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1 GENERAL INTRODUCTION 

 

Wheat (Triticum aestivum) is the most cultivated crop worldwide with a global output of 749 

million tonnes in 2016 (FAOSTAT 2018). Growing areas range from the southern regions of 

South America and Australia to the northern latitudes of Canada and China (Bushuk 1997). 

Wheat tolerates a wide range of climatic conditions, soil fertility, and elevations. As a valuable 

source of protein, vitamins and minerals it is the most important food grain and provides over 

20 % of the calories in human nutrition. It can be stored over long periods and easily transported. 

Wheat originated from hybridization between cultivated tetraploid emmer wheat (AABB, 

Triticum dicoccoides) and diploid goat grass (DD, Aegilops tauschii) approximately 10,000 

years ago (Salamini et al. 2002; Petersen et al. 2006). The domestication of wheat took place in 

the Middle Eastern region known as the Fertile Crescent (Feuillet et al. 2008), where the early 

plant breeders were farmers who genetically improved wild cereals predominantly by 

phenotypic mass selection for desired traits like non-brittle rachis, non-shattering of seeds, free 

threshing, and increased grain size (Murphy 2007). The cultivation value of wheat increased by 

the selection of these traits and its allopolyploid nature contributed furthermore a broad 

adaption to various growing areas. However, it took several thousand years until the cultivation 

of wheat spread into the common growing areas known today (Harlan 1981). Improved crop 

management practices in combination with modern plant breeding methods and technologies 

resulted in an average grain yield of 3 t ha-1 (FAOSTAT 2018). 

 

FUSARIUM HEAD BLIGHT – THE MOST DEVASTATING WHEAT DISEASE 
WORLDWIDE 
 

Fusarium head blight (FHB) is an economically important disease on small grain cereal crops 

in humid and semi-humid areas worldwide (Schroeder and Christensen 1963; Steffenson 2003). 

Although many Fusarium species can cause FHB, Fusarium graminearum is the most common 

pathogen in many countries (Schroeder and Christensen 1963; Sutton 1982; Wang and Miller 

1988; Bai and Shaner 1994). FHB causes quality reduction by contamination of harvested grain 

with potent mycotoxins, especially high levels of deoxynivalenol (DON) and zearalenone 

(ZON), and up to 40 % yield loss (Parry et al. 1995; McMullen et al. 1997; Bai et al. 2001). 

The maximum acceptable DON and ZON values for human consumption in raw wheat grain 

are limited to 1,250 𝜇𝑔 𝑘𝑔  and to 100 𝜇𝑔 𝑘𝑔  , respectively, in the European Union ((EG) 
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Nr. 1126/2007) and obligate breeding companies to achieve at least a moderate resistance. As 

FHB can only partially be controlled by appropriate use of fertilizers, suitable crop rotation, 

soil tillage, weed control, and fungicide application with the dose and timing of spraying being 

a crucial factor (McMullen et al. 1997; Pirgozliev et al. 2003; Yuen and Schoneweis 2007; 

Willyerd et al. 2012). Additionally, the cost of treatment and the lack of highly effective 

registered fungicides are limiting the usage of chemical 

protection against FHB. The best application may reduce 

direct yield loss up to 50 % in terms of damaged kernels, but 

mycotoxin contamination still forms a constant risk to the food 

chain (Martin and Johnston 1982; Magan et al. 2002; Ramirez 

et al. 2004; Paul et al. 2008). Consequently, the development 

of resistant varieties is the most effective approach for 

managing FHB. Two major types of resistance have been 

classified: resistance to initial infection (Type I) and resistance 

to spreading within a spike (Type II, Schroeder and 

Christensen 1963). Mesterházy (1995) further described 

additional types of resistance. 

Fig. 1 Spike infected with FHB 

 

SEPTORIA TRITICI BLOTCH – A LEAF DISEASE ADVANCING FAST 
 

Septoria tritici blotch (STB), caused by Zymoseptoria tritici, is one of the most destructive foliar 

diseases of wheat (Eyal 1987; Eyal et al. 1987). Severe epidemics reduce yield and quality, and 

losses of up to 60 % have been reported for susceptible cultivars (Shipton et al. 1971; King et 

al. 1983; Eyal et al. 1985). STB was considered to be confined to Mediterranean-type climates 

with wet winters and temperate temperatures and in the ‘Great Plains’ of North America (Leath 

et al. 1993). In the recent years, STB is also spreading in the humid regions of the Maritimes 

Zones of Great Britain and Central Europe (Fones and Gurr 2015). This can be attributed to the 

widespread growing of early-maturing, short straw, susceptible cultivars, early sowing, 

increased nitrogen fertilizer, direct sowing, high summer rainfall and differential response to 

certain fungicides (Eyal 1999; Cools and Fraaje 2008; Torriani et al. 2009). Furthermore, long-

term effectiveness of major resistance genes is lacking (Ahmed et al. 1995; Jackson et al. 2000; 

McDonald and Linde 2002). However, even in STB-prone regions, severe epidemics arise 

sporadic making control strategies more challenging (Eyal 1999). Resistance breeding of 
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cultivars, which provide durable resistance to STB is the most 

preferable method for controlling the disease. 

 

 

 

 

 

 

 

 

 

Fig. 2 Leaves infected with STB 

 

REDUCING PLANT HEIGHT GENES 
 

In wheat, an agronomic trait of high importance is plant height. Plant height has a considerable 

influence on yield and quality traits as it determines the susceptibility to lodging. Therefore, 

over several decades, the development of short straw wheat has been an important breeding 

goal (Griffiths et al. 2012). During the ‘Green Revolution’ reducing plant height (Rht) or 

dwarfing genes had led to remarkable increases in grain yield and are intensively used in 

breeding programs worldwide (Hedden 2003). To date, more than twenty Rht genes have been 

identified in wheat, but most of them needs to be validated as their effects on agronomic traits 

have not been extensively examined (McIntosh et al. 2017). The most commonly utilized semi-

dwarfing alleles are Rht-B1b and Rht-D1b, which are located on the chromosomes 4B and 4D 

at homoeologous loci, respectively, and the allele Rht8c on chromosome 2D. These alleles, 

derived from the non-adapted cultivars ‘Norin 10’ and ‘Akakomugi’, respectively, act as 

repressors of growth and are present in approximately 50 % of the worldwide wheat cultivars 

(Gale and Youssefian 1985; Archard et al. 2006; Wilhelm et al. 2013). Wheat varieties with 

dwarfing alleles are highly resistant to lodging as they are defined by stiff and short straw. This 

enables a rise of the harvest index as agronomic methods, such as applications of pesticides, 

irrigation, and nitrogen, can be intensified. Additionally, the Rht-B1b and Rht-D1b dwarfing 

alleles are correlated with the main yield components as they increase grain size, grain number 

per ear, grain fertility, tiller number and, hence, lead to increasing wheat yield (Gale and 

Youssefian 1985; Flintham et al. 1997; Li et al. 2006). Cultivars carrying the semi-dwarfing 
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alleles of Rht-B1 and Rht-D1 are characterized by a reduction of sensitivity to gibberellic acid 

(GA) and, consequently, reduced plant height (Peng et al. 1999). In contrast, the widely used 

locus Rht8 is part of the GA sensitive dwarfing genes that restrain plant growth (Korzun et al. 

1998; Worland et al. 1998). 

