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CHAPTER 1 
Introduction 

 Problem description 

The progress in agriculture can be indicated by the increase of productivity per worker involved. In 

advanced countries, the percentage of people working in agriculture dropped to 2.5%, compared to 

75% during the late 1950s (Federico 2005). In Germany, the percentage dropped at the same time 

from 22.1% to 1.5% (Bundesamt 2015). This development was also described by Johnson (1997), 

who even expressed the prosperity of nations with the number of people working in agriculture. 

However, the world is changing and farming as an important production sector of a national economy 

has to adapt, to guarantee food security in future (Martin et al. 2013). New challenges for agriculture 

are ahead, like providing food for an increased world population (Gerland et al. 2014), mitigating 

climate change effects (Rosenzweig et al. 2014), securing water supply (Elliott et al. 2014), defeating 

soil erosion (Knijff et al. 2000) and encountering the wish of consumers for high-quality food and 

organic farming products (Reganold and Wachter 2016).  

One part of the agricultural success story of the last century was due to mechanisation (Federico 

2005). In the last decades, the trend went from small to big agricultural machines to increase 

productivity. The aim was to handle larger areas in less time with fewer people (Blackmore et al. 

2006; Johnson 1997). This development made small machines impractical, as the entire farming 

process was optimized for large machines (King 2017). However, the size of the machines cannot 

increase forever, as they cause soil compactions, have to be transported to the fields, fit on public 

roads and have to have good fatigue live resistance (Paraforos et al. 2016). In future, new ways have 

to be found to improve agricultural productivity by using the advances of modern sensor technology 

and automation. Autonomous robots together with new sensor and computer technologies could lead 

to the next agricultural revolution and to improvements in food production (Bloem et al. 2014; King 

2017).  

In the last decades, the developments of precision and smart farming tried to deal with spatial 

variability on fields by variable rate applications (Stafford 2000). These technologies enabled a 

reduction of the farm management area down to a sub-field level. The next logical step would be to 

realize individual plant care with the help of sensor guidance (Dzinaj et al. 1998; Pedersen et al. 2006; 

Weiss and Biber 2011). Individual plant treatment could be realized by sensor guided implements or 
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with autonomous robots (Lee et al. 1999; Strothmann et al. 2017). If there are autonomous working 

robots, there will be no need for big and heavy machines, as they could work in swarms for 24 hours 

a day (Pedersen et al. 2006). These small, autonomous, in collaboration working machines, could be 

a solution for increasing productivity and food quality in future and would cause less soil compaction 

on the fields (Vougioukas 2012). With robotics, it could be possible to cultivate techniques back to 

agriculture which are right now discarded, because of unproductivity or high labour costs (van 

Ittersum and Rabbinge 1997). Even a collaboration between humans and machines could be 

imaginable (Cheein et al. 2015). Considering the aspects of food security, climate change and 

sustainable land management, there are many options for improvements, like organic fertilization, 

mechanical weeding, precision spraying or the goal of minimum soil disturbance (Branca et al. 2013). 

As the wealth of countries in Europe develops, it is more challenging for farmers to find workers for 

low-paid jobs like fruit pickers. Therefore, future has to deal with the automation of these tasks to 

keep agriculture in developed countries competitive.  

The biggest challenge towards fully autonomous vehicles in agriculture is the high diversity in 

different outdoor environments. There are many tasks in agriculture that until now cannot be 

automated without adapting the environment to the behaviour of the robot, such as fruit picking, 

selective weeding or selective harvesting (Back et al. 2014). While robots are performing well in 

indoor environments, they are mainly unable to cope with the high diversity and uncertainty of our 

world (Shalal et al. 2013). Especially in outdoor environments, the performance of mobile robots is 

still far away from robust and reliable use (Back et al. 2014). One factor for this performance 

discrepancy in known environments, compared to unstructured and dynamic worlds, is the missing 

of context awareness (Bechar and Vigneault 2016a).  

For sufficient performance, robots need to know where they are, what is around them and what are 

the objects of interests in the area (Brooks 1991). This could be also described with self-awareness 

and context awareness (Gorbenko et al. 2011, 2012; Lu 2014). Blackmore et al. (2006) describe self-

awareness as the situation where a machine knows about its own processes and contexts. Robots or 

machines working in a known and static environment do not need to adapt, as long as the model for 

machine and environment is correct (Brooks 1991). The precision and repeatability of robots are 

supporting the robustness of static processes. However, if the environment and the system are 

changing in an unpredictable way, it is necessary to adapt the robot behaviour in a correct way to new 

inputs. The system must perceive new unknown situations in order to create knowledge from the 

given context (Brooks 1990). Processes and contexts should be combined in an intelligent system to 

perform robust and reasonable decisions (Brooks 1986).  Bechar and Vigneault (2016) divide the 
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complexity of robotic domains into four different groups depending on the environment and the 

objects to handle (Table 1).  

 
Environment 

Structured Unstructured 

Objects 
Structured Industrial domain 

Military, space, underwater, mining 

domains 

Unstructured Medical domain Agricultural domain 

Table 1: Description of the different domains in robotic disciplines (Bechar and Vigneault 2016b). 

The uniqueness of agricultural robotics is the necessity to deal with unstructured objects in an 

unstructured environment. Therefore, we need a reliable sensor perception and context awareness for 

robots in the agricultural domain.  

 Sensor perception and knowledge creation 

Perception is the first step to reach the goal of an autonomous system with reasonable self-awareness. 

With perception, machines can learn about their environment and the surrounding objects. When 

there is not a structured environment like in the industrial sector, perception is the most important 

part of reaching context awareness with autonomous machines. The more unstructured, the more 

knowledge is required for detection because more uncertainty disrupts the process (Bajcsy 1988).  

Traditionally automation was using one sensor for controlling one actuator or function, which is not 

useful for an advanced robotic system. It is more convenient to use an information platform, gathering 

the sensor data available in a local cloud (Brooks 1986; Quigley et al. 2009). Brooks (1986) 

recommended this kind of architecture, as data from different sensors could be fused to different 

behaviour based tasks. This enables to create more robust, more complex and more intelligent 

systems, as different available sensors could confirm the gathered information. In addition, a 

malfunction of one sensor does not mean that the task could not be fulfilled. Other sensors could close 

the gap and bring in the necessary knowledge for the process (Brooks 1986; Dzinaj et al. 1998; Fender 

et al. 2006).  

Before relevant knowledge could be created out of perception, it is necessary to create a sensor able 

to transform attributes into electrical signals. A smart sensor would be able to convert this data to 

usable information. Used in the right context of an intelligent system, information could be 

transformed into knowledge, which is the basis for a decision. The knowledge gained by an intelligent 

system can differ between each information created and the context. In addition, the complexity of 

the decision-making can have high differences. As long as the assumed models and the sensor system 
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are correct, the created information could be converted to knowledge, which can be the reason for a 

decision of e.g. a mobile autonomous system (Griepentrog 2017) (Figure 1). 

 

Figure 1: Relation between an attribute and the decision-making of an intelligent system  (Griepentrog 

2017). 

The decision-making of an autonomous robot could be as follows: The robot system wants to know 

where it is. For the definition of the actual position, a Global Navigation Satellite System (GNSS) 

could be used. The sensor measures the signals sent by satellites and creates data. The information 

(position) is created out of the precise knowledge of the position of the satellites (orbits) and the time 

difference between the received sensor signals by trilateration. Together with the context, like the 

modelling of the earth and precise maps, a decision could be made where the robot should go next. 

The position of an autonomous system could be gained by an absolute or relative coordinate system. 

An absolute coordinate system defines the position in a fixed frame of reference, a relative system 

could take the coordinates relative to e.g. a moving vehicle (Griepentrog et al. 2006a). As long as the 

context fits with the known model (e.g. map or crop line), the results are trustable. This is sufficient 

for automated steering or navigation on agricultural fields, as there are static field borders and the 

crop rows and patterns are not changing after seeding (Griepentrog et al. 2006b). However, maps and 

models have to be created beforehand, what makes this technique uninteresting for direct environment 

interaction under changing and unknown conditions. The decision-making is based on static 
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information, not able to adjust to an always-changing world. The question is how we could connect 

models with the changing of the environment and how to use this information. 

One way to adapt to changes in the environment could be a Wireless Sensor Network, sending 

information about the surrounding of one location. However, these sensors are generally fixed to one 

place, just able to create information at the actual position where they were mounted.  

A different way is the use of tactile or visual sensors, mounted at a mobile robot, to get online 

information about the environment. Here the robot could lead the sensors to the position of interest 

to create the data. For good reference, a precise position system could help to set the information into 

the right context. This requires a robust object detection, what is dependent on a robust software 

classification. 

Standard robot navigation does not distinguish between different objects. Out of the context (sensor 

attachment), it just gets decided if there is an obstacle or not (Barawid et al. 2007). Crop row detection 

is a basic function in agriculture for automating robot systems or to create driver assistant systems 

(Hague et al. 1997; S. Hiremath et al. 2014; G. Jiang et al. 2010a). Autonomous navigation could be 

performed like this, as long as the environment is controllable and could be modelled. However, this 

is not sufficient when objects are changing, or the behaviour of the robot have to be adjusted to the 

behaviour of the objects in front. This is a well-known problem in the research area of human-robot 

interaction (Gorbenko et al. 2012; Kruse et al. 2013; Luber et al. 2012).  

 The uncertainty of robot and sensory perception in agriculture 

In outdoor robotics, many parameters could affect the result of sensory perception and the resulting 

decision made, like sunlight, uneven terrain or changing weather conditions (Vázquez-Arellano et al. 

2016). However, as long as the accuracy of the sensor and the correct context are known, errors could 

be detected and analysed by an intelligent system. For a smart planning and task execution of a robot, 

the interaction with the environment is necessary (Xu and Van Brussel 1997). On a field, the objects 

are changing as plants are growing and even the surroundings like weather and soil conditions can 

change (Bechar and Vigneault 2016b). This makes it challenging to program algorithms, able to 

perform under all possible circumstances. The challenges differ strongly between the crop, the season 

and side specific parameters like the soil composition. Therefore, to navigate in the winter season in 

an orchard with cleanly defined borders is easier than to run a machine autonomously without 

calibrating in crop rows in different growth stages. Especially the change of appearance of plants 

makes it hard for localizing the same object with sensors at different growth periods. 

Classical object recognition algorithms are challenged by the diversity of plants during growth stages 

and their structure (Bechar and Vigneault 2016b). One advantage of agriculture is the semi-structured 
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environment. This could help to find a better way for classification of plants, as they are planted in 

ordered structures. This could help to reach a higher percentage of robot autonomy.  

 Levels of robot autonomy  

Autonomy could be defined by the percentage of human interaction required. A fully autonomous 

system would be a machine, with no human interaction or goal settings. Bechar and Vigneault (2016b) 

appoint to the Pareto principle for robot autonomy on agricultural fields. They claim that 80% of tasks 

are easy to automate, but the remaining 20% are hard to achieve (Stentz et al. 2002). The farmer is 

an expert in his field, so why should we aim to replace him and do not use his expertise? We could 

try to adapt the knowledge of the farmer to the machine by supervised learning. Therefore, it could 

be easier to gain a useful level of autonomy with a commercial use. 

The advantages of human-machine (or robot) interaction are huge. The robots could learn a task from 

a worker and do the task as long as necessary as robots do not need breaks (Anzai 1993; Cheein et al. 

2015). The lacking part about modern robots is still the same like three decades ago (Brooks 1990). 

They are still a long way from making reasonable and robust decisions in fast-changing environments, 

which is also reflected in the performance of harvesting robots of the last three decades (Back et al. 

2014). Until this state is not improved, the goals have to be defined by humans, assisted by machines. 

However, with the actual state of the art of robotic performance and artificial intelligence, it is quite 

questionable, if the results of autonomous interacting robots would be better than when a human 

operator decides the goals.  

One of the most interesting parts for automation in agriculture is navigation (Stentz et al. 2002). In a 

deterministic system, the path has to be created in all details by a user to create a point-to-point 

navigation. The details of the work plan have to be created beforehand, so these systems have a small 

percentage of autonomy (Griepentrog et al. 2006a). If the planning and the environment do not fit, 

the system will fail. A reactive system, able to react in real-time to environmental changes, would be 

much more robust. The combination of both variants in hybrid systems seems necessary to enable 

robust autonomous navigation.  

For high levels of autonomy, machines could use special architectures to deal with the differences in 

the environment. Strube (1998) described a three-layer architecture for action control including 

physiological (reflexes), associative (stimulus-response) and deliberative regulation (goal 

management). The first layer responses (the reflexes) have to be as fast as possible, but there is more 

time for associative layer decisions. The last layer, the deliberative regulation, is in general not time 

critical, as global goal planning does not have to be changed in real time when the other two layers 

enable the system to deal with local uncertainties.  
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Another way for robot control under different circumstances could be to define different programmes, 

which are activating or changing parameters if they are needed. When the context is known, it is much 

easier to adapt algorithms to work robustly. One practical example is the so-called “mode changer”, 

defining different operational tasks for the programming, like one program for line following and one 

for headland turning (Griepentrog et al. 2006a; S. Vougioukas et al. 2004). This allows a system to 

be more flexible and user-friendly, which would be the first way to get semi-autonomous machines 

up and running. 

 Aim and objectives 

This thesis aims at increasing context awareness for robots in agriculture through different approaches 

of environmental perceptions. Therefore, different strategies to increase context awareness with 

perception are addressed and applied to mobile robots in agriculture: 

 Enable objects to communicate with the robot  

 Control the environment to detect unstructured objects 

 Model changes to predict algorithm behaviour 

 Detect objects before interacting with them 

 Use algorithms which are not affected by changes in the morphology or environmental 

parameters 

These points lead to the five objectives of the thesis: 

1. Set up an application for static local sensor communication with a mobile vehicle 

2. Use sonar sensors to detect unstructured objects in a controlled environment  

3. Find a way to describe the influence of growth stage on algorithm outcomes  

4. Use the gained sensor information to detect single plants  

5. Improve the robustness of algorithms under noisy condition 

 Appended papers 

The dissertation is based on the following five papers: 

A. Reiser, D., Paraforos, D.S., Khan, M.T., Griepentrog, H.W., Vázquez Arellano, M., (2017). 

Autonomous field navigation, data acquisition and node location in wireless sensor networks. 

Precision Agriculture, 18 (3), 279-292. doi:10.1007/s11119-016-9477-2. 

B. Reiser, D., Martín-López, J., Memic, E., Vázquez-Arellano, M., Brandner, S., Griepentrog, 

H. W., (2017). 3D Imaging with a Sonar Sensor and an Automated 3-Axes Frame for Selective 



 

Chapter 1  Introduction 

 

- 8 - 

Spraying in Controlled Conditions. Journal of Imaging, 3(1):9. doi:10.3390/ 

jimaging3010009. 

C. Reiser, D., Miguel, G., Arellano, M.V., Griepentrog, H.W., Paraforos, D.S., (2016). Crop row 

detection in maize for developing navigation algorithms under changing plant growth stages. 

In: Advances in Intelligent Systems and Computing. doi:10.1007/978-3-319-27146-0_29. 

D. Reiser, D., Arellano, M.V., Izard, M.G., Griepentrog, H.W., Paraforos, D.S., (2018). Iterative 

Individual Plant Clustering in Maize with Assembled 2D LiDAR Data. Computers in 

Industry. doi:10.1016/j.compind.2018.03.023. 

E. Reiser, D., Vázquez-Arellano, M., Izard, M.G., Paraforos, D.S., Sharipov, G., Griepentrog, 

H.W., (2017). Clustering of Laser Scanner Perception Points of Maize Plants, In: Advances 

in Animal Biosciences: Precision Agriculture (ECPA) 2017,8:2. doi:10.1017/ 

S20404700111X. 

To show how perception and localisation could be done with machine-to-machine sensor 

communication, Paper A introduces a method for the data acquisition and localization in wireless 

sensor networks and shows how this could be used for precision agriculture.  

Paper B focused on the detection and perception of objects in 3D point cloud representations, which 

could be gained with different sensor types and examining the possibility of sonar sensors for 

selective spraying in a controlled environment.  

The next Paper C points on the experiment planning for describing plant growth changes in maize 

and how this is affecting the outcome of algorithm results. 

The gained data from different growth stages is used in Paper D to create 3D point clouds with a 2D 

LiDAR scanner and to use this point clouds for single plant detection. 

The final Paper E introduces an algorithm for separating and clustering point clouds with the help of 

a previous known plant position. This method is particularly insensitive to noisy conditions.  
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Abstract 

To overcome the limited transmission range of spatially separated nodes of a wireless sensor network 

(WSN), a small 4-wheel autonomous robot assembled the data from nodes distributed in a vineyard. 

First, the robot followed a predefined way-point route between the grapevine rows, in order to 

evaluate the sensor node locations by their received signal strength indication (RSSI). Then, the 

recorded and geo-referenced RSSI data were analysed and mapped. By using the evaluated node 

positions, an optimised second route was generated. While navigating, a laser scanner was used for 

obstacle detection and avoidance. Path planning with known positions of the nodes reduced the 

driving time by 15 times compared with the first run, because the hybrid control system used was 

capable of navigating within the plantation even perpendicular to the row structures. For locating the 

nodes, results based on trilateration were compared with the values of an attached differential global 

navigation satellite system (DGNSS). The results showed that it is possible to locate and geo-

reference the sensor nodes with a robot, even without any prior knowledge about their absolute 

position. The best achieved location showed a deviation with DGNSS of 1.2 m and with RSSI 

trilateration of 0.6 m compared to the actual position. 

 

Keywords: Spatial RSSI variation, WSN, hybrid control, Vineyard navigation, Trilateration 

                                                 
1 The publication of Chapter 2 was published with consent of the Springer International Publishing. The original 

publication was in: Precision Agriculture (2017), 18 (3), 279-292. It can be found under the following link: 
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 Introduction 

Today’s precision farming is dependent on reliable information about the production process and its 

environmental and physico-chemical parameters. Wireless sensor networks (WSN) in connection 

with sensors can provide a wide variety of ambient conditions such as canopy, temperature and soil 

moisture. Especially the low-cost and low-power consumption makes WSN useful for tracking and 

monitoring in diverse areas (Yick et al. 2008). Typical applications for sensor networks are 

environmental monitoring, precision agriculture, machine and process control, building and facility 

automation as well as traceability systems (Wang et al. 2006). 

In precision farming, many of these applications need to cover large areas with geo-referenced data 

sets (Camilli et al. 2007). However, as long as the sensor nodes and long-lasting batteries for the 

devices are still expensive, it is important to maintain cost and power consumption as low as possible 

(Anisi et al. 2015).  

The geo-referencing of the nodes could be done manually, or by analysing the received signals to 

autonomously locate the nodes. The principles for locating the nodes autonomously, vary from 

trilateration, triangulation and scene matching (Elnahrawy et al. 2004; Papamanthou et al. 2008). 

However, non-line-of-sight conditions between the sensor nodes impose errors on the distance 

estimation (Alsindi et al. 2009). Elnahrawy et al. (2004) investigated the limits of locating nodes 

using signal strength in a static network and expected a median error of roughly 3 m in indoor 

environments. These results match with other researches using distance-based self-location of the 

sensor nodes in a WSN with RSSI values in different environments (Alippi & Vanini, 2006; Wang et 

al., 2011).   

In agricultural areas with a high density of trees and bushes, WSN signals can be affected by several 

error sources, which makes autonomous node location and data transmission a challenging task. 

When the network settings and node positions are not well formed, signal-fading and attenuation 

losses could influence the performance and cause data loss (Jakes 1974). Therefore, it is important to 

keep the transmission range short, as the data loss rate can be decreased with the reduction of 

perturbations and radio interference (Bhadauria et al. 2011). Additionally, there is always a balancing 

between reliable communication among nodes and the need for spatial sampling, as well as keeping 

the costs acceptable (Vougioukas et al. 2013). Especially for large areas, proper planning is necessary 

for keeping the whole area under observation (López et al. 2011). Even in high density WSN, 

connectivity can suffer in some areas (Vecchio and López-Valcarce 2014). However, the spatial 

density of WSN-nodes is low due to the investment and set up costs, or because of the need to capture 

site-specific heterogeneity.  
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The task to collect data from all WSN nodes within a plantation or a field could be performed by an 

autonomous platform. The robot could be used as a mobile receiver to overcome the transmission 

gaps within a WSN and attenuation and fading could also be minimized. This was investigated by 

Bhadauria et al. (2011) who performed data acquisition of spatially dispersed wireless devices, but 

with previously known sensor node positions. Sichitiu and Ramadurai (2004) presented a beacon-

based location technique for sensor nodes, based on a mobile device, that was aware of its own 

position. Caballero et al. (2008) used a mobile robot to calibrate the WSN positions and analysed the 

received signal strength indication (RSSI) values for the node location. However, the authors 

evaluated the results in open fields with line-of-sight between the nodes, which makes it hard to 

compare with real agricultural environments. 

Considering the economic factor, Vougioukas et al. (2013) assumed that the additional costs of a 

WSN can be better justified for high-value crops, e.g. in orchards and vineyards, where the use of a 

robotic system is recommended. The robot should be as small as possible, because it fits better to the 

plantation structures than conventional big machinery (Griepentrog et al. 2013).  

One application could be that the sensor nodes are placed by the farmer just at the points of 

interest and the robot takes care of data acquisition. As the robot would be able to drive close to the 

sensor nodes, transmission costs and data loss rate of the nodes could be minimized. If the 

autonomous system could geo-reference and map the transmitted sensor data, the analysis could be 

done automatically. Also network installation time could be minimised, as manual geo-referencing 

would not be necessary. Beside mapping the values, the node location could help to shorten the 

driving time of the robot, which increases the working radius of an autonomous machine. 

The objective of this work was to evaluate the use of a robot for data acquisition and data location for 

spatially separated WSN in agricultural environments. An autonomous data acquisition system based 

on a small field robot should collect data from distributed sensor nodes within a vineyard. 

Furthermore, RSSI values of all wireless transmitter nodes should be investigated, to ease and 

optimise the robot navigation in space and time. The collected RSSI values can be used for geo-

referencing the nodes with trilateration. The positions found can be compared with the locations 

gained from a DGNSS-based positioning system. 

