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1. Preface 

1.1. Summary 

Monitoring milk processing is an essential task as it affects the quality and safety of the final 

product. The aim of this investigation was to develop and analyse the self-learning system for the 

supervision of the processing of milk. In the self-learning evaluation module, several algorithms 

for data analysis of near infrared (NIR) and Raman spectra was implemented for the prediction 

of sample quality and safety.  

In the first part of this thesis, the use of NIR spectroscopy for controlling milk processing was 

investigated. For this reason, a high-quality quartz flow cell with a 1 mm pathlength including 

temperature controlling option for liquids was implemented. For sample preparation, UHT-milk 

with 1.5 % fat content was measured at 5 °C and considered as the reference milk. Samples with 

various changes such as added water and cleaning solution, different fat content and 

temperature as well as milks from various suppliers were investigated as the modified samples.  

A data set from reference and modified samples was obtained with NIR measurements. In this 

study, first Savitzky-Golay derivative with second polynomial order and window size of 15 was 

applied. It was compared with the usefulness of raw spectrum and also the combination of raw 

and first derivative spectrum. For the self-learning sector, an autoencoder neural network was 

employed. Within this thesis, it was shown that the trained autoencoder using first derivative 

spectra was capable to detect 5 % added water and 9 % cleaning solution in the milk. However, 

by using the combination spectra, the difference of 0.1 % in fat concentration was perfectly 

recognized. These two procedures were able to detect milks from different suppliers and 

difference of 10 °C in the measurement temperature. 

Another part of this work was done using Raman spectroscopy. The aim of this part was to check 

if the previous result can be improved. In this step, the circulation method was again employed 

the same as in the previous part. However, because of the heat introduced to the sample by the 

laser using in Raman spectroscopy and the length of plastic tubes which can be affected by the 

temperature of the laboratory, the measurement temperature was kept at 10 °C. 1.5 % fat UHT-
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milk was utilized as the reference sample. Milks with various changes such as different fat 

contents, various measurement temperatures and added water or cleaning solution were 

investigated as the modified samples. In this investigation, not only the autoencoder but also 

some chemometric models were utilized with the purpose of anomaly detection. Principal 

component analysis (PCA) was investigated to check if the various samples can be categorized 

separately. In addition, two chemometric modelling techniques such as principal component 

regression and Gaussian process regression were tested to check the ability for change detection. 

By using the results obtained by PCA, a sufficient categorization of various samples was not 

achieved. While the PCR did not present a promising prediction as the related R2 was 0.7, 

Gaussian process regression with R2 of 0.97 predicted the changes almost perfectly. The trained 

autoencoder and Gaussian process regression both were able to define 5 % water and cleaning 

solution, difference of 0.1 % fat content, and variation of 5 °C in the measurement temperature. 

In comparison between the autoencoder and Gaussian process regression, it should be 

mentioned that the Gaussian process regression was capable to determine more abnormal 

signals than the autoencoder, however, it must be trained with all the possible changes. In 

contrast, the autoencoder can be trained once just with reference signals and used in online 

monitoring properly.  

As the final part and to detect which type of anomalies happened during the milk processing, 

several classification approaches such as linear discriminant analysis, decision tree, support 

vector machine, and k nearest neighbour were utilized. While decision trees and linear 

discriminant analysis failed to effectively characterize the various types of anomalies, the k 

nearest neighbor and support vector machine presented promising results. The support vector 

machine presented an accuracy of 81.4 % for test set, while the k nearest neighbor showed an 

accuracy of 84.8 %. As a result, it is reasonable to assume that both algorithms are capable of 

classifying various groups of data accurately. It can help the milk business figure out what's going 

wrong during the processing of milk. 

In general, Raman spectroscopy produced better findings than NIR spectroscopy, because the 

typical absorption bands of milk components in NIR spectrometers may be impacted by high 

water absorption combined with substantial light scattering by fat globules. Additionally, the 
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autoencoder as self-learning system was capable of correctly detecting changes during milk 

processing, however, classification algorithms can aid in obtaining more details. 

1.2. Zusammenfassung 

Die Überwachung der Milchverarbeitung ist eine wesentliche Aufgabe, da sie die Qualität und 

Sicherheit des Endprodukts beeinflusst. Das Ziel dieser Untersuchung war die Entwicklung und 

Analyse eines selbstlernenden Systems zur Überwachung der Milchverarbeitung. In dem 

selbstlernenden Auswertungsmodul wurden verschiedene Algorithmen zur Datenanalyse 

implementiert, um die Qualität und Sicherheit der Proben mit Hilfe spektroskopischer Methoden 

vorherzusagen.  

Im ersten Teil dieser Arbeit wurde der Einsatz der Nahinfrarot-Spektroskopie (NIR) zur Kontrolle 

der Milchverarbeitung untersucht. Zu diesem Zweck wurde eine hochwertige 

Quarzdurchflusszelle mit einer Schichtdicke von 1 mm und einer Temperiermöglichkeit für 

Flüssigkeiten eingesetzt. Zur Probenvorbereitung wurde UHT-Milch mit 1,5 % Fettgehalt bei 5 °C 

gemessen und als Referenzmilch betrachtet. Als modifizierte Proben wurden Proben mit 

verschiedenen Veränderungen wie Wasser- und Reinigungsmittelzusatz, unterschiedlichem 

Fettgehalt und Temperatur sowie Milch von verschiedenen Lieferanten untersucht.  Mit NIR-

Messungen wurde ein Datensatz von Referenz- und modifizierten Proben gewonnen. In dieser 

Studie wurde die erste Savitzky-Golay-Ableitung mit zweiter Polynomordnung und einer 

Fenstergröße von 15 verwendet. Sie wurde mit der Auswertegüte des Rohspektrums und auch 

der Kombination aus Roh- und erstem Ableitungsspektrum verglichen. Für den selbstlernenden 

Bereich wurde ein neuronales Netz als Autoencoder eingesetzt. Im Rahmen dieser Arbeit wurde 

gezeigt, dass der trainierte Autoencoder unter Verwendung der ersten Ableitung in der Lage war, 

5 % zugesetztes Wasser und 9 % Reinigungslösung in der Milch zu erkennen. Durch die 

Verwendung der Kombinationsspektren wurde auch der Unterschied von 0,1 % in der 

Fettkonzentration perfekt erkannt. Diese beiden Verfahren waren in der Lage, Milch von 

verschiedenen Lieferanten und einem Unterschied von 10 °C bei der Messtemperatur zu 

erkennen.  
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Ein weiterer Teil dieser Arbeit wurde mit der Raman-Spektroskopie durchgeführt. Ziel dieses Teils 

war es, zu prüfen, ob das vorherige Ergebnis verbessert werden kann. In diesem Schritt wurde 

wieder die gleiche Zirkulationsmethode wie im vorherigen Teil verwendet. Wegen der Wärme, 

die durch den Laser bei der Raman-Spektroskopie in die Probe eingebracht wird, und der Länge 

der Kunststoffrohre, die durch die Temperatur im Labor beeinflusst werden kann, wurde die 

Messtemperatur jedoch bei 10 °C gehalten. Als Referenzprobe wurde UHT-Milch mit 1,5 % Fett 

verwendet. Milch mit verschiedenen Veränderungen wie unterschiedlichen Fettgehalten, 

verschiedenen Messtemperaturen und Zusatz von Wasser oder Reinigungslösung wurde als 

modifizierte Probe untersucht. In dieser Untersuchung wurden nicht nur der Autoencoder, 

sondern auch einige chemometrische Modelle zur Erkennung von Anomalien eingesetzt. Die 

Hauptkomponentenanalyse (PCA) wurde untersucht, um zu prüfen, ob die verschiedenen Proben 

separat kategorisiert werden können. Darüber hinaus wurden zwei chemometrische 

Modellierungstechniken wie die Hauptkomponentenregression und die Gaußsche 

Prozessregression getestet, um die Fähigkeit zur Erkennung von Veränderungen zu prüfen. Mit 

den Ergebnissen der PCA konnte keine ausreichende Kategorisierung der verschiedenen Proben 

erreicht werden. Während die Hauptkomponentenregression (PCR) keine vielversprechende 

Vorhersage lieferte, da das zugehörige R2 bei 0,7 lag, sagte die Gaußsche Prozessregression mit 

einem R2 von 0,97 die Veränderungen nahezu perfekt voraus. Sowohl der trainierte Autoencoder 

als auch die Gaußsche Prozessregression waren in der Lage, 5 % Wasser und Reinigungslösung, 

einen Unterschied von 0,1 % Fettgehalt und eine Variation der Messtemperatur von 5 °C zu 

detektieren. Im Vergleich von Autoencoder und der Gauß'schen Prozessregression ist zu 

erwähnen, dass die Gauß'sche Prozessregression in der Lage war, mehr anormale Signale zu 

bestimmen als der Autoencoder, allerdings muss sie mit allen möglichen Änderungen trainiert 

werden. Im Gegensatz dazu muss der Autoencoder nur einmal mit Referenzsignalen trainiert und 

kann dann für die Online-Überwachung verwendet werden.  Als letzter Teil und um zu erkennen, 

welche Art von Anomalien während der Milchverarbeitung auftraten, wurden verschiedene 

Klassifizierungsansätze wie lineare Diskriminanzanalyse, Entscheidungsbaum, Support Vector 

Machine und K Nearest Neighbour verwendet. Während die Entscheidungsbäume und die lineare 

Diskriminanzanalyse nicht in der Lage waren, die verschiedenen Arten von Anomalien effektiv zu 

8



charakterisieren, lieferten die K Nearest Neighbour und die Support Vector Machine Methode 

vielversprechende Ergebnisse. Die Support Vector Machine wies eine Genauigkeit von 81,4 % für 

den Testsatz auf, während die K Nearest Neighbour Methode eine Genauigkeit von 84,8 % ergab. 

Daher kann man davon ausgehen, dass beide Algorithmen in der Lage sind, verschiedene 

Datengruppen genau zu klassifizieren. Dies kann der Milchwirtschaft helfen, herauszufinden, was 

bei der Verarbeitung von Milch falsch läuft. 

Im Allgemeinen lieferte die Raman-Spektroskopie bessere Ergebnisse als die NIR-Spektroskopie, 

da die typischen Absorptionsbanden der Milchbestandteile in NIR-Spektrometern durch eine 

hohe Wasserabsorption in Kombination mit einer erheblichen Lichtstreuung durch Fettkügelchen 

beeinträchtigt werden können. Darüber hinaus war der Autoencoder als selbstlernendes System 

in der Lage, Veränderungen während der Milchverarbeitung korrekt zu erkennen, jedoch können 

Klassifizierungsalgorithmen helfen, mehr Details zu erhalten. 
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2. Introduction and Outline 

2.1 Introduction 

2.1.1. Milk 

Milk, as a complex natural food matrix, includes all of the nutrients required for life to exist. It 

contains 90 % water, varying levels of fat, protein, and carbohydrates, as well as trace minerals 

(Varnam & Sutherland 1994). The composition of milk can directly affect the quality and safety 

of products and therefore, the contents of fat, protein and carbohydrate in milk must be labelled 

on commercial products (Qin et al. 2017). The appearance, flavor, and aroma of milk are all 

directly related to its quality from the consumer's perspective. Milk's hue is caused by fat globules 

scattering reflected light, and its density is related to the number and size of particles. Although 

appearance is not a measurable criterion, it is critical for quality control; nonetheless, there is no 

federal standard for it. It is suggested to select white, clean, and no debris as standard 

appearance. Regarding to the standard regulations, the temperature of milk must never exceed 

7 °C and the best option is storing the samples at 5 °C or less. The fat content in milk is varied 

based on types of milk including the whole milk, reduced fat milk, and skimmed milk. Recent 

advancements in dairy processing have resulted in increased product safety and quality. Ultra-

pasteurization processes and aseptic packaging technologies, in particular, have provided the 

industrial user with products that have a longer shelf life (Chandan, 2011). The public's attention 

has recently been drawn to the quality and safety of products due to regular allegations of milk 

safety issues. As a result, strategies for evaluating and controlling the process are needed in the 

dairy business. Monitoring processing levels would be critical because the various processes of 

milk production have a substantial impact on the quality and safety of final products. 

Consequently, the demands for techniques which can evaluate or control milk quality or safety 

have been dramatically increased (He et al. 2019). For processing the milk, most refrigerated 

products are ultra-pasteurized by heating to 125 - 137.8 °C for 2 - 5 seconds and packaged in 

sterilized cartons in clean atmosphere. For ambient storage, UHT milk is treated at 135 - 148.9 °C 

for 4 - 15 seconds, followed by aseptic packaging. Homogenization which can reduce the size of 
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particles is implemented at the temperatures higher than 37 °C. It pumps the milk at high 

pressure through a small orifice in order to reduce the size of particles. For low fat products or 

products in which high viscosity is desired, single stage homogenization is employed which means 

the pressure drop is engineered over a single valve. On the other hand, dual stage 

homogenization is implemented for fluids with high fat contents or whenever low viscosity is 

needed. In the first stage the product is subjected to high pressure of 13.8 MPa which results in 

breakdown of the particle size diameter to an average of less than 1 μm. Then the product goes 

through the second stage of 3.5 MPa to break the clusters of globules formed in the first stage. 

Finally, the products are cooled rapidly to 4.4 °C, packed in the proper packages, and stored in 

the proper places (Chandan, 2011).  In this research, various procedures were tested in order to 

develop a method that can monitor the production of milk and detect the changes which can 

happen during the process as fast as possible. 

2.1.2. Change detection 

Monitoring various steps of milk production is an essential task as it corresponds to quality and 

safety of final products. These days, the final product is analyzed to be approved for the quality 

and safety. Therefore, if unusual changes happen during the production, they can be detected 

after completion of process which cause wasting time and money. To solve such an effective 

problem, online monitoring of the process is highly suggested which can helps companies to 

detect changes immediately and avoid suffering. Thereby, as the aim of this research, developing 

a detection method based on spectroscopy combined with evaluation techniques was 

investigated.  

2.1.3. Near infrared spectroscopy (NIR) 

NIR technology is one of the advanced non-destructive systems for quality evaluation which is 

available for a wide range of applications. NIR spectroscopy at different wavelengths ranges 

(extending from the visible spectrum to the near infrared) has been implemented to determine 

various quality parameters. In electromagnetic radiation, three wavelength ranges exist: 

ultraviolet (UV) radiation from 100 to 380 nm, visible (VIS) radiation from 380 to 780 nm, and 
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infrared (IR) radiation above 780 nm. The near infrared (NIR) portion of the IR covers wavelengths 

ranging from 780 nm to 2500 nm. Broad band absorptions related primarily to overtones and 

combinations of vibrational modes involving C–H, O–H, N–H, and S–H chemical bonds are present 

in the spectra obtained using this approach (Osborne, 2000). Reflectance spectra give 

information about both the color and brightness of an object which are widely used as criteria 

for evaluating product quality (Krivoshiev et al., 2000). Many studies have confirmed the ability 

of NIR spectroscopy in the food science to predict the main chemical components such as water, 

protein and fat. It was reported by several researches that NIR spectroscopy could be used as a 

proper tool for detecting additives in milk powder, liquid milk, and in infant formula (Balabin and 

Smirnov, 2011). Kawasaki et al. (2008) suggested that the NIR spectroscopic system can be used 

to assess milk quality in real-time in an automatic milking system. They added that such a system 

could provide dairy farmers with information on milk quality and physiological or health 

condition of an individual cow which can give a feedback control for optimizing dairy farm 

management. By using the system, dairy farmers will be able to produce high-quality milk and 

precision dairy farming will be realized. In this contribution, NIR was used to simulate the on-line 

processing of milk. For this reason, a special flow cell including temperature controlling option 

for liquids was implemented. Therefore, the flow cell was connected by plastic tubes to the 

source of milk in a cold-water bath and the temperature was kept stable during the process. As 

a result of this construction, NIR measured the milk during the circulation in various processing 

steps. The purpose behind it was to create a new technique based on NIR spectroscopy to 

determine anomalies during the milk processing. 

2.1.4. Raman spectroscopy  

Raman spectroscopy which is based on an inelastic scattering effect was first documented by 

Raman and Krishnan (Raman and Krishnan, 1928). When a sample is irradiated by a high-intensity 

monochromatic light, a few of the scattered photons exchange energy with the sample 

molecules, so the direction and frequency of the scattered photons also change. Such inelastic 

scattering is called Raman scattering. The majority of scattered photons, on the other hand, do 

not exchange energy with the molecules in the sample; as a result, these scattered photons 
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change only the direction of propagation with the same frequency as the excitation photons, and 

this type of elastic scattering is known as Rayleigh scattering. When the energy of photons 

changes, they will shift to shorter or larger wavelength, and Stokes or anti-Stokes line can be 

appeared in spectra (Lord, 1990). Stokes scattering has a substantially higher intensity than anti-

Stokes scattering, and it is used in the application of Raman spectroscopy in food analysis (Morris 

2006). When the polarizability of a molecule changes during vibration, Raman signals can be seen 

(Dijkstra et al. 2005). The frequency shifts of dispersed light are revealed by spectral bands in the 

Raman spectrum. As a result, different spectral bands represent various chemical bonds and 

functional groups in samples. Raman spectroscopy can be utilized not only for qualitative and 

structural study of a sample, but also for quantitative determination, because the band intensity 

is linearly proportional to the concentration of the examined molecule (Yang & Ying 2011). 

