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1 Summary 

The fate of soil organic carbon (SOC) is one of the greatest uncertainties in predicting future 

climate. Soil microorganisms, as primary decomposers of SOC, control C storage in terrestrial 

ecosystems by mediating feedbacks to climate change. Even small changes in microbial SOC 

decomposition rates at the regional scale have the potential to alter land-atmospheric feedbacks at 

the global scale. Despite their critical role, the ways in which soil microorganisms may change 

their abundances and functions in response to the climate change drivers of soil temperature and 

moisture is unclear. Additionally, most existing C models do not consider soil microorganisms 

explicitly as drivers of decomposition, one consequence of which is large variability in predicted 

SOC stock projections. This demonstrates the need for a better mechanistic understanding of 

microbial SOC decomposition at large scales. This thesis was designed to clarify the role of 

microbial SOC decomposition dynamics in response to climate change factors in two 

geographically distinct areas and land-use types. The hypothesis was that microbial communities 

would be adapted to climatic and edaphic conditions specific to each area and to the SOC organic 

quality in each land-use and would therefore exhibit distinct responses to soil temperature and 

moisture variations.  

Three studies were performed to address the goals of this thesis. The first study aimed to clarify 

temporal patterns of degradation in C pools that varied in complexity by modelling in situ potentials 

of microbially produced extracellular enzymes. Temperature and moisture sensitivity patterns of C 

cycling enzymes were followed over a period of thirteen months. The second study investigated 

group-specific temperature responses of bacteria and fungi to substrate quality variations through 

an additional incubation experiment. Here, complex environments were mimicked in order to 

determine the dependence of microbial responses not only on environmental conditions, but also 

under conditions of inter- and intra-specific community competition. Changes in microbial 

community composition, abundance, and function were determined at coarse (phospholipid fatty 

acid – PLFA, ergosterol) and relatively fine resolutions (16S rRNA, taxa-specific quantitative PCR, 

fungal ITS fragment). A third study investigated 1) the spatial variability of temperature sensitivity 

of microbial processes, and 2) the scale-specificity and relative significance of their biotic and 

physicochemical controls at landscape (two individual areas, each ca. 27 km2) and regional scales 

(pooled data of two areas).  
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Strong seasonal dependency was observed in the temperature sensitivities (Q10) of hydrolytic and 

oxidative enzymes, whereas moisture sensitivity of β-glucosidase activities remained stable over 

the year. The range of measured enzyme Q10 values was similar irrespective of spatial scale, 

indicating a consistency of temperature sensitivities of these enzymes at large scales. Enzymes 

catalyzing the recalcitrant SOC pool exhibited higher temperature sensitivities than enzymes 

catalyzing the labile pool; because the recalcitrant C pool is relatively large, this could be important 

for understanding SOC sensitivity to predicted global warming. Response functions were used to 

model temperature-based and temperature and moisture-based in situ enzyme potentials to 

characterize seasonal variations in SOC decomposition. In situ enzyme potential explained 

measured soil respiration fluxes more efficiently than the commonly used temperature-respiration 

function, supporting the validity of our chosen modelling approach. As shown in the incubation 

experiment, increasing temperature stimulated respiration but decreased the total biomass of 

bacteria and fungi irrespective of substrate complexity, indicating strong stress responses by both 

over short time scales. This response did not differ between study areas and land-uses, indicating 

a dominant role of temperature and substrate quality in controlling microbial SOC decomposition. 

Temperature strongly influenced the responses of microbial groups exhibiting different life 

strategies under varying substrate quality availability; with soil warming, the abundance of 

oligotrophs (fungi and gram-positive bacteria) decreased, whereas copiotrophs (gram-negative) 

increased under labile C substrate conditions. Such an interactive effect of soil temperature and 

substrate quality was also visible at the taxon level, where copiotrophic bacteria were associated 

with labile C substrates and oligotrophic bacteria with recalcitrant substrates. Which 

physicochemical and biological factors might explain the observed alterations in microbial 

communities and their functions in response to climate change drivers at the regional scale was 

investigated in the third study. Here, it was shown that the soil C:N ratio exerted scale-dependent 

control over soil basal respiration, whereas microbial biomass explained soil basal respiration 

independent of spatial scale. Factors explaining the temperature sensitivity of soil respiration also 

differed by spatial scale; extractable organic C and soil pH were important only at the landscape 

scale, whereas soil texture as a control was independent of spatial scale. 

In conclusion, this thesis provides an enhanced understanding of the response of microbial C 

dynamics to climate change at large scales by combining field measurements with innovative 

laboratory assays and modelling tools. Component specific degradation rates of SOC using 
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extracellular enzyme measurements as a proxy, group-specific temperature sensitivities of 

microbial key players, and the demonstrated scale-specificity of factors controlling microbial 

processes could potentially improve the predictive power of currently available C models at 

regional scale. 
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2 Zusammenfassung 

Der Verbleib und das Verhalten von bodenbürtigem organischen Kohlenstoff (SOC) bergen mit 

die größten Unsicherheiten bei der Vorhersage des zukünftigen Klimas. Als primäre Zersetzer von 

SOC kontrollieren Bodenmikroorganismen die Speicherung von Kohlenstoff in terrestrischen 

Ökosystemen, da sie die mediatorische Rückkopplung zum Klimawandel darstellen. Schon geringe 

Änderungen der SOC-Abbauraten auf regionaler Skala haben das Potential, die Land-

Atmosphären-Rückkopplungen auf globaler Ebene zu beeinflussen. Trotz ihrer wichtigen Rolle ist 

unklar, wie Bodenmikroorganismen ihre Abundanz und Funktion an Klimawandel, 

Bodentemperatur und -feuchte anpassen. Darüber hinaus werden Bodenmikroorganismen in den 

meisten C-Modellen nicht explizit als bestimmende Komponente des Kohlenstoffabbaus 

einbezogen, was in einer großen Variation der vorhergesagten C-Vorräte resultiert. Dies 

unterstreicht die Notwendigkeit eines besseren mechanistischen Verständnisses des mikrobiellen 

SOC-Abbaus auf großen Skalen. Die vorliegende Dissertation wurde ausgeführt, um die Rolle der 

mikrobiellen SOC-Abbaudynamik in Anhängigkeit von Klimawandelfaktoren in zwei 

geographisch getrennten Regionen und Landnutzungstypen zu klären. Die Hypothese lautete, dass 

mikrobielle Gemeinschaften sich an die regional spezifischen klimatischen und edaphischen 

Bedingungen sowie an die Qualität des SOC in jeder Landnutzungsform anpassen und daher 

unterschiedliche Reaktionen auf Bodentemperatur- und -feuchtigkeitsvariationen zeigen. 

Um das Ziel dieser Dissertation zu erreichen, wurden drei Studien durchgeführt. Die erste Studie 

zielte darauf ab, den zeitlichen Verlauf des Abbaus von unterschiedlich komplexen C-Quellen 

durch die Modellierung des in situ-Potentials von mikrobiellen, extrazellulären Enzymen zu 

untersuchen. Die Temperatur- und Feuchtesensitivität von Enzymen des Kohlenstoffkreislaufs 

wurde über einen Zeitraum von dreizehn Monaten beobachtet. Die zweite Studie untersuchte 

gruppenspezifische Temperaturabhängigkeiten von Bakterien und Pilzen im Hinblick auf Substrate 

unterschiedlicher Qualität in einem separaten Inkubationsexperiment. Hierbei wurden komplexe 

Umweltbedingungen nachgestellt, um die Abhängigkeit mikrobieller Reaktionen nicht nur von 

Umwelteigenschaften, sondern auch von inter- und intraspezifischer Gemeinschaftskonkurrenz zu 

bestimmen. Veränderungen in der mikrobiellen Gemeinschaftsstruktur, Abundanz und Funktion 

wurden mittels grober (Phospholipidfettsäuren – PLFA, Ergosterol) und relativ feiner Auflösung 

(16S rRNA, taxaspezifische quantitative PCR, pilzliche ITS-Fragment) bestimmt. Eine dritte 
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Studie untersuchte 1) die räumliche Variabilität der Temperatursensitivität mikrobieller Prozesse, 

und 2) die skalenspezifische und relative Bedeutung ihrer biotischen und physikalisch-chemischen 

Steuerungsgrößen auf Landschafts- (zwei individuelle Regionen, jede 27 km²) und Regionalskala 

(zusammengefasste Daten zweier Regionen). 

Es wurden starke jahreszeitliche Abhängigkeiten der Temperatursensitivität (Q10) von 

hydrolytischen und oxidativen Enzymen beobachtet, während die Feuchtigkeitssensitivität der β-

Glucosidaseaktivitäten im Jahresverlauf stabil blieb. Der Bereich der gemessenen Q10-Werte 

variierte, unabhängig von der räumlichen Skala, wenig, was auf eine konstante 

Temperatursensitivität dieser Enzyme auf größerer räumlicher Skala hinweist. Enzyme, die in den 

Abbau von rekalzitrantem SOC involviert sind, wiesen eine höhere Temperatursensitivität 

verglichen mit solchen Enzymen auf, die labilere Verbindungen abbauen. Da der Anteil 

rekalzitranter C-Quellen im Boden relativ groß ist, könnte dies wichtig sein, um die SOC-

Sensitivität auf den vorhergesagten Klimawandel zu verstehen. Um die temperaturbasierten sowie 

temperatur- feuchtigkeitsbasierten in situ-Enzympotentiale zur Charakterisierung von saisonalen 

Variationen im SOC-Abbau zu modellieren, wurden Antwortfunktionen genutzt. In situ-

Enzympotentiale erklärten die gemessenen Bodenatmungsflüsse effektiver als die üblich genutzte 

Temperatur-Atmungs-Funktion. Dies unterstrich die Validität des gewählten 

Modellierungsansatzes. Wie im Inkubationsexperiment gezeigt wurde, erhöhte steigende 

Temperatur die Atmung, aber verringerte die Gesamtbiomasse von Bakterien und Pilzen 

unabhängig von der Substratkomplexität. Dies deutet auf starke Stressreaktionen beider Gruppen 

innerhalb kurzer Zeiträume hin. Die Reaktion unterschied sich nicht zwischen den 

Untersuchungsregionen oder Landnutzungen, was auf die dominierende Rolle von Temperatur und 

Substratqualität bei der Steuerung des mikrobiellen SOC-Abbaus hindeutet. Die Temperatur hatte 

unter variierender Substratqualitätsverfügbarkeit starken Einfluss auf die mikrobiellen Gruppen 

mit unterschiedlichen Lebensstrategien: bei Vorhandensein labiler C-Substrate nahm die 

Abundanz von Oligotrophen Mikroorganismen (Pilze, Gram positive Bakterien) mit der 

Bodenerwärmung ab, während Kopiotrophe (Gram negative Baktieren) zunahmen. Solch ein 

interaktiver Effekt von Bodentemperatur und Substratqualität war auch auf der Taxonebene 

sichtbar, wo Kopiotrophe Bakterien stärker mit labilen und Oligotrophe Bakterien stärker mit 

rekalzitranten C-Substraten assoziiert waren. Welche physikalisch-chemischen und biologischen 

Faktoren die beobachteten Veränderungen in mikrobiellen Gemeinschaften sowie ihre Funktionen 
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in Reaktion auf Einflussfaktoren des Klimawandels auf regionaler Skala erklären, wurde in der 

dritten Studie untersucht. Hier konnte gezeigt werden, dass das C:N-Verhältnis des Bodens einen 

skalenabhängigen Einfluss auf die Basalatmung des Bodens hatte, während die mikrobielle 

Biomasse die Basalatmung unabhängig von der räumlichen Skala erklärte. Faktoren, die die 

Temperatursensitivität der Bodenatmung erklärten, unterschieden sich ebenfalls zwischen den 

räumlichen Skalen: der extrahierbarer organischer C und der Boden pH-Wert waren nur auf der 

Landschaftsskala relevant, während die Bodenart als Steuerungsgröße unabhängig von der 

räumlichen Skala war. 

Schlussfolgernd bietet diese Dissertation ein verbessertes Verständnis für die Reaktionen von 

mikrobiellen C-Dynamiken auf den Klimawandel auf größeren Skalen, in dem sie Feldmessungen 

mit innovativen Laboranalysen und Modellierungswerkzeugen verbindet. 

Komponentenspezifische Abbauraten von SOC, die extrazelluläre Enzymmessungen als 

Stellvertretervariable, gruppenspezifische Temperaturabhängigkeiten mikrobieller Hauptakteure 

und die demonstrierte Skalenspezifität von Einflussgrößen auf mikrobielle Prozesse nutzen, haben 

das Potential die Vorhersagekraft aktuell verfügbarer C-Modelle auf der regionalen Skala zu 

verbessern.



3 General introduction  7 

 
 

3 General Introduction 

3.1 Soils at the core of C cycling; the context of climate change 

The global soil carbon stock is approximately 1500 Pg in the top 100 cm, making the soil carbon 

stock bigger than both atmospheric (1.7 times) and vegetation (~ 2.7 times) stocks (Lal, 2018). 

Carbon (C) storage in soil systems is regulated by the balance of C inputs, its stabilization, and its 

losses (Yigini and Panagos, 2016). Soil organic carbon (SOC) is an extremely complex mixture 

that originates from many biotic and abiotic sources including, but not limited to, partially 

decomposed plant and animal residues and microbial biomass (Balser, 2005; Conant et al., 2011; 

Schmidt et al., 2011). Carbon exits the soil system primarily through soil respiration, including 

both autotrophic (by roots) and heterotrophic (by microorganisms) respiration (Schlesinger and 

Andrews, 2000). Other processes through which C is lost from soils include lateral fluxes; for 

instance, dissolved C export through crop harvest or runoff (Guenet et al., 2018). 

Soil harbours an enormous diversity of life and its inhabitants consist of populations of macrofauna, 

mesofauna, microfauna and microflora (Nannipieri et al., 2003). Soil microorganisms, as primary 

decomposers of SOC, mediate the size of the SOC pool by contributing up to 90 % of process 

reactions, hence playing a key role in governing C cycling (Nannipieri et al., 2003; Balser and 

Wixon, 2009; Portillo et al., 2013; Vries and Shade, 2013). Microorganisms benefit soil ecosystems 

in many ways; for example, enhancing biodiversity and productivity of above ground plant biomass 

by increasing nutrient availability for their growth, by scavenging contaminants (e.g. heavy metals 

and pesticides), and by increasing resilience and resistance to different environmental stresses (Poll 

et al., 2010; Lukac et al., 2017; Lladó et al., 2018). Besides providing the above mentioned 

ecosystem services, soil microorganisms also structural complexity of SOC through 

depolymerization and by synthesizing metabolites leading to aggregate formation, hence SOC 

stabilization (Chotte, 2005; Conant et al., 2011). Various factors exert control over SOC dynamics 

through control of microbial growth and respiration rates. These include intra- and inter-microbial 

community competition, e.g., for available substrate and for sound habitat through antibiotic 

production (Fontaine et al., 2003; Revilla-Guarinos et al., 2014), SOC quality / quantity, soil 

temperature, soil moisture (controlling, e.g., substrate / O2 / microbial diffusion) (Davidson and 

Janssens, 2006; German et al., 2011; Steinweg et al., 2012; Allison et al., 2014), and other 

physicochemical soil properties including soil texture, exchangeable calcium and iron- and 
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aluminium-oxyhydroxides, pH, and soil C:N ratio (Ding et al., 2014; Min et al., 2014; Spohn, 2015; 

Rasmussen et al., 2018). 

Human activities influence the earth’s energy balance by altering atmospheric concentrations of 

radiatively vital greenhouse gases, such as CO2, contributing significantly to the warming of earth’s 

mean surface temperature (Cubasch et al., 2013). Observations have shown an increase of 0.85 °C 

in mean global surface temperature over the period 1880 – 2012 and a further increase, at a great 

rate, is expected by the end of 2100 (IPCC, 2014). On the basis of different climate change 

scenarios, climate warming may increase earth’s mean surface temperature to as high as 4.8 °C by 

the end of the twenty-first century (relative to 1986 – 2005) (IPCC, 2014). Rising atmospheric CO2 

concentrations and the resulting climate change are projected to increase primary productivity and 

hence litter input to SOC pools during the next century, thus strengthening the negative feedback. 

However, soil warming is also projected to accelerate SOC decomposition, which like any other 

kinetic process, reacts strongly positively to a temperature increase (Conant et al., 2011; Guenet et 

al., 2018). Therefore, given the magnitude of the soil C stock, clarification of the SOC 

decomposition response to predicted global climate change is central to understanding dynamics 

of the coupled carbon-climate system (Ajwa and Tabatabai, 1994; Schlesinger and Andrews, 

2000). 

3.2 Sensitivity of SOC decomposition in the context of climate change 

A great deal of existing literature focuses on understanding and clarifying the dynamics of SOC 

under a changing climate (Trumbore, 1997; Zogg et al., 1997; Davidson et al., 1998; Davidson and 

Janssens, 2006; Fierer et al., 2006; Poll et al., 2013; Tang and Riley, 2015; Klimek et al., 2016). 

Still, the fate of SOC is uncertain and an important element of this uncertainty is the response of 

SOC quality to climate change. Plant growth will be altered as a result of global climate change. 

CO2 enrichment / fertilization effect, rising temperatures, modified specific leaf area, and plant C 

allocation patterns – all can alter input of detritus in both absolute (litter quantity) and relative terms 

(litter quality) (Cha et al., 2017; Chen and Chen, 2018). Uncertainty of the response of SOC to 

climate warming is often discussed in terms of SOC structural complexity, i.e., the rate and extent 

of decomposition of labile and complex SOC pools (Xu et al., 2012; Luo et al., 2017a). Like any 

other biochemical reaction, SOC decomposition is inherently sensitive to temperature, and 

decomposition rates may increase with increasing temperature, which is in agreement with the 
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Arrhenius theory (Sierra, 2012). Temperature sensitivity of SOC decomposition is commonly 

quantified as the Q10 value; it represents the rate of change in basal respiration rate for every 10 °C 

difference in soil temperature (Davidson and Janssens, 2006; Tang et al., 2017). Over the last 

decades, many studies have supported the temperature sensitivity of SOC decomposition with the 

“C quality temperature” hypothesis, which states: reactions with high activation energies (Ea, 

representing recalcitrant C pool) have higher temperature sensitivity (high Q10 values) than 

reactions with low Ea (low Q10 values, representing labile C pool) (Fierer et al., 2003; Knorr et al., 

2005; Davidson and Janssens, 2006; Vanhala et al., 2007; Conant et al., 2008; Klimek et al., 2016). 

However, studies have also found evidence that contradicts this hypothesis, i.e., an inverse 

relationship (Benbi et al., 2014) or even no difference in Q10 values between SOC pools of different 

qualities (Fang et al., 2005; Conen et al., 2006; Fang et al., 2006). Higher sensitivity of “physio-

chemical SOC stabilization processes” (see below) than “SOC respiration reactions” may be 

responsible for these contradictory findings (Thornley and Cannell, 2001). It may also be that much 

of the SOC persisting in soil is of high quality, but due to direct or indirect interactions with mineral 

surfaces and with other soil organic matter, it is either insoluble or spatially inaccessible to 

decomposers, resulting in an altered temperature-related response (Colman and Schimel, 2013). 

Sierra (2012) attributed the inconsistent temperature sensitivities of SOC pools to different 

measures used to explain it, such as turnover times, activation energies, qCO2 and Q10. Therefore, 

clear understanding of the response of SOC dynamics to warming climate remains an unresolved 

issue. 

Assignment of soil organic C into different pools and fractions, for estimation of absolute pool size 

with individual turnover rates, has been carried out using different techniques. For instance, SOC 

can be physically separated into aggregate, particle size, and density fractions; or can be 

fractionated using various wet chemical procedures; high-gradient magnetic separation (HGMS), 

nuclear magnetic resonance (NMR) spectroscopy, diffuse reflectance Fourier transform mid-

infrared spectroscopy (midDRIFTS), and their combinations (Lützow et al., 2007; Kunlanit et al., 

2014). Each fractionation method has advantages and disadvantages; for instance, sample 

preparation and measurement time, method accuracy and cost effectiveness. Recently, midDRIFTS 

has been used successfully to characterize SOC at the regional scale (Mirzaeitalarposhti et al., 

2015) highlighting the usefulness of this technique in time and perhaps cost effectiveness. 
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Discrepancies in SOC decomposition responses to temperature, besides above explained SOC 

quality aspect, may be directly or indirectly related to other physicochemical drivers, such as 

interactive effects of CO2 production and nutrient availability (N, P), soil C:N ratio, and pH (Fierer 

et al., 2003; Klimek et al., 2016; Craine et al., 2010; Schmidt et al., 2011; Min et al., 2014). Soil 

texture controls temperature-related SOC decomposition by, for example, a) physical protection, 

in which SOC becomes occluded within soil aggregates; b) chemical protection, in which SOC 

becomes adsorbed onto mineral surfaces through strong covalent and electrostatic bonds; and by 

c) altering soil water holding capacity and solution chemistry through pH buffering (Sollins et al., 

1996; Thornley and Cannell, 2001; Davidson and Janssens, 2006). The temperature sensitivity of 

soil respiration is also controlled by soil moisture, another important factor which will be affected 

by predicted climate change. For example, altered soil water films control substrate diffusion, and 

diffusion of microbial decomposers (Davidson and Janssens, 2006). Variations in soil moisture 

have been associated with abrupt changes in soil respiration patterns with different mechanisms 

responsible, including disruption of aggregates and subsequent release of physically protected 

SOC, microbial cell lysis and / or release of their osmoregulatory solutes to soil that could be further 

mineralized by microbial biomass (Fierer and Schimel, 2003). Allision and Treseder (2008) 

suggested that rising temperatures may not result in a positive feedback to climate change if soil 

moisture remains a limiting factor in SOC decomposition. 

Seasonal factors, such as variation in soil temperature and microbial community composition, may 

also modify the temperature sensitivity of microbial processes. For example, sensitivity of SOC 

decomposition is greater at low than at high temperatures and strongly deviates from an assumption 

of constant Q10 across temperatures (Koch et al., 2007; Kirschbaum, 2010). Different studies 

provide complementary evidence for this: regions with cold-climate and high elevations (cool 

temperature) exhibited greater temperature sensitivity than regions with warm-climate and low 

elevation gradients (warm temperature) (Schindlbacher et al., 2010). 

3.3 Microbial decomposition of SOC in the context of climate change 

Soil microorganisms play a central role in soil’s service of maintaining biogeochemical cycles by 

processing virtually all types of soil organic matter; from xenobiotics to naturally occurring 

polyphenols and related compounds (Nannipieri et al., 2003). Soil microbial biomass consists of 

populations of organisms that differ from each other in many respects; for example, life history 
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traits, thermal tolerances, and dispersal ability (Classen et al., 2015). Soil bacteria and fungi, 

comprising > 90 % of soil microbial biomass, are the major drivers of organic C decomposition 

(Jagadamma et al., 2014). Abundances and functions of soil microorganisms may be affected 

directly or indirectly by the same major factors driving climate change. For example, climate 

warming and associated soil moisture dynamics may alter soil microbial community composition 

and its plasticity and resilience under environmental stresses directly (Schimel et al., 2007; Allison 

and Treseder, 2008; Griffiths and Philippot, 2013; Morrissey et al., 2017) or indirectly, through 

altered plant community composition, litter quality and altered plant root phenology and exudation 

(Badri and Vivanco, 2009; Drake et al., 2013; Abramoff and Finzi, 2014; Robinson et al., 2018). 

Soil microorganisms respond to a warming climate by shifting metabolic processes and rates; 

however, discrepancies in our understating still exist as to the direction of the responses, and 

possible reasons for this could be microbial adaptation (Bradford, 2013). While most soil warming 

experiments, in lab- and field-scale studies and at short time scale (days to weeks and over several 

months), have shown an increase in SOC decomposition with increasing temperature, studies 

carried out over longer time periods (several years) highlight the limitations and complex 

interactions between temperature, substrate quality, and its availability to microbial decomposer 

communities in controlling decomposition rates (Burke et al., 2003). For example, a decrease in 

soil respiration rates in soil warming experiments to pre-warming levels after an initial short-lived 

increase have been associated with depletion of labile SOC, microbial biomass, and their 

combination, as well as acclimation of microbial communities to warming with resulting 

adjustments in their C use efficiency (CUE) patterns (Knorr et al., 2005; Hartley et al., 2007; 

Bradford et al., 2008; Lützow and Kögel-Knabner, 2009a; Allison et al., 2010; Birge et al., 2015). 

Classical understanding suggests that fungi decompose recalcitrant substrates while bacteria 

usually decompose labile substrates (Kramer et al., 2016). Similarly, the fungal to bacterial ratio in 

soil is associated with C sequestration potential, in which greater fungal abundance is usually 

associated with greater C storage. Therefore, shifts in soil microbial substrate utilization patterns 

may critically alter the rate of C loss from soils (Six et al., 2006). However, a fungal association 

with only recalcitrant substrate decomposition has recently been challenged (Kramer et al., 2016; 

Müller et al., 2017). CUE, the proportion of assimilated C utilized for growth and enzyme 

production vs. that utilized for maintenance, is a function of both C quality and the degradative 

efficacy of microbial community. For example, fungi are more efficient users than soil bacteria of 
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the C they take up (Cotrufo et al., 2013; Frey et al., 2013; Sinsabaugh et al., 2016). Frey et al., 

(2013) observed that temperature controls microbial CUE patterns of different SOC fractions; 

recalcitrant substrate utilization efficiency was reduced as temperature increased. However, Frey 

et al., (2013) also observed that microbes adapted their CUE with continuous soil warming that 

resulted in a weaker decline in CUE of recalcitrant substrate with increasing temperature. 

Knowledge of the temperature-sensitive responses of microbial abundances and activities and of 

specific microbial functional groups within a given community will also improve our 

understanding of microbial SOC decomposition (Malcolm et al., 2008; Classen et al., 2015). Soil 

temperature has been shown to influence microbial community abundance and composition (Zogg 

et al., 1997; Waldrop and Firestone, 2004). The temperature response of microbial SOC 

decomposition may in fact be tightly linked to microbial life strategies. Copiotrophic 

microorganisms have high nutritional requirements, thrive in high quality substrate environments 

(labile) and exhibit rapid growth rates under abundant resource availability. In contrast, 

oligotrophic microorganisms grow relatively slowly and exploit low nutrient environments (Fierer 

et al., 2007). Bai et al., (2017b) found that copiotrophs were positively correlated with the 

temperature sensitivity of SOC decomposition whereas oligotrophs were negatively correlated; it 

follows that soils dominated by copiotrophs may respond strongly to climate warming. There is 

compelling evidence that soil microorganisms vary in their responses to temperature alterations in 

two aspects, 1) difference with respect to organisms – fungi perform better at low temperatures, 

while bacteria benefit more from warm temperatures (Pietikäinen et al., 2005; Bell et al., 2008; 

Bell et al., 2009), and 2) difference with respect to regional adaptation – cold adapted microbial 

communities may be more temperature sensitivities than warm adapted microbial communities 

(Bradford et al., 2008; Wei et al., 2014). This temperature sensitive response could also be observed 

at the community level, for example, as has been observed for ectomycorrhizal fungi, between 

ectomycorrhizal and saprotrophic fungi and between gram-positive and gram-negative bacteria 

(Allison and Treseder, 2008; Bell et al., 2009; Malcolm et al., 2008). Additionally at the taxon 

level, Proteobacteria and Bacteroidetes may exhibit negative relation to increasing temperature, 

whereas Acidobacteria, Verrucomicrobia and Firmicutes abundances may increase with soil 

warming (DeAngelis et al., 2015; Mateos-Rivera et al., 2016; Bai et al., 2017b). 
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Temperature changes are often coupled with altered soil moisture content. But studies focusing on 

only single factor, for example temperature, may under- or over-estimate the response of microbial 

communities to given environmental alterations (Steinweg et al., 2012; Classen et al., 2015). 

Changes in soil water potentials may significantly affect microbial community composition and 

functions depending on those organisms’ physiology. For example, fungi are characterized by 

higher tolerance to water fluctuations than bacteria, and within the bacterial community, gram-

positive bacteria may resist water stress more efficiently than gram-negative bacteria (Lützow et 

al., 2006; Schimel et al., 2007; Bell et al., 2009). The moisture sensitivity of microbial communities 

has also been associated with C sequestration potential; physiological stress caused by moisture 

reduction potentially reduces microbial C mineralization rates that would otherwise sequester soil 

C over time (Fierer and Schimel, 2003). 

3.4 Role of microbial extracellular enzymes 

Soil microorganisms control global C fluxes, nutrient cycling, plant productivity, and atmospheric 

composition by mineralizing soil organic matter; microbes do this by producing myriad 

extracellular enzymes (EEs) that deconstruct plant and microbial cell walls and reduce 

macromolecules to soluble substrates that are microbially assimilable (Schimel and Weintraub, 

2003; Sinsabaugh et al., 2008; Baldrian, 2014). Therefore, production and activity of EEs is directly 

linked to ecosystem function (Wallenstein and Burns, 2011). Important enzymes involved in the 

cycling of different compounds are: β-glucodidases, endo-cellulases, cellobiohydrolases, and 

phenol- and per-oxidases involved in C mineralization, amidase asparaginase, urease, and 

dipeptidase involved in N mineralization, and phosphomonoesterase and phosphodiesterase 

involved in P mineralization (Kandeler, 1990; Caldwell, 2005; Kandeler et al., 2011; Bünemann, 

2015). These enzymes can be broadly categorized into hydrolytic and oxidative enzymes. 

Hydrolytic enzymes are substrate-specific and catalyze reactions that cleave specific bonds, for 

instance C–O and C–N bonds. In contrast, oxidative enzymes are less substrate-specific and 

catalyze reactions that share similar bonds, for instance C–C and C–O–C, using either oxygen or 

hydrogen peroxide as electron acceptors (Allison et al., 2007; Wallenstein and Burns, 2011). 

Microbial enzyme production is directly controlled by substrate and enzyme-catalyzed-product 

concentration; producing enzymes is energetically expensive and requires large quantities of N; 
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therefore, microbes produce enzymes only when investment costs are lower than the energy 

retrieved from assimilable products (Allison, 2005; Allison et al., 2014). 

Since microbial decomposition of SOM accounts for more than 50 % of the CO2 flux from soils, 

and since extracellular enzymes perform the rate limiting steps of microbial SOM decomposition 

and also reflect changes in microbial communities that decompose SOC of different qualities (see 

above), understanding the potential of extracellular enzymes would help to clarify the fate of SOC 

in predicted climate change scenarios (Frey et al., 2013; German et al., 2012). However, 

interpreting EEs’ activity measurements as indices of microbial SOC decomposition is challenging 

due to many confounding factors, such as the temporal and spatial variability in EE potentials 

(Baldrian, 2014). A good example of the problem is the influence of temperature on enzyme 

activities. Studies have demonstrated that EEs have distinct temperature sensitivities that vary 

between seasons and soil types, within one region or between regions with contrasting organic 

matter quantities (Koch et al., 2007; Trasar-Cepeda et al., 2007). Seasonal variation in enzyme 

temperature sensitivity has been associated with isoenzymes possessing distinct temperature 

sensitivities and also with alterations in plant C inputs and nutrient availability over time 

(Wallenstein et al., 2009; Bell et al., 2010). Temperature sensitivity of enzyme activities may also 

be region-specific; enzymes from cold regions may exhibit greater temperature sensitivity than 

enzymes from warm regions (German et al., 2012) and this differentiation has been associated with 

the flexibility of enzyme reactive sites to temperature variations and the thermal adaptation of 

enzyme-producing microbial communities (Bradford, 2013; Wallenstein et al., 2011). Allison et 

al., (2018) found contradictory results, however, observing warm-climate adapted enzymes which 

exhibited high temperature sensitivities. Furthermore, EEs catalyzing substrates of varying 

complexities may also have different temperature sensitivities. For example, Wang et al., (2012) 

found greater temperature sensitivity in enzymes catalyzing recalcitrant compounds compared to 

enzymes catalyzing labile C substrate. However, there is disagreement about this finding 

(Blagodatskaya et al., 2016). Therefore, information about the temperature sensitivity of enzymes’ 

depolymerization of different SOC fractions may improve our understanding of the relative decay 

rates of different SOC pools (Koch et al., 2007; Davidson and Janssens, 2006). 

Temperature sensitivity of EE activities may also be controlled by other factors that vary between 

regions; for example, soil pH, C:N ratio, soil texture, particle size distribution, and soil moisture 
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content (Allison et al., 2007; Allison et al., 2018; Burns et al., 2013; Davidson and Janssens, 2006). 

Min et al., (2014) identified a significant role of pH in controlling temperature sensitivity of C-

acquiring enzymes, while no pH-dependent changes were observed in the temperature sensitivity 

of N-acquiring enzymes. Physical or chemical separation of enzymes from substrates may also 

alter their apparent temperature sensitivities and produce temperature-sensitive responses much 

lower than the intrinsic response (Davidson and Janssens, 2006). What makes the temperature-

sensitivity of enzymes’ response even more complicated, and where little information is available, 

is fluctuation in soil moisture content and its control over enzyme activities. Reduced soil moisture 

content affects enzyme diffusion to substrate hindering the formation of enzyme-substrate 

complexes, and consequently, enzyme temperature dependence (Davidson and Janssens, 2006; 

Steinweg et al., 2012). However, high diffusion rates are also problematic; they reduce the return 

on investment for enzyme producing microbes, resulting in enzyme downregulation (Allison et al., 

2007). Enzyme downregulation may also be a microbial strategy for coping with water stress; under 

this conditions, microbes can change their resource allocation from enzyme production to, e.g., 

osmolyte production (Schimel et al., 2007) leading to an overall reduction in the enzyme 

temperature sensitivity response. However, slower enzyme turnover rates in dry soils could help 

enzymes retain activity over a longer time period (Burns et al., 2013). Therefore, in the context of 

climate warming, understanding these complex interactions of abiotic soil properties and their 

relative control over enzyme temperature sensitivity may also improve our understanding of soil 

and ecosystem services (Allison et al., 2018; Henry, 2013).  

Associating potential enzyme activities with ecosystem services and extrapolating enzyme 

temperature- and moisture-based variations to field conditions is a challenging task (Weedon et al., 

2011; Steinweg et al., 2012; Burns et al., 2013). Over the last decades, assays of EE have become 

an increasingly common tool for examining soil microbial responses to climate warming, but these 

methods are not universal, and consequently make it difficult to compare results from different 

studies (Burns et al., 2013; Henry, 2013). Current enzyme assays are performed under controlled 

lab conditions; optimal substrate concentration, pH, and lack of diffusion limitations (Poll et al., 

2008) and permit measurement of specific enzyme activities. However, they do not make possible 

the identification of specific microbial organisms responsible for this activity, e.g., who produces 

these enzymes (Nannipieri et al., 2003). However, it is well established that lab-based studies 
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cannot truly represent the interactive controls, for example, of soil temperature and moisture over 

EE activities (Wallenstein et al., 2011).  

3.5 Microbial SOC decomposition and C modelling: the scale issue 

The spatial distribution of SOC in soil and its subsequent microbial decomposition provides a basis 

for understanding C cycling within single hot spots, for example, at the mm scale (Poll et al., 2006). 

However, decomposition of SOC (hence soil respiration) and differing microbial responses to 

temperature (influencing microbial abundance and function) vary at temporal and spatial scales 

larger than the mm scale. For example, soil respiration has been found to vary from less than one 

meter to landscape (100+ meters) and even continental scales (Martin and Bolstad, 2009; Colman 

and Schimel, 2013). Spatial variation in the temperature sensitivity of SOC decomposition also 

exists at the biome scale, especially in boreal and temperate biomes, and from the continental to 

the global scale (Chen and Tian, 2005; Fierer et al., 2006; Zhou et al., 2009). Regional scale 

variation in microbial community structure and function has also been reported, and been attributed 

to different land-use types and soil edaphic properties (Kaiser et al., 2016). Large variations in Q10 

values of SOC decomposition are also temporal occurring on seasonal scales (Janssens and 

Pilegaard, 2003). However, it is not clear which factors controlling microbial growth and 

respiration response to environmental changes (such as temperature) are important at which scale. 

For example, biogeography, climate and abiotic conditions may shape microbial community 

abundance and function at the regional scale, physicochemical soil properties and plant 

communities may influence microbial community structure at centimeter to meter scales, and plant 

root exudates and soil heterogeneity may be significant at finer scales (Lladó et al., 2018). Despite 

the huge variation observed in the temperature sensitivity of SOC decomposition, and the fact that 

the temperature sensitivity of microbial respiration often decreases with increasing temperature, 

Q10 is generally treated as a constant of 2 in C dynamics models (Chen and Tian, 2005; Tang and 

Riley, 2015). 

Most ecosystem models partition soil organic matter into different pools that are decomposed at 

pool specific rates. These models simulate C dynamics by describing biological and physical 

mechanisms of SOC decomposition using first order kinetics, which are known to be simplistic 

and unable to fully capture microbially driven SOC dynamics (Guenet et al., 2018; Lawrence et 

al., 2009). Currently available SOC models demonstrate limited ability to reproduce the spatial 
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variability in SOC stocks, resulting in a large spread of future projections (Todd-Brown et al., 

2013). One reason for this large spread may be that microbial mechanisms are not explicitly 

considered in C models. However, when microbial processes and their interactions with the 

physicochemical soil environment are included in the models, they have improved SOC predictions 

(Lawrence et al., 2009; Wieder et al., 2015). Nonetheless, explicit representation of microbial 

processes is challenging, due to the scale at which these processes occur (Wieder et al., 2015). 

Therefore, the predictive power of C dynamics models could be enhanced by identifying microbial 

processes and controls on microbial C cycling that are relevant at large scales, e.g., at the regional 

scale, and these controls could be used for model implementation and parameterization (Wieder et 

al., 2013; Hararuk et al., 2015). An example of such a control is the spatial variability in the Q10 of 

SOC decomposition; considering this variability has led to increased total (40 %) and microbial 

(25 %) respiration compared to the invariant Q10 values used in conventional global soil respiration 

models (Zhou et al., 2009).
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4 Objectives 

The fate of soil organic carbon is one of the largest uncertainties in predicting future climate and 

terrestrial ecosystem functions (Craine et al., 2010). Soil microorganisms mediate the 

decomposition of SOC and climate change has the potential to accelerate microbial SOC 

decomposition, providing positive feedback to climate warming. Altered soil temperature and 

moisture may influence microbial communities’ SOC decomposition potential by modifying their 

growth strategies and by altering their interactions with the immediate environment (Balser and 

Wixon, 2009; Wallenstein et al., 2011; Hararuk et al., 2015). However, the intensity of SOC 

decomposition feedback to climate warming could vary between regions since both the effects of 

climate change drivers may differ between regions, and the decomposition rates of SOC may also 

vary due to regional differences. These include physicochemical and biological soil properties as 

well as land-use patterns that result in SOC quality differences (IPCC, 2014; Tifafi et al., 2018). 

Despite the critical role soil microorganisms play in controlling terrestrial C cycling and its 

feedbacks to climate change, there is limited understanding of the influence of physicochemical 

factors controlling microbial abundance and function. Therefore, the aim of this thesis was to 

understand the response of microbial SOC decomposition dynamics to changing soil resources and 

climate change factors, soil temperature and moisture, in regions differing in climatic and edaphic 

conditions. The hypothesis was that soil microbial communities and their respective extracellular 

enzymes would be adapted to climatic and edaphic conditions specific to each region and would, 

therefore, exhibit distinct temperature and moisture sensitivities. The aim of this thesis was 

addressed: 1) by clarifying the temporal patterns of degradation of SOC pools of varying quality 

(labile to recalcitrant), 2) by measuring abundance and respiration temperature sensitivities of 

functionally diverse microbial communities, and 3) by identifying controls on microbial SOC 

decomposition and its temperature sensitivity at different spatial scales.  

Temporal patterns of degradation of SOC pools of varying quality were investigated using 

microbially produced extracellular enzymes as proxies. The aim was to investigate whether 

temperature and moisture sensitivities of extracellular enzyme activities vary at the seasonal scale 

and to test the validity of the “C quality temperature” hypothesis; i.e., to test whether or not labile 

C pools are less sensitive to temperature than recalcitrant C pools. Temperature and moisture 

sensitivities of three C cycling enzymes (β-glucosidase, xylanase, and phenoloxidase) which target 
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organic C pools of varying complexities (labile to rather recalcitrant and complex) were measured 

over a period of thirteen months, in two geographic areas differing in climatic and edaphic 

conditions, and two land-use types differing in SOC quality. Using a combination of laboratory 

measurements, field data, and mathematical tools, estimations of in situ enzyme potentials were 

made to clarify the temporal variations in degradation of C pools of different complexities. 

Furthermore, in view of extracellular enzymes as rate-limiting agents of SOC decomposition (Koch 

et al., 2007), it was tested whether temperature-based in situ enzyme potentials could explain 

measured soil respiration fluxes and whether adding moisture as an additional control variable 

improved the observed variations in soil respiration fluxes. The power of enzyme-based models in 

explaining soil respiration fluxes was also tested against the traditional temperature vs. soil 

respiration modelling approach. 

Microbial communities are functionally diverse and decompose different fractions of organic C; 

thus, understanding the growth and respiration responses of microbial key players to temperature 

variation is essential for accurate prediction of climate-induced changes in SOC dynamics 

(Whitaker et al., 2014; Malcolm et al., 2008). Therefore, using soils from two areas and land-uses 

(see above), a short-term (36 day) microcosm experiment was established in the lab to investigate 

temperature sensitivities of soil bacteria and fungi. Three organic substrates of different qualities 

(cellobiose, xylan and coniferyl alcohol) were added to soil samples incubated at three temperature 

treatments (5, 15, and 25 °C) to mimic complex environments. The hypothesis was that the growth 

response of a soil microbial community depends strongly on environmental conditions (interactive 

temperature-substrate quality effects) that may alter inter- and intra-specific microbial community 

competition. Microbial community composition was determined by estimating phospholipid fatty 

acids (PLFA) and ergosterol content of the soil. Bacterial and fungal abundances were evaluated 

using the 16S rRNA gene and ITS fragment, respectively. Additionally, temperature-sensitive 

abundances of different bacterial taxa representing copiotrophs and oligotrophs were quantified 

using taxon-specific 16S rRNA quantitative PCR assays. 