 

 Materials and methods 

 Wireless Sensor Network (WSN) 

The network was built up by the wireless development tool eZ430-RF2500 (Texas Instruments, 

Dallas, USA). The eZ430-RF2500 consists of two core components: an MSP430F2274 
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microcontroller and a CC2500 2.4-GHz ISM (Industrial, Scientific and Medical) frequency band 

wireless transceiver. The eZ430-RF2500T target board was used for the transmitter nodes to realise 

a stand-alone system (see Figure 1a). The package provided an USB debugging interface which 

enabled the eZ430-RF2500 to transmit and receive data from a computer via a serial interface (see 

Figure 1b). This part was used as the receiver node. The development tool eZ430-RF2500 was chosen 

because of the easy use of the tools and available demo code. 

(a) (b) (c)  

   

Figure 1:  (a) Standalone transmitter node, (b) USB-debugger as receiver and (c) the pole used for the transmitter nodes 

with a DGNSS receiver and power supply. 

The receiver was synchronised with the robot operating system. Four transmitters were used. Each 

one was mounted on a pole (see Figure 1c), at a height of 0.45 m, having the same height as the 

receiver on the robot platform. The target boards had a battery power supply and a serial RS232 

interface. The serial interface was used to connect with a DGNSS receiver placed at the top of the 

pole at 1.90 m (see Figure 1c). For DGNSS, the Navilock NL-603P (Navilock, Berlin, Germany) 

receiver was used, which had a built-in high sensitivity antenna (-162 dBm) and also provided low 

cost setup. Every transmitter was assigned a unique identification number (ID), in order to be able to 

filter the received data for every node individually. As soon as a connection was established between 

transmitter and receiver, the ID and current DGNSS signal was transmitted.  

 Autonomous outdoor robot 

A small 4-wheel autonomous robot called TALOS, manufactured by the Institute of Agricultural 

Engineering at the University of Hohenheim, Germany, with differential steering was used to move 

the receiver node of the WSN (see Figure 2a). The size of the robot platform is 400x500x600 mm. 

The robot was equipped with four separate driving motors with a total of 200 W, and a weight of 

Transmitter 

DGNSS 

receiver 

 

Battery 

supply 
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40 kg. The average driving speed during the experiment was 0.8 ms-1, with a maximum torque of 

2.9 Nm per motor.  

The robot system was equipped with an inertial measurement unit (IMU) VN-100 (VectorNav, 

Dallas, USA), two LMS111 two-dimension (2D) Light Detection and Ranging (LIDAR) laser 

scanners (Sick, Waldkirch, Germany) at the back and the front. To provide geo-reference, an AgGPS 

542 real time kinematic (RTK) (Trimble, Sunnyvale, USA) was used. The robot was controlled by 

an embedded computer, equipped with i3-Quadcore processor with 3.3 GHz, 4 GB RAM and SSD 

hard drive. For energy supply, batteries of 12 V/48 Ah capacity were provided. This gave an operating 

time around 4-5 h, depending on the required motor torque, task and additional weight of equipment 

placed on the robot platform. The operating system was Ubuntu 14.04 and used the robot operating 

system (ROS) (see Figure 2b) middleware for the navigation algorithms. ROS uses a combination of 

C++ and Python programming languages. Some parts of the open-source software code of Frobomind 

(Jensen et al. 2014) were used and customized to implement the deterministic path planning.  

To follow an optimized route, the robot should be small enough to drive even perpendicular to the 

row structures. To be able to navigate in the chosen terrain, a hybrid control system was used, 

combining deterministic and reactive path planning. While the robot was carrying the receiver node 

of the WSN, the position system of the robot was used to locate this mobile beacon and synchronize 

the received data from the sender nodes. 

 (a) (b) 

  

Figure 2: (a) The robot system TALOS and (b) a screenshot of the visualizing software of the robot. 
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 Hybrid robot control 

The information of the RTK-GNSS receiver was used for absolute positioning of the robot and for 

estimating the next goal point of the deterministic path planning. The orientation of the robot was 

provided by the on-board IMU. The initial orientation of the IMU was determined by using the driving 

direction obtained from the RTK-GNSS positions. 

The robot position and the navigation goal points were defined as separate co-ordinate systems. The 

distance could be evaluated by receiving the transform between the two frames; this was done by 

using quaternions. The motor speed was controlled by a simple PID control using the error between 

the robot position and the direct line to the next goal point. For avoiding obstacles, the deterministic 

control command was replaced by an obstacle avoidance control (using the two laser scanners). This 

control layer was activated when an obstacle was detected. When an obstacle blocked the path, the 

avoidance control defined a new local navigation goal point for the robot, taking the local 

environment into account. This allowed the robot to drive around the trunks and other small sized 

obstacles that could be found in the vineyard.  

For the first deterministic path following, no obstacle avoidance was needed and the path following 

was mainly influenced by the surface of the vineyard. For the second task, the hybrid robot control 

was necessary because it was required to drive perpendicularly through the rows. There, the 

navigation goal points were set exactly at the estimated node positions. This position was evaluated 

from the received data of the first task. 

 Data acquisition and processing 

The position of the robot, provided by the RTK-GNSS receiver and the transmitter data, were 

collected by an external laptop running Windows 8.1 mounted on the robot. The RTK-GNSS data 

were transmitted via TCP/IP with a rate of 5 Hz. The RSSI value was calculated by the receiver 

whenever a transmitter was in range and new data were acquired. For acquiring and storing data from 

the RTK-GNSS and the receiver, software was developed in Microsoft Visual Studio C# 2010. The 

software developed followed a multi-thread architecture where a unique thread was dynamically 

created for every connected sensor, allowing parallel data acquisition. As soon as raw sensor data 

were acquired by each thread, a time stamp with one millisecond resolution was added to the character 

string. The created character string was stored in a text file (.txt) for post-processing. Despite the 

asynchronous communication that resulted in data acquisition at different instances, the time stamp 

eased post-processing. Since the acquired data were measured at different moments, a piecewise cubic 

interpolation method was used to calculate the values at desired time instances. 

For precise RTK-GNSS measurements, a base station was placed at the side of the vineyard with the 

antenna at a height of 1.20 m. The positional geodetic datum was WGS84. The GNSS antenna was 



 

Chapter 2  Paper A 

 

- 19 - 

placed on the robot at the horizontal centre of rotation at a height of 0.6 m. For navigation and 

integration of the robot movement, the position datum had been internally transformed to the 

universal transverse mercator (UTM) co-ordinate system in terms of east [m], north [m] and altitude 

[m]. 

The robot absolute positions and the evaluated RSSI values were first used to map the RSSI data. As 

a second step, this geo-referenced RSSI data were used to estimate the node position by trilateration. 

Since the devices had an on-board DGNSS receiver, the estimated node position could be directly 

compared with the transmitted node position. To locate the nodes only by their RSSI value using 

trilateration, the absolute position of the receiver, placed on the robot, and the approximate distance 

of the transmitter were needed.  

The behaviour for the path loss (PL) in free space of a transmitted signal can be described by the Friis 

equation (Friis 1946). As the RSSI value is dependent on PL, a direct correlation between distance 

and RSSI can be expected. As in vineyards, the signals may experience attenuation and so a 

propagation model for signal attenuation prediction was necessary. With a given dataset, this could 

be also derived empirically (Yang et al. 2015). Thus, a best-fit curve can help to directly estimate the 

actual distance out of the RSSI value. The following equation was used for the approximate distance 

determination:    

 
𝑑 = 𝐴 ∗

𝑅𝑆𝑆𝐼𝐵

𝑅𝑆𝑆𝐼1𝑚
+ 𝐶 

(1) 

 

Where 𝑅𝑆𝑆𝐼1𝑚  is the RSSI value at 1 m distance, RSSI is the actual RSSI value, 𝐴, 𝐵 and 𝐶 are 

constants. To ease the navigation and location problem, the 2D distance was considered, assuming 

that the receiver and the transmitters were at the same height (~0.5 m). Using three beacon positions 

P1, P2 and P3 and their resulting receiver-transmitter distance d1, d2 and d3, the trilateration for the 

sensor node position was calculated by the following equation: 

 
𝑥 =

𝑑1² − 𝑑2² + (𝑃2,𝑥 − 𝑃1,𝑥)2

2(𝑃2,𝑥 − 𝑃1,𝑥)
 

(2) 

 

 
𝑦 =

𝑑1² − 𝑑3² + (𝑃3,𝑦 − 𝑃1,𝑦)2 + (𝑃2,𝑥 − 𝑃1,𝑥)2

2(𝑃2,𝑥 − 𝑃1,𝑥)
−

(𝑃3,𝑦 − 𝑃1,𝑦)

(𝑃2,𝑥 − 𝑃1,𝑥)
𝑥 

(3) 

 

The received beacons of the sensor nodes could continuously be used to update the estimated node 

positions by solving the mean value of all trilateration results. 
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 Field experiments  

The first tests were made to determine the maximum transmitter range of the wireless devices under 

ideal conditions. One pole (see Figure 1c) was placed in an obstacle free courtyard and the robot with 

a receiver drove towards the pole at a speed of 0.3 ms-1. The maximal transmission radius was 

manually obtained with a measuring tape.  

To investigate the influence of leaves on the RSSI value, a second test was conducted, using an 

artificial canopy wall. The wall length was 5 m and the height 2.5 m. The trunks were old vine trunks 

and the leaves were plastic leaves. The whole construction was held by a metal frame and two wires 

at a height of 1.5 and 0.8 m. In order to simulate the water content of leaves, the canopy wall was 

moistened. As electromagnetic waves can also spread underwater, it was assumed that the influence 

of moisture will not block, but just attenuate the signals (Park et al. 2015). 

For the field tests, a local vineyard (48.710115N, 9.212913E) in Stuttgart-Hohenheim (Germany) was 

used, with an almost flat surface. An area of 85 x 60 m, with a total of 33 grapevine rows was explored 

by the robot. As a common vine training system in Germany, the grapevine rows were stabilized by 

poles and two horizontal wires at an average height of 1.50 m and 0.8 m (see Figure 2a). Grass with 

some vehicle tracks and molehills covered the navigation terrain. The four transmitter poles (see 

Figure 1c) were placed in a square with a sufficient distance to assure that there were no signal 

overlays. This minimal distance was determined in a transmitter range test before going to the 

vineyard.  

The initial navigation route was defined by using absolute way-points to guide the robot through all 

rows in the transmission range of the installed wireless devices. The robot used the onboard RTK-

GNSS for path tracking. As soon as the wireless receiver at the robot established a connection to one 

transmitter of the WSN, the sensor data were transferred. The final navigation test used the positional 

points with the highest RSSI value of every node, to plan an optimised route for the robot to serve all 

devices.  

In Figure 3, the in-field route followed, in UTM co-ordinates, and the positions of the wireless 

transmitters, provided by the DGNSS receivers, are shown. The UTM positions of established 

connections between the receiver and the transmitter nodes are also illustrated. In order to examine 

whether the height of the wireless receiver at the robot platform had an impact on the perception, in 

the second part of the field experiments (right side of Figure 3), the wireless receiver was placed at a 

height of 0.7 m compared to the first part (left side of Figure 3) where it was at 0.45 m from the 

ground.  
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For evaluating the path loss rate of the RSSI values, the point of the highest RSSI value was used as 

ground truth for the node position. The transmission distance was calculated from the UTM receiver 

positions.  

 Results and discussion 

The testing in a courtyard before going to the vineyard, to investigate the transmitter signal strength, 

showed a reliable communication up to 26 m at a receiver height of 0.5 m. When using a simulated 

grapevine canopy of artificial leaves, the signal was mainly interrupted by the trunks. That led to 

signal fluctuation in the test area. Based on the courtyard testing, the distance between the nodes was 

set to 30 m in the vineyard. As seen in Figure 3, the devices had been arranged in an almost square 

configuration.  

As soon as the robot reached the end of the field, the points with the highest RSSI value of every 

single transmitter node were evaluated. These points were considered as transmitter positions for the 

hybrid controlled navigation.  

 

Figure 3: RTK-GNSS route followed by the robot (-, green), mean DGNSS positions of the wireless 

transmitters (o, blue) and positions with established connection between the wireless receiver and transmitter 

for the nodes 1 (+), 2 (*), 3 (.) and 4 (x). 

This hybrid control system was responsible for navigating the robot, from the end of the field directly 

to all four evaluated transmitter positions, for collecting the data and then to the starting point. The 
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route followed and the spatial variability map of the RSSI values, using kriging interpolation 

(Kravchenko and Bullock 1999), are shown in Figure 4.   

The distance travelled along the deterministic path through all rows in the tests (see Figure 3) was 

around 3000 m, while the hybrid controlled path just needed 200 m of distance travelled to gain a 

connection to all transmitter nodes. With an average speed of 0.8 ms-1, 3750 s were required for the 

deterministic path and around 250 s for the hybrid control architecture. This results in a faster 

performance with a factor of around 15.  

When using the DGNSS which was connected to each node, the location algorithm would just need 

one received signal from each node to locate it. This would make the deterministic path following 

through all rows unnecessary. It is apparent that the positions of the highest RSSI values and the 

evaluated positions from the DGNSS receivers do not match. Nevertheless, all four positions from 

the DGNSS receivers lay in an area where the RSSI value was higher than 44%. This value was 

considered sufficient to establish a stable data transmission between transmitter and receiver.  

The maximum difference between the point of the highest RSSI value and the received DGNSS 

position was 3.7 m (see Table 1). That led to the assumption, that an absolute geo-referencing 

precision around 4 m is achievable with just using DGNSS signals. The distance change per 

percentage of the RSSI value was for all nodes in the range of one meter, with a minimum for node 

4 and a maximum at node 1 (see Table 1). The mean standard deviation for all distances of the 

received values was always higher than 4 m. This makes the RSSI value as a single signal not usable 

for accurate node location. Interestingly, the maximal and minimal values for the RSSI of all nodes 

just differed by around 2 %. Consequently, it can be assumed that the changes of the antenna gain of 

receiver and transmitter signal have a minimal influence on the path loss.  

Table 1: Specific parameters of the received signal and the transmitted DGNSS signal. 

From Figure 4, it can be concluded that the RSSI values were dependent on the distance between the 

transmitter and receiver, as they decrease radially outward to the centre point when there was a 

received signal. As the standard deviation of the signal is high, a better result could be expected when 

Node 

no. 

Mean standard 

deviation [m] 

Distance 

per RSSI 

[m/%] 

RSSI 

max [%] 

RSSI 

min [%] 

Distance 

max [m] 

Distance RSSI max 

to DGNSS [m] 

1 5.0880 1.4286 56 32 16.8 3.7005 

2 4.4002 1.0427 57 35 21.1 1.2112 

3 5.5079 0.9600 57 33 25.0 3.1384 

4 4.1440 0.9058 58 32 27.6 2.4029 
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the values are averaged over time. This is possible as the node location for most applications is not 

time-critical. In Figure 5, the RSSI values were averaged every meter.  

 

Figure 4: RSSI variability map of the received information in the vineyard together with the transmitter 

positions (o), and the route that the robot followed based on hybrid control navigation (·). 

 

Figure 5: Mean values for node 1 (*), node 2 (+), node 3 (.) and node 4 (x), rounded for every meter. 
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 Node location based on RSSI values 

When comparing the values of Figure 5, it can be seen that the maximum transmission range of nodes 

3 and 4 was higher compared to that of numbers 1 and 2. This could happen because the receiver 

height was changed in this part from 0.5 m to 0.7 m. When fitting Equation 1 to the data set of Figure 

4, using the Matlab R2015b Curve Fitting Tool (MathWorks, Natick, MA, USA) with the Levenberg-

Marquardt method, the following parameters for A, B and C were derived (see Table 2): 

Table 2: Best-fit equation parameters for the distance evaluation of the transmitter nodes of Equation 1. 

node no. A B C 

1 2.196 -5.306 -2.164 

2 0.7913 -8.402 -0.4043 

3 1.408 -6.87 -1.491 

4 10.74 -2.656 -13.43 

The constants of Table 2 together with Equations 2 and 3, give the option to analyse the node location 

by the RSSI value. When the robot is not passing close to nodes in a WSN, it cannot be guaranteed 

that the highest RSSI value is also corresponding to the node position. The following evaluation 

assumed that the robot was not passing areas with an RSSI value higher than 49 %. This corresponds 

approximately to a distance of 3 m to the sensor. To guarantee good data transmission, a minimal 

RSSI value of 39 % was assumed. So for the trilateration only, the areas with RSSI between 39 % 

and 49 % were considered. For solving the trilateration, three points in the dataset were randomly 

picked. This was done for the dataset in the range between 1 and 500 times. Out of three points, a 

resulting node position was evaluated and compared with the other resulting points. Out of the 

resulting node positions, the mean value was composed and the difference to the node position was 

evaluated. The results are shown in the following graph for all 4 nodes (see Figure 6). As can be seen 

in Figure 6 and the values in Table 3, the best fit was possible for node 2, with a mean distance to the 

assumed node position of 0.5992 m. For all nodes, the results stabilised after around 100 selected 

random points for the trilateration.  
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Table 3: Mean value of all calculated node positions with trilateration. 

Node no. Mean distance [m] Standard deviation [m] RMSE [m] 

1 1.4942 0.4855 0.4850 

2 0.5992 0.6789 0.6782 

3 2.2021 0.6207 0.6201 

4 2.1818 0.8061 0.8053 

 

(a) (b) 

  

 

(c) (d) 

  

Figure 6: Distance between trilateration mean value and the highest RSSI value of the nodes 1 (a), 2 (b), 3 (c) 

and 4 (d). 

The spatial distribution for 1000 randomly selected points for every node can be seen in Figure 7. 

There, it can be seen that the node estimation based on trilateration, had a high variance, but it also 

shows a normal circular distribution around the node. Therefore, the best results can be expected 

when sample points all around the node can be collected. This could help to locate the node position 

more precisely and have the option for even better node location based on particle or kalman filters 
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(Caballero et al. 2008; Papamanthou et al. 2008). Also, using another path loss model such as the 

Hata Urban Model could help to increase precision (Chrysikos and Kotsopoulos 2013). 

Even without additional filters or path loss models, the results are already more precise than the 

attached DGNSS. This gives the option to skip this additional device and just use the trilateration 

technique together with a precise location system on the robot, to geo-reference the nodes. The 

maximum RSSI value used for the trilateration was 49 %, which correlates with a distance of 

approximately 3 m (see Figure 4). Passing the nodes at this distance should be sufficient to evaluate 

the precise position. With a row width of 1.5 m, as in the vineyard used, precise node positioning 

would even be possible if the robot would always skip 3 rows.  

 

Figure 7: Spatial distribution of 1000 randomly picked trilateration results for the RSSI value of estimated 

node 1 position (+), DGNSS position (o) and estimated trilateration position (x). 

Alippi and Vanini (2006) achieved the best localisation precision with 7 fixed known anchors with 

an average error of 2.3 m which is similar to the current results (see Table 3). When comparing the 

results with the theoretical error developments shown by Savvides et al. (2005), the RMS location 

error reached around 1 m for more than 60 nodes in the network. This means, that the results achieved 

are at least as precise as would be achievable with a highly dense WSN with more than 60 neighbour 

nodes. The reason for these good results could be due to the use of the robot RTK-GNSS system, 

which makes a highly precise receiver location possible.  
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Apart from the RS232 interface, the transmitters were also equipped with analogue and digital inputs. 

This gives the capability to connect many sensors in order to provide information that is essential for 

performing agricultural tasks, related to precision agriculture. Soil moisture or soil temperature 

sensors could be connected to the transmitter nodes. Then, the robot can collect and geo-reference 

the data via trilateration. This would be possible even when some of the sensors were removed, or 

had been moved to another place since the last data acquisition. The short transmission distance to 

the robot allows production of more cost and power efficient devices that are capable of lasting a long 

time in the field without any additional maintenance service. Whenever additional data is required, 

the navigation algorithm of the robot and the evaluated transmitter positions could be restarted to 

follow the route without any additional information. A system capable of recharging on its own would 

be able to collect data from a large field without any supervision. All this could help to make possible 

an easy and completely automated WSN node setup in a field or vineyard with low cost sensors. 

In the future, it has to be evaluated whether the skipping of several rows for collecting the RSSI values 

for trilateration would be sufficient to evaluate the transmitter positions with appropriate accuracy. 

Also the trilateration behaviour under real path following in the vineyard and at different seasons has 

to be evaluated. Another option for optimizing the process of data collection could be the use of 

drones, because they do not have to take care about obstacles, when operating at a certain height. 

However, it should be investigated how the canopy will affect the signalling when drones do the data 

acquisition. When collecting the data from ground based wireless antennae, the flight path of the 

drones should be denser than the path of a ground vehicle, because the flight height will influence the 

minimal possible receiver distance to the nodes. Also, it should be taken into account, that the 

communication signals of the drones and the WSN could overlay, causing navigation problems. 

Another big advantage of data collection by driving to the sensor with a robot is that the signals could 

not be easily disturbed by interfering transmitters from outside sources. So short range data 

transmission could help to keep the surveillance of the environment running even under harsh 

conditions.  

 Conclusions 

The results of the field tests showed good performance in detecting and servicing all transmitter nodes 

in the vineyard without any prior knowledge of their absolute position. Therefore, data collection and 

transmission can be completed by a fully autonomous operation. The second run did a minimized 

total distance because not all the rows (tree or crop) needed to be passed by the field robot. 

Furthermore, due to the hybrid control architecture, the robot could react to environmental changes 

and avoid obstacles. This updated route minimized the running time of the robot and made the overall 
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operation more cost-effective. In the present work, a DGNSS was connected to the wireless 

transmitters and the information was acquired by the receiver on the robot. Also, the use of 

trilateration for the location of the nodes was investigated. Trilateration showed better location results 

than the one provided by DGNSS data at all nodes. Therefore, it could be assumed that, with the use 

of RTK-GNSS on the robot and RSSI trilateration, the sensor nodes could be precisely geo-referenced 

by just passing the nodes. 
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Selective Spraying in Controlled Conditions2
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and Hans W. Griepentrog 

 

Abstract 

Autonomous selective spraying could be a way for agriculture to reduce production costs, saving 

resources, protecting the environment and helping to fulfil specific pesticides regulations. The 

objective of this paper was to investigate the use of a low-cost sonar sensor for autonomous selective 

spraying of single plants. For that, a belt driven autonomous robot was used, with an attached 3-axes 

frame with 3 degrees of freedom. In the tool centre point (TCP) of the 3-axes frame, a sonar sensor 

and a spray valve were attached to create a point cloud representation of the surface, detect plants in 

the area and perform selective spraying. The autonomous robot was tested on replicates of artificial 

crop plants. The location of each plant was identified out of the acquired point cloud with the help of 

Euclidian Clustering. The gained plant positions were spatially transformed from the coordinates of 

the sonar sensor to the valve location to determine the exact irrigation points. The results showed that 

the robot was able to automatically detect the position of each plant with an accuracy of 2.7 cm and 

could spray on these selected points. This selective spraying reduced the used liquid by 72%, when 

comparing it to a conventional spraying method in the same conditions.  

