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1 General introduction 

1.1 Importance of conventional and herbicide-tolerant oilseed rape 

Oilseed rape (OSR, Brassica napus L.) is an amphidiploid species (AA×CC, n=19) from 

the cross between Brassica campestris L. (AA, n=10) and Brassica oleracea L. (CC, n=9; 

U, 1935). Nowadays, OSR has become the second most important oilseed crop after 

soybean in modern agriculture around the world, producing 67.45 million tonnes of seed 

yield and providing 13.8% of world supply of oilseeds with cultivated area of 31.7 million 

hectares (FAO, 2015). An increasing demand for OSR would expect due to protein 

meals/cakes used in animal feed and vegetable oils/fats for biodiesel and human 

consumption. Besides, OSR is an important part of crop rotations with a high proportion 

of cereals. In the crop rotation, OSR can contribute to crop diversity, covers the soil for 

almost a whole year; after harvest, straw of OSR with a comparatively narrow C/N ratio is 

left on the soil surface, which decomposes fast and provide nitrogen for the following crops. 

Globally, OSR is grown as spring or winter forms with different vernalization requirement. 

In Europe, winter OSR is grown widely due to its high seed yield and the climatic 

conditions.  

The large-scale cultivation of OSR was not realised until 1980s due to high levels of 

glucosinolates and erucic acid of the seeds, which are adverse substances for human health. 

Breeding and development of double-low varieties (00-varieties; low content of 

glucosinolates and erucic acid) made by-products of OSR suitable for both human and 

livestock consumption (Booth & Gunstone, 2004; Thiyam-Holländer et al., 2012).With the 

advance in plant breeding, new varieties are continuously marketed in terms of oil content 

and components, yield increase, insect-tolerance, and herbicide-tolerance being the most 

important trait. Tolerance to herbicides for OSR has been developed first by genetic 

engineering, namely tolerance to the non-selective herbicides glyphosate and to 

glufosinate-ammonium. OSR varieties with these tolerance are widely grown in the United 

States of America, Canada, and Australia, but their cultivation is currently not permitted in 

the European Union due to legal restrictions. Another, non-GM approach for herbicide-

tolerant OSR is tolerance to imidazolinone herbicides such as imazamox (Krato et al., 

2012). They are not restricted by a threshold, and are commercially used in Europe labelled 

as Clearfield® oilseed rape (CL OSR).  

The introduction of CL OSR in Europe has raised concern in weed control in crop rotations 
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with OSR due to volunteer OSR. These volunteers result from large harvest losses and 

high seed dormancy, and their chemical control could become difficult if they are tolerant 

to a group of herbicides.   

1.2 Issues in the production of OSR 

 

1.2.1 Seed dormancy of OSR 

Seed dormancy is a trait that can prevent germination of a viable seed during unfavourable 

seasons or under temporarily favourable conditions (Bewley 1997). The definitions and 

classifications of seed dormancy are different in previous studies. Based on the fact that 

dormancy is controlled by morphology, physiology or environment of the seed, one 

classification including five types of dormancy is summarized here (Baskin and Baskin, 

2004; Finch-Savage and Leubner-Metzger, 2006). They are (1) physiological dormancy 

(PD) resulting from inhibitor chemicals such as abscisic acid (ABA) which can retard 

embryo growth, (2) morphological dormancy (MD) associated with underdeveloped 

embryo, (3) morphophysiological dormancy (MPD) combing both PD and MD, (4) 

physical dormancy (PY) as a result of palisade layers in the fruit or seed coat, and (5) 

combinational dormancy (PY + PD). Most crop species show non-deep PD which can be 

broken by stratification, gibberellic acid (GA) application, or release during after-ripening; 

their seed dormancy is mainly associated with embryo growth and seed coat 

impermeability to water (Arc et al., 2013). 

In OSR, seed dormancy is simply divided into primary dormancy and secondary 

dormancy in literatures (Schlink, 1993; Pekrun et al., 1997) as did in Arabidopsis thaliana 

(Hilhorst, 1995). Primary dormancy is supposed to be related to MD, PD or MPD 

depending on growth stage of seed development, and cannot be induced after harvest. 

Secondary dormancy in OSR is induced particularly after harvest by external 

environmental conditions such as dryness, darkness, or oxygen deficiency (Pekrun et al., 

1997, 1998). Primary dormancy level in mature OSR seeds has previously been shown to 

be low (Momoh et al., 2002; Gruber et al., 2004a; Gulden et al., 2004b) or even nearly 

absent (Schlink 1993). Thus, secondary dormancy turns out to be the main contributor to 

the seed persistence in the soil (Pekrun et al., 1998; Gulden et al., 2003, 2004b), interacting 

with varietal effects. Based on the predisposition to secondary dormancy (potential 

dormancy; seeds with this potential can be induced into secondary dormancy easily) tested 

by Hohenheim Standard Dormancy Test in laboratory (Weber et al. 2010), 44 OSR 
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varieties were classified into high (>40%; dormancy level), medium (20-40%), and low 

(<20%) dormant group in Germany (Gruber et al., 2009). Also, varied dormancy between 

varieties was reported in Chinese, western European, and Canadian OSR (Momoh et al., 

2002; Gulden et al., 2004b). 

In addition to varietal effects, maternal environment (e.g. air humidity and temperature) 

that surrounds mother plants during growth period could influence dynamics of dormancy 

during seed development in many crop species (King, 1993; Romagosa et al., 2001; Chono 

et al., 2006), but evidence in OSR is still limited. There appears to be a link between 

potential secondary dormancy and growing year of OSR (Gruber et al., 2009), which was 

also detected in the studies of Schatzki et al. (2013a) and Gulden et al. (2004b). With seed 

development, primary dormancy in OSR decreases probably as a consequence of decrease 

in seed ABA content, accompanied by an increase of potential secondary dormancy (Haile 

and Shirtliffe, 2014). Yet, the underlying mechanisms in dormancy dynamics especially 

for potential secondary dormancy has not been well understood. After harvest, both 

primary dormancy and potential secondary dormancy decline over time during seed 

storage, associated with storage conditions (Totterdell and Roberts, 1997; Kebreab and 

Murdoch, 1999; Gulden et al., 2004b).  

Once OSR seeds were induced into secondary dormancy and were buried in the soil by 

tillage, some of them can persist in the soil over 10 years (Lutman et al., 2003), probably 

as a consequence of deep dormancy level, slow dormancy release and steady soil 

conditions. Secondary dormancy of OSR can be broken by alternating light and 

temperature in a short period (Weber et al., 2010), whereas the speed of release from 

dormancy especially when seeds are buried in the soil is particularly not understood.  

1.2.2 Harvest loss 

Large seed losses can occur before and during harvest of OSR as a consequence of pod 

shattering. The amount of lost seeds ranges from less than 2000 to more than 10,000 seeds 

m-2 (Lutman et al., 2005), depending on the harvesting methods and conditions shortly 

before and during harvest (Price et al., 1996; Irvine and Lafond, 2010; Zhu et al., 2012) 

and on varieties (Gan et al., 2008; Cavalieri et al., 2014). 

Combine harvesting is widely used for OSR around the world, and windrowing is also used 

in some regions to minimize harvest seed loss like in Canada, or to allow double cropping 
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in one year such as in the south of China. Early windrowing OSR can provide the next crop 

with a longer growing period (Zhu et al., 2012). For these two methods, timing of the 

operation is important. Full seed maturity is required for the direct combine harvesting, but 

it is often accompanied by a large harvest loss (Thomas et al., 1991). Early windrowing 

can reduce seed loss but reduces seed yield and quality (Irvine and Lafond, 2010; Haile et 

al., 2014). Pod sealant (e.g., chemicals which keep the pots closed) could be a solution for 

reducing harvest loss due to the reduced pod shattering for the harvest method of 

windrowing (Nunes et al., 2015), but possible chemical residual have to be taken into 

account.  

Moreover, adverse environmental conditions such as wind, rainfall, or hailstorm before 

harvest can increase seed loss (Price et al., 1996), and cool and moist weather conditions 

during harvest can reduce the number of lost seeds due to a high resistance to pod shattering. 

To date, many breeding approaches have been attempted to improve shatter resistance of 

OSR (e.g., interspecific hybridization or resynthesis using shatter-resistant species), but 

the advance still remains limited (Morgan et al., 2000; Hossain et al., 2011). Yet, even in 

ideal harvest conditions and with suitable harvest methods, the harvest loss in OSR would 

be still huge, reflecting a challenge in controlling harvest losses.  

1.2.3 Tillage and soil seed bank 

Soil tillage is the traditional method for weed control in arable fields. Lost crop seeds and 

weed seeds in the soil or on the soil surface can be vertically and horizontally distributed, 

depending on tillage intensity and tillage types (Colbach et al., 2000; Mohler et al., 2006). 

Reduced tillage tends to increase the soil seed bank (Vanasse and Leroux, 2000; Cardina 

et al., 2002; Sosnoskie et al., 2006; Ruisi et al., 2015). Mouldboard ploughing can bury 

weed seeds from the soil surface into deep soil layers, whereas shallow soil disturbance by 

tine cultivator, harrows or rototiller mainly mixes seeds within upper soil layers (Swanton 

et al., 2000; Gruber et al., 2005; Mohler et al., 2006). Under no-till conditions, medium or 

high seed numbers were also found near the soil surface (0-5 cm) in some weed species 

(Cardina et al., 2002; Sosnoskie et al., 2006; Légère et al., 2011). Irrespective of seed 

distribution by tillage, a general difference between inversion tillage and non-inversion 

tillage on the numbers of weed seeds in the soil is not obvious or at marginal significance 

(Cardina et al., 2002; Plaza et al., 2011; Ruisi et al., 2015). The same situation was also 

found in OSR by Pekrun et al. (2006). However, an obvious difference between tillage 
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modes in soil seed bank of OSR was found, but which only occurred in the first following 

year (Gruber et al., 2007, 2010). The variability and contradiction among studies in impacts 

of tillage modes on soil seed bank size might attribute to different experimental locations. 