Identifying controls on microbial SOC decomposition and its temperature sensitivity at different 

spatial scales might help to improve the predictive power of C dynamics models. Seasonal 

variations in temperature sensitivity of soil extracellular enzymes and group-specific temperature 

responses of microbial key players to substrate of varying qualities investigated at the plot scale of 
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two different areas (see above) led to a third study, the focus of which was twofold; to investigate 

whether the temperature sensitivity of microbial SOC decomposition and related enzyme activities 

also vary at a spatial scale larger than the previously investigated plot scale, and to investigate the 

scale-specificity of factors controlling the temperature sensitivity of SOC dynamics. Specific 

biotic, physical, and chemical soil properties were tested as factors controlling basal soil 

respiration, its temperature sensitivity and the temperature sensitivity of two enzymes (β-

glucosidase and xylanase) at landscape and regional scales. Output of the studies carried out in the 

framework of this thesis may have the potential to further parameterize and / or validate C dynamics 

models at the regional scale.
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Abstract 

Understanding in situ enzyme activities could help clarify the fate of soil organic carbon (SOC), 

one of the largest uncertainties in predicting future climate. Here, we explored the role of soil 

temperature and moisture on SOM decomposition by using, for the first time, modelled in situ 

enzyme activities as a proxy to explain seasonal variation in soil respiration. We measured 

temperature sensitivities (Q10) of three enzymes (β-glucosidase, xylanase and phenoloxidase) and 

moisture sensitivity of β-glucosidase from agricultural soils in southwest Germany. Significant 

seasonal variation was found in potential activities of β-glucosidase, xylanase and phenoloxidase 

and in Q10 for β-glucosidase and phenoloxidase activities but not for xylanase. We measured 

moisture sensitivity of β-glucosidase activity at four moisture levels (12%–32%), and fitted a 

saturation function reflecting increasing substrate limitation due to limited substrate diffusion at 

low water contents. The moisture response function of β-glucosidase activity remained stable 

throughout the year. Sensitivity of enzymes to temperature and moisture remains one of the greatest 

uncertainties in C models. We therefore used the response functions to model temperature-based 

and temperature and moisture-based in situ enzyme activities to characterize seasonal variation in 

SOC decomposition. We found temperature to be the main factor controlling in situ enzyme 

activities. To prove the relevance of our modelling approach, we compared the modelled in situ 

enzyme activities with soil respiration data measured weekly. Temperature-based in situ enzyme 

activities explained seasonal variability in soil respiration well, with model efficiencies between 

0.35 and 0.78. Fitting an exponential response function to in situ soil temperature explained soil 

respiration to a lesser extent than our enzyme-based approach. Adding soil moisture as a co-factor 

improved model efficiencies only partly. Our results demonstrate the potential of this new approach 

to explain seasonal variation of enzyme related processes.  
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5.1 Introduction 

Soil carbon (C) stock is estimated to be > 1500 Pg C, significantly higher than atmospheric stock 

~ 750 Pg C (Kirschbaum, 2000; Davidson and Janssens, 2006; IPCC, 2007). SOC, the largest pool 

in terrestrial C cycling (Kandeler et al., 2005), has the potential to act as a source or sink of 

greenhouse gases due to its dynamic interactions with the atmosphere (Lal, 2004). A large fraction 

of C is introduced into the atmosphere as CO2 through microbial decomposition of organic matter 

(Frey et al., 2013). Temperature sensitivity of soil organic matter (SOM) decomposition has been 

given great attention (Davidson et al., 2012) due to the inherent relevance of kinetic theory 

(Davidson and Janssens, 2006). Expected warming of the earth’s climate between 3 and 5°C over 

the next century (Bergfur and Friberg, 2012) may accelerate decomposition of SOC (Bengtson and 

Bengtsson, 2007) through faster processing of SOC by soil biotic communities and, therefore, 

affect the C source or sink functions of soils. The higher sensitivity of SOM decomposition, and in 

turn soil respiration, to temperature as compared to net photosynthesis makes investigations into 

the temperature sensitivity of C mineralization very important (Koch et al., 2007; Kirschbaum, 

2000). 

The temperature response of SOM decomposition depends upon its molecular structure; 

recalcitrant compounds have higher activation energies (Ea) than labile and, therefore, theoretically 

higher temperature sensitivity (Davidson and Janssens, 2006). Yet most existing C models consider 

a uniform temperature sensitivity of decomposition for organic matter pools of different stabilities 

(Fierer et al., 2005; Todd-Brown et al., 2012). This issue still needs to be resolved due to variations 

in findings related to the temperature response of different C pools (Zimmermann and Bird, 2012).  

Extracellular enzymes (EE), produced by soil microorganisms, perform the rate-limiting step in 

SOM decomposition as well as nutrient cycling (Allison and Vitousek, 2005; Sinsabaugh, 1994). 

Most C models do not take extracellular enzyme kinetics explicitly into consideration (Allison et 

al., 2010). Recently efforts have been made to develop mechanistic models to simulate the 

combined effect of temperature, moisture and soluble-substrate supply on soil respiration by 

considering enzyme kinetics (Davidson et al., 2012). As almost half of the CO2 released from soil 

is linked to decomposition of SOM by microorganisms and a large fraction of this respired CO2 
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depends upon EE activity (Frey et al., 2013; Ryan and Law, 2005), adding enzyme kinetics to C 

models has the potential to improve climate change predictions (Allison et al., 2010). 

Environmental factors, such as soil temperature, pH, diffusion constraints, and substrate 

availability and complexity modify microbial production, expression and temperature sensitivity 

of EE (Burns et al., 2013; Koch et al., 2007). For example, by analysing samples collected over 

different seasons from a forest soil Baldrian et al. (2013) found that seasonal variations in soil 

temperature strongly influenced SOM decomposition by changing the pool size and activity of EE. 

Different studies have focused on seasonal variations in the temperature sensitivities of soil 

enzymes (Koch et al., 2007; Brzostek and Finzi, 2012). However, it is still unclear which factors 

drive these seasonal trends (Jing et al., 2014). The complex interactions between enzymes and their 

environment and high variability of their temperature sensitivities makes it impossible to 

extrapolate single measurements across different temporal scales (Weedon et al., 2011). The 

current laboratory assays for measuring EE activities are performed under controlled conditions, 

which do not represent these complex interactions in situ (Henry, 2012). Moreover, this approach 

neglects the fundamental role of different factors, e.g. temperature and enzyme/substrate diffusion, 

in controlling in situ enzyme activities (Weedon et al., 2011). To illustrate the interactions of 

enzyme pool size and seasonal temperature sensitivity patterns in controlling in situ enzyme 

activities, Wallenstein et al. (2009) developed a predictive model of in situ β-glucosidase activities 

based on enzyme activities measured at different sampling dates, Q10 and daily soil temperature 

data from an arctic tundra site. 

Little information is available on the effects of soil moisture on the temperature sensitivity of 

organic matter decomposition (Craine and Gelderman, 2011; Steinweg et al., 2012). Limiting soil 

moisture can cause a decline in diffusion rates of substrates and, therefore, in EE activity (Davidson 

and Janssens, 2006). As a consequence, increasing temperatures may not result in a positive 

feedback to climate change when soil moisture is a limiting factor (Allison and Treseder, 2008). 

Standard enzyme assays are performed in soil slurry (Poll et al., 2006; Kramer et al., 2013) for 

estimating enzyme potentials at non-limiting conditions neglecting diffusion constraint. Recently, 

Steinweg et al. (2012) developed an assay based on the use of fluorogenic substrates, to account 

for diffusion limitation at low water content and for non-homogeneous distribution of substrate in 

soil. 
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Previous studies have predicted the response of EE activity to in situ temperature and moisture 

(Steinweg et al., 2012; Wallenstein et al., 2009) and have yielded valuable insights into soil carbon 

dynamics. To date, however, the next step, that of using modelled in situ enzyme potentials as an 

explanatory tool for the seasonal variation of CO2 respiration, is missing.  

The goal of the present study is to explore the role of abiotic controls, i.e. soil temperature and 

moisture, on SOM decomposition by using modelled in situ enzyme activities as a proxy. We 

modelled in situ temperature-based potentials of three different enzymes (β-glucosidase, xylanase 

and phenoloxidase) targeting organic matter pools of different complexity, at two different study 

sites, with and without the presence of vegetation (fallow and vegetation plots). The selection of 

these three enzymes was based on the assumption that the targeted organic matter pools are 

representative for most of the soil organic matter pools. We also modelled in situ moisture-based 

β-glucosidase potential for both study sites and combined both temperature and moisture functions 

to illustrate the combined effect of both abiotic factors on enzyme potentials. To identify the 

similarities in seasonal patterns of modelled in situ enzyme activities with soil respiration and to 

prove the relevance of the modelling approach, we compared the modelled in situ enzyme activities 

with weekly measured soil surface CO2–C fluxes. We hypothesized that (1) temperature and 

moisture sensitivity of enzymes targeting organic matter pools of different stability will change 

during the year. Furthermore, we expected that (2) measured soil CO2 flux correlates strongly with 

the modelled in situ enzyme potentials, and we expected even stronger correlations with combined 

controls of soil temperature and moisture on in situ enzyme potentials.  
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5.2 Material and methods 

Study site description  

We investigated two study regions, with different climatic and edaphic conditions, which are part 

of the integrated research project “Agricultural landscapes under global climate change – processes 

and feedbacks on regional scale” (https://klimawandel.uni-hohenheim.de/). The first study site 

(48°31'7'' N, 9°46'2'' E) is located close to the city of Nellingen in the Swabian Alb region, while 

the second study site (48°55'7'' N, 8°42'2'' E) is located close to the city of Pforzheim in the 

Kraichgau region. The Swabian Alb (800–850 m a.s.l.) is characterized as an extensively used 

grassland and croplands region with cool and humid climate (mean annual temperature and 

precipitation ≤ 7°C and 800–1,000 mm, respectively, see Fig. S5.1a.). The Kraichgau region (100–

400 m a.s.l.) is characterized by a warmer and drier climate (mean annual temperature and 

precipitation > 9°C and 720–830 mm, respectively, see Fig. S5.1b.) and intensive agriculture. 

Swabian Alb is a karst plateau of Jurassic limestone with soils classified as Calcic Luvisol, 

Anthrosol and Rendzic Leptosol whereas the Kraichgau region has loess parent material with soil 

developed into Stagnic Cambisol (WRB, 2007). 

Experimental setup and soil sampling 

To capture a range of soil carbon storage conditions, to investigate soils differing in organic matter 

input but which are typical for each region and to isolate more recalcitrant organic matter, three 

fallow plots (5 × 5 m) were installed in three selected agricultural fields in each study region in 

2009. These plots were left fallow since 2009 until the time of sampling. Adjacent to fallow plots, 

vegetation plots (5 × 5 m) were selected in 2012 (vegetation type and period are given in Table 

S5.1). Each fallow and vegetation plot was considered as an individual block for statistical analysis. 

The fallow plots were managed by manual weeding and periodic spraying of glyphosate (Monsanto 

Agrar, GmbH, Germany) throughout the year. In situ soil temperature and moisture data of fallow 

plots were recorded by vertical installation of temperature (0 - 15 cm, 109 Thermistor Probe, 

Campbell Scientific, Ltd. Germany) and TDR probes (0 - 30 cm, CS625 Water Content 

Reflectometer, Campbell Scientific, Ltd. Germany) in each of the fallow plots. The same data for 

vegetation plots were obtained from temperature (at 2, 6 and 15 cm depths) and TDR probes 
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installed (at 5, 15 and 30 cm depths) close to eddy covariance (EC) stations in Kraichgau and 

Swabian Alb (3 EC stations per region). 

Soil sampling (0-30 cm) was done each month from April 2012 to April 2013 and snow cover was 

removed in winter just before sampling. Four soil cores from each plot were thoroughly mixed and 

homogenized to obtain one representative sample. Samples were kept in cooling boxes and 

transferred to the laboratory. Soils were sieved (<2 mm) and water content was measured 

gravimetrically (60°C for 3 days). Soil samples were stored at -24°C until further analysis.  

Soil-surface CO2–C flux 

Soil surface CO2 flux was measured with two portable non-dispersive infrared field Environmental 

Gas Monitor instruments equipped with soil respiration chambers (10 cm diameter, 1171 cm3 

volume, EGM-2 and EGM-4 models, PP Systems Amesbury, Massachusetts, USA). Gas 

measurements were performed weekly, between 9:00 and 12:00 h, from 25.04.2012 to 05.04.2013. 

Three measurements were taken on each fallow and vegetation plot at each measurement date in 

both regions. On the vegetation plots, plant above ground biomass was excluded from chamber 

measurements but roots were still present which might have impaired CO2 flux measurements. Flux 

measurements were not performed as intensively in winter as in summer due to high snow cover 

and difficulties in accessing the experimental fields.  

Analyses 

Microbial biomass carbon (Cmic) 

Microbial carbon was determined based on the chloroform fumigation-extraction method. For 

method specific steps, please see Kramer et al. (2012). Samples were extracted with 0.5 M K2SO4 

(1:4 w/v).  
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Enzyme analyses 

Temperature sensitivity assays 

Temperature sensitivity assays of selected enzymes were performed on monthly collected soil 

samples starting from April 2012 till April 2013. Measurement of potential β-glucosidase activity 

was done according to Marx et al. (2001) with minor modifications. Substrate (4-

methylumbelliferyl-β-D-glucopyranoside), standard (MUF) and MES-buffer were obtained from 

Sigma–Aldrich (St. Louis, USA.). Final concentrations of substrate and standard working solutions 

were 1 mM and 10 µM, respectively. Preliminary results showed that 1 mM substrate concentration 

was optimal for the investigated soils (data not shown). Briefly, 1 g soil (fresh weight from frozen 

samples) was suspended in 50 ml sterile water and particles disaggregated with an ultrasonic probe 

(50 J s-1 for 2 min). Fifty µl of soil suspension was added to each well of a microplate (PP 

microplate, black 96 well, Greiner Bio-one GmbH, Frickenhausen, Germany) together with 50 µl 

buffer and 100 µl of substrate solution. Each soil sample was replicated 8 times (8 wells in the 

microplate). Temperature sensitivity of β-glucosidase activity was measured at 5 temperatures; 6, 

12, 18, 24, and 30°C. Soil plates were pre-incubated at their respective incubation temperatures for 

30 min and one standard plate was prepared with standard concentrations of 0, 0.5, 1, 2.5, 4, and 6 

µM. After pre-incubation, measurements were conducted at 0, 30, 60, 120 and 180 min with a 

fluorescence microplate reader (FLx800, BioTek Instruments Inc., Winooski, VT, USA) with 

excitation and emission filters at 360/460 nm, respectively. During incubation, plates were covered 

in order to minimize evaporation.  

Xylanase activity was measured according to a modified method of Schinner and von Mersi, 

(1990). To measure the temperature sensitivity of xylanase activity, the assay was run at a range of 

incubation temperatures; 6, 17, 28, and 39°C, in addition to the optimum temperature of 50°C. 

Briefly, 5 g fresh soil was incubated in 50 ml falcon tubes with 15 ml substrate solution (1.2% 

xylan, from beech wood, suspended in 2 M acetate buffer solution at 45°C for > 1 h, at pH 5.5) and 

15 ml acetate buffer solution (2 M, pH 5.5) for 24 h. Blanks were run with 5 g of soil suspended in 

15 ml buffer solution only. After incubation, 15 ml substrate solution was added to blanks and all 

samples were centrifuged at 4422 × g for 30 min. An aliquot of 0.5 ml from each sample was used 

for the Prussian blue colour reaction. Two hundred µl of produced reaction-solution was pipetted 
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into a 96-well microplate (3 wells per sample) and absorption was measured photometrically at 690 

nm using a microplate reader (ELx808, Absorbance Microplate Reader, BioTek Instruments Inc., 

Winooski, VT, USA). 

Potential phenoloxidase (PO) activities were measured using tetramethylbenzidin (TMB) as a 

substrate (Johnsen and Jacobsen, 2008). Briefly, 0.4 g fresh soil was suspended in 50 ml of Na-

acetate buffer solution (50 mM). Soils were disaggregated using an ultrasonic probe (50 J s-1 for 2 

min). Two hundred µl soil suspension was added to each well of the microplate. Sample wells 

contained 50 µl substrate (12 mM) while blank wells contained the same quantity of buffer solution. 

Negative controls were run without soil suspension but with buffer and substrate solutions. Each 

sample was replicated three times. Plates were incubated at 25°C (additional temperature steps at 

5, 10, 15, and 20°C for temperature sensitivity determination) and measurements were done after 

0, 4, 8, 12 and 16 min of incubation on a microplate reader (ELx808, Absorbance Microplate 

Reader, Biotek Instruments Inc., Winooski, VT, USA) at 630 nm. 

Moisture sensitivity assay 

The moisture sensitivity assay was performed only with β-glucosidase, for fallow and vegetation 

plots, according to a modified method by Steinweg et al. (2012). We selected four sampling dates; 

April, August, and December 2012 and April 2013 for moisture sensitivity in both study regions.  

Fresh soil samples were dried overnight at room temperature to reach a water content of ~ 2%. 

Following drying, soils were weighed in 50 ml falcon tubes according to 2 g dry matter and sterile 

distilled water was added dropwise to establish moisture treatments ranging from ~2, 10, 15, and 

20% water content (w/w). Soils were mixed for 5–10 s with a spatula. Immediately after water 

addition, 250 µl of 2 mM substrate (4-methylumbelliferyl-β-D-glucopyranoside) was added 

followed by 5 s stirring. After substrate addition, tubes were incubated at 30°C for 8 min followed 

by the addition of 31 ml of 0.1 M MES buffer. Samples were vortexed for 5 s and centrifuged for 

3 min at 344 × g. Two hundred µl supernatant were transferred to a 96-well microplate and 

fluorescence was measured as described above. Two measurements, 0 and 8 min after substrate 

addition, were made to follow fluorescence development. Standard curves were prepared for each 

individual sample and moisture level by adding varying amounts of distilled water and MUF 

standard to soils to reach final MUF concentrations of 0, 100, 300, and 500 µM. Preliminary tests 



5 Modelling in situ activities of enzymes to explain seasonal soil respiration 30 

 
 

showed a dependence of the standard curve on soil moisture (data not shown) indicating variation 

in the extraction efficiency of the MUF standards. In addition, we used standard curves only after 

8 min incubations as preliminary trials indicated no slope variation between 0 and 8 min. Addition 

of substrate and standard further increased soil moisture to ~ 12–32%, which spanned the range of 

soil moistures measured under field conditions in both study regions.  

Data calculation and modelling approach 

We calculated the temperature sensitivity of measured β-glucosidase and xylanase activities by 

calculating Q10 values. The following exponential function was used to illustrate the response of 

enzyme activity to temperature:  

݇ሺܶሻ ൌ ݇଴	݁௔்   (5.1). 

where T represents the incubation temperature (°C), k0 is the intercept with the y-axis at T = 0°C 

and a is the exponential coefficient. The exponential function was used because the measured 

response of enzyme activity in the lab was exponential within our selected temperature range. We 

used a to calculate the Q10 values, for each individual plot as follows:  

ܳଵ଴ ൌ ݁ଵ଴	ൈ	௔    (5.2). 

We modelled the temperature-based in situ enzyme potential of soils of both study regions based 

on the monthly determined exponential response function and Q10 values and the measured average 

daily soil temperature data. We used the exponential response function to calculate enzyme 

activities at 6°C rather than using the measured activities to minimize the influence of measurement 

uncertainty at low temperatures. In addition, linear interpolation of the exponential coefficient (i.e. 

a from Eq. (5.1)) produced different enzyme activities compared to linear interpolation of Q10. 

Therefore, calculated enzyme activities at 6°C and Q10 values were used for linear interpolation 

between the sampling dates, in order to get enzyme activities corresponding to 6°C and Q10 values 

on a daily basis. This linear interpolation was necessary to calculate in situ enzyme activity for each 

day. We used the empirical model developed by Wallenstein et al. (2009) to model the temperature-

based in situ enzyme activity as follows:  
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݇ሺܶሻ ൌ ܴ଺ܳଵ଴
ቀ೅షల
భబ

ቁ   (5.3). 

where R6 is the calculated enzyme activity at 6°C and T is the in situ daily average soil temperature.  

Moisture sensitivity of β-glucosidase activity was characterized by using a saturation function, 

where we assumed that substrate diffusion and, therefore, substrate availability for enzymatic 

reactions decreases with decreasing soil moisture. We used a nonlinear least-squares self-starting 

Michaelis–Menten saturation function (R Core Team, 2017) to fit a moisture response function to 

normalized enzyme activities using the following equation: 

݇ሺߠሻ ൌ
௏೘ೌೣ	஘	

௄೘	ା	஘
  (5.4). 

where Vmax is the maximum normalized enzyme activity (no units) and Km is the soil water content 

at which the enzyme activity reaches 50% of Vmax. ϴ is the soil water content. This saturation 

function holds true for enzyme data produced in our study since soil water contents, in laboratory 

assay as well as in situ, never went below 12%. For even lower soil water contents a concave 

upward function should be used with a clear threshold at the moisture level where hydraulic 

conductivity is lost (Hamamoto et al., 2010). In our study, normalized data on a per plot basis 

(normalization for individual fallow and vegetation plot in each month with respect to the 

maximum value) were used to account for specific pool sizes of β-glucosidase in individual plots 

which would have affected Vmax, and, therefore, comparability between plots. This allowed us to 

pool normalized data of the three fallow or vegetated plots for each month and region to get a more 

reliable model fit based on a higher number of data points. For comparison, we pooled the data of 

the three fallow or vegetated plots for each month and region before normalization. Fitting Eq. (5.4) 

to normalized data provided a factor by which in situ enzyme activity is reduced when diffusion 

limitation occurs and allowed the combination with Eq. (5.5). We calculated the relative in situ β-

glucosidase activity by taking average of Vmax and Km over the whole sampling period and also by 

linear interpolation of Vmax and Km between the sampling dates. 

To estimate the combined effect of soil temperature and moisture on the in situ β-glucosidase 

activity, we applied a multiplicative approach:  

݇ሺܶ, ሻߠ ൌ ܴ଺ܳଵ଴
ቀ
೅షల
భబ

ቁ ൈ
௏೘ೌೣ	ఏ೔೙	ೞ೔೟ೠ
௄೘ା	ఏ೔೙	ೞ೔೟ೠ

        (5.5). 
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To prove the relevance of our approach of modelling in situ enzyme potentials of soils and to see 

the similarities in seasonal patterns of modelled in situ enzyme activities and soil respiration, we 

compared the measured CO2–C flux (g m–2 d–1) with modelled in situ enzyme potentials over the 

whole sampling period. We used a modified Weibull function (Eq. (5.6)), to describe the relation 

between measured soil CO2–C fluxes and modelled in situ β-glucosidase and xylanase activities 

(kg), with a clear threshold at low in situ enzyme potential where no CO2 efflux was recorded. 

൫݇௚൯ܫ ൌ ݂	 ൈ ሺ1 െ ݁ି	൫஛௞೒൯
ಽ

	ሻ        (5.6). 

where λ and L are fit parameters and f is the maximum measured CO2 flux (g CO2–C m–2 d–1).  

Comparison between CO2–C flux and in situ soil temperature was also done by fitting an 

exponential function (see Table 5.4). The accuracy of the fitted models was tested by calculating 

the model efficiency (EF) as described in Loague and Green (1991). Statistical analyses were 

performed in the R program for statistical computing and graphics (R Core Team, 2017). We used 

mixed-effect models fitted with maximum likelihood (Pinheiro et al., 2015) to test for the effects 

of season, treatment (fallow and vegetation) and region on microbial biomass, potential enzyme 

activities, Q10 values, and measured CO2–C flux; block and plot were taken as nested random 

effects. In case of significant interactions, Tukey’s HSD (Mendiburu, 2015) for comparison of 

treatments was used. CO2–C flux data were square root transformed for mixed-effect model fitting 

to achieve normal data distribution and homogeneity of variances. The level of significance was 

set to P < 0.05 in all cases.  
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5.3 Results 

Cmic and potential enzyme activities 

Plant input increased microbial biomass C, on average, by 41% in Swabian Alb; in Kraichgau, up 

to 66% increase was recorded over the whole sampling period (F1,4 = 1188.57 P < 0.01, Fig. S5.2a, 

b). Statistical analysis revealed significant seasonal variation in Cmic in the Swabian Alb as well as 

in the Kraichgau region (F12,96 = 6.51 P < 0.01).  

Potential β-glucosidase activity showed significant seasonal (F12,96 = 7.21 P < 0.01) as well as 

regional (F1,4 = 26.76 P ≤ 0.01) dependence (Fig. 5.1a, b). In Kraichgau, β-glucosidase activity 

remained quite stable in the early summer, decreased in September and November and showed a 

comparative increase in winter, while soils in the Swabian Alb showed higher seasonal variation 

in β-glucosidase activities. Land use had significant effects on potential β-glucosidase activities in 

both regions (F1,4 = 254.49 P < 0.01); with 42% and 54% greater activities in vegetation plots than 

in fallow plots over the sampling period in Swabian Alb and Kraichgau, respectively.  

Considering potential xylanase activity (Fig. 5.1c, d), we recorded significant differences between 

the fallow and vegetation plots (F1,2 = 241.76 P < 0.01) with 65% higher activity in vegetation plots 

over the sampling period, as well as a strong seasonal effect (F12,47 = 6.81 P < 0.01) in the Swabian 

Alb region. In the Kraichgau region, xylanase activity in fallow plots was sometimes below the 

detection limit and therefore no results are reported for these plots; however, a significant seasonal 

effect was recorded in the vegetation plots (F12,24 = 2.87 P ≤ 0.01). No statistically significant 

differences were found between vegetation plots of either region; activities increased at the 

beginning of summer, declined between June and September, and remained stable during winter.  

Potential phenoloxidase activity did not exhibit any significant effect of land use. Season had a 

significant effect on phenoloxidase activity (F12,94 = 23.63 P < 0.01) but this seasonal effect was 

similar in both regions (Fig. S5.3a, b). Phenoloxidase activity peaked in May, was at the lowest 

recorded range in June and showed a linear increase through the vegetation period. Highest 

activities were recorded in November, shortly after harvest. Phenoloxidase activity decreased 

during December and January and increased again in February, where higher soil temperatures 

were also recorded (Fig. 5.4c, d). 
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Fig. 5.1  Potential β-glucosidase activity measured at 30°C (a, b) and xylanase activity measured 

at 50°C (c, d) in both study regions. Bars represent standard error (n = 3). GE = glucose 
equivalents. 
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Table 5.1 Q10 values of β-glucosidase and xylanase measured at different laboratory incubation temperatures (starting from April 2012 
till April 2013). Values represent average of field replicates (n = 3) and standard error is given in parenthesis. Q10 values for 
xylanase in Kraichgau fallow plots were not calculated due to assay limitations.  

  β-glucosidase  Xylanase 

Month Swabian Alb  Kraichgau  Swabian Alb   Kraichgau 

 Fallow Vegetation  Fallow Vegetation  Fallow Vegetation   Vegetation 

Apr 1.87 (0.01) 1.95 (0.09) 1.83 (0.09) 1.88 (0.06) 1.94 (0.07) 1.90 (0.04)  2.45 (0.08) 

May 1.65 (0.05) 1.71 (0.04) 1.70 (0.06) 1.72 (0.04) 2.55 (0.37) 2.10 (0.19)  2.07 (0.09) 

Jun 1.77 (0.04) 1.85 (0.06) 1.72 (0.03) 1.79 (0.05) 2.30 (0.31) 1.92 (0.06)  2.19 (0.21) 

Jul 1.83 (0.02) 1.81 (0.04) 1.68 (0.05) 1.73 (0.06) 1.86 (0.17) 2.09 (0.20)  1.95 (0.09) 

Aug 1.79 (0.02) 1.92 (0.03) 1.79 (0.02) 1.90 (0.05) 1.84 (0.30) 1.92 (0.29)  1.86 (0.41) 

Sept 1.67 (0.03) 1.72 (0.01) 1.67 (0.01) 1.71 (0.06) 2.29 (0.31) 1.88 (0.14)  2.32 (0.38) 

Oct 1.75 (0.03) 1.74 (0.03) 1.74 (0.02) 1.85 (0.004) 2.32 (0.25) 2.08 (0.20)  2.11 (0.18) 

Nov 1.69 (0.02) 1.74 (0.01) 1.65 (0.02) 1.75 (0.05) 1.99 (0.42) 1.87 (0.05)  1.96 (0.28) 

Dec 1.82 (0.06) 1.80 (0.03) 1.69 (0.05) 1.68 (0.08) 2.07 (0.24) 1.78 (0.03)  2.10 (0.02) 

Jan 1.67 (0.04) 1.76 (0.01) 1.71 (0.03) 1.68 (0.04) 2.02 (0.16) 1.88 (0.12)  1.80 (0.14) 

Feb 1.84 (0.06) 1.82 (0.05) 1.71 (0.04) 1.80 (0.04) 1.80 (0.13) 1.95 (0.12)  1.96 (0.14) 

Mar 1.76 (0.04) 1.98 (0.08) 1.92 (0.03) 1.97 (0.02) 2.06 (0.29) 2.38 (0.07)  1.96 (0.07) 

Apr 1.84 (0.02) 1.87 (0.04) 1.76 (0.02) 1.84 (0.01) 2.57 (0.14) 1.90 (0.13)   1.90 (0.41) 
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Temperature and moisture sensitivity of enzyme activity 

By fitting an exponential function (Eq. (5.2)) to the measured enzyme activities at different 

incubation temperatures, Q10 values were calculated (Table 5.1, S5.2). Q10 of β-glucosidase activity 

showed a significant effect of sampling date (F12,96 = 10.29 P < 0.01) with values ranging from 1.6 

to 2.1 in Swabian Alb and 1.5 to 2.0 in Kraichgau (Table S5.3). Xylanase showed comparatively 

higher Q10 values as well as higher differences than β-glucosidase with values ranging from 1.3 to 

3.3 in Swabian Alb and 1.2 to 3.0 in Kraichgau (Table 5.1, S5.3). We did not detect any significant 

seasonal effects on the temperature sensitivity of xylanase activity. In both study regions, 

significant differences were found between the fallow and vegetation plots for Q10 of β-glucosidase 

(F1,4 = 20.85 P = 0.01), but not for xylanase. Phenoloxidase Q10 values ranged from 0.5 to 4.5 in 

Swabian Alb and 0.3 to 2.9 in Kraichgau (Table S5.3). In most of the samples, phenoloxidase did 

not show increased activity with increasing incubation temperatures. Temperature sensitivity of 

phenoloxidase activity differed between the regions (F1,4 = 12.51 P ≤ 0.05) and also showed a 

seasonal effect (F12,96 = 4.12 P < 0.01). 

We fitted an asymptotic function to explain the variation in β-glucosidase activity with changes in 

soil water content. β-glucosidase activity increased rapidly with increasing soil water content, with 

generally the lowest activity at 12% WC and the highest at 27 and 32% WC (Kraichgau: F1,89 42.25 

P < 0.01, Swabian Alb: F1,85 65.58 P < 0.01), but were asymptotic once there was no longer a 

diffusion limitation for enzyme and/or substrate (Fig. 5.2a, b). On average, higher values of the 

fitted model parameters Vmax and Km were recorded in the fallow plots compared to vegetation 

plots in Swabian Alb region, while in the Kraichgau region an opposite trend was recorded (Table 

5.2). Vmax and Km were not significantly different over the measurement dates in both study regions; 

therefore, averages for Vmax and Km across the year were used for further calculations. Model fitting 

was not possible for April 2013 data in the Swabian Alb. In August, in the fallow plots of Swabian 

Alb, much higher values of model parameters were recorded compared to other measurement dates. 

On average, fitted models showed higher model efficiencies in vegetation than in fallow plots. 

Moisture sensitivity data normalized on a per month basis also showed no significant differences 

of Vmax and Km in both study regions and model efficiencies were lower compared to data 

normalized on a per plot basis (data not shown). 
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Fig. 5.2  Response of potential β-glucosidase activity to soil moisture for April 2012, in Swabian 

Alb (a) and Kraichgau (b). Data were normalized on per plot basis to fit the saturation 
function to laboratory-based enzyme activity measurements (n = 3 per moisture level). 
For Swabian Alb fallow plots, results are based on two field replicates.  
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Table 5.2 Model parameters extracted by fitting a saturation response function (Eq. (5.4)) to normalized enzyme activities and 
soil moisture (starting from April 2012 to April 2013). EF is the model efficiency with maximum value of 1, while 
n.d. represents “not determined”. 

 Swabian Alb  Kraichgau 

  Fallow  Vegetation  Fallow  Vegetation 

 Vmax Km EF  Vmax Km EF  Vmax Km EF  Vmax Km EF 

April 1.38 13.7 0.8  1.5 16.3 0.7  1.5 16.5 0.9  1.2 8.04 0.6 

August 38.7 1229 0.9  1.9 29.4 0.9  1.5 19.4 0.7  2.2 36.4 0.9 

December 1.48 19.1 0.5  3.7 95.1 0.8  1.7 26.5 0.6  1.8 25.7 0.8 

April n.d. n.d. n.d.  n.d. n.d. n.d.  1.0 2.7 0.1  2.1 40.1 0.7 
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Modelled in situ enzyme potentials 

We modelled in situ potential for β-glucosidase and xylanase. Since phenoloxidase activities 

showed an atypical temperature response in most soil samples (see above), we could not apply the 

modelling approach for this enzyme. In general, temperature-based in situ activities (Fig. 5.3a, b) 

were higher in the vegetation plots than fallow plots even though in situ soil temperatures were, on 

average, comparatively higher in fallow plots. Modelled in situ temperature-based β-glucosidase 

and xylanase activities increased during spring and throughout summer, started decreasing after 

September and remained stable during the winter. Activities increased again in April 2013 when 

soils began to warm. 

We calculated the relative moisture-based enzyme potential of both study regions for β-glucosidase 

only (Fig. 5.3c, d). For Swabian Alb, we were able to fit the saturation function only for the year 

2012. Predicted β-glucosidase activities were higher in the vegetation plots of Swabian Alb than in 

the fallow plots throughout the year. Low activities appeared during summer during periods of low 

moisture combined with high temperatures (Fig. 5.3c & 5.4c). Modelled β-glucosidase in situ 

moisture-based activities in Kraichgau were lowest in September (Fig. 5.3d). In both study regions, 

we recorded higher moisture-based β-glucosidase in situ activities during winter. 

Adding moisture sensitivity as a co-factor together with temperature reduced the average activity, 

which was visible mainly in summer due to a reduced difference between summer and winter (Fig. 

5.3e, f). Statistically significant differences were found for in situ β-glucosidase activities between 

temperature-based and moisture and temperature-based in situ activities (Table 5.3). 
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Table 5.3 Average modelled in situ β-glucosidase activities (nmol g–1 dry soil h–1) for both study 
regions with standard error given in parenthesis. For Kraichgau, average of whole year 
data is presented (April 2012 till April 2013) while for Swabian Alb, average until 
December 2012 is given. Different letters within columns indicate significant differences 
of modelled activities between temperature-based (Eq. (5.3)) and combined (temperature 
+ moisture, Eq. (5.5)) models for each treatment, at significance level P < 0.01. 

 
  Swabian Alb Kraichgau 

 Fallow    Vegetation Fallow     Vegetation 

Temperature-based, 
k(T) 

143 (3.3) a 176.87 (3.5) a 75.3 (1.6) a 105.5 (2.2) a

Combined, k(T,ϴ)  116.4 (2.4) b 160.5 (3.1) b 62.9 (1.2) b 85.8 (1.7) b

 

Table 5.4 Model efficiencies (EF) calculated by fitting modified Weibull function to weekly 
measured soil CO2–C flux and modelled in situ enzyme potential for both study regions. 
Average CO2–C flux for each land use (3 measurements × 3 plots) represented the 
respective data point against modelled in situ enzyme potential. Model efficiency for soil 
temperature and CO2–C flux was calculated by fitting an exponential function given as 
follows:	COଶ െ C	flux ൌ a	 ൈ eୠൈ୲ୣ୫୮ୣ୰ୟ୲୳୰ୣ Maximum EF value = 1, n.d = not 
determined.  

 

 Swabian Alb  Kraichgau  

 Fallow Vegetation Fallow Vegetation  

CO2–C flux as a function of temperature-based in situ 
enzyme activity  

β-glucosidase 0.47 0.78 0.56 0.65  

Xylanase 0.35 0.76 n.d 0.64  

 

CO2–C flux as a function of temperature & moisture-
based in situ enzyme activity 

 

 

β-glucosidase 0.35 0.66 0.57 0.72  

           

CO2–C flux as a function of in situ soil temperature   

 0.42 0.63 0.38 0.59  
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Fig. 5.3 Modelled in situ temperature-based β-glucosidase and xylanase activities in Swabian 

Alb (a) and Kraichgau (b) region. While (c) and (d) represent the relative in situ 
moisture-based β-glucosidase potential and (e) and (f) represent combined effect of soil 
temperature and moisture on in situ β-glucosidase activity in Swabian Alb and 
Kraichgau, respectively.  
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Soil respiration 

Land use had a significant effect on the seasonal variability of soil respiration in both study regions 

(F1,4 = 55.32 P < 0.01; Fig. 5.4a, b). In the vegetation plots, soil respiration increased during 

summer and peaked in September (Fig. 5.4a) or shortly after September (Fig. 5.4b). Respiration 

declined by mid-October, when soil temperature had also declined (Fig. 5.4c, d). 

We tested the relevance of our modelling approach (prediction of in situ enzyme potential) by 

fitting asymptotic model to the predicted in situ enzyme activities and measured CO2–C efflux. 

This model fit was chosen as measured CO2–C efflux increased linearly in the beginning but 

reached an asymptote at higher predicted in situ enzyme activities (Fig. 5.5). Accuracy of the fitted 

model is presented in terms of EF (Table 5.4). The fitted model efficiencies for β-glucosidase and 

xylanase were higher in vegetation plots in comparison to fallow plots in both study regions when 

only in situ temperature was considered as a controlling factor. Adding soil moisture as a co-factor 

for controlling β-glucosidase activities improved model predictions only in the Kraichgau region 

(Table 5.4). 

As seasonal soil CO2 flux can also be explained, to some extent, by temporal variations in soil 

temperature (Davidson et al., 1998), we looked how well our enzyme-based model explains 

variation in soil respiration when compared to a simple exponential response function of soil 

respiration to in situ soil temperature (temperature-based model). In both regions, the enzyme-

based model performed better than the temperature-based model when soil temperature was 

considered as the main controlling factor (Table 5.4). 
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Fig. 5.4  Seasonal variation of weekly measured soil CO2–C flux from April 2012 to April 2013 

in Swabian Alb (a) and Kraichgau (b) in fallow and vegetation plots. While average 
daily in situ soil temperature (°C) and volumetric soil water content (VWC, m3 m–3) 
recorded over the whole sampling period in both fallow and vegetation plots of 
Swabian Alb and Kraichgau is shown in (c) and (d), respectively. 
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5.4 Discussion 

Understanding temperature and moisture sensitivity of enzymatic reactions might play an important 

role in explaining seasonal variation of soil respiration. We found significant seasonal variation in 

temperature sensitivities of enzymes targeting different substrate pools, which could have 

important implications for the relative decomposition of SOM and modification of C cycling in 

predicted climate change scenarios. Seasonal variability in soil temperature was found to be the 

main controlling factor of the in situ enzyme activity. The present study is the first of its kind to 

explain temporal variation of soil respiration using in situ enzyme potential as a proxy where 

applied models successfully explained variation of enzyme related processes. 

Seasonal variation in potential enzyme activities 

Global climate change has the potential to affect C cycling by affecting the physiology of primary 

drivers of SOM decomposition such as microbial communities, which use mainly extracellular 

enzymes as proximate agents of SOM decomposition (Li et al., 2014). In our study, intensive soil 

sampling over the whole year from two regions differing in climatic conditions and land use (with 

the establishment of fallow plots) provided the opportunity to detect seasonal variation as well as 

land use effects on potential activities of enzymes targeting substrates of varying complexity. We 

observed significant seasonal variation in potential activities of the three investigated enzymes (Fig. 

5.1, S5.3). Degree of variation across the year was similar for β-glucosidase and xylanase while 

phenoloxidase, in comparison to the other two enzymes, showed two and three to four fold higher 

variation in Swabian Alb and Kraichgau, respectively. Potential enzyme activity rates are 

controlled by enzyme pool size, which in turn may be affected by soil temperature and moisture 

causing seasonal variation in potential enzyme activities (Steinweg et al., 2013). Under stress 

conditions like drought, soil microbial communities change their strategy of resource allocation 

from growth and resource acquisition to survival by reducing enzyme production (Schimel et al., 

2007). Therefore, seasonal changes in enzyme pool size may be explained either by reduced 

enzyme production by the same community (Schimel et al., 2007) or by reduced microbial 

community size (Hueso et al., 2011). However, substrate availability dynamics (Sinsabaugh, 2010) 

may also explain the observed significant differences in land use for β-glucosidase and xylanase 

activities, which occur due to differences in inputs from different plant communities, resource 
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allocation, as well as C input through roots and root exudates (Hargreaves and Hofmockel, 2014). 

The seasonal variation might also occur due to moisture limitation during periods of low rainfall 

or under frozen conditions, causing substrate limitation at the enzyme active site (Davidson and 

Janssens, 2006) and reducing the ‘return on investment’ in enzyme production (Schimel and 

Weintraub, 2003). Soil temperature variation could also explain variation in enzyme activities over 

the investigated time period (Fenner et al., 2005; Davidson and Janssens, 2006; Baldrian et al., 

2013). In our study, considerably lower potential enzyme activities were recorded during winter 

when soil temperature was low. Baldrian et al. (2013) conducted a study in a forest ecosystem and 

also found low activities of different enzymes during winter in the O and Ah soil horizons. Authors 

concluded that soil temperature is the main factor controlling seasonal variation in enzyme 

activities. However, it is difficult to separate the confounding interactions of soil microbial 

community composition, soil microbial community response under stress conditions, soil 

temperature and moisture, plant growth changes, as well as organic matter input (Bell et al., 2010; 

Chen et al., 2004).  