 

ASSOCIATION OF FHB AND STB WITH AGRONOMIC TRAITS 
 

A negative relationship between plant height and FHB has been observed in many studies (Zhu 

et al. 1999; Draeger et al. 2007; Klahr et al. 2007; Voss et al. 2008; Buerstmayr et al. 2009; 

Srinivasachary et al. 2009; Yan et al. 2011; Lu et al. 2013). This reduced resistance is 

considered to be directly affected by (semi-) dwarfing alleles and not just indirectly by plant 

height per se (Draeger et al. 2007; Gosman et al. 2008; Voss et al. 2008; Srinivasachary et al. 

2009). Srinivasachary et al. (2009) reported, that the increase of FHB susceptibility was higher 

in presence of the semi-dwarfing allele Rht-D1b in comparison to the Rht-B1b allele. Miedaner 

and Voss (2008) announced reduced FHB resistance in varying degrees depending on the 

genetic background for the Rht alleles Rht-B1b and Rht-D1b. A negative association was further 

reported between FHB and heading date, inflorescence and anther extrusion (Zhu et al. 1999; 

Klahr et al. 2007; Skinnes et al. 2008; Buerstmayr et al. 2009; Lu et al. 2013). 

Several authors have shown a relationship between STB and both, plant height and heading 

date (Shaner et al. 1975; Tavella 1978; Rosielle and Brown 1979; Rosielle and Boyd 1985; 

Baltazar et al. 1990; Camacho-Casas et al. 1995). Shaner et al. (1975) observed that flag leaves 

often emerge on early-maturing cultivars when the weather conditions are favorable for the 

disease in early spring (cool temperatures and rain). Other authors assumed the association 

between heading date and STB due to genetic linkage (Rosielle and Boyd 1985; Baltazar et al 

1990). For this reason, the replacement of traditional tall cultivars by high-yielding, semi-dwarf 

varieties has increased severity levels in many parts of the world (Eyal 1987). However, 

Baltazar et al. (1990) observed differences in levels of resistance to STB depending on the 

present dwarfing gene. Simón et al. (2004) analyzed the influence of Rht genes on reaction to 

STB and detected no association with Rht‐D1b in two sets of near isogenic lines. The authors 

announced the association of reduced plant height and enhanced STB severity primarily to 

lower distances between leaf insertions, making inoculum transfer easier, but only in very short 

wheat genotypes carrying the dwarfing alleles of the loci Rht3 and Rht12, respectively. Arama 

et al. (1999), however, did not find genetic associations between plant height and STB severity 
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or heading date. Indeed, Van Beuningen and Kohli (1990) accounted these associations to 

epidemiological factors. 

Lower disease coverage on the upper leaves and ears, respectively, contributed by tall plant 

stature due to disease escape and late maturity, can be announced as one resistance factor 

(Mesterházy 1995; Eyal 1999). However, the requirements for modern wheat cultivars are early 

maturity and short straw. Dwarfing loci causing short and stiff straw in wheat without 

simultaneously reducing FHB and STB resistance are therefore urgently required. 

 

BREEDING FOR FHB AND STB RESISTANCES 
 

The development of resistant cultivars is considered to be the most promising method for the 

management of both diseases, FHB and STB. Nevertheless, phenotypic selection for both 

diseases by direct symptom evaluation is time- and labor-intensive (Miedaner et al. 2012). 

Furthermore, conventional breeding for STB resistance is complicated by the long latent period 

of the disease, a great variability in the pathogen population, and a certain degree of specifity 

(Perelló et al. 1991; Adhikari et al. 2004). Marker-assisted selection (MAS) has been assumed 

to be an appropriate alternative to phenotypic selection and this approach enhanced disease 

resistances when few quantitative trait loci (QTL) of at least intermediate effect were present 

(Del Blanco et al. 2003; Yang et al. 2003; Zhou et al. 2003; Adhikari et al. 2004; Chartrain et 

al. 2005; Miedaner et al. 2006; Anderson et al. 2007; Goodwin 2007; McCartney et al. 2007; 

Wilde et al. 2007; Von der Ohe et al. 2010; Salameh et al. 2011; Agostinelli et al. 2012; Balut 

et al. 2013). Indeed, MAS was successfully implemented for FHB resistance conferred by the 

major QTL Fhb1 in Northern American wheat breeding programs where this fungal disease has 

a very high economic impact (Steiner et al. 2017). Fhb1 as well as the major QTL Fhb5 

(formerly called Qfhs.ifa-5A) are both derived from the cross ‘Sumai#3’×‘Thornbird-S’ 

(Buerstmayr et al. 2002, 2003). Fhb1 belongs to Type II resistance while Fhb5 was described 

as Type I resistance. Both loci are located on chromosome 3BS and 5B, respectively 

(Buerstmayr et al. 2002, 2003). However, as strategy of targeting mostly single QTL or genes, 

the advantages of MAS are restricted, because (1) large-effect QTL are absent in European 

breeding material (Holzapfel et al. 2008; Buerstmayr et al. 2009; Löffler et al. 2009; Miedaner 

et al. 2011; Miedaner and Korzun 2012; Mirdita et al. 2015a), (2) the risk of fixing large 

genomic regions is given, especially when linkage disequilibrium (LD) is large as in wheat, and 

(3) a high selection pressure is exerted on the pathogen populations. Indeed, when STB 

resistance breeding has been concentrated on monogenic, isolate-specific resistances STB 
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resistance was readily overcome (Ahmed et al. 1995; Jackson et al. 2000; McDonald and Linde 

2002). Furthermore, experience with MAS in wheat indicates, that the effects of FHB QTL are 

often dependent on the genetic background and, thus, the potential of MAS to increase disease 

resistance occurs to be limited (Jiang et al. 2017). An additional obstacle hindering the broad 

application of MAS in the past were high genotyping costs. In recent years these costs have 

strongly declined making it possible to genotype large numbers of individuals with marker 

densities covering the entire genome (Elshire et al. 2011; Poland et al. 2012; Heslot et al. 2013). 

Genomic selection (GS), taking into account all QTL underlying a trait of interest, has been 

promoted as an alternative concept for selection of quantitative traits (Meuwissen et al. 2001; 

Goddard and Hayes 2007). Firstly, a large training population of intensively phenotyped 

individuals must be genotyped with a large number of genome-wide distributed markers. This 

training population is subsequently used to train a prediction model employing the marker 

genotypes as explanatory variables (Heffner et al. 2009; Jannink et al. 2010). This prediction 

model can finally be used to estimate genomic breeding values (GEBVs) for all genotyped 

selection candidates of whom no phenotypic information about traits of interest (e. g. grain 

yield or resistances to diseases) is available yet by summing up across all their estimated marker 

effects (Jannink et al. 2010). In this way, the GEBVs can support breeders in their selection 

decisions, by providing them more information about their breeding material in earlier phases 

of variety development. Indeed, GS has been shown to be promising for traits with complex 

inheritance which are controlled by many loci of small effect (Daetwyler et al. 2010; Jannink 

et al. 2010; Burgueño et al. 2012; González-Camacho et al. 2012). The ridge regression-best 

linear unbiased prediction (RR-BLUP) is a commonly used prediction model. This method 

shrinks all marker effects towards zero as it assumes that all markers share a common variance. 

Thus, the assumption of RR-BLUP is that many loci of small effect control a trait of 

investigation (Lorenz et al. 2011). However, when an appreciable proportion of the phenotypic 

variation is contributed by major QTL or genes, such as the QTL Fhb1 or Fhb5 for FHB 

resistance and the major genes Stb1-Stb8, Stb10-Stb12 or Stb15 for STB resistance (Goodwin 

2007), RR-BLUP may underestimate the variance connected with these major genes or QTL. 

