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1 Summary 

Many soil functions, such as nutrient cycling or pesticide degradation, are controlled by micro-

organisms. Dynamics of microbial populations and biogeochemical cycling in soil are largely 

determined by the availability of carbon (C). However, the underlying regulation mechanisms 

are still not well understood. The detritusphere is a microbial “hot spot” of C turnover. It is 

characterized by a pronounced concentration gradient of C from litter (high) into the adjacent 

soil (lower). Therefore, this microhabitat is very well suited to investigate the influence of C 

availability on microbial dynamics and biogeochemical processes. My thesis aimed at improv-

ing our understanding of biogeochemical interactions involved in pesticide degradation cou-

pled to C turnover in the detritusphere. Thereby, the herbicide 4-chloro-2-methylphenoxyacetic 

acid (MCPA) served as a model xenobiotic. 

In the first study, the influence of litter-C input on C and MCPA turnover as well as on the 

MCPA-degrading microbial community in soil was investigated spatially resolved in a three-

week microcosm experiment. Based on these results, a new mathematical model was devel-

oped that simulates transport and degradation of MCPA depending on C turnover and micro-

bial dynamics. High-leverage model parameters were identified by a global sensitivity analysis. 

A second microcosm experiment focused on the spatiotemporal dynamics of MCPA, C und 

microorganisms. It provided the data to parameterize the new model. 

In the experiments MCPA, organic C (total and extractable) and microbial C as well as CO2 

production were analyzed to quantify matter cycling in soil. In the experiments 14C-labeled 

MCPA as well as litter and soil with different 13C signatures were applied. Thus, the fate of 

MCPA- and litter-C was traced by using isotopic analyses of CO2, extractable and total organic 

C as well as microbial C. Information on composition and dynamics of the soil microbial com-

munity was obtained by quantifying three marker-genes: the 16S rRNA gene (bacteria), an 

internal transcribed spacer (ITS) fragment (fungi) and the functional gene tfdA (bacterial MCPA 

degrader) 

The new model was formulated as a set of coupled ordinary and partial differential equations. 

It simulates the dynamics of MCPA, five C pools (litter, high-quality and low-quality dissolved 

organic C, insoluble soil organic matter, CO2) and three microbial pools (bacteria, fungi, bac-

terial pesticide degraders). In addition, it considers physiological activity of microorganisms, 

transport and sorption of dissolved organic C and MCPA as well as the dynamics of C isotopes 

(14C, 13C). The model was calibrated using a Pareto optimization. In addition to the parameter-

ization of the model, this method was used to analyze possible structural shortcomings of the 

model. For the first time, genetic information on abundances of total bacteria, fungi and specific 

pesticide degraders in soil were directly used as a proxy of the corresponding microbial pools 

in the model.  
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In the detritusphere, gradients of organic matter turnover from litter into the adjacent soil could 

be identified. Increased C availability, due to the transport of dissolved organic substances 

from litter into soil, resulted in the boost of microbial biomass and activity as well as in the 

acceleration of MCPA degradation. Fungi and bacterial MCPA-degraders profited most from 

litter-C input. Accelerated MCPA degradation was accompanied by increased incorporation of 

MCPA-C into soil organic matter. The experimental results show that the transport of dissolved 

organic substances from litter regulates C availability, microbial activity and finally MCPA deg-

radation in the detritusphere. In general, litter-derived organic compounds provide energy and 

resources for microorganisms. The following possible regulation mechanisms were identified: 

i) Litter might directly supply the co-substrate α-ketoglutarate (or surrogates) required for en-

zymatic oxidation of MCPA by bacterial MCPA degraders. Alternatively, it might provide addi-

tional energy and resources for production and regeneration of the needed co-substrate. ii) 

Additional litter-C might alleviate substrate limitation of enzyme production by bacteria and 

bacterial consortia resulting in an increased activity of specific enzymes attacking MCPA. iii) 

Litter-derived organic substances might stimulate MCPA degradation via fungal co-metabolism 

by unspecific extracellular enzymes, either directly by inducing enzyme production, or by sup-

plying primary substrates that provide the energy consumed by co-metabolic MCPA transfor-

mation. 

The model abstracts these regulation mechanisms in such a way that C availability controls 

physiological activity, growth, death and maintenance of microbial pools. Accelerated pesticide 

degradation in the detritusphere was modeled by the two following mechanisms: i) Increasing 

C availability and turnover promotes activity and biomass of bacterial pesticide degraders. 

Thus, the pesticide is faster utilized as a growth substrate by this microbial pool. ii) By analogy, 

the model simulates accelerated co-metabolic pesticide transformation as a result of increased 

activity and biomass of the fungal pool due to increased C availability. Based on the global 

sensitivity analysis, 41% (n=33) of all considered parameters and input values were classified 

as “very important” and “important”. These mainly include biokinetic parameters and initial val-

ues. The Pareto-analysis showed that the model structure was adequate and the identified 

parameter values were reasonable to reproduce the observed dynamics of C and MCPA. The 

model satisfactorily matched observed abundances of 16S rRNA and tfdA genes. It underes-

timated, however, the steep increase of fungal ITS fragments, most probably because this 

gene-marker is only inadequately suited as a measure of fungal biomass. The model simula-

tions indicate that soil fungi primarily benefit from low-quality C, whereas bacterial MCPA-de-

graders preferentially use high-quality C. According to the simulations, MCPA was predomi-

nantly transformed via co-metabolism to high-quality C. Subsequently, this C was primarily 

assimilated by bacterial MCPA-degraders. The highest turnover of litter-derived C occurred by 

substrate uptake for microbial growth. Input and microbial turnover of litter-C stimulated MCPA 
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degradation mainly in a soil layer at 0-3 mm distance to litter. As a consequence of this, a 

concentration gradient of MCPA formed, which triggered the diffusive upward transport of 

MCPA from deeper soil layers into the detritusphere. 

The results of the three studies suggest that i) the detritusphere is a biogeochemical hot spot 

where microbial dynamics control matter cycling, ii) the integrated use of experiments and 

mathematical modelling gives detailed insight into matter cycling and dynamics of microorgan-

isms in soil, and iii) microbial communities need to be explicitly considered to understand the 

regulation of soil functions. 
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2 Zusammenfassung 

Viele Bodenfunktionen, wie zum Beispiel die Umsetzung von Nährstoffen oder der Abbau von 

Pestiziden, werden massgeblich durch Mikroorganismen gesteuert. Die Verfügbarkeit von 

Kohlenstoff (C) bestimmt dabei signifikant die Dynamik der mikrobiellen Biomasse und bioge-

ochemischer Umsetzungsprozesse im Boden. Ein „hot spot“ des mikrobiellen C-Umsatzes ist 

die Detritusphäre. Sie ist durch einen starken Gradienten der C-Konzentration von der Streu 

(hoch) in den angrenzenden Boden (niedriger) geprägt. Daher lässt sich der Einfluss der C-

Verfügbarkeit auf mikrobielle Umsatzprozesse gerade in der Detritusphäre sehr gut untersu-

chen. Ziel meiner Dissertation war es, die am gekoppelten Pestizid-Abbau und C-Umsatz be-

teiligten biogeochemischen Wechselwirkungen in der Detritusphäre besser zu verstehen. Da-

bei diente das Herbizid 4-Chlor-2-methylphenoxyessigsäure (MCPA) als ein Modell-Xenobio-

tikum. 

In der ersten Studie wurde in einem dreiwöchigen Mikrokosmenexperiment der Einfluss von 

Streu-C auf den Umsatz von C und MCPA sowie die MCPA-abbauende mikrobielle Gemein-

schaft im Boden räumlich aufgelöst untersucht. Aufbauend auf diesen Ergebnissen wurde in 

der zweiten Arbeit ein neues mathematisches Modell entwickelt, das den Transport und den 

Abbau von MCPA in Abhängigkeit vom C-Umsatz und der mikrobiellen Dynamik simuliert. An-

hand einer globalen Sensitivitätsanalyse wurden die Modellparameter identifiziert, die die Si-

mulation am stärksten beeinflussen. Ein weiteres Mikrokosmenexperiment mit dem Focus auf 

der zeitlichen  Dynamik von MCPA, C und Mikroorganismen diente zur Parametrisierung des 

neuen Modells (dritte Studie). 

Zur Quantifizierung des Stoffumsatzes in den Experimenten wurden MCPA, organischer C 

(total und extrahierbar) und mikrobieller C im Boden sowie die CO2-Produktion analysiert. Au-

ßerdem wurde 14C markiertes MCPA sowie Streu und Boden mit jeweils unterschiedlicher 13C-

Signatur eingesetzt. Mithilfe isotopischer Analysen von CO2, gelöstem und gesamtem organi-

schen C sowie mikrobiellem C konnten so die Umsatzwege von MCPA- und Streu-C verfolgt 

werden. Informationen über die Zusammensetzung und Dynamik der mikrobiellen Gemein-

schaft im Boden lieferte die Quantifizierung folgender Gen-Marker: das 16S rRNA Gen (Bak-

terien), ein internal transcribed spacer (ITS) Fragment (Pilze) und das Funktionsgen tfdA (bak-

terielle MCPA-Abbauer).  

Das neue Modell wurde als System gekoppelter gewöhnlicher und partieller Differentialglei-

chungen formuliert. Es simuliert die Dynamik von MCPA, fünf C-Pools (Streu, gelöster organi-

scher C hoher und niedriger Qualität, unlösliche organische Bodensubstanz, CO2) und drei 

mikrobiellen Pools (Bakterien, Pilze, bakterielle Pestizidabbauer). Außerdem berücksichtigt es 

die physiologische Aktivität von Mikroorganismen, den Transport und die Sorption von gelös-

tem organischen C und MCPA sowie die Dynamik von C-Isotopen (14C; 13C). Das Modell wurde 
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mithilfe einer Pareto-Optimierung kalibriert. Dieses Verfahren erlaubte darüber hinaus eine 

Analyse möglicher struktureller Defizite des Modells. Für die Kalibrierung wurden erstmals di-

rekt genetische Informationen über die Abundanz von gesamten Bakterien, Pilzen und spezi-

fischen MCPA-Abbauern im Boden als Maß für die entsprechenden mikrobiellen Pools im Mo-

dell genutzt. 

In der Detritusphäre zeigten sich Gradienten des Stoffumsatzes von der Streu in den angren-

zenden Boden. Die erhöhte C-Verfügbarkeit in der Detritusphäre, infolge des Transports ge-

löster organischer Verbindungen aus der Streu in den Boden, führte zu einem Anstieg der 

mikrobiellen Biomasse und Aktivität sowie zu einem beschleunigten MCPA-Abbau. Pilze und 

bakterielle MCPA-Abbauer profitierten am stärksten von eingetragenem Streu-C. Der be-

schleunigte MCPA-Abbau ging mit verstärktem Einbau von MCPA-C in die organische Boden-

substanz einher. Die experimentellen Ergebnisse zeigen, dass der Transport gelöster organi-

scher Verbindungen aus der Streu die C-Verfügbarkeit und in der Folge sowohl die mikrobielle 

Aktivität als auch den MCPA-Umsatz im Boden reguliert. Generell stellen eingetragene Ver-

bindungen aus der Streu Energie und Ressourcen für Mikroorganismen zur Verfügung. Als 

mögliche Regulationsmechanismen wurden identifiziert: i) Streu könnte direkt das Co-Substrat 

α-Ketoglutarat (oder Surrogate) liefern, das für die enzymatische Oxidation von MCPA durch 

bakterielle MCPA-Abbauer gebraucht wird. Alternativ könnten organische Verbindungen aus 

der Streu zusätzliche Energie und Ressourcen zur Produktion und Regeneration des benötig-

ten Co-Substrats liefern. ii) Zusätzlicher Streu-C könnte die Substratlimitierung der Enzympro-

duktion von Bakterien und bakteriellen Konsortien vermindern und in der Folge zu höherer 

Aktivität von spezifischen MCPA-angreifenden Enzymen führen. iii) Organische Substanzen 

aus der Streu könnten den co-metabolischen MCPA-Abbau durch unspezifische extrazelluläre 

Enzyme von Bodenpilzen stimulieren, entweder direkt über die Induktion der Enzymproduktion 

oder indem aus Primärsubstraten Energie, die für die co-metabolische MCPA-Transformation 

verbraucht wird, gewonnen werden kann. 

Das Modell abstrahiert diese Regulationsmechanismen, indem physiologische Aktivität, 

Wachstum, Absterben und Erhaltungsstoffwechsel der mikrobiellen Pools durch die C-Verfüg-

barkeit kontrolliert werden. Der beschleunigte MCPA-Abbau in der Detritusphäre wird durch 

folgende zwei Mechanismen abgebildet: i) Steigende C-Verfügbarkeit und erhöhter C-Umsatz 

fördern Aktivität und Biomasse bakterieller Pestizid-Abbauer. Infolgedessen wird durch diesen 

mikrobiellen Pool vermehrt Pestizid als Wachstumssubstrat umgesetzt. ii) Analog dazu simu-

liert das Modell den beschleunigten co-metabolischen MCPA-Umsatz als Folge erhöhter Akti-

vität und Biomasse des pilzlichen Pools aufgrund von höherer C-Verfügbarkeit. Auf Basis der 

globalen Sensitivitätsanalyse des Modells wurden 41% (n = 33) aller berücksichtigten Para-

meter bzw. Eingangsgrößen als „sehr wichtig“ und „wichtig“ klassifiziert. Dazu zählten vor al-
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lem biokinetische Parameter und Anfangswerte. Die Pareto-Analyse ergab, dass die Modell-

struktur geeignet war und sinnvolle Parameterwerte identifiziert werden konnten, um die ge-

messene Dynamik von C und MCPA abzubilden. Das Modell konnte die gemessenen A-

bundanzen der 16S rRNA und tfda Gene zufriedenstellend wiedergeben. Es unterschätzte 

allerdings den extrem starken Anstieg der pilzlichen ITS-Fragmente, höchstwahrscheinlich 

weil dieser Gen-Marker nur unzureichend als Maß für die gesamte pilzliche Biomasse geeignet 

ist. Die Modellsimulationen zeigten, dass Bodenpilze vor allem von C niedriger Qualität profi-

tierten, während bakterielle MCPA-Abbauer bevorzugt C hoher Qualität nutzten. In den Simu-

lationen wurde MCPA überwiegend durch pilzlichen Co-Metabolismus zu C von hoher Qualität 

umgesetzt. Dieser C wurde anschließend primär von spezifischen bakteriellen MCPA-Abbau-

ern assimiliert. Der größte Umsatz von eingetragenem Streu-C erfolgte durch Substratauf-

nahme für mikrobielles Wachstum. Eintrag und mikrobieller Umsatz von Streu-C förderte den 

Abbau von MCPA vor allem in einer Bodenschicht in 0-3 mm Abstand zur Streu. Infolgedessen 

bildete sich ein Gradient der MCPA-Konzentration aus, der den diffusiven MCPA Transport 

aus tieferen Bodenschichten in die Detritusphäre antrieb. 

Die Ergebnisse der Studien zeigen: i) Die Detritusphäre ist ein biogeochemischer hot spot, in 

dem Stoffumsätze durch die mikrobielle Dynamik kontrolliert werden. ii) Die integrierte Anwen-

dung von Experimenten und mathematischer Modellierung erlaubt einen erweiterten Einblick 

in die Dynamik von Stoffen und Mikroorganismen im Boden. iii) Mikrobielle Gemeinschaften 

müssen explizit berücksichtigt werden, um die Regulation von Bodenfunktionen zu verstehen. 
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3 General Introduction 

3.1 Biogeochemical interfaces in soil 

“Soil is the most complex biomaterial on the planet” (Young and Crawford 2004). It “is an ex-

traordinarily complex medium, made up of a heterogeneous mixture of solid, liquid and gase-

ous material, as well as a diverse community of living organisms.” (Jury and Horton 2004; p. 

1, first sentence). Consequently, a dynamic system of biogeochemical interfaces is formed at 

the points of contact between diverse inorganic, organic and living soil components (Totsche 

et al. 2010). Rennert et al. (2012) define a biogeochemical interface as a “3D domain with a 

thickness ranging from nanometers to micrometers” that “gradually or abruptly separate[s] bulk 

immobile phases from mobile liquid or gaseous phases”. 

However, biogeochemical interfaces are not restricted to the nano- and microscale, and they 

can be viewed as being hierarchically organized across a much wider range of spatial scales 

(Vogel and Roth 2003; Totsche et al. 2010; Lin 2012). Thus, the spatially heterogeneous dis-

tribution of interfaces between solid, liquid and gas in combination with the spatially and tem-

porally heterogeneous input of carbon, nutrients and other chemicals promotes the formation 

of microbially diverse niches in soil (Or et al. 2007; Totsche et al. 2010). Such microhabitats 

are biogeochemical interfaces themselves as they separate soil compartments with different 

biological and physicochemical properties. Ultimately at the highest hierarchical level, soil mi-

crohabitats are in turn integral parts of the pedosphere as the global interfacial domain between 

hydrosphere, atmosphere, biosphere and lithosphere (Blume et al. 2010).  

Properties of interfaces between liquid, gas and solid (including microorganisms) fundamen-

tally control biogeochemical processes occurring at a scale below micrometers (Chorover et 

al. 2007; Totsche et al. 2010). Such processes include the alteration of water-film thickness by 

capillary forces at the pore surface, sorption/ desorption of various solutes (e.g. cations, ani-

ons, natural organic carbon or pollutants), weathering of primary mineral surfaces and for-

mation of secondary minerals as well as microbial uptake of diverse compounds from the solid, 

liquid and gaseous phases and their microbial transformation (Or et al. 2007). These nanoscale 

biogeochemical processes determine major soil functions, such as water storage, nutrient cy-

cling or degradation of organic chemicals at the scale of microhabitats and in the pedosphere 

as a whole (Young and Crawford 2004; Chorover et al. 2007; Totsche et al. 2010). 

How biogeochemical processes occurring at the nanoscale manifest at the higher hierarchical 

level of microhabitats and how they determine the functioning of microhabitats as biogeochem-

ical interfaces is, however, regulated by microhabitat-specific characteristics, such as the avail-

ability of water and nutrients (Paul 2007, Chapter 11). Considering the pedosphere as the 



3  General Introduction 8 

 

 

biogeochemical interface at the highest hierarchical level, e.g., climatic conditions can regulate 

biogeochemical cycling at spatial scales of about 100 - 1000 km (Or et al. 2007). 

Biogeochemical interfaces are often biogeochemical hot spots, because the continuous supply 

and junction of different, complementary reactants at such locations facilitates maintaining high 

rates of specific biogeochemical reactions (McClain et al. 2003; Hagedorn and Bellamy 2011). 

McClain et al. (2003) further state that hot spots of biogeochemical processing “may be defined 

at any spatial scale”. This is in perfect agreement with the hierarchical scale concept of bioge-

ochemical interfaces stated above. 

3.2 Biogeochemical hot spots and matter cycling in soil 

“Microbial activity is vital to a wide range of soil functions. They [the microbes] play critical roles 

in most biogeochemical cycles on Earth, including those of carbon, nitrogen, phosphorus and 

sulphur.” (Or et al. 2007). Indeed, soil organic matter dynamics as well as cycling of inorganic 

nutrients and metals in soils are strongly driven by microbial action (Paul 2007 Ch. 12, 13,15; 

Gleixner 2013). Therefore, the understanding of biologically controlled soil processes is crucial 

to understand the response of the soil system to environmental impacts, such as those arising 

due to climate change or application of agrochemicals (e.g. fertilizers, pesticides) or contami-

nation with pollutants (e.g. organic chemicals, heavy metals).  

Despite its important role, microbial biomass represents only 2 - 5% of total terrestrial soil C 

(Paul 2007, p.286) and it accounts only for 1 - 6% of total organic matter in most soils (Blume 

et al. 2010, p.95). Only a small fraction of the potentially habitable space in soils is colonized 

by microorganisms. Based on microscopic investigations of a sand dune soil, Hissett and Gray 

(1976) estimated that 0.2% of the organic surfaces and 0.02% of the sand grain surfaces were 

occupied by bacteria. Young and Crawford (2004) estimated 10-6% areal coverage of solid 

surfaces in soil by microorganisms and stated: “The important point here is not the absolute 

coverage, which can vary with clay content, moisture, and substrate availability, but the fact 

that it is considerably less than 1%, even with the most optimistic balance of inputs.” 

The majority of soil bacteria resides in pores  > 0.8 µm. They are most frequently found in 

pores with a maximum pore diameter ranging from 2.5 to 9 µm, where they are most protected 

against predators. In contrast, fungi, protozoa and algae mainly colonize pores larger than 5 

µm (Paul 2007, p.297). Postma and van Veen (1990) found that microbial colonization in soil 

is not limited by the availability of protective and habitable pore space. In their study, less than 

0.5% of this pore space were occupied by bacteria. 

Instead of the available habitat space, the availability of resources largely determines how 

dense available solid surfaces in soil are populated. This view was nicely illustrated by micro-

scopic images from thin sections by Nunan et al. (2003). The images show that soil surfaces 

were more densely colonized by bacteria, when glucose was added as additional carbon 
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source. The same authors suggested that bacteria are present at preferentially colonized 

patches. They accounted the observed heterogeneous bacterial distribution to an uneven dis-

tribution of soil organic matter at the micro-scale. Recent studies confirmed that bacterial cells 

aggregate at a scale of a few micrometers as a result of soil architecture and resource availa-

bility at the micro-scale (Raynaud and Nunan 2014). In general, “the structural organization of 

soil creates a mosaic of microenvironments” (Ranjard and Richaume 2001) with locally specific 

physicochemical characteristics (e.g., pH, redox potential, water availability, concentrations of 

nutrients, electron acceptors and signaling compounds), which determine diversity and abun-

dance of microbial communities at the micro-scale (Foster 1988; Ranjard et al. 2000; Ettema 

and Wardle 2002; Grundmann 2004; Paul 2007, Chapter 11; Franklin and Mills 2009; Ruamps 

et al. 2011; Crawford et al. 2012; Prosser 2012; Vos et al. 2013).  

Micro-environmental characteristics also regulate the physiological state of microorganisms. 

In their recent review, Blagodatskaya and Kuzyakov (2013) define four physiological states of 

microorganisms: i) active, ii) potentially active, iii) dormant and iv) dead. They stated that the 

portion of active microorganisms actually contributing to ongoing biogeochemical processes is 

as low as 0.1 – 2% and does not exceed 5% of the total microbial biomass in soil. The authors 

further speculate that this low active portion of the total microbial community in soil might reflect 

heterogeneously distributed “hot spots” of high substrate availability at the micro-scale, “where 

an important part of potentially active and partly dormant microorganisms switched to the ac-

tive state.”  

The activity state of microorganisms is directly linked to the production of extracellular enzymes 

(Kandeler et al. 1999a; Poll et al. 2006; Spohn and Kuzyakov 2013). However, the actual ac-

tivity of extracellular enzymes in soil is, at least to some extent, decoupled from their active 

microbial producers (Nannipieri et al. 2002). For that, Burns et al. (2013) gave three reasons: 

First, “most extracellular enzymes diffuse away from their parent cell.” Second, “many extra-

cellular enzymes become stabilized through association with clay minerals, humic acids and 

particulate organic matter and retain significant levels of activity for prolonged periods of time.” 

And third, extracellular enzyme activity may also originate from enzymes attached to or re-

leased from dead microorganisms. 

As a result of soil’s heterogeneous nature, the biological functioning of soils is governed by 

high reaction rates occurring at distinct hot spots and hot moments (see McClain et al. 2003 

for a definition), where life conditions of microbial communities and physicochemical con-

straints of extracellular enzymes are optimally met (Parkin 1993; Nannipieri et al. 2003; Nunan 

et al. 2003; Girish Shukla and A. Varma 2011, Chapter 12; Vos et al. 2013). Kandeler et al. 

(2001) stated: “… hot spots of activity may be <10% of the total soil volume, but may represent 

>90% of the total biological activity in most soils worldwide.” Consequently, we must study 

matter cycling in biochemical hot spots to improve our understanding of the dynamics of the 
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whole soil system (Kuzyakov et al. 2009). On the other hand, microbially-driven processes in 

“non hot spot” regions should not be neglected. In agreement with the “hot spot” point of view 

taken here, Young and Ritz (2005) draw the well-fitting picture of soils as “oases surrounded 

by deserts” and claim “that the desert regions have just as much to do with the functionality of 

the soil system as do the oases [the biochemical hot spots]”.  

Biogeochemical hot spots in soils are found in numerous highly diverse soil microhabitats (Fos-

ter 1988; Beare et al. 1995). Physical fractionation of soil according to size and density of 

particles as well as aggregates was widely applied to study the association of microorganisms 

and microbially-driven soil processes (in particular SOM turnover) with defined micro-niches 

(Nishiyama et al. 1992; Kandeler et al. 1999b; Kandeler et al. 2000; Christensen 2001; Ses-

sitsch et al. 2001; Poll et al. 2003; Marx et al. 2005; Dorodnikov et al. 2009; Lagomarsino et 

al. 2012; Bailey et al. 2013; Zhang et al. 2013; Rabbi et al. 2014). Small-size fractions (i.e. clay 

and silt) have been identified as microhabitats with high abundance and diversity of bacteria, 

whereas large-size fractions (aggregates > 2 mm) have been found to be fungal hot spots 

(Ranjard and Richaume 2001; Kögel-Knabner et al. 2008). Enzyme measurements further re-

vealed that soil particles of clay- to silt-size and free particulate organic matter are biogeo-

chemical hot spots of C, nitrogen, sulphur and phosphorus cycling (Kandeler et al. 1999b; 

Allison and Jastrow 2006; Lagomarsino et al. 2012). 

On the basis of the conceptual soil aggregate hierarchy model by Tisdall and Oades (1982) 

and its later enhancements (Six et al. 2004), there is evidence that SOM is predominantly 

stabilized in micro-aggregates rather than in macro-aggregates (Jastrow et al. 2007). Accord-

ingly, Dorodnikov et al. (2009) found that measured activities of enzymes involved in C, nitro-

gen, sulfur, phosphorus cycling and enzyme activity in bulk soil could be primarily attributed to 

macro-aggregates and that micro-aggregates (<250 µm) contributed only to a very minor part. 

Thus, macro-aggregates were identified as important micro-environments (i.e. hot spots) of 

matter cycling by these authors. Other studies focused on soil processes in the interior vs. the 

exterior of soil aggregates. For instance, Sexstone (1985) nicely demonstrated the importance 

of anaerobic zones within aggregates as hot spots of denitrification, whereas higher potential 

nitrification was found in aggregate exteriors (Hoffmann et al. 2007). 

Biological studies employing physical particle size and aggregate fractionation greatly helped 

to improve the understanding how micro-environmental conditions regulate biological function-

ing. However, results from such studies should be interpreted with caution. Particle size frac-

tionation destroys the natural micro-environment of particles and soil microorganisms (Kande-

ler and Dick 2007) and studies employing aggregate fractionation have been found to be 

strongly dependent on the used isolation procedure and prone to artefacts caused by sample 

preparation (Ashman et al. 2003; Bach and Hofmockel 2014). Consequently, the use of phys-

ically extracted particle size and aggregate fractions to understand functional consequences 



3  General Introduction 11 

 

 

of the intact soil structure in situ is somewhat limited (Young and Ritz 2005; von Lützow et al. 

2007; Hallett et al. 2013). 

Six and Paustian (2014) stated that by relying on isolation of aggregate structure to understand 

SOM dynamics, “…in some sense, we are looking at the walls of a house to understand what 

is happening in the living-room.” Indeed, microbial activity immediately takes places in the 

pores (“the living-room”) rather than within the solid matrix of soil (“the walls of a house”). The 

characteristics of the continuous soil pore network (e.g. connectivity and pore shape) deter-

mine microbial functioning and soil processes (Strong et al. 2004; Young and Ritz 2005; Or et 

al. 2007; Chenu and Cosentino 2011; Ananyeva et al. 2013). In particular, the pore network 

geometry regulates water distribution and resource availability at the micro-scale, which then 

determines at which location in the pore network microorganisms are most active (Or et al. 

2007; Bouckaert et al. 2013; Ruamps et al. 2013). This relationship is nicely illustrated in sev-

eral studies that identified preferential flow paths and macropores as hot spots of increased C 

and N turnover as well as accelerated degradation of pesticides (Pivetz and Steenhuis 1995; 

Vinther et al. 1999; Bundt et al. 2001a; Bundt et al. 2001b; Gaston and Locke 2002; Jarvis 

2007; Badawi et al. 2013). The hot spots identified in these studies are characterized by better 

nutrient availability (as a result of root-, earthworm- and litter-derived biopore linings with SOM) 

and oxygen supply compared to the surrounding soil matrix. 

The input of organic C and nutrients from external sources (e.g., litter, roots) generally triggers 

the formation of microbial hot spots as localized zones of increased matter cycling in soil. The 

rhizo-, drilo- and detritusphere are major biogeochemical interfaces (soil-roots, soil-earth-

worms, soil-litter) where C and nutrients enter soil (Beare et al. 1995). Several studies have 

shown that in these microhabitats C turnover can be accelerated and “priming effects”, i.e. 

“…strong short-term changes in the turnover of soil organic matter caused by comparatively 

moderate treatments of the soil” (Kuzyakov et al. 2000), are typically occurring (Helal and Sau-

erbeck 1984; Bottner et al. 1999; Kandeler et al. 1999a; Don et al. 2008; Poll et al. 2008; Cheng 

2009; Kuzyakov 2010; Bird et al. 2011; Schenck zu Schweinsberg-Mickan et al. 2012). En-

hanced C turnover in the rhizo-, drilo- and detritusphere is often coupled to increased rates of 

other soil processes, such as the degradation of organic chemicals (Haby and Crowley 1996; 

Shaw and Burns 2003; Gerhardt et al. 2009; Liu et al. 2011; Chen and Yuan 2012; Blouin et 

al. 2013). However, the regulation mechanisms that are responsible for such priming phenom-

ena (i.e., accelerated degradation of SOM and pesticides in response to supply with fresh C 

or nutrients) are not yet fully understood (Blagodatskaya and Kuzyakov 2008; Neill and Guenet 

2010; Fontaine et al. 2011). 
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3.3 Modeling microbial regulation of matter cycling in soil 

“Models provide a means of deconstructing the complexity of environmental systems…” (Wain-

wright and Mulligan 2013; chapter 2.1.4, p. 11). They serve as tools to test theory and can 

improve our understanding of observations in natural systems (Wainwright and Mulligan 2013, 

chapter 2.1.3). 

The most widely applied simplification of decay processes in biochemical models employs first 

order kinetics assuming that degradation can be described as a strictly substrate-limited pro-

cess. This formulation is used in most mathematical models in combination with equations 

describing transport and sorption of solutes to simulate the fate of C, N and pesticide pools in 

soils at different spatial and temporal scales (Köhne et al. 2009; Manzoni and Porporato 2009). 

It has been recognized that global scale models should explicitly account for the impact of 

microbial dynamics on degradation processes in order to realistically represent C dynamics in 

soil and to improve model predictions of the soil organic matter response to global change 

(Schmidt et al. 2011; Todd-Brown et al. 2012). Similarly, models must consider microbial dy-

namics to reproduce priming phenomena (Parnas 1976; Wutzler and Reichstein 2008). 

Various mathematical models explicitly consider microbial regulation mechanisms of biochem-

ical processes. They usually implement several functional groups of microorganisms and re-

source pools of differing quality (e.g.; Grant et al. 1993; Garnier et al. 2003; Kravchenko et al. 

2004; Moorhead and Sinsabaugh 2006; Ingwersen et al. 2008; Gras et al. 2011; Aslam et al. 

2014). In such models, dynamics of resources and microorganisms are typically coupled using 

Monod kinetics. Several models explicitly account for microbial traits, enzyme production and 

microbial physiology (Blagodatsky and Richter 1998; Schimel and Weintraub 2003; Allison 

2012; Moorhead et al. 2012; Moore et al. 2014; Sistla et al. 2014; Wang et al. 2014; Wieder et 

al. 2014). Recently, the spatial heterogeneity of the pore space and the distribution of micro-

organisms in soil has been directly implemented (Masse et al. 2007; Gharasoo et al. 2012; 

Resat et al. 2012; Cazelles et al. 2013; Monga et al. 2014). Such models are complex, but they 

are powerful tools to enhance the mechanistic understanding of microbial dynamics and bio-

geochemical interactions involved in carbon and nutrient cycling as well as in the degradation 

of organic compounds in soil (Blagodatsky et al. 2010; Allison 2012; Möller and Hansen 2012; 

Banitz et al. 2013; Chalhoub et al. 2013; Perveen et al. 2014; Rosenbom et al. 2014). 