We tested for vegetation cover effects on the relation between measured enzyme activities in both 

study regions. β-glucosidase activity was not significantly correlated to xylanase and 

phenoloxidase activities in both treatments as well as both study regions (Fig. S5.4, S5.5). Similar 

results have been reported for the relation of β-glucosidase and phenoloxidase activities by 

Sinsabaugh and Shah (2011), who argued that a non-significant relation between these two enzyme 

classes shows variation in enzyme production, activity as well turnover at the community and 

ecosystem scale.  
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Fig. 5.5 Response of measured CO2–C efflux to modelled in situ β-glucosidase potential as a 

function of soil temperature alone and in combination with soil moisture in vegetation 
plots of Kraichgau, and modelled in situ xylanase potential as a function of soil 
temperature alone, in vegetation plots of Swabian Alb. 

Temperature and moisture sensitivity of enzyme activities 

If there is no change in an enzyme pool, variations in soil temperature and moisture may have the 

potential to change soil respiration rate by affecting microbial functions (Gougoulias et al., 2014). 

In the present study, the cellulose degrading enzyme β-glucosidase showed lower average Q10 (1.78 

in Swabian Alb, 1.76 in Kraichgau) than xylanase, the xylan degrading enzyme (2.04 for both 

regions). Whereas β-glucosidase targets oligosaccharides derived from the decomposition of 

cellulose (Cañizares et al., 2011), different xylanases are responsible for the degradation of 

complex hemicelluloses (Wyman et al., 2004). Therefore, the multi-enzyme system for the 

degradation of xylan might differ in its temperature sensitivity from that of β-glucosidase (Trasar-

Cepeda et al., 2007). Differences in Q10 may also be explained by the difference in Ea of both 

enzymes. For example Wang et al. (2012) showed that enzymes targeting labile substrates had 
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lower Ea than enzymes targeting more recalcitrant substrates; therefore, this difference in Ea may 

cause the difference in temperature sensitivity (Davidson and Janssens, 2006). 

Our hypothesis, that the temperature sensitivity of enzyme activity depends upon season, was 

partially true; we found seasonal variability in Q10 for β-glucosidase and phenoloxidase, but not for 

xylanase. This observed variability could be due to different isoenzymes, produced by the same or 

different microorganisms over the season, having different temperature responses (Wallenstein and 

Weintraub, 2008; Jing et al., 2014). Q10 values of β-glucosidase found in our study were within the 

range reported by Koch et al. (2007) and Wang et al. (2012). We found an increase in average Q10 

values only in β-glucosidase and phenoloxidase in winter and early spring for both study regions, 

when there were also lower recorded soil temperatures. In agreement with our study, Kirschbaum 

(1995) also found that the temperature sensitivity of decomposition increases with decreasing 

temperature. This high sensitivity may be achieved by increased catalytic efficiency of enzymes 

through enhanced conformational flexibility under cold conditions (Georlette et al., 2004; Bradford 

et al., 2008).  

Though we detected seasonal variability in the Q10 of phenoloxidase, we did not detect any clear 

pattern in phenoloxidase activity with increasing incubation temperatures in the lab assay. A 

possible reason for this could be large spatiotemporal variation (Sinsabaugh, 2010), which might 

be due to enzyme stabilization on mineral surfaces and inefficient interactions of the enzyme-

substrate complex (A'Bear et al., 2014). Since phenoloxidase may not follow Michaelis–Menten 

kinetics, as do other enzymes, its assays are complex and difficult to optimize (German et al., 2012). 

We found an effect of region on the Q10 values of β-glucosidase and phenoloxidase. Although these 

two regions differ in soil organic matter content (Swabian Alb > Kraichgau), it is not easy to draw 

any conclusion as to which soil properties caused these variations and therefore, factors affecting 

the regional temperature sensitivity of enzyme activity need to be explored further. 

Soil microbial interactions with their physical environment can also be affected through changes 

in soil moisture (Cook and Orchard, 2008), a factor having the potential to affect the C cycle and 

soil respiration in a global climate change context (Poll et al., 2013). In our study, potential β-

glucosidase activities responded positively to short-term moisture manipulations, showing 

significant increases in activity when soil moisture increased from 12 to 27 or 32% WC (Fig. 5.2). 
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Similar results were found by Steinweg et al. (2012) where β-glucosidase activities generally 

increased with soil water content. According to Hinojosa et al. (2004) enzyme activities increase 

when diffusion limitation is alleviated as a response to increased soil moisture and improved access 

to either already available organic matter or to newly produced C from cell lyses due to drought 

stress. However, under dry soil conditions, enzymes adsorption to soil particles may cause changes 

in their conformation that might result in reduced substrate affinity and hence activity (Kandeler, 

1990). 

We fit an asymptotic model to increasing enzyme activity with increasing soil moisture because 

we assumed that at low soil moisture levels, substrate and enzyme diffusion is limited; therefore, 

enzymes face low substrate concentrations in their very direct environment, resulting in low 

activities. At high soil moisture, diffusion does not limit substrate availability and factors other 

than moisture (e.g. soil temperature, enzyme concentration) become more dominant. We used the 

average of fitted parameters (Vmax and Km) because, in contradiction to our hypothesis, we did not 

find any significant differences in these parameters over the selected sampling dates. One possible 

reason could be that we did not reach the lower limit of soil moisture during the laboratory assay. 

At very low soil moisture, seasonal variation in conformational adaptation of isoenzymes to 

drought may have been more obvious than at the investigated water content range of 12–32%. 

However, the investigated moisture range in our study covered the observed range of soil moisture 

in both regions. Another possible reason for seasonal non-significance is the observed high 

variation in overall enzyme activity as well as in model parameters, which could be reduced if a 

larger range of soil moistures were used than in our study. Other factors controlling seasonal non-

significance of model parameters might be soil texture and pore distribution. These two factors 

control substrate diffusion, which is a limiting factor for its decomposition at low moisture 

(Manzoni et al., 2012a; Mtambanengwe et al., 2004). Soil texture does not change over the season; 

therefore, one might expect no variation in moisture sensitivity across the season. Nevertheless, 

using the investigated range of soil moistures, the models fitted the data well and produced good 

model efficiencies (Table 5.2). 

 

 



5 Modelling in situ activities of enzymes to explain seasonal soil respiration 49 

 
 

Modelled in situ enzyme potentials 

We modelled in situ activities of enzymes targeting different carbon pools (β-glucosidase and 

xylanase) using their temperature and/or moisture sensitivity and measured in situ soil temperature 

and moisture. Since currently it is not possible to measure in situ enzyme activity directly in the 

field, only a few studies have modelled in situ enzyme activities from different soils and climatic 

conditions, by using a combination of enzyme activities in the lab and field measurements of soil 

temperature and moisture (Steinweg et al., 2012; Bárta et al., 2014).  

When considering temperature as the only controlling factor, in situ activities of β-glucosidase and 

xylanase increased in spring through summer and declined in autumn through winter in both study 

regions (Fig. 5.3a, b). Temperature-based modelled in situ enzyme activities followed the seasonal 

variation in soil temperature in our study, as soil temperature variation, rather than seasonal changes 

in enzyme pool size, is the main factor controlling in situ enzyme activities (Baldrian et al., 2013). 

Reduced in situ enzyme activities observed during winter could likely be explained by substrate 

availability, e.g. reduced C input from above ground biomass, whereas enzyme production is 

limited by available C and N (Brzostek and Finzi, 2011). Therefore, microorganisms produce fewer 

enzymes resulting in lower in situ enzyme potential. On the other hand, at higher temperatures, e.g. 

during the growing season, more substrate is available for microbial decomposition. High substrate 

availability is also achieved by destabilizing SOM-mineral matrices at high temperature (Conant 

et al., 2011) causing a considerable increase in observed enzyme potential. Temperature increase 

also increases substrate diffusion rate, which leads to efficient substrate catabolism by enzymes 

(Brzostek and Finzi, 2012) and, therefore, a net increase in enzyme activities. 

Diffusion also controls substrate transport through soil water films to enzyme reactive sites (He et 

al., 2014), which may also affect in situ enzyme potential. We modelled in situ moisture sensitivity 

of β-glucosidase activity to explain how diffusion limitation affects substrate availability, diffusion 

of enzymes, or enzyme catalysed-reaction products in the field. Moisture-based in situ β-

glucosidase activity showed, in general, a steady increase from summer through winter in Swabian 

Alb and Kraichgau following patterns of measured in situ soil moisture. Upon drying, soil water-

filled pores are reduced, resulting in limited microbial activity due to their limited motility and 

substrate availability (Manzoni et al., 2012a). Under these circumstances, the cost of enzyme 
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production is greater than the benefit from their activity in terms of nutrient availability (Allison 

and Vitousek, 2005), causing a decrease in net activity.  

In our study, soil temperature explained > 90% variation in in situ β-glucosidase activity when 

temperature was considered as the only control of in situ enzyme activity. Adding soil moisture as 

a co-factor controlling in situ enzyme activity significantly decreased average in situ β-glucosidase 

activity (Table 5.3). Diffusion limitation due to periods of low moisture content might have 

overcome the positive effect of temperature on enzyme activity during summer. This trend was 

also observed in the study by Steinweg et al. (2012), where lack of soil moisture resulted in a strong 

negative effect on temperature and moisture-based in situ β-glucosidase activity.  

Explaining soil respiration using in situ enzyme potential 

Measured soil respiration in our study represents heterotrophic and root respiration except in the 

fallow plots where it solely represents heterotrophic flux from soil. We found significant seasonal 

variation in soil respiration that can be explained by changes in soil temperature and moisture, 

affecting ecosystem productivity and the rate of SOM decomposition (Han et al., 2007). Other 

factors, for example changes in substrate quantity, quality, and availability, might also explain 

seasonal variation in soil respiration (Buchmann, 2000).  

We fitted an asymptotic model to explain the relation between measured CO2 efflux and in situ 

enzyme potential because the asymptotic model was superior to a linear relationship. Because 

enzymatic products must overcome diffusion, microbial uptake, and metabolic processing before 

CO2 is produced, a linear relation between in situ enzyme activities and soil respiration is therefore 

highly unlikely. 

Another possible factor influencing a non-linear response could be reduction in soil microbial 

activities due to reduced substrate availability (German et al., 2011) through dynamic input of 

organic matter via roots, root exudates and leaf litter over the season (Hargreaves and Hofmockel, 

2014). Wan and Luo (2003) showed a significant reduction in soil respiration with reduced 

substrate supply. Moreover, substrate limitation for microorganisms / enzymes could also result 

from substrate spatial variation in the soil (Resat et al., 2012). Microbial utilization of substrate 

depends upon, along with other factors, the position of the substrate within the soil matrix 
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(Kandeler et al., 2005). Physical protection of substrate by soil aggregates or adsorption onto 

mineral surfaces (Davidson and Janssens, 2006) may hinder its decomposition by microbial 

communities. Therefore, at high enzyme potential, substrate in the very direct environment of the 

enzyme might be limiting and this high enzyme potential therefore cannot be directly translated 

into CO2 production. 

High in situ enzyme potential is related mainly to higher soil temperatures, which occur in summer 

when water may become limiting either due to soil warming (water evaporation and plant water 

consumption), or less precipitation, which was also observed in our study. Soil microorganisms 

acclimate to dry conditions by changing their resource use strategy, spending more on survival than 

growth, e.g. through production of osmolytes (Schimel et al., 2007). Stress conditions may also 

force a microbial community shift towards those having less mass-specific respiration (Schimel et 

al., 2007; Billings and Ballantyne, 2013). This microbial community shift and physiological 

adaptation might also explain the saturation of respired CO2 at high in situ enzyme potential 

observed in our study. Since we did not measure microbial community composition in this study, 

we can only speculate about microbial community shifts and observed CO2 responses at in situ 

enzyme potential. This aspect still needs to be explored.  

The non-linearity between CO2 release in the field and in situ enzyme potential could also be 

explained by differences in microbial carbon use efficiency, which is affected both by differences 

in substrate availability and quality and by different nutrient availabilities, e.g. N, P, during the 

season (Manzoni et al., 2012b; Ågren et al., 2001; Frey et al., 2013). However, enzyme production 

could also be driven by availability of these nutrients in the soil (Allison and Vitousek, 2005). In 

addition, EE involved in different key processes of C-, and N-cycling might have different 

responses to temperature and/or moisture (Koch et al., 2007; Bárta et al., 2014). Therefore, 

differences in sensitivity might result in a decoupling of substrate release by β-glucosidase activity 

and further processing during CO2 production.  

In both regions of our study, abiotic factors exerted different controls on soil respiration using in 

situ potential of different enzymes as a proxy. Our results indicate that the Weibull function fitted 

the data well since this assumed a certain threshold of enzyme activity, ~ 50 nmol g–1 dry soil h–1 

and ~ 12 µg GE g–1 dry soil 24h–1 for β-glucosidase and xylanase, respectively, below which 
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detection of the respired CO2 may not be possible. Since EE retain their catalytic ability under cold 

conditions (Bremner and Zantua, 1975; Blankinship et al., 2014) and enzymatic products are being 

formed, further processing of these products to CO2 production may decline, resulting in a lag 

phase such as that observed in our study for respired CO2 at lower in situ enzyme potential (Fig. 

5.5). Possible factors involved in this decoupling could be cost-intensive physiological 

acclimations adapted for survival by soil microorganisms, e.g. changes in membrane lipids and 

production of shielding and anti-freezing proteins (Schimel et al., 2007) reducing microbial growth, 

or higher sensitivity of microbial intracellular metabolism e.g. as a result of limited liquid water 

(Mikan et al., 2002), causing changes in microbial metabolic activity under freezing conditions. 

Upon soil thawing, a peak of CO2 efflux is often observed (Schimel and Clein, 1996), generally 

associated with metabolism of easily decomposable organic matter originating from cell lyses 

(Feng et al., 2007). This peak may also be due to metabolism of extracellular enzyme-catalysed 

products produced during freezing conditions, but this aspect needs to be explored further.  

Our modelled in situ temperature-based enzyme activities, as initially expected, successfully 

explained seasonal soil respiration efflux with model efficiencies ranging from 0.47 to 0.78 for β-

glucosidase, and 0.35 to 0.76 for xylanase, proving the relevance of our modelling approach. 

Therefore, our results indicate that enzymes that degrade labile C compounds represent in situ CO2 

production better than enzymes that degrade more complex substrates (Table 5.4). The labile C 

pool contributes up to 90% of the total respired CO2 efflux from soil to the atmosphere (Wan and 

Luo, 2003), probably due to higher decomposition at high temperatures (Mikan et al., 2002). 

However, for long term stabilization of SOC, decomposability of the stable pool is more important 

due to the higher temperature sensitivity of decomposition of this pool (Frey et al., 2013), which 

can result in a positive feedback to atmospheric CO2.  

Adding soil moisture as a co-factor in modelling in situ enzyme potential improved CO2 prediction 

in the Kraichgau but not in the Swabian Alb region, partly supporting our hypothesis. This could 

be explained by overall differences in soil moisture in both regions (comparatively lower soil 

moisture recorded in the Kraichgau than in the Swabian Alb, particularly during the growing season 

Fig. 5.4c, d), and also due to short periods with limited soil moisture content. Therefore, in the 

Kraichgau region, due to a strong moisture effect together with temperature, better model 

efficiencies were obtained. Adding soil moisture as a co-factor increased soil respiration for a given 
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in situ enzyme potential (Fig. 5.5). This counterintuitive effect suggests that calculating 

temperature-based in situ enzyme potentials underestimates catalytic rates of soil enzymes, which 

underlines the above mentioned substrate limitation of EE. 

We tested our new approach of enzyme-based variation on seasonal soil CO2 efflux with a 

conventional approach of soil temperature-based variation of CO2 efflux (Table 5.4). Obtained 

model efficiencies indicate that our enzyme-based model explained variation in CO2 efflux better 

than the soil temperature-based model in both study regions. Though it is not clear if changes in 

enzyme catalytic rates will change soil respiration due to the uncertainty of dominant controlling 

factors (Billings and Ballantyne, 2013), our results exhibit the potential of our new approach to 

explain temporal variability in enzyme related processes. 

In conclusion, this is, to our knowledge, the first study considering temperature and moisture-based 

in situ enzyme potentials to explain CO2 efflux. Our study demonstrates that soil enzymes, as the 

proximate agents of SOM decomposition, respond differently to changes in soil temperature and 

moisture. Therefore, in the context of predicted climate change, soil enzymes have the potential to 

affect feedback mechanisms between agro-ecosystems and the atmosphere. 
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Abstract 

Soil microbial communities mediate soil feedbacks to climate; a thorough understanding of their 

response to increasing temperatures is therefore central to predict climate-induced changes in 

carbon (C) fluxes. However, it is unclear how microbial communities will change in structure and 

function in response to temperature change and to the availability of organic C which varies in 

complexity. Here we present results from a laboratory incubation study in which soil microbial 

communities were exposed to different temperatures and organic C complexity. Soil samples were 

collected from two land-use types differing in climatic and edaphic conditions and located in two 

regions in southwest Germany. Soils amended with cellobiose (CB), xylan, or coniferyl alcohol 

(CA, lignin precursor) were incubated at 5, 15 or 25 °C. We found that temperature predominantly 

controlled microbial respiration rates. Increasing temperature stimulated cumulative respiration 

rates but decreased total microbial biomass (total phospholipid fatty acids, PLFAs) in all substrate 

amendments. Temperature increase affected fungal biomass more adversely than bacterial biomass 

and the temperature response of fungal biomass (fungal PLFAs, ergosterol and ITS fragment) 

depended upon substrate quality. With the addition of CB, temperature response of fungal biomass 

did not differ from un-amended control soils, whereas addition of xylan and CA shifted the fungal 

temperature optima from 5 °C to 15 °C. These results provide first evidence that fungi which 

decompose complex C substrates (CA and xylan) may have different life strategies and temperature 

optima than fungal communities which decompose labile C substrate (CB). Gram-positive and 

gram-negative bacteria differed strongly in their capacity to decompose CB under different 

temperature regimes: gram-positive bacteria had highest PLFA abundance at 5 °C, while gram-

negative bacteria were most abundant at 25 °C. Bacterial community composition, as measured by 

16S rRNA gene abundance, and PLFAs showed opposite temperature and substrate decomposition 

trends. Using multivariate statistics, we found a general association of microbial life strategies and 

key members of the microbial community: oligotrophic Alphaproteobacteria and Acidobacteria 

were associated with complex substrates and copiotrophic Actinobacteria with labile substrates. 

Our study provides evidence that the response of C cycling to warming will be mediated by shifts 

in the structure and function of soil microbial communities.  
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6.1 Introduction 

Soil has long been a focus of climate change studies due to its large carbon (C) stock relative to 

plant biomass and atmospheric C (Karhu et al., 2014; Todd-Brown et al., 2014). Microbial soil 

organic carbon (SOC) decomposition is a vital process controlling C storage in terrestrial 

ecosystems and it is widely accepted that soil microorganisms have the potential to accelerate 

climate change by adding more C in the form of CO2 to the atmosphere (Yuste et al., 2011; Thakur 

et al., 2015; Auffret et al., 2016). Different studies argue that climatic and environmental variables 

including soil texture, temperature, moisture, and C quantity and quality are the main controls on 

SOC decomposition (Davidson and Janssens, 2006; Cleveland et al., 2007; Karhu et al., 2014). 

However, it is unclear how these abiotic variables interact with biotic factors and alter microbial 

substrate utilization response under varying temperatures (Zogg et al., 1997; Waldrop and 

Firestone, 2004; Cleveland et al., 2007; Tang et al., 2018). Therefore, understanding how 

functionally diverse microbial communities alter their abundance and respiration response to 

temperature is essential if we are to predict climate-induced change in respiration in different 

ecosystems (Malcolm et al., 2008). 

Microbial abundance, metabolic activity, substrate uptake rates, and community structure are 

strongly regulated by temperature variation (Stres et al., 2008; Conant et al., 2011; Bradford, 2013). 

However, little is known about temperature responses of individual key members of microbial 

communities decomposing SOC (Pietikäinen et al., 2005; Meier et al., 2010). For example, soil 

bacterial abundance may increase as a response to chronic soil warming coinciding with decreasing 

fungal abundance (Frey et al. 2008). On a much shorter time scale, Pietikäinen et al. (2005) 

observed that increasing temperature (above 30 °C) influenced fungal activity more negatively than 

bacterial activity, whereas an opposite temperature response of fungal and bacterial activities was 

observed at low temperatures (below 10 °C). Furthermore, soil microbial communities adapted to 

regional climatic conditions may respond distinctively to temperature variations. For example, cold 

adapted microbial communities may have a different optimum temperature, with cold adapted 

communities respiring more C at high temperatures (Bradford, 2013; Schindlbacher et al., 2015). 

Temperature can also indirectly affect microbial SOC decomposition. For instance, it controls 

microbial, substrate and/or enzyme diffusion and diffusion of enzymatic products by controlling 

soil moisture content (Steinweg et al., 2013; Ali et al., 2015). Microbial temperature response is 
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also affected by substrate availability through altered substrate sorption / desorption to organo-

mineral complexes (Davidson and Janssens, 2006; Conant et al., 2011). 

Investigation of microbial biomass and respiration response to temperature is also complicated by 

confounding effects of soil C quality (Devêvre and Horwáth, 2000; Hartley et al., 2008). For 

example, the pool of complex C compounds may be more strongly affected by temperature than 

the pool of rapidly degradable labile C (Knorr et al., 2005; Davidson and Janssens, 2006). 

Furthermore, C quality and temperature control the efficiency with which soil microbes utilize 

different C substrates. Frey et al. (2013) found a decrease in C utilization efficiency (C respired vs 

assimilated into biomass) with increasing temperature only for recalcitrant substrates. Steinweg et 

al. (2008) found the same temperature effect for cellobiose degradation. Carbon quality may also 

change microbial community composition to a greater extent than it changes the absolute amount 

of total microbial biomass (Cederlund et al., 2014). For example, the availability of complex C 

substrates has been shown to favor the dominance of fungal communities which degrade 

recalcitrant C compounds such as lignin (Yuste et al., 2011). Such an effect of substrate quality has 

also been observed under soil warming experiments, e.g., lack of labile substrate under soil 

warming supported fungal community, whereas increased labile substrate availability (via plants) 

shifted the dominance from fungal towards bacterial communities (Castro et al., 2010). Similarly, 

labile C rapidly increased soil respiration by stimulating an opportunistic bacterial community; 

specifically, members of Gammaproteobacteria and Firmicutes (Cleveland et al., 2007). However, 

this C-quality and microbial community relationship is not that straight forward and mixed 

substrate utilization responses of bacteria and fungi have been reported. For example, fast-growing 

fungi (yeasts) and specific bacterial taxa including Actinobacteria and Proteobacteria, both have 

been shown to utilize labile C compounds (Kramer et al., 2016). On the other hand, specific 

bacterial taxa such as Bacteroidetes were associated with decomposition of polymeric C substrate, 

for example, cellulose (Schellenberger et al., 2010). Based on their substrate preferences, 

predictable responses of diverse microbial taxa, for instance those exhibiting copiotrophic and 

oligotrophic behaviors, can make it possible to use them as indicators of soil trophic status 

(Cederlund et al., 2014; Fierer et al., 2007). 

The aim of our study was, therefore, to better understand the temperature response of a diverse 

microbial community, specifically bacteria and fungi, utilizing substrates of different qualities, 
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which has rarely been tested simultaneously. The study was carried out in two geographically 

distinct regions and land-use types (bare fallow and soils influenced by vegetation). We assumed 

that each region and land-use type will be inhabited by distinct microbial communities adapted to 

region-specific climatic and edaphic conditions and to depleted labile C substrates in bare fallow 

soils. We, therefore, expected these specific microbial communities to show distinct responses to 

temperature and substrate quality variations. Additionally, we hypothesized that 1) microbial 

groups will show distinct temperature sensitivities in that fungal abundance will be high at low 

temperatures and bacteria will benefit from warm temperatures and that 2) addition of labile 

substrate will amplify the temperature response of bacterial abundance, whereas addition of 

complex substrates will pronounce fungal response to temperature changes. To accomplish the aim 

of this study, soil samples were amended with substrates varying in C quality (labile to moderately 

and strongly complex C compounds) and were exposed to different incubation temperatures. 

Changes in microbial community composition were determined by estimating phospholipid fatty 

acid (PLFA) and ergosterol content. In addition to the quantification of eight different bacterial 

groups using taxa-specific quantitative real-time PCR, bacterial and fungal abundances were 

evaluated using 16S rRNA gene and ITS fragment.  



6 Microbial community response to temperature and substrate quality variations 59 

 
 

6.2 Materials and methods 

Site description and soil sampling 

Soil samples were taken from two agricultural sites in the Kraichgau and the Swabian Alb regions, 

both situated in Southwest Germany. The Kraichgau (48°55’7’’ N, 8°42’2’’ E; 100-400 m a.s.l) is 

an intensively used fertile loess region with a warm, dry climate, mean annual temperature (MAT) 

of 9.3 °C, and mean annual precipitation (MAP) between 720-830 mm. The dominant soil type in 

this region is Stagnic Cambisol on loess as parent material (WRB, 2007). In contrast, the Swabian 

Alb (48°31’7’’ N, 9°46’2’’E) is an extensively used grassland and cropland region with a more 

humid, cooler climate than the Kraichgau (MAT 7 °C, MAP between 800-1000 mm). The Swabian 

Alb is a karst plateau of Jurassic limestone with dominant soils classified as Calcic Luvisol, 

Anthrosol and Rendzic Leptosol (WRB, 2007). Some basic soil properties of both regions are found 

in Table S1. 

In April 2013, soil samples (0-30 cm) were taken from two land-use types in each region; bare 

fallow and vegetated plots, five m2 each. Bare fallow plots have been kept fallow since 2009 and 

managed by manual weeding and periodic spraying of glyphosate (Monsanto Agrar, GmbH, 

Germany). Vegetated plots were planted with winter wheat (Triticum aestivum) in the Kraichgau 

and winter rape (Brassica napus) in the Swabian Alb. Samples were sieved (< 2 mm) and stored at 

-24 °C until the start of the laboratory experiment. Results are reported based on oven dried soil 

(60 °C for 3 days). 

Experimental design 

We established the following treatments to test the effect of substrate quality on microbial activity 

at different temperatures: control (without any amendment), labile organic C as cellobiose (CB) 

(Sigma-Aldrich, St. Louis, USA), moderately complex C as xylan (from beech wood, SERVA 

Electrophoresis GmbH, Heidelberg, Germany), and strongly complex C as coniferyl alcohol (CA) 

(Sigma-Aldrich, St. Louis, USA). Substrate C was added at a rate of 5 % of the carbon content of 

soil samples under contrasting climatic and edaphic conditions (i.e. Kraichgau vs. Swabian Alb and 

vegetated vs. bare fallow plots). After thorough mixing, soil samples were filled into steel cylinders 

(100 cm3, packed to their respective bulk densities) and placed in glass microcosms (volume: 480 
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ml). Microcosms were incubated at 5, 15, or 25 °C. Soil moisture content (at 60% WHC) was kept 

constant during the incubation period. Soil cores were incubated for either 7 days (CB) or 36 days 

(xylan and CA) depending on the decomposition rate of the added substrate. Two sets of controls 

were incubated, one for 7 days as control for the CB addition and the other for 36 days as control 

for the other amendments. Decomposition patterns of added C substrates were followed by 

measuring CO2 production. Over the 36 days of the incubation experiment, soil respiration was 

measured seven times, on days 1, 3, 5, 7, 14, 28, and 36. Before taking gas samples, microcosms 

were closed with rubber stoppers. Fifteen ml headspace gas samples were collected by syringe at 

0, 60 and 120 minutes after microcosm closure, then transferred to pre-evacuated exetainers (5.9 

ml, Labco Ltd.). Concentrations of CO2 in the collected samples were measured by gas 

chromatography (Agilent 7890A equipped with FID) and calibration was done by measuring 

known standard concentrations as described by Livingston and Hutchinson (1995). Cumulative 

flux of CO2 was calculated as described by Poll et al. (2013). At the end of the incubation, soils 

were destructively sampled and stored at -24 °C until further analyses. 

Analyses 

Phospholipid Fatty Acids (PLFAs) and ergosterol  

Four g (fresh weight) soil were used for extraction of PLFAs and their further transformation into 

fatty acid methyl esters (FAMEs) by alkaline methanolysis (Frostegård et al., 1991). Measurement 

of the extracted FAMEs was carried out by gas chromatography (AutoSystem XL, Perkin-Elmer 

Corporation, Norwalk, CT, USA) equipped with FID using helium as the carrier gas. For 

methodological details, see Kramer et al. (2013). Fatty acids including i15:0, a15:0, i16:0 and i17:0 

were considered as gram-positive bacteria, and cy17:0 and cy19:0 were gram-negative. Total 

bacterial PLFAs included the gram-positive and gram-negative plus 16:1ω7, while 18:2ω6,9 

represented the fungal PLFA. Total bacterial, fungal, and the following PLFAs comprised total 

PLFAs: 14:0, 15:0, 16:1ω6, 16:1ω5, 16:0, 17:0, 18:2ω6,9, 18:1ω9c, 18:3ω3, 18:1ω7, 18:1ω9t, 

18:0, 20:4ω6, 20:5ω3, 20:3ω6, 20:2, 20:0, 22:0, and 24:0.  

In addition to the 18:2ω6,9 PLFA, fungal biomass was also assessed by ergosterol content 

following a method described by Djajakirana et al. (1996) using one g fresh soil. For method 

specific details, see Kramer et al. (2012). 
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DNA extraction and quantitative PCR (qPCR) assay 

DNA of 0.3 g soil was extracted using the FastDNA SPIN Kit for soil (MP Biomedicals, USA). 

Extracted DNA concentration was measured on a Nanodrop ND-2000 spectrophotometer (Thermo 

Scientific, USA). Quantification of 16S rRNA genes and fungal ITS fragment as well as eight taxa 

including Alphaproteobacteria, Betaproteobacteria, Acidobacteria, Firmicutes, 

Gemmatimonadetes, Verrucomicrobia, Actinobacteria, and Bacteroidetes was carried out with an 

ABI Prism 7500 Fast Real Time PCR System (Applied Biosystems, Germany). SYBR Green was 

used as the detection system. Reaction mixture included 4.473 µl H2O, 0.75 µl of each primer, 

0.027 µl T4GP32, 7.5 µl SYBR Green, and 1.5 µl DNA (5 ng µl-1). PCR primers and thermal 

cycling conditions are given in Table S2. 

Statistical analysis 

All statistical analyses were performed using the R program for statistical computing – version 

3.4.3 (R Core Team, 2017). Data homogeneity was tested with Levene’s test for equality of 

variance. We used multi-factorial ANOVA to test the statistical significance of region, temperature, 

substrate amendment, and land-use (bare fallow vs vegetated) on microbial respiration, PLFAs and 

ergosterol content, 16S rRNA abundances, and fungal ITS fragments. Log transformation of 16S 

rRNA and fungal ITS data was performed to achieve normality. Least-squares means (lsmeans 

function of the lsmeans package; Tukey method for comparing a family of estimates) was used for 

pairwise comparisons (Russell, 2016). The relationship between the fungal PLFA and ergosterol 

was tested by Spearman’s rank correlation (Bonferroni adjusted P-value). In order to determine 

how bacterial communities were affected by temperature and substrate amendments, principal 

component analyses were performed (R package stats) for each region using the relative 

abundances of bacterial groups. The relative abundance for each bacterial group was calculated as 

the ratio between copy numbers of the target group (estimated from individual group-specific qPCR 

assays) and the sum of copy numbers of the eight bacterial groups. Site scores of the first two 

principal components were further used in a multi-factorial ANOVA to test for temperature and 

substrate amendment effect. Significance was tested for P < 0.05 in all cases.  
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6.3 Results 

Soil Respiration 

Cumulative soil respiration was on average 38 % higher (F1,96 = 137.41, P < 0.001) in the Swabian 

Alb compared to the Kraichgau (Fig. 1). Land-use affected soil respiration (F2,96 = 10.75, P < 0.001) 

with bare fallow soils producing lower respiration than soils under vegetation influence (Figs. 1 

and S1), however, the effect of land-use on soil respiration was smaller than the regional effect. 

Only minor differences in the temporal patterns of CO2 production between bare fallow soils and 

soils under vegetation influence were observed. We therefore focus in the following only on CO2 

results from the vegetated soils. Temperature predominantly controlled microbial respiration 

response in soils under vegetation influence by generally increasing cumulative respiration in all 

substrate treatments and in both regions with maximum respiration measured at 25 °C (F2,48 = 

91.51, P < 0.001; Fig. 1). In the Swabian Alb, substrate addition led to increased respiration at all 

temperatures and with all substrates when compared to un-amended controls (F3,24 = 87.56, P < 

0.001). In contrast, substrate addition generally increased cumulative respiration in the Kraichgau 

only at 15 and 25 °C with xylan addition showing the largest effect when compared to un-amended 

controls (substrate × temperature, F6,24 = 3.10, P < 0.05; Fig. 1). During the first week of incubation, 

CB induced higher respiration than xylan at all incubation temperatures in both regions, and almost 

no difference was observed between CA and un-amended controls (Fig. S2). 
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Fig. 6.1 Microbial respiration flux (cumulative CO2-C) measured from vegetated soils of the 
Swabian Alb and the Kraichgau regions under different C substrate amendments. CA 
= coniferyl alcohol, CB = cellobiose. Bars indicate standard error (n = 3).  
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PLFA content 

Control samples, incubated for either 7 days or 36 days, showed similar trends and were not 

statistically different from one another. We therefore show PLFA data only for the controls after 

36 days’ incubation at the respective temperatures.  

Both regions differed from each other with respect to the size of microbial biomass content; the 

Swabian Alb had 51 % higher total PLFA content than the Kraichgau (F1,107 = 1327.65, P < 0.001; 

Fig. 2 a, b). The difference in extracted PLFAs between bare fallow soils and soils influenced by 

vegetation was smaller than the regional effect, with vegetated soils having 43 % higher total PLFA 

content than bare fallow soils (F2,107 = 550.62, P < 0.001, Figs. 2 a, b and S3 a, b). Substrate addition 

generally led to increased total PLFA content across all temperatures, regions, and land-uses with 

CB addition exhibiting the largest effect (F4,107 = 426.10, P < 0.001). The temperature effect was 

smaller than the substrate addition effect and negatively influenced total PLFAs with lowest values 

recorded at highest temperatures (F2,107 = 237.52, P < 0.001; Figs. 2 a, b and S3 a, b). The lipid 

profiles showed decreasing unsaturation that depended upon substrate amendment in both regions 

with increasing temperature (temperature × substrate × region; F8,107 = 2.18, P < 0.05, Fig. S9). 
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Fig. 6.2 Shifts in total, gram-positive, and gram-negative bacterial PLFAs of vegetated soils in 
response to incubation temperature and C substrate of varying qualities. Left panels 
represent PLFAs of the Swabian Alb (a, c, e) and right panels represent PLFAs of the 
Kraichgau (b, d, f). Bars indicate standard error (n = 3). 
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Fig. 6.3 Fungal PLFAs and ergosterol contents measured in vegetated soils of the Swabian Alb 
(a, c) and the Kraichgau (b, d) un-amended and amended with C substrates of varying 
qualities after incubation at three different temperatures. Bars indicate standard error 
(n = 3). 
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Abundance of soil bacterial groups were more affected by the regional than the land-use effect with 

higher PLFA contents in the Swabian Alb than in the Kraichgau (F1,107 = 716.41, P < 0.001; F1,107 

= 829.40, P < 0.001, respectively; Figs. 2 and S3 c, d, e, f). Vegetated soils showed higher contents 

of gram-positive and gram-negative bacterial PLFAs than the bare fallow soils (F2,107 = 163.30, P 

< 0.001; F2,107 = 24.48, P < 0.001, respectively; Figs. 2 and S3 c, d, e, f). Substrate addition affected 

abundance of gram-positive and gram-negative bacterial PLFAs more strongly than the rising 

temperature. PLFAs of gram-positive bacteria decreased with increasing temperature in both 

regions (Fig. 2 c, d). There was only one exception to this general trend: the use of CA by gram-

positive bacteria was not influenced by temperature (Fig. 2 c, d). Consequently, the interaction 

between temperature × substrate (F8,107 = 17.57, P < 0.001) was significant. Total bacterial PFLAs 

showed similar trends with respect to temperature and substrate amendments as those of gram-

positive bacteria (data not shown). Like gram-positive bacteria, gram-negative bacterial PLFAs 

generally increased after substrate addition at all temperatures with the strongest increase recorded 

after CB addition (F4,107 = 46.41, P < 0.001; Fig. 2 e, f). PLFA content of gram-negative bacteria 

increased from 5 to 15 °C, irrespective of substrate quality. For soils amended with CB, gram-

negative PLFAs further increased with increasing temperatures in both regions and land-uses 

(substrate × temperature; F8,107 = 12.15, P < 0.001; Figs. 2 and S3 e, f). 

Like bacterial biomass, the fungal PLFA content was also significantly higher in the Swabian Alb 

than in the Kraichgau (F1,107 = 178.19, P < 0.001) and was significantly increased in soils influenced 

by vegetation compared to bare soils (F2,107 = 363.09, P < 0.001, Figs. 3 and S4 a, b). Land-use had 

the strongest effect on fungal PLFAs and temperature and substrate quality affected fungal PLFAs 

almost equally (Fig. 3 and S4). Fungal PLFAs were highest in CB and xylan amended soils (F4,107 

= 147.50, P < 0.001), whereas after CA addition fungal PLFAs increased only slightly. In general, 

increasing temperature reduced fungal biomass; lowest fungal PLFAs were recorded at 25 °C and 

fungal PLFAs increased from 5 to 15 °C in most cases after the addition of xylan and CA 

(temperature × substrate; F8,107 = 9.89, P < 0.001; Fig. 3 a, b). 

Ergosterol 

A significant correlation (r = 0.89, P < 0.05) was found between the two fungal biomarkers 

investigated in our study; ergosterol and fungal PLFAs. Land-use affected ergosterol content most 
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strongly, and like fungal PLFAs, temperature and substrate quality equally affected ergosterol 

contents (Figs. 3 and S4 c, d). Soils of the Swabian Alb had 20 % more ergosterol content than 

soils of the Kraichgau (F1,117 = 130.07, P < 0.001). Ergosterol content also differed between 

investigated land-uses with bare fallow soil having significantly lower (-72 %; F2,117 = 725.16, P < 

0.001) ergosterol content than soils influenced by vegetation. In most cases, substrate addition 

increased ergosterol content across all temperatures, regions, and land-uses with xylan addition 

showing the largest effect (F4,117 = 126.00, P < 0.001, Figs. 3 and S4 c, d). After CA addition, a 

clear increase in ergosterol content was recorded at 15 °C (substrate × temperature; F8,117 = 12.75, 

P < 0.001; Fig. 3 c, d). This effect of complex substrate addition on ergosterol content was greater 

than that observed for the fungal PLFAs, where no such increase was recorded. Lowest ergosterol 

values were recorded at 25 °C in both regions and land-uses, as also observed for the fungal PLFAs 

(F2,117 = 193.16, P < 0.001; Fig. 3). Temperature effect on added substrate quality was distinct at 5 

and 15 °C but not at 25 °C, where ergosterol content converged back to the control values with an 

exception of CB in the Kraichgau and xylan in the Swabian Alb (region × temperature × substrate; 

F8,117 = 3.04, P < 0.01; Fig. 3 c, d).  

Gene abundances of different bacterial taxa  

Bare fallow and soils influenced by vegetation showed, for the most part, similar trends in response 

to temperature and substrate amendments (Figs. 4, S5). We therefore focus here only on the results 

of soils influenced by vegetation. Temperature and substrate amendment both affected 16S rRNA 

gene abundance with substrate addition effect being larger than the temperature effect (Figs. 4 and 

S5). Increasing temperature generally increased the abundance of 16S rRNA after CB and xylan 

additions, and this was most pronounced in the Swabian Alb (Fig. 4). In contrast, soils amended 

with CA showed a much smaller temperature response, and their highest 16S rRNA abundances 

after incubation were observed at 15°C (region × temperature × substrate, F8,54 = 2.42, P < 0.05; 

Fig. 4). The fungal ITS fragment, in contrast to 16S rRNA gene abundance, was generally lowest 

in abundance at 25 °C (region × temperature F2,54 = 4.10, P < 0.05), with substrate addition effect 

being larger than the temperature effect (Fig. 4). In the Kraichgau, the temperature response of the 

fungal ITS fragment to individual substrate amendments differed between xylan and CA, with a 

peak at 15 °C, while in the CB amendment they were highest in abundance at 5°C (temperature × 

substrate F8,27 = 2.67, P < 0.05; Fig. 4). In the Swabian Alb, a similar pattern was observed, 
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although less pronounced for xylan and CA and more pronounced for CB (temperature × substrate 

F8,27 = 1.99, P = 0.09; Fig. 4).  

 

Fig. 6.4 16S rRNA gene abundance and quantities of fungal ITS fragment from the Swabian 
Alb and the Kraichgau vegetated soils as affected by temperature and different C 
substrate qualities. Bars indicate standard error (n = 3). Ctrl.C are un-amended controls 
after 7-days’ incubation and “Control” are un-amended controls after 36-day 
incubation. 
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Fig. 6.5 Results of PCA analysis for bacterial community composition from vegetated soils as 
affected by different temperatures and substrate amendments. Species scores are in the 
form of arrows with different bacterial taxa (Actino = Actinobacteria, Alphapro = 
Alphaproteobacteria, Betapro = Betaproteobacteria, Acido = Acidobacteria, Bactero 
= Bacteroidetes, Gemmat = Gemmatimonadetes, Firmi = Firmicutes, Verruco = 
Verrucomicrobia). For legend, see Figure 6.4. 
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Of eight microbial taxa, Alphaproteobacteria, Acidobacteria, and Actinobacteria were the three 

most abundant in all substrate amendments and at all incubation temperatures with mean relative 

abundances of up to 19, 26, and 37 % in the Swabian Alb, and 32, 28 and 31 % in the Kraichgau, 

respectively (Figs. S7 and S8; for absolute abundances of respective taxa, see Table S3). Principal 

component analyses (PCA) were carried out to discern the influence of temperature and substrate 

quality on soil bacterial community composition. Together, the first two principal components 

(PCs) explained 52 % and 53 % of the observed variance in bacterial taxa for soils influenced by 

vegetation in the Kraichgau and the Swabian Alb, respectively, which was lower than the explained 

variance for bare fallow soils in both regions (Figs. 5, S6). In both regions, substrate amendment 

effect was larger than temperature effect. Specifically, in the Kraichgau vegetated soils, no 

temperature effect was found along PC1 but there was a slightly significant interaction between 

temperature and substrate amendment (temperature × substrate F8,27 = 2.56, P < 0.05). 

