Internationalization of Research & Development and Host-Country Patenting:

The Dynamics of Innovation and Trans-Border R&D Flows between Developed and Emerging Countries

Internationalization of Research & Development and Host-Country Patenting:

The Dynamics of Innovation and Trans-Border R&D Flows between Developed and Emerging Countries

Dissertation to obtain the doctoral degree of Economic Sciences (Dr. oec.)

Faculty of Business, Economics and Social Sciences University of Hohenheim Institute of Marketing & Management

Chair for International Management & Innovation (570F)

Daniel Sommer

2021

Internationalization of Research & Development and Host-Country Patenting:

The Dynamics of Innovation and Trans-Border R&D Flows between Developed and Emerging Countries

Daniel Sommer

Defense of dissertation in an oral examination on 11. August 2021 at the University of Hohenheim

Dean: Prof. Dr. Karsten Hadwich

Examination Committee:

Chair: Prof. Dr. Katja Schimmelpfeng First Examiner: Prof. Dr. Alexander Gerybadze Second Examiner: Prof. Dr. Bernd Ebersberger

Executive Summary

The international business world has profoundly changed through globalization in the last years and decades. The cross-border exchange of products and people, as well as information, technology and capital has increased. Furthermore, companies are faced with an increasingly distributed knowledge base which means that one centralized Research & Development (R&D) base, usually at the headquarters is not sufficient and a company's success rather depends on its ability to identify and occupy selected locations across the globe for R&D activities.

While the degree of R&D Internationalization of large multinational corporations (MNCs) has been increasing for the last decades, the group of source countries has remained small: the headquarters of the leading R&D-conducting MNCs have been largely based in the US, Japan and several European countries (e.g. Germany, Switzerland) and R&D Internationalization had been remaining within this group. Since the beginning of this millennium, however, several emerging countries (e.g. China or India) have entered the stage and increasingly attracted foreign R&D investments as target countries. R&D has therefore not only increased in intensity, it has also increased in breadth, i.e. the degree of target country diversification has grown.

This dissertation addresses and is driven by the following overarching research question:

How can we capture even more precisely to what extent and in what fields MNCs conduct R&D abroad and how have the patterns changed in the time period 2000 – 2019?

Structural Approach

I structure this dissertation in four blocks, divided in eight distinct chapters, as outlined in the following:

<u>Framework</u>

- Introduction & Literature Overview: What does the existing literature say about R&D Internationalization and its drivers? I outline and group the factors based on relevant literature over the last decades in four distinct groups:
 - a. Pull-Factors: Influencing factors of the host-country (receiving country) for attracting or "pulling in" foreign R&D.
 - b. Push-Factors: Influencing factors of the home-country (sending country) for "pushing out" R&D abroad.
 - c. Industry-based factors: R&D Internationalization can differ across industries. I show the factors based on the relevant industry.
 - d. Company-based factors: Even within the same industry R&D Internationalization can differ for respective companies, based on the respective culture, strategy and structure.
- 2. Methodology: How do we measure R&D activities? I outline my methodology and approach in analyzing R&D activities and its internationalization. With my approach, I built upon relevant literature and extend the current state of the art, namely by a strong analysis of R&D Expenditures and patent activities.

Country-Level Analysis

- Global Development in R&D Expenditure: What are the patterns and developments of R&D Expenditure by Multinational Corporations (MNC) globally and in relevant countries? By combining relevant R&D data from international and national offices, I give a global overview of R&D Expenditures and of major relevant economies.
- 4. Outward Host-Country Patent Analysis: What are the patterns and developments of Host-Country Patents by MNCs globally, from relevant countries? I show in detail how R&D activities to and from relevant countries has developed over time. Furthermore, I show the concentration of patents on relevant technological fields. Differentiating patents by field can show specific concentrations and expertise by countries on relevant areas.
- 5. Inward Host-Country Patent Analysis: What are the patterns and developments of Host-Country Patents by MNCs globally to relevant countries? I take the inverse perspective to Chapter 4, in order to show the R&D activities and concentration of patents on relevant technological fields for the most-relevant target / receiving countries.

Industry-Level Analysis

- 6. Industry Analysis in R&D Expenditure: What are the patterns and developments of R&D Expenditure by MNCs in relevant R&D intensive industries? As the size and distribution of R&D varies across industries, I move downwards from the macro perspective, i.e. in this chapter I look in detail how R&D activities differ across relevant industries. Based on the data I develop a profile for relevant economies, outlining in which industries comparable strengths and weaknesses exist.
- 7. Industry Analysis in Patenting Activities: What are the patterns and developments of Host-Country Patents by MNCs in relevant R&D intensive industries? For the most relevant industries and R&D intensive technological fields, I scrutinize the respective patents. I show the developments over time and introduce quality measures to give insights into the R&D developments within the industries over time.

Conclusion

8. Conclusion & Outlook: I summarize my research and embed it into a broader research context. With the highly dynamic field of R&D Internationalization, the relevance and interest for further research will only increase for practitioners and researchers alike.

Contribution

This dissertation expands the current academic horizon as following:

- Comprehensiveness: I scrutinize the current diverse research on R&D Internationalization and put it in a wider context. I show and retrace the uprise of particular industries and nations in terms of R&D activities on a broad and general, as well as on a detailed and precise scale, based on literature and data. This work can therefore serve to gain a general and current overview on R&D Internationalization, as well as finding precise data on relevant countries and industries.
- Methodology: The two core indices I use to measure R&D activities are the amount of R&D Expenditure in a financial value and patent numbers in a count value.
 - R&D Expenditure: By combining and analyzing relevant data I give precise insights on developments in recent years.

b. Patent Analysis: While patents are generally a readily available data-set, their actual purpose is not the academic analysis, but rather the protection of intellectual interests. With a detailed and methodological analysis and the combination of relevant data-sets, including patent quality indices and a measure for cultural distance to quantify internationality, I derive detailed and precise findings for the inventors, applicants and technological fields, as well as internationality.

Main Findings

Six major trends can be identified to answer the research question:

- 1. The share of R&D conducted abroad by MNCs in relation to their total R&D has increased in the last decades.
- 2. The number of target countries and their technological diversification degree has increased.
- A select number of target countries, particularly ambitious emerging countries (China, India and partly some Eastern European countries) have significantly increased in relevance as a base for R&D activities.
- 4. Target countries attract foreign R&D in respective specific technological fields. Particularly the uprising emerging countries have built up competences in certain areas and participate in R&D in these fields on a relevant global degree.
- 5. A strong shift across the R&D-conducting industries can be observed. Particularly high-tech industries (e.g. pharma and biotech) and new technologies (IT, internet, software) have significantly increased in relevance compared to classic manufacturing industries and account for an increasing share of R&D activities across all industries.
- 6. Conducting R&D abroad generally pays off compared to purely domestic R&D, although there is indication that too much internationality can be detrimental as well.

Content Overview

Exe	cutive SummaryI
Con	tent OverviewV
1.	Introduction and Research Outline1
2.	Methodology of Analyzing R&D Internationalization21
3.	Global Trends and Shifts in R&D Expenditure Patterns61
4.	Outward Host-Country Patents by Country and Field
5.	Inward Host-Country Patents by Country and Field
6.	Industry Trends and Shifts in R&D Expenditure Patterns
7.	Patent Analysis for R&D Intensive Industries
8.	Summary and Conclusion271
Tab	lesX
Illus	trationsXIV
Abb	reviationsXV
Sou	rcesXVII
Арр	endix – Tables XXXIV

Contents

1.	Intro	oductio	n and Research Outline	1	
	1.1.	Internationalization of R&D by MNCs			
		1.1.1.	Pull- & Push-Factors for R&D Internationalization	9	
		1.1.2.	Industry-based factors for R&D Internationalization	14	
		1.1.3.	Company-based factors for R&D Internationalization	17	
	1.2.	Resear	ch Questions and Structure of Dissertation	19	
2.	Met	hodolo	gy of Analyzing R&D Internationalization	21	
	2.1.	R&D E	xpenditure	23	
		2.1.1.	Definition and Terminology	23	
		2.1.2.	Measurement of R&D Expenditure	25	
	2.2.	Patent	Analysis to Measure R&D Internationalization	26	
		2.2.1.	Characteristics and Relevance of Patents	27	
		2.2.2.	Patents as Indicator for R&D Activities	29	
		2.2.3.	Structure and Composition of Patents	29	
		2.2.4.	Measurements of Patent Quality and Patent Links	33	
		2.2.5.	Methodology of Patent Analysis	34	
		2.2.6.	Overview Patent Number Development	36	
		2.2.7.	Excursus: Linking R&D Expenditure and Patents	39	
	2.3.	Cultura	I Distance to Measure Degree of R&D Internationalization	44	
		2.3.1.	Culture as a Relevant Category of Innovation	44	
		2.3.2.	Measurement of Cultural Distance	46	
		2.3.3.	Methodology of Cultural Distance Calculation	48	
		2.3.4.	Cultural Distance and Innovation	49	
	2.4.	Intervie	ews with Relevant R&D personnel	55	
		2.4.1.	Methodology of Interview	55	
		2.4.2.	Interview Guideline	56	

	2.5.	Classifi	ication of Countries	57
3.	Glol	bal Trer	nds and Shifts in R&D Expenditure Patterns	61
	3.1.	Overvie	ew Global Development of R&D Expenditure	62
	3.2.	R&D E	xpenditure by Country	70
		3.2.1.	R&D Expenditure: Germany	72
		3.2.2.	R&D Expenditure: USA	74
		3.2.3.	R&D Expenditure: Japan	80
		3.2.4.	R&D Expenditure: China	83
4.	Out	ward He	ost-Country Patents by Country and Field	86
	4.1.	Global	Overview of Outward Host-Countries	87
	4.2.	Country	y Breakdown	90
		4.2.1.	US Outward Host-Country Patents	94
		4.2.2.	Germany Outward Host-Country Patents	
		4.2.3.	Switzerland Outward Host-Country Patents	103
		4.2.4.	France Outward Host-Country Patents	107
		4.2.5.	Japan Outward Host-Country Patents	112
		4.2.6.	China Outward Host-Country Patents	116
		4.2.7.	Netherlands Outward Host-Country Patents	120
		4.2.8.	Sweden Outward Host-Country Patents	124
		4.2.9.	UK Outward Host-Country Patents	128
5.	Inwa	ard Hos	st-Country Patents by Country and Field	133
	5.1.	Global	Overview of Inward Host-Countries	134
	5.2.	Develo	ped Countries	139
		5.2.1.	US Inward Host-Country Patents	139
		5.2.2.	Germany Inward Host-Country Patents	144
		5.2.3.	UK Inward Host-Country Patents	149
		5.2.4.	France Inward Host-Country Patents	152
		5.2.5.	Canada Inward Host-Country Patents	156
		5.2.6.	Japan Inward Host-Country Patents	159