Taken together, a soil seed bank from OSR seeds can be established due to a large harvest 

loss and high seed dormancy (particularly secondary dormancy) after harvest of OSR. For 

the tillage effects, timing of tillage seems more responsible for the build-up of a soil seed 

bank compared to the mode of tillage. Early incorporation of OSR seeds even by shallow 

stubble tillage after harvest of OSR can lead to a large soil seed bank (Gruber et al., 2005; 

Pekrun et al., 2006), probably as a result of fast induction of secondary dormancy by 

drought, darkness, or oxygen deficiency when seeds are buried in the soil (Pekrun et al., 

1997, 1998). Some OSR varieties display relatively high primary dormancy (ca. 15%) in 

freshly harvested seeds (Gruber et al., 2004a; Haile and Shirtliffe, 2014), which can also 

increase seed bank size if they are buried immediately after harvest. On the other hand, 

predisposition to secondary dormancy (potential secondary dormancy tested in the 

laboratory; Weber et al., 2010) of OSR declines over time during storage, which is 

associated with storage conditions such as alternating environmental conditions (Gulden 

et al., 2004b). Similar to this, seeds on the soil surface in a field are exposed to variable 

environmental conditions, and probably have a faster decline in potential secondary 

dormancy, and a reduced chance to acquire secondary dormancy as well. A small soil seed 

bank of OSR was also found in no-till treatment in the subsequent crops after OSR (Gruber 

et al., 2004a), depending on environmental conditions post-harvest (Gruber et al., 2004b). 

Environmental conditions preventing OSR seeds from falling dormancy seem more 

important for obtaining a small soil seed bank than conditions which trigger germination 

when seeds drop on the soil surface (Pekrun et al., 2005, 2006). However, results in 

dormancy dynamics of OSR and their interaction with environmental conditions during 

the period between harvest and the first subsequent tillage are still particularly limited. 

The soil seed bank of OSR can persist for several years due to secondary dormancy, but 

seed bank size declines rapidly during the first few months after OSR, and then slows down 

in subsequent seasons (Lutman et al., 2003, 2005; Gruber et al., 2004a; Soltani et al., 2013). 

This decline in seed numbers depends on variety and location. Gulden et al. (2003) reported 

that in Canada high dormancy spring OSR varieties resulted in about 6- to 12-fold greater 

seed persistence than low dormancy varieties. Gruber et al. (2010) found that 60% of 



6 

General introduction 

 
 

initially buried seeds of a high dormancy winter OSR variety (91% potential secondary 

dormancy from laboratory analyses) were still viable after 4.5 years burial in the soil, while 

only 8% of a low dormancy variety (9% dormancy) were survival. The evidence on the 

effects of location on seed persistence is scarce, but seed persistence in dry soil condition 

seems to be longer than in moist conditions (Pekrun et al., 2006). Moreover, the mode of 

tillage can influence seed persistence (Gruber et al., 2010) likely due to its effects on burial 

depth, water supply, gaseous, light and temperature conditions. 

1.2.4 Volunteer OSR 

OSR volunteers can occur in the subsequent crops even more than 10 years after harvest 

due to long-term seed persistence (Lutman et al., 2003; Messéan et al., 2007; Belter, 2016). 

These volunteers can cause problems in weed control in directly following crops such as 

cereals, or in another cultivated OSR some years later in the crop rotation. Weed control 

will become more difficult if the volunteers are herbicide tolerant. Moreover, unwanted 

gene pollination or seed admixture would spoil seed quality and oil quality of grown OSR 

if varieties with different traits such as Holli-OSR was previously grown in the same fields 

or in the neighbouring fields. Some large scale farm studies in France showed that seed 

admixture of oilseed rape > 0.9% can occur in OSR as following crops to other OSR crops 

even 3-8 year later (Messéan et al., 2007).   

The emergence of OSR volunteers varies considerably between varieties in time. 

Volunteers from varieties with high disposition to dormancy are supposed to persist for a 

longer period (Gulden et al., 2003; Pekrun et al., 2005; Gruber and Claupein, 2007). Seed 

bank size is a crucial factor to determine the amounts of volunteers, but not the only one. 

For instance, much more volunteers were recorded of a high dormancy variety in the first 

crop after OSR due to the larger soil seed bank, compared to a low dormancy variety 

(Gruber et al., 2004c; Weber et al., 2014). In addition, seed burial by tillage is another 

important influencing factor. Non-inversion tillage (i.e. chisel ploughing or rototiller) 

results in greater volunteers than inversion tillage (i.e., mouldboard ploughing) due to 

shallow seed burial in the soil (Gruber et al., 2004b, 2005); in no-till conditions, much 

more volunteers can be found if no effective weed control was performed. Also, soil texture 

likely affects occurrence of volunteers probably related to growth resistance by soil clods 

(Dürr et al., 2001; Sester et al., 2007) and to moisture and oxygen provided by different 

soils (Gruber et al., 2014). 
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Several approaches to the control of OSR volunteers have been proposed such as selecting 

or breeding for low dormancy variety, crop management (including crop rotation and 

tillage systems) and herbicide application. However, the available information in these 

aspects and the relevant mechanisms are still limiting especially from long-term 

experiments.  

1.3 Imidazolinone-tolerant oilseed rape (Clearfield® oilseed rape; CL OSR) 

Imidazolinone herbicides were discovered in the 1970s at the American Cyanamid 

Company (Shaner and O'Connor, 1991). To date, six imidazolinone herbicides (imazapyr, 

imazapic, imazethapyr, imazamox, imazamethabenz and imazaquin) have been registered 

(Ramezani, 2007). These herbicides target the enzyme acetohydroxyacid synthase (ALS), 

which is the first common enzyme for the biosynthesis of branched chain amino acids in 

plants (Ray, 1984). A broad spectrum of weeds (both monocotyledonous and 

dicotyledonous) can be controlled by ALS-inhibiting herbicides at low application rates 

pre- or post-emergence of crop. This option could provide benefits for the cropping 

systems.  

CL OSR was first developed in the late 1980s in Canada using microspores and haploid 

protoplasts (Swanson et al., 1988, 1989). By spraying imidazolinone herbicides (i.e. 

imazethapyr), five double-haploids were selected in the greenhouse, and two mutants 

(point mutations PM1 and PM2) showed super tolerance to imazethapyr. The genes PM1 

and PM2 are unlinked and additive, and they are estimated to link to the ALS1 and ALS3 

loci of OSR, respectively (Rutledge et al., 1991). Regarding herbicide tolerance, PM1 

confers tolerance to imidazolinones only, but PM2 is tolerant to both imidazolinones and 

sulfonylureas (Shaner et al., 1996) so the tolerance level resulting from PM2 is much higher 

than that from PM1 (Hattori et al., 1995). The highest tolerance level to imidazolinone 

herbicides can be achieved when both PM1 and PM2 are homozygous (Tan et al., 2005), 

which has already been realized in commercial CL OSR varieties. 

Due to possible benefits for weed control by the Clearfield® production system, the 

combination of CL varieties and imidazolinone herbicides, CL crops such as maize (Zea 

mays L.), oilseed rape (B. napus), rice (Oryza sativa), wheat (Triticum aestivum), 

sunflower (Helianthus annuus) and lentil (Lens culinaris) have already been commercially 

used (Tan et al., 2005; Pfenning et al., 2008). CL OSR has already been widely grown in 
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the United States and Canada (Beckie et al., 2004; Brimner et al., 2005). In EU, some of 

CL OSR varieties have already been introduced in Eastern part of Europe and will 

comprehensively continue in other regions. Despite all these, the seed dormancy and 

potential volunteer problems resulting from CL OSR have not been deeply detected yet. 

The debate about CL OSR is rising in Europe and Germany due to CL OSR volunteers in 

other crops, which might not be controlled easily by many herbicides using sulfonylureas 

and other active ingredients to which a cross-tolerance exists (Krato et al., 2012). On the 

other hand, CL OSR volunteers in grown OSR, which cannot be killed by spraying 

herbicides, could outcross, admix, and multiply in the long run. 

1.4 Outline and objectives  

The overall objective of this thesis was to propose suitable strategies to reduce CL OSR 

volunteers in the subsequent crops in terms of variety choice based on seed dormancy and 

crop management. This resulted in the following hypotheses:  

1. (i) There is primary (innate) and secondary (induced) dormancy in oilseed rape; 

(ii)Primary dormancy decreases during seed development, the potential secondary 

dormancy increases; (iii) At maturity, the level of the remaining primary dormancy and 

the varietal potential to secondary dormancy probably correlate. 

2. (i) There is variation in potential seed dormancy of CL OSR. (ii) F1 (seeded) and F2 

(harvested) generations of hybrid CL-OSR show similar dormancy levels although 

changes through environmental effects are known; (iii) the environment (location) 

during seed development and maturation has an effect on the potential dormancy. 

3. (i) The soil seed bank size of OSR is determined by post-harvest tillage (particularly 

tillage time) and seed dormancy traits of the cultivated variety. (ii) The emergence of 

volunteers from the seed bank also depends on the mode of tillage. (iii) Gene 

segregation in herbicide-tolerance might occur between CL volunteers.  

For the investigation of these hypotheses, seed dormancy in F1 and F2 generations of 15 

CL OSR accessions was investigated in the laboratory. Several field experiments were 

conducted at different locations in south-west Germany during 2012-2016. The 

experimental results were shown in Chapter I- III that were published or peer-reviewed 

manuscripts.  
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Chapter I deals with the development of primary dormancy and potential secondary 

dormancy in OSR and their interaction during seed development. Chapter II focuses on 

potential secondary dormancy level in mature seeds of CL OSR, its inheritance from F1 to 

F2 generations, and its interaction with maternal environment. Chapter III examines the 

effects of variety, tillage (tillage mode and operation time), and their interaction on soil 

seed bank and volunteers in the subsequent crops after OSR. 
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2 Publications 

The present thesis consists of three scientific articles as reflected by chapter I-III, which 

form the body of the dissertation. These articles have been published. For citation of the 

three articles, please use the references given below. 