Raman spectroscopy which have been moderately employed for milk analysis has been 

developed into various analysis technologies such as surface-enhanced Raman spectroscopy 

(SERS), Fourier-transform (FT) Raman spectroscopy, micro-Raman spectroscopy, near infrared 

(NIR) Raman spectroscopy, and offset Raman spectroscopy (SORS) (He et al. 2019). Because the 

Raman signal is inversely proportional to the excitation wavelength, shorter laser excitation 

wavelengths can produce stronger Raman signals. Fluorescence, on the other hand, can easily 

interfere with it at shorter excitation wavelengths. Milk analysis has been done using Raman 

spectroscopy. Moros et al. (2007) implemented FT-Raman spectroscopy to quantify fat content 

in milk powder. Stefanov et al. (2010) investigated the effects of spectra acquisition temperature 

conditions for predicting odd-chain and branched-chain fatty acids in milk utilizing a FT-Raman 

spectroscopy. Also, Hou et al. (2016) employed SERS method for quantitative analysis of milk 

protein. FT-Raman spectroscopy in combination with partial least discriminant analysis was 

implemented by Rodrigues et al. (2016) for evaluating and classifying various milk powder 

samples according to the lactose state and the addition of maltodextrin. In this contribution, to 

simulate the on-line processing procedure, the quartz flow cell was connected to the source of 

milk by plastic tubes. Thereby, Raman spectrometer measured the milk during the circulation 

and the related spectra for further investigations were acquired. It was used with the aim of 

anomaly detection in the milk processing steps. Several reference and abnormal spectra were 
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measured by Raman in order to establish a novel method which can distinguish anomalies during 

the production of milk.  

2.1.5. Pre-processing 

As there are huge baseline shifts and noises in spectra with broad wavelength ranges while 

analyzing them, choosing the right pre-treatment procedure is crucial (Cen et al., 2006). Pre-

processing is employed to obtain effective results in milk analysis and eliminate noise or any 

irrelevant information. For instance, smoothing or Savitzky-Golay filtering techniques are 

commonly used to improve signal-to-noise ratio (Zhang & Henson, 2007), while baseline 

correction algorithms can be employed for removing fluorescence background in Raman spectra. 

Moreover, normalization algorithms (standard normal variate, multiplicative scatter correction, 

peak normalization) are applied for evaluating samples. More approaches and their functionality 

are detailed in several literatures (Lohumi et al., 2017; De Luca et al.,2015; Schulze et al., 2005).  

2.1.6. Principal component analysis and regression 

Principal component analysis (PCA) is the most popular multivariate statistical technique used by 

most of the scientific disciplines. PCA can extract the dominant patterns in data in terms of a 

complementary set of score and loading plots. The purpose behind it is to extract the necessary 

information, reduce the dimensionality of data set by keeping the most important information 

which has decreasing variance with increasing components, and represent it as a set of new 

orthogonal variables called principal components. Finally, it analyzes the structure of the 

observations and the variables and shows the pattern of similarity. The first PC presents the 

largest possible variance of observations while the second one is calculated with respect to the 

constraint of being orthogonal to the first component. The values of these new variables for the 

observations are called factor scores which can be interpreted geometrically as the projections 

of the observations regarding to the principal components (Abdi et al., 2010). Principal 

component regression (PCR) is a regression analysis technique which is based on PCA. In details, 

PCR is used for estimating the unknown regression coefficients in a standard linear regression 

model. In PCR, instead of regressing the dependent variable on the explanatory variables directly, 
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the principal components of the explanatory variables are used as regressors (Næs et al., 1988). 

In this work, PCA was implemented for classification of samples including reference and 

abnormal samples. In addition, PCR was employed in order to predict the difference of standard 

and abnormal samples. In this case, the reference samples were put equal to zero and abnormal 

ones equal to one to check if a modified sample (which has some deviations from standard one) 

can be detected from standards.  

2.1.7. Autoencoder neural network as self-learning tool 

Supervised and unsupervised learning algorithms are generally two types of machine learning 

techniques, which are normally utilized in sentiment analysis. In supervised learning technique, 

the dataset is labeled and trained to obtain a reasonable output (Gautam and Yadav, 2014). While 

unsupervised learning process do not need any labeled data, hence they cannot be processed at 

ease (Tripathy et al.,2016). Self-learning tools can be considered as tools that can be trained with 

example samples and consequently they are ready to detect abnormal and normal samples. An 

autoencoder neural network can be seen as a good example of self-learning tools categorised in 

the unsupervised learning techniques which can apply back propagation algorithms. The back-

propagation neural network is a universal approximator given sufficient hidden units, multilayer 

feedforward sigmoidal network architectures can approximate virtually any function of interest 

to any desired degree of accuracy (Sharma et al., 2007). The autoencoder is also a feed forward 

neural network presenting that information moves in only one direction, from input neurons 

through the hidden neurons and finally reach the output neurons, thus there is no loop or cycle 

in it. It tries to set the output values equal to inputs by compressing the inputs to the hidden 

layers called encoding and decompressing again to the outputs called decoding. While the 

tangent sigmoid transfer function was employed for hidden neurons, the identity transfer 

function was implemented for the output neurons. The tangent sigmoid function is given in the 

equation (1): 

 𝑓(𝑥) =
2

1+𝑒−2𝑥 − 1                                                                                                                 (1) 

While x denotes weighted sum of the inputs (Vasafi et al., 2021). 
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Figure 1 presents the structure of autoencoder simply. 

 

Figure 1. The autoencoder structure. N is equal to the number of wavenumber channels.  

For anomaly detection during the milk processing, the autoencoder can be trained by spectra 

from reference samples, thus it can learn to reproduce the reference spectra. While the 

autoencoder faces the spectra with some deviations which is different from reference sample, it 

is not able to reproduce the spectra. Therefore, by creating a higher autoencoder error, it can 

imply the anomalies in the sample. MSE (mean squared error) is used as the autoencoder error 

which shows average of difference between output and input spectrum for each individual 

wavelength. Mean squared error is mentioned as equation (2): 

MSE = (𝑥⃗𝑜𝑢𝑡 − 𝑥⃗𝑖𝑛)(𝑥⃗𝑜𝑢𝑡 − 𝑥⃗𝑖𝑛)𝑇 𝑛⁄                                                                                   (2) 

𝑥⃗𝑖𝑛 and  𝑥⃗𝑜𝑢𝑡 are the spectra as vectors for the input and output of the autoencoder respectively 

and n is represented the number of wavenumber channels. 

Next, the upper boundary of confidential was calculated in order to define the limit of detection 

which means that each sample shows the higher autoencoder error than the limit of detection is 
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considered as the abnormal sample includes a deviation from standard. Although, confidence 

interval was computed for training set by the formula mentioned below: 

Confidence Interval = 𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ± 𝑡(𝛼, 𝑓) × s                                                                       (3) 

𝑀𝑆𝐸̅̅ ̅̅ ̅̅  is the average of autoencoder errors (MSE) of all training spectra, 𝑡 is t distribution, 𝑓 degree 

of freedom, and α significance level. In addition, s is equal to standard deviation of autoencoder 

errors. A significance level of 5 % was utilized (Vasafi et al., 2021). 

Generally, by doing so, the autoencoder would be able to detect deviations from standard milk 

processing which helps companies to be aware of production problems as fast as possible. 

2.1.8. Gaussian process regression 

Gaussian processes have attracted many attentions for statistical data analysis as it shows good 

predictive performance and analytical properties. Normally, multivariate calibration models have 

been developed using regression-based techniques. A Bayesian non-parametric regression 

technique, namely the Gaussian process regression is more flexible and practical than parametric 

models such as feed‐forward neural networks (Chen at al., 2007; Chaurasia et al., 2019). Gaussian 

process is a distribution over the space of functions where any subset has a Gaussian distribution, 

therefore it is mainly specified by its mean and covariance function. This algorithm is not useful 

for applications with large datasets since it does not scale with the number of data points 

(Ranganathan et al., 2010). In the framework of Gaussian process, wide variety of covariance 

functions can be employed, subject to the requirement that a valid covariance function must 

always result in a positive definite covariance matrix for the targets. In a Bayesian model, the 

covariance function depends mainly on different hyperparameters, which are themselves given 

prior distributions. These hyperparameters can control the amount of noise in a regression 

model, the degree to which various input variables are relevant, and the magnitudes of various 

additive components of a model. The posterior distribution of these hyperparameters will be 

concentrated on values that are proper for the data that was actually observed. In contrast to 

the elaborate forms for the covariance function described here, the mean function for the 

Gaussian process (GP) will usually be set to zero. However, it does not mean that this function is 
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expected to be centered around zero. It implies that mean function does not make an impact in 

the prediction output and the prediction is only based on the covariance function. Different 

covariance functions can be constructed by adding and multiplying other covariance functions, 

since the element-by-element sum or product of any two symmetric, positive semidefinite 

matrices is also symmetric and positive semidefinite (Bernardo et al., 1998). Three different 

covariance functions (kernel) which play important role in building a regression model are 

squared exponential, Matern, and rational quadratic. The widely used squared exponential 

covariance function is differentiable infinitely, meaning that the GP with this covariance function 

has mean square derivatives of all orders, and is therefore very smooth (Aye et al., 2017). In this 

study, the model was created based on spectra obtained from both reference samples and 

abnormal ones (while reference samples were put equal to zero and abnormal samples were put 

equal to one). After training phase, a threshold which can split data into normal and abnormal 

groups was selected. Finally, the test set was checked to detect anomalies in milk samples. If a 

sample shows higher value than the threshold, it is considered as the abnormal sample. 

Therefore, by doing so, the anomalies can be distinguished from standard samples.  

2.2. Outline 

Monitoring the steps of milk processing is an essential sector as can assure the safety and quality 

of final product. Conventional methods using for this reason are time-consuming, laborious, and 

require complicated preparation levels (He et al., 2019). Thereby, a time-resaved technique to 

monitor steps based on online measurement data is highly demanded. By doing so, early changes 

can be detected immediately which can help companies to react promptly and avoid to be 

suffered. Accordingly, the focus of this study was to develop novel statistical methods for 

monitoring milk processing using spectroscopic techniques such as near infrared and Raman 

spectroscopy. 

In the first contribution ‘‘Anomaly detection during milk processing by autoencoder neural 

network based on near-infrared spectroscopy’’ the main goal was to develop a self-learning tool 

which can monitor the milk production steps and detect deviations (such as changes in fat or 

temperature, added water or cleaning solution) from standard final product. As a new method 
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of unsupervised machine learning, the autoencoder showed a powerful ability for this purpose, 

thus the use of the autoencoder combined with near infrared (NIR) spectrometer was 

investigated. To recognize deviations, raw spectra acquired by NIR were compared with their first 

derivative and combination of both in order to find the best detection method. The autoencoder 

was trained by 1.5 % fat UHT-milk as a standard sample which was measured at 5 °C and utilized 

to define every possible change. The results of using first derivative spectra presented that the 

trained autoencoder was capable to detect 5 % added water and 9 % cleaning solution in the 

milk. Although, the trained autoencoder with combination spectra, was able to detect a 

difference of 0.1 % in fat concentration. In addition, various production methods (milks from 

various suppliers) and difference of 10 °C in the temperature were determined by both 

procedures. With the proposed method, it was possible to monitor the various steps of milk 

processing and detect some deviations from standard final product. To improve the detection, in 

the second publication ‘‘Establishing a novel procedure to detect deviations from standard milk 

processing by using inline Raman spectroscopy’’ use of Raman spectrometer was checked. Data 

set obtained from Raman was evaluated with various techniques such as principal component 

analysis and regression, Gaussian process regression, and the autoencoder in order to determine 

the most suitable procedure of the detection. In this investigation, principal component 

regression was not capable to predict the deviations properly. Therefore, the Gaussian process 

regression was utilized as the next option and illustrated the promising results in the detection 

of 5 % water and cleaning solution as well as 0.1 % difference in fat content and variation of 5 °C 

in temperature. The similar results were obtained by using the autoencoder neural network. For 

a comparison between the autoencoder and Gaussian process regression, it can be mentioned 

that both procedures are worthy, however the autoencoder can be trained once by only standard 

samples and used immediately for the on-line supervision. The Gaussian process regression has 

to be trained by standard samples as well as samples with possible changes and it can be 

mentioned as the disadvantage of this method. All the previous publications were used to define 

changes during the process. However, in the third publication ‘‘Comparison of various 

classification techniques for supervision of milk processing’’ the purpose behind it was to 

determine the type of anomalies happened in the milk processing. Therefore, various 
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classification methods such as linear discriminant analysis, decision tree, support vector machine, 

and k nearest neighbour were implemented. Support vector machine and k nearest neighbour 

presented promising results. They classified reference milks from modified milks correctly and 

also categorized different groups of anomalies properly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20



3. Publications 

3.1. Anomaly detection during milk processing by autoencoder neural network 

based on near-infrared spectroscopy 

By Pegah Sadeghi Vasafi, Olivier Paquet-Durand, Kim Brettschneider, Jörg Hinrichs, Bernd 

Hitzmann. Published in Food Engineering. Volume 299, page 110510, June 2021. 

 

21

https://www.sciencedirect.com/science/article/abs/pii/S0260877421000352#!


Journal of Food Engineering 299 (2021) 110510

Available online 25 January 2021
0260-8774/© 2021 Elsevier Ltd. All rights reserved.

Anomaly detection during milk processing by autoencoder neural network 
based on near-infrared spectroscopy 
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A B S T R A C T   

Anomaly detection during milk processing (such as changes in fat or temperature, added water or cleaning so
lution) can assure a satisfactory final product quality, including compositional and hygienic characteristics, as 
well as adulteration with water. The use of near-infrared (NIR) spectroscopy for change detection in complex 
dairy matrix is discussed. The autoencoder neural network plays fundamental role in anomaly detection. To 
evaluate this capability, the raw spectra obtained from NIR as well as first derivative and combination of both 
were analysed. An autoencoder was trained by 1.5% fat UHT-milk (measured at 5 ◦C) and applied to detect 
possible changes happening during the milk processing. The trained autoencoder using first derivative spectra 
was capable to detect 5% added water and 9% cleaning solution in the milk. Also, with the combination spectra, 
it was able to recognize a difference of 0.1% in fat concentration. In addition, both procedures were able to detect 
different production methods (specific procedure of suppliers such as homogenization level or pressure) and 
difference of 10 ◦C in the temperature. It can be concluded, that using an autoencoder neural network in 
combination with near-infrared spectroscopy is a reliable method to monitor the milk processing. By doing so, 
abnormal changes can be detected early, controlling the process becomes easier and the quality and safety of the 
product is guaranteed.   

1. Introduction 

There are strict regulations on the monitoring and control of tem
perature, composition such as fat concentration, hygiene, taste and 
smell in the milk processing industry in order to assure a satisfactory 
final product quality (Bylund, 1995). The main control point here is the 
temperature, refrigerated milk storage tanks must maintain a tempera
ture of 5 ◦C. From a consumer standpoint, the quality factors associated 
with milk are appearance, color, aroma, flavor, and mouth feel which 
are highly dependent on composition. Added water is an adulteration in 
milk processing and testing the freezing point of milk using a cryoscopy 
indicates if abnormal amounts of water exist in the load (Chandan, 
2011). The regulations on the hygienic production of milk are strong on 
intention and require milk to be produced to define quality standards 
based on traditional methodology. As of now, common testing proced
ures appear to be less frequent and are often more likely to be reactive. 
Overall, control or even recognition of a potential problem in milk can 
be difficult (Hillerton, and Berry, 2004). Having reliable and accurate 
measurements of the states of the process (such as separation, 

pasteurization and standardization) is one of the essential principles of 
process control but it cannot be adequately obtained by the single point 
information provided by conventional sensing techniques and devices 
(Williams and Beck, 1995; Scott and McCann, 2005; Sharifi and Young, 
2011). Reliable and robust sensors are not available for important 
quality and process variables, such as sensory assessment, micro flora or 
spoilage; furthermore, available sensors are typically used only in iso
lated applications and frequently provide insufficient reliability (Hitz
mann et al., 2015). Zettel et al. (2016) point out, that especially optical 
sensors are able to measure process variables without physically 
touching the products and without the use of any additional reagents. 
They predict a more widespread application of optical sensors in all 
branches of food production in the near future. 