	5.3.	Emergi	ng Countries	163
		5.3.1.	China Inward Host-Country Patents	163
		5.3.2.	India Inward Host-Country Patents	168
		5.3.3.	Israel Inward Host-Country Patents	171
		5.3.4.	South Korea Inward Host-Country Patents	175
		5.3.5.	Singapore Inward Host-Country Patents	178
		5.3.6.	Russia Inward Host-Country Patents	182
	5.4.	Conclu	sion Outward & Inward Host-Country Patents	185
6.	Indu	ustry Tr	ends and Shifts in R&D Expenditure Patterns	189
	6.1.	Overvie	ew Top R&D Industries	189
		6.1.1.	Current Distribution of R&D Expenditure	191
		6.1.2.	Recent Developments in R&D Expenditure Distribution	193
		6.1.3.	Long-term Developments in R&D Expenditure Distribution	195
	6.2.	Releva	nt R&D Industries by Country	198
		6.2.1.	Aggregated R&D Expenditure by Country	198
		6.2.2.	R&D Expenditures in Pharmaceuticals & Biotechnology	200
		6.2.3.	R&D Expenditures in Technology Hardware	202
		6.2.4.	R&D Expenditures in Software & Computer Services	206
		6.2.5.	R&D Expenditures in Automobiles & Parts	208
	6.3.	Country	y-Analysis	210
		6.3.1.	R&D Expenditure by USA	211
		6.3.2.	R&D Expenditure by Japan	214
		6.3.3.	R&D Expenditure by Germany	216
		6.3.4.	R&D Expenditure by China	219
7.	Pate	ent Ana	lysis for R&D Intensive Industries	222
	7.1.	Overvie	ew Measurement and Methodology	222
	7.2.	Patent	Analysis by Industry	225
		7.2.1.	Patent Analysis of Pharmaceutical Industry	226
		7.2.2.	Patent Analysis of Biotechnology Industry	236
		7.2.3.	Patent Analysis of Technology Hardware Industry	246

		7.2.4.	Patent Analysis of Software & Computer Services Industry	254
		7.2.5.	Patent Analysis of Automotive Industry	262
8.	Summary and Conclusion			
	8.1.	Summa	ary of Findings and Contribution	271
	8.2.	Implica	tions for Economies and Practitioners	274
	8.3.	Recom	mendations for Further Research	275

1. Introduction and Research Outline

The international business world has thoroughly changed through globalization in the last years and decades. The cross-border exchange of products and people, as well as information, technology and capital has grown and conducting Research & Development (R&D) and sourcing innovations globally has continuously progressed.

However, still in the year 1991 Patel and Pavitt concluded that R&D is highly concentrated at the home-base and dependent on the respective country's systems of innovation, which they called "the non-globalization of large firms' innovative activities".¹ More recent research, has revised that conclusion and outlined the importance of internationalizing R&D: Companies aim to tap into knowledge at selected places outside of the respective home-country in order to increase their innovative performance and thereby gain and maintain competitiveness.²

Initially companies only conducted less important R&D abroad which requires lower-level capabilities and non-core knowledge, while keeping strategically relevant R&D, requiring advanced capabilities and core knowledge at home.³ With the beginning of the 21st century, Multinational Corporations (MNCs) started to build up R&D in emerging countries.⁴ These countries, including China, India, Brazil, Russia, showed growth potential and cheap access to knowledge and human capital. While previously practically irrelevant in terms of R&D investment, emerging countries increasingly attracted investments from MNCs located in the 'Triad countries', i.e. the historically big economies of the U.S., Western-Europe (mostly Germany and Switzerland) and Japan. Companies from these countries have diversified their target countries for R&D investments in the last decades.⁵

¹ Cf. Patel and Pavitt (1991) & Pavitt and Patel (1999). Other prominent authors, e.g. Porter (1990) and Hu (1992) come to the same result with R&D being deeply rooted in the respective home country. Hu even argues that the term "multinational corporation" is an exaggeration as a company has only one distinct home which remains relatively more important to other countries. See also a discussion about this term in Kennelly (2000).

² Cf. OECD (2008a, p. 17ff); Hall (2011, p. 179f); Chen, Huang, and Lin (2012). Companies face this internationalization often rather with "resignation than with pleasure" (De Meyer and Mizushima, 1989, p. 139) due to a multitude of unpredictable factors. Regular challenges are unplanned cost explosions, loss of economies of scale due to information asymmetries in coordination and thereby unintentional duplication of research at the different locations and difficulties to reach a critical mass.

³ Cf. Gerybadze and Reger (1999), who analyze 21 MNCs located in Europe, U.S.A. and Japan. They outline the increasing complexity of the globally distributed R&D. See also Schasse et al. (2014) & Criscuolo, Narula, and Verspagen (2005).

⁴ In academia, the terms Multinational Enterprise (MNE), Transnational Corporation (TNC) and MNC are used mostly interchangeably. In this analysis the latter term will be used.

⁵ Cf. von Zedtwitz and Gassmann (2016); Patel and Pavitt (2013); Gerybadze and Merk (2014).

The emerging countries have shown an unprecedented international growth and expansion⁶, increasing their share of global R&D. The increasing speed of innovation combined with a growing global interlacing of business activities requires meticulous analyses.

In this chapter I will show, discuss and categorize factors from academic literature affecting R&D Internationalization.

1.1. Internationalization of R&D by MNCs

The increasing R&D Internationalization is mainly driven by MNCs, which therefore will be the focus of the dissertation's analysis.⁷ R&D Internationalization on a public institution and not business level (e.g. universities, public research centers) will only be regarded if explicitly indicated.

While some early research suggests that R&D Internationalization started in the 1950s, only product adaptions, i.e. applied research can be observed at this time.⁸ In fact, this early research did not thoroughly distinguish between the different kinds of R&D, which is relevant when discussing R&D Internationalization, e.g. the three kinds according to the OECD: basic research, applied research and experimental development⁹.

R&D Internationalization up until in the 1970s was rather small, as knowledge was concentrated on an international center, e.g. the US in many fields or Western Europe for example for chemistry.¹⁰ Ronstadt (1978) provides one of the first relevant systematic

⁶ In the last years big companies from emerging countries have gained relevance in certain fields, sometimes even at the "technological frontier" (Amann and Cantwell, 2012). As these "Emerging-Country MNCs" (EMNCs) have followed a completely different process of growth, strategy and internationalization compared to "Advanced-Country MNCs" (AMNCs), they will not be regarded in detail in this dissertation. Cf. Giuliani et al. (2014); Awate, Larsen, and Mudambi (2015); Guillén and García-Canal (2009).

⁷ In the 1980s & 1990s R&D Internationalization was "largely restricted" to MNCs (Gassmann and von Zedtwitz, 1999). In 2002, 98% of the 700 largest R&D spending companies were MNCs, which account for 46% of the world's R&D Expenditure or 69% of the world's business R&D Expenditure (UNCTAD, 2005, p. 151). Similar findings are being made as well in more recent reports: e.g. Hervás, Siedschlag, and Tübke (2014); UNCTAD (2017).

⁸ An early analysis by Dunning (1958) breaks down foreign ownership and R&D efforts in British companies. In this analysis it was found that U.S. manufacturing affiliates in the U.K. employed less than 10% of its total staff in R&D in the 1950s – compared to ca. 31% in 1989: Cf. Dunning (1999); U.S. Department of Commerce (1992). Safarian (1967) makes similar findings with U.S. investment in Canada. However, this research, often cited as one of the first internationalizations of R&D, e.g. by Lee (2013), does not accurately mark the start of real R&D Internationalization, as the analyzed businesses solely adapted their production to their respective local environments.

⁹ OECD (2015b, p. 26): The FRASCATI manual, published by the OECD, has grown to be the internationally accepted document for defining standards and procedures for R&D analysis. Other classifications have been developed as well, which will be discussed in the Methodology Chapter 2.

¹⁰ Cf. Bartlett and Ghoshal (1990).

1.1. Internationalization of R&D by MNCs

analyses of international R&D, here of seven US-based MNCs. Following studies focused on US firms as well.¹¹ Mansfield (1984) summarizes and unites these first findings.

Until the 1980s the R&D Internationalization gradually shifted towards a polycentric structure, meaning that several global centers for knowledge-intensive fields exist.¹²

The topic of R&D Internationalization as a global phenomenon was only gained momentum in the late 1990s, partly through researchers affiliated with the OECD¹³ and partly through relevant conferences and publications. Up until the 2000s, there was insufficient documentation on global R&D Activities. Relevant conferences such as organized by the EIBA (European International Business Academy) or AIB (Academy of International Business) promoted the nascent R&D research and lead to a special issue in the journal 'Research Policy', nowadays one of the most prestigious academic journals for innovation, in 1999 on the topic "The Internationalization of Industrial R&D". A number of still relevant research has been published in that special issue, e.g. by Gerybadze and Reger (1999)¹⁴.

Figure 1-1 illustrates the increase in relevance of R&D Internationalization in academia over time, by counting the number of relevant publications per year.¹⁵

¹¹ Cf. Mansfield, Teece, and Romeo (1980); Lall (1980).

¹² Cf. Gerybadze, Meyer-Krahmer, and Reger (1997).

¹³ Cf. Hatzichronoglou (2008); OECD (2008a, 2008b, 2008c, 2008d), for an overview of R&D Internationalization.

¹⁴ Other relevant publications by authors who continued to shape the discussion on R&D Internationalization are i.a. by Gassmann and von Zedtwitz (1999); Kuemmerle (1999b) or Patel and Vega (1999).

¹⁵ A meta-analysis by Paul and Feliciano-Cestero (2020) of research on foreign direct investment (FDI) by MNCs shows a similar development and outlines the high relevance of FDI for international business research.

Figure 1-1: Development of Publications on R&D Internationalization¹⁶

We can divide the recent publication history broadly into three phases. 1990 - 1999; 2000 - 2009; 2010 - 2020.¹⁷ The respective top-cited articles are shown in the following tables.

¹⁶ Own illustration based on SCOPUS (2020). Publication search for 'R&D' and 'Internat*' or 'Global*'. Last updated on 12. Sep. 2020.

¹⁷ Own illustration based on SCOPUS (2020). Methodology similar, as outlined in footnote 16, but limited to respective publication years. Last updated on 21. Nov 2020.

Rank	Author & Year	Title	Journal	Citations
1	Florida (1997)	The globalization of R&D: Results of a survey of foreign-affiliated R&D laboratories in the USA	Research Policy 26(1), pp. 85-103	367
2	Nobel and Birkinshaw (1998)	Innovation in Multinational Corporations: Control and Communication Patterns in International R&D Operations	Strategic Management Journal 19(5), pp. 479-496	359
3	Gerybadze and Reger (1999)	Globalization of R&D: Recent changes in the management of innovation in transnational corporations	Research Policy 28(2-3), pp. 251-274	273
3	Gassmann and von Zedtwitz (1999)	New concepts and trends in international R&D organization	Research Policy 28(2-3), pp. 231-250	273
5	Pearce (1999)	Decentralised R&D and strategic competitiveness: Globalised approaches to generation and use of technology in multinational enterprises (MNEs)	Research Policy 28(2-3), pp. 157-178	258

Table 1-1: Top Five Publications by Citations in 1990 - 1999¹⁷

Four out of this Top Five publications and several other publications at lower ranks come from the aforementioned special issue in Research Policy, underlining the relevance of this particular journal issue.¹⁸

¹⁸ Cf. relevant authors, as shown in footnote 14.

