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1 General Introduction 

A major policy concern in most OECD countries is the challenge of financing health and 

long-term care (LTC) expenditures. The public sector, including social insurance systems 

as well as governments, plays a key role in funding these expenses in most OECD coun-

tries. For instance, about 77% of total health expenditure in Germany in 2013 was pub-

licly funded, mainly through contributions to the social security system. In addition to 

several factors, the aging of the population is likely to aggravate the financial burden on 

the public budget. Due to a rising life expectancy and decreasing birth rates, the average 

share of individuals aged 65 years and older in OECD countries is expected to nearly 

double from 15% in 2010 to about 27% in 2050, while the share of people in working age 

is expected to decline (OECD, 2015). In a social insurance system with a pay-as-you-go 

system, such as in Germany, population aging thus affects the financial equilibrium and 

leads to an intensified redistribution from people in working age to retirees (Breyer, 

Zweifel, & Kifmann, 2013). It is thus of particular interest to economically evaluate op-

tions that may help to alleviate the financial pressure on the public budget with respect to 

health and LTC expenditures. This thesis focuses on two specific options: 

The first option refers to the arrangement of a health insurance and long-term care 

insurance (LTCI) system with respect to the mix of a public system and a private insur-

ance market. By increasing the cost sharing or excluding coverage of specific services in 

the public system, the financial pressure on the public sector may be lowered. Simultane-

ously, individuals may be offered the opportunity to purchase voluntary private insurance 

coverage in order to reduce the coverage gaps in the public system. Policymakers in sev-

eral OECD countries have considered and already implemented markets for voluntary 

private health insurance (VPHI) and private LTCI that coexist with a public system (e.g., 

Colombo, Llena-Nozal, Mercier, & Tjadens, 2011; OECD, 2004a).  

In Germany, for instance, the majority of the population (about 88%) is covered in 

the statutory health insurance (SHI), while 12% have substitutive private health insurance 

(PHI) (Federal Ministry of Health, 2017). Even though SHI enrollees benefit from a rel-

atively generous benefit package (Beske, Drabinski, & Golbach, 2005), copayments have 

been increased and some benefits have been excluded in the SHI in recent health reforms. 

As a result, markets for private supplemental health insurance (SuppHI) offered by PHI 
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companies to reduce the coverage gaps in the German SHI have substantially increased 

in recent years (Grabka, 2014). Another example for a SuppHI market is the U.S. 

Medigap insurance market. Individuals covered in the Medicare program, which is a na-

tional social insurance program for the elderly in the U.S., face a substantial out-of-pocket 

expenditure risk and may purchase a Medigap insurance policy to reduce these coverage 

gaps (Fang, 2016). Moreover, private markets for voluntary private LTCI have evolved 

in some countries (e.g., U.S., Germany and France), even though these markets are still 

relatively small. In Germany, for instance, only 3.5% of individuals aged 40 years and 

older held a private LTCI policy that provides complementary insurance coverage for 

LTC expenditures not covered in the basic statutory LTCI in 2009 (Colombo et al., 2011). 

While private insurance markets are an alternative funding source for health and LTC 

expenditures, these markets may suffer from inefficiencies due to the economic problem 

of asymmetric information and related selection effects. In contrast to public insurance 

systems, which are predominantly funded through income-related contributions or taxa-

tion (e.g., OECD, 2004a), premiums in private insurance markets are generally risk-

based. Nevertheless, the problem of adverse selection may arise in private insurance mar-

kets with risk-based premiums if insurers are not able (or do not) sufficiently discriminate 

between different risk types. In the standard model of adverse selection (Rothschild & 

Stiglitz, 1976), individuals have residual private information on their risk type. In that 

case, individuals with a high risk will purchase more insurance coverage than low-risk 

individuals in a separating equilibrium. On the other hand, the theory of advantageous 

selection suggests that low-risk individuals are more likely to buy insurance coverage in 

a situation with multiple dimensions of private information. For instance, low-risk indi-

viduals may be more inclined to buy insurance coverage if they are more risk averse and 

if they simultaneously undertake more preventive effort to lower their risk exposure (de 

Meza & Webb, 2001). Even if both types of selection effects offset each other, they may 

lead to inefficiencies in an insurance market with respect to the coverage of at least part 

of the population (Finkelstein & McGarry, 2006). In addition to the potential problem of 

selection based on ex-ante private information, an ex-post risk-based selection  may arise 

in markets with long-term contracts (e.g., private LTCI markets), if only the insurers can 

commit to the insurance contract. In such a situation, low-risk individuals who learn about 

their risk type over time may get incentives to cancel their contract if the amount of pre-

payments in the long-term contracts is insufficient to lock in low-risk types (Hendel & 
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Lizzeri, 2003). This would lead to a worsening of the remaining collective and a rise of 

the premiums for that collective (e.g., Brown & Finkelstein, 2009).  

Another potential economic problem of asymmetric information in insurance markets 

is moral hazard that occurs when insurers are not able to observe the actions of individu-

als. This phenomenon generally refers to an unobservable change of individuals in their 

behavior as a response of holding insurance coverage. One specific form of that problem, 

called ex-ante moral hazard, arises when individuals decrease their preventive efforts 

prior to the loss occurrence due to insurance coverage (e.g., Zweifel & Eisen, 2012).1 In 

a public health insurance system with comprehensive insurance coverage like the German 

SHI, enrollees may thus have low incentives to put effort into prevention (Breyer et al., 

2013). One way to counteract this problem is to subsidize preventive health care as pro-

posed by Arnott and Stiglitz (1986). 

Hence, instead of shifting insurance coverage to a private insurance system, another 

option to alleviate the financial burden in a public health insurance system is to promote 

preventive health care, since this may reduce the overall health expenditures. An example 

is the implementation of the population-based skin cancer screening program (SCS) in 

the German health care system in 2008. An important aspect to evaluate in this context is 

whether promoted preventive measures are effective in reducing the morbidity and/or 

mortality of diseases like skin cancer and may thus lower the costs of care in a public 

health insurance system. 

This dissertation contributes to the literature on the impact of these two individual 

options with a particular focus on the German LTCI and health insurance scheme. More 

specifically, three academic papers in this thesis analyze selection effects in markets for 

private LTCI and VPHI. The first paper, which is presented in Chapter 2, provides a lit-

erature review on the empirical work on asymmetric information and related selection 

effects in markets for private LTCI and in the U.S. market for Medigap insurance. Both 

types of insurance provide coverage for important out-of-pocket financial risks of the 

elderly population (e.g., Fang, 2016). A large body of recent empirical work has analyzed 

multidimensional private information and related selection effects particularly in these 

                                                 

1 Another type is ex-post moral hazard, which refers to an increased utilization of care services after the loss 

occurrence due to lower marginal costs of care (e.g., Pauly, 1968). 
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insurance markets. The review examines to what extent adverse and advantageous selec-

tion are present in these markets and to what extent several characteristics contribute to 

selection effects. Regarding the latter, a focus is on the role of private information that 

individuals have on their risk type, the role of the individual’s risk preferences and of 

sociodemographic characteristics. The literature review points out potential directions for 

future research.  

The third chapter provides an empirical analysis of selection effects in the market for 

complementary private LTCI in Germany based on a large dataset on more than 98,000 

individuals from a German private insurance company. Even though the mandatory LTCI 

for SHI and PHI enrollees only provide partial insurance coverage, the demand for com-

plementary private LTCI in addition to basic LTCI coverage is still rather low. Analyzing 

the selection behavior in this market is of interest for policy implications as selection 

effects may lead to market inefficiencies and thus contribute to the limited demand for 

this type of insurance coverage. Within a static framework, this chapter analyzes the cov-

erage-risk correlation to provide insights whether selection effects in this insurance mar-

ket exist. As premiums for this type of insurance are generally risk-based, but only de-

pendent on few characteristics, this market is likely to suffer from selection effects. In a 

second step, potential drivers of selection effects are examined by testing whether char-

acteristics (e.g., occupation) that are observable for the insurer, but not used for determin-

ing insurance premiums, are correlated with insurance coverage and the risk of needing 

LTC. The analysis in the static framework differentiates between the decision to buy 

complementary LTCI and to choose the amount of LTCI coverage. In a third step, this 

chapter focuses on the insurance uptake and lapse behavior in a dynamic framework and 

examines what characterizes the in- and outflow of the insured collective over time. While 

this analysis, in general, provides information on the stability of the insured collective 

over time, the findings on the lapse behavior, in particular, yield important insights into 

the potential problem of ex-post risk-based selection.  

Chapter 4 addresses selection effects in the German market for supplemental dental 

insurance (SuppDI). Among different available types of SuppHI policies, this is the most 

popular one among SHI enrollees in Germany and showed the largest increase in recent 

years. Between 2004 and 2012, the share of SHI policyholders with a SuppDI rose from 

5.6% to 16.6%. One possible explanation for this increasing demand is a change in the 
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copayments for dental prostheses since 2005 to reduce the financial burden in the SHI 

(Grabka, 2014). Similar to the German market for complementary private LTCI, the risk 

classification in the market for SuppDI is mainly based only on few characteristics. There-

fore, the shifting to a private insurance market for dental care services is prone to selection 

effects and may suffer from market inefficiencies. Using survey data from the Healthcare 

Monitor of the Bertelsmann Stiftung, the coverage-risk correlation is tested to analyze 

whether individuals have private information leading to selection effects in this market. 

In addition, several potential sources of selection are examined. The empirical findings 

on selection effects in this chapter provide insights that may be useful for policy implica-

tions concerning the shifting of dental insurance coverage from a public health care sys-

tem to a VPHI market. This is of interest beyond the German health care system because 

dental benefits for adults are not fully covered by basic health insurance schemes in many 

OECD countries (Paris, Devaux, & Wei, 2010).  

Another empirical paper, presented in chapter 5, shifts the focus of this thesis on the 

evaluation of promoting preventive health care by taking the implementation of the na-

tionwide population-based SCS program in Germany as an example. Since the implemen-

tation of this program in 2008, the SHI offers a whole body examination for SHI enrollees 

at no charge every 2 years when they are at least 35 years old (Geller et al., 2010). By 

detecting skin cancer at an earlier stage, the primary aim of this program is to reduce 

mortality from malignant melanoma (Eisemann, Waldmann, Garbe, & Katalinic, 2015) 

and thus to reduce health care costs on skin cancer (Stang, Garbe, Autier, & Jöckel, 2016). 

Therefore, Chapter 5 examines the effect of this program on the number of hospital dis-

charges following malignant skin neoplasm diagnosis and the malignant melanoma mor-

tality rate per 100,000 inhabitants. The related research question is whether this program 

is effective with respect to these measures. To this end, panel data from the Eurostat da-

tabase on subregions in 22 European countries, measured at the lowest nomenclature of 

territorial units for statistics (NUTS) level for 2000–2013, are used. By applying a fixed 

effects model to analyze the causal effect of the implementation of the German SCS pro-

gram on the skin cancer diagnosis and the melanoma mortality rate, this chapter particu-

larly contributes to the literature on assessing the effectiveness of SCS programs. 

Finally, this dissertation ends with a summary of the key results in chapter 6.  
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2 Multidimensional Private Information and Selection 

Effects in Private Long-term Care Insurance Markets and 

the Medigap Insurance Market – A Review of the 

Empirical Evidence2 

Abstract 

This article reviews the empirical literature on asymmetric information and related selec-

tion effects in markets for private long-term care insurance and in the U.S. Medigap in-

surance market, which provides supplementary health insurance coverage for the elderly. 

The empirical work suggests that multidimensional private information are present in 

these insurance markets and lead to both adverse and advantageous selection. After 

providing an overview of the existence and the dominating type of selection in these mar-

kets, the evidence on several potential sources of selection is reviewed. With regards to 

the latter, the focus is on the role of the individual’s private information about the risk 

type, of risk preferences and of sociodemographic characteristics. The review offers po-

tential directions for future research concerning selection effects. 

  

                                                 

2 The following chapter is a single authored manuscript by the candidate and yet unpublished.  
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2.1 Introduction 

The share of the elderly population in OECD countries has risen over the last decades due 

to increasing life expectancies and fallen fertility rates. The percentage of people aged 65 

years and older is expected to rise further from 15% in 2010 to 27% in 2050 on average 

across OECD countries (OECD, 2015). One of the most important financial risks that 

elderly people face are health care and LTC expenditure risks (e.g., Fang, 2016). Even 

though some public insurance programs, such as Medicare in the U.S. or statutory LTCI 

in Germany, provide basic insurance coverage for health or LTC expenses, people often 

still suffer from a substantial out-of-pocket risk (Bauer, Schiller, Schreckenberger, & 

Trautinger, 2017; Brown, Goda, & McGarry, 2012; Fang, 2016). Individuals may fill 

these coverage gaps by purchasing private LTCI coverage and supplementary health in-

surance coverage. Concerning the latter, elderly in the U.S., for instance, may buy 

Medigap insurance as a supplement to their health insurance coverage by Medicare.  

One major concern in private health insurance and LTCI markets is asymmetric in-

formation and related selection effects. While private information of people about their 

risk type is expected to result in adverse selection of high-risk types into the insurance 

market (Rothschild & Stiglitz, 1976), multiple dimensions of private information may 

also lead to advantageous selection of low-risk types into the market (de Meza & Webb, 

2001; Hemenway, 1990). Even though both selection effect may offset each other, market 

inefficiencies may still arise from the presence of multidimensional private information 

as at least part of the population is not able to get optimal insurance coverage at actuarially 

fair premiums (Finkelstein & McGarry, 2006). While a large empirical work has detected 

adverse selection in markets for acute health insurance (Cutler & Zeckhauser, 2000), an 

increasing number of empirical studies on markets for VPHI3 and LTCI has taken multi-

dimensional private information into account when testing for selection effects.  

This paper reviews the empirical literature on selection effects into LTCI markets and 

the U.S. Medigap insurance with emphasis on multidimensional private information and 

the sources of selection. These markets are of particular interest since they provide vol-

untary insurance coverage for substantial out-of-pocket expenditure risks that the elderly 

                                                 

3  VPHI comprises supplementary, complementary and duplicate health insurance as defined in OECD 

(2004b).  
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face. An overview of the evidence on the selection behavior may provide important in-

sights into potential inefficiencies arising from selection effects in these markets. More-

over, the decision to buy insurance coverage for these risks are often made in older age. 

While only Medicare beneficiaries in the U.S. can buy Medigap policies, the average age 

of LTCI buyers in the U.S., for instance, is about 60 (Ko, 2016; LifePlans, 2017). There-

fore, selection effects in these markets may be different compared to other VPHI markets. 

2.1.1 Background 

Theory suggests two different types of selection effects based on individual’s private in-

formation, i.e., adverse and advantageous selection. Based on classical models of adverse 

selection (e.g., Rothschild & Stiglitz, 1976), individuals have one-dimensional private in-

formation about their risk type. In an equilibrium à la Rothschild and Stiglitz (1976), 

high-risk individuals choose more insurance coverage than low-risk individuals. The 

basic prediction of adverse selection is a positive correlation between insurance coverage 

and the risk of loss conditional on all characteristics used for risk classification (Chiappori 

& Salanié, 2000). Two equivalent parametric tests used in the literature are the regression 

of risk on insurance coverage4 and a bivariate probit model (Cohen & Siegelman, 2010). 

Since the theory of moral hazard (e.g., Pauly, 1968; Shavell, 1979) also predicts a positive 

coverage-risk correlation, such a correlation is not a sufficient condition for adverse  

selection. Nevertheless, a positive coverage-risk correlation is quite robust in a perfectly 

competitive insurance market (Chiappori, Jullien, Salanié, & Salanié, 2006).  

A negative coverage-risk correlation may point to a phenomenon called advantageous 

or propitious selection because low-risk individuals are more likely to purchase insurance 

coverage. Based on Hemenway (1990) and de Meza and Webb (2001), this phenomenon 

may arise when more risk averse individuals are more likely to buy insurance coverage 

and additionally undertake more effort into prevention, which lowers their risk of loss. 

Thus, in contrast to standard adverse selection models, individuals may make decisions 

on their insurance coverage based on multidimensional private information and are thus 

not only heterogeneous in their risk type, but also in their preferences for insurance cov-

erage. In case that preferences for insurance coverage are negatively associated with the 

                                                 

4  Alternatively, insurance coverage can be regressed on risk occurrence (Dionne, Gouriéroux, & Vanasse, 

2001).  
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risk of loss, the insurance market may be advantageously selected (Cutler, Finkelstein, & 

McGarry, 2008; Fang & Wu, 2016). The market structure, however, plays a crucial role 

for the finding of a negative coverage-risk correlation even in the presence of multiple 

dimensions of private information. Consistent with Chiappori and Salanié (2013), Fang 

and Wu (2016) show that multidimensional private information and related selection ef-

fects do not lead to a negative coverage-risk correlation in a market equilibrium in per-

fectly competitive markets unless the loading factor in the insurance market is sufficiently 

large. In a monopolistic or, more generally, in an imperfectly competitive insurance mar-

ket, however, a negative coverage-risk correlation may exist in equilibrium due to multi-

dimensional private information. 

Adverse and advantageous selection may not only arise from an informational disad-

vantage of insurance companies. Finkelstein and Poterba (2014) suggest that an insurance 

market may suffer from selection effects and the related market inefficiencies if observ-

able characteristics significantly correlate with insurance demand and the risk of loss, but 

are not used for determining the insurance premium. They call these characteristics “un-

used observables”. Possible explanations for the existence of unused observables are reg-

ulation and industry norms (Dardanoni & Li Donni, 2016). Furthermore, Kesternich and 

Schumacher (2014) show in a theoretical model that unused observables may also exist 

in an equilibrium when the insurance market is imperfectly competitive and the market 

entry is costly.5  

In this review, thus, a characteristic can be considered as a source of advantageous 

selection under the following two conditions. First, it is not observable to the insurance 

company and/or not used for risk classification. Second, it is positively correlated with 

insurance coverage and negatively with the risk of loss (Fang, Keane, & Silverman, 2008; 

Finkelstein & McGarry, 2006). The theoretical model of de Meza and Webb (2001) sug-

gests risk aversion as a key source of advantageous selection. A characteristic is a source 

of adverse selection if it is not used for pricing and if it is significantly associated with 

                                                 

5  Further possible explanations for the presence of unused observables in insurance markets are discussed 

by Finkelstein and Poterba (2014) as well as Kesternich and Schumacher (2014). 
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insurance demand and the risk of loss in the same direction conditional on pricing. Stand-

ard models of asymmetric information predict that private information of individuals 

about their risk type is the key driver for adverse selection.  

2.1.2 Previous Reviews and New Contribution 

Some previous literature reviews consider the empirical literature on selection effects in 

health insurance and LTCI markets. In a review focusing on the market for acute health 

insurance in the U.S., Cutler and Zeckhauser (2000) report that 25 of 30 empirical studies 

find evidence consistent with adverse selection. This is supplemented by a review of 

Breyer, Bundorf, and Pauly (2012), who predominantly consider studies for the U.S. 

health insurance market divided by primary and supplementary insurance coverage. In 

these reviews, however, advantageous selection and its sources only play a minor role 

and selection effects in LTCI markets are not considered. In a closely related review, Kiil 

(2012) assesses the empirical literature on the determinants of VPHI in systems with uni-

versal health care systems in Europe, Australia and Israel. This review particularly exam-

ines the importance of socioeconomic characteristics, risk preferences and health-related 

factors. Concerning risk preferences, she concludes that the empirical evidence is still 

scarce and mixed. Even though this review considers to what extent the empirical evi-

dence corresponds with theoretical predictions on selection effects, the focus is more on 

the role of different characteristics of privately VPHI enrollees instead of examining to 

what extent certain characteristics contribute to selection effects in different health insur-

ance markets. Moreover, studies of the U.S. Medigap as well as LTCI markets are ex-

cluded. Brown and Finkelstein (2009) discuss several supply-side factors and demand-

side factors that may contribute to the limited market size of the U.S. LTCI market, but 

only consider one study on asymmetric information.  

Further previous reviews put more emphasis on the empirical literature on asymmetric 

information and selection effects in insurance markets without restricting to health insur-

ance or LTCI. Cohen and Siegelman (2010) provide an extensive review of empirical 

studies on adverse selection in different insurance markets. Concerning health insurance, 

they, however, mostly rely on studies already reviewed by Cutler and Zeckhauser (2000), 

while they only include one study with respect to adverse selection in LTCI markets. 

Even though they discuss the existence of risk aversion and other factors that may lead to 
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an offsetting of a positive coverage-risk correlation, their focus is rather on the existence 

and the variance of a positive coverage-risk correlation across different insurance markets 

than on sources of selection effects. The review of Chiappori and Salanié (2013) on asym-

metric information in insurance markets puts more emphasis on the methodology in test-

ing for asymmetric information and related difficulties than on the existence of selection 

effects and its sources. Chetty and Finkelstein (2013) shortly summarizes some evidence 

on selection markets with social insurance, but mostly rely on previous reviews with re-

spect to findings in health insurance markets (e.g., Cutler & Zeckhauser, 2000).  

This paper reviews the empirical work on selection effects in private LTCI markets 

and in the U.S. Medigap insurance market with a focus on the evidence regarding the 

presence and, in particular, the drivers of selection effects that arise from asymmetric 

information or unused observables. For these insurance markets, a growing number of 

studies examined the role of multiple dimensions of private information and related se-

lection effects in recent years. The aim of this review is to examine in a first step whether 

and to what extent selection effects exist in private LTCI markets and in the Medigap 

insurance market. In a second step, this review analyzes what characteristics drive adverse 

and advantageous selection in these markets. By specifically focusing on the sources of 

selection effects in insurance markets, which cover important financial risks for the el-

derly, and by including more recent studies that are not addressed in previous reviews, 

this paper contributes to existing reviews on selection effects in insurance markets. This 

review can be used as a basis for future work on asymmetric information and related 

selection effects in insurance markets and for deriving policy implications.  

The remainder of this paper is structured as follows. Section 2.2 describes the search 

strategy used to identify and to select the empirical studies for this review. Section 2.3 

gives an overview of the identified studies and presents the results with respect to the 

research questions in this review. Section 2.4 concludes. 

2.2 Methods 

The search for empirical studies in this review is primarily based on an electronic search 

for literature in the databases EconLit and Business Source Premier (via EBSCO Host). 

The search terms that are used for this review are “((SU health insurance) OR (SU medi-
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cal insurance) OR (SU Medigap) OR (SU long term care insurance)) AND ((AB asym-

metric information) OR (AB private information) OR (AB adverse selection) OR (AB 

advantageous selection) OR (AB favorable selection) OR (AB selection effect*))”. The 

first component of the search terms refers to the type of insurance market. Using the field 

code SU (i.e., “Subject”) restricts the search for these terms to the subject heading field 

and thus enables a keyword search for subject terms that describe the content of an article. 

The second component aims at the identification of papers that analyzes information 

asymmetries and related selection effects. AB means that the search for the respective 

keywords is restricted to the abstracts. In addition to the main search in the databases, 

primarily reference lists of the identified literature were screened and, moreover, Google 

Scholar was used in order to get knowledge of further studies. The search is limited to 

relevant empirical studies in English or German published between 2005 and July 2017. 

The lower limit is set as empirical studies on multidimensional private information and 

advantageous selection in health insurance and LTCI markets are, to the best of the au-

thor’s knowledge, published after 2004. This should ensure that this review puts emphasis 

on studies that do not only analyze the existence of adverse selection, but also consider 

multidimensional private information and the related sources of selection. 

The selection of studies and the insurance markets is based on the author’s subjective 

judgement of the studies concerning their relevance for answering the research questions. 

Table 2.1 presents criteria applied for including studies in this review. First, empirical 

studies published in peer-reviewed journals as well as working or discussion papers were 

eligible for inclusion given that they examine selection effects in LTCI markets or the 

U.S. Medigap markets. This implies that studies analyzing selection effects in other in-

surance markets, such as studies on health insurance policies with primary coverage or 

on other VPHI markets, are not primarily analyzed in this review. Purely theoretical arti-

cles were not included in this review. 

It should be noted that this review does not claim to cover all empirical studies on 

selection effects in health insurance and LTCI markets. Nevertheless, the study search 

and study selection should ensure a good overview of the empirical literature on selection 

effects and especially on the sources of adverse and advantageous selection in private 

LTCI markets and in the Medigap insurance market.  
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Table 2.1: Inclusion Criteria 

 Inclusion criteria 

Publication type Research articles in peer-reviewed journals; working or 

discussion papers 

Focus of paper Empirical analysis of private information and/or selection effects 

in insurance markets  

Targeted market Long-term care insurance market and/or the U.S. Medigap  

insurance market  

Year of publication 2005-July 2017 

Language English and German 

 

2.3 Results  

2.3.1 Search Results 

The literature search in the two databases yielded 432 search results in total. Of these, 16 

articles remained after removing duplicates and excluding articles based on the selection 

criteria described in Section 2.2. After further searching for relevant papers primarily in 

reference lists of all identified articles, 9 studies were added. This results to 25 included 

studies on the targeted markets in this review. The majority of the included studies is 

published in a peer-reviewed journal (𝑛 = 22). The remaining articles are working papers 

(𝑛 = 3). 16 studies provide empirical evidence for private LTCI markets, while 11 stud-

ies analyzed the U.S. Medigap market.6 Most of the studies are based on survey data with 

few exceptions (Bauer et al., 2017; Desmond, Rice, & Fox, 2006). Table 2.2 gives a sum-

mary of the selected empirical studies divided by the type of insurance market. In addi-

tion, some recent empirical evidence on selection effects in other VPHI markets, particu-

larly from Europe and Australia, is used to consider the findings for LTCI and Medigap 

insurance in a broader context.  

                                                 

6  Note, that 2 included studies (Dardanoni & Li Donni, 2016; Cutler et al., 2008) analyze both the U.S. LTCI 

market and the Medigap insurance market. 
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Table 2.2: Key Information about the Reviewed Studies on Selection Effects in Markets for Private Long-term Care Insurance and 

Medigap Insurance  

Author (year) Data Key results concerning private information and selection effects  Identified sources of selection 

LTCI 

Bauer et al. 

(2017) 

Data from a German health  

insurance company (claims data 

from 2006–2014) combined with  

publicly available data (e.g., from 

the German Census and the  

Eurostat database); N = 98,305  

In the aggregate, individuals holding a private complementary LTCI  

coverage are lower risk types than non-policyholders. Among  

complementary LTCI policyholders, those with more LTCI coverage are 

lower risks. The individual’s occupational status, residential location and 

the holding of further supplementary health insurance policies are observ-

able characteristics that are not used for pricing, but that incorporate in-

formation associated with insurance coverage and the risk of loss. 

Socioeconomic status as a source of 

advantageous selection; mixed  

results for the role of holding of  

further supplementary health  

insurance policies  

Braun, Kopecky, 

and Koresh-

kova (2017) 

Health and Retirement Study 

(HRS) (1992–2012); number of 

observations not reported  

Main findings of Finkelstein and McGarry (2006) with respect to the  

coverage-risk correlation are replicated using a quantitative model. Only 

individuals who are likely to be rejected by insurers have private  

information about their risk of a nursing home use at a 10-year horizon. 

Not explicitly tested. 

Brown et al. 

(2012) 

Participants of the RAND  

American Life Panel aged 50 

years and older (2011);  

N = 1,569 

Controlling for observable characteristics, 27% of people who believe that 

they will need LTC in the future hold LTCI compared to 14% of people 

who do not expect to need care. 

Self-assessment of LTC risk may  

contribute to adverse selection 

   Continued on next page 
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Author (year) Data Key results concerning private information and selection effects  Identified sources of selection 

Browne, and 

Zhou-Richter 

(2014) 

Survey data from the German 

Socio-Economic Panel 

(GSOEP) with information on 

LTCI coverage from 1992 and 

information on the need for LTC 

from 1996–2006; N = 3,749  

individuals 

In the aggregate, the correlation between LTCI coverage and risk is  

positive, consistent with adverse selection as the dominating selection  

effect, but there are factors contributing to advantageous selection in  

addition to factors contributing to adverse selection.  

Adverse selection: self-assessed  

financial readiness (major source), 

only minor role of further tested  

factors, such as self-assessed poor 

health; advantageous selection: 

preference for insurance and level 

of pessimism 

Costa-Font, and 

Rovira-Forns 

(2008) 

Computer-based survey of adult 

heads of households in  

Catalonia (1999); N = 383 

Individuals with a higher perceived risk of disability are more likely to buy 

LTCI. In addition, some (e.g., individual health status), but not all  

proxies for the individual’s risk occurrence, such as the self-assessed 

health, are positively correlated with the probability to buy LTCI.  

Not explicitly tested, but evidence 

suggesting that private information 

about the individual’s risk  

contributes to adverse selection 

Courbage, and 

Rodaut (2008) 

Sample of French individuals from 

the Survey of Health, Ageing, 

and Retirement in Europe 

(SHARE) (2007); N = 2,530 

Individuals with higher LTC risk measured by alcohol consumption, body 

mass index and self-assessed health are more likely to buy private LTCI. 

Not explicitly tested. 

Finkelstein, and 

McGarry 

(2006) 

Individual-level survey data from 

the Asset and Health Dynamics 

(AHEAD) cohort of the HRS 

(1995–2000); N = 5,072 

Individuals have residual private information about their risk of nursing 

home use and this private information is positively associated with LTCI 

purchase. Controlling for risk classification, the correlation between  

ex-post risk occurrence and LTCI coverage is not significantly different 

from zero. Restricting the analysis to a more homogeneous subsample of 

healthier and wealthier individuals, the coverage-risk correlation is  

significantly negative. Multidimensional private information leads to an 

offsetting of adverse and advantageous selection. 

Wealth and cautious health behavior 

(preventive health activities and seat 

belt use) as drivers for advantageous 

selection; self-assessment of nursing 

home risk as a source of adverse  

selection; education, race and  

number of children also contributing 

to adverse selection 

   Continued on next page 
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Author (year) Data Key results concerning private information and selection effects  Identified sources of selection 

Gan, Huang, and 

Mayer (2015) 

Individual-level survey data from 

the AHEAD cohort of the HRS 

(1995–2000); N = 5,119 

Individuals have private information about their risk. More risk averse  

individuals are less likely to go to a nursing home and more likely to buy 

LTCI.  

Risk attitude measured by cautious 

health behaviors and wealth as a 

source of advantageous selection 

Hendren (2013) For the analysis on LTCI: HRS 

(1993–2008) and review of  

underwriting guidelines from  

major insurance companies;  

N = 31,262 observations (13,257 

unique individuals)  

In contrast to those individuals, who actually can buy insurance coverage, 

those, who are likely to be rejected by insurance companies, have a  

considerable amount of private information about their risk. 

Not explicitly tested. 

Ko (2016) HRS (1998–2010); N = 5,105 for 

asymmetric information test and 

N = 19,283 family-year  

observations (4,183 families) for  

equilibrium analysis   

Individuals have private information about the availability of informal care. 

Those who believe that their children will help in case of LTC are less 

likely to use a nursing home and less likely to hold LTCI coverage, i.e.,  

substantial adverse selection based on private information about the  

availability of informal care. 

Availability of informal care as a 

source of adverse selection 

Oster, Shoulson, 

Quaid, and 

Dorsey (2010) 

Data on people at risk for the  

Huntington disease (HD) from 

the Prospective Huntington At 

Risk Observational Study  

(PHAROS) (1999–2010) and 

data on individuals in the general 

population from the HRS (2000); 

N = 7,356 

Individuals who are at about 50% risk for HD are more likely to hold LTCI 

than the general population with an approximately 0% chance for HD. 

The probability to hold LTCI is significantly higher for individuals who 

tested positive and know they carry the HD mutation compared to those 

who are at 50% risk for HD, but not tested, as well as compared to people 

who tested negative.  

Not explicitly tested. 

   Continued on next page 
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Author (year) Data Key results concerning private information and selection effects  Identified sources of selection 

Su, and Spindler 

(2013) 

For the analysis on LTCI: Same 

dataset as Finkelstein & McGarry 

(2006); N = 4,780 

The null hypothesis of no asymmetric information can be rejected at the 

10% significance level using a nonparametric test. Results suggest that  

individuals have some private information, which is related to their risk 

preferences. 

Not explicitly tested. 

Taylor et al. 

(2010) 

The Piedmont Health Survey of 

the Elderly (1986–2006), for  

association of genetic infor-

mation and nursing home use,  

N = 1,999; Risk Evaluation and 

Education for Alzheimer’s  

Disease (REVEAL) Study with  

participants of the second trial for 

association between genetic  

information and LTCI purchase; 

N = 253 

Among individuals who get genetic information about their future risk of 

Alzheimer’s disease, those having an increased risk for that disease are 

2.3 times more likely to increase their LTCI holdings after disclosure of 

this information. 

Not explicitly tested. 

Zick et al. (2005) REVEAL study with participants 

at higher than average risk for  

developing the Alzheimer’s  

disease (2000-2003); N = 148 

Study participants with genetic information that they are at higher risk for 

the Alzheimer’s disease are 5.76 times more likely to alter their LTCI  

coverage in the year after disclosure of genetic information than  

participants without genetic information. Results are not robust to  

sensitivity tests. 

Not explicitly tested. 

Medigap 

Dardanoni,  

Forcina and, 

Li Donni 

(2016) 

HRS (2002); N = 2,286 Individuals have private information leading to a positive coverage-risk 

correlation, but this correlation is heterogeneous across categories of risk 

and insurance coverage.  

Education and cognitive abilities  

contribute to advantageous selection; 

mixed results for proxies for risk  

preferences 

   
Continued on next page 
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Author (year) Data Key results concerning private information and selection effects  Identified sources of selection 

Dardanoni, and 

Li Donni 

(2012) 

HRS (2002–2006; 2006 as  

reference point); N = 3,368 

Substantial multidimensional residual private information leading to  

adverse and advantageous selection. There is adverse selection by  

individuals with both a high (low) propensity to purchase Medigap  

insurance coverage and to use inpatient care. Individuals with opposite  

attitudes to buy insurance coverage and to use inpatient care  

advantageously select into the Medigap market.   

