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Summary
Climate variability has been posing formidable policy challenges in Ethiopia by
deteriorating rural livelihoods. Climate variability-induced shocks have a profound
impact on smallholder farmers’ welfare both in the short run via reducing production
and increasing output prices and in the long run by depleting productive farm assets
and leading them to a poverty trap. However, the impact of shocks on smallholders’
welfare depends on their choice of adaptation and coping measures to deal with them,
which are in turn farmer-specific. This thesis applied an integrated econometric
analysis and farm-level simulations to assess smallholder farmers’ adaptation and
coping measures under extreme climate and price variability in Ethiopia. The thesis
provides a special focus on the role of investment in small-scale agroforestry to curb
the adverse effects of shocks.

Drought, hailstorms, pests, and crop diseases are identified as the most frequent
and intense climate variability-induced shocks in Ethiopia. Smallholders’ dominant
adaptation and coping measures for each shock are identified using logistic principal
component analysis (LPCA). The application of dimensionality reduction of binary
data using LPCA to select smallholder farmers’ dominant adaptation and coping
measures is unique to this study. Results show that planting stress-resistant crops and
varieties, early planting, increasing seed rate, and soil and water conservation practices
are the dominant ex-ante adaptation measures. Whereas selling livestock, selling
assets, reducing consumption, borrowing and replanting are the dominant ex-post
coping measures.

In later sections, household-specific drivers of smallholder farmers’ choice of adaptation
and coping measures are disentangled using multivariate probit regression (MVP) for
each shock. Gender, knowledge and experience, participation in rural institutions,
social networks, resource endowments, and their shock experience and expectation
are the significant drivers of farmers’ choices of ex-ante adaptation and ex-post
coping measures. Results suggest that smallholder farmers’ choice of measures to
deal with climate variability-induced shocks is highly distinctive and depends on their
socioeconomic settings, experience and knowledge, and their interactions with the
environment. Correlation analysis both in LPCA and MVP results show that most of
the measures farmers choose are complementary, which implies that no single measure
is robust and works best for all farmers. Farmers invest more on ex-post measures than
ex-ante measures. Those who invest on tree perennials as ex-ante drought measures
are less likely to use severe measures such as selling livestock and other assets in the
aftershock.

The econometric analysis in the first part of the thesis establishes a descriptive analysis
of smallholder farmers’ behavioral responses to climate variability-induced covariate
shocks. This captures the behavior of farmers in the status quo. However, it does



not tell us much about how farmers would behave in different future circumstances,
especially with extreme climate and price variability. This requires a prescriptive and
descriptive approach with a detailed investigation of farmers’ behavior down to the plot
level. To achieve this objective, the second part of the thesis applies household-level
micro-simulation to analyze ex-ante planning and ex-post responses to future climate
and price variability, focusing on the role of smallholder farmers’ investment in woodlot
perennials to their livelihoods. The agent-based simulation package - Mathematical
Programming-based Multi-Agent Systems (MPMAS) is used for this purpose to capture
investment, production, and consumption decisions at the farm household level. A farm
decision model representing smallholder farmers in the Upper Nile Basin in Ethiopia
is developed accordingly. The farmers in the area are known for their integrated
crop-livestock system, and a unique Acacia Dicurrens based taungya system in the
country. This thesis shows a first-time use of an agent-based modeling approach
representing the acacia-based taungya system in the Upper Nile Basin in Ethiopia,
which is another contribution of this study.

The farm decision model is validated using empirical data and interactive sessions
with experts. Another methodological novelty of this study is developing and using
interactive web applications to validate the farm decision model with experts remotely
due to the COVID-19 pandemic. Interactive model validation is not new in agent-based
modeling using MPMAS. However, the web-based R Shiny app and an integrated
web-based expert survey questionnaire app is an original contribution of this study. The
study also uses Zoom virtual conferencing to record all interactive validation sessions
with experts.

Two simulation experiments were designed to quantify the effects of shocks and price
variability on agents’ livelihoods. The High-Performance Computing platform in
Baden Wurttemberg (bwHPC) is used to run simulation experiments for this study.
The first simulation experiment aims at measuring the effects of shocks on agents’
livelihoods and the effectiveness of ex-ante planning to curb the adverse effects of
these shocks. The application of model features on agents’ ex-ante preparation for the
possible occurrence of shocks within the farm decision model is a new development
in this study. Accordingly, the frequent and intense crop and tree diseases in the
area - potato late blight and acacia seedling disease are introduced as shocks in the
model. Simulation results show that both potato late blight and acacia seedling
disease reduce annual per capita discretionary income significantly and forcing some
poor resource agents to fail to fulfill minimum non-food expenditure. The trade-off in
agents’ land-use decisions between trees and crops by agents shows that they prefer to
plant trees than crops as an ex-ante planning strategy for shocks.

The second simulation experiment aims at examining the effect of long-run expected
price changes, mainly on land-use decisions of agents in the model. Four future price
scenarios are designed, and the results are compared with the baseline to examine the
effect on agents’ discretionary income and land-use decisions. The purpose of this
simulation experiment is to see if there is a deviance from croplands to woodlots and
vise versa based on long-run changes in expected prices. Simulation results show that



agents are highly responsive to changes in expected prices in the long run, except for
the expected price of bamboo. In cases where there is a decrease in the expected price
of acacia charcoal or an increase in the expected price of crops or both, results show
that agents will go back to potatoes and wheat-dominated production systems instead
of the acacia-dominated production system .

This study suggests that supporting farmer adaptation to climate variability-induced
shocks should focus on policy interventions related to crop and land management
activities. Policy interventions should also focus on building the household asset base
to boost farmers’ coping ability and resilience to shocks. Moreover, results suggest that
robust climate adaptation and mitigation interventions should take the heterogeneity
of farmers into account. Furthermore, both econometrics and farm-level simulation
analyses show the importance of planting trees as a crucial adaptation strategy.
Findings suggest that investment in woodlot perennials is an essential adaptation
strategy for smallholder farmers with scarce resource settings and should be promoted
and scaled to a broader area in the region.



Zusammenfassung
Klimavariabilität hat Äthiopien vor gewaltige politische Herausforderungen gestellt,
indem sich die Lebensgrundlagen auf dem Land wesentlich verschlechterten. Durch
Klimavariabilität verursachte Schocks haben einen tiefgreifenden Einfluss auf das
Wohlergehen von kleinbäuerlichen Betriebs-Haushalten, sowohl kurzfristig durch die
Verringerung der Produktion und den Anstieg der Erzeugerpreise als auch langfristig
durch die Erschöpfung der produktiven landwirtschaftlichen Vermögenswerte
und das Abgleiten in eine Armutsfalle. Die Auswirkungen von Schocks auf die
Wohlfahrt von kleinbäuerlichen Betriebs-Haushalten hängen jedoch von der Wahl
der Anpassungsmaßnahmen ab, die wiederum haushaltsspezifisch sind. Diese Arbeit
wendet integrierte ökonometrische Analysen und Simulationen auf Haushaltsebene
an, um die Anpassungsmaßnahmen von Kleinbauern unter extremen Klima- und
Preisschwankungen in Äthiopien zu bewerten. Die Arbeit legt einen besonderen Fokus
auf die Rolle von Investitionen in kleinbäuerliche Agroforstwirtschaft, um die negativen
Auswirkungen von Schocks zu dämpfen.

Dürre, Hagelstürme, Schädlinge und Pflanzenkrankheiten werden als die häufigsten
und intensivsten Schocks identifiziert, die durch Klimavariabilität in Äthiopien
verursacht werden. Die wichtigsten Anpassungsmaßnahmen der kleinbäuerlichen
Betriebs-Haushalte für diese Schocks werden mit Hilfe der logistischen Hauptkomponen-
tenanalyse (LPCA) identifiziert. Die Anwendung der Dimensionalitätsreduktion von
binären Daten mittels LPCA zur Auswahl der dominanten Anpassungsmaßnahmen
der Kleinbauern ist einzigartig in dieser Studie. Die Ergebnisse zeigen, dass der
Anbau von stressresistenten Pflanzen und Sorten, die frühe Aussaat, die Erhöhung
der Saatgutmenge und boden- und wasserkonservierende Praktiken die dominanten
ex-ante Anpassungsmaßnahmen sind. Die dominierenden ex-post Maßnahmen sind der
Verkauf von Vieh, der Verkauf von Vermögenswerten, die Reduzierung des Konsums,
die Aufnahme von Krediten und die Neubepflanzung.

Im Folgenden werden die haushaltsspezifischen Einflussfaktoren auf die Wahl der
Anpassungsmaßnahmen der Kleinbauern mithilfe einer multivariaten Probit-Regression
(MVP) für jeden Schock aufgeschlüsselt. Geschlecht, Wissen und Erfahrung,
Beteiligung an ländlichen Institutionen, soziale Netzwerke, Ressourcenausstattung
sowie die Schockerfahrung und -erwartung sind die signifikanten Einflussfaktoren
für die Wahl von ex-ante und ex-post Maßnahmen. Die Ergebnisse deuten darauf
hin, dass die Wahl der Maßnahmen zur Bewältigung von durch Klimavariabilität
verursachten Schocks bei Kleinbauern sehr unterschiedlich ausfällt und von ihrem
sozioökonomischen Umfeld, ihrer Erfahrung und ihrem Wissen sowie von ihren
Interaktionen mit der Umwelt abhängt. Korrelationsanalysen sowohl in der LPCA als
auch in den MVP-Ergebnissen zeigen, dass die meisten von den Landwirten gewählten
Maßnahmen komplementär sind, was bedeutet, dass keine einzelne Maßnahme robust
ist und gleichermaßen bei allen Landwirte wirkt. Die Landwirte investieren mehr in



ex-post-Maßnahmen als in ex-ante-Maßnahmen. Diejenigen, die in die Anpflanzung
von Bäumen als ex-ante Maßnahmen investieren, nutzen weniger schwerwiegende
Maßnahmen wie den Verkauf von Vieh und anderen Vermögenswerten.

Die ökonometrische Analyse im ersten Teil der Arbeit liefert deskriptive Statistiken
der Verhaltensreaktionen von kleinbäuerlichen Betriebs-Haushalten in Bezug auf
klimavariabilitätsinduzierte, kovariate Schocks. Dies erfasst das Verhalten der
Haushalte im Status quo. Die Analyse sagt jedoch nicht viel darüber aus, wie
sich die kleinbäuerlichen Betriebs-Haushalte unter anderen zukünftigen Umständen
verhalten würden, insbesondere bei extremer Klima- und Preisvariabilität. Dies
erfordert einen präskriptiven und deskriptiven Modellansatz mit einer detaillierten
Untersuchung des Verhaltens der Landwirte bis hinunter auf die Parzellenebene. Um
dieses Ziel zu erreichen, wendet der zweite Teil der Arbeit eine Mikrosimulation auf
Haushaltsebene an, um die ex-ante Planung und die ex-post Reaktionen auf zukünftige
Klima- und Preisschwankungen zu analysieren, wobei der Schwerpunkt auf der Rolle
der Investitionen in Agroforstsysteme liegt. Das agentenbasierte Simulationspaket
MPMAS wird zu diesem Zweck verwendet, um Investitions-, Produktions- und
Verbrauchsentscheidungen auf der Ebene der landwirtschaftlichen Haushalte zu
erfassen. Ein landwirtschaftliches Entscheidungsmodell, das Kleinbauern im oberen
Nilbecken in Äthiopien repräsentiert, wird entsprechend entwickelt. Die Landwirtschaft
in diesem Gebiet ist bekannt für ihr integriertes Ackerbau-Viehzucht-System und ein
im Land einzigartiges, auf Acacia Dicurrens basierendes Taungya-System. Diese Arbeit
zeigt den erstmaligen Einsatz eines agentenbasierten Modellierungsansatzes, der das
Taungya-System im oberen Nilbecken in Äthiopien darstellt, was ein weiterer Beitrag
dieser Studie ist.

Das landwirtschaftliche Entscheidungsmodell wird anhand empirischer Daten
und interaktiver Modellierungs-Sessions mit Experten validiert. Eine weitere
methodische Neuheit dieser Studie ist die Entwicklung und Verwendung interaktiver
Webanwendungen zur Online-Validierung des landwirtschaftlichen Entscheidungsmodells
mit Experten aufgrund der COVID-19-Pandemie. Die interaktive Modellvalidierung
ist bei der agentenbasierten Modellierung mit MPMAS nicht neu. Die webbasierte
R Shiny-App und eine integrierte webbasierte App zur Expertenbefragung ist
jedoch ein originärer Beitrag dieser Studie. Die Studie verwendet auch virtuelle
Zoom-Konferenzen, um alle interaktiven Validierungs-Sessions mit Experten
aufzuzeichnen.

Zwei Simulationsexperimente wurden entworfen, um die Auswirkungen von Schocks
und Preisschwankungen auf den Lebensunterhalt der Modellagenten zu quantifizieren.
Die High-Performance Computing Plattform in Baden Württemberg (bwHPC) wird
genutzt, um Simulationsexperimente für diese Studie durchzuführen. Das erste
Simulationsexperiment zielt darauf ab, die Auswirkungen von Schocks auf den
Lebensunterhalt der Modellagenten und die Effektivität der Ex-ante-Planung zur
Eindämmung der negativen Auswirkungen dieser Schocks zu messen. Die Anwendung
von Modellmerkmalen zur Ex-ante-Vorbereitung der Agenten auf das mögliche
Auftreten von Schocks innerhalb des landwirtschaftlichen Entscheidungsmodells



ist eine neue Entwicklung in dieser Studie. Dementsprechend werden die häufig
auftretenden Pflanzen- und Baumkrankheiten in der Region - die Kraut-und
Knollenfäule der Kartoffel und die Akazienkrankheit - als Schocks in das
Simulationsmodell eingeführt. Die Simulationsergebnisse zeigen, dass sowohl die
Kraut- und Knollenfäule als auch die Akazienkrankheit das jährliche frei verfügbare
Pro-Kopf-Einkommen signifikant reduzieren und bei einigen armen Agenten-Haushalte
auch die Mindestnahrungsverfügbarkeit nicht mehr sichergestellt ist. Der Trade-off
in den Landnutzungsentscheidungen der Agenten zwischen Bäumen und Feldfrüchten
zeigt, dass sie als Ex-ante-Planungsstrategie für Schocks lieber Bäume als Feldfrüchte
pflanzen.

Das zweite Simulationsexperiment zielt darauf ab, den Effekt von langfristig erwarteten
Preisänderungen zu untersuchen, hauptsächlich auf Landnutzungsentscheidungen der
Agenten im Modell. Es werden vier zukünftige Preisszenarien entworfen, um die
Auswirkungen auf das tatsächlich frei verfügbare Einkommen der Agenten und die
Landnutzungsentscheidungen zu untersuchen. Der Zweck dieses Simulationsexperiments
ist es, zu sehen, ob es eine Umwandlung von Ackerland zu Baumflächen und
umgekehrt gibt, basierend auf langfristigen Änderungen der erwarteten Preise. Die
Simulationsergebnisse zeigen, dass die Agenten langfristig stark auf Änderungen der
erwarteten Preise reagieren, mit Ausnahme des erwarteten Preises für Bambus. In den
Fällen, in denen der erwartete Preis für Akazienholzkohle sinkt oder der erwartete
Preis für Feldfrüchte steigt oder beides, zeigen die Ergebnisse, dass die Agenten zu den
von Kartoffeln und Weizen dominierten Produktionssystemen zurückkehren, anstatt
zu dem von Akazien dominierten Produktionssystem.

Diese Studie legt nahe, dass sich die Unterstützung der Anpassung der Landwirte an
durch Klimavariabilität verursachte Schocks auf politische Interventionen konzentrieren
sollte, die sich auf Anbau- und Landmanagementaktivitäten beziehen. Politische
Interventionen sollten sich auch auf den Aufbau der Vermögensbasis der Haushalte
konzentrieren, um die Anpassungsfähigkeit und Widerstandsfähigkeit der Bauern
gegenüber Schocks zu stärken. Darüber hinaus legen die Ergebnisse nahe, dass
robuste Maßnahmen zur Klimaanpassung und -minderung die Heterogenität der
Landwirte berücksichtigen sollten. Darüber hinaus zeigen sowohl ökonometrische
als auch Simulationsanalysen auf Betriebsebene die Bedeutung des Anpflanzens von
Bäumen als eine entscheidende Anpassungsstrategie. Die Ergebnisse deuten darauf
hin, dass Investitionen in Agroforstsystemen eine wesentliche Anpassungsstrategie für
Kleinbauern mit knappen Ressourcen sind, entsprechend gefördert und auf ein größeres
Gebiet in der Region ausgeweitet werden sollten.
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Chapter 1

Introduction

Chapter objectives
• Establishing stylized facts on adaptation and mitigation of climate variability in

scarce resource settings in general and in Ethiopia in particular
• Explaining motivation and showing research gap which necessitates undertaking

of this research
• Setting objectives and corresponding research questions of the research
• Explaining organization of the thesis

1.1 Adaptation and Mitigation of Climate Variability
in Scarce Resource Settings

Stylized facts in Ethiopian Context
Stylized fact 1: Agriculture is highly climate sensitive in Ethiopia

Agriculture in Ethiopia is predominantly rainfed and highly climate-sensitive. Though
there are several rainfall regimes in the country, the Meher or Kiremt season (June -
September) is the country’s main rainy season, which accounts for 50 to 80 % of the
total annual rainfall (Asfaw et al. 2018) and (CRGE 2019). Historically, droughts and
other climate variability induced shocks in the country are associated with the failure
of this main rainy season (Segele and Lamb 2005). Attributed to the global south-north
movement and inter-topical convergence zone, rainfall in Ethiopia is characterized by
high spatial variations (Korecha and Barnston 2007). The variability of rainfall is higher
in the rift valley and eastern part than the country’s highlands and western part. The
inter annual variability of rainfall in Ethiopia is affected negatively by El Nino (Schreck
and Semazzi 2004) and positively by La Nina (Schreck and Semazzi 2004; Segele, Lamb,

1



and Leslie 2009). The total annual rainfall in the country has been declining on average
since 1950 (Jury and Funk 2013). Future rainfall projections based on historical data
show a slight increase in annual rainfall (Jury and Funk 2013; Kassie et al. 2014) but
higher variability until the end of the 21st century (CRGE 2019).

Because of its tropical latitude, Ethiopia has a mild temperature. Like average annual
rainfall, the annual average temperature has large spatial differences based on altitude,
with 15 to 20 °C in highlands to 25 to 30 °C lowlands (CRGE 2019). Inter annual
temperature variations have been recording an increasing trend since the 1950s with
regional variations (Jury and Funk 2013). Projections of mean annual temperature
show a consistent warming trend in the last decadeas (Kassie et al. 2014).

Stylized fact 2: Climate variability has a profound impact on smallholder
livelihoods in Ethiopia

Ethiopian agriculture is dominated by subsistence smallholder farmers characterized
by high poverty status and food insecurity (Berck, Berck, and Di Falco 2018). Climate
variability and the subsequent drought, price shocks, and food insecurity have posed
formidable policy challenges in Ethiopia for several decades. Climate variability-
induced shocks profoundly impact the economy by reducing agricultural production,
inflating agricultural output prices (Hill and Porter 2017) and deteriorating smallholder
farm household welfare (Yalew et al. 2018). The effect of climate variability-induced
shocks on smallholders’ livelihoods is multi-faceted. The indirect effects of drought on
household welfare via its impact on increasing food prices and reducing livestock prices
(due to relatively lower supply attributed to drought), for instance, are often greater,
particularly for net buyers, than its direct effect on agricultural production (Holden
and Shiferaw 2004; Menghistu, Mersha, and Abraha 2018).

Erratic rainfall and increasing inter-annual temperature variability have caused several
climate variability induced shocks in Ethiopia for several decades. Recurrent climate
variability induced droughts, floods, hailstorms, pests, and crop diseases have been
threatening the lives of tens of millions in Ethiopia that are a cause of several hundreds
of thousands. Mulugeta, Tolossa, and Abebe (2017) indicated that erratic rainfall and
high temperature-induced droughts severely affect farmers in Ethiopia’s southern and
eastern regions. According to the CRGE (2019), drought in 2003 and 2015 put 12 and
10 million Ethiopians in urgent need of humanitarian assistance and the drought in
1983 took the lives of more than 300,000 Ethiopians.

For the past half a century, climate variability induced shocks have placed millions
of poor rural smallholder households and pastoralists in the position of acute water
and food shortage and made them vulnerable to the outbreak of diseases (Enbiale
and Ayalew 2018; FAO 2016). Since 1965, Ethiopia has experienced 15 drought years
with an average of one in four years (Richman, Leslie, and Segele 2016). In 2015, for
example, the two main rainy seasons (meher and belg) failed due to El Nino, which left
10.2 million people (10% of the total population) in urgent need of humanitarian food
assistance and 6 million children at risk from hunger, disease and lack of water (FAO
2016; HRD 2016). Besides, livelihoods were affected due to poor health and livestock
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death or remained hazardous because of limited access to seeds and other agricultural
inputs for the following production year.

In addition to drought and price shocks, smallholders’ livelihoods in Ethiopia are also
threatened by frequent pests, crop disease and hailstorms (Abate, van Huis, and Ampofo
2000; Kebede et al. 2019; Kumela et al. 2019). Sometimes the intensity of these shocks
is more devastating than successive droughts (Zheng and Byg 2014). Climate variability
has a significant effect on pest and crop disease occurrences through altering rainfall
and precipitation (Del Rio 2014). Pests and crop diseases have been severe threats
for smallholders in Ethiopia, reducing agricultural production as far as 35% in bad
years (Erenstein et al. 2019). In 2017, for example, an invasion of Fall Army Worm
(Spodoptera frugiperda) caused estimated average crop damage of 32% in the production
of maize in the country (0.8 to 1-ton reduction per ha) (Kumela et al. 2019). Hailstorms
cause substantial production losses, sometimes reaching up to 100% (Amare and Simane
2017). Coupled with the absence of weather-indexed insurance in most parts of the
country, such losses make farmers sell their key assets such as livestock to cope up with
the shocks or rely on aid and safety nets otherwise (Peterson 2012).

Climate variability-induced shocks cause hunger and income deprivation when they
occur and lead to a loss of assets (livestock, savings, soil fertility, human capital) that
hamper the productivity and income opportunities of the farmer in the long run. Also,
the risk of their occurrence alone may require farmers to reserve part of their resources
to prepare for adverse outcomes (ex-ante adaptation) – given a lack of access to fully
functioning credit and insurance markets (Cooper et al. 2008 ; Hertel, Burke, and
Lobell 2010). The necessity to ensure food security in bad years puts resource-poor
smallholders in a more disadvantaged position than more resource-rich farms, who
can pursue more profitable but riskier production options (Dercon and Christiaensen
2011). Climate variability may, in this way, lock smallholders within a poverty trap
that will transmit over generations, given that the starting position of a new household
is determined to a large part by intergenerational transfers of productive assets and
human capital (Kumar and Quisumbing 2012).

Stylized fact 3: Climate variability has a profound impact on all pillars
of food security

Climate variability-induced shocks profoundly impact food security in developing
countries by altering availability, access, and utilization of food and destabilizing
food systems (Mbow et al. 2014 ; Ringler 2010). Climate variability diminishes the
availability of food by reducing crop productivity (Wheeler and Braun 2013). Currently,
crop production in developing countries is characterized by inefficiency in production
and a wider potential yield gap that could be closed without introducing new and
innovative technologies (Henderson et al. 2016). Climate variability exacerbates the
problem by worsening the prevailing inefficiency in crop production and widens the
yield gap further (Mbow et al. 2014). Mueller et al. (2012) showed that alongside
fertilizer use and irrigation, climate variability significantly impacts global yield
variability.
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Intra and inter-seasonal variations in temperature and precipitation have a significant
impact on food availability by reducing staple cereal crops’ productivity in Eastern
Africa (Adhikari, Nejadhashemi, and Woznicki 2015). Simulated crop yield results in
future climate conditions show up to a 10% decrease in maize production in Africa and
Latin America by 2055 (Jones and Thornton 2003). A study in Tanzania shows that the
prevalence of extreme events significantly reduces simulated yields of maize, sorghum,
and rice by 2050 (Rowhani et al. 2011). Similarly, sorghum yield substantially declines
with future climate variability in Ethiopia, which in turn reduces the availability of food
for smallholders (Eggen et al. 2019). Furthermore, climate variability diminishes the
availability of food by reducing livestock productivity (Mbow et al. 2014 ; Rojas et al.
2017). Megersa et al. (2014) showed that seasonal change of rainfall and temperature
is significantly associated with reduced cattle size due to a high mortality rate.

Besides reducing food availability, climate variability worsens smallholders’ food
security by restricting their access to food by reducing agricultural production and
deteriorating purchasing power via price and income effects (Mbow et al. 2014 ;
Wheeler and Braun 2013). Reduced agricultural production limits the amount of
food available in the household and diminishes their total farm income (Wossen et
al. 2018). The limited supply of agricultural output, on the other hand, increases
the market prices of food items (Chen and Villoria 2019). The combined effect of
income and prices cripples smallholders’ purchasing power to fulfill their minimum food
requirements (Wheeler and Braun 2013). The effect is severe for smallholders with
relatively lower resource settings (Carter et al. 2007) and limited adaptive capacity
(Mbow et al. 2019). Furthermore, the effect is more disastrous for women and children
as they are more resource-constrained (Mbow et al. 2019).

By altering food quality and food safety, climate variability has a direct and indirect
impact on smallholders’ utilization of food (Mbow et al. 2019 ; Wheeler and Braun
2013). Climate variability impairs smallholders’ access to an adequate diet, sanitation
and health care and thus, their nutritional status creates inadequate access to clean
drinking water (Wheeler and Braun 2013). Climate variability induced toxins and
microorganisms’ prevalence deters food safety and results in food losses (Ayelign and
Saeger 2020 ; Mbow et al. 2019). Ayelign and Saeger (2020) identified adverse effects
of Mycotoxin on food safety and a significant loss of income to smallholders in Ethiopia
as a result. Besides, the nutritional quality of food is affected by climate variability
through its direct impact on plants and animals’ biological processes and reduced growth
and yields due to increases in CO2 concentration (Mbow et al. 2019). Furthermore,
the recurrence and severity of climate variability induced extreme events put the food
system at risk due to short term variability in the food supply through disrupting
food prices and agricultural income (Wheeler and Braun 2013). This, in turn, puts
smallholders to be dependent on food aid and humanitarian assistance.
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Stylized fact 4: there is a greater need for practical adaptation and
mitigation strategies to enhance food security under climate variability

Weathering the adverse effects of climate variability and enhancing food security
among smallholders demands a greater need for sound adaptation and mitigation
strategies (Berck, Berck, and Di Falco 2018). Farmers employ a series of adaptation
and mitigation strategies to reduce the impact of extreme climatic events ranging from
crop management activities such as adjusting cropping calendar, applying improved
technologies and inputs and crop diversification to land-based adaptation practices
and seasonal migration (Bedeke et al. 2019). There is a wealth of empirical evidence
on potential and effective adaptation and coping strategies to ensure smallholders’
food security under climate variability.

It has been shown that the availability of food under climate variability improves
significantly via closing crop yield and productivity gaps through the application of
new and improved technologies. Challinor et al. (2014) showed an average simulated
yield increase of 7 to 15% for main crops such as maize, wheat and rice under climate
change due to crop level adaptation practices. Application of improved maize varieties
coupled with improved crop and agronomic practices increase maize yield and enhance
adaptation to climate change (Shiferaw et al. 2011). The effectiveness of improved
maize and wheat varieties is even higher when it is accompanied by access to short
term credit (Wossen et al. 2018) and fertilizer subsidy (Berger et al. 2017).

Better food storage provides a sustained food availability and helps farmers as a
coping strategy to smooth food consumption in the aftershock of climate variability
induced shocks (Sunano 2020). Enhancing integrated adaptation practices and risk
management, including marketing mechanisms and crop and livestock insurance,
increases food system stability (Mbow et al. 2019). Crop diversification enhances
smallholders’ access to food under climate variability by increasing farm income and
labor availability for off-farm work (Asmare, Teklewold, and Mekonnen 2019). Food
availability and dietary intake of meat and milk products are potentially improved by
diversifying livestock production in the presence of climate variability (Megersa et al.
2014). The impact of climate variability on smallholders’ access and utilization of food
can also be mitigated by increasing supply chains’ efficiency, reducing food waste, and
access to storage facilities (Mbow et al. 2019).

Stylized fact 5: Smallholders vulnerability to climate variability depends
on agroecology and adaptive capacity

Smallholder exposure, adaptive capacity, and vulnerability to climate variability
induced shocks in Ethiopia vary across agroecological systems (Tessema and Simane
2019). Similar variations were observed by Abeje et al. (2019). Ringler (2010) pointed
out that inadequate and lack of access to credit, markets, information, risk-sharing
tools, and property rights have limited smallholders’ adaptive capacity to circumvent
the negative impacts of climate change in Africa. Moreover, in another study, Lewis
(2017) pointed out that the impact of climate variability on food security is different in
different Ethiopia regions – the impact is higher in most marginal livelihood systems
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and drier areas. Likewise, after showing the significant contribution of the adoption
of climate-smart agricultural practices to nutrition security, Teklewold, Gebrehiwot,
and Bezabih (2019) pointed out that such strategies’ impact is different for different
households based on resource availability between male and female farmers. This
indicates that adaptation and coping of climate variability induced shocks should be
tailored based on agroecology and socioeconomic status of smallholders Jones and
Thornton (2003).

1.2 Motivation
Climate variability have been posing formidable policy challenges in Ethiopia for several
decades. Climate variability induced shocks caused serious problems to smallholder
farmers’ welfare in Ethiopia both in the short run via reducing production and increasing
output prices and in the long run by depleting productive farm assets and leading to
the poverty trap. However, the impact of these shocks on farmers’ welfare depends on
the strategies farmers use to deal with them before and after their occurrence and is,
therefore, farmer specific.

While climate variability is a global phenomenon for everyone within a given
agroecological zone, impacts of climate variability can be very diverse, due to a strong
heterogeneity in the resource base, socio-cultural ties, market and information access,
and human capital of smallholder farmers (Berhanu and Beyene 2015; Caeyers and
Dercon 2012; Wossen et al. 2018). As a result, adaptation and coping strategies that
farmers are able and willing to select in response to climate variability induced shocks
are specific to each farmer. Likewise, the success and robustness of these strategies
depend not only on the frequency and extent of shocks but also, among other things,
on their endowments, social networks, political affiliation and other community-level
characteristics (Amare and Simane 2017; Caeyers and Dercon 2012; Wossen et al.
2018).

Berger et al. (2017) showed that household-specific characteristics in Ethiopia
significantly determine farmers’ choices of adaptation strategies. Similarly, a study
in Zambia indicates that the adoption of conservation farming practices to deal
with climate variability is determined by agroecological farmers’ and socioeconomic
factors (Arslan et al. 2014). Application of water and soil conservation practices,
drought-tolerant varieties and chemical fertilizer depends on age and gender
of household head, confidence on extension services and membership, on local
organizations (Sisay and Kindu 2019). Application of climate-smart technologies in
eastern Africa is derived by gender, perception of risk severity, technology awareness
and access to input markets (Murage et al. 2015). Gebrehiwot and van der Veen
(2013) examined household-specific determinants of the choice of adaptation strategies
by smallholders and found education and age of household head, access to credit and
agricultural services, wealth, knowledge on climate and temperature, as major factors
exposure and experience to climate shocks and access to climate information increase
farmers’ chance of crop and livestock diversification to tackle the adverse effects of
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climate variability and enhance food security (Mulwa and Visser 2020).

Farmers’ adaptation to climate variability induced shocks also requires adopting more
than one strategy for a risk factor (Khan et al. 2020). Attributed to their unobserved
characteristics, smallholder decisions on choice of ex-ante and ex-post strategies are
interrelated and interdependent to one another (Abay et al. 2018). Some of the
strategies are conditional on the adoption of other strategies. In contrast, some
strategies compete over the same resources. For example, on the one hand, farmers
can choose either to sell tree perennials or to sell livestock as a coping strategy to
escape the adverse effects of drought on their livelihoods. On the other hand, they
may engage in off-farm activities instead of reducing consumption as a strategy to
cope with a hailstorm. For smallholders, understanding which strategies compete
over the same resource means saving important resources. However, the adoption of
multiple strategies depends on household characteristics and differs from farmer to
farmer (Tongruksawattana and Wainaina 2019).

In connection with this, scientific assessments intended to support the design of
successful and robust climate adaptation policies should take the heterogeneity of
farming households into account and assess the complementary and competitive
combination of various ex-ante and ex-post coping strategies. Failure to consider the
heterogeneity of farmers’ adoption decisions in policy interventions results in unequal
treatment of farmers and may even lead to maladaptation in a significant number of
cases (Berger et al. 2017). The first part of this study integrates logistic principal
component analysis and Multivariate probit regression to identify dominant strategies
and disentangle farmer specific determinants of the choice of ex-ante and ex-post
strategies for most frequent and intense climate variability induced shocks in Ethiopia.
Further, the study signals robust strategy mixes by identifying complementary and
competitive strategies for climate variability induced shocks.

In the second part of this study the emphasis is on agroforestry as a key instrument
for adaptation and coping strategies for smallholders. The focus is on tree perennials –
mainly Acacia Decurrens and Bamboo - most common among smallholders in North
Western Ethiopian highlands. The multidimensional benefits of adopting agroforestry
to rural livelihoods have recently got due attention worldwide (Sisay and Kindu
2019). For instance, it is explicitly stated in the UN Sustainable Development Goals
(SDGs) that encourages the adoption of agroforestry in rural areas is identified as an
important instrument to ensure food security (UNDP 2015). Besides, the adoption of
agroforestry to the mainstream agricultural practices of crop and livestock production
in Sub-Saharan Africa is recommended by major international organizations such as
the Food and Agricultural Organization of the United Nations (FAO) food security
of smallholder farmers. FAO also suggested governments in Sub Saharan Africa to
incorporate agroforestry as a major strategy in their agricultural policies (Partey et al.
2017).

Agroforestry has an immense potential to effectively adapt and mitigate the impact of
climate variability induced shocks on smallholder livelihoods through increasing farm
income and restoring the environment (Bedeke et al. 2019)). There is well-established
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empirical evidence on agroforestry’s role as an effective instrument to climate change
coping and adaptation endeavors by smallholders. Linger (2014) showed that home
garden forestry significantly improves smallholders’ income and serves as an effective
strategy to mitigate the impact of climate variability. Similarly, smallholder agroforestry
improves farmers’ living standards under climate variability in Ethiopia and Kenya
through income generation and restoration of degraded land (Thorlakson and Neufeldt
2012).

Historically, inadequate land management practices coupled with long-lasting
monoculture practice has led the soil in Ethiopian highlands to massive degradation
through erosion and nutrient depletion. This soil degradation combined with high
population growth in the rural areas engender deforestation and force agriculture into
marginal lands and steep slopes. Moreover, there is an increased argument recently
that agroforestry - as the major land-based mitigation strategy for climate variability-
threatens food security by reducing food availability for smallholders (Mbow et al.
2019). High returns on investment from agroforestry drive smallholders to shift
from crop management and social capital related adaptation strategies to land-based
adaptation strategies to deal with climate variability. This reduces the amount of
fertile land available for crop production and displaces crops to the less productive and
high climatic risk and vulnerable areas (Mbow et al. 2019). Despite its contribution
to farm income, however, there is a trade-off between food security and land-based
adaptation strategies via reducing agricultural land (Doelman et al. 2020).

Following the success of Eucalyptus Globulus as a multi-purpose exotic perennial in
the country, Acacia Decurrens was introduced to the Ethiopian highlands in the early
1990s for short-rotation forestry as part of the government’s plan not only to meet the
increasing demand for firewood in the urban areas but also to reduce deforestation
and increase soil fertility in rural areas. And thereby help smallholders’ smooth
consumption, improve food security and reduce poverty, especially at extreme weather
events. Currently, attracted by its dual benefit, smallholders in Ethiopian highlands
are rapidly converting their croplands to Acacia woodlots and making a significant
portion of their livelihood from it. With such a higher rate of land-use conversion
understanding the effect of investment in woodlots on livelihoods in current and future
climate and price variability is imperative.

In this respect, this research applies household level microsimulations to analyze the
role of smallholders’ investment in woodlot perennials to livelihoods in the presence
of climate and price variability. The agent-based simulation package Mathematical
Programming-based Multi-Agent Systems (MPMAS) is used to capture production
consumption and investment decisions at the farm household level. A recursive dynamic
intertemporal planning model is developed using plot-level data collected from farm
households in Ethiopian highlands in 2018 to capture farmers’ multiperiod investment
in woodlot perennials alongside their annual non-separable production and consumption
decisions (Berger et al. 2017). This enables us to show how climate and price variability
changes farmers’ land-use and consumption decisions and thus effects their livelihoods.
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1.3 Objectives and research questions
This study’s overall objective is to assess farmers’ behavioral choices of ex-ante
adaptation and ex-post coping measures to climate variability- induced shocks in
Ethiopia and examine the role of agroforestry as a cross cutting issue. The specific
objectives are:

• Learn farmers’ behavior in ex-ante and ex-post strategy choices and understand
who chooses which strategy and examine if it is different across different
households.

• Model farmers’ behavior to deal with climate variability induced shocks to analyze
potential improvements and optimal responses in robust strategy choices and the
role of planting trees to it.

• Explore the potential of small-scale agroforestry (through investment in woodlot
perennials) to livelihoods in the presence of climate and price variability.

The corresponding research questions are:

• What are household-specific drivers of farmers’ choice of adaptation and coping
measures to climate variability induced shocks?

• How far can planting trees (Acacia Decurrens and Bamboo) and the resultant
surplus labor help farmers withdraw from vulnerability to climate variability?

• What is the effect of investment in woodlots on livelihoods in current and future
climate and price variability?