Rank	Author & Year	Title	Journal	Citations
1	Oxley and Sampson (2004)	The Scope and Governance of International R&D Alliances	Strategic Management Journal 25(8-9), pp. 723-749	510
2	von Zedtwitz and Gassmann (2002)	Market versus technology drive in R&D internationalization: Four different patterns of managing research and development	Research Policy 31(4), pp. 569-588	443
3	Narula (2004)	R&D collaboration by SMEs: New opportunities and limitations in the face of globalisation	Technovation 24(2), pp. 153-161	312
4	Asakawa (2001)	Organizational tension in international R&D management: The case of Japanese firms	Research Policy 30(5), pp. 735-757	138
5	Y. Zhang et al. (2007)	R&D intensity and international joint venture performance in an emerging market: Moderating effects of market focus and ownership structure	Journal of International Business Studies 38(6), pp. 944-960	121

Table 1-2: Top Five Publications by Citations in 2000 - 2009¹⁷

Table 1-2 shows again for the 2000 – 2009 period a strong impact of publications from the renowned journal Research Policy. Interestingly the two top publications in the period 2000 – 2019 have received more citations than any publication in the prior 1990 – 1999 period, despite the latter having been published longer and therefore having more time to potentially receive publications. This shows that since the beginning of the millennium, R&D Internationalization has really started to be in the center of academic interest. See also Figure 1-1.

Rank	Author & Year	Title	Journal	Citations
1	Awate, Larsen, and	Accessing vs sourcing knowledge: A	Journal of International	126
	Mudambi (2015)	comparative study of R&D internationalization	Business Studies	
		between emerging and advanced economy firms	46(1), pp. 63-86	
2	Hottenrott and	(International) R&D collaboration and SMEs:	Research Policy	88
	Lopes-Bento (2014)	The effectiveness of targeted public R&D	43(6), pp. 1055-1066	
		support schemes		
3	Hsu, Lien, and	R&D internationalization and innovation	International Business	69
	Chen (2015)	performance	Review	
			24(2), pp. 187-195	
4	Castellani, Jimenez,	How remote are R&D labs? Distance factors and	Journal of International	67
	and Zanfei (2013)	international innovative activities	Business Studies	
			44(7), pp. 649-675	
5	Chakrabarty and	The Long-Term Sustenance of Sustainability	Journal of Business	65
	Wang (2012)	Practices in MNCs: A Dynamic Capabilities	Ethics	
		Perspective of the Role of R&D and	110(2), pp. 205-217	
		Internationalization		

Table 1-3: Top Five Publications by Citations in 2010 - 2019¹⁷

Table 1-3 shows the top publications for the 2010 – 2019 period. With an increasing recency to today's date, we obviously have fewer overall citations. We see from the publication titles and journal names an increasing diversification in topic and target focus, even though a respective Top 5 is certainly just the tip of the iceberg: Whereas in the beginning publications were centered more on general R&D Internationalization, more recent publications have expanded on that knowledge and found a more specific niche.

In fact, today's literature on R&D Internationalization can be grouped into one of the following four distinct streams:

 Reasons and motives to internationalize R&D.¹⁹ Early research has strived to identify motives and drivers on R&D Internationalization on different levels. I condense and discuss that literature according to my structure presented in Figure 1-2.

¹⁹ Cf. Ambos and Ambos (2009); Gassmann and von Zedtwitz (1998).

- The patterns and destinations of R&D Internationalization. While some authors have focused their analysis on countries from developed economies,²⁰ some have focused on one or several emerging economies²¹.
- 3. The interplay and environment of home- and host-country bases of companies. Here, the authors have aimed to analyze the establishment, organization and management of R&D locations and networks.²²
- 4. Assessment of the effect of R&D Internationalization on firms' performance.²³ With ambiguous findings, neither the direction nor the shape of relationship between R&D Internationalization and firm performance have been conclusively identified.

Despite the increasing discussion on R&D Internationalization, this topic is not necessarily self-evident in practice, as a recent report, published by the management consultancy McKinsey in November 2020, does not explicitly mention internationalizing a company's R&D, as a key component on building an advanced R&D strategy.²⁴

In the following parts I give an overview of the literature on internationalization of R&D in more detail, showing and discussing the drivers of R&D Internationalization on different levels. The practical analysis of R&D data and industries starts from Chapter 3 onward.

I group these factors into my framework of four groups of influencing factors:

²⁰ Cf. Cantwell and Piscitello (2002).

²¹ Cf. Asakawa and Som (2008); Ayden et al. (2020); Chittoor and Ray (2007); von Zedtwitz and Gassmann (2016).

²² Cf. Gassmann and von Zedtwitz (1998); Westney (1993).

²³ Cf. Chen, Huang, and Lin (2012); Hsu, Lien, and Chen (2015); Hurtado-Torres, Aragón-Correa, and Ortiz-de-Mandojana (2017); Nieto and Rodríguez (2011).

²⁴ Cf. Brennan et al. (2020). This can be, however, just indicative that McKinsey does not particularly specialize its strategy consulting on (international) innovation areas, as several competitors, in fact, have been addressing this topic for a longer time. The Boston Consulting Group, for example, gives an annual overview of "The Most Innovative Companies" (BCG, 2020). Arthur D. Little is another firm, whose consultants have written about R&D Internationalization (Roussel, Saad, and Erickson, 1991). Yet another publication addressing researchers and practitioners is the annual ranking and discussion of leading R&D spending firms by the Industrial Research Institute in the years 2000 – 2008 (IRI, 2008).

1.1.1. Pull- & Push-Factors for R&D Internationalization

The framework provided by the respective host-region (or country) in relation to the home-country plays a significant role in the decision process of R&D relocation. Depending on the perspective and constellation a factor can be a pull- or a push-factor. Pull-factors "pull in" foreign R&D because companies expect more stimuli and a higher utility to perform R&D in a particular location, whereas push-factors "push out" domestic R&D internationally. For example, the access to specialized talent can be considered a pull-factor, because the host-country attracts foreign R&D with strong innovation clusters, well-funded universities etc., but also a push-factor if the home-country does not provide such an environment and drives the firm's R&D abroad through its relatively worse standing. Likewise, some governmental regulations can both push-out R&D internationally due to restrictions in the home-country or pull-in foreign R&D due to more liberal legislations.²⁵

²⁵ Cf. EFI (2013, p. 67).

Five main factors can be identified:

First, R&D Internationalization often follows an MNC's general internationalization process of production. Production is likely to be internationalized to regions or countries with a big market size and or a big market and revenue growth potential, as well as existing infrastructure, where R&D would follow.²⁶ Furthermore a certain degree of industrialization and general development is required for R&D to thrive.²⁷ The size and or quality of a market can therefore stimulate innovation activities within a specific product line.

Second, R&D highly depends on an educated workforce. MNCs are very likely to locate R&D centers to the proximity of universities and other areas with high concentration of potential employees²⁸ and there are close linkages between a host-country's innovative performance and educational capabilities. Due to the strategic importance of R&D, qualification of staff is a more relevant driver of R&D Internationalization than lower salary costs for R&D personnel.²⁹ A growing globalization, i.e. ease of mobility and acceptance of English as a working language³⁰, has facilitated a growing number of foreign R&D locations. Some studies even attribute the rise of emerging countries mainly to their success in educating large numbers in relevant fields and thereby attracting foreign MNCs.³¹

Third, the selection of a R&D location depends on the local policy and economic environment. Policy makers regularly aim to attract R&D investments through financial incentives and or some kind of preferential treatment of foreign firms.³² These advantages can include, but are not limited to, lower taxation or special taxation schemes for revenues generated with

²⁶ Cf. Kuemmerle (1999a); Williams and Vrabie (2018); Odagiri and Yasuda (1996); von Zedtwitz and Gassmann (2002). There is a positive correlation between a country's market size and salary level, meaning that companies usually have little to no salary-cost advantage in countries with big markets. However, the higher revenue in these countries regularly compensates for the higher labor costs. Cf. Le Bas and Sierra (2002).

²⁷ Cf. Reinert (2007), who explains in his book 'How Rich Countries Got Rich and Why Poor Countries Stay Poor' countries success factors on developing or not, based on relevant economic theories.

²⁸ Thursby and Thursby (2006), as well as Kinkel and Maloca (2008) even find the lack of locally qualified R&D staff to be the most important factor for an MNC to relocate its R&D to countries with more qualified personnel.

²⁹ Cf. Huggins, Demirbag, and Ratcheva (2007) or Hegde and Hicks (2008), who analyze overseas U.S. R&D subsidiaries and find that a shift of R&D to Asian countries is mainly attributed to the availability of highly-skilled workforce in the host-country and lack thereof domestically. When deciding between two locations, salary levels only become the deciding factor with other factors being similar (Cincera, Cozza, and Tübke, 2010, p. 17ff).

³⁰ Cf. Miguelez and Fink (2013), who show through patent analyses the relatively higher geographic mobility of high-skilled compared to low-skilled workers.

³¹ Cf. Grimes and Miozzo (2015); Haakonsson and Ujjual (2015); Lewin, Massini, and Peeters (2009).

³² Especially emerging countries have created special economic zones (SEZ), with own infrastructure and often preferred tax regimes. The benefits of these SEZs for the respective region or country are not always given. Cf. Sosnovskikh (2017).

1.1. Internationalization of R&D by MNCs

innovation (e.g. through a patent box³³) or indirectly, by keeping foreign competition out through tariffs.³⁴ The literature does observe positive short-term effects for countries employing these policies. However, firms not always create sustainable value when relocating to regions or countries with these incentives and rather benefit by tax shifting and windfall gains. Therefore, several empirical studies do not consider special financial incentives as long-term beneficial for countries.³⁵ Instead, regions providing reliable infrastructure, improving the education sector, as well as competitive and non-discriminatory tax rates have proven to be successful in attracting and keeping foreign R&D investments. As part of the legal environment, companies will prefer regions or countries with strong appropriability regimes, i.e. systems that efficiently and successfully guarantee that the inventor can also reap the benefits from his inventions. From the side of the policy-makers the optimal level of appropriability can be difficult to determine: on the one hand, a high appropriability encourages R&D but also raises barriers impeding knowledge distribution. On the other hand, a low appropriability will distribute the knowledge more efficiently but discourages R&D, because the inventor might not fully benefit from his invention investments.³⁶ This appropriability trade-off will be further discussed below.

Fourth, the existence of a lead market. Beise (2004) defines lead markets in innovation, based on the general concept developed by Bartlett and Ghoshal (1990) as markets which induce global innovations through local demand environmental conditions. It is an important concept in explaining the creation and diffusion of innovations. A lead market is not necessarily the market in which an invention took place, as numerous examples in history show the opposite: firms from one country picking up an invention made elsewhere and rolling it out on a large

³³ A Patent Box offers a significantly lower corporate tax rate for revenue generated through patents or other forms of intellectual property. Cf. Evers, Miller, and Spengel (2013, p. 1). Ireland and France started to establish these tax schemes in the beginning of the 2000s followed by other countries, such as UK, China, Netherlands etc. Some of these respective taxation schemes are considered to be "harmful" by the OECD in terms of a fair and balanced international competition. Cf. OECD (2015a).

³⁴ Gerybadze (2019), for example, analyzes the Asian countries Japan, South Korea and China based on the thoughts of German economist Friedrich List, arguing that less advanced nations need to protect their nascent entrepreneurial firms from foreign competition, at least initially, through tariffs.

³⁵ Cf. OECD (2011); Cantwell and Piscitello (2002); Thursby and Thursby (2006); Kinkel and Maloca (2008).

³⁶ Cf. Malerba and Orsenigo (1995).

scale.³⁷ It defines and elaborates on a concept brought up in earlier works by Gassmann and von Zedtwitz (1999); Gerybadze and Reger (1999) or Gerybadze (2004a).