Chapter I 

Huang, S., Gruber, S., Stockmann, F., Claupein, W. (2016): Dynamics of dormancy 

during seed development of oilseed rape (Brassica napus L.). Seed Science Research, 

1, 1-9 

 

 

Chapter II 

Huang, S., Gruber, S., Weber, E. A., Claupein, W. Seed dormancy in F1 and F2 

generations of imidazolinone-tolerant oilseed rape at different locations. Journal für 

Kulturpflanzen/Journal of Cultivated Plants, 68, 175-184.  

 

 

Chapter III 

Huang, S., Gruber, S., Claupein, W. Field history of imidazolinone-tolerant oilseed rape 

(Brassica napus) volunteers in following crops under six long-term tillage systems. 

Field Crops Research, 185, 51-58. 
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3 Chapter I 

Dynamics of dormancy during seed development of oilseed rape (Brassica 
napus L.). 
 

Publication I 
 
Huang, S., Gruber, S., Stockmann, F., Claupein, W. (2016):  
Dynamics of dormancy during seed development of oilseed rape (Brassica 
napus L.).  
Seed Science Research  
 

The contribution of seed dormancy, particularly secondary dormancy, to seed 

persistence in the soil seed bank of oilseed rape was frequently highlighted by 

previous studies, but the information about dormancy formation during seed 

development is quite limited. This chapter focused on the dynamics of primary 

dormancy and potential induced secondary dormancy over time during seed 

development of oilseed rape, providing important information for the 

understanding of underlying mechanisms in the formation, fluctuation, 

maintenance, and decline of seed dormancy in oilseed rape.  
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Seed dormancy in F1 and F2 generations of imidazolinone-tolerant oilseed 
rape at different locations.  
 

Publication II 
 
Huang, S., Gruber, S., Weber, E. A., Claupein, W. (2016):  
Seed dormancy in F1 and F2 generations of imidazolinone-tolerant oilseed 
rape at different locations.  
Journal für Kulturpflanzen/Journal of Cultivated Plants.  
  

The introduction of imidazolinone-tolerant oilseed rape into Europe 

increased the scepticism on the control of oilseed rape volunteers due to their 

tolerance to acetolactate synthase inhibiting herbicides. Seed dormancy traits 

of imidazolinone-tolerant oilseed rape are still not known. Besides, effects of 

maternal environmental on seed dormancy of oilseed rape are still not fully 

understood. This chapter found out that potential secondary dormancy of 15 

imidazolinone-tolerant oilseed rape (Clearfield® oilseed rape) genotypes 

varied considerably, similar to that of conventional oilseed rape. Maternal 

environment during seed development could affect seed dormancy level to 

some extent. Particularly, precipitation might be one factor to determine seed 

dormancy dynamics of oilseed rape. 
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Field history of imidazolinone-tolerant oilseed rape (Brassica napus) 
volunteers in following crops under six long-term tillage systems.  
 

Publication III 
 
Huang, S., Gruber, S., Claupein, W. (2016):  
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After harvest of oilseed rape, soil seed bank and occurrence of volunteers are 

strongly dependent on mode of tillage, operation time and variety. Between 

volunteers of imidazolinone-tolerant oilseed rape, gene segregation in 

herbicide tolerance is supposed to occur. Against this background, tillage 

strategy along with choice of variety are supposed to reduce soil seed bank 

size and the number of volunteers. The quantification of gene segregation 

could be measured in the volunteers. This chapter confirmed some previous 

findings that varieties with high seed dormancy or early soil disturbance after 

harvest of oilseed rape can result in larger soil seed banks, and non-inversion 

tillage can result in more volunteers. Interestingly, release from dormancy 

might be different between varieties resulting in the difference in volunteer 

emergence. Gene segregation will reduce the tolerance of volunteers to 

acetolactate synthase inhibiting herbicides.  
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6 General discussion 

In the previous chapters (I-III), various aspects of seed dormancy of CL OSR and tillage 

effects on soil seed bank and volunteers in the following crops after OSR have been 

evaluated. The primary results are presented in the above three scientific articles, followed 

by an individually detailed discussion at the end of each article. In the general discussion, 

the main results from chapter I-III are summarized with the aim to examine the initially 

proposed hypotheses and finally to deal with the future research in this field.  

The present chapter also focused on the discussion of obtained results in a broader context 

of scientific literatures; for instance, overall evaluation of seed dormancy & dormancy 

formation during seed development of OSR, maternal environment effects and post-

harvest environment effects on dormancy dynamics, as well as suitable cropping 

systems to reduce soil seed bank and volunteers of OSR. Soil seed bank dynamics and 

volunteer emergence in a long run as an important aspect of gene dispersal in time were 

further discussed. In particular, dormancy release over time when seeds are buried in the 

soil is integrated into this chapter. An integrated management strategy of OSR volunteers 

was discussed and assessed based on previous and present results.  

6.1 Seed dormancy  

6.1.1 Varietal effects 

This study confirmed the variation of predisposition to secondary dormancy (potential 

secondary dormancy from laboratory analyses; Weber et al., 2010) of mature OSR seeds 

between varieties shown by Gulden et al. (2004a, 2009), Gruber et al., (2004a), Weber et 

al. (2013) as well as the dormancy variation within populations of the same variety (Weber 

et al., 2013). Due to the dormancy variation, seed persistence of OSR in the soil seed bank 

varies considerably, ranging from a few months to over 10 years, depending on variety 

(Lutman et al., 2003). Correspondingly, varieties with a high dormancy level can give rise 

in occurrence of volunteer OSR for a longer period (Messéan et al., 2007; D'Hertefeldt et 

al., 2008). 

The genetic background to secondary seed dormancy is relatively strong (Schatzki, et al., 

2013a), indicating that selecting or breeding for low dormancy OSR variety is feasible. It 

is estimated that sowing low dormancy OSR varieties is an effective method to control 

OSR volunteers in the following crops after OSR (Gruber and Claupein, 2007; Weber et 
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al., 2014); hence it is encouraged to classify the current varieties into different dormancy 

groups (low, medium and high) according to their dormancy levels in agricultural practice 

(Gruber et al., 2009).  

In CL OSR, mature seeds showed similar dormancy variation between or within varieties 

to that of non-CL OSR (Chapter I and II). The current CL OSR varieties or lines (genotypes) 

can also be classified into low, medium, and high dormancy groups; out of the 15 tested 

CL genotypes, nine genotypes can be considered as low dormancy (<30%, dormancy level). 

The inheritability of potential secondary dormancy from F1 to F2 generations is stable. This 

suggests that low dormancy CL OSR variety can be achieved by selection or breeding 

method, providing a strategy from genotypic perspective to control CL OSR volunteers.  

The contribution of variety to secondary dormancy of OSR has been calculated in a range 

of 44-82%, probably related to seed size (Gulden et al., 2004a) and stage of maturation of 

the seeds (Haile and Shirtliffe, 2014). And this is likely to be associated with gene 

expression (Fei et al., 2007, 2009; Schatzki et al., 2013b). Much more genes can be up-

regulated in high dormancy OSR varieties than in low dormancy varieties when seeds are 

exposed to specific osmotic conditions. These genes are supposed to be involved in ABA 

biosynthesis (Fei et al., 2007, 2009). The DELAY OF GERMINATION 1 (DOG1) gene, 

which is essential for seed dormancy in Arabidopsis thaliana is likely to regulate induction 

of secondary dormancy in OSR, named BnaDOG1 gene (Née et al., 2015). DOG1 is 

dependent on ABA (Nonogaki, 2015). The difference between varieties in induction of 

secondary dormancy starts to appear at mid-stage of seed development and becomes more 

apparent over time (Chapter I). This could be explained by the difference between varieties 

in gene expression during the transition from full-size embryo to maturity (Fei et al., 2007). 

Yet, the physiological role of these genes in dormancy induction is far from being 

understood.  

Compared to secondary dormancy, primary seed dormancy is easier to be understood. The 

initial primary dormancy level is high probably resulting from an under-developed embryo 

at early seed development (Bewley, 1997), and remains at low level at maturity (Momoh 

et al., 2002; Gulden et al., 2004a), associated with seed ABA content in OSR (Finkelstein 

et al., 1985; Nambara et al., 2010). Two QTLs were detected for primary seed dormancy 

of OSR (Schatzki et al., 2013b). Several primary dormancy-related genes such as DOG1, 

ABA deficient1 (ABA1), and ABA INSENSITIVE 3, 4, 5 (ABI3) in Arabidopsis thaliana 
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have been discovered (Angelovici et al., 2010; Graeber et al., 2012). However, evidences 

in genetic and molecular control of primary dormancy in OSR are still absent. 

Primary dormancy of OSR is supposed to be a small contributor to the development of soil 

seed bank due to low dormancy level in mature seeds (Momoh et al., 2002; Gulden et al., 

2003). Considering the large harvest loss (up to 10 000 seeds m-2; Lutman et al., 2005), its 

contribution cannot however be negligible, e.g. a mean primary dormancy level of 3% 

across 20 OSR varieties at normal harvest was detected (Gruber et al., 2004a), 

corresponding to up to 300 dormant seeds m-2 located on the soil surface. In particular, 

primary dormancy in fresh seeds of most varieties and in mature seeds of some varieties is 

high (Haile and Shirtliffe, 2014), which was also found in CL OSR in the present study. 

With this in mind, a hailstorm or a strong wind during late seed development of OSR 

probably could result in a large soil seed bank as a consequence of primary seed dormancy.  