Key sources not explicitly tested. 

Desmond et al. 

(2006) 

Aggregated data from several 

sources on over 60 areas: Two 

large insurance companies,  

Centers for Medicare &  

Medicaid Services (CMS),  

Interstudy, U.S. Census,  

American Academy of Actuaries 

(1994–2000) 

A rising Medicare HMO penetration rate of 10% leads to an increase of 

premiums for Medigap insurance policies by 0.9–2.5%, i.e., adverse  

selection into Medigap insurance market due to greater enrollment in  

Medicare HMO. 

Not explicitly tested. 

Fang et al. 

(2008) 

Medicare Current Beneficiary 

Survey (MCBS) (2000–2001), 

N = 15,945 and HRS  

(2000–2002), N = 9,973 

On average, Medigap policyholders have health expenditure of about 

$4,000 less than non-policyholders; controlling for health, policyholders 

spend about $1,900 more. Conditional on several factors contributing to  

advantageous selection (e.g., cognitive ability, income) health  

expenditures are positively correlated with Medigap insurance coverage.  

Sources of advantageous selection: 

cognitive ability (key source),  

income, education, expectations on 

longevity and financial planning  

horizon; risk aversion is not a main 

source of advantageous selection 

   Continued on next page 
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Author (year) Data Key results concerning private information and selection effects  Identified sources of selection 

Hu, Munkin, and 

Trivedi (2015) 

MCBS (2003–2005); N = 2,309  

observations 

Medigap enrollees with prescription drug coverage are lower risk types 

than those without prescription drug coverage. For instance, the average 

treatment effect ($1,132) is larger than the average treatment effect of the 

treated ($858). As the latter represents the treatment effect of those who  

actually hold prescription drug coverage, while the first is the treatment  

effect of a randomly selected individual, the authors suggest that this  

provides evidence of advantageous selection. 

Not explicitly tested. 

Keane, and  

Stavrunova 

(2016) 

MCBS (2000–2001), N = 14,129 

and HRS (2002), N = 1,671  

Conditional on covariates used for pricing, Medigap insurance coverage 

correlates negatively with risk (i.e., advantageous selection as dominating 

selection effect). After additionally controlling for several sources of  

selection (e.g., cognitive ability), there is only weak adverse selection; a 

rise in expenditure risk by one standard deviation is associated with a rise 

in the probability of purchasing Medigap insurance by 5.5 percentage 

points. Findings indicate that selection on unobserved health is less 

important. 

Sources of advantageous selection: 

cognitive ability and income  

(key sources), education, expecta-

tions on longevity, financial planning  

horizon; only minor role of risk  

aversion; indicators for blacks and  

Hispanics (i.e., race) as important 

source of adverse selection 

Li, and Trivedi 

(2016) 

MCBS (2003–2004); N = 7,664  

observations (5,725 unique 

individuals) 

Concerning prescription drug expenditures, both adverse and advantageous 

selection exist in Medicare supplemental plans including Medigap; for  

instance, there is adverse selection into Medigap plans relative to basic 

Medicare fee-for-service plans only, but advantageous selection into 

Medigap with prescription drug coverage relative to Medigap without 

drug coverage. 

Not explicitly tested. 

Munkin, and 

Trivedi (2010) 

MCBS (2003–2005) with  

additional data from the Area  

Resource File and the State 

County File; N = 7,273 

There is adverse selection into supplemental plans with prescription drug 

coverage, particular for the higher expenditure latent type; no  

disaggregation for different types of supplemental plans that offer  

prescription drug coverage to isolate selection effects specifically in 

Medigap plans. 

Not explicitly tested. 

   Continued on next page 
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Author (year) Data Key results concerning private information and selection effects  Identified sources of selection 

Zimmer (2012) Medical Expenditure Panel Survey 

(2000–2005); N = 15,787  

Overall, holding supplemental insurance coverage is positively associated 

with health care expenditure. But consistent with advantageous selection, 

individuals with supplemental insurance are, on average, healthier.  

Individuals with access to employer-sponsored supplemental insurance 

have lower health care expenditure. People do not select into supple-

mental insurance based on their risk preferences. Expenditures on  

prescription drugs do not considerably differ between individuals with 

and without supplemental insurance coverage. 

Some socioeconomic characteristics 

contribute to advantageous selection; 

only minor role of risk aversion as a 

source of selection 

Medigap and LTCI 

Cutler et al. 

(2008) 

AHEAD sample of the HRS for 

analyzing the market for LTCI 

(1995–2002), N = 6,401 and for 

Medigap (1995), N = 6,383 

More risk averse (proxied by five measures of behavior, such as smoking) 

individuals are more likely to hold five types of insurance policies includ-

ing Medigap and LTCI. Some proxies for risk aversion (e.g., seat belt 

use) are negatively associated with nursing home use, but not systemati-

cally associated with health care costs covered by Medigap policies. 

Risk preferences as a source of  

advantageous selection in LTCI  

markets, but not in the Medigap  

market 

Dardanoni, and 

Li Donni 

(2016) 

LTCI: AHEAD cohort of the HRS 

(1995–2000); restricted sample 

of individuals in the top quartile 

of the wealth and income  

distribution and without health 

conditions that could lead to a  

rejection by insurers; N = 1,491 

Conditional on risk classification, individuals are heterogeneous with  

respect to cautiousness. Cautious individuals are 2.5 times less likely to  

enter a nursing home, but four times more likely to buy LTCI. The  

welfare loss of unpriced heterogeneity is about 7.5–10% of total  

insurance coverage costs. 

Cautiousness as a source of  

advantageous selection 

 Medigap: HRS (1994–2010); 

N = 5,432 

Conditional on risk classification, there is multidimensional heterogeneity 

leading to both adverse and advantageous selection. The welfare loss of 

not pricing on residual heterogeneity is about 14–28% of total insurance  

coverage costs. 

No specific source of selection  

identified. 

Notes: The number of observations within the studies varies due to different estimation models and missing values for some variables. In this table, the maximum number of observa-

tions used in the study is reported. 



  

21 

2.3.2 Existence of Selection Effects in Insurance Markets 

2.3.2.1 Long-term Care Insurance Markets 

LTCI generally provides financial compensation for LTC services in an institution, such 

as a nursing home, or at the care recipient’s home when individuals suffer from physical 

and/or cognitive impairment in performing routine activities of daily living, such as bath-

ing, eating and dressing (e.g., Brown & Finkelstein, 2009; Courbage & Roudaut, 2008). 

In this review, the included studies examine existing private LTCI insurance markets in 

the U.S., France and Germany.7 With regards to the population coverage, these are one 

of the largest markets even though the demand is still rather low. For instance, only 5% 

of the U.S. population aged 40 years and older held a private LTCI in 2010.8 Typically, 

private LTCI markets coexist with a public LTC system. For instance, in the U.S., private 

LTCI policies offer coverage for individuals that are not eligible for Medicaid, which is 

the public insurance program for the indigent. In other OECD countries, such as Germany 

and France, private LTCI provides complementary LTCI coverage in addition to basic 

public coverage for LTC services (Colombo et al., 2011). In contrast to the evidence on 

many health insurance markets, the empirical literature on LTCI markets suggests that 

multidimensional private information play an important role for this insurance type and 

lead to both adverse selection and advantageous selection.  

Most of the existing studies analyze the private LTCI market in the U.S. based on data 

from the Health and Retirement Study (HRS). In a seminal paper, Finkelstein and 

McGarry (2006) provide evidence of multiple dimensions of private information in this 

insurance market. In a first step, they test for asymmetric information directly by exam-

ining the individual’s subjective assessment of the probability of entering a nursing home. 

They control for the risk classification by insurance companies including the individual’s 

age and health status. In case of poor health conditions, applicants may even be rejected 

                                                 

7  It should be noted that in some countries (e.g., U.S. and France), people may have private LTCI coverage 

by individual contracts or by group insurance policies, which are typically offered by employers (Colombo 

et al., 2011). 
8  In France, about 15% of the population held a private LTCI policy in 2010, while only about 3.5% of the 

German population aged 40 years and older held a private complementary LTCI policy (Colombo et al., 

2011). 
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by insurance companies.9 They find that individuals have residual private information 

about their risk of becoming a nursing case and that this private information is positively 

correlated with the holding of LTCI as proposed by standard adverse selection models. 

Applying the bivariate probit model based on Chiappori and Salanié (2000) in a second 

step, they do not find evidence that individuals with a higher risk experience are more 

likely to buy LTCI coverage after controlling for the risk classification. Restricting the 

analysis to a more homogeneous sample of individuals, who are in the top quartile of the 

wealth distribution and who do not have any health conditions that might lead to a rejec-

tion by insurers, they even find a significantly negative coverage-risk correlation. As an 

explanation for these seemingly conflicting results, they suggest that individuals also have 

private information about factors other than the risk type and that this may lead to advan-

tageous selection and an offsetting of adverse selection in the aggregate. Their results 

provide suggestive evidence that cautiousness and wealth are factors that contribute to 

advantageous selection.  

Some more recent studies propose alternative econometric approaches to test for 

asymmetric information and apply their approach to the same dataset as Finkelstein and 

McGarry (2006) without using information of the individuals’ self-assessed probability 

to enter a nursing home. Su and Spindler (2013), for instance, show that asymmetric in-

formation exist in the U.S. LTCI market by applying a nonparametric test. Their findings 

suggest that individuals have some sort of private information that is related to the risk 

attitude as opposed to risk occurrence. Using a finite mixture model (FMM), Dardanoni 

and Li Donni (2016) as well as Gan et al. (2015) find evidence of multidimensional pri-

vate information in this insurance market. They identify two types of individuals that 

substantially differ in their insurance demand and risk occurrence as well as in their cau-

tiousness. Dardanoni and Li Donni (2016), for instance, show that more cautious individ-

uals are four times more likely to purchase LTCI, but about 2.5 times less likely to enter 

a nursing home than more reckless individuals. In sum, these studies support the main 

results of Finkelstein and McGarry (2006). 

                                                 

9  In the U.S., insurance companies offering private LTCI apply medical underwriting and may reject appli-

cants if they have health conditions that make them more likely to become a nursing case, such as re-

strictions in activities of daily living - and/or if they are aged 80 years and older and are thus likely to be 

too costly for insurance companies (Hendren, 2013). Braun et al. (2017) estimate that 36% of individuals 

aged 55–66 would be rejected in the U.S. LTCI market due to medical underwriting. 
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Braun et al. (2017) develop a quantitative optimal contracting model of the U.S. LTCI 

market to analyze the empirical relevance of several demand-side and supply-side fric-

tions. Calibrating their model based on HRS data, they are able to reproduce the main 

findings of Finkelstein and McGarry (2006) with respect to the evidence of asymmetric 

information and with respect to the correlation between LTCI coverage and nursing home 

entry. As their model is based, however, on the assumption that individuals only have 

one-dimensional private information, their results propose alternative explanations for a 

small positive or even a negative coverage-risk correlation. Their model, for instance, 

suggests that the correlation between the holding of LTCI coverage and loss occurrence 

is positive, but small since low- and high-risk types do not differ in the LTCI uptake rate 

within most groups of individuals that are identical for an insurance company.  

In countries other than the U.S., the empirical literature on selection effects in LTCI 

markets is rather sparse and mixed. In Germany, premiums for private complementary 

LTCI policies are based on the age at the date of the insurance uptake and, up to and 

including December 2012, on gender. Similar to the U.S. LTCI market, insurance com-

panies may reject applicants based on medical underwriting. Consistent with the evidence 

on the U.S. LTCI market, studies on selection effects into private LTCI in Germany show 

that both adverse and advantageous selection are present. Browne and Zhou-Richter 

(2014) find that adverse selection is the dominating selection effect in the German LTCI 

market. As they additionally identify some sources of advantageous selection, such as the 

individuals’ level of pessimism, their findings indicate that selection effects are based on 

multidimensional private information. The latter is supported by Bauer et al. (2017)10, 

who find that individuals with a complementary LTCI are lower risks than non-policy-

holders and that those policyholders with higher LTCI coverage are lower risks than those 

with lower LTCI coverage. In contrast to Browne and Zhou-Richter (2014), this finding 

suggests that the LTCI is predominantly advantageously selected. They identify the oc-

cupation, residential location and holding of further supplementary health insurance pol-

icies as unused observables since these factors include information that are associated 

with LTCI coverage and the risk of loss, but are not used by the insurer for pricing. One 

possible explanation for the differences in the findings between both studies are differ-

ences in the data sources. While Browne and Zhou-Richter (2014) use survey data from 

                                                 

10  This study is presented in detail in chapter 3 of this dissertation. 
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the German Socio-Economic Panel (GSOEP) that includes information of individuals of 

the SHI and the substitutive PHI, Bauer et al. (2017) use data from a German PHI com-

pany only on enrollees of the substitutive PHI, which is not representative for the whole 

German population.11 Moreover, the different time periods may explain differences in the 

empirical findings.  

With regards to the French market for private LTCI, Courbage and Roudaut (2008) 

find some suggestive evidence that adverse selection is present in this market as some 

indicators for LTC risk, such as the body mass index, are positively correlated with LTCI 

coverage controlling for age as a proxy for the pricing of LTCI policies. However, they 

conclude that this finding is to be considered with caution due to limitations in the data, 

such as regarding the insurance product’s characteristics. Costa-Font and Rovira-Forns 

(2008) analyze determinants of the ex-ante demand for LTCI in a time of inexistence of 

LTCI policies in Spain using a representative sample of Catalonia. Similar to the evidence 

for the French LTCI market, they also find some evidence in favor of adverse selection. 

Consistent with findings of Finkelstein and McGarry (2006), they show that individuals 

with higher perceived LTC risks are associated with a higher probability to purchase 

LTCI. Moreover, some measures which are related with an individual’s LTC risk, such 

as the health status, are also positively associated with the demand on LTCI.  

It should be noted that LTCI policies, such as in the U.S. and in Germany are typically 

long-term term contracts that are guaranteed renewable (Pauly, Kunreuther, & Hirth, 

1995). In a situation with a lack of consumer commitment, i.e., policyholders may let 

their policy lapse, and with policyholders that learn about their risk of loss over time, the 

risk pool may worsen over time if the front-loading in these policies is insufficient to 

lock-in low-risk individuals (Hendel & Lizzeri, 2003). Thus, LTCI markets may not only 

suffer from selections effects into the market, but also from an ex-post selection of low-

risk types out of LTCI policies.12 While there is some evidence of such ex-post risk-based 

                                                 

11  In Germany, only about 12% of the population is covered by the substitutive PHI, while about 88% is 

covered by the SHI (Federal Ministry of Health, 2017). Only dependent workers or employees with an 

income above a certain income threshold, civil servants and self-employed individuals may opt for the 

German substitutive PHI. 
12 Ex-post in this context means after the signing of the insurance contract. 
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selection (Finkelstein, McGarry, & Sufi, 2005), some more recent studies provide evi-

dence suggesting that LTCI policy lapses are rather an issue of financial problems (Bauer 

et al., 2017; Konetzka & Luo, 2011).  

2.3.2.2 Medigap Insurance Market  

The public insurance program Medicare in the U.S. provides primary health insurance 

coverage for most elderly aged 65 and older as well as for disabled individuals. Tradi-

tional fee-for-service Medicare plans provide insurance coverage for hospital care (Part 

A) and outpatient medical care services (Part B). However, enrollees of these plans bear 

a considerable financial risk due to out-of-pocket expenses on health care including co-

payments, deductibles and uncovered benefits. They may buy a Medigap plan as a sup-

plemental insurance policy from PHI companies to fill these coverage gaps. Relative to 

the U.S. market for private LTCI, the Medigap insurance market is highly regulated. First, 

in most states, insurance companies can sell only ten standardized policies with similar 

benefits. Second, ex-ante premium differentiation is limited since pricing is mainly based 

on age, gender, place of residence and the smoking status. In addition, there is no medical 

underwriting at least in the 6-month open enrolment period, which starts after individuals 

are at least 65 years old and are enrollees of Medicare Part B. This regulation makes this 

market prone for selection effects (Fang et al., 2008).  

As reviewed by Breyer et al. (2012), the evidence on selection effects of Medicare 

enrollees into the Medigap market based on studies published before 2005 is mixed. Re-

cent empirical studies on selection of Medicare beneficiaries into the Medigap insurance 

market provide evidence that multidimensional private information may explain these 

ambiguous results. In a widely noted paper, Fang et al. (2008) find that Medicare benefi-

ciaries with Medigap insurance spend, on average, about $4,000 less than individuals 

without that SuppHI coverage, but about $1,900 more after controlling for health indica-

tors. While the first finding provides evidence of multidimensional private information, 

the latter is consistent with ex-post moral hazard. Taken both results together indirectly 

points to advantageous selection in the aggregate, i.e., elderly with better health are more 

likely to hold a Medigap policy. After gradually adding several potential sources of ad-

vantageous selection to their regression of Medigap coverage on expected medical ex-

penditure and pricing characteristics they find that the coverage-risk correlation turns 

positive as proposed by standard adverse selection models.  



  

26 

Several more recent studies on the Medigap market corroborate the key findings of 

Fang et al. (2008) concerning selection effects. A closely related paper by Keane and 

Stavrunova (2016) extends the work of Fang et al. (2008) in several ways, especially by 

using a simultaneous equations model for jointly analyzing selection and moral hazard 

effects. Their model enables them to account for endogeneity of insurance status when 

examining the extent of selection effects. Using the same database as Fang et al. (2008), 

their results are similar to those of Fang et al. (2008) concerning multidimensional private 

information, the extent of selection effects as well as the sources of selection in this mar-

ket.13 However, using an extended set of potential sources of selection, they only find a 

weak adverse selection effect that is smaller by one third compared to that measured by 

Fang et al. (2008). Specifically, they find that a rise in health care expenditure risk by one 

standard deviation (i.e., $12,700) is associated with an increased probability of holding 

Medigap insurance by 5.5 percentage points. Among a huge set of factors, both studies 

particularly identify the individual’s cognitive ability and income, but not the risk attitude 

as a key driver for advantageous selection. Based on survey data from the Medical Ex-

penditure Survey Data, Zimmer (2012) separately analyze Medigap policies from em-

ployer-sponsored supplemental insurance coverage for Medicare beneficiaries. He also 

finds evidence suggesting that Medicare beneficiaries with better health advantageously 

select into supplemental insurance coverage. However, in contrast to the findings of Fang 

et al. (2008), he shows a positive relationship between health care expenditure and 

Medigap coverage unconditional on health and further covariates, which may at least to 

some extent be explained by differences in the data sources.  

Dardanoni et al. (2016) propose a multivariate ordered logit regression model for test-

ing for asymmetric information in insurance markets and apply it on the U.S. Medigap 

insurance market. Their approach extends the standard bivariate probit model based on 

Chiappori and Salanié (2000) by considering ordered categorical dependent variables in-

stead of binary dependent variables and by considering several risk measures simultane-

ously. Using doctor visits and hospital stays as risk measures, they do not only find evi-

dence of asymmetric information in this market, but a positive correlation between 

                                                 

13  Keane and Stavrunova (2016) additionally find evidence of advantageous selection on health that is unob-

served to the econometrician, even conditional on the entire set of potential sources of advantageous selec-

tion. However, their results indicate that the unobserved components of health are less important with re-

spect to the extent of adverse selection in this market.  
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Medigap insurance coverage and these risk measures, which is not homogenous across 

categories of risk and insurance coverage. Their findings imply that the coverage-risk 

correlation depends on how risk and insurance coverage are classified into high and low. 

In line with other studies on the Medigap market (e.g., Fang et al., 2008), their results 

additionally reveal that individuals have multidimensional private information (e.g., on 

cognitive abilities) leading to advantageous selection in this market.  

Using HRS data, Dardanoni and Li Donni (2012) examine ex-post moral hazard and 

selection effects on inpatient care. They apply a recursive bivariate probit model and a 

discrete multivariate FMM to disentangle selection from moral hazard. Based on the idea 

that a finite number of types that are heterogeneous in the purchase of insurance coverage 

and in the utilization of medical care can be identified conditional on the pricing charac-

teristics, the latter model aims at understanding selection effects under multidimensional 

private information. They identify four types that represent residual heterogeneity and 

provide evidence of substantial multidimensional private information leading to adverse 

and advantageous selection in this market. For instance, they find, conditional on risk 

classification, that some individuals are more likely to buy Medigap insurance coverage 

and to use inpatient care (consistent with adverse selection), while some individuals have 

a high preference for insurance, but a low inpatient care use (consistent with advanta-

geous selection). Their findings suggest that low-risk types suffer from substantial cross-

subsidization of high-risk types. Similar, Dardanoni and Li Donni (2016) identify five 

types of individuals that have expected medical costs independent of insurance coverage 

within these types, but that differ substantially in the expected medical costs and in the 

Medigap insurance coverage conditional on the insurer’s risk classification across the 

types. There is no clear order of the types in terms of both risk of loss and insurance 

coverage. For instance, one high-risk type has a relatively high probability to buy LTCI 

compared to low-risk types, while the opposite holds for another type of high-risk  

individuals. Their findings of the large heterogeneity of these types indicate the existence 

of multidimensional private information and the presence of both types of selection. They 

estimate that the lack of premium differentiation across these types and the associated 

implicit cross-subsidization between high- and low-risks is about 25% of total insurance 

coverage costs.  
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As an alternative source of supplemental insurance coverage for the elderly in the 

U.S., individuals may choose to enrol in Medicare managed plans, such as Health Mainte-

nance Organizations (HMO), which are also called Medicare Advantage plans or 

Medigap Part C. In these plans, enrollees have lower deductibles and co-payments as well 

as more benefits than in traditional Medicare, but are restricted to receive benefits only 

from the provider network of the managed care plan (Fang, 2016). Using aggregated data, 

Desmond et al. (2006) analyze the effect of Medicare HMO enrolment on premiums in 

the Medigap insurance market. Their results indicate that an increased Medicare HMO 

penetration rate is associated with a moderate rise of Medigap premiums. They conclude 

that Medicare HMO plans cause an adverse selection into the Medigap insurance market. 

A possible explanation for this result is that SuppHI coverage for Medicare enrollees 

through managed care plans is less attractive for sicker individuals due to the restrictions 

in the choice of health care providers.  

Traditional Medicare plans do not provide insurance coverage for prescription drugs. 

Before the introduction of Medicare Part D in 2006, which provides optional prescription 

drugs coverage for Medicare beneficiaries, three out of ten standardized Medigap plans 

offered optional drug coverage (Hu et al., 2015). While anecdotal evidence suggests that 

drug coverage appears to be heavily adversely selected (Breyer et al., 2012), recent stud-

ies use data from the Medicare Current Beneficiary Survey to examine ex-post moral 

hazard and selection effects with respect to prescription drug coverage offered in some 

Medigap plans before 2006. By applying econometric approaches (e.g., an extended two-

part model) that incorporate instrumental variables, these studies estimate moral hazard 

effects as treatment effects while accounting for unobserved selection effects into supple-

mental plans. 

Munkin and Trivedi (2010) find evidence in favor of adverse selection of Medicare 

beneficiaries into supplemental prescription drug coverage, particularly for the group of 

individuals with higher average drug expenditures. They consider, however, drug cover-

age at an aggregated level without allowing for differences between prescription drug 

coverage through a Medigap plan and other sources. Li and Trivedi (2016) conduct a 

more disaggregated analysis and distinguish between employer-sponsored insurance 

plans, Medicare managed care plans and Medigap plans with and without drug coverage. 

Focusing their analysis on prescription drug expenditures, their findings suggest that both 
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adverse and advantageous selection into supplemental plans are present. For instance, 

they find evidence of adverse selection for Medigap plans relative to the choice of Med-

icare without supplemental insurance coverage, but advantageous selection for Medigap 

plans with prescription drug coverage relative to Medigap plans without drug coverage. 

In another study, Hu et al. (2015) provide several findings that are in favor for advanta-

geous selection. For instance, they show that the incentive effect of prescription drug 

coverage measured with the average treatment effect is more than $1,132, while the ob-

served difference in the expenditure on prescription drugs between individuals with and 

without such prescription drug coverage is only $337. As the latter includes both moral 

hazard and selection effects, the authors conclude that this indicates the presence of ad-

vantageous selection. In sum, the findings of these studies on prescription drug coverage 

indicate that both adverse and advantageous selection are present, which may be ex-

plained by multidimensional private information. However, these studies do not explicitly 

examine sources of selection. 

It should be noted that particularly recent studies on the Medigap market take the 

problem of disentangling selection effects from incentive or treatment effects in their 

econometric approach into account (Dardanoni & Li Donni, 2012; Hu et al., 2015; Keane 

& Stavrunova, 2016). Thus, the evidence on multidimensional private information and 

related selection effects in this insurance market based on the studies included in this 

review is less likely to be biased by any moral hazard effects.14 Moreover, it seems to be 

less likely that a negative coverage-risk correlation results from denials of high-risk indi-

viduals, since rejections of enrollees are only possible after the 6-month open enrollment 

period. Fang et al. (2008) show and discuss that advantageous selection in this market is 

rather driven by the choice of consumers themselves than by cream skimming activities 

by insurance companies. Nevertheless, there is still need for further research on this issue 

(Fang, 2016).  

The empirical evidence of multidimensional private information and the existence of 

both adverse and advantageous selection in the Medigap insurance market is consistent 

with findings for other VPHI markets that coexist with public health care systems. For 

different European VPHI markets, there is some evidence of adverse selection (Franc, 

                                                 

14  The different approaches are not discussed in more detail in this review. See Cohen and Siegelman (2010) 

and Dionne (2013) for a discussion of disentangling moral hazard effects from selection effects.  
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Perronnin, & Pierre, 2010; Lange, Schiller, & Steinorth, 2017; Olivella & Vera-Hernán-

dez, 2013; Schokkaert, Van Ourti, De Graeve, Lecluyse, & Van de Voorde, 2010). Using 

data from the Survey of Health, Ageing, and Retirement in Europe (SHARE) on people 

aged 50 and older in eleven European countries, Paccagnella, Rebba, and Weber (2013), 

for instance, find that those with low physical health are more likely to hold VPHI in 

Denmark, Netherlands, Switzerland and Austria. Even though their focus is not on testing 

for asymmetric information, they conclude that this might point to adverse selection in 

these countries. Several other studies provide evidence indicating that advantageous se-

lection exist in European VPHI markets (e.g., Bolhaar, Lindeboom, & van der Klaauw, 

2012; Schmitz, 2011) and in the Australian market for private duplicate health insurance 

(e.g., Buchmueller, Fiebig, Jones, & Savage, 2013; Doiron, Jones, & Savage, 2008). 

Based on SHARE data, Bolin, Hedblom, Lindgren, and Lindgren (2010) even find a neg-

ative association between risk and VPHI coverage in several European countries for in-

dividuals at the age of 50 years and older. These findings support the results for the 

Medigap insurance market even though VPHI policies in some markets (e.g., Australia) 

aim at improving the quality and service of health care as well as the access to health care 

rather than at reducing financial risks. Moreover, it should be noted that, compared to the 

Medigap insurance market, those VPHI markets in Europe and Australia in general do 

not focus on the elderly population.  

2.3.3 Sources of Selection 

2.3.3.1 Risk Type 

Theory proposes that private information of individuals about their expected risk of loss 

is the most important source of adverse selection (e.g., Rothschild & Stiglitz, 1976). Find-

ings of a positive coverage-risk correlation conditional on the insurer’s risk classification 

may be explained by residual private information of individuals about their risk type given 

that moral hazard is sufficiently controlled for. Consistent with ambiguous effects of self-

reported health measures on holding VPHI (see Kiil, 2012 for a review), the evidence 

based on explicit tests for this type of private information in private LTCI markets is 

mixed. While Courbage and Roudaut (2008), for instance, find that individuals with bad 

self-assessed health are more likely to purchase private LTCI in France, some studies 

provide direct evidence suggesting that individuals with higher self-perceived risk are 
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more likely to purchase LTCI coverage (Brown et al., 2012; Costa-Font & Rovira-Forns, 

2008; Finkelstein & McGarry, 2006).15 Browne and Zhou-Richter (2014), however, find 

that individuals with worse self-assessed health are more likely to have a higher risk of 

becoming a nursing case, but not more likely to buy LTCI relative to individuals with a 

better self-assessed health. The latter is in line with many findings in markets for VPHI 

(Kiil, 2012) and, following Zhou-Richter, Browne, and Gründl (2010), may be explained 

by the unawareness of some individuals with bad health with respect to their LTC risk. 

In addition, it may also be difficult for some individuals to predict their future LTC risk 

adequately and thus to make optimal decisions on LTCI coverage. 

Some recent studies suggest that private information about risk among those individ-

uals, who are unlikely to be rejected by insurers and are thus actually able to buy LTCI, 

is not a key source of adverse selection. Hendren (2013) proposes that the absence of a 

positive correlation between insurance coverage and risk occurrence, as shown by Finkel-

stein and McGarry (2006), may be explained by rejections of applicants. Analyzing the 

U.S. LTCI market, Hendren (2013) as well as Braun et al. (2017) find that individuals, 

who are likely to be offered LTCI policies, do not have significant private information 

conditional on criteria used for risk classification, while people that would be rejected by 

insurance companies have a relatively larger and significant amount of private infor-

mation. As the latter type of individuals are higher risk types, the possibility of rejections 

by insurance companies may prevent adverse selection and thus a positive correlation 

between insurance coverage and risk occurrence. Based on the observation that the LTCI 

uptake rate declines with observable frailty, Braun et al. (2017) show that the coverage-

risk correlation may even be negative in a setting with one-dimensional private infor-

mation if the researcher does not sufficiently control for the information set of an insurer 

and hence for possible rejections of high-risk individuals. In line with these findings, Ko 

(2016) provides evidence that, among people who are less likely to be rejected in the U.S. 

LTCI market, the individual’s belief of entering a nursing home is not significantly asso-

ciated with actual nursing home use conditional on pricing characteristics and beliefs 

                                                 

15  Brown et al. (2012) note some potential limitations concerning their findings and its generalizability as, for 

instance, their results may be biased by reversed causality or sample selection. Even though they find a 

strong positive relationship between the expectation about the need for LTC and LTCI coverage in the U.S. 

after controlling for some observable sociodemographic characteristics, they may not sufficiently control 

for risk classification.  
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about the availability of informal care. It should be noted, however, that the finding of 

Finkelstein and McGarry (2006) of a negative correlation between LTCI coverage and 

nursing home use among a more homogeneous subsample of wealthier and healthier in-

dividuals is unlikely to be explained by rejections.  

While some evidence casts doubt that some individuals have private information their 

risk type, genetic tests are increasingly available and may provide individuals additional 

private information about their risk of suffering from a disease. In the U.S., the Genetic 

Information Nondiscrimination Act of 2008 outlaws health insurance companies to use 

genetic information, but does not explicitly consider other insurance markets including 

LTCI (Taylor et al., 2010). Some studies examine genetic testing on specific diseases and 

the related selection behavior in the U.S. LTCI market and provide evidence suggesting 

that genetic testing may cause or exacerbate adverse selection. Zick et al. (2005), for in-

stance, find that individuals who receive genetic information that they are at higher risk 

for the Alzheimer’s disease are more likely to alter their LTCI coverage than those with-

out disclosure of genetic information. Taylor et al. (2010) provide evidence that confirm 

these results and show that individuals with a higher risk of the Alzheimer’s disease based 

on genetic testing are more likely to enter a nursing home. Major limitations in these 

studies concerning LTCI purchase are the small sample size and the restriction to partic-

ipants who are higher than average risk types for the Alzheimer’s disease. Oster et al. 

(2010) find that individuals who know that they carry the Huntington disease (HD) mu-

tation based on genetic testing are significantly more likely to hold LTCI coverage rela-

tive to the general population with an approximately chance of 0% to have HD. Among 

the individuals at risk for HD, the probability to hold LTCI is significantly higher for 

those who find out that they carry the HD genetic mutation based on genetic testing com-

pared to those with negative test results for carrying this genetic mutation. The authors 

conclude that an increased availability of genetic information may lead to increasing pri-

vate information for individuals about their risk type and thus to an exacerbation of ad-

verse selection and related market inefficiencies. 
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2.3.3.2 Risk Preferences 

While the evidence on the association of risk preferences and the demand for insurance 

coverage in VPHI markets other than the Medigap market is sparse (Kiil, 2012), several 

studies on LTCI markets and the Medigap insurance market examine the role of risk pref-

erences as it is proposed to explain advantageous selection (e.g., de Meza & Webb, 2001). 

In the literature, there is no standard measure used for risk attitude (Anderson & Mellor, 

2008). Thus, there is a wide range of proxies used for risk preferences in the studies on 

LTCI markets and on the Medigap insurance market including self-reported risk attitudes 

(Costa-Font & Rovira-Forns, 2008; Zimmer, 2012), individual’s cautiousness (Browne 

& Zhou-Richter, 2014; Cutler et al., 2008; Dardanoni et al., 2016; Dardanoni & Li Donni, 

2016; Finkelstein & McGarry, 2006; Gan et al., 2015; Zimmer, 2012), the individual’s 

preference for insurance measured by the ownership of other types of insurance (Bauer 

et al., 2017; Browne & Zhou-Richter, 2014), a measure based on individual’s choices 

over hypothetical income gambles (Fang et al., 2008; Keane & Stavrunova, 2016) as well 

as the share of portfolio invested in safer assets (Dardanoni et al., 2016; Dardanoni & Li 

Donni, 2016). 