 

Keywords: Selective spraying, single plant, agricultural robot, sonar, ultrasonic, point cloud, 3D 

imaging 

                                                 
2 The publication of Chapter 3 is done with the consent of the MDPI Publishing. The original publication was in: Journal 

of Imaging 2017, 3(1):9. It can be found under the following link: http://doi.org/10.3390/jimaging3010009    
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 Introduction 

Pesticides are one of the main contamination factors of water sources and ecosystems in the world 

(El-Gawad 2016). In the European Union for example, a rate of 300 000 tons of pesticides were 

applied each year. This lead to a water pollution that exceeded the threshold set by the regulation 

commission of the European Union (N. 546/2011) (Gaillard et al. 2016). However, the excess of 

weeds increases the cost of the cultural practices, destroy crops, modify the effectiveness of 

agricultural equipment and decrease the fertility of soils (Kira et al. 2016; Oerke 2006). This leads to 

the assumption that the productivity of conventional farming is dependent on chemicals (Oerke 2006). 

Although the use of pesticides, fungicides and fertilizers contributes to improving the quality and 

productivity of crops in agriculture, significant problems were reported when the chemicals are 

applied uniformly over the fields. Typical related problems are the negative effects on the 

environment (Doulia et al. 2016; El-Gawad 2016), herbicide-resistant weeds (Heap 2014) and human 

and animal health issues (Alves et al. 2016). A decrease of the distributed chemicals, would not only 

result in a decrease in the contamination of ecosystems (Solanelles et al. 2006), but also in a reduction 

of costs and an increase of crop production efficiency (Chang et al. 2016). Therefore, one goal for 

future farming should be to apply chemicals just at the place where they are required (Gonzalez-de-

Soto et al. 2016). Instead of applying fixed amounts of pesticides over the field, each plant could be 

detected individually and treated when needed (Peteinatos et al. 2014). Modern technology should 

already be able to reduce the amount of the application, working time and environmental damage 

(Oberti et al. 2015; Peteinatos et al. 2014). However, this requires robust and reliable sensors, 

software processing and application systems (Blackmore et al. 2006; Slaughter et al. 2008).  

The technologies for the automatic detection and removal of weeds progressed significantly in the 

last decades. This was mainly because of the use of new sensor types and improvements in crop 

management and control treatments with herbicides, pesticides or fungicides (Gonzalez-de-Soto et 

al. 2016; Kunz et al. 2016; Lee et al. 1999; Peteinatos et al. 2014). Many investigations have focused 

on the use of image analysis techniques, stereo photogrammetry, spectral cameras, time-of-flight-

cameras, structured light sensors and light detection and ranging (LiDAR) laser sensors (Backman et 

al. 2012; Garrido et al. 2015; Gil et al. 2007; Kira et al. 2016; Woods and Christian 2016). Typically 

the sensors were used on tractor implements to recognize the weeds and to use this information for 

selective spraying (Berge et al. 2012), or on robots, to automate the whole navigation and application 

process of selective spraying (Oberti et al. 2015).  

However, most of the mentioned sensor principles are limited by the high costs and/or complexity to 

acquire and to process the information (Bietresato et al. 2016). This brings difficulty for the farmer 

to implement this technology, as agricultural machinery should have a good cost-benefit rate.  
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Since the new Microsoft Kinect v2 sensor was introduced to the consumer market, it was also used 

in agricultural research for environment perception (Andújar et al. 2016; Y. Jiang et al. 2016; 

Kusumam et al. 2016; Vázquez-Arellano et al. 2016). This time-of-flight based sensor system is quite 

promising, but is still highly affected by sunlight and requires high computational resources to process 

the data (Vázquez-Arellano et al. 2016).  

Using sonar sensors for selective spraying was already part of several research papers. A research 

was conducted comparing LiDAR systems with ultrasonic sensors to estimate the vegetation. The 

results indicated a good correlation between the estimation made by LiDAR and ultrasonic sensors 

(Tumbo et al. 2002). The first sprayer with automatic control was tested 1987 (Giles et al. 1987). This 

system used ultrasonic sensors to measure the distance to the foliage. The impact of the volume 

reduction of liquid was between 28-35% and 36-52%. It was confirmed that spraying systems can be 

controlled more precisely using ultrasonic and optical sensors to open and close individual nozzles 

by recognizing the presence or absence of plants (Doruchowski and Holownicki 2000). Also two 

ultrasonic transducers with solenoid valve control were developed, finding savings of 65% and 30% 

respectively of the liquid spray (Solanelles et al. 2006). Even a ultrasonic low-cost spraying system 

was developed and tested in a wild blueberry field to reduce initial costs (Swain et al. 2009). 

Additionally, ultrasonic sensors  have showed very good results to determine plant height (Zaman et 

al. 2005).  

In maize, the weed height is in general lower than the crop height, therefore a correct height estimation 

would be enough to distinguish between weed and crop (Peteinatos et al. 2014). A research concluded 

that in a simplified system of semi-automatic spraying, the most important parameters are the plant 

height and the planting density (Walklate et al. 2006). Therefore, just the plant height information 

would allow already a significant reduction in spray volume, while maintaining the coverage rates 

and the penetration similar to conventional spraying methods (Gil et al. 2007).  

The most described selective spraying methods performed a 1D control with the sonar sensors, using 

the distance measurement to activate the nozzles, but not taking the 3D position of the sensors into 

account. When this information is known, it is possible to even create out of the 1D information of a 

sonar sensor a 3D image representation of the environment. This point clouds are useful 

representations, allowing to estimate the shape, position and size of specific objects. They are 

commonly used for autonomous navigation and mapping (Reiser, Garrido, et al. 2016; Reiser, 

Paraforos, et al. 2016; Zlot and Bosse 2014), plant detection (Weiss and Biber 2011), harvesting 

(Back et al. 2014) and phenotyping (Dornbusch et al. 2007; Garrido et al. 2015). However, the 

acquisition of point clouds is mainly performed with expensive equipment like LiDAR, stereo 

cameras, time-of-flight-cameras or structured-light sensors.  



 

Chapter 3  Paper B 

 

- 34 - 

All these vision sensors are light sensitive and thus inherently flawed for agricultural applications, 

bringing more challenges for the software algorithms (Vázquez-Arellano et al. 2016). This is not the 

case for sonar sensors. Therefore, a low-cost 1D sonar sensor mounted on a 3D positioning system 

could replace visual sensors. Combined with adequate algorithms, the acquired data could be used to 

detect single plant positions. 

The main objective of this paper is to describe and evaluate the capability of a low-cost system for 

3D point cloud generation and for the use of single plant detection and treatment. For that, an 

ultrasonic sensor with a cost of around 2 € was used. Compared to other possible distance sensors, it 

is one of the cheapest solutions available on the market. For other low cost sensors such as a 1D-

LiDAR a price of approximately 80 € and for a cheap 3D camera (e.g. Microsoft Kinect v2) around 

200 € have to be considered. The sonar sensor was attached to a 3D axis frame, which in turn was 

mounted on a mobile robot. The ultrasonic sensor should be used to detect plants in the working area 

of the 3D frame and to perform a selective plant spraying. To extend the working area of the system, 

a mobile robot platform was used to move the autonomous system to the next area after the selective 

spraying was performed.  

The paper is ordered as follows: The second chapter describes the whole setup of sensors and software 

tools. This includes the mobile robot, 3D frame and the calibration setup. In addition, the experiment 

and the data processing are described in detail. The third chapter present the results, combined with 

the discussion. This is followed by the conclusion. 

 Materials and methods 

 Hardware and sensor setup 

The developed automatic system was composed by four parts: A robotic vehicle, a movable frame 

with three degrees of freedom a distance-sensor and a precision spraying system. The frame mounting 

point for the sensor was assumed as the TCP. The working space of the frame was 1.1 m x 1.4 m x 

1.0 m (x, y, z respectively). The whole system was mounted on a field robot platform called Phoenix 

(developed at Hohenheim University). The robot platform is able to drive 5 km/h up to a 30 degree 

slope and with an additional payload of 200 kg. The vehicle weights around 450 kg. The system is 

driven by two electrical motors with a total power of 7 kW. The system was powered by four built-

in batteries, which could provide an operation time of approximately 8-10 hours, depending on driven 

speed, elevation and workload. The navigation computer of the robot was a Lenovo ThinkPad with 

i5 processor, 4 GB RAM and 320 GB disk space.  
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Figure 1: Description of the used automatic spraying system with all the hardware components mounted (1. 

TCP, 2. CPU + motor controllers, 3. water tank, 4. plants, 5. calibration point). 

As distance sensor, a low-cost ultrasonic sensor HC-SR04 (Cytron Technologies, Johor, Malaysia) 

was mounted at the TCP of the frame, pointing downwards, perpendicular to the surface. The sensor 

had a measuring range from 2 cm to 400 cm and an effective angle measurement of 15 degree. The 

measuring rate was limited to 10 Hz to avoid signal overlapping. The precision spraying system used 

a DC-Pump (Barwig GmbH, Germany) with a maximum supply of 22 l/min and maximum pressure 

of 1.4 bar. Water was used to emulate the pesticide/herbicide application, which was flowing through 

a plastic hose with a diameter of 10 mm that ran along the frame to the TCP. The movement of the 

frame axes was done through bipolar stepper motors Nema 17 (Osmtec, Ningbo, China). The stepper 

motors (2 for the x-axis, 1 for the y-axis, and 1 for the z-axis) had a step angle of 1.8 degree (200 

steps/revolution), a holding torque of 0.59 Nm, a step accuracy of 5% and a maximum travel speed 

for each axis of 0.2 m/s. The frame motors and sensors were controlled with two low-cost Raspberry 

Pi 2, Model B computers (Raspberry Pi Foundation, Caldecote, United Kingdom). To control the four 

stepper motors and the DC-Pump, three motor controllers Gertbot V 2.4 (Fen Logic Limited, 

Cambridge, United Kingdom) were connected to one Raspberry Pi. The sonar sensor was attached to 

the GPIOs of a second Raspberry Pi. The second Raspberry Pi was used because the attached Gertbots 

blocked the access to the Raspberry Pi GPIOs. So using a second Raspberry Pi allowed an easier and 

faster implementation of the sonar sensor to the 3D frame. The whole setup of the robot with frame 

and plants is shown in Figure 1. 
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 Software setup  

The control software for the robot system was programmed for the ROS-Indigo middleware. This 

included the driving and navigation software of the mobile robot, as well as the control software for 

the frame, data acquisition of the sensors, plant detection algorithms and the precision spraying 

device. For visualization of the processes and acquired data, the built-in ROS 3D visualization tool 

“rviz” and the survey tool “rqt” were used. The driver software for the 3D frame, the pump and the 

motors were programmed directly on one of the Raspberry Pi computers. The sonar driver was 

programmed on the second Raspberry Pi. All computers were connected to the local robot network 

with Ethernet cables. For synchronization of all included systems and sensors of the robot and to 

collect the datasets, the ROS environment was installed on all systems and was used to define a 

synchronized time for the whole robot setup. The higher-level software was programmed on the robot 

navigation computer, for defining goal points and assessing the acquired data. For the point cloud 

assessment, parts of the PCL-Library were used (Rusu and Cousins 2011). The Raspberry Pi 

operating system was Raspbian Jessie 4.1 and on the navigation computer Ubuntu 14.04. All parts of 

the software were programmed in a combination of C/C++ and Python programming languages. For 

post processing of the recorded point clouds Matlab R2015b (MathWorks, Natick, MA, USA) was 

used. 

 Calibration and system test 

For calibrating the frame, the relative position of the 3-axis frame was measured by a highly precise 

total station (SPS930, Trimble, Sunnyvale, USA), together with a MT1000 tracking prism. In order 

to do that, the prism was attached to the highest point of the z-axis on the frame over the sonar sensor 

(see Figure 1). After that, the frame was moved to seven different positions inside the workspace and 

the relative total station output was evaluated. The measured points were spatially separated and 

covered the whole workspace. The total station output was compared with the moved steps of the 

motors and were used to define the calibration parameters of the software.  

For calibrating the sonar sensor, measurements on a flat surface of a concrete floor were done and the 

results were compared with the movement of the z-axis. The TCP was moved downwards by the 

software to the relative distances of 10, 20 and 30 cm. This test was performed three times per height 

at different positions. All calibrations were referred to the frame coordinate system. The results were 

evaluated with the mean value (𝑑̅) (1), standard deviation (𝑠𝑡𝑑𝑑𝑒𝑣 )(2) and root mean square error 

(RMSE)(3). 𝑑𝑖 describes the distance output of the sensor, N the number of tests and 𝑑𝑟  the real 

value (ground truth). 
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𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑑𝑖 − 𝑑𝑟 )² 

𝑁

𝑖=1

 (3) 

The values reached by the sonar system were compared to the theoretical reachable accuracy of a 

stereo vision system. Stereo vision systems are quite common sensing systems for automated outdoor 

vehicles, making them reasonably comparable with the sonar sensor system (Rovira-Más et al. 2010). 

As the accuracy of camera systems is highly affected by the object distance to the sensor position, 

this effect increases when using a stereo camera for 3D point cloud generation. Stereo cameras need 

textures in the images to find matching pixels in the two camera images, what brings lack of distance 

measurements since matching is not achieved. However, if a perfect stereo camera is considered, the 

depth accuracy ∆𝑍 could be described with (Pajares et al. 2016):  

∆𝑍 =
𝐵

2
𝑡𝑎𝑛 (tan−1 (

2𝑍

𝐵
) + 𝜃) − 𝑍 

(4) 

With B as baseline (distance between the two camera systems), Z as the object distance, and 𝜃 as the 

pixel expanding angle. 𝜃 could be described as: 

𝜃 = arctan (
𝑝

𝑓
) 

(5) 

With 𝑝 as the pixel size and 𝑓 as the focal length of the camera (Pajares et al. 2016). For comparing 

the two sensor principles, two different cases were considered. First, replace the sonar sensor with a 

stereo camera and second, replace the sonar sensor and the 3D frame by one fixed camera, spotting 

the workspace of 1.3 x 0.9 m. As camera parameters the values provided by Pajares et al. were used 

(Pajares et al. 2016).  

 Experiment description 

The experiment was realized at the University of Hohenheim (Germany) and used artificial crop 

plants with a height of 20 cm. To simulate the spatial separation of corn crop, the positions of the 

plants consisted of 2 crop rows with 5 plants each, following the seeding density for maize used by 

(Reckleben 2011), with 0.75 m between row and 0.14 m between plants. The ground truth position 

of each plant was measured using a pendulum attached to the TCP that was moved over the top of 
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the plants. The software based TCP position was saved as plant reference. Just the (x, y) coordinates 

were considered (see Figure 1).   

To automatically detect the plants with the sonar sensor, first a scan of the whole working area was 

performed. The scanned route was defined to drive lineally on the field along the frame with a distance 

between each scanned line of 2 cm in the x-axis. The representation of a typical scan is shown in 

Figure 2a, where the green line is showing the planed path for the ground scanning. In addition, some 

tests with 2x1 cm and 2x3 cm were performed. However, the 2x2 cm resolution was used because it 

achieved the best results in the smallest amount of time.  

(a) (b) 

  

Figure 2: Visualization of the robot system (a) and the acquired point cloud in ROS-rviz, with the 

estimated plant positions by the software algorithm (blue dots) (b). 

 Point cloud assembling and processing 

For each value received from the sensor, one point of the point cloud was estimated. The programmed 

software used different coordinate systems for each axis of the frame and was setting one coordinate 

system at the sensor position. The position of each axis coordinate system was estimated by the 

amount of steps sent to the stepper motors from the motor controllers. To estimate then the precise 

position of a received sensor value, the transform between the sensor coordinate system and the 

reference coordinate system was solved. This was possible, as the time stamp between all used 

controllers and sensors was synchronized. For the precise position estimation, the values were linearly 

interpolated. This procedure allowed to create a spatial 3D point cloud out of the one dimensional 

measurement of the sensor. To get rid of double measurements, all points in a grid with an edge length 

of 2 cm were filtered and summarized to one point. This led to a 3D image with a pixel size of 2x2 

cm. 

This 3D image was then processed to obtain the single plant positions in the considered area. First all 

points belonging to the ground plane were removed, using a basic RANSAC plane algorithm (Fischler 

and Bolles 1981). The defined parameters were a maximum of 1000 iterations, sigma of 0.005 m and 
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a distance threshold of 0.045 m. To get rid of noise, the remaining points were filtered, using a radius 

outlier filter (PCL 1.7.0, RadiusOutlierRemoval class). Points were considered as noise, when inside 

a radius of 0.08 m around the point less than four additional points were found. For separating the 

resulting points, a k-d-tree clustering was used (PCL 1.7.0, EuclideanClusterExtraction class) 

assuming that the plants were separated by a gap of minimum of 0.04 m. Of each single point cloud 

cluster, the 3D centroid c was evaluated and assumed as the resulting plant position. With N as 

number of points 𝑝 in the cluster (Equation 4). 

𝑐 =
1

𝑁
∑ 𝑝𝑖

𝑛

𝑖=1

 (6) 

The resulting plant positions of the algorithm were compared with the ground truth to obtain the 

precision. The assembled point cloud and the detected plant positions could be visualized in real-time 

with the help of the ROS visualization tool "rviz” (see Figure 2b). 

 Precision spraying 

The plant coordinates were extracted automatically from the point cloud, and subsequently could be 

used for the implementation of the automatic spraying algorithm. The coordinates were sent as goals 

to the frame motor driver board, and the programmed goal manager activated the pump as soon as 

the goal was reached. Because of the linear shift between sonar sensor and pump exit point, a static 

translation was applied to the plant positions with 3 cm x-axis and 4 cm y-axis. Two spraying 

configurations were applied for the comparison of the saved liquid. The first method was a continuous 

application along the plant rows (conventional spraying). The second method applied the liquid spray 

at the estimated plant position (selective spraying). The pump was turned on, for the first method, 

when the first plant position was reached in a distance range of +/- 2 cm, while for the second, the 

pump was turned on when the estimated plant position was reached with a precision of +/- 1 mm. 

This procedure was performed with three replicates, in which the amount of liquid applied in each 

test was quantified with small canisters with a diameter of 35 mm, placed under the application points. 

In total 17 canisters were placed in a row, covering a distance of 0.56 m. For both methods 42 ml 

were used. At the conventional method, the amount of water was applied over the whole line, while 

at the selective method the frame was moving to the plant poses and was applying the water (14 ml 

per plant). The three plant poses were assumed to be at the x-axis positions 0.035 m, 0.175 m and 

0.315 m, separated by a spacing of 14 cm. 

 Results and discussion 

After the calibration of the TCP with the help of the total station, the measured positions of the frame 

showed results of +/- 1 mm deviation between the software estimated positions and the total station. 
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This precision was achievable for two relative points. The system was able to recalibrate itself by 

driving once again to the end stop position at the edges of the working range. This allowed relocating 

the same position with the same precision inside the working range of the frame, as long as the mobile 

robot system was not moving. As soon as the system was starting and stopping for several times 

without reaching an end stop, the position error accumulated. This was caused by the mechanical 

inertia while stopping the system, as a consequence generating a slight slipping of the axis. For testing 

the limits of the system, the 7 points were approached, without returning to the next end stop. The 

details of the performed test points are described in the following Table 1. Because of the 

accumulation of the errors, the precision for the y-axis got an absolute precision deviation of 4 mm. 

The highest measurement error was 0.32%, compared to the distance. It could be assumed, that the 

system is able to collect spatial referenced sensor data in the millimetre range. This level of precision 

was obtained thanks to the controllable discrete angular displacement engines, whose high resolution 

and precise steps played a significant role in the overall accuracy of the positioning system.  

Table 1: List of the performed calibration points with results. 

 

 

Regarding the calibration of the ultrasonic sensor, the height detected by the ultrasonic sensor and 

vertical movement of the TCP was compared. It indicated a variable precision of the system 

depending on the height of the sensor. This precision decreased as the distance was reduced to the 

measured object, with a RMSE of 5.5 mm for 10 cm, going down to 0.2 mm at a height above 30 cm 

(see Table 2). The maximum standard deviation was 4.1 mm and the minimal at 30 cm of 0.2 mm. 

For this reason, the detection of plants (with an average height of 20 cm) was performed at a height 

of 40 cm from the ground, thus avoiding an increase in measurement error.  

For assessing the accuracy of a theoretical stereo vision system as a possible replacement for the sonar 

sensor, a baseline of 30 cm, a focal length of 10 mm and a camera pixel size of 5 µm as described by 

No.  Total Station measurement [m] Software position [m] 

 x y x y 

1 0.000 0.000 0.000 0.000 

2 0.000 1.001 0.000 1.000 

3 0.001 1.459 0.000 1.460 

4 0.499 0.496 0.500 0.500 

5 0.500 1.456 0.500 1.460 

6 1.000 0.005 1.000 0.000 

7 1.000 1.455 1.000 1.460 
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Pajares et al. were assumed. When solving the Equations 4 and 5 with these parameters and a variable 

object distance, the theoretical depth accuracy could be described with the following graph (see 

Figure 3). To compare the values, the absolute values were also included in the following Table 2 for 

the estimated height poses of 10, 20 and 30 cm. 

Table 2: Calibration results of the sonar sensor compared with the accuracy of a theoretical stereo 

camera. 

Estimated pose [m] Measured sonar value [m] Stereo camera [m] 

 𝒅̅ 𝒔𝒕𝒅𝒅𝒆𝒗 RMSE accuracy 

0.1000 0.1037 0.0041 0.0055 0.00011 

0.2000 0.2037 0.0019 0.0041 0.00021 

0.3000 0.3001 0.0002 0.0002 0.00038 

 

 

Figure 3: Development of the accuracy of a stereo vision system, with the assumed parameters B=300 mm, 

f=10 mm and p=5 µm (see Equations 4, 5). 