Near-infrared (NIR) spectroscopy measurements have great potential 
for evaluating safety and quality of final products rapidly and nonde
structively. Rapid measurement with minimal sample preparation is the 
most important advantage of spectroscopic methods. Food and beverage 
processing companies are already using optical sensing technologies for 
quality and process control (Workman et al., 2003; Huang et al., 2008). 
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NIR hyperspectral imaging was investigated for quantitative evaluation 
of melamine particles in nonfat and whole milk powders (Huang et al., 
2016). Using chemometric methods helps to better interpret the results 
of NIR. It was reported by several research groups that NIR spectroscopy 
combined with chemometrics could be used as a rapid and accurate 
method for detecting additives in milk powder, liquid milk, and in infant 
formula (Mauer et al., 2009; Lu et al., 2009; Balabin and Smirnov, 2011; 
Fu et al., 2014). Another serious experimental work on the determina
tion of sensory attributes of cheese has been done by using NIR spec
trometer based on artificial neural network (ANN). Principle component 
analysis (PCA) was applied to the dataset (NIR spectra obtained from 
cheese samples) and was used as input to the ANN. Through ANNs, a 
reliable prediction was obtained that related the NIR spectrum of a 
complete set of cheese samples with a complete image of the sensory 
attributes that described taste, texture, aspect, smell and other relevant 
sensations. As a result, a very useful tool for quality control with a very 
low computation cost was obtained (Curto et al., 2020). In other study, 
NIR spectroscopy, data pretreatment techniques and multivariate data 
analysis were used to predict fine particle size fraction, dispersibility and 

bulk density of various milk powder samples, which are believed to have 
a significant impact on milk powder quality. Predictive models using 
partial least squares (PLS) regression were developed using NIR spectra 
and milk powder physical and functional properties, and it was 
concluded that the PLS models predicted milk powder quality with an 
accuracy of 88–90% (Khan et al., 2020). Núñez-Sánchez et al. (2016) 
also employed NIR to evaluate the quality of dairy goat milk and re
ported that transflectance analysis gave better or similar 
cross-validation results than reflectance mode. Kawasaki et al. (2008) 
investigated the NIR sensing system for on-line bovine milk quality 
assessment in a milking robot. Calibration models for determining three 
major milk constituents (fat, protein and lactose), somatic cell count and 
milk urea nitrogen of unhomogenized milk were developed, and the 
precision and accuracy of the models were validated. The coefficient of 
determination and standard error of prediction of the validation set for 
fat were very good. The results of the study suggested that the NIR 
spectroscopic system can be used to assess milk quality in real-time in an 
automatic milking system. They added that such a system could provide 
dairy farmers with information on milk quality and physiological or 

Fig. 1. The autoencoder structure. N is equal to the number of wavenumber channels.  

Fig. 2. NIR spectra of cow milk acquired from Bruker MPA; the spectral features of some components are mainly distributed around some wavenumbers (underlined) 
whereas others would appear at the specific wavenumber (arrow). 
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health condition of an individual cow which can give a feedback control 
for optimizing dairy farm management. By using the system, dairy 
farmers will be able to produce high-quality milk and precision dairy 
farming will be realized. 

As every possible change such as change in fat, temperature, added 
water or cleaning solution in processing can affect the quality and safety 
of milk, anomaly detection is an essential task with critical applications 
in this area. The unsupervised anomaly detection is learning a normal 
profile (spectra from standard sample) then identifying the samples not 
conforming to the normal profile as anomalies. Deep autoencoder has 
been extensively used for anomaly detection. It is a powerful tool to 
model the high-dimensional data in the unsupervised setting. After 
training on the normal data, the autoencoder is expected to produce 
higher reconstruction error for the abnormal inputs than the normal 
ones, which is adopted as a criterion for identifying anomalies (Gong 
et al., 2019). The autoencoder is trained by repeated presentation of 
representative exemplar input-output vector pairs (pair patterns) where 
the input and output vectors are the same and the network learns 
through repeated experiences. The back-propagation learning proced
ure, which can be used in autoencoder training, is based on adjusting the 
synaptic strengths or weights of the neural connections by a gradient 
descent search technique in order to minimize a cost function. Here, the 
squared difference between the network output and input after a given 
iteration cycle can be used. Weights are usually randomly initialized, 
and are gradually adjusted towards the minimum of the cost function in 
the weight space (Eerikäinen et al., 1993). 

Autoencoders have not been applied in food science yet, but ANN 
have already been utilized in some areas. A neural network model based 
on back-propagation learning has been found useful for prediction of 
improved dairy yield (305-day milk yield, fat and protein) (Sharma 
et al., 2007). ANNs have been employed successfully in another study for 
dairy yield prediction and cow culling classification (Lacroix et al., 
1997). Milk production estimates have been successfully obtained in a 
study by using feedforward ANN (Sanzogni and Kerr, 2001). ANNs have 
been used for detecting influential variables in the prediction of inci
dence of clinical mastitis in dairy animals (Heald et al., 2000). A 
three-layer back-propagation connectionist model has been used for 
pattern recognition to develop Monterey jack cheese (Sharma et al., 
2007), which allows study of real-time control process of cheese pro
duction. Also, ANN has been used in modeling of pH and acidity for 
cheese production (Paquet et al., 2000). ANNs have been successfully 
used to predict temperature, moisture and fat in slab-shaped foods with 

edible coatings during deep-fat frying (Mittal and Zhang, 2000). A 
self-organized network inspired by immune algorithm (SONIA), which 
improves generalization capability of the back-propagation method, has 
been reported in a recent study for time-temperature-based food quality 
prediction system using real meat delivery data. The results have been 
compared with standard back-propagation and back-propagation with 
Bayesian regularization algorithm (Widyanto et al., 2005). 

Anomaly detection by autoencoder neural networks has been used in 
some areas like medical science, but it has not been applied in the 
processing food yet. It was concluded that using autoencoder neural 
networks for controlling food production processes is a new application 
of the method which can be useful in determination of changes in the 
process. By applying autoencoder neural networks, most early changes 
can be detected and potentially be solved as soon as possible before 
affecting the final quality. Therefore, the objective of this study was to 
evaluate anomaly detection (such as changes in fat, temperature, added 
water or cleaning solution) during the milk processing by using spec
troscopy data as well as autoencoder neural network. 

2. Material and method 

2.1. Material 

1.5% and 3.5% fat milk were purchased from the brand “Weihen
stephan”, Germany. The milk with the lower fat concentration is called 
reference milk, because it was used for training the autoencoder. All 
samples were stored in refrigerators at 5 ◦C before opening the packages. 
Concentrated substance “Anti Germ clean A-N 30” was prepared from 
dairy pilot plant of university of Hohenheim. 

2.2. Near-infrared spectroscopy 

The NIR spectra were acquired with a MPA Multi-Purpose Fourier 
Transform NIR spectrometer (Bruker, Germany), which was equipped 
with the software OPUS (Version 7, Bruker, Germany). The spectral 
range between 12,500 and 4000 cm− 1 (800–2500 nm) was scanned with 
a resolution of 2 cm− 1. Sixty-four (64) absorbance scans were averaged 
for each sample spectrum (R1). A background spectrum (64 scans) was 
measured (R0) before starting the measurement which were collected as 
reference to avoid spectra variation due to unknown factors. A high- 
quality quartz flow cell of 1 mm pathlength including temperature 
controlling option for liquids was implemented. Less than 1 mL of milk 
was needed for each NIR measurement. The measurement of each 
sample took almost 1 min. For each experiment, the instrument was 
turned on 30 min before measurement to achieve a stable state. The 
averaged and background-corrected spectrum was used for further 
steps. Based on the obtained intensity R1 and R0, absorbance A was 
calculated by A = lg(R0

R1
). A cold water bath with temperature of 5 ◦C was 

implemented to keep the temperature of samples cold during the mea
surement. A beaker that held cold milk at 5 ◦C was left in the water bath. 
The Flow cell was connected by plastic tubes to the source of milk in the 
beaker. Milk was circulated through the flow cell during the measure
ment in order to keep the temperature stable and simulate on-line pro
cess measurement conditions in a by-pass. 

2.3. Sample preparation and data collection 

There are several factors which may cause some changes in the 
spectrum of the reference milk (training set). It was investigated how an 
autoencoder neural network can detect these changes. In order to define 
different changes such as temperature or fat variation, added water or 
cleaning solution to the milk and various production methods of milk, a 
prediction set was set up and feed to the autoencoder to investigate its 
performance. Raw and derivative spectra as well as the combination of 
both were used to investigate which spectral pre-processing can improve 

Table 1 
Percentage of autoencoder errors higher than limit of 6.8E-04, and lower than it 
as well as mean and standard deviation for samples in the prediction set by using 
raw data without any pre-processing.  

Sample Percentage of 
values lower 
than limit (%) 

Percentage of 
values higher 
than limit (%) 

Average of 
MSE (unit) 

Standard 
deviation of 
MSE (unit) 

5% 
cleaning 
solution 

100 0 4.4E-04 7.0E-05 

9% 
cleaning 
solution 

80 20 5.2E-04 1.7E-04 

10% 
cleaning 
solution 

70 30 6.2E-04 2.9E-04 

5% water 86 14 5.4E-04 1.3E-04 
10% water 0 100 2.2E-03 2.4E-04 
10 ◦C 100 0 4.4E-04 6.6E-05 
15 ◦C 0 100 1.6E-03 1.0E-04 
1.6% fat 0 100 4.7E-03 1.2E-03 
ESL-milk 0 100 7.2E-02 5.2E-03 
ESL-milk 0 100 8.6E-02 4.8E-03 
UHT-milk 0 100 7.3E-03 1.2E-03 
UHT-milk 0 100 1.5E-01 3.1E-03  
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the result. 
Two groups of data sets (training set and prediction set) were 

created. For the training set, 470 spectra were taken from different 
packages of UHT-milk (ultra-high-temperature processing milk) with 
1.5% of fat from the brand “Weihenstephan”, Germany. For the pre
diction set, different types of samples were measured. As each company 
has the specific production methods, firstly various samples such as milk 
with 1.5% fat, both ESL-milk (extended shelf life) and UHT-milk from 
various suppliers were purchased from local stores and measured in 
order to check if there are any detectable differences from each other or 
not. Then, the same samples used for training set were measured after 
heating up to 10 ◦C or 15 ◦C to determine the sensitivity of samples to 
the temperature. A sample with 1.6% fat was prepared by mixing 95 mL 
of 1.5% fat milk and 5 mL of 3.5% fat milk from the brand of “Wei
henstephan”. It was prepared in order to be checked if it can be distin
guished from 1.5% fat milk. For cleaning pilot plants, 1 mL of 
concentrated substance “Anti Germ clean A-N 30” is diluted with 99 mL 

water. This liquid can be used as the common cleaning solution of hy
gienic operation. Finally, different concentrations of water (0.05 mL/mL 
and 0.1 mL/mL) or cleaning solution (0.05 mL/mL, 0.09 mL/mL, and 
0.1 mL/mL) were added to the 1.5% fat UHT-milk from “Weihen
stephan” and were measured after cooling down to 5 ◦C. The purpose 
behind was to understand how much water and cleaning solution can be 
detected in the milk. 

2.4. Data pre-processing 

Spectral pre-processing techniques are required to remove any 
irrelevant information including noise, uncertainties, variability, in
teractions and unrecognized features (Lacroix et al., 1997). In this study, 
data were divided into three categories including raw data, first deriv
ative, and combination of both. At first, raw data without any 
pre-processing was used. Next, first Savitzky-Golay derivative with 
second polynomial order and window size of 15 was applied. Finally, 

Fig. 3. Graph for training set (n = 470) showing the mean squared error of input and output of raw spectrum (MSE) at 5 ◦C (3.a) and graph for prediction set (n =
220) showing MSE of input and output of raw spectrum by using autoencoder (3.b). Limit is equal to upper range of confidential interval of training set with 
significance level of 5%. ESL-milks are from different suppliers. 
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each raw spectrum was supplemented with it’s first derivative in order 
to investigate the effectiveness of such a combination. These methods 
were acquired by trials and checking different methods to show better 
and more accurate results. Other pre-processing methods such as 
smoothing, standard normal variate (SNV), multiplicative scatter 
correction (MSC), various normalizations and second derivative were 
applied on the spectral data but the results were not improved. 

2.5. Autoencoder neural network 

Autoencoder neural network is an unsupervised learning algorithm 
that can apply back-propagation, setting the output values to be equal to 
the inputs. In this feedforward network, the information moves in only 
one direction, forward, from the input nodes, through the hidden nodes 
to the output nodes (Fig. 1). There are no cycles or loops in the network. 

Back-propagation is a widely used algorithm in training feedforward 
neural networks. The back-propagation neural network is a universal 

approximator given sufficient hidden units, multilayer feedforward 
sigmoidal network architectures can approximate virtually any function 
of interest to any desired degree of accuracy (Sharma et al., 2007). The 
maximum number of epochs is arbitrarily kept at 10000. An epoch de
scribes the number of times the entire data set is processed by the al
gorithm. So, each time the algorithm has processed all samples in the 
dataset, an epoch has been completed. The tangent sigmoid transfer 
function (mathematically equivalent to tanh(x)) was used for hidden 
neurons, however, the identity transfer function was employed for the 
output neurons. The tangent sigmoid used here is given in the following 
equation: 

f (x)=
2

1 + e− 2x − 1 (1)  

Where x denotes weighted sum of the inputs. 
As can be observed in Fig. 1, the input is compressed to the hidden 

layer(s) called encoding. Then, these compressed vector nodes are fully 

Fig. 4. Graph for training set (n = 470) showing the mean squared error of input and output of first derivative spectrum (MSE) at 5 ◦C (4.a) and graph for prediction 
set (n = 220) showing the mean squared error of input and output of first derivative spectrum (MSE) by using autoencoder (4.b). Limit is equal to upper range of 
confidential interval of training set with significance level of 5%. ESL-milks are from different suppliers. 
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connected to a greater number of nodes in the hidden layer, until the 
number of nodes reaches the dimension of the input representation. This 
process is called decoding. In other words, autoencoder is trying to learn 
an approximation to the identity function, so as the output is similar to 
input. 

In this work, a five-layer (I*10*5*10*O) feedforward back- 
propagation neural network was applied through experimental investi
gation of various internal parameters to detect changes in the milk 
processing. At the beginning, the autoencoder was trained with raw 
spectra and every 10th wavenumber was used for the input of autoen
coder. In order to train the autoencoder, data was split to the training set 
and testing set. To avoid overfitting, training was stopped when the 
error of the test data increased. Training lasted 1–3 min based on the 
number of neurons. To analyse a spectrum, the sum of squared of dif
ferences between input and output of the autoencoder is calculated 
using the following equation: 

MSE=

(

x→out − x→in

)(

x→out − x→in

)T/

n (2) 

MSE is the mean squared error of a spectrum and n is equal to the 
number of wavenumber channels used (441 is for every 10th wave
number of the whole spectrum), x→in and x→out are the spectra (as a 
vector) for the input and output of the autoencoder, respectively. T 
indicated the transposed vector. A confidence interval was computed for 
training set by the formula mentioned below: 

Confidence Interval=MSE± t(α, f ) × s (3) 

MSE is the average of autoencoder errors (MSE) of all training 
spectra, t is t distribution, f degree of freedom, and α significance level. 
In addition, s is equal to standard deviation of autoencoder errors. 

220 spectra with the same wavenumbers as the training set were 
utilized for prediction set. In order to identify if the samples in the 
prediction set are different from training set, the upper limit of confi
dence interval of training set was used. A significance level of 5% was 
utilized. In the prediction set, the values higher than upper limit were 
considered as detectable values. For each sample, the measurement was 
done several times and after calculating MSE for each replication, the 
average and standard deviation were computed. The same procedure 
was applied for first derivative and the combination spectra. However, 
the main difference was the number of inputs in the neural network. 
When all the wavenumbers of transformed first derivative spectra were 
used as input (4407 wavenumbers), every 10th wavenumbers were 
utilized for combination spectra. The MATLAB software’s proprietary 
script language (version of 2019b) with Deep Learning Toolbox (version 
of 13.0) have been used for the purpose of developing the autoencoder 
neural network. 

3. Results and discussion 

Fig. 2 summarize NIR absorption intensities related to the charac
teristics of the chemical bonds within milk ingredients. 

