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Chapter 1

Introduction

The studying of Survival Analysis has a long tradition. The most popular model is the

proportional hazards model introduced by Cox (1972), but many other regression models

have been proposed since then. The Cox model is a semiparametric regression model

which is useful to calculate a survival function of survival time data depending on co-

variates which influence this function. It suggests that the underlying regression function

is linear in the covariates. But of course, the question arises whether this assumption is

always true. It may occur that a covariate has another functional form like a logarithmic

or a quadratic one. On the other hand the influence of a covariate can change at a certain

threshold of the covariate. But how to investigate the correct functional form? Plots of

residuals can be used to obtain an educated guess. But is there also an analytical way?

The aim of this thesis is to provide a more flexible Cox model with bent-line change-

points according to thresholds of the covariates, i.e. the underlying regression function

is continuous but not differentiable in the change-points. Thresholds in time are also

interesting, but will not be discussed in this thesis. The Cox model with change-points

and certain goodness-of-fit tests enable us to rebuild the functional form of a covariate

as piecewise linear. A further goal is to introduce a more complex transformation model

with a bent-line change-point.

Survival analysis has its origin in biostatistics. Usually, it is concerned with the ana-

lysis of individuals experiencing events over time. The aim of regression models is to

relate the events to certain covariates. A classical application is the study of patients that

undergo some type of surgery. One is interested in which way covariates like age or a

special treatment influence the length of survival. However, in most cases the patients are

still alive when the study ends and the statistical analysis of the gathered data is made.

For those patients it is only known that they survive up to a certain time. This phe-

nomenon is called censoring and has to be taken into account in survival analysis studies.

But of course such data can not only be found in biometrics. Other fields of application

1



1.1. COX MODELS 2

are for instance system or software reliability and actuarial mathematics. In reliability

theory one individual can be a machine or a motor and the interest lies in predicting the

survival until a failure occurs. Considering a piece of software the events are incoming

bug reports. In actuarial mathematics one can think of different applications. An indi-

vidual can be represented by an insurance contract and the events are claims made by

the insurance holder. On the other hand it is conceivable to investigate the cancellation

of contracts by means of survival analysis.

In classical survival analysis only one event per individual occurs. The modern interpre-

tation of the models also allow more than one event. Different examples where this is the

case are mentioned above. Theoretically, for the ith individual a stochastic process Ni(t)

is given which counts the number of events for the individual up to time t. Regression

models are designed to connect certain covariates with the rate of occurrence of events.

Usually, such models are described in form of a so-called intensity λi(t), which can be de-

fined in the following way. Under certain regularity conditions in martingale theory there

exists a predictable increasing process Λi(t) such that Ni(t) − Λi(t) is a local martingale.

If the paths of the compensator Λi(t) are absolutely continuous with respect to Lebesgue

measure, then a predictable process λi(t) such that Λi(t) =
∫ t

0
λi(s) ds holds is called an

intensity.

1.1 Cox Models

In the Cox model the intensity is assumed to be

λi(t) = λ0(t)Ri(t) exp{β�Zi(t)},

where the observable covariates Zi are combined in a vector of predictable processes, λ0

is a deterministic function, the so-called baseline intensity and the vector of regression

parameters is denoted by β ∈ Rp. The observable stochastic process Ri is called the

at-risk indicator which indicates whether an individual is at risk or not by taking only

values 1 and 0. In the most basic model the covariates are not time-dependent and

hence, the covariates are simply given as a vector of random variables. The unknown

function λ0(t) and the regression parameter vector β have to be estimated. This model

is called semiparametric, since it contains an infinite-dimensional parameter λ0 and a

finite-dimensional parameter that consists of the regression parameters.

An extension of this model is the Cox model with one single change-point at an unknown

threshold of a covariate, i.e. one covariate, say Z2, is misspecified in the sense that the

ordinary linear unchanging influence of the covariate is not given. The intensity of this
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model can be written as

λi(t) = λ0(t)Ri(t) exp{β�Z1i(t) + β2Z2i + β3(Z2i − ξ)+}, (1.1)

where a+ means the maximum of a and 0, the parameter ξ ∈ R represents the change-

point and the other parameters are as in the classical Cox model. Thus, the influence of

the covariate Z2i changes from β2 to β2 + β3 when Z2i exceeds the change-point. The

unknown change-point parameter has to be estimated as well as the regression parameter

and the baseline intensity function. In the usual Cox model the regression parameter is

estimated by a partial log likelihood

logL(β) =

n∑
i=1

∫ τ

0

β�Zi(t) dN(t) −
∫ τ

0

log

(
n∑

i=1

Ri(t) exp{β�Zi(t)}
)

d

(
n∑

i=1

Ni(t)

)

and instead of the baseline function λ0(t) the cumulative intensity function Λ0(t) =∫ t

0
λ0(s) ds is estimated by the so-called Breslow estimator (see Andersen et al. (1993))

Λ̂0(t) =

∫ t

0

d(n−1
∑n

i=1Ni(s))

n−1
∑n

j=1Rj(s) exp{β̂�
nZj(s)}

.

For the Cox model with a change-point the partial likelihood is determined by the intensity

given in (1.1). Hence, the likelihood depends on the regression parameter β and on the

change-point parameter ξ. We obtain estimates by maximizing the likelihood with respect

to the parameters, which is done in a two-phase maximization. These estimates possess

certain desirable properties. We show that our combined estimator of θ = (ξ,β�)� is√
n−consistent and asymptotically normal. Since our underlying regression function is

continuous but not differentiable in the change-point parameter ξ the usual approach of

considering a Taylor expansion can not be made. Therefore, we use techniques developed

for the theory of empirical processes. Some authors stated that the rate of convergence

of the change-point estimate in our model should be n. However, our simulation studies

as well as our analytical proofs do not support this claim, see Figure 1.1. The cumulative

baseline intensity is estimated by the Breslow estimator depending on the estimates of β

and ξ. We show that
√
n(Λ̂n(t) − Λ0(t)) converges weakly to a Gaussian process.

The Cox model with one change-point in one covariate can be further extended to a model

with a general risk function and with more than one change-point. This model is given

by

λi(t, θ) = λ0(t)Ri(t) r
{
β�

1 Z1i(t) + β�
2 Z2i(t) + β�

3 (Z2i(t) − ξ)+
}
,

where r : R → [0,∞) is a twice continuously differentiable nonnegative link function.

The change-points are indicated by ξ, which is a vector of parameters lying in a rectangle
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Figure 1.1: Simulation study on the rate of convergence. On the left-hand side the
empirical density of

√
n(ξ̂n − ξ0) and on the right-hand side the empirical density of

n(ξ̂n − ξ0) is shown with n = 100, 200, 400, 800, 1600 and with 1000 replicates for each n.

Ξ = [ξ11, ξ21] × [ξ12, ξ22] × · · · × [ξ1m, ξ2m]. The parameters ξ11, ξ21, ξ12, ξ22, ..., ξ1m, ξ2m are

assumed to be known. The ideas of the proofs are similar to the ones in the univariate

case. But the replacement of the exponential function by a general risk function requires

additional conditions for the function r and makes the proofs more complex.

1.2 Transformation Model

In applications, it is possible that the Cox model does not represent the data well enough.

It may occur, that groups of related survival times are correlated due to an unobservable

risk factor. Groups sharing some risk factor might be a family or electric motors from the

same plant. One way to describe such kind of data is in terms of so-called frailty models.

In that case an unobservable random variable acts multiplicatively on the intensity. If

this intensity is given by a Cox model then the new intensity can be written as

λi(t) = Wiλ0(t)Ri(t) exp{β�Zi},
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where Wi is the unobservable positive random variable. Usually, one assumes that the

distribution ofWi belongs to some specific class of distributions. The most frequently used

is the Gamma distribution but other choices are possible, too. Among others these frailty

models and the Cox model are submodels of the linear transformation model, which can

be written in terms of the survival function of a survival time conditional on the covariates

Z as

SZ(t) = Λ

(∫ t

0

exp{β�Z(u)} dA(u)

)
,

where β ∈ R
p is a parameter vector, the function Λ is known, thrice differentiable and

decreasing with Λ(0) = 1 and A is an unknown increasing function restricted to [0, τ ].

Different choices of Λ produce different models. Especially, Λ(u) = exp{−u} results in the

Cox model. As in the Cox model we introduce change-points at thresholds of covariates

in the underlying regression function. Thus, we study the model

SZ(t) = Λ

(∫ t

0

exp{β�
1 Z1(u) + β�

2 Z2 + β�
3 (Z2 − ξ)+} dA(u)

)
,

where ξ denotes the vector of change-points. The estimation of the parameter is much

more complex in this model than in the usual Cox model, since the estimation of the

infinite-dimensional parameter, the integrated baseline hazard A(t), can no longer be

separated from the estimation of the finite-dimensional parameters by a partial likelihood

method. We use a nonparametric maximum likelihood to obtain estimates. Again we

can show that the estimates of the finite-dimensional parameters β and ξ as well as the

estimate of the infinite-dimensional parameter A(t) are
√
n−consistent and asymptotically

normal. The theory of empirical processes was a helpful tool for our proofs, since as in

the Cox model with change-points the underlying regression function is not differentiable

in ξ and hence, the classical approach using a Taylor expansion fails. Especially, we use

techniques developed for the general class of M-Estimators. Furthermore, proving the

asymptotic properties of the infinite-dimensional parameter involves the theory of linear

operators and Fréchet differentiabillity.

1.3 Outline

The thesis is structured as follows.

In Chapter 2, we review the main ideas of survival analysis and present some models from

it. Moreover, we discuss properties of the estimates and we introduce some notation we

will need in the main chapters.

In Chapter 3, we give an overview of change-point models. Different kinds of change-point

models are described and properties of the estimates are discussed.
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One of the main chapters is Chapter 4. It contains the Cox model with one single change-

point. The estimation procedure for the change-point parameter and the other parameters

is illustrated. Furthermore, consistency and asymptotic normality of the estimates are

proved and the rate of convergence of the estimates is derived.

In Chapter 5 we extend the Cox model with one change-point to a Cox model with general

risk function and more than one change-point. Again, we prove the usual properties of

the estimates.

Chapter 6 contains the more complex transformation model with change-points. We

present a nonparametric likelihood, which is used to estimate the finite- and infinite-

dimensional parameters. The consistency of all estimates is proved in subsection 6.4.

Furthermore, the score and information operators are calculated after a reparametrization

of our model. As a result, the rate of convergence
√
n is obtained again and asymptotic

normality of the estimates can be established.

In Chapter 7 we apply the Cox model with change-points to different datasets. The first

dataset consists of insurance contracts, for which different attributes were recorded. The

purpose of our study was to investigate how the different attributes influence the cancel-

lation of a contract. It can be seen that one covariate is misspecified using the classical

Cox model such that our model yields a better fit than the classical one. Furthermore,

by using a special goodness-of-fit test we are able to describe the functional form of these

covariates in a piecewise linear form.

The second dataset contains information about lifetimes of electric motors and covariates

like load, current, nominal voltage and r.p.m. The aim of this analysis is to determine

the influence of the covariates on the lifetime and to obtain survival functions of different

types of motors, including estimates for untested configurations.

The last dataset is the well known PBC dataset described in Fleming & Harrington

(1991), which contains data about the survival of patients with primary biliary cirrhosis

(PBC). We suggest to use the Cox model with change-points to get a better fit compared

to the model used in Fleming & Harrington (1991).

In Chapter 8 some remarks about the models and the applications are given. Further-

more, some open problems are discussed.

In the Appendix some general definitions and results from the theory of empirical pro-

cesses are stated.

The contents of Chapter 3 will be published in Jensen & Lütkebohmert (2007a). Some

of the basic ideas of Chapter 4 have already been published in Gandy et al. (2005)

whereas the ideas of Chapter 5 are submitted for publication (see Jensen & Lütkebohmert

(2007b)).

The application concerning the electric motor dataset is published in Lütkebohmert et al.

(2007).



Chapter 2

Regression Models for Survival Data

2.1 Survival Data

A typical dataset in Survival Analysis is obtained from a collection of individuals which

are observed from an entry time of a study until the occurrence of a particular event.

A classical example is the observation of patients in a clinical trial. The interest lies in

the time period from a certain surgery until death. Recording such data involves some

problems. Sometimes the dataset must be analyzed before all patients have died. Patients

can die due to other reasons or the individuals can leave the study such that the data is

lost for follow-up studies. Therefore, most often such a dataset is not complete and the

question is how to handle the data. Leaving out some data would falsify the outcome and

thus the concept of right censoring is used. Right censoring is the phenomenon that it is

only known that the event of death has not yet happened until a specified time. Hence,

one assumes that for each individual i there are two random times: Ti the time of an event

and Ci the censoring time. Actually, one observes the minimum Vi of Ti and Ci. The

status of the ith individual will be denoted by the indicator δi = I{Ti≤Ci}, which is 1 if Ti is

observed and 0 if the observation is censored. This setup can also be expressed in terms

of counting processes. Let Ni(t) = δiI{Vi≤t} be the counting process which stays 0 if the

ith individual does not experience an event and jumps from 0 to 1 at the observed event

time Ti. This formulation of the problem is useful, since a counting process admits an

intensity λi(t) which enables us to define different models. Furthermore, by definition the

difference between the counting process and the cumulative intensity Λi(t) =
∫ t

0
λi(s) ds

is a martingale. Hence, martingale theory can be used for analyzing the data. Another

advantage of this setup is that it generalizes immediately to multiple events during a finite

interval [0, τ ], where τ <∞.

In many studies the main interest is in how explanatory variables, so-called covariates,

influence the survival of a patient. Explanatory variables can be a certain medical treat-

7
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Figure 2.1: Eight observations from a clinical trial, calendar years
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Figure 2.2: Eight observations from a clinical trial, years since operation

ment or known characteristics of a patient like age, blood pressure, etc. Therefore, a

typical dataset in survival analysis consists of iid triples (Vi, Zi, δi), i = 1, . . . , n., where

Vi is the observed right censored lifetime, δi indicates whether the time is censored or not

and Zi is a covariate. Typical models are regression models since they allow to incorporate

covariates and explore their effects on the lifetimes. Moreover, they take right-censoring

into account.
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Figure 2.3: Counting processes with at most one event per individual. Left: no event,
Right: event at time Ti.

2.2 Notation

In this section we want to introduce some notation. Some of these conventions will be used

only in later chapters, whereas others are already needed in the next section. Nevertheless,

we will give an exhaustive overview here and will refer to this section, whenever it is useful.

One main aspect of this thesis is to provide the asymptotic properties of the estimates.

Therefore, stochastic convergence is denoted by
P→ and convergence in distribution is

denoted by
d→. Matrices and vectors are written in bold face (H , z) and their entries

are described by Hij and zi, respectively. If not stated otherwise, the vectors are column

vectors. The transpose of a vector is denoted by z� and 1 ∈ R
k is an k-dimensional

vector of 1’s. By the partial derivatives with respect to a vector x ∈ Rk and y ∈ Rm the

following is meant
∂

∂x
=

(
∂

∂x1
, . . . ,

∂

∂xk

)�

and
∂

∂x

∂

∂y
=

(
∂

∂xν

∂

∂yµ

)
for ν = 1, . . . , k, µ = 1, . . . , m.

Moreover, if xi : R+ → R, i = 1, . . . , k is a real valued function, then

∫
x(t) dt =

(∫
x1(t) dt, . . . ,

∫
xk(t) dt

)�

and considering a matrix H ∈ Rk × Rm of functions on R+

∫
H(t) dt =




∫
h11(t) dt · · · ∫

h1m(t) dt
...

. . .
...∫

hk1(t) dt · · · ∫
hkm(t) dt


 .

The indicator function is written in the form I{·}. Let a+ denote the maximum of a and

0. For vectors, this expression has to be read componentwise. Especially, for vectors
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x, z,a ∈ Rk the following xI{z>a} is a short notation for (x1I{z1>a1}, · · · , xkI{zk>ak})
�.

The expectation of a vector conditional on a vector also has to be read elementwise.

We denote by ‖ · ‖ the Euclidean norm of a vector, by ‖ · ‖v the total variation norm

and by ‖ · ‖∞ the uniform norm. The notation ∆N(t) is used for N(t) − N(t−), where

N(t−) = lims↑t N(s).

The symbol O(x) is the usual Landau symbol. Whereas, we write Xn = OP(1) for

sequences (Xn), n ∈ N of random variables, if for each ε > 0 there exists a constant

K > 0, such that supn∈N
P(|Xn| > K) < ε. For sequences (Xn), n ∈ N, and (an), n ∈ N,

of random variables, we say Xn = oP(an) if Xn/an
P→ 0 and Xn = oa.s.(an) if Xn/an → 0

almost surely.

The following notation is used in Chapter 6. Let X1, . . . , Xn be a random sample from a

probability distribution P on a measurable space (X ,A). The empirical distribution is the

discrete uniform measure on the observations. We denote it by Pn = n−1
∑n

i=1 δXi
, where

δx is the probability distribution that is degenerate at x. Given a measurable function

f : X → R, we write Pnf for the expectation of f under the empirical measure, and P f

for the expectation under P. Thus

Pnf =
1

n

n∑
i=1

f(Xi), P f =

∫
f dP.

In this context the Lr(P)-norm is often used, which is defined as follows:

‖f‖P,r = (P |f |r)1/r .

The empirical process is given by Gnf =
√
n(Pnf − P f).

2.3 Regression Models

In Survival Analysis the objective may be to compare different treatment effects on the

survival time including the information which is available for each individual such as age,

sex and various clinical data. This leaves us with a regression problem. Various regression

models were proposed in the last 30 years. The most famous ones are the Cox model and

the Aalen model. There also exist various other models. We will review some of them

here.

2.3.1 The Cox Model

A classical survival time model was proposed by Cox (1972). A counting process approach

was first presented by Andersen & Gill (1982). Let t ∈ [0, τ ], 0 < τ < ∞. In this model
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the vector of covariatesZi(t) is related to the counting processN(t) = (N1(t), . . . , Nn(t))�

by the intensity λ(t) = (λ1(t), . . . , λn(t))� which is specified as follows:

λi(t) = λ0(t)Ri(t) exp{β�Zi(t)} (2.1)

The observed vector of covariates is a p-dimensional predictable and locally bounded

stochastic process, the parameter β ∈ Rp is an unknown parameter vector, Ri(t) is a

process taking only values 1 or 0 indicating whether an individual is at risk or not and λ0(t)

is the baseline hazard function. The vector of regression parameters β and the integrated

baseline hazard Λ0(t) =
∫ t

0
λ0(u) du have to be estimated. Using a partial likelihood it

is possible to estimate the parameter β separately from the cumulative baseline intensity

Λ0(t). The partial likelihood is given by

L(β) =

n∏
i=1

τ∏
t=0

{
exp{β�Zi(t)}∑n

j=1Rj(t) exp{β�Zj(t)}

}∆Ni(t)

(2.2)

with ∆Ni(t) = Ni(t) −Ni(t−). Clearly, β̂n also maximizes the log partial likelihood

logL(β) =
n∑

i=1

∫ τ

0

β�Zi(t) dN(t) −
∫ τ

0

log

(
n∑

j=1

Rj(t) exp{β�Zj(t)}
)

d
n∑

i=1

Ni(t).

The cumulative hazard function Λ0(t) can be estimated by the well known Breslow esti-

mator (see Andersen et al. (1993)) which is given by

Λ̂0(t) =

∫ t

0

d(n−1
∑n

i=1Ni(s))

n−1
∑n

j=1Rj(s) exp{β̂�
nZj(s)}

.

Under some regularity conditions it can be shown that the estimate β̂n is
√
n-consistent

and that
√
n(β̂n − β0) converges in distribution to a normal distribution. Furthermore,

weak convergence of
√
n(Λ̂n(t) − Λ0(t)) can be established.

In the classical model the link function is given as an exponential function. An extension

is to consider instead a general known function r : R → [0,∞) which has been studied by

Prentice & Self (1983). The hypothesis of a linear functional form of the covariates has

to be abandoned for several applications. An alternative is to consider a general unknown

function ψ(Z) instead of β�Z in (2.1). This approach was presented by Chen & Zhou

(2007). Another way to obtain the functional form is to use an underlying regression

function with bent-line change-points according to the covariates. Details will be given

in Chapter 4.
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2.3.2 The Aalen Model

The difference between the Cox model and the Aalen model is the construction of their

intensity processes which link covariates to counting processes. In the Aalen model the

covariates are given in the form of a matrix Y (t) = (Yij(t)), i = 1, . . . , n, j = 1, ..., p, p ≤
n, of locally bounded predictable processes. The covariate Yij(t) is set equal to 0 if the

individual i is not at risk. The model is characterized by the intensity

λi(t) =

p∑
j=1

Yij(t)αj(t), t ∈ [0, τ ],

where αj(t) are unknown deterministic baseline intensities, which need to be estimated.

An estimator for the integrated baseline intensity A(t) =
∫ t

0
α(s) ds is given by a gener-

alized Nelson-Aalen estimator

Â(t) =

∫ t

0

Y−(s) dN(s),

where Y−(t) is a generalized inverse of Y(t). In the case that Y(t) has full rank, we can

choose Y−(t) = (Y�(t)Y(t))−1Y�(t). Now the baseline intensity α(t) can be estimated

by smoothing procedures, e.g. one can use kernel smoothers.

2.3.3 Multiplicative-Additive Hazards Models

The previous intensity models postulate different relationships between the covariates

and the hazard. But sometimes it is not clear, which one is to be preferred. Maybe a

combination of both models presents specific data in a better way. There exist various

ways to combine the two models above. One possibility is to add up the basic models,

which leads to the proportional excess hazard model, where the additive part can be

thought of as modeling the baseline mortality while the multiplicative part describes

the excess risk due to different exposure levels. Various authors have studied such a

combination, e.g. Lin & Ying (1995) considered the following intensity model

λ(t) = R(t)
[
g(X�(t)α) + λ0(t)h(Z

�β)
]
,

where R(t) is an at risk indicator, (X�(t),Z�(t))� is a covariate vector, (α�,β�)� is a

vector of regression coefficients and λ0(t) is an unspecified baseline hazard. Both functions

g and h are assumed to be known. Sasieni (1996) studied the model

λ(t) = R(t)
[
α(t, X) + λ0(t) exp{Z�β}] ,
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where α(t, X) is the background rate of the mortality in a control population and is

assumed to be known. Estimates for the unknown parameter β and Λ0(t) =
∫ τ

0
λ0(s) ds

can be derived. Martinussen & Scheike (2002) consider a more flexible model

λ(t) = R(t)
[
X�(t)α(t) + ρ(t)λ0(t) exp{Z�(t)β}] ,

where both R(t) and ρ(t) are at risk indicators, α(t) is a time varying regression function,

λ0(t) is the baseline hazard of the excess term and β is a vector of relative risk coefficients.

A different way of combining the two models is to multiply them. Other approaches were

made by Dabrowska (1997) and Scheike & Zhang (2002).

2.3.4 Frailty Models and Transformation Models

In frailty models the intensity process depends partly on an unobservable random variable.

Usually, the frailty is modeled by an unobservable random variable acting multiplicatively

on the intensity. One has to distinguish between two cases of frailty models. In the

univariate case we consider life times of independent individuals where the frailty describes

the influence of unobserved risk factors, i.e. we observe survival times T1, . . . , Tn and

these have, conditional on frailty variables W1, . . . ,Wn, hazards Wiα(t), for some baseline

α(t). The frailties are supposed to be unknown and hence their distributions have to

be deduced from the hazard functions by integration. Thus the observed hazards are

given by E[Wi|Ti > t]α(t). Since the first term is time dependent the observed hazard

can be quantitatively different from the conditional hazard we describe below. In the

multivariate case, where the frailty is common to a group of individuals like families, the

frailty induces a correlation between the individuals in the group. Such a shared frailty

model is given as follows: Let Tij , i = 1, . . . , n be the survival times of the jth individual

in the ith group. Then the model is given by

λij(t|Wi) = Wiα(t),

where W1, . . . ,Wn are the frailty variables and α(t) is a baseline hazard. The most

common choice for the distribution of Wi is a gamma distribution with mean one and

an unknown variance. But other distributions are also possible, see Hougaard (2000).

The multivariate case is the more common approach (see Clayton (1978), Nielsen et al.

(1992)). In terms of the Cox model we have a semiparametric frailty model for which the

conditional hazard function for independent, possibly censored survival times V1, . . . , Vn

is given by

λi(t|Zi) = WiRi(t) exp{β�Zi}λ0(t),
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where Zi is a covariate vector for the ith individual, β the regression parameter vector,

λ0(t) the baseline function and Ri(t) an at-risk indicator. In this case the frailty term

represents the neglected common covariates.

There has been a number of suggestions on how to estimate the parameters. One approach

is via the EM-algorithm, whereas another approach is via a nonparametric maximum

likelihood method.

A more general class of models is that of so-called transformation models which involve

one or more monotone transformations φ : R → R. Semiparametric frailty models are

examples of this class. One special case is a linear transformation regression model.

Suppose that Z is a random vector on Rp and ε is some nuisance random variable with

distribution function F . Furthermore, assume that for some β ∈ R
p the following linear

relationship holds

Y = −β�Z + ε.

Now, the random vector (Z, U) can be observed, where U = φ−1(Y ) for some transfor-

mation function φ. Thus, we can write equivalently

φ(U) = −β�Z + ε.

Different choices of the distribution function F of ε result in different models. For example,

if eε ∼Pareto(η), i.e. P (ε ≥ t) = (1 + ηet)−1/η then we obtain a semiparametric Pareto

regression model, which was studied by Clayton & Cuzick (1985). This model can also

be viewed as a Cox regression model with frailty W > 0. To see this relationship consider

the hazard function conditional on Z,W

λ(u|Z,W ) = W exp{β�Z}λ0(u)

or equivalently

Λ(u|Z,W ) = W exp{β�Z}Λ0(u).

Thus the survival function is given by S(u|Z,W ) = exp{−W exp{β�Z}Λ0(u)}. If W

follows a Γ(1/η, 1/η) distribution, then

S(u|Z) =
[
1 + η exp{β�Z}Λ0(u)

]−1/η
.

Consequently, if eε ∼Pareto(η), then

exp{β�Z}Λ0(U) = exp{ε} ⇐⇒ log Λ0(U) = −β�Z + ε. (2.3)
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Choosing φ(U) = log Λ0(U) we get the linear relationship as described above again. In

the Cox model (2.3) holds, if eε ∼Exp(1).

A general description of linear transformation models is in terms of the survival function

conditional on some covariate vector Z. For example, Kosorok et al. (2004) considered

the model

S(t|Z) = Λγ

(∫ t

0

exp{β�Z(s)} dA(s)

)
,

where A(s) denotes the cumulative baseline hazard function, Λγ is the Laplace transform

of a random variable W and γ is an unknown parameter. They use a nonparametric

likelihood method to obtain estimates and to prove their asymptotical properties. Another

approach is given by Slud & Vonta (2004). They prove consistency of the nonparametric

maximum likelihood estimator for the model

S(t|Z) = exp{−G(exp{Z�β}A(t))},

where G is assumed known and the other functions and parameters are given as in the

model of Kosorok et al. (2004). Bagdonavičius & Nikulin (2002) consider among other

models

S(t|Z) = G

(∫ t

0

exp{β�Z1(u)} dG−1(S0(u)) +

∫ t

0

γ�Z2(u) du

)
,

where G is some survival function and S0 is an unknown baseline survival function. They

use estimating equations to study the asymptotical properties of their estimates.

Other transformation models can be set up without using the linear relationship. One

example is a Copula model. Suppose that Cθ is a distribution on [0, 1]2 for θ ∈ Θ ⊂ R
k.

Moreover, we assume that Cθ has uniform marginals. If (U, V ) ∼ Cθ for some θ ∈ Θ,

we observe X = (S, T ) = (σ−1(U), φ−1(V )) = G−1(U), H−1(V )), where G and H are

distribution functions on R and hence σ and φ are transformation functions. Thus the

joint distribution function of X is given by

FS,T (s, t) = Cθ(G(s), H(t)).

For more details we refer to Bickel et al. (1998).



Chapter 3

Change-Point Models

This chapter gives an overview over different change-point models and is based on Jensen

& Lütkebohmert (2007a). Our main interest in this thesis lies on change-point models

in hazard rate and regression models, but due to completeness we will depict the more

familiar change-point models form quality control as well.

