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1 Summary 

Soils are the largest terrestrial reservoir of organic carbon (OC). Substantial proportions of the 

stored OC are found in stabilized form in deeper soil layers. Beside the quality and quantity of C 

input from plant biomass, C storage in soil is primarily controlled by the microbial decomposition 

capacity. Various physical, chemical and biological factors (e.g., substrate availability, 

temperature, water content, pH, texture) vary within soil profiles and directly or indirectly 

influence the abundance, composition and activity of microbial communities and thus the 

microbial C turnover. While soil microbiological research has so far focused mainly on processes 

in topsoil, the mechanisms of C storage and turnover in subsoil are largely unknown. The 

objective of the present thesis was therefore to investigate the specific influence of substrate 

availability and different environmental factors as well as their interactions on microbial 

communities and their regulatory function in subsoil C-cycling. 

This objective was addressed in three studies. In the first and second study, one-year field 

experiments were established in which microbial communities from different soil depths were 

exposed to altered habitat conditions to identify crucial factors influencing the spatial and 

temporal development of microbial abundance and substrate utilization within soil profiles. This 

was achieved by reciprocal translocation of soils between subsoil horizons (first study) and 

topsoil and subsoil horizons (second study) in combination with addition of 13C-labelled 

substrates and different sampling dates. In the third study, a flow cascade experiment with soil 

columns from topsoil and subsoil horizons and soil minerals (goethite) coated with 13C-labelled 

organic matter (OM) was established. This laboratory experiment investigated the importance of 

exchange processes of OM with reactive soil minerals for the quality and quantity of dissolved 
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OM and the influence of these soil microhabitats on microbial abundance and community 

composition with increasing soil depth. 

For investigating the microbiological objectives, both classic soil biological methods 

(microbial C and N, enzyme activity, ergosterol) and modern molecular methods (quantitative 

polymerase chain reaction (qPCR), phospholipid fatty acid analysis (PLFA)) were utilized. The 

use of 13C-labelled substrates allowed to determine flows between different C pools using 

isotopic ratio mass spectrometry (IRMS). 

In the first study, the reciprocal translocation of subsoils from different soil depths revealed 

that due to comparable micro-climatic conditions and soil textures within the subsoil profile, no 

changes in microbial biomass, community composition and activity occurred. Moreover, 

increasing microbial substrate utilization in relation to the quantity of added substrate indicated 

that deep soil layers exhibit high potential for microbial C turnover. However, this potential was 

constrained by low soil moisture in interplay with the coarse soil texture and the resulting micro-

scale fragmentation of the subsoil environment. The bacterial substrate utilization was more 

affected by this spatial separation between microorganisms and potentially available substrate 

than that of fungi, which was further confirmed by the translocation experiment with topsoil and 

subsoil in the second study. While the absolute substrate utilization capacity of bacteria decreased 

from the more moist topsoil to the drier subsoil, fungi were able to increase their substrate 

utilization and thus to partially compensate the decrease in C input from other sources. 

Furthermore, the addition of root litter as a preferential C source of fungal decomposer 

communities led to a pronounced fungal growth in subsoil. The third study demonstrated the high 

importance of reactive soil minerals both in topsoil and in subsoil for microbial growth due to 

extensive exchange processes of OM and the associated high availability of labile C. In particular 
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copiotrophic bacteria such as Betaproteobacteria benefited from the increased C availability 

under non-limiting water conditions leading to a pronounced increase in bacterial dominance in 

the microbial communities of these soil micro-habitats. 

In conclusion, this thesis showed that subsoil exhibits great potential for both bacterial and 

fungal C turnover, albeit this potential is limited by various factors. This thesis, however, allowed 

to determine the specific effects of these factors on bacteria and fungi and their function in 

subsoil C-cycling and thus to identify those factors of critical importance. The micro-climate in 

subsoil, in particular soil moisture, was the primary factor limiting bacterial growth and activity, 

whereas fungi were more strongly restricted by substrate limitations. With regard to future 

dynamics of long-term stabilized C in subsoil, e.g., under changing temperature and precipitation 

regimes, the fungal function in C-cycling is of particular interest due to the higher drought stress 

resistance of many fungal taxa and should be further investigated. 
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2 Zusammenfassung 

Böden sind der größte terrestrische Speicher von organischem Kohlenstoff (OC). Ein 

erheblicher Anteil des gespeicherten OC liegt hierbei in tieferen Bodenschichten in stabilisierter 

Form vor. Neben der Qualität und Quantität des Eintrages aus pflanzlicher Biomasse wird die C-

Speicherung in Böden hauptsächlich durch die mikrobielle Abbauleistung gesteuert. Eine 

Vielzahl von physikalischen, chemischen und biologischen Faktoren (z.B. Substratverfügbarkeit, 

Temperatur, Wassergehalt, pH, Textur) variieren innerhalb von Bodenprofilen und beeinflussen 

direkt oder indirekt die Abundanz, Zusammensetzung und Aktivität mikrobieller Gemeinschaften 

und somit den mikrobiellen C-Umsatz. Während die bodenmikrobiologische Forschung bisher 

verstärkt auf Prozesse im Oberboden ausgerichtet war, sind die Mechanismen der Speicherung 

und des Umsatzes von C im Unterboden weitgehend unbekannt. Das Ziel der vorliegenden Arbeit 

war es daher, den spezifischen Einfluss von Substratverfügbarkeit und verschiedener 

Umweltfaktoren sowie ihrer Wechselwirkungen auf die mikrobielle Gemeinschaft und ihre 

regulierende Funktion im C-Kreislauf des Unterbodens zu untersuchen. 

Dieses Ziel wurde durch drei Studien angegangen. In der ersten und zweiten Studie wurden 

jeweils einjährige Feldexperimente etabliert, in denen Mikroorganismengemeinschaften 

verschiedener Bodentiefen veränderten Habitatbedingungen ausgesetzt wurden, um 

entscheidende Einflussgrößen auf die räumliche und zeitliche Entwicklung ihrer Abundanz und 

Substratnutzung innerhalb von Bodenprofilen zu identifizieren. Dies wurde durch eine 

wechselseitige Translokation von Böden zwischen Unterbodenhorizonten (erste Studie) und 

Oberboden- und Unterbodenhorizonten (zweite Studie) in Kombination mit Zugabe von 13C-

markierten Substraten und mehreren Probennahmezeitpunkten möglich. In der dritten Studie 

wurde ein Fluss-Kaskaden-Experiment mit Bodensäulen aus Ober- und Unterbodenhorizonten 
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und mit 13C-markiertem organischen Material (OM) belegten Bodenmineralen (Goethit) etabliert. 

Mit diesem Laborexperiment wurde die Bedeutung von Austauschprozessen von OM mit 

reaktiven Bodenmineralen für die Qualität und Quantität von gelöstem OM sowie der Einfluss 

dieser Boden-Mikrohabitate auf die mikrobielle Abundanz und Gemeinschaftszusammensetzung 

mit zunehmender Bodentiefe untersucht. 

Für die Bearbeitung der mikrobiologischen Fragestellungen wurden sowohl klassische 

bodenbiologische (Enzymaktivität, mikrobieller C und N, Ergosterol) als auch moderne 

molekularbiologische Methoden (quantitative Polymerase-Kettenreaktion (qPCR), Phospholipid-

Fettsäuren-Analyse (PLFA)) genutzt. Der Einsatz 13C-markierter Substrate ermöglichte die 

Bestimmung von Flüssen zwischen C-Pools mittels Isotopenverhältnis-Massenspektrometrie 

(IRMS). 

Durch die wechselseitige Translokation von Unterböden verschiedener Ursprungstiefen in der 

ersten Studie zeigte sich, dass aufgrund vergleichbarer mikroklimatischer Bedingungen und 

Bodentexturen innerhalb des Unterbodenprofils keine Veränderungen der mikrobiellen Biomasse, 

Gemeinschaftszusammensetzung und Aktivität auftraten. Die in Abhängigkeit von der 

Zugabemenge gesteigerte mikrobielle Substratnutzung verdeutlichte darüber hinaus, dass in 

tieferen Bodenschichten ein hohes Potential zum mikrobiellen C-Umsatz besteht. Dieses wurde 

jedoch durch die geringe Bodenfeuchtigkeit im Zusammenspiel mit der groben Bodentextur und 

einer daraus resultierenden kleinräumigen Fragmentierung im Unterboden stark eingeschränkt. 

Die bakterielle Substratnutzung war durch diese räumliche Trennung von Mikroorganismen und 

potentiell verfügbarem Substrat stärker betroffen als die pilzliche, was sich im 

Translokationsexperiment mit Ober- und Unterböden der zweiten Studie bestätigte. Während die 

absolute Substratnutzungskapazität der Bakterien vom feuchteren Oberboden zum trockeneren 
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Unterboden abnahm, konnten Pilze diese steigern und somit die Abnahme des C-Eintrages aus 

anderen Quellen teilweise ausgleichen. Des Weiteren führte die Wurzelstreu-Zugabe als 

präferentielle C-Quelle pilzlicher Zersetzergemeinschaften zu einem deutlichen Pilzwachstum im 

Unterboden. Die dritte Studie verdeutlichte, dass reaktive Minerale sowohl im Oberboden als 

auch im Unterboden aufgrund ausgeprägter Austauschprozesse von OM und einer damit 

einhergehenden hohen Verfügbarkeit von labilem C von großer Bedeutung für mikrobielles 

Wachstum sind. Insbesondere profitierten kopiotrophe Bakterien wie Betaproteobacteria unter 

den nicht wasserlimitierten Bedingungen von der gesteigerten C-Verfügbarkeit, was zu einer 

deutlichen Steigerung der bakteriellen Dominanz in der mikrobiellen Gemeinschaft dieser 

Boden-Mikrohabitate führte. 

Zusammenfassend wurde durch diese Arbeit deutlich, dass in Unterböden ein großes Potential 

sowohl zu bakteriellem als auch pilzlichem C-Umsatz vorhanden ist. Dieses Potential wird 

jedoch durch verschiedene Faktoren begrenzt. Es war durch diese Arbeit indes möglich, die 

spezifische Wirkung dieser Faktoren auf Bakterien und Pilze und ihre Funktion im C-Kreislauf 

des Unterbodens aufzuzeigen und somit jene von entscheidender Bedeutung zu identifizieren. So 

war das Mikroklima im Unterboden, insbesondere Bodenfeuchte, der primär limitierende Faktor 

bakteriellen Wachstums und Aktivität, wohingegen pilzliches Wachstum stärker durch 

Substratlimitierungen begrenzt wurde. In Hinblick auf die zukünftige Dynamik des bisher 

langfristig stabilisierten C im Unterboden, z.B. unter Einfluss veränderter Temperatur- und 

Niederschlagsregime, ist auf Grundlage der Erkenntnisse dieser Arbeit die pilzliche Funktion im 

C-Kreislauf aufgrund der höheren Trockenstressresistenz vieler pilzlicher Taxa von besonderem 

Interesse und sollte weitergehend erforscht werden. 
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3  General Introduction 

3.1 Soil as carbon reservoir 

Soil organic matter (SOM) contains more than three times as much carbon (C) as the 

atmosphere or the terrestrial vegetation (Schmidt et al., 2011). Globally, the soil organic carbon 

(SOC) pool is estimated to be approximately 1500 gigatonnes (Gt; 1 Gt = 1 billion tonnes) in the 

first meter of soil (Jobbagy and Jackson, 2000). Soil C storage capacities show enormous 

variations over different spatial (local to global) scales. Among different biomes, for example, 

forest soils are of major importance for the global C-cycle due to their high C stocks and the large 

area covered by forests (Lal, 2005). This applies – as SOC stocks generally increase as the mean 

annual temperature decreases – in particular for forest soils in the northern hemisphere and thus 

in Europe with estimations of the European forest soil C stocks of up to 79 Gt (Baritz et al., 2010; 

Schils et al., 2008; Stockmann et al., 2013). 

SOC pools represent a dynamic equilibrium between gains and losses of C (Lal, 2004). C 

input into soil originates from above- and belowground litter, root exudates, dissolved organic 

carbon (DOC) and sediment deposition. The sum of all dead material in varying states of 

decomposition in the soil containing organic carbon (OC) is defined as soil organic matter 

(SOM). The primary loss of C from soil occurs via carbon dioxide (CO2) efflux due to microbial 

(heterotrophic) and root (autotrophic) respiration, although DOC leaching, erosion and anaerobic 

microbial respiration (methane; CH4) can also be of importance (Sollins et al., 1996; Davidson 

and Janssens, 2006). Fundamental controls of SOC fluxes are soil microorganisms as primary 

degraders of SOM as well as the net primary production (NPP) of plants and the type of organic 

matter (OM) inputs (Stockmann et al., 2013). All these constituents are interconnected in various 

manners and mutually influence each other: 
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Soil microorganisms degrade SOM to yield C for energy production (catabolic pathway) and 

growth (anabolic pathway) and thus play a crucial role in soil C-cycling with major implications 

for SOC turnover and sequestration (Frey et al., 2013). Moreover, soil microorganisms have a 

key role in nutrient cycling and contribute to soil fertility, and plant diversity and growth through 

a variety of direct (e.g., nitrogen (N) -fixing bacteria) and indirect (e.g., nutrient mineralization of 

free-living microbes) effects (van der Heijden et al., 2008). 

Plant growth and diversity determine the quantity and quality of above- and belowground 

litter inputs into the soil and are major controls on SOM formation and decomposition. For 

example, high C:N as well as high lignin:N ratios of plant residues lead to reduced degradability 

greatly influencing C and nutrient dynamics in soil (e.g., Silver and Miya, 2001). Also 

rhizodeposits in form of ,e.g., exudates or C flow from plants to mycorrhizal and bacterial 

symbionts for nutrient acquisition substantially account for OC allocations from plant to soil 

respectively microbial OC pools. Consequently, plant inputs can be described as the controlling 

pump of the C-cycle (Paul, 2016; Jones et al., 2009).  

 

3.2 Deep soil – source or sink for carbon? 

An increasing number of studies in recent years assessing soil C stocks included not only C 

stored in the upper layers of soil, but also C stored in deeper soil layers. The global C stocks in 

the top three meters of soil, for example, were estimated to be 2344 Gt, or 56% more C than the 

1500 Gt stored in the first meter of soil (Jobbagy and Jackson, 2000). Therefore, subsoils play an 

important role in the global C-cycle and the response of this enormous C reservoir to changing 



3 General Introduction 
 

9 
 

conditions due to e.g. global climate change or human impact is of particular relevance 

considering the function of soil as source or sink of C. 

A stronger focus on subsoil C-cycling is also of great importance since the mechanisms of C 

storage and turnover in deeper soil differ clearly from those in topsoil. The main sources of deep 

soil OM are plant roots and root exudates, dissolved organic matter (DOM) and via bioturbation 

translocated OM (Rumpel and Kögel-Knabner, 2011). Compared to topsoil, subsoil exhibits 

substantially lower C densities as well as a different chemical composition of the OM (Rumpel et 

al., 2002). Important processes contributing to the altered chemical composition of OM in deeper 

soil are the temporal and selective immobilization (sorption, precipitation) as well as microbial 

mineralization and transformation of DOM percolating down the soil profile. As a consequence, 

with increasing soil depth OM pools consist to a greater extent of aged plant-derived compounds 

and microbial residues (Kaiser and Kalbitz, 2012; Liang and Balser, 2008). Contrary, important 

pathways for fresh OC inputs into deeper soil are preferential flow paths differing from the soil 

matrix by higher concentrations and younger age of the C (Bundt et al., 2001). However, large 

areas in subsoil remain unaffected by fresh OC inputs and consequently subsoil OC pools exhibit 

a more heterogeneous distribution and considerably higher radiocarbon ages (up to several 

thousand years before present; B.P.) than those in topsoil (largely modern age) (Rumpel and 

Kögel-Knabner, 2011). The increasing age of the OC indicates an enhanced stabilization and a 

prolonged residence time of OM with soil depth due to pronounced inhibition of microbial 

degradation processes (Rumpel et al., 2004). Different mechanisms contributing to enhanced 

stabilization and long-term storage of the OM with increasing soil depth have been discussed: 

Chemical recalcitrance describes the reduced biodegradability of OM due to a highly stable 

inherent chemical structure of certain compounds (e.g., lignin) of the OM. For example, root litter 
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is an important C source in deep soil but comprises high lignin concentrations and might 

consequently contribute to an increased stabilization of subsoil OM due to the selective 

preservation of this chemically recalcitrant OM compound. However, the actual contribution of 

recalcitrant OM compounds to stabilization processes in deeper soil is controversially discussed, 

since recalcitrance was found to be ,e.g., only of major relevance in active surface layers and at 

early decomposition stages (Rasse et al., 2005; Rumpel and Kögel-Knabner, 2011; von Lützow et 

al., 2006). 

Physical protection implies the occlusion of OM within micropores or aggregates leading to 

spatial protection against microbial decomposition. The protection is caused by reduced access to 

OM for microorganisms and their enzymes (e.g., decreased rates of enzyme diffusion into the 

inner space of aggregates) and reduced oxygen concentrations inhibiting aerobic decomposition. 

In subsoil, the physical protection of occluded particulate organic matter (oPOM) and clay 

associated OM in micro-aggregates has been found to be of particular importance. (Lützow et al., 

2006; Rumpel and Kögel-Knabner, 2011). 

Physico-chemical protection is the stabilization of OM by interaction with reactive soil 

minerals (e.g., adsorption to clay minerals or iron (Fe) oxides). The adsorption affinity of OM to 

soil minerals depends on the chemical structure of the OM and on the surface area and properties 

of the soil minerals. The resulting binding strength at the organo-mineral surfaces increases the 

resistance of OM against microbial and enzymatic attack and might ensure an effective protection 

against microbial decomposition. The radiocarbon age of C was found to be related to the mineral 

size fraction, with highest amounts of C with old radiocarbon ages on mineral fractions < 20 µm. 

Moreover, the protection of OM against microbial decomposition is further enhanced by 
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combined processes of adsorption and occlusion (Dungait et al., 2012; Kaiser and Guggenberger, 

2000). 

Energy limitation of microbial SOM turnover describes the absence of, respectively the restricted 

access to fresh OC as energy source for soil microorganisms inhibiting microbial decomposition 

processes and thus maintaining the stability of SOC. Inputs of fresh OC into subsoil as an 

essential energy source for (fast) microbial C turnover are largely limited to preferential flow 

paths and root channels, while large areas of the soil matrix in deeper soil are disconnected from 

frequent fresh OC inputs and show very low C turnover rates. Consequently, SOC pools in 

subsoil show heterogeneous and spatially distinct radiocarbon ages varying between modern and 

up to several thousand years depending on amount and composition of OC inputs (Fontaine et al., 

2007; Chabbi et al., 2009). 

Increasing releases of C from subsoil OC pools can be induced by intensified destabilization 

processes. Destabilization is the overall process leading to lower resistance of OM against 

degradation due to increasing microbial accessibility or decreasing recalcitrance (Sollins et al., 

1996). This increasing vulnerability of stabilized OC in subsoil could be facilitated by different 

direct or indirect effects of global climate change (e.g., increased soil temperature) or other 

human-induced environmental changes (see chapter 3.4). 

 

3.3 Microbial biomass, community composition and activity with soil depth 

The microbial biomass, community composition and activity are subject to great changes with 

increasing soil depth (Blume et al., 2002). Microorganisms in subsoil are exposed to distinctly 

different habitat conditions than those in topsoil, since almost all driving factors are typically 
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changing with increasing soil depth (Eilers et al., 2012). This includes quantitative and qualitative 

C availability, nutrient status, soil temperature and moisture, pH, and oxygen (O2) concentration. 

The spatial variability of all of these individual factors and their influence on microbial 

characteristics have been investigated in several studies (e.g., Holden and Fierer, 2005; Hansel et 

al., 2008; Herold et al., 2014). 

The microbial biomass largely depends on C availability indicated by strongly decreasing 

microbial abundances in response to lower C concentrations with increasing soil depth (Taylor et 

al., 2002; Fierer et al., 2003). Furthermore, the increasing heterogeneity of C with depth is 

reflected in a patchy distribution of the microbial biomass in deep soil with highest microbial 

abundances in hotspots of substrate availability such as preferential flow paths (Bundt et al., 

2001; Nunan et al., 2003). Nevertheless, deeper soil contains substantial numbers of 

microorganisms due to the large volume of subsoil horizons and the potential for C turnover and 

storage is immense (Eilers et al., 2012). 

The microbial community composition in subsoil environments shows a decreased microbial 

diversity and species richness compared to microbial communities in topsoil (Fierer et al., 2003; 

Agnelli et al., 2004). For example, the bacterial diversity in subsoil of a Californian grassland site 

was found to be 75% lower than in surface soil (LaMontagne et al., 2003). Differences in 

microbial communities within a few decimetres of soil depth can be as large as between 

microbial communities of soils from different biomes with distances of several thousand 

kilometres (Eilers et al., 2012). Previous studies have found a characteristic pattern of the 

microbial community structure with soil depth: While the relative proportion of Gram-positive 

bacteria increases in microbial communities with depth, the proportions of Gram-negative 

bacteria and fungi decrease (Blume et al., 2002; Fierer et al., 2003). These typical changes in the 



3 General Introduction 
 

13 
 

microbial community structure are largely attributed to differences in resource availability with 

soil depth and to microbial group-specific feeding strategies (Kramer and Gleixner, 2008), 

although also environmental factors such as pH, temperature or moisture as well as their potential 

interactions among each other and with resource availability have been identified as important 

determinants (Blagodatskaya and Anderson, 1998; Brockett et al., 2012; DeAngelis et al., 2015). 

Differentiation of individual microbial taxa/phyla according to their environmental or resource 

requirements allows a detailed characterization of microbial communities and their function 

within soil profiles. While copiotrophic microorganisms (r-strategists, fast growth rates) such as 

Betaproteobacteria and Bacteroidetes have high resource requirements and predominate in e.g. 

rhizosphere soils, oligotrophic microorganisms (K-strategists, slow growth rates) such as 

Acidobacteria and Actinobacteria are most abundant under low nutrient content and qualitatively 

and quantitatively poor C supply such as in bulk soil compartments (Fierer et al., 2007; Hartmann 

et al., 2009). In addition to this metabolism- or resource-based classification, the environmental 

requirements (e.g., pH or soil moisture conditions) of microbial taxa/phyla allow a further 

specification of the microbial community and function. For example, Acidobacteria are most 

abundant at low pH and moist soil conditions, whereas Actinobacteria exhibit opposite 

abundance patterns (Lauber et al., 2009; Barnard et al., 2013). 

The microbial activity - indicated either as functional (respiration, mineralization) or 

enzymatic activity - shows pronounced decreases with increasing soil depth reflecting altered 

habitat conditions within soil profiles (Taylor et al., 2002). As with microbial biomass and 

community structure, resource availability is the most critical factor influencing the microbial 

activity with soil depth. Moreover, there is a strong relationship between microbial activity and 

biomass, so that the specific metabolic activities of microorganisms in subsoil and topsoil are 

similar when normalized to microbial biomass (Fang and Moncrieff, 2005; Stone et al., 2014). 
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Characteristic differences in microbial activity within soil profiles are pronounced enzymatic 

activities in degradation processes of recalcitrant OM as well as higher sensitivity to nutrient and 

temperature increases in subsoil than in near-surface horizons (Herold et al., 2014; Fierer et al., 

2003b). Subsoils show an increased occurrence of oxidative enzymes (e.g., peroxidase) involved 

in recalcitrant OM degradation, while soil compartments with higher proportions of more easily 

degradable substrates show enhanced rates of hydrolytic enzyme activities (e.g., β-glucosidase) 

(Uksa et al., 2015). Moreover, enzyme activity is affected by soil moisture, consequently spatial 

and temporal variations in soil moisture can distinctly influence the expression of enzyme activity 

within soil profiles (Baldrian et al., 2010; Brockett et al., 2012). The production of specific 

enzymes is related to the microbial community composition, thus enzyme activity patterns 

reflects shifts in microbial communities and their functioning under changing habitat conditions 

with increasing soil depth (Waldrop et al., 2000). 

 

3.4 Changing habitat conditions and microbial SOM decomposition 

Various natural (e.g., climate, parent material) and anthropogenic (e.g., land use type, 

management intensity) factors and the complex interplay of these factors directly or indirectly 

influence the microbial decomposition activity as well as plant growth and diversity and thus the 

development of SOC stocks within soil profiles (Grüneberg et al., 2010). Consequently, the 

feedback of SOC pools to altered environmental conditions such as temperature or moisture is of 

major concern as C releases from soil due to increasing microbial SOM decomposition are 

expected to exceed the C input via enhanced primary production of plants in future climate 

change scenarios (Davidson and Janssens, 2006). In this regard, subsoil OC pools are of 

particular relevance, since stable C was found to be at least as vulnerable as more labile C 
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fractions to microbial decomposition under changing environmental conditions (Guenet et al., 

2012; Fierer et al., 2005). 

Soil microorganisms as main driver of SOM decomposition respond highly sensitive to 

increases in soil temperature with accelerated activity, and changes in microbial biomass and 

community composition (e.g., shifts from colder- to warmer-adapted taxa) affecting SOM 

decomposition and thus the efflux of CO2 from soil C pools to the atmosphere via heterotrophic 

microbial respiration (Bardgett et al., 2008; Frey et al., 2008; DeAngelis et al., 2015). However, 

long-term estimations of the soil-atmosphere C exchange are subject to great uncertainties, since, 

e.g., SOM decomposition and CO2 emission were found to show rapid increases following soil 

warming, but decline again after a certain time (Melillo et al., 2017). This phenomena has been 

explained by thermal adaption of the microbial decomposer community to altered temperature 

regimes, depletion of readily available substrates over time and varying temperature sensitivity of 

microbial decomposition dependent on substrate C quality (Bradford, 2013; Conant et al., 2011; 

Fierer et al., 2005). 

Also changes in soil moisture - often accompanied by altered soil temperature - can cause 

changes in microbial biomass, composition and function and thus in SOM decomposition rates. 

Microorganisms can respond either directly to changing soil moisture conditions, or indirectly via 

related changes in pH or altered C translocation within soil profiles (Evans et al., 2014). 

Furthermore, changes in duration and frequency of droughts can lead to moisture-related 

limitations of the microbial activity and thus to an inhibition of C turnover, thereby altering the 

development of soil C pools (Bardgett et al., 2008). In this context, also the drying and rewetting 

patterns and the “stress history” of soils have great influence on microbial C dynamics, with rapid 
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rewetting of dry soils potentially causing an increased release of CO2 due to a strongly enhanced 

microbial activity (Fierer and Schimel, 2002).  

Altered plant productivity and diversity - either due to changes in land use or climatic 

conditions - have also great impact on the development of SOC pools. Shifts in plant community 

composition or increased photosynthesis rates due to increased atmospheric CO2 concentrations 

can lead to an enhanced input as well as altered composition of plant-derived C and thus 

stimulate increases in microbial abundance and activity, and enhanced C mineralization (priming 

effects) (Bardgett et al., 2008). With regard to the stability of subsoil C pools, an increased input 

of labile C into deeper soil is of particular relevance, since the relative magnitude of priming 

effects increases with soil depth (Karhu et al., 2016). Consequently, increasing labile C inputs 

accelerate the microbial activity in particular in subsoil leading to an increased decomposition of 

long-term stabilized C (Bernal et al., 2016; Fontaine et al., 2007). However, predictions on the 

effects of changing habitat conditions on the response of SOC pools and microbial degradation 

capacities within soil profiles are largely unreliable due to complex interactions of various 

factors. For example, when considering soil C dynamics, the mutual influence of plant and 

microbial characteristics (e.g., biomass or diversity) on each other must be taken into account 

(van der Heijden et al., 2008). 

 

3.5 Stable isotopes in the research of soil carbon dynamics 

The application of stable C isotopes in investigations of soil C fluxes offers a wide range of 

new research perspectives using either natural abundance or labelling techniques. With regard to 

microbial C pools, for example, it is possible to track C flows at different taxonomic resolutions 



3 General Introduction 
 

17 
 

from the total microbial biomass down to specific microbial taxa (e.g., 13C microbial biomass 

(13Cmic), 13C phospholipid fatty acid (13C-PLFA) or 13C deoxyribonucleic acid (13C-DNA) 

analyses). 

The most common C isotopes 12C und 13C have generally a natural abundance of 

approximately 98.982% and 1.108% of total C, respectively. 

Natural abundance techniques use variations in the ratio of 12C and 13C (or 14C) between 

different C pools to trace sources and fluxes of C in soil environments. (Staddon, 2004). A well-

known example and frequently used application of the natural abundance approach is the 

vegetation change from C3 to C4 plants or vice versa in SOM turnover studies (e.g., Balesdent et 

al., 1988).  

Labelling methodologies comprise the use of substrates either enriched or depleted in rarer C 

isotopes (usually 13C or 14C) allowing to trace the fate of C from the introduced substrate into 

different C pools. An advantage of the labelling approach in comparison to the natural abundance 

approach is the higher sensitivity towards, e.g., low microbial C incorporation/turnover rates or 

large background C pools. Moreover, labelling of specific C pools/substrates of different 

complexity (e.g., CO2, cellulose or whole plants) is possible and a variety of different labelled 

substrates are commercially manufactured. Consequently, the isotopic tracer can be introduced to 

the soil C-cycle either by labelling of the vegetation or single plants with labelled CO2 (e.g., via 

pulse labelling) or by addition of readily labelled substrates such as plant litter (Staddon, 2004). 

Complex investigations of, e.g., soil microbial food webs (e.g., Lueders et al., 2006) or the 

identification of soil microorganisms involved in specific processes (e.g., Bull et al., 2000) 

require the use of compound-specific isotope analysis respectively stable isotope probing (SIP) 
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analyzing specific biomarkers (e.g., 13C-PLFA or 13C-DNA) (Radajewski et al., 2000; Boschker 

and Middelburg, 2002; Dumont and Murrell, 2005). The SIP method was first introduced for 

PLFA analysis (13C-PLFA) and is widely applied. The 13C-PLFA analysis is an important culture-

independent approach and used for investigations on the contribution of specific microbial groups 

(e.g., fungi) and metabolic pathways in C-cycling (Evershed et al., 2006). For example, using this 

technique, it was shown that the (arbuscular) mycorrhizal pathway is more important than direct 

root exudation for the transfer of recently assimilated C from plants to soil microorganisms 

(Kaiser et al., 2015) or that the microbial community structure has a specific temporal dynamic 

during decomposition processes (Moore-Kucera and Dick, 2008). 
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4  Objectives 

The mechanisms of C storage and turnover in subsoil as well as the physical, chemical and 

biological factors influencing these mechanisms have largely not been deciphered (Rumpel and 

Kögel-Knabner, 2011). Consequently, the comprehensive investigation of subsoil C dynamics in 

beech forest ecosystems in the north-west of Germany is the overall research objective of the 

SUBSOM research group. The focus of the present thesis, which was compiled within the 

framework of the research group, is on microbial decomposer communities and their regulatory 

function in C-cycling under the specific habitat conditions of subsoil environments. Habitat 

conditions with decisive influence on microbial parameters include substrate availability 

(quantity and type) as well as different micro-climatic conditions (soil temperature and moisture) 

and other environmental conditions such as pH, soil texture and oxygen availability (Waldrop 

and Firestone, 2004; Fierer et al., 2003; Allison et al., 2013). All of these factors directly or 

indirectly influence each other and show distinct changes with increasing soil depth. The effects 

of these depth-dependent changes on microbial decomposer communities and their regulative 

function in C-cycling are key aspects in the understanding of subsoil C-cycling and consequently 

their identification is the primary aim of this thesis. The thesis is structured into three studies: 

The first and second study were vertical and reciprocal soil translocation experiments with 

amendments of 13C-labelled substrates (cellulose, root litter) to the soil samples. The 

translocation exposed microorganisms from specific soil depths to different habitat conditions 

within the soil profile, while the substrate amendments increased the substrate availability for 

microbial decomposer communities. The interplay of the various factors acting on soil 

microorganisms was taken into account by conducting the two translocation experiments under in 

situ conditions. The use of 13C-labelled substrates allowed following the spatial and temporal 
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development of C flow from the substrates into different soil C pools. Both field experiments 

were conducted with soil samples from an acid and sandy Dystric Cambisol at the main 

experimental site of the SUBSOM research group in the Grinderwald, an approximately 100-year 

old beech (Fagus sylvatica L.) forest ~ 40 km north-west of Hannover in Lower-Saxony, 

Germany. 

