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1  S u m m a r y  

1 Summary 

Climate warming will have great impact on terrestrial ecosystems. Different soil 

properties such as temperature and moisture will be altered, thereby influencing C- and N-

cycles, soil microbial activity, abundances and community composition as well as plant 

growth. This may contribute to the observed increase in soil greenhouse gas (GHG) 

emissions under climate change. Therefore, new soil management options are needed to 

mitigate theses projected consequences. Biochar is primarily suggested to be effective in 

long-term C sequestration in agricultural soils due to its long-term stability. In addition, it 

could be applied to improve physical, chemical and biological soil properties, plant growth 

and to reduce soil GHG emissions. To date, knowledge about such beneficial biochar 

effects in soil under predicted warming climate is extremely scarce. This thesis presents 

novel results on the interactive effects of biochar and soil warming on soil properties, 

microorganisms, crop growth and GHG emissions on field scale to evaluate biochar’s 

future potential for long-term C sequestration in temperate agricultural soil. 

This thesis is composed of three studies. In the first study, a slow-pyrolysis biochar 

from Miscanthus x giganteus feedstock (600 °C, 30 Min.) was incubated for short time 

(37d) under controlled laboratory conditions in agricultural soil in the presence of 

earthworms and N-rich litter (Phacelia tanacetifolia Benth.). It was aimed to investigate 

the potential of biochar to reduce the emissions of CO2 and N2O from soil. In addition, it 

was examined whether possible interactions between biochar and earthworms could affect 

soil GHG emissions and microbial abundances. The field experiment, investigated in the 

second and third study, focused on the stability and long-term soil C sequestration potential 

of comparable Miscanthus biochar (850 °C, 30 Min.). Related effects on soil GHG 

emissions, physical, chemical and microbiological soil properties as well as plant growth 

were determined in an agroecosystem at year-round elevated soil temperature (+2.5 °C, 

since 2008). 

Biochars produced from the C4 crop Miscanthus x giganteus differed in their isotopic 

(13C) signature from investigated C3 soil. This made it possible to follow the fate of applied 

biochar-C into different compartments such as evolved CO2, earthworm or microbial 

biomass. Soil microbial abundances and community composition were analyzed by using 

extraction methods for phospholipid fatty acids (PLFA) and microbial biomass C 

(chloroform-fumigation-extraction, CFE).  
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In the first study, biochar increased microbial abundances and the fungal-to-bacterial 

PLFA ratio after 37 days of incubation in arable soil applied with litter. It was suggested 

that biochar improved living conditions for soil microorganisms. Fungi may benefit most 

from newly created habitats due to colonizable biochar pores and surfaces. Additionally, 

fungi could have also co-metabolized small amounts of recalcitrant biochar-C during plant 

litter decomposition. Without litter, biochar led to interactions between earthworms and 

soil microorganisms resulting in enhanced bacterial and fungal abundances. This indicates 

better growth habitats for soil microbes in earthworm casts containing biochar. However, 

earthworms did not incorporate biochar-C, thus not directly influencing biochar stability. 

Soil respiration and metabolic quotients (qCO2) were decreased after biochar application. 

Concurrently, biochar reduced N2O emissions in litter treatments suggesting a more 

efficient microbial community and underscoring the GHG mitigation potential of the used 

biochar.  

The second study investigated the short-term effects of a similar biochar on microbial 

abundances and growth of winter rapeseed during the first year after field application to a 

warmed temperate arable soil. It was found that fungal biomass and the fungal-to-bacterial 

ratio were increased in the warmed biochar plots only after three months when spring 

barley litter from the previous growing season was present in soil. This short-term fungal 

response was interpreted as a limited mineralization of recalcitrant biochar-C during litter 

degradation at elevated soil temperature. The disappearance of this effect points to an 

overall high stability of the investigated biochar. Moreover, biochar proved to be effective 

in mitigating negative effects of seasonal dryness on microbial abundances and early plant 

growth in the dry spring period in 2014. However, biochar had no effect on final 

aboveground biomass of winter rapeseed at harvest in the first growing season.  

As shown in the third study, in the second vegetation period, aboveground biomass of 

spring wheat was enhanced by warming, but only slightly increased with biochar. After 

two vegetation periods, this confirms the assumption that plant productivity in already 

fertile temperate arable soils is unlikely to be further enhanced with biochar amendment. 

Total CO2 emissions after two years were not reduced by biochar and remained unchanged 

even under warming suggesting a high degradation stability of the used biochar. In 

addition, biochar had no effect on the temperature sensitivity of soil respiration and only 

initially on the efficiency of microbial metabolism, further emphasizing the limited impact 

of biochar on microbial functions in soil C cycling. N2O emissions were increased in 
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biochar-amended soil at elevated soil temperature, presumably due to enhanced water and 

fertilizer retention with biochar. Thus biochar amendment could induce unintended higher 

N2O emissions from agricultural soils in the future. The investigated arable soil served as 

a minimal sink for CH4, while total CH4 uptake was not significantly influenced by biochar 

or soil warming. The global warming potential (GWP100) of total soil GHG emissions was 

enhanced by 28 % with warming, but not changed with biochar. However, the storage of 

biochar-C in soil was estimated to compensate warming-induced elevated soil GHG 

emissions for 20 years. 

To conclude, this thesis revealed that biochar may have only minor influence on soil 

microorganisms and crop growth in temperate, fertile arable field soils. It was shown that 

biochar could be a valuable tool for C sequestration in temperate arable soils, thus 

potentially offsetting a warming-induced increase in GHG emissions. In order to face 

climate change impacts, more long-term studies on microbiological effects and the C 

sequestration potential of biochar in cultivated soil are urgently needed. Further research 

on biochar should also consider environmental factors affected by global warming such as 

elevated soil temperature and moisture variability, which particularly regulate C and N 

cycling in soils. 
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1 2 Zusammenfassung 

2 Zusammenfassung 

Die Klimaerwärmung wird einen erheblichen Einfluss auf terrestrische Ökosysteme 

haben. Bodeneigenschaften wie Temperatur und Feuchte werden sich verändern und dabei 

C- und N-Stoffkreisläufe, die Aktivität, Abundanzen und Zusammensetzung der 

mikrobiellen Gemeinschaft im Boden sowie das Pflanzenwachstum beeinträchtigen. Dies 

könnte zur Erhöhung von Treibhausgas-(THG) Emissionen durch den Klimawandel 

beitragen. Daher werden neue Möglichkeiten für ein Bodenmanagement zur Verringerung 

dieser prognostizierten Folgen benötigt. Pflanzenkohle wird aufgrund ihrer 

Langzeitstabilität primär als ein effektives Mittel für die langfristige C-Sequestrierung in 

Ackerböden betrachtet. Zudem könnte diese ebenfalls für die Verbesserung von 

physikalischen, chemischen und biologischen Bodeneigenschaften, zur Erhöhung von 

Pflanzenwachstum und Verminderung von THG Emissionen angewendet werden. Bisher 

ist der Kenntnisstand über solche begünstigenden Pflanzenkohle-Effekte im Boden unter 

zukünftig erwärmtem Klima sehr gering. Die vorliegende Arbeit präsentiert neue 

Ergebnisse über interaktive Effekte von Pflanzenkohle und Bodenerwärmung auf 

Bodeneigenschaften, Mikroorganismen, Pflanzenwachstum und THG Emissionen auf 

Feldmaßstab, um das zukünftige Potential von Pflanzenkohle für eine langfristige C-

Festlegung in einem temperaten Ackerboden zu bewerten. 

Diese Doktorarbeit umfasst drei Studien. In der ersten Studie wurde Miscanthus x 

giganteus Pflanzenkohle aus langsamer Pyrolyse (600 °C, 30 Min.) mit Regenwürmern 

und stickstoffreicher Pflanzenstreu (Phacelia tanacetifolia Benth.) über einen kurzen 

Zeitraum (37 Tage) in einem Ackerboden unter kontrollierten Laborbedingungen 

inkubiert. Dabei sollte das Potential von Pflanzenkohle zur Reduktion von CO2 und N2O 

Emissionen geprüft werden. Zudem wurde untersucht, ob Interaktionen zwischen Kohle 

und Regenwürmen die THG Emissionen oder die Abundanz von mikrobiellen Gruppen 

im Boden beeinflussen. Im Fokus des Feldexperiments der zweiten und dritten Studie 

stand die Stabilität und das langfristige C-Sequestrierungspotential von vergleichbarer 

Miscanthus Kohle (850 °C, 30 Min.). Die damit verknüpften Effekte von Kohle auf THG 

Emissionen, physikalische, chemische und mikrobiologische Bodeneigenschaften sowie 

das Pflanzenwachstum wurden in einem Agrarökosystem unter permanent erhöhter 

Bodentemperatur (+2,5 °C, seit 2008) untersucht. 

Die Pflanzenkohlen aus der C4 Pflanze Miscanthus x giganteus unterschieden sich in 

ihrer isotopischen (13C) Signatur gegenüber dem untersuchten C3 Boden. Dies ermöglichte 
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es, den Verbleib von Kohle-C in verschiedenen Kompartimenten wie emittiertem CO2, 

Regenwurm- oder mikrobieller Biomasse zu verfolgen. Mikrobielle Abundanzen und die 

Gemeinschaftszusammensetzung wurden mittels der Extraktionsmethoden für 

Phospholipid-Fettsäuren (PLFA) und mikrobielle Biomasse-C (Chloroform-Fumigation-

Extraktion) analysiert. 

In der ersten Studie erhöhte Pflanzenkohle die Abundanz der Mikroorganismen und 

das Pilze/Bakterien-Verhältnis nach 37 Tagen Inkubation in einem Ackerboden unter 

Zugabe von Streu. Dies deutet auf verbesserte Lebensbedingungen für 

Bodenmikroorganismen mit Pflanzenkohle hin und das Pilze am stärksten von 

neugeschaffenen Habitaten durch kolonisierbare Poren und Oberflächen der Kohle 

profitieren konnten. Pilze könnten zudem geringe Mengen des rekalzitranten Kohle-C 

während des Streuabbaus durch Kometabolismus mineralisiert haben. Ohne Streuzugabe 

hat Pflanzenkohle zu interaktiven Effekten zwischen Regenwürmern und 

Mikroorganismen und damit erhöhten bakteriellen und pilzlichen Abundanzen geführt. 

Dies lässt verbesserte Wachstumsbedingungen für die Bodenmikroorganismen in Kohle 

enthaltenen Regenwurmgängen vermuten. Allerdings haben die Regenwürmer kein 

Kohle-C in ihre Biomasse eingebaut und somit den Abbau der Pflanzenkohle nicht direkt 

beeinflusst. Die Bodenatmung und metabolischen Quotienten wurden nach Kohle-Zugabe 

reduziert. Gleichzeitig verminderte Pflanzenkohle die N2O Emissionen in den 

Behandlungen mit Streu, was auf eine effizientere mikrobielle Gemeinschaft hindeutet und 

das Potential von Pflanzenkohle zur Reduktion von THG unterstreicht. 

Die zweite Studie untersuchte die Kurzzeiteffekte einer vergleichbaren Pflanzenkohle 

auf mikrobielle Abundanzen und das Wachstum von Winterraps während des ersten Jahres 

nach Kohle-Applikation zu einem erwärmten temperaten Agrarökosystem. Die pilzliche 

Biomasse und das Pilz/Bakterien-Verhältnis wurden in den erwärmten Kohleflächen 

lediglich nach drei Monaten erhöht, als Streu von der Vorfrucht Sommergerste noch im 

Boden vorhanden war. Diese kurzzeitige Reaktion der Pilze wurde als eine geringfügige 

Mineralisierung von rekalzitrantem Kohle-C während des Streuabbaus unter erwärmter 

Bodentemperatur interpretiert. Das Verschwinden dieses Effektes deutet auf eine 

allgemein hohe Stabilität der untersuchten Pflanzenkohle hin. Darüber hinaus verminderte 

die Kohle die negativen Effekte von saisonaler Trockenheit auf die Abundanz von 

Mikroorganismen und das Frühwachstum von Winterraps im trockenen Frühling 2014. 



2 Zusammenfassung 

 

7 

Allerdings hatte die Pflanzenkohle keinen Effekt auf die oberirdische Biomasse von 

Winterraps in der ersten Vegetationsperiode.  

Wie in der dritten Studie gezeigt, wurde die oberirdische Biomasse von 

Sommerweizen im zweiten Jahr durch Erwärmung erhöht, aber nur geringfügig durch 

Kohle gesteigert. Nach zwei Vegetationsperioden wird damit die Annahme bestätigt, dass 

eine zusätzliche Erhöhung der Pflanzenproduktion in bereits fruchtbaren Ackerböden 

gemäßigter Breiten mit Pflanzenkohle unwahrscheinlich ist. Die Gesamtemission von CO2 

nach zwei Jahren wurde nicht durch Kohle reduziert und blieb unverändert unter 

Erwärmung, was auf eine hohe Abbaustabilität der untersuchten Kohle hindeutet. 

Außerdem hatte Kohle keinen Effekt auf die Temperatursensitivität der Bodenatmung und 

nur anfangs auf die mikrobielle Effizienz, was die begrenzte Wirkung von Pflanzenkohle 

auf mikrobielle Funktionen im C-Kreislauf im Boden betont. Die N2O Emissionen wurden 

in den erwärmten Kohle-behandelten Böden erhöht, was vermutlich auf eine erhöhte 

Wasser- und Nährstoffretention durch Kohle zurückzuführen ist. Kohle-Anwendung 

könnte deshalb in Zukunft zu einer unbeabsichtigten Steigerung von N2O Emissionen von 

Ackerböden führen. Der untersuchte Ackerboden diente als geringfügige Methansenke, 

aber die Gesamtaufnahme von Methan wurde nicht signifikant durch Kohle oder 

Erwärmung beeinflusst. Das globale Treibhausgaspotential (GTP) der Gesamt-THG-

Emissionen wurde über zwei Jahre um 28 % durch Erwärmung erhöht, aber nicht von 

Pflanzenkohle verändert. Es wurde jedoch geschätzt, dass die Festlegung von 

Pflanzenkohle-C im Boden, die durch Erwärmung in 20 Jahren erhöhte produzierte Menge 

an THG Emissionen kompensieren könnte. 

Abschließend zeigte diese Arbeit, dass Pflanzenkohle einen eher geringen Einfluss auf 

Bodenmikroorganismen und das Pflanzenwachstum in temperaten, fruchtbaren 

Ackerböden unter Freilandbedingungen haben könnte. Es konnte festgestellt werden, dass 

Pflanzenkohle ein sinnvolles Mittel für die C-Sequestrierung in temperaten Ackerböden 

sein kann und damit das Potential besitzt die erhöhten THG Emissionen in einem 

erwärmten Klima auszugleichen. Um dem Klimawandel zu begegnen, werden dringend 

weitere Studien zu mikrobiologischen Effekten und zum Potential von Pflanzenkohle zur 

C-Sequestrierung in kultivierten Böden benötigt. Darüber hinaus sollten die von der 

globalen Erwärmung beeinflussten Umweltfaktoren wie erhöhte Bodentemperatur und 

Variabilität in der Bodenfeuchte berücksichtigt werden, die insbesondere die C- und N-

Kreisläufe in Böden steuern.
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2 3 General Introduction  

3 General Introduction 

3.1 C cycle and climate change 

Soils are major reservoirs for terrestrial carbon (C) having about three times more C 

than the atmosphere or living plant biomass (Schmidt et al., 2011). Soil organic carbon 

(SOC) stocks are estimated to be 1500 Pg (Lal, 2004) from which more than 10 % are 

stored in agricultural soils (Paustian et al., 2000). All dead material in soil including plant 

litter, roots or animals containing organic C is termed as soil organic matter (SOM) and 

the balance between C input and output regulates the SOM pool (Sollins et al., 1996). Plant 

biomass (leaves and roots) and root exudates mainly constitute C inputs to soil. C loss 

occurs via heterotrophic or autotrophic respiration as carbon dioxide (CO2), by anaerobic 

microbial respiration releasing methane (CH4) or by leaching of dissolved carbon 

(Bardgett et al., 2005; Davidson & Janssens, 2006).  

Soil microorganisms play an essential role in ecosystem functioning, as they are 

driving SOM decomposition and C- and N-mineralization which controls C cycling, 

nutrient availability, microbial and plant community diversity as well as plant growth 

(Hättenschwiler et al., 2005; van der Heijden et al., 2008). The quantity and quality of 

plant litter and root exudates, competition between plants and soil microorganisms for 

available N and other nutrients as well as further abiotic soil properties such as temperature 

and moisture are limiting factors for both plant biomass production and microbial activity 

thus influencing SOM formation (Horwath, 2007; Robertson & Groffmann, 2007; van der 

Heijden et al., 2008). 

Increasing the SOM pool is desirable due to its multiple functions in improving soil 

structure, water and nutrient retention, enhancing soil biodiversity and reducing risks of 

soil degradation, e.g. by erosion (Lal, 2009). The protection of SOM against microbial 

mineralization or leaching is known as stabilization (Sollins et al., 1996). Responsible 

mechanisms of SOM stabilization are the chemical recalcitrance of SOM molecules (plant 

litter, rhizodeposits, humic substances or charred OM) as well as spatial inaccessibility of 

SOC to microorganisms, e.g. occlusion of SOM by aggregation or the formation of organo-

mineral interactions between SOC and clay minerals (Sollins et al., 1996; von Lützow et 

al., 2006). Indeed, there is incomprehensive understanding on these individual processes 

and its relevance for SOM stabilization (von Lützow et al., 2006; Marschner et al., 2008; 

Dungait et al., 2012). Earthworms are known to stabilize SOC in soil aggregates, but also 
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mobilize soil carbon and nitrogen (N), thus interacting with soil microorganisms and 

promoting SOM decomposition by their feeding, burrowing and casting activities (Marhan 

& Scheu, 2005; Lubbers et al., 2013).  

As a consequence of human activities in the past 250 years, the atmospheric 

concentrations of the greenhouse gases (GHG) CO2, N2O and CH4 increased considerably. 

For example, CO2 concentrations have risen from 278 ppm to 391 ppm in this timespan 

due to the combustion of fossil fuels and emissions from land use changes (Ciais et al., 

2013). N2O and CH4 are 265 and 28 times more potent greenhouse gases than CO2 over a 

period of 100 years (Myhre et al., 2013). This means that only small changes in their 

atmospheric concentrations have major impact on global climate (Robertson & Grace, 

2004). The enhanced abundances of CO2, N2O and CH4 in the atmosphere cause energy 

uptake by the climate system through absorption of solar radiation which drives the global 

climate change and results in the observed changes in earth surface temperatures, 

precipitation patterns and extreme weather events (Hartmann et al., 2013). Global average 

surface temperature increased by 0.85 °C in the past 130 years and further increase is 

expected for the future (IPCC, 2013). Regional climate models predict a temperature 

elevation of 2 to 3 °C for Germany until 2100 (Umweltbundesamt, 2006).  

Elevated temperature will likely affect the global carbon cycle and alter the function 

of soils to act as sink or source for CO2 (Rustad et al., 2001; Lal, 2013). Microbial 

respiration and the degradation of SOM is highly dependent on soil temperature and 

increases in CO2 emissions could have a positive feedback on global climate change 

(Bardgett et al., 2008, see Chapter 3.2).  

Soil C sequestration is the conversion of atmospheric CO2 into the SOM pool where it 

is stabilized and conserved for long time. Hence, management of the SOM pool in soils is 

considered as an effective climate change mitigation strategy (Lal, 2013). Intensively 

managed agricultural soils are mostly depleted in SOC and therefore have a high potential 

for C sequestration (Paustian et al., 2000). Adaption to climate change through C 

sequestration in agroecosystems can be achieved by increasing the stable SOM pool 

through conservation agriculture (no or reduced tillage) to preserve soil aggregates, 

increase of plant production and recycling of crop residues, cover cropping, an integrated 

nutrient management or the amendment of OM as manure, composts or biochar 

(Franzluebbers, 2010; Lal, 2013).  
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3.2 Effects of climate change on soil microorganisms 

The driving factors of climate change such as elevated atmospheric CO2 

concentrations, changed precipitation patterns and global warming are expected to have 

major impacts on C- and N cycling in terrestrial ecosystems and involved soil microbial 

communities (Castro et al., 2010; Gray et al., 2011; Allison et al., 2013; De Vries & Shade, 

2013; Zhou et al., 2016). Alterations in abiotic factors such as litter quality, C inputs by 

root exudation, nutrient availability, soil moisture and temperature under changing climate 

are regulating soil microbial activity, abundances as well as community composition (Frey 

et al., 2008; Castro et al., 2010; Lu et al., 2013).  

Soil microorganisms are sensitive to changes in temperature and respond to soil 

warming with changed activity and community composition (Zogg et al., 1997; 

Pietikäinen et al., 2005). Most research was addressed on warming effects on soil 

respiration (e.g. Lu et al., 2013), but potential alterations in microbial physiology and the 

relationship between microbial activity and abundances/community composition have 

been scarcely investigated. Elevated temperatures are expected to increase C inputs to soil 

by higher plant production, directly caused by enhanced photosynthesis rates and longer 

growing periods or indirectly by increased N mineralization and availability (Rustad et al., 

2001). Plant growth could also be limited by warming-induced decreases of soil moisture 

(Ciais et al., 2005). However, it is still uncertain how soil warming affects microbial 

communities and their functioning in litter decomposition and nutrient cycling and 

whether SOC stocks will be affected over time (Knorr et al., 2005; Frey et al., 2008). SOM 

decomposition and CO2 emissions were often found to be initially enhanced under soil 

warming in many studies, but diminished after a few years (Luo et al., 2001; Melillo et al., 

2002; Bradford et al., 2008). This short-lived warming effect on soil respiration has been 

attributed to the adaption of soil microorganisms to temperature increase (Bradford et al., 

2008) and to depletion and limitation of readily available substrates as well as water 

limitation under warming, thus controlling enzyme activity, microbial respiration and 

growth (Bradford, 2013; Fissore et al., 2013). Moreover, it is still debated whether there 

are differences in the temperature sensitivity of the mineralization of substrates with 

varying quality, which could also explain the suggested microbial adaption to warming 

(Conant et al., 2011; Frey et al., 2013).  

In addition to soil respiration, information on microbial abundances and community 

composition could help to explain how soil microorganisms control the decomposition of 
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SOM under warming (Bradford et al., 2008; Allison et al., 2010; Chen et al., 2015b). 

Primary decomposers such as bacteria and fungi likely differ in their response to changing 

environmental factors under warming. Several studies reported that fungi are more adapted 

to cold temperatures than bacteria while this behavior is reversed at high temperatures (e.g. 

Pietikäinen et al., 2005). Soil warming is usually accompanied by reduced soil moisture 

(Xu et al., 2013) and microorganisms respond sensitive to fluctuations in soil water 

(Schimel et al., 2007; Allison & Treseder, 2008). For example, Gram-positive bacteria and 

fungi are characterized by higher tolerance against drought than Gram-negative bacteria 

based on their physiology and acclimation strategies (Schimel et al., 2007). Moreover, 

bacteria may respond more quickly to soil warming than fungi due to their differences in 

substrate utilization (Cregger et al., 2014). In general, bacteria are known to primarily use 

labile C and to be fast growing, while fungi are slowly growing and mainly responsible to 

decompose recalcitrant SOM (De Boer et al., 2005).  

Across various biomes, microbial abundances were inconsistently influenced by 

elevated soil temperature showing increases, decreases or no effect depending on 

ecosystem and plant types, experimental setup and duration as well as determination 

methods (Pold & DeAngelis, 2013). However, increased microbial abundances and CO2 

emissions under warming are mostly highest in C-rich soils in higher latitudes with cold 

climate (e.g. boreal regions, Antarctic) due to the abolition of substrate and water 

limitations (Melillo et al., 2002; Yergeau et al., 2011). Some short- to mid-term studies in 

temperate climate reported increased abundances and alterations in microbial community 

composition under warming (Zhang et al., 2005; Gray et al., 2011), whereas other did not 

observe a substantial effect in different ecosystems (Schindlbacher et al., 2011; Zhang et 

al., 2013b; Reinsch et al., 2014). By contrast, long-term experiments (> 10 years) revealed 

reductions in total microbial abundances and relative decrease in fungal abundances 

suggesting community shifts toward bacteria only after several years (Frey et al., 2008; 

Rinnan et al., 2007; DeAngelis et al., 2015). The lag in microbial response may be 

connected to slow changes in quantity and quality of substrates, alteration of plant 

communities or changing microbial niches under long-term warming (Rinnan et al., 2007; 

DeAngelis et al., 2015). An increase in the bacterial-to-fungal ratio was also found in the 

meta-analysis of Chen et al. (2015b) and suggests that such shifts within the microbial 

community toward more bacteria could have crucial impact on C dynamics and endanger 

long-term C sequestration potential in warmed soil (Bardgett et al., 2005).  
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Vice versa, fungal-dominated microbial communities could be beneficial in terms of 

C sequestration, especially in agricultural soils, due to their expected higher C use 

efficiency in comparison to bacteria (Six et al., 2006). However, shifts within fungal 

communities due to warming could also increase the mineralization of recalcitrant OM 

(Treseder et al., 2016). Compared to forest and grassland ecosystems, less attention was 

paid to warming impacts on microbial activity and abundances in agricultural soils. The 

practice of no-till land management, which leads to the provision of easily available C 

inputs by crop residues on soil surface and promoted growth of root biomass, could induce 

prolonged stimulation of CO2 emissions from arable soils under warming and this needs 

to be further investigated (Hou et al., 2014, 2016). Otherwise, studies also showed that 

reduced soil moisture resulting from increased temperature hampered both soil respiration 

and microbial growth (Poll et al., 2013; Liu et al., 2015). This implies that a set of different 

factors will likely influence soil microorganisms and C-cycling in intensively used 

agricultural systems under climate change. 

Soil warming likely also affects the fluxes of non-CO2 greenhouse gases such as N2O 

and CH4 (Dijkstra et al., 2013). Enhanced mineralization and bioavailability of N, 

reductions in soil moisture, and shifts in N-cycling microbial communities under warming 

could have influence on soil N2O emissions (Cantarel, et al., 2012; Bai et al., 2013). N2O 

is produced as an intermediate product of several complex microbial processes in soil such 

as nitrification, nitrifier denitrification, denitrification or co-denitrification (Baggs, 2011). 

Agricultural soils are major sources of N2O due to the application of fertilizers, manures, 

and crop residues (Baggs et al., 2002; Reay et al., 2012). Enhanced N2O emissions in 

warmed soil may be directly induced by increased soil respiration and the coupling 

between C- and N-cycles as well as indirectly by an increase of anaerobic zones in soil 

due to stimulated respiration, thus favoring denitrification (Butterbach-Bahl et al., 2013). 

However, substrate and water limitations could also weaken a stimulatory effect on N2O 

emissions by elevated soil temperature (Butterbach-Bahl & Dannenmann, 2011).  