Particularly the latter two measures capture financial risk aversion. This may be dif-

ferent from health-related risk attitude. While some evidence suggests that risk prefer-

ences are not stable across contexts (Barseghyan, Prince, & Teitelbaum, 2011), Dohmen 

et al. (2011) find a relatively strong correlation of risk attitudes in different contexts in-

cluding financial matters and health. Another concern about decisions of survey respond-

ents in hypothetical situations, such as choices over hypothetical income gambles (e.g., 

Fang et al., 2008), is that individuals may actually behave differently in real life situations 

(Anderson & Mellor, 2008). Some evidence, however, suggest that measures for risk 

preferences based on hypothetical situations are associated with risk-taking behavior 

(e.g., smoking) as well as decisions on holding insurance coverage or on investments in 

risky assets (e.g., Barsky, Juster, Kimball, & Shapiro, 1997). Most studies that examine 

risk preferences in LTCI and the Medigap insurance market rely on health-related behav-

iors that capture the cautiousness of individuals including risk-reducing activities (e.g., 

having a flu shot, blood test for cholesterol, mammogram and seat belt use) as well as the 

refraining of risky activities (e.g., alcohol consumption and smoking). Basically, cau-

tiousness can be considered closely related to risk aversion. However, it may well be the 
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case that more risk averse individuals do not put more effort into preventive activities 

(Dionne & Eeckhoudt, 1985; Jullien, Salanié, & Salanié, 1999). Thus, while more risk 

averse individuals can be assumed to buy insurance coverage with a higher probability, it 

is an empirical question whether that also applies to more cautious individuals (Finkel-

stein & McGarry, 2006). There is some evidence of a significantly negative relationship 

between health-related behaviors (i.e., smoking, alcohol consumption, obesity and the 

non-use of a seat belt) and an experiment-based measure of risk aversion. This indicates 

that these health-related behaviors are consistently affected by the attitude towards risk 

(Anderson & Mellor, 2008).  

The empirical work on private LTCI and Medigap insurance indicates that the role of 

risk preferences as a source of advantageous selection varies across insurance markets. In 

LTCI markets, the empirical evidence predominantly suggests that risk aversion contrib-

utes to advantageous selection (Browne & Zhou-Richter, 2014; Cutler et al., 2008; Dar-

danoni et al., 2016; Dardanoni & Li Donni, 2016; Finkelstein & McGarry, 2006; Gan et 

al., 2015; Su & Spindler, 2013) even though there are few exemptions. For instance, the 

studies on the German LTCI market find that individuals with additional VPHI policies 

are more likely to hold complementary private LTCI.16 While the findings of Browne and 

Zhou-Richter (2014) suggest that preference for insurance coverage is an important 

source of advantageous selection, Bauer et al. (2017), however, conclude that the associ-

ation between the holding of other types of insurance and claims for LTC benefits is 

mixed. Concerning the individual’s cautiousness, Cutler et al. (2008), for instance, do not 

identify a systematic relationship of risky behaviors (e.g., smoking) and nursing home 

use, but find that risk preferences proxied by preventive health care and seat belt are a 

source of advantageous selection in the U.S. LTCI market. Similar, Browne and Zhou-

Richter (2014) find that the individual’s level of pessimism contributes to advantageous 

selection, which may be explained by an overestimation of the loss probability and a more 

cautious behavior. However, they find that individuals who engage in active sports only 

infrequently are more likely to have a higher risk of needing LTC, but not less likely to 

hold LTCI. This is in line with Costa-Font and Rovira-Forns (2008) who do not identify 

self-assessed risk aversion as a significant determinant of LTCI coverage. Nevertheless, 

Dardanoni and Li Donni (2016) estimate that the welfare loss in the U.S. LTCI market 

                                                 

16  This is consistent with findings for other VPHI markets (Buchmueller et al., 2013; Lange et al., 2017). 
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due to a lack of premium differentiation based on the individual’s cautiousness is about 

7.5% to 10% of total insurance coverage costs.  

Studies on the U.S. Medigap insurance market predominantly provide evidence that 

risk aversion is rather unimportant in explaining advantageous selection even though 

more risk averse individuals are more likely to have Medigap insurance (Cutler et al., 

2008; Dardanoni et al., 2016; Fang et al., 2008; Keane & Stavrunova, 2016; Zimmer, 

2012). Fang et al. (2008) and Keane and Stavrunova (2016), for instance, find that risk 

aversion only slightly affects the relationship between insurance coverage and risk. An 

explanation for this finding is that the health status of less risk averse individuals is not 

particularly bad. Similar, Cutler et al. (2008) do not identify a systematic association be-

tween risk preferences and expected claims in this insurance market. Consistent with find-

ings of Dardanoni et al. (2016), they show that some proxies for risk preferences, such as 

preventive health activities, act to reinforce adverse selection, while some proxies for risk 

aversion, such as seat belt use, contribute to an offsetting of adverse selection. These 

findings are in line with some evidence for other VPHI markets indicating that risk pref-

erences are not an important driver for advantageous selection (e.g., Buchmueller et al., 

2013).17 Bolin et al. (2010), for instance, do not find that the negative coverage-risk cor-

relation among individuals aged 50 years and older in European VPHI markets is driven 

by heterogeneous risk preferences and suggest that the negative coverage-risk correlation 

is more likely to be explained by a successful screening by insurance companies based 

on observable health conditions. 

2.3.3.3 Sociodemographic Characteristics 

Relative to the individual’s risk attitude, sociodemographic characteristics are usually ob-

servable for insurers, but may still be drivers for selection effects if and only if they are 

not used for risk classification. Particularly, the individual’s age at the uptake of insurance 

is basically used for risk classification in private LTCI markets as well as in the Medigap 

insurance market and is thus not considered a potential source of selection. As other so-

cioeconomic traits, such as income and education, are generally found to be associated 

                                                 

17  It should be noted that some evidence suggests that risk preferences is a source of advantageous selection 

in VPHI markets. Schmitz (2011), for instance, finds that the self-assessed risk aversion of men with respect 

to health contributes to advantageous selection in the German market for supplementary insurance for hos-

pital visits. 
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with VPHI demand (Kiil, 2012), and as these factors are not used for risk classification 

in LTCI markets and in the Medigap insurance market, they are potential drivers for se-

lection. Findings of Zimmer (2012), for instance, suggest that socioeconomic character-

istics, including income and education, affect the relationship between Medigap insurance 

coverage and health care expenditure. While he does not consider the impact of each these 

traits on the coverage-risk correlation separately, several studies examine the association 

of specific socioeconomic characteristics with insurance coverage and risk occurrence. 

The evidence on income and education as a driver for selection effects is mixed. Some 

empirical findings suggest that wealth or income is a source of advantageous selection in 

the U.S. LTCI market (Finkelstein & McGarry, 2006) and in the Medigap insurance mar-

ket (Fang et al., 2008; Keane & Stavrunova, 2016). Finkelstein and McGarry (2006), for 

instance, show that individuals with more wealth are more likely to buy LTCI, but less 

likely to enter a nursing home. The finding of a positive association of wealth and LTCI 

coverage is consistent with results of Costa-Font and Rovira-Forns (2008) and can be 

explained by the existence of a public program like Medicaid in the U.S., which is a sub-

stitute for private LTCI especially for individuals with lower wealth (Pauly, 1990). Like-

wise, some studies on the Medigap insurance market show that education contributes of 

advantageous selection (Dardanoni et al., 2016; Fang et al., 2008; Keane & Stavrunova, 

2016). In line with these findings, Bauer et al. (2017) show that a higher socioeconomic 

status based on the individual’s occupation and residential location is positively associ-

ated with complementary LTCI coverage in Germany, but negatively with the probability 

of suffering from LTC costs.  

Similar to some evidence for other VPHI markets insurance (e.g., Bolhaar et al., 

2012), some findings, however, are not consistent with income and education as im-

portant drivers for advantageous selection. For instance, Dardanoni and Li Donni (2012) 

do not find that wealthier and more educated individuals are more likely to buy Medigap 

insurance based on a recursive bivariate probit model. Similar, other studies do not iden-

tify a significant or clear association of income with insurance coverage (Browne 

& Zhou-Richter, 2014; Dardanoni et al., 2016; Zimmer, 2012) or of education with in-

surance coverage (Costa-Font & Rovira-Forns, 2008). Finkelstein and McGarry (2006) 

even show that less educated individuals are both less likely to hold LTCI and to use LTC, 

which is rather consistent with adverse selection based on education. 
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Concerning race, there is some evidence that this factor is relevant for selection ef-

fects. Keane and Stavrunova (2016), for instance, observe that Hispanics and blacks are 

less likely to hold Medigap insurance and have a lower health expenditure risk after con-

trolling for health. In addition, they identify these measures as one of the most important 

determinants of Medigap insurance. The findings concerning the association of blacks 

and Hispanics with Medigap insurance is supported by Zimmer (2012). Similar, Finkel-

stein and McGarry (2006) find that non-whites relative to whites as well as Hispanics 

relative to non-Hispanics are less likely to use nursing homes and to hold LTCI. Even 

though this observable characteristic contributes to adverse selection, it is unlikely that 

insurers can use it for risk classification due to ethical reasons. 

The marital status and the number of children of individuals are further observable 

factors for insurance companies that are not used to determine insurance premiums in 

LTCI markets and the Medigap insurance market. Concerning the latter, Keane and Stav-

runova (2016) find some evidence that married individuals are more likely to hold insur-

ance coverage and that the marital status is a source of adverse selection in this insurance 

market. It should be noted, however, that the effect of marital status on the coverage-risk 

correlation is not isolated from the effect of race, which seems to play a more important 

role for selection effects in this market relative to marital status. Zimmer (2012), who 

examine the holding of employer-provided supplemental coverage and Medigap insur-

ance coverage separately, find that marriage is significantly and positively correlated with 

the holding of employer-provided supplemental insurance, but negatively with having a 

Medigap policy. His findings do not suggest that marital status contributes to selection 

effects into Medigap insurance.  

With respect to LTCI, marital status as well as the number of children are of particular 

interest as they are proxies for the availability of informal caregivers. The theoretical pa-

per by Pauly (1990) proposes that individuals who prefer to be cared for by their children, 

may decide not to buy LTCI as this may reduce the incentives for their children to provide 

informal care for them in favor of formal care (e.g., in a nursing home).18 For the U.S. 

LTCI market, Finkelstein and McGarry (2006) find that having more children is nega-

tively correlated with the probability to buy LTCI and to use a nursing home. Similar, Ko 

                                                 

18  This phenomenon is also called intrafamily moral hazard (Pauly, 1990). 
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(2016) provides evidence of substantial adverse selection arising from private information 

about the availability of informal care as this factor is negatively associated with nursing 

home use and LTCI coverage. Based on findings of equilibrium analyses of the LTCI 

market, she suggests that pricing on child demographics (e.g., the gender and residential 

proximity of the caregiving child) may substantially reduce this adverse selection and 

may lead to welfare gains by increasing the LTCI coverage rate of low-risk individuals 

with better availability of informal care. For the German LTCI market, however, the em-

pirical evidence does not suggest that the availability of informal caregivers is an im-

portant driver for selection effects. Browne and Zhou-Richter (2014) show that individu-

als who are unmarried or not living with one’s spouse are higher risk types compared to 

married individuals who live with their spouse, but are not significantly more likely to 

hold LTCI. Likewise, having fewer children does not significantly affect the probability 

to buy LTCI. Similar, Bauer et al. (2017) do not find that people who live in regions with 

a higher share of single adults are significantly more likely to hold complementary LTCI.  

2.3.3.4 Further Attributes 

Some studies, particularly on the Medigap insurance market, examine further potential 

sources of selection, which may be classified as “behavioral” factors (Keane & Stav-

runova, 2016). One important factor is the elderly’s cognitive abilities measured, for in-

stance, by scores on numeracy and word recall. Empirical evidence suggests that cogni-

tion has a relatively large positive impact on the probability to buy Medigap insurance 

and is a key source of advantageous selection in this insurance market as elderly with 

higher cognitive abilities are healthier (Dardanoni et al., 2016; Fang et al., 2008; Keane 

& Stavrunova, 2016). This finding is in line with Paccagnella et al. (2013) who analyze 

determinants of the purchase of VPHI among people aged 50 and older in eleven Euro-

pean countries. They show that heads of the household with better cognitive abilities are 

more likely to hold VPHI in most countries. Due to the importance of this factor in this 

market, Fang et al. (2008) discuss several possible pathways for this characteristic as a 

source of advantageous selection. They provide some preliminary evidence that a poten-

tial association of cognitive abilities with search costs to find lower Medigap premiums 

does not appear to be important. As alternative explanations they suggest that elderly with 
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higher cognitive abilities are more able to evaluate whether the holding of Medigap in-

surance is worthwhile or that they are more aware of potential future health risks even 

though they are healthier.  

Further behavioral factors that contribute to advantageous selection in the U.S. 

Medigap insurance market are the longevity expectation as measured by the individual’s 

subjective probability to reach the age of 75 years and older as well as the length of the 

individual’s financial planning horizon (Fang et al., 2008; Keane & Stavrunova, 2016). 

While these behavioral factors may play an important role in the decision to purchase 

LTCI coverage, there is a lack of evidence concerning their effect on the relationship 

between LTCI coverage and LTC expenditure risk. In a recent study, Gottlieb and Mitch-

ell (2015) suggest a model of narrow framing based on prospect theory. The idea of their 

model is that individuals, who are subject to narrow framing, tend to make decisions in 

isolation and consider insurance as a risky investment that is worth if the premiums are 

lower than the indemnities paid by the insurance company. Using HRS data, they find 

evidence that individuals with narrow framing are significantly less likely to buy LTCI. 

In addition, their results indicate that the narrow framing effect on the holding of LTCI 

coverage is much higher than the effect of the individual’s risk aversion, cautiousness or 

the self-assessed probability of entering a nursing home. It should be noted, however, that 

they do not examine the empirical relevance of narrow framing as a source of selection. 

Browne and Zhou-Richter (2014) examine the individuals’ self-assessed financial 

preparation for the risk of LTC expenditure, which may be associated with income, risk 

preferences and LTCI purchase, as a source of selection in the German private LTCI mar-

ket. They identify this factor as the main driver for adverse selection in this insurance 

market because individuals, who feel well financially prepared in case of LTC, are more 

likely to hold LTCI and to become a nursing case. Their findings suggest that financially 

well prepared individuals are more aware of their higher risk of LTC expenditures and 

invest more in protecting themselves against this risk by purchasing LTCI.  

Finally, Fang et al. (2008) and Keane and Stavrunova (2016) find that individuals 

with higher uncertainty in their health expenditures as measured by the variance are less 

likely to hold Medigap insurance even though that uncertainty is positively associated 

with the mean of health care expenditure. They thus interpret the variance of health care 
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expenditure as a source of advantageous selection in this insurance market. Possible ex-

planations for this puzzle, as discussed by Fang et al. (2008), are an underestimation of 

the variance or crowding out effects on Medigap by public-funded health care, such as by 

Medicaid.  

2.4 Conclusion 

Health care and LTC expenditure risk are important financial risks for the elderly popu-

lation. While markets for VPHI and private LTCI may be an option to counteract out-of-

pocket risks related to health care and LTC, these markets may suffer from inefficiencies 

due to asymmetric information or unused observables and related selection effects. This 

paper reviewed the empirical evidence on the presence and the sources of selection effects 

in private LTCI markets and in the U.S. Medigap insurance market.  

The empirical evidence predominantly suggests that both adverse and advantageous 

selection are present in these markets due to multidimensional private information, which 

is consistent with evidence for some other VPHI markets (e.g., Bolhaar et al., 2012; Buch-

mueller et al., 2013). The evidence concerning the dominating selection effect in private 

LTCI markets is ambiguous. In the U.S. LTCI market, adverse and advantageous selec-

tion rather offset each other in the aggregate as shown by Finkelstein and McGarry 

(2006). The evidence on selection behavior in other private LTCI markets, such as the 

German market for private complementary LTCI, points to different directions concern-

ing the dominating selection effect. Future research should especially extend the still 

sparse evidence on selection effects in LTCI markets in countries other than the U.S. 

because LTCI markets differ in their institutional settings. Results for the U.S. LTCI mar-

ket are not necessarily representative for LTCI markets in other countries. In the U.S. 

Medigap insurance market, most studies provide evidence that advantageous selection 

rather than adverse selection is the dominating selection effect. While some evidence 

suggests that it is less likely that advantageous selection in this market is driven by cream 

skimming of insurance companies, an interesting direction for future research is to exam-

ine to what extent a negative coverage-risk correlation is supply-side or demand-side 

driven. Findings of some recent studies that focus on the insurance coverage for prescrip-

tion drug expenditures among the elderly U.S. population suggest that both adverse and 

advantageous selection exist concerning insurance coverage for prescription drugs. As 
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this may be explained by multidimensional private information, more research should be 

done on sources of selection in this field.  

Theory proposes private information on the risk type as the primary source of adverse 

selection (e.g., Rothschild & Stiglitz, 1976). The evidence on this type of private infor-

mation particularly in private LTCI markets is ambiguous. Some evidence suggests that 

private information about risk among those individuals, who are unlikely to be rejected 

and thus actually can buy LTCI, is not a key source of adverse selection (Braun et al., 

2017; Hendren, 2013; Ko, 2016). The findings of Hendren (2013) indicate that individu-

als with certain observable bad health conditions are rejected as they have significant 

private information about their risk type. Thus, future research should sufficiently control 

for possible rejections by insurance companies when analyzing asymmetric information 

and selection effects. Possible explanations why some individuals particularly with bad 

self-assessed health are not more likely to buy private LTCI may be unawareness con-

cerning LTC risks or difficulties in predicting one’s own future LTC risk. Recent studies 

show that experience with LTC affect one’s own LTCI demand as this may increase the 

awareness concerning the LTC risk (e.g., Coe, Skira, & Van Houtven, 2015; Courbage 

& Roudaut, 2008; Tennyson & Yang, 2014). Following Coe et al. (2015), experience with 

LTC could therefore be explicitly addressed in future research on asymmetric information 

and selection behavior in LTCI markets. In addition, findings of some studies (e.g., Oster 

et al., 2010) suggest that genetic testing affects the individuals’ private information on 

their risk type and may aggravate adverse selection. 

While theory proposes risk aversion as a key source of advantageous selection (de 

Meza & Webb, 2001), the empirical evidence suggests that the role of risk preferences 

with respect to selection effects varies across insurance markets. Studies on LTCI markets 

predominantly identify this factor as a driver for advantageous selection even though 

some findings are not consistent with risk aversion as a source of advantageous selection. 

Possible explanations for different results are differences in the used data as well as in the 

measures for risk preferences. In the U.S. Medigap insurance market, empirical evidence 

suggests that the individuals’ risk attitude is rather of minor importance with respect to 

selection effects.  

As some sociodemographic characteristics are not used by insurance companies in 

private LTCI markets and in the Medigap insurance market for risk classification, they 
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are potential sources of selection effects. With some exceptions, there is empirical evi-

dence suggesting that particularly income or wealth is a source of advantageous selection 

in these markets. While some studies find that race contributes to selection effects, it is 

unlikely that insurers are allowed to use it for risk classification due to ethical reasons. 

Nevertheless, an interesting direction for future research is to examine the pathway 

through which race leads to selection effects. Family characteristics, such as the marital 

status and the number of children, play an important role in LTCI markets as they can be 

considered as proxies for the availability of informal caregivers. There is evidence that 

the availability of informal caregivers contributes to adverse selection in the U.S. LTCI 

market. This is not corroborated by the sparse evidence on selection behavior in other 

LTCI markets, specifically in the German market for complementary LTCI. Future re-

search could extend these findings by considering not only the marital status or the num-

ber of children, but more specific proxies for the availability of informal care. Examples 

that have been used in the literature on the demand for LTCI are the beliefs about the 

availability of informal care (e.g., Coe et al., 2015; Ko, 2016), the number of sons and 

daughters or whether children live in the same household (e.g., Bonsang & Schoenmaeck-

ers, 2015; Van Houtven, Coe, & Konetzka, 2015).  

Furthermore, the evidence on the Medigap insurance market shows that longevity ex-

pectations as well as the planning horizon and, in particular, cognitive abilities are sources 

of advantageous selection. There is, however, still need for future research with respect 

to the channel through which these factors impact selection effects. In addition, there is 

lack of evidence concerning these factors as potential drivers for selection effects in pri-

vate LTCI markets.  

Summing up, there is strong evidence of multidimensional private information in the 

markets for Medigap insurance and private LTCI, which cover important financial risks 

of the elderly. This may lead to inefficiencies in these markets concerning the insurance 

coverage of at least some individuals (e.g., Finkelstein & McGarry, 2006). Some recent 

findings suggest that the use of sources of selection effects for risk classification could 

decrease inefficiencies in those markets (Dardanoni & Li Donni, 2016; Ko, 2016).   
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3 Selection Behavior in the Market for Private 

Complementary Long-term Care Insurance in Germany19 

Abstract 

In this paper, we analyze selection effects in the German market for private complemen-

tary long-term care insurance (CompLTCI) contracts within a static and dynamic frame-

work. Using data on more than 98,000 individuals from a German insurance company, 

we provide evidence that advantageous selection is dominating in this market, with re-

spect to both the decision to buy a CompLTCI policy and the decision about the extent of 

CompLTCI coverage. We identify occupational status, residential location and the hold-

ing of further supplementary health insurance policies as unused observables contributing 

to selection effects in this market. Our results suggest that non-linearities in the relation-

ship of potential sources of selection with insurance coverage and risk should be consid-

ered. A panel data analysis shows that an increase in health insurance payouts is positively 

correlated with the uptake of CompLTCI, while a decrease in those costs is positively 

associated with the lapse of CompLTCI. In addition, we find that people in financial dis-

tress and of lower socioeconomic status are more likely to let their CompLTCI policies 

lapse.  

  

                                                 

19  This chapter is based on joint work with Jan Michael Bauer from the Copenhagen Business School, Jörg 

Schiller from the University of Hohenheim and Max-Josef Trautinger. This paper is yet unpublished. The 

candidate´s individual contribution focused mainly on the literature research, the empirical work and the 

writing. The author wishes to particularly thank Bernard and François Salanié, Georges Dionne, Carine 

Franc, Michael Hanselmann as well as all the participants at the 43rd annual EGRIE seminar, the 3rd Eu-

HEA PhD student-supervisor conference, the CEAR/MRIC Behavioral Insurance Workshop 2016 and the 

Annual Meeting 2017 of the Deutscher Verein für Versicherungswissenschaft e.V. (DVfVW) for their 

helpful comments. The author also gratefully acknowledges financial support from the DVfVW. 
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3.1 Introduction 

The aging of the population in virtually all industrialized countries has become a great 

burden for financing LTC (OECD/European Commission, 2013).20 Public LTC coverage, 

such as basic mandatory LTCI in Germany, however, does not cover the full costs of care, 

leading to a risk of high out-of-pocket payments for individuals in need for LTC. The 

private insurance market offers complementary LTCI (CompLTCI) to close this coverage 

gap in basic LTCI. However, similar to the limited size of the private LTCI market in the 

U.S. (Brown & Finkelstein, 2009), the number of CompLTCI policies in Germany was 

only approximately 3.3 m in 2015 (Association of German private healthcare insurers, 

2016b), i.e., only approximately 4% of individuals with basic LTCI in Germany held a 

CompLTCI policy.  

The purpose of this paper is to analyze the German CompLTCI market to identify 

imperfections and related selection effects, as these may lead to market inefficiencies and 

contribute to the limited demand for private LTCI.21 This market is appropriate for ana-

lyzing selection effects because premiums for CompLTCI in Germany are risk-adjusted 

on the date of contract signing based on a small number of characteristics, i.e., age and 

gender. Ex-ante private information of individuals may lead to adverse (e.g., Rothschild 

& Stiglitz, 1976) and advantageous selection (de Meza & Webb, 2001). Those selection 

effects – and the related market inefficiencies – may arise not only from unobservable 

private information but also from the existence of unused observables, i.e., informative 

observable characteristics that are correlated with both insurance coverage and risk but 

not used in pricing (e.g., Finkelstein & Poterba, 2014). Our first research question relates 

to the existence of those selection effects due to private information in the aggregate. For 

this purpose, we analyze the correlation between CompLTCI and the risk of LTC needs 

in a static framework. Here, we differentiate between the decision to buy CompLTCI and, 

if insured, the decision about the amount of CompLTCI coverage to purchase. By exam-

ining potential unused observables in a manner similar to Finkelstein and Poterba (2014), 

we seek to answer a second research question related to the drivers of selection effects in 

                                                 

20  Considering the population aging, LTC expenses are expected to at least double and might even triple 

across OECD countries between 2006/2007 and 2050 (e.g., Colombo et al., 2011). 
21  Brown and Finkelstein (2009) summarize several demand-side and supply-side factors that may limit the 

market for private LTCI. 
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this market. Based on previous findings (e.g., Browne & Zhou-Richter, 2014; Fang et al., 

2008; Finkelstein & McGarry, 2006), our hypothesis is that asymmetrically used infor-

mation about preferences for insurance coverage and aspects of the socioeconomic status, 

such as education and income, contribute to selection effects in this market. In addition 

to selection effects based on ex-ante private information, an ex-post selection may arise 

from insufficient front-loading in a situation with long-term contracts and one-sided com-

mitment (e.g., Hendel & Lizzeri, 2003). This may contribute to the limited demand for 

LTCI policies, such as in the U.S. (e.g., Finkelstein et al., 2005). Hence, by examining 

the lapse and uptake behavior in a dynamic framework, our third research question is 

what characterizes the in- and outflow of the insured collective over time. This may pro-

vide important insights into the stability of the risk pool of CompLTCI policyholders. 

Note that the focus of this paper is on selection effects rather than information asymmetry 

because the latter is not a necessary condition for such an ex-post selection (Hendel 

& Lizzeri, 2003). 

By using a large dataset from a German private health insurance company and ana-

lyzing selection behavior in both a static and dynamic context, we extend previous em-

pirical studies that rely on survey data to test for asymmetric information and selection 

effects in LTCI markets (e.g., Browne & Zhou-Richter, 2014; Finkelstein et al., 2005; 

Finkelstein & McGarry, 2006). Moreover, we contribute to the literature on unused ob-

servables (e.g., Finkelstein & Poterba, 2014) in insurance markets and the sources of se-

lection effects, especially of advantageous selection. Our empirical results provide evi-

dence of asymmetric information in the German CompLTCI market and indicate that ad-

vantageous selection is the dominating selection effect. We find that occupational status, 

residential location, and the holding of further supplementary health insurance policies 

are unused observables contributing to selection effects in this market. Another contribu-

tion our paper makes to the literature is that our results suggest that the effect of charac-

teristics on insurance coverage and risk may be heterogeneous. By analyzing LTCI uptake 

and lapse behavior, we show that the decision to hold and retain CompLTCI is affected 

by a change in health insurance payouts. In addition, individuals with lower socioeco-

nomic status and financial problems are more likely to drop CompLTCI coverage.  

The remainder of this paper proceeds as follows. Section 3.2 provides an overview of 

the German LTCI market. Section 3.3 summarizes the theoretical background and related 
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empirical literature on selection effects in insurance markets. Section 3.4 describes the 

data and the empirical models used for analyzing selection effects in this market. Section 

3.5 reports and discusses the results of our analysis, and Section 3.6 concludes the paper. 

3.2 Private Complementary Long-term Care Insurance in Germany 

In Germany, approximately 88% of the population is covered by SHI, while approxi-

mately 12% has substitutive PHI (Federal Ministry of Health, 2017). Since 1995, all cit-

izens have been required to be insured by the statutory LTCI. A basic principle of the 

German LTCI scheme is that LTCI follows health insurance (Schulz, 2010). Thus, statu-

tory LTCI can be divided into two forms: First, SHI members are usually insured by social 

LTCI. Second, PHI enrollees are insured by the mandatory private LTCI, which is the 

focus of our paper. Premiums for the basic private LTCI are risk-adjusted at the date of 

contract signing based on the individual’s age and state of health (Association of German 

private healthcare insurers, 2016a). By law, the type and scope of benefits of the manda-

tory private LTCI are equivalent to those in the social LTCI (§ 23 Social Code Book XI). 

Insured persons are entitled to claim benefits for LTC if independent experts confirm their 

need for LTC in a review. The need for LTC is legally defined and requires that the in-

sured need help in the long-term, i.e., for at least six months (§ 14 Social Code Book XI). 

If it is determined that the insured are eligible for LTC, the experts assign them to one of 

three possible care levels.22 People in a higher care level receive more benefits. In the 

basic private LTCI, enrollees can choose between cash benefits for informal home care, 

reimbursement of part of the LTC costs for formal care or combinations of both. Since 

2013, people with a considerably limited ability to cope with daily activities (for instance, 

due to dementia) but who are not assigned to one of the care levels may also obtain these 

types of benefits at a lower level than the lowest care level. However, statutory LTCI only 

partly covers the costs of LTC (Association of German private healthcare insurers, 

2016a). Hence, out-of-pocket payments for LTC benefits in Germany are substantial.23 

                                                 

22  Due to reform of the German LTCI scheme, the number of care levels changed from three to five in 2017.  
23  In Germany, the average out-of-pocket payments for people, who are in need for full-time inpatient LTC, 

are about 1,700 euros per month (Association of German private healthcare insurers, 2017). 
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More than one third of all LTC costs in 2013 were financed by out-of-pocket payments 

(Rothgang, Kalwitzki, Müller, Runte, & Unger, 2015).24 

Enrollees in the mandatory private LTCI are permitted to purchase private CompLTCI 

coverage directly from private health insurers to reduce the coverage gaps of basic LTCI. 

Generally, the PHI market, including the market for CompLTCI, can be regarded as oli-

gopolistic (Hofmann & Browne, 2013). In 2015, the total number of CompLTCI policies 

was approximately 3.3 m, compared to only approximately 0.8 m in 2005 (Association 

of German private healthcare insurers, 2016c).25 While the number of CompLTCI poli-

cies is increasing, the demand is still rather low. Among CompLTCI policyholders, most 

individuals have a CompLTCI with daily cash benefits (Association of German private 

healthcare insurers, 2016b); these policies are the focus of this paper. The cash benefits 

depend on the recipient’s care level, the chosen tariff and the type of LTC, but they do 

not depend on the actual costs of LTC. In line with basic LTCI, CompLTCI policyholders 

only receive benefits from CompLTCI if an individual is assigned to a care level. If LTC 

is indeed needed, the daily cash benefits are freely available to the beneficiaries. 

At the date of contract signing, CompLTCI premiums are generally risk-based on the 

individual’s gender as well as the age.26 The rather limited underwriting and hence a lim-

ited premium differentiation may lead to selection effects concerning both the uptake and 

extent of CompLTCI. Contracts are guaranteed renewable (Pauly et al., 1995). As insurers 

are committed to the contract terms and enrollees may opt out of their contracts, there is 

one-sided commitment. Since the policyholders’ health status deteriorates over time, 

CompLTCI policies are front-loaded in order to cover higher expected LTC costs in older 

age (Hendel & Lizzeri, 2003). The front-loading ensures that premiums are independent 

of individual changes in health status for the entire contract duration. Hence, policyhold-

ers are completely insured against the individual reclassification risk. However, the par-

ticipating nature of CompLTCI contracts, where policyholders participate in the risk 

                                                 

24  See Schulz (2010) for more detailed information on the German LTC system. 
25  Since 2013, private health insurers may additionally offer government-funded CompLTCI policies. In 

2015, nearly 0.7m (i.e., about 21%) of CompLTCI policies were government-funded (Association of Ger-

man private healthcare insurers, 2016b). In our paper, however, we will focus on non-funded policies. 
26  Since the introduction of unisex tariffs in December 2012, private health insurers have been prohibited 

from using gender as a criterion for determining premiums. Moreover, insurers may reject applicants based 

on their health status or need for LTC at the date of contract signing.  
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pool’s performance, leads to a collective reclassification risk. When actual LTC expend-

itures exceed calculated (expected) costs, insurers have the right to adjust premiums for 

all policyholders of the risk pool (Hofmann & Browne, 2013; Nell & Rosenbrock, 2008). 

The lack of consumer commitment and higher incentives for low-risk policyholders to 

drop CompLTCI coverage may increase the collective reclassification risk due to a wors-

ening of the risk pool over time (Brown & Finkelstein, 2009; Hofmann & Browne, 2013). 

In extreme cases, this worsening of the risk pool may endanger the protection against the 

individual reclassification risk (Finkelstein et al., 2005; Nell & Rosenbrock, 2008). Over-

all, the rather limited ex-ante premium differentiation for CompLTCI as well as the lack 

of consumer commitment may lead to market inefficiencies due to selection effects. 

3.3 Theoretical Background and Related Literature  

Our paper is closely related to two strands of literature. First, we rely on and contribute 

to the literature on adverse and advantageous selection based on ex-ante private infor-

mation. In classic models of asymmetric information in insurance markets (e.g., Roth-

schild & Stiglitz, 1976), individuals have only private information about their risk of loss, 

i.e., private information is one-dimensional. In a separating equilibrium, high-risk indi-

viduals choose policies with higher coverage compared to low-risk individuals. Accord-

ing to the model of Rothschild and Stiglitz (1976), in the context of CompLTCI in Ger-

many, people with a high risk of needing LTC are more likely to buy CompLTCI or 

choose higher coverage compared to low-risk individuals. The basic empirical prediction 

of adverse selection models in a market equilibrium is the so-called “positive correlation 

hypothesis”, i.e., there is a positive correlation between the individual’s risk of loss and 

the amount of insurance coverage selected conditional on all individual characteristics 

used by insurers for pricing. This prediction seems to be quite robust if the insurance 

market is perfectly competitive (Chiappori et al., 2006). Several studies have found a 

positive coverage-risk correlation in different insurance markets, such as in annuity in-

surance or health insurance markets (for a review, see Cohen & Siegelman, 2010). In a 

closely related paper, Browne and Zhou-Richter (2014) find a positive coverage-risk cor-

relation in the German private LTCI market using data from the GSOEP. This is con-

sistent with Oster et al. (2010), who provide evidence for adverse selection in the U.S. 