It is visible, that a 3D visual system accuracy is highly dependent to the object distance. Therefore, it 

could be seen, that the sonar sensor is less precise than the stereo system at short distances (10 cm), 

but perform already better when the object is placed at 30 cm distance. This means, that the advantage 

of a stereo camera is not laying at the depth accuracy, compared to a sonar sensor, but just by the 

spatial resolution. Instead of mounting the camera at the TCP, the stereo camera could also be 

mounted in a fixed position to monitor the complete workspace of 1.3 x 0.9 m at once. By using a 

typical camera angle of view of 50 degrees, this would lead to a necessary mounting height of at least 

1.39 m, what would guide to an accuracy of 6.58 mm. 

This would increase the error compared to the used low-cost sonar system. As the accuracy of stereo 

cameras are effected by sunlight, light reflections, lack of texture or light (night) and the used 
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matching algorithm (Hirschmüller 2008), this accuracy could get worse under real field conditions, 

what would not be the case with sonar sensors. 

To increase the accuracy of the system and to minimize the influence of the accumulation of path 

errors (see Table 1), the sonar scans of the 3D frame were separated in 10 small segments, of 10 cm 

x 140 cm. After each segment, the frame was driven to one end stop. The total time for each scan was 

10 minutes. The unfiltered representation of the experimental area contained a total of 3801, 4383 

and 4469 points for the 3 performed scans. After filtering the scan area to one point for each grid of 

2x2 cm, the resulting points for the 3 scans were 2931, 2906 and 2907 points. The results of the point 

clouds are shown in Figure 4. Only points in the x-axis and y-axis greater than 0.1 m were considered. 

The 3D point representation is shown on the left side. The right picture depicts the same data as 

surface reconstruction. The value of every grid was extrapolated by smoothing the values with the 

given point cloud dataset, using a Delaunay triangulation principle with the use of the Matlab function 

gridfit (Errico 2016). The showed graphs were solved by setting a grid size of 1 cm over the 

considered area, defining a smoothing factor of 2 for the dataset.  

Out of the generated 3D point clouds, it is possible to observe the plant positions represented by the 

higher altitudes. Around the centre of the plant, the height was forming the maximum, with a balloon 

like shape. When reconstructing a surface out of the 3D point cloud (see Figure 4), the peaks are 

strongly correlated with the real plant position, that leads to the assumption that the peaks are also the 

real plant centre positions. However, the reflections of leaves caused points to overlap, making the 

clusters of the single plants harder to separate. In addition, some plants were detected better than 

others, where the morphology of each plant could be a cause. The difference in height between plants 

was in some cases more than 10 cm. However, there was always a detectable peak for every single 

plant. 

The applied algorithm for the single plant detection needed a clear spacing between the points to 

cluster the plants. In this described case, the distance between the plants was set to 0.14 m. This 

distance was sufficient to estimate a clear spacing between the plants, what lead to an automatic 

performed plant detection rate of 100% in all performed scans.   
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(a) 

  

(b) 

  

(c) 

  

Figure 4: Visualization of the received 3D point clouds and surface reconstructions for the three scans 

(a), (b) and (c). All readings are in [m]. 

Obtaining the coordinates of each plant was done in real time by the described algorithm. The 3D 

centroid of each cluster was assumed as plant position. However, the actual centre of the plant varied 

depending on the orientation of the leaves, their density, size and height. This caused that the centre 

of the cluster did not match exactly the real plant origin, but represented the centre of the plant's leaf 

area, what brings advantages for autonomous spraying, as the leaves are normally the areas of interest. 

Figure 5 shows a comparison between the pendulums measured coordinates of the plant centres and 

the coordinates obtained from the point clouds. The average distance of the plants to the real position 

was 2.4 cm in the (x, y) coordinates with a RMSE of 2.7 cm. This gives the system a good precision 
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considering the influence of the leaf area on the determination of the location of the plants and the 

systems TCP movement. 

Figure 5: Estimated plant poses in x and y with the ground truth (x) and the results for the three scans (*, 

o, +). 

Therefore, it was assumed, that the system is capable of obtaining the location of plants without prior 

measurements of their actual location, when the following conditions are fulfilled:  

 The ground surface must have a planar shape, that it can be detected with a RANSAC 

plane-fitting algorithm. The soil irregularities must be smaller than the height of the 

plants.  

 The plant leaves should not cover the area between the plants, so that height differences 

at the plant gaps are detectable. 

 No other sonar sources are interfering with the sensor system. 

 The plant height is smaller than approximately 0.5 m, since the TCP or the mobile robot 

could touch the leaves, producing wrong measurements or damaging the plants. 

 

As the sensor system is not affected by sunlight, it could be assumed that the sensor detection will 

also perform well under outdoor field conditions, when the monitored environment is similar to the 

tested experiment, with a planar like soil surface and spatially separated plants. One advantage of the 

used sonar sensor is, compared to other sensor types, that inside the measurement cone, the highest 

value is reflected back. Therefore, since the closest point is reflected, a low image resolution can be 
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generated without missing the high peaks of a region. However, the spatial resolution of the sensor 

hardly allows the detection of small plant details like single leaves. On the other hand, with a LiDAR 

system, it would be easy to miss the highest spot of a plant, when the measurement resolution is too 

low. Consequently, sonar sensors could help to create robust 3D imaging methods for precision 

spraying and plant height estimation.  

However, when using the sensor system for outdoor field testing, the main influence factor on the 

results is assumed to be the change of the surface structure. Especially the roughness of the soil could 

cause measurement errors. As sonar sensors are not able to detect flat surfaces within higher 

inclination to the sensor, this could cause measurement errors in rough terrain. Same problem could 

occur when plants form sharp edges. Wind could change the surface while scanning, leading to 

moving plant leaves which could result in wrong aligned plant positions or measurement noise. The 

measurement quality will not change with sonar sensors under changing weather conditions in 

general, like it is typical with vision based sensor systems, so that shading of the sensors must not be 

considered.   

As previously mentioned, it was found that planting distances significantly affect the formation of 

clusters. Close proximity between plants produced that the corresponding plant points could not be 

separated and two plants were considered as one. In the described experiment, the plant spacing was 

set to 14 cm, which was adequate to identify all the plants without causing overlaps or unifications 

of clusters. As long as the plants are showing a height difference between their gaps and do not 

completely overlap, the plants can then be detected and clustered.  

For comparing selective to conventional spraying, in total six tests were performed. The measured 

values were averaged for every canister with the spacing of 0.035 m and the results were compared. 

The results are shown in the following Figure 6.  

 

Figure 6: Average distribution of the conventional spraying compared to the selective spraying with two 

standard deviations. 

The standard deviations of the measured liquid content of the performed experiments were between 

0.754 ml and 0.042 ml. The selective method applied all water spray precisely on the single plants, 
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without any loss in the canisters of 3.5 cm diameter. The results of the continuous spraying showed 

a constant distribution over the measured area. The water distribution, showed a continuous 

application of approximately 4 ml in the first 0.35 m of the path. However, the value was decreased 

to values close to 0.8 ml in the rest of the way. This phenomenon was generated because the pump 

did not provide a continuous pressure, or a shut off valve to keep the liquid inside the hose. In the 

selective application, no liquid was lost, as the TCP was not moving while the pump was working.  

When comparing the amount of water applied at the plant pose canister, the selective spraying method 

applied in average 3.6 times more water to the plants than the conventional method. With the 

conventional method, a total of 151.2 ml must be applied so that the plant obtains the same amount 

of water. This would represent a saving of 109.2 ml or 72% of the conventional spraying method.  

Similar values were reported by (Gil et al. 2007; Gonzalez-de-Soto et al. 2016; Maghsoudi et al. 2015; 

Oberti et al. 2015), who gave a pesticide reduction of 34.5%, 58%, 64% and 66% respectively, when 

compared to a conventional homogeneous spraying. The result of this tests confirmed that an 

inexpensive precision system could confer significant reductions in the use of herbicides.  

The main disadvantage of the proposed method is the low in speed. As the actual scanning time of 

the workspace needs around 10 minutes for 10 plants, a performance of 1 minute per plant would lead 

at a density of 9 plants per square meter (Reckleben 2011) to a performance of approximately 166 

hours per hectare.  

This means, that for real-time applications, scanning with a sonar sensor at the TCP is not promising. 

Much faster would be a fixed 2D array of sonar sensors spaced within a few centimetres, using the 

robot movement to create a spatial 3D image. When this is combined with a movable spray nozzle 

per row, the speed could be adjusted depending on the needed sonar sensor grid size. With a grid size 

of 2 cm and the used 10 Hz of the sonar sensor a driving speed of sonar sensor, the system could 

cover 1.3 m² in 5 seconds, what leads to approximately 10 hours per hectare. With a robotic system 

working 24 hours a day, this could already have a good cost benefit ratio. The 3D image obtained by 

the system could even be used to spray according to the measured canopy volume of the 3D image to 

apply the liquid more effectively. In addition, the use of a magnet valve would help to apply the liquid 

more precisely to the plants.  

Future work should also include research in real outdoor conditions, to define the minimal necessary 

grid size of the sensor readings in order to be fast but without missing useful information. To 

understand the advantages of different sensor systems, it could also help to compare the differences 

between the use of a LiDAR sensor and a sonar sensor, comparing detection rate, precision and 

possible speed for detecting single plants. For more robust plant detection, other clustering algorithms 

like a k-means or graph-cut based principles could be investigated. 
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 Conclusions 

An autonomous selective spraying robot was developed and tested at the University of Hohenheim. 

This system was composed by a mobile robot, with a mounted frame with three degrees of freedom. 

An ultrasonic sensor was mounted at the frame TCP to scan the surface with the aim of determining 

the height of the objects inside the working range. The precision of the horizontal movement of the 

TCP was determined with +/- 1 mm. The vertical precision depended on the height measurement of 

the ultrasonic sensor. The ultrasonic sensor RMSE was between 5.5 mm to 0.2 mm, depending on the 

distances between the objects and the sensor. The 3D position of the TCP was fused with the sonar 

sensor value to generate a 3D point cloud.  

Three scans were performed, finding on average a total of 4127 points per scan. This point cloud 

allowed differing plants present on the scan area. To acquire the exact plant positions, the ground 

points were removed by a RANSAC plane-fitting algorithm. The resulting points were separated with 

a Euclidian distance clustering. The centroid of each cluster represented the estimated plant position. 

The estimation of the plant coordinates demonstrated an RMSE of 2.7 cm, allowing a real-time 

location and spraying of the position by an attached control valve at the TCP. This would be sufficient 

to detect single plant structures and allow single plant treatment. The comparative tests between the 

selective spraying method and the conventional spraying in this investigation showed that with the 

reduction of the amount of the spraying operation in places where it is not necessary, it could provide 

savings of about 72%.  

The sonar sensor allows variable grid sizes and is not affected by sunlight, leading to the assumption 

that it could perform well in outdoor conditions. From the economic and environmental point of view, 

the designed system could provide ideas for low-cost precision spraying by reducing soil and 

groundwater contamination. Therefore, it could decrease the use of herbicides, workers and working 

time.  
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Crop Row Detection in Maize for Developing Navigation Algorithms 

under Changing Plant Growth Stages3 
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Dimitris S. Paraforos 

 

Abstract 

To develop robust algorithms for agricultural navigation, different growth stages of the plants have 

to be considered. For fast validation and repeatable testing of algorithms, a dataset was recorded by 

a 4 wheeled robot, equipped with a frame of different sensors and was guided through maize rows. 

The robot position was simultaneously tracked by a total station, to get precise reference of the sensor 

data. The plant position and parameters were measured for comparing the sensor values. A horizontal 

laser scanner and corresponding total station data was recorded for 7 times over a period of 6 weeks. 

It was used to check the performance of a common RANSAC row algorithm. Results showed the best 

heading detection at a mean growth height of 0.268 m. 

 

Keywords: ground-truth, reference, algorithms, RANSAC, total station, LIDAR, plant position, 

growth status, row navigation   

 Introduction 

Autonomous robots can have a key role in increasing sustainability and resource efficiency in food 

production for future world population (English et al. 2014). Therefore, the navigation must be planed 

precisely and be robust enough to deal with the changing conditions on a field. But this requires, that 

the machines know where the crop plants are and that they don´t get destroyed by the vehicle. As 

                                                 
 
3 The publication of Chapter 4 is done with the consent of the Springer International Publishing. The original publication 

was in Advances in Robotics, Volume 1 Robot 2015: Second Iberian Robotics Conference. It can be found under the 

following link: http://doi.org/10.1007/978-3-319-27146-0_29 

http://doi.org/10.1007/978-3-319-27146-0_29
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most of the current crops are planted in row structures, detecting these rows is one of the basic needs 

for the autonomous navigation of robots in semi-structured agricultural environments. Many 

researches had been conducted on detecting this line structures by camera images ((Marchant and 

Brivot 1995),(G. Jiang et al. 2010b)), light detection and ranging (LIDAR) laser scanner data 

((Hansen et al. 2010),(Barawid et al. 2007),(S. A. Hiremath et al. 2014)), or other types of sensors. 

Nevertheless, precise line detection, relying on noisy sensor data, is still a challenging task for a 

computer algorithm due to the inherent uncertainty in the environment (S. A. Hiremath et al. 2014). 

Humans can detect objects and shapes because of experience rather than a formal mathematical 

definition, like a computer algorithm does (Papari and Petkov 2011). The environment has a countless 

number of variables influencing the sensors, making it hard to get the right information out of the 

values (Russell and Norvig 1995). Aside from that, plants on the field are changing their shape 

rapidly, making object recognition even more challenging. First the plants are growing and, second, 

the conditions are changing. Therefore, there is a necessity for calibration of the algorithms before 

the robot is able to perform the task autonomously (S. A. Hiremath et al. 2014). 

In addition, weather and lighting conditions can already produce big changes in the results. This is 

especially problematic for image analysis, where alternate and discontinuous luminance usual affects 

the outcome (Papari and Petkov 2011).  

To deal with these uncertainties, researchers have used simulated datasets (Weiss and Biber 2011), 

artificial plants ((Weiss and Biber 2011), (Bochtis et al. 2015)) or recorded datasets ((English et al. 

2014), (G. Jiang et al. 2010b), (S. A. Hiremath et al. 2014)) to evaluate their algorithms. Since a 

simulation is always an approximate model of the environment, it will never cover all possibilities 

(Russell and Norvig 1995). When recording data, the question is of how to refer to the algorithm 

performance. One option is to set the crop row manually (S. A. Hiremath et al. 2014). The precise 

sensor value recording of the same plants over different growth stages, can be a good way for the 

later evaluation of navigation algorithms. In order to understand how algorithms behave under 

changing conditions in a field, it is necessary to know the pictured objects and how the sensors react 

on them. Therefore, it is important to know the correct plant position and parameters. In order to 

achieve that, the plant parameters must be mapped and referenced in every new test.  

The aim of this paper is to show how algorithm analysing could be improved using precise referenced 

sensor data, especially when the same plants can be investigated with the same sensors over different 

growth stages. For that purpose, the data set of a horizontal LIDAR is used. With the help of a highly 

accurate total station, all sensor data sets can be converted into the same reference frame, in order to 

obtain comparable results. This approach is tested by the performance evaluation of a common 

random sample consensus (RANSAC) line fitting algorithm (Fischler and Bolles 1981). The 



 

Chapter 4  Paper C 

 

- 55 - 

RANSAC algorithm has the advantage of being fast and robust against outliers, resulting in advanced 

performance when dealing with noisy sensor data. Therefore, the performance at different growth 

stages can be precisely evaluated, by using the same reference. 

 Materials and methods 

 Hardware and sensors 

A small 4-wheel autonomous robot with differential steering was used to move the sensors with 

manual control through the crop rows (see Figure 1). The size of the robot platform was 500 x 600 x 

1100 mm. The weight of the robot is 50 kg and it is equipped with four motors with a total power of 

200 W. Maximum driving speed is 0.8 m/s and the maximum static motor torque is 4 x 2,9 Nm. The 

robot system is equipped with wheel encoders, a VN-100 Inertial Measurement Unit (IMU) 

(VectorNav, Dallas, USA) and a LMS111 2D-LIDAR laser scanner (SICK, Waldkirch, Germany). 

The laser scanner was mounted horizontally at the front of the robot at a height of 0.2 m above the 

ground level. All other mounted sensors had not been used in this paper. 

For evaluating the precise position of the robot, the SPS930 Universal Total Station (Trimble, 

Sunnyvale, USA) was utilized. The total station was tracking a Trimble MT900 Machine Target 

Prism, which was mounted on top of the robot at a height of 1.07 m in order to guarantee always line 

of sight to the total station (see Figure 1).  

The robot is controlled by an embedded computer, equipped with i3-Quadcore processor with 3.3 

GHz, 4 GB RAM and SSD Hard drive. For energy supply, two 12V/48Ah batteries are providing an 

operating time of around 4-5 h, depending on the load torque, task and additional weight of equipment 

placed on the robot platform. The total station data was sent to a Yuma 2 Rugged Tablet Computer 

(Trimble, Sunnyvale, USA); this tablet is equipped with an Intel Atom CPU N2600 dual-core 

processor with 1.6 GHz, 4 GB RAM, SSD Hard drive, and a self-sufficient battery. Connectivity to 

the SPS930 total station is provided by an internal 100mW radio antenna at the 2.4 GHz (IEEE 

802.11) range. The Yuma 2 Rugged Tablet Computer was connected to the robot computer via serial 

RS232 interface for continuous data exchange.  
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Figure 1: Robot platform, equipped with the sensors and the reference prism. 

 Software 

The robot computer runs by Ubuntu 14.04 and use the Robot Operating System (ROS-Indigo) 

middleware for the data recording. The software components had been programmed in a combination 

of C++ and Python programming languages.  

The Trimble Yuma 2 Tablet was running under Windows 7 Professional and executed the Trimble 

SCS900 Site Controller Software Version 3.4.0. The Trimble software includes an easy-to-use 

graphical interface for fast calibration and point measurement. It also has the option to export the 

actual prism position via serial RS232 interface. The tablet was placed on the robot and the serial 

output was directly used by the ROS system to refer the robot position to the total station coordinate 

frame. The prism position data was time stamped, according to the computer system time, together 

with the sensor data. The data flow diagram can be seen in Figure 2. 

 

Figure 2: Data flow diagram of the robot sensor setup. 
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 Referencing and data acquisition 

To create a relative coordinate frame in the greenhouse, five fixed attachments for the MT1000 Prism 

had been placed on predefined positions. The accurate position of these five points could be located 

by just screwing the prism on the attachments for every new field test. The absolute point distances 

were stored during the first setup. Before every subsequent data acquisition, these points were 

measured once again by the total station in order to recalibrate the system to the first total station 

position with the original Cartesian coordinate frame. After every test, the inaccuracy in the static 

measurement was evaluated by reassessing each of these fixed points. The shift between the first 

reference points and the actual measurement was evaluated by the Trimble SPS software and was in 

all tests below 4 mm for all three dimensions. The total station was always placed almost at the same 

position inside the greenhouse, which lies around the zero point of the coordinate frame. 

After plant emergence, the stem position was measured with the aid of pendulum hanging from a 

tripod; the MT1000 Prism was attached at the centre of the tripod. It was assumed that the centre of 

each plant stem’s position will not change during the period of growth. Consequently, each of these 

points was used as the reference position of each individual plant.  

Due to the robot rigid body frame that was carrying the sensors, a static transformation between the 

prism and the sensor positions was performed. The three-dimensional orientation of the robot in space 

was evaluated by the IMU, which was placed at the centre of the robot and on the same axis as the 

prism. As the orientation of the prism could not be evaluated by the total station, the position of the 

prism was fused with the IMU data to transform the laser scans to the greenhouse frame.  

This procedure allowed to directly transform the recorded sensor data into the same coordinate frame, 

and even to assign them to single plant positions. In Figure 3a the test environment with the moving 

robot is presented and in Figure 3b the corresponding sensor value visualization of all attached sensors 

in the ROS environment is illustrated. The blue points correspond to the horizontal laser scanner data. 

The sensor files were separated at a size of 4 GB. The timestamp was according to the robot embedded 

computer system time, with a resolution of one millisecond. The LIDAR data was collected with an 

average of 25 Hz and a resolution of 0.5 degree. The total station updated the data with 15 Hz. The 

IMU data was transmitted with 40 Hz. Linear interpolation was used to fuse robot position and the 

sensor data before transforming it to the global coordinates of the greenhouse frame.  
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Figure 3: (a) The greenhouse environment and (b) a visualisation of the transformed sensor data in the ROS 

visualisation environment. 

 RANSAC algorithm 

The RANSAC is a commonly used algorithm for evaluating plane parameters in noisy point cloud 

data (Choi et al. 2014), (Weiss et al. 2010). But also for row or line estimation in image analysis 

(English et al. 2014), and 2D-LIDAR data (J. Zhang et al. 2014), (Marden and Whitty 2014). To 

evaluate the general algorithm behaviour, the RANSAC was chosen due to its previously mentioned 

robustness against outliers. The implemented RANSAC algorithm is part of the Point Cloud Library 

(Rusu and Cousins 2011) and was integrated in the ROS environment, for direct analysis of the 

published scans. To get always precise reference of the extracted lines, the LIDAR data was first 

transformed to the robot body frame and then to the overall greenhouse frame.  

As the distance between maize crop rows is 0.75 m, this parameter was used to filter roughly the row 

area with the known robot position with a rectangle. The resulting point cloud was separated to have 

for each crop row an individual point cloud. This was done by using the known robot position and 

robot direction. The RANSAC was then applied to each distinct point cloud. The maximum iteration 

limit was set to the input point number and the maximal distance range for the line to 0.5 m. These 

parameters were fixed for all performed line fittings.  

 Experiments 

Five rows of maize were planted with a length of 5.2 m each. The row spacing was defined according 

to common agricultural practice to 0.75 m, with 41 plants per row. The maize was planted in a 

greenhouse to be independent of external weather conditions. The measured positions of the plants, 

total station and reference points can be found in Figure 4. After every data acquisition, the height, 

stem width and leaf numbers of each single plant had been measured. This was done manually with 

a measuring tape and a sliding calliper. 

(a) (b) 
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Figure 4: Manually measured plant positions, reference points and total station position. 