3.4 The model pesticide 4-chloro-2-methylphenoxyacetic acid (MCPA) 

MCPA is a systemic herbicide acting like naturally occurring phytohormones (auxins) causing 

abnormal growth responses and finally the death of target plants (Caux et al. 1995; British 

Crop Protection Council 2009). It is formulated into esters, salts and amine derivatives and 

often used in combination with other herbicides, such as Dicamba and Mecoprop-P (British 

Crop Protection Council 2009). The typical application rate is 0.2–2.3 kg of MCPA per hectare 
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(Caux et al. 1995; British Crop Protection Council 2009). The half-life of MCPA in soils is fairly 

short (7 – 41 days; European Commission 2005) and it is not strongly sorbed in soils (kOC = 

10-157 L kg-1; Jensen et al. 2004; European Commission 2005). Chlorophenoxy pesticides, 

such as MCPA, are widely applied as broad-spectrum, post-emergence herbicides against  

broad-leaved weeds in agricultural cultivation (cereals, vegetables) and grassland (British Crop 

Protection Council 2009). In Germany, phenoxy phytohormones represent about 6% of all sold 

herbicides (Status in 2013; BVL 2014).   

Among the chlorophenoxy pesticides, mainly 2,4-dichlorophenoxyacetic acid and MCPA have 

been frequently used as model compounds to study the degradation of organic contaminants 

in soil (Torstensson et al. 1975; Loos et al. 1979; Soulas 1993; Crespin et al. 2001; Cederlund 

et al. 2007; Boivin et al. 2005). In soil, MCPA is predominantly degraded by microorganisms; 

exclusively under aerobic conditions (European Commission 2005). Bacterial pathways of 

MCPA degradation and enzymes as well as functional genes involved have been intensively 

studied (Helling et al. 1968; Don and Pemberton 1981; Pieper et al. 1988; Fukumori and 

Hausinger 1993; Smejkal et al. 2001; Laemmli et al. 2004; Ledger et al. 2006; Liu et al. 2013). 

The major bacterial pathway of biodegradation of MCPA and other chlorophenoxy herbicides 

is initiated by the cleavage of the ether-bonded acetate side chain, which is catalyzed by dif-

ferent oxygenases (Itoh et al. 2004; Müller et al. 2006; Baelum et al. 2010; Zaprasis et al. 2010; 

Nielsen et al. 2013; Liu et al. 2013). Fungal degradation pathways of chlorophenoxy herbicides 

and the fungal enzymes involved are less well understood. Evidence is growing, however, that 

many soil fungi are able to degrade chlorophenoxy herbicides (Torstensson et al. 1975; Vroum-

sia et al. 2005; Itoh et al. 2013). 

3.5 Scope of the thesis – Why study the detritusphere? 

“Plant litter materials provide the primary resources for organic matter formation in soil.” (Kögel-

Knabner et al. 2008). Accordingly, the detritusphere is a highly relevant microhabitat in soils 

because it is the biogeochemical interface where soil gets into contact with fresh plant litter. It 

is a very important biochemical hot spot of microbial activity and matter cycling in soil (Beare 

et al. 1995; Kandeler et al. 1999a; Gaillard et al. 2003; Poll et al. 2008; Kuzyakov 2010). Con-

sequently, the detritusphere is a well-suited to elucidate the regulation of crucial soil functions. 

My thesis aims to clarify the biogeochemical interactions involved in MCPA degradation cou-

pled to C turnover in the detritusphere. The herbicide MCPA serves as a model compound to 

elucidate how microbial dynamics in biogeochemical hot spots control the fate of organic chem-

icals, in particular pesticides. 

  



3  General Introduction 14 

 

 

The work is organized in three parts: 

In the first study, the effect of litter addition on MCPA degradation as well as on the microbial 

community in soil was investigated in a laboratory experiment using a microcosm incubation 

system. Possible regulation mechanisms of accelerated MCPA degradation were identified. 

Secondly, based on a detritusphere C turnover model (Ingwersen et al. 2008), a complex 

mathematical model was developed. It simulates coupled C turnover and pesticide degradation 

in the detritusphere by considering physicochemical processes (i.e. convective/ diffusive 

transport, sorption) as well as microbial dynamics. The model particularly includes two micro-

bial regulation mechanisms of accelerated MCPA degradation in the detritusphere identified in 

the first study: i) stimulation of the activity of specific bacterial MCPA degraders, and ii) in-

creased fungal production of unspecific enzymes that transform MCPA. 

In the third study, a second microcosm experiment was performed. The experimental data 

were then utilized to parameterize the new model. In a novel approach, measured dynamics 

of microbial marker genes (tfdA, 16S rRNA, fungal ITS fragments) and carbon isotopes (13C 

and 14C) were used to calibrate simulated dynamics of microbial pools as well as of litter- and 

pesticide-derived organic carbon in soil. The parameterized model was then applied as an 

analytical tool to gain further insight into the microbial regulation of accelerated MCPA degra-

dation in the detritusphere. 
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4.1 Abstract 

Much is known about mechanisms and regulation of phenoxy acid herbicide degradation at 

the organism level, whereas the effects of environmental factors on the performance of the 

phenoxy acid degrading communities in soils are much less clear. In a microcosm experiment 

we investigated the small-scale effect of litter addition on the functioning of the MCPA degrad-

ing communities. 14C labelled MCPA was applied and the functional genes tfdA and tfdAα were 

quantified to characterise bacterial MCPA degradation. We identify the transport of litter com-

pounds as an important process that probably regulates the activity of the MCPA degrading 

community at the soil-litter interface. Two possible mechanisms can explain the increased tfdA 

abundance and MCPA degradation below the litter layer: 1) transport of α-ketoglutarate or its 

metabolic precursors reduces the costs for regenerating this co-substrate and thereby im-

proves growth conditions for the MCPA degrading community; 2) external supply of energy 

and nutrients changes the internal resource allocation towards enzyme production and/or im-

proves the activity of bacterial consortia involved in MCPA degradation. In addition, the pres-

ence of litter compounds might have induced fungal production of litter-decaying enzymes that 

are able to degrade MCPA as well. 
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4.2 Introduction 

Soil microbial communities play a key role in degrading xenobiotic compounds. This function 

is part of the filter capabilities of soils and belongs to the ecosystem services listed by the 

Millennium Ecosystem Assessment (2005). MCPA (4-chloro-2-methylphenoxyacetic acid) and 

2,4-D (2,4-dichlorophenoxyacetic acid) have been two of the most heavily used phenoxy acid 

herbicides against dicotyledonous plants for around 50 years. They were often studied as 

model compounds for the environmental fate of xenobiotics. Several environmental factors 

govern phenoxy acid degradation in soils. One such key factor is the soil organic matter con-

tent, which influences the ratio between sorbed and dissolved 2,4-D and thereby the degrada-

tion rate (Greer and Shelton, 1992). Recently, Vieublé-Gonod et al. (2003) suggested that 

uneven distribution of 2,4-D degradation in an arable soil at the millimeter scale might be ex-

plained by a heterogeneous distribution of the degrader community and of carbonaceous sub-

strates required for co-metabolic 2,4-D degradation. Another study suggested that MCPA deg-

radation is independent of the background density of the degrader community and more con-

nected to growth of the microbial degraders (Fredslund et al., 2008). Therefore, microbial 

growth conditions might play an important role in MCPA degradation. This is in accordance 

with Cederlund et al. (2007), who suggested that MCPA mineralisation in railway embank-

ments was N limited, and to Duah-Yentumi and Kuwatsuka (1980), who showed that adding 

plant residues increased MCPA degradation. The activity of the soil microbiota is favoured in 

hot-spots where more nutrients are available than in other more oligotrophic habitats of soils. 

Previous studies have shown enhanced degradation of several xenobiotics in the rhizosphere 

(Piutti et al., 2002; Shaw and Burns, 2004). Similar to the rhizosphere, the detritusphere is 

characterized by high availability of soluble litter compounds, which stimulates microbial activ-

ity, growth and C turnover (Poll et al., 2008). However, the effect of litter addition on pesticide 

degradation as well as on the involved functional microbial communities at the small-scale has 

not yet been investigated. 

Several bacteria have been identified as 2,4-D or MCPA degraders (e.g. Bell, 1960; Bollag et 

al., 1967; Chaudhry and Huang, 1988; Pieper et al., 1988) and much is known about the mech-

anisms and regulation of the degradation processes at the organism level. The most intensively 

studied is the tfd pathway. The tfd genes are often located on plasmids (Don and Pemberton, 

1985) and are seldom chromosomal. Bacteria might be capable of the complete degradation 

pathway or only harbour genes encoding a truncated degradation pathway (Ka et al., 1994; 

Top et al., 1996). The initial step of this pathway encoded by the tfdA gene (Streber et al., 

1987) is the cleavage of the acetate side chain by an -ketoglutarate-dependent dioxygenase 

(Fukumori and Hausinger, 1993). Beside bacteria that harbour genes of the tfd pathway, sev-

eral other phenoxy acid degraders have been identified. Among these are slow-growing oligo-
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trophic bacteria of the  subdivision of the class Proteobacteria, which were isolated from pris-

tine soils. They harbour the tfdA gene that encodes another -ketoglutarate-dependent diox-

ygenase (Itoh et al., 2002; Kamagata et al., 1997). The degradation of phenoxy acid herbicides, 

however, is not restricted to bacteria. Fungi have been reported to degrade these compounds 

as well (Castillo et al., 2001; Reddy et al., 1997). Vroumsia et al. (2005) screened ninety fungal 

strains and found up to 52% of added 2,4-D degraded by single fungal strains after an incuba-

tion of 5 days. In contrast to bacteria, no distinct pathway of fungal phenoxy acid degradation 

is known. Non-specific enzymes like lignin peroxidase or manganese peroxidase/laccase are 

suggested to be involved in the degradation process (Castillo et al., 2001). 

The direct effects of environmental factors on the performance of the phenoxy acid degrading 

community in soils, however, are poorly known. Small-scale studies provide the unique oppor-

tunity to directly relate environmental factors (e.g. substrate availability or soil texture) to the 

functioning of the microbial degrader community. We studied the effect of litter addition on 

MCPA degradation as well as on the MCPA degrading community at the small-scale. We hy-

pothesise that i) MCPA degradation is enhanced due to increased substrate availability within 

the detritusphere and that ii) this is accompanied by an increase in the genetic potential for 

MCPA degradation. Since bacteria and fungi show different substrate utilization strategies 

within the detritusphere (Poll et al., 2006), we further expected that iii) these two microbial 

groups differentially respond to the addition of MCPA and litter. For this purpose, we studied 

the degradation of 14C labelled MCPA in the detritusphere in a microcosm experiment over 20 

days. The abundance of 16S rDNA and 18S rDNA sequences was quantified to detect the 

response of the bacterial and fungal components of the soil microbiota to MCPA and litter 

addition. Finally, we quantified tfdA and tfdA sequences as indicators for the abundance of 

bacterial MCPA degraders. Our results elucidate the regulation of microbial MCPA degradation 

by the properties of the soil habitat. 

4.3 Material and methods 

4.3.1 Soil and plant residues 

Soil was sampled from an agricultural field located at an experimental farm in Scheyern, north 

of Munich (Germany, 48° 30’ N, 11° 21’ E) in July 2007. Samples were taken from the loamy 

topsoil of a Luvisol (World Reference Base for Soil Resources) [pH (CaCl2) 5.3, total C content 

13.6 g kg-1, total N content 1.32 g kg-1]. After sampling, the soil was sieved (< 2 mm) and stored 

at -20°C to minimise disturbance by soil faunal activity during the experiments. For the incu-

bation, maize (C/N ratio 48) residues were chosen. Maize leaf litter and stems were shredded 

into pieces of 2-10 mm length and stored air-dried until the start of the experiment. The soil 

was pre-incubated for 6 weeks at 20°C with an MCPA addition of 20 mg kg-1 to increase the 
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initial number of MCPA degrading microorganisms (Baelum et al., 2008). Pre-experiments in-

dicated that, after 6 weeks, MCPA is totally dissipated in this soil. 

4.3.2 Experimental design 

The experiment consisted of the 

following four treatments: (i) no 

MCPA and no litter addition, (ii) ad-

dition of litter, (iii) addition of MCPA, 

and (iv) addition of litter and MCPA. 

After thawing, the soil was homog-

enised and half of the soil was 

spiked with 14C ring labelled MCPA 

(radioactive purity 91%, specific ac-

tivity 60 MBq mmole-1) at a concen-

tration of 50 mg kg-1. Labelled 

MCPA was mixed and dissolved in 

water with unlabelled MCPA to give 

a final activity of 26.4 kBq micro-

cosm-1. Soil moisture was adjusted 

to a volumetric water content of 

35.2%, corresponding to a matric 

potential of -63 hPa. Finally, soil 

equivalent to 90 g dry soil was filled 

into cylinders (diameter=5.6 cm, 

height=4 cm) and covered with 0.5 g litter for the litter treatments. The litter was rewetted with 

2 ml 0.01 M CaCl2 before addition to the microcosms. The soil cores had a height of 3 cm and 

were compacted to a bulk density of 1.2 g cm-3. For each treatment, 9 soil cores were prepared. 

Subsequently, each soil core was placed into an air-tight microcosm (Fig. 1) with a saturated 

ceramic plate beneath each cylinder. Ceramic plates were kept at a defined water suction of -

63 hPa to maintain a defined lower boundary condition regarding water transport in the soil 

columns. The microcosms were incubated at 20 °C. After 20 days, 14CO2 production indicated 

a strong decrease in MCPA degradation activity and the experiment was ended. During the 

incubation, we irrigated the microcosms one time with 4 ml and four times with 3 ml 0.01 M 

CaCl2 solution. We used CaCl2 to avoid dispersion of clay. At the first irrigation event, we ap-

plied 4 ml CaCl2 to account for differences in soil moisture originating from the preparation of 

soil cores. Leachates were sampled one day after each irrigation event. 

  

Fig. 1 Illustration of the microcosms used for the incubation exper-
iment. 
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4.3.3 Sample preparation 

The litter was removed after the incubation and the soil cores were frozen and subsequently 

cut into thin slices using a cryostat microtome (HM 500 M, MICROM International GmbH). The 

respective slices of three soil cores were pooled together to obtain a sufficient amount of soil 

for analysis. This yielded three replicates of each treatment. The slices were taken from the 

following distances to the soil-litter interface: 0–1, 1–2, 2–3, 3–4, 4–5, 5–7 and 7–10 mm. 

4.3.4 MCPA analysis of soil and leachates 

We extracted 1.5 g fresh soil with 7.5 ml of methanol/water (1:1) for 1 h in a water bath (50°C) 

using 50 ml glass centrifuge tubes with Teflon-lined screw caps. After centrifugation, 2 ml of 

the supernatant were removed for analysis. Soil extracts and leachates were filtered (0.45 µm 

pore size) and the MCPA concentration was determined by HPLC (System Gold, Beckman 

Instruments) using a UV detector according to the method of Moret et al. (2006). The separa-

tion was carried out on a 200 mm×4.6 mm column packed with 5µm Kromasil 100 C18 material 

(MZ-Analysentechnik GmbH) at 20°C and a flow of 1 ml min-1. MCPA was detected at a wave-

length of 228 nm. 

4.3.5 Respiration and 14C content of CO2 and leachate 

CO2-C production was measured at regular intervals during the incubation. Evolved CO2 was 

trapped in 2.5 ml of 1 M NaOH solution, which were added to small vessels fixed to the lids of 

the microcosms. An aliquot of 0.5 ml was taken, and trapped CO2 was measured titrimetrically 

after precipitation of carbonate with 0.5 ml 1 M BaCl2 solution using 0.1 M HCl. 

For determining the 14C content of the CO2-C, 1 ml NaOH was transferred into 5 mL scintillation 

vials (LDPE) and mixed with 4 ml scintillation fluid (Rotiszint eco-plus, Carl Roth GmbH+Co. 

KG). Similarly, 0.5 ml of each collected leachate were mixed with 4 ml scintillation fluid. The 

vials were shaken and then analysed for 10-20 min using a Wallac 1411 Liquid Scintillation 

System (Perkin Elmer Life Sciences). 14C activity was calculated and corrected for quenching 

using standard calibration. 

We used the logistic model of Simkins and Alexander (1984) to estimate kinetic parameters of 

MCPA mineralisation: 
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According to Fomsgaard (1997), the following analytical solution of the differential equation 

was obtained and fitted to 14C mineralisation data: 

tXCk

C

X
e

XC
CCCP

)(

00
00

00

0

01





 , 



4  Regulation of bacterial and fungal MCPA degradation at the soil-litter interface 21 

 

 

where C stands for the amount of MCPA in soil, k for the mineralisation rate constant, X0 for 

the amount of MCPA required to produce the initial population density, C0 for the total amount 

of MCPA converted to 14CO2 by first order metabolism, P for the amount of MCPA mineralised 

at time t (% of initial 14C), and t for the time in days. 

4.3.6 14C content of soil organic matter 

The 14C activity in soil was determined by sample oxidation. Soil samples (0.13-0.35 g) were 

weighed into cellulose paper and combusted for 4 min (Biological Oxidizer OX 500 R.J. Harvey 

Instrument Corporation). Subsequently, 14CO2 was trapped in Oxysolve C-400 (Zinsser Ana-

lytic GmbH) and quantified by liquid scintillation counting (Beckman Coulter LS6500 Multi-Pur-

pose Scintillation Counter, Beckman Coulter Inc.). The trapping efficiency was >94%. 

4.3.7 Microbial biomass and dissolved organic carbon (DOC) 

Microbial biomass was determined using the chloroform-fumigation-extraction (CFE) method 

(Vance et al., 1987). One gram of soil was fumigated with ethanol-free chloroform for 24 h at 

room temperature in a desiccator. After the incubation, chloroform was removed. Fumigated 

and non-fumigated samples were dispersed in 10 ml 0.5 M K2SO4 and extracted on a horizontal 

shaker at 250 rev min-1 for 30 min. Then, samples were centrifuged at 4560 rev min-1 for 30 

min. Two millimeters of the supernatant were diluted four times to avoid a high salt concentra-

tion for the subsequent analysis. Diluted extracts were analysed for DOC with a DIMATOC 100 

(Dimatec GmbH). However, the microbial biomass was not detectable due to low contents and 

the high extraction ratio of 1:10, which was necessary because only small sample amounts 

were available and a minimum extraction volume for the subsequent analyses was needed. 

The 14C activity of the microbial biomass was analysed as described above by mixing 15 ml 

scintillation fluid with 6 ml of the soil extracts. The 14C activity of the non-fumigated samples 

were used as estimates for the 14C DOC of the soils; the 14C activity of the microbial biomass 

was calculated from the difference in the 14C activity of the fumigated and non-fumigated sam-

ples using a kEC factor of 0.45 (Joergensen, 1996). 

4.3.8 DNA extraction 

Total community DNA was extracted from 0.3 g soil using the FastDNA Spin Kit for soil 

(BIO101, MP Biomedicals) according to the manufacturer’s instructions. The extracted DNA 

was quantified with a Nanodrop ND1000 Spectrophotometer (NanoDrop Technologies Inc.). 

4.3.9 Quantitative PCR assay 

We quantified copy numbers of tfdA, tfdA, 16S rDNA and 18S rDNA with an ABI Prism 7900 

(Applied Biosystems) using a SYBR green PCR master mix (QuantiTect SYBR green PCR Kit, 

QIAGEN). The primer sets and temperature programmes for quantifying tfdA and tfdA genes 

were taken from Baelum et al. (2006) and Itoh et al. (2002), respectively (Table 1); 18S rDNA 

and 16S rDNA were analysed according to Manerkar et al. (2008) and Lopéz-Gutiérrez et al. 
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(2004), respectively. Each PCR contained 2 µl of each primer (10 µM), 10 µl of SYBR green 

PCR master mix, 0.5 µl of T4gp32 (Q-BIOgene), 3.5 µl water and 2 µl of diluted soil DNA 

corresponding to 20 ng of soil DNA. Selected tfdA and tfdA PCR products were sequenced 

to confirm their specificity. 16S rDNA standard curves were obtained using 10-fold serial dilu-

tions of a linearised plasmid containing cloned 16S rRNA genes from Pseudomonas aeru-

ginosa PAO1 (Bru et al., 2008). 18S rDNA, tfdA and tfdA standard curves were prepared by 

serial dilution of pGem-T clones of respective PCR products resulting from soil DNA amplifica-

tion. Efficiencies of the qPCR reaction were 109%, 93%, 91% and 83% for 16S rDNA, 18S 

-extracted humic substances were 

tested by comparison of standard plasmid DNA quantification in the presence or absence of 

soil DNA (Philippot et al., 2009). 

Table 1 Primers and conditions for quantitative PCR 

R, G/A; Y, T/C; S, G/C; K, G/T; 

 

4.3.10 Statistics 

The results were calculated based on oven-dried soil. Soil water content was determined by 

weighing 0.3 g of fresh soil into vessels and drying at 60°C for 72 h. 

Cumulative CO2 production and the abundance of 16S rDNA, 18S rDNA, tfdA and tfdAα se-

quences were tested for significant differences by two-way ANOVA with the fixed factors litter 

and MCPA. The data for the abundance of 18S rDNA were log-transformed before analysis 

because of heterogeneity of variances. For the comparison of the gene copy numbers, only 

the first layer (0-1 mm from the litter) was chosen because we expected the effects to be 

greatest within this layer. The results of the 14CO2 production rate were compared by one-way 

ANOVA with repeated measure. We used student’s t-test to compare the parameters derived 

Target  
sequence 

 
Primer 

 
qPCR conditions 

 
Reference 

16S rDNA 
341F: CCT ACG GGA GGC AGC AG 
515R: ATT CCG CGG CTG GCA 

900s at 95°C, 
Cycle (35): 15s at 95°C, 30s at 60°C, 
30s at 72°C, 30s at 80°C (detection) 

Manerkar et al., 
2008 

18S rDNA 
IST 3F: GCA TCG ATG AAG AAC GCA GC 
IST 4R: TCC TCC GCT TAT TGA TAT GC 

900s at 95°C, 
Cycle (35): 15s at 95°C, 30s at 55°C, 
30s at 72°C, 30s at 80°C (detection) 

Lopéz-Gutiérrez 
et al., 2004 

tfdA 
F: GAG CAC TAC GCR CTG AAY TCC CG 
R: GTC GCG TGC TCG AGA AG 

900s at 95°C, 
Cycle (40): 15s at 95°C, 30s at 64°C, 
30s at 72°C (detection) 

Baelum et al., 
2006 

tfdA 
F: ACS GAG TTC KSC GAC ATG CG 
R: GCG GTT GTC CCA CAT CAC 

900s at 95°C, 
Cycle (40): 15s at 95°C, 30s at 64°C, 
30s at 72°C (detection) 

Itoh et al., 2002 



4  Regulation of bacterial and fungal MCPA degradation at the soil-litter interface 23 

 

 

from the modified Gompertz model and the 14C content of the microbial biomass within the first 

layer. The 14C content of the soil organic matter showed heterogeneous variances even after 

transformation and, additionally, some missing values. We therefore performed no statistical 

test for these data. 

4.4 Results 

4.4.1 Soil respiration and MCPA degradation 

Litter addition significantly increased 

the cumulative CO2-C production 

(F1,32 = 2548, P<0.001) by about 42 

mg per microcosm (Fig. 2A). MCPA 

significantly increased this produc-

tion (F1,32 = 79.4, P<0.001) by 7.4 mg 

per microcosm. The differences in 

the cumulative CO2-C production due 

to MCPA addition mainly reflected in-

creased respiration rates during the 

first five days (Fig. 2A), whereas after 

this initial phase nearly no differences 

in response to MCPA addition oc-

curred. 

Mineralisation of 14C labelled MCPA 

showed a lag phase of about seven 

days (Fig. 2B). Thereafter, the pres-

ence of litter significantly increased 

the 14CO2 production (F1,16 = 27.2, 

P<0.001). Sixteen days after MCPA 

addition, the 14CO2 production 

strongly decreased in soil cores cov-

ered with maize litter, whereas this 

decrease was delayed by about two 

days in microcosms without litter 

(data not shown). At the end of the incubation, about 38% and 46% of the initially added 14C 

were mineralised in microcosms without and with litter, respectively. The logistic model fitted 

the 14CO2 production with model efficiencies of 0.95 and 0.97 for the control and the litter treat-

ment, respectively. The mineralisation rate constant k increased from 0.0059 to 0.0082 % day-

1 with litter addition (t-test, P<0.05), C0 indicated a maximum percentage of mineralisation of 

Fig. 2 Cumulative CO2-C production (A), MCPA mineralisation 

and leaching of 14C (B). Curves are fitted to a logistic model with 
the following parameters (± standard error): no litter C0=50.6 
(±5.5), X0=0.43 (±0.20), k=0.0059 (±0.0014); litter C0=48.5 
(±1.3), X0=0.31 (±0.10), k=0.0082 (±0.0008). Values are means 
of nine microcosms (mc), error bars show standard deviation. 
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about 49% with no differences between treatments. These results were supported by the ex-

tractable MCPA and the 14C activity of the DOC (Fig. 3A, C). We extracted 4-6% of the initially 

added MCPA from microcosms without litter addition, whereas less than 1% was extractable 

after litter addition. The 14C activity of the DOC showed a similar pattern: more of the initially 

added 14C remained within the DOC in microcosms without (8-10.5%) than in microcosms with 

(3-5%) litter addition. 

Nearly seven percent of the added 14C were leached from the soil columns (Fig. 2B). However, 

no differences between microcosms with and without litter were detected. In the top layer (0-1 

Fig. 3 Depth profiles of the extractable MCPA (A), and of the 14C activity of the soil organic matter 

(B), the DOC (C) and the microbial biomass (D). Values are means of three replicates, error bars 
show standard deviation. 
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mm) of microcosms with litter, about 52% of the added 14C remained in the soil organic matter 

(Fig. 3B). This value decreased with increasing distance to the litter and reached the control 

level of 20-25% at 3 mm depth. However, the difference between microcosms due to litter 

addition was statistically not significant. In total, we recovered 70-75% of the added 14C as 

CO2, soil organic carbon and leachate. The 14C activity of the microbial biomass reflected the 

14C activity pattern of the soil organic matter: the top layer of microcosms covered with maize 

litter showed significantly higher activities (t-test, P<0.01) than in microcosms without litter (Fig. 

3D). These differences decreased with increasing depth and became negligible below 3 mm. 

4.4.2 16S rDNA/18S rDNA 

The abundance of the soil microflora was estimated by qPCR assay targeting the 16S rDNA 

sequence of the bacterial ribosomal operon. We detected 16S rDNA sequences within the 

range of 7.9x1010 to 1.7x1011 copy numbers g-1 (Fig. 4A). Litter addition significantly increased 

the abundance of 16S rDNA sequences (F1,8 = 607.6, P<0.001) by 83% within the first layer. 

The increase in copy numbers due to litter addition was detectable up to a distance of 3-4 mm 

to the litter. MCPA addition significantly increased the abundance of 16S rDNA sequences (F1,8 

= 33.3, P<0.001) as well, although to a much smaller extent (+14%) than litter. 

The abundance of the fungal community was estimated by qPCR targeting the 18S rDNA se-

quence of the fungal ribosomal operon. Copy numbers of 18S rDNA sequences were within a 

range of 1.9x108 to 3.4x109 g-1 (Fig. 4B). Litter addition significantly increased the abundance 

of 18S rDNA sequences (F1,8 = 673.7, P<0.001) 12-fold within the first layer. This effect was 

detectable up to 5 mm away from the litter. Overall, MCPA addition significantly increased copy 

numbers of 18S rDNA sequences (F1,8 = 8.9, P<0.05) by 66% within the first layer. In contrast 

to 16S rDNA, however, MCPA addition increased 18S rDNA sequence copy numbers only in 

the presence of litter (F1,8 = 9.9, P<0.05). 

4.4.3 tfdA/tfdA 

The abundance of the MCPA degrading community was estimated by qPCR targeting either 

tfdA or tfdA sequences. We detected tfdA sequences within the range of 5.1x106 to 1.5x108 

copy numbers g-1 (Fig. 4C). Litter addition significantly increased the abundance of tfdA se-

quences (F1,8 = 434.2, P<0.001) 6-fold within the first layer. The gradient in the copy number 

of tfdA sequences within 3-4 mm of the litter was similar to that found for 16S rDNA. MCPA 

addition increased the abundance of tfdA sequences in microcosms with and without litter over 

the complete range of 10 mm. However, the significant 3-fold increase (F1,8 = 260.5, P<0.001) 

within the first layer was much stronger than for 16S rDNA. Furthermore, litter and MCPA 

addition showed a significant interaction (F1,8 = 143.0, P<0.001), with the increase in copy 

numbers being much stronger in soils exposed to both litter and MCPA (22-fold) than in soils 
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exposed to MCPA (3-fold) or litter (6-fold) alone. The gradients and effects were similar when 

considering the relative abundance of tfdA sequences in the soil microflora (data not shown). 

Copy numbers of tfdA sequences ranged from 5.3x108 to 1.5x109 g-1 (Fig. 4D). Litter addition 

significantly increased their abundance (F1,8 = 101.3, P<0.001) 2-fold within the first layer. 

Again, we detected a gradient within 3-4 mm of the litter. The effect of MCPA addition on the 

abundance of tfdA sequences was more similar to the pattern found for 18S rDNA than for 

tfdA. MCPA addition significantly increased copy numbers (F1,8 = 9.9, P<0.05) by 23%. As for 

18S rDNA, however, this effect was restricted to microcosms with MCPA and litter addition due 

to a significant interaction of both factors (F1,8 = 13.0, P<0.01). In contrast to tfdA, litter and 

MCPA addition did not affect the relative abundance of tfdA sequences in the soil microflora 

(data not shown), and almost all data were within the range of the original soil. 

Fig. 4 Quantities of the 16S 
rDNA (A), 18SrDNA (B), tfdA (C) 

and tfdA (D) sequences within 

the depth profile. The dotted 
lines show the abundance of 
genes in the soil before incuba-
tion. Values are means of three 
replicates, error bars show 
standard deviation. 

  



4  Regulation of bacterial and fungal MCPA degradation at the soil-litter interface 27 

 

 

4.5 Discussion 

4.5.1 MCPA degradation 

In the present experiment, 38% to 46% of the added 14C evolved into 14CO2 over a period of 

20 days. This value is within the range found in the literature for phenoxy acid herbicides (Boi-

vin et al., 2005; Fredslund et al., 2008; Nicolaisen et al., 2008). As we hypothesised, MCPA 

degradation was enhanced after litter addition. This agrees with the result of Duah-Yentumi 

and Kuwatsuka (1982), who found an increased degradation rate of MCPA after adding plant 

residues. Furthermore, those authors found no effect of plant residues on the lag phase, which 

supports our results. In contrast, Nicolaisen et al. (2008) did not detect any lag phase after pre-

incubation of the soil with 20 mg kg-1 MCPA. Vieublé Gonod et al. (2003) explained the lag 

phase prior to MCPA degradation as the time required to promote the growth of low-density, 

degrading microbial populations. We detected relatively high copy numbers of the tfdA se-

quence. Therefore, differences in soil properties, which affect MCPA availability, are probably 

more important for the contradictory effects of repeated MCPA addition on the lag phase. Over-

all, we found an increased cumulative respiration by 7.4 mg CO2-C due to MCPA addition, 

which is distinctly more than the initially applied 2.4 mg MCPA-C. One possible explanation for 

this priming effect is an increased mineralisation of soil organic matter due to the added energy 

source (Fontaine et al., 2003), in our case MCPA. However, the observed difference in respi-

ration occurred mainly during the lag phase of MCPA mineralisation. We suggest cryptic 

growth (Jenkinson and Parry, 1989) or a stress reaction due to toxic effects of MCPA on soil 

microorganisms as reasons for the observed effect. Vieublé Gonod et al. (2006) detected a 

change in the genetic structure of the bacterial community during the first 4 days after 2,4-D 

application. The authors explained this effect by growth of 2,4-D degraders or by toxic effects 

on parts of the microbial community. The latter is supported by results of Saleh et al. (un-

published), who found a decrease in bacterial PLFAs after MCPA addition, and of S. Schulz 

(personal communication), who detected a negative effect of MCPA on the abundance of alkB 

genes. 

We found about 1 to 6% of the added 14C bound in the microbial biomass, which is within the 

range of the 5% observed by Vieublé Gonod et al. (2006) 15 days after 2,4-D application. 