1.4 Organization of the thesis
The thesis is organized into seven chapters. The second chapter presents data sources,
study area and farming system and elicits the materials and methods used for analysis in
the thesis. Both econometric and agent-based modeling methods used for data analysis
in the thesis are described in this chapter. Chapter three to chapter five presents the
results of the thesis. Chapter three presents econometrics results on farmers’ choices
of ex-ante and ex-post measures. Chapter four and five show validation results and
simulation experiment results, respectively of the farm decision model. Discussion of
the thesis’s main findings are presented in the six chapter, and the seventh chapter
elicits concluding remarks and way forward. Model documentation and other results of
the thesis are presented in the Appendix A to C.
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Chapter 2

Data and Methods

Chapter objectives
• Describing study area and data sources
• Introducing farming system the farm decision model in this thesis is built for
• Describing methods of data analysis used in the thesis

2.1 Data and study area
This study uses two data sets from two different sampling areas. The first sample
encompasses smallholder farm households in the central rift valley, central and
northwestern regions of Ethiopia. The data was collected in 2011 by the International
Maize and Wheat Improvement Centre (CIMMYT) in collaboration with the Ethiopian
Institute of Agricultural Research (EIAR) as part of the project entitled Sustainable
Intensification of Maize and Legume Cropping Systems for Eastern and Southern
Africa (SIMLESA). The sample covers major maize growing areas both in high
and low rainfall receiving agro-ecologies. Since the project aimed at maize-based
systems, nine sample districts located in three Regional States and eight administrative
zones were selected based on maize production potential, environmental diversity,
and geographical dispersion. These districts are Pawe from Benshangul Gumuz
region; Meskan, Hawasa Zuria and Misrak Badawacho from SNNP region and Shalla,
Gubeseyo, Dugda, Adami Tulu, and Bako Tibe are in Oromia region. From these
districts a total of 898 households were randomly selected and interviewed (Chilot,
Adam, and Menale 2017). Figure 2.1 shows the location of the sample districts.

Using this data, this study aims at establishing the dominant climate variability
mitigation and adaptation measures of smallholder farm households in Ethiopia to the
most frequent and intense risk factors they encounter The dataset covers a wealth of
information on the frequency and occurrence of a wide range of climate variability
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induced shocks and the corresponding ex-ante and ex-post strategy choices of farm
households in the area, among other things. The vast sampling area provides a
platform to undertake a countrywide analysis of effect, adaptation, and mitigation of
climate variability induced shocks.

Figure 2.1: Sampling area: CIMMYT survey

The second sample covers a relatively narrower area focusing on smallholder farmers
in Ethiopia’s northwestern highlands. The sample covers areas under the Nile basin
(encircled by the river Nile) and around the Choke mountain range. The data was
collected by the student researcher in 2018. The whole sample includes four zones in
the Amhara region - Awi, East Gojjam, South Gondar, and West Gojjam. A total of
354 smallholder farmers were selected randomly and a comprehensive farm household
survey was administered. The data includes information on household composition and
demographics; participation in rural institutions; access to service and infrastructure;
social networks; plot level data on agricultural production, input use, yield, marketing
and utilization; agroforestry; production constraint; food consumption and expenditure;
consumption preference; non-food expenditure; food security; credit and savings; access
to extension services; agricultural and non agricultural assets; livestock ownership;
income and income sources; and data on shocks, risk management and coping measures.
The survey also includes focus group discussions, key informant interviews and case
story interviews.
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This data is used to initialize the farm decision model to investigate smallholder farmers’
mitigation and adaptation of climate variability induced shocks. From the whole sample
only 72 farmers in Acacia Decurrens and Bamboo growing Fagita Lekoma district in
Awi Zone in Amhara National Regional State to parametrize are used to initialize the
model. Figure 2.2 shows sample area of the farm decision model.

Figure 2.2: Sample area: 2018 survey

2.2 Farming system
This section provides a brief introduction of the farming system the farm decision model
is built for. The study area’s farming system is called the Western Highland Maize
Mixed Farming System (WHMFS). It extends from Awi Zone to East Metekel and
East Wollega. As per the 2010 projections, the total population in the whole farming
system is around 4 million, 87% of which is agricultural. More than one third of the
agricultural population in the area earns less than 1.25 USD per day and, therefore,
are considered “rural poor” which accounts for 5% of the country’s rural poor. The
farming system is dominated by a cool/sub-humid agro-ecological zone with an average
elevation of 1,340 meters above sea level (ranging from 528m - 3,145m). The average
length of the growing period (LGP) is 219 days ranging from 166 days to 260 days. The
average annual rainfall in the area is 1,458 mm (1,057mm to 1,657mm) (Auricht 2017).
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Agriculture in the area is dominated by smallholder farmers who practice an integrated
crop, livestock and tree perennial production. Teff, finger millet, niger seed, wheat, and
barley are the common crops grown in this farming system. Potatoes, tomatoes, and
pepper are the common vegetables grown. The common perennials are mango, pawpaw,
and coffee. As it is more relevant for this study, the Awi subsystem in the WHMFS
has peculiar characteristics where potatoes and barley are the common crops grown.
Figure 2.3 shows farming system the farm decision model is built for.

Figure 2.3: Western Highland Maize Mixed Farming System

Farmers in the WHMFS also keep livestock in addition to crops and trees. There is a
large population of livestock in the area, mainly equines (horses and mules), cattle and
small ruminants (sheep). The primary source of fodder for livestock are crop residues,
pasture from private land and communal grazing land. The subsystem is also known for
extensive plantations of short-cycle small-scale agroforestry. The major tree perennial
farmers grow at a large scale and with commercial orientation are Acacia Decurrens,
Bamboo and Eucalyptus.

2.3 Methodology
The research applies an integrated approach by blending agent-based modeling
and econometric analysis to examine farmers behavioral responses towards climate
variability induced shocks and the resultant effects on their livelihoods. On the one
hand, using econometric analysis enables us to understand what farmers are currently
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doing and the determinants of their behavioral responses (who does what) to mitigate
and adapt to shocks. On the other hand, using agent-based modeling, we can model
what farmers might do in different situations and analyze potential improvements and
optimal responses. Combining these methods enables us to have a holistic perspective
on the effects of climate variability-induced shocks on smallholders’ livelihoods and
their past, current and future behavioral responses to mitigate and adapt to these
shocks. The following sections discuss the methods used in this research.

2.3.1 Modelling interdependent adaptation decisions
The research combines logistic principal component analysis (LPCA) (Landgraf and
Lee 2015 ; Song et al. 2019) and multivariate probit regression (Khanna 2001 ;
Dorfman 1996) to examine determinants of the choice of ex-ante and ex-post measures
of smallholder farmers in response to climate variability induced shocks in Ethiopia.

Principal Component Analysis (PCA)

Dimensionality reduction of binary data

The research applies PCA to obtain low dimensional data on farmers’ choice of
ex-ante and ex-post measures1 for multivariate probit analysis (MVP). It is used to
identify dominant ex-ante and ex-post strategy choices of farmers and to determine
their correlation. PCA reduces dimensionality by identifying orthogonal components
representing a set of measures that explain a large share of the total variance in the
data. This enables us to characterize which set of measures are complementary or
substitutes by examining their correlation (Jolliffe 2002).

For PCA, our data is represented by a 𝑛 × 𝑘 matrix of binary responses in which each
entry in the matrix represents the adoption of a strategy. Where 𝑛 is the number of
farm households in the sample who faced a particular risk factor in the past ten years
(2001-2010) and 𝑘 is the number of strategy choices available for them in response
to the risk factor before and after occurrence. With such a binary choice matrix,
the application of classical linear principal component analysis (PCA) to our problem
would be misleading (Landgraf and Lee 2015; Jolliffe 2002; Song et al. 2019). PCA is
best suited for continuous data. It considers the 0s and 1s in our choice matrices as
numbers instead of choices and tries to solve orthogonal principal components as a linear
combination of all the measures included in the matrix (Zou, Hastie, and Tibshirani
2006; Jolliffe 2002).

PCA assumes a Gaussian distribution and doesn’t account for mathematical properties
of binary data - as Gaussian assumptions are only appropriate for continuous numerical
data (Landgraf and Lee 2015; Leeuw 2006; Michael, Dasgupta, and Schapire 2002).
Nonetheless, there are well-suited methods for dimensionality reduction of binary data
that assume binary distribution instead of normal distribution (Tipping and Bishop

1Throughout the text, ex-ante and ex-post measures refer to adaptation and coping measures s
respectively.
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1999). The popular methods in such respect are logistic PCA (LPCA) and logistic
singular value decomposition (LSVD) (Song et al. 2019; Landgraf and Lee 2015; Zou,
Hastie, and Tibshirani 2006; Jolliffe 2002). The main difference between the two
is whether the score matrix and the loading matrix are estimated simultaneously or
sequentially (Song et al. 2019). In LSVD these matrices are estimated simultaneously
while LPCA, on the other hand, only estimates the loading matrix directly, and the
score matrix is obtained by a projection-based approach in the same manner as classical
PCA (Udell et al. 2016; Michael, Dasgupta, and Schapire 2002).

The study applied LPCA and dominant measures are selected based on their component
loadings from the first two principal components. The identified dominant measures
are later used as dependent variables in the MVP regression model to disentangle
farmer-specific determinants of strategy choices for climate variability induced shocks.

Multivariate probit model

Attributed to their unobserved characteristics, smallholder decisions on choice of ex-ante
and ex-post measures are interrelated and interdependent to one another (Abay et al.
2018). For example, on the one hand, farmers can choose either to sell tree perennials
or to sell livestock as a coping strategy to escape the adverse effects of drought on
their livelihoods. On the other hand, they may engage in off-farm activities instead
of reducing consumption as a strategy to cope with a hailstorm. To identify the
determinants of farmers’ choice of ex-ante and ex-post measures with such adoption
interdependence, the appropriate estimation method is the multivariate probit model
(MVP) (Khanna 2001 ; Dorfman 1996).

MVP has been applied to different interdependent adoption decision problems (M.
Kassie et al. 2013; Kpadonou et al. 2017; Tongruksawattana and Wainaina 2019;
Teklewold, Gebrehiwot, and Bezabih 2019; Bedeke et al. 2019; Abay et al. 2018;
Tsegaye et al. 2017). MVP enables us to capture correlations amongst error terms
of adoption equations and estimates a set of binary equations altogether. When the
error terms of adoption equations are correlated, estimation using a univariate probit
model will produce biased and inefficient coefficient estimates (Belderbos et al. 2004;
Dorfman 1996; Khanna 2001). This is the primary advantage of MVP over univariate
probit models. Correlations amongst the error terms of adoption equations arise due
to the unobserved characteristics of smallholders, affecting their choice of adaptation
and coping measures (Greene 2003; Khanna 2001). Positive correlation among adoption
equations implies complementarity of the measures, whereas negative correlations imply
the measures are alternatives (Khanna 2001). If the error terms are correlated in either
of the cases, then the adoption decisions of smallholders are interdependent.

Two underlying processes represent the multivariate decision choice problem of
smallholders in MVP. The first is a system of linear equations representing farmer
expectations for adopting each ex-ante or ex-post strategy. In this system of equations,
the dependent variable is a latent variable (𝑌 ), which represents a farmer’s expected
benefit from adopting a strategy. The expected benefit is realized in terms of increased
production and improved farm profits (in the case of ex-ante measures), or consumption
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smoothing (in case of ex-post measures) that inturn is a function of farmers observable
characteristics at an individual (head) level (𝐼𝑁), a household level (𝐻𝐻) and village
or community level (𝐶𝑀) and a multivariate normal stochastic error term (𝑢).
Therefore, the expectation equation for the adoption of adaptation and coping measures
is given by:

𝑌 ∗
ℎ𝑘 = 𝐼𝑁ℎ𝑘𝛼𝑘 + 𝐻𝐻ℎ𝑘𝛽𝑘 + 𝐶𝑀ℎ𝑘𝛾𝑘 + 𝑢ℎ𝑘 (2.1)

Where the ∗ shows that 𝑌 is a latent variable; 𝛼, 𝛽, 𝛾 and are parameter coefficients;
subscript ℎ represents household level variables and 𝑘 represents the number of measures
(and thus number of system equations) in the model.

The second process describes a farmer’s choice of an ex-ante and ex-post measures.
Smallholders adopt an ex-ante or ex-post strategy if they expect they would reap a
positive benefit from it. The dichotomous choice of ex-ante and ex-post measures is
given by:

𝑌 = {1 if 𝑌 ∗
ℎ𝑘 > 0

0 Otherwise
(2.2)

The error terms of farmers adoption equations have a joint normal distribution with 0
mean and conditional variance of an identity matrix.

(𝑢1 + 𝑢2 + ...𝑢𝑘) 𝑀𝑉 𝑁(0, Ω) (2.3)

The variance covariance matrix is given by,

Ω =
⎡
⎢⎢
⎣

1 𝜌12 ... 𝜌1𝑘
𝜌21 1 ... 𝜌2𝑘
. . ... .

𝜌𝑘1 𝜌𝑘2 ... 1

⎤
⎥⎥
⎦

(2.4)

where 𝜌 represents the pairwise correlation coefficient of the error terms. If the
off-diagonal elements in Ω are non-zero, the error terms are correlated, measures are
interdependent, and equation 2.2 become a multivariate probit model. If 𝜌 is positive,
then the measures are complements and if it is negative then they are substitutes
(Khanna 2001). While selecting the explanatory variables in the multivariate probit
model precautions are made during model specification not to include two or more
explanatory variables which partialy explain the choice of explanatory variables. This
helps to avoid the problem of endogeneity in the model.
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The results obtained in the PCA and MPV are used as an input to parametrize
the agent-based model and later to validate results from simulation experiments.
During model parametrization, the most frequent risk factors are included as covariate
shocks. The dominant measures obtained from PCA are also used in the model as
ex-ante planning options and ex-post responses to shocks. Results from MVP, i.e.,
farmer-specific drivers of choice of measures, are used as a benchmark to validate the
model’s corresponding results.

2.3.2 Bioeconomic modelling: Model design and parametrization
The econometric analysis establishes a descriptive analysis of farmers’ behavioral
responses to climate variability induced covariate shocks. This captures the behavior of
farmers in the status quo. However, it does not tell us much about how farmers would
behave in different future circumstances, especially with climate and price variability.
This requires a prescriptive approach and a detailed investigation of farmers’ behavior
down to the plot level. To achieve this objective, an agent-based model is developed
representing smallholder farmers in the Nile basin’s northwestern highlands in Ethiopia.
The farmers in the area are known for their integrated crop-forest-livestock system.
Tree perennials, mainly Acacia Decurrens and Bamboo, are grown intensively in the
area. The area is known for its Taungya system based on these tree species.

Accordingly, this research applies household level microsimulations to analyze ex-ante
planning and ex-post responses to future climate and price variability with a special
focus on the role of smallholders’ investment in woodlot perennials to their livelihoods.
The agent-based simulation package called Mathematical Programming-based
Multi-Agent Systems (MPMAS) is used to capture production, consumption and
investment decisions at the farm household level. MPMAS is well suited for the
analysis of the effect of climate variability in agriculture (Berger and Troost 2014).
In their paper, Berger and Troost showed potential application areas for agent-based
simulation experiments based on multi-agent systems (MAS). MAS provides a platform
for integrating risk components in farm operations and the effectiveness of adaptation
measures applied. This includes integration of ex-ante planning for shocks. Coupled
with other biophysical models, MAS provides a state of the art analysis of land-use
change and supply response in agriculture. MAS is also suitable for ex-ante policy
analysis. With the nature of future climate and price variability, MAS allows us to
integrate climate variability in ex-ante policy analysis efforts.

The MPMASQL4 software structure and farm decision model and equations are
based on the ODD (Overview, Design concepts and Details) protocol following
Schreinemachers and Berger (2011). Details on the farm decision model are provided
in Appendix A.

Overview and Design Concepts

MPMAS allows simulating many heterogeneous farming households’ decisions and their
consequences under different climatic and economic developments over time, including

17



interactions between households and their environment. MPMAS is employed in its
newest yet unpublished version, which incorporates explicit intertemporal planning and
allows us to capture perennial planting and livestock (dis)investment decisions more
realistically.

A recursive dynamic intertemporal planning model is developed using plot-level data
collected from farm households in Ethiopian highlands in 2018 to capture farmers’
multiperiod investment in woodlot perennials alongside their annual non-separable
production and consumption decisions. The central component of the modeling
framework is a mathematical programming-based decision model that captures the
choice of farming households among the available decision alternatives for crop
production, livestock raising, perennial and forestry plantations, crop sales, food
purchases and consumption, savings, livestock sales and purchases, loan contracting,
labor sharing, off-farm labor and temporal migration as well as participation in various
forms of informal social safety nets.

The household’s main goals are to satisfy its food demand in nutritional energy, ensure
survival in bad years, and cover other non-food minimum expenditures. Once these
main goals are fulfilled, maximize freely available cash. The farmers’ decisions are
constrained by its resource base, household labor, production and off-farm employment
options, market access, human and social capital, and cultural constraints on labor and
consumption, which are established from the results of the econometric analysis. The
decision model captures both the ex-ante decision situation where the farming household
plans for the coming season and beyond, whereas the ex-post decision situation where
the agent has to cope with the potentially adverse outcomes of the cropping seasons.

The decision model is solved recursively in each simulation period for all computational
agents in the model which represent farmers in the study area. Decision modeling
provides a dynamic platform to analyze agents decisions in the face of different climate,
economic and policy development related trajectories. The endogenously determined
decision of agents are combined with other exogenous variables to update agents’
resource base for the next period. MPMAS also allows adjustments of plans in the
beginning and end of each period depending of the outcomes from the previous period.
Agents can adjust their production, consumption and investment plans accordingly.
The farm decision model also captures the evolution of food and nutrient requirements,
labor supply and human capital status of the household by tracking demographic
dynamics in the household across simulation periods.

Outcome variables of the household such as income, food security or nutritional status
or deficits and deficiencies of these outcome variables can be analyzed using MPMAS.
Furthermore, the household dynamics in the decision model allows to undertake gender
specific analysis on the output. Figure 2.4 shows conceptual model of farmers decision
problem.
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Figure 2.4: Conceptual model of farmers decision problem
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Details: Implementation, initialization and input data

The farm decision model applied for this research is a recursive dynamic multiperiod
model with intertemporal planning (see Figure 2.5). It is a mixed-integer programming
(MIP) model where there are several integer constraints. The model captures an
integrated farming system where agents engage in crop production and investments
in livestock and woodlot perennials. The cool humid (dega) agroecological zone in the
Awi zone of Amhara region is represented in the model. In the model’s current setting,
the planning horizon is 15 years, mainly because of multi-period investment decisions.

Figure 2.5: Recursive dynamic model with intertemporal planning and ex-ante shock
planning. Source: mpmasql4 tutorial (Troost 2021)

t: planning period – shifts from year to year and p: simulation period (fixed)

As shown in Figure 2.5, the model takes agents risk considerations into account (C.
Troost 2021). Shocks in the model are represented by bad years. There are many
risk factors included in the model (drought, diseases of teff, wheat, potatoes, barley,
and acacia seedling). As a result, agents optimize the expected cash surplus only after
ensuring current and future minimum consumption needs are fulfilled and adequate
precautions are taken to shocks (see the agent’s objective in Appendix A).

Initial agent information in the model is obtained from the sampled farmers in the
2018 survey. The 72 farmers in the field are represented by 72 agents in the model
on a one to one basis. The survey provides initial asset endowments of land (farm
size), labor (household composition and age structure), livestock ownership, perennial
(standing tree) ownership and capital (cash). Qualitative data about the main practices
and principles of farming specific to using focus group discussions and key informant
interviews is also collected. As a result, very relevant information on the accustomed
rules of farming in the area is obtained, such as rotation patterns, social networks and
cropping calendars. Time series data on yield and prices is collected from Ethiopia’s
central statistical agency (CSA). Data on the interest rate, inflation rate, the wage rate
for casual laborers is also obtained from secondary sources.
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Agents can grow 4 main crops (wheat, teff, barley and potatoes) in acidic soiltype in 2
varieties (local and improved) and 2 fertilization types. There is a total of 38 applicable
cropping activities for agents. Inputs of crop production are land, labor, fertilizer, seed,
draft power and or cash and the outputs are grain and stover.

Agents also invest in livestock. There are 7 livestock types from cattle, sheep, equines
(cow, bull, ox, ram, ewe, horses, mules), which have a lifetime of 6 to 9 years, that
agents can invest. Livestock activities in the model are livestock production inputs
such as feed, labor, housing, and others (variable cost). Products from investment in
livestock are live animals, meat, milk, cheese and butter.

Furthermore, agents invest in woodlot perennials. There are 3 woodlot perennials
(acacia decurrens (AD), eucalyptus and bamboo), cycle (first, second), seedling density
(high, normal, low) available as options for investment (with a lifetime ranging from
4 to 10 years). There is an accompanying activity of intercropping in the 1st year
of AD (red teff, potatoes, barley, wheat) where there are 24 applicable agroforestry
activities and also hedging with bamboo. Inputs of woodlot perennial production
without intercropping are land, labor, and or cash. Products of investment in perennials
are charcoal, logs, culms and/or leaves.

Details on the farm decision model are provided in Appendix A.

Methods of model validation

Validation is an essential step in agent-based models. However, there is no single best
method recommended to validate an agent-based model. Besides, given the complex
systems modeled in ABM, a single validation procedure alone might not be sufficient
(Troost and Berger 2020). Hence, validation techniques should be tailored to the
objectives of a specific research context (Troost and Berger 2020). In this context, this
research uses empirical and interactive methods to validate the farm level programming
model to lay a solid basis for simulation experiments, ensuring the reliability of results
and enhancing the predictive quality of farm-level micro-simulations. The general
framework of model validation resides on comparing actual and simulated results of
primary outcome variable such as land-use between surveyed farmers on the field and
agents in the model on a one to one basis. For the empirical validation,the survey data
collected in 2018 is used. Figure 2.6 shows the general framework and approach for
model validation.
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Figure 2.6: Model validation framework

Interactive model Validation

Comparing multi-period simulation results with observed survey results obtained at a
given snapshot in time might not adequately show the model’s validity. Two reasons
can be mentioned for this. First, each period’s simulation result obtained from the
model is loaded with information on planned activities in the future and feedback
from the previous periods - especially in the presence of long term investments such
as perennials. Each period simulation result might have a different level of goodness
of fit for the observed data. This leads to an underestimation or overestimation of the
observed results. Second, cross-sectional data obtained in the survey (which is used as
a benchmark for validation) might not adequately reflect the model’s current status.
The occurrence of both idiosyncratic and covariate shocks, for instance, might have a
seasonal divergence of outcomes captured during the survey but might not reflect the
status of the farmer in general. Since the model’s parameterization is largely dependent
on this survey, the validation results might be skewed based on temporary shocks. This
will in turn overestimate or underestimate validation parameters.

To avoid such data-driven discrepancies in validation results and to consolidate the
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results obtained from the empirical validation, a participatory and more interactive
model validation method had to be applied. Initially, the interactive validation was
designed to be conducted with farmers who participated in the survey. However,
because of COVID-19, it was not possible conduct a modeler-to-farmer interactive
validation. As a result, an alternative design was devised - an online participatory
platform to validate the model using experts in various agricultural fields in Ethiopia.
The objective was to improve further/sharpen the empirically validated model using
feedback from experts from different fields of agriculture. The selection of experts was
based on the relevance of their expertise, particularly to our model and their experience
working in the area. There were participants from the fields of crop science, rural
development, forestry, and agricultural economics.

To undertake this modeler-expert participatory validation, an interactive web
application was developed using R Shiny. The app is designed as a web page where all
participants were sent the link and could open it using any device they wish to use.
For convenience the interactive session was guided by the researcher through a video
conference. All the necessary simulations were run ahead. The required data for model
validation is uploaded in advance to the server. The app operates at minimal internet
data requirements which is suitable for the poor internet connectivity in Ethiopia.
This reduces the validation time compared with the previous versions of interactive
MPMAS validation (Mössinger et al. 2022), where the model has to run on the field
for all designed points used for model validation on the spot.

Results of model validation are discussed in chapter four.
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Chapter 3

Farmers’ adaptation to and coping
with climate variability-induced
shocks in Ethiopia

Disentangling household specific determinants of
ex-ante and ex-post strategy choices

Chapter objectives
• Identifing farmers’ choice of dominant ex-ante and ex-post measures for the most

frequent and intense climate variability induced shocks
• Examining household specific drivers of measures
• Examining complementarity and substitutability of measures
• Identifing feedback from the results to be used as an input for the farm decision

model

Establishing smallholder farmers’ existing behavioral responses to adapt and mitigate
with climate variability-induced shocks is the first objective of this thesis. Knowing
the current adaptation and mitigation practices and disentangling farmer-specific
determinants of choices of these practices helps to understand robust strategies.
Besides, it also helps to draw lessons later used to build the baseline farm decision
model for ex-ante analysis. As a result, this chapter presents results from the
econometric analysis and aims at establishing this knowledge. First, the most frequent
and intense climate variability induced risk factors are selected and farmers’ dominant
strategy choices for each risk factor is identified. Second, farmer specific drivers
of choices of dominant measures are examined to capture farmer heterogeneity in
choices. Third, complementary and substitute measures are identified based on the
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criteria of competition over the same resource. Fourth, correlation between ex-ante
and ex-post measures are examined to see the success of ex-ante measures. Finally,
important lessons from the econometric analysis are identified to be used as an input
to parametrize the farm decision model presented in the subsequent chapters.

3.1 Farmers’ dominant ex-ante and ex-post strategy
choices

3.1.1 Risk factors
During the data collection, farmers in the sample were provided with different names
of risk factors. First, they were asked to report if the risk factor had occurred in the
previous ten years (2000 - 2010). Then, second, if it had occurred, how many times it
occurred during that time period. If they reported a risk factor during the specified
ten years period, third, they were asked to choose three most important measures they
adopted for each risk factor before and after its occurrence. Farmers have also reported
which of the risk factors were more intense and disastrous and which were relatively easy.
Based on farmers’ responses the most frequent and intense risk factors are identified as
shown in Table 3.1.

Table 3.1: Most frequent and Intense risk factors

Risk Factor Frequency of occurrence between
2000 to 2010 (average frequency)

Stress Intensity (%) (Reported as
very stressful by farmers) – plot
level

Drought 2.12 43.58
Crop pests and disease 1.85 33.1
Hailstorm 1.75 8.72
Flood 1.68 0.65
Observations 898.00 3,715

Risk factor intensity is as important as frequency of occurrence (El Kenawy et al. 2016;
Bewket and Conway 2007). For instance, an occurrence of hailstorm in a season might
have a more distressing effect than two consecutive crop pest years. This is the main
reason why risk factor frequency and intensity are considered together to select the
most pressing risk factors for analysis. As a result, drought, crop pests and diseases
and hailstorm are considered as the most frequent and intense risk factors. All the above
risk factors are covariate shocks which occur at village level and their devastating effect
is shared by households in the same village. Drought typically has a larger area of
impact than hailstorms and pests (Nguyen and Minh Pham 2018).

Ex-ante and ex-post measures were used in logistic PCA to identify farmers dominant
choices for multivariate analysis and to identify correlation between measures. This is
done for drought, hailstorm and pests and crop disease before and after occurrence and
the results are summarized in Table 3.2 and Table 3.3. From 898 sample households,
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730 of them reported drought has occurred in their village in the past 10 years. Whereas
episodes of hailstorm and pests or crop disease are reported by 432 and 613 farmers,
respectively. LPCA was run on measures and results show that the proportion of
variance explained by the first two components explain a large proportion of the total
variance in the farmers choice matrices, ranging from 60.7% to 88%. The highest
contributing measures to the total variance in the choice matrix were selected based
on the value of their component loadings. Table 3.2 and Table 3.3. shows LPCA
component loadings of measures. The first three or four measures with the highest
component loadings are considered as dominant measures. Most of which have loadings
of ≥ 0.4.

Table 3.2: Component loadings of the first four principal components for logistic PCA:
Ex-ante

Ex-ante principal component loadings

Drought Hailstorm Pests

Strategy pc1 pc2 pc1 pc2 pc1 pc2

Drought tolerant crops (DTC) 0.54 0.16
Drought tolerant varieties (DTV) 0.47 0.30
Early planting (EP) 0.21 0.53 0.10 0.06 0.31 0.47
Crop diversification (CD) 0.02 0.04 0.29 0.53 0.44 0.43
Increase seed rate (ISR) 0.19 0.10 0.65 0.01 0.38 0.25

Offfarm work (OF) 0.18 0.41 0.38 0.52 0.05 0.01
Saving (SA) 0.49 0.13 0.35 0.03
Soil and water conservation (SWC) 0.03 0.55 0.34 0.47 0.07 0.06
Planting local varieties (LV) 0.47 0.25 0.38 0.30
Water harvesting (WH) 0.07 0.04

Rented out land (ROL) 0.07 0.04
Planting trees (PT) 0.33 0.31 0.01 0.36 0.02 0.00
Cooperative membership (EC) 0.06 0.18
Pest and crop disease tolerant varieties (PTV) 0.44 0.40
Ask for expert advice (EXA) 0.01 0.00

Use pesticide (PES) 0.30 0.53
Explained variance (%) 78.50 88.20 82.10
Sample size 730.00 432.00 613.00
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Table 3.3: Component loadings of the first four principal components for logistic PCA:
Ex-post

Ex-post principal component loadings

Drought Hailstorm Pests

Strategy pc1 pc2 pc1 pc2 pc1 pc2

Replanting (RPL) 0.47 0.31 0.29 0.50 0.06 0.03
Selling livestock (SL) 0.42 0.42 0.48 0.02 0.51 0.31
Rent out land (ROL) 0.01 0.03 0.04 0.18
Selling assets (SAS) 0.19 0.50 0.02 0.16 0.50 0.31
Reduce consumption (RC) 0.41 0.32 0.56 0.07 0.07 0.58

Outmigration (OM) 0.05 0.10 0.26 0.24
Borrowing (BR) 0.06 0.04 0.22 0.46 0.07 0.06
Stop sending children to school (SSCTS) 0.36 0.23 0.40 0.28 0.06 0.10
Offfarm work (OF) 0.28 0.47 0.20 0.53 0.50 0.03
Herbicide and pesticide (HP) 0.15 0.50

Government assistance (GA) 0.05 0.01 0.10 0.28 0.09 0.29
Used stored crops (USC) 0.03 0.25 0.21 0.15
Received aid (AID) 0.43 0.11 0.33 0.14 0.29 0.20
Dissaving (DI) 0.02 0.10 0.02 0.10
Explained variance (%) 60.70 64.20 61.30

Sample size 730.00 432.00 613.00

Based on results from Table 3.2 and Table 3.3., the dominant measures identified by
LPCA are summarized in Table 3.4. Crop management activities such as planting stress
resistant crops and varieties, early planting, increasing seed rate and soil and water
conservation practices are the dominant ex-ante measures for climate variability-induced
shocks Farmers also engage in off-farm activities to supplement their income for shocks
such as hailstorm. Selling livestock, selling assets, reducing consumption, borrowing
and replanting are the dominant ex-post measures for climate induced shocks. Measures
identified in Table 3.4 are used as dependent variables in MVP regression.

Table 3.4: Dominant measures (logistic PCA) and their frequency in the sample

PCA chosen dominant measures and their frequencies in the sample

Ex-ante Ex-post

Risk factor Strategy Frequency (%) Strategy Frequency (%)

Drought Planting drought tolerant crops 23.3 Replanting 25.9
Planting drought tolerant varieties 18.2 Selling livestock 34.8
Early planting 9.2 Selling other assets 14.5
Soil and water Conservation 6.3 Reduce consumption 22.2

Hailstorm Crop diversification 6.7 Replanting 22.2

More nonfarm work 4.4 Selling livestock 14.4
Increase seed rate 6.7 Reduce consumption 20.4

Pests Plant disease/pest tolerant varieties 28.5 Borrowing 12.7
Crop diversification 13.2 Selling livestock 13.0
Increase seed rate 4.9 Selling other assets 14.8

Eat less than before 15.7
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3.2 Drivers of farmers ex-ante and ex-post coping
strategy choice

Explanatory variables used in the MVP regression are described (with the rationale
for inclusion in the model specification) in this section before the results are presented.
The model presumes that farmers’ choice of a given strategy is subject to quantity
and quality of human capital they have in the household; their social networks and
participation in rural institutions; access to market and extension services; asset
endowments they have and their experience and expectation related with shocks (M.
Kassie et al. 2013; Tongruksawattana and Wainaina 2019; Teklewold, Gebrehiwot,
and Bezabih 2019; Bedeke et al. 2019; Abay et al. 2018; Tsegaye et al. 2017). The
dependent variables for the MVP model, on the other hand, are obtained from LPCA
results.

3.2.1 Description of variables

3.2.2 Explanatory variables of MVP models
Human capital: Human capital plays a crucial role in determining farmers’ choice of
ex-ante and ex-post measures (Wossen 2018). Human capital of the household in the
model is captured using education, age and gender of household head and total family
size. The average literacy rate in the sample is 57%. Educated households may have
more knowledge about adaptation and coping strategy options than uneducated farmers
and are expected to be more open to new farm innovations in such regard. Educated
farmers may also have better expectations of future droughts and thus may be better
prepared. Age of household head may have high correlation with farming experience
and knowledge. The average age of household head in the sample was 44 years old.
Older household heads are expected to be more resilient than younger household heads.
Gender of household head is highly related with key resource ownership, such as land
and labour, in rural Ethiopia (Wossen 2018). Female headed households, on average,
have lower resource settings than their male counterparts (Wossen 2018). Resource base
of households, on the other hand, has a crucial role in farmer’s choice of adaptation
and coping measures (Asfaw et al. 2018). Therefore, female headed households may
choose less costly or rationing measures whereas male headed households may tend to
choose more resource demanding and labour-intensive measures. Interaction variable
between gender of the household head and total TLU are also included to capture the
effect of gender on choice of measures based on resource availability in the household.
In addition, family size may have positive relationship for both ex-ante and ex-post as
households with larger families have relatively more labour capacity. This may enable
them to choose for alternative off-farm jobs as adaptation as well as coping measures.
The average family size in the sample is 6.5 persons.
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Table 3.5: Summary of Variables in MVP model

Risk factors

Drought Hailstorm Pests

Variable Description mean s.d mean s.d mean s.d

Household Attributes
Human capital
Gender 1 = household head is male 0.92 - 0.95 - 0.93 -
Age Age of household head (years) 43.5 12.7 42.65 12.58 43.29 12.67
Education 1 = household head is literate 0.57 - 0 .62 0 .48 0.59 -

Family size Total family size of the household (persons) 6.5 2.3 6.47 2.34 6.5 2.4
Access to main services
Market Minutes of walking time to the market 93.8 62.9 92.17 62.18 92.54 61.2
Agricultural ext. office Minutes of walking time to the agricultural extension office 30.6 30.9 30.18 29.54 31.58 31.14
Rural Institutions and Social Networks

Farmer association 1 = farmer is a member of farmer association 0.08 - 0.22 - 0.23 -
Religious association 1 = farmer is a member of religious association 0.15 - 0.28 - 0.32 -
SACCO 1 = farmer is a member of saving and credit association 0.09 - 0.29 - 0.28 -
Iddir 1 = farmer is a member of iddir 0.4 - 0.86 - 0.82 -
Relatives Number of relatives the farmer can rely on 12.4 16.5 11.06 12.55 12.04 14.36

Friends Number of friends the farmer can rely on 12.9 21 11.57 19.2 12.5 20.26
Leadership 1 = friends or relatives in leadership position 0.48 - 0.47 - 0.48 -
Resources and assets
Asset Value Total Asset value of the household 13,196 19,122 14461.66 22896.19 15787.32 26364.18
Farm size Farm size of the household 2.03 1.83 3.66 3.65 3.4 3.6

TLU Tropical livestock unit 8.61 7.26 8.39 8029 8.84 9.42
Food expenditure Food expenditure in ‘000 ETB 2.3 1.6 2279.10 1517.13 2364.76 1614.24
Non-food expenditure Non-food expenditure in ‘000 ETB 4.9 14.6 4242.21 9819.97 4603.31 12595.94
Credit constrained 1=credit constrained 0.31 - 0.6 - 0.58 -
Extension Services

Adaptation 1 = receive training or information on adaptation 0.66 - 0.62 - 0.61 -
Varieties 1 = receive training or information on new varieties of maize 0.89 - 0.88 - 0.88 -
Input market 1 = receive training or information on input market and prices 0.72 - 0.69 - 0 .68 -
Shock Experience and Expectation
Shock frequency (last 10 years) Drought frequency in the last 10 years 2.6 1.4 2.18 1.55 2.7 2.1

Expectation of shock in the future 1 = if they expect drought in the future 0.59 - 0.63 - 0.57 -
Expectation Frequency Frequency of expectations in coming 10 years 2.7 1.9 3 2.5 3.2 2.2
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Rural institutions and social networks: Farmers’ participation in rural
institutions and strength of their social ties provide them way outs which would be
difficult to achieve without enough resources (Wuepper et al. 2018; Caeyers and Dercon
2012; Dercon and Krishnan 2003; Paul et al. 2016; Adger 2003; Wossen et al. 2013;
Wossen et al. 2015). Participation in rural institutions is captured in the model
using farmers’ membership in iddir, saving and credit associations, farmer associations
and religious associations. Farmers’ participation in these institutions is expected to
enable them to get support in terms of farm inputs (labour, farm implements, seed, or
knowledge and experience sharing, etc), cash (borrowing) or food (Dercon et al. 2006).
Therefore, farmers who are members of rural institutions are expected to mitigate
risk better than those who are not. Similarly, farmers social network in the model is
captured by the number of friends and relatives they have inside and outside their
villages and whether they have a friend or relative in leadership position. Farmers who
have more friends and relatives are expected to have more options to choose. They are
also expected to smooth consumption and mitigate risk better than others.