The idea of foreign lead markets is, that despite globalization, attitudes, demands, or more generally environments, differ across countries. Often innovations become globally successful after they have reached a critical penetration rate in a lead market, i.e. the high penetration in a lead market stimulates penetration of the lag markets. Apart from the example of the fax machine, outline in footnote 37, one might think of the internet, which was first popularized in the US or several automotive-related inventions, such as the airbag, which were first widely adopted in Germany, before they became industry standard or the photovoltaics industry in China³⁸. It is crucial to point that the lead market is not automatically the market which first adopts an invention, but rather the first market to adopt an innovation, which is subsequently adopted by other countries.³⁹

Internationalizing R&D is therefore closely connected to the concept of lead markets: firms have to go "where the action is", i.e. identify and locate lead markets in order to capture and shape nascent technologies.⁴⁰ A multitude of analysis has looked at particular cases or industries in detail and confirmed the concept of lead markets as a determining factor of R&D Internationalization.⁴¹ That means that R&D Internationalization does not necessarily imply a broad global distribution of R&D activities, but rather a selected concentration on a few countries or regions, which are technologically advanced and relevant for the particular niche of technology.⁴² Therefore, also emerging countries can fill this role and are in fact increasingly relevant as lead markets in certain fields and boosters of R&D Internationalization.⁴³ With a strategy of exploitation a key approach of R&D Internationalization is rather the fast acquisition of relevant foreign locations and knowledge, instead of building up a foreign location

³⁷ For example, the fax device was popularized in Japan: While the technology was not invented there, the fax machine quickly replaced the existing teleprinters or telex systems: the teleprinter technology allowed for only a restricted size of character set, which limited the practicality with the Japanese 'Kanji' character system. The fax machine, however, allowed for the transfer all kinds of characters, due to the image processing technology. Japan therefore become the lead market for the fax machine. The US and then Europe adopted the fax machine and within a few years, other systems were pushed to a niche existence.

³⁸ Cf. EFI (2012, p. 106), who outline in detail the case and development of China's photovoltaics industry as a lead-market.

³⁹ Cf. Beise and Gemünden (2004).

⁴⁰ Cf. Gerybadze (2020).

⁴¹ Cf. for example Klein (2018) for an analysis of the wind energy sector, which identifies particularly Denmark as a lead market or Schaffland (2017) for an analysis of the ICT sector.

⁴² Cf. Gerybadze and Reger (1999).

⁴³ Cf. Tiwari and Herstatt (2012), who apply the lead market concept to the emerging country of India.

independently from scratch.⁴⁴ Such an M&A does not necessarily have to be a singularity, but rather is a sequence of several M&A resulting in an integration and consolidation of existing R&D units.⁴⁵

Accessing lead markets can also benefit firms in a standard-setting process, which plays a relevant role in certain industries and early-stage developments (e.g. technological, IT fields).⁴⁶ Performing R&D internationally and at relevant locations can help to be at the forefront of standard-setting, which can give the firm a competitive advantage.⁴⁷

An additional fifth factor, which does not directly affect the decision to internationalize R&D, but rather influences where to the internationalization takes place is the distance of the R&D host- towards the home-location affects costs and benefits. Studies have shown that a geographical and cultural proximity leads to higher cross-regional R&D activities, due to lower coordination and transaction costs.⁴⁸ A higher cultural distance implies additional challenges through the lack of tacit knowledge and embeddedness in local informal networks.⁴⁹ This "liability of outsidership"⁵⁰ decreases over time but can continue to persist.⁵¹ Another factor favoring a close geographic proximity when internationalizing R&D are potential knowledge spillovers: R&D serves not only the purpose to generate new information, but also "enhances the firm's ability to assimilate and exploit existing information"⁵². Direct benefits can be learning about new technologies, materials, methods and processes. Indirect benefits stem from the contact to trade partners and customers.⁵³ With less distance, there are fewer potential barriers or hindrances for spillovers. As the geographical or cultural proximity is a main

⁴⁷ Cf. Rysman and Simcoe (2008); Lin (2003).

⁴⁴ Cf. Bertrand and Zuniga (2006); von Zedtwitz and Gassmann (2002). Di Minin, Zhang, and Gammeltoft (2012), for example, outline the relevance of technology exploitation in foreign locations through M&A particularly for fast-moving firms from emerging countries, here China.

⁴⁵ Cf. Gerybadze (2020).

⁴⁶ Cf. Dunning and Lundan (2009); Di Minin and Bianchi (2011).

⁴⁸ Cf. Guellec and van Pottelsberghe de la Potterie (2004); Luintel and Khan (2017); Carrincazeaux, Lung, and Rallet (2001). Dachs and Pyka (2010) argue that a higher distance between locations implies higher costs through the "decentralization of innovative activity".

⁴⁹ Cf. Cavusgil, Calantone, and Zhao (2003).

⁵⁰ Cf. Johanson and Vahlne (2009) who established and developed this term from the "liability of foreignness" by Zaheer (1995, p. 342f). In a follow-up paper Vahlne, Schweizer, and Johanson (2012, p. 229ff) discuss how "experiental knowledge, commitment building and trust" help to overcome this "outsidership".

⁵¹ Cf. Fu, Revilla Diez, and Schiller (2013); Ledeneva (2008).

⁵² Cf. Cohen and Levinthal (1989, p. 569). Aghion and Jaravel (2015, p. 570) build on this concept and explain how companies may conduct basic research less for particular results, than for identification and exploitation of potential knowledge spillovers generated by competitors, universities or public research institutions. They measure R&D spillovers by evaluating the role of new knowledge on R&D intensity of a given industry.

⁵³ Cf. Coe and Helpman (1995); Coe, Helpman, and Hoffmaister (1997).

determinant of the magnitude of positive knowledge spillovers, firms will cluster more in fields with a high degree of spillovers, i.e. R&D activity.⁵⁴ A location's attractiveness for R&D investment therefore highly depends on the potential for industry- or cluster-specific spillovers, which in turn to some degree depends on the geographic or cultural distance to the home location.⁵⁵

1.1.2. Industry-based factors for R&D Internationalization

The drivers for R&D Internationalization, differ also on an industrial level, for two reasons: First, R&D has a different strategic importance and outline for different industries. The R&D intensity can indicate the relative importance of R&D⁵⁶. Industries with a high importance of R&D, e.g. pharma, have to follow different strategies than industries with a low relevance, e.g. construction.⁵⁷ A higher R&D intensity, however, does not automatically imply a high R&D Internationalization, as, for example, the biotech industry shows a high R&D intensity but is rather concentrated in few countries (e.g. the US).

Second, it is not just the R&D intensity and degree of R&D Internationalization which differs across industries, but also the path of innovation activity. Depending on the respective industry there are substantially different inherent processes towards R&D Internationalization.⁵⁸ Partly these differences can be explained with historic differences: IT, for example, is a rather young field, characterized by rapid growth rates in the last decades, whereas classic manufacturing industries such as Aerospace & Defense have lost in relative relevance. The former is generally more internationalized to a higher number of countries than the latter, as the former was "new to everyone" and not based on a historically grown foundation.⁵⁹ The detailed

⁵⁴ Cf. Breschi and Lissoni (2001); Audretsch and Feldman (1996).

⁵⁵ Cf. Cantwell and Piscitello (2002); Luintel and Khan (2017).

⁵⁶ The R&D intensity is defined as the share of a company's expenditure on R&D to its sales (OECD, 2015b). It is comparably high, e.g. in the biotech or pharmaceutical industry, where the R&D intensity is on average well over 10% (European Commission, 2017, p. 12).

⁵⁷ Cf. Gassmann, Reepmeyer, and von Zedtwitz (2008, p. 48f), who argue that due to the complexity of pharmaceutical substances and technologies, no single company can be successfully innovating alone. Companies aiming to succeed in this competitive market, rather have to "look beyond their own research borders" through international collaborations with universities, research centers and competitors. A high R&D Internationalization in Pharma is furthermore explained by the approval process of drugs: in stage III of the development process, drugs are tested on numerous people in numerous markets, which regularly requires an international presence (FDA, 2018).

⁵⁸ Cf. Malerba (2002); Castellacci and Zheng (2010). Reddy (2011) & Grimes and Miozzo (2015) explain the unique internationalization pattern in the pharma industry: a long development time of over ten years allows for splitting of the numerous development steps to different locations. The emergence of new technologies in recent years increased the necessity for specialization and thereby for outsourcing parts of the value chains to locations with competences in the respective fields.

⁵⁹ Cf. Mani, Srikanth, and Bharadwaj (2014) or Nepelski and De Prato (2012) for an overview of R&D Internationalization in the ICT / IT industries.

industry activities will be analyzed in the upcoming chapters. I will also show in the next chapters that R&D Internationalization across industries is not evenly spread on countries, but rather exhibits focused patterns: some countries have created competencies, incentives and other factors which made them attractive for foreign R&D investments in a particular industry.⁶⁰

Four factors can be identified which differently influence the decision to internationalize R&D depending on the industry level.

First, the level of appropriability inherent to the particular industry. As discussed in the previous subchapter, appropriability can strongly differ across regions and countries due to different policies. However, it also differs across industries.⁶¹ In industries, where inventions are harder to codify and thereby harder to protect (e.g. service sector) or where the general complexity of inventions is comparably low and therefore competitors can more easily "invent around" (e.g. clothing, food) knowledge is more likely to spill.⁶² In order to reduce this risk, a company in such a sector is more likely to keep its R&D more under its control by remaining centralized and refraining from R&D Internationalization.⁶³

Second, the degree of "cumulativeness". Cumulativeness refers to the concept that today's innovation is building on and thereby depends on yesterday's innovation. It describes the degree of serial correlation between subsequent innovations.⁶⁴ With a higher complexity of knowledge (see previous point) learning effects, experience and knowledge become relatively more important: technological leaders therefore can be expected to continuously innovate to keep their competitive advantage.⁶⁵ Industries with a higher degree of cumulativeness, such as biotech, pharma and IT could be expected to have a more concentrated R&D and thereby less internationalized to achieve a higher degree of specialization and benefit from economies of scope.⁶⁶ However, the effect of cumulativeness on an industry level appears to be small, as ample evidence outlines the high degree of R&D Internationalization in the above-mentioned industries with high cumulativeness and studies have found little statistical evidence on the effect of industry to R&D Internationalization with regards to

⁶⁰ Cf. Gerybadze (2020).

⁶¹ Cf. Levin et al. (1987); Cohen, Nelson, and Walsh (2000), who first reported large-scale evidence about the influence of appropriability regimes on companies' location decisions.

⁶² Cf. Cohen, Nelson, and Walsh (2000); Hurmelinna-Laukkanen and Puumalainen (2007); Harabi (1995).

⁶³ Cf. Breschi (2000, p. 216).

⁶⁴ Cf. Malerba and Orsenigo (1996); Breschi (2000, p. 215).

⁶⁵ Cf. Gambardella and Malerba (1999, p. 74).

