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1 General introduction 

Triticale (×Triticosecale Wittmack) is an artificially produced allopolyploid 

small-grain cereal (Mergoum et al. 2009) and first artificial but sterile crosses 

were reported in 1875 (Wilson 1876; Mergoum et al. 2009). The first fertile triticale 

genotypes (Rimpau 1891; Lindschau and Oehler 1935) were octoploid crosses 

(2n = 8x = 56; AABBDDRR) between bread wheat (Triticum aestivum L., 2n = 6x 

= 42; AABBDD) and rye (Secale cereale, L., 2n = 2x = 14; RR), but were 

characterized by a low level of fertility (Mergoum et al. 2009; Oettler 2005). Large 

numbers of fertile triticale genotypes could only be obtained with the 

establishment of appropriate in vitro techniques (Laibach 1929; Wang et al. 1973) 

and efficient chromosome doubling through the discovery of colchicine 

(Blakeslee and Avery 1937; Maluszynski et al. 2003). Today, only hexaploid 

triticales (2n = 6x = 42; AABBRR), initially achieved by crosses between durum 

wheat (Triticum durum L., 2n = 28 = AABB) and rye, are grown due to their 

increased fertility, reproductive stability, and superior vigor (Mergoum et al. 2009; 

Oettler 2005). In recent years, crosses between wheat and rye to generate 

triticale, so-called primaries (Kiss 1966), are mainly performed to introduce new 

genetic variation into triticale germplasm (Oettler 2005). The main improvement 

of triticale focuses on secondary triticales comprising crosses between two or 

more primaries or secondary triticales as well as crosses between secondary 

triticales with either primaries, wheat, rye, or triticale (Oettler 2005). 

Triticale’s importance has grown steadily despite all the challenges in early 

triticale breeding and its relatively low attention on a global scale. Since the 

release of the first registered triticale cultivars in the late 1970s (Mergoum et al. 

2009; Oettler 2005), global triticale acreage grew to approximately 4 million ha 
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until 2019, of which the main percentage is grown in Europe (FAOSTAT 2021). 

This success story of triticale is also reflected by the fact that 48 triticale cultivars 

are currently listed in the German Plant Variety Catalogue (Bundessortenamt 

2020) and that more than 2,600 triticale cultivars or genotypes are registered or 

in the application processes on a global scale (CPVO 2021). 

Triticale – its uses and breeding goals 

Today, triticale grains are mainly used as animal fodder, especially in pig and 

poultry farming due to their high-quality protein composition (Myer 2002; 

Mergoum et al. 2009; Boros 2002; Myer and Del Lozano Río 2004), for bioethanol 

production (McGoverin et al. 2011; Zechner et al. 2011), and to a lesser extent 

for human consumption (Peña 2004; Zhu 2018) since triticale shows a low baking 

quality (Mergoum et al. 2019). Triticale whole-plant biomass has been employed 

as fodder, e.g., grazing, silage, straw, or hay for several years (Myer and Del 

Lozano Río 2004) and more recently, it is also used as an energy crop for biogas 

production (McGoverin et al. 2011; Cantale et al. 2016; Weiland 2010). 

These uses clearly point to the most important breeding goals in triticale 

breeding programs. The main efforts to improve triticale are grain (Neuweiler et 

al. 2020) and biomass yield (Gowda et al. 2011; Losert et al. 2016), and to 

enhancement against disease resistances, e.g., Fusarium head blight (caused 

by Fusarium spp.), powdery mildew (Blumeria graminis), Septoria tritici blotch 

(Zymoseptoria tritici), and yellow rust (Puccinia striiformis) which can 

substantially reduce grain yield especially in triticale crop production systems with 

low-input strategies (Troch et al. 2012; Losert et al. 2017b; Walker et al. 2011; 

Miedaner et al. 2016). Additional breeding goals are, e.g., baking quality 

(Mergoum et al. 2019; Wrigley and Bushuk 2017), protein content (Neuweiler et 

al. 2021) or morphological characteristics such as plant height, lodging tolerance, 

or flowering time (Losert et al. 2017b; Kalih et al. 2014; Alheit et al. 2014). 
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Genetic basis of plant height in triticale  

Plant height is usually examined in triticale breeding programs because it is one 

of the criteria for the evaluation of distinctness, uniformity, and stability to register 

a newly developed cultivar (CPVO 2011). It influences lodging tolerance, which 

often leads to increased drying costs at harvest, reduces grain quality, and results 

in significant grain yield losses (Losert et al. 2017b; Rajkumara 2008; Liu et al. 

2015). Furthermore, resistance against Fusarium head blight has been reported 

to be associated with plant height (Miedaner and Voss 2008; Kalih et al. 2014; 

Yan et al. 2011). In recent years, the interest in plant height increased as it has 

been shown to be one of the main contributors to biomass and straw yield in 

triticale (Losert et al. 2016; Alheit et al. 2014; Gowda et al. 2011). In addition, it is 

of relevance to increase hybrid seed set by fine-tuning plant height of the parental 

pools in hybrid breeding programs, with male parents being taller than females 

(Longin et al. 2012). 

On a genetic basis, plant height is a quantitatively inherited trait in small-grain 

cereals controlled by several minor and a couple of major quantitative trait loci 

(QTL; Würschum et al. 2014; Alheit et al. 2014; Griffiths et al. 2012; Börner et al. 

1996; Würschum et al. 2017a; Würschum et al. 2015). Moreover, plant height 

shows undesirable and in wheat well evaluated pleiotropic effects on other 

developmental processes, such as root elongation, coleoptile length, or early 

seedling vigor (Ellis et al. 2004; Botwright et al. 2001; Rebetzke et al. 2001; Bai 

et al. 2013). 

Many height-reducing genes have been studied in the parental species of 

triticale, wheat and rye (Börner et al. 1996; McIntosh et al. 2017; McIntosh et al. 

2013; Kantarek et al. 2018; Stojałowski et al. 2015). To date, the use of Rht-B1 

in spring (Chernook et al. 2019) and Ddw1 in winter triticale (Alheit et al. 2014; 

Kalih et al. 2014) has been reported. However, there are still only few studies 

focusing on the genetic control of plant height with several small-effect QTLs 

being detected in triticale (Kalih et al. 2014; Alheit et al. 2014; Würschum et al. 

2014). So far only Ddw1 could be identified in QTL studies (Kalih et al. 2014; 

Alheit et al. 2014). 
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Breeding for biomass yield in triticale breeding 

programs 

Grain yield is the most important breeding goal in triticale breeding programs 

(Aydoğan et al. 2010). However, in recent years triticale biomass yield became 

more and more important due to its use as, e.g., forage crop (Ayalew et al. 2018) 

and the incorporation of biomass into energy production strategies established 

by a European promoting policy (EU 2001, 2009, 2018; Monforti et al. 2013). The 

predominant crop concerning biogas production is silage maize (Zea mays; Oslaj 

et al. 2010), although crops such as fodder and sugar beet (Beta vulgaris), clover 

(Trifolium), or small-grain cereals, e.g., wheat (Triticum aestivum), rye (Secale 

cereale), and triticale (×Triticosecale Wittmack) are well suited to produce biogas 

and can contribute to widen crop rotations (Weiland 2010). 