The first reciprocal translocation experiment with subsoil samples derived from 20 cm (upper 

subsoil) and 120 cm (lower subsoil) soil depth and particulate 13C-labelled cellulose as additional 

substrate was conducted from June 2013 to June 2014 with soil samplings after 1, 4 and 12 

months. Cellulose was used as additional substrate as it is a frequent component of plant biomass 

with known degradation pathways. The study was aimed to investigate the response of microbial 

communities from contrasting subsoil horizons to altered habitat conditions and different 

substrate availabilities. It was hypothesized (i) that translocation of different subsoil samples 

changes local environmental conditions (DOC, nutrient inputs, oxygen availability as well as 

amplitudes of temperature and water availability) and consequently soil microorganisms and C 

turnover and (ii) that increases in substrate availability change microbial community composition 

and function in subsoils, with relatively greater effects as soil depth increases. A specific focus of 

this study was on the response of the bacterial communities as well as of enzymatic activities to 

the different treatments. 

In the second reciprocal translocation experiment, soil samples derived from 5-10 cm (topsoil) 

and 110-115 cm (subsoil) soil depth were incorporated into 5, 45 and 110 cm soil depth to 

include a wide range of habitat conditions within the soil profile. The experiment started in June 

2014 and had a total duration of 12 months with four soil samplings in three month intervals. The 

addition of 13C-labelled root litter as important C source in top- and subsoil habitats allowed 
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tracing the flow of C from a natural and complex substrate into different C pools. The research 

focus of this study was on the potentially inhibiting effects of subsoil habitat conditions on the 

succession of microbial communities and their decomposition capacity and on factors influencing 

the rapid decline of fungal microorganisms with increasing soil depth (13Cmic; 13C-PLFA, 

ergosterol). Consequently, the hypotheses were that habitat conditions in subsoil (i) slow down 

the succession of root litter-decomposing fungi and bacteria and (ii) reduce microbial root-C 

utilization rates. 

The third study was a laboratory flow cascade experiment with three connected and 

undisturbed soil columns from different depths of Dystric and Eutric Cambisol soils and 

integrated thin goethite layers in each column. The quality and quantity of DOM as an important 

microbial C source throughout soil profiles differs substantially between surface and deeper soil 

layers. These changes during the passage through the soil profile might be driven by (selective) 

sorption processes and – as postulated in the “cascade model” (Kaiser and Kalbitz, 2012) - by 

additional stepwise exchange processes on reactive minerals such as goethite. The experiment 

was conducted to quantify the OC adsorption and desorption and net OC exchange at goethite 

surfaces using 13C labelling of OM, as well as to investigate the associated microbial community 

patterns (13C analysis in solid and solution phase, NanoSIMS, qPCR). It was hypothesized that (i) 

the input of plant-derived DOM to mineral topsoils leads to selective adsorption of plant-derived 

compounds to reactive surfaces and that (ii) fresh DOM input partially replaces older mineral-

associated OM, which subsequently gets remobilized and further transported to deeper soil. The 

third hypothesis was that (iii) these mineral-organic associations act as biogeochemical hotspots 

of high resource availability leading to changes in microbial abundance and community 

composition. 
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Abstract 

While habitat conditions influencing the abundance of microorganisms in topsoil are well 

known, these dynamics have been largely unexplored in deeper soil horizons. We investigated the 

effects of different substrate availabilities and environmental conditions on microbial community 

composition and carbon flow into specific groups of microorganisms in subsoils using a 

reciprocal soil transfer experiment within an acid and sandy Dystric Cambisol from a ~100-year 

old European beech (Fagus sylvatica L.) forest in Lower Saxony, Germany. Containers filled 

with subsoil from 10-20 cm (SUB20) and 110-120 cm (SUB120) soil depths and with additions 

of different amounts of 13C labelled cellulose (1% and 5% of the respective organic carbon 

content of both soil layers) were exposed either in their home field environment or transferred 

reciprocally between SUB20 and SUB120 horizons for periods of one, four and twelve months. 

During the exposure of twelve months, 13C accumulated up to 15 percent in total microbial 

biomass and up to 25 percent in fungal PLFAs. Similar microbial 13C incorporation rates in 

SUB20 samples located at either 20 or 120 cm depth indicated comparable microclimatic 

conditions in both soil environments with no depth-dependent effects on the decomposer 

communities. While low nitrogen availability (when primary C-limitation was alleviated) and 

water content limited bacterial growth and activity at both depths, fungal abundance and activity 

were less affected due to their ability to efficiently exploit resources in surrounding soil by 

hyphal growth and higher drought resistance. Consequently, bacterial PLFAs (phospholipid fatty 

acids) incorporated less 13C than fungi.  The relatively high, from 1 % to 5 % cellulose addition 

linearly increased 13C incorporation rates in SUB120 samples at 120 cm depth, clearly showed 

the potential of efficient carbon turnover in deeper soil layers. Spatial separation between subsoil 

microorganisms and their substrates may therefore be an important factor influencing carbon 

accumulation in subsoil.  
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5.1 Introduction 

At the global scale, soil organic carbon (SOC) represents the largest active terrestrial organic 

carbon (C) pool, and prediction of future SOC content is a major uncertainty in climate change 

scenarios (Lal, 2004; Kandeler et al., 2005). Despite the much lower C concentrations in subsoil 

than in topsoil horizons (Jobbagy and Jackson, 2000), more than 50 % of organic carbon is stored 

in subsoils below 30 cm soil depth (Batjes, 1996). This highlights the importance of subsoils for 

accurate estimates of global SOC pools and their role as sources or sinks of greenhouse gases 

(Harrison et al., 2011; Lal, 2004). However, there is a discrepancy between the importance of 

carbon pools in surface and subsurface soil horizons and the limited number of studies focusing 

on the key role of soil microorganisms in terrestrial C cycling (e.g. Brockett et al., 2012; Zumsteg 

et al., 2013). 

Carbon dynamics in subsoil vary from those in topsoil; subsoils harbour relatively more 

stabilised soil organic matter (SOM) than topsoils, as shown by the greater radiocarbon age of 

SOM in subsoil horizons (Rumpel et al., 2002). A variety of mechanisms have been suggested to 

explain this phenomenon. For example, the enhanced stabilisation of SOM is thought to be 

caused by spatial inaccessibility and organo-mineral interactions, separating soil microorganisms 

from SOM and leading to a heterogeneous distribution of stabilized C compounds (Lützow et al., 

2006; Chabbi et al., 2009; Salome et al., 2010; Dungait et al., 2012). Chemical recalcitrance, 

however, has been suggested as less important than stabilization of organic C by mineral 

interactions (Eusterhues et al., 2005).  
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The lack of fresh C input as an energy source for microorganisms has been discussed as 

another factor which inhibits C mineralization in subsoils (Fontaine et al., 2007). The main 

sources of potentially available subsoil OM are root exudates and dissolved organic carbon 

(DOC) (e.g. Jobbagy and Jackson, 2000; Kaiser and Guggenberger, 2000). However, C 

availability in subsoils is highly variable, since the downward movement of these fresh C inputs 

occurs along preferential flow paths which are stable for long time periods (Bundt et al., 2001). 

Large soil volumes are therefore disconnected from the supply of fresh organic matter and result 

in low C turnover rates. Consequently, microorganisms in subsoil are heterogeneously 

distributed, with preferential colonisation in pores which are connected to preferential flow paths 

(Bundt et al., 2001; Nunan et al., 2003). The total microbial biomass in “hotspots” is 2-3 times 

higher and microbial diversity is also greater as compared to bulk soil (Marschner et al., 2012). In 

contrast to these microbial hotspots, microbial biomass in bulk soil generally decreases with soil 

depth (Taylor et al., 2002; Hartmann et al., 2009). For example, only 35 % of the total microbial 

biomass in the first 2 meters of soil depth was found below a depth of 25 cm (Fierer et al. 2003a). 

The decrease in microbial biomass was also accompanied by a decrease in microbial diversity 

and changes in community composition with increasing soil depth (LaMontagne et al., 2003; 

Hansel et al., 2008; Will et al., 2010). Metabolic activities of soil microorganisms in top- and 

subsoil also typically reflect differences in environmental conditions, while processes in subsoils 

are more influenced by higher sensitivity to temperature increases and nutrient availability (Fierer 

et al., 2003b). A study in top- and subsoils of three different forest sites in Germany concluded 

that enzyme activities decreased with soil depth, corresponding to declines in total C and nitrogen 

(N) concentrations, while the degradation of recalcitrant C compounds relatively increased with 

depth (Herold et al., 2014). Similarly, oxidative enzymes dominated in the bulk soil 

compartments of subsoils, while hydrolase activities increased in microbial hotspots such as the 
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rhizosphere (Uksa et al., 2015). However, microbial activity in subsoil was found to be similar to 

that in topsoil when normalized to microbial biomass (Blume et al., 2002).  

The main objective of this study was to characterize the responses of microbial decomposer 

communities from different subsoil horizons to altered environmental conditions and substrate 

availabilities. We hypothesized that (i) translocation of different subsoil samples changes local 

environmental conditions (DOC, nutrient inputs, oxygen availability as well as amplitudes of 

temperature and water availability) and consequently soil microorganisms and C turnover. 

Furthermore, we hypothesized that (ii) increases in substrate availability change microbial 

community composition and function in subsoils, with relatively greater effects as soil depth 

increases. We conducted a reciprocal soil transfer experiment under field conditions with subsoils 

from 10-20 and 110-120 cm soil depths in a ~100-year old temperate beech forest site in Lower 

Saxony, Germany. By adding different amounts of particulate 13C-labelled cellulose we changed 

the quantitative substrate availability of the soil samples.  

 

5.2 Materials and methods 

Site description 

The study site belongs to the SUBSOM-Project (www.subsom.de) and is located in the 

Grinderwald (52° 34' 22" N 9° 18' 51" E), a ~100-years old temperate beech (Fagus sylvatica L.) 

forest 40 km northwest of Hannover in Lower-Saxony, Germany. The climate is temperate and 

humid with mean annual precipitation and temperature in the time period from 1981 to 2010 of 

762 mm and 9.7 °C, respectively. The climate data were provided by the German Meteorological 

Service (DWD) monitoring station in Nienburg in the vicinity of the study area. The soil is an 

acid and sandy Dystric Cambisol (IUSS Working Group WRB, 2014) with soil pH (CaCl2) 



5 Microbial community response to changes in substrate availability and habitat conditions 
 

27 
 

values ranging from 3.3 (topsoil) to 4.5 (subsoil) and mean sand, silt and clay contents of 77.3 %, 

18.4 % and 4.4 %, respectively. The mean nitrogen (N) contents were 0.45 g kg-1 in topsoil (10 

cm depth) and 0.02 g kg-1 in subsoil (110 cm). Parent materials for pedogenesis are fluvial and 

aeolian sandy deposits from the Saale glaciation (Angst et al., 2016). Table 5.1 lists the soil 

properties of a soil profile at the Grinderwald site. 

 

Table 5.1: Soil parameters of the field site. 

Soil 
horizon 

 Depth 
(cm) 

pH 
(CaCl2) 

SOC (g kg-

1) 
Sand 
(%) Silt (%) Clay (%) 

        
AE  0-2 3.3 27 70 26 4 

        
Bsw  2-12 3.4 17 65 30 5 

        
Bw  12-36 4.4 7 67 29 4 

        
BwC  36-65 4.5 3 73 24 3 

        
C  65-125 4.4 0.4 95 4 1 
        

2C  125-150 4.1 0.1 81 11 8 
        

2Cg  150-180 4.2 0.8 72 19 9 
        

3C  180+ 4.2 <0.1 95 4 1 
        
        

 

Experimental setup 

In total, 12 treatments were established: soil originating from 10-20 and 110-120 cm x 3 levels 

of substrate availability x return of soils back into 20 and 120 cm. Each treatment was sampled in 

triplicate after 1, 4 and 12 months. Three beech trees with distances of between 25 and 30 m from 

each other and diameter at breast heights (DBH) of 35 to 40 cm were selected. Around each of 

these trees, three profile pits with a distance of 2.5 m between the tree facing profile wall and the 

tree were excavated. The positions of the profile pits around the trees were randomly selected. All 



5 Microbial community response to changes in substrate availability and habitat conditions 
 

28 
 

nine profile pits had a length of 1.60 m and a depth of > 1.20 m. Prior to excavation of the profile 

pits the litter layer was removed and stored separately. During excavation of the nine profile pits, 

upper subsoil from 10-20 cm (Bsw-Bw horizon; thereafter: SUB20) and lower subsoil from 110-

120 cm (C horizon; thereafter: SUB120) soil depths were taken, mixed separately for the two 

depths and passed through a 2.0 mm sieve to remove roots and stones.  

One hundred eight PVC containers (2.0 cm height, 10.5 cm inner diameter, 173.1 cm3 volume) 

were filled with 242.3 g SUB20 and 277.0 g SUB120 soils, respectively. These amounts were 

calculated according to the soil bulk densities: 1.4 g cm3 at 20 cm depth and 1.6 g cm3 at 120 cm 

depth. The top and bottom sides were closed with micro mesh PA-material with a mesh size of 

500 µm to allow vertical water flow and microbial exchange between container and surrounding 

soil. To manipulate quantitative substrate availability, 13C enriched cellulose (1.2 atom % 13C, 

IsoLife B.V., Netherlands) derived from maize stem (Zea mays L.) with a mean particle size of 

approximately 100 µm was added in three different concentrations to both SUB20 and SUB120 

samples: no addition, 1%, and 5% of the total carbon content of the Bsw and C horizons, 

respectively. The amount added to the SUB20 samples was 41.2 mg 13C-cellulose (1%) and 206.0 

mg 13C-cellulose (5%), while that to the SUB120 samples was 8.3 mg 13C-cellulose (1%) and 

41.5 mg 13C-cellulose (5%). Cellulose and soil were thoroughly mixed to ensure homogeneous 

distribution of the cellulose. This resulted in six types of containers (2 soil depths x 3 cellulose 

additions). 

The containers were incorporated into the tree-facing, undisturbed profile walls (Fig. 5.1). In 

each pit, one container of each type was incorporated into the profile wall at 20 cm and at 120 cm 

soil depths. The positions of the different containers within each soil depth at any one pit were 

randomly selected. The distance between neighboring containers was 12 cm and the positions of 

the containers in the upper layer were offset from the containers in the lower layer to minimize 
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vertical interference. After incorporation, all profile pits were refilled with soil separately stored 

during excavation appropriately to the soil horizon sequence and litter was placed on the top 

corresponding to the initial litter amount and thickness. 

 

The experiment was established in June 2013 and one of the three profile pits surrounding each 

of the three trees was randomly selected and sampled after one (July 2013), four (October 2013) 

and twelve (June 2014) months. The samples were immediately cooled at 0°C for transport. After 

sieving (< 2 mm), the soil samples were stored at -23 °C until further analysis. Soil water content 

of each soil sample was determined gravimetrically after drying for 72 h at 60 °C and all 

presented data are related to soil dry weight. 

  

Figure 5.1 Exemplary front view of one of nine tree facing profile walls with six soil containers (treatments: 
SUB20 + 0% cellulose, SUB20 + 1% cellulose, SUB20 + 5% cellulose, SUB120 + 0% cellulose, SUB120 + 1% 
cellulose and SUB120 + 5% cellulose) randomly incorporated into both soil depths (20 cm and 120 cm). Due to 
the randomized distribution of the different containers in the two depths of each of the nine profile pits this is an 
exemplary incorporation pattern to illustrate the incorporation design. 
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Analyses 

δ 13C of microbial biomass C, extractable organic C (EOC) and extractable N (ETN) 

The chloroform fumigation extraction (CFE) method (Vance et al.,1987) was used to 

determine microbial biomass carbon (Cmic) according to Marhan et al. (2010). Microbial C was 

calculated using a kEC factor of 0.45 (Joergensen and Mueller, 1996). Extractable organic carbon 

(EOC) and extractable total nitrogen (ETN) were calculated from the values of the non-fumigated 

samples. 

The determination of  δ 13C of microbial biomass C was done as described by Marhan et al. 

(2010).  

The following equation was used for the calculation of δ13C of microbial biomass: 

𝛿𝛿 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 
13 = 𝐶𝐶𝑛𝑛𝑛𝑛𝑥𝑥 𝛿𝛿𝑛𝑛𝑛𝑛−𝐶𝐶𝑓𝑓𝑥𝑥 𝛿𝛿𝑓𝑓

𝐶𝐶𝑛𝑛𝑛𝑛−𝐶𝐶𝑓𝑓
, 

where Cnf and Cf are extracted organic C content (µg C g-1 soil) of the non-fumigated and 

fumigated samples and δnf and δf are the corresponding δ13C values. 

The calculation of cellulose-derived C (%) was done using the following equation: 

% 𝐶𝐶 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝛿𝛿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 
𝛿𝛿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝛿𝛿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑥𝑥100, 

where δsample is the δ13C value of the respective sample, δreference is the δ13C mean value of the 

respective non-13C-addition sample, δcellulose is the average δ13C value of the added cellulose 

(98.8 ‰), and δsoil is the average δ13C value of the upper (-27.93 ‰) or lower (-26.67 ‰) subsoil 

used for the transfer experiment.  
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Fungal biomass  

Fungal biomass in soil was determined following the method of Djajakirana et al. (1996). For 

the extraction of ergosterol, one gram of SUB20 subsoil and four g of SUB120 subsoil were used 

and analysed as described by Müller et al. (2016). 

 

δ13C Phospholipid fatty acid analyses (PLFA) 

For lipid extraction and fractionation according to the method of Frostegård et al. (1991), 16 g 

of field moist SUB20 subsoil and 24 g of field moist SUB120 subsoil were used and fatty acid 

methyl esters (FAMEs) were determined according to Kramer et al. (2013). The abundances of 

individual FAMEs were expressed in nmol per g soil. The fatty acids i15:0, a15:0, i16:0, 16:1ω7, 

i17:0, cy17:0, 18:1ω7 and cy19:0 were considered as bacterial PLFAs (PLFAbac) Furthermore, 

i15:0, a15:0, i16:0 and i17:0 represented Gram-positive bacteria and cy17:0 and cy19:0 

represented Gram-negative bacteria, following Kandeler et al. (2008), Frostegård and Baath 

(1996) and Zelles (1999). Fungal biomass was considered to be represented by the PLFA 18:2ω6 

(Frostegård et al., 1993). 

δ13CPLFA values were determined with the HP 6890 Gas Chromatograph (Agilent Inc., USA) 

coupled via a combustion III Interface (Thermo Finnigan, USA) to a Delta Plus XP mass 

spectrometer (Thermo Finnigan MAT, Germany) as described by Müller et al. (2016).  

Calculation of cellulose-derived C (%) was done as described for microbial biomass C. 

Mean 13C incorporation into the different microbial groups was calculated considering the 

relative proportion of the respective fatty acids to the total amount of the group-associated fatty 
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acids. In addition, the total amount of 13C-cellulose derived C incorporated into each microbial 

group (mg C g-1 added 13C-cellulose) was calculated.  

 

Bacterial abundance using quantitative PCR analyses  

The FastDNA SPIN Kit for soil (BIO101, MP Biomedicals, USA) was used for extraction of 

the DNA from 0.3 g soil. The extracted DNA was quantified with a Nanodrop ND-2000 

spectrophotometer (Thermo Scientific, USA) followed by dilution of the samples with ultra-pure 

water to a target concentration of 5 ng DNA µl-1. The quantification of the abundances of β-

Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes, Verrucomicrobia and 

Gemmatimonadetes taxa via quantitative PCR (qPCR) (Fierer et al., 2005; Philippot et al., 2009; 

Bacchetti De Gregoris et al., 2011) was carried out with an ABI prism 7500 Fast System 

(Applied Biosystems, USA). Each qPCR run included two no template controls showing no or 

negligible values. The relative abundances of the specific taxa were calculated by dividing the 

absolute abundance of a specific taxon by the sum of the absolute abundances of all investigated 

taxa. Table S5.1 lists the primers, thermal cycling conditions and efficiencies.  

 

Enzyme activity analyses  

Potential activities of β-glucosidase (EC 3.2.1.21), β-xylosidase (EC 3.2.1.37), N-acetyl-β-

glucosaminidase (EC 3.2.1.52) and cellulose 1-4-β-cellobiosidase (EC 3.2.1.91) were measured 

according to the method of Marx et al. (2001) described by Kramer et al. (2013) in detail using 

four g of soil per sample. Xylanase activity was analysed according to the method developed by 
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Schinner and von Mersi (1990) and modified by Ali et al. (2015). Potential activities of 

phenoloxidase and peroxidase were measured as described by Johnsen and Jacobsen (2008).  

 

Microbial nutrient status 

Microbial nutrient status was measured after 12 months in soils amended with 5% cellulose 

using a Respiration Measurement System (RMS, ETS, Darmstadt, Germany) with automated 

electrolytic microrespirometers (Scheu, 1992). Measurements were conducted in a water bath 

(Julabo CF41, Julabo GmbH, Germany) at 20°C. Microbial nutrient status was determined as the 

respiratory response of soil microorganisms to different carbon and nutrient amendments (C, 

C+N, C+P and C+N+P). C was added to each amendment type since previous measurements 

revealed a primary C limitation (C compared to H2O), and the respiratory responses of  N, P and 

N+P amendments alone were much lower as compared to amendments including C. The 

amendments were added as aqueous solutions with a quantity of 100 µl g-1 soil fresh weight, 6 

mg glucose g-1 soil fresh weight for SUB20 samples, and 2 mg glucose g-1 soil fresh weight for 

SUB120 samples. Nitrogen (as (NH4)2SO4) and phosphorus (as KH2PO4) were added respecting 

a C:N:P mass ratio of 10:2:1 (Anderson and Domsch, 1980). Fifteen g (SUB20) or 20 g 

(SUB120) soil were weighed into sample chambers, respectively, and measured for up to 40 h. 

After an initial phase (4 to 6 h) of maximal initial respiratory response (MIRR; Anderson and 

Domsch, 1978) microorganisms began to grow. This microbial growth, expressed by cumulative 

additional microbial respiration up to a maximum respiration rate (AMR), was used to determine 

the microbial nutrient status (Scheu, 1993). The relative changes (%) in AMR of the C+N, C+P 

and C+N+P treatments compared to C amendment alone were used as indicators of nutrient 

limitations to microbial growth after removing the primary C limitation.
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Statistical analyses 

Effects of cellulose addition (cellulose), translocation, sampling date (date) and interactions of 

these factors were analysed with linear mixed-effects (lme) models separately for SUB20 and 

SUB120 samples. Due to the experimental design, tree was set as random factor. Effects of 

cellulose addition, translocation and sampling date on the bacterial community structure were 

tested by MANOVA with tree as independent factor. Effects of nutrient addition (C, C+N, C+P, 

C+N+P), translocation, and their interactions on microbial respiration (microbial nutrient status) 

were analysed with lme models separately for SUB20 and SUB120. Significance was tested for p 

< 0.05 in all cases. Homogeneity of variance was tested for all parameters by Levene’s test. All 

statistical analyses were carried out with R statistics version 3.2.1 (R Core Team, 2013) using the 

nlme package (Pinheiro et al., 2015). 

 

5.3  Results 

Water content, pH and extractable organic C (EOC) and extractable total N (ETN) 

Gravimetric water content in the SUB20 soils was higher (9 - 13 %) than in the less organic 

SUB120 samples (4 – 7 %) and generally below 30 % of the water holding capacity (WHC; data 

not shown) of both layers. Soils incorporated into 20 cm soil depth showed a clear seasonal 

variation (SUB20: 12 % (July), 9 % (October), 11 % (June); SUB120: 7 %, 4 %, 6 %) with the 

lowest water content in October 2013. In contrast, soils incorporated into 120 cm soil depth had 

generally higher water content and showed less seasonal variation (SUB20: 12 % (July), 12 % 

(October), 13 % (June) ; SUB120: 7 %, 7 %, 7 %) (date x translocation; SUB20: F2, 40 = 5.4, p < 

0.01; SUB120: F2, 40 = 5.7, p < 0.01).  
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Figure 5.2 Amount of extractable organic carbon (EOC) (a and c) and extractable total nitrogen (ETN) (b and d) 
in SUB20 and SUB120 samples under different translocation and cellulose addition treatments at the sampling 
dates July 2013, October 2013 and June 2014. Error bars indicate standard deviation (n=3). 
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The pH values of SUB20 and SUB120 soils were not affected by translocation or cellulose 

addition and remained constant over the entire experimental period (data not shown). 

EOC in SUB20 samples increased with increasing amounts of cellulose addition (cellulose; F1, 

40 = 8.5, p < 0.01) and steeply decreased between the second and third sampling dates (F2, 40 = 

133.6, p < 0.001) (Fig. 5.2 a). While EOC in translocated SUB120 samples showed no cellulose 

effects, EOC in non-translocated samples decreased over time; it increased from first to second 

and decreased from second to third sampling dates in translocated samples (date × translocation; 

F2, 40 = 8.8, p < 0.001) (Fig. 5.2 c). 

ETN in SUB20 samples was generally higher if located at 120 cm depth (translocation; F1, 40 = 

13.1, p < 0.001) (Fig. 5.2 b). Increasing amounts of added cellulose decreased ETN only at the 

first sampling date (date × cellulose; F2, 40 = 4.0, p < 0.05). In SUB120 samples, the ETN 

decreased from the first to second sampling dates in non-translocated samples only (date × 

translocation; F2, 40 = 3.8, p < 0.05) (Fig. 5.2 d).  

 

Microbial biomass 

Mean microbial biomass varied between 63.4 and 128.9 µg Cmic g-1 DM in the SUB20 

treatments and 8.3 and 37.2 µg Cmic g-1 DM in the SUB120 treatments (Fig. 5.3 a and c). 

Whereas sampling time significantly influenced microbial biomass in both SUB20 and SUB120 

samples (SUB20: F2, 34 = 3.8, p < 0.05; SUB120: F2, 34 = 3.4, p < 0.05), neither addition of 

cellulose nor reciprocal transfer of soils influenced Cmic. 

Incorporation of 13C into Cmic of SUB20 samples increased with increasing amounts of added 

cellulose (SUB20: F1, 22 =23.2, p < 0.001) with the highest mean incorporation rate of 13 % at the 
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third sampling date (Fig. 5.3 b). In SUB120 samples (Fig. 5.3 d) 13C incorporation increased over 

time only in the 5% cellulose addition treatments (date × cellulose; F2, 22 = 5.2, p < 0.05) with up 

to 27 % cellulose derived C in Cmic at the last sampling date. Cellulose-C incorporation into 

microbial biomass was generally not affected by translocation. 

 

  

Figure 5.3 Microbial biomass C (a and c) and relative incorporation of 13C-cellulose-derived C into Cmic (b and 
d) in SUB20 and SUB120 samples under different translocation and cellulose addition treatments at the sampling 
dates July 2013, October 2013 and June 2014. Error bars indicate standard deviation (n=3). 
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PLFAs 

In general, PLFAbacteria and PLFAgram+ showed similar patterns and results of PLFAbacteria are, 

therefore, not described here. The abundances of PLFAgram+, PLFAgram- and PLFAfungi in SUB20 

samples (Fig. 5.4 a – c) were neither affected by cellulose addition nor by translocation, but 

PLFAfungi abundance increased over time (F2, 34 = 23.7, p < 0.001). However, the fungal to 

bacterial ratio in SUB20 samples (Table 5.2) increased due to cellulose addition (F1, 40 = 11.7, p < 

0.01), decreased due to translocation (F1, 40 = 14.0, p < 0.001) and generally increased over the 

experimental period (F2, 40 = 36.9, p < 0.001).  

The abundance of PLFAs in SUB120 samples (Fig. 5.4 d – f) was not affected by cellulose 

addition, but translocation to the upper subsoil environment increased abundances of PLFAgram+ 

(F1, 34 = 14.1, p < 0.001) and PLFAgram- (F1, 34 = 4.9, P < 0.05). Furthermore, the abundance of 

PLFAfungi in SUB120 samples increased over time in translocated samples (date × translocation; 

F2, 33 = 4.8, p < 0.05). The fungal to bacterial ratio (Table 5.2) increased due to translocation (F1, 

40 = 24.7, p < 0.001) and varied between the sampling dates (F2, 40 = 6.1, p < 0.01). Microbial 

PLFAs were highly correlated with Cmic (r = 0.78; p < 0.001). 

In general, fungal PLFAs showed higher relative cellulose-C incorporation than bacterial 

PLFAs (Fig. 5.5 a - f). In both SUB20 and SUB120 samples, the highest cellulose-C 

incorporation into PLFAfungi (25.3 % and 20.8 % relative incorporation, respectively) was found 

in the treatments with 5 % cellulose addition (SUB20: date × cellulose; F2, 22 = 6.5, p < 0.01; 

SUB120: F1, 22 = 31.7, p < 0.001; Fig. 5.5 a - f). For SUB120 samples, relative incorporation 

rates into PLFAfungi were higher in non-translocated than in translocated samples (translocation; 

F1, 22 = 7.8, p < 0.05). 
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In SUB20 samples PLFAgram+ showed increasing relative incorporation over time depending 

on the amount of added cellulose (date × cellulose; F2, 22 = 6.3, p < 0.001). Furthermore, 

cellulose-C incorporation into PLFAgram- increased with increasing cellulose amount (F1, 14 = 

88.1, p <0.001) and over time (F2, 14 = 7.4, p < 0.05). For SUB120 samples, cellulose-C 

incorporation (%) into PLFAgram+ increased with time, which was pronounced in non-

translocated samples (date × translocation; PLFAgram+: F2, 22 = 6.6, p < 0.01) and in samples with 

addition of 5 % cellulose (date × cellulose: F2, 22 = 5.7, p < 0.05). Increasing amounts of added 

cellulose increased relative incorporation into PLFAgram- (cellulose; F1, 22 = 105.4, p < 0.001). 13C 

PLFAs were highly correlated with 13Cmic (r = 0.82; p < 0.001). 