To date, no special studies have focused on varietal differences in the release of OSR seeds 

from dormancy, which is closely associated with the occurrence of volunteers in the long 

run, especially after the development of soil seed bank. The results in Chapter III of this 

thesis indicate that medium-dormant OSR variety can result in more volunteers than high-

dormant variety. This effect is probably attributed to the difference in the speed of 

dormancy release. The speed of release from dormancy could be independent from the 

level of dormancy but linked with any traits of the seed such as oil content or seed size, or 

it could be linked to the dormancy level. The evidence in dormancy release of OSR has 

still been particularly lacking. This study states the hypothesis that low dormancy varieties 

would be released from dormancy more rapidly than high dormancy varieties. The study, 

however, compared only two varieties, so that the hypothesis has to be tested in more 

detailed, following studies with varieties different in dormancy levels and in other seed 

traits. 

If the OSR varieties available on the market could be classified into different groups based 

on the speed of secondary dormancy release (i.e. slow, medium, and fast), another variety-

related approach to control volunteers would be possible, apart from breeding low-

dormancy varieties. Therefore, dormancy release in OSR needs to become a goal in the 

next research step.  
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6.1.2 Harvest time 

Harvest time (or stage of seed maturation at harvest) effects on primary and secondary 

dormancy are significant in OSR (Haile and Shirtliffe, 2014). Before full-size stage of seed 

embryo, primary dormancy was high and potential secondary dormancy was nearly zero 

(Chapter I); but after that stage, primary dormancy declined to a relatively low level and 

potential secondary dormancy increased over time. Evidence in the relationship between 

primary and potential secondary dormancy during seed development of OSR is still not 

enough. Probably, there is a link at early seed development based on the significant 

correlation between them, but the link became weak with further seed development. It 

seemed that freshly harvested seeds with high primary dormancy can be induced secondary 

dormancy more easily in OSR (Gruber et al., 2004a; Schatzki et al., 2013b), which was 

also found and discussed in Arabidopsis thaliana by Auge et al. (2015). Moreover, the 

results in Chapter I also indicate that seed dormancy of OSR is dependent on some 

processes essential for seed viability and germination during seed development. These 

processes are estimated to associate with endogenous ABA biosynthesis (Finkelstein et al., 

1985; Bewley, 1997) and embryo sensitivity to ABA (Hilhorst, 1995; Juricic et al., 1995). 

In agricultural practice, the dormancy-related processes during the late seed development 

are supposed to be more important to determine an appropriate harvest time. Therefore, 

full seed maturity is necessary for combine harvesting if no primary dormancy is wanted, 

in contrast to windrowing which would allow the seeds to after-ripen. This would mainly 

apply for harvests of seeds to be used for immediately sowing the next OSR crop.  

It is known that primary dormancy and potential secondary dormancy of OSR decreases 

over time during seed storage (Gruber et al., 2004a; Gulden et al., 2004a). In Chapter I, it 

was shown that the decline of potential secondary dormancy already appeared before full 

seed maturation. The highest peak in potential secondary dormancy, which seemed to occur 

60-70 days after flowering depending on variety, must be avoided in harvest. Besides, 

evidence from Gruber et al. (2004a) showed that primary seed dormancy of OSR vanished 

and potential secondary dormancy decreased by about nine percent points after six months 

of seed storage at room temperature (18-25℃). This suggested that seeds being stored for 

one year and then sowed would result in a lesser dormancy induction at sowing. 

Compared to combine harvesting, the operation time of windrowing, is supposed not to 

have important effects on seed dormancy. The seed dormancy dynamics of OSR during the 
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period from windrowing to seed threshing is still unclear. In this period, the supply of seeds 

with assimilates and water by the mother plant is interrupted and maturation is fostered 

after windrowing (Irvine and Lafond, 2010). There are currently not many results available 

about dormancy dynamics under the conditions of interrupted ripening, such as during 

windrowing, or if seeds drop onto the soil through hailstorm. 

Harvesting at the optimum stage can give lower seed losses; delayed harvesting would 

increase the risk of seed losses from the standing crop by natural opening of the pods 

(Thomas et al., 1991). It is more difficult to determine the optimal harvest time for winter 

OSR compared with spring OSR because of the longer and less uniform period of seed 

ripening (Thomas et al., 1991; Price et al., 1996). This is also affected by environmental 

conditions surrounding mother plants, e.g. the drier the conditions the larger the harvest 

losses, associated with hot and windy weather. Therefore, avoiding harvest at a hot 

temperature with a low air moisture and during windy conditions is necessary (Thomas et 

al., 1991). Seed losses of OSR resulting from delayed harvesting or improper harvesting 

conditions seem to be greater than those from harvesting methods (Lutman, 2003; Pekrun 

et al., 2003). Advance in breeding pod shatter resistant varieties is encouraging, but it is 

still an ambitious goal (Morgan et al., 2000; Hossain et al., 2011). 

Seeds from seed propagation, used for sowing the next OSR crop, may also result in a soil 

seed bank if they are seeded shortly after harvest due to both high primary dormancy and 

potential secondary dormancy. Besides, seed dispersal by harvesting machine or seed 

spillage during transportation can cause a soil seed bank at feral area such as road sides, 

resulting in feral OSR populations (Garnier et al., 2008; Pivard et al., 2008a, b). In 

particular, seeds lost during hailstorms, which frequently occur in Europe during seed 

development of OSR, are supposed to have a high primary dormancy level (Chapter I; 

Haile and Shirtliffe, 2014), directly giving rise a soil seed bank without induction of 

secondary dormancy.  

6.1.3 Maternal environment and post-harvest environment 

The predisposition to secondary dormancy of OSR varies between locations and years 

(Momoh et al., 2002; Gruber et al., 2009; Weber et al., 2013), which is partly attributed to 

the difference in maternal environment. Seed dormancy levels for many plant species have 

been found to differ between habitats related to latitude and elevation (Baskin and Baskin, 

1998), reflecting plant adaptation to different maternal environments (Alonso-Blanco et 
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al., 2009). Precisely, precipitation and temperature in seed ripening are involved in the 

influence of location or year on seed dormancy dynamics. For instance, high temperature 

and drought can result in low primary seed dormancy in wheat (Garello and Le Page-

Degivry, 1999; Wright et al., 1999). Maternal environmental effects on seed dormancy are 

limited, but its interaction with variety is obvious in Arabidopsis thaliana (Postma and 

Ågren, 2015). It has been estimated that maternal environmental effects can influence the 

expression of genetic variation (i.e., DOG1) for seed dormancy in Arabidopsis thaliana 

(Donohue, 2009). There also appears to be an influence of maternal environment on 

secondary seed dormancy in OSR (Gulden et al., 2004a; Schatzki et al., 2013b), but the 

direct influencing factors were not mentioned. Chapter II of this thesis highlighted the 

importance of precipitation and temperature over seed ripening on the dynamics of 

potential secondary dormancy in OSR for the first time; locations with low precipitation 

and high temperature during maturation could lead to a lower level of potential secondary 

dormancy in OSR seeds. This indicates that it is possible to select suitable location for 

breeding low dormancy varieties.  

It is well known that post-harvest environmental conditions play a critical role in the 

development and dynamics of the soil seed bank of OSR (Pekrun et al., 2005, 2006). 

During the period between harvest of OSR and the subsequent, first tillage operation, three 

processes in seed dormancy can be defined:  

1. Decline of primary dormancy if primary dormancy exists in mature seeds; this period 

probably cannot last long time (probably a few weeks) due to the low dormancy level, 

depending on variety and storage conditions. 

2. Decline of the predisposition to secondary dormancy which is supposed to last longer 

(probably several months) than the decline of primary dormancy probably due to high 

potential secondary dormancy level. 

3. Induction of secondary dormancy, which probably takes place in the first two weeks 

after the seeds were exposed to the soil environment.  

Explicit experiments about secondary seed dormancy induction on soil surface in natural 

environment for OSR was not found. In one pot experiment of Gruber et al. (2010), about 

50% of artificial input of OSR seeds falling dormancy at the soil surface were ever found. 

One of our field trials aiming at investigating effects of timing and depth of stubble tillage 

post-harvest on soil seed bank and volunteers of OSR, presented no or very small soil seed 
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bank and no volunteers in the following crop winter wheat (data not shown). This field 

trial was conducted at two sites (Ihinger Hof experimental station of the University of 

Hohenheim and Hohenheim) in two experimental approaches 2012-2013 and 2013-2014. 

By contrast, a similar field trial about effects of delayed tillage with or without stubble 

tillage was also performed at Ihinger Hof experimental station but in 2001-2002 and 2002-

2003 by Gruber et al. (2004b, c, 2005), in which a large soil seed bank and a high number 

of volunteers were detected. The biggest difference between these trials was the higher 

precipitation after harvest of OSR in the years 2012 and 2013 which could explain the 

difference in soil seed bank and volunteers from the following aspects. First, due to the 

usually low primary dormancy in harvested OSR seeds, most of the lost seeds are not or 

slightly dormant at harvest, which can be triggered into germination by precipitations. 

Second, the hydrothermal values (temperature of 3.8℃and water potential of -1.4 MPa) 

for germination of OSR are quite low (Soltani et al., 2013), so soil moisture even resulting 

from a slight rain is supposed to give rise to germination for the lost seeds in a short period. 

These might be also the reasons for the absence of CL OSR volunteers in the first following 

crops (most of them were winter wheat) at 20 out of 41 monitoring sites nearly across the 

whole of Germany in 2012-2013 (Laufer et al., 2014). 

The emerged seedlings in the first autumn after harvest of OSR can reach up to 70% of all 

seeds dropped onto the soil (Pekrun, et al., 2006). The autumn emergence is obviously not 

closely correlated with soil seed bank size in next spring after OSR (Pekrun, et al., 2006; 

Weber et al., 2014), suggesting that post-harvest environmental conditions inducing 

dormancy is more important than conditions that trigger seed germination. The quantitative 

effects of each seed fates such as emergence, seed death, predation, dormancy and decay 

have not yet been fully understood. 

