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Testing for cointegration with threshold adjustment

in the presence of structural breaks
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Abstract

In this paper, we develop new threshold cointegration tests with SETAR and
MTAR adjustment allowing for the presence of structural breaks in the equi-
librium equation. We propose a simple procedure to simultaneously estimate
the previously unknown breakpoint and test the null hypothesis of no cointegra-
tion. Thereby, we extend the well-known residual-based cointegration test with
regime shift introduced by Gregory and Hansen (1996a) to include forms of non-
linear adjustment. We derive the asymptotic distribution of the test statistics
and demonstrate the finite-sample performance of the tests in a series of Monte
Carlo experiments. We find a substantial decrease of power of the conventional
threshold cointegration tests caused by a shift in the slope coefficient of the equi-
librium equation. The proposed tests perform superior in these situations. An
application to the ‘rockets and feathers’ hypothesis of price adjustment in the US
gasoline market provides empirical support for this methodology.
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1 Introduction

The residual-based threshold cointegration models developed by Enders and Siklos
(2001) are a useful addition to the toolbox of researchers working with multivariate
time series. They are easy to apply, allow for discontinuous adjustment to a long-run
equilibrium and nest linear cointegration in the sense of Engle and Granger (1987) as
a special case. The dynamics of the adjustment process are described by a two-regime
threshold autoregressive (TAR) model which partitions the residual process according
to a threshold value and specifies different coefficients of the leading autoregressive lag
for each regime. It can therefore be considered a restricted model under the general
class of TAR models described by Tong (1983, 1990). A prominent application in the
economics literature is the empirical analysis of asymmetric price transmissions in which
case non-stationary price series form a cointegrating relationship and may feature asym-
metric adjustment to long-run equilibrium. The speed of adjustment is usually assumed
to depend on the sign and magnitude of the deviations from the long-run equilibrium.
While threshold cointegration models are suitable to study these cases, they do not
account for possible structural change in the long-run relationship. It is well-known
that conventional residual-based cointegration tests perform poorly when a cointegra-
tion relationship has structural breaks (see, for example, Gregory et al. (1996)). Maki
(2012) found that the power property of threshold cointegration tests is more robust
to structural breaks than, for example, the Engle-Granger cointegration tests assuming
linear adjustment. Nevertheless, the power of all residual-based cointegration tests is
impaired if the tests do not model the structural breaks explicitly. Consequently, it is
difficult to provide evidence for the existence of a cointegration relationship. Further-
more, the estimated adjustment coefficients are biased if the cointegrating vector does
not account for structural change.

An extensive body of literature exists on the problem of structural instability in
time series. Based on the seminal work of Perron (1989), several unit root tests ac-
counting for structural change have been developed (see, inter alia, Zivot and Andrews
(1992), Lumsdaine and Papell (1997) and Lee and Strazicich (2003)). Structural breaks
in linear cointegration models are addressed in Gregory and Hansen (1996a,b), Arai
and Kurozumi (2007), Carrion-i Silvestre and Sanso (2006), Westerlund and Edgerton
(2007) and Hatemi-J (2008). For a comprehensive survey on structural change in time
series models, see Perron (2006). Gregory and Hansen (1996a), henceforth GH, propose
a residual-based cointegration test with structural break. Their test does not require
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a pre-specified breakpoint which is rarely known in empirical applications. Instead, a
single unknown breakpoint is determined from the data based on one of three struc-
tural break models. However, the GH test is only suitable for cointegration models
with linear adjustment.1 We contribute to the literature by extending the GH test to
include two forms of non-linear adjustment. These new tests are residual-based and use
either a self-exciting threshold autoregressive (SETAR) model or a momentum thresh-
old autoregressive (MTAR) to describe the adjustment toward equilibrium. Thereby,
we also provide an extension to the Enders-Siklos cointegration tests which are robust
to a structural break in the cointegrating vector.

We derive the limiting distributions of the test statistics considered in this paper
and provide a formal proof. The properties of the proposed test are investigated by
Monte Carlo experiments for a variety of models ranging from linear adjustment with
no structural break to non-linear adjustment with structural break in the intercept and
slope coefficients. The results suggest that a break in the intercept does not influence
the power of the threshold cointegration tests enough to justify modelling the structural
break. However, a break in the slope coefficients reduces the power of the Enders-Siklos
tests substantially such that our proposed tests perform clearly better than their bench-
marks. In addition, we find that the unknown breakpoints are estimated accurately by
the new procedure.

The methodology is applied to empirical data in the context of the ‘rockets and
feathers’ hypothesis. We use US gasoline market data covering the Financial Crisis. We
illustrate that empirical evidence for the existence of a long-run relationship between
neighbouring stages of the gasoline value-chain can only be provided if we control for a
structural break in the cointegrating vector. Using a cointegration model with SETAR
adjustment and the possibility of structural breaks, we find evidence for asymmetric
adjustment from spot gasoline to retail gasoline prices. The MTAR model yields similar
results.

The paper is organized as follows. Section 2 describes the models and the cointe-
gration testing procedure, Section 3 presents the asymptotic distributions of the test
statistics. Section 4 is devoted to the Monte Carlo simulation study. Section 5 reports
the results of the empirical application, and Section 6 summarizes the study.

1The effects on the power properties of linear cointegration tests, if the equilibrium error follows a
nonlinear adjustment process, are reported in Pippenger and Goering (2000).

3



2 Models and cointegration testing

The long-run equilibrium equation of Engle-Granger cointegration models is given by

yt = µ+ α1x1t + α2x2t + · · ·+ αmxmt + et

= µ+ α′xt + et (1)

where t = 1, 2, . . . , T is the time series index, yt and xt = (xit, x2t, . . . , xmt)′ are I(1)
variables, µ is an intercept, α′ = (α1, α2, . . . , αm) is a vector of slope coefficients and
et is the equilibrium error. The null hypothesis of no cointegration is rejected if the
residuals obtained from least squared estimation of (1) are mean-zero stationary. Since
the parameters µ and α are time-invariant, a residual-based cointegration test based on
(1) becomes invalid if the long-run equilibrium is subject to structural change.

Following Perron (1989) and Gregory and Hansen (1996a), we consider three forms
of structural change.2 First, in the C model, a break in the intercept µ is considered.
This model captures events that cause a parallel shift of the equilibrium equation.
Second, the C/T model adds an additional trend term to the equilibrium equation.
Third, in the C/S model, a simultaneous break in the constant and slope parameters is
specified. This model allows for the possibility of a complete regime shift at one point
in time. The three models are given as follows,

(C) yt = µ1 + µ2ϕt,τ + α′xt + etτ

(C/T ) yt = µ1 + µ2ϕt,τ + δt+ α′xt + etτ (2)

(C/S) yt = µ1 + µ2ϕt,τ + α′1xt + α′2xtϕt,τ + etτ

where µ1, µ2 are constants, α1 = (α11, α12, . . . , α1m)′ and α2 = (α21, α22, . . . , α2m)′ are
slope coefficients. The dummy variable ϕt,τ is defined as

ϕt,τ =

 1 if t ≥ [Tτ ]

0 if t < [Tτ ]
, (3)

where τ ∈ (0, 1) denotes the relative timing of the breakpoint (break fraction), and [·]
denotes integer part. The timing of the breakpoint is rarely known in empirical applica-

2We restrict our analysis to these three models. However, our methodology can easily be adapted
for other structural break models, as for example given in Gregory and Hansen (1996b) and Hatemi-J
(2008).
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tions so that the GH test is constructed without the need of pre-specified breakpoints.
More specifically, a grid search over all possible breakpoint is employed, i.e. the struc-
tural change model is repeatedly estimated for each possible break fraction τ ∈ T . The
set T can be any compact subset of (0, 1) which excludes endpoint results. GH suggest
a lateral trimming of 15 percent (T = (0.15, 0.85)) and, for computational reasons,
consider only integer steps. Estimating one of the structural break models in (3) by
least squares for each breakpoint yields a sequence of residuals. The GH test applies the
ADF test to each sequence and evaluates the null hypothesis of no cointegration based
on the smallest values of the t ratios across all τ ∈ T . The infimum statistic is chosen
since it puts the most weight on the alternative hypothesis. If the null hypothesis is
rejected, the break fraction τ̂ corresponding to the infimum statistic is considered to be
the most likely breakpoint.

In order to account for asymmetric adjustment, the two-regime SETAR model is
now used to describe the adjustment toward equilibrium. The SETAR model for the
breakpoint-specific equilibrium error process etτ is given by

∆etτ = ρ1et−1τ1{et−1τ ≥ λ}+ ρ2et−1τ1{et−1τ < λ}+
K∑
j=1

γj∆et−jτ + εtτK , (4)

where 1{·} denotes the Heaviside indicator function, the parameter λ is a possibly non-
zero threshold value and εtτK is a stationary mean zero error term. The coefficient ρ1

measures the mean-reversion toward the attractor after a shock greater than or equal
to λ whereas ρ2 measures the mean-reversion toward the cointegrating vector after a
shock less than λ. The indicator function in this case is set according to the level of
et−1τ .

In an alternative specification, suggested by Enders and Granger (1998) and Caner
and Hansen (2001), the indicator function is set depending on ∆et−1τ . The two-regime
MTAR model is given by

∆etτ = ρ1et−1τ1{∆et−1τ ≥ λ}+ ρ2et−1τ1{∆et−1τ < λ}+
K∑
j=1

γj∆et−jτ + εtτK .

In this specification, ρ1 measures the mean-reversion toward the attractor if a shock has
momentum greater than or equal to λ whereas ρ2 measures the mean-reversion toward
the cointegrating vector if a shock has momentum less than λ.