 

Table 5.2: Mean ratios of PLFAfungi / PLFAbacteria  

 

    SUB20    SUB120  

Incorporation depth 
(cm) 

Cellulose 
addition 

 July 
2013 October 2013 June 

2014  July 
2013 October 2013 June 

2014 

20 0%  
0.05 0.06 0.09 

 
0.13 0.24 0.52 

20 1%  
0.05 0.07 0.08 

 
0.12 0.34 0.39 

20 5%  
0.06 0.06 0.13 

 
0.10 0.24 0.37 

120 0%  
0.04 0.05 0.08 

 
0.08 0.08 0.08 

120 1%  
0.04 0.04 0.09 

 
0.08 0.11 0.17 

120 5%  
0.05 0.05 0.11 

 
0.09 0.12 0.14 
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Figure 5.4 Abundance of gram-positive bacteria (PLFAgram+), gram-negative bacteria (PLFAgram-) and fungi 
(PLFAfungi) in SUB20 (a, b, c) and SUB120 (d, e, f) samples under different translocation and cellulose 
addition treatments at the sampling dates July 2013, October 2013 and June 2014. Error bars indicate standard 
deviation (n=3). 
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Figure 5.5 Relative incorporation of 13C-cellulose-derived C into gram-positive bacteria (PLFAgram+), 
gram-negative bacteria (PLFAgram-) and fungi (PLFAfungi) in SUB20 (a, b, c) and SUB120 (d, e, f) samples 
under different translocation and cellulose addition treatments at the sampling dates July 2013, October 
2013 and June 2014. Error bars indicate standard deviation (n=3). 
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Absolute amounts of incorporated cellulose-C (mg 13C-cellulose derived C g-1 cellulose) 

followed similar temporal patterns to those of relative incorporation. The treatment patterns, 

however, differed between absolute amount incorporation and relative incorporation, with 

absolute amount incorporation showing comparable proportions of added cellulose-C 

incorporated into the 1% and 5% cellulose addition treatments. The absolute amount of 

incorporated cellulose in PLFAgram+ and PLFAfungi in SUB20 samples (Fig. S5.1 a - c) was not 

affected by cellulose addition or translocation, but increased during the experiment (PLFAgram+: 

F2, 22 = 4.7, p < 0.05; PLFAfungi: F2, 22 = 13.7, p < 0.001). The absolute amount incorporated into 

PLFAgram- was much lower than for the other groups and increased over the experimental period 

with slightly higher values in samples with 1% than with 5% cellulose addition (date × cellulose; 

F1, 14 = 6.4, p < 0.05). 

In SUB120 samples (Fig. S5.1 d - f), the absolute amount of incorporated cellulose-C into 

PLFAfungi increased over time (F2, 22 = 4.8, p < 0.05) and was not influenced by added cellulose 

and translocation. Cellulose-C in PLFAgram+ was higher in non-translocated samples and 

generally increased with time except for the translocated samples with addition of 1 % cellulose 

(date × translocation; F2, 22 = 3.9, p < 0.05). Incorporation of 13C into PLFAgram- was higher in 

SUB120 than in SUB20.  
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Fungal biomass (ergosterol) 

The mean ergosterol content varied between 1.85 and 2.88 µg g-1 DM in SUB20 and 0.23 and 

1.53 µg g-1 DM in SUB120 samples (Fig. 5.6 a and b). Ergosterol content was not affected by 

cellulose additions, but translocation caused a significant decrease (-14 %) in SUB20 (F1, 34 = 4.9, 

p < 0.05) and an increase (+106 %) in SUB120 (F1, 34 = 11.0, p < 0.01) samples. Additionally, 

ergosterol content in SUB120 samples varied significantly between sampling dates (F2, 34 = 3.4, p 

< 0.05) with a decrease of -20 % from first to second sampling dates and an increase of +131% 

from second to third sampling dates.  

  

Figure 5.6 Amount of ergosterol in SUB20 (a) and SUB120 (b) samples under different translocation and 
cellulose addition treatments at the sampling dates July 2013, October 2013 and June 2014. Error bars indicate 
standard deviation (n=3). 
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Bacterial community structure 

In SUB20 samples (Fig. 5.7 a - c), Acidobacteria were the dominant taxa in all treatments and 

at all sampling dates with mean relative abundance of up to 76 %. Relative abundance of 

Acidobacteria decreased in translocated samples (translocation; F1, 38 = 4.3, p < 0.05) while that 

of Actinobacteria increased (translocation; F1, 39 = 9.4, p < 0.01). Cellulose addition had no 

significant effect on the relative abundances of any investigated taxa in SUB20 samples. In 

SUB120 samples (Fig. 5.7 d - f), Acidobacteria and Actinobacteria were the dominant taxa with 

mean relative abundances of up to 52 and 46 %, respectively. The abundance of Acidobacteria 

increased over the experimental period (date; F2, 38 = 7.1, p < 0.01). Relative abundance of 

Actinobacteria decreased at the first and increased at the second and third sampling dates in 

translocated samples compared to non-translocated samples (date × translocation; F2, 38 = 3.4, p < 

0.05). In contrast to SUB20 samples, β-Proteobacteria in SUB120 samples also exhibited high 

relative abundances of up to 25 %. 

The MANOVA of bacterial community structure in SUB20 and SUB120 samples indicated no 

effects of cellulose addition. The community structure in SUB20 samples was also not influenced 

by translocation but changed over the experimental period (F2, 66 = 2.9, p < 0.01). However, the 

communities in SUB120 samples developed differently in non-translocated and translocated 

samples over time (date × translocation; F2, 70 = 2.1, p < 0.05).  
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Figure 5.7 Bacterial community structures indicated by relative abundance (%) of the different bacterial taxa in 
SUB20 (a, b, c) and SUB120 (d, e, f) samples under different translocation and cellulose addition treatments at 
the sampling dates July 2013, October 2013 and June 2014.  
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Enzyme activities 

Enzyme activities in SUB20 and SUB120 samples were mainly temporally variable over the 

sampling dates and were additionally affected by translocation (Tables S5.2 and S5.3). Cellulose 

addition increased the activities of 1-4-β-cellobiosidase (cellulose; F2, 34 = 4.9, p < 0.05) and 

xylanase (cellulose; F2, 34 = 15.7, p < 0.001) in SUB20 samples, while in SUB120 cellulose 

addition had no effect (Table S5.3). Translocation induced only minor changes with decreased 1-

4-β-cellobiosidase activity (translocation; F1, 34 = 6.1, p < 0.05) and slightly increased 

phenoloxidase activity (translocation; F1, 34 = 12.1, p < 0.01). In contrast, enzyme activities in 

SUB20 samples showed no translocation effects.  

 

Microbial nutrient status 

Microbial respiratory responses indicated limitation of microbial growth by N when C-

limitation was alleviated in both translocated and non-translocated SUB20 samples (Table S5.4). 

Mean respiration increased in samples with C+N amendments compared to samples with C 

amendments only (N; F1, 16 = 164.9, p < 0.001) and this was more pronounced in non-

translocated samples, which increased 46 % (± 15) compared to translocated samples, which 

increased 30 % (± 8) (N × translocation; F1, 6 = 5.4, p < 0.05). Samples receiving C+P 

amendments showed similar respiratory responses to those receiving C amendments only. 

Furthermore, measurements revealed a subsequent P limitation when C and N limitations were 

excluded. This was seen in the samples amended with C+N+P, in which the mean respiratory 

increase was the highest with 154 % (± 37) and 106% (± 12) in non-translocated and translocated 

samples, respectively (N+P; F1, 16 = 49.4, p < 0.001).  
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Microbial nutrient status of the SUB120 samples showed a pattern similar to the SUB20 

samples with C-limitation followed by N-limitation when C-limitation was alleviated (Table 

S5.4). Here, C+N amendments led to a mean respiratory increase of 75 % (± 37) in non-

translocated and 57% (± 24) in translocated samples compared to samples with amended with C 

only (N; F1, 16 = 31.8, p < 0.001). Samples amended with C+P exhibited a lower but still 

significant increase in respiration of 16 % (± 9) and 28 % (± 15) for non-translocated and 

translocated samples, respectively (P; F1, 16 = 20.5, p < 0.001). The highest respiratory responses 

in both non-translocated and translocated SUB120 samples appeared in samples amended with 

C+N+P, with increases of 508 % (± 172) and 284 % (± 159) (N+P; F1, 16 = 15.5, p < 0.01).  

 

5.4  Discussion 

Effects of translocation on microbial abundance and function  

The reciprocal transfer experiment made it possible to separate the importance of habitat 

conditions from substrate availability for microbially regulated C turnover in subsoils. Due to 

differences in habitat properties such as oxygen, substrate availability, or soil moisture, we 

expected a decrease in microbial biomass in SUB20 samples transferred to 120 cm depth and an 

increase in biomass in SUB120 samples transferred to 20 cm depth compared to the respective 

non-translocated samples. However, we did not find any changes in microbial biomass (Fig. 5.3 a 

and c) and, therefore, changes in habitat conditions were either not effective or not present.  

We did not measure the oxygen concentrations in the two soil depths during the experiment 

but it may be that throughout the profile of the well aerated sandy textured soil, oxygen 

concentration conditions did not change in such a way as to limit microbial biomass. A study 
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under similar site conditions by Chirinda et al. (2014) found non-limiting oxygen concentrations, 

not lower than 16 %, in subsoils with loamy and sandy textures, while a study of Salome et al. 

(2010) revealed that even oxygen levels of 5 % were sufficiently high to avoid limiting 

conditions. The water content at 120 cm depth was significantly higher and more stable over time 

than at 20 cm depth, but these differences in water content appear not to have directly influenced 

the microbial biomass. In general, however, the water content was below 30 % of the water 

holding capacity (WHC; data not shown) of both layers and, therefore, water content of both 

layers may have restricted microbial activity and abundance (Gordon et al., 2008), whereas 

oxygen concentration did not limit microbial growth in our study site.  

Besides oxygen concentration and soil moisture, resource availability, especially carbon, has 

been identified as the most common microbial growth limiting factor in soils (Joergensen and 

Scheu, 1999; Ekblad & Nordgren, 2002; Demoling et al., 2007). In accordance with these studies, 

our respiration measurements under different C, N and P amendments revealed a primary C 

limitation followed by a subsequent N limitation for both SUB20 and SUB120 soil samples 

irrespective of translocation and sampling date. The N limiting conditions may have been 

induced by leaching of N during water pulses after heavy rainfall events (Austin et al., 2004; 

Gordon et al., 2008), as shown by increased concentrations of nitrogen in water that had 

percolated into deeper soil layers at the study site (Leinemann, personal communication). We 

expected improved substrate availability in translocated SUB120 samples due to increased C 

input by root exudation or DOC transport from organic horizons. However, EOC content as an 

indicator for substrate availability did not change and, thus may explain similar microbial activity 

and abundance in the two layers.  
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In general, microbial community structure changes significantly with increasing soil depth 

(Ekelund et al., 2003; Eilers et al., 2012). Consequently, we expected significant changes in 

microbial diversity and abundance of specific microbial groups due to translocation. Fungal 

abundance (ergosterol) decreased in translocated SUB20 and increased in translocated SUB120 

samples (Fig. 5.6); therefore, fungal life in subsoils was restricted and transfer of deeper subsoil 

into upper subsoil stimulated fungal abundance. Nevertheless, we can only hypothesize as to 

which group of soil fungi profit from the transfer and develop into key drivers of organic matter 

decomposition in upper subsoils. This topic is especially interesting because recent studies have 

found that closely related microbial taxa can have similar capacities to utilize resources in natural 

systems (Talbot et al., 2013, 2015). Considering that transferred subsoils may also be colonised 

by saprotrophic as well as ectomycorrhizal fungi, future studies should clarify the phylogeny of 

soil fungi and sort single taxa according to their functional traits (either saprotrophic or 

ectomycorrhizal fungi). Recalcitrance of organic matter in subsoils may also be related to 

restricted growth of both saprotroph as well as ectomycorrhizal fungi. Consequently, the transfer 

of subsoil may increase not only the incorporation of C into fungal biomass, but also stimulate 

saprotrophic and ectomycorrhizal organic matter decomposition in the beech forest. The main 

factor may have been increased carbon availability (root exudates, DOC) in this environment 

(Fig. 5.2), with higher root density and closer spatial proximity to the litter/organic layer. Since 

EOC content was not affected in translocated SUB120 samples, fungi may have been able to 

translocate resources within their mycelia, enabling fungi to overcome local limitations in 

heterogeneously distributed resources at the µm to mm scale (Frey et al., 2000; Boberg et al., 

2010, 2014). Additionally, fungi may have benefited from generally higher soil temperatures 

during summer in the upper subsoil environment (Castro et al., 2010).  
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While fungal abundance decreased slightly in translocated SUB20 samples, Gram+ and Gram- 

bacteria (PLFA data; Fig. 5.4 b and c) remained at relatively constant levels. In line with this, 

bacterial community composition investigated with qPCR measurements showed only minor 

changes (Fig. 5.7). The relative increase in Actinobacteria in translocated SUB20 samples and 

the high abundance of these taxa in both SUB20 and SUB120 samples may be related to their 

adaptation to resource- or moisture-limited conditions and to the diverse metabolic capabilities 

within this phylum (Hartmann et al., 2009; Barnard et al., 2013). Also the highly abundant 

Acidobacteria are able to survive desiccation stress (Castro et al., 2010) and are generally the 

dominant phylum in slightly acidic and carbon rich soils (Rawat et al., 2012). Their metabolic 

versatility allows specific strains of this phylum to cope with low resource availability (Eichorst 

et al., 2011; Naether et al., 2012). 

The main difference between the bacterial communities in SUB120 and those in SUB20 

samples was the higher abundance of β-Proteobacteria in SUB120 samples. Several studies have 

described increased relative abundances of β-Proteobacteria in soils with pH > 4 (e.g. Lauber et 

al., 2009; Rousk et al., 2010). Since both translocated and non-translocated SUB120 samples had 

pH values of ~ 4 and thus higher pH values than SUB20 samples, this may explain the higher 

abundance of β-Proteobacteria in soils from the lower subsoil environment. However, none of 

the investigated bacterial phyla benefited from considerably higher carbon content in translocated 

SUB120 samples, highlighting the role of nutrient limitation, which only fungi were able to 

overcome. 
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Effects of cellulose addition on microbial abundance and function 

To alleviate substrate limitation of soil microorganisms, we added cellulose. However, 

cellulose addition generally did not affect microbial biomass either in translocated or non-

translocated SUB20 and SUB120 samples, respectively (Fig. 5.3 a and c). This may have been 

due to the relatively constant habitat conditions (e.g. oxygen and pH) within the soil profile.  

Nevertheless, the micro-environment as well as the amount of added cellulose affected the 

relative 13C incorporation from cellulose into soil microorganisms (Fig. 5.3 b and d). Specifically, 

reduced microbial 13C incorporation in translocated SUB120 samples with 5 % cellulose addition 

indicated that, in accordance with the observed enhanced fungal growth in these samples, the 

added cellulose contributed a smaller proportion to the total substrate pool than in non-

translocated samples. Although a substantial amount of cellulose-derived C was incorporated into 

the microbial biomass, the reduction of the primary growth limiting factor, carbon, did not result 

in a net increase in microbial biomass. This underscores the observation in our results that 

microorganisms were N limited in the presence of C (Table S5.4), and is in accordance with other 

studies investigating microbial growth limiting factors (Göransson et al., 2011; Kamble et al., 

2013).  

Since microbial communities generally change with increasing soil depth, we also expected 

changes in activity and function of individual microbial groups associated with carbon turnover. 

However, translocation affected relative 13C incorporation into the different microbial groups 

only in SUB120 samples (Fig. 5.5), while 13C-cellulose incorporation generally differed between 

microbial groups and between the 1 % and 5 % cellulose additions. The relatively higher 13C 

incorporation into fungi compared to bacteria in both SUB20 and SUB120 samples emphasized 

the preferential use of cellulose by fungal decomposers. Despite the potentially high proportion 
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of bacterial cellulose decomposers, e.g. Actinobacteria, β-Proteobacteria and Bacteroidetes, 

cellulose utilisation is more common in fungal decomposer communities (Edwards et al., 2008; 

Stursová et al., 2012; Větrovský et al., 2014). Additionally, fungi might have benefited from their 

higher tolerance to low pH values compared to bacterial decomposers (Rousk et al., 2010). For 

the discussion of experiments with the addition of substrates to soils with different microbial 

densities, it is critical to distinguish between the effects of either altered substrate to SOC ratios 

or changes in the substrate to volume ratios. For example, adding 5% cellulose to both non-

translocated SUB20 and SUB120 samples resulted in higher relative 13C incorporation rates with 

time into Gram+ bacteria in SUB120 samples than in SUB20 samples (Fig. 5.5), although the 

cellulose to SOC ratio was the same in both cases. We explain this by the observed increasing C 

limitation with depth, where C was found to be largely spatially inaccessible to microorganisms 

due to a pronounced heterogeneous distribution of C substrates in deeper soil layers (Niebuhr et 

al., unpublished results). The amount of added cellulose was similar for the 1% addition to 

SUB20 and the 5% addition to SUB120, resulting in the same cellulose to volume ratio; i.e. the 

same amount of cellulose could be used by soil microorganisms in a specific soil volume. 

However, the number of microorganisms in close vicinity to cellulose particles was lower and, at 

the same time, the cellulose to SOC ratio was higher in the 5% SUB120 samples, resulting in 

much higher incorporation rates (%) in these samples as compared to the 1% SUB20 samples. 

Increasing the amount of added substrate increased substrate accessibility for soil 

microorganisms (1 % < 5 % cellulose treatment) in both soil depths, respectively. This reduced 

energy-limited habitat conditions, and thus enhanced C-assimilation by soil microorganisms.  

In contrast to SUB20 samples, relative 13C incorporation into microbial groups in SUB120 

samples was affected by translocation, resulting in decreased relative incorporation into Gram+ 

bacteria and fungi (Fig. 5.5). This underscores our hypothesis that generally increased carbon 
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availability in the upper subsoil environment affects microbial habitat conditions and, therefore, 

microbial function. However, the degree of cellulose utilization in translocated SUB120 samples 

was as high as in non-translocated samples, as indicated by similar absolute amounts of 

incorporated 13C g-1 cellulose (Fig. S5.1). This indicates a high energy demand and associated 

carbon turnover due to fungal growth and higher microbial activity, which was satisfied by 

additive utilization of cellulose and larger carbon pools (e.g. DOC) in this environment.   

Among the bacterial communities in SUB20 samples, Actinobacteria may have been key 

decomposers of the cellulose due to their dominance in abundance and to the high proportion of 

cellulose derived C in Gram+ bacteria in SUB20 samples (Fig. S5.1). In contrast, the low amount 

of 13C incorporated into Gram- bacteria in SUB20 samples suggests that this group either used 

other carbon sources to a greater extent or remained in a dormant state (Fig. S5.1). For example, 

Pankratov et al. (2011) described Gram- Acidobacteria as slow cellulose degraders, not 

competitive with other cellulose degrading phyla. This is in contrast to other studies, in which 

Acidobacteria were identified as important cellulose decomposers (Stursová et al., 2012), but this 

may be restricted to C-rich soils, which are clearly different from those at our experimental site. 

Relative incorporation into Gram- bacteria in SUB120 samples was considerably higher than in 

the SUB20 samples (Fig. 5.5). Acidobacteria, as the most abundant phylum of Gram- bacteria, 

were only to a limited extent involved in cellulose decomposition and, therefore, the higher 

incorporation rates into Gram- bacteria in SUB120 samples were probably caused by high 

cellulose decomposition activities of β-Proteobacteria, which showed considerably higher 

abundances in SUB120 than in SUB20 samples (Fig. 5.7).  
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Spatial separation as an important factor for carbon accumulation in deeper soil layers 

While the amount of added cellulose affected 13C incorporation (%) into microbial PLFAs, 13C 

utilization g-1 added cellulose was not affected by the amount of added cellulose (Fig. S5.1). We 

explain this by stressing the importance of the small-scale distribution of substrate and 

microorganisms and the consequences of their spatial separation. The cellulose was not added in 

suspension but as crystalline cellulose particles and, even though the cellulose particles were 

homogeneously distributed within the soil volume, each particle created, therefore, a hot spot of 

substrate availability affecting a specific soil volume. Based on the assumption that the amount of 

cellulose per newly created hot spot was similar for both the 1% and 5% addition treatments, we 

expected the number of newly created hot spots to increase with increasing amounts of added 

cellulose (Fig. S5.2). In addition to the number of hot spots, the cellulose degradation capacity of 

the local community within each hot spot is of great importance. We observed generally 

increasing 13C incorporation (%) into microbial PLFAs during the exposure time of 12 months 

(Fig. 5.5). We hypothesize, therefore, that the capacity for complete cellulose degradation was 

too low to degrade the amount of cellulose available in each hot spot. Increasing the number of 

cellulose hot spots could, theoretically, result in an overlap of hot spots. In such a case, 

overall 13C utilization g-1 added cellulose (Fig. S5.1) would have decreased based on the low 

capacity to degrade cellulose. Since we did not observe lower 13C utilization g-1 added cellulose 

in the 5% treatments compared to 1% cellulose addition, we hypothesize that even in the 

treatment with 5% cellulose addition cellulose hot spots were spatially separated from each other. 

Consequently, increasing the amount of added cellulose proportionally, i.e. linearly, increased the 

affected soil volume and the number of microorganisms affected by cellulose addition (Fig. 

S5.2). Although SUB20 and SUB120 soils showed similar patterns, the results of the two soil 

samples are not directly comparable in terms of spatial separation. Both soils differed in habitat 
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conditions, such as the availability of C substrates, which may have resulted in changes of 

microbial physiological traits such as longer microbial biomass turnover times with increasing 

soil depth (Spohn et al., 2016). 

The explanation of our results is supported by the following: The soil has a sandy texture with 

low aggregation, which results in a rather high contribution of large soil pores to the overall soil 

pore volume. Large soil pores as well as low moisture content of the site may have further limited 

the spatial extent and size of cellulose hot spots, since the relocation of enzymes, substrate and 

metabolites in the soil suspension may have been inhibited by spatial fragmentation of water-

filled pores. Although fungi are potentially able to bridge air-filled pores, we suggest that this 

ability is directly related to the availability of energy. Energy limitation as well as a high 

proportion of air-filled pores may, therefore, have constrained fungal exploitation in our study to 

a rather small scale. The capacity of soil microorganisms to degrade cellulose is directly related 

to the activity of extracellular enzymes. Adding cellulose could potentially result in an increase in 

cellulose degrading enzymes such as β-glucosidase. However, in our study enzyme activities 

were generally low and showed only minor responses to cellulose addition (Table S5.2 and S5.3). 

Enzyme production is a nutrient demanding process (Schimel and Weintraub, 2003) and we 

suggest, therefore, that the N limitation in our soils inhibited the additional enzyme production 

needed to increase cellulose degradation. In addition, low enzyme activities may be explained by 

energy conservation of a mainly dormant microbial community in an energy limited soil 

environment, where microorganisms avoid the energy-intensive enzyme production which may 

exceed a possible energy gain through newly exploited carbon resources (De Nobili et al., 2001; 

Spohn et al., 2016). A laboratory experiment with top- and subsoils derived from samplings along 

three vertical transects in a grid sampling pattern from the same experimental site also indicated 

that spatial separation is an important factor for low C-turnover in subsoils (Niebuhr et al., 
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unpublished results). They detected, with multi-substrate enzymatic assay and substrate induced 

respiration experiments, the presence of labile SOC in subsoil, but largely spatially inaccessible 

for microorganisms, leading to highly variable microbial activities and C-turnover restricted 

mainly to “hotspots”. Finally, the incorporation rates for both SUB20 and SUB120 samples (Fig. 

5.5) indicate that spatial separation of substrates and soil microorganisms could be an important 

factor influencing low C-turnover and, consequently, carbon accumulation in subsoil with 

increasing relevance with depth.  

 

5.5  Conclusion 

The reciprocal translocation of subsoils revealed no or only minor depth-dependent effects on 

microbial biomass, community structure and activity, indicating comparable environmental 

conditions (e.g. oxygen availability) in both subsoil environments. Therefore, our hypothesis 

regarding depth-dependent effects on soil microbial parameters due to translocation must be 

largely rejected. However, nutrient and water limitation inhibited microbial net growth in 

SUB120 samples translocated to the growth promoting (via carbon availability) upper subsoil 

environment, while the carbon stock in translocated SUB20 samples remained sufficiently high to 

keep the microbial biomass abundance constant. In general, fungi responded more strongly than 

bacteria to changes in environmental conditions and substrate availability. Fungal growth in the 

upper subsoil environment was accelerated by both high availability of carbon resources (e.g. 

DOC, rhizodeposits) and added cellulose. Since substrate effects were lower than hypothesized, 

factors like N and water limitation may have masked the response of bacterial decomposers in 

particular. Furthermore, spatial separation between substrates and decomposers may be an 

important factor contributing to carbon accumulation in subsoil, an effect which is accelerated 



5 Microbial community response to changes in substrate availability and habitat conditions 
 

57 
 

under low moisture conditions. Future studies should investigate bacterial and fungal responses to 

changes in micro-environmental conditions and substrate availability under non-limiting water 

and nutrient conditions to improve the predictions of future SOC content and storage potential of 

subsoils. In addition, there is still a need to understand the dynamics and drivers of fungal 

communities in subsoils to better understand long-term carbon storage in forest ecosystems. 

Specifically, we need to know why fungal life in subsoils is restricted and why changing the 

micro-environment by transferring deeper subsoil into lower subsoil stimulates fungal abundance 

and activity of subsoils. 
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5.7 Supplementary materials 

 

Table S5.1: qPCR primers and conditions. 
 
Gene Primer* Thermal profile** No. of 

Cycles 
Efficiency 
mean (%) 

Reference 

      
Acidobacteria 
 

Acid31 
Eub518 

95°C – 10 m 
95°C – 15 s, 55°C – 30 
s, 72°C – 30 s, 76°C – 
30 s 

1 
35 

95% (Philippot et al., 
2009) 

Actinobacteria 
 

Act920F3 
Act1200R 

95°C – 10 m 
95°C – 15 s, 61.5°C – 30 
s, 72°C – 30 s, 76°C – 
30 s 

1 
35 

82% (De Gregoris et 
al., 2011) 

β-Proteobacteria 
 

Eub338 
Bet680 

95°C – 10 m 
95°C – 15 s, 55°C – 30 
s, 72°C – 30 s, 80°C – 
30 s 

1 
35 

111% (Philippot et al., 
2009)  

Firmicutes 
 

Lgc353 
Eub518 

95°C – 10 m 
95°C – 15 s, 60°C – 30 
s, 72°C – 30 s, 79°C – 
30 s 

1 
35 

108% (Fierer et al., 
2005) 

Verrucomicrobia Verr 349 
Eub 518 

95°C – 10 m 
95°C – 15 s, 60°C – 30 
s, 72°C – 30 s, 77°C – 
30 s 

1 
35 

95% (Philippot et al., 
2009) 

Gemmatimonadetes 
 

Gem440 
Eub518 

95°C – 10 m 
95°C – 15 s, 58°C – 30 
s, 72°C – 30 s, 78°C – 
30 s 

1 
35 

109% (Philippot et al., 
2009) 

*Primer concentration was 10 pmol μl-1 

**Additionally, a 60°C to 95°C step was added to each run to obtain the denaturation curve specific for 
each amplified sequence. 
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Table S5.2: Enzyme activities in SUB20 and SUB120 samples with different 
treatment types (T = translocated, NT = non-translocated, 0% = no cellulose 
addition, 1% = 1% cellulose addition, 5% = 5% cellulose addition) and sampling 
dates. Data are presented as mean ± standard deviation (n =3) 

   Treatment 

Soil Parameter Sampling 
date 0% NT 1% NT 5% NT 0% T 1% T 5% T 

SUB20 
β–glucosidase 
[nmol/ g DM x h] 

 

July 2013 4.95 (±1.92) 4.83 (±2.47) 4.33 (±2.29) 3.95 (±3.27) 3.97 (±2.59) 5.61 (±3.12) 

October 2013 13.07 (±4.42) 10.64 (±6.37) 12.06 (±1.58) 9.27 (±2.27) 10.32 (±0.95) 18.69 (±2.91) 

June2014 10.67 (±5.66) 12.96 (±3.80) 11.90 (±7.37) 6.73 (±3.10) 5.38 (±4.92) 14.95 (±3.40) 

SUB120 β–glucosidase 
[nmol/ g DM x h] 

July 2013 0.97 (±0.86) 1.49 (±1.56) 0.81 (±0.58) 0.79 (±0.38) 1.02 (±0.58) 0.98 (±0.48) 

October 2013 3.67 (±1.29) 3.40 (±1.10) 4.17 (±1.01) 2.23 (±0.24) 4.22 (±2.64) 1.76 (±1.07) 

June2014 3.87 (±2.09) 3.06 (±1.29) 2.73 (±1.33) 4.97 (±1.94) 3.62 (±1.48) 2.21 (±0.35) 

SUB20 β–xylosidase 
[nmol/ g DM x h] 

July 2013 3.44 (±1.92) 3.37 (±2.34) 3.02 (±2.22) 2.66 (±2.02) 2.78 (±2.20) 3.87 (±2.30) 

October 2013 7.37 (±0.76) 5.24 (±2.95) 9.46 (±2.30) 7.42 (±2.23) 7.67 (±1.46) 11.04 (±1.79) 

June2014 7.68 (±1.67) 10.92 (±3.28) 7.92 (±4.92) 4.08 (±3.38) 6.45 (±4.91) 11.22 (±0.68) 

SUB120 β–xylosidase 
[nmol/ g DM x h] 

July 2013 0.34 (±0.33) 0.53 (±0.41) 0.43 (±0.27) 0.27 (±0.26) 0.59 (±0.25) 0.35 (±0.30) 

October 2013 1.37 (±0.79) 1.20 (±0.70) 1.63 (±0.95) 0.57 (±0.07) 0.57 (±0.07) 0.68 (±0.22) 

June2014 1.71 (±0.23) 1.16 (±0.83) 0.89 (±0.82) 1.78 (±0.45) 1.78 (±0.14) 1.21 (±0.42) 

SUB20 
N–acetyl–β–

glucosaminidase 
[nmol/ g DM x h] 

July 2013 8.93 (±3.21) 9.45 (±4.68) 6.76 (±2.34) 5.27 (±4.56) 5.52 (±4.38) 6.85 (±4.87) 

October 2013 24.90 (±7.44) 11.83 (±5.45) 21.33 (±3.72) 15.77 (±3.45) 20.58 (±11.77) 16.72 (±4.28) 

June2014 13.72 (±5.10) 19.42 (±7.35) 12.73 (±6.90) 16.39 (±17.57) 10.49 (±12.06) 14.42 (±9.94) 

SUB120 
N–acetyl–β–

glucosaminidase 
[nmol/ g DM x h] 

July 2013 1.10 (±1.09) 0.91 (±0.80) 1.05 (±0.94) 0.78 (±0.29) 1.46 (±0.90) 0.92 (±0.36) 

October 2013 2.31 (±0.32) 4.28 (±2.48) 6.10 (±5.52) 2.57 (±0.42) 3.38 (±0.26) 3.81 (±2.60) 

June2014 8.27 (±2.37) 4.38 (±2.78) 2.05 (±0.51) 3.63 (±2.44) 6.67 (±5.59) 2.52 (±1.48) 

SUB20 
Cellulose 1.4-β-
cellobiosidase 
[nmol/ g DM x h] 

 

July 2013 0.91 (±0.22) 0.92 (±0.36) 0.90 (±0.71) 0.38 (±0.35) 0.55 (±0.24) 0.10 (±0.26) 

October 2013 1.45 (±0.24) 1.47 (±0.87) 2.49 (±0.53) 1.03 (±0.43) 1.82 (±1.24) 3.74 (±1.55) 

June2014 1.46 (±0.59) 2.24 (±1.50) 2.32 (±0.97) 2.01 (±0.64) 1.31 (±0.83) 1.49 (±1.42) 

SUB120 
Cellulose 1.4-β-
cellobiosidase 
[nmol/ g DM x h] 

 

July 2013 0.35 (±0.00) 0.44 (±0.00) 0.33 (±0.00) 0.08 (±0.05) 0.23 (±0.00) 0.16 (±0.10) 

October 2013 1.46 (±0.57) 1.69 (±0.61) 1.33 (±0.49) 0.41 (±0.19) 0.40 (±0.26) 0.38 (±0.25) 

June2014 1.05 (±0.48) 1.37 (±0.95) 1.38 (±0.61) 1.20 (±0.28) 1.58 (±0.29) 1.19 (±0.35) 

SUB20 Xylanase 
[µg GE/g DM x 24 h] 

July 2013 360.92 (±101.07) 351.01 (±28.59) 391.75 (±90.75) 291.01 (±11.02) 247.77 (±54.16) 408.12 (±57.94) 

October 2013 254.72 (±67.30) 292.87 (±25.34) 375.28 (±20.83) 304.18 (±12.55) 378.31 (±86.53) 551.44 (±47.14) 

June2014 240.01 (±24.96) 285.92 (±49.49) 386.32 (±55.55) 273.42 (±81.50) 305.92 (±54.98) 349.38 (±45.40) 

SUB120 Xylanase 
[µg GE/g DM x 24 h] 

July 2013 43.11 (±24.78) 25.19 (±22.35) 65.11 (±11.26) 53.17 (±41.74) 43.43 (±12.13) 84.77 (±30.64) 

October 2013 69.69 (±21.68) 110.51 (±19.65) 96.88 (±14.86) 47.84 (±36.95) 70.69 (±22.82) 54.81 (±30.39) 

June2014 59.53 (±17.82) 87.17 (±44.46) 119.72 (±45.46) 65.87 (±4.40) 62.99 (±20.98) 73.222 (±13.83) 

SUB20 Phenoloxidase 
[A 630nm/ g soil x h] 

July 2013 0.21 (±0.16) 0.39 (±0.01) 0.33 (±0.05) 0.48 (±0.03) 0.35 (±0.17) 0.34 (±0.12) 

October 2013 0.11 (±0.05) 0.22 (±0.14) 0.30 (±0.23) 0.26 (±0.17) 0.34 (±0.21) 0.32 (±0.26) 

June2014 0.25 (±0.09) 0.29 (±0.10) 0.19 (±0.15) 0.27 (±0.15) 0.16 (±0.18) 0.20 (±0.16) 

SUB120 Phenoloxidase 
[A 630nm/ g soil x h] 

July 2013 0.24 (±0.14) 0.36 (±0.04) 0.32 (±0.02) 0.32 (±0.14) 0.29 (±0.10) 0.33 (±0.11) 

October 2013 0.10 (±0.10) 0.16 (±0.07) 0.12 (±0.07) 0.35 (±0.11) 0.41 (±0.09) 0.32 (±0.09) 

June2014 0.19 (±0.04) 0.18 (±0.04) 0.21 (±0.01) 0.20 (±0.13) 0.22 (±0.08) 0.18 (±0.10) 

  July 2013 2.23 (±1.02) 2.23 (±1.03) 2.37 (±1.30) 1.96 (±0.99) 2.29 (±0.84) 2.22 (±0.53) 

SUB20 Peroxidase 
[A 630nm/ g soil x h] 

October 2013 2.28 (±0.78) 2.24 (±0.52) 2.38 (±0.42) 2.16 (±0.49) 2.04 (±0.54) 2.10 (±0.53) 

June2014 2.39 (±0.06) 2.27 (±0.06) 2.53 (±0.33) 2.30(±0.58) 2.47 (±0.58) 2.36 (±0.45) 

SUB120 Peroxidase 
[A 630nm/ g soil x h] 

July 2013 0.52 (±0.20) 0.72 (±0.29) 0.39 (±0.19) 0.67 (±0.34) 0.73 (±0.24) 0.54 (±0.23) 

October 2013 0.72 (±0.18) 0.56 (±0.05) 0.68 (±0.10) 0.47 (±0.16) 0.37 (±0.12) 0.64 (±0.12) 

June2014 0.81 (±0.47) 0.55 (±0.09) 0.43 (±0.15) 0.53 (±0.10) 0.53 (±0.06) 0.54 (±0.17)  
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Table S5.3: Cellulose addition, translocation and sampling date effects on enzyme activities tested 
with three-way ANOVA. The table shows F-ratios and P-values in parentheses. A = cellulose addition, 
T = translocation, D = sampling date, A*T = interaction between cellulose addition and translocation, 
A*D = interaction between cellulose addition and sampling date, T*D = interaction between 
translocation and sampling date, A*T*D = interaction between cellulose addition, translocation and 
sampling date. 