Actinobacteria and Acidobacteria had opposite loadings along the first PC; Actinobacteria 

associated more strongly with CB and Acidobacteria associated more strongly with un-amended 

controls and CA (Fig. 5). Significant temperature and substrate effects were also visible along PC2 

(21 % explained variance) in the Kraichgau (temperature × substrate F8,27 = 6.84, P < 0.001) where, 

in CB amended soils, samples at 15 °C diverged from those at 5 and 25 °C (Fig. 5). Similarly, 

temperature and substrate significantly affected bacterial community distribution along the first 

two principal components in the Swabian Alb (temperature × substrate, for PC1 F8,27 = 5.16, P < 

0.001; for PC2 F8,27 = 4.49, P = 0.001) with temperature separating CB along PC1, and CA, xylan 

and their respective controls along PC2 (25 °C separated from 5 and 15 °C; Fig. 5). Actinobacteria 

and Acidobacteria had opposite loadings along the second PC.   
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6.4 Discussion  

Despite the critical role soil microorganisms play in controlling terrestrial C cycle processes and 

its feedbacks to climate change, how soil microbes change in their abundance and respiration 

responses to temperature and SOC quality remains unclear (Hartley et al., 2008). On one side, 

temperature change has been associated with shifts in microbial community composition 

(Bradford, 2013) and on the other side, temperature sensitivity of microbial SOC decomposition 

has been associated with C quality and its availability to microbial decomposers (Davidson and 

Janssens, 2006; Moinet et al., 2018). Here, we present results from a microcosm study where the 

specific temperature responses of microbial groups in the presence of three substrates of varying 

quality (CB, xylan, CA) were investigated in two regions and land-use types. Our study mimics 

complex environments where microbial abundance is not only affected by environmental 

conditions, but also depends upon competition between microbial groups for available resources, 

such as soil bacteria and fungi. When a certain microbial group is more abundant in response to the 

addition of a certain substrate, compared to un-amended controls, we assumed this as an indication 

of utilization of this specific substrate. Nevertheless, other mechanisms such as priming effect may 

also contribute, to some extent, to the changes in abundance of specific microbial groups (Zhang 

et al., 2013). 

We expected that the relative differences in climatic and edaphic properties of both regions and the 

differences in the organic matter quality of bare fallow soils and soils influenced by vegetation 

would select for specific soil microbial communities, which would in turn respond in distinctively 

different ways to our experimental treatments. Contrary to our expectations, we observed 

differences in microbial abundances only in absolute terms: C rich soils of the Swabian Alb had 

higher microbial abundances than the Kraichgau (e.g., see Figs. 2 and S3), and soil influenced by 

vegetation had higher microbial biomass than bare fallow soils, but the response to temperature 

change and substrate amendments did not differ. Therefore, region and land-use seem to have much 

smaller impacts on microbial response to temperature than expected. 

Temperature sensitive response of soil microbial biomass 

Rising temperatures are largely predicted to stimulate the decomposition of SOC, and soil 

microorganisms and their community composition, e.g., bacteria and fungi, are important in this 
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context due to their role as the mediators of carbon-climate feedback (Allison et al., 2010; 

Jagadamma et al., 2014). Therefore, understanding the temperature sensitive responses of microbial 

abundances and respiration is important to understand changes in C fluxes in the context of climate 

warming (Classen et al., 2015; Alster et al., 2016). In our study, temperature was the main factor 

affecting soil microbial respiration response. Temperature negatively influenced total microbial 

biomass (total PLFAs) irrespective of land-use and region, with the lowest PLFAs usually 

measured at highest incubation temperatures (Figs. 2 a, b and S3 a, b). Such a decrease in microbial 

biomass with warming has been reported by others (Zogg et al., 1997; Waldrop and Firestone, 

2004; Frey et al., 2008; Wu et al., 2010) and attributed to increased metabolic stress at high 

temperatures (Zogg et al., 1997). We witnessed a strong increase in a metabolic stress indicator 

with increasing temperature, as indicated by the ratio of the fatty acid cy17:0 to its metabolic 

precursor 16:1ω7 (Schindlbacher et al., 2011), which was consistent in all C substrate amendments 

including un-amended controls (data not shown). Decreased total PLFAs with increasing 

temperatures coincided with an opposite microbial cumulative respiration response, especially in 

CB amended soils (Figs. 1 and S1), hinting at a metabolic shift to catabolic processes. Temperature 

increase forces microbes to spend available resources more on maintenance than on biosynthesis, 

a trend which has previously been observed (Steinweg et al., 2008; Allison et al., 2010; Frey et al., 

2013; Tucker et al., 2013). Observed decrease in microbial biomass with increasing temperature 

may also be associated with specific microbial communities present in both study regions at the 

time of soil sampling. Average soil temperatures in the Kraichgau and the Swabian Alb, one month 

before soil sampling, were 3.3 °C and 1.3 °C, respectively, which may indicate support for the 

presence of psychrophilic microorganisms. Psychrophiles tend to have an increased proportion of 

unsaturated fatty acids (Nedwell, 1999) and changes in microbial PLFA composition with 

increasing temperature, for instance, decreases unsaturated fatty acids (Marr and Ingraham, 1962). 

As this was observed in our study (Fig. S9), it possibly corresponds to the energy-requiring 

biosynthesis of saturated fatty acids (Zogg et al., 1997). Thus, it may be that with increasing 

temperature, certain members of microbial communities may not be able to keep up with the energy 

demand, leading to metabolic stress or death (Petersen and Klug, 1994). In our study, soil fungal 

biomass was negatively affected by increasing temperature, an effect consistent through all fungal 

biomarkers (Figs. 3 and 4). Furthermore, increasing temperature from 5 to 15 or 5 to 25 °C affected 

fungal biomass more adversely than bacterial biomass (gram-positive bacteria; e.g., Figs. 2 and 3 
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a, b). This difference in the strength of temperature-sensitive response may indicate that fungi are 

more sensitive to temperature variations than bacteria due to their thermal adaption strategies or 

physiological differences (Alster et al., 2018). Such temperature-related biomass response of soil 

microbial groups partially confirms our initial hypothesis that low temperature may support fungal 

biomass more than bacterial biomass. However, we could not confirm our hypothesis, that bacteria 

will benefit from high temperatures, as the abundance of gram-positive bacteria decreased with 

increasing temperatures and gram-negative bacteria showed a temperature optimum at 15°C. In the 

context of climate warming, such a response of microbial groups may lead to shifts in fungi/bacteria 

ratios towards higher bacterial biomass, as has been observed in earlier studies (Pietikäinen et al., 

2005). Lipson et al. (2002) also found a more positive effect of low winter temperatures on fungi 

than bacteria leading to a higher fungi/bacteria ratio. However, a lower substrate utilization 

efficiency and higher biomass turnover rate for bacteria than for fungi (Allison et al., 2005; Gunina 

et al., 2017) may significantly affect C cycling and storage in soil systems following climate 

warming (Six et al., 2006) and may also provide positive feedback to climate change, at least at the 

short-term scale investigated in our study.  

SOC quality controls the temperature sensitive response of microbial key players involved in 

SOC decomposition 

Substrate quality is expected to be among the main drivers of microbial community composition 

(Goldfarb et al., 2011). At the same time, it may also modify the temperature response of microbial 

groups decomposing SOC. Bacterial abundance, as assessed by 16S rRNA gene abundance, 

responded positively to added substrates at high temperatures in the order CB > xylan > CA (Fig. 

4), corresponding to our hypotheses that bacterial biomass may increase with warming and labile 

C substrate availability. Gunina et al. (2017) also found that bacteria were more active in labile C 

utilization (glucose) than fungi. The relative difference in bacterial biomass between added 

substrate qualities may be explained by 16S rRNA copy numbers per genome (see discussion 

below). The number of rRNA genes correlates with the rate at which phylogenetically diverse 

bacteria respond to substrate availability (Klappenbach et al., 2000). Therefore, having more than 

one 16S rRNA copy per cell could provide a competitive advantage that translates to an increased 

biomass for a particular community when suitable substrates become available. 
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The temperature response of gram-positive bacterial abundance basically did not change with 

substrate addition, but the strength of the response was confounded by substrate quality. The 

addition of coniferyl alcohol induced only small changes, whereas the addition of cellobiose and 

xylan induced a pronounced increase in the abundance of gram-positive bacteria at low 

temperatures (Fig. 2 c, d). Similarly, a temperature induced decline in gram-positive bacterial 

abundance in soils amended with complex substrate (maize residues with C/N ratio ~ 52 incubated 

at 10 or 30 °C) has been reported by Bai et al. (2017a). The pattern observed in our study may 

suggest a food preference of gram-positive bacteria for organic C of different qualities. Consistent 

with our results, Wang et al. (2015) found higher gram-positive bacterial abundances in forest soils 

amended with substrate of high quality (leaves, low C/N ratio) than soils amended with low quality 

substrate (maize stalk, high C/N ratio). Other studies have reported mixed responses of gram-

positive bacterial biomass to changing temperature and substrate quality (Waldrop and Firestone, 

2004; Hopkins et al., 2014; Wei et al., 2014). Since gram-positive bacteria are known to react to a 

variety of substrates ranging from easily available to more complex compounds (Müller et al., 

2016), substrate quality may change the feeding behavior of gram-positive bacteria, hence their 

abundance in the context of climate warming.  

Gram-negative bacteria, on the other hand, responded differently to temperature and substrate 

amendments than gram-positive bacteria (Figs. 2 and S3). In most cases, there was an increase from 

5 to 15 °C and a decrease from 15 to 25 °C. The addition of CB increased their abundance up to 25 

°C. Gram-negative bacteria generally exhibit copiotrophic behavior; they grow in high-quality 

resource-rich conditions (Fierer et al., 2007; Fanin et al., 2014; Zhang et al., 2016). Therefore, our 

observed temperature response of gram-negative bacteria to the CB amendment, which represents 

relatively high-quality C substrate, fits this pattern. Furthermore, high turnover rates of 

copiotrophic gram-negative bacteria (Fierer et al., 2007) at high temperatures could also explain 

the observed increase in cumulative respiration in CB amended soils of both study regions (Figs. 1 

and S1). However, these results must not be over interpreted, as the shorter incubation duration for 

CB amended soils may explain why gram-negative bacterial PLFAs responded differently than in 

xylan and CA amended soils at 25 °C. At high temperatures, especially at 25 °C, incubation time 

may have been an important factor due to faster exhaustion of available substrate, since C 

mineralization rates are known to be much higher at high than low temperatures (Feng and 

Simpson, 2009; Tang et al., 2018).  
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Furthermore, our results showed that fungi did not have any specific food preference for either 

labile or complex substrates, opposite to our initial hypothesis of fungi utilizing complex substrate. 

Fungal biomass increased in soils amended with labile substrate (CB) either equally or even 

stronger than in soils amended with more complex substrates (xylan and CA) (Fig. 3). Utilization 

of relatively simple compounds by fast-growing opportunistic fungi may explain these observations 

(Meidute et al., 2008). A clear separation of fungi utilizing complex substrates and bacteria 

primarily utilizing simple substrates was also not verified by Kramer et al. (2016). This 

opportunistic behavior of fungi may have important implications for C cycling due to their role in 

soil C stabilization dynamics. Nevertheless, fungal biomass and respiration response to temperature 

variation was confounded by substrate quality; CB addition did not alter temperature response of 

fungi, whereas xylan and CA amendment shifted the fungal temperature optima from 5 °C to 15 

°C (Fig. 3). These results may suggest possible coupling of fungal life strategies with substrate use 

of different qualities. It may be that fungi which use complex substrates, for instance lignin, have 

higher temperature optima than fungi using simple sugars. Kerry (1990) compared the temperature 

behavior of leaf and litter colonizing fungi and concluded that phyllospheric fungi had a lower 

temperature optimum than saprotrophic fungi feeding on more complex material.  

Response of bacterial taxa to temperature and substrate quality variations 

To decipher the soil microbial community’s abundance and respiration responses to changing 

temperature and C resource quality, we investigated eight bacterial taxa using a quantitative PCR 

approach (Figs. 5 and S6). Investigated taxa in our study are among the most dominant found in 

soil systems at the global scale, as recently suggested by Delgado-Baquerizo et al. (2018). 

Therefore, by targeting these taxa, we sought to identify a great diversity of bacteria and include 

their response to our experimental amendments. PCA projections using taxon relative abundance 

confirmed significant interactive controls of temperature and substrate quality over microbial 

community composition in both study regions and analysis of variance further indicated the 

substrate effect alone being the largest (Figs. 5 and S6). Association with temperature has been 

shown previously, even at the global scale, to be among the best predictors of microbial abundance 

(Delgado-Baquerizo et al., 2018). However, associating changes in microbial community 

composition due to, for example, temperature or resource quality through use of taxa specific 

information can be challenging. Microbial processes, such as decomposition of organic C of 
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varying complexity, may be the result of myriad integrated metabolic pathways that can be carried 

out by a broad range of taxa (Fierer, 2017). That could be one reason that no clear trends were seen 

for a temperature- and / or substrate-specific taxon response in our study. Therefore, distinguishing 

different taxa based on some shared life strategies for survival under specific environmental 

conditions, for example copiotrophic vs oligotrophic, may be more meaningful. We would expect 

a relatively higher association of oligotrophs with the soils amended with complex substrates (CA 

and xylan), but expect copiotrophs to be more strongly associated with the soils amended with 

relatively labile substrates (CB). Consistent with these interpretations, taxa which represent 

oligotrophs such as Alphaproteobacteria and Acidobacteria (Goldfarb et al., 2011) were associated 

more with the un-amended controls and complex C substrates (CA or xylan), whereas taxa 

exhibiting copiotrophic behavior such as Actinobacteria (Goldfarb et al., 2011) were associated 

more with CB amended soils (Figs. 5 and S6). Copiotrophic bacteria, including Betaproteobacteria 

and Bacteroidetes (Goldfarb et al., 2011), were also associated with CB amended soils along PC2 

in the Kraichgau; however, in the Swabian Alb, they were associated with xylan (a somewhat 

complex substrate) and un-amended controls incubated for 7 days. This overlapping utilization of 

labile with rather complex substrates, despite regional climatic and geological differences between 

study regions, could be attributed to non-specific or broad substrate utilization spectra of these taxa. 

Fierer et al. (2007) argued against distinct categorization of Betaproteobacteria and Bacteroidetes 

as copiotrophic or oligotrophic due to evidence that certain members of these taxa could behave 

otherwise. Therefore, further research is needed to improve our understanding of the metabolic 

plasticity of soil bacteria in their ability to decompose substrates of different qualities to better 

predict climate-induced temperature variations. 

Different microbial biomarkers vary in their response to temperature and substrate quality 

The bacterial community’s response to changing temperature, as measured by 16S rRNA gene 

abundance, was opposite that observed in the bacterial PLFA biomarkers (Figs. 2 and 4). Even 

though the variation between replicate samples could be higher in a qPCR compared to PLFA 

assay, these two methods of microbial biomass estimation have been positively correlated to each 

other (Zhang et al., 2017; Orwin et al., 2018). The opposite behavior of bacterial PLFAs and gene 

abundances may have been due to differences in gene copy numbers and different percentages of 

relic DNA of specific bacterial taxa. The copy numbers of 16S rRNA from different bacterial 
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genomes vary from one to as many as 17 per genome (Klappenbach et al., 2000; Větrovský and 

Baldrian, 2013; Stoddard et al., 2015). We observed an increase in the absolute abundances of 

different taxa at 25 °C (compared to un-amended controls, Table S3) which are known to have 

more than one 16S rRNA gene copy; for instance, Proteobacteria, Fimicutes, and Actinobacteria 

(Stoddard et al., 2015), which was not reflected in the bacterial PLFA data. An alternative 

explanation could be differences in the ratio of DNA extracted either from active cells or from 

extracellular DNA (relic or historical DNA) of different taxa (Fierer, 2017). Relic DNA, which is 

found in cells with compromised cytoplasmic membranes, may increase bacterial diversity 

estimates by more than 40% (Carini et al., 2016; Fierer, 2017). Nevertheless, discrepancy between 

microbial PLFA and 16S rRNA gene analysis might also be caused by stress-induced changes in 

microbial PLFA pattern with soil warming (see discussion above), which may not be reflected in 

16S rRNA analysis. For example, Schindlbacher et al. (2011) observed no significant warming 

effect on microbial community composition but warming soil for 5 years led to increased 

abundance of PLFA stress biomarkers. Therefore, soil warming studies performed at a short time 

scale may produce different results due to choice of biomarker of microbial community 

composition. In comparison, studies performed at a longer time scale may be independent of 

biomarker bias, for example, due to adaptation of microbial community to temperature and altered 

substrate availability and quality (Bradford, 2013).  

The two fungal markers (ergosterol and fungal PLFA) were not comparable after the addition of 

CA: whereas ergosterol content increased under this condition at 15 °C, the fungal PLFA did not 

increase (Figs. 3 and S4). Differences in coverage of specific fungal groups by the two biomarkers 

could explain these results: ergosterol is mainly produced by higher fungi, for instance, 

Ascomycetes and Basidiomycetes and these groups are also typically known to decompose complex 

substrates such as lignin (Weete and Gandhi, 1997; Hanson et al., 2008). Other classes of fungi, 

such as. Zygomycetes, include fast-growing organisms. Some of these may lack ergosterol (e.g. 

Mortierellales), vary in their fungal fatty acid profiles (linoleic acid) and decompose relatively 

labile C (Stahl and Klug, 1996; Weete and Gandhi, 1999; Hanson et al., 2008; Richardson, 2009; 

Ruess and Chamberlain, 2010). Similar correlations frequently found in the literature between the 

two biomarkers (e.g. by Müller et al. 2016) may hold true only for ecosystems with similar substrate 

quality and temperature variation.  
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6.5 Conclusions 

It is crucial to understand how soil microorganisms respond to environmental changes because of 

their importance in carbon cycling. Our aim was to test whether soil temperature, substrate quality, 

and their interactive effects modify the abundance of soil bacteria and fungi, the key players 

involved in SOC decomposition, in geographically different regions and under different land-uses. 

The much larger impact of temperature and substrate quality rather than region and land-use on 

microbial abundance identified the first two factors as having important implications for 

understanding the response of C cycling in soils. Strong stress response of soil bacteria and fungi 

to increasing temperature that resulted in high respiration, but reduced biomass indicates that 

climate warming could provide positive feedback to climate change at a short time scale. 

Temperature increase also affected fungal biomass more negatively than the bacterial biomass 

further complementing the positive feedback response considering the fungal role in SOC 

stabilization and C sequestration. However, the strength of this feedback would depend upon the 

strength of respiration increase vs biomass reduction. At a longer time scale, reduced microbial 

biomass may results in reduced SOC decomposition and, together with possible adjustments in 

microbial carbon use efficiencies (Frey et al., 2013; Tucker et al., 2013) reduce the intensity of this 

positive feedback. Our results provide evidence that substrate quality partly controls the 

temperature response of soil microbial communities. In total, the observed complex interactions 

between different groups of soil microorganisms, substrate quality, and temperature, gave evidence 

that the response of carbon fluxes to climate change will be strongly driven by shifts in microbial 

community’s functionality.  
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Abstract 

Even small changes in microbial decomposition rates of soil organic carbon (SOC) at the regional 

scale have the potential to modify land-atmospheric feedbacks at the global scale. Limited 

understanding of the regulation of microbial driven processes has led to major uncertainty in global 

SOC estimates. Therefore, to better understand the large scale processes controlling SOC 

dynamics, we examined the influence of SOC quantity, quality, and soil physical and biochemical 

properties on soil basal respiration and of the temperature sensitivities (Q10) of soil respiration and 

enzymes (β-glucosidase and xylanase) at two scales: landscape (two individual areas, each 

approximately 27 km2) and regional (pooled data of both areas). Soil samples (0-30 cm soil depth) 

originated from 41 agricultural sites distributed over two areas in southwest Germany differing in 

climatic and geological conditions. We used a two-step data analysis procedure; variable selection 

through random Forest regression, followed by shortlisting of significant explanatory variables 

using linear mixed-effect models. Microbial biomass regulated soil basal respiration at both scales, 

whereas soil C:N ratio played an important role only at the regional scale based on mixed-effect 

models. Soil texture significantly explained temperature sensitivity (Q10) of soil respiration at both 

scales. Different SOC quality fractions characterized by midDRIFTS played a minor role, whereas 

extractable organic C related negatively to the respiration Q10. Soil properties controlling soil 

enzymes (Q10) were scale-specific. We found pH to be the main factor affecting β-glucosidase Q10 

at the landscape scale. We argue that scale-specificity of variables may depend on homogeneity of 

study areas and should be considered when exploring SOC dynamics. Our study identified direct 

and indirect controlling factors affecting soil basal respiration and its temperature sensitivity, 

providing vital information for SOC dynamics at large scales.  
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7.1 Introduction 

Soil respiration, a primary pathway of soil organic carbon (SOC) loss, plays a significant role in 

the global C cycle (Chen et al., 2015; Jiang et al., 2015). Globally, 50 – 90 Pg CO2-C per year are 

emitted from soils into the atmosphere and it has been suggested that ongoing global warming will 

increase this flux (Del Grosso et al., 2005; Bond-Lamberty and Thomson, 2010; Subke and Bahn, 

2010). Recent studies have estimated global SOC stocks of 510 to 3040 Pg C, a six-fold variation 

using different models (Todd-Brown et al., 2013), resulting in uncertainty about the response of 

soil C to changing climate. This demonstrates the need for a better mechanistic understanding of 

SOC decomposition at large scales (Todd-Brown et al., 2013; Hararuk et al., 2015). 

SOC dynamics are controlled by factors like climate, landscape position and biotic properties as 

well as their complex interactions (Burke et al., 1989; Luo et al., 2017b). For example in regions 

with similar mineralogy, clay content is usually highly related to SOC stabilization (Burke et al., 

1989). Doetterl et al. (2013) demonstrated, however, that understanding spatially variable SOC 

stocks requires the consideration of multiple environmental processes. Therefore, landscapes 

differing in the above mentioned soil forming factors might show specific controls of climatic and 

soil physicochemical and biotic properties on SOC dynamics that demand investigation. Although 

soil respiration is the primary process by which C is released from the soil, little information about 

its regulation at the regional scale is available. In the few studies which have focused on the main 

factors influencing soil respiration, the use of a broad range of explanatory variables such as SOC, 

soil bulk density and texture, total nitrogen (TN), pH, and C:N ratio have thus far not provided a 

clear picture at landscape and regional scales (Friedel et al., 2006; Chen et al., 2010; He et al., 

2015). 

Soil temperature plays an important role in SOC dynamics with usually negative association to 

SOC density, observed even at large scales (Wang et al., 2014). Since microbial processes largely 

control the decomposition and stabilization of SOC, the temperature sensitivity of microbial 

respiration is likely to have a strong influence on the response of SOC content to global warming 

(Meier et al., 2010; Wieder et al., 2015). On the regional scale, temperature sensitivity of SOC 

decomposition may be controlled by site specific soil properties such as substrate quality and 

quantity, as well as other physicochemical soil properties including pH, soil moisture, diffusion 
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limitation, and soil texture (Davidson and Janssens, 2006; Lützow and Kögel-Knabner, 2009b; 

Suseela et al., 2012; Yu et al., 2015). Stabilization of available substrate by physical and chemical 

processes, e.g. isolation within soil aggregates and adsorption onto mineral surfaces, along with its 

spatial distribution, may also restrict a SOC decomposition response to temperature (Davidson and 

Janssens, 2006; Poll et al., 2006; Kemmitt et al., 2008; Lützow and Kögel-Knabner, 2009b). 

Chemical recalcitrance of SOC is also one of the major constraints on the temperature response of 

decomposition, although contradictory results have been reported (Fang et al., 2005; Knorr et al., 

2005; Conen et al., 2006; Fierer et al., 2006; Benbi et al., 2014; Xu et al., 2014). Characterizing 

SOC quality is, therefore, a promising tool for explaining regional variation in the temperature 

response of soil respiration.  

The quality of SOC has been characterized by a variety of techniques (Lützow et al., 2007). Diffuse 

Reflectance Fourier Transform mid-infrared Spectroscopy (midDRIFTS) is a high throughput 

method that has been successfully applied to characterize SOC fractions (Demyan et al., 2013; 

Kunlanit et al., 2014) making this technique useful for studies at large scales with many samples. 

Many studies have shown mid-infrared spectral changes both in applied residues and bulk soil 

during incubation (Spaccini et al., 2001; Calderón et al., 2011; Kunlanit et al., 2014). Studies have 

also shown differing functional group contributions between light and heavy soil organic matter 

fractions (Demyan et al., 2012). However, as with other analytical methods, midDRIFTS might 

have its limits such as overlapping peaks resulting from more than one vibrational functional group 

and the fact that the spectrum is a result of vibrations of both mineral and organic components 

(Demyan et al., 2012).  

Microbially produced enzymes mediate the rate-limiting step of SOC depolymerization (Kandeler 

et al., 2006; Min et al., 2014) and a considerable proportion of heterotrophic respiration is 

controlled by the enzyme activities (Dungait et al., 2012; Ali et al., 2015). To improve our 

understanding of the temperature sensitivity of soil respiration, it is therefore important to 

investigate the factors controlling the temperature response of enzyme activities. High temperatures 

accelerate microbial decomposition of SOC by increasing activities of soil enzymes (Wallenstein 

et al., 2011), while quantity of organic matter may control or mask the temperature effect on 

enzyme activities. For example, German et al. (2011) found as much as a 50 % decrease in starch 

mineralization when its relative contribution was below ca. 10 % of the total SOC due to a reduction 
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in starch-degrading enzymes. Trasar-Cepeda et al. (2007) found increasing activation energies in 

soils with increasing amounts of SOC; however, this effect was enzyme dependent. Also changes 

in microbial community composition may lead to a different spectrum of enzymes and isoenzymes 

which in turn might have different responses to temperature, thus affecting the observed enzyme 

temperature sensitivities from C substrates (Davidson and Janssens, 2006; Ali et al., 2015). 

In the present study, we sampled soils from two landscapes differing in climatic and edaphic 

conditions and investigated the data at two scales: landscape scale (representing the two individual 

areas; the Kraichgau and the Swabian Alb, each around 27 km2) and regional scale (representing 

pooled data of both areas, situated approximately 95 km apart from each other). The objective was 

to investigate the specificity of the factors explaining SOC decomposition dynamics to landscapes 

differing in their climatic, physicochemical, and biotic properties. We hypothesized that the quality 

of SOC, as characterized by midDRIFTS, would be a primary factor in explaining basal respiration 

and its temperature sensitivity due to its respective lability and relevance for microbially-mediated 

decomposition (soil respiration and enzyme activities). We related landscape / regional variation 

in basal soil respiration, its short-term temperature sensitivity, and the temperature responses of 

two soil enzymes degrading SOC of varying complexities (β-glucosidase and xylanase), to a set of 

biotic, physical and chemical soil properties.   
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7.2 Materials and methods 

Study areas and soil sampling 

The two areas of the present study are located in southwest Germany and are part of the integrated 

research project “Agricultural Landscapes under Global Climate Change – Processes and 

Feedbacks on Regional Scale” (http://klimawandel.uni-hohenheim.de/) of the German Research 

Foundation (DFG). The first area lies in the central Swabian Alb (500 – 850 m a.s.l,) characterized 

by extensively used grass- and croplands with a cool and humid climate (mean annual temperature 

of 7.0 °C, precipitation 800 – 1000 mm). Soils in this area developed mainly from Jurassic 

limestone into shallow and stony Leptosols (WRB, 2007). The second is the Kraichgau area (100 

– 400 m a.s.l), which is largely covered with loess and is a fertile and intensively cropped hilly 

area. Soils in the Kraichgau developed mainly into Regosols and Luvisols (WRB, 2007). In 

comparison to the Swabian Alb, the Kraichgau is characterized by a warmer and drier climate 

(mean annual temperature of 9.3 °C, precipitation 720 – 830 mm). Average total nitrogen 

fertilization (between 2010 and 2012) was 227 kg N ha–1 in the Kraichgau (170 – 274 kg N ha–1) 

and 216 kg N ha–1 in the Swabian Alb (180 – 244 kg N ha–1). In 2009, soil moisture networks 

within 27 km2 domains were installed on agricultural fields in each landscape and consisted of 20 

sites in the Swabian Alb and 21 in the Kraichgau (Fig. S7.1). At each site, soil temperature, 

moisture and precipitation data are continuously recorded. Soil type at each individual site belongs 

to the main soil types of that landscape. Common crops grown in both landscapes included 

Rapeseed (Brassica napus), Mustard (Sinapis arvensis), Barley (Hordeum vulgare), Spelt 

(Triticum spelta), Wheat (Triticum aestivum) and Pea (Pisum sativum), whereas the Swabian Alb 

had in addition to above mentioned crops also Maize (Zea mays), Oats (Avena) and different species 

of clover (Trifolium). For a detailed description of the moisture networks, we refer to Poltoradnev 

et al. (2015). Soil samples from these 41 soil moisture network sites were collected between 17 

April and 9 May, 2013. Four soil cores (Ø 2.5 cm) to 30 cm depth were taken from each site, and 

mixed thoroughly to get one composite sample per site. Samples were kept in cooling boxes, 

transferred to the laboratory, sieved through a <2 mm sieve and stored at –24 °C until further 

analysis. Studies have shown no considerable effects of freezing soils to –20 ± 2 °C on soil 

properties like microbial biomass and basal soil respiration (Stenberg et al., 1998). 
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SOC characterization 

SOC was characterized by Diffuse Reflectance Fourier Transform mid-Infrared Spectroscopy 

(midDRIFTS). With this technique, organic and inorganic functional groups are characterized by 

the reflectance of their characteristic bending and stretching vibrations in the mid-infrared range. 

Soil samples were ball milled and dried overnight at 32 °C before measurement. Soil spectra were 

scanned on a Tensor-27 Fourier transform spectrometer (Bruker Optik GmbH, Ettlingen, Germany) 

equipped with a liquid N cooled mid-band mercury-cadmium-telluride detector and potassium 

bromide beam splitter. A Praying Mantis diffuse reflectance chamber (Harrick Scientific Products, 

New York, USA) purged with dry air (200 liters hour–1 flow rate) using a compressor (Jun-Air 

International, Nørresundby, Denmark) was mounted to the spectrometer system. Sixteen individual 

scans at a resolution of 4 cm–1 were combined to record the spectra in the mid-infrared range (4000 

to 400 cm–1). Each sample was measured three times to gain a representative spectrum. Deeper 

insights into the methodology used are given in Demyan et al. (2012). Peaks at 2930, 1620, 1530 

and 1159 cm–1, integrated with a local baseline for correction, were selected as indicators of organic 

functional groups representing a range of stabilities within SOM (Demyan et al., 2012). The peak 

at 2930 cm–1 was assigned to C-H vibrations (Stevenson, 1994), the peak at 1620 cm–1 to aromatic 

C=C and/or asymmetric –COO– stretching (Baes and Bloom, 1989), the peak at 1530 cm–1 to 

aromatic C=C stretching, and the peak at 1159 cm–1 to C–O of both polyalcoholic and ether groups 

(Spaccini and Piccolo, 2007). Relative peak area, with respect to the sum of the 4 peaks (e.g. 

denoted as r_2930 representing relative peak area at 2930 cm–1), was taken as indicator for shifts 

in the chemical composition of SOC, i.e. in the quality of SOC. The limits of the individual peaks 

are given in Fig. 7.1. The peak at 2930 cm–1 was corrected for carbonate interference as calcite and 

dolomite have overlapping peaks with aliphatic vibrations (Mirzaeitalarposhti et al., 2016). 
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Fig. 7.1 Baseline corrected midDRIFTS spectra from the bulk soil of the Kraichgau (n = 21) 
and the Swabian Alb (n = 20). The lines (solid and dotted) are the average of all spectra 
from the respective landscape with the error envelope ± one standard deviation. The 
grey shaded bars show the integrated regions used for further analysis. 

Soil biotic properties 

Chloroform fumigation-extraction was used to determine microbial biomass carbon (Cmic) and 

nitrogen (Nmic) content (Vance et al., 1987). Briefly, 10 g thawed, field moist soil from each sample 

was fumigated for at least 24 h under alcohol–free chloroform fumes. One non-fumigated sample 

from each was taken as the control. Extraction of fumigated and control samples was done by 

adding 40 ml of 0.5 M K2SO4, followed by shaking (30 min at 250 rev min–1) and centrifugation 

(30 min at 4422 x g). Organic C in supernatant was measured with a DOC/TN analyzer (Multi N/C 

2100S, Analytik Jena, Germany). Organic C of control samples was subtracted from fumigated 
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samples and converted into Cmic and Nmic using the kec factor 0.45 (Joergensen, 1996) and ken factor 

0.54 (Joergensen and Mueller, 1996), respectively. Extractable organic carbon (EOC) and nitrogen 

(EN) were calculated from the control samples. 

Soil fungal biomass was assessed by measuring ergosterol content as a biomarker for fungi 

following a modified method of Djajakirana et al. (1996). Briefly, 1 g thawed field moist soil was 

extracted with 50 ml ethanol by shaking at 250 rev min–1 on a horizontal shaker followed by 

centrifugation at 4422 x g for 30 minutes. Twenty ml supernatant solution was dried at 50 °C in a 

vacuum rotary evaporator (Martin Christ, RVC 2-25, Osterode am Harz, Germany), dissolved in 1 

ml methanol, then transferred to 2 ml brown HPLC (High Performance Liquid Chromatography) 

vials through a 0.45 µm cellulose-acetate filter (Sartorius Stedim Biotech GmbH, Germany). 

Extracted ergosterol content was measured with HPLC (150 x 3 mm AquaPerfect C18, 3 µm 

column, flow rate 0.5 ml min–1, detection wavelength 282 nm) using pure methanol as the mobile 

phase. A standard curve was obtained by using different dilutions of pure ergosterol (Sigma-

Aldrich, St. Louis, USA) with final concentrations of 0.1, 0.2, 0.5, 1, 2, and 5 µg ergosterol ml–1. 

Soil physicochemical properties 

Total carbon (TC) and total nitrogen (TN) were measured with the elemental analyzer MACRO 

(Elementar Analysensysteme GmbH, Hanau, Germany). Carbonate content was determined using 

the Scheibler method (Schlichting et al., 1995); treating approximately 1 g soil with HCl for 

volumetric determination of evolved CO2. Soil organic C was calculated by subtracting carbonate 

from TC. pH was determined from 2 g soil suspended in 5 ml of 0.01 M CaCl2 solution using a 

glass electrode pH meter. Mineral nitrogen (Nmin), as the sum of ammonium (NH4
+) and nitrate 

(NO3
−), was measured from non-fumigated control extracts of the chloroform-fumigation analysis 

(see above), using an AutoAnalyzer 3 (Bran & Luebbe, Norderstedt, Germany). Soil texture was 

measured from individual samples as explained by Poltoradnev et al. (2015). 

Temperature sensitivity of soil respiration and enzymes 

Temperature sensitivity of SOC decomposition was assessed by measurement of microbial 

respiration rates via an automated respirometer based on electrolytic oxygen (O2) micro-

compensation (Scheu, 1992). Moist soil (60 % WHC) equivalent to 4 g dry soil was incubated at 
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four different temperatures; 10, 17, 24, and 31 °C. Incubation at each temperature step lasted for > 

72 h (O2 consumption reached basal rates after 48 h in a preliminary experiment). The following 

exponential function (Eq. (7.1)) was applied to the average basal respiration rate between 49–72 h 

to calculate the Q10 (denoted by RQ10 hereafter) values (Eq. (7.2)) of SOC decomposition: 

݇ሺܶሻ ൌ ݇଴	݁௔்         (7.1) 

ܳଵ଴ ൌ ݁ଵ଴	ൈ	௔          (7.2) 

Where T is the incubation temperature (°C), k0 is the intercept with y-axis at T = 0 °C and a is the 

exponential coefficient. 

Soil enzyme responses to changing soil temperature were assessed by conducting enzyme assays 

at five different temperature steps (β-glucosidase: 6, 12, 18, 24 and 30 °C; xylanase: 6, 17, 28, 39 

and 50 °C). Activities of β-glucosidase and xylanase measured at 30 and 50 °C respectively, were 

considered as their potential activities (Marx et al., 2001; Ali et al., 2015). The enzymes β-

glucosidase and xylanase target organic matter, and refer to the labile and relatively complex C 

pools, respectively (Schinner and Mersi, 1990; Acosta-Martínez and Tabatabai, 2000). 

Temperature sensitivity of β-glucosidase activity was measured in 1 g soil using 1 mM substrate 

concentration (4-methylumbelliferyl-b-D-glucopyranoside), whereas for the xylanase activity 

measurement, 5 g soil were incubated with 15 ml of 1.2 % xylan solution. Both enzyme activities 

were measured using 96-well microplates on a micro plate reader. Assay specific steps for 

measuring temperature sensitivities of individual enzymes are described in Ali et al. (2015). 

Exponential functions (Eq. (7.1)) were fitted to measured enzyme activities at different 

temperatures to determine exponential coefficients, which were further used to calculate the Q10 

values (Eq. (7.2)) for individual enzymes. 

Extracting factors affecting Q10 of soil enzymes and respiration 

A two-step methodology was used to simplify the data analysis procedure; step one included 

parameter selection through random forests (RF) regression analysis, and in step two the selected 

parameters from RF regression analysis were used in linear mixed-effect models. In step one, a 

machine-learning tree ensemble method, RF (randomForest function of the randomForest package 
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in R version 3.3.2) (Liaw and Wiener, 2002), was used for regression analysis with basal 

respiration, its Q10 and the Q10 values of soil enzymes as response or dependent variables, 

separately, and the other measured soil properties as independent variables using the R language 

for statistical computation (R Core Team, 2017). RF is a widely used method to find variables 

relevant to response variable for interpretation purpose or to reduce the number of variables for 

further analysis. The process involved ranking explanatory variables (500 regression trees; where 

in a grown tree, each node is split using the best predictor variable among a subset of randomly 

chosen at that node) using variable importance (VI) scores. When two highly correlated variables 

were selected in a single model, the variable with the lower rank was removed (ranking based on 

Person’s correlation ≥ 0.90) to avoid collinearity, then new trees were calculated. Variable 

importance scores were averaged over the models to get a final importance value for each variable. 

To isolate the most important factors explaining the variability of Q10 values, from the tree 

ensemble model output a relative VI threshold was set as described by Hobley et al. (2015). 

Variables with VI higher than the set threshold were further used to inform linear mixed-effect 

models (lme function of the nlme package) (Pinheiro et al., 2015). Predictive variables were taken 

as fixed effects and a constant independent variable with a random intercept. Different 

autocorrelation structures were incorporated into the mixed-effect models with respect to the 

coordinates of the soil sampling points in each area (compound symmetry structure corresponding 

to uniform correlation, or an exponential spatial correlation structure). 

Within the linear mixed-effect models, a sequential variable-drop-strategy was followed for model 

simplification to get the final model output. To achieve this, variables with the lowest significance 

(based on the p-value) were dropped and models were re-run until all the variables retained were 

significant. The final model was selected based on the Akaike information criterion (AIC). Models 

with the lowest AIC value were considered best resulting in some models with non-significant 

variables.  

Since linear mixed-effect models have no well-established r2 statistics, fitted lme model 

performance was assessed by calculating likelihood-ratio-based r2, an r2-like statistic, as described 

by Sun et al. (2010). Calculating such a r2-like statistics allows comparing different models with 

each other and helps to find out associated variance-covariance structures of different fixed effects 
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within mixed-effect models (Sun et al., 2010). We used r2 of the final lme model to extract the 

relative importance of each significant variable in explaining the observed variation of each 

response factor by dropping them one at a time and observing changes in the model r2.  

The entire variable selection procedure explained above was also applied to soil respiration 

measured at 31 °C in order to find the variables that could be used as indicators of soil respiration 

efflux at the landscape and the regional scales. Soil respiration data were normalized with respect 

to SOC content at each site as were the microbial properties (Cmic, ergosterol and enzyme potential 

activities).  
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7.3 Results 

Biotic and abiotic site properties 

The relative contributions of organic C quality indices areas characterized by midDRIFTS, 

averaged over the sampling sites, differed significantly (P < 0.001) between the Kraichgau and the 

Swabian Alb except for the peak area at 1159 cm–1 (Fig. 7.1 & Table S7.1). The peak at 1620 cm–

1 contributed most to the total relative area (i.e. highest contribution to the sum of four selected 

peaks), followed by the peaks at 2930, 1159 and 1530 cm–1. In the Swabian Alb, abundance of peak 

at 2930 cm–1, representing the aliphatic C-H stretching, was twice that of Kraichgau (Table 7.1). 

SOC, carbonate, TN, EOC, EN and Nmin (NH4
+, NO3

–) were also higher in the Swabian Alb than 

in the Kraichgau. There was considerable variation in all soil properties within and between the 

two landscapes. Potential xylanase activities related positively and C:N related negatively to basal 

respiration at both landscape and regional scales, however, their relationship was significant (P < 

0.05) only at the regional scale. Other properties that showed significant (P < 0.05) correlations to 

basal respiration at the regional scale included SOC, TN, EN, NO3
– and soil texture (Table S7.2). 

The RQ10 and Q10 of β-glucosidase and xylanase activities exhibited different but non-significant 

correlations to the explanatory variables at both landscape and regional scales (Table S7.2). 
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Table 7.1 SOC chemical quality indices (represented by stretching and vibrations of different C 
groups at peaks 2930, 1620, 1530 and 1159 cm–1) as well as measured soil physical, 
chemical, and biotic properties in the Kraichgau and the Swabian Alb. Values represent 
average, standard deviation, and coefficient of variation of the sites from the Kraichgau 
(n = 21) and the Swabian Alb (n = 19). 