Under the null hypothesis of no cointegration, ρ1 = ρ2 = 0, the data-generating
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process (DGP) of etτ is symmetric and a unit root is present in both regimes. Models
(4) and (5) are a special case of the general class of threshold autoregressive models
in that they do not allow for regime-specific deterministic terms and regime-specific
dynamics beyond the leading autoregressive lag. This restriction is convenient since
it circumvents the problem of having an identified threshold under the null hypothesis
resulting in an asymptotic distribution of the test statistic that depends on nuisance
parameters (see Caner and Hansen (2001) for a more detailed discussion in the context of
MTAR processes with a unit root). Furthermore, the Engle-Granger test for symmetric
adjustment (ρ1 = ρ2) is itself a special case of (4) and (5). Petruccelli and Woolford
(1984) show that the stationarity of the SETAR process is ensured if ρ1 < 0, ρ2 < 0
and (1 + ρ1)(1 + ρ2) < 1 for any value λ. In the case of MTAR processes, Lee and
Shin (2000) prove that stationarity is ensured if ρ1 < 0, ρ2 < 0, (1 + ρ1)(1 + ρ2) < 1,
(1+ρ1)(1+ρ2)2 < 1 and (1+ρ1)2(1+ρ2) < 1. Assuming stationarity, Tong (1983, 1990)
demonstrated that least squares estimators of ρ1 and ρ2 are asymptotically normally
distributed. Enders and Siklos (2001) recommend a Wald-type F -test to test the null
hypothesis of no cointegration in their model without structural breaks. However,
since the F -test can lead to rejection of the null hypothesis when only one coefficient
is negative, the test should only be applied if both point estimates suggest a mean-
reversion behaviour. In other words, the one-sided alternative ρ1 < 0 ∧ ρ2 ≥ 0 or
ρ2 < 0 ∧ ρ1 ≥ 0 should not lead to rejection of the null hypothesis.

In the case of a cointegration model with potential structural break, we propose the
following cointegration test: First, an appropriate structural break model is selected
from (3) and the cointegrating regression is estimated by least squares for each break
fraction τ ∈ T . Then, the SETAR or MTAR regression is estimated and the F -
statistic, Fτ , is computed for each sequence of residuals. Since the null hypothesis of
no cointegration is naturally rejected for large values of the F -statistic, the supremum
statistic,

F ∗ = sup
τ∈T

Fτ , (5)

is used to evaluate the null hypothesis of no cointegration against the alternative of
threshold cointegration with possible structural break. The largest value found in this
grid search also determines the most likely breakpoint.
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3 Asymptotic distribution

In the following, we present the asymptotic distributions of the test statistics as func-
tionals of Brownian motion. The asymptotic theory for SETAR processes with a unit
root was developed in Seo (2008) and the asymptotic theory for MTAR processes with a
unit root was developed in Caner and Hansen (2001). Gregory and Hansen (1996a) pro-
vide important results for cointegration test statistics which are functions of the break
fraction parameter τ and serves as the building block for our residual-based tests.

For notational convenience we use ‘⇒’ to signify weak convergence of the associated
probability measures. Continuous stochastic processes such as the Brownian motion
B(s) on [0,1] are simply written as B if no confusion will be caused. We also write
integrals with respect to the Lebesgue measure such as

1∫
0
B(s)ds simply as

1∫
0
B.

Let {zt}∞0 be an (m+ 1)-vector integrated process whose data generating process is

zt = zt−1 + ξt, t = 1, 2, . . . (6)

where it is assumed that T−1/2z0
p→ 0 so that z0 can be treated as either fixed or

random and the results do not depend on the initial condition. The (m + 1)-vector
random sequence {ξt}∞1 is defined on the probability space (X,F , P ) and is assumed
to be strictly stationary and ergodic with zero mean and finite variance. {ξt}∞1 satisfies
the following regularity conditions:

Assumption 1. ξt is a stationary ARMA process with ξt =
∞∑
j=0

Cjνt−j, C0 = In,
∞∑
j=0

j ‖Cj‖ < ∞ and νt ∼ iid(0,Σ), where Σ is a positive definite variance matrix and

νt have absolutely continuous distribution3. Further, E|νt|r <∞ for some r ≥ 4.

The partial sum process constructed from {ξt} satisfies the functional central limit
theorem (FCLT) for Reyni-mixing processes, described in Hall and Heyde (1980). For
s ∈ [0, 1] and as T →∞, it holds that

XT (s) = T−1/2
[Ts]∑
t=1

ξt ⇒ B(s), (7)

3A stationary ARMA process is not necessarily strong-mixing. But if the innovations have ab-
solutely continuous distribution, the strong-mixing condition is ensured (see, for example Andrews
(1984) and Mokkadem (1988)).
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where B(s) is (m+ 1)-vector Brownian motion with covariance matrix

Ω = lim
T→∞

T−1E

((
T∑
t=1

ξt

)(
T∑
t=1

ξ′t

))
. (8)

We partition zt = (yt, x′t)′ into the scalar variate yt and them-vector xt with conformable
partitions of Ω and B:

B =
By

Bx

 Ω =
ω11 ω′21

ω21 Ω22

 . (9)

We assume Ω22 > 0 and decompose Ω as Ω = L′L, where L is given by

L =
l11 0
l21 L22

 , (10)

with l11 = (ω11 − ω′21Ω−1
22 ω21)1/2, l21 = Ω−1/2

22 ω21, and L22 = Ω1/2
22 . Further, we define

W (s) to be (m+ 1)-vector standard Brownian motion and from Lemma 2.2 of Phillips
and Ouliaris (1990) it follows that B = L′W .

Residual-based cointegration tests seek to test the null hypothesis of no cointegration
using unit root tests applied to the residuals of the cointegrating regression. Hence, we
estimate the cointegrating regression according to one of the structural break models (3)
using least squares and apply the SETAR model (4) to the residuals êtτ given that the
threshold parameter λ is known, i.e. a fixed value. We make the following assumption
about λ to ensure a sufficiently large number of observations in each regime. The
cointegration residual series êtτ follows a stochastic trend under the null hypothesis and
has no stable distribution. Hence, the exact threshold value is negligible asymptotically.
Still, we have to specify a threshold value for which the SETAR model can be estimated
using finite samples.

Assumption 2.a. A fixed value for λ is specified which satisfies the condition 0.15 ≤
P (êtτ ≤ λ) ≤ 0.85 for all τ ∈ T .

Alternatively, we use the MTAR specification in (5) and change the assumptions
about λ slightly. Since ∆êtτ has a stationary distribution under the null hypothesis and
the alternative, we can directly specify the threshold with respect to the probability
distribution of its asymptotic counterpart.

Assumption 2.b. A fixed value for λ is specified which satisfies the condition 0.15 ≤
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P (∆êtτ ≤ λ) ≤ 0.85 for all τ ∈ T . Alternatively, the probability, u ∈ [0.15, 0.85], of the
asymptotic counterpart to ∆êtτ being greater than a threshold λ is specified directly.

We assume the lag order K in the auxiliary regression to be large enough to capture
the correlation structure of the cointegration residuals. Similar to Said and Dickey
(1984), we approximate the infinite order process εtτ by a TAR model with finite lag
order εtτK . Since εtτ might have a nonzero MA component, it is necessary to increase
K with the sample size (K → ∞ as T → ∞). In practice, we can use order selection
rules such as AIC, BIC or a general-to-specific pretesting procedure to determine the
lag truncation parameter. We follow Chang and Park (2002) and state:

Assumption 3. K increases with T in such a way that K = o(T 1/2).

Since the indicators 1{· ≥ λ} and 1{· < λ} are orthogonal, we can write the test
statistic as

Fτ = t21 + t22
2 , (11)

where t1 and t2 are the t ratios for ρ̂1 and ρ̂2 from regression (4) or (5). Fτ is computed
for each possible break fraction τ ∈ T and the supF -statistic is computed to evaluate
the null hypothesis of no cointegration against the alternative of threshold cointegration
with possible structural break.

The following theorem presents the asymptotic distributions of the supF test statis-
tic for model specifications C, C/T and C/S and SETAR adjustment:

Theorem 1. If {zt}∞0 is generated by (6), Assumptions (1), (2.a), (3) hold and τ

belongs to a compact subset of (0, 1), then as T →∞

F ∗SETAR ⇒
1
2 sup
τ∈T



(
1∫
0
1{Qκτ ≥ 0}QκτdQκτ

)2

κ′τDτκτ
1∫
0
1{Qκτ ≥ 0}Q2

κτ

+

(
1∫
0
1{Qκτ < 0}QκτdQκτ

)2

κ′τDτκτ
1∫
0
1{Qκτ < 0}Q2

κτ


where

Qκτ = Wy −

 1∫
0

WxτW
′
xτ

−1 1∫
0

WyW
′
xτ

Wxτ

κτ =

1,−
 1∫

0

WxτW
′
xτ

−1 1∫
0

WyW
′
xτ
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Under the alternative of cointegration with two-regime SETAR adjustment, F ∗SETAR →
∞ as T →∞. Qκτ depends on the model:
a) If the residuals are obtained from least squares estimation of model C, then

Wxτ = (W ′
x, 1, ϕτ )′

Dτ =
Im+1 0

0 0

 .
b) If the residuals are obtained from least squares estimation of model C/T , then

Wxτ = (W ′
x, 1, s, ϕτ )′

Dτ =
Im+1 0

0 0

 .
c) If the residuals are obtained from least squares estimation of model C/S, then

Wxτ = (W ′
x, 1,W ′

xϕτ , ϕτ )′

Dτ =



1 0 0 0 0
0 Im 0 (1− τ)Im 0
0 0 0 0 0
0 (1− τ)Im 0 (1− τ)Im 0
0 0 0 0 0


.

A formal proof of Theorem 1 is provided in the Appendix. Accordingly, the asymp-
totic distribution of the supF test statistic for cointegration models with MTAR ad-
justment is given in Theorem 2.