Soil Parameter A T D A*T T*D A*D A*T*D 
SUB20 β–glucosidase 1.50 

(0.2368) 
3.08  

(0.0884) 
4.31  

(0.0215) 
0.03  

(0.9707) 
0.81  

(0.4538) 
0.53  

(0.7119) 
0.14  

(0.9661) 

SUB120 β–glucosidase 0.80 
(0.4564) 

0.02  
(0.8846) 

3.14 
(0.0562) 

0.44  
(0.6459) 

0.38  
(0.6839) 

0.83  
(0.5125) 

0.31  
(0.8680) 

SUB20 β–xylosidase 1.99  
(0.1525) 

1.72  
(0.1982) 

14.15  
(<.0001) 

0.05  
(0.9519) 

4.55 
(0.0178) 

2.10  
(0.0912) 

0.36  
(0.8360) 

SUB120 β–xylosidase 1.97  
(0.1545) 

1.66  
(0.2060) 

3.64  
(0.0370) 

0.31  
(0.7322) 

4.05  
(0.0264) 

1.20  
(0.3270) 

0.62  
(0.6534) 

SUB20 N–acetyl–β–
glucosaminidase 

0.10  
(0.9053) 

0.58  
(0.4506) 

7.23  
(0.0024) 

0.09  
(0.9135) 

0.01  
(0.9852) 

0.14  
(0.9665) 

1.15  
(0.3491) 

SUB120 N–acetyl–β–
glucosaminidase 

0.77  
(0.4696) 

0.20  
(0.6579) 

4.82  
(0.0143) 

0.27  
(0.7615) 

0.66 
(0.5217) 

2.10 
(0.1019) 

0.12 
(0.9761) 

SUB20 Cellulose 1.4-β-
cellobiosidase 

4.88 
(0.0137) 

0.21  
(0.6511) 

11.55  
(0.0001) 

0.24  
(0.7876) 

1.13  
(0.3337) 

1.68  
(0.1765) 

1.10 
(0.3710) 

SUB120 Cellulose 1.4-β-
cellobiosidase 

0.14  
(0.8727) 

6.13  
(0.0184) 

31.71 
(<.0001) 

0.14  
(0.8669) 

6.32  
(0.0046) 

0.44  
(0.7780) 

0.15  
(0.9595) 

SUB20 Xylanase 15.65  
(<.0001) 

0.99  
(0.3276) 

2.62  
(0.0870) 

0.74  
(0.4821) 

5.69  
(0.0074) 

1.18  
(0.3363) 

1.07  
(0.3858) 

SUB120 Xylanase 1.97  
(0.1545) 

1.66  
(0.2060) 

3.64  
(0.0370) 

0.31  
(0.7322) 

4.05  
(0.0264) 

1.20  
(0.3270) 

0.62  
(0.6534) 

SUB20 Phenoloxidase 0.80 
(0.4574) 

2.01  
(0.1653) 

2.65  
(0.0848) 

2.54  
(0.0933) 

1.92  
(0.1624) 

0.72  
(0.5844) 

0.83  
(0.5168) 

SUB120 Phenoloxidase 0.67  
(0.5159) 

12.05  
(0.0014) 

5.05 
(0.0120) 

0.31  
(0.7336) 

4.02 
(0.0270) 

0.28  
(0.8914) 

0.05 
(0.9948) 

SUB20 Peroxidase 0.07  
(0.9281) 

1.39  
(0.2457) 

0.49  
(0.6172) 

0.20  
(0.8196) 

0.21  
(0.8139) 

0.18  
(0.9470) 

0.09 
(0.9843) 

SUB120 Peroxidase 2.14  
(0.1334) 

0.47  
(0.4989) 

0.02  
(0.9845) 

0.08  
(0.9229) 

0.10  
(0.9033) 

1.99  
(0.1187) 

1.07  
(0.3845) 
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Table S5.4: Mean respiratory response of 5 % cellulose addition samples after 12 month  

    SUB20  SUB120 

Incorporatio
n depth (cm) 

Amendment 
type 

 Respiratory 
response / O2 
consumption 

 (µl O2 g-1 dw h-1) 

Change in % 
to C 

amendment 
 

Respiratory 
response / O2 
consumption 

 (µl O2 g-1 dw h-1) 

Change in % 
to C 

amendment 

20 C  122.9 -  23.6 - 
20 C+N  179.9 +46  36.9 +57 
20 C+P  123.0 +0  30.2 +28 
20 C+N+P  312.0 +154  90.3 +284 
120 C  124.4 -  21.4 - 
120 C+N  161.7 +30  37.4 +75 
120 C+P  122.8 -1  24.9 +16 
120 C+N+P  256.1 +106  129.8 +508  
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Figure S5.1 Absolute amount of 13C-cellulose-derived C incorporated into gram-positive bacteria (PLFAgram+), 
gram-negative bacteria (PLFAgram-) and fungi (PLFAfungi) in SUB20 (a, b, c) and SUB120 (d, e, f) samples under 
different translocation and cellulose addition treatments at the sampling dates July 2013, October 2013 and June 
2014. Error bars indicate standard deviation (n=3). Not determined treatments are indicated with nd. 
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Figure S5.2 Increased amounts of added cellulose proportionally increase the affected soil volume and the 
number of microorganisms with access to cellulose in a carbon limited environment.  
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Abstract 

Contrasting environmental conditions in topsoil and subsoil determine both abundance and 

function of soil microbial communities, affecting carbon (C) dynamics throughout the entire soil 

profile. Although the response of soil microorganisms to single factors such as substrate 

availability or micro-climatic conditions has been frequently studied, fewer studies have focused 

on complex interactions between substrate availability and environmental conditions. To address 

this, we employed vertical soil translocations between topsoil and subsoil horizons of an acid and 

sandy Dystric Cambisol under European beech forest in Lower Saxony, Germany, to investigate 

the impact of changing habitat conditions on microbial decomposer communities. To follow 

microbial substrate utilization at different soil depths, we created hot spots of fresh organic matter 

(OM) by adding 13C-labelled root litter. Soil samples were taken every three months over an 

experimental period of twelve months (June 2014 to June 2015). 

Generally, microbial biomass was strongly controlled by C availability throughout the profile. 

The importance of root litter as a microbial C source increased from topsoil to subsoil, but 

changes in available C sources affected fungi and bacteria differently. Fungi preferentially used 

root litter-derived C throughout the entire soil profile, demonstrating that limited access to 

preferred substrates, rather than micro-climatic conditions, was the main driver of decreasing 

fungal abundance with soil depth. In contrast, bacteria intensified utilization of root-derived C 

only in the absence of alternative C sources in the subsoil and were more strongly affected by 

spatial separation from C sources. Low soil moisture in combination with the highly sandy 

subsoil environment limited bacterial access to their substrates and, consequently, bacterial 

growth. In conclusion, fungal C utilization relies mainly on the quantity of recent plant-derived 

substrates, whereas bacterial access to substrates is additionally controlled by environmental 



6 Fungi and bacteria respond differently to changing habitat conditions within a soil profile 
 

66 
 

conditions. This study indicates that limited microbial access to their heterogeneously distributed 

substrates may be an important factor for C accumulation and stabilization in subsoils. 

 

Keywords: Carbon cycle; Subsoil; Soil microorganisms; Stable isotopes; Habitat conditions; 

Detritusphere  

 

6.1 Introduction 

The abundance of soil microorganisms and their decomposition activity undergo significant 

changes with increasing soil depth. Microbial biomass generally decreases from topsoil to subsoil 

and is more heterogeneously distributed in subsoil than in topsoil (Ekelund et al., 2001; Taylor et 

al., 2002). With increasing soil depth, microbial community structure typically increases in its 

relative proportion of gram-positive bacteria, while the proportions of gram-negative bacteria and 

fungi decrease (Blume et al., 2002; Fierer et al., 2003). Deeper soil layers further exhibit 

decreased genetic and metabolic microbial diversity compared to surface soils (Eilers et al., 2012; 

Will et al., 2010; Goberna et al., 2005). Moreover, there are also pronounced differences in 

microbial activity between different microhabitats within soil profiles (e.g., rhizosphere vs. bulk 

soil), and decomposition rates of soil organic matter (SOM) generally decrease with increasing 

soil depth, while turnover times increase (Kuzyakov and Blagodatskaya, 2015; Gaudinski et al., 

2000). In previous studies, these differences in abundances and activity of microbial decomposer 

communities between topsoil and subsoil have been attributed to a variety of factors such as 

altered and less easily available carbon (C) sources, increased physical inaccessibility (e.g. 

occlusion within soil aggregates) of nutrients and substrates, and harsher environmental 
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conditions (e.g., water and oxygen content, temperature, pH, and soil texture) in deeper soil 

layers (Hansel et al., 2008; Drenovsky et al., 2004; Herold et al., 2014).  

Compared to topsoil, subsoil exhibits substantially lower C density and organic matter (OM) 

with a different chemical composition (Rumpel et al., 2002). Important processes contributing to 

the altered chemical composition of OM in deeper soil are temporal and selective immobilization 

(sorption, precipitation), as well as continuous microbial mineralization and transformation of 

OM as it passes through the soil profile. As a consequence, with increasing soil depth, OM pools 

increasingly consist of aged plant-derived compounds and microbial residues (Kaiser and 

Kalbitz, 2012; Liang and Balser, 2008). A higher proportion of stabilized OM in deeper soil, as 

demonstrated by older radiocarbon ages of the soil organic carbon (SOC) in subsoil as compared 

to topsoil (Rumpel et al., 2002), indicates an increasing reduction in microbial decomposition 

processes (e.g., reduced substrate utilization rates) with soil depth. However, the determining 

factors accounting for these differences in C turnover and accumulation with soil depth are still 

under discussion. While some studies have attributed OM stabilization in subsoil to a greater 

abundance of chemically recalcitrant OM compounds (e.g. Krull et al., 2003; Rasse et al., 2005), 

other studies have suggested physico-chemical interactions (e.g., adsorption to mineral surfaces), 

or physical protection (e.g., occlusion of OM within soil aggregates) as the most important 

factors preventing microbial degradation (Eusterhues et al., 2005; Dungait et al., 2012; Moni et 

al., 2010; Salomé et al., 2010). Among these factors, spatial separation between OM and 

microbial degraders coupled with low input of fresh SOC as an energy source for 

microorganisms may also be important (Holden and Fierer, 2005; Fontaine et al., 2007). 

Besides the importance of C characteristics, altered environmental conditions with soil depth 

also influence the development of microbial communities and C turnover. Changing temperature 
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regimes have been found to alter microbial community composition as well as microbial carbon 

use efficiencies (CUE) and decay dynamics of stable OM compounds (Feng and Simpson, 2009; 

Frey et al., 2013). Another key environmental influence on microbial abundance and activity 

within soil profiles is soil moisture. For example, differences in soil moisture conditions have 

been found to shape microbial community composition and enzyme activity patterns; 

consequently, spatial and temporal variations in soil moisture within soil profiles can distinctly 

influence microbial decomposition processes (Baldrian et al., 2010; Brockett et al., 2012).  

However, although the influences of either differences in substrate availability or changing 

environmental conditions on soil microorganisms and C turnover within soil profiles have been 

frequently investigated, previous studies have not been able to distinguish between the 

importance of biotic (e.g. substrate supply) and abiotic factors for reduced microbial C turnover 

in subsoils under in situ conditions (Kätterer et al., 2014; Sanaullah et al., 2016). A promising 

tool to decouple these two factors is the reciprocal translocation of soil samples combined with 

addition of substrates. Originally, this approach was developed to clarify the importance of 

different site-specific properties between ecosystems (e.g. meadow versus forest; Balser and 

Firestone, 2005; Boyle et al., 2006; Zumsteg et al., 2013). We have applied reciprocal 

translocation for the first time between different subsoil horizons (Preusser et al., 2017). In the 

current study, we extended this approach and reciprocally translocated topsoil and subsoil both 

with and without hotspots of substrate availability. Consequently, this approach allowed us to 

disentangle both the impact of depth-specific environmental conditions (via soil translocation) 

and the influence of substrate availability (via 13C labelled root litter addition) as well as to 

investigate the influence of the complex interactions among these factors and microbial 

decomposer communities. One of the main objectives of the study was to investigate bacterial 

and fungal C assimilation under topsoil and subsoil environmental conditions. We followed the 
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temporal and spatial patterns of C flow from root litter as a natural and complex substrate into 

microbial decomposers, as well as changes in microbial community structure through different 

stages of root litter decomposition, under a variety of depth-specific environmental conditions. 

The determination of the amount of incorporated root-C per gram of root addition allowed us to 

understand the microbial root-C utilization rates. We hypothesize that habitat conditions in 

subsoil (i) slow down the succession of root litter-decomposing fungi and bacteria and (ii) reduce 

microbial root-C utilization rates. 
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6.2 Materials and methods 

Site description 

The translocation experiment was conducted on the main experimental site of the SUBSOM-

Project, a ~100-years old European beech (Fagus sylvatica L.) forest in Grinderwald (52° 34’ 

22’’ N 9° 18’ 51’’ E; 100 m a.s.l.) 40 km northwest of Hannover in Lower-Saxony, Germany. 

Data from the closest German Meteorological Service (DWD) weather station in Nienburg 

indicate, for the period from 1981 to 2010, a temperate and humid climate with mean annual 

precipitation and temperature of 762 mm and 9.7 °C, respectively. Air temperature and 

precipitation for the actual period of the translocation experiment was provided by another 

weather station operated directly at the experimental site by the research group (Fig. S6.1). 

Additionally, three soil observatories on the site made it possible to measure soil temperature 

(°C) and volumetric water content (%) at 10, 30, 50, 90, 150 and 180 cm soil depths (Fig. 6.1) 

(Leinemann et al., 2016). The soil type of the experimental site is an acid and sandy Dystric 

Cambisol (IUSS Working Group WRB, 2014) with pH values of 3.3 in topsoil and 4.5 in subsoil. 

Mean sand, silt and clay content are 77.3 %, 18.4 % and 4.4 %, respectively. The predominant 

humus form is moder and the parent materials for pedogenesis are fluvial and aeolian deposits 

from the Saale glaciation (Angst et al., 2016a). Additional soil properties of the study site are 

listed in Table S6.1 (Preusser et al., 2017).  
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Experimental design 

For the soil translocation experiment, twelve profile pits were randomly arranged around three 

mature beech trees of comparable age and growth (4 profile pits per tree), each located 2.5 m 

from the respective trees. During the excavation of each of the profile pits, the topsoil from 5 to 

10 cm soil depth (Bsw horizon; 2.84 % Corg; hereafter referred to as TOP5) and the subsoil from 

Figure 6.1 Mean daily (a) soil temperatures (°C) and (b) soil water content (%) from June 1, 2014 to June 31, 
2015 at six different soil depths (10 cm, 30 cm, 50 cm, 90 cm, 150 cm and 180 cm) at the field site.  
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110 to 115 cm soil depth (C horizon; 0.11 % Corg; hereafter referred to as SUB110) were stored 

separately, then sieved (2 mm) and mixed with the soil from the respective soil depth of the other 

profile pits. Subsequently, 144 soil containers of height 2.0 cm, diameter 10.5 cm and volume 

173.1 cm3 were filled with either 242.3 g soil dry weight (bulk density 1.4 g cm-3) of the TOP5 

soil or 277.0 g soil dry weight (bulk density 1.6 g cm-3) of the SUB110 soil. To mimic 

detritusphere hotspots of increased substrate availability, root litter was added to 36 of the 72 

containers filled with TOP5 soil (1.73 g roots per container; corresponding to a root density of 10 

g L-1; 0.84 g root-C per container) and to 36 of the 72 containers filled with SUB110 soil (0.35 g 

roots per container; 2 g L-1; 0.17 g root-C per container). The added root materials to TOP5 and 

SUB110 containers mimicked as closely as possible the naturally occurring root biomass in the 

respective soil depths. The air-dried 13C-labelled European beech (Fagus sylvatica L.) roots 

(residual water content 6.2 %, 48.7 % C; 9.38 atom % 13C; IsoLife B.V., Netherlands) were cut 

into 1 - 2 cm segments before addition and the root thickness fractions (∅ 0.5 - 2 mm) were 

homogeneously distributed within each container. Root addition increased C content in the 

containers filled with TOP5 and SUB110 soils by 12 % and 56 %, respectively. After filling, the 

containers were closed at the top and bottom with micro PA-material with mesh size of 500 µm 

to ensure unimpeded water flow in the upcoming experiment between the surrounding soil 

volume and the soil within the containers. To summarize, containers with four different filling 

types were prepared: topsoil with root addition (TOP5roots), topsoil without root addition 

(TOP5control), subsoil with root addition (SUB110roots) and subsoil without root addition 

(SUB110control).  

Thereafter, soil containers were incorporated into the undisturbed tree-facing profile walls of the 

twelve profile pits according to the following pattern: In each soil profile one of each of the four 

container types (TOP5roots, TOP5control, SUB110roots and SUB110control) was incorporated into 5 
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cm, 45 cm and 110 cm soil depths representing a gradient in abiotic and biotic habitat conditions 

(Fig. S6.2). The containers were, therefore, exposed to either non-altered environmental 

conditions (e.g. SUB110 incorporated into 110 cm soil depth) or to altered environmental 

conditions via vertical soil translocation (e.g. SUB110 incorporated into 5 cm or 45 cm soil 

depth). The positions of the four container types within each of the three soil depths were 

randomly selected. Additionally, the containers in each layer were horizontally offset from the 

containers in the other layers to minimize vertical interference. After incorporation, the profile 

pits were refilled with soil appropriate to the soil horizon sequence that had been separately 

stored during excavation, and the litter layer was restored to replicate the initial amount and 

thickness. The experiment began in June 2014 and samples were taken at three-month intervals 

(September 2014, December 2014, March 2015 and June 2015). At every sampling date, one of 

the four profile pits surrounding each of the three trees was randomly selected and a total of 36 

containers (four filling types x three incorporation depths x three field repetitions) were removed 

and immediately stored at 0 °C for transport to the laboratory. 

 

Analyses 

All samples were sieved (<2 mm) after sampling to remove larger particles (including root 

residues) and the gravimetric water content of the samples was determined. The samples were 

stored at -23°C until further analysis. 
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δ 13C of microbial biomass C and extractable organic C (EOC) and N (ETN) 

The chloroform fumigation extraction (CFE) method of Vance et al. (1987) was used to 

determine microbial biomass carbon (Cmic) as described by Marhan et al. (2010). Each sample 

was measured ten times to increase measurement accuracy. Microbial C was calculated using a 

kEC factor of 0.45 (Joergensen, 1996). Extractable organic carbon (EOC) and extractable total 

nitrogen (ETN) were calculated using the values of the non-fumigated samples. 

Microbial biomass δ13C values were determined as described by Marhan et al. (2010). The 

following equation was used for the calculation of δ13C of the microbial biomass: 

𝛿𝛿 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 
13 = 𝛿𝛿𝑓𝑓 𝑥𝑥 𝐶𝐶𝑓𝑓 – 𝛿𝛿𝑛𝑛𝑛𝑛 𝑥𝑥 𝐶𝐶𝑛𝑛𝑛𝑛 

𝐶𝐶𝑓𝑓−𝐶𝐶𝑛𝑛𝑛𝑛
, 

where Cf and Cnf are extracted organic C content (µg C g-1 soil) of the fumigated and non-

fumigated samples and δf and δnf are the corresponding δ13C values. 

The calculation of root-derived C (%) was done using the following equation: 

% 𝐶𝐶 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝛿𝛿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  
𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝛿𝛿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑥𝑥100, 

where δsample is the δ13C value of the respective sample, δreference is the δ13C mean value of the 

respective non-13C-addition samples, δroots is the average δ13C value of the added roots (8283 ‰), 

and δsoil is the average δ13C value of TOP5 (-27.8 ‰) or SUB110 (-25.5 ‰) soil used for the 

translocation experiment. 

In addition, the absolute quantity of root-derived C incorporated into the microbial biomass 

(mg C g-1 added 13C roots) was calculated. 
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δ13C phospholipid fatty acid analyses (PLFA) 

Twelve g field moist TOP5 soil and 24 g field moist SUB110 soil were used for lipid 

extraction and fractionation according to the method of Frostegård et al. (1991). The PLFAs were 

transformed into fatty acid methyl esters (FAMEs) using alkaline methanolysis (Kramer et al., 

2013). The abundance of individual FAMEs was expressed in nmol per g soil. The fatty acids 

i15:0, a15:0, i16:0, 16:1ω7, i17:0, cy17:0, 18:1ω7 and cy19:0 were considered as bacterial 

PLFAs (PLFAbac). Of these, i15:0, a15:0, i16:0 and i17:0 represented Gram-positive bacteria 

(PLFAgram+) and cy17:0 and cy19:0 represented Gram-negative bacteria (PLFAgram-) following 

Kandeler et al. (2008), Frostegård and Bååth (1996) and Zelles (1999). Fungal PLFA was 

considered as 18:2ω6,9 (PLFAfun) (Frostegård et al., 1993). 

The δ13CPLFA values were determined with an HP 6890 Gas Chromatograph (Agilent Inc., 

USA) coupled with a combustion III Interface (Thermo Finnigan, USA) to a Delta Plus XP mass 

spectrometer (Thermo Finnigan MAT, Germany) as described by Müller et al. (2016). 

Calculation of root-derived C (%) was done as described for microbial biomass C. Mean 13C 

incorporation into the different microbial groups was calculated according to the relative 

proportions of the respective fatty acids to the total of the group-associated fatty acids. In 

addition, the absolute quantity of root-derived C incorporated into each microbial group (mg C g-

1 added 13C roots) was calculated. 
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Ergosterol  

Ergosterol content as a proxy for fungal biomass was analysed using the method of 

Djajakirana et al. (1996). For extraction of ergosterol, one g TOP5 and four g SUB110 soil were 

analysed as described by Müller et al. (2016).  

 

Cutin and suberin derived monomers 

Soil samples from the first (September 2014) and last (June 2015) samplings were subjected to 

a sequential extraction procedure to release ester bound constituents of the lipid biopolymers 

cutin and suberin. Samples were processed following the protocol described by Angst et al. 

(2016a). Briefly, prior to saponification, solvent extractable lipids were extracted from 10 g soil 

by accelerated solvent extraction (dichloromethane (DCM)/methanol 9/1 v/v at 17 x 106 Pa and 

75°C, Wiesenberg et al., 2004; Jansen et al., 2006). The solid extraction residues were subjected 

to alkaline hydrolysis in teflon lined bombs with 1 M methanolic potassium hydroxide solution 

(KOH) at 100°C for three hours. The extracts were dried under a stream of nitrogen and the dried 

extracts were re-dissolved in deionized water and DCM. The neutral fraction was extracted 3 

times with DCM by liquid-liquid extraction. The residual water phase was adjusted to pH 1 and 

extracted 3 times with DCM to separate the acid fraction. The acid fraction was measured by 

GC/MS and quantified using an external standard (Angst et al., 2016b). Specific monomers 

indicative for cutin or suberin were chosen according to the results of a previous study at the 

same site (Angst et al., 2016c). The 8,9,10,ω-hydroxy hexadecanoic acids (subsumed under x,ω-

C16) were indicative for cutin and ω-hydroxy octadecenoic acid (ω-C18:1), α,ω-octadecanedioic 

acid (C18DA), and ω-hydroxy alkanoic acids C20-24 with an even chain length (ω-C20, ω-C22, ω-

C24) were indicative for suberin. 
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Statistical analyses 

Effects of root addition (A), translocation depth (T), sampling date (D) and interactions among 

these factors were analysed with linear mixed-effects (lme) models separately for TOP5 and 

SUB110 samples for all parameters except absolute incorporation rates. For the absolute 

incorporation rates, a direct statistical comparison of the TOP5 and SUB110 samples was 

possible due to the calculation of incorporation relative to one g added roots (mg C g-1 added 13C 

roots). In this case, the additional factor soil origin (S) was included to compare samples from 

top- and subsoil origins. Due to the experimental design, tree was set as random factor. 

Significance was tested at p < 0.05 in all cases. Homogeneity of variance was tested for all 

parameters by Levene’s test. All statistical analyses were carried out in the R statistical 

environment, version 3.2.1 (R Core Team, 2015) using the nlme package (Pinheiro et al., 2015) 

for lme models and the Hmisc package (Harrell et al., 2015) for correlations. 
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6.3 Results  

Water content and extractable total N (ETN) 

Gravimetric water content was generally higher in the less sandy TOP5 (10 - 20 %) than in the 

SUB110 samples (4 - 10 %) (Fig. S6.3 a). Water content of TOP5 and SUB110 showed high 

seasonal variation at the 5 cm soil depth, whereas soils translocated to greater depths experienced 

reduced seasonal variability, with lowest water content at 45 cm soil depth (Table S6.2 a). 

Mean ETN content of TOP5 and SUB110 samples were between 9.5 and 25.2 µg g-1 DM and 

1.3 and 7.2 µg g-1 DM, respectively (Fig. S6.4). The depth profiles of ETN were opposite one 

another for TOP5 and SUB110 samples, with highest content at the 110 cm depth for TOP5 

samples and at 5 cm depth for SUB110 samples. Additionally, TOP5 samples with root addition 

had a generally higher ETN content (+ 28 %) than control soils (Table S6.2 a). 

 

Extractable organic C (EOC)  

Mean EOC content in TOP5 and SUB110 samples ranged from 130 - 198 µg g-1 DM and 15 - 

82 µg g-1 DM, respectively (Fig. 6.2 a, c). Root addition led to an average increase in EOC 

content of 12 % in both TOP5 and SUB110 samples. Translocation of TOP5 samples to different 

soil depths did not change EOC content, whereas translocation of SUB110 samples to shallower 

soil depths led to an increase in EOC. In addition, greater seasonal fluctuation in EOC in SUB110 

samples was observed at 5 cm than at 45 or 110 cm depths, with peaks in EOC at the second and 

third sampling dates (Table S6.2 a). 

The mean relative proportion (%) of root-derived C in EOC ranged from 3.8 - 10.9 % in TOP5 

and 1.5 - 10.0 % in SUB110 samples (Fig. S6.5 a, c). Root-derived C in the EOC fraction of 
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TOP5 samples was similar at all soil depths at the first sampling date and increased over the 

course of the experiment. The strength of this increase was positively correlated with soil depth. 

In contrast, the relative proportion of root-derived C in EOC in SUB110 samples was lowest at 5 

cm depth throughout the experiment (Table S6.3). 

The mean absolute value of 13C in EOC per g added roots (mg C g-1 added 13C roots) varied 

between 1.7 - 5.2 mg C g-1 added 13C roots in TOP5 and 1.4 - 4.3 mg C g-1 added 13C roots in 

SUB110 samples (Fig. S6.5 b, d). Absolute 13C values in TOP5 were generally higher than in 

SUB110 samples and increased with soil depth, while those in SUB110 samples were highest at 

45 cm soil depth. Peaks in incorporated 13C in TOP5 samples were detected at the third or fourth 

sampling date and in SUB110 samples at the second sampling date (Table S6.4). 