6.2 Tillage effects on the soil seed bank 

Conventional tillage (inversion tillage; mouldboard ploughing), conservation tillage (non-

inversion tillage, i.e., by chisel ploughing, rototiller), with or without preceding shallow 

stubble tillage or no-tillage are main categories of soil cultivation. These tillage operations 

performed after harvest of OSR can affect number and distribution of OSR seeds in the 

soil to a great extent (Pekrun et al., 1998; Gruber et al., 2007, 2010). Regarding the size of 

the OSR soil seed bank, previous studies did not show clear and consistent results for the 

mode of tillage. For instance, chisel ploughing resulted in a larger soil seed bank of OSR 

compared to mouldboard ploughing in the study of Gruber et al. (2004b). No significant 
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difference between inversion ploughing and non-inversion cultivation was detected in the 

study of Pekrun et al. (2006), similar as shown in Chapter III of this thesis. For weed soil 

seed banks, there were no significant difference on the size of the seed bank either (Plaza 

et al., 2011; Ruisi et al., 2015), but in a long run or in organic farming, non-inversion 

cultivation generally results in larger soil seed banks (Cardina et al., 2002; Sosnoskie et al., 

2006; Gruber and Claupein, 2009). The inconsistent results are likely related to post-

harvest environmental conditions (Gulden et al., 2004a, c) or soil types (Swanton et al., 

2000; Gruber et al., 2014). Nevertheless, no-till in general results in a smaller soil seed 

bank size of OSR than other modes of tillage. 

In contrast to seed bank size, effects of tillage modes on seed distribution are more 

consistent; mouldboard ploughing can bury more seeds in the deep soil, whereas chisel 

ploughing mixes seeds within the tilled soil layer, and no-till leaves most of lost seeds on 

the soil surface (Colbach et al., 2000; Swanton et al., 2000; Gruber et al., 2010). In the 

second following year, deeply buried seeds, however, can be turned back into upper soil 

layer by repeat mouldboard ploughing (Colbach et al., 2000; Momoh et al., 2006). The soil 

burial depth might affect secondary seed dormancy induction of OSR, in interaction with 

external environmental conditions (Gulden et al., 2004c; Soltani et al., 2013). Under pot 

experimental conditions in greenhouse, more dormant OSR seeds were found at both soil 

surface and deep soil layers (<12cm) than in the middle soil of 1-7 cm (Gruber et al., 2010). 

Dryness at the soil surface, or darkness and low oxygen in the deep soil probably contribute 

to dormancy induction and large soil seed banks. Under field conditions, more OSR seeds 

seem to be induced into dormancy in the soil below top soil layer, which can explain the 

smaller soil seed bank frequently found in no-till treatment (Pekrun et al., 1998; Gruber et 

al., 2004b, 2005, 2010). In some weed species, it is estimated that seed dormancy increases 

with burial depth (Benvenuti, et al., 2001; Sester et al., 2007; Gruber and Claupein, 2009). 

Compared with dormancy induction, the suppressed effects of burial depth on seedling pre-

emergence growth of non-dormant OSR seeds tend to be more obvious (Lutman, 1993; 

Gulden et al., 2004c; Pekrun et al., 2005). If the burial depth is over 10 cm, the seedlings 

are assumed not to emerge due to the limited seed reserves (Gruber et al., 2011; Soltani et 

al., 2013). 

A consensus in effects of operation time of post-harvest tillage on soil seed bank of OSR 

has been achieved. i.e. delayed soil disturbance after harvest can reduce soil seed bank size 

even by shallow stubble tillage (Lutman et al., 2003; Gruber et al., 2004b; Pekrun et al., 
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2006), which was further confirmed and thoroughly discussed in Chapter III. However, 

when seeds are exposure to dry conditions, which is the most effective inducing factor for 

secondary dormancy in OSR, some exceptions can be found. More dormant seeds were, 

for instance, found in two-week delayed tillage treatment than in immediate tillage post-

harvest, but only in one out of ten experimental sites of Pekrun et al. (2006). Differences 

in loss of primary dormancy and in induction of secondary dormancy between seeds on 

the soil surface and seeds buried in the soil can partly explain the underlying mechanisms. 

Explicit studies of the mechanisms under field conditions were not available. Hence, more 

burial experiments with fresh OSR seeds which have both primary dormancy and potential 

secondary dormancy under controlled environments are needed. Generally, it is 

recommended to keep stubbles undisturbed for several weeks after harvest of OSR with 

the aim at reducing both soil seed bank size and volunteer weed problems in the subsequent 

crops (Gruber et al., 2004b; Pekrun et al., 2006). 

6.3 Soil seed bank dynamics and volunteer emergence 

Once a soil seed bank is created, its size will decrease exponentially with time and with 

burial depth as a consequence of dormancy loss, germination and natural death in weeds 

or OSR (Squire et al., 1997a; Sester et al., 2006; Soltani et al., 2013). The seed number 

declines rapidly in a few months after development of soil seed bank, and then slows down 

during the subsequent seasons, depending on soil environment and variety (Gulden et al., 

2003; Lutman et al., 2003, 2005; Gruber et al., 2004a, 2010). 

Seasonal soil environment is assumed to regulate the dormancy status of buried seeds in 

some plant species including OSR (Batlla and Benech-Arnold, 2004; Pekrun et al., 2005; 

Sester et al., 2007; Colbach et al., 2008). In some summer annual weeds, seed dormancy 

of seeds in the soil seed bank increases in summer and autumn and decreases in winter 

(Batlla and Benech-Arnold, 2004; Sester et al., 2007). Colbach et al. (2008) proposed that 

seed dormancy level in OSR could be expressed in sinusoidal wave as a consequence of 

seasonal soil moisture, temperature and burial depth. There is supposed to be a threshold 

temperature, below which seed dormancy will decline faster in Polygonum aviculare L. 

(Batlla and Benech-Arnold, 2004), in interaction with light and nitrate (Çetinbaş and 

Koyuncu, 2006; Finch-Savage et al., 2007). In OSR, low temperature and potassium nitrate 

(KNO3) are supposed to force loss of secondary dormancy (ISTA 2007), and alternating 

light and temperature is proved to be the most effective way to break secondary seed 

dormancy (Weber et al., 2010). Nevertheless, the threshold temperature for dormancy loss 
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in OSR and quantified contributions of soil climates are still quite far from being clearly 

defined.  

Regarding variety influence on seed persistence, high dormancy varieties can result in a 

longer persistence than medium and low dormancy varieties in OSR, due to larger soil seed 

bank (Gulden et al., 2003; Gruber et al., 2010) or to slower dormancy release. However, 

the evidence in dormancy release between OSR varieties is still limited.  

After release of secondary dormancy in buried seeds of OSR, their emergence seems to be 

strongly dependent on burial depth, hydrothermal time, seed reserves and soil structure. 

Non-dormant seeds located in a top soil layer (e.g. 0-5cm) more likely emerge as 

volunteers in the following crop (Pekrun et al., 2005; Gruber and Claupein, 2006; Gruber 

et al., 2010; Soltani et al., 2013) depending on soil moisture and temperature (Colbach et 

al., 2008). In deeper soil layer, the emergence rate will decrease exponentially with burial 

depth (Gruber et al., 2004a; Gulden et al., 2004c; Sester et al., 2007), associated with soil 

texture (Swanton et al., 2000; Dürr et al., 2001).  

After emergence, plant disease, insects, herbicides, crop competition, and their interactions 

can impact OSR volunteers and reduce their number and/or impair their performance and 

reproductive capacity to some extent. This thesis included results from experiments 

without any chemical control, and thus showed the worst case scenarios where no chemical 

and mechanical weed control either was applied or was efficient. The situation in the field 

would be most likely different from this situation. There are herbicides in selection for 

broadleaf weeds including OSR volunteers. Even if the volunteers would be tolerant to 

some active ingredients (as CL OSR is), the efficacy of herbicides would probably not be 

always 100% but rather 70-90%, depending on varieties and application time (Krato et al., 

2012). 

However, there might be still some OSR volunteers surviving until the harvest of 

subsequent crops, especially in rapeseed crops. In previous study of Gruber and Claupein 

(2007), seed production of volunteer OSR in cereal crops was about 10% of sown OSR, 

and about one seed m-2 could replenish the soil seed bank; in subsequently sown OSR crop, 

however, volunteer seed production can reach up to 100% and the same number of seeds 

as the sown crop could return to the seed bank. 
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6.4 Management of CL OSR volunteers 

Seed dormancy characteristics, soil seed bank dynamics, and volunteer occurrence of CL 

OSR are similar to that of non-CL OSR, based on the comparison between results in 

chapter I-III and previous results. Although gene segregation in herbicide tolerance exists 

in CL OSR volunteers, most of the volunteers (>80%) are still homozygous in both PM1 

and PM2 genes (Chapter III). This indicated that the highest tolerance to imidazolinone 

herbicides was also existent in the volunteers. Therefore, suitable strategies to control 

volunteer CL OSR are listed and assessed in the following: 

1. Harvest scenarios: there are two harvest scenarios, early harvesting with a high seed 

dormancy (both primary dormancy and potential secondary dormancy) but low harvest 

losses, and late harvesting with high risk of seed losses (Thomas et al., 1991) but low 

seed dormancy (particularly primary dormancy). Determination of the optimal harvest 

time is quite complex because of different ripening of seeds depending on pod positions 

on the plants (Diepenbrock and Geisler, 1979). Apart from seed dormancy and seed 

losses, early harvesting can reduce seed yield and seed quality (Rathke et al., 2006). 

Overall, as recommended by Haile and Shirtliffe (2014), OSR should not be harvested 

earlier than 60% seed color change for the harvesting method of windrowing. For the 

combine harvesting, avoiding harvest at the stage, at which OSR seeds have the highest 

potential secondary dormancy, is necessary, along with avoidance of unsuitable 

harvesting weather conditions such as high temperature, low air humidity and wind.  