Change-point models have originally been developed in connection with applications in

quality control, where a change from the in-control to the out-of-control state has to be

detected based on the available random observations. Up to now various change-point

models have been suggested for a broad spectrum of applications like quality control,

reliability, econometrics or medicine.

The general change-point problem can be described as follows: A random process indexed

by time is observed and we want to investigate whether a change in the distribution of

the random elements occurs. In other words we are interested in determining whether the

observed stochastic process is homogeneous or not. Formally, in the discrete time case,

let X1, X2, . . . denote a sequence of independent random variables, where the elements

X1, . . . , Xθ−1 have an identical distribution function F0 and Xθ, Xθ+1, . . . are distributed

according to F1 and the change-point θ is unknown. Several statistical tests of the null

hypothesis F0 = F1 against the alternative F0 �= F1 for some θ > 1 have been suggested.

In addition, estimates for the change-point have been proposed and their properties have

been investigated.

Change-point problems can be classified in different ways. Approaches in the classical

framework as in the Bayesian framework have been made. Also, there exist models in con-

tinuous time as well as in discrete time. Furthermore, the analysis of change-points can be

partitioned in sequential and posteriori detection models (ex post analysis). And of course,

the problem can be viewed at in a parametric or nonparametric context. Another char-

acterization is whether only one change-point exists or more than one. The early work in

change-point analysis is described in the survey article of Zacks (1982). Other comprehen-

sive reviews are given in Bhattacharya (1994) and in the book of Brodsky & Darkhovsky

16
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(1993) for nonparametric models. For an overview of limit theorems in change-point

problems we refer to Csörgő & Horváth (1997). Here we want to concentrate shortly on

a review of models and methods for sequentially observed data and will explain in more

detail change-points in regression and hazard rate models.

3.1 Detection of a Change-Point in Sequentially Ob-

served Data

The aim of so-called disorder or detection problems is to detect the change-point ”as

soon as possible” but avoiding too many false alarms. We distinguish discrete time and

continuous time models.

3.1.1 Discrete Time Models

In the discrete case let X1, X2, . . . be a sequence of independent random variables which

are observed sequentially. The first X1, . . . , Xθ−1, θ > 1 are distributed according to some

known distribution F0 while Xθ, Xθ+1, . . . have some known distribution function F1 �= F0.

The change-point θ is unknown. The time of alarm (a change-point has occurred) is deter-

mined by a stopping rule which takes the random observations into account. Concerning

the change-point there exist Bayesian and non-Bayesian approaches. One of the first non-

Bayesian methods is the CUSUM-procedure proposed by Page (1954), which was further

investigated by Lorden (1971) and Moustakides (1986).

A Bayesian formalization of the disorder problem goes back to Shiryaev (1963). He

postulated that the change-point θ has a geometric a priori distribution with some pa-

rameter p and considered the following risk function R(τ) for stopping at τ : R(τ) =

P (τ < θ) + cE(τ − θ)+. Here the penalty costs of a false alarm are normed to 1, and

the costs for the delay of stopping after the change-point are c per time unit. Now

the Bayes stopping rule is to stop at the smallest n for which the posterior probability

Πn = P (θ ≤ n|X1, ..., Xn) of a change up to n is greater than some threshold A for some

0 < A < 1.

3.1.2 Continuous Time Model

Shiryaev (1963) was also one of the first to present a model in continuous time in a

Bayesian framework: the change-point is assumed to be a random variable with some

prior distribution. Shiryaev considered the following observation process

Wt = Bt + r(t− θ)+, t ∈ [0,∞),
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where B denotes a standard Brownian motion, r is a known fixed constant and θ is an

unknown (random) change-point, which is assumed to be independent of B and to have

a mixed exponential prior distribution: P (θ = 0) = p and P (θ > t) = (1 − p)e−λt, p ∈
[0, 1), λ > 0, t ≥ 0. The stopping time τ with respect to the filtration generated by

W should signal the change in the drift as soon as possible. The speed of detection is

measured by the risk function R(τ), which is the same as in the discrete time case. A

Bayes solution τ ∗ should minimize the risk

R(τ ∗) = inf
τ
R(τ).

The optimal stopping time τ ∗ can be determined by means of the posterior distribution

Πt = P (θ ≤ t | FW
t ), with FW

t = σ{Ws : s ≤ t}. Then the optimal stopping time is

τ ∗ = inf{t > 0 |Πt ≥ p∗},

for some properly chosen p∗ ∈ [0, 1). Details about this approach can be found in Shiryaev

(1978). An explicit expression for the optimal threshold p∗, and further ramifications can

be found in Beibel (1994, 1996).

Another type of change-point problems has been studied in recent years, namely the

Poisson disorder problem. Instead of considering a Wiener process with changing drift

a Poisson process with changing intensity is observed. Then the problem is to deter-

mine a stopping time which signals a change of the intensity of the observed Poisson

process. Formally, a point process (Tn), n ∈ N and its corresponding counting process

Nt =
∑∞

n=1 I{Tn≤t} are observed, where I is the indicator function. At an unknown ran-

dom time θ the intensity of N switches from µ0 to µ1 > µ0. This means, that if θ is given,

N is a Poisson process with intensity µ0 up to θ and a Poisson process with intensity

µ1 after θ. For more details we refer to Peskir & Shiryaev (2002), Brown & Zacks (2006)

and Herberts & Jensen (2004).

3.2 Change-Points in Regression and Hazard Rate

Models

3.2.1 Regression Models

In the literature two different types of change-point regression models can be found: On

the one hand so called time-varying regression models, in which the model parameters

change at some unknown point in time, and on the other hand two-phase regression

models. Both models are presented briefly in the following.
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In the time-varying model a change in the regression coefficients takes place from the

early to the late observations of a sequence (Xn), n ∈ N. Let (X1, Y1), . . . , (Xn, Yn) be

independent random vectors. Then the model in the random design is given by

Yi =

{
α0 + α1Xi + εi, i ≤ τ

β0 + β1Xi + εi, i ≥ τ + 1

where (Xi) and (εi), i = 1, . . . , n are mutually independent iid sequences with E(εi) = 0

and E(ε2i ) = 1 and (α0, α1) �= (β0, β1). If 1 ≤ τ ≤ n − 1, then τ is a change-point. This

design is called fixed if the sequence (Xi), i = 1, . . . , n is non-stochastic.

A two-phase regression model is a regression model with piecewise linear regression func-

tions over two different domains of the design-variable. The random design of a two-phase

regression model is given by

Yi = (α0 + α1Xi)I{Xi≤τ} + (β0 + β1Xi)I{Xi>τ} + εi = m(Xi) + εi. (3.1)

The two-phase regression models can be classified further into a restricted and an un-

restricted case. In the restricted case the regression function f is continuous but not

differentiable, whereas in the unrestricted case the regression function is discontinuous.

The discontinuity can be expressed in form of a fixed jump size or a contiguous jump size,

in which the jump size tends to zero as the sample size tends to infinity.

Hinkley (1971) was one of the first authors to investigate a maximum likelihood estima-

tor of the point of intersection for the special case of two line segments under normally

distributed errors. A generalization of his model with multiple change-points was consid-

ered by Feder (1975a,b), who investigated least squares estimates and showed that these

estimates are consistent under suitable identifiability assumptions and the asymptotic

distributions of these estimates are obtained by ”classical” methods.

Koul & Qian (2002), Koul et al. (2003) considered M-estimators in the unrestricted two-

phase random design with a fixed jump size. The M-process corresponding to a function

φ : R → [0,∞) is defined as

Mn(θ) =

n∑
i=1

φ(Yi −m(Xi, θ)),

where m(X; θ) is the linear regression function of model (3.1) and the M-estimator θ̂ is

given as the minimizer of the M-process:

Mn(θ̂) = inf
θ
Mn(θ) a. s.
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They showed that the estimate of the jump point converges with rate Op(n
−1), whereas

the rate of convergence of the coefficient parameters is Op(n
−1/2). The normalized M-

process is asymptotically equivalent to the sum of two processes. One is a quadratic form

in the standardized coefficient parameter vector, the other is a jump point process in the

change-point parameter. This result can be exploited to show weak convergence. The

suitably standardized M-estimator of the change-point converges weakly to the minimizer

of a compound Poisson process. The estimates of the regression coefficients are asymptot-

ically normal and independent of the jump point M-estimator. This is remarkable because

the results differ from the restricted and unrestricted contiguous non-random design cases.

All models considered above assumed a parametric setting. Of course, there exist various

nonparametric models as well. Müller (1992) studied the following fixed design nonpara-

metric regression model

Yin = g(tin) + εin, tin ∈ [0, 1], 1 ≤ i ≤ n,

where Yin are noisy measurements of the regression function g taken at points tin and

εin ∼ N (0, σ2) are iid errors. The assumption is made that there is a change-point for

the νth derivative g(ν) at τ, 0 < τ < 1 in the following sense: There exists a function

f ∈ Ck+ν([0, 1]) with ν ≥ 0 and k ≥ 2 an even integer, such that

g(ν)(t) = f (ν)(t) + ∆νI[τ,1](t), ∆ν > 0, 0 ≤ t ≤ 1.

The case ∆ν < 0 can be treated analogously. Now, the jump size at the possible change-

point τ of the νth derivative of g is given by

∆ν = g
(ν)
+ (τ) − g

(ν)
− (τ),

where g
(ν)
+ (x) = lim

y↓x
g(ν)(y) and g

(ν)
− (x) = lim

y↑x
g(ν)(y) are the one-sided limits of the deriva-

tive g(ν)(x). Hence, the idea is to base the inference of the change-points on differences

between the left and right sided estimates of g(ν)(t), which can be done by suitably cho-

sen one sided kernel estimates. The location of the maximum of these differences is a

reasonable estimator of the location of the change-point. Let τ be an element of a closed

interval T ⊂ (0, 1). Then the estimator is

τ̂ = inf{ρ ∈ T : ∆̂ν(ρ) = sup
x∈T

∆̂ν(x)}.

In this setting Müller (1992) proved weak convergence of the estimator τ̂ . Loader (1996)

considered a similar nonparametric regression model in which the mean function may

have a discontinuity at an unknown point. His estimate is similar in principle to that



3.2. CHANGE-POINTS IN REGRESSION AND HAZARD RATE MODELS 21

studied by Müller (1992). But since he imposed different conditions on the kernel K, his

estimate has different properties. It is shown that the change-point estimate converges

in probability with rate OP (n−1) and that it has the same asymptotic distribution as

maximum likelihood estimates in parametric models.

The same rate of convergence is attained by Müller & Song (1997) in a two-step estima-

tion of the change-point in a nonparametric fixed design regression model with fixed jump

size, whereas the rate of convergence in the contiguous case is OP (n−1∆−2
n ), where ∆n is

a sequence of jump sizes which tends to zero.

Another important problem in modeling data is the question whether an unknown func-

tion, which cannot be specified parametrically, should be modeled as a globally smooth

function or a smooth function with isolated change-points. Müller & Stadtmüller (1999)

proposed statistics which provide relevant information for this decision.

3.2.2 Hazard Rate Models

Hazard rate models often occur in medical follow up studies after major surgery. The

simplest one with a change-point can be expressed as follows

λ(t) =

{
λ1 t ≤ τ

λ2 t > τ
, t ≥ 0 , τ ≥ 0

with constants λ1, λ2 > 0 and change-point τ . A first attempt to estimate these three

parameters was made by Anderson & Senthilselvan (1982). They investigated as a special

case of this simple model an extended Cox model with λ1 = eα
�Z, λ2 = eγ

�Z, where α and

γ are parameter vectors and Z is a vector of covariates. The parameters are estimated

by the conditional log-likelihood given the value of τ and then the baseline hazard λ(t)

is estimated by a penalized maximum likelihood method conditioning on the parameter

estimates. Liang et al. (1990) proposed a slightly different Cox model

λ(t) = λ0(t) exp{(β + θI{t≤τ})Z + γ�X},

where Z is a one-dimensional covariate which should be included in possibly different

magnitudes over time, X is another confounding covariate vector and the change-point

at an unknown time is given by τ . They tested the hypothesis of H0 : θ = 0 by using a

test statistic

M = sup
τ∈[a,b]

S(τ),

where S is a function of the first two derivatives of the partial log likelihood function with

respect to β and γ.
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A further Cox model is presented by Luo & Boyett (1997):

λ(t) = λ0(t) exp{βI{X≤θ} +α�Z},

where a constant is added to a covariate beyond a threshold, which is characterized by a

random variable X. They proved consistency of their partial MLE.

A Cox model for independent and identically distributed right censored survival times

with a change-point according to the unknown threshold of a covariate was introduced by

Pons (2003):

λ(t) = λ0(t) exp{α�Z1(t) + β�Z2(t)I{Z3≤ζ} + γ�Z2(t)I{Z3>ζ}}.

In this model it is shown that the partial MLE of the change-point ζ is n-consistent, i.e.

the rate of convergence is Op(n
−1). Such a rate was also attained for the change-point

in the unrestricted two-phase random linear regression design with a fixed jump size (see

Koul & Qian (2002)). Furthermore, Pons (2003) proved that the estimates of the regres-

sion parameter vectors α,β,γ are
√
n-consistent and that n(ζ̂n − ζ) converges weakly to

a random variable ν̂Q which is a maximizer of a certain jump process. The estimates of

the regression parameters are asymptotically normal.

Gandy et al. (2005) also investigated an extended Cox model. But instead of a discontin-

uous underlying regression function they considered a continuous underlying regression

function, which is not differentiable at the change-point ξ. Such a change-point is called

a bent-line change-point. The intensity of this model is the following

λ(t) = λ0(t) exp{β�
1 Z1(t) + β2Z2 + β3(Z2 − ξ)+}.

As the model of Pons (2003) can be compared with an unrestricted two-phase random

linear regression model with fixed jump, the model of Gandy et al. (2005) can be compared

with a restricted two-phase regression model. Hence, the rate of convergence of the

bent-line change-point parameter is different to the one which is obtained in the model

with a jump. In the model with a bent-line change-point the rate of convergence of all

parameters is OP(n−1/2) and all parameter are asymptotically normal. More details about

the estimation of the parameter and the properties of the estimates are given in Chapter

4, which is one of the main chapter in this thesis.

Other approaches relying on the Cox model have recently been suggested by Dupuy (2006).

He considered a model with a change-point in both hazard and regression parameters.

Estimates of the change-point, hazard and regression parameters are proposed and shown

to be consistent.



Chapter 4

Cox Model with a Bent-Line

Change-Point

In this chapter, we consider a new extended Cox model with a single change-point in

one of the covariates. The change-point is a bent-line change-point, i.e. the underlying

regression function is linear and continuous but not differentiable at that point. Thus, a

change-point specifies the unknown threshold at which the influence of a covariate shifts.

In contrast to this notion there exist change-points at which the corresponding regression

function jumps, see Pons (2003). For a better understanding of the following chapters we

first include only one change-point and thoroughly describe the techniques used.

We derive estimates of the regression and change-point parameters and prove their asymp-

totic properties, namely consistency and asymptotic normality. Furthermore, we investi-

gate the rate of convergence of the estimates. Especially, the rate of convergence of the

change-point parameter differs from the one obtained in a model, in which the underlying

regression function is discontinuous. Moreover, we provide a proof of weak convergence

of
√
n(Λ̂n(t) − Λ0(t)), where Λ̂n(t) is the Breslow estimator of the cumulative baseline

intensity.

4.1 Model Setup

Let [0, τ ], 0 < τ <∞ be a fixed time interval on which all stochastic processes are defined

and let all stochastic elements be given on a filtered probability space (Ω,F ,P). We

assume that the n-variate counting process N(t) = (Ni(t), i = 1, ..., n) has independent

and identically distributed elements which have no common jumps. The counting process

admits an intensity λ and counts only one event per subject. More precisely, we assume

that (N,R,Z1(t), Z2), (Ni, Ri,Z1i(t), Z2i) , i = 1, ..., n are iid vectors of random quantities,

where Z1, R are adapted left continuous processes with right-hand limits. Furthermore,

23
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M(t) = N(t) − ∫ t

0
λ(s) ds is a vector of martingales on the time interval [0, τ ]. The

components of λ are defined by

λi(t, θ) = λ0(t)Ri(t) exp
{
β�

1 Z1i(t) + β2Z2i + β3(Z2i − ξ)+
}
,

where θ = (ξ,β�)� with β = (β�
1 , β2, β3)

� ∈ B ⊂ Rp+2 is the vector of regression

parameters and ξ ∈ R indicates the change-point. The baseline intensity is denoted by

λ0(t) and Ri(t) is the at-risk indicator, which is 1 if the individual is under risk and 0

otherwise. Thus, we have a regular Cox model for the covariate vector Z1i(t) and a change

of the influence of the covariate Z2i at ξ from β2 to β2 + β3. For brevity, we consider

Z̃i(t; ξ) =
(
Z�

1i(t), Z2i, (Z2i − ξ)+
)�
.

The change-point ξ is a parameter, which lies in a compact interval [ξ1, ξ2] of known

parameters ξ1 and ξ2. For applications this is not a great constraint. Moreover, the true

parameter values θ0 = (ξ0,β
�
0 )� are supposed to be identifiable, meaning that β30 �= 0.

In this model the regression parameter β, the change-point parameter ξ and the baseline

intensity function λ0(t) have to be estimated. Using a partial likelihood the estimation

of the finite-dimensional parameter can be separated from the estimation of the infinite-

dimensional parameter λ0(t).

4.2 Estimation

In this new Cox model θ0 is estimated by the value θ̂n that maximizes the logarithm of

the partial likelihood

logL(θ) =

n∑
i=1

∫ τ

0

β�Z̃i(t; ξ) dNi(t)−
∫ τ

0

log

(
n∑

i=1

Ri(t) exp(β�Z̃i(t; ξ))

)
d

(
n∑

i=1

Ni(t)

)
.

The maximization can be carried out in two phases:

For fixed ξ, let β̂n(ξ) = arg maxβ∈B logL(ξ,β) and logL(ξ) = logL(ξ, β̂n(ξ)). Then ξ0

can be estimated by ξ̂n satisfying

ξ̂n = arg max
ξ∈[ξ1,ξ2]

logL(ξ).

Hence, the partial maximum likelihood estimator of θ0 is θ̂n = (ξ̂n, β̂
�
n )�, where β̂n =

β̂n(ξ̂n).

In the usual approach to show consistency and asymptotic normality of the parameters

the score function of logL(θ) has to be calculated. In our case this is impossible, since
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logL(θ) is not differentiable in θ, i.e. in particular not in ξ. Therefore, one could try to

consider the (possibly differentiable) limit of logL(θ) as n→ ∞. Unfortunately, logL(θ)

does not converge to a finite limit as n→ ∞, instead we can contemplate the process

Xn(θ) =
1

n

(
logL(θ) + (logn)

n∑
i=1

Ni(τ)

)
(4.1)

=
1

n

n∑
i=1

∫ τ

0

β�Z̃i(t; ξ) dNi(t) −
∫ τ

0

log{ 1

n

n∑
i=1

Ri(t) exp(β�Z̃i(t; ξ))} dN̄(t),

where N̄(t) = 1
n

∑n
i=1Ni(t). Obviously, the estimate θ̂n not only maximizes logL(θ) but

also Xn(θ). We can show that the limit of Xn(θ) as n→ ∞ is given by

x(θ) = E

[∫ τ

0

(
β�Z̃(t; ξ) − log (s(t; θ))

)
λ(t, θ0) dt

]
, (4.2)

where s(t; θ) = E[R(t) exp(β�Z̃(t; ξ))].

The cumulative hazard function Λ0(t) =
∫ t

0
λ0(u) du is estimated by the Breslow estimator

Λ̂n(t) =

∫ t

0

d
(
nN̄(u)

)
S(u, θ̂n)

,

where S(u, θ) =
∑n

i=1Ri(u) exp{β�Z̃i(u, ξ)}.

4.3 Conditions

The following conditions are needed to establish the asymptotic properties of the esti-

mates. To ease up notation it is convenient to define the probability measure Pt with

d Pt = q−1
t d Qt, Qt(A) =

∫
A

R(t) exp(β�
0 Z̃(t; ξ0)) d P and qt =

∫
d Qt,

provided that qt <∞.

The conditions are based on the existence of a convex and compact set Θ = [ξ1, ξ2]×B ⊂
R

p+3 with θ0 in its interior.

Conditions.

A.1 [Finite baseline intensity] supt∈[0,τ ] λ0(t) <∞.

A.2 The random variable Z2 has an absolutely continuous distribution with density fZ2

which is strictly positive, bounded and continuous in a neighborhood of ξ0. Moreover,

EZ2 <∞.
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A.3 For k=0,1,2,

E sup
t∈[0,τ ]

sup
θ∈Θ

{(‖Z1(t)‖k + |Z2|k
)
exp(β�Z̃(t; ξ))

}2

<∞.

A.4 [Asymptotic regularity conditions] The function s(t; θ) = E[R(t) exp(β�Z̃(t; ξ))] is

bounded away from zero on [0, τ ] × Θ and the first two partial derivatives of s(t; θ)

with respect to β are continuous on Θ, uniformly in t ∈ [0, τ ].

A.5 a)For all t ∈ [0, τ ] there exists a neighborhood V (θ0) of θ0 such that the covariance

matrix CovPt(Y (t)), where Y (t) =
(−β30I{Z2>ξ0},Z

�
1 (t), Z2, (Z2 − ξ0)

+
)�

is posi-

tive definite.

b)For k=0,1,2, j=1,2,

sup
z∈[ξ1,ξ2]

E

[
sup

t∈[0,τ ]

sup
θ∈Θ

{(‖Z1(t)‖k + |Z2|k
)
exp(β�Z̃(t; ξ))

}j

|Z2 = z

]
<∞

and

sup
z,z′

sup
t∈[0,τ ]

sup
θ∈Θ

∣∣∣E {
exp(β�Z̃(t; ξ))|Z2 = z

}
−E

{
exp(β�Z̃(t; ξ))|Z2 = z′

}∣∣∣ |z−z′|→0−→ 0,

where z and z′ vary in [ξ1, ξ2].

Condition A.5 is used for interchanging integrability and differentiability. Note that con-

ditions A.3 is a consequence of A.5. But this more stringent condition is not needed for

the first proofs.

4.4 Consistency of the Estimates

In this subsection we establish the consistency of θ̂n. The proof is based on the uniform

convergence of Xn to x, see (4.1) and (4.2), and on properties of x in a neighborhood of

θ0.

Lemma 4.1. Under conditions A.1-A.4, supθ∈Θ |Xn(θ) − x(θ)| converges in probability

to zero as n→ ∞.
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Proof. Xn(θ) can be rewritten in the following way:

Xn(θ) =(β�
1 , β2)

� 1

n

n∑
i=1

∫ τ

0

(
Z1i(t)

Z2i

)
dMi(t)

+ (β�
1 , β2)

� 1

n

n∑
i=1

∫ τ

0

(
Z1i(t)

Z2i

)
Ri(t) exp(β�

0 Z̃(t; ξ0)) dΛ0(t)

+ β3
1

n

n∑
i=1

(Z2i − ξ)+Ni(τ)

−
∫ τ

0

log

(
1

n

n∑
i=1

Ri(t) exp(β�Z̃i(t; ξ))

)
dN̄(t).

(4.3)

Due to A.2 and A.3 and since Θ is compact the first term has mean zero and hence

converges in probability to zero by the law of large numbers. Similarly, the second term

converges to

(β�
1 , β2)

�E

[∫ τ

0

R(t)

(
Z1(t)

Z2

)
exp(β�

0 Z̃(t; ξ0)) dΛ0(t)

]
.

The third term in (4.3) can be handled as follows. By condition A.3, for all ξ ∈ [ξ1, ξ2],

E

[
(Z2 − ξ)+

∫ τ

0

λ(t, θ0) dt

]
≤ E

[
(Z2 − ξ1)

+

∫ τ

0

λ(t, θ0) dt

]

≤ E

∫ τ

0

|Z2|λ(t, θ0) dt+ |ξ1|E
∫ τ

0

λ(t, θ0) dt <∞.

Hence by condition A.2, ∫ t

0

(Z2 − ξ)+ dM(s)

is a martingale and

E
[
(Z2 − ξ)+N(τ)

]
= E

[∫ τ

0

(Z2 − ξ)+dN(t)

]
= E

[∫ τ

0

(Z2 − ξ)+λ(t, θ0) dt

]
<∞.

We want to apply the Glivenko-Cantelli theorem given in Theorem 19.4 and Example

19.8 in Van der Vaart (1998), (see also Appendix Theorem A.5). Clearly, (Z2 − ξ1)
+N(τ)

is an envelope function for (Z2 − ξ)+N(τ). Since (Z2 − ξ)+N(τ) is continuous in ξ, we get

sup
ξ∈[ξ1,ξ2]

∣∣∣∣∣ 1n
n∑

i=1

(Z2i − ξ)+Ni(τ) −E

[∫ τ

0

(Z2 − ξ)+λ(t, θ0) dt

]∣∣∣∣∣ P→ 0.

Multiplying by the bounded parameter β3 gives the convergence of the third term in (4.3).
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To show uniform stochastic convergence of the fourth term in (4.3) one can argue as

follows: By the strong law of large numbers given by Andersen & Gill (1982) (see also

Theorem A.1),

sup
θ∈Θ

sup
t∈[0,τ ]

∣∣∣∣∣ 1n
n∑

i=1

Ri(t) exp(β�Z̃i(t, ξ)) − s(t, θ)

∣∣∣∣∣ P→ 0,

where we used the integrability condition A.3. Since s(t, θ) is bounded away from 0 by

condition A.4, it follows immediately that

sup
θ∈Θ

sup
t∈[0,τ ]

∣∣∣∣∣log

(
1

n

n∑
i=1

Ri(t) exp(β�Z̃i(t, ξ))

)
− log(s(t, θ))

∣∣∣∣∣ P→ 0.

Since
1

n

n∑
i=1

Ni(τ)
P→ EN(τ) = E

[∫ τ

0

λ(t, θ0) dt

]
<∞,

the difference between ∫ τ

0

log(s(t, θ)) dN̄(t)

and the fourth term in (4.3) converges uniformly to 0 in probability. Using the Glivenko-

Cantelli theorem and Example 19.8 in Van der Vaart (1998) as before, we get

sup
θ∈Θ

sup
t∈[0,τ ]

∣∣∣∣
∫ τ

0

log(s(t, θ)) dN̄(t) − E

[∫ τ

0

log(s(t, θ))λ(t, θ0) dt

]∣∣∣∣ P→ 0,

where the envelope function

sup
θ∈Θ

sup
t∈[0,τ ]

log(s(t, θ))N(τ)

is bounded by A.3 and A.4. �

In order to prove the next theorem it is beneficial to show concavity of x(θ) in a neigh-

borhood of θ0. For this we need to consider the score function U(θ) = ∂
∂θ
x(θ) and the

Hessian matrix of x(θ) at θ0.

Lemma 4.2. Under conditions A.1-A.5 the score function U(θ0) = 0 and the Hessian

matrix H(θ0) of x(θ0) is given by

H(θ0) = −
∫ τ

0

qs CovPs(Y (t))λ0(t) dt,

where Y (t) =
(−β30I{Z2>ξ0},Z

�
1 (t), Z2, (Z2 − ξ0)

+
)�
.
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Moreover, the matrix H(θ0) is negative definite.

Proof. To compose the score function and the Hessian matrix of the function x(θ0) we

need to calculate several partial derivatives. First of all we consider the derivatives of

s(t; θ) = E[R(t) exp(β�Z̃(t, ξ))]. Note that the density of fZ2 of the distribution of Z2

exists by condition A.2. Furthermore, let ∂
∂β1

=
(

∂
∂β11

, · · · , ∂
∂β1p

)�
as described in Section

2.2 .