The graph is showing raw data without any pre-processing with 
different peaks that depict specific components of milk, e.g. –CH groups 
within the chains of fatty acid molecules, carbonyl groups in ester 
linkages of fat molecules, peptide linkages between amino acids of 
protein molecules, and –OH groups in lactose and water. NIR spectro
scopic technique relies on different energy states using excitations of 
higher quanta transitions, i.e. first overtones and binary combinations of 
fundamental molecular vibrations. NIR spectra contain information 
about molecular vibration of certain groups and harmonics of said vi
brations. The stretching vibration and stretching–bending combinations 
of various chemical groups of chemical bonding (O–H, N–H, C–H, S–H) 
in the molecules have natural vibrational frequencies, of which over
tones and combination tones appear in the region from 9000 to 4000 
cm− 1. Proteins are mainly composed of amino acid molecules through 
peptide bonds (–CO–NH–), and their N–H bond is the main absorption 
group. The first-order frequency doubling of the N–H bond stretching 
vibration would appear in specific wavenumber while the frequency of 
combination of the stretching vibration and bending vibration would be 
at a different wavenumber so several peaks related to protein are shown. 
The spectral features of some components are mainly distributed 
throughout some spectral regions whereas others would appear in the 
specific wavenumber. Due to the coupling of fundamental frequency, 
double frequency and combined frequency, polyatomic molecules have 
many absorption bands in the whole near infrared region, and it is 
difficult to accurately distinguish the attribution of near infrared bands 
(Chang et al., 2020). N–H, O–H and C–H bonds of NIR are located 
around 8500–4000 cm− 1. In the range of 9000–4000 cm− 1, the NIR 
spectra showed nine main features, whose representative chemical 
groups have been marked in Fig. 2. These results show that compared 
with the range of 12000–9000 cm− 1, more useful information can be 

Table 2 
Percentage of autoencoder errors higher than limit of detection, and lower than 
it as well as mean and standard deviation for samples in the prediction set by 
using first derivative.  

Sample Percentage of 
values lower 
than limit (%) 

Percentage of 
values higher 
than limit (%) 

Average 
of MSE 

Standard 
deviation of 
MSE 

5% 
cleaning 
solution 

100 0 5.9E-07 1.7E-07 

9% 
cleaning 
solution 

34 66 1.1E-06 3.2E-07 

10% 
cleaning 
solution 

24 76 1.3E-06 4.4E-07 

5% water 30 70 1.2E-06 9.1E-07 
10% water 20 80 1.2E-06 1.5E-07 
10 ◦C 100 0 6.0E-07 8.9E-08 
15 ◦C 0 100 5.2E-06 7.9E-08 
1.6% fat 60 40 9.8E-07 4.5E-07 
ESL-milk 0 100 9.6E-06 1.4E-07 
ESL-milk 0 100 9.6E-06 1.3E-07 
UHT-milk 40 60 5.4E-07 1.5E-07 
UHT-milk 0 100 1.1E-06 4.0E-07  

Table 3 
Percentage of autoencoder errors higher than limit of detection, and lower than 
it as well as mean and standard deviation for samples in the prediction set by 
using combination of raw data and first derivative.  

Sample Percentage of 
values lower 
than limit (%) 

Percentage of 
values higher 
than limit (%) 

Average 
of MSE 

Standard 
deviation of 
MSE 

5% 
cleaning 
solution 

100 0 2.8E-04 3.5E-05 

9% 
cleaning 
solution 

72 28 3.7E-04 1.5E-04 

10% 
cleaning 
solution 

70 30 3.5E-04 1.5E-04 

5% water 62 38 3.7E-04 2.2E-04 
10% water 0 100 1.1E-03 1.1E-04 
10 ◦C 100 0 2.5E-04 4.3E-05 
15 ◦C 0 100 1.0E-03 8.9E-05 
1.6% fat 0 100 5.6E-03 1.7E-03 
ESL-milk 0 100 5.8E-02 1.7E-03 
ESL-milk 0 100 7.6E-02 3.4E-03 
UHT-milk 0 100 5.8E-03 1.7E-03 
UHT-milk 0 100 3.7E-02 1.0E-03  
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acquired from the range of 9000–4000 cm− 1. As can be seen, a promi
nent and broad band around 6900 cm− 1 (the first overtone of O–H 
stretching vibration) has been attributed to water. In addition, water 
shows strong absorption bands of O–H stretching and bending at around 
5100–5300 cm− 1 in NIR spectroscopy. The band at 5000 cm− 1 has been 
associated with protein as amide, besides absorption bands at about 
6250 cm− 1 (the first harmonic free N–H stretch/amide II combination). 
Furthermore, other bands corresponding to fat content appeared at 
5800 cm− 1 (the first overtone of –CH stretching) (dos Santos Pereira, 
2020). Milk contains about 88% water, which produces strong bands in 
NIR around 10400, 6950, 5150, and 4820 cm− 1, which overlap with 
some bands of interest creating noise (Tsenkova et al., 1999). In NIR, for 
instance, characteristic absorption bands of milk components such as fat 
may be affected by the high absorption by water in combination with the 
strong light scattering by the fat globules (Aernouts et al., 2011). 

3.1. Detection of changes by the autoencoder using raw data 

At the first level, raw spectra without any pre-processing were used. 
Every 10th wavenumber was utilized as the input of this neural network. 
The average and standard deviation of MSE for the training set was 
calculated (3.9 ± 1.4) E− 04. The upper limit of the confidence interval 
with significance level of 5%, mentioned as limit of detection is equal to 
6.8E-04. Generally, the autoencoder errors which are lower than this 
limit are not considered as abnormal whereas higher values can show 
the detection capability of this neural network. Table 1 presents results 
of the prediction set including percentage of autoencoder errors which 
are higher and lower compared to the limit, as well as average and 
standard deviation. Fig. 3.a illustrates the autoencoder errors of the 
training set at 5 ◦C by using raw data without any pre-processing. The 
graph in Fig. 3.b shows the individual autoencoder errors for the pre
diction set as well as the limit of detection. 

The examination of the prediction set reveals that all the replications 
related to milk with 5% cleaning solution are lower than 6.8E-04 which 

Fig. 5. Graph for training set (n = 470) showing the mean squared error of input and output of pre-processed spectrum (combination of raw and first derivative) at 
5 ◦C (5.a) and graph for prediction set (n = 220) showing the mean squared error of input and output of pre-processed spectrum (combination of raw and first 
derivative) by using autoencoder in the cow milk (5.b). Limit is equal to upper range of confidential interval of training set with significance level of 5%. ESL-milks 
are from different suppliers. 
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is specified as limit. It means that 5% cleaning solution cannot be 
detected by the autoencoder. However, in milk with 9% cleaning solu
tion, 80% of replications are lower than the limit. The average of rep
lications shows lower value than the limit, it points that 9% of cleaning 
solution in milk is still undetectable. By having a closer look to the 
samples with 10% cleaning solution, it can be observed that 30% of 
values are higher than the limit and the average of replications is 6.2E- 
04 which is very close to the limit. According to Fig. 3.b, the values of 
10% cleaning solution spread around the limit clearly. The same pro
cedure for 5% water confirms that just 14% of repetitions are higher 
than the limit and also 5.4E-04 and 1.3E-04 are mentioned as average 
and standard deviation respectively. Based on the results in Table 1, the 
average of this sample is lower than 6.8E-04, so 5% water is not 
detectable by using autoencoder. However, by testing further concen
tration of water (10%), all the repetitions are above the limit. As a result, 
it is concluded that 10% water in milk is recognised by this neural 
network. As the 1.5% fat milk was used for training the autoencoder, 
1.6% fat milk was tested in order to investigate if other concentrations of 
fat are detectable or not. According to Fig. 3.b, all the values related to 
this sample are clearly above the limit which demonstrates the fact that 
the autoencoder can distinguish at least the difference of 0.1% fat in the 
milk. Temperature variation was another variable which was checked by 
this neural network. While the training set was measured at 5 ◦C, neural 
network behaves differently with the samples measured at the temper
ature of 10 ◦C and 15 ◦C. Based on Table 1, 100% of autoencoder errors 
of samples measured at 10 ◦C are lower than 6.8E-04. In contrast, all the 
samples measured at 15 ◦C are above the limit and can be distinguished. 
The reason is sensitivity of NIR to the temperature as it works based on 
vibrational movements. In the further steps, when two ESL-milk with 
1.5% fat from various suppliers are used in prediction set, the autoen
coder errors of them are intensively high. It depicts to the different 
procedures between ESL-milk and UHT-milk preparation which can be 
easily detect by the autoencoder. In addition, according to Fig. 3.b, all 
samples with the same characteristics to the training sample from 
several suppliers are higher than the limit which points to the specific 
production methods of each companies. 

Generally, by implementing the special procedure of using raw data, 
three hidden layers (10*5*10) and 441 inputs (every 10th wave
number), some changes in the milk like adding 10% water, 0.1% fat, 
10 ◦C difference in temperature of samples, and various production 
methods are detectable. However, milks with 10% cleaning solution is 
overlapped with the limit of detection. The technique is rapid, nonde
structive, precise and cost-effective, compared with other laboratory 
techniques. Kasemsumran et al. (2007) confirmed the feasibility of NIR 
to detect and to quantify water or whey adulterants in bovine milk. The 
study concluded that, for the detection of whey or water adulterant, 
pretreated spectra with MSC and 2nd derivative method were needed. 
Jaiswal et al. (2017) reported that Fourier Transform Infrared spec
troscopy is a rapid method for detection and quantification of anionic 
detergent in milk. For determination of detergent in milk, partial least 
squares regression was used. Indicating the potential of this method 
without much sample preparation and data treatment was promising. 
Despite of other works, using NIR and autoencoder can investigate and 
detect several anomalies simultaneously which consider as the advan
tage of this procedure. These changes are not always small enough so 
that the regulations in Germany are fulfilled. For instance, it is not 
allowed to add water to milk. For semi-skimmed milk (heat-treated 
low-fat milk), where a minimum of 1.5% and a maximum of 1.8% fat is 
required, the autoencoder can provide useful information. However, the 
detection of 10% of detergent is not enough and must be improved. 

3.2. Detection of changes by the autoencoder using first derivative data 

To investigate the effects of pre-processing on the improvement of 
detection, the first derivative with a window size of 15 was applied and 
all the wavenumbers of the pre-processed spectra were utilized as the 

input of the autoencoder neural network. In this case, the limit of 
detection which is calculated by using confidence interval with the 
significance level of 5 percent is equal to 1.0E-06. Also, the average and 
standard deviation of MSE for training set are 6.4E-07 and 1.9E-07 
respectively. Fig. 4 displays the autoencoder errors of training set and 
prediction set by using pre-processed data. 

Table 2 states the results of prediction set which are pre-processed by 
first derivative Savitzky-Golay filter. 

According to Fig. 4.b all the replications of milk with 5% cleaning 
solution are lower than the limit which illustrates that it is not detect
able, even by using derivative data. However, confirming to Table 2, for 
the samples with 9% and 10% cleaning solution, the percentage of 
values higher than the limit are 66% and 76% respectively. These two 
samples show the average of 1.1E-06 and 1.3E-06, which both are higher 
than the limit. Therefore, it would signify the capability of autoencoder 
to detect the 9% cleaning solution in the milk. The average of 1.2E-06 
(higher than the limit of detection) for milk with 5% water showing 
the usefulness of autoencoder to determine this concentration of water 
inside the milk. Fig. 4.b illustrates that despite of samples were 
measured at 10 ◦C which the autoencoder cannot distinguish them from 
the training set, samples measured at 15 ◦C can be properly detected. 
Also, by looking closer at Fig. 4.b, it is obvious that autoencoder errors of 
milk with 1.6% fat are spreading around the limit. Additionally, the 
average of 9.8E-07 for this sample shows that it can be overlapped with 
the limit of detection so the difference of 0.1 percent fat can’t be rec
ognised reliably. The results of UHT and ESL milk from several suppliers 
demonstrate that autoencoder is able to detect some changes in these 
samples in compare with the training set. 

In order to compare the usage of raw data to the first derivative in 
this procedure, it can be concluded that using first derivative with 
window size of 15 would be more effective to detect the water and 
cleaning solution in the milk. In contrast, to recognize the difference in 
the fat concentration of milk, the results of raw data show much more 
accurate prediction. 

3.3. Detection of changes by the autoencoder using combination of raw 
and first derivative spectrum 

In pursuance of finding better results, the raw spectra were combined 
with their first derivative, and every 10th wavenumbers were used as 
the input of the autoencoder. The average of autoencoder errors for 
training set is equal to 2.1E-04 ± 8.6E-05 and the limit of detection is 
3.8E-04. Table 3 shows the percentage of autoencoder errors higher and 
lower than the limit of detection as well as mean and standard deviation 
for samples in the prediction set. SNV (standard normal variate) was 
applied after combining the raw and derivative spectra but it did not 
improve the results. Fig. 5 presents the graph of training and prediction 
set which are prepared by autoencoder from the combination of raw and 
first derivative spectrum. 

By using the mentioned procedure, all replications related to the milk 
with 5% cleaning solution are lower than 3.8E-04 considered as the limit 
of detection. However, the percentage of autoencoder errors above the 
limit for 9% and 10% cleaning solution are 28% and 30% respectively. 
As a result, the lower average of samples with 9% and 10% cleaning 
solution (compared to the limit of detection) imply the lower efficiency 
of combination spectrum for cleaning solution detection. However, 
these averages are very close to the limit of detection. The average of 
mean squared errors for milk with 5% water is 3.7E-04 which is very 
close to the limit but still lower. In contrast, samples with 10% water can 
be detected properly. By taking a closer look to Fig. 4.b, despite of 
samples measured at 15 ◦C, all the milks measured at 10 ◦C are not 
detectable. 0.1% fat can be recognised easily by using combination of 
raw and first derivative spectra. In addition, various production methods 
can be distinguished from each other. The Fourier Transform Infrared 
spectroscopy was before evaluated as a promising method for detection 
of anionic detergents in milk. Principal component analysis showed 
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discrete clustering of samples based on level of detergents in milk 
(Jaiswal et al., 2017). Other work was employed on NIR spectroscopy 
and PLS algorithms for the identification and quantification of goat milk 
adulteration by adding cow milk, besides the determination of their fat 
and protein contents. Therefore, the proposed methodology proved to be 
a useful, fast and non-destructive tool for screening the quality of goat 
milk in terms of its adulteration with cow milk, in addition to the 
quantification of its fat and protein contents (dos Santos Pereira, 2020). 

Using the combination of raw and first derivative spectra can 
improve the autoencoders detection abilities compared to raw data 
alone. However, for detecting the cleaning solution and water inside the 
milk, using only first derivative alone would be more effective. On the 
other hand, the combination of the first derivative with the raw un
processed signal was useful to detect fat, temperature, and production 
method changes. Overall, as this combination can detect more anoma
lies, it is recommended. In addition, pre-processed spectra usually are 
better than raw data to detect anomalies which can be consider as 
advantage of this method but pre-processing in general could be time 
consuming or induce more cost. This procedure can detect several 
anomalies simultaneously so it is superior to existing methods. 

As a result, the detection of anomalies during milk processing is an 
important sector as it effects the quality and safety of the final product. 
As a new method of unsupervised machine learning, deep autoencoder 
represent a powerful capability in anomaly detection. By this method 
most issues can be detected early in the process and potentially be 
corrected. As a spectroscopic method, it is rapid with minimal sample 
preparation which is the most important advantage. In this contribution, 
the potential of an autoencoder for detecting possible changes during 
milk processing was evaluated. The performance of NIR spectroscopy 
was investigated as well. Raw spectra acquired by NIR spectrometer 
were compared with their first derivative and combination of both in 
order to find the best anomaly detection method. It can be concluded 
that most abnormal states in milk processing can be detected by this 
method. Using first derivative was helpful to detect 5% added water and 
9% cleaning solution in the milk, however, a combination of raw spectra 
with their first derivative was more effective to detect the difference of 
0.1% fat. Both procedures were able to detect 10 ◦C temperature vari
ation, as well as variations in various other production parameters. In 
summary, this innovative method shows great promise for use during 
milk processing and beyond to detect anomalies during the production. 
It can be adapted easily for new processes, because it is a self-learning 
unsupervised evaluation method. Therefore, this approach can be 
adopted for the quality control of pretty much all liquid beverages such 
as juice, lemonade and even further liquid products like oil. 
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Ying, Y., 2014. Detection of melamine in milk powders based on NIR hyperspectral 
imaging and spectral similarity analyses. J. Food Eng. 124, 97–104. https://doi.org/ 
10.1016/j.jfoodeng.2013.09.023. 

Gong, D., Liu, L., Le, V., Saha, B., Mansour, M.R., Venkatesh, S., Van Den Hengel, A., 
2019. Memorizing Normality to Detect Anomaly: Memory-Augmented Deep 
Autoencoder for Unsupervised Anomaly Detection. Presented at the 2019 IEEE/CVF 
International Conference on Computer Vision (ICCV). IEEE, Seoul, Korea (South), 
pp. 1705–1714. 