LTCI market when individuals have increased private information on their risk (obtained 

through genetic testing) with respect to carrying HD. 
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It should be noted that finding a positive correlation is not a sufficient condition for 

the existence of adverse selection, as such a correlation may also arise from the presence 

of moral hazard, i.e., reverse causality may be present (e.g., Chiappori et al., 2006; Di-

onne, 2013). In the latter case, individuals with a high level of insurance coverage have 

fewer incentives to put effort into prevention, leading to higher risks compared to indi-

viduals with lower insurance coverage (ex-ante moral hazard); they may also use more 

benefits due to decreased marginal costs (ex-post moral hazard). Cohen and Siegelman 

(2010) and Dionne (2013) discuss several approaches to disentangle different information 

problems, such as the causality test of Dionne, Michaud, and Dahchour (2013), which 

uses dynamic data to separate moral hazard from adverse selection. 

While the prediction of a positive coverage-risk correlation is quite robust in a com-

petitive insurance market, the coverage-risk correlation may be of any sign under asym-

metric information in an imperfectly competitive market (Chiappori & Salanié, 2013). 

This may be explained by unobservable heterogeneity in preferences for insurance, in 

addition to heterogeneity in risk (Cutler et al. 2008). Hemenway (1990) and de Meza and 

Webb (2001) suggest that a reversal of the positive correlation prediction can be explained 

by individuals who are more likely to purchase insurance coverage and who simultane-

ously put more effort into prevention to decrease their risk of loss. Such a mechanism 

leads to an “advantageous selection" for insurance companies, as insurance coverage is 

more likely to be chosen by low-risk types. Although, in the theoretical model of de Meza 

and Webb (2001)27, risk aversion is a source of advantageous selection, essentially any 

private information that individuals have about a characteristic with a positive association 

with insurance coverage but a negative association with risk can be considered a driver 

of advantageous selection (Fang et al., 2008). Some empirical evidence suggests that mul-

tidimensional private information and the resulting selection effects are important in dif-

ferent insurance markets, such as in LTCI markets (Cutler et al., 2008). Finkelstein and 

McGarry (2006) find that people with private information about their own high risk are 

more likely to hold LTCI in the U.S. LTCI market. However, this adverse selection is 

offset by advantageous selection, which explains the absence of a positive correlation 

between insurance coverage and admission to a nursing home. Their findings suggest that 

                                                 

27  De Meza and Webb (2001) base their theoretical model on a competitive insurance market. However, ad-

ministrative costs in processing claims play a crucial role in the existence of the equilibrium. 
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wealth and risk preferences are sources of advantageous selection in this market. Using 

survey data, Browne and Zhou-Richter (2014) also find that both selection effects are 

present in the German private LTCI market even though adverse selection is predominant 

in that insurance market. They identify the preference for insurance, as measured by the 

number of additional complementary health insurance policies, as a source of advanta-

geous selection in the German private LTCI market.28 Fang et al. (2008) provide evidence 

that cognitive abilities and socioeconomic characteristics (e.g., income and education) are 

sources of advantageous selection in the U.S. Medigap insurance market.  

In another closely related paper, Finkelstein and Poterba (2014) suggest that the iden-

tification of observable characteristics that are not used by insurance companies for pric-

ing but correlate with insurance coverage and the risk of loss (i.e., unused observables) 

indicates that the insurance market suffers from asymmetrically used information. They 

provide evidence of asymmetric information in the U.K. annuity market by identifying 

residential location (proxied by the individual’s postcode) as an unused observable during 

the period of their study; they find that the socioeconomic status of an individual’s resi-

dential location is correlated with insurance demand and with the individual’s risk of loss. 

As shown by Kesternich and Schumacher (2014), unused observables may exist in an 

equilibrium in an imperfectly competitive insurance market with costly market entry.29 

The second strand of literature addresses selection effects and dynamic market inef-

ficiencies due to one-sided commitment that may arise for risk-averse individuals who 

want to insure against the individual reclassification risk (e.g., Pauly et al., 1995) in long-

term contracts. In a situation with one-sided commitment (i.e., a lack of commitment from 

only the insured), low-risk types learning about their risk over time may have an incentive 

to drop their long-term contracts (Hendel & Lizzeri, 2003). Consistent with their predic-

tions, Hendel and Lizzeri (2003) find that front-loading reduces incentives to cancel in-

surance policies and that more front-loading helps to retain a better risk pool by decreas-

ing the probability of lapsing in the U.S. life insurance market. In line with these findings, 

there is some evidence in the German health insurance market that low-risk individuals 

                                                 

28  Browne and Zhou-Richter (2014) consider this individual characteristic to be related to risk aversion. 
29  Kesternich and Schumacher (2014) also discuss further explanations for the existence of unused observa-

bles. 
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are more likely to drop their basic PHI coverage (Hofmann & Browne, 2013) or supple-

mentary hospital insurance coverage (Lange et al., 2017). Similarly, with respect to LTCI, 

Finkelstein et al. (2005) and Browne (2006) find that people with a lower LTC risk are 

less likely to retain LTCI policies over time in the U.S. market. Such an ex-post selection 

may lead to a worsening of the risk pool and therefore higher premiums for LTCI (Brown 

& Finkelstein, 2009). Dynamic market inefficiencies resulting from an incomplete lock-

in of low-risk types (due to insufficient front-loading) may be one factor explaining the 

limited size of the U.S. LTCI market (Browne, 2006; Finkelstein et al., 2005). It should 

be noted that this type of selection may be based on the symmetric learning of both insur-

ance companies and consumers, as shown in the model of Hendel and Lizzeri (2003). 

Konetzka and Luo (2011), however, find little evidence for a worsening of the risk pool 

due to policy lapse in the U.S. LTCI market and conclude that other drivers, such as a 

decrease in assets, play a more important role in lapse behavior compared to an improved 

health status.  

In this paper, we contribute to the literature on asymmetric information and selection 

effects as well as on lapse behavior in LTCI markets. While prior literature is mostly 

based on survey data, our paper uses insurer data. In addition, we test for selection effects 

in a static and dynamic framework. While, for instance, Browne and Zhou-Richter (2014) 

also analyze the German private LTCI market with a similar research focus, they use 

survey data with information on private LTCI coverage only from 1992, i.e., before the 

implementation of mandatory basic LTC coverage in Germany. Not only has the German 

market grown substantially since then, as shown in the previous section, we also examine 

lapse and uptake behavior over time. In contrast to their findings, we show that advanta-

geous selection is dominating in the German LTCI market. Moreover, we extend the lit-

erature by focusing our analysis on unused observables, such as the individual’s occupa-

tion, in the German CompLTCI market. Another contribution we make to the literature is 

that we consider heterogeneous effects of characteristics on the risk of loss and insurance 

coverage when testing for sources of selection. 
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3.4 Data and Methods 

3.4.1 Data and Specification of Variables 

In our paper, we use data from a German private health insurance company that sells 

insurance policies throughout Germany, but is regionally focused on one federal state.30 

Our data include information on health insurance and LTCI policies concluded between 

1960 and 2014. We observe claims for each policy between 2006 and 2014. In our anal-

ysis, we restrict our sample in three ways. First, we exclude SHI enrollees because we 

only have information about their LTC risk if they hold a CompLTCI policy from this 

private health insurance company. Thus, we do not have a control group among SHI en-

rollees with respect to LTC risk. Second, we exclude civil servants to avoid any complex-

ity arising from differences between civil servants and individuals not employed as civil 

servants.31 Third, similar to Browne and Zhou-Richter (2014), we only include individu-

als aged 40 years and older in 2006, i.e., the first year of observing insurance payouts, as 

the risk of needing LTC substantially increases with age. Hence, our final sample consists 

of 98,305 individuals. Table A.1 in the Appendix summarizes, by data source, all varia-

bles that we use in our analysis. 

As a risk measure in our empirical models, we use several proxies. First, we use a 

dichotomous variable that indicates 1 if there was any insurance claim for the mandatory 

LTCI between 2006 and 2014, and 0 otherwise (LTCprob). This measure neglects the 

intensity of the individual impairment but allows for a clear identification of LTCI needs. 

                                                 

30  It should be noted that, theoretically, people might buy CompLTCI policies from more than one insurance 

company. While this could be an obstacle to analyzing asymmetric information with data from one insur-

ance company (Chiappori & Salanié, 2013), we argue that it is very unlikely that individuals will purchase  

CompLTCI policies from different insurers, as they would suffer from higher transaction costs if they were 

to buy CompLTCI policies from more than one insurer without benefiting. It would only make sense for 

the insured to purchase additional insurance from another insurer if they wanted to purchase coverage that 

exceeds the maximum daily allowance from one insurance company. However, the maximum daily allow-

ance for CompLTCI must not be exceeded by the daily allowance of all CompLTCI policies, including 

those bought from other insurers. Moreover, we only find about 1% of the CompLTCI policies providing 

the maximum possible coverage in our sample. Hence, we conclude that outside options seem to be a minor 

issue. 
31  Civil servants in Germany receive subsidies for their health care and LTC costs from their employer. In 

addition, civil servants have a strong incentive to enroll in the PHI, which covers their remaining health 

care costs (Hofmann & Browne, 2013). Moreover, civil servants enrolled in the substitutive PHI have to 

be insured in the basic mandatory private LTCI (Association of German private healthcare insurers, 2016a). 

However, coverage in the basic LTCI is lower for civil servants compared to other enrollees. 
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Using this dichotomous proxy for risk allows us to exclude any ex-post moral hazard 

effects that may arise from the choice of the type and scope of LTC services. As a second 

measure of the insured’s risk, we use the natural logarithm of the total cost of payouts 

from the mandatory LTCI (lnLTCcost). Note that we can only observe the annual amount 

of LTC payouts, and hence, we have no information about the insured’s care level. As 

some of the insured may only receive relatively low payouts from the mandatory LTCI, 

for instance for care aids, even though they do not need LTC in legal terms, we only 

consider enrollees as in need for LTC if their payouts exceed the minimum amount of 

cash benefits for LTC. Here, we take into account that the insured are only eligible for 

LTC benefits if they need care for at least six months. For instance, we classify people as 

care-dependent if their LTC payouts in 2006 exceeded 1,230 euros, which equals 6 

monthly payouts of cash benefits at the lowest care level.32 In the panel data analysis, we 

use a dummy variable that indicates 1 if there was any claim for health insurance benefits 

(HCprob), and we use the natural logarithm of total payouts from health insurance  

(lnHCcost) as a proxy for risk. As the latter variables only consider claims that were sub-

mitted to the insurer, we have to take into account that health insurance policies differ 

with respect to deductibles. To make policyholders comparable with respect to their 

health insurance benefits, we follow Cohen (2005) and consider only claims for health 

insurance benefits exceeding the highest possible deductible in these policies (i.e., 1,680 

euros). 

We measure LTCI coverage in a first step with the dichotomous variable CompLTCI, 

which indicates 1 if an individual holds any type of relevant CompLTCI and 0 otherwise. 

To measure CompLTCI coverage more precisely, we also use the natural logarithm of the 

sum of the monthly premiums that individuals pay for their CompLTCI policies  

(lnCompLTCIp). When using this variable as a proxy for insurance coverage, we restrict 

our sample to CompLTCI policyholders, as non-policyholders do not pay any premiums 

for CompLTCI. 

To control for the risk classification made by the insurance company, we include gen-

der and age as covariates in our models.33 When analyzing only the sample of CompLTCI 

                                                 

32  To take into account that people may become dependent at the end of a year, we also checked that the 

received LTC payouts exceed six monthly cash benefits over 2 successive years. 
33  We include gender because most of the CompLTCI policies in our dataset were signed before the introduc-

tion of the unisex tariffs in December 2012. 
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policyholders, we also control for the year of contract conclusion. We interact all pricing 

characteristics to ensure, for instance, that every individual with the same age and gender 

is placed into the same risk class. Including these variables adjusts the coverage-risk cor-

relation for all observable factors used by the insurer to set the individual premium.34 To 

check the extent to which these characteristics can predict the premiums for CompLTCI, 

we regress the premium for CompLTCI on these characteristics as well as the type of 

CompLTCI policy. In this regression, we interact the pricing characteristics. The type of 

CompLTCI policy considers the generosity with respect to benefits at the different care 

levels. We find an adjusted R2 of 0.9545. In our empirical models, however, it is not 

feasible to consider each type of CompLTCI policy. As much variation in the premiums 

can be explained without even considering the year in which the contract was signed 

(𝑎𝑑𝑗. R2 = 0.8221), our proxies for the characteristics used to determine the CompLTCI 

premiums are good predictors for placing individuals in different risk classes.  

When analyzing the sources of selection, we consider several observable characteris-

tics of the insured that are not used by the insurer to set LTCI prices. Here, we analyze 

the preference for insurance proxied by the holding of additional health insurance poli-

cies, in line with Browne and Zhou-Richter (2014). Specifically, we consider daily sick-

ness benefits insurance and hospital daily benefits insurance because PHI enrollees can 

purchase both types of insurance policies as supplements to their health insurance cover-

age.35 In addition to data of the insurance company, we include further information to our 

dataset in two ways to test for unused observables. First, the insurance data contain infor-

mation on occupational status of more than 80% of our sample. We use the International 

Socio-Economic Index of Occupational Status (ISEI) introduced by Ganzeboom, De 

Graaf, and Treiman (1992) and assign an index value corresponding to socioeconomic 

status to each individual.36 The index values used in this paper are based on ISEI-0837 

                                                 

34  Note that there is no discount for buying several policies from the same insurance company or for choosing 

higher benefits in the CompLTCI policies. 
35  While sickness benefits insurance policies protect PHI enrollees against the loss of income due to the ina-

bility to work caused by sickness, PHI enrollees holding hospital daily benefits insurance receive daily cash 

benefits for each day during a hospital stay. 
36  As some occupations of the insured in our dataset cannot be assigned an ISEI value, the number of indi-

viduals with an ISEI-08 value differs from the number of individuals for whom we have information about 

occupation. 
37  ISEI-08 is based on the 2008 revision of the International Standard Classification of Occupations (ISCO), 

i.e., ISCO-08. 
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(Ganzeboom & Treiman, 2010) and consider the income and education of an individual. 

Second, following Finkelstein and Poterba (2014), we are able to merge information from 

the German Census of 2011 and the Eurostat database with the residential location of the 

insured measured by the first three digits of the insured’s postcode. The German Census 

of 2011 includes detailed data on socioeconomic characteristics for more than 400 rural 

and urban districts.38 We use these district-level data to assign data on education, employ-

ment status, GDP per capita and marital status to each individual.39 In addition, we in-

clude information on the age pattern (dependency ratio) in the residential locations where 

the individuals live. 

3.4.2 Econometric Approach in a Static Setting 

For the identification of selection effects based on the individual’s private information in 

a static framework, we rely, in our empirical model, on the idea of the bivariate probit 

model by Chiappori and Salanié (2000); this model has been applied in several previous 

studies (see Cohen & Siegelman, 2010 for a review). In a first step, we will assess the 

coverage-risk correlation to obtain the overall difference in LTC risk between people 

holding a CompLTCI and people without additional LTCI coverage by estimating the 

following two-equation model:  

𝑅𝑖 = 𝛼1 + 𝛼2𝑋𝑖 + 𝜀𝑖             (1) 

𝐶𝑖 = 𝛽1 + 𝛽2𝑋𝑖+ 𝜗𝑖                 (2) 

In this model, we regress both the individual’s i risk of receiving benefits from the 

compulsory (basic) LTCI (𝑅𝑖) and the CompLTCI coverage (𝐶𝑖) on a vector of the indi-

vidual’s i characteristics (𝑋𝑖) that are observable to the German CompLTCI insurers and 

used for determining the premium for CompLTCI. After regressing both equations, we 

use the residuals (𝜀𝑖 &  𝜗𝑖) and check their independence by analyzing the correlation co-

                                                 

38  These districts in Germany correspond to the units of NUTS level 3.  
39  In most cases, the first three digits of the postcode can be attributed to more than one district. Therefore, 

we use the mean values of the socioeconomic variables for each residential location. 



  

56 

efficient 𝜌 (𝜀𝑖, 𝜗𝑖). Identifying a correlation between the residuals that is significantly dif-

ferent from zero, i.e., 𝜌 (𝜀𝑖, 𝜗𝑖) ≠ 0, indicates that 𝑅𝑖 and 𝐶𝑖 are correlated. This finding 

would point to the existence of asymmetric information in the aggregate. Based on pre-

vious findings and the rather limited underwriting in the German CompLTCI market, we 

hypothesize that the German CompLTCI market suffers from asymmetric information, 

leading to adverse and/or advantageous selection. 

To identify potential sources for selection, we follow the approach of Finkelstein and 

Poterba (2014). Their test for unused observables is based on the two regressions in equa-

tions (1) and (2): 

𝑅𝑖 = 𝛿1 + 𝛿2𝑈𝑖 + 𝛿3𝑋𝑖+ 𝜑𝑖            (3) 

𝐶𝑖 = 𝜃1 + 𝜃2𝑈𝑖 + 𝜃3𝑋𝑖+ 𝜔𝑖             (4) 

The interpretation of the equations generally follows equations (1) and (2). We sepa-

rately regress 𝑅𝑖 and 𝐶𝑖  on the same model that includes an intercept (𝛿1 & 𝜃1), the char-

acteristics used for pricing of the CompLTCI policies (𝑋𝑖), and the error term (𝜑𝑖 & 𝜔𝑖). 

We also include information about the insured that was not used for calculating the pre-

miums but is available to the insurer (𝑈𝑖). These unused observables can be on the indi-

vidual level or on a more aggregated level (such as residential location). Looking at 

𝛿2 & 𝜃2 allows us to identify characteristics that can drive selection into CompLTCI. A 

variable that correlates positively with risk (𝛿2 > 0), but also significantly increases the 

uptake of CompLTCI (𝜃2 > 0) can be interpreted as a driver of adverse selection. Con-

versely, if a variable correlates positively with the uptake of CompLTCI (𝜃2 > 0) but 

negatively with risk (𝛿2 < 0), then we interpret this variable as a driver of advantageous 

selection. In line with previous studies (e.g., Browne & Zhou-Richter, 2014), another 

property of a driver of adverse (advantageous) selection is a substantial change in the 

coverage-risk correlation represented by 𝜌 (𝜀𝑖, 𝜗𝑖) in a negative (positive) direction, i.e., 

𝜌 (𝜑𝑖, 𝜔𝑖) < 𝜌 (𝜀𝑖, 𝜗𝑖) (𝜌 (𝜑𝑖, 𝜔𝑖) > 𝜌 (𝜀𝑖, 𝜗𝑖)).  

  



  

57 

3.4.3 Econometric Approach in a Dynamic Setting 

In addition to cross-sectional information, the data set provides longitudinal annual costs 

for each contract with information about the cancellation of CompLTCI between 2008 

and 2014 and about the uptake of CompLTCI over the whole observation period (i.e., 

since 1960). We exploit this information to investigate dynamic selection into and out of 

CompLTCI over our observation period. In a first step, we base our analysis on a pooled 

regression model similar to equation (4). Here, rather than merely compare individuals 

with and without CompLTCI, we focus on people changing their CompLTCI status.  

For further longitudinal analysis, in a second step, we use variations in the annual 

health care costs associated with the year an individual takes up or lapses CompLTCI. In 

this event study, we assign distinct dummy variables to the years before and after the 

event. This analysis provides a dynamic understanding of the relationship between the 

individual’s health status and the decision-making concerning CompLTCI. Therefore, we 

model the annual health care costs and claim occurrence in health insurance as:  

𝐻𝑖𝑡  =  𝛽′𝑋𝑖𝑡 +  ∑ 𝛾𝑗𝐿𝑗,𝑖𝑡
5
𝑗=−5 + 𝑢𝑡 +  𝜀𝑖𝑡,       𝑗 = −5, −4, … , 4, 5        (5) 

where 𝐻𝑖𝑡 represents the health of individual 𝑖 at time 𝑡 measured as the natural logarithm 

of the annual health care cost (lnHCcost) or as a dummy variable indicating the occur-

rence of at least one claim during the specific year (HCprob). 𝑋𝑖 represents information 

about the insured that is used for calculating the premiums. By including dummies for 

year fixed effects with 𝑢𝑡, we control for unobserved but constant heterogeneity among 

different years. The 𝐿𝑖𝑡 dummies indicate the years before and after the uptake or lapse in 

year 0. Given the 9 years of observation, leads and lags of more than 5 years are rarely 

observed. Therefore, we include those observations in the 5-year dummies. 

As individuals can only lapse (buy) CompLTCI if they previously had (did not have) 

such insurance, we restrict our sample in the following way. For the lapse analysis, we 

only include individuals who had CompLTCI in 2008, as we only observe lapses after 

2007. For the uptake analysis, we include people who did not hold CompLTCI before 

2006. Thereby, we make our sample comparable in such a way that all individuals in the 
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sample have the opportunity to experience such an event. As reference for the year dum-

mies, we exclude the group of individuals for whom we do not observe a change in  

CompLTCI status. 

3.5 Results  

3.5.1 Descriptive Statistics 

Table 3.1 provides summary statistics for the whole sample and by CompLTCI status. 

Within the sample, 19% of individuals own a CompLTCI. A simple comparison of the 

means of people who do and do not have CompLTCI suggests that the groups do not 

differ in their probabilities of claiming LTC benefits and in their average LTC costs; this 

lack of difference may be at least partly due to the relatively small number of LTC bene-

ficiaries (𝑛 = 923). However, if we only consider health care costs that exceed the high-

est possible deductible, the probability of submitting a claim and the total cost of health 

insurance payouts are higher, on average, for CompLTCI policyholders.40 In addition, 

CompLTCI policyholders are more likely to hold daily sickness benefits insurance and 

hospital daily benefits insurance. With respect to demographics, the average CompLTCI 

enrollee is more likely to be male and older. Data from the additional sources show that 

individuals with CompLTCI have a slightly higher ISEI-08 score, i.e., a higher socioec-

onomic status, and they live in areas with higher socioeconomic status as measured by 

the proportion of individuals with a higher education entrance qualification, the employ-

ment rate, and the GDP per capita in an individual’s region. 

  

                                                 

40  Considering all claims for health insurance, we also find that CompLTCI policyholders have a higher prob-

ability of making claims and higher amounts of health insurance payouts (not presented in Table 3.1). 
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Table 3.1:  Summary Statistics 

 
Total CompLTCI  

(Mean) 

Variable N Mean SD Min Max No Yes 

 Individual data 

LTCprob 98,305 0.009 0.096 0 1 0.009 0.009 

lnLTCcost 98,305 0.089 0.919 0 12.262 0.089 0.086 

HCprob 98,305 0.758 0.428 0 1 0.740 0.836 

lnHCcost 98,305 6.687 4.028 0 14.641 6.493 7.498 

CompLTCI 98,305 0.192 0.394 0 1 0 1 

lnCompLTCIp 98,305 0.571 1.213 0 5.495 0 2.967 

dsick_ins 98,305 0.490 0.500 0 1 0.464 0.600 

dhosp_ins 98,305 0.247 0.432 0 1 0.211 0.400 

male  98,305 0.737 0.440 0 1 0.724 0.791 

age 98,305 58.430 8.075 48 98 58.056 60.002 

ISEI-08 71,471 55.819 21.457 11.560 88.960 55.620 56.786 

 Aggregated dataa 

educ_sec 98,085 32.977 12.353 16.554 71.000 32.679 34.229 

employ 98,085 77.122 3.267 61.400 82.704 76.971 77.757 

gdp_10000 98,085 3.381 1.493 1.492 8.684 3.345 3.533 

dependency  

   ratio 

98,085 58.325 4.867 47.000 68.944 58.351 58.217 

single 98,085 27.398 5.328 21.000 42.800 27.428 27.271 

Notes: a The aggregated data for the variables educ_sec, employ, dependency ratio and single are measured as the 

respective percentage share. The GDP per capita is measured in 10,000 euros. A description of the variables and 

the source of data for each variable can be found in Table A.1 in the Appendix.  
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3.5.2 Results of the Static Analysis 

3.5.2.1 Existence of Asymmetric Information 

Table 3.2 reports the estimated correlation coefficient of the residuals 𝜌 (𝜀𝑖, 𝜗𝑖) of equa-

tions (1) and (2). Column (1) shows that 𝜌 (𝜀𝑖, 𝜗𝑖) is negative and significant when equa-

tions (1) and (2) are estimated with a bivariate probit model. As shown in column (2) and 

(3), this result is confirmed when we estimate equations (1) and (2) with a probit model 

and a linear probability model (LPM) separately for the whole sample. These results point 

to a significantly negative correlation between the probability of buying a CompLTCI 

policy and the risk of needing LTC care. Thus, low-risk individuals are more likely to 

purchase a CompLTCI policy. When considering only the sample of CompLTCI policy-

holders, column (4) shows that the correlation between the extent of CompLTCI coverage 

(lnCompLTCIp) and the extent of payouts from the mandatory LTCI (lnLTCcost) is also 

significantly negative, i.e., low-risk individuals choose higher CompLTCI coverage than 

high-risk individuals. These results support our hypothesis that individuals have private 

information that leads to selection effects in the German CompLTCI market, regarding 

both the decision to buy a CompLTCI policy and the extent of CompLTCI coverage se-

lected. The negative correlation between insurance coverage and risk indicates that ad-

vantageous selection is dominating, which may be explained by multidimensional private 

information. Following Chiappori and Salanié (2013) and, this suggests that, similar to 

the German PHI market (Hofmann & Browne, 2013), the German CompLTCI market is 

not perfectly competitive, i.e., the insurer has some market power. 

Table 3.2:  Correlation between CompLTCI Coverage and Risk 

 (1) (2) (3)  (4) 

 Full Sample  CompLTCI  

policyholders 

    

 Biprobit 

LTCprob - 

CompLTCI 

Probit 

LTCprob – 

CompLTCI 

 

LPM 

LTCprob – 

CompLTCI 

 

 OLS 

lnLTCcost - 

lnCompLTCIp 

Correlation coefficient 

   of residuals 𝜌 (𝜀𝑖 , 𝜗𝑖) 

-0.0624*** -0.0063** -0.0155***  -0.0325*** 

Observations 98,305 98,305 98,305  18,908 
Notes: The residuals are derived from equations (1) and (2). In column (1), the correlation coefficient is based on a bivariate probit 

model. The coefficient in column (2) represents the correlation between predicted Pearson residuals. *p < 0.1, **p < 0.05, ***p < 0.01. 
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3.5.2.2 Unused Observables 

After analyzing the existence and the dominant type of selection effects in the German 

CompLTCI market, we focus on the association of observable characteristics of individ-

uals that are currently not used for pricing CompLTCI with LTC risk and with CompLTCI 

coverage. Table 3.3 illustrates the regression results of adding potential drivers of selec-

tion to our model in equations (1) and (2), considering the full sample. We find a signifi-

cant and positive correlation of socioeconomic status (as measured by the ISEI-08 value) 

with CompLTCI coverage, but a significant and negative correlation with the risk of loss. 

Similarly, individuals from regions with a high proportion of people with higher educa-

tion entrance qualification and with a higher employment rate are more likely to purchase 

CompLTCI, but less likely to claim LTC benefits. The relationships of these socioeco-

nomic characteristics with our dependent variables remain robust after adding all covari-

ates simultaneously in columns (4) and (5) as well as (9) and (10). Moreover, the corre-

lation between CompLTCI coverage and risk of loss declines from negatively significant 

(𝜌 (𝜀𝑖, 𝜗𝑖) = −0.0504;  𝑝 = 0.090)41 to insignificant (𝜌 (𝜑𝑖, 𝜔𝑖) = 0.0388; 𝑝 = 0.195) 

after including these socioeconomic variables in the model simultaneously (not reported 

in Table 3.3). These findings suggest that both occupational status and the residential 

location of an individual are unused observables. Related information about the socioec-

onomic status on an individual level and on a district level contributes to advantageous 

selection in the German CompLTCI market. This is consistent with previous studies that 

have also found socioeconomic characteristics, such as education and wealth, to be 

sources of advantageous selection (e.g., Fang et al., 2008; Finkelstein & McGarry, 2006). 

The results of our proxies for preference for insurance are mixed. Holding daily sick-

ness benefits insurance is negatively correlated with the risk of loss and positively with 

insurance coverage. Moreover, the coverage-risk correlation is, while still significant, 

lower after controlling for this characteristic (column (3)). However, the negative corre-

lation of holding this type of insurance with the risk of loss becomes insignificant after 

                                                 

41 Note that the correlation coefficient of the residuals based on a bivariate probit model without controlling 

for potential divers of selection is slightly different from that in Table 3.2 We used here the same sample  

(𝑛 = 71,358) for the models with and without socioeconomic characteristics to make the correlation be-

tween the residuals comparable. 
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controlling for all covariates simultaneously (column (4)).42 As this type of insurance 

compensates individuals for the loss of earnings, it is relevant only for employed people. 

Therefore, we also analyzed the relationship of holding daily sickness benefits insurance 

with our dependent variables only for people aged 65 and younger, and we still found a 

positive correlation with CompLTCI coverage and a negative correlation with the risk of 

loss. This finding is consistent with Browne and Zhou-Richter (2014), who find the pref-

erence for insurance to be a source of advantageous selection. 

In contrast, holding hospital daily benefits insurance can be regarded as a driver of 

adverse selection because it is positively correlated with both CompLTCI coverage and 

the probability of claiming LTC benefits when risk is measured by the probability of 

needing LTC. This is consistent with Lange et al. (2017), who find that people in Ger-

many with supplementary hospital insurance coverage are more likely to suffer from sick-

ness in the future. One possible explanation for these mixed results with respect to sup-

plementary health insurance is that some people have private information about their risk 

of suffering from diseases that are likely to require treatment in a hospital. This would 

lead to a higher probability of purchasing hospital daily benefits insurance and  

CompLTCI. On the other hand, people buying daily sickness benefits insurance may be 

relatively highly risk averse, leading to a higher demand for this type of supplementary 

health insurance and CompLTCI, but a lower LTC risk due to cautious health behavior. 

Another explanation could be that some people have private information about their risk 

of becoming sick and suffering from income loss due to a resulting inability to work, but 

this situation is not linked to a higher risk of needing LTC. Nevertheless, we suggest that 

the holding of supplementary health insurance is another unused observable. 

Table 3.4 depicts the results for sources of selection for the subsample of CompLTCI 

policyholders. Here, we find that the ISEI-08 value and the holding supplementary health 

insurance coverage are positively correlated with the extent of CompLTCI coverage. Ad-

ditionally, the employment rate of an individual’s district is positively correlated with the 

amount of CompLTCI coverage. Individuals who live in areas with a high share of single 

                                                 

42 This is at least partly due to the reduced sample. Adding all potential sources of selection except the  

ISEI-08 value to the model, the correlation between holding daily sickness benefits insurance and the risk 

of loss is still significantly negative.  
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adults purchase less CompLTCI coverage. While some variables, such as educational at-

tainment and the share of single adults in an individual’s region, are significantly nega-

tively correlated with the risk of needing LTC, these relationships are weak and even 

insignificant in the full model, as shown in column (4). The holding of hospital daily 

benefits insurance is positively correlated with the probability of receiving LTC payouts. 

Hence, among CompLTCI policyholders, only the holding of this type of supplementary 

health insurance can be identified as a source of adverse selection when all covariates are 

considered simultaneously.43  

The results in Tables 3.3 and 3.4 suggest that most potential sources of selection con-

sistently affect the decision to buy a CompLTCI policy and the amount of CompLTCI 

coverage. However, only one variable (dhosp_ins) can be identified as a consistent source 

of either adverse or advantageous selection for the full sample, on the one hand, and the 

restricted sample of CompLTCI policyholders, on the other hand. This finding indicates 

that unused observables may contribute to selection effects concerning the decision to 

purchase a CompLTCI, but not concerning the decision to choose the amount of  

CompLTCI coverage among the CompLTCI policyholders.