Significantly more 14C was bound in the microbial biomass and the soil organic matter when 

soil cores were covered by litter, whereas less MCPA was extracted and less 14C was found 

as dissolved organic carbon. Therefore, we suggest that litter addition induced greater MCPA 

degradation and assimilation of 14C by the MCPA degrading community. At the same time, a 

higher assimilation rate would result in more MCPA-C bound in the soil organic matter as cell 

tissue. A possible explanation for this observation is a greater availability of -ketoglutarate 

due to either direct transport or improved delivery of -ketoglutarate through the Krebs cycle 

by increased metabolic activity of MCPA degraders. Müller and Babel (2000) reported that a 



4  Regulation of bacterial and fungal MCPA degradation at the soil-litter interface 28 

 

 

considerable portion of the energy resulting from MCPA metabolism is used to regenerate -

ketoglutarate, which is used as a co-substrate during the initial degradation step. Adding this 

co-substrate increased 2,4-D degradation (Müller, 2007). Therefore, transport of litter-derived 

-ketoglutarate or its metabolic precursors into the soil might have on the one hand decreased 

the portion of MCPA carbon used to regenerate -ketoglutarate and on the other hand in-

creased the portion used for microbial growth. This hypothesis of transport-regulated MCPA 

degradation at the soil-litter interface is further supported by the gradients we observed within 

the first 3 mm for the 14C content of the soil organic matter and the microbial biomass. In a 

previous study, such gradients were detected in the detritusphere as the result of transport of 

litter-derived substrates (Poll et al., 2006). Another possibility is a change in internal resource 

allocation within the bacterial cells. Beside the availability of -ketoglutarate, the transport of 

litter compounds potentially regulated MCPA degradation by improving the energy- and nutri-

ent-intensive enzyme production (Schimel and Weintraub, 2003). In this case, the MCPA de-

grading community might have allocated more resources into the production of tfd enzymes 

after litter addition. This agrees with Cederlund et al. (2007), who found MCPA degradation 

along a railway embankment to be N-limited. 

4.5.2 Quantification of functional genes 

We detected 5x106 g-1 copy numbers of the tfdA sequence in the control soil, which is within 

the range reported in the literature (Baelum et al., 2008; Nicolaisen et al., 2008; Vieublé Gonod 

et al., 2006). The tfdA abundances are two orders of magnitude greater in the control soil 

than for tfdA and represented about 0.6% of the copy numbers of 16S rDNA. Itoh et al. (2004). 

suggested the existence of a natural substrate for the enzyme encoded by tfdA. The high 

abundance of tfdA indicates that this natural substrate might be relatively common in the soil 

used here. Litter addition induced a gradient in the abundance of the tfdA bacterial commu-

nity, whereas MCPA affected tfdA only in the presence of litter, which indicates that adding 

litter compounds induces the tfdA pathway. However, at least some of the tfdA enrichment 

is due to an overall increase in bacterial abundance. We therefore suggest, that bacteria har-

bouring tfdA contributed little to MCPA degradation in the detritusphere. 

Note that the tfdA sequence abundance showed a much stronger response to the addition of 

MCPA or litter both in absolute numbers and in relation to 16S rDNA. This agrees with previous 

studies (Baelum et al., 2008; Vieublé Gonod et al., 2006) that found a similar increase in tfdA 

copy numbers after 2,4-D and MCPA addition. For example, Baelum et al. (2008) detected an 

increase from 2x106 copy numbers g-1 to 8x106 copy numbers g-1. However, litter addition com-

bined with MCPA boosted the value to 1.5x108 g-1, which is two-fold higher than any literature 

value. The positive response of the tfd bacterial community to increased substrate availability 

along a gradient at the soil-litter interface corroborates our second hypothesis of an improved 
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genetic potential of MCPA degraders within the detritusphere. This further indicates that the 

detritusphere represents a hotspot for MCPA degradation and that the above-mentioned reg-

ulation mechanisms are relevant within this microhabitat. Furthermore, the increased MCPA 

degradation and assimilation of MCPA derived C seems to be due to a pronounced activity of 

the tfd bacterial community. Shaw and Burns (2004) observed an increased 2,4-D mineralisa-

tion in the rhizosphere of Trifolium pratense but no enrichment in the degrading populations 

(based on the most probable number method). Plasmids carrying the tfdA gene are present at 

a single or low copy number per cell (Leveau et al., 1999). Therefore, the increase in copy 

numbers of the tfdA sequence in our experiment was probably due to growth of the tfd bacterial 

community. Hogan et al. (1997) also detected tfdA genes in bacterial populations unable to 

degrade 2,4-D. Therefore, litter addition might also have favoured non-degrading bacterial 

populations carrying the tfdA gene. However, litter addition enhanced MCPA degradation, and 

a positive interaction between MCPA and litter on the abundance of tfdA genes occurred: both 

results indicate that litter addition favoured MCPA degrading populations. Beside the above-

mentioned transport of -ketoglutarate and its metabolic precursors, other regulation mecha-

nisms potentially explain the positive effect of litter addition on MCPA degradation. Microbial 

populations might act as a consortium during MCPA degradation (Ka et al., 1994; Top et al., 

1996), which reduces the benefit from each single population. This is especially true for popu-

lations that harbour only the tfdA gene encoding the initial degradation step (Müller and Babel, 

2001). Adding external C sources like -ketoglutarate or fructose induced degradation activity 

by such strains. In our experiment, transport of litter compounds might have alleviated sub-

strate limitation. Accordingly, bacterial populations only capable of the initial degradation step 

boosted MCPA degradation and tfdA abundance. Finally, litter substrates probably induced 

co-metabolic MCPA degradation. We suggest that, in our experiment, co-metabolic MCPA 

degradation might be partly connected to fungal communities. Fungal degradation of 2,4-D 

and MCPA has been shown by several studies (e.g. Reddy et al., 1997; Vroumsia et al., 1999). 

For example, Castillo et al. (2001) revealed that MCPA degradation on unsterile straw was 

connected to the activity of fungal lignin-degrading enzymes like lignin peroxidase and man-

ganese peroxidase/laccase. We observed an effect of MCPA on the abundance of 18S rDNA 

only in the presence of litter. We therefore suggest that litter addition stimulates the develop-

ment of fungal populations and non-specific enzymes able to transform MCPA. This hypothesis 

is supported by findings of Vroumsia et al. (1999), who observed that fungal degradation of 

2,4-D in medium was improved in the presence of glucose and nitrogen. Finally, the specific 

conditions in the detritusphere might have promoted the development of fungal populations 

able to transform MCPA. Mortierella isabellina was one of the two most efficient fungi out of 

ninety strains tested for their ability to degrade 2,4-D (Vroumsia et al., 2005). In a previous 

study using a similar experimental set-up, we identified Mortierellaceae as pioneer colonisers 
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in the detritusphere (Poll et al., 2010). Therefore, we suggest that adding litter provided condi-

tions for the growth of specific fungal populations that can degrade MCPA. 

4.6 Conclusions 

In conclusion, our study exemplified how substrate availability regulates the functioning of mi-

crobial communities. Furthermore, soil represents a highly structured environment, and the 

regulation of microbial activity therefore often depends on small-scale processes, which form 

micro-habitats with specific conditions. At the soil-litter interface, transport of litter compounds 

increased the abundance and activity of the tfd bacterial community probably by: a) supplying 

-ketoglutarate due to either direct transport or increased delivery through the Krebs cycle or 

b) supplying energy and nutrients, which improve bacterial enzyme production or the activity 

of bacterial consortia involved in MCPA degradation. Induction of non-specific fungal enzymes 

that transform MCPA is another possible regulation mechanism of MCPA degradation at the 

soil-litter interface. Finally, the observed effects of litter addition are a good example of priming 

effects in soil, and the suggested regulation mechanisms might be of more general relevance. 
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5.1 Abstract 

Microbiologically active biogeochemical interfaces are excellent systems to study soil functions 

such as pesticide degradation at the micro-scale. In particular, in the detritusphere pesticide 

degradation is accelerated by input of fresh organic carbon from litter into the adjacent soil. 

This observed priming effect suggests: i) pesticide degradation is strongly coupled to carbon 

turnover, ii) it is controlled by size and activity of the microbial community and iii) sorption and 

transport of dissolved carbonaceous compounds and pesticides might regulate substrate avail-

ability and in turn decomposition processes. We present a new mechanistic 1D model (PEsti-

cide degradation Coupled to CArbon turnover in the Detritusphere, PECCAD) which imple-

ments these hypotheses. The new model explicitly considers growth and activity of bacteria, 

fungi and specific pesticide degraders in response to substrate availability. Enhanced pesticide 

degradation due to availability of a second source of carbon (dissolved organic carbon) is im-

plemented in the model structure via two mechanisms. First, additional substrate is utilized 

simultaneously with the pesticide by bacterial pesticide degraders resulting in an increase in 

their size and activity. Second, stimulation of fungal growth and activity by additional substrates 

leads directly to higher pesticide degradation via co-metabolism. Thus, PECCAD implicitly ac-

counts for litter-stimulated production and activity of unspecific fungal enzymes responsible for 

co-metabolic pesticide degradation. With a global sensitivity analysis we identified high-lever-

age model parameters and input. In combination with appropriate experimental data, PECCAD 

can serve as a tool to elucidate regulation mechanisms of accelerated pesticide degradation 

in the detritusphere. 

  



5  Micro-scale modeling of pesticide degradation coupled to carbon turnover in the 
detritusphere - Model description and sensitivity analysis 

36 

 

 

5.2 Introduction 

The detritusphere is a microbiologically highly active biogeochemical interface in soil. It in-

cludes the litter and the adjacent soil influenced by litter (Ingwersen et al. 2008; Poll et al. 

2006). The dimension of this microhabitat is typically in the range of only a few millimeters 

(Gaillard et al. 2003; Kandeler et al. 1999). However, the rates at which biogeochemical pro-

cesses occur at such microsites determine the functioning of the soil ecosystem at the large 

scale (Beare et al. 1995; Totsche et al. 2010; Young et al. 2009). 

The degradation of pesticides is one important biogeochemical process in soils. It can be sub-

stantially accelerated by readily available organic substrates. The stimulation of pesticide deg-

radation by root exudates is well documented (Gerhardt et al. 2009; Shaw and Burns 2003), 

but little information is available about the effect of litter carbon (C) on pesticide degradation. 

For example, Ghani and Wardle (2001) killed Carduus nutans L. plants (musk thistle) by the 

application of the 14C-labelled herbicide metsulfuron-methyl and studied the influence of the 

remaining plant litter on metsulfuron-methyl degradation. They found a significant effect of 

plant litter on herbicide degradation and mineralization accompanied by increased incorpora-

tion of herbicide-14C into the microbial biomass compared to the control without plants. Simi-

larly, we also found a significant stimulating effect of maize litter on the mineralization and 

utilization of the herbicide MCPA (4-chloro-2-methylphenoxyacetic acid) as well as on specific 

MCPA degraders in the detritusphere (Poll et al. 2010). 

Considering pesticides as a part of the soil organic matter (SOM) pool, such a short-term stim-

ulation effect due to fresh C or nutrient input can be seen as a ‘priming effect’ (Kuzyakov et al. 

2000). The detritusphere is one of the microbial ‘hot spots’ in soils for priming phenomena 

(Kuzyakov 2010). 

Microorganisms are the drivers of observed priming effects in soil (Blagodatskaya and Kuzya-

kov 2008; Shaw and Burns 2003). While the number of soil C models has increased exponen-

tially in the last decades, this active role of microorganisms in SOM dynamics has not been 

taken into account by most models. A comprehensive overview about available SOM models 

can be found in a recent review by Manzoni and Porporato (2009). The majority of SOM models 

use a first-order approach to describe the SOM decomposition as an exclusively substrate-

controlled process. They typically partition SOM into several compartments including one bio-

mass pool (e.g., Braakhekke et al. 2011; Jenkinson and Rayner 1977; Parton 1993; Van Veen 

and Paul 1981). However, the decomposition of single SOM compartments is then calculated 

using biomass-independent pool-specific decomposition rates, thereby neglecting soil micro-

organisms as the real drivers. Nevertheless, such models have been successfully used to sim-

ulate long term C dynamics in soil (Smith et al. 1997). 



5  Micro-scale modeling of pesticide degradation coupled to carbon turnover in the 
detritusphere - Model description and sensitivity analysis 

37 

 

 

Despite the dominance of first-order approaches, some detailed SOM models have been de-

veloped which explicitly consider that SOM decomposition processes are regulated by the pool 

size and activity of soil microorganisms (Allison 2012; Blagodatsky et al. 2011; Ingwersen et 

al. 2008; Moorhead and Sinsabaugh 2006; Parnas 1976; Paustian and Schnürer 1987; 

Schimel and Weintraub 2003). Other than first-order linear models, such models are principally 

able to simulate priming phenomena (Wutzler and Reichstein 2008) and they are mostly em-

ployed to capture C dynamics at a small spatial (~ µm to mm) and temporal (~ hours to days) 

scale. The detailed models typically assume Monod-type kinetics for microbial growth and ac-

count for microbial maintenance and death. Blagodatsky and Richter (1998) were the first to 

explicitly consider the “activity state” of microbial biomass as a function of substrate concen-

tration in a combined C and nitrogen (N) model. This unique feature was based on the work of 

Panikov (1995). Various models differentiate between distinct functional microbial groups, typ-

ically based on physiological characteristics of individual populations. In some of these ap-

proaches the decomposition of specific SOM fractions is then explicitly attributed to defined 

functional groups of microorganisms. For instance, the CANTIS model (Garnier et al. 2001) 

splits total microbial biomass into zymogenous and autochthonous pools. Fontaine et al. 

(2003) define r- and K-strategist microorganisms according to the paradigm of an r- to K-se-

lection continuum, which has been recently suggested as a basic classification scheme in soil 

microbial ecology (Fierer et al. 2007). Similarly, in both models the zymogenous organisms 

(i.e. r-strategists) feed only on fresh and soluble organic matter, whereas the autochthonous 

(i.e. K-strategists) predominately utilize less energy-rich SOM compounds. In the model of 

Ingwersen et al. (2008), decomposition of “initial-stage” (is) dissolved organic carbon (DOC) is 

exclusively attributed to is-decomposers, whereas “late-stage” (ls) DOC is only utilized by ls-

decomposers. Indeed, is- and ls-decomposers were thought to predominantly reflect bacterial 

and fungal physiology, respectively. The theoretical guild-based decomposition model (GDM) 

of Moorhead and Sinsabaugh (2006) defines three guilds of microorganisms (opportunists, 

decomposers and miners); each simultaneously utilizing three C pools (soluble compounds, 

holocellulose and lignin). The synthetic chemostat model (SCM; Panikov 1999) is based on 

similar theoretical foundations using the concept of r-, K- or L-selected microbial life strategies. 

Litter and SOM are heterogeneous mixtures of substances ranging from readily degradable 

components such as sugars, proteins or amino acids to more recalcitrant components such as 

cellulose or lignin (Blume et al. 2010; Kögel-Knabner 2002; Paul 2007). This has led to the 

concept of a “dynamic continuum of decomposability”. This concept uses a distribution function 

describing organic matter quality to model litter and SOM decomposition (Bosatta and Ågren 

1991; Carpenter 1981; Feng 2009). However, it results in complex model structures. Its usa-

bility is further limited by the lack of detailed knowledge about SOM chemistry for model vali-

dation (Bosatta and Ågren 2003; Gignoux et al. 2001; Moorhead and Sinsabaugh 2006). The 
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majority of models simplify the SOM quality continuum by partitioning SOM into discrete pools 

with differing decomposition rates, which are considered empirical functions of bulk soil varia-

bles such as moisture, temperature or clay content (Manzoni and Porporato 2009). For the 

widely-used RothC model (Jenkinson and Rayner 1977) it was shown that the sizes of the C 

pools can be calibrated via measurement (Skjemstad et al. 2004; Zimmermann et al. 2007) or 

inverse parameter optimization (Scharnagl et al. 2010). 

However, decomposition rates and stability of SOM compounds are not exclusively regulated 

by their molecular structure (as recently reviewed by Dungait et al. 2012). Rather, microbial 

activity at the micro-scale is strongly influenced by the conditions (e.g., pH; moisture; availa-

bility of co-substrates or nutrients) in the immediate soil micro-environment (Ekschmitt et al. 

2008; Schmidt et al. 2011). Physicochemical characteristics of soil also control sorption and 

transport processes, which in turn can regulate the microbial degradation of DOC and pesti-

cides (Ghafoor et al. 2011; Jensen et al. 2004; Marschner and Kalbitz 2003; Poll et al. 2006; 

Poll et al. 2010; Scow and Johnson 1996; Zander et al. 1999). Several SOM and litter turnover 

models explicitly include microbial dynamics, but treat the soil as a bulk phase, thereby ne-

glecting these physical processes (e.g., Allison 2012; Blagodatsky and Richter 1998; Moor-

head and Sinsabaugh 2006, but see Garnier et al. 2001; Ingwersen et al. 2008). 

On the other hand, a couple of models simulating DOC dynamics (e.g., Fan et al. 2010; Gjet-

termann et al. 2008; Michalzik et al. 2003; Neff and Asner 2001; Yurova et al. 2008) and many 

pesticide fate models (e.g., Köhne et al. 2006; Leistra et al. 2001; Roulier and Jarvis 2003; 

Šimůnek et al. 2008; Streck and Richter 1999)  mechanistically consider sorption and transport 

processes in great detail, but they typically oversimplify decomposition as a process exclu-

sively determined by substrate concentration using first order approaches. Although Monod-

type kinetics were successfully applied to account for growth-linked pesticide degradation 

(Cheyns et al. 2010; De Wilde et al. 2009; Shelton and Doherty 1997) potentially synergistic 

or antagonistic effects due to simultaneous utilization of other available substrates, such as 

DOC, are rarely considered (but see Richter et al. 1996; p.76). Modeling approaches for co-

metabolic degradation of organic chemicals have been proposed, but data for estimating ki-

netic parameters are scarce (Alvarez-Cohen and Speitel Jr 2001). 

Complex models can represent biophysical processes in great detail, but the estimation of the 

resulting high number of unknown parameters is a challenge. Biokinetic parameters typically 

depend strongly on the conditions under which they are determined and in most cases they 

cannot be estimated independently (Brusseau et al. 2006; Estrella et al. 1993; Langner et al. 

1998). Fortunately, in recent years sophisticated codes for inverse parameter optimization 

have become available (e.g., Doherty 2005; Vrugt and Robinson 2007). These techniques 

have been successfully applied to simultaneously estimate sorption, degradation and transport 
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parameters of pesticide models (Cheyns et al. 2010; Dubus et al. 2004; Mertens et al. 2009). 

In addition, modern molecular biological tools, such as quantitative real time PCR (Higuchi et 

al. 1993) allow direct measurement of specific degrader populations in soil and thus reduce an 

important source of uncertainty in coupled biophysical models. These developments offer a 

promising way to obtain meaningful parameter estimates of complex biophysical models. 

In this paper we present a new biophysical model intended to serve as a tool to elucidate 

regulation mechanisms of litter-C stimulated pesticide degradation in the detritusphere. We 

modified and extended the micro-scale C model of Ingwersen et al. (2008) to cover coupled 

transport, sorption and biodegradation processes of SOM and pesticide C with special empha-

sis on the dynamics of microbial degrader populations. In a series of microcosm experiments 

we study the transport and degradation of the model pesticide MCPA in the detritusphere. 

Isotopic measurements as well as the abundance of taxonomic and functional genes (as a 

proxy for specific microbial populations in soil) supplement measured concentrations of SOM 

constituents and MCPA. These data will provide the basis for identification of biokinetic param-

eters and input variables of the PECCAD model by inverse parameter optimization in future 

studies. Here, we give a detailed overview of the new PECCAD model and present the results 

of a global sensitivity analysis conducted to identify the high-leverage model parameters and 

input values. 

5.3 Model description 

5.3.1 General structure 

The PECCAD model is based on a detritusphere model described in detail by Ingwersen et al. 

(2008). This model was successfully applied to simulate the two-phase dynamics of litter de-

composition and microbial succession observed in a microcosm study (Poll et al. 2008). In the 

model, litter is split into two C pools, one decomposing rapidly (is), the other slowly (ls). The 

release of C from litter to the corresponding DOCis and DOCls pools is controlled by a Weibull 

function. While the DOCis pool serves as a growth substrate for specific is-decomposers, the 

DOCls pool and an insoluble SOM pool serve as growth substrates for ls-decomposers. As in 

the NICA model (Blagodatsky and Richter 1998), microbial growth is coupled with the con-

sumption of substrate via Monod kinetics, which is controlled by a physiological state variable 

regulating the fractions of active and dormant microorganisms. The model of Ingwersen et al. 

(2008) simulates C-linked N dynamics and accounts for diffusive transport of DOC and inor-

ganic N. Moreover, it can handle different C isotopes (12C, 13C). 

The generic structure of the PECCAD model is given in Fig. 1. Following Ingwersen et al. 

(2008) we defined two litter C fractions: a readily available high quality (hiq) pool and a less 

easily decomposable low quality (loq) pool. We changed the nomenclature from “initial stage” 

and “late stage” C pools to “high quality” and “low quality”, because the successive stages of 
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litter/ DOC decomposition can be thought as being primarily caused by C quality. Each litter 

pool is decomposed and partly mineralized to CO2. The remaining part is transferred to soil by 

convective and diffusive-dispersive transport. These two processes form the upper boundary 

conditions for DOC dynamics in soil. The hiq DOC pool (Chiq) is primarily fed by the decompo-

sition of hiq litter, but dissolved pesticide carbon (CP) also contributes to the supply of Chiq via 

co-metabolic pesticide degradation. In contrast, the loq DOC pool (Cloq) is replenished by de-

composition of loq litter and insoluble SOM (CI). 

The model is formulated as a set of coupled partial and ordinary differential equations, which 

are given in Table 1. All functions as well as parameters and other inputs are listed in Table 2 

and Online Resource 1, respectively. Technical details on specific key features of the model 

are given in Online Resource 2. In these equations z  (mm) stands for soil depth or distance 

to litter and t (d) for time. The locations of the upper and lower boundaries are given by 0z   

and z L , respectively.   

Compared to the detritusphere model of Ingwersen et al. (2008), the PECCAD model has been 

extended by the following features: 

 (1) We implemented an empirical decomposition model (Rovira and Rovira 2010) to simu-

late the input of hiq and loq DOC originating from litter at the soil surface (see Online 

Resource 3). The change in decomposed litter quality depends on the time dependent 

Fig. 1 Schematic diagram of the new PECCAD model. Boxes indicate carbon pools and arrows symbolize car-
bon fluxes. The abbreviations hiq and loq stand for high and low quality. 
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rate function of litter decomposition. The empirical Weibull function mentioned above 

was therefore not needed. 

(2) We explicitely account for sorption of DOC by including pools for the solution and sorbed 

phases of hiq and loq DOC ( hiqC / loqC  and /hiq SC  loq SC  ), which are related by a linear 

sorption isotherm. Further, we added two pools for pesticide solution and sorbed phases 

(CP and CP-S) in soil. The phase concentrations are expressed in terms of C and related 

by the nonlinear Freundlich sorption isotherm. 

(3) PECCAD assumes three microbial pools: bacteria, fungi and specific pesticide degrad-

ers. A multi-substrate Monod kinetics approach was introduced to couple microbial 

growth with the consumption of hiq and loq DOC as well as pesticide C. 

(4) N turnover has not yet been considered in the current model version to restrict the model 

complexity. The dynamics of inorganic N were shown to be unimportant for modeled C 

turnover in the study of Ingwersen et al. (2008). 

(5) Convective and diffusive transport of DOC and pesticide are accounted for. 

(6) We explicitly account for total C, 13C and 14C pools and fluxes to trace the C flow from 

litter and pesticide into other C pools. 

(7) Ingwersen et al. (2008) used the method of lines with a finite difference scheme and 

employed Berkeley Madonna (Macey et al. 2000) as solver. We used the software 

FlexPDE (PDE solutions Inc. 2011) for discretization with finite elements to solve the 

resulting system of equations. 

5.3.2 Microbial physiology 

In the PECCAD approach the microbial community consists of three specific populations, 

which differ in their physiological traits. Thus, only specific bacterial pesticide degraders (CBP) 

can utilize the pesticide as growth substrate (Table 2; Eq. 31). On the other hand, only unspe-

cific extracellular enzymes produced by fungi ( FC ) can co-metabolically degrade the pesticide 

(Table 2; Eq. 33; See Online Resource 2 for the rationale). In contrast to the two bacterial 

populations ( BC  and BPC ), which possess exogenous maintenance, we use an endogenous 

maintenance function for fungi (For details refer to Online Resource 2). Following Ingwersen 

et al. (2008), this is based on the fact that fungi are able to autolyse their old hyphae (Jennings 

and Lysek 1999) and use the reallocated nutrients for maintenance-related functions, whereas 

most bacteria utilize exogenous substrates to gain energy for maintenance (Russell and Cook 

1995). 
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Beside these specific traits of single populations, all microbial groups share some common 

traits. However, the individual level of ability for a specific trait is assigned by population-spe-

cific parameters. For example, the level of utilization of hiq and loq DOC by bacteria, fungi and 

specific pesticide degraders is strongly determined by their individual growth rates (Table 1; 

Eq. 11, 15). The growth rates in turn are controlled by the actual values of individual maximum 

growth rates and substrate affinity coefficients (Table 2, Eq. 28, 29, 31) as fundamental prop-

erties of each microbial population. In analogy, the microbial pools can respond differently to 

substrate availability in terms of activity. The active part of individual microbial pools is deter-

mined by their physiological state index (Table 1, Eq. 8, 9, 10). Here, activity inhibition coeffi-

cients are assigned as fundamental properties of individual populations that regulate how sin-

gle functional groups of microorganisms become active or dormant in response to substrate 

availability (For details refer to Online Resource 2). Other individual traits of the microbial pools 

implemented in PECCAD regulate ecological processes such as the decomposition of insolu-

ble SOM ( IC ) by extracellular enzymes (Table 1; Eq. 19) 

  



5  Micro-scale modeling of pesticide degradation coupled to carbon turnover in the 
detritusphere - Model description and sensitivity analysis 

43 

 

 

Table 1 Governing differential equations of the PECCAD model 

Stock Differential equation  

Litter layer    

Litter carbon 
(mg C)  

L,tot

L L,tot

dC
k ·C

dt
   (1) 

hiq litter derived dissolved 
organic carbon 

(mg C) 

L,hiq *

L,hiq L L L,tot

dC
Y ·f ·k ·C

dt
  (2) 

loq litter derived dissolved 
organic carbon 

(mg C) 
 L,loq *

L,loq L L L,tot

dC
Y · 1 f ·k ·C

dt
   (3) 

Litter derived CO2 
(mg C)   * *2 L

L,hiq L L,loq L L L,tot

dCO
1 Y ·f Y · 1 f ·k ·C

dt

      (4) 

Detritusphere soil   

Bacteria 

(mg C g-1 soil)  B
B B B,hiq B,loq B

C
C ·r · a

t


   


 (5) 

Fungi 

(mg C g-1 soil)   * *F
F F F,hiq F,loq F max F r F F,P

C
C ·r · a a · 1 Y m

t
 


      


 (6) 

Bacterial pesticide degraders 

(mg C g-1 soil)  BP
BP BP BP,P BP,hiq BP,loq BP

C
C ·r · a

t


    


 (7) 

Physiological state index of 

bacteria    B
B,hiq B,loq B B

r
· r

t


    


 (8) 

Physiological state index of 

fungi    F
F,hiq F,loq F F

r
· r

t


    


 (9) 

Physiological state index of 

bacterial 
pesticide degraders 

   BP
BP,P BP,hiq BP,loq BP BP

r
· r

t


     


 (10) 

hiq dissolved organic carbon 

(mg C g-1 soil) 
 hiq

B B B,hiq B,hiq*

S B,hiq

BP BP BP,hiq BP,hiq*

S BP,hiq

*

F F F,hiq F,P R F,P*

S F,hiq

2

hiq hiq S,hiq

e hiq 2

C 1
C ·r · · m

t Y

1
C ·r · · m

Y

1
C ·r · · q ·Y

Y

C C C
D · v·

z tz











  
    

   

 
    

 
 

 
    

 
 

  
  

 

 (11) 
 

 Sorbed phase 
*

*B
hiq S d hiq hiq*

C ·K ·C 





 (12) 
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 Boundary conditions 

hiq *

hiq e hiq L,hiq L L L,tot* *

Bz = 0

C 1000
v·C D · ·Y ·f ·k ·C0

·
( , t)

z A





 
  (13) 

 
hiq

e hiq

z = L

C
D · 0

z






 (14) 

loq dissolved organic carbon 

(mg C g-1 soil) 
 loq *

B B B,loq B,loq B r B*

S B,loq

*

BP BP BP,loq BP,loq B r B*

S BP,loq

*

F F F,loq F r F*

S F,loq

2

loq loq S,loq

e loq 2

C 1
C ·r · · m q ·Y

t Y

1
C ·r · · m q ·Y

Y

1
C ·r · · q ·Y

Y

C C C
D · v·

z tz















  
     

   

 
     

 
 

 
    

 
 

  
  

 

 (15) 

 Sorbed phase 
*

*B
loq S d loq loq*

C ·K ·C 





 (16) 

 Boundary conditions 

 loq *

loq e loq L,loq L L L,tot* *

Bz = 0

C 1000
v·C D · ·Y · 1(0, ft) ·k ·C

z A ·



 

 
 (17) 

 
loq

e loq

z = L

C
D · 0

z






 (18) 

Insoluble soil organic matter 
(mg C g-1 soil)       I

B B B B BP BP BP B F F F F

C
C ·r · a q C ·r · a q C ·r · a q

t


     


 (19) 

Pesticide 
(mg C g-1 soil) 

 P P S

BP BP BP,P BP,P*

S BP,P

2

P P
F F F,P e P 2

C C 1
C ·r · · m

t Y

C C
C ·r ·q D · v·

zz







  
       

 
  



 (20) 

 Sorbed phase 
*
F Pn

* *
* B P

P S F P P * *

C

1000· ·M
C K · C ·

9· ·M



 

 
  

 
 

(21) 

 Boundary conditions 

P
P e P

z = 0

C
v·C (0, t) D · 0

z



 


 (22) 

 
P

e P

z = L

C
D · 0

z






 (23) 
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CO2 

(mg C g-1 soil) 

 

* *

S B,hiq S B,loq

B,hiq B,loq*
2 S B,loqS B,hiq

B B

*

B,hiq B,loq B r B

* **

S BP,hiq S BP,loqS BP,P

BP,P BP,hiq BP,loq* * *

S BP,P S BP,hiq S BP,loq
BP BP

1 Y 1 Y
· ·

CO YYC ·r ·
t

m m q · 1 Y

1 Y 1 Y1 Y
· · ·

Y Y YC ·r ·

 





 

  

  
  

  
 
    
 

 
  



  

   

*

BP,P BP,hiq BP,loq B r B

* *

S F,hiq S F,loq

F,hiq F,loq* *

S F,hiq S F,loq
F F

* * *

max F r F F,P F,P R F,P

m m m q · 1 Y

1 Y 1 Y
· ·

Y YC ·r ·

a · 1 Y m q · 1 Y



 

 

  

 
 
 
 
    
 

  
  
 
 
     
 

 

(24) 

Biokinetic functions and composite parameter expressions are defined in Table 2. 