Access to market and extension services: Access to input and output markets
in the model is captured by their proximity to the main market in the nearby town.
Whereas, their access to services and knowledge is captured by proximity of their
residence to agricultural extension offices and whether they have been advised or took
training on adaptation to climate variability, input markets and varieties. Farmers who
are near to the main market are expected to have more off-farm job opportunities than
those who are far away (Amare and Simane 2017). They may also have better market
information. Farmers near agricultural extension offices and who took training and
counselling are expected to have better knowledge and skills and are thus expected to
be more resilient (Asrat and Simane 2018).

Resources and assets: Farmers’ resource endowments (constraints) in the model are
captured using farm size, total TLU, total estimated asset value other than livestock
assets, off-farm employment, food and non-food expenditure, previous year stock of
food and access to credit. Resource constraints are the prime drivers of the variation
in farmers’ choices of adaptation and coping measures (Asfaw et al. 2018). Farmers
with better resource endowments are expected to be more resilient. Irrigation is also
included in the model to show its role in determining farmers choice adaptation and
coping measures. Farmers who have irrigated plots have better access to food than
others and are expected to be more resilient.

Shock experience and expectation: Ex-ante strategy choices of farmers are highly
related to their shock experience and expectation (Robert et al. 2016). Shock experience
and expectation in the model is captured using past frequency of shocks, future shock
expectation and frequency of shock expectation. These variables collectively capture
how farmers choose their adaptation and coping measures in line with the feedback they
had in the past years. Farmers who experienced shocks more frequently are expected
to have better knowledge on how to cope and adapt.
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3.3 Multivariate probit regression results
Multivariate probit regression results show that farmers’ human capital, participation
in rural institutions and strength of social networks, resource endowments, knowledge
and access to extension services and their shock experience and expectation in general
are the major drivers for farmers’ choice of ex-ante and ex-post measures for climate
variability induced shocks. Tables 3.6 - 3.9 show MVP regression results for drought,
hailstorm and pests and crop diseases respectively.
Gender of household head has a significant effect in the choice of ex-ante and ex-post
drought measures. Male-headed households are more likely to engage in soil and water
conservation activities to prevent the adverse effects of drought. They are also more
likely to engage in early planting than their female counterparts, but the effect of gender
on choice of measures is dependent on household’s material wellbeing represented by
total TLU. Male headed households apply crop diversification and increase seed rate
as an ex-ante preparation for drought and they are less likely to sell livestock after
hailstorm. The effect of gender on hailstorm is dependent on the livestock worth of
the household. In response to pests and crop disease, male-headed households apply
crop diversification and plant pest tolerant varieties to mitigate the adverse effects.
Households with elderly heads are related to lower likelihood of selling assets to cope
drought. Literacy of household head is related to application of drought tolerant
varieties as an adaptation strategy.

Results show that farmers’ participation in rural institutions, mainly participation in
iddir and saving and credit associations, has a significant effect to their choice of
adaptation and coping measures for drought and hailstorm. Farmers who are members
of iddir more likely choose planting drought tolerant crops and early planting as ex-ante
drought strategy whereas they are less likely to sell livestock in the aftershock. iddir
members are also more likely to engage in crop diversification to mitigate the possible
adverse effects of hailstorm. Members of saving and credit association are more likely
to sell livestock to cope from hailstorm than non-members. The MVP result shows
that farmers with more friends or relatives in a leadership position use soil and water
conservation activities to counter the adverse effects of drought.

The MVP result shows that farmers resource endowments are important in determining
their ex-ante and ex-post coping strategy choices. High total TLU is associated with
early planting as ex-ante adaptation strategy for drought. Farmers with higher total
TLU are more likely to increase seed rate and engage in off farm activities as an ex-ante
hailstorm strategy but are less likely to sell livestock after hailstorm. TLU is also
positively related with application of crop diversification for ex-ante preparation for
pests and crop diseases. Larger farm size is associated with planting drought tolerant
crops to prepare for drought and less likely to reduce consumption to cope adverse
effects of pests and crop disease. Higher total asset value is associated with lower
probability of early planting for ex-ante drought planning and low probability of selling
livestock after drought. Farmers with higher asset values are also less likely to increase
seed rate to mitigate hailstorm. These farmers are also less likely to sell livestock to
cope pests and crop diseases. Furthermore, households’ non-food expenditure has a
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significant role for their choice of measures. Those with high non-food expenditure are
more likely to engage in early planting as ex-ante drought measures. For hailstorm,
households with high non-food expenditure engage in off farm activities as an ex-ante
strategy. And, households with high non-food expenditure sell livestock to cope with
drought, hailstorm and pests and crop diseases.
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Table 3.6: Multivariate probit regression results for drought

Drought
Ex-ante Ex-post

VARIABLES DTC DTV EP SWC RPL SL SA RC

Model 1 2 3 4 1 2 3 4
Human Capital
Gender 625 463 2.451*** 3.709*** 409 347 -117 664

-429 -381 -625 -260 -342 -319 -405 -427
Gender*TLU -0.0385 -0.0207 -0.185*** -0.0320 -0.0274 -0.00713 0.00264 -0.0507

(0.0507) (0.0501) (0.0601) (0.0395) (0.0433) (0.0410) (0.0503) (0.0467)
Age 0.00120 0.00128 -0.00100 -4.94e-05 0.00674 -0.00341 -0.0102** -0.00129

(0.00442) (0.00483) (0.00571) (0.00659) (0.00429) (0.00402) (0.00483) (0.00455)
Education 163 0.218* -0.0705 128 0.0197 -0.0622 -179 0.0623

-121 -125 -153 -172 -110 -104 -124 -114

Family Size -0.0245 -0.0171 -0.0324 -0.0492 0.000798 -0.00212 0.0215 -0.0313
(0.0239) (0.0259) (0.0368) (0.0406) (0.0246) (0.0240) (0.0296) (0.0252)

Access to Markets
Walking min to 0.000131 0.00200** 0.000404 0.00134
main market (0.000901) (0.000953) (0.00110) (0.00143)

Walking min to 0.000888 -0.00159 0.000647 -0.000729
main extension office (0.00171) (0.00208) (0.00257) (0.00262)
Rural Institutions: Member to
Saving and Credit Association -0.0203 -0.00989 103 -0.00597 0.0381 129 103 111

-122 -133 -155 -170 -116 -112 -128 -120

Religious Association -143 -131 -0.0726 -264
-119 -126 -149 -163

Iddir 0.328** 0.251* 0.552*** -0.00997 -0.0774 -0.254** 102 141
-135 -146 -201 -181 -122 -118 -143 -137

Farmers’ association 0.0207 -0.0110 121 -118

-120 -115 -134 -129
Social Networks
Total Number of Relatives 0.00240 0.00583 -0.00261 -0.00567

(0.00432) (0.00423) (0.00483) (0.00448)
Total Number of Friends -0.00219 -0.00465 0.00265 0.00117

(0.00359) (0.00354) (0.00364) (0.00344)
Observations 730 730 730 730 730 730 730 730
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Multivariate probit regression results for drought: continued

Ex-ante Ex-post

VARIABLES DTC DTV EP SWC RPL SL SA RC

Model 1 2 3 4 1 2 3 4
Friends in Leadership Position 163 174 195 0.425***

-109 -117 -138 -160
Resources and assets
Total TLU 0.0316 0.0155 0.184*** 0.0278 0.0199 0.0117 0.00166 0.0663

(0.0502) (0.0495) (0.0595) (0.0385) (0.0429) (0.0408) (0.0501) (0.0465)
Farm Size (ha) 0.0402*** -0.00448 -0.0268 -0.00385 -0.0159 -0.0221 0.0185 -0.00299

(0.0142) (0.0178) (0.0271) (0.0222) (0.0163) (0.0152) (0.0160) (0.0160)
Total Asset Value 0.00251 0.00129 -0.0109** 0.00188 -0.00348 -0.00709** -0.00648* 0.00268

(0.00282) (0.00280) (0.00494) (0.00252) (0.00237) (0.00287) (0.00364) (0.00239)

Food Expenditure -0.0283 -0.0271 0.00653 0.0712 0.00275 0.0336 0.0115 0.0167
(0.0376) (0.0422) (0.0471) (0.0472) (0.0348) (0.0345) (0.0404) (0.0362)

Non-food Expenditure -0.00241 0.00558* 0.00869** -0.00720 -0.000889 0.00702** 0.00536 0.000151
(0.00378) (0.00296) (0.00354) (0.00605) (0.00461) (0.00299) (0.00437) (0.00405)

Access to Extension Services and Farmers Knowledge

Took Training on Climate Change Adaptation -0.218* -0.0938 -0.288** 0.597***
-112 -117 -142 -172

Farmers’ Shock Experience and Expectation
Drought frequency (last 10 years) 0.0469 0.159*** -0.102** 0.253*** 0.163*** 0.0936*** -0.0353 -0.0259

(0.0393) (0.0385) (0.0484) (0.0503) (0.0360) (0.0340) (0.0378) (0.0376)

Expectation of drought 0.754*** 0.640*** 0.852*** 0.545***
in the future -121 -127 -179 -186
Expectation Frequency
Constant -2.184*** -2.532*** -4.109*** -6.837*** -1.597*** -613 -678 -1.389***

-519 -470 -732 -497 -416 -380 -468 -475

Observations 730 730 730 730 730 730 730 730
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Table 3.8: MVP results for hailstorm

Hailstorm

Ex-ante Ex-post

VARIABLES CD ISR OFF RPL SL RC

Model 1 2 3 1 2 3
Human Capital
Gender 1.716*** 1.019** -838 1.160* -1.730** 582

-542 -501 -607 -679 -779 -603
Gender*TLU -0.134** -0.0909* 0.0224 -0.0924* 0.317** -0.0593

(0.0526) (0.0519) (0.0636) (0.0541) -152 (0.0511)
Age 0.0175** -0.00317 0.00742 0.00369 0.00274 -0.00404

(0.00715) (0.00758) (0.00792) (0.00550) (0.00602) (0.00577)
Education 231 0.0656 -0.00544 0.0618 -0.0539 -159

-224 -208 -236 -154 -166 -153

Family Size 0.0225 0.00805 -0.0223 -0.0384 -0.0218 -0.0168
(0.0441) (0.0406) (0.0623) (0.0347) (0.0355) (0.0342)

Rural Institutions
Farmers Association -226 -204 -0.0202 0.0773 -156 -305

-285 -262 -320 -172 -215 -186

Saving and Credit Association 107 265 -0.0914 -0.0131 0.401** 210
-245 -237 -244 -157 -188 -162

Iddir 0.711** 202 316 -0.0689 -108 226
-347 -271 -349 -205 -226 -205

eqqub 211 197 237

-300 -286 -310
Social Networks
Total number of relatives 0.00637 0.00222 -0.0125*

(0.00548) (0.00578) (0.00692)
Relatives living in the village -0.0110 -0.0387 -0.000198

(0.0157) (0.0250) (0.0163)
Relatives living outside the village 0.0259* 0.0202 0.0234

(0.0138) (0.0164) (0.0155)
Friends living outside the village -0.00826 -0.0101 -0.0131

(0.00986) (0.0143) (0.0146)

Resources and assets
Total farm size -0.0501 -0.0199 -0.0128 0.0115 -0.00710 0.0124

(0.0311) (0.0324) (0.0362) (0.0186) (0.0284) (0.0217)
Total TLU 0.146*** 0.119** 0.00272 0.104* -0.317** 0.0650

(0.0526) (0.0513) (0.0626) (0.0538) -152 (0.0504)

Non-food expenditure 0.000389 0.00380 0.0185*** -0.00650 0.01000** -0.00525
(0.00558) (0.00496) (0.00432) (0.00704) (0.00500) (0.00567)

Food expenditure -0.0148 -0.0876 0.0472 0.0624 -0.0256 -0.0972*
(0.0714) (0.0741) (0.0790) (0.0539) (0.0578) (0.0560)

Safety net -0.0977 -128 0.0411

-335 -367 -299
Total asset value -0.00768 -0.0132** -0.00669 -0.00103 0.000634 0.00202

(0.00534) (0.00665) (0.00569) (0.00307) (0.00333) (0.00355)
Farmers Shock Experience and Expectation
Hailstorm Frequency -0.0942 -0.00489 -0.0140 0.135*** 0.200*** -0.101**

(0.0750) (0.0545) (0.0520) (0.0427) (0.0447) (0.0469)
Hailstorm Expectation frequency

-4.656*** -2.488*** -1.758** -2.443*** 243 -780
Constant -742 -665 -796 -805 -850 -698

Observations 432 432 432 432 432 432

Access extension services and farmers’ knowledge has a significant effect on farmers’
choice of ex-ante measures to adapt for drought. Farmers who took training and
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Table 3.9: MVP results for pests and crop disease

Pests and crop disease

Ex-ante Ex-post

VARIABLES PTV CD SL SA RC

Models 1 2 1 2 3
Human Capital
Gender 0.813** 4.696*** -124 0.0782 457

-413 -1654 -367 -457 -324
Gender*TLU -0.0739 -0.326*** -0.0455 -0.0210 -0.0228

(0.0451) -118 (0.0447) (0.0585) (0.0283)
Age 0.00341 -0.00144 0.00268 -0.000466 -0.000825

(0.00474) (0.00561) (0.00554) (0.00528) (0.00522)
Education 0.0510 0.0922 -0.00301 174 191

-123 -148 -141 -141 -129

Family size -0.0131 -0.0110 -0.000549 0.0110 -0.0495*
(0.0254) (0.0313) (0.0336) (0.0305) (0.0265)

Rural Institutions
Farmers Association -108 0.0844 -167 0.0442 -104

-142 -157 -162 -158 -149

Iddir 211 0.00833 -0.324** 0.0316 -185
-161 -188 -163 -181 -160

Cooperative Union -0.0873 -235
-140 -164

Social Networks

Total number of Relatives 0.00179 0.00507 -0.00560
(0.00557) (0.00611) (0.00638)

Total number of Friends -0.00580 -0.00454 0.00159
(0.00402) (0.00485) (0.00429)

Resources and assets

Total farm size 0.0257 0.00212 -0.0365 -0.0223 -0.0629***
(0.0164) (0.0181) (0.0245) (0.0220) (0.0239)

Total TLU 0.0569 0.320*** 0.0412 0.0186 0.0258
(0.0450) -118 (0.0448) (0.0585) (0.0283)

Total Asset Value -0.00627** 7.81e-07 0.00366*

(0.00291) (0.00268) (0.00213)
Non-food expenditure -0.000860 -0.00705 0.0157*** 0.00281 0.00119

(0.00385) (0.0103) (0.00499) (0.00388) (0.00533)
Food expenditure -0.0284 0.0134 -0.0102 0.0309 0.0108

(0.0381) (0.0475) (0.0450) (0.0460) (0.0419)

Safety Net 192 -137 -241
-270 -295 -293

Credit constrained 123 0.0698
-116 -137

Access to Extension Services and Farmers Knowledge

Took training on varieties -252 -277
-208 -241

Took training on pest and disease control 0.0933 0.0307
-138 -154

Farmers Shock Experience and Expectation

Pest and Crop Disease Frequency 0.119*** 0.0431* 0.121*** 0.173*** 0.0482*
(0.0241) (0.0234) (0.0278) (0.0265) (0.0259)

Future Pest and Crop Disease Expectation 0.442*** 0.525***
-116 -141

Constant -1.992*** -5.903*** -0.994** -1.855*** -1.044***

-472 -1663 -438 -525 -395
Observations 613 613 613 613 613

counselling on climate change adaptation are more likely to engage in soil and water
conservation practices and less likely engage in early planting for ex-ante drought
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situations.

MVP results of all risk factors shows that farmers shock experience and expectation
has a significant effect on their choice of both ex-ante and ex-post measures. Farmers in
drought frequent areas are more likely to plant drought tolerant varieties and engage in
soil and water conservation activities and less likely to apply early planting as ex-ante
adaptation measures to prevent or minimize the adverse effects of drought. Farmers
from drought frequent areas are more likely to engage in replanting and selling livestock
which might contributed towards not using consumption reduction as an ex-post coping
strategy to drought. Farmers from hailstorm frequent areas are more likely to choose
replanting and selling livestock to cope in the aftershock and less likely to reduce their
consumption. In pest and crop disease frequent areas farmers tend to plant pest tolerant
varieties and diversify crops before its occurrence and sell livestock and assets aftershock.
And, farmers with future pests and crop disease expectation are more likely to engage in
crop diversification and planting pest tolerant varieties. Farmers who have high future
drought expectation frequency tend to plant drought tolerant crops, drought tolerant
varieties, early planting and engage in water and soil conservation as ex-ante drought
preparation.

3.3.1 Complementary and substitute measures
Complementarity and substitutability of measures is analysed using LPCA and MVP
and the results obtained from both methods are consistent. In addition to identifying
dominant measures LPCA also shows which measures are complementary and which
measures compete over the same resource. Figure 3.1 show score and loading plots
of the first two principal components for all measures chosen ex-ante and ex-post in
drought, hailstorm and pest and crop disease situations. Loading plots do not only
indicate the major contributors they also show the correlation between measures in
the matrix in general1. This enables us to identify which measures are substitutes and
which are complements. Measures clustered together have similar contribution in the
matrix. The farther the strategy is from the origin in the loading plots, the higher its
contribution to the total variation in the choice matrix. Selling livestock and selling
non-livestock assets, for example, have high positive correlation in ex-post drought
situation. If the farmer chooses one, the likelihood that the other will be chosen is
higher. On the contrary, engaging in off-farm activities and out migration (rural-urban
migration) go in opposite directions from selling livestock (or selling other assets) in
the loading plot and are substitute measures. Same is true for replanting and reducing
consumption. Planting drought tolerant crops and planting drought tolerant varieties
are ex-ante complementary measures. Saving and engaging in off-farm activities are
also complementary measures for drought. Early planting and crop diversification are
complementary ex-ante measures for pests and crop disease.

1MVP determines correlation between measures based on different farmer level characteristics,
LPCA on the other hand, shows correlation between measures according to the total contribution
to the variation in the choice matrix – is therefore more generic.
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Figure 3.1: Ex-post Scores loading plots of LPCA

In MVP, on the other hand, complementarity and substitutability of measures is
obtained from post estimation correlation matrix of the error terms of adoption
equations. Table 3.10 shows most of the off-diagonal elements of the correlation matrix
are statistically different from zero for all risk factors. This confirms that farmers
choices of ex-ante as well as ex-post measures are interdependent and the application
of an MVP model specification to the problem is appropriate.
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Table 3.10: Correlation coefficient (rho) of MVP regression equations

Correlation matrix

Ex-ante Ex-post

Risk factor �21 �31 �41 �32 �42 �43 �21 �31 �41 �32 �42 �43

Drought 1.137*** 0.601*** 0.494*** 0.777*** 0.753*** 0.191** 0.219*** 0.208*** -0.325*** 0.480*** -0.0600 -0.0325
(0.106) (0.0989) (0.1000) (0.0925) (0.109) (0.0855) (0.0623) (0.0758) (0.0668) (0.0731) (0.0614) (0.0740)

�21 �31 �32 �21 �31 �32
Hailstorm 0.624*** 134 0.811*** 0.486*** -0.0552 -0.0591

(0.133) (0.0899) (0.182) (0.105) (0.0945) (0.0942)

Pests �21 �21 �31 �32
0.765*** 0.336*** 0.0227 0.485***
(0.0989) (0.0810) (0.0870) (0.0846)

Note:
Numbers in each column refers correlation between models mentioned in previous regression tables.

The result in Table 3.10 shows that there is complementarity and substitutability in farmers choices of ex-ante and ex-post
measures for drought, hailstorm, and pests & crop disease. Planting drought tolerant crops and varieties, and soil and water
conservation activities are used complementarily as an ex-ante adaptation options for drought. Farmers use selling livestock
and selling other assets and replanting complementarily in response to drought. Farmers also have substitute ex-ante strategy
measures for drought. The identified substitute measures are selling livestock and reducing consumption & replanting and
reducing consumption. Farmers use increasing seed rate and engage in non-farm activities complementarily to reduce the
outcome of hailstorm shocks.
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On the other hand, replanting and selling livestock are complementary measures to cope
with the aftershock. For pests and crop disease both before and after the occurrence
measures are complementary than competitive. Planting pest tolerant varieties and
crop diversification are complementary ex-ante measures while selling livestock, selling
other assets and reducing consumption are complementary ex-post measures in response
to pests and crop disease shocks.

3.3.2 Correlation between ex-ante and ex-post measures
LPCA is also used to see relationship between farmers choices of ex-ante and ex-post
measures over the past ten years. Results show that farmers who planted trees as
an ex-ante measure for drought are less likely to sell livestock and other assets after
drought. Planting drought tolerant varieties and receiving aid are negatively correlated.
The result also shows that ex-post measures have a strong contribution to the total
variation in the choice matrix than ex-ante measures. This shows that farmers invest
more on ex-post measures than ex-ante measures. For hailstorm off farm work and
soil and water conservation are positively correlated to planting trees and stop sending
children to school respectively. For pests and crop diseases, using pesticide is negatively
correlated with planting pest tolerant varieties while engaging in off farm work is
positively correlated with selling livestock. And, engaging in off farm work is negatively
correlated with early planting and crop diversification. Figure 3.2 shows correlation
between ex-ante and ex-post measures.
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Figure 3.2: Ex-ante and ex-post measures: correlation

3.4 Feedback to agent based model
Some of the results obtained in the econometrics analysis are used as an input during
parameterizing the farm decision model. Even though the sample used for econometric
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analysis and agent based modeling in this thesis are different, the underlying principles
of adaptation and mitigation of shocks is similar throughout Ethiopia. Besides the
study area for the farm decision model is with in the range of the study area used
for the econometric analysis in this thesis. The main feedback from the econometric
analysis to the farm decision model goes to the setting up of ex-ante planning by agents
for shocks. The following are the main feedback from the results of the econometrics
analysis used in the model in one way or another.

• Shocks: the most frequent and intense shocks identified in the econometrics
analysis are included in the model to set-up agents’ ex-ante planning measures

• Strategies: the strategies such as food storage, selling livestock, selling trees, for
instance are included in the model in shock cases and as in the normal cases

Besides, econometric results help to shape our objectives in model calibration by
establishing the standard ways the farmers behaves when choosing measures.
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Chapter 4

Validation of farm decision model

Chapter objectives
• Showing validity of the farm decision model to do simulation experiments

– Examining results of empirical model validation
– Examining results of interactive model validation

4.1 Structural model background and purpose
4.1.1 Purpose
This chapter presents validation results of the farm level mathematical programming
model. The primary objective here is to show the quality of predictive accuracy of
the model in contrast to the actual short-run production decisions made by farmers in
the study area, given the underlying assumptions set in the model. Before validating
the model, the underlying assumptions of validation and initialization of the model
are explained. Later different versions of the model based on the agent’s behavioral
response towards risk to decide on the baseline model are compared. There are two
different versions of the model where agents make ex-ante preparation for the possible
occurrence of shocks or not. The model with these two settings is compared and chose
the one with the highest resemblance to the survey data. Verification and validation
results are presented after model selection.

4.1.2 Underlying assumptions of model validation
The basis of model validation resides in the assumptions set during model
parametrization. The model assumes that farmers’ short term production decisions
can be predicted from the multi-agent farm level mathematical programming model if

42



the values of key parameters about farmers (described below) are known. Following
are the underlying assumptions in the model:

• prices, wage rates, interest rates, inflation rates, discount rates, rotation
constraints, yields, minimum energy and protein requirements, and cropping
calendar are exogenous in the model

• farmers’ expectations of yields and prices is known
• farmers take calculated risks only (they operate in a safe mode)
• farmers’ asset endowments (land, labor and liquidity) are known at the beginning

of the season before they make plans

4.2 Observations
4.2.1 Initial endowments
The initial endowments which are assumed to have a significant role in determining
agent’s short term production decisions are farm size, labor capacity, livestock and
perennial ownership and capital in the form of cash1. The average landholding in the
agent population is 1.8 hectares ranging from 0.5 ha to 7 ha per household. To ease
divisibility, plots were classified into areas of 0.125 ha and keep all growing activities
as integer activities in the model.
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Figure 4.1: Agent information: correlation between household size and farmsize

Figure 4.1 shows that there is slightly negative correlation between farmsize and
household size in the agent population.

1Cash is relevant for financing farm operation costs at the beginning of the planning period before
they collect their harvest.
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4.2.2 Household composition
One of the most important agent information for the model’s initialization is the
households’ labor capacity. Agents’ labor capacity in the model is captured by the
total number of different labor groups available. There are five labor groups in the
model classified based on household members’ age and gender (small child labor, child
labor, male labor, female labor and senior labor). Age is dynamic in the model2. To
summarize the distribution of the different labor groups across agents by their material
well being, agents were classified based on their farm size - often used as a proxy
for smallholder farmers material well-being status in addition to livestock and labor
capacity. The entire agent population is classified into three groups (better-off, average
and worse-off farmers) based on quartiles of farm size in the sample.
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Figure 4.2: Agents’ labor composition by household types

Figure 4.2 shows that child labor and small child labor constitute a substantial share
of household members in the agent population on average. It depicts no significant
difference between the distribution in the labor groups based on material wellbeing
classification. In comparison, senior labor constitutes the smallest amount. This shows
the population in the model is a young population, similar to the situation at the
national level. The active labor force in the agent population is around 45% of the total
agent population. These are the key participants in the major agricultural activities in
the area.

2growth of household members and shift from one labor group to the next labor group based on
age is captured across the planning horizon
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4.2.3 Exogenous variables in the model
Time series data on prices and yield of crops are obtained from the Central Statistical
Agency of Ethiopia database (CSA 2019). Data on minimum energy and protein
requirements of household members by their corresponding age is obtained from FAO
database (FAO 2001). Constant expectation is assumed in the model. The cropping
calendar (land preparation, sowing dates, weeding, harvesting and threshing periods)
of major crops in the area are exogenous. Data on the cropping calendar used in the
model is obtained from empirical literature, focus group discussions and key informant
interviews (USDA 2018). The cropping calendar is typical of the Dega AEZ. Agents
also have the option of double cropping (barley after potatoes). The cropping calendar
is for the main rainy season (kiremt or meher).

4.3 Empirical validation
4.3.1 Benchmarks for model validation
Benchmarks are a set of locally stylized facts that characterize a farming system and
a typical farmer’s behavior in that farming system. The basis for model validation
and the underlying assumptions are these benchmarks that characterize the farming
system modeled. The benchmarks could be considered well-established knowledge
or facts, customized rules of farm operations, strong and consistent input-output
relationships that characterize farmers and the farming system the model is trying
to simulate (Christian Troost 2014). The main sources to establish benchmarks are
survey data, KIIs, FGDs, secondary data, and literature. These benchmarks are then
used as the basis to design our validation experiment. Benchmarks were set on farmers’
main characteristics related to their land-use decisions in crop and tree production
and livestock production. The following sections summarize the available systematic
relationships in farmers’ land-use decisions and their livestock production.

4.3.2 Crop and woodlot tree production
Figure 4.3 shows the distributions of observed land-use by farmers in the sample for all
crops grown. Potatoes and acacia woodlot tree plantations have the highest land-use
coverage in hectares, followed by barley, teff and wheat. Potatoes are the most grown
crop in the area. This is attributed to the suitability of acidic soils for potato production.
In addition to potatoes, acacia decurrens and teff are the most widely grown crops
among farmers in the sample. This is perhaps related to the high intercropping rate of
acacia decurrens with teff in the first year. Most farmers in the sample allot a piece of
land for the major crops in general. However, relatively larger farm size is allocated for
acacia and potatoes.
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Observed land−use
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Figure 4.3: Distribution of land-use

To see the heterogeneity of land allocation, he land-use share distribution of each farmer
in the sample for all the growing crops is plotted. The box plots in Figure 4.4 show,
on average, farmers in the sample allocate a larger share of their respective farmland,
followed by wheat and teff. On average, each farmer allocates 31% and 28% of their
total farm size to potatoes and acacia decurrens.
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Figure 4.4: Distribution of land-use share in the study area

Furthermore, the study applied descriptive and statistical techniques to examine a
systematic relationship between farmers’ endowments and the amount of land allocated
for a particular crop. First, distributions of farmers’ endowments are plotted and
compared the results for growers with the non-growers. The aim is to examine why
some farmers are growing a particular crop and others not. The results are presented
in figures 7.1 to 7.15. From the shapes of the distributions, it can be understood that
land-use decisions on crops and perennials are driven by endowments (mainly land and
livestock), where there is a noticeable difference on asset endowments of growers and
non-growers. Figures are shown in Appendix C

Furthermore, to examine the determinants of farmers’ discrete land-use decisions, a
dummy variable on growers of each crop is regressed on household and community-level
characteristics. Table 4.1 and Table 4.2 show logistic regression results and the
corresponding odds ratio of explanatory variables. The results show that, farm size,
livestock ownership (TLU) and information on prices significantly affect the choice to
grow a particular crop in the study area.
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Table 4.1: Logistic Regression of land-use Decisions

1 = grow, 0 = don’t grow
acacia barley potatoes redteff wheat

(1) (2) (3) (4) (5)
hhsize .45 .15 −.37 .94 −.14

(1.32) (.77) (.83) (.74) (.60)
farmsize 2.27∗ .02 −.30 .25 .36

(1.17) (.25) (.25) (.24) (.31)
Small.child.labor −.26 −.83 −.05 −1.25∗ .71

(1.28) (.74) (.71) (.69) (.57)
Child.labor −.38 −.77 .55 −.39 .35

(1.44) (.82) (.81) (.73) (.61)
Male.labor 1.89 .12 .87 −.91 .13

(1.46) (.86) (1.00) (.88) (.66)
Female.labor −.75 1.23∗ .12 .06 −.81

(1.18) (.74) (.85) (.66) (.55)
TLU −.34 .26 .03 −.03 −.04

(.23) (.16) (.18) (.15) (.15)
Access.to.credit.to.buy.seed .06 1.43∗ −.61 −.12 −.05

(1.44) (.86) (.88) (.81) (.81)
Fertilizer.price .35 −.99 −2.44∗ −.91 .71

(1.49) (.98) (1.45) (.88) (.79)
Input.market.information 2.54 1.99∗∗ 1.09 1.28 −.07

(1.69) (.93) (1.07) (.85) (.77)
Labour.wages .23 −3.25∗∗ .33 −.22 −.31

(1.74) (1.43) (1.27) (.92) (.93)
Output.price 1.87 −2.16∗∗ .01 −.39 −.23

(1.59) (1.06) (1.07) (.89) (.87)
Seed.price −2.24 −.37 1.12 1.40 .18

(2.62) (1.19) (1.41) (1.19) (1.02)
Seed.quality −1.42 1.37 −2.25 −2.95∗∗ .17

(1.93) (1.15) (1.38) (1.15) (.96)
Timely.seed.supply −1.15 1.26 .97 .35 −.60

(1.86) (1.02) (1.10) (.92) (.93)
Constant −2.00 −2.02 3.73∗ −.77 .51

(2.37) (1.71) (2.04) (1.44) (1.37)
Observations 72 72 72 72 72
Log Likelihood −18.53 −33.51 −26.85 −36.93 −38.34
Akaike Inf. Crit. 69.05 99.02 85.70 105.87 108.67

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4.2: Logistic Regression of land-use Decisions ‐ ODDS RATIOs

1 = grow, 0 = don’t grow
acacia barley potatoes redteff wheat
(1) (2) (3) (4) (5)

hhsize 1.57 1.16 .69 2.55∗∗∗ .87
(1.32) (.77) (.83) (.74) (.60)

farmsize 9.69∗∗∗ 1.02∗∗∗ .74∗∗∗ 1.28∗∗∗ 1.43∗∗∗

(1.17) (.25) (.25) (.24) (.31)
Small.child.labor .77 .44 .95 .29 2.03∗∗∗

(1.28) (.74) (.71) (.69) (.57)
Child.labor .69 .46 1.72∗∗ .68 1.41∗∗

(1.44) (.82) (.81) (.73) (.61)
Male.labor 6.64∗∗∗ 1.13 2.39∗∗ .40 1.14∗

(1.46) (.86) (1.00) (.88) (.66)
Female.labor .47 3.42∗∗∗ 1.13 1.06 .44

(1.18) (.74) (.85) (.66) (.55)
TLU .71∗∗∗ 1.29∗∗∗ 1.03∗∗∗ .97∗∗∗ .96∗∗∗

(.23) (.16) (.18) (.15) (.15)
Access.to.credit.to.buy.seed 1.06 4.20∗∗∗ .54 .88 .95

(1.44) (.86) (.88) (.81) (.81)
Fertilizer.price 1.42 .37 .09 .40 2.03∗∗∗

(1.49) (.98) (1.45) (.88) (.79)
Input.market.information 12.67∗∗∗ 7.32∗∗∗ 2.98∗∗∗ 3.60∗∗∗ .94

(1.69) (.93) (1.07) (.85) (.77)
Labour.wages 1.26 .04 1.39 .80 .73

(1.74) (1.43) (1.27) (.92) (.93)
Output.price 6.50∗∗∗ .12 1.01 .68 .79

(1.59) (1.06) (1.07) (.89) (.87)
Seed.price .11 .69 3.05∗∗ 4.06∗∗∗ 1.19

(2.62) (1.19) (1.41) (1.19) (1.02)
Seed.quality .24 3.95∗∗∗ .11 .05 1.19

(1.93) (1.15) (1.38) (1.15) (.96)
Timely.seed.supply .32 3.54∗∗∗ 2.63∗∗ 1.42 .55

(1.86) (1.02) (1.10) (.92) (.93)
Constant .13 .13 41.84∗∗∗ .46 1.66

(2.37) (1.71) (2.04) (1.44) (1.37)
Observations 72 72 72 72 72
Log Likelihood −18.53 −33.51 −26.85 −36.93 −38.34
Akaike Inf. Crit. 69.05 99.02 85.70 105.87 108.67

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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4.4 Empirical validation results
To empirically validate the model simulated and observed values of land-use and
livestock production were compared on a one to one basis. Accordingly, land-use
values and shares of each crop for all farmers in the sample are fitted using multinomial
logit regression. The fitted values from the regression are compared with the farmers’
actual land-use decisions in the survey and simulated3 land-use decisions by agents in
the model. Scatter plots of fitted, observed and simulated land-use values are plotted
over farm size to see the consistency of fitted and simulated results with the observed
results. Figures 4.5 and 4.6 show scatter plots of land-use and land-use share to total
farm size.

RedTeff Wheat

Acacia Barley Potatoes

0 20 40 0 20 40

0 20 40

0

10

20

30

40

50

0

10

20

30

40

50

Farmsize

la
nd

−
us

e

Variables Fitted Observed Simulated

Scatterplot of land−use to total farmsize
Total number of agents = 72

Multinomial logit regression results

Figure 4.5: Land-use: observed vs simulated land-use in pixels of 0.125 ha

The results from both figures show that the model has higher predictive power for
small farm size farmers. As the farm size increase, the model tends to overestimate
land-use-values. This is persistent for acacia decurrens, potatoes and wheat. Besides,

3The baseline scenario at the first simulation period is used for comparison
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in terms of land-use shares, the model overestimates values compared to observed and
fitted values. Results using farm size are compared following its significant contribution
to land-use decisions as per the logistic regression results above.
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Figure 4.6: Land-use shares: observed vs simulated land-use shares in pixels of 0.125
ha

Furthermore, since potatoes and acacia are the most commonly grown crop/tree in
the area, simulated land-use results of agents in the model are compared with farmers’
actual land-use decisions on a one to one basis. The results are presented in Figure 4.7.
The 45-degree line is used as a reference for the predictive capacity of the model. The
results show that the model underestimates land-use decisions of acacia decurrens in
the area in the baseline scenario with no shock and with ex-ante planning. The results
are better for potatoes. The prediction of the model is more accurate in the initial
years of simulation.
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Figure 4.7: Simulated versus observed values of acacia and potatoes in the baseline
scenario

4.4.1 Conclusions from empirical validation results
• Potatoes and acacia have highest land-use shares followed by wheat, teff and

barley which is in line with the values obtained in the model

• Farmer endowments mainly land and livestock ownership determine their choice
of crops/trees to grow

• The model has better predictive power for land-use shares of small farm size
farmers - mainly for acacia, potatoes and wheat. As farmsize increases the model
overestimates land-use shares

• Model prediction is better in the initial simulation years.

4.5 Interactive model validation
4.5.1 R shiny apps user interface (UI)
Interactive model validation is not new in agent-based modeling using MPMAS.
Mössinger, Troost, and Berger (2022) showed how interactive model validation help
improve the analysis of agricultural systems using MPMAS. For this study two
Shiny apps were developed for interactive model validation sessions. The first is the
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Online Expert Feedback Survey4. All validation and verification related questions
for experts are included in this app. There are four sets of questions - background
information about the expert; Turing test questions; verification/validation questions;
and questions on the interactive tool’s overall feedback. The Turing test questions are
stand-alone questions where all the relevant information to answer the questions is
provided on the spot. In contrast, answering the verification and validation questions
requires referring to the second (main) interactive model validation app.

The online feedback survey app is synchronized to dropbox cloud storage and the data is
stored in the cloud upon each submission. This enabled us to get the data in real-time.
The app is developed in such a way that it will be self-explanatory. The necessary
steps to follow and tasks to do are described inside. Video tutorials are also included
for further clarification. The app is developed in two languages - English and Amharic.
This is primarily to smooth communication between experts and the app as much
as possible. Every expert feedback survey session was guided by the researcher and
was conducted via zoom video conferencing. This created smooth sessions in terms of
communication and clarity. All video discussions in the zoom sessions are recorded.
Much of the feedback about the model is found in the discussions than the recorded
answers from the structured questions.