                                                 

43  The relationships of all observable characteristics with our risk proxy remain robust when risk is measured 

with the natural logarithm of LTC payouts (lnLTCcost). 
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Table 3.3:  Sources of Selection (Full Sample) 

 (1) (2) (3) (4) (5)  (6) (7) (8) (9) (10) 

 Adding potential sources  
separately 

Adding all potential sources 
simultaneously 

 Adding potential sources  
separately 

Adding all potential sources 
simultaneously 

 LTCprob CompLTCI 𝜌 (𝜑𝑖 , 𝜔𝑖)  LTCprob CompLTCI  lnLTCcost lnCompLTCIp 𝜌 (𝜑𝑖 , 𝜔𝑖) lnLTCcost lnCompLTCIp 

            

Socioeconomic  

   characteristics 

           

ISEI-08 -0.0028*** 0.0014*** -0.0459 -0.0023** 0.0012***  -0.0004*** 0.0010*** -0.0110*** -0.0003*** 0.0008*** 

 (0.001) (0.000) (p = 0.112) (0.001) (0.000)  (0.000) (0.000) (p = 0.003) (0.000) (0.000) 

educ_sec -0.0029*** 0.0044*** -0.0606*** -0.0083** 0.0039**  -0.0011* 0.0028*** -0.0247*** -0.0009* 0.0022 

 (0.001) (0.001) (p = 0.003) (0.004) (0.002)  (0.001) (0.001) (p = 0.001) (0.000) (0.001) 

employ -0.0131*** 0.0394*** -0.0580*** -0.0146*** 0.0284***  -0.0028*** 0.0292*** -0.0225*** -0.0022*** 0.0215*** 
 (0.004) (0.004) (p = 0.005) (0.005) (0.003)  (0.001) (0.002) (p = 0.000) (0.001) (0.002) 

gdp_10000 -0.0141* 0.0376*** -0.0617*** 0.0237 0.0312**  -0.0023 0.0255*** -0.0231*** 0.0045 0.0162 

 (0.009) (0.007) (p = 0.003) (0.024) (0.014)  (0.002) (0.006) (p = 0.000) (0.003) (0.010) 
dependency ratio 0.0028 -0.0025 -0.0627*** 0.0075 -0.0082**  0.0002 -0.0013 -0.0232*** 0.0007 -0.0061** 

 (0.003) (0.002) (p = 0.002) (0.007) (0.004)  (0.001) (0.002) (p = 0.000) (0.001) (0.003) 

single -0.0042* -0.0036 -0.0631*** 0.0046 -0.0217***  -0.0007 -0.0038** -0.0233*** 0.0001 -0.0130*** 

 (0.002) (0.003) (p = 0.002) (0.007) (0.004)  (0.001) (0.002) (p = 0.000) (0.001) (0.003) 

Preference for insurance 
           

dsick_ins -0.1338*** 0.4485*** -0.0564*** -0.0648 0.3919***  -0.0303*** 0.3261*** -0.0213*** -0.0146*** 0.2582*** 
 (0.035) (0.010) (p = 0.005) (0.040) (0.013)  (0.005) (0.008) (p = 0.000) (0.004) (0.010) 

dhosp_ins 0.0648*** 0.5215*** -0.0714*** 0.1042** 0.4380***  0.0042 0.4287*** -0.0237*** 0.0104 0.3477*** 

 (0.031) (0.010) (p = 0.000) (0.045) (0.014)  (0.007) (0.010) (p = 0.000) (0.006) (0.014) 
            

Pricing characteristics Yes Yes Yes Yes Yes  Yes Yes Yes Yes Yes 

            
Constant    -4.0768*** -3.9652***     -0.1172 -1.6840*** 

    (0.731) (0.388)     (0.108) (0.278) 

Observations  71,358   71,358 

Correlation between 

   residuals 𝜌 (𝜑𝑖 , 𝜔𝑖) 

  -0.0480 (p = 0.114)     -0.0102*** (p = 0.006) 

Notes: The number of observations slightly differs due to missing values. The coefficients in columns (1)-(5) are based on a bivariate probit model. Robust standard errors for each coefficient and p-value for the 

correlation coefficient of the residuals in parentheses, respectively. When aggregated characteristics are included into the model, standard errors are clustered at a district level. *p < 0.10, **p < 0.05, ***p < 0.01. 



  

65 

Table 3.4:  Sources of Selection (CompLTCI Policyholders) 

 (1) (2) (3) (4) (5) 

 Adding potential sources  

separately 

Adding all potential sources 

simultaneously 

 LTCprob lnCompLTCIp 𝜌 (𝜑𝑖 , 𝜔𝑖) LTCprob lnCompLTCIp 

      

Socioeconomic  

   characteristics 

     

ISEI-08 -0.0000 0.0006** -0.0214** 0.0000 0.0007** 

 (0.000) (0.000) (p = 0.018) (0.000) (0.000) 

educ_sec -0.0001* -0.0000 -0.0308*** -0.0001 0.0013 

 (0.000) (0.000) (p = 0.000) (0.000) (0.001) 

employ -0.0001 0.0026* -0.0308*** -0.0000 0.0030* 

 (0.000) (0.001) (p = 0.000) (0.000) (0.002) 

gdp_10000 -0.0009* 0.0025 -0.0307*** -0.0001 0.0081 

 (0.000) (0.003) (p = 0.000) (0.001) (0.009) 

dependency ratio 0.0001 0.0005 -0.0308*** -0.0000 -0.0042* 

 (0.000) (0.001) (p = 0.000) (0.000) (0.002) 

single -0.0002* -0.0022*** -0.0311*** -0.0001 -0.0096*** 

 (0.000) (0.001) (p = 0.000) (0.000) (0.002) 

Preference for insurance 
     

dsick_ins -0.0030** 0.0267*** -0.0308*** -0.0019 0.0257** 

 (0.001) (0.010) (p = 0.000) (0.001) (0.012) 

dhosp_ins 0.0024* 0.0360*** -0.0315*** 0.0025* 0.0295*** 

 (0.001) (0.009) (p = 0.000) (0.001) (0.011) 

      

Pricing characteristics Yes Yes Yes Yes Yes 

      

Constant    0.0250 28.2273*** 

    (0.026) (0.570) 

Observations  12,170 

Correlation between  

   residuals 𝜌 (𝜑
𝑖
, 𝜔𝑖) 

   -0.0212** (p = 0.020) 

Notes: The number of observations slightly differs due to missing values. Robust standard errors for each coefficient and p-value for 

the correlation coefficient of the residuals in parentheses, respectively. When aggregated characteristics are included into the model, 
standard errors are clustered at a district level. *p < 0.10, **p < 0.05, ***p < 0.01. 

 

In a next step, we divide all non-binary variables into quintiles to examine potential 

non-linear effects of individuals’ characteristics on our outcome variables. This enables 

us to obtain a clearer picture of whether the association of the covariates with our outcome 

variables is heterogeneous. As shown in Table 3.5, the correlation of the characteristics 

that we identify as sources of advantageous selection (i.e., the ISEI-08 value as well as 

the educational attainment and the employment rate of an individual’s region) with  

CompLTCI is consistently lower in the first quintile (reference group) compared to higher 

quintiles (column (2)). However, these correlations do not increase linearly. For instance, 

consistent with similar findings of McCall, Mangle, Bauer, and Knickman (1998) regard-

ing the association of income and LTCI, the pattern of the correlation of the ISEI-08 value 

with CompLTCI is U-shaped, with its strongest association in the third quintile. Thus, the 
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demand for CompLTCI increases up to the third quintile of the ISEI-08 distribution and, 

while still significantly higher than the first quintile, decreases afterwards. The identifi-

cation of these characteristics as sources of selection is mainly driven by the highest quin-

tiles, as the negative correlation with the risk of loss is only significant in those quintiles. 

Moreover, while we could not identify the GDP per capita in an individual’s district as a 

source of selection in our previous analysis (see Table 3.3), we find that individuals living 

in regions with a GDP per capita in the highest quintile are lower risks and significantly 

more likely to hold CompLTCI than individuals in the lowest quintile. This indicates that 

individuals living in relatively wealthy regions contribute to advantageous selection. 

Table 3.5:  Heterogeneous Effects of Potential Sources of Selection on CompLTCI and 

Risk 

 (1) (2) 

Independent Variable LTCprob CompLTCI 

ISEI-08   

    Second Quintile -0.0031 0.2411*** 

 (0.057) (0.018) 

    Third Quintile -0.0761 0.3126*** 

 
(0.061) (0.018) 

    Fourth Quintile -0.0649 0.2584*** 

 (0.060) (0.018) 

    Fifth Quintile -0.1562*** 0.0686*** 

 (0.059) (0.018) 

educ_sec   

    Second Quintile 0.0335 0.2039*** 

 (0.043) (0.034) 

    Third Quintile -0.0952** 0.2275*** 

 (0.046) (0.035) 

    Fourth Quintile -0.0444 0.1124*** 

 (0.043) (0.038) 

    Fifth Quintile -0.1119** 0.2676*** 

 (0.044) (0.030) 

employ   

    Second Quintile -0.0155 0.1345*** 

 (0.041) (0.042) 

    Third Quintile -0.0130 0.2096*** 

 (0.043) (0.038) 

    Fourth Quintile -0.1086*** 0.3345*** 

 (0.041) (0.033) 

    Fifth Quintile -0.1238*** 0.3475*** 

 (0.041) (0.033) 

   

  Continued on next page 

  



  

67 

 (1) (2) 

Independent Variable LTCprob CompLTCI 

gdp_10000 
  

    Second Quintile -0.0484 0.1682*** 

 (0.043) (0.043) 

    Third Quintile -0.0046 0.0932** 

 (0.043) (0.045) 

    Fourth Quintile 0.0084 0.2201*** 

 (0.040) (0.043) 

    Fifth Quintile -0.0899** 0.1995*** 

 (0.041) (0.042) 

dependency ratio   

    Second Quintile 0.0429 0.0186 

 (0.045) (0.048) 

    Third Quintile 0.0551 0.0614 

 (0.041) (0.040) 

    Fourth Quintile 0.0858* 0.0146 

 (0.045) (0.038) 

    Fifth Quintile 0.0170 -0.0154 

 (0.042) (0.039) 

single   

    Second Quintile -0.0063 0.1144*** 

 (0.041) (0.034) 

    Third Quintile -0.0638 0.0701* 

 (0.042) (0.039) 

    Fourth Quintile -0.0959** -0.0509 

 (0.046) (0.047) 

    Fifth Quintile -0.0877** -0.0161 

 (0.042) (0.040) 
Notes: The number of observations slightly differs due to missing values. Robust standard errors for each coefficient in parentheses. 

When aggregated characteristics are included into the model, standard errors are clustered at a district level. Omitted reference catego-
ries: First quintiles of the independent variables. *p < 0.10, **p < 0.05, ***p < 0.01. 

 

It should be noted that one potential issue could be that the unused observables and 

the related characteristics are not necessarily exogenous.44 We argue, however, that en-

dogeneity is unlikely to be an issue with respect to using residential location and occupa-

tional status as unused observables. The characteristics based on residential location are 

measured on an aggregated regional level. We argue that they are less likely to suffer 

from the issue of reverse causality or an omitted variable bias based on unobserved indi-

vidual characteristics. Similarly, the insurance company collects information about the 

individual’s occupation only once, i.e., at the time of the individual’s first health insur-

ance enrollment. This information is not frequently updated. Hence, occupational changes 

as a consequence of LTC-related health shocks seem to be less likely. 

                                                 

44  Dionne, La Haye, and Bergerès (2015), for instance, use several instruments to take account of possible 

endogeneity in testing for the presence of asymmetric information.  
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3.5.3 Results of the Dynamic Analysis 

Our finding of the negative coverage-risk correlation, which indicates advantageous se-

lection as the dominating selection effect, is based on a static perspective on the sample. 

In this section, we turn to a dynamic analysis of how the sample of CompLTCI policy-

holders changes over time. Here, we consider the lapse as well as the uptake of  

CompLTCI policies. Table 3.6 reports the results of a pooled regression of these outcome 

variables on health insurance payouts and on several other characteristics. Considering 

columns (1) and (2), we find that CompLTCI policyholders with higher health insurance 

payouts are less likely to let their CompLTCI policies lapse. Consistent with previous 

findings (e.g., Finkelstein et al., 2005), this points to an ex-post risk-based selection due 

to a lack of consumer commitment even though CompLTCI policies are front-loaded. 

Moreover, individuals with higher socioeconomic status, as measured by the ISEI-value, 

are also less likely to let their policies lapse. Consistent with Konetzka and Luo (2011), 

this suggests that people with lower socioeconomic status are more likely to suffer from 

financial problems, which increases the probability that they will let their policies lapse. 

This is supported by the strong positive correlation of having an “emergency treatments 

only” tariff (designed for non-paying customers in financial distress) with a lapse in  

CompLTCI.45 As shown in columns (3) and (4) of Table 3.6, our findings similarly sug-

gest an adverse selection with respect to the uptake of CompLTCI, as individuals with 

higher health insurance payouts are more likely to purchase CompLTCI. Consistent with 

the findings of our static analysis, our results show that individuals with a higher socio-

economic status (as measured with the ISEI-08 value and the employment rate of an in-

dividual’s district) and individuals who hold a supplementary health insurance policy are 

more likely to buy CompLTCI. 

  

                                                 

45  PHI enrollees who are not able to pay their regular health insurance premiums over several months are 

assigned to an “emergency treatments only” tariff, which only covers the costs of acute sickness and pain, 

as well as pregnancy and maternity. In 2014, about 0.1 m PHI enrollees held this tariff (Association of 

German private healthcare insurers, 2016b). 
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Table 3.6:  Pooled Regression for Lapse and Uptake of CompLTCI 

Dependent variable  LTCI_lapse  CompLTCI 

 (1) (2)  (3) (4) 

Independent  

   variable 

Adding covariates 

separately 

Adding covariates 

simultaneously  

 Adding covariates 

separately 

Adding covariates 

simultaneously  

lnHCcost -0.0060*** -0.0022***  0.0021*** 0.0010*** 

 (0.001) (0.001)  (0.000) (0.000) 

ISEI-08 -0.0006*** -0.0003***  0.0003*** 0.0002*** 

 (0.000) (0.000)  (0.000) (0.000) 

educ -0.0002 0.0002  -0.0001 -0.0003 

 (0.000) (0.000)  (0.000) (0.000) 

employ -0.0014** -0.0001  0.0056*** 0.0060*** 

 (0.001) (0.001)  (0.000) (0.001) 

gdp_10000 -0.0018* -0.0009  -0.0002 -0.0002 

 (0.001) (0.002)  (0.001) (0.002) 

dependency ratio 0.0007** 0.0008  0.0003 -0.0013** 

 (0.000) (0.001)  (0.000) (0.001) 

single -0.0001 0.0006  -0.0012*** -0.0009 

 (0.000) (0.001)  (0.000) (0.001) 

dsick_ins -0.0103** -0.0075  0.0492*** 0.0437*** 

 (0.004) (0.005)  (0.002) (0.003) 

dhosp_ins -0.0013 -0.0019  0.0507*** 0.0409*** 

 (0.003) (0.004)  (0.003) (0.004) 

tariff_non-payer 0.8709*** 0.8521***    

 (0.022) (0.024)    

Pricing  

   characteristics 

Yes Yes  Yes Yes 

Constant  -0.0597   -0.3621*** 

  (0.217)   (0.067) 

Observations  8,321   66,408 
Notes: The number of observations slightly differs due to missing values. Robust standard errors for each coefficient in parentheses. 
When aggregated characteristics are included into the model, standard errors are clustered at a district level. *p < 0.10, **p < 0.05, 

***p < 0.01. 

 

Figure 3.1 illustrates the health insurance benefits held by individuals in the periods 

before and after two events: lapse and uptake of CompLTCI. The marginal effects on 

health insurance benefits before and after these events are reported in Table A.2 in the 

Appendix. Considering first the lapse behavior of CompLTCI policyholders (graphs on 

the left), we find that the probability and amount of health insurance payouts for people 

in financial distress (red line) decline until the CompLTCI policy lapses. After the lapse, 

health insurance payouts remain at a low level. One obvious reason for this finding is that 

people with financial problems are more likely to drop CompLTCI coverage, and this 

tariff provides only basic coverage, such as for the costs of acute treatment and severe 

pain. Considering individuals without financial distress (blue line), the probability of 

claiming health insurance benefits as well as the amount of health insurance payouts are 

at a higher level, but still consistently below the average of CompLTCI enrollees who did 

not let their policies lapse. Similar to the trend for people in financial distress, the proba-

bility of claiming insurance benefits as well as the amount of health insurance benefits 



  

70 

decrease around the year of the lapse. If health insurance payouts mainly reflect the indi-

vidual’s health status, which is positively correlated with LTC costs in the future, this 

result may point to ex-post selection, which would be consistent with previous studies 

(e.g., Finkelstein et al., 2005; Hofmann & Browne, 2013); i.e., people with better health 

and lower LTC risks are more likely to let their CompLTCI lapse. However, as shown in 

Figure 3.1, the health insurance payouts of policyholders without financial problems rise 

again some years after the lapse in insurance, and costs actually return to their pre-lapse 

level. While we cannot exclude the possibility that the decreased health insurance payouts 

around the year of lapse reflect an improvement in health, we suggest that it is more likely 

that individuals’ financial problems explain these findings. Individuals with a deductible 

as part of their health insurance policy may omit medical treatments to reduce health care 

expenses, which will lower health insurance payouts for a short period of time. Moreover, 

as shown in Table 3.6 and Figure 3.1 (red lines), people of lower socioeconomic status 

and/or with financial problems are more likely to drop CompLTCI. 

The uptake behavior, shown in the graphs on the right, indicates that both the proba-

bility and the amount of health insurance payouts of CompLTCI enrollees are lower than 

the average of non-enrollees before the uptake, but starting in the year of the uptake, both 

increase to a level above the average of non-policyholders. This may indicate that people 

with increasing health care costs become more aware of LTC risk or anticipate an in-

creased risk of needing LTC. If health care and LTC costs are positively correlated, this 

finding would be consistent with adverse selection and hence with a deterioration of the 

risk pool of CompLTCI policyholders over time. 
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Figure 3.1:  Average Marginal Effects of Lapse and Uptake of CompLTCI Policies on the 

Probability of Claiming Health Insurance Benefits and the Amount of Health 

Insurance Payouts. 

  

 

Note: The horizontal line on each graph represents the outcome variable of the reference group, i.e., people 

who did not lapse in the graphs on the left and people without a CompLTCI in the graphs on the right. The 

vertical bars on each point refer to the 95% confidence interval.  

 

3.5.4 The Issue of Moral Hazard 

The finding of our static analysis – i.e., that advantageous selection is the dominating 

selection effect – holds true regardless of the existence of moral hazard, as the latter would 

imply a positive coverage-risk correlation. Nevertheless, it is of interest to determine the 

extent to which any selection effect is biased by moral hazard effects. In a first step, we 

theoretically argue that moral hazard should be of minor importance in the context of the 

German market for CompLTCI. In addition, we provide empirical evidence that moral 

hazard is unlikely to bias our results. 
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From a theoretical perspective, our first argument is that ex-ante moral hazard plays 

a small role in the LTCI context (similar to the context of health insurance markets) be-

cause any behavior leading to ex-ante moral hazard negatively affects the individual’s 

own health (Cutler & Zeckhauser, 2000). Second, ex-post moral hazard effects in the 

German LTCI market are less likely to be a problem due to the condition that LTC bene-

fits depend on individuals being assigned to a care level by independent experts. Ex-post 

moral hazard in the German CompLTCI market could result from LTC beneficiaries 

choosing between different LTC services, such as between receiving LTC at home from 

a mobile nursing service or receiving more expensive care at a nursing home. Several 

surveys show that individuals in Germany prefer to receive LTC at home instead of going 

to a nursing home (Deutsche Gesellschaft für Qualität, 2015; MLP, 2014; R+V Versi-

cherung, 2013). Moreover, as shown by Grabowski and Gruber (2007), the demand for 

nursing home care is relatively price inelastic. In addition, when we measure risk by the 

probability of needing LTC, ex-post moral hazard should not be an issue. 

To empirically test for moral hazard, we estimate an instrumental variable (IV) model 

for a regional subsample. The identification of potential moral hazard requires that we 

exclude the possibility of selection into insurance, which can be estimated using exoge-

nous variation in the uptake of insurance. The instrument in question must predict  

CompLTCI uptake and be uncorrelated with LTC risk. As an instrument, we rely on the 

regional density of local banks in the area, as such banks serve as insurance agencies. 

Close proximity to an insurance agency reduces the costs of uptake and increases the 

probability of interacting with an insurance agent. The agency density in a region is, how-

ever, only exogenous to LTC risk if agents are not able to anticipate future risk develop-

ment and select themselves into low-risk environments. We argue that this is not the case 

for two reasons: First, we only rely on local banks that are unlikely to locate themselves 

in certain areas based on local LTC risks. Second, little is known about the determinants 

of LTC risk beyond individual age and gender, both of which we use as controls in the 

IV regression. We therefore account for any possible confounding relationship between 

the agency density and age and gender distribution.  

Table 3.7 shows the estimation results. The LPM displayed in column (1) shows a 

negative correlation between CompLTCI and the probability of LTC needs. This result 
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again indicates the presence of advantageous selection in the LTCI market, which over-

shadows potential moral hazard when CompLTCI is endogenous in the regression. For 

the regional subsample, we observe a similar relationship for the LPM, which suggests 

that the subsample does not systematically differ from the full sample. The first-stage 

regression shows that our instrument is sufficiently predictive of insurance uptake, with 

an F-statistic above the commonly accepted threshold of 10 (Greene, 2012; Stock, 

Wright, & Yogo, 2002). However, neither the reduced form regression nor the 2SLS es-

timation show a significant effect on LTC risk. This supports our previous argument that 

the CompLTCI market is unlikely to suffer from moral hazard and our selection estimates 

are unlikely to be upwardly biased by the presence of moral hazard. 

Table 3.7:  IV-approach with Distribution Density as an Instrument for Testing for Moral 

Hazard 

 (1) (2) (3) (4) (5) 

 Full Sample Regional Sample 

 

  

LPM 

 

LPM 

Reduced Form 

LPM 

First Stage 

LPM 

 

2SLS 

 

Dependent variable LTCprob  

 

LTCprob  

 

LTCprob 

 

CompLTCI LTCprob 

 

Independent variable      

      

CompLTCI -0.0038*** 

(0.001) 

-0.0048*** 

(0.001) 

  0.0134 

(0.041) 

distribution_dens   0.0001 

(0.001) 

0.0128*** 

(0.003) 

 

First Stage F-statistic      16.294 

Observations 98,305 38,537 38,537 38,537 38,537 
Notes: Robust standard errors in parentheses. In the regression of the reduced form, the first stage as well as the 2SLS (columns (3)-
(5)), standard errors are clustered at the district level because the agency density is measured on a regional level. *p < 0.1, **p < 0.05, 

***p < 0.01. 

 

3.6 Conclusions 

In this paper, we analyze selection effects in the German market for CompLTCI using 

data from an insurance company. In a static framework, we provide evidence that indi-

viduals with a CompLTCI are lower-risk types than non-enrollees and that CompLTCI 

policyholders with more insurance coverage are lower risks compared to policyholders 

with less coverage. These results indicate that people in this market have private infor-

mation, which leads to advantageous selection as the dominating selection effect – con-

cerning both the decision to buy a policy and the extent of insurance coverage chosen. 



  

74 

This is in contrast to the results of Browne and Zhou-Richter (2014), who find adverse 

selection to be dominating in the German market for LTCI. Given the design of the Ger-

man LTCI system, these findings are unlikely to be biased by moral hazard, and we pro-

vide additional empirical evidence of this conclusion. An equilibrium involving advanta-

geous selection, which arises from multidimensional private information and offsets ad-

verse selection effects, may also suffer from market inefficiencies (e.g., Fang et al., 2008; 

Finkelstein & McGarry, 2006). 

Testing for sources of selection, we identify the occupation, the residential location 

and the preference for insurance coverage as unused observables. While both occupation 

and residential location include information about socioeconomic status that contributes 

to advantageous selection, our results with respect to holding supplementary health insur-

ance as a source of either adverse or advantageous selection are mixed. We argue that 

these tests are unlikely to suffer from endogeneity when we test aggregated information 

based on the residential location and information based on the occupation. The incon-

sistency – with respect to the sources of selection for the full and the restricted sample of 

CompLTCI policyholders – suggest that unused observables, which contribute to selec-

tion effects concerning the decision to buy CompLTCI, do not necessarily contribute to 

selection effects concerning the chosen amount of CompLTCI coverage. Moreover, our 

results indicate that non-linear effects of certain characteristics on insurance coverage and 

risk should be considered when analyzing sources of selection.  

Based on our results of the static analysis, we conclude that the German CompLTCI 

market is not perfectly competitive. First, following Chiappori and Salanié (2013), in a 

perfectly competitive market with asymmetric information, only a positive coverage-risk 

correlation would be predicted. Second, the significant relationships for several potential 

unused observables suggest that German CompLTCI insurers do not use all observable 

characteristics of individuals when classifying individuals into risk classes, even though 

these characteristics are correlated both with insurance demand and with the risk of loss 

in this market. Following Kesternich and Schumacher (2014), one explanation for the 

existence of the identified unused observables might be that the existing insurance com-

panies offering CompLTCI in Germany cannot profitably use the unused observables to 

discriminate between different risk types. Nevertheless, we argue that the selection effects 
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identified here might be gainfully used by insurance companies in the German LTCI mar-

ket should they want to pursue a more targeted distribution of products.  

It should be noted that our finding of advantageous selection in the static framework 

can be regarded as a snapshot of the risk pool at a given point in time. By examining the 

change in the risk pool over time in a dynamic framework, we find that individuals with 

increased health insurance payouts are more likely to buy a CompLTCI and that people 

with decreased health care costs are more likely to let their CompLTCI policy lapse. Peo-

ple who learn about their low LTC risk over time based on their current health care status 

and decide to drop CompLTCI coverage might explain this result if health insurance pay-

outs are positively correlated with future LTC risk. In this case, our results suggest that 

the market suffers not only from adverse selection over time but also from ex-post selec-

tion arising from a lack of consumer commitment. The latter would be in line with find-

ings for the U.S. LTCI market (Finkelstein et al., 2005) and the German PHI market (Hof-

mann & Browne, 2013) and would lead to dynamic market inefficiencies. However, our 

results also show that health insurance payouts rise again a short time after lapse. One 

possible explanation for this finding from a behavioral perspective could be that the de-

clined insurance payouts reflect a short-term improvement in health and that this provides 

individuals with a salient reference point for their expectations about their future health 

and LTC risks. Accordingly, people may make their decisions to retain CompLTCI based 

on these factors. While we cannot exclude this explanation, we suggest, in line with 

Konetzka and Luo (2011), that it is more likely that lapses are driven by financial prob-

lems. People with financial problems and a deductible in their health insurance contracts 

may simply decide to forego or delay medical treatment over a short period to reduce 

their out-of-pocket expenses on health care. This could also explain the declined health 

insurance payouts. In addition, these people may decide to drop CompLTCI to eliminate 

premium payments. This alternative explanation is supported by our finding that lapses 

are positively associated with financial distress and low socioeconomic status. Moreover, 

considering our results that people of higher socioeconomic status are less likely to need 

LTC, the selection of people based on their socioeconomic status may counteract any 

possible worsening of the risk pool.  

Overall, our findings provide solid evidence of the existence of market imperfections 

and selection effects in the German CompLTCI market. This may lead to inefficiencies 
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with respect to insurance coverage for LTC risks. Note that we do not claim that our data 

are representative of all PHI companies or the entire population in Germany. Future re-

search could extend our insights into selection behavior in LTC markets by differentiating 

between different types of LTC. Furthermore, information about health care and LTC 

costs, as well the lapse of LTCI policies over a longer period of time, might provide more 

insights into the issue of ex-post selection. In addition, future studies could extend our 

analysis by focusing on CompLTCI tariffs that are subsidized by the state (“Pflege-Bahr”) 

and that were introduced in 2013. As insurance companies in this market cannot charge 

risk-based premiums at the time of contract signing or reject applicants who have no need 

for LTC, the market for these policies is prone to adverse selection (Ehing, 2015; Jacobs 

& Rothgang, 2013).  
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4 Heterogeneous Selection in the Market for Private 

Supplemental Dental Insurance: Evidence from 

Germany46 

Abstract 

This paper analyzes the German market for supplemental dental insurance to identify se-

lection behavior based on individuals’ private information. The rather limited underwrit-

ing by German private health insurers makes this market especially prone to selection 

effects. Although the standard positive correlation test does not indicate asymmetric in-

formation in this market, we conjecture that this outcome may result from sample heter-

ogeneity when adverse and advantageous selection occur simultaneously and offset each 

other. Examining a large set of potential sources of selection effects, we mainly find that 

the holding of other SuppHI policies, which is related to risk preferences, contributes to 

an advantageous selection in this insurance market. Our results suggest that even in the 

absence of a positive correlation between risk and insurance coverage, the German market 

for supplemental dental insurance suffers from information asymmetry, which is caused 

by multidimensional private information.  

                                                 

46  This chapter is based on joint work with Jan Michael Bauer from the Copenhagen Business School and 

Jörg Schiller from the University of Hohenheim. The candidate´s individual contribution focused mainly 

on the literature research, the empirical work and the writing. The underlying manuscript was submitted to 

Empirical Economics for publication. The author wishes to particularly thank Stefan Felder and Peter 

Zweifel, the University of Ulm as well as all the participants at the 41st annual EGRIE seminar, the 2015 

annual meeting of the DVfVW and the 3rd World Risk and Insurance Economics Congress for their helpful 

comments. The author also thanks the Bertelsmann Stiftung for providing data from the Healthcare Monitor 

in cooperation with the statutory health insurance fund Barmer GEK. Furthermore, the author gratefully 

acknowledges financial support from the DVfVW. 
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4.1 Introduction 

Growing health care expenditure has led to a financial burden for health care systems 

with universal insurance coverage. Increasing copayments and benefits restrictions in 

public health insurance, while offering a market for VPHI for coverage gaps may be an 

option to limit public health care expenditure. In many OECD countries, especially dental 

care for adults is one type of benefits not at all or only partly covered by basic health 

insurance (Paris et al., 2010) and thus on average, 55% of the total expenditure for dental 

care was paid for out-of-pocket in 2011 (OECD, 2013). In the German SHI, for instance, 

insurance coverage for dental benefits has been incrementally reduced. This led to a tri-

pling of SHI enrollees holding a private SuppDI in addition to their SHI coverage between 

2004 and 2012. Among several different SuppHI policies, the highest demand is on 

SuppDI in Germany (Grabka, 2014). However, shifting coverage to VPHI carries a risk 

of inefficiency since asymmetric information and related selection effects may lead to a 

suboptimal insurance coverage at least by some individuals (Finkelstein & McGarry, 

2006; Rothschild & Stiglitz, 1976). 

The purpose of this paper is to analyze selection effects in the German market for 

SuppDI. This is a particularly appropriate context given that the rather limited underwrit-

ing by German private health insurers at the date of contract signing makes this market 

prone to selection. In a first step, we examine whether SHI enrollees have private infor-

mation leading to selection effects in the aggregate. Using standard approaches for testing 

for asymmetric information, such as based on Chiappori and Salanié (2000), we do not 

find support for the basic prediction that SuppDI coverage correlates positively with the 

risk of needing dental care. As this finding may result from an offsetting of adverse and 

advantageous selection, combined with a possible inefficient market outcome (Finkel-

stein & McGarry, 2006), we analyze whether we identify potential sources of selection in 

a second step. Based on theory (de Meza & Webb, 2001; Rothschild & Stiglitz, 1976) 

and previous studies (Buchmueller et al., 2013; Fang et al., 2008; Finkelstein & McGarry, 

2006), we focus on risk preferences, socioeconomic characteristics and the individual’s 

health status as potential sources. We mainly find the preference for insurance proxied by 

the number of other SuppHI policies except SuppDI as the main driver for advantageous 

selection. This is consistent with Lange et al. (2017) who also find a positive impact of 

preference for insurance, proxied among others by the holding of other SuppHIs, on 
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SuppDI coverage. In contrast to their study, which is based on data from the GSOEP, our 

data include information on dental risk enabling us to analyze selection effects. By 

providing evidence of heterogeneous selection despite not rejecting the null hypothesis 

of an insignificant coverage-risk correlation, we complement the mixed evidence on se-

lection effects in markets for private dental insurance (e.g., Godfried, Oosterbeek, & van 

Tulder, 2001; Srivastava, Chen, & Harris, 2017). More generally and in line with Finkel-

stein and McGarry (2006), this finding suggests that a coverage-risk correlation is not a 

necessary condition for information asymmetry in insurance markets. Moreover, using a 

rich set of data, we extend the empirical literature on sources of selection. We particularly 

contribute to the still mixed evidence on the role of risk preferences with respect to selec-

tion behavior by identifying the holding of other insurance policies as a key source of 

advantageous selection in this market (e.g., Browne & Zhou-Richter, 2014; Fang et al., 

2008). Moreover, our findings are useful for policy implications concerning the decision 

to decrease coverage in the public health insurance system and to provide the option of 

VPHI for coverage gaps in the public system.  

The remainder of the paper proceeds as follows. Section 4.2 gives an overview of the 

German health insurance system. Section 4.3 then summarizes the basic theoretical ef-

fects of information asymmetry in insurance markets and reviews the related literature. 

Section 4.4 presents the data and empirical model. Section 4.5 reports and discusses the 

results of both the main analysis and several robustness checks. Section 4.6 concludes the 

paper. 

4.2 Institutional Background 

In Germany, the SHI covers nearly 90% of the population while about 10% has substitu-

tive PHI. SHI has a highly uniform standard benefit package for all funds, one that is quite 

comprehensive compared to those in other industrialized countries (Beske et al., 2005). 

Due to rising health care expenditure, out-of-pocket expenses from copayments and 

standard benefit exclusions have recently been increasing in the SHI (Grabka, 2014). In 

particular, a 2004 reform changed the 35–50% coinsurance rate for dental prostheses to 
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diagnosis-based fixed benefits covering 50%47 of the cost of standard treatment (Klingen-

berger & Micheelis, 2005).48 Dental prostheses costs exceeding these benefits must be 

paid out of pocket, subjecting SHI enrollees to an increased financial risk associated with 

dental care. 

To reduce coverage gaps in the SHI benefit package, SHI enrollees may buy SuppHI 

directly from private health insurers. The German market for PHI including SuppHI is 

imperfectly competitive (Hofmann & Browne, 2013). SuppHI contracts are guaranteed 

renewable (Pauly et al., 1995). Among various types of SuppHI available to SHI enrol-

lees, such as SuppDI or supplemental hospital insurance, SuppDI is the most prevalent 

and has the highest growth rate probably due to the 2004 reform. The proportion of SHI 

enrollees having SuppDI tripled after the 2004 reform from 5.6% in 2004 to 16.6% in 

2012 (Grabka, 2014). The main purpose of SuppDI policies is to reduce out-of-pocket 

expenses for dental services, especially for dental prostheses. Since only the cost of stand-

ard treatment for dental prostheses is partly covered by SHI, SHI enrollees may profit 

even more from SuppDI policies if they prefer higher quality prostheses. Premiums for 

SuppDI are generally risk adjusted based on individual age at the date of contract signing 

and gender.49 Additionally, insurers may ask applicants about past dental prostheses and 

advised dental or orthodontic treatment.50 Yet, the ex-ante premium differentiation for 

SuppDI is limited, since only few characteristics are used for pricing SuppDI policies. 