Methane is produced in soil by the microbial decomposition of OM by methanogens 

under anaerobic conditions and low redox potential. It can also be consumed by aerobic 

bacteria (methanotrophs) through oxidation (Smith et al., 2003). The role of soils to act as 

a source or sink for CH4, i.e. the difference between production and consumption, is mainly 

controlled by moisture level and aeration (Dijkstra et al., 2011). Therefore, wetlands such 

as peatlands or paddy soils are important emitters of CH4, while aerobic upland soils serve 
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as methane sink (Le Mer & Roger, 2001). Generally, agricultural soils are small sources 

or sinks for CH4 (Mosier et al., 2005). Warming may either directly stimulate the activity 

of methanogens or indirectly favor methanotrophs by decreased soil moisture and 

enhanced oxygen diffusion into soil (Smith et al., 2003; Dijkstra et al., 2011).  

 

3.3 Biochar – A tool for C sequestration in soil? 

The idea to sequester C in soil by biochar amendment is based on the anthropogenic 

Terra Preta soils occurring in small patches in Central Amazonia in Brazil (Glaser et al., 

2001). In this tropical climate, researchers found dark colored soils enriched with ancient 

charcoal and aromatic humic substances (termed as black carbon), thereby exhibiting 

higher amounts of SOM than the adjacent Oxisols with same mineralogy. The 

accumulation of black carbon in the Terra Preta soils is likely because of repeated slash-

and-burn and gardening practices by the indigenous population (Glaser & Birk, 2012). 

Radiocarbon ages of hundreds to thousands of years documented the long-term persistence 

of the pyrogenic OM in soil due its inherent recalcitrant nature and organo-mineral 

stabilization (Glaser et al., 2001; Liang et al., 2008). In addition, the enhanced fertility by 

amelioration of various physical and chemical soil properties such as water and nutrient 

retention, soil pH or cation exchange capacity (CEC), as well as higher microbial 

abundances and diversity in these soils was partly attributed to the high amount of black 

carbon (Glaser et al., 2002; Kim et al., 2007; Grossman et al., 2010). Similar charcoal 

enrichments in soil due to fire-derived thermal alteration of plant residues are ubiquitous 

and were described in different ecosystems worldwide, for example in Germany, the 

Netherlands, Australia, Russia, the USA and Belgium (Schmidt et al., 1999; Hammes et 

al., 2008; Cheng et al., 2008; Downie et al., 2011; Vasilyeva et al., 2011; Mao et al., 2012; 

Hernandez-Soriano et al., 2016). 

By definition, biochar is chemically similar to charcoal, but intentionally produced for 

C sequestration in soil (Lehmann & Joseph, 2009). Biochar is produced by pyrolysis, the 

incomplete combustion of organic material (e.g. crop residues) under limited oxygen 

supply and at a wide temperature range between 300 and ~1000 °C for varying time 

periods (Spokas, 2010; EBC, 2012). During pyrolysis, the plant polymers cellulose, 

hemicellulose and lignin are thermochemically decomposed thereby forming gaseous, 

liquid and solid (biochar) products (Brown, 2009; Laird et al., 2010; Libra et al., 2011). 

The yielded biochar is composed of highly polycondensed aromatic C structures, volatile 
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(labile) matter and ash (Keiluweit et al., 2010; Lehmann et al., 2011). Typically, biochars 

can be characterized by high C content, large surface area, high micro- and macroporosity 

as well as CEC and alkaline pH (Downie et al., 2009; Amonette and Joseph, 2009; Brewer 

et al., 2011). However, biochars from distinct feedstock or pyrolysis conditions 

(temperature and duration) can significantly vary in their physical and chemical 

characteristics and suitability for soil application (Brewer et al., 2011; Schimmelpfennig 

& Glaser, 2012). First guidelines and certificates were introduced to ensure sustainable 

biochar production and to define quality standards in order to prevent negative effects of 

biochar field application on soil functions (EBC, 2012; IBI, 2015).  

Biochar research has gained increasing attention in the last years and the Terra Preta 

model is aimed to be transferred from tropical to temperate climate regions (Jeffery et al., 

2015). Many researchers emphasize the multifaceted potential of biochar to 

simultaneously sequester C in soil and increase SOM pools, to improve several soil 

properties and agronomic yields and to mitigate soil greenhouse gas emissions (Atkinson 

et al., 2010; Spokas et al., 2012; Lorenz & Lal, 2014; Ameloot et al., 2016). This made 

biochar also interesting for the application in temperate agricultural field soils (e.g. 

Ameloot et al., 2014; Domene et al., 2014). The feasibility of biochar for C sequestration 

in soils could be evaluated from its stability in situ and possible influences of biochar on 

the preservation of native SOM and promotion of C inputs to soil by enhanced plant 

production (Lorenz & Lal, 2014).  

Only few studies exist on the decomposability of biochar in the field (Gurwick et al., 

2013; Wang et al., 2016a). In addition, the in situ stability of biochar was rarely evaluated 

by stable isotope techniques (Major et al., 2010; Knoblauch et al., 2011; Ventura et al., 

2015). Biochar degradation is mostly derived from incubation studies with durations 

between days and years (Kammann et al., 2012; Singh et al., 2012; Ameloot et al., 2013a; 

Kuzyakov et al., 2014). From these studies and observations from historical charcoal sites 

(see above) it can be concluded that most biochars are relatively stable in soil due to their 

chemical recalcitrance, although not inert (Schneider et al., 2011; Vasilyeva et al., 2011). 

Though, it seems to be biochar-, site- and soil-specific whether the mineralization of native 

SOM is suppressed or increased (negative or positive priming effect) with biochar. This 

could question its usefulness to increase SOM stocks (Wardle et al., 2008; Zimmerman et 

al., 2011). Generally, plant-derived biochars produced by slow pyrolysis at higher 

temperatures (≥500 °C) with high proportion of aromatic C and low volatile matter content 
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should be preferred over more labile lower-temperature biochars for purposes of C 

sequestration in soil (Spokas, 2010; Brewer et al., 2011; Wang et al., 2016a). Results of 

short-to mid-term field studies (1-3 years) in agricultural sites indicate that biochar could 

help to sequester C by stabilizing SOM and preventing breakup of soil aggregates or by 

being physically protected against degradation through aggregate occlusion (Zhang et al., 

2015; Dong et al., 2016; Ma et al., 2016). An improved soil aggregation through biochar 

amendment would reduce the risk of SOC losses by erosion (Jien & Wang, 2013).  

Biochar can also indirectly increase SOM by promoting above- and belowground plant 

growth and rhizodeposits (Lorenz & Lal, 2014). Increases in crop growth after biochar 

addition to soil was observed in a number of studies which could be attributed to increased 

soil pH, enhanced nutrient retention in soil as well as plant availability of P and K, and 

increased water holding capacity in soil (Jeffery et al., 2011; Biederman & Harpole, 2013). 

Yield benefits could be rather small in temperate fertile agricultural soils (Crane-Droesch 

et al., 2013; Jay et al., 2015). However, leaching of mineral N from fertilized soils is of 

major concern for the productivity of agricultural systems and groundwater quality (Stavi 

& Lal, 2013). The affinity of biochar to adsorb nutrients due to its large surface area and 

high CEC could reduce NO3
- leaching and increase the N-use efficiency of plants in 

fertilized agricultural soils (Steiner et al., 2008b; Jones et al., 2012; Zheng et al., 2013). 

Many researchers argue that the application of unweathered biochar initially reduces plant-

available N (Nelissen et al., 2014; Schmidt et al., 2014), though this effect became weaker 

during ageing of biochar in the field (Gronwald et al., 2015). Therefore, biochar is also 

often mixed with compost, or co-composted to charge it with nutrients before soil 

application to prevent such temporal negative impacts on plant growth (Schulz & Glaser, 

2012; Schmidt et al., 2014; Kammann et al., 2015).  

Long-term field research is definitely needed to evaluate biochar stability and possible 

priming of native SOM decomposition in situ as well as biochar effects on plant 

productivity over several growing periods. Another challenge will be to elucidate the role 

of soil microorganisms in affecting biochar`s C sequestration potential under changing 

climate and soil warming.  
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3.4 Effects of biochar on soil microorganisms 

Some studies demonstrated the preferential colonization of biochars by 

microorganisms, particularly by AMF (Warnock et al., 2007; Jin, 2010; Luo et al., 2013). 

Microhabitats in biochar pores may also protect microorganisms against their predators 

and extreme conditions such as heat and water stress (Pietikäinen et al., 2000; Thies & 

Rillig, 2009).  

Biochar has the potential to ameliorate several physical and chemical soil properties 

and thus change soil habitat conditions, which could positively affect soil microorganisms 

(Lehmann et al., 2011; Gul et al., 2015). For example, such improvements in properties of 

biochar-amended soil include a decrease in soil bulk density (Major et al., 2010; Downie 

et al., 2009), increased CEC (Laird et al., 2010), enhanced water holding capacity (Karhu 

et al., 2011; Omondi et al., 2016), improved nutrient retention (Zheng et al., 2013), 

increases of soil pH (van Zwieten et al., 2010) or adsorption of toxic compounds (Chen & 

Yuan, 2011). In addition, biochar sometimes promoted aboveground and belowground 

plant growth, which could also have direct impact on plant-associated microbial 

communities or indirectly influence microorganisms by changed substrate and nutrient 

availability in soil (Jones et al., 2012; Biederman & Harpole, 2013). However, chemical 

and physical properties of biochars and thus its soil amelioration potential vary with used 

feedstock and pyrolysis conditions (Ronsse et al., 2013; Gai et al., 2014). The magnitude 

of biochar effects in improving soil properties and, in turn, to alter soil microbial 

communities as well as increase plant growth relies on initial fertility status of soil. 

Therefore, degraded, acidic and coarse-textured soils with high drainage and leaching 

potential for nutrients may benefit most from biochar amendment (Atkinson et al., 2010; 

Gul et al., 2015; Omondi et al., 2016).  

Interactions between biochar and earthworms are likely also relevant for soil microbial 

habitats. Earthworms were commonly used to assess the biotoxicity of different biochars 

in soil (e.g. Busch et al., 2012). Negative effects of biochars on earthworm survival rates 

or its avoidance could arise from physical and chemical alteration of soil properties or 

toxic substances of biochar itself (Liesch et al., 2010; Li et al., 2011). Biochar particles 

may also be ingested by earthworms without direct benefit, but mixed with SOM during 

passage through their gut, which could create more profitable habitats for microorganisms 

in biochar-amended soils (Augustenborg et al., 2012). In addition, earthworms may either 

mobilize biochar by grinding and breakup of soil aggregates or stabilize biochar in cast 
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aggregates, therefore changing substrate availability for soil microorganisms (Domene, 

2016). 

Increased microbial abundances and alterations in community composition in soils 

containing black carbon were reported from Terra Preta soils (Kim et al., 2007; Grossman 

et al., 2010. In addition, biochar application positively affected abundances and diversity 

of soil microorganisms in incubation studies (Khodadad et al., 2011; Gomez et al., 2014; 

Prayogo et al., 2014; Ameloot et al., 2015) and in short- or medium-term (< 4 years) field 

experiments in agroecosystems (Jones et al., 2012; Domene et al., 2014; Zhang et al., 

2014). Otherwise, no effect or even decreases in microbial abundances were observed in 

other studies (Dempster et al., 2012; Rutigliano et al., 2014). This reflects that biochar 

effects on soil microorganisms strongly depend on biochar types (feedstock, pyrolysis 

conditions), application rates and soil/ecosystem (Liu et al., 2016). Increased microbial 

biomass in biochar-amended soils may be mainly explained with the above mentioned 

improvements of habitat conditions due to alterations in physical and chemical soil 

properties after biochar amendment (Gul et al., 2015). Until now, no long-term study exists 

showing whether positive effects of biochar on soil microbial abundances will be 

persistent. The application of biochar to agricultural soils led also to shifts in the soil 

microbial community composition and increased bacterial-to-fungi ratios (Jones et al., 

2012; Chen et al., 2013). Such changes in the microbial community suggest differences in 

the response of bacteria and fungi to biochar application and also alterations in the function 

of microorganisms in C- and N-cycling (Lehmann et al., 2011).  

Several studies showed an initial increase in CO2 emissions after the application of 

fresh biochar (e.g. Smith et al., 2010). This is mainly correlated to the amount of easily 

available C of the biochar, which is rapidly consumed by soil microorganisms (Spokas, 

2010). On longer terms, biochar may not serve as substrate for microbial growth in soil 

(Ameloot et al., 2013b), although fungi are able to decompose recalcitrant materials such 

as biochar (Ascough et al., 2010). The incorporation of labeled biochar-C into microbial 

biomass measured by chloroform fumigation extraction (CFE) or phospholipid fatty acid 

analysis (PLFA) was observed to be quite low (Kuzyakov et al., 2009; Farrell et al., 2013; 

Luo et al., 2013; Watzinger et al., 2014). After short-term stimulation of soil respiration, 

biochar is expected to be only slowly mineralized (Kuzyakov et al., 2009, 2014). In 

addition, in many studies biochar suppressed total CO2 emissions (Liu et al., 2016). 

Possible mechanisms for the reduction in soil respiration are (i) the stability of biochar due 
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to its high chemical aromaticity, (ii) stabilization of labile C through sorption on the 

surface of biochar preventing it from being mineralized, (iii) N immobilization due to 

sorption on biochar or by enhanced plant-uptake thereby inducing nutrient limitation for 

soil microorganisms, (iv) precipitation of CO2 as carbonate on biochar surfaces or (v) 

biochar-derived toxic substances inhibiting microbial activity (Lehmann et al., 2011; Case 

et al., 2012; Saarnio et al., 2013). However, reduced CO2 emissions were frequently 

observed together with enhanced microbial biomass and community shifts resulting in 

decreased metabolic quotients (qCO2) and enhanced microbial efficiency (Jin, 2010; 

Domene et al., 2014). This points to a limited relevance of the above mentioned 

mechanisms for reduced soil respiration. Lehmann et al. (2011) hypothesized that biochar 

offers microhabitats where the co-location of substrates, nutrients and microorganisms 

supports increased microbial efficiency. This would legitimate the use of biochar as soil 

amendment for soil C sequestration and amelioration of soil properties. However, further 

research on the influence of biochar on the mineralization of native SOM is of particular 

importance. Contradicting results were reported from experiments using varying biochars 

and soils showing both enhanced and reduced mineralization of SOM, also termed as 

positive or negative priming effects (Kuzyakov et al., 2009; Zimmerman et al., 2011). 

Changes in soil abiotic factors after biochar addition may also affect the emissions of 

N2O and CH4. Biochar likely has distinct effects on nitrifier and denitrifier communities 

in soil and related N2O-genic processes depending on biochar and soil properties 

(Prommer et al., 2014; Harter et al., 2016). Several studies demonstrated reductions in N2O 

emissions following biochar application (Taghizadeh-Toosi et al., 2011; Harter et al., 

2013; Ameloot et al., 2016). Some suggested explanations are the suppression of 

denitrification through enhanced soil aeration, reduced availability of labile C or nitrate 

due to adsorption on biochar or by higher plant N-uptake, as well as increases in soil pH 

(Clough et al., 2013, 2014). In addition, many authors showed reduced N2O emissions by 

further reduction of N2O to N2. This process may be facilitated by the creation of 

denitrification hotspots in biochar pores, where soil water, substrate availability as well as 

pH are locally favorable and electrons may be shuttled faster to denitrifiers (Cayuela et al., 

2013; Harter et al., 2013; Ameloot et al., 2016). On the other hand, N2O fluxes were also 

increased with low-temperature biochars from N-rich litter, after rewetting soils and 

application of N-fertilizer (Yanai et al., 2007; Singh et al., 2010; Saarnio et al., 2013; 

Sánchez-García et al., 2014; Chen et al., 2015a). This requires further clarification to 



3 General Introduction 

 

 

20 

determine possible reasons in order to adjust biochar production and selection of fertilizers 

for applications in agricultural land management.  

Biochar was also recently applied to decrease CH4 emissions from rice paddy soils, 

but with varying success (Yu et al., 2013; Zhang et al., 2013a). Yu et al. (2013) found that 

biochar increased methane oxidation at low moisture levels, whereas increasing CH4 

production at higher water-filled spore space (WFPS) above 60 %. By contrast, Karhu et 

al. (2011) reported short-term increased CH4 uptake in a field agricultural soil and 

hypothesized that enhanced aeration and CH4 diffusion into soil are possible reasons. No 

consistent results were obtained in other experiments in the laboratory or field using 

different arable soils (Spokas & Reicovsky, 2009; Castaldi et al., 2011; Kammann et al., 

2012). This underlines that biochar may differently affect methanogenic and 

methanotrophic microorganisms depending on changes in abiotic soil properties (Feng et 

al., 2012). However, the effects of biochar on soil CH4 fluxes are strongly determined by 

soil moisture levels and aeration as well as by soil and biochar properties and are therefore 

difficult to predict.  

The effects of biochar on terrestrial ecosystems affected by climate warming are 

mostly unexplored. It is largely unknown whether climate warming intensifies biochar 

mineralization in soil, thus influencing its long-term stability and GHG budgets. Only little 

research was done on the temperature sensitivity of biochar decomposition in incubation 

studies (Nguyen et al., 2010; Fang et al., 2014, 2015) and biochar effects on N2O emissions 

and CH4 emissions at elevated soil temperature (Case et al., 2012; Han et al., 2016). Until 

now, no study focused on interactive effects of biochar and elevated soil temperature on 

microbial abundances and community composition under field conditions. 
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4 Objectives  

4 Objectives  

New management options are required to mitigate the expected climate change effect 

on soil temperature and moisture likely influencing soil microbial communities involved 

in C- and N-cycling and further indirect effects on abiotic factors, thus leading to 

stimulated decomposition of SOM and enhanced greenhouse gas (GHG) emissions 

(Bardgett et al., 2008; Dijkstra et al., 2013; Chen et al., 2015b). Biochar is proposed as a 

promising tool to sequester C in agricultural soils, to increase SOC stocks and thereby may 

have high potential to mitigate soil GHG emissions and to improve overall soil fertility 

(Lorenz & Lal, 2014). However, it is uncertain whether the proposed beneficial effects of 

biochar can be achieved under soil warming. This thesis aims to evaluate the potential of 

C4 plant-derived Miscanthus x giganteus biochar to be a valuable soil management 

strategy to attenuate projected climate change effects in a temperate agroecosystem in 

south-west, Germany. The use of an isotopically labeled (13C) biochar allowed to trace the 

fate of biochar-C in different C pools such as CO2 and microbial or earthworm biomass. 

The present thesis is structured in three studies. The first study, a short-term laboratory 

incubation (37d), examined the potential of a slow-pyrolysis biochar produced from 

Miscanthus x giganteus feedstock (pyrolysis at 600 °C for 30 Min.) to reduce the emissions 

of CO2 and N2O in the presence of earthworms and N-rich Phacelia tanacetifolia Benth. 

litter in agricultural soil under controlled conditions. It was aimed to investigate whether 

endogeic earthworms of the species Aporrectodea caliginosa, the dominating earthworms 

in temperate arable soils (Marhan et al., 2015), could contribute to biochar mineralization 

by mobilizing and incorporating biochar-C into their biomass. In addition, it was studied 

whether single or interactive effects of biochar and earthworms affect soil microbial 

abundances and community composition measured by phospholipid fatty acid analysis 

(PLFA).  

For this pre-experiment soil was taken from the same agroecosystem which was later 

investigated in study two and three. Hence, the results of the first study should give useful 

information on possible toxic effects of Miscanthus biochar on soil fauna, as represented 

by earthworms, the biological stability of the used biochar and its potential to mitigate soil 

greenhouse gas emissions from the used arable soil. 

The second and third study focused on the feasibility of long-term soil C sequestration 

with Miscanthus biochar and its biological effects on an agroecosystem under predicted 
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climate warming. A two-factorial field experiment, the Biochar Hohenheim Climate 

Change Experiment (BC-HoCC) was established in August 2013 as a part of the already 

existing HoCC-experiment (Poll et al., 2013). A naturally labeled (13C) Miscanthus 

biochar produced at high-temperature (850 °C) by slow pyrolysis (30 Min.) was applied 

to selected plots at a rate of 30 t ha-1 and incorporated into 0-20 cm soil depth. Half of the 

plots were warmed by 2.5 °C against ambient soil temperature by heating cables since July 

2008.  

In the second study of this thesis, short-term (after one year) effects of biochar and soil 

warming on physical and chemical soil properties as well as on microbial abundances and 

community composition (PLFA) were investigated at three sampling dates (November 

2013, March and September 2014) and in two depths (0-5 and 5-15 cm). In addition, the 

growth of winter rapeseed (Brassica napus L.) was determined by canopy height and 

aboveground biomass at maturity. The first hypothesis was that the used Miscanthus 

biochar is stable against microbial decomposition even under predicted soil warming, 

which was examined by PLFA abundances and the quantification of incorporated labeled 

biochar-C in microbial biomass (13Cmic). Secondly, it was hypothesized that the positive 

effect of biochar on soil moisture regime, especially in dry periods, would compensate for 

water loss in warmed soil, thus positively influencing soil microbial abundances and 

growth of winter rapeseed.  

In the third study, the effects of biochar and soil warming on microbial activity and 

greenhouse gas fluxes of CO2, N2O and CH4 were monitored over two years under winter 

rapeseed and spring wheat growing seasons. It was hypothesized that the used biochar will 

form a persistent constituent of OM in soil, thus not increasing CO2 emissions, microbial 

metabolic efficiency and temperature sensitivity of soil respiration on the medium-term 

even under warming. In addition, it was aimed to study how biochar effects on physical 

and chemical soil properties would influence N2O and CH4 fluxes under changing weather 

conditions, agricultural land management (ploughing, cropping and fertilization) and soil 

warming. 
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Abstract 

Biochar application to arable soils could be effective for soil C sequestration and 

mitigation of greenhouse gas (GHG) emissions. Soil microorganisms and fauna are the 

major contributors to GHG emissions from soil, but their interactions with biochar are 

poorly understood. We investigated the effects of biochar and its interaction with 

earthworms on soil microbial activity, abundance, and community composition in an 

incubation experiment with an arable soil with and without N-rich litter addition. After 37 

days of incubation, biochar significantly reduced CO2 (up to 43 %) and N2O (up to 42 %), 

as well as NH4
+-N and NO3

–-N concentrations, compared to the control soils. 

Concurrently, in the treatments with litter, biochar increased microbial biomass and the 

soil microbial community composition shifted to higher fungal-to-bacterial ratios. Without 

litter, all microbial groups were positively affected by biochar × earthworm interactions 

suggesting better living conditions for soil microorganisms in biochar-containing cast 

aggregates after the earthworm gut passage. However, assimilation of biochar-C by 

earthworms was negligible, indicating no direct benefit for the earthworms from biochar 

uptake. Biochar strongly reduced the metabolic quotient qCO2 and suppressed the 

degradation of native SOC, resulting in large negative priming effects (up to 68 %). We 

conclude that the biochar amendment altered microbial activity, abundance, and 

community composition, inducing a more efficient microbial community with reduced 

emissions of CO2 and N2O. Earthworms affected soil microorganisms only in the presence 

of biochar, highlighting the need for further research on the interactions of biochar with 

soil fauna. 

 

Keywords:  Biochar, Respiratory efficiency, Soil microbial community composition, 

Aporrectodea caliginosa 
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5.1 Introduction 

The addition of biochar to arable soils has been often shown to increase soil fertility 

and crop yield (Jeffery et al., 2011; Spokas et al., 2012). Another beneficial effect of 

biochar could be the reduction of greenhouse gas emissions from soils (Case et al., 2012; 

Kammann et al., 2012). However, reported effects of biochar on carbon dioxide (CO2) 

emissions from soil have been variable, ranging from a short-term increase to a decrease 

in CO2 emissions (Jones et al., 2011; Kammann et al., 2012; Ameloot et al., 2013a). 

Differences in C mineralization can be explained by different biochar and soil 

characteristics as well as various underlying processes, such as abiotic C-release from 

biochar, soil organic carbon (SOC) adsorption, and positive or negative priming effects 

(Zimmerman, 2010; Jones et al., 2011; Bamminger et al., 2014a). In addition, the emission 

of nitrous oxide (N2O), which is 265 times more potent as greenhouse gas than CO2 over 

a time period of 100 years (IPCC, 2013), was found to be significantly reduced by biochar 

(e.g., Taghizadeh-Toosi et al., 2011; Kammann et al., 2012), while only a few studies have 

also shown increased N2O emissions (Saarnio et al., 2013). Possible reasons for these 

inconsistent biochar effects on N2O emissions could be related to different biochar and soil 

characteristics showing divergent effects of biochar on soil aeration and moisture 

conditions, nutrient availability, or soil microbial community structure (Clough & 

Condron, 2010).  

Biochar-related changes in micro-environmental conditions have been suggested to be 

responsible for observed modifications in soil microbial community composition 

(Khodadad et al., 2011) and abundances of different bacterial families (Anderson et al., 

2011). Moreover, shifts to bacteria-dominated communities and decreases in fungal 

abundances have been observed in fields after biochar application (Jones et al., 2012; Chen 

et al., 2013). This emphasizes that there is a preferential microbial response to biochar 

addition, which may differ between fungi and bacteria, but the reasons for this are not well 

understood (Lehmann et al., 2011).  

The pyrogenic C in biochar is more recalcitrant than other organic matter pools in soils 

(Vasilyeva et al., 2011), but it is not inert and can be slowly decomposed by abiotic and 

biologically mediated oxidation (Zimmerman, 2010). Indeed, microbial biomass increased 

in biochar-amended soil (Jin, 2010), but direct microbial consumption of labile fractions 

of biochar was observed mainly within the first 3 days and declined afterwards (Farrell et 

al., 2013). This suggests that the major parts of biochar are stable against microbial 
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decomposition and that direct uptake of biochar-C is of minor importance for the activity 

and abundance of soil microorganisms. Finally, the enhanced soil microbial biomass and 

reduced CO2 respiration in the presence of biochar indicate a more efficient microbial 

community (Jin, 2010), which may be caused by shifts in the community composition and 

changed substrate use patterns (Lehmann et al., 2011).  

Beside soil microorganisms, which are most responsible for C and N mineralization in 

soils, earthworms have also been shown to increase emissions of CO2 and N2O (Lubbers 

et al., 2013) and to affect the mobilization as well as the stabilization of soil C and N 

(Marhan & Scheu, 2005). Burrows and casts of earthworms provide substrates and 

nutrients for soil microorganisms, enhancing the decomposition and C-mineralization of 

plant residues. In addition, low oxygen availability in combination with high nutrient 

content in the gut of earthworms and their cast material provide ideal conditions for 

denitrifying bacteria and concomitant high N2O emissions (Drake & Horn, 2007).  

In comparison to the effects of biochar on soil microorganisms, even less is known 

about biochar effects on earthworms. The few existing studies have detected weight loss 

and mortality of earthworms after 28 days of incubation (Li et al., 2011), especially in soils 

with high doses of biochar (67.5 and 90 Mg ha-1) (Liesch et al., 2010). Negative effects on 

earthworm activity and biomass could arise from physical or chemical effects of biochar 

amendments, i.e., insufficient soil moisture due to the dry biochar (Li et al., 2011) or 

toxicity/salinity (Liesch et al., 2010). Furthermore, biochar may interact with earthworms, 

modifying greenhouse gas emissions from soils. In a pot experiment with endogeic 

earthworms of the species Aporrectodea icterica, Augustenborg et al. (2012) observed a 

reduction of the earthworm-induced N2O emissions by 20 to 95 % in the presence of 

biochar, while biochar reduced CO2 emissions only in the absence of earthworms. This 

illustrates the potential of biochar to mitigate the N2O-emission stimulating earthworm 

effect. However, the stability of biochar against decomposition might be also affected by 

endogeic earthworms, which have been suspected of increasing the mobilization of old 

and possibly stable C resources in soils (Marhan et al., 2007).  