In such cases, the Bayesian GS models can capture the variance more appropriately by treating 

markers of different effect size heterogeneously (Habier et al. 2011; Resende et al. 2012). 

However, a remarkable disadvantage of Bayesian GS methods is that they are computational 

highly demanding. An alternative method that treats known functional markers as fixed effects, 

called weighted RR-BLUP (wRR-BLUP), was proposed by several authors (Bernardo 2014; 

Rutkoski et al. 2014; Arruda et al. 2016; Spindel et al. 2016; Michel et al. 2018). 
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GS could provide a durable and higher quantitative disease resistance to FHB by supporting the 

accumulation of many alleles of small effect (Rutkoski et al. 2012; Arruda et al. 2015; Mirdita 

et al. 2015a and 2015b; Poland and Rutkoski 2016) and STB (Mirdita et al. 2015a; Juliana et 

al. 2017a). However, these promising results arise from cross-validation studies within diversity 

panels or single bi-parental populations and the true phenotypic performance can only be 

determined after selection in the next growing session. Commonly, 80 % of a given data set is 

sampled as training population and used to fit a GS model to predict the remaining 20 % of the 

data set forming the validation population of whom the available phenotypic data is masked. 

This method is usually repeated several hundred times with varying training and validation 

population combinations. Following, the prediction ability can be determined as the correlation 

between predicted and observed performance in the validation population, which might be 

divided by the square root of the heritability to yield prediction accuracy (Dekkers 2007). 

However, this procedure does not represent the circumstances in wheat breeding programs 

where many new bi-parental crosses of mostly small size are produced every year (Bernardo 

2003). So far, this fact is often given little attention in research (Bassi et al. 2016). In a recent 

study, Jiang et al. (2017) predicted FHB resistance among independent samples and yielded 

prediction accuracies comparable high to cross-validation. They assumed this result to be a 

consequence of the considerable relationship between the validation and the training set utilized 

in their study. Other independent validation studies are required, especially for important 

quantitative resistances to FHB and STB.
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OBJECTIVES 
 

The aim of this thesis was to investigate the potential of genomic selection across different 

genetic backgrounds, considering the reduced height loci Rht24, Rht-D1 and the FHB resistance 

QTL Fhb1 and Fhb5 and its success for improving disease resistances in winter wheat. 

 

In particular, the objectives were to 

 

(i) Evaluate the effect of the Rht24 locus on FHB and STB resistances, plant height, 

and heading date in comparison to Rht-D1 in the bi-parental winter wheat 

population ‘Solitär × Bussard’. 

(ii) Compare the effects of the Rht-D1, Fhb1 and Fhb5 loci on FHB resistance in a 

large pool of winter wheat lines. 

(iii) Analyze the prediction accuracy achieved by cross-validation in two large winter 

wheat populations and by within- and among-family prediction comparing the 

two prediction models RR-BLUP and wRR-BLUP for FHB and STB 

resistances, plant height and heading date. 

(iv) Quantify the genomic selection advantage and determine the percentage of 

correctly selected top 10 % individuals for FHB and STB resistances. 
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Abstract 

 

The introgression of the Green Revolution semi-dwarfing genes Rht-B1 and Rht-D1 led to 

spectacular increases in wheat grain yields. However, their application causes increased 

susceptibility to Fusarium head blight (FHB). Thus, Rht loci that hold the potential to reduce 

plant height in wheat without concomitantly decreasing FHB resistance are urgently required. 

The biparental population ‘Solitär × Bussard’ fixed for the Rht-1 wild-type alleles, but 

segregating for the recently described gibberellic acid (GA)-sensitive Rht24 gene, was analyzed 

to identify quantitative trait loci (QTL) for FHB severity, plant height, and heading date and to 

evaluate the effect of the Rht24 locus on these traits. The most prominent QTL was Rht24 on 

chromosome 6A explaining 51% of genotypic variation for plant height and exerting an additive 

effect of − 4.80 cm. For FHB severity three QTL were detected, whereas five and six QTL were 

found for plant height and heading date, respectively. No FHB resistance QTL was co-localized 

with QTL for plant height. In contrast to the Rht-1 semi-dwarfing alleles, Rht24b did not 

significantly affect FHB severity. This underlines, that the choice of dwarfing alleles is a crucial 

factor for breeding FHB resistant wheat varieties. 
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Abstract 

 

Short and stiff straw is an important breeding goal in wheat breeding programs to develop high 

yielding varieties. In Northern Europe, this aim is achieved by using one of the dwarfing genes 

Rht‐B1 or Rht‐D1. Both genes, however, result in a higher susceptibility to Fusarium head blight 

(FHB). We analysed the possibility to use the two non‐adapted FHB resistance quantitative trait 

loci Fhb1 and Fhb5 (syn. QFhs.ifa‐5A) to counterbalance the negative effect of the dwarfing 

allele Rht‐D1b in a winter wheat population of 585 doubled‐haploid (DH) lines segregating for 

the three loci. All genotypes were inoculated with Fusarium culmorum at four locations and 

analysed for FHB severity, plant height, and heading date. The DH population showed a 

significant (p < 0.001) genotypic variation for FHB severity ranging from 3.6% to 65.9% with 

a very high entry‐mean heritability of 0.95. The dwarfing allele Rht‐D1b reduced plant height 

by 24 cm, but nearly doubled the FHB susceptibility (24.74% vs. 12.74%). The resistance 

alleles of Fhb1 and Fhb5 reduced FHB susceptibility by 6.5 and 11.3 percentage points, 

respectively. Taken all three loci together, Fhb5b alone was already able to compensate the 

negative effect of Rht-D1b on FHB resistance. Marker-assisted introgression of Fhb5b might 

support semi-dwarf wheat breeding without decreasing FHB resistance. 

 

  



19 
 

4 PUBLICATION: GENOMIC SELECTION III 

 

 

ACCURACY OF WITHIN- AND AMONG-FAMILY GENOMIC 

PREDICTION FOR FUSARIUM HEAD BLIGHT AND SEPTORIA TRITICI 

BLOTCH IN WINTER WHEAT 

 

 

Cathérine Pauline Herter1, Erhard Ebmeyer2, Sonja Kollers2, Viktor Korzun2, Tobias 

Würschum1, Thomas Miedaner1 

 

 
1 State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599 Stuttgart, 

Germany 
2 KWS LOCHOW GmbH, Ferdinand-von-Lochow-Straße 5, 29303 Bergen, Germany 

 

 

 

Theoretical and Applied Genetics (2018) 132:1121-1135, doi: 10.1007/s00122-018-3264-6 

 

 

The original publication is available at 

https://doi.org/10.1007/s00122-018-3264-6 
 
 



20 
 

Abstract 

 

Genomic selection (GS) is a valuable breeding tool that holds the potential to enhance selection 

gain in breeding programs by reducing the cycle length and/or increasing the selection intensity. 

In this study, two winter wheat populations (DS1 and DS2) comprising 438 and 585 lines 

derived from six and eight bi-parental families, respectively, were genotyped with genome-

wide single nucleotide polymorphism markers and phenotyped for Fusarium head blight and 

Septoria tritici blotch severity, plant height and heading date. We used ridge regression-best 

linear unbiased prediction to investigate the potential of genomic selection under different 

selection constellations: prediction across each winter wheat population, within- and among-

family prediction in each population, and prediction from DS1 to DS2 and vice versa. 