∂

∂ξ
s(t; θ) = E[R(t)(−β3I{Z2>ξ}) exp(β�Z̃(t, ξ))]

∂

∂β1

s(t; θ) = E[R(t)Z1(t) exp(β�Z̃(t, ξ))]

∂

∂β2
s(t; θ) = E[R(t)Z2 exp(β�Z̃(t, ξ))]

∂

∂β3
s(t; θ) = E[R(t)(Z2 − ξ)I{Z2>ξ} exp(β�Z̃(t, ξ))]

∂2

(∂ξ)2
s(t; θ) = E[R(t)(−β3I{Z2>ξ})2 exp(β�Z̃(t, ξ))]

−E[R(t)(−β3) exp(β�Z̃(t, ξ))|Z2 = ξ]fZ2(ξ)

∂2

(∂β1)
2
s(t; θ) = E[R(t)Z1(t)Z

�
1 (t) exp(β�Z̃(t, ξ))]

∂2

(∂β2)2
s(t; θ) = E[R(t)(Z2)

2 exp(β�Z̃(t, ξ))]

∂2

(∂β3)2
s(t; θ) = E[R(t)(Z2 − ξ)2I{Z2>ξ} exp(β�Z̃(t, ξ))]

∂

∂β1

∂

∂ξ
s(t; θ) = E[R(t)(−β3I{Z2>ξ})Z1(t) exp(β�Z̃(t, ξ))]

∂

∂β2

∂

∂ξ
s(t; θ) = E[R(t)(−β3I{Z2>ξ})Z2 exp(β�Z̃(t, ξ))]

∂

∂β3

∂

∂ξ
s(t; θ) = E[R(t)(−β3I{Z2>ξ})(Z2 − ξ) exp(β�Z̃(t, ξ))]

+E[R(t)(−1)I{Z2>ξ} exp(β�Z̃(t, ξ))].

The first partial derivatives of x(θ) are given by

∂

∂ξ
x(θ) =

∫ τ

0

[
E

[
R(t)(−β3I{Z2>ξ}) exp(β�Z̃(t, ξ))

]

−s(t; θ0)

s(t; θ)

∂

∂ξ
s(t; θ)

]
λ0(t) dt

∂

∂β1

x(θ) =

∫ τ

0

[
E

[
R(t)Z1(t) exp(β�Z̃(t, ξ))

]
− s(t; θ0)

s(t; θ)

∂

∂β1

s(t; θ)

]
λ0(t) dt



4.4. CONSISTENCY OF THE ESTIMATES 30

∂

∂β2
x(θ) =

∫ τ

0

[
E

[
R(t)Z2 exp(β�Z̃(t, ξ))

]
− s(t; θ0)

s(t; θ)

∂

∂β2
s(t; θ)

]
λ0(t) dt

∂

∂β3

x(θ) =

∫ τ

0

[
E

[
R(t)(Z2 − ξ)+ exp(β�Z̃(t, ξ))

]

−s(t; θ0)

s(t; θ)

∂

∂β3
s(t; θ)

]
λ0(t) dt

Differentiation and integration can be interchanged because of conditions A.3 and A.5.

It follows that ∂
∂ξ
x(θ0) = ∂

∂β1
x(θ0) = ∂

∂β2
x(θ0) = ∂

∂β3
x(θ0) = 0 and hence U(θ0) =

∂
∂ξ
x(θ0) + ∂

∂β1
x(θ0) + ∂

∂β2
x(θ0) + ∂

∂β3
x(θ0) = 0.

To calculate the Hessian matrix we need the second derivatives of x(θ) with respect to

θ0, which exist because of conditions A.2-A.5 and the Lebesgue differentiation theorem.

We use the notation Qt(A) and consequently, s(t; θ0) =
∫

d Qt. Thus,

∂

∂ξ
s(t; θ0) =

∫
(−β30I{Z2>ξ0}) d Qt

∂

∂β1

s(t; θ0) =

∫
Z1(t) d Qt

∂

∂β2

s(t; θ0) =

∫
Z2 d Qt

∂

∂β3

s(t; θ0) =

∫
(Z2 − ξ0)I{Z2>ξ0} d Qt

∂2

(∂ξ)2
s(t; θ0) =

∫
(−β30I{Z2>ξ0})

2 d Qt −
∫

(−β30I{Z2>ξ0}) d Qt

∂2

(∂β1)
2
s(t; θ0) =

∫
Z1(t)Z

�
1 (t) d Qt

∂2

(∂β2)2
s(t; θ0) =

∫
(Z2)

2 d Qt

∂2

(∂β3)2
s(t; θ0) =

∫
(Z2 − ξ0)

2I{Z2>ξ0} d Qt

∂

∂β1

∂

∂ξ
s(t; θ0) =

∫
(−β30I{Z2>ξ0})Z1(t) d Qt

∂

∂β2

∂

∂ξ
s(t; θ0) =

∫
(−β30I{Z2>ξ0})Z2 d Qt

∂

∂β3

∂

∂ξ
s(t; θ0) =

∫
(−β30I{Z2>ξ0})(Z2 − ξ0) d Qt +

∫
I{Z2>ξ0} d Qt .
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Therefore, it follows that

∂2

(∂ξ)2
x(θ0) =

∫ τ

0

[
1∫
d Qs

(∫
(−β30I{Z2>ξ0}) d Qs

)2

−
∫

(−β30I{Z2>ξ0})
2 d Qs

]
λ0(s) ds

∂2

(∂β1)
2
x(θ0) =

∫ τ

0

[
1∫
d Qs

(∫
Z1(s) d Qs

) (∫
Z1(s) d Qs

)�

−
∫
Z1(s)Z

�
1 (s) d Qs

]
λ0(s) ds

∂2

(∂β2)2
x(θ0) =

∫ τ

0

[
1∫
d Qs

(∫
Z2 d Qs

)2

−
∫

(Z2)
2 d Qs

]
λ0(s) ds

∂2

(∂β3)2
x(θ0) =

∫ τ

0

[
1∫
d Qs

(∫
(Z2 − ξ0)

+ d Qs

)2

−
∫

((Z2 − ξ0)I{Z2>ξ0})
2 d Qs

]
λ0(s) ds

∂

∂β1

∂

∂ξ
x(θ0) =

∫ τ

0

[
1∫
d Qs

∫
Z1(s) d Qs

∫
(−β30I{Z2>ξ0}) d Qs

]
λ0(s) ds

−
∫ τ

0

[∫
Z1(s)(−β30I{Z2>ξ0}) d Qs

]
λ0(s) ds

∂

∂β2

∂

∂ξ
x(θ0) =

∫ τ

0

[
1∫
d Qs

∫
Z2 d Qs

∫
(−β30I{Z2>ξ0}) d Qs

]
λ0(s) ds

−
∫ τ

0

[∫
Z2(−β30I{Z2>ξ0}) d Qs

]
λ0(s) ds

∂

∂β3

∂

∂ξ
x(θ0) = −

∫ τ

0

[
(−1)I{Z2>ξ0} d Qs

]
λ0(s) ds

+

∫ τ

0

[
1∫
d Qs

∫
(Z2 − ξ0)

+ d Qs

∫
(−β30I{Z2>ξ0}) d Qs

]
λ0(s) ds

−
∫ τ

0

[∫
(Z2 − ξ0)

+(−β30) d Qs

]
λ0(s) ds.

The Hessian matrix H of x(θ0) is given by

H =




(
∂2

∂2ξ2

)
x(θ0)

(
∂2

∂ξ∂β1

)
x(θ0)

(
∂2

∂ξ∂β2

)
x(θ0)

(
∂2

∂ξ∂β3

)
x(θ0)(

∂2

∂β1∂ξ

)
x(θ0)

(
∂2

∂2β2
1

)
x(θ0)

(
∂2

∂β1∂β2

)
x(θ0)

(
∂2

∂β1∂β3

)
x(θ0)(

∂2

∂β2∂ξ

)
x(θ0)

(
∂2

∂β2∂β1

)
x(θ0)

(
∂2

∂2β2
2

)
x(θ0)

(
∂2

∂β2∂β3

)
x(θ0)(

∂2

∂β3∂ξ

)
x(θ0)

(
∂2

∂β3∂β1

)
x(θ0)

(
∂2

∂β3∂β2

)
x(θ0)

(
∂2

∂2β2
3

)
x(θ0)



.
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It remains to show that H is negative definite. Therefore, we consider the following

H(θ0) =

∫ τ

0

(H1(θ0) −H2(θ0))λ0(t) dt

with the symmetric matrices

H1(θ0) =
1∫
d Qs

∫
Y d Qs

(∫
Y d Qs

)�
and H2(θ0) =

∫
Y Y � d Qs,

where Y =
(−β30I{Z2>ξ0},Z

�
1 (s), Z2, (Z2 − ξ0)

+
)�

. Using the notation q =
∫

d Qs and

d Ps = q−1 d Qs we get

−(H1 −H2) =

∫
Y Y � d Qs −q−1

∫
Y d Qs

(∫
Y d Qs

)�

=

∫
Y Y � d Qs −2q−1

∫
Y d Qs

(∫
Y d Qs

)�

+ q

(
q−1

∫
Y d Qs

)(
q−1

∫
Y d Qs

)�

=

∫ (
Y − q−1

∫
Y d Qs

) (
Y − q−1

∫
Y d Qs

)�
d Qs

= qCovPs(Y (s)).

Hence, H is negative semidefinite. By means of condition A.5 this result can be strength-

ened to ensure that H(θ0) is negative definite. �

Theorem 4.2. Under conditions A.1-A.5 there exists a neighborhood V (θ0) of θ0 such

that if θ̂n lies in V (θ0), it follows that θ̂n
P→ θ0 as n→ ∞.

Proof. By Lemma 4.1 we know that Xn converges uniformly to x. Furthermore, Lemma

4.2 yields that x(θ) is strictly concave in a neighborhood V (θ0) ⊂ Θ. Together with

U(θ0) = 0 this gives the unique maximum of x at θ0. Now, the assertion follows. �

4.5 Rate of Convergence

Usually, when a change-point model with a jump is considered the rate of convergence of

the change-point estimator is n. In our case it turns out that the rate of convergence of

the change-point estimator is not better than
√
n. The difference between a jump and

a bent-line change-point is the continuity of the process Xn(θ) (cf. (4.1)) in ξ in the

bent-line model. The continuity causes the limit of Xn(θ) to be differentiable in ξ.
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Let Vε(θ0) = {θ ∈ Θ : ‖θ − θ0‖ < ε} be a neighborhood of θ0 and let Wn be the process

Wn(θ) =
√
n(Xn(θ) − x(θ)).

The following lemmas are needed to establish the rate of convergence.

Lemma 4.3. Under conditions A.1 and A.5, for ε sufficiently small there exists a con-

stant α > 0 such that for all θ in Vε(θ0), x(θ) − x(θ0) ≤ −α‖θ − θ0‖2.

Proof. For x(θ) = E
[∫ τ

0

{
β�Z̃(t, ξ) − log(s(t, θ))

}
λ(t, θ0) dt

]
we know that ∂

∂ξ
x(θ0) =

0 and ∂
∂β
x(θ0) = 0. Hence, by a Taylor expansion of x(θ) for ε sufficiently small and for

θ in Vε(θ0),

x(θ) − x(θ0) =
∂

∂ξ
x(θ0)(ξ − ξ0) +

∂

∂β
x(θ0)(β − β0)

+
1

2
(θ − θ0)

�H(θ0)(θ − θ0) + o(‖θ − θ0‖2)

≤ −α‖θ − θ0‖2,

since H(θ0) is negative definite. �

Lemma 4.4. Under conditions A.1-A.5, for every ε > 0 there exists a constant κ > 0

such that E[supθ∈Vε(θ0) |Wn(θ) −Wn(θ0)|] ≤ κε, for all n ∈ N.

Proof. Let β = (β�
1 ,β

�
2 )� and S̄(t; θ) = 1

n

∑n
i=1Ri(t) exp(β�Z̃i(t)). Rewrite Wn(θ) −

Wn(θ0) = W1n(θ) −W2n(θ), where

W1n(θ) = n−1/2(β − β0)
�

n∑
i=1

[∫ τ

0

(
Z1i(t)

Z2i

)
dNi(t) −

∫ τ

0

E

(
Z1(t)

Z2

)
λ(t, θ0) dt

]

+n−1/2β3

n∑
i=1

[∫ τ

0

(Z2i − ξ)+ dNi(t) −
∫ τ

0

E(Z2 − ξ)+λ(t, θ0) dt

]

−n−1/2β30

n∑
i=1

[∫ τ

0

(Z2i − ξ0)
+ dNi(t) −

∫ τ

0

E(Z2 − ξ0)
+λ(t, θ0) dt

]

= n−1/2(β − β0)
�

n∑
i=1

[∫ τ

0

Z̃i(t, ξ0) dNi(t) −
∫ τ

0

E[Z̃(t, ξ0)]λ(t, θ0) dt

]

+n−1/2β3

[
n∑

i=1

∫ τ

0

(Z2i − ξ)+ − (Z2i − ξ0)
+ dNi(t)

−
∫ τ

0

[E(Z2 − ξ)+ − E(Z2 − ξ0)
+]λ(t, θ0) dt

]
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and

W2n(θ) =
√
n

(∫ τ

0

log(S̄(t, θ)) dN̄(t) −
∫ τ

0

log(s(t, θ))s(t, θ0) dΛ0(t)

−
∫ τ

0

log(S̄(t, θ0)) dN̄(t) +

∫ τ

0

log(s(t, θ0))s(t, θ0) dΛ0(t)

)

= n−1/2

n∑
i=1

[∫ τ

0

log

(
s(t, θ)

s(t, θ0)

)
dNi(t) −

∫ τ

0

log

(
s(t, θ)

s(t, θ0)

)
s(t, θ0) dΛ0(t)

]

+n−1/2
n∑

i=1

[∫ τ

0

log

(
S̄(t, θ)

s(t, θ)

)
− log

(
S̄(t, θ0)

s(t, θ0)

)
dNi(t)

]

Consider W1n(θ). The expectation of the supremum of the absolute value of the first

term is O(ε), since ‖β − β0‖ < ε. In the second term we consider the sets of functions

{fξ : ξ ∈ [ξ1, ξ2]} and {gξ : ξ ∈ [ξ1, ξ2]} with fξ(a, b) = abI{b>ξ} and gξ(a, b) = aξI{b>ξ}.

These sets form Vapnik-Cervonenkis classes. The function
∫ τ

0
(Z2i − (ξ0 − ε))+ dNi(t) is

an envelope function for
∫ τ

0
(Z2i − ξ)+ dNi(t) in Vε(θ0). Therefore, the L2(P ) norm of the

envelope function is bounded by

E sup
ξ∈Vε(ξ0)

∣∣∣∣
∫ τ

0

[(Z2 − ξ)+ − (Z2 − ξ0)
+] dN(t)

∣∣∣∣
≤

{
E

∫ τ

0

|(Z2 − (ξ0 − ε))+ − (Z2 − ξ0)
+|2 dN(t)

}1/2

= O(ε).

The boundedness of

E sup
ξ∈Vε(ξ0)

∣∣∣∣ 1√
n

n∑
i=1

∫ τ

0

[(Z2i − ξ)+ − (Z2i − ξ0)
+] dNi(t)

−
∫ τ

0

[E(Z2 − ξ)+ − E(Z2 − ξ0)
+]λ(t, θ0) dt

∣∣∣∣
is a consequence of Theorem 2.14.1 of Van der Vaart & Wellner (1996), see Appendix

Theorem A.7.

Now consider W2n(θ). For the class of functions

{
log

(
s(t, θ)

s(t, θ0)

)
: θ ∈ Vε(θ0)

}
it can

be shown that it has an envelope function with L2(P ) norm of order O(ε) and that

its L2(P ) bracketing integral is finite by Theorem 2.7.11 in Van der Vaart & Wellner

(1996), see Appendix Theorem A.3. Hence, as a consequence of Theorem 2.14.2 of

Van der Vaart & Wellner (1996) (Appendix Theorem A.8) the bound of

E

[
sup

θ∈Vε(θ0)

∣∣∣∣∣n−1/2

n∑
i=1

[∫ τ

0

log

(
s(t, θ)

s(t, θ0)

)
dNi(t) −

∫ τ

0

log

(
s(t, θ)

s(t, θ0)

)
s(t, θ0) dΛ0(t)

]∣∣∣∣∣
]
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is of order O(ε). The second term can be treated as follows: Using a Taylor expansion of

log
(

S̄(t,θ)
s(t,θ)

)
at 1 yields

log

(
S̄(t, θ)

s(t, θ)

)
=
S̄(t, θ)

s(t, θ)
− 1 + oa.s.(1).

For the second logarithm we use a similar Taylor expansion, such that the second term

of W2n(θ) can be approximated by

n−3/2
∑
i,j

∫ τ

0

(
Rj(t) exp {β�Z̃j(t, ξ)}

s(t, θ)
− Rj(t) exp {β�

0 Z̃j(t, ξ0)}
s(t, θ0)

)
dNi(t) (1 + oa.s.(1)) .

If i = j,

n−3/2

n∑
i=1

E sup
θ∈Vε(θ0)

∫ τ

0

(
exp {β�Z̃i(t, ξ)}

s(t, θ)
− exp {β�

0 Z̃i(t, ξ0)}
s(t, θ0)

)
dNi(t) = o(1).

Otherwise,

E sup
θ∈Vε(θ0)

n−3/2
∑
i
=j

∫ τ

0

(
Rj(t) exp {β�Z̃j(t, ξ)}

s(t, θ)
− Rj(t) exp {β�

0 Z̃j(t, ξ0)}
s(t, θ0)

)
dNi(t)

= E

[
E

∫ τ

0

sup
θ∈Vε(θ0)

n−3/2
∑
i
=j

(
Rj(t) exp {β�Z̃j(t, ξ)}

s(t, θ)

−Rj(t) exp {β�
0 Z̃j(t, ξ0)}

s(t, θ0)

)
dNi(t)|Rj,Zj

]

≤ E

[∫ τ

0

sup
θ∈Vε(θ0)

n−1/2
∑

j

(
Rj(t) exp {β�Z̃j(t, ξ)}

s(t, θ)

−Rj(t) exp {β�
0 Z̃j(t, ξ0)}

s(t, θ0)

)
s(t, θ0) dΛ0(t)|Rj,Zj

]
.

The integrand of the last term can be divided into four terms according to the location

of ξ and ξ0. Thus for r ∈ {0, 1} and z = (z1, z2) we consider the following families of

functions:

φ1,t,θ(r, z) = r

{
exp{β�

1 z + β2z2 + β3(z2 − ξ)}
s(t, θ)

−exp{β�
10z + β20z2 + β30(z2 − ξ0)}

s(t, θ0)

}
I{z2>ξ0}
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φ2,t,θ(r, z) = r

{
exp{β�

1 z + β2z2}
s(t, θ)

− exp{β�
10z + β20z2}
s(t, θ0)

}
I{z2<ξ0}

φ3,t,θ(r, z) = r

{
exp{β�

1 z + β2z2}
s(t, θ)

− exp{β�
10z + β20z2 + β30(z2 − ξ0)}

s(t, θ0)

}
I{ξ>z2>ξ0}

φ4,t,θ(r, z) = r

{
exp{β�

1 z + β2z2 + β3(z2 − ξ)}
s(t, θ)

− exp{β�
10z + β20z2}
s(t, θ0)

}
I{ξ0>z2>ξ}

For k = 1, 2, the functions φk,t,θ are continuously differentiable with respect to θ and their

derivatives are uniformly square integrable on [0, τ ] × Vε(θ0). For k = 3, 4, the functions

φk,t,θ are products of indicator functions I(ξ,ξ0) with ξ ∈ [ξ0 − ε2, ξ0], and of continuously

differentiable functions with respect to θ. These continuously differentiable functions also

have uniformly square integrable derivatives on [0, τ ] × Vε(θ0). Furthermore, the class of

functions {φk,t,θ : θ ∈ Vε(θ0)} has a finite L2−bracketing integral which does not depend

on t. Hence, using Theorem 2.14.2 in Van der Vaart & Wellner (1996) we know that for

k = 1, . . . , 4

∫ τ

0

[
E sup
θ∈Vε(θ0)

∣∣∣∣∣ 1√
n

n∑
i=1

φk,t,θ(R,Z) −Eφk,t,θ(R,Z)

∣∣∣∣∣
]
s(t, θ0) dΛ0(t) = O(ε).

Consequently, the sum is bounded by ε times a constant. Hence, the assertion of the

lemma is proved. �

Theorem 4.3. Under conditions A.1-A.5,
√
n‖θ̂n − θ0‖ = OP (1).

Proof. Let ε > 0 be sufficiently small to ensure that Lemma 4.3 holds on Vε(θ0). Be-

cause of Theorem 4.2 we know that θ̂n converges to θ0 in a neighborhood of θ0, i.e.

P(θ̂n ∈ Vε(θ0)) > 1 − η for n sufficiently large and some η > 0.

Now, for each n, the parameter set Vε(θ0) \ {θ0} can be partitioned into subsets Hn,j =

{θ ∈ Vε(θ0) : 2j <
√
n‖θ−θ0‖ ≤ 2j+1}, j ∈ Z. Based on ideas of Ibragimov & Has’minskii

(1981) and for n sufficiently large we get by using Lemma 4.3 and Lemma 4.4 the following

P
(√

n‖θ̂n − θ0‖ > M
)

≤ P


 sup

θ∈Vε(θ0)

M≤√
n‖θ−θ0‖

Xn(θ) ≥ Xn(θ0)


 + η

≤
∑

{j:2j>M}
P

(
sup
Hn,j

Xn(θ) −Xn(θ0) ≥ 0

)
+ η
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=
∑

{j:2j>M}
P

(
sup
Hn,j

(Wn(θ) −Wn(θ0)) ≥ −√
n(x(θ) − x(θ0))

)
+ η

≤
∑

{j:2j>M}
P

(
sup
Hn,j

(Wn(θ) −Wn(θ0)) ≥
√
nα‖θ − θ0‖2

)
+ η

=
∑

{j:2j>M}
P

(
sup
Hn,j

√
n (Wn(θ) −Wn(θ0)) ≥ nα‖θ − θ0‖2

)
+ η

≤
∑

{j:2j>M}
P

(
sup
Hn,j

√
n (Wn(θ) −Wn(θ0)) ≥ α 22j

)
+ η

≤
∑

{j:2j>M}

E
[
supHn,j

|Wn(θ) −Wn(θ0)|
]

αn−1/2 22j
+ η

≤
∑

{j:2j>M}

κ

α2j−1
+ η.

The last step holds because of Markov’s inequality. This concludes the proof. �

4.6 Asymptotic Normality

In this section we prove the asymptotic normality of our estimates. Standard methods

fail, since they use the differentiability of the partial likelihood function with respect

to its parameters. We use a theorem which establishes the asymptotic normality of M-

estimators in the case the criterion function is Lipschitz and its limit function admits a

second order Taylor expansion. Consider the criterion function

mθ = mθ(z) =

∫ τ

0


(
β�

1 , β2, β3

)�



z1(t)

z2

(z2 − ξ)+


 − log(s(t, θ))


 dN(t)

and the matrix ∆(θ0) = Eṁθ0ṁ
�
θ0
, where ṁθ0 is given by

ṁθ0 =




− ∫ τ

0

(
β30I{z2>ξ0} + 1

s(t,θ0)
∂
∂ξ
s(t, θ0)

)
dN(t)∫ τ

0

(
z1(t) − 1

s(t,θ0)
∂

∂β1
s(t, θ0)

)
dN(t)∫ τ

0

(
z2 − 1

s(t,θ0)
∂

∂β2
s(t, θ0)

)
dN(t)∫ τ

0

(
(z2 − ξ0)

+ − 1
s(t,θ0)

∂
∂β3
s(t, θ0)

)
dN(t)



.
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Theorem 4.4. Under conditions A.1-A.5 and under the assumption that θ̂n is a consis-

tent estimator of θ0,

√
n(θ̂n − θ0)

d→ N(0,H(θ0)
−1∆(θ0)H(θ0)

−1) as n→ ∞,

where H(θ0) is given as in Lemma 4.2.

Proof. Rewrite the criterion function as follows

mθ(z) =(β�
1 , β2)

�
∫ τ

0

(
z1(t)

z2

)
dN(t) + β3

∫ τ

0

(z2 − ξ)+dN(t) −
∫ τ

0

log (s(t, θ)) dN(t)

The function z → mθ(z) is a measurable function such that θ → mθ(z) is differentiable

at θ0 for P-almost every z because of condition A.2. It can easily be seen that the first

term of mθ is Lipschitz in β1 and β2 since it is linear in β1 and β2. The second term is

Lipschitz in a neighborhood of θ0 since∣∣∣∣
∫ τ

0

β̃3(z2 − ξ̃)+ dN(t) −
∫ τ

0

β3(z2 − ξ)+ dN(t)

∣∣∣∣
≤ |ξ − ξ̃|N(τ)|β3| + |β̃3 − β3|

∫ τ

0

|(z2 − ξ̃)| dN(t).

Now, for the third term, by a Taylor expansion at θ

log(s(t, θ̃)) − log(s(t, θ)) =

∂
∂β
s(t, θ′)

s(t, θ′)
(β̃ − β) +

∂
∂ξ
s(t, θ′)

s(t, θ′)
(ξ̃ − ξ)

where θ′ is on the line segment between θ and θ̃. The partial derivatives are uniformly

bounded and bounded away form zero by conditions A.3 and A.4. Hence, the last term

is Lipschitz in θ.

Furthermore, the map θ → Emθ = x(θ) admits a second order Taylor expansion at θ0

with the nonsingular symmetric Hessian matrix H(θ0) given in Lemma 4.2.

Finally, since θ̂n is consistent for θ0 in a neighborhood of θ0, it follows that
√
n(θ̂n−θ0) is

asymptotically normal with covariance matrix H(θ0)
−1∆(θ0)H(θ0)

−1 by Theorem 5.23

in Van der Vaart (1998). �

Since H(θ) and ∆(θ) are continuous in θ0, they can be consistently estimated by H(θ̂n)

and ∆(θ̂n).

Using the approach of Andersen & Gill (1982) the weak convergence of
√
n(Λ̂n(t)−Λ0(t))

can be established. Its asymptotic behavior follows from Theorem 4.4 and from the next

result, which is the same if the underlying change-point ξ0 was known.
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Theorem 4.5. Under conditions A.1-A.5 the process

√
n(Λ̂n(t) − Λ0(t)) +

√
n(β̂n − β0)

�
∫ t

0

E[R(u)Z̃(u, ξ0) exp{β�
0 Z̃(u, ξ0)}]

s(u, θ0)
dΛ0(u)

converges weakly to a mean zero Gaussian process with covariance
∫ s∧t

0
1

s(u,θ0)
dΛ0(u), s, t ∈

[0, τ ] and
√
n(β̂n − β0) and the process above are asymptotically independent.

Proof. Note that S(u, θ) =
∑n

i=1Ri(u) exp{β�Z̃i(u, ξ)}. Consider

√
n(Λ̂n(t) − Λ0(t))

=
√
n

{∫ t

0

d(nN̄)(u)

S(u, θ̂n)
− Λ0(t)

}

=
√
n

{∫ t

0

d(nN̄)(u)

S(u, θ̂n)
−

∫ t

0

S(u, θ0)

S(u, θ̂n)
dΛ0(u)

+

∫ t

0

S(u, θ0)

S(u, θ̂n)
dΛ0(u) −

∫ t

0

S(u, θ̂n)

S(u, θ̂n)
dΛ0(u)

}

=
√
n

{∫ t

0

d(nN̄)(u) − S(u, θ0) dΛ0(u)

S(u, θ̂n)
−

∫ t

0

S(u, θ̂n) − S(u, θ0)

S(u, θ̂n)
dΛ0(u)

}

=

∫ t

0

d[n1/2M̄(u)]

n−1S(u, θ̂n)
−

∫ t

0

n−1/2[S(u, θ̂n) − S(u, θ0)]

n−1S(u, θ̂n)
dΛ0(u)

where M̄(u) = 1
n

∑n
i=1Mi(u). The first term in the last expression converges to a centered

Gaussian process with covariance
∫ s∧t

0
1

s(u,θ0)
dΛ0(u) by Rebolledos theorem (see Rebolledo

(1980)). For the second term consider a Taylor expansion at β0

n−1/2
(
S(u, θ̂n) − S(u, θ0)

)
= n−1/2

(
S(u,β0, ξ̂n) − S(u,β0, ξ0)

)

+ n−1/2(β̂n − β0)
�

(
n∑

i=1

Ri(u)Z̃i(u, ξ̂n) exp
{
β�

∗ Z̃i(u, ξ̂n)
})

,

where β∗ is on the line segment between β0 and β̂n. The first term of the Taylor expansion

converges uniformly in u ∈ [0, τ ] to zero in probability by using the continuous mapping

theorem, since S is a continuous function in ξ. By the strong law of large numbers given

by Andersen & Gill (1982) the following difference

sup
u∈[0,τ ]

sup
θ∈Θ

∥∥∥∥∥1

n

n∑
i=1

Ri(u)Z̃i(u, ξ) exp{β�Z̃i(u, ξ)} −E[R(u)Z̃(u, ξ) exp{β�Z̃(u, ξ)}]
∥∥∥∥∥



4.6. ASYMPTOTIC NORMALITY 40

converges to zero in probability and

sup
u∈[0,τ ]

sup
θ∈Θ

|n−1S(u, θ) − s(u, θ)| P→ 0.