 
  Kraichgau  Swabian Alb 
Variables Average Std.dev CV (%)  Average Std.dev CV (%)

r_2930 (cm–1) 20.06 10.73 53 41.98 15.73 37 

r_1620 (cm–1) 67.56 8.37 12 47.66 12.53 26 

r_1530 (cm–1) 3.05 1.12 37 1.36 1.08 79 

r_1159 (cm–1) 9.44 1.79 19 9.01 3.00 33 
pH 6.68 0.83 12 6.84 0.72 10 
SOC (%) 0.97 0.19 19 2.82 0.80 29 
Carbonate-C (%) 0.48 0.79 167 0.83 1.29 156 
TN (%) 0.12 0.02 15 0.31 0.08 27 
Soil C:N 7.85 1.29 16 8.95 0.63 7 

Cmic (µg C mg–1 SOC) 180.11 48.24 27 174.88 42.70 24 

Nmic (µg N mg–1 SOC) 20.58 7.41 36 22.59 7.07 31 

EOC (µg g–1 soil) 50.28 8.11 16 80.59 30.10 37 

EN (µg g–1 soil) 20.59 7.53 37 37.88 12.19 32 

NO3
- (µg g–1 soil) 21.63 11.54 53 46.91 16.17 34 

NH4
+ (µg g–1 soil) 1.67 0.73 44 2.32 2.18 94 

Clay (%) 22.42 4.93 22 52.34 13.41 26 
Sand (%) 4.36 2.83 65 3.70 2.06 56 
Silt (%) 73.22 5.26 7 45.92 12.87 28 

Ergosterol (µg mg–1 SOC) 1.40 0.48 34  0.94 0.26 27 
EOC = extractable organic C 

Temperature sensitivity of soil respiration and enzyme activities 

Basal soil respiration (at 31 °C measured as O2 consumption) ranged from 1.47 – 2.86 and 0.74 – 

2.42 µg O2 mg–1 SOC h–1 in the Kraichgau and the Swabian Alb, respectively (Fig. 7.2). Soil 

respiration increased with increasing temperature in the short-term incubation experiments, with 

the lowest flux recorded at 10 °C and highest at 31 °C (Fig. S7.2). At all temperature steps, we 

recorded 54 – 91 % higher relative soil respiration from the Kraichgau samples than from the 

Swabian Alb. Temperature sensitivity of soil respiration was not significantly different between 
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the two study areas (Fig. 7.3). We recorded similar variations in RQ10 values in the Kraichgau and 

the Swabian Alb (coefficients of variation 14 and 13 %, respectively) ranging from 1.37 to 2.67 in 

the Kraichgau (median 1.95) and from 1.47 to 2.60 in the Swabian Alb (median 1.88). At the 

regional scale, the RQ10 coefficient of variation was 13 % (median 1.90). 

 

Fig. 7.2  Basal soil respiration (measured at 31 °C) and potential activities of β-glucosidase 
(measured at 30 °C) and xylanase (measured at 50 °C) for the Kraichgau (n = 21) and 
the Swabian Alb (n = 19). 

 

Enzyme potential activities in the Kraichgau ranged from 183 – 507 nmol mg–1 SOC h–1 for β-

glucosidase and 256 – 772 µg GE mg–1 SOC 24 h–1 for xylanase (Fig. 7.2). In the Swabian Alb, 

potential enzyme activities ranged from 102 – 443 nmol mg–1 SOC h–1 and 92 – 351 µg GE mg–1 

SOC 24 h–1 for β-glucosidase and xylanase, respectively. Over the incubation temperature range, 

β-glucosidase activities were 10 – 25 % and xylanase activities 63 – 150 % higher in the Kraichgau 

than in the Swabian Alb (Fig. S7.3). The two landscapes did not differ significantly from each other 

with respect to the Q10 of soil enzymes (Fig. 7.3). β-glucosidase Q10 ranged from 1.42 to 2.18 

(median 1.82) in the Kraichgau and 1.51 to 1.94 (median 1.76) in the Swabian Alb with greater 

variability in the Kraichgau (CV 11 %) than the Swabian Alb (CV 6 %). Xylanase Q10 ranged from 
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1.34 – 2.80 (median 1.65, CV 19 %) in the Kraichgau and 1.31 – 1.87 (median 1.59, CV 10 %) in 

the Swabian Alb. At the regional scale, β-glucosidase Q10 values were slightly higher (median 1.77, 

CV 9 %) than were those of xylanase (median 1.61, CV 16 %). 

 

Fig. 7.3  Temperature sensitivities of soil respiration and the two enzymes (β-glucosidase and 
xylanase) for the Kraichgau (n = 21) and the Swabian Alb (n = 19). 

 

Variable selection by tree ensemble models 

At the landscape scale 

The variable selection procedure by tree ensemble models extracted C:N, pH and soil texture as 

common explanatory variables explaining soil basal respiration in both landscapes; soil organic C 

quantity was most important in the Kraichgau and soil carbonate in the Swabian Alb (Fig. S7.4 

a,b). Explanatory variables for the Q10 of soil respiration were clay, ranked highest in importance 

in the Kraichgau, and ammonium in the Swabian Alb. Other variables which ranked important in 

both landscapes included EOC, TN, pH, r_1159 and sand (Fig. S7.4 c,b). To explain the Q10 of β-

glucosidase, pH and SOC were the two most important variables in both landscapes (Fig. S7.5 a,b), 
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whereas ammonium and potential xylanase activities ranked highest in explaining the Q10 of 

xylanase (Fig. S7.5 c,d). 

At the regional scale 

Tree ensemble models selected SOC, soil texture, Cmic, potential xylanase activities and organic C 

quality indices as important variables in explaining basal respiration and its temperature sensitivity. 

SOC ranked highest in importance in explaining RQ10; however, it ranked second in explaining 

basal respiration after C:N (Fig. S7.6). Soil texture, organic C quality indices, pH, carbonate, 

potential β-glucosidase activities, and fungal biomass were important explanatory variables 

common to both β-glucosidase and xylanase with respect to temperature sensitivities (Fig. S7.6). 

Factors affecting Q10 variation in soil respiration and enzyme activities 

At the landscape scale 

Linear mixed-effect models performed almost equally in selecting factors to explain basal soil 

respiration measured at 31 °C in both areas (58 % explained variance in the Kraichgau and 57 % 

in the Swabian Alb). SOC quantity was significant in explaining basal respiration in the Kraichgau, 

whereas Cmic was significant in the Swabian Alb (Table 7.2). With respect to temperature sensitivity 

of soil respiration, mixed-effect models performed better in the Swabian Alb, explaining 43 % of 

RQ10 variance, compared to 39 % variance explained in the Kraichgau. Soil texture (clay content) 

was the common factor explaining RQ10 in both landscapes. In addition to soil texture, pH was 

significant in explaining RQ10 in the Kraichgau, while in the Swabian Alb quantity of EOC was 

significant (Table 7.2). Soil pH was the most important variable explaining the temperature 

sensitivity of β-glucosidase activities in both landscapes. In the Kraichgau, in addition to potential 

β-glucosidase activities, SOC quantity was significant in explaining β-glucosidase Q10, whereas in 

the Swabian Alb, soil organic C quality (SOC quality indices and C:N) were significant. No 

measured soil properties were considered significant in explaining xylanase Q10 values in the 

Kraichgau, whereas in the Swabian Alb only potential xylanase activities were significant in 

explaining the xylanase Q10 (Table 7.2). 
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At the regional scale 

Pooling the basal soil respiration data of the two landscapes improved the performance of the 

mixed-effect model (r2 = 0.65) and identified soil C:N and biotic properties including Cmic and 

potential xylanase activities as significant explanatory variables (Table 7.2). Pooling soil 

respiration temperature sensitivity data decreased the performance of the mixed-effect model (r2 = 

0.17) and resulted in Cmic and soil texture as significant explanatory variables for RQ10 (Table 7.2). 

Potential β-glucosidase activity remained significant at the regional scale in explaining the 

observed β-glucosidase activities’ Q10 values. Although model performance in explaining xylanase 

temperature sensitivity decreased at the regional scale, r_2930 and clay content were selected as 

significant indicators (Table 7.2). 
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Table 7.2 Results of linear mixed-effect models showing explanatory variables for basal soil respiration (31 °C), its temperature sensitivity 
and Q10 of enzyme activities at landscape and regional scales. Arrangement of variables represents significant importance based 
on reduction in the pseudo r2-like parameter calculated by dropping each significant variable one at a time. Decisions on which 
non-significant variables in the model to keep was based on the AIC values. Variables in bold are statistically significant (P < 
0.05). XylQ10 and βQ10 are the Q10 of xylanase and β-glucosidase activities, respectively. 

 
Landscape scale 

Kraichgau  Swabian Alb 
 r2   r2 
 
Basal soil respiration ~ SOC + NH4

+ + Silt 0.58  Basal soil respiration ~ Cmic + β-glucosidase 0.57 
RQ10 ~ Clay + pH 0.39  RQ10 ~ EOC + Clay + r_1159 + NH4

+  0.43 
 
Q10 of enzyme activities 
βQ10 ~ pH + β-glucosidase + Ergosterol + 
SOC

0.45  
βQ10 ~ pH + C:N + r_1530 + NH4

+ + r_1159 + β-glucosidase + 
Carbonate + SOC 

0.90 

XylQ10 ~ r_1159 + β-glucosidase 0.37  XylQ10 ~ Xylanase 0.30 

Regional Scale (pooled data from Kraichgau and Swabian Alb) 
 
Basal soil respiration ~ C:N + Cmic + Xylanase + Nitrate 

 
0.65 

RQ10 ~ Cmic + Silt + Nitrate + r_1159 0.17 
 
Q10 of enzyme activities 

 

βQ10 ~ β-glucosidase + Ergosterol 0.22 

XylQ10 ~ r_2930 + Clay 0.19 
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7.4 Discussion 

Given the large variations in predicted SOC estimates, it is important to identify and understand 

the control mechanisms of SOC decomposition dynamics that may help to make SOC estimates 

more accurate. Integrating spatially variable Q10 values in global soil respiration models have been 

shown to increase total (40 %) and microbial (25 %) respiration (Zhou et al., 2009). The spatial 

variability of soil respiration Q10 and its control factors have also been measured for different 

regions and ecosystems with varying properties (Zheng et al., 2009; Liu et al., 2017). In this study, 

we have investigated the specificity of the factors explaining SOC dynamics (soil respiration, its 

temperature sensitivity and sensitivity of two enzymes) to two landscapes differing in their climatic 

and edaphic conditions at two spatial scales: landscape scale (representing the two individual areas) 

and regional scale (representing pooled data of both landscapes). 

Basal soil respiration 

Basal soil respiration data is presented as specific respiration (i.e. g–1 SOC) to identify underlying 

drivers, which are independent of SOC content. One important aspect to mention here is the control 

of soil moisture over microbial C dynamics; by soil moisture strongly affecting soil respiration 

(Chang et al., 2014). We, however, measured basal soil respiration and its temperature sensitivity 

at optimal moisture content (60 % WHC) and enzyme activities in a soil slurry, which makes the 

control of soil moisture irrelevant. In our study, microbial biomass (Cmic) was the only factor 

significantly explaining basal soil respiration in the Swabian Alb (Table 7.2). An association of soil 

respiration with the Cmic pool has been found in previous studies (Wang et al., 2003; Fraser et al., 

2016) and also been implemented in many decomposition models (Zhang et al., 2014; Wieder et 

al., 2015). However, this relationship is complex and substrate supply to microbial or enzymatic 

sites may be limited by other physio-chemical properties, for instance substrate stabilization in 

micro-aggregates and/or its chemical stabilization at the surface of clay minerals (Birge et al., 

2015). Care must also be taken in directly associating microbial biomass with the respiration flux 

since as temperature increases microbial C use efficiency decreases and more CO2 is respired from 

the same microbial pool (Manzoni et al., 2012b). The fact that Cmic was the only significant 

explanatory variable for basal soil respiration in the Swabian Alb may indicate that Cmic integrates 
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the effects of all habitat conditions, whereas each habitat condition alone may have only a small 

effect. 

Quantity of SOC significantly explained basal soil respiration in the Kraichgau but not in the 

Swabian Alb, where organic C was almost three times higher than in the Kraichgau (Table 7.1). 

Normalization of the respiration data to SOC content, as in our study, neutralizes the overwhelming 

direct effect of SOC quantity on respiration and implies that indirect effects of SOC content 

connected to other factors are important controls on soil respiration. The warmer weather 

conditions of the Kraichgau compared to the Swabian Alb are usually preferable for microbial 

activity, suggesting that labile C sources are more efficiently degraded. This is supported by the 

relative peak area at 2930 cm–1, used as the indicator for a more labile C fraction, which was much 

lower in the Kraichgau than the Swabian Alb (Table 7.1). We argue, therefore, that variability in 

SOC content in the Kraichgau was mainly related to differences in the labile C fractions and that 

this variability strongly influenced soil respiration. In the Kraichgau, therefore, SOC quantity plays 

an important role due to low levels of substrate, whereas in areas with higher SOC content, e.g. the 

Swabian Alb, other physical and biological properties integrate the substrate effect (e.g. Cmic, see 

above). Other studies have shown relative increases in the proportion of labile C with overall 

increasing SOC. Wang et al. (2003) concluded that under optimal temperature and moisture, soil 

respiration is generally limited by substrate available for biological activity. 

At the regional scale, Cmic remained a significant variable, together with soil C:N ratio and potential 

xylanase activities, in explaining basal soil respiration (Table 7.2). Bradford et al. (2017) identified 

microbial biomass as a strong regulator of litter decomposition rates at the regional scale. A study 

by Colman and Schimel (2013) also showed a direct control of microbial biomass over soil 

respiration even at a larger scale than considered in our study. Climate and geology are quite 

homogeneous within the landscape but differ between both landscapes. Still we saw considerable 

variation of measured soil properties within each landscape, but this variation was much larger 

between the landscapes (Table 7.1, Figure S7.7). We suggest, therefore, that the selection of factors 

explaining soil respiration at the landscape or regional scale depends on homogeneity of measured 

variables within the target area. Based on our results, one could select two groups of factors: 1) 

properties that are important as explanatory independent of the spatial scale, e.g. Cmic in our study, 
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and 2) properties that become explanatory as the range of their measured values increase when the 

target area is extended across different landscapes. 

Soil C:N ratio belonged to the second group of factors in our study, with a negative relationship of 

C:N ratio to basal soil respiration (Table 7.2). The effect of C:N ratio on soil basal respiration can 

be interpreted from the perspective of substrate quality. Low C:N ratios are usually associated with 

high quality substrates, which are preferentially degraded by soil microorganisms (Davidson and 

Janssens, 2006; Cong et al., 2015; He and Yu, 2015; Wang et al., 2015). Taking C:N ratio as a 

quality index would, therefore, result in low specific respiration with high C:N ratio. In contrast, a 

high C:N ratio may reduce microbial carbon-use efficiency (CUE) (Manzoni et al., 2012b; Alberti 

et al., 2014). Consequently, increasing nutrient availability, e.g. through N fertilization of 

agricultural systems, may increase microbial CUE, leading to reduced respiration (Manzoni et al., 

2012b). Nevertheless, mechanisms controlling soil C dynamics through nutrient limitation, 

particularly N, are still poorly understood (Alberti et al., 2014) and substrate stoichiometry might 

have an important, yet not fully understood influence on SOC decomposition. 

Temperature sensitivity of soil respiration 

For understanding large scale drivers of soil C dynamics, not only factors driving soil respiration 

but also factors driving its temperature sensitivity are important. The site-specific properties are 

assumed to be in equilibrium at our study sites as no land use change has occurred and therefore, 

microbial communities are adapted to their local environment. Temperature sensitivity of microbial 

respiration (RQ10) observed in both landscapes cover the range previously observed by Poll et al. 

(2013) at the plot scale for an agricultural soil in Germany. Area-specific trends were not visible 

for RQ10 values in this study, which may indicate that similar factors are responsible for within-

area variation of Q10 values in both, the Kraichgau and the Swabian Alb.  

Soil texture was significant in explaining RQ10 in both landscapes of our study (Table 7.2). Previous 

studies have focused on the importance of soil texture from a physico-chemical perspective, with 

a well-established relationship between clay and SOM (Six et al., 2002; Leifeld and Kögel-

Knabner, 2005). However, a microbial C processing perspective is required in order to improve 

our understanding of the factors that control SOC dynamics since microbes are largely responsible 

for SOC decomposition. Since we normalized respiration data to SOC content, we consider, based 
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on our results for basal soil respiration, that the effect of texture on soil respiration via its SOC 

stabilizing function is less important. Nevertheless, it is important to mention here that the 

temperature sensitivity of SOC decomposition may depend on the availability of substrate to soil 

microorganisms/enzymes which in turn is controlled by soil texture through, for example, physical 

protection, sorption to mineral surfaces or co-precipitation with minerals (Oades, 1988; Davidson 

and Janssens, 2006; Haddix et al., 2011). Clay may also control the temperature sensitivity of soil 

respiration through increased soil water holding capacity, soil nutrient availability and changing 

solution chemistry through pH buffering, leading to greater microbial decomposition of available 

organic C or directly by interacting with microbes and altering their metabolism (Sollins et al., 

1996; Chen et al., 2010). Since aggregate turnover, substrate desorption, and diffusion are strongly 

affected by texture and increase with increasing temperatures (Conant et al., 2011), spatial 

heterogeneity in texture may induce differences in the Q10 of soil respiration. Basal respiration is 

measured at a specific temperature and, therefore, this indirect temperature-texture control on RQ10 

may not apply to basal respiration. In addition, temperature-related decomposition of available 

substrate by microbial decomposers might also be controlled by substrate quality, which might be 

regulated by soil texture through mechanisms listed above. In our study, EOC significantly 

explained the RQ10 in the Swabian Alb (Table 7.2). Although there is a considerable debate in the 

literature, many studies argue that high temperature sensitivities are associated with stable organic 

C pools, which have complex structures and require high activation energies (Ea), while low 

temperature sensitivities are associated with labile organic C pools (Fierer et al., 2005; Davidson 

and Janssens, 2006; Hartley and Ineson, 2008). In the Swabian Alb, we observed a weak but 

negative correlation between RQ10 and EOC. We assume that in our study EOC is mainly driven 

by the labile SOC fraction which is relatively easily desorbed from the mineral phase and, therefore, 

it seems to be accessible to the microbes. This was confirmed by a positive correlation of EOC with 

r_2930 (R = 0.50) and a contrasting correlation with r_1620 (R = –0.51). These both peaks 

corresponding to different functional groups (2930 cm–1 to aliphatic and 1620 cm–1 to aromatic) 

have been assumed to represent labile and more stable SOC fractions, respectively (Demyan et al., 

2012). A similar effect was visible when data from both areas were pooled (r_2930, R = 0.56). Our 

study, at least with SOC quality indices used here, supports, therefore, the idea of labile SOC pool 

being negatively associated to the Q10 of soil respiration even at the landscape and regional scale. 
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Of the measured chemical properties, pH was the only variable that significantly explained the 

RQ10 in the Kraichgau (Table 7.2). In a study by Craine et al. (2010), 67 % of the observed variance 

in activation energy of soil organic matter decomposition was explained by pH. This may explain 

the significant role of pH for RQ10 in the Kraichgau, since temperature sensitivity of respiration is 

directly related to the activation energy of the substrates. In addition, soil pH may affect 

temperature related SOC decomposition through direct or indirect control on SOC decomposers or 

SOC availability. Direct pH control could occur by changing bacterial and fungal growth, an effect 

observed previously in different ecosystems (Bååth and Anderson, 2003; Rousk et al., 2009). An 

indirect pH control could be through, e.g., alteration of nutrient availability, substrate solubility, 

and various microbial enzyme activities, which in turn could change microbial resource availability 

(Acosta-Martínez and Tabatabai, 2000; Bååth and Anderson, 2003; Min et al., 2014).  

At the regional scale, soil texture remained a significant factor explaining RQ10 together with Cmic. 

However, pH and SOC quantity, significant at the landscape scale, were not selected as important 

by the mixed-effect models (Table 7.2). Differences in the relevance of environmental factors in 

explaining RQ10 at the landscape and regional scales may indicate that regulation of the temperature 

response of microbial activity differs slightly at these scales. As discussed for basal respiration, 

Cmic may integrate the effects of all habitat conditions, whereas each habitat condition alone may 

have only a small effect. 

Temperature sensitivity of soil enzyme activities 

Roughly half the soil CO2 flux derives from microbial respiration of SOC, and a significant 

proportion of this depends on the activity of soil enzymes, which perform the rate-limiting step in 

SOC decomposition (Wallenstein et al., 2011). Since factors affecting enzyme activities may limit 

C flux to microorganisms, it is important to understand these factors and the temperature related 

enzymatic reactions in order to improve predictions of respiratory C losses from soil. However, a 

challenge remains to determine the controls on the temperature sensitivity of extracellular enzymes 

directly from current enzyme assay procedures. Generally, in enzyme assays, optimal substrate 

concentrations are calibrated to the type of targeted enzymes. Therefore, soil indigenous substrate 

availability may play a very limited role in clarifying observed temperature responses. Other 

controlling factors, e.g., substrate / enzyme diffusion limitations, are also reduced by performing 
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assays in a soil slurry (Ali et al., 2015). An additional challenge that makes the link between 

extracellular enzymes and soil organic C dynamics difficult is their substrate association especially 

in mineral soils. It might be that most of the organic C associated to minerals is of labile quality 

and either not accessible by enzymes due to physical barriers and sorption to mineral surfaces or 

does not require enzymes at all since the investigated enzymes cleave oligomers of very high 

molecular weights or polymers (Davidson and Janssens, 2006; Colman and Schimel, 2013; Schimel 

et al., 2017). We argue, therefore, that biotic and abiotic properties investigated in our study 

influenced temperature responses of measured enzymes only indirectly either by changing the 

abundances of different isoenzymes with specific temperature sensitivities (Wallenstein et al., 

2009; Conant et al., 2011), or by altering their substrate affinity through changes in conformation 

and sorption to mineral surfaces (Davidson and Janssens, 2006; Min et al., 2014). Furthermore, 

temperature itself affects the conformation of enzymes (Daniel et al., 2008) and the thermal optima 

of sorbed enzymes may differ from that of enzymes in solution (Wallenstein and Burns, 2011). 

Soil pH was the most significant factor related to the Q10 of β-glucosidase activities in both 

landscapes (Table 7.2). Soil pH affects microbial biomass, its dynamics, and diversity and, 

therefore, may significantly change enzyme activities (Acosta-Martínez and Tabatabai, 2000). 

Since different isoenzymes have different pH optima (Turner, 2010; Leifeld and Lützow, 2013), 

pH may control temperature sensitivity of enzymes through shifts in the composition of enzyme 

pools. In addition, soil pH also plays an important role in controlling enzyme conformation and its 

sorption onto the soil matrix (Min et al., 2014), which in turn may influence the temperature 

response of enzymatic processes. Min et al. (2014) concluded from their study that ecosystems 

varying in soil pH may have distinct β-glucosidase activity responses to temperature. When data 

of both study areas were pooled for β-glucosidase Q10, the pH effect disappeared (Table 7.2). 

Therefore, the direct mechanisms behind pH effects on temperature sensitivities of SOC 

decomposition need to be further clarified.  

Only potential xylanase activity related significantly to the Q10 of xylanase activities at the 

landscape scale (Swabian Alb) whereas at the regional scale, SOC quality and soil texture (clay 

content) were significant (Table 7.2). Processes by which soil texture may influence the 

temperature sensitivities of SOC decomposition and enzymes are discussed above. However, the 

exact mechanism by which substrate availability (r_2930) affects the temperature sensitivity of 
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xylanase, which is measured under conditions of substrate saturation, remains unclear and needs to 

be further investigated. 

7.5 Conclusions 

In conclusion, our study provides vital information about the factors controlling microbial SOC 

decomposition at two levels of complexity in terms of spatial scale. We argue that homogeneity of 

the study area with respect to climatic and edaphic properties exerts a strong influence on the 

relevance of factors explaining soil processes at the investigated scale. Microbial biomass 

significantly explained SOC-normalized basal respiration at the landscape (Swabian Alb only, 

covering approximately 27 km2) and the regional scale (data of both landscapes merged). Soil 

texture is often discussed as an important control on SOC stabilization. However, in our study it 

was not an important control on basal soil respiration at any spatial scale, whereas soil texture was 

an important control on the temperature sensitivity of soil respiration at landscape and regional 

scales. Controls on the temperature sensitivities of enzymes degrading SOC of varying stabilities 

showed strong scale-specificity, which needs further investigation due to methodological 

constraints. The relative importance of direct and indirect controls of SOC dynamics provided by 

our study using observations from two landscapes differing in climatic and edaphic conditions 

might have important implications for reliable SOC estimates. 
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8 General discussion 

Despite the critical role played by soil microorganisms in transforming SOC, including its 

formation and turnover rates, C modelling studies focus more on soil physical rather than soil 

microbiological processes as primary controls on soil C dynamics, resulting in great uncertainty 

about the response of SOC decomposition dynamics to predicted climate change (Balser, 2005; 

Graham et al., 2014). This bias could be due to limited available information on the highly complex 

responses of soil microbes to possible climate change factors; improving this knowledge base could 

advance spatially explicit biogeochemical models (Allison et al., 2010; Waldrop et al., 2017). The 

main objective of this thesis was, therefore, to investigate the role of soil microorganisms in 

controlling SOC decomposition at the regional scale, specifically focusing on microbial responses 

to varying soil temperature, moisture, and C resources differing in quality or availability. This 

would provide information on the dependence of microbially related SOC decomposition processes 

on factors driving climate change, dependence that could vary depending upon microbial 

adaptation strategies. This would in turn help resolve the scale issue by identifying relevant controls 

on SOC decomposition at different spatial scales. Determination of how soil microbial abundances 

and functions are influenced by variations in climatic and edaphic properties was made by selecting 

two study areas: the cool and wet “Swabian Alb” plateau, and the warm and dry “Kraichgau” in 

southwest Germany. It is important to point out here that the present thesis does not test the 

sensitivity of soil C models in any way; rather it provides data on the role of microbes with respect 

to C dynamics in a changing environment, data that can be further utilized for model 

parameterization or validation purposes. 

8.1 Responses of soil microbial abundances and activities to soil temperature and 

moisture alterations 

Temperature is a strong regulator of soil microbial respiration, microbial community abundance 

and structure, and a strong influence on production and activity of microbial extracellular enzymes, 

which act as the rate limiting agents of SOC decomposition (Machmuller et al., 2016; Waldrop et 

al., 2017). Temperature may not only affect soil microbial activity directly, but also indirectly, by 

modifying other drivers such as soil moisture and substrate availability (Bååth, 2018). Such direct 

and indirect effects of temperature on microbial respiration (Chapters 5, 6 and 7), microbial enzyme 



8 General discussion and conclusions  107 

 
 

activities, both potential and in situ activities (Chapters 5 and 7), and on microbial community 

composition and abundance (Chapter 6) were observed in the framework of the present thesis. Soil 

respiration response to temperature was independent of the spatial scale; increasing temperature 

induced high soil respiration rates in studies at the plot scale (Chapters 5 and 6) and also at the 

regional scale (Chapter 7). Maximum soil respiration was observed at highest incubation 

temperatures in the lab (Figs. 6.1, S6.1; Fig. S7.2) and higher respiration was observed in summer 

than in winter in the field (Fig. 5.4a,b). This observed control of soil temperature over soil 

respiration is consistent with other studies (Davidson et al., 1998). Different processes may be 

responsible for temperature-induced increases in soil respiration, however. For example, given no 

change in microbial community composition, increasing temperature increases the metabolic 

activity of soil microbes and the catalyzing efficiency of the extant extracellular enzyme pool 

(Wallenstein et al., 2011; Classen et al., 2015) leading to more substrate available for microbial 

utilization, hence increased respiration. This argument is supported by the observed increase in 

potential enzyme activities with increasing temperatures (Fig. S7.3). Soil warming may  also affect 

microbial carbon use efficiency (CUE), whereby a higher proportion of substrate taken up by 

microbes is utilized for cell maintenance and less is invested in cell growth, leading to higher 

respiration rates but low microbial biomass (Steinweg et al., 2008; Frey et al., 2013). This argument 

is supported by the observed decline in total microbial biomass with increasing temperature that 

coincided with increasing cumulative respiration (Figs. 6.1, 6.2a, b). Together, these observations 

suggest that soil warming may enhance the positive feedback of SOC decomposition to climate 

change by introducing more CO2 to the atmosphere. 

Microbial soil respiration response and its temperature sensitivity may also be decoupled from the 

temperature sensitivity of enzyme activity, since products catalyzed by enzymatic reactions must 

go through diffusion limitation before respiration can occur (Wallenstein et al., 2011). Information 

gained of the temperature sensitivity of SOC pools differing in complexity, using extracellular 

enzymes as proxies for C quality, were compared at different scales; i.e., plot scale enzyme Q10 

(Chapter 5) vs. landscape to regional scale enzyme Q10 (Chapter 7). The range of measured Q10 

values of β-glucosidase and xylanase activities at the plot scale (Table 5.1) encompassed, to a large 

extent, the range observed at the landscape scale (Fig. 7.3). That indicated consistency of 

temperature sensitivities of these enzymes in investigated areas which could be associated with 

homogeneous geological and climatic properties within each area (Table 7.1). Therefore, 
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depending upon the homogeneity of the study area with respect to physicochemical and biological 

factors, temperature sensitivity of soil enzymes at the plot scale might be extrapolated to larger 

scales, e.g., landscape and regional scales. Regions with considerable variation in physicochemical 

factors, however, including soil texture, mineralogy, and soil moisture might result in scale 

dependent temperature responses of microbial enzymes by controlling their activities (Wallenstein 

et al., 2011). 

Soil organic carbon decomposition is potentially one of the largest feedbacks to climate change; 

therefore, understanding the relative decomposition rates of SOC pools of varying qualities and 

their respective sensitivity to soil warming at large scales will help improve the accuracy of 

predicting the fate of SOC in a warmer world (Craine et al., 2010; Davidson et al., 2012). This 

thesis also investigated the “C quality temperature” hypothesis, which stats that SOC pools that 

differ in complexity also exhibit different temperature sensitivities, recalcitrant pools being more 

temperature sensitive than labile pools. The measured Q10 values of two enzymes targeting SOC 

pools of different stabilities confirmed this hypothesis; β-glucosidase activity had, on average, 

lower Q10 values than the Q10 of xylanase activities at the plot scale and this effect was consistent 

in both areas (Table 5.1, Chapter 5). Additionally, extractable organic C (EOC) also associated 

negatively with the Q10 of soil respiration at the landscape scale (Swabian Alb, Table 7.2), (It was 

assumed that EOC was driven by the labile C fraction due to a positive correlation of EOC with 

labile C fraction, 2930 cm-1 peak from MIRS spectrum; Table S7.2; Chapter 7). A negative 

relationship of substrate quality with its temperature sensitivity has been observed in previous 

studies (Liu et al., 2017; Craine et al., 2010; Wang et al., 2018). From these observations and the 

above-mentioned range of enzyme Q10 values, two conclusions could be drawn: 1) the temperature 

sensitivity of SOC decomposition deviates strongly from a constant assumption of 2 and its 

variation should be added into C models, and 2) the recalcitrant SOC pool is more sensitive to 

temperature change than the labile SOC pool. Therefore, in the context of climate change, soil 

warming may accelerate decomposition of SOC even more strongly by accelerating the relative 

decomposition rates of recalcitrant C pools which, in most soils, is proportionally much larger than 

the labile C pool (Davidson and Janssens, 2006). However, a study carried out in the framework of 

this thesis investigating temperature sensitivity responses of extracellular enzymes at the regional 

scale found different patterns of enzyme Q10; average xylanase Q10 values were slightly but 

significantly lower than Q10 values of β-glucosidase (Fig. 7.3; Chapter 7). This observation does 
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not necessarily mean that the “C quality temperature” hypothesis may not apply at larger spatial 

scales, rather it hints towards other mechanisms that may confound the temperature-sensitive 

responses of extracellular enzyme activities. For example, soil moisture limitation effects on 

enzyme Q10 at the temporal scale (Chapter 5) might not be depicted in measured Q10 at the spatial 

scale (Chapter 7) or vice versa; the effect of a spatially variable factor such as clay content might 

not be observed at the temporal scale (Davidson, 1995; Martin and Bolstad, 2009). Furthermore, 

relative abundances of microbial taxa have been shown to co-vary with soil properties at the spatial 

scale (Philippot et al., 2009) and different taxa were also specifically influenced by temperature 

variations under availability of substrates of varying complexity (Fig. 6.5, Fig. S6.6). Different 

isoenzymes, enzymes with similar function but different structures, produced by these spatially 

variable taxa with different temperature sensitivities (Wallenstein and Weintraub, 2008; 

Wallenstein et al., 2009) may also explain the observed enzyme Q10 results at the regional scale. 

Based on these results and interpretations, one might argue that large scale modelling studies 

implementing the Q10 of SOC decomposition extracted from the plot scale, without considering its 

spatial variability and factors affecting that spatial variability, may over- or underestimate the SOC 

decomposition response in a warming world.  

Seasonal variations were measured in the temperature sensitivities of enzymes catalyzing labile 

and complex organic C, β-glucosidase and phenoloxidase, at the plot scale in two geographically 

different areas (Table 5.1, S5.2, Chapter 5). Similar to our results, other studies have also found a 

strong seasonal dependency of the temperature sensitive response of hydrolytic and oxidative 

enzymes belonging to C, N and P cycling (Jing et al., 2014; Machmuller et al., 2016). These results 

could be explained by strong seasonal substrate (plant root and root exudates) and nutrient 

variations, and by different temperature responses of isoenzymes (Bárta et al., 2014; Jing et al., 

2014; Machmuller et al., 2016; Waldrop et al., 2017). Furthermore, these results could also be 

associated with alterations in soil microbial community composition as a response to temperature 

variation. In the microcosm experiment (Chapter 6), an increase in temperature influenced 

abundances of soil fungi differently than bacteria when supplied with labile C substrate; fungal and 

gram-positive bacterial abundances decreased with temperature, while abundance of gram-negative 

bacteria increased (Figs. 6.2 and 6.3). Interpreting this observed microbial community response to 

temperature and substrate variations over the season, altered microbial community composition as 

a response to seasonal temperature variation might have affected enzyme / isoenzyme pool 
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dynamics, that in turn, have different temperature sensitivities. Indeed, studies have associated 

microbial community composition with production of enzymes that vary in their physical flexibility 

to temperature variation, hence different sensitivities (Alster et al., 2016). Therefore, in the context 

of climate change, microbial community composition may indirectly control SOC decomposition 

dynamics by shaping soil enzyme patterns. 

Increasing temperature is often coupled with reduced soil moisture content and, although these two 

variables are among the most important factors affecting microbial SOC decomposition in a 

warming climate, many studies have focused only on the temperature effect (Yuste et al., 2007). In 

the framework of this thesis, the response of β-glucosidase potential activity to moisture variability 

was investigated by fitting an asymptotic model to measured activities at four moisture levels 

(Chapter 5). β-glucosidase potential activity exhibited a positive moisture sensitivity response; 

activity increased with increasing soil water content (Fig. 5.2), and this result is similar to what was 

observed by Steinweg et al., (2012). Eliminating the water limitation may have increased enzyme 

diffusion to substrate and vice versa (Davidson and Janssens, 2006). Critically, however, the 

moisture sensitivity of microbial C dynamics in a dry soil environment, a condition that could 

potentially hamper the observed temperature sensitivity response of extracellular enzymes, was not 

investigated in the present study. For example, enzyme adsorption to clay particles in dry soils may 

affect their conformation, hence their catalytic efficiency (Kandeler, 1990). On the other hand, such 

enzyme stabilization mechanisms may also increase enzyme turnover time; dry soils could then 

harbor a larger enzyme pool (Steinweg et al., 2012), leading to potentially different responses to 

environmental perturbations such as temperature.  

Decades of research on extracellular enzyme activity informed our understanding of the crucial 

links between microbial community composition (e.g., bacteria and fungi) and soil functions 

through the use of extracellular enzymes as proxies for those linkages (Kandeler, 1990; Sinsabaugh 

et al., 2008; German et al., 2011; Waldrop et al., 2017). Studies have also previously investigated 

in situ enzyme potentials and their respective controls (Wallenstein et al., 2009; Steinweg et al., 

2012; Bárta et al., 2014). However, a relationship between in situ enzyme potentials and measured 

microbial response factors such as soil respiration, was not established, even though more than half 

of soil respiration comes from enzyme-mediated SOC decomposition (Chen et al., 2017). 

Therefore, this missing-link was investigated in the present thesis (Chapter 5) in which the aim was 
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to test whether or not soil temperature and moisture-regulated extracellular enzyme potentials 

explain the seasonal variations in soil respiration reported in different studies (Reichstein et al., 

2003). Modelled in situ enzyme potentials successfully explained seasonal variation in soil 

respiration, with model efficiencies of up to 78 % and 76 % for β-glucosidase and xylanase, 

respectively (Table 5.4). The observed interaction between in situ enzyme potential and soil 

respiration flux was non-linear, which may be attributed to high microbial / substrate spatial 

variations, microbial thermal acclimation, and physiological adjustments (Resat et al., 2012; Frey 

et al., 2013). The superiority of an enzyme-based model in explaining soil respiration efflux as 

compared to traditional soil temperature–soil respiration relationships was also tested; enzyme-

based models performed better than simple soil respiration models as a function of in situ soil 

temperature (Table 5.4). Allison et al., (2010) demonstrated that adding microbial mechanisms 

(enzyme temperature sensitivity) could explain soil respiration responses to warming better than 

the conventional model with no explicit consideration of microbial mechanisms. Therefore, the 

inclusion of extracellular enzyme sensitivity to environmental disturbances (e.g., temperature and 

moisture alterations) in C modelling dynamics may have the potential to improve soil carbon-

climate feedbacks. 

Seasonal variations in enzyme potentials could be explained by regulation of extracellular enzymes 

through temperature and substrate alterations (Fig. 5.1, Table 5.1; see discussion above). Also 

higher in situ enzyme potential of soils under vegetation influence as compared to bare fallow soils, 

despite higher soil temperatures in the bare fallow soils (Fig. 5.4 c,d), supports the claim that 

temperature may not be the sole regulator of microbial C utilization dynamics; substrate quantity 

and quality are also important. It is, however, still unclear the extent to which soil temperature 

influences microbial community composition and abundance, and the extent to which bacteria and 

fungi differ in their respiration responses to variations in temperature and substrate quality 

(Malcolm et al., 2008). The hypothesis that the interactive effects of temperature and substrate 

quality will strongly influence the abundance and inter-/intra-specific competition between 

microbial key players was tested in a microcosm experiment (Chapter 6). Increasing temperature 

influenced soil microbial biomass negatively with lowest fungal and bacterial biomass recorded at 

highest temperatures, and the effect was similar in substrates of varying complexity (Fig. 6.2 a,b; 

Fig. 6.3). Such a decrease in microbial biomass with soil warming has been observed in other 

studies, perhaps due to increased metabolic stress at high temperatures (Zogg et al., 1997; Waldrop 
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and Firestone, 2004). The observed decline in microbial biomass may also be explained by altered 

microbial growth efficiencies (Schimel, 2013). Temperature increase may have stimulated 

microbial activity, as observed through the measured increase in cumulative respiration (Fig. 6.1), 

but affected their growth efficiencies strongly negatively, leading to a net decline in their biomass. 

Therefore, in the context of climate change, decomposition of SOC might not be accelerated by 

soil warming due to reduced microbial population size (Allison et al., 2010). However, under 

prolonged warming, microbial thermal adaptation might provide a different outcome; Frey et al., 

(2013) observed that chronic warming led to adjustments in microbial substrate use efficiency to a 

higher level, especially for recalcitrant substrates. In this context, soil warming might provide 

positive feedback to climate change. Therefore, which pathways of SOC decomposition dynamics 

dominate under soil warming would strongly depend on either adaptation of existing microbial 

communities or shifts in microbial community composition towards more efficient individuals / 

groups (Frey et al., 2013; Schimel, 2013). 

Efficient microbial utilization of C substrate against environmental stress, such as temperature 

change, determines the rate of microbial C turnover and C sequestration, although C quality may 

influence microbial community composition (Goldfarb et al., 2011; Sinsabaugh et al., 2017). In the 

present thesis, temperature influenced microbial communities’ inter- and intra-specific competition 

when supplied with C substrates of varying quality (Chapter 6). Fungi and gram-positive bacteria 

generally exhibited similar responses to temperature variations; abundance of fungi and gram-

positive bacteria decreased with increasing temperature and addition of labile and recalcitrant 

substrate increased their abundances compared to un-amended controls (Fig. 6.2 c,d; Fig. 6.3 a,b). 

However, gram-negative bacterial abundance increased continuously with increasing temperature 

in soils amended with labile C substrate (Fig. 6.2 e,f). These results hint to adaptation responses of 

microbial communities to induced environmental stress. Soil fungi and gram-positive bacteria 

generally exhibit oligotrophic life strategies and are associated with decomposition of complex 

substrates (Fanin et al., 2014; Koranda et al., 2014; Geyer et al., 2016); however, to cope with 

induced temperature stress, they have broadened their substrate utilization spectrum by consuming 

both labile and recalcitrant substrates. Copiotrophic gram-negative bacteria, although they are 

known to have low substrate utilization efficiency and low ability to cope with stress conditions, 

exhibited rapid substrate utilization rates under C rich conditions (Fierer et al., 2007; Geyer et al., 

2016). This may have provided them with a competitive advantage over gram-positive 



8 General discussion and conclusions  113 

 
 

bacteria/fungi, leading to higher abundances. However, increased abundance of gram-negative 

bacteria under future soil warming, couple with their higher utilization of labile C, might be of less 

concern since most of the labile C present in soil may be associated with soil organic matter and 

minerals, rendering its decomposition difficult (Colman and Schimel, 2013). The broad substrate 

utilization spectrum of oligotrophs, combined with their high substrate use efficiencies, low 

biodegradability of cell walls, and comparatively slow turnover times, could be important for SOC 

sequestration in a warming world (Six et al., 2006; Rousk and Bååth, 2007). 