The ideal line parameters were evaluated by the plant germination positions, measured with the total 

station. Because this line has no outliers, the least square algorithm can result in the most accurate 

line fitting. As reference, a 2D line in the XY-plane was estimated using the equation 𝑓(𝑥) = 𝑎𝑥 +

𝑏. The residual 𝑟 of every data point 𝑃𝑖(𝑥𝑖, 𝑦𝑖) can be described with:  

 𝑟𝑖 = 𝑓(𝑥𝑖) − 𝑎 ∗ 𝑥𝑖 − 𝑏 (1) 

Using the least square estimation, the best line fit can be estimated as: 

 
min
𝑎 𝑏

∑ 𝑟𝑖²

𝑛

𝑖=1

 
(2) 

This was adapted to the emerging points of the plants, resulting in the line parameters presented in 

Table 1.  

As it can be seen in the intersection points, shown in Table 1, the row with the smallest angle 

difference between the lines is the path between crop row 2 and 3; here, the intersection point had the 

longest distance to the row centre. The best performance was expected from the most parallel lines 

for evaluating the row detection algorithm. So crop row line 2 and 3 were selected. The sensor data 

recording took place from 23.04.15 until 1.06.15 in Stuttgart Hohenheim. In total 7 tests were 

performed. In every test, the robot was driven by a remote joystick with a constant speed through the 

crop rows. The average speed was around 0.05 m/s in order to acquire a high data density. Both rows 
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were recorded twice, once for each travel direction. For all 7 test days, each travel direction was 

evaluated, resulting in a total of 14 recorded and analysed datasets. The laser scanner data was used, 

when the robot reference prism was in an area between 2 to 5 m in the x direction. For filtering 

purposes, the scans were first transformed to Cartesian coordinates and then to the greenhouse 

coordinate frame. The reflected points of the robot vehicle were removed and the point cloud was 

separated as described above. By doing this, the RANSAC could be performed for each crop line 

separately. Each of the line fittings was addressed directly to one single point cloud set without using 

any prior knowledge about the last dataset or the robot position. Scans with less than three points in 

the line area were ignored. In total 10277 different laser scans were evaluated. In Table 2 the number 

of analysed scans per line are presented.  

Table 1: Listing of the line parameters. 

Line number Line equation in [m] Intersection point with last row in [m] 

1 𝑓(𝑥) =  −0.0062𝑥 +  0.4441 - 

2 𝑓(𝑥)  =  −0.0079𝑥 +  1.1913 𝑃 (439.53, −2.28) 

3 𝑓(𝑥)  =  −0.0085𝑥 +  1.9414 𝑃 (1250.17, 8.69) 

4 𝑓(𝑥)  =  −0.0068𝑥 +  2.7186 𝑃 (−457.18, 5.83) 

5 𝑓(𝑥)  =  −0.0101𝑥 +  3.4811 𝑃 (231.06, 1.15) 

Table 2: Numbers of analysed scans per line. 

Test number: Date Days after seeding 
Analysed scans 

line 3 
Analysed scan line 2 

1 23.04.2015 28 67 688 

2 27.04.2015 32 601 990 

3 30.04.2015 35 910 1041 

4 05.05.2015 40 897 941 

5 13.05.2015 48 754 763 

6 18.05.2015 53 653 652 

7 01.06.2015 67 660 660 

The difference between ideal line and the algorithm solved line, was evaluated with the help of the 

Root Mean Square Error (RMSE), defined by the following equation: 

 

𝑹𝑴𝑺𝑬 = √
∑ (𝛿 − 𝛽𝒊)

𝒏
𝒊=𝟏 ²

𝒏
 

(3) 
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With 𝛿 as ideal line parameters and 𝛽𝑖 as the resolved algorithm parameters at the scan 𝑖. 

 Results and discussion 

As the greenhouse soil was not homogeneous, there was a huge diversity in growth status. For 

tracking the crop development, the highest point of each plant was measured and the mean value was 

evaluated for each crop row. The variability is expressed by the standard deviation of all 41 plants 

heights per crop row. The results are shown in Figure 5. The average height of the plants at line 3 had 

been lower than at line 2. 48 days after seeding, most of the plants reached the level of 0.2 m height. 

At all tests afterwards the number of analysed scans had been almost the same for both sides (see 

Table 2). As in the first two tests the average plant height of line 3 was below the height of the laser 

scanner, the RANSAC algorithm for line 3 detected points, just when the vehicle was turned 

downwards, because of uneven ground. The absolute mean value for the height of the line 3 was 0.47 

m while for line 2 the mean value was 0.65 m. The tallest plant reached 0.82 m at line 3 and 0.86 m 

at line 2. For later growth stages the standard deviation was increased. Along with the height, the 

numbers of leaves, covering the row, were also increased. This caused limited sight of view for the 

LIDAR.  

(a) (b) 

  

Figure 5: Mean growth status of the plants for (a) line 3 and (b) line 2. 

For evaluating the change between crop row and RANSAC output, the RMSE for every data set was 

estimated. The results for the row position (Figure 6a) showed a higher error in the first tests for all 

mean values below 0.2 m. For all other heights, the RMSE value fluctuated at a value around 0.1 m. 
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The best matches were after 35 and 67 days at line 2 with an RMSE value of 0.07 m and 0.06 m, 

respectively.  

Also the heading error (Figure 6b) had a higher value at the first tests with low mean plant height. 

For both lines a local minima could be detected after a 35 days (see Figure 6b). As it could be seen 

in Table 2, this was the first test with almost equal number of detected lines out of the scans. With 

the growth of the plants, the precision decreased back again. Only the last measurement of line 3 did 

performed better than the first minima of the same line. A reason for this could be the inhomogeneous 

growth of the crop plants. In total the RANSAC performed better at line 2 than in line 3. Reasons for 

that could be the more homogenous growth of the plants, which is expressed by the standard deviation 

of the two lines (see Figure 5). Especially line 2 had almost constant RMSE values between 35 and 

53 days after seeding. 

(a) (b) 

  

Figure 6: RMSE of (a) position and (b) heading of row line 2 (▲) and line 3 (●). 

To better understand the evaluated error of the real line parameters, the direct RANSAC output is 

shown in Figure 7. For evaluating the values, two tests after 35 days and two tests after 67 days are 

visualized. For both test days, the robot moved through the row in each direction once. 200 

measurements were evaluated and compared in the following graph (see Figure 7). The RANSAC 

heading output after 35 days is shown in Figure 7a and the output after 67 days can be seen in Figure 

7b.  The inclination parameter of line 2 is -0.0079, which under ideal conditions should be the same 

like the computed RANSAC parameter. The nearest heading to this theoretical value can be seen at 

35 days after seeding (see Fig 6b). After 67 days, the computed values increased and produced out of 
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these a bigger shift to the reference value. At the end of the row a higher shift can be noticed. A reason 

for this could be, the lower number of points, detectable at the end of a row, to balance the outliers. 

After 67 days this performance was worse compared to the values after 35 days as illustrated in Figure 

7b. First this could be reasoned, by the high amount of leaves hanging into the laser scan area. These 

leaves blocked the detection of the stem positions that were necessary to evaluate the line orientation. 

For every direction the robot moved, a static shift of the heading was observed (see Figure 7). This 

can be explained by some reflections of leaves, which caused a shift of the detected line to the middle 

of the row. This effect was stronger after 67 days and caused a narrow detection of the plant stems. 

The minimal reached RMSE was 0.05 rad for the line detection with the RANSAC after 37 days. 

After 67 days this value increased.  

In worst cases the noise could be much higher than 5 degrees (0.1 rad) compared to the real value. 

This can cause problems on line following, especially when there is not enough space between the 

vehicle and the rows. The failure rate could be seen in many cases of the evaluated data. A part of the 

analysed error could also be resulted by the inaccuracy of the LIDAR measurements.  

For getting a RANSAC algorithm robust for navigation, this heading uncertainty must be 

compensated. Higher algorithm robustness could be accomplished using a Kalman filter. When the 

growth status is known, the heading error could also be decreased by a static offset, which must be 

evaluated before starting the line following.  Filtering for outliers or mean filter methods could also 

bring better results.  

(a) (b) 

  

Figure 7: Heading values of the RANSAC for (a) line 2, 35 days after seeding and (b) 67 days after seeding. 

Robot movement in positive x direction (orange triangles) and in negative x direction (blue dots). 

The results of the RANSAC showed a high variability in the dataset, with different outcomes of the 

algorithm. So it could be assumed, that the variability in the dataset brings additional options for 
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testing the robustness of line following algorithms for different growth states. The experimental setup 

allowed to detect a heading offset, which is dependent on the growth status of the crop plants. It could 

be shown that this offset is dependent on the sensor position and the movement of the robot. Also the 

best height for the line detection with the given laser position could be evaluated. This was at a mean 

height of 0.265 m of the plants. 

 Conclusions 

The results of the collected data set showed high precision and good referenced sensor data for all 

measured growth stages. The application of a RANSAC algorithm for line detection to the horizontal 

laser data showed high diversity in heading and positioning. The smallest heading error was detected 

35 days after seeding and at an average plant height of 0.268 m. After that, the error increased and 

brought a higher RMSE value to the detection. Also a drift dependent on the travel direction of the 

robot was observed, which was caused by leaves inside the row. This effect increased with the growth 

of the plants. In many cases of the given data set, the deviation of the line heading was higher than 5 

degrees. This would cause problems for precise row navigation. The position error was for most cases 

acceptable. For line following applications in maize with a RANSAC algorithm, robust filtering of 

the laser data and algorithm results should be considered. In total the approach was helpful in order 

to evaluate some basic problems of outdoor line detection with LIDARs and a RANSAC algorithm. 

Aside of that, the accurate reference of the heading difference could be evaluated. 
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Abstract 

A two dimensional (2D) laser scanner was mounted at the front part of a small 4-wheel autonomous 

robot with differential steering, at an angle of 30 degrees pointing downwards. The machine was able 

to drive between maize rows and collect concurrent time-stamped data. A robotic total station tracked 

the position of a prism mounted on the vehicle. The total station and laser scanner data were fused to 

generate a three dimensional (3D) point cloud. This 3D representation was used to detect individual 

plant positions, which are of particular interest for applications such as phenotyping, individual plant 

treatment and precision weeding. Two different methodologies were applied to the 3D point cloud to 

estimate the position of the individual plants. The first methodology used the Euclidian Clustering on 

the entire point cloud. The second methodology utilised the position of an initial plant and the fixed 

plant spacing to search iteratively for the best clusters. The two algorithms were applied at three 

different plant growth stages. For the first method, results indicated a detection rate up to 73.7% with 

a root mean square error of 3.6 cm. The second method was able to detect all plants (100% detection 

rate) with an accuracy of 2.7 – 3.0 cm, taking the plant spacing of 13 cm into account. 

                                                 
4 The publication of Chapter 5 is done with the consent of the Elsevier Publishing. The original publication was in 

Computers in Industry. It can be found under the following link: http://doi.org/10.1016/j.compind.2018.03.023  
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 Introduction 

Detecting individual plants could bring high benefits to future farming. When the precise position of 

the plants is known, variable rate application could be scaled down to individual plant treatment. By 

obtaining this information, autonomous mechanical or thermal precision weeding could be 

implemented (Griepentrog et al. 2005; Pérez-Ruiz et al. 2012). This could also help to decrease the 

use of chemicals such as fertilizers, pesticides and herbicides (Chéné et al. 2012; Gonzalez-de-Soto 

et al. 2016). The integration of autonomous machines into every-day agricultural practice could result 

in increasing yield, saving labour cost and time but also valuable resources. This could make the use 

of robots in agriculture economically feasible as it is still difficult to justify such an investment 

(Pedersen et al. 2006). 

Autonomous machines need robust object classification of the environment and an optimal behaviour 

to the classified objects (Fountas et al. 2007; Reina et al. 2015). The machines need sensors that will 

enable them to react appropriately to any unknown circumstances that may occur in the unstructured 

agricultural environment. It is necessary to determine everything in this environment, which could be 

potentially damaged by the robot or damage the robot itself. This would be highly important in order 

to find the right strategy for robot navigation and the performed agricultural applications. Individual 

plant observation could even help to improve decisions when the question arises if the acquired sensor 

data belong to a rigid or a flexible obstacle, but also if the data are measurement noise. The availability 

of this information could enable an optimised path navigation system for future applications involving 

agricultural robotics.  

Mapping the individual seed positions and using this information for later applications has been 

already successfully performed by using a Real Time Kinematic Global Navigation Satellite System 

(RTK-GNSS) (Griepentrog et al. 2005; Pérez-Ruiz et al. 2012). The main advantage of this method 

was that it was not dependent on the crop type, as the shape and the morphology of the plants were 

not considered (Pérez-Ruiz et al. 2012). However, this method was not able to define the individual 

plant parameters, which are necessary to determine the demands of each individual plant. 

For plant classification in 2D images, many different algorithms and methods have been used. The 

results varied depending on the environment, the object diversity, the used sensors and the 

implemented algorithms. Shrestha et al. (2004) used an Otsu thresholding algorithm to discriminate 

between maize plants and weeds in video data. Sugar beet has been also analysed for crop/weed 
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discrimination using 2D images (Åstrand and Baerveldt 2004). Haug et al. (2014) reached a detection 

rate of 80.4%, using a random forest classifier for plant discrimination in images. Two methods based 

on support vector machine (SVM) and ant colony optimisation were used to discriminate different 

plant species out of 2050 images with an accuracy of 95.5% (Ali Jan Ghasab et al. 2015). Neural 

networks were used to classify sunflower crops in images reaching a classification rate of 85 – 90% 

(Arribas et al. 2011). Dyrmann et al. (2016) used a deep convolutional neural network to classify 22 

different weed species out of a training dataset of 10413 upper-view pictures. The reached success 

rate fluctuated between 33 – 97%. Bayesian classification and unsupervised learning for isolating 

weeds in crop rows were investigated with a success rate of 85 – 94% by De Rainville et al. (2014).  

3D point clouds for agricultural analysis were created by scanning the area of interest with terrestrial 

light detection and ranging (LiDAR) scanners (Escolà et al. 2016; Rosell et al. 2009). The point cloud 

clustering for separating single plants was already performed with fixed distances (Arnó et al. 2013), 

convex-hull approach (Auat Cheein et al. 2015), hidden semi-Markov model (Underwood et al. 

2015), by clustering the highest points inside a defined grid (Reitberger et al. 2007) or using machine-

learning approaches (Gleason and Im 2012). Weiss and Biber (2011) reached a detection rate of 60% 

while examining early stage maize plants with a 3D LiDAR scanner. They analysed the data with a 

k-d-tree based Euclidean Clustering algorithm. Garrido et al. (2014) used a LiDAR and a light curtain 

to detect stem positions of almond trees, with a detection rate of 99.5%. The position of the detected 

stems was obtained with the help of an optical wheel odometer at clearly separated plants with no 

overlapping parts. Sonar sensors were also used to detect plants, but the results were not that precise 

due to the detection cone of the sensor (Harper and McKerrow 2001; Reiser, Martín-López, et al. 

2017). Weiss et al. (2010) tested different machine-learning algorithms for 3D point clouds generated 

by a 3D laser scanner under laboratory conditions, with a success rate of 34.5 – 98%. Conditional 

random fields were used in point clouds, created by structure from motion, to discriminate between 

grapes, leaves and branches with a success rate of 96% (Dey et al. 2012). Point clouds of an RGB-D 

camera were analysed to detect broccoli heads with the help of histograms and SVM classifier with 

a detection rate of 95.2% (Kusumam et al. 2016). A Bayesian classifier used the combination of 

spectral data and 3D features for crop/weed discrimination with a success rate of 85 – 95% 

(Strothmann et al. 2017). 

The basic limitation of machine-learning principles is the high amount of labelled training data, which 

are necessary to create robust and reliable classifiers. Inappropriate data sets could cause serious 

issues in terms of safety for autonomous machines (Steen et al. 2016). As the plant diversity is 

immense, robust and accurate classifiers for plant discrimination under outdoor conditions are 
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indispensable. Machine-learning models are vulnerable to adversarial examples, which can cause 

unexpected classification errors (Rozsa et al. 2016). By correctly contextualising sensor data, more 

robust results could be obtained compared to machine-learning as proven by Garrido et al. (2014), 

where context awareness helped to reach a stem detection rate of 99.5%, better than all machine-

learning principles in literature. 

One of the biggest challenges for robotics is the sensing and the correct environment classification. 

Bechar and Vigneault (2016) considered it as the weakest link of autonomous robots. The best 

examples are harvesting robots, which are still not performing sufficiently under high uncertainties 

for detecting and picking fruits (Back et al. 2014). For reliable autonomous agricultural robots, a 

robust and easy object and plant detection system is necessary. However, this should be performed 

with affordable and robust sensors, so that the investment costs do not overcome the saving of 

resources and labour (Pedersen et al. 2006). Vision and machine-learning algorithms are facing 

difficulties when the objects of interest change their morphology over time. A unique characteristic 

in agriculture is that the plant detection algorithms are highly impacted by the plant growth stage.  

In general, it is possible to extract information such as plant position, plant height, leaf area, yield or 

even plant health status out of 3D representations. As Vázquez-Arellano et al. (2016) point out, it is 

necessary to have 3D sensor data to obtain this information. Many of the autonomous outdoor robots 

today are using horizontally mounted 2D LiDAR scanners for simultaneous localisation and mapping 

(SLAM) and navigation, which are still more robust and efficient compared to camera-based systems 

(Hiremath et al. 2014; Reiser et al. 2016; Steen et al. 2016). Vertically mounted 2D LiDAR scanners 

have been mainly used for remote sensing (Andújar et al. 2013; Jiang et al. 2016). Most projects for 

individual plant detection used vertical laser scanners or already 3D sensors (Chéné et al. 2012; 

Garrido et al. 2014, 2015; Lin 2015). Horizontally mounted LiDAR scanners are not suitable for 

creating 3D representations because their detecting is limited due to the parallel scanning to the 

terrain. When the sensor is mounted vertically, every robot movement provides a new position or 

orientation of the sensor, allowing a better observation of the 3D environment. However, a vertically 

positioned sensor makes it difficult to detect obstacles in front of the robot. A compromise is to mount 

the LiDAR scanner in an inclined position. This makes it possible to detect obstacles before the robot 

reaches them, and at the same time to assemble the data into a 3D point cloud representation.  

The aim of this publication is to use a terrestrial 2D LiDAR for obtaining georeferenced 3D point 

clouds of maize plants at different growth stages and use this information to cluster individual plants. 

Until now, the use of context information for plant clustering in 3D point clouds has not been 

investigated. Therefore, the proposed methodology should show that it is possible to significantly 
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increase the accuracy of the plant detection when an algorithm is used together with the right context 

information (plant spacing, row position). For the plant detection and calculation of the plant position, 

two different approaches are applied and compared: 

 

   Search for plant objects in the complete 3D representation by removing the ground points and 

by searching for objects in the remaining data points with a Euclidian distance clustering. 

   Estimate plant positions using the fixed plant spacing parameter and search for the nearest 

fitting cluster. Use the obtained cluster position to estimate the next plant position. 

 Materials and methods 

 Hardware and sensors 

A small 4-wheel autonomous robot with differential steering was the carrier vehicle to move the 

sensors through the crop rows (Figure 1a) (Reiser et al. 2016). The Robot Operating System (ROS) 

visualisation software “rviz” (Figure 1b) was used to present the output of the data processing and 

assembling of the inclined LiDAR in real-time. 

(a) (b) 

  

Figure 1: The robot platform for the data acquisition (a) and the representation of the robot in the ROS 

visualization tool “rviz” while assembling the LiDAR data (b). 

The used laser scanner in this research was an LMS111 2D-LiDAR laser scanner (SICK, Waldkirch, 

Germany), mounted at a height of 0.58 m, pointing downwards at an angle of 30 degrees. The 

LMS111 sensor is robust against direct sunlight and has a separate heating system to work properly 

even under rainy and foggy conditions. To measure the robot orientation in all three directions, the 

VN-100 Inertial Measurement Unit (IMU) (VectorNav, Dallas, USA), was included in the sensor 

setup. The SPS930 Universal Total Station (Trimble, Sunnyvale, USA) tracked a Trimble MT900 

Machine Target Prism (Trimble, Sunnyvale, USA), which was mounted on top of the robot at a height 

of 1.07 m (see Figure 1a) to evaluate the robot position. To qualitatively compare the assembled point 
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clouds with RGB images, a Kinect v2 (Microsoft, Washington, DC, USA) sensor was mounted at the 

front part of the robot at a height of 0.95 m. The specifications of the used sensors for the 3D point 

cloud generation can be found in Table 1.  

  Table 1: Sensor specifications. 

Sensor Specification Value 

LMS 111 (Sick AG Waldkirch 2017): Operating range: 0.5 m to 20 m 

 Field of view/scanning angle: 270º 

 Data rate: 25 Hz 

 Angular resolution: 0.5º 

 Systematic error: ± 30 mm 

 Statistical error (1𝜎): 12 mm (0.5-10 m) 

SPS930 (Trimble 2017):  Operating range: 

Field of view/scanning angle: 

0.2 to 700 m 

360° 

 Data rate: 20 Hz 

 Distance measurement accuracy: ± (4 mm + 2 ppm) 

VN100 (Vectornav 2017) : Data rate: 40 Hz 

 Angular resolution: 0.05° 

 Accuracy heading: 2.0° 

 Accuracy pitch/roll: 1.0° 

The robot used an embedded computer system with 3.3 GHz, 4 GB RAM and SSD Hard drive. In 

addition, the Total Station data were sent with a radio antenna at the 2.4 GHz range (IEEE 802.11) to 

a Yuma 2 Rugged Tablet Computer (Trimble, Sunnyvale, USA) with an Intel Atom CPU N2600 

dual-core processor with 1.6 GHz, 4 GB RAM and SSD Hard drive. The Yuma 2 Tablet was placed 

on the robot. The data exchange between the computers was done via serial RS232 interface. The 

whole data flow inside the robot, observation system, computers and the sensors are depicted in the 

following data flow chart (Figure 2). 