The asymptotic independence follows from the approximation

√
n(β̂n − β0) =

(
n−1 ∂2

(∂β)2
logL(θ0)

)−1

· n−1/2 ∂

∂β
logL(θ0) + oP (1),

where

∂

∂β
logL(θ0) =

n∑
i=1

∫ τ

0

Z̃i(u, ξ0) dMi(u) −
∫ τ

0

E[R(u)Z̃(u, ξ0) exp{β�
0 Z̃(u, ξ0)}]

S(u, θ0)
dM̄(u),

since n−1/2 ∂
∂β

logL(θ0) and
∫ t

0
n1/2 dM̄(u)

s(u,θ0)
are asymptotically Gaussian with mean zero and

E

[∫ t

0

n1/2 dM̄(u)

s(u, θ0)
· n−1/2 ∂

∂β
logL(θ0)

]
= 0

for all t ∈ [0, τ ]. �



Chapter 5

Cox Model with Change-Points and

a General Risk Function

In this chapter we examine a further extended version of the Cox model. In contrast to the

last chapter we allow a general risk function, multiple change-points of the type we have

discussed before and a counting process, which may jump more than once. This model

can be seen in two different ways. Firstly, it allows us to insert several change-points in

a single covariate , secondly one can use it to describe multiple change-points in different

covariates.

An example of a different risk function is r(x) = 1 + x2. The main problem that arises

is that the function r is not so well-behaved as the exponential function, such that some

work-around has to be made.

Again we show the asymptotic properties such as consistency and asymptotic normality

of our estimates and the rate of convergence of the change-point parameter vector. The

ideas, results and proofs are similar to those stated in Chapter 4.

5.1 Model and Estimation

We use nearly the same setup as we did in the last chapter. Our random quantities

(N,R,Z1(t),Z2(t)) , (Ni, Ri,Z1i(t),Z2i(t)) , i = 1, ..., n are given on a filtered probability

space and they are independently identically distributed. Both, Z1(t) and Z2(t) are

predictable and adapted stochastic processes taking values in Rp and Rq, respectively.

Consider a multivariate counting process N(t) = (N1(t), . . . , Nn(t)), where Ni(t) counts

observed events in the lifetime of the ith individual, i = 1, . . . , n, over the time interval

[0, τ ]. The sample paths of N(t) are step functions, zero at time zero with jumps of

size one only and two arbitrary components do not jump at the same time. The counting

processN(t) admits an intensity λ(t) = (λ1(t), . . . , λn(t)) such that the processes Mi(t) =

41
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Ni(t)−
∫ t

0
λi(u) du, i = 1, . . . , n, and t ∈ [0, τ ] are martingales. Then, the model involving

time-dependent covariates with possible q change-points is given by:

λi(t, θ) = λ0(t)Ri(t) r
{
β�

1 Z1i(t) + β�
2 Z2i(t) + β�

3 (Z2i(t) − ξ)+
}
,

where θ = (ξ�,β�)� with β = (β�
1 ,β

�
2 ,β

�
3 )� ∈ B ⊂ Rp+2q is the vector of regression

parameters, λ0(t) is the baseline intensity and Ri(t) is a process taking only values 1 or

0 to indicate whether a subject is at risk or not. The function r : R → [0,∞) is a twice

continuously differentiable nonnegative known function. Again, we use for brevity,

Z̃i(t; ξ) =
(
Z�

1i(t),Z
�
2i(t), ((Z2i(t) − ξ)+)�

)�
.

The vector of change-points is indicated by ξ ∈ Rq, which is a vector of parameters lying

in a rectangle Ξ = [ξ11, ξ21] × [ξ12, ξ22] × · · · × [ξ1q, ξ2q]. The parameters ξ11, ξ21, ξ12, ξ22

, ..., ξ1q, ξ2q are assumed to be known. The true parameter values θ0 = (ξ�0 ,β
�
0 )� are

supposed to be identifiable, meaning that at least one component of β30 is unequal to 0.

The parameter θ0 is estimated by the value θ̂n that maximizes the logarithm of the partial

likelihood

logL(θ) =
n∑

i=1

∫ τ

0

log
(
r{β�Z̃i(t; ξ)}

)
dNi(t)

−
∫ τ

0

log

(
n∑

i=1

Ri(t) r{β�Z̃i(t; ξ)}
)

d

(
n∑

i=1

Ni(t)

)
.

The maximization is carried out in two phases again:

For fixed ξ, let β̂n(ξ) = arg maxβ∈B logL(ξ,β) and logL(ξ) = logL(ξ, β̂n(ξ)). Then ξ0

can be estimated by ξ̂n satisfying

ξ̂n = arg max
ξ∈Ξ

logL(ξ).

The partial likelihood estimate of θ0 is θ̂n = (ξ̂n, β̂n), where β̂n = β̂n(ξ̂n).

Since logL(θ) does not converge to a finite limit as in the univariate case we consider the

process

Xn(θ) =
1

n

n∑
i=1

∫ τ

0

log
(
r{β�Z̃i(t; ξ)}

)
dNi(t) (5.1)

−
∫ τ

0

log{ 1

n

n∑
i=1

Ri(t) r{β�Z̃i(t; ξ)} d

(
1

n

n∑
i=1

Ni(t)

)
.
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Obviously, the estimate θ̂n not only maximizes logL(θ) but also Xn(θ) and the limit of

Xn(θ) as n→ ∞ will be given by

x(θ) := E

[∫ τ

0

log
(
r{β�Z̃(t; ξ)}

)
r{β�

0 Z̃(t; ξ0)}R(t)λ0(t) dt

]
(5.2)

−E
[∫ τ

0

log (s(t; θ)) r{β�
0 Z̃(t; ξ0)}R(t)λ0(t) dt

]
,

where s(t; θ) = E[R(t) r{β�Z̃(t; ξ)}].
Now, the cumulative hazard function Λ0(t) =

∫ t

0
λ0(u) du can be estimated by the Breslow

estimator

Λ̂n(t) =

∫ t

0

d (
∑n

i=1Ni(u))

S(u, θ̂n)
,

where S(u, θ) =
∑n

i=1Ri(u)r{β�Z̃i(u, ξ)}.

5.2 Conditions

Similar conditions as in the last chapter are needed to establish the asymptotic properties

of the estimates. Condition C.6 refers to properties of the general link function. We use

the notation

d Pt = q−1
t d Qt, Qt(A) =

∫
A

R(t)r(β�
0 Z̃(t; ξ0)) d P and qt =

∫
d Qt,

provided that qt <∞.

There exists a convex and compact set Θ ⊂ R
p+3q with θ0 in its interior such that the

following holds:

Conditions.

C.1 [Finite baseline intensity] supt∈[0,τ ] λ0(t) <∞.

C.2 The random vector Z2(t) has an absolutely continuous distribution with density

fZ2(t) which is strictly positive, bounded and continuous in a neighborhood of ξ0 for

every t ∈ [0, τ ].

C.3 The expectation E supθ∈Θ

{
r{β�Z̃(t; ξ)}

}
<∞.

C.4 [Asymptotic regularity conditions] The function s(t; θ) = E[R(t) r{β�Z̃(t; ξ)}] is

bounded away from zero on [0, τ ] × Θ and the first two partial derivatives of s(t; θ)

with respect to β and ξ are bounded on [0, τ ] × Θ and continuous on Θ, uniformly

in t ∈ [0, τ ].
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C.5 a) For all (ξ,β) ∈ Θ and t ∈ [0, τ ] the covariance matrix CovPt(Y (t)), where

Y (t) = Ỹ (t, θ0)
(
(−β30I{Z2>ξ0})

�, Z̃
�
(t, ξ)

)�
with Ỹ (t, θ0) =

r′(β�
0 Z̃i(t,ξ0))

r(β�
0 Z̃i(t,ξ0))

is posi-

tive definite.

b)Furthermore,

E


 sup

t∈[0,τ ]

sup
θ∈Θ

{
r′{β�Z̃(t; ξ)}
r{β�Z̃(t; ξ)} r{β

�
0 Z̃(t; ξ0)}

}2

 <∞

and for k=1,2,

E


 sup

t∈[0,τ ]

sup
θ∈Θ

{
(‖Z1(t)‖k + ‖Z2(t)‖k)

r(k){β�Z̃(t; ξ)}
r{β�Z̃(t; ξ)} r{β�

0 Z̃(t; ξ0)}
}2


 <∞,

sup
z,z′

sup
t∈[0,τ ]

sup
θ∈Θ

∣∣∣E {
r(k){β�Z̃(t; ξ)}|Z2(t) = z

}
−E

{
r(k){β�Z̃(t; ξ)}|Z2(t) = z′

}∣∣∣
converges to zero as ‖z − z′‖ → 0, where z and z′ vary in Ξ.

C.6 [Regression function positivity] There exists a neighborhood Θ0 of θ0 such that, for

θ ∈ Θ0, r{β�Zi(t; ξ)} is locally bounded away form zero for all i = 1, ..., n.

The last statement in condition C.5 is used for interchanging integration and differentia-

tion.

5.3 Consistency of the Estimator

As before the proof of consistency relies on the uniform convergence of Xn to x, see (5.1)

and (5.2), and on properties of x in a neighborhood of Θ0. Of course, the proofs are

similar to those with the exponential function as link function. Therefore, we want to

clarify the differences.

Lemma 5.1. Under conditions C.1-C.4 and C.6,

sup
θ∈Θ

|Xn(θ) − x(θ)| P→ 0 as (n→ ∞).
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Proof. Xn(θ) can be rewritten in the following way:

Xn(θ) =
1

n

n∑
i=1

∫ τ

0

log
(
r{β�Z̃i(t; ξ)}

)
dNi(t)

−
∫ τ

0

log

(
n−1

n∑
i=1

Ri(t) r{β�Z̃i(t; ξ)}
)
d

(
1

n

n∑
i=1

Ni(t)

) (5.3)

The predictability of each Zi, the continuity of r and condition C.6 ensure that

log
(
r{β�Z̃i(t; ξ)}

)
and log

{
1

n

n∑
i=1

Ri(t) r{β�Z̃i(t; ξ)}
}

are predictable and locally bounded for each θ ∈ Θ0. Consider the first term of (5.3). By

conditions C.3 and C.6 and by the continuity of r(·) and log(·) for all ξ ∈ Ξ,

E

[∫ τ

0

log( r{β�Z̃(t; ξ)})λ(t, θ0) dt

]
≤ E

[∫ τ

0

sup
θ∈Θ0

log( r{β�Z̃(t; ξ)})λ(t, θ0) dt

]
<∞,

Hence, ∫ t

0

log
(
r{β�Z̃(t; ξ)}

)
dM(s)

is a martingale and

E

[∫ τ

0

log
(
r{β�Z̃(t; ξ)}

)
dN(t)

]
= E

[∫ τ

0

log
(
r{β�Z̃(t; ξ)}

)
λ(t, θ0) dt

]
<∞.

We want to apply the Glivenko-Cantelli Theorem given in Theorem 19.4 and Example

19.8 in Van der Vaart (1998). Clearly,
∫ τ

0
supβ∈B0

log
(
r{β�Z̃(t; ξ1)}

)
dN(t) is an en-

velope function for
∫ τ

0
log

(
r{β�Z̃(t; ξ)}

)
dN(t). Since

∫ τ

0
log

(
r{β�Z̃(t; ξ)}

)
dN(t) is

continuous in ξ, we get

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

∫ τ

0

log
(
r{β�Z̃(t; ξ)}

)
dNi(t) − E

[∫ τ

0

log
(
r{β�Z̃(t; ξ)}

)
λ(t, θ0) dt

]∣∣∣∣∣ P→ 0.

For the second term we can use the same argumentation as in the last chapter. The strong

law of large numbers given by Andersen & Gill (1982) can be used, since R(t)r{β�Z̃(t, ξ)}
are caglad (left continuous with right hand limits) functions due to the fact that r is

continuous.

Theorem 5.2. Under conditions C.1-C.6 there exists a neighborhood Θ0 of θ0 such that

if θ̂n lies in Θ0, it follows that θ̂n converges in probability to θ0 as n→ ∞.
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Proof. By Lemma 5.1 we know that Xn converges uniformly to x. Hence it suffices to

show that x is strictly concave in a neighborhood Θ0 ⊂ Θ and attains a maximum at θ0.

Consider the derivatives with respect to β and ξ. To simplify notation we will use as

described in Section 2.2 ∂
∂β

and ∂
∂ξ

as a short form for the derivatives with respect to

components of β and ξ, respectively. Furthermore, let

Ỹ (t, θ) =
r′{β�Z̃(t; ξ)}
r{β�Z̃(t; ξ)}

∂

∂β
x(θ) =

∫ τ

0

[
E

[
Z̃(t, ξ)Ỹ (t, θ)r{β�

0 Z̃(t; ξ0)}R(t)
]

−s(t; θ0)

s(t; θ)

(
∂

∂β
s(t; θ)

)]
λ0(t) dt,

∂

∂ξ
x(θ) =

∫ τ

0

[
E

[
(−β3)I{Z2(t)>ξ}Ỹ (t, θ)r{β�

0 Z̃(t; ξ0)}R(t)
]

−s(t; θ0)

s(t; θ)

(
∂

∂ξ
s(t; θ)

)]
λ0(t) dt,

where

∂

∂ξ
s(t; θ) =E[R(t)(−β3)I{Z2(t)>ξ}r

′{β�Z̃(t; ξ)}],
∂

∂β
s(t; θ) =E[R(t)Z̃(t, ξ)r′{β�Z̃(t; ξ)}].

Differentiation and integration can be interchanged because of condition C.5. Hence,
∂
∂ξ
x(θ0) = ∂

∂β
x(θ0) = 0 follows.

Next, we calculate the Hessian matrix of x

H(θ0) =

(
∂2

(∂ξ)2
x(θ0)

∂2

∂ξ∂β
x(θ0)

∂2

∂β∂ξ
x(θ0)

∂2

(∂β)2
x(θ0)

)
.

Therefore, we need the second partial derivatives of x(θ) which exist because of condition

C.5 and the Lebesgue differentiation theorem. Using the notation

Qt(A) =

∫
A

R(t)r(β�
0 Z̃(t; ξ0)) d P, qt =

∫
d Qt

and

Ỹ (1)(t, θ) =

[
r′′{β�Z̃(t, ξ)}
r{β�Z̃(t, ξ)} − (r′{β�Z̃(t, ξ)})2

(r{β�Z̃(t, ξ)})2

]
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we get

∂2

(∂β)2
x(θ) =

∫ τ

0

{∫
Z̃(t, ξ)(Z̃(t, ξ))�Ỹ (1)(t, θ) dQt

+ qt




(
∂

(∂β)
s(t, θ)

)(
∂

(∂β)
s(t, θ)

)�

(s(t, θ))2
−

∂2

(∂β)2
s(t, θ)

s(t, θ)





λ0(t) dt

∂2

(∂β)2
x(θ0) =

∫ τ

0

{
−

∫
Z̃(t, ξ0)(Z̃(t, ξ0))

�(Ỹ (t, θ0))
2 dQt

+
1

qt

(∫
Z̃(t, ξ0)Ỹ (t, θ0) dQt

) (∫
Z̃(t, ξ0)Ỹ (t, θ0) dQt

)�}
λ0(t) dt

∂2

(∂ξ)2
x(θ) =

∫ τ

0

{∫
(−β3I{Z2>ξ})(−β3I{Z2>ξ})�Ỹ (1)(t, θ) dQt

+ qt




(
∂
∂ξ
s(t, θ)

)(
∂
∂ξ
s(t, θ)

)�

(s(t, θ))2
−

∂2

(∂ξ)2
s(t, θ)

s(t, θ)




λ0(t) dt

∂2

(∂ξ)2
x(θ0) =

∫ τ

0

{
−

∫
(−β30I{Z2>ξ0})(−β30I{Z2>ξ0})

�(Ỹ (t, θ0))
2 dQt

+
1

qt

(∫
(−β30I{Z2>ξ0})Ỹ (t, θ0) dQt

) (∫
(−β30I{Z2>ξ0})Ỹ (t, θ0) dQt

)�}
λ0(t) dt

∂2

∂ξ∂β
x(θ) =

∫ τ

0

{∫
(−β3I{Z2>ξ})(Z̃(t, ξ))�Ỹ (1)(t, θ) dQt

+ qt




(
∂
∂ξ
s(t, θ)

)(
∂

∂β
s(t, θ)

)�

(s(t, θ))2
−

∂2

∂ξ∂β
s(t, θ)

s(t, θ)




λ0(t) dt

∂2

∂ξ∂β
x(θ0) =

∫ τ

0

{
−

∫
(−β30I{Z2>ξ0})(Z̃(t, ξ0))

�(Ỹ (t, θ0))
2 dQt

+
1

qt

(∫
(−β30I{Z2>ξ0})Ỹ (t, θ0) dQt

∫
Z̃(t, ξ0)Ỹ (t, θ0) dQt

)}
λ0(t) dt,

where

∂2

(∂β)2
s(t; θ) =E[Ri(t)Z̃(t, ξ)(Z̃(t, ξ))�r′′{β�Z̃(t; ξ)}]

∂2

(∂β)2
s(t; θ0) =

∫
Z̃(t, ξ0)(Z̃(t, ξ0))

� r
′′{β�

0 Z̃(t, ξ0)}
r{β�

0 Z̃(t, ξ0)}
dQt
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∂2

(∂ξ)2
s(t; θ) =E[Ri(t)(−β3I{Z2(t)>ξ})(−β3I{Z2(t)>ξ})

�r′′{β�Z̃(t; ξ)}]

− E[Ri(t)(−β3)r
′{β�Z̃(t; ξ)}|Z2(t) = ξ]fZ2(ξ),

∂2

(∂ξ)2
s(t; θ0) =

∫
(−β30I{Z2>ξ0})(−β30I{Z2>ξ0})

� r
′′{β�

0 Z̃(t, ξ0)}
r{β�

0 Z̃(t, ξ0)}
dQt

−
∫

(−β30I{Z2>ξ0})Ỹ (t, θ0) dQt

∂2

∂ξ∂β
s(t; θ) =E[Ri(t)(−β3I{Z2>ξ})(Z̃(t, ξ))�r′′{β�Z̃(t; ξ)}]

∂2

∂ξ∂β
s(t; θ0) =

∫
(−β30I{Z2>ξ})(Z̃(t, ξ0))

� r
′′{β�

0 Z̃(t, ξ0)}
r{β�

0 Z̃(t, ξ0)}
dQt

As before we can show that

H(θ0) =

∫ τ

0

(H1(θ0) −H2(θ0))λ0(t) dt

with H1(θ0) =
∫
Y dQt and H2(θ0) = q−1

t

(∫
Y dQt

)2
, where in this case

Y = Ỹ (t, θ0)


 −β30I{Z2>ξ0}

Z̃(t, ξ0)


 .

Hence, it follows thatH(θ0) is negative semidefinite. Condition C.5 ensures thatH(θ0) is

negative definite. Furthermore, H is continuous in θ. We conclude, since H is continuous

and negative definite at θ0, there exists a neighborhood Θ0 of θ0 on whichH(θ) is negative

definite for all θ in Θ0. �

5.4 Rate of Convergence

As before, we can show that the rate of convergence is
√
n for all parameters.

Let Vε(θ0) = {θ : ‖θ − θ0‖ < ε} be an ε-neighborhood of θ0 again and consider the

process Wn(θ) =
√
n(Xn(θ) − x(θ)).

Lemma 5.2. Under conditions C.1-C.6, for ε sufficiently small there exists a constant

α > 0 such that for all θ in Vε(θ0), x(θ) − x(θ0) ≤ −α‖θ − θ0‖2.

Proof. The proof is a perfect analogy to the proof of Lemma 4.3. �

Lemma 5.3. Under conditions C.1-C.6, for every ε > 0 there exists a constant κ > 0

such that E[supθ∈Vε(θ0) |Wn(θ) −Wn(θ0)|] ≤ κε, for all n.
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Proof. Rewrite Wn(θ) −Wn(θ0) = W1n(θ) −W2n(θ) with W1n and W2n as follows

W2n(θ) =
√
n

(∫ τ

0

log(S̄(t, θ))dN̄(t) −
∫ τ

0

log(s(t, θ))s(t, θ0)dΛ0(t)

−
∫ τ

0

log(S̄(t, θ0))dN̄(t) −
∫ τ

0

log(s(t, θ0))s(t, θ0)dΛ0(t)

)

=n−1/2
n∑

i=1

[∫ τ

0

log

(
S̄(t, θ)

S̄(t, θ0)

)
dNi(t) −

∫ τ

0

log

(
s(t, θ)

s(t, θ0)

)
s(t, θ0)dΛ0(t)

]
,

where S̄(t; θ) = 1
n

∑n
i=1Ri(t)r{β�Z̃i(t, ξ)} and

W1n(θ) = n−1/2
n∑

i=1

[∫ τ

0

log
(
r{β�Z̃i(t; ξ)}

)
− log

(
r{β�

0 Z̃i(t; ξ)}
)

dNi(t)

+

∫ τ

0

log
(
r{β�

0 Z̃i(t; ξ)}
)
− log

(
r{β�

0 Z̃i(t; ξ0)}
)

dNi(t)

−E
∫ τ

0

log
(
r{β�Z̃(t; ξ)}

)
− log

(
r{β�

0 Z̃(t; ξ)}
)
λ(t, θ0) dt

−E
∫ τ

0

log
(
r{β�

0 Z̃(t; ξ)}
)
− log

(
r{β�

0 Z̃(t; ξ0)}
)
λ(t, θ0) dt

]

The expectation of the supremum of the absolute value of W2n is O(ε) using the same

arguments as in Lemma 4.4.

Consider W1n. A Taylor expansion of log
(
r{β�Z̃i(t; ξ)}

)
at β0 yields

log
(
r{β�Z̃i(t; ξ)}

)
− log

(
r{β�

0 Z̃i(t; ξ)}
)

= (β − β0)
�Z̃i(t; ξ)

r′{β�
∗ Z̃i(t; ξ)}

r{β�
∗ Z̃i(t; ξ)}

,

where β∗ is on the line segment between β and β0. Substituting this into W1n(θ) we get

W1n(θ) = n−1/2(β − β0)
�

n∑
i=1

{∫ τ

0

Z̃i(t; ξ)
r′{β�

∗ Z̃i(t; ξ)}
r{β�

∗ Z̃i(t; ξ)}
dNi(t)

−E
∫ τ

0

Z̃(t; ξ)
r′{β�

∗ Z̃(t; ξ)}
r{β�

∗ Z̃(t; ξ)} λ(t, θ0) dt

}

+ n−1/2
n∑

i=1

{∫ τ

0

log
(
r{β�

0 Z̃i(t; ξ)}
)
− log

(
r{β�

0 Z̃i(t; ξ0)}
)

dNi(t)

− E

∫ τ

0

log
(
r{β�

0 Z̃(t; ξ)}
)
− log

(
r{β�

0 Z̃(t; ξ0)}
)
λ(t, θ0) dt

}
.

The expectation of the supremum of the first term is O(ε) using C.3 and C.6. For the
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second difference, note that

∫ τ

0

log
(
r{β�

0 Z̃(t; ξ0 − ε)}
)

dNi(t)

is an envelope for the class of functions

Fε =

{∫ τ

0

log
(
r{β�

0 Z̃(t; ξ)}
)

dNi(t) : ‖ξ − ξ0‖ ≤ ε

}
.

Furthermore, since r and log(·) are Lipschitz functions,∣∣∣log(r(β�
0 Z̃(t, ξ))) − log(r(β�

0 Z̃(t, ξ0)))
∣∣∣ ≤ K

∣∣∣β�
0 Z̃(t, ξ) − β�

0 Z̃(t, ξ0)
∣∣∣ , for someK <∞.

Again we will consider the components of the vectors individually as discussed in Sec-

tion 2.2. The sets of functions {fξ : ξ ∈ [ξ1, ξ2]} and {gξ : ξ ∈ [ξ1, ξ2]} with fξ(b) =

bI{b>ξ} and gξ(b) = ξI{b>ξ} form Vapnik-Cervonenkis classes. By Theorem 2.6.7 in

Van der Vaart & Wellner (1996) we know that the class Fε has a finite entropy number.

Moreover,

E sup
ξ∈Vε(ξ0)

∣∣∣∣
∫ τ

0

log
(
r{β�

0 Z̃(t; ξ)}
)
− log

(
r{β�

0 Z̃(t; ξ0)}
)

dN(t)

∣∣∣∣
≤

{
E

∫ τ

0

∣∣∣log
(
r{β�

0 Z̃(t; ξ − 1 · ε)}
)
− log

(
r{β�

0 Z̃(t; ξ0)}
)∣∣∣2 dN(t)

}1/2

= O(ε).

Thus,

E sup
ξ∈Vε(ξ0)

∣∣∣∣n−1/2
n∑

i=1

∫ τ

0

log
(
r{β�

0 Z̃i(t; ξ)}
)
− log

(
r{β�

0 Z̃i(t; ξ0)}
)

dNi(t)

− E[

∫ τ

0

log
(
r{β�

0 Z̃(t; ξ)}
)
− log

(
r{β�

0 Z̃(t; ξ0)}
)

dN(t)]

∣∣∣∣ = O(ε)

as a consequence of Theorem 2.14.1 in Van der Vaart & Wellner (1996). �

Using the theorems and lemmas above the following theorem can be proved in analogy to

Theorem 4.3. Hence, the rate of convergence is established.

Theorem 5.3. Under conditions C.1-C.6,
√
n‖θ̂n − θ0‖ = OP (1).

5.5 Asymptotic Normality

In this section we prove the asymptotic normality of our estimates. We use similar argu-

ments as in Section 4.6.
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Consider the criterion function

mθ(z) =

∫ τ

0

log
(
r{β�z̃(t; ξ)}) dN(t) −

∫ τ

0

log (s(t, θ)) dN(t)

and the matrix ∆(θ0) = Eṁθ0ṁθ0 , where ṁθ0 is given by

ṁθ0 =




∫ τ

0
(−β30I{z2(t)>ξ0})

r{β�
0 z̃(t,ξ0)}

r′{β�
0 z̃(t,ξ0)} −

∂
∂ξ

s(t,θ0)

s(t,θ0)
dN(t)

∫ τ

0
z̃(t, ξ0)

r{β�
0 z̃(t,ξ0)}

r′{β�
0 z̃(t,ξ0)} −

∂
∂β

s(t,θ0)

s(t,θ0)
dN(t)


 .

Theorem 5.4. Under conditions C.1-C.6 and under the assumption that θ̂n is a consis-

tent estimator of θ0,
√
n(θ̂n−θ0) is asymptotically normal with mean zero and covariance

matrix H(θ0)
−1∆(θ0)H(θ0)

−1.

Proof. The function z → mθ(z) is a measurable function such that θ → mθ(z) is dif-

ferentiable at θ0 for P-almost every z because of condition C.1. The first term of the

function m is Lipschitz in θ = (ξ,β) since piecewise linear functions are Lipschitz and

the composition of functions which are Lipschitz is Lipschitz again. The second term is

Lipschitz in a neighborhood of θ0, which follows from a Taylor expansion

log(s(t, θ̃)) − log(s(t, θ)) =

∂
∂β
s(t, θ′)

s(t, θ′)
(β̃ − β) +

∂
∂ξ
s(t, θ′)

s(t, θ′)
(ξ̃ − ξ)

where θ′ is on the line segment between θ and θ̃. The partial derivatives are uniformly

bounded and bounded away form zero by conditions C.3, C.4 and C.6. Hence, the last

term is Lipschitz in θ.