These trends together with the great potential of triticale regarding biogas 

production (Weiland 2010; LTZ 2013) shifted the interest of triticale breeding 

programs into the direction of biomass production and the release of cultivars 

solely developed for these purposes (Gowda et al. 2011; Liu et al. 2017; 

Bundessortenamt 2020). As part of this development, simultaneous improvement 

of triticale germplasm for grain and biomass yield has been proposed for triticale 

breeding programs (Lekgari et al. 2008; Gowda et al. 2011; Liu et al. 2017; Losert 

et al. 2016). Considering the large genetic variation and the medium to high 

heritabilities of biomass yield in triticale (Gowda et al. 2011; Losert et al. 2016; 

Alheit et al. 2014; Liu et al. 2017), great potential to improve biomass yield in line 

(Gowda et al. 2011) and hybrid breeding programs (Losert et al. 2016) has been 

identified. However, efficient strategies to select the most promising genotypes in 

hybrid breeding programs are still missing and are urgently needed, due to a 

quadratically increasing number of putative experimental hybrids with an 

increasing number of parents (Bernardo 2010). 
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Molecular markers, related technologies, and their 

use in triticale breeding 

Most traits observed in plants, including triticale, are quantitatively inherited and 

are therefore not subject to Mendelian genetics with discrete phenotypic 

distributions (Tanksley 1993; Würschum 2012; Falconer and Mackay 1996). 

Such traits are controlled by many QTL with small effects (Falconer and Mackay 

1996; Mackay et al. 2009). Consequently, the development and application of 

markers, especially of molecular markers since the 1980’s (Collard et al. 2005; 

Rafalski and Tingey 1993; Mammadov et al. 2012; Bernardo 2010), led to 

effective methods in plant breeding unraveling the genetic control of various 

agronomically important traits and to identify putative QTL contributing to the 

traits plant breeders are interested in (Buerstmayr et al. 2009; Collard et al. 2005; 

Würschum 2012). This trend is expected to continue as the costs of genotyping 

plants steadily decrease (Würschum 2012). 

One method which has been used throughout the last decades is linkage 

mapping based on, e.g., the utilization of bi-parental populations (Tanksley 1993; 

Würschum 2012) and molecular markers (Collard et al. 2005). However, linkage 

mapping is highly population specific and strongly depends on the genetic 

constitution of the parents of the underlying population and shows only a low 

mapping resolution (Würschum 2012). The more recently used method of linkage 

disequilibrium mapping, also known as genome-wide association study (GWAS), 

has originally been developed by human geneticists (Hästbacka et al. 1992; 

Hirschhorn and Daly 2005) and has then been applied for research in the plant 

breeding context (Gupta et al. 2005; Zhu et al. 2008). 

The effects of detected QTL are often overestimated (Melchinger et al. 1998) 

and the power to identify a QTL is highly dependent on the type of population and 

the underlying population size (Tanksley, 1998; Würschum 2012; Vales et al. 

2005). Besides these points, in GWAS the allele frequency influences the 

detection of a QTL (Korte and Farlow 2013; Würschum and Kraft 2014; Zhu et al. 

2008). One of the big advantages of GWAS over linkage mapping is that the 

allelic variation is not restricted to the parental lines and the potentially high 

mapping resolution resulting from the historical recombination events in the 
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studied population (Myles et al. 2009; Korte and Farlow 2013). Furthermore, the 

time-consuming production of mapping populations, the big disadvantage of 

linkage mapping, is eliminated (Zhu et al. 2008). Nevertheless, the population 

structure always must be accounted for in GWAS to avoid false-positive results 

(Bernardo 2010; Würschum 2012). Furthermore, a high marker density and a 

large mapping population are required for a sufficiently high mapping resolution 

and QTL detection power in GWAS, especially for small or medium effect size 

and rare QTL (Zhu et al. 2008; Würschum 2012). In particular, the need for many 

markers prevented GWAS from becoming a routinely used method in various 

crops, also in triticale (Zhu et al. 2008). Continuously decreasing costs for 

genotyping has and will make high marker densities affordable in several crops 

in the future (Würschum 2012). Despite these obstacles, numerous QTL mapping 

studies have already been published in triticale investigating a wide range of traits 

(Kalih et al. 2014; Miedaner et al. 2016; Kalih et al. 2015; Neuweiler et al. 2020; 

Alheit et al. 2014; Würschum et al. 2014; Galiano-Carneiro et al. 2019; Wajdzik 

et al. 2019; Szechyńska-Hebda et al. 2011; Dhariwal et al. 2018; Niedziela et al. 

2014; Ollier et al. 2020). 

Well characterized QTL of agronomically important traits can routinely be 

accumulated in breeding populations using marker-assisted selection and 

therefore increase the genetic gain of a breeding program (Xu and Crouch 2008; 

Collard and Mackill 2008; Mohan et al. 1997). A further advancement of 

marker-assisted selection is genomic selection. Here the information of a great 

number of molecular markers is exploited at once to predict the performance of 

untested genotypes (Crossa et al. 2011; Meuwissen et al. 2001). This approach 

has only been evaluated in a limited number of studies in triticale (Liu et al. 2015; 

Würschum et al. 2017b). Fine-mapping of the genetic control of important traits 

was not feasible in triticale until recently, as high marker densities were not 

available and a reference genome of triticale is not available until today. However, 

physical map positions can nowadays be used since recently from wheat and rye 

(Alaux et al. 2018; Rabanus-Wallace et al. 2021) to, e.g., physically fine-map 

identified genes or QTL, perform positional candidate gene identification and 

positional cloning. 
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Hybrid breeding in the autogamous crop triticale 

Hybrid breeding has always been associated with the utilization of heterosis and 

hybrids have shown higher resistance to biotic and abiotic stress as well as an 

increased yield stability (Mette et al. 2015). Therefore, hybrid breeding 

methodology has been routinely introduced in many allogamous species such as 

maize, rye, sugar beet, or sunflower (Coors and Pandey 1999; Carena 2009; 

Cooke and Scott 1993). It also has been proposed recently for autogamous 

small-grain cereals, such as barley (Hordeum vulgare), wheat (Triticum 

aestivum), and triticale (×Triticosecale Wittmack) to further improve trait 

performances (Longin et al. 2012). Triticale is a partly outcrossing small-grain 

cereal and therefore well suited for hybrid breeding (Herrmann 2002; Kiss 1970; 

Sowa and Krysiak 1996). Furthermore, suitable hybrid mechanisms based on 

chemical hybridization agents and cytoplasmic male sterility (CMS) are available 

in triticale breeding, facilitating the use of hybrid methodology in triticale (Longin 

et al. 2012; Warzecha and Salak-Warzecha 2002). 