Additionally, we compared a full random model to a model incorporating quantitative trait loci 

(QTL) as fixed effects. The prediction accuracies obtained by cross-validation within 

populations were moderate to high for all traits. Accuracies for individual families were in 

general lower and varied with population size and genetic architecture of the trait. In the among-

family prediction scenario, highest accuracies were achieved by predicting from one half-sib 

family to another, while accuracies were lowest between unrelated families. Our results further 

demonstrate that the prediction accuracy can be considerably increased by a fixed effect model 

approach when major QTL are present. In conclusion, the application of GS for Fusarium head 

blight and Septoria tritici blotch resistance breeding appears feasible, but the structure of the 

training population is a crucial factor for maintaining moderate prediction accuracies. 
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Abstract 

 

Genomic selection (GS) holds the potential to accelerate the breeding cycle by facilitating the 

rapid selection of superior genotypes based on marker data solely. However, reported realized 

gain from genomic selection is limited to few experiments. In this study, a training population 

of 1120 winter wheat lines derived from 14 bi-parental families was genotyped with genome-

wide single nucleotide polymorphism markers and phenotyped for Fusarium head blight (FHB) 

and Septoria tritici blotch (STB) severity, plant height and heading date. We used weighted 

ridge regression best linear unbiased prediction to calculate genomic estimated breeding values 

(GEBVs) of 2500 genotypes. Based on GEBVs, we selected the most resistant wheat lines as 

well as a random sample and tested them in a multi-location field trial. We computed moderate 

coefficients of correlation between observed and predicted trait values for FHB severity, plant 

height and heading date and achieved a genomic selection advantage of 10.62 percentage points 

for FHB resistance compared to the randomly chosen subpopulation. GS failed for the 

improvement of STB resistance with a genomic selection advantage of only 2.14 percentage 

points. Our results also indicate that the selection of new breeding parents based on GEBVs is 

not reliable. Taken together, the implementation of GS for FHB resistance, plant height and 

heading date seems to be promising. In contrast, for traits with very strong 

genotype × environment variance, like STB resistance, the application of GS appears to be still 

challenging. 
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6 GENERAL DISCUSSION 

 

The development of resistant cultivars through accumulation of resistance QTL is the most 

effective approach for managing FHB and STB leading to the enhancement of yield stability. 

However, resistance breeding faces several problems including labor- and time-intensive 

disease evaluations, negative associations of both diseases with plant height, and for STB a long 

latent period of the disease and a lacking durability of major resistance genes. Genomic 

selection (GS) has been examined in several studies for agronomic traits and appears to be a 

promising breeding tool in diverse crops. 

The aim of this study was to improve the potential of resistance breeding for FHB and STB by 

employing GS as breeding tool, by analysis of the recently detected dwarfing gene Rht24 as an 

alternative to the widely used locus Rht-D1, and by examination if the non-adapted FHB 

resistance QTL Fhb1 and Fhb5 might counteract the negative effect of Rht-D1 on FHB 

resistance. 
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RHT24 AND ITS ASSOCIATION WITH PLANT HEIGHT AND FHB 
 

The recently on chromosome 6A characterized gibberellic acid (GA) sensitive dwarfing gene 

Rht24 appears in wheat varieties from USA, China, and Europe (McIntosh et al. 2017; Tian et 

al. 2017; Würschum et al. 2017a). Würschum et al. (2017a) reported, that the allele Rht24b is 

already extensively utilized in breeding programs worldwide as it was found in 67 % of the 

cultivars registered since 1990. The dwarfing allele, formerly called QPH.caas-6A (Li et al. 

2015), is associated with increased number of spikes and kernel number per spike to a similar 

extent as Rht-D1 and further with thousand-kernel weight (Li et al. 2015; Tian et al 2017). 

Negative effects of Rht-B1b, Rht-D1b and Rht8b on FHB resistance have been reported by 

several authors (e. g. Miedaner and Voss 2008; Srinivasachary et al. 2009; Mao et al. 2010; 

Buerstmayr and Buerstmayr 2016) and were confirmed for Rht-D1b in this study (Chapter 2). 

Genotypes carrying Rht-D1b revealed on average 10.05 percentage points more disease 

symptoms than individuals carrying the wild type allele. Therefore, a strong negative 

association between FHB and plant height was detected in the bi-parental family ‘History × 

Rubens’ segregating for the locus Rht-D1 (Chapter 2). The reinforcing effects on FHB severity 

of the dwarfing allele of Rht-B1 and very likely also of Rht-D1, are directly caused by the 

mutated DELLA proteins that reduce the sensitivity to the growth promoting hormone GA, but 

also enhance Type 1 susceptibility to FHB in comparison to the wildtype alleles (Saville et al. 

2012). In contrast to these dwarfing alleles, reduced resistance to FHB was not associated with 

Rht24b (Chapter 2) or STB (data not shown), but reduced plant height by 8.96 cm and explained 

51 % of the genotypic variation. Thus, in the bi-parental family ‘Solitär × Bussard’, which 

segregated for the GA sensitive dwarfing locus Rht24, but fixed for the Rht-B1 and Rht-D1 

wildtype alleles, no association between FHB and plant height was observed. As quantitative 

traits, plant height and FHB in bread wheat are regulated by a large number of small-effect QTL 

besides the Rht genes (Löffler et al. 2009; Buerstmayr et al. 2009; Mao et al. 2010; Reif et al. 

2011; Griffiths et al. 2012; Würschum et al. 2015; McIntosh et al. 2017; Würschum et al. 

2017a). In general, adverse effects on FHB resistance by small-effect QTL for plant height 

occur occasionally (e. g. Gervais et al. 2003; Paillard et al. 2004; Schmolke et al. 2005; 

Holzapfel et al. 2008). Thus, lines of short plant stature appeared to be less resistant. In this 

experiment, four and three small-effect QTL were detected for plant height and FHB resistance, 

respectively (Chapter 2). None of these QTL were co-localized. Notably, artificial inoculation 

was applied from above. Plant height might considerably affect FHB severity in case of natural 

infection. Passive resistance mechanisms have been assumed for tall plants, such as the different 
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microclimate in ear height, an enhanced distance of the ears to the soil, or different canopy 

structure (Mesterházy 1995; Mao et al. 2010). Nevertheless, Hilton et al. (1999) and Gosman 

et al. (2008) found no differentiation in relative humidity at ear level between wheat lines of 

different plant height, indicating that varying degrees of FHB resistance cannot be explained 

by the microclimate alone. The findings of this experiment confirm that reduced resistance to 

FHB is not commonly a cause of plant height per se, but rather a direct effect of GA-insensitive 

Rht-1 alleles. This demonstrates that in breeding programs the choice of dwarfing genes must 

be carefully considered when improved FHB resistance is a relevant breeding goal and breeders 

must select the appropriate dwarfing source that may confer resistance. However, in a large 

panel of 1,110 worldwide winter wheat cultivars, 44 % of the varieties carrying Rht24b where 

also carrier of the Rht-B1 or Rht-D1 dwarfing alleles (Würschum et al. 2017a). This indicates 

that Rht24b is often used to further decrease plant height in combination with other semi-

dwarfing alleles rather than replacing them. 