Heald, C.W., Kim, T., Sischo, W.M., Cooper, J.B., Wolfgang, D.R., 2000. A computerized 
mastitis decision and using farm-based records: an artificial neural network 
approach. J. Dairy Sci. 83 (4), 711–720. https://doi.org/10.3168/jds.S0022-0302 
(00)74933-2. 

Hillerton, J.E., Berry, E.A., 2004. Quality of the milk supply: European regulations versus 
practice. NMC Annual Meeting Proceedings 207, 214. 

Hitzmann, B., Hauselmann, R., Niemoeller, A., Sangi, D., Traenkle, J., Glassey, J., 2015. 
Process analytical technologies in food industry–challenges and benefits: a status 
report and recommendations. Biotechnol. J. 10 (8), 1095–1100. 

Huang, H., Yu, H., Xu, H., Ying, Y., 2008. Near-infrared spectroscopy for on/in-line 
monitoring of quality in foods and beverages: a review. J. Food Eng. 87 (3), 
303–313. https://doi.org/10.1016/j.jfoodeng.2007.12.022. 

Huang, M., Kim, M.S., Delwiche, S.R., Chao, K., Qin, J., Mo, C., Esquerre, C., Zhu, Q., 
2016. Quantitative analysis of melamine in milk powders using near-infrared 
hyperspectral imaging and band ratio. J. Food Eng. 181, 10–19. https://doi.org/ 
10.1016/j.jfoodeng.2016.02.017. 

Jaiswal, P., Jha, S.N., Kaur, J., Borah, A., 2017. Detection and quantification of anionic 
detergent (lissapol) in milk using attenuated total reflectance-Fourier Transform 
Infrared spectroscopy. Food Chem. 221, 815–821. 

Kasemsumran, S., Thanapase, W., Kiatsoonthon, A., 2007. Feasibility of near-infrared 
spectroscopy to detect and to quantify adulterants in cow milk. Anal. Sci. 23 (7), 
907–910. 

Kawasaki, M., Kawamura, S., Tsukahara, M., Morita, S., Komiya, M., Natsuga, M., 2008. 
Near-infrared spectroscopic sensing system for on-line milk quality assessment in a 
milking robot. Comput. Electron. Agric. 63 (1), 22–27. https://doi.org/10.1016/j. 
compag.2008.01.006. 

Khan, A., Munir, M.T., Yu, W., Young, B.R., 2020. Near-infrared spectroscopy and data 
analysis for predicting milk powder quality attributes. International Journal of Dairy 
Technology. https://doi.org/10.1111/1471-0307.12734. 

Lacroix, R., Salehi, F., Yang, X.Z., Wade, K.M., 1997. Effects of data pre-processing on the 
performance of artificial neural network for dairy yield prediction and cow culling 
classification. Transactions of the ASAE 40, 839–846. American Society of 
Agricultural Engineers.  

Lu, C., Xiang, B., Hao, G., Xu, J., Wang, Z., Chen, C., 2009. Rapid detection of melamine 
in milk powder by near-infrared spectroscopy. Journal of Near-Infrared 
Spectroscopy 17, 59–67. https://doi.org/10.1255/jnirs.829. 

Mauer, L.J., Chernyshova, A.A., Hiatt, A., Deering, A., Davis, R., 2009. Melamine 
detection in infant formula powder using near- and mid-infrared spectroscopy. 
J. Agric. Food Chem. 57, 3974–3980. https://doi.org/10.1021/jf900587m. 

Mittal, G.S., Zhang, J., 2000. Use of artificial neural network to predict temperature, 
moisture, and fat in slab-shaped foods with edible coatings during deep-fat frying. 
J. Food Sci. 65 (6), 978–983. https://doi.org/10.1111/j.1365-2621.2000.tb09403.x. 
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A B S T R A C T   

Controlling milk processing steps is a crucial task as it affects the quality and safety of the final product. Using 
Raman spectrometer in combination with various evaluation techniques such as principal component analysis 
and regression, Gaussian process regression, and the autoencoder were checked to define an accurate method for 
detection of deviations from standard procedures. For this purpose, milk with 5% fat measured at 10 ◦C was 
considered as the reference milk. A temperature-controlled flow cell was used in a by-pass for online mea
surements. While the principal component regression was not able to predict the deviations, results demonstrate 
the capability of Gaussian process regression and the autoencoder to detect 5% added water and cleaning so
lution, 0.1% difference in fat content and variation of 5 ◦C in measurement temperature. It can be concluded that 
both procedures display promising results, however, the autoencoder can be trained once and used immediately 
for online supervision. Therefore, changes can be detected promptly, enabling companies to react instantly.   

1. Introduction 

Milk is a complete nutrient source for humans, so its quality and 
safety would be critical not only for producers but also for consumers. 
Thereby, to ensure the quality and safety of milk a prognostic tool based 
on online measurement data would be beneficial for fast detection of 
deviations from the standard product. Especially when the conventional 
methods do only analyze statistically selected samples are time- 
consuming, laborious, and require complicated preparation levels. 
During milk production, the sources of raw milk, ways of transportation 
and storage as well as deviations in processing parameters or cleaning 
can affect the quality and safety of final products. Therefore, there are 
some demands for time-resaved techniques to evaluate and control each 
step or in summary the final product until filling and packing (He et al., 
2019). 

Raman spectroscopy, based on an inelastic scattering effect, which 
can be observed when electromagnetic radiation interacts with matter, 
was first published by Raman and Krishnan (1928). Dijkstra et al. (2005) 
mentioned that there are various forms of vibration in molecules but 
Raman signals can be acquired by only a few of them. Raman signals can 
therefore be observed while the polarizability of the molecule changes. 
Raman spectroscopy has been formerly used in the dairy industry 
(Blanpain-Avet et al., 2012). To detect the artificial additives in milk, 

Rajapandiyan et al. (2015) illustrated a method for rapid determination 
of melamine in milk samples by surface-enhanced Raman spectroscopy 
technique. El-Abassy et al. (2011) illustrated the capability of visible 
Raman spectroscopy combined with partial least square regression (PLS) 
as an accurate and fast method for direct detection of milk fat. Also, 
Bernuy et al. (2008) explained the potential capacity of Fourier Trans
form (FT) Raman spectroscopy in the detection of total conjugated 
linoleic acid (CLA) in milk in 57 anhydrous milk fat samples. Another 
research was carried out by Moros et al. (2007) using Fourier Transform 
spectroscopy to identify fat content in milk powder. In their study, raw 
data without any pre-processing were employed. A partial least squares 
regression modelling with 8% mean relative prediction error was ob
tained. Stefanov et al. (2011) verified the feasibility of Fourier Trans
form Raman spectroscopy in combination with partial least square 
regression for the determination of individual or grouped trans-
monounsaturated fatty acids (FAs) and conjugated linoleic acid in milk 
at two temperature conditions. In addition, Li et al. (2015) employed 
crystal violet as an internal standard and employed Raman spectroscopy 
with a 785 nm laser light to quantitative detect lactose in milk. The 
results demonstrated a proper linear relationship between lactose and 
peak intensity with R2 of 0.99. More recently, Vaskova et al. (2016) 
compared phenylalanine and crystal violet for normalizing Raman 
identification and quantification of lactose. Furthermore, Acar-Soykut 
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et al. (2018) demonstrated that Raman spectroscopy combined with 
principal component analysis (PCA) analysis can be applied to deter
mine antibiotics and phages in raw milk samples. 

Deep autoencoder is a powerful tool to model high-dimensional data 
in the unsupervised setting with the aim of detecting deviations from the 
standard. In details, it can learn a “normal” profile (spectra from refer
ence sample), thereby define the samples which are not conforming to 
the normal profile (standard products with no quality or safety issues) by 
producing higher reconstruction error than the reference samples. The 
higher autoencoder error can be used as a criterion for the detection of 
anomalies (Gong et al., 2019). The autoencoder has not been extensively 
applied in food science in particular dairy technology. Vasafi et al. 
(2021) used the autoencoder for anomaly detection during milk pro
cessing based on near-infrared spectroscopy. Here the prediction capa
bility of this evaluation method performed best. 

Gaussian process regression (GPR) can be applied to solve regression 
problems and requires only a few samples for modelling (Wang & 
Chaib-draa, 2016). Wang et al. (2021) have built a soft sensor model 
based on Gaussian process regression in order to monitor the chlortet
racycline fermentation process based on online measurable parameters 
and the total sugar content of the fermentation broth. However, this 
procedure has not been used intensively in food science. Recently, a 
novel prediction model of diet nutrients digestibility of dairy cows based 
on Gaussian process regression was developed (Fu et al., 2019). Also, Liu 
et al. (2019) proposed a non-destructive detection method for packaged 
food based on the generalized Gaussian model for Raman scattering 
images. In this study, line-scan Raman scattering images were used. The 
Raman peaks of the scattering image were extracted, and the attenua
tion information of the peaks far from the laser point was imported into 
the established generalized Gaussian model. Analysis of the histogram of 
residual distribution revealed that the difference in residual distribution 
was enhanced, and an appropriate threshold was selected to separate the 
Raman baseline correction spectrum of the internal materials. Gener
alized Gaussian model was able to separate food and package Raman 
peaks. 

The aim of this research was to develop an appropriate technique for 
detecting deviations from standard samples during the milk processing 
(such as changes in fat, temperature, added water or contamination of 
cleaning solution) by using Raman spectroscopy. A flow cell was 
established in a by-pass, then the spectra were collected online. Prin
cipal component regression, Gaussian process regression as well as an 
autoencoder were tested to be valuable to identify such deviations from 
the standard by means of spectra comparison. 

2. Material and method 

2.1. Material 

In this contribution, two different types of homogenized milk with 
1.5% and 3.5% fat content were used from the “Weihenstephan” brand, 
Germany. Milk with a concentration of 1.5% fat was considered as the 
reference sample (standard). Samples were kept at the temperature of 
5 ◦C before opening the packages. “Anti-Germ clean A-N 30” was used as 
a test cleaning solution to prepare contaminated samples. 

The spectra evaluation was carried out on a Windows PC 10. As 
software for the principal component analysis and regression, the Un
scrambler (version of 10.3) as well as for all other evaluation techniques, 
MATLAB (version of 2019b) with the Deep Learning Toolbox version 
13.0 were applied. 

2.2. Sample preparation 

As the reference sample UHT milk (ultra-high-temperature process
ing milk) with 1.5% of fat was used. Then the reference sample was 
modified by some changes. A sample with 1.6% fat was prepared by 
mixing 95 mL of 1.5% fat milk and 5 mL of 3.5% fat milk. The same 

procedure was done to create concentrations of 1.7% and 1.8% fat by 
mixing various amounts. So, the ability of different evaluation tech
niques to distinguish different fat contents in milk was checked. For 
cleaning plants, 1 mL of concentrated substance “Anti Germ clean A-N 
30” is diluted with 99 mL water. This liquid is used as the common 
cleaning solution of hygienic operation. Subsequently, various concen
trations of water or cleaning solution (0.05 L/L and 0.1 L/L) were added 
to the reference milk. The purpose behind it was to understand how 
much water and cleaning solution can be detected by using different 
evaluation procedures. All the modified samples were measured after 
reaching the temperature of 10 ◦C. For the final step reference milk was 
measured after warming up to 15 ◦C or 20 ◦C to determine the tem
perature sensitivity of the analysis. 

2.3. Raman spectroscopy 

Raman measurements were carried out using an INNO-SPEC Raman 
785 Spectrometer (INNO-SPEC GmbH, Germany) with a laser excitation 
wavelength of 784.98 nm. The signal was collected on a thermoelectric 
cooled back-thinned CCD (charge-coupled device) sensor. All Raman 
spectra consisted of a scan at 1 cm− 1 resolution across the spectral range 
of 65–3290 cm− 1. Integration time (IT) of 20 s and power of less than 
500 mW were employed. 

For spectra acquisition, a high-quality quartz flow cell of 1 mm path 
length including temperature controlling option for liquids was imple
mented (Hellma Analytics, Germany). The volume of the flow cell was 
less than 1 mL. The flow cell was placed 12 mm far away from the outlet 
of a temperature-stabilized laser to ensure proper focusing on the sam
ple. In order to adjust the cold temperature of samples during the 
measurement, a water bath with a temperature of 5 ◦C was utilized. A 
beaker holding milk at 5 ◦C was left in the water bath and connected to 
the flow cell by plastic tubes. In order to keep the temperature stable and 
simulate online process measurement conditions in a by-pass, milk was 
circulated through the flow cell during the measurement. Right after 
starting the milk circulation, its temperature increased to 10 ◦C because 
of the heat produced by the laser as well as the length of plastic tubes, 
which can be affected by room temperature. Spectra were acquired by 
applying a continuous mode of measurement during the milk circulation 
through the flow cell. 139 spectra were acquired from three different 
packages of reference milk and 213 spectra were obtained from nine 
modified samples including several repetitions for each sample. 

2.4. Pre-processing algorithms 

Spectral pre-processing techniques are required to remove any 
irrelevant information including noise, uncertainties, variability, in
teractions and unrecognized features (Lacroix et al., 1997). In this 
investigation, various pre-processing methods such as first and second 
derivative, different normalization methods, baseline correction and 
multiplicative scatter correction (MSC) were tested to find the best one 
for spectral evaluation. A smoothing of the spectra using a 
Savitzky-Golay filter with second polynomial order and window size of 
15 in combination with standard normal variate (SNV) transformation 
was applied to reduce the (physical) variability between samples (Kar
unathilaka et al., 2018) and gave the best results for pre-processing. 

For the identification of modified samples, several models were 
investigated. 

2.5. Applied models for identification of modified samples 

2.5.1. Principal component analysis and regression 
A score plot of a principal component analysis (PCA) was employed 

to investigate if the pattern of reference and modified samples can be 
separated. Here, the data were analyzed with respect to the variance of 
the predictor variable by using Unscrambler software. The factor load
ings might be able to interpret the dimensions, and the factor scores to 
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identify the relative positions among the product in a map (Chapman 
et al., 2001; Karunathilaka et al., 2018). To visualize the differences 
between sample groups, PCA was carried out involving all the samples. 
To check this procedure all the wavenumbers of a spectrum were used 
and PCA score plots were drawn with various combinations of principal 
components. 

With the aim of predicting the difference of reference and modified 
milk, principal component regression (PCR) was evaluated using Un
scrambler software. For this purpose, all of the reference samples were 
put equal to 0, while the modified ones equal to 1. To select the number 
of factors utilized for building a PCR model and in order to model the 
system without overfitting, a cross-validation method was employed. 
The maximum number of factors used to build the model was selected as 
16. RMSE was computed as an indicator of the average error in the 
analysis for each component which shows how well the model fits the 
data. The determination coefficient (R2) displaying the fraction of the 
total variance explained by the models was calculated as well. 

2.5.2. Gaussian process regression 
For the detection of spectra from modified samples, the Gauss pro

cess regression was applied. A very good description of Gauss process 
regression was given by Rasmussen and Williams (2006). The Gaussian 
process regression is a supervised machine learning algorithm, which 
needs spectra of reference as well as modified samples for the calculation 
of a non-parametric regression model. This probabilistic-based approach 
uses a Bayesian framework for the regression task. The Matlab function 
fitrgp is used for the model calculation, for prediction the function predict 
has been applied. While the intensity values depending on the wave
numbers were utilized as predictor variables, zero for reference and one 
for modified samples were considered as response values. To determine 
the model for the evaluation of new spectra, the covariance function 
(kernel function) was specified. Three different covariance functions 
were tested (squared exponential, Matern, and rational quadratic). 
Pre-processed spectra including all the wavenumbers were used as the 
inputs of the model. The model was calibrated with the reference and 
modified milks, while the reference samples were put equal to 0 and 
modified samples were put equal to 1, the same as PCR. By using the 
training set the detection limit was specified as the highest prediction 
value of the reference samples. The prediction set was prepared by 
modified milks and predicted with the model. Then the determination 
coefficient (R2) was obtained. RMSE was considered as a criterion to 
state how well the evaluation techniques can detect modified samples. 

2.5.3. Autoencoder 
An autoencoder is a special type of feedforward neural network 

which consists of at least three layers. The input and output layers have 
the same number of neurons, while there can be just one hidden layer or 
many with various numbers of neurons. The network learns to map the 
input pattern to the output pattern through a bottleneck, which is the 
hidden layer. Therefore, the autoencoder learns an approximation to the 
identity function. Due to the fact that the number of neurons in the 
hidden layers are restricted to smaller numbers than the input layer, a 
compression is carried out. As a learning algorithm, the back
propagation algorithm can be applied. Given sufficient hidden layers, 
the multilayer feedforward sigmoidal network can approximate virtu
ally any function of interest to any desired degree of accuracy (Sharma 
et al., 2007). In this investigation, the maximum number of epochs was 
arbitrarily kept at 10,000. For hidden neurons, the transfer function tanh 
(x) was applied, which was a rescaled logistic sigmoid function, whereas 
the identity transfer function was implemented for the output neurons. 