We performed a factorial incubation experiment based on the following research 

questions: (1) Are endogeic earthworms able to mobilize and incorporate stable biochar-

C, leading to increased decomposition of biochar? and (2) Will there be effects only of the 

single factors, earthworms, and biochar on C and N turnover, i.e., CO2 and N2O emissions 

or will there be interactions between both factors? In addition to the second question, we 
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investigated whether the effects and interactions between biochar and earthworms will 

change when litter, as an additional C and N resource, is present in the soil and to which 

extent analyses of soil microbial abundance and community composition could help to 

explain the results? To address these questions, we mixed pyrolysis biochar (Miscanthus) 

with an arable soil and added specimens of Aporrectodea caliginosa, a common endogeic 

earthworm in temperate arable soils. Biochar derived from a C4 plant and showing another 

13C-signature than the soil made it possible to quantify the earthworm effect on biochar-C 

mobilization. To one half of the experiment, we added N-rich plant litter, reflecting the 

incorporation of a green manure into arable soil, which is typically accompanied by high 

N2O emissions (Baggs et al., 2002). The effects of biochar and earthworms on C and N 

turnover were investigated by measuring CO2 and N2O emissions, microbial abundance 

and community composition were quantified by phospholipid fatty acid analyses (PLFA). 

 

5.2 Materials and methods 

Experimental setup 

The experiment was conducted in vessels consisting of airtight Perspex tubes (height 

150 mm, Ø 45 mm) fixed on water saturated ceramic plates. The vessels were closed at 

the top with a lid and a rubber stopper with a three-way stopcock, enabling gas sampling 

for CO2 and N2O measurements with a syringe from the head space. At the bottom of the 

lid, a small vial was attached, which was filled with NaOH to trap CO2 for determination 

of isotopic signature of CO2 produced inside the vessel (Marhan et al., 2007). The 

following treatments were established: soil only (Ctrl), soil with biochar (BC), soil with 

one juvenile A. caliginosa (EW), soil with biochar, and one juvenile A. caliginosa (BC + 

EW). Half of the vessels were set-up without litter (‘no litter’ treatments), the other half 

with Phacelia litter (‘with litter’ treatments). In total, 46 vessels were established (Ctrl, 

treatments n=5; all others, n=6), all soil mixtures were initially rewetted to 60 % of water 

holding capacity (WHC) of the control and incubated in darkness in a climate chamber at 

20 °C for 37 days. 
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Materials 

Soil 

Soil was taken from the Ap-horizon (0–10 cm) of an arable field at the agricultural 

experimental station ‘Heidfeldhof’ (University Hohenheim, Germany). The soil is a 

slightly stagnic luvisol with a silty texture of 9 % sand, 69 % silt, and 22 % clay (Table 

5.1). The soil was sieved (<2 mm) to remove stones, plant residues, earthworms, and their 

cocoons and stored at 4 °C for a few days until the experiment was set up. Each vessel was 

filled with fresh soil equivalent to 100 g dry weight (DW) and compacted to a bulk density 

of 1.2 g cm3. 

 

Biochar 

The biochar was produced by slow pyrolysis (approximately 600 °C; production rate 

up to 40 kg biochar h-1) in a continuous reactor from Miscanthus x giganteus and was 

provided by Pyreg GmbH (Dörth, Germany) (Table 5.1). There was a low toxicity 

potential of PAHs, dioxins, heavy metals, or other persistent organic pollutants in the 

biochar (see further details in Table S5.1). The low toxicity of the biochar was revealed in 

a grassland field experiment showing no negative effects on plant growth 

(Schimmelpfennig et al., 2014). The biochar was sieved and particles <2 mm were 

homogenously mixed with soil (2 % w/w) to obtain an application rate of 30 Mg ha−1, 

assuming biochar incorporation into ploughing depth of 30 cm in the field. This is the 

typical application rate in several biochar experiments (Augustenborg et al., 2012). 

 

Litter 

Litter material was taken from Phacelia tanacetifolia Benth. plants grown in the same 

soil in a greenhouse for 10 weeks. Aboveground biomass was harvested, fragmented into 

<10 mm size pieces, and dried at 40 °C to constant weight. The green litter material had a 

low C/N ratio of 17 (350.2 g C kg−1, 20.6 g N kg−1). Litter was shredded to 5 mm size and 

homogenously mixed into the soil of the litter treatments at a rate of 1.54 % w/w of soil, 

which is equivalent to 23.1 Mg ha−1; this represents the amount of Phacelia litter ploughed 

into the soil as green manure from an arable field at the ‘Heidfeldhof’ field station. 
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Table 5.1. Characteristics of soil, biochar and litter. 

Parameter  Soil Biochar Litter 

    Corg [g kg-1] 12.1 671.7 350.2 

Nt [g kg-1] 1.3 2.3 20.6 

C/N ratio 9.3 292 17 

δ13C [‰] -27.28 -13.82 -29.82 

pH [0.01 M CaCl2] 6.8 8.8 n.d. 

Sand [%] 9  n.d. n.d. 

Silt [%] 69 n.d. n.d. 

Clay [%] 22 n.d. n.d. 

    
n.d. = not determined. 

 

Earthworms 

Juvenile endogeic earthworms (A. caliginosa Savigny) were extracted from grassland 

adjacent to the arable field by hand sorting. The use of juvenile specimens enabled the 

detection of earthworm biomass decrease as well as increase (Marhan & Scheu, 2005). 

The earthworms were kept in the experimental soil for 6 days until the incubation 

experiment was set up. Before the earthworms were placed into the vessels, they were kept 

on wet filter paper for 1 day to void their guts. Afterwards, they were washed with water, 

dabbed dry, and weighed, giving the initial live weight. The mean body mass of A. 

caliginosa specimens was 138 mg fresh weight with a range of 90 to 192 mg. Smaller and 

larger specimens were homogenously distributed over the earthworm containing 

treatments. After incubation, the soil was carefully removed from the vessels to avoid 

injuring the earthworms and earthworm body mass was determined in the same way as 

described above in order to calculate changes in individual body mass. 

 

Analyses 

C, δ13C, N analyses, and pH values 

Initial soil, litter, and biochar C and N concentrations and their isotopic signatures 

(δ13C) were measured using an elemental analyzer (EA, Euro EA 3000, Euro Vector, 

Milan, Italy) coupled with an isotope mass spectrometer (IRMS, DeltaXP Plus, Thermo 

Finnigan,Waltham, USA). For this analysis, the sieved and dried soil, litter, and biochar 

were finely ground. Earthworm δ13C signatures were determined by analyzing tissue 
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material from the anterior part of specimens, which contained no soil particles. For this, 

earthworms were killed by freezing and the anterior part of the frozen earthworms was cut 

off and dried at 60 °C. About 1.3 to 3.98 mg dry tissue material from each individual 

earthworm was analyzed. The earthworm δ13C signatures were determined for three 

specimens per treatment. After the incubation, soil pH values were measured in 0.01 M 

CaCl2 solution (1:4 w/v).  

 

Extractable organic C (EOC), ammonium (NH4
+-N), and nitrate (NO3

−-N) 

At the end of the incubation EOC, NH4
+-N and NO3

--N concentrations in soil were 

determined by extracting the soil with 0.5 M K2SO4 (1:4 w/v). Soil suspensions were 

shaken on a horizontal shaker (30 min at 250 rpm) and centrifuged (30 min at 4400 × g). 

Concentrations of EOC in the supernatant were then analyzed with a DOC analyzer (multi 

N/C 2100 S, Analytik Jena AG, Jena, Germany). NH4
+-N and NO3

--N concentrations in 

the supernatant were determined colorimetrically with a continuous flow analyzer (Bran + 

Luebbe Autoanalyzer 3, SEAL Analytical, Hamburg, Germany). 

 

CO2, N2O, and 13CO2 emission  

To measure CO2 and N2O emissions, vessels were tightly closed and 15 ml of the 

headspace volume was sampled immediately and 60 min after closure. Gas samples were 

taken with 20 ml syringes via three-way stopcocks and injected into pre-evacuated 5.9 ml 

exetainers (Labco Ltd., UK). CO2 and N2O concentrations in the headspace samples were 

determined on an Agilent 7890 gas chromatograph (Agilent Technologies Inc., Santa 

Clara, CA, USA) equipped with a methanizer and a FID for CO2 and an ECD for N2O 

measurements. Three external standards per gas were used for calibration by linear 

regression (0.304, 1.487, and 2.966 mmol mol−1 CO2; 0.568, 1.099, and 2.056 μmol mol−1 

N2O; Westfalengas, Germany). Gas samples were taken at days 1, 2, 3, 6, 8, 10, 13, 16, 

21, 27, 30, and 34 of incubation. Cumulative CO2 and N2O fluxes were calculated by linear 

interpolation between two consecutive measurements. 13C in produced CO2 was 

determined according to the method of Marhan et al. (2008) by capturing emitted CO2 in 

NaOH solution (1 M) in the headspace of each vessel and measuring 13C in the precipitated 

SrCO3 at days 1, 4, 7, 10, 15, 18, 22, 29, 32, and 37 of incubation. Between gas sampling 

dates, lids or holes were left open to ensure free gas exchange. 
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Calculation of biochar-derived C in CO2 and priming effects 

The biochar derived from the C4 plant Miscanthus has a δ13C value of −13.82 ‰, 

different from that of the soil (−27.28 ‰). Determination of biochar-C and SOC 

mineralization was possible for the ‘no litter’, but not for the ‘with litter’ treatments, due 

to the different 13C signature of the litter-C in comparison to soil-C, which served as a 

third, not quantifiable CO2 source. For the calculation of the relative amounts of biochar-

C and native SOC in CO2 at specific dates of the incubation, a simple two-pool mixing 

model was used (Gregorich et al., 1995). Priming effects (PEs) were calculated for ‘no 

litter’ treatments based on the 13C data by determining the difference in the native SOC 

mineralization between biochar-amended samples (BC and BC + EW) and respective 

controls (Ctrl and EW) (Bamminger et al., 2014a) as shown in Eq. 1: 

 

PE [%] = (mineralized SOCtreatment - mineralized SOCcontrol) /        (1) 

  mineralized SOCcontrol × 100 

 

Phospholipid fatty acid analysis 

The PLFAs of 4 g incubated soil (fresh weight) from each vessel were extracted 

according to Frostegård et al. (1993) with Bligh & Dyer solution (chloroform, methanol, 

citrate buffer; pH=4; 1:2:0.8 v/v/v) and separated into glycolipid, neutral lipids, and 

phospholipid fatty acids with silica acid columns (0.5 g silicic acid, 3 ml; Varian Medical 

Systems, Palo Alto, California). Only the PLFA-fraction was analyzed. The branched fatty 

acids i15:0, a15:0, i16:0, and i17:0 were summed as Gram-positive and the cy17:0 and 

cy19:0 as Gram-negative bacteria (Zelles, 1999). In addition to these biomarkers, 16:1ω7 

was included for total bacteria calculation (Frostegård & Bååth, 1996). The biomarker 

18:2ω6,9c was considered as fungal PLFA (Frostegård & Bååth, 1996; Kaiser et al., 2010). 

Total microbial PLFA (PLFAmic) consists of total bacterial and fungal PLFA. Metabolic 

efficiency (qCO2) of the soil microbial community was calculated by the ratio between 

CO2-C and microbial PLFA. 

 

Statistical analysis 

Data on cumulative CO2-C and N2O-N production, contents of EOC, NH4
+-N, NO3

−-

N, soil pH, and microbial PLFA data were analyzed by two-way analysis of variance 
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(ANOVA) separately for the ‘no litter’ and ‘with litter’ treatments due to the strong effect 

of the litter, which led to inhomogeneity of the variances. Factors for two-way ANOVA 

were ‘biochar’ (BC; without and with BC) and ‘earthworm’ (EW; without and with EW). 

For the two-way ANOVA of earthworm biomass changes, the litter treatments were not 

separated and factors were ‘biochar’ and ‘litter’ (no and with litter). Prior to analysis, data 

were log-transformed in the case of non-normal distribution and inhomogeneity of 

variance (Levene test). A statistical probability of P<0.05 was considered significant. The 

STATISTICA 6.0 software package (Statsoft, Tulsa, OK, USA) was used for statistical 

analyses. 

 

5.3 Results 

Earthworm biomass 

All earthworms survived the incubation in the ‘no litter’ treatments and only one 

earthworm died in the ‘with litter’ treatments. This replicate was excluded from further 

analyses. Litter significantly affected earthworm biomass; in the ‘no litter’ treatments, 

earthworms reduced their biomass by 19 and 23 %, whereas in the ‘with litter’ treatments 

earthworms gained biomass by 42 and 32 % in the absence and presence of biochar, 

respectively (data not shown). Earthworm biomass showed no significant effects from 

biochar addition. After 37 days, the δ13C signatures of the earthworms’ biomass seemed 

to be more depleted in the ‘with litter’ than in the ‘no litter’ treatments (P=0.08), showing 

that litter derived-C was assimilated (Fig. S5.1), but no significant differences in 

earthworm δ13C signatures were found between treatments with and without biochar. 

 

CO2 emissions 

CO2 emission rates declined slightly in the ‘no litter’ treatments, whereas in the ‘with 

litter’ treatments decomposition of the litter was highest during the first 4 days (Fig. S5.2a). 

Basal respiration (RB), which was the CO2 production rate at the end of the experiment, 

was 36-fold higher in the ‘with litter’ than in the ‘no litter’ treatments. In both litter 

treatments, RB was significantly reduced by biochar, but not affected by earthworms 

(Tables 5.2 and 5.3). Cumulative CO2 production over the incubation period ranged 

between 0.05 and 0.11 mg CO2-C g-1 dws in the ‘no litter’ treatments and between 0.91 

and 1.30 mg CO2-C g-1 dws in the ‘with litter’ treatments (Fig. 5.1a). Biochar significantly 
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(P<0.05) reduced cumulative CO2 emissions in the ‘no litter’ and ‘with litter’ treatments 

by 43 and 27 %, respectively (Fig. 5.1a, Table 5.3). Earthworms had no significant effect 

on the CO2 efflux. 

 

Table 5.2. Physicochemical and microbial soil properties within the ‘no litter’ and ‘with litter’ 

treatments after 37 days of incubation. 

Parameter 

No litter With litter 

Ctrl BC EW BC+ 

EW 

Ctrl BC EW BC+ 

EW 

    
RB  

(µg CO2-C g-1 dws 

d-1) 

1.24    

± 0.44 

0.12   

± 0.05 

1.25   

± 0.28 

0.27     

± 0.10 

2.87     

± 0.42 

2.13     

± 0.33 

3.37   

± 0.32 

1.81        

± 0.23 

         
pH 

  

6.69    

± 0.18 

7.04   

± 0.06 

6.82   

± 0.04 

6.99  

± 0.05 

7.17  

± 0.03 

7.16  

± 0.06 

7.21  

± 0.03 

7.12  

± 0.12  
        

EOC  

(µg C g-1 dws) 

47.9  

± 4.2 

48.4 

± 3.4 

45.5 

 ± 3.7 

57.1 

± 2.1 

107.7 

 ± 6.0 

106.7  

± 4.0 

95.3 

 ± 2.5 

114.8 

± 8.9  
        

Total bacterial 

PLFA 

(nmol g-1 dws) 

14.1  

± 0.37 

14.9 

 ± 1.1 

13.8 

 ±0.55 

19.6 

± 0.54 

36.4  

± 2.5 

41.7  

± 1.2 

35.9 

± 0.69 

39.3  

± 0.54 

         
PLFAmic 

(nmol g-1 dws) 

15.0 

± 0.40 

15.7 

 ± 1.2 

14.7 

± 0.62 

20.7 

± 0.55 

43.5 

± 3.9 

52.6 

± 2.9 

42.5 

± 1.2 

49.2 

± 1.3 

         
Gram-

positive/Gram- 

negative ratio 

4.23 

± 0.09 

4.48 

± 0.14 

4.22 

± 0.06 

4.52 

± 0.15 

3.52 

± 0.05 

3.87 

± 0.13 

3.52 

± 0.06 

3.48 

± 0.04 

 
        

Fungal/Bacterial 

ratio 

0.06    

± 0.00 

0.06   

± 0.00 

0.06   

± 0.00 

0.06      

± 0.00 

0.19     

± 0.02 

0.26     

± 0.04 

0.18   

± 0.01 

0.25        

± 0.02 

qCO2 (µg CO2-C 

µmol-1 PLFAmic d-1) 

82.3     

± 31.7 

10.0   

± 3.4 

67.7   

± 5.3 

14.1     

± 5.9 

70.7     

± 14.6 

42.6     

± 7.9 

79.3   

± 7.6 

37.4        

± 5.7  
  

Ctrl = only soil, BC = soil with biochar, EW = soil including one endogeic earthworm, BC+EW= 

soil with biochar and one earthworm. Means ± SE. 

RB (basal respiration), qCO2 (metabolic efficiency) 
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Table 5.3. Two-Way ANOVA results for physicochemical and microbial soil properties within 

the ‘no litter’ and ‘with litter’ treatments. The table shows F-values for the effects of biochar 

(BC) and earthworm (EW) and their interaction (BC × EW). Significant effects are bold and 

indicated by asterisks (* P < 0.05, ** P < 0.01, *** P < 0.001). 

Parameter 

No litter (n = 23) With litter (n = 22) 

BC EW BC × 

EW 

BC EW BC × 

EW 

 
Cumulative CO2

 12.8** 0.21 0.05  64.8 *** < 0.01 1.00   
      

Cumulative N2O # 0.33 1.27  0.02  22.7*** 0.01 0.90  

       
RB

 # 25.4*** 2.08 1.72  12.5** 0.08 1.56  
      

pH 8.46** 0.19  1.0 0.46  0.01 0.21  
      

EOC 3.21 0.87 2.71   2.30 0.13 2.82   
      

NH4
+-N 0.02 1.44 0.11  6.49* 26.9*** 6.36* 

       
NO3

--N 99.6*** 0.53 0.25  8.83** 0.02  0.02 

       
Gram-positive 

bacteria 

17.7*** 7.17* 9.00** 14.9*** 2.72 1.45 

       
Gram-negative 

bacteria 

18.4*** 14.0** 17.4*** 4.22 0.01 0.09  

       
Total bacteria 18.9*** 8.55** 11.0** 9.99** 1.10 0.51  

       
Fungi 6.29* 8.92** 5.87* 6.97* 0.25 0.03 

       
PLFAmic 18.7*** 8.96** 11.1** 9.61** 0.69 0.22 

       
Gram- positive/ 

Gram- negative ratio 

5.27* 0.01 0.04  3.47 5.42* 5.56* 

       
Fungal/bacterial ratio 1.41  1.29 0.06  6.32* 0.022 <0.001  

       
qCO2 20.7*** 0.72 0.97  14.5*** 0.04 0.57 

       
# Data for N2O (‘with litter’), RB (basal respiration) and qCO2 (metabolic efficiency) (both ‘no 

litter’) were log-transformed prior ANOVA. 
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Fig. 5.1. Cumulative emissions of a) CO2 and b) N2O in the ‘no litter’ and ‘with litter’ treatments 

at the end of the experiment (after 37 days). Ctrl soil only, BC soil with biochar, EW soil including 

one endogeic earthworm, BC + EW soil with biochar and one earthworm. Means±SE. 

 

Mineralization of biochar-C and SOC 

Calculations of biochar-C derived CO2 were not possible for the first half of the 

experiment due to strong variations in 13CO2 values, likely caused in part by initial release 

of inorganic C from the biochar (Bruun et al., 2008). During the second half of the 

experiment (days 18, 22, 29, and 32), the contribution of mineralized biochar-C to total 

CO2 emissions was on average 6.3 % in the ‘no litter’ treatment without earthworms (BC) 

and showed no increasing or decreasing trend (data not shown). In combination with the 

reduced total CO2 emissions in this treatment, we calculated a negative priming effect of 

biochar, reducing soil-C mineralization by 56 % on an average. Biochar-C mineralization 
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seemed to be higher, by an average of 9.5 %, in the presence of earthworms in the ‘no 

litter’ treatment (BC + EW), but this difference was not significant (P=0.097). However, 

as total CO2 production was similar to the treatment without earthworms, the negative 

priming effect of biochar increased due to earthworm activity up to 68 %. 

 

N2O emissions 

N2O emission rates were much lower in the ‘no litter’ treatments than in the ‘with 

litter’ treatments, but were generally highest during the first 2 days of incubation and 

declined afterwards rapidly until the end of the incubation (Fig. S5.2b). Cumulative N2O 

production in the ‘no litter’ treatments ranged from 0.08 to 0.15 μg N2O-N g-1 while in the 

‘with litter’ treatments N2O production ranged from 0.68 to 1.35 μg N2O-N g-1 dry soil 

after 37 days (Fig. 5.1b). While biochar did not significantly reduce N2O emissions in the 

‘no litter’ treatments, cumulative N2O production was significantly reduced by 42 % in the 

‘with litter’ treatments (Fig. 5.1b, Table 5.3). Earthworms did not exhibit a significant 

effect on N2O emissions neither in the ‘no litter’ nor in the ‘with litter’ treatments. 

 

pH, EOC, NH4
+-N, and NO3

−-N 

Litter amendment increased pH values consistently above 7. Overall, biochar slightly 

increased pH values, by 0.1 to 0.3 units (Table 5.2), which was significant in the ‘no litter’, 

but not in the ‘with litter’, treatments (Table 5.3). EOC content in the ‘with litter’ 

treatments was almost twofold higher than in the ‘no litter’ treatments (Table 5.2). Neither 

biochar nor earthworms affected EOC contents significantly (Table 5.3). NH4
+-N 

concentrations were between four to sixfold higher in the ‘with litter’ than in the ‘no litter’ 

treatments (Fig. 5.2a). In the ‘with litter’ treatments only, both biochar and earthworms 

reduced NH4
+-N concentrations, but the earthworm effect was less pronounced in the 

presence of biochar (BC × EW interaction, Table 5.3). Concentrations of NO3
--N strongly 

exceeded those of NH4
+-N and were almost twofold higher in the ‘with litter’ than in the 

‘no litter’ treatments (Fig. 5.2). Biochar significantly (P<0.05) reduced NO3
--N by 40 % 

in the ‘no litter’ and by 16 % in the ‘with litter’ treatments (Fig. 5.2b, Table 5.3). 

Earthworms did not affect the amount of extractable NO3
−-N in the present experiment. 
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Fig. 5.2. Soil extractable a) NH4
+-N and b) NO3

--N in the ‘no litter’ and ‘with litter’ treatments at 

the end of the experiment (after 37 days). Ctrl soil only, BC soil with biochar, EW soil including 

one endogeic earthworm, BC + EW soil with biochar a biochar and one earthworm. Means±SE. 

 

Microbial PLFA content 

Total microbial and bacterial PLFA abundances (Table 5.2) and PLFA abundances of 

Gram-positive bacteria, Gram-negative bacteria, and fungi were higher in the ‘with litter’ 

than the ‘no litter’ treatments (Fig. 5.3a–c). While a two to threefold increase was observed 

for bacterial PLFAs, fungal PLFA abundance was 8 to 13-fold higher in the ‘with litter’ 

compared to the ‘no litter’ treatments. In the ‘no litter’ treatments, abundances of total 

bacteria, Gram-positive, Gram-negative, and fungi were significantly increased by both 

biochar and earthworms, but generally highest abundances were found in the BC + EW 

treatment (significant BC × EW interaction, P<0.05, Tables 5.2 and 5.3, Fig. 5.3a–c). In 
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the ‘with litter’ treatments, biochar significantly (P<0.05) increased total microbial PLFA 

abundance (PLFAmic) by 16 % and that of total bacteria by 11 % (Tables 5.2 and 5.3). This 

biochar effect was mostly derived from a significant increase in abundances of Gram-

positive bacteria (Fig. 5.3a, b; Tables 5.2 and 5.3). Moreover, biochar significantly 

(P<0.05) increased the abundance of fungi by 34 % (Fig. 5.3c, Tables 5.2 and 5.3). The 

ratio of Gram-positive to Gram-negative bacteria was significantly (P<0.05) increased by 

biochar only in the ‘no litter’ treatments (Tables 5.2 and 5.3). In the ‘with litter’ treatments, 

earthworms decreased the ratio of Gram-positive to Gram-negative bacteria only in the 

presence of biochar (BC × EW interaction). Biochar also significantly (P<0.05) increased 

the fungal to bacterial ratio, but only in the ‘with litter’ treatments (Tables 5.2 and 5.3). At 

the end of the experiment, the metabolic quotient (qCO2) was significantly (P<0.05) 

decreased by biochar in the ‘no litter’ (86 %) and in the ‘with litter’ (37 %) treatments, but 

remained unaffected by earthworms (Tables 5.2 and 5.3). 
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Fig. 5.3. Concentrations of phospholipid fatty acids (PLFA) for a) Gram-positive, b) Gram-

negative, and c) fungi in the ‘no litter’ and ‘with litter’ treatments at the end of the experiment 

(after 37 days). Ctrl soil only, BC soil with biochar, EW soil soil including one endogeic 

earthworm, BC + EW soil with biochar and one earthworm. Means±SE. 
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5.4 Discussion 

The first aim of the present study was to answer the question whether endogeic earthworms 

are able to mobilize and incorporate stable biochar C, likely leading to increased 

decomposition of biochar. Biochar had no effect on earthworm biomass and stable isotope 

technique (13C) revealed that 13C-signatures of earthworm tissues did not change when 

biochar was present in soil. This indicates that endogeic earthworms did not assimilate 

biochar-C in relevant amounts. A selective avoidance of biochar by A. caliginosa, as 

suggested by Tammeorg et al. (2014), can be excluded from the present study as biochar 

particles were visible in produced earthworm casts. However, earthworms may ingest 

biochar particles due to its detoxifying and liming effects rather than for nutrient supply 

(Topoliantz & Ponge, 2003). Although the assimilation of biochar-C by earthworms seems 

to be negligible, the presence of earthworms led to a slightly higher mineralization of 

biochar-C in the ‘no litter’ treatments. As stated above, the quantification of biochar-C 

mineralization was only possible for the ‘no litter’ treatments due to the non-quantifiable 

litter derived-C contribution to total CO2 emission. Measurements of δ13CO2 revealed that 

only a small contribution (6.3 %) of the respired CO2 was biochar-derived in the treatment 

without earthworms. This indicates that the Miscanthus biochar was not inert, but rather 

stable, resisting decomposition by soil microorganisms. This is comparable to other studies 

with plant-derived biochars produced at 500–600 °C (Zimmerman, 2010; Singh et al., 

2012). In the presence of earthworms, the proportion of biochar-C in evolved CO2 was 

increased slightly (9.5 vs. 6.3 %). However, mineralization of earthworm biomass derived-

C could influence 13C-signatures of emitted CO2 from soil (Marhan et al., 2007). During 

the present incubation, earthworm biomass decreased in the ‘no litter’ treatment and it 

could be that this earthworm derived-C, which has a δ13C signature between biochar and 

SOC might have contributed to the produced CO2. This could lead to an overestimation of 

the earthworm effect on biochar-C mineralization. 