 

THE POTENTIAL OF FHB1 AND FHB5 QTL FOR BREEDING PROGRAMS 
 

FHB resistance as quantitative trait is regulated by mostly small-effect QTL. More than 200 

resistance QTL have been mapped to date, but only few major QTL have been described 

(Buerstmayr et al. 2009). The most prominent are Fhb1 and Fhb5 (Buerstmayr et al. 2002, 

2003). While being widely used in North America (Steiner et al. 2017), so far only the cultivar 

‘Jaceo’ has been developed in Europe carrying Fhb1b, but was deleted from the French 

Recommended list shortly thereafter. One reason may be that the introgression of these non-

adapted QTL also implies disadvantages through linkage drag. Von der Ohe et al. (2010) 

observed that the alleles Fhb1b and Fhb5b slightly negatively affect grain yield in backcross 

populations of two elite high-yielding cultivars. However, this adverse effect was significant 

only in one population and both loci might be appropriate QTL for counterbalancing the 

increased FHB susceptibility affected by the semi-dwarfing allele Rht-D1b in high-yielding 

environments. In a highly FHB susceptible background, Fhb5b alone was able to compensate 

the negative effect of Rht-D1b on FHB resistance, whereas Fhb1b could not counterbalance 

this negative impact (Chapter 3). Contrary to this result, Lu et al. (2011) announced that Fhb1b 

and Fhb5b are both necessary for counterbalancing the increased FHB susceptibility through 

Rht-D1b. This opens up the possibility of developing semi-dwarf wheat without reducing FHB 

resistance as molecular markers for Fhb5 are available enabling the marker-assisted 

introgression of this locus (Buerstmayr et al. 2018). The result of this study is in accordance 
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with Von der Ohe et al. (2010), who also reported that Fhb5b affected FHB resistance to a 

higher extent than Fhb1b, though the difference was not significant in their study. The group 

further observed that in one backcross population the combination of Fhb1b + Fhb5b led to a 

significant loss of grain yield of 4 % while the progenies with Fhb5b alone yielded to the same 

extent as the progenies without any of these resistance alleles. Therefore, in practical wheat 

breeding programs, the utilization of the resistance allele of Fhb5 would support the selection 

of semi-dwarf, FHB-resistant progenies and, thus, provide a valuable basis for the prospective 

development of cultivars. However, experiments reporting effects of Fhb5 on important 

agronomic traits are limited to the study of von der Ohe et al. (2010). Studies investigating the 

effect of Fhb5 in diverse genetic backgrounds are needed as they would evaluate the potential 

application in European breeding programs. 

 

BREEDING PROGRESS BY GENOMIC SELECTION 
 

When resistance to a disease is based on monogenic resistance, it puts high selection pressure 

on the respective pathogen to broken down resistance. Indeed, e. g. breeding history for STB 

has shown that resistance was readily overcome when achieved through one major QTL or gene 

alone (Ahmed et al. 1995; Jackson et al. 2000; McDonald and Linde 2002). Thus, durable 

resistance should be attained through the accumulation of native minor resistance QTL in 

combination with major QTL. However, conventional recurrent selection procedures aiming 

for this goal are time-consuming. GS might be the right tool to facilitate resistance breeding as 

it is possible to predict breeding values of a much larger number of genotypes than by visual 

scoring. Indeed, GS has been proven to be a powerful method for increasing the prediction 

accuracies for FHB and STB resistances in cross validation studies (Rutkoski et al. 2012; 

Arruda et al. 2015; Mirdita et al. 2015a and 2015b; Poland and Rutkoski 2016; Juliana et al. 

2017a). Besides this approach, in this experiment, the potential of within- and among-family 

predictions was investigated, which is a much more realistic scenario of using GS in a plant 

breeding program (Wegenast et al. 2008; Würschum 2012). In accordance with previous 

findings, prediction accuracies achieved through cross-validation of a diversity panel were 

promising for FHB and STB resistances, plant height and heading date and increased with 

decreasing genetic complexity of the trait (Chapter 4; Rutkoski et al. 2012; Würschum et al. 

2014; Arruda et al. 2015; Mirdita et al. 2015a and 2015b; Zhang et al. 2015; Michel et al. 2016; 

Poland and Rutkoski 2016; Juliana et al. 2017a; Würschum et al. 2017b). The prediction 

accuracies evaluated within individual families were lower than those across families (cross-
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validation of a diversity panel) for all traits and differed between families likely due to varying 

population sizes, genetic architecture of the trait under investigation, as well as the number of 

segregating markers. The prediction accuracies among families were assessed by using one bi-

parental family as training set and predicting another bi-parental family and were usually lower 

than prediction accuracies achieved within families. In general, prediction accuracies were 

higher between half-sib families than between unrelated bi-parental populations. In line with 

these observations, studies have been shown that better prediction results are caused by a higher 

average kinship between validation and training population (Lehermeier et al. 2014; Lorenz 

and Smith 2015; Han et al. 2016; Würschum et al. 2017b). Especially shared major QTL like 

Rht-D1 between populations had a considerable influence on enhancing the prediction accuracy 

(Chapter 4). In this study, furthermore, the impact of two different GS models on prediction 

accuracy was examined. The first model was the commonly used RR-BLUP method, 

considering all markers as random effects. The second prediction model was wRR-BLUP, 

which assumes significant markers as fixed effects and all remaining markers as random effects. 

Significant markers were detected by a genome-wide association scan (GWAS) as proposed by 

Spindel et al. (2016). The upweighting of significant markers improved prediction accuracies 

when large-effect QTL were present (Bernardo 2014; Rutkoski et al. 2014; Zhao et al. 2014; 

Arruda et al. 2016; Boeven et al. 2016; Losert et al. 2016; Spindel et al. 2016; Juliana et al. 

2017b; Moore et al. 2017; Michel et al. 2018). In accordance with these results, this work 

suggests that prediction accuracies for heading date, plant height, FHB and STB resistances in 

wheat can be enhanced by the utilization of prior information about QTL-targeted markers. 

Hence, the wRR-BLUP model should be the preferred GS model. Indeed, the incorporation of 

QTL, identified by the GWAS, into the model led to considerable increases of prediction 

accuracy. Strong improvements of prediction accuracy especially occurred when conducting 

cross-validation in individual families and by predicting one segregating family to another 

segregating family. However, the fixed model approach decreased the prediction accuracy in 

comparison to the full random model method in some prediction constellations. This only 

occurred when the prediction accuracy yielded by a full random model was already low 

(Chapter 4) and is likely the consequence of the incorporation of inaccurate markers which are 

not important in the validation set or due to epistasis (Spindel et al. 2016; Michel et al. 2018). 

For low heritable traits like grain yield, significant marker-trait associations are often not 

repeatable across years even in large mapping populations (He et al. 2016a) and modelling them 

as fixed effects might thus introduce an error putatively decreasing the prediction accuracy 

(Michel et al. 2018). In this study, however, the usage of a fixed model was never 
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disadvantageous when the prediction accuracies were already moderate to high, indicating that 

this approach should be the method of choice (Chapter 4). The results of this study illustrate 

that GS can be used for predictions within bi-parental families and within gene pools, which 

represent the germplasm of a breeding program. However, the prediction accuracies within 

families differed considerably between the cross-validation runs, illustrating that the 

composition of the training set is a crucial factor for the correct calculation of genomic 

estimated breeding values (GEBVs). So far, it appears to be not possible to identify a superior 

training population based on marker data solely (Marulanda et al. 2015). Predictions from one 

family to another seem less beneficial in unrelated and even half-sib families. 