In order to detect deviations from reference, the following archi
tecture represented the best results; a three-layer network with 322 
input neurons, 10 hidden neurons, and 322 output neurons (just every 
10th wavenumber was utilized as the training input and output pattern). 
The autoencoder was trained with 139 pre-processed spectra taken from 
various packages of reference milk. During the training step, which lasts 

roughly 1 min, data was split into the training set and testing set. The 
training was stopped when the error of the test data increased which can 
avoid overfitting. To analyze the samples, the sum of squared differences 
between input and output of the autoencoder was computed by the 
formula: 

MSE=
1

N⋅n
∑N

i=1

(

x→i,in − x→i,out

)(

x→i,in − x→i,out

)T

(1) 

MSE (considered as autoencoder error) is the mean squared error of 
applied samples, N is the number of samples, n the number of intensity 
values in a spectrum, and x→i,inand x→i,out are the ith spectrum of the input 
and output of the autoencoder respectively. T denoted the transposed 
vector. A confidence interval was calculated for the training set using the 
following equation: 

Confidence ​ Interval ​ = ​ MSE± t(α, f)⋅s (2) 

Here t() is the t distribution, α significance level, f degree of freedom 
and s is equal to standard deviation of the MSE. 213 pre-processed 
spectra were employed for the prediction set. The upper boundary of 
confidence interval of training set with significance level of 5% was 
utilized as limit to decide if a reference or modified sample is present. 
The autoencoder decision was “modified sample”, when the following 
prove value p of a new sample was larger than the limit. 

p=
(

x→in − x→out

)(

x→in − x→out

)T /

n (3) 

For each sample, the measurement was done several times and after 
obtaining the prove value for each replication the average pand standard 
deviation were calculated. The MATLAB software’s proprietary script 
language (version of 2019b) with Deep Learning Toolbox (version of 
13.0) was applied with the aim of developing the autoencoder. 

3. Results and discussion 

3.1. Raman spectra 

Raman spectrum acquired from the standard milk sample is shown in 
Fig. 1. The prominent peaks in the Raman spectra are observed at 1650 
cm− 1 (C= C) stretching of RHC= CHR, 1440 cm− 1 (C–H) bending of 
-CH2, and 1747 cm− 1 (C= O) stretching of RC= OOR. The three bands 
around 1008 cm− 1 (C–CH3 bending), 1150 cm− 1 (C–C stretching), and 
1525 cm− 1 (C= C stretching) are attributed to carotenoids. Carotenoids 
are natural antioxidants and contribute up to 50% of vitamin A activity. 
In the region of 2800–3100 cm− 1 of the Raman spectra, bands around 
2850 and 2940 cm− 1 are contributed to the symmetric and asymmetric 
(C–H) stretching vibrations of the terminal chains of methyl (CH2) and 
methylene (CH3) groups of aliphatic molecules that exist in edible oils 
and fats. Also, bands at 3005 cm− 1 are associated with the symmetric 
scissoring mode of (= C–H) (El-Abassy et al., 2011). Region of 
700–1200 cm− 1 demonstrates the spectral features of a so-called 
fingerprint. This area includes bands that are characteristics of C–C 
skeletal and C–O bond vibrations. The hydrocarbon chains are charac
terized by a series of bands due to the vibration of skeletal C–C bonds in 
the wavenumber of 800–900 and 1000–1100 cm− 1, while C–O bonds 
have characteristic features in two bands close to 800–970 and 
1060–1150 cm− 1. The carbon chain deformation vibrations are detected 
in the region of 150–450 cm− 1 (Baeten et al., 1998). 

3.2. Detection of changes using principal component analysis and 
regression 

A score plot of principal component analysis and its regression were 
employed to detect modified samples from the reference. Fig. 2 illus
trates a classification among the reference and various modified samples 
using PCA. 
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PCA score plot was drawn with different components, however, PC1 
and PC2 separate the samples in some groups a bit better than the other 
PCs combinations. PC1 covers 69% and PC2 14% of the variance of the 
pre-processed data set. The region which is defined by the circle presents 
the reference milk area which can be considered as the limit of detec
tion. Consequently, the samples are situated slightly outside the limit are 
denoted as the modified samples. As can be seen in Fig. 2, samples with 
various amount of water and cleaning solution can be distinguished 
from the reference. The model is not capable to differentiate samples 
measured at various temperatures. Furthermore, the difference in fat 
contents cannot be distinguished clearly. It can be concluded that the 
classification results are not promising. PCA model in combination with 
Raman spectroscopy has been recently used in order to discriminate 
infant gender on the basis of milk fat content and shown much better 
results. In total 50 milk samples were used in this study, out of which 20 
have male and 30 have female infant babies. It was observed that PCA 
was able to clearly separate the two sets of classes on the basis of features 
obtained from the Raman spectra (Ullah et al., 2017). 

With the aim of predicting the reference and modified samples, PCR 
was evaluated. Fig. 3 a presents results obtained by principal component 

regression for calibration of the model. For the PCR model, a calibration 
set with 16 principal components was used, including reference samples 
(whose y values were set to 0) and modified milks (whose y values were 
set to 1). 

Fig. 3b presents the principal component regression model for pre
dicting modified samples and reference samples. 

As can be seen in Fig. 3a showing the calibration set after imple
menting PCR, reference samples spread out from − 0.5 to 0.9 and 
modified samples from 0.2 to 1.5. Subsequently, a threshold for group 
classification cannot be selected. In addition, Fig. 3b plotting predicted 
values against reference values demonstrates the R2 equal to 0.7 and 
RMSE of 0.6 which implies the inability of PCR to predict reference and 
modifies samples correctly. 

He et al. (2019) mentioned that the baseline correction algorithms 
can be employed for suppressing fluorescence background, while the 
Savitzky-Golay filter is commonly used to improve signal-to-noise. 
Moreover, normalization algorithms (standard normal variate, multi
plicative scatter correction, peak normalization) are applied for evalu
ating real samples. More approaches and their applicability in Raman 
analysis have been stated elsewhere (Lohumi et al., 2017; De Luca et al., 
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2015). 

3.3. Detection of changes by using Gaussian process regression 

In pursuance of finding better results, a Gaussian process regression 
model using cross-validation was employed to determine changes. Fig. 4 
represents the results of the calibration set and prediction set acquired 
by the Gaussian process regression model using pre-processed data. The 
determination coefficient R2 and RMSE acquired by this model are 0.97 
and 0.09 respectively. The limit of detection obtained by this procedure 
is equal to 0.6. 

Fig. 5 displays the results of the prediction set of Gaussian process 
regression including the percentage of values higher and lower than the 
limit of detection. 

The averages and standard deviations of predicted values using GPR 
are illustrated in Table 1. 

In this step, reference samples were put equal to zero and modified 
ones equal to one and as can be observed in Fig. 4 a the ‘‘Reference’’ line 
is implying this procedure. According to Fig. 4 a, in the calibration set 
responses of the reference samples are spreading from − 0.09 to 0.5 and 
modified samples from 0.7 to 1.1. The limit of detection can be defined 
by the value of 0.6 which can separate the modified and reference milks 
quite good. It implies the fact that each predicted value higher than the 

limit is considered as a modified sample. In regard to Fig. 4 b, the sample 
with 5% water is mostly higher than the limit. By a closer look at Figs. 5 
and 94.9% of replications of this sample are higher than the value of 0.6 
considered as the limit of detection. Subsequently, regarding the 
average of 0.7 for this sample, 5% water is detectable by this method. 
Although, all the replications of milks with 10% water are higher than 
the limit. As can be seen in Fig. 4 b, all the predicted values for milks 
with various fat contents are higher than the limit, which implies the 
ability of the Gaussian process regression model to distinguish the dif
ference of 0.1% fat in the milk. In addition, this model is also able to 
detect samples with 5% and 10% cleaning solution because of the higher 
values than the detection limit. Milks were measured at 15 ◦C are 
spreading around the limit. In the mentioned sample 73.7% of repetition 
are higher than 0.6 showing an average of 0.7, which implies the 
capability of GPR for detection. Despite samples measured at 15 ◦C, all 
the sample measured at 20 ◦C are obviously above the limit of detection. 
The model predicts the reference samples with values lower than the 
limit. 

Generally, by implementing the combination of Raman spectrometer 
and Gaussian process regression model all the modified sample can be 
clearly distinguished from the reference samples. However, pre- 
processing by Savitzky-Golay filter and SNV improved the results. 

Fu et al. (2019) applied various methods to predict the diet nutrients 
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digestibility of dairy cows and the prediction results specified that the 
GPR method is superior to other conventional techniques. A large 
number of researches have represented that the GPR method generally 
achieves better modelling and prediction performance than other sta
tistical prediction techniques (Kong et al., 2018). 

3.4. Detection of changes by autoencoder 

To investigate the effectiveness of the autoencoder on the detection 
of deviations from standard during the milk processing, pre-processed 
data was employed as the inputs. In addition, for the training set, the 
average and standard deviation of autoencoder errors were calculated, 
2.7E-04 and 7.0E-05 respectively. The limit of detection, which was 
computed by using the upper boundary of the confidential interval with 
the significance level of 5%, is equal to 4.1E-04. Consequently, samples 
that show higher values than the limit of detection is considered as the 
modified samples. 

Fig. 6 represents the autoencoder errors of the training set and pre
diction set by using pre-processed data. 

The averages and standard deviations of autoencoder errors in the 
prediction set are displayed in Table 1. Fig. 7 represents the percentage 
of autoencoder errors that are lower and higher than 4.1E-04, which is 
the limit of detection. 

In regard to Fig. 7, the autoencoder can distinguish 5% water in the 
milk as the percentage of values higher than the limit is 81.1%. Ac
cording to Table 1, various replications of the mentioned sample show 
the average of 5.3E-04 ± 1.8E-04 which is higher than the limit value 
implies the ability of the autoencoder for detection. Confirming to Fig. 6 
b, all the repetitions of milk with 10% water are higher than the limit 
which states that it can be distinguished perfectly by this method. As can 
be seen in Fig. 6 b, samples with 1.6% fat spread out around the limit. By 
closer look at Fig. 7, it can be defined that 42.9% of predicted values of 
1.6% fat milk are higher than the limit while it is 66.7% for samples with 
1.7% fat. In contrast, all the replications for milks with 1.8% fat show 
values higher than the limit. Overall, while the autoencoder errors of 
milk with 1.6% fat are spreading around the limit, the average of 5.5E- 
04 is still higher than the limit. Consequently, the difference of 0.1% fat 
is detectable by using the autoencoder. According to Fig. 6 b, various 
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concentrations of cleaning solution in the milk (5% and 10%) are 
obviously higher than the limit. Therefore, it signifies the capability of 
the autoencoder to identify 5% cleaning solution in the milk. The results 
of reference milk measured at 15 ◦C demonstrate that 42.1% of 
autoencoder errors are higher than the limit which shows the average of 
4.2E-04 in Table 1. Despite the average value is very close to the limit of 
detection, it is still higher implying the capability of the autoencoder for 
considering the sample as a modified one. For samples, which were 
measured at 20 ◦C the autoencoder is functional to detect changes as 
79.2% of replications with an average of 1.0E-03 are higher than the 
limit of detection. 

Totally, the combination of the autoencoder with the Raman spec
trometer shows promising results for the identification of modified 
samples. The pre-processed spectra by the smoothing prior to calcu
lating the SNV transformation can affect the mentioned network to 
distinguish deviations from standard production perfectly. Conse
quently, it is capable to distinguish the 5% water and cleaning solution 
in the milk while Vasafi et al. (2021) illustrated that using the autoen
coder in combination with a NIR spectrometer is not able to detect 5% 
cleaning solution (similar cleaning solution) in the milk processing. 

Difference of 0.1% in fat content and 5 ◦C difference in the measurement 
temperature are also detectable by utilizing the autoencoder. 

To compare the results of the autoencoder and Gaussian process 
regression model, it can be mentioned that both are showing promising 
results and are able to detect various changes. By comparing Fig. 4.b and 
6 b, it can be seen that GPR can detect more modified signals than the 
autoencoder. However, the model must be calibrated with all the 
possible changes before the usage which can be considered as the 
disadvantage of this technique. Consequently, the autoencoder learns 
how a regular signal looks like and upon this, changes can be detected. 
After a training phase, it is ready to use. It will always be attentive and 
never become tired and is highly recommended. 

4. Conclusion 

Monitoring of milk processing using a process analyser helps the 
companies to ensure the quality and safety of products before filling and 
packaging. Otherwise, samples have to be taken from the packages and 
analyzed. Establishing a novel procedure, which can detect deviations 
from standard processing (normal data) in a by-pass, helps to minimize 
the risks of recalls of products with quality defects. In this contribution, 
we used the contact-free measurement via Raman spectrometer in a by- 
pass combined with data analysis of the spectra to identify deviations of 
modified milk from reference milk. The principal component analysis 
and regression of the spectral data did not show a promising prediction 
as the related R2 was 0.7. Gaussian process regression with R2 of 0.97 
was capable to predict the changes almost perfectly. In addition, results 
represented the proper functionality of the autoencoder for detecting 
deviations from standard milk production. Both of these innovative 
procedures displayed promising results including the detection of 5% 
water and cleaning solution, the difference of 0.1% in fat content, and 
variation of 5 ◦C in the measurement temperature. In summary, to 
compare the results of these two techniques, Gaussian process regression 
can detect more modified signals. However, the autoencoder can be 
trained with just standard milk samples, no preparation of modified 
samples are necessary, and immediately the supervision of the process 
can be started. Therefore, an autoencoder is suggested for such 
applications. 
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Table 1 
Results of prediction set acquired by the autoencoder and Gaussian process 
regression model. Limit of detection for GPR is 0.6 and for autoencoder is equal 
to 4.1E-04.  

Samples Average of 
autoencoder 
errors (unit) 

Standard 
deviation of 
autoencoder 
errors (unit) 

Average of 
predicted 
values using 
GPR (unit) 

Standard 
deviation of 
predicted 
values using 
GPR (unit) 

5% water 5.3E-04 1.8E-04 0.7 0.06 
10% water 8.0E-04 2.0E-04 0.9 0.10 
1.6% fat 5.5E-04 7.8E-04 0.8 0.06 
1.7% fat 1.7E-03 4.5E-03 0.8 0.05 
1.8% fat 3.2E-03 7.7E-03 1.1 0.12 
5% 

cleaning 
solution 

9.0E-04 1.3E-03 1.0 0.05 

10% 
cleaning 
solution 

3.0E-03 5.8E-03 1.0 0.10 

15 ◦C 4.2E-04 7.9E-05 0.7 0.07 
20 ◦C 1.0E-03 2.8E-03 1.1 0.15 
Reference 3.39E-04 3.06E-05 0.02 0.12       
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Abstract
Detecting the types of anomalies that can occur throughout the milk processing
process is an important task since it can assist providers in maintaining control
over the process. The Raman spectrometer was used in conjunction with several
classification approaches—linear discriminant analysis, decision tree, support
vector machine, and k nearest neighbor—to establish a viable method for detect-
ing different types of anomalies thatmay occur during the process—temperature
and fat variation and added water or cleaning solution. Milk with 5% fat mea-
sured at 10◦Cwas used as the referencemilk for this study. Addedwater, cleaning
solution, milk with various fat contents and different temperatures were used to
detect abnormal conditions. While decision trees and linear discriminant anal-
ysis were unable to accurately categorize the various type of anomalies, the k
nearest neighbor and support vector machine provided promising results. The
accuracy of the support vector machine test set and the k nearest neighbor test
set were 81.4% and 84.8%, respectively. As a result, it is reasonable to conclude
that both algorithms are capable of appropriately classifying the various groups
of samples. It can assist milk industries in determining what is wrong during
milk processing.