* indicates defined parameters, input values and material constants that are given in Online Resource 1. 
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Table 2 Biokinetic functions and composite parameter expressions used in the PECCAD model 

Definition Expression Unit  

Litter layer    

Rate of total litter 

decompositiona 

3

*

L L 2 *

L

t
k c

t b

 
   

 
 d-1 (25) 

Fraction of hiq litter 
on total decomposed 

litter 

*

L L
L

L,max

k c
f

k


   Unitless (26) 

Maximum rate of to-
tal litter decomposi-

tion 

*

L,max L

L

3

*

1
with k c

2· b

 
  
 
 

 d-1 (27) 

Detritusphere soil     

 with i {hiq, loq}:    

Substrate dependent 

specific growth rate 

of bacteriab 

* *

max B B,i

B,i * *

ma B i

i

x B,i

·C ·k

C ·k






 

 
 d-1 (28) 

Substrate dependent 

specific growth rate 
of fungib 

* *

max F F,i

F,i * *

ma F i

i

x F,i

·C ·k

C ·k






 

 
 d-1 (29) 

Substrate dependent 

specific rate of 
maintenance respira-

tion of bacteriab 

* *

max B m B,i

B,i * *

max B i m B,i

i·C ·k

C ·

m
m

m k

 

 




 
d-1 (30) 

 with i {P,hiq, loq}:    

Substrate dependent 

specific growth rate 

of bacterial pesticide 
degradersb 

* *

max BP BP,i

BP,i * *

max BP

i

i BP,i

·C ·k

C ·k






 

 
 

d-1 (31) 

Substrate dependent 
specific rate of 

maintenance respira-

tion of bacterial pes-
ticide degradersb 

* *

max BP m BP,i

BP,i * *

max BP ,i

i

i m BP

m ·C ·k

C ·m k
m

 

 




 

d-1 (32) 

Co-metabolic pesti-

cide consumption 
rate of fungic 

  * * P
F,P y F F,hiq F,loq F,P *

S F,P P

C
q T · k ·

K C




   


 
d-1 (33) 

Endogenous mainte-
nance rate of fungi 

due to co-metabolic 

pesticide degrada-
tionc 

F,P

F,P *

F,P

q
m

T
  

d-1 (34) 

Specific death rate of 

bacteriad 

*

max B

B * *

a B,hiq hiq a B,loq loq

a
a

1 K ·C K ·C



 


 

 d-1 (35) 
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Specific death rate of 

fungid 

*

max F

F * *

a F,hiq hiq a F,loq loq

a
a

1 K ·C K ·C



 


 

 d-1 (36) 

Specific death rate of 

bacterial pesticide 
degradersd 

*

max BP

BP * * *

a BP,P P a BP,hiq hiq a BP,loq loq

a
a

1 K ·C K ·C K ·C



  


  

 d-1 (37) 

Specific rate of insol-

uble SOM decompo-
sition by bacteria and 

bacterial pesticide 
degradersd 

*

max

I

I

I

B

B *

B

q ·C
q

K C








 

d-1 (38) 

Specific rate of insol-

uble SOM decompo-
sition by fungid 

*

max

I

I

I

F

F *

F

q ·C
q

K C








 d-1 (39) 

Limiting factor of ac-

tivity increase of bac-
teriad 

* *

hiq r B,hiq loq r B,loq

B * *

hiq r B,hiq loq r B,loq

C / k C / k

1 C / k C / k

 

 


 

 
 Unitless (40) 

Limiting factor of ac-

tivity increase of fun-
gid 

* *

hiq r F,hiq loq r F,loq

F * *

hiq r F,hiq loq r F,loq

C / k C / k

1 C / k C / k

 

 


 

 
 Unitless (41) 

Limiting factor of ac-

tivity increase of bac-
terial pesticide de-

gradersd 

* * *

hiq r BP,hiq loq r BP,loq P r BP,P

BP * * *

hiq r BP,hiq loq r BP,loq P r BP,P

C / k C / k C / k

1 C / k C / k C / k

  

  









 
 

Unitless (42) 

Pore water velocity *

w

*

J
v 


 mm d-1 (43) 

Effective diffusion-

dispersion coefficient 
of hiq DOC 

* *

e hiq hiqD ·v ·D     
mm² d-1 (44) 

Effective diffusion-

dispersion coefficient 
of loq DOC 

* *

e loq loqD ·v ·D     
mm² d-1 (45) 

Effective diffusion-

dispersion coefficient 
of pesticide 

* *

e P PD ·v ·D      
mm² d-1 (46) 

Soil liquid tortuosity 

factore 
3

2

7

*
 


 Unitless (47) 

Porosity of soil *

B

*

S

1


  


 Unitless (48) 

Conversion factor to 

calculate the abun-
dance of 16S rRNA 

genes from bacterial 
biomass 

 

   

*

16S rRNA * *

B mic

16S rRNA t 0
f

f t 0 ·C t 0



 
  

1copy numbe ·(mg C)r   (49) 
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Conversion factor to 

calculate the abun-
dance of 18S rRNA 

genes from fungal bi-
omass 

 

    

*

18S rRNA * *

B mic

18S NA t 0
f

1 f t 0 ·C t 0

rR 

  
  

1copy numbe ·(mg C)r   (50) 

Conversion factor to 

calculate the abun-
dance of tfdA genes 

from biomass of bac-
terial pesticide de-

graders 

 

     

*

* * *

BP B B mic

tfdA

tfdA t 0
f

f t 0 ·f t 0 ·C t 0



  
  

1copy numbe ·(mg C)r   (51) 

* indicates defined parameters, input values and material constants that are given in Online Resource 1. 

a modified from case 4 in (Rovira and Rovira 2010). 

b according to (Lendenmann and Egli 1998) 

c derived from (Criddle 1993) 

d based on (Blagodatsky and Richter 1998) 

e after (Millington and Quirk 1961) 
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5.4 Global sensitivity analysis 

For simplicity, we use only the term “parameter”, even though we included both parameters 

and other model input, e.g. boundary conditions, in the sensitivity analysis. The PECCAD 

model is complex. Consequently, it contains a high number of parameters (n=81; see Online 

Resource 1). They can be derived i) from direct measurements, ii) by the use of data from 

independent experiments or iii) by calibrating the model against the target data set (inverse 

simulation). See Addiscott et al. (1995) for a discussion of how the way of parameter evaluation 

affects model validation. A global sensitivity analysis helps to identify the most important fac-

tors of model dynamics and efficiently reduces the number of parameters that require fitting 

(Saltelli 2008). Such, overparameterization can be avoided, which often occurs with complex 

non-linear environmental models as a consequence of equifinality (Beven and Freer 2001). 

The global sensitivity analysis was performed in line with a series of microcosm experiments 

conducted to explore the temporally and spatially resolved dynamics of SOM and the model 

pesticide MCPA in soil. 

The experiments are similar to those described by Poll et al. (2010). Briefly, small soil columns 

of 30 mm length and 56 mm diameter are filled with a homogeneous soil spiked with MCPA. 

We used a fertilized topsoil (loamy Luvisol; WRB 2006) from an agricultural field at the research 

station Scheyern (Germany; 48°30’N, 11°21’E; http://www.helmholtz-muenchen.de/en/schey-

ern2/home/index.html). Maize litter is placed on top of the soil cores and the cores are irrigated 

regularly. The soil cores are placed on suction plates to control the lower boundary condition 

and incubated in an airtight microcosm system. 

In line with actually measured quantities in the related microcosm experiments, we chose 411 

model outputs to be considered in the sensitivity analysis. The set of model outputs included 

several aggregated C pools and gene abundances in soil integrated over seven layers (0-1, 1-

2, 2-3, 3-4, 4-6, 6-10 and 10-20 mm below a litter layer) at five sampling dates (4.89, 7.84, 

10.03, 13.93 and 22.81 days of incubation) as well as 14C  and total CO2-fluxes released from 

the whole soil column at 13 sampling dates (0.83, 1.79, 3.76, 4.86, 5.77, 7.74, 8.75, 9.97, 

13.76, 15.73, 18.77, 20.76, 22.74 days of incubation). CO2 fluxes were averaged over each of 

the 13 sampling intervals. Simulated abundances of 16S rRNA and 18S rRNA genes as well 

as of the functional gene tfdA were derived from the modeled biomass of bacteria, fungi and 

bacterial pesticide degraders, respectively, using conversion factors (Eqs. 49-51; Table 2). 

Total DOC was calculated as: 

 hiq loq PD C C COC     (52) 
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Total pesticide concentration was given by: 

 
P S PP C C    (53) 

Total microbial biomass was derived by: 

 mic F B BPC C C C    (54) 

Several C pools were then aggregated as total organic carbon: 

 , ,S hiq S loq micTOC DOC C C P C      (55) 

Accordingly, 13C abundances and 14C activities of these aggregated model outputs were cal-

culated as 
14 2CA CO , 

14C micA C , 
13C TOC  and 

14CA TOC . 

5.4.1 Methodology 

We adopted the LH-OAT (“Latin Hypercube – One At a Time”) method of van Griensven et al. 

(2006), who used this method to analyze parameter sensitivities of a hydrological model (Soil 

and Water Assessment Tool, SWAT; Arnold et al. 1998). In brief, we sampled the parameter 

space by a Latin Hypercube method (McKay et al. 1979) at 100 different locations. At each 

sampling point individual parameter values were slightly varied (“one at a time”). We used the 

resulting parameter-sets (81 parameters, n=8200) as input for PECCAD and calculated the 

model outputs needed to determine relative parameter sensitivities. Global parameter sensi-

tivities were calculated as the 90th percentile of partial relative sensitivities. Further methodical 

details are given in Online Resource 4. 

5.5 Results and discussion 

5.5.1 Model concept 

To our knowledge, PECCAD is the first model that mechanistically simulates microbial dynam-

ics and explicitly couples pesticide degradation with C dynamics in soil. The model is able to 

reproduce accelerated pesticide degradation due to fresh litter-C input. The acceleration is due 

to two mechanisms: i) direct stimulation of activity and growth of specific pesticide degraders 

and ii) increase in fungal activity and growth causing enhanced fungal co-metabolic degrada-

tion of the pesticide. 

Soil microorganisms are genetically highly diverse (Whitman et al. 1998; Hawksworth 2001), 

leading to a multitude of potential microbial characteristics. Partitioning of the microbial com-

munity into a limited number of functional groups is an unavoidable simplification, necessary 

to obtain applicable C turnover models. Physiological traits of microorganisms substantially 

determine rates of ecological processes in response to environmental conditions. Thus, a next 

step towards a more mechanistic treatment of microbial-driven ecological functions in SOM 
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turnover models may be achieved by a more comprehensive incorporation of functional micro-

bial traits on the community level linked with the explicit consideration of enzyme kinetics (Wal-

lenstein and Hall 2012). A recent implementation of this concept can be found in the litter 

decomposition model DEMENT (Allison 2012). DEMENT explicitly considers the characteris-

tics of microbial communities as well as those of various extracellular enzymes (n=20-50) and 

accounts for interactions between multiple microbial taxa (n=100-200). While these develop-

ments are promising, there is still a lack of available data to properly validate such complex 

models (Allison 2012). Wallenstein et al. (2012) explicitly addressed this issue as one outcome 

of the recent “Second International Enzymes in the Environment Research Coordination Net-

work Workshop: Incorporating Enzymes and Microbial Physiology” by stating that “… Model 

development should occur in tandem with experimental design and data acquisition...”. With 

PECCAD we follow this suggestion. Thus, we consider only three microbial pools with a limited 

number of functional microbial traits. However, in contrast to other mechanistic models (e.g., 

Allison 2012, Moorhead and Sinsabaugh 2006), microbial pools in PECCAD have been chosen 

such that they can be measured directly by their taxonomic and functional genes. We think 

that this is a promising feature for a successful parameterization. 

Similarly to the GDM model (Moorhead and Sinsabaugh 2006), each microbial pool simulta-

neously utilizes two pools containing DOC of differing quality. Compared to the detritusphere 

model of Ingwersen et al. (2008) this new feature makes the model more realistic and flexible, 

but it increases the number of parameters. 

The mechanistic integration of microorganisms in C models has the potential to improve pre-

dictions of ecological functioning in response to climate change (McGuire and Treseder 2010; 

Todd-Brown et al. 2012). Likewise, modeling of priming effects induced by easily available C 

sources requires an explicit incorporation of microbial processes (Wutzler and Reichstein 
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2008). Accordingly, this also holds true for the main purpose of PECCAD: modeling the stim-

ulating effect of litter-C (i.e. ‘priming effect’) on pesticide degradation in the detritusphere. 

Mathematically, stimulated activity and growth 

due to additional substrate availability are primar-

ily implemented by means of the multi-substrate 

growth of specific pesticide degraders and fungi 

(Table 2; Eqs. 31-32) in combination with the 

functions BP  and F  (Table 2; Eqs. 41, 42) reg-

ulating the activity of pesticide degraders and 

fungi. As illustrated in Fig. 2, the additional avail-

ability of hiq or loq DOC has a synergistic effect 

on both the activity state and the overall growth 

rate of specific pesticide degraders and fungi. 

Due to the nonlinearity of both functions, the in-

crease in microbial activity and growth rate by the 

synergistic effect of additional substrates is rela-

tively higher at low substrate availability and be-

comes constant if the concentration of at least 

one readily usable C source (such as hiqC ) is 

high. This feature supports the wide-spread ob-

servation that microbes adapt their strategy from 

simultaneous substrate utilization at low sub-

strate levels to preferential utilization of the most 

growth-supporting substrate at high (i.e. not 

growth-limiting) substrate levels (Egli 2010; 

Harder and Dijkhuizen 1982).  

In addition to stimulated pesticide degradation, 

the PECCAD model is able to simulate acceler-

ated SOM decomposition triggered by the input 

of fresh DOC, since the decomposition of the in-

soluble SOM pool is controlled by the biomass of 

microbial pools (Table 1; Eq. 19). Higher growth 

and activity of microorganisms due to additional DOC input directly leads to increased insoluble 

SOM decomposition (‘priming effect’). This feedback reflects the increased production of ex-

tracellular enzymes as a consequence of additional DOC input. The action of non-specific ox-

Fig. 2 Effect of substrate availability on a physiological 
state at steady state and b growth rate of microorgan-

isms for pesticide levels of CP = 0.015 mg C g-1 (1) and 
CP = 0 mg C g-1 (2). Both functions were calculated ac-
cording to corresponding formulations of specific pesti-
cide degraders (Table 2, Eqs. 31, 42). Concentrations 
of hiq and loq DOC (Chiq, Cloq) were assumed to be in 
the range of 0 to 0.1 mg C g-1. Individual values of 
both variables were normalized to the maximum re-
sulting in a range of [0…1]. Parameter values were 
chosen for illustrative purposes as follows: 
kr-BP,P = 0.05 mg C g-1, kr-BP,hiq = 0.5 mg C g-1 
kr-BP,loq = 2 mg C g-1, µmax-BP = 10 d-1 
kBP,P = 200 g (mg C d)-1

, kBP,hiq = 50 g (mg C d)-1 
kBP,hiq = 50 g (mg C d)-1 
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idative enzymes on both the insoluble SOM pool and the dissolved pesticide pool is only im-

plicitly considered in the current version of the PECCAD model. Insoluble SOM decomposition 

and fungal co-metabolic pesticide decomposition are defined as flows that are directly con-

trolled by the size and activity of biomass pools. This implementation implicitly reflects a bio-

mass-coupled dynamic of enzyme production. An increase in microbial activity/ size results in 

higher production of non-specific enzymes and finally leads to increased decomposition of 

SOM and pesticide. A more direct coupling of SOM decomposition with the non-specific deg-

radation of pesticide could be obtained by explicitly considering an additional independent pool 

of extracellular enzymes in a future version of the PECCAD model. 

It is worthwhile to compare the basic concept of PECCAD to other studies modeling priming 

effects in soil. For instance, Blagodatsky et al. (2010) modeled enhanced SOM decomposition 

induced by addition of 14C glucose in a short-term laboratory incubation experiment. They 

found that approaches considering microbial activity were best suited to match experimental 

14CO2 production data. However, for simplicity they considered only one microbial pool. Yet, 

the basic mechanism of accelerated decomposition of one C pool due to higher microbial ac-

tivity and growth induced by a second pool of fresh C in soil is the same as that implemented 

in PECCAD. Other models also include formulations to capture enhanced growth of one or 

several specific microbial pools in response to additional fresh C or other nutrients (e.g., Fon-

taine and Barot 2005; Moorhead and Sinsabaugh 2006; Neill and Gignoux 2006; Parnas 

1976), but other than PECCAD, they usually do not account for interactions between differing 

simultaneously utilized C substrates. In addition to the complex representation of microbial-

driven processes, PECCAD considers sorption as well as convective and diffusive transport of 

both DOC and the pesticide as regulation mechanisms of substrate availability in soil. 

Several studies have demonstrated that including 13C/ 14C pools or fluxes combined with ap-

propriate isotopic measurement data can be very useful in parameterizing SOM models (e.g., 

Blagodatsky et al. 2010; Ingwersen et al. 2008; Niklaus and Falloon 2006; Pansu et al. 2009). 

Likewise, measurements of 14CO2 mineralized from 14C-labeled pesticides are often used to 

calibrate relatively simple pesticide decomposition models (e.g., Gaultier et al. 2008; Poll et al. 

2010; Simkins and Alexander 1984). Isotopic labeling of pesticides generally allows for tracing 

the flow of pesticide C into soil pools, such as microbial biomass (Gonod et al. 2006; Lerch et 

al. 2009; Poll et al. 2010) and biogenic residues (Nowak et al. 2011). Accordingly, PECCAD 

explicitly simulates 13C and 14C isotopes, providing a basis for the use of isotopic data from the 

accompanying microcosm studies to facilitate parameter identification by inverse simulation. 
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5.5.2 Model dynamics 

 

Fig. 3 Simulated substrate pools integrated over selected soil layers of 0-1 mm, 2-3 mm and 6-10 mm distance 
to litter (a, b); cumulative pesticide-derived 14CO2 (c) and cumulative total CO2 (d). PECCAD was run with de-

fault parameter and input values as given in Online Resource 1. Open symbols represent a simulation with–out 
litter addition and filled symbols for a simulation with litter addition (CL,tot(t=0) = 0 vs. CL,tot(t=0) = 206 mg C). 

We used the default parameter values given in Online Resource 1 to investigate the dynamics 

of soil and biomass pools in PECCAD with special emphasis on the effect of litter on pesticide 

(MCPA) degradation. We ran two PECCAD simulations with i) addition of litter, i.e. existence 

of soil-litter interface or ii) no addition of litter. PECCAD predicted accelerated pesticide deg-

radation close to the soil-litter interface (Fig. 3a) and overall increased mineralization of 14C-

labelled pesticide in response to litter addition (Fig. 3b). Further, litter addition led to increased 

DOC concentration at the soil-litter interface (Fig. 3c) and higher CO2 production (Fig. 3d). The 

simulated CO2 and 14CO2 dynamics are comparable to experimental observations in a previous 

microcosm study (Poll et al. 2010). Increased DOC concentrations at the soil-litter interface 
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induced enhanced activity and abundance of microbial populations (Fig. 4), with the most pro-

nounced response nearest to the litter (0-1 mm distance). 

Fungi benefit more from litter-derived DOC than bacteria. Higher proliferation of fungi is due to 

their lower maximal specific death rate coefficient (
1

max
0.35






F
a d  vs. 

1

max
1.30

 


 

B max BP
a da

; Online Resource 1). The detritusphere model of Ingwersen et al. (2008) predicted higher 

growth of late-stage decomposers (dominated by fungi) at the soil-litter interface. Thus, despite 

its structural differences from Ingwersen et al. (2008), the PECCAD model with its flexible 

structure is able to simulate similar biomass dynamics. 

The set of parameter values and in particular initial conditions used are related to microcosm 

studies conducted in our lab. They give only one possible realization of the PECCAD model 

but are suitable to generally demonstrate PECCAD’s ability to simulate litter-stimulated pesti-

cide degradation. In a next step, the model will be thoroughly tested and calibrated against 

data from a series of ongoing microcosm experiments. 
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Fig. 4 Simulated dynamics of microbial biomass (a, c, e) and activity (b, d, f) integrated over selected soil 
layers of 0-1 mm, 2-3 mm and 6-10 mm distance to litter: a, b are specific bacterial pesticide degraders; c, d 
are bacteria; e, f are fungi. PECCAD was run with default parameter and input values as given in Online Re-

source 1. Open symbols stand for a simulation without litter addition and filled symbols for a simulation with 
litter addition (CL,tot(t=0) = 0 vs. CL,tot(t=0) = 206 mg C). 
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5.5.3 Global sensitivity analysis 

Estimated sensitivity indices of all considered parameters for all criteria are given in Online 

Resource 5. We defined the global sensitivity index (GSI); that is, the maximum taken over all 

sensitivity indices of a single criterion. Based on this GSI we classified parameters and input 

values as i) very important (1.0>=GSI>=0.75; n=22), ii) important (0.75>GSI>=0.50; n=11), iii) 

less important (0.50>GSI>=0.25; n=28) and iv) not important (0.25>GSI>=0.00; n=20). The 

sensitivity of model output to very important and important parameters is illustrated in Fig. 5.  

Fig. 5 Sensitivity of model out-
put to very important and im-
portant parameters  
(a Global sensitivity index as 
defined in Online Resource 4) 
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Model parameters can be grouped into two categories. They can be either (A) directly meas-

ured or estimated from independent experiments, or they must be (B) fitted by inverse simula-

tion. Category A parameter ranges were set according to uncertainty estimates (i.e. primarily 

95% confidence limits) of mean values (Online Resource 1), whereas those of category B were 

defined on the basis of literature data. Thus, the calculated sensitivities of category A param-

eters will be used to discuss the impact of their uncertainty on the dynamics of PECCAD model 

pools.  

About 41% (n=33) of all considered parameters are regarded as important or very important. 

Out of these 33 parameters 11 belong to category A and 22 are associated with category B. 

Among the important or very important category B parameters are biokinetic parameters such 

as maximum growth and death rates ( max  and maxa ) of bacteria, fungi and bacterial pesticide 

degraders. Likewise, substrate affinity coefficients for growth on loq DOC ( ,BP loqk , ,B loqk  and 

,F loqk ) have a high impact on model dynamics. Further, model output is highly sensitive to 

parameters controlling the decomposition of the insoluble SOM pool IC  (
,max Bq , r FY  , r BY   and 

r BY  ), substrate uptake efficiencies ( ,S BP PY  , ,S F loqY  ,  ,S B loqY   and ,S BP loqY  ), parameters con-

trolling sorption ( d loqK  ) and transport with the soil solution ( ,L loqY ,   and ,L hiqY ) as well as to 

the initial composition of the microbial community ( ( 0)Bf t  ). Our sensitivity results are es-

sentially in line with those of Ingwersen et al. (2008). They found highest sensitivities for max-

imum growth, death and SOM decomposition rates as well as for the fractions of initial and late 

stage litter (equivalent to hiq and loq litter in PECCAD) transferred to soil. Parameters control-

ling the activity of microbial pools ( ( 0)r t   and rk ) show the lowest sensitivity in their study, 

which is consistent with the results presented here. In addition to microbial activity parameters, 

we also identified coefficients linked with bacterial maintenance kinetics ( BC , BPC ) as not im-

portant. These parameters were fixed to default values in the study of Ingwersen et al. (2008). 

The low importance of parameters related to exogenous maintenance results from the rela-

tively low contribution of the corresponding C fluxes to total C turnover compared to microbial 

growth and death processes. In contrast, model output shows a higher sensitivity to parame-

ters related to fungal endogenous maintenance ( max Fa  , r FY  )  because this process has a 

larger contribution on overall C turnover. Recall that, although the detritusphere model of 

Ingwersen et al. (2008) served as a basis for the development of PECCAD, there are distinct 

differences between the models, in particular in the structure of microbial populations. 

Among the category A parameters, uncertainties of initial DOC concentration ( ( 0)DOC t  ) 

and volumetric water content ( ) have the greatest influence of all considered input on several 
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outputs simultaneously. Very important and important category A parameters are several 

measured initial quantities ( , ( 0)L totC t  , ( 0)MCPA t  , ( 0)TOC t  , 
14 ( 0)CA t  , ( 0)micC t  ) 

as well as independently estimated sorption parameters ( ,F Pn ,
F PK 

) and parameters used 

with the empirical litter decomposition model (
Lb ,

Lc ). Both litter decomposition parameters are 

included in the function 
Lf  (Table 2, Eq. 26), which calculates the fraction of hiq litter on total 

litter decomposition and controls the associated fluxes of hiq and loq DOC from litter into soil. 

Ingwersen et al. (2008) also found high sensitivities for the parameters of a Weibull function 

that regulates the fraction of initial-stage litter (equivalent to hiq litter in PECCAD) on total litter 

decomposition. 

The global sensitivity analysis gave reasonable and coherent results in terms of causes and 

effects. Thus, highest biokinetic parameter sensitivities of specific microbial pools are typically 

linked to corresponding microbial proxies (16S rRNA, 18S rRNA, tfdA) and associated sub-

strate pools. Likewise, parameter sensitivities properly reflect simulated decomposition and 

transport processes of the model. For instance, several parameters linked with fungi or specific 

bacterial pesticide degraders show a high sensitivity for pesticide and 14C pools in soil in con-

junction with the production rate of 14CO2, thereby reflecting the direct utilization of pesticide 

by both microbial populations. In contrast, 14C model output is typically less sensitive to pa-

rameters associated with bacteria. This makes sense because bacteria do not directly utilize 

14C-labeled pesticide. Another example of consistent sensitivity results is related to the high-

leverage transport parameters  , ,L hiqY  and ,L loqY . These parameters have a strong impact on 

the modeled 
13C TOC   dynamics, which reflects their direct effect on litter-C transport. 

5.6 Conclusion and outlook 

Due to its sophisticated representation of microbial populations and microbial-driven processes 

the PECCAD model can be utilized as a tool for studying regulation mechanisms of accelerated 

pesticide degradation (i.e. priming effects) in the detritusphere. The model will be particularly 

useful to evaluate 13C and 14C data from microcosm experiments. As a consequence of the 

sensitivity analysis we recommend to setting all parameters classified as not important (and 

perhaps also the less important ones) to default values.  

The new model will be calibrated and validated using the data from a series of microcosm 

experiments. The simulation of experimentally amenable gene abundances and isotopic C 

pools is a promising feature to successfully parameterize PECCAD using sophisticated inverse 

techniques.  
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Table 1 Parameters, input variables and material constants used in the PECCAD model 

Symbol Definition 
Default 

Value 

Lower 

bound 

Upper 

bound 
Unit Source 

Litter layer 

Lb  Empirical parameter of lit-

ter decomposition rate 

At time Lb  the decompo-

sition rate reaches its maxi-

mum value L,maxk  

4.79a 1.85a 7.73a d² Fittedb 

Lc  Rate coefficient of litter de-

composition function, anal-

ogous to a first order de-

composition coefficient 

21.17 10 a 39.15 10 a 21.43 10 a d-1 Fittedb 

L,hiqY  Fraction of the decomposed 

hiq litter transferred to soil 

0.3 0.01 1 Unitless (Ingwersen et 

al. 2008) 

L,loqY  Fraction of the decomposed 

loq litter transferred to soil 

0.829 0.01 1 Unitless (Ingwersen et 

al. 2008) 

 L,totC t 0  Initial litter carbon 206a 201a 211a mg C Measured 

Detritusphere soil 

max B  Maximal specific growth 

rate of bacteria 

25.5 0.1 50 d-1 (Ingwersen et 

al. 2008) 

max F  Maximal specific growth 

rate of fungi 

2.60 0.1 50 d-1 (Ingwersen et 

al. 2008) 

max BP  Maximal specific growth 

rate of bacterial pesticide 

degraders 

25.5 0.1 50 d-1 (Ingwersen et 

al. 2008) 

B,hiqk  hiq DOC growth substrate 

affinity coefficient of bac-

teria 

96.5 1 25 10   
1

g· mgC·d


 (Ingwersen et 

al. 2008) 

B,loqk  loq DOC growth substrate 

affinity coefficient of bac-

teria 

9.81 1 25 10   
1

g· mgC·d


 (Ingwersen et 

al. 2008) 

F,hiqk  hiq DOC growth substrate 

affinity coefficient of fungi 

96.5 1 25 10   
1

g· mgC·d


 (Ingwersen et 

al. 2008) 

F,loqk  loq DOC growth substrate 

affinity coefficient of fungi 

9.81 1 25 10   
1

g· mgC·d


 (Ingwersen et 

al. 2008) 

BP,Pk  Pesticide  growth substrate 

affinity coefficient of bac-

terial pesticide degraders 

96.5 1 25 10   
1

g· mgC·d


 (Ingwersen et 

al. 2008) 

BP,hiqk  hiq DOC growth substrate 

affinity coefficient of bac-

terial pesticide degraders 

96.5 1 25 10   
1

g· mgC·d


 (Ingwersen et 

al. 2008) 
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BP,loqk  loq DOC growth substrate 

affinity coefficient of bac-

terial pesticide degraders 

2.5 1 25 10   
1

g· mgC·d


  

max Bm   Maximal specific mainte-

nance rate of bacteria 

0.250 0.01 2 d-1 (Gignoux et al. 

2001) 

max BPm   Maximal specific mainte-

nance rate of bacterial pes-

ticide degraders 

0.250 0.01 2 d-1 (Gignoux et al. 

2001) 

m B,hiqk   hiq DOC maintenance sub-

strate affinity coefficient of 

bacteria 

250 1 31.5 10   
1

g· mgC·d


 (Ingwersen et 

al. 2008) 

m B,loqk   loq DOC maintenance sub-

strate affinity coefficient of 

bacteria 

250 1 31.5 10   
1

g· mgC·d


 (Ingwersen et 

al. 2008) 

m BP,Pk   Pesticide  maintenance sub-

strate affinity coefficient of 

bacterial pesticide degrad-

ers 

250 1 31.5 10   
1

g· mgC·d


 (Ingwersen et 

al. 2008) 

m BP,hiqk   hiq DOC maintenance sub-

strate affinity coefficient of 

bacterial pesticide degrad-

ers 

250 1 31.5 10   
1

g· mgC·d


 (Ingwersen et 

al. 2008) 

m BP,loqk   loq DOC maintenance sub-

strate affinity coefficient of 

bacterial pesticide degrad-

ers 

250 1 31.5 10   
1

g· mgC·d


 (Ingwersen et 

al. 2008) 

F,Pk  Maximum  specific rate  of  

pesticide utilization in the 

absence of  growth sub-

strates 

4 51 10  5 d-1  

y FT   Growth substrate transfor-

mation capacity 

1 41 10  1  
1

mgC· mgC


  

S F,PK   Substrate affinity  coeffi-

cient of fungal co-meta-

bolic pesticide transfor-

mation kinetic 

0.1 0.01 5 1mgC·g
  

F,PT  Co-metabolic pesticide 

transformation capacity of 

fungi 

31 10  1 41 10   
1

mg C· mg C


  

max Ba   Maximal specific death rate 

of bacteria 

1.30 0.1 3 d-1 (Blagodatsky 

et al. 1998) 

max Fa   Maximal specific death rate 

of fungi 

0.35 0.1 3 d-1  

max BPa   Maximal specific death rate 

of bacterial pesticide de-

graders 

1.30 0.1 3 d-1 (Blagodatsky 

et al. 1998) 



5  Micro-scale modeling of pesticide degradation coupled to carbon turnover in the 
detritusphere - Model description and sensitivity analysis 

69 

 

 

a B,hiqK   Inhibition coefficient of 

bacterial death rate in re-

sponse to hiq DOC 

12.4 1 100  
1

g· mgC


 (Blagodatsky 

et al. 1998) 

a B,loqK   Inhibition coefficient of 

bacterial death rate in re-

sponse to loq DOC 

12.4 1 100  
1

g· mgC


 (Blagodatsky 

et al. 1998) 

a F,hiqK   Inhibition coefficient of 

fungal death rate in re-

sponse to hiq DOC 

12.4 1 100  
1

g· mgC


 (Blagodatsky 

et al. 1998) 

a F,loqK   Inhibition coefficient of 

fungal death rate in re-

sponse to loq DOC 

12.4 1 100  
1

g· mgC


 (Blagodatsky 

et al. 1998) 

a BP,PK   Inhibition coefficient of 

death rate of bacterial pesti-

cide degraders in response 

to pesticide 

12.4 1 100  
1

g· mgC


 (Blagodatsky 

et al. 1998) 

a BP,hiqK   Inhibition coefficient of 

death rate of bacterial pesti-

cide degraders in response 

to hiq DOC 

12.4 1 100  
1

g· mgC


 (Blagodatsky 

et al. 1998) 

a BP,loqK   Inhibition coefficient of 

death rate of bacterial pesti-

cide degraders in response 

to loq DOC 

12.4 1 100  
1

g· mgC


 (Blagodatsky 

et al. 1998) 

max Bq   Maximal specific  decom-

position rate of insoluble 

organic matter ( IC ) of bac-

teria and bacterial pesticide 

degraders 

1.62 0.1 10 d-1 (Ingwersen et 

al. 2008) 

max Fq   Maximal specific  decom-

position rate of insoluble 

organic matter ( IC ) of 

fungi 

1.62 0.1 10 d-1 (Ingwersen et 

al. 2008) 

I BK   Substrate affinity coeffi-

cient of insoluble organic 

matter ( IC ) decomposition 

kinetics of bacteria and 

bacterial pesticide degrad-

ers 

13.8 1 100  
1

g· mgC


 (Blagodatsky 

et al. 1998) 

I FK   Substrate affinity coeffi-

cient of insoluble organic 

matter ( IC ) decomposition 

kinetics of fungi 

13.8 1 100  
1

g· mgC


 (Blagodatsky 

et al. 1998) 

r B,hiqk   Inhibition coefficient of 

bacterial activity in re-

sponse to hiq DOC 

25.06 10  31 10  10 1mgC·g
 (Ingwersen et 

al. 2008) 

r B,loqk   Inhibition coefficient of 

bacterial activity in re-

sponse to loq DOC 

2.33 31 10  10 1mgC·g
 (Ingwersen et 

al. 2008) 
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r F,hiqk   Inhibition coefficient of 

fungal activity in response 

to hiq DOC 

35.06 10  31 10  10 1mgC·g  (Ingwersen et 

al. 2008) 

r F,loqk   Inhibition coefficient of 

fungal activity in response 

to loq DOC 

2.33 31 10  10 1mgC·g
 (Ingwersen et 

al. 2008) 

r BP,Pk   Inhibition coefficient of ac-

tivity of bacterial pesticide 

degraders in response to 

pesticide 

35.06 10  31 10  10 1mgC·g  (Ingwersen et 

al. 2008) 

r BP,hiqk   Inhibition coefficient of ac-

tivity of bacterial pesticide 

degraders in response to 

hiq DOC 

31 10  31 10  10 1mgC·g   

r BP,loqk   Inhibition coefficient of ac-

tivity of bacterial pesticide 

degraders in response to 

loq DOC 

2.33 31 10  10 1mgC·g  (Ingwersen et 

al. 2008) 

r BY   Efficiency of insoluble or-

ganic matter ( IC ) decom-

position by bacteria and 

bacterial pesticide degrad-

ers 

0.570 0.1 1 Unitless (Blagodatsky 

et al. 1998) 

r FY   Efficiency of insoluble or-

ganic matter ( IC ) decom-

position and biomass reuti-

lisation by fungi 

0.570 0.1 1 Unitless (Blagodatsky 

et al. 1998) 

R F,PY   Efficiency of co-metabolic 

pesticide transformation by 

fungi  

0.316 0.1 1 Unitless  

S B,hiqY   Substrate uptake efficiency 

of hiq DOC by bacteria 

0.850 0.5 1 Unitless (Blagodatsky 

et al. 1998) 

S B,loqY   Substrate uptake efficiency 

of loq DOC by bacteria 

0.850 0.5 1 Unitless (Blagodatsky 

et al. 1998) 

S F,hiqY   Substrate uptake efficiency 

of hiq DOC by fungi 

0.850 0.5 1 Unitless (Blagodatsky 

et al. 1998) 

S F,loqY   Substrate uptake efficiency 

of loq DOC by fungi 

0.850 0.5 1 Unitless (Blagodatsky 

et al. 1998) 

S BP,PY   Substrate uptake efficiency 

of pesticide  by bacterial 

pesticide degraders 

0.850 0.5 1 Unitless (Blagodatsky 

et al. 1998) 

S BP,hiqY   Substrate uptake efficiency 

of hiq DOC by bacterial 

pesticide degraders 

0.850 0.5 1 Unitless (Blagodatsky 

et al. 1998) 

S BP,loqY   Substrate uptake efficiency 

of loq DOC by bacterial 

pesticide degraders 

0.850 0.5 1 Unitless (Blagodatsky 

et al. 1998) 

hiqD  Diffusion coefficient of hiq 

DOC in water 

16.4 1 100 2 1mm ·d  (Hendry et al. 