⁶⁶ Cf. Singh (2008), who finds a negative impact of a distributed R&D to the average value of companies' innovations. The exact build of the regression model might distort the findings, as important variables, e.g. a time-variance factor, are omitted.

cumulativeness.⁶⁷ One explanation would be that the number of inventors in industries with high cumulativeness is so high, that the benefits of international exchange, i.e. R&D Internationalization outweigh the benefits of knowledge concentration.⁶⁸ This relates to the next point:

Third, the relative importance of networks. A high degree of connections to the "outside" fosters R&D Internationalization. On the one hand this can be seen in industries which heavily rely on basic research, such as Pharma or Biotech. Companies in these industries often rely on partners, such as universities or other public research institutions, as well as on competitors through joint-ventures. On the other hand, industries with a highly distributed commodity chain, such as Automotive, depend highly on their networks, as they are tightly connected to their suppliers. Unless the company is already located in a strong lead-market (see Chapter 1.1.1) with a clustered network, a high relative importance of such networks in a given industry will require a company more to put its R&D in proximity to its partners, i.e. to internationalize.⁶⁹

Fourth, tacitness. This term was first used in a modern sense in 1958 by Polanyi and described knowledge which could not be codified and passed on through words.⁷⁰ Later, the term tacitness has shifted slightly in meaning and nowadays describes all forms of un-codified personal knowledge without the previous underlying conditions.⁷¹ Therefore, a high degree of tacitness implies that knowledge transfer over a geographical distance becomes expensive. The effects on R&D Internationalization are ambivalent: on the one hand, high tacitness can enable a concentrated R&D, i.e. a low degree of R&D Internationalization, to concentrate the tacit knowledge in one place and avoid the high transaction costs. On the other hand, high tacitness can also enable a high degree of R&D Internationalization: due to the high transaction costs of tacit knowledge a company disperses its R&D, i.e. highly internationalizes it, in order to be present in numerous locations, where the respective local tacit knowledge is clustered.

⁶⁷ Cf. Gassmann and von Zedtwitz (1998, p. 148ff), who outline the connection of R&D intensity and R&D Internationalization by analyzing 31 companies from three industries. In several other publications both authors have followed up on this topic: e.g. von Zedtwitz (2005), von Zedtwitz and Gassmann (2016).

⁶⁸ Cf. Baptista and Swann (1998).

⁶⁹ Cf. Edquist (1997, p. 67ff), who considers networks as a key element in the innovation process.

⁷⁰ Cf. Polanyi (1966, p. 4ff; 2005, p. 69ff). In his 1966 work, Polanyi gives the example of recognizing a familiar person's face: while one could recognize it "among a million", one usually could not put in words how exactly to recognize said face.

⁷¹ Cf. Cowan, David, and Foray (2000, p. 212).

1.1.3. Company-based factors for R&D Internationalization

Two companies operating on the same regional and industrial level, still can differ in their R&D Internationalization structures, as companies differ with respects to their size, management, product portfolio, cost structure etc. Four factors can be identified influencing the degree of R&D Internationalization on a company level and creating heterogeneity.

First, degree of internationalization in production and distribution. There is a correlation of the degree of production and distribution internationalization, as R&D locations abroad can be intended to support production and distribution: products have to be adapted to local markets and with a geographically close R&D these design, adaptation and development processes can be done in an easier way.⁷² Therefore, companies internationalize R&D to "exploit their assets" abroad in a better way.⁷³ Dunning argues that these assets are exploited through Foreign Direct Investments (FDI), because of ownership, location and integration, i.e. internationalization, advantages. Depending on these factors two otherwise similar companies might follow substantially different R&D Internationalization approaches, due to a self-selection⁷⁴.

Second, relevance of creating and gaining new knowledge. Companies internationalize their R&D in order to tap into the globally distributed and increasingly specialized knowledge pool. MNCs are therefore "seeking assets" through specialized and superior knowledge in a certain field.⁷⁵ While we have discussed the access to local knowledge already in Chapter 1.1.1, it is also a relevant company-based factor. Depending on the particular firm history, mindset, respective environment a foreign R&D location can function more or less as a "local antenna", meaning that it monitors local trends and transfers information back to the home-base.⁷⁶ A main driver for the asset-seeking strategy is the rising complexity of knowledge⁷⁷ and technology which requires companies to be present in several locations in order to be at the

⁷² Cf. Kafouros et al. (2008). The local adaptation activities can also include following local regulations. For example Kuemmerle (1999a) & Dunning and Narula (1995) point out local environmental laws as a common governmental regulation necessitating local R&D.

⁷³ Cf. Dunning (1973, p. 307ff; Dunning and Lundan (2008, p. 401ff), who call this motive "asset exploitation". Other researchers call this motive "home-base exploiting" (Kuemmerle, 1999a, p. 2ff) or "market-driven R&D" (Boutellier, Gassmann, and von Zedtwitz, 2008, p. 98ff).

⁷⁴ Cf. Head and Ries (2003); Helpman, Melitz, and Yeaple (2004). Crescenzi, Gagliardi, and lammarino (2015), for example, outline market engagement and ownership structure as main effects.

⁷⁵ Cf. Dunning and Lundan (2008, p. 72ff), who call this motive "asset seeking". Other researchers call this motive "home-base augmenting" (Kuemmerle, 1999a, p. 2ff) or "global R&D strategy" (Boutellier, Gassmann, and von Zedtwitz, 2008, p. 103ff).

⁷⁶ Cf. Meyer-Krahmer and Reger (1999, p. 769).

⁷⁷ Some of the knowledge can be tacit, i.e. transferrable only with relative high costs. See discussion in the previous sub-chapter.

technological frontier⁷⁸ and located in lead markets.⁷⁹ "Asset-seeking" therefore also implies that a company has to collaborate with numerous entities, as substantial knowledge is gained through engagement with local partners, customers and research institutions.⁸⁰ Asset exploitation and asset seeking are not mutually exclusive. In fact, several analyses have shown how companies use both strategies, depending on the respective environment and target-country.⁸¹ On top the concept of augmenting vs. exploiting has been discussed and expanded by subsequent research. Gerybadze and Merk (2014) identify three approaches: an increase of number and size of foreign R&D locations, the creation of new products in lead markets and the increasing inclusion of foreign-based inventors in patenting activities. The former two approaches can be subsumed as augmenting and the latter as exploiting.⁸²

Third, firm performance and R&D Internationalization. Research has found a connection of the optimal level of R&D Internationalization, in terms of increasing firm performance, and the R&D Internationalization. However, the direction and shape of relationship have not yet been conclusively identified.⁸³ While the optimal level of R&D Internationalization in terms of the firm size can be hard to determine and appears to be dependent on the respective industry and target countries, however, a connection of R&D, R&D intensity and firm size is undoubted.⁸⁴

Forth, internal company structure. The internal company structure influences the scale and scope of R&D Internationalization both regarding the quantitative cost structure and the qualitative management style. The costs of an internationalized R&D include transaction costs

⁷⁸ Cf. Reddy (2011); Grimes and Miozzo (2015).

⁷⁹ Cf. Gerybadze (2020) and above for an elaboration on "lead markets".

⁸⁰ Cf. e.g. Narula and Zanfei (2005) & Florida (1997) & von Zedtwitz and Gassmann (2002). This idea is related to the concept of "Open Innovation", as discussed by Chesbrough (2006, p. 25ff), who argues that companies increasingly not only use their internal R&D, but also concepts and ideas developed through external parties, including parties located abroad.

⁸¹ Cf. Dunning (1993), which first acknowledges the inter-connection of the OLI-framework. Later works expanded on how the components of the OLI-framework are linked over time (Dunning and Narula, 2004, p. 201ff). Studies, e.g. by Ivarsson and Jonsson (2003); Buckley et al. (2016), outline how both strategies are used selectively by MNCs and thereby confirm Dunning.

⁸² Furthermore, a number of research by Criscuolo, e.g. Criscuolo, Narula, and Verspagen (2005); Criscuolo (2006) expands on the augmenting – exploiting classification.

⁸³ Cf. Hsu, Lien, and Chen (2015), who report a curvilinear U-shaped relationship between R&D Internationalization and innovation performance in Taiwanese high-tech firms. The underlying thesis is that only above a certain degree of R&D Internationalization the benefits outweigh the costs and positive impacts on performance can be determined. Hurtado-Torres, Aragón-Correa, and Ortiz-de-Mandojana (2017), on the other hand, find an inverted U-shaped relationship of R&D Internationalization to a firm's performance in the energy sector, implying that very high levels of R&D internationalization deteriorate innovation performance. However, the finding is contingent upon the positive moderating impact of firm's international experience embedded into firm's capability in dealing with the challenges of international expansion.

⁸⁴ Cf. OECD (2009, p. 148ff).

for the coordination of R&D activities within the firm and opportunity costs for looser control over technologies and a decreasing embeddedness in the national innovation system (NIS) of the home-base, compared to a centralized R&D.⁸⁵ A decentralized R&D structure requires an appropriate management structure with an established intrafirm communication⁸⁶: an efficient internal knowledge transfer from the home-base to the foreign location increases the benefits from incoming external spillovers to the home-base. This in turn improves the efficiency of gaining external knowledge and thereby both strengthens and encourages a decentralized R&D structure.⁸⁷

1.2. Research Questions and Structure of Dissertation

How can we capture even more precisely to what extent and in what fields MNCs conduct R&D abroad and how have the patterns changed in the time period 2000 - 2019?

⁸⁵ Cf. von Zedtwitz and Gassmann (2002); Narula (2003).

⁸⁶ Some authors, e.g. Birkinshaw (2002, p. 257ff), even argue that R&D Internationalization can only made possible with giving a relatively high degree of autonomy to the foreign locations.

⁸⁷ Cf. Sanna-Randaccio and Veugelers (2007, p. 59); Ramirez and Li (2009, p. 290); Gersbach and Schmutzler (2011, p. 136).

Chapter 2 introduces into the methodology of analyzing R&D Internationalization. I will outline the exact ways and data sources of my analyses, based on relevant prior research. Namely I will outline the methodologies of analyzing R&D Expenditure, Patents, Cultural Distance as a degree of R&D Internationalization, Interviews and Country Classification.

Chapter 3 analyzes structural changes in the R&D Internationalization processes both from a global perspective, as well the four major economies Germany, USA, Japan and China. With quantitative data, i.a. provided by the OECD and national statistic offices, patterns in the R&D Internationalization are determined.

Chapter 4 & 5 analyze Host-Country Patents (HCPs), i.e. patents conducted with inventors located in foreign countries. Patents are regularly used as proxies for R&D Internationalization, due to their standardized nature of publication and disclosure of inventors.⁸⁸ I will give a global overview of major home- and host-countries and go into detail for relevant economies. I show Outward HCPs in Chapter 4 and Inward HCPs in Chapter 5. Outward HCPs show in which countries firms from a particular country are basing their R&D. Inward HCPs shows where foreign firms are located, which internationalize R&D into a particular country.

Chapter 6 takes an industry perspective and shows trends and shifts in R&D Expenditure patterns. In this chapter I follow a three-step approach: first, I give an overview over the top R&D expending industries worldwide and their developments. Second, I show the R&D Expenditure of relevant industries per country. Third, I give a country analysis of relevant economies, to outline which country has focused and specialized in what industry.

Chapter 7 gives a methodological patent analysis of relevant R&D intensive industries. I show not only classic indices, such as patent numbers, but also the quality, competitiveness and "internationalization-ness" of patents in major R&D-conducting industries and technological fields.

Chapter 8 summarizes and concludes this dissertation.

⁸⁸ Cf. Laurens et al. (2015).

2. Methodology of Analyzing R&D Internationalization

This chapter breaks down the methodologies of analyzing Research & Development (R&D) and answers the following research questions:

- RQ2.1: With which indices can we measure innovation?
- RQ2.2: How exactly can each index be calculated to give insights into innovation activities?
- RQ2.3: What are the advantages and challenges of the respective indices?