 

REALIZED GAIN FROM GENOMIC SELECTION 
 

The majority of recent studies present the success of GS as estimation of prediction accuracy, 

but this method, does not represent the circumstances in plant breeding programs. While the 

prediction accuracy is an useful indicator for the performance of a model, it does not reply to 

the most urgent questions of a breeder: What is the percentage of the top individuals correctly 

selected for a given trait? Is it possible to select breeding parents based on their GEBVs? How 

much realized selection gain can be achieved by the GS approach? Hence, predictions must be 

validated in critical experiments. So far, there have been only a few studies reporting realized 

gain from GS in wheat and maize and none for FHB or STB resistances (Combs and Bernardo 

2013; Massman et al. 2013; Beyene et al. 2015; Rutkoski et al. 2015; Michel et al. 2017). Combs 

and Bernardo (2013) found that GS led to better mean performance of grain yield in maize 

compared with phenotypic backcrossing. Massman et al. (2013) reported that GS provided 

superior response for stover yield and grain yield and stover indices by 14 to 50 % over marker-

assisted recurrent selection in a bi-parental temperate maize population. Beyene et al. (2015) 

announced that GS yielded higher genetic gains for tropical maize grain yield under drought 

stress in comparison to a pedigree-based conventional phenotypic selection (PS). Rutkoski et 

al. (2015) and Michel et al. (2017) found gain from GS to be similar to gain from PS for stem 

rust in spring wheat and wheat grain yield in winter wheat, respectively. In this study, the 

GEBVs of 2,500 untested genotypes were calculated based on a partially related training 

population of 1,120 genotypes. The most resistant FHB and STB individuals were genomically 

selected in comparison to a random sample under consideration of plant height. A main 

breeding goal in Middle Europe is semi-dwarf wheat, however, a strong negative association 

between FHB resistance and plant height was observed (Chapter 5). Therefore, in this study a 
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moderate culling level of 96.93 cm representing the average GEBVs for plant height of the 

whole validation population plus 5 % was applied to avoid the selection of too tall genotypes 

that are not accepted by agronomic practice. For FHB resistance, a genomic selection advantage 

of 10.62 percentage points in comparison to the random sample was achieved, indicating that 

GS is a promising approach for that trait (Chapter 5). However, GS failed to improve resistance 

to STB and the coefficient of correlation between predicted and observed FHB severity was 4.8 

times higher than for STB severity. These results are in accordance with Mirdita et al. (2015b), 

who reported a three times larger prediction accuracy for FHB than for STB resistance in an 

independent validation study when predicting a less related test set. Stable and high prediction 

trait accuracies are apparently preferable, however, when high genotype-by-environment 

interactions are present, accurate predictions are difficult to attain. Promising prediction 

accuracies for STB resistance achieved in cross-validation studies so far (Mirdita et al. 2015a; 

Juliana et al. 2017a) are likely a result from overestimation as genotypes from the training 

population and validation population are tested in the same environment (Storlie and Charmet 

2013; Krchov et al. 2015). Indeed, the heritability of STB was lower than that of FHB, because 

of a strong genotype-by-location interaction variance explaining the highest proportion of 

variation for that trait as a result of highly differing weather conditions between locations and 

the much higher demand of STB for humidity during inoculation compared to FHB (Chapter 

5). This makes the use of GS for STB resistance even more challenging. In plant breeding 

programs, the appropriate selection of the most promising genotypes for advanced field trials 

is a crucial factor for the successful development of cultivars. It is further an urgent question of 

a plant breeder, whether it is possible to select superior breeding parents by GS as it is already 

a standard procedure in livestock breeding (Hayes et al. 2009). The identification of crossing 

parents based on GEBVs in early generations would lead to shorter breeding cycles, because it 

would not be longer necessary to wait for higher generations to phenotype quantitative traits 

(Heffner et al. 2009; Bassi et al. 2016; Poland and Rutkoski 2016). The results of this study 

indicate that the selection of breeding parents based on GEBVs for high FHB resistance seems 

not to be sufficiently reliable as the percentage of correctly genomically selected individuals 

among the observed 10 % top individuals for the whole selection population was only 19 %. 

However, Michel et al. (2017) reported that the possibility of selecting the best performing lines 

was much higher by GS than by conventional PS for grain yield in wheat for advanced field 

trials in several environment. 
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THE IMPLEMENTATION OF GENOMIC SELECTION INTO BREEDING 
PROGRAMS 
 

GS has been proposed as valuable breeding tool for traits controlled by many QTL of 

predominantly small effects. Hence, quantitative FHB and STB resistances appear to be 

appropriate target traits. Many suggestions about the implementation of GS into breeding 

programs have been made as its broad application possibilities allow different strategies 

(Heffner et al. 2009, 2010; Nakaya and Isobe 2012; Longin et al. 2015; Rutkoski et al. 2015; 

Bassi et al. 2016; Marulanda et al. 2016; Poland and Rutkoski 2016; Spindel et al. 2016). In 

general, it is assumed that GS is conducted in early generations of a breeding scheme before 

applicating advanced field trials. Breeders can, therefore, consider the reduction of traditional 

field trials by GS to save phenotyping costs (Endelman et al. 2014). Two possible GS 

implementation scenarios into a wheat breeding program based on double haploid technique 

are shown in Figure 3. The breeding cycle begins with the identification and intermating of 

inbred parents taking into account all desired target traits. From their crossing offspring (F1) 

double haploid plants (D0) are developed. These plants are genotyped and a GS model is applied 

for the prediction of their GEBVs for all target traits including necessary single genes, like Rht 

and photoperiod response (Ppd) alleles. Two scenarios are conceivable: In the breeding scheme 

A, culling of the worst performing genotypes takes place. In breeding scheme B, new crossing 

parents are selected based on GEBVs. However, in this study the percentage of correctly 

genomically selected top individuals for FHB resistance was only 19 % and failed for STB 

resistance (Chapter 5) and, thus, evidence is required to test for the efficiency of GS for the 

selection of new breeding parents and the applicability of breeding scheme B. In both breeding 

schemes, all sets of genomically positive selected D1 seeds, each derived from one D0 plant, are 

planted in single rows at two to three locations for selection of highly heritable traits. Generation 

D2 and D3 are phenotyped in replications and multi-location wise for grain yield, baking quality 

and other low-heritable traits and genotyped, because their trait values are used to update the 

GS model for all measured traits. In generation D4 already the first year of testing the value for 

cultivation and use takes place. Each stage in the breeding pipeline is characterized by a 

decrease in the overall number of genotypes and increase in the level of field testing. In breeding 

scheme A, new crossing parents are phenotypically selected based on generation D2 and D3. 

These two GS applications are applicable for all target traits and the application of GS in early 

breeding cycles makes it especially attractive for traits which are normally tested in later 

generations. Some traits like FHB and STB resistances (Chapter 4 and 5, Jiang et al. 2014; 

Mirdita et al. 2015a, 2015b) or frost tolerance (Sieber et al. 2014; Sieber et al. 2016) cannot be 
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observed every year and special tests are necessary. GS might further greatly support selection 

for abiotic stress tolerances like drought or heat stress, when large, adequate training 

populations are available. Otherwise, such traits must be phenotyped under special labor- and 

cost-intensive conditions in higher generations (Ziyomo and Bernardo 2013; Beyene et al. 