The second aim of our study was to determine whether only the single factors, 

earthworms and biochar, affect C and N turnover, i.e., CO2 and N2O emissions or whether 

they interact. We found no significant earthworm effect on CO2 and N2O emissions. This 

is in contrast to a recent meta-analysis by Lubbers et al. (2013), which has shown that 

earthworms alone often increase CO2 and N2O emissions from soil. The lack of an 

earthworm effect on CO2 and N2O emission was unexpected because increased CO2 

production was found for the same soil and earthworm species by Marhan et al. (2010). In 
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addition, no interactive effect of earthworms and biochar on CO2 and N2O emissions was 

observed in the present study. This is in contrast to Augustenborg et al. (2012) who found 

that endogeic earthworms increased GHG emissions and that this was mitigated by 

biochar.  

However, biochar alone strongly reduced CO2 (by 43 %) in the ‘no litter’ and reduced 

both CO2 (by 27 %) and N2O (by 42 %) emissions in the ‘with litter’ treatments. These 

strong reductions of GHGs from soil by biochar are comparable to the results from other 

short-term laboratory studies using biochars from plant feedstock produced at 500–600 °C 

(Augustenborg et al., 2012; Cayuela et al., 2014). One of the most likely explanations for 

the reductions of CO2 and N2O emissions by biochar could be a decrease in soil microbial 

abundance. In contrast, analyses of PLFAs showed an increasing effect of biochar on 

microbial abundances in the ‘with litter’ treatments and at least no negative effect in the 

‘no litter’ treatments in our study. It is still unclear whether biochar could interfere with 

extraction-based microbial analyses like PLFA, probably stabilizing dead microbial PLFA 

onto biochar particles, which may result in an overestimation of living microbial 

abundance (Lehmann et al., 2011). Although we cannot finally exclude these biochar 

effects on PLFA stabilization in soils, we assume that this could not explain the strong 

discrepancy between concurrent reduction of CO2 and N2O emissions and increment of 

PLFA abundances in the ‘with litter’ treatments. 

Other potential reasons to explain the reductions of CO2 and N2O emissions by biochar 

have been also discussed in the literature (Ameloot et al., 2013a; Augustenborg et al., 

2012; Cayuela et al., 2013, 2014; Lehmann et al., 2011): (1) Changes of soil moisture 

conditions, e.g., a biochar induced decrease of soil moisture could lead to water limitation 

for soil microorganisms, thus decreasing CO2 as well as N2O emissions; (2) Reduced C 

and N resource availability due to the adsorption onto biochar surfaces, protecting it from 

microbial decomposition; (3) Immobilization of N by soil microorganisms for building up 

their biomass thereby reducing mineral-N as substrates for N2O production by nitrification 

and denitrification; and (4) Changes in the microbial community composition resulting in 

a modified activity, e.g., due to biochar effects on soil pH. In the following paragraphs, 

these potential reasons will be discussed in the context of the results of our study:  

We analyzed the potential effect of biochar on soil moisture in an additional laboratory 

analysis (see supplemental text, Fig. S5.3). This analysis revealed that at 60 % WHC, 

which was the adjusted water content for the incubation experiment, no changes due to 
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biochar addition were found. We, therefore, excluded different soil moisture conditions as 

a possible explanation for the observed biochar effect on CO2 and N2O emissions. 

Adsorption or diffusion of C and N substrates into biochar micropores could result in 

reduced SOC mineralization or N2O emission in biochar-amended soil by preventing C 

and N from being used by microorganisms (Ameloot et al., 2013a). The unavailability of 

SOC would induce a negative priming effect (Kuzyakov et al., 2009), which was found in 

the ‘no litter’ treatments, where biochar alone induced a negative priming effect, thus 

decreasing the mineralization of native soil organic matter by 56 %. Similar negative SOC 

priming effects of 38 % (Bamminger et al., 2014a) and 52 % (Zimmerman et al., 2011) 

have been reported in other studies with similar biochars. In contrast, the amount of EOC, 

which is considered as readily available substrate for microorganisms and which serves as 

electron donor during the denitrification process, was not decreased by biochar in the 

present study (Table 5.2). Therefore, we assume that adsorption of C to biochar particles 

in larger quantities is unlikely. Biochar can also reduce the availability of NH4
+ and NO3

- 

(Clough et al., 2013), which serve as substrates for the N2O producing processes of 

nitrification and denitrification, respectively. Biochar reduced extractable NO3
--N in both 

litter treatments and reduced NH4
+-N in the ‘with litter’ treatments after 37 days (Fig. 5.2). 

In both cases, adsorption of inorganic-N on biochar particles could be one explanation for 

the observed reduction of N2O emissions.  

Immobilization of N by soil microorganisms could be another explanation for a 

reduction of N2O emissions by biochar. Microbial abundance was increased by biochar in 

the ‘with litter’ treatments, enhancing microbial PLFAs by 16 % (Table 5.2). Biochar is 

known to alter physicochemical soil properties and, therefore, the living conditions for soil 

microorganisms thereby often promoting microbial growth (Ameloot et al., 2013a). In the 

biochar ‘with litter’ treatments higher PLFAmic contents corresponded to lower extractable 

NO3
--N and NH4

+-N (for NH4
+-N only in the treatment without earthworms). This 

indicates that N-mineralization was decreased in the presence of biochar (Prayogo et al., 

2014), i.e., organic N from the litter was assimilated by soil microorganisms and, therefore, 

immobilized rather than being mineralized. The reduction in the availability of NO3
--N 

and NH4
+-N could be responsible for the observed reduction of N2O emissions in the 

biochar treatments when litter was present. The reductive effect of biochar on N2O 

emission is lacking in the ‘no litter’ treatments and here PLFAmic is only enhanced in 
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combination with earthworms. The reason for the different effects of biochar might be the 

lack of C and N resources, which limited microbial growth in the ‘no litter’ treatments. 

Soil pH is known to affect soil microorganisms and biochar often enhances pH, thus 

possibly influencing soil microbial abundance and activity due to a liming effect (Lehmann 

et al., 2011). In our study, biochar increased pH by on average 0.26 units only in the ‘no 

litter’ treatments (Table 5.2). This increase of pH might be the reason for the observed 

increase of the Gram-positive/Gram-negative ratio. The question is now, whether this 

significant but rather small shift in bacterial community composition could explain the 

pronounced reductions of total CO2 emissions by 43 % and the strong decrease of the 

metabolic quotient (qCO2) by 86 %. In the ‘with litter’ treatments, where no effect of 

biochar on pH was observed, CO2 emissions (by 27 %) and the metabolic quotient (37 %) 

were also reduced. The non-existence of a biochar effect on pH in the ‘with litter’ 

treatments indicates that additional factors influence microbial community composition 

and activity. Biochar may provide ideal conditions for soil microorganisms by improving 

nutrient retention and, therefore, higher N bioavailability at the surface of the biochar 

particles (e.g., Zheng et al., 2013). This biochar-supported co-location of substrates and 

soil microorganisms on their surfaces could reduce the stress potential leading to a more 

efficient metabolic C use (Lehmann et al., 2011). 

Biochar increased the fungal-to-bacterial ratio and the Gram-positive/Gram-negative 

ratio (only in the treatments without earthworms) in the ‘with litter’ treatments, and 

similarly the Gram-positive/gram-negative ratio in the ‘no litter’ treatments. This indicates 

that biochar selectively influences microbial abundances of some microbial groups, 

leading to a different microbial community composition (Farrell et al., 2013) with 

enhanced microbial C use efficiency (Jin, 2010). Gram-positive bacteria seem to benefit 

more from biochar addition than Gram-negative bacteria. Gram-positive bacteria are 

known to preferentially degrade aromatic C in soil and they may, therefore, better utilize 

biochar-C, thus profiting more from the presence of the aromatic structure of the biochar 

(Farrell et al., 2013). Conversely, the relative decrease in the abundance of Gram-negative 

bacteria could be related to low quantities of easily available substrates in high temperature 

biochars (Ameloot et al., 2013a). 

In the ‘with litter’ treatments, biochar generally increased fungal abundance more than 

bacterial abundance, resulting in increased fungal-to-bacterial ratios (Table 5.2), which 

was also found in the study of Prayogo et al. (2014). In our study, the presence of N-rich 
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and easily degradable litter could have promoted higher growth rates in fungi, which 

indicates that the fungal community may serve as major litter decomposers, mobilizing 

nutrients from dead plant material. In addition, it is possible that fungi are able to grow 

into biochar pores using additional resources or habitats better than bacteria (Lehmann et 

al., 2011). Our results stand in contrast to field studies, including litter incorporation into 

soil, which found decreased fungal abundances and shifts towards more bacterial-

dominated soil microbial communities when biochar was present in soil (Chen et al., 2013; 

Jones et al., 2012). The mechanisms behind the observed suppressed SOC mineralization, 

improved metabolic efficiency, and change in the soil microbial community composition 

clearly warrant further investigations to clarify causes and effects. 

In addition, the observed shifts in soil microbial community composition after biochar 

addition probably also influenced nitrification and denitrification processes (Clough & 

Condron, 2010). In the N-rich plant litter containing ‘with litter’ treatments, biochar 

reduced N2O emissions by 42 %. A mitigating effect of biochar on N2O had been observed 

in other short-term studies (e.g., Kammann et al., 2012). In addition to the above 

mentioned possible reason, that reduced availability of N due to adsorption onto biochar 

surfaces or immobilization by soil microorganisms is responsible for the observed 

reduction of N2O emissions, other studies found out that biochar promotes the last step of 

denitrification (Cayuela et al., 2013; Harter et al., 2013). Acceleration of the last step of 

the denitrification, the reduction of N2O to N2, could decrease N2O emission from soil. 

Harter et al. (2013) showed that biochar increased the abundance of denitrifying bacteria 

performing this last step of the denitrification. However, as this was not measured in the 

present study, we cannot confirm this proposed mechanism as a reason for the biochar 

induced reduction of N2O emissions for the present experiment. 

Overall, our results confirm those of the study of Prayogo et al. (2014), who also 

showed that the presence of litter influences the effects of biochar on the abundance and 

activity of soil microorganisms. In addition, earthworms, as an additional factor, partly 

influenced these effects of biochar in the present study as well. Although earthworms alone 

and in interaction with biochar showed no effects on greenhouse gas emissions, we found 

positive interactive effects of earthworms and biochar on Gram-positive, Gram-negative 

bacteria, and fungi in the ‘no litter’ BC + EW treatment (Fig. 5.3). As biochar particles 

were found in earthworm casts, we expect that pure biochar particles were mixed with soil 

organic matter during passage through the earthworm gut. This would lead to a closer 

association of soil and earthworm gut microorganisms with biochar (Ameloot et al., 
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2013b). We conclude that the formation of these was more suitable habitats for soil 

microorganisms in earthworm worked biochar amended soils will increase microbial 

abundance. However, the mechanisms behind the increased microbial abundance in the 

‘no litter’ treatment with biochar and earthworms cannot yet be identified, as neither pH, 

available EOC, nor mineral N was similarly affected in the combined treatment. 

 

5.5 Conclusion 

A major result of this short-term study was that biochar reduced CO2 and N2O 

emissions, while it simultaneously increased microbial abundance in soil. This resulted in 

a more efficient metabolic C use, emphasizing the potential beneficial effect of biochar on 

soil microbial activity. In addition, the effect of reduced N2O emissions was especially 

pronounced when litter with a low C/N ratio was applied to the soil, suggesting that biochar 

amendments may mitigate the typical high N2O emissions from arable fields after green 

manure is ploughed into the soils. The mechanisms for increased respiratory C-use 

efficiency, negative priming effects, and reduced N2O emissions may be interrelated and 

are likely connected to the observed changes in the soil microbial community composition, 

warranting more detailed investigation. Moreover, the observed interactive effects of 

earthworms with biochar on soil microbial abundance highlight the importance for 

additional research including the different kinds of soil organisms as well as biochar, under 

natural field conditions in the medium to long term. 
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5.7 Supplementary material 

Supplemental text 

Determination of soil hydraulic properties of all treatments 

Before the microcosm experiment was set up, the effects of biochar and litter on WHC, 

soil hydraulic properties (saturated hydraulic conductivity and water retention curve) were 

separately measured for all treatments. Briefly, 280 g of oven dry soil and mixtures with 

biochar with and without litter were packed into 250 cm3 soil cores yielding a bulk density 

of 1.12 g cm-3. The cores were slowly saturated from the bottom up with degased and 

deionized water. The saturated hydraulic conductivity (Ksat) was measured by means of 

the falling-head experiment following the standard DIN 19683-9 using the UMS Ksat 

system (UMS, Munich, Germany). For each soil core, we repeated the Ksat-measurement 

five times.  

The water retention curve was determined by the evaporation method for each soil core 

using the HYPROP-system (UMS, Munich, Germany) (Fig. S5.3). In our study, the 

tensiometers failed at tensions around 1 bar. To gain additional information in the drier 

range of the retention curve, we determined water retained at 15 MPa tension (pF 4.2) by 

the pressure plate method using a Ceramic Plate Extractor (Soil Moisture Equipment 

Corp., Santa Barbara, CA, USA). Rubber rings (n=4) were filled with soil suspension and 

placed on the ceramic plate. After 10 days of pressure, the soil was weighed, oven dried at 

105 °C for 48 hours, and reweighed to calculate the water content. Plant available water 

capacity of each soil sample was determined by calculating the difference in volumetric 

water content held at tensions of 0.063 MPa (pF 1.8) and 15 MPa (pF 4.2). Soils of all 

treatments exhibited almost the same water content at 60 % WHC without an effect of 

biochar or litter on the available water capacity. Thus, all soil mixtures were rewetted to 

60 % of water holding capacity (WHC) of the control treatment at the start of the 

microcosm experiment. 
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Fig. S5.1. δ13C-values of earthworm biomass in soils without (EW) and with biochar (BC+EW) in 

the ‘No litter’ and ‘With litter’ treatments.  
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Fig. S5.2. Rates of a) CO2 and b) N2O fluxes in the ‘No litter’ and ‘With litter’ treatments during 

the 37 days of incubation. Ctrl = only soil, BC = soil with biochar, EW = soil including one 

endogeic earthworm, BC+EW = soil with biochar and one earthworm.  
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Fig. S5.3. Water retention curve (pF curve) of soil without (Ctrl) and with biochar (BC) and 

without and with litter (+ litter). 
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Table S5.1. Chemical characteristics of the used biochar from Miscanthus x giganteus (Pyreg 

GmbH, Dörth, Germany). 

Parameter Value 

  Bulk density (1.5 mm ground) [g 100 ml-1] 15.9 

  
Water holding capacity [g H2O g-1 Biochar] 3.7 

  
BET surface [m² g-1] 864 ± 26.7 

  
Ash content [%] >20 

  Nutrient concentration [g kg-1]  

  
Ca 12.6 

  
K 29.8 

  
Mg 5.3 

  
P 3.0 

  
S 0.55 

  Micronutrient / heavy metal concentration [mg kg-1]  

  
Al 2380 

  
As  1.2 

  
Cd  0.07 

  
Cr  20.4 

  
Cu  16.2 

  
Fe  2520 

  
Hg  < 0.01 

  
Ni  17.4 

  
Pb  1.23 

  
Zn  97.1 

  ∑PAH (EPA)1 2.2 

  
PCB n.d. 

n.d. = not detectable. 1 Sum of 16 Polycyclic aromatic carbohydrates (PAH) after EPA 

classification 
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Table S5.2. Soil hydraulic properties in soil without (Ctrl) and with biochar (BC), without and 

with litter addition.  

Properties 
No litter With litter 

Ctrl BC Ctrl BC 

θs [cm3 cm-3] 0.55 0.60 0.62 0.63 

Ks [cm d-1] 414±2.0 139±2.8  270±3.2 203±3.7 

Θ(pF 1.8) [cm3 cm-3] 0.42 0.44 0.42 0.43 

Θ(pF 4.2) [cm3 cm-3] 0.12 0.13 0.12 0.13 

AWC [cm3 cm-3] 0.30 0.31 0.30 0.30 

Ks = saturated hydraulic conductivity; AWC = plant available water content (Θ(pF 1.8) - Θ(pF 4.2)) 
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Abstract 

The amendment of biochar to agricultural soils is presumed to mitigate global warming 

through long-term carbon (C) sequestration. In addition, biochar may support microbial 

biomass and diversity as well as plant growth by the improvement of soil properties. So 

far, no information is available on the stability of biochar and the effects of biochar on soil 

microbial and plant properties under predicted soil warming at the field scale. We 

investigated the impacts of biochar addition (Miscanthus pyrochar, 30 t ha-1, August 2013) 

and long-term soil warming (+2.5 °C, since July 2008) and their interactive effects on 

microbial biochar-C utilization and physical, chemical and microbial soil properties of a 

silty-loamy stagnic Luvisol in a temperate agroecosystem (Stuttgart, Germany) over one 

year under winter rapeseed (Brassica napus). Three months after biochar application 

(November 2013), microbial abundances remained unaffected, indicating that readily 

available C from fresh biochar had been consumed before sampling. However, we found 

evidence for initial decomposition of more recalcitrant biochar-C by fungi under soil 

warming after three months. We suggest that the added biochar was very stable, since 

increased biochar degradation by fungi could not be detected after seven and twelve 

months. Nevertheless, during spring 2014, biochar reduced water loss in warmed soil by 

16 % and decreased negative effects of soil dryness on microbial abundances by up to 

80 %. In addition, the positive effect of biochar on soil moisture affected canopy height of 

winter rapeseed in the non-warmed plots in the early growth stages, although it did not 

change the final aboveground biomass in the first year after biochar application. Overall, 

biochar could be an appropriate tool for C sequestration by improving or maintaining soil 

fertility and productivity in temperate agroecosystems under future elevated temperatures. 

Keywords:  Pyrogenic carbon, Soil warming, Soil microbial community composition, 

Brassica napus, Agroecosystem  

Highlights:  

• Biochar improved soil properties without triggering strong microbial responses. 

• Fungi may decomposed biochar initially under soil warming. 

• Biochar mitigated drought effects on soil microorganisms under soil warming.  

• Biochar supported the growth of winter rapeseed under drought conditions.  
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6.1 Introduction 

The application of biochar to soil organic carbon-(SOC) depleted agricultural soils is 

thought to be an effective means of carbon (C) sequestration as well as for mitigation of 

the impacts of global warming on C cycling (Lal, 2011). The concept of using charcoal for 

C sequestration in soils originates from its low degradability due to a high percentage of 

polycondensed aromatic C structures, which was shown in the Amazonian ‘Terra Preta’ 

soils (Glaser & Birk, 2012). In these tropical soils enriched with ancient charcoal particles, 

various soil physical and chemical properties were found to have improved (Glaser et al., 

2002) and microbial abundance and diversity was enhanced compared to adjacent soils 

(Grossman et al., 2010). However, there is limited knowledge about the interactive effects 

of biochar with future climate warming, although this knowledge is essential in order to 

evaluate the potential of biochar as a climate change mitigation tool.  

Biochar may interact with soil microorganisms either directly, by being degraded and 

utilized, or indirectly, by improving soil properties and habitat conditions (Ameloot et al., 

2013b). Certainly, the stability of biochar against microbial degradation is a prerequisite 

for its use in C sequestration and the longevity of expected beneficial effects on soil 

organisms. Feedstock type and particularly pyrolysis conditions are determining the 

properties and stability of biochar (Zimmerman, 2010). For example, increasing pyrolysis 

temperature and duration generally leads to higher pH and surface area and decreased 

cation exchange capacity as well as degradability of biochar (Ronsse et al., 2013; Gai et 

al., 2014). Laboratory experiments using slow-pyrolysis biochars produced at moderate 

temperatures (400–525 °C) indicated mostly low values of biochar-C of about 2 % in 

microbial biomass after 100 days (Watzinger et al., 2014) and 624 days (Kuzyakov et al., 

2009). Even for high-temperature biochar (700 °C), Luo et al. (2013) found that after 90 

days, less than 2 % of microbial biomass carbon was biochar-derived in an alkaline soil. 

Unfortunately, to date, microbial biochar-C uptake has not been quantified under both field 

conditions and soil warming. 

As the previous results of Luo et al. (2013) and Watzinger et al. (2014) indicate, due 

to the resistance of biochar to microbial consumption, biochar may indirectly alter soil 

microbial communities. As proposed by Lehmann et al. (2011), biochar could positively 

affect soil microbial abundance and community composition by i) serving as a refuge 

habitat, which protects microbes against grazers and predators, ii) improving physical soil 

properties, e.g. water holding capacity, bulk density and aeration, and iii) modifying 
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chemical soil properties, e.g. pH, cation exchange capacity (CEC), nutrient retention and 

sorption of soil organic matter. A more abundant and diverse soil microbial community 

under added biochar can improve the fertility and productivity of agricultural soils by, e.g., 

promoting nutrient cycling and suppression of plant diseases such as pathogens, possibly 

leading to increased crop yields (Jeffery et al., 2011; Bonanomi et al., 2016). 

There is some evidence that biochar may have positive effects on soil microorganisms 

in agroecosystems. Domene et al. (2014) reported an increase in microbial biomass by 

nearly 100 % after three years, attributing this primarily to increased soil moisture due to 

biochar application. Similarly, two years after biochar application, enhanced microbial 

growth rates were observed by Jones et al. (2012). In contrast, other studies have found no 

or only slight impact of biochar on microbial abundances (Quilliam et al., 2012; Rutigliano 

et al., 2014; Imparato et al., 2016). However, recent studies have reported not only changes 

in the structure of the soil microbial community and shifts to bacterial-dominated 

communities (Jones et al., 2012; Chen et al., 2013), but also higher fungal-to-bacterial 

ratios in biochar-amended soils (Bamminger et al., 2014b). These quite different effects of 

biochar on soil microbial abundances could be explained by variations in soil fertility, 

biochar or crop type and climate conditions. In addition, divergent responses of bacteria 

and fungi to biochar may be due to differences in their abilities to cope with biochar in the 

soil environment; a faster response of bacteria compared to fungi to changed substrate 

availability; differences between bacteria and fungi in their mobility and colonization of 

biochar pores, and the fact that some fungal species can decompose biochar (Thies et al., 

2015). 

Global warming will unequivocally impact C cycling in terrestrial ecosystems; 

therefore, adequate mitigation and adaptation strategies, such as biochar addition to soils, 

are required (Lal, 2011). Soil temperature is an important regulator of microbial activity 

and community structure, as some organisms may be better suited to substrate utilization 

under elevated temperatures compared to others (Zogg et al., 1997). However, the response 

of microorganisms to soil warming is not only directly dependent on increased 

temperature, but also driven by environmental constraints such as soil moisture (Allison 

& Treseder, 2008), quantity of easily available C pools (Frey et al., 2008), and changes in 

aboveground and belowground plant growth, factors which affect soil fungi and bacteria 

differently (De Vries & Shade, 2013). These observations are restricted to forest and 

grassland soils, but the microbial response to soil warming in agricultural sites has been 
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tested in only a limited number of field experiments. During five years of soil warming, 

soil respiration was not enhanced in an agricultural soil in China, due most probably to 

soil-drying (Liu et al., 2015). Likewise, at the same field site where we conducted our 

study, Poll et al. (2013) found reductions in microbial biomass and respiration in summer 

2009 when soil warming negatively affected moisture. This underscores the claim that soil 

moisture affected by warming may be one of the most important drivers of microbial 

activity and abundance in agroecosystems in a changing climate. Warming-induced 

alterations of environmental conditions (e.g. soil moisture) and their effects on the activity 

of plant-associated microbial communities may also affect crop growth in agricultural 

ecosystems (Compant et al., 2010). However, especially high-temperature biochar is able 

to increase soil water content due to its porous structure and hydrophilic functional groups, 

which makes it capable of retaining water on its surfaces (Gray et al., 2014). This could 

reduce the water loss in warmed soil, thus positively affecting soil microorganisms and 

plant growth (Liang et al., 2014; Kammann et al., 2011). 

Very little is known to date about the stability of biochar against microbial 

decomposition, or biochar effects on soil microorganisms and plants under predicted soil 

warming in a changing climate. We aimed to close these gaps in knowledge in order to 

evaluate the potential of biochar as an appropriate climate change mitigation tool in 

agricultural soils. Biochar has already been shown to be highly resistant to microbial 

decomposition and we hypothesized that our high-temperature biochar from slow-

pyrolysis would be stable in soil even under elevated soil temperature. Soil microbial 

biomass and community composition will likely change under soil warming and soil 

moisture especially will play a crucial role in this context (Poll et al., 2013). We 

hypothesized that biochar will alter the response of soil microorganisms to elevated soil 

temperature, i.e. the enhanced water retention in soil with biochar may reduce the limiting 

conditions for microorganisms induced by lower soil moisture content. In addition, we 

expected that the positive effect of biochar on the water regime in warmed soil, especially 

in dry periods, will be responsible for enhanced growth of crops such as winter rapeseed. 

In this study, we added Miscanthus (C4) biochar to a temperate agroecosystem which 

has been exposed to soil warming for the last five years. We were interested in the potential 

interactions between biochar and soil microorganisms, especially under soil warming, 

followed over a period of one year after biochar application under winter rapeseed. The 
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use of an isotopically labeled (13C) biochar made it possible to quantify the incorporation 

of biochar derived-C into microbial biomass. 

 

6.2 Materials and methods 

Field site and experimental setup 

The Hohenheim Climate Change (HoCC) experiment, in which both soil temperature 

and precipitation amount and patterns are manipulated (Poll et al., 2013), was established 

on an arable site at the experimental field station Heidfeldhof of the University of 

Hohenheim (Stuttgart, Germany) in July 2008. The experiment of the present study, the 

Biochar Hohenheim Climate Change experiment (BC-HoCC), is part of the HoCC 

experiment and was established in August 2013 in order to investigate biochar stability as 

well as biochar effects on soil microbial properties and crop growth after long-term soil 

warming (five years). 

The HoCC experiment consists of four blocks with four plots (4 m × 1 m) each. Each 

plot is subdivided into four subplots (1 m × 1 m) of which two were used in the present 

experiment. According to the predicted temperature increase of 2.5 °C by 2100 

(Umweltbundesamt, 2006), half of the plots (Te: elevated temperature) are warmed using 

heating cables at the soil surface (RS 611–7918, RS Components GmbH) since 2008, while 

the other non-heated plots are covered with dummy cables as experimental controls (Ta: 

ambient temperature). Additional information on the HoCC experimental setup can be 

found in Poll et al. (2013). 

The commercially available biochar used was produced from C4 Miscanthus x 

giganteus litter feedstock by slow pyrolysis for 30 min at 850 °C (δ13C = -14.63 ‰, 

PYREG GmbH, Dörth, Germany, Table 6.1). At the start of the BC-HoCC experiment 

(August 21st, 2013), the biochar (30 t ha-1) was first put on top of the subplots (BCTa: soil 

with biochar at ambient temperature, BCTe: soil with biochar at elevated temperature) 

together with spring barley litter (80 g m-2) from the previous growing season. Both 

amendments were then manually ploughed into 0–20 cm soil depth. Control subplots 

(CtrlTa: control soil at ambient temperature, CtrlTe: control soil at elevated temperature) 

were not amended with biochar, but with litter, while incorporation and ploughing was 

done in the same way as in the biochar plots. In total, 16 subplots (four replicates per 

treatment) were investigated in the present study. 
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The BC-HoCC experiment is equipped with a wireless sensor network consisting of 

wireless sensors (12 cm rods, CWS655) connected to a control data logger (CR800, all 

devices from Campbell Scientific Ltd., Logan, Utah, USA) to measure surface-near soil 

temperature (0–2 cm) and soil moisture (0–12 cm depth) in each subplot. We decided to 

measure soil temperature only in the upper 2 cm, where heating cables should have the 

highest impact on soil temperature, and to check whether the soil heating treatment was 

working correctly. In addition, a possible greater warming in biochar-amended plots by 

the decreased albedo of the soil due to its darker color (Verheijen et al., 2013), could most 

accurately be determined near the soil surface. 