Figure 4.8: Online expert feedback survey web app user interface
4The Online Expert Feedback Survey web app is deployed to the link address https://mpmas-

ethioacacia-mpv.shinyapps.io/expertfeedback_english/
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The second Shiny app is the main interactive model validation app5. This is basically
a simple representation of the farm decision model. Three agents with low, average
and high endowments from the 72 agents in the model were selected and presented all
model validation outcomes for these agents throughout. The selection of these three
farmers was based on farm size, labor capacity and quality and livestock ownership.
The purpose of having three agents instead of one is to see the model’s performance for
agents with different resource settings. The main app is also presented both in English
and Amharic versions. Besides, each step and action is explained on the app for easy
navigation. The baseline scenario represented in the model is the WAN scenario where
agents can plan with Acacia Decurrens (W), with ex-ante planning (A) and no-drought
(N).

Figure 4.9: Main interactive model validation web app user interface

The UI of the app has four main components. First, information about the endowments
of the three selected farmers is provided. The second part is the tuning window or
the input panel. Here experts are provided with varying percentage change values of
six parameters from the model to tune for every combination available easily. The
parameters are prices of acacia charcoal, bamboo culm, potatoes, teff, wheat and
barley and availability of off-farm work as a percentage of the total excess labor. Each
parameter has three percentage change values. The model is run for 729 design points
using the baseline scenario, which is the full factorial sample of all the combinations of

5The main interactive model validation web app is deployed to the link address https://mpmas-
ethioacacia-mpv.shinyapps.io/rshiny_english/
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percentage changes in these parameters. Slider bars are used to select the values of these
parameters. In this way, experts were able to select different values and combinations of
the parameters of interest and see the model’s corresponding simulated results. Experts
need to refer to this main app to answer verification and validation questions in the
online expert feedback survey. For each question, a specific tuning and setting of these
parameters are provided before questions are asked. After experts changed parameter
values on the slider bar as requested, they reran the model (by clicking the run button)
to get the updated results in the output panel - which is the last portion of the interface.

The main interactive model application’s output panel shows a graphical representation
of outcome variables from the model after each run. These outcome variables are
directly linked to the verification and validation questions. The outcome variables
are land-use decisions, type and number of livestock kept, total sales revenue from all
sources, revenue from crops, revenue from tree perennial products and revenue from
off-farm employment. Each design point is run for 4 simulation periods starting from
the year of data collection (2018-2021) and for 15 years planning horizon.

4.5.2 Settings and tuning
The parameter selection for tuning in the Shiny app is based on the study area’s context,
the sensitivity (elasticity) of outcomes towards changes in the parameter, and the
relevant research question the study tries to answer. That is why exogenous variables are
used, mainly prices and off-farm capacity of agents in the model, as tuning parameters.

4.5.3 Sample of Experts
Before the actual interactive session, a pretest had been done using experts from
University of Hohenheim to check contents and functionality of the apps. A total
of 10 experts participated in the actual interactive session. The selection of sample
experts was purposive. Experts who have been researching in the study area, with the
relevant expertise to the study and adequate experience are selected. Nine experts are
researchers from Amhara Regional Agricultural Research Institute (ARARI), and one
is from Adet Agricultural Research Center.

Table 4.3: Characterstics of experts in the sample

id Name Expertise Institute Education Experience years

1 Birhanu Endalew Soil science ARARI Masters 17
2 Yalfal Temesgen Agricultural Economics ARARI Masters 8
3 Beyene Belay Forestry ARARI PhD 15
4 Daniel Woldegiorgis Rural development ARARI Masters 19
5 Melkamu Elmiyhun Plant breeder ARARI Masters 13

6 Yazie Chanie Agricultural Economics ARARI Masters 18
7 Walelign Zegeye Plant pathology ARARI Masters 29
8 Molla Mekonen Plant breeder ARARI Masters 26
9 Amsalu Nigatu Forestry ARARI Masters 8
10 Atinkut Fentahun Plant breeding Adet ARC Masters 13
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Experts from various fields in agriculture are included in the sample. The sample
includes agricultural economists (2), forest researchers (2), plant breeders (3), rural
development and extension expert (1), soil scientist (1) and plant pathologist (1). The
minimum level of education attained in the sample is masters and the maximum is
Ph.D. Experts in the sample have adequate experience in their respective fields. The
average years of experience in the sample is 16.6 years, ranging from 8 to 29 years.

4.5.4 Turing test results
Following the methodology applied in Christian Troost (2014), the first part of the
interactive model validation session is the Turing test. The Turing test aims to test the
plausibility of the results from the farm decision model. There are five farmer types
(Farmer type 1 - Farmer type 5) provided for the Turing test - large farm-sized farmers,
high labor capacity farmer, farmer with the largest livestock ownership, and relatively
better off and worse off farmers in the sample in general. The primary objective of the
classification is to see the predictive performance of the model for farmers in different
resource settings and to ensure representativeness thereof. The profile6 of each farmer
type is given at the beginning of each Turing test question.
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Figure 4.10: Turing test results

For each farmer type, the model was run with several parameter combinations and the
major land-use decisions (plans) of six alternative farmers/agents are given. One of
which is from survey data, and the rest five are simulated results from the model. For
each Turing test question, experts compare the results and choose one of the six options
they thought is an actual farmer from the survey.

6Profiling is based on family size, farm size and livestock ownership
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As shown in Figure 4.10, most of the experts’ choices (86%) about land-use plans of
the actual farmer from the survey are incorrect. They chose land-use plans of agents
obtained from simulated results. Only 7 out of 50 choices were correctly specified
towards the actual farmer. At least three options have been chosen for each farmer
type, whereas in most cases, four and five options out of six options are chosen. For
two farm types, all experts chose agents’ simulation results only. Only in one of the
farmer types were the actual farmer chosen by three out of ten experts.

4.5.5 Results of verification and validation experiments
The second section of the interactive model validation session includes validation and
verification experiments. The purpose of the verification and validation experiments is
to attest to the model’s plausibility and predictive accuracy. The verification questions
are based on two experiment settings. The first is experiments on the baseline scenario.
In this setting, all the parameter values in the model remain unchanged. Therefore,
experts were asked questions to verify the plausibility of the model’s results in its
baseline state. Six of the total of eleven verification and validation questions are on
these baseline settings of the model. On the app, experts were able to see graphs on
model output for each question asked.

Based on experts, most of the results obtain in the baseline are realistic (60% to 90%)
except on the results from livestock where almost all of the experts said that it is not
realistic. Most experts also argued that the baseline model should not be dominated
by bamboo, it should be acacia dicurrense. They said that is what is happening in
the study area at the moment. Equines were not included in the baseline model. And,
almost all experts have commented that equines are missing and have to be included.
Horses are main source of draft power in the area. Horses also serve as a means of
transportation. In addition to the economic benefits, horses has a social value in the
community and should be included thereof.

Most of the experts said that the ten percent assumption on labor availability is
plausible. Some of them said it could even be more than 10%. However, according
to experts, better-off farmers are net buyers of labor (not realistic for better off and
realistic for the rest). Because of low agricultural productivity, before acacia, there has
been an extensive migration of labor from the study area to more productive lowland
areas, mainly in the harvesting season. They migrate to harvest maize, cotton and
sesame in large public and private farms in Jawi, Ayo, Quara, Metema, Humera, Soma,
Pawe and several other places. The emergence of acacia in the area has created a lot of
job opportunities. There are off-farm activities in acacia seedling preparation, charcoal
making, pruning and preparation of logs, transportation of logs, making bamboo
products, loading, transporting charcoal, cutting trees. The average daily wage rate
ranges from 70 to 120 ETB per day.

Details on experts remarks on the baseline experiment is provide in Table 4.4 and Table
4.5.
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Table 4.4: Verification experiment results: (Experiment = Baseline)

Settings: Everything remains unchanged and off-farm labour availability remains at 10%
Verification / Validation questions

Expert id In the baseline
farmers grow
annual crops with
bamboo
universally, do
you think farmers’
land use decisions
are realistic?

In the baseline
farmers keep only
chicken and cows,
do you think it is
realistic?

In the baseline
farmers get higher
proportion of their
sales revenue from
tree products, do
you think it is
realistic?

In the baseline
farmers get higher
sales revenue from
potatoes among
crops, do you
think it is
realistic?

In the baseline
farmers get higher
sales revenue from
tree products, do
you think it is
realistic?

In the baseline if
farmers were only
able to work 10%
of their excess
labor off-farm
they will get up to
16, 000 ETB, do
you think it is
realistic?

1 Not realistic Not realistic Realistic Realistic Realistic Not realistic
2 Realistic Not realistic Realistic Not realistic Realistic Realistic
3 Not realistic Not realistic Realistic Realistic Realistic Realistic
4 Realistic Not realistic Realistic Realistic Realistic I don‘t know
5 Realistic Not realistic Realistic Realistic Realistic Realistic

6 Realistic Not realistic Realistic Realistic Realistic Realistic
7 Realistic Realistic Realistic Realistic Realistic Realistic
8 Not realistic Not realistic Realistic Realistic Realistic Realistic
9 Not realistic Not realistic Realistic Realistic Realistic Realistic
10 Realistic Not realistic Not realistic Realistic Not realistic Realistic
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The second experiment setting asks questions based on the future (long run) price
variability and off-farm work availability changes. Attributed to heavy rain, the acidic
content of the soil in the study area is very high. As a result, crop productivity is very
low. This was one of the driving factors for expanding Acacia woodlot plantations in
the area in the past decade. Compared to crops, the income farmers get from acacia
is very high. Besides, acacia is a leguminous tree that fixes nitrogen into the soil.
Which eventually reduces soil acidity, soil erosion, and recovers the soil fertility. These
multifaceted benefits led to the extensive and fast conversion of croplands into acacia
woodlots.

However, during the 2018 survey, farmers in FGDs mentioned that price fluctuation
is the main threat to acacia production in the area. In the interactive session, it has
also been established that prices have decreased at the farm gate and are distorted
by brokers and traders. On the contrary, soil fertility has been improving because of
repeated cycles of acacia plantations. Moreover, the price of crops has constantly been
increasing for several years in Ethiopia in general. One of this study’s objectives is to
see if farmers would go back to annual crops in these push and pull factors. And, all
the questions in this section are asked, considering this development.

The questions are asked in an investigative manner:

• a 50% decrease in bamboo price, keeping other variables constant and observing
agents’ land-use plans.

• a decrease acacia charcoal and bamboo culm price by 50% simultaneously, keeping
everything unchanged and observed land-use plans.

• Keeping the prices of tree products unchanged, an increase all crops’ prices by
50% and observed results.

• a simultaneously decreased the price of tree products by 50% and increased the
crops’ prices by 50% and observed agents’ land-use decisions.

With future price variability, most of the results from the model are considered as a
good fit to the reality by experts. The model was considered as a good representation
of agricultural practices in the area with 67.5% (27 out of 40) responses from experts
on verification and validation questions as “good fit.”

Table 4.6 and Table 4.7 show results from the verification and validation questions from
the interactive session.
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Table 4.5: Verification experiment results: (Experiment = Future price variability)

Settings: Changes in future prices and capacity of off farm labor availability
Verification / Validation questions

Expert id Suppose the price of
bamboo culm
decreases by 50%,
keeping other
parameters constant.
Do you think the shift
in land use from
bamboo to acacia is a
good fit?

Suppose the price of
bamboo culm and
acacia charcoal price
decreases by 50%
simultaneously,
keeping other
parameters constant.
Do you think the shift
in land use from trees
to cropsis a good fit?

Suppose the price of
crops increases by
50% simultaneously,
keeping other
parameters constant.
As a result, there is
no significant change
in land use. Do you
think it is a good fit?

Suppose the price of
crops increases by
50% and price of
charcoal and bamboo
culms decrease by
50% simultaneously,
keeping other
parameters constant.
Do you think the shift
in land use from trees
to cropsis a good fit?

Suppose off farm
capacity increases
from 10% to 25% and
then to 50%. Which
one of these
capacities do you
think is a good fit?

1 Good fit Good fit Good fit Good fit None
2 Overestimated Overestimated Good fit Overestimated None
3 Overestimated Good fit Good fit Good fit None
4 Good fit Overestimated Good fit Good fit 10%
5 Good fit Good fit I don’t know Good fit 10%

6 Good fit Overestimated Good fit Good fit 25%
7 Good fit Overestimated Good fit Overestimated 10%
8 Overestimated Overestimated Good fit Good fit None
9 Good fit Overestimated Good fit Good fit None

10 Overestimated Good fit Good fit Good fit 10%
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Another challenge during model parametrization was determining the availability of off
farm work for agents in the model. Using the model it is possible to know the amount
of excess labour after optimization. But how much can they work is not known. Agents
can also work in off farm activities in the model but were only allowed to work 10% of
the excess labor they have. This is because of no data on off farm availability in the
area. As a result, experts were asked about the availability of off farm labor in the area.
This is covered by two questions in the interactive validation.

4.5.6 Conclusions from interactive validation results
• Turing test results show that the model predicts land-use decisions accurately in

4 from 5 cases

• The land-use share of bamboo in the baseline scenario is overestimated

• Equines have to be included in the model

• Higher sales revenue obtained from tree products and livestock is realistic

• Most experts agreed that 10% assumption of the off-farm labor availability as a
percentage of excess labor in the household is realistic.

• Soil fertility is an essential factor in addition to prices to drive farmers to shift
from crops to trees and vise versa

4.6 Corrections to the model after model validation
Based on the results obtained in model validation the following features are improved
in the model before the final simulation runs were done.

• Equines were added as one of the livestock production options

• Planting bamboo is only limited to farmsteads

• Acacia seedling disease is introduced as shock based on information obtained from
the interactive model validation

61



Chapter 5

Farmers’ ex-ante planning for
shocks and the role of small scale
agro forestry

Chapter objectives
• Examining the effects of shocks on agents’ income and the role of ex-ante planning

for shocks
• Examining the income effect of agents’ investment in acacia dicurrens
• Examining the effect of long-run price variability on agents’ income
• Disentangling the role of household specific endowments on income

This chapter presents results obtained from simulation experiments of the farm decision
model. The validation results shown in the previous chapter provide a basis to do
simulation experiments using the model and draw sensible conclusions about the agent
population comparable to what is happening in reality with farmers. The missing or
incorrect model features pointed out by experts in the interactive model validation are
incorporated in the model before the final simulation experiments were run.

The simulation results are presented in two subsections. The rationale and design
of each simulation experiment are explained before the results are shown. First, the
contribution of acacia to livelihoods is examined. Accordingly, the effect of investment
in acacia on income and land use is examined, followed by an analysis of the effects of
shocks on income and the role of ex-ante planning by agents in curbing the adverse
effects of shocks. Model convergence in repeated samples is presented in the first
subsection. Second, analysis of the sustainability of acacia is presented by examining
agents’ response to expected price shocks in the long run. For each subsection, the
aggregated results summarizing values at the agent population level are presented
first, followed by disaggregated results to disentangle household-specific drivers that
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determine the direction and/or intensity of effects on the outcome variable. All the
results presented are summarized over sample repetitions from the uncertainty analysis.

5.1 Contribution of acacia on agents’ livelihood
Rationale
Expansion of acacia-based small-scale agroforestry in the past decade has brought both
economic and ecological benefits for smallholders in the study area (Nigussie et al. 2017
; Berihun et al. 2019). This study focuses only on the economic aspect of investment
in acacia and aims at quantifying the economic (financial) benefits from investment
in acacia for smallholder farmers. Researches so far have used tools such as NPV
to quantify the financial benefit of investing in acacia by farmers in the study area
(Nigussie et al. 2020). However, in this study, a farm-level decision model that captures
the study area’s complex farming system is developed. As discussed in the methodology
section, the model allows interactions between sectors - crop production, livestock
production, and forestry, a more holistic approach than a financial analysis such as
NPV. Besides, the model integrates farmers’ objectives of fulfilling their minimum food
(protein and energy) and essential non-food consumption while quantifying acacia’s
economic benefits as part of the optimization problem. Furthermore, smallholders in
the study area have a heterogeneous distribution of endowments such as land and
labor, as shown in Figure 4.1 and Figure 4.2. Since investment in acacia is a land-based
investment, the returns depend on the farmers’ endowments, especially farm size. As a
result, disentangling the effects of an investment in acacia based on endowments gives
a better understanding of the effect under farmers’ heterogeneity.

The effect of investment in acacia also depends on shocks and agents’ ex-ante planning.
The research simulates the effect of investment on acacia on aggregated land-use shares
and income for the coming ten years depending on whether agents do ex-ante planning
and/or there is a covariate shock in the area. One of the advantages of using agent-based
modeling in this study is that it enables us to capture ex-ante risk consideration by
agents (Berger and Troost 2014). With their risk expectations, agents operate safely
in the model if they adopt precautionary ex-ante planning in their farm operations.
Farming in a safe mode gives agents the ability to smooth farm operations for any
possible occurrence of a future shock in their planning horizon. At its weakest point,
operating in safe mode might force agents to opt for decisions leading to lower objective
value compared to the situation where they expect the future to have no risks or if they
chose to do nothing about it. This forces them to allocate their scarce resources in less
favored options. By comparing with the counterfactual scenario where agents are not
planning for future shocks’, the opportunity cost of ex-ante planning for shocks can be
quantified.

The effectiveness of ex-ante planning of agents is tested by introducing shocks in the
model’s actual simulation years. Pests and crop diseases frequently occur in the study
area. According to the 2018 survey, 53% of the sample farmers reported that pests and
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crop disease have the most severe consequences to their livelihood than other covariate
shocks. Since potatoes and acacia have higher aggregated land-use share in the study
area, potato late blight and acacia seedling disease are considered to assess effects on
aggregated land-use shares and total discretionary income. Studies show that late blight
reduces potato yield by a substantial amount. Hirut et al. (2017) in their study showed
that late blight in the study area causes a yield loss of 50.2% on average, ranging from
16% to 88%. Moreover, acacia seedling disease poses a significant threat to acacia
decurrens production in the study area. From the interactive model validation with
experts, it has been understood that in 2020 acacia seedling disease has been widely
witnessed in the area, which forces farmers to plow over the dried seedlings to prepare
the land for the next production period.

These facts raise a scientific curiosity to measure the effects of these crop diseases
on agents’ livelihood and the effectiveness of ex-ante planning thereof. As a result,
late blight is introduced as a common potato disease in the study area in the second
simulation period (2019). The results are compared with counterfactual scenarios to see
the effect on outcome variables. Moreover, acacia decurrens disease is introduced in the
second year and compared the results in the same fashion as of late blight. Furthermore,
to see the effectiveness of ex-ante planning by agents in the worst cases, potato late
blight and acacia disease are introduced in the fourth year - 2021.

Therefore, this simulation experiment’s purposes are (first) to examine the effect of
investment in acacia on land use shares and income and (second) to see the effect of
ex-ante planning in the presence of covariate shocks on land-use share and income in
the study area.

Simulation experiment design
To understand the effect of investment in acacia and the role of ex-ante planning on
farmers’ livelihood in the study area, scenarios are defined based on agents’ willingness
to plan for shocks on ex-ante facto basis, whether an investment in acacia is allowed or
not and the occurrence of shock (late blight in the second year, acacia seedling disease
in the second year and late blight and acacia seedling disease in the fourth year).

Accordingly, the effect of ex-ante planning for all disease and no-disease scenarios. A
total of eight comparisons were done. For no disease scenarios, the results from NPA
with NRA were compared. Besides, the results of BPA with BRA were compared and
for the other two shocks in a similar fashion. Scenario definition of the effect of ex-ante
planning on agents’ livelihoods is presented in Table 5.1. land-use in hectares, land-use
share and cash income are used as an outcome variable to compare the effect.
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Table 5.1: Scenario definitions: Effects of ex-ante planning for shocks and investment
on AD.

Simulation experiment 1: scenario definition

Crop/tree disease
scenarios

Ex-ante planning (P) No ex-ante planning (R ) Acacia adoption
scenarios

Normal year (N) NPA NRA Allow investment in
Acacia (A)

Normal year (N) NPO NRO No investment in
Acacia (O)

Shock year: second year
is late blight year (B)

BPA BRA Allow investment in
Acacia (A)

Shock year: second year
is acacia disease year (S)

SPA SRA Allow investment in
Acacia (A)

Shock year: fourth year is
late blight and acacia
disease year (C )

CPA CRA Allow investment in
Acacia (A)

Outcome variables
The model outcome variables used in this simulation experiment are income and land
use. Discretionary income is the working definition of income throughout the thesis.
Discretionary income is defined as agent’s income after food and essential non-food
expenditures are covered. Discretionary income is the appropriate measure for agent’s
income specially when substantial portion of income goes to food and basic non-food
items. The other outcome variable is land-use. Land use shares are used instead of
absolute values to capture the difference irrespective of the heterogeneity in farm size.
The same outcome variables are also used for the second simulation experiment.

Uncertainty analysis
Some variables and parameters, including yields and prices, used as an input in the
model are determined exogenously. Results from simulation experiments, in general, are
affected due to uncertainty associated with these exogenous variables and parameters.
As a result, uncertainty analysis was carried out using the exogenous variables in the
model following the approach by Christian Troost and Berger (2014) to corroborate
robustness the simulation experiments’ results. The study applied Sobol’s quasi-random
sequence method to select the samples from the full factorial space Tarantola, Becker,
and Zeitz (2012).
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Table 5.2: Description of uncertainty variables and model parameters

Values are in standardized percentage change

Variable Description Distribution
of sample

Min.
value

Max. value

Potatoes yield variation factor Uniform 0.50 1.50
Wheat yield variation factor Uniform 0.50 1.50
Barley yield variation factor Uniform 0.50 1.50
Teff yield variation factor Uniform 0.50 1.50
Acacia charcoal price variation factor Uniform 0.50 1.50

Bamboo culm price variation factor Uniform 0.50 1.50
Potatoes price variation factor Uniform 0.50 1.50
Teff price variation factor Uniform 0.50 1.50
Wheat price variation factor Uniform 0.50 1.50
Barley price variation factor Uniform 0.50 1.50

UREA price variation factor Uniform 0.50 1.50
DAP price variation factor Uniform 0.50 1.50
Milk yield variation factor Uniform 0.50 1.50
Meat yield variation factor Uniform 0.50 1.50
Inflation rate variation factor Uniform 1.00 1.30

Discount rate variation factor Uniform 0.02 0.09

Accordingly, a total of 16 uncertainty variables and parameters were selected that fall
under the category of crop and tree product yields, livestock output, output prices,
input prices and financial parameters (interest rates, inflation rates and discount rate).
Table 5.2 presents description of uncertainty variables and model parameters used in
the uncertainty analysis.

Simulations were run for 40 repetitions1 and all the results on outcome variables for
this simulation experiment is summarized for the 72 agents in the model over these
sample repetitions. Following the methods used in Figure 5.1 shows the convergence
of discretionary income of agents over sample points in the sobol sequence. Annual
discretionary income is presented at its mean value, 95th percentile and 5th percentile
to show how much it diverges across the sample. The result shows a annual discretionary
income converges quickly and have a relative steady state value in repeated samples -
which shows the robustness of the results.

1Selection of number of repetitions is based on the minimum number of sample size required to
make statistical inferences afterwards, i.e, 𝑛 = 30
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Figure 5.1: Convergence of average annual discretionary income over the Sobol sequence

5.1.1 Effect of investment in acacia on land-use
Land use shares2 are used instead of actual land-use values to show the effect of
investment in acacia on land-use decisions. This helps us to see the effect irrespective of
differences in farm size across agents. The results on the effect of farm size on land use
shares is shown separately afterwards. Accordingly, Figure 5.2 displays land-use shares
of crops and trees grown by agents in the model with and without investment in acacia.
Simulations were run for ten years starting from 2018. The values are aggregated over
sample repetitions for all agents in each simulation period. In the baseline scenario
where there is investment in acacia, acacia has an aggregated land-use share of 41%,
followed by potatoes (32.8%), wheat (22.9%) and pasture (8%) in each simulation period
on average. On the other hand, in the scenario where the is no investment in acacia,
agents opt to produce crops where potatoes (40.4%) and wheat (39%) take the lion’s
share. Agents also grow pasture (10.9%) and teff (8.9%) in a relatively smaller land
share.

2Land-use share is calculated at agent level by dividing total area of a crop or tree by total farm
size of the agent in each period
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Figure 5.2: Land-use share in the baseline scenario

Land use shares with investment in acacia are subtracted from those without acacia
to examine the effects of investment in acacia on land use shares for each agent in
each repetition and in each simulation period. The results show that the share of
wheat decreases by 16% as acacia takes over 42.5% of the aggregated land-use share
on average. Likewise, the percentage of teff, potatoes and pasture reduce by 8.3%,
7.6% and 2.8%, respectively on average. Figure 5.3 shows the difference in aggregated
land-use shares attributed to investment in acacia.
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Figure 5.3: Effect of invesstment in acacia on aggregated land-use

The difference in actual land-use in hectares between the two scenarios is calculated
and plotted against farm size to see if there is systematic relationship. With investment
in acacia, area covered in acacia and pasture have a positive relationship with farm size
whereas potatoes and wheat decrease as farm size increases. The results on acacia
is straight forward as there is no investment in acacia in the counterfactual scenario.
However, the results on crops show that agents agents allocate lower and lower land
to crops as their farm size increases. Figure 5.4 shows scatter plot of farm size and
difference in land use in ha and a fitted line.
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Figure 5.4: Scatter plot of actual land-use diference by farm size

5.1.2 Effect of investment on discretionary income
Simulation results show that agents get higher discretionary income with investment in
acacia on average. The average annual discretionary income of agents in the baseline
is 58,738 ETB, whereas the average per capita discretionary income is 11,631 ETB per
year. Figure 5.5 shows distribution of total and per capita annual discretionary income
of agents for 10 simulation periods. Agents get 7.8% higher annual discretionary income
with investment in acacia. The increment is a bit higher at the per capita level (8.1%).
Figure 5.6 and Figure 5.7 show average annual discretionary income and average annual
per capita discretionary income respectively both with and without investment in acacia.
Both figures depict that discretionary income with acacia is oscillatory across simulation
periods while it is smooth without acacia. This is due to the cycles of acacia and the
fact that it is harvested every four years from planting. The figure also shows higher
discretionary income in the third simulation period. This is attributed to the initial
standing trees agents had at the beginning of the planning period, most of which is
harvested at the end of the second simulation period.
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Figure 5.5: Average annual discretionary income
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Figure 5.6: Average annual discretionary income

71



Annual per capita discretionary income

With acacia

Annual per capita discretionary income

Without acacia

1 3 5 7 9 1 3 5 7 9

0

10

20

Simulation Periods

D
is

cr
et

io
na

ry
 in

co
m

e 
(1

00
0 

E
T

B
)

Figure 5.7: Average annual per capita discretionary income

Simulation result also shows that agents fulfill their minimum non-food expenditure
better with acacia than without acacia. In both scenarios, the average non-food
expenditure deficit is close to zero except for few agents in the first few simulation
periods who could not get enough inputs such as labor to produce to their total capacity.
However, the rest of the agents were able to fulfill their minimum cash requirements
for their essential non-food expenditure in all simulation periods. Figure 5.8 shows the
average annual non-food expenditure deficit. The figure shows non-food expenditure
deficit disappears quickly over the simulation periods if agents are investing in acacia.
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Figure 5.8: Average annual non-food expenditure deficit

The average annual non-food expenditure deficit is plotted in Figure 5.9 against farm
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size and a fitted value to understand if there is a systematic relationship between
agents’ non-food expenditure deficit and their farm size. The result shows agents who
have smaller farm sizes are the ones with the deficit, which is plausible. The result is
consistent both with and without investment in acacia.
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Figure 5.9: Average annual non-food expenditure deficit by farm size

5.1.3 Effect of shocks on land-use
Figure 5.10 shows aggregated land-use shares of agents for all shock and non-shock
scenarios with and without ex-ante planning. Acacia decurrens, potatoes and wheat
have high aggregated land-use shares throughout the scenarios. As shown before
the baseline scenario where there is no shock, acacia has an aggregated land-use
share of 41%, followed by potatoes (32.8%) and wheat (22.9%) on average. Similar
patterns are observed in the late blight scenario with ex-ante planning for shocks.
The aggregated land-use share of acacia is reduced to 38.7% in the acacia seedling
disease scenario, whereas shares of potatoes and wheat increase to 34.8% and 24.2%
on average, respectively. In the worst-case scenario where agents face both late blight
for potatoes and acacia seedling disease land use share of acacia has 39.8% land use
share on average followed by potatoes (34.4%), wheat (23.6%) and pasture(7.5%)
respectively.
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Figure 5.10: Land-use share in shock and no shock scenarios

The percentage change in aggregated land-use share of trees and crops of the ex-ante
planning scenarios with no-ex-ante planning scenarios is compared to see the effect of
ex-ante planning. The comparison is done for all shock and no-shock scenarios and the
results are shown in Figure 5.11 to Figure 5.14.
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Figure 5.11: No shocks
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Figure 5.12: Potatoe late blight
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Figure 5.13: Acacia seedling disease
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Figure 5.14: Potatoes late blight and acacia seedling disease

Figures show that the magnitude of the ex-ante planning effect on aggregated land-use is
small. It is perhaps related to the limited number of cropping options and technologies
available for agents. Or, it is related to the fact that agents are resource constrained
which hinders them to focus on few cropping options. Acacia land-use share increases
by 1% to 2% on average if agents have ex-ante plans for future shocks. Potatoes land
share decreases by 1% to 1.5% on average except during late blight, where there is no
ex-ante planning effect. Likewise, wheat land-use share decreases from 0.5% to 1% on
average throughout shocks. Though the magnitude of the ex-ante planning effect on
land-use shares is small, the direction of the effect tells agents’ preferences in choosing
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adaptation measures to deal with shocks. The trade-off between trees and crops by
agents show that they prefer to plant trees than crops as part of their ex-ante plan for
shocks.

5.1.4 Effect of shocks on discretionary income
Figure 5.15 and Figure 5.16 show average annual discretionary income and average
per capita discretionary income of agents in all scenarios. On average, the yearly
discretionary income ranges from a minimum of 56.5 thousand ETB in potato disease
scenario to maximum 59 thousand ETB in scenario without shocks. If we look closely
at the simulation periods where the shocks occur, we observe the difference in average
annual discretionary income attributed to shocks. Figure 5.17 and Figure 5.18 show the
effects of shocks on per capita discretionary income with and without ex-ante planning.
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Figure 5.15: Average annual discretionary income
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Figure 5.16: Average annual discretionary income

The effect of shocks on annual per capita discretionary income when agents’ are planning
for future shocks is presented in Figure 5.17. In 2019, potato late blight reduced
agents’ annual discretionary income by 58.7% compared to the baseline - reducing
the average per capita discretionary income to 2.7 thousand ETB in the same period.
In addition, occurrence of acacia seedling disease in the fourth period only reduces
average per capita discretionary income by 2.7%. As the yield from investment in
acacia is realized after the fourth year from the shock year, except for the loss in input
costs for acacia in the first year, a direct effect on per capita discretionary income is
expected in the coming simulation periods than the shock year. In connection with this,
the average discretionary income decreases by 31% after four years in 2023 - which is
highly likely associated to the acacia shock in fourth period. Furthermore, in the fourth
year (2021), when potato late blight and acacia seedling disease coincide, annual per
capita discretionary income decreases by 27% in the shock year compared to the baseline
scenario. And, an additional overdue decrease of another 27% in 2025 because of late
effects of acacia seedling disease. Similar values have been obtained from the scenarios
without ex-ante planing.
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Figure 5.17: Effects of shocks on discretionary income - With Ex-ante planing
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Figure 5.18: Effects of shocks on discretionary income - Without Ex-ante planing

The percapita non-food expenditure deficit is zero for most of the agents, if not a very
low amount. Agents who have deficit are the ones who have lower initial endowments.
Agents reserve 453 ETB per capita on average in scenarios where there is ex-ante
planning.
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Figure 5.19: Annual percapita non-food expenditure deficit
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Figure 5.20: Annual per capita cash reserve
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5.2 Sustainability of acacia: how responsive are
agents to long-run expected price shocks?

Rationale
The second simulation experiment aims at examining the effect of long-run expected
price changes mainly on land-use decisions of agents in the model. The purpose of
this simulation experiment is to see if there is a deviance from croplands to woodlots
and vise versa based on long-run changes in expected prices. The motive comes from
the developments related to the expansion of acacia decurrens in the area. Attracted
by economic and ecological factors, farmers in the study area have been converting
their cropland into acacia woodlots for more than a decade now (Berihun et al. 2019
; Nigussie et al. 2017). This opportunity has improved the livelihoods of farmers
significantly (Nigussie et al. 2020) which is in line with the results obtained in the first
simulation experiment. Recently, however, the acacia production in the area has faced
a double threat. The first threat is the reduction of farm gate charcoal prices attributed
to charcoal mass-production coupled with high transaction cost from the farm to the
market and increased involvement of mediators in the supply chain with high price
making power. These concerns has been raised both by farmers in FGDs in 2018 and
also in the interactive model validation by experts. The second threat is acacia seedling
disease. According to experts, in 2020, farmers reported a widespread acacia seedling
disease, which forces them to plow over dried seedlings for the next production season.

Parallelly, the soil fertility has been improving because of multiple cycles of acacia
woodlots planted in the area. Eventually, this has reduced the acidity of the soil and
increased crop productivity (Dubiez et al. 2019). Moreover, as part of the country’s
whole macroeconomic developments, prices of crops have been growing by over 20%
annually on average for the last years (CSA 2021). These complementary developments
raised a scientific curiosity on how agents’ decisions would change in the future. As a
result, scenarios with different sets of long-run expected price variability for crops and
tree products in the future were established to see the effect.

Simulation experiment design
Scenarios are defined as combinations of a percentage point changes of expected prices
of tree products and crops. Acacia charcoal and bamboo culm prices are used to capture
long-run price changes in main tree products. Whereas the prices of main crops in the
area - potatoes, teff and wheat - are used to change the growth in cereals’ prices in
the area. The percentage changes in prices were set to a substantial amount (50%)
to capture long-run price changes. A 50% increase or decrease in the price of a given
product could happen at a particular year but could not be the case all the time. But
this can be considered valid in repeated samples in the future. So, the notion of higher
price change represents a substantial change in the future prices in the planning horizon.

In the baseline scenario, everything remains unchanged. To see the effect of price
changes in tree products on land-use, the baseline scenarios is compared with 50%
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Table 5.3: Effects of long-run price changes on agent’s decisions

Simulation experiment 2: scenario definition

Percentage point change in expected prices of:

Scenario description Acacia Bamboo Potatoes Wheat Teff

Base line 0 0 0 0 0
Decrease in expected price of charcoal -50 0 0 0 0
Decrease in expected price of acacia
charcoal and bamboo culm

-50 -50 0 0 0

Increase in the expected price of crops 0 0 50 50 50
Decrease in expected price of acacia
charcoal and bamboo culm and
increase in the expected price of crops

-50 -50 50 50 50

decrease in the price of bamboo culm and 50% decrease in acacia charcoal price. Next,
the effect of a simultaneous reduction of tree products’ prices by 50% is shown by
comparing with the baseline scenario followed by a simultaneous increase in cereals’
prices by 50%. Finally, the effect of a concurrent rise in cereal prices and a decrease in
tree products’ prices by 50% is shown by comparing it with the baseline.