8.1.1 Microbial community responses in the context of site-specificity and SOC quality 

Microbial community adaptation to climatic and edaphic properties may produce site-specific 

responses to environmental alterations. For example, cold-adapted microbial communities may 

respire more C at high temperatures due to greater temperature sensitivity than warm-adapted 

microbial communities, and this effect could arise through changes in microbial enzyme 

expressions (Bradford, 2013; Schindlbacher et al., 2011). In the present thesis, two study areas and 

land-uses (bare fallow and soils influenced by vegetation) were investigated under the hypothesis 

that differences in climatic and edaphic properties of two study areas will modify the temperature 

sensitivity of microbial communities and their functions. Bare fallow soils were investigated under 

the assumption that these soils would have been depleted in labile organic C and therefore be 

inhabited by distinct microbial communities adapted to reduced substrate quality. Soils under the 

influence of vegetation had higher microbial biomass (Cmic and total PLFA content) than soils left 

fallow for four years and this effect also persisted over seasons (Fig. S5.2; Fig. 6.2 a,b, Fig. S6.3 

a,b). Also, C rich soils of the Swabian Alb had higher microbial biomass than the Kraichgau, 

irrespective of the spatial scale (Chapters 5, 6 and 7). Site-specific and land-use specific differences 

were also observed in the activities of extracellular enzymes; potential activities of β-glucosidase 

and xylanase were higher in soils influenced by vegetation than bare fallow soils and also higher 

in the Swabian Alb than the Kraichgau (Chapter 5, Fig. 5.1 and Chapter 7; Fig. 7.2). However, 

these differences were only in absolute terms; patterns of observed responses were similar in both 

areas and land-uses and may have been associated with soil carbon content, one of the most 

important factors regulating soil microbial growth. At low carbon concentrations, in the absence of 

plant-related C inputs to bare fallow soils, extracellular enzyme production by microbial 

decomposers is also downregulated (German et al., 2011; Demoling et al., 2007). Furthermore, 
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contrary to our hypothesis, regional and land-use specificity was absent, except for absolute 

differences, in microbial communities’ responses to temperature variations when supplied with 

substrates of varying complexity (e.g., Figs. 6.2, S6.3, S6.9) and no clear differences were observed 

in the response of investigated bacterial taxa (Figs. 6.5, S6.6). It follows that region and / or land-

use might have smaller impacts on microbial abundance and community composition than 

temperature and substrate quality. These results could be associated either with substrate use 

plasticity of soil microorganisms, which has been observed to change depending upon 

environmental conditions (Morrissey et al., 2017), or with functional redundancy of soil 

microorganisms. Microbial communities adapted to certain regions / land-uses may contain taxa 

that are functionally redundant with taxa in other regions / land-uses or taxa in adapted communities 

might function differently but result the in same process rates when observed from the community 

level (Allison and Martiny, 2008). Nevertheless, microbial physiological differences and their 

ability to behave differently under different environmental perturbations may determine the fate of 

SOC decomposition in a warming world, with region and land-use playing a secondary role. 

Therefore, associating temperature and substrate quality sensitive responses of microbial key 

players based on their physiology and life strategies, i.e., copiotrophs vs. oligotrophs, may well 

improve C models at large scales. 

8.2 Scale-specificity of factors controlling microbial SOC dynamics 

The dynamics of microbial SOC processing at large scales are poorly understood, a result of which 

is the large spread in global SOC stock predictions under a changing climate (Bond-Lamberty and 

Thomson, 2010; Todd-Brown et al., 2013). However, it is still not completely clear which factors 

controlling SOC decomposition at the plot scale are also important at larger scales. For example, 

at the fine scale of mm to m, microbial community composition may be important due to its 

functional specificity, whereas at the coarse scale, abiotic factors, including temperature and 

moisture, may be more important (Classen et al., 2015). Therefore, one aim of the present thesis 

was to identify factors controlling microbial SOC decomposition dynamics at two large spatial 

scales; the landscape scale, representing two individual areas (the Kraichgau and the Swabian Alb), 

and the regional scale, representing combined data from both areas (Chapter 7). The hypothesis 

was that from a set of biotic, physical, and chemical soil properties, the quality of SOC would be 
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the primary control on microbial decomposition processes (basal respiration and its temperature 

sensitivity) due to its lability and relevance for microbially mediated decomposition.  

Different factors explained microbial SOC decomposition and its temperature sensitivity at 

different spatial scales (Chapter 7). Soil microbial biomass (Cmic) explained soil basal respiration 

independent of spatial scale, while soil C:N ratio and SOC quantity were scale-dependent factors 

(Table 7.2). Association of Cmic and C:N (proxy for SOC quality) as explanatory factors for soil 

respiration at large scales has also been shown by other studies (Colman and Schimel, 2013; Xu et 

al., 2016). From our results, microbial biomass emerged as an integrative proxy for SOC 

decomposition dynamics; i.e., it integrated the effects of all other variables (Bailey et al., 2018). 

Liu et al. (2018) identified a unique role for soil microbial biomass and microbial community 

composition in predicting soil respiration rates. Based on our results, it may be that that microbial 

biomass pool size and SOC quality limit SOC decomposition when landscapes with different SOC 

content and climatic conditions are investigated in a single model. However, in landscapes of low 

SOC content such as the Kraichgau, it is the quantity of SOC that limits its decomposition by 

microbial decomposers. Furthermore, temperature sensitivity of SOC decomposition was 

successfully explained by soil texture and this control was independent of spatial scale, whereas 

Cmic explained the Q10 of SOC decomposition at the regional scale (Table 7.2). Variables explaining 

temperature sensitivities of extracellular enzymes were scale-specific (Table 7.2). In a study by 

Trivedi et al. (2016), microbial functional genes provided a strong explanation for observed soil 

functions even though many other biotic and abiotic processes were considered. Therefore, adding 

scale-specific variables and variables that are independent of the spatial scale as controls on process 

rates in regional scale C dynamics models, providing further input to global scale models, may 

improve our understanding of the fate of SOC in a warming world.  
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8.3 Conclusions and perspectives 

This thesis provides new insights into the critical role soil microorganisms play in SOC 

decomposition dynamics and demonstrates the extent to which C turnover may be affected by soil 

microbial communities as a response to climate change at large scales. It was shown that 

temperature and quality of soil organic C play central roles in controlling microbial SOC 

decomposition dynamics irrespective of land-use and spatial scale. From the plot to the regional 

scale and from point measurement to measurements spanning seasons, this thesis provided 

evidence that the temperature sensitivity of SOC varies at both spatial and temporal scales and 

decreases with increasing soil temperature. This contradicts the assumption used in most CN 

models that it is constant (Q10 = 2). Therefore, the observed variance in SOC Q10 in this study 

should be added to CN models to potentially improve their predictive power. Furthermore, analysis 

of extracellular enzymes, as proxies for varying lability in SOC pools, indicated that the labile SOC 

pool exhibited lower temperature sensitivities than the recalcitrant pool. This could have important 

implications for predictions of the relative SOC pool size estimations in the context of climate 

change. Although soil warming reduced the abundances of soil bacteria and fungi, it stimulated 

their respiration responses. Together these results indicate that microbial SOC decomposition may 

provide a positive feedback to climate change, at least at the scale investigated here. Soil fungi are 

usually associated with decomposition of complex SOC while bacteria prefer labile SOC; however, 

similar utilization of labile and recalcitrant C by fungi was observed. Additionally, soil warming 

selected for dominance of gram-negative bacteria over gram-positive bacteria. Therefore, with 

shifts in microbial community functional traits, the fungal/bacterial ratio may change in a warming 

world, with important implications for SOC sequestration. 

The large spread in predictions of SOC stock sizes observed at the global scale (Hararuk et al., 

2015) could perhaps be improved by adding microbial controls on SOC decomposition in C models 

at the regional scale. By focusing on the soil microbial perspective, this thesis provides an improved 

understanding of the physicochemical and biological controls of SOC decomposition dynamics at 

large spatial scales. To improve regional scale climate change projections, efforts are being made 

that provide input for global scale model improvements. Models are run, for example, in the 

framework of EURO–CORDEX (coordinated downscaling experiment – European domain), at a 

spatial resolution of about 12 km (http://www.euro-cordex.net/060374/index.php.en). This makes 
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the results of this thesis highly applicable and timely, as the presently investigated landscapes are 

approx. 95 km apart from each other. Explanatory factors of microbially medicated SOC 

decomposition common at the landscape and/or at regional scale extracted in this study may be 

directly used for SOC model optimization. 

Furthermore, this thesis highlights the potential for extracellular enzyme potentials and their 

temperature sensitivities to be used as proxies for different SOC pools, which may improve the 

predictive power of C dynamics models. The validity of in situ enzyme potentials vs. soil 

respiration relationships for N and P cycling in similar and in different ecosystems should be tested 

in future studies. There are, however, some methodological issues related to this. One problem with 

measuring in situ enzyme potentials is that lab-based assays also measure the activity of stabilized 

enzymes, through disruption of aggregates, that usually form complexes with organic matter or 

clays and these enzymes may not be active under in situ conditions (Wallenstein and Weintraub, 

2008). With our modelled in situ enzyme potentials, even though we considered control of in situ 

temperature and moisture, the above stated problem may still exist. Therefore, there is a need to 

combine lab-based enzyme assays (temperature and moisture sensitivity measurements) with in 

situ measurement methods, for instance enzyme zymography, which may provide a more accurate 

assessment of environmental alterations to enzyme potentials at large scales.
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Appendix – I 

Supplementary data – Chapter 5 

 

Fig. S5.1  Average daily air temperature and precipitation data recorded at the Swabian Alb 
(a) and the Kraichgau (b) study sites. The data were recorded in half hourly 
resolution.   
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Fig. S5.2  Average microbial biomass measured from the fallow and vegetation plots of both 

study sites. Bars represent the standard error (n = 3) 
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Fig. S5.3  Potential Phenoloxidase activities in the Swabian Alb (a) and the Kraichgau region 

(b) measured at different sampling dates (from April 2012 till April 2013). Bars 
represent standard error (n = 3).  
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Fig. S5.4  Potential β-glucosidase activities in relation to xylanase and phenoloxidase (Phenol) 

activities. “a” represents activity relation from Kraichgau fallow plots, “b” 
Kraichgau vegetation plots, “c” Swabian Alb fallow plots and “d” represents 
enzyme activity relation from Swabian Alb vegetation plots, respectively (n = 39).  
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Fig. S5.5  Potential xylanase activities in relation to phenoloxidase (Phenol) activities. “a” 

represents activity relation from Kraichgau vegetation plots, “b” Swabian Alb 
fallow plots and “c” represents enzyme activity relation from Swabian Alb 
vegetation plots, respectively (n = 39). 
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Table S5.1  Crop type as well as vegetation period of the selected vegetation plots, (covering the 
sampling dates starting April 2012 to April 2013) in both study regions. In each 
region, three vegetated plots were selected. 

Region Plot Crop Vegetation period 
Swabian 
Alb Vegetation 1 Spring Barley (Hordeum vulgare) 25.03.2012 - 15.08.2012 
 Vegetation 2 Silage Maize (Zea mays) 28.04.2012 - 07.10.2012 
 Vegetation 3 Winter Barley (Hordeum vulgare) 22.09.2011 - 26.07.2012 
 Vegetation 1 Winter Rape (Brassica napus) 28.08.2012 - 22.08.2013 
 Vegetation 2 Winter Barley (Hordeum vulgare) 15.10.2012 - 02.08.2013 
 Vegetation 3 Cover Crop *  01.08.2012 - 12.01.2013 
    
Kraichgau Vegetation 1 Winter Rape (Brassica napus) 22.08.2011 - 20.07.2012 
 Vegetation 2 Energy Maize (Zea mays) 01.05.2012 - 18.09.2012 
 Vegetation 3 Winter Wheat (Triticum aestivum) 17.10.2011 - 01.08.2012 
 Vegetation 1 Winter Wheat (Triticum aestivum) 17.10.2012 - 04.08.2013 
 Vegetation 2 Winter Wheat (Triticum aestivum) 26.10.2012 - 05.08.2013 
 Vegetation 3 Winter Rape (Brassica napus) 24.08.2012 - 02.08.2013 
 
 
 

   
    
        

 

Table S5.2 Q10 values of phenoloxidase measured at different laboratory incubation 
temperatures (starting from April 2012 till April 2013). Values represent average of 
field replicates (n = 3) and standard error is given in parenthesis 

Month  Swabian Alb  Kraichgau 
  Fallow Vegetation  Fallow Vegetation 
Apr  0.82 (0.14) 0.14 (0.09)  1.05 (0.09) 0.84 (0.04)
May  1.56 (0.19) 0.19 (0.30)  1.38 (0.10) 1.28 (0.26)
Jun  1.55 (0.25) 0.25 (0.06)  0.55 (0.15) 0.88 (0.20)
Jul  1.23 (0.06) 0.06 (0.22)  0.95 (0.06) 0.90 (0.02)
Aug  1.22 (0.15) 0.15 (0.10)  1.05 (0.09) 0.84 (0.04)
Sept  1.05 (0.19) 0.19 (0.15)  1.32 (0.08) 1.24 (0.11)
Oct  1.43 (0.08) 0.08 (0.04)  1.29 (0.02) 1.17 (0.03)
Nov  1.19 (0.12) 0.12 (0.13)  1.14 (0.13) 1.71 (0.58)
Dec  1.26 (0.14) 0.14 (0.12)  0.96 (0.05) 0.99 (0.20)
Jan  1.25 (0.09) 0.09 (0.12)  1.00 (0.11) 0.86 (0.01)
Feb  1.87 (0.22) 0.22 (0.52)  1.10 (0.08) 1.40 (0.05)
Mar 1.52 (0.28) 0.28 (1.06)  1.21 (0.15) 1.25 (0.13)
Apr 1.16 (0.07) 0.07 (0.08)  1.12 (0.05) 1.09 (0.08)
        

*Common vetch (Vicia sativa) 60%, Berseem clover (Trifolium alexandrinum) 25%
  Phacelia 7.5%, Sunflower (Helianthus annuus)7.5% 
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Table S5.3 Q10 of individual plots (fallow and vegetation) from both study regions together with 
coefficient of exponential model applied (a), calculated activity at 6°C (R6), k0 (β-
glucosidase - nmol g–1 h–1 and xylanase–µg GE g–1 24h–1) as well as model 
efficiencies.  

 Kraichgau Swabian Alb 

β-GLUCOSIDASE 
Fallow Plot Fallow Plot 

 

Month Plot R6 k0 a Q10 EF R6 k0 a Q10 EF 

            

Apr, 2012 fallow1 44.66 29.47 0.0693 2.0 0.86 84.91 57.87 0.0639 1.9 0.86 

 fallow2 47.40 33.17 0.0595 1.8 0.93 106.37 73.37 0.0619 1.9 0.82 

 fallow3 69.99 51.29 0.0518 1.7 0.89 93.23 64.35 0.0618 1.9 0.84 

May, 2012 fallow1 54.67 39.21 0.0554 1.7 0.86 91.59 69.75 0.0454 1.6 0.86 

 fallow2 63.87 45.15 0.0578 1.8 0.93 79.78 59.28 0.0495 1.6 0.82 

 fallow3 64.48 48.90 0.0461 1.6 0.89 83.19 59.56 0.0557 1.7 0.84 

June, 2012 fallow1 50.91 37.43 0.0513 1.7 0.86 85.89 60.03 0.0597 1.8 0.86 

 fallow2 53.57 38.49 0.0551 1.7 0.93 91.60 64.10 0.0595 1.8 0.82 

 fallow3 51.91 37.03 0.0563 1.8 0.89 101.97 74.55 0.0522 1.7 0.84 

July, 2012 fallow1 58.46 44.23 0.0465 1.6 0.86 93.62 65.91 0.0585 1.8 0.86 

 fallow2 54.95 39.24 0.0561 1.8 0.93 89.52 61.67 0.0621 1.9 0.82 

 fallow3 56.89 41.34 0.0532 1.7 0.89 73.21 51.04 0.0601 1.8 0.84 

Aug, 2012 fallow1 52.84 37.58 0.0568 1.8 0.86 77.89 55.10 0.0577 1.8 0.86 

 fallow2 54.67 38.14 0.0600 1.8 0.93 82.11 57.15 0.0604 1.8 0.82 

 fallow3 57.71 40.78 0.0579 1.8 0.89 91.76 65.14 0.0571 1.8 0.84 

Sept, 2012 fallow1 36.16 26.31 0.0530 1.7 0.86 87.31 65.34 0.0483 1.6 0.86 

 fallow2 61.71 45.31 0.0515 1.7 0.93 96.13 69.70 0.0536 1.7 0.82 

 fallow3 56.67 41.98 0.0500 1.6 0.89 73.65 53.78 0.0524 1.7 0.84 

Oct, 2012 fallow1 40.73 28.90 0.0572 1.8 0.86 81.95 59.84 0.0524 1.7 0.86 

 fallow2 58.32 42.18 0.0540 1.7 0.93 122.34 86.95 0.0569 1.8 0.82 

 fallow3 54.01 39.04 0.0541 1.7 0.89 63.20 44.70 0.0577 1.8 0.84 

Nov, 2012 fallow1 40.84 30.05 0.0511 1.7 0.86 69.70 50.80 0.0527 1.7 0.86 

 fallow2 60.54 45.36 0.0481 1.6 0.93 73.39 54.47 0.0497 1.6 0.82 

 fallow3 47.24 34.87 0.0506 1.7 0.89 67.54 48.70 0.0545 1.7 0.84 

Dec, 2012 fallow1 37.93 26.81 0.0578 1.8 0.86 84.82 60.14 0.0573 1.8 0.86 

 fallow2 58.59 43.02 0.0515 1.7 0.93 88.38 59.45 0.0661 1.9 0.82 

 fallow3 61.57 46.44 0.0470 1.6 0.89 58.92 41.93 0.0567 1.8 0.84 

Jan, 2013 fallow1 52.20 37.08 0.0570 1.8 0.86 80.53 58.38 0.0536 1.7 0.86 

 fallow2 56.47 41.38 0.0518 1.7 0.93 112.88 85.19 0.0469 1.6 0.82 

 fallow3 55.37 40.60 0.0517 1.7 0.89 61.76 44.78 0.0536 1.7 0.84 

Feb, 2013 fallow1 58.03 43.35 0.0486 1.6 0.86 93.27 62.29 0.0673 2.0 0.86 

 fallow2 54.62 38.87 0.0567 1.8 0.93 109.75 77.78 0.0574 1.8 0.82 
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 fallow3 64.06 45.89 0.0556 1.7 0.89 84.39 59.62 0.0579 1.8 0.84

Mar, 2013 fallow1 38.06 25.63 0.0659 1.9 0.86 79.54 56.94 0.0557 1.7 0.86 

 fallow2 52.76 36.31 0.0623 1.9 0.93 73.94 53.77 0.0531 1.7 0.82 

 fallow3 51.33 34.26 0.0674 2.0 0.89 70.14 48.91 0.0601 1.8 0.84 

Apr, 2013 fallow1 46.69 32.77 0.0590 1.8 0.86 67.43 46.34 0.0625 1.9 0.86 

 fallow2 65.12 46.57 0.0559 1.7 0.93 91.62 64.46 0.0586 1.8 0.82 

 fallow3 64.50 46.45 0.0547 1.7 0.89 62.11 42.90 0.0617 1.9 0.84 

                      

   
Vegetation Plot Vegetation Plot 

  

 Plot R6 k0 a Q10 EF R6 k0 a Q10 EF 

            

Apr, 2012 Vegetated1 64.89 42.84 0.0692 2.0 0.91 104.47 66.21 0.0760 2.1 0.92 

 Vegetated2 63.71 44.34 0.0604 1.8 0.87 166.38 115.18 0.0613 1.8 0.85 

 Vegetated3 90.03 62.81 0.0600 1.8 0.89 88.73 60.95 0.0626 1.9 0.77 

May, 2012 Vegetated1 72.66 51.15 0.0585 1.8 0.91 102.30 72.75 0.0568 1.8 0.92 

 Vegetated2 82.58 59.69 0.0541 1.7 0.87 129.26 93.66 0.0537 1.7 0.85 

 Vegetated3 94.41 69.81 0.0503 1.7 0.89 111.80 83.02 0.0496 1.6 0.77 

June, 2012 Vegetated1 77.56 53.76 0.0611 1.8 0.91 115.69 77.49 0.0668 2.0 0.92 

 Vegetated2 78.94 57.71 0.0522 1.7 0.87 149.20 103.16 0.0615 1.8 0.85 

 Vegetated3 79.69 55.16 0.0613 1.8 0.89 115.18 82.11 0.0564 1.8 0.77 

July, 2012 Vegetated1 84.83 60.70 0.0558 1.7 0.91 114.80 82.53 0.0550 1.7 0.92 

 Vegetated2 95.33 71.48 0.0480 1.6 0.87 118.54 82.11 0.0612 1.8 0.85 

 Vegetated3 89.14 62.34 0.0596 1.8 0.89 91.84 63.66 0.0611 1.8 0.77 

Aug, 2012 Vegetated1 71.70 49.22 0.0627 1.9 0.91 107.56 71.74 0.0675 2.0 0.92 

 Vegetated2 77.50 51.35 0.0686 2.0 0.87 119.05 80.46 0.0653 1.9 0.85 

 Vegetated3 81.18 56.47 0.0605 1.8 0.89 143.19 98.23 0.0628 1.9 0.77 

Sept, 2012 Vegetated1 73.29 51.26 0.0595 1.8 0.91 107.06 77.66 0.0535 1.7 0.92 

 Vegetated2 77.83 56.59 0.0531 1.7 0.87 137.64 98.89 0.0551 1.7 0.85 

 Vegetated3 74.28 55.83 0.0476 1.6 0.89 138.31 100.39 0.0534 1.7 0.77 

Oct, 2012 Vegetated1 60.95 42.27 0.0610 1.8 0.91 128.25 92.59 0.0543 1.7 0.92 

 Vegetated2 85.64 59.11 0.0618 1.9 0.87 120.90 85.26 0.0582 1.8 0.85 

 Vegetated3 69.12 47.79 0.0615 1.8 0.89 96.52 70.27 0.0529 1.7 0.77 

Nov, 2012 Vegetated1 52.48 36.31 0.0614 1.8 0.91 118.46 84.81 0.0557 1.7 0.92 

 Vegetated2 75.04 54.47 0.0534 1.7 0.87 95.24 67.94 0.0563 1.8 0.85 

 Vegetated3 76.44 55.79 0.0525 1.7 0.89 71.93 51.93 0.0543 1.7 0.77 

Dec, 2012 Vegetated1 75.97 53.16 0.0595 1.8 0.91 125.66 87.67 0.0600 1.8 0.92 

 Vegetated2 91.76 70.73 0.0434 1.5 0.87 111.67 79.85 0.0559 1.7 0.85 

 Vegetated3 90.68 66.42 0.0519 1.7 0.89 101.13 70.09 0.0611 1.8 0.77 

Jan, 2013 Vegetated1 86.03 61.74 0.0553 1.7 0.91 117.49 83.11 0.0577 1.8 0.92 

 Vegetated2 108.16 81.29 0.0476 1.6 0.87 119.25 84.60 0.0572 1.8 0.85 
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 Vegetated3 70.62 51.35 0.0531 1.7 0.89 105.11 75.39 0.0554 1.7 0.77

Feb, 2013 Vegetated1 70.20 48.22 0.0626 1.9 0.91 112.43 80.44 0.0558 1.7 0.92 

 Vegetated2 89.39 62.36 0.0600 1.8 0.87 144.37 101.27 0.0591 1.8 0.85 

 Vegetated3 85.76 61.95 0.0542 1.7 0.89 91.76 62.31 0.0645 1.9 0.77 

Mar, 2013 Vegetated1 60.15 39.71 0.0692 2.0 0.91 115.51 79.44 0.0624 1.9 0.92 

 Vegetated2 76.47 50.88 0.0679 2.0 0.87 104.95 70.13 0.0672 2.0 0.85 

 Vegetated3 70.41 47.44 0.0658 1.9 0.89 94.10 59.86 0.0754 2.1 0.77 

Apr, 2013 Vegetated1 51.56 35.67 0.0614 1.8 0.91 114.88 80.30 0.0597 1.8 0.92 

 Vegetated2 77.86 53.58 0.0623 1.9 0.87 90.13 62.36 0.0614 1.8 0.85 

 Vegetated3 61.75 43.11 0.0599 1.8 0.89 69.65 46.60 0.0670 2.0 0.77 

            

XYLANASE Kraichgau Swabian Alb  

 
Fallow Plot Fallow Plot 

 

 Plot R6 k0 a Q10 EF R6 k0 a Q10 EF 

Apr, 2012 fallow1      21.56 14.07 0.0712 2.04 0.86

 fallow2      22.21 15.60 0.0589 1.80 0.84

 fallow3      22.37 14.82 0.0686 1.99 0.40

May, 2012 fallow1      20.61 13.30 0.0730 2.07 0.86

 fallow2      7.04 4.27 0.0834 2.30 0.84

 fallow3      4.00 1.96 0.1184 3.27 0.40

June, 2012 fallow1      37.44 25.42 0.0645 1.91 0.86

 fallow2      5.17 2.73 0.1065 2.90 0.84

 fallow3      21.05 13.52 0.0737 2.09 0.40

July, 2012 fallow1      67.47 50.80 0.0473 1.60 0.86

 fallow2      27.31 19.17 0.0590 1.80 0.84

 fallow3      14.07 8.82 0.0778 2.18 0.40

Aug, 2012 fallow1      128.07 109.64 0.0259 1.30 0.86

 fallow2      14.60 9.97 0.0635 1.89 0.84

 fallow3      24.72 14.86 0.0849 2.34 0.40

Sept, 2012 fallow1      8.00 4.53 0.0947 2.58 0.86

 fallow2      15.56 10.40 0.0671 1.96 0.84

 fallow3      6.21 3.48 0.0967 2.63 0.40

Oct, 2012 fallow1      11.52 6.94 0.0846 2.33 0.86

 fallow2      3.34 1.82 0.1009 2.74 0.84

 fallow3      16.74 11.46 0.0632 1.88 0.40

Nov, 2012 fallow1      90.98 74.59 0.0331 1.39 0.86

 fallow2      16.08 11.40 0.0574 1.78 0.84

 fallow3      3.44 1.85 0.1034 2.81 0.40

Dec, 2012 fallow1      38.40 27.53 0.0555 1.74 0.86

 fallow2      14.53 9.81 0.0654 1.92 0.84
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 fallow3  3.81 2.18 0.0934 2.54 0.40

Jan, 2013 fallow1      15.55 9.94 0.0746 2.11 0.86

 fallow2      8.82 5.43 0.0808 2.24 0.84

 fallow3      29.26 21.30 0.0529 1.70 0.40

Feb, 2013 fallow1      79.08 60.44 0.0448 1.57 0.86

 fallow2      19.59 13.76 0.0588 1.80 0.84

 fallow3      32.55 21.30 0.0707 2.03 0.40

Mar, 2013 fallow1      9.99 5.98 0.0855 2.35 0.86

 fallow2        Outlier   

 fallow3      23.54 16.68 0.0574 1.77 0.40

Apr, 2013 fallow1      6.45 3.35 0.1093 2.98 0.86

 fallow2      7.61 4.34 0.0935 2.55 0.84

 fallow3      13.21 8.26 0.0782 2.19 0.40
            

 Kraichgau Swabian Alb 

   
Vegetation Plot Vegetation Plot 

  

Apr, 2012 Vegetation1 7.924 4.53 0.0933 2.54 0.87 50.51 33.67 0.0676 1.97 0.75

 Vegetation2 13.66 8.29 0.0833 2.30 0.60 45.70 31.56 0.0617 1.85 0.85

 Vegetation3 10.22 5.87 0.0925 2.52 0.81 52.02 35.77 0.0623 1.87 0.79

May, 2012 Vegetation1 14.44 8.87 0.0811 2.25 0.87 74.50 53.17 0.0562 1.75 0.75

 Vegetation2 29.52 19.82 0.0664 1.94 0.60 19.19 12.18 0.0757 2.13 0.85

 Vegetation3 31.6 20.79 0.0698 2.01 0.81 22.16 13.05 0.0882 2.41 0.79

June, 2012 Vegetation1 26.91 17.85 0.0684 1.98 0.87 75.43 52.66 0.0599 1.82 0.75

 Vegetation2 14.03 7.90 0.0957 2.60 0.60 39.35 26.61 0.0652 1.92 0.85

 Vegetation3 42.69 28.43 0.0678 1.97 0.81 56.64 37.13 0.0704 2.02 0.79

July, 2012 Vegetation1 26.04 17.17 0.0694 2.00 0.87 118.00 85.91 0.0529 1.70 0.75

 Vegetation2 59.93 42.57 0.0570 1.77 0.60 22.10 13.40 0.0834 2.30 0.85

 Vegetation3 42.08 27.14 0.0731 2.08 0.81 30.61 18.7 0.0821 2.27 0.79

Aug, 2012 Vegetation1 6.841 3.83 0.0968 2.63 0.87 135.53 104.71 0.0430 1.54 0.75

 Vegetation2 114.2 94.51 0.0217 1.24 0.60 55.08 39.53 0.0553 1.74 0.85

 Vegetation3 44.67 30.14 0.0534 1.71 0.81 22.06 12.77 0.0911 2.49 0.79

Sept, 2012 Vegetation1 2.991 1.54 0.1107 3.02 0.87 31.58 20.35 0.0732 2.08 0.75

 Vegetation2 132.8 96.07 0.0539 1.71 0.60 63.13 47.42 0.0477 1.61 0.85

 Vegetation3 31.63 19.62 0.0796 2.22 0.81 48.89 32.69 0.0671 1.96 0.79

Oct, 2012 Vegetation1 14.72 9.20 0.0784 2.19 0.87 24.51 14.33 0.0894 2.44 0.75

 Vegetation2 19.78 11.77 0.0865 2.38 0.60 31.21 20.41 0.0708 2.03 0.85

 Vegetation3 40.58 28.89 0.0566 1.76 0.81 59.81 42.46 0.0571 1.77 0.79

Nov, 2012 Vegetation1 15.73 10.25 0.0714 2.04 0.87 54.42 37.68 0.0612 1.84 0.75

 Vegetation2 78.97 63.18 0.0372 1.45 0.60 25.02 17.59 0.0588 1.80 0.85

 Vegetation3 17.66 10.46 0.0873 2.39 0.81 29.54 19.75 0.0671 1.96 0.79
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Dec, 2012 Vegetation1 17.22 11.14 0.0726 2.07 0.87 50.75 36.12 0.0567 1.76 0.75

 Vegetation2 19.32 12.39 0.0741 2.10 0.60 36.50 25.34 0.0608 1.84 0.85

 Vegetation3 19.66 12.49 0.0755 2.13 0.81 54.91 39.45 0.0551 1.74 0.79

Jan, 2013 Vegetation1 33.69 24.93 0.0502 1.65 0.87 28.15 18.07 0.0739 2.09 0.75

 Vegetation2 26.51 17.12 0.0729 2.07 0.60 29.63 20.31 0.0629 1.88 0.85

 Vegetation3 58.43 43.11 0.0507 1.66 0.81 39.52 29.14 0.0508 1.66 0.79

Feb, 2013 Vegetation1 20.28 12.86 0.0759 2.14 0.87 76.68 55.10 0.0551 1.74 0.75

 Vegetation2 25.82 16.66 0.0730 2.08 0.60 32.87 20.79 0.0763 2.14 0.85

 Vegetation3 60.07 44.02 0.0518 1.68 0.81 31.77 21.21 0.0673 1.96 0.79

Mar, 2013 Vegetation1 16.27 10.45 0.0739 2.09 0.87 18.20 10.49 0.0918 2.50 0.75

 Vegetation2 32.33 22.25 0.0623 1.86 0.60 13.37 7.98 0.0860 2.36 0.85

 Vegetation3 30.05 20.34 0.0650 1.92 0.81 21.23 12.97 0.0821 2.27 0.79

Apr, 2013 Vegetation1 49 38.17 0.0416 1.52 0.87 57.66 37.18 0.0731 2.08 0.75

 Vegetation2 10.3 5.65 0.1001 2.72 0.60 24.55 15.67 0.0748 2.11 0.85

 Vegetation3 99.63 78.89 0.0389 1.48 0.81 64.85 47.59 0.0516 1.68 0.79

            

PHENOLOXIDASE            

 Kraichgau Swabian Alb 

 Fallow Plot Fallow Plot 
 
Month Plot R6 k0 a Q10 EF R6 k0 a Q10 EF 

Apr, 2012 fallow1   -0.015 0.86 0.013   -0.013 0.88 0.15

 fallow2   0.009 1.1 0.005   -0.061 0.55 0.19

 fallow3   -0.044 0.65 0.015   0.003 1.03 0.12

May, 2012 fallow1   0.027 1.31 0.013   0.034 1.41 0.15

 fallow2   0.046 1.58 0.005   0.028 1.32 0.19

 fallow3   0.023 1.25 0.015   0.066 1.94 0.12

June, 2012 fallow1   -0.043 0.65 0.013   -0.137 0.25 0.15

 fallow2   -0.137 0.25 0.005   0.044 1.55 0.19

 fallow3   -0.031 0.73 0.015   0.068 1.98 0.12

July, 2012 fallow1   0 1 0.013   0.010 1.10 0.15

 fallow2   0 1 0.005   0.028 1.32 0.19

 fallow3   -0.018 0.83 0.015   0.022 1.25 0.12

Aug, 2012 fallow1   0.001 1.01 0.013   0.004 1.04 0.15

 fallow2   -0.01 0.9 0.005   0.042 1.52 0.19

 fallow3   0.02 1.22 0.015   0.009 1.09 0.12

Sept, 2012 fallow1   0.035 1.42 0.013   0.034 1.40 0.15

 fallow2   0.016 1.17 0.005   0.001 1.01 0.19

 fallow3   0.032 1.38 0.015   -0.031 0.74 0.12

Oct, 2012 fallow1   0.022 1.25 0.013   0.034 1.41 0.15

 fallow2   0.029 1.33 0.005   0.046 1.58 0.19
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 fallow3  0.025 1.28 0.015 0.027 1.31 0.12

Nov, 2012 fallow1   0.003 1.03 0.013   -0.002 0.98 0.15

 fallow2   0 1 0.005   0.017 1.18 0.19

 fallow3   0.033 1.39 0.015   0.034 1.41 0.12

Dec, 2012 fallow1   -0.014 0.87 0.013   0.013 1.14 0.15

 fallow2   -0.002 0.98 0.005   0.043 1.53 0.19

 fallow3   0.003 1.03 0.015   0.009 1.10 0.12

Jan, 2013 fallow1   0.015 1.17 0.013   0.034 1.41 0.15

 fallow2   -0.023 0.79 0.005   0.023 1.26 0.19

 fallow3   0.004 1.04 0.015   0.008 1.09 0.12

Feb, 2013 fallow1   0.014 1.15 0.013   0.080 2.22 0.15

 fallow2   0.018 1.19 0.005   0.065 1.92 0.19

 fallow3   -0.006 0.94 0.015   0.038 1.46 0.12

Mar, 2013 fallow1   -0.004 0.96 0.013   0.072 2.05 0.15

 fallow2   0.019 1.2 0.005   0.036 1.43 0.19

 fallow3   0.038 1.46 0.015   0.007 1.08 0.12

Apr, 2013 fallow1   0.02 1.22 0.013   0.003 1.03 0.15

 fallow2   0.009 1.09 0.005   0.019 1.21 0.19

 fallow3   0.016 1.17 0.015   0.008 1.09 0.12
 
 
 
            

 Kraichgau Swabian Alb 

 
Vegetation Plot Vegetation Plot 

 

 Plot R6 k0 a Q10 EF R6 k0 a Q10 EF 

Apr, 2012 Vegetation1   0.031 1.36 0.025   -0.031 0.74 0.16

 Vegetation2   -0.001 0.99 0.002   -0.009 0.92 0.18

 Vegetation3   0.07 2.01 0.035   0.005 1.06 0.13

May, 2012 Vegetation1   0.057 1.76 0.025   0.027 1.31 0.16

 Vegetation2   -0.014 0.87 0.002   0.004 1.04 0.18

 Vegetation3   0.02 1.22 0.035   0.071 2.04 0.13

June, 2012 Vegetation1   0.022 1.24 0.025   0.002 1.02 0.16

 Vegetation2   -0.061 0.54 0.002   0.005 1.05 0.18

 Vegetation3   -0.014 0.87 0.035   -0.017 0.85 0.13

July, 2012 Vegetation1   -0.014 0.87 0.025   0.048 1.61 0.16

 Vegetation2   -0.007 0.93 0.002   0.041 1.51 0.18

 Vegetation3   -0.011 0.9 0.035   -0.01 0.91 0.13

Aug, 2012 Vegetation1   -0.029 0.75 0.025   -0.002 0.98 0.16

 Vegetation2   -0.012 0.89 0.002   0.028 1.33 0.18

 Vegetation3   -0.013 0.88 0.035   0.019 1.21 0.13
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Sept, 2012 Vegetation1  0.021 1.23 0.025 0.039 1.48 0.16

 Vegetation2   0.005 1.06 0.002   0.023 1.26 0.18

 Vegetation3   0.035 1.42 0.035   -0.004 0.96 0.13

Oct, 2012 Vegetation1   0.017 1.18 0.025   0.027 1.31 0.16

 Vegetation2   0.02 1.22 0.002   0.023 1.26 0.18

 Vegetation3   0.011 1.12 0.035   0.015 1.16 0.13

Nov, 2012 Vegetation1   0.007 1.07 0.025   0.022 1.24 0.16

 Vegetation2   0.018 1.19 0.002   0.049 1.64 0.18

 Vegetation3   0.105 2.86 0.035   0.049 1.63 0.13

Dec, 2012 Vegetation1   -0.04 0.67 0.025   -0.012 0.88 0.16

 Vegetation2   -0.006 0.94 0.002   -0.008 0.92 0.18

 Vegetation3   0.03 1.35 0.035   0.021 1.24 0.13

Jan, 2013 Vegetation1   -0.017 0.84 0.025   0.035 1.42 0.16

 Vegetation2   -0.017 0.84 0.002   0.027 1.31 0.18

 Vegetation3   -0.012 0.89 0.035   0 1 0.13

Feb, 2013 Vegetation1   0.037 1.45 0.025   0.073 2.07 0.16

 Vegetation2   0.037 1.45 0.002   0.116 3.18 0.18

 Vegetation3   0.027 1.31 0.035   0.033 1.39 0.13

Mar, 2013 Vegetation1   0.028 1.33 0.025   0.15 4.48 0.16

 Vegetation2   0.036 1.43 0.002   0.027 1.31 0.18

 Vegetation3   0 1 0.035   0.023 1.26 0.13

Apr, 2013 Vegetation1   0 1 0.025   0.023 1.25 0.16

 Vegetation2   0.025 1.28 0.002   0.023 1.26 0.18

 Vegetation3   0.015 1.16 0.035   0.012 1.13 0.13
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Appendix – II 

Supplementary data – Chapter 6 

 
 
Fig. S6.1 Microbial respiration fluxes (cumulative CO2-C) measured from bare fallow soils of 

both regions and different C substrate amendments. 
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Fig. S6.2 Decomposition curves of CO2-C fluxes measured under different C substrate 

amendments. Panels (a), (b), (c) & (g), (h), (i) represent bare fallow soils of the Swabian 
Alb and the Kraichgau, respectively. Panels (d), (e), (f) & (j), (k), (l) represent vegetated 
soils of the Swabian Alb and the Kraichgau, respectively. Bars indicate standard error 
(n = 3). Note different scales of the Swabian Alb and the Kraichgau. 
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Fig. S6.3 Shifts in total, gram-positive, and gram-negative PLFAs of bare fallow soils in 
response to incubation temperature and availability of C substrate of varying 
qualities. Left panels represent PLFAs of the Swabian Alb (a, c, e) and right panels 
represent PLFAs of the Kraichgau (b, d, f). Bars indicate the standard error (n = 3). 
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Fig. S6.4 Fungal PLFAs and ergosterol content measured in bare fallow soils of the Swabian 

Alb (a, c) and the Kraichgau (b, d) un-amended and amended with C substrates of 
varying qualities after incubation at three different temperatures. Bars indicate 
standard error (n = 3). 
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Fig. S6.5 16S rRNA gene abundance and fungal ITS fragment amounts from the Swabian Alb 

and the Kraichgau bare fallow soils as affected by temperature and different C 
substrate qualities. Bars indicate standard error (n = 3). Ctrl.C = un-amended 
controls after 7-day incubation and “control” after 36-day incubation. 
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Fig. S6.6 Results of the PCA analysis from the bare fallow soils for bacterial community 

composition as affected by different temperatures and substrate amendments. Species 
scores are shown as arrows associated with different bacterial taxa (Actino = 
Actinobacteria, Alphapro = Alphaproteobacteria, Betapro = Betaproteobacteria, 
Acido = Acidobacteria, Bactero = Bacteroidetes, Gemmat = Gemmatimonadetes, Firmi 
= Firmicutes, Verruco = Verrucomicrobia). For legend, see Fig. 6.4. 



Appendix – II    163 

 

 
 
 
Fig. S6.7 Relative abundances (%) of the measured bacterial community members under the 

influence of different C substrates in vegetated soils of the Swabian Alb and the 
Kraichgau after exposure to different temperatures. 
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Fig. S6.8 Relative abundances (%) of the measured bacterial community members under the 

influence of different C substrates in bare fallow soils of the Swabian Alb and the 
Kraichgau after exposure to different temperatures. 
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Fig. S6.9 The effect of incubation temperature on the ratio of unsaturated to saturated 

microbial PLFAs when amended with different substrates. The filled symbols 
represent vegetated soils and empty symbols the bare fallow soils. Bars indicate 
standard error (n = 3). Control are the samples after 36 days’ incubation. 
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Table S6.1 Soil properties measured from the two land-use types of the Kraichgau and the 
Swabian Alb regions. 

 
Region Land-use   Basic soil properties 

  
SOC 

mg g-1 C:N
NH4

+

µg g-1
NO3

- 

µg g-1 
Carbonate

(%) 
Sand
(%) 

Silt 
(%) 

Clay 
(%) 

Kraichgau Bare fallow 7.40 9.00 2.87 4.06 n.d. n.d. n.d. n.d. 
 Vegetated 8.30 9.75 2.02 13.99 0.9 2.73 78.25 19.02

Swabian Alb Bare fallow 13.90 8.86 5.49 12.83 n.d. n.d. n.d. n.d. 
  Vegetated 16.00 8.99 10.58 20.97 2.2 7.83 50.58 41.59

SOC = soil organic carbon, n.d. = not determined 
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Table S6.2 Primers, sequences, and conditions for qPCR of the respective target groups.  
 