2003) 
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loqD  Diffusion coefficient of loq 

DOC in water 

16.4 1 100 2 1mm ·d  (Hendry et al. 

2003) 

PD  Diffusion coefficient of 

pesticide in water 

54.7 1 100 2 1mm ·d  Calculated for 

MCPA after 

(Worch 1993) 

d hiqK   Linear sorption coefficient 

of hiq DOC 

26.0 1 100 3 1mm ·mg  Fittedc 

d loqK   Linear sorption coefficient 

of loq DOC 

26.0 1 100 Unitless Fittedc 

F PK   “Freundlich”-coefficient of 

pesticide sorption isotherm 

0.538a 0.326a 0.750a 
 

*
Fn

3 1mm ·mg
 

Fittedd 

F Pn   “Freundlich”-exponent of 

pesticide sorption isotherm 

0.859a 0.788a 0.932a Unitless Fittedd 

  Dispersivity 10 1 50 mm (Jury and Hor-

ton 2004) 

wJ  Average soil water flux 0.190e 0.171e 

 

0.209e 1mm·d  Calculated 

  Average volumetric soil 

water content 

0.360e 0.324e 0.396e 3 3mm ·mm
 Calculated 

B  Bulk density of soil 1.20 - - 3 3mm ·mm
 Adjusted 

S  Soil particle density 2.65 - - 3mg·mm
 (Jury and Hor-

ton 2004) 

PM  Molar weight of pesticide 201 - - 1g·mol  Calculated for 

MCPA from 

(Wieser and 

Coplen 2011) 

CM  Molar weight of carbon 12.0 - - 1g·mol  (Wieser and 

Coplen 2011) 

 Br t 0  Initial physiological state 

index of bacterial 

0.1 0.01 1 Unitless (Blagodatsky 

et al. 1998) 

 Fr t 0  Initial physiological state 

index of fungi 

0.165 0.01 1 Unitless (Ingwersen et 

al. 2008) 

 BPr t 0  Initial physiological state 

index of bacterial pesticide 

degraders 

0.1 0.01 1 Unitless (Blagodatsky 

et al. 1998) 

 Bf t 0  Initial fraction of bacteria 

on total biomass 

0.1 0.05 0.95 Unitless (Ingwersen et 

al. 2008) 

 BP Bf t 0   Initial fraction of bacterial 

pesticide degraders on total 

bacterial biomass 

43.16 10  61 10  11 10  Unitless  

 DOC,hiqf t 0  Initial fraction of hiq DOC 

on total DOC 

51 10  51 10  1 Unitless Lower bound 

 TOC t 0  Initial total organic carbon 

in soil 

15.0a 14.3a 15.7a 1mgC·g
 Measured 

 DOC t 0  Initial total dissolved or-

ganic carbon in soil 

24.21 10 a 24.00 10
a 

24.42 10 a 
1mgC·g
 Measured 
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 micC t 0  Initial microbial biomass in 

soil 
29.46 10 a 28.86 10 a 0.101a 

1mgC·g  Measured 

 MCPA t 0  Initial MCPA concentration 

in soil 

53.6a 49.7a 57.4a 1mgMCPA·kg  Measured 

 14CA t 0  Initial total 14C activity in 

soil due to MCPA amend-

ment 

341a 318a 365a 1Bq·g  Measured 

 16S rRNA t 0  Initial abundance of 16S 

rRNA genes in soil 
122.48 10 a 122.18 10 a 122.77 10 a 

1copy number·g

 

Measured 

 18 rRS NA t 0  Initial abundance of 18S 

rRNA genes in soil 
98.51 10 a 97.80 10 a 99.22 10 a 

1copy number·g

 

Measured 

 tfdA t 0  Initial abundance of tfdA 

genes in soil 
61.49 10 a 61.36 10 a 61.63 10 a 

1copy number·g

 

Measured 

a  Mean and 95% confidence limits of estimated and measured values. 
b Estimated by fitting Equation 1 (main paper ; Table 1) to litter mass loss data obtained from the microcosm experiment 

that provided the data base for model calibration.  
c  Average soil water flux and volumetric soil water content were estimated from a transient water flow simulation. An un-

certainty of the estimated values of 10% was assumed. 
d Estimated by fitting an initial mass isotherm (Nodvin et al. 1986) to sorption data of water extracted litter DOC on a Lu-

visol soil. The same soil was used in the microcosm experiment that provided the data base for model calibration. 
e Estimated by fitting a Freundlich-isotherm to 24h batch sorption data of MCPA on a Luvisol soil. The same soil was 

used in the microcosm experiment that provided the data base for model calibration. 
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Microbial dynamics 

In our model, the microbial pools change through growth, maintenance and death. Each mi-

crobial pool has a specific activity state. It is reasonable to assume that multiple carbonaceous 

compounds are utilized simultaneously as homologous substrates by microorganisms in natu-

ral C-limited environments. Indeed, there is some experimental evidence for mixtures of natu-

rally occurring organic compounds and organic pollutants (e.g., Egli 2010; Knightes and Pe-

ters 2006; Wick et al. 2003). In line with this concept all three microbial pools are able to 

grow on both hiq and loq DOC. The specific pesticide degraders are in addition capable of us-

ing dissolved pesticide C as a third growth substrate. 

To model this simultaneous utilization of growth substrates we applied a Monod type kinetic 

for mixed substrate growth developed by Lendenmann and Egli (1998). These authors suc-

cessfully modeled the simultaneous utilization of mixtures of different sugars by Escherichia 

coli in a C-limited chemostat culture. We slightly modified their approach by defining sub-

strate specific affinity coefficients ik  for each microbial pool (main paper; Table 2; Eqs. 28, 

29, 31), such that: 

  

 
,max i

i

i

k
K


  (1) 

where ,max i  and iK  are parameters of the single Monod kinetic that describe utilization of 

substrate i . The fraction of DOC and pesticide C that is utilized due to exogenous mainte-

nance respiration of bacteria and bacterial pesticide degraders is modeled by analogy to mi-

crobial growth using a mixed substrate Monod kinetics (main paper; Table 2; Eqs. 30, 32). In 

contrast the endogenous maintenance of fungi is represented by the term  ,· 1max F r Fa Y   

(main paper; Table 1; Eq. 6) and a second function (main paper; ,F Pm ; Table 2; Eq. 34). The 

latter reflects an additional maintenance burden imposed on fungal cells due to co-metabolic 

pesticide degradation. 

Wang and Post (2012) recently suggested an interesting compromise approach for microbial 

maintenance, which is able to reflect a change from exogenous maintenance at high substrate 

availability to endogenous maintenance at low substrate availability. The rationale behind this 

approach was based on studies of bacterial maintenance by Dawes and Ribbons (1964). The 

shift to endogenous maintenance results in relatively higher microbial death at low substrate 

availability. Our modeling approach is similarly able to simulate such an increased microbial 
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decay at low substrate concentration, because microbial death is directly considered by multi-

substrate dependent death rates (main paper; Table 2; Eqs. 35-37) as proposed by Blagodatsky 

and Richter (1998). In contrast, Wang and Post (2012) assumed in their simplified model of 

SOM decomposition that microbial death rates are independent of substrates. 

In their review (Lennon and Jones 2011) showed that dormancy of microorganisms plays a 

very important role to deal with variable environmental conditions in ecosystems, in particular 

in soil. We account for possible dormancy of soil microorganisms by employing a physiologi-

cal state index r first introduced by Panikov (1995) with each microbial pool (main paper; Ta-

ble 1; Eqs. 8-10). This index r ranges from [0 … 1] and reflects the proportion of actively 

growing (r) vs. dormant (1-r) microorganisms. The change in the physiological state of each 

microbial pool is regulated by a multi-substrate dependent response function (main paper; Ta-

ble 2; Eqs. 40-42). The utilization of a physiological state variable results in a lagged response 

of the microbial biomass to a change in substrate availability, because all microbial life pro-

cesses (i.e. growth, death or maintenance) are directly controlled by r (main paper; Table 1; 

Eqs. 5-7).  As excellently illustrated by Blagodatsky and Richter (1998), the consideration of  

microbial activity allows a more realistic simulation of the long term behavior of microbial 

populations in soil compared to standard approaches that do not account for it. With our for-

mulation at very low substrate concentrations a large part of a certain microbial pool persists 

at a dormant state or in turn only a minor part of microorganisms is still active. Since only the 

active part of a microbial pool is depleted by maintenance and death processes in PECCAD’s 

model structure, microbes do not die off relatively fast due to substrate deficiencies. Instead 

the microbial biomass decreases slowly with time and is able to recover as substrates are 

available again. An increase in substrate availability first triggers microbial activity and is 

than followed by higher growth. 

Co-metabolic pesticide degradation by fungi 

Because we use the herbicide MCPA as a model pesticide in accompanying microcosm stud-

ies, we model pesticide decomposition by fungi with strong reference to chlorophenoxyacetic 

acids. Several studies have indicated that unspecific fungal lignin-degrading enzymes, such as 

manganese and lignin peroxidase, are involved in co-metabolic transformation of chlorophe-

noxyacetic acids (Castillo et al. 2001; Reddy et al. 1997; Vroumsia et al. 2005). This pathway 

also applies to pesticides from other substance classes (Bumpus et al. 1985). There is also 

some evidence of growth-linked degradation of halogenated aromatic compounds by fungi 

(e.g., Shailubhai et al. 1983). In a previous microcosm experiment we observed an increased 



5  Micro-scale modeling of pesticide degradation coupled to carbon turnover in the 
detritusphere - Model description and sensitivity analysis 

77 

 

 

abundance of the fungal taxonomic marker 18S rRNA gene (Manerkar et al. 2008) in detri-

tusphere soil amended with MCPA (Poll et al. 2010). The effect of MCPA was not visible in 

soil not influenced by litter, which suggests that the conditions in the detritusphere promoted 

the development of a specific fungal community capable of degrading MCPA either by 

growth-linked metabolism or co-metabolism. However, we found a much more pronounced 

stimulating effect of MCPA on the abundance of specific bacterial MCPA degraders using 

quantitative PCR targeting the functional gene tfdA. This gene encodes for a bacterial dioxy-

genase, which catalyzes the cleavage of the acetate side chain of the MCPA molecule as the 

first step of its biodegradation (Fukumori and Hausinger 1993). 

Against this background, we simplified the pesticide degradation in the PECCAD model, such 

that it is performed by specific bacterial pesticide degraders with growth-linked metabolism. 

In contrast, pesticide transformation by fungi is modeled as a strictly co-metabolic process. 

We adopted a kinetic approach from Criddle (1993), which couples fungal utilization of pesti-

cide-C to the fungal growth rates on hiq and loq DOC (main paper; Table 2; Eq. 33). This ex-

pression implies that the pesticide is co-metabolically transformed by fungal cells at a maxi-

mum rate defined by the parameter ,F Pk , even in the absence of growth substrates. If hiq or 

loq DOC is present and fungi grow, the maximum rate of co-metabolic pesticide utilization is 

further increased. The increase is regulated by the transformation capacity y FT  . This parame-

ter reflects the mass of pesticide C transformed per unit mass of hiq or loq DOC and effec-

tively links co-metabolic pesticide transformation with fungal growth.  

Water regime and transport of DOC and pesticide 

We assumed homogeneous soil and a stationary water regime. An extension of the model to 

account for a transient water regime would be straightforward, but is out of the scope of the 

present study. Transport of DOC and pesticide is simulated by the one-dimensional convec-

tion-dispersion equation (Jury and Horton 2004, Chapter 7) with apparent diffusion-dispersion 

coefficients (main paper; Table 2; Eqs. 44-66). 

Dynamics of 13C and 14C pools 

The dynamics of 13C and 14C pools are calculated from total C dynamics (Ingwersen et al. 

2008). We defined 13C and 14C mass fractions of each C pool in the model. To calculate a 13C 

or 14C flux, the respective total C flux is multiplied with the current 13C or 14C mass fraction 
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of the source pool. Diffusion and convection of isotopic DOC pools are computed inde-

pendently based on the 13C/ 14C concentrations of DOC. Isotopic pools of the pesticide (CP 

and CP-S) are directly calculated from total C pools assuming constant 13C and 14C mass frac-

tions. 

Boundary conditions and numerical integration 

At the upper boundary of the detritusphere (soil surface) the influx densities of hiq and loq 

DOC were set according to the second terms in Eq. 13 and 17 (main paper; Table 1); that is, 

the influx of hiq and loq DOC from litter is defined by a given proportion of the total litter de-

composition flux ,·L L totk C . The actual time-dependent values of hiq and loq DOC influx den-

sities are controlled by the parameters ,L hiqY  and ,L loqY  as well as by the function Lf  (main pa-

per; Table 2; Eq. 26), which partitions the total decomposition flux into hiq and loq C fluxes. 

At the upper boundary we assumed infiltration of pesticide-free water (main paper; Table 1; 

Eq. 22). At the lower boundary we applied a Neumann-type boundary condition (main paper; 

Table 1, Eqs. 14, 18, 23). 

 The system of non-linear partial and ordinary differential equations (main paper; Table 1) 

was numerically solved with the finite element solver FlexPDE (PDE solutions Inc. 2011) us-

ing a fully implicit Galerkin scheme in conjunction with the Newton-Raphson algorithm and a 

second-order two-step backward difference formula for solution in time. 
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Litter decomposition model 

We applied a power function to model the litter decomposition rate (main paper; Table 2; Eq. 

25; Rovira and Rovira 2010). This function shows a strong initial increase followed by a slow 

decrease with time. We postulate a short initial lag phase before litter C is successively de-

composed. The original expression 

  
3

2

at
f t c

t b

 
   

 
 (1) 

was modified by setting 1a  . By this simplification the specific shape characteristics of the 

original expression is basically maintained (at least for b<10 d2) and only two instead of three 

parameters have to be estimated by inverse simulation. 

Compared to the complex structure implemented for soil pools with explicit consideration of 

defined microbial populations we are currently using a relatively simple empirical model to 

simulate litter decomposition. A more mechanistic approach could not be justified because, at 

the current state, data on microbial litter communities is not available from the related micro-

cosm experiments. However, this information would be needed as a prerequisite to success-

fully estimate the additionally introduced parameters. 

A biomass-driven litter decomposition model validated on the basis of suitable experiments 

would be a very promising feature to substantially improve the representation of DOC input at 

the soil-litter interface towards more generality, but it is out of the scope of this study. 

 

Parameter estimation 

The parameters Lb  and Lc  of the time-dependent decomposition rate Lk  were estimated by 

fitting Eq. 1 (main paper; Table 1) to litter mass loss data of the accompanying microcosm ex-

periment (Fig. 1).  The ordinary differential equation that describes total litter mass loss (main 

paper; Table 1; Eq. 1) was numerically solved with FlexPDE (PDE solution Inc. 2011). 

FlexPDE was coupled to PEST (Doherty 2005) to optimize the two parameters by applying a 

least squares criterion to the residual amount of litter C using the Levenberg-Marquardt algo-

rithm. Estimated means as well as 95% confidence limits of Lb  and Lc  are given in Online 

Resource 1. The litter decomposition model performed well as indicated by a model effi-

ciency (EF; Loague and Green 1991) of EF=0.956.  
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The value 2.19Lb d  gives the time when the decomposition rate reaches the maximum of 

2 1

, 2.44 10  dL maxk     (main paper; Table 2; Eq. 27). The partitioning of total litter decompo-

sition between hiq and loq C is directly coupled to the litter decomposition rate by Eq. 26 

(main paper; Table 2). This function implies an initial pulse of hiq C, which is transferred to 

CO2 and to the hiq DOC pool in soil. 

 

Fig. 1 Reconstructed litter decomposition: a 

measured litter mass loss data and fit (solid line) 

of litter decomposition model (main paper; Ta-

ble 1; Eq. 1); grey symbols indicate individual 

measured values, black symbols show means 

and standard deviations of the means; b total lit-

ter C decomposition rate (solid line) and parti-

tioning between hiq and loq C. Portion trans-

ferred to CO2 as well as to DOC pools in soil are 

indicated by patterned lines, using the default 

values of YL,hiq=0.15 and YL,loq=0.829 (Online 

Resource 1) 

 

 

 

 

  



5  Micro-scale modeling of pesticide degradation coupled to carbon turnover in the 
detritusphere - Model description and sensitivity analysis 

83 

 

 

References 

Doherty J (2005) PEST: Model Independent Parameter Estimation. 5th ed. Watermark Numerical Computing, 

Brisbane, Australia 

Loague K, Green RE (1991) Statistical and graphical methods for evaluating solute transport models: Overview 

and application. J Contam Hydrol 7 (1-2):51-73. doi:10.1016/0169-7722(91)90038-3 

PDE Solutions Inc. (2011) FlexPDE 6.20 - finite element model builder for Partial Differential Equations. WA, 

USA  

Rovira P, Rovira R (2010) Fitting litter decomposition datasets to mathematical curves: Towards a generalised 

exponential approach. Geoderma 155 (3-4):329-343. doi:10.1016/j.geoderma.2009.11.033 

  



5  Micro-scale modeling of pesticide degradation coupled to carbon turnover in the 
detritusphere - Model description and sensitivity analysis 

84 

 

 

 

Online Resource 4:  

Description of the LH-OAT approach for global sen-

sitivity analysis  

 

Corresponding paper: 

Micro-scale modeling of pesticide degradation coupled to 

carbon turnover in the detritusphere - Model description 

and sensitivity analysis 

Holger Pagel1, Joachim Ingwersen1, Christian Poll2, Ellen Kandeler2, Thilo Streck1 

1 Institute of Soil Science and Land Evaluation, Biogeophysics, University of Hohenheim, D-

70593 Stuttgart, Germany 

2 Institute of Soil Science and Land Evaluation, Soil Biology, University of Hohenheim, D-

70593 Stuttgart, Germany 

 

Corresponding author: 

Holger Pagel 

Institute of Soil Science and Land Evaluation, Biogeophysics 

University of Hohenheim 

Emil-Wolff-Str. 27 

D-70593 Stuttgart, Germany 

Tel.: (+49)711 459 23383 

Fax: (+49)711 459 23117 

holgerp@uni-hohenheim.de 

mailto:holgerp@uni-hohenheim.de


5  Micro-scale modeling of pesticide degradation coupled to carbon turnover in the 
detritusphere - Model description and sensitivity analysis 

85 

 

 

LH-OAT approach for global sensitivity analysis 

The parameter distributions were subdivided into NI=100 strata of equal probability. We as-

sumed a log-uniform distribution of parameters. Lower (LB) and upper (UB) parameter 

bounds (as stated in Online Resource 1; Table 1) were first transformed by taking the loga-

rithm to base 10. The resulting log-transformed parameter range was then subdivided into 
iN

=100 intervals of width: 

  
1

· log log
i

UB LB
N

  (1) 

We randomly chose 100 parameter values, such that for each parameter each interval was 

only sampled once. At each sampling point we calculated the relative parameter sensitivity as 

follows (van Griensven et al. 2006): 
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where , ,i j ks  is the partial relative sensitivity of parameter 
ip  at LH sampling point j for each 

model output 
kM and f was set to 0.001.  

The global parameter sensitivity was calculated as a normalized measure over all LH inter-

vals: 
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MAX s s
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where ,
ˆ

i kS  denotes the normalized global parameter sensitivity of parameter 
ip  for model out-

put 
kM , ,i ks  is the 90th percentile of partial relative sensitivities over all LH intervals of pa-

rameter 
ip  for model output 

kM . Np stands for the total number of parameters. 

The LH-OAT approach resulted in  · 1 8200Ni Np   parameter-sets and model runs. The 

number of parameters considered was 81Np  .  
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Table 1 Sensitivity indices of PECCAD parameters and input values for key model outputs 

 Model outputa   

Model inputb DOC  P  TOC  

13C

TOC


 

14CA

TOC
 

micC  

14C

mic

A

C
 

16S

rRNA
 

18S

rRNA
 

tfdA  2CO  

14C

2

A

CO
 

 GSIc 

               

DOC(t 0)  1.000 1.000 0.508 0.442 0.772 1.000 0.764 1.000 0.443 0.712 1.000 0.977 

V
e
ry

 i
m

p
o

rt
a
n

t 
(0

.7
5

0
 –

 1
.0

0
0
) 

1.000 

  1.000 0.639 0.426 1.000 1.000 0.603 0.749 0.576 0.213 0.612 0.533 0.586 1.000 

F Pn 
 1.000 1.000 0.045 0.143 1.000 0.239 1.000 0.376 0.031 1.000 0.192 1.000 1.000 

max BP  0.636 0.378 0.086 0.207 0.511 0.517 0.988 0.596 0.069 1.000 0.315 0.901 1.000 

max Fa 
 0.563 0.118 0.134 0.197 0.304 1.000 1.000 0.270 1.000 0.132 0.729 0.672 1.000 

max BPa 
 0.838 0.366 0.184 0.216 0.474 0.533 1.000 0.677 0.031 1.000 0.344 0.439 1.000 

 L,totC t 0  0.447 0.135 0.325 1.000 0.322 0.664 0.419 0.653 0.208 0.374 0.801 0.157 1.000 

 MCPA t 0  0.925 0.370 0.066 0.157 0.370 0.317 0.544 0.313 0.035 0.742 0.160 1.000 1.000 

 TOC t 0  0.278 0.045 1.000 1.000 0.146 0.415 0.210 0.328 0.079 0.114 0.861 0.303 1.000 

max Ba 
 0.289 0.028 0.297 0.157 0.079 0.753 0.228 1.000 0.064 0.139 0.478 0.251 1.000 

S BP,PY 
 0.243 0.233 0.046 0.147 1.000 0.152 0.409 0.128 0.030 0.123 0.093 0.908 1.000 

 14CA t 0  0.061 0.029 0.027 0.123 1.000 0.102 0.424 0.124 0.036 0.067 0.027 0.432 1.000 

wJ  0.368 0.140 0.114 0.979 0.580 0.340 0.281 0.310 0.097 0.241 0.059 0.138 0.979 

BP,loqk  0.955 0.526 0.084 0.218 0.341 0.459 0.281 0.396 0.064 0.486 0.353 0.510 0.955 

L,loqY  0.389 0.052 0.296 0.923 0.204 0.559 0.212 0.447 0.147 0.217 0.554 0.115 0.923 

F PK 
 0.296 0.909 0.028 0.168 0.346 0.135 0.360 0.160 0.031 0.296 0.077 0.643 0.909 

  0.237 0.062 0.100 0.892 0.224 0.267 0.171 0.187 0.087 0.119 0.085 0.054 0.892 

d loqK 
 0.673 0.163 0.298 0.830 0.291 0.481 0.187 0.392 0.173 0.274 0.508 0.337 0.830 

S F,loqY 
 0.358 0.131 0.229 0.460 0.240 0.563 0.306 0.166 0.223 0.084 0.815 0.319 0.815 

BP,Pk  0.285 0.773 0.067 0.154 0.548 0.185 0.591 0.201 0.024 0.495 0.119 0.803 0.803 

max Bq 
 0.400 0.042 0.600 0.487 0.254 0.358 0.166 0.380 0.064 0.132 0.785 0.306 0.785 

Lc  0.340 0.039 0.256 0.780 0.217 0.466 0.254 0.398 0.163 0.212 0.662 0.123 0.780 

               

max B  0.252 0.066 0.088 0.223 0.103 0.420 0.242 0.739 0.130 0.133 0.243 0.220 
Im

p
o

rt
a
n

t 
(0

.5
0

0
 –

 0
.7

5
0
) 

0.739 

 micC t 0  0.289 0.144 0.199 0.179 0.249 0.579 0.606 0.519 0.270 0.349 0.738 0.436 0.738 

r FY 
 0.284 0.052 0.193 0.243 0.196 0.685 0.423 0.196 0.483 0.081 0.395 0.391 0.685 

L,hiqY  0.263 0.101 0.108 0.662 0.197 0.429 0.309 0.424 0.122 0.272 0.119 0.089 0.662 

Lb  0.288 0.116 0.118 0.652 0.316 0.442 0.355 0.476 0.152 0.255 0.656 0.098 0.656 

B,loqk  0.535 0.065 0.173 0.244 0.170 0.474 0.279 0.645 0.162 0.243 0.451 0.289 0.645 

S B,loqY 
 0.245 0.054 0.263 0.193 0.107 0.597 0.184 0.487 0.103 0.092 0.523 0.109 0.597 

S BP,loqY 
 0.351 0.082 0.406 0.364 0.155 0.588 0.167 0.447 0.045 0.262 0.513 0.203 0.588 

r BY 
 0.410 0.049 0.233 0.237 0.141 0.545 0.211 0.586 0.081 0.149 0.319 0.251 0.586 

F,loqk  0.566 0.084 0.132 0.266 0.226 0.380 0.241 0.272 0.305 0.146 0.318 0.380 0.566 

 Bf t 0  0.395 0.213 0.117 0.183 0.247 0.548 0.441 0.494 0.114 0.361 0.393 0.510 0.548 
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 Model outputa   

Model inputb DOC  P  TOC  

13C

TOC


 

14CA

TOC
 

micC  

14C

mic

A

C
 

16S

rRNA

 
18S

rRNA

 
tfdA  2CO  

14C

2

A

CO
 

 GSIc 

               

 16S rDNA t 0  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.491 0.000 0.000 0.000 0.000 

L
e
s
s
 i
m

p
o

rt
a
n

t 
(0

.2
5

0
 –

 0
.5

0
0
) 

0.491 

r B,loqk 
 0.242 0.057 0.186 0.174 0.075 0.391 0.193 0.470 0.060 0.089 0.308 0.124 0.470 

r BP,loqk 
 0.375 0.107 0.107 0.144 0.242 0.231 0.435 0.208 0.049 0.282 0.232 0.325 0.435 

max F  0.329 0.061 0.082 0.181 0.101 0.359 0.332 0.210 0.408 0.113 0.291 0.426 0.426 

S F,PK 
 0.226 0.138 0.025 0.086 0.261 0.093 0.382 0.061 0.022 0.046 0.035 0.421 0.421 

F,Pk  0.116 0.102 0.034 0.143 0.139 0.080 0.335 0.098 0.021 0.032 0.033 0.420 0.420 

y FT 
 0.214 0.070 0.041 0.163 0.125 0.097 0.313 0.060 0.024 0.040 0.032 0.418 0.418 

R F,PY 
 0.046 0.024 0.027 0.077 0.177 0.055 0.417 0.058 0.036 0.025 0.030 0.375 0.417 

 BP Bf t 0   0.200 0.157 0.052 0.155 0.153 0.172 0.401 0.206 0.038 0.332 0.072 0.410 0.410 

 Fr t 0  0.133 0.045 0.039 0.100 0.085 0.182 0.124 0.088 0.307 0.072 0.391 0.354 0.391 

 DOC,hiqf t 0  0.363 0.157 0.079 0.143 0.108 0.276 0.321 0.280 0.142 0.226 0.323 0.242 0.363 

max Fq 
 0.187 0.035 0.192 0.240 0.150 0.299 0.168 0.126 0.097 0.076 0.360 0.172 0.360 

a B,loqK 
 0.117 0.038 0.067 0.118 0.080 0.240 0.104 0.357 0.022 0.055 0.143 0.060 0.357 

S F,hiqY 
 0.253 0.094 0.041 0.155 0.173 0.164 0.356 0.112 0.089 0.116 0.057 0.157 0.356 

d hiqK 
 0.350 0.173 0.089 0.328 0.139 0.283 0.337 0.269 0.077 0.178 0.172 0.191 0.350 

 tfdA t 0  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.345 0.000 0.000 0.345 

r F,loqk 
 0.342 0.061 0.123 0.228 0.129 0.298 0.328 0.144 0.255 0.097 0.226 0.237 0.342 

a BP,loqK 
 0.180 0.064 0.079 0.193 0.078 0.223 0.228 0.208 0.022 0.342 0.105 0.189 0.342 

 Br t 0  0.136 0.027 0.072 0.181 0.050 0.225 0.081 0.334 0.036 0.068 0.256 0.065 0.334 

I BK 
 0.162 0.035 0.299 0.281 0.088 0.249 0.092 0.184 0.034 0.095 0.331 0.172 0.331 

F,hiqk  0.117 0.029 0.037 0.113 0.057 0.124 0.311 0.118 0.142 0.091 0.049 0.094 0.311 

S B,hiqY 
 0.170 0.033 0.072 0.305 0.070 0.187 0.270 0.215 0.039 0.067 0.106 0.116 0.305 

r BP,hiqk 
 0.188 0.062 0.050 0.142 0.088 0.152 0.295 0.165 0.050 0.180 0.048 0.101 0.295 

r BP,Pk 
 0.127 0.217 0.039 0.101 0.109 0.107 0.184 0.088 0.034 0.193 0.046 0.293 0.293 

BP,hiqk  0.258 0.108 0.050 0.196 0.229 0.218 0.289 0.219 0.041 0.265 0.095 0.115 0.289 

r B,hiqk 
 0.169 0.050 0.066 0.182 0.070 0.286 0.119 0.269 0.077 0.121 0.087 0.042 0.286 

 18 rDS NA t 0  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.267 0.000 0.000 0.000 0.267 

B,hiqk  0.174 0.068 0.059 0.150 0.079 0.237 0.254 0.225 0.072 0.106 0.133 0.076 0.254 
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 Model outputa   

Model inputb DOC  P  TOC  

13C

TOC


 

14CA

TOC
 

micC  

14C

mic

A

C
 

16S

rRNA

 
18S

rRNA

 
tfdA  2CO  

14C

2

A

CO
 

 GSIc 

               

a F,loqK 
 0.116 0.042 0.074 0.180 0.074 0.249 0.125 0.075 0.177 0.052 0.114 0.103 

N
o

t 
im

p
o

rt
a
n

t 
(0

.0
0

0
 –

 0
.2

5
0
) 

0.249 

m BP,Pk 
 0.087 0.045 0.019 0.092 0.248 0.065 0.113 0.073 0.028 0.030 0.031 0.122 0.248 

S BP,hiqY 
 0.237 0.157 0.040 0.167 0.067 0.160 0.076 0.170 0.029 0.132 0.103 0.065 0.237 

I FK 
 0.185 0.038 0.222 0.204 0.098 0.197 0.091 0.121 0.073 0.081 0.235 0.101 0.235 

max BPm 
 0.106 0.043 0.035 0.117 0.233 0.087 0.136 0.086 0.019 0.065 0.059 0.194 0.233 

loqD  0.183 0.042 0.044 0.230 0.076 0.185 0.076 0.084 0.043 0.071 0.033 0.043 0.230 

a F,hiqK 
 0.131 0.028 0.057 0.221 0.080 0.110 0.079 0.126 0.081 0.122 0.035 0.053 0.221 

 BPr t 0  0.099 0.049 0.037 0.136 0.072 0.104 0.210 0.124 0.027 0.213 0.038 0.211 0.213 

PD  0.165 0.059 0.028 0.086 0.203 0.083 0.120 0.075 0.024 0.082 0.038 0.072 0.203 

r F,hiqk 
 0.119 0.064 0.051 0.106 0.051 0.184 0.150 0.097 0.129 0.077 0.065 0.084 0.184 

max Bm 
 0.165 0.030 0.089 0.139 0.078 0.180 0.112 0.136 0.074 0.092 0.073 0.069 0.180 

hiqD  0.110 0.033 0.028 0.163 0.069 0.122 0.128 0.104 0.032 0.053 0.032 0.043 0.163 

m BP,hiqk 
 0.143 0.060 0.042 0.156 0.067 0.146 0.063 0.069 0.045 0.058 0.042 0.062 0.156 

a BP,PK 
 0.078 0.073 0.033 0.077 0.094 0.095 0.126 0.091 0.029 0.150 0.037 0.101 0.150 

m BP,loqk 
 0.112 0.042 0.054 0.130 0.129 0.104 0.105 0.139 0.049 0.069 0.041 0.079 0.139 

m B,loqk 
 0.047 0.032 0.045 0.127 0.040 0.111 0.043 0.087 0.031 0.035 0.040 0.056 0.127 

a B,hiqK 
 0.074 0.054 0.020 0.092 0.043 0.106 0.054 0.126 0.018 0.077 0.028 0.052 0.126 

a BP,hiqK 
 0.090 0.047 0.041 0.120 0.081 0.098 0.099 0.069 0.056 0.109 0.056 0.070 0.120 

F,PT  0.056 0.022 0.012 0.068 0.044 0.072 0.048 0.068 0.029 0.045 0.035 0.035 0.072 

m B,hiqk 
 0.067 0.027 0.016 0.065 0.050 0.057 0.064 0.047 0.019 0.026 0.028 0.067 0.067 

asee Section 3 of the main paper for definition of key model output criteria 
bsee Online Resource 1 for definition of parameters and input values 
cGlobal sensitivity index, that is the maximum sensitivity index over all single model output criteria 
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6.1 Abstract 

The mechanistic integration of microbial behavior is still one of the greatest challenges facing 

biogeochemical models of organic matter cycling in soil. We recently introduced dynamic feed-

backs between specific microbial groups and their micro-environment to model pesticide deg-

radation coupled to carbon (C) turnover in the detritusphere (PECCAD). In the detritusphere, 

pesticide degradation by bacteria and fungi is stimulated by the transport of organic substances 

from the litter into the adjacent soil. In this study, we applied the PECCAD model to the data 

of a microcosm experiment to enhance our understanding of regulation mechanisms involved 

in coupled C turnover and degradation of the model compound MCPA (4-chloro-2-methylphe-

noxyacetic acid). With our novel modeling approach we link genetic information on abun-

dances of total bacteria, fungi and specific pesticide degraders in soil to the biogeochemical 

dynamics of C and MCPA. 