5.2.1 Effect of long-run price variability on aggregated
land-use shares

Figure 5.21 shows aggregated land-use shares of agents in the model for the baseline and
all price scenarios. Relatively different aggregated land-use shares of crops and trees
under future price variability compared to the baseline are observed. To understand the
effect of price variability, the percentage change of aggregated land-use share of each
price scenario from the baseline is presented - growth from the baseline. A closer look
at agents’ decisions to see how they switch between crops or between crops and trees
is shown in the subsequent figures.
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Figure 5.21: Agreggated land-use shares under long-run price variability

First, acacia charcoal price was decreases by 50%, keeping other parameters constant at
the baseline value. Figure 5.22 shows the difference in aggregated land-use share of each
crop. Agents are highly responsive to the decrease in the price of charcoal by 50%. As a
result, land-use share of acacia decreases by 26.5% on average. Whereas the aggregated
land-use share of potatoes and wheat increases by 13.5% and 14.3%, respectively. The
aggregated land-use shares of bamboo, teff and barley is still meager in this scenario
and there is no change from the baseline. With the 50% decrease in expected charcoal
price, agents would shift their acacia woodlots into croplands dominated by potatoes
and wheat. Figure 5.23 shows the substitution of land-use from trees to crops.
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Figure 5.22: Effect of 50 percent decrease in charcoal price on land-use shares of trees
and crops
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Figure 5.23: Substitution of land-use from woodlots to croplands

Second, the expected prices of tree products’ were decreased (acacia charcoal and
bamboo culms) by 50% simultaneously to see the effect on aggregated land-use shares
in the future. The combined effect of price decrease in bamboo and acacia has a
similar effect as the 50% increase in charcoal prices alone. Aggregated land-use share
of acacia decreases by 26.6% whereas potatoes and wheat share increases by 13.4% and
14.3% respectively. Provided that farmers can grow bamboo only in the farmstead, it is
plausible to see if there is no significant change in aggregated land-use share irrespective
of the price stimulus from bamboo. Results on these experiments are shown in Figure
5.24.
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Figure 5.24: Effect of 50 percent decrease in charcoal price and bamboo culm on land-use
shares of trees and crops

Third, all expected prices of crops were increased by 50%, keeping other parameters
at the baseline value. Agents shift from forestry dominated to crop-dominated
production system as a result - similar to the results obtained in the 50% decrease
in charcoal’s expected price. Figure 5.25 shows the results on aggregated land-use
shares. Accordingly, the aggregated land-use share of acacia decreases by 23%, whereas
it increases by 8.5% and 12.4% for potatoes and wheat, respectively. Finally, the
expected price of crops was increased by 50% and decreased the expected price of tree
products by 50% to see the agents’ land-use decisions. The results are shown in Figure
5.26. The aggregated land-use of acacia decreases by 28.3%, while that of potatoes
and wheat increased by 14.5% and 15%, respectively.
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Figure 5.25: Effect of 50 percent increase in crop prices on land-use shares of trees and
crops
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Figure 5.26: Effect of 50 percent decrease in prices of tree products and 50 percent
increase in crop prices on land-use shares of trees and crops

5.2.2 Effects of long-run price variability on discretionary
income

Figure 5.27 and Figure 5.28 show average annual discretionary income and average
per capita discretionary income of agents in all scenarios respectively. On average,
the yearly discretionary income ranges from a minimum of 42.7 thousand ETB in 50%
decrease in the price of charcoal to maximum 58 thousand ETB in 50% increase in
the price of crops. The average annual discretionary income of agents in the baseline
scenario is 52.2 thousand ETB. Attributed to cost related to acacia investment, the
average discretionary income in the first couple of simulation years is lower. Once
agents start to harvest acacia, they start getting relatively smoother discretionary
income for the subsequent years, which is the same for all price scenarios. Figure 5.27
shows the distribution of annual discretionary income. Since an increase in bamboo’s
expected price has no effect, it has an almost equal amount of discretionary income as
the baseline. Previous results show that these scenarios are acacia dominated scenarios.
The oscillations in discretionary income in the two scenarios are related to acacia harvest
cycles. In the rest of the scenarios, agents resort to annual crops than trees and have
smoother discretionary income throughout the simulation periods.
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Figure 5.27: Average annual discretionary income
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Figure 5.28: Average annual percapita discretionary income
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The income effect of changes in expected price is higher for crops than tree products.
Figure 5.29 shows that agents earn around 15 thousand ETB more because of a 50%
increase in the expected price of crops than a 50% decrease in expected charcoal prices.
In other words, agents prefer an increase in the expected crop prices than decrease in
charcoal prices to convert their woodlots to croplands. The effect of price shocks on
annual per capita discretionary income is presented in Figure 5.29. A 50% decrease in
the expected price of charcoal and 50% decrease in the prices of charcoal and bamboo
culm simultaneously reduces agents’ annual per capita discretionary income by a little
bit more than 1% on average per period. On the contrary, both a 50% increase in the
expected price of crops all together and and a 50% increase in the price of crops and a
50% decrease in the price of tree products occurred at the same period brings agents
27% more income per period.
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Figure 5.29: Effects of price shocks on discretionary income

Lastly, one of the objectives of the model is to fulfill minimum essential non-food
consumption expenditure by agents. The per capita non-food expenditure deficit by
agents is calculated using the minimum requirement. The result shows that the average
per capita non-food expenditure deficit among agents is almost zero. There are only few
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agents who were not able to fulfill their cash consumption. And, this only happens in the
first simulation period. The main reasons for the cash deficit for the agents is attributed
to low initial endowments such as cash and labor. Furthermore, agents reserve more
cash for shocks in the price scenarios than the baseline scenario on average. Agents
reserve higher amount of money (2,068 ETB) in the worst case scenario and relatively
lower value in the baseline scenario.
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Figure 5.30: Annual non-food expenditure deficit
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Figure 5.31: Average annual percapita cash reserve
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Chapter 6

Discussion

Chapter objectives
• Discussing the main findings of the study

– Discussing results from econometric analysis
– Discussing results from simulation experiments

6.1 Farmers’ choice of ex-ante and ex-post
measures

What are the drivers of choice?

In the first part of this thesis drivers of farmers’ ex-ante and ex-post strategy choices
for climate variability-induced shocks is disentangled by blending LPCA and MVP
regression. The LPCA results indicate that crop management activities such as planting
stress resistant crops and varieties, early planting, increasing seed rate and soil and
water conservation practices are the dominant ex-ante measures for climate-induced
shocks. Whereas, selling livestock, selling assets, reducing consumption, borrowing and
replanting are the dominant ex-post measures.

The MVP regression result reveals human capital of the household, mainly gender and
education of the household head, significantly determine farmers’ choice of ex-ante
and ex-post risk management and coping measures for drought and pests. Soil and
water conservation activities are highly labour-intensive and are usually done by male
laborers. Similarly, (Bedeke et al. 2019) and (Wossen et al. 2018) found that male
headed households are more likely to adopt ex-ante measures such as drought resistant
varieties, chemical fertilizer application and soil and water conservation activities.
Gender is also a significant factor determining farmers choice of ex-post drought
coping measures. However, the effect of gender on choice of measures is different for
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different values of TLU. Female headed smallholders have relatively lower asset base
than their male counterparts. This is in line with the results obtained in (Wossen et
al. 2018). Such resource limitation has adverse effects on the livelihoods of female
headed farm households. One of such adverse effects is lower confidence (attributed to
no or inadequate collateral) in the eyes of creditors – both personal and institutional
creditors.

The role of rural institutions and social networks to risk management and coping
strategy efforts of farmers has been well established (Wuepper et al. 2018). Results
show that members of iddir plant drought tolerant varieties and plant early more often
than non-members do. This is perhaps due to information sharing among members
of iddir. Iddir is very important rural institution which provide farmers with access
to information and support. Same results were found from Ethiopia and Tanzania in
(Dercon et al. 2006). Iddir has also a significant effect in the farmers choice of ex-post
measures. Members of iddir have relatively better access to borrow money, food or
other items than non-members and are less likely to sell livestock to cope drought.

In a rural society where farmers have low resource endowments and agriculture is highly
climate sensitive, strong social networks are a safety net to circumvent the adverse
effects of shocks both before and after their occurrence (Wuepper, Yesigat Ayenew,
and Sauer 2018; Caeyers and Dercon 2012). This findings of this research reveled that
having friends or relatives in leadership position help farmers prepare for the possible
occurrence of drought ahead through shared knowledge or inputs. In connection with
this (Caeyers and Dercon 2012) found that farmers who have close associates in official
position have a 12% more chance of getting free food.

Farmers’ resilience to shocks is highly correlated with their resource endowments (Asrat
and Simane 2018). Similarly, it has been found that livestock ownership is associated
with increasing seed rate and engage in off-farm activities as an ex-ante hailstorm
strategy. Whereas, larger farm size is associated with planting drought tolerant crops,
replanting and consumption smoothing. Besides farmers non-food expenditure is a
significant driver for farmers choice of measures to deal with climate variability induced
shocks.

Findings show that farmers who took training and counselling on adaptation to
climate variability are more resilient to climate variability induced shocks This is quite
unequivocal as farmers who have better knowledge on how to deal with shocks before
and after the occurrence are expected to perform well than others. Farmers knowledge
and access to extension services are very important in determining farmers choice of
adaptation measures, similar results in this regard has been found by (Asfaw et al.
2018).

Farmers shock experience and expectation has a crucial role in the choice of ex-ante
adaptation measures for climate variability induced shocks. Besides the experience
and knowledge farmers acquire from past shocks provides them with feedback to their
coping measures choices in the aftershock.

The MVP model result reveals that farmers in drought, hailstorm and pest and crop
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disease frequent areas are more likely to plant stress tolerant varieties and engage in soil
and water conservation activities as ex-ante adaptation measures to prevent or minimize
the adverse effects of shocks. Moreover, the correlation coefficient matrix reveals these
measures as complementary measures with a very strong correlation coefficient of their
respective error term. The complementarity of adoption of these measures enables
farmers to curb short run shock surprises via planting stress tolerant crops and long
run resilience through preserving water and soil fertility via soil and water conservation
activities. Furthermore, farmers who have future shock expectation are more likely
to choose farm management practices such as planting stress tolerant crops; planting
stress tolerant varieties and engaging in soil and water conservation activities.

Frequency of climate variability induced shocks has also a significant effect in farmers
choice of ex-post measures. Findings of the research show that farmers in shock prone
areas choose to sale livestock to cope to climate variability induced shocks. Livestock is
an important agricultural asset to smallholders in Ethiopia which provide farmers with
different means of livelihood. More importantly, livestock are capital assets of farmers
which provide inputs to agricultural production such as draft power and transportation.
It is sensible that subsequent climate variability induced shocks deplete farmers livestock
through death attributed to water stress; killing them for their meat or by selling them
for cash to buy food. In other words, farmers from less drought frequent areas are less
likely to sell livestock to cope with the pressure in the aftermath of drought. Findings
of this research show that farmers living in shock frequent areas are less likely to reduce
their consumption. However, farmers in these areas with higher expectations in the
frequency of shock occurrence in the future tend to reduce their consumption and sell
other assets instead of livestock. This suggests farmers with frequent shock experience
and high expectations of future shocks tend to reserve their productive assets to save
their future and try to live by other less destructive means to escape the short run effect
of climate variability induced shocks on their livelihood. Furthermore, both LPCA and
MVP post estimation results consistently indicate that there is high complementarity
and few substitutability of measures chosen by farmers. Complementarity is strong
in both ex-ante and ex-post measures while competitiveness is strongly prevalent in
ex-post measures. This shows that robustness of interventions should involve multiple
measures and there is no single best strategy that fits all farmers.

LPCA also shows the correlation between farmer ex-ante and ex-post strategy choices
over the past ten years. Findings of this research show that farmers invest more on
ex-post measures than ex-ante measures. This is perhaps attributed to the low resource
settings smallholders have. Being resource constrained puts farmers in a position to
choose the more cost-effective method to deal with climate variability induced shocks.
They could invest either in ex-ante, ex-post or both and the measures chosen in any of
the above cases, however, must be affordable to the farmer. With poor resource setting
of smallholder farmers, they may not be able to choose the most effective strategy and
thus will be forced to settle for compromises to optimize under the new set of options
they have.
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6.2 Ex-ante planning for shocks and the role of
small-scale agroforestry

In the second part of the thesis a farm decision model representing smallholder farmers
in the Ethiopia’s Upper Nile Basin is developed to simulate how they would change
their farm level decisions with shocks and price variability in the future and to measure
the effect on their income thereof. Results show that agents in the model would change
their land-use decisions based on the type of shock they are facing - both before the
shock as part of their ex-ante planning, and after the shock as their ex-post coping
measures.

What is the effect of investment on acacia on agents’ land-use decisions
and their discretionary income?

Scenarios with and without investment in acacia are compared first to show the
contribution of investment in acacia to income and land-use shares. It has been found
from simulation results that acacia takes more than 40% of land-use share in the
area per year on average. This has reduced the share of annual crops simultaneously.
Moreover, it has been found that land-use share of acacia increases with farm size.
This is plausible as agents’ with smaller farm sizes has to allocate some part of
their land to produce food crops to fulfill their minimum consumption requirements.
Results also show that with investment in acacia agents would get 8% higher percapita
discretionary income each year on average. As a result, agents are able to fulfill the
food and non-food expenditures better with acacia than without acacia, except in the
first couple of simulation periods for few agents who have smaller farm sizes.

In their research (Nigussie et al. 2020) showed that acacia-based taungya system has
relatively higher profitability in the study area than other cropping alternatives. Similar
results were found by (Ajayi et al. 2009) in Zambia where agroforestry practices are
more profitable specially if the alternative options are growing unfertilized crops - which
is similar to the case in the study area of this research attributed to acidity of the soil
(Berihun et al. 2019). Nigussie et al. (2020) also showed that farmers with larger farm
size prefer investment in woodlots than those who have smaller farm sizes attributed to
lower liquidity of standing trees. These results are in line with the simulation experiment
results found in this study.

The amount of agents’ annual discretionary income depends on off-farm income in
addition to farm income. Off-farm income, on the other hand, depends on the amount
of excess labor available for the agent after all farm activities are covered, and also
on off-farm work availability in the area. In this connection, one of the advantages of
acacia is its low labor requirement specially in the second, third and fourth years of
the standing tree. This provides agents with extra excess labor capacity compared to
the case where there is no investment on acacia. This excess capacity is the source of
off-farm work for agents and thus a source of extra income. Moreover, as discussed in
chapter four, acacia also brings employment opportunities for farmers in the study area
throughout the year starting from seedling preparation to charcoal making.
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One of the challenges during model implementation was data gap on the availability of
off-farm work in the area. The assumption of off-farm labor availability as a percentage
of excess labor of an agent in the model determines the amount of off-farm income
they get. If the appropriate value is not considered, the assumed value of off-farm labor
availability will underestimate or overestimate the amount of discretionary income agent
would get, which in turn underestimates or overestimates the effect of investment in
acacia on discretionary income. Higher value, for example, would give agents easy
money. This has been shown in the uncertainty analysis during model validation in
chapter four. During the interactive model validation sessions, experts were provided
with options and asked to choose how much they would think is a relatively appropriate
value in terms of percentage. Besides, they were asked to suggest their own figures.
Based on the results almost all of the experts opted for a value somewhere around
10% of excess labor which is implemented in the model accordingly. To this effect the
value of discretionary income obtained from simulation results can be considered as
adequate. However, results could be sharpened more with detailed data on off-farm
work availability in the area.

What is the effect of shocks on agents’ land-use decisions and their
discretionary income? and what is the role of ex-ante planning?

The effect of shocks on land-use decisions is observed in an ex-post facto basis. To
have a direct effect on land-use the shock has to either force agents to change land-use
decisions in the same period or make them adjust their decisions in future periods based
on assumed expectation formation. The frequent and intense crop and tree diseases in
the area - potato late blight and acacia seedling disease are introduced as shocks in the
model to see the effect on agents’ livelihoods. Since it is assumed in the model that
agents have constant expectations, late blight doesn’t affect land-use shares like acacia
seedling disease. Simulation results also show that land-use share of acacia decreases
against crops in scenarios where acacia seedling disease occurs or in the scenario where
both potato late blight and acacia seedling disease occur in the same period.

Unlike in the case of shocks, agents’ ex-ante decision to plan for shocks may directly
affect land-use shares of trees and crops irrespective of assumption on expectation
formation. Changes in land-use shares in such cases is perhaps attributed to agents’
initial endowments and their respective affordable adaptation strategies for future
shocks. This, for example, might involve growing more of one crop than the other
or more trees than crops, or vise versa. Simulation results show that the effect of
ex-ante planning on land-use shares is very small. This is perhaps related to small farm
size agents have on average which limits their option to apply diversified cropping plans.
The flexibility is even very low when agents are expected to fulfill their minimum food
consumption from own production. Even though the magnitude of ex-ante planning
effect on land-use shares is small, agents prefer to plant trees than crops as part of their
ex-ante planning for shocks. This is in line with the results obtained in the econometric
analysis.

Both ex-ante plannings for shocks and shocks’ occurrence indirectly affect discretionary
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income through crops/trees grown and the respective changes in yields. The percentage
change in percapita discretionary income from the baseline is compared for all shock
types and with and without ex-ante planning. Simulation results show that potato late
blight induced yield loss reduces discretionary income of agents by almost 60% in the
year they occur whereas acacia seedling disease reduces it by 30%. Potato late blight
and acacia seedling disease occurring in the same year reduce discretionary income by
more than 50%.

How responsive are agents’ to long run expected price shocks?

The second simulation experiment examines sustainability of acacia in the presence of
long run expected price shocks. Four scenarios are designed to capture price shocks
in the future and the results are compared with the baseline to examine the effect on
agents’ discretionary income and land use decisions.

Simulation results show that agents are highly responsive to changes in expected prices
in the long run except for the expected price of bamboo. Figure 6.1 summarizes the
effect of changes in expected prices of crops and tree products on aggregated land-use.
In cases where there is a decrease in the expected price of charcoal or an increase in the
expected price of crops or both, results show that agents will go back to potatoes and
wheat-dominated production system instead of acacia-dominated production system
as in the baseline. The symmetric shape of the area plot in Figure 6.1 shows the
substitutability between crops and trees.
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Figure 6.1: Percentage point difference of land-use share for all price scenarios from the
baseline

Similar results have been found by (Nigussie et al. 2020) on the effect of extreme price
variability on land use decisions of farmers in the study area. Their findings show
that extreme price fluctuations in the future could reduce profitability of investment in
acacia and forces farmers to shift back to annual crops instead of woodlots.

Price shocks have a direct effect on discretionary income of agents. Simulation results
shows that income effect of changes in expected price is higher for crops than tree
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products. A 50% increase in the expected price of crops increases average annual
discretionary income of agents by more than 25%. Similar figures were found in the
scenario where expected prices of crops increase by 50% and expected price of tree
products decrease by 50% simultaneously.
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Chapter 7

Conclusions

Chapter objectives
• Making concluding remarks based on the results obtained from the study
• Pinpointing policy implications based on the results of the study and gaps for

further research

Climate variability-induced and other covariate shocks have been posing serious
problems to smallholder farmers’ welfare in Ethiopia both in the short run via reducing
production and increasing input and output prices and in the long run by depleting
productive farm assets leading to a poverty trap. However, the impact of these shocks
on farmers’ welfare depends on the measures farmers use to deal with them before
and after their occurrence and is, therefore, farmer-specific. Scientific assessment
intended to support the design of successful and robust climate adaptation strategies
should take the heterogeneity of farming households into account - failure to do so
results in unequal treatment of farmers and may lead to maladaptation. In this
connection, this study integrates econometric and farm-level simulation analyses to
examine smallholder farmer choices of ex-ante adaptation and ex-post coping measures
to climate variability-induced and other covariate shocks in Ethiopia, with a special
focus on the role of investment on small-scale agroforestry.

The first objective of this study is to learn farmers’ current behavioral choices of ex-ante
adaptation and ex-post coping measures to deal with climate variability-induced and
other covariate shocks and examine farmer-specific drivers of choice. This is aimed
at answering - How do farmers deal with shocks currently? question. For this
purpose, the study integrates LPCA and MVP analysis to disentangle farmer-specific
determinants of the choice of ex-ante and ex-post measures for drought, hailstorm,
pests and crop disease in Ethiopia. Dimensionality reduction of binary data using
LPCA identifies dominant ex-ante and ex-post measures of farmers for climate
variability induced shocks. Planting stress resistant crops and varieties, early planting,
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increasing seed rate and soil and water conservation practices are the dominant ex-ante
measures Whereas, selling livestock, selling assets, reducing consumption, borrowing
and replanting are the dominant ex-post measures. This suggests that adaptation
to climate variability-induced shocks should focus on crop and land management
activities. And, building households’ asset base will boost farmers’ resilience to these
shocks.

Farmers’ interdependent adoption decisions of adaptation and coping measures are
captured using MVP regression models to examine the drivers of choice. MVP
results show that several factors determine farmers’ choice of adaptation and coping
measures. Gender, knowledge and experience, participation in rural institutions, social
networks, resource endowments and their shock experience and expectation are the
major drivers of farmers’ choices of ex-ante adaptation and ex-post coping measures.
This suggests that the choice of strategies by smallholder farmers to deal with climate
variability-induced shocks is highly idiosyncratic and depends on their socioeconomic
settings, their experience and knowledge and their interactions with the environment.
As a result, robust climate adaptation and mitigation interventions should take this
heterogeneity into account.

Results from both LPCA and MVP show that most of measures farmers choose are
complementary measures. This implies that there is no single best strategy that
works for all farmers, instead farmers use multiple adaptation and coping measures.
Complementarity of measures is stronger in ex-ante measures than ex-post measures.
Farmers invest more on ex-post measures than ex-ante measures. And, those who invest
on tree perennials as ex-ante drought measure are less likely to use severe measures such
as selling livestock and other assets in the aftershock.

This study’s second and third objectives focus on How farmers would behave to deal with
shocks in future circumstances? The econometric analysis in the first part of the thesis
establishes a descriptive analysis of farmers’ behavioral responses to climate variability
induced and other covariate shocks. This captures the behavior of farmers in the status
quo. However, it does not tell us much about how farmers would behave in different
future circumstances, especially with climate and price variability. This requires a
prescriptive and descriptive approach with a detailed investigation of farmers’ behavior
down to the plot level. To achieve this objective, the second part of the study applies
household level micro-simulation to analyze ex-ante planning and ex-post responses to
future climate and price variability with a particular focus on the role of smallholders’
investment in woodlot perennials to their livelihoods. The agent-based simulation
package - Mathematical Programming-based Multi-Agent Systems (MPMAS) is used
for this purpose to capture production, consumption and investment decisions at the
farm household level. A farm decision model representing smallholder farmers in the
Upper Nile Basin in Ethiopia is developed accordingly. The farmers in the area are
known for their integrated crop-livestock system and a unique Acacia Dicurrens based
Taungya system.

Two simulation experiments were designed to quantify the effects of shocks and price
variability on agents’ livelihoods. The High Performance Computing platform in Baden
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Wurttemberg (bwHPC) is used to run simulation experiments for this study. The first
simulation experiment aims at achieving two sub-objectives. The first sub-objective is
measuring the contribution of investment in acacia-based woodlots on farmers’ land-use
decisions and their discretionary income. Simulation results show that acacia accounts
for more than 40% land-use shares in the area on-average in each year. The expansion
of acacia-based agroforestry system in the study area brings farmers with additional
benefits in terms of increased per capita discretionary income and helps them withdraw
from failure to fulfill their food and essential non-food expenditure.

The second sub-objective measures the effects of shocks on agents’ livelihoods and the
effectiveness of ex-ante planning to curb the adverse effects of these shocks. The frequent
and intense crop and tree diseases in the area - potato late blight and acacia seedling
disease are introduced as shocks in the model. Simulation results show that both potato
late blight and acacia seedling disease reduce annual per capita discretionary income
significantly and forcing some resource poor agents to fail to fulfill minimum non-food
expenditure. The trade-off in agents’ land-use decisions between trees and crops by
agents show that they prefer to plant trees than crops as an ex-ante planning strategy
for shocks.

The second simulation experiment aims at examining the effect of long-run expected
price changes, mainly on land-use decisions of agents in the model. Four future price
scenarios are designed and the results are compared with the baseline to examine
the effect on agents’ discretionary income and land use decisions.The purpose of this
simulation experiment is to see if there is a deviance from croplands to woodlots and
vise versa based on long-run changes in expected prices. Simulation results show that
agents are highly responsive to changes in expected prices in the long run, except for
the expected price of bamboo. In cases where there is a decrease in the expected price
of charcoal or an increase in the expected price of crops or both, results show that
agents will go back to potatoes and wheat-dominated production system instead of the
acacia-dominated production system as in the baseline.

Policy implications and way forward
Based on the findings of this study, the following policy implications could be drawn
as takeaway messages for policymakers.

• Supporting farmer adaptation to climate variability induced shocks should focus
on policy interventions related to crop and land management activities.

• Policy interventions building the household asset base will boost farmers coping
ability and resilience to shocks.

• Robust climate adaptation and mitigation interventions should take the
heterogeneity of farmers into account.

• Investment in woodlot perennials is a crucial adaptation strategy for smallholder
farmers. Particularly, both econometrics and farm-level simulation analyses show
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the importance of planting trees as a crucial adaptation strategy.

In addition to the findings and policy implications obtained, this study also helped
identify important gaps for further research. The following are some of the areas of
future research:

• It has been understood from the interactive validation sessions that the soil
fertility improvement role of acacia dicurrens in the study area might outweigh
the financial benefits. In other words, farmers might not want to shift from
woodlots to croplands ( or the magnitude of the shift might be different) even
if the financial benefits are higher in the later. So, a financial analysis alone
might not comprehensively show the effect of investment in acacia on farmers’
livelihoods. To this effect, the contribution of acacia to the soil as a leguminous
plant and the resultant improvement in crop yield after subsequent cycles of
acacia should be taken in to account. This can be methodologically captured
using a soil dynamics feature in the farm decision model once the yield effect
of improvement in the soil is known. The soil dynamics feature in the model is
already implemented. Yet, the yield effects are set to be constant at the current
status of the model irrespective of multiple cycles of acacia. This calls for further
research and sharpens the effect of investment in acacia on agents in the model.

• Another important feature of the model which needs more expansion is livestock
production. The role of livestock to farmers’ livelihood in the area is well
established. Even though the income from livestock in the model is validated,
the type of livestock the agents are keeping and the number of years they are
keeping them in the model is a bit different from what is happening in reality.
Agents only keep cows and chickens, and they only keep them for one year. As
livestock is an important adaptation and coping measure for farmers, among
other things, a detailed representation of livestock production activities and
constraints backed by detailed data could improve the results of the model
further.

• Furthermore, the importance of off-farm work as an adaptation and coping
measure should be investigated alongside the role of investment in acacia
dicurrens which also provides with extra surplus labor compared to the
crop-based production systems.

• More up-to-date data on adaptation and coping strategy choices of farmers would
also help us have the state of the art knowledge on how farmers deal with climate
variability-induced shocks.
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Appendix A

The farm decision model
Objective function
Agents optimize expected cash surplus only after ensuring current and future minimum
consumption needs are fulfilled and adequate precaution is taken to shocks.

𝑀𝑎𝑥 ∶ (∑
𝑡

𝐶𝑎𝑠ℎ 𝑆𝑢𝑟𝑝𝑙𝑢𝑠 − ∑
𝑡=0

𝐶𝐷𝑐𝑝 − ∑
𝑡>0

̄𝐶𝐷𝑐𝑝 − ∑
𝑡,𝑠

𝐶𝐷𝑒𝑝)

Where 𝐶𝐷 is consumption shortage; 𝑡 is time (𝑇 planning periods); 𝑠 is shocks; 𝑐𝑝 is
current period (𝑡 = 0); and ep is future periods (0 < 𝑡 ≤ 𝑇 )
Detailed expansion of components of the objective function are provided in equations
(A.39) to (A.46)

Crop Production
Land balances

Total available land (𝐹𝑆) is exhaustively used for one or more of the following activities:
- grow crop, grow pasture or grow perennials

∑
𝑐

𝑋𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
𝑙𝑎𝑛𝑑 + ∑

𝑐
𝑋𝑝𝑎𝑠𝑡𝑢𝑟𝑒

𝑔𝑟𝑜𝑤 + ∑
𝑐

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠
𝑔𝑟𝑜𝑤 = 𝐹𝑆

For crops only, land in use balance constraint is defined as.

∑
𝑐

𝑋𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
𝑙𝑎𝑛𝑑 − ∑

𝑐
𝑋𝑐𝑟𝑜𝑝𝑠

𝑔𝑟𝑜𝑤 = 0

Transfer land is introduced because of rotation constraints in crops. For perennials,
land in use balance constraint is defined as:

102



∑
𝑙

𝑋𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑙𝑎𝑛𝑑 − ∑

𝑤
𝑋𝑝𝑙𝑎𝑛𝑡𝑎𝑡𝑖𝑜𝑛

𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 = 0

Maintain plantation activity at period 𝑡 refers to having a tree plantation 𝑤 of age 𝑎 in
period 𝑡

Crop rotation

Potatoes are rotated every other year in dega AEZ. And, in kola hot pepper is rotated
every other year.

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑙𝑖𝑚𝑖𝑡 = 1
2

∑
𝑟𝑐

𝑋𝑟𝑜𝑡𝑎𝑡𝑒𝑑𝑐𝑟𝑜𝑝𝑠
𝑔𝑟𝑜𝑤 − 0.5 ∗ 𝑋𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

𝑙𝑎𝑛𝑑 ≤ 0

Labor balance
Labor capacity

Use of family labor cannot exceed available labor in the household (𝐿𝐶) at any time 𝑡.
Where lt is a set of labor types.

𝑙𝑡 = 𝑠𝑚𝑎𝑙𝑙𝑐ℎ𝑖𝑙𝑑𝑙𝑎𝑏𝑜𝑟, 𝑐ℎ𝑖𝑙𝑑𝑙𝑎𝑏𝑜𝑟, 𝑚𝑎𝑙𝑒𝑙𝑎𝑏𝑜𝑟, 𝑓𝑒𝑚𝑎𝑙𝑒𝑙𝑎𝑏𝑜𝑟, 𝑠𝑒𝑛𝑖𝑜𝑟𝑙𝑎𝑏𝑜𝑟
Therefore, the labour capacity constraint is defined as:

∑
𝑙𝑡

𝑋𝑓𝑎𝑚𝑖𝑙𝑦𝑙𝑎𝑏𝑜𝑟
𝑢𝑠𝑒 ≤ 24 ∗ 𝐿𝐶

Where 24 is the time division of the year. 1 𝑡𝑖𝑚𝑒 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 = 2 𝑤𝑒𝑒𝑘𝑠 and, labour is
measured in person days

Labor balance without herding

Labor use types (𝑙𝑢𝑡) are a set of farming activities

𝐿𝑢𝑡 = 𝑝𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛, 𝑤𝑒𝑒𝑑𝑖𝑛𝑔, ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑖𝑛𝑔, ℎ𝑒𝑟𝑑𝑖𝑛𝑔, 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔, 𝑜𝑓𝑓 − 𝑓𝑎𝑟𝑚
For all labor use types except herding, the labor balance constraint is defined as follows:

∑
𝑐,𝑙𝑢𝑡

𝑋𝑐𝑟𝑜𝑝𝑠
𝑔𝑟𝑜𝑤 ∗ 𝐿𝑐𝑟𝑜𝑝

𝑑𝑑 + ∑
𝑝

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠
𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 ∗ (𝐿𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠

𝑑𝑑 + 𝐿𝑖𝑛𝑡𝑒𝑟𝑐𝑟𝑜𝑝𝑝𝑖𝑛𝑔
𝑑𝑑 )

+ ∑
𝑝

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠
𝑐𝑢𝑡𝑑𝑜𝑤𝑛 ∗ 𝐿𝑐𝑢𝑡𝑑𝑜𝑤𝑛

𝑑𝑑 + ∑
𝑙

𝑋𝑜𝑤𝑛𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘
𝑐𝑜𝑛𝑠𝑢𝑚𝑒 ∗ 𝐿𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

𝑑𝑑

+ ∑
𝑙

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘
𝑠𝑒𝑙𝑙 ∗ 𝐿𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

𝑑𝑑 − ∑
𝑙𝑡

𝑋𝑓𝑎𝑚𝑖𝑙𝑦𝑙𝑎𝑏𝑜𝑟
𝑢𝑠𝑒 ≤ 0
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Herding labor balance

At any time t in the planning period the labor used for herding livestock must be less
than or equal to the total amount of labor available in the household

∑
𝑙,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘
𝑘𝑒𝑒𝑝 ∗ 𝐿ℎ𝑒𝑟𝑑𝑖𝑛𝑔

𝑑𝑑 − ∑
𝑙𝑡

𝑋𝑓𝑎𝑚𝑖𝑙𝑦𝑙𝑎𝑏𝑜𝑟
𝑢𝑠𝑒 ≤ 0

Herding labor balance FSE (t = T)

At the end of the planning period the labor used for herding livestock must be less than
or equal to the total amount of labor available in the household and hired labor.

∑
𝑙,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝐹𝑆𝐸
𝑘𝑒𝑒𝑝 ∗ 𝐿ℎ𝑒𝑟𝑑𝑖𝑛𝑔𝐹𝑆𝐸

𝑑𝑑 − ∑
𝑙𝑡,𝑡

𝑋𝑓𝑎𝑚𝑖𝑙𝑦𝑙𝑎𝑏𝑜𝑟
𝑢𝑠𝑒 − ∑

𝑡
𝑋𝑙𝑎𝑏𝑜𝑟

ℎ𝑖𝑟𝑒 ∗ 𝑝𝑙𝑎𝑏𝑜𝑟
𝑤𝑎𝑔𝑒 ≤ 0

Input balance
Agents do not buy inputs i of crop production in excess of demand. Bought inputs of
crop production are fertilizer (DAP, UREA) and improved seeds

∑
𝑐

𝑋𝑐𝑟𝑜𝑝𝑠
𝑔𝑟𝑜𝑤 ∗ 𝑖𝑐𝑟𝑜𝑝𝑠

𝑑𝑑 − ∑
𝑖

𝑋𝑖𝑛𝑝𝑢𝑡𝑠
𝑏𝑢𝑦 ≤ 0

Food storage
Agents store food to smooth consumption. Maximum food storage time is 2 years
(lifetime). Stored food is, therefore, an asset. Food storage constraints of agents will
be introduced first as they are important component of product balances.

𝑆𝑡𝑜𝑟𝑎𝑏𝑙𝑒𝑐𝑟𝑜𝑝𝑠𝑠𝑐 = 𝑚𝑎𝑖𝑧𝑒, 𝑤ℎ𝑒𝑎𝑡, 𝑏𝑎𝑟𝑙𝑒𝑦, 𝑤ℎ𝑖𝑡𝑒 𝑡𝑒𝑓𝑓, 𝑟𝑒𝑑 𝑡𝑒𝑓𝑓, ℎ𝑜𝑡 𝑝𝑒𝑝𝑝𝑒𝑟

Start of period storage balance 1<t<T & a=1

In future periods except the final period, the total amount of food kept in storage,
taken from storage and reserved storage for shocks should not be bigger than the total
amount of food stored in the previous period.

∑
𝑠𝑐,𝑎,𝑡

𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒
𝑘𝑒𝑒𝑝𝑖𝑛 + ∑

𝑠𝑐,𝑎,𝑡
𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒

𝑡𝑎𝑘𝑒𝑓𝑟𝑜𝑚 + ∑
𝑠𝑐,𝑎,𝑡

𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒
𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑓𝑜𝑟𝑠ℎ𝑜𝑐𝑘 − ∑

𝑠𝑐,𝑡−1
𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒

𝑖𝑛𝑡𝑒𝑟𝑒𝑑𝑖𝑛𝑡𝑜 ≤ 0

Start of period storage balance 1<t<T & a<2

In future periods except the final period and for year of storage lifetime, the total
amount of food kept in storage, taken from storage and reserved storage for shocks

104



should not be bigger than the total amount of food kept in storage in the previous
period.

∑
𝑠𝑐,𝑎,𝑡

𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒
𝑘𝑒𝑒𝑝𝑖𝑛 + ∑

𝑠𝑐,𝑎,𝑡
𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒

𝑡𝑎𝑘𝑒𝑓𝑟𝑜𝑚 + ∑
𝑠𝑐,𝑎,𝑡

𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒
𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑓𝑜𝑟𝑠ℎ𝑜𝑐𝑘 − ∑

𝑠𝑐,𝑎−1,𝑡−1
𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒

𝑘𝑒𝑒𝑝𝑖𝑛 ≤ 0

Start of period storage balance 1<t<T & a=2

In future periods except the final period and for year of storage life time (𝑎 = 2), the
total amount of food taken from storage should not be bigger than the total amount of
food kept in the previous period.

∑
𝑠𝑐,𝑎,𝑡

𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒
𝑡𝑎𝑘𝑒𝑓𝑟𝑜𝑚 − ∑

𝑠𝑐,𝑎−1,𝑡−1
𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒

𝑘𝑒𝑒𝑝𝑖𝑛 ≤ 0

Start of period storage balance t=1 & a>0

At 𝑡 = 1, the total amount of food kept in storage, taken from storage and reserved
storage for shocks should not be bigger than the total amount of food stored at the end
of the previous period (𝑆𝐹 𝑡=0).

∑
𝑠𝑐,𝑎,𝑡

𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒
𝑘𝑒𝑒𝑝𝑖𝑛 + ∑

𝑠𝑐,𝑎,𝑡
𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒

𝑡𝑎𝑘𝑒𝑓𝑟𝑜𝑚 + ∑
𝑠𝑐,𝑎,𝑡

𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒
𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑓𝑜𝑟𝑠ℎ𝑜𝑐𝑘 ≤ 𝑆𝐹 𝑡=0

Start of period storage balance t=1 & a=2

At 𝑡 = 1, the total amount of food taken from storage should not be bigger than
the total amount of food stored at the end of the previous period (𝑆𝐹 𝑡=0) aged the
maximum lifetime.

∑
𝑠𝑐,𝑎,𝑡

𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒
𝑡𝑎𝑘𝑒𝑓𝑟𝑜𝑚 ≤ 𝑆𝐹 𝑡=0,𝑎=2

Reserve for shock storage balance t<T

For all future periods except the last period, taking from storage times the likelihood
of shock occurrence must not be bigger than the total amount of reserved food storage
for shocks.

𝑃𝑟𝑠 ∗ ∑
𝑠,𝑠𝑐,𝑎,𝑡

𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒
𝑠ℎ𝑜𝑐𝑘𝑡𝑎𝑘𝑒𝑓𝑟𝑜𝑚 − ∑

𝑠𝑐,𝑎,𝑡
𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒

𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑓𝑜𝑟𝑠ℎ𝑜𝑐𝑘 ≤ 0
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Start of period reserve for shock storage balance 1<t<T

For all future periods except the first and the last period and for all storage ages, the
total amount of food taken from storage during shock period t must not be bigger than
the total amount of food taken into storage in the previous year.

∑
𝑠,𝑠𝑐,𝑎,𝑡

𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒
𝑠ℎ𝑜𝑐𝑘𝑡𝑎𝑘𝑒𝑓𝑟𝑜𝑚 − ∑

𝑠𝑐,𝑎−1,𝑡−1
𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒

𝑘𝑒𝑒𝑝𝑖𝑛 ≤ 0

Start of period reserve for shock storage balance 1<t<T

For all future periods except the first and the last period and for the first year of storage,
the total amount of food taken from storage during shock period t must not be bigger
than the total amount of food entered storage in the previous year.

∑
𝑠,𝑠𝑐,𝑎,𝑡

𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒
𝑠ℎ𝑜𝑐𝑘𝑡𝑎𝑘𝑒𝑓𝑟𝑜𝑚 − ∑

𝑠𝑐,𝑡−1
𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒

𝑖𝑛𝑡𝑒𝑟𝑒𝑑𝑖𝑛𝑡𝑜 ≤ 0

Final static equilibrium storage balances

Transition to FSE storage balance t=T

In the final period the total amount of food entered and kept in the previous period
should not be less than the amount of reserve storage for shocks.

∑
𝑠𝑐,𝑡

𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝐹𝑆𝐸
𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑓𝑜𝑟𝑠ℎ𝑜𝑐𝑘 − ∑

𝑠𝑐,𝑎,𝑡−1
𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒

𝑘𝑒𝑒𝑝𝑖𝑛 − ∑
𝑠𝑐,𝑡−1

𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒
𝑖𝑛𝑡𝑒𝑟𝑒𝑑𝑖𝑛𝑡𝑜 ≤ 0

Storage balance FSE t=T

In the final period the total amount of food entered should not be less than the amount
of reserve storage for shocks.