 

Microbial biomass 

Mean microbial biomass of TOP5 and SUB110 treatments was between 98.2 - 200.4 µg Cmic 

g-1 DM and 1.4 - 42.2 µg Cmic g-1 DM, respectively (Fig. 6.2 b, d). Mean increases in microbial 

biomass in all samples with root addition were 17 % in TOP5 and 44 % in SUB110 samples, 

whereas increases in samples that had only been non-translocated were 15 % in TOP5 and 91 % 

in SUB110 samples (Table 6.1 a). Translocation to different soil depths led to highest mean 

microbial biomass at 45 cm depth for TOP5 and at 5 cm depth for SUB110 samples. In general, 

microbial biomass in TOP5 samples was highest at the first or second sampling and decreased 

over the duration of the experiment (Table S6.2 b).  
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Mean 13C incorporation (%) into Cmic of TOP5 and SUB110 samples ranged from 10.3 - 

20.4 % and from 7.8 - 62.6 %, respectively (Fig. 6.3 a, c). Neither sampling date nor soil 

depth significantly influenced microbial 13C incorporation into TOP5 soils. Microbial 13C 

incorporation into SUB110 samples strongly increased at both 45 cm and 110 cm soil depths 

compared to the 5 cm layer. In addition, the peaks of microbial 13C incorporation into 

SUB110 samples occurred later in the experiment with increasing soil depth (Table S6.3). 

  

Figure 6.2 Amount of extractable organic carbon (EOC, a and c) and microbial biomass C (Cmic, b and d) in 
TOP5 and SUB110 samples under different translocation and root addition treatments for the sampling dates 
September 2014, December 2014, March 2015 and June 2015. Error bars indicate standard error (n=3). The 
figure shows significant effects with respective P-values. A = root addition, T = translocation, D = sampling date. 
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a 
 

SU
B

ST
R

A
T

E
 E

FF
E

C
T Soil Incorporation depth (cm) Cmic PLFAgram+ PLFAgram- PLFAfun Ergosterol 

 5 +15 +16 +15 +96 +39 

TOP5 45 +16 +17 +19 +112 +20 
 110 +21 +17 +16 +171 +44 
 5 +34 +50 +14 +45 +/-0 

SUB110 45 +8 +124 +74 +188 +106 
 110 +91 +111 +48 +427 +329 

b 
 

T
R
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N

SL
O

C
A

T
IO

N
 E

FF
E

C
T

 

Soil Incorporation 
depth (cm) 

Root 
addition Cmic PLFAgram+ PLFAgram- PLFAfun Ergosterol 

TOP5 
45 

yes +9 -1 +1 -6 -14 
no +8 -1 -2 -13 -1 

110 
yes -18 -12 -5 -34 -26 
no -22 -13 -6 -52 -29 

SUB110 
5 

yes +395 +62 +46 +372 +154 
no +605 +128 +90 +1134 +1177 

45 
yes +39 +56 +34 +187 +162 
no +146 +47 +14 +425 +445 

c 
 

IN
T

E
R

A
C

T
IO

N
 

E
FF

E
C

T
 

Soil Incorporation depth (cm) Cmic PLFAgram+ PLFAgram- PLFAfun Ergosterol 

TOP5 
45 +25 +15 +17 +85 +20 

110 -5 +2 +9 +29 +3 

SUB110 
5 +847 +242 +116 +1987 +989 

45 +166 +229 +98 +1412 +1024 
 

* i15:0, a15:0, i16:0 and i17:0 
** cy17:0 and cy19:0 
+ 18:2ω6 

  
   

Table 6.1:  
a: Substrate addition effect: Mean increase (%) of microbial biomass C (Cmic), PLFAgram+

*,   PLFAgram-
**, PLFAfun

+ 
and Ergosterol in TOP5 and SUB110 samples with root addition compared to samples without root addition in 
different incorporation depths. 

b: Translocation effect: Mean increase / decrease (%) of microbial biomass C (Cmic), PLFAgram+
*, PLFAgram-

**, 
PLFAfun

+ and Ergosterol in TOP5 and SUB110 samples translocated to different incorporation depths based on 
the related non-translocated treatments with or without root addition, respectively.  

c: Interaction effect of substrate addition and translocation: Mean increase / decrease (%) of microbial biomass C 
(Cmic), PLFAgram+

*, PLFAgram-
**, PLFAfun

+ and Ergosterol in translocated TOP5 and SUB110 samples with root 
addition compared to the respective non-translocated samples without root addition. 
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The absolute values of 13C per g added roots (mg C g-1 added 13C roots) incorporated into the 

Cmic of TOP5 and SUB110 samples were not influenced by incorporation depth, sampling date or 

their interaction, but were generally higher in TOP5 than in SUB110 samples (Fig. 6.3 b, d; Table 

S6.4). 

PLFAs 

Root addition increased the abundances of PLFAgram+, PLFAgram- and PLFAfun in TOP5 and 

SUB110 samples, and was more pronounced for fungi than bacteria (Fig. 6.4; Table S6.2 b). In 

Figure 6.3 Relative incorporation (%) of 13C-root-derived C into microbial biomass C (13Cmic, a and c) and 
absolute amount of incorporated 13C-root-derived C per g root addition (mg C g-1 added 13C roots, b and d) in 
TOP5 and SUB110 samples under different translocation and root addition treatments at the sampling dates 
September 2014, December 2014, March 2015 and June 2015. Error bars indicate standard error (n=3). The 
figure shows significant effects with respective P-values. S = soil origin, A = root addition, T = translocation, D = 
sampling date. 
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addition, translocation of TOP5 samples decreased the abundances of PLFAgram+ and PLFAfun 

with increasing soil depth. A similar pattern was found for the SUB110 samples, where 

translocation of the subsoil into upper soil layers led to increases in abundances of bacterial and 

fungal PLFAs (Table 6.1 b, Table S6.2 b). Root addition increased (F = 20.16, p < 0.001) and 

incorporation depth decreased (F = 3.46, p < 0.05) the fungal to bacterial PLFA ratio in TOP5 

samples, while for SUB110 samples the ratio decreased only with increasing soil depth (F = 

14.30, p < 0.001) (Table 6.2). 

Table 6.2: Fungi to bacteria ratios (18:2ω6 to 
bacterial PLFA) of TOP5 and SUB110 
samples with and without root addition. 
 

 

Treatment Depth 
(cm) 

Mean  
fungi to bacteria 

ratio 

TOP5 roots 
5 0,12 

45 0,12 
110 0,10 

TOP5 control 
5 0,07 

45 0,07 
110 0,04 

SUB110 roots 
5 0,78 

45 0,65 
110 0,37 

SUB110 control 
5 0,81 

45 0,52 
110 0,13  
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Relative 13C incorporation into bacterial PLFAs mirrored the pattern of 13Cmic data (Figure 6.5 

a, b, d and e; Fig. 6.3 a, c). PLFAgram+, PLFAgram- and PLFAfun increased with soil depth at 

moderate rates in the TOP5 (for PLFAgram- only a tendency) and strongly in the SUB110 samples 

(Fig. 6.5 a - f). In TOP5 samples, fungi incorporated more root-derived C into their specific 

PLFA than bacteria, with incorporation rates of up to 80 % (Fig. 6.5 a - c). The variability of 13C 

incorporation over time was higher for SUB110 samples than for TOP5 samples (Fig. 6.5 a - f). 

Maximum 13C incorporation into PLFAs occurred after six months in SUB110 samples with 

incorporation rates of up to 100 % for fungi (Table S6.3). 

While the absolute 13C incorporation (mg C g-1 added 13C roots) into the fungal PLFA was 

similar at all three incorporation depths, bacterial PLFAs exhibited, in most cases, increases 

in 13C incorporation with soil depth. However, more 13C was found in the fungal PLFA in 

SUB110 than in TOP5 samples, while bacterial PLFAs showed a contrasting pattern; higher 

quantities in TOP5 than in SUB110 samples with lower temporal variability in TOP5 than in 

SUB110 samples for PLFAgram- (Fig. 6.5 g - l; Table S6.4). 
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Figure 6.4 Abundance of gram-positive bacteria (PLFAgram+), gram-negative bacteria (PLFAgram-) and fungi 
(PLFAfungi) in TOP5 (a, b, c) and SUB110 (d, e, f) samples under different translocation and root addition 
treatments for the sampling dates September 2014, December 2014, March 2015 and June 2015. Error bars 
indicate standard error (n=3). The figure shows significant effects with respective P-values. A = root addition, T 
= translocation, D = sampling date. 
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Figure 6.5 Relative (%) (a - f) and absolute (mg C g-1 13C root addition) ( g -l) incorporation of 13C-root-derived 
C into gram-positive bacteria (PLFAgram+), gram-negative bacteria (PLFAgram-) and fungi (PLFAfungi) in TOP5 
and SUB110 samples under different translocation and root addition treatments for the sampling dates 
September 2014, December 2014, March 2015 and June 2015. Error bars indicate standard error (n=3). The 
figure shows significant effects with respective P-values. S = soil origin, A = root addition, T = translocation, D 
= sampling date.  
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Ergosterol 

Ergosterol content in TOP5 and SUB110 samples increased with root addition and decreased 

with depth (Fig. S6.6; Table 6.1 a, b). While TOP5 samples exhibited only minor temporal 

variability, ergosterol content in SUB110 samples showed clear seasonal fluctuations with 

occasional steep increases (up to +400 %) and decreases (up to -60 %) between the sampling 

dates (Table S6.2 b). The ergosterol content of the TOP5 and SUB110 samples was highly 

correlated with PLFAfun content (TOP5: r = 0.64, p < 0.001; SUB110: r = 0.78, p < 0.001). 

 

Interactive effects of translocation and root addition on the abundances of bacteria and 

fungi 

Calculating the mean increase or decrease (%) in microbial properties in translocated samples 

with root addition and comparing them to the respective non-translocated samples without root 

addition enabled us to quantify the magnitude of the interactive effects. While translocation of 

TOP5 soil without root addition decreased microbial properties in deeper soil layers (Table 6.1 

b), root addition to translocated TOP5 samples counteracted the less favourable environmental 

conditions in subsoils (Table 6.1 c). The beneficial effect of root addition to translocated TOP5 

soils could be seen in Cmic, bacterial and fungal PLFAs, and ergosterol content. 

While translocation of subsoils (SUB110) alone led to an increase of 14 – 128 % for bacteria 

and 425 – 1134 % for fungi (Table 6.1 b), these responses were further pronounced with root 

addition (98 – 242 % for bacteria and 1412 – 1987 % for fungi; Table 6.1 c). Hence, we found an 

additive positive effect of root addition and translocation on subsoil microorganisms that were 

placed in the upper soil micro-environment. 
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Cutin and suberin derived monomers 

The mean cutin and suberin content (µg g-1 OC) of SUB110 samples as well as the mean 

suberin content of TOP5 samples had significantly decreased by the last sampling date (June 

2015) compared to the first (September 2014) (Fig. S6.7 b - d). Additionally, suberin content of 

TOP5 samples from the last sampling date were lowest at 45 cm soil depth. The mean cutin 

content of TOP5 samples did not show any significant effect of root addition, incorporation 

depth, or sampling date (Fig S6.7 a; Table S6.2 a).  

 

6.4 Discussion 

The reciprocal soil translocation combined with the addition of 13C-labelled root litter allowed 

us to disentangle the impacts of depth-specific environmental conditions and substrate 

availability on microbial biomass, community structure, and substrate utilization capacity in both 

topsoil and subsoil of a temperate beech forest site.  

 

Microbial responses to different environmental conditions within soil profiles  

The increase in microbial biomass in subsoil samples without root addition translocated to the 

topsoil environment indicated that either higher and more diverse C inputs (e.g., higher root 

exudation and input of plant residues) in topsoil than in subsoil or more favourable abiotic 

conditions (e.g., soil moisture) determine gradients in microbial biomass within soil profiles. The 

reverse translocation of topsoil samples into the subsoil environment induced only a moderate 

decrease in microbial biomass, although the EOC content remained largely constant over the 
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experimental period. This indicates that changes in microbial biomass in the investigated soil 

profile were primarily attributable to qualitative and quantitative changes in microbial C supply.  

In our study, soil translocation shaped microbial community structure by changing both 

bacterial and fungal responses to shifts in available C sources, which is in accordance with 

previous studies (Fierer et al., 2003; Goberna et al., 2005). Recent plant-derived C is primarily 

available in the topsoil environment and, in particular, a major C source for certain fungal taxa 

(Rumpel et al., 2004; Hanson et al., 2008; Jumpponen et al., 2010). The pronounced response of 

fungal abundance to translocation was likely due to this dependence of certain fungal strains on 

recent plant C and, consequently, to changes in available C sources with soil depth. In contrast, 

bacteria (especially Gram+ bacteria) utilize, to a greater degree, processed and chemically 

complex SOM-derived C (Kramer and Gleixner, 2006) and thus responded less strongly to the 

translocation of topsoil samples than fungi, resulting in increased dominance of bacteria in 

microbial communities in the subsoil environment.  

Soil temperature and moisture are known to directly influence microbial activity, community 

structure, and function (Waldrop and Firestone, 2006; Treseder et al., 2016; Drenovsky et al., 

2004; Brockett et al., 2012). In this experiment, however, differences in temperature within the 

soil profile were small (as compared to much greater seasonal temperature variability) and the 

temperature regimes in both top- and subsoil environments were well within the physiological 

limits of soil microbial communities of temperate climate zones. Consequently, we conclude that 

the rather small vertical temperature variation had little or no effect on microbial community 

structure within the translocated topsoil and subsoil samples.  

In contrast, translocation of topsoil to dryer conditions in subsoil and vice versa may have 

enhanced or reduced environmental stress on the microbial decomposer community. For 
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example, low soil moisture can disrupt the interconnections among soil pore spaces and thereby 

the associated substrate translocation via soil solution. This in turn leads to increased spatial 

separation between decomposer and substrate and thus reduces microbial C turnover and growth 

(Preusser et al., 2017). Accordingly, higher water content in topsoil than in subsoil may have 

facilitated increases in total microbial biomass in translocated subsoil samples in our experiment. 

However, fungi are known to be less moisture dependent than bacteria (Drenovsky et al., 2004). 

Consequently, the much stronger response of fungi compared to bacteria in subsoil samples 

translocated to the topsoil environment indicated that C availability rather than changes in micro-

climatic conditions may have been the dominant factor influencing microbial biomass and 

community structure. Moreover, the influences of pH and oxygen content were negligible in our 

experiment, since neither substantial changes in pH nor oxygen limitations between soil depths 

and over time had been found in a previous experiment under similar conditions at the same 

experimental site (Preusser et al., 2017). 

 

Microbial responses to substrate addition in topsoil and subsoil  

Compared to topsoil, C in subsoil is scarce, more heterogeneously distributed, and largely 

protected (e.g., adsorption of OM to mineral surfaces) from rapid microbial decomposition 

(Rumpel and Kögel-Knabner, 2011; Chabbi et al., 2009). Therefore, microorganisms may be 

increasingly substrate limited with increasing soil depth. In our study, the addition of root litter 

underscored the role that access to degradable substrates plays in the development of microbial 

abundance in subsoils, with greater increases in microbial biomass in subsoil than in topsoil in 

non-translocated topsoil and subsoil samples with root addition. Moreover, microbial growth in 

subsoil samples resulted almost entirely from utilization of root litter derived-C. Consequently, 
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although subsoils exhibit enormous potential for microbial growth and C turnover, this potential 

is largely restricted by C accessibility, as hotspots of substrate availability are scarce and large 

areas of subsoil are largely disconnected from frequent OC inputs (Rumpel et al., 2004). 

At the group-specific level, differences in their capacities to explore heterogeneously 

distributed C sources likely drove the observed changes in bacterial and fungal substrate 

utilization within the soil profile. The moderate response of bacterial abundance to root addition 

in both topsoil and subsoil samples indicated either low bacterial dependence on root litter or the 

presence of other limiting factors. Near-surface environments contain C from various sources 

(e.g. DOC, leaf litter) with a low proportion of root litter-C in the total OC pool (Rumpel et al., 

2002; Fröberg et al., 2007). In contrast, continuous and selective C utilization and retention 

during the transport of C through the soil profile led to a generally low quantity and diversity of 

available C in deeper soil layers (Rumpel et al., 2004). The observed bacterial root-C utilization 

in the present study reflected this shift in C availability with increasing soil depth: in the topsoil 

environment bacterial communities showed only moderate root-C incorporation rates, while 

bacteria in subsoil were adapted to the low C availability and extensively utilized root litter 

derived-C as it became available. However, despite this pronounced bacterial utilization of root-

C, bacterial abundance increased only slightly, indicating that other factors had a role in limiting 

bacterial growth in subsoil.  

The absolute root-C incorporation into microbial biomass in the non-translocated topsoil 

samples was found to be higher than in non-translocated subsoil samples. This contrasts with 

previous studies which found no depth-dependence of microbial C assimilation (Sanaullah et al., 

2011; Solly et al.; 2015), but may be explained by distinct changes in habitat conditions with 

increasing soil depth. As also stated in a study by Gill and Burke (2002), the detected low water 
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content and coarse soil texture in subsoil may have specifically impeded and spatially restricted 

bacterial access to the added root litter to a greater degree than in topsoil, reducing bacterial 

decomposition capacity due to spatial separation between substrate and decomposers.  

In contrast to bacteria, the considerable increase in fungal abundance demonstrated the 

importance of root-litter as a preferred C source for fungal decomposers throughout the entire soil 

profile. Moreover, the fungal response to root addition was greater in subsoil as compared to 

topsoil samples, indicating that substrate limitation is a key factor accounting for low fungal 

abundance in deeper soils. However, the data obtained in this experiment do not allow further 

differentiation of the fungal community with respect to which fungal guild, e.g., saprotrophic vs. 

ectomycorrhizal fungi, responded to substrate addition. Even though saprotrophic fungi are key 

decomposers of OM, ectomycorrhizal fungi may also play an important role in degradation 

processes, as they were found to use OM for nutrient acquisition in previous studies (e.g., Shah et 

al., 2016). 

The strong increase in fungal abundance as a response to root addition throughout the entire 

soil profile was paralleled by high relative root-C incorporation rates. This indicated the 

dominance of preferential root litter decomposers within the fungal communities in both topsoil 

and subsoil environments. This strong fungal dependence on recent plant residues within entire 

soil profiles was also found in a study following C flow from maize litter into microbial 

decomposers (Müller et al., 2016). Considering that the contribution of recent plant-derived C to 

subsoil OC pools is low (Kramer and Gleixner, 2008; Angst et al., 2018), the fungal root-C 

utilization pattern with soil depth in our study provides further evidence of the limitation of plant-

derived C as a key factor accounting for low fungal abundance in subsoil. 
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Differences in biomass responses and root-C incorporation rates between bacteria and fungi 

were also reflected in absolute root-C incorporation. This suggests that the substrate assimilation 

capacity of fungi was less affected by the low water content than was that of bacteria. Fungal 

decomposers have been found to be less moisture sensitive than bacteria and are able to bridge 

air-filled pores via hyphal growth (Drenovsky et al., 2004; Preusser et al., 2017). This may 

explain why fungi, in contrast to bacteria, showed higher absolute root-C incorporation rates in 

subsoil than in topsoil samples despite the generally lower water content. Therefore, fungi were 

either not or only slightly constrained in their utilization of the added root litter in the subsoil 

environment, while bacterial utilization was clearly restricted. Consequently, our hypothesis 

regarding the impact of habitat conditions on microbial substrate utilization was confirmed for 

bacteria but not for fungi, indicating the importance of fungi in C-cycling under unfavourable 

conditions such as low soil moisture. 

 

Interaction effects of substrate addition and soil translocation on microbial decomposers  

Biotic and abiotic gradients within the soil profile had only minor influences on the 

development of root-degrading microorganisms in topsoil samples. The abundances as well as the 

relative and absolute root-C assimilation rates of bacteria in topsoil samples were not affected by 

incorporation depth, indicating both a constant contribution of various C sources to the SOC pool 

and unchanged SOC availability at the microbial scale (i.e., within the soil containers). In 

contrast, the fungal community was more sensitive than the bacterial community to both root 

litter addition and to altered environmental conditions with soil depth, showing a steep increase in 

relative root-C utilization from top- to subsoil. In the subsoil environment, fungal growth was 

almost entirely dependent on root-C; the concurrently decreasing fungal abundance with soil 



6 Fungi and bacteria respond differently to changing habitat conditions within a soil profile 
 

94 
 

depth suggested that fungi relying on other C sources were disconnected from their substrates. In 

addition, the substantial shift in fungal C resources indicated pronounced alterations in the depth-

specific fungal communities due to soil translocation, as also seen in a study investigating fungal 

communities within soil profiles of a cropland (Moll et al., 2015). However, the root litter 

degrading fungal community in topsoil samples remained constant, as reflected by unchanged 

absolute root-C incorporation within the entire soil profile. A change in microbial abundance or 

community structure, therefore, is not necessarily related to changes in a community-specific 

function such as root decomposition as also shown in a study by Waldrop and Firestone ( 2004). 

In contrast to topsoil samples, root-C utilization patterns of both bacteria and fungi changed in 

subsoil samples. While the absolute bacterial root-C incorporation reflected constant bacterial 

root decomposition over the entire profile, we assume that bacterial sub-populations depending 

on other C sources benefited, for example, from increased DOC input into subsoil samples that 

had been translocated to the topsoil environment. This process diluted the 13C signal in the 

bacterial community while increasing bacterial abundance. Hyphal growth of fungi supported 

increased growth of fungal sub-populations using either root-C or other C sources as indicated by 

the reduced relative 13C incorporation and concurrently increased absolute 13C incorporation. 

Consequently, growth of fungal root degraders may have been triggered by other available 

substrates or by improved accessibility to limiting nutrients such as nitrogen. 

The relative fungal root-C utilization exceeded that of bacteria throughout the first twelve 

months of root decomposition. In previous studies, fungi were identified as the primary initial 

degraders of root litter, with the bacterial contribution increasing in later stages of decomposition 

(Sanaullah et al., 2016). However, we found no shift in microbial community structure or in the 

extent of group-specific root-C utilization throughout the major phase of root decay, in which 
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fungi consistently exhibited both the greatest increase in abundance and the highest relative root-

C incorporation. Moreover, changes in microbial community structure with ongoing root decay 

and increasing soil depth were not observed either in topsoil or in subsoil samples over the course 

of the experiment. This implies that although environmental conditions differed within the soil 

profile, they did not affect the development of the root degrading microbial community. Our 

hypothesis in this regard could therefore not be confirmed. 

 

6.5 Conclusion 

The reciprocal soil translocation of topsoil and subsoil revealed microbial access to degradable 

substrate as the key determinant of microbial C assimilation and growth. Microbial access is 

regulated by the quantity and quality of substrate inputs as well as by the spatial distribution of 

substrates within soil profiles. Interactions between low water content and soil structure can 

interrupt C transport via soil solution and result in spatial separation between microorganisms and 

their substrates. This applies, in particular, to soils with a coarse soil structure, such as the sandy 

Dystric Cambisol in this experiment, and to soils exposed to periodic droughts. At the group 

specific level, spatial separation between decomposer and their substrates restricts substrate 

utilization of bacteria to a higher extend than that of fungi. Since bacteria dominate microbial 

communities in subsoils, the inhibition of bacterial decomposition under low soil moisture 

strongly affects C dynamics and may thus contribute to stabilization of C in deeper soil layers. 
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6.7 Supplementary materials 

 

Table S6.1: Soil parameters of the field site. 
 
Soil horizon Depth (cm) pH (CaCl2) SOC (g kg-1) Sand (%) Silt (%) Clay (%) 

       
AE 0-2 3.3 27 70 26 4 

       
Bsw 2-12 3.4 17 65 30 5 

       
Bw 12-36 4.4 7 67 29 4 

       
BwC 36-65 4.5 3 73 24 3 

       
C 65-125 4.4 0.4 95 4 1 
       

2C 125-150 4.1 0.1 81 11 8 
       

2Cg 150-180 4.2 0.8 72 19 9 
       

3C 180+ 4.2 <0.1 95 4 1 
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Table S6.2:  
a: Root addition, translocation and sampling date effects on water content (%), extractable total nitrogen 
(ETN), extractable organic carbon (EOC) and cutin and suberin derived monomers tested with LME model.  

b: Root addition, translocation and sampling date effects on microbial biomass C (Cmic), PLFAgram+, PLFAgram-, 
PLFAfun and Ergosterol tested with LME model.  

The table shows significant effects with F-ratios and P-values in parentheses. A = root addition, T = 
translocation, D = sampling date. 

 Soil Parameter A T D A*T T*D A*D A*T*D 

a TOP5 Water content 
(%)     F6, 46 = 11.12 

p < 0.001   

 SUB110 Water content 
(%)     F6, 46 = 13.02 

p < 0.001   

 TOP5 ETN F1, 46 = 4.10  
p < 0.05 

F2, 46 = 10.64 
p < 0.001      

 SUB110 ETN  F2, 46 = 4.86  
p < 0.05      

 TOP5 EOC F1, 46 = 12.81 
p < 0.001       

 SUB110 EOC F1, 46 = 3.18  
p < 0.1    F6, 46 = 5.29 

 p < 0.001   

 TOP5 Cutin        

 SUB110 Cutin   F1,21 = 18.07 
p < 0.001     

 TOP5 Suberin     F2,20 = 3.51  
p < 0.05   

 SUB110 Suberin   F1, 9 = 9.98  
p < 0.05     

b TOP5 Cmic F1, 46 = 10.77  
p < 0.01 

F2, 46 = 9.14  
p < 0.01 

F3, 46 =113.21 
 p < 0.001     

 SUB110 Cmic F1, 46 = 5.62 
p < 0.05    F6, 46 = 4.66 

p < 0.01   

 TOP5 PLFAgram+ F1,46 = 21.82 
p < 0.001 

F2,46 = 6.63  
p < 0.01      

 SUB110 PLFAgram+   F3,46 = 5.86, 
p < 0.01 

F2,46 = 4.40 
 p < 0.05    

 TOP5 PLFAgram- F1,46 = 18.95  
p < 0.001       

 SUB110 PLFAgram-    F2,46 = 4.28  
p < 0.05    

 TOP5 PLFAfun F1,46 = 68.19  
p < 0.001 

F2,46 = 9.90  
p < 0.001      

 SUB110 PLFAfun    F2,46 = 4.56  
p < 0.05    

 TOP5 Fungi to 
bacteria ratio 

F1,46=20.16 
p < 0.001 

F2,46= 3.46 
p < 0.05      

 SUB110 Fungi to 
bacteria ratio  F2,46=14.30 

p < 0.001      

 TOP5 Ergosterol F1,46 = 31.03  
p < 0.001 

F2,46 = 12.60  
p < 0.001      

 SUB110 Ergosterol   F3,46 = 5.09  
p < 0.01 

F2,46 = 10.57 
p < 0.001     
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Table S6.3: Translocation and sampling date effects on relative root-
derived C incorporation (%) into different fractions tested with LME 
models. The table shows significant effects with F-ratios and P-values 
in parentheses. T = translocation, D = sampling date.  

 

 Soil Parameter T D T*D 
Ex

tra
ct

ab
le

 
or

ga
ni

c 
C TOP5 EO13C (%)   F6, 22 = 3.52  

p < 0.05 

SUB110 EO13C (%) F2, 22 = 16.51  
p < 0.001   

M
ic

ro
bi

al
 

bi
om

as
s C

 

TOP5 13Cmic (%) F2, 22 = 2.95 
 p < 0.1   

SUB110 13Cmic (%)   F6, 21 = 2.73 
 p < 0.05 

Ph
os

ph
ol

ip
id

 fa
tty

 a
ci

d 
(P

LF
A

) 

TOP5 
13C PLFAgram+ 

(%) 
 F2,22 = 6.36 

 p < 0.01   

SUB110 
13C PLFAgram+ 

(%) 
F2,22 = 24.41  

p < 0.001   

TOP5 
13C PLFAgram- 

(%) 
F2, 22 = 2.85  

p < 0.1   

SUB110 
13C PLFAgram- 

(%) 
F2,22 = 22.90 
 p < 0.001 

F3,22 = 3.74  
p < 0.05  

TOP5 
13C PLFAfun  

(%) 
F2,22 = 7.31  

p < 0.01   

SUB110 
13C PLFAfun 

(%) 
F2,22 = 10.79  

p < 0.001 
F3,22 = 6.20  
p < 0.001  
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 Parameter S T D S*T S*D T*D S*T*D 

Ex
tra

ct
ab

le
 

or
ga

ni
c 

C 

EO13C 
(abs.)   

F3,46 = 
7.09 

p < 0.001 

F2,46 = 
4.34 

p < 0.05 
   

M
ic

ro
bi

al
 

bi
om

as
s C

 

13Cmic 
(abs.) 

F1,45 = 
19.29 

p < 0.001 
      

Ph
os

ph
ol

ip
id

 fa
tty

 a
ci

d 
(P

LF
A

) 

13C 
PLFAgram+ 

(abs.) 

F1,46 = 
9.45 

p < 0.01 

F2,46 = 
4.15 

p < 0.05 
     

13C 
PLFAgram- 

(abs.) 
 

F2,46 = 
14.27 

p < 0.001 
  

F3,46 = 
3.94 

p < 0.05 
  

13C 
PLFAfun 

(abs.) 

F1,46 = 
28.12 

p < 0.001 
      

Table S6.4: Translocation and sampling date effects on absolute root-derived C 
incorporation into different fractions tested with LME models. The table shows 
significant effects with F-ratios and P-values in parentheses. S = soil, T = translocation, 
D = sampling date.  
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Figure S6.1 Mean daily (a) air temperature (°C) and (b) precipitation (mm) at the experimental site from June 1, 
2014 to June 31, 2015.  
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Figure S6.2 Exemplary front view of one of twelve tree facing profile walls with four soil containers 
(treatments: TOP5roots, TOP5control, SUB110roots and SUB110control) randomly incorporated into 5 cm, 45 
cm and 110 cm soil depths each. Due to the randomized distribution of the different containers in the three 
depths of each of the twelve profile pits, this is an exemplary incorporation pattern to illustrate the incorporation 
design. 
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Figure S6.3 Mean gravimetric water content (%) in TOP5 and SUB110 samples translocated to different soil 
depths at the sampling dates September 2014, December 2014, March 2015 and June 2015. Error bars indicate 
standard error (n=3). The figure shows significant effects with respective P-values. A = root addition, T = 
translocation, D = sampling date. 

 

Figure S6.4 Amount of extractable total nitrogen (ETN) in TOP5 (a) and SUB110 (b) samples under different 
translocation and root addition treatments at the sampling dates September 2014, December 2014, March 2015 
and June 2015. Error bars indicate standard error (n=3). The figure shows significant effects with respective P-
values. A = root addition, T = translocation, D = sampling date. 
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Figure S6.5 Relative proportion (%) of root-derived 13C in extractable organic carbon (EO13C %, a and c) and 
absolute amount of 13C-root-derived C in EOC (µg root-derived C in EOC g-1 DM, b and d) in TOP5 and 
SUB110 samples under different translocation and root addition treatments at the sampling dates September 
2014, December 2014, March 2015 and June 2015. Error bars indicate standard error (n=3). The figure shows 
significant effects with respective P-values. S = soil origin, A = root addition, T = translocation, D = sampling 
date. 
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Figure S6.6 Amount of ergosterol in TOP5 (a) and SUB110 (b) samples under different translocation and root 
addition treatments at the sampling dates September 2014, December 2014, March 2015 and June 2015. Error 
bars indicate standard error (n=3). The figure shows significant effects with respective P-values. A = root 
addition, T = translocation, D = sampling date. 
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Figure S6.7 Amounts of cutin (µg g-1 OC, a and c) and suberin (µg g-1 OC, b and d) in TOP5 and SUB110 
samples under different translocation and root addition treatments at the sampling dates September 2014 and 
June 2015. Error bars indicate standard error (n=3). The figure shows significant effects with respective P-
values. A = root addition, T = translocation, D = sampling date. 
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Abstract 

Organic topsoil layers are important sources of dissolved organic matter (DOM) transported to 

deeper soil layers. During passage through the mineral soil, both organic matter (OM) quality and 

quantity change markedly. Whether these alterations are due to sorption processes alone or to 

additional stepwise exchange processes of OM on mineral surfaces (“cascade model”) is not fully 

understood. To test the “cascade model”, we conducted a laboratory flow cascade experiment 

with undisturbed soil columns from three depths of two different soil profiles (Dystric and Eutric 

Cambisol) using carbon (C) isotope labelling. Each of the connected topsoil and subsoil columns 

contained a goethite (α-FeOOH) layer either with or without sorbed 13C-labelled OM to assess 

the importance of OM immobilization / mobilization reactions with reactive soil minerals. By 

using a multiple method approach including 13C analysis in the solid and solution phases, 

nanometer scale secondary ion mass spectrometry (NanoSIMS), and quantitative polymerase 

chain reaction (qPCR), we quantified organic carbon (OC) adsorption and desorption and net OC 

exchange at goethite surfaces as well as the associated microbial community patterns at every 

depth step of the column experiment. The gross OC exchange between OM-coated goethite and 

the soil solution was in the range of 15-32%. This indicates that a considerable proportion of the 

mineral associated OM was mobilized and replaced by percolating DOM. We showed that 

specific groups of bacteria play an important role in processing organic carbon compounds in the 

mineral micro-environment. Whereas bulk soils were dominated by oligotrophic bacteria such as 

Acidobacteria, the goethite layers were specifically enriched with copiotrophic bacteria such as 

Betaproteobacteria. This group of microorganisms made use of labile carbon derived either from 

direct DOM transport or from OM exchange processes at goethite surfaces. Specific 

microorganisms appear to contribute to the cascade process of OM transport within soils. Our 
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study confirms the validity of the postulated “cascade model”, featuring the stepwise transport of 

OM within the soil profile. 