Moreover, the map θ → Emθ = x(θ) admits a second order Taylor expansion at θ0

with nonsingular symmetric second derivative matrix H(θ0), which has been calculated

in Theorem 5.2. Finally, since θ̂n is a consistent estimator of θ0 in a neighborhood of θ0,

the assertion of the theorem follows using Theorem 5.23 in Van der Vaart (1998). Note

that H(θ0) and ∆(θ0) are continuous in θ, thus they can be estimated consistently by

H(θ̂n) and ∆(θ̂n). �

The weak convergence of
√
n(Λ̂n(t)−Λ0(t)) can be established as in Chapter 4. Therefore,

we state the theorem without proof.

Theorem 5.5. Under conditions C.1-C.6 the process

√
n(Λ̂n(t) − Λ0(t)) +

√
n(β̂n − β0)

�
∫ t

0

E[R(u)Z̃(u, ξ0)r{β�
0 Z̃(u, ξ0)}]

s(u, θ0)
dΛ0(u)
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converges weakly to a mean zero Gaussian process with covariance
∫ s∧t

0
1

s(u,θ0)
dΛ0(u), s, t ∈

[0, τ ] and
√
n(β̂n − β0) and the process above are asymptotically independent.



Chapter 6

A Transformation Model with a

Bent-Line Change-Point

In this chapter a further generalization of the models before is discussed. We consider

a linear transformation model with bent-line change-points in the covariates. The main

difference between the models explained earlier and this new model is, that the cumulative

intensity function and the other parameters can not be estimated separately. Therefore,

some new techniques are involved. We use a nonparametric maximum likelihood method

instead of a partial likelihood method. In this way we can estimate the finite-dimensional

regression and change-point parameters as well as the infinite-dimensional parameter of

the cumulative baseline intensity function. The parameters are estimable with the same

precision as if the true threshold of the covariates were known. This model includes the

Cox model with a change-point but also so-called frailty models.

Kosorok & Song (2007) considered a similar model. But they included in their model a

change-point in which the underlying regression function is discontinuous. Some of our

proofs are based on the same techniques they used.

6.1 Model

Consider a linear transformation model for a nonnegative survival time T which is given

by

logA(T ) = −β�Z + ε,

where A is an unspecified monotone increasing transformation and ε follows a known

error distribution not depending on the covariates Z. If SZ(t) = P[T > t|Z] denotes the

survival function of T given the covariates Z and Sε(t) = 1 − Fε(t), where Fε(t) is the

53
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distribution function of ε, the model can be equivalently written in the form

SZ(t) = Sε

(
logA(t) + β�Z

)
.

Choosing Sε(u) = Λ(eu) results in the model

SZ(t) = Λ

(∫ t

0

exp{β�Z} dA(u)

)
,

where the function Λ is known, thrice differentiable and decreasing with Λ(0) = 1. Several

choices of the function Λ(u) satisfy the model conditions, which we will give in Section 6.3.

One example is Λ(u) = exp{−u}. Choosing this extreme value distribution in the model

results in a Cox model. Another choice could be Λ(u) = (1+cu)−1/c, c ∈ (0,∞), which be-

longs to the family of log-Pareto distributions and results in an odds-rate transformation

family. The limit c→ 0 leads to a Cox model and if c = 1 then we obtain a proportional

odds model. A further different possibility is to choose Λ(u) = E[exp{−Wu}], where W

is a positive frailty with E[W−c] <∞, for some c > 0 and E[W 4] <∞. Thus, we are able

to consider a family of frailty transformations. Especially, the conditions are fulfilled for

the inverse Gaussian and log-normal families. Verification of this last statement is given

in Kosorok & Song (2007).

We refine this general model setup. Consider censored survival time data given by

(V, δ,Z), where V = T ∧ C and δ = I{T≤C} for a survival time T and a censoring time

C. Furthermore, let 0 < τ < ∞ and let Z = {Z(t), t ∈ [0, τ ]} denote a left continuous

covariate process with right hand limits and with Z(t) = (Z1(t),Z2) ∈ R
p × R

q. The

data (Vi, δi,Zi), i = 1, . . . , n consists of n iid copies of (V, δ,Z).

Thus, the transformation model for a survival time T conditionally on Z is given by

SZ(t) = Λ

(∫ t

0

exp{β�
1 Z1(u) + β�

2 Z2 + β�
3 (Z2 − ξ)+} dA(u)

)

= Λ

(∫ t

0

exp{β�Z̃(u, ξ)} dA(u)

)
, (6.1)

where β = (β�
1 ,β

�
2 ,β

�
3 )� ∈ Rp+2q is a parameter vector and ξ ∈ Rq is a change-point

vector. The function Λ is known, thrice differentiable and decreasing with Λ(0) = 1 and

A is an unknown increasing function restricted to [0, τ ].

For convenience, let G = − log(Λ) and denote the derivatives Λ′(u) = ∂Λ(u)
∂u

, Λ′′(u) =
∂Λ′(u)

∂u
, G′(u) = ∂G(u)

∂u
, G′′(u) = ∂G′(u)

∂u
and G′′′(u) = ∂G′′(u)

∂u
. Moreover, define the combined

parameter θ = (ξ,β, A) = (ψ, A). The true parameter values and the true probability

measure are denoted with a subscript 0.
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6.2 Nonparametric Maximum Likelihood Estimation

In this model setup we cannot separate the estimation of the finite-dimensional regression

and change-point parameters and the estimation of the infinite-dimensional cumulative

intensity function parameter as in the previous chapters. Therefore, a different concept

is needed. To obtain estimates we use a nonparametric maximum likelihood.

Consider the model (6.1) with Λ = exp{−G}. The standard likelihood for right-censored

survival data and A being absolutely continuous with respect to the Lebesgue measure is

n∏
i=1

{
G′ (Hθ(Vi)

)
exp{β�Z̃i}a(Vi) exp{−G (

Hθ(Vi)
)}}δi {

exp{−G (
Hθ(Vi)

)}}1−δi
,

where a(t) = d
dt
A(t) , Hθ(s) =

∫ s

0
Ri(t) exp{β�Z̃i(t, ξ)} dA(t) and R(t) = I{V ≥t}. Hence,

the nonparametric log-likelihood scaled by 1/n is given by

L̃n(θ) = Pn

[
δ log(a(V )) +

∫ τ

0

{
log

(
G

′
(Hθ(s))

)
+ β�Z̃(s, ξ)

}
dN(s) −G(Hθ(V ))

]
(6.2)

where N(t) = δI{V ≤t} and Pn denotes the empirical measure, i.e. Pnf(V ) = 1
n

∑n
i=1 f(Vi).

For more details on constructing the nonparametric likelihood we refer to Slud & Vonta

(2004). A problem, which arises by considering the nonparametric log-likelihood is, that

there exists no maximizer if A is continuous, as every unrestricted maximizer of (6.2)

puts mass at observed failure times and is thus not a continuous hazard. Therefore, we

extend the set of hazard functions and allow also discrete hazard functions. Thus, we

replace a(t) with n∆A(t) as suggested in Parner (1998), where ∆A(s) = A(s) − A(s−)

and A(s−) = limt↑s A(t). In this case we get an estimate Â for A0 instead of an estimate

for a0(t). The likelihood (6.2) with a(t) replaced by n∆A(t) is denoted by Ln(θ).

The estimates are obtained by two-phase maximization. For fixed ξ, maximize the full

nonparametric log-likelihood over γ = (β, A) to obtain the profile likelihood pLn(ξ) =

supγ Ln(θ). Then maximize pLn(ξ) over ξ to obtain ξ̂n and compute

γ̂n = arg max
γ

Ln(γ, ξ̂n),

which yields the nonparametric maximum likelihood estimator (NPMLE) θ̂n = (γ̂, ξ̂)

for θ0. For the construction of an estimate of A we need to consider the following one-

dimensional submodels of A:

u → Au =

∫ (·)

0

(1 + ug(s))dA(s),
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where g : [0, τ ] → R is an arbitrary measurable bounded nonnegative function and (·)
denotes an argument ranging over [0, τ ]. Using this submodel we can define a score

function for A as the derivative of Ln(ψ, Au) with respect to u at u = 0, which is given

by

∂

∂u
Ln(θ)

∣∣
u=0

=

Pn

[
δg(V ) −

{
G

′
(Hθ(V )) − δ

G
′′
(Hθ(V ))

G′(Hθ(V ))

}
·
∫ τ

0

R(s) exp{β�Z̃(s, ξ)}g(s) dA(s)

]
.

(6.3)

Now, for any fixed ψ, we will denote the maximizer of A → Ln(θ) by Âψ, and θ̂ψ =

(ψ, Âψ). Choosing g(s) = I{s≤t} and t ∈ [0, τ ] in (6.3), we solve the equation ∂
∂u
Ln(θ)

∣∣
u=0

=

0. A solution to this equation is given by the recursive formula

Âψ(s) =

∫ s

0

[
PnW (u; θ̂ψ)

]−1

Pn( dN(u)), (6.4)

where

W (u, θ̂ψ) = R(u) exp{β�Z̃(u, ξ)}
{
G

′
(H θ̂ψ (V )) − δ

G′′(H θ̂ψ (V ))

G′(H θ̂ψ (V ))

}
. (6.5)

6.3 Conditions

Some special conditions are needed to prove identifiability, consistency and asymptotic

normality of the parameter and the estimates, respectively.

Conditions.

A.1 P0[C = 0] = 0, P0[C ≥ τ |Z] = P0[C = τ |Z] > 0 almost surely, and censoring is

independent of T given Z.

A.2 The total variation of Z1(·) on [0, τ ] is almost surely less than some m0 < ∞ and

Z2 is bounded almost surely.

B.1 The vector ξ0 lies in the interior of a compact set Ξ = [ξ11, ξ21] × [ξ12, ξ22] × · · · ×
[ξ1q, ξ2q] with known ξ11, ξ21, . . . , ξ1q, ξ2q.

B.2 For some neighborhood V (ξ0) of ξ0 the density of Z2, fZ2
, exists and is strictly

positive, bounded and continuous.

B.3 For some t1 ∈ (0, τ ], Var[Z1(t1)|Z2 = ξ0] is positive definite.
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C.1 The parameter vector is given by β0 = (β�
10,β

�
20,β

�
30)

� ∈ B = B1×B2×B3 ⊂ Rp+2q,

where B1, B2 and B3 are open, convex, bounded and known.

C.2 At least one component of β30 is unequal to 0.

C.3 The function A0 ∈ A, where A is the set of all increasing functions A : [0, τ ] →
[0,∞) with A(0) = 0 and A(τ) < ∞. Moreover, A0 has derivative a0 satisfying

0 < a0(t) <∞ for all t ∈ [0, τ ].

D.1 The function G = − log Λ : [0,∞) → [0,∞) is thrice continuously differentiable,

with G(0) = 0, and for each u ∈ [0,∞), 0 < G
′
(u) < ∞, 0 < Λ

′′
(u) < ∞ and

sups∈[0,u] |G′′′
(s)| <∞.

D.2 For some c0 > 0, both supu≥0 |uc0Λ(u)| <∞ and supu≥0 |u1+c0Λ′(u)| <∞.

The conditions A.1, A.2, C.1 and C.3 are general conditions required for the use of non-

parametric maximum likelihood methods. They provide identifiability in right censored

transformation models. Especially, condition A.1 expresses that there is no censoring

after τ such that all functions only matter on the interval [0, τ ]. Moreover, we need the

conditions B.1, B.2, B.3 and C.2 to show that the change-points are identifiable. The

conditions D.1 and D.2 are used to establish asymptotic normality. All these conditions

are similar to the ones stated in Kosorok & Song (2007).

6.4 Consistency

In this section we derive consistency of the finite and infinite-dimensional estimates. First

of all we show that our parameters are identifiable, if the conditions of Section 6.3 are

satisfied. Afterwards we prove that the NPMLE is bounded, i.e. lim supn→∞ Ân(τ) <∞.

Consistency will then follow.

Lemma 6.1. Under the regularity conditions A.1, B.2, B.3, C.2, C.3, D.1, the transfor-

mation model with a change-point is identifiable.

Proof. Consider the Kullback-Leibler divergence
∫

log d Pθ
d P0

d P0 in Van der Vaart (1998).

Since in general

P0 (log( dPθ) − log( dP0)) ≤ −
∫ (

( dPθ)
1/2 − ( dP0)

1/2
)2

dµ,

for a dominating measure µ, the Kullback-Leibler divergence is only zero if d Pθ = d P0.

Therefore, it is enough to show that for all θ ∈ Θ the equality G(Hθ(t)) = G(Hθ0(t))
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implies θ = θ0 almost surely. Hence, suppose that almost surely under P0 for all t ∈ [0, τ ]

G

(∫ t

0

R(s) exp{β�Z̃(s, ξ)} dA(s)

)
= G

(∫ t

0

R(s) exp{β�
0 Z̃(s, ξ0)} dA0(s)

)
. (6.6)

Since the conditions D.1 and A.1 hold, (6.6) implies

∫ t

0

exp{β�Z̃(s, ξ)} dA(s) =

∫ t

0

exp{β�
0 Z̃(s, ξ0)} dA0(s).

Taking the Radon-Nikodym derivative with respect to A0 and the logarithm on both sides

yields

β�Z̃(t, ξ) + log(
dA

dA0

) − β�
0 Z̃(t, ξ0) = 0. (6.7)

Choose a z ∈ V (ξ0) according to B.2 and consider the left-hand side of (6.7) conditioned

on Z2 = z. Calculating the variance yields

(β1 − β10)
� Var[Z1(t)|Z2 = z](β1 − β10) = 0.

Since for some t1 ∈ (0, τ ] the variance Var[Z1(t1)|Z2 = z] is assumed to be positive

definite because of condition B.3, the last equation yields β1 = β10.

The assertion ξ = ξ0 is proved by contradiction.

Assume that ξ > ξ0 and consider the rest of equation (6.7) conditioned on Z2 < ξ0 < ξ

P

(
(β20 − β2)

�Z2 = log(
dA

dA0

)

∣∣∣∣Z2 < ξ0 < ξ

)
= 1.

Since Var[Z2|Z2 < ξ0 < ξ] is positive definite in a neighborhood of ξ0 by B.2, the term

(β20 − β2)
�Z2 can only be a constant if β20 = β2. Now let ξ0 < Z2 < ξ and

P

(
(β20 − β2)

�Z2 + β�
30(Z2 − ξ0) = log(

dA

dA0
)

∣∣∣∣ξ0 < Z2 < ξ

)
= 1.

Since Var[Z2|ξ0 < Z2 < ξ] is positive definite in a neighborhood of ξ0 because of B.2 and

β2 = β20, the term β�
30(Z2 − ξ0) can only be a constant almost surely, if all elements of

β30 are equal to zero. This is a contradiction to C.2.

The case ξ < ξ0 can be shown analogously. Hence, ξ = ξ0.

Using the obtained results ξ = ξ0, β1 = β10 and β2 = β20 and conditioning the left-hand

side of (6.7) on Z2 > ξ0 yields

P

(
(β3 − β30)

�(Z2 − ξ0) = log

(
dA

dA0

) ∣∣∣∣Z2 > ξ0

)
= 1.
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Since Var[Z2|Z2 > ξ0] is positive definite, the last equation implies β3 = β30 and hence

A(t) = A0(t). �

Lemma 6.2. Under the regularity conditions A.2, D.1 and D.2, Ân = Âψ(τ) is asymp-

totically bounded, i.e.

lim sup
n→∞

Ân(τ) <∞ almost surely.

Proof. Let (Ω∞,F∞,P∞
0 ) be the probability space for infinite sequences of observations

and let W ⊂ Ω∞ be a set of inner probability 1 for which PnN(t) → P0N(t) uniformly

in t. The conclusion of this lemma is shown by contradiction.

Assume that

lim sup
n→∞

Ân(τ) = ∞ (6.8)

with positive probability. Define θn = (ξ0,β0, An) = (ψ0, An) with An chosen as An =

PnN(t). If θ̂n = (ψ0, Ân) maximizes the likelihood then the difference Ln(θ̂n) − Ln(θn)

should be nonnegative. Our goal is to show that under assumption (6.8) this is not the

case. We can find a subsequence {nk}, such that limk→∞ Ânk
(τ) = ∞ for some fixed

ω ∈ W due to (6.8) and we will prove that the likelihood difference Lnk
(θ̂nk

) − Lnk
(θnk

)

diverges to negative infinity as nk tends to infinity. This yields the intended contradiction

since θ̂nk
should maximize Lnk

(θ).

For the subsequence described above consider

Lnk
(θ̂nk

) − Lnk
(θnk

)

≤ O(1) + Pnk

[
δ log

(
nk ∆Ânk

(V )
)]

+ Pnk

[
δ log

(
G′(H θ̂nk (V ))

)]
− Pnk

[
G(H θ̂nk (V ))

]
,

(6.9)

since Pnk
[δ log(nk∆Ank

(V ))] = 0 and Pnk

[
δ log

(
G′(Hθnk (V ))

)] − Pnk

[
G(Hθnk (V ))

]
=

O(1) using the fact, that ψ0 is bounded and Pnk
N(t) converges uniformly to P0N(t). For

the last two terms in the above inequality we know by condition D.2 that for all u > 0

and some c0 > 0,

log(−Λ′(u)) = log(−u1+c0 Λ′(u)) − (1 + c0) log(u) ≤ O(1) − (1 + c0) log(u)

and

log(Λ(u)) = log(uc0Λ(u)) − c0 log(u) ≤ O(1) − c0 log(u).
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Hence,

Pnk
[δ log

(
G′(H θ̂nk (V ))

)]
− Pnk

[
G(H θ̂nk (V ))

]
= Pnk

[
δ log

(
−Λ′(H θ̂nk (V ))

)
− δ log

(
Λ(H θ̂nk (V ))

)]
− Pnk

[
− log

(
Λ(H θ̂nk (V ))

)]
= Pnk

[
δ log

(
−Λ′(H θ̂nk (V ))

)]
− Pnk

[
(1 − δ)(− log Λ(H θ̂nk )(V ))

]
≤ O(1) − Pnk

[
(δ + c0) log(H θ̂nk (V ))

]
≤ O(1) − Pnk

[
(δ + c0) log(Ânk

(V ))
]
. (6.10)

The last inequality is valid, since

log(H θ̂nk (V )) = log

(∫ V

0

exp{β�
0 Z̃(s, ξ0)} dÂnk

(s)

)

≥ log

(∫ V

0

exp{−K0} dÂnk
(s)

)
≥ −K0 + log(Ânk

(V )),

where exp{−K0} is a lower bound of exp{β�
0 Z̃(t, ξ0)} by condition A.2.

Next consider the second term of (6.9).

Choose a partition of [0, τ ], 0 = u0 < u1 < · · · < uJ = τ for some finite J and let

N j(s) = N(s)I{V ∈[uj−1,uj ]}, j = 1, . . . , J . Then, Pnk

[∫ τ

0
log

(
nk ∆Ânk

(s)
)

dN(s)
]

can be

split in the following way

Pnk

{∫ τ

0

log(nk∆Ânk
(s)) dNJ(s)

}
+

J−1∑
j=1

Pnk

{∫ τ

0

log(nk∆Ânk
(s)) dN j(s)

}
.

The j−th term is equal to

Pnk
N j(τ)

(∫ τ

0

log(nk∆Ânk
(s)) dPnk

N j(s)

)
/Pnk

N j(τ)
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Using Jensen’s inequality it is dominated by

≤ Pnk
N j(τ) log

(∫ uj

0

(nk∆Ânk
(s)) dPnk

N j(s)/Pnk
N j(τ)

)

= Pnk
N j(τ)

(
log([Pnk

N j(τ)]−1) + log

(∫ uj

0

(nk∆Ânk
(s)) dPnk

N j(s)

))

= Pnk
N j(τ) log([Pnk

N j(τ)]−1) + Pnk
N j(τ) · log

(∫ uj

0

(nk∆Ânk
(s)) dPnk

N j(s)

)

≤ O(1) + Pnk
N j(τ) · log

(∫ uj

0

nk∆Ânk
(s) d

1

nk

nk∑
i=1

N j
i (s)

)

= O(1) + Pnk
δI{V ∈[uj−1,uj ]} · log

(∫ uj

0

∆Ânk
(s) d

nk∑
i=1

N j
i (s)

)

≤ O(1) + Pnk
δI{V ∈[uj−1,uj ]} · log(Ânk

(uj)). (6.11)

The last inequality holds, since Ânk
jumps at the same time as N . Hence, (6.9) is upper

bounded by

O(1) + log(Ânk
(τ))Pnk

[
δI{V ∈[uJ−1,uJ ]}

] − log(Ânk
(τ))Pnk

[
(δ + c0)I{V ∈[uJ ,∞]}

]
+

J−1∑
j=1

{
log(Ânk

(uj))Pnk

[
δI{V ∈[uj−1,uj ]}

] − log(Ânk
(uj))Pnk

[
(δ + c0)I{V ∈[uj ,uj+1]}

]}
.

(6.12)

For a fixed constant c > 1, ( c0
c
< c0) we can choose the partition such that

P0

[
N(τ)I{V ∈[uJ−1,uJ ]}

]
= P0

[(
N(τ) +

c0
c

)
I{V ∈[uJ ,∞]}

]
and for j = 1, . . . , J − 1

P0

[
N(τ)I{V ∈[uj−1,uj ]}

]
= P0

[(
N(τ) +

c0
c

)
I{V ∈[uj ,uj+1]}

]
.

With this choice it is not hard to see that the summands of (6.12) tend to negative infinity,

since Pnk
N(t) → P0N(t) uniformly, Ânk

∈ A and because of assumption (6.8). Hence, we

obtain that (6.12) tends to negative infinity as nk → ∞. This is the desired contradiction,

which shows that lim supn→∞ Ân(τ) <∞ almost surely. �

The following lemma shows that the class of functions

F(k) = {W (t; θ) : t ∈ [0, τ ], ξ ∈ Ξ,β ∈ B,A ∈ A(k)}
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with W (t; θ) given in (6.5) and A(k) = {A ∈ A : A(τ) ≤ k}, is P0-Donsker. This fact will

be needed in the proof of consistency.

Lemma 6.3. Assume the regularity conditions A.2 and D.1. The class F(k), is P0-

Donsker ∀ k <∞.

Proof. Consider Hθ(s) =
∫ s

0
exp{β�Z̃(u, ξ)} dA(u). The classes {β�

1 Z1(t) : β1 ∈ B1, t ∈
[0, τ ]}, {β�

2 Z2 : β2 ∈ B2} and {β�
3 (Z2 − ξ)+ : β3 ∈ B3, ξ ∈ Ξ} are Donsker classes.

Since exp(·) is Lipschitz on compacts and a sum of Donsker classes is Donsker, the class

{exp{β�Z̃(t, ξ)} : β ∈ B, ξ ∈ Ξ, t ∈ [0, τ ]} is Donsker. Consider the map

h ∈ D[0, τ ] →
{∫ t

0

h(s) dA(s) : t ∈ [0, τ ], A ∈ A
}

∈ l∞([0, τ ]) ×A

where l∞([0, τ ]) denotes the set of bounded functions on [0, τ ]. Note that this map is

uniformly equicontinuous and linear. Thus the class

F =

{∫ t

0

exp{β�Z̃(u, ξ)} dA(u) : t ∈ [0, τ ],β ∈ B, ξ ∈ Ξ, A ∈ A
}

is Donsker by the continuous mapping theorem. Now condition D.1 ensures that G
′
and

G
′′

G
are Lipschitz on compacts. The sum of Donsker classes is Donsker and the product of

bounded Donsker classes is Donsker. �

Theorem 6.2. Under the regularity conditions of Section 6.3, θ̂n converges outer almost

surely to θ0.

Proof. Note that almost sure convergence of θ̂n is equivalent to outer almost sure conver-

gence in our setup, since the uniform distance between θ̂n and θ0 is measurable.

By Lemma 6.3 we know that the class of functions F(k) is Donsker and hence Glivenko-

Cantelli for all k < ∞. Using the same arguments as in the lemma above one can also

show that the classes {G(Hθ(V )) : ξ ∈ Ξ,β ∈ B,A ∈ A(k)} and {G′(Hθ(s)) : ξ ∈ Ξ,β ∈
B,A ∈ A(k), s ∈ [0, τ ]} are Glivenko Cantelli for all k <∞. Thus, with probability 1 the

following two expressions (Pn − P0)
(
W (·; θ̂n)

)
and (Pn − P0)

(
G(H θ̂n(V )) −G(Hθn(V ))

)
converge to zero. Furthermore, by Lemma 6.2 {Ân(τ)} is asymptotically bounded and

PnN(t) → P0 N(t) uniformly in t.

For the rest of the proof we fix some ω for which the last asymptotics hold. By Helly’s

lemma (Theorem A.4) we can find a subsequence {Ânk
} with the property that Ânk

(t) →
A(t) at each continuity point t ∈ [0, τ ] of some function A. From the construction of the

estimator in (6.4) we know that Ânk
(t) jumps at the same time as N(t). Since PnN(t)

converges to P0N(t) uniformly and since P0N(t) is continuous, A(t) is continuous for all
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t ∈ [0, τ ]. This convergence is uniform, since the sequence Ân is monotone, A is continu-

ous and by the application of Dinis theorem, (see LeCam (1986)). Now assume without

loss of generality that along this subsequence {Ânk
} there exists a sequence ψ̂nk

which

converges to some ψ ∈ Ψ. Moreover, let θn = (ψ0, An), where

An(t) =

∫ t

0

1

P0W (s, θ0)
dPnN(s).

For all t ∈ [0, τ ] derive

A0(t) =

∫ t

0

1

P0W (s, θ0)
d P0N(s)

with the same technique we used to develop the estimator Ân(t) only with the true

parameter θ0. Hence, Ank
converges uniformly to A0 , since Pnk

N(s) converges uniformly

to P0N(s) as k → ∞.

Since θ̂nk
maximizes Lnk

(θ), we get

0 ≤ Lnk
(θ̂nk

) − Lnk
(θnk

)

= Pnk

∫ τ

0

log

(
P0W (s, θ0)

Pnk
W (s, θ̂nk

)

)
dN(s)

+ Pnk

[∫ τ

0

log
(
G

′
(H θ̂nk (s))

)
+ β̂

�
nk
Z̃(s, ξ̂nk

) dN(s)

]

− Pnk

[∫ τ

0

log
(
G

′
(Hθnk (s))

)
+ β�

0 Z̃(s, ξ0) dN(s)

]

− Pnk

[
G(H θ̂nk (V )) −G(Hθnk (V ))

]
→ P0

∫ τ

0

log

(
dA(s)

dA0(s)

)
dN(s) + P0

[∫ τ

0

log
(
G

′
(Hθ(s))

)
+ β�Z̃(s, ξ) dN(s)

]

− P0

[∫ τ

0

log
(
G

′
(Hθ0(s))

)
+ β�

0 Z̃(s, ξ0) dN(s)

]
− P0

[
G(Hθ(s)) −G(Hθ0(s))

]
=

∫
log

d Pθ
d P0

d P0

≤ 0.

The last inequality holds, since the Kullback-Leibler divergence is negative. Therefore,

the last calculations force θ = θ0, since the parameters are identifiable as shown in

Lemma 6.1. To summarize the results: Since we chose a sequence arbitrarily and found a

subsequence {nk} such that θ̂nk
→ θ0, it follows that all convergent subsequences of θ̂n

converge to θ0. �
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6.5 Local Behavior of the Limit Function

In this section we will consider the derivatives of the nonparametric likelihood, which are

needed later to determine the rate of convergence and the asymptotic normality of the

parameters. Three different problems arise when it comes to calculating the derivatives

of the nonparametric likelihood with respect to the parameters. First of all we have to

deal with the same problem as in the previous chapters. The empirical likelihood is not

differentiable in the parameter vector ξ, such that we have to consider the limit function

of the empirical likelihood. This brings up the second problem. The limit function as

well as the empirical likelihood evaluated at the true parameter A0 are negative infinity,

since A0 is continuous and hence ∆A0 is zero. The third problem is given by the infinite-

dimensional parameter included in the nonparametric likelihood function.