Data were recorded every 20 min. Mean annual temperature and precipitation in this 

area (1981–2010) is 9.4 °C and 718.7 mm, respectively (DWD, 2016). In 2013 and 2014, 

mean annual air temperature was 9.5 °C and 11.0 °C (Fig. 6.1a) and annual precipitation 

was 790.1 mm and 654.1 mm, respectively (Fig. 6.1b; weather station ‘Hohenheim’, LTZ 

Augustenberg, 2016). The C3 arable soil (δ13C = -27.94 ‰) is a loess-derived stagnic 

Luvisol with silty loam-texture and neutral pH (Table 6.1). 
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Fig. 6.1. (a) Daily air temperature (2 m) and (b) daily precipitation amount for the weather station 

“Hohenheim”. Data provided by the agricultural technology center in Baden-Württemberg, 

Germany (LTZ Augustenberg). F1, F2 = fertilization events, X = soil sampling. (c) Increase of 

average daily soil temperature due to soil warming and (d) effect of soil warming on average daily 

volumetric soil water contents (VWC) in control (Ctrl) and biochar (BC) plots. 
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Crop management, plant and soil sampling 

On September 3rd, 2013, 13 days after biochar application, winter rapeseed (Brassica 

napus L., 60 plants m-2, ≈ 20 cm row spacing) was sown manually on all subplots. In the 

same month, slug pellets were applied to avoid seedling damage by slug grazing. On 

March 13th, 2014, plant numbers were adjusted to achieve usual plant density for rapeseed 

(30 plants m-2). On the same day, the plants were fertilized with calcium ammonium nitrate 

at 70 kg nitrogen (N) ha-1. On March 28th, 2014, the insecticide Trebon 30 EC (200 mL 

ha-1) was applied to protect the plants from rape beetles (Meligethes aeneus). At the second 

fertilization event (March 31st, 2014), ammonium thiosulfate (17.2 kg N ha-1 and 37.2 kg 

S ha-1) was added to the plots. Canopy height was recorded weekly between April 9th and 

July 16th, 2014, always from the same five plants per subplot which were selected at the 

beginning of the experiment. Plants were harvested at maturity on July 17th, 2014, by 

cutting the aboveground biomass by hand. Total aboveground biomass was determined by 

weighing the oven-dried plant material (3 days at 37 °C). 

Soil samples for physical, chemical and microbial analyses were taken with a soil auger 

from the control and biochar subplots under ambient and elevated temperature at two soil 

depths (0–5 and 5–15 cm) during the growing period of winter rapeseed in November 

2013, March 2014, and after final harvest in September 2014. 

 

Physical and chemical analyses 

To determine soil bulk density, undisturbed soil cores (100 cm³) were taken in duplicate 

at 0–5 and 5–15 cm soil depth from uncropped subplots in August 2014 after harvest of 

winter rapeseed. Soil water content (SWC) was determined gravimetrically at two depths 

on three occasions (November 2013, March 2014 and September 2014) after drying at 

65 °C for three days. In addition, we obtained volumetric soil water content (VWC) by 

continuous time-domain reflectometry (TDR)-based measurements. By converting SWC 

into VWC, we calculated that TDR-based VWC in biochar-amended soil was likely 

overestimated by on average 37 %. This phenomenon has also been described in other 

studies and can be explained by the high electrical conductivity of high-temperature 

(>800 °C) biochar, which was like that used in our study, interfering with the TDR 

technique (Kameyama et al., 2014). We therefore only considered soil warming as a fixed 

effect in the statistical analysis for VWC. 
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The pH of initial biochar and collected soil samples was measured in 0.01 M CaCl2 

solution using a 1:50 w/v and 1:4 w/v ratio, respectively. Concentrations of ammonium-N 

(NH4
+-N) and nitrate-N (NO3

--N) in soil were determined by extracting field moist soil 

with 0.5 M K2SO4 (1:4 w/v ratio). Soil suspensions were shaken on a horizontal shaker 

(30 min at 250 rev. min-1) and centrifuged (30 min at 4400 × g). NH4
+-N and NO3

--N 

concentrations in the supernatant were determined colorimetrically with a continuous flow 

analyzer (Bran + Luebbe Autoanalyzer 3, SEAL Analytical, Hamburg, Germany). 

For elemental analysis, the sieved and dried soil was ground using a ball mill. The 

biochar was ground using a swing mill (CryoMill, Retsch GmbH, Haan, Germany), which 

was cooled with liquid nitrogen (-196 °C) to avoid heat development and gaseous carbon 

loss. Total C and N content, as well as C isotopic signatures (δ13C) of the initial biochar 

and of control soils at the three sampling dates were measured using an elemental analyzer 

(EA, Euro EA 3000, Euro Vector, Milan, Italy) coupled with an isotope mass spectrometer 

(IRMS, DeltaXP Plus, Thermo Finnigan, Waltham, USA). Acetanilide (C8H9NO, Merck, 

Darmstadt) was used as a laboratory reference material for internal calibration. δ13C values 

are expressed relative to the international reference standard Vienna Pee Dee Belemnite 

(V-PDB). In addition, H and S contents of the biochar were determined using a Euro EA 

– CHNSO Elemental Analyzer (Hekatech, Wegberg, Germany). H content was corrected 

by the residual moisture of the biochar sample. Due to an instrumental defect, O content 

of the biochar was calculated by difference (%O = 100 - %C - %N - %H - %S - %ash). 

Fourier transform infrared (FTIR) spectrum (Fig. S6.4) of the biochar was recorded on 

a VARIAN 660-IR spectrophotometer (Agilent Technologies Inc., CA) using the pellet 

technique by mixing 2 mg of dried biochar with 200 mg of pre-dried and pulverized 

spectroscopic-grade KBr (from Merck and Co., Whitehouse Station, NJ) and pressing at 

compressive force of 10 tons. 

Thermogravimetric analysis (TGA) and derivative (DTG) profiles of the biochar (Fig. 

S6.5) were obtained using a simultaneous thermogravimetric analyzer (STA 449 F3 

Jupiter, Netzsch, Germany) and performed under inert nitrogen atmosphere at a constant 

flow of (120 mL min-1) and heating rate of 10 K min-1 in a temperature range from ambient 

temperature to 1000 °C. Volatile matter (VM) associated with the biochar was assessed 

from weight loss after heating for 7 min at 900(±10) °C according to the standard 

procedure DIN 51720. Ash content of the biochar was determined by treating the sample 

at 815(±25) °C until weight constancy was reached (DIN 51719). The content of fixed C 
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of the biochar was calculated by the difference between 100 % and the sum of measured 

residual moisture (from TGA), VM and ash content. Key characteristics of soil and biochar 

are displayed in Table 6.1. 

 

Microbial biomass carbon and quantification of biochar-C incorporation 

Microbial biomass C (Cmic) was estimated by chloroform-fumigation-extraction (CFE) 

according to Vance et al. (1987). Field moist soil was fumigated under vacuum with 

ethanol-free chloroform in a desiccator for 24 h. After removing the chloroform, samples 

were extracted with 0.5 M K2SO4 solution (1:4 w/v ratio), then shaken and centrifuged as 

described for NH4
+-N and NO3

--N. Further subsamples were non-fumigated, but similarly 

extracted. Concentrations of organic C in the supernatant of fumigated (f) and non-

fumigated (nf) samples (EOC) were analyzed with a total organic C analyzer (multi N/C 

2100 S, Analytik Jena AG, Jena, Germany). Cmic was calculated by the difference in 

organic C content between f and nf samples divided by a kEC factor of 0.45 (Joergensen, 

1996). 

Biochar may influence the extraction efficiency of microbial C due to its potential to 

adsorb organic C compounds onto its surfaces, especially in sandy soils (Liang et al., 2010; 

Gomez et al., 2014). In soils with finer texture (like our silty-loam soil), clay minerals may 

have similar sorption characteristics to biochar (Gomez et al., 2014). Hence, we assumed 

that biochar effects on the determination of microbial biomass were negligible in our soil, 

but this cannot be entirely excluded. 

For analysis of δ13C values of Cmic, an additional CFE was performed with 0.025 M 

K2SO4 solution. Ten ml aliquots of the supernatants of both f and nf samples were dried 

in a vacuum rotary evaporator (RVC 2–25, Martin Christ, Osterode am Harz, Germany) at 

60 °C. Subsequently, the remnant was ground and weighed into tin capsules (7–20 mg) to 

guarantee a minimum concentration of 5 mg C per capsule. Samples were measured by an 

elemental analyzer (Euro EA 3000, EuroVector, Milan, Italy) coupled with an isotope ratio 

mass spectrometer (IRMS, DeltaXP Plus, Thermo Finnigan, Waltham, USA). 

 δ13Cmic was calculated by using the following equation: 

δ13Cmic = (cnf × dnf) - (cf × df) / (cnf - cf)           (1)  
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where cnf and cf are the extracted organic C content (mg C g-1 soil) of the nf and f sample 

and δnf and δf are the corresponding δ13C values (‰). 

Finally, the proportion of biochar-derived C under Ta or Te at each sampling date was 

calculated as follows:  

% Biochar-derived C = (δ13Cmic (BC) - δ13Cmic (Ctrl)) / (δBC - δSoil) × 100      (2) 

where δ13Cmic (BC) and δ13Cmic (Ctrl) are the microbial biomass δ13C (‰) of biochar and 

control obtained from Eq. (1), respectively, and δBC and δSoil are the δ13C values (‰) of 

initial biochar and control soil collected in November 2013, March, and September 2014. 

 

Phospholipid fatty acid (PLFA) analysis 

We used PLFAs as biomarkers for soil microorganisms to investigate the microbial 

community structure in soil by separation of fungal and bacterial PLFAs. PLFAs of 4 g 

soil (fresh weight) were extracted according to Frostegård et al. (1993) with Bligh and 

Dyer solution (chloroform, methanol, citrate buffer; pH = 4; 1:2:0.8; v/v/v) and separated 

into glyco- and neutral lipids as well as phospholipid fatty acids. We analyzed only the 

PLFA-fractions as described in Kramer et al. (2013). 

To group the data, the branched fatty acids i15:0, a15:0, i16:0 and i17:0 were summed 

as Gram-positive and the cy17:0 and cy19:0 as Gram-negative bacteria (Zelles, 1999). 

Total bacteria were calculated by adding the phospholipid fatty acid 16:1v7 to the sum of 

Gram-positive and Gram-negative bacterial PLFAs (Frostegård & Bååth, 1996). The 

biomarker 18:2ω6,9c was regarded as fungal PLFA (Frostegård & Bååth, 1996; Kaiser et 

al., 2010). 

 

Statistical analyses 

Field data on average daily soil temperature and volumetric water content (VWC), 

physical and chemical soil analyses, microbial and PLFA abundances (separately for each 

soil depth) and weekly measured canopy height of winter rapeseed were analyzed by linear 

mixed-effects (lme) models (lme function from the nlme package of R 3.2.1; R Core Team, 

2015). Fixed-factors were ‘biochar’ (BC; without and with BC), ‘soil warming’ (W; Ta 

and Te) while time dependency was investigated by including ‘season’ for soil temperature 

and VWC analysis (S; autumn: 22.08.2013 to 30.11.2013; winter: 01.12.2013 to 
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28.02.2014; spring: 01.03.2014 to 31.05.2014 and summer: 01.06.2014 to 05.09.2014), 

‘date of collection’ (DC) for physical, chemical and microbial soil properties or ‘day’ (D) 

for weekly measurement of canopy height of winter rapeseed. Block, plot and subplot were 

nested random effects in the lme models used. 

In addition, soil temperature and VWC data were separately analyzed for each seasonal 

average, soil properties separately at each collection date, canopy height one day before 

harvest and aboveground biomass of winter rapeseed at maturity by using the same lme 

models excluding the time factor. In all VWC analyses, the fixed-factor BC was not 

considered due to its potential overestimation in the BC plots (see physical and chemical 

analyses). Differences in the incorporation of biochar-C into microbial biomass between 

ambient temperature (BCTa) and elevated temperature (BCTe) biochar plots were tested for 

each sampling date and soil depth separately (lme model, fixed-factor W). In addition, we 

analyzed whether the proportion of biochar-C in microbial biomass was significantly 

higher than zero by T-test.  

Prior to analyses, data were log- or square-root transformed if non-normally distributed 

and inhomogeneity of variance (Levene test) was found. A statistical probability of P≤0.05 

was considered to be significant. 

 

6.3 Results 

Soil temperature and moisture 

Average daily soil temperature was significantly increased by soil warming (P≤0.05) 

by 2.25 °C in control (Ctrl), and by 2.40 °C in biochar (BC) plots during the experimental 

period of 380 d (Fig. 6.1c). Biochar had no significant effect on soil temperature, although 

we found a higher temperature increase (2.71 °C vs. 2.01 °C) in warmed biochar plots 

(BCTe) than in the control plots during summer. Depending on the season, soil warming 

decreased VWC on average (W × S, P≤0.001) (Figs. 6.1d, S6.1, S6.2b). In the very dry 

spring season (March–May 2014), the warming-induced water loss was on average 16 % 

lower in biochar-amended than in control plots. In contrast, in summer (June–September 

2014), biochar intensified soil water loss under warming by 71 % (Figs. 6.1d and S6.2b). 

Biochar increased SWC across all sampling dates, which was statistically significant at 0–

5 cm (P≤0.05), but not at 5–15 cm (Table 6.2). In contrast, soil warming significantly 

decreased SWC at 0–5 cm (P≤0.05), but this effect was dependent on sampling date (W × 
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D, P≤0.01), showing a negative impact of soil warming on SWC only in March (-23 %, 

P≤0.01; Table 6.2). The same pattern was observed at 5–15 cm. 
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Plant growth 

Canopy height of winter rapeseed tended to increase with biochar (P=0.089), mainly 

due to short-term enhanced growth under ambient soil temperature (BCTa) in the early 

phase of the growing period in spring 2014 (BC × D, P≤0.001; Fig. 6.2a). Soil warming 

significantly increased canopy height throughout the experiment, but the large differences 

between Te and Ta plots in April diminished afterwards (W × D, P≤0.05). One day before 

final harvest, canopy height of rapeseed tended to be higher in warmed than in ambient 

plots (P=0.06), while biochar amendment had no effect (Fig. 6.2a). Total aboveground 

biomass at maturity was increased by soil warming only in the control plots, but not in the 

biochar plots (Fig. 6.2b; BC × W, P≤0.05). 

 

Fig. 6.2. (a) Canopy height between April and July 2014 (mean ± SE). Significant results of linear 

mixed-effects model for the effects of biochar addition (BC), soil warming (W) and date (D) and 

their interactions as indicated by asterisks (* P≤0.05, ** P≤0.01, *** P≤0.001). (b) Final 

aboveground biomass of winter rapeseed at crop maturity (07/15/2014) (mean ± SE). Results of 

linear mixed-effects model for the effects of biochar addition (BC) and soil warming (W) and their 

interactions are shown when significant. CtrlTa = control under ambient soil temperature, CtrlTe = 

control under elevated soil temperature, BCTa = soil amended with biochar under ambient soil 

temperature, BCTe = soil amended with biochar under elevated soil temperature. 
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Physical and chemical soil properties 

Soil bulk density (BD) was significantly decreased in biochar-amended plots by 12 % 

and 7 % at 0–5 cm and 5–15 cm depth, respectively (Table 6.2, P≤0.01). Biochar increased 

soil pH at each sampling date and at both soil depths by 0.1 to 0.3 pH units (P≤0.001, 

Table 6.2). In addition, soil pH was enhanced by warming in the biochar, but not in the 

control plots in March (BC × W, P≤0.05). EOC was not affected by biochar or soil 

warming alone over the entire experiment, but tended to increase at 0–5 cm under biochar 

in November (P=0.095) and under soil warming in March (P=0.086) (Table 6.2). 

Concentrations of NH4
+-N and NO3

--N at 0–5 cm soil depth were considerably higher in 

March compared to November and September (Table 6.2). In November, NH4
+-N was 

slightly reduced by warming at 0–5 cm, but enhanced with biochar (BC × W, P≤0.05). 

Biochar reduced NO3
--N at 0–5 cm in November (by 89 %, P≤0.05) and in September (by 

37 %, P≤0.01) as well as in the deeper soil layer (5–15 cm) by 63 % (P≤0.05) and 46 % 

(P≤0.05) in November and March, respectively. 

 

Microbial biomass carbon and biochar-C incorporation 

At each sampling date, Cmic was higher at 0–5 cm than at 5–15 cm soil depth (Fig. 

6.3a). There were no significant effects of biochar or soil warming alone, but the 

interaction between the two factors affected Cmic in November (0–5 cm, BC × W, P≤0.05), 

with no effect of warming in the biochar plots, but increased microbial abundance in the 

CtrlTe treatment (Fig. 6.3a). 

The biochar-derived C in microbial biomass appeared to decrease at 0–5 cm, while it 

increased at 5–15 cm during our one-year study (Fig. 6.4). Microbial incorporation of 

biochar-C was highly variable (up to 15 % and 12 % on average at 0–5 cm and 5– 15 cm 

soil depths, respectively), irrespective of the soil warming treatment (Fig. 6.4, P>0.05). 

Although microbial incorporation of BC-derived C was significant in September 2014 (5–

15 cm, P≤0.05), the data were highly variable and at the other dates microbial BC-C 

assimilation was not significantly higher than zero. 
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Fig. 6.3. Concentrations of (a) microbial biomass carbon (Cmic) as well as phospholipid fatty acids 

(PLFA) for (b) fungi, (c) Gram-positive bacteria and (d) Gram-negative bacteria at 0–5 and 5–15 

cm soil depth in November 2013, March 2014 and September 2014 (mean ± SE). Significant results 

of linear mixed-effects models for the effects of biochar addition (BC) and soil warming (W) and 

their interactions separately for each sampling date and soil depth as indicated by asterisks (* 

P≤0.05, ** P≤0.01, *** P≤0.001). CtrlTa = control under ambient soil temperature, CtrlTe = control 

under elevated soil temperature, BCTa = soil amended with biochar under ambient soil temperature, 

BCTe = soil amended with biochar under elevated soil temperature. 
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Fig. 6.4. Proportion (%) of biochar-derived C in soil microbial biomass at 0–5 and 5–15 cm soil 

depth in November 2013, March 2014 and September 2014 (mean ± SE). BCTa = soil amended 

with biochar under ambient soil temperature, BCTe = soil amended with biochar under elevated 

soil temperature. 

 

Microbial PLFA content 

Changes in soil microbial community composition under biochar or soil warming 

treatment were statistically tested by using abundances of single PLFA biomarkers and 

microbial groups of Gram-positive and Gram-negative bacteria as well as fungi. At a depth 

of 0–5 cm, biochar had no significant effect on the microbial community during our study, 

while soil warming generally increased PLFA abundances (P≤0.001) and specifically the 

abundance of the i16:0 biomarker, representing Gram-positive bacteria (P≤0.05, Fig. 

S6.3). However, in November (0–5 cm), fungal abundance and fungal-to-bacterial ratio 

increased under soil warming in the biochar plots, whereas warming slightly decreased 

fungi in the control plots (BC × W, P≤0.05; Fig. 6.3b and Table 6.3). In March (0–5 cm), 

fungal biomass decreased under soil warming, while this reduction was up to 80 % lower 

in plots with biochar addition (BC × W interaction, P=0.06, Fig. 6.3b). Concurrently, 

biochar and soil warming had an interactive effect on the fungal-to-bacterial ratio at 0–5 
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cm (BC × W, P≤0.05), showing almost no change in the biochar plots, whereas warming 

slightly decreased this ratio in plots without biochar addition (Table 6.3). 

At a depth of 5–15 cm, soil warming had a similar effect on the microbial community 

during the experiment (P≤0.001), but this was dependent on sampling date without 

showing a clear pattern (W × DC, P≤0.05; Fig. S6.3). At this depth, biochar had no overall 

effect on PLFA abundances, but contents of the fungal PLFA-marker 18:2ω6:9c were 

significantly increased by biochar (P≤0.05, Fig. S6.3). 
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6.4 Discussion 

Biochar utilization by soil microorganisms 

The aim of this study was to investigate the effect of soil warming on the utilization 

and incorporation of biochar-C by microorganisms as a measure of biochar stability in soil. 

During one year after biochar addition, we found only slight initial degradation of biochar 

and assimilation by soil microorganisms under ambient and elevated soil temperature. This 

is in accordance with previous studies showing that biochar initially triggers microbial 

activity by providing limited amounts of labile C, but that long-term stability is determined 

by slowly decomposable aromatic C structures (Ameloot et al., 2013b). Some experiments, 

using different biochars and soils, indicated low microbial assimilation of biochar-C under 

controlled conditions (Kuzyakov et al., 2009; Luo et al., 2013; Watzinger et al., 2014). 

Similar to our study, Luo et al. (2013) incubated a high-temperature biochar from 

Miscanthus (700 °C) in alkaline arable soil confirming our results of low microbial 

degradation of such biochar types. From the physical-chemical point of view, enhancing 

pyrolysis temperature to 850 °C lead to a great disappearance of aliphatic CH, CH2 and 

CH3 groups, i.e. the bio-degradable carbon fraction, due to the decomposition and de-

volatilization of mainly hemicellulose and cellulose (bands between 1200 and 1000 cm-1) 

as well as partly lignin, while the appearance of aromatic C-H (850–780 cm-1) and C=C 

(around 1160–1580 cm-1 and 1430–1400 cm-1) groups increased, as shown by FTIR 

spectrum (Fig. S6.4) and confirmed by TGA (Fig. S6.5). In addition, the low O/C molar 

ratio (0.07) of the used biochar can be seen as predictor of high degradation stability 

(Spokas, 2010). 

From our 13Cmic data we cannot definitely estimate biochar stability in our field 

experiment. The results on BC incorporation by soil microorganisms (up to 15 %) were 

highly variable and not affected by soil warming. One year after biochar amendment we 

determined the vertical distribution of biochar at 0–15 cm soil depth and found highly 

variable results (personal communication D. Grunwald). In the BC-HoCC experiment we 

applied unsieved and large-sized biochar particles of 4–20 mm length to simulate a realistic 

scenario for biochar amendment in agriculture. This resulted in a highly heterogeneous 

distribution of the biochar particles at the small-scale, which made it difficult to detect 

changes in biochar content, i.e. the persistence or fate of the biochar in the field over time. 

In conclusion, our results should be interpreted with caution, but it appears that microbial 

assimilation at 0–5 cm was highest at the beginning and decreased over time, while at 5–
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15 cm depth it increased until the last sampling in September 2014. As the arable field was 

not ploughed between sampling dates, this may indicate a vertical transport of biochar 

particles by fragmentation and bioturbation as shown in other soils (Topoliantz & Ponge, 

2003), or in the form of dissolved organic carbon (DOC; Major et al., 2010). 

Our data on microbial abundances three months after biochar application (November) 

indicated that the labile C pools of the biochar were utilized by soil microorganisms before 

sampling, leaving poorly degradable (recalcitrant) biochar in soil. This is supported by 

data on CO2 emissions (unpublished data) which were initially enhanced in both BC 

treatments after biochar incorporation into soil, but leveled off after a few weeks, 

indicating a rapid utilization of mostly labile biochar-C. The used Miscanthus biochar 

exhibits limited volatile matter (<10 %), which is lower compared to other high-

temperature biochars from different feedstock (Enders et al., 2012), but partly forms a 

short-term biodegradable fraction mainly consisting of aliphatic functional groups 

(Zimmerman, 2010). However, fungal abundance as well as the fungal-to-bacterial ratio 

increased under warming in the biochar-amended soil (BCTe vs. BCTa), together with the 

highest EOC and NH4
+-N contents in BCTe in November in the uppermost soil depth. Fungi 

are known to degrade recalcitrant material such as biochar in soil, and to use it as a growth 

substrate (Ascough et al., 2010). Further, stable C pools are considered to be more sensitive 

to increased soil temperature than less stable C (Conant et al., 2011) and different 

incubation studies have shown that the mineralization of recalcitrant biochar-C was 

temporarily enhanced with increasing soil temperature (e.g. Fang et al., 2014). In our 

experiment, the increased fungal biomass and EOC concentrations in the BCTe treatment 

after three months may indicate that soil warming triggered the decomposition of more 

stable biochar components by fungi, leading to the enhanced fungal biomass. In addition, 

spring barley litter was ploughed into the soil together with biochar at the beginning of the 

experiment in August and was still present in November. This likely stimulated the growth 

of soil fungi and perhaps also led to a utilization of biochar-derived C due to co-metabolic 

pathways (Ascough et al., 2010). Budai et al. (2016) showed that high-temperature 

biochars, containing low volatile matter and high fixed C like the biochar we used in our 

study, had considerable impacts on the soil microbial community composition, although 

fungi and bacteria responded similarly to biochar amendment. In contrast, the shift in the 

fungal-to-bacterial ratio in our experiment indicates that soil fungi benefited most from the 

potential biochar mineralization in the early phase of the experiment. In a short-term 

incubation study (37 days) with Miscanthus biochar added to the same soil as that 
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investigated in the present study, biochar increased microbial abundances by 16 % and 

shifted the microbial community toward a higher fungal-to-bacterial PLFA ratio when 

litter was added to the soil (Bamminger et al., 2014b). Certainly, the response of fungi to 

biochar in our field experiment may be transient or strongly connected to the presence of 

litter as the effect of enhanced fungal biomass could no longer be observed in March or 

September. 

A further potential reason for the short-term effect on fungal biomass under warming 

may be a biochar-induced modification of soil properties and microhabitat conditions (e.g. 

bulk density, soil moisture, pH) (Lehmann et al., 2011). However, changes in soil 

properties and microhabitat conditions were not pronounced under soil warming and 

therefore not expected to be primarily responsible for the observed fungal response. 

Our results point to an initial mineralization and utilization of biochar-C by fungi in 

warmed soil; however, this study examined only the short-term effects of biochar on soil 

microorganisms. Assuming that the biochar will not be degraded by soil microorganisms 

in relevant amounts in the future, an outcome suggested by our results, biochar turnover 

may be a negligible factor in long-term C sequestration. 