 

Keywords: Cascade model; DOM; reactive minerals; 13C; NanoSIMS; microbial community 

composition 

 

7.1 Introduction 

Dissolved organic matter (DOM) mobilized in topsoil and transported to subsoil horizons is an 

important source of carbon (C) throughout the soil profile. In most soils the concentration of 

dissolved organic carbon (DOC) declines strongly with soil depth, with up to 90% net loss in the 

first meter of the soil profile (Michalzik et al., 2001). This is likely due to its adsorption to 

reactive minerals such as iron (Fe) oxides (Kaiser and Guggenberger, 2000) and clay minerals 

(Saidy et al. 2013), or to co-precipitation with aluminium (Al) and Fe (Scheel et al., 2008; 

Mikutta et al., 2014). According to Kalbitz and Kaiser (2008), as much as 19-50% of the organic 

matter (OM) in the subsoil of a sandy Podzol can be derived from DOM.  

Positive correlations between the content of pedogenic Al and Fe with the content of soil 

organic carbon (OC) (Kaiser and Guggenberger, 2000) and of OC resistant to chemical 

degradation (Mikutta et al., 2006) suggest that the association of OM with Fe and Al oxides is an 

important stabilisation mechanism for OM. Especially in acidic soil environments, such as in 

Dystric Cambisol subsoils, Fe oxides with high specific surface area (SSA) provide reactive 

surfaces that are important for the binding of OM (Eusterhues et al., 2005). Gu et al. (1994) and 

Kaiser et al. (1997) concluded that the adsorption of DOM to Fe oxides is dominated by ligand 

exchange involving carboxyl and hydroxyl functional groups, promoting oxidized aromatic 
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moieties (i.e., lignin-degradation compounds) over carbohydrates in the sorption process 

(Chorover and Amistadi, 2001; Kaiser, 2003). Thus not only does the concentration of DOC 

decrease with soil depth but the composition of DOM also changes. A relative enrichment in 

carbohydrates and sugars along with the selective removal of carboxylated aromatic moieties 

from soil solution has been observed in batch experiments (Kaiser et al., 1997), saturated soil 

column experiments (Guo and Chorover, 2003), and in field experiments (Kaiser et al., 2004; 

McCarthy et al., 1996). Binding of DOM to Fe oxides such as goethite is not only selective for 

specific compounds, but can also lead to a strong reduction in SSA due to clogging of micropores 

by selective sorption at the mouths of pores (Kaiser and Guggenberger, 2007). At higher OM 

loadings, multiple layers of OM are possibly formed on the mineral surfaces, suggesting stronger 

binding and stabilization of OM that is in direct contact with the mineral surface (Kaiser and 

Guggenberger, 2003) and enhanced exposure of the outermost OM layer to desorption and 

exchange processes.  

A major source of DOM in temperate forest soils is leaching from the forest floor, leading to 

highest DOC concentrations directly below the soil organic layer (Michalzik et al., 2001). Most 

of this DOM is either retained or consumed in the upper centimeters of the mineral soil (Fröberg 

et al., 2007), whereas DOM at greater soil depths is not directly derived from the organic layer 

(Hagedorn et al., 2004). Based on such observations, Kaiser and Kalbitz (2012) proposed a 

stepwise cascade of adsorption to reactive minerals, microbial transformation, and re-release into 

the soil solution during the transport of DOM down the soil profile. This cascade assumes that 

previously bound, more degraded OM moieties get remobilized by the input of fresh highly 

surface-reactive plant-derived DOM and are transported further down the soil profile where they 

replace and consequently remobilize even older OM. This conceptual view, therefore, could link 

the chemical fractionation of DOM during passage down the soil column with the increasing 14C 
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age of DOM and OM as soil depth increases (Sanderman et al., 2008), but experimental data is 

lacking. 

The microbial community adapts to the quantity of bioavailable OM; thus microbial 

community composition indicates co-evolution with concurrently changing OM properties as soil 

depth increases (Heckman et al., 2013). In deeper soil, the magnitude of OM processing differs 

considerably between different soil compartments. Microbial densities are mostly low and 

heterogeneously distributed depending on OM availability and chemical composition (Preusser et 

al., 2017; Angst et al., 2016). In contrast to the generally slow process rates in subsoil, reactive 

minerals such as goethite are known as hotspots of biogeochemical interactions (Eusterhues et al., 

2005) and may therefore be of major importance for OM processing in deeper soil layers. 

Nevertheless, several physicochemical characteristics of water-extractable OM (apparent molar 

mass, pH, and electrical conductivity) may modify responses of the bacterial and fungal 

communities in the presence of Fe and Al oxide phases (Heckman et al., 2013). 

The objective of this study, therefore, was to test the “cascade model” of Kaiser and Kalbitz 

(2012) by elucidating whether changes in amounts and composition of DOM within soil profiles 

are due to sorption processes alone or to additional stepwise exchange of OM on mineral 

surfaces, processes which may be driven in part by microbial activity. We hypothesize that (i) the 

input of plant-derived DOM to mineral topsoils leads to selective adsorption of plant-derived 

compounds to reactive surfaces; (ii) fresh DOM input partially replaces older mineral-associated 

OM, which subsequently gets remobilized and further transported to deeper soil; and (iii) these 

mineral-organic associations act as biogeochemical hotspots of high resource availability leading 

to changes in microbial abundance and community composition. These hypotheses were tested by 

a column experiment using three connected undisturbed soil horizons from two soils (Dystric and 
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Eutric Cambisol), each horizon containing a thin interspersed layer of goethite coated with 13C-

labelled OM. Incorporation of the labelled OC made it possible to quantify net OC retention and 

DOM-induced exchange of goethite-associated OM. For selected samples, nanoscale secondary 

ion mass spectrometry (NanoSIMS) was used to study the microscale (im)mobilization of OM at 

the goethite surfaces. Concomitant shifts in microbial community composition in the bulk soil 

and the goethite layers were analyzed by domain- and taxa-specific quantitative polymerase chain 

reaction (qPCR) assays. 

 

7.2 Materials and methods 

Soil sampling 

Undisturbed soil cores of 100 cm3 (ø 5.7 cm, h 4.0 cm) were taken from two sites in Lower 

Saxony, Germany; a sandy Dystric Cambisol (IUSS Working Group WRB, 2014) developed 

from Pleistocene fluvial and aeolian sandy deposits at the Grinderwald (52° 34’22.12'' N, 9° 18’ 

49.76'' E), and a silty Eutric Cambisol (IUSS Working Group WRB, 2014) developed from basalt 

near Dransfeld (51° 28' 35.60'' N, 09° 45' 32.46'' E). Both sites were covered with evenly aged 

(~100 years) European beech (Fagus sylvatica L.) forest. Soil cores were taken from three 

depths: 4 cm, 30 cm and 100 cm at the sandy site, and 4 cm, 12 cm and 26 cm at the silty site, 

because core sampling in deeper soil layers at the silty site was impossible due to high stone 

content near the solid bedrock (Table7.1). 
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Table 7.1: Basic physical and chemical soil properties of the three sampling depths in each of the two soils 
before the experiment. 

Texture Horizon Depth (cm) pH 
(CaCl2) C (mg g-1) N (mg g-1) C/N δ13C (‰) Fed (mg g-1) Sand (%) Silt (%) Clay (%) 

Sand AE 4 3.23 56.31 0.80 27.46 -28.32 2.97 54 41 5 

Sand Bw 30 4.27 5.99 0.32 18.80 -26.62 2.46 56 39 5 

Sand Cw 100 4.28 0.20 0.06 3.63 -26.41 1.38 76 23 1 

Silt A 4 3.85 48.79 3.75 13.02 -26.54 20.85 0 89 11 

Silt Bw 12 3.88 44.80 3.57 12.53 -26.28 21.49 0 87 13 

Silt Bw 26 4.27 30.25 2.77 10.94 -25.96 22.4 1 89 11 

 

Preparation of goethite coated with 13C-labelled organic matter 

Goethite was produced by increasing the pH of a 0.5 M FeCl3 solution to 12 with 5 M NaOH 

and subsequent aging of the precipitate to goethite at 55°C for 48 hours (Schwertmann and 

Cornell, 2000). The suspension was dialyzed against double deionized water until the 

conductivity was <10 µS cm-1 and subsequently frozen in liquid nitrogen, freeze-dried, and 

sieved <200 µm. For the organic matter coating, 13C-labeled DOM was prepared by extraction of 

a mixture of 10 g labelled beech leaves (12.3 atom% 13C) (IsoLife BV, Wageningen, 

Netherlands) and 240 g of naturally grown beech leaves in 2500 mL double deionized water 

(1:10, w/v), to limit the need for expensive 13C-labelled plant litter. The litter material was 

ground to a maximum size of approximately 3 cm with a stick blender, mixed with the water, and 

then extracted after being held at room temperature for 16 h. The litter material was removed by a 

coarse sieve and the remaining solution was pre-filtered by pressure filtration through glass fibre 

filters (GF 92, Whatman, Chicago, USA) and finally pressure filtered through 0.45-µm cellulose 

nitrate filters (Sartorius, Göttingen, Germany). The bulk solution had a concentration of 1519.5 ± 

15.3 mg C L-1 and 119.6 ± 1.6 mg N L-1. The solution was diluted to 500 mg C L-1 with double 

deionized water for further handling. Ten g of goethite were shaken in 1000 ml of this DOM 

solution for 24 hours in the dark on an overhead shaker and subsequently centrifuged for 20 min 
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at 2000 g. The supernatant was decanted and the residual goethite was washed two times for 10 

minutes with ultrapure water und each time centrifuged for 10 minutes at 2000 g and decanted. 

The residual OM-coated goethite was freeze dried and stored in the dark until use. The OM-

coated goethite had an OC concentration of 19.4 mg g-1 and 0.19 mg m-2. SSA decreased 

considerably as a result of the OM loading (Table 7.2), even though the sorption capacity of the 

mineral was not reached as compared to investigations by Kaiser and Guggenberger (2007). The 

OM coating on the goethite had a δ13C ratio of 1298.9‰ VBDP. 

Table 7.2: Specific surface area (SSA), carbon (C) and nitrogen (N) content, C/N ratio, change of carbon 
concentration over the course of the experiment (ΔC), δ13C, proportion of C sorbed to the goethite derived 
from before the experiment (GDC), proportion of solution-derived C associated with goethite after the 
experiment (SDC), and previously bound OC that was either removed or replaced over the course of the 
experiment (MC). Results of the uncoated goethite before the experiment are shown (Gp), and the samples 
from the respective three depth compartments with sandy soil (GpSa1, GpSa2 GpSa3) and silty soil (GpSi1, 
GpSi2, GpSi3), the OM-coated goethite before the experiment (G0), and the respective three depth 
compartments with sandy soil (G0Sa1, G0Sa2, G0Sa3) and with silty soil (G0Si1, G0Si2, G0Si3). 

Sample SSA (m2 g-1) C (mg m-2) C (mg g-1) N (mg m-2) N (mg g-1) C/N ΔC (%) δ 13C (‰) GDC (%) SDC (%) MC (%) 

Gp 102.80 0.02 2.36 0.00 0.50 4.68 - -20.58 - - - 

G0 79.50 0.19 19.44 0.02 1.72 11.32 - 1298.92 100 0 - 

G0Sa1 82.29 0.30 31.04 0.03 2.13 14.58 37.31 ± 2.31 631.43 ± 29.05 48.96 ± 3.44 51.04 ± 3.44 21.93 ± 3.89 

G0Sa2 85.97 0.23 23.93 0.02 1.70 13.94 14.72 ± 21.15 893.84 ± 226.05 68.57 ± 17.20 31.43 ± 17.20 19.62 ± 2.27 

G0Sa3 86.49 0.18 18.28 0.02 1.57 11.61 -6.77 ± 7.66 1146.55 ± 74.09 87.89 ± 6.13 12.11 ± 6.13 17.65 ± 2.25 

G0Si1 84.91 0.24 24.51 0.02 1.43 13.05 20.71 ± 0.86 699.46 ± 19.83 54.35 ± 0.78 45.65 ± 0.78 31.46 ± 0.24 

G0Si2 80.91 0.19 19.09 0.02 1.44 11.6 -1.82 ± 0.46 1029.33 ± 37.50 78.94 ± 1.64 21.06 ± 1.64 22.47 ± 1.96 

G0Si3 84.80 0.18 18.04 0.02 1.42 12.62 -7.77 ± 1.55 1046.11 ±  36.31 80.37 ± 2.70 19.63 ± 2.70 25.44 ± 1.57 

 

Column experiment 

Two soil cores of one depth were assembled into one soil column, with 2.8 g of goethite 

embedded in a 200-µm polyester mesh (Franz Eckerd GmbH, Waldkirch, Germany) placed 

tightly in between the cores (Fig. 7.1). For both soil types two variations of the experiment were 
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performed, one using pure goethite (PG) and one using OM-coated goethite (CG). This resulted 

in four treatments: pure goethite between sandy soil cores (SaPG), OM-coated goethite between 

sandy soil cores (SaCG), pure goethite between silty soil cores (SiPG), and OM-coated goethite 

between silty soil cores (SiCG). Each column was equipped with an inlet and outlet and sealed 

with a solvent free sealing compound (water stop, MEM Bauchemie GmbH, Leer, Germany). 

Dissolved OM used in the column experiment was extracted from air dried, ground beech leaves 

sampled in autumn 2014 from the Grinderwald forest floor in double deionized water at room 

temperature for 16 h (1:10, w/v) and subsequently filtered through 0.45-µm cellulose nitrate 

filters (Sartorius AG, Göttingen, Germany). The resulting concentration of 1246.7 ± 25.7 mg C L-

1 was diluted to approximately 30 mg C L-1 with double deionized water. The δ13C ratio of the 

beech litter extract was -28.9‰ VPDB. 

 

 

 

Figure 7.1: Experimental setup of the column experiment. The arrows represent the direction of water flow. The 
dotted arrows represent sampling ports. 
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Three columns, representing soil from the different soil depths, were combined into one 

cascade with three replicates (Fig. 7.1). The experiments were carried out in a temperature 

controlled cabinet at a constant temperature of 8°C, closely approximating the mean annual 

temperature at the sampling sites. The prepared solution was pumped at a flux rate of 5.5 ml h-1 

(3 mm h-1) for 32 days into the first column inlet and the efflux from the first depth compartment 

was sequentially pumped into the second and third depth compartments. A volume of 100 ml of 

the outflow solution from each column and the inflow solution from the first depth column was 

sampled after 1, 2, 4, 8, and 16 days, and at the end of the experiment (first depth 32 days, second 

depth 27 days and third depth 22 days). The second and third columns had to be started after a 5 

day delay with respect to their upper column because ca. 300 ml of percolation solution had to 

accumulate to enable secure solution supply. In total 4224 ml (2346 mm) solution were pumped 

through the first depth compartment, 3564 ml (1969 mm) through the second depth compartment, 

and 2904 ml (1604 mm) through the third depth increment, simulating the cumulative mean water 

flux of three years’ mean precipitation. The volume reduction over depth was due to the cascade 

design of the experiment, as the available solution for the second and third columns declined by 

the withdrawn sample volume (100 ml per sampling). However, such a decrease in water flux 

with soil depth occurs also in the natural environment, as was recorded for the sampling site 

Grinderwald (Leinemann et al., 2016). After the experiment, the soil was removed from the 

cores, air dried, and stored for further measurements. 
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Measurements 

DOC concentration was measured by high temperature combustion (Vario TOC cube; 

Elementar, Langenselbold, Germany), and the UV absorbance of DOM was determined at 280 

nm on a Varian Cary 50 UV-Vis spectrophotometer (Agilent Technologies, Santa Clara, CA, 

USA). The δ13C value of DOM (DO13C) was analysed directly in solution using a high-

temperature combustion system for direct 13C measurement from liquid (Federherr et al., 2014 

and Kirkels et al., 2014). For this, an isoTOC cube (Elementar group, Langenselbold, Germany) 

total organic carbon analyzer was coupled with a continuous flow isotope ratio mass spectrometer 

(IsoPrime100, Isoprime Ltd, Cheadle Hulme, UK).  

All samples were manually acidified to pH ~2 by HCl (37%) in order to remove dissolved 

inorganic C and/or prevent (re)dissolution of atmospheric CO2. Samples were injected 4 times 

and only the last three injections were used for data analyses. Injection volume ranged between 

0.2 and 1 ml depending on the TOC content. Both at the beginning and at the end of each 

sequence a set of international standards (Caffeine IAEA-600 Sucrose IAEA-CH6; Coplen et al., 

2006) dissolved in the blank water at a TOC concentration similar to the one expected for the 

samples were run as samples, allowing for 2 point normalisation. To be able to use a two point 

normalisation for labelled samples also, artificial standards were prepared by thoroughly mixing 

non-labelled and 99%-labelled glucose in proportions to obtain the desired label. The mixtures 

were then normalised vs international standard as solid using an Elemental Analyzer (vario 

ISOTOPE cube, Elementar group, Hanau, Germany) coupled to IRMS (IsoPrime100, Isoprime 

Ltd., Cheadle Hulme, UK) and then used to prepare the standard solutions as described above. 

The artificial solid mixtures were checked several times during the entire period of analyses to 

ensure the consistency of the obtained values. Blanks samples of the same water used for the 
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preparation of the normalising standards were analysed before, after, and between samples. All 

calculations for corrections and normalisation were done according to those described in Kirkels 

et al. (2014).  

After the experiment, soil columns were opened and the soil core above and below the 

goethite as well as the goethite layer were sampled separately, freeze dried and stored in the dark 

until analyses. C and N content and δ13C ratios of solid samples were measured using an 

Elementar IsoPrime100 IRMS (IsoPrime Ltd, Cheadle Hulme, UK) coupled to an Elementar 

vario MICRO cube EA CN analyzer (Elementar Analysensysteme GmbH, Langenselbold, 

Germany). Total pedogenic Fe (dithionite-citrate-extractable Fe, Fed) of the soil samples before 

the experiment were determined according to Blakemore et al. (1987), in which 1.00 g air-dried 

soil in the presence of 1 g sodium dithionite was extracted with 20 ml 22% sodium citrate. After 

16 hours of shaking and addition of 5 ml of 5 mM MgSO4, samples were centrifuged for 20 min 

at 500 g and filtered. The filtrate was analyzed for Fe by inductively coupled plasma optical 

emission spectroscopy (ICP-OES; Varian 725-ES, Varian Australia Pty Ltd., Mulgrave, 

Australia). The specific surface area (SSA) and pore volumes of solid samples were analysed by 

N2 adsorption-desorption at 77 K, after outgassing the samples at 232 K for 24 hours until the 

pressure remained constant below 9.0 × 10-4 Torr (Autosorb MP1, Quantachrome, Boynton 

Beach, FL, USA). SSA was determined by the multipoint BET method using 11 points in the 

0.05-0.3 P/P0 range (Brunauer et al., 1938). Total pore volume (TPV) of pores with a radius 

<1839.6 Å was taken at a partial pressure of 0.99. Average pore radius was calculated as rp = 

2Vliq/SSA, where Vliq is the volume of liquid N2 contained in the pores. 

To map the distribution of sorbed OC to the goethite surface, an aliquot of the OM-coated 

goethite before the experiment (G0) and an aliquot of the OM-coated goethite after the 
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experiment from each of the three depths of the columns with the sandy soil (4 cm = G1, 30 cm = 

G2, 100 cm = G3) were analysed with a NanoSIMS 50L (Cameca, Gennevilliers, France). In 

order to facilitate adhesion to a thin layer of goethite, a small quantity of dried sample was spread 

on a silica wafer and placed at -20°C in a freezer for one minute. Afterwards, the sample was 

placed at room temperature for another minute, generating condensation water that served to 

adhere the samples to the wafer, which was then dried in a desiccator overnight. Loose material 

was removed with compressed air and the remaining sticking sample was subsequently coated 

with gold to avoid possible charging effects (Sputter Coater S150A, Edwards, Crawley, UK) 

during subsequent scanning electron microscope (SEM) imaging. Using SEM on each sample, 

four regions with representative single layered goethite aggregates were chosen for subsequent 

NanoSIMS analyses. A Cs+ ion beam with 16 keV impact energy, ~4 pA, primary current was 

used and 12C-, 13C-, 16O- and 56Fe16O- secondary ions were recorded using electron multipliers on 

a raster area of 30 µm × 30 µm (256 × 256 pixels) by collecting 100 planes per spot with a dwell 

time of 1 ms pixel-1. Appropriate slits were used to ensure a mass resolution to solve mass 

interferences present between 13C- and 12C1H-. Prior to analysis the region was sputtered using a 

high primary beam current between 500 and 600 pA to remove contaminants, the Au layer, and 

to implant primary ions in the surface to enhance secondary ion emission. The images were 

corrected for electron multiplier dead time (44 ns) and further processed using the 

look@nanoSIMS software (Polerecky et al., 2012) operated with Matlab 2013b (The MathWorks 

Inc., Natick, MA, USA). Regions of interest (ROIs) were selected by the interactive threshold 

function on the basis of the 12C- counts of the accumulated measurements, as they represented 

areas of sorbed OM containing moieties rich in 13C- abundance as well. The areas corresponding 

to goethite were selected similarly on the basis of 56Fe16O- counts. The distribution of sorbed OM 

to the goethite was quantified by calculating the percentage of area covered by OM on the 
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goethite surface. The 13C- / 12C- was calculated for the OM ROIs to evaluate OC dynamics on the 

goethite surface over the course of the experiment. The ratio numbers were multiplied by 100 to 

better visualise small differences. The numbers then were in the range of atom% 13C. To compare 

with NanoSIMS atom% 13C the bulk EA-IRMS measurements were converted from the δ‰ 

notation to atom% 13C values by taking the 13C- / 12C- ratio of the EA-IRMS standard (0.0111802) 

into account (Frey, 2007). For further discussion of the results the ROIs with an atom% 13C of 

<1.40 were considered to consist mainly of newly sorbed OC as they occurred on the samples 

only after the column experiment (Table S7.6) and are referred to as low enriched. The ROIs with 

an atom%13C of >1.4 and <2.4 are referred to as intermediate enriched and to possibly consist of 

a mixture of old and new sorbed OC. The ROIs with an atom%13C of >2.40 are referred to as 

high enriched and were considered to consist of mainly old OC, as the they were similar to or 

higher than bulk EA-IRMS measurements of the OM-coated goethite before the experiment. 

For qPCR analysis, DNA was extracted from 0.3 g sample of the experimental run with pure 

goethite (Table S7.2) using a FastDNA SPIN Kit for soil (BIO101, MP Biomedicals, Santa Ana, 

CA, USA) and quantified with a Nanodrop ND-2000 spectrophotometer (Thermo Scientific, 

Waltham, MA, USA), followed by dilution of the samples with ultra-pure water to a target 

concentration of 5 ng DNA µl-1. The quantification of the abundances of total bacteria, fungi, and 

archaea and the abundances of the bacterial taxa Betaproteobacteria, Actinobacteria, 

Acidobacteria, Bacteroidetes, Firmicutes, Verrucomicrobia and Gemmatimonadetes via qPCR 

was carried out with an ABI prism 7500 Fast System (Applied Biosystems, Foster City, CA, 

USA). For each qPCR assay a cocktail of 0.75 µl of each forward and reverse primer, 0.375 µl 

T4gp32, 7.5 µl SYBR Green, 4.125 µl ultra-pure water, and 1.5 µl DNA template (for total 

bacteria and archaea only 1.0 µl) was mixed. Standard curves were generated in triplicate with 

serial dilutions of a known quantity of the respective isolated plasmid DNA. Each qPCR run 
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included two no-template controls showing no or negligible values. Table S7.1 lists the selected 

primers, thermal cycling conditions, and PCR efficiencies. Sampling strategy as well as sample 

storage made it possible to measure the qPCR derived from samples of the sandy Dystric 

Cambisol only.  

 

Calculations 

The total amount of DOC transported at each sampling point was calculated by multiplying 

the measured DOC concentration with the volume of percolate passing the column over the 

period represented by the sample (eq. 1). 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐷𝐷𝐷𝐷𝐷𝐷 ( 𝑚𝑚𝑚𝑚 ) = 𝐷𝐷𝐷𝐷𝐷𝐷 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ( 𝑚𝑚𝑚𝑚 𝐿𝐿−1 )  × 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ( 𝐿𝐿 ℎ−1 ) ×

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ( ℎ )   (eq. 1) 

DOC exchange in the 1st depth increment was calculated by subtracting the cumulative DOC 

in the inflow solution (DOCin1) from the cumulative outflow solution (DOCout1) (eq. 2). Because 

of the delayed start for the second depth increment, the cumulative DOC of the 4th to the 6th 

samples of the outflow from the first depth compartment (DOCout1) was subtracted from the sum 

of cumulative DOC from the second depth compartment (DOCout2) (eq. 3). For the third depth 

compartment the cumulative DOC of the 4th to the 6th samples of the second depth compartment 

(DOCout2) was subtracted from the sum of the cumulative DOC of the third depth compartment 

(DOCout3) (eq. 4). 

𝐷𝐷𝐷𝐷𝐷𝐷 𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 1.𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ = ∑ 𝐷𝐷𝐷𝐷𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜16
𝑖𝑖=1 − ∑ 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖16

𝑖𝑖=1       (eq. 2) 

𝐷𝐷𝐷𝐷𝐷𝐷 𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 2.𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ =  ∑ 𝐷𝐷𝐷𝐷𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜26
𝑖𝑖=1 − ∑ 𝐷𝐷𝐷𝐷𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜16

𝑖𝑖=4      (eq. 3) 

𝐷𝐷𝐷𝐷𝐷𝐷 𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 3.𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ = ∑ 𝐷𝐷𝐷𝐷𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜36
𝑖𝑖=1 − ∑ 𝐷𝐷𝐷𝐷𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜26

𝑖𝑖=4      (eq. 4) 
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The specific UV absorbance (SUVA) at 280 nm was calculated as the ratio of UV absorbance 

of the solutes and DOC concentration (L mg C-1 cm-1). Mean values for inflow and outflow 

solutions were calculated for the six sampling times. For the net SUVA change in the first depth 

the mean SUVA of the inflow solution (SUVAin1) was subtracted from the mean SUVA of the 

outflow solution from the first depth compartment (SUVAout1) (eq. 5). For the SUVA change in 

the second depth compartment, the mean SUVA of the outflow solution from the first depth 

compartment (SUVAout1) was subtracted from the mean SUVA of the outflow solution from the 

second depth compartment (SUVAout2) (eq. 6). For the SUVA change in the third depth 

compartment the mean SUVA of the outflow solution from the second depth compartment 

(SUVAout2) was subtracted from the mean SUVA of the outflow solution from the third depth 

compartment (SUVAout3) (eq. 7). 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 1.𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ = 𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜1 − 𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖1       (eq. 5) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 2.𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜2 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜1       (eq. 6) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 3.𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜3 −  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜2       (eq. 7) 

The proportion of C derived from the OM-coated goethite in the outflow solution (goethite-

derived OC, GDCDOM) of each column was calculated relative to the δ13C ratio of the respective 

inflow solution (eq. 8), where δ13Cout and δ13Cin represent the δ13C ratio of the outflow and the 

inflow solutions and δ13CCG represents the δ13C ratio of the OM-coated goethite. The δ13C ratios 

were averaged over the six sampling times. 

𝐺𝐺𝐺𝐺𝐺𝐺𝐷𝐷𝐷𝐷𝐷𝐷  (%) = (𝛿𝛿13𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜−𝛿𝛿13𝐶𝐶𝑖𝑖𝑖𝑖)
(𝛿𝛿13𝐶𝐶𝐶𝐶𝐶𝐶−𝛿𝛿13𝐶𝐶𝑖𝑖𝑖𝑖) 𝑥𝑥 100       (eq. 8) 

The proportion of C on the OM-coated goethite-derived from the solution after the experiment 

(solution-derived OC, SDCgoethite ) was calculated relative to the δ13C ratio of the inflow solution 
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(δ13Cin), where δ13CCGA represents the δ13C ratio of the goethite after the experiment and δ13CCG 

represents the δ13C ratio of the OM-coated goethite before the experiment (eq. 9). Hence, the 

remaining proportion of OC on the goethite after the experiment was still derived from the OM-

coating applied before the experiment. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑖𝑖𝑖𝑖𝑖𝑖 (%) = (𝛿𝛿13𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−𝛿𝛿13𝐶𝐶𝐶𝐶𝐶𝐶)
(𝛿𝛿13𝐶𝐶𝑖𝑖𝑖𝑖−𝛿𝛿13𝐶𝐶𝐶𝐶𝐶𝐶) 𝑥𝑥 100       (eq. 9) 

The relative change in OC concentration (∆C) of the OM-coated goethite before (Cbefore) and 

after the experiment (Cafter) was calculated by equation 10.  

 ∆𝐶𝐶 (%) = �𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�
𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑥𝑥 100        (eq. 10) 

The previously goethite-bound OC that was mobilized during the experiment (MC) was 

calculated by the difference in the absolute amount of SDC and the net change in OC content of 

the mineral before (Cbefore) and after the experiment (Cafter) relative to the OC content before the 

experiment.  

𝑀𝑀𝑀𝑀 (%) =
�
𝑆𝑆𝑆𝑆𝑆𝑆(%) × 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

100  − �𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�� 

𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑥𝑥 100      (eq. 11) 

The magnitude of change in the δ13C ratios of the soil samples before and after the experiment 

was too small to calculate the respective GDC in the soil samples. Thus the total amount of OC 

retained in the soil cores that was mobilized from the OM-coated goethite (Retained MC) was 

calculated as the difference between the total amount of MC and the total amount of GDC in the 

outflow solution (eq. 12). The total amount of MC (mg) was the product of Cbefore (mg g-1) and 

MC (%) times the weight of the goethite between the soil cores (2.8 g), divided by 100. The total 

amount of GDC (mg) was the product of the total DOCoutput
 (mg) and the GDC (%), divided by 

100.  
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑀𝑀𝑀𝑀 (𝑚𝑚𝑚𝑚) =  𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 × 𝑀𝑀𝑀𝑀(%)× 2.8
100

− 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐷𝐷𝐷𝐷𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 × 𝐺𝐺𝐺𝐺𝐺𝐺(%)
100

   (eq. 12) 

 

Statistical analysis 

Effects of soil type (soil), depth (depth), position inside the column above the goethite or 

below the goethite (pos), OM-coating of the goethite (goethite), and interactions of these factors 

were analysed with linear mixed-effect (lmer) models. Due to the design with three experimental 

repetitions of the three–step cascade system, the soil columns were set as random factor. 