 

Figure 2: Data flow diagram of the robot and sensor architecture used in the experiment (Reiser et al. 2016).  
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 Software 

The robot computer was running on Linux Ubuntu 14.04 and used the ROS-Indigo middleware for 

sensor control, actuator control and data recording (Quigley et al., 2009). This middleware provided 

the architecture for sensor time-synchronisation, data processing, data filtering and linear data 

interpolation. As ROS is providing monitoring (rqt) and 3D visualisation tools (rviz), it was possible 

to monitor the sensor data and the robot behaviour in real-time and to visualize the outputs. The 

software components of the robot were programmed in a combination of C++ and Python 

programming languages. The Trimble SCS900 Site Controller Software (Software Version 3.4.0) was 

used to recalibrate the system for every test and to export the total station data to ROS. The plant 

detection accuracy of the programmed algorithms was analysed in Matlab R2015b (MathWorks, 

Natick, MA, USA). 

 Calibration and experiments 

To reference all sensor data to the same Cartesian coordinate frame, five fixed locations were defined 

at the test area inside a greenhouse (Garrido et al. 2015; Reiser et al. 2016). The positions of these 

five points were measured by the total station at the beginning of every test by fixing the prism on 

the defined locations on the greenhouse’s surrounding concrete wall. By doing this, the positioning 

system of the total station was every time calibrated to the same fixed coordinate frame. Based on 

these static measurements, the shift between the first reference points and the actual measurements 

was below 4 mm for all three dimensions in all tests. First, the roll, pitch and yaw angle of the IMU 

were fused with the total station data and were used to define the prism position and orientation. From 

the prism, a static transformation to the robot geometric centre and to the sensor position was 

performed. This procedure allowed to track the precise sensor position and orientation in the same 

reference frame (Garrido et al. 2015; Reiser et al. 2016).  

In total five rows of maize were seeded in the greenhouse, with a length of 5.2 m and a width of 0.75 

m. Each row had a fixed number of 41 plants. In this study, just two rows were considered, one row 

to the left and one to the right of the robot driving direction. The spacing between the plants was 

defined by different Gaussian distributions for every crop row, to emulate diverse real scenarios. The 

rows used in this paper were planted with a standard deviation for the plant spacing of 1.7 cm (left 

row) and 0.6 cm (right row). The ground truth positions of the plants were measured using the Total 

Station after plant emergence. With the help of a tripod, a pendulum was pointed over the stem 

position to obtain the correct position. The resulting distance between plants had a mean spacing of 

13.0 cm (left row) and 12.8 cm (right row). The corresponding standard deviation was 5.9 cm left and 

2.2 cm at the right crop row. This agrees with the results reported by Sun et al. (2010), were a standard 



 

Chapter 5  Paper D 

 

- 73 - 

deviation between planting and emergence of 5.1 cm was measured with an RTK-GNSS system. Due 

to the limited space inside the greenhouse, it was possible to visualize 38 of the plants in the 3D 

representation. The tests were performed at three different growth stages with plants between V1 and 

V3 leaf stage (Ritchie et al. 1993). As the soil in the greenhouse was not previously cultivated, and 

no fertiliser was added to the soil in the experiment, the development of the maize plants was slower 

than it would be under real field conditions. Different lighting conditions occurred during the 

experiments because the greenhouse was not shadowed. The average height and standard deviation 

of the plants in the collected datasets are described in Table 2. 

Table 2: Description of the maize plant heights in the used datasets. 

 Left row Right row 

Dataset 

no. 

Average plant 

height [m] 

Height standard 

deviation [m] 

Average plant 

height [m] 

Height standard 

deviation [m] 

1 0.14 0.0567 0.12 0.0556 

2 0.17 0.0624 0.13 0.0609 

3 0.23 0.0831 0.16 0.0786 

After every test, the height and the stem width of every single plant were manually measured and 

used as a reference. All three tests were performed in the same driving direction and in the same path. 

The number of used sensor readings, recording time and other details for all datasets are described in 

Table 3. 

Table 3: Description of used datasets including date of the data acquisition, duration and number of sensor 

readings. 

Dataset 

[no.] 
Days after 

seeding [d] 
Date 

Duration 

[s] 

IMU data 

[no.] 

Tilted LiDAR 

scans [no.] 

Total station 

data [no.] 

1 26 21.4.2015 78 3146 1965 1573 

2 28 23.4.2015 54.8 2189 1366 1086 

3 32 27.4.2015 60 2426 1499 1200 

The trajectories of the robot for all three performed tests are depicted in the following Figure 3, 

together with the ground truth of the maize plants. 
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Figure 3: Path moved by the robot at the three test days. For reference, also the plant positions are depicted. 

The driving direction was from the right to the left (see arrow). 

The speed of the robot was kept as constant as possible, to ensure similar densities for the assembled 

point clouds. The mean speed was 0.0965 m s-1, 0.1086 m s-1 and 0.1064 m s-1 for the first, second 

and third test, respectively. The exact speed distribution over the x-axis for the three tests can be seen 

in Figure 4. 

(a) (b) (c) 

   

Figure 4: Description of the three test runs (a) speed of the first, (b) second, and (c) third dataset. 

 Data processing and assembling 

To obtain a representative and accurate plant map out of the raw sensor data, the first task was to 

interpolate the LiDAR position by using the total station and IMU data. This position was then fused 

with the LiDAR data in order to create a 3D point cloud representation. Subsequently, the two 

different approaches to filter plant structures were applied to the dataset and the results were 

compared (Figure 5). The first approach used Plant Detection with Euclidian Clustering (PDEC) and 

the second an Iterative Plant Clustering Method (IPCM). 
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Figure 5: Data flowchart, describing how the sensor data were converted to a resulting plant map. 

 Point cloud assembling 

To obtain usable 3D point clouds from the referenced 2D sensor data, the raw data of the laser scanner 

were filtered to remove noise and points outside the area of interest. Initially, the reflections of the 

vehicle and the greenhouse wall were removed from the sensor data, using a distance filter. In 

addition, the scanned distances by the LiDAR were limited to 1 m so that only one row to the left and 

one to the right of the robot could be observed. Sharp edges and reflective surfaces can cause the 

effect of misaligned LiDAR beams and create the so-called ghost points (Balduzzi et al. 2011). This 

is mainly the case when the laser beam partially hits a plant, or the angle of incidence is higher than 

a specific threshold. Balduzzi et al. (2011) found that an angle of incidence higher than 60 degrees 

can cause variable intensities and make ghost points more probable. The plant edges were responsible 

for a high percentage of this measurement noise. To remove these ghost points from the raw data, a 

shadow noise filter was applied (see Algorithm 1). 
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Algorithm 1 Shadow Noise Filter 
Require: scan, sensorOrigin, minAngle, maxAngle 
for all points p in scan do 

angle_to_last_point = getAngleBetweenPointsComparedToSensorOrigin (pi, pi -1) 
angle_to_next_point = getAngleBetweenPointsComparedToSensorOrigin (pi, pi+1) 
 

if angle_to_last_point >minAngle or angle_to_last_point < maxAngle then 
                       removeFromOutput (pi) 

end if 

if angle_to_next_point >minAngle or angle_to_next_point < maxAngle then 
                       removeFromOutput (pi) 

end if 

end for 

For all three datasets, the same filter settings were used. The minAngle was set to -60 degrees and the 

maxAngle 60 degrees. Then the data were transformed together with the fusion of the robot total 

station position and the IMU orientation to a fixed world coordinate system (Garrido et al. 2015). 

 Plant detection algorithms 

The resulting 3D representations were later processed to find the plant clusters and then predict the 

individual plant positions. For every plant point cloud cluster, the 3D centroid was evaluated and 

assumed as the resulting plant position. The centroid c was correlated to the n number of P points in 

a point cloud cluster in Equation 1. 

𝑐 =
1

𝑛
∑ 𝑃𝑖

𝑛

𝑖=1

 (1) 

Only the x and y coordinates of the plant positions were considered in order to compare the calculated 

centroids to the ground truth measurements acquired by the total station. To assess the accuracy of 

the plant pose, the mean value, the standard deviation and the Root Mean Square Error (RMSE) of 

the position error were calculated and compared. 

 Plant Detection with Euclidian Clustering (PDEC) 

The PDEC method follows a basic approach for detecting and separating objects by removing the 

ground plane, which is widely used for object recognition in point clouds (Owens et al. 2015; 

Vosselman et al. 2004; Weiss and Biber 2011). Consequently, the ground points were detected and 

removed from the point cloud. The remaining points above the detected ground plane were further 

processed. This method does not take the order of points into account and can be applied to all point 

clouds, with clearly separated objects such as early-growth-stage crop plants. Initially, the point cloud 

was separated into two parts to obtain two point clouds, one for each row. To these point clouds, a 

basic Random Sample Consensus (RANSAC) plane algorithm was applied as implemented in the 
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Point Cloud Library (PCL) (Fischler and Bolles 1981). A heuristic algorithm calculated the distance 

of each point P(x,y,z) to the plane model, to get the point-to-plane distance. This ransac_dist was 

solved using the Hessian Normal form, describing a plane with the plane equation parameters 

constants a, b, c and d. 

𝑟𝑎𝑛𝑠𝑎𝑐𝑑𝑖𝑠𝑡 = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 (2) 

When the distance of the point to the plane equation was below the defined threshold, this point was 

removed from the point cloud. To eliminate noise and outliers, the remaining plant points were 

filtered using a radius outlier filter (PCL 1.7.0, RadiusOutlierRemoval class). To separate the 

resulting points, a k-d-tree clustering was utilised (PCL 1.7.0, EuclideanClusterExtraction class) 

(Bentley 1975; Rusu et al. 2009), assuming that the plants were spatially separated in the point cloud. 

The min and max cluster size of the point clouds were fixed in the range between 5 and 1000 points. 

To ensure the best possible results, the parameter values were individually adjusted for each row. The 

used parameters for the algorithm are listed in Table 4. 

Table 4: Algorithm settings first method (PDEC). 

Dataset [no.] Row side 
RANSAC 

distance [m] 
Noise radius [m] 

Min points inside 

radius [no.] 

Cluster 

distance [m] 

1 Left 0.045 0.05 20 0.02 

1 Right 0.035 0.03 10 0.05 

2 Left 0.06 0.05 15 0.03 

2 Right 0.035 0.05 15 0.05 

3 Left 0.06 0.05 15 0.05 

3 Right 0.03 0.05 15 0.03 

 Iterative Plant Clustering Method (IPCM) 

The fixed plant spacing was used to facilitate the clustering of single plants from the entire point 

cloud. A rough estimate of the starting position inside the plant row was used to limit the search area. 

All points around the starting point with a distance less than the fixed plant spacing multiplied by a 

factor of 1.5 were selected (Algorithm 2). All ground points were removed from the point cloud. As 

the terrain was not level, an additional threshold parameter, the RANSAC distance, was necessary in 

order to remove all ground points (Equation 2). All remaining points after the ground removal were 

considered as plant points. The resulting points were clustered and the 3D centroid of every cluster 

was calculated. These centroids were compared to the initially estimated plant position. The nearest 

cluster centroid was estimated as the real plant position and was stored in a plant position array. On 
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the resulted plant position, the IPCM added the fixed plant spacing along the row direction and then 

restarted an iterative process until the end of the row was reached.  

In the experiment, the row structure was parallel to the x-axis of the world coordinate frame. The 

plant spacing of 13 cm was added to the x-axis value of the last plant position. All resulting plant 

clusters were saved in an array (plant_positions_array) to be used later for plant description and 

mapping.  

The height of three plant clusters was evaluated and was then compared to the ground truth data as 

an example to assess the algorithm capability. As the terrain plane was almost horizontal, the distance 

from the highest point to the terrain plane was considered as the height of the plant (Equation 2). The 

RANSAC plane reduction removed all points with a smaller distance to the plane than the RANSAC 

distance. This factor was added to the final estimated plant height. 

Algorithm 2: IPCM 
 

Input: point_cloud, first_plant_position, plant_spacing, RANSAC_distance, cluster_distance, spacing_factor 
Output: plant_position_array 
 

actual_plant_pose = first_plant_position 

result_points=GetAllPointsAroundPlant(actual_plant, point_cloud, plant_spacing * spacing_factor) 

result_points=RemoveGroundPoints(result_points, RANSAC_distance) 

 

while result_points include points do 
clusters = DoEucledianClustering(result_points,cluster_distance) 

for all clusters do 
 

 2D_centroid = Get2DCentroid(cluster) 
 distance_to_actual_plant = GetDistance(2D_centroid, actual_plant_pose) 

  

if distance_to_actual_plant < than the other cluster centroids then 
 

addToPlantArray(2D_centroid, cluster) 

best_centroid = 2D_centroid 

 

end if  

end for 

 

actual_plant_pose = best_centroid + plant_spacing  

result_points = GetAllPointsAroundPlant(actual_plant, point_cloud, plant_spacing* spacing_factor) 

result_points=RemoveGroundPoints(result_points, RANSAC_distance) 

 

end while 

The whole process was programmed in a ROS node so that it could be used and visualised in real-

time. The following Figure is illustrating the estimated plant positions (blue dots), the obtained point 

cloud and the ground truth (green sticks) in the ROS visualization tool “rviz” (Figure 6). 
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Figure 6: Processed point cloud is shown in a 3D representation of the ROS visualisation tool “rviz”. The blue 

spheres present to the automatically detected plant positions and the green sticks indicate the ground truth 

positions.  

The following Table 5 is presenting the used parameters for the three datasets. For each row side, one 

separate setting was used. The cluster distance defined the max spacing that was necessary between 

the points to separate the points into two different clusters. The “max cluster deviation” defined the 

max distance between the calculated cluster centres and the estimated plant position. 

Table 5: Algorithm settings second method (IPCM). 

Dataset 

[no.] 

Row 

side 

RANSAC 

distance [m] 

Noise 

radius [m] 

Minimal points 

inside radius [no.] 

Cluster 

distance [m] 

Max cluster 

deviation [cm] 

1 Left 0.04 0.020 4 0.020 7.2 

1 Right 0.045 0.015 5 0.024 5.4 

2 Left 0.04 0.020 4 0.015 7.2 

2 Right 0.045 0.015 5 0.024 6.5 

3 Left 0.04 0.020 4 0.015 6.5 

3 Right 0.045 0.015 5 0.024 6.5 
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(a) (b)   [m] 

   

(c) (d)   [m] 

   

(e) (f)   [m] 

  
 

Figure 7: Assembled point clouds used by the algorithm for the three different growth stages: (a, b) 26, (c, d) 

28, (e, f) and 32 days after seeding. The colorbar is defining the value of the points in the z-axis. 

 Results and discussion 

The resulting 3D representations of the point cloud assemblies are depicted in Figure 7b, 7d and 7f.  

To indicate the difference in the growth stage, the corresponding RGB image by the attached Kinect 

v2 Sensor is also presented (Figure 7a, 7c, 7e). The Figure illustrates the plant development over time, 

starting 26 days (Figure 7a, 7b), 28 days (Figure 7c, 7d) and 32 days after seeding (Figure 7e, 7f). It 

could be seen that the plant development was not uniform, resulting in plant height differences, which 

introduced some difficulties to the plant detection algorithms. Another factor that caused problems to 

the algorithms was that many plants had overlapping parts. Sometimes points belonging to plants 

were removed and leaves were separated because of the low-density data of the point clouds.  

The detection rate of the first algorithm (PDEC) resulted in varying rates with a max value up to 

73.7%. The lower detection rate was 52.6% (Table 6). This was achieved with a best standard 

deviation of 2 cm and an RMSE of 3.6 cm at the right row of dataset 1. The percentages for the 
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detected plants were calculated considering 38 plants in every single row. From the results of Table 

6, it can be seen that the distance accuracy decreases as the plants were growing. The RMSE increased 

from 3.6 cm to 6.5 cm and from 4.8 cm to 6.6 cm for the right and the left row, respectively. The 

mean distances also increased as the plants were growing. This was not the case for the plant detection 

rate that appeared not to have any direct correlation with the growth stage. The total evaluated plant 

number was 228 plants, with 148 correct detected plants, corresponding to a detection rate of 64.9%. 

The confusion matrix of the PDEC algorithm is shown in the following Table 7. 

Table 6: PDEC algorithm results. 

Dataset 

no. 

Row 

side 

Correct 

detected plants 

no. 

Plants 

detected [ %] 

Mean 

distance 

[m] 

Standard 

deviation 

[m] 

RMSE 

[m] 

1 Left 23 60.5 0.044 0.023 0.048 

1 Right 27 71.1 0.030 0.020 0.036 

2 Left 28 73.7 0.046 0.026 0.053 

2 Right 20 52.6 0.037 0.019 0.042 

3 Left 26 68.4 0.050 0.043 0.066 

3 Right 24 63.2 0.052 0.040 0.065 

Table 7: PDEC algorithm confusion matrix. 

  True value  

  Plant no Plant % 

p
re

d
ic

te
d

 Plant 148 25 85.5 

no Plant 80 0 0 

% 64.9 0  

In total 80 plants of the three different datasets were not detected by the PDEC algorithm and were 

therefore regarded as false negatives. A detected plant by the software was regarded as false positive 

when the estimated plant centre was more than 6.5 cm away (half of the plant spacing) from the real 

plant centre. The number of false positives was equal to 25 while the results of the true positives were 

quite sufficient with an accuracy of 85.5%. The spatial distribution of the detected plants by the PDEC 

algorithm can be seen in Figure 8. 
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Figure 8: Plant positions obtained by the PDEC algorithm, with (o) ground truth of the plant positions, (*) 

result of dataset 1, (x) result of dataset 2 and (+) result of dataset 3. 

The false positives were mainly triggered by leaves which were not connected to the rest of the plant 

points. This was caused by low point cloud density and the fixed scanning direction. Sometimes two 

plants could not be separated because of the close distance between them. This led to the detection of 

one plant directly in the middle of two real ones.  

The overall detection rate of the algorithm was low but was mainly affected by the height differences 

of the plants. This caused that the algorithm settings could not be calibrated to work consistently at 

the whole row. Small plants were shadowed by the bigger ones beside them. At areas of low height 

variability, the detection rate was high and accurate. The precision on small plants was considerably 

good, where some plants had a detection rate of 100% at all three datasets. The precision of the 

position (less than 3 cm deviation), made the detection rate good enough to allow single plant 

treatment like mechanical weeding.  

The IPCM algorithm used the same clustering method as the PDEC, but in combination with the 

known spacing parameters to search for the best fitting cluster around the estimated plant position. 

This allowed to define the algorithm settings more specifically and more precisely. The results of the 

iterative IPCM method are shown in the following Table 8.  
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Table 8: IPCM algorithm results. 

Dataset 

no. 

Row 

side 
Correct 

detected 

plants [no.] 

Plants 

detected 

[ %] 

Mean 

distance 

[m] 

Standard 

deviation 

[m] 

All-over 

RMSE 

[m] 

RMSE 

without false 

positives [m] 

1 Left 35 92.1 0.031 0.015 0.0345 0.0297 

1 Right 38 100.0 0.029 0.009 0.0303 0.0303 

2 Left 35 92.1 0.029 0.016 0.0331 0.0286 

2 Right 38 100.0 0.027 0.010 0.0290 0.0290 

3 Left 36 94.7 0.026 0.016 0.0304 0.0266 

3 Right 36 94.7 0.028 0.017 0.0324 0.0293 

As the IPCM method was searching for the best fit around the estimated plant position, a cluster was 

chosen for every plant, as long as some plant points were in the area. This guided to a plant detection 

up to 100% for the datasets 1 and 2 at the right row. The worst detection rate was 92.1% at the left 

row. The overall results were quite accurate, even when considering all false positives. The IPCM 

algorithm resulted in a mean deviation of less than 3.1 cm and a standard deviation less than 1.7 cm 

at all datasets. The worse RMSE of the method was 3.4 cm and was better than the best result of the 

PDEC method. This result even gets better when excluding the false positives, guiding to an RMSE 

between 3.0 and 2.7 cm. All false positives were caused by overlapping leaves between the plants so 

that the clusters could not be separated correctly with the Euclidian Clustering. The detection rates 

can be seen in Table 9. 

Table 9: IPCM algorithm confusion matrix. 

  True value  

  Plant no Plant % 

p
re

d
ic

te
d

 Plant 218 10 95.6 

no Plant 10 0 0 

% 95.6 0  

The overall detection rate was 95.6% in a total sum of 228 analysed plants. As the algorithm always 

tried to detect the best spot for the estimated plant position, each false positive resulted in one true 

negative. The threshold for defining false positives was set, when the distance between the true plant 

position and the detected spot was more than 6.5 cm apart.  

The spatial distribution of the plant positions is shown in Figure 9. It is possible to see that the main 

distributions and deviations from the real plant positions were in the y-axis direction. Especially the 

small and even separated plants on the left row side could be detected perfectly (Figure 9). 
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Figure 9: IPCM algorithm results of (*) dataset 1, (x) dataset 2, and (+) dataset 3 and (o) ground truth. 

Some of the occurred errors were produced by the sensor and data acquisition setup. The positioning 

error of the Total Station could have added errors to the plant position estimation. Some deviations 

could be caused by the inaccuracy of the laser scanner, as the system can have a statistical error of 

+/- 30 mm (Table 1).  

Figure 10 shows the automatically created point cloud clusters of the IPCM algorithm for one plant 

example and the change of the plant over the datasets. The considered plant is framed in the reference 

pictures (Figure 10a-c). 

The shape of the reference plant varied for each dataset (Figure 10a-c). The height of the plant 

increased from 23 to 30 cm and the stem size from 0.25 to 0.48 cm. The IPCM algorithm managed 

to detect the plant in all three datasets, even when the plant leaves were touching the adjacent plant 

(32 days after seeding dataset). The resulting point cloud clusters are shown in Figure 10d-f (black 

dots). In all three cases, the algorithm did not manage to cluster the entire plant, as parts of the leaf 

and stem points were filtered or removed by the RANSAC ground removal. Nevertheless, this did 

not cause a high deviation of the obtained plant position, as the mean centre of the resulted point 

cloud cluster was close to the real plant position (Figure 10d and 10e). Cutting off parts of the leaves 

or the stem did not affect the estimated stem position considerably. A shift in the plant position of 

Figure 10f was noticed, which was caused by the asymmetrical clustering due to some wrongly 

clustered points of the adjacent plant. The accuracy was mainly affected by this kind of clustering 

errors. The highest point-to-plane distance correlates to the manual measured plant height. The results 

of the manual plant measurements to the height estimated by the programmed software of the selected 

plant in Figure 10, are shown in the following Table 10. 