Common methods and standards to measure, analyze and interpret data on innovation is crucial for academics, policy makers and decision makers in businesses in order to make sound analyses and conclusions, as well as to facilitate comparability across geographic regions. The most accepted definitions and standards are jointly published by the OECD and EUROSTAT in their 'Oslo Manual', sometimes called the "bible" for innovation research.⁸⁹ The Oslo Manual is regularly updated and now in its 4th version, in order to reflect changes in prevailing opinions what and how innovation can be measured exactly.⁹⁰

Not all innovation measurements are equally relevant for each purpose and approach. Depending on the size and scope of analysis, quantitative or qualitative, broader or more narrow indices can be utilized.

The most common indices, also used in this dissertation are given in the following. One approach is to break down the indices into input and output measures.⁹¹ For precision purposes, I include a third category: intermediary.⁹²

- 1. **Input Measure:** These measures quantify the resources going into the innovative process. They are generally good to measure innovation in the early stages, because input metrics are responsive. The following measurements and a combination thereof are common indices used in the literature. The exact indicators and measurement procedure might differ, as the business environment and ultimate goal of the analysis might be different:
 - R&D Expenditure in absolute terms or as a percentage of sales (R&D intensity).

⁸⁹ Cf. Finnish Ministry of Education (2009, p. 23).

⁹⁰ OECD and EUROSTAT (2018).

⁹¹ Cf. Criscuolo, Narula, and Verspagen (2005).

⁹² Cf. Acs, Anselin, and Varga (2002).

- Number of innovation projects started within a certain time-period.
- Number of R&D locations or R&D employees: Counting locations or staff can be the "least bad" option, if more precise data is not available. The underlying, yet not necessarily correct, assumption is, that a twice as large R&D location also has around twice as much innovative output.⁹³
- 2. Intermediary Measure: A commonly used method of analyzing innovation are patents. Researchers can count the number of patents applied or granted for a very standardized unit of comparison and analysis. However, as a patent stands at the end of a step in the innovation process, it is not an output measure, as product tests and adaption can follow, and not every patent results in some kind of product or process output. A detailed description of patents, as a measurement for innovation, follows.
- 3. Output Measure: These measures quantify the outcomes of the innovation process. Usually, these metrics are easier to collect but less actionable from a business perspective, due to the time-lag of innovative activity and ultimate change in outcome indicator. Commonly used outcome measurements are:
 - Number of new products launched within a certain time period⁹⁴
 - Revenue / Profit from new products
 - Return on Investment (ROI) on innovation activities

When selecting indicators for measuring R&D, the following criteria must be met:

- The indicators must be relevant and meaningful.
- The indicators must be collectible in a reliable way.

In the following the method of analysis for the most relevant measurements, which will be used in this analysis, will be explained. I will show how exactly I measure R&D activities in this dissertation.

⁹³ Hsu, Lien, and Chen (2015), for example discuss the effect of R&D Internationalization on innovation performance. They measure the degree of companies' R&D Internationalization by counting the respective number of domestic and foreign R&D locations. This approach can be challenged: a company with one R&D location in a certain country employing 10,000 R&D employees would certainly be more innovative and more internationalized in terms of R&D, compared to another company which has three R&D locations in said country, with just 5 R&D employees in each location. Counting only the locations certainly skews the data.

⁹⁴ This data is usually collected via surveys, e.g. Geroski (1995). A potential question, as used by the "Business Environment and Enterprise Performance Survey (BEEPS)", is: "How many new or significantly improved products did this establishment introduce in the market over the last three years?" (EBRD and World Bank, 2012)

2.1. R&D Expenditure

Measuring the amount of money spent on Research & Development (R&D Expenditure) is of interest to decision makers, as it shows who conducts R&D to what extent at which places. It can further show the development and shifts in R&D activities and thereby reveal the effectiveness of policy action.⁹⁵ R&D Expenditures are an input measurement of innovation activities, so R&D activities through expenditure can be observed with a smaller time lag, than, for example, through patents. Policy makers therefore benefit from timely data.⁹⁶

A certain level of expenditure can be a goal in itself, as the "EUROPE 2020" strategy by the European Commission, published in 2010, set the target that 3% of the EU's GDP should be invested in R&D by 2020.⁹⁷

This "Gross Domestic Expenditure on Research & Development" (GERD) is a commonly used index to show how much money has been spent on R&D within a country during a set period. It helps in comparing countries.

This dissertation focusses on businesses, so I will use the Business Expenditure on R&D (BERD). BERD is a subset of GERD, although the terms GERD and BERD are sometimes used interchangeably. However, it should be clarified, that the GERD refers to all expenditure on R&D, whereas the BERD refers only to expenditures by companies – the focus of analysis in this dissertation. Other, and usually much smaller parts of GERD, are expenditures on R&D by the Government sector (GOVERD), the Higher Education sector (HERD) and the Private Non-Profit sector (PNPRD).⁹⁸

2.1.1. Definition and Terminology

The FRASCATI-manual, defines BERD as "the measure of intramural R&D Expenditures within the Business enterprise sector" OECD (2015b, p. 33). Throughout the dissertation I will use a fixed set of terms. Therefore, I elaborate on the FRASCATI definition and will use the following terms⁹⁹:

⁹⁷ Cf. European Commission (2010).

⁹⁵ Cf. OECD (2015b).

⁹⁶ Cf. Mansfield (1984).

⁹⁸ Cf. OECD (2015b, p. 145).

⁹⁹ The FRASCATI-manual breaks down R&D funding flows into performing (intramural, extramural) and funding side (internal, external) (OECD, 2015b, p. 129).
Definition: The BERD of a country is the amount of money spent within that country in a set time period. It is the sum of money spent on R&D within that country by companies ultimately owned by entities from that country (National R&D) and the money spent on R&D coming from foreign companies, i.e. from other countries within that country (Inward R&D). The Outward R&D is the amount of money spent on R&D by companies from that country in other countries. The sum of money spent on R&D by companies from that country domestically and abroad is the Total R&D.

"Ultimately owned" refers to the concept of 'Ultimate Beneficial Owner' (UBO). It refers to the entity who "ultimately owns or controls" a company.¹⁰⁰ For the classification of R&D, we have to distinguish between domestic and foreign firms, for which the location of the hierarchically highest owner is relevant. Consider the following example: Company A is German; Company B is Norwegian. The Norwegian company B fully owns the German company A. When we analyze the R&D Expenditure of Germany, we would consider R&D Expenditure of company A as foreign (non-German), because it ultimately is owned by a foreign (here Norwegian) entity.

Figure 2-1 illustrates these five sets in a Venn-diagram. The mathematical set notation looks as following:

EQ2-1	Inward $R\&D \subseteq BERD$
EQ2-2	$BERD = Inward \ R\&D \cup National \ R\&D$
EQ2-3	National $R\&D \cap Inward \ R\&D = \emptyset$
EQ2-4	National $R\&D \cap Outward \ R\&D = \emptyset$
EQ2-5	$Total \ R\&D = National \ R\&D \cup Outward \ R\&D$

¹⁰⁰ Cf. FATF (2014, p. 8).

Figure 2-1: Terminology of R&D Expenditure Sets

Strategic, political goals, as the earlier mentioned 3% spending goal of the European Union's GDP in R&D are rather broad. First, it considers the GERD, i.e. different categories of R&D Expenditure. Certain political measurements might incentivize businesses to invest, i.e. increase the BERD, while at the same time government activities are reduced, i.e. decrease the GOVERD. Second, the GDP is not a constant variable: in an economic downswing the GERD might, for a short time, remain constant (low elasticity), so that the ratio of GERD to GDP actually increases and potential political goals are being met, with little practical positive impact on innovation. Furthermore, smaller economies with relative strong innovation activities can have a relative high GERD to GDP ratio although their absolute GERD is comparable low. South Korea and Israel, for example, have had a ratio for the last five years of >4%, whereas their absolute GERD can be a fraction of that of bigger economies. Israel's GERD, for example has been consistently <5% of the US'. Therefore, despite having a lower GERD to GDP ratio, the US are, in absolute terms, still a much bigger spender on R&D.¹⁰¹

2.1.2. Measurement of R&D Expenditure

Analyzing the measured R&D Expenditure is a standard input measure for innovative activities (see above). As trivial as summing up expenses might sound, the measurement of R&D Expenditure and thereby its analysis, can be challenging and comparability can be limited, despite common definitions through the FRASCATI manual.

Relevant databases to analyze R&D Expenditures are on a country level the OECD's AMNE database (Activity of Multinational Enterprises)¹⁰², the OECD's MSTI database (Main Science

¹⁰¹ Cf. MSTI database – OECD (2019a).

¹⁰² The AMNE database is an expansion of the historical AFA (Activities of Foreign Affiliates) and FATS (Foreign Affiliates Statistics) databases and uses the industry classifications ISIC Rev. 3 and Rev. 4 United Nations (2008); United Nations (2002); United Nations (1990).

and Technology Indicators)¹⁰³ or the National Science Foundation's Science & Engineering Indicators¹⁰⁴. On a company level the EU's R&D Scoreboard aggregates the top 2500 companies worldwide in terms of their R&D spending¹⁰⁵. For detailed company level analyses, it can be fruitful to scrutinize a company's annual report, as well as its other publications, such as press releases, news reports etc. outlining the company's R&D activities

Put in a nutshell, R&D Expenditure in light of this dissertation is measured in one of the following dimensions:

- Total Business R&D Expenditure broken down to relevant countries or industries
- R&D investment of domestic firms abroad on a total scale or broken down by target country or industry (Outward R&D)
- R&D investment of foreign affiliates domestically on a total scale or broken down by country of origin or industry (Inward R&D)
- Individual R&D investments by respective companies

2.2. Patent Analysis to Measure R&D Internationalization

"The patent system [...]; secured to the inventor, for a limited time, the exclusive use of his invention; and thereby added the fuel of interest to the fire of genius, in the discovery and production of new and useful things" Abraham Lincoln (1859, as cited in Kennedy and Cohen, 2013)

A company is an innovator when it creates new products, technologies or processes, often using substantial resources in the process. An imitator, following the innovator, does not bear its high R&D costs, as it can learn from the innovator's setbacks and follow with similar concepts. Depending on the appropriability regime in the respective country, industry and product segment, it can be easier or harder to take possession of the relevant knowledge.¹⁰⁶

The innovator strives to maintain exclusivity over its new development. This can be achieved in two ways:

1. Secrecy: Keep the innovation secret and thereby protect it from imitation.

¹⁰³ Cf. OECD (2019a).

¹⁰⁴ Cf. NSF (2018).

¹⁰⁵ For earlier years, less companies are listed, e.g. the Top 500 EU and Top 500 non-EU firms for 2004 European Commission (2019).

¹⁰⁶ Cf. Teece (1986), who shows a taxonomy of win and lose outcomes from the innovation process for both the innovator and the follower-imitator.

2. Protection: Achieve legal exclusivity within the respective jurisdiction.¹⁰⁷

Successfully implementing the 'secrecy-strategy' can be challenging, as, in most cases, the innovator wants to bring third parties into contact with his invention: he might require suppliers who need specification, customers or partners who can disassemble the product and aim to reverse-engineer it etc. Technical attacks (hacking) or even such a chatty or disgruntled employee are just a few other possibilities for the 'secrecy-strategy' to fail and thereby potentially costing a significant potential profit.

Despite the risks, the 'secrecy-strategy' is regularly applied: either particularly by smaller firms or individuals, who do have other means, such as market power, to fully appropriate their invention¹⁰⁸ or in cases, where inventions are not yet commercializable¹⁰⁹.