Theorem 2. If {zt}∞0 is generated by (6), Assumptions (1), (2.b) and (3) hold and τ
belongs to a compact subset of (0, 1), then as T →∞

F ∗MTAR ⇒
1
2 sup
τ∈T



(
1∫
0
Qκτ (s)dW (s, u)

)2

u
1∫
0
Q2
κτ (s)ds

+

(
1∫
0
Qκτ (s) (dW (s, 1)− dW (s, u))

)2

(1− u)
1∫
0
Q2
κτ (s)ds
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where

Qκτ = Wy −

 1∫
0

WxτW
′
xτ

−1 1∫
0

WyW
′
xτ

Wxτ

Under the alternative of cointegration with two-regime MTAR adjustment, F ∗MTAR →∞
as T →∞. Qκτ depends on the model:
a) If the residuals are obtained from least squares estimation of model C, then

Wxτ = (W ′
x, 1, ϕτ )′

b) If the residuals are obtained from least squares estimation of model C/T , then

Wxτ = (W ′
x, 1, s, ϕτ )′

c) If the residuals are obtained from least squares estimation of model C/S, then

Wxτ = (W ′
x, 1,W ′

xϕτ , ϕτ )′

A formal proof of Theorem 2 is provided in the Appendix.4

4 Simulation results

Critical values and finite sample properties of the supF tests are examined by Monte
Carlo experiments. In the absence of a structural break, we use a DGP according to
Engle and Granger (1987) and Banerjee et al. (1986) which is given for one regressor
(m = 1) in the form of

yt = µ+ αx1,t + et ∆et = ρet−1 + ϑt ϑt ∼ N(0, 1)
yt = x1,t + ηt ηt = ηt−1 + ωt ωt ∼ N(0, 1),

(12)

4Enders and Siklos (2001) do not provide an asymptotic theory for their tests. The theorems given
here are easily adapted to provide the asymptotic distributions for models without structural breaks
using Wxτ = (W ′x, 1)′. Hence, the asymptotic distribution of their F -statistic using fixed threshold
values and a SETAR model is given as a special case of Theorem 1 of this paper and as a special case
(λ1 = λ2) of Theorem 2 in Maki and Kitasaka (2015). Theorem 2 is new in this context. It shows that
the cointegration test using MTAR adjustment in Enders and Siklos (2001) depends on the nuisance
parameter u. However, critical values obtained for different u are very similar for the model without
structural breaks.
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where the parameters of the equilibrium equation are µ = 1 and α = 2. First, the
null hypothesis of no cointegration is simulated with ρ = 0. This enables us to obtain
quantiles of the supF distribution for different sample sizes. The BIC is used to deter-
mine the lag truncation parameter K. Critical values are computed for 10, 000 draws
for each sample size. The results are reported in Table 1, Table 2 and Table 3.

The power of the supF test under structural change is evaluated with a DGP de-
signed in line with Gregory and Hansen (1996a). A slight modification was, however,
necessary to allow for asymmetric adjustment to the long-run equilibrium. The follow-
ing DGP is employed for a bivariate cointegrated system,

yt = µt + αtx1,t + et ∆et =

ρ1et−1 + ϑt if et−1 ≥ 0

ρ2et−1 + ϑt if et−1 < 0
ϑt ∼ N(0, 1)

yt = x1,t + ηt ηt = ηt−1 + ωt ωt ∼ N(0, 1)

 µt = µ1, αt = α1, t ≤ [Tτ ]
µt = µ2, αt = α2, t > [Tτ ]

 ,
(13)

in which symmetric adjustment is nested as ρ1 = ρ2. In the case of MTAR adjustment,
the speed of adjustment depends on whether the previous periods change was greater
than the median of ∆et. Thus, we investigate the power for u = 0.5. A change in
the intercept is modelled by means of an increase from µ1 = 1 to µ2 = 4 at the
breakpoint, whereas a change in the slope is modelled as an increase from α1 = 2 to α2 =
4. The simulation set-up used for cointegrated systems with symmetric adjustment
directly follows Gregory and Hansen (1996a) so that the results for the supF test can
be compared with the results for the GH test.

Table 4 reports displays the rejection rates under cointegration with symmetric
adjustment and break in either the intercept or slope. The power of the tests is in-
vestigated by generating 2,500 draws for every specification. We find that the supF
tests have generally higher rejection rates than either the Engle-Granger test using the
ADF test statistic or threshold cointegration tests without breakpoint estimation. The
simulation reveals that the supF test with SETAR adjustment has comparable power
properties to the GH test. The MTAR specification of the supF test has slightly lower
power against the alternative than the GH test. The Enders-Siklos test with SETAR
adjustment seems to be rather robust to a break in the intercept but suffers from a
drastic reduction in power if a break in the slope is considered. The supF tests appear
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to have sufficient power at sample sizes above T = 100 and moderate adjustment rate
ρ = −0.5. As expected, the model C outperforms model C/T and C/S if a break in
the intercept is considered, while C/S performs best if the slope changes at one point
in the sample.

The simulation results under symmetric adjustment can also be used to analyze
the estimation accuracy of the pre-specified breakpoint in the DGP. The timing of the
break is varied and takes place either at the beginning, the middle or near the end of
the series. The results are summarized in Table 5 and reveal that breakpoint estimates
are in large parts very accurate. In general, it seems that breaks at the beginning of the
sample are most difficult to detect and the supF tests often indicate a later breakpoint.
Breaks in the intercept and the slope are estimated with equal accuracy as long as the
correct structural break model is applied. The SETAR model seems to produce slightly
more accurate breakpoint estimates than the MTAR model.

The upper panel of Table 6 displays the rejection rates under structural stability
and asymmetric adjustment. For each combination of autoregressive coefficients, we
generate series with sample size T = 100. If the series are generated under asymmetric
adjustment with a stable cointegrating vector, we find that the supF tests operate with
less power than the threshold cointegration tests by Enders and Siklos (2001). Falsely
incorporating breaks in form of additional dummy variables in the equilibrium equation
thus reduces the power against the null hypothesis. Accordingly, the most parsimonious
model C performs best among the three structural break models.

Finally, the behaviour of the supF test is evaluated under parameter instability
and asymmetric adjustment. For that matter, we draw from the DGP in (13). We
consider SETAR adjustment in Table 6 and MTAR adjustment in Table 7, respectively.
In the second panel, we model a break in the intercept. The supF tests have poor
power properties and are outperformed by the Enders-Siklos test in each parameter
combination. The loss in power of the original threshold cointegration test due to a
break in the intercept does not justify the additional parameter estimation and grid
search of the C model. The C/T and C/S models involve an additional parameter
and, as expected, have lower rejection rates. With a break in the slope (third panel
of Table 6 and Table 7), we find the picture to be quite different. All structural break
models have more power against the null hypothesis than the Enders-Siklos test. As
expected, the power of the correctly specified C/S model exceeds all other structural
change models for each parameter combination. Further, we evaluate the power of the
GH test and find that the power is lower than the supF tests’ power if the adjustment
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is asymmetric.5

In the last panel, we display the results for a simultaneous break in the intercept
and the slope. Again, the C/S model performs best among the structural break models
and far exceeds the benchmark Enders-Siklos test. In general, we find a break in
the slope to have a more substantial impact on the power function than a break in the
intercept. In practice, we have to assume that structural change involves all parameters
of the equilibrium equation. Since the supF tests based on the C/S model perform
best in those situations, it has to be considered the preferred model for cointegration
relationships with asymmetric adjustment which are subject to parameter instability
at an unknown point in time.

5 Empirical application

In this section, we apply the supF test methodology to study the ‘rockets and feathers’
hypothesis6 in the US gasoline market. The ‘rockets and feathers’ hypothesis describes
the adjustment behaviour of prices faced with input price shocks. More precisely, the
hypothesis states that prices adjust faster to input price increases than to input price
decreases. In the terms of Bacon (1991)’s seminal paper, the price goes up like a rocket,
but falls down like a feather. While early studies on the matter (Bacon (1991), Manning
(1991), Borenstein et al. (1997)) focused on the short-run asymmetry in the pricing
process, the focus quickly shifted to the economically meaningful long-run asymmetry
estimated by asymmetric error correction models (Bachmeier and Griffin (2002)).

For the empirical illustration, we examine the fuel prices transmission at two points
of the production chain. First, we analyze the speed of adjustment for deviations from
the long-run relationship between crude oil prices and gasoline spot prices (first stage).
Second, we analyze the pass-through from gasoline spot prices to retail prices (second
stage). Finally, the direct link between crude oil prices and retail prices is analyzed
(single stage). Naturally, we expect the speed of adjustment at the first and second
stage to be faster than at the single stage transmission. Long-run asymmetry in the
sense of the ‘rockets and feathers’ hypothesis is found if negative deviations from the
long-run equilibrium are adjusted faster than positive deviations, i.e. ρ1 = ρ− < ρ+ =
ρ2. Alternatively, we use the MTAR model to investigate whether a shock having

5The results are not reported in this paper but can be obtained from the author upon request.
6The name originates from the Bacon (1991) paper entitled: ‘Rockets and feathers: the asymmetric

speed of adjustment of UK retail gasoline prices to cost changes’
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Figure 1: WTI crude oil prices, spot gasoline prices and retail gasoline prices from January
2006 to December 2013

momentum greater than or equal to its median is adjusted faster than a shock with less
momentum.

Our sample reaches from January 2006 to December 2013 to include the collapse of
commodity prices in 2009 and their subsequent recovery. We observe prices at a monthly
frequency yielding a total of 96 observations. The West Texas Intermediate prices (pct),
regular gasoline spot prices (pst) and regular gasoline retail prices (pgt ) are all obtained
from the U.S. Energy Information Administration (EIA). Figure 1 depicts the trajectory
of the prices and shows volatile behaviour of prices for petroleum products during the
Financial Crisis. Although the times series are affected by global events, it does not
immediately follow that the long-run relationship between them changes. However,
from our simulation study, we know that an existing instability of the cointegrating
vector can severely decrease the power of a threshold cointegration test.