In addition, favorable heterosis and its magnitude have been widely evaluated 

in triticale germplasm (Oettler et al. 2001; Oettler et al. 2003; Oettler et al. 2005; 

Losert et al. 2016; Tams et al. 2006; Mühleisen et al. 2015; Fischer et al. 2010; 

Gowda et al. 2013; Herrmann 2007) and triticale hybrids showed an increased 

yield stability compared to lines for many traits such as plant height, grain and 

biomass yield, or various yield and quality traits (Oettler et al. 2005; Mühleisen et 

al. 2014). However, for an effective exploitation of heterosis and an efficient 

hybrid breeding program heterotic pools are needed (Fischer et al. 2010; Reif et 

al. 2007). To date no heterotic pools were identified in triticale breeding programs 

(Fischer et al. 2010; Gowda et al. 2013; Losert et al. 2017b; Tams et al. 2004; 

Tams et al. 2006). This is mainly due to the lively exchange among breeders and 

generally common in autogamous small-grain cereals. Nevertheless, first 

CMS-based triticale hybrids were released in 2012 in France and Germany 

showing the great potential of triticale hybrid breeding (Longin et al. 2012). 
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Prediction of biomass yield in triticale hybrids 

One of the major challenges in hybrid breeding programs is the quadratically 

increasing number of possible experimental hybrids as the number of parental 

lines is increasing (Bernardo 2010). This makes it impossible to evaluate all 

possible hybrid combinations and implies that a pre-selection must be 

implemented prior to the evaluation of experimental hybrids in the field. 

Therefore, appropriate methods are needed and have been extensively 

evaluated for typical hybrid crops like maize or sunflower (Reif et al. 2013; Smith 

1986; Jenkins 1934; Melchinger et al. 1987; Schrag et al. 2006; Nyaga et al. 

2020), but also for small-grain cereals such as barley, rye, and wheat (Miedaner 

et al. 2013; Zhao et al. 2014; Mühleisen et al. 2013; Philipp et al. 2016; Bernal-

Vasquez et al. 2017; Wang et al. 2014). 

Currently, a diverse range of phenotypic and genotypic approaches to predict 

hybrid performance has been reported with different advantages and 

disadvantages. Predicting the performance of hybrids based on their mid-parent 

values is very desirable as no experimental hybrids must be produced and 

therefore a lot of resources can be saved in a breeding program. However, 

practicable results have only been reported for less complex and highly heritable 

traits such as plant height or ear emergence in triticale breeding programs 

(Boeven et al. 2016; Gowda et al. 2013; Oettler et al. 2005), whereas more 

complexly inherited traits like grain yield or thousand-kernel weight showed 

medium to low prediction accuracies (Gowda et al. 2013; Oettler et al. 2005) 

owed to non-additive masking effects (Bernardo 2010; Smith 1986). For biomass 

yield the same is suspected due to its quantitative inheritance (Alheit et al. 2014) 

but has not been evaluated in further detail so far. 

The standard procedure predicting the performance of experimental hybrids 

in many of today’s hybrid breeding programs is based on general combining 

ability (GCA) effects (Guimarães 2009; Hallauer et al. 2010; Henzell and Jordan 

2009). This has also shown very good results compared to predictions based on 

the parental per se values predicting the performance of quantitatively inherited 

traits in triticale, such as Fusarium head blight and grain yield (Boeven et al. 2016; 

Fischer et al. 2010; Gowda et al. 2013). To predict hybrids based on GCA effects, 
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however, at least a subset of experimental hybrids must be produced and tested 

in the field charging a breeder’s budget. Furthermore, prediction accuracies are 

presumed to be less accurate with an increasing ratio of specific combining ability 

(SCA) in comparison to the total genetic variance (Melchinger 1999; Hallauer et 

al. 2010) what in turn is strongly dependent on the examined trait as shown in 

recent publications in triticale (Boeven et al. 2016; Gowda et al. 2013; Oettler 

2005). 

Latest developments gave triticale breeding programs access to molecular 

markers (Badea et al. 2011; Kuleung et al. 2004) and therefore the possibility, to 

avoid resource-intensive field trials at least partly. Genomic prediction 

approaches have been broadly evaluated in both line (Alemu et al. 2021; Rapp 

et al. 2019; Sapkota et al. 2020; Duhnen et al. 2017) and hybrid breeding 

programs (Werner et al. 2018; Zhao et al. 2013; Gowda et al. 2013; Technow et 

al. 2012; Windhausen et al. 2012; Technow et al. 2014; Philipp et al. 2016; Li et 

al. 2017; Wang et al. 2017; Reif et al. 2013; Wang et al. 2014; Gaikpa et al. 2020; 

Zhao et al. 2014) and have proven their usefulness in triticale breeding programs 

due to the observed high prediction accuracies for traits such as ear emergence, 

flowering time, Fusarium head blight, grain yield, as well as plant height (Boeven 

et al. 2016; Gowda et al. 2013). However, genomic prediction approaches have 

not been evaluated for biomass related traits in triticale so far, especially in the 

context of hybrid breeding. 

Phenotypic widening of the female pool in triticale 

hybrid breeding 

Evaluating novel female candidate lines is a major challenge in CMS-based 

hybrid breeding programs. Though, genomic prediction has provided promising 

results in many crops (Wang et al. 2014; Mette et al. 2015; Werner et al. 2018; 

Technow et al. 2012; Philipp et al. 2016), it is still expensive in triticale due to high 

genotyping cost and large training populations required to achieve high prediction 

accuracies (Gupta et al. 2019; Liu et al. 2016). 

Furthermore, for the evaluation of experimental hybrids solely based on 
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phenotypic parameters, an efficient hybrid mechanism is needed to evaluate the 

parental GCA effects. In small-grain cereals mainly sterility systems based on 

CMS and chemical hybridization agents are used (Longin et al. 2012; Adugna et 

al. 2004). Besides the high cost, the use of chemical hybridization agents comes 

hand in hand with difficulties such as environmental toxicity and phytotoxicity 

leading to a reduced seed set and hybrid vigor, as well as a narrow time-window 

for its application (Adugna et al. 2004; Cisar and Cooper 2002; Gupta et al. 2019) 

what ultimately makes them financially inferior compared to CMS systems (Hede 

2001). On the contrary, using a hybridization mechanism based on CMS requires 

among others the time- and resource-intensive introgression of female lines into 

a sterile cytoplasm. 