2.2.1. Characteristics and Relevance of Patents

Instead of creating and maintaining secrecy, a patent follows a different logic: the innovator describes its innovation in detail and discloses its structure and method to a public institution – the patent office. The disclosure helps the patent office and competitors to check for prior art, i.e. overlaps with other inventions, as well as to disseminate the novel information and thereby advancing the scientific horizon.¹¹⁰ The patent office checks the application and tests whether it fulfills five criteria. In case of a positive evaluation, the patent office grants the patent. Contrary to popular belief this patent does not grant its holder the right to make, use or sell, it simply grants the right to exclude others from using that technology within the respective legal jurisdiction,¹¹¹ for usually 20 years.¹¹²

The five substantive criteria which have to be fulfilled for patent granting are:¹¹³

¹⁰⁷ Cf. Gerybadze (2004b, p. 91ff).

¹⁰⁸ Cf. Arundel (2001); Graham and Hegde (1999).

¹⁰⁹ Cf. Hussinger (2006).

¹¹⁰ Some academics argue that the economic utility of a patent is rather the dissemination of information, than the rewarding of the R&D costs of the inventor (Kultti, Takalo, and Toikka, 2007).

¹¹¹ Cf. Herman v Youngstown Car Manufacturing Co. (1911).

¹¹² Cf. Merck Co. Inc. v A Kessler (1989). The usual term of a patent worldwide is 20 years, while there are certain exceptions, e.g. in the pharma industry, where extensions can be granted to compensate for delays in market approval.

¹¹³ Cf. EPO (2017); USPTO (2018) for a comprehensive overview.

- Eligibility of subject matter: Even if an invention fulfills all other criteria, certain subject matters can be excluded. Depending on the respective legislation this usually includes intangible objects, e.g. theories, mathematical methods, aesthetic creations.¹¹⁴ While several European countries usually require a certain degree of "technicity", and thereby exclude patenting of software, the U.S., for example, permits software patents.¹¹⁵
- 2. **Novelty:** An invention cannot be patented if it is already publicly known. The reference point in time is the "priority date", i.e. the date of the first patent filing. The novelty requirement prevents researchers from prior publication: even a simple academic presentation on a conference can destroy the novelty characteristic, as that disclosure on the presentation would be considered "prior art".¹¹⁶
- 3. **No prior use:** The invention furthermore cannot be patented, if it has been used, sold or licensed in the own business.
- 4. **Inventive:** The new invention must inhibit some degree of inventive activity, i.e. it cannot be obvious to a skilled person.
- 5. **Usefulness:** The invention must have some concrete utility (U.S. law) or some industrial applicability (EU law). It cannot be merely hypothetical.

In general, the criteria are the same in all relevant markets, although they differ in detail (e.g. technicity) which can lead to disharmonies, i.e. very different results when aiming to patent the same invention across different jurisdictions.¹¹⁷ Particularly the novelty criterion can be challenging to fulfill, as this prevents researchers from publishing and discussing preliminary results. While the U.S. allows for a grace period of 12 months after the first publication, in which a filed patent still is considered to be "novel", European countries consider the novelty criterion as absolute.

The novelty criterion can also be used strategically as a way of intellectual property protection, called "defensive publication": By publishing an invention on purpose, it becomes public domain and therefore cannot be patented by competitors. This strategy can be advisable for inventors who cannot or do not want to undergo the costly and lengthy process of a patent

¹¹⁴ Cf. §52 European Patent Convention, EPO (2016). Other legal forms such as utility models or registered designs may protect such items in certain jurisdictions (WIPO, 2017).

¹¹⁵ Cf. Bessen and Hunt (2007).

¹¹⁶ Cf. Franzoni and Scellato (2010). In certain jurisdictions a "grace period" exists: within that period a prior (e.g. academic) publication does not necessarily set a "prior art" and therefore does not conflict with the novelty requirement. In countries such as United States, Canada or South Korea this grace period is 12 months. The EPO and most European countries do not have any grace period.

¹¹⁷ Cf. Jensen, Palangkaraya, and Webster (2005), who analyze discrepancies between the Trilateral Patent Offices.

filing, while preventing competitors from locking them out of their own invention, by filing the patent themselves.¹¹⁸

2.2.2. Patents as Indicator for R&D Activities

Patents are a helpful proxy to determine size and scope of R&D activities.¹¹⁹ Companies usually do not publish comprehensive quantitative data on the details of their R&D data, whereas the standardized structure of a patent allows for time series analyses, identification of geographical R&D activities¹²⁰, as well as comparisons between companies. Patents are public and due to the legal requirement of being published after 18 months, at the latest, patent analyses allow for relatively up-to-date insights. Patent data can therefore help to complement R&D data, as – often but not always – a causality and positive correlation between R&D spending and number of patents has been shown.¹²¹

It has to be noted that patents and products in industries do not necessarily have a 1:1 connection, i.e. one new product can be based on several patents and one patent can serve as the foundation for several products. One exception is the pharma industry, where there is a tight connection between R&D activity, patent and product.¹²² It is therefore not trivial to put a value on one single patent, but at least the criteria for patent filings, as discussed in the previous chapter, ensure a certain degree of technological and economical significance.¹²³

2.2.3. Structure and Composition of Patents

Each patent is filed in the same standardized manner. It is crucial to understand this structure in order to develop a stringent model of analysis.¹²⁴ In the following the relevant variables of a patent, which are relevant for the upcoming analyses, will be introduced:

- 1. **Inventor Name and ID:** The inventor(s) listed on the patent are the individuals involved in the invention process. Each inventor gets assigned a unique ID by the patent office.
- 2. **Inventor Country:** The complete address, including country of the inventor is listed on the patent. It is not to be confused with the country of citizenship or birth of the inventor. The location of the inventor serves as a proxy to determine the location of R&D activity, as it is

¹¹⁸ Cf. Adams and Henson-Apollonio (2002); Barrett (2002).

¹¹⁹ Depending on the industry one inherent error, as mentioned before, is of course that not every R&D activity results in a patent. Cf. Jaffe and Trajtenberg (2002, p. 3f).

¹²⁰ Numerous analyses use patent data to determine international R&D flows and discuss the advantages, e.g. Gerybadze and Sommer (2017); Gerybadze and Reger (1999); Criscuolo (2006); Guellec and van Pottelsberghe de la Potterie (2001); Rassenfosse et al. (2013).

¹²¹ Cf. e.g. Pakes and Griliches (1980).

¹²² Cf. Brouwer and Kleinknecht (1999).

¹²³ Cf. Dachs and Pyka (2010).

¹²⁴ Cf. Frietsch and Schmoch (2010), for a discussion on the methodology of patent analyses.

assumed that the inventor works and invents close to his residence.¹²⁵ If, for example, one patent by a German applicant shows five inventors, of which four reside in China, it can be concluded that a significant portion of the R&D activity was conducted in China. On a micro level patent analysis, the share of inventors is usually partially attributed to the respective countries (partial counting). On a macro level, i.e. country-level patent analysis, patents are usually counted fully, i.e. if at least one inventor comes from a certain country, this country's number of patents are increased by one (full counting).¹²⁶

3. Applicant Name and ID: The applicant files for the patent and then owns it. Most patents are held by institutions, i.e. the company which employs the inventor.¹²⁷ Analyzing all patents by a company can be challenging and requires attention, as even the applicant ID does not facilitate easy comparisons: The patent office assigns its own application identification number, i.e. there is no common unique identifier such as the International Securities Identification Number (ISIN). However, the same company can receive several different IDs for its patents because the patent examiners do not conduct thorough searches for the company name. Other reasons include, but are not limited to, different notations (e.g. BAYER AG vs. Bayer Aktiengesellschaft¹²⁸) or publications through subsidiaries (e.g. Bayer Intellectual Property GmbH, Bayer Innovation GmbH). In the case of the German pharma and life sciences company 'Bayer' over 100 different IDs for the actual same company can be identified. However, relying on a simple name search can be misleading, as for example the German 'Merck KGaA' is completely independent and separate from the U.S. 'Merck & Co.'. The former operates in North America under the name 'EMD', whereas the latter operates outside North America under 'MSD' (Merck Sharp & Dohme). Properly attributing all relevant subsidiaries to its parent, especially when the subsidiaries are operating under a different name, can be challenging and requires rigor in order to get meaningful results¹²⁹. In addition, some discrepancies arise with spelling, through special characters and different transcriptions, filling words (and / &) and different abbreviations.¹³⁰ Recent research underlines the challenges in a proper patent

¹²⁵ Cf. Zander (2002). However, a detailed regional analysis of the invention locations can be exacerbated due to the fact, that the general availability of data for the inventor addresses in the patent databases is limited Li et al. (2014).

¹²⁶ Cf. Gerybadze and Sommer (2017). For example, if a patent has five inventors, one from Germany and four from China, this patent would count as 0.2 patents for Germany and 0.8 for China. Full counting would simply attribute this patent as one patent for Germany and one for China.

¹²⁷ Cf. Degnan and Huskey (2006). Sometimes renowned scientists contractually reserve the right to be named together with their employer as an applicant. The focus of this analysis are MNCs, so patents completely held by individuals will not be regarded.

¹²⁸ AG is the abbreviation for 'Aktiengesellschaft', the German legal form of a joint-stock company.

¹²⁹ Cf. Bruns and Kalthaus (2020),who outline the complexity of an accurate patent selection.

¹³⁰ Cf. Sommer and Bhandari (2018).

selection process.¹³¹ The OECD provides in its HAN (Harmonized Applicant Names)-database a grouping of patent applicant names, expanded with business register data, which reduces the number of unique person IDs by about 30% through automatic matching.¹³² This can only be a first step in a thorough analysis as, on the one hand, the OECD outlines itself the possibility of wrong matches and, on the other hand, the algorithms are quite conservative, meaning that for many applicants, there are much more matches or groupings possible and necessary. I expand on the methodology of the HAN-database and use approximate string matching (fuzzy matching) both automatically and manually to account for differences in writing, as well as including additional data, e.g. the applicant's address to help the matching process.¹³³

- 4. Applicant Country: The location of the applicant serves as a proxy to determine the source of R&D investment. As mentioned in the previous point companies sometimes file patents under their subsidiaries, which might be located in the host-country. It is crucial to attribute these patents to the ultimate owner, i.e. the parent company in the home-country.¹³⁴
- 5. IPC: Each patent gets assigned at least one category of the "International Patent Classification" (IPC) system designated by a short alphanumerical code. These hierarchically organized categories structure patents for easier search and analysis by other users. From the big eight main sections (e.g. A for Human Necessities or G for Physics) the IPC breaks down into approximately 70,000 subcategories.¹³⁵ The IPC categories are built on technical relatedness, not on business relevance, leading to sometimes unevenly distributed numbers of patents within the categories. Therefore, a concordance has to be devised assigning IPCs to the relevant business categories.¹³⁶

Patents are designed to protect technologies, so they are categorized in one or several categories of the IPC. This classification assigns a letter-number combination to indicate in what technological field(s) the respective patent relates to. For example, the IPC-code "F03D 3/04" is hierarchically organized as following:

¹³¹ Cf. Bruns and Kalthaus (2020).

¹³² Cf. HAN database – OECD (2020b).

¹³³ A company's annual report can be a good source to identify the numerous legal entities belonging to the company at question, even if those names are quite different. For example, German car manufacturer Daimler AG owned the legal entity 'Leonie FSM DVB GmbH'. This, quite different, name does not immediately reveal the connection to the Daimler AG. In September 2020, this entity was terminated and merged into the 'Daimler Mobility AG' Cf. Daimler (2020).

¹³⁴ Cf. Picci (2010). Patenting through a host-country subsidiary usually occurs for taxation or legal reasons.