We utilized a Pareto optimization for multi-criteria calibration of the PECCAD model to deter-

mine the trade-off in estimating parameters from the data of three experimental treatments. 

The analysis revealed that the PECCAD model structure was adequate and the identified pa-

rameter values were reasonable. The model was able to reproduce the observed dynamics of 

C and MCPA. The simulations matched the measured increase of dissolved organic C (DOC) 

and microbial C as well as the accelerated MCPA degradation in soil up to a 6 mm distance to 

litter (detritusphere). Whereas the observed increase of bacteria and pesticide degrader pop-

ulations was simulated satisfactorily, the model could not reproduce the steep increase of fungi 

indicated by the fungal marker gene. Our simulations suggest that fungal activity and growth 

was specifically stimulated by low-quality DOC, whereas bacterial MCPA degraders mostly 

benefited from high-quality DOC. According to the simulations, MCPA predominantly degraded 

via fungal co-metabolism. Our study demonstrates: i) Genetic information has a high potential 

to parameterize and evaluate complex mechanistic models, but model approaches must be 

improved based on extended information on gene dynamics at the cellular level, and ii) math-

ematical modeling is a powerful tool to gain comprehensive insight into microbial regulation of 

matter cycling in soil. 
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6.2 Introduction 

The dynamics of biogeochemical processes in soil microhabitats strongly control matter cycling 

and ecosystem functioning (Beare et al. 1995, Young et al. 2009, Totsche et al. 2010). Small-

scale habitats, such as the rhizosphere, drilosphere or detritusphere are characterized by high 

availability of readily utilizable carbon (C) resulting in high microbial abundance and activity 

compared to bulk soil (Lavelle 1988, Kandeler et al. 1999, Brown et al. 2000, Tiunov et al. 

2001, Gaillard et al. 2003, Dazzo and Ganter 2009, Marschner et al. 2012). They are hot spots 

of C turnover (Helal and Sauerbeck 1984, Bottner et al. 1999, Kandeler et al. 1999, Don et al. 

2008, Poll et al. 2008, Cheng 2009, Kuzyakov 2010, Bird et al. 2011, Schenck zu Schweins-

berg-Mickan et al. 2012) and degradation of organic chemicals (particularly pesticides) in soils 

(Haby and Crowley 1996, Shaw and Burns 2005, Gerhardt et al. 2009, Poll et al. 2010, Liu et 

al. 2011, Chen and Yuan 2012, Blouin et al. 2013).  

In the detritusphere, litter-derived C stimulates the degradation of herbicides (Duah-Yentumi 

and Kuwatsuka 1980, Ghani and Wardle 2001, Poll et al. 2010, Ditterich et al. 2013). The 

herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) is well suited to study the microbially-

driven interactions between C turnover and pesticide degradation in the detritusphere. MCPA 

and other chlorophenoxy herbicides are widely applied against broad leaf weeds and have 

frequently been used as model compounds to study the degradation of organic contaminants 

in soil (Torstensson et al. 1975, Loos et al. 1979, Soulas 1993, Crespin et al. 2001, Boivin et 

al. 2005, Cederlund et al. 2007). The half-life of MCPA in soils is reasonably fairly short (7 – 

41 days; European Commission 2005) and has been studied in detailed laboratory experi-

ments.  

Bacterial pathways of MCPA degradation and functional genes involved have been intensively 

studied (e.g., Helling et al. 1968, Don and Pemberton 1981, Pieper et al. 1988, Fukumori and 

Hausinger 1993, Smejkal et al. 2001, Laemmli et al. 2004, Ledger et al. 2006, Liu et al. 2013). 

The major bacterial pathway of biodegradation of MCPA and other chlorophenoxy herbicides 

is initiated by the cleavage of the ether-bonded acetate side chain. This reaction is catalyzed 

by different oxygenases encoded by tfdA/ tfdA-like, cadA and r/sdpA genes (Itoh et al. 2004, 

Müller et al. 2006, Baelum et al. 2010, Zaprasis et al. 2010, Liu et al. 2013, Nielsen et al. 2013). 

It has been shown that MCPA degradation in soil is quantitatively linked to the abundance of 

tfdA genes (Baelum et al. 2006, Nicolaisen et al. 2008, Poll et al. 2010, Ditterich et al. 2013, 

Liu et al. 2013). 

Fungal degradation pathways of chlorophenoxy herbicides and the fungal enzymes involved 

are less well understood. Thus, Vroumsia et al. (2005) concluded: “Although 2,4-D is a herbi-

cide used world-wide in crop control and its bacterial degradation has been extensively stud-
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ied, there is a noticeable lack of knowledge on its degradation by fungi …”. To date this state-

ment still holds true, and it does so for MCPA. Evidence is growing, however, that many soil 

fungi are able to degrade chlorophenoxy herbicides (Torstensson et al. 1975, Vroumsia et al. 

2005, Itoh et al. 2013). In analogy to bacterial pathways the cleavage of the ether-bond ap-

pears as one of the major reactions, which initiate chlorophenoxyacetic acid degradation by 

fungi (Shailubhai et al. 1983, Reddy et al. 1997, Vroumsia et al. 2005, Itoh et al. 2013). Alt-

hough Faulkner and Woodcock (1965) reported in an early study that the fungus Aspergillus 

niger transformed MCPA and 2,4-D by direct hydroxylation of the phenyl ring, later 2,4-Dichlo-

rophenol was found as major metabolite of 2,4-D degradation by A. niger suggesting initial 

ether-bond cleavage (Shailubhai et al. 1983). The activity of lignolytic enzymes, such as lignin 

and manganese peroxidases or laccases, has been associated with chlorophenoxyacetic acid 

degradation (Castillo et al. 2001). However, there is some evidence that the initial cleavage of 

the ether-bond is catalyzed by non-lignolytic enzymes and that the lignolytic enzymes are ra-

ther involved in the degradation of the chlorinated aromatic moiety (Reddy et al. 1997). Indeed, 

the degradation of chlorophenols by fungal lignin and manganese peroxidases as well as lac-

cases is well documented (Gianfreda and Bollag 1994, Field and Sierra-Alvarez 2008, Rubilar 

et al. 2008). Reports on side-chain cleavage of 2,4,6-Trichloroanisole (Campoy et al. 2009) 

and phenoxybutyrate herbicides (Sträuber et al. 2003) by cytochrome P450 monooxygenases 

indicate that this intracellular enzyme might be involved in the initial cleavage of the ether-bond 

of chlorophenoxyacetic acids by fungi. 

An Aspergillus niger strain was able to use 2,4-D as sole source of C and energy (Shailubhai 

et al. 1983). In contrast, the majority of isolated fungal strains from an agricultural soil were not 

able to degrade chlorophenoxyacetic acids as sole source of C and energy (Han Sung and 

New 1994). The latter fact in combination with the putative involvement of lignolytic enzymes 

suggests that fungal MCPA degradation proceeds at least in part co-metabolically. There are 

two fundamental explanations of co-metabolic substrate utilization. First, the presence of pri-

mary substrates can be necessary to induce the respective enzymes, which catalyze the trans-

formation of a secondary substrate. And second, the utilization of primary substrates can pro-

vide the energy to produce the reduction equivalents (e.g.,NAD(P)H) needed for the enzymat-

ically catalyzed reaction to attack the secondary substrate (Dalton and Stirling 1982, Brandt et 

al. 2003). 

Litter-derived compounds could serve as inducers of enzyme production or as additional C and 

energy source at the soil-litter interface. In a previous study we found that fungal growth was 

stimulated by MCPA only if litter-derived C was also available (Poll et al. 2010). Thus, the 

observed accelerated degradation of MCPA at the soil-litter interface could be explained at 

least in part by litter-induced co-metabolic transformation of MCPA and formation of com-
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pounds that can then be used as growth substrates by fungi. On the other hand, specific bac-

terial MCPA degraders were stimulated and apparently contributed to enhanced MCPA deg-

radation at the soil-litter interface as well. Based on these considerations, we hypothesized 

that litter-derived C stimulates the growth and activity of i) specific bacterial degraders capable 

of using MCPA as sole source of C and energy and ii) fungal populations capable of producing 

unspecific enzymes that catalyze the co-metabolic degradation of MCPA (Poll et al. 2010). 

Both regulation mechanisms of MCPA degradation at the soil-litter interface were recently im-

plemented in the PECCAD model (Pesticide degradation Coupled to CArbon turnover in the 

Detritusphere; Pagel et al. 2014). 

The representation of soil biochemical processes in mathematical models can be substantially 

improved by explicitly considering microbial dynamics and several models (including the PEC-

CAD model) already incorporate microbial physiology or enzyme dynamics (Gras et al. 2011, 

Allison 2012, Aslam et al. 2014, Perveen et al. 2014, Sistla et al. 2014, Wieder et al. 2014). 

However, such models typically have complex structures resulting in a high number of param-

eters that are largely unknown. Their parameterization can highly benefit from genomic and 

proteomic data (von Bergen et al. 2013, Myrold et al. 2014), which provide detailed information 

on the abundance and function of soil microorganisms. A promising approach to simplify the 

representation of complex soil microbial communities in models is to explicitly consider micro-

bial traits identified by molecular biological analyses (Green et al. 2008, Wallenstein and Hall 

2012, Trivedi et al. 2013, Krause et al. 2014). First approaches already integrate functional 

genes with biochemical models (Reed et al. 2014) and, indeed, measurements of tfdA class I 

and III genes in streambed sediments have been recently utilized to calibrate the initial biomass 

of MCPA degraders in a simple biokinetic model used to simulate the dynamics of MCPA de-

graders and MCPA mineralization in a microcosm experiment (Batoglu-Pazarbasi et al. 2013). 

Nonetheless, genomic data are not yet widely used to calibrate complex biochemical models, 

but it is promising to tackle this challenge. 

Further progress in the mechanistic modeling of microbial traits and coupled enzyme dynamics 

may be fostered by the availability of advanced parameter estimation techniques (Trigueros et 

al. 2010, Gao et al. 2011, Kügler 2012, Laloy et al. 2013, Sambridge 2013, Vrugt and Sadegh 

2013, Zhang et al. 2013). In particular, it has been demonstrated, albeit primarily in hydrologi-

cal applications, that multiobjective optimization can be effectively utilized to parameterize and 

analyze complex models (Efstratiadis and Koutsoyiannis 2010, Moore et al. 2011, Price et al. 

2012, Wöhling et al. 2013). Multiobjective optimization results in a Pareto set of parameter 

values, which reflect the global trade-off between multiple objectives by mapping from the pa-

rameter space to the objective space. Pareto optimal solutions have the property that moving 

from one solution to another results in the improvement of one objective while causing deteri-

oration in at least one of the others (Vrugt et al. 2003). In contrast to using single objective 
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functions, multiobjective frameworks provide a better understanding of structural limitations of 

a model by quantifying the trade-off between model fits employing multiple characteristic cri-

teria (Wöhling et al. 2013). 

Our objectives in the present study were: i) to assess the capability of the PECCAD model to 

reproduce the experimental data from a complex microcosm experiment on MCPA degrada-

tion, ii) to evaluate the structural limitations of the PECCAD model, and iii) to gain new insights 

into the biophysicochemical interactions involved in MCPA degradation in the detritusphere by 

applying the calibrated PECCAD model. 

6.3 Material and Methods 

6.3.1 Microcosm experiment 

We conducted a microcosm experiment focusing on the spatiotemporal dynamics of MCPA, C 

and microorganisms. Details on the setup and the technical procedures are given elsewhere 

(Poll et al. 2010, Ditterich et al. 2013). 

Experimental design 

We used topsoil from a loamy Luvisol (WRB 2006) from an agricultural field at the research 

station Scheyern (Germany; 48°30’N, 11°21’E; http://www.helmholtz-muenchen.de/en/schey-

ern2/home/index.html). The soil was sampled, sieved (< 2 mm) and stored in the dark at -20°C 

in July 2008. Before use the soil was thawed and its initial gravimetric water content ( g ) of 

27% was reduced to 22% by air drying at 20°C during an acclimatization period of 10 days in 

the dark. Then the soil was mixed with unlabeled MCPA (Sigma-Aldrich, PESTANAL©) dis-

solved in distilled water to give a final concentration of 20 µg/g and incubated at 20°C in the 

dark for 29 days. This pre-incubation was carried out to increase the abundance of MCPA 

degrading bacteria. The pre-incubated soil ( g = 22%) was then immediately used in the mi-

crocosm experiment. It contained some residual MCPA (0.18±0.03 µg/g), which was consid-

ered negligible in relation to the subsequent MCPA amendment. To induce the formation of a 

detritusphere we employed a one-to-one mixture of shredded (2-10 mm) maize leaves and 

stems. See Appendix A: Table A1 for basic soil and litter properties. 

We set up three experimental treatments: A) addition of litter (L), B) addition of MCPA (M), and 

C) combined addition of MCPA and litter (ML). All treatments were performed with four repli-

cates. We prepared a mixture of unlabeled and 14C-labeled MCPA (ring-U-14C, >95% radio-

chemical and chemical purity, Izotop, Hungary) dissolved in distilled water and adjusted to pH 

5.3 with NaOH. The pre-incubated soil was then homogeneously spiked with this stock solu-
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tion. On average we obtained a final MCPA concentration of 53.6 µg/g and a specific 14C ac-

tivity of 341 Bq/g (see Online Resource 1; Pagel et al. 2014). In the litter treatment we only 

added distilled water to the soil. 

The soil was filled to a height of 30 mm into stainless steel cylinders (diameter = 56 mm, height 

= 40 mm) and compacted to a bulk density of 1.2 g/cm3. The soil had a volumetric water content 

of 35%, corresponding to a matric potential of -63 hPa. In L and ML treatments we placed 0.5 

g of maize residues (rewetted with 2 ml 0.01 M CaCl2) as a thin layer on top of the soil cores. 

Soil cores were placed in airtight microcosms on ceramic plates, which were kept at a defined 

suction of -63 hPa (Poll et al. 2010). We incubated the microcosms at 20°C in the dark. The 

soil was irrigated with 0.01 M CaCl2 solution at a rate of 0.2 ml/min on four events (1.97, 8.92, 

14.76 and 21.95 days). In total we applied 13 ml solution, 4 ml at the first irrigation event and 

3 ml at each of the remaining three events. Based on a transient simulation of water movement 

using the Richards equation we calculated an average water flow rate of 0.191 mm/d, which 

was then used to model the steady state water flow with PECCAD. 

Analysis of litter and soil pools 

We destructively sampled four microcosms of each treatment after 4.9, 7.8, 10.0, 13.9 and 

22.8 days. After removing the litter layer the soil cores were immediately frozen at -20°C. Sub-

sequently, they were sliced using a cryostat microtome (HM 500 M, MICROM International 

GmbH, Walldorf, Germany) in 0-1, 1-2, 2-3, 3-4, 4-6, 6-10 and 10-20 mm layers. To obtain 

sufficient material for analyses, we combined and homogenously mixed the soil from the as-

sociated layers of two soil cores. This procedure yielded two replicate samples per treatment, 

layer and sampling date derived from four replicate soil cores. 

Residual MCPA in soil was extracted by agitation of 1.5 g soil with a 7.5 mL methanol/H2O (1:1 

by volume) solution in 15 ml centrifuge tubes (polyethylene) on a horizontal shaker at 200 rpm 

for 10 min. The tubes were then heated in a water bath for 60 min at 50°C. After repeated 

agitation on a horizontal shaker (200 rpm for 10 min) and centrifugation (4500g, 10 min) an 

aliquot of 1.5 ml supernatant was filtered (0.45 µm syringe filters, regenerated cellulose) di-

rectly into HPLC vials for further analysis. MCPA in the extracts was determined by HPLC with 

a UV-detector (System Gold, Beckman Instruments) at a wavelength of 228 nm using acetoni-

trile/water (ratio 32:68) with 20 mmol/l H3PO4 as mobile phase at a flow rate of 0.5 ml/min on 

a 150 mm  3 mm column packed with 3 µm MZ Aqua Perfect C18 material column (MZ-

Analysentechnik GmbH, Germany). Identification and quantification was done by external cal-

ibration using freshly prepared MCPA standards dissolved in methanol/H2O (1:1 by volume). 

The detection limit of MCPA in soil was 0.05 µg/g, and the recovery of total MCPA from freshly 

spiked soil samples was 96%. 
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Oven-dried (105°C for 24h) ground soil samples were used to determine total 14C activity by 

liquid scintillation counting of trapped 14CO2 after complete combustion as well as 13C abun-

dance by an elemental analyser coupled with an isotope ratio mass spectrometer (EA-IRMS). 

See Poll et al. (2010; 14C) and Poll et al. (2008; 13C) for technical and instrumental details. Total 

organic C (TOC) contents of soil were directly obtained from the 13C EA-IRMS measurements. 

Quantification of TOC and TO13C in soil was verified using weighted samples of a certified low 

organic content soil standard (C: 15.2 0.2 µg/g, δ 13CV-PDB: -27.46 0.11‰; Certificate No. 

114524, IVA Analysentechnik e.K., Germany). 

Microbial biomass was determined by the chloroform-fumigation-extraction method (Vance et 

al. 1987). Briefly, we applied 4 mL 0.025 M K2SO4 solution to 1 g of fumigated (24h, ethanol-

free CH3Cl) and non-fumigated soil. An aliquot of the soil extracts was then analyzed for dis-

solved organic carbon (DOC) using a  DIMATOC 100 (Dimatec GmbH). The 14C activity of soil 

extracts was determined by liquid scintillation counting (Wallac 1411, Perkin Elmer) after mix-

ing 0.5 ml soil extract with 4.5 ml scintillation fluid (Rotiszint eco-plus, Carl Roth GmbH&Co. 

KG, Germany). Total C content and 14C activity of the microbial biomass (Cmic, mg/g; 14Cmic, 

Bq/g) were calculated as follows: 
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Here DOCfum (DO14Cfum) and DOCcontrol (DO14Ccontrol) stand for organic C (14C) extracted with 

0.025 M K2SO4 solution from fumigated and non-fumigated soil samples, respectively. We 

used kEC = 0.45 to account for incomplete extraction of microbial biomass C after fumigation 

(Joergensen 1996). 

The quantification of 16S rRNA genes, fungal ITS fragments and tfdA genes was performed 

by quantitative PCR after DNA extraction from fresh soil samples and was described in detail 

by Poll et al. (2010) and Ditterich et al. (2013). 

Production rate of total CO2 and 14CO2 

We determined the CO2-C production from the whole soil column at regular intervals during 

the experiment using a 1 M NaOH solution to trap evolved CO2 in the headspace of the micro-

cosms. Sampling of NaOH and analysis of total CO and 14CO2 were done as described in Poll 

et al. (2010). Time-averaged CO2 production rates (
2 ,CO ir , mg C/d; 

2

14

,CO ir , Bq/d) were estimated 

at 13 sampling dates (
2 ,CO iT = [0.83, 1.79, 3.76, 4.86, 5.77, 7.74, 8.75, 9.97, 13.76, 15.73, 

18.77, 20.76, 22.74] days): 
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Here 
2 ,CO iC  (

2

14

,CO iC ) denotes the amount of CO2 (14CO2) produced during the sampling period 

it  measured at sampling date 
2 ,CO iT . 

6.3.2 PECCAD model 

Setup 

The PECCAD model is described in detail in Pagel et al. (2014). Briefly, PECCAD simulates 

the coupled dynamics of several C pools (high and low quality [hiq and loq] DOC, insoluble 

soil organic matter [SOM]), two pesticide pools (dissolved and sorbed phase) as well as size 

and activity of three microbial populations (bacteria, fungi and specific bacterial pesticide de-

graders). It simulates abundances of 16S rRNA genes and fungal ITS fragments as well as of 

the functional gene tfdA calculated from the modeled biomass of bacteria, fungi and bacterial 

MCPA degraders, respectively. It considers the vertical transport (diffusion and convection) of 

DOC and pesticide and accounts for 13C and 14C pools. The model is formulated as a set of 

non-linear partial and ordinary differential equations, which were numerically solved using the 

finite element solver FlexPDE (PDE_Solutions 2011). Influx of litter-derived hiq and loq DOC 

at the upper soil boundary was simulated by an empirical litter decomposition model. Its pa-

rameters were estimated from litter mass loss in microcosms by inverse simulation. Further 

details on the litter submodel can be found in Pagel et al. (2014). PECCAD is capable of mech-

anistically simulating enhanced pesticide degradation in soil due to the input of fresh organic 

C, which stimulates i) growth and activity of specific (bacterial) pesticide degraders and ii) fun-

gal co-metabolism by unspecific fungal enzymes. 

Calibration 

To parameterize the PECCAD model, we performed a calibration against the measured data 

of the microcosm experiment. In total, we simultaneously estimated 67 parameters including i) 

biokinetic parameters such as maximal growth and decomposition rates, substrate affinities 

coefficients, inhibition coefficients controlling the activity of microbial pools and substrate up-

take efficiencies, ii) physicochemical parameters such as the dispersivity or sorption and diffu-

sion coefficients of hiq and loq DOC and iii) initial values such as the initial physiological state 

index of microbial pools and coefficients defining the initial fraction of bacteria, fungi and spe-

cific MCPA degraders on the total microbial biomass in soil. Lower and upper boundary con-

straints of parameters are given in Appendix B: Table B1. 
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We conducted a multi-criteria Pareto analysis using the AMALGAM (a multi-algorithm, genet-

ically adaptive multiobjective; Vrugt and Robinson 2007) method to obtain parameter sets that 

reflect Pareto-efficient solutions of the data from the three experimental treatments (L, M, ML). 

Consequently, we used three aggregated objective functions to quantify the fit of PECCAD 

simulations with the respective observations for each experimental treatment 
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where iF  is the objective function of treatment i (L, M or ML) to be minimized, P

iN  denotes the 

treatment-specific total number of considered pools and ,i jMSE  stands for the mean squared 

error as treatment- (i) and pool- (j) specific criterion of goodness of fit. The individual ,i jMSE  

were normalized with corresponding minimum mean squared error values
,

MIN

i jMSE , which were 

estimated from an initial “burn-in” AMALGAM run of about 10000 model evaluations. We ap-

plied this normalization to balance the weights of individual ,i jMSE  and that of the three ob-

jective functions iF . The ,i jMSE  were calculated from the difference of model predictions , ,i j kP  

and measured observations , ,i j kO . The constant 
,

S

i jN  is the total number of samples of pool j 

and treatment i. These 1 … k samples include the measured and corresponding modelled 

values on a given sampling date and in the case of soil pools also at different soil layers. 

Individual , ,i j kP  and , ,i j kO  were normalized to lie in an interval of {0…1} by dividing its value 

by the maximum observed value of the respective pool. 

There are three Pareto extremes, where LF , MF  or MLF  reach their minima. Each of these 

Pareto extremes corresponds to a parameter set, which produces the model realization that 

best fits the data of a single experimental treatment.  Additionally, we defined a Pareto point, 

referred in the following as the compromise solution, where the Euclidean distance to the origin 

( 0,0,0  ) in the three-dimensional objective space is at its minimum: 

 
2 2 2

Comp L M MLF F F F    

The corresponding parameter set leads to a model realization that, by definition, simultane-

ously best matches the data of all three experimental treatments. 
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6.4 Results and discussion 

6.4.1 Model parameterization 

Trade-offs between treatments: Litter, MCPA and MCPA & litter 

Out of 156,800 parameter sets sampled by the AMALGAM algorithm, we identified in total 108 

Pareto solutions. These Pareto points lie on a three-dimensional Pareto surface that defines 

the trade-off between the FL, FM and FML objectives, respectively. Fig. 1 shows the three Pareto 

fronts, each with regard to two of the three objectives. Pareto points away from the projected 

fronts indicate model parameterizations that perform well on the third objective not shown in 

the bi-criterion plots, but not on the two objectives shown. 

Fig. 1 Projection of the objective functions for all simulations onto the FM – FL, FML – FL and FML – FM planes. 

The axes represent the values of three objective functions (F; normalized squared errors) that were minimized 
during calibration of the PECCAD model with AMALGAM to the experimental data of the three treatments: Litter 
(L), MCPA (M) and MCPA & litter (ML). 

In general, the shapes of the Pareto fronts are only slightly non-rectangular indicating that it 

was possible to significantly improve the predictions of one treatment without losing too much 

performance with regard to the other two treatments. Accordingly, the Pareto extreme that best 

matches the data of the ML treatment (lowest FML) results in individual objective values (FL = 

3.22, FM = 2.58, FML = 2.14) that are close to the values of the compromise solution (FL = 2.73, 

FM = 2.38, FML = 2.46). The objective values (ΔFL = 0.75 vs. ΔFM = 0.28 and ΔFML = 0.32) of 

the compromise solution, in turn, are only slightly larger than the single best values with the 

highest deviation found for the L treatment. All these findings imply that the trade-off for match-

ing the data of the three treatments is relatively low. However, the curvature (i.e. the deviation 

from a rectangular shape) of the Pareto fronts is most pronounced for the FL and FM objectives, 

which points to some structural deficits of the PECCAD model in simulating the coupled C and 

MCPA dynamics in soil. The largest trade-off was found between the objectives FL-FML and FL-

FM. Here, the best fit to the experimental data of the L treatment (FL = 1.98) is accompanied by 

substantially higher values for the other two objectives (FML = 18.3 and FM = 4.52). Also the 

minimum Pareto extreme related to the M treatment (FM = 2.10) is contrasted by FL and FML 

values of 7.48 and 3.70, respectively. 
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Numerical models need to simplify the complexity of interacting processes in real-world sys-

tems (Wainwright and Mulligan 2013). Hence, every model has structural deficits and trade-

offs between different objectives have to be expected. From a more detailed view on the per-

formance of PECCAD (Table 2) it becomes evident that the observed trade-off in fitting the 

data of different experimental treatments is largely driven by conflicts in simultaneously match-

ing the observed microbial dynamics of all three treatments. This indicates that there is space 

for improvement with regard to the structural representation of microbial dynamics in PECCAD. 

One should, however, be aware that the trade-offs between objectives arise not only from 

structural deficits of the PECCAD model, but that they will partly also be due to other sources 

such as errors in measuring input and output values (Wöhling et al. 2013). Measurement errors 

are much higher for microbial data (e.g. microbial biomass, gene abundances) than for other 

measurements (e.g. MCPA concentration, δ13C abundance). 

The FL-FML Pareto front close the FL Pareto optimum appears patchy and could have been 

explored further by AMALGAM. However, the bi-criterion Pareto fronts did not substantially 

improve during the last 30,000 model evaluations, and the Pareto analysis was stopped since 

the Pareto fronts were stable. Wöhling and Vrugt (2011) argued similarly regarding a patchy 

Pareto front observed in their AMALGAM optimization using a hydrological model. 

The final Pareto analysis with AMALGAM needed about four months of computation time run-

ning PECCAD in parallel on a six-core workstation. Due to computational limitations, we re-

stricted the Pareto analysis to the use of three objective functions. Direct utilization of different 

data types as individual objective values would have given a more detailed insight into model 

structural inadequacies. However, the computer power needed would then dramatically in-

crease because of the much higher number of model evaluations required to sample the re-

sulting high-dimensional (>10) Pareto surface. This limitation could be compensated for by 

running the AMALGAM code coupled with the model on a computer cluster, but this was out 

of the scope of the present study. The experimental data of the three treatments represent 

different degrees of biogeochemical complexity; with the ML treatment as the most complex 

system. Thus, we think that the applied information reduction to three treatment-specific ob-

jectives was reasonable and efficient to assess the structure of the PECCAD model. 

Optimized parameters 

In total, 67 parameters were simultaneously optimized with AMALGAM (Table 1). The majority 

of parameters directly controls biokinetic functions and microbial dynamics in soil. The remain-

ing parameters essentially control transport and sorption of litter-, MCPA- and soil-C, respec-

tively. Most parameters take on similar values in treatment-specific and the overall (compro-

mise) optimization, in line with the low trade-offs between the objectives found with the Pareto 
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analysis. However, model parameterizations optimal for L and M treatments do not reflect in-

teractions between litter-C and pesticide dynamics. Accordingly, the optimization with regard 

to only one objective is not sufficient alone to constrain the values of the full set of PECCAD’s 

parameters. This is obvious for parameters directly related to pesticide degradation (e.g. kBP,P, 

YS-BP,P or kF,P) in case of the L treatment or for that directly related to litter-C input (YL, hiq and 

YL, loq) in case of the M treatment. Also, e.g., parameters related to hiq DOC dynamics are 

excited most with the data of L and ML treatments, because the hiq DOC pool in soil is mostly 

supplied directly from hiq litter-C. The model parameterization optimal for ML reflects interac-

tions between C and pesticide dynamics, but does not necessarily capture the dynamics of 

microbial pools and substrate pools in absence of either MCPA-C or litter-C. Thus, only the 

compromise solution integrates all of the information about different states of the system ob-

served in the three treatments. In contrast, parameters optimized for only a subset of the data 

take partly unrealistic values. Therefore, unless stated otherwise, we refer only to the param-

eter set of the overall optimization in the following discussion. 

Based on our simulations, we can state that the fraction of decomposed litter-C transferred to 

soil is approximately four times larger for hiq than for loq litter (YL,hiq vs. YL,loq; Table 1). In 

contrast, Ingwersen et al. (2008) found a much lower fraction of decomposed initial-stage litter 

transferred to soil (corresponding to YL,hiq) compared to that of late-stage litter (corresponding 

to YL,loq). In the present study, 45% of the decomposed hiq litter-C and 12% of the decomposed 

loq litter-C were transferred to soil, whereas according to the detritusphere model of Ingwersen 

et al. (2008) only 15% of decomposed initial-stage litter-C, but 83% of decomposed late-stage 

litter-C were transferred to soil. Despite the fact that rye litter was applied by Ingwersen et al. 