One way to solve the second problem is a reparametrization of the estimator Ân. We

use the reparametrization Γ(·) → AΓ
n(·) =

∫ (·)
0

exp{−Γ(s)} dPnN(s) as suggested in

Kosorok & Song (2007). This reparametrization yields the same NPMLE as before by

maximizing the process Ln(ξ,β,Γ) over the parameter ϑ = (ξ,β,Γ), where

Ln(ϑ) = Pn

[∫ τ

0

[
−Γ(s) + β�Z̃(s, ξ) + log

(
G′(Hθ(n)

(s))
)]

dN(s) −G(Hθ(n)

(V ))

]

and θ(n) = (ξ,β, AΓ
n).

The parameter Γ is estimated by Γ̂n(·) = log(PnW (·; θ̂n)), where W (·; θ̂n) is given in

(6.5). For the construction of the limit function define Γ0(·) = log(P0W (·; θ0)). The limit

function of the empirical likelihood has the form

L(ϑ) = P0

[∫ τ

0

[
−Γ(s) + β�Z̃(s, ξ) + log

(
G′(Hθ(0)

(s))
)]

dN(s) −G(Hθ(0)

(V ))

]
,

where θ(0) = (ξ,β, AΓ
0 ) with AΓ

0 (s) =
∫ s

0
exp{−Γ(u)} d P0N(u) and the functionHθ(0)

(t) =∫ t

0
R(s) exp{β�Z̃(s, ξ)} dAΓ

0 (s).

The third problem can be handled by considering the setup in a different way. Let

D[0, τ ] denote the space of all cadlag functions on [0, τ ] and consider the modified space

Θ̄ = Ξ × B × BV with elements (ξ,β,Γ) instead of the parameter space Θ, where the

space BV is a subspace of D[0, τ ] containing all functions that are of bounded variation

on the interval [0, τ ]. The space H consists of elements h = (h1,h2,h3,h4, h5) with

h1 ∈ Rq,h2 ∈ Rp,h3 ∈ Rq,h4 ∈ Rq, h5 ∈ BV and we define the norm

ρ(h) =
(‖h1‖2 + ‖h2‖2 + ‖h3‖2 + ‖h4‖2 + ‖h5‖2

∞
)1/2
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where ‖ · ‖∞ is the uniform norm. Furthermore, the set Hr is defined by Hr = {h ∈
H : ρ(h) ≤ r, r ∈ (0,∞)} and H∞ = {h ∈ Hr : r < r̃} for some sufficiently large

r̃ < ∞. In this way the parameter ϑ ∈ Θ̄ can be viewed as a linear functional on H∞
by defining ϑ(h) = h�

1 ξ + h�
2 β1 + h�

3 β2 + h�
4 β3 +

∫ τ

0
h5(u) dAΓ

0 (u). Hence, elements of

Θ̄ can be identified as elements of l∞(H∞) with uniform norm ‖ϑ‖∞ = suph∈H∞ |ϑ(h)|,
where l∞(H∞) is the set of all bounded functionals on H∞. Note that H1 is rich enough

to extract all components of ϑ. This is easy to see for the Euclidean parameters. For the

infinite-dimensional parameter choose {h : h1 = 0,h2 = 0,h3 = 0,h4 = 0, h5 = I{u<t}, t ∈
[0, τ ]} ⊂ H1. Thus we will use the concept of operators.

6.5.1 The Score Operator

Before we study the score operator note that for any g ∈ BV

∂A
(Γ+tg)
0 (·)
∂t

∣∣∣∣
t=0

= −
∫ (·)

0

g(s) dAΓ
0 (s).

The one-dimensional submodel t → ϑt = ϑ+ t(h1,h2,h3,h4,
∫ (·)
0
h5(u) dAΓ

0 (u)), h ∈ H∞
is needed for the calculation of the score operator. Using the abbreviation

R̃θ
(0)

= G′(Hθ(0)

(V )) − δ
G′′(Hθ(0)

(V ))

G′(Hθ(0)
(V ))

the score operator is given by

∂L(ϑt)

∂t

∣∣∣∣
t=0

= P0 U
τ (ϑ)(h),

where U τ (ϑ)(h) = U τ
1 (ϑ)(h1) + U τ

2 (ϑ)(h2) + U τ
3 (ϑ)(h3) + U τ

4 (ϑ)(h4) + U τ
5 (ϑ)(h5), and

U τ
1 (ϑ)(h1) =

∫ τ

0

(−β3I{Z2>ξ})�h1 dN(s)

− R̃θ
(0)

∫ τ

0

R(s)(−β3I{Z2>ξ})�h1 exp{β�Z̃(s, ξ)} dAΓ
0 (s)

U τ
2 (ϑ)(h2) =

∫ τ

0

Z�
1 (s)h2 dN(s) − R̃θ

(0)

∫ τ

0

R(s)Z�
1 (s)h2 exp{β�Z̃(s, ξ)} dAΓ

0 (s)

U τ
3 (ϑ)(h3) =

∫ τ

0

Z�
2 h3 dN(s) − R̃θ

(0)

∫ τ

0

R(s)Z�
2 h3 exp{β�Z̃(s, ξ)} dAΓ

0 (s)

U τ
4 (ϑ)(h4) =

∫ τ

0

(
(Z2 − ξ)+

)�
h4 dN(s)

− R̃θ
(0)

∫ τ

0

R(s)
(
(Z2 − ξ)+

)�
h4 exp{β�Z̃(s, ξ)} dAΓ

0 (s)
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U τ
5 (ϑ)(h5) = −

∫ τ

0

h5(s) dN(s) + R̃θ
(0)

∫ τ

0

R(s)h5(s) exp{β�Z̃(s, ξ)} dAΓ
0 (s).

6.5.2 The Information Operator

To prove weak convergence the score operator has to be Fréchet differentiable, since

we want to use Theorem A.10 given in the Appendix A. Therefore, we calculate the

Gateaux derivative of the score operator first and then we show that this derivative can

be strengthened to a Fréchet derivative. The Gateaux derivative at ϑ ∈ Θ has the

following form

− ∂

∂t
P0 U

τ (ϑ+ tϑ1)(h)

∣∣∣∣
t=0

= ϑ1(σθ(0)(h)), for everyh ∈ H∞,

where ϑ1 ∈ Θ̄ and σθ(0) : H∞ → H∞ represents the information operator. Hence, the

derivative can be interpreted as a linear functional. Using

R̃θ
(0)

1 = G′′(Hθ(0)

(V )) − δ

(
G′′′(Hθ(0)

(V ))G′(Hθ(0)
(V )) −G′′(Hθ(0)

(V ))2

G′(Hθ(0)
(V ))2

)

the information operator is the 5 × 5 matrix σθ(0)(h) = Ṽ (h), where

Ṽξ,1(h1) = − P0

[∫ τ

0

(−β3)
�h1 dN(s)|Z2 = ξ

]
fZ2

(ξ)

+ P0

[
R̃θ

(0)

∫ τ

0

R(s)(−β3)
�h1 exp{β�Z̃(s, ξ)} dAΓ

0 (s)|Z2 = ξ

]
fZ2(ξ)

+ P0

[
R̃θ

(0)

1

∫ τ

0

R(s)(−β3I{Z2>ξ}) exp{β�Z̃(s, ξ)} dAΓ
0 (s)

×
∫ τ

0

R(s)(−β3)
�h1 exp{β�Z̃(s, ξ)} dAΓ

0 (s)

+R̃θ
(0)

∫ τ

0

R(s)(−β3)
�h1(−β3I{Z2>ξ}) exp{β�Z̃(s, ξ)} dAΓ

0 (s)

]

Ṽξ,2(h2) = P0

[
R̃θ

(0)

∫ τ

0

R(s)Z�
1 (s)h2 exp{β�Z̃(s, ξ)} dAΓ

0 (s)|Z2 = ξ

]
fZ2(ξ)

+ P0

[
R̃θ

(0)

1

∫ τ

0

R(s)(−β3I{Z2>ξ}) exp{β�Z̃(s, ξ)} dAΓ
0 (s)

×
∫ τ

0

R(s)Z�
1 (s)h2 exp{β�Z̃(s, ξ)} dAΓ

0 (s)

+R̃θ
(0)

∫ τ

0

R(s)(−β3I{Z2>ξ})Z
�
1 (s)h2 exp{β�Z̃(s, ξ)} dAΓ

0 (s)

]
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Ṽξ,3(h3) =P0

[
R̃θ

(0)

∫ τ

0

R(s)Z�
2 h3 exp{β�Z̃(s, ξ)} dAΓ

0 (s)|Z2 = ξ

]
fZ2(ξ)

+ P0

[
R̃θ

(0)

1

∫ τ

0

R(s)(−β3I{Z2>ξ}) exp{β�Z̃(s, ξ)} dAΓ
0 (s)

×
∫ τ

0

R(s)Z�
2 h3 exp{β�Z̃(s, ξ)} dAΓ

0 (s)

+R̃θ
(0)

∫ τ

0

R(s)(−β3I{Z2>ξ})Z
�
2 h3 exp{β�Z̃(s, ξ)} dAΓ

0 (s)

]

Ṽξ,4(h4) =P

[
R̃θ

(0)

∫ τ

0

R(s)
(
(Z2 − ξ)+

)�
h4 exp{β�Z̃(s, ξ)} dAΓ

0 (s)|Z2 = ξ

]
fZ2(ξ)

+ P0

[
R̃θ

(0)

1

∫ τ

0

R(s)(−β3I{Z2>ξ}) exp{β�Z̃(s, ξ)} dAΓ
0 (s)

×
∫ τ

0

R(s)((Z2 − ξ)+)�h4 exp{β�Z̃(s, ξ)} dAΓ
0 (s)

+R̃θ
(0)

∫ τ

0

R(s)(−β3I{Z2>ξ})((Z2 − ξ)+)�h4 exp{β�Z̃(s, ξ)} dAΓ
0 (s)

]

Ṽξ,5(h5) =P0

[
R̃θ

(0)

∫ τ

0

R(s)h5(s) exp{β�Z̃(s, ξ)} dAΓ
0 (s)|Z2 = ξ

]
fZ2(ξ)

+ P0

[
R̃θ

(0)

1

∫ τ

0

R(s)(−β3I{Z2>ξ}) exp{β�Z̃(s, ξ)} dAΓ
0 (s)

×
∫ τ

0

R(s)h5(s) exp{β�Z̃(s, ξ)} dAΓ
0 (s)

+R̃θ
(0)

∫ τ

0

R(s)(−β3I{Z2>ξ})h5(s) exp{β�Z̃(s, ξ)} dAΓ
0 (s)

]

Ṽβ1,1(h1) =P0

[
R̃θ

(0)

1

∫ τ

0

R(s)Z1(s) exp{β�Z̃(s, ξ)} dAΓ
0 (s)

×
∫ τ

0

R(s)(−β3I{Z2>ξ})�h1 exp{β�Z̃(s, ξ)} dAΓ
0 (s)

+R̃θ
(0)

∫ τ

0

R(s)Z1(s)(−β3I{Z2>ξ})�h1 exp{β�Z̃(s, ξ)} dAΓ
0 (s)

]

Ṽβ1,2(h2) =P0

[
R̃θ

(0)

1

∫ τ

0

R(s)Z1(s) exp{β�Z̃(s, ξ)} dAΓ
0 (s)

×
∫ τ

0

R(s)Z�
1 (s)h2 exp{β�Z̃(s, ξ)} dAΓ

0 (s)

+R̃θ
(0)

∫ τ

0

R(s)Z1(s)Z
�
1 (s)h2 exp{β�Z̃(s, ξ)} dAΓ

0 (s)

]

Ṽβ1,3(h3) =P0

[
R̃θ

(0)

1

∫ τ

0

R(s)Z1(s) exp{β�Z̃(s, ξ)} dAΓ
0 (s)

×
∫ τ

0

R(s)Z�
2 h3 exp{β�Z̃(s, ξ)} dAΓ

0 (s)

+R̃θ
(0)

∫ τ

0

R(s)Z1(s)Z
�
2 h3 exp{β�Z̃(s, ξ)} dAΓ

0 (s)

]
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Ṽβ1,4(h4) =P0

[
R̃θ

(0)

1

∫ τ

0

R(s)Z1(s) exp{β�Z̃(s, ξ)} dAΓ
0 (s)

×
∫ τ

0

R(s)((Z2 − ξ)+)�h4 exp{β�Z̃(s, ξ)} dAΓ
0 (s)

+R̃θ
(0)

∫ τ

0

R(s)Z1(s)((Z2 − ξ)+)�h4 exp{β�Z̃(s, ξ)} dAΓ
0 (s)

]

Ṽβ1,5(h5) =P0

[
R̃θ

(0)

1

∫ τ

0

R(s)Z1(s) exp{β�Z̃(s, ξ)} dAΓ
0 (s)

×
∫ τ

0

R(s)h5(s) exp{β�Z̃(s, ξ)} dAΓ
0 (s)

+R̃θ
(0)

∫ τ

0

R(s)Z1(s)h5(s) exp{β�Z̃(s, ξ)} dAΓ
0 (s)

]

Ṽβ2,1(h1) =P0

[
R̃θ

(0)

1

∫ τ

0

R(s)Z2 exp{β�Z̃(s, ξ)} dAΓ
0 (s)

×
∫ τ

0

R(s)(−β3I{Z2>ξ})�h1 exp{β�Z̃(s, ξ)} dAΓ
0 (s)

+R̃θ
(0)

∫ τ

0

R(s)Z2(−β3I{Z2>ξ})�h1 exp{β�Z̃(s, ξ)} dAΓ
0 (s)

]

Ṽβ2,2(h2) =P0

[
R̃θ

(0)

1

∫ τ

0

R(s)Z2 exp{β�Z̃(s, ξ)} dAΓ
0 (s)

×
∫ τ

0

R(s)Z�
1 (s)h2 exp{β�Z̃(s, ξ)} dAΓ

0 (s)

+R̃θ
(0)

∫ τ

0

R(s)Z2Z
�
1 (s)h2 exp{β�Z̃(s, ξ)} dAΓ

0 (s)

]

Ṽβ2,3(h3) =P0

[
R̃θ

(0)

1

∫ τ

0

R(s)Z2 exp{β�Z̃(s, ξ)} dAΓ
0 (s)

×
∫ τ

0

R(s)Z�
2 h3 exp{β�Z̃(s, ξ)} dAΓ

0 (s)

+R̃θ
(0)

∫ τ

0

R(s)Z2Z
�
2 h3 exp{β�Z̃(s, ξ)} dAΓ

0 (s)

]

Ṽβ2,4(h4) =P0

[
R̃θ

(0)

1

∫ τ

0

R(s)Z2 exp{β�Z̃(s, ξ)} dAΓ
0 (s)

×
∫ τ

0

R(s)((Z2 − ξ)+)�h4 exp{β�Z̃(s, ξ)} dAΓ
0 (s)

+R̃θ
(0)

∫ τ

0

R(s)Z2(Z2 − ξ)+h4 exp{β�Z̃(s, ξ)} dAΓ
0 (s)

]

Ṽβ2,5(h5) =P0

[
R̃θ

(0)

1

∫ τ

0

R(s)Z2 exp{β�Z̃(s, ξ)} dAΓ
0 (s)

×
∫ τ

0

R(s)h5(s) exp{β�Z̃(s, ξ)} dAΓ
0 (s)

+R̃θ
(0)

∫ τ

0

R(s)Z2h5(s) exp{β�Z̃(s, ξ)} dAΓ
0 (s)

]
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Ṽβ3,1(h1) =P0

[∫ τ

0

−I{Z2>ξ}h1 dN(s) + R̃θ
(0)

1

∫ τ

0

(−β3I{Z2>ξ})�h1 exp{β�Z̃(s, ξ)} dAΓ
0 (s)

×
∫ τ

0

R(s)(Z2 − ξ)+ exp{β�Z̃(s, ξ)} dAΓ
0 (s)

+R̃θ
(0)

[∫ τ

0

R(s)(−I{Z2>ξ})h1 exp{β�Z̃(s, ξ)} dAΓ
0 (s)

+

∫ τ

0

R(s)(Z2 − ξ)+(−β3I{Z2>ξ})�h1 exp{β�Z̃(s, ξ)} dAΓ
0 (s)

]]

Ṽβ3,2(h2) =P0

[
R̃θ

(0)

1

∫ τ

0

R(s)(Z2 − ξ)+ exp{β�Z̃(s, ξ)} dAΓ
0 (s)

×
∫ τ

0

R(s)Z�
1 (s)h2 exp{β�Z̃(s, ξ)} dAΓ

0 (s)

+R̃θ
(0)

∫ τ

0

R(s)(Z2(s) − ξ)+Z�
1 (s)h2 exp{β�Z̃(s, ξ)} dAΓ

0 (s)

]

Ṽβ3,3(h3) =P0

[
R̃θ

(0)

1

∫ τ

0

R(s)(Z2 − ξ)+ exp{β�Z̃(s, ξ)} dAΓ
0 (s)

×
∫ τ

0

R(s)Z�
2 h3 exp{β�Z̃(s, ξ)} dAΓ

0 (s)

+R̃θ
(0)

∫ τ

0

R(s)(Z2 − ξ)+Z�
2 h3 exp{β�Z̃(s, ξ)} dAΓ

0 (s)

]

Ṽβ3,4(h4) =P0

[
R̃θ

(0)

1

∫ τ

0

R(s)(Z2 − ξ)+ exp{β�Z̃(s, ξ)} dAΓ
0 (s)

×
∫ τ

0

R(s)(Z2 − ξ) + h4 exp{β�Z̃(s, ξ)} dAΓ
0 (s)

+R̃θ
(0)

∫ τ

0

R(s)(Z2 − ξ)+(Z2 − ξ)+h4 exp{β�Z̃(s, ξ)} dAΓ
0 (s)

]

Ṽβ3,5(h5) =P0

[
R̃θ

(0)

1

∫ τ

0

R(s)(Z2 − ξ)+ exp{β�Z̃(s, ξ)} dAΓ
0 (s)

×
∫ τ

0

R(s)h5(s) exp{β�Z̃(s, ξ)} dAΓ
0 (s)

+R̃θ
(0)

∫ τ

0

R(s)(Z2 − ξ)+h5(s) exp{β�Z̃(s, ξ)} dAΓ
0 (s)

]

ṼA0,1(h1) =P0

[
R̃θ

(0)

1 R(s) exp{β�Z̃(s, ξ)}

×
∫ τ

0

R(s)(−β3I{Z2>ξ})�h1 exp{β�Z̃(s, ξ)} dAΓ
0 (s)

+R̃θ
(0)

R(s)(−β3I{Z2>ξ})�h1 exp{β�Z̃(s, ξ)}
]

ṼA0,2(h2) =P0

[
R̃θ

(0)

1 R(s) exp{β�Z̃(s, ξ)}

×
∫ τ

0

R(s)Z�
1 (s)h2 exp{β�Z̃(s, ξ)} dAΓ

0 (s)

+R̃θ
(0)

R(s)Z�
1 (s)h2 exp{β�Z̃(s, ξ)}

]
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ṼA0,3(h3) =P0

[
R̃θ

(0)

1 R(s) exp{β�Z̃(s, ξ)}

×
∫ τ

0

R(s)Z�
2 h3 exp{β�Z̃(s, ξ)} dAΓ

0 (s)

+R̃θ
(0)

R(s)Z�
2 h3 exp{β�Z̃(s, ξ)}

]
ṼA0,4(h4) =P0

[
R̃θ

(0)

1 R(s) exp{β�Z̃(s, ξ)}

×
∫ τ

0

R(s)((Z2 − ξ)+)�h4 exp{β�Z̃(s, ξ)} dAΓ
0 (s)

+R̃θ
(0)

R(s)((Z2 − ξ)+)�h4 exp{β�Z̃(s, ξ)}
]

ṼA0,5(h5) =P0

[
R̃θ

(0)

1 R(s) exp{β�Z̃(s, ξ)}

×
∫ τ

0

R(s)h5(s) exp{β�Z̃(s, ξ)} dAΓ
0 (s)

+R̃θ
(0)

R(s)h5(s) exp{β�Z̃(s, ξ)}
]
.

The next lemma yields that the Gateaux differentiability of the score operator can be

strengthened to Fréchet differentiability.

Lemma 6.4. Under the regularity condition of Section 6.3, the operator ϑ → P0 U
τ (ϑ)

is Fréchet differentiable at ϑ∗ for any ϑ∗ ∈ Θ̄ with derivative −ϑ(σϑ∗(h)), where h ranges

over H∞ and ϑ ranges over the linear span lin Θ̄ of Θ̄.

Proof. Consider the expression

lim
t→0+

sup
h∗∈lin Θ̄:ρ(h∗)≤1

sup
h∈H∞

|
∫ 1

0

h∗(σϑ∗+sth∗(h) − σϑ∗(h)) ds|

= lim
t→0+

sup
h∗∈lin Θ̄:ρ(h∗)≤1

sup
h∈H∞

|1
t

∫ t

0

h∗(σϑ∗+uh∗(h) − σϑ∗(h)) du| (6.13)

Note that u → h∗(σϑ∗+uh∗(h)) is integrable with antiderivative G∗(u) due to the smooth-

ness condition D.1. Furthermore, note that

0 = h∗(σϑ∗(h)) − h∗(σϑ∗(h))

= lim
t→0+

G∗(t) −G∗(0)

t
− h∗(σϑ∗(h))

= lim
t→0+

1

t

∫ t

0

h∗(σϑ∗+uh∗(h) − σϑ∗(h)) du.

which implies that (6.13) equals to zero. Hence, the assertion of the lemma is proved. �

The following lemma shows the continuous invertibility of the operators σθ0 and ϑ →
ϑ(σθ0(·)). Note that σθ0 = σϑ0 and AΓ0

0 = A0.



6.5. LOCAL BEHAVIOR OF THE LIMIT FUNCTION 71

Lemma 6.5. Under the regularity conditions of Section 6.3, the information operator

σθ0
: H∞ → H∞ is continuously invertible and onto with inverse σ−1

θ0
. The linear operator

ϑ → ϑ(σθ0(·)) from lin Θ̄ into itself is also continuously invertible and onto with inverse

ϑ → ϑ(σ−1
θ0

(·)).

Proof. For any h = (h1,h2,h3,h4, h5) ∈ H∞ we can write σθ0(h) as a sum K(h) +

C(h), where K(h) = (h1,h2,h3,h4, g0h5) and C(h) = σθ0(h) − K(h) and g0(s) =

P0

[
R(s) exp {β�

0 Z̃(s, ξ0)}R̃θ0

]
. Since g0 is bounded, K is one-to-one and onto with

continuous inverse defined by K−1(h) = (h1,h2,h3,h4, h5/g0). We need to show that the

operator C(h) is compact. Because of the construction of σ and since a bounded linear

operator with finite-dimensional range is compact, we will only consider C5 : BV → BV

given by

C5(h5) = P0

[
R̃θ

(0)

1 R(s) exp{β�Z̃(s, ξ)}
∫ τ

0

R(s)h5(s) exp {β�Z̃(s, ξ)}dAΓ
0 (s)

]
.

To prove compactness of C5 we show that for an arbitrary bounded sequence of functions

{h̄5n}, there exists a convergent subsequence of {C(h̄5n)} such that the limit point is an

element of BV . Now, C5 is a linear operator with ‖C5(h5)‖v ≤M
∫ τ

0
|h5| dAΓ

0 (s) for every

h5 and for a fixed constant M . Hence, it suffices to show that there exists a subsequence

of h̄5n that converges in L1. By Helly’s selection theorem we can find a subsequence

{h̄5nk
}, such that h̄5nk

converges pointwise to some function h̄5 as k → ∞. Using the

dominated convergence theorem h̄5nk
converges to a limit in L1. Hence, the operator

C(h) is compact.

Now we will show that σθ0 is one-to-one, i.e. if ‖h‖ > 0, then ‖σθ0(h)‖ > 0. Suppose

this is not the case, i.e. σθ0(h) = 0 for some h ∈ H∞. Then, for the one-dimensional

submodel defined by the map s → ϑ0s = ϑ0 + s(h1,h2,h3,h4,
∫ τ

0
h5(u) dA0(u)) we have

that

P0 [U τ (ϑ0)(h)]
2 = 0. (6.14)

Define a random set S(n, r, t) = {ω : (N(u), R(u))(ω) = (n(u), r(u)), u ∈ [t, τ ]}. Because

of the positivity of [U τ (ϑ0)(h)]
2 equality (6.14) implies that P0 [U τ (ϑ0)(h)|S(n, r, t)]2 = 0

for all S such that P0(S(n, r, t)) > 0. Hence, U t(ϑ0)(h) equals zero almost surely for

all t ∈ [0, τ ]. Now consider the set on which the observation (V, δ, Z) is censored at time

t ∈ [0, τ ]. The equality U t(ϑ0)(h) = 0 at a censoring time t yields

∫ t

0

R(s)
[
h1(−β30)I{Z2>ξ0} + h�

2 Z1(s) + h�
3 Z2 + h�

4 (Z2 − ξ0)
+ + h5(s)

]
× exp{β�

0 Z̃(s, ξ0)} dA0(s) = 0.
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Taking the Radon-Nikodym derivative with respect to A0 and dividing the equality by

exp{β�
0 Z̃(t, ξ0)} yields

R(t)
[
h1(−β30)I{Z2>ξ0} + h�

2 Z1(t) + h�
3 Z2 + h�

4 (Z2 − ξ0)
+ + h5(t)

]
= 0.

Using the same arguments as in the proof of Lemma 6.1 we get that h = 0. Hence,

σθ0(h) = 0 implies h = 0, thus σθ0 is one-to-one. Using the assertion of Lemma 25.93 in

Van der Vaart (1998) yields that σθ0
is onto and continuously invertible with σ−1

θ0
. Using

this fact, we know that for each 0 < r < ∞, there exists an s > 0 with σ−1
θ0

(Hs) ⊂ Hr.

Hence,

inf
ϑ∈ lin Θ̄

‖ϑ(σθ0
(·))‖(r)

‖ϑ‖(r)

≥ inf
ϑ∈ lin Θ̄

suph∈σ−1
θ0

(Hs)
|ϑ(σθ0(h))|

‖ϑ‖(r)

= inf
ϑ∈ lin Θ̄

‖ϑ‖(s)

‖ϑ‖(r)

≥ s

5r
.

Since ‖ϑ(σθ0(·))‖(r) ≥ s
5r
‖ϑ‖(r), the linear operator ϑ → ϑ(σθ0(·)) is continuously invert-

ible using Proposition A.1.7 in Bickel et al. (1998). The operator ϑ(σθ0(·)) is onto with

inverse ϑ → ϑ(σ−1
θ0

(·)), since σθ0 is onto. This proves the lemma. �

Before we study the local behavior of L(ϑ) define

B̄k
ε = {ϑ ∈ Θ̄ : ρ(ϑ− ϑ0) < ε, ‖Γ‖ν < k},

where ‖ · ‖v is the total variation norm on BV . Note that ϑ̂ = (ξ̂n, β̂n, Γ̂n) lies in B̄k
ε for

all n large enough, since θ̂n is consistent and because of the next lemma.

Lemma 6.6. There exists a k0 <∞ such that

lim sup
n→∞

‖Γ̂n‖v ≤ k0 and lim
n→∞

‖Γ̂n − Γ0‖∞ = 0 outer almost surely.

Proof. Consider Γ̂(·) = log(PnW (·, θ̂n)) with

W (s, θ̂n) = R(s) exp{β�Z̃(s, ξ)}
{
G

′
(H θ̂n(V )) − δ

G′′(H θ̂n(V ))

G′(H θ̂n(V ))

}
.