2015; Vivek et al. 2016). Thus, GS gives the potential of selecting lines with desired traits in 

early breeding generations showing better yield stability under biotic and abiotic stress 

conditions in the future (Wang et al. 2015; Huang et al. 2016). Here, the GS model under 

application must be considered. In this study, wRR-BLUP has shown to be an effective method 

for FHB resistance, plant height and heading date (Chapter 4 and 5). However, this model failed 

to improve resistance to STB. The year 2018 in which the selection population was tested, was 

the warmest year since begin of weather records with extremely low precipitation (DWD 2018) 

making successful inoculation with STB more challenging and causing strong genotype × 

environment interactions (GE). These conditions might be one reason why GS was less 

effective for STB than for FHB resistance. An alternative method for traits with strong GE is 

the incorporation of the respective effects into the prediction model to increase accuracy (Zhang 

et al. 2015). Modeling epistatic effects might further provide a significant advantage (Jiang and 

Reif 2015, Mirdita et al. 2015b). Mirdita et al. (2015b) yielded higher prediction accuracies for 

STB resistance in comparison to RR-BLUP when applying an extended genomic best linear 

unbiased prediction model which explicitly modeled epistasis (EG-BLUP; Jiang and Reif 2015) 

or reproducing kernel Hilbert space regression (RKHSR; Gianola et al. 2006), which also 

captures epistatic effects among markers (Gianola and van Kaam 2008; Morota and Gianola 

2014; Jiang and Reif 2015). Additionally, a crucial factor for maintaining high prediction 

accuracies is a high degree of relatedness between validation and training set (Asoro et al. 2011; 

Nakaya and Isobe 2012; Lehermeier et al. 2014; Lorenz and Smith 2015; Han et al. 2016; 

Würschum et al. 2017b). This study has shown that predictions among families appear to be 

not reliable, even in half-sib families, while predictions within families were a more promising 

approach (Chapter 5) as recently also reported by Würschum et al. (2017b). Moreover, breeders 

broaden their breeding pools by the steadily introgression of foreign plant material (Sallam et 

al. 2015; He et al. 2016b; Michel et al. 2017). This leads to an uncertain structure of the breeding 

populations. Simulation studies (Habier et al. 2013) and empirical experiments (Lorenz and 

Smith 2015) investigated the effects on the prediction accuracy when distant relatives are added 

to the GS models. The results explicitly illustrate a decrease of prediction accuracy with 

declining degree of relatedness. Thus, GS might be a useful tool to predict traits within bi-

parental populations (Lorenzana and Bernardo 2009; Heffner et al. 2011; Krchov and Bernardo 
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2015). By applying GS, the number of individuals could be enhanced enabling an increase of 

selection intensity given that GS is cheaper than phenotypic evaluation. When foreign 

germplasm was integrated into the breeding program which is currently not present in the 

training population, each bi-parental family could be parted into one fraction to be phenotyped 

and genotyped forming the training population and one fraction to be genotyped only and 

predicted as validation population. The advantage of this approach is represented by the low 

marker density needed as extensive linkage disequilibrium enables genome-wide marker 

coverage to be achieved with little expense in wheat (Jannink et al. 2010; Heffner et al. 2011). 

However, an unfavorable effect is the extension of the breeding cycle as the first generation of 

offspring needs to be phenotyped before performing GS. Hence, a multifamily GS approach 

that uses predictions from a training population consisting of advanced breeding lines from 

many families that have passed the breeding program would be preferable as described above. 

 

In conclusion, several opportunities how to implement GS into a breeding program do exist and 

it is mainly a decision of management, the cost-benefit ratio, and the priorities of the respective 

breeder. Moreover, a crucial factor determining long-term response to selection is the 

maintaining of genetic diversity in a breeding program (Cowling 2013). GS has shown to 

provide similar gain as phenotypic selection but resulted in a significantly higher reduction of 

genetic variance especially at loci with large effect (Rutkoski et al. 2015; Sallam and Smith 

2016). Therefore, experiments investigating long-term response to genomic selection are 

urgently required to support breeder´s decisions. 
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Fig. 3 Breeding scheme of winter wheat under application of double haploid technique and genomic selection (GS). Two possible implementation steps of GS are 
illustrated. A GS either is applied for culling the worst performing D0 individuals or B to identify new breeding parents.



34 
 

7 SUMMARY 

Fusarium head blight (FHB) and Septoria tritici blotch (STB) are devastating cereal diseases 

reducing quality and yield in Central Europe. As both traits are predominantly quantitatively 

inherited, resistant cultivars are developed by the accumulation of quantitative trait loci (QTL). 

Conventional recurrent selection procedures aiming for this goal are labor- and time-

consuming. Furthermore, resistance breeding is complicated by the long latent period of STB, 

a great variability of the pathogen populations and a negative association between reduced 

height (Rht) genes and both diseases. The resistance breeding progress could be supported by 

the utilization of major QTL in addition to minor QTL. Indeed, the non-adapted major FHB 

resistance QTL Fhb1 and Fhb5, derived from Chinese wheat, have been successfully 

implemented in North American breeding programs. In European companies, however, these 

QTL are not currently used. Rht loci that provide the agronomical important short plant stature 

without adverse effects on FHB and STB resistances are further urgently required. As 

alternative strategy to pure phenotypic selection, genomic selection (GS) has been proposed to 

facilitate breeding progress. This method enables the prediction of trait values of a much larger 

number of genotypes at lower costs than by visual scoring. Several studies have demonstrated 

the potential of GS to increase prediction accuracy of FHB and STB resistances in cross-

validation studies. Experiments investigating the potential of genomic selection across different 

populations and its success for improving disease resistance are lacking. Hence, the aims of this 

study were to improve selection for FHB and STB resistances by (i) evaluating the effect of the 

recently described dwarfing locus Rht24 in comparison to the widely used Rht-D1 on FHB and 

STB resistances, plant height, and heading date for the first time, (ii) investigating the potential 

of the non-adapted QTL Fhb1 and Fhb5 for breeding semi-dwarf wheat, (iii) analyzing the 

prediction accuracy achieved by within- and among-family prediction comparing the models 

ridge regression-best linear unbiased prediction (RR-BLUP) and weighted RR-BLUP (wRR-

BLUP), and (iv) computing the advantage from genomic selection and determine the percentage 

of correctly selected top 10 % individuals for FHB and STB resistances. 

The results of this study demonstrated that the most recently described gibberellic acid sensitive 

dwarfing gene Rht24 on chromosome 6A reduces plant height by 8.96 cm without adverse 

effects on FHB and STB resistances. Further, no association with heading date was observed. 

In contrast, Rht-D1b decreased FHB resistance by 10.05 percentage points. This work has 

further shown, that the resistance alleles of Fhb1 and Fhb5 reduced FHB severity by 6.54 and 

11.33 percentage points, respectively, and that the non-adapted allele Fhb5b alone was able to 
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counterbalance the negative impact of Rht-D1b on FHB resistance in a population consisting 

of eight bi-parental families segregating for these resistance loci. This indicates that in breeding 

programs the choice of semi-dwarfing and FHB resistance genes is of crucial importance where 

improvement of FHB resistance is a relevant breeding goal and breeders must select the 

appropriate dwarfing source that may confer resistance. In this study, furthermore, the potential 

of GS within and among families was investigated. The prediction accuracies evaluated within 

individual families were higher than those among families for all traits and differed between 

families and prediction constellations. The upweighting of significant markers by using the 

wRR-BLUP model was superior to the commonly used RR-BLUP model when large effect loci 

like Rht-D1 or Fhb5 were present. In this study, the genomic estimated breeding values 

(GEBVs) of 2,500 untested genotypes were calculated based on a partially related training 

population of 1,120 genotypes and the 10 % most resistant FHB and STB individuals were 

selected as well as a random sample under consideration of plant height. The best linear 

unbiased estimators (BLUES) of the selected genotypes were evaluated at four ecologically 

different locations relative to a randomly selected sample of genotypes. For FHB resistance, a 

genomic selection advantage of 10.62 percentage points relative to the random sample was 

achieved. However, GS improved resistance to STB only by 2.14 percentage points. The results 

of this study indicate that a rigorous selection of breeding parents based on GEBVs for high 

FHB resistance seems not to be sufficiently reliable as the percentage of correctly selected 

individuals of the observed 10 % top individuals for the whole selection population was only 

19 %. 