First, we estimate a threshold cointegration model according to Enders and Siklos
(2001). We specify the long-run equilibrium equations

(I) pst = µ+ α pct + et

(II) pgt = µ+ α pst + et

(S) pgt = µ+ α pct + et

(14)

where the (I), (II), (S) denote first stage, second stage and single stage, respectively. The
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coefficients of the cointegrating vector are estimated using least squares and a threshold
model is applied to the residuals. The results for the SETAR model are reported in
panel (a) of Table 8 and reveal significant asymmetry in the adjustment process only in
the second stage. The results for the MTAR model with u = 0.5 are reported in panel
(b) of Table 8. Here, we also find significant asymmetries in the transmission from spot
gasoline to retail gasoline prices. Surprisingly, we do not find sufficient evidence for
a long-run relationship between crude oil prices and gasoline spot prices. In contrast,
retail gasoline prices and crude oil prices seem to maintain a long-run equilibrium which
is a less likely result from an economic perspective than the existence of a crude/spot
relationship.

Second, we estimate the long-run equilibrium equations again using the C/S specifi-
cation since this specification of the supF tests performed best in the simulation study
if the slope coefficient changed at one point in time and is best-suited for modelling
unspecific regime shift events. The results are reported in panel (b) and panel (d) of
Table 8. The null hypothesis of no cointegration can now be rejected at all stages
along the gasoline value-chain. The breakpoint is located either at the peak crude oil
prices during the Financial Crisis or after the prices had recovered in 2011. Closer
inspection of the time series reveals that the spread between crude oil prices and spot
gasoline prices increased substantially around 2011. We do not find statistical evidence
for asymmetric adjustment processes in the first stage. The asymmetry results for the
second stage and single stage remain unchanged.

6 Summary

This paper proposed an extension to the GH test to include SETAR and MTAR ad-
justment. Thereby, we constructed threshold cointegration tests which endogenously
determine the location of a structural break in the cointegrating vector and test the
null of no cointegration. We derived the limiting distribution for the structural break
models C, C/T and C/S and tabulated their critical values which were obtained by
Monte Carlo simulations. Analysis of the finite sample properties under the alterna-
tive of linear and threshold cointegration revealed that the tests exhibit considerable
power gains over the conventional Enders-Siklos tests if a break in the slope coefficient
is present. We applied the supF tests to US gasoline market data and found evidence
for a long-run relationship between prices along the value-chain after we accounted for
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structural breaks. The results for the SETAR and MTAR models provided evidence
for asymmetric price transmission from spot gasoline to retail gasoline.
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Appendix

Proof of Theorem 1. The asymptotic distribution is derived by adapting the results
of Gregory and Hansen (1992) to match the F -statistic process involving a threshold
indicator function using results in Maki and Kitasaka (2015). However, Maki and
Kitasaka (2015) use a different definition of the threshold parameter space in their
SETAR model. The threshold parameter in our model is fixed, i.e. belongs to a trivial
compact subset of R whereas the parameter space in Maki and Kitasaka (2015) is
data dependent (see the discussion on threshold parameter space in Section 2.2 of their
paper). Indicator functions with threshold parameters defined on compact sets are
treated in Seo (2008). The proof only refers to model C/S while the results for the
remaining models can be deduced from the results obtained for this model. Hence, we
consider the cointegrating regression,

yt = α̂′1xt + µ̂1 + α̂′2xtϕt,τ + µ̂2ϕt,τ + êtτ , (15)

where êtτ is an integrated process under the null hypothesis of no cointegration and
zt = (yt, x′t)′ is generated according to (6).

Define the (2m + 3)-vector Xtτ = (yt, xt′, 1, xtϕt,τ ′, ϕt,τ )′ and partition Xtτ =
(X1tτ , X2tτ

′)′ where X1tτ = yt and X2tτ contains all regressors of (15). De-
fine δT = diag(T−1/2Im+1, 1, T−1/2Im, 1), ϕτ (s) = 1{s > τ} and Xτ (s) =
(B(s)′, 1, Bx(s)ϕτ (s)′, ϕτ (s))′. Partition δT = (δ1T , δ2T ) in conformity to Xtτ .

Next, we partition the (m + 1)-vector standard Brownian Motion W as W =
(Wy,W

′
x)′ where

Wy = l−1
11

(
By − ω′21Ω−1

22 Bx

)
Wx = Ω−1/2

22 Bx. (16)

Furthermore, we define
Wxτ = (Wx

′, 1,Wxϕτ
′, ϕτ )′ (17)

and Wτ = (Wy,Wxτ
′)′.

First, we consider the least squares estimator of the parameters of the cointegrating
regression. It is shown in Gregory and Hansen (1992) using the FCLT for vector pro-
cesses in Phillips and Durlauf (1986) and the continuous mapping theorem (CMT, see
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Billingsley (1999), Theorem 2.7) that

T−1δT
T∑
t=1

XtτXtτ
′δT ⇒

1∫
0

XτXτ
′ (18)

where the weak convergence is with respect to the uniform metric over τ ∈ T . In
the remainder of the proof, we refer to weak convergence results involving the break
fraction parameter τ as holding uniformly over τ (see also Arai and Kurozumi (2007)
for a similar application).

We define the vector θ̂τ = (α̂′1, µ̂1, α̂
′
2, µ̂2) as the least squares estimator of (15) for

each τ . It follows from (18) and the CMT that

T−1/2δ−1
2T θ̂τ =

(
T−1δ2T

T∑
t=1

X2tτX2tτ
′δ2T

)−1 (
T−1δ2T

T∑
t=1

X2tτX1tτδ1T

)

⇒

 1∫
0

X2τX2τ
′

−1 1∫
0

X2τX1τ

 . (19)

When we set η̂τ = T−1/2δ−1
T (1,−θ̂′τ )′ = (1,−δ−1

2T θ̂
′
τ )′, it follows that

η̂τ ⇒

1,−
 1∫

0

X1τX2τ
′

 1∫
0

X2τX2τ
′

−1
′

= ητ . (20)

Next, we state some useful convergence results for the residuals of the cointegrating
regression. We define the residual series êtτ = yt − α̂′1xt − µ̂1 − α̂′2xtϕt,τ − µ̂2ϕt,τ which
is dependent on τ . Note that êtτ can be expressed as

êtτ = T 1/2η̂′τδTXtτ . (21)

Using Lemma 2.2 of Phillips and Ouliaris (1990) yields

T−1/2êtτ ⇒ η′τXτ = l11κ
′
τWτ = l11Qκτ , (22)
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where

κτ =

1,−
 1∫

0

WyW
′
xτ

 1∫
0

WxτW
′
xτ

−1
′

Lητ = l11κτ (23)

Qκτ = Wy −

 1∫
0

WyW
′
xτ

 1∫
0

WxτW
′
xτ

−1

Wxτ .

The first-differenced residuals are expressed as ∆êtτ = T 1/2η̂′τδT∆Xtτ , where

∆Xtτ = ∆(yt, xt′, 1, xtϕt,τ ′, ϕt,τ )′

= (ξ1t, ξ2t
′, 0, xt−1∆ϕt,τ ′ + ∆xtϕt,τ ′,∆ϕt,τ )′ (24)

= (ξ1t, ξ2t
′, 0, xt−1∆ϕt,τ + ξ2tϕt,τ

′,∆ϕt,τ )′

and

∆ϕt,τ =

 1 if t = [Tτ ]

0 if t 6= [Tτ ]
. (25)

The asymptotic counterpart to ∆ϕt,τ is the differential dϕτ , a Dirac function concen-
trating the unit mass at the point t = τ so that

b∫
a

fdϕτ = lim
z↑τ

f(z), a < τ < b,

for all functions with left-limits. Then, we can define the differential dXτ by

dXτ (s) = (dB(s)′, 0, Bx(s)′dϕτ (s) + dBx(s)′ϕτ (s), dϕτ (s))′. (26)

Under Assumption (1), ξt is a stationary VARMA process and consequently, the scalar
process T 1/2η̂′τδT∆Xtτ ⇒ T 1/2η′τδT∆Xtτ is also a stationary ARMA process with an
intervention outlier at t = [Tτ ]. Moreover, under Assumption (3) the lag truncation
parameter K → ∞ for T → ∞. This means that the error of approximating εtτ by
a finite AR process becomes small as K grows large. Following Phillips and Ouliaris
(1990) we write the infinite order AR representation of the SETAR error term process as
εtτ =

∞∑
j=0

Dj(T 1/2δT∆Xt−jτ )′ητ = D(L)(T 1/2δT∆Xtτ )′ητ . The lag structure is chosen in

a way that εtτ is an orthogonal (0, σ2(η, τ)) sequence with long-run variance σ2(η, τ) =
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D(1)2η′τΩτητ . From Lemma 2.1 of Phillips and Ouliaris (1990), it follows that

T−1/2
[Ts]∑
t=1

εtτK = D(L)η′τ

T−1/2
[Ts]∑
t=1

T 1/2δT∆Xtτ

+ op(1)⇒ D(1)η′τXτ (s), (27)

where D(1) =
∞∑
j=0

Dj.
Now, we consider the auxiliary regression. We apply the SETAR model to the

residuals according to (4) and compute the test statistics Fτ . Note that the esti-
mated adjustment coefficients might be correlated with the estimated coefficients of
the additional lagged differences. Therefore, we write the least squares estimator of
ρ = (ρ1, ρ2)′ in the breakpoint specific notation under the null hypothesis ρ1 = ρ2 = 0
as ρ̂ = (U ′τQKUτ )−1U ′τQKετ , where

Uτ =


ê0τ1{ê0τ ≥ λ} ê0τ1{ê0τ < λ}
ê1τ1{ê1τ ≥ λ} ê1τ1{ê1τ < λ}

... ...
êT−1τ1{êT−1τ ≥ λ} êT−1τ1{êT−1τ < λ}

 , (28)

ετ = (ε1τ , ε2τ , . . . , εTτ )′ and QK = I −MK(M ′
KMK)−1M ′

K is the projection matrix onto
the space orthogonal to the regressors MK = (∆êt−1τ , . . . ,∆êt−Kτ ).