 

Biochar effects on soil microorganisms and plants under drought and soil warming 

We were interested in the potential interactive effects of biochar together with 

predicted soil warming on soil microbial abundances related to seasonal changes in soil 

moisture. During the dry spring season in 2014, biochar reduced warming-induced water 

loss in comparison to the control plots. Likewise, biochar led to maximum 80 % lower 

reduction of fungal biomass in warmed soil in March. We observed the same patterns for 

Gram-positive bacteria and the fungal-to-bacterial ratio, but these interactive effects of 

biochar and soil warming were only tendencies. Nevertheless, according to our hypothesis 

it seems likely that the compensatory effect of biochar on water content in warmed soil 

positively influenced soil microbial abundances. Similarly, Liang et al. (2014) observed 

increased drought tolerance of the microbial community in a tropical soil amended with 

biochar, likely due to beneficial effects of biochar on habitat conditions and water 

retention. It is well known that Gram–positive bacteria and fungi are more resistant to 

water stress than Gram-negative bacteria due to their physiologies and their acclimation 

capacities (Schimel et al., 2007). In the present study, Gram-negative bacteria did not profit 
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from the enhanced water retention by biochar, emphasizing their high sensitivity to soil 

dryness compared to Gram-positive bacteria and fungi. Another important driver of 

microbial processes and abundances in soil is pH, and the liming potential of many 

biochars may have a major impact on the soil microbial community (Lehmann et al., 2011). 

We found highest soil pH in biochar-amended soil under warming in March, which could 

have influenced microbial abundances as well. However, we do not expect that pH played 

an important role in our experiment as our soil has nearly neutral pH and it was increased 

by only a maximum of 0.3 pH units with biochar. This would suggest, in contrast to our 

results, an increased bacterial abundance rather than higher fungal abundance, as it has 

been shown that bacterial abundance increases with rising pH up to 7, while fungal 

biomass decreases or shows no effect (Rousk et al., 2009). 

In September, soil moisture was generally higher than in March due to extensive 

precipitation during July and August; SWC was increased by biochar, but not reduced by 

warming. At the same time, microbial abundances were rarely affected by single effects 

or the interaction of biochar and soil warming. We suggest that below a specific threshold 

even small differences in soil moisture affect the competition between differently adapted 

microbial groups, whereas in September the positive effect of biochar on soil moisture was 

not sufficient to alter the soil microbial community. 

We expected that crop growth is mainly determined by soil moisture in spring and 

summer, which is reduced by soil warming, but enhanced with biochar. Soil warming 

enhanced canopy height during the experiment and aboveground biomass at crop maturity 

in the control plots. Similarly, Siebold & Tiedemann (2012) have shown that soil warming 

accelerated the phenology of rapeseed. Enhanced aboveground biomass production under 

soil warming may be caused by fewer frost events, longer growing seasons, higher nutrient 

availability and enhanced photosynthesis rates up to a species-specific temperature 

optimum (Rustad et al., 2001). However, warming effects on crops seemed to be species-

specific since aboveground biomass production of barley was not affected by elevated soil 

temperature in a previous study (Högy et al., 2013). 

Biochar has sometimes been shown to increase crop growth by increasing soil pH as 

well as water and nutrient retention in soil, but this is assumed to be less likely in temperate 

fertile soils with almost neutral pH (Biederman & Harpole, 2013; Jay et al., 2015). In our 

study, biochar did not increase canopy height in warmed, but instead in the non-warmed 

plots in the early growth stages in the dry spring season (April-May). This was likely 
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caused by the vertical distribution of biochar in the soil profile and subsequent differences 

in soil moisture. Due to accelerated phenology under soil warming, the rapeseed plants 

were bigger in the warmed than in the non-warmed plots and we assume that their rooting 

systems reached deeper soil horizons where biochar was not incorporated (>20 cm depth). 

In contrast, the plants in the non-warmed plots may have met their water demand in the 

(drier) upper soil layers where biochar was incorporated and in this case biochar may have 

been effective in countering water limitation for the plants. However, at harvest, the effect 

of biochar on aboveground crop biomass at ambient temperature disappeared. This could 

be attributed to decreased availability of nutrients to plants due to initial strong adsorption 

of nutrients (e.g. nitrate) on the positive as well negative adsorption sites due to functional 

groups on fresh biochars’ surfaces (Schmidt et al., 2014). Some studies have shown that 

crop yield after biochar application increases over time (Crane-Droesch et al., 2013) 

suggesting the need for field weathering of fresh biochar to reduce negative effects on 

plant nutrient uptake (Schmidt et al., 2014). In addition, a further partitioning of the 

different potential biochar effects on aboveground and belowground crop growth under 

soil warming in future studies would help to better understand biochar-plant-soil nutrient 

interactions in agroecosystems. 

 

6.5 Conclusion 

Biochar is increasingly discussed as a climate change mitigation tool, but there is 

limited knowledge about its interactive effects with future soil warming, possibly 

influencing its stability as well as its beneficial effects on soil microorganisms and plants. 

In this field experiment, the high-temperature biochar used was considered to be stable 

against microbial utilization during the first year after application, despite evidence of 

initial degradation by fungi under soil warming. This indicates that biochar could persist 

in soil and may be suitable for C sequestration in soils even under elevated temperature. 

In addition, we have shown that biochar could mitigate seasonal effects of climate change 

(e.g. drought) on microorganisms and plants depending on weather conditions, thus 

increasing or maintaining the fertility and productivity of agricultural soils. However, the 

interrelationships between biochar, soil warming, plants and soil microorganisms have to 

be investigated in more detail and over additional vegetation periods to identify the impact 

of biochar on the soil environment, on microorganisms, and under different crops. Its long-

term stability must be better characterized as well. 
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6.7 Supplementary material 

 

Fig. S6.1. Daily average volumetric water contents (VWC) of soil during the experiment. CtrlTa = 

control under ambient soil temperature, CtrlTe = control under elevated soil temperature, BCTa = 

soil amended with biochar under ambient soil temperature, BCTe = soil amended with biochar 

under elevated soil temperature. 
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Fig. S6.2. (a) Average seasonal soil temperature increase due to soil warming and (b) Average 

seasonal decrease of volumetric water content (VWC) in soil due to warming in control (Ctrl) and 

biochar (BC) plots. 
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Fig. S6.3. Concentrations of the phospholipid fatty acid (PLFA) biomarkers i15:0, a15:0, i16:0 and 

i17:0 (Gram-positive bacteria); cy17:0 and cy19:0 (Gram-negative bacteria) and 18:2ω6:9c (fungi) 

at 0-5 and 5-15 cm soil depth in November 2013, March 2014 and September 2014 (mean ± SE). 

Significant results of linear mixed-effects models for the effects of biochar addition (BC), soil 

warming (W) and date of collection (DC) and their interactions separately for each soil depth as 

indicated by asterisks (* P≤0.05, ** P≤0.01, *** P≤0.001). CtrlTa = control under ambient soil 

temperature, CtrlTe = control under elevated soil temperature, BCTa = soil amended with biochar 

under ambient soil temperature, BCTe = soil amended with biochar under elevated soil temperature. 
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Abstract 

Global warming will likely enhance greenhouse gas (GHG) emissions from soils. Due to 

its slow decomposability, biochar is widely recognized as effective in long-term soil 

carbon (C) sequestration and in mitigation of soil GHG emissions. In a long-term soil 

warming experiment (+2.5 °C, since July 2008) we studied the effect of applying high-

temperature Miscanthus biochar (0, 30 t ha-1, since August 2013) on GHG emissions and 

their global warming potential (GWP) during two years in a temperate agroecosystem. 

Crop growth, physical and chemical soil properties, temperature sensitivity of soil 

respiration (Rs) and metabolic quotient (qCO2) were investigated to yield further 

information about single effects of soil warming and biochar as well as on their 

interactions. Soil warming increased total CO2 emissions by 28 % over two years. The 

effect of warming on soil respiration did not level off as has often been observed in less 

intensively managed ecosystems. However, the temperature sensitivity of soil respiration 

was not affected by warming. Overall, biochar had no effect on most of the measured 

parameters, suggesting its high degradation stability and its low influence on microbial C 

cycling even under elevated soil temperatures. In contrast, biochar × warming interactions 

led to highest total N2O emissions, possibly due to accelerated N-cycling at elevated soil 

temperature and to biochar-induced changes in soil properties and environmental 

conditions. Methane uptake was not affected by soil warming or biochar. The 

incorporation of biochar-C into soil was estimated to offset warming-induced elevated 

GHG emissions for 20 years. This highlights the suitability of biochar for C sequestration 

and GHG mitigation in cultivated temperate agricultural soil under a future elevated 

temperature.  

 

Keywords: soil warming, biochar, agroecosystem, carbon dioxide, nitrous oxide, 

methane, temperature sensitivity, carbon sequestration 

 

 

 



7 Offsetting global warming-induced elevated greenhouse gas emissions 

 

89 

7.1 Introduction 

Global warming has been shown to increase the emission of greenhouse gases (GHG) 

from soils, potentially creating a positive feedback and increasing the rate of global climate 

change (Davidson & Janssens, 2006; Dijkstra et al., 2012). Biochar (BC) amendment to 

agricultural soils has been proposed as a mitigation strategy to offset global climate change 

effects through long-term carbon (C) sequestration, reduction of GHG emissions, and by 

maintaining or improving soil fertility and crop productivity (Ippolito et al., 2012; Lorenz 

& Lal, 2014; Zhang et al., 2016). Although biochar is considered a future climate change 

mitigation option, its C sequestration potential and effects on GHG emissions have rarely 

been evaluated under predicted elevated soil temperatures in field experiments to date. 

Several field studies have reported short-term increases in CO2 emissions under 

elevated soil temperature which leveled off after a few years (Luo et al., 2001; Melillo et 

al., 2002; Allison et al., 2010). This effect has been variously explained by depletion of 

easily available C substrates or by thermal adaption of microbial respiration; the latter 

involved changes in microbial community structure (Bradford et al., 2008; Crowther et al., 

2013). However, experimental warming studies on soil GHG fluxes have been largely 

restricted to forest and grassland ecosystems, and limited in agricultural soils. The studies 

of Poll et al. (2013) and Liu et al. (2015) indicate that soil drying, a process that 

accompanies elevated soil temperature, may be a crucial factor limiting microbial biomass 

and activity in arable soils under changing climate. Conversely, enhanced plant growth 

and related higher belowground C input by root exudation under a warmer climate may 

provide additional substrates for soil microorganisms and promote soil respiration 

(Trumbore, 1997). These elevated soil temperature-related modifications of physical and 

chemical soil properties (e.g. soil moisture) can influence N2O and CH4 fluxes from soil 

as well (Smith et al., 2003). In a meta-analysis, Bai et al. (2013) showed that N-

mineralization, N pools and N2O emissions increased under experimental warming, while 

temperature-related reduction in soil moisture and C availability could limit microbial 

activity and N cycling. The uptake of CH4 in upland soils was observed to be enhanced 

under warming through increased methane oxidation activity and reduced soil moisture, 

likely resulting in higher diffusivity of methane into the soil (Dijkstra et al., 2012). 

Although the uptake of atmospheric methane may be enhanced under soil warming, the 

global warming potential (GWP) of GHG emissions from temperate agricultural soils is 

dominated by CO2 and N2O emissions (Robertson & Grace, 2004), since temperate arable 



7 Offsetting global warming-induced elevated greenhouse gas emissions 

 

 

90 

soils are small sinks for atmospheric CH4 compared to grasslands and forests (Le Mer & 

Roger, 2001). This points to the importance of developing mitigation options to counteract 

CO2 and N2O emissions from arable soils.  

The stability of biochar is fundamental to its function as a long-term option for C 

sequestration, GHG reduction and soil amelioration. The turnover of biochar in soil is 

typically characterized by rapid depletion of labile biochar-C, followed by slow 

mineralization of more stable and highly polycondensed aromatic C fractions (Kuzyakov 

et al., 2014; Wang et al., 2016a). This suggests long-term persistence of biochar in soil 

(Glaser et al., 2001). However, biochar may also interact with soil organic matter (SOM), 

either by decreasing or enhancing SOM mineralization (priming effect) (Zimmerman et 

al., 2011; Ventura et al., 2015). If biochar were to trigger SOM degradation, it would 

challenge the concept of biochar application to soil as a strategy for long-term C storage 

and climate warming mitigation. Increased CO2 emissions from agricultural soils after the 

application of low-temperature biochars (< 450 °C) (Jones et al., 2012; Ameloot et al., 

2013a) may be attributed to a high proportion of labile biochar-C. In contrast, the 

amendment of high-temperature biochar (>500 °C) to arable soils has often resulted in 

either a decrease or no effect on CO2 emissions in lab (e.g. Ameloot et al., 2013a, Ameloot 

et al., 2014; Bamminger et al., 2014a) and field experiments (Castaldi et al., 2011; Case et 

al., 2014). This suggests that high-temperature biochars may be suitable for long-term C 

sequestration in arable soils (Liu et al., 2016). Reduced CO2 fluxes from biochar-amended 

soil have often been linked to decreased metabolic quotients (qCO2) and enhanced 

microbial C use efficiencies (Jin, 2010; Domene et al., 2014; Bamminger et al., 2014b), 

even though microbial abundances often increased. Decreased qCO2 in biochar-amended 

soil could be due to shifts in soil microbial community composition and co-location of 

microorganisms and substrates on biochar surfaces, increasing microbial C use efficiency 

(Jin, 2010; Lehmann et al., 2011).  

Agricultural soils are the main sources of N2O emissions due to increasing application 

of both mineral N-fertilizers and manure; thus, strategies to reduce N2O emissions in the 

context of global climate change mitigation are required (Reay et al., 2012). Biochar-

induced reduction of N2O emissions has been demonstrated in several lab and field 

experiments (Taghizadeh-Toosi et al., 2011; Harter et al., 2013; Ameloot et al., 2016). In 

contrast, other studies have found increased N2O emissions following biochar 

incorporation (Saarnio et al., 2013; Sánchez-García et al., 2014). Biochar may influence 
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different N2O-genic processes by altering soil aeration, water retention, N-availability, and 

soil pH or by sorption of labile C, leading to shifts in the nitrifying and denitrifying soil 

microbial community (Clough et al., 2013; Cayuela et al., 2014). It is therefore challenging 

to predict the effects of biochar on N2O emissions in soil environments, especially under 

field conditions. Biochar could also change CH4 uptake from arable soils by increasing 

aeration, soil moisture, pH, or by sorption of C and N depending on biochar characteristics 

and soil management (Jeffery et al., 2016). This would affect methane production by 

methanogenic archaea and methane consumption by methanotrophs, both of which depend 

on native soil conditions (Feng et al., 2012; Yu et al., 2013). Hence, varying results have 

been observed in several studies; decreased CH4 uptake (Spokas & Reicovsky, 2009), no 

effect (Castaldi et al., 2011; Kammann et al., 2012) or increased CH4 uptake from arable 

soils (Karhu et al., 2011).  

It is not clear to date whether elevated soil temperature impacts biochar stability or 

how interactions between elevated temperatures and biochar could influence GHG fluxes 

under field conditions. Studies in ecosystems along climate gradients (Glaser & Amelung, 

2003; Cheng et al., 2008) have provided no information on the actual mineralization of 

pyrogenic organic matter under field conditions at elevated temperature. Under controlled 

conditions, the proportion of mineralized biochar-C (pyrolysis at 550-600 °C) was 

somewhat enhanced with increasing temperature (Nguyen et al., 2010; Fang et al., 2014), 

but biochar’s effects on the temperature sensitivity of native SOM degradation have 

sometimes been ambiguous, depending on soil properties, biochar properties, and 

incubation temperature (Fang et al., 2014, Fang et al., 2015). Likewise, there is also no 

clear evidence that biochar could reduce N2O and CH4 fluxes from field soil at elevated 

temperature (Case et al., 2012; Han et al., 2016). 

We investigated how biochar affects GHG emissions in warmed arable soil during two 

vegetation periods to assess the feasibility of biochar for future C sequestration and climate 

change mitigation in temperate arable soils. Based on existing knowledge about biochar 

stability in soil, we hypothesized that the high-temperature Miscanthus biochar (850 °C) 

used in this study will form a persistent constituent of OM in soil, thus preventing an 

increase in soil CO2 emissions, qCO2, or the temperature sensitivity of soil respiration in 

the medium-term even under warming. Further, we aimed to explore how potential biochar 

effects on soil properties (e.g. increases in soil moisture, pH and aeration), under changing 
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weather conditions and different stages of management (ploughing, cropping and 

fertilization) will affect the fluxes of N2O and CH4 from soil under warming. 

 

7.2 Materials and methods 

Field site 

The investigated arable field is located at the experimental station Heidfeldhof of the 

University of Hohenheim (Stuttgart, Germany). The area is characterized by mean annual 

temperature and precipitation (1981–2010) of 9.4 °C and 718.7 mm, respectively (DWD, 

2016). In the investigated years, 2013, 2014, and 2015, mean annual air temperatures were 

9.5 °C, 11.0 °C and 10.9 °C and annual precipitation was 790.1 mm, 654.1 mm and 492.1 

mm, respectively (Fig. S1c; weather station ‘Hohenheim’, LTZ Augustenberg, 2016). The 

arable soil is a loess-derived stagnic Luvisol with silty loam-texture (9 % sand, 69 % silt 

and 22 % clay), total C content of 11.4 g C kg-1 soil dry weight and pH 6.8.  

 

Experimental design 

The Biochar Hohenheim Climate Change experiment (BC-HoCC) was established in 

August 2013 (Bamminger et al., 2016) as part of an existing climate change experiment in 

a temperate agroecosystem (HoCC), where soil has been warmed since 2008 (Poll et al., 

2013). The HoCC experiment has a split-plot-design, with four blocks consisting of four 

plots each subdivided into subplots (1×1 m). In the warmed plots (Te), heating cables were 

installed near the soil surface to increase soil temperature by 2.5 °C above ambient soil 

temperature at 4 cm depth, and non-heated plots (Ta) serve as experimental controls which 

are fitted with dummy cables. In August 2013, biochar from Miscanthus x giganteus (slow-

pyrolysis for 30 min at 850 °C) was added to soil (BCTa: soil with biochar at ambient soil 

temperature, BCTe: soil with biochar at elevated soil temperature) at a rate of 30 t ha-1 and 

manually incorporated into 0-20 cm soil depth together with spring barley litter from the 

previous growing season. Control plots (CtrlTa: control soil at ambient soil temperature, 

CtrlTe: control soil at elevated soil temperature) were not amended with biochar, but litter 

was incorporated in the same way. For more information on the site, establishment of the 

BC-HoCC experiment and soil as well as biochar properties we refer to Poll et al. (2013) 

and Bamminger et al. (2016).  
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Soil management, plant and soil sampling 

In the first cropping season of the BC-HoCC experiment, winter rapeseed (Brassica 

napus L.) was manually sown on all subplots (3 September 2013, 60 plants m-2, ≈ 20 cm 

row spacing). In spring 2014 (13 March), plant numbers were adjusted to obtain standard 

plant density for rapeseed in each subplot (30 plants m-2). Fertilizer was applied twice to 

all subplots; first, immediately after plant number adjustment, calcium ammonium nitrate 

at 70 kg nitrogen (N) ha-1 and second, on 31 March 2014, ammonium thiosulfate (17.2 kg 

N ha-1 and 37.2 kg S ha-1) was applied to the soil surface. Winter rapeseed was harvested 

at maturity on 17 July 2014 by cutting the aboveground biomass by hand. After drying and 

determination of aboveground biomass weight (see Bamminger et al., 2016), the rapeseed 

litter was shredded and re-applied to the respective plots on 29 August 2014. On 21 

October 2014, soil was ploughed for the first time since incorporation of the biochar. 

Spring wheat (Triticum aestivum) was sown on 20 March 2015 (about 450 plants m-2, ≈ 

10 cm row spacing). Before sowing, standard fertilizer (35 kg P, 70 kg K, 13 kg Mg, 19 

kg S) was applied to soil. In addition, fertilizer was added twice as calcium ammonium 

nitrate on 7 May 2015 (60 kg N ha-1) and on 3 June 2015 (80 kg N ha-1) to the subplots. 

Aboveground biomass of spring wheat was harvested at maturity on 31 July 2015.  

Soil samples were collected using a soil auger to determine soil physical, chemical, 

and microbial properties from all subplots at two soil depths (0-5 cm and 5-15 cm) in 

November 2013, March and September 2014, and in March and August 2015. 

 

Physical and chemical soil analyses 

To determine soil bulk density (BD), undisturbed soil cores (100 cm³) were taken in 

duplicate at 0-5 and 5-15 cm soil depth from non-vegetated subplots after harvest of winter 

rapeseed and spring wheat in August 2014 and November 2015, respectively.  

Soil water content (SWC) was determined gravimetrically from the regularly taken soil 

samples after drying for three days at 65 °C. In addition, we obtained volumetric soil water 

content (VWC) by continuous time-domain reflectometry (TDR)-based measurements 

throughout the experiment.  

pH of soil samples was measured in 0.01 M CaCl2 solution using a 1:4 w/v ratio. 

Concentrations of ammonium (NH4
+-N) and nitrate (NO3

--N) were determined by 

extracting field moist soil with 0.5 M K2SO4 (1:4 w/v ratio). Subsequently, soil 
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suspensions were shaken on a horizontal shaker (30 min at 250 rev. min-1) and centrifuged 

(30 min at 4400 × g). Concentrations of NH4
+-N and NO3

--N in the supernatant were 

determined colorimetrically with a continuous flow analyzer (Bran + Luebbe Autoanalyzer 

3, SEAL Analytical, Hamburg, Germany). 

 

Determination of greenhouse gas fluxes 

During the two-year experimental period, greenhouse gas emissions (CO2, N2O and 

CH4) were measured weekly using closed chambers (Hutchinson & Livingston, 2002). 

Closed chambers were located between the crop rows, and had an inner volume of 4850 

cm³ covering an area of 270 cm² as described in Poll et al. (2013). Gas samples (20 ml) of 

the headspace volume were taken with 20 ml syringes via three-way stopcocks and injected 

into pre-evacuated 12 ml exetainers (Labco Ltd., UK). Samples were taken between 8:00 

AM and 2:00 PM after 0, 15 and 30 min in warm periods and after 0, 30 and 60 min after 

closure in cold periods. In cold periods, closure time was extended to account for lower 

soil respiration and to ensure sufficient accumulation of GHG within the chamber. The 

concentrations of CO2, N2O and CH4 in the headspace samples were determined on an 

Agilent 7890 gas chromatograph (Agilent Technologies Inc., Santa Clara, CA, USA) 

equipped with a methanizer and FID for CO2 and CH4 and an ECD for N2O measurements. 

Three external standards per gas were used for calibration by linear regression. Cumulative 

fluxes of CO2, N2O and CH4 were calculated by linear interpolation between two 

successive gas samplings and expressed per m².  

Due to technical problems with soil heating during winter 2014/2015, cumulative GHG 

fluxes were calculated separately for the period between 27 August 2013 and 11 November  

2014 as well as for that between 24 March and 11 September 2015. Consequently, total 

GHG emissions after two years were obtained by the sum of the cumulative emissions in 

these two periods. GHG emissions in non-vegetated and vegetated periods were calculated 

by the sum of cumulative emissions during bare soil periods as well as winter rapeseed 

and spring wheat growing seasons. The global warming potential of soil GHG emissions 

over a period of 100 years (GWP100) was calculated by summing total emissions of CO2, 

N2O and CH4, with N2O and CH4 emissions converted to CO2 equivalents by applying the 

factors 265 and 28, respectively (Myhre et al., 2013).  
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We estimated biochar turnover and residence time at elevated soil temperature from 

the difference in CO2 emissions between BCTe and CtrlTe plots and the known amounts of 

applied biochar (30 t ha-1). For this calculation, we assumed that the additional release of 

CO2 equivalents would correspond solely to mineralized biochar-C and that no priming 

effects occurred in the soil. In a further step, we calculated the warming-induced increase 

in GWP100 in biochar plots (BCTe – BcTa) and estimated how long C fixation through 

biochar sequestration would compensate for the enhanced GHG emissions in warmed 

arable soil. It has to be noted that we assumed a constant warming-induced increase of 

GHG emissions and a CO2-neutral biochar production system. Possible indirect effects of 

biochar and warming on GHG emissions by influences on plant and root growth as well 

as litter input were not considered in this calculation.  

 

Microbial biomass carbon (Cmic) and metabolic quotient (qCO2) 

Microbial biomass C was measured by chloroform-fumigation-extraction (CFE) in soil 

samples of March and August 2015 as described in (Bamminger et al., 2016). In addition, 

Cmic data from the first year of the BC-HoCC experiment (August 2013 to September 

2014) was taken from (Bamminger et al., 2016) to determine metabolic quotients (qCO2) 

at 0-15 cm soil depth during vegetation-free periods. The metabolic quotient, as a measure 

of respiratory efficiency of the soil microbial community, was calculated as soil respiration 

per unit microbial biomass and expressed as mg CO2-C g-1 Cmic d
-1. For calculation of 

qCO2, area-related CO2 data (per m²) were converted to emitted CO2 per g soil in 0-15 cm 

soil depth by applying plot-specific bulk densities (0-5 and 5-15 cm), which were weighted 

according to depth thickness. Bulk density determined in August 2014 was used to convert 

CO2 data between November 2013 and September 2014, while bulk density from 

November 2015 was used for March and August 2015. For Cmic, values of 0-5 and 5-15 

cm soil depth were integrated to 0-15 cm values by weighting according to depth thickness.  

Soil respiration data for qCO2 was calculated by the cumulative CO2-C emission of 

two or three consecutive gas sampling events within three weeks before soil sampling and 

divided by the number of days of the total period between these gas samplings. In general, 

qCO2 was determined in periods without vegetation, either shortly after sowing when plant 

growth was still negligible or after crop harvest. We ensured that there were no extreme 

influences such as heavy rainfall or fertilization events between the gas samplings or 

directly before soil sampling in order to avoid times of a strongly disturbed soil microbial 
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community. Therefore, qCO2 was not calculated in March 2014 because of both fertilizer 

additions shortly before gas and soil sampling and advanced growth of winter rapeseed, 

which could have contributed to CO2 emissions by root respiration.  

 

Temperature sensitivity of soil respiration (Rs) 

We aimed to investigate the effects of biochar and soil warming on the temperature 

response of soil respiration during the two-year study. Fitting soil respiration with an 

exponential temperature response function (Q10 model) was not adequate mainly due to 

decreasing respiration activity above a threshold of 25 °C (see Fig. S4a). Therefore, data 

on soil respiration was natural log (ln) transformed to achieve normal distribution and 

homogeneity of variances. Based on the approach of (Carey et al., 2016), we found a log-

quadratic function (Eq. 1) to best describe the temperature sensitivity of soil respiration: 

ln(Rs) ~ γ0 + γ1T + γ2T² (1) 

where ln(Rs) is the natural log of soil respiration, T is soil temperature at 2 cm soil depth, 

γ0 is the y-intercept, while γ1 and γ2 describe the shape (slope) of the curve.  

 

Statistical analyses 

Field data on average daily soil temperature and volumetric water content (VWC), 

physical, chemical, and microbial soil properties (separately for each soil depth), GHG 

rates of CO2, N2O, and CH4 as well as qCO2 were analyzed by linear-mixed effects (lme) 

models (nlme package of R 3.2.1; R Core Team, 2015). Fixed-factors were ‘soil warming’ 

(W; Ta and Te) and ‘biochar’ (BC; without and with BC), while time dependency was 

investigated by including ‘season’ (S; autumn 2013: 22.08.2013 to 30.11.2013; and 

autumn 2014: 01.09.2014 to 11.11.2014; winter 2013/14: 01.12.2013 to 28.02.2014; 

spring 2014: 01.03.2014 to 31.05.2014 and spring 2015: 12.03.2015 to 31.05.2015, 

summer 2014: 01.06.2014 to 31.08.2014 and summer 2015: 01.06.2015 to 11.09.2015) or 

‘soil cover’ (V, vegetated or non-vegetated) for analysis of soil temperature, VWC and 

GHG fluxes. For physical, chemical and microbial soil properties we added ‘sampling 

date’ (D) as time factor. Block, plot and subplot were included as nested random effects 

in the lme models. In case of significant single effects of the time factor or interactions 

with warming and/or biochar, the following analyses were done. In order to relate 
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environmental conditions and plant growth to soil GHG emissions, we averaged soil 

temperature and VWC data over seasons and the entire experimental period and calculated 

cumulative GHG emissions for each season and in non-vegetated and vegetated periods. 