This may lead to selection effects from information asymmetry.51 

  

                                                 

47  By law, the fixed benefits can rise by 20% (30%) if there is evidence that the insured performs regular 

prevention and can prove yearly dental check-ups during the last 5 (10) years before treatment. 
48  This rule applies to all but low-income SHI enrollees, who are eligible to receive the full cost of standard 

treatment. According to Barmer GEK, in 2012, about 9% of SHI enrollees received diagnosis-based fixed 

benefits covering 100% of the cost of standard treatment (Rädel, Hartmann, Bohm, & Walter, 2014). 
49  Since the introduction of unisex tariffs in December 2012, gender has been prohibited for determining the 

premiums for private health insurance policies, such as SuppDI.  
50  Moreover, insurers may reject applicants based on risk-related responses. For instance, some insurers reject 

applicants with missing teeth above a certain threshold. We will take this issue in our empirical model 

(Section 4.4.2) and in our robustness checks (Section 4.5.2) into account. 
51  In addition, there is no consideration of past premium payment history, meaning that the information asym-

metry from a lack of ex-ante premium differentiation preserves over time. 
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4.3 Theoretical Background and Related Literature 

The classical type of selection based on asymmetric information is adverse selection. In 

the standard model with adverse selection (Rothschild & Stiglitz, 1976), individuals have 

only private information with respect to their risk type. In a separating equilibrium, high-

risk individuals choose policies with higher coverage compared to low-risk individuals. 

In our context, this model predicts that high-risk SHI enrollees purchase SuppDI with a 

higher probability or – in an extreme case – are the only risk types purchasing SuppDI, 

meaning that the demand of low-risk individuals is inefficiently low. The basic empirical 

prediction of adverse selection is that the amount of insurance coverage is positively cor-

related with the risk of loss controlling for all relevant characteristics used by insurers for 

risk-based rate making (Chiappori et al., 2006). Numerous studies have confirmed this 

correlation prediction in different insurance markets (see Cohen & Siegelman, 2010 for 

a review). In a closely related paper, Godfried et al. (2001) identify adverse selection in 

the Dutch SuppDI market after dental service exclusion from compulsory health insur-

ance. They show that individuals with poorer dental health or more frequent past dentist 

visits are more likely to purchase SuppDI than individuals with better dental health or 

fewer past visits.  

However, the prediction of a positive coverage-risk correlation is not only consistent 

with adverse selection, but may also arise from moral hazard (Chiappori et al., 2006). 

Based on theory on moral hazard (Pauly, 1968; Shavell, 1979), individuals with SuppDI 

coverage may reduce their effort into preventive dental care (ex-ante moral hazard) or 

increase their consumption of dental care after occurrence of a dental disease (ex-post 

moral hazard). As discussed by Cohen and Siegelman (2010) as well as Dionne (2013), 

different approaches have been applied in empirical studies to separate selection effects 

from moral hazard in insurance markets. One way is based on a randomized or natural 

experiment, such as the RAND Health Insurance Experiment (Manning, Newhouse, 

Duan, Keeler, & Leibowitz, 1987). In settings with non-experimental data, one possible 

approach is to use simultaneous equations models (e.g., Holly, Gardiol, Domenighetti, & 

Bisig, 1998; Keane & Stavrunova, 2016; Paccagnella et al., 2013; Srivastava et al., 2017). 

A crucial limitation of the positive correlation test is that the correlation between in-

surance coverage and risk occurrence may also be negative in an imperfectly competitive 

insurance market like the German market for SuppDI (Chiappori & Salanié, 2013). An 



  

82 

absence of a positive correlation can be explained either by negligible information asym-

metries or, for instance, by unobserved preference heterogeneity in addition to heteroge-

neity in risk, i.e., multidimensional private information (e.g., Cutler et al., 2008).52 

Hemenway (1990) suggests that a negative risk-coverage correlation can be explained by 

highly risk-averse individuals that are more likely to buy insurance coverage and invest 

more in prevention so as to reduce their risk of loss. This mechanism can produce an 

advantageous selection in a market equilibrium as shown in the theoretical model by de 

Meza and Webb (2001). Based on this theory, one would expect low-risk individuals to 

buy SuppDI coverage more likely. 

Several recent studies do find evidence for the importance of multidimensional pri-

vate information in different insurance markets. Srivastava et al. (2017), for instance, find 

a positive correlation between private dental insurance in Australia and oral health as well 

as preventive behavior towards dental health (e.g., flossing), which is consistent with ad-

vantageous selection. In another related paper, Finkelstein and McGarry (2006) find evi-

dence of multidimensional private information in the U.S. LTCI market. As they do not 

identify a significant correlation between risk occurrence and LTCI coverage, they con-

clude that adverse and advantageous selection offset each other in the aggregate. Their 

findings indicate that a positive coverage-risk correlation is not a necessary condition for 

implying that an insurance market suffers from inefficiencies due to information asym-

metry.  

Based on de Meza and Webb (2001), risk aversion is of primary interest as a source 

of advantageous selection. Some studies provide evidence that factors related to risk pref-

erences contribute to advantageous selection (e.g., Buchmueller et al., 2013; Doiron et 

al., 2008; Finkelstein & McGarry, 2006; Schmitz, 2011). Browne and Zhou-Richter 

(2014), for instance, find that preference for insurance, measured by the holding of Sup-

pHI policies, is a source for advantageous selection in the German LTCI market. How-

ever, insurance markets differ in whether risk preferences are an important source of ad-

vantageous selection. Fang et al. (2008) for instance, find that risk preferences cannot be 

considered as a source of advantageous selection in the U.S. Medigap insurance market. 

They suggest that potential sources of advantageous selection, in general, may be any 

                                                 

52  Further possible explanations for the lack of a positive correlation between insurance coverage and risk 

occurrence are discussed by Cohen and Siegelman (2010). 
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private information about characteristics that positively correlates with insurance cover-

age, but negatively with the risk of loss. For instance, there is some evidence that socio-

economic characteristics, particularly wealth or income, contribute to advantageous se-

lection (Buchmueller et al., 2013; Fang et al., 2008; Finkelstein & McGarry, 2006). 

The previous literature has provided evidence that indicates that the dominating type 

of selection and the role of risk preferences with respect to selection behavior is still 

mixed. Hence, further evidence is required to provide a better understanding of selection 

effects and their sources that can be used to improve market efficiency. Our paper is, to 

the best of our knowledge, the first study analyzing heterogeneous selection in the Ger-

man market of SuppDI based on a rich data set with particularly detailed dental infor-

mation. We use a comprehensive set of statistical tests to provide robust and novel in-

sights into selection behavior in markets for SuppHI. 

4.4 Data and Methods 

4.4.1 Data 

In our paper, we use data at the individual level from the Healthcare Monitor, a repre-

sentative survey of a cross-section of the German population.53 For the present analysis, 

we rely exclusively on wave 19 (from 2011) because it contains very detailed information 

of individuals about dental health and dentist visits in addition to information on the gen-

eral health status, health insurance coverage, socioeconomic characteristics and the num-

ber of physician visits. Concerning dental health, respondents were asked whether or not 

they have periodontitis, dental fillings, implants, dental prosthesis, caries, jaw point pain, 

missing teeth, toothache, and whether they wear braces or a splint against teeth grinding. 

With respect to health insurance, the survey collected data whether the respondents are 

SHI or PHI enrollees and which SuppHI policies they hold. The survey does not provide 

information about the premiums and the comprehensiveness of the insurance policies. For 

this wave, a total of 2,200 individuals aged 18 to 79 were contacted by mail, of whom 

                                                 

53  The Healthcare Monitor (“Gesundheitsmonitor”) is administered since 2001 by the Bertelsmann Stiftung. 

Since 2011, the SHI fund Barmer GEK has been cooperating with the Bertelsmann Stiftung on the 

Healthcare Monitor. 
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over 80% responded (GfK Health Care, 2011). Our final sample consists of 1,781 indi-

viduals. 

Table 4.1 shows some descriptive statistics divided by insurance status. PHI enrollees 

(column 1) tend to be older, have higher incomes, and be more predominantly male than 

SHI enrollees (column 2). With regard to dental health, however, we observe no major 

differences between the two groups. Given our focus on selection in the SuppDI market, 

we are particularly interested in differences between individuals with and without a 

SuppDI policy. Since the insurance coverage covered by SuppDI is already included in 

most PHI plans, we exclude PHI enrollees (𝑛 = 285) and only consider SHI enrollees 

(𝑛 = 1,496) in our analysis. Among individuals with SHI, less than one third (29%) holds 

a SuppDI policy. The comparison between SHI with (3) and without (4) SuppDI shows 

that SuppDI policyholders are more likely to be married and, in line with most findings 

in the literature (see Kiil, 2012 for a review), have a higher income. Srivastava et al. 

(2017), for instance, show that private dental insurance coverage is positively correlated 

with income in Australia. Consistent with previous findings (Browne & Zhou-Richter, 

2014; Buchmueller et al., 2013; Lange et al., 2017), SuppDI policyholders are more likely 

to hold further SuppHIs. 

To test for selection effects, we must find an appropriate measure for the financial 

risk associated with dental treatments. Because our data include no information on the 

specific type of dental care or resulting expenditure for dental treatments, we cannot fully 

measure individual risk. Rather, we proxy risk by the number of dentist visits. The indi-

viduals were asked about the number of dentist visits in the previous twelve months. Ta-

ble 4.1 shows that SuppDI policyholders go to the dentist more often than the comparison 

group. This finding might indicate that SuppDI policyholders are higher risks as they are 

also more likely to have a dental implant or dental filling and less likely to have no dental 

problems. Simply comparing the numbers for SuppDI enrollees and non-enrollees, how-

ever, is inadequate for risk assessment because the former may also be more likely to 

have annual check-ups. In fact, Table 4.1 confirms that SuppDI policyholders tend to 

have more preventive dentist visits than non-enrollees.  
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Table 4.1:  Descriptive Statistics by Insurance 

 PHI SHI SHI 

 (1) (2)           (3)    SuppDI     (4) 

 All All Yes No 

Utilization of dental services    

Dentist visits per year 1.817 1.761 2.049 1.641*** 

Usual preventive dentist visits per year     

    Seldom/only in pain 0.108 0.054 0.022 0.068*** 

    Once in 2 years 0.082 0.032 0.020 0.036 

    Once  0.354 0.375 0.353 0.384 

    Twice  0.384 0.490 0.551 0.464*** 

    Three times or more 0.071 0.049 0.054 0.048 

Dental issues     

    Periodontitis 0.146 0.178 0.159 0.185 

    Filling 0.623 0.674 0.728 0.651*** 

    Prosthesis 0.384 0.419 0.441 0.409 

    Implant  0.198 0.105 0.127 0.096* 

    Braces 0.022 0.021 0.017 0.022 

    Grind teeth 0.056 0.065 0.076 0.060 

    Missing teeth 0.078 0.095 0.098 0.093 

    Toothache 0.011 0.015 0.025 0.011* 

    Chewing/jaw 0.007 0.022 0.025 0.021 

    Caries 0.071 0.074 0.061 0.079 

    No issues 0.123 0.115 0.088 0.126** 

Socioeconomic characteristics   

Male 0.687 0.454 0.429 0.464 

Age 54.567 49.495 50.324 49.153 

Marital status     

    Married 0.690 0.576 0.637 0.550*** 

    Widowed 0.030 0.047 0.056 0.044 

    Divorced 0.067 0.089 0.091 0.088 

    Single 0.213 0.288 0.216 0.318*** 

Income 3.690 2.782 2.993 2.695*** 

A-level 0.657 0.462 0.446 0.468 

Employment     

    Full time work 0.422 0.389 0.407 0.381 

    Part time work 0.052 0.123 0.115 0.127 

    Hourly based work 0.022 0.059 0.061 0.059 

    Unemployed  0.455 0.358 0.373 0.352 

    Job training 0.049 0.071 0.044 0.082** 

Household size 2.291 2.315 2.341 2.304 

Health status      

Self-rated health 3.201 3.135 3.130 3.137 

Proxies for risk preferences and health-related behavior   

Number of other SuppHIs 1.160 0.506 1.179 0.228*** 

Never a smoker 0.545 0.561 0.532 0.572 

BMI 26.500 26.428 26.543 26.381 

Activity 4.134 3.940 4.034 3.901 

Diet     

    Fruits 3.179 3.218 3.267 3.198 

    Vegetables 3.157 3.075 3.137 3.050** 

    Fast food 1.825 1.822 1.824 1.822 

    Sweets 2.347 2.411 2.419 2.408 

Observations 285 1,496 429 1,067 
Notes: Sample size can vary slightly within each variable. Income is measured in €1,000 intervals from < €1,000 up to > €5,000 

monthly net household income. Self-rated health: bad = 1 to excellent = 5. Activity: never = 1 to daily = 6. Diet: never/seldom = 1 to 

daily = 4. The level of significance for the statistical differences in a two-sided t-test between the two groups (see columns 3 and 4) is 
designated as follows: *p < 0.10; **p < 0.05; ***p < 0.01. 
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To improve our risk measurement, we adjust our risk proxy to disentangle acute treat-

ment visits from preventive check-ups. Figure 4.1 shows the distribution of dentist visits 

for the whole sample of individuals with SHI. As is evident, many individuals go to the 

dentist only once or twice a year, which indicates actual treatment or a dental check-up.54 

Since SHI only covers two annual check-ups, we assume that three or more annual dentist 

visits clearly point to acute treatment. We thus transform our variable for risk (DentVisits) 

into a dummy equal to 1 if an individual went to the dentist more than twice in the previ-

ous year, and 0 otherwise. This transformation of the count variable, also used by God-

fried et al. (2001), should minimize incorrect measurement of preventive dentist visits as 

a proxy for risk. In our robustness checks, we consider alternative specifications of the 

main dependent variable as well as an alternative risk proxy (Section 4.5.2).  

Figure 4.1:  Number of Dentist Visits for All Individuals with SHI 

 

  

                                                 

54  SHI members have a financial incentive to go for regular dental check-ups because if they do so during the 

5 or 10 years preceding treatment, they receive higher benefits for dental prostheses. 
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4.4.2 Econometric Approach 

In a first step, we analyze the coverage-risk correlation to test for asymmetric information 

in the aggregate. Here, we apply two approaches which have been used in several previ-

ous studies (Cohen & Siegelman, 2010). In our first approach (“one-equation approach”), 

we estimate the relation between the ex-post risk of an individual with respect to dental 

treatment and SuppDI coverage by specifying the following LPM: 

𝑃(𝐷𝑒𝑛𝑡𝑉𝑖𝑠𝑖𝑡𝑠 = 1|𝑆𝑢𝑝𝑝𝐷𝐼, 𝑋, 𝐶)  =  𝛼0 +  𝛼1𝑆𝑢𝑝𝑝𝐷𝐼 +  𝛼2𝑋 +  𝛼3𝐶         (1) 

𝐷𝑒𝑛𝑡𝑉𝑖𝑠𝑖𝑡𝑠 is our risk proxy as described in the previous section. 𝑆𝑢𝑝𝑝𝐷𝐼 equals 1 

if an individual has SuppDI, 0 otherwise. As the premiums for SuppDIs are generally risk 

adjusted, we include the vector X to control for the risk classification in SuppDI policies. 

In line with the pricing of all German health insurers offering SuppDI, we include the 

insured’s age55 and gender56. As insurers may ask applicants about missing teeth, past 

dental prostheses and advised dental or orthodontic treatment, we also include whether 

the individual has a dental prosthesis, a dental implant or missing teeth to be more con-

servative and to reflect the more thorough risk classification used only by some insurance 

companies. All these variables are included in nonparametric form and fully interacted. 

Finally, we control in our models for the usual number of annual dentist visits for patients 

without any major dental issues. We assume these to represent preventive dentist visits 

(vector C).57 Hence, this should capture overly cautious individuals, i.e., those getting 

more than the recommended two annual check-ups. In addition, we control for the indi-

viduals’ fear of the dentist, which might capture possible skipping of annual check-ups 

                                                 

55  As the data are only cross-sectional, we cannot include characteristics related to time of contract finaliza-

tion. As a proxy, we use current information from the survey. In fact, age at contract entry is decisive for 

risk classification; however, since the survey does not report this datum, we control for the age of the 

insured at time of survey. We assume this bias to be relatively small since the majority of policies were 

finalized after the 2004 health care reform.  
56  As our survey data are from 2011, the introduction of unisex tariffs in December 2012 does not affect our 

analysis.  
57  Possible answers to the correspondent survey item are “three or more times a year,” “about twice a year,” 

“about once a year,” “about once in 2 years,” or “seldom, only in pain.” 
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or an avoidance of necessary treatments.58 Because the dependent variable is dichoto-

mous, we also estimate a probit model.  

In our second approach (“two-equation approach”), we rely on the bivariate probit 

model introduced by Chiappori and Salanié (2000) with the following two equations: 

𝐷𝑒𝑛𝑡𝑉𝑖𝑠𝑖𝑡𝑠 = 𝟏(𝛽1𝑋 +𝛽2𝐶 + 𝜀 > 0)            (2) 

𝑆𝑢𝑝𝑝𝐷𝐼       = 𝟏(𝛾1𝑋 +𝜂 > 0)            (3) 

The specifications of the variables are the same as in equation (1). In this approach, 

we regress both our risk proxy 𝐷𝑒𝑛𝑡𝑉𝑖𝑠𝑖𝑡𝑠 and our proxy for insurance coverage 𝑆𝑢𝑝𝑝𝐷𝐼 

conditional on 𝑋. We only control for vector 𝐶 in equation (2) since we assume that the 

frequency of dentist visits without any major dental issues and the fear of the dentist are 

exogenous in this equation, but do not directly affect the holding of SuppDI. Testing the 

independency of the residuals by the correlation coefficient 𝜌 (𝜀, 𝜂) enables to determine 

the relationship between 𝐷𝑒𝑛𝑡𝑉𝑖𝑠𝑖𝑡𝑠 and 𝑆𝑢𝑝𝑝𝐷𝐼. Finding a correlation between the re-

siduals that is significantly different from zero, i.e., 𝜌 (𝜀, 𝜂) ≠ 0, indicates that 

𝐷𝑒𝑛𝑡𝑉𝑖𝑠𝑖𝑡𝑠 and 𝑆𝑢𝑝𝑝𝐷𝐼 are correlated. This finding would point to the existence of 

asymmetric information. 

The sign of the coefficient of interest 𝛼1 in equation (1) as well as the correlation 

coefficient 𝜌 (𝜀, 𝜂) based on equation (2) and (3) indicate the dominant selection type in 

the aggregate. Identifying that 𝛼1 or 𝜌 (𝜀, 𝜂) is not significantly different from zero may 

be explained by different effects. First, it could indicate that asymmetric information in 

the SuppDI market is empirically negligible. Second, it could lead to a false rejection of 

asymmetric information when both adverse and advantageous selection offset each other 

in the insurance market. The latter is unlikely to result in an equilibrium that is first best 

(Finkelstein & McGarry, 2006). Third, an insignificant coverage-risk correlation could 

also be due to the existence of advantageous selection and an offsetting moral hazard 

effect positively affecting the coverage-risk correlation. Some studies (e.g., Manning, 

Bailit, Benjamin, & Newhouse, 1986; Meyerhoefer, Zuvekas, & Manski, 2014) find that 

                                                 

58  Measured by a 6-item scale from “no fear” to “panic.” 
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having dental insurance positively affects utilization of dental services.59 However, there 

is also empirical evidence (see Grembowski, Conrad, Weaver, & Milgrom, 1988 for a 

review) that documents a rather low price elasticity for dental services. Furthermore, 

Meyerhoefer et al. (2014), for instance, find that the use of dental services is significantly 

increased for people holding a dental insurance, but insensitive to variation of out-of-

pocket costs. Consistent with previous studies (Manning et al., 1986; Mueller & Monheit, 

1988), this finding indicates that varying the mere level of dental insurance coverage does 

not considerably impact the use of dental services. Thus, while we cannot reject a possible 

bias caused by moral hazard, we conjecture that a moral hazard effect of SuppDI coverage 

in Germany is rather low since each SHI enrollee is fully covered for basic tooth preser-

vation and at least for 50% of the cost of standard treatment for dental prostheses. We 

suggest that an insignificant coverage-risk correlation arises at least to some extent from 

an offsetting effect of heterogeneous selection. 

To get a clearer picture on the selection behavior in the SuppDI market, we test for 

the potential sources of selection effects in a second step. Consistent with previous studies 

(e.g., Browne & Zhou-Richter, 2014; Finkelstein & McGarry, 2006), we add potential 

drivers to our basic model in equation (4) and (5): 

𝐷𝑒𝑛𝑡𝑉𝑖𝑠𝑖𝑡𝑠 = 𝟏(𝜃1𝑋 +𝜃2𝐶 + 𝜃3𝐷 + 𝜑 > 0)          (4) 

𝑆𝑢𝑝𝑝𝐷𝐼      = 𝟏(𝜗1𝑋 + 𝜗3𝐷 + 𝜙 > 0)           (5) 

The interpretation of the equations generally follows equation (2) and (3). Vector 𝐷 

represents potential drivers for selection. Looking at 𝜃3 and 𝜗3 enables us to examine 

which characteristics are drivers for selection. Identifying an attribute that correlates pos-

itively with the uptake of SuppDI (𝜗3 > 0) and with the risk of loss (𝜃3 > 0) and that 

substantially changes the coverage-risk correlation represented by 𝜌 (𝜑, 𝜙)  in a negative 

direction (i.e., 𝜌 (𝜑, 𝜙) < 𝜌 (𝜀, 𝜂)) can be considered as a source of adverse selection. 

Conversely, finding a characteristic with opposite signs for the correlation with SuppDI 

                                                 

59  Srivastava et al. (2017), for instance, find that private dental insurance coverage increases the probability 

of general dental visits which may be interpreted as evidence of ex-post moral hazard. However, as they 

do not disentangle visits for acute treatment and for dental check-ups, their findings may be also explained 

by a higher degree of risk aversion of individuals with a private dental insurance. 
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and risk (e.g., 𝜗3 > 0 & 𝜃3 < 0) and which leads to 𝜌 (𝜑, 𝜙) > 𝜌 (𝜀, 𝜂) can be interpreted 

as a source of advantageous selection. It should be noted that this holds irrespective of a 

possible bias caused by moral hazard. 

In our analysis, we consider several potential sources of advantageous selection. We 

focus on characteristics related to risk preferences since risk aversion may be considered 

as a primary cause of advantageous selection based on de Meza and Webb (2001). Since 

we cannot measure risk aversion directly, we test a large set of factors that have been 

related to individual risk preferences in previous studies (Browne & Zhou-Richter, 2014; 

Buchmueller et al., 2013; Cutler et al., 2008; Finkelstein & McGarry, 2006). First, we 

examine risky or risk-reducing behavior with variables on the individual’s care about his 

own health (“Care about health”), on smoking (“Never a smoker”), on the frequency of 

physical activities (“Physical activities”), such as sports or gardening, and on the fre-

quency of eating rather healthy food (“Fruits” and “Vegetables” ) and unhealthy food 

(“Fast Food” and “Sweets”). Based on the assumption that these measures are likely to 

be related to risk aversion, we predict that people with a preventive health behavior are 

more likely to hold SuppDI and less likely to visit dentists for acute treatment. As another 

characteristic related to risk preferences, we test the preference for insurance proxied by 

the holding of other SuppHIs except SuppDI (“Preference for insurance”).60 Examples 

for further SuppHIs in our data are a daily sickness or hospital daily benefits insurance 

and a supplemental hospital insurance covering the treatment by chief physician and a 

single or double hospital bed.61 Based on de Meza and Webb (2001), we argue that people 

holding many SuppHIs buy SuppDI because of their inner need for security and their 

                                                 

60  The holding of several SuppHIs can basically be driven by the individual’s preference for insurance cov-

erage and by supplier behavior. However, to the best of our knowledge, insurance companies do not offer 

discounts for individuals buying more than one SuppHI. Moreover, the share of SHI enrollees with one 

specific type of SuppHI varies substantially. For instance, many SHI enrollees with a SuppDI do not hold 

a supplemental hospital insurance (Grabka, 2014). Thus, in line with Browne and Zhou-Richter (2014), we 

suggest that the holding of several SuppHIs is more likely to be driven by the individual’s preference for 

insurance. 
61  Further examples are a SuppHI with benefits for eyeglasses, drugs, and other medication, a CompLTCI, a 

SuppHI for alternative healing methods and naturopathy, a SuppHI for cures and special medical check-

ups and a SuppHI for treatment by a private physician. 
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generally higher preference for insurance on the one hand and are more likely to take 

precautions leading to lower ex-post risk on the other hand.62  

Based on classical adverse selection models (e.g., Rothschild & Stiglitz, 1976) and 

empirical findings (e.g., Browne & Zhou-Richter, 2014) we examine self-rated health as 

a potential source of adverse selection. The rationale is that people with private infor-

mation about their bad health are more likely to expect future dental treatments and are 

more likely to buy SuppDI. We measure self-assessed health by a categorical variable 

(“Self-rated health”) with 1 for bad health to 5 for excellent health. Finally, we test soci-

oeconomic characteristics, including income (“Income”), employment (e.g., “Full time”), 

marital status (“Married”) household size (“HH size”) and education (“A-level”) as po-

tential drivers for selection. Based on previous findings (e.g., Buchmueller et al., 2013; 

Fang et al., 2008), we suggest that a better socioeconomic status, such as higher income, 

contributes to advantageous selection in the SuppDI market. 

4.5 Results 

4.5.1 Evidence of Heterogeneous Selection 

We first analyze the data using the two aforementioned approaches to test for asymmetric 

information in insurance markets. Table 4.2 summarizes the results of the one- and two-

equation approach using different estimation techniques. Regressing dental risk on the 

dummy for holding SuppDI (one-equation approach), while controlling for pricing char-

acteristics, shows no significant difference between the groups both using a LPM and a 

probit estimation (column 1 and 2). Similarly, for the two-equation approach, we do not 

find a significant correlation between the residuals obtained from the two regressions of 

risk and insurance demand on pricing characteristics. This holds both when using a biva-

riate probit model (column 3) and when checking the independence of the residuals after 

estimating equation (2) and (3) separately by a LPM (column 1) and a probit model (col-

umn 2). 

                                                 

62  Note that empirical evidence (e.g., Chen & Hunter, 1996; Lang, Farghaly, & Ronis, 1994; Levin & 

Shenkman, 2004) shows that dental prevention, such as periodic dental check-ups or flossing, is predomi-

nantly positively related to dental health. See Petersen (2003), for instance, for a discussion on oral disease 

prevention. 
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Table 4.2:  Coverage-Risk Correlation 

Dependent Variable Dentist visits > 2 

 (1) (2) (3) 

 LPM Probit Biprobit 

    

Coefficient from regression of  

   dentist visits on SuppDI 

0.0246 

(0.022) 

0.1118 

(0.097) 

 

Observations 1,474 1,375  

    

Correlation coefficient of residuals 

   𝜌 (𝜀, 𝜂) 

0.0316 

(p = 0.225) 

0.0304 

(p = 0.261) 

0.0658 

(p = 0.258) 

Observations 1,474 1,375 1,474 

Notes: The residuals are derived from equation (2) and (3). Since we additionally control for vector C in equation (2), which leads to 

few missing values, the slightly different number of observations between the regressions of the two equations was aligned. The coef-
ficient in column (2) represents the correlation between predicted Pearson residuals. In column (3), the correlation coefficient is based 

on a bivariate probit model. The coefficients for the pricing characteristics are not displayed in this table due to the high number of 

interaction terms. Robust standard errors for the coefficient from the regression of dentist visits on SuppDI and p-values for the corre-
lation coefficient of the residuals in parentheses, respectively. *p < 0.10, **p < 0.05, ***p < 0.01.  

 

Based on these results, one could conclude the absence of asymmetric information in 

the German market for SuppDI. Since this finding can, however, also be explained by an 

offsetting of adverse and advantageous selection in the aggregate, we exploit the rich data 

set and test for sources of selection. Table 4.3 shows the results for adding each potential 

driver for selection separately (column 1 and 2) and adding those potential drivers simul-

taneously (column 3 and 4) to our basic bivariate probit model. Here, we cluster our var-

iables along two main categories: first, a set of factors related to risk preferences and, 

second, socioeconomic characteristics including self-rated health. Among the attributes 

related to risk preferences, we only find that preference for insurance significantly and 

positively correlates with the demand for SuppDI, but negatively with dental risk. To 

interpret preference for insurance as a driver for selection in the SuppDI market, the issue 

of causality in the relationship of preference for insurance with SuppDI and risk is im-

portant. If the risk covered by any SuppHI except SuppDI correlates with the number of 

dentist visits through other ways than the link of risk aversion, our estimates would be 

biased. Admittedly, we doubt that worse dental health is likely to influence the decision 

to buy one of the other SuppHI products. Moreover, other health issues that increase the 

likelihood of other SuppHIs, such as supplemental hospital insurance, may not affect den-

tal care, being a very distinct field. Nevertheless, if an individual’s general health corre-

lates negatively with overall insurance coverage and positively with dental health, any 

potential bias is likely to be positive. The relationships of preference for insurance with 
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our dependent variables remain robustly significant when we control for further covari-

ates, including overall health, in column 3 and 4. 

Furthermore, the correlation of the residuals turns from insignificant (Table 4.2) to 

significantly positive when controlling for this attribute. In line with Browne and Zhou-

Richter (2014), these findings indicate that preference for insurance is a source of advan-

tageous selection. Consistent with Srivastava et al. (2017), we find that individuals with 

higher income are more likely to hold a SuppDI and tend to go more often to the dentist 

for acute treatment. However, this only holds if we estimate all the covariates jointly. This 

finding indicates that income rather contributes to an adverse selection in this market. 

Self-rated health correlates as expected significantly negatively with dental risk, but the 

correlation with the holding of SuppDI is insignificant. This finding does not support the 

prediction that self-assessed health is a source of adverse selection in this market. The 

correlation coefficient of the bivariate probit model after controlling for all potential driv-

ers for selection (𝜌 (𝜑, 𝜙) = 0.1379**) suggests that there are still unobserved character-

istics that correlate positively with insurance demand and dental risk and hence offset the 

advantageous selection driven by preference for insurance.
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Table 4.3:  Sources of Selection 

 (1) (2) (3) (4) (5) 

 Adding potential sources  

separately 

Adding all potential sources 

simultaneously 

 DentVisits SuppDI 𝜌 (𝜑, 𝜙) DentVisits SuppDI 

Risk preferences      

Care about health -0.0495 0.0184 0.0642 -0.0604 -0.0763 

 (0.061) (0.050) (p = 0.270) (0.069) (0.062) 

Never smoker 0.0505 -0.0425 0.0628 -0.0026 -0.0071 

 (0.094) (0.077) (p = 0.284) (0.101) (0.090) 

BMI -0.0122 0.0005 0.0591 -0.0125 -0.0122 

 (0.011) (0.007) (p = 0.314) (0.011) (0.008) 

Physical activity -0.0409 0.0293 0.0661 -0.0395 -0.0008 

 (0.029) (0.024) (p = 0.257) (0.031) (0.029) 

Fruits 0.0141 0.0616 0.0637 0.0026 0.0495 

 (0.058) (0.048) (p = 0.274) (0.066) (0.062) 

Vegetables 0.0228 0.1445** 0.0634 0.0432 0.0310 

 (0.069) (0.057) (p = 0.278) (0.079) (0.073) 

Fast food -0.0367 -0.0024 0.0798 -0.0477 0.0175 

 (0.076) (0.066) (p = 0.174) (0.081) (0.078) 

Sweets 0.0512 0.0204 0.0728 0.0485 0.0318 

 (0.058) (0.049) (p = 0.213) (0.064) (0.057) 

Preference for insurance -0.1162** 0.7795*** 0.1446** -0.1372*** 0.7471*** 

 (0.049) (0.056) (p = 0.020) (0.051) (0.057) 

Socioeconomic characteristics      

Employment   0.0657   

   (p = 0.259)   

    Part time work 0.0365 -0.1902  0.0954 -0.0686 

 (0.154) (0.129)  (0.164) (0.153) 

    Hourly based work -0.0352 -0.0564  -0.0765 0.0296 

 (0.214) (0.173)  (0.239) (0.206) 

    Unemployed -0.1346 -0.0801  -0.1249 -0.0520 

 (0.155) (0.128)  (0.171) (0.153) 

    Job Training -0.2060 -0.2908  -0.2796 -0.0368 

 (0.301) (0.266)  (0.328) (0.285) 

A-level 0.0520 -0.0844 0.0682 0.0201 -0.0941 

 (0.090) (0.076) (p = 0.241) (0.094) (0.091) 

Marital status   0.0592   

   (p = 0.314)   

    Married 0.0353 0.3506***  0.1113 0.3003** 

 (0.125) (0.103)  (0.147) (0.133) 

    Widowed 0.2227 0.3286  0.2688 0.2090 

 (0.229) (0.211)  (0.235) (0.238) 

    Divorced -0.1159 0.2187  -0.0674 0.4201** 

 (0.194) (0.156)  (0.202) (0.174) 

Income 0.0554 0.2061*** 0.0547 0.0887* 0.1555*** 

 (0.041) (0.036) (p = 0.352) (0.049) (0.048) 

HH size -0.0461 0.0493 0.0658 -0.1143* -0.0304 

 (0.044) (0.037) (p = 0.259) (0.061) (0.055) 

Health status      

Self-rated health -0.1379** -0.0034 0.0659 -0.1736** -0.0717 

 (0.063) (0.049) (p = 0.259) (0.072) (0.061) 

Constant    -0.3560 -2.1415*** 

    (0.776) (0.709) 

Pricing Characteristics Yes Yes  Yes Yes 

Fear dummies Yes No  Yes No 

Preventive Visits Yes No  Yes No 

Observations    1,382 

Correlation between residuals 

   𝜌 (𝜑, 𝜙)  

   0.1379** (p = 0.033) 

Notes: Income is measured in €1,000 intervals from < € 1,000 up to > €5,000 monthly net household income. Self-rated health:  

bad = 1 to excellent = 5. Care about health: not at all = 1 to very strongly = 5. Physical activity: never = 1 to daily = 6. Diet:  

never/seldom = 1 to daily = 4. Omitted reference categories: full time employment, marital status = single. The correlation coefficients 
of the residuals are based on a bivariate probit model. Robust standard errors for the coefficients and p-values for the correlation 

coefficient of the residuals in parentheses, respectively. *p < 0.10, **p < 0.05, ***p < 0.01. 
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In an additional test, we provide support for our assumption that people with a higher 

preference for insurance are better dental risks and, therefore, go to the dentist less often. 