Partition the matrix Uτ as Uτ = (U1τ , U2τ ), then the t ratio of ρ̂1 can be expressed
as

t1 = ρ̂1

se(ρ̂1) = ρ̂1

(σ̂2(U ′1τQKU1τ )−1)1/2 = U ′1τQKετ
σ̂(U ′1τQKU1τ )1/2 (29)

and similarly the t ratio of ρ̂2 can be expressed as

t2 = U ′2τQKετ
σ̂(U ′2τQKU2τ )1/2 . (30)

In the remainder of the proof, we focus on t1. Scaling the t ratio appropriately yields
the numerator

T−1U ′1τQKετ = T−1U ′1τετ − T−1/2 · T−1U ′1τMK(T−1M ′
KMK)−1T−1/2M ′

Kετ

= T−1U ′1τετ + op(1) = NT (λ, τ) + op(1) (31)
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and the term

T−2U ′1τQKU1τ = T−2U ′1τU1τ − T−1 · T−1U ′1τMK(T−1M ′
KMK)−1T−1M ′

KU1τ

= T−2U ′1τU1τ + op(1) = DT (λ, τ) + op(1). (32)

Finally, we need convergence results for NT (λ, τ), DT (λ, τ) and σ̂2. Since x 7→
x1{x ≥ λ} is a regular function, it follows from (22) and Theorem 3.1 of Park and
Phillips (2001) that

T−1/2êt−1τ1{êt−1τ ≥ λ} = η̂′τδTXt−1τ1{T 1/2η̂′τδTXt−1τ ≥ λ}

= η̂′τδTXt−1τ1{η̂′τδTXt−1τ ≥ T−1/2λ} (33)

⇒ η′τXτ1{η′τXτ ≥ 0} = l11Qκτ1{Qκτ ≥ 0}.

Thus, Theorem 2.2 of Kurtz and Protter (1991) combined with results (27) and (33)
yields

NT (λ, τ) = T−1
T∑
t=1

1{êt−1τ ≥ λ}êt−1τ εtτ

= η̂′τδT
T∑
t=1

1{δT η̂′τXt−1τ ≥ T−1/2λ}Xt−1τD(L)(∆Xtτ )′δTητ

⇒ D(1)η′τ
1∫

0

1{η′τXτ ≥ 0}XτdX
′
τητ (34)

= D(1)l211

1∫
0

1{Qκτ ≥ 0}QκτdQκτ ,

while (27), (33) and the CMT yield

DT (λ, τ) = T−2
T∑
t=1

1{êt−1τ ≥ λ}ê2
t−1τ

= η̂′τδTT
−1

T∑
t=1

1{δT η̂′τXt−1τ ≥ T−1/2λ}Xt−1τXt−1τ
′δT η̂τ

⇒ η′τ

1∫
0

1{η′τXτ ≥ 0}XτX
′
τητ (35)

= l211

1∫
0

1{Qκτ ≥ 0}Q2
κτ .
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For the variance estimate, σ̂2, we note that ρ̂1 = Op(T−1) and ρ̂2 = Op(T−1), but
(γ̂j − γj) = Op(T−1/2). Using Lemma 2.2 of Phillips and Ouliaris (1990) yields

σ̂2 = T−1
T∑
t=1

∆êtτ − ρ̂1êt−1τ1{êt−1τ ≥ λ} − ρ̂2êt−1τ1{êt−1τ < λ} −
K∑
j=1

γ̂j∆êt−jτ

2

= T−1
T∑
t=1

ε2tτ + op(1)⇒ D(1)2η′τΩτητ = D(1)2l211κ
′
τDτκτ , (36)

where the long-run covariance matrix is given by

Ωτ =



ω11 ω′21 0 (1− τ)ω′21 0
ω21 Ω22 0 (1− τ)Ω22 0
0 0 0 0 0

(1− τ)ω21 (1− τ)Ω22 0 (1− τ)Ω22 0
0 0 0 0 0


(37)

and

Dτ =



1 0 0 0 0
0 Im 0 (1− τ)Im 0
0 0 0 0 0
0 (1− τ)Im 0 (1− τ)Im 0
0 0 0 0 0


. (38)

Similar results can be obtained for t2 so that the results (34), (35), (36) combine with
the CMT to proof the theorem under the null hypothesis.
Under the alternative, the system is cointegrated so that we have η̂τ

p→ ητ and

η̂τ = ητ +Op(T−1) (39)

from Phillips and Durlauf (1986), Theorem 4.1. Thus, for the residual series it holds
that

êtτ = η̂′τzt = η′τzt +Op(T−1/2) = qtητ +Op(T−1/2). (40)

By assumption a stationary SETAR representation of qtητ exists and is given by

qtητ = a11qt−1ητ1{qt−1ητ ≥ λ}+ a12qt−1ητ1{qt−1ητ < λ}+
∞∑
j=2

ajqt−jητ + ε∗tητ , (41)
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where ε∗tητ is an orthogonal (0, σε∗ητ ) sequence. This can alternatively be written as

∆qtητ = ψ11qt−1ητ1{qt−1ητ ≥ λ}+ ψ12qt−1ητ1{qt−1ητ < λ}+
∞∑
j=2

ψj∆qt−jητ + ε∗tητ . (42)

If we consider the t ratio of ρ̂1 and use the expression

t1 = 1
σ̂

(
ρ̂1 (U ′1τQKU1τ )1/2

)
, (43)

we find that ρ̂1
p→ ψ11 6= 0 and σ̂2 p→ σ2

ε∗ητ
. Further, we observe

U ′1τQKU1τ = U ′1τU1τ − U ′1τMK(M ′
KMK)−1M ′

KU1τ = Op(T ) (44)

which yields t1 = Op(T 1/2) and similarly t2 = Op(T 1/2). Hence, we immediately see
that F ∗SETAR →∞ as T →∞. �

Proof of Theorem 2. The proof is structured similarly to the proof of Theorem 1.
Using the results for the cointegrating regression, we write the AR representation of the
MTAR error term process as εtτ =

∞∑
j=0

aj(T−1/2δT∆Xt−jτ )′ητ = a(L)(T−1/2δT∆Xt−jτ )′ητ
and εtτ is an orthogonal (0, σ2(η, τ)) sequence with σ2(η, τ) = a(1)2η′τΩτητ . From
Lemma 2.1 of Phillips and Ouliaris (1990), it follows that

T−1/2
[Ts]∑
t=1

εtτK = a(L)η′τ

T−1/2
[Ts]∑
t=1

T 1/2δT∆Xtτ

+ op(1)⇒ a(1)η′τXτ , (45)

where a(1) =
∞∑
j=0

aj.

Now, we apply the MTAR model to the residuals according to (5) and compute the
test statistics Fτ . The t ratio of ρ̂1 is written as

t1 = U ′1τQKετ
σ̂(U ′1τQKU1τ )1/2 (46)

and the t ratio of ρ̂2 is written as

t2 = U ′2τQKετ
σ̂(U ′2τQKU2τ )1/2 , (47)
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where

Uτ = (U1τ , U2τ ) =


ê0τ1{∆ê0τ ≥ λ} ê0τ1{∆ê0τ < λ}
ê1τ1{∆ê1τ ≥ λ} ê1τ1{∆ê1τ < λ}

... ...
êT−1τ1{∆êT−1τ ≥ λ} êT−1τ1{∆êT−1τ < λ}

 . (48)

Finally, we need convergence results for NT (λ, τ), DT (λ, τ) and σ̂2. The main dif-
ference between the asymptotic distribution for the SETAR and the MTAR models
lies in the fact that the indicator variable ∆êtτ has a stationary distribution under the
null hypothesis and the alternative. Further, the MTAR decomposition of êt−1τ is not
regular and Theorem 3.1 of Park and Phillips (2001) cannot be used. However, from
Theorem 1 in Caner and Hansen (2001) it follows that

T−1/2
[Ts]∑
t=1

1{∆êt−1τ ≥ λ}εtτ = T−1/2
[Ts]∑
t=1

1{G (∆êt−1τ ) ≥ G (λ)}εtτ

= T−1/2
[Ts]∑
t=1

1{Ut ≥ G (λ)}εtτ

⇒ Qκτ (s, u) = σ(η, τ)W (s, u) (49)

= a(1)l11(κ′τDτκτ )1/2W (s, u),

where G(·) is the marginal distribution of ∆êt−1τ so that G(∆êt−1τ ) = Ut ∼ U [0, 1]
and G(λ) = u. The standard two-parameter Brownian motion W (s, u) is defined on
(s, u) ∈ [0, 1]2. Using Theorem 2.2 of Kurtz and Protter (1991) and (49) yields

NT (λ, τ) = T−1
T∑
t=1

1{∆êt−1τ ≥ λ}êt−1τεtτ

= η̂′τδT
T∑
t=1

1{G (∆êt−1τ ) ≥ G (λ)}Xt−1τ εtτ

⇒ a(1)l11(κ′τDτκτ )1/2η′τ

1∫
0

Xτ (s)dW (s, u) (50)

= a(1)l211(κ′τDτκτ )1/2
1∫

0

Qκτ (s)dW (s, u)
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and Theorem 3 of Caner and Hansen (2001) yields

DT (λ, τ) = T−2
T∑
t=1

1{∆êt−1τ ≥ λ}ê2
t−1τ

= η̂′τδTT
−1

T∑
t=1

1{G (∆êt−1τ ) ≥ G (λ)}Xt−1τXt−1τ
′δT η̂τ

⇒ uη′τ

1∫
0

Xτ (s)X ′τ (s)dsητ (51)

= ul211

1∫
0

Q2
κτ (s)ds.