Objectives 

The goal of this thesis was to evaluate potentials to further improve triticale line 

and hybrid breeding programs with a special attention on plant height, biomass 

traits, and the evaluation of different hybrid prediction approaches. In detail, the 

objectives were to: 

(i) Unravel the genetic control and evaluate long-term genetic trends of 

plant height in Central European winter triticale 

(ii) Evaluate the potential of triticale hybrid breeding and hybrid prediction 

approaches in triticale with a focus on biomass yield 

(iii) Introduce and examine a concept bypassing the time- and 

resource-consuming evaluation of female candidate lines in 

CMS-based hybrid breeding 

(iv) Draw conclusions for the future improvement of triticale line and hybrid 

breeding programs
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5 General discussion 

The history of triticale is a success story of its own as it has started only 130 years 

ago (Rimpau 1891) and triticale is grown worldwide on about 4 million ha today 

(FAOSTAT 2021) predominantly as line but also as hybrid cultivar (Longin et al. 

2012). However, triticale faces more and more challenges, such as an increasing 

disease pressure (Losert et al. 2017a; Oettler 2005) or challenges converting 

triticale to a hybrid crop (Longin et al. 2012). On the other hand, new 

technologies, such as molecular markers (Badea et al. 2011) have been 

introduced in triticale breeding programs recently and can be used today to assist 

breeders by marker-assisted or genomic selection. Therefore, this dissertation 

was conducted to evaluate potentials improving triticale line and hybrid breeding 

programs using phenotypic and genomic concepts. 

Genetic control of plant height in triticale 

Many breeding programs are evaluating plant height routinely as it is a very 

important trait in many small-grain cereals. This study identified several putative 

QTL for plant height and therefore provided new insights into its genetic control 

in Central European winter triticale cultivars. Two of these QTL most likely 

correspond to the height-reducing genes Rht12 and Ddw1 originating from wheat 

(Sun et al. 2019) and rye (Braun et al. 2019). So far, no study reported the 

height-reducing gene Rht12 in triticale, but its use and application has been 

investigated in wheat recently (Chen et al. 2018; Chen et al. 2013; Sun et al. 

2019; Worland et al. 1994). On the contrary, the height-reducing gene Ddw1 has 

been detected in many studies working on triticale (Chernook et al. 2019; Kroupin 



52 General discussion 

 

et al. 2019; Kalih et al. 2014; Alheit et al. 2014) and the fine-mapping results in 

this study likely confirmed its broad occurrence in Central European winter 

triticale. 

However, the use of such height-reducing genes often are accompanied with 

adverse effects on other traits, such as developmental stage, Fusarium head 

blight, or grain yield and has, to our best knowledge, only been described in detail 

for Ddw1 in Central European winter triticale before (Kalih et al. 2014). Our results 

confirmed these findings as most markers detected to significantly reduce plant 

height also delayed flowering time and registered cultivars showed the slight 

tendency of flowering at a later point of time (Trini et al. 2021a). Until now the 

effects of height-reducing genes under drought conditions, as shown in wheat 

(Worland et al. 1998; Mathews et al. 2006; Butler et al. 2005), were not evaluated 

in triticale but should be considered as a future possibility facing the challenges 

of climate change (Fahad et al. 2017). The height-reducing gene Rht12, for 

example, showed favorable effects on seedling establishment under drought 

conditions in wheat (Singh and Khanna-Chopra 2010; Bai et al. 2013) and might 

therefore be a candidate for future research in triticale. 

Triticale breeding theoretically could also use other height-reducing genes 

from its parental species wheat such as Rht-A1, Rht-B1, Rht7, Rht9, Rht12, 

Rht22, Rht24 (McIntosh et al. 2017; McIntosh et al. 2013) or the dominant (Ddw1, 

Ddw2, Ddw3, Ddw4) and the recessive (ct1, ct2, np, dw9) height-reducing genes 

from rye (Kantarek et al. 2018; Stojałowski et al. 2015; Braun et al. 2019; 

Grądzielewska et al. 2020). However, to date only the use of Rht-B1 and Ddw1 

have been reported in triticale (Chernook et al. 2019; Kroupin et al. 2019) leaving 

a lot of room for improvement. The most promising height-reducing genes of 

wheat, which could be used in triticale are probably Rht-B1 and Rht24 as they 

are widely used in wheat breeding programs today and have a large 

height-reducing effect on plant height (Würschum et al. 2015; Würschum et al. 

2017a). For the height-reducing gene Rht-B1, however, adverse effects under 

heat conditions were reported (Würschum et al. 2017a), which have to be kept in 

mind if introgressing it into triticale germplasm. Promising candidates in the 

context of adverse drought effects through climate change, though, seem to be 

Rht12 located on chromosome 5A and the height-reducing loci Rht14, Rht16, 



General discussion 53 

 

Rht18, Rht24, and Rht25 located on chromosome 6A (Mo et al. 2018; Sun et al. 

2019). The genetic positions of the latter, however, were not evaluated in detail 

and therefore it is not clear until now whether these loci represent alleles 

belonging to the same gene or closely linked genes (Mo et al. 2018). Besides 

Ddw1, the probably most promising height-reducing genes, which could be 

introduced into triticale are Ddw3 lying on chromosome 1R, and Ddw4 on 

chromosome 3R. Both are gibberellin-sensitive indicating that they might show 

positive properties under drought conditions similar as reported for Rht12 in 

wheat (Singh and Khanna-Chopra 2010; Bai et al. 2013) and showed substantial 

height-reduction of around 40% to 50% in rye (Stojałowski et al. 2015; Kantarek 

et al. 2018). Effects on other traits, such as number of spikelets per ear, spike 

length, or grain yield have partly been evaluated in rye, but did not allow a final 

evaluation in terms of negative influences, especially in regards on grain yield 

(Stojałowski et al. 2015; Kantarek et al. 2018). However, before applying the 

mentioned height-reducing genes from wheat and rye in triticale their genetic 

effects on plant height and other traits need to be evaluated in the genetic 

background of triticale and therefore remain a future research question. 

Nevertheless, the general trend of decreasing plant height observed during 

the last four decades in this study is a success owed to the efforts of triticale 

breeders and resulted in an increasing frequency of genotypes carrying 

height-reducing QTL. On the contrary, a growing number of taller genotypes is 

owed the fact, that biomass yield gained in importance as a breeding goal in 

recent years (EU 2001, 2018, 2009; Ayalew et al. 2018) and the fact that plant 

height is one of the major contributors to biomass yield in triticale (Losert et al. 