KEYWORDS
anomaly detection, classification methods, milk processing, Raman spectroscopy

1 INTRODUCTION

Milk and dairy products are well-known for their benefits
to human health. Milk is one of the main components
of the human diet and a universal source of nutrients for
protein, lactose, vitamins, minerals, and fats [1]. To mini-
mize the production problems, large resource investments
are required [2]. Using fast spectroscopy to detect product

ABBREVIATIONS: kNN, k nearest neighbor; SVM, support vector
machine; UHT, ultra-high temperature processing milk

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2021 The Authors. Engineering in Life Sciences published by Wiley-VCH GmbH

defects online is beneficial to dairy producers as it can
readjust product characteristics or redirect product flow
during the production process. During the processing
of milk, some abnormal changes—fat and temperature
variation, addedwater and cleaning solution—can happen
which threaten the quality and safety of final products. As
the fat content of milk is usually set and they are classified
by their amount of fat, fat concentration should be consis-
tent and correct during production. Also, the pilot plant
is cleansed with cleaning solution and water after produc-
tion and if some part of the chemical stuff remains in the
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production line, it creates numerous safety and quality
concerns.Moreover, the temperature is themost important
option which has to be controlled, as milk is a heat-treated
product. As a result, controlling these changes is a benefi-
cial task [2, 3, 4]. Therefore, controlling the process online
is a vital sector that helps a company avoid suffering. In
this case, not only detecting the abnormal changes would
be an advantage but also it is very important to understand
what exactly happened in the processing steps. Therefore,
a predictive tool based on online measurement data is
needed to monitor every stage of production [3].
Raman spectroscopy has great potential in such appli-

cations due to its quick and easy measurement. It has
great potential in food quantification and has been applied
to food science, especially for dairy technology. A fast-
screening approach for detecting melamine in milk pow-
der with laser Raman spectrometry was developed by
Cheng et al. [5] which a detection limit of 0.13% and a good
partial least squares (PLS) analysis model were obtained.
McGoverin et al. [6] represented the efficiency of Raman
spectroscopy at quantifying the protein and fatwithin skim
and whole milk powders. Also, it was effective in the iden-
tification of additives such as calcium carbonate. Taking
barista foam as an example, the applicability of Raman
spectroscopy as a product application parameter index was
studied. In order to evaluate the applicability of a purely
online system, principal component analysis was used to
evaluate the advantages of Raman spectroscopy [07].
Machine learning includes the use of mathematics,

statistics, and calculationmethods, with the goal of finding
effective and accurate classification algorithms. Machine
learning algorithms for classification have been success-
fully used in many different applications, such as food
science. The classification problem learning step usually
starts with a set of labeled examples containing a train-
ing set and a test set. Ciosek et al. [8] classified milk with
the use of support vector machine networks. The numeri-
cal results of the recognition of milk made differently and
with variable fat content have proven to be quite good.
A research was done to investigate the use of the least-
squares support vector machine (LS-SVM) as an alterna-
tive multivariate calibration method for the simultaneous
quantification of some common adulterants (starch, whey
or sucrose) found in powdered milk samples, using near-
infrared spectroscopy with direct measurements by dif-
fuse reflectance and showed promising results [9]. For the
automated microbiological quality evaluation of pasteur-
ized vanilla cream, the performance of Fourier transform
infrared (FTIR) spectroscopy with support vector machine
analysis, was evaluated by Lianou et al. [10]. In the other
study, Raman spectral data of milk samples of different
species were used for multi-class classification using a

PRACTICAL APPLICATION

Detection of anomalies during the processing of
food would be helpful; however, it is even more
important to determine the type of anomalies that
happened during the process. It can help com-
panies not only to understand the existence of
anomalies in the process but also help them to find
the type of it. As a result, classification can assist
industries to detect the type of anomalies that hap-
pened during milk processing as fast as possible
and avoid being suffered.

dimensionality reduction technique in combination with
a random forest (RF) classifier. With an average accu-
racy of about 93.7%, precision of 94%, specificity of 97%,
and sensitivity of 93%, the suggested technique indicated
a considerable potential for a distinction between milk
samples of different species [11]. De Lima et al. [12] pre-
sented a rapid method for discrimination between lactose
and lactose-free UHT milks using NIRS combined with
multivariate classification methods. Among the classifica-
tionmodels developed, LDA (linear discriminant analysis)
models were more parsimonious due to the use of fewer
variables. Although, k nearest neighbor (kNN) classifica-
tion model was developed to classify control from adulter-
ated milk samples and adulterated milk samples based on
the level of adulteration. The results illustrated quite satis-
factory predictability, with sensitivity and specificity rang-
ing from 0.66 to 1 [13]. A decision tree (DT) model was uti-
lized to detect post-calving diseases based on rumination,
activity, milk yield, BW and voluntary visits to the milk-
ing robot. The overall accuracy of the model was 78%, with
a specificity of 87% and a sensitivity of 69%, suggesting its
practical value [14]. UsingRaman spectroscopyVasafi et al.
[15] could demonstrate that Gaussian process regression as
well as autoencoder were able to distinguish between ref-
erence milk and manipulated milk, but could not identify
which manipulation took place.
The main goal of this research was to develop a suitable

technique based on data obtained by Raman spectrom-
eter, not only for detecting various changes that can
happen during the processing of milk—changes in fat,
temperature, added water or contamination of cleaning
solution—but also to label which change happened. In
this contribution, various classification methods—linear
discriminant analysis, decision tree, support vector
machine, k nearest neighbor—were tested to find the best
method of detection.
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TABLE 1 Preparation of the abnormal samples

Sample Preparation method
1.6% fat Mixing 5 mL of 3.5% fat milk and 95 mL of 1.5% fat

milk
1.7% fat Mixing 10 mL of 3.5% fat milk and 90 mL of 1.5%

fat milk
1.8% fat Mixing 15 mL of 3.5% fat milk and 85 mL of 1.5%

fat milk
5% cleaning
solution

Adding 5 mL of common cleaning solution to
95 mL of reference milk

5% water Adding 5 mL of water to 95 mL of reference milk
10% cleaning
solution

Adding 10 mL of common cleaning solution to
90 mL of reference milk

10% water Adding 10 mL of water to 90 mL of reference milk
15◦C Reference samples were measured after heating

up to 15◦C
20◦C Reference samples were measured after heating

up to 20◦C

2 MATERIALS ANDMETHODS

2.1 Sample preparation

In this contribution, ultra-high temperature processing
milk (UHT) with two different fat content of 1.5% and 3.5%
were utilized from the brand of “Weihenstephan”, Ger-
many. Samples were kept at the temperature of 5◦C before
opening the packages. The 1.5% fat milk was utilized as a
reference sample. A sample with a concentration of 1.6%
fat was prepared by mixing 5 mL of 3.5% fat milk and
95 mL of 1.5% fat milk. In addition, kinds of milk with 1.7%
and 1.8% fat content were created by the same procedure.
One milliliter of a cleaning solution named “Anti-Germ
clean A-N 30″ was diluted with 99 of mL water in order to
prepare a common cleaning solution. Therefore, different
concentrations of water and cleaning solution (0.05 and
0.1 L/L) were added to 1.5% fat milk. All the samples were
measured at 10◦C. Finally, 1.5% fat milk was measured
after heating up to 15◦C and 20◦C. The purpose behind this
work was to find a proper procedure that can clarify what
kind of changes happened during the milk processing.
Table 1 presents how various modified samples were
created.

2.2 Raman spectroscopy

In this study, an Inno-Spec Raman 785 spectrometer (Inno-
Spec GmbH, Germany) with a laser excitation wavelength
of 785 nm was used to measure the samples. All Raman
spectra included scanningwith a resolution of 1 cm–1 in the

spectral range of 65-3290 cm–1. The integration time (IT)
used was 20 s. A high-quality quartz flow cell with a chan-
nel length of 1 mmwas used for the measurement. To keep
the measurement temperature stable at 10◦C, the quartz
flow cell was connected to the milk source in a cold-water
bath. The flow cell had a capacity of less than 1 mL and
was placed 12 mm away from the laser. For each sample,
70% of data were used as the training set while 30% were
employed for the test set. One hundred fifty spectra were
used for the reference sample and for each modified sam-
ple on average 20 spectra were used.

2.3 Pre-processing

Preprocessing has been deemed essential for subsequent
data mining tasks and has been determined to be an indis-
pensable part of spectral data analysis. In fact, it has been
shown that classification and quantitative models devel-
oped based on pre-processed data generally perform bet-
ter thanmodels based on rawdata. Pre-processing includes
outlier rejection, normalization, filtering, detrending, con-
version, folding, and feature selection. The purposes
behind spectral preprocessing are better spectral inter-
pretability, greater robustness, and higher precision of
post-classification or quantitative analysis [16]. Therefore,
to improve the results, the following preprocessing steps
were completed and tested: baseline correction, normal-
ization, multiplicative scatter correction and derivative.
Finally, before calculating the standard normal variable
(SNV), a Savitzky Golay filter with a second-order poly-
nomial and a window size of 15 was used to smooth the
spectrum. SNV belongs to a group of scatter correction
preprocessing methods and can reduce physical variability
between samples [17].

2.4 Classification algorithms

2.4.1 Overview

Given an unlabeled sample, the classification problem
involves determining which class it belongs to, based on a
training data set with known class variables. For showing
the results of classification a confusion matrix was used.
A confusion matrix is an n×n table that summarizes how
successful a classification model’s predictions were; that
is, the correlation between the class and themodel’s classi-
fication. One axis of a confusionmatrix is the class that the
model predicted, and the other axis is the actual class. n
represents the number of different classes. Four concepts
were introduced called true positives, true negatives, false
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positives, and false negatives. A true positive is an outcome
where the model correctly predicts the reference samples
class. Similarly, a true negative is an outcome where the
model correctly predicts the modified samples class. In
addition, a false positive is an outcome where the model
incorrectly predicts the reference class and a false negative
is an outcome where the model incorrectly predicts
the modified class. In order to evaluate the classification
model, its accuracy was calculated. Classification accuracy
is the ratio of correct predictions to total predictions made.
In the case of unbalanced data sets, the precision of the
classification alone is not the best indicator to evaluate
the classifier. Various other performance indicators can
be used to gain a more complete understanding of the
function of the classifier. The confusion matrix contains
enough information to calculate various performance
indicators—precision, specificity, and recall. Recall or
sensitivity is the metric that measures the accuracy on
the positive instances, it can be calculated as true posi-
tive/(true positive + false negative). Specificity measures
the accuracy on the negative instances and can be defined
as true negative/(true negative + false positive). Precision
is another metric which is the ratio of true positives to the
total of the true positives and false positives [18].

2.4.2 Linear discriminant analysis

LDA was first proposed by Fisher in [19]; today, it is still
a complete statistical-based pattern classification method.
Discriminant function analysis is a dimensionality reduc-
tion technique commonly used for supervised classifica-
tion problems. It is used to model differences in groups,
such as separating two or more classes. It can be used to
project features in space from high-dimensional to low-
dimensional ones. Therefore, it focuses on the separa-
tion ability among the classes. In this technique, a new
axis is created based on maximizing the distance between
the means of each category and minimizing the variation
within each category [20]. For the training set, each class
was named by a number and the test set was predicted
by using the function of predict in MATLAB with the full
covariance function.

2.4.3 Decision tree

By its simplest description, decision tree analysis is a divide
and conquer approach for classification. Decision trees can
be used to discover features and extract patterns in large
databases that are important for discrimination and pre-
dictive modelling [21]. A decision tree consists of nodes

at which a variable is tested. A variable can be a nomi-
nal or numerical value and in the latter case, the test usu-
ally determines whether the variable’s value is greater or
less than a predetermined constant, resulting in a two-way
split. A variable is selected to split the data set at the first
node (root node). For each possible test outcome at the
node, a branch is made ending in a daughter node. The
process can be repeated recursively for each branch, using
only those records that actually reach the branch. If at any
time all records at a node have the same classification, that
part of the tree stops developing [18]. The same procedure
as for other techniques was done and the accuracy of the
model was calculated.

2.4.4 Support vector machine

Support vector machine (SVM) is a supervised learning
algorithm that is well suited for determining patterns in
complex data sets. It performs the classification by finding
a hyperplane that maximizes the margin between classes.
The vector determines the hyperplane is considered the
support vector. The algorithm performs the classification
and learns from the examples to predict the classification
of never-before-seen data [22]. To do so, two inputs are
needed: training data set and test data set. The class label
file clarifies each training example, in this case, each set of
samples is represented by a specific number. The goal of
model selection is to adjust the hyperparameters (penalty
parameters and any kernel parameters) of the SVM classi-
fication to achieve the lowest test error, such as the lowest
probability of misclassification from unseen test examples
[23]. As predictor variables the intensity values depend-
ing on the wavelength were utilized, as the response val-
ues, each group of samples were put equal to a specific
number. The cubic function was implemented as the ker-
nel function. The classification learner was used for the
model calculation, for prediction the function predict was
applied. Binary classification is employed for classification
tasks with two classes while multi-class classification is
implemented for classification tasks with more than two
classes. Heuristic methods can be used to split a multi-
class classification problem into multiple binary classifica-
tion datasets and train a binary classification model each.
One-vs-All is a heuristic method for using binary classifi-
cation algorithms formulti-class classificationwhereas the
One-vs-One strategy splits a multi-class classification into
one binary classification problem per each pair of classes.
It involves splitting the multi-class dataset into multiple
binary classification problems. In this case, all the strate-
gies were tested to find the best algorithms and finally,
One-vs-All was utilized.
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F IGURE 1 Confusion matrix of classification of various samples from training set by means of linear discriminant analysis. 1: Reference
sample, 2: 10% water, 3: 5% water, 4: 1.6% fat, 5: 1.7% fat, 6: 1.8% fat, 7: 5% cleaning solution, 8: 10% cleaning solution, 9: 15◦C, 10: 20◦C
(misclassifications are shown in yellow)

2.4.5 K nearest neighbor

The k nearest neighbor is one of the simplest machine
learning algorithms, based on the fact that objects close to
each other will show similar characteristics. Therefore, if
the characteristics of a sample are obvious, it is easy to pre-
dict the characteristics of its neighbors. k is a positive small
integer which indicates how many neighbors are consid-
ered. The k nearest neighbors are selected based on dis-
tancemetric andhere, the Euclideanwas employed [23]. In
this contribution, for the training set, each classwas named
by a number and k was equal to 3. In MATLAB, the clas-
sification learner was used for the model calculation, for
prediction the function predict was applied.

3 RESULTS AND DISCUSSION

3.1 Linear discriminant analysis

Linear discriminant analysis shows an accuracy of 89.8%
for the training set and 67.8% for the test set. Figure 1 rep-
resents the result of using linear discriminant analysis for
classification in a confusion matrix.
As can be seen in Figure 1, 98% of the reference samples

are classified correctly in group one. However, 2% of the

mentioned samples are classified in the group of samples
which were measured at 15◦C (false negative). In contrast,
3% of the samples with 1.6% fat and 36% of samples mea-
sured at 15◦C are wrongly categorized as reference samples
(false positive). The highest wrong classification is related
to sample number 7 which is named 5% cleaning solu-
tion in which 40% of spectra are classified as the samples
with 10% cleaning solution. Although, while 45% of sam-
ples with 1.7% fat are correctly classified, 27% of this sam-
ple classified as 1.6% fat and 28% as 1.8% fat. By a closer
look at Figure 1, just 62% of the sample with 10% cleaning
solution classified correctly. Thementioned sample is clas-
sified into wrong groups, 23% in the group of 5% cleaning
solution and 15% in the group of 10% water. As the training
model did not work well, the test set is not discussed here.

3.2 Decision tree

The decision tree shows the accuracy of 83.9% for the train-
ing set and 61% for the test set. The confusion matrix
obtained by using the decision tree and the training set for
classification is presented in Figure 2.
According to Figure 2, there are a lot of misclassifica-

tionswhere each sample is classified into several irrelevant
groups. Reference samples are classified as 10% water, 1.6

47



6 VASAFI and HITZMANN

F IGURE 2 Confusion matrix of classification of various samples from training set by means of decision tree. 1: Reference sample, 2: 10%
water, 3: 5% water, 4: 1.6% fat, 5: 1.7% fat, 6: 1.8% fat, 7: 5% cleaning solution, 8: 10% cleaning solution, 9: 15◦C, 10: 20◦C (misclassifications are
shown in yellow)

and 1.7% fat and samples measured at 15◦C and 20◦C. The
best classification is referred to sample with 5% water, of
which 94% are classified truly and 6% are categorized as
10% water. The worst classified sample is referred to the
sample with 5% cleaning solution, while just 20% of spec-
tra are classified correctly. Forty percent ofmentioned sam-
ples are in the group of 10% cleaning solution, 30% in the
group of 10% water, and 10% in the group of samples mea-
sured at 20◦C.