The total variation of t → R(t) is bounded by 1. Due to condition A.2, the total variation

of t → exp{β�Z̃(t, ξ)} is bounded by a constant K0. Thus,

‖PnW (·, θ̂n)‖v ≤ K0Pn

∣∣∣∣∣G′(H θ̂n(V )) − δ
G′′(H θ̂n(V ))

G′(H θ̂n(V ))

∣∣∣∣∣ .
Since all functions, which are involved are smooth and since the logarithm is Lipschitz

on compacts bounded away from zero, the first result follows. The second part follows
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from Lemma 6.3 combined with the consistency of the estimate θ̂n, the continuity of

θ → PW (·, θ), and reapplication of the Lipschitz continuity of u → log(u). �

Now, by the definition of the score and information operators the first derivative of ϑ →
L(ϑ) in the direction h ∈ H∞ is zero at the point ϑ0, while the second derivative in

the same direction is < 0, which is proved in Lemma 6.5. The conditions D.1 and D.2

ensure the smoothness of the score and information operators. This smoothness and the

arbitrariness of h yield that L(ϑ) is concave for every ϑ ∈ B̄k
ε , for sufficiently small ε.

6.6 Rate of Convergence

In a recent paper by Kosorok & Song (2007) it has been claimed that our model is a

submodel of theirs. However, when the rate of convergence is concerned the two models

have to be recognized as different. Usually, when a change-point model with a jump is

considered the rate of convergence of the change-point estimator is n. In our case it turns

out that the rate of convergence of the change-point estimate is not better than
√
n. The

difference between a jump and a bent-line change-point is the continuity of the likelihood

in ξ as described in the simpler models of the previous chapters. The continuity causes

the limit of the likelihood to be differentiable in ξ. Therefore, our case leads to a rate of

convergence different from that one in Kosorok & Song (2007).

Define the process Xn(ξ,β,Γ) = Ln(ϑ) − Ln(ϑ0) and the function X(ξ,β,Γ) = L(ϑ) −
L(ϑ0). Moreover, let Dn =

√
n(Xn(ϑ) −X(ϑ)).

Lemma 6.7. Under the conditions in Section 6.3, for ε sufficiently small there exists a

constant α > 0 such that for all ϑ ∈ B̄k
ε , X(ϑ) ≤ −αρ(ϑ− ϑ0)

2.

Proof. For L(ϑ) we know that P0 U
τ (ϑ0) = 0 by definition and the second derivative

I(ϑ0) = ∂
∂ϑ

P0 U
τ (ϑ)

∣∣
ϑ=ϑ0

is negative definite. Hence, by a Taylor expansion of L(ϑ) for

ε sufficiently small and for ϑ ∈ B̄k
ε (ϑ0),

X(ϑ) = P0 U
τ (ϑ0)(ϑ− ϑ0) +

1

2
(ϑ− ϑ0)

�I(ϑ0)(ϑ− ϑ0) + o(ρ(ϑ− ϑ0)
2)

≤ −αρ(ϑ− ϑ0)
2,

since I(ϑ0) is negative definite. �

Lemma 6.8. Under the regularity conditions in Section 6.3, for every ε > 0 there exists

a constant κ > 0 such that

E[ sup
ϑ∈B̄k

ε

|Dn(ϑ)|] ≤ κε, for all n ∈ N.
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Proof. Consider the process

Dn(ϑ) =
√
n {Ln(ϑ) − L(ϑ) − Ln(ϑ0) + L(ϑ0)}

=
√
n

{
Pn

[∫ τ

0

(
−Γ(t) + β�Z̃(t, ξ) + log(G′(Hθ(n)

(t)))
)

dN(t) −G(Hθ(n)

(V ))

]

−P0

[∫ τ

0

(
−Γ(t) + β�Z̃(t, ξ) + log(G′(Hθ(0)

(t)))
)

dN(t) −G(Hθ(0)

(V ))

]

−Pn

[∫ τ

0

(
−Γ0(t) + β�

0 Z̃(t, ξ0) + log(G′(Hθ
(n)
0 (t)))

)
dN(t) −G(Hθ

(n)
0 (V ))

]

+ P0

[∫ τ

0

(
−Γ0(t) + β�

0 Z̃(t, ξ0) + log(G′(Hθ0(t)))
)

dN(t) −G(Hθ0(V ))

]}

=
√
n(Pn − P0)

[∫ τ

0

(−Γ(t) + Γ0(t)) dN(t)

]

+
√
n(β − β0)

�(Pn − P0)

[∫ τ

0

Z̃(t, ξ0) dN(t)

]

+
√
nβ�

3 (Pn − P0)

∫ τ

0

(Z2 − ξ)+ − (Z2 − ξ0)
+ dN(t)

+
√
n

{
Pn

[∫ τ

0

log(G′(Hθ(n)

(t))) − log(G′(Hθ
(n)
0 (t))) dN(t)

]

−P0

[∫ τ

0

log(G′(Hθ(0)

(t))) − log(G′(Hθ0(t))) dN(t)

]}

−√
n

{
Pn

[
G(Hθ(n)

(V )) −G(Hθ
(n)
0 (V ))

]
− P0

[
G(Hθ(0)

(V )) −G(Hθ0(V ))
]}

.

The expectation of the first term is of order O(ε). To establish this we use Theorem

2.14.1 in Van der Vaart & Wellner (1996) with the envelope function
∫ τ

0
(Γ0(s)+ ε) dN(s)

for
∫ τ

0
Γ(s) dN(s) in B̄k

ε . The second and the third term can be handled as in the proof

of Lemma 4.4 in Chapter 4 and hence, it is O(ε). To obtain the order of the fourth term

note that the functions log(·) , exp(·), G′ and G′′ are Lipschitz. Hence,

∣∣∣∣
∫ τ

0

log(G′(Hθ(n)

(t))) − log(G′(Hθ
(n)
0 (t))) dN(t)

∣∣∣∣
≤

∫ τ

0

K
∣∣∣Hθ(n)

(t) −Hθ
(n)
0 (t)

∣∣∣ dN(t)

≤
∫ τ

0

(
K

∫ t

0

| exp{β�Z̃(s, ξ) − Γ(s)} − exp{β�
0 Z̃(s, ξ0) − Γ0(s)}| dPnN(s)

)
dN(t)

≤
∫ τ

0

(
K

∫ t

0

K2 |β�Z̃(s, ξ) − Γ(s) − β�
0 Z̃(s, ξ0) − Γ0(s)| dPnN(s)

)
dN(t),
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where K > 0 and K2 > 0 are some constants. Similarly, we can bound∣∣∣∣
∫ τ

0

log(G′(Hθ(0)

(t))) − log(G′(Hθ0(t))) dN(t)

∣∣∣∣ .
Since it is possible to find an envelope function for β�Z̃(s, ξ)−Γ(s)−β�

0 Z̃(s, ξ0)−Γ0(s) by

using the arguments as above, we can apply Theorem 2.14.1 in Van der Vaart & Wellner

(1996) again and obtain that

E

[
sup
ϑ∈Bk

ε

√
n

∣∣∣∣∣Pn

∫ τ

0

log

(
G′(Hθ(n)

(t))

G′(Hθ
(n)
0 (t))

)
dN(t) − P0

∫ τ

0

log

(
G′(Hθ(0)

(t))

G′(Hθ0(t))

)
dN(t)

∣∣∣∣∣
]

is bounded by ε times a constant.

Since G is also Lipschitz the last term can be treated similarly as the fourth term. This

yields the desired result. �

Theorem 6.3. Under the conditions 6.3,
√
nρ(ϑ̂n − ϑ0) = OP(1).

Proof. Since Lemma 6.7 and Lemma 6.8 hold, the assertion can be proved using the same

techniques as in the proof of Theorem 4.3 in Chapter 4. �

6.7 Asymptotic Normality

In this section the asymptotic normality is proved. We use Hoffmann-Jørgensen weak

convergence as described in Van der Vaart & Wellner (1996).

Theorem 6.4. Under the conditions described in Section 6.3,
√
n(θ̂n −θ0) is asymptoti-

cally linear, with influence function m̃(h) = U τ (θ0)(σ
−1
θ0

(h)), h ∈ H, converging weakly in

the uniform norm to a tight, mean zero Gaussian process Z with covariance E[m̃(g)m̃(h)],

for all g,h ∈ H.

Proof. We use theorem A.10 in the Appendix to show the assertion of the lemma. The

class of functions {Uθ,h : ‖θ − θ0‖ < ε, h ∈ H} is P0 −Donskser for some ε > 0 by the

same arguments as in Lemma 6.3. Moreover, the continuity of the functions involved

yields that suph∈H P0 (Uθ,h− Uθ0,h)
2 → 0 as ‖θ − θ0‖ → 0. The map θ → P0 U

τ (θ)

is twice continuously differentiable at θ0 with nonsingular derivative matrix. The other

conditions of Theorem A.10 are proved in Lemma 6.4, Lemma 6.5 and Theorem 6.3. �

The estimate θ̂n is regular and hence as sufficient as if the change-point parameter were

known, since
√
n(θ̂n − θ0) is asymptotically linear and provides an influence function

which is contained in the closed linear span of the tangent space. The latter is the case,

since σθ0 is continuously invertible.



Chapter 7

Applications

We investigate three different datasets. The first is chosen from an actuarial context,

while the second contains electric motor data. The last considers the well known PBC

dataset described in Fleming & Harrington (1991). Especially, the first two datasets will

be discussed in detail. The last dataset is mentioned, since it enables us to see the

difference between a piecewise linear approximation of the functional form and a function

guessed from a plot.

Furthermore, we will give a short overview of a goodness-of-fit test that we used to

determine which model fits best. Also, we will describe a heuristic development of the

martingale residual plots used.

7.1 Goodness-of-Fit Tests

Goodness-of-fit tests are used to examine whether a model is adequate. We describe two

tests. The first investigates whether an Aalen model fits better than a Cox model, whereas

the second determines whether a Cox model with change-point has a better fit than a

Cox model without a change-point. The following methods for testing goodness-of-fit in

the Aalen model are based on Gandy & Jensen (2005).

Assume that c(t) = (c1(t), ..., cn(t))� is a vector of predictable stochastic processes such

that c(t) is perpendicular to the columns of the matrix of covariates Y(t) in the Aalen

model, i.e. Y�(t)c(t) = 0 for all t ≥ 0. Then under some regularity conditions

T̂ (t) :=
1√
n

∫ t

0

c�(s) dN(s)

is a local martingale. The process c(t) can be defined by a projection of some vector d(t)

onto the orthogonal complement of the column space of Y(t). With the corresponding

projection matrix P(t) we get c(t) = P(t)d(t). If Y(t) has full rank we can set P(t) = I−

76



7.1. GOODNESS-OF-FIT TESTS 77

Y(t)(Y�(t)Y(t))−1Y�(t). Gandy & Jensen (2005) suggest different choices of d to detect

the following alternatives. The first alternative is a completely known fixed alternative.

The second alternative is that there is an additional covariate. The third alternative is

that the Cox model (2.1) holds. The covariates Z(t) in the Cox model do not have to be

the same as in the Aalen model. The suggested choice for detecting Cox’s model is

di(s) := Ri(s) exp{β̂�
Zi(s)}, (7.1)

where β̂ is the maximum partial likelihood estimator for Cox’s model, see (2.2). Note

that even though in this case di is not predictable due to β̂, the following asymptotics

still hold.

If the Aalen Model (2.3.2) is the correct model and some additional assumptions hold

then T̂ (t) converges to a mean zero Gaussian martingale whose variance can be estimated

consistently by

[T̂ ](t) =
1

n

∫ t

0

d�(s)P(s) diag( dN(s))P(s)d(s),

where diag( dN(s)) is a diagonal matrix with entries dNi(s), i ∈ {1, ..., n}. The simplest

test statistic that can be constructed based on this asymptotic behavior is

T :=
1√

[T̂ ](τ)
T̂ (τ)

which converges as n → ∞ in distribution to a standard normal random variable. With

the choice of d given by (7.1), Gandy & Jensen (2005) showed that a test that rejects for

large values of T is consistent against Cox’s model.

The second test decides whether a Cox model with change-point is more adequate than a

Cox model without a change-point. We use tests which were developed by Gandy & Jensen

(2006) for an extended version of a Cox-type regression model λi(t) = λ0(t)ρi(β, t),

where λ0(t) is an unknown baseline and ρi(β, t) is an observable stochastic process which

may depend on a finite-dimensional parameter vector β. In our case we have just

the basic Cox model with time-dependent covariates as a null hypothesis such that

ρi(β, t) = Ri(t) exp{β�Zi(t)}.
The test is based on sums of weighted martingale residuals and the test statistic is given

by

T (c(ϑ̂, ·)) = n−1/2

n∑
i=1

∫ τ

0

ci(ϑ̂, s) dN(s).

The weights ci(·, ·) are chosen such that a simple asymptotic distribution can be derived

and secondly such that the test is powerful against certain alternatives, which are called
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competing models. Therefore, the test statistic does not only contain the parameter of the

null model but also that of the competing model. The parameter vector ϑ := (β�,γ�)�,

where β is a parameter vector of the null model and γ a parameter vector of the competing

model, is estimated by the maximum likelihood estimator ϑ̂ = (β̂
�
, γ̂�)�. In our case we

consider the null hypothesis

H0 : λi(t) = λ0(t)ρi(β, t).

The competing models are given by

λi(t) = a(t)hi(γ, t),

where a(t) is an unspecified baseline, γ is an unknown parameter vector and the stochastic

processes hi(γ, t), i = 1, ..., n are observable. In our case we have the basic Cox model

ρi(β, t) = Ri(t) exp{β�Zi} as a null hypothesis and the change-point model hi(γ, t) =

Ri(t) exp{γ�Z̃i(t, ξ)} as a competing model. Under the null hypothesis (and some mild

technical conditions) the test statistic is asymptotically normal:

T (c(ϑ̂, t))
d→ N(0, σ2),

where σ2 can be estimated consistently by σ̂2(c) = n−1
∑n

i=1

∫ τ

0
c2i (ϑ̂, s) dNi(s). Simulation

studies show that this test performs well even for moderate sample sizes. For the explicit

choice of the weights and all further details we refer to Gandy & Jensen (2006).

7.2 Martingale Residuals and Functional Form in the

Cox Model

The Cox model heavily relies on the functional form of the covariates Z. In applications it

is not clear whether one of the covariates, say X, should better be included in a different

functional form like X2 or logX. Therneau et al. (1990) suggested to use martingale

residuals to determine the functional form of covariates graphically. Arguing differently

we derive similar results.

We consider only one individual and drop the index i. Let X and Z be stochastically

independent random covariates constant over time. We assume that the counting process

N admits the following intensity

λ(t) = h(X) exp{β�Z}R(t)λ0(t) = h(X)λ∗(t),
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where h is an unknown positive function. Hence,

M(t) = N(t) −
∫ t

0

h(X)λ∗(s) ds = N(t) − h(X)Λ∗(t)

is a mean zero martingale. Forming conditional expectation with respect to X we get

E[M(t)|X] = E[N(t)|X] − h(X)E[Λ∗(t)|X].

Since this is again a mean zero martingale we set, heuristically, E[M(τ)|X] equal to zero

and get

h(X) ≈ E[N(τ)|X]

E[Λ∗(τ)|X]
=

(
1 − E[N(τ) − Λ∗(τ)|X]

E[N(τ)|X]

)−1

.

In particular, we are interested in f(X) := log h(X). Using a first order Taylor expansion

we get

f(X) ≈ − log

(
1 − E[N(τ) − Λ∗(τ)|X]

E[N(τ)|X]

)
≈ E[N(τ) − Λ∗(τ)|X]

E[N(τ)|X]
.

Treating c = E[N(τ)|X] as constant it remains to estimate E[N(τ)−Λ∗(τ)|X] for which

we use the martingale residuals

M̂(τ) = N(τ) −
∫ τ

0

R(s) exp{β̂�
Z} dΛ̂0(s)

resulting from the Cox model ignoring X. To do so we smooth a scatterplot of M̂i(τ)

against Xi via robust locally weighted regression (see Cleveland (1979)). To sum up,

plotting the martingale residuals against X should give an idea of the functional form of

X. A linear scatterplot indicates that no further transformation of X is necessary. We

have carried out several simulation studies, which supported the validity of this heuristic

method.

7.3 Insurance Dataset

The dataset we are considering stems from a German insurance company and contains

information about private accident insurance contracts. Generally, in survival analysis

the time to death of an individual or the time to failure of a technical system is examined.

We investigate the time from the conclusion until the cancellation of a contract. Our

dataset does not only consist of information about the time to cancellation. There are

several other attributes given about the insurance holder and the person insured: age,

number of persons insured, amount of the annual premium, insurance sums covering

death or disablement, etc. Our main goal is to investigate in which way the attributes
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influence the cancellation of contracts. The dataset consists of more than 100 000 private

accident insurance contracts. Special features of these contracts are that more than one

person can be insured in a contract and that the insurance holder does not have to be

insured in it. There also exist aggregated covariates like the average insurance sum per

insured person in each contract. In total, each contract offers about 70 attributes. For

our analysis we have transformed some attributes into numerical covariates and deleted

some due to too small frequency, e.g. the covariate which is 1 if the premium is paid

in advance appeared only once. The cancellation of a contract could only be observed

during the period of May 1st, 2002 to April 30th, 2003. About 91 percent of all contracts

were censored meaning that they were not canceled during this period. Since this dataset

is quite big, we reduced our analysis to a smaller dataset. There we only contemplated

contracts belonging to insurance holders working in similar professions which were 31298

contracts. In our analysis we focused on 43 covariates since some of the covariates were

redundant. In the smaller dataset in the first, second, third and ninth year no contracts

have been canceled. Furthermore, there are only few contracts which have a duration

longer than 30 years. The longest duration of a contract is given by 44 years.

The models we use to examine the data are the Cox model, the Aalen model and the Cox

model with change-points.

7.3.1 Results

The conclusions we want to present are drawn from the smaller dataset containing 43

covariates. All computations were done in SAS and R.

First we analyzed our dataset by using two different variable selection methods to exclude

the least significant covariates. Here we confine ourselves to the forward selection method

since the backward selection method has produced similar results. Conducting the forward

selection method in the Cox model we first estimate parameters for covariates forced into

the model (see Krall et al. (1975)). Then we compute adjusted χ2-statistics for each

covariate and examine the largest of these statistics. If it is significant at a 5 percent

level the corresponding covariate is added to the model and stays in the model in all

the following steps. In the Aalen model we include as a first covariate in the forward

selection the baseline covariate, i.e. the covariate which is 1 for all contracts under risk.

Then we test the hypothesis that the Aalen model (2.3.2) holds as described in Section

7.1 against the hypothesis that there exists an additional covariate, i.e. we test against

all other variables and include the covariate having the smallest p-value into the model.

We stop our selection when the remaining covariates are not significant on the 5 percent

level.
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Covariate Description Parameter Standard
Estimate Error

first insured person is female 0.08593 0.04808

paying the premium every 6 months 0.23833 0.05627

paying the premium every month 0.19082 0.04340

paying the annual premium by direct debit -0.43466 0.05085

executive employee -0.26966 0.11709

employee -0.10646 0.04210
standardized single insurance -0.24778 0.05623

risk group B of first ins. person -0.18729 0.05398

dynamic in the contract 0.21613 0.04258

insurance holder equals first person insured -0.22325 0.05460

insurance sum for disability of first ins. person -5.193E-6 1.024E-6
risk premium of first insured person 0.00284 0.00036

age of the insurance holder -0.01330 0.00173

average accident benefits per person insured -0.000365 0.000102

average daily benefits per person insured -0.03044 0.00657

average hospital daily benefits per person insured -0.00551 0.00156
number of adults insured 0.26230 0.05245

Table 1: Parameter estimation after forward selection in the Cox model

The analysis of our dataset yields nearly the same significant covariates by using the

forward selection method in both models. In the Cox model as well as in the Aalen model

the forward selection methods suggest to include 17 covariates into the models, see Table

1 for the covariates in the Cox model. Except for the first and the fifth covariate all

p-values are less than 0.01. The first ten covariates displayed in Table 1 are categorical

covariates taking only values 1 or 0. One may be tempted to compare the influence

of certain covariates by the value of their parameter estimator. This may yield a false

conclusion because of the different values of the covariates.

Variables like the risk premium, the insurance sums, paying with direct debit show effects

as one would have expected. For example, a higher risk premium leads to an increasing

churn rate. The intensity of a contract being canceled declines as the insurance sum grows.

Furthermore, insurance holders paying with direct debit are less likely to cancel their

contracts. A closer look at the martingale residuals, following the procedure described in

Section 7.2, reveals that we obtain a nearly linear smoothed scatterplot for all investigated

covariates that are not 0-1 variables except for the one indicating the age of the insurance

holder. Recall that a linear smoothed scatterplot provides evidence that the corresponding

covariate has been introduced into the model adequately. The smoothed plots of the

martingale residuals against the variable age of the insurance holder and against the
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Figure 7.1: Martingale Residual plot of the covariate age

variable for average accident benefits are given in the Figures 7.1 and 7.2. As Figure 7.1

shows, the plot of the residuals of the covariate age is nonlinear. Therefore, we fit our

extended model with change-points to the data. The estimated change-points are at the

age of 29.5, 45.7 and 59.5. Furthermore, the influence before the first change-point (i.e.

β2) is positive and the influence after the first change-point (i.e. β2 +β3) is negative. This

means that the intensity of cancellation for insurance holders increases with age up to the

first change-point and declines afterwards until the second change-point. As an empirical

affirmation, we judged by the partial likelihood that the model with change-points has a

better fit than the original model.

The Aalen model provides nearly the same trends of the variables as those indicated by the

Cox model. Whenever the parameter estimate of β for a covariate is positive (negative) in

the Cox model, then the estimated integrated intensity B̂(t) of this covariate is increasing

(decreasing). This can be seen for example in Figure 7.3. There the estimated integrated

intensity of the covariate for paying the annual premium by direct debit is plotted with

its pointwise confidence intervals. Testing goodness-of-fit of the Aalen model against the

Cox model using the test explained in Section 7.1 the hypothesis that Aalen’s model is

the true model is rejected (p-value< 0.001).

To sum up the results, we can state that several covariates have been found to be of

significant influence. They have been identified by using forward and backward selection

methods. The influence of the covariates can be interpreted in a reasonable way. Even in

the bigger dataset we are able to observe similar parameter estimates for the covariates

in the Cox model. But further investigations are needed to reveal the effect of the same
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Figure 7.2: Martingale Residual plot of the average accident benefits
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Figure 7.3: Estimated integrated intensity B̂(t) of the covariate for paying the annual
premium by direct debit

occurrence times of several events in both models. Furthermore, our analysis shows that

the functional form of one of the covariates seems to be misspecified. Therefore, it is

reasonable to use the Cox model with change-points.
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7.3.2 Electric Motor Dataset

As part of a DFG (Deutsche Forschungsgemeinschaft) research project long term experi-

ments with electric motors were conducted. A total of 200 sample objects were observed

on a test bed and failure- and censoring times as well as the covariates load, current,

nominal voltage and r.p.m. were recorded. The goal of the analysis was to quantify the

influence of the different covariates on the survival times. By observing the smoothed

martingale residuals a change-point in nominal voltage seems to exist, see Figure 7.4.

Fitting our change-point model to the data and using the goodness-of-fit test of Section

7.1 a change-point at 18V is suggested. The covariates load, current and r.p.m seem to
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Figure 7.4: Martingale Residuals

have a linear influence. Now a predicted survival function can be calculated with its 95

% confidence intervals, see Figure 7.5.

null hypothesis competing model p-value

Model without CP Model CP in nominal voltage 0.0001

Table 2: Table contains the p-value calculated based on Section 7.1

For the validity of the model we estimated the survival function based on our model out

of two different datasets and compared the functions in a plot. One dataset consists of

all data from 12V and 24V electric motors. Based on these data we estimate the survival

function for a covariate value of 18 V. On the other hand we determine the survival

function for a covariate value of 18 V out of the dataset which only contains data from

18V electric motors. In Figure 7.6 we compare the two functions. It can be seen that the
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Figure 7.5: Predicted survival function for an 18 V electric motor
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Figure 7.6: Validation

survival function based on 12V and 24V electric motors is inside the pointwise confidence

intervals of the survival curve of 18V electric motors. This suggests that the estimation

with the Cox model with change-points is close to the survival curve for other covariate

values.
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7.3.3 PBC Dataset

The third dataset we looked at is the well known PBC dataset described in Fleming &

Harrington (1991). It contains survival data of 312 patients with primary biliary cirrhosis.

We use the corrected dataset given by Fleming & Harrington (1991), p. 81.

First they developed a Cox model which included the covariates age, albumin, bilirubin,

edema, hepatomegaly and prothrombin time. Hereby, the covariate albumin describes the

amount of a certain protein in the blood, bilirubin is the level of a liver bile pigment, edema

is an indicator for the presence of a swelling or enlargement of the liver, and prothrombin

time is the amount of time it takes the blood sample to begin coagulation in a certain

laboratory test. To get a better fit they used model selection methods and transformed

some covariates. At the end they suggested to use the following covariates in the model:

age, edema, log(albumin), log(bilirubin) and log(prothrombin time). After considering

the martingale residual plots we suggest to use a different model with a change-point in

the covariate bilirubin instead of log(bilirubin). A change-point is obtained at a level of

3. Using the directed goodness-of-fit tests for Cox type regression models described in

Section 7.1 with the model of Fleming & Harrington (Model F&H) as null hypothesis and

the change-point model (Model CP) as alternative we get a clear rejection of the model

of Fleming & Harrington.

null hypothesis competing model p-value

Model F& H Model CP 0.0088
Table 1: Table contains the p-value calculated based on Section 7.1 with respect to the

PBC dataset



Chapter 8

Conclusions and Remarks

We introduce new Cox-type regression and transformation models with change-points ac-

cording to covariate thresholds. For the Cox-type regression model with bent-line change-

points in the underlying regression function we proposed an estimation procedure and we

proved that the regression parameters and change-point parameters are
√
n-consistent

and asymptotically normal. Furthermore, we applied this model to different data sets

and showed that using a goodness-of-fit test the new model is superior compared to the

classical Cox model.

Moreover, this model enables us to study the unknown functional form of different covari-

ates. In practice, the true nature of the functional form of a covariate is often opaque.

Usually, martingale residuals are used for analyzing the functional form as plotted in Fig-

ure 7.1. But it is still a problem to select the most accurate function by simply looking

at these plots. In fact, we suggest that a piecewise linear functional form of the covariate

often fits the data in a better way. Therefore, we recommend to proceed as follows:

Starting with the classical Cox model, change-points can be added successively to the

model, resulting in a piecewise linear functional form. With each new change-point a

goodness-of-fit test must be made to check whether the assumption that another change

of influence occurs is accurate. The procedure ends when the last goodness-of-fit test is

rejected.

A further generalization of the model can be made if the exponential function is replaced

by a general known risk function, for example 1 +x, x > 0. In Chapter 5 it is shown that

the same asymptotic properties as in the usual case with the exponential function still

hold.

To cover even more survival time models we introduced the transformation model with

change-points according to covariate thresholds. We showed that in this model the fi-

nite and infinite-dimensional parameters can be estimated
√
n-consistently and that they

are asymptotically normal. Although Kosorok & Song (2007) stated that our model is

a submodel of theirs, we have to recognize the two models as different when the rate of
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convergence and the asymptotic properties of the change-point estimates are concerned.

The study of the transformation model presented in Chapter 6 is of interest for applica-

tions since it enables us to insert bent-line change-points in frailty models.

However, adapting the transformation model to data is a task of noticeable complexity.

For the proportional hazards and the proportional odds model Kosorok & Song (2007)

conducted simulation studies to justify their approach. A similar analysis would also be

conceivable for our model.

Another interesting extension could be the multiplicative-additive transformation model

with survival function

SZ(t) = Λ

(∫ t

0

exp{β(Z1 − ξ)+} dA(u) +

∫ t

0

γTZ2(u) du

)
.

Using the same approach as in our case seems reasonable at first sight but turns out to

be difficult because of the additive term.

Summarizing, we suggest new survival time models with bent-line change-points which are

superior compared to the classical Cox model. Furthermore, the new models combined

with a goodness-of-fit test give an analytical impression of the functional form of the

covariates. Namely, the functional form is modeled as piecewise linear by the procedure

described above. Many reasonable applications for our model exist. For example, in

biological settings bent-line change-points are in many cases more realistic than complex

nonlinear or jump effects. This was already noted by Chapell (1989). Various other

applications where a piecewise linear functional form yields a better fit to the given data

than the classical approach were studied in Chapter 8



Appendix A

Some Results from the Theory of

Empirical Processes

In this chapter we collect some results from the theory of empirical processes used in this

thesis. Most definitions and theorems can be found in Van der Vaart & Wellner (1996)

and Van der Vaart (1998).