∑
𝑠𝑐,𝑡

𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝐹𝑆𝐸
𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑓𝑜𝑟𝑠ℎ𝑜𝑐𝑘 − ∑

𝑠𝑐,𝑡
𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝐹𝑆𝐸

𝑖𝑛𝑡𝑒𝑟𝑒𝑑𝑖𝑛𝑡𝑜 ≤ 0

Reserve for shock storage balance FSE t=T

In the final period taking from storage times the likelihood of shock occurrence must
not be bigger than the total amount of reserved food storage for shocks.

𝑃𝑟𝑠 ∗ ∑
𝑠,𝑠𝑐,𝑎,𝑡

𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝐹𝑆𝐸
𝑠ℎ𝑜𝑐𝑘𝑡𝑎𝑘𝑒𝑓𝑟𝑜𝑚 − ∑

𝑠𝑐,𝑎,𝑡
𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝐹𝑆𝐸

𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑓𝑜𝑟𝑠ℎ𝑜𝑐𝑘 ≤ 0
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Product balances
Start of period in [1<t<T]

At the start of each period (except for the first and the last period), the total amount
of crops sold in the previous year (sole cropping and intercropping with perennials) and
total consumption from own production should not be bigger than the total amount of
non-stored harvest at time 𝑡 − 1 and total harvest taken from storage at 𝑡
𝑖𝑐 = 𝑡𝑒𝑓𝑓, 𝑝𝑜𝑡𝑎𝑡𝑜𝑒𝑠, 𝑏𝑎𝑟𝑙𝑒𝑦, 𝑤ℎ𝑒𝑎𝑡, 𝑔𝑟𝑎𝑠𝑠 (𝑝𝑎𝑠𝑡𝑢𝑟𝑒)
𝑆𝑡𝑜𝑟𝑎𝑏𝑙𝑒𝑐𝑟𝑜𝑝𝑠 = 𝑚𝑎𝑖𝑧𝑒, 𝑤ℎ𝑒𝑎𝑡, 𝑏𝑎𝑟𝑙𝑒𝑦, 𝑟𝑒𝑑𝑡𝑒𝑓𝑓, 𝑤ℎ𝑖𝑡𝑒𝑡𝑒𝑓𝑓, ℎ𝑜𝑡𝑝𝑒𝑝𝑝𝑒𝑟

∑
𝑐,𝑡

𝑋𝑜𝑤𝑛𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
𝑐𝑜𝑛𝑠𝑢𝑚𝑒 + ∑

𝑐,𝑡−1
𝑋𝑐𝑟𝑜𝑝𝑠

𝑠𝑒𝑙𝑙 − ∑
𝑐,𝑡

𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒
𝑡𝑎𝑘𝑒𝑓𝑟𝑜𝑚 − ∑

𝑐,𝑡−1
𝑋𝑐𝑟𝑜𝑝𝑠

𝑛𝑜𝑛𝑠𝑡𝑜𝑟𝑒𝑑 ≤ 0

End of period in [t!=T, T]

At the end of each period except the last period and one period before the last period,
the total amount of crops produced (sole cropping, double cropping and intercropping
with perennials) is either entered storage or not.

𝐷𝑜𝑢𝑏𝑙𝑒 𝑐𝑟𝑜𝑝𝑝𝑖𝑛𝑔 = 𝑏𝑎𝑟𝑙𝑒𝑦 𝑎𝑓𝑡𝑒𝑟 𝑝𝑜𝑡𝑎𝑡𝑜𝑒𝑠, 𝑖𝑛 𝐷𝑒𝑔𝑎 𝐴𝐸𝑍

∑
𝑐,𝑡

𝑋𝑐𝑟𝑜𝑝𝑠
𝑛𝑜𝑛𝑠𝑡𝑜𝑟𝑒𝑑 + ∑

𝑐,𝑡
𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒

𝑖𝑛𝑡𝑒𝑟𝑒𝑑𝑖𝑛𝑡𝑜 − ∑
𝑐

𝑋𝑐𝑟𝑜𝑝𝑠
𝑔𝑟𝑜𝑤 ∗ 𝑦𝑐𝑟𝑜𝑝𝑠

𝑦𝑖𝑒𝑙𝑑

− ∑
𝑐

𝑋𝑑𝑜𝑢𝑏𝑙𝑒𝑐𝑟𝑜𝑝𝑒𝑑
𝑔𝑟𝑜𝑤 ∗ 𝑦𝑑𝑜𝑢𝑏𝑙𝑒𝑐𝑟𝑜𝑝𝑒𝑑

𝑦𝑖𝑒𝑙𝑑 − ∑
𝑝

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠
𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 ∗ 𝑦𝑖𝑛𝑡𝑒𝑟𝑐𝑟𝑜𝑝𝑒𝑑 𝑐𝑟𝑜𝑝𝑠

𝑦𝑖𝑒𝑙𝑑 ≤ 0

Harvest balance at (t=1) = (year = 0)

The amount of harvest at t=1 should not be bigger than what was planted in the year, if
only planted. This is the possibility (potential) harvest in the beginning of the planning
period. It is the result of the decisions taken before (no in the current setting of the
model).

∑
𝑐

𝑋𝑦𝑒𝑎𝑟=0
ℎ𝑎𝑟𝑣𝑒𝑠𝑡 = {∑𝑐,𝑡−1 𝑋𝑐𝑟𝑜𝑝𝑠

𝑔𝑟𝑜𝑤 , if grown
0 , if not grown

Product balance at t=1 = (end of year = 0)

At the end of each period except the last period and one period before the last period,
the total amount of crops produced (sole cropping, double cropping and intercropping
with perennials) is either entered storage or not.
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∑
𝑐,𝑡−1

𝑋𝑐𝑟𝑜𝑝𝑠
𝑛𝑜𝑛𝑠𝑡𝑜𝑟𝑒𝑑 + ∑

𝑐,𝑡−1
𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒

𝑖𝑛𝑡𝑒𝑟𝑒𝑑𝑖𝑛𝑡𝑜 − ∑
𝑐,𝑡

𝑋𝑐𝑟𝑜𝑝𝑠
𝑔𝑟𝑜𝑤 ∗ 𝑦𝑐𝑟𝑜𝑝𝑠

𝑦𝑖𝑒𝑙𝑑

− ∑
𝑐,𝑡

𝑋𝑑𝑜𝑢𝑏𝑙𝑒𝑐𝑟𝑜𝑝𝑒𝑑
𝑔𝑟𝑜𝑤 ∗ 𝑦𝑑𝑜𝑢𝑏𝑙𝑒𝑐𝑟𝑜𝑝𝑒𝑑

𝑦𝑖𝑒𝑙𝑑 − ∑
𝑝,𝑡,𝑎=0

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠
𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 ∗ 𝑦𝑖𝑛𝑡𝑒𝑟𝑐𝑟𝑜𝑝𝑒𝑑 𝑐𝑟𝑜𝑝𝑠

𝑦𝑖𝑒𝑙𝑑 ≤ 0

Product balance at t=1 (start of period)

At the beginning of period 1 the total amount of harvest sold and consumed in the
agent’s household must not be bigger than the total sum of stored and non-stored
harvest in the previous period (𝑝𝑒𝑟𝑖𝑜𝑑 = 0).

∑
𝑐,𝑡

𝑋ℎ𝑎𝑟𝑣𝑒𝑠𝑡 𝑦𝑒𝑎𝑟0
𝑠𝑒𝑙𝑙 + ∑

𝑐,𝑡
𝑋𝑜𝑤𝑛𝑝𝑟𝑜𝑑𝑢𝑐𝑒

𝑐𝑜𝑛𝑠𝑢𝑚𝑒 − ∑
𝑐,𝑡−1

𝑋𝑐𝑟𝑜𝑝𝑠
𝑛𝑜𝑛𝑠𝑡𝑜𝑟𝑒𝑑 − ∑

𝑐,𝑡−1
𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒

𝑖𝑛𝑡𝑒𝑟𝑒𝑑𝑖𝑛𝑡𝑜 ≤ 0

Inter cropping harvest balance at t=1 (year = 0)

Total number of plots of possible harvest of crops intercropped with perennials before
the start of the planning period must not be bigger than perennials established in the
previous period, if established (planted).

∑
𝑐,𝑡

𝑋𝑡𝑋ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑖𝑛𝑡𝑒𝑟𝑐𝑟𝑜𝑝𝑝𝑖𝑛𝑔𝑦𝑒𝑎𝑟=0
ℎ𝑎𝑟𝑣𝑒𝑠𝑡 = {∑𝑝,𝑡=1,𝑎=0 𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠

𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 , if planted
0 , if not planted

Shock product balance at [1<t<T]

For all future periods except the last period, agents’ product balance is also considerate
of shocks. In these periods total amount of harvest from sole cropping, double cropping
and intercropping in the previous period (𝑡 − 1) and harvest taken from storage at 𝑡
should be greater than or equal to the amount of harvest sold in the previous period
(𝑡 − 1) and amount consumed during shock period 𝑡 𝑤𝑐𝑦𝑖𝑒𝑙𝑑 is worst case yield expected
in time of shocks and s is a set of shocks.

𝑆 = 𝑑𝑟𝑜𝑢𝑔ℎ𝑡, ℎ𝑜𝑡𝑝𝑒𝑝𝑝𝑒𝑟𝑑𝑖𝑠𝑒𝑎𝑠𝑒, 𝑤ℎ𝑒𝑎𝑡𝑑𝑖𝑠𝑒𝑎𝑠𝑒, 𝑚𝑎𝑖𝑧𝑒𝑑𝑖𝑠𝑒𝑎𝑠𝑒, 𝑡𝑒𝑓𝑓𝑑𝑖𝑠𝑒𝑎𝑠𝑒, 𝑝𝑜𝑡𝑎𝑡𝑜𝑑𝑖𝑠𝑒𝑎𝑠𝑒

∑
𝑐,𝑠,𝑡

𝑋𝑐𝑟𝑜𝑝𝑠
𝑠ℎ𝑜𝑐𝑘𝑠𝑒𝑙𝑙 + ∑

𝑐,𝑠,𝑡
𝑋𝑜𝑤𝑛𝑝𝑟𝑜𝑑𝑢𝑐𝑒

𝑠ℎ𝑜𝑐𝑘𝑐𝑜𝑛𝑠𝑢𝑚𝑒

− ∑
𝑐,𝑠,𝑡

𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒
𝑠ℎ𝑜𝑐𝑘𝑡𝑎𝑘𝑒𝑓𝑟𝑜𝑚 − ∑

𝑐,𝑡−1
𝑋𝑐𝑟𝑜𝑝𝑠

𝑔𝑟𝑜𝑤 ∗ 𝑦𝑐𝑟𝑜𝑝𝑠
𝑤𝑐𝑦𝑖𝑒𝑙𝑑

− ∑
𝑐,𝑡−1

𝑋𝑑𝑜𝑢𝑏𝑙𝑒𝑐𝑟𝑜𝑝𝑒𝑑
𝑔𝑟𝑜𝑤 ∗ 𝑦𝑑𝑜𝑢𝑏𝑙𝑒𝑐𝑟𝑜𝑝𝑒𝑑

𝑤𝑐𝑦𝑖𝑒𝑙𝑑 − ∑
𝑝,𝑡−1,𝑎=0

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠
𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 ∗ 𝑦𝑖𝑛𝑡𝑒𝑟𝑐𝑟𝑜𝑝𝑒𝑑 𝑐𝑟𝑜𝑝𝑠

𝑤𝑐𝑦𝑖𝑒𝑙𝑑 ≤ 0
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Final static equilibrium

End of period [t=T-1]

At the end of the previous period before the final period (𝑡 = 𝑇 − 1) the total amount
of crops produced (sole cropping, double cropping and intercropping with perennials)
is greater than or equal to stored and non-stored harvest in the same period.

∑
𝑐,𝑡

𝑋𝑐𝑟𝑜𝑝𝑠
𝑛𝑜𝑛𝑠𝑡𝑜𝑟𝑒𝑑 + ∑

𝑐,𝑡
𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒

𝑖𝑛𝑡𝑒𝑟𝑒𝑑𝑖𝑛𝑡𝑜

− ∑
𝑐,𝑡

𝑋𝑐𝑟𝑜𝑝𝑠
𝑔𝑟𝑜𝑤 ∗ 𝑦𝑐𝑟𝑜𝑝𝑠

𝑦𝑖𝑒𝑙𝑑 − ∑
𝑐,𝑡

𝑋𝑑𝑜𝑢𝑏𝑙𝑒𝑐𝑟𝑜𝑝𝑒𝑑
𝑔𝑟𝑜𝑤 ∗ 𝑦𝑑𝑜𝑢𝑏𝑙𝑒𝑐𝑟𝑜𝑝𝑒𝑑

𝑦𝑖𝑒𝑙𝑑

− ∑
𝑝,𝑡,𝑎=0

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠
𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 ∗ 𝑦𝑖𝑛𝑡𝑒𝑟𝑐𝑟𝑜𝑝𝑒𝑑 𝑐𝑟𝑜𝑝𝑠

𝑦𝑖𝑒𝑙𝑑 ≤ 0

Start of period [t=T]

In the final period whatever is not consumed at 𝑡 = 𝑇 or sold at 𝑡 = 𝑇 − 1 should not
be bigger than what has not been stored at 𝑡 = 𝑇 − 1. The notion here is agents do
not store grains anymore.

∑
𝑐,𝑡−1

𝑋ℎ𝑎𝑟𝑣𝑒𝑠𝑡 𝑦𝑒𝑎𝑟0
𝑠𝑒𝑙𝑙 + ∑

𝑐,𝑡
𝑋𝑜𝑤𝑛𝑝𝑟𝑜𝑑𝑢𝑐𝑒

𝑐𝑜𝑛𝑠𝑢𝑚𝑒 − ∑
𝑐,𝑡−1

𝑋𝑐𝑟𝑜𝑝𝑠
𝑛𝑜𝑛𝑠𝑡𝑜𝑟𝑒𝑑 ≤ 0

Final static equilibrium [t=T]

In the final period the total amount of harvest sold, consumed at home and entered in
to storage should not be bigger than the total amount of crops produced (sole cropping,
double cropping and intercropping with perennials) and the reserved storage for shocks
in the same period.

∑
𝑐,𝑡

𝑋𝑐𝑟𝑜𝑝𝑠
𝑠𝑒𝑙𝑙 + ∑

𝑐,𝑡
𝑋𝑜𝑤𝑛𝑝𝑟𝑜𝑑𝑢𝑐𝑒

𝑐𝑜𝑛𝑠𝑢𝑚𝑒 + ∑
𝑐,𝑡

𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒
𝑖𝑛𝑡𝑒𝑟𝑒𝑑𝑖𝑛𝑡𝑜

− ∑
𝑐,𝑡

𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒
𝑠ℎ𝑜𝑐𝑘𝑟𝑒𝑠𝑒𝑟𝑣𝑒 − ∑

𝑐,𝑡
𝑋𝑐𝑟𝑜𝑝𝑠

𝑔𝑟𝑜𝑤 ∗ 𝑦𝑐𝑟𝑜𝑝𝑠
𝑦𝑖𝑒𝑙𝑑

− ∑
𝑐,𝑡

𝑋𝑑𝑜𝑢𝑏𝑙𝑒𝑐𝑟𝑜𝑝𝑒𝑑
𝑔𝑟𝑜𝑤 ∗ 𝑦𝑑𝑜𝑢𝑏𝑙𝑒𝑐𝑟𝑜𝑝𝑒𝑑

𝑦𝑖𝑒𝑙𝑑 − ∑
𝑝,𝑡,𝑎=0

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠
𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 ∗ 𝑦𝑖𝑛𝑡𝑒𝑟𝑐𝑟𝑜𝑝𝑒𝑑 𝑐𝑟𝑜𝑝𝑠

𝑦𝑖𝑒𝑙𝑑

≤ 0

Shock balance in FSE [t=T]

In the final period and in the case of shocks in 𝑇 − 1, the total amount of harvest from
sole cropping, double cropping and intercropping in the previous period and harvest
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taken from storage at t should be greater than or equal to the amount of harvest sold
in the and amount consumed.

∑
𝑐,𝑠,𝑡

𝑋𝑐𝑟𝑜𝑝𝑠𝐹𝑆𝐸
𝑠ℎ𝑜𝑐𝑘𝑠𝑒𝑙𝑙 + ∑

𝑐,𝑠,𝑡
𝑋𝑜𝑤𝑛𝑝𝑟𝑜𝑑𝑢𝑐𝑒

𝑠ℎ𝑜𝑐𝑘𝑐𝑜𝑛𝑠𝑢𝑚𝑒

− ∑
𝑐,𝑠,𝑡

𝑋𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝐹𝑆𝐸
𝑠ℎ𝑜𝑐𝑘𝑡𝑎𝑘𝑒𝑓𝑟𝑜𝑚 − ∑

𝑐,𝑡
𝑋𝑐𝑟𝑜𝑝𝑠

𝑔𝑟𝑜𝑤 ∗ 𝑦𝑐𝑟𝑜𝑝𝑠
𝑤𝑐𝑦𝑖𝑒𝑙𝑑

− ∑
𝑐,𝑡−1

𝑋𝑑𝑜𝑢𝑏𝑙𝑒𝑐𝑟𝑜𝑝𝑒𝑑
𝑔𝑟𝑜𝑤 ∗ 𝑦𝑑𝑜𝑢𝑏𝑙𝑒𝑐𝑟𝑜𝑝𝑒𝑑

𝑤𝑐𝑦𝑖𝑒𝑙𝑑 − ∑
𝑝,𝑡,𝑎=0

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠
𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 ∗ 𝑦𝑖𝑛𝑡𝑒𝑟𝑐𝑟𝑜𝑝𝑒𝑑 𝑐𝑟𝑜𝑝𝑠

𝑤𝑐𝑦𝑖𝑒𝑙𝑑 ≤ 0

Credit and savings
Credit limit

The total amount of loan an agent can get from different credit sources should not
exceed the maximum amount allowed.

∑
𝑐𝑠,𝑡

𝑋𝑙𝑜𝑎𝑛
𝑡𝑎𝑘𝑒 + ∑

𝑐𝑠,𝑡
𝑋𝑙𝑜𝑎𝑛

𝑠ℎ𝑜𝑐𝑘𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑡𝑎𝑘𝑒 ≤𝐶𝐿𝑐𝑠

𝐶𝐿 𝑖𝑠 𝑐𝑟𝑒𝑑𝑖𝑡 𝑙𝑖𝑚𝑖𝑡
𝑐𝑠 𝑖𝑠 𝑐𝑟𝑒𝑑𝑖𝑡 𝑠𝑜𝑢𝑟𝑐𝑒𝑠
𝑐𝑠 = 𝑚𝑖𝑐𝑟𝑜𝑓𝑖𝑛𝑎𝑛𝑐𝑒, 𝑚𝑜𝑛𝑒𝑦𝑙𝑒𝑛𝑑𝑒𝑟, 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑠

Loan repayment balance at t=1

At the end of t=1 the total amount of loan repaid, and the amount defaulted should
be exactly equal to the amount of loan taken in the previous simulation period.

∑
𝑐𝑠,𝑡

𝑋𝑙𝑜𝑎𝑛
𝑟𝑒𝑝𝑎𝑦 + ∑

𝑐𝑠,𝑡
𝑋𝑙𝑜𝑎𝑛𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦

𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑒𝑑 = ∑
𝑐𝑠,𝑡

𝑋𝑙𝑜𝑎𝑛
𝑡𝑎𝑘𝑒

Existing deposit balance at t=1

At 𝑡 = 1 the total amount of deposit available is equal to the amount of money deposited
in the previous simulation period

𝑋𝑑𝑒𝑝𝑜𝑠𝑖𝑡
𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝑡 = 𝑋𝑑𝑒𝑝𝑜𝑠𝑖𝑡

𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝑡=1

Block access to credit after default at (t=1 + 5th)

Agents who default in the previous period are denied access to credit for the succeeding
5 years

110



∑
𝑐𝑠,𝑡

𝑋𝑙𝑜𝑎𝑛
𝑡𝑎𝑘𝑒 + 𝑏𝑖𝑔𝑀 ∗ 𝑋𝐷𝑢𝑚𝑚𝑦

𝐷𝑒𝑓𝑎𝑢𝑙𝑡 = 𝑏𝑖𝑔𝑀 + (−𝑏𝑖𝑔𝑀) ∗ ∑
𝑐𝑠,𝑡

𝑋𝑜𝑛
𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝑒𝑑

𝑋𝐷𝑢𝑚𝑚𝑦
𝐷𝑒𝑓𝑎𝑢𝑙𝑡 = {1 , if dafaulted

0 , if not dafaulted

𝑏𝑖𝑔𝑀 𝑖𝑠 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟

Require register default at (t=1)

∑
𝑐𝑠,𝑡

𝑋𝑙𝑜𝑎𝑛𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦
𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑒𝑑 − 𝑏𝑖𝑔𝑀 ∗ ∑

𝑐𝑠,𝑡
𝑋𝑜𝑛

𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝑒𝑑 ≤ 0

Take loan reserve balance at (t>1)

In all future periods, where the previous period is a shock period, reserve loan during
shocks is less than or equal to the probability of shock occurrence times the amount of
loan taken during shocks.

𝑃𝑟𝑠 ∗ ∑
𝑐𝑠,𝑠,𝑡

𝑋𝑙𝑜𝑎𝑛
𝑡𝑎𝑘𝑒 − ∑

𝑐𝑠,𝑡
𝑋𝑙𝑜𝑎𝑛

𝑠ℎ𝑜𝑐𝑘𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑡𝑎𝑘𝑒 ≤0

Cash balances
Start of year cash balance at t=1

The cash balance in the first planning period: total costs of production, amount of
cash transferred to the start of the next period, the amount of money withdrawn, cash
deposited and loan repayment should not exceed the total revenue from sales and the
cash reserve obtained from the previous period. Current market price is used at 𝑡 = 1.
𝐸𝑇 𝐵 is the monetary unit.

∑
𝑖,𝑡

𝑋𝑖𝑛𝑝𝑢𝑡𝑠
𝑏𝑢𝑦 ∗ 𝑝𝑖𝑛𝑝𝑢𝑡𝑝𝑟𝑖𝑐𝑒

𝑚𝑎𝑟𝑘𝑒𝑡 + ∑
𝑐,𝑡−1

𝑋𝑏𝑜𝑢𝑔ℎ𝑡𝑐𝑟𝑜𝑝𝑠
𝑐𝑜𝑛𝑠𝑢𝑚𝑒 ∗ 𝑝𝑏𝑜𝑢𝑔ℎ𝑡𝑐𝑟𝑜𝑝𝑠

𝑚𝑎𝑟𝑘𝑒𝑡 ∗ 𝑝𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 +

∑
𝑙,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘
𝑏𝑢𝑦 ∗ 𝑝𝑏𝑜𝑢𝑔ℎ𝑡𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘

𝑚𝑎𝑟𝑘𝑒𝑡 ∗ 𝑝𝑡𝑜𝑝𝑢𝑝
𝑏𝑢𝑦𝑖𝑛𝑔 + ∑

𝑙,𝑡−1
𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘

𝑘𝑒𝑒𝑝 ∗ 𝐶𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑐𝑜𝑠𝑡
𝑘𝑒𝑒𝑝𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘+

∑
𝑙,𝑡−1

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘
𝑟𝑎𝑖𝑠𝑒 ∗ 𝐶𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑐𝑜𝑠𝑡

𝑟𝑎𝑖𝑠𝑒𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘+ ∑
𝑡

𝑋𝑙𝑎𝑏𝑜𝑟
ℎ𝑖𝑟𝑒 ∗ 𝑝𝑙𝑎𝑏𝑜𝑟

𝑤𝑎𝑔𝑒+

∑
𝑡

𝑋𝑜𝑥𝑒𝑛
ℎ𝑖𝑟𝑒 ∗ 𝑝𝑝𝑎𝑖𝑟𝑜𝑓𝑜𝑥𝑒𝑛𝑝𝑒𝑟𝑑𝑎𝑦

𝑝𝑟𝑖𝑐𝑒 +𝐴𝐼𝑅 ∗ ∑
𝑡

𝑋𝑠𝑡𝑎𝑟𝑡𝑜𝑓𝑛𝑒𝑥𝑡𝑦𝑒𝑎𝑟
𝑐𝑎𝑠ℎ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 +

∑
𝑡−1

𝑋𝑒𝑛𝑑𝑜𝑓𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑝𝑒𝑟𝑖𝑜𝑑
𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑐𝑎𝑠ℎ + ∑

𝑝,𝑡
𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠

𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 ∗ 𝐶𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑐𝑜𝑠𝑡
𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠+

111



∑
𝑝,𝑡

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠
𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ ∗ 𝑝𝑠𝑒𝑒𝑑𝑙𝑖𝑛𝑔

𝑝𝑟𝑖𝑐𝑒 ∗ 𝑆𝐷 + 𝑋𝑐𝑎𝑠ℎ
𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑡

+ 1
𝐴𝐼𝐹 ∗ ∑

𝑐𝑠,𝑡
𝑋𝑙𝑜𝑎𝑛

𝑟𝑒𝑝𝑎𝑦 ∗ 𝑟𝑙𝑜𝑎𝑛
𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑟𝑎𝑡𝑒−

∑
𝑐,𝑡

𝑋𝑐𝑟𝑜𝑝ℎ𝑎𝑟𝑣𝑒𝑠𝑡
𝑠𝑒𝑙𝑙 ∗ 𝑝𝑐𝑟𝑜𝑝𝑝𝑟𝑖𝑐𝑒

𝑚𝑎𝑟𝑘𝑒𝑡 − ∑
𝑙,𝑡−1

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
𝑠𝑒𝑙𝑙 ∗ 𝑝𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

𝑚𝑎𝑟𝑘𝑒𝑡 −

∑
𝑝,𝑡

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
𝑠𝑒𝑙𝑙 ∗ 𝑝𝐴𝐷

𝑝𝑟𝑖𝑐𝑒𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ∗ 𝑝𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
𝑚𝑎𝑟𝑘𝑒𝑡 − ∑

𝑙,𝑡−1
𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑎𝑓𝑡𝑒𝑟𝑏𝑖𝑟𝑡ℎ

𝑠𝑒𝑙𝑙 ∗ 𝑝𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘
𝑚𝑎𝑟𝑘𝑒𝑡 −

∑
𝑙,𝑡−1

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑎𝑡𝑒𝑛𝑑𝑜𝑓𝑝𝑒𝑟𝑖𝑜𝑑
𝑠𝑒𝑙𝑙 ∗ 𝑝𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘

𝑚𝑎𝑟𝑘𝑒𝑡 − ∑
ℎ,𝑙𝑝,𝑡

𝑋ℎℎ𝑙𝑎𝑏𝑜𝑟
𝑠𝑒𝑙𝑙 ∗ 𝑝𝑜𝑓𝑓−𝑓𝑎𝑟𝑚

𝑤𝑎𝑔𝑒 −

( 1
𝐴𝐼𝐹 + 𝑟𝑑𝑒𝑝𝑜𝑠𝑖𝑡

𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑟𝑎𝑡𝑒 ∗ 1
𝐴𝐼𝐹 ) ∗ 𝑋𝑑𝑒𝑝𝑜𝑠𝑖𝑡

𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 ≤ 𝐶𝑅

𝑝𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 1.7

𝑆𝐷 = 𝑆𝑒𝑒𝑑𝑙𝑖𝑛𝑔 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
𝐶𝑅 = 𝑎𝑔𝑒𝑛𝑡 𝑓𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙 𝑐𝑎𝑠ℎ 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠 𝑓𝑟𝑜𝑚 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑝𝑒𝑟𝑖𝑜𝑑
𝐴𝑡𝑡 = 1, 𝐶𝑅 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑡ℎ𝑒 𝑎𝑔𝑒𝑛𝑡 𝑠𝑡𝑎𝑟𝑡𝑠 𝑤𝑖𝑡ℎ
𝐴𝐼𝐹𝑖𝑠𝑎𝑠𝑠𝑢𝑚𝑒𝑑𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛𝑓𝑎𝑐𝑡𝑜𝑟𝐴𝐼𝑅 = 1.15
𝑝𝐴𝐷

𝑝𝑟𝑖𝑐𝑒𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑤𝑖𝑔ℎ𝑠𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑝𝑟𝑖𝑐𝑒𝑠
𝑝𝐴𝐷

𝑝𝑟𝑖𝑐𝑒𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 1, 𝑒𝑥𝑐𝑒𝑝𝑡 𝑎𝑐𝑎𝑐𝑖𝑎 𝑐ℎ𝑎𝑟𝑐𝑜𝑎𝑙
ℎ = ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑙𝑎𝑏𝑜𝑟 𝑡𝑦𝑝𝑒
𝑙𝑝 = 𝑖𝑠 𝑙𝑎𝑏𝑜𝑟 𝑝𝑒𝑟𝑖𝑜𝑑𝑠
𝑟 𝑖𝑠 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒
∑𝑙,𝑡 𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘

𝑏𝑢𝑦 refers for both preferred and non-preferred ages

Start of year cash balance at 1>t>T

For future periods except the last period agent use expected prices instead of actual
prices – because they don’t know future prices. In each period costs of production,
amount of cash transferred to the start of the next period, cash deposited, loan taken
for shocks, normal loan taken and the amount of money withdrawn should not exceed
the total revenue from sales, the cash transferred from the previous period, loan taken
and cash deposited in the previous period.

∑
𝑖,𝑡

𝑋𝑖𝑛𝑝𝑢𝑡𝑠
𝑏𝑢𝑦 ∗ 𝑒𝑝𝑖𝑛𝑝𝑢𝑡𝑝𝑟𝑖𝑐𝑒

𝑚𝑎𝑟𝑘𝑒𝑡 + ∑
𝑐,𝑡−1

𝑋𝑏𝑜𝑢𝑔ℎ𝑡𝑐𝑟𝑜𝑝𝑠
𝑐𝑜𝑛𝑠𝑢𝑚𝑒 ∗ 𝑒𝑝𝑏𝑜𝑢𝑔ℎ𝑡𝑐𝑟𝑜𝑝𝑠

𝑚𝑎𝑟𝑘𝑒𝑡 ∗ 𝑝𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 +

∑
𝑙,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘
𝑏𝑢𝑦 ∗ 𝑒𝑝𝑏𝑜𝑢𝑔ℎ𝑡𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘

𝑚𝑎𝑟𝑘𝑒𝑡 ∗ 𝑝𝑡𝑜𝑝𝑢𝑝
𝑏𝑢𝑦𝑖𝑛𝑔 + ∑

𝑙,𝑡−1
𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘

𝑘𝑒𝑒𝑝 ∗ 𝐶𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑐𝑜𝑠𝑡
𝑘𝑒𝑒𝑝𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘+

112



∑
𝑙,𝑡−1

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘
𝑟𝑎𝑖𝑠𝑒 ∗ 𝐶𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑐𝑜𝑠𝑡

𝑟𝑎𝑖𝑠𝑒𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘+ ∑
𝑡

𝑋𝑙𝑎𝑏𝑜𝑟
ℎ𝑖𝑟𝑒 ∗ 𝑝𝑙𝑎𝑏𝑜𝑟

𝑤𝑎𝑔𝑒+

∑
𝑡

𝑋𝑜𝑥𝑒𝑛
ℎ𝑖𝑟𝑒 ∗ 𝑒𝑝𝑝𝑎𝑖𝑟𝑜𝑓𝑜𝑥𝑒𝑛𝑝𝑒𝑟𝑑𝑎𝑦

𝑝𝑟𝑖𝑐𝑒 + ∑
𝑡

𝑋𝑠𝑡𝑎𝑟𝑡𝑜𝑓𝑛𝑒𝑥𝑡𝑦𝑒𝑎𝑟
𝑐𝑎𝑠ℎ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 +

∑
𝑡−1

𝑋𝑒𝑛𝑑𝑜𝑓𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑝𝑒𝑟𝑖𝑜𝑑
𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑐𝑎𝑠ℎ + ∑

𝑝,𝑡
𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠

𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 ∗ 𝐶𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑐𝑜𝑠𝑡
𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠+

∑
𝑝,𝑡

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠
𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ ∗ 𝑒𝑝𝑠𝑒𝑒𝑑𝑙𝑖𝑛𝑔

𝑝𝑟𝑖𝑐𝑒 ∗ 𝑆𝐷 + 𝑋𝑐𝑎𝑠ℎ
𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑡

+ 𝑆𝐼𝐹∗

∑
𝑐𝑠,𝑡

𝑋𝑙𝑜𝑎𝑛
𝑠ℎ𝑜𝑐𝑘𝑡𝑎𝑘𝑒 ∗ 𝑟𝑑𝑒𝑝𝑜𝑠𝑖𝑡

𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑟𝑎𝑡𝑒 + ∑
𝑐𝑠,𝑡−1

𝑋𝑙𝑜𝑎𝑛
𝑡𝑎𝑘𝑒 ∗ (1 + 𝐷𝐼𝐹 ∗ 𝑟𝑙𝑜𝑎𝑛

𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑟𝑎𝑡𝑒)−

∑
𝑐,𝑡

𝑋𝑐𝑟𝑜𝑝ℎ𝑎𝑟𝑣𝑒𝑠𝑡
𝑠𝑒𝑙𝑙 ∗ 𝑒𝑝𝑐𝑟𝑜𝑝𝑝𝑟𝑖𝑐𝑒

𝑚𝑎𝑟𝑘𝑒𝑡 − ∑
𝑙,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
𝑠𝑒𝑙𝑙 ∗ 𝑒𝑝𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

𝑚𝑎𝑟𝑘𝑒𝑡 −

∑
𝑝,𝑡

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
𝑠𝑒𝑙𝑙 ∗ 𝑒𝑝𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

𝑚𝑎𝑟𝑘𝑒𝑡 − ∑
𝑙,𝑡−1

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑎𝑓𝑡𝑒𝑟𝑏𝑖𝑟𝑡ℎ
𝑠𝑒𝑙𝑙 ∗ 𝑒𝑝𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘

𝑚𝑎𝑟𝑘𝑒𝑡 −

∑
𝑙,𝑡−1

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑎𝑡𝑒𝑛𝑑𝑜𝑓𝑝𝑒𝑟𝑖𝑜𝑑
𝑠𝑒𝑙𝑙 ∗ 𝑒𝑝𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘

𝑚𝑎𝑟𝑘𝑒𝑡 − ∑
ℎ,𝑙𝑝,𝑡

𝑋ℎℎ𝑙𝑎𝑏𝑜𝑟
𝑠𝑒𝑙𝑙 ∗ 𝑝𝑜𝑓𝑓−𝑓𝑎𝑟𝑚

𝑤𝑎𝑔𝑒 − ∑
𝑡−1

𝑋𝑠𝑡𝑎𝑟𝑡𝑜𝑓𝑛𝑒𝑥𝑡𝑦𝑒𝑎𝑟
𝑐𝑎𝑠ℎ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 −

∑
𝑐𝑠,𝑡

𝑋𝑙𝑜𝑎𝑛
𝑡𝑎𝑘𝑒 − ∑

𝑐𝑠,𝑡−1
𝑋𝑐𝑎𝑠ℎ

𝑑𝑒𝑝𝑜𝑠𝑖𝑡 ∗ (1 + 𝐷𝐼𝐹 ∗ 𝑟𝑑𝑒𝑝𝑜𝑠𝑖𝑡
𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑟𝑎𝑡𝑒) ≤ 0

𝑇 = 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 ℎ𝑜𝑟𝑖𝑧𝑜𝑛, 𝑒𝑝 = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑝𝑟𝑖𝑐𝑒, 𝑆𝐼𝐹 = 2, 𝑖𝑠 𝑠ℎ𝑜𝑐𝑘 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑓𝑎𝑐𝑡𝑜𝑟

Start of year shock cash balance at 1>t>T

For all future periods except the last period, in case of shock in the previous period, the
net cash flow at the start of the year should at least be equal to household minimum
consumption and worst-case cash top up. Cash inflows at (𝑡) are: cash transferred
from previous year, sales revenue from crops, livestock and perennial products in the
previous period, and interest from deposit in the previous period plus off farm income,
loan taken and cash consumption forgone in the current period (𝑡). Cash out flows at
(𝑡) are inputs of production (crop, livestock and perennials) at t including hired labor
and oxen, shock time food expenditure at t and loan interest rate paid for credit taken
in the previous year. The net cash flow (𝑐𝑎𝑠ℎ𝑖𝑛𝑓𝑙𝑜𝑤 − 𝑐𝑎𝑠ℎ𝑜𝑢𝑡𝑓𝑙𝑜𝑤) should be greater
than or equal to the minimum cash requirement of the agent plus a shock year cash to
up.