3.3 Support vector machine

Figure 3 demonstrates the result of using a support vector
machine to classify the training set in the confusionmatrix.
The accuracy of the model is 96% for the training set

and 81.4% for the test set. According to Figure 3, all the
reference samples are classified correctly in group number
one. While all the samples with 5% water are classified
correctly, 2% of samples with 10%water are classified as 5%
water. Three percent of the sample with 1.6% fat and 9% of
samples with 1.7% fat are classified wrongly as reference
sample.
As shown in Table 2, while most of the sample repre-

sents the high value for recall, the sample with 10% water
shows a value of just 11%. By accurate investigation, it was
found that this sample is mainly classified as 5% water and
minimally as 10% cleaning solution. The value of recall for

TABLE 2 Calculated recall, specificity, and precision of the test
set for each sample using support vector machine

Sample
Recall
(sensitivity) Specificity Precision

Reference sample 100% 98% 93%
10% water 11% 98% 50%
5% water 100% 94% 67%
1.6% fat 80% 96% 67%
1.7% fat 100% 100% 100%
1.8% fat 80% 100% 100%
10% cleaning
solution

67% 100% 100%

5% cleaning
solution

75% 100% 100%

15◦C 100% 100% 100%
20◦C 100% 93% 55%

the sample with 10% cleaning solution is 67% when some
of the samples are classified as 10% water. The calculated
specificities of samples are quite high, while the lowest one
is equal to 93% for milks measured at 20◦C. The computed
precision values for samples with various fat content are
100% implies the ability of this method for correct catego-
rizing of fat content. The lowest precision values are 50%
and 55% for the samples with 10% water and measured at
20◦C, respectively.
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F IGURE 3 Confusion matrix of classification of various samples from training set by means of support vector machine. 1: Reference
sample, 2: 10% water, 3: 5% water, 4: 1.6% fat, 5: 1.7% fat, 6: 1.8% fat, 7: 5% cleaning solution, 8: 10% cleaning solution, 9: 15◦C, 10: 20◦C
(misclassifications are shown in yellow)

3.4 K nearest neighbor

The result of classification of the training set by using k
nearest neighbor in the confusion matrix is presented in
Figure 4.
The accuracy of the model is 96.4% for the training

set and 84.8% for the test set. According to Figure 4, all
the reference samples are classified correctly; however,
3% of 1.6% fat and 9% of 1.7% fat are categorized as the
reference samples (the same as support vector machine).
In comparison with other samples, 5% cleaning solution
is not classified as good as others. Ten percent of the
mentioned sample is classified wrongly as 1.7% fat and
10% as the samples with 10% cleaning solution. Six percent
of the sample with 1.8% fat is categorized wrongly as 1.7%
fat and also 6% as 1.6% fat. Samples measured at 20◦C are
classified quite good; however, 4% and 5% of the spectra
are classified as 10% water or 15◦C, respectively. Low
numbers of spectra related to 10% cleaning solution are
classified as 10% water and 1.6% fat wrongly.
As can be seen in Table 3, recall values for the refer-

ence sample, 5% water and cleaning solution, 1.7% fat, and
20◦C are equal to 100%. Although, the lowest value is con-
tributed to the 10% water which is mostly classified as the
5% water wrongly. The recall value for 10% cleaning solu-

TABLE 3 Calculated recall, specificity, and precision of test set
for each sample using k nearest neighbor

Sample
Recall
(sensitivity) Specificity Precision

Reference sample 100% 98% 93%
10% water 56% 94% 62%
5% water 100% 92% 60%
1.6% fat 80% 100% 100%
1.7% fat 100% 100% 100%
1.8% fat 75% 100% 100%
10% cleaning
solution

67% 100% 100%

5% cleaning
solution

100% 100% 100%

15◦C 80% 100% 100%
20◦C 100% 98% 83%

tion is 67%, where this sample is mostly categorized as 10%
water. In addition, the mentioned value for samples with
1.8% fat content is equal to 75%. The calculated specificity
of samples is quite high, while the lowest value is 92% con-
tributed to 5%water in themilk.Despite a hundred per cent
precision for most of the samples, samples with 5 and 10%
water show the precision of 62% and 60%, respectively. The
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F IGURE 4 Confusion matrix of classification of various samples from training set by means of k nearest neighbor. 1: Reference sample,
2: 10% water, 3: 5% water, 4: 1.6% fat, 5: 1.7% fat, 6: 1.8% fat, 7: 5% cleaning solution, 8: 10% cleaning solution, 9: 15◦C, 10: 20◦C
(misclassifications are shown in yellow)

precision value for samples measured at 20◦C is 83% and
for the reference sample is equal to 93%.

4 CONCLUDING REMARKS

The use of a process analyzer to monitor milk process-
ing helps suppliers to maintain product quality and safety
before filling and packing. In this research, Raman spec-
troscopy was used for developing an innovative approach
that can detect anomalies from reference processing in a
by-pass to reduce the probability of quality-defect recalls.
To determine the best machine learning methodology for
classifying various anomalies, a variety of classification
methods—linear discriminant analysis, decision tree, sup-
port vector machine, and k nearest neighbors—were used.
The results demonstrate that decision tree and linear dis-
criminant analysis models, with the accuracy of 61% and
67.8% for the test set, respectively, are unable to correctly
predict the classes. Also, by taking a look at the confusion
matrix of the training set, it is clear that these twomethods
classify the reference samples as themodified samples and
vice versa. Consequently, continuing with them was not
fruitful in this application. In contrast, the support vector
machine and k nearest neighbor, perform well in the cat-
egorization of diverse groups, with the accuracy of 81.4%
and 84.8% for the test set, respectively. In this case, the
most important thing is that anomalies can be separated

from the reference signals. Classifying the various anoma-
lies would be good but not essential. Therefore, it would be
necessary to distinguish samples with abnormal changes
from the reference sample which support vector machine
and k nearest neighbor did. Both procedures show high
values of recall, specificity, and accuracy for the reference
sample (100%, 98%, and 93%, respectively), indicating that
these methods are capable of classification. In addition,
these values are quite high for the modified samples imply
the fact that most of the abnormal signals are classified
correctly by these methods. Therefore, these two methods
might work as well for the classification of other spectro-
scopic applications.
In general, it can be stated that support vector machine

and k nearest neighbor are capable of accurately detecting
and identifying various anomalies during milk processing,
allowing the milk industry to respond quickly to the situa-
tion.
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4. Discussion 

Milk and dairy products are well-known for their health-promoting properties. Milk is a 

worldwide source of protein, lactose, vitamins, minerals, and lipids and is one of the most 

important components of the human diet (Teneva-Angelova, 2018). Large resource 

investments are required to reduce the limiting difficulties arising from food industrial 

intensive productivity (Beda et al., 2016). Dairy producers benefit from using rapid 

spectroscopy to detect product flaws online since it allows them to change product features 

or redirect product flow during the manufacturing process. During the processing of milk, 

some abnormal changes – fat and temperature variation, fouling, added water and cleaning 

solution - can happen which threaten the quality and safety of final products.  Because the fat 

content of milk products is usually fixed during processing, the amount of fat used during 

manufacture must be consistent and accurate. A pilot plant is usually cleaned with water and 

cleaning solution, but its presence in the production line raises various safety and quality 

problems. As milk is a heat-treated product, temperature is the most crucial factor to consider. 

As a result, managing these changes is a worthwhile endeavor (Vasafi et al, 2021). Food quality 

and food safety have been a popular topic in the media as a result of recent so-called food 

crises in Europe. Food quality and food safety are frequently used interchangeably. There are 

significant disparities, particularly when it comes to food company communication and 

customer attitudes. Before, most people simply assumed that all food on the market matched 

these two criteria. This was self-evident, and the consumer didn't need to be informed about 

food safety. Food safety has become a food quality attribute in recent years, which has 

changed the situation. The food and feed industries are being pushed by government officials 

to build comprehensive quality management systems to improve food safety, restructure the 

food inspection system, and improve consumer information in order to recover consumer 

faith in food. Food producers are required to monitor information relating to consumer 

perceptions of whether the organization has met customer needs as one of the measurements 

of the quality management system's performance. Food producers are now interested in 

communicating food safety because it has become a qualitative trait (Röhr et al., 2005). In 

order to ensure a satisfying product, the milk processing business has tight requirements on 

monitoring and control of temperature, composition such as fat concentration, hygiene, taste, 
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and odor (Vasafi et al., 2021). Therefore, developing an online tool monitors the process can 

help companies to avoid suffering from production of milks with quality and safety issues.  

NIR spectroscopy was used earlier to quantify goat milk adulteration caused by the addition 

of cow milk, as well as to determine the fat and protein levels. As a result, the proposed 

methodology appeared to be a helpful, quick, and non-destructive for determining the fat and 

protein content of goat milk, as well as screening the quality of goat milk for adulteration with 

cow milk (Dos Santos Pereira et al., 2020). Balabin et al. (2011) illustrated that near infrared 

spectroscopy is a beneficial tool to detect melamine in dairy products, such as infant formula, 

milk powder, or liquid milk. This method can be considered as a fast, robust, sensitive, and 

low-cost method for dairy industry.  

Within this thesis, anomaly detection during milk processing by using spectroscopy was 

investigated. By using NIR spectroscopy, 470 spectra were taken from different packages of 

UHT-milk with 1.5 % of fat from the brand "Weihenstephan," Germany and used as the 

training set. For the prediction set, different samples were measured. Various samples such 

as milk with 1.5 % fat, both ESL-milk (extended shelf life) and UHT-milk from various suppliers 

were measured to check if they show any detectable differences from each other. Same 

samples used for training set were measured after heating up to 10 °C or 15 °C to determine 

the sensitivity of samples to the temperature. Sample with 1.6 % fat was prepared by mixing 

95 mL of 1.5 % fat milk and 5 mL of 3.5 % fat milk to define if difference of 0.1 % fat content 

can be distinguished. Different concentrations of water or cleaning solution were added to 

the reference milk and measured after cooling down to 5 °C to understand how much water 

and cleaning solution can be detected in the milk. A cold-water bath with temperature of 5 °C 

was implemented to keep the measurement temperature stable. The flow cell was connected 

by plastic tubes to the source of milk in the beaker. Milk was circulated through the flow cell 

during the measurement for two reasons. First, in order to keep the temperature stable and 

and second, to simulate on-line process measurement conditions in a by-pass. The approach 

of using spectroscopy techniques to monitor milk processing seems to be fruitful in order to 

help companies to produce high quality products and also to avoid suffering. The combination 

of using near infrared spectroscopy (NIR) and an autoencoder neural network seems to be a 

useful procedure to detect anomalies. Here the ability of an autoencoder to be used as a self-

learning tool has many advantages, such as no further experimental effort or offline 

measurements. However, various pre-processing methods presented different results. Using 
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first derivative spectra, the trained autoencoder was able to detect 5 % additional water and 

9 % cleaning solution in the milk. It was also able to detect a 0.1 % change in fat contents using 

the combination spectra. Furthermore, both procedures were able to detect changes in milks 

from various suppliers as well as a temperature variation of 10 °C. The results were promising 

demonstrating the ability to use an autoencoder as self-learning procedure. In NIR 

measurements, characteristic absorption bands of milk components can be affected by the 

high absorption by water in combination with the strong light scattering by the fat globules. 

Therefore, an alternative measurement system might help to improve the self-learning 

capability of such a system.  

Raman spectroscopy was applied earlier for fast determination of milk fat content and 

considered as a quick beneficial technique which can reveal contributions from proteins, but 

mainly from their fat content with different spectral characteristics (El-Abassy et at., 2011).  

Raman scattering, like MIR absorption spectroscopy, provides access to the vibrational 

fingerprints of molecules. Raman spectroscopy has recently been used in food analysis due to 

its ability to offer content-relevant information based on well-defined and resolved spectra in 

a variety of sample categories, including liquids, solids, and gases. Raman spectroscopy is 

based on inelastic light scattering, a process in which incident excitation radiation interacts 

with molecules and causes a red shift in the energy of the incident photon equal to the internal 

vibrational energies (El-Abassy et at., 2011). As the disadvantages of NIR for milk analysis with 

high amount of water and fat globules were explained, Raman spectroscopy were utilized in 

order to improve the results of the self-learning system.  

In this case, circulation method was utilized again and spectra were taken from both reference 

and modified samples. For Raman spectroscopy, reference sample with 1.5 % UHT fat was 

measured at 10 °C, as the heat of laser affected the temperature of samples. Samples with 

various changes such as different fat content, various measurement temperature (10 °C and 

15 °C), and added water and cleaning solution were measured by Raman spectroscopy as the 

modified samples. Development of an autoencoder neural network based on Raman spectra 

represented better results which were able to detect 5 % water or cleaning solution in the 

milk. Also, a difference of 0.1 % in fat content and temperature variation of 5 °C were detected 

by this procedure. Moreover, other procedures such as principal component analysis and 

regression, partial least squares regression, and Gaussian process regression were developed 

to check the possibility of change detection and their ability as evaluation methods in a self-
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learning module. Principal components analysis (PCA) classified abnormal signals as normal 

signals and was not able to classify anomalies correctly. Principal component regression (PCR) 

also was not capable to predict abnormal and normal signals accurately while it presented the 

R2 equal to 0.7. In this case, all the normal signals were put equal to zero and modified signals 

were put equal to one. The model was trained with both reference and modified signals and 

results presented that a reliable limit of detection which can separate the normal signals from 

abnormal signals cannot be defined. Meanwhile, Gaussian process regression with R2 equal to 

0.97 predicted normal and abnormal signals perfectly. It was capable to detect 5 % water and 

cleaning solution in milk, 5 °C temperature variation and 0.1 % difference in fat content. 

Gaussian process regression can detect even more abnormal signals than the autoencoder, 

but it should be trained with not only reference signals but also all the possible abnormal 

signals which can be counted as the disadvantage of this method. Therefore the Gaussian 

process regression increase the workload for the implementation of a self-learning system. 

The autoencoder can be trained once and just with normal signals and it can be considered as 

a powerful self-learning system to control milk processing.  

Several studies have been carried out for the implementation of classification techniques such 

as support vector machine to categorize milk samples which showed promising results (Ciosek 

et al., 2006). In the previous parts just, detection of anomalies was investigated. However, 

after anomaly detection during the process, it is very important to understand which 

anomalies or changes happened during the process which can help companies to solve the 

problem easier and faster. For this reason, several classification methods such as support 

vector machine, k nearest neighbour, linear discriminant analysis, and decision tree were 

investigated to get more information out of the spectra. Results illustrated that two 

procedures called linear discriminant analysis and decision tree showed low accuracy 

analysing the train set and consequentially were not able to classify abnormal signals and 

normal ones accurately. On the other hand, support vector machine and k nearest neighbour 

presented the higher accuracy values not only for the training set but also for the test set. The 

test set accuracy of 81.4 % for support vector machine and 84.8 % for the k nearest neighbor 

presented the usefulness of these algorithms for determination of type of anomalies. Both 

were capable to classify reference and abnormal signals properly which is the most important 

criterion to select the best classification method. For a comparison, both support vector 

machine and k nearest neighbour were capable to determine the type of anomalies in the milk 
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processing, however, based on method accuracy, k nearest neighbour showed better results. 

For the reference sample, both approaches showed the high value of recall, specificity, and 

accuracy (100 %, 98 %, and 93 %, respectively), showing that they are capable of 

categorization.  

Overall, the combination of NIR and the autoencoder neural network and utilizing various pre-

processing methods was capable to detect difference of 0.1 % in fat content, 10 °C in 

temperature measurement and milk from various suppliers. In addition, results showed the 

capability of this method to detect 5 % water and 9 % cleaning solution in milk. However, 

Raman spectroscopy presented better results than the NIR spectroscopy as it was not affected 

by high absorption by water and light scattering of fat globules in the milk. The combination 

of Raman spectroscopy and the autoencoder was able to detect difference of 0.1 % in fat 

content, 5 °C in temperature of measurement, and 5 % water and cleaning solution in the milk. 

The combination of Raman spectroscopy and Gaussian process regression presented the same 

results however, it detected more abnormal signals than the autoencoder. As this method 

needed to be trained by both normal and abnormal signals, which will increase the effort to 

be implemented as evaluation procedure in a self-learning module, the autoencoder 

remained the most proper procedure. It can be trained once and just with normal signals and 

it is ready for detection. After detection of anomalies in the process, to get more details about 

the type of anomalies, the classification techniques were really helpful. By using Raman 

spectroscopy, support vector machine classified anomalies appropriately when it showed the 

accuracy of 96 % for training set and 81.4 % for test set. By this method, all the reference 

samples classified correctly in one group. Also using k nearest neighbour, the accuracy of 

model was 96.4 % for training set and 84.8 % for test set. By this method, all the reference 

samples classified correctly as well. It can be stated that support vector machine and k nearest 

neighbor were capable of accurately detecting various anomalies during milk processing. This 

result can help companies to avoid being suffered by producing lots of samples with quality 

and safety issues. It can warn the operator when an issue arises, enable them to react 

immediately. It assists the companies, not only to understand some abnormal changes exist 

in the process, but also help them to know what is the exact problem. In this work, milk was 

used as a case of study, however this procedure is able to detect abnormal changes that can 

happen during the processing of any liquid. In addition even the supervision of powder or any 
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material, which can be transported in front of the spectroscopic sensor, can be carried out by 

such a self-learning system.   
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