For the variance estimate, σ̂2, Lemma 2.2 of Phillips and Ouliaris (1990) yields

σ̂2 = T−1
T∑
t=1

ε2tτ + op(1)

⇒ a(1)2l211κ
′
τDτκτ . (52)

The results (50), (51), (52) combine with the CMT to proof

t1 ⇒

1∫
0
Qκτ (s)dW (s, u)(
u

1∫
0
Q2
κτ (s)ds

)1/2 . (53)

Analogously, we can show that

t2 ⇒

1∫
0
Qκτ (s) (dW (s, 1)− dW (s, u))(

(1− u)
1∫
0
Q2
κτ (s)ds

)1/2 (54)

holds. Finally, we observe that taking the supremum over all τ ∈ T is a continuous
transformation so that we can use the CMT to proof the theorem under the null hypoth-
esis. The proof of the theorem under the alternative is a straightforward adaptation of
the results given in the proof of Theorem 1. �
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Table 1: Approximate critical values of F ∗SETAR

C C/T C/S

T 90% 95% 99% 90% 95% 99% 90% 95% 99%
m = 1

50 16.01 18.48 24.22 18.80 21.38 27.10 17.52 20.16 25.83
100 12.73 14.66 19.24 15.58 17.75 22.49 14.44 16.68 21.40
250 10.80 12.29 15.70 12.99 14.59 18.16 12.52 14.36 17.82
500 10.13 11.42 14.30 12.11 13.46 16.37 11.76 13.24 16.39
∞ 9.48 10.70 13.45 11.53 12.86 15.74 11.20 12.71 15.69

m = 2
50 17.63 20.14 26.26 19.84 22.42 28.47 20.49 23.47 29.57
100 16.19 18.21 23.21 18.69 20.90 25.94 19.24 21.56 26.54
250 13.33 15.02 18.93 15.50 17.39 21.69 16.47 18.39 23.03
500 12.22 13.68 17.08 14.06 15.63 19.07 15.22 16.85 20.18
∞ 12.18 13.60 16.88 14.22 15.82 19.33 15.30 16.86 20.45

m = 3
50 19.80 22.49 28.40 21.71 24.56 30.57 23.94 27.05 34.08
100 18.20 20.51 25.37 20.40 22.81 28.00 22.87 25.43 30.89
250 15.37 17.16 21.21 17.31 19.24 23.42 19.81 22.00 26.48
500 14.15 15.71 19.11 15.88 17.57 21.14 18.44 20.30 24.11
∞ 14.12 15.65 19.03 16.00 17.66 21.23 18.60 20.44 24.09

m = 4
50 21.19 23.92 29.90 23.22 26.11 32.96 27.33 30.40 37.89
100 20.13 22.56 27.61 22.42 24.80 29.47 25.98 28.49 34.16
250 17.36 19.27 23.87 19.21 21.23 26.12 23.26 25.81 30.78
500 15.77 17.41 20.70 17.41 19.13 22.73 21.46 23.44 27.80
∞ 16.04 17.69 21.28 17.81 19.51 23.12 21.75 23.83 27.95

Note: C, C/T and C/S denote the supF tests using the structural break models in (3). m refers to
the number of columns of the regressor matrix xt. The lag truncation parameter is determined using
the BIC and maximum lag length Kmax = 8. Critical values for different order selection rules are not
reported but can be obtained from the author upon request.
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Table 2: Approximate critical values of F ∗MTAR

C C/T C/S

u 90% 95% 99% 90% 95% 99% 90% 95% 99%
m = 1

T = 50
0.15 17.49 20.18 26.82 18.72 21.25 26.65 18.12 20.62 26.60
0.25 16.89 19.41 25.74 18.56 20.86 26.52 17.98 20.43 26.32
0.50 16.56 19.03 24.57 18.51 20.94 26.52 17.88 20.34 26.00

T = 100
0.15 17.95 21.03 28.71 18.16 20.77 26.43 18.04 21.17 28.37
0.25 15.56 18.26 24.05 17.03 19.32 24.00 16.55 18.97 24.92
0.50 14.58 16.86 21.30 16.47 18.92 23.86 15.92 18.28 23.42

T = 250
0.15 19.21 23.19 32.09 18.82 21.85 28.79 19.45 23.15 31.94
0.25 15.08 17.60 24.11 16.11 18.20 23.65 16.13 18.65 25.27
0.50 12.85 14.72 18.87 14.75 16.50 20.70 14.33 16.21 20.98

T = 500
0.15 20.83 24.76 35.04 20.90 24.37 32.96 21.56 25.51 35.91
0.25 15.35 17.67 24.79 16.60 18.98 24.46 16.55 18.95 25.93
0.50 12.49 14.04 17.37 14.34 15.89 19.51 13.96 15.66 19.37

T =∞
0.15 21.59 25.94 36.86 21.52 25.25 34.64 22.52 26.71 37.94
0.25 15.30 17.48 25.12 16.37 18.67 24.70 16.56 19.01 26.38
0.50 11.81 13.13 16.39 13.65 14.82 18.08 13.35 14.79 18.27

m = 2
T = 50

0.15 18.18 20.74 26.68 19.72 22.13 28.33 20.23 22.86 29.18
0.25 17.95 20.36 26.17 19.64 21.99 27.80 20.37 23.05 29.61
0.50 17.77 20.24 26.40 19.91 22.40 28.33 20.44 23.38 29.22

T = 100
0.15 18.74 21.57 27.97 19.57 22.19 28.05 20.01 22.43 28.48
0.25 17.21 19.08 25.53 18.84 21.23 26.08 19.62 21.93 27.02
0.50 16.84 19.15 24.07 18.84 21.09 25.82 19.62 21.13 27.15

T = 250
0.15 19.85 23.35 32.90 19.81 22.51 28.71 20.89 23.90 31.19
0.25 16.43 18.77 24.80 17.53 19.73 24.53 18.64 21.00 26.47
0.50 14.70 16.64 20.91 16.48 18.35 22.44 17.46 19.56 24.40

T = 500
0.15 21.24 25.01 35.89 21.49 24.69 31.92 22.52 26.01 35.26
0.25 16.54 18.96 26.23 17.70 19.77 24.76 18.62 21.19 27.14
0.50 14.26 15.90 19.66 15.86 17.51 21.06 16.97 18.75 23.10

T =∞
0.15 21.88 26.00 38.63 21.79 25.05 32.61 23.17 27.05 37.19
0.25 16.23 18.99 26.06 17.12 19.07 24.19 18.20 20.87 27.27
0.50 13.20 14.64 18.18 14.69 16.14 19.47 15.88 17.47 21.79

Note: C, C/T and C/S denote the structural break models in (3). m refers to the number of columns
of the regressor matrix xt. The lag truncation parameter is determined using the BIC and maximum
lag length Kmax = 8. Critical values for different order selection rules are not reported but can be
obtained from the author upon request. Critical values for u = {0.75, 0.85} are not reported to conserve
space. Since the distribution is symmetric in u, the values can easily be inferred from the table.
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Table 3: Approximate critical values of F ∗MTAR, continued

C C/T C/S

u 90% 95% 99% 90% 95% 99% 90% 95% 99%
m = 3

T = 50
0.15 19.72 22.32 27.81 21.40 24.06 30.13 23.59 26.77 33.19
0.25 19.73 22.47 27.92 21.55 24.10 29.93 23.72 26.87 33.77
0.50 19.86 22.37 28.41 21.60 24.49 30.78 24.13 27.36 34.55

T = 100
0.15 19.74 22.37 28.26 21.05 23.53 28.71 22.89 25.54 30.77
0.25 18.90 21.17 26.30 20.50 22.95 27.94 22.77 25.36 30.68
0.50 18.66 21.03 25.79 20.51 22.89 28.32 22.90 25.71 31.06

T = 250
0.15 20.12 23.50 31.76 20.66 23.36 28.98 22.49 25.25 31.63
0.25 17.66 20.05 26.40 18.94 21.00 25.55 21.07 23.50 29.01
0.50 16.52 18.40 22.78 18.17 20.05 24.18 20.52 22.73 27.76

T = 500
0.15 21.79 25.58 34.78 22.22 25.74 33.58 23.45 26.54 34.99
0.25 17.92 20.37 26.21 19.01 21.17 27.07 20.88 23.27 28.54
0.50 15.94 17.76 21.83 17.45 19.21 23.49 19.77 21.75 26.03

T =∞
0.15 22.14 26.37 36.87 22.20 25.94 34.35 23.42 26.67 36.10
0.25 17.39 19.98 26.48 18.33 20.30 26.20 20.08 22.46 28.03
0.50 14.91 16.48 20.49 16.28 17.83 21.55 18.60 20.29 24.59

m = 4
T = 50

0.15 21.12 23.88 29.68 22.90 25.88 31.96 26.96 30.13 36.84
0.25 21.08 23.84 29.93 23.04 25.89 31.99 27.21 30.20 37.04
0.50 21.33 24.07 30.30 23.29 26.13 32.80 27.65 30.68 37.73

T = 100
0.15 21.05 23.51 29.54 22.43 24.71 30.01 25.57 28.29 33.88
0.25 20.52 22.93 27.47 22.31 24.65 29.63 25.77 28.31 34.02
0.50 20.49 22.93 27.85 22.43 24.91 30.01 26.15 28.71 34.65

T = 250
0.15 21.03 23.88 31.30 21.75 24.39 29.32 24.56 27.12 32.56
0.25 19.15 21.26 26.57 20.50 22.62 27.36 23.84 26.21 31.76
0.50 18.24 20.24 24.79 19.83 21.87 26.58 23.61 26.01 31.68