Target group Primer Sequence (5´     3´)a qPCR conditionsb Reference 

16S rRNA genes 341F 
515R 

CCT ACG GGA GGC AGC AG 
ATT ACC GCG GCT GCT GGC A 

600s at 95 °C 
Cycle (35): 15s at 95 °C, 30s at 60 °C, 30s at 72 °C, 30s at 75 °C (m.o.f.) 

(López-Gutiérrez et al., 
2004) 

Fungal ITS fragment ITS 3F 
ITS4R 

GCA TCG ATG AAG AAC GCA GC 
TCC TCC GCT TAT TGA TAT GC 

600s at 95 °C 
Cycle (35): 15s at 95 °C, 30s at 55 °C, 30s at 72 °C, 30s at 76 °C (m.o.f.) 

(White et al., 1990; 
Manerkar et al., 2008) 

Alphaproteobacteria Eub338 
Alfa685 

ACT CCT ACG GGA GGC AGC AG 
TCT ACG RAT TTC ACC YCT AC 

600s at 95 °C 
Cycle (35): 15s at 95 °C, 30s at 55 °C, 30s at 72 °C, 30s at 77 °C (m.o.f.) 

(Fierer et al., 2005) 

BetaProteobacteria Eub338 
Bet680 

ACT CCT ACG GGA GGC AGC AG 
TCA CTG CTA CAC GYG 

600s at 95 °C 
Cycle (35): 15s at 95 °C, 30s at 55 °C, 30s at 72 °C, 30s at 80 °C (m.o.f.) 

(Fierer et al., 2005) 

Acidobacteria Acid31 
Eub518 

GAT CCT GGC TCA GAA TC 
ATT ACC GCG GCT GCT GG 

600s at 95 °C 
Cycle (35): 15s at 95 °C, 30s at 55 °C, 30s at 72 °C, 30s at 81 °C (m.o.f.) 

(Fierer et al., 2005) 

Firmicutes Lgc353 
Eub518 

GCA GTA GGG AAT CTT CCG 
ATT ACC GCG GCT GCT GG 

600s at 95 °C 
Cycle (35): 15s at 95 °C, 30s at 60 °C, 30s at 72 °C, 30s at 79 °C (m.o.f.) 

(Fierer et al., 2005) 

Gemmatimonadetes Gem440 
Eub518 

TTC GGR KTG TAA ACC ACT GT 
ATT ACC GCG GCT GCT GG 

600s at 95 °C 
Cycle (35): 15s at 95 °C, 30s at 58 °C, 30s at 72 °C, 30s at 78 °C (m.o.f.) 

(Philippot et al., 2009) 

Verrucomicrobia Verr349 
Eub518 

GYG GCA SCA GKC GMG AAW 
ATT ACC GCG GCT GCT GG 

600s at 95 °C 
Cycle (35): 15s at 95 °C, 30s at 60 °C, 30s at 72 °C, 30s at 77 °C (m.o.f.) 

(Philippot et al., 2009) 

Actinobacteria Act920F 
Act1200R 

TAC GGC CGC AAG GCT A 
TCR TCC CCA CCT TCC TCC G 

600s at 95 °C 
Cycle (35): 15s at 95 °C, 30s at 61.5 °C, 30s at 72 °C, 30s at 78 °C (m.o.f.) 

(Bacchetti De Gregoris et 
al., 2011) 

Bacteroidetes Cfb798F 
Cfb967R 

CRA ACA GGA TTA GAT ACC CT 
GGT AAG GTT CCT CGC GTA T 

600s at 95 °C 
Cycle (35): 15s at 95 °C, 30s at 45.7 °C, 30s at 72 °C, 30s at 75 °C (m.o.f.) 

(Bacchetti De Gregoris et 
al., 2011) 

a M (A+C); R (A+G); W(A+T); S (G+C); Y(C+T); K(G+T) 
b m.o.f., represents measurement of fluorescence 
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 Table S6.3 Biomass response of bacterial taxa (absolute abundance copy numbers / g dry soil) to variations of temperature and substrate quality, 
from soils of two regions and land-uses. CA = conifery alcohol, CB = cellobiose, control = un-amended soils after 36 days’ incubation, 
Ctrl.C = un-amended soils after 7 days’ incubation (n = 3). Std.Er = standard error 

Region 
Land-

use 
Temperature

(°C) 
Substrate 

Alphaproteobacteria Betaproteobacteria Acidobacteria Bacteroidetes 

Average Std. Er Average Std. Er Average Std. Er Average Std. Er 
K

ra
ic

h
ga

u
 

B
ar

e 
fa

ll
ow

 

5 CA 9.17E+08 2.21E+08 2.67E+08 3.59E+07 9.12E+08 1.47E+08 6.04E+07 3.12E+06 
15 CA 1.35E+09 6.98E+08 4.58E+08 9.78E+07 1.37E+09 2.19E+08 1.63E+08 1.66E+07 
25 CA 2.82E+09 1.15E+08 2.32E+08 1.92E+07 1.81E+09 7.00E+07 4.14E+07 2.72E+06 
5 xylan 1.67E+09 2.24E+08 4.44E+08 3.69E+07 1.39E+09 1.82E+08 6.02E+08 6.42E+07 

15 xylan 5.98E+09 1.07E+09 4.82E+08 6.81E+07 1.68E+09 7.01E+07 6.36E+08 4.44E+07 
25 xylan 4.31E+09 1.28E+09 3.88E+08 6.34E+07 2.12E+09 1.00E+08 1.09E+08 5.79E+05 
5 control 2.09E+09 2.42E+08 3.60E+08 9.55E+07 1.32E+09 1.33E+08 1.48E+08 1.81E+07 

15 control 4.82E+09 7.38E+08 6.11E+08 4.86E+07 2.13E+09 1.21E+08 1.67E+08 6.59E+06 
25 control 1.34E+09 2.17E+08 3.40E+08 8.54E+07 2.06E+09 3.32E+08 5.69E+07 1.35E+07 
5 CB 4.21E+09 1.06E+09 5.97E+07 5.03E+07 4.76E+08 2.38E+08 3.78E+08 1.10E+07 

15 CB 4.39E+09 8.61E+08 9.18E+08 3.74E+08 1.08E+09 8.47E+07 5.84E+08 3.98E+07 
25 CB 2.17E+09 4.33E+08 1.33E+09 2.73E+08 1.76E+09 1.63E+08 1.05E+08 1.67E+07 
5 Ctrl.C 7.21E+09 1.73E+09 4.11E+08 3.17E+07 3.71E+09 1.38E+09 1.97E+08 1.34E+07 

15 Ctrl.C 1.38E+09 3.32E+08 1.12E+09 5.17E+06 2.87E+09 2.39E+08 3.11E+08 1.98E+07 
25 Ctrl.C 3.73E+09 3.05E+08 2.49E+08 3.19E+07 1.25E+09 3.18E+08 5.02E+07 7.80E+06 
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5 CA 2.13E+09 1.84E+08 3.99E+08 3.35E+07 2.11E+09 6.96E+07 1.40E+08 1.59E+07 
15 CA 2.26E+09 3.51E+08 8.20E+08 9.81E+07 4.19E+09 4.97E+08 3.59E+08 2.48E+07 
25 CA 5.06E+09 7.04E+08 5.13E+08 5.30E+06 3.29E+09 2.08E+08 9.88E+07 7.83E+06 
5 xylan 1.04E+09 2.30E+08 5.42E+08 6.39E+07 1.66E+09 5.30E+08 1.03E+09 1.75E+08 

15 xylan 2.29E+09 7.42E+08 6.98E+08 2.24E+08 2.86E+09 9.17E+08 9.18E+08 1.48E+08 
25 xylan 5.19E+09 1.94E+09 5.35E+08 7.71E+07 2.47E+09 3.30E+08 1.52E+08 1.08E+07 
5 control 2.60E+09 1.94E+08 5.22E+08 7.60E+07 2.27E+09 3.41E+08 2.15E+08 3.72E+07 

15 control 2.52E+09 1.26E+08 7.84E+08 1.15E+08 3.30E+09 4.22E+08 3.03E+08 4.85E+07 
25 control 2.18E+09 4.08E+08 1.77E+08 9.89E+07 2.15E+09 2.87E+08 8.74E+07 1.17E+07 
5 CB 2.17E+09 6.25E+08 5.22E+08 2.53E+08 2.02E+09 1.78E+08 1.35E+09 2.16E+08 

15 CB 5.87E+09 6.42E+08 2.73E+09 4.30E+08 3.46E+09 2.33E+08 3.27E+09 1.11E+09 
25 CB 3.01E+09 2.15E+08 1.85E+09 2.92E+08 3.71E+09 2.18E+08 1.97E+08 3.48E+07 
5 Ctrl.C 4.81E+09 2.07E+09 2.02E+08 5.08E+06 7.13E+08 3.84E+08 1.15E+08 8.88E+06 

15 Ctrl.C 2.64E+09 3.69E+08 9.91E+07 4.14E+07 1.46E+09 7.87E+08 2.04E+08 1.05E+08 
25 Ctrl.C 3.31E+09 1.35E+08 9.87E+08 5.51E+07 3.26E+09 3.69E+07 1.36E+08 1.43E+07 
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Region 
Land-

use 
Temperature

(°C) 
Substrate 

Firmicutes Gemmatimonadetes Actinobacteria Verrucomicrobia 

Average Std. Er Average Std. Er Average Std. Er Average Std. Er 
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5 CA 5.73E+07 3.49E+06 5.00E+07 1.24E+07 1.50E+09 6.30E+08 1.49E+08 4.45E+07 

15 CA 6.84E+07 2.71E+07 9.42E+07 2.91E+07 2.15E+09 7.98E+08 1.63E+08 4.78E+07 

25 CA 5.65E+07 7.95E+06 9.99E+07 2.46E+07 1.73E+09 5.52E+08 2.06E+08 6.63E+07 

5 xylan 7.32E+07 1.28E+07 8.01E+07 2.38E+07 3.57E+09 1.29E+09 2.33E+08 7.43E+07 

15 xylan 5.62E+07 8.02E+06 6.20E+07 2.31E+07 2.01E+09 5.97E+08 1.67E+08 5.30E+07 

25 xylan 2.17E+08 2.77E+07 1.46E+08 2.19E+07 2.98E+09 2.37E+08 6.91E+08 6.11E+07 

5 control 2.21E+07 6.37E+06 3.44E+07 1.08E+07 3.38E+08 2.12E+08 8.36E+07 3.89E+07 

15 control 3.84E+07 6.92E+06 5.48E+07 1.11E+07 8.87E+08 2.43E+08 2.28E+08 6.74E+07 

25 control 7.27E+07 1.25E+07 5.53E+07 1.18E+07 1.20E+09 1.97E+08 5.26E+08 1.87E+08 

5 CB 7.45E+07 8.08E+06 4.54E+07 2.19E+07 4.07E+09 5.27E+08 1.14E+08 8.95E+06 

15 CB 8.00E+07 6.47E+06 6.67E+07 1.76E+07 3.51E+09 7.97E+08 1.71E+08 5.43E+07 

25 CB 1.52E+08 2.60E+07 1.64E+08 5.30E+07 3.83E+09 9.74E+08 7.15E+08 1.06E+08 

5 Ctrl.C 9.08E+07 4.67E+06 1.32E+08 3.15E+06 6.53E+09 1.81E+09 5.25E+08 8.78E+06 

15 Ctrl.C 1.23E+08 1.70E+07 2.10E+08 1.10E+07 8.31E+09 1.84E+09 8.85E+08 1.40E+07 

25 Ctrl.C 5.05E+07 7.64E+06 2.12E+07 NA 1.38E+09 1.05E+08 1.84E+08 1.54E+06 
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5 CA 6.30E+07 1.30E+07 7.75E+07 1.53E+07 2.93E+09 9.82E+08 1.66E+08 4.40E+07 

15 CA 1.29E+08 3.16E+07 1.63E+08 3.52E+07 5.57E+09 1.49E+09 5.92E+08 2.35E+08 

25 CA 8.11E+07 4.77E+06 1.91E+08 2.29E+07 4.25E+09 7.23E+08 5.45E+08 3.24E+07 

5 xylan 6.21E+07 8.67E+06 8.42E+07 3.25E+07 3.90E+09 1.16E+09 4.82E+08 1.00E+08 

15 xylan 1.19E+08 2.85E+07 1.33E+08 2.35E+07 3.66E+09 8.51E+08 6.09E+08 2.73E+08 

25 xylan 1.25E+08 7.69E+06 1.80E+08 5.57E+07 4.03E+09 6.40E+08 6.68E+08 2.09E+08 

5 control 3.26E+07 1.56E+07 4.72E+07 2.03E+07 9.90E+08 5.81E+08 1.81E+08 9.06E+07 

15 control 1.01E+08 1.58E+07 1.40E+08 7.46E+07 2.31E+09 5.43E+08 7.52E+08 3.80E+08 

25 control 3.31E+07 1.84E+07 4.72E+07 2.36E+07 9.13E+08 2.86E+08 2.92E+08 7.16E+07 

5 CB 1.15E+08 1.60E+07 9.82E+07 2.30E+07 8.00E+09 2.42E+09 3.58E+08 1.08E+08 

15 CB 1.61E+08 1.81E+07 1.77E+08 2.82E+07 8.62E+09 8.67E+08 6.93E+08 9.73E+07 

25 CB 2.11E+08 3.68E+07 2.60E+08 4.44E+07 8.72E+09 7.79E+08 1.33E+09 1.33E+08 

5 Ctrl.C 8.30E+07 #DIV/0! 3.01E+07 1.05E+07 1.53E+09 3.23E+08 1.62E+08 7.92E+07 

15 Ctrl.C 1.63E+08 3.43E+07 9.00E+07 5.56E+07 5.67E+09 NA 1.21E+09 1.04E+09 

25 Ctrl.C 9.48E+07 1.47E+07 2.65E+08 1.63E+07 5.50E+09 6.11E+08 8.20E+08 3.74E+07 
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Region 

Land-
use 

Temperature
(°C) 

Substrate 
Alphaproteobacteria Betaproteobacteria Acidobacteria Bacteroidetes 

Average Std. Er Average Std. Er Average Std. Er Average Std. Er 
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5 CA 1.08E+09 2.62E+08 4.34E+08 9.57E+06 2.23E+09 1.89E+08 8.54E+07 1.22E+07 

15 CA 1.52E+09 6.25E+08 5.20E+08 4.44E+07 1.65E+09 5.33E+08 1.20E+08 6.40E+06 

25 CA 3.26E+09 4.29E+08 4.09E+08 7.58E+07 4.36E+09 7.33E+08 8.43E+07 1.54E+07 

5 xylan 3.25E+09 4.09E+08 1.08E+09 1.21E+08 2.98E+09 3.56E+08 8.43E+08 1.51E+07 

15 xylan 3.81E+09 7.85E+08 1.62E+09 1.79E+07 4.37E+09 7.41E+08 8.03E+08 1.06E+08 

25 xylan 5.12E+09 1.90E+09 7.79E+08 7.78E+07 6.02E+09 9.05E+08 2.59E+08 4.86E+07 

5 control 3.76E+09 1.16E+09 6.68E+08 7.19E+07 3.73E+09 3.65E+08 1.58E+08 2.62E+07 

15 control 4.13E+09 2.98E+08 8.22E+08 2.26E+07 3.87E+09 8.30E+08 1.71E+08 1.04E+07 

25 control 2.70E+09 3.75E+08 4.60E+08 3.44E+07 4.86E+09 1.16E+08 8.95E+07 1.12E+07 

5 CB 1.32E+09 4.19E+08 2.20E+08 1.61E+08 5.10E+08 4.87E+08 2.65E+08 2.59E+07 

15 CB 3.23E+09 5.16E+08 7.23E+08 1.88E+08 2.30E+09 4.83E+07 4.68E+08 9.40E+06 

25 CB 2.10E+09 6.76E+08 9.08E+08 2.08E+08 3.46E+09 2.81E+08 2.08E+08 1.56E+07 

5 Ctrl.C 1.04E+09 7.16E+07 7.62E+08 NA 1.61E+09 7.92E+07 9.38E+07 5.87E+05 

15 Ctrl.C 4.59E+09 1.43E+09 1.17E+09 3.35E+08 3.15E+09 1.23E+09 2.12E+08 7.20E+07 

25 Ctrl.C 2.94E+09 1.84E+09 6.67E+08 5.78E+07 2.52E+09 1.06E+09 1.04E+08 2.22E+07 
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5 CA 4.48E+09 3.35E+08 5.48E+08 8.33E+07 3.66E+09 5.50E+08 1.18E+08 1.38E+07 

15 CA 4.09E+09 3.30E+08 7.23E+08 5.26E+07 5.11E+09 1.20E+09 2.59E+08 9.00E+06 

25 CA 4.29E+09 3.15E+08 5.48E+08 3.39E+07 5.26E+09 1.37E+08 1.19E+08 1.39E+07 

5 xylan 2.05E+09 3.22E+08 1.30E+09 1.58E+08 4.67E+09 1.68E+09 1.45E+09 5.63E+07 

15 xylan 2.65E+09 5.62E+08 1.41E+09 4.07E+08 4.75E+09 6.80E+08 1.03E+09 1.21E+08 

25 xylan 8.25E+08 1.79E+08 8.99E+08 7.30E+07 5.09E+09 2.61E+08 2.50E+08 7.22E+06 

5 control 1.36E+09 1.14E+08 9.73E+08 1.06E+08 5.98E+09 2.18E+08 3.04E+08 2.18E+07 

15 control 4.54E+09 6.06E+08 1.06E+09 1.27E+08 5.57E+09 2.53E+08 3.60E+08 1.03E+07 

25 control 3.43E+09 2.25E+08 2.83E+08 2.56E+08 4.93E+09 7.02E+08 1.51E+08 1.49E+07 

5 CB 1.58E+09 4.50E+08 1.79E+09 2.28E+08 3.96E+09 4.52E+08 8.83E+08 9.61E+07 

15 CB 3.02E+09 2.04E+08 2.41E+09 2.60E+08 4.47E+09 4.86E+08 1.16E+09 1.23E+08 

25 CB 6.96E+09 7.03E+08 1.60E+09 5.05E+08 7.25E+09 1.07E+09 4.45E+08 1.93E+07 

5 Ctrl.C 3.05E+09 6.25E+08 1.50E+09 2.87E+08 5.99E+09 7.30E+08 2.35E+08 1.19E+06 

15 Ctrl.C 1.27E+09 2.87E+08 5.02E+08 2.78E+07 1.88E+09 9.43E+07 2.01E+08 2.11E+07 

25 Ctrl.C 6.46E+09 7.76E+08 1.35E+09 9.85E+07 5.53E+09 8.78E+08 2.54E+08 2.24E+07 
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Firmicutes Gemmatimonadetes Actinobacteria Verrucomicrobia 
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5 CA 1.27E+08 6.78E+07 6.85E+07 3.14E+07 1.40E+09 4.35E+08 2.11E+08 1.17E+08 

15 CA 1.80E+08 2.60E+07 7.79E+07 2.37E+07 2.18E+09 3.58E+08 2.88E+08 6.33E+07 

25 CA 2.50E+08 5.67E+06 1.47E+08 1.93E+07 3.82E+09 2.78E+08 6.82E+08 7.03E+07 

5 xylan 3.74E+08 2.68E+07 2.60E+08 4.81E+07 1.37E+10 2.88E+09 1.43E+09 3.48E+08 

15 xylan 3.00E+08 5.31E+07 3.25E+08 3.32E+07 1.20E+10 1.64E+09 1.22E+09 2.20E+08 

25 xylan 5.84E+08 1.05E+08 4.14E+08 2.56E+07 8.57E+09 9.44E+08 2.86E+09 9.06E+07 

5 control 1.98E+08 6.37E+06 1.62E+08 1.30E+07 3.51E+09 6.64E+08 1.20E+09 2.05E+08 

15 control 2.18E+08 1.72E+07 1.69E+08 1.41E+07 4.13E+09 3.68E+08 1.19E+09 8.53E+07 

25 control 2.04E+08 1.93E+07 1.94E+08 2.23E+07 3.60E+09 2.35E+08 1.41E+09 5.98E+07 

5 CB 2.53E+08 6.30E+07 7.45E+07 2.31E+07 5.71E+09 1.06E+09 2.20E+08 1.73E+08 

15 CB 6.22E+08 1.18E+08 5.32E+07 2.26E+07 3.82E+09 1.08E+09 2.59E+08 2.11E+07 

25 CB 4.45E+08 2.81E+07 2.05E+08 6.28E+07 4.60E+09 1.30E+09 8.50E+08 1.52E+08 

5 Ctrl.C 2.26E+08 2.79E+07 1.74E+08 4.84E+07 5.30E+09 2.04E+09 6.25E+08 1.65E+08 

15 Ctrl.C 2.18E+08 4.85E+06 1.45E+08 3.23E+07 4.13E+09 7.70E+08 1.21E+09 5.27E+08 

25 Ctrl.C 2.36E+08 1.29E+07 2.16E+08 5.68E+07 4.69E+09 1.43E+08 1.75E+09 1.79E+08 
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5 CA 1.89E+08 2.34E+07 1.56E+08 8.97E+06 6.37E+09 1.13E+09 9.91E+08 8.63E+07 

15 CA 2.16E+08 1.25E+07 3.08E+08 5.24E+07 8.92E+09 1.06E+09 1.16E+09 2.00E+08 

25 CA 2.63E+08 4.28E+07 4.11E+08 7.54E+07 1.03E+10 1.68E+09 1.61E+09 2.46E+08 

5 xylan 2.84E+08 4.17E+07 1.00E+08 5.83E+07 5.01E+09 9.42E+08 8.33E+08 2.36E+08 

15 xylan 2.20E+08 2.55E+07 2.13E+08 2.52E+07 5.90E+09 4.93E+08 9.48E+08 1.79E+08 

25 xylan 3.50E+08 4.89E+07 2.89E+08 7.51E+07 5.20E+09 9.58E+08 1.63E+09 3.54E+08 

5 control 1.15E+08 9.95E+06 1.11E+08 4.39E+07 2.38E+09 1.91E+08 7.87E+08 8.23E+07 

15 control 8.79E+07 3.96E+07 1.15E+08 4.25E+07 2.22E+09 4.77E+08 8.93E+08 2.28E+08 

25 control 1.84E+08 8.23E+07 1.20E+08 3.02E+07 4.29E+09 6.75E+08 1.64E+09 1.11E+08 

5 CB 3.15E+08 4.43E+07 2.13E+08 2.73E+07 2.16E+10 7.93E+09 2.53E+09 7.25E+08 

15 CB 5.08E+08 5.42E+07 2.92E+08 5.57E+07 1.41E+10 2.10E+09 1.77E+09 3.02E+08 

25 CB 7.12E+08 3.73E+07 3.10E+08 6.93E+06 1.02E+10 1.27E+09 4.23E+09 9.72E+07 

5 Ctrl.C 3.98E+08 4.79E+07 2.18E+08 8.79E+07 1.08E+10 4.30E+08 2.46E+09 7.49E+08 

15 Ctrl.C 7.99E+07 3.49E+06 4.81E+07 1.86E+07 3.11E+09 2.22E+08 2.90E+08 4.51E+07 

25 Ctrl.C 3.36E+08 3.25E+07 1.73E+08 7.39E+06 5.46E+09 5.63E+08 2.97E+09 1.03E+09 



Appendix – III    172 

 

Appendix – III 

Supplementary data – Chapter 7 

 

 
 
Fig. S7.1  The two investigated landscapes in southwest Germany showing the 41 moisture 

network sites. 
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Fig. S7.2 Soil respiration normalized to SOC content, measured in terms of oxygen consumption 

response of soil microorganisms to increasing temperatures in the Kraichgau and the 
Swabian Alb. Bars indicate standard deviation for the Kraichgau (n = 21) and the 
Swabian Alb (n = 19). 
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Fig. S7.3 Response of β-glucosidase (a) and xylanase (b) activities to changing temperature in 

the Kraichgau and the Swabian Alb. Enzyme activities are normalized to SOC per site. 
Bars indicate standard deviation for the Kraichgau (n = 21) and the Swabian Alb (n = 
19).  
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Fig. S7.4 Variable importance as given by the tree ensemble regression models for selecting most 

important variables explaining basal soil respiration (measured at 31 °C) and its 
temperature sensitivity in the Kraichgau (a & c) and the Swabian Alb (b & d), 
respectively. Line indicates theoretical importance when all explanatory variables have 
similar importance. 

 
 
 
 
 



Appendix – III    176 

 

 
 
Fig. S7.5 Variable importance as given by the tree ensemble regression models for selecting most 

important variables explaining temperature sensitivity of β-glucosidase and xylanase 
activities in the Kraichgau (a & c) and the Swabian Alb (b & d), respectively. Line 
indicates theoretical importance when all explanatory variables have similar 
importance. 
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Fig. S7.6 Variable importance as given by the tree ensemble regression models using data for the 

regional scale. Soil respiration and activities data of both enzymes are normalized to 
SOC content. Lines represent theoretical importance when all explanatory variables 
have similar importance. 
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Fig. S7.7 Variation of the explaining variables between and within each landscape. Here we 

present examples of some variables, complete data for all explaining variables can be 
found in Table S1.  
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Table S7.1 Values of the explanatory variables from each site in both study areas. Enzyme activities, microbial and fungal biomass data 
were normalized on basis of soil organic carbon in each site. "x" and "y" are the Gauß-Krüger site coordinates (meters). 
RQ10, BetaQ10 and XylanQ10 are the Q10 of soil respiration and of β-glucosidase and xylanase activities, respectively. 

Area x y r_2930 r_1620 r_1530 r_1159 betagluco Xylanase pH SOC Carbonate TN C:N 

K
ra

ic
hg

au
 

3489835 5451324 14.52 71.11 4.23 10.14 320.94 397 5.58 0.91 0.06 0.14 6.52 

3490239 5449814 38.71 53.92 1.57 5.8 192.1 381.19 7.48 1.28 2.37 0.11 11.66 

3491823 5449585 3.44 81.64 4.61 11.28 415.49 255.95 7.07 0.96 0.04 0.13 7.36 

3491080 5449079 38.11 54.7 1.28 5.9 253.65 609.6 7.5 0.75 2.59 0.09 8.34 

3489251 5449185 20.44 65.4 4.42 9.74 182.81 423.34 6.53 0.96 0 0.13 7.36 

3486509 5452807 12.82 73.58 4.01 9.59 371.51 386.43 5.22 0.79 0.08 0.13 6.08 

3490275 5452795 17.84 70.73 3.14 9.77 401.39 305.56 7.31 0.99 0.19 0.12 8.25 

3492875 5453374 16.55 69.53 3.39 10.53 412.89 289.12 6.57 1.11 0.08 0.15 7.42 

3493367 5450073 6.9 78.52 3.71 10.88 507.49 259.03 6.23 1.06 0 0.14 7.54 

3493102 5447216 22.34 65.06 3.08 9.52 405.12 295.49 6.88 1.22 0.07 0.17 7.2 

3490153 5447055 7.91 76.09 4.51 11.48 217.8 772.35 5.04 0.6 0.06 0.09 6.62 

3487036 5446275 13.49 71.99 3.57 10.95 335.12 452.1 7.15 0.73 0.17 0.12 6.07 

3488459 5449890 20.68 65.8 3.3 10.23 187.37 443.87 5.37 1.12 0 0.13 8.59 

3481556 5458806 41.16 50.87 1.71 6.27 233.75 466.15 7.36 1.07 0.91 0.12 8.96 

3491253 5458990 30.04 59.14 2.39 8.42 453.63 418.28 7.33 1.2 0.4 0.13 9.25 

3499360 5458846 19.28 65.6 3.92 11.2 193.86 457.72 5.87 0.7 0 0.1 6.97 

3500061 5449895 23.13 64.99 2.56 9.31 306.52 444.07 7.37 1.08 0.25 0.13 8.31 

3499496 5440975 32.28 60.06 0.84 6.81 252.12 355.21 7.51 1.02 1.79 0.11 9.29 

3490479 5441095 17.32 71.66 1.66 9.36 436.24 766.84 7.46 1.1 0.8 0.13 8.42 

3480494 5441002 16.91 69.65 3.13 10.32 338.72 375.13 7.1 0.91 0.03 0.12 7.61 

3482390 5450274 7.42 78.71 3.07 10.81 368.58 325.41 6.26 0.78 0.06 0.11 7.12 
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Table S7.1 Continued   

Area Cmic Nmic EOC EN NO3
- NH4

+ Clay Sand Silt Ergosterol 
basal  

respiration 
RQ10 BetaQ10 XylanQ10 

K
ra

ic
hg

au
 

103.54 14.21 52.55 14.8 8.94 4.1 26.17 3.88 68.7 1.43 2.21 2.05 1.96 1.59 

162.26 21.33 53.67 15.63 11.53 1.29 23.62 2.33 75.1 0.96 1.71 2.67 1.74 2.16 

224.72 12.56 54.21 33.97 38.05 1.17 27.6 2.15 71.5 1.29 1.7 2.21 1.82 1.87 

244.51 29.45 58.7 17.97 20.97 1.16 20.14 2.78 78.1 1.47 2 2.25 1.55 2.03 

131.81 12.36 44.57 15.65 13.51 1.39 14.61 3.96 80.6 0.67 2.39 2.07 1.76 1.7 

152.05 12.38 59.78 16.91 13.77 2.16 29.51 10.91 60.3 2.72 1.97 2.02 1.84 1.53 

143.51 19.04 41.04 12.43 10.61 1.13 20.83 4.57 73.8 1.24 1.71 1.89 1.84 1.69 

196.12 14.77 44.13 32.62 39.16 1.56 27.85 2.02 69.3 1.88 1.7 1.77 1.75 1.57 

248.52 22.48 65.14 32.49 36.18 1.46 29.93 1.96 68.4 1.97 2.36 1.95 1.76 1.34 

215.72 31.48 57.06 16.65 19.33 1.13 25.22 1.94 74 1.32 1.83 1.87 2.04 1.52 

110.64 11.95 55.64 15.06 7.89 2.67 15.05 4.22 80.2 1.51 2.53 1.71 1.52 1.84 

188.58 27.77 48.24 14.68 12.86 1.3 22.48 3.43 74.4 1.17 2.26 1.73 1.85 1.89 

93.15 7.14 38.15 20.49 22.65 1.23 16.6 5.65 77.2 1 1.47 1.64 2.17 1.96 

190.98 23.05 49.32 23.9 29.79 1.23 17.17 12.8 68.6 0.9 1.72 1.64 1.68 2.8 

238.1 20.39 56.41 36.16 49.26 1.46 19.85 3.28 78.2 0.99 1.83 2.01 2.18 1.7 

165.15 20.54 50.99 19.14 20.5 2.82 13.67 3.39 82.1 0.86 2.86 1.37 1.83 1.49 

257.94 36.46 47.48 17.32 18.39 1.49 23.33 2.52 75.1 1.43 2.05 1.95 1.42 1.57 

171.24 22.67 52.52 24.03 29.73 1.35 23.62 7.25 68.2 1.15 1.69 1.75 1.53 1.5 

210.22 26.27 55.39 26 25.84 1.35 26.74 4.15 70 1.77 2.16 2.16 1.87 1.48 

167.53 24.89 35.14 13.13 13.79 1.56 21.25 4.53 74 1.69 2.12 1.71 1.99 1.65 

165.99 20.94 35.72 13.27 11.58 2.08 25.55 3.9 70 1.91 2.27 2.07 1.72 1.38 
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Table S7.1 Continued 
Area x y r_2930 r_1620 r_1530 r_1159 betagluco Xylanase pH SOC Carbonate TN C:N 

A
lb

 

3533589 5363681 64.74 32.14 0.25 2.97 255.48 138.56 7.36 3.3 2.72 0.37 8.91 

3534111 5364554 24.33 64.06 0.81 10.8 374.45 127.93 7.4 2.94 0.46 0.33 8.9 

3533163 5365757 34.36 53.74 2.01 9.89 188.15 157.24 6.34 2.49 0.04 0.28 8.88 

3531777 5365542 55.41 35.55 0.73 8.32 268.18 136.06 7.28 4.17 0.23 0.42 9.93 

3529367 5368142 31.99 54.97 1.9 11.14 233.02 106.02 7.02 2.79 0.09 0.31 9.01 

3534133 5368861 25.97 61.46 2.03 10.53 295.64 142.88 6.41 2.34 0.06 0.25 9.35 

3536174 5367268 58.71 37.93 -1.11 4.47 443.42 271.36 7.38 2.77 2.23 0.34 8.14 

3535962 5365210 54.57 33.24 1.49 10.7 291.98 166.26 7.16 4.44 0.22 0.51 8.7 

3532209 5359662 60.5 29.57 1.22 8.72 268.33 179.23 7.27 3.66 0.49 0.39 9.39 

3530130 5362033 33.85 54.94 1.47 9.74 372.82 214.61 7.35 2.75 0.58 0.3 9.18 

3528278 5365394 66.91 30.24 -0.13 2.98 290.57 275.97 7.46 2.93 4.23 0.34 8.62 

3524155 5374065 38.23 49.51 2.01 10.25 102.49 350.72 5.01 2.37 0.08 0.25 9.46 

3533912 5374718 24.25 61.72 2.67 11.37 258.64 337.5 5.13 1.71 0 0.19 9.02 

3542416 5374751 32.18 54.89 1.9 11.02 195.88 224.79 6.65 2.6 0.05 0.28 9.29 

3540992 5363208 35.4 51.5 1.33 11.77 337.55 164.43 7.06 2.39 0.08 0.29 8.23 

3539411 5357583 52.24 37.96 1.19 8.6 368.83 252.5 7.22 3.49 0.56 0.4 8.72 

3533385 5355846 56.64 38.69 0.25 4.55 372.24 208.8 7.18 3.26 3.41 0.32 10.2 

3524171 5356074 30.9 55.93 2.35 10.83 267.69 92.45 6.68 2.16 0.07 0.25 8.65 

3524521 5364198 16.52 67.47 3.55 12.47 151.82 236.08 6.52 1.04 0.14 0.14 7.46 
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Table S7.1 Continued   

Area Cmic Nmic EOC EN NO3
- NH4

+ Clay Sand Silt Ergosterol 
basal  

respiration 
RQ10 BetaQ10 XylanQ10 

A
lb

 

184.48 23.01 129.07 50.06 55.53 3.33 76.13 4.16 23.6 0.85 1.36 1.77 1.84 1.59 

183.67 22.46 57.78 38.11 56.08 1.37 58.93 2.15 40 0.9 1.86 2 1.77 1.51 

154.98 16.79 61.9 29.27 44.12 1.96 49.99 2.31 48.8 1.12 1.1 1.75 1.61 1.62 

154.11 21.06 70.1 38.29 49.98 1.6 53.67 3.24 45 1.07 0.97 1.47 1.84 1.63 

132.04 8.65 43.65 49.71 52.75 1.44 59.66 2.93 38.9 0.82 0.97 2.05 1.87 1.54 

154.86 16.77 66.09 37.45 52.78 1.67 50.13 2.26 48.3 0.87 0.99 1.66 1.69 1.42 

277.65 39.82 68.42 31.49 40.19 1.47 66.44 3.21 36 1.36 2.42 1.84 1.72 1.56 

190.84 26.4 126.55 57.93 69.5 1.62 53.85 2.27 42.7 0.84 1.33 1.84 1.7 1.54 

212.65 22.99 75.41 55.64 75.12 1.51 66.12 4.48 30.7 0.87 1.62 1.99 1.84 1.77 

206.01 29.64 76.28 25.27 34.87 1.19 53.12 4.38 44.7 1.04 1.54 1.86 1.94 1.81 

211.92 25.1 79.95 61.61 80.3 2.24 66.22 8.59 34.5 0.91 1.5 1.88 1.76 1.87 

112.44 15.8 150.98 36.84 27.69 7.7 37.45 3.95 58.4 0.89 1.32 1.75 1.51 1.72 

115.23 15.41 76.22 32.11 31.32 8.95 35.69 2.43 64.2 1.02 0.74 2.07 1.66 1.83 

110.51 15.07 62.89 24.94 28.59 1.34 32.6 1.8 64.5 0.57 1.04 1.6 1.74 1.54 

206.67 25.4 50.82 31.79 41.18 1.13 57.69 2.52 37.8 1.61 1.3 2.6 1.69 1.86 

209.28 30.91 127.77 43.47 51.99 1.39 51.23 3.33 46.6 1.13 1 1.99 1.84 1.46 

194.2 28.69 77.83 32.71 45.26 1.34 62.54 8.91 36.4 0.89 1.27 2.12 1.87 1.58 

161.98 23.21 55.15 22.41 32.12 1.11 38.18 5.63 57.2 0.7 1.05 2.07 1.77 1.31 

149.13 21.94 74.43 20.68 21.92 1.78 24.91 1.74 74.1 0.46 1.65 1.91 1.59 1.69
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Table S7.2    Correlations of explaining variables to basal soil respiration, its temperature sensitivity (RQ10) and the temperature sensitivities 
of two soil enzymes from landscape and regional scale. Bold and red marked correlations are significant (P < 0.05). 