In summary, GS has shown to be a valuable tool to support the breeding progress for the 

complex inherited FHB resistance over short cycles and increased population sizes. Increased 

resistance to FHB in winter wheat could be achieved by that approach in combination with the 

choice of the appropriate dwarfing source and the potential use of the non-adapted QTL Fhb5. 
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8 ZUSAMMENFASSUNG 

Ährenfusarium (FHB) und die Septoria-Blattdürre (STB) sind verheerende 

Getreidekrankheiten, die in Mitteleuropa zu erheblichen Qualitäts- und Ernteverlusten führen 

können. Da beide Krankheiten überwiegend quantitativ vererbt werden, können resistente 

Sorten durch die Akkumulation von QTL (quantitative trait loci) entwickelt werden. Dies kann 

durch rekurrente Selektion erreicht werden, die jedoch zeit- und arbeitsintensiv ist. Zusätzlich 

wird die Resistenzzüchtung durch die lange Latenzperiode von STB, eine große Variabilität der 

Pathogenpopulationen und einem negativen Zusammenhang zwischen Reducing height (Rht)-

Genen und Resistenzen erschwert. Eine zusätzliche Nutzung von Major-QTL könnte den 

Zuchtfortschritt unterstützen. In Nordamerika wurden dafür Fhb1 und Fhb5 aus chinesischem 

Weizen bereits erfolgreich genutzt. Europäische Unternehmen haben diese QTL bisher nicht in 

ihr Zuchtmaterial implementiert. Rht-Gene, die die agronomisch notwendige Kurzstrohigkeit 

bewirken und dabei die FHB- und STB-Resistenzen nicht mindern, werden zusätzlich dringend 

benötigt. Die genomische Selektion (GS) stellt eine Alternative zur reinen phänotypischen 

Selektion dar und ihre Anwendung ermöglicht eine Beschleunigung des Zuchtfortschritts, da 

diese Methode die Vorhersage von Selektionsmerkmalen einer größeren Anzahl von 

Genotypen ermöglicht als phänotypisch im Feldversuch getestet werden könnte. Mehrere 

Kreuzvalidierungsstudien haben gezeigt, dass die GS das Potenzial trägt, die 

Vorhersagegenauigkeit (prediction accuracy) für FHB- und STB-Resistenzen zu erhöhen. 

Experimente, die das Potential der GS für die Vorhersage zwischen verschiedenen 

Populationen und den genomischen Selektionsgewinn untersuchen, beschränken sich bisher auf 

wenige Studien. Daher waren die Ziele dieser Arbeit (i) die erstmalige Evaluierung des Effekts 

des Zwerggens Rht24 auf FHB- und STB-Resistenzen, Wuchshöhe und Ährenschieben im 

Vergleich zum weit genutzten Locus Rht-D1, (ii) die Untersuchung des Potenzials der nicht-

adaptierten QTL Fhb1 und Fhb5 für die Entwicklung von Kurzstrohweizen, (iii) die Analyse 

der Vorhersagegenauigkeit von GS innerhalb und zwischen Familien durch die Anwendung der 

beiden Modelle RR-BLUP (ridge-regression best linear unbiased prediction) und wRR-BLUP 

(weighted RR-BLUP) und (iv) die Berechnung des Selektionsgewinns bzw. die Bestimmung 

der korrekt selektierten Top-10 %-Genotypen für FHB- und STB-Resistenzen durch GS. 

Die Ergebnisse dieser Studie zeigten, dass das gibberellinsäuresensitive Zwerggen Rht24 auf 

Chromosom 6 die Wuchshöhe um durchschnittlich 8,96 cm senkte, ohne dabei die FHB- und 

STB-Resistenzen oder den Zeitpunkt des Ährenschiebens ungünstig zu beeinflussen. 

Demgegenüber senkte das weitläufig verwendete Allel Rht-D1b die FHB-Resistenz um 



37 
 

durchschnittlich 10,05 Prozentpunkte in einer Winterweizenpopulation bestehend aus acht 

biparentalen Familien, die für diese Resistenzloci segregierten. Diese Arbeit hat zusätzlich 

aufgezeigt, dass die Resistenzallele von Fhb1 und Fhb5 die FHB-Anfälligkeit um 6,54 bzw. 

11,33 Prozentpunkte reduzierten und somit bereits allein das nicht-adaptierte Allel Fhb5b in 

der Lage ist, den negativen Effekt von Rht-D1b auf die FHB-Resistenz im untersuchten 

Material auszugleichen. Das verdeutlicht, dass die Wahl der Zwerg- und Resistenzgene in 

Zuchtprogrammen, in denen FHB-Resistenz ein Selektionsmerkmal ist, von entscheidender 

Bedeutung ist. In dieser Studie wurde des Weiteren das Potenzial der GS innerhalb und 

zwischen Familien untersucht. Die Vorhersagegenauigkeiten innerhalb einer Familie waren für 

alle Zielmerkmale höher als die zwischen Familien und unterschieden sich zwischen den 

einzelnen Familien und Vorhersagekonstellationen. Die stärkere Gewichtung von signifikanten 

Markern durch das wRR-BLUP-Modell führte zu einer Verbesserung der 

Vorhersagegenauigkeit im Vergleich zum weit genutzten RR-BLUP-Modell, wenn einzelne 

Gene, wie Rht-D1, oder Major-QTL, wie Fhb5, vorhanden waren. In dieser Studie wurden die 

genomisch geschätzten Zuchtwerte (GEBVs) von 2.500 ungeprüften Genotypen bestimmt, 

basierend auf einer partiell verwandten Trainingspopulation von 1.120 Genotypen. Die 10 % 

FHB- und STB-resistentesten Linien und eine zufällige Stichprobe wurden unter 

Berücksichtigung der Wuchshöhe genomisch selektiert und phänotypisch in einem vierortigen 

Feldversuch evaluiert. Für die FHB-Resistenz wurde ein Selektionserfolg von 10,62 

Prozentpunkten relativ zur zufällig selektierten Populationsstichprobe ermittelt. Die GS erhöhte 

die STB-Resistenz allerdings nur um 2,14 Prozentpunkte. Auch die Selektion von neuen 

Kreuzungseltern auf der Basis von GS erscheint nicht ausreichend zuverlässig, da nur 19 % der 

Top-10 %-Individuen korrekt selektiert wurden. 

Zusammenfassend stellt die GS ein wertvolles Werkzeug dar, um den Zuchtfortschritt für die 

komplex vererbte FHB-Resistenz über kürzere Zyklen und größere Populationen zu 

unterstützen. In Kombination mit der Nutzung geeigneter Zwerggene und des nicht adaptierten 

QTL Fhb5 kann dadurch eine Steigerung der FHB-Resistenz im Winterweizen erzielt werden. 
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