These data, total GHG emissions and GWP100 data after two years (excluding winter 

season 2014/2015), soil properties separately at each collection date, and total 

aboveground crop biomass, were analyzed using the same lme models excluding the time 

factor. In all VWC analyses, the fixed-factor BC was not included due to the 

overestimation in the BC plots (Bamminger et al., 2016). Prior to analyses, data were log- 

or square-root transformed if non-normally distributed and inhomogeneity of variance 

(Levene test) was found. In the cases of GHG rates or cumulative data, we included 

variance functions (varPower or varIdent, nlme package in R) into the lme models where 

needed to account for heteroscedasticy of the data (Zuur et al., 2009). A statistical 

probability of P≤0.05 was considered significant.  

Temperature sensitivity of soil respiration was determined using linear models (lm) 

instead of lme models due to overlapping confidence intervals of the model parameter 

estimates (γ0, γ1, γ2) between individual plots (subject-to-subject variability) which 

revealed that random effects did not need to be considered in our models (Pinheiro & 

Bates, 2000). First, we fitted data of all observations (‘full model’) and, in addition, 

included the factors ‘soil warming’ (W) and ‘biochar’ (BC) as categorical variables 

stepwise into the models to investigate their interactions with temperature sensitivity. 

Differences in the temperature response in plots with or without biochar in warmed or 

control plots were examined by analyzing the magnitude of the temperature response (γ0) 

and by the shapes of the curves (γ1 and γ2) indicating temperature sensitivity. Regression 

curves were plotted using the xyplot function of the lattice package in R. 

 

7.3 Results 

Soil temperature and moisture 

Between August 2013 and September 2015, soil warming significantly increased soil 

temperature by on average 1.88 and 2.03 °C in control and biochar plots, respectively (Fig. 

S7.1a, P≤0.01). The warming effect on soil temperature depended on the season (W×S, 

P≤0.05) and declined with experimental duration (Fig. S7.1a, S7.2a). Soil temperature 

increase was considerably higher in biochar-amended than in control plots in the summer 
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seasons 2014 (2.72 vs. 2.01 °C) and 2015 (1.74 vs. 1.29 °C) (Fig. S7.2a), but without 

showing statistical significance.  

Soil warming led to a reduction of VWC during the two-year experiment by on average 

19 % (Fig. S1b, P=0.22). This reduction varied with season (W×S, P≤0.001), ranging from 

4 % in winter 2013 to 41 % in summer 2015, averaged over control and biochar treatments 

(Fig. S7.2b). Likewise, the reducing effect of soil warming on SWC varied with sampling 

date at 0-5 cm and 5-15 cm (W×D, P≤0.01), but was only significant in spring 2014 

(March) at both soil depths (Table 7.1). The overall effect of biochar on VWC could not 

be evaluated in this study due to high electrical conductivity of the biochar (Bamminger et 

al., 2016). However, biochar was effective in reducing water loss caused by soil warming 

between August 2013 and April 2014, but this effect on VWC disappeared afterwards (Fig. 

S7.1b, S7.2b). The most pronounced compensatory effect of biochar on soil moisture in 

warmed soil was present in spring 2014, showing 16 % less water loss than in the control 

plots (Figs. S7.1b, S7.2b).  

In addition, we used SWC, which was measured in the sampled soils, to compare 

differences in soil moisture between control and biochar plots at different soil depths. 

Biochar significantly increased SWC at both soil depths across all soil sampling dates 

(P≤0.05). This biochar-induced increase of SWC was more pronounced at 5-15 cm soil 

depth than at 0-5 cm on most sampling dates (Table 7.1).  

 

Physical and chemical soil properties  

Soil bulk density was not affected by warming, but significantly (P≤0.01) reduced by 

biochar at 0-5 cm depth, in August 2014 by 12 % and in November 2015 by 7 % (Table 

7.1). At 5-15 cm, biochar decreased BD by 7 % (P≤0.01) and 8 % (P=0.06) in August 

2014 and November 2015, respectively. Soil pH was not changed by elevated temperature, 

but soil warming interacted with biochar in April 2014 showing the highest value in the 

BCTe treatment (Table 7.1, BC×W, P≤0.05). Biochar significantly increased soil pH 

throughout the study by a maximum of 0.3 pH units, but this effect declined with time 

(BC×D, P≤0.01) and in August 2015, two years after application, biochar no longer had 

an effect on soil pH. Overall, soil warming and biochar had no effect on EOC at 0-5 cm, 

while warming tended to increase EOC at 5-15 cm throughout the study (Table 7.1, 

P=0.06). Three months after application (November 2013), biochar appeared to increase 
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EOC concentrations at 0-5 cm (P=0.09). NH4
+-N concentration in soil was inconsistently 

affected by biochar at both depths depending on sampling date (BC×D, P≤0.05), which 

was only significant at single sampling dates (Table 7.1). In November 2013, NH4
+-N was 

enhanced in BCTe (BC×W, P≤0.05). While warming had no effect, biochar significantly 

decreased concentrations of NO3
--N at 0-5 cm and 5-15 cm soil depth between November 

2013 and March 2015 (Table 7.1).  
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Crop growth 

As previously reported in Bamminger et al. (2016) for the vegetation period 

2013/2014, warming increased total aboveground biomass of winter rapeseed by 45 %, 

but only in plots without biochar (Fig. S7.3; BC×W, P≤0.05). At the end of the second 

season, total aboveground biomass of spring wheat was higher by 28 % in warmed than in 

ambient temperature soils and 11 % higher in plots with than without biochar. However, 

although the effects of the factors were pronounced, they were not statistically significant 

due to high variation in plant growth within the field experiment. 

 

Greenhouse gas emissions and global warming potential  

Soil warming enhanced CO2 emission rates throughout the study (Fig. 7.1a, P≤0.05) 

and led to an increase of 28 % of total emissions after two years (Fig. 7.1b, P≤0.05). 

Biochar application increased the initial CO2 peak after ploughing in August 2013, 

especially under soil warming (Fig. 7.1a). In the following few weeks, CO2 rates declined 

and showed no clear stimulation by biochar. This immediate CO2 pulse after the 

experimental start in the biochar plots led to a trend of higher cumulative CO2 emissions 

in autumn 2013 (Fig. 7.2a, P=0.07). No significant effect of biochar on total CO2 emissions 

was found after two years (Fig. 7.1b). In a more detailed view, in non-vegetated periods 

(e.g. autumn 2014), CO2 emissions were slightly decreased in biochar plots under ambient 

(-11 %), but not under elevated soil temperature (Fig. 7.2a, BC×W, P=0.053). In contrast, 

during vegetated periods, both soil warming (+41 %) and biochar (+6 %) significantly 

increased CO2 emissions (P≤0.05). 

Similar to CO2, emission rates of N2O were initially enhanced but leveled off rapidly 

and this was most pronounced in biochar-amended soil under warming (Fig. 7.1c). In the 

first month, soil warming and biochar had an interactive effect on N2O emission rates (Fig. 

7.1c), resulting in a biochar-induced decrease of 26 % of cumulative N2O emissions under 

ambient, but 65 % increase under elevated temperature (BC×W, P≤0.05). After two years 

the same pattern was observed for total N2O emissions, although the effect sizes were 

smaller (-8 % at Ta, +33 % at Te) (Fig. 7.1d, BC×W, P≤0.05). During the whole study, 

both soil warming and biochar addition showed no consistent effects on N2O rates, but 

seemed to interact with season (BC×W×S, P=0.056), which could, in addition to the N2O 

pulse at the beginning, be related to N-availability and precipitation events (Fig. 1c). In 
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spring 2014, after N-fertilization of winter rapeseed, soil warming appeared to increase 

cumulative emissions of N2O (P≤0.07) with highest emissions from the BCTe treatment, 

but no significant interaction between biochar and soil warming (Fig. 7.2b). In the summer 

of 2014, daily precipitation was quite high compared to the dry spring period before (Fig. 

S7.1c) and biochar increased cumulative N2O by 79 % (P≤0.01) in comparison to the 

control plots, showing highest N2O emissions from the BCTe treatment (Fig. 7.2b). In the 

dry summer of 2015, at the final growth stage of spring wheat and mainly after N-

fertilization, soil warming led to a decrease in control plots, but enhanced cumulative N2O 

emissions in warmed biochar-amended soil (Fig. 7.2b, BC×W, P≤0.05). During vegetated 

periods in the two-year experiment, warming reduced N2O emissions by 26 % in control 

plots, but increased N2O by 92 % in biochar-amended soil (Fig. 7.2b, BC×W, P≤0.05). 

CH4 rates showed no distinct seasonal fluctuations during the experiment (Fig. 7.1e), 

but soil warming tended to increase total CH4 uptake by 38 % (Fig. 7.1f, P=0.07). Soil 

warming had the highest impact in spring 2014, when cumulative CH4 uptake was 

increased by 51 % and 49 % in control and biochar plots, respectively (P=0.07). Biochar 

tended to increase cumulative CH4 uptake only in summer 2014 by on average 31 % 

(P=0.07), but did not affect total CH4 uptake over the two years (Fig. 7.1f).  
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Fig. 7.1. Greenhouse gas flux rates (left panels) and total emissions (right panels) of CO2 (a+b), 

N2O (c+d) and CH4 (e+f) over two years (mean ± SE). The winter period 2014/2015 was excluded 

due to technical problems with soil heating. Significant results of linear mixed-effects model for 

the effects of soil warming (W) and biochar addition (BC) and their interactions are indicated by 

asterisks (* P≤0.05). Percent values show the size of significant single effects. F1-4 = fertilization 

events. CtrlTa = control soil under ambient soil temperature, CtrlTe = control soil under elevated 

soil temperature, BCTa = soil amended with biochar under ambient soil temperature, BCTe = soil 

amended with biochar under elevated soil temperature.  
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Fig. 7.2. Cumulative greenhouse gas emissions in single seasons as well as during crop growth 

periods (non-vegetated and vegetated) over two years of (a) CO2-C and (b) N2O-N (mean ± SE). 

Significant results of linear mixed-effects model for the effects of soil warming (W), biochar 

addition (BC) and their interactions are indicated by asterisks (* P≤0.05, ** P≤0.01). Percent 

values show the size of significant single effects. CtrlTa = control soil under ambient soil 

temperature, CtrlTe = control soil under elevated soil temperature, BCTa = soil amended with 

biochar under ambient soil temperature, BCTe = soil amended with biochar under elevated soil 

temperature. n.d. = not determined. 
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GWP100 was enhanced by 28 % in warmed soil (P≤0.05) and predominantly 

determined by CO2 emissions, and only to a small extent by N2O and CH4 emissions. 

Biochar had no significant effect on GWP100 (Fig. 7.3). Annual biochar turnover in soil 

was estimated to be approximately 0.3 %, corresponding to a residence time of 369 years. 

Based on our calculations, the amount of sequestered CO2 equivalents in soil by biochar 

application could compensate for the warming-induced enhancement of cumulative GHG 

emissions in a 20-year period. 

 

Fig. 7.3. Global warming potential over a period of 100 years (GWP100) from the sum of total soil 

greenhouse gas emissions of CO2, N2O and CH4 during two years (mean ± SE). Significant results 

of linear mixed-effects model for the effects of soil warming (W), biochar addition (BC) and their 

interactions are indicated by asterisks (* P≤0.05). Percent values show the size of significant single 

effects. CtrlTa = control soil under ambient soil temperature, CtrlTe = control soil under elevated 

soil temperature, BCTa = soil amended with biochar under ambient soil temperature, BCTe = soil 

amended with biochar under elevated soil temperature.  

 

Microbial biomass (Cmic) and metabolic quotient (qCO2) 

Cmic was not significantly affected by soil warming or biochar at either soil depth 

across five sampling dates within two years after biochar application. Only in November 

2013 (0-5 cm), and August 2015 (5-15 cm), biochar and soil warming showed interactive 

effects on Cmic, as warming led to an increase in microbial abundance in controls, but a 

decrease in biochar plots (Table S7.1, BC×W, P≤0.05). 
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Neither soil warming nor biochar consistently influenced qCO2 during the experiment, 

and their effects depended on sampling date (Fig. 7.4, W×D, P≤0.01; BC×D, P≤0.05). In 

November 2013, three months after biochar application and soil ploughing, soil warming 

and biochar increased qCO2 by 88 % (P≤0.01) and 44 % (P≤0.05), respectively (Fig. 7.4). 

In addition, soil warming enhanced qCO2 by 31 % (P≤0.05) and 35 % (P=0.11) in March 

and August 2015, respectively. 

 

 

 

Fig. 7.4. Metabolic efficiency (qCO2) of the soil microbial community at 0-15 cm soil depth at 

four soil sampling dates during the two-year experimental period (mean ± SE). Significant results 

of linear mixed-effects model for the effects of soil warming (W), biochar addition (BC) and their 

interactions are indicated by asterisks (* P≤0.05, ** P≤0.01). Percent values show the size of 

significant single effects. CtrlTa = control soil under ambient soil temperature, CtrlTe = control soil 

under elevated soil temperature, BCTa = soil amended with biochar under ambient soil temperature, 

BCTe = soil amended with biochar under elevated soil temperature. n.d. = not determined. For 

calculation of qCO2 in November 2013 and September 2014, Cmic data were taken from 

Bamminger et al. (2016).  

 

Temperature sensitivity of soil respiration 

Including all observations (‘full model’, n=757, R²=0.49, P≤0.001), soil warming had 

a significant effect (P≤0.05) on the temperature response function during our two-year 

study, although only the γ –intercept, i.e. the magnitude of the temperature response, was 

affected. No interactions between warming treatment and the other model parameters (γ1, 
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γ2) were observed. In addition, biochar had no significant effect on the magnitude of the 

response or temperature sensitivity of Rs. Therefore, best fit regression curves of the single 

treatments were displayed with uniform shape (γ1, γ2 of the full model, see Fig. S7.4b), but 

with individual γ–intercepts, showing differences between Ta and Te plots of the control 

(1.374 vs. 1.600) and biochar (1.434 vs. 1.683) treatments, respectively (Fig. 7.5). In 

addition, the vague relationship between residuals of the full model and the VWC data 

(Fig. S7.4c) indicated that differences in soil moisture only weakly determined the 

temperature response of soil respiration. 

 

 

Fig. 7.5. Regression curve fits of ln Rs (soil respiration) against soil temperature at 2 cm depth 

during the experiment for the single treatments. (a) CtrlTa = control soil under ambient soil 

temperature, (b) CtrlTe = control soil under elevated soil temperature, (c) BCTa = soil amended with 

biochar under ambient soil temperature, and (d) BCTe = soil amended with biochar under elevated 

soil temperature.  

 

 

 

 

CtrlTa CtrlTe 
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7.4 Discussion 

Biochar effects on soil respiration under warming 

Climate change will affect matter cycling in soils, which may cause increases in GHG 

emissions and positive feedback effects to global warming (Bardgett et al., 2008). It has 

been suggested that biochar can sequester C in soil over the long-term (Lorenz & Lal, 

2014) and thus may reduce warming-induced positive feedbacks to the global climate. This 

is the first study investigating the effect of biochar on soil GHG emissions in warmed soil 

in a temperate agricultural system. Our results during a two-year experimental period 

showed that soil warming enhanced total CO2 emissions by 28 %. This suggests a failure 

of microbial adaption to elevated soil temperature even after several years, a finding also 

shown by Schindlbacher et al. (2015) in forest soil, but contrasts with results of several 

other studies in which enhanced soil respiration diminished over time (Melillo et al., 2002; 

Bradford et al., 2008). Biochar did not reduce total CO2 emissions, but also showed no 

significant additional C-mineralization even under warming. This indicates high 

degradation resistance of the biochar, which is in line with other field experiments (e.g. 

Ameloot et al., 2014).  

Although biochar did not influence total CO2 emissions after two years, the temporal 

pattern of soil respiration provides insight how biochar may affect the response of C 

dynamics in soil to warming. Biochar initially stimulated soil respiration especially under 

warming. We suggest this was due primarily to readily available C substrate on the 

surfaces of fresh biochar, which are rapidly consumed by soil microorganisms leading to 

short-time enhanced CO2 emissions (Smith et al., 2010). In November 2013, three months 

after biochar application, soil warming and biochar led to 88 % and 44 % higher metabolic 

quotients (qCO2), respectively, showing the most pronounced increase in the BCTe plots. 

The qCO2 can be used as an indicator of the metabolic efficiency of soil microorganisms 

affected by changes in environmental conditions (Anderson & Domsch, 2010), in this case 

induced by a combination of soil warming and biochar. According to Frey et al. (2013), 

the carbon use efficiency (CUE) of soil microorganisms was reduced with increasing 

temperature, including that of recalcitrant compounds, but this effect was alleviated by 

long-term warming. Relating this to our study, we suggest a less efficient microbial 

community under soil warming and prolonged microbial degradation of biochar in autumn 

2013, three months after its application. The increase in microbial respiration without 

biomass growth in soils treated with biochar points to inefficient microbial utilization of 
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biochar-C. However, the simultaneous application of biochar and plant litter in warmed 

soil could have had an additive effect on the microbial decomposer community, increasing 

fungal abundances and the fungal-to-bacterial ratio in the BCTe treatment in November 

2013 (Bamminger et al., 2016). Fungal species were found to differ in their ability to adapt 

to elevated soil temperature (Malcom et al., 2008), and shifts in soil microbial community 

composition may influence microbial C use efficiency (Bölscher et al., 2016). 

Nevertheless, metabolic quotients were not affected by biochar later in the first or in the 

second year of our experiment. Therefore, biochar may stabilize in soil with time due to 

the immediate mineralization of labile biochar-C and/or by the occlusion of biochar 

particles in soil aggregates as observed after one year (Grunwald et al., unpublished). This 

would explain the negligible effects on soil microorganisms in the longer term.  

Nguyen et al. (2010) and Fang et al. (2014) described enhanced mineralization of 

recalcitrant biochar-C with increasing soil temperature. Stable SOC is generally 

considered to be more sensitive to increasing soil temperature than less stable SOC 

(Conant et al., 2011), but this theory is somewhat controversial (Fang et al., 2014). In the 

present study, we could not distinguish between biochar and native SOC mineralization, 

but we assessed the influence of biochar on the temperature sensitivity of Rs in agricultural 

soil. We found no significant biochar effect on the temperature dependency of soil 

respiration during the two years. This may indicate that the temperature sensitivity of 

biochar-C mineralization was similar to that of SOC, as also shown by (Fang et al., 2014). 

Alternatively, and more likely in our case, biochar was not degraded in amounts great 

enough to have an effect on the temperature sensitivity of soil respiration. In addition, the 

CO2 emission data suggest that biochar did not considerably influence SOC mineralization 

(priming effect) under warming in the investigated arable ecosystem. Taken together, this 

implies that biochar-soil warming interactions may only be important during initial 

degradation of biochar in the first weeks after incorporation into soil, but not in the long 

term. This generally confirms results from a recent two-year incubation experiment by 

Fang et al. (2015), which suggests that BC could be an option to store C in soils under a 

warming climate.  

Interactions between biochar and plants likely also influence soil microbial activity 

and C cycling (Ventura et al., 2015). In the present study we found only minor effects of 

warming and biochar on CO2 emissions in non-vegetated periods, whereas during 

vegetated periods, soil respiration was increased by 41 % and 6 % by warming and 
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biochar, respectively. These results corresponded well to the observed positive effects on 

plant growth and aboveground biomass of winter rapeseed and spring wheat. Hence, we 

assume that warming led also to intensified root growth and biomass as well as exudation 

accompanying enhanced root and microbial respiration (Trumbore, 1997). In addition, 

biochar application was found to be beneficial in terms of improving soil properties and 

increasing crop yields (Biederman & Harpole, 2013). The plant-mediated small increase 

in CO2 emissions from the biochar plots in our study may be therefore explained by slightly 

improved crop growth, and related to increases in root respiration and microbial activity 

in the rhizosphere. In this case, mineralized C in BC plots could be derived in large part 

from newly assimilated CO2 by plants, and only to a lesser extent from older SOC. This 

would underline the potential of biochar for long-term C fixation and SOC protection in 

cultivated soils (Weng et al., 2015) even under a predicted warming climate. However, 

possible interactions between SOC, biochar and plants are poorly understood to date 

(Whitman et al., 2014). 

 

Biochar influence on soil N2O and CH4 fluxes under warming  

After two years, under ambient temperature, biochar decreased total N2O emissions 

very little. This is in contrast to several field studies which have shown that biochar 

reduced N2O emissions from arable soils receiving N inputs by the application of fertilizer 

or litter (e.g. Taghizadeh-Toosi et al., 2011; Felber et al., 2014). The lack of a reducing 

effect of biochar on N2O emissions in this field experiment is even more noteworthy, since 

in an earlier study, under controlled conditions, short-term (37d) N2O emissions from the 

same arable soil were found to be reduced by 42 % after combined application of 600 °C 

Miscanthus biochar and Phacelia litter (Bamminger et al., 2014b). The reduction of N2O 

emissions by biochar has been attributed mainly to suppressed denitrification rates by e.g. 

lower soil bulk density and related higher aeration, enhanced soil pH inaccessibility of C, 

sorption of inorganic N to biochar particles, microbial N-immobilization or due to more 

favorable conditions for complete denitrification (Clough et al., 2013). The last step of 

denitrification (the reduction of N2O to N2) could be promoted by the creation of hotspots 

with optimal conditions for complete denitrification on biochar surfaces with locally 

higher water and N retention as well as enhanced soil pH (Harter et al., 2013; Ameloot et 

al., 2016). In our field experiment, biochar generally altered physico-chemical soil 

properties, although the slight pH increase was transient. In summary, these biochar 
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impacts on soil properties did not result in significant reductions in N2O emissions, which 

compares favorably with two other field studies using high-temperature biochars (Suddick 

& Six, 2013; Verhoeven & Six, 2014).  

In contrast, under soil warming, biochar increased total N2O emissions by 33 % over 

the two year period. Interactive effects of biochar and warming on field-scale N2O 

emissions have not yet been evaluated by others, but may be highly relevant to agricultural 

soils. Soil N2O is produced primarily by denitrification and nitrification processes, which 

can occur simultaneously at different locations in soil, depending on water content and the 

availability of oxygen, mineral N and C sources (Bateman & Baggs, 2005). Especially in 

the BCTe treatment we observed a short-term increase in N2O rates in the first weeks after 

biochar application and soil ploughing, which was analogous to increased CO2 emissions. 

After this initial stimulation, the main or interactive effects of biochar and warming on 

N2O emissions were mainly associated with the combination of N-fertilization and 

precipitation events in dry periods (spring 2014 and summer 2015) and extensive 

precipitation, leading to marked increases in soil moisture and microbial activity (summer 

2014). Our results, increased N2O emissions in warmed biochar plots, may be explained 

by the combination of several mechanisms potentially affecting denitrification/ 

nitrification in soil: (i) sorption of inorganic N (NO3
-, NH4

+) onto biochar surfaces, thus 

preventing N-leaching while maintaining bioavailability in the upper soil layers (Clough 

et al., 2013; Zheng et al., 2013), which could further enhance N-cycling due to soil 

warming (Bai et al., 2013); (ii) stimulated SOM mineralization under warming, providing 

more available C in soil and, at the same time, oxygen depletion creating anaerobic zones 

in soil for denitrification (Butterbach-Bahl et al., 2013); (iii) increased soil moisture with 

biochar, especially during dry periods (Saarnio et al., 2013) and enhanced aeration at the 

same time (Karhu et al., 2011) potentially promoting nitrification (Verhoeven & Six, 

2014); or (iv) shifts in the N-cycling microbial community due to soil warming (Cantarel, 

et al., 2012) and biochar application (Prommer et al., 2014). Another mechanism resulting 

in increased N2O emissions could be improved transport of N2O, produced in deeper soil 

layers, to the atmosphere due to lower bulk density of the silty-loam soil after biochar 

addition. This could have prevented the reduction of N2O to N2 in the topsoil, the assumed 

reason for decreased N2O emissions observed in other studies (e.g. Harter et al., 2013).  

Intensively managed agricultural soils typically have only minimal sink potential for 

methane (Jeffery et al., 2016). Likewise in our agroecosystem, methane fluxes were 
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generally low and showed only small seasonal fluctuations but high variation between 

plots, which likely explains the lack of significant effects of biochar (Castaldi et al., 2011) 

and warming or their interaction on CH4 fluxes. However, soil warming tended to increase 

total CH4 uptake by, on average, 38 % over the two years and this was most pronounced 

during the dry spring period in 2014. Soil drying, enhanced oxygen supply, and increased 

diffusion of CH4 into the soil under warming may explain this effect (Dijkstra et al., 2012). 

Biochar tended to increase CH4 uptake only in summer 2014 when extensive precipitation 

increased soil moisture. Karhu et al. (2011) proposed that biochar could increase water 

holding capacity and air-filled pore space at the same time, which may either reduce CH4 

production and/or increase CH4 oxidation, thus increasing CH4 uptake. Overall, the low 

CH4 fluxes during the two-year experimental period indicate that methane is of minor 

importance for the GHG budget of the investigated agroecosystem. 

 

Biochar C-sequestration vs. enhanced GHG emissions under global warming 

Soil warming increased GWP100 by 28 % over two years (during the 6th and 7th year 

of the warming experiment), supporting predictions of further increased GHG emissions 

under future elevated soil temperatures (Ciais et al., 2013). Although biochar was not 

effective in reducing warming-induced enhanced soil GHG emissions, its application 

could mitigate climate change by long-term C sequestration and increasing SOC stocks in 

arable soils (Hernandez-Soriano et al., 2016). We estimated that the high-temperature 

biochar used in our study is mineralized slowly (about 0.3 % per year) and therefore should 

persist for about 369 years in warmed soil. Based on our calculations, the amount of 

sequestered CO2 equivalents by biochar incorporation into soil may counterbalance the 

increased soil GHG emissions due to warming for two decades. This underscores the value 

of biochar as a tool to offset soil GHG emissions at predicted elevated temperatures in 

temperate arable soils, even though biochar and warming interactively increased N2O 

emissions. However, the climate change mitigation potential of biochar-C sequestration is 

constrained by the degree of its resistance to decomposition, potential positive or negative 

feedbacks on native SOC, and the sustainability of biochar production systems (Wang et 

al., 2016b; Woolf et al., 2016). Clearly, the linkages between biochar stability, soil 

microbial communities, GHG emissions and crop growth in agroecosystems need to be 

further explored in long-term experiments to evaluate biochar as a C sequestration and 

GHG mitigation tool, especially under predicted global warming.  
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7.6 Supplementary material 

 

Fig. S7.1. Effect of soil warming on (a) average daily soil temperature and (b) average daily 

volumetric soil water content in control (Ctrl) and biochar (BC) plots as well as (c) daily 

precipitation amount for the weather station “Hohenheim” during the two-year experimental 

period. Data on soil temperature and VWC during the winter period 2014/2015 were excluded due 

to technical problems with soil heating. Precipitation data was provided by the agricultural 

technology center in Baden-Württemberg, Germany (LTZ Augustenberg). X = soil sampling. Data 

on soil temperature and VWC between August 2013 and September 2014 were taken from 

Bamminger et al. (2016). 
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Fig. S7.2. (a) Average seasonal soil temperature increase by warming and (b) average seasonal 

decrease of volumetric soil water content by warming in control (Ctrl) and biochar (BC) plots. 