Basal respiration in Kraichgau                   

 r_2930 r_1620 r_1530 r_1159 β-glucosidase Xylanase pH Carbonate SOC TN CN 

 cm-1 cm-1 cm-1 cm-1 nmol mg-1 SOC h-1 
µg GE mg-1 
SOC 24h-1  % % %  

r_2930            

r_1620 -0.98           

r_1530 -0.73 0.65          

r_1159 -0.84 0.80 0.79         

β-glucosidase -0.44 0.43 0.01 0.15        

Xylanase 0.34 -0.28 -0.15 -0.18 -0.50       

pH 0.64 -0.59 -0.82 -0.70 0.06 0.08      

Carbonate 0.59 -0.54 -0.79 -0.76 0.05 0.23 0.81     

SOC 0.47 -0.45 -0.45 -0.52 0.23 -0.31 0.37 0.28    

TN -0.21 0.16 0.27 0.04 0.52 -0.46 -0.24 -0.29 0.53   

CN 0.71 -0.65 -0.76 -0.69 -0.07 0.03 0.71 0.54 0.67 -0.12  

Cmic 0.12 -0.16 -0.39 -0.22 0.57 -0.15 0.53 0.36 0.29 0.22 0.28 

Nmic 0.38 -0.35 -0.66 -0.41 0.20 0.11 0.68 0.51 0.15 -0.08 0.24 

EOC -0.03 0.01 0.01 -0.19 0.33 0.07 0.01 0.21 0.03 0.13 -0.04 

EN 0.13 -0.16 -0.13 -0.14 0.33 -0.07 0.17 0.11 0.43 0.33 0.41 

NO3
- 0.17 -0.21 -0.24 -0.14 0.42 -0.20 0.27 0.10 0.45 0.34 0.46 

NH4
+ -0.41 0.31 0.38 0.38 -0.04 0.15 -0.53 -0.35 -0.42 -0.01 -0.47 

Clay -0.48 0.46 0.03 0.05 0.68 -0.61 -0.01 0.07 0.22 0.53 -0.14 

Sand 0.11 -0.02 -0.07 -0.13 -0.37 0.38 -0.08 0.06 -0.27 -0.36 0.08 

Silt 0.27 -0.28 0.10 0.09 -0.46 0.48 -0.03 -0.17 -0.13 -0.35 0.01 

Ergosterol -0.62 0.61 0.11 0.26 0.58 -0.25 -0.26 -0.06 -0.19 0.23 -0.34 

Respiration -0.37 0.33 0.37 0.41 -0.10 0.38 -0.39 -0.40 -0.61 -0.19 -0.59 
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Table S7.2 Continued        

Basal respiration in Kraichgau                   

 Cmic Nmic EOC EN NO3
- NH4

+ Clay Sand Silt Ergosterol 

 
µg C mg-1 

SOC 
µg N mg-1 

SOC µg g-1 soil µg g-1 soil µg g-1 soil µg g-1 soil % % % µg mg-1 SOC 

r_2930           

r_1620           

r_1530           

r_1159           

β-glucosidase           

Xylanase           

pH           

Carbonate           

SOC           

TN           

CN           

Cmic           

Nmic 0.68          

EOC 0.37 0.10         

EN 0.54 -0.04 0.41        

NO3
- 0.65 0.14 0.21 0.92       

NH4
+ -0.25 -0.29 -0.04 -0.10 -0.22      

Clay 0.34 0.13 0.31 0.21 0.19 0.08     

Sand -0.58 -0.28 -0.32 -0.27 -0.24 0.08 -0.34    

Silt -0.11 -0.08 -0.13 -0.14 -0.19 -0.02 -0.77 -0.18   

Ergosterol 0.21 0.08 0.22 -0.06 -0.04 0.33 0.70 -0.11 -0.50  

Respiration -0.08 0.07 0.11 -0.35 -0.42 0.57 -0.18 -0.09 0.31 0.17 
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Table S7.2 Continued 
Basal respiration in Swabian 
Alb                   

 r_2930 r_1620 r_1530 r_1159 β-glucosidase Xylanase pH Carbonate SOC TN CN 

 cm-1 cm-1 cm-1 cm-1 nmol mg-1 SOC h-1 

µg GE mg-

1  
SOC 24h-1  % % %  

r_2930            

r_1620 -0.97           

r_1530 -0.80 0.70          

r_1159 -0.84 0.75 0.78         

β-glucosidase 0.22 -0.14 -0.58 -0.34        

Xylanase 0.17 -0.16 -0.02 -0.12 -0.04       

pH 0.58 -0.50 -0.88 -0.62 0.65 -0.12      

Carbonate 0.70 -0.59 -0.82 -0.75 0.52 0.13 0.85     

SOC 0.69 -0.74 -0.73 -0.61 0.37 -0.20 0.66 0.63    

TN 0.74 -0.78 -0.78 -0.63 0.45 -0.16 0.74 0.66 0.97   

CN 0.09 -0.10 0.00 -0.22 -0.10 -0.06 -0.17 -0.04 0.23 0.05  

Cmic 0.63 -0.58 -0.68 -0.56 0.72 0.09 0.71 0.70 0.47 0.59 -0.34 

Nmic 0.50 -0.42 -0.58 -0.49 0.74 0.15 0.62 0.69 0.38 0.50 -0.38 

EOC 0.50 -0.51 -0.25 -0.54 -0.02 0.58 0.14 0.49 0.34 0.31 0.21 

EN 0.58 -0.64 -0.48 -0.46 0.15 -0.08 0.44 0.45 0.73 0.72 0.18 

NO3
- 0.50 -0.53 -0.55 -0.46 0.38 -0.35 0.59 0.47 0.72 0.72 0.04 

NH4
+ 0.11 -0.16 0.15 -0.17 -0.51 0.38 -0.25 -0.10 -0.09 -0.09 0.06 

Clay 0.73 -0.64 -0.84 -0.65 0.52 -0.20 0.79 0.75 0.65 0.70 -0.05 

Sand 0.64 -0.55 -0.45 -0.64 0.21 0.07 0.39 0.59 0.31 0.31 0.23 

Silt -0.74 0.66 0.81 0.62 -0.51 0.19 -0.76 -0.74 -0.64 -0.69 0.03 

Ergosterol 0.28 -0.22 -0.42 -0.33 0.50 0.24 0.26 0.16 0.12 0.24 -0.09 

Respiration 0.28 -0.21 -0.39 -0.25 0.32 0.19 0.53 0.56 0.14 0.20 -0.39 
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Table S7.2 Continued          

Basal respiration in Swabian Alb                 

 Cmic Nmic EOC EN NO3
- NH4

+ Clay Sand Silt Ergosterol 

 
µg C mg-1 

SOC 
µg N mg-1 

SOC 
µg g-1 
soil 

µg g-1 
soil 

µg g-1 
soil 

µg g-1 
soil % % % 

µg mg-1 
SOC 

r_2930           

r_1620           

r_1530           

r_1159           

β-glucosidase           

Xylanase           

pH           

Carbonate           

SOC           

TN           

CN           

Cmic           

Nmic 0.86          

EOC 0.18 0.31         

EN 0.32 0.07 0.40        

NO3
- 0.51 0.21 0.12 0.87       

NH4
+ -0.29 -0.40 0.49 0.34 0.08      

Clay 0.70 0.48 0.11 0.62 0.72 -0.08     

Sand 0.49 0.45 0.39 0.28 0.22 -0.14 0.49    

Silt -0.74 -0.49 -0.13 -0.62 -0.72 0.11 -0.99 -0.52   

Ergosterol 0.46 0.41 0.04 0.04 0.05 -0.03 0.24 0.16 -0.24  

Respiration 0.54 0.50 0.19 -0.01 0.14 -0.04 0.39 0.08 -0.40 0.02 
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Table S7.2 Continued           

Basal respiration from Pooled data                   

 r_2930 r_1620 r_1530 r_1159 β-glucosidase Xylanase pH Carbonate SOC TN CN 

 cm-1 cm-1 cm-1 cm-1 
nmol mg-1 
SOC h-1 

µg GE mg-1  
SOC 24h-1  % % %  

r_2930            

r_1620 -0.99           

r_1530 -0.88 0.84          
r_1159 -0.62 0.53 0.60         

β-glucosidase -0.22 0.26 -0.03 -0.12        

Xylanase -0.40 0.45 0.45 -0.11 -0.08       

pH 0.52 -0.43 -0.69 -0.66 0.25 -0.04      

Carbonate 0.64 -0.57 -0.76 -0.73 0.16 -0.07 0.83     

SOC 0.78 -0.81 -0.76 -0.30 0.03 -0.75 0.30 0.40    

TN 0.62 -0.67 -0.59 -0.15 0.12 -0.79 0.10 0.24 0.92   

CN 0.72 -0.70 -0.68 -0.38 -0.23 -0.42 0.36 0.42 0.70 0.44  

Cmic 0.22 -0.19 -0.35 -0.39 0.63 0.00 0.59 0.47 0.15 0.13 -0.03 

Nmic 0.43 -0.39 -0.56 -0.43 0.36 -0.07 0.63 0.59 0.28 0.23 0.08 

EOC 0.56 -0.59 -0.50 -0.25 -0.01 -0.41 0.07 0.35 0.62 0.66 0.45 

EN 0.59 -0.63 -0.58 -0.15 0.09 -0.62 0.20 0.31 0.80 0.78 0.56 

NO3
- 0.63 -0.66 -0.65 -0.19 0.16 -0.71 0.29 0.33 0.82 0.80 0.55 

NH4
+ -0.04 -0.02 0.12 0.09 -0.24 0.04 -0.43 -0.19 0.00 0.13 -0.08 

Clay 0.58 -0.60 -0.67 -0.16 0.21 -0.81 0.18 0.35 0.83 0.89 0.43 

Sand 0.17 -0.10 -0.12 -0.42 -0.09 0.28 0.13 0.28 -0.12 -0.17 0.05 

Silt -0.64 0.65 0.70 0.22 -0.16 0.77 -0.20 -0.39 -0.81 -0.85 -0.47 

Ergosterol -0.46 0.51 0.24 -0.03 0.57 0.39 -0.02 -0.08 -0.45 -0.37 -0.51 

Respiration -0.52 0.56 0.43 -0.02 0.25 0.67 0.03 -0.08 -0.70 -0.62 -0.68 
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Table S7.2 Continued          

Basal respiration from Pooled data                 

 Cmic Nmic EOC EN NO3
- NH4

+ Clay Sand Silt Ergosterol 

 
µg C mg-1 

SOC 
µg N mg-1 

SOC 
µg g-1 
soil 

µg g-1 
soil 

µg g-1 
soil 

µg g-1 
soil % % % 

µg mg-1 
SOC 

r_2930           

r_1620           

r_1530           

r_1159           

β-glucosidase           

Xylanase           

pH           

Carbonate           

SOC           

TN           

CN           

Cmic           

Nmic 0.72          

EOC 0.15 0.28         

EN 0.27 0.08 0.64        

NO3
- 0.35 0.20 0.55 0.95  

NH4
+ -0.31 -0.32 0.32 0.20 0.07      

Clay 0.20 0.26 0.63 0.75 0.77 0.15     

Sand -0.13 0.04 -0.11 -0.17 -0.14 -0.03 -0.10    

Silt -0.15 -0.25 -0.58 -0.72 -0.76 -0.12 -0.96 -0.09   

Ergosterol 0.32 0.12 -0.32 -0.38 -0.37 -0.03 -0.20 0.02 0.22  

Respiration 0.24 0.08 -0.43 -0.60 -0.59 0.04 -0.56 0.09 0.58 0.47 
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Table S7.2 Continued           

RQ10 in Kraichgau                     

 r_2930 r_1620 r_1530 r_1159 β-glucosidase Xylanase pH Carbonate SOC TN CN 

 cm-1 cm-1 cm-1 cm-1 
nmol mg-1 SOC 

h-1 
µg GE mg-1  
SOC 24h-1  % % %  

r_2930            
r_1620 -0.98           
r_1530 -0.73 0.65          
r_1159 -0.84 0.80 0.79         
β-glucosidase -0.44 0.43 0.01 0.15        
Xylanase 0.34 -0.28 -0.15 -0.18 -0.50       
pH 0.64 -0.59 -0.82 -0.70 0.06 0.08      
Carbonate 0.59 -0.54 -0.79 -0.76 0.05 0.23 0.81     
SOC 0.47 -0.45 -0.45 -0.52 0.23 -0.31 0.37 0.28    
TN -0.21 0.16 0.27 0.04 0.52 -0.46 -0.24 -0.29 0.53   
CN 0.71 -0.65 -0.76 -0.69 -0.07 0.03 0.71 0.54 0.67 -0.12  

Cmic 0.12 -0.16 -0.39 -0.22 0.57 -0.15 0.53 0.36 0.29 0.22 0.28 

Nmic 0.38 -0.35 -0.66 -0.41 0.20 0.11 0.68 0.51 0.15 -0.08 0.24 
EOC -0.03 0.01 0.01 -0.19 0.33 0.07 0.01 0.21 0.03 0.13 -0.04 
EN 0.13 -0.16 -0.13 -0.14 0.33 -0.07 0.17 0.11 0.43 0.33 0.41 

NO3
- 0.17 -0.21 -0.24 -0.14 0.42 -0.20 0.27 0.10 0.45 0.34 0.46 

NH4
+ -0.41 0.31 0.38 0.38 -0.04 0.15 -0.53 -0.35 -0.42 -0.01 -0.47 

Clay -0.48 0.46 0.03 0.05 0.68 -0.61 -0.01 0.07 0.22 0.53 -0.14 
Sand 0.11 -0.02 -0.07 -0.13 -0.37 0.38 -0.08 0.06 -0.27 -0.36 0.08 
Silt 0.27 -0.28 0.10 0.09 -0.46 0.48 -0.03 -0.17 -0.13 -0.35 0.01 
Ergosterol -0.62 0.61 0.11 0.26 0.58 -0.25 -0.26 -0.06 -0.19 0.23 -0.34 
RQ10 -0.06 0.08 -0.13 -0.33 0.25 -0.18 0.29 0.30 0.13 0.11 0.11 
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Table S7.2 Continued          

RQ10 in Kraichgau                   

 Cmic Nmic EOC EN NO3
- NH4

+ Clay Sand Silt Ergosterol 

 
µg C mg-1 

SOC 
µg N mg-1 

SOC 
µg g-1 
soil 

µg g-1 
soil 

µg g-1 
soil 

µg g-1 
soil % % % 

µg mg-1 
SOC 

r_2930           
r_1620           
r_1530           
r_1159           
β-glucosidase           
Xylanase           
pH           
Carbonate           
SOC           
TN           
CN           

Cmic           

Nmic 0.68          
EOC 0.37 0.10         
EN 0.54 -0.04 0.41        

NO3
- 0.65 0.14 0.21 0.92       

NH4
+ -0.25 -0.29 -0.04 -0.10 -0.22      

Clay 0.34 0.13 0.31 0.21 0.19 0.08     
Sand -0.58 -0.28 -0.32 -0.27 -0.24 0.08 -0.34    
Silt -0.11 -0.08 -0.13 -0.14 -0.19 -0.02 -0.77 -0.18   
Ergosterol 0.21 0.08 0.22 -0.06 -0.04 0.33 0.70 -0.11 -0.50  
RQ10 0.22 0.04 0.35 0.05 -0.08 -0.15 0.44 -0.35 -0.09 0.21 



Appendix – III    191 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S7.2 Continued           

RQ10 in Swabian Alb                     

 r_2930 r_1620 r_1530 r_1159 β-glucosidase Xylanase pH Carbonate SOC TN CN 

 cm-1 cm-1 cm-1 cm-1 
nmol mg-1 SOC h-

1 
µg GE mg-1  
SOC 24h-1  % % %  

r_2930            
r_1620 -0.97           
r_1530 -0.80 0.70          
r_1159 -0.84 0.75 0.78         
β-glucosidase 0.22 -0.14 -0.58 -0.34        
Xylanase 0.17 -0.16 -0.02 -0.12 -0.04       
pH 0.58 -0.50 -0.88 -0.62 0.65 -0.12      
Carbonate 0.70 -0.59 -0.82 -0.75 0.52 0.13 0.85     
SOC 0.69 -0.74 -0.73 -0.61 0.37 -0.20 0.66 0.63    
TN 0.74 -0.78 -0.78 -0.63 0.45 -0.16 0.74 0.66 0.97   
CN 0.09 -0.10 0.00 -0.22 -0.10 -0.06 -0.17 -0.04 0.23 0.05  

Cmic 0.63 -0.58 -0.68 -0.56 0.72 0.09 0.71 0.70 0.47 0.59 -0.34 

Nmic 0.50 -0.42 -0.58 -0.49 0.74 0.15 0.62 0.69 0.38 0.50 -0.38 
EOC 0.50 -0.51 -0.25 -0.54 -0.02 0.58 0.14 0.49 0.34 0.31 0.21 
EN 0.58 -0.64 -0.48 -0.46 0.15 -0.08 0.44 0.45 0.73 0.72 0.18 

NO3
- 0.50 -0.53 -0.55 -0.46 0.38 -0.35 0.59 0.47 0.72 0.72 0.04 

NH4
+ 0.11 -0.16 0.15 -0.17 -0.51 0.38 -0.25 -0.10 -0.09 -0.09 0.06 

Clay 0.73 -0.64 -0.84 -0.65 0.52 -0.20 0.79 0.75 0.65 0.70 -0.05 
Sand 0.64 -0.55 -0.45 -0.64 0.21 0.07 0.39 0.59 0.31 0.31 0.23 
Silt -0.74 0.66 0.81 0.62 -0.51 0.19 -0.76 -0.74 -0.64 -0.69 0.03 
Ergosterol 0.28 -0.22 -0.42 -0.33 0.50 0.24 0.26 0.16 0.12 0.24 -0.09 
RQ10 -0.18 0.23 0.04 0.32 0.30 -0.07 0.06 0.09 -0.13 -0.12 -0.26 
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Table S7.2 Continued          

RQ10 in Swabian Alb                   

 Cmic Nmic EOC EN NO3
- NH4

+ Clay Sand Silt Ergosterol 

 
µg C mg-1 

SOC 
µg N mg-1 

SOC 
µg g-1 
soil 

µg g-1 
soil 

µg g-1 
soil 

µg g-1 
soil % % % 

µg mg-1 
SOC 

r_2930           
r_1620           
r_1530           
r_1159           
β-glucosidase           
Xylanase           
pH           
Carbonate           
SOC           
TN           
CN           

Cmic           

Nmic 0.86          
EOC 0.18 0.31         
EN 0.32 0.07 0.40        

NO3
- 0.51 0.21 0.12 0.87       

NH4
+ -0.29 -0.40 0.49 0.34 0.08      

Clay 0.70 0.48 0.11 0.62 0.72 -0.08     
Sand 0.49 0.45 0.39 0.28 0.22 -0.14 0.49    
Silt -0.74 -0.49 -0.13 -0.62 -0.72 0.11 -0.99 -0.52   
Ergosterol 0.46 0.41 0.04 0.04 0.05 -0.03 0.24 0.16 -0.24  
RQ10 0.29 0.27 -0.22 -0.05 0.01 -0.41 0.17 0.27 -0.22 0.05 
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Table S7.2 Continued           

RQ10 in Pooled data                     

 r_2930 r_1620 r_1530 r_1159 β-glucosidase Xylanase pH Carbonate SOC TN CN 

 cm-1 cm-1 cm-1 cm-1 
nmol mg-1 SOC h-

1 

µg GE 
mg-1  

SOC 24h-

1  % % %  
r_2930            
r_1620 -0.99           
r_1530 -0.88 0.84          
r_1159 -0.62 0.53 0.60         
β-glucosidase -0.22 0.26 -0.03 -0.12        
Xylanase -0.40 0.45 0.45 -0.11 -0.08       
pH 0.52 -0.43 -0.69 -0.66 0.25 -0.04      
Carbonate 0.64 -0.57 -0.76 -0.73 0.16 -0.07 0.83     
SOC 0.78 -0.81 -0.76 -0.30 0.03 -0.75 0.30 0.40    
TN 0.62 -0.67 -0.59 -0.15 0.12 -0.79 0.10 0.24 0.92   
CN 0.72 -0.70 -0.68 -0.38 -0.23 -0.42 0.36 0.42 0.70 0.44  

Cmic 0.22 -0.19 -0.35 -0.39 0.63 0.00 0.59 0.47 0.15 0.13 -0.03 

Nmic 0.43 -0.39 -0.56 -0.43 0.36 -0.07 0.63 0.59 0.28 0.23 0.08 
EOC 0.56 -0.59 -0.50 -0.25 -0.01 -0.41 0.07 0.35 0.62 0.66 0.45 
EN 0.59 -0.63 -0.58 -0.15 0.09 -0.62 0.20 0.31 0.80 0.78 0.56 

NO3
- 0.63 -0.66 -0.65 -0.19 0.16 -0.71 0.29 0.33 0.82 0.80 0.55 

NH4
+ -0.04 -0.02 0.12 0.09 -0.24 0.04 -0.43 -0.19 0.00 0.13 -0.08 

Clay 0.58 -0.60 -0.67 -0.16 0.21 -0.81 0.18 0.35 0.83 0.89 0.43 
Sand 0.17 -0.10 -0.12 -0.42 -0.09 0.28 0.13 0.28 -0.12 -0.17 0.05 
Silt -0.64 0.65 0.70 0.22 -0.16 0.77 -0.20 -0.39 -0.81 -0.85 -0.47 
Ergosterol -0.46 0.51 0.24 -0.03 0.57 0.39 -0.02 -0.08 -0.45 -0.37 -0.51 
RQ10 -0.07 0.10 -0.03 -0.03 0.28 -0.04 0.17 0.17 -0.03 -0.03 -0.05 
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Table S7.2 Continued          

RQ10 in Pooled data                   

 Cmic Nmic EOC EN NO3
- NH4

+ Clay Sand Silt Ergosterol 

 
µg C mg-1 

SOC 
µg N mg-1 

SOC 
µg g-1 
soil 

µg g-1 
soil 

µg g-1 
soil 

µg g-1 
soil % % % 

µg mg-1 
SOC 

r_2930           
r_1620           
r_1530           
r_1159           
β-glucosidase           
Xylanase           
pH           
Carbonate           
SOC           
TN           
CN           

Cmic           

Nmic 0.72          
EOC 0.15 0.28         
EN 0.27 0.08 0.64        

NO3
- 0.35 0.20 0.55 0.95       

NH4
+ -0.31 -0.32 0.32 0.20 0.07      

Clay 0.20 0.26 0.63 0.75 0.77 0.15     
Sand -0.13 0.04 -0.11 -0.17 -0.14 -0.03 -0.10    
Silt -0.15 -0.25 -0.58 -0.72 -0.76 -0.12 -0.96 -0.09   
Ergosterol 0.32 0.12 -0.32 -0.38 -0.37 -0.03 -0.20 0.02 0.22  
RQ10 0.26 0.10 -0.04 -0.02 -0.04 -0.26 0.13 -0.07 -0.03 0.17 
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Table S7.2 Continued           

β-glucosidase Q10 in Kraichgau                   

 r_2930 r_1620 r_1530 r_1159 β-glucosidase Xylanase pH Carbonate SOC TN CN 

 cm-1 cm-1 cm-1 cm-1 nmol mg-1 SOC h-1 
µg GE mg-1 
SOC 24h-1  % % %  

r_2930  
r_1620 -0.98           
r_1530 -0.73 0.65          
r_1159 -0.84 0.80 0.79         
β-glucosidase -0.44 0.43 0.01 0.15        
Xylanase 0.34 -0.28 -0.15 -0.18 -0.50       
pH 0.64 -0.59 -0.82 -0.70 0.06 0.08      
Carbonate 0.59 -0.54 -0.79 -0.76 0.05 0.23 0.81     
SOC 0.47 -0.45 -0.45 -0.52 0.23 -0.31 0.37 0.28    
TN -0.21 0.16 0.27 0.04 0.52 -0.46 -0.24 -0.29 0.53   
CN 0.71 -0.65 -0.76 -0.69 -0.07 0.03 0.71 0.54 0.67 -0.12  

Cmic 0.12 -0.16 -0.39 -0.22 0.57 -0.15 0.53 0.36 0.29 0.22 0.28 

Nmic 0.38 -0.35 -0.66 -0.41 0.20 0.11 0.68 0.51 0.15 -0.08 0.24 
EOC -0.03 0.01 0.01 -0.19 0.33 0.07 0.01 0.21 0.03 0.13 -0.04 
EN 0.13 -0.16 -0.13 -0.14 0.33 -0.07 0.17 0.11 0.43 0.33 0.41 

NO3
- 0.17 -0.21 -0.24 -0.14 0.42 -0.20 0.27 0.10 0.45 0.34 0.46 

NH4
+ -0.41 0.31 0.38 0.38 -0.04 0.15 -0.53 -0.35 -0.42 -0.01 -0.47 

Clay -0.48 0.46 0.03 0.05 0.68 -0.61 -0.01 0.07 0.22 0.53 -0.14 
Sand 0.11 -0.02 -0.07 -0.13 -0.37 0.38 -0.08 0.06 -0.27 -0.36 0.08
Silt 0.27 -0.28 0.10 0.09 -0.46 0.48 -0.03 -0.17 -0.13 -0.35 0.01 
Ergosterol -0.62 0.61 0.11 0.26 0.58 -0.25 -0.26 -0.06 -0.19 0.23 -0.34 
β-gluco Q10 -0.12 0.14 0.18 0.12 0.34 -0.15 -0.25 -0.33 0.24 0.48 -0.12 
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Table S7.2 Continued          

β-glucosidase Q10 in Kraichgau                 

 Cmic Nmic EOC EN NO3
- NH4

+ Clay Sand Silt Ergosterol 

 
µg C mg-1 

SOC µg N mg-1 SOC µg g-1 soil µg g-1 soil µg g-1 soil µg g-1 soil % % % µg mg-1 SOC 
r_2930           
r_1620           
r_1530           
r_1159           
β-glucosidase           
Xylanase           
pH           
Carbonate           
SOC           
TN           
CN           

Cmic           

Nmic 0.68          
EOC 0.37 0.10         
EN 0.54 -0.04 0.41        

NO3
- 0.65 0.14 0.21 0.92  

NH4
+ -0.25 -0.29 -0.04 -0.10 -0.22      

Clay 0.34 0.13 0.31 0.21 0.19 0.08     
Sand -0.58 -0.28 -0.32 -0.27 -0.24 0.08 -0.34    
Silt -0.11 -0.08 -0.13 -0.14 -0.19 -0.02 -0.77 -0.18   
Ergosterol 0.21 0.08 0.22 -0.06 -0.04 0.33 0.70 -0.11 -0.50  
β-gluco Q10 -0.17 -0.14 -0.01 -0.01 0.09 -0.08 0.04 0.01 0.06 -0.06 
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Table S7.2 Continued           

β-glucosidase Q10 in Swabian Alb                   

 r_2930 r_1620 r_1530 r_1159 β-glucosidase Xylanase pH Carbonate SOC TN CN 

 cm-1 cm-1 cm-1 cm-1 nmol mg-1 SOC h-1 
µg GE mg-1 
SOC 24h-1  % % %  

r_2930            
r_1620 -0.97           
r_1530 -0.80 0.70          
r_1159 -0.84 0.75 0.78         
β-glucosidase 0.22 -0.14 -0.58 -0.34        
Xylanase 0.17 -0.16 -0.02 -0.12 -0.04       
pH 0.58 -0.50 -0.88 -0.62 0.65 -0.12      
Carbonate 0.70 -0.59 -0.82 -0.75 0.52 0.13 0.85     
SOC 0.69 -0.74 -0.73 -0.61 0.37 -0.20 0.66 0.63    
TN 0.74 -0.78 -0.78 -0.63 0.45 -0.16 0.74 0.66 0.97   
CN 0.09 -0.10 0.00 -0.22 -0.10 -0.06 -0.17 -0.04 0.23 0.05  

Cmic 0.63 -0.58 -0.68 -0.56 0.72 0.09 0.71 0.70 0.47 0.59 -0.34 

Nmic 0.50 -0.42 -0.58 -0.49 0.74 0.15 0.62 0.69 0.38 0.50 -0.38 
EOC 0.50 -0.51 -0.25 -0.54 -0.02 0.58 0.14 0.49 0.34 0.31 0.21 
EN 0.58 -0.64 -0.48 -0.46 0.15 -0.08 0.44 0.45 0.73 0.72 0.18 

NO3
- 0.50 -0.53 -0.55 -0.46 0.38 -0.35 0.59 0.47 0.72 0.72 0.04 

NH4
+ 0.11 -0.16 0.15 -0.17 -0.51 0.38 -0.25 -0.10 -0.09 -0.09 0.06 

Clay 0.73 -0.64 -0.84 -0.65 0.52 -0.20 0.79 0.75 0.65 0.70 -0.05 
Sand 0.64 -0.55 -0.45 -0.64 0.21 0.07 0.39 0.59 0.31 0.31 0.23 
Silt -0.74 0.66 0.81 0.62 -0.51 0.19 -0.76 -0.74 -0.64 -0.69 0.03 
Ergosterol 0.28 -0.22 -0.42 -0.33 0.50 0.24 0.26 0.16 0.12 0.24 -0.09 
β-gluco Q10 0.34 -0.28 -0.52 -0.43 0.43 -0.37 0.62 0.60 0.61 0.55 0.33 
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Table S7.2 Continued          

β-glucosidase Q10 in Swabian Alb                 

 Cmic Nmic EOC EN NO3
- NH4

+ Clay Sand Silt Ergosterol 

 
µg C mg-1 

SOC µg N mg-1 SOC 
µg g-1 
soil 

µg g-1 
soil 

µg g-1 
soil 

µg g-1 
soil % % % µg mg-1 SOC 

r_2930           
r_1620           
r_1530           
r_1159           
β-glucosidase           
Xylanase           
pH           
Carbonate           
SOC           
TN           
CN           
Cmic           
Nmic 0.86          
EOC 0.18 0.31         
EN 0.32 0.07 0.40        

NO3
- 0.51 0.21 0.12 0.87       

NH4
+ -0.29 -0.40 0.49 0.34 0.08      

Clay 0.70 0.48 0.11 0.62 0.72 -0.08     
Sand 0.49 0.45 0.39 0.28 0.22 -0.14 0.49    
Silt -0.74 -0.49 -0.13 -0.62 -0.72 0.11 -0.99 -0.52   
Ergosterol 0.46 0.41 0.04 0.04 0.05 -0.03 0.24 0.16 -0.24  
β-gluco Q10 0.36 0.33 0.03 0.31 0.41 -0.51 0.54 0.55 -0.53 -0.03 
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Table S7.2 Continued           

β-glucosidase Q10 in Pooled data                   

 r_2930 r_1620 r_1530 r_1159 β-glucosidase Xylanase pH Carbonate SOC TN CN 

 cm-1 cm-1 cm-1 cm-1 nmol mg-1 SOC h-1 
µg GE mg-1 
SOC 24h-1  % % %  

r_2930            
r_1620 -0.99           
r_1530 -0.88 0.84          
r_1159 -0.62 0.53 0.60         
β-glucosidase -0.22 0.26 -0.03 -0.12        
Xylanase -0.40 0.45 0.45 -0.11 -0.08       
pH 0.52 -0.43 -0.69 -0.66 0.25 -0.04      
Carbonate 0.64 -0.57 -0.76 -0.73 0.16 -0.07 0.83     
SOC 0.78 -0.81 -0.76 -0.30 0.03 -0.75 0.30 0.40    
TN 0.62 -0.67 -0.59 -0.15 0.12 -0.79 0.10 0.24 0.92   
CN 0.72 -0.70 -0.68 -0.38 -0.23 -0.42 0.36 0.42 0.70 0.44  

Cmic 0.22 -0.19 -0.35 -0.39 0.63 0.00 0.59 0.47 0.15 0.13 -0.03 

Nmic 0.43 -0.39 -0.56 -0.43 0.36 -0.07 0.63 0.59 0.28 0.23 0.08 
EOC 0.56 -0.59 -0.50 -0.25 -0.01 -0.41 0.07 0.35 0.62 0.66 0.45 
EN 0.59 -0.63 -0.58 -0.15 0.09 -0.62 0.20 0.31 0.80 0.78 0.56 

NO3
- 0.63 -0.66 -0.65 -0.19 0.16 -0.71 0.29 0.33 0.82 0.80 0.55 

NH4
+ -0.04 -0.02 0.12 0.09 -0.24 0.04 -0.43 -0.19 0.00 0.13 -0.08 

Clay 0.58 -0.60 -0.67 -0.16 0.21 -0.81 0.18 0.35 0.83 0.89 0.43 
Sand 0.17 -0.10 -0.12 -0.42 -0.09 0.28 0.13 0.28 -0.12 -0.17 0.05 
Silt -0.64 0.65 0.70 0.22 -0.16 0.77 -0.20 -0.39 -0.81 -0.85 -0.47 
Ergosterol -0.46 0.51 0.24 -0.03 0.57 0.39 -0.02 -0.08 -0.45 -0.37 -0.51 
β-gluco Q10 -0.10 0.13 0.07 -0.16 0.42 -0.06 0.05 -0.01 0.10 0.14 -0.07 
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Table S7.2 Continued          

β-glucosidase Q10 in Pooled data                 

 Cmic Nmic EOC EN NO3
- NH4

+ Clay Sand Silt Ergosterol 

µg C mg-1 
SOC µg N mg-1 SOC µg g-1 soil µg g-1 soil µg g-1 soil µg g-1 soil % % % µg mg-1 SOC

r_2930           
r_1620           
r_1530           
r_1159           
β-glucosidase           
Xylanase           
pH           
Carbonate           
SOC           
TN           
CN           

Cmic           

Nmic 0.72          
EOC 0.15 0.28         
EN 0.27 0.08 0.64        

NO3
- 0.35 0.20 0.55 0.95       

NH4
+ -0.31 -0.32 0.32 0.20 0.07      

Clay 0.20 0.26 0.63 0.75 0.77 0.15     
Sand -0.13 0.04 -0.11 -0.17 -0.14 -0.03 -0.10    
Silt -0.15 -0.25 -0.58 -0.72 -0.76 -0.12 -0.96 -0.09   
Ergosterol 0.32 0.12 -0.32 -0.38 -0.37 -0.03 -0.20 0.02 0.22  
β-gluco Q10 0.05 0.01 -0.13 -0.01 0.05 -0.24 0.04 0.26 -0.02 0.03 
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Table S7.2 Continued           
Xylanase Q10 in Kraichgau                   

 r_2930 r_1620 r_1530 r_1159 β-glucosidase Xylanase pH Carbonate SOC TN CN 

 cm-1 cm-1 cm-1 cm-1 nmol mg-1 SOC h-1 

µg GE mg-

1  
SOC 24h-1  % % %  

r_2930            
r_1620 -0.98           
r_1530 -0.73 0.65          
r_1159 -0.84 0.80 0.79         
β-glucosidase -0.44 0.43 0.01 0.15        
Xylanase 0.34 -0.28 -0.15 -0.18 -0.50       
pH 0.64 -0.59 -0.82 -0.70 0.06 0.08      
Carbonate 0.59 -0.54 -0.79 -0.76 0.05 0.23 0.81     
SOC 0.47 -0.45 -0.45 -0.52 0.23 -0.31 0.37 0.28    
TN -0.21 0.16 0.27 0.04 0.52 -0.46 -0.24 -0.29 0.53   
CN 0.71 -0.65 -0.76 -0.69 -0.07 0.03 0.71 0.54 0.67 -0.12  
Cmic 0.12 -0.16 -0.39 -0.22 0.57 -0.15 0.53 0.36 0.29 0.22 0.28 
Nmic 0.38 -0.35 -0.66 -0.41 0.20 0.11 0.68 0.51 0.15 -0.08 0.24 
EOC -0.03 0.01 0.01 -0.19 0.33 0.07 0.01 0.21 0.03 0.13 -0.04 
EN 0.13 -0.16 -0.13 -0.14 0.33 -0.07 0.17 0.11 0.43 0.33 0.41 

NO3
- 0.17 -0.21 -0.24 -0.14 0.42 -0.20 0.27 0.10 0.45 0.34 0.46 

NH4
+ -0.41 0.31 0.38 0.38 -0.04 0.15 -0.53 -0.35 -0.42 -0.01 -0.47 

Clay -0.48 0.46 0.03 0.05 0.68 -0.61 -0.01 0.07 0.22 0.53 -0.14 
Sand 0.11 -0.02 -0.07 -0.13 -0.37 0.38 -0.08 0.06 -0.27 -0.36 0.08 
Silt 0.27 -0.28 0.10 0.09 -0.46 0.48 -0.03 -0.17 -0.13 -0.35 0.01 
Ergosterol -0.62 0.61 0.11 0.26 0.58 -0.25 -0.26 -0.06 -0.19 0.23 -0.34 
Xylanase Q10 0.39 -0.40 -0.04 -0.24 -0.46 0.33 0.22 0.27 0.05 -0.28 0.26 
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Table S7.2 Continued          

Xylanase Q10 in Kraichgau                   

 Cmic Nmic EOC EN NO3
- NH4

+ Clay Sand Silt Ergosterol 

 
µg C mg-1 

SOC µg N mg-1 SOC µg g-1 soil µg g-1 soil µg g-1 soil µg g-1 soil % % % µg mg-1 SOC 
r_2930           
r_1620           
r_1530           
r_1159           
β-glucosidase           
Xylanase           
pH  
Carbonate           
SOC           
TN           
CN           

Cmic           

Nmic 0.68          
EOC 0.37 0.10         
EN 0.54 -0.04 0.41        

NO3
- 0.65 0.14 0.21 0.92       

NH4
+ -0.25 -0.29 -0.04 -0.10 -0.22      

Clay 0.34 0.13 0.31 0.21 0.19 0.08     
Sand -0.58 -0.28 -0.32 -0.27 -0.24 0.08 -0.34    
Silt -0.11 -0.08 -0.13 -0.14 -0.19 -0.02 -0.77 -0.18   
Ergosterol 0.21 0.08 0.22 -0.06 -0.04 0.33 0.70 -0.11 -0.50  

Xylanase Q10 -0.18 -0.15 -0.09 -0.09 -0.09 -0.44 -0.48 0.14 0.37 -0.50 
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Table S7.2 Continued           

Xylanase Q10 in Swabian Alb                   

 r_2930 r_1620 r_1530 r_1159 β-glucosidase Xylanase pH Carbonate SOC TN CN 

 cm-1 cm-1 cm-1 cm-1 nmol mg-1 SOC h-1 
µg GE mg-1 
SOC 24h-1  % % %  

r_2930   
r_1620 -0.97           
r_1530 -0.80 0.70          
r_1159 -0.84 0.75 0.78         
β-glucosidase 0.22 -0.14 -0.58 -0.34        
Xylanase 0.17 -0.16 -0.02 -0.12 -0.04       
pH 0.58 -0.50 -0.88 -0.62 0.65 -0.12      
Carbonate 0.70 -0.59 -0.82 -0.75 0.52 0.13 0.85     
SOC 0.69 -0.74 -0.73 -0.61 0.37 -0.20 0.66 0.63    
TN 0.74 -0.78 -0.78 -0.63 0.45 -0.16 0.74 0.66 0.97   
CN 0.09 -0.10 0.00 -0.22 -0.10 -0.06 -0.17 -0.04 0.23 0.05  

Cmic 0.63 -0.58 -0.68 -0.56 0.72 0.09 0.71 0.70 0.47 0.59 -0.34 

Nmic 0.50 -0.42 -0.58 -0.49 0.74 0.15 0.62 0.69 0.38 0.50 -0.38 
EOC 0.50 -0.51 -0.25 -0.54 -0.02 0.58 0.14 0.49 0.34 0.31 0.21 
EN 0.58 -0.64 -0.48 -0.46 0.15 -0.08 0.44 0.45 0.73 0.72 0.18 

NO3
- 0.50 -0.53 -0.55 -0.46 0.38 -0.35 0.59 0.47 0.72 0.72 0.04 

NH4
+ 0.11 -0.16 0.15 -0.17 -0.51 0.38 -0.25 -0.10 -0.09 -0.09 0.06 

Clay 0.73 -0.64 -0.84 -0.65 0.52 -0.20 0.79 0.75 0.65 0.70 -0.05 
Sand 0.64 -0.55 -0.45 -0.64 0.21 0.07 0.39 0.59 0.31 0.31 0.23 
Silt -0.74 0.66 0.81 0.62 -0.51 0.19 -0.76 -0.74 -0.64 -0.69 0.03 
Ergosterol 0.28 -0.22 -0.42 -0.33 0.50 0.24 0.26 0.16 0.12 0.24 -0.09 

Xylanase Q10 0.27 -0.26 -0.10 -0.06 -0.15 0.49 0.06 0.14 -0.11 -0.08 0.00 
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Table S7.2 Continued          

Xylanase Q10 in Swabian Alb                 

 Cmic Nmic EOC EN NO3
- NH4

+ Clay Sand Silt Erg

 
µg C mg-1 

SOC µg N mg-1 SOC µg g-1 soil µg g-1 soil µg g-1 soil µg g-1 soil % % % µg m
r_2930          
r_1620          
r_1530          
r_1159          
β-glucosidase          
Xylanase          
pH          
Carbonate          
SOC          
TN          
CN          

Cmic          

Nmic 0.86         
EOC 0.18 0.31        
EN 0.32 0.07 0.40       

NO3
- 0.51 0.21 0.12 0.87      

NH4
+ -0.29 -0.40 0.49 0.34 0.08     

Clay 0.70 0.48 0.11 0.62 0.72 -0.08    
Sand 0.49 0.45 0.39 0.28 0.22 -0.14 0.49   
Silt -0.74 -0.49 -0.13 -0.62 -0.72 0.11 -0.99 -0.52  
Ergosterol 0.46 0.41 0.04 0.04 0.05 -0.03 0.24 0.16 -0.24 

Xylanase Q10 0.15 0.01 0.26 0.04 -0.11 0.34 0.10 0.24 -0.17 
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Table S7.2 Continued           

Xylanase Q10 in Pooled data                   

 r_2930 r_1620 r_1530 r_1159 β-glucosidase Xylanase pH Carbonate SOC TN CN 

 cm-1 cm-1 cm-1 cm-1 nmol mg-1 SOC h-1 
µg GE mg-1 
SOC 24h-1  % % %  

r_2930            
r_1620 -0.99           
r_1530 -0.88 0.84          
r_1159 -0.62 0.53 0.60         
β-glucosidase -0.22 0.26 -0.03 -0.12        
Xylanase -0.40 0.45 0.45 -0.11 -0.08       
pH 0.52 -0.43 -0.69 -0.66 0.25 -0.04      
Carbonate 0.64 -0.57 -0.76 -0.73 0.16 -0.07 0.83     
SOC 0.78 -0.81 -0.76 -0.30 0.03 -0.75 0.30 0.40    
TN 0.62 -0.67 -0.59 -0.15 0.12 -0.79 0.10 0.24 0.92   
CN 0.72 -0.70 -0.68 -0.38 -0.23 -0.42 0.36 0.42 0.70 0.44  

Cmic 0.22 -0.19 -0.35 -0.39 0.63 0.00 0.59 0.47 0.15 0.13 -0.03

Nmic 0.43 -0.39 -0.56 -0.43 0.36 -0.07 0.63 0.59 0.28 0.23 0.08 
EOC 0.56 -0.59 -0.50 -0.25 -0.01 -0.41 0.07 0.35 0.62 0.66 0.45 
EN 0.59 -0.63 -0.58 -0.15 0.09 -0.62 0.20 0.31 0.80 0.78 0.56 

NO3
- 0.63 -0.66 -0.65 -0.19 0.16 -0.71 0.29 0.33 0.82 0.80 0.55 

NH4
+ -0.04 -0.02 0.12 0.09 -0.24 0.04 -0.43 -0.19 0.00 0.13 -0.08 

Clay 0.58 -0.60 -0.67 -0.16 0.21 -0.81 0.18 0.35 0.83 0.89 0.43 
Sand 0.17 -0.10 -0.12 -0.42 -0.09 0.28 0.13 0.28 -0.12 -0.17 0.05 
Silt -0.64 0.65 0.70 0.22 -0.16 0.77 -0.20 -0.39 -0.81 -0.85 -0.47 
Ergosterol -0.46 0.51 0.24 -0.03 0.57 0.39 -0.02 -0.08 -0.45 -0.37 -0.51 

Xylanase Q10 0.17 -0.16 0.03 -0.12 -0.31 0.33 0.13 0.15 -0.11 -0.20 0.08 
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Table S7.2 Continued          

Xylanase Q10 in Pooled data                   

 Cmic Nmic EOC EN NO3
- NH4

+ Clay Sand Silt Ergosterol 

 
µg C mg-1 

SOC µg N mg-1 SOC µg g-1 soil µg g-1 soil µg g-1 soil µg g-1 soil % % % µg mg-1 SOC 
r_2930           
r_1620           
r_1530           
r_1159           
β-glucosidase           
Xylanase           
pH           
Carbonate           
SOC           
TN           
CN           

Cmic           

Nmic 0.72          
EOC 0.15 0.28         
EN 0.27 0.08 0.64        

NO3
- 0.35 0.20 0.55 0.95       

NH4
+ -0.31 -0.32 0.32 0.20 0.07      

Clay 0.20 0.26 0.63 0.75 0.77 0.15     
Sand -0.13 0.04 -0.11 -0.17 -0.14 -0.03 -0.10    
Silt -0.15 -0.25 -0.58 -0.72 -0.76 -0.12 -0.96 -0.09   
Ergosterol 0.32 0.12 -0.32 -0.38 -0.37 -0.03 -0.20 0.02 0.22  

Xylanase Q10 -0.05 -0.09 -0.06 -0.12 -0.15 -0.14 -0.24 0.18 0.20 -0.05 
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Table S7.3  Relative decrease in r2 like parameter (Pseudo r2) of the linear mixed effect models calculated by dropping significant variables one by one. 
Value next to each variable is the absolute change in model r2 after removing the respective variable. Sorting of the variables is according to 
their ranking of significance. 

  Landscape Scale   Regional Scale 

 Kraichgau  Swabian Alb    

 Factors Pseudo r2  Factors Pseudo r2  Factors Pseudo r2 

Soil basal respiration Complete model 0.58  Complete Model 0.57  Complete model 0.65 

 SOC 0.43  Cmic 0.13  CN 0.52 

 NH4
+ 0.49  *β-gluco. Pot. 0.48  Cmic 0.54 

 Silt 0.51     Xylanase 0.57 

             NO3
‐ 0.62 

RQ10 Complete model 0.39  Complete model 0.43  Complete model 0.17 

 Clay 0.15  EOC 0.27  Cmic 0.06 

 pH 0.24  Clay 0.27  Silt 0.08 

    r_1159 0.29  NO3
‐ 0.12 

        NH4
+ 0.35  r_1159 0.14 

β‐glucosidase Q10  Complete model 0.45  Complete model 0.90  Complete model 0.22 

 pH 0.21  pH 0.68  β-gluco. Pot. 0.00 

 β-gluco. Pot. 0.25  CN 0.73  Ergosterol 0.16 

 Ergosterol 0.30  r_1530 0.82    

 SOC 0.36  NH4
+ 0.83    

    r_1159 0.87    

    β-gluco. Pot. 0.87    

    Carbonate 0.87    

        SOC 0.87      

Xylanase Q10  Complete model 0.37  Complete model 0.30  Complete model 0.19 

 r_1159 0.22  Xylanase   r_2930 0.01 

 β-gluco. Pot. 0.23     Clay 0.07 

                  

* β‐gluco. Pot. = Potential β‐glucosidase activity        
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