2017a; Gowda et al. 2011). The future trend of plant height in triticale is thus less 

clear, as it is very likely that taller genotypes continue to be of interest for biomass 

production, for an increased straw production, and dual use cultivars improving 

biomass and grain yield simultaneously may increase further. However, opposing 

relationships between agronomically important traits, such as susceptibility to 

lodging and plant height or biomass yield (Losert et al. 2017b; Losert et al. 2016; 

Gowda et al. 2011; Alheit et al. 2014), facilitate the necessity to evaluate efficient 

measures for a simultaneous improvement of such traits in triticale by, e.g., using 

index selection as recently proposed by Neuweiler et al. (2021). 
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Hybrid breeding in triticale 

Hybrid breeding in autogamous small-grain cereals did not prevail entirely until 

today, but many efforts have been attempted and resulted in first CMS-based 

triticale hybrid cultivars released in 2012 (Longin et al. 2012).The major goal and 

advantages of hybrid breeding are to systematically exploit heterosis (Shull 1908) 

and taking advantage of stacking favorable genes, e.g., for disease resistance, 

to improve stress tolerance of hybrids over lines especially in marginal 

environments (Oettler et al. 2005; Hallauer et al. 2010). 

As positive heterosis for grain and biomass yield has been observed, its 

exploitation moved into the focus of triticale breeders (Tams et al. 2006; Oettler 

et al. 2001; Oettler et al. 2005; Losert et al. 2016). Nonetheless, heterotic pools 

are not established in triticale breeding so far (Fischer et al. 2010; Gowda et al. 

2013; Losert et al. 2017b; Tams et al. 2004; Tams et al. 2006) what hampers the 

exploitation of heterosis (Reif et al. 2007). This was confirmed by molecularly 

evaluating a panel of triticale hybrids and their parents in this study, showing that 

female and male lines did not cluster into heterotic groups (Trini et al. 2020). The 

two main reasons for the absence of heterotic pools though are that in triticale 

the heterotic pool establishment is still at a very beginning (Fischer et al. 2010) 

and the predominance of line breeding accompanied by a strong exchange of 

breeding material among breeders (Góral et al. 2015). 

With the absence of heterotic pools, however, the exploitation of useful 

heterosis is hampered and hybrid breeding cannot utilize its full potential to create 

hybrids with an improved performance compared to line breeding. Nevertheless, 

a great amount of heterosis can be observed in triticale for numerous traits and 

for some traits even commercial heterosis – meaning that a hybrid is 

outperforming the best check cultivar in the dataset or more generally in the 

market – was observed (Figure 1; Losert et al. 2016; Boeven et al. 2016; Oettler 

et al. 2005; Oettler et al. 2001). If considering grain yield, for example, we 

observed experimental hybrids showing negative mid-parent, better-parent, and 

commercial heterosis reflected in both, single- and three-way crosses (Figure 1). 

However, the positive mid-parent and better-parent heterosis values of up to 

11.5% and 9.5%, respectively, indicate that substantial heterosis can be 
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achieved. The commercial heterosis values, though were still negative reflecting 

the timely backlog in the development process of hybrids compared to line 

breeding at the moment. This, however, is likely to change with an increasing 

per se performance of the parents. To develop heterotic pools in triticale and 

exploit favorable heterosis, efficient methods as proposed by Cowling et al. 

(2020), Fischer et al. (2010), and Melchinger and Gumber (1998) are required 

and need to be implemented to further improve triticale hybrid breeding. 
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Figure 1: Absolute (a) and relative (%, b) mid-parent (MPH), 

better-parent (BPH), and commercial heterosis (CH) derived with the best linear 

unbiased estimates (BLUEs, c) from Trini et al. 2021b for the traits ear 

emergence (BBCH), Fusarium head blight (0–100%), grain yield (Mg ha-1), plant 

height (cm), powdery mildew (0-9), protein content (%), test weight (kg hL-1), 

thousand kernel weight (g), and starch content (%). For all traits, except Fusarium 

head blight and powdery mildew, more positive heterosis estimates are better.  
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Breeding for biomass yield in hybrid triticale 

Biomass yield became an important breeding goal in triticale just recently due to 

a policy promoting energy utilizing crop biomass (EU 2001, 2018, 2009; Monforti 

et al. 2013) and its potential as high-quality fodder for ruminants (Ayalew et al. 

2018). This led to a shift from breeding primarily shorter cultivars to also breed 

for taller genotypes with an increased biomass yield as plant height is significantly 

associated with biomass yield (Losert et al. 2016; Alheit et al. 2014; Gowda et al. 

2011). This development is displayed by an increasing number of taller genotypes 

released since 2011 in comparison to previous years (Trini et al. 2021a). 

Furthermore, triticale showed a great variation regarding biomass yield (Losert et 

al. 2016) indicating the great potential to breed for cultivars with improved 

biomass yield. On the contrary, taller genotypes are associated with a higher 

susceptibility to lodging (Losert et al. 2017b) meaning that sufficient selection 

methods, e.g., selection indices or marker-assisted selection, need to be 

implemented into a breeding program to simultaneously improve lodging 

tolerance and biomass yield. 

The potential of hybrid breeding to improve biomass yield traits has also been 

evaluated and has shown promising results (Losert et al. 2016). The observed 

commercial heterosis estimates for biomass yield showed values up to 11% using 

parental lines which did not represent the latest developed lines and whose 

performance was originally optimized for grain yield (Losert et al. 2016). This 

means, that the full potential using hybrid methodology could not be exploited but 

still demonstrated great potential increasing biomass yield using hybrid 

methodology. To evaluate the most promising hybrid combinations in terms of 

biomass yield, though, we evaluated different prediction approaches showing 

great potential to further increase biomass yield (Trini et al. 2020). As grain yield 

is still the most important breeding goal in triticale, efficient measures are needed 

to focus on a simultaneous improvement of grain and biomass yield in joint 

breeding programs improving both traits simultaneously as proposed by Gowda 

et al. (2011) and Liu et al. (2017). However, such an improvement has not been 

evaluated for triticale hybrid breeding programs so far and should thus be an 

objective for future studies. 



58 General discussion 

 

Hybrid prediction in triticale 

Hybrid breeding is facing multiple challenges. One of the biggest is the 

quadratically increasing number of experimental hybrids when the number of 

parental lines increases (Bernardo 2010). Therefore, efficient methods to 

preselect the most promising parental lines and hybrid combinations before 

testing them in the field are required and were evaluated for the purpose of 

triticale hybrid breeding in this study. 

Hybrid prediction based on phenotypic estimates 

According to quantitative genetic theory, phenotypic hybrid prediction estimates 

based on the parental per se performance is expected to be inferior compared to 

predictions based on GCA effects, as GCA effects additionally exploit dominance 

effects partially (Lynch and Walsh 1998; Smith 1986). For some traits in this 

study, however, prediction accuracies based on the parental per se performance 

and GCA effects were similar or equally high (Trini et al. 2020). In particular, this 

was observed for traits that generally show a less complex inheritance and high 

heritabilities, such as ear emergence and plant height. This was in concordance 

with previous findings in triticale and also observed for other traits, e.g., Fusarium 

head blight and thousand-kernel weight (Gowda et al. 2013; Boeven et al. 2016). 

Accordingly, a bigger difference between the two prediction approaches was 

observed for traits showing a more complex inheritance, such as biomass related 

traits, grain yield, protein content, starch content, and test weight (Trini et al. 