T = 500
0.15 22.38 25.85 35.15 22.59 25.57 33.44 25.12 28.03 35.57
0.25 18.89 21.28 27.64 19.98 22.11 27.03 23.28 25.52 30.62
0.50 17.43 19.27 23.32 18.82 20.71 24.71 22.37 24.53 29.27

T =∞
0.15 22.50 26.28 36.47 22.37 25.67 33.72 24.82 27.74 35.55
0.25 18.21 20.51 27.60 19.06 21.15 26.11 22.39 24.59 29.73
0.50 16.26 17.90 21.89 17.45 19.14 23.09 21.10 23.22 27.89
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Table 4: Size-adjusted power of the supF test under structural change and symmetric adjustment

µ1 = 1, µ2 = 4, α1 = 2, α2 = 2 µ1 = 1, µ2 = 1, α1 = 2, α2 = 4
T = 50 T = 100 T = 50 T = 100

τ 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
SETAR
C 0.372 0.377 0.380 0.970 0.970 0.972 0.211 0.217 0.421 0.686 0.627 0.880
C/T 0.224 0.234 0.223 0.875 0.878 0.874 0.107 0.113 0.157 0.485 0.529 0.744
C/S 0.278 0.277 0.290 0.922 0.921 0.934 0.343 0.293 0.334 0.980 0.972 0.966
MTAR
C 0.297 0.299 0.319 0.893 0.879 0.892 0.167 0.178 0.355 0.516 0.447 0.759
C/T 0.231 0.221 0.218 0.790 0.800 0.797 0.122 0.127 0.172 0.398 0.443 0.653
C/S 0.247 0.238 0.259 0.851 0.819 0.842 0.279 0.265 0.281 0.911 0.892 0.879
EG (c) 0.139 0.096 0.096 0.391 0.274 0.277 0.089 0.060 0.086 0.126 0.100 0.145
EG (c + t) 0.124 0.125 0.116 0.397 0.481 0.434 0.076 0.058 0.096 0.109 0.122 0.187
GH (C) 0.364 0.369 0.374 0.970 0.970 0.973 0.176 0.170 0.375 0.606 0.545 0.870
GH (C/T ) 0.240 0.248 0.239 0.879 0.879 0.878 0.101 0.108 0.150 0.411 0.470 0.709
GH (C/S) 0.271 0.271 0.283 0.922 0.921 0.934 0.296 0.257 0.293 0.968 0.963 0.962
ΦSETAR 0.216 0.184 0.186 0.738 0.600 0.727 0.111 0.095 0.148 0.196 0.189 0.303
ΦMTAR 0.194 0.193 0.183 0.699 0.565 0.619 0.092 0.082 0.132 0.182 0.169 0.245

Note: C, C/T and C/S denote the structural break models in (3). EG (c) and EG (c + t) refer to the Engle-Granger test with intercept and intercept plus trend,
respectively. GH denotes the Gregory-Hansen test. ΦSETAR and ΦMTAR denote the Enders-Siklos cointegration test with SETAR and MTAR adjustment, respectively.
The table is based on 2,500 replications of the DGP described in (13). The autoregressive coefficients are ρ1 = ρ2 = −0.5, i.e. the adjustment is constant and symmetric.
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Table 5: Estimates of the breakpoint under symmetric adjustment

SETAR
µ1 = 1, µ2 = 4, α1 = 2, α2 = 2 µ1 = 1, µ2 = 1, α1 = 2, α2 = 4
T = 50 T = 100 T = 50 T = 100

τ 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
C 0.32(0.15) 0.53(0.11) 0.70(0.15) 0.28(0.10) 0.51(0.08) 0.74(0.11) 0.34(0.18) 0.55(0.13) 0.72(0.13) 0.28(0.12) 0.54(0.11) 0.75(0.10)

0.28(0.04) 0.52(0.04) 0.74(0.04) 0.26(0.02) 0.51(0.02) 0.76(0.02) 0.28(0.05) 0.54(0.04) 0.76(0.04) 0.26(0.02) 0.52(0.02) 0.77(0.02)
C/T 0.38(0.19) 0.50(0.16) 0.66(0.22) 0.33(0.16) 0.51(0.11) 0.69(0.16) 0.39(0.19) 0.53(0.15) 0.65(0.20) 0.31(0.15) 0.53(0.11) 0.73(0.13)

0.28(0.26) 0.50(0.08) 0.74(0.34) 0.27(0.03) 0.51(0.02) 0.75(0.03) 0.28(0.26) 0.52(0.10) 0.74(0.22) 0.27(0.02) 0.52(0.02) 0.75(0.02)
C/S 0.35(0.16) 0.53(0.12) 0.68(0.16) 0.30(0.11) 0.51(0.07) 0.72(0.12) 0.33(0.14) 0.54(0.09) 0.71(0.13) 0.27(0.07) 0.51(0.05) 0.75(0.07)

0.28(0.18) 0.54(0.04) 0.76(0.12) 0.25(0.02) 0.51(0.02) 0.76(0.03) 0.26(0.14) 0.54(0.04) 0.78(0.08) 0.25(0.02) 0.51(0.02) 0.77(0.01)
MTAR

µ1 = 1, µ2 = 4, α1 = 2, α2 = 2 µ1 = 1, µ2 = 1, α1 = 2, α2 = 4
T = 50 T = 100 T = 50 T = 100

τ 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
C 0.35(0.18) 0.52(0.14) 0.68(0.18) 0.29(0.11) 0.51(0.08) 0.74(0.10) 0.38(0.22) 0.55(0.21) 0.67(0.21) 0.30(0.17) 0.54(0.17) 0.72(0.17)

0.28(0.14) 0.52(0.04) 0.74(0.10) 0.26(0.02) 0.51(0.02) 0.75(0.02) 0.28(0.30) 0.54(0.20) 0.74(0.04) 0.27(0.02) 0.52(0.09) 0.77(0.02)
C/T 0.40(0.20) 0.50(0.16) 0.60(0.22) 0.34(0.17) 0.51(0.12) 0.68(0.17) 0.42(0.21) 0.53(0.18) 0.64(0.21) 0.35(0.18) 0.54(0.15) 0.72(0.15)

0.28(0.34) 0.50(0.08) 0.72(0.38) 0.27(0.04) 0.51(0.02) 0.75(0.05) 0.32(0.32) 0.54(0.14) 0.74(0.26) 0.27(0.13) 0.52(0.07) 0.76(0.02)
C/S 0.38(0.18) 0.53(0.14) 0.67(0.17) 0.31(0.12) 0.51(0.08) 0.72(0.11) 0.36(0.17) 0.52(0.16) 0.66(0.22) 0.27(0.09) 0.50(0.10) 0.72(0.16)

0.30(0.26) 0.52(0.06) 0.74(0.18) 0.26(0.04) 0.52(0.02) 0.76(0.03) 0.30(0.22) 0.54(0.06) 0.76(0.16) 0.25(0.02) 0.52(0.02) 0.77(0.02)

Note: C, C/T and C/S denote the structural break models in (3). The left panel and right panel report the estimates of the break fraction following a shift in the
intercept and a shift in the slope, respectively. Upper rows contain the mean breakpoint estimate and the empirical standard deviation. Lower row contain the median
breakpoint and the interquartile range. The autoregressive coefficients are ρ1 = ρ2 = −0.5, i.e. the adjustment is constant and symmetric.
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Table 6: Size-adjusted power of the supF test (SETAR) under structural change and
asymmetric adjustment

µ1 = 1, µ2 = 1, α1 = 2, α2 = 2
C C/T C/S ΦSETAR

ρ1 ρ2 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
−0.025 −0.05 0.109 0.060 0.015 0.098 0.052 0.010 0.112 0.055 0.010 0.123 0.070 0.019

−0.15 0.130 0.072 0.022 0.121 0.065 0.012 0.125 0.066 0.014 0.160 0.086 0.023
−0.25 0.149 0.084 0.025 0.129 0.069 0.014 0.137 0.075 0.019 0.185 0.113 0.031

−0.05 −0.10 0.133 0.076 0.021 0.128 0.068 0.012 0.127 0.067 0.014 0.174 0.093 0.024
−0.25 0.178 0.104 0.034 0.163 0.089 0.019 0.168 0.093 0.024 0.276 0.170 0.052

−0.10 −0.15 0.195 0.114 0.035 0.176 0.103 0.022 0.176 0.103 0.025 0.338 0.205 0.060
−0.25 0.258 0.156 0.051 0.228 0.131 0.029 0.236 0.142 0.036 0.477 0.313 0.114

Size: 0.135 0.073 0.023 0.143 0.085 0.022 0.126 0.080 0.021 0.120 0.060 0.012
µ1 = 1, µ2 = 4, α1 = 2, α2 = 2

C C/T C/S ΦSETAR

ρ1 ρ2 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
−0.025 −0.05 0.104 0.052 0.013 0.108 0.051 0.009 0.106 0.054 0.013 0.119 0.062 0.014

−0.15 0.125 0.062 0.014 0.120 0.061 0.012 0.117 0.061 0.014 0.143 0.067 0.018
−0.25 0.140 0.072 0.016 0.132 0.068 0.017 0.128 0.068 0.016 0.153 0.084 0.022

−0.05 −0.10 0.129 0.062 0.013 0.122 0.065 0.012 0.118 0.063 0.014 0.147 0.080 0.019
−0.25 0.174 0.094 0.023 0.159 0.086 0.022 0.155 0.082 0.020 0.182 0.108 0.032

−0.10 −0.15 0.187 0.109 0.023 0.166 0.090 0.018 0.166 0.084 0.023 0.210 0.118 0.037
−0.25 0.244 0.145 0.041 0.211 0.120 0.029 0.209 0.113 0.032 0.258 0.158 0.053