Comparison of means was conducted for all factors and interactions. Significance was tested at p 

<0.05 in all cases. Homogeneity of variance was tested for all parameters by Levene’s test. All 

statistical analyses were carried out with R statistics version 3.2.1 (R Core Team, 2015) using the 

“lme4” (Bates et al., 2015) and the “lsmeans” package (Lenth, 2016). 

 

7.3 Results 

DOC transport 

Mean DOC concentration in the column outflow solution decreased with increasing depth, and 

the columns with OM-coated goethite had higher DOC concentrations than the columns with 

pure goethite (Fig. 7.2). Both results were more pronounced for the soil developed from sand 

than for the silty soil developed from basalt (Table 7.1). Concurrent with the DOC concentration, 

cumulative DOC transport also decreased with depth, and more DOC was found in the effluent of 

columns with OM-coated goethite than in the effluent of columns with pure goethite (Fig. 7.2). 

With respect to cumulative DOC flux, the differences with depth were more pronounced for the 

sandy soil than for the silty soil (Fig. 7.3). The net OC exchange was calculated to evaluate 
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Figure 7.2 Mean DOC concentrations (mg L-1) and 
standard deviations of the outflow solution per treatment 
and depth (4, 30, and 100 cm for the columns with sandy 
soil and 4, 12, and 26 cm for the columns with silty soil). 
Abbreviations: SaCG = sandy soil and OM-coated 
goethite, SaPG = sandy soil and pure goethite, SiCG = 
silty soil and OM-coated goethite, SiPG = silty soil and 
pure goethite. Different letters above the error bars 
indicate significant differences with p-values <0.05. 

 

whether, over the course of the experiment, OC was retained or released in the columns. Samples 

from the first depth showed a higher cumulative DOC flux in the outflow than in the inflow 

indicating that DOC was released over the course of the experiment (values above the 1:1 line in 

Fig. 7.3). The samples from the first depth compartments with silty soil and pure goethite were an 

exception as OC was retained. In contrast, all columns from the second and third depths retained 

OC, and under all experimental conditions less OC was retained for the experiments with OM-

coated goethite than for those with pure goethite (F1,10 = 11.98, p <0.01; Table S7.4). 

Figure 7.3 Total output DOC (mg) vs. total input DOC 
(mg) of all experimental treatments. Abbreviations: 
SaCG = sand and OM-coated goethite, SaPG = sand and 
pure goethite, SiCG = silt and OM-coated goethite, 
SiPG = silt and pure goethite. Values above the 1:1 line 
represent net leaching, whereas values below the 1:1 
line represent net retention. Error bars indicate standard 
deviation.  Filled symbols represent columns with OM-
coated goethite whereas empty symbols represent 
columns with pure goethite. 
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Aromaticity of DOM 

The outflow solution of the first depth of the sandy soil had a higher mean SUVA than the 

inflow solution (Fig. 7.4). But with increasing depth the mean SUVA of the column outflow 

decreased (depth: F2,133 = 100.06, p <0.01). The effect of OM-coated or pure goethite on SUVA 

was less pronounced than on the DOC concentration (Fig. 7.3 and 7.4). The silty soil showed 

smaller differences in SUVA between the three depths than the sandy soil. A depth trend was 

only apparent in the columns with OM-coated goethite (significant difference between first and 

third depths, p <0.01; Fig. 7.4; Table S7.5). The sandy soil had a higher mean SUVA in the 

outflow of the first depth compartments than the silty soil. The mean SUVA of the outflow of the 

second depth compartments with sandy soil was in the same range as in case of the silty columns, 

while for the third depth compartments it was lower for the sandy soil than for the silty soil.  

 

Exchange of OC between goethite, soil and solution 

Along with the sorptive exchange of unlabelled DOM from the percolation solution with the 

labelled goethite-bound OM, the δ13C ratio of the outflow DOM solution significantly increased 

Figure 7.4 Mean values of output specific UV-Vis 
absorbance (SUVA) at 280 nm (L mg C-1 cm-1) vs. 
input SUVA at 280 nm of all experimental variations. 
Abbreviations: SaCG = sand and OM-coated goethite, 
SaPG = sand and pure goethite, SiCG = silt and OM-
coated goethite, SiPG = silt and pure goethite. Values 
above the 1:1 line represent increasing SUVA values 
as a result of sorption / desorption processes, whereas 
values below the 1:1 line represent decreasing SUVA 
values. Error bars indicate standard deviation. 
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with soil depth (depth: F2,72 = 76.7, p <0.01). This increase was less pronounced in the effluent of 

the silty soil columns than of the sandy soil columns (Fig. 7.5A). In the sandy soil, the proportion 

of labelled OM desorbed from the goethite to total DOM increased from the first to the second 

depth and then remained constant (Fig. 7.5B). In the silty soil, the contribution of labelled OM 

desorbed from the goethite to the DOM output of the columns did not change significantly with 

depth (Fig. 7.5B). 

 

Percolation of the DOM solution through all first depth compartments increased the OC 

content of the goethite. In the second and third depths, the OC content was in the range of the 

OM-coated goethite before the experiment (19.4 mg g-1) or slightly decreased (Table 7.2). As an 

unlabelled DOM solution (δ13C of –28.9‰) was used, the δ13C of the goethite-associated OM 

decreased during the experiment (Table 7.2). In the first depth compartments of both soils the 

proportion of OM adsorbed to the goethite after the experiment was evenly distributed between 

new OM derived from the percolation solution and OM that had already been adsorbed before the 

Figure 7.5 (A) δ13C value of the outflow solution of the three cascade depths of the columns from both soils. (B) 
Mean proportion of OM derived from the coated goethite in the outflow solution of the three cascade depths of 
the columns from the sandy and the silty soils. Error bars indicate standard deviation. Different letters above the 
error bars indicate significant differences (p <0.05). 



7 Multiple exchange processes on mineral surfaces control the transport of dissolved organic matter 
 

128 
 

experiment (Fig. 7.6). With increasing depth, the proportion of unlabelled OM newly sorbed to 

the goethite decreased. In the columns derived from silty soil, the goethite from the second and 

third depth compartments had similar percentages of goethite- and solution-derived OC (Fig. 

7.6). A replacement of pre-experimentally bound OC, calculated according to equations 8-11, 

was evident in all columns, even where the net OC exchange (ΔC) of the goethite was negative. 

More OC was replaced in the columns of the silty soil than in those of the sandy soil (F1,9 = 35.1, 

p <0.01), but the depth patterns were similar (Fig. 7.6).  

 

 

In the first and second depth compartments of the sandy soil, the OC adsorbed to goethite 

from the percolation solution (SDC) exceeded the overall increase in OC content (ΔC) over the 

course of the experiment. Hence, for both soil depths, around 20% of the goethite-derived OM 

was exchanged by OM from the percolation solution (MC), while the rest of the OC was sorbed 

Figure 7.6 Mean fraction of the newly sorbed solution-derived carbon (SDC; eq. 9) versus the remaining carbon 
of the initial carbon coating (GDC; eq. 8) on the goethite samples after the column experiment for the sandy soil 
(4, 30, and 100 cm) and the silty soil (4, 12, and 26 cm), the net carbon exchange (ΔC; eq. 10), and the mobilized 
carbon (MC; eq. 11) of the respective samples. Standard deviations are given in brackets. 
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additionally. In the third depth, both the OC content and the δ13C ratio of the goethite decreased, 

leading to a calculated proportion of 12% of OM derived from the percolation solution and 18% 

of the OM adsorbed to the goethite before the experiment was mobilized. In the first depth 

compartments with silty soil, 31% of the OM adsorbed to the goethite before the experiment was 

exchanged over the course of the experiment. In the second and third depths, an overall decrease 

in OC concentration of the goethite as compared to the concentrations before the experiment 

corresponded to an adsorption of 20% OC from the solution, and about 25% of the previously 

bound OC was replaced (Fig. 7.6, Table 7.2).  

Table 7.3: Mean mobilized OC from the OM-coated goethite (MC), mean goethite-derived OC (GDC) in 
the solution and mean RetainedMC (eq. 12), and the proportion of retainedMC relative to the total amount 
of mobilized OC from the respective goethite sample (± standard deviation) in the three depths of the 
columns with sandy and silty soils. RetainedMC represents the fraction of OC mobilized from the OM-
coated goethite but retained in the soil core below the goethite and thus not transported out of the 
column.  

Texture Depth 
(cm) 

MC from OM-coated 
goethite (mg) 

GDC in solution 
(mg) 

RetainedMC 
(mg) 

RetainedMC (% of 
MC) 

Sand 4 11.94 ± 2.10 4.11 ± 0.54 7.83 ± 2.17 64.88 ± 6.86 

Sand 30 10.68 ± 1.23 5.02 ± 1.20 5.66 ± 1.22 53.11 ± 9.63 

Sand 100 9.61 ± 1.22 2.79 ± 0.65 6.81 ± 1.76 70.05 ± 9.47 

Silt 4 17.12 ± 0.09 3.29 ± 0.78 13.83 ± 0.87 80.74 ± 4.68 

Silt 12 12.23 ± 0.75 0.86 ± 0.99 11.37 ± 1.21 92.98 ± 8.09 

Silt 26 13.85 ± 0.85 0.77 ± 0.14 13.08 ± 0.96 94.39 ± 1.26 
 

The δ13C ratio of the original soil increased with increasing depth (Table 7.1). After the 

percolation experiment, in the first and second depth compartments the δ13C ratio of the soil 

either above or below the goethite showed major changes compared to the δ13C ratio of the 

original soil. In the third depth the δ13C ratios of the soil above and below the goethite increased 

by 10.4‰ and 11.7‰, respectively (Table S7.5). Based on the difference between the amount of 

mobilized OC from the goethite and the measured goethite-derived OC in the DOM solutions, we 
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were able to determine the amount of OC mobilized from the goethite that was thereafter retained 

in the soil below the goethite layer (RetainedMC). In the first depth compartment of the sandy soil, 

this amounted to 7.9 mg OC, whereas 5.2 mg OC and 7.1 mg OC were calculated for the second 

and third depth compartments, respectively (eq. 12). In the columns with silty soil, 13.9 mg of the 

mobilized OC was retained under the goethite layer of the first depth and 11.3 mg OC and 13.0 

mg OC were retained in the second and third depths, respectively (Table 7.3). 

 

Figure 7.7 SEM image of goethite superposing the NanoSIMS image of 12C- in red and 56Fe16O- in blue. A) 
Sample from the 4-cm depth compartment of sandy soil; B) Sample from 30-cm depth compartment of sandy 
soil. Regions of carbon accumulation on the goethite surface identified as regions of interest (ROI) are encircled. 
The color represents the range of the atom% 13C for the respective ROI: green marks OM with <1.4 atom% 13C 
(high abundance of newly adsorbed organic matter; low 13C enrichment), white marks OM with 1.4-2.4 atom% 
13C (intermediate abundance of newly adsorbed organic matter, intermediate 13C enrichment), and brown marks 
OM with >2.4 atom% 13C (low abundance of newly adsorbed organic matter, high 13C enrichment). The white 
line surrounds the mineral surface. 
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Microbial community composition 

The microbial communities in the soil and of the goethite in all depth compartments of the 

sandy Dystric Cambisol were dominated by bacteria with relative proportions of 69-92% (Fig. 

7.9A). Post-experimental absolute abundances of bacteria increased significantly from the first to 

the second soil depth for both bulk soil and goethite layers, with the highest mean increase in 

bacterial abundance of 265% in the goethite layer at 30 cm depth compared to the respective 

layer at the 4 cm depth (depth: F1,18 = 13.29, p <0.01). Bacterial abundances also tended to differ 

between sampling points within each depth compartment, with the largest differences between 

the soil above the goethite layer and the goethite itself (pos: F2,18 = 3.18, p <0.1). Fungi and 

archaea showed highest relative proportions in the 4 cm soil columns of up to 13 and 19%, 

respectively. Archaea exhibited increasing absolute abundances with depth and showed 

pronounced differences within each depth compartment (Fig. 7.9A). Greatest changes were found 

Figure 7.8 Results from NanoSIMS measurements of the OM-coated goethite samples from the columns 
with sandy soil. A) Atom% 13C of the ROIs of the OM-coated goethite before the experiment (G0) and from 
the three depth compartments with sandy soil after the experiment, as determined by NanoSIMS. For 
comparison the respective bulk atom% 13C value as calculated from the IRMS measurements is shown as a 
black cross. The number of ROIs is given for each boxplot (n). B) Area of high (atom% 13C > 2.4), 
intermediate (atom% 13C 1.4-2.4) and low (atom% 13C < 1.4) 13C enrichment, relative to the total OM 
covered surface, as determined by NanoSIMS. 
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between the goethite layers (lowest abundances) and the soil below (highest abundances, depth: 

F1,15 = 7.40, p <0.05; pos: F2,15 = 6.16, p <0.05). 

 

 

Taxa-specific assays of the bacterial communities revealed that all soil depth compartments, 

both above and below the goethite layers, were dominated by Actinobacteria (up to 60%) and 

Acidobacteria (up to 25%). In contrast, goethite layers showed the highest abundances of 

Betaproteobacteria, with relative proportions ranging between 54 and 66% (Fig. 7.9B). Three of 

the six investigated taxa were significantly affected by soil depth or position within the column 

(above or below the goethite). While Actinobacteria, Verrucomicrobia and Firmicutes did not 

show any significant effects, the abundances of Acidobacteria, Betaproteobacteria and the 

generally less abundant Gemmatimonadetes increased with depth (Fig 9B; Acidobacteria: F1,15 = 

7.52, p <0.05; Betaproteobacteria: F1,15 = 6.89, p <0.05; Gemmatimonadetes: F1,15 = 8.22, p 

Figure 7.9 Microbial abundances of the sandy soil above and below the goethite layer (GL) as well as in 
the goethite itself sampled from the 4 cm, 30 cm, and 100 cm depth increments. A) Mean abundances of 
bacteria, fungi and archaea; B) Mean abundances of the bacterial taxa Acidobacteria, Actinobacteria, 
Betaproteobacteria, Bacteroidetes, Firmicutes, Gemmatimonadetes, and Verrucomicrobia. 
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<0.05). Additionally, Betaproteobacteria were more abundant in the goethite layers than in the 

bulk soil compartments, while Acidobacteria and Gemmatimonadetes showed the opposite effect 

(Betaproteobacteria: F2,15 = 7.90, p <0.01; Acidobacteria: F2,15 = 10.41, p <0.01; 

Gemmatimonadetes: F2,15 = 4.49, p <0.05).  

 

Spatial distribution of OM on goethite surfaces 

About 2.7 ± 0.7% of the mineral surfaces of the OM-coated goethite used in the column 

experiments and analysed by NanoSIMS were covered by OM (Fig. 7.7, Table S7.7). The mean 

atom% 13C of the ROIs on all samples was 2.2 ± 0.4 with a minimum of 1.6 ± 0.3 and a 

maximum of 3.2 ± 0.7. The bulk EA-IRMS measurement was in the same range and translates to 

2.5 atom% 13C (Fig. 7.8A). As only the goethite from the columns taken in the sandy soil was 

analysed by NanoSIMS, the following results are restricted to this soil type. After the experiment, 

3.5 ± 1.0% of the goethite surface from the first depth compartment was covered by OM, while 

the mean atom% 13C changed to 1.9 ± 0.5. The bulk EA-IRMS measurement was in the same 

range (1.8 atom% 13C). The samples from the second depth compartment showed slightly smaller 

mineral surface coverage by OC (2.7 ± 1.4%) and a slightly higher mean atom%13C (2.0 ± 0.5), 

which mirrored the bulk EA-IRMS measurement (2.3 atom% 13C). The samples from the third 

depth showed a mineral surface coverage (3.5 ± 2.1%) and atom% 13C results (1.9 ± 0.5) 

comparable to the first depth samples, but the bulk EA-IRMS result was higher (2.3 atom% 13C, 

Fig. 7.8A). 

On average, 74.5 ± 33.3% of the ROI area of the OM-coated goethite before the experiment 

showed intermediately enriched atom% 13C values (1.4-2.4 atom% 13C) whereas the remainder 

showed high 13C enrichments (>2.4 atom% 13C). The ROI area of the goethite from the first depth 
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compartment comprised the largest proportion of less enriched OM (<1.4 atom%13C) and the 

smallest proportion with highest 13C enrichment. The ROI area of the goethite from the second 

and third depth compartments showed comparable proportions of the low enriched category, 

which decreased compared to the first depth compartment. For all post-experimental goethite 

samples, slightly above 50% of the ROI fell into the intermediate enriched category, with the 

maximum area (66.5 ± 14.3% of ROI) observed for goethite from the second depth compartment 

(Fig. 7.8B). 

 

7.4 Discussion 

Net OC exchange at goethite surfaces 

DOC concentration and DOM composition changed through interaction of soils and goethite 

with the percolated solutions. In the first depth compartments of all experiments, except for the 

columns from the basalt site with pure goethite, there was a net release of DOC, and the SUVA 

increased in the outflow solution relative to the inflow solution (leaf leachate). This indicated a 

release of plant derived aromatic compounds from the topsoil (McDowell and Likens, 1988), 

which was assumed to be the initial step of the cascade-like transport of DOM down the soil 

profile (Kaiser and Kalbitz, 2012). The inflow solutions of the second depth compartments 

consequently had the highest DOC concentrations in the experiments along with the highest 

proportion of aromatic moieties. Retention processes in the second and third depth compartments 

led to a decrease in DOC concentration in the effluents; declining SUVA values indicated the 

preferential sorption of aromatic compounds. Field experiments on DOC dynamics (Kaiser et al., 

2004; Leinemann et al., 2016) found comparable results with respect to the behaviour of aromatic 

moieties; we conclude, therefore, that the column experiment was suitable for investigation of 
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natural processes. The transport of DOM in the second and third depths of the column experiment 

can thus be characterised as the competitive retention of aromatic, mostly plant derived 

compounds with higher sorption affinity versus potentially labile microbially-derived compounds 

that remain in solution or become desorbed from mineral surfaces (Guo and Chorover, 2003). 

The smaller inter-depth differences in DOC concentrations and SUVA observed for the silty soil 

cascade were most likely due to the smaller depth gradient, resulting in smaller differences in C 

and N content between the samples of the different depth increments (Table 7.1). The larger 

quantities of released DOC in the sandy topsoil than in the silty topsoil led to the conjecture that 

OM is adsorbed more strongly in the more fine-grained substrate with a higher content of 

dithionite-extractable Fe (Table 7.1). This is in accordance with studies of the relationship 

between OC storage and content of pedogenic Fe (and Al) oxides (Eusterhues et al., 2005; Herold 

et al., 2014; Mikutta et al., 2006).  

 

Gross OC exchange between goethite and soil solution 

The use of goethite coated with 13C-labelled OC enabled us to distinguish between sink and 

source processes on goethite surfaces. This made it possible to determine whether or not a 

competitive exchange of OC between the mineral phase and soil solution occurs due to the input 

of reactive DOM compounds as proposed in the “cascade model”. Over the whole cascade, the 

OM-coated goethite acted as a C source as the δ13C in the columns’ output solution increased 

with every step (Fig. 7.5A). At the same time the OM-coated goethite also sorbed DOM at all 

three depths, even though its OC content decreased in the third depth compartment of the sandy 

soil and the second and third depth compartments of the silty soil (Fig. 7.6).  
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The proportion of mobilized OC from the goethite (MC) was relatively constant with depth 

but was higher in the OM-rich silty soil than in the OM-depleted sandy soil, at least in the first 

and third depth compartments (Fig. 7.6). Thus, the mobilization of goethite-associated OM was 

soil specific. The greater mobilization of OC from the goethite in the third depth of the silty soil 

can be explained by a higher reactivity of the percolating DOM, as in the second depth the 

aromaticity of the output solution of the silty soil columns was higher than the aromaticity in the 

output solution of the sandy soil columns (Fig. 7.4). The SUVA values also help to explain the 

comparable OC mobilization in the second depth, but not the differences between the sandy and 

the silty soil in the first depth, where the aromaticity of the solution percolating through the sandy 

soil columns was higher.  

It was not possible to calculate the proportion of solution-derived OC sorbed to the soil 

samples because changes in δ13C ratios of the soil (above and below the OM-coated goethite) 

during the experiment were minor. However, the assessment of changes in 13C of the OM-coated 

goethite and of the DOM output solution enabled us to precisely calculate the retention of OC 

mobilized from OM-coated goethite in the subsequent soil depth. Following this approach, the 

shallow silty soil retained two times more OC than the sandy soil from the OM-coated goethite 

(Tab. 3) and was thus identified as the more reactive system. This is in accordance with a 10-fold 

higher dithionite-extractable Fe content (Table 7.1). Thus, the greater sorption capacity of the 

silty soil provides an explanation for the ambiguous results of higher proportions of mobilized 

OC from the goethite (Fig. 7.6) and lower proportions of goethite-derived OC in the output 

solution (Fig. 7.5) in comparison to the sandy soil columns. The lower sorption capacity of the 

sandy topsoil, in contrast, resulted in a higher proportion of solution-derived OC in the first two 

depths and as a consequence, more OC could be additionally sorbed to the goethite layer.  
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The strong decline in solution-derived OC at the goethite surfaces in the third depth of the 

sandy soil (Fig. 7.6) likely resulted from its interaction with less reactive DOM, as according to 

the “cascade model”, high-affinity aromatic compounds were already preferentially adsorbed in 

the second depth compartment (Fig. 7.4). The retention of aromatic compounds in the second 

depth most likely occurred for the most part in the soil core above the goethite, since, compared 

to the first depth, no stronger mobilization of OC from the goethite was found. This is in 

accordance with results of Hagedorn et al. (2015) who found a strong retention of percolated 

DOM in the uppermost 2 cm of soil cores. Mobilisation of less strongly sorbing OM components 

in the second depth compartment is likewise reasonable. According to adsorption experiments 

using in situ DOM extracts from different soil depths, the reactivity of subsoil DOM is lower than 

that of topsoils (Rennert and Mansfeldt 2003). Hence, the comparable proportion of solution-

derived OC associated with goethite in the second and third depths of the silty soil (Fig. 7.6) is in 

accordance with the minor changes in SUVA of the percolating soil solution in these depth 

increments (Fig. 7.4). 

The release of 13C from the goethite into the percolation solution at every depth step confirms 

that the interaction of DOM with mineral-associated OM led to a re-mobilisation of previously 

bound OM, thus providing strong evidence for the partially stepwise transport of DOM through 

soil profiles (Kaiser and Kalbitz, 2012). Even though the goethite was not OM-coated to its 

maximum sorption capacity (Kaiser and Guggenberger, 2007) it did not further sorb OC during 

the experiment but rather directly participated in the cycling of OM. Despite the low OC loading 

of the goethite, fostering strong interactions between the mineral and OM, and careful washing of 

the OM-goethite associations to remove non-sorbed and easily bound OM, as much as 18 to 31% 

of the initially sorbed OC took part in the cascade transport. Based on other sorption experiments 

and using the initial mass isotherm approach, the DOC-induced desorption of OC from 48 
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different mineral soil samples, including topsoils and subsoils, averaged 3.2% (Moore et al., 

1992). This is in accordance with the fraction of desorbable goethite-associated OM (2.7%) after 

treatment with DOC-free synthetic soil solution (Kaiser and Zech 2000). However, the column 

experiment clearly highlights that for quantification of the cycling potential of OM bound to soil 

minerals, gross exchange processes need to be considered. Batch desorption studies without extra 

information derived from the use of stable isotope labelling are not suitable for determination of 

the potential DOC source of mineral-associated OM. Absent this additional information, the 

importance of mineral-associated OM for soil C cycling cannot be quantified reliably. It has 

recently been suggested that such exchange processes occur between litter-derived DOC and 

organic layers (Müller et al., 2009). Using the column experiment with 13C-labelled goethite-

bound OM, we were able to provide evidence that DOM from different soil 

compartments―including mineral topsoil and subsoil horizons―is able to replace mineral-

associated OM and thus the transport of DOC does occur in a cascade-like manner, in constant 

exchange with mineral bound OC. 

 

Depth and substrate effects on microbial abundance and community composition 

Reactive minerals such as goethite are hotspots of biochemical interactions between mineral 

surfaces, organics, and microbial degraders with high bioactivity (Heckman et al., 2013). 

Consequently, the increase in bacterial abundance by up to 265% and the altered bacterial 

community composition in the goethite layers in comparison to the surrounding bulk soil reflect 

high C processing on mineral surfaces as postulated in the “cascade model” (Fig. 7.9A and B). 

DOC transport within the soil profile as well as the pronounced C exchange processes on the 

goethite surfaces led to large amounts of bio-available OC in the goethite layers (Fig.7.3). The 
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high availability of labile carbon compounds stimulated the growth of predominantly 

copiotrophic bacteria such as Betaproteobacteria in the goethite layers. This result is in 

accordance with a study of Eilers et al. (2010) characterising Betaproteobacteria as an important 

taxon under conditions of high concentrations of labile carbon. The mean fungal-to-bacteria ratio 

of 1:14 in the goethite layers in comparison to 1:9 in the bulk soil layers also led to the 

conclusion that labile carbon mainly stimulated the growth of copiotrophic bacteria in the former 

(Fig. 7.9B). In addition, Betaproteobacteria may have also benefited from higher pH values in 

the goethite layer (pH 5.1-6.7) in comparison to the bulk soil (pH 3.2-4.6) (Table S7.2; see also 

Blagodatskaya and Anderson, 1998). Especially in the two deeper soil horizons with lower OC 

content (Table 7.1), actual microbial C availability may have been increased in the goethite layers 

where OC loading was higher than in the surrounding environment. The higher C availability was 

reflected by the negative net decrease of OC content on the goethite in the 100 cm depth 

compartments and increasing 13C content of the solution with every depth step (Fig. 7.6). This 

suggests that - despite of the high sorption capacity of goethite - sufficiently large amounts of 

labile C were available for microbial turnover processes and may indicate an active function of 

microorganisms in remobilization processes of mineral-bound OM. However, future studies 

using stable isotope probing need to clarify the re-mobilization potential of microorganisms in 

bioactive mineral-microbe systems. Nevertheless, the increased microbial access to OC in the 

goethite layers explains the increase in copiotrophic (r-strategists, fast growth rates) 

Betaproteobacteria and decrease in oligotrophic (K-strategists, low growth rates) Acidobacteria, 

which decreased in relative proportions in the microbial communities under increased OC 

availability (Fierer et al., 2007). Consequently, Betaproteobacteria may be initial colonizers of 

reactive minerals such as goethite and the relative increase in this taxon could indicate a shift 

from K- to r-strategist-dominated microbial communities from bulk soil to goethite layers. The 
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dominance of Acidobacteria and Actinobacteria in the soil compartments was also found in situ 

at the field site of the Dystric Cambisol (Preusser et al., 2017). The microbiological results of this 

study highlight the contribution of microbial degraders to the cascade processes of DOC transport 

within the soil profile as well as the magnitude of C exchange processes on surfaces of reactive 

minerals such as goethite. 

 

Small-scale variability of OC on mineral surfaces 

To track the exchange of OC sorption at the small scale, goethite samples were analysed by 

NanoSIMS. The data suggested that OM occurred in randomly distributed patches over the 

goethite surfaces (Fig. 7.7) with a low maximum coverage of 3.5% of the goethite surfaces as 

detected by NanoSIMS (Table S7.6). Using comparable NanoSIMS measurements, Vogel et al. 

(2014) observed a fivefold higher OM coverage (19%) mainly on micro-aggregates composed of 

clay-sized soil minerals at an OC loading of 1.1 mg m-2, which is roughly five times the OC 

loading of the OM-coated goethite used in our experiment (Tab. 2). However, Xiao et al. (2016) 

analysed extracted Fe-bearing soil colloids with C content of 15 to 25 mg C g-1 by NanoSIMS 

and found C surface coverages of 7 to 10%. The rather small surface coverages found on our 

samples are thus in a range comparable to other NanoSIMS studies. 

In our NanoSIMS study it was possible to additionally distinguish between OC sorbed before 

and during the experiment based on changes in atom% 13C values in selected ROIs. The 

approximately 25% of OC on the mineral surface residing in the highly enriched category can be 

considered as sorbed before the experiment and to have remained unchanged during the 

experiment. Evidence for this is that the proportion of OC on the goethite samples in the highly 

enriched category after the experiment declined only relatively in the first and second depth 
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samples as their total carbon content increased over the course of the experiment. In the third 

depth sample the proportion increased relatively because of the decreasing total OC content 

(Table 7.2, Fig.7.8). Between 15 and 25% of the OM on the surface of the goethite after the 

experiment was freshly sorbed. In the first and second depths this was less than the proportion of 

solution-derived OC on the goethite determined by EA-IRMS measurements (Fig. 7.6), 

suggesting that the intermediate enriched category was involved in the interactions with the DOM 

to a great extent. These results provide further evidence for a mobilisation of previously bound 

OM. It also corroborates the findings of Vogel et al. (2014) who were able to show a rapid 

accrual of fresh C and N on micro-aggregate surfaces with a specific sorption to inherited OM. 

Our study highlights the importance of microscale OM patches for the cycling of OC at 

microscale mineral interfaces as indicated by the dilution of the 13C signals. This interaction of 

previously sorbed OC and DOC as indicated by declining 13C enrichment at certain spots on the 

goethite surface supports the “cascade model” (Kaiser and Kalbitz 2012) and thus the exchange 

of inherited OM by percolating DOC.  

 

7.5 Conclusion 

Undisturbed soil column experiments with 13C-labelled goethite-associated OM were 

conducted to verify the “cascade model” of DOM transport through soil profiles and to quantify 

the net and gross exchange processes on mineral surfaces as well as associated shifts in microbial 

communities. We found that, during the transport of DOM through soil columns, aromatic DOM 

moieties were preferentially retained, similar to natural conditions. Variable gross OC exchange 

rates of up to 31% showed that fresh OM inputs can replace a significant fraction of mineral-

associated OM. Exchange processes at mineral surfaces due to simultaneous adsorption and 
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desorption of OM thus play a crucial role in DOM transport, as well as in the fate and properties 

of mineral-associated OM. Comparably high microbial abundances in goethite layers highlight 

the role of secondary minerals as hotspots for OM transformation and decomposition. The high 

concentrations of copiotrophic bacteria such as Betaproteobacteria in the goethite layers 

provided evidence that large quantities of labile carbon are processed on the surfaces of reactive 

minerals. Nevertheless the roles of different microbial taxa and phyla in re-mobilization need 

further study, for example by using different stable isotope probing techniques. In conclusion, 

sorbed OM can be mobilized and replaced by DOC over an entire soil profile even at depth, thus 

confirming the validity of the “cascade model”. 
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7.7 Supplementary materials 

 

Table S7.1: qPCR primers and conditions. 