2021b; Trini et al. 2020; Gowda et al. 2013). In triticale breeding programs, 

however, the relatively high prediction accuracies based on the parental 

mid-parent performance make it relatively easy for breeders to preselect the most 

promising parental lines, i.e., before their introgression into a male sterile 

cytoplasm. This is supported by recent findings, as Boeven et al. (2016) showed 

that the resistance to Fusarium head blight severity is highly correlated between 

lines in a male sterile and in a normal cytoplasm. 

Genomic hybrid prediction in triticale 

The incorporation of molecular markers into breeding programs (Mammadov et 
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al. 2012; Collard et al. 2005) during the last years opened new possibilities for 

the prediction of experimental hybrids. Various methods were proposed with 

diverse advantages and disadvantages, but these mostly yielded the same 

prediction accuracy (Thorwarth 2019). Therefore, we constrained the used 

approach to genomic best linear unbiased prediction (gBLUP) to predict hybrid 

performance. Prediction accuracies based on the parental GCA effects including 

genomic data showed great potential for the evaluated biomass traits in this study 

and for other traits, such as ear emergence, flowering time, Fusarium head blight, 

grain yield, and plant height in previous studies (Gowda et al. 2013; Boeven et 

al. 2016). However, the genomic data did only increase the prediction accuracies 

slightly compared to predictions solely based on phenotypic data in this study 

making it necessary for breeders to carefully consider how to apply molecular 

markers in a breeding program. Great improvement, however, has been 

observed previously in triticale hybrids using such an approach to predict grain 

yield (Gowda et al. 2013). 

Another field for the application of molecular markers in a hybrid breeding 

program is the evaluation of newly introduced parental lines into a breeding 

program and its evolving experimental hybrids. This is probably one of the most 

challenging fields as no phenotypic estimates of the possible hybrid combinations 

are available and prediction accuracies are usually decreasing with a lower 

degree of relatedness among the genetic material (Thorwarth 2019; Crossa et al. 

2014). In this study, prediction accuracies incorporating molecular marker data 

decreased with an increasing number of untested parental lines (Trini et al. 2020). 

However, some prediction accuracies incorporating only one or no parental line 

in the estimation set still showed promising properties and therefore can be used 

for a preselection of newly introduced lines before their complex production and 

evaluation of experimental hybrids in the field. 

Hybrid prediction and its use for biomass yield and related traits 

The use of hybrid prediction approaches to improve the performance of biomass 

yield and related traits was not evaluated before. In this study, we proved that 

besides phenotypic also genotypic hybrid prediction approaches can be used to 

effectively predict the performances of experimental hybrids for biomass related 
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traits (Trini et al. 2020). The fact that prediction accuracies based on the parental 

per se performance were already very high give breeders the possibility to 

preselect the most promising parental lines already before the production of 

experimental hybrids and evaluate the most promising pre-selected lines using 

experimental hybrids in the up-following steps of a breeding program. The 

prediction accuracies based on GCA effects – using phenotypic and/or molecular 

data – showed promising properties to efficiently predict untested hybrids but 

were substantially hampered for biomass yield by a high ratio of variance due to 

SCA effects compared to the total genetic variance (Trini et al. 2020). 

Nevertheless, hybrid breeding including hybrid prediction has shown to be a very 

promising tool to further increase the performance of biomass yield in triticale. 

Challenges of triticale hybrid prediction 

Although the prediction accuracies showed promising results, triticale hybrid 

prediction still faces several challenges. Genomic prediction in triticale just 

recently became cheaper but is still not broadly used by triticale breeders (H. P. 

Maurer, personal communication) as relatively large training population sizes are 

required for sufficiently high prediction accuracies which are mostly not available 

as hybrid methodology is still not widely spread in triticale breeding programs 

(Crossa et al. 2014; H. P. Maurer, personal communication; Jannink et al. 2010). 

Furthermore, the efficiency of predicting experimental hybrids is strongly 

dependent on the genetic relationship among the training and the prediction set 

(Thorwarth 2019; Crossa et al. 2014; Würschum et al. 2017b) and therefore the 

selection of a sample of genotypes representing the whole population which 

should be predicted is of utmost importance. Prediction accuracies based on the 

parental per se performance showed encouraging results for a few traits, e.g., dry 

matter content, heading date, or plant height, what was verified by simulation 

studies but are neglecting dominance effects and therefore their use cannot 

exploit its full potential achieving the highest possible prediction accuracies (Trini 

et al. 2021b; Trini et al. 2020; Lynch and Walsh 1998; Smith 1986). The lack of 

heterotic pools in triticale hampers both, GCA-based prediction accuracies based 

on solely phenotypic or incorporating genomic data (Gowda et al. 2013; Boeven 

et al. 2016). This is displayed in high proportions of variance due to SCA 
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compared to the total genetic variance. As dominance effects are partly neglected 

in predictions solely based on GCA effects (Lynch and Walsh 1998) prediction 

accuracies are reduced for traits with a high observed SCA variance ratio 

compared to the total genetic variance (Reif et al. 2012; Melchinger 1999; 

Hallauer et al. 2010). We observed this in our study for traits such as fresh and 

dry biomass yield, Fusarium head blight severity, protein and starch content, as 

well as grain yield (Trini et al. 2021b; Trini et al. 2020). Finally, the production of 

experimental hybrids using CMS is very time- and resource-consuming due to 

the required introgression into a male sterile cytoplasm illustrating the necessity 

for new approaches evaluating novel candidate lines in hybrid breeding. 

Novel approach evaluating candidate lines for hybrid breeding 

To overcome the disadvantages of the introgression of female candidate lines 

into a male sterile cytoplasm for the purpose of testing them, we introduced a 

novel approach (Trini et al. 2021b). The prediction of single-crosses using GCA 

or GCA and SCA estimates derived from experimental three-way hybrids was 

promising for all evaluated traits and its efficiency was further substantiated by 

computer simulations. The newly presented approach could be used routinely in 

triticale hybrid breeding programs to (i) increase the number of female candidate 

lines tested as a potential hybrid component, (ii) decrease the quantity of 

produced experimental hybrids especially with the use of suitable mating designs 

like single and double round robin design, (iii) identify female lines with high GCA 

effects recurrently improving the female pool, and (iv) gaining additional 

information about the candidate line under investigation regarding its level of 

sterility and response to restorer genes increasing the annual selection gain. A 

further step would be the inclusion of molecular markers to estimate SCA effects 

of untested single-cross hybrids, particularly when single or double round robin 

designs are used, to further increase prediction accuracies and increase the 

efficiency of triticale hybrid breeding programs. 
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Conclusions and prospects 