2. The use of low dormancy varieties: the ideal varieties with low potential for OSR 

volunteer occurrence would have no primary dormancy, very low or no potential for 

secondary dormancy, and would be released from dormancy very fast. If release from 

dormancy would occur within the first year, with usually cereals as first following crop 

after OSR, the volunteers could be controlled by supplemental herbicides or by 

choosing crop densities or varieties of cereals which compete with OSR volunteers. 

High dormancy varieties, in contrast, are supposed to cause long-term seed persistence, 

large seed banks and volunteers in subsequent crops several years after the harvest of 

OSR, especially in another sown OSR crop where no chemical control is possible.  

3. Tillage modes and tillage operation timing: considering the difference between 

modes of tillage in the volunteer emergence (Pekrun et al., 1998; Gruber et al., 2004b), 

combination of tillage modes in different following years after OSR can probably 

control OSR volunteers in a long run. As shown in Chapter III, inversion tillage by 
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mouldboard ploughing resulted in very few or no volunteers in the first following year, 

but resulted in relatively more volunteers in the second year due to soil return to 

shallow soil layer. Non-inversion tillage or no-till led to more volunteers in the first 

year, and to fewer in the second year due to soil seed bank depletion. Besides, a time 

break of 3-4 weeks between harvest of OSR and the first following tillage can result in 

a smaller soil seed bank compared to immediate tillage. Therefore, performing delayed 

deep inversion tillage in the first year after OSR and shallow non-inversion tillage in 

subsequent years is recommended in the control of OSR volunteers.  

4. Alternative herbicides with different active ingredients other than ALS- inhibiting 

herbicides (e.g. imidazolinones and sulfonylureas) should be considered in the control 

of CL OSR volunteers, especially for homozygous imidazolinone-tolerant (HOM_IT) 

plants. Herbicide florasulam, one of Triazolopyrimidine sulfonanilide-based herbicide, 

was considered as the most effective herbicide treatment in the study of Krato et al. 

(2012). Its efficacy can reach up to 100% for heterozygous imidazolinone-tolerant 

(HET_IT) volunteers and to about 90% for HOM_IT volunteers under different 

environmental conditions. Based on the field survey in chapter III of this thesis, across 

six tillage treatments, 4.04 and 1.77 HOM_IT volunteers m-2 and 0.06 and 0.07 

HET_IT volunteers m-2 were found for medium and high dormancy CL OSR varieties 

in the first following spring (data not shown), respectively. After florasulam application, 

0.41 and 0.18 HOM_IT volunteers m-2 are supposed to survive for the two CL OSR 

varieties used, which are still high numbers of OSR volunteer in the following crops 

after OSR (Gruber and Claupein, 2007; Messéan et al., 2007). If imidazolinones or 

sulfonylureas herbicides were applied, more volunteer survivors could be detected 

(Krato et al., 2012; Krato and Petersen, 2012; Schwabe et al., 2016). Efficacy of 

flupyrsulfuron (one sulfonylureas herbicide), for instance, was 95% and 50% in the 

control of HET_IT and HOM_IT CL OSR volunteers (Krato et al., 2012), and 

correspondingly, 2.07 and 0.95 CL OSR volunteers (sum of HET_IT and HOM_IT 

plants) of medium and high dormancy CL varieties used in Chapter III of this thesis 

would survive the herbicide application in the first following crop winter wheat. 

Besides, due to the difference in burial depth and in dormancy release between OSR 

seeds, the volunteer emergence is supposed to be uneven. In this context, the efficacy 

of herbicides to the volunteers emerging after herbicide application will be 

compromised. Hence, cultural practices, particularly tillage regimes, are recommended 

to be used conscientiously in the first place before sowing the subsequent crop to reduce 
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OSR volunteers to the lowest possible level (Krato et al., 2012). 

5. Crop rotation: the choice of the following crops after CL OSR is supposed to be 

crucial in the control of OSR volunteers (Colbach et al., 2001; Devos et al., 2004). OSR 

crop is mainly grown in one out of three or four years in rotations with a high proportion 

of cereals in Germany (Rathke et al., 2005; Rathke and Diepenbrock, 2006). In general, 

cereals are the first following crops after OSR in crop rotations in Germany such as 

winter OSR (WOSR)-winter wheat (WW)-winter barley (WB), WOSR-WW, and 

WOSR-WW-WW-soybean (SB). Control of OSR volunteers in cereal crops is easy and 

inexpensive because of various herbicide options.  

Crop competition is also a contributor to the control of weeds or crop volunteers, 

depending on plant density and morphological structures (Colbach et al., 2001; Rajcan 

and Swanton, 2001; Weiner et al., 2001). Cereal crops with high plant density and a 

high competitive morphology (such as planophile leaves and a fast development) 

which can suppress weeds or volunteers should be considered. Increasing the length of 

the rotation can reduce the number of OSR volunteers and their adverse impacts into 

the following oilseed rape crop. 

As another issue, herbicide-tolerant genes can be dispersed from herbicide-tolerant OSR 

to non-herbicide tolerant OSR with pollen flow (Devos et al., 2004; Hüsken and Dietz-

Pfeilstetter, 2007; Krato and Petersen, 2012) due to the high cross-pollination (Becker et 

al., 1992; Cuthbert and McVetty, 2001). Most of the outcrossed seeds (more than 80%) of 

CL OSR, which mainly occurred at the nearest area of pollen acceptor fields to CL OSR 

fields, were heterozygous in both PM1 and PM2 genes (Krato and Petersen, 2012). Even at 

45 m from CL OSR field, HET_IT seeds also can be found in non-CL field. If these seeds 

fall on the soil surface during harvest and become a component of the soil seed bank, 

HET_IT OSR volunteers are supposed to appear in the following crops, increasing the 

difficulty of weed control in adjacent fields. Therefore, suitable cultural practices for 

limiting pollen-mediated gene flow of GM OSR (Ingram, 2000; Staniland et al., 2000; 

Damgaard and Kjellsson, 2005) probably can be applied to CL OSR, such as isolation 

distance between CL and non-CL fields, buffer zone in non-CL fields, or separately 

harvesting border area of non-CL fields at early seed stage to reduce harvest loss.  

In the monitoring of Laufer et al. (2014), nearly half of the monitored sites (20 out of 40 

sites all over Germany) had no soil seed bank and volunteers of CL OSR at all in the first 
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following crops after OSR, most of which were winter wheat. The farmers at these sites 

must have made some things correctly, such as in the choice of post-harvest tillage and 

herbicides. In addition, weather conditions, especially between harvest of OSR and first 

subsequent tillage was not sufficient for dormancy induction, probably associated with a 

high precipitation in this period. Similarly, nearly neither OSR soil seed banks nor 

volunteers were detected in one of our field trials even with a huge artificial seed input of 

5000-20,000 seeds m-2 of high dormancy OSR variety (91% induced secondary dormancy 

level) in 2012-2015 at Hohenheim (data not shown). This is assumed to be attributed to 

the high precipitations in the first autumn after harvest of OSR. All in all, farmers’ practice 

is obviously often suitable to control OSR volunteers even without knowing the details in 

the volunteer control. Combining with the recommended cultural practices in this study, 

CL OSR volunteers are supposed to be reduced to a very low level.  

Considering the advantages of the Clearfield® production system in weed control (post-

emergence, working flexibility, and broad-spectrum), CL OSR will probably be widely 

accepted by famers in Europe. This will increase the debate on the adverse impacts of CL 

OSR volunteers on the following crops. Based on the current knowledge achieved in this 

study (Table 1) and previous studies (Krato et al., 2012; Krato and Petersen, 2012; Laufer 

et al., 2014), the CL volunteers can be well controlled by mechanical and chemical methods 

pre- and post-sowing of next crops. However, as the herbicide tolerance (i.e. ALS-

inhibitors) and particularly long-term seed persistence if a large soil seed bank is developed, 

it is quite difficult to control these CL volunteers by herbicides in crop rotations with non-

CL OSR in a long run. Therefore, it is particularly important to reduce the potential 

development of soil seed bank after harvest of OSR. To our knowledge, an integrated 

strategy should be considered, including variety-dependent dormancy (low dormancy), 

harvest date (relative late harvest to avoid high seed dormancy, depending on harvesting 

method), and post-harvest tillage (delayed and deep burial). Also, proper choice of 

competitive following crops (planophile leaves and a fast development) and alternative 

herbicides (non-ALS inhibitors) to suppress CL volunteers. After harvest of the first 

following crops, shallow non-inversion tillage should be used for several years to keep CL 

seeds buried deeply in the soil.  

To date, there are still lots of knowledge gaps in the life cycle of OSR volunteers that will 

be focused in next research steps (Table 1), e.g. (i) quantification of post-harvest 

environmental effects on seed dormancy dynamics and especially on induction of 
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secondary seed dormancy, and (ii) dormancy release for buried seeds in a long run. 

Moreover, in CL OSR hybrids, genetic segregation within F2 populations as a result of seed 

impurity or outcrossing pollination might take place, likely resulting in CL OSR volunteers 

with different zygosities in genes PM1 and PM2 (see Chapter III of this thesis). Information 

on the tolerance of these volunteers to herbicides with different modes of action is still 

limited (Krato et al., 2012). Third, in the context of various field conditions in complex 

landscapes, a practice-oriented model simulating life cycle of OSR volunteers should be 

developed for breeders, users and non-users of CL OSR crops to guide stewardship from 

breeding to sowing, crop management, harvesting, transportation, storage, and volunteer 

control in the subsequent crops.  
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Table 1. The most important outcomes and the most important remaining questions that 

will be focused in the next steps.  

New outcomes from the thesis What we still want to know 

1. Dormancy dynamics (primary and 

potential secondary dormancy) during 

seed development. 