We analyzed the share of individuals without any dental problems and the self-rated 

health for four separate subgroups. In Table 4.4, we report the differences in means within 

the first and last two columns. The first row shows that the share of individuals without 

SuppDI coverage (12.6%) who are not suffering from any dental problems is significantly 

higher than the respective share of SuppDI policyholders (8.9%). That indicates that 

SuppDI policyholders are higher risk types in the aggregate. To get a clearer picture on 

preference for insurance as a driver for advantageous selection, column 3 and 4 show a 

comparison of SuppDI policyholders with high (i.e., > 2 additional SuppHIs) and low 

preference for insurance (≤ 2 additional SuppHIs). 17.2% of SuppDI policyholders with 

high preference for insurance have no dental issues versus only 7.4% of SuppDI policy-

holders with low preference for insurance. This significantly lower result is consistent 

with our earlier estimations showing that multidimensional private information leads to 

advantageous selection by some individuals. People with a high preference for insurance 

seem to have better dental health, an observation supported by the fact that their mean of 

self-rated overall health is slightly higher than that of the comparison group.  

Table 4.4:  Differences by Insurance and Subgroup 

 (1) (2) (3) (4) 

Variable No SuppDI SuppDI ≤ 2 other SuppHIs > 2 other SuppHIs 

No dental issues  0.126 0.089** 0.074 0.172** 

Observations 1,067 429 365 64 

Self-rated health 3.135 3.121 3.092 3.286* 

Observations 1,059 423 360 63 

Notes: Measurements: no dental issues (1 = yes); self-related health from bad (1) to excellent (5). The level of significance for the 

statistical differences in means in a two-sided t-test between the two groups in column (1) and (2) as well as between the groups in 
column (3) and (4) is designated as follows: *p < 0.10; **p < 0.05; ***p < 0.01.  
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4.5.2 Robustness Checks 

The main results are based on distinct specifications of the risk proxy (𝐷𝑒𝑛𝑡𝑉𝑖𝑠𝑖𝑡𝑠) and 

the proxy for preference for insurance (𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑓𝑜𝑟 𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒) as the main driver 

for selection. To emphasize the robustness of our results, we test several different speci-

fications of those variables and thereby assess the sensitivity of our main results. Table 

4.5 presents how different specifications of the variable for dentist visits affect its corre-

lation with the holding of SuppDI in the LPM and with preference for insurance in the 

bivariate probit model. The correlation between SuppDI and dentist visits remains insig-

nificant when varying the cutoff for the dummy variable for dentist visits and controlling 

for the same set of covariates as in our basic LPM. However, for the linear specification, 

the coverage-risk estimate shows a positive and significant correlation between SuppDI 

and dentist visits at least on a 10% level, which might indicate the existence of moral 

hazard or adverse selection in the aggregate. Alternatively, the positive association could 

result from inadequately capturing some non-acute dentist visits of highly risk averse 

SuppDI policyholders, which is why we refrained from using this specification in our 

main model. In line with results from Table 4.3, when controlling for potential drivers, 

including preference for insurance, the association between SuppDI and dental risk be-

comes positively significant for most specifications. The correlation of dentist visits and 

preference for insurance remains robustly significant for some, but not all, other specifi-

cations of dentist visits. In column 8 of Table 4.5, we additionally use the dummy variable 

indicating no dental issues, already presented in Table 4.4, as an alternative risk proxy. 

Results are similar to dentist visits as we do not find a significant coverage-risk correla-

tion. Moreover, people with a high preference for insurance are more likely to have no 

dental issues, i.e., they are more likely to be a low-risk type.  

Table 4.6 shows the results of testing the sensitivity of the specification of our pref-

erence for insurance variable. Based on the bivariate probit model, we find that the results 

are quite robust when using a dummy variable for preference for insurance with different 

cutoffs. This supports our main findings shown in the previous section.63

                                                 

63  Testing for larger cutoffs for the variable Preference for Insurance results in cell sizes of less than ten 

observations. 
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Table 4.5:  Sensitivity Test for the Specification of the Dependent Variable 

Dependent Variable Dentist visits No dental issues 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 Cutoff > 0 Cutoff > 1 Cutoff > 2 Cutoff > 3 Cutoff > 4 Cutoff > 5 Linear Cutoff > 0 

Independent Variable   

 LPM / OLS only controlling for underwriting and vector C without C 

SuppDI 

0.0357 0.0169 0.0246 0.0250 0.0207 0.0160 0.1873* -0.0067 

(0.022) (0.027) (0.022) (0.019) (0.015) (0.013) (0.103) (0.017) 

LPM controlling for underwriting, vector C + all potential drivers for selection without C 

0.0377 0.0558* 0.0492* 0.0349 0.0381** 0.0317** 0.3196*** -0.0239 

(0.025) (0.032) (0.027) (0.022) (0.018) (0.016) (0.121) (0.019) 

         

 Bivariate probit model controlling for underwriting and vector C without C 

Preference for insurance 

-0.0008 -0.0840** -0.1162** -0.0705 -0.1064 -0.1535**  0.1086* 

(0.041) (0.039) (0.049) (0.059) (0.067) (0.076)  (0.059) 

Bivariate probit model controlling for underwriting, vector C + all potential drivers for selection without C 

0.0092 -0.0672* -0.1372*** -0.1045* -0.1402* -0.1448*  0.1074* 

(0.043) (0.041) (0.051) (0.061) (0.073) (0.079)  (0.060) 
Notes: The list of all potential drivers of selection corresponds to the list of potential drivers used in Table 4.3. The number of observations slightly varies between the specifications due to missing values. The cells 

for the linear specification of dentist visits in the bivariate probit model are left blank as this model is based on binary dependent variables. Robust standard errors in parentheses. *p < 0.10, **p < 0.05, ***p < 0.01. 
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Table 4.6:  Sensitivity Test for the Specification of Preference for Insurance 

 Dentist visits > 2 

 (1) (2) 

Dependent Variable Dentist visits > 2 SuppDI 

Independent Variable Preference for insurance Preference for insurance  

  

 Bivariate probit model controlling for underwriting and vector C 

Cutoff > 0 -0.1704* 1.2858*** 

 (0.101) (0.084) 

Cutoff > 1 -0.3592** 1.6034*** 

 (0.150) (0.125) 

Cutoff > 2 -0.5628** 1.9118*** 

 (0.238) (0.226) 

Linear  -0.1162** 0.7795*** 

 (0.049) (0.056) 

Observations 1,474 1,474 

   

 Bivariate probit model controlling for underwriting, vector C + 

all potential drivers for selection 

Cutoff > 0 -0.1774* 1.2511*** 

 (0.106) (0.089) 

Cutoff > 1 -0.4231*** 1.5096*** 

 (0.156) (0.129) 

Cutoff > 2 -0.6662*** 1.8335*** 

 (0.253) (0.229) 

Linear  -0.1372*** 0.7471*** 

 (0.051) (0.057) 

Observations 1,382 1,382 
Notes: Potential drivers of selection correspond to the list of potential drivers used in Table 4.3. Robust standard errors in parentheses. 

*p < 0.10, **p < 0.05, ***p < 0.01. 

 

This analysis is based on survey data. The survey items about dental health, however, 

only capture their extensive margin, but do not allow differentiating the intensity of a 

specific dental issue. For instance, we can observe if a participant has at least one missing 

tooth or not but we do not observe how many teeth are actually missing. Thus, we cannot 

fully rule out a possible bias in the risk distribution in the overall market, as some insurers 

may reject applicants for SuppDI based on the intensity of their dental issues. Even though 

we know that rejections may occur due to missing teeth or dental prostheses, some insur-

ers only reject applicants if the number exceeds a certain threshold, which cannot be iden-

tified in the data. To provide further insights into this potential problem, we split our 

sample and exclude all individuals that have at least one dental prosthesis, implant or 

missing tooth. Hence, similar to Finkelstein and McGarry (2006), we are able to test the 

coverage-risk correlation for a more homogeneous subsample of individuals as we can be 

certain that individuals in the remaining sample would not be rejected by insurers. Results 

in panel A of Table 4.7 support the non-significant relationship between dentist visits for 
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acute treatments and SuppDI coverage. Similarly, preference for insurance remains a ro-

bust driver for advantageous selection (columns 3 and 4). The results in Panel B of Table 

4.7 reveal that our findings for the alternative risk proxy, i.e., no dental issues, are similar 

to our findings for dentist visits (Panel A).64  

Table 4.7:  Coverage-Risk Correlation for Non-rejection Sample 

   

Dependent Variable Panel A: Dentist visits > 2 SuppDI 

 (1) (2) (3) (4) 

 LPM Probit Biprobit Biprobit 

Independent variable     

SuppDI 0.0136 0.0703   

 (0.027) (0.155)   

Preference for insurance    -0.1773* 0.7706*** 

   (0.096) (0.077) 

Observations 688 688 688 688 

Dependent Variable Panel B: No dental issues SuppDI 

   

 LPM Probit Biprobit Biprobit 

Independent variable     

SuppDI -0.0141 -0.0506   

 (0.035) (0.126)   

Preference for insurance    0.1092* 0.7616*** 

   (0.059) (0.077) 

Observations 702 702 702 702 
Notes: As we only consider individuals without dental implants, dental prostheses or missing teeth, we only use age and gender to 

control for pricing characteristics. The coefficients for the pricing characteristics are not displayed in this table due to the high number 

of interaction terms. In Panel A, we use the number of dentist visits for acute treatment as a risk proxy and additionally control for 
vector C. In Panel B, the risk proxy is the dummy variable that indicates 1 if individuals do not have any dental issues and 0 otherwise. 

Robust standard errors in parenthesis *p < 0.10, **p < 0.05, ***p < 0.01.  

 

4.6 Conclusions 

In this paper, we analyze information asymmetry and related selection effects in the Ger-

man SuppDI market. Applying the standard positive correlation test, our results provide 

no evidence that individuals with SuppDI are higher risk types than non-enrollees. Thus, 

in contrast to findings of Godfried et al. (2001), we find no support for the positive cov-

erage-risk correlation in the aggregate as predicted by classic adverse selection models. 

Testing several potential sources of selection in a further step, we mainly identify the 

                                                 

64  The use of the restricted sample resolves a second issue concerning the alternative risk proxy presented in 

Table 4.5 (column 8). Specifically, the variables for dental health that we use for risk classification (e.g., 

missing teeth) perfectly predict whether individuals have any dental issues. Even though these observations 

do not get omitted by our statistical software, results remain remarkably similar between the two ap-

proaches. 
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holding of other SuppHIs as a main driver for advantageous selection. This result remains 

robust even after we control for a comprehensive set of covariates. Our results suggest, 

however, that health-related behavior as another factor related to risk preferences, self-

assessed health or socioeconomic characteristics only play a minor role with respect to 

selection effects in this market.  

Overall, our findings provide solid evidence of information asymmetry in the German 

SuppDI market even though the coverage-risk correlation is not significantly different 

from zero. Following Finkelstein and McGarry (2006), we thus argue that more than one 

type of individual is buying SuppDI coverage: first, individuals with private information 

about their high risk (adverse selection) and second, low-risk individuals who purchase a 

SuppDI policy because of their preference for insurance (advantageous selection). It is 

important to note that such heterogeneous selection leads to a market equilibrium that is 

unlikely to be efficient (Finkelstein & McGarry, 2006). Hence, our results indicate that a 

shifting of dental insurance coverage from public insurance to a private insurance market 

may suffer from market inefficiencies due to suboptimal insurance coverage by at least 

some individuals. 

Further research is needed that extends our insights about heterogeneous selection and 

tests our findings using longitudinal data with better measures for the risk of dental care 

expenditures and for risk preferences. Such investigation might give more insights into 

drivers for selection, which explains the remaining significant coverage-risk correlation 

even after controlling for a comprehensive set of covariates. In addition, it may help to 

understand better the causal channel by which risk preferences affect the risk of needing 

health or dental care. In the meantime, we suggest that insurance companies might gain-

fully use the selection effects identified here for a more thorough underwriting, which 

could decrease inefficiencies from information asymmetry. From an insurer’s point of 

view, the selection effects could also be used to better attract low-risk individuals given 

that the German SuppDI market is not perfectly competitive. 
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5 The Effectiveness of a Population-Based Skin Cancer 

Screening Program: Evidence from Germany65 

Abstract 

In this paper, we analyze how a nationwide population-based skin cancer screening pro-

gram (SCS) implemented in Germany in 2008 has impacted the number of hospital dis-

charges following malignant skin neoplasm diagnosis and the malignant melanoma mortal-

ity rate per 100,000 inhabitants. Our panel data, drawn from the Eurostat database, cover 

subregions in 22 European countries, measured at the lowest nomenclature of territorial 

units for statistics (NUTS) level for 2000–2013. Applying fixed effects methods, we find a 

significantly positive and robust effect of the German SCS on the number of patients diag-

nosed with malignant skin neoplasm. However, the program does not significantly influ-

ence the melanoma mortality rate. This finding conflicts with the decreased melanoma mor-

tality rate found for the pilot SCS program in northern Germany. Our results indicate that 

Germany’s nationwide SCS program is effective in terms of a higher diagnosis rate for 

malignant skin neoplasms and thus may contribute to an improvement in the early detection 

of skin cancer.  

  

                                                 

65  This chapter is based on joint work with Micha Kaiser and Jörg Schiller both from the University of 

Hohenheim. The candidate’s individual contribution focused on the literature review, data preparation, 

empirical analysis and the writing. The work was published by Springer Nature as ‘Kaiser, M., Schiller, 

J. & Schreckenberger, C. (2018). The effectiveness of a population-based skin cancer screening program: 

evidence from Germany. The European Journal of Health Economics, 19(3), 355–367. 

doi:10.1007/s10198-017-0888-4’, and is used for this thesis with kind permission of Springer Nature. 

The work is available online: https://doi.org/10.1007/s10198-017-0888-4. The author wants to thank the 

anonymous reviewers for their valuable comments. 
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5.1 Introduction  

The incidence of skin cancer, the most frequently diagnosed cancer, is increasing in many 

industrialized countries, including the U.S. and Germany (American Cancer Society, 

2017; MacKie, Hauschild, & Eggermont, 2009; Robert Koch Institut und die Gesellschaft 

der epidemiologischen Krebsregister in Deutschland e. V., 2015; World Health Organi-

zation, 2016). In Germany, over 200,000 new cases of the commonest skin cancers – 

malignant melanoma (ICD–10 code C43), basal cell carcinoma, and squamous cell car-

cinoma (ICD–10 code C44), – were diagnosed in 2012. Moreover, although the mortality 

rate for malignant melanoma in Germany has remained relatively constant over the last 

30 years, its age-standardized morbidity rate has more than tripled in the same time pe-

riod. In 2012, over 20,000 individuals in Germany were diagnosed with malignant mela-

noma, and nearly 3000 died from this disease (Robert Koch Institut und die Gesellschaft 

der epidemiologischen Krebsregister in Deutschland e. V., 2015).  

Skin cancer screening (SCS) may help to reduce morbidity and mortality from skin 

cancer by improved detection at an early stage (Breitbart et al., 2012; Choudhury, 

Volkmer, Greinert, Christophers, & Breitbart, 2012). In 2008, the German Statutory 

Health Insurance (SHI), which covers about 90% of the German population, introduced 

a nationwide population-based SCS program. This program is the first of its kind world-

wide (Choudhury et al., 2012) and primarily aims at reducing melanoma mortality (Eise-

mann et al., 2015) and thus mitigating the related health care expenditures by an early 

identification of skin cancer (Stang et al., 2016). Under this program, SHI enrollees who 

are at least 35 years old are entitled to a whole body examination every 2 years (Geller et 

al., 2010). General practitioners and dermatologists are eligible to screen patients after 

completion of a standardized training program (Geller et al., 2010; Veit, Lüken, & 

Melsheimer, 2015). Additionally, since these screenings are free of charge, the insured 

are encouraged to check suspicious lesions as early as possible.  

With respect to the effectiveness of the nationwide SCS program in Germany, a mi-

crosimulation of melanoma mortality in Germany predicted about a 45% reduction 20 

years after the implementation of a biennial population-based SCS in 2008. More inter-

estingly, this simulation predicts a relative decline of the mortality rate by about 14–17% 

5 years after the implementation of a SCS program with a 2-year screening interval (Eise-
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mann et al., 2015). An evaluation of the SCS program also documented a greater im-

provement in the malignant skin tumor detection rate in the first years after implementa-

tion than figures from previous years would have predicted (Veit et al., 2015). 

As a basis for implementing the program nationwide, a research-based pilot project, 

Skin Cancer Research to Provide Evidence for Effectiveness of Screening in Northern 

Germany (SCREEN), was carried out in the federal state of Schleswig-Holstein in north-

ern Germany between 2003 and 2004. Several studies have shown a substantial impact 

of this project on the incidence of melanoma and non-melanoma and on melanoma mor-

tality (Breitbart et al., 2012; Eisemann et al., 2014; Katalinic et al., 2012; Waldmann et 

al., 2012). Waldmann et al. (2012), for instance, report that the incidence of melanoma 

increased during the SCREEN period compared to the pre-SCREEN period, while it de-

creased after this pilot project. Additionally, the results were compared with incident rates 

in the state of Saarland, where the pilot study was not conducted. The authors found that 

in Saarland the incidence rate only slightly increased between the pre- and post-SCREEN 

periods. Katalinic et al. (2012) identify an almost 50% decrease in melanoma mortality 

in Schleswig-Holstein between the pre-screening period (1998-1999) and 2008-2009, 

while the melanoma mortality rate in other German regions remained relatively constant 

over the same period. The findings of a study by Stang and Jöckel (2016), however, raised 

doubts about the SCS program’s effectiveness in reducing the melanoma mortality rate 

based on the fact that incorrect assignment of some skin melanoma deaths could upwardly 

bias the rate recorded for SCREEN (Stang & Jöckel, 2016). This doubt is supported by 

other research evidence of a slight increase in melanoma mortality 5 years after SCS im-

plementation in 2008 (Katalinic, Eisemann, & Waldmann, 2015; Stang & Jöckel, 2016). 

This research inconclusiveness echoes a similar ambiguity in earlier evidence of the ben-

efits and efficacy of population-based SCS programs in reducing mortality or increasing 

the proportion of skin cancers detected at earlier stages (Choudhury et al., 2012; Feder-

man, Kirsner, & Viola, 2013).  

In this paper, we analyze the SCS’s impact on the number of hospital discharges fol-

lowing a diagnosis of malignant skin neoplasm (ICD–10 code C43_C44) and the mortal-

ity rate from malignant melanoma (ICD–10 code C43) per 100,000 inhabitants. Our main 

research question is whether the national SCS program introduced in Germany in 2008 

has been effective for these outcome variables. To answer this query, we empirically 
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compare the regional skin cancer diagnosis and mortality rates for Germany with those 

for other European countries between 2000 and 2013. By applying a fixed effects model 

to panel data to assess the effects of the SCS program implementation on our outcome 

variables, we make a valuable contribution to the literature.66 As far as we know, ours is 

the first study to use advanced panel data methods to analyze the effectiveness of a pop-

ulation-based SCS program. Our results contribute especially to the literature assessing 

the effectiveness of SCS programs. 

5.2 Materials and Methods 

Using Eurostat data for 22 European countries, we derive a valid proxy for SCS effec-

tiveness by extracting hospital discharges by diagnosis (diagnosis) and causes of death 

(mortality) per 100,000 inhabitants. Because we are interested in skin cancer diagnosis 

and mortality, we focus on the diagnosis rate for malignant skin neoplasms (ICD–10 code 

C43_C44) and the mortality rates from malignant melanoma (ICD–10 code C43). We 

also obtain the following covariates from Eurostat: the proportion of individuals aged 65 

and older (age 65+), the sex ratio (sexratio), the proportion with tertiary education (educ), 

the proportion of medical doctors per 100,000 inhabitants (docdens), the GDP per capita 

in logarithmic scale (logGDP), and employment rates (employ). All variables cover the 

same 2000–2013 time span except mortality, which covers only 2000–2012. The choice 

of our covariates is mainly based on the seminal work of Grossman (1972) which implies 

that the optimal choice of health investment is essentially influenced by the age, wealth 

and education of an individual (Grossman, 1972). Furthermore, past studies that evaluate 

socioeconomic risk factors of different cancer types tend to rely on a similar set of varia-

bles (Aarts, Lemmens, Louwman, Kunst, & Coebergh, 2010; Conway et al., 2015; Little 

& Eide, 2012). To obtain information about regional differences in the variables in our 

sample, we decompose every country into the lowest possible regional level indicated by 

the nomenclature of territorial units for statistics (NUTS) (Eurostat, 2016). As Table 5.1 

shows, our final sample includes 1512 observations from 22 countries that are divided 

into 108 subregions.  

                                                 

66  Since there was SCS in Schleswig-Holstein before the implementation of the nationwide SCS program in 

2008, we take the SCREEN project in Schleswig-Holstein in two ways into account. While we exclude 

Schleswig-Holstein in the descriptive statistics, we consider this project in our empirical model.  
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Table 5.1:  Number of Subregions and Observations by Country 

Country Subregions Observations 

Austria 9 126 

Belgium 1 14 

Bulgaria 1 14 

Switzerland 1 14 

Czech Republic 8 112 

Germany 16 224 

Denmark 1 14 

Spain 18 252 

Finland 1 14 

France 22 308 

Croatia 1 14 

Hungary 1 14 

Ireland 1 14 

Italy 19 266 

Netherlands 1 14 

Norway 1 14 

Poland 1 14 

Portugal 1 14 

Romania 1 14 

Sweden 1 14 

Slovenia 1 14 

Slovakia 1 14 

∑ 𝐂𝐨𝐮𝐧𝐭𝐫𝐢𝐞𝐬 = 22 ∑ Regions = 108 ∑ Observations = 1512 

 

A comparison of the descriptive statistics of Europe and Germany (excluding Schles-

wig-Holstein) given in Table 5.2 shows that, on average, the ratio of males to females, 

i.e., the sex ratio, is almost the same in Europe and Germany. Furthermore, the density of 

medical doctors is nearly the same in Europe and in Germany, whereas the GDP per cap-

ita, employment rate, tertiary education rate, and proportion aged 65+ tend to be lower 

for non-German regions. The same holds true for both the average number of skin cancer 

diagnoses (diagnosis) and the average melanoma mortality rate (mortality). Expressed in 

percentages, the differences in diagnosis and mortality per 100,000 inhabitants between 

Germany and other European countries are about 125% (99.74 vs 44.42) and about 5% 

(3.00 vs 2.87), respectively.  
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Table 5.2:  Summary Statistics for Europe and Germany 

 Europe 

(excluding Germany) 

Germany 

(excluding Schleswig-Holstein) 

Variable Obs. Mean 

(SD) 

Min Max 

 

Obs. Mean 

(SD) 

Min Max 

         
age 65+  

(in %) 

1287 17.365 

(3.049) 

10.8 27.7 210 19.436 

(2.288) 

14.2 24.7 

sexratio 1288 0.954 

(0.025) 

0.886 1.051 210 0.9572 

(0.011) 

0.930 0.983 

docdens 

(no. per 

100,000) 

1245 366.159 

(109.080) 

192.653 976.253 210 366.406 

(63.352) 

259.073 

 

588.665 

GDP 

(in euros) 

1288 23,585.02 

(10,090.5) 

1800 79,000 210 28,269.05 

(8834.7) 

15,800 54,600 

educ (in %) 1286 20.831 

(8.345) 

6.5 46.8 210 26.175 

(4.573) 

15.3 37.2 

employ (in %) 1286 68.628 

(6.262) 

46.3 83.3 210 74.839 

(3.654) 

65.5 81.5 

diagnosis 

(no. per 

100,000) 

1212 44.420 

(37.044) 

1.2 305 210 99.741 

(27.293) 

47.2 184.7 

mortality 

(no. per 

100,000) 

1148 2.869 

(1.010) 

0.6 7.2 195 3.000 

(0.686) 

0.2 4.82 

Notes: Sample size varies slightly within each variable because of missing values. 

 

A more sophisticated representation of the diagnosis and mortality rate differences 

can be obtained from the time trends for both variables, represented in Figure 5.1 as  

2000–2013 skin cancer-related hospital discharges for Europe versus Germany. Whereas 

the trends for Europe appear stable across the period, Germany shows not only a mono-

tonically increasing pattern of hospital discharges (that begins to intensify around 2006), 

but also a higher number of diagnoses. Interestingly, this sharp increase in diagnosis rate 

starts a few years before SCS implementation, which is consistent with program evalua-

tions documenting the highest increase in reported skin cancer cases between 2007 and 

2008 (Veit et al., 2015). These different trends can also be seen in Table 5.3, which splits 

the sample into four subsamples. Here, the 84.88 mean value of diagnoses per 100,000 

persons in German regions (excluding the federal state of Schleswig-Holstein) between 

2000 and 2007 rises by about 41% to 119.56 between 2008 and 2013.67 Compared with 

                                                 

67  We excluded the federal state of Schleswig-Holstein from Germany due to the SCREEN project, which 

was carried out between 2003 and 2004. However, the mean values of diagnosis and mortality for Germany 

only slightly change when Schleswig-Holstein is included. 
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this substantial increase, the 7% rise in other European regions (from 50.53 to 53.97) 

seems paltry. 

Figure 5.1:  Trends in Skin Cancer-related Hospital Discharges per 100,000 Inhabitants 

from 2000 to 2013 (a) and in Malignant Melanoma Mortality Rates from 

2000 to 2012 (b) for Europe (excluding Germany) and Germany (excluding 

Schleswig-Holstein) 

  



 

108 

Table 5.3:  Outcome Variables for Germany and Europe Before and After 2008 

Outcome 2000–2007 2008–2013 

 
Germany (excluding Schleswig-Holstein) 

 Observations Mean 

(no. per 100,000) 

Observations Mean 

(no. per 100,000) 

diagnosis 120 84.878 90 119.559 

mortality 120 2.733 75 3.429 

 
Europe (excluding Germany) 

 Observations Mean 

(no. per 100,000) 

Observations Mean 

(no. per 100,000) 

diagnosis 805 50.532 673 53.969 

mortality 791 2.841 614 3.155 

Notes: The sample does not include data on mortality in 2013. 

 

The 2000–2012 pattern of average melanoma mortality, in contrast, is similar in both 

Europe and Germany, with both lines in Figure 5.1 characterized by an overall increase. 

At the same time, the skin cancer mortality rate is slightly higher in Germany than in the 

other European regions. Considering the pre- (2000–2007) and post- (2008–2012) imple-

mentation periods separately, Table 5.3 shows about a 25% increase in mortality for Ger-

many (from 2.73 to 3.43) but only a 10% increase for other European regions (from 2.84 

to 3.12).68 Admittedly, however, these descriptive differences in the dependent variables 

diagnosis and mortality (𝑦𝑖𝑡) before (𝑇𝑖𝑡 = 0) and after SCS implementation (𝑇𝑖𝑡 = 1) do 

not address the hypothetical counterfactual of diagnosis and mortality trends in Germany 

had the program not been implemented. Hence, comparing the average outcomes of dif-

ferent German regions before and after SCS implementation leads to a selection bias and 

therefore to biased estimates (cf. Angrist & Pischke, 2009). 

  

                                                 

68  A policy intervention, such as the implementation of the SCS program in Germany, may lead to special 

effects around the year of implementation. Hence, we additionally compared the means for the diagnosis 

and mortality rate between the time period between 2000-2007 and 2009-2013. The differences between 

these periods only slightly differ from our main specification of the time periods. Thus, we suggest that 

there are not any special effects around the year of implementation. 
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To circumvent this selection bias while measuring the SCS’s effect on diagnoses and 

mortality rates, we set up a fixed effects model69 that uses a hypothetical control group of 

all the European countries in our sample except Germany. For example, this method has 

been employed by Sabates and Feinstein (2006) to test education’s effect on cervical can-

cer screening.70 We estimate the impact of the SCS program on our outcome variables 

using the following model: 

𝑦𝑖𝑡 = 𝛼𝑇𝑖𝑡 + 𝛽𝑋𝑖𝑡
′ + 𝛾𝑖 + 𝛿𝑡 + 𝑢𝑖𝑡           (1) 

where 𝑦𝑖𝑡 is either hospital discharges by diagnosis for skin neoplasms or mortality from 

melanoma per 100,000 inhabitants in subregion i in year t. As Figure 5.2 shows, mortality 

seems to be normally distributed, while diagnosis is skewed to the right. We therefore 

use a negative binomial fixed effect for diagnosis as the dependent variable. The treat-

ment71 variable 𝑇𝑖𝑡 is a dummy equal to 1 if subregion i had a SCS program in year t (i.e., 

it is 1 for German subregions only) and 0 otherwise. We also consider the SCREEN pilot 

by assigning the value 1 to this variable for Schleswig-Holstein in 2003 and 2004. 𝑋𝑖𝑡
′  is 

a 1 × 𝑁 vector of covariates with additional information about certain characteristics of 

region i in year t. To control for unobserved but constant regional heterogeneity and for 

heterogeneity among the different time periods, we include dummies for regional (𝛾𝑖) and 

annual (𝛿𝑡) fixed effects. 

  

                                                 

69 Since we reject the null hypothesis of the Hausman specification test, we use a fixed effect instead of 

random effect technique in our model. In addition, we use a negative binomial fixed effect for diagnosis as 

dependent variable, since we can reject the null hypothesis of the Kolmogorow-Smirnow test for an under-

lying normal distribution. Moreover, we can reject the null hypothesis of a zero value of alpha by a likeli-

hood-ratio χ2 test, which suggests overdispersion of the data. Hence, a negative binomial model is superior 

to a Poisson model. 
70  Cf. Angrist and Pischke (2009) or Wooldridge (2013) for the mechanisms underlying fixed effects regres-

sion techniques. 
71  In this paper, the term “treatment” generally refers to the implementation of the German SCS program and 

the SCREEN pilot program in Schleswig-Holstein. To avoid any confusion from the difference between 

the SCS program implementation as a treatment effect in our empirical model and a medical treatment of 

skin cancer, we will explicitly call the latter “medical treatment”. 
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Figure 5.2:  Distribution of Skin Cancer-related Hospital Discharges per 100,000 Inhab-

itants (a) and of Malignant Melanoma Mortality Rates (b) 
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5.3 Results  

Table 5.4 shows the impact of Germany’s SCS program on our outcome variables using 

the fixed effects model in equation (1). The coefficient of our treatment variable repre-

senting the SCS’s effect on diagnosed cases of malignant skin neoplasm is significantly 

positive (0.276) in the base model without covariates (column 1a). This positive effect 

remains significant with the addition of the different covariates (columns 1a-5a) even 

though the coefficient declines to 0.181 in the full model (column 5a). The coefficient for 

the treatment dummy indicates that sub-regions which participated in the SCS program 

are characterized by an incidence-rate-ratio of about 1.2. Specifically, this means that the 

implementation of the SCS in Germany has caused an increase of 20% in the rate of 

diagnoses of malignant skin neoplasms compared to the hypothetical counterfactual sce-

nario. Looking at our covariates, we find that physician density, employment rate and the 

GDP per capita are the greatest contributors to this decreasing treatment coefficient, with 

higher physician density, employment rate, and GDP per capita associated with more di-

agnoses of malignant skin neoplasms. Moreover, the sex ratio also positively correlates 

with the number of diagnoses, while a higher proportion of 65+ and tertiary educated 

individuals negatively affect the number of diagnoses. 

With respect to the melanoma mortality rate, Table 5.4 shows that it is only signifi-

cantly and positively correlated by the SCS program (treatment) in the base model (col-

umn 1b); once the covariates are added in, the relation is not significantly different from 

zero (column 2b–5b). These results indicate that the SCS did not significantly influence 

the malignant melanoma mortality rate between 2008 and 2012, meaning that we cannot 

confirm the finding of an increased melanoma mortality rate 5 years after SCS implemen-

tation (Katalinic et al., 2015; Stang & Jöckel, 2016). In contrast to the findings for diag-

nosis, mortality rate is significantly and positively linked only to the proportion of those 

aged 65+ and physician density and negatively associated with the employment rate.  