Unraveling the genetic architecture of complex traits and using this knowledge to 

improve germplasm and breeding programs is very important. In triticale, though, 

molecular markers in great numbers are available only recently, since the 

introduction of genotyping-by-sequencing (Edwards et al. 2013). Therefore, this 

study was a breakthrough in triticale, as only a very limited number of 

fine-mapping studies are available so far and none of them evaluated the genetic 

architecture of plant height in Central European winter triticale. We observed only 

a small number of putative height-reducing QTL, which likely are associated with 

known height-reducing genes from wheat and rye (Trini et al. 2021a). The great 

majority of height-reducing genes, which could possibly be utilized from wheat 

and rye, were not used in triticale germplasm to date, e.g., Rht-B1, Rht24, and 

Ddw3, leaving a lot of space for the improvement of triticale plant height by 

introducing such height-reducing genes. Moreover, side effects of these 

height-reducing genes, such as lodging tolerance or drought resistance, were not 

evaluated in triticale and should therefore be subject of future research, especially 

facing difficulties of changing weather conditions due to climate change (Fahad 

et al. 2017). However, over the time we observed an increasing frequency of 

registered cultivars carrying one or several putative height-reducing QTL 

indicating the potential of marker-assisted breeding in Central European winter 

triticale. 

The evaluated hybrid prediction approaches showed great potential for the 

future improvement of triticale regarding biomass traits and was supported by our 

simulation studies (Trini et al. 2020). However, the missing heterotic pools 

observed in this and previous studies (Fischer et al. 2010; Gowda et al. 2013; 

Losert et al. 2017b; Tams et al. 2004; Tams et al. 2006) resulted in high ratios of 

SCA variance compared to the total genetic variance for some traits (Trini et al. 

2021b; Trini et al. 2020). This reduced prediction accuracies solely based on 

phenotypic GCA effects or additionally incorporating molecular marker data and 

in some cases, these were then only as high as the prediction accuracies based 

on the hybrids’ parental per se performances. Therefore, heterotic pools in 

triticale have to be established and efficient strategies have to be tailored to the 

specific requirements of triticale. Until then, though, promising hybrid 
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combinations can be pre-selected using the parental per se performances before 

producing and evaluating them based on their phenotypic GCA estimates. 

In triticale breeding programs grain yield will most probably stay the most 

important trait in the future. Despite this, biomass yield has gained sufficient 

interest in recent years due to a promoting policy (EU 2018) and its high digestion 

quality in ruminant feed (Ayalew et al. 2018). This indicates that biomass yield 

will also play an important role in triticale breeding in the future and therefore its 

improvement has to be considered in breeding programs. However, it is important 

to examine if breeding programs only designed to improve biomass yield in 

triticale are able to prevail as the demand for cultivars used for biomass 

production is to some extend limited. It is more probable, that breeding programs 

will work on the simultaneous improvement of grain and biomass yield in the near 

future. This, however, still leaves obstacles as farmers prefer shorter cultivars, 

whereas biomass yield is highly dependent on tall genotypes in triticale (Gowda 

et al. 2011). Thus, sufficient methods and their use in triticale breeding programs 

need to be evaluated in the future, e.g., by index and marker-assisted selection, 

to ensure efficient breeding programs. 

The novel approach introduced in this study phenotypically evaluating novel 

female candidate lines with respect to hybrid production showed promising 

results for all evaluated traits using field data and simulation studies (Trini et al. 

2021b). This approach, however, was not evaluated for biomass traits leaving 

space for future evaluations. Nevertheless, it can be expected to increase the 

efficiency of CMS-based hybrid breeding programs as it showed promising 

results and could also be applied in other hybrid crops using a CMS system as 

hybrid mechanism. 
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Summary 

Triticale (×Triticosecale Wittmack) breeding is a success story as it evolved to a 

serious alternative in farmer’s crop rotations since the 1970s and is grown 

globally on around 4 million hectares today. New developments, however, 

pointed out additional possibilities to improve triticale line and hybrid breeding 

programs increasing its future competitiveness and were evaluated in this study. 

In more detail, these were to (i) examine the genetic control and evaluate 

long-term genetic trends of plant height in Central European winter triticale, (ii) 

evaluate the potential of triticale hybrid breeding and hybrid prediction 

approaches in triticale with a focus on biomass yield, (iii) introduce and examine 

a concept bypassing the time- and resource-consuming evaluation of female 

candidate lines in cytoplasmatic male sterility (CMS) based hybrid breeding, and 

(iv) to draw conclusions for the future improvement of triticale line and hybrid 

breeding programs. 

The genome-wide association study detected markers significantly 

associated with plant height and developmental stage, respectively. These 

explained 42,16% and 29,31% of the total genotypic variance of plant height and 

development stage and are probably related to four and three quantitative trait 

loci (QTL), respectively. The two major QTL detected for plant height were 

located on chromosomes 5A and 5R which most likely could be assigned to the 

known height-reducing genes Rht12 from wheat and Ddw1 from rye. The third 

major QTL detected located on chromosome 4B could not be assigned to a 

known height-reducing gene and it cannot be precluded, that these significantly 

associated markers are identifying one and the same QTL as the markers located 

on chromosome 5R, as these showed a high linkage disequilibrium amongst each 
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other. Evaluating the 129 registered cultivars showed that plant height decreased 

since the 1980’s. Evaluating their genetic constitution revealed that most cultivars 

carried at least one height-reducing QTL and that plant height could be reduced 

even further in cultivars combining more than one height-reducing QTL. It was 

further observed that the frequency of cultivars carrying one or a combination of 

height-reducing QTL increased since the 1980’s. 

A considerable amount of heterosis has been observed for biomass related 

traits in triticale hybrids before. However, the use of hybrid prediction approaches 

for these traits has not been evaluated. Hybrid prediction based on mid-parent 

values already showed very good results illustrating their potential to preselect 

the most promising parents as prediction accuracies based on parental general 

combining ability (GCA) effects were only slightly better. When incorporating 

molecular markers into GCA-based prediction accuracies, prediction accuracies 

decreased slightly compared to prediction accuracies solely based on phenotypic 

GCA effects. Predicting hybrids incorporating one or two untested parental lines, 

imitating a scenario where novel female and/or male candidate lines are 

introduced into a hybrid breeding program, reduced genomic prediction 

accuracies even further due to the decreasing amount of information which could 

be exploited from the parents. Additionally including specific combining ability 

(SCA) effects in the genomic prediction models did not yield additional use. A 

high proportion of SCA variance compared to the total genetic variance 

decreased prediction accuracies for the traits fresh and dry biomass yield. In this 

study simulation studies were used to demonstrate what a prediction accuracy of 

a specific value actually means for a hybrid breeding programs. 

Further, an approach was introduced and evaluated showing great potential 

to evaluate novel female candidate lines for their use in a CMS-based hybrid 

breeding program by bypassing their time- and resource-demanding 

introgression into a male sterile cytoplasm using three-way hybrids. Prediction 

accuracies obtained by this novel approach showed highly promising results for 

most evaluated traits compared to prediction accuracies based on GCA effects 

or mid-parent performance. Additionally incorporating SCA effects into the 

prediction models showed only a little increase of the prediction accuracies. 