 

Chapter 5  Paper D 

 

- 85 - 

(a) (b) (c) 

    

 (d) (e) (f) 

   

Figure 10: Pictures of the same plants at the 3 tests (a) 26, (b) 28 and (c) 32 days after seeding and the 

corresponding algorithm clusters (d), (e) and (f) (black dots). 

 

Table 10: Results individual plant clustering of Figure 10. 

Dataset 

no. 
Stem width 

[cm] 

Plant height 

[cm] 

Algorithm plant 

height [cm] 

Height deviation 

[cm] 

Height deviation 

[%] 

1 0.25 23.0 20.2 2.8 12.2 

2 0.28 24.6 23.4 1.2 4.9 

3 0.48 30.0 26.7 3.3 11.0 

The maximum deviation of the height was 12.2% with a minimum of 4.9%. All values were below 

the manual measurement. One reason could be that the leaves are becoming quite small at the top of 

the maize plants, making it easy to get missed by the laser beams. Even when a beam hit the plant tip, 

the point was probably removed by the adjusted noise filters. This problem indicates the limits of the 

evaluated clustering method and the used sensor system.  

Both described algorithms performed the plant clustering fast enough to be realised in real-time. The 

PDEC was faster and allowed to cluster the entire point cloud with a rate of 5 Hz. The iterative IPCM 
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needed more time, with a rate of 0.5 Hz for point cloud analysis. For real-time performance, the 

methods should keep the considered point cloud as small as possible. In combination with a global 

plant map, the search area could be minimised, allowing a fast and robust plant detection. With an 

adequate CPU or graphics card, it would be possible to increase the speed of the algorithms, in order 

to obtain information for navigation and application. 

The main advantage of using the LiDAR LMS111 for sensing is the high reliability of the sensor 

under outdoor conditions. Especially the ambient light immunity until 40000 lx, the operating 

temperature between -30 and +50 °C and the IP 67 enclosure rating promise robustness against 

changing outdoor conditions (Sick AG Waldkirch 2017). Therefore, the sensor can work under bright 

sunlight as well as in a moonless night. This is a high advantage compared to the image based methods 

described in the introduction. In addition, the combination of safety and observation can be fulfilled 

with the same sensor system. The accuracy of the performed test was determined by the measuring 

accuracy of the LiDAR and the point cloud density. Using different sensor types like the Kinect v2, 

stereo vision or even a 3D laser could increase the number of points and the accuracy of the sensor 

output, which could result in a more precise plant clustering.  

The biggest challenge of the algorithm settings was the discrimination between ground and plant 

points. Especially when the plants are small, the height difference was not enough to use a simple 

RANSAC plane filter. It could be helpful to discriminate ground and plant points not only by using a 

plane model but by taking the laser intensities or multiple echoes into account (Reymann et al. 2015). 

Another challenge was the density of the point clouds because the laser beams did not cover all parts 

of the leaves. This caused that some leaves were not clustered correctly to the right plant. More 

complex plant models should be used for the point cloud clustering. In addition, repeated driving in 

the same row and matching the data could help to increase the density of the point clouds. 

In general, the algorithms could perform in other growth stages, as long as the plants could be 

separated in single point cloud clusters. In the described methods this is dependent on point cloud 

density and plant spacing. In the best case, the plants are completely isolated and can be easily 

distinguished from each other. As long as the objects of interest are clearly separated, but big enough 

to be hit by the laser beams, like in early stage maize, the described methods promise sufficient results. 

In other crops like cereals, this could be more challenging and have to be evaluated in future research. 

It is expected that when the plants are higher than the sensor position, no satisfying results could be 

obtained. The speed of the robot is a crucial parameter in order to gain adequate information from the 

laser scanner data. However, it is expected that driving faster would also increase the error. This could 
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be solved by using a laser sensor with a higher frequency or using a 3D sensor system for point cloud 

generation.  

As the described methods do not take the shape of the objects into account, a discrimination between 

crops, weeds or other objects is not possible. For a reliable object detection of maize plants, additional 

algorithms such as machine-learning algorithms, or fusion with 2D image analysis could be used. 

Sensor redundancy could help to keep the detection rate close to 100%, even without manual 

parameter changes. By using other algorithms such as region growing, k-mean, graph-cut or by 

utilising normal orientations for the clustering, better results could be achieved with less dependency 

on perfectly aligned and dense point clouds (Reiser, Vázquez-Arellano, et al. 2017). To increase the 

reached accuracy, the stem position should be analysed with more complex models. A line fitting or 

a histogram-based approach could be used to estimate the stem position. To use the obtained 

information in a complex autonomous robotic system, the information could be converted into a 

suitable obstacle or cost map. This could be later used to guide an attached implement and to re-

localise the robot in the field. 

 Conclusions 

A tilted 2D LiDAR laser scanner was utilised to assemble 3D point clouds of maize plants in 

combination with a total station and an IMU. This point cloud generation setup allowed to process 

information and objects in front of the vehicle, which could be used for performing different 

applications and navigation purposes. Detecting individual plants with context information was 

investigated. The behaviour of the algorithms was considered under different growth stages. The 

results showed high improvement in the accuracy and robustness using context awareness. In a semi-

structured and consistent environment, this could lead up to a 100% detection rate, better than the 

state-of-the-art technology, which does not include contextual information in the analysis. The 

contextualised Iterative Plant Clustering Method was accurate and reliable with an RMSE between 

3.0 and 2.7 cm. The ground truth height measurements and the algorithm results had a maximum 

deviation of 3.3 cm for all examined datasets. Future work should deal with automatically 

determining the necessary parameters. A classification based on region growing or min-cut principles 

could increase the level of the algorithm robustness. 
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Clustering of Laser Scanner Perception Points of Maize Plants 5 
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Galibjon Sharipov and Hans W. Griepentrog 

 

Abstract 

The goal of this work was to cluster maize plants perception points under six different growth stages 

in noisy 3D point clouds with known positions. The 3D point clouds were assembled with a 2D laser 

scanner mounted at the front of a mobile robot, fusing the data with the precise robot position, gained 

by a total station and an Inertial Measurement Unit. For clustering the single plants in the resulting 

point cloud, a graph-cut based algorithm was used. The algorithm results were compared with the 

corresponding measured values of plant height and stem position. An accuracy for the estimated 

height of 1.55 cm and the stem position of 2.05 cm was achieved. 

 

Keywords: LiDAR, single plant detection, graph-cut, stem detection, phenotyping 

 

 Introduction 

Precision farming is developing from big scale to small scale. Instead of considering the entire field, 

single plants and their status are getting into focus. With the continuing automation of processes, it 

could in future be possible to treat every plant individually, by measuring their behaviour and needs. 

This requires an accurate sensing system for plant shape and position and the possibility to localize 

                                                 
5 The publication of Chapter 6 is done with the consent of the Cambridge University Press Publishing. The original 

publication was published in Advances in Animal Bioscience, Precision Agriculture (ECPA) 2017,8:2. It can be found 

under the following link: https://doi.org/10.1017/S204047001700111X 

https://doi.org/10.1017/S204047001700111X
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for every crossing the plants. Tasks like navigation, weeding, spraying, or estimating plant health 

status would benefit from this gained information. During sowing it is possible to map the position 

of every seed with real time kinematic global navigation satellite system receivers. This information 

would be precise enough for guidance of autonomous vehicles, but not sufficient for individual plant 

care (H. W. Griepentrog et al. 2005). However, when using this information in combination with 

sensor data, the precise position of the plant and the vehicle could be recalibrated.  

Plants are elastic and shape changing objects, which are located in alternating environments. This 

makes perception with common sensors and algorithms a challenging task (Y. Zhang et al. 2016). 

Sunlight or shade strongly affects the sensor outputs (Bechar and Vigneault 2016b). Light detection 

and ranging (LiDAR) laser scanners are in general robust against sunlight and are not dependent on 

external light sources like passive sensor types (i.e. cameras, stereo cameras), what making it 

reasonable to use them for outdoor robotics (Vázquez-Arellano et al. 2016). LiDAR sensors measure 

the time of flight of a laser beam, reflected by an object. Every sensor output could be described as a 

perception point, defining the distance between sensor and object.  

Using 3D instead of 2D data is recommended if the whole plant should be described with sensor data 

(Vázquez-Arellano et al. 2016). 3D-LiDARS are expensive, making them until now, unrealistic to 

provide affordable autonomous system solutions. Another method to gain 3D Data is to use a 2D 

laser and assemble 3D point clouds with the exact knowledge of the sensor position. This method 

could help to keep autonomous systems affordable (Escolà et al. 2016; Garrido et al. 2015). The most 

economical way would be to use the same sensor for navigation and plant phenotyping. This means 

that the sensor must look ahead of the machine, to navigate the robotic system. Using 3D point clouds 

of a 3D LiDAR for single plant detection, was already applied by Weiss and Biber (2011) using 

machine-learning and nearest neighbour classification methods. Also stem detection in point clouds 

was performed with different sensor types like stereo cameras, light curtains and LiDAR data (Bac et 

al. 2014; Garrido et al. 2014; Reitberger et al. 2007). Analysing the plant height with 3D sensor data 

is a well-known research topic for plant phenotyping, performed with a large variety of sensors (Y. 

Zhang et al. 2016). Today’s variable-rate applications are performed using map-based or sensor based 

approaches. Nevertheless, if both methods are combined, enormous benefits could be brought 

together by reaching high accuracy (sensor-based approach) and high consistency (map-based 

approach) over long periods of time. 

In the following work a graph-cut based method for the clustering of the remaining perception points 

of the plants is presented (Golovinskiy and Funkhouser 2009). This algorithm uses the knowledge of 

the object position as a reference to cluster a 3D point cloud with the use of weighted graphs and a 
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min-cut method. As reference parameters for the achieved precision and accuracy, the ground truth 

of the stem position and the maximal plant height were evaluated.  

 Materials and methods 

 Hardware and sensors 

A small 4-wheel autonomous robot with differential steering was used as the carrier vehicle to move 

the sensors through the crop rows (see Figure 1a) (Reiser, Garrido, et al. 2016). A LMS111 2D-

LiDAR laser scanner (SICK, Waldkirch, Germany) was used, mounted at a height of 0.58 m, above 

the ground, pointing downwards at an angle of 30 degrees. The sensor data was assembled with 25 

Hz and an angle resolution of 0.5 degrees. This position was selected to allow 3D point cloud 

generation and at the same time to be able to navigate the robot system with the sensors through the 

rows. To measure the robot orientation, a VN-100 Inertial Measurement Unit (IMU) (VectorNav, 

Dallas, USA) was included in the sensor setup. The robot position was obtained through the use of a 

SPS930 Universal Total Station (Trimble, Sunnyvale, USA). The total station tracked a Trimble 

MT900 Machine Target Prism, which was mounted on top of the robot at a height of 1.07 m (see 

Figure 1a).   

(a) (b) 

 
 

Figure 1: The robot platform for the data acquisition (a) and the visualization of the robot in the Robot Operating 

System (ROS) with one assembled point cloud and the ground truth of the plants as green sticks (b). 

 Software 

The robot computer runs on Ubuntu 14.04 and uses the Robot Operating System (ROS-Indigo) 

middleware for sensor control and data recording. The system could be used for live monitoring of 

the sensor data and provided the necessary visualization tools (see Figure 1b). All the software 

components were programmed in a combination of C++ and Python programming languages. For 

fast calibration, point measurement and importing the total station data into ROS, the Trimble 
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SCS900 Site Controller (Software Version 3.4.0) graphical interface was used. The prism position 

data was time stamped and helped to refer the transforms to the global frame and to interpolate the 

data. 

For the plant detection, a ROS node (executable-program) was developed, reading in the assembled 

point cloud and giving out the results of the algorithm. This implementation could be used directly 

on a real-time operating robot system. For the specific point cloud algorithms the PCL 

implementation (Rusu and Cousins 2011) was used and optimized for ROS.  

 

 Data acquisition and point cloud assembling 

For referencing to the same Cartesian coordinate frame in every test, 5 fixed points were defined 

nearby the test area (Garrido et al. 2015; Reiser, Garrido, et al. 2016). To relocate these points for 

every test, a greenhouse with a solid concrete wall was selected for the data acquisition. The precise 

position of these 5 points could be located by just screwing a prism of the total station on fixed 

positions on the concrete wall. With these positions, the positioning system of the total station could 

be calibrated to one fixed coordinate frame. The inaccuracy in the static measurement could be 

estimated by reassessing each of these fixed points with the first measurement. The shift between the 

first reference points and the actual measurements was in all tests below 4 mm for all three 

dimensions. For the robot rigid body frame, carrying the sensors, a static transformation between the 

prism and the sensor position was assumed. First the roll, pitch and yaw angle of the IMU was fused 

together with the prism position and was used to create a coordinate frame for the prism position. 

After that, a static transformation to the robot geometric centre and to the sensor position was 

performed. This procedure allowed to track down the precise sensor position and orientation in the 

same reference frame in every test (Garrido et al. 2015; Reiser, Garrido, et al. 2016).  

The spacing between the plants was defined by different Gaussian distributions for every crop row, 

to emulate diverse real scenarios. The rows used in this paper had a Gaussian distribution and a 

standard deviation of 0.02 m and 0.03 m for the spacing. In total 41 plants were planted per row. The 

ground truth positions of the plants were measured using the total station just after emergence with 

the help of a tripod.  

In total six different growth stages were assessed in this paper, the first test 28 days and the last test 

47 days after seeding. The average height of the plants changed in this time between 12.03 cm and 

41.76 cm. The absolute plant height was varying between 5.7 and 45 cm. The real height of the plants 

was measured manually after every test day right after the data acquisition. The plants were between 

V1 and V6 stage, varying at every test day (Ritchie et al. 1993).  
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For the data acquisition the robot drove through the row always from the same side with an average 

speed of 0.02-0.04 m/s. All six tests were performed in the same row, in the same driving direction, 

towards the total station. The laser scanner was always at the front of the driving direction.  

Before assembling the data of the LiDAR into a 3D point cloud, the single scans were filtered with a 

range filter, so that reflections of the vehicle and the greenhouse wall were removed from the sensor 

data. The limits of the points were set to a defined distance, so that just one row to the left and one to 

the right of the robot could be observed. Only the points in the range of 0.75 m to the left and 0.75 m 

to the right of the sensor position were considered. This filtered scans were transformed together with 

the fusion of the robot position, gained by the total station and the IMU orientation, into one 

coordinate system. With this new reference, all points could be transferred to one 3D point cloud, in 

one global world coordinate system. In Figure 2 the 3D assembled point cloud representations in six 

different grow stages are depicted. The colours represent the height value of the points. 

      

(a) [m] (b) [m] (c) [m] 

      

(d) [m] (e) [m] (f) [m] 

Figure 2: Assembled point clouds used for the algorithm with the six different assessed growth stages: (a) 

26, (b) 28, (c) 32, (d) 35, (e) 40 and (f) 47 days after seeding. 

 Plant detection algorithm 

To speed up the detection algorithm and get more precise results, the area of interest (AOI) was 

defined around the single particular plant, just taking one square meter around the plant into account. 

To test the limits of the algorithm, no noise reduction was applied. Limiting the AOI around the single 

particular plant, allowed to create a more precise estimation of the data points representing the soil. 
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As the shape of the ground was roughly planar in the data set, a random sample consensus (RANSAC) 

based plane fitting algorithm was used to remove the points of the ground (Fischler and Bolles 1981) 

and separate them from the plant points.  

The plant points in the AOI were afterwards clustered to define point cloud groups of every single 

plant with the use of the ground truth of the plant position. A graph-cut based algorithm was used to 

cluster the plant points (Boykov and Funka-Lea 2006). This method fits perfect to the described 

problem, as it allows to separate foreground and background objects by using the known position of 

the object of interest. Compared to the use in 2D image analysis, the graph-cut based algorithm in 

point clouds cannot use colour information to define the nodes and edges of the graph. The only 

possible organizing methods for the graph are distances and densities between the points. Therefore, 

the point cloud was organized in a k-nearest neighbour graph, using the row direction as separator 

(Bentley 1975), correlating with the X-Axis in the point cloud reference frame (Reiser, Garrido, et al. 

2016). Every point of the point cloud was defined as a node of the graph. This defined graph was then 

clustered with a min-cut in foreground and background points (Golovinskiy and Funkhouser 2009). 

For that, it is necessary to define sink and source points to set the edges, linking the nodes (points) of 

the graph. The source points define the assumed center of the object of interest. The sink points define 

background points. The edge value defines the weight that is used for the min-cut clustering. This 

weight decreases with the distance to the source point. The weight 𝑤𝑖 of edge 𝑖 is defined with the 

distance 𝑑𝑖 to the source point and the additional fixed parameter 𝜎. 

𝑤𝑖 = 𝑒−(
𝑑𝑖
𝜎 )

2

 (1) 

In this case, the real plant position was used as source point with a predefined source weight as starting 

weight value. As sink points, all points with a distance radius area around 0.5 m around the real plant 

position were defined. The final segmentation was done by minimizing the cut cost of the nearest 

neighbour graph and the background penalty (Golovinskiy and Funkhouser 2009).  

To assess the clustering, first the minima and maxima points of the gained point cloud were assessed. 

When the ground plane is shown with the point-normal form, the minimal distance ℎ𝑖 between a point 

𝑃𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) to a plane can be defined as: 

ℎ𝑖 = 𝑎𝑥𝑖 + 𝑏𝑦𝑖 + 𝑐𝑧𝑖 + 𝑑 (2) 

With 𝑎, 𝑏, 𝑐, 𝑑 defining the plane equation parameters. As the parameters 𝑎 and 𝑏 converged to zero 

and parameter 𝑐 converged to one, the estimated height was approximated with ℎ = 𝑧 + 𝑑. The stem 

position was approximately estimated with the 3D centroid of all resulting points. The centroid 𝑐 is 

correlated to the number of 𝑛 points 𝑃 in one point cloud cluster in Equation 3.  
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𝑐 =
1

𝑛
∑ 𝑃𝑖

𝑛

𝑖=1

 (3) 

Just the x and y coordinates of the plants were considered for ground truth. The results of the 

algorithm for plant positions were compared to the measured positions by the total station to define 

the achieved precision. The height was compared with the manual measurements taken after every 

data acquisition. For assessing the accuracy of the plant pose and the height, the mean value 𝑑̅, the 

standard deviation 𝑠𝑡𝑑𝑑𝑒𝑣 and the Root Mean Square Error (RMSE) were used:  

𝑑̅ =
1

𝑁
√(𝑥𝑟 − 𝑥𝑎)² + (𝑦𝑟 − 𝑦𝑎)² (4) 

 

𝑠𝑡𝑑𝑑𝑒𝑣 = √
1

𝑁
∗ ∑(𝑑𝑎 − 𝑑̅)²

𝑁

𝑖=1

 (5) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (√(𝑥𝑟 − 𝑥𝑎)² + (𝑦𝑟 − 𝑦𝑎)² )² 

𝑁

𝑖=1

 (6) 

with 𝑑𝑟(𝑥𝑟 , 𝑦𝑟) as ideal plant position measured by the total station and 𝑑𝑎(𝑥𝑎, 𝑦𝑎)  as the resolved 

algorithm plant position in 2D and N as the number of assessed datasets. 

 Results and discussion 

The algorithm was applied to six selected plants. Each was assessed in six different growth stages. 

For each row three plants were assessed. All plants were grouped in the row with highly overlapping 

leaves in the later growth stages (see Figure 2). For applying the algorithm, the settings of the 

adjustable parameters were fixed in all data sets. The only change between each assessment was the 

definition of the ideal plant position as source point. The used settings were 𝜎 = 0.5, radius = 0.5, 

source weight = 0.25 and the minimal neighbours acceptable with 5 points. The results of the plant 

17 in row 2 are shown in the following Figure 3. The results of the stem detection and height 

estimation of the evaluated six plants with standard deviation and RMSE could be found in Table 1. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 3: clustered points for plant 17 of row 2 in all six growth stages, black points are the clustered plant 

points: (a) 26, (b) 28, (c) 32, (d) 35, (e) 40 and (f) 47 days after seeding (V1-V6 (Ritchie et al. 1993)). 

The achieved precision was accurate, so showed the mean value the best deviation of the stem position 

of 1.88 cm for all six growth stages and reached in some of the measurements even the position 

accuracy of 0.21 cm. The worst positioning error was 5.19 cm at plant 19 in row 3 what was caused 

by a partial covering of the plant of one big maize plant just 10 cm away from the examined plant. 

This caused the much higher RMSE for the stem distance. The poorly results for the plant 27 of row 

3 are caused by a general offset to the ground truth, what could be caused by an error while measuring 

the plant position, or a special shape of the plant, what caused that the center of the plant did not fit 

with the stem position. Using a more complex model for the stem pose estimation in the point clouds 

and denser point clouds would bring improvements to the results. The RMSE height estimation 

ranged for the examined plants between 1.55 and 3.85 cm. The best estimations for single growth 

stages reached an accuracy of 1.1 mm for plant 33 in row 2 and plant 27 in row 3. The worst detection 

had an accuracy of 6 cm for one test in row 2 for plant 17. This was caused by not perfectly clustered 

point clouds, cutting off leaves at the top.  
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Table 1: Results of the plant-clustering algorithm combined over all six growth stages. 

Plant position Stem distance error [m] Height error [m] 

row no. 𝑑̅ 𝑠𝑡𝑑𝑑𝑒𝑣 𝑅𝑀𝑆𝐸 𝑑̅ 𝑠𝑡𝑑𝑑𝑒𝑣 𝑅𝑀𝑆𝐸 

2 17 0.0188 0.0075 0.0202 0.0195 0.0332 0.0385 

2 18 0.0216 0.0117 0.0245 -0.0062 0.0262 0.0269 

2 33 0.0194 0.0088 0.0213 0.0015 0.0190 0.0190 

3 18 0.0188 0.0116 0.0221 -0.0045 0.0288 0.0292 

3 19 0.0264 0.0137 0.0297 0.0138 0.0249 0.0285 

3 27 0.0318 0.0083 0.0328 0.0028 0.0152 0.0155 

        

From visual feedback, the ground truth does not match completely with the 3D point cloud plant 

poses. This could be caused by the inaccuracy of the used LMS111 laser scanner depth information. 