µ1 = 1, µ2 = 1, α1 = 2, α2 = 4
C C/T C/S ΦSETAR

ρ1 ρ2 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
−0.025 −0.05 0.249 0.168 0.098 0.210 0.140 0.064 0.339 0.266 0.146 0.114 0.057 0.012

−0.15 0.272 0.196 0.111 0.225 0.159 0.070 0.386 0.295 0.177 0.117 0.059 0.014
−0.25 0.282 0.203 0.116 0.237 0.167 0.077 0.410 0.315 0.188 0.119 0.064 0.016

−0.05 −0.10 0.277 0.202 0.114 0.226 0.166 0.072 0.399 0.316 0.182 0.114 0.059 0.013
−0.25 0.313 0.227 0.137 0.257 0.187 0.085 0.474 0.369 0.225 0.126 0.067 0.017

−0.10 −0.15 0.328 0.252 0.140 0.265 0.184 0.090 0.505 0.400 0.246 0.136 0.072 0.018
−0.25 0.370 0.281 0.161 0.297 0.212 0.105 0.566 0.459 0.279 0.193 0.110 0.037

µ1 = 1, µ2 = 4, α1 = 2, α2 = 4
C C/T C/S ΦSETAR

ρ1 ρ2 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
−0.025 −0.05 0.247 0.176 0.096 0.206 0.141 0.061 0.339 0.262 0.148 0.111 0.057 0.011

−0.15 0.275 0.192 0.108 0.225 0.160 0.069 0.383 0.297 0.169 0.112 0.058 0.013
−0.25 0.283 0.200 0.110 0.235 0.165 0.076 0.408 0.313 0.186 0.118 0.062 0.015

−0.05 −0.10 0.280 0.203 0.117 0.232 0.162 0.072 0.398 0.307 0.176 0.116 0.058 0.011
−0.25 0.316 0.231 0.131 0.261 0.180 0.082 0.465 0.362 0.220 0.130 0.068 0.017

−0.10 −0.15 0.335 0.249 0.138 0.261 0.189 0.091 0.505 0.398 0.240 0.134 0.069 0.017
−0.25 0.365 0.282 0.162 0.295 0.208 0.107 0.565 0.450 0.282 0.143 0.081 0.022

Note: C, C/T and C/S denote the structural break models in (3). ΦSETAR denotes the Enders-Siklos cointegration
test with SETAR adjustment. The table is based on 2,500 replications of the DGP described in (13) with sample size
T = 100. The breakpoint occurs mid-sample, i.e. τ = 0.5. The test with the highest rejection rates is highlighted in
boldface.
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Table 7: Size-adjusted power of the supF test (MTAR) under structural change and
asymmetric adjustment

µ1 = 1, µ2 = 1, α1 = 2, α2 = 2
C C/T C/S ΦMTAR

ρ1 ρ2 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
−0.025 −0.05 0.090 0.043 0.007 0.096 0.045 0.008 0.094 0.050 0.008 0.112 0.054 0.013

−0.15 0.098 0.050 0.008 0.117 0.064 0.014 0.107 0.054 0.009 0.206 0.109 0.030
−0.25 0.135 0.073 0.014 0.152 0.082 0.016 0.142 0.072 0.013 0.378 0.224 0.066

−0.05 −0.10 0.090 0.048 0.009 0.115 0.059 0.014 0.099 0.056 0.012 0.168 0.091 0.024
−0.25 0.152 0.077 0.015 0.161 0.089 0.017 0.153 0.081 0.015 0.430 0.269 0.083

−0.10 −0.15 0.115 0.064 0.012 0.139 0.074 0.017 0.129 0.067 0.013 0.323 0.192 0.055
−0.25 0.189 0.100 0.019 0.198 0.106 0.020 0.192 0.110 0.016 0.557 0.365 0.119

Size: 0.085 0.042 0.007 0.074 0.039 0.006 0.093 0.041 0.009 0.109 0.060 0.014
µ1 = 1, µ2 = 4, α1 = 2, α2 = 2

C C/T C/S ΦMTAR

ρ1 ρ2 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
−0.025 −0.05 0.090 0.044 0.009 0.110 0.057 0.010 0.099 0.051 0.012 0.108 0.051 0.013

−0.15 0.104 0.053 0.013 0.117 0.064 0.010 0.106 0.050 0.012 0.155 0.083 0.014
−0.25 0.151 0.070 0.018 0.151 0.086 0.014 0.146 0.074 0.014 0.233 0.128 0.033

−0.05 −0.10 0.151 0.070 0.018 0.151 0.086 0.014 0.146 0.074 0.014 0.233 0.128 0.033
−0.25 0.166 0.078 0.017 0.159 0.091 0.016 0.160 0.078 0.017 0.255 0.142 0.039

−0.10 −0.15 0.134 0.067 0.015 0.136 0.073 0.015 0.143 0.066 0.013 0.212 0.115 0.026
−0.25 0.205 0.105 0.023 0.196 0.103 0.025 0.194 0.104 0.021 0.305 0.178 0.047

µ1 = 1, µ2 = 1, α1 = 2, α2 = 4
C C/T C/S ΦMTAR

ρ1 ρ2 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
−0.025 −0.05 0.193 0.130 0.071 0.191 0.133 0.062 0.310 0.228 0.114 0.080 0.040 0.009

−0.15 0.224 0.156 0.086 0.221 0.149 0.070 0.369 0.274 0.141 0.100 0.049 0.007
−0.25 0.261 0.190 0.104 0.245 0.173 0.082 0.431 0.331 0.178 0.120 0.062 0.012

−0.05 −0.10 0.217 0.155 0.084 0.214 0.148 0.072 0.355 0.261 0.134 0.096 0.050 0.008
−0.25 0.276 0.200 0.112 0.258 0.184 0.090 0.455 0.359 0.199 0.126 0.067 0.014

−0.10 −0.15 0.261 0.192 0.106 0.245 0.176 0.088 0.424 0.328 0.178 0.113 0.060 0.012
−0.25 0.300 0.221 0.125 0.287 0.204 0.100 0.504 0.397 0.230 0.133 0.076 0.018

µ1 = 1, µ2 = 4, α1 = 2, α2 = 4
C C/T C/S ΦMTAR

ρ1 ρ2 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
−0.025 −0.05 0.196 0.132 0.073 0.192 0.135 0.060 0.303 0.232 0.113 0.085 0.040 0.009

−0.15 0.219 0.156 0.082 0.223 0.154 0.071 0.367 0.281 0.140 0.096 0.050 0.009
−0.25 0.256 0.193 0.107 0.250 0.173 0.084 0.435 0.330 0.181 0.122 0.063 0.013

−0.05 −0.10 0.213 0.156 0.082 0.219 0.145 0.070 0.348 0.262 0.136 0.093 0.046 0.010
−0.25 0.273 0.204 0.115 0.257 0.182 0.090 0.458 0.350 0.200 0.126 0.069 0.016

−0.10 −0.15 0.265 0.191 0.106 0.240 0.175 0.084 0.422 0.326 0.180 0.115 0.062 0.012
−0.25 0.301 0.220 0.132 0.282 0.202 0.100 0.503 0.397 0.228 0.134 0.079 0.018

Note: C, C/T and C/S denote the structural break models in (3). ΦMTAR denotes the threshold cointegration test
with MTAR adjustment. The table is based on 2,500 replications of the DGP described in (13) with sample size T = 100.
The breakpoint occurs mid-sample, i.e. τ = 0.5. The test with the highest rejection rates is highlighted in boldface.
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Table 8: Long-run adjustment along the gasoline value-chain

SETAR
Panel (a): No structural break

µ α ρ+ ρ− ΦSETAR ρ+ = ρ−

(I) 5.49 1.145 −0.225 −0.153 3.97 -
(II) 79.50 0.960 −0.567 −0.887 21.28∗∗∗ 2.029∗∗∗
(S) 76.38 1.141 −0.251 −0.326 7.20∗∗ 0.245

Panel (b): Structural break model C/S

µ1 µ2 α1 α2 ρ+ ρ− supF ρ+ = ρ− break
(I) 32.54 90.52 0.932 −0.216 −0.578 −0.551 14.79∗∗ 0.017 01/11
(II) 60.49 22.38 1.062 −0.123 −0.630 −1.018 25.93∗∗∗ 2.817∗∗ 10/08
(S) 93.80 195.44 0.989 −0.698 −0.453 −0.588 16.66∗∗∗ 0.549 02/11

MTAR
Panel (c): No structural break

µ α ρ+ ρ− ΦMTAR ρ+ = ρ−

(I) 5.49 1.140 −0.162 −0.243 3.95 -
(II) 79.50 0.960 −0.437 −0.871 21.51∗∗∗ 3.647∗∗
(S) 76.38 1.140 −0.226 −0.333 7.21∗∗ 0.510

Panel (d): Structural break model C/S

µ1 µ2 α1 α2 ρ+ ρ− supF ρ+ = ρ− break
(I) 32.86 81.55 0.930 −0.179 −0.634 −0.406 16.97∗∗ 1.474 12/10
(II) 62.92 20.31 1.046 −0.106 −0.453 −0.993 26.04∗∗∗ 5.544∗∗∗ 09/08
(S) 93.80 195.44 0.989 −0.698 −0.448 −0.556 16.14∗∗ 0.367 02/11

Note: µ (α) denotes the intercept (slope coefficient) of the long-run equilibrium equation without
structural break. µ1 (α1) and µ2 (α2) denote the intercept (slope coefficient) of the long-run equilibrium
equation before the break and after the break, respectively. δ is the linear trend coefficient. ΦSETAR
and ΦMTAR denote the F -statistic based on the null hypothesis H0 : ρ+ = ρ− = 0, respectively. We
conduct bootstrap F -tests with 600 replications to test the null hypothesis ρ+ = ρ−.
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1
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