∑
𝑡−1

𝑋𝑠𝑡𝑎𝑟𝑡𝑜𝑓𝑛𝑒𝑥𝑡𝑦𝑒𝑎𝑟
𝑐𝑎𝑠ℎ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 + ∑

𝑐,𝑡−1
𝑋𝑐𝑟𝑜𝑝ℎ𝑎𝑟𝑣𝑒𝑠𝑡

𝑠𝑒𝑙𝑙 ∗ 𝑤𝑝𝑐𝑟𝑜𝑝
𝑚𝑎𝑟𝑘𝑒𝑡+

∑
𝑠,𝑡

𝑋𝑓𝑜𝑟𝑔𝑜𝑛𝑒
𝑠ℎ𝑜𝑐𝑘𝑐𝑎𝑠ℎ𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 + ∑

𝑙,𝑡−1
𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘

𝑠𝑒𝑙𝑙 ∗ 𝑒𝑝𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘
𝑚𝑎𝑟𝑘𝑒𝑡 +

∑
𝑙,𝑡−1

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑎𝑓𝑡𝑒𝑟𝑏𝑖𝑟𝑡ℎ
𝑠𝑒𝑙𝑙 ∗ 𝑤𝑝𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘

𝑚𝑎𝑟𝑘𝑒𝑡 + ∑
𝑙,𝑡−1

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑎𝑡𝑒𝑛𝑑𝑜𝑓𝑝𝑒𝑟𝑖𝑜𝑑
𝑠𝑒𝑙𝑙 ∗ 𝑤𝑝𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘

𝑚𝑎𝑟𝑘𝑒𝑡 +
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∑
𝑝,𝑡

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠
𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 ∗ 𝐶𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑐𝑜𝑠𝑡

𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠 ∗ 𝐶𝑁𝑌 𝐼𝐷𝑤𝑐

+ ∑
𝑝,𝑡

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠
𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ ∗ 𝑒𝑝𝑠𝑒𝑒𝑑𝑙𝑖𝑛𝑔

𝑝𝑟𝑖𝑐𝑒 ∗ 𝑆𝐷 ∗ 𝐶𝑁𝑌 𝐼𝐷𝑤𝑐+

∑
ℎ,𝑙𝑝,𝑡

𝑋ℎℎ𝑙𝑎𝑏𝑜𝑟
𝑠𝑒𝑙𝑙 ∗ 𝑝𝑜𝑓𝑓−𝑓𝑎𝑟𝑚

𝑤𝑎𝑔𝑒 + ∑
𝑐𝑠,𝑡

𝑋𝑙𝑜𝑎𝑛
𝑡𝑎𝑘𝑒 + (1 + 𝑟𝑑𝑒𝑝𝑜𝑠𝑖𝑡

𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑟𝑎𝑡𝑒) ∗ 𝑋𝑐𝑎𝑠ℎ
𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑡

−

∑
𝑖,𝑡

𝑋𝑖𝑛𝑝𝑢𝑡𝑠
𝑏𝑢𝑦 ∗ 𝑒𝑝𝑖𝑛𝑝𝑢𝑡𝑝𝑟𝑖𝑐𝑒

𝑚𝑎𝑟𝑘𝑒𝑡 ∗ 𝐶𝑁𝑌 𝐼𝐷𝑤𝑐 − ∑
𝑐,𝑠,𝑡

𝑋𝑓𝑜𝑜𝑑
𝑠ℎ𝑜𝑐𝑘𝑏𝑢𝑦 ∗ 𝑤𝑝𝑐𝑟𝑜𝑝

𝑚𝑎𝑟𝑘𝑒𝑡∗𝑝𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

−

∑
𝑙,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘
𝑏𝑢𝑦 ∗ 𝑤𝑝𝑏𝑜𝑢𝑔ℎ𝑡𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘

𝑚𝑎𝑟𝑘𝑒𝑡 ∗ 𝑝𝑡𝑜𝑝𝑢𝑝
𝑏𝑢𝑦𝑖𝑛𝑔 ∗ 𝐶𝑁𝑌 𝐵𝐿𝑤𝑐 ∗ 𝑃𝑆𝐿𝑃𝑂𝐶𝐴−

∑
𝑙,𝑡−1

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘
𝑘𝑒𝑒𝑝 ∗ 𝐶𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑐𝑜𝑠𝑡

𝑘𝑒𝑒𝑝𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘 ∗ 𝐶𝑁𝑌 𝐼𝐷𝑤𝑐−

∑
𝑙,𝑡−1

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘
𝑟𝑎𝑖𝑠𝑒 ∗ 𝐶𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑐𝑜𝑠𝑡

𝑟𝑎𝑖𝑠𝑒𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘 ∗ 𝐶𝑁𝑌 𝐼𝐷𝑤𝑐

− ∑
𝑝,𝑡−1

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
𝑠𝑒𝑙𝑙 ∗ 𝑝𝐴𝐷

𝑝𝑟𝑖𝑐𝑒𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ∗ 𝑒𝑝𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
𝑚𝑎𝑟𝑘𝑒𝑡

− ∑
𝑡

𝑋𝑜𝑥𝑒𝑛
ℎ𝑖𝑟𝑒 ∗ 𝑝𝑝𝑎𝑖𝑟𝑜𝑓𝑜𝑥𝑒𝑛𝑝𝑒𝑟𝑑𝑎𝑦

𝑝𝑟𝑖𝑐𝑒 ∗ 𝐶𝑁𝑌 𝐼𝐷𝑤𝑐 − ∑
𝑡

𝑋𝑙𝑎𝑏𝑜𝑟
ℎ𝑖𝑟𝑒 ∗ 𝑝𝑙𝑎𝑏𝑜𝑟

𝑤𝑎𝑔𝑒 ∗ 𝐶𝑁𝑌 𝐼𝐷𝑤𝑐

− (1 + 𝑟𝑑𝑒𝑝𝑜𝑠𝑖𝑡
𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑟𝑎𝑡𝑒) ∗ ∑

𝑐𝑠,𝑡−1
𝑋𝑙𝑜𝑎𝑛

𝑡𝑎𝑘𝑒 ≥ 𝑀𝐶𝐶𝑡 + 𝐶𝑇 𝑈𝑤𝑐

𝑀𝐶𝐶𝑡𝑖𝑠𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝑐𝑎𝑠ℎ𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑜𝑓𝑡ℎ𝑒𝑎𝑔𝑒𝑛𝑡𝑎𝑡𝑡𝑖𝑚𝑒𝑡.
𝑤𝑝 = 𝑤𝑜𝑟𝑠𝑡 𝑐𝑎𝑠𝑒 𝑝𝑟𝑖𝑐𝑒𝑠
𝐶𝑁𝑌 𝐼𝐷𝑤𝑐 = 1, 𝑖𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑤𝑜𝑟𝑠𝑡 𝑐𝑎𝑠𝑒 𝑖𝑛𝑝𝑢𝑡 𝑑𝑒𝑚𝑎𝑛𝑑 𝑛𝑒𝑥𝑡 𝑦𝑒𝑎𝑟
𝐶𝑁𝑌 𝐵𝐿𝑤𝑐 = 1, 𝑖𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑤𝑜𝑟𝑠𝑡 𝑐𝑎𝑠𝑒 𝑝𝑟𝑖𝑐𝑒𝑠 𝑡𝑜 𝑏𝑢𝑦 𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘
𝑃𝑆𝐿𝑃 𝑂𝐶𝐴 = 0.5, 𝑖𝑠 𝑝𝑟𝑖𝑐𝑒 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑢𝑝 𝑓𝑎𝑐𝑡𝑜𝑟 𝑡𝑜 𝑠𝑒𝑙𝑙 𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘
𝑃𝑆𝐿𝑃 𝑂𝐶𝐴𝑊𝐶 = 2, 𝑖𝑠 𝑝𝑟𝑖𝑐𝑒 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑢𝑝 𝑓𝑎𝑐𝑡𝑜𝑟 𝑡𝑜 𝑏𝑢𝑦 𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘 𝑖𝑛 𝑤𝑜𝑟𝑠𝑡 𝑐𝑎𝑠𝑒𝑠
𝐶𝑇 𝑈𝑤𝑐 = 0, 𝑖𝑠 𝑤𝑜𝑟𝑠𝑡 𝑐𝑎𝑠𝑒 𝑐𝑎𝑠ℎ 𝑡𝑜𝑝 𝑢𝑝

Final static equilibrium cash balances

Shock cash balance at t=T

At the final period where there is shock in the previous period the net cash flow should
be greater than or equal to the minimum cash requirement of the agent plus a shock
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year cash to up.

∑
𝑐,𝑠,𝑡

𝑋𝑠ℎ𝑜𝑐𝑘𝑐𝑟𝑜𝑝ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝐹𝑆𝐸
𝑠𝑒𝑙𝑙 ∗ 𝑤𝑝𝑐𝑟𝑜𝑝

𝑚𝑎𝑟𝑘𝑒𝑡 ∗ 𝑝𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 + ∑

𝑙,𝑡
𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘

𝑠𝑒𝑙𝑙 ∗ 𝑒𝑝𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘
𝑚𝑎𝑟𝑘𝑒𝑡 +

∑
𝑙,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝐹𝑆𝐸
𝑠𝑒𝑙𝑙 ∗ 𝑤𝑝𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘

𝑚𝑎𝑟𝑘𝑒𝑡 + ∑
𝑝,𝑡

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠
𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 ∗ 𝐶𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑐𝑜𝑠𝑡

𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠 ∗ 𝐶𝑁𝑌 𝐼𝐷𝑤𝑐+

∑
𝑝,𝑡

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠
𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ ∗ 𝑒𝑝𝑠𝑒𝑒𝑑𝑙𝑖𝑛𝑔

𝑝𝑟𝑖𝑐𝑒 ∗ 𝑆𝐷 ∗ 𝐶𝑁𝑌 𝐼𝐷𝑤𝑐 + ∑
ℎ,𝑙𝑝,𝑡

𝑋ℎℎ𝑙𝑎𝑏𝑜𝑟
𝑠𝑒𝑙𝑙 ∗ 𝑝𝑜𝑓𝑓−𝑓𝑎𝑟𝑚

𝑤𝑎𝑔𝑒 +

∑
𝑐𝑠,𝑠,𝑡

𝑋𝑠ℎ𝑜𝑐𝑘𝑙𝑜𝑎𝑛
𝑡𝑎𝑘𝑒 + 𝑋𝑐𝑎𝑠ℎ

𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑡
− ∑

𝑖,𝑡
𝑋𝑖𝑛𝑝𝑢𝑡𝑠

𝑏𝑢𝑦 ∗ 𝑒𝑝𝑖𝑛𝑝𝑢𝑡𝑝𝑟𝑖𝑐𝑒
𝑚𝑎𝑟𝑘𝑒𝑡 ∗ 𝐶𝑁𝑌 𝐼𝐷𝑤𝑐−

∑
𝑐,𝑠,𝑡

𝑋𝑓𝑜𝑜𝑑
𝑠ℎ𝑜𝑐𝑘𝑏𝑢𝑦 ∗ 𝑤𝑝𝑐𝑟𝑜𝑝

𝑚𝑎𝑟𝑘𝑒𝑡∗𝑝𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

− ∑
𝑠,𝑡

𝑋𝑓𝑜𝑟𝑔𝑜𝑛𝑒
𝑠ℎ𝑜𝑐𝑘𝑐𝑎𝑠ℎ𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛−

∑
𝑙,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝐹𝑆𝐸
𝑏𝑢𝑦 ∗ 𝑤𝑝𝑏𝑜𝑢𝑔ℎ𝑡𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘

𝑚𝑎𝑟𝑘𝑒𝑡 ∗ 𝑝𝑡𝑜𝑝𝑢𝑝
𝑏𝑢𝑦𝑖𝑛𝑔 ∗ 𝐶𝑁𝑌 𝐵𝐿𝑤𝑐 ∗ 𝑃𝑆𝐿𝑃𝑂𝐶𝐴−

∑
𝑙,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝐹𝑆𝐸
𝑘𝑒𝑒𝑝 ∗ 𝐶𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑐𝑜𝑠𝑡

𝑘𝑒𝑒𝑝𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘 ∗ 𝐶𝑁𝑌 𝐼𝐷𝑤𝑐 − ∑
𝑙,𝑡

𝑋𝑠ℎ𝑜𝑐𝑘𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝐹𝑆𝐸
𝑠𝑒𝑙𝑙 ∗ 𝑤𝑝𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘

𝑚𝑎𝑟𝑘𝑒𝑡 −

∑
𝑝,𝑡

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
𝑠𝑒𝑙𝑙 ∗ 𝑝𝐴𝐷

𝑝𝑟𝑖𝑐𝑒𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ∗ 𝑒𝑝𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
𝑚𝑎𝑟𝑘𝑒𝑡 −

∑
𝑡

𝑋𝑜𝑥𝑒𝑛
ℎ𝑖𝑟𝑒 ∗ 𝑝𝑝𝑎𝑖𝑟𝑜𝑓𝑜𝑥𝑒𝑛𝑝𝑒𝑟𝑑𝑎𝑦

𝑝𝑟𝑖𝑐𝑒 ∗ 𝐶𝑁𝑌 𝐼𝐷𝑤𝑐−

∑
𝑡

𝑋𝑙𝑎𝑏𝑜𝑟
ℎ𝑖𝑟𝑒 ∗ 𝑝𝑙𝑎𝑏𝑜𝑟

𝑤𝑎𝑔𝑒 ∗ 𝐶𝑁𝑌 𝐼𝐷𝑤𝑐 − (1 + 𝑟𝑑𝑒𝑝𝑜𝑠𝑖𝑡
𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑟𝑎𝑡𝑒) ∗ ∑

𝑐𝑠,𝑡−1
𝑋𝑙𝑜𝑎𝑛

𝑡𝑎𝑘𝑒 ≥ 𝑀𝐶𝐶𝑡 + 𝐶𝑇 𝑈𝑤𝑐
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∑
𝑖,𝑡

𝑋𝑖𝑛𝑝𝑢𝑡𝑠
𝑏𝑢𝑦 ∗ 𝑒𝑝𝑖𝑛𝑝𝑢𝑡𝑝𝑟𝑖𝑐𝑒

𝑚𝑎𝑟𝑘𝑒𝑡 + ∑
𝑐,𝑡

𝑋𝑏𝑜𝑢𝑔ℎ𝑡𝑐𝑟𝑜𝑝𝑠
𝑐𝑜𝑛𝑠𝑢𝑚𝑒 ∗ 𝑒𝑝𝑏𝑜𝑢𝑔ℎ𝑡𝑐𝑟𝑜𝑝𝑠

𝑚𝑎𝑟𝑘𝑒𝑡 ∗ 𝑝𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 +

∑
𝑙,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘
𝑏𝑢𝑦 ∗ 𝑒𝑝𝑏𝑜𝑢𝑔ℎ𝑡𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘

𝑚𝑎𝑟𝑘𝑒𝑡 ∗ 𝑝𝑡𝑜𝑝𝑢𝑝
𝑏𝑢𝑦𝑖𝑛𝑔

+ ∑
𝑙,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝐹𝑆𝐸
𝑏𝑢𝑦 ∗ 𝑒𝑝𝑏𝑜𝑢𝑔ℎ𝑡𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘

𝑚𝑎𝑟𝑘𝑒𝑡 ∗ 𝑝𝑡𝑜𝑝𝑢𝑝
𝑏𝑢𝑦𝑖𝑛𝑔 ∗ 𝑃𝑆𝐿𝑃𝑂𝐶𝐴+

∑
𝑡

𝑋𝑙𝑎𝑏𝑜𝑟
ℎ𝑖𝑟𝑒 ∗ 𝑒𝑝𝑙𝑎𝑏𝑜𝑟

𝑤𝑎𝑔𝑒+ ∑
𝑡

𝑋𝑜𝑥𝑒𝑛
ℎ𝑖𝑟𝑒 ∗ 𝑒𝑝𝑝𝑎𝑖𝑟𝑜𝑓𝑜𝑥𝑒𝑛𝑝𝑒𝑟𝑑𝑎𝑦

𝑝𝑟𝑖𝑐𝑒 +

∑
𝑡−1

𝑋𝑒𝑛𝑑𝑜𝑓𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑝𝑒𝑟𝑖𝑜𝑑
𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑐𝑎𝑠ℎ + ∑

𝑝,𝑡
𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠

𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 ∗ 𝐶𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑐𝑜𝑠𝑡
𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠+
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∑
𝑝,𝑡

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠
𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ ∗ 𝑒𝑝𝑠𝑒𝑒𝑑𝑙𝑖𝑛𝑔

𝑝𝑟𝑖𝑐𝑒 ∗ 𝑆𝐷 + ∑
𝑙,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝐹𝑆𝐸
𝑘𝑒𝑒𝑝 ∗ 𝐶𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑐𝑜𝑠𝑡

𝑘𝑒𝑒𝑝𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘 + 𝑋𝑐𝑎𝑠ℎ
𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑡

+

∑
𝑐𝑠,𝑡−1

𝑋𝑙𝑜𝑎𝑛
𝑡𝑎𝑘𝑒 ∗ (1 + 𝐷𝐼𝐹 ∗ 𝑟𝑙𝑜𝑎𝑛

𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑟𝑎𝑡𝑒) − ∑
𝑐,𝑡−1

𝑋𝑐𝑟𝑜𝑝ℎ𝑎𝑟𝑣𝑒𝑠𝑡
𝑠𝑒𝑙𝑙 ∗ 𝑒𝑝𝑐𝑟𝑜𝑝𝑝𝑟𝑖𝑐𝑒

𝑚𝑎𝑟𝑘𝑒𝑡 −

∑
𝑙,𝑡−1

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
𝑠𝑒𝑙𝑙 ∗ 𝑒𝑝𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

𝑚𝑎𝑟𝑘𝑒𝑡 −

∑
𝑝,𝑡−1

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
𝑠𝑒𝑙𝑙 ∗ 𝑝𝐴𝐷

𝑝𝑟𝑖𝑐𝑒𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ∗ 𝑒𝑝𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
𝑚𝑎𝑟𝑘𝑒𝑡 −

∑
ℎ,𝑙𝑝,𝑡

𝑋ℎℎ𝑙𝑎𝑏𝑜𝑟
𝑠𝑒𝑙𝑙 ∗ 𝑝𝑜𝑓𝑓−𝑓𝑎𝑟𝑚

𝑤𝑎𝑔𝑒 − ∑
𝑡−1

𝑋𝑠𝑡𝑎𝑟𝑡𝑜𝑓𝑛𝑒𝑥𝑡𝑦𝑒𝑎𝑟
𝑐𝑎𝑠ℎ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 − ∑

𝑐𝑠,𝑡−1
𝑋𝑐𝑎𝑠ℎ

𝑑𝑒𝑝𝑜𝑠𝑖𝑡 ∗ (1 + 𝑟𝑑𝑒𝑝𝑜𝑠𝑖𝑡
𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑟𝑎𝑡𝑒) ≤ 0
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∑
𝑖,𝑡

𝑋𝑖𝑛𝑝𝑢𝑡𝑠
𝑏𝑢𝑦 ∗ 𝑒𝑝𝑖𝑛𝑝𝑢𝑡𝑝𝑟𝑖𝑐𝑒

𝑚𝑎𝑟𝑘𝑒𝑡 + ∑
𝑐,𝑡

𝑋𝑏𝑜𝑢𝑔ℎ𝑡𝑐𝑟𝑜𝑝𝑠
𝑐𝑜𝑛𝑠𝑢𝑚𝑒 ∗ 𝑒𝑝𝑏𝑜𝑢𝑔ℎ𝑡𝑐𝑟𝑜𝑝𝑠

𝑚𝑎𝑟𝑘𝑒𝑡 ∗ 𝑝𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 +

∑
𝑙,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝐹𝑆𝐸
𝑏𝑢𝑦 ∗ 𝑒𝑝𝑏𝑜𝑢𝑔ℎ𝑡𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘

𝑚𝑎𝑟𝑘𝑒𝑡 ∗ 𝑝𝑡𝑜𝑝𝑢𝑝
𝑏𝑢𝑦𝑖𝑛𝑔 ∗ 𝑃𝑆𝐿𝑃𝑂𝐶𝐴 + ∑

𝑡
𝑋𝑙𝑎𝑏𝑜𝑟

ℎ𝑖𝑟𝑒 ∗ 𝑒𝑝𝑙𝑎𝑏𝑜𝑟
𝑤𝑎𝑔𝑒+

∑
𝑡

𝑋𝑜𝑥𝑒𝑛
ℎ𝑖𝑟𝑒 ∗ 𝑒𝑝𝑝𝑎𝑖𝑟𝑜𝑓𝑜𝑥𝑒𝑛𝑝𝑒𝑟𝑑𝑎𝑦

𝑝𝑟𝑖𝑐𝑒 + ∑
𝑡−1

𝑋𝑒𝑛𝑑𝑜𝑓𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑝𝑒𝑟𝑖𝑜𝑑
𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑐𝑎𝑠ℎ +

∑
𝑝,𝑡

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠
𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 ∗ 𝐶𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑐𝑜𝑠𝑡

𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠+ ∑
𝑝,𝑡

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠
𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ ∗ 𝑒𝑝𝑠𝑒𝑒𝑑𝑙𝑖𝑛𝑔

𝑝𝑟𝑖𝑐𝑒 ∗ 𝑆𝐷+

∑
𝑙,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝐹𝑆𝐸
𝑘𝑒𝑒𝑝 ∗ 𝐶𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑐𝑜𝑠𝑡

𝑘𝑒𝑒𝑝𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘 + 𝑆𝐼𝐹 ∗ ∑
𝑐𝑠,𝑡

𝑋𝑙𝑜𝑎𝑛
𝑠ℎ𝑜𝑐𝑘𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑡𝑎𝑘𝑒 ∗ 𝑟𝑙𝑜𝑎𝑛

𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑟𝑎𝑡𝑒−

∑
𝑐,𝑡

𝑋𝑐𝑟𝑜𝑝ℎ𝑎𝑟𝑣𝑒𝑠𝑡
𝑠𝑒𝑙𝑙 ∗ 𝑒𝑝𝑐𝑟𝑜𝑝𝑝𝑟𝑖𝑐𝑒

𝑚𝑎𝑟𝑘𝑒𝑡 − ∑
𝑙,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
𝑠𝑒𝑙𝑙 ∗ 𝑒𝑝𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

𝑚𝑎𝑟𝑘𝑒𝑡 −

∑
𝑙,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝐹𝑆𝐸
𝑠𝑒𝑙𝑙 ∗ 𝑒𝑝𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘

𝑚𝑎𝑟𝑘𝑒𝑡 − ∑
ℎ,𝑙𝑝,𝑡

𝑋ℎℎ𝑙𝑎𝑏𝑜𝑟
𝑠𝑒𝑙𝑙 ∗ 𝑝𝑜𝑓𝑓−𝑓𝑎𝑟𝑚

𝑤𝑎𝑔𝑒 − ∑
𝑐𝑠,𝑡

𝑋𝑐𝑎𝑠ℎ
𝑑𝑒𝑝𝑜𝑠𝑖𝑡 ∗ 𝑟𝑑𝑒𝑝𝑜𝑠𝑖𝑡

𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑟𝑎𝑡𝑒 ≤ 0

Minimum cash consumption
At any time 𝑡 the total amount of cash withdrawn at the end of the previous period
should at least cover household’s minimum consumption requirement 𝑀𝐶𝐶𝑡.

∑
𝑡−1

𝑋𝑒𝑛𝑑𝑜𝑓𝑝𝑒𝑟𝑖𝑜𝑑
𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑐𝑎𝑠ℎ+𝑋𝑐𝑎𝑠ℎ𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝑓𝑜𝑟𝑔𝑜𝑛𝑒 ≥ 𝑀𝐶𝐶𝑡

Minimum cash consumption FSE
In the last period 𝑡 = 𝑇 the total amount of cash withdrawn should at least cover
household’s minimum consumption requirement at the same period 𝑀𝐶𝐶𝑡.
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∑
𝑡

𝑋𝑒𝑛𝑑𝑜𝑓𝑝𝑒𝑟𝑖𝑜𝑑
𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑐𝑎𝑠ℎ+𝑋𝑐𝑎𝑠ℎ𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝑓𝑜𝑟𝑔𝑜𝑛𝑒 ≥ 𝑀𝐶𝐶𝑡

Investment

Perennials
Perennials are defined as assets. Agents have three tree perennials as options for
investment. 𝑃𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠 = 𝐴𝑐𝑎𝑐𝑖𝑎𝐷𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑠𝑒 (𝐴𝐷) , 𝐵𝑎𝑚𝑏𝑜𝑜 (𝐵𝐴𝑀) , 𝐸𝑢𝑐𝑎𝑙𝑦𝑝𝑡𝑢𝑠 (𝐸𝑈𝐶)
Acacia Decurrense and bamboo can only grow in the Dega AEZ while eucalyptus
can grow anywhere. The lifetime of investment in 𝐴𝐷, 𝐵𝐴𝑀 𝑎𝑛𝑑 𝐸𝑈𝐶 is 7,
4 and 9 years respectively. Cutting down is harvesting for perennials. There
are different harvest options for each perennial. 𝑃𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑜𝑝𝑡𝑖𝑜𝑛𝑠 (𝑜) =
𝑙𝑜𝑔𝑠 (𝑐𝑢𝑙𝑚𝑠) , 𝑐ℎ𝑎𝑟𝑐𝑜𝑎𝑙, 𝑠𝑒𝑙𝑙𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 Charcoal is only applicable for AD. Establishing,
maintaining and cutting down plantation are integer activities.

Plantation capacity at establishment age=0 & t=1

At 𝑡 = 1 and age (𝑎 = 0) the total area of plated trees is strictly equal to the area of
trees maintained in the same period.

∑
𝑝, 𝑡=1

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙
𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ − ∑

𝑝,𝑡=1, 𝑎=0
𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠

𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 == 0

Plantation capacity (age>0) & t=1

At 𝑡 = 1 and age (𝑎 > 0) the total area of trees harvested (cut down) and the total area
of trees maintained (kept) is strictly equal to the area of land covered by trees in the
previous period. Where 𝑇 𝑃𝐴𝑡−1 is total area covered with trees in the previous year

∑
𝑝,𝑜, 𝑡=1,𝑎>0

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙
𝑐𝑢𝑡𝑑𝑜𝑤𝑛 + ∑

𝑝,𝑡=1, 𝑎>0
𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠

𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 == 𝑇 𝑃𝐴𝑡−1

Plantation capacity at establishment (age=0) & t>1

At 𝑡 > 1 and age (𝑎 = 0) the total area of plated trees is strictly equal to the area of
trees maintained in the same period.

∑
𝑝, 𝑡>1

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙
𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ − ∑

𝑝,𝑡>1, 𝑎=0
𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠

𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 == 0

Plantation capacity age>0 & t>1

At 𝑡 > 1 and age (𝑎 > 0) the total area of trees harvested (cut down) and the total
area of trees maintained (kept) is strictly equal to the area of trees maintained (kept)
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in the previous period.

∑
𝑝,𝑜, 𝑡,𝑎

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙
𝑐𝑢𝑡𝑑𝑜𝑤𝑛 + ∑

𝑝,𝑡, 𝑎
𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠

𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 == ∑
𝑝,𝑡−1, 𝑎−1

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠
𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛

Forestry product balance

The total amount of perennial products (𝑣) sold at any time t should be less than or
equal to the amount harvested at the same period.

v = {AD logs, AD leaves, AD charcoal, AD standing logs, BAM culms, EU C logs, EU
C leaves}

∑
𝑝,𝑣, 𝑡

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
𝑠𝑒𝑙𝑙 ≤ ∑

𝑝,𝑜, 𝑡,𝑎
𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙

𝑐𝑢𝑡𝑑𝑜𝑤𝑛

Plantation capacity final static equilibrium

At the final period 𝑡 = 𝑇 for all tree ages 𝑎 > 0 the total area of plantation harvested,
and total are area of perennial land maintained must be equal to total area maintained
in the previous age.

∑
𝑝,𝑜, 𝑡=𝑇 ,𝑎>0

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙
𝑐𝑢𝑡𝑑𝑜𝑤𝑛 + ∑

𝑝,𝑡=𝑇 , 𝑎>0
𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠

𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 − ∑
𝑝,𝑡=𝑇 , 𝑎−1

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠
𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 = 0

Plantation capacity transition to final static equilibrium

At the final period 𝑡 = 𝑇 for all tree ages a>0 the total area of plantation harvested,
and total are area of perennial land maintained must be equal to total area maintained
in the previous age and in the previous period.

∑
𝑝,𝑜, 𝑡=𝑇 ,𝑎>0

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙
𝑐𝑢𝑡𝑑𝑜𝑤𝑛 + ∑

𝑝,𝑡=𝑇 , 𝑎>0
𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠

𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 − ∑
𝑝,𝑇 −1, 𝑎−1

𝑋𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙𝑠
𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 = 0

Livestock
Agents invest in livestock. Livestock in the model is introduced as an asset. Livestock
production options 𝑙 for agents are: 𝑙 = 𝑐𝑜𝑤, 𝑏𝑢𝑙𝑙, 𝑟𝑎𝑚, 𝑒𝑤𝑒, 𝑑𝑜𝑒, 𝑏𝑢𝑐𝑘 Cow and bull
have a lifetime of 9 years while ram, ewe, doe and buck have a lifetime of 6 years.

Inputs

Housing capacity for livestock t<T

In all periods except the last period, the total housing requirement of livestock of all
ages kept and livestock of less than a year old raised (which will be turned in to calf at

118



the end of the period) should not be bigger than the general livestock housing limit.

∑
𝑙,𝑎,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘
𝑘𝑒𝑒𝑝 ∗ 𝐻𝑅𝑙,𝑎 + ∑

𝑙,𝑡
𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘

𝑟𝑎𝑖𝑠𝑒 ∗ 𝐻𝑅𝑙,𝑎=1 ≤ 𝐺𝐿𝐻 𝑙

𝐺𝐿𝐻 𝑙 = 10 𝑢𝑛𝑖𝑡, 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘 ℎ𝑜𝑢𝑠𝑖𝑛𝑔 𝑙𝑖𝑚𝑖𝑡
𝐻𝑅𝑙,𝑎 𝑖𝑠 ℎ𝑜𝑢𝑠𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘 𝑏𝑦 𝑎𝑔𝑒𝑠

𝐻𝑅𝑙,𝑎 = {1 , cow and bull
0 , ram, ewe, doe and buck

Housing capacity for livestock FSE t=T

In the last period, the total housing requirement of livestock of all ages kept should not
be bigger than the general livestock housing limit.

∑
𝑙,𝑎,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝐹𝑆𝐸
𝑘𝑒𝑒𝑝 ∗ 𝐻𝑅𝑙,𝑎 + ∑

𝑙,𝑡
𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘

𝑟𝑎𝑖𝑠𝑒 ∗ 𝐻𝑅𝑙,𝑎=1 ≤ 𝐺𝐿𝐻 𝑙

Feeding balance t<T

In all periods except the last period, the total feed requirement of livestock of all ages
kept and livestock of less than a year old raised should not be bigger than the feed
capacity from communal property and the amount of pasture grown on own plot in the
same period.

∑
𝑙,𝑎,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘
𝑘𝑒𝑒𝑝 ∗ 𝐹𝑅𝑙,𝑎 + ∑

𝑙,𝑡
𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘

𝑟𝑎𝑖𝑠𝑒 ∗ 𝐹𝑅𝑙,𝑎=1 − ∑
𝑐

𝑋𝑝𝑎𝑠𝑡𝑢𝑟𝑒
𝑔𝑟𝑜𝑤 ≤ 𝐹𝐶𝑃 𝑙

𝐹𝐶𝑃 𝑙 = 50ℎ𝑎, 𝑖𝑠 𝑓𝑒𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑓𝑟𝑜𝑚 𝑐𝑜𝑚𝑚𝑜𝑛 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (𝑐𝑜𝑚𝑚𝑢𝑛𝑎𝑙 𝑔𝑟𝑎𝑧𝑖𝑛𝑔)
𝐹𝑅𝑙,𝑎 𝑖𝑠 𝑓𝑒𝑒𝑑 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘 𝑏𝑦 𝑎𝑔𝑒𝑠

Feeding balance FSE t=T

In the last period, the total feed requirement of livestock of all ages kept should not
be bigger than the feed capacity from communal property and the amount of pasture
grown on own plot in the same period.

∑
𝑙,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝐹𝑆𝐸
𝑘𝑒𝑒𝑝 ∗ 𝐹𝑅𝑙,𝑎 − ∑

𝑐,𝑡
𝑋𝑝𝑎𝑠𝑡𝑢𝑟𝑒

𝑔𝑟𝑜𝑤 ≤ 𝐹𝐶𝑃 𝑙
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Livestock products
𝑅𝑎𝑤 𝑜𝑛𝑔𝑜𝑖𝑛𝑔 𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 = 𝑐𝑜𝑤 𝑚𝑖𝑙𝑘
𝑅𝑎𝑤 𝑓𝑖𝑛𝑎𝑙 𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 = 𝑏𝑒𝑒𝑓, 𝑚𝑢𝑡𝑡𝑜𝑛
𝐵𝑢𝑡𝑡𝑒𝑟 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑛𝑙𝑦 𝑏𝑜𝑢𝑔ℎ𝑡 𝑎𝑛𝑑 𝑠𝑜𝑙𝑑 𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘 𝑝𝑟𝑜𝑑𝑢𝑐𝑡
𝐴𝑔𝑒𝑛𝑡𝑠 𝑐𝑜𝑛𝑠𝑢𝑚𝑒 𝑏𝑢𝑡𝑡𝑒𝑟, 𝑐𝑜𝑤 𝑚𝑖𝑙𝑘, 𝑐ℎ𝑒𝑒𝑠𝑒, 𝑏𝑒𝑒𝑓 𝑎𝑛𝑑 𝑚𝑢𝑡𝑡𝑜𝑛
𝑃 𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 = 𝑏𝑢𝑡𝑡𝑒𝑟, 𝑐ℎ𝑒𝑒𝑠𝑒

Milk use balance (for all t)

At any time t in the planning periods the total amount of milk consumed at home
and used as an input to process cheese and butter should not be bigger than the total
amount of milk collected in the same period.

∑
𝑡

𝑋𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
𝑐𝑜𝑛𝑠𝑢𝑚𝑒 + ∑

𝑡
𝑋𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝑏𝑢𝑡𝑡𝑒𝑟𝑎𝑛𝑑𝑐ℎ𝑒𝑒𝑠𝑒

𝑐𝑜𝑛𝑠𝑢𝑚𝑒 ∗ 𝑀𝑅𝑙𝑝+

∑
𝑡

𝑋𝑏𝑢𝑡𝑡𝑒𝑟
𝑠𝑒𝑙𝑙 ∗ 𝑀𝑅𝑙𝑝 − ∑

𝑡
𝑋𝑚𝑖𝑙𝑘

𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 ≤ 0

Milk requirement of livestock products (𝑀𝑅𝑙𝑝) per 1 kg of butter and cheese is 16
litters and 10 litters respectively.

Milk product balance t<T

For all periods except the last period, the total amount of milk collected is strictly equal
to the total milk collecting capacity of the agent.

∑
𝑡

𝑋𝑚𝑖𝑙𝑘
𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 − ∑

𝑙,𝑎,𝑡
𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘

𝑘𝑒𝑒𝑝 ∗ 𝑄𝑙,𝑎 ≤ 0

𝑄𝑙,𝑎 𝑖𝑠 𝑎𝑛𝑛𝑢𝑎𝑙 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘 𝑡𝑦𝑝𝑒.
𝑒.𝑔. 𝑏𝑢𝑙𝑙 𝑜𝑓 𝑎𝑔𝑒 9 𝑔𝑖𝑣𝑒𝑠 300𝑘𝑔 𝑜𝑓 𝑏𝑒𝑒𝑓

Milk product balance FSE t=T

In the last period, the total amount of milk collected is strictly equal to the total milk
collecting capacity of the agent.

∑
𝑡

𝑋𝑚𝑖𝑙𝑘
𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 − ∑

𝑙,𝑎,𝑡
𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝐹𝑆𝐸

𝑘𝑒𝑒𝑝 ∗ 𝑄𝑙,𝑎
𝐹𝑆𝐸 ≤ 0
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Meat product balance t<T

For all periods except the last period, the total amount of beef and mutton collected
should not be bigger than the total meat obtained from slaughtered animals at the end
of the previous period.

∑
𝑙,𝑡

𝑋𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑏𝑒𝑒𝑓𝑎𝑛𝑑𝑚𝑢𝑡𝑡𝑜𝑛
𝑐𝑜𝑛𝑠𝑢𝑚𝑒 − ∑

𝑙,𝑎,𝑡−1
𝑋𝑒𝑛𝑑𝑜𝑓𝑝𝑒𝑟𝑖𝑜𝑑

𝑠𝑙𝑎𝑢𝑔ℎ𝑡𝑒𝑟 ∗ 𝑄𝑙,𝑎 ≤ 0

Meat product balance FSE t=T

In the last period, the total amount of beef and mutton collected should not be bigger
than the total meat obtained from slaughtered animals at the end of the previous period.

∑
𝑙,𝑡

𝑋𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑏𝑒𝑒𝑓𝑎𝑛𝑑𝑚𝑢𝑡𝑡𝑜𝑛
𝑐𝑜𝑛𝑠𝑢𝑚𝑒 − ∑

𝑙,𝑎,𝑡
𝑋𝑒𝑛𝑑𝑜𝑓𝑝𝑒𝑟𝑖𝑜𝑑𝐹𝑆𝐸

𝑠𝑙𝑎𝑢𝑔ℎ𝑡𝑒𝑟 ∗ 𝑄𝑙,𝑎
𝐹𝑆𝐸 ≤ 0

Oxen draft power
Pairs of oxen t>T

In all periods except the last period, available pairs of oxen should not be bigger than
the available bulls who can plough.

2 ∗ ∑
𝑙=𝑏𝑢𝑙𝑙,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘
𝑘𝑒𝑒𝑝 − ∑

𝑡
𝑋𝑜𝑥𝑒𝑛𝑑𝑟𝑎𝑓𝑡𝑝𝑜𝑤𝑒𝑟

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 ≤ 0

𝐵𝑢𝑙𝑙𝑠 𝑐𝑎𝑛 𝑝𝑙𝑜𝑢𝑔ℎ 𝑎𝑓𝑡𝑒𝑟 𝑦𝑒𝑎𝑟 2 𝑡𝑜 𝑦𝑒𝑎𝑟 9
𝑃 𝑙𝑜𝑢𝑔ℎ𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 2 𝑜𝑥𝑒𝑛

Pairs of oxen t=T

In the last period, available pairs of oxen should not be bigger than the available bulls
who can plough.