Varietal differences in release of dormancy 
(especially of secondary dormancy); variety 
classification based on the speed of dormancy 
release. 

2. Dormancy characteristics of CL OSR 

seeds; variety classification based on 

secondary seed dormancy. 

3. Impacts of maternal environment on 

seed dormancy, e.g. impacts of 

precipitation during seed 

development. 

Quantification of environmental effects post-
harvest on seed dormancy dynamics; loss of 
primary dormancy and induction of secondary 
dormancy between harvest and first following 
tillage (burial experiment with fresh seeds 
having a high primary dormancy). 4. Impacts of stubble tillage post-harvest 

with different depths and timings on 

soil seed bank volunteers of CL OSR 

(unpublished). 

5. Shallow stubble tillage leads to 

“survivors” (volunteers in spring which 

survived stubble tillage and ploughing; 

unpublished). 

Seed fate of harvest lost CL OSR seeds 
located on the soil surface; e.g. germinating, 
falling dormancy and death, etc. 

6. Impacts of tillage mode and operation 

time on soil seed bank and volunteers 

of CL OSR. 

Soil seed bank dynamics in a long run in 
interaction with soil environment and cropping 
systems. 

7. Varietal differences in development of 

soil seed bank and emergence of 

volunteers. 

8. Segregation in herbicide tolerance 

between CL OSR volunteers. 

Modelling the life cycle of CL volunteers on the 
field, including effects of different herbicides 
on CL volunteers. 

9. Integrated strategies to control CL 

OSR volunteers in following crops; 

pre- and post-harvest strategies. 
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7 Summary 

Oilseed rape (OSR) has become the second most important oilseed crop after soybean 

worldwide, producing 70.95 million tons of seed yield, and providing 13.4% of world 

supply of oilseeds in 2014. The demand for OSR is expected to increase due to protein 

meals/cakes used in animal feed and vegetable oils/fats for biodiesel and human 

consumption. With increasing cultivation area, concern over volunteer OSR is rising, 

particularly if the variety in question is tolerant to specific herbicides. Currently, the 

introduction of imidazolinone-tolerant OSR (commercially named Clearfield® OSR; CL 

OSR) into Europe poses new challenges for chemical control of CL OSR volunteers 

because of their tolerance to imidazolinone herbicides and other acetolactate synthase 

(ALS) inhibiting herbicides. Additionally, the potential of gene dispersal in time and space 

by persistent dormant seeds in the soil and by volunteers is increasing. 

Volunteers emerge from the soil seed bank, the volume of which is predominantly 

dependent on seed dormancy. Therefore, the objectives of this study were (i) to investigate 

seed dormancy and dormancy formation of CL OSR, and (ii) to find out suitable 

agricultural strategies to reduce volunteers by growing OSR genotypes with low potential 

for seed dormancy and seed survival, and by implementing appropriate tillage operations. 

Focusing on these aims, several experiments were carried out with different methods, 

namely field experiments, germination tests in the laboratory, and genomic analysis, 

providing data for three scientific articles. 

Experiment 1. A 3-year field trial in south-west Germany investigated dormancy 

dynamics during seed development (primary dormancy and potential secondary dormancy; 

tested with an existing standard method in the laboratory) of 10 non-CL OSR varieties 

(lines) in 2009 and 2010, and of five CL OSR varieties (hybrids) in 2014.  

Experiment 2. A total of 15 CL OSR genotypes grown at two locations in south-west 

Germany in 2012/2013, and eight genotypes (two CL genotypes included) grown at 12 

locations across Germany in 2011/2012, were tested for potential secondary seed 

dormancy with the aim to investigate dormancy traits of CL OSR and maternal 

environmental effects on dormancy formation.  

Experiment 3. A 5-year experiment (2011–2015) was conducted in south-west Germany 

with non-CL OSR and CL OSR (two CL varieties: high dormant and medium dormant) in 

the same rotation (non-CL winter oilseed rape - winter wheat - CL winter oilseed rape - 
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winter wheat - corn) to investigate OSR volunteer dynamics under different modes of 

tillage (inversion tillage, non-inversion tillage, no-till, with or without additional stubble 

tillage prior to primary tillage).  

Following hypotheses were tested: 

Experiment 1. (i) There is primary (innate) and secondary (induced) dormancy in 

oilseed rape; (ii) primary dormancy decreases during seed development, the potential 

secondary dormancy increases; (iii) at maturity, the level of the remaining primary 

dormancy and the varietal potential to secondary dormancy correlate. 

These hypotheses have been approved. Primary dormancy decreased from a high 

dormancy level (ca. 99%) at about 30 days after flowering (DAF) to a quite low level (< 

15%) at late seed development. Embryo growth probably regulates the dynamics of 

primary dormancy, at least during early seed development. Depending on variety and year, 

potential secondary dormancy initially increased from nearly 0% to the highest level (up 

to 90%) at about 70 DAF, and then slightly decreased with further seed development. The 

correlation between primary dormancy and potential secondary dormancy was high at 

early seed development, but was quite low at late seed ripening.  

Experiment 2: (i) There is variation in potential seed dormancy of CL OSR; (ii) F1 

(seeded) and F2 (harvested) generations of hybrid CL-OSR show similar dormancy 

levels although changes through environmental effects are known; (iii) the 

environment (location) during seed development and maturation has an effect on the 

potential dormancy. 

The hypotheses were approved. The CL OSR genotypes differed in potential secondary 

dormancy from 0.0 to 95.7% in the F1 generation and from 3.5 to 77.9% in their 

corresponding offspring (F2). Out of the 15 CL genotypes, nine were considered to be low 

dormant (<30% dormancy level). High correlation (r = 0.96) between F1 and F2 generations 

indicates a strong inheritance of seed dormancy. Precipitation during seed development is 

thought to be a contributor to dormancy formation, e.g. the higher the precipitation the 

higher the dormancy level. These results indicate that selection or breeding for low 

dormancy CL OSR is feasible. A direct comparison of varieties by dormancy is only 

possible if they have been grown and harvested at the same location, due to environmental 

effects. 

Experiment 3: (i) The soil seed bank size of OSR is determined by post-harvest tillage 
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(particularly tillage time) and seed dormancy traits of the cultivated variety; (ii) the 

emergence of volunteers from the seed bank also depends on the mode of tillage; (iii) 

gene segregation in herbicide-tolerance might occur among CL volunteers.  

These hypotheses were partly approved. There was no significant effect of tillage on the 

soil seed bank, but the soil seed bank was visibly higher if stubble tillage was done prior 

to primary tillage (179 vs. 56 seeds m-2; treatments with stubble tillage vs. corresponding 

treatments without stubble tillage). There were significant effects of tillage in general on 

volunteers in the next crop. Non-inversion tillage resulted in 30 times more volunteers in 

the following winter wheat crop than inversion tillage due to shallow seed burial depth. A 

high dormancy OSR variety resulted in a significantly larger soil seed bank than a medium 

dormancy variety (147 vs. 58 seeds m−2) but in fewer volunteers (0.9 vs. 1.9 volunteers 

m−2) in the first following crop winter wheat, probably due to slow release of seeds from 

dormancy. Hypothetically speaking, seeds from low dormancy varieties seem to be 

released from dormancy more rapidly than seeds from high dormancy varieties. Gene 

segregation with 10 zygosities of the imidazolinone-tolerance genes PM1 and PM2 was 

detected in the CL volunteers in the first following crop winter wheat. Approximately 90% 

of sampled plants were homozygous for PM1 and PM2, still conferring a high tolerance to 

imidazolinones. 

Overall, a high variation in potential secondary dormancy was detected for CL OSR, which 

is similar to non-CL OSR. The contribution of seed dormancy to the soil seed bank was 

confirmed. During seed development, maternal environment can influence seed dormancy 

dynamics to some extent. Tillage operations, particularly tillage time, can also influence 

the soil seed bank and the emergence of volunteers. A very new aspect is that the 

disposition of seeds to release from dormancy (instead of induction of dormancy) should 

be considered in further studies. Sound strategies to control volunteers should include (1) 

the use of low dormancy varieties with a low potential to establish a seed bank and with a 

fast release from dormancy, and (2) a combination of different tillage operations in the 

years following OSR cultivation, e.g. delayed inversion tillage with a deep burial depth in 

the first year, followed by shallow non-inversion tillage in subsequent years.  

Combined with a thorough knowledge of seed dormancy, of the development of the soil 

seed bank and of the release from dormancy, the occurrence of CL volunteers in following 

crops can be reduced or even avoided by a scope of practical methods and approaches 

proposed in this study.
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8 Zusammenfassung 

Raps ist die zweitwichtigste Ölfrucht nach Sojabohnen weltweit. Im Jahr 2014 werden 

70,95 Mio Tonnen Raps erzeugt, die 13,4% des globalen Angebots darstellen. Aufgrund 

der Verwendung von Raps in der menschlichen und tierischen Ernährung sowie für die 

Herstellung von Biodiesel wird eine Steigerung in der Nachfrage nach Raps erwartet. Mit 

wachsender Anbaufläche steigt auch die Sorge über möglichen Rapsdurchwuchs, 

insbesondere wenn die betroffene Sorte Herbizidtoleranz aufweist. Derzeit stellt die 

Einführung von Imidazolinon-tolerantem Raps (Clearfield®-Raps; CL-Raps) in Europa 

neue Herausforderungen an die chemische Kontrolle von CL-Durchwuchsraps, da auch 

andere Herbizide auf Basis von Acetolactatsynthase (ALS)-Inhibitoren nicht mehr oder 

eingeschränkt wirksam sein können. Außerdem erhöht sich das Potenzial einer zeitlichen 

und räumlichen Verbreitung der Herbizidtoleranz-Gene mittels überdauernder Rapssamen 

im Boden und über Durchwuchsraps. Durchwuchsraps geht aus der Bodensamenbank 

hervor, deren Umfang und Langlebigkeit zu großem Teil von der Keimruhe (Dormanz) 

abhängt.  