(2008), whereas maize litter was used in our experiment, these differences result mainly from 

a different reconstruction of litter decomposition. PECCAD simulates a successive decompo-

sition of both litter fractions. The maximum proportion of hiq litter-C decomposition on the total 

rate reaches a maximum value of 0.5 after 2 days, and litter decomposition is almost com-

pletely fed by loq C after 15 days (Pagel et al. 2014; see appendix x for details). In contrast, 

Ingwersen et al. (2008) used a Weibull function to model a continuous sigmoidal shift in de-

composition from initial-stage litter-C dominated to almost complete dominance of late-stage 

litter-C after 37 days. By that, they applied a strictly sequential litter decomposition scheme. In 

consequence of the different schemes, Ingwersen et al. (2008) simulate relatively higher 

amounts of decomposed initial-stage litter-C compared to the amounts of hiq litter-C simulated 

in PECCAD. Thus, the optimized fractions of initial-stage vs. hiq and late-stage vs. loq litter-C 

transferred to soil partly compensate for the uncertainty in the reconstruction of litter decom-

position dynamics. Nonetheless, the fast initial turnover of hiq litter-C  simulated by PECCAD 

agrees well with a study by Kalbitz et al. (2003). By applying a double-exponential first-order 

decomposition model to CO2 mineralization data, they performed an incubation  
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Table 1 Parameter values of best fits of the PECCAD model to the data of three experimental treat-

ments obtained by Pareto analysis: litter (L), MCPA (M) and MCPA & litter (ML). The compromise solution 
(Comp) indicates the parameters of the overall best fit. See Appendix B: Table B1 for parameter bounds and 
units. 

 

  

Parameter L M ML Comp Parameter FL FM FML Comp 

L,hiqY  0.453 - 0.467 0.463 max Fq 
 8.67 0.44 0.44 0.72 

L,loqY  0.116 - 0.119 0.120 I BK 
 1.74 1.17 1.07 1.04 

max B  0.174 37.7 1.01 0.704 I FK 
 1.21 1.28 1.20 1.18 

max F  0.728 0.198 0.153 0.171 r B,hiqk 
 6.13 8.06 5.83 6.93 

max BP  12.4 4.37 8.35 4.69 r B,loqk 
 9.18 9.51 8.80 7.66 

B,hiqk  4.05 1.56 2.40 3.95 r F,hiqk 
 0.144 0.0013 0.0010 0.0010 

B,loqk  1.27 44.8 29.7 1.77 r F,loqk 
 1.28 10.0 7.82 5.84 

F,hiqk  1.00 1.31 1.25 1.31 r BP,Pk 
 - 0.0789 0.0042 0.0634 

F,loqk  432 478 479 467 r BP,hiqk 
 3.40 10.0 3.12 2.53 

BP,Pk   - 1.13 1.21 1.07 r BP,loqk 
 10.0 9.12 8.25 9.69 

BP,hiqk  32.0 9.34 6.61 34.7 r BY 
 0.855 0.929 0.901 0.851 

BP,loqk  2.64 1.25 1.27 1.32 r FY 
 0.986 0.997 0.996 0.998 

max Bm 
 0.0469 0.0214 0.0231 0.0166 R F,PY 

 - 0.299 0.307 0.285 

max BPm 
 0.0523 0.0265 0.0243 0.0269 S B,hiqY 

 0.700 0.520 0.539 0.809 

m B,hiqk 
 102 1370 418 1468 S B,loqY 

 0.867 0.996 0.998 1.000 

m B,loqk   1175 5.89 522 726 S F,hiqY 
 0.608 0.593 0.671 0.612 

m BP,Pk   - 280 295 264 S F,loqY 
 0.871 0.775 0.891 0.891 

m BP,hiqk   5.81 8.93 2.80 1.81 S BP,PY 
 - 0.999 0.750 0.712 

m BP,loqk   13.1 1288 1500 1261 S BP,hiqY 
 0.555 0.527 0.500 0.500 

F,Pk
 - 9.69 9.76 9.77 S BP,loqY 

 0.990 0.853 0.742 0.841 

y FT   - 0.0414 0.0343 0.444 hiqD
 17.1 11.5 4.02 15.9 

S F,PK 
 - 0.14 0.11 0.10 loqD

 2.59 3.85 3.86 4.98 

F,PT  - 18.4 32.3 27.4 d hiqK   1.58 1.28 2.94 2.46 

max Ba 
 0.183 0.318 0.413 0.272 d loqK 

 9.05 11.5 10.5 9.23 

max Fa 
 0.156 0.257 0.263 0.274   2.30 7.25 3.61 2.61 

max BPa 
 0.196 0.136 0.135 0.139  Br t 0  0.0212 0.0100 0.0101 0.0100 

a B,hiqK 
 1.33 4.99 1.60 1.79  Fr t 0  0.0107 0.0101 0.0102 0.0106 

a B,loqK 
 1.05 5.47 5.12 5.20  BPr t 0  0.965 0.999 0.897 0.907 

a F,hiqK 
 92.8 99.0 100 90.5  Bf t 0  0.950 0.306 0.365 0.407 

a F,loqK 
 1.54 1.09 1.08 1.22  BP Bf t 0   0.488 0.434 0.500 0.346 

a BP,PK 
 - 4.04 2.52 1.95  DOC,hiqf t 0  2.1x10-3 1.1x10-4 8.5x10-4 3.0x10-4 

a BP,hiqK 
 23.7 3.90 5.05 5.02 DOCf  0.630 0.848 0.778 0.762 

a BP,loqK 
 1.57 2.84 2.75 2.86 Pf  - 0.891 0.888 0.890 

max Bq 
 2.02 8.99 6.51 6.76      
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experiment with DOC extracted from fresh maize litter and estimated a half-life of 4.4 days for 

the labile DOC pool. Moreover, our finding of YL,hiq > YL,loq is consistent with the mechanistic 

conception that the hiq litter fraction mainly contains readily soluble compounds released as 

initial flush, whereas loq litter largely consists of insoluble particulate material successively 

degraded by extracellular enzymes (Berg and McClaugherty 2008, Moorhead et al. 2013, 

Rinkes et al. 2014). 

We found about three times higher diffusion coefficients and four times lower sorption coeffi-

cients of hiq DOC compared to loq DOC (Table 1). This indicates faster transport and lower 

retardation of hiq DOC vs. loq DOC. Diffusion and sorption coefficients implicitly reflect physi-

cochemical characteristics associated with the two organic C fractions utilized in the model. 

Thus, based on the empirical correlation of Polson (1950), molecular diffusion coefficients in 

water for substances with a molar mass greater than 1 kg/mol can be calculated as 

 
5

1

3

2.74 10
D

M


 , 

where D is the molecular diffusion coefficient in water (cm2/s) and M denotes the molar mass 

(g/mol). Recalculated from this equation, the fitted diffusion coefficients (compromise solution, 

Table 1) of hiq DOC correspond to molar masses of 2.60 – 204 kg/mol, those of loq DOC 

correspond to molar masses of 107 - 764 kg/mol. These values are in the range typically ob-

served with DOC sampled from soil and litter (Kiikkilä et al. 2013, Malik and Gleixner 2013). 

Similar to the PECCAD model, a site-specific version (silt loam forest soil) of the DyDOC (dy-

namic DOC) model distinguishes between two different DOC fractions: PDOM1 is associated 

to hydrophilic compounds, PDOM2 to more hydrophobic DOC compounds (Tipping et al. 

2012). The linear sorption coefficients Kd-hiq and Kd-loq optimized with the PECCAD model (Ta-

ble 1) were lower than the corresponding values optimized with DyDOC (Kd-PDOM1 = 5 – 5.8 

mm3/d, Kd-PDOM1 = 140 – 160 mm3/d). Note, differences between their and our estimates may 

of course arise due to differing sorbent properties and DOC compositions of the studied soils. 

The implementation of hiq and loq C pools in PECCAD is based on the fact that physicochem-

ical characteristics of DOC compounds determine their degradability, availability and, hence, 

their quality as substrate for microbes (Kalbitz et al. 2003; Kiikkilä et al. 2013). In accordance 

with that, it follows from the above that the estimates of sorption and diffusion coefficients 

reasonably indicate association of small hydrophilic compounds with the hiq DOC pool, 

whereas the loq DOC pool is rather associated with large less hydrophilic compounds. 

Comparing optimized values of PECCAD’s biokinetic parameters with values obtained with 

other models is limited by the fact that the exact model parameterization is closely linked to 

the structure of biological processes implemented. In addition, the optimized values of bioki-
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netic parameter values typically depend on experimental conditions (e.g. pF, pH or tempera-

ture) that influence microbial functioning but are currently not explicitly considered in the PEC-

CAD model (Estrella et al. 1993, Langner et al. 1998, Brusseau et al. 2006). Nonetheless, 

comparisons with other studies can help to reveal if the optimized biokinetic parameters of the 

PECCAD model are reasonable or not. 

Optimized values of maximum growth rates of bacteria and fungi (µmax, Table 1) are 1-2 or-

ders of magnitude lower than the corresponding values (2.59 d-1 and 25.5 d-1) estimated in the 

study of Ingwersen et al. (2008). Neglecting differences in experimental conditions and model 

structure, this difference may originate from the fact that Ingwersen et al. (2008) used fixed 

and equal substrate affinity coefficients for the two DOC pools. Both parameters are, however, 

highly correlated and several different combinations of both values can result in similar growth 

kinetics (Kovarova-Kovar and Egli 1998). In contrast to Ingwersen et al. (2008), PECCAD as-

sumes multi-substrate Monod kinetics employing substrate- and decomposer-specific affinity 

constants. These parameters have been identified to strongly affect model dynamics (Pagel et 

al. 2014). In this study, other than in  Ingwersen et al. (2008), they were fitted together with the 

maximum growth rates. Further, maximum growth rates in the range from 1 to 29 d-1 have been 

typically utilized in studies investigating the dynamics of either single species (mostly E. coli) 

growing on glucose and other easily degradable substrates (Simkins and Alexander 1984, 

Kovarova-Kovar and Egli 1998, Lendenmann and Egli 1998), soil microorganisms after glu-

cose amendment (Smith 1979, Blagodatsky et al. 2000), or of microbial pools in soil associated 

with the degradation of labile C pools (Paustian and Schnürer 1987, Toal et al. 2000). That is, 

maximum growth rates > 1 d-1 correspond to fast growing microorganisms utilizing easily de-

gradable substrates (Wutzler and Reichstein 2013). In contrast, Zelenev et al. (2005) apply a 

much lower maximum growth rate of 0.24 d-1 for oligotrophic soil microbes, Moorhead and 

Sinsabaugh (2006) give a “C uptake rate coefficient” (corresponding to the maximal growth 

rate parameter of PECCAD) for microorganisms involved in litter decay from 0.04 d-1 – 0.10 d-

1, and recently Sistla et al. (2014) reported a value of 0.15 d-1. Our estimated maximum growth 

rates of bacteria and fungi are relatively close to the latter values. Modeled bacterial and fungal 

pools are dominated by species growing relatively slowly.  

The maximum growth rate of specific bacterial pesticide degraders is in the range of 3.12–5.76 

d-1 estimated by others for 2,4-D and MCPA degraders in pure culture and soil (Shelton and 

Doherty 1997, Füchslin et al. 2003, Rosenbom et al. 2014). Cederlund (2007) determined spe-

cific growth rates of up to 10 d-1 for MCPA degrading microorganisms in the soil of a railway 

embankment. 

The optimized maximum growth rate of bacterial pesticide degraders (Table1; overall optimum) 

is ~ 6-times higher than those of bacteria in general and even ~27-times higher than those of 
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fungi. Higher growth rates of bacteria compared to fungi are in line with lower experimentally 

estimated turnover times of bacteria (0.5 – 215 days) vs. fungi (20 – 580 days) in soil (Rousk 

and Bååth 2011) and higher net growth rates of bacteria (9 – 60 d-1) than fungi (0.3 – 8.4 d-1) 

determined in solution culture under optimum conditions (McGill et al. 1981). The highest sub-

strate affinity to hiq DOC (khiq) is attributed to bacterial pesticide degraders followed by bacteria 

and fungi, whereas fungi show dramatically higher (>250 times) substrate affinities to loq DOC 

than bacteria and pesticide degraders.  

The growth parameters characterize the population of bacterial pesticide degraders and to a 

less extent also that of other bacteria as relatively fast growing microorganisms specialized on 

easily degradable substrates (hiq DOC). In contrast fungi are simulated as rather slow growing 

microorganisms specialized on less easily degradable substrates (loq DOC).  

Optimized values of substrate uptake efficiencies (YS) differ primarily with the kind of substrate. 

Thus, YS is lower for hiq DOC and MCPA (0.50 – 0.809) than for loq DOC (0.841 – 1.00). How 

substrate quality (i.e. chemical composition and molecular size) controls YS is not yet fully 

understood. In general, YS varies with substrate quality because of differences in metabolic 

assimilation pathways (Gommers et al. 1988, Van Hees et al. 2005). On the one hand, sub-

strate uptake efficiencies may be low if many enzymatic steps are needed until the C contained 

in a compound can be assimilated (Manzoni et al. 2012, Sinsabaugh et al. 2013). Higher opti-

mized YS values for loq DOC (i.e. large molecules) vs. hiq DOC/MCPA (i.e. small molecules 

which are readily available) stand in contrast to this argumentation, but may be explained in 

accordance with a counteracting mechanism that controls YS due to the degree of reduction of 

substrates. The degree of reduction is defined as “the number of available electrons per unit 

carbon atom of a substance which can be transferred to oxygen” (Minkevich and Eroshin 1973, 

Battley 2009). It is a measure of the chemical energy content of organic substances (for details 

see Gommers et al. 1988, Manzoni et al. 2012). Considering a single compound as energy 

and growth substrate, YS approaches the theoretical limit of unity at a degree of reduction of a 

substrate larger than five (Gommers et al. 1988). Indeed, many readily available substrates 

(corresponding to hiq DOC) used by microorganisms (e.g. miscellaneous organic acids, amino 

acids and carbohydrates) as well as MCPA have a degree of reduction smaller than five (Man-

zoni et al. 2012). They can be classified as energy-limited, i.e. their energy content per C is 

not sufficient to completely transform all substrate-C into biomass-C. This results in YS values 

smaller than unity down to extremely low values such as, e.g., < 0.2 in the case of oxalate 

(Gommers et al. 1988). Following this line of argumentation higher YS values for loq DOC vs. 

hiq DOC/MCPA would reflect that the modeled loq DOC is dominated by compounds not en-

ergy-limited, whereas hiq DOC rather consists of energy-limited substances. In addition, YS of 

a substrate utilized as carbon and energy source can also increase if a second substrate is 

dominantly utilized as energy source during mixed substrate utilization (Gommers et al. 1988). 
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Thus, preferential use of hiq DOC compounds and MCPA as energy source vs. loq DOC com-

pounds might also explain higher YS of loq DOC than hiq DOC and MCPA. More detailed 

characterization of measured DOC, e.g. by electrospray ionization combined with ultra-high-

resolution mass spectrometry (Reemtsma 2009, Roth et al. 2014), would probably allow to 

constrain identified substrate-specific YS. Considering the same substrate, differences of YS 

attributed to microbial pools were much less pronounced. This latter finding is in line with recent 

studies, where no differences in carbon use efficiency (which is conceptually similar to YS) 

between bacteria and fungi were found (Thiet et al. 2006, Dijkstra et al. 2011). In contrast, 

earlier experimental observations and model implementations  (e.g. in the CENTURY model; 

Parton et al. 1987) suggested higher carbon use efficiency of fungi than of bacteria (see review 

by Manzoni et al. 2012). 

Other than most models, PECCAD applies a microbial death rate function that depends on the 

substrate concentration. It is controlled by two parameters: amax and Ka. Model outputs are 

highly sensitive to maximum specific death rates (amax), but the inhibition coefficients of micro-

bial death rates (Ka) show low sensitivity indices (Pagel et al. 2014). Therefore, we will only 

compare the estimated amax values to those from other studies. The maximal specific death 

rates  of all three microbial populations are four to ten times lower than the value (1.3 d-1) 

estimated by Blagodatsky et al. (1998) and applied by Ingwersen et al. (2008). However, they 

were close to values (0.12 and 0.24 d-1) used in other models (Smith 1979, Gras et al. 2011, 

Lashermes et al. 2013). Zelenev et al. (2005) utilized maximum specific death rates of 0.12 d-

1 and 5.76 d-1 for copiotrophic and oligotrophic soil bacteria, respectively. Compared with esti-

mates of Blagodatsky et al. (1998), we probably found lower amax, because these authors stud-

ied a glucose-amended soil, in which the proportion of active copiotrophic microorganisms was 

higher than in our soil. Similarly, Monga et al. (2014) estimated mortality rates of five different 

bacterial species incubated with fructose in sand microcosms in the range of 0.22 – 1.4 d-1. 

We found very similar amax values for bacteria and fungi. This result is supported by a recent 

experimental study, in which mortalities of bacteria and fungi (25% and 27%) within the first 

three hours following the rewetting of a seasonally dried soil were similar (Blazewicz et al. 

2014). 

The estimated maximum specific maintenance rates of bacteria and MCPA degraders (mmax) 

are about 1-2 magnitudes lower than their corresponding maximum growth and death rate 

coefficients. In line with Ingwersen et al. (2008), this suggests that exogenous maintenance 

respiration plays a minor role compared to growth and death fluxes. However, they used an 

about tenfold higher value (0.25 d-1) in their model based on literature data from Gignoux et al. 

(2001). These authors pointed to the scarcity and the large uncertainty of mmax estimates. Pub-

lished estimates of specific maintenance rates corresponding to mmax can be found to be in the 
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range of 0.0017 – 0.744 d-1 (Anderson and Domsch 1985a, 1985b, Mueller et al. 1997, Blago-

datsky et al. 2010, Gras et al. 2011, Wang et al. 2014). This wide variety of estimates arises 

partly because various maintenance concepts are still debated. As a consequence, very dif-

ferent approaches are utilized in models (Van Bodegom 2007, Blagodatsky et al. 2010, Wang 

and Post 2012). 

The inhibition coefficients (kr) are parameters of three functions, which control the physiological 

state r of the three microbial pools, i.e. their transition from the dormant to the active state and 

vice versa (Pagel et al. 2014). Our kr estimates (Table 1) extend the range of 0.051 to 2.3 mg 

C/g reported by Blagodatsky et al. (1998)  and Ingwersen et al. (2008). Yet, it must be noted 

that absolute kr values cannot be directly compared. The number and structural integration of 

microbial pools differs between the three models. Considering each microbial population indi-

vidually, our fitted kr values were lowest for hiq DOC/MCPA and highest for loq DOC. This 

means that microorganisms respond more sensitively to changes in the supply with hiq DOC 

and MCPA than to alterations of loq DOC. This finding is basically in line with Ingwersen et al. 

(2008). However, they had set up their model in such a way that initial-stage DOC (correspond-

ing to hiq DOC) was exclusively consumed by initial-stage decomposers, whereas late-stage 

DOC (corresponding to loq DOC) was exclusively consumed by late-stage decomposers. 

Much lower values of kr-F,hiq and kr-BP,P compared to the other kr estimates indicate that the 

onset of activity of fungi and specific bacterial MCPA degraders is triggered already at relatively 

low concentrations of hiq DOC and MCPA, respectively. In particular, fungi respond faster to 

additional supply of hiq DOC by switching to the active state than bacteria.  Specific bacterial 

MCPA degraders respond more strongly to MCPA-C than to hiq and loq DOC. The high sen-

sitivity of the physiological state of specific MCPA degraders to changes in MCPA supply is 

reasonable. In contrast, the high sensitivity of fungal physiological activity to hiq DOC is some-

what unexpected in view of the fact that we estimated a high fungal substrate affinity to loq 

DOC and a relatively low maximum growth rate of fungi (see above). On the other hand, these 

values might be interpreted as implicitly reflecting fungal activity stimulation by intermediate 

degradation products of extracellular enzymes (associated with hiq DOC) that act as inducers 

of enzyme production (Allison et al. 2011). 

Based on the identified biokinetic parameter, the simulated microbial pools of the PECCAD 

model can be ecologically categorized as follows. The two bacterial pools mainly reflect the 

characteristics of r-strategists/copiotrophs, whereas the fungal pool predominantly consists of 

K-strategist/oligotrophs (Fierer, Bradford, and Jackson 2007). We must be aware of the fact, 

however, that bacterial and fungal populations in soil are complex and consist of numerous 

species, which cover a broad continuum of ecological characteristics. How to best simplify the 

high complexity of soil microbial community composition in mathematical models remains a 

big challenge. 
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Studies on co-metabolic transformation of pesticides in soil by fungi are scarce (Ellegaard-

Jensen et al. 2013). Recently, Aslam et al. (2014) modeled the enhanced degradation of the 

herbicide glyphosate in a maize detritusphere. They attributed its biodegradation exclusively 

to co-metabolic transformation. To our knowledge, there is no study in which the co-metabolic 

transformation of MCPA is simulated. Our estimated value of the maximum specific rate of 

MCPA utilization via co-metabolism by fungi in the absence of growth substrates (kF,P) reaches 

almost 10 d-1 (Table 1). This high kF,P in relation to a µmax-F value < 1 d-1 in combination with a 

Ty,F estimate < 0.5 indicates that the co-metabolic pesticide consumption rate function of fungi 

(Eq. 33; Pagel et al. 2014) is dominantly controlled by the kF,P and KS-F,P parameters. Overall, 

the parameterization of the co-metabolic pesticide consumption rate function suggests an es-

sential contribution of co-metabolic MCPA transformation by fungi on the total MCPA dissipa-

tion. The YR-F,P estimate reveals that about 70% of the total co-metabolically transformed 

MCPA-C is directly mineralized to CO2. Such a high proportion of CO2 production associated 

with co-metabolic MCPA transformation would be in line with the mechanism that intermediate 

metabolites are to a large extent directly utilized for the resupply of energy or reduction equiv-

alents, which have been consumed in the initial enzymatic attack of the MCPA molecule 

(Brandt et al. 2003). Consequently, only a small percentage of co-metabolized MCPA-C is then 

released as hiq DOC. The TF,P value (Table 1) indicates an approx. 30-fold lower maintenance 

burden to the fungal biomass compared to the total flux of co-metabolic MCPA transformation 

by fungi (compare Eqs. 6, 20,34; Pagel et al. 2014). In contrast, other studies report transfor-

mation capacity values corresponding to TF,P values <<1 for more toxic compounds (e.g. Tri-

chlorethylene) than MCPA (Alvarez-Cohen and Speitel Jr 2001, Chen et al. 2008, Sedighi and 

Vahabzadeh 2014). Thus, for such substrates the maintenance burden to microorganisms in 

terms of C is severalfold higher than the substrate-C actually transformed via co-metabolism. 

Because such a strong adverse impact of MCPA or its degradation products is not docu-

mented, we set the lower bound of TF,P to unity (see Appendix B: Table B1). 

Compared to that of fungi the maximal specific insoluble SOM decomposition rate of bacteria 

is much higher (qmax-B = 6.76 d-1, qmax-F = 0.72 d-1; Table 1). Note, however, the high uncertainty 

of the qmax-F estimate as reflected in the large difference between the fitted values associated 

with the L treatment and the compromise solution. This is mainly caused by the low sensitivity 

of model outputs to qmax_F (Pagel et al. 2014). In addition, the estimation of parameters of SOM 

kinetics is weakened by the large uncertainty of TOC measurements (see below). The qmax 

estimates of Ingwersen et al. (2008) and Blagodatsky et al. (1998) (1.6 and 2.3 d-1) lie between 

our two values, but these two models applied only one mutual qmax parameter for the total 

microbial community. Our qmax estimates are 3-4 orders of magnitudes higher than the decom-

position rate constants of insoluble SOM pools applied by widely used C turnover models such 

as RothC, CENTURY or DAISY (Parton 1993, Gjettermann et al. 2008, Rampazzo Todorovic 
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et al. 2010). Other than in these models, however, in the PECCAD model the apparent insol-

uble SOM decomposition rate is limited by the biomass and physiological state of microbial 

pools. This explains higher absolute values of qmax (Wutzler and Reichstein 2013). The sub-

strate affinity coefficients of insoluble organic matter (KI) approach their lower bound, whereby 

KI estimates of fungi and bacteria are very close (Table 1; Appendix B: Table B1). In contrast 

to the KI values estimated by Blagodatsky et al. (1998) and used by Ingwersen et al. (2008), 

our KI estimates are approximately one order of magnitude lower than the average insoluble 

SOM concentration. This indicates that the SOM decomposition rate is not limited by SOM 

substrate availability. Rather, PECCAD’s model structure and parameterization implicitly re-

flect that production and activity of extracellular enzymes are strongly regulated by microbial 

dynamics, which is highly consistent with recent experimental results (Kramer et al. 2013, 

Spohn and Kuzyakov 2014, Talbot et al. 2014) and mathematical models that explicitly account 

for enzyme dynamics (Allison et al. 2010, He et al. 2014, Moore et al. 2014). 

A small number of parameters that characterize the initial conditions in soil had to be calibrated, 

because these values were not accessible to direct measurement. The low fDOC,hiq(t=0) values 

means that the total DOC in soil initially contains only a minor fraction of hiq DOC (< 0.3%). 

Hence, litter-C input was the major source of hiq DOC. This is in accordance with simulations 

by others (Ingwersen et al. 2008, Wutzler and Reichstein 2013, Aslam et al. 2014). The esti-

mated initial fraction of bacteria on the total microbial biomass fB(t=0) of 0.41 corresponds well 

to a fungi-to-bacteria ratio of 37 - 76% as reported by Joergensen and Wichern (2008) for the 

microbial biomass of arable soils. The values of fB(t=0) and fBP-B(t=0) (initial fraction of bacterial 

MCPA degraders on the total bacterial biomass) were used to compute conversion factors 

from copy numbers of 16S rRNA genes, fungal ITS fragments and tfdA genes to C contents of 

the microbial model pools and vice versa. Based on the compromise values of fB(t=0) and fBP-

B(t=0) and the gene abundances measured in soil before the start of the experiment, we cal-

culated the following ratios (copy numbers per mg C): 

16S rRNA genes/bacterial C = 6.44x1011, 

fungal ITS fragments/fungal C = 1.52x109, and 

tfdA genes/bacterial degrader C = 1.12x108 

Assuming that the mass of bacterial C ranges from 10 to 100 fg/cell (Mcmahon and Parnell 

2014) the ratio of 16S rRNA genes to bacterial C results in a range of 6.4 - 64 copies of 16S 

rRNA genes/cell. Despite this wide uncertainty range, our assessment is close to the measured 

16S rRNA gene copy numbers/cell in bacteria ranging from 1 – 15 (Kembel et al. 2012). Klap-

penbach et al. (2000) proposed that the number of rRNA operons in a bacterial genome rep-

resents one microbial trait allowing bacteria with a higher number of rRNA operons (5) to 

respond faster to resource availability. Our lowest estimate of 6.4 copies/cell might be biased 



6  Regulation of pesticide degradation in the detritusphere: Integrating soil 
genomics and biogeochemical modeling 

111 

 

 

towards a higher value, because the extraction of extracellular DNA originating from dead bac-

teria results in an overestimation of the 16S rRNA gene abundance in relation to the living 

microbial biomass captured by the chloroform fumigation-extraction method (Pietramellara et 

al. 2009). Further uncertainty arises because extraction efficiencies of DNA and fumigated 

biomass-C both vary with soil characteristics (Joergensen 1996, Anderson and Martens 2013). 

The fraction of fungal ITS fragments/fungal C indicates a much lower number of gene copies 

per biomass-C in fungi than in bacteria. Baldrian et al. (2013) report a comparable ratio of 

fungal ITS fragments/dry biomass of 0.794x109 copies/mg C for fruit bodies of several fungi 

collected at a forest site. The authors explicitly point to the high level of variation in ITS copy 

number estimates even within one species. Performing the same calculation as for 16S rRNA 

genes (see above), the ratio tfdA genes/bacterial degrader C results in much less than one 

tfdA gene copy/cell (0.001 – 0.012). Consequently, the initial proportion of bacterial MCPA 

degraders has been probably overestimated considering the relatively high estimate that about 

14% of the total microbial biomass initially consists of bacterial pesticide degraders (Table 1). 

On the other hand, specific bacterial MCPA degraders were substantially enriched by the pre-

incubation of soil carried out after amendment of 20 µg/g MCPA (see Material & Methods). 

Similarly, Klappenbach et al. (2000) reported a high relative enrichment of 2,4-D-degrading 

bacteria, which represented up to 10% of the total culturable bacteria from soil microcosms 

after one-time pulses of 2,4-D addition. Moreover, whereas MCPA-degrading bacteria carry 

tfdA genes, also bacteria harboring cadA and r/sdpA genes have been identified to degrade 

MCPA (Liu et al. 2013). Thus, the modeled pool of bacterial MCPA degraders may be consid-

ered to only partly consist of microorganisms carrying tfdA genes, albeit we implicitly assume 

that the abundance of tfdA genes can be used as a genetic proxy reflecting the total MCPA-

degrading bacterial community. The fitted initial physiological states of bacteria and fungi 

rB(t=0) and rF(t=0) approached its lower bound of 0.01 (Table 1; Appendix B: Table B1). In 

comparison, Blagodatsky et al. (1998) and Ingwersen et al. (2008) report values of 0.1 – 0.165, 

whereas Wutzler et al. (2012) estimated the mean r(t=0) of 32 arable soil samples by kinetic 

respiration analysis to be 0.004. Further, a low proportion of active microbes is in agreement 

with estimates that typically less than 20% of the total microbial community in soils is in an 

active state (Lennon and Jones 2011, Wang et al. 2014). In their recent review on the activity 

state of microorganisms in soil (Blagodatskaya and Kuzyakov 2013) even state that the portion 

of active microorganisms actually contributing to ongoing biogeochemical processes is as low 

as 0.1 – 2% and does not exceed 5% of the total microbial biomass in soil. In contrast, the 

initial physiological activity of the bacterial MCPA degrader pool rBP(t=0) was very high. Alt-

hough an initially higher proportion of active bacterial MCPA degraders compared to the total 

bacteria and fungi can be reasonably attributed to the pre-incubation of the soil with MCPA, 

the rBP(t=0) parameter is probably overestimated. This is substantiated considering that the 
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steady state value of rBP at t=0 is 0.19, which can be calculated from the initial MCPA and DOC 

concentrations and the kr-BP estimates according to the compromise solution. With steady 

state, the values of rB and rF at t=0 are much lower (5.5x10-3 and 1.9x10-2). 

The applied batch extraction of DOC (see material and methods) overestimates the in situ 

DOC in the soil solution as simulated with PECCAD, because the DOC captured in the extracts 

additionally contains some sorbed phase C as a result of the lower soil/solution ratio used in 

extraction than in situ. To account for this potential overestimation and to assure compatibility 

of PECCAD model outputs and measurements, we fitted the parameter fDOC. Its value of 0.76 

(Table 1) suggests that DOC measured in K2SO4 extracts overestimates the in situ DOC con-

centration in the soil solution by a factor of 1.3 (1/0.76). This is in good agreement with the 

data on differentially extracted DOC from a silty loam soil Zsolnay (Zsolnay 2003). 

The estimate of fP (Table 1) confirms a slightly reduced extraction efficiency of MCPA with 

K2SO4 solution in comparison to the MeOH/H2O extraction. The lower efficiency had to be 

considered to avoid unrealistic high model outputs of 14C activity in K2SO4 extractable DOC. 

The parameter values given in Table 1 yield relevant model realizations that optimally match 

the observed dynamics of C, MCPA and microorganisms. We are, however, aware of param-

eter uncertainty arising from errors of input and calibration data as well as from structural errors 

of the model (Vrugt and Sadegh 2013). The available data might also not have been sufficient 

to simultaneously identify the large number of parameters associated with the high complexity 

of the PECCAD model (Young 2013). Thus, the identified Pareto parameter sets might repre-

sent only a subset of suitable model realizations (equifinality, Beven 2006). It is impossible to 

infer the uncertainty associated with the optimized parameter set from the Pareto analysis 

alone. In future studies, for instance approximate Bayesian computation (Vrugt and Sadegh 

2013) could be used for an enhanced investigation of the Pareto solution space in the front 

region. 

6.4.2 Microbial regulation of MCPA degradation coupled to C turnover in the detri-
tusphere 

Measured dynamics of C, MCPA and microorganisms 

The presence of litter resulted in up to five times higher respiration rates in comparison to the 

control (M treatment) (Fig. 2) as well as in increases in extractable DOC (Fig. 3), microbial 

biomass C and abundances of genetic proxies (Fig. 4) in the soil close to the soil-litter interface. 