A.1 Empirical Process

The empirical measure Pn of a sample of random elements X1, . . . , Xn on a measurable

space (X ,A) is the discrete random measure given by Pn(C) = n−1#(1 ≤ i ≤ n :

Xi ∈ C). If the points are measurable, it can be described as the random measure, that

puts mass 1/n at each observation. The empirical measure can be written in the form

Pn = n−1
∑n

i=1 δXi
of the dirac measures at the observation. Given a collection F of

measurable functions f : X → R, the empirical measure induces a map from F to R

given by f → Pnf. If P is the common distribution of the Xi, then the centered and

scaled version of the given map is the F -indexed empirical process Gn given by

f → Gnf =
√
n(Pn − P )f =

1√
n

n∑
i=1

(f(Xi) − P f),

where P f =
∫
f d P for a signed measure P .

A.2 Measurability

The classical theory of weak convergence requires that the random elements are Borel

measurable. This measurability usually holds when we consider a separable metric space

such as Rk with the supremum metric. This requirement can fail when the metric space is
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not separable. One example is the Skorohod space D[0, 1] of all right-continuous functions

on [0, 1] with left hand limits endowed with the metric induced by the supremum norm.

One approach to deal with this difficulty was made by Billingsley (1968). He endowed

D[0, 1] with the Skorohod metric under which D[0, 1] is separable and complete. In this

context the extension of the strong law of large numbers introduced by Andersen & Gill

(1982) has to be considered. They extended the strong law of large numbers to cad-

lag processes in Banach spaces. Let DB[0, τ ] the space which contains right continuous

functions on [0, 1] with left hand limits taking values in a separable Banach space B.

Theorem A.1. Let X1, X2, . . . be i.i.d. random elements of DB[0, τ ] (endowed with the

Skorohod topology). If E supt∈[0,τ ] ‖X1(t)‖ <∞, then

sup
t∈[0,τ ]

∥∥∥∥∥1

n

n∑
i=1

Xi(t) − EX1(t)

∥∥∥∥∥ → 0 almost surely.

Another approach concerning the weak convergence put forward by Hoffmann-Jørgensen

and which is described in detail in Van der Vaart & Wellner (1996) is to drop the require-

ment of Borel measurability of each Xn, meanwhile upholding the requirement Ef(Xn) →
Ef(X), for all function f in the set of all bounded, continuous, real functions on a metric

space. The expectations are now to be interpreted as outer expectations and the Xn may

be arbitrary maps. Denote the extended real line by R̄ = R ∪ {−∞,∞}.

Definition A.1. (outer expectation and outer probability)

Let (Ω,A,P) be an arbitrary probability space and Z : Ω → R̄ an arbitrary map. The

outer expectation of Z with respect to P is defined as

E∗Z = inf
{
EU : U ≥ Z,U : Ω → R̄measurable, EU exists

}
.

The outer probability of a set B ⊂ Ω is

P∗(B) = E∗IB.

Inner expectation and inner probability can be defined in a similar way. They can also

be defined by E∗Z = −E∗(−Z) and P∗(B) = 1 − P∗(Ω − B), respectively.

We use the approach of Billingsley (1968) in Chapter 4 and Chapter 5 and the one of

Hoffmann-Jørgensen in Chapter 6.
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A.3 Entropy Numbers

One of the main concerns in the theory of empirical processes is to obtain results about

the convergence of

sup
f∈F

|Pnf − P f |

where F is a class of functions. Therefore, it is essential to measure the size of the class

F . A relatively simple way is the use of entropy numbers.

Let (F , ‖ · ‖) be a subset of a normed space of real functions f : X → R on some set.

Definition A.2. (Envelope function)

An envelope function of a class F is any function x → F (x) such that |f(x)| ≤ F (x) <∞,

for every x and f .

Note that, the minimal envelope function is x → supf |f(x)|.
Definition A.3. (Covering numbers)

The covering number N(ε,F , ‖ · ‖) is the minimal number of balls {g : ‖g − f‖ < ε} of

radius ε needed to cover the set F . The entropy is defined as the logarithm of the covering

number.

Definition A.4. (Bracketing numbers)

Given two functions l and u, the bracket [l, u] is the set of all functions f with l ≤ f ≤ u.

An ε-bracket in Lr(P) is a bracket [l, u] with P(u − l)r < ε. The bracketing number

N[](ε,F , Lr(P)) is the minimal number of ε-brackets needed to cover F . The entropy with

bracketing is the logarithm of the bracketing number.

Using the notion of Vapnik-C̆ervonenkis classes of sets it is possible to derive upper bounds

for uniform covering numbers, which are needed to show that a class is Glivenko-Cantelli.

Definition A.5. (Vapnik-C̆ervonenkis class)

For a collection of subsets C of a set X , and points x1, . . . , xn ∈ X , define

∆C
n(x1, . . . , xn) = #{C ∩ {x1, . . . , xn} : C ∈ C},

so that ∆C
n(x1, . . . , xn) is the number of subsets of {x1, . . . , xn} picked out by the collection

C. Define moreover,

mC(n) = max
x1,...,xn∈X

∆C
n(x1, . . . , xn)

and

V (C) = inf{n ≥ 1 : mC(n) < 2n}.
We call V (C) the index of the class C. The collection C is a Vapnik-C̆ervonenkis class

(VC-class) if V (C) <∞.
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Definition A.6. (Vapnik-C̆ervonenkis class of functions)

The subgraph of a function f : X → R is the subset of X × R given by

{(x, t) ∈ X × R : t < f(x)}.

For a class of functions F , let V (F) be the index of the collection of subgraphs. A collection

of functions F is called a Vapnik-C̆ervonenkis subgraph class if V (F) <∞.

Theorem A.2. (Van der Vaart & Wellner (1996), Theorem 2.6.7)

For a Vapnik-C̆ervonenkis subgraph class F with measurable envelope function F and

r ≥ 1, one has for any probability measure Q with ‖F‖Q,r =
(∫ |F |r dQ

)1/r
> 0,

N(ε‖F‖Q,r,F , Lr(Q)) ≤ KV (F)(16e)V (F)

(
1

ε

)r(V (F)−1)

,

for a universal constant K and 0 < ε < 1.

A.4 Lipschitz Functions and Helly’s Lemma

For classes of functions x → ft(x) that are Lipschitz in the index parameter t ∈ T the

following holds for every x:

|fs(x) − ft(x)| ≤ d(s, t)F (x),

where d is some metric on the index set and F is a function on the sample space. Then

the diameter of T times F is an envelope function for the class {ft − ft0 : t ∈ T} for any

fixed t0.

Theorem A.3. (Van der Vaart & Wellner (1996), Theorem 2.7.11)

Let F = {ft : t ∈ T} be a class of functions satisfying the preceding display for every s

and t and some fixed function F . Then for any norm ‖ · ‖,

N[](2ε‖F‖,F , ‖ · ‖) ≤ N(ε, T, d).

A quite useful theorem which we needed in several proofs in Chapter 6 is Helly’s lemma

and corollaries from it. We present here the lemma as stated in Van der Vaart (1998).

Theorem A.4. (Van der Vaart (1998), Lemma 2.5 )

Each given sequence Fn of cumulative distribution functions on Rk possesses a subsequence

Fnj with the property that Fnj(x) → F (x) at each continuity point x of a possibly defective

distribution function F .
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A.5 Glivenko-Cantelli and Donsker Classes

By the law of large numbers, the sequence Pnf converges almost surely to P f , for every

f such that P f is defined. The abstract Glivenko-Cantelli theorems make this result

uniform in f ranging over a class of functions.

Definition A.7. (Glivenko-Cantelli class)

A class F of measurable functions f : X → R is called P-Glivenko-Cantelli if

‖Pnf − P f‖F = sup
f∈F

|Pnf − P f | → 0, almost surely.

Theorem A.5. (Van der Vaart (1998), Theorem 19.4)

Every class F of measurable functions such that N[] (ε,F , L1(P)) < ∞ for every ε > 0 is

P-Glivenko-Cantelli.

Definition A.8. (Donsker class)

A class F of measurable functions f : X → R is called P-Donsker if the sequence of

processes Gnf : f ∈ F converges in distribution to a tight limit process in the space l∞.

The abstract Donsker theorem is a uniform version of the central limit theorem.

Theorem A.6. (Van der Vaart (1998) Theorem 19.5)

Every class F of measurable functions with J[] (1,F , L2(P)) <∞ is P-Donsker.

A.6 Finite Entropy Integrals

In this section we derive bounds on moments for the supremum ‖Gn‖F of the empirical

process for classes F that possess a finite uniform-entropy or bracketing entropy integral.

For a class of functions F with envelope function F and δ > 0, let the uniform-entropy

integral be

J(δ,F) = sup
Q

∫ δ

0

√
1 + logN(ε‖F‖Q,2,F , L2(Q)) dε,

where the supremum is over all discrete probability measures Q with ‖F‖Q,2 > 0. Fur-

thermore, define the L2(Pn)-seminorm by

‖f‖n =

√√√√ 1

n

n∑
i=1

f 2(Xi).

The symbol � indicates that the left side is bounded by a constant times the right side.
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Theorem A.7. (Van der Vaart & Wellner (1996), Theorem 2.14.1)

Let F be a P-measurable class of functions with measurable envelope function F . Then

‖‖Gn‖∗F‖P,p � ‖J(ρn,F)‖F‖n‖P,p � J(1,F)‖F‖P,2∨p, p ≥ 1.

Here ρn = (supf∈F ‖f‖∗n)/‖F‖n where ‖ · ‖n is the L2(Pn)-seminorm and the inequalities

are valid up to constants depending only on p. In particular, when p = 1

E‖Gn‖∗F � E [J(ρn,F)‖F‖n] � J(1,F)‖F‖P,2.

For a given norm ‖ · ‖, define a bracketing integral of a class of functions F as

J[](δ,F , ‖ · ‖) =

∫ δ

0

√
1 + logN[](ε‖F‖,F , ‖ · ‖) dε.

For most classes of interest, the bracketing numbers N[](ε,F , Lr(P)) grow to infinity as

ε ↓ 0. A sufficient condition for a class to be Donsker is that they do not grow too fast.

The speed can be measured in terms of the bracketing integral described above. The

integrand in the integral is a decreasing function of ε. Hence, the convergence of the

integral depends only on the size of the bracketing numbers for ε ↓ 0. Roughly speaking,

the integral condition requires that the entropies grow of slower order than (1/ε)2.

Theorem A.8. (Van der Vaart & Wellner (1996), Theorem 2.14.2)

Let F be a class of measurable functions with measurable envelope function F . For a fixed

η > 0 define

α(η) =
η‖F‖P,2√

1 + logN[](η‖F‖P,2,F , L2(P))
.

Then, for every η > 0,

E∗‖Gn‖F �J[](η,F , L2(P))‖F‖P,2 +
√
nPFI{F>

√
nα(η)}

+ ‖‖f‖P,2‖F
√

1 + logN[](η‖F‖P,2,F , L2(P)).

If ‖f‖P,2 < δ‖F‖P,2 for every f ∈ F , then taking η = δ in the last display yields

E∗‖Gn‖F � J[](δ,F , L2(P))‖F‖P,2 +
√
nPFI{F>

√
nα(δ)}

Hence, for any class F ,

E∗‖Gn‖F � J[](1,F , L2(P))‖F‖P,2
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A.7 Limit Theorems

The following theorems are concerned with the asymptotic normality of the estimators.

Theorem A.9 is used in Chapter 4 and Chapter 5, whereas Theorem A.10 is applied in

Chapter 6.

The following theorem concernsM-estimators defined as maximizers of a criterion function

θ → Pnmθ, which are assumed to be consistent for a point of maximum θ0 of the function

θ → Pmθ.

Theorem A.9. (Van der Vaart (1998), Theorem 5.23)

For each θ in an open subset of Euclidean space let x → mθ(x) be a measurable function

such that θ → mθ(x) is differentiable at θ0 for P- almost every x with derivative ṁθ0(x)

and such that, for every θ1 and θ2 in a neighborhood of θ0 and a measurable function ṁ

with P ṁ2 <∞
|mθ1(x) −mθ2(x)| ≤ ‖θ1 − θ2‖.

Furthermore, assume that the map θ → Pmθ admits a second-order Taylor expansion

at a point of maximum θ0 with nonsingular symmetric second derivative matrix Iθ0. If

Pnmθ̂n
≥ supθ Pnmθ − oP(n−1) and θ̂n

P→ θ0, then

√
n(θ̂n − θ0) = −I−1

θ0

1√
n

n∑
i=1

ṁθ0(Xi) + oP(1).

In particular, the sequence
√
n(θ̂n − θ0) is asymptotically normal with mean zero and

covariance matrix I−1
θ0

P ṁθ0ṁ
�
θ0
I−1
θ0

.

For the treatment of semiparametric models, for which the infinite-dimensional parameter

can not be handled separately, it is useful to extend the results on Z-estimators to the case

of infinite-dimensional parameters. A differentiability or Lipschitz condition on the maps,

which are equal to zero at the estimate θ̂n, would preclude most applications. However,

if we use the language of Donsker classes, the extension is straightforward.

If the parameter θ ranges over a subset of infinite-dimensional normed space, then we

use an infinite number of estimating equations, which we label by some set H. Thus the

estimator θ̂n solves an equation PnU(θ)(h) = PnUθ,h = 0 for every h ∈ H . In our case

PnU(θ) represents the score function.

Theorem A.10. (Van der Vaart & Wellner (1996), Theorem 3.3.1 and Van der Vaart

(1998) Theorem 19.26)

For each θ in a subset Θ of a normed space and every h in an arbitrary set H, let

x → Uθ,h(x) be a measurable function such that:
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1. The class of functions {Uθ,h : ‖θ − θ0‖ < ε,h ∈ H} is P0-Donsker for some ε > 0,

with finite envelope function.

2. suph∈H P0 (Uθ,h− Uθ0,h)
2 → 0 as θ → θ0.

3. The map θ → P0 U(θ) is Fréchet-differentiable at a zero θ0, with a derivative σθ0
:

lin Θ → l∞(H) that has a continuous inverse on its range.

4. P0 U(θ0) = 0 and θ̂n satisfies PnU(θ̂n) = oP(n−1/2) and converges to θ0 in proba-

bility.

Then σθ0

√
n(θ̂n − θ0) = −Gn[U(θ0)] + oP(1).
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Bagdonavičius, V. & Nikulin, M. (2002). Accelerated Life Models . Monographs on Statis-

tics and Applied Probability 94, Boca Raton.

Beibel, M. (1994). Bayes problems in change-point models for the Wiener process. In

Change-point Problems (eds. E. Carlstein, H. Müller & D. Siegmund), 1–6, Institute of

Mathematical Statistics, Hayward.

Beibel, M. (1996). A note on Ritov’s Bayes approach to the minimax property of the

CUSUM-procedure. Ann. Stat. 24, 1804–1812.

Bhattacharya, P. (1994). Some aspects of change-point analysis. In Change-point Prob-

lems (eds. E. Carlstein, H. Müller & D. Siegmund), 28–56, Institute of Mathematical

Statistics, Hayward.

Bickel, P., Klaassen, A., Ritov, Y. & Wellner, J. (1998). Efficient and Adaptive estimation

for Semiparametric Models. Springer, New York.

Billingsley, P. (1968). Convergence of Probability Measures. John Wiley, New York.

Brodsky, B. & Darkhovsky, B. (1993). Nonparametric Methods in Change-Point Problems.

Kluwer Academic Publishers, Dordrecht.

Brown, M. & Zacks, S. (2006). A note on optimal stopping for possible change in the

intensity of an ordinary Poisson process. Stat. Probab. Lett. 76, 1417–1425.

97



BIBLIOGRAPHY 98

Chapell, R. (1989). Fitting bent lines to data, with applications to allometry. Journal of

Theoretical Biology .

Chen, S. & Zhou, L. (2007). Local partial likelihood estimation in proportional hazards

regression. Ann. Stats. 35, 888–916.

Clayton, D. (1978). A model for association in bivariate life tables and its application

in epidemiological studies of familial tendency in chronic disease incidence. Biometrika

65, 141–151.

Clayton, D. & Cuzick, J. (1985). Multivariate generalization of the proportional hazards

model. J. Roy. Statist. Soc. Ser. A 148, 82–117.

Cleveland, W. (1979). Robust locally weighted regression and smoothing scatterplots. J.

Am. Statist. Assoc. 74, 829–836.

Cox, D. (1972). Regression models and life tables. J. Roy. Statist. Soc. Ser. B 34, 187–200.
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Zusammenfassung

In dieser Arbeit werden verschiedene Regressionsmodelle aus der Lebensdaueranalyse be-

trachtet. Speziell das Cox Modell, welches auf proportionalen Ausfallraten basiert, wird

erweitert.

Eine klassische Anwendung der Lebensdaueranalyse gibt es im Bereich der Medizin. Bei

Patienten in einer Studie wird beobachtet, zu welchem Zeitpunkt ein bestimmtes Ereig-

nis eintritt. Dieses Ereignis kann der Tod des Patienten oder ein Rückfall nach einer

Operation sein. Das Ziel von Regressionsmodellen ist es, einen Zusammenhang zwis-

chen dem Risiko für das Auftreten eines Ereignisses und bestimmten Attributen einzel-

ner Individuen zu modellieren. Ein besonderes Interesse besteht darin herauszufinden,

welchen Einfluss Medikamente oder Merkmale eines Patienten wie zum Beispiel das Alter

auf das Überleben des Patienten haben. Ein Problem ist, dass oftmals eine Auswer-

tung der Studie erfolgen muss, bevor bei allen Patienten der Tod registriert wurde. Das

heißt, es ist nur bekannt, dass die Patienten bis zu einem bestimmten Zeitpunkt überlebt

haben. Diese so genannten Zensierungseffekte müssen in einer statistischen Auswer-

tung berücksichtigt werden. Dieses Phänomen tritt jedoch nicht nur im medizinischen

Umfeld auf. Zum Beispiel werden Dauerlaufversuche von verschiedenen Motoren aus

Kostengründen ebenso nach einer bestimmten Zeit abgebrochen, so dass für die Motoren

nicht nur Ausfallzeiten sondern auch Zensierungen beobachtet werden. Trotzdem möchte

man Lebensdauerverteilungen der Motoren unter Berücksichtigung verschiedener Merk-

malkombinationen angeben. Ein weiteres Beispiel für zensierte Daten ergibt sich aus

einer Studie über Versicherungsverträge. Die Stornierung von Verträgen, die verschiedene

Attribute aufweisen, kann nur in einem bestimmten Zeitfenster beobachtet werden. Mit

Hilfe von Regressionsmodellen der Lebensdaueranalyse kann man Attribute bestimmen,

die einen Effekt auf die Stornierung eines Vertrages haben.

Während in der klassischen Lebensdaueranalyse davon ausgegangen wird, dass nur ein

Ereignis auftritt, kann mit der Theorie der Zählprozesse auch mehr als ein Ereignis be-

trachtet werden. Ein Beispiel dafür ist die Berechnung des Risikos für das Auftreten von

Schadensfällen mehrerer Versicherungsverträge. Theoretisch wird für ein Individuum i

ein stochastischer Prozess Ni(t) beobachtet, der die Anzahl der Ereignisse bis zu einem

Zeitpunkt t zählt. Die Regressionsmodelle werden typischerweise über die Intensität der
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Zählprozesse definiert. Das am weitesten verbreitete Modell ist das Cox Modell. Es wird

beschrieben durch die Intensität

λi(t) = λ0(t)Ri(t) exp{β�Zi(t)}, (A.1)

wobei λ0(t) die Baseline-Intensität bezeichnet, die für alle Individuen gleich ist. Des

Weiteren ist Ri(t) ein Faktor, der angibt, ob ein Individuum unter Risiko steht oder

nicht und deshalb nur die Werte 1 oder 0 annimmt. Die Merkmale eines Individuums

werden in dem so genannten Kovariablenvektor Zi zusammengefasst und β stellt die zu

schätzenden Regressionsparameter dar. In diesem Modell wird angenommen, dass alle

Kovariablen linear eingehen. Wir haben Datensätze untersucht, in denen diese Annahme

verletzt ist. Daher haben wir ein neues flexibleres Modell entwickelt.

In dieser Arbeit betrachten wir ein Cox Modell mit einem so genannten Change-Point.

Ein Change-Point beschreibt den Wert, an dem sich der Einfluss einer Kovariablen ändert.

Wir nehmen dazu an, dass unsere zugrunde liegende Regressionsfunktion in dem Change-

Point stetig, aber nicht differenzierbar ist. Im Gegensatz zum klassischen Cox Modell

erhalten wir auf diese Weise einen weiteren zu schätzenden Parameter. Das Modell hat

die folgende Form

λi(t) = λ0(t)Ri(t) exp{β�
1 Z1i(t) + β2Z2i + β3(Z2i − ξ)+}, (A.2)

wobei a+ das Maximum von a und 0 ist, λ0(t) wieder die Baseline-Intensität beschreibt

und Ri(t) wie im klassischen Cox Modell definiert ist. Der Kovariablenvektor teilt sich in

Z1i und Z2i auf, wobei sich der Einfluss von Z2i im Change-Point ξ ∈ R verändert. Die

Regressionsparameter sind in der Form eines Vektors β = (β�
1 , β2, β3)

� ∈ Rp+2 gegeben.

Zu schätzen sind der endlichdimensionale Parametervektor β, der Change-Point ξ und

die unbekannte Baseline-Intentsität λ0(t). In dem klassischen Cox Modell benutzen wir

für die Schätzung der Parameter einen Partial Likelihood der auf der Intensität (A.1)

basiert. Anstelle der Baseline-Intensität schätzen wir die kumulierte Baseline-Intensität

Λ0(t) =
∫ t

0
λ0(s) ds mit Hilfe des Breslow Schätzers.

Im Cox Modell mit einem Change-Point schätzen wir die Parameter ebenfalls mit einem

Partial Likelihood, der jetzt jedoch auf (A.2) basiert, das heißt die Likelihood-Funktion

hängt von β und ξ ab. In unserer Arbeit zeigen wir, dass die Schätzer die üblichen

asymptotischen Eigenschaften aufweisen, das heißt sie sind konsistent und asymptotisch

normalverteilt. Für den Nachweis dieser Eigenschaften benötigen wir Techniken aus der

Theorie der Empirischen Prozesse und verwenden insbesonder Methoden, die für allge-

meine M-Schätzer entwickelt wurden.

Die kumulierte Baseline-Intensität wird mit Hilfe des Breslow Schätzers, der jetzt von β

und ξ abhängt, geschätzt. Wir zeigen, dass
√
n(Λ̂n(t) − Λ0(t)) gegen einen Gaußschen
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Prozess konvergiert.

In einem zweiten Schritt haben wir das Cox Modell mit einem Change-Point erweitert, in-

dem wir anstatt der Exponentialfunktion eine allgemeine Risikofunktion r : R → [0,∞) un

mehrere Change-Points zugelassen haben. Unter geeigneten Bedingungen an die Funktion

r lassen sich dieselben Resultate erzielen wie im Fall der Exponentialfunktion. Allerdings

zeigt sich, dass die Beweise deutlich aufwändiger sind, wenn die Exponentialfunktion er-

setzt wird.

Ein weiteres Kernthema der Arbeit ist die Betrachtung eines linearen Transformations-

modells mit Change-Points. Dieses Modell beinhaltet nicht nur unter bestimmten Voraus-

setzungen das oben genannte Cox Modell, sondern auch allgemeinere Modelle wie Frailty-

Modelle. In Frailty-Modellen werden Gruppen von Ausfallzeiten betrachtet, die aufgrund

eines nicht beobachtbaren Risikofaktors korreliert sind. Gruppen, die den gleichen Risiko-

faktor teilen, können Familien oder auch Motoren aus demselben Werk sein. In diesen

Modellen wirkt eine unbeobachtbare Zufallsvariable multiplikativ auf die Intensität ein.

Für die unbekannte Zufallsvariable wird normalerweise eine Verteilungsannahme getrof-

fen. Typischerweise betrachtet man eine Klasse von Gamma-Verteilungen. Solche Frailty-

Modelle und andere Modelle lassen sich in einem linearen Transformationsmodell zusam-

menfassen. Ein lineares Modell bezüglich einer Überlebenszeit T hat die Form

logA(T ) = −β�Z + ε,

wobei A eine unbekannte monoton wachsende Funktion ist, β einen Regressionsparameter

beschreibt und ε einer Fehlerverteilung folgt, die nicht von den Kovariablen Z abhängt.

Das Modell kann deshalb äquivalent beschrieben werden durch

SZ(t) = Sε

(
logA(t) + β�Z

)
.

Hier stellt SZ die Überlebensfunktion von T bei einem gegebenen Kovariablenvektor Z dar

und Sε beschreibt die Funktion 1−Fε, wobei Fε die Verteilungsfunktion von ε bezeichnet.

Wählt man nun Sε(u) = Λ(eu), so erhält man die folgende Darstellung

SZ(t) = Λ

(∫ t

0

exp{β�Z} dA(u)

)
.

Die Funktion Λ(t) ist eine bekannte, dreimal differenzierbare, fallende Funktion mit

Λ(0) = 1 und A(t) beschreibt eine unbekannte kumulierte Baseline-Intensität. Dieses

Transformationsmodell, das in der letzten Zeit von verschiedenen Autoren untersucht

wurde, erweitern wir, indem wir zensierte Daten zulassen und in die zugrunde liegende
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Regressionsfunktion Change-Points aufnehmen, so dass wir das folgende Modell erhalten

SZ(t) = Λ

(∫ t

0

exp{β�
1 Z1(t) + β�

2 Z2 + β�
3 (Z2 − ξ)+} dA(u)

)
.

Die Schwierigkeit bei der Anwendung dieses Modells liegt darin, dass die Schätzung der

Baseline-Intensität nicht mehr von der Schätzung der Regressionsparameter und Change-

Point Parameter mit Hilfe des Partial Likelihoods getrennt werden kann. Deshalb wird

für die Schätzung ein nichtparametrischer Likelihood verwendet, der die Komplexität des

Problems deutlich erhöht. Mit der Hilfe von modernen Beweismethoden aus dem Be-

reich der empirischen Prozesse, die in Van der Vaart & Wellner (1996) zusammengefasst

sind, können wir die üblichen asymptotischen Eigenschaften für unsere Schätzer wie
√
n-

Konsistenz und asymptotische Normalität nachweisen. Insbesondere benötigen wir lineare

Operatoren und Fréchet Differenzierbarkeit, um die Eigenschaften des unendlichdimen-

sionalen Schätzers für die Baseline-Intensität zu erhalten.

Zum Abschluss unserer Arbeit haben wir das Cox-Modell mit Change-Points auf drei

verschiedene Datensätze angewendet. Mit verschiedenen Selektionsmethoden haben wir

die für die Lebensdauer signifikanten Kovariablen ermittelt. Außerdem konnten wir mit

einem speziellen Anpassungstest nachweisen, dass in einigen Kovariablen Change-Points

vorhanden sind. Dieser Test ermöglicht uns auch, deren Anzahl zu bestimmen und zu

entscheiden, ob das Cox Modell mit Change-Points eine bessere Anpassung gegenüber

dem klassischen Modell liefert. Ein weiterer Vorteil unseres Modells besteht darin, dass

die funktionale Form einer Kovariablen durch die sukzessive Anpassung von Change-

Points beschrieben werden kann. Bei der Auswertung des bekannten PBZ-Datensatzes

aus Fleming & Harrington (1991), in dem Daten über Patienten mit primärer biliärer

Zirrhose zusammengefasst sind, konnten wir mit dem Change-Point Modell eine bessere

Anpassung erzielen als mit dem von Fleming & Harrington (1991) vorgeschlagenen Mod-

ell.

In dieser Arbeit haben wir neue Überlebensdauermodelle mit Change-Points entwickelt

und für die zu schätzenden endlich- und unendlich-dimensionalen Parameter die üblichen

asymptotischen Eigenschaften nachgewiesen. Außerdem haben wir reale Datensätze un-

tersucht und gezeigt, dass sich durch die Verwendung der Change-Point Modelle eine

Möglichkeit ergibt, die funktionale Form einer Kovariablen stückweise linear zu beschreiben.
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