In the manual the systematic error was described with +/- 30 mm with a maximum of +/- 50 mm 

(Sick AG Waldkirch 2017). When visually comparing the algorithm stem positions with the laser 

scanning data, the results seemed quite accurate. This inaccuracy in the sensor data showed, that the 

algorithm would be quite robust against not precise plant pose estimations. The algorithm results 

matched with the sensor data and not with the ground truth points. The algorithm worked well for 

detecting accurately the stem position of small plants, but it had the tendency to cut off small leaves 

and not clustering them, when they were too far apart from the assumed centre of the object. 

Future work should evaluate how precise the plant estimation must be in order to detect precisely the 

plants and how a known plant spacing could help to perform better results. In addition, the evaluation 

of all plants in the row should be done to evaluate the robustness of the suggested algorithm with 

more data. To evaluate the quality of the point clouds and the clustering, the spatial correlation 

between the clustered point clouds and the leaf area and biomass change could be investigated. 

 Conclusions  

In this work, a mobile robot was used for assembling 2D laser scanner data in six different growth 

stages of maize plants. The data was assembled to a 3D point cloud and clustered with a graph-cut 

based algorithm. In total, 6 different plants at 6 different growth stages with a varying height between 

5.7 and 45 cm were assessed. It was shown that all plants could be clustered correctly, with the same 

algorithm settings, when using the previous known plant position. The results were better than the 

LiDAR sensor accuracy specifications, with accuracies for stem position of 2.02 cm and plant height 

estimation of 1.55 cm.  
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CHAPTER 7 
Discussion 

This thesis conducts to the perception of agricultural robots to perform better context awareness 

within fields. In total five aspects were addressed: (I) static local sensor communication with a mobile 

vehicle, (II) detect unstructured objects in a controlled environment, (III) describe the influence of 

growth stage to algorithm outcomes, (IV) use the gained sensor information to detect single plants 

and (V) improve the robustness of algorithms under noisy conditions.  

The following discussion addresses the findings and highlights the key points of the thesis. 

 Static local sensor communication with a mobile vehicle 

For the first aspect of perception for context awareness, four wireless sensors were placed in a 

vineyard. Besides communicating with a receiver node, they were able to send data from an attached 

sensor to gain information about the environment. To use this information (e.g. temperature, moisture, 

pH) they had to be localized and the information must be set in the right context. The use of static 

sensors brings advantages for context awareness and could be used for precision farming purposes. 

With these “Internet of Things” (IoT) sensors, the environment could communicate with other 

technical devices like computers, mobile phones, tractors or autonomous robots. The information is 

dependent on the position where the sensors were placed (Bloem et al. 2014). Therefore, the user 

needs to define the right context, by placing the static IoT devices at specific points. The intelligence 

of the system is limited to static points of interests and the specific knowledge about the received 

sensor data. In the showed use case, a farmer would be responsible for placing the sensors at relevant 

locations. For understanding the sensor data, context awareness and location of the IoT system have 

to be provided. The exact location of the data could be assessed by the system automatically, as it 

was shown in the experiment. However, the user must provide the necessary context awareness. With 

these IoT sensors, it could be possible to realize more detailed path planning and reasoning, taking 

sensor values like moisture into account. For example, moisture in steep vineyards could be an 

interesting parameter to define if the soil and grass have enough friction to enable the vehicle to pass 

the steep areas, or if a different route has to be used. Even the soil compaction caused by a machine 

could be estimated with actual moisture measurements. However, the generated information is fixed 

to one spot, what makes it hard for covering big areas with a small grid size. As for autonomous 
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vehicles, the direct environment and the behaviour of fast changes are interesting, this method of 

static Wireless Sensor Networks is not sufficient. It is necessary to observe the environment with 

additional optical sensors simultaneously. This helps to react to direct environment changes and 

obstacles in front of the robot. In the described experiment, the navigation was based on a 

deterministic RTK-GNSS signal, combined with a direct reactive obstacle control for avoiding the 

trunks in the vineyard.  

 Detect unstructured objects in a controlled environment 

The basic behaviour for robot navigation is to order the environment in two classes: free space and 

obstacles (Hertzberg et al. 2012). Out of the perception information of objects in the environment, a 

path or task could be planned and optimized (Seraji and Howard 2002). This works fine for wide and 

clear structures as they could be found indoors, or on a fine prepared vineyard, as it was addressed in 

the first paper. To increase the level of context awareness, sensor perceptions should be classified to 

objects, so that the system really “knows”, what is around. This can help to make more advanced 

decisions, leading to the implementation of self-awareness in autonomous machines (Gorbenko et al. 

2012).  

The task in the agriculture domain is to deal with unstructured objects in unstructured environments 

(Bechar and Vigneault 2016b). The objects could be for example crop plants, weed plants or soil. To 

distinguish first between plants and soil, this experiment addressed unstructured objects in a 

structured (indoor) environment with a well-known sensor position, to focus on the main aspect of 

object detection.  

For dealing with objects in our world, it is necessary to gain three-dimensional knowledge about 

them, what is one big aspect of setting the sensor information into the right context. 1D or 2D sensor 

data could just be used for dealing with 3D objects, if the precise context of the sensor position and 

the environment is known. Therefore a 3D information is providing more options for environment 

perception and context awareness for later applications (Vázquez-Arellano et al. 2016). For gaining 

relative or absolute sensor positions, it is possible to use a precise positioning system to set the 

information in the right context. In this case, a 1D sonar sensor was used together with a highly precise 

3D frame to create a 3D point cloud out of an artificial crop row. The object classification was done 

by detecting the planar shape (soil) and the space between the remaining points (plants). This 

classification uses known parameters of the semi-structured agricultural environment, instead of 

integrating machine-learning algorithms to detect structures in an unknown context. When you see 

just a small part of a picture without any context, it is even hard for a human to detect, what the image 

is showing. However, with the right context, the detection of objects and interpretation of the data is 
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a solvable task. As long as the context is known, the object classification could be performed easier. 

Therefore, more robust and more reliable algorithms could be developed, when the context of the 

sensor perception is known. However, how does it work, when the objects are not static, but changing 

their shape over time? This changing of unstructured objects in agriculture and their effect on 

algorithms were addressed in the next paper. 

 Influence of growth stage to algorithm outcomes 

Describing the change of unstructured objects and their effect on algorithms is a challenging task for 

autonomous machines (Chen and Cournede 2012). Therefore, it was important to find an adequate 

way to describe the change of plants over different growth stages. There are two typical ways to 

describe unstructured objects like plants: create a model and simulate the data, or to measure real 

plants with sensor values in a realistic environment (Weiss and Biber 2011). In our case, the 

measuring of real plants was considered.  

For recording real data sets, maize was planted in a greenhouse and the positions of every single crop 

was measured with a highly accurate total station. This total station was also used to track down a 

vehicle with mounted sensors. Afterwards the data could be tested with different algorithms for the 

performance under different growth stages. The performance of the tested line-fitting algorithm was 

highly affected by the different growth stages. In later growth stages, leaves covered the row, causing 

algorithm failure.  

Another issue is, that in later growth stages the plants touch the robot from time to time. For robust 

performance the robot has to decide, if touching the leaves is acceptable, or if the sensor readings 

define an obstacle. This leaves would make a standard obstacle detection with a LiDAR challenging, 

as the system could not separate leaves in the row or obstacles placed in front of the robot. Here 

context awareness is necessary to keep the system capable of acting. An intelligent robot system 

would decide, if a collision would harm the robot or if a touch of the robot will harm the plant. It is 

challenging to achieve this goal, but it can be avoided by using a different robot operating structure. 

An easy way for getting the system work under the described conditions, is to use a mode changer ( 

Griepentrog et al. 2006; Vougioukas et al. 2004). As the system could change the actual status of the 

program parameters and algorithms based on outer states (e.g. in row navigation, headland turning), 

the sensor readings could be set in the right context. When performing in row navigation, obstacles 

could be ignored and the navigation could be performed by detecting line structures. When the actual 

mode is headland turning, rigid obstacles could be expected.  

A more advanced way for environment perception would be to detect single plants and to use this 

information for navigation. For robust navigation, the plant positions needed to be known, so that it 
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could be possible to distinguish between leaves and other obstacles and where the robot is allowed to 

drive without destroying the plants. For e.g. precision farming, mechanical weeding and precision 

spraying this information could be used to improve the performance (Tillett et al. 2002).  

 Use the gained sensor information to detect single plants 

Single plant detection is still a challenging task. There are many different approaches for detecting 

plants, starting from camera detection to light curtains and tactile systems (Åstrand and Baerveldt 

2002; Garrido et al. 2014; Ge et al. 2013; Pérez-Ruiz et al. 2012; Vázquez-Arellano et al. 2016). 

Anyhow, most systems were only used for single plant detection and not for simultaneous navigation. 

The proposed approach used a tilted laser scanner in a position suitable for navigation, to create an 

assembled 3D point cloud. The resulting point cloud could be used simultaneously for detecting 

objects and to classify single plants.  

Since the environment in fields is changing rapidly, the approach tried to focus on the known 

parameters and used them in combination with the LiDAR. The single plant detection was performed 

with the knowledge of the theoretical plant position, which could be a known parameter in a semi-

structured environment on an agricultural field. As the line width and the spacing between the plants 

were fixed, it was possible to limit the search for the plant. Without using context information like 

row width and theoretical plant position, a detection rate of 70% was reached. By using the context 

information, it was possible to detect all plants in the test area.  

The semi-structured environment of crop rows helped to gain better results for the detection of 

unstructured plant objects, which could be the first step for increasing the context awareness of 

vehicles on fields. Especially the information about plant health, exact plant position and plant shape 

could help to improve many different applications for agricultural robots (Chéné et al. 2012; 

Ruckelshausen et al. 2009). This information could be used for any kind of single plant treatment, 

advanced navigation and advanced obstacle detection. The next step would be to show how the 

approach could be made more robust to work even under noisy sensor conditions. 

 Improve the robustness of algorithms under noisy conditions 

Robustness of algorithms is one of the most challenging tasks for autonomous applications in 

agriculture. Especially the changing conditions of shape and illumination could make it hard to detect 

the position of single plants (Vázquez-Arellano et al. 2016). The goal was to find a parameter 

adjustment, which would work over the measured growth stages without any changes.  

The research for a robust and usable algorithm resulted in a graph cut based method. It reached 100% 

detection rate, without any adjustment, overall measured growth stages. The general function of this 
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algorithm was using the weight of points to define the point cloud clusters. In combination with the 

assumed position of a plant, it was possible to assess the points of the plant quite accurate in a crop 

row, even when the point clouds were overlapping and plants were not clearly visible.  

The knowledge of plant positions could help to improve perception and context awareness of 

machines. To reach a higher state of autonomy and algorithm robustness, the focus on the known 

aspects seem to be more promising besides trying to deal with all uncertainties in agriculture.  

 Outlook  

The thesis demonstrated different approaches for context awareness of agricultural robots. The 

implementation of the approaches could lead to the next step of advanced farming with autonomous 

or semi-autonomous machines. The realisation of future machines must combine different strategies 

for the perception of context awareness. Similar to sensor fusion, multiple sensors and approaches 

for context awareness could make the object detection and environment perception more robust. 

Future work has to address the changes in objects in more detail and should try to adapt the algorithms 

in combination with an application to show the use of these methodologies.  

Companies in agriculture could in future focus more seriously on small autonomous robots than on 

big machines guided by one operator. Small autonomous machines combine the positive aspects of 

less risk with a high autonomy and saving labour. This could help to keep farming in developed 

countries competitive on the world market, could fulfil the need for organic food and could make 

farming ready for future law regulations because of health and environment issues.  

Even for developing countries, context-aware robots could bring advantages, as the machines can 

provide knowledge directly to the farmer. In addition, the trend of producing your own food could be 

realized with small autonomous robots, what would give individual persons the option to produce 

their food by themselves.  
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Summary 

Context awareness is one key point for the realisation of robust autonomous systems in unstructured 

environments like agriculture. Robots need a precise description of their environment so that tasks 

could be planned and executed correctly. When using a robot system in a controlled, not changing 

environment, the programmer maybe could model all possible circumstances to get the system 

reliable. However, the situation gets more complex when the environment and the objects are 

changing their shape, position or behaviour. Perception for context awareness in agriculture means to 

detect and classify objects of interest in the environment correctly and react to them.  

The aim of this cumulative dissertation was to apply different strategies to increase context awareness 

with perception in mobile robots in agriculture. The objectives of this thesis were to address five 

aspects of environment perception: (I) test static local sensor communication with a mobile vehicle, 

(II) detect unstructured objects in a controlled environment, (III) describe the influence of growth 

stage to algorithm outcomes, (IV) use the gained sensor information to detect single plants and (V) 

improve the robustness of algorithms under noisy conditions. 

First, the communication between a static Wireless Sensor Network and a mobile robot was 

investigated. The wireless sensor nodes were able to send local data from sensors attached to the 

systems. The sensors were placed in a vineyard and the robot followed automatically the row structure 

to receive the data. It was possible to localize the single nodes just with the exact robot position and 

the attenuation model of the received signal strength with triangulation. The precision was 0.6 m and 

more precise than a provided differential global navigation satellite system signal. 

The second research area focused on the detection of unstructured objects in point clouds. Therefore, 

a low-cost sonar sensor was attached to a 3D-frame with millimetre level accuracy to exactly localize 

the sensor position. With the sensor position and the sensor reading, a 3D point cloud was created. In 

the workspace, 10 individual plant species were placed. They could be detected automatically with 

an accuracy of 2.7 cm. An attached valve was able to spray these specific plant positions, which 

resulted in a liquid saving of 72%, compared to a conventional spraying method, covering the whole 

crop row area.  

As plants are dynamic objects, the third objective of describing the plant growth with adequate sensor 

data, was important to characterise the unstructured agriculture domain. For revering and testing 

algorithms to the same data, maize rows were planted in a greenhouse. The exact positions of all 

plants were measured with a total station. Then a robot vehicle was guided through the crop rows and 

the data of attached sensors were recorded. With the help of the total station, it was possible to track 

down the vehicle position and to refer all data to the same coordinate frame. The data recording was 
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performed over 7 times over a period of 6 weeks. This created datasets could afterwards be used to 

assess different algorithms and to test them against different growth changes of the plants. It could be 

shown that a basic RANSAC line following algorithm could not perform correctly under all growth 

stages without additional filtering.  

The fourth paper used this created datasets to search for single plants with a sensor normally used for 

obstacle avoidance. One tilted laser scanner was used with the exact robot position to create 3D point 

clouds, where two different methods for single plant detection were applied. Both methods used the 

spacing to detect single plants. The second method used the fixed plant spacing and row beginning, 

to resolve the plant positions iteratively. The first method reached detection rates of 73.7% and a root 

mean square error of 3.6 cm. The iterative second method reached a detection rate of 100% with an 

accuracy of 2.6 - 3.0 cm. 

For assessing the robustness of the plant detection, an algorithm was used to detect the plant positions 

in six different growth stages of the given datasets. A graph-cut based algorithm was used, what 

improved the results for single plant detection. As the algorithm was not sensitive against overlaying 

and noisy point clouds, a detection rate of 100% was realised, with an accuracy for the estimated 

height of the plants with 1.55 cm. The stem position was resolved with an accuracy of 2.05 cm. 

This thesis showed up different methods of perception for context awareness, which could help to 

improve the robustness of robots in agriculture. When the objects in the environment are known, it 

could be possible to react and interact smarter with the environment as it is the case in agricultural 

robotics. Especially the detection of single plants before the robot reaches them could help to improve 

the navigation and interaction of agricultural robots.  
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Zusammenfassung 

Kontextwahrnehmung ist eine Schlüsselfunktion für die Realisierung von robusten autonomen 

Systemen in einer unstrukturierten Umgebung wie der Landwirtschaft. Roboter benötigen eine 

präzise Beschreibung ihrer Umgebung, so dass Aufgaben korrekt geplant und durchgeführt werden 

können. Wenn ein Roboter System in einer kontrollierten und sich nicht ändernden Umgebung 

eingesetzt wird, kann der Programmierer möglicherweise ein Modell erstellen, welches alle 

möglichen Umstände einbindet, um ein zuverlässiges System zu erhalten. Jedoch wird dies 

komplexer, wenn die Objekte und die Umwelt ihr Erscheinungsbild, Position und Verhalten ändern. 

Umgebungserkennung für Kontextwahrnehmung in der Landwirtschaft bedeutet relevante Objekte in 

der Umgebung zu erkennen, zu klassifizieren und auf diese zu reagieren.  

Ziel dieser kumulativen Dissertation war, verschiedene Strategien anzuwenden, um das 

Kontextbewusstsein mit Wahrnehmung bei mobilen Robotern in der Landwirtschaft zu erhöhen. Die 

Ziele dieser Arbeit waren fünf Aspekte von Umgebungserkennung zu adressieren: (I) Statische lokale 

Sensorkommunikation mit einem mobilen Fahrzeug zu testen, (II) unstrukturierte Objekte in einer 

kontrollierten Umgebung erkennen, (III) die Einflüsse von Wachstum der Pflanzen auf Algorithmen 

und ihre Ergebnisse zu beschreiben, (IV) gewonnene Sensorinformation zu benutzen, um 

Einzelpflanzen zu erkennen und (V) die Robustheit von Algorithmen unter verschiedenen 

Fehlereinflüssen zu verbessern. 

Als erstes wurde die Kommunikation zwischen einem statischen drahtlosen Sensor-Netzwerk und 

einem mobilen Roboter untersucht. Die drahtlosen Sensorknoten konnten Daten von lokal 

angeschlossenen Sensoren übermitteln. Die Sensoren wurden in einem Weingut verteilt und der 

Roboter folgte automatisch der Reihenstruktur, um die gesendeten Daten zu empfangen. Es war 

möglich, die Sendeknoten mithilfe von Triangulation aus der exakten Roboterposition und eines 

Sendesignal-Dämpfung-Modells zu lokalisieren. Die Genauigkeit war 0.6 m und somit genauer als 

das verfügbare Positionssignal eines „differential global navigation satellite system“. 

Der zweite Forschungsbereich fokussierte sich auf die Entdeckung von unstrukturierten Objekten in 

Punktewolken. Dafür wurde ein kostengünstiger Ultraschallsensor auf einen 3D Bewegungsrahmen 

mit einer Millimeter Genauigkeit befestigt, um die genaue Sensorposition bestimmen zu können. Mit 

der Sensorposition und den Sensordaten wurde eine 3D Punktewolke erstellt. Innerhalb des 

Arbeitsbereichs des 3D Bewegungsrahmens wurden 10 einzelne Pflanzen platziert. Diese konnten 

automatisch mit einer Genauigkeit von 2.7 cm erkannt werden. Eine angebaute Pumpe ermöglichte 

das punktuelle Besprühen der spezifischen Pflanzenpositionen, was zu einer Flüssigkeitsersparnis 

von 72%, verglichen mit einer konventionellen Methode welche die gesamte Pflanzenfläche benetzt, 

führte. 
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Da Pflanzen sich ändernde Objekte sind, war das dritte Ziel das Pflanzenwachstum mit geeigneten 

Sensordaten zu beschreiben, was wichtig ist, um unstrukturierte Umgebung der Landwirtschaft zu 

charakterisieren. Um Algorithmen mit denselben Daten zu referenzieren und zu testen, wurden 

Maisreihen in einem Gewächshaus gepflanzt. Die exakte Position jeder einzelnen Pflanze wurde mit 

einer Totalstation gemessen. Anschließend wurde ein Roboterfahrzeug durch die Reihen gelenkt und 

die Daten der angebauten Sensoren wurden aufgezeichnet. Mithilfe der Totalstation war es möglich, 

die Fahrzeugposition zu ermitteln und alle Daten in dasselbe Koordinatensystem zu transformieren. 

Die Datenaufzeichnungen erfolgten 7-mal über einen Zeitraum von 6 Wochen. Diese generierten 

Datensätze konnten anschließend benutzt werden, um verschiedene Algorithmen unter verschiedenen 

Wachstumsstufen der Pflanzen zu testen. Es konnte gezeigt werden, dass ein Standard RANSAC 

Linien Erkennungsalgorithmus nicht fehlerfrei arbeiten kann, wenn keine zusätzliche Filterung 

eingesetzt wird. 

Die vierte Publikation nutzte diese generierten Datensätze, um nach Einzelpflanzen mithilfe eines 

Sensors zu suchen, der normalerweise für die Hinderniserkennung benutzt wird. Ein gekippter 

Laserscanner wurde zusammen mit der exakten Roboterposition benutzt, um eine 3D Punktewolke 

zu generieren. Zwei verschiedene Methoden für Einzelpflanzenerkennung wurden angewendet. 

Beide Methoden nutzten Abstände, um die Einzelpflanzen zu erkennen. Die zweite Methode nutzte 

den bekannten Pflanzenabstand und den Reihenanfang, um die Pflanzenpositionen iterativ zu 

erkennen. Die erste Methode erreichte eine Erkennungsrate von 73.7% und damit einen quadratischen 

Mittelwertfehler von 3.6 cm. Die iterative zweite Methode erreichte eine Erkennungsrate von bis zu 

100% mit einer Genauigkeit von 2.6-3.0 cm.  

Um die Robustheit der Pflanzenerkennung zu bewerten, wurde ein Algorithmus zur Erkennung von 

Einzelpflanzen in sechs verschiedenen Wachstumsstufen der Datasets eingesetzt. Hier wurde ein 

„graph-cut“ basierter Algorithmus benutzt, welcher die Robustheit der Ergebnisse für die 

Einzelpflanzenerkennung erhöhte. Da der Algorithmus nicht empfindlich gegen ungenaue und 

fehlerhafte Punktewolken ist, wurde eine Erkennungsrate von 100% mit einer Genauigkeit von 1.55 

cm für die Höhe der Pflanzen erreicht. Der Stiel der Pflanzen wurde mit einer Genauigkeit von 2.05 

cm erkannt.  

Diese Arbeit zeigte verschiedene Methoden für die Erkennung von Kontextwahrnehmung, was helfen 

kann, um die Robustheit von Robotern in der Landwirtschaft zu erhöhen. Wenn die Objekte in der 

Umwelt bekannt sind, könnte es möglich sein, intelligenter auf die Umwelt zu reagieren und zu 

interagieren, wie es aktuell der Fall in der Landwirtschaftsrobotik ist. Besonders die Erkennung von 

Einzelpflanzen bevor der Roboter sie erreicht, könnte helfen die Navigation und Interaktion von 

Robotern in der Landwirtschaft verbessern.   
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