The soil data in combination with the δ13C abundance of TOC (Fig. 3) suggest a detritusphere 

dimension of up to 6 mm (see Appendix C). The concentration/abundance gradients were most 

pronounced in the 0 - 3 mm soil layer adjacent to litter in good agreement with other studies 

(Gaillard et al. 2003, Poll et al. 2006, 2008, Marschner et al. 2012). 
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In the detritusphere, we found accelerated MCPA degradation in combination with increased 

incorporation of 14C into the microbial biomass and into TOC (Fig. 5). This confirms our previ-

ous results (Poll et al. 2010). Nowak et al. (2011) showed that the C in non-extractable residues 

of 2,4-D can be almost completely assigned to microbial residues. Hence, we suppose that at 

the end of the experiment, the largest part of the non-extractable 14C TOC (Fig. 5) can be 

primarily ascribed to residues of microorganisms that had assimilated MCPA-C before, either 

directly from the parent compound or indirectly as part of the C cycling in soil. Our results thus 

point to accelerated and increased formation of MCPA-derived biogenic residues in the detri-

tusphere. The measured dynamics of extractable 14C-DOC essentially paralleled that of MCPA 

(Fig. 5). Thus, any metabolites and co-metabolic transformation products of MCPA that might 

had been formed were not accumulated, but rapidly converted. 

Fig. 2 Measured and simulated respiration and MCPA mineralization of the entire soil cores. Symbols show 

means and error bars indicate standard errors of four replicates. Horizontal line segments represent the model 
fits to the observed average CO2 production rates. Continuous lines show simulated CO2/14CO2 production 
rates and cumulated CO2/14CO2 using either the treatment specific optimal parameters (dashed line) or the 
compromise parameter set (solid). 
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Fig. 3 Dynamics of organic C pools in three selected soil layers close to litter (0-3 mm) and one in “bulk” soil (6-

10 mm). Symbols show means and error bars indicate standard errors of two replicates. Continuous lines show 
simulated values using either the treatment specific optimal parameters (dashed line) or the compromise pa-
rameter set (solid). See Appendix C: Fig. C1 for additional measurements and simulations of soil layers 3-4, 4-6 
and 10-20 mm. 

Other than in Poll et al. (2010), the 14C mineralization kinetics as well as the total respiration 

rate differed only slightly between M and ML as well as L and ML treatments, respectively (Fig. 

2). However, in another previous experiment (Ditterich et al. 2013), we also found no effect of 

MCPA addition on total C mineralization. In agreement with both studies (Poll et al. 2010, 

Ditterich et al. 2013) we found a strong increase of fungal ITS fragments close to the soil-litter 

interface and a slight synergistic effect of MCPA, whereas there was no effect of MCPA without 

litter addition (Fig. 4). The abundance of 16S rRNA and tfdA genes responded exclusively to 

litter addition (Fig. 4), whereas an increased abundance of both genetic markers had been 

measured before in the case of the ML treatment (Poll et al. 2010, Ditterich et al. 2013). Poll 

et al. (2010) additionally found slightly increased 16S rRNA gene abundance in response to 

solely MCPA amendment without litter addition. 

The observed CO2, MCPA and microbial dynamics remarkably differs within the current and 

the two previous experiments, although the same soil as well as very similar pre-treatments 

and experimental conditions were used. This finding emphasizes that the reproducibility of soil 

experiments is limited as soon as microbial interactions are studied. Slight differences in ex-

perimental conditions most probably affect the initial status of microorganisms and result in 
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system behavior variability. In consequence this i) enhances the uncertainty of inversely esti-

mated biokinetic parameters and ii) limits their applicability between individual experiments 

(Brusseau et al. 2006). The variability inherent to natural microbial systems should also kept 

in mind with respect to the following assessment of model simulations. 

Fig. 4 Dynamics of microbial biomass C and genetic markers in three selected soil layers close to litter (0-3 

mm) and one in “bulk” soil (6-10 mm). Symbols show means and error bars indicate standard errors of two rep-
licates. Continuous lines show simulated values using either the treatment specific optimal parameters (dashed 
line) or the compromise parameter set (solid). See Appendix C: Fig. C2 for additional measurements and simu-
lations of soil layers 3-4, 4-6 and 10-20 mm. 
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Fig. 5 Dynamics of MCPA and specific 14C activity in organic C pools in three selected soil layers close to litter 

(0-3 mm) and one in “bulk” soil (6-10 mm). Symbols show means and error bars indicate standard errors of two 
replicates. Continuous lines show simulated values using either the treatment specific optimal parameters 
(dashed line) or the compromise parameter set (solid). See Appendix C: Fig. C3 for additional measurements 
and simulations of soil layers 3-4, 4-6 and 10-20 mm. 

Model performance 

The PECCAD model simulations agreed with the measured C and MCPA dynamics and nicely 

reproduced the impact of litter addition (Table 2, Fig. 2 - 5). The initial peak of soil respiration 

in the presence of litter was slightly underestimated, but the simulations predicted CO2 produc-

tion in the order ML~L>>M treatment in agreement with the data (Fig. 2). The model simula-

tions correctly reflected the observed accelerated MCPA degradation in the detritusphere, but 

the observed initial lag phase of MCPA degradation in the case of the M treatment was not 

fully resolved as indicated by the simulated dynamics of 14CO2 and MCPA in soil (Fig. 2, 5) 

and reflected in the initial overestimation of 14C in microbial biomass (Fig. 5). The TOC dynam-

ics could not be modeled well (EF<0; Table 2), mostly because of uncertainty in the measured 
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data as indicated by the large standard deviations (Fig. 3). The uncertainty is probably due to 

the relatively small soil samples used in EA-IRMS measurements. In contrast, the accuracy of 

δ13C data was high (Fig. 3) and so were the model efficiencies (Table 2). Note that model 

efficiency is low per se when measured variables show only little variation over time. 

Table 2 Performance of opti-

mized parameter sets for best 
fits of the PECCAD model to 
the data of the three experi-
mental treatments litter (L), 
MCPA (M) and MCPA & litter 
(ML) as well as for the compro-
mise solution (Comp). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The model simulations could not match the observed decrease of microbial biomass accom-

panied by increased extractable DOC at the first two sampling dates in the M treatment (Fig. 

3, 4). Note, however, that the initial decrease of microbial biomass was not reflected in the 

measured gene abundances (Fig. 4). The decrease of microbial biomass may indicate a toxic 

effect of MCPA on part of the soil microbial community (Cabral et al. 2003, Gonod et al. 2006, 

Poll et al. 2010). Dead microbes would directly lead to an increase of extractable DOC. The 

model simulation might have failed to match these measurements, because MCPA toxicity is 

not considered in the PECCAD model. 

 EFL
* EFM EFML   EFL EFM EFML 

MCPA concentration  Extractable DOC 
M - 0.90 0.88  L 0.75 -1.38 -19.7 

ML - 0.87 0.92  M -6.14 -4.15 -4.61 
Comp - 0.86 0.91  ML 0.58 -3.12 0.37 

  Comp 0.46 -3.44 0.18 
14C activity of microbial biomass      

M - -0.02 -0.19  Extractable 14C DOC 
ML - -0.45 0.49  M - 0.86 0.88 

Comp - -0.07 -0.10  ML - 0.81 0.92 
  Comp - 0.83 0.91 
14C activity of TOC      

M - 0.88 0.49  Microbial biomass 

ML - 0.83 0.75  L 0.75 -1.38 -19.7 

Comp - 0.85 0.59  M -6.14 -4.15 -4.61 

     ML 0.38 -0.02 0.47 
Mean CO2 production rate  Comp 0.46 -3.44 0.18 

L 0.71 0.02 0.53      
M 0.56 0.43 0.54  Abundance of tfdA genes 

ML 0.67 0.09 0.65  L 0.56 -0.36 -24.3 
Comp 0.69 0.04 0.65  M 0.43 -0.10 0.32 

     ML -0.73 -1.40 -0.12 

Mean 14CO2 production rate  Comp -0.73 -1.40 -0.12 
M - 0.71 0.43      

ML - 0.60 0.50  Abundance of 16S rRNA genes 
Comp - 0.64 0.49  L -0.02 -3.40 -25.6 

     M -0.06 -0.26 0.16 

TOC  ML -0.73 -1.40 -0.12 
L -0.50 -0.32 -0.36  Comp 0.10 -0.74 0.05 

M -0.55 -0.30 -0.25      
ML -0.47 -0.33 -0.18  Abundance of fungal ITS fragment 

Comp -0.50 -0.33 -0.23  L 0.46 -0.48 -0.39 
  M 0.20 -0.42 -0.02 

δ13C TOC  ML -0.26 -0.98 -0.44 

L 0.86 -0.01 0.43  Comp -0.19 -0.90 -0.40 
M 0.86 -0.01 0.69      

ML 0.77 -0.01 0.63      
Comp 0.85 -0.01 0.68      
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Although the PECCAD model simulations generally followed the observed increase of micro-

bial biomass and gene abundances in the detritusphere (Fig. 4), the highest trade-offs in fitting 

the data of the three experimental data sets occurred with microbial dynamics (Table 2). In 

particular, the rapid, about tenfold increase of fungal ITS fragments close to the soil-litter inter-

face could not be resolved. This discrepancy arises presumably because the relationship be-

tween the genetic marker abundance and biomass of each microbial pool was taken to be 

linear. We apply a simple conversion factor, calculated from the measured initial abundance 

of fungal ITS fragments and the inversely identified initial fungal biomass (see above). Yet, in 

real world, the abundance of fungal ITS fragments per biomass-C is probably strongly depend-

ent on the physiological state and the composition of the fungal community in soil. In addition, 

Baldrian et al. (2013) showed that the quantification of fungal biomass by determination of ITS 

fragments is associated with high uncertainty because of high variation of rRNA gene copy 

numbers per biomass even within the same species. The authors pointed out that our ability 

to quantify fungal biomass pools in soil is limited, and that measurement methods must be 

improved to better catch reality. Summing up, the value of using fungal ITS fragments as ge-

netic markers of fungal biomass is limited. The abundances of bacterial marker genes (tfdA, 

16S rRNA genes) can be expected to be more reliable biomass proxies because of much lower 

variation of gene copies per biomass (see section “optimized parameters”). Future research 

should focus on model approaches that consider nonlinear relationships between gene abun-

dance and biomass depending on physiological state and composition of microbial communi-

ties. At the same time, we need further progress in quantitative molecular techniques to im-

prove the use of genetic proxies for integrating microbially explicit models with experiments. 

Simulated pools and fluxes 

The PECCAD model considers two pathways of MCPA degradation: i) the use of MCPA as 

growth and maintenance substrate by specific bacterial degraders and ii) co-metabolic trans-

formation by fungi. There was no measured and simulated response of tfdA gene abundance 

to the MCPA amendment (i.e. no growth of bacterial MCPA degraders; Fig. 4). Consequently, 

in our simulations accelerated MCPA degradation in the detritusphere is predominantly regu-

lated by fungal dynamics. According to the simulated dynamics in the first 3 mm soil layer close 

to litter (Fig. 6), input of litter-derived hiq and loq DOC by convective and diffusive transport 

(see Appendix D: Fig. D1) results in increased activity (physiological state r) and biomass of 

fungi (Fig. 6ab) as well as in accelerated fungal transformation of MCPA via co-metabolism 

(Fig. 6e). 
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Fig. 6 Simulated microbial dynamics involved in coupled C turnover and MCPA degradation in the detri-
tusphere (0-3 mm soil layer). Row a shows the mean simulated physiological state variable r that indicates 
which proportion of the total microbial pool is active (0 .. 1). Rows b-d represent total, litter-derived and MCPA-
derived C in microbial biomass, respectively. Row e represents how much C of the parent MCPA compound 

was either used for growth and maintenance by specific bacterial degraders (left) or transformed to hiq DOC via 
fungal co-metabolism. Row f reflects the cumulated amount of MCPA-C from hiq DOC used for growth. 
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In contrast, the physiological state of bacterial MCPA degraders is mainly triggered by the 

availability of MCPA (see also section “optimized parameters”) resulting in a rapid reduction of 

physiologically active degraders as MCPA dissipates and only slightly enhanced biomass by 

litter-C (Fig. 6bc). The simulations show that MCPA is predominantly degraded via co-meta-

bolic transformation by fungi (Fig. 6e), but specific MCPA degraders proliferate most from hiq 

DOC and thereby indirectly incorporate most MCPA-derived C in their biomass (Fig. 6df). How-

ever, in case of the ML treatment the model simulations failed to reflect the observed rapid 14C 

incorporation into microbial biomass and TOC in the 0-1 mm soil layer directly adjacent to litter 

(Fig. 5). Thus, the indirect incorporation of MCPA-derived 14C into the biomass of tfdA-harbor-

ing bacteria could not fully explain our measurements. We think this disagreement could be a 

consequence of the uncertainties associated with the use of the genetic proxies to constrain 

the modeled microbial pools. Indeed, it has been found that particularly tfdA class III genes are 

most strongly related to MCPA degradation, whereas tfdA class I genes typically dominate the 

total tfdA gene abundance (as measured in our study), but class I tfdA genes are not neces-

sarily linked to MCPA degradation (Nielsen et al. 2011, Ditterich et al. 2013). Consequently, 

tfdA class III genes might have been a more sensitive genetic proxy for the bacterial MCPA 

degrader pool. Similarly, bacterial degraders harboring other genes than tfdA (see e.g.; Liu et 

al. 2013) that show different growth dynamics might have been involved in the degradation of 

MCPA in the present microcosm experiment and even fungal degraders that use MCPA as 

growth substrate may be responsible for MCPA degradation (see Shailubhai et al. 1983, Itoh 

et al. 2013). Thus, a biased dominance of co-metabolic vs. growth-linked MCPA degradation 

might be the reason that led to the underestimation of both i) the initial lag phase in case of the 

M treatment and ii) the observed rapid 14C incorporation into microbial biomass and TOC in 

the 0-1 mm soil layer directly adjacent to litter in case of the ML treatment by PECCAD model 

simulations. 

On the basis of our simulations we calculated the mass balance of total, litter-derived and 

MCPA-derived C pools and cumulated fluxes for the entire soil core, separated into 0-3 mm 

and 3-30 mm soil layers, at the end of the experiment (Appendix E: Fig. E1). Total C pools and 

cumulated fluxes clearly reflect increased C turnover in combination with accelerated MCPA 

degradation via stimulated microbial processes by litter-C input in the 0-3 mm compared to the 

3-30 mm soil layer. 

After 22.8 days 27% (56.1 mg) of total initial litter-C (206 mg) was decomposed. About 17% of 

decomposed litter-C corresponding to 4.6% of total litter-C was transferred to soil by convec-

tion and diffusion. This estimate is in the range of transfer rates found by two previous studies 

for diffusive transport of litter-C. Using young rye leaves and mature wheat straw stems with 

C/N ratios of 9 and 167, Galliard et al. (2003) calculated that 30% and 7% of initial litter-C were 

transferred to soil after 3 and 10 days. Similarly, Ingwersen et al. (2008) found that 31% of 
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initial litter-C were transferred to soil after 84 days, using rye residues with a similar C/N ratio 

of 40 as the maize residues used in this experiment. They further calculated that after 3 and 

10 days about 1% and 4% of initial litter-C had been transferred. In their study 17% of the total 

litter-C transferred to soil was diffusively transported to soil at a distance of > 3 mm from the 

litter layer after 84 days. Our simulation predicted a higher transfer (see below). The increase 

is reasonable in view of the fact that litter-C was additionally transported by convection due to 

irrigation. 

At the end of the experiment, after 22.8 days, most of the litter-C transferred to soil was found 

in the DOC pool within the 0-3 mm (65%) and 3-30 mm (23%) soil layers. In contrast, 

Ingwersen et al. (2008) found that most litter-C had been already transferred to the insoluble 

SOM pool via microbial turnover after 84 days. Consequently, in their experiment 31% of the 

total litter-derived CO2 arose from mineralization processes in soil, whereas the litter-derived 

CO2 in our experiment was almost completely produced directly in the litter layer. In accord-

ance with Ingwersen et al. (2008), the largest part of litter-derived DOC was utilized for micro-

bial growth: about 7% in the 0-3 mm and 1.4% in the 3-30 mm soil layer.  

Essentially the same amounts of MCPA-C initially added (2.6 mg) were mineralized (69%) or 

leached (6.8%) from the entire soil core in both the M and ML treatments. In a previous exper-

iment, conducted with the same soil and under similar experimental conditions,  Poll et al. 

(2010) obtained a lower maximum percentage of mineralization of about 49% by fitting of a 

simple logistic model, but leached amounts of MCPA-derived 14C were similar. 

Without litter addition the residual amounts of MCPA were clearly higher. In the 0-3 mm soil 

layer 16% of the total initially added MCPA parent compound were mineralized or transformed 

to DOC in the presence of litter compared to only 8% without litter addition. We found a net 

upward transport of the MCPA parent compound from the 3-30 mm to the upper 3 mm soil 

layer (5.8% of initially added MCPA) in the presence of litter, whereas in case of the M treat-

ment 2.3% of initially added MCPA were transferred from the 0-3 mm soil layer to the subjacent 

soil. The increased co-metabolic transformation of MCPA by fungi in detritusphere soil resulted 

in a higher proportion of MCPA-C in DOC and higher export of MCPA-C as DOC out of the 0-

3 mm soil layer than in the M treatment. 

6.5 Conclusions 

Our study revealed that complex biogeochemical models that explicitly consider microbial dy-

namics can be reasonably parameterized using sophisticated parameter optimization tech-

niques in combination with biophysicochemical and genetic information provided by detailed 

experimental data. It is well recognized that mathematical modelling is a powerful tool to im-

prove our understanding of environmental systems and its regulation (Wainwright and Mulligan 

2013, p. 8). Here, simulations provide a comprehensive insight into the microbial regulation of 
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MCPA degradation coupled to C turnover in the detritusphere. They point to an important, 

albeit not yet well understood, role of fungi in the biodegradation of MCPA. We demonstrated 

that there are strong interactions between microbial dynamics and matter cycling at the mm-

scale in soil. Diffusive and convective transport of litter-derived C control microbial dynamics 

in the detritusphere, which in turn impacts the diffusive transport of MCPA. 

In future versions of the PECCAD model, a more complex representation of microbial traits 

within fungal and bacterial pools and the dynamics of extracellular enzymes will be explicitly 

considered on the basis of genomic and proteomic information to further improve the mecha-

nistic representation of microbial population dynamics in soil. Recently the dynamics of MCPA 

degraders were coupled with that of water and solute transport in a three-dimensional model 

to evaluate how small-scale heterogeneity affects the leaching of MCPA in a loamy soil (Ros-

enbom et al. 2014). Similarly, a three-dimensional version of the PECCAD model will be ap-

plied in future studies to model coupled C turnover and pesticide degradation in natural soil, 

where biological and physicochemical processes intertwine at various hot spots (e.g. detri-

tusphere – rhizosphere – drilosphere). 

The PECCAD model provides the basis to study how microbial regulation mechanisms opera-

tive at the small-scale (mm) manifest at larger spatial scales using a bottom-up approach. In 

this context it can be applied as a tool to explore how the microbial dynamics in biogeochemical 

hot spots and elsewhere in soil regulate soil functions and ecosystem services, such as C 

cycling and pesticide degradation.  
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6.8 Appendices 

Appendix A (Table A1). Basic characteristics of soil and maize litter. In parentheses: 

standard errors. 

 

  

 Total C Total N δ13C pH (CaCl2) sand silt clay 

 mg/g mg/g   ‰  % % % 

Soil 14.9 (0.4) 1.85 (0.02) -25.9 (0.04) 5.3 19 (0.4) 63 (0.5) 17 (0.1) 

Maize litter 412 (5) 8.81 (0.20) -12.8 (0.01) - - - - 
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Appendix B (Table B1). Parameters and further model input of the PECCAD model 

with defined ranges. 

Parameter Range Unit Parameter Range Unit 

L,hiqY  0.01 … 1 Unitless max Fq 
 0.1 … 10 d-1 

L,loqY  0.01 … 1 Unitless I BK 
 1 … 100 

1(mgg C)  

max B  0.1 … 50 d-1 I FK 
 1 … 100 

1(mgg C)  

max F  0.1 … 50 d-1 r B,hiqk 
 0.001 … 10 

1mg C g  

max BP  0.1 … 50 d-1 r B,loqk 
 0.001 … 10 

1mg C g  

B,hiqk  1 … 500 
1(mg Cg d)   r F,hiqk 

 0.001 … 10 
1mg C g  

B,loqk  1 … 500 
1(mg Cg d)   r F,loqk 

 0.001 … 10 
1mg C g  

F,hiqk  1 … 500 
1(mg Cg d)   r BP,Pk 

 0.001 … 10 
1mg C g  

F,loqk  1 … 500 
1(mg Cg d)   r BP,hiqk 

 0.001 … 10 
1mg C g  

BP,Pk  1 … 500 
1(mg Cg d)   r BP,loqk 

 0.001 … 10 
1mg C g  

BP,hiqk  1 … 500 
1(mg Cg d)   

r BY 
 0.1 … 1 Unitless 

BP,loqk  1 … 500 
1(mg Cg d)   

r FY 
 0.1 … 1 Unitless 

max Bm 
 0.01 … 2 d-1 R F,PY 

 0.1 … 1 Unitless 

max BPm 
 0.01 … 2 d-1 S B,hiqY 

 0.5 … 1 Unitless 

m B,hiqk 
 1 … 1500 

1(mg Cg d)   S B,loqY 
 0.5 … 1 Unitless 

m B,loqk   1 … 1500 
1(mg Cg d)   S F,hiqY 

 0.5 … 1 Unitless 

m BP,Pk   1 … 1500 
1(mg Cg d)   S F,loqY 

 0.5 … 1 Unitless 

m BP,hiqk   1 … 1500 
1(mg Cg d)   S BP,PY 

 0.5 … 1 Unitless 

m BP,loqk   1 … 1500 
1(mg Cg d)   S BP,hiqY 

 0.5 … 1 Unitless 

F,Pk
 1x10-5 … 10 d-1 S BP,loqY 

 0.5 … 1 Unitless 

y FT   1x10-5 … 1 
1mg C (mg C)  hiqD

 1 … 100 2 1mm d  

S F,PK 
 0.1 … 100 

1mg C g  loqD
 1 … 100 2 1mm d  

F,PT  1 … 1x105 
1mg C (mg C)  d hiqK   1 … 100 

3 1mm mg  

max Ba 
 0.1 … 3 d-1 d loqK 

 1 … 100 
3 1mm mg  

max Fa 
 0.1 … 3 d-1   1 … 50 mm 

max BPa 
 0.1 … 3 d-1  Br t 0  0.01 … 1 Unitless 

a B,hiqK 
 1 … 100 

1(mgg C)   Fr t 0  0.01 … 1 Unitless 

a B,loqK 
 1 … 100 

1(mgg C)   BPr t 0  0.01 … 1 Unitless 

a F,hiqK 
 1 … 100 

1(mgg C)   Bf t 0  0.05 … 0.95 Unitless 

a F,loqK 
 1 … 100 

1(mgg C)   BP Bf t 0   1x10-6 … 1 Unitless 

a BP,PK 
 1 … 100 

1(mgg C)   DOC,hiqf t 0  1x10-5 … 1 Unitless 

a BP,hiqK 
 1 … 100 

1(mgg C)  
DOCf  0.1 … 1 Unitless 

a BP,loqK 
 1 … 100 

1(mgg C)  
Pf  0.76 … 0.90 Unitless 

max Bq 
 0.1 … 10 d-1      
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Appendix C. Measured and simulated dynamics of C, MCPA and microorganisms in all soil layers. 

 

Fig. C1 Dynamics of organic C pools in three selected soil layers close to litter (0-3 mm) and one in “bulk” soil (6-10 mm). Symbols show means and error bars indicate 

standard errors of two replicates. Continuous lines show simulated values using either the treatment specific optimal parameters (dashed line) or the compromise parameter 

set (solid). 
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Fig. C2 Dynamics of microbial biomass C and genetic markers in three selected soil layers close to litter (0-3 mm) and one in “bulk” soil (6-10 mm). Symbols show means 

and error bars indicate standard errors of two replicates. Continuous lines show simulated values using either the treatment specific optimal parameters (dashed line) or the 

compromise parameter set (solid).  
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Fig. C3 Dynamics of MCPA and specific 14C activity in organic C pools in three selected soil layers close to litter (0-3 mm) and one in “bulk” soil (6-10 mm). Symbols show 

means and error bars indicate standard errors of two replicates. Continuous lines show simulated values using either the treatment specific optimal parameters (dashed line) 

or the compromise parameter set (solid).
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Appendix D. Simulated input of hiq and loq DOC at the upper soil boundary 

 

 

Fig. D1 Simulated dynamics of hiq and loq litter-C input at the top of the soil cores (upper boundary). 
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Appendix E. Mass balance of total, litter- and MCPA-derived C after 22.8 days. 

 

Fig. E1 Simulated pool sizes and cumulated fluxes of total C (T), litter-derived C (L) and MCPA-de-

rived C (M) after 22.8 days. For each pool and cumulated flux the values of the three treatments are 

shown in black (Litter), orange (MCPA) and blue (MCPA & litter). Within each data group the first 

(bold) and second (italic) lines indicate model results using the compromise or the best treatment spe-

cific optimal parameter set. All pools and fluxes are given in mg C. 
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7 General discussion 

Using the detritusphere as a model system, my thesis elucidated how the availability of C 

resources regulates microbial dynamics involved in MCPA degradation. Readily utilizable C 

stimulates microbial activity and C turnover in soil (Kuzyakov 2010). This was confirmed by the 

results of my thesis. It was additionally shown that increased microbial activity and C turnover 

triggers accelerated MCPA degradation. Stimulation of biogeochemical processes (particularly 

C/N turnover and pesticide degradation) as a result of increased availability of readily utilizable 

C can be similarly found in other biogeochemical hot spots, such as the rhizo- and drilosphere, 

or in macropores (Bundt et al. 2001a; Gerhardt et al. 2009; Liu et al. 2011; Schenck zu 

Schweinsberg-Mickan et al. 2012; Badawi et al. 2013; Blouin et al. 2013). 

Kandeler et al. (1999a) stated that litter-derived dissolved organic substances provide the en-

ergy for microbial activity in the detritusphere. This statement nicely expresses the underlying 

principle of three possible regulation mechanisms of accelerated MCPA degradation identified 

in my thesis: 

(1) The major bacterial pathway of MCPA degradation involves the initial cleavage of the 

ether bond of MCPA by α-ketoglutarate-linked dioxygenases (Liu et al. 2013). In this 

reaction, the co-substrate α-ketoglutarate is oxidized to CO2 plus succinate (Müller and 

Babel 2001; Hausinger 2004). Note, that other α-ketoacids can be utilized as cosub-

strate as well (Fukumori and Hausinger 1993). Litter might supply α-ketoglutarate, other 

α-ketoacids or metabolic precursors to the detritusphere soil. As a result, resources 

and energy required by bacteria for co-substrate (re)generation would be substantially 

reduced. 

(2) Additional supply of C, N and energy can generally increase the production of enzymes 

by alleviating resource limitation (Schimel and Weintraub 2003; Allison 2005). Conse-

quently, litter-C input might shift resource allocation towards increased production of 

MCPA degrading enzymes by specific bacteria and bacterial consortia. 

(3) In accordance with previous studies (Berg and McClaugherty 2008, p.36; Ingwersen et 

al. 2008), my thesis revealed that fungi most strongly benefit from additional supply of 

litter-C. Litter-derived compounds probably facilitate fungal MCPA degradation via co-

metabolism involving unspecific enzymes (Reddy et al. 1997; Castillo et al. 2001; 

Sträuber et al. 2003; Vroumsia et al. 2005; Campoy et al. 2009; Itoh et al. 2013). Pri-

mary substrates supplied by litter might act as inducers of enzyme production, or pro-

vide the energy required for the enzymatically catalyzed reaction to attack MCPA as 

secondary substrate (Dalton and Stirling 1982; Brandt et al. 2003). 
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These regulation mechanisms are reflected in the PECCAD (PEsticide degradation Coupled 

to CArbon turnover in the Detritusphere) model, which I developed in the frame of my thesis. 

In the model, specific bacterial degraders utilize MCPA as growth and energy substrate, 

whereas fungi perform co-metabolic MCPA transformation. Availability of dissolved organic C 

controls physiological activity, growth, death and maintenance of microorganisms. Conse-

quently, the model implicitly reflects accelerated MCPA degradation in response to litter-C in-

put i) via additional resource and energy supply to specific bacterial MCPA degraders and ii) 

via increased production of unspecific fungal enzymes as a result of stimulated fungal growth 

and activity. 

The consideration of microbial feedbacks to C availability in PECCAD is in accordance with 

formulations used in current state-of-the-art C turnover models (Blagodatsky et al. 2010; Neill 

and Guenet 2010; Allison 2012; Wutzler and Reichstein 2013; Moore et al. 2014; Perveen et 

al. 2014; Wang et al. 2014; Wieder et al. 2014). Other than PECCAD, however, some of these 

models explicitly account for enzyme dynamics. The mechanism of accelerated co-metabolic 

MCPA transformation in response to higher availability of dissolved organic C as incorporated 

in PECCAD was similarly applied to model glyphosate degradation in mulch and adjacent soil 

(Aslam et al. 2014). Beyond these approaches, PECCAD does not treat soil as a bulk. Instead 

it explicitly considers sorption and one-dimensional transport of solutes (DOC and MCPA). It 

thereby mechanistically accounts for interactions between microbial dynamics and physico-

chemical processes. Likewise other models combine the simulation of microbial dynamics and 

reactive transport (Chalhoub et al. 2013; Rosenbom et al. 2014). Recent approaches addition-

ally consider the pore network architecture in real soil (Gharasoo et al. 2014; Monga et al. 

2014). In contrast to PECCAD, such studies focus on C and N turnover only and have not yet 

considered regulation mechanisms of C availability on microbial dynamics involved in the deg-

radation of pesticides or other xenobiotics.  

“Biogeochemical models, however, are trailing in the wake of the environmental genomics rev-

olution…” (Reed et al. 2014). That means, modern molecular tools provide huge amounts of 

information about composition and function of microbial communities in soil (von Bergen et al. 

2013; Myrold et al. 2014), but this knowledge has largely not yet been utilized for modeling 

(Trivedi et al. 2013). In extension of much simpler approaches (Batoglu-Pazarbasi et al. 2013), 

my thesis contributes to integrate soil genomics and mathematical modeling.  Microbial pools 

of the PECCAD model are set up in correspondence to quantifiable genetic proxies. I demon-

strated that the PECCAD model can be parameterized using detailed microbial (incl. genetic 

proxies) and physicochemical data in combination with a sophisticated parameter optimization 

approach. The application of the parameterized PECCAD model allows an in-depth analysis 

of matter cycling in the detritusphere. Nevertheless, my thesis points to severe challenges in 
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integrating genetic information and mechanistic models that need to be solved in future re-

search. Here, the identification of functional microbial traits by molecular tools (including ge-

nomics, proteomics, transcriptomics, and metabolomics; Green et al. 2008; Prosser 2012; 

Krause et al. 2014; Talbot et al. 2014) and their integration in mechanistic models (Allison 

2012; Wallenstein and Hall 2012; Manzoni et al. 2014) provide a promising way to gain further 

progress. 

  



8  Final conclusions 143 

 

 

8 Final conclusions 

The detritusphere is a hot spot of matter turnover in soil. The input of C from the litter layer into 

the adjacent soil strongly affects the dynamics of fungi and specific bacterial MCPA degraders 

in this microhabitat, which in turn regulate the biogeochemical processes there. According to 

the PECCAD simulations about 90% of initially applied MCPA is degraded co-metabolically by 

fungi, whereas only about 4% of applied MCPA is used as growth and energy substrate by 

specialized bacterial degraders. Although these numbers may be somewhat affected by un-

certainties in the model parameters and in the genetic proxies utilized, my results clearly sug-

gest a distinct dominance of co-metabolic over growth-linked MCPA transformation implying 

that unspecific fungal enzymes play a more important role in the biodegradation of MCPA than 

previously thought. 

Soil is a complex system with self-organizing properties (Young and Crawford 2004). “Three 

key concepts that characterize self-organizing systems are feedback, complexity and emer-

gence” (Wainwright and Mulligan 2013, p.49). Accordingly, my thesis clarifies the complexity 

of a system response (accelerated MCPA degradation coupled to C turnover) emerging from 

small-scale feedbacks (or interactions) between physicochemical processes and microbial dy-

namics. My thesis makes a contribution to tackle the challenge of integrating genetic infor-

mation in mechanistic models, which is important to improve “our understanding of the key role 

microbes play in modulating Earth’s biogeochemistry” (Reed et al. 2014). Further improve-

ments of the representation of complex soil microbial communities and their dynamics in math-

ematical models will be probably gained in future research by explicitly considering functional 

traits of soil microorganisms, which are identified and quantified using molecular biological 

analyses.  

My thesis highlights that we need to understand microbial functioning to grasp how soil func-

tions are regulated. I demonstrated the benefit of closely integrating complex mathematical 

models and sophisticated experiments in order to facilitate the interpretation of observations 

and to test theory. The applied modeling approach provides a promising perspective for future 

studies aiming at an improved understanding of microbial functioning in soil.  
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