2 ∗ ∑
𝑙=𝑏𝑢𝑙𝑙,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝐹𝑆𝐸
𝑘𝑒𝑒𝑝 − ∑

𝑡
𝑋𝑜𝑥𝑒𝑛𝑑𝑟𝑎𝑓𝑡𝑝𝑜𝑤𝑒𝑟

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 ≤ 0

Oxen draft power for all t

In all periods the total quantity of oxen draft power demanded to plough should not be
bigger than the total amount of hired oxen and oxen draft power from own livestock.
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∑
𝑐,𝑡

𝑋𝑐𝑟𝑜𝑝𝑠
𝑔𝑟𝑜𝑤 ∗ 𝐿𝑑𝑟𝑎𝑓𝑡𝑝𝑜𝑤𝑒𝑟

𝑑𝑑 − ∑
𝑙𝑝,𝑡

𝑋𝑜𝑥𝑒𝑛
ℎ𝑖𝑟𝑒 − ∑

𝑡
𝑋𝑜𝑥𝑒𝑛𝑑𝑟𝑎𝑓𝑡𝑝𝑜𝑤𝑒𝑟

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 ∗ 𝐿𝐿𝑃 ∗ 𝑂𝑥𝐻𝑑𝑎𝑦 ≤ 0

𝑂𝑥𝐻𝑑𝑎𝑦 = 6, 𝑖𝑠 𝑜𝑥𝑒𝑛 ℎ𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦
𝐿𝐿𝑃 𝑖𝑠 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑙𝑎𝑏𝑜𝑟 𝑝𝑒𝑟𝑖𝑜𝑑𝑠
𝑙𝑝 𝑖𝑠 𝑙𝑎𝑏𝑜𝑟 𝑝𝑒𝑟𝑖𝑜𝑑𝑠

Livestock balance
Livestock balance start of period (t<T) and a =0

In all periods except the last period, the total heads of new-born livestock kept, raised
or sold after birth is strictly equal to the total heads of new borne bought and new
offspring obtained in the same period.

∑
𝑙,𝑎=0,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘
𝑘𝑒𝑒𝑝 + ∑

𝑙,𝑡
𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘

𝑟𝑎𝑖𝑠𝑒 + ∑
𝑙,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑎𝑓𝑡𝑒𝑟𝑏𝑖𝑟𝑡ℎ
𝑠𝑒𝑙𝑙 −

∑
𝑙,𝑎=0,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘
𝑏𝑢𝑦 − ∑

𝑙,𝑎=0,𝑡
𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘

𝑘𝑒𝑒𝑝 ∗ 𝑃𝑟𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 = 0

𝑃𝑟𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 ℎ𝑎𝑣𝑖𝑛𝑔 𝑎𝑛 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔

𝑃𝑟𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 = {1/𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑐𝑜𝑢𝑛𝑡 , if livestock type can give offspring
0 , otherwise

Livestock balance start of period (t=0) and a=0

At the end of the period t=0, the total heads of new-born livestock kept, raised or sold
after birth is strictly equal to the total heads of livestock of age 1 available in the same
period.

∑
𝑙,𝑎=0,𝑡=0

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘
𝑘𝑒𝑒𝑝 + ∑

𝑙,𝑡
𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘

𝑟𝑎𝑖𝑠𝑒 + ∑
𝑙,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑎𝑓𝑡𝑒𝑟𝑏𝑖𝑟𝑡ℎ
𝑠𝑒𝑙𝑙 − 𝐿𝐻𝑎=1

𝑡=0 = 0

𝐿𝐻𝑎=1
𝑡=0 , is the total heads of age 1 livestock available as an initial asset for agents

before the beginning of the planning period.

Livestock balance end of period (0>=t>T) and a =1

In all periods including t=0 except the last period and for all livestock of age 1, the
total heads of 1-year old livestock sold at end of period, slaughtered at end of period,
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reserved for bad years and transferred to the next period is strictly equal to the total
heads of new-born livestock kept in the same period.

∑
𝑙,𝑎,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑎𝑡𝑒𝑛𝑑𝑜𝑓𝑝𝑒𝑟𝑖𝑜𝑑
𝑠𝑒𝑙𝑙 + ∑

𝑙,𝑎,𝑡
𝑋𝑒𝑛𝑑𝑜𝑓𝑝𝑒𝑟𝑖𝑜𝑑

𝑠𝑙𝑎𝑢𝑔ℎ𝑡𝑒𝑟 + ∑
𝑙,𝑎,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑓𝑜𝑟𝑠ℎ𝑜𝑐𝑘𝑐𝑎𝑠𝑒
𝑟𝑒𝑠𝑒𝑟𝑣𝑒 +

∑
𝑙,𝑎,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑡𝑜𝑛𝑒𝑥𝑡𝑝𝑒𝑟𝑖𝑜𝑑
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 − ∑

𝑙,𝑎−1,𝑡
𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘

𝑘𝑒𝑒𝑝 = 0

Livestock balance start of period (t<T) and a = 1

In all periods except the last period and for all livestock of age 1, the total heads
of 1-year old livestock kept is strictly equal to the total heads of 1-year old livestock
transferred from the previous period and the total heads of 1-year old livestock bought
in the same period.

∑
𝑙,𝑎−1,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘
𝑘𝑒𝑒𝑝 − ∑

𝑙,𝑎,𝑡
𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑡𝑜𝑛𝑒𝑥𝑡𝑝𝑒𝑟𝑖𝑜𝑑

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 − ∑
𝑙,𝑎=0,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘
𝑏𝑢𝑦 = 0

Livestock balance end of period (0>=t>T) and a>1

In all periods including t=0 except the last period and for all livestock of age 1, the
total heads of 1-year old livestock sold at end of period, slaughtered at end of period,
reserved for bad years and transferred to the next period is strictly equal to the total
heads of new-born livestock raised in the same period.

∑
𝑙,𝑎,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑎𝑡𝑒𝑛𝑑𝑜𝑓𝑝𝑒𝑟𝑖𝑜𝑑
𝑠𝑒𝑙𝑙 + ∑

𝑙,𝑎,𝑡
𝑋𝑒𝑛𝑑𝑜𝑓𝑝𝑒𝑟𝑖𝑜𝑑

𝑠𝑙𝑎𝑢𝑔ℎ𝑡𝑒𝑟 + ∑
𝑙,𝑎,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑓𝑜𝑟𝑠ℎ𝑜𝑐𝑘𝑐𝑎𝑠𝑒
𝑟𝑒𝑠𝑒𝑟𝑣𝑒 +

∑
𝑙,𝑎,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑡𝑜𝑛𝑒𝑥𝑡𝑝𝑒𝑟𝑖𝑜𝑑
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 − ∑

𝑙,𝑡
𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘

𝑟𝑎𝑖𝑠𝑒 = 0

Livestock balance end of period (t=0) and a>1

At t=0 and for all livestock of age greater than 1, the total heads of livestock sold at
end of period, slaughtered at end of period and transferred to the next period is strictly
equal to the total heads of livestock of age 2 and above available in the same period.

∑
𝑙,𝑎,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑎𝑡𝑒𝑛𝑑𝑜𝑓𝑝𝑒𝑟𝑖𝑜𝑑
𝑠𝑒𝑙𝑙 + ∑

𝑙,𝑎,𝑡
𝑋𝑒𝑛𝑑𝑜𝑓𝑝𝑒𝑟𝑖𝑜𝑑

𝑠𝑙𝑎𝑢𝑔ℎ𝑡𝑒𝑟 +

∑
𝑙,𝑎,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑡𝑜𝑛𝑒𝑥𝑡𝑝𝑒𝑟𝑖𝑜𝑑
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 𝐿𝐻𝑎>1

𝑡=0

123



Livestock balance end of period (t<T) and a>1

In all periods except the last period and for all livestock of age greater than 1, the total
heads of livestock sold at end of period, slaughtered at end of period, reserved for bad
years and transferred to the next period is strictly equal to the total heads of livestock
kept in the same period.

∑
𝑙,𝑎,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑎𝑡𝑒𝑛𝑑𝑜𝑓𝑝𝑒𝑟𝑖𝑜𝑑
𝑠𝑒𝑙𝑙 + ∑

𝑙,𝑎,𝑡
𝑋𝑒𝑛𝑑𝑜𝑓𝑝𝑒𝑟𝑖𝑜𝑑

𝑠𝑙𝑎𝑢𝑔ℎ𝑡𝑒𝑟 + ∑
𝑙,𝑎,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑓𝑜𝑟𝑠ℎ𝑜𝑐𝑘𝑐𝑎𝑠𝑒
𝑟𝑒𝑠𝑒𝑟𝑣𝑒 +

∑
𝑙,𝑎,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑡𝑜𝑛𝑒𝑥𝑡𝑝𝑒𝑟𝑖𝑜𝑑
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 − ∑

𝑙,𝑎−1,𝑡
𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘

𝑘𝑒𝑒𝑝 = 0

Livestock balance start of period (t<T) and a>1

In all periods except the last period and for all livestock of age 1, the total heads of
livestock kept is strictly equal to the total heads livestock transferred from the previous
period and the total heads livestock of age 2 and more bought in the same period.

∑
𝑙,𝑎,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘
𝑘𝑒𝑒𝑝 − ∑

𝑙,𝑎,𝑡−1
𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑡𝑜𝑛𝑒𝑥𝑡𝑝𝑒𝑟𝑖𝑜𝑑

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 − ∑
𝑙,𝑎,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘
𝑏𝑢𝑦 = 0

Livestock balance end of life (t=0) and a =A

At t=0 and for final age of livestock A, the total heads of livestock sold and slaughtered
at end of period is strictly equal to the total heads of livestock at their final age available
in the same period.

∑
𝑙,𝑎,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑎𝑡𝑒𝑛𝑑𝑜𝑓𝑝𝑒𝑟𝑖𝑜𝑑
𝑠𝑒𝑙𝑙 + ∑

𝑙,𝑎,𝑡
𝑋𝑒𝑛𝑑𝑜𝑓𝑝𝑒𝑟𝑖𝑜𝑑

𝑠𝑙𝑎𝑢𝑔ℎ𝑡𝑒𝑟 = 𝐿𝐻𝑎=𝐴
𝑡=0

Livestock balance end of life (t<T) and a =A

In all periods except the last period and for final age of livestock A, the total heads of
livestock sold and slaughtered at end of period is strictly equal to the total heads of
livestock at their final kept in the previous age in the same period.

∑
𝑙,𝑎,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑎𝑡𝑒𝑛𝑑𝑜𝑓𝑝𝑒𝑟𝑖𝑜𝑑
𝑠𝑒𝑙𝑙 + ∑

𝑙,𝑎,𝑡
𝑋𝑒𝑛𝑑𝑜𝑓𝑝𝑒𝑟𝑖𝑜𝑑

𝑠𝑙𝑎𝑢𝑔ℎ𝑡𝑒𝑟 − ∑
𝑙,𝑎−1,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘
𝑘𝑒𝑒𝑝 = 0

Livestock balance in case of shock (t<T)

In all periods except the last period and for all ages of livestock, the total heads of
livestock sold in bad years should not be bigger than the total heads of livestock reserved
for shocks in the same period.
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𝑃𝑟𝑠 ∗ ∑
𝑙,𝑡

𝑋𝑠ℎ𝑜𝑐𝑘𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘
𝑠𝑒𝑙𝑙 − ∑

𝑙,𝑠,𝑎,𝑡
𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑓𝑜𝑟𝑠ℎ𝑜𝑐𝑘𝑐𝑎𝑠𝑒

𝑟𝑒𝑠𝑒𝑟𝑣𝑒 ≤ 0

Livestock balance in FSE t=T

In the last period and for all final static equilibrium livestock classes, the total heads of
livestock sold at end of period, slaughtered at end of period and reserved for bad years
should not be bigger than the total heads of livestock kept and bought in the same
period.

1
𝑐𝑜𝑢𝑛𝑡 ∗ ∑

𝑙𝑓𝑠𝑒,𝑡
𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝐹𝑆𝐸

𝑘𝑒𝑒𝑝 + ∑
𝑙𝑓𝑠𝑒,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑎𝑡𝑒𝑛𝑑𝑜𝑓𝑝𝑒𝑟𝑖𝑜𝑑𝐹𝑆𝐸
𝑠𝑒𝑙𝑙 + ∑

𝑙𝑓𝑠𝑒,𝑡
𝑋𝑒𝑛𝑑𝑜𝑓𝑝𝑒𝑟𝑖𝑜𝑑𝐹𝑆𝐸

𝑠𝑙𝑎𝑢𝑔ℎ𝑡𝑒𝑟 +

∑
𝑙𝑓𝑠𝑒,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑓𝑜𝑟𝑠ℎ𝑜𝑐𝑘𝑐𝑎𝑠𝑒𝐹𝑆𝐸
𝑟𝑒𝑠𝑒𝑟𝑣𝑒 − ∑

𝑙𝑓𝑠𝑒,𝑡
𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝐹𝑆𝐸

𝑘𝑒𝑒𝑝 − ∑
𝑙𝑓𝑠𝑒,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝐹𝑆𝐸
𝑏𝑢𝑦 ≤ 0

𝑙𝑓𝑠𝑒, is final static equilibrium livestock classes. 𝑐𝑜𝑢𝑛𝑡 =

Livestock balance transition to FSE t=T

In the last period and for all final static equilibrium livestock classes, the total heads of
livestock sold at end of period, slaughtered at end of period and reserved for bad years
should not be bigger than the total heads of livestock transferred to the last period
from T-1.

1
𝑐𝑜𝑢𝑛𝑡 ∗ ∑

𝑙𝑓𝑠𝑒,𝑡
𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝐹𝑆𝐸

𝑘𝑒𝑒𝑝 + ∑
𝑙𝑓𝑠𝑒,𝑡

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑎𝑡𝑒𝑛𝑑𝑜𝑓𝑝𝑒𝑟𝑖𝑜𝑑𝐹𝑆𝐸
𝑠𝑒𝑙𝑙 +

∑
𝑙𝑓𝑠𝑒,𝑡

𝑋𝑒𝑛𝑑𝑜𝑓𝑝𝑒𝑟𝑖𝑜𝑑𝐹𝑆𝐸
𝑠𝑙𝑎𝑢𝑔ℎ𝑡𝑒𝑟 + ∑

𝑙𝑓𝑠𝑒,𝑡
𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑓𝑜𝑟𝑠ℎ𝑜𝑐𝑘𝑐𝑎𝑠𝑒𝐹𝑆𝐸

𝑟𝑒𝑠𝑒𝑟𝑣𝑒 −

∑
𝑙𝑓𝑠𝑒,𝑎−1,𝑡−1

𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑡𝑜𝑛𝑒𝑥𝑡𝑝𝑒𝑟𝑖𝑜𝑑
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 ≤ 0

Livestock balance in case of shock FSE t=T

In the last period and for all final static equilibrium livestock classes, the total heads
of livestock sold in bad years should not be bigger than the total heads of livestock
reserved for shocks in the same period.

𝑃𝑟𝑠 ∗ ∑
𝑙𝑓𝑠𝑒,𝑡

𝑋𝑠ℎ𝑜𝑐𝑘𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝐹𝑆𝐸
𝑠𝑒𝑙𝑙 − ∑

𝑙𝑓𝑠𝑒,𝑠,𝑡
𝑋𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑓𝑜𝑟𝑠ℎ𝑜𝑐𝑘𝑐𝑎𝑠𝑒𝐹𝑆𝐸

𝑟𝑒𝑠𝑒𝑟𝑣𝑒 ≤ 0
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Additional constraints

No goats in dega AEZ

Goats can not be raised or kept in dega because of agroecological reasons.

Consumption
Agents eat injera and wot (sauce). Injera is made from cereals mainly teff, finger millet,
barley, wheat or sorghum. Agents can mix cereals to make injera. And, wot is made
from mixing pulses (beans, peas, chickpeas, lentils), vegetables and tubers (cabbage,
carrots, onions), meat (mainly mutton and beef), milk (yogurt, cheese and butter) and
spices (chili - berbere).

Own production and buying from market are the main sources of food for agents.

Minimum food (nutrient) consumption
At any time 𝑡 agents’ nutrient consumption from bought and produced crops and
livestock products should at least meet the minimum nutrient requirements. 𝑀𝑁𝐷𝑡 is
the minimum nutrient demand.

∑
𝑐,𝑙

𝑋𝑏𝑜𝑢𝑔ℎ𝑡𝑓𝑜𝑜𝑑
𝑐𝑜𝑛𝑠𝑢𝑚𝑒 ∗ 𝑁𝑒

𝑝+ ∑
𝑐,𝑙

𝑋𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑓𝑜𝑜𝑑
𝑐𝑜𝑛𝑠𝑢𝑚𝑒 ∗ 𝑁𝑒

𝑝+𝑋𝑠ℎ𝑜𝑐𝑘𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
𝑓𝑜𝑟𝑔𝑜𝑛𝑒 ∗ 𝑁𝑒

𝑝 ≥ 𝑀𝑁𝐷𝑡

𝑁𝑒
𝑝 = 𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑓𝑜𝑜𝑑 𝑖𝑡𝑒𝑚

Minimum food (nutrient) consumption during shocks in (t>1)

In all future periods, where the previous period is a shock period, the minimum amount
of nutrients to consume at time t from bought and produced crop and livestock products
should at least meet the minimum nutrient requirements.

∑
𝑐,𝑙,𝑠,𝑡

𝑋𝑠ℎ𝑜𝑐𝑘𝑏𝑢𝑦𝑓𝑜𝑜𝑑
𝑐𝑜𝑛𝑠𝑢𝑚𝑒 ∗ 𝑁𝑒

𝑝+ ∑
𝑙,𝑡

𝑋𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘
𝑐𝑜𝑛𝑠𝑢𝑚𝑒 ∗ 𝑁𝑒

𝑝+

∑
𝑙,𝑡

𝑋𝑠ℎ𝑜𝑐𝑘𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑐𝑟𝑜𝑝
𝑐𝑜𝑛𝑠𝑢𝑚𝑒 ∗ 𝑁𝑒

𝑝+𝑋𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
𝑓𝑜𝑟𝑔𝑜𝑛𝑒 ∗ 𝑁𝑒

𝑝 ≥ 𝑀𝑁𝐷𝑡

Minimum protein-energy ratio
At any time in the planning period the total amount of protein obtained from
consumption of bought and produced crop and livestock products should be greater
than the total amount of energy times the protein-energy ratio.
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∑
𝑐,𝑙,𝑓,𝑡

𝑋𝑏𝑜𝑢𝑔ℎ𝑡𝑓𝑜𝑜𝑑
𝑐𝑜𝑛𝑠𝑢𝑚𝑒 ∗ (𝑝𝑟𝑜𝑡𝑒𝑖𝑛

𝑒𝑛𝑒𝑟𝑔𝑦 ∗ 𝐸𝑛𝑒𝑟𝑔𝑦𝑐 − 17 ∗ 𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑐) +

∑
𝑐,𝑙,𝑓,𝑡

𝑋𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑓𝑜𝑜𝑑
𝑐𝑜𝑛𝑠𝑢𝑚𝑒 ∗ (𝑝𝑟𝑜𝑡𝑒𝑖𝑛

𝑒𝑛𝑒𝑟𝑔𝑦 ∗ 𝐸𝑛𝑒𝑟𝑔𝑦𝑐 − 17 ∗ 𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑐) +𝑋
𝑝𝑟𝑜𝑡𝑒𝑖𝑛
𝑒𝑛𝑒𝑟𝑔𝑦

𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 ≤ 0

𝑝𝑟𝑜𝑡𝑒𝑖𝑛
𝑒𝑛𝑒𝑟𝑔𝑦 = 0.1, 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑒𝑛𝑒𝑟𝑔𝑦𝑟𝑎𝑡𝑖𝑜

𝑓 = 𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑟𝑜𝑡𝑒𝑖𝑛

𝐸𝑛𝑒𝑟𝑔𝑦𝑐 = 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑜𝑓 𝑐𝑟𝑜𝑝𝑠 (𝑀𝐽/𝑀𝐽)

𝑋
𝑝𝑟𝑜𝑡𝑒𝑖𝑛
𝑒𝑛𝑒𝑟𝑔𝑦

𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑖𝑠 𝑝𝑒𝑛𝑎𝑙𝑖𝑡𝑦 𝑖𝑓 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑
(17) is a constant to level the units of protein and energy to simplify computation

Shock minimum protein-energy ratio t>1
In all future periods, where the previous period is a shock period, total amount of protein
obtained from consumption of bought and produced crop and livestock products should
be greater than the total amount of energy times the protein-energy ratio during shocks.

∑
𝑐,𝑙,𝑓,𝑡

𝑋𝑠ℎ𝑜𝑐𝑘𝑏𝑢𝑦𝑓𝑜𝑜𝑑
𝑐𝑜𝑛𝑠𝑢𝑚𝑒 ∗ (𝑝𝑟𝑜𝑡𝑒𝑖𝑛

𝑒𝑛𝑒𝑟𝑔𝑦 𝑠ℎ𝑜𝑐𝑘
∗ 𝐸𝑛𝑒𝑟𝑔𝑦𝑐 − 17 ∗ 𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑐) +

∑
𝑐,𝑙,𝑓,𝑡

𝑋𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑓𝑜𝑜𝑑
𝑐𝑜𝑛𝑠𝑢𝑚𝑒 ∗ (𝑝𝑟𝑜𝑡𝑒𝑖𝑛

𝑒𝑛𝑒𝑟𝑔𝑦 𝑠ℎ𝑜𝑐𝑘
∗ 𝐸𝑛𝑒𝑟𝑔𝑦𝑐 − 17 ∗ 𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑐) +

∑
𝑐,𝑙,𝑓,𝑡

𝑋𝑠ℎ𝑜𝑐𝑘𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑐𝑟𝑜𝑝
𝑐𝑜𝑛𝑠𝑢𝑚𝑒 ∗ (𝑝𝑟𝑜𝑡𝑒𝑖𝑛

𝑒𝑛𝑒𝑟𝑔𝑦 𝑠ℎ𝑜𝑐𝑘
∗ 𝐸𝑛𝑒𝑟𝑔𝑦𝑐 − 17 ∗ 𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑐) +𝑋

𝑝𝑟𝑜𝑡𝑒𝑖𝑛
𝑒𝑛𝑒𝑟𝑔𝑦 𝑠ℎ𝑜𝑐𝑘

𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 ≤ 0

𝑝𝑟𝑜𝑡𝑒𝑖𝑛
𝑒𝑛𝑒𝑟𝑔𝑦 𝑠ℎ𝑜𝑐𝑘

= 0.07, protein energy ratio. The notion here is agent’s propensity to
consume more energy than protein in time of shock compared to normal years.

𝑋
𝑝𝑟𝑜𝑡𝑒𝑖𝑛
𝑒𝑛𝑒𝑟𝑔𝑦 𝑠ℎ𝑜𝑐𝑘

𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑖𝑠 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑖𝑓 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑓𝑢𝑙𝑓𝑖𝑙𝑒𝑑

Consumption behavior
Based on observed data and focus group discussions we included rules of predetermined
consumption behavior as constraints in the model.
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Minimum berbere consumption

Berbere is used as a spice. So, its consumption must be constrained proportional to the
amount of cereals (flour for injera) consumed. Rule: Per 100kg of injera flour agents
consume the minimum berbere consumption is 3kg. Forgone berbere consumption is a
penalty imposed on agents when they cannot fulfill the minimum berbere requirements
from all sources, which will make the model infeasible otherwise.

0.03 ∑
𝑐

𝑋𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑐𝑒𝑟𝑒𝑎𝑙𝑠
𝑐𝑜𝑛𝑠𝑢𝑚𝑒 + 0.03 ∑

𝑐
𝑋𝑏𝑜𝑢𝑔ℎ𝑡𝑐𝑒𝑟𝑒𝑎𝑙𝑠

𝑐𝑜𝑛𝑠𝑢𝑚𝑒 𝑋𝑏𝑒𝑟𝑏𝑒𝑟𝑒
𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 − 𝑋𝑏𝑒𝑟𝑏𝑒𝑟𝑒

𝑏𝑜𝑢𝑔ℎ𝑡 + 𝑋𝑏𝑒𝑟𝑏𝑒𝑟𝑒
𝑓𝑜𝑟𝑔𝑜𝑛𝑒 ≤ 0

Minimum berbere consumption during shocks t>1

In all future periods, where the previous period is a shock period, the minimum berbere
consumption must not be lower than 3% of the total cereal consumption.

0.03 ∑
𝑐,𝑡

𝑋𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑐𝑒𝑟𝑒𝑎𝑙𝑠
𝑠ℎ𝑜𝑐𝑘𝑐𝑜𝑛𝑠𝑢𝑚𝑒 + 0.03 ∑

𝑐,𝑡
𝑋𝑏𝑜𝑢𝑔ℎ𝑡𝑐𝑒𝑟𝑒𝑎𝑙𝑠

𝑠ℎ𝑜𝑐𝑘𝑐𝑜𝑛𝑠𝑢𝑚𝑒 − 𝑋𝑏𝑜𝑢𝑔ℎ𝑡𝑏𝑒𝑟𝑏𝑒𝑟𝑒
𝑠ℎ𝑜𝑐𝑘𝑐𝑜𝑛𝑠𝑢𝑚𝑒−

𝑋𝑜𝑤𝑛𝑏𝑒𝑟𝑏𝑒𝑟𝑒
𝑠ℎ𝑜𝑐𝑘𝑐𝑜𝑛𝑠𝑢𝑚𝑒 + 𝑋𝑏𝑒𝑟𝑏𝑒𝑟𝑒𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝑠ℎ𝑜𝑐𝑘𝑓𝑜𝑟𝑔𝑜𝑛𝑒 ≤ 0

Maximum berbere consumption

Similarly, observed consumption behavior dictates to set a maximum berbere
consumption for a certain proportion of cereals consumed. Rule: As a result, based
on focus group discussions and observed data from farm household surveys we set a
maximum berbere consumption for 100ks of cereals consumed by agents is 5kg.

− 0.05 ∑
𝑐

𝑋𝑐𝑒𝑟𝑒𝑎𝑙𝑠
𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 − 0.05 ∑

𝑐
𝑋𝑐𝑒𝑟𝑒𝑎𝑙𝑠

𝑏𝑜𝑢𝑔ℎ𝑡 + 𝑋𝑏𝑒𝑟𝑏𝑒𝑟𝑒
𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 + 𝑋𝑏𝑒𝑟𝑏𝑒𝑟𝑒

𝑏𝑜𝑢𝑔ℎ𝑡 ≤ 0

Maximum berbere consumption during shocks t>1

In all future periods, where the previous period is a shock period, berbere consumption
must not be bigger than 5% of the total cereal consumption.

− 0.05 ∑
𝑐

𝑋𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑐𝑒𝑟𝑒𝑎𝑙𝑠
𝑠ℎ𝑜𝑐𝑘𝑐𝑜𝑛𝑠𝑢𝑚𝑒 −0.05 ∑

𝑐
𝑋𝑏𝑜𝑢𝑔ℎ𝑡𝑐𝑒𝑟𝑒𝑎𝑙𝑠

𝑠ℎ𝑜𝑐𝑘𝑐𝑜𝑛𝑠𝑢𝑚𝑒+𝑋𝑏𝑜𝑢𝑔ℎ𝑡𝑏𝑒𝑟𝑏𝑒𝑟𝑒
𝑠ℎ𝑜𝑐𝑘𝑐𝑜𝑛𝑠𝑢𝑚𝑒+𝑋𝑜𝑤𝑛𝑏𝑒𝑟𝑏𝑒𝑟𝑒

𝑠ℎ𝑜𝑐𝑘𝑐𝑜𝑛𝑠𝑢𝑚𝑒 ≤ 0

Proportion of consumption from own production

Minimum own cereal consumption in kola

The model represents subsistence farmers where substantial portion of consumption
comes from own production. Agents in kola have relatively higher productivity than
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those in dega AEZ.

Cereals: teff, maize, wheat, barley. Forgone cereal consumption is a penalty imposed
when agents fail to fulfill minimum cereal consumption from all sources.

Rule: 50% of consumption comes from own production for all agents in kola

𝑒0.5 (∑
𝑐

𝑋𝑐𝑒𝑟𝑒𝑎𝑙𝑠
𝑏𝑜𝑢𝑔ℎ𝑡 − ∑

𝑐
𝑋𝑐𝑒𝑟𝑒𝑎𝑙𝑠

𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑) − 𝑋𝑐𝑒𝑟𝑒𝑎𝑙𝑠
𝑓𝑜𝑟𝑔𝑜𝑛𝑒 ≤ 0 ∀𝐴𝐸𝑍 = 𝑘𝑜𝑙𝑎

Minimum own cereal consumption in dega

Attributed to lower productivity compared to kola and high reliance on perennials and
livestock, agents in dega are assumed to fulfill a relatively lower amount of their cereal
consumption from own production. Moreover, potatoes constitute substantial portion
of consumption in dega. Rule: 25% of consumption comes from own production for all
agents in dega

0.25 (∑
𝑐

𝑋𝑐𝑒𝑟𝑒𝑎𝑙𝑠
𝑏𝑜𝑢𝑔ℎ𝑡 − ∑

𝑐
𝑋𝑐𝑒𝑟𝑒𝑎𝑙𝑠

𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑) − 𝑋𝑐𝑒𝑟𝑒𝑎𝑙𝑠
𝑓𝑜𝑟𝑔𝑜𝑛𝑒 ≤ 0 ∀𝐴𝐸𝑍 = 𝑑𝑒𝑔𝑎

Minimum potato consumption in dega

Potatoes are only produced in dega AEZ. And, it constitutes substantial portion of
their consumption. Forgone potato consumption is a penalty when they cannot fulfill
their demand from all sources.

Rule: minimum potato consumption in dega is 25%

0.25 ∑
𝑐,𝑡

𝑋𝑐𝑒𝑟𝑒𝑎𝑙𝑠
𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 +0.25 ∑

𝑐,𝑡
𝑋𝑐𝑒𝑟𝑒𝑎𝑙𝑠

𝑏𝑜𝑢𝑔ℎ𝑡 −𝑋𝑝𝑜𝑡𝑎𝑡𝑜𝑒𝑠
𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 −𝑋𝑝𝑜𝑡𝑎𝑡𝑜𝑒𝑠

𝑏𝑜𝑢𝑔ℎ𝑡 +𝑋𝑝𝑜𝑡𝑎𝑡𝑜𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
𝑓𝑜𝑟𝑔𝑜𝑛𝑒 ≤ 0

∀𝐴𝐸𝑍 = 𝑑𝑒𝑔𝑎

Minimum potato consumption in dega during shocks t>1

In all future periods, where the previous period is a shock period, minimum potato
consumption in dega AEZ is 25% of total food items consumed.

Rule: minimum potato consumption in dega is 25%

0.25 ∑
𝑐,𝑠,𝑡

𝑋𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑐𝑒𝑟𝑒𝑎𝑙𝑠
𝑠ℎ𝑜𝑐𝑘𝑐𝑜𝑛𝑠𝑢𝑚𝑒 + 0.25 ∑

𝑐,𝑡
𝑋𝑏𝑜𝑢𝑔ℎ𝑡𝑐𝑒𝑟𝑒𝑎𝑙𝑠

𝑠ℎ𝑜𝑐𝑘𝑐𝑜𝑛𝑠𝑢𝑚𝑒 − 𝑋𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑝𝑜𝑡𝑎𝑡𝑜
𝑠ℎ𝑜𝑐𝑘𝑐𝑜𝑛𝑠𝑢𝑚𝑒 −

𝑋𝑏𝑜𝑢𝑔ℎ𝑡𝑝𝑜𝑡𝑎𝑡𝑜
𝑠ℎ𝑜𝑐𝑘𝑐𝑜𝑛𝑠𝑢𝑚𝑒 + 𝑋𝑝𝑜𝑡𝑎𝑡𝑜𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝑠ℎ𝑜𝑐𝑘𝑓𝑜𝑟𝑔𝑜𝑛𝑒 ≤ 0 ∀𝐴𝐸𝑍 = 𝑑𝑒𝑔𝑎
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Maximum potato consumption in dega

Agents can not only eat potatoes even if it is available abundantly.

Rule: maximum potato consumption should not be greater than 50%

− 0.5 ∑
𝑐,𝑡

𝑋𝑐𝑒𝑟𝑒𝑎𝑙𝑠
𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 − 0.5 ∑

𝑐,𝑡
𝑋𝑐𝑒𝑟𝑒𝑎𝑙𝑠

𝑏𝑜𝑢𝑔ℎ𝑡 + 𝑋𝑝𝑜𝑡𝑎𝑡𝑜𝑒𝑠
𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 + 𝑋𝑝𝑜𝑡𝑎𝑡𝑜𝑒𝑠

𝑏𝑜𝑢𝑔ℎ𝑡 ≤ 0 ∀𝐴𝐸𝑍 = 𝑑𝑒𝑔𝑎

Maximum potato consumption in dega during shocks t>1

In all future periods, where the previous period is a shock period, maximum potato
consumption should not be greater than 50% of total bought and produced food
consumption in dega AEZ

− 0.5 ∑
𝑐,𝑠,𝑡

𝑋𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑐𝑒𝑟𝑒𝑎𝑙𝑠
𝑠ℎ𝑜𝑐𝑘𝑐𝑜𝑛𝑠𝑢𝑚𝑒 − 0.5 ∑

𝑐,𝑠,𝑡
𝑋𝑏𝑜𝑢𝑔ℎ𝑡𝑐𝑒𝑟𝑒𝑎𝑙𝑠

𝑠ℎ𝑜𝑐𝑘𝑐𝑜𝑛𝑠𝑢𝑚𝑒+

𝑋𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑐𝑒𝑟𝑒𝑎𝑙𝑠
𝑠ℎ𝑜𝑐𝑘𝑐𝑜𝑛𝑠𝑢𝑚𝑒 + 𝑋𝑏𝑜𝑢𝑔ℎ𝑡𝑐𝑒𝑟𝑒𝑎𝑙𝑠

𝑠ℎ𝑜𝑐𝑘𝑐𝑜𝑛𝑠𝑢𝑚𝑒 ≤ 0 ∀𝐴𝐸𝑍 = 𝑑𝑒𝑔𝑎

Maximum meat consumption

Rule: The maximum meat consumption per 100kg of cereals consumed is 20kg

𝑀𝑒𝑎𝑡 = 𝑏𝑒𝑒𝑓, 𝑚𝑢𝑡𝑡𝑜𝑛
Meat can only be produced in the farm for consumption (no bought meat)

− 0.2 ∑
𝑐

𝑋𝑐𝑒𝑟𝑒𝑎𝑙𝑠
𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 − 0.2 ∑

𝑐
𝑋𝑐𝑒𝑟𝑒𝑎𝑙𝑠

𝑏𝑜𝑢𝑔ℎ𝑡 + 𝑋𝑚𝑒𝑎𝑡
𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 + 𝑋𝑚𝑒𝑎𝑡

𝑏𝑜𝑢𝑔ℎ𝑡 ≤ 0
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Appendix B

Data sources for the farm decision model
The farm decision model used data from different sources to initialize the model. Both
primary and secondary source of data are used to parameterize the model. The following
table shows the model to data (requirement and source) connections of the different
features in the farm decision model.

Table 7.1: Model to data connections of the farm decision model

Model
features

Model sub-featues Data requirements Data sources Corresponding equations
(in Appendix A)

Crop
production

land balance farm size own survey (2018) land balances eq. pp.
104

croprotation rotation limit FGDs (2018) croprotation eq. pp. 105
labor balance household (agent)

demographic data
own survey (2018) labor balance eqns.

pp.105-106
input balance inpud demand (eg

fertilizers, improved
seeds)

own survey (2018) input balance eq. pp.
106

food storage
balance

storable crops,
storage life time

own survey (2018),
FGDs (2018)

storage balance equs. pp.
106 – 108

Investment perennials types and initial
endowments of tree
perennials

own survey (2018) perennial eqn. pp. 119

life time, plantation
capacity, harvest
options, variable
cost including labor
and output prices

own survey (2018) perennial eqn. pp.
119,120

livestock livestock types kept
by age

own survey (2018),
CSA data 2019

livestock eqn. pp. 120
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inputs: livestock
housing limit, feed
requirements,
grazing land feed
capacity, livestock
products,
markatability of
products, oxen draft
power

own survey (2018),
CSA data 2019

livestock eqns. pp.
121-127

consumption minimum food
(nutrient)
consumption

nutrient contents of
all food items in the
model (mainly
energy and protein),
minimum energy to
protein ratio

FAO (food and
nutrition technical
report series 1) and
USDA online
database

consumption eqns. pp.
128-129

predetermined
consumption
behaviour

minimum and
maximum
consumption limits
for berbere (chilli)
and shiro (beans),
proportions of
consumption from
own production (for
cereals, potatoes
and meat)

own survey (2018),
FGDs (2018)

consumption eqns. pp.
130-132

Others credit and savings credit sources,
credit limit, interest
rate, deposit rate

own survey (2018),
KIIs (2018),
Amhara Credit and
Saving Institute
ACSI annual report
2019

credit and savings eqns.
pp. 112-113

Ex-ante planning expected loss of
crop diseases, worst
case prices and
rates, probability of
shocks,

own survey (2018),
feedback from the
econometric analysis

shock equations
throughout appendix A

exogeneous
variables

Prices, yields,
discount rate,
inflation rate

own survey (2018),
CSA data 2019
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Appendix C

Distribution of endowments by crop/tree growers
Acacia Dicurrens

Distribution of farm size by acacia grower
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Figure 7.1: Distribution of farm size by acacia grower
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Distribution of TLU by acacia grower
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Figure 7.2: Distribution of TLU by acacia grower

Distribution of household size by acacia grower
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Figure 7.3: Distribution of household size by acacia grower
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Barley

Distribution of farm size by barley grower
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Figure 7.4: Distribution of farm size by barley grower

Distribution of TLU by barley grower
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Figure 7.5: Distribution of TLU by barley grower
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Distribution of household size by barley grower
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Figure 7.6: Distribution of household size by barley grower

Potatoes

Distribution of farm size by potato grower
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Figure 7.7: Distribution of farm size by potato grower
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Distribution of TLU by potato grower
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Figure 7.8: Distribution of TLU by potato grower

Distribution of household size by potato grower
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Figure 7.9: Distribution of household size by potato grower
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Red Teff

Distribution of farm size by teff grower
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Figure 7.10: Distribution of farm size by teff grower

Distribution of TLU by teff grower
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Figure 7.11: Distribution of TLU by teff grower
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Distribution of household size by teff grower
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Figure 7.12: Distribution of household size by teff grower

Wheat

Distribution of farm size by wheat grower
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Figure 7.13: Distribution of farm size by wheat grower
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Distribution of TLU by wheat grower
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Figure 7.14: Distribution of TLU by wheat grower

Distribution of household size by wheat grower
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Figure 7.15: Distribution of household size by wheat grower
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