 



  

 

1
1
2
 

Table 5.4:  Effect of the German SCS on Hospital Discharges by Diagnosis for Malignant Skin Neoplasm and Malignant Melanoma  

Mortality Rate 

 Dependent Variable 

 Hospital discharges by diagnosis per 100,000 inhabitants 

for malignant skin neoplasm (ICD–10 code C43_C44) 

 Malignant melanoma mortality rate (ICD–10 code C43) 

per 100,000 inhabitants 

 (1a) (2a) (3a) (4a) (5a)  (1b) (2b) (3b) (4b) (5b) 

Treatment 0.276*** 

(0.02) 

0.291*** 

(0.02) 

0.219*** 

(0.02) 

0.214*** 

(0.02) 

0.181*** 

(0.02) 

 0.242** 

(0.08) 

0.143 

(0.09) 

0.119 

(0.09) 

0.117 

(0.09) 

0.077 

(0.10) 

Proportion of individuals 

aged 65 and older (in %) 

 -0.004 

(0.01) 

0.004 

(0.01) 

-0.010 

(0.01) 

-0.023** 

(0.01) 

  0.048* 

(0.02) 

0.046* 

(0.02) 

0.046* 

(0.02) 

0.094*** 

(0.03) 

Sex ratio  7.548*** 

(1.11) 

5.723*** 

(1.08) 

6.130*** 

(1.07) 

3.432** 

(1.05) 

  -1.047 

(2.30) 

-0.391 

(2.26) 

-0.340 

(2.28) 

4.034 

(3.35) 

Physician density 

(no. per 100,000) 

  0.001*** 

(0.00) 

0.001*** 

(0.00) 

0.001*** 

(0.00) 

   0.000+ 

(0.00) 

0.000+ 

(0.00) 

0.001* 

(0.00) 

Proportion of individuals 

(aged 25–64) with a  

tertiary education (in %) 

   -0.121*** 

(0.00) 

-0.124*** 

(0.00) 

    -0.000 

(0.01) 

0.012 

(0.01) 

Employment rate (in %)     0.032*** 

(0.00) 

     -0.018+ 

(0.01) 

Natural log of GDP per 

capita (in euros) 

    0.307*** 

(0.07) 

     0.030 

(0.19) 

Constant 4.454*** 

(0.12) 

-2.595* 

(1.07) 

-0.830 

(1.05) 

-0.668 

(1.05) 

-3.034** 

(1.12) 

 2.506*** 

(0.09) 

2.710 

(2.29) 

1.948 

(2.25) 

1.894 

(2.26) 

-2.390 

(3.47) 

Year dummies Yes Yes Yes Yes Yes  Yes Yes Yes Yes Yes 

N 1436 1435 1397 1396 1396  1356 1355 1315 1314 1314 

Notes: The treatment variable equals 1 for all German subregions as of 2008 and for the German federal state of Schleswig-Holstein in 2003 and 2004. For diagnosis 

as dependent variable, we counter the right-skewed distribution by using a negative binomial fixed effects model. Standard errors are in parentheses. +p < 0.1,  

*p < 0.5, **p < 0.01, ***p < 0.001. 
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To test the robustness of our results, we first apply a pooled regression model with 

the malignant skin neoplasms diagnostic rate as dependent variable72 and the same co-

variates as in equation (1). As shown in Table 5.5, the results using this model confirm 

our findings with respect to the effect of the SCS program. Moreover, we apply a differ-

ence-in-difference-in-difference technique in order to exclude any possible unmeasured 

confounding factors that are likely to affect the diagnosis for both malignant skin neo-

plasms (ICD–10 code C43_C44) and other neoplasms (ICD–10 code C00_D48), i.e. gen-

eral risk factors for cancer, such as smoking behavior, diet or alcohol consumption. Be-

sides considering the pre- and post-SCS implementation period for Germany and Europe, 

we also include the diagnosis of neoplasms other than malignant skin neoplasms. In Table 

B.1 presented in the Appendix, we sketch our difference-in-difference-in-difference ap-

proach. As reported in Table 5.6, our finding that the German SCS program significantly 

and positively affects the number of hospital discharges following malignant skin neo-

plasm diagnosis using the difference-in-difference-in difference technique confirms our 

result of our fixed effect estimation in Table 5.4.73 

 

                                                 

72  The rationale used for basing our pooled regression model on a negative binomial distribution of diagnosis 

is equivalent to the rationale used for basing our fixed effect model on this distribution. 
73 Furthermore, we assume that any unobserved factors that could influence the diagnosis rate for malignant 

skin neoplasms do not systematically differ between 2000 and 2013. To assess this assumption, we re-

estimated our fixed effect model for shorter time periods, as this should exclude much of any unobserved 

confounding factors (not presented in the paper). We still find a significantly positive effect of the SCS 

program on diagnoses for skin neoplasms if we only consider the time period between 2006 and 2010 as 

well as the time period between 2007 and 2009.  
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Table 5.5:  Effect of the German SCS on the Outcome Variables using Pooled Regression 

 Dependent Variable 

 Hospital discharges by diagnosis per 100,000 inhabitants 

for malignant skin neoplasm (ICD–10 code C43_C44) 

 Malignant melanoma mortality rate (ICD–10 code C43) 

per 100,000 inhabitants 

 (1a) (2a) (3a) (4a) (5a)  (1b) (2b) (3b) (4b) (5b) 

Treatment 0.919*** 

(0.11) 

1.165*** 

(0.11) 

1.155*** 

(0.11) 

1.188*** 

(0.11) 

0.852*** 

(0.12) 

 0.279* 

(0.14) 

0.280+ 

(0.15) 

0.251+ 

(0.15) 

0.263+ 

(0.16) 

-0.231 

(0.16) 

Proportion of individuals 

aged 65 and older  

(in %) 

 -0.055* 

(0.03) 

-0.054* 

(0.03) 

-0.052* 

(0.03) 

-0.040+ 

(0.02) 

  0.004 

(0.02) 

0.012 

(0.02) 

0.012 

(0.02) 

0.014 

(0.02) 

Sex ratio  -12.434*** 

(2.99) 

-11.141*** 

(3.19) 

-10.389** 

(3.45) 

-13.105*** 

(2.71) 

  -4.638 

(3.74) 

-4.145 

(3.67) 

-3.827 

(3.54) 

-7.222* 

(3.07) 

Physician density  

(no. per 100,000) 

  0.001+ 

(0.00) 

0.001+ 

(0.00) 

0.001* 

(0.00) 

   0.000 

(0.00) 

0.000 

(0.00) 

0.000 

(0.00) 

Proportion of individuals 

(aged 25–64) with a  

tertiary education (in %) 

   -0.008+ 

(0.01) 

-0.031** 

(0.01) 

    -0.003 

(0.01) 

-0.038*** 

(0.01) 

Employment rate (in %)     0.059*** 

(0.01) 

     0.079*** 

(0.01) 

Natural log of GDP per 

capita (in euros) 

    0.027 

(0.12) 

     0.314* 

(0.15) 

Constant 3.828*** 

(0.07) 

16.515*** 

(2.88) 

14.945*** 

(3.06) 

14.343*** 

(3.24) 

12.880*** 

(2.73) 

 2.507*** 

(0.09) 

6.853+ 

(3.65) 

6.103+ 

(3.61) 

5.846+ 

(3.50) 

1.336 

(3.88) 

Year dummies Yes Yes Yes Yes Yes  Yes Yes Yes Yes Yes 

N 1436 1435 1397 1396 1396  1356 1355 1315 1314 1314 

Notes: The treatment variable equals 1 for all German subregions as of 2008 and for the German federal state of Schleswig-Holstein in 2003 and 2004. For diagnosis 

as dependent variable, we counter the right-skewed distribution by using a negative binomial regression model. Standard errors are in parentheses. +p < 0.1, *p < 0.5,  

**p < 0.01, ***p < 0.001. 
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Table 5.6:  Effect of the German SCS on the Hospital Discharges by Diagnosis per 100,000 Inhabitants for Malignant Skin Neoplasm using 

a Difference-in-difference-in-difference Technique 

 Dependent Variable 

 Hospital discharges by diagnosis per 100,000 inhabitants 

for malignant skin neoplasm (ICD–10 code C43_C44) 

 (1) (2) (3) (4) (5) 

Treatment 0.358*** 

(0.02) 

0.324*** 

(0.02) 

0.311*** 

(0.11) 

0.312*** 

(0.02) 

0.306*** 

(0.02) 

Proportion of individuals aged 65 and 

older (in %) 

 0.022*** 

(0.00) 

0.022*** 

(0.00) 

0.019*** 

(0.00) 

0.015*** 

(0.00) 

Sex ratio  0.932* 

(0.38) 

0.195 

(0.39) 

0.160 

(0.38) 

-0.890* 

(0.39) 

Physician density (no. per 100,000)   0.000*** 

(0.00) 

0.000*** 

(0.00) 

0.000*** 

(0.00) 

Proportion of individuals (aged 25–64) 

with a tertiary education (in %) 

   -0.002+ 

(0.00) 

-0.003* 

(0.00) 

Employment rate (in %)     0.008*** 

(0.00) 

      

Natural log of GDP per capita (in euros)     0.244*** 

(0.03) 

Constant 5.221*** 

(0.05) 

4.048*** 

(0.37) 

4.717*** 

(0.38) 

4.844*** 

(0.38) 

3.094*** 

(0.43) 

Year dummies Yes Yes Yes Yes Yes 

N 2872 2870 2794 2792 2792 

Notes: The treatment variable equals 1 for all German subregions as of 2008 and for the German federal state of Schleswig-Holstein in 2003 and 2004. We counter 

the right-skewed distribution by using a negative binomial regression model. Standard errors are in parentheses. +p < 0.1, *p < 0.5, **p < 0.01, ***p < 0.001. 
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However, because of the right skewed distribution of diagnosis, we cannot exclude 

the possibility of inefficiently estimated coefficients of our fixed effects or pooled regres-

sion model. We therefore estimate a finite mixture model (FMM) that accounts for distri-

bution heterogeneity (Deb, Gallo, Ayyagari, Fletcher, & Sindelar, 2011). As Table 5.7 

shows, we confirm a positive effect of the SCS in subregions with a lower malignant skin 

neoplasm diagnosis rate (component 1), whereas the impact of the SCS program is, alt-

hough still significantly positive, considerably smaller in subregions with a comparatively 

high rate (component 2). 

Additionally, we apply a pooled OLS regression using the malignant melanoma mor-

tality rate as the dependent variable and again identify a significantly positive effect of 

the SCS program in the base model (see column 1b, Table 5.5). We find no significant 

correlation between the implementation of the SCS program and the malignant melanoma 

mortality rate once all covariates are added into the model (column 5b, Table 5.5). These 

findings are consistent with our results of the fixed effects estimation in Table 5.4. Finally, 

we test for a “placebo effect” by applying the treatment variable in our model to Austria, 

which shows similar trends for both our outcome variables as well as for all covariates. 

Estimating our model as though Austria had also implemented an SCS program in 2008, 

however, yields no significant impact of the SCS program implementation on the diag-

nosis rate once all covariates are controlled for (see column 5a, Table 5.8). This finding 

indicates that although SCS implementation in Germany has affected the malignant skin 

neoplasm diagnosis rate, its implementation in Austria has had no such effect. Moreover, 

as Table 5.8 also shows, the association between the SCS program and malignant mela-

noma mortality rate in Austrian subregions is not significantly different from zero, even 

in the base model without covariates.  
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Table 5.7:  Effect of the German SCS on Hospital Discharges by Diagnosis for Malignant Skin Neoplasms using FMM 

 Dependent Variable 

 Component 1  Component 2 

 (1a) (2a) (3a) (4a) (5a)  (1b) (2b) (3b) (4b) (5b) 

Treatment 1.244*** 

(0.08) 

1.408*** 

(0.07) 

1.468*** 

(0.07) 

1.446*** 

(0.08) 

1.611*** 

(0.12) 

 0.181 

(0.12) 

0.245+ 

(0.14) 

0.157+ 

(0.08) 

0.192* 

(0.08) 

0.379*** 

(0.07) 

Proportion of individuals 

aged 65 and older (in %) 

 -0.048*** 

(0.01) 

-0.035*** 

(0.01) 

-0.042*** 

(0.01) 

-0.053*** 

(0.01) 

  -0.028+ 

(0.01) 

-0.001 

(0.01) 

0.050*** 

(0.01) 

-0.001 

(0.01) 

Sex ratio  -12.313*** 

(0.83) 

-10.544*** 

(1.08) 

-11.957*** 

(1.25) 

-15.513*** 

(1.31) 

  -7.303** 

(2.29) 

8.740*** 

(2.08) 

14.422*** 

(1.73) 

-9.750*** 

(1.42) 

Physician density  

(no. per 100,000) 

  -0.000 

(0.00) 

-0.000 

(0.00) 

-0.000 

(0.00) 

   0.004*** 

(0.00) 

0.005*** 

(0.00) 

0.002*** 

(0.00) 

Proportion of individuals 

(aged 25–64) with a  

tertiary education (in %) 

   0.000 

(0.00) 

-0.020*** 

(0.09) 

    -0.041*** 

(0.00) 

-0.043*** 

(0.00) 

Employment rate (in %)     0.039*** 

(0.01) 

     0.063*** 

(0.00) 

Natural log of GDP per 

capita (in euros) 

    -0.107 

(0.10) 

     0.063 

(0.05) 

Constant 3.512*** 

(0.05) 

16.179*** 

(0.85) 

14.214*** 

(1.13) 

15.770*** 

(1.26) 

17.926*** 

(1.69) 

 4.582*** 

(0.08) 

12.119*** 

(2.16) 

-5.254* 

(2.10) 

-11.084*** 

(1.70) 

8.774*** 

(1.54) 

Year dummies No No No No No  Yes Yes Yes Yes Yes 

N 1436 1435 1397 1396 1396  1436 1435 1397 1396 1396 

Notes: The treatment variable equals 1 for all German subregions as of 2008 and for the German federal state of Schleswig-Holstein in 2003 and 2004. We counter 

the right-skewed distribution of diagnosis by using a negative binomial distribution in both components. Standard errors are in parentheses. +p < 0.1, *p < 0.5, **p < 

0.01, ***p < 0.001. 
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Table 5.8:  Placebo Effects of Applying the Treatment Variable to Austrian Subregions (Fixed Effects Model) 

 Dependent Variable 

 Hospital discharges by diagnosis per 100,000 inhabitants 

for malignant skin neoplasm (ICD–10 code C43_C44) 

 Malignant melanoma mortality rate (ICD–10 code C43)  

per 100,000 inhabitants 

 (1a) (2a) (3a) (4a) (5a)  (1b) (2b) (3b) (4b) (5b) 

Treatment2 0.160*** 

(0.03) 

0.123*** 

(0.03) 

0.042+ 

(0.02) 

0.034 

(0.02) 

0.017 

(0.02) 

 0.105 

(0.10) 

0.043 

(0.10) 

-0.003 

(0.10) 

0.009 

(0.11) 

0.011 

(0.11) 

Proportion of individuals 

aged 65 and older (in %) 

 0.035*** 

(0.01) 

0.037*** 

(0.01) 

0.026*** 

(0.01) 

0.005 

(0.01) 

  0.089*** 

(0.02) 

0.088*** 

(0.02) 

0.099*** 

(0.02) 

0.104*** 

(0.02) 

Sex ratio  6.362*** 

(1.15) 

4.533*** 

(1.09) 

4.913*** 

(1.10) 

2.168* 

(1.07) 

  1.261 

(3.01) 

2.169 

(3.18) 

2.256 

(3.18) 

3.960 

(3.35) 

Physician density  

(no. per 100,000) 

  0.001*** 

(0.00) 

0.001*** 

(0.00) 

0.001*** 

(0.00) 

   0.001* 

(0.00) 

0.001* 

(0.00) 

0.001* 

(0.00) 

Proportion of individuals 

(aged 25–64) with a 

tertiary education (in %) 

   -0.009** 

(0.00) 

-0.010** 

(0.00) 

    0.011 

(0.01) 

0.013 

(0.01) 

Employment rate (in %)     0.037*** 

(0.00) 

     -0.017+ 

(0.01) 

Natural log of GDP per 

capita (in euros) 

    0.284*** 

(0.07) 

     -0.019 

(0.19) 

Constant 4.144*** 

(0.11) 

-2.215* 

(1.11) 

-0.387 

(1.07) 

-0.372 

(1.07) 

-2.735* 

(1.16) 

 2.512*** 

(0.05) 

-0.142 

(2.96) 

-1.229 

(3.08) 

-1.691 

(3.12) 

-2.488 

(3.47) 

Year dummies Yes Yes Yes Yes Yes  Yes Yes Yes Yes Yes 

N 1436 1435 1397 1396 1396  1356 1355 1315 1314 1314 

Notes: The treatment2 variable equals 1 for all Austrian subregions as of 2008. For diagnosis as the dependent variable, we use a negative binomial fixed effects 

model. Standard errors are in parentheses. +p < 0.1, *p < 0.5, **p < 0.01, ***p < 0.001. 
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5.4 Conclusions 

This analysis of the effectiveness of Germany’s nationwide population-based SCS pro-

gram identifies a significant, robust effect of the SCS program on the number of malig-

nant skin neoplasm diagnoses per 100,000 people. This finding is consistent with earlier 

reports of a positive effect of the SCREEN project and the national SCS program in Ger-

many on the melanoma and non-melanoma incidence (Breitbart et al., 2012; Eisemann et 

al., 2014; Waldmann et al., 2012). It should be noted, however, that patients diagnosed 

with ICD–10 code C44 skin cancers are often ambulatory (Robert Koch Institut und die 

Gesellschaft der epidemiologischen Krebsregister in Deutschland e. V., 2015), meaning 

that the SCS’s impact on the diagnosis rate could be higher than that recorded here for 

inpatient discharges.74 Nevertheless, once we control for the different covariates, we iden-

tify no significant program effect on the melanoma mortality rate, so our findings fail to 

support prior evidence of a decreasing melanoma mortality produced by SCREEN (Breit-

bart et al., 2012; Katalinic et al., 2012). Furthermore, we cannot confirm the 14–17% 

decline of the malignant melanoma mortality rate in Germany 5 years after the imple-

mentation of the national biennial SCS, predicted in the microsimulation model of Eise-

mann et al. (2015). 

The insignificant effect on the mortality rate may be partly explained by the complex-

ity of determining the cause of death, which could bias disease-specific mortality rates 

(Black, Haggstrom, & Welch, 2002). Furthermore, the analysis is based on aggregate 

data, which do not allow us to control for individual skin cancer risk characteristics such 

as solarium attendance, sunburn prevention behavior, skin type, and/or existing moles. 

Furthermore, because our data cover comparatively few post-SCS periods, our results 

may not capture possible long-run effects on the mortality rate. On the other hand, while 

                                                 

74 Both melanoma and non-melanoma skin cancer are more likely diagnosed by outside hospital services. Our 

data include information about the hospital discharges by diagnosis per 100,000 inhabitants for malignant 

skin neoplasm. It is fair to say that the number of these discharges include both the cases solely diagnosed 

in hospitals and cases already diagnosed by outside hospital services which are transferred to a hospital for 

treatment. The latter are also reported as hospital discharges by diagnosis per 100,000 inhabitants for ma-

lignant skin neoplasm. However, our data does not include cases that were diagnosed and solely treated by 

outside hospital services. Hence, our finding of a positive effect of Germany’s SCS program on the malig-

nant skin neoplasm diagnosis rate may underestimate the true effect. 
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Welch and Black (2010) suggest that an increasing diagnosis rate combined with no sig-

nificant change in mortality rate may indicate skin cancer overdiagnosis,75 such a finding 

could also be explained by a rising number of erroneously diagnosed benign skin lesions 

(Carli et al., 2003).76 

Overall, our results indicate that Germany’s nationwide population-based SCS pro-

gram has been effective in terms of a higher diagnosis rate for malignant skin neoplasms 

and thus may have helped improve early detection of skin cancer. Future research on SCS 

effectiveness might consider extending our analysis by using longer time periods and in-

dividual data. Moreover, the German SCS program could additionally be evaluated in 

terms of process outcomes, such as the awareness of individuals for SCS and skin cancer 

prevention, improved quality of diagnosis among physicians or the acceptability among 

patients for SCS. Finally, a cost-effectiveness analysis should also be conducted to iden-

tify the extent to which prior findings on the cost-effectiveness of melanoma screenings 

can be confirmed for Germany’s SCS program (Losina et al., 2007). In addition to as-

sessing the justifiability of associated costs, such an analysis would provide reliable in-

sights for policy decisions. 

  

                                                 

75 Welch, Woloshin, and Schwartz (2005), for instance, find evidence supporting melanoma overdiagnosis in 

the U.S. as a result of raised diagnostic scrutiny. 
76 A rising number of erroneously diagnosed benign skin lesions would lead to systematic measurement error, 

which we do not consider a major problem in our analysis.  

https://www.dict.cc/englisch-deutsch/erroneously.html
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6 General Conclusions 

This dissertation contributes to the literature on effects of two different options which 

may help to reduce the financial burden on the public sector with respect to health and 

LTC expenditures and are thus of particular interest for governments in several OECD 

countries. The first option refers to the use of a voluntary private insurance system that 

provides coverage for gaps in a public LTCI or health insurance system. In particular, 

three academic papers contribute to the empirical literature of asymmetric information 

and selection effects in private LTCI and VPHI markets. An understanding of selection 

effects in these markets is useful for policy implications because they may indicate inef-

ficiencies concerning the insurance coverage of individuals in a market of voluntary pri-

vate insurance.  

In a first step, chapter 2 reviews the empirical work on asymmetric information and 

related selection effects in markets for private LTCI and in the U.S. market for Medigap 

insurance. These types of insurance provide coverage for out-of-pocket LTC and health 

expenditure risks, which are of high importance for the elderly. The empirical literature 

shows that both adverse and advantageous selection are present in these insurance mar-

kets due to multidimensional private information. While the evidence suggests that ad-

vantageous selection is dominating in the U.S. Medigap insurance market, adverse and 

advantageous rather offset each other in the U.S. LTCI market. Only few empirical stud-

ies have analyzed selection effects in LTCI markets outside the U.S. and show mixed 

results with respect to the dominating selection effect. Concerning the sources of selec-

tion, some evidence on LTCI markets is consistent with classic models of asymmetric 

information (e.g., Rothschild & Stiglitz, 1976) by suggesting that adverse selection is 

driven by private information on the risk type. However, some results indicate that indi-

viduals who may actually have the opportunity to buy LTCI do not have significant pri-

vate information on their risk type. Nevertheless, some studies suggest that the problem 

of adverse selection may arise or exacerbate due to a rising availability of genetic testing 

leading to increased private information. In line with theory (de Meza & Webb, 2001), 

some findings suggest that risk preferences contribute to advantageous selection in LTCI 

markets. However, advantageous selection in the Medigap insurance market is not mainly 

driven by risk aversion, but particularly by cognitive abilities. Moreover, some findings 



  

122 

indicate that socioeconomic factors (e.g., income) that are not used for pricing by insur-

ance companies may play an important role for selection effects. However, there is still 

need for further research on selection effects in these insurance markets to provide more 

profound policy implications. This includes extending the literature on selection behavior 

in LTCI markets other than the U.S. market, examining the channel through which some 

factors (e.g., cognitive abilities) impact selection effects and analyzing to what extent a 

negative coverage-risk correlation is supply-side or demand-side driven. 

The subsequent chapters include two empirical studies that provide new insights on 

selection effects in the markets for CompLTCI and SuppDI in Germany. Both markets 

have in common that they provide voluntary private insurance coverage for residual out-

of-pocket expenditure risks not covered by public LTCI or health insurance in Germany. 

In addition, the ex-ante premium differentiation is rather limited in these markets since 

risk-based premiums are only dependent on few characteristics. This makes these markets 

prone to selection effects.  

Based on contract data on PHI policyholders of a German health insurance company, 

the results in Chapter 3 indicate that advantageous selection is dominating in the German 

CompLTCI market with respect to both the decision to buy a CompLTCI policy and to 

choose the extent of CompLTCI coverage. The occupation as well as the residential lo-

cation are observable characteristics that are not used by the insurance company for pric-

ing, but that contribute to advantageous selection through the socioeconomic status. An-

other unused observable that contributes to selection effects is the holding of further  

SuppHI policies even though the results concerning this factor as a source of either ad-

verse or advantageous selection are mixed. In addition, the findings suggest that non-

linearities in the relationship of potential sources of selection with risk and insurance cov-

erage should be taken into account. Even though the insured collective is advantageously 

selected at a given point in time, findings of a panel data analysis point to a possible 

worsening of the insured collective over time. Individuals with increased health insurance 

payouts are more likely to buy CompLTCI, while policyholders with decreased health 

insurance payouts are more likely to cancel their CompLTCI contracts. Although it can-

not be excluded that the latter points to an ex-post selection of low-risk individuals out of 

the collective, cancellations of CompLTCI policies are assumed to be rather driven by 

financial problems.  
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The empirical study on selection effects in the German market for SuppDI in Chapter 

4 is based on survey data from the Healthcare Monitor of the Bertelsmann Stiftung. The 

findings provide evidence that asymmetric information and selection effects exist in this 

market even though the standard positive correlation test does not reveal a significant 

coverage-risk correlation. Analyzing several potential sources of selection, the holding of 

other private SuppHIs, which is related to risk preferences, is identified as a main source 

of advantageous selection. It can be concluded that the absence of a significant coverage-

risk correlation is explained by an offsetting of adverse and advantageous selection in the 

aggregate. Thus, both high-risk individuals with private information on their risk type as 

well as low-risk individuals with private information on their preference for insurance 

purchase SuppDI.  

The second option to reduce the financial burden on the public sector, which is ana-

lyzed in this thesis, refers to the promotion of preventive health measures. Specifically, 

Chapter 5 contributes to this topic by empirically analyzing the effectiveness of the na-

tionwide population-based SCS program that was implemented in the German health care 

system in 2008. The purpose of this program is to lower the melanoma mortality rate and 

the costs of care by improving the detection of skin cancer at an early stage. Using panel 

data from the Eurostat database, the study shows a positive and robust effect of this pro-

gram on the diagnosis rate for malignant skin neoplasms, but no significant impact on the 

melanoma mortality rate. Since the latter may partly be explained by the relatively short 

time period after the implementation of the program, future research might give more 

insights into long-term effects of this program on the melanoma mortality rate. The pos-

itive impact on the diagnosis rate suggests that this program may have improved the de-

tection rate of skin cancer at an earlier stage and may thus help to mitigate the health care 

costs on skin cancer. However, taken the impact on the diagnosis rate and the melanoma 

mortality rate together, the findings may also indicate the problem of skin cancer overdi-

agnosis. The latter could even lead to rising health care costs related to skin cancer (e.g., 

Welch & Black, 2010).  

Summing up, the results in this thesis point out some specific effects of shifting in-

surance coverage to a market for private LTCI and VPHI as well as of the promotion of 

preventive health care via a cancer screening program. In particular, the empirical results 

in this thesis suggest that selection effects due to multidimensional private information 
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are present in the German market for CompLTCI and SuppDI, which is in line with find-

ings for the Medigap insurance and the private LTCI market in the U.S. These findings 

raise the concern of inefficiencies in these insurance markets due to related suboptimal 

insurance coverage of at least part of the population. Hence, selection effects need to be 

addressed when considering the strategy of shifting coverage from a public LTCI or 

health insurance system to a private insurance market. Some evidence reviewed in this 

thesis suggest that inefficiencies in private insurance markets may be decreased by con-

sidering drivers for selection in determining insurance premiums. Instead of shifting in-

surance coverage to the private insurance market, an alternative way to lower the financial 

burden of the public sector is to promote preventive health care, for instance via a cancer 

screening program. In this regard, the findings in this thesis indicate that the German SCS 

program is effective in terms of a higher rate of malignant skin neoplasm diagnoses and 

may thus help to reduce the health care costs related to skin cancer by an early detection 

of that disease. However, future research on the cost-effectiveness of this specific screen-

ing program is needed to give more profound policy implications on the justifiability of 

the costs for this program. 
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Appendix A 

Table A.1:  Specification of Variables 

Variable Explanation Data Source 

Risk 

  

LTCprob 1 = one or more insurance claims in the mandatory LTCI, 

0 = otherwise 

Insurance company 

lnLTCcost Natural log of insurance payouts in the mandatory LTCI + 1 Insurance company 

HCprob 1 = one or more insurance claims in health insurance above the 

highest possible deductible, 0 = otherwise 

Insurance company 

lnHCcost Natural log of insurance payouts in health insurance above the 

highest possible deductible + 1 

Insurance company 

Coverage 

  

CompLTCI 1 = holding of a CompLTCI, 0 = otherwise Insurance company 

lnCompLTCIp Natural log of the monthly premium for CompLTCI tariffs + 1 

(without rate module for increasing the benefits over time) 

Insurance company 

Pricing characteristics 

 

male 1 = man, 0 = woman Insurance company 

age Age in years Insurance company 

year Year of signing the insurance contract Insurance company 

Unused observables   

dsick_ins 1 = holding of a daily sickness benefits insurance, 0 = otherwise Insurance company 

dhosp_ins 1 = holding of a hospital daily benefits insurance, 0 = otherwise Insurance company 

ISEI-08 Socioeconomic status score based on ISEI-08 Assignment based on 

Ganzeboom and 

Treiman (2010) 

educ_seca Proportion of individuals (aged 15 years and older) with the 

general / subject-restricted higher education entrance 

qualification per district (in %) 

German Census 2011 

employ Employment rate (of individuals aged 15-64 years) per district  

(in %) 

German Census 2011 

gdp_10000 Average GDP per inhabitant by district between 2006 and 2013 

(in 10,000 euros) 

Eurostat 

dependency ratio Dependency ratio, i.e., the ratio of individuals aged under 18 

years or 65 years and older to individuals aged 18-64 years per 

district (in %) 

German Census 2011 

single Proportion of single adults (19 years and over) per district (in %) German Census 2011 

Further information of the insurance company  

LTCI_lapse 1 = lapse of CompLTCI policies, 0 = otherwise Insurance company 

distribution_dens Proportion of distributors of CompLTCI policies per 10,000  

inhabitants 

Insurance company 

tariff_non-payer 1 = holding of a “emergency treatments only” tariff for non-pay-

ing customers in financial distress, 0 = otherwise 

Insurance company 

Notes: a This educational degree in Germany is, for instance, the so called “Abitur” which is comparable to A-level in the U.K. 
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Table A.2:  Marginal Effects on Health Insurance Benefits Before and After CompLTCI 

Lapse and Uptake 

 (1) (2) (3) (4) (5) (6) 
 

Lapse Behavior Uptake Behavior 

Dependent 

   variable 

HCprob lnHCcost HCprob lnHCcost 

 Customers 

without  

financial  
distress 

Customers  

in financial  

distress 

Customers 

without 

financial  
distress 

Customers  

in financial  

distress 

  

Before the event  
     

<= -5 years 0.5048*** 0.4195*** 3.8195*** 3.2143*** 0.3165*** 2.3945*** 

 (0.035) (0.040) (0.268) (0.299) (0.007) (0.053) 

- 4 years 0.4147*** 0.3366*** 3.1182*** 2.5523*** 0.3066*** 2.3016*** 

 (0.030) (0.034) (0.224) (0.248) (0.007) (0.055) 

- 3 years 0.4009*** 0.3312*** 3.0861*** 2.6028*** 0.2989*** 2.2190*** 

 (0.027) (0.029) (0.207) (0.217) (0.006) (0.047) 

- 2 years 0.3704*** 0.2901*** 2.8163*** 2.2444*** 0.2957*** 2.2040*** 

 (0.027) (0.029) (0.206) (0.215) (0.006) (0.044) 

- 1 years 0.4311*** 0.2301*** 3.2322*** 1.7481*** 0.3029*** 2.2386*** 

 (0.028) (0.027) (0.218) (0.200) (0.005) (0.039) 

0 0.3790*** 0.1163*** 2.7921*** 0.9148*** 0.3516*** 2.6098*** 

 (0.028) (0.020) (0.210) (0.153) (0.005) (0.036) 

After the event   
    

+ 1 year 0.3454*** 0.1195*** 2.6618*** 0.9771*** 0.3654*** 2.7058*** 

 (0.029) (0.024) (0.232) (0.183) (0.005) (0.038) 

+ 2 year 0.2904*** 0.0726*** 2.2708*** 0.6320*** 0.3712*** 2.7399*** 

 (0.032) (0.020) (0.256) (0.175) (0.005) (0.040) 

+ 3 year 0.3978*** 0.0611*** 3.1058*** 0.5021*** 0.3910*** 2.9133*** 

 (0.036) (0.019) (0.297) (0.150) (0.006) (0.045) 

+ 4 year 0.4396*** 0.1106*** 3.4251*** 0.8750*** 0.3959*** 2.9514*** 

 (0.042) (0.031) (0.344) (0.251) (0.006) (0.047) 

+ 5 year 0.4389*** 0.0963** 3.4286*** 0.7940** 0.4126*** 3.1066*** 

 (0.062) (0.039) (0.506) (0.340) (0.005) (0.043) 

Pricing  

   characteristics 

Yes Yes Yes Yes Yes Yes 

Observations 127,008 790,119 

Notes: Standard errors clustered on the level of the individual in parentheses. *p < 0.10, **p < 0.05, ***p < 0.01. 
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Appendix B 

Table B.1:  Difference-in-difference-in-difference Approach 

 Malignant skin neoplasms 

ICD–10 code C43_C44 

Neoplasms 

ICD–10 code C00_D48 

(excluding ICD–10 code 

C43_C44) 

 
Germany 

𝑡 < 2008 𝑥𝐺  𝑦𝐺  

𝑡 > 2008 𝑥𝐺´ 𝑦𝐺´ 
Difference 𝑥𝐺´– 𝑥𝐺 𝑦𝐺´– 𝑦𝐺  

Difference-difference ∆𝜑𝐺 = (𝑥𝐺´– 𝑥𝐺) – (𝑦𝐺´– 𝑦𝐺) 

 Europe 

𝑡 < 2008 𝑥𝐸 𝑦𝐸  
𝑡 > 2008 𝑥𝐸´ 𝑦𝐸´ 
Difference 𝑥𝐸´– 𝑥𝐸 𝑦𝐸´– 𝑦𝐸 

Difference–difference ∆𝜑𝐸 = (𝑥𝐸´– 𝑥𝐸) – (𝑦𝐸´– 𝑦𝐸) 

Difference–difference–difference ∆𝜑𝐺 − ∆𝜑𝐸 

 