Gene Primer* Thermal profile** No. of 
Cycles 

Efficiency 
mean (%) Reference 

16S rRNA genes 341F  
515R 

95°C – 10 m, 95°C – 15 s, 
60°C – 30 s, 72°C – 30 s, 
75°C – 30 s 

1  
35 99% 

(Lopez-
Gutierrez et 
al., 2004) 

Fungal ITS 
fragment 

ITS3F 
ITS4R 

95°C – 10 m95°C – 15 s, 
55°C – 30 s, 72°C – 30 s, 
76°C – 30 s 

1 
35 93% 

(White et al., 
1990; 
Manerkar et 
al.,2008) 

16S Archaea Ar912R 
Ar109F 

95°C – 10 m, 95°C – 30 s, 
52°C – 60 s, 72°C – 60 s, 
75°C – 30 s 

1 
40 92% 

(Lueders and 
Friedrich, 
2000) 

Acidobacteria Acid31 
Eub518 

95°C – 10 m, 95°C – 15 s, 
55°C – 30 s, 72°C – 30 s, 
81°C – 30 s 

1 
35 92% (Fierer et al., 

2005) 

Actinobacteria Act920F3 
Act1200R 

95°C – 10 m, 95°C – 15 s, 
61.5°C – 30 s, 72°C – 30 s, 
78°C – 30 s 

1 
35 92% 

(Bacchetti De 
Gregoris et 
al., 2011) 

β-Proteobacteria Eub338 
Bet680 

95°C – 10 m, 95°C – 15 s, 
55°C – 30 s, 72°C – 30 s, 
80°C – 30 s 

1 
35 92% (Fierer et al., 

2005) 

Firmicutes Lgc353 
Eub518 

95°C – 10 m, 95°C – 15 s, 
60°C – 30 s, 72°C – 30 s, 
79°C – 30 s 

1 
35 97% (Fierer et al., 

2005) 

Verrucomicrobia Verr 349 
Eub 518 

95°C – 10 m 95°C – 15 s, 
60°C – 30 s, 72°C – 30 s, 
77°C – 30 s 

1 
35 90% (Philippot et 

al., 2009) 

Gemmatimonadetes Gem440 
Eub518 

95°C – 10 m, 95°C – 15 s, 
58°C – 30 s, 72°C – 30 s, 
78°C – 30 s 

1 
35 95% (Philippot et 

al., 2009) 

Bacteroidetes Cfb798F 
Cfb967R 

95°C – 10 m, 95°C – 15 s, 
61.5°C – 30 s, 72°C – 30 s, 
75°C – 30 s 

1 
35 96% 

(Bacchetti De 
Gregoris et 
al., 2011) 

*Primer concentration was 10 pmol μl-1 

**Additionally, a 60°C to 95°C step was added to each run to obtain the denaturation curve specific for 
each amplified sequence. 
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Table S7.2: Selected soil and goethite parameters of the samples from the experimental run with pure 
goethite used for the qPCR analyses. 

Depth 
column 

Sample 
type 

pH 
(CaCl2) C (mg g-1) N (mg g-1) C/N Sand (%) Silt (%) Clay (%) 

4 Soil 3.2 58.22 2.42 24 54 41 5 

4 Goethite 5.1 15.54 1.13 14 - - - 

30 Soil 4.1 8.72 0.37 23 56 39 5 

30 Goethite 6.3 4.96 0.66 8 - - - 

100 Soil 4.6 1.00 0.19 5 76 23 1 

100 Goethite 6.7 1.94 0.57 3 - - - 

 

 

Table S7.3: Mean DOC concentrations (mg L-1) of the outflow solutions of all 
experimental variations at the three respective depths (cm). 

Depth (cm) 4 30 100 

Sandy soil OM-coated goethite 65.35 ± 19.17 41.17 ± 11.11 28.41 ± 19.73 

Sandy soil pure goethite 24.07 ± 5.64 10.22 ± 3.42 7.53 ± 3.17 

Depth (cm) 4 12 26 

Silty soil OM-coated goethite 22.21 ± 3.28 16.95 ± 2.60 12.01 ± 2.52 

Silty soil pure goethite 13.42 ± 0.36 11.73 ± 2.32 10.00 ± 2.39 
 

  



7 Multiple exchange processes on mineral surfaces control the transport of dissolved organic matter 
 

145 
 

Table S7.4: Cumulative mean DOC inflow (mg), and outflow (mg) as well as the gross balance of 
both (± standard deviation). Negative values represent adsorption processes from the solution, 
whereas positive values represent desorption processes into the solution. The balance in percent is 
calculated relative to the inflow solution. 

* Differences in output concentration and the consecutive input concentration of the next 
depth compartment are caused by the delayed start of the next column leaching as some 
solution was used for sampling. 

  

Sandy soil and OM-coated goethite* 

Depth (cm) 4 30 100 

DOC in 102.34 ± 26.13 143.77 ± 7.85 101.64 ± 19.84 

DOC out  182.79 ± 16.53 127.04 ± 26.62 60.44 ± 5.26 

Balance  80.45 ± 12.40 -16.73 ± 18.86 -41.19 ± 20.08 

Balance (%) 85.04 ± 38.18 -11.24 ± 12.51 -38.99 ± 12.44 

Sandy soil and pure goethite* 

Depth (cm) 4 30 100 

DOC in 71.04 ± 2.63 86.62 ± 10.87 29.40 ± 9.40 

DOC out  94.51 ± 12.88 32.92 ± 9.40 16.37 ± 4.57 

Balance  23.47 ± 10.25 -53.71 ± 20.28 -13.03 ± 13.97 

Balance (%) 32.80 ± 13.21 -61.01 ± 15.75 -38.70 ± 35.15 

Silty soil and OM-coated goethite* 

Depth (cm) 4 12 26 

DOC in 72.17 ± 0.00 73.10 ± 4.21 43.43 ± 4.64 

DOC out  93.62 ± 7.16 61.17 ± 6.89 32.49 ± 5.19 

Balance  21.45 ± 7.16 -11.92 ± 5.30 -10.95 ± 3.40 

Balance (%) 29.73 ± 9.92 -16.36 ± 7.51 -25.31 ± 7.49 

Silty soil and pure goethite* 

Depth (cm) 4 12 26 

DOC in 69.18 51.64 34.60 

DOC out  55.24 38.61 26.35 

Balance  -13.94 -13.03 -8.25 

Balance (%) -20.15 -25.23 -23.86 
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Table S7.5: Mean values of total specific UV absorbance (SUVA) at 280 nm (L mg C-1 cm -1) of DOM in 
the inflow and in the outflow as well as the balance of both (± standard deviation). Negative values 
represent decreasing SUVA in the outflow whereas positive values represent increasing SUVA in the 
outflow. The balance in percent is calculated relative to the inflow solution.  

Sandy soil and OM-coated goethite* 

depth (cm) 4 30 100 

SUVA in 0.019 ± 0.005 0.038 ± 0.005 0.020 ± 0.004 

SUVA out 0.035 ± 0.004 0.018 ± 0.003 0.005 ± 0.002 

Balance 0.017 ± 0.006 -0.020 ± 0.005 -0.015 ± 0.004 

Balance (%) 97.63 ± 53.94 -53.3 ± 8.14 -73.53 ± 11.05 

Sandy soil and pure goethite* 

depth (cm) 4 30 100 

SUVA in 0.026 ± 0.003 0.036 ± 0.002 0.017 ± 0.005 

SUVA out 0.035 ± 0.002 0.016 ± 0.003 0.005 ± 0.003 

Balance 0.009 ± 0.001 -0.020 ± 0.005 -0.012 ± 0.007 

Balance (%) 37.40 ± 8.46 -55.56 ± 10.72 -66.56 ± 24.43 

Silty soil and OM-coated goethite* 

depth (cm) 4 12 26 

SUVA in 0.023 ± 0.000 0.026 ± 0.003 0.021 ±0.001 

SUVA out 0.021 ± 0.003 0.017 ± 0.002 0.014 ± 0.001 

Balance -0.002 ± 0.003 -0.009 ± 0.004 -0.007 ± 0.002 

Balance (%) -10.85 ± 12.67 -34.47 ± 13.29 -34.45 ± 9.07 

Silty soil and pure goethite* 

depth (cm) 4 12 26 

SUVA in 0.023 ± 0.001 0.024 ± 0.004 0.021 ± 0.002 

SUVA out 0.018 ± 0.004 0.017 ± 0.006 0.018 ± 0.005 

Balance -0.005 ± 0.006 -0.005 ± 0.004 -0.002 ± 0.003 

Balance (%) -19.65 ± 25.77 -25.22 ± 20.32 -9.03 ± 15.66 
* Differences in the output SUVA and the consecutive input SUVA of the next depth compartment are 
caused by the delayed start of the next column leaching as some solution was used for sampling. 
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Table S7.6: Mean OC concentration and δ13C ratio of the soil samples before and after the experiment and the respective change of both, per depth 
increment and used soil, on basis of bulk EA-IRMS measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Above and below the goethite layer. 

  

Texture Depth Position* OC after the experiment 
(mg g-1) 

OC before the experiment 
(mg g-1) 

C change 
(mg g-1) δ13CAE (‰) δ13CBE 

(‰) δ13Cchange (‰) 

sand 4 above 83.21 ± 30.05 56.31 26.90 ± 
30.04 -28.53 ± 0.13 -28.32 -0.21 ± 0.13 

sand 4 below 109.38 ± 8.01 56.31 53.07 ± 8.01 -28.34 ± 0.33 -28.32 -0.25 ± 0.33 

sand 30 above 10.36 ± 1.63 5.99 4.37 ± 1.63 -27.12 ± 0.17 -26.62 -0.50 ± 0.17 

sand 30 below 10.60 ± 1.62 5.99 4.60 ± 1.62 -26.28 ± 0.04 -26.62 0.34 ± 0.04 

sand 100 above 1.17 ± 0.04 0.20 0.97 ± 0.04 -16.06 ± 4.83 -26.41 10.35 ± 4.83 

sand 100 below 0.95 ± 0.35 0.20 0.75 ± 0.34 -14.71 ± 1.00 -26.41 11.70 ± 1.00 

silt 4 above 47.29 ± 5.36 48.79 -1.50 ± 5.36 -26.31 ± 0.36 -26.54 -0.23 ± 0.36 

silt 4 below 47.94 ± 8.27 48.79 -0.85 ± 8.27 -26.97 ± 0.59 -26.54 -0.43 ± 0.59 

silt 12 above 45.16 ± 5.93 44.80 0.36 ± 5.93 -26.33 ± 0.26 -26.28 -0.05 ± 0.26 

silt 12 below 44.45 ± 6.82 44.80 -0.35 ± 6.82 -26.29 ± 0.42 -26.28 -0.01 ± 0.42 

silt 26 above 32.47 ± 4.59 30.25 2.22 ± 4.59 -25.52 ±  0.14 -25.96 0.44  ±  0.14 

silt 26 below 33.59 ± 3.97 30.25 3.34 ± 3.97 -25.89 ± 1.34 -25.96 0.07 ±  1.34 
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Table S7.7: Surface coverage and isotopic data based on NanoSIMS images of OM-coated goethite before (G0) and after the experiment (G0 4 cm, 
G0 30 cm, G0 100 cm). We report mean atom% 13C values of regions of interest (ROIs) that represented regions with OM coating and the respective 
bulk IRMS measurements for the whole sample. The ROIs with an atom% 13C of <1.40 were considered to be related to newly sorbed OC (low 13C 
enrichment), the ROIs with an atom% 13C of >1.40 and <2.40 were considered to consist of a mixture of old and new sorbed OC (intermediate 13C 
enrichment), and ROIs with an atom% 13C of >2.40 were assumed to consist of mainly old OC (high 13C enrichment). The table shows the relative 
proportion of the surface covered by OC of each category and the number of ROIs (n) in each category. 

 
Sample 

Surface 
covered by 

OM (% ± SD) 

Mean atom% 13C 
of ROI (± SD) 

Bulk IRMS 
(atom% 13C) 

low 
13C 

(% of total OC 
± SD) 

n 
intermediate 13C 
(% of total OC ± 

SD) 
n 

high 
13C 

(% of total OC 
± SD) 

n 

G0 2.68 ± 0.71 2.24 ± 0.41 2.51 0.00 ± 0.00 0 74.55 ± 33.26 18 25.45 ± 33.26 8 
G0 4 cm 3.45 ± 0.99 1.91 ± 0.50 1.81 24.54 ± 19.36 11 57.96 ± 22.33 25 17.51 ± 12.26 11 

G0 30 cm 2.72 ± 1.43 1.99 ± 0.49 2.29 13.65 ± 10.95 7 66.50 ± 14.32 42 19.85 ± 19.05 11 
G0 100 cm 3.52 ± 2.09 1.91 ± 0.50 2.26 14.87 ± 29.74 6 50.56 ± 19.58 21 34.57 ± 29.49 6 
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8  General Discussion 

Microbial decomposer communities and their regulatory function in C-cycling are decisively 

influenced by depth-specific habitat conditions within soil profiles. The objectives of this thesis 

were to evaluate the effects of specific factors (substrate, micro-environment) and their interplay 

on microbial characteristics, and to identify potential implications for the microbial regulatory 

function in C turnover and storage in subsoil. In order to achieve these objectives, two reciprocal 

soil translocation experiments under in situ conditions (chapters 5 and 6) and one laboratory flow 

cascade experiment (chapter 7) have been conducted. 

Effects of substrate and environment on microbial biomass and function in subsoil 

Availability of C has been described as the key determinant for microbial abundance within 

soil profiles (Fierer et al., 2003; Ekblad and Nordgren, 2002). In line with this, we expected 

microbial biomass response according to the altered C availability in the translocation and 

cellulose addition treatments of the first reciprocal soil translocation experiment (chapter 5) with 

upper (10-20 cm soil depth; Bsw-Bw horizon) and lower (110-120 cm; C horizon) subsoil. 

However, neither the translocation and the ensuing changes in substrate availability in different 

soil depths nor the addition of cellulose influenced the microbial biomass (Fig. 5.3 a and c), 

although cellulose-derived C accumulated up to 15% in the microbial biomass (Fig. 5.3 b and d). 

We could explain this inhibition of microbial growth with a subsequent N limitation following 

the alleviation (via cellulose addition) of the primary C limitation as previously observed in other 

studies (e.g. Kamble et al., 2013) (Table S5.4). Moreover, we concluded that the detected low 

water content - as a result of scarce precipitation and high water uptake by trees - in interplay 

with the highly sandy texture of the two subsoil layers may have caused an enhanced spatial 
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(micro-scale) fragmentation of the subsoil environment and thus a spatial separation between 

microorganisms and their substrates (see Chapter 5.4.3). Under low soil moisture conditions, 

substrate-induced limitation of microbial activity is more likely in the investigated subsoil than in 

the topsoil due to the coarser soil structure of mineral soil and the related lower pore connectivity 

and stronger decline in solute diffusion as water content decreases (Manzoni et al., 2012). As 

enzyme production is an energy and nutrient demanding process (Schimel and Weintraub, 2003; 

De Nobili et al., 2001), the detected low enzymatic activity with no or only minor response to 

cellulose addition (Table S5.2 and S5.3) mirrored the impact of soil moisture and nutrient 

limitations on microbial growth and activity in subsoil, where a largely dormant microbial 

community might have been largely incapable to efficiently exploit newly emerging resources. 

Accordingly, several studies investigating SOM decomposition found a strong dependence of 

enzyme production and activity on soil moisture and nutrient availability (e.g. Baldrian et al., 

2010; Allison and Vitousek, 2005). This inefficiency in microbial substrate utilization due to 

spatial separation between microorganisms and substrates may therefore be of high relevance for 

C accumulation in subsoil. 

In contrast to the first translocation experiment, increases in absolute microbial abundance due 

to enhanced substrate availability were not masked by nutrient-induced growth limitations in the 

second reciprocal soil translocation experiment (chapter 6) with topsoil (5-10 cm soil depth; Bsw 

horizon) and subsoil (105-110 cm; C horizon). Therefore, this experiment demonstrated the 

beneficial effect of higher substrate availability on soil microorganisms, both in shallower soil 

depth (microbial biomass increase of up to 605%), via root addition (up to 91%) and through the 

interplay of both (up to 847%; see also Table 6.1). In this context, the enormous increase in 

microbial biomass due to translocation of subsoil to shallower soil depth and the concurrently 

decreasing relative importance of root litter as microbial C source emphasized the higher 
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diversity of microbial C sources in topsoil (Fig. 6.3 a and c). Moreover, we concluded from the 

constant absolute microbial root-C utilization capacities in translocated topsoil as well as subsoil 

samples that the functional groups of root decomposers remained at a similar abundance level 

within the entire soil profile and that the increase in microbial biomass in the topsoil environment 

was largely due to growth of microorganisms using newly available C from e.g. fresh leaf litter-

derived DOC inputs or root exudation (Fig. 6.3 b and d). Decrease in microbial biomass with soil 

depth is therefore a consequence of both decrease in quantitative C availability and in potential C 

sources. 

Comparing the results of the two translocation experiments allowed us to clarify the impact of 

environmental conditions on soil microorganisms and their substrate utilization capacities within 

soil profiles. Although root litter was of higher importance as microbial C source in non-

translocated subsoil than in non-translocated topsoil samples (Fig. 6.3 a and c), absolute 

microbial root-C utilization capacities were generally lower in the comparatively dry subsoil than 

in the more moist topsoil of the second translocation experiment (Fig. 6.3 b and d; Fig. S6.3). 

Between the two subsoil layers with comparable soil texture and similarly low water content 

(generally < 30% water holding capacity; WHC) of the first translocation experiment, however, 

no decreases in absolute microbial cellulose-C utilization capacities with increasing soil depth 

were detected (Fig. S5.1). This confirmed our finding of the first translocation experiment that 

soil moisture was crucial for maintaining microbial activity and thus greatly affected microbial 

substrate utilization capacities within the soil profiles as also described in a study by Gill and 

Burke (2002). However, other previous studies investigating root decomposition dynamics in 

topsoil and subsoil detected no differences within soil profiles under non-limiting water 

conditions (Sanaullah et al., 2011, Solly et al., 2015). Consequently, the comparison with these 

previous studies emphasized the discrepancy between potential and actual microbial substrate 
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utilization and the enormous influence of soil moisture on these processes. Our results implied 

that especially in very sandy soils like the Dystric Cambisol at the experimental site of the two 

field experiments (Table 5.1), moisture content of the soil respectively of the different soil 

horizons is the most critical environmental factor controlling microbial C turnover with soil 

depth. 

While non-translocated soil samples allowed us to compare microbial C processing under 

different moisture regimes with soil depth, the translocation of soil samples enabled us to study 

the specific influence of different temperature regimes within soil profiles. However, the 

temperature differences within the soil profile were rather small, which is explained both by the 

coarse and thus well aerated soil structure and further by the mitigating effect of tree stands on 

local temperature patterns (lower diurnal temperature amplitude in forest compared to e.g. 

pasture) (Fig. 6.1 a). We concluded that the detected minor temperature differences had no or 

only minor influence on microbial abundance, since soil temperatures were well within the 

physiological limits of soil microbial communities of temperate climate zones (Fierer et al., 

2003). It also emerged that the microbial C utilization capacities were not negatively affected by 

the slightly differing temperature regimes with soil depth, as seen in both translocation 

experiments (Fig. 6.3 b; Fig. S5.1). Contrary, other studies described soil temperature to be of 

high relevance for microbial abundance and functioning (Waldrop and Firestone, 2006; Treseder 

et al., 2016); and this applies in particular for microbial degradation processes (Frey et al., 2013). 

Therefore, it could not be excluded that during the two field experiments temperature effects have 

been masked by the enormous impact of the generally low soil moisture and will be present under 

(occasionally occurring) more favourable soil moisture conditions within the soil profile. 
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Specific responses of bacterial and fungal abundance and function to substrate and 

environment in subsoil 

One of the most striking results of the second translocation experiment was the steeply 

increasing fungal abundance under enhanced availability of root-C in subsoil demonstrating 

substrate limitation as key factor for low fungal abundance in deeper soil layers (Fig. 6.4 c and f). 

In line with the results of the first translocations experiment, highest relative substrate-derived C 

incorporation rates were determined in fungal PLFA with incorporation rates of up to 100% in 

subsoil samples within their home field soil depth (Fig. 5.5; Fig. 6.5 a – f). The generally high 

substrate-C incorporation rates (%) into fungi in both translocation experiments demonstrated the 

role of (saprotrophic) fungi as the primary degraders of structural components of recent plant-

derived substrates due to their pronounced ability to decompose complex OM compounds (e.g. 

cellulose and lignin) as also recently described by Baldrian (2017) and Hicks Pries et al. (2018). 

However, the decreasing relative importance of root litter as fungal C source (Fig. 6.5 c and f) 

concurrently with steeply increasing fungal abundance (Fig. 6.4 c and f) from subsoil to topsoil in 

the second translocation experiment suggested that pronounced alterations in fungal communities 

occurred, and that these alterations were driven by the availability of more diverse C resources 

with shallower soil depth as shown in a study by Moll et al. (2015). 

Another important finding could be obtained through the differences in bacterial and fungal 

root-C utilization capacities revealing a fungal competitive advantage in decomposition processes 

under the prevailing environmental conditions in subsoil during the second field experiment. The 

added roots had a higher relative importance as C source for both bacteria and fungi in subsoil 

than in topsoil samples as C inputs from other sources decreased with soil depth (Fig. 6.5). 

However, while the absolute bacterial root-C incorporation showed a similar pattern as for the 
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total microbial community, with less incorporation in subsoil than in topsoil, fungi were able to 

incorporate higher amounts of root-derived C in subsoil (Fig. 6.5 g – l). We explained this by the 

lower moisture sensitivity of fungi and by the fungal ability to bridge air-filled pores via hyphal 

growth enabling fungi to exploit resources more efficiently and to maintain their metabolic 

activity under unfavourable conditions for longer time periods than bacteria (Manzoni et al., 

2012; Drenovsky et al., 2004). Conversely, this implied that the bacterial decomposition activity 

was more negatively affected by low water content in the subsoil environment. Beside a generally 

weaker bacterial affinity to use recent plant-derived C (Kramer and Gleixner, 2006), this decrease 

in root decomposition activity with soil depth was largely caused by the drought-induced spatial 

fragmentation of the subsoil environment restricting bacteria to remaining water-filled pore 

spaces disconnected from the surrounding soil volume and thus largely impeding bacterial 

utilization of the potentially available substrate. Consequently, we found bacterial responses to 

hot spots of substrate availability to be considerably lower than fungal responses, showing no or 

only marginal, and by soil depth negatively affected increases in abundance in both translocation 

experiments (Fig. 5.4; Fig. 6.4). The largely restriction of bacterial growth and activity in deeper 

soil was in particular shown in the bacterial community composition of the first translocation 

experiment showing generally no response to cellulose addition, supporting our assumption of a 

largely dormant bacterial decomposer community in subsoil (Fig. 5.7). Among the investigated 

bacterial phyla, in particular Betaproteobacteria and Acidobacteria have been identified as 

potentially important cellulose degraders in previous studies (e.g. Stursová et al., 2012). 

In contrast to this extensive inhibition of bacterial growth and activity in subsoil, the increase 

in microbial abundance in the topsoil layer of the second translocation experiment indicated an 

enhanced microbial activity in this near-surface environment (Fig. 6.4). However, the increase in 

abundance was accompanied by substantial decreases in relative microbial root-C incorporation 
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and thus a greater microbial utilization of other C sources (Fig. 6.5 a – f). Among these different 

potential C sources, in particular DOM is of major importance. The laboratory flow cascade 

experiment (chapter 7) allowed us to investigate the development of the quality and quantity of 

DOM with passage through the soil profile, with particular consideration of exchange processes 

on goethite as reactive soil mineral. As mineral surfaces are hot spots of biochemical interactions 

with high OC processing (Heckman et al., 2013), this experiment further provided important 

information about microbial characteristics in this soil micro-environment. 

An outstanding result of this experiment under non-limiting water conditions (see chapter 

7.2.3) was the greater dominance of bacteria in the microbial communities of goethite layers 

(fungi-to-bacteria ratio: 1:14) compared to bulk soil layers (1:9) at the end of the 32-day 

experimental period (Fig. 7.9 a). This community shift revealed the beneficial effect of high 

labile C availability due to extensive C exchange processes on mineral surfaces on bacterial 

growth with, in particular, rapid increases of copiotrophic bacteria (r-strategists, fast growth 

rates) such as Betaproteobacteria (Fig. 7.6; Fig. 7.9 b). This finding is in accordance with other 

studies investigating the relationship between soil properties and bacterial community 

composition describing Betaproteobacteria as important taxon under conditions of high labile C 

availability (Eilers et al., 2010; Fierer et al., 2007). The column experiment further allowed 

comparing the bacterial community composition of soil minerals as micro-habitats within soil 

profiles with the overall bacterial community composition of larger bulk soil volumes. This 

comparison revealed that the dominance of Betaproteobacteria in the bacterial communities on 

mineral surfaces was in clear contrast to the community composition of the bulk soil 

compartments with high relative proportions of oligotrophic bacteria (K-strategists, low growth 

rates) such as Acidobacteria and Actinobacteria (Fig. 7.9 b). A predominantly oligotrophic 

bacterial community dominated by Acidobacteria and Actinobacteria was also detected under in 
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situ conditions in the first translocation experiment (Fig. 5.7). Both bacterial phyla have been 

characterized to be adapted to resource- and moisture-limited conditions in previous studies (e.g. 

Barnard et al., 2013; Naether et al., 2012; Castro et al., 2010), Therefore, we concluded that their 

high abundance reflected the low C availability in the bulk soil layers compared to the goethite 

layers of the column experiment as well as in the subsoil environment of the first translocation 

experiment (Fig. 7.2; Fig.5.2 a and c). As postulated in the “cascade model” (Kaiser and Kalbitz, 

2012), the flow cascade experiment further demonstrated that the quality and quantity of DOM 

substantially changed with passage through the soil profile (Fig. 7.2; Fig. 7.6). However, despite 

these preceding alterations of DOM, we found mineral surfaces in the subsoil environment to be 

hot spots of microbial abundance with a comparable community composition as on those 

minerals in shallower soil depth (Fig. 7.9 b). This indicated that despite the high proportions of 

mineral-bound C (Angst et al., 2016) subsoil-C was at least partly bioavailable and that the 

microbial C availability on mineral surfaces in the subsoil was significantly increased compared 

to the surrounding soil environment. However, microbial C availability in subsoil strongly 

depends on OC transport with the soil solution from upper soil layers, whereas the total extent 

and the spatial and seasonal patterns of soil water fluxes were found to be highly variable under 

field conditions (Leinemann et al., 2016). Therefore, a synthesis of the results of the soil 

translocation experiments and the column experiment allowed conclusions on the microbially 

regulated C dynamics with increasing soil depth. The column experiment clearly demonstrated 

the high potential of extensive C processing on mineral surfaces in deeper soil environments with 

distinct influence on especially bacterial properties and C turnover. However, the results of the 

translocation experiments suggested that the extent of microbial C processing in deeper soil under 

in situ conditions is temporary and spatially restricted. In this regard, especially bacteria as key 

players of mineral-associated C turnover were found to be inhibited in growth and decomposition 
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activity by soil moisture limitations. Consequently, intense bacterial activity in the sandy subsoil 

might largely be limited to preferential flow paths or to rainfall events with pronounced DOM 

fluxes down to deeper soil layers (Bundt et al., 2001). Contrary, fungi – primarily involved in the 

decomposition of recent plant-derived substrates as well as complex plant compounds such as 

cellulose and lignin – were rather restricted by substrate limitation in deeper soil than by micro-

climatic conditions. The resistance of specific fungal strains against micro-climatic fluctuations 

might be an important fungal characteristic in decomposition processes under future warmer 

climatic conditions, where soils might dry out for longer time periods and to greater extent. 
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9 Final Conclusions and Perspectives 

Carbon dynamics in subsoil have gained increasing attention in recent years due to the high 

proportion of total SOC stored for long timescales in deeper soil layers and the relevance of 

subsoil as potential source or sink of C in the global C-cycle. However, to date, there is still 

insufficient understanding of the mechanisms of OC storage and turnover in subsoil and of the 

biological, chemical and physical factors influencing these processes. The aim of the SUBSOM 

research group was to comprehensively investigate these complex processes in subsoil C-cycling. 

Within the framework of this research group, the studies presented in this thesis have investigated 

the effects of various factors and their interactions on the abundance and regulatory function of 

microorganisms in C-cycling in deeper soil layers. This thesis provides novel knowledge about 

the microbial community structure in subsoil habitats, the function of different microbial groups 

in SOM decomposition within soil profiles, and the effects of changing habitat conditions with 

soil depth on microbial characteristics. 

The results of this thesis demonstrated that deep soil layers exhibit a substantial potential for 

microbial C turnover. Under field conditions, however, this potential was found to be limited by 

the predominant environmental conditions, so that the actual microbial C turnover was generally 

low during the investigation period. Beside the coarse soil texture of the Dystric Cambisol at the 

experimental site, the nearly perpetually occurring low soil water content and the interaction of 

these factors led to a spatial separation between microorganisms and potentially available 

substrates. This applied in particular for the subsoil horizons of the site causing a pronounced 

inhibition of microbial C turnover in deeper soil. Spatial separation might consequently be a key 

determinant for the accumulation of OC in subsoil. The extent of spatial separation decisively 

depends on the texture and water holding capacity of the soil as well as on the amount and 
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temporal pattern of precipitation and the resulting soil moisture. Based on the results of this 

thesis, soils/soil horizons with a high sand content and thus a rather coarse soil structure appear to 

be more susceptible to micro-scale fragmentation and thus to spatial separation between 

microorganisms and substrates under low soil moisture conditions. Moreover, this thesis 

demonstrated that bacteria and their C turnover were more negatively influenced by these habitat 

conditions than fungi suggesting that bacterial characteristics were predominantly affected by 

micro-climatic conditions, in particular low soil moisture, whereas fungi exhibited a clear 

dependence on preferential substrates. This finding indicated that the fungal role in SOM 

turnover could be of increasing importance under future climatic conditions, where soils might 

dry out for longer time periods and to greater extent. Fungi were found to maintain their 

metabolic activity under low soil moisture for longer time periods than bacteria due to their 

ability to bridge air-filled pores via hyphal growth and their generally lower soil moisture 

sensitivity. Nevertheless, the laboratory flow cascade experiment revealed that also increased 

bacterial growth and activity could occur in subsoil. Here, high C processing on mineral surfaces 

and favorable water conditions led to an increased growth of in particular copiotrophic bacteria 

indicating high labile C availability in this micro-environment. Consequently, this thesis reveals 

that microbial C turnover in subsoil largely depends on spatial C availability for microorganisms 

in a heterogeneous environment. The microbial C availability, in turn, strongly depends on direct 

and indirect effects of soil water content and fluxes on C transport, interconnection of the soil 

pore space, as well as on microbial metabolism and mobility. In the context of subsoil as source 

or sink of C this means that increasing OC input due to climate change (e.g. higher net primary 

production; NPP) or human impact may not necessarily lead to an increased C sequestration in 

deeper soil (Lorenz and Lal, 2005), but rather to enhanced microbial C turnover and thus to an 

accelerated C release (e.g. via positive priming effects) from subsoil C pools. 
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The newly gained knowledge from this thesis provides the basis for further investigations on 

the regulatory function of microorganisms in subsoil C-cycling. However, more studies are 

required on taxa-specific C utilization in response to different habitat conditions in order to 

obtain a more detailed picture of the different actors in subsoil C-cycling and their development 

under future climate change scenarios. This can be achieved by analyzing nucleic acids in 

labelling experiments (DNA-SIP, RNA-SIP) and the taxonomic and functional characterization 

of the microbial communities and their metabolic function (functional genes) in subsoil. Fungal 

decomposition communities might be of particular interest due to their increased importance in 

C-cycling under dry soil conditions, as demonstrated in this thesis. Moreover, the microbial 

communities of different soil types and their response to different habitat conditions should be 

integrated into investigations in order to assess the development of microbial regulation of 

subsoil C pools on larger spatial scales. 
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