Please note that data for the winter period 2014/2015 were removed due to technical problems with 

soil heating.  
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Fig. S7.3. Final aboveground biomass at crop maturity of winter rapeseed and spring wheat 

(mean ± SE). Results of linear mixed-effects model for the effects of soil warming (W), 

biochar addition (BC) and their interactions separately for each crop are shown when 

significant (* P≤0.05). CtrlTa = control soil under ambient soil temperature, CtrlTe = control 

soil under elevated soil temperature, BCTa = soil amended with biochar under ambient soil 

temperature, BCTe = soil amended with biochar under elevated soil temperature. Data on 

aboveground biomass of winter rapeseed were taken from Bamminger et al. (2016). 
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Fig. S7.4. (a) Soil respiration (Rs) as a function of soil temperature across all treatments, (b) ln Rs 

as a function of soil temperature fitted with a log-quadratic model and (c) residuals of the 

regression model used in (b) against volumetric soil water content (VWC). 

(b) 

(c) 
2 

(a) 
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8  General discussion  

8 General discussion 

The objectives of this thesis were to evaluate the biological stability of Miscanthus 

biochar from slow-pyrolysis and its potential for long-term C sequestration and GHG 

mitigation in a temperate agricultural ecosystem under predicted soil warming, which is 

closely related to its influence on soil properties, plant growth and soil microorganisms. 

 

8.1 Soil microbial community influenced by biochar application and 

warming 

In a microcosm study (Chapter 5), biochar from Miscanthus (600 °C, 30 Min) was 

added at a rate of 30 t ha-1 to a temperate agricultural soil and incubated for short time 

(37d) at constant soil temperature (20 °C) in the laboratory, including earthworm and 

Phacelia litter treatments, but excluding living plants. Soil from the ensuing BC-HoCC 

field experiment (Chapter 6 and 7) was used to evaluate biological effects and the 

compatibility of such biochars for field application. In this pre-experiment, it was aimed 

to assess the interactive effects between slow-pyrolysis Miscanthus biochar, soil 

microorganisms and earthworms. Most striking results were that biochar led to short-term 

increased microbial abundances and shifts in the fungal-to-bacterial PLFA ratio as well as 

Gram-positive-to-Gram-negative bacterial ratio in treatments with litter. Without litter, 

biochar increased the Gram-positive-to-Gram-negative bacterial ratio, but did not affect 

single microbial groups (Table 5.2, 5.3; Fig. 5.3). Similarly, in the study of Prayogo et al. 

(2014) biochar affected fungal biomass only when applied to soil together with litter. This 

suggests that fungi as primary decomposers of plant litter may profited most from better 

living conditions created by biochar. The observed shift in the bacterial community toward 

Gram-positive bacteria in both litter treatments were attributed to the recalcitrance of the 

biochar, which generally favors Gram-positive over Gram-negative bacteria (Ameloot et 

al., 2013a; Farrell et al., 2013). Increased microbial biomass in soil amended with biochar 

could also be connected to improvements of physical and chemical soil properties due to 

biochar (Gul et al., 2015). In our microcosm study, changes in microbial abundances and 

community composition with biochar could not be entirely explained by improved soil 

properties. Biochar did not affect soil water content at 60 % WHC compared to the control 

soils as measured by water retention (pF) curves (Fig. S5.3; Table S5.2). In addition, 

biochar had no effect on EOC contents in both litter treatments, thus may not enhance C 
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availability to microorganisms. In the presence of N-rich litter, where highest effects of 

biochar on microbial abundances were detected, biochar did not significantly influence 

pH, but reduced the extractability of NH4
+-N and NO3

--N (Table 5.2, 5.3; Fig. 5.2). 

Therefore, it was proposed that enhanced N immobilization by soil microorganisms could 

be the most likely responsible mechanism for the extended microbial growth in the ‘with 

litter’ treatments. Moreover, the often suggested co-location of substrates and 

microorganisms on biochar surfaces, which leads to more efficient microbial C use 

(Lehmann et al., 2011; Jin, 2010), may also explain our results and further changes in the 

functionality of soil microorganisms (see Chapter 8.2). Without litter, microbial groups 

were positively influenced by biochar × earthworm interactions. Although, biochar 

particles were found in earthworm casts, the earthworms did not incorporate biochar-C in 

relevant amounts and thus had no direct benefit from the presence of biochar in soil (Fig. 

S5.1). This is in concert with several other studies (e.g. Topoliantz & Ponge, 2003). 

However, it was assumed that biochar associated to OM in earthworm-worked soil may 

provide a more advantageous microbial growth habitat as supported by the study of 

Augustenborg et al. (2012). Such interactions between biochar, mesofauna and 

microorganisms were scarcely considered by others when evaluating the biological effects 

of biochar in soil (Ameloot et al., 2013b). 

Information obtained from this microcosm experiment was compared with short-term 

microbial responses at the same biochar addition rate (30 t ha-1) under field conditions. In 

August 2013, a field experiment with another slow-pyrolysis Miscanthus biochar (850 °C, 

30 Min) was established on an already existing climate change experiment (Chapter 6), 

where soil temperature is enhanced by 2.5 °C since 2008 (Poll et al., 2013). The effect of 

biochar and soil warming on microbial abundances and community composition was 

monitored throughout the first year after biochar application under winter rapeseed crop. 

It was hypothesized that the used biochar would be stable against microbial degradation 

and incorporation into microbial biomass even under soil warming.  

Incorporation of biochar-derived C into microbial biomass could not be determined by 

stable isotopes (13C) due to the high variability of the data (Fig. 6.4), which was 

particularly explained by the heterogeneous spatial distribution of biochar particles in field 

soil. However, fungal PLFA abundances and the fungal-to-bacterial ratio showed that 

fungal growth was promoted in biochar-amended soil under warming three months after 

biochar application and that fungi were advantaged over bacteria under these conditions 
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(Fig. 6.3b; Table 6.3). Based on these results, it was proposed that fungi were responsible 

for initial degradation of stable biochar compounds, because some of them are known to 

metabolize stable biochar-C (Ascough et al., 2010; Ameloot et al., 2013b). Such fungal-

driven biochar mineralization at elevated soil temperature may be only short-lived and 

related to the presence and degradation of spring barley litter, as enhanced fungal biomass 

was not observed after seven and twelve months. It is still debated whether the 

mineralization of recalcitrant SOM such as biochar is more sensitive to temperature 

elevation than labile C pools Fang et al. (2014). However, other potential reasons for 

enhanced fungal biomass in soils amended with biochar such as changes of pH or 

alterations of other physico-chemical soil properties (Lehmann et al., 2011) were not 

pronounced in the warmed BC treatment (BCTe) and therefore expected to marginally 

explain the described results.  

Interestingly, after immediate microbial utilization of labile C following biochar 

incorporation, fungal biomass was increased on the short term under laboratory (after 

37 days) and field conditions (after 3 months) in the same soil applied with comparable 

slow-pyrolysis Miscanthus biochars and plant litter. Indeed, the positive effect of biochar 

on fungi in the field was restricted to the warmed plots. Nevertheless, these results may be 

explained by some general mechanisms, which initially favor fungi over bacteria in this 

temperate arable soil applied with biochar and litter: 

(I) Differences between bacteria and fungi in their mobility and colonization of 

biochar cracks and pores (Lehmann et al., 2011; Ascough et al., 2010; Jaafar et 

al., 2014) and the fact that some fungal species can decompose stable biochar-

C (Thies et al., 2015). 

(II) Higher carbon-use-efficiency of fungi compared to bacteria, thus favoring 

fungi after the addition of biochar with high C:N ratio to soil (Ng et al., 2014). 

(III) Fungal dominance in plant litter decomposition, thereby potentially utilizing 

recalcitrant biochar-C by co-metabolism (Hamer et al., 2004). 

(IV) Faster response of bacteria compared to fungi to easily available substrate (Six 

et al., 2006) such as labile biochar-C, with a maximum bacterial growth that 

was not captured by sampling scheme in this thesis. 

In the present thesis, only short-term increases of fungal abundances were observed, 

which may indicate an overall high degradation stability of the investigated Miscanthus 

biochars. If the growth of fungi (especially of mycorrhizae) would be enhanced on longer 
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terms and stimulate crop growth without increasing the mineralization of SOC and 

biochar-C, this would benefit agricultural soils to serve for long-term C sequestration 

(Warnock et al., 2007). The observed microbial community shifts toward fungi in this 

thesis stand in contrast to other studies which revealed relative higher bacterial abundances 

after biochar addition (Jones et al., 2012; Chen et al., 2013). Such bacterial-dominated 

microbial communities may indicate faster C cycling and reduced C sequestration 

potential of biochar (Six et al., 2006; Jones et al., 2012). These results point out that distinct 

biochars in soils with varying physical and chemical properties differ in their impact on 

microbial groups. This might have influence on the effectiveness of biochar to increase C 

stocks in soils. 

Another benefit of biochar field application could be the mitigation of negative effects 

of warming on soil moisture by enhancing water retention in soil, especially in dry periods, 

thereby positively influencing microbial abundances and plant growth. In the short-term 

field study (Chapter 6), it was shown that biochar attenuated soil water loss in the dry 

spring period in 2014 (Figs. 6.1, S6.2b) and the reduction of microbial abundances under 

drought and warming in March 2014 (Fig. 6.3). For example, the decrease in fungal 

biomass was by up to 80 % less pronounced in biochar-amended soil at elevated 

temperature compared to the respective control soil. In addition, biochar field application 

slightly shifted the bacterial community toward Gram-positive bacteria (Table 6.3) which 

was likely induced by the higher moisture sensitivity of Gram-positive compared to Gram-

negative bacteria (Schimel et al., 2007). In another study, the drought tolerance of soil 

microorganisms was similarly enhanced possibly due to better habitat conditions in 

biochar-amended tropical soil (Liang et al., 2014). In addition, some studies also showed 

positive effects of biochar on plant growth under drought conditions (Kammann et al., 

2011; Paneque et al., 2016). In the present thesis, the positive effect of biochar on soil 

moisture regime also improved the early growth of winter rapeseed, but only at ambient 

temperature in spring 2014 (Fig. 6.2a). This could be connected to the greater influence of 

biochar on smaller plants in the ambient plots, whereas plants under warming were bigger 

and may exhibited a more widespread rooting system, which exceeded the soil depth (0-

20 cm) to which biochar was applied. Hence, only limited additional indirect biochar 

effects on the soil microbial community by enhanced plant growth were assumed under 

warming. Like observed for microbial abundances, the observed beneficial effects of 

biochar on crop growth were not long lasting and disappeared during the first year after 

biochar application and were scarce in the second year under spring wheat (Table S7.2; 
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Fig. S7.3). This reflects that positive biochar effects on soil properties, microbial 

abundances and crop growth were limited in the investigated ecosystem as determined in 

other temperate, fertile arable soils (Crane-Droesch et al., 2013; Ameloot et al., 2014), but 

partly highlighted under extreme conditions (e.g. drought). 

 

8.2 Potential of biochar to reduce soil GHG emissions under warming 

Biochar application to soil is thought to mitigate soil GHG emissions (e.g. Case et al., 

2014) and in this thesis, it was aimed to investigate whether biochar could reduce GHG 

emissions from temperate agricultural soil under predicted global warming. In the above 

mentioned laboratory pre-experiment (Chapter 5), the emissions of CO2 and N2O were 

measured during a 34-d period. Under these short-term lab conditions without plants, 

cumulative fluxes of CO2 were significantly reduced by 43 % and 27 % in treatments 

without and with litter, respectively (Fig. 5.1a). Further, biochar led to negative priming 

effects and decreased the mineralization of native SOM by 56 % on average in treatments 

without litter during the second half of the incubation. Such high suppression of soil CO2 

emissions after biochar addition is comparable to other incubation studies (e.g. Ameloot 

et al., 2013a; Bamminger et al., 2014a). The increase of microbial abundances and 

decrease in soil respiration resulted in lower metabolic quotients (qCO2) with biochar 

(Table 5.2), indicating enhanced respiratory efficiency of the soil microbial community. 

This phenomenon was often observed in different soils amended with biochar (Steiner et 

al., 2008a; Jin, 2010; Domene et al., 2014) and is attributed to the close co-location of 

substrates and microorganisms on biochar surfaces (Lehmann et al., 2011). Unfortunately, 

there is no study providing clear evidence for this hypothesis. Moreover, the effect of 

biochar on the metabolic efficiency was only determined in incubations under nearly 

optimal conditions with soil samples derived from laboratory or field experiments, but not 

investigated under soil warming. 

In the field experiment of this thesis, biochar enhanced initial CO2 rates especially 

under warming (Fig. 7.1a). Labile biochar-C pools were likely already consumed before 

November in 2013 as indicated by declining CO2 rates in the first weeks (Fig. 7.1a). 

Metabolic efficiency of the soil microbial community was investigated by relating in-situ 

soil respiration to microbial biomass at 0-15 cm depth. The increase of qCO2 in the BCTe 

treatment after three months in November (Fig. 7.4) suggests a less efficient microbial C 

use and may support the outcome of the second study of this thesis, the potential 
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mineralization of recalcitrant biochar-C under warming mainly by fungi (see Chapters 6 

and 8.1). However, further remarkable changes of microbial abundances, respiration rates 

and qCO2 induced by biochar could not be observed during later stages of the experiment 

(Table S7.1; Figs. 7.1a, 7.4). Additionally, biochar neither did significantly influence total 

CO2 emissions or the temperature sensitivity of soil respiration (Figs. 7.1b, 7.5) after two 

years. Hence, it was argued that a temporal biochar mineralization under soil warming is 

negligible under the aspect of long-term C sequestration. Concluding from this two-year 

study, this means that biochar could be persistent and contribute to C sequestration in soil 

even under predicted elevated soil temperature, thus confirming results from recent 

incubation studies (Fang et al., 2014, 2015). 

Even though the used biochar was considered to be relatively stable against microbial 

mineralization on the short term (Chapter 5 and 6) to medium term (Chapter 7), it has been 

shown that the large reduction of CO2 emissions and the increased microbial efficiency 

observed in the incubation experiment could not be observed in field soil as well. No, or 

only slight effects of biochar on CO2 emissions were also shown for other field 

experiments in agroecosystems (e.g. Castaldi et al., 2011). Potential reasons for the 

differences between laboratory and field experiments may be constant optimal incubation 

conditions vs. fluctuating weather and soil conditions (temperature, moisture), 

homogenized soil vs. soil heterogeneity in field soil, or plant-free microcosms vs. soil-

plant interactions in the field. In non-vegetated periods in the field experiment, biochar 

reduced CO2 emissions by 11 % in ambient plots, but had no effect under soil warming. 

Under vegetation, biochar overall increased CO2 emissions by 6 % (Fig. 7.2a). If enhanced 

CO2 emissions with biochar in cultivated soil originated from higher plant root activity 

and exudation, this would mean that native SOC remained mainly unaffected. Despite the 

fact that biochar just slightly stimulated crop growth and soil respiration in the vegetated 

plots of our field experiment, this highlights that interactions between soil, biochar and 

plants could have impact on microbial activity, C-cycling and C sequestration in 

agricultural soils (Biederman & Harpole, 2013; Whitman et al., 2014). Incubation studies 

without plants are therefore limited in predicting potential effects of biochar on C and N 

cycling in cultivated field soils (Weng et al., 2015). 

N2O emissions were only significantly reduced by biochar in the treatments with litter 

(by 42 %) in the incubation experiment, when decreased mineral N and enhanced 

microbial abundances were observed (Chapters 5 and 8.1; Figs. 5.1b, 5.2 and 5.3). Several 
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laboratory studies confirm the high suppression of N2O emission from biochar-amended 

soil (Ameloot et al., 2013a; Harter et al., 2013). Most likely explanations for the reduced 

N2O emissions in the microcosm study (Chapter 5) could be the adsorption of nitrate and 

ammonium on biochar sites as well as enhanced microbial N immobilization which could 

have decreased the availability of N for denitrification and nitrification. Additional factors 

such as C availability, soil pH or moisture (Clough et al., 2013) were rather marginally 

affected (Tables 5.2, 5.3; Fig. S5.3) and not considered to be major responsible for the 

observed results. Alternatively, biochar has been shown to foster the growth and activity 

of N2O-reducing bacteria containing the nosZ gene, promoting complete denitrification 

and the production of N2 (Harter et al., 2013, 2016). It cannot be excluded that N2O was 

also further reduced and emitted from soil via N2 during the incubation of the first study 

of this thesis. However, evidence for such mechanistic explanation for reductions in N2O 

emissions is still lacking from field experiments (Ameloot et al., 2016).   

In the BC-HoCC experiment, we found that biochar decreased cumulative N2O 

emissions by 26 % at ambient soil temperature in the first month in non-vegetated plots 

when no N-fertilizer was added. This short-term reduction of N2O is smaller than observed 

in the laboratory study (Chapter 5). This can likely be explained by the constant and 

favorable soil water conditions for N2O production as well as the addition of N-rich litter 

in the microcosm experiment, rather enabling the reduction of N2O emissions by biochar. 

After two years, the mitigating effect of field-applied biochar on total N2O emissions at 

ambient temperature was rather low (8 %). No relevant effects were shown in other field 

studies using high-temperature biochars (e.g. Verhoeven & Six, 2014) as in our field 

experiment. The lack of prolonged reduction of field N2O emissions due to biochar may 

be related to biochar ageing and changes of its impact on soil pH, soil aggregation, water 

holding capacity and nutrient retention (Spokas, 2013; Heitkötter & Marschner, 2015). In 

fact, in the present field experiment the biochar-induced slight increase of soil pH 

disappeared during two years (Table 7.1), but increased soil moisture and nutrient retention 

(derived from extractable mineral N) as well as reduced bulk density in soil applied with 

biochar were still detectable. Other factors may also weaken the mitigating effect by 

biochar such as soil-biochar-plant interactions and soil disturbances through changes of 

weather and soil conditions (heavy rainfall, soil temperature and moisture, drying-

rewetting cycles) as well as land management (ploughing and fertilization). However, it is 

questionable and only scarce evidence exists that biochar has the potential to effectively 

mitigate N2O emissions from agricultural soils on longer terms (Hagemann et al., 2016). 
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So far, it is also unknown how this will be at elevated soil temperature in the future. 

Biochar raised cumulative N2O fluxes under warming in the first months and total N2O 

emissions after two years by 33 % (Figs. 7.1d, 7.2b). These results imply that biochar 

addition to fertilized agricultural soils could be a serious problem with respect to N2O 

emissions under predicted global warming scenarios. The interactive effect of biochar and 

warming on N2O was mainly driven by precipitation events, soil moisture fluctuations and 

fertilizer additions. Biochar × warming interactions seem to stimulate soil microorganisms 

involved in N-cycling by the aforementioned alterations of several soil properties with 

biochar (e.g. Atkinson et al., 2010) and accelerated N cycling in warmed soil (Butterbach-

Bahl et al., 2013). The combination of these effects might also have impact on the 

composition of N-cycling microbial communities. Moreover, competition between 

microorganisms and plants for available N in biochar-applied soil could have also 

influenced N2O emissions (Saarnio et al., 2013), but this was not investigated in detail. 

More research is definitely needed to identify the mechanisms involved in the impact of 

biochar on N-cycling microbial communities, plants and N2O emissions under current and 

predicted climate conditions.  

The effect of biochar on methane emissions from soil was only evaluated on the field 

scale. Agricultural soils are mostly small sinks or sources for CH4 and could be also 

influenced by biochar amendment (Jeffery et al., 2016). Effects of biochar on methane 

fluxes are expected to be derived from increased water and nutrient retention, enhanced 

aeration, changes of soil pH or adsorption of C and N (Feng et al., 2012). Our agricultural 

soil served as a small sink for CH4 during the two-year experimental period, but was only 

scarcely influenced by biochar addition, while warming tended to increase total CH4 

uptake by 38 % (Figs. 7.1e,f). The warming-induced increase of CH4 uptake may be linked 

to enhanced activity of methane oxidizers in soil and soil drying respective higher aeration 

as well leading to increased diffusion of methane from the atmosphere into the soil (Smith 

et al., 2003). It was concluded that methane fluxes were mostly too low to be affected by 

biochar amendment in the present agricultural ecosystem. At least, biochar did not increase 

CH4 emissions, which is another positive issue with respect to the C sequestration potential 

of biochar in the investigated arable soil. 

The global warming potential of soil GHG emissions over a period 100 years (GWP100) 

was enhanced by 28 % by soil warming, but was not affected by biochar (Fig. 7.3). Hence, 

even after seven years of warming, especially microbial C cycling was still enhanced under 
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elevated soil temperature suggesting a lack of thermal adaption and/or no limiting effect 

of substrate depletion (Schindlbacher et al., 2015). In contrast to Case et al. (2014), biochar 

could not reduce the global warming potential of soil GHG in the present field experiment. 

However, atmospheric CO2 fixed in plant biomass can be converted to less biodegradable 

biochar via pyrolysis and subsequently stored in soil for long time (Lorenz & Lal, 2014). 

For the present experiment, it was estimated that the sequestration of highly stable biochar-

C into arable soil could offset the amount of warming-induced GHG emissions of two 

decades.  
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9 Final conclusions and perspectives 

Biochar has gained increasing attention under the aspect of climate change due to its 

potential long-term stability in soil and suggested positive effects on soil properties, plant 

growth, microbial abundances, metabolic efficiency and soil GHG mitigation. To date, 

there is a scarcity of knowledge about such biochar effects in soil under predicted global 

warming. This thesis helps to better understand how biochar acts in soil and provides novel 

knowledge about combined effects of biochar application and soil warming on abiotic and 

biotic soil properties, crop growth and GHG emissions on the field scale.  

On the short term, it could be shown that biochar increased fungal abundances and 

induced soil microbial community shifts toward fungi in the presence of plant litter both 

in the laboratory and in warmed plots in the field experiment. As bacteria are rather known 

to quickly respond to labile C supply, this may be a hint for the initial degradation of 

recalcitrant biochar-C by fungal species. Under controlled conditions, however, biochar 

simultaneously reduced the cumulative emissions of CO2 and N2O, the mineralization of 

SOM as well as qCO2 rather suggesting the potential for GHG mitigation and enhanced 

microbial efficiency. In addition, the observed interactions between biochar and 

earthworms on microbial abundances indicate that biochar could increase overall soil 

fertility of temperate arable soils. In the soil warming field experiment, biochar was shown 

to mitigate seasonal effects of climate change on soil moisture, microbial abundances and 

plant growth in the first year and thus could sustain the fertility of agricultural soils in the 

future. Nevertheless, in the investigated agroecosystem, biochar had limited effects on 

final aboveground biomasses of winter rapeseed and spring wheat during two vegetation 

periods. After two years, total CO2 emissions, the temperature sensitivity of soil respiration 

and qCO2 remained mainly unaffected by biochar. These results indicate high stability of 

the biochar and support the concept of long-term C sequestration in temperate agricultural 

soils by biochar amendment even under future soil warming. However, this thesis showed, 

for the first time, that biochar amendment to warmed soil could be a serious problem with 

respect to N2O emissions from soil. CH4 uptake was not significantly influenced by 

biochar or soil warming and less important in the investigated agroecosystem. Finally, the 

incorporation of stable Miscanthus biochar to soil was estimated to counterbalance the 

expected warming-induced higher GHG emissions of two decades. Such climate change 

mitigation could be the minimum benefit of biochar application to fertile temperate 
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agricultural soils, even when further proposed positive effects on soil properties, 

microorganisms and crop growth are non-existent or short-lived. 

The present thesis provides a basis for further research on biochar as C sequestration 

tool in arable soils to face climate warming and related implications on plant growth, soil 

microorganisms and GHG emissions. However, impacts on different soil properties after 

biochar application need to be further studied on longer terms in field experiments to 

disentangle the roles of biochar, warming, soil microorganisms and plants and their 

interactions in affecting soil C sequestration and GHG emissions under global change. 

Biochar research was yet not systematic and too widespread, spanning over dozen of 

feedstocks, production techniques and application rates making it difficult to compare 

results. In addition, many studies are still lacking to adequately describe the physical and 

chemical properties of biochars that were used in experiments on biological effects and 

mitigation of GHG emissions in soil. It is essential to characterize biochar for field 

application to get a more comprehensive understanding of possible interactions with soil 

and its organisms. As biochar is once added to soil, it cannot be easily removed in case of 

adverse effects. This has to be considered when discussing about biochar as soil 

amendment and C sequestration tool.  

There are some methodological issues associated to extraction-based analyses of 

microbial abundances such as phospholipid fatty acid analysis (PLFA), chloroform-

fumigation-extraction (CFE) or DNA extraction from soils amended with biochar. Due to 

its large surface area, functional groups and high adsorption capacity, biochar may adsorb 

organic C which could lead to underestimation of microbial abundances (Lehmann et al., 

2011), but also to overestimation by stabilization of dead microbial biomass on biochar. 

Therefore, some authors suggested to determine the extraction efficiency of microbial C, 

PLFAs or DNA to overcome these methodological problems (Liang et al., 2010; 

Durenkamp et al., 2010; Gomez et al., 2014; Hale & Crowley, 2015). For example, Liang 

et al. (2010) added 13C enriched microbial culture to soil and assessed the recovery rate of 

microbial biomass by CFE. This approach would be hardly possible in our experiments 

where 13C-labeled biochars were applied to soil, thus making source partitioning difficult. 

In this thesis, it was assumed that the interference of biochar with the used extraction 

methods is rather negligible as texture of the investigated soil (silty-loam) suggests that 

clay minerals may act as sorption sites as well (Gomez et al., 2014). Surely, adsorption of 

microbial-derived C onto biochar surfaces cannot be completely excluded.  
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This thesis followed the approach to trace the fate of biochar-C into different C pools 

such as CO2, earthworm and microbial biomasses by the use of naturally labeled 

Miscanthus biochar and the application of the stable isotope technique (13C). 

Unfortunately, quantification of biochar-derived C in the different compartments (CO2 and 

Cmic) was accompanied by high variability and uncertainty in the field experiment. This 

was mainly explained by the heterogeneity of spatial distribution of biochar in the soil 

profile. In general, biochar can be applied to soil in different forms such as large-sized 

particles, milled, co-composted or together with liquid manures or fertilizers and can be 

incorporated, top-dressed or added by banding (Blackwell, 2010). In the field experiment, 

we followed a more practical approach and added unsieved, heterogeneous biochar to our 

arable soil and incorporated it into 0-20 cm depth. A compromise has to be made in future 

studies to allow investigation into biochar mechanisms in soil while maintaining realistic 

environmental conditions and practicability for farmers. 
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