Further, the results were supported by simulation studies adjusting different 
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parameters, such as the number of parents or the proportion of SCA variance 

compared to the total genetic variance. 
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Zusammenfassung 

Die Züchtung von Triticale (×Triticosecale Wittmack) ist eine Erfolgsgeschichte, 

da sie sich seit den 1970er Jahren zu einer ernstzunehmenden Alternative in der 

Fruchtfolge von Landwirten entwickelt hat und heute weltweit auf rund 4 Millionen 

Hektar angebaut wird. Jüngere Entwicklungen jedoch identifizierten zusätzliches 

Potential zur Verbesserung von Triticale Linien- und 

Hybridzüchtungsprogrammen, die die Konkurrenzfähigkeit von Triticale weiter 

erhöhen können und wurden deshalb in dieser Studie näher beleuchtet. Genauer 

betrachtet waren die Ziele dieser Studie (i) die genetische Struktur und 

genetischen Langzeittrends des Merkmals Wuchshöhe in Mitteleuropäischer 

Wintertriticale zu untersuchen, (ii) die Potenziale der Hybridzüchtung und 

Konzepte zur Hybridvorhersage in Triticale, mit dem Fokus auf Biomasseertrag, 

zu evaluieren, (iii) ein Konzept, welches die zeit- und ressourcenintensive 

Beurteilung weiblicher Mutterkomponenten in der zytoplasmatisch männlich 

sterilen (CMS) Hybridzüchtung vereinfacht, vorzustellen sowie bezüglich seiner 

Zweckdienlichkeit zu bewerten, und (iv) um Rückschlüsse für die zukünftige 

Verbesserung von Triticale Linien- und Hybridzuchtprogrammen zu ziehen. 

In einer genomweiten Assoziationsstudie wurden Marker entdeckt, die 

signifikant mit den Merkmalen Wuchshöhe und Entwicklungsstadium assoziiert 

waren. Diese erklärten 42,16% beziehungsweise 29,31% der Gesamtvarianz der 

genannten Merkmale und repräsentieren wahrscheinlich vier beziehungsweise 

drei merkmalsbeeinflussende Genorte (QTL). Es wurden zwei bedeutende QTL 

für das Merkmal Wuchshöhe auf den Chromosomen 5A und 5R entdeckt, welche 

höchstwahrscheinlich den Wuchshöhe reduzierenden Genen Rht12 von Weizen 
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und Ddw1 von Roggen zuzuschreiben sind. Das dritte bedeutende QTL, welches 

auf Chromosom 4B gefunden wurde, konnte keinem bekannten Wuchshöhe 

reduzierenden Gen zugeordnet werden. Ferner kann nicht ausgeschlossen 

werden, dass diese als signifikant identifizierten Marker ein und dasselbe QTL 

identifizieren, wie die auf Chromosom 5R liegenden Marker, da diese 

untereinander ein hohes Kopplungsungleichgewicht aufweisen. Die Wuchshöhe 

der 129 untersuchten zugelassenen Sorten nahm seit den 1980er Jahren 

kontinuierlich ab. Die Untersuchung der zugrunde liegenden genetischen 

Ursachen hat ergeben, dass die meisten Sorten mindestens ein 

Wuchshöhereduzierendes QTL trugen und dass sich die Wuchshöhe noch weiter 

verringerte, wenn eine Sorte mehrere Wuchshöhe reduzierende Gene vereinte. 

Außerdem konnte beobachtet werden, dass sich seit den 1980er Jahren die 

Häufigkeit von zugelassenen Sorten die ein oder eine Kombination aus mehreren 

Wuchshöhe reduzierenden QTL trugen erhöht hat. 

Ein beträchtlicher Umfang an Heterosis wurde in früheren Studien für 

Biomassemerkmale beobachtet. Nichtsdestotrotz wurden die Nützlichkeit von 

Hybridvorhersageansätzen bisher nicht evaluiert. Hybridvorhersagen, welche auf 

dem Mittelwert ihrer Elternlinien basieren zeigten vielversprechende 

Vorhersagegenauigkeiten und spiegelte somit ihr hohes Potential für die 

Vorselektion der vielversprechendsten Elternkomponenten wider, da 

Vorhersagegenauigkeiten basierend auf den elterlichen allgemeinen 

Kombinationsfähigkeiten (GCA) nur geringfügig besser waren. Mit der Aufnahme 

von molekularen Markerdaten in die GCA-basierten Vorhersagen verringerten 

sich die Vorhersagegenauigkeiten im Vergleich zu den Vorhersagen, welche 

lediglich auf phänotypischen GCA Effekten basierten. Bei Vorhersagen, welche 

ein oder zwei ungetestete Elternlinien beinhalteten, d.h. in einem Szenario 

welches neue weibliche und/oder männliche Kandidatenlinien in ein 

Hybridzuchtprogramm integriert, verringerten sich die genomischen 

Vorhersagegenauigkeiten noch weiter, da nur von einem beziehungsweise von 

keinem Elter Information genutzt werden konnte. Die zusätzliche Einbeziehung 

von spezifischen Kombinationseffekten (SCA) in die genomischen 

Vorhersagemodelle ergab keinen zusätzlichen Nutzen. Ein hoher Anteil an SCA 

Varianz an der genetischen Gesamtvarianz verringerte die 
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Vorhersagegenauigkeiten für die Merkmale Frisch- und Trockenbiomasseertrag. 

Ferner wurde anhand von Simulationsstudien abgeleitet, was eine bestimmte 

Vorhersagegenauigkeit eigentlich für ein Hybridzüchtungsprogramm bedeutet. 

Es wurde ein neuer Ansatz auf seinen Nutzen in einem CMS-basierten 

Hybridzuchtprogram hin evaluiert der die zeit- und ressourcenintensive 

Rückkreuzung weiblicher Kandidatenlinien für deren Evaluierung in ein männlich 

steriles Zytoplasma umgeht. Die durch diesen neuen Ansatz erhaltenen 

Vorhersagegenauigkeiten zeigten großes Potential für die meisten untersuchten 

Merkmale im Vergleich zu Vorhersagegenauigkeiten basierend auf GCA Werten 

oder ihrem elterlichen Mittelwert. Das zusätzliche Miteinbeziehen von SCA 

Effekten in die Vorhersagemodelle zeigte nur eine geringfügige Verbesserung 

der Vorhersagegenauigkeiten. Außerdem konnten die Ergebnisse durch 

Simulationsstudien unter Anpassung verschiedener Parameter, wie die Anzahl 

der Eltern oder der Anteil der SCA Varianz an der genetischen Gesamtvarianz, 

untermauert werden. 
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