Die Ziele der vorliegenden Arbeit waren daher (i) die Keimruhe und die 

Dormanzausprägung bei CL-Raps zu untersuchen und (ii) geeignete pflanzenbauliche 

Maßnahmen zur Reduzierung von Durchwuchsraps zu entwickeln. Mit dieser Zielsetzung 

wurden verschiedene Versuche auf unterschiedlichen methodischen Ebenen durchgeführt, 

nämlich Feldversuche, Keimtests im Labor und genetische Analysen, die die Grundlagen 

für drei wissenschaftliche Artikel bilden. 

Versuch 1: Ein dreijähriger Feldversuch in Südwest-Deutschland untersuchte die 

Dormanzdynamik während der Samenentwicklung (primäre Dormanz sowie Disposition 

zu sekundärer Dormanz; mit Standardmethoden im Labor getestet) von 10 nicht-CL-

Rapssorten (Linien) in den Jahren 2009/2010 und von fünf CL-Rapssorten (Hybride) im 

Jahr 2014.  

Versuch 2: Insgesamt 15 verschiedene CL-Rapsgenotypen wurden an zwei Standorten in 

Südwest-Deutschland im Jahr 2012/13 angebaut, sowie acht Genotypen (einschließlich 

zwei CL-Genotypen) an 12 Standorten über Deutschland verteilt im Jahr 2011/2012. Diese 

Genotypen wurden mit einer vorhandenen Standardmethode auf potenzielle sekundäre 

Dormanz geprüft, mit dem Ziel, die Neigung zur Dormanz von vorliegenden, zum Teil 

anbaurelevanten CL-Rapssorten zu bestimmen sowie Umwelteffekte während der 

Samenentwicklung und Abreife auf die Dormanzausprägung zu untersuchen.  
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Versuch 3: Ein fünfjähriger Feldversuch (2011-2015) wurde in Südwest-Deutschland mit 

nicht-CL-Raps und CL-Raps (zwei Sorten: hoch dormant und mittel dormant) in derselben 

Fruchtfolge (nicht-CL-Winterraps – Winterweizen – CL-Winterraps – 

Winterweizen – Mais) durchgeführt, um die Dynamik von Ausfallraps bei verschiedenen 

Bodenbearbeitungsverfahren zu untersuchen (wendende und nicht-wendende 

Bodenbearbeitung  mit oder ohne zusätzlicher Stoppelbearbeitung vor der 

Grundbodenbearbeitung  sowie „no-till“). 

Folgende Hypothesen wurden geprüft:  

Versuch 1: (i) Bei Raps gibt es primäre (innate) und sekundäre (induzierte Dormanz). (ii) 

Die primäre Dormanz nimmt während der Samenentwicklung ab, die Fähigkeit zur 

sekundären Dormanz nimmt zu. (iii) Die Höhe der verbliebenen primären Dormanz 

und das sortenspezifische Potenzial zur sekundären Dormanz korrelieren miteinander 

zur Samenreife. 

Die Hypothesen ließen sich teilweise bestätigen. Die primäre Dormanz fiel bei allen 

Genotypen von einem hohen Dormanzniveau (ca. 99 %) etwa 30 Tage nach der Blüte auf 

ein eher niedriges Niveau (bis zu maximal 15%) während der späten Samenentwicklung 

zurück. Wahrscheinlich reguliert das Embryowachstum die Dynamik der primären 

Dormanz, zumindest zu Beginn der Samenentwicklung. Je nach Sorte und Jahr stieg die 

potenzielle sekundäre Dormanz anfänglich von 0 % etwa 70 Tage nach der Blüte auf das 

höchste Niveau und sank danach mit fortschreitender Samenentwicklung leicht ab. Die 

Korrelation zwischen primärer Dormanz und potenzieller sekundärer Dormanz war zu 

Beginn der Samenentwicklung hoch, aber zur späten Samenreife niedrig.  

Versuch 2: (i) CL-Rapssorten weisen Variabilität im Potenzial für sekundäre Dormanz auf 

(gering/mittel/hoch dormant). (ii) F1-(Saatgut) und F2-(Erntegut) von CL-Raps 

(Hybridraps) zeigen ähnliches Niveau in der sekundären Dormanz, obwohl 

Umwelteffekte auftreten können. (iii) Es bestehen Umwelteffekte während der 

Samenentwicklung und -abreife, die die Dormanzausprägung beeinflussen. 

Diese Hypothesen ließen sich bestätigen. Die CL-Rapsgenotypen wiesen in ihrer 

potenziellen sekundären Dormanz in der F1 Generation eine Schwankungsbreite zwischen 

0 und 95,7 % und in den dazugehörigen Nachkommen (F2) zwischen 3,5 und 77,9 % auf. 

Neun der 15 CL-Genotypen wurden als gering dormant (< 30 % Dormanz) eingestuft. Eine 

hohe Korrelation (r = 0,96) zwischen der F1 und F2 Generation deutet auf eine hohe 

Heritabilität des Merkmals "Dormanz" hin. Die Menge der Niederschläge während der 
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Samenentwicklung scheint zur Ausprägung späterer Dormanz beizutragen. Eine höhere 

Niederschlagsmenge in den letzten Wochen vor der Ernte führte zu einem höheren 

Dormanzpotenzial. Diese Ergebnisse lassen darauf schließen, dass Selektion oder 

Züchtung auf geringe Dormanz bei CL-Raps möglich ist. Das Dormanzpotenzial von 

Sorten kann nur direkt miteinander verglichen werden, wenn die Sorten am selben Standort 

abgereift sind. 

Versuch 3. (i) Der Bodensamenvorrat von Raps wird durch die Bodenbearbeitung nach 

der Ernte, insbesondere durch den Zeitpunkt der ersten Bearbeitung, und durch die 

Neigung zu Dormanz der verwendeten Sorte bestimmt; (ii) Der Auflauf  von 

Durchwuchsraps aus der Bodensamenbank ist von der Art der Bearbeitung 

(wendend/nicht-wendend) bzw. der Bearbeitungstiefe abhängig;(iii) Es kommt zu einer 

genetischen Aufspaltung der Herbizidtoleranz bei CL-Durchwuchsraps.  

Die Hypothesen ließen sich teilweise bestätigen. Die Bodenbearbeitungsverfahren 

wendend vs. nicht-wendend hatten keinen signifikanten Einfluss auf die Größe der 

Samenbank, doch die frühzeitige Einarbeitung der Samen mittels flacher 

Stoppelbearbeitung erhöhte den Bodensamenvorrat sichtbar (179 vs. 56 Samen m-2 bei den 

Varianten mit Stoppelbearbeitung vs. ohne Stoppelbearbeitung). Die Anzahl an 

Durchwuchsraps in der Nachfrucht war signifikant. abhängig von der Bodenbearbeitung. 

Aufgrund der flachen Verschüttung der Samen führte nicht-wendende Bodenbearbeitung 

zu 30 mal mehr Durchwuchsrapspflanzen in der Nachfrucht Winterweizen als wendende 

Bodenbearbeitung. Die hoch-dormante Rapssorte führte zu einem signifikant größeren 

Bodensamenvorrat als die mittel-dormante (147 vs. 58 Samen m-2), jedoch zu weniger 

Durchwuchsraps (0,9 vs. 1,9 Pflanzen m-2) in der ersten Nachfrucht. Möglicherweise wird 

die Dormanz bei Samen von hoch dormanten Sorten im Bodensamenvorrat langsamer 

gebrochen als bei geringer dormanten Sorten. Die Prüfung der genetischen Aufspaltung 

für Imidazolinontoleranz (Gene PM1 und PM2) im CL-Durchwuchsraps in der ersten 

Nachfrucht Winterweizen ergab insgesamt 10 unterschiedliche Allelkombinationen. Dabei 

waren rund 90% der Pflanzen homozygot in PM1 und PM2, d.h.  sie besaßen eine 

genetische Disposition für eine hohe Toleranz gegen Imidazolinone.   

Insgesamt wurde eine hohe Variationsbreite bei der potenziellen sekundären Dormanz von 

CL-Raps festgestellt, ähnlich den bereits bekannten Ergebnissen bei nicht-CL-Raps. Der 

Beitrag der sortenspezifischen Dormanzneigung bei Raps zum Aufbau der 

Bodensamenbank wurde bestätigt. Während der Samenentwicklung können die 
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mütterlichen Umweltbedingungen die Dormanzausprägung in einem gewissen Maß 

beeinflussen. Bodenbearbeitungsverfahren, insbesondere der Zeitpunkt der Bearbeitung, 

beeinflussen die Bodensamenbank und das Auftreten von Durchwuchsraps in den 

Folgekulturen. Ein neuer Aspekt ist, dass neben der bisher untersuchten Kontrolle von 

dormanzinduzierenden Faktoren zukünftig auch Faktoren berücksichtigt werden müssen, 

die vorhandene Dormanz brechen. 

Realistische Strategien zur Kontrolle von Auflaufraps sollten (1) die Verwendung von 

gering dormanten Sorten mit geringem Potenzial zur Bildung einer Samenbank sowie mit 

schneller Brechung der Dormanz umfassen, und (2) eine Kombination verschiedener 

Bodenbearbeitungsverfahren in den Jahren nach dem Rapsanbau beinhalten. Ein Beispiel 

wäre eine verzögerte, tiefe, wendende Bodenbearbeitung im ersten Jahr mit anschließender 

flacher, nicht-wendender Bodenbearbeitung in Folgejahren.  

Mit dem Hintergrund eines vertieften Verständnisses von Dormanz, der Entwicklung einer 

Bodensamenbank sowie der Brechung von Dormanz kann das Auftreten von CL-

Durchwuchsraps in Nachfrüchten durch die in dieser Arbeit vorgestellten, methodisch breit 

angelegten und praktischen Ansätze reduziert oder sogar vermieden werden.  
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