¹³⁵ Cf. WIPO (2020b).

¹³⁶ Cf. Schmoch (2008), who suggests a concept of technology classification with IPCs.

Hierarchy-Label	Example	Description
Section	F	Mechanical Engineering; Lighting; Heating; Weapons;
		Blasting
Class	F03	Machines or Engines for Liquids; Wind, Spring, or
		Weight Motors; Producing Mechanical Power or a
		reactive propulsive thrust, no otherwise provided for
Subclass	F03D	Wind Motors
Main Group	F03D 3	Wind motors with rotation axis substantially
		perpendicular to the air flow entering the rotor
Subgroup	F03D 3/04	Wind motors with rotation axis substantially
		perpendicular to the air flow entering the rotorhaving
		stationary wind-guiding means, e.g. with shrouds or
		channels

Table 2-1: Overview IPC Structure with Example¹³⁷

We see that the IPC categorization is very thorough and technically specific. Not in all cases a breakdown to the lowest hierarchy level of the sub-group is required: on the one hand, the categories are not symmetric and not equal in size and in some cases the lowest hierarchy level is already the "subclass". On the other hand, we might want to talk on a higher hierarchy-level on purpose. E.g. when we want to look at all patents relating to "Wind Motors", we look for patents with the IPC "F03D", which includes all subordinated main groups and subgroups.

6. Priority Date: When first filing for a patent, the date of application gets noted as the priority date on the application. Within 12 months of this application the applicant has the right to file for protection at other patent offices, i.e. other geographic regions, while maintaining the novelty stipulation. This regulation gives the applicant the chance to patent an invention for example in the home-country and then decide within a year whether this invention is worth to be patented internationally.¹³⁸ All subsequent patent applications which claim priority belong to the same 'patent family' and therefore receive the same priority date from the first application.¹³⁹ In academia the priority date, and not for example the filing date, is used as a reference point in time, as it is the date closest to the actual inventive activity.¹⁴⁰

¹³⁷ Cf. WIPO (2020a).

¹³⁸ Cf. Heuckeroth (2017).

¹³⁹ Cf. §87 European Patent Convention, EPO (2016).

¹⁴⁰ Cf. Hinze and Schmoch (2004).

2.2.4. Measurements of Patent Quality and Patent Links

The advantage of analyzing patents is their standardized nature of publication. Therefore, a minimum level of quality can be assumed for every published patent.¹⁴¹ Attributing each patent an identical value would be an oversimplification: with the establishment of a new radical technology a company usually aims to hold one or several "core patents" on which the future development and technological expansions are built on. As radical innovations are usually more valuable, said company firms will aim to apply for additional patents in order to exploit the full market and technological potential of the new technology, as well as creating and expanding their patent fence.¹⁴² These patent fences aim to prevent the development of substitute products by competitors, through covering a broad field around the own invention.¹⁴³

Regarding patents not as isolates, but as connected items which build upon each other, does not only help to understand the technological development of technologies, i.e. which invention is building on which, it also helps to determine the quality and thereby the value of an invention.

Several measurements can be used to determine patent linkages and patent quality:

- 1. **Backward Citations:** Backward citations (sometimes simply called citations) are previous patents on which the filed patent builds on. These citations can help to determine an evolutionary path of a technology by determining which are the basic or foundation patents of an emerging technology and which patents build on them on which point in time and occupy fields of knowledge.
- 2. Forward Citations: In hindsight the forward citations indicate how many and which subsequent patents cite the given patent. Comparable to the academic world, this citation value can be seen as a measure of quality or visibility. However, this value has to be considered in relation to the year and overall citations: a patent published 20 years ago naturally can accumulate more forward citations, than a patent published last year. Alternatively, one might consider only citations which have been, for example, received in the subsequent three years of each patent publication.

¹⁴¹ Cf. Harhoff, Scherer, and Vopel (2003).

¹⁴² Cf. Sternitzke (2010), Sorescu, Chandy, and Prabhu (2003).

¹⁴³ Cf. Blind et al. (2006).

3. **Revealed Technological Advantage (RTA):** The RTA was initially developed by Soete (1987) and picked up by several academics.¹⁴⁴ It is a proxy for the specialization or "comparative advantage" across technological fields and calculated as following: $RTA_{ij} = \frac{P_{ij}/\sum_i P_{ij}}{\sum_j P_{ij}/\sum_i p_{ij}}$, where P_{ij} gives the number of patents granted to a firm *i* in the technological field *j*. The *RTA* can take any non-negative value: $RTA \in [0; +\infty]$.

The interpretation of values with no upper bound can be challenging. To facilitate analysis, interpretation and understanding in this dissertation, I normalize the *RTA* to the *Normalized Revealed Technological Advantage (NRTA)*, with the formula: $NRTA = \frac{RTA-1}{RTA+1}$. This *NRTA* can take a value between -1 and 1: *NRTA* \in [-1;+1], with positive values indicating a comparative advantage, i.e. that the firm has a higher share in patent numbers in the relevant fields compared to its competitors and negative values indicating a comparative disadvantage, i.e. a lower share.¹⁴⁵

4. **Composite Patent Quality Index:** The OECD publishes numerous indicators for their patent data, which are added up to form a composite patent quality index. The "Patent Quality Composite Index" used in this dissertation is calculated from the OECD's "Quality Composite Index 6" as published in the OECD PATENT QUALITY Database ¹⁴⁶. It expands on an analysis by Lanjouw and Schankerman (2004) and is a composite of six indices: a granted patent's number of forward citations (up to 5 years after publication), backward citations, grant lag index, patent family size, number of claims and the patent generality index. The time-limit of 5 years for forward citations means that more recent patents do not automatically have a lower citation count, than patents which have been published decades ago and a much larger citation potential. The index can take values between 0 and 1: *Patent Quality Composite Index* $\in [0; +1]$.

2.2.5. Methodology of Patent Analysis

Patents from different patent authorities cannot be compared, so it is common academic practice to use only patent data from one patent office.¹⁴⁷ Traditionally, the "triadic patent offices" i.e. USPTO, EPO and JPO, which cover the geographic area of the US, Europe and Japan were, by far, the most relevant, due to their size and geographic coverage. With the uprise of other economies in recent decades, such as China and South Korea, their respective

¹⁴⁴ Cf. Patel and Pavitt (1987), Patel and Vega (1999), Cantwell and Iammarino (2000), Le Bas and Sierra (2002).

¹⁴⁵ Cf. Nesta and Patel (2004, p. 537).

¹⁴⁶ Cf. Squicciarini, Dernis, and Criscuolo (2013, p. 59), OECD (2019b).

¹⁴⁷ Cf. Jaffe and Trajtenberg (2002).

patent offices, CNIPA¹⁴⁸ and KIPO, also increased in relevance. These five largest patent offices in the world, connect in the so called 'IP5', a forum to improve and harmonize the examination processes for patents.¹⁴⁹

When deciding for a patent office, the 'home-advantage effect' has to be considered, i.e. that a company is more likely to patent in its home-country first and patent data therefore can be skewed. EPO data, however, covers more than one country, thereby reducing this effect.¹⁵⁰ Furthermore, the underlying assumption is, that the EPO data sufficiently covers inventions by U.S.-based MNCs as well, as these companies seek for international protection with their relevant patents and therefore patent relevant inventions with the EPO.¹⁵¹

Patents do not have to be filed at a singular patent office. Filing a patent under the Patent Cooperation Treaty (PCT) allows the patent applicant to file for protection in any of the treaty member states and designate any number of other member states in which patent protection can be filed for within 12 months of the initial application. The result of the initial patent office gets circulated across the other contracting states allowing for a simplified protection procedure. Each patent office still retains the authority whether to grant patent protection within its jurisdiction or not.¹⁵² Analyzing patents filed under the PCT can be therefore particularly beneficial when focusing on international R&D activities on a country level. When analyzing individual firms, USPTO or EPO data should be analyzed and not PCT data: the PCT is not one singular patent office but rather the aggregate from numerous offices. Data across different patent authorities cannot be reasonably compared on a micro level, as explained above.

In this dissertation I analyze EPO patents on a micro and meso, i.e. company and industry level, and PCT data on a macro, i.e. country level, unless otherwise noted.

EPO patent data is provided by the EPO's PATSTAT database. This biannually published database is provided for a fee and includes additional variables, such as patent abstracts. A simplified dataset free of charge and after some delay is provided by the OECD with its REGPAT database. This REGPAT database can be combined with the OECD's CITATIONS

¹⁴⁸ In August 2018 the Chinese agency responsible for patents has been renamed from 'State Intellectual Property Office of China' (SIPO) to 'China National Intellectual Property Administration' (CNIPA) (EPO, 2018).

¹⁴⁹ Cf. IP5 Offices (2017).

¹⁵⁰ Cf. Le Bas and Sierra (2002); Criscuolo, Narula, and Verspagen (2005); Dachs and Pyka (2010).

¹⁵¹ Cf. Criscuolo (2006), who compares patent data from the different patent offices.

¹⁵² Cf. Alcácer, Gittelman, and Sampat (2009). Only few countries worldwide have not undersigned the PCT, such as Argentina or Bolivia (WIPO, 2017).

database. Patent citations can provide additional insights into patents and their quality, comparable to academic journal citations, as discussed in the previous sub-chapter.

In addition, the OECD publishes aggregated, i.e. country-level patent data on its website.¹⁵³ This database provides insights into USPTO, EPO and PCT data and is continuously updated.

2.2.6. Overview Patent Number Development

This chapter gives a broad overview over the development of patent filings worldwide. Table 2-2 gives an overview for the years 2000 – 2017 of the patent filing development in the IP5, the world's five biggest patent offices, covering approximately 80% of the worldwide patent applications.¹⁵⁴ The IP5 include the patent offices of the US, Europe, China, South Korea and Japan.

The data is collected and analyzed as published by the IP5. Due to different reporting standards the numbers can slightly differ compared to the publications by the respective patent offices.¹⁵⁵

Figure 2-2 illustrates the data from Table 2-2 further.

In 2017 over 2.6 Million patents were filed at the IP5, which is an average annual increase (CAGR) compared to 2000 of over 6%. A large share of this growth can be attributed to China, with an CAGR of over 20% and an exponential growth for several years in a row. This underlines the increase in relevance for China in terms of patenting and can be the result of a structured developmental process and uprise of China as a knowledge and innovation center. The Chinese patent office has received more patent applications in 2017, than all other four offices together. Note: Chinese law differentiates between three types of patents: "Creations and Inventions", "Utility Models" and "Designs".¹⁵⁶ Only patent data for "Creations and Inventions" is considered in this analysis.

Japan, in 2000 the patent office with the most applications per year, has, on overage, lost 1.8% of patent applications per year and has fallen behind the US in 2006. The US, South Korea and Europe, on the other hand, have slowly but steadily experienced an increase in patent applications.

¹⁵³ Cf. OECD (2020e).

¹⁵⁴ Cf. IP5 Offices (2017).

¹⁵⁵ The first published year by the IP5 for China is 2008. For previous years, data from the National Bureau of Statistics of China has been used: National Bureau of Statistics of China (2009); National Bureau of Statistics of China (2008); National Bureau of Statistics of China (2005); National Bureau of Statistics of China (2003).

¹⁵⁶ Cf. National Bureau of Statistics of China (2019).

The US patent office (USPTO) had around 600k patent applications in 2017, which makes it the second largest patent office since it was overtaken in 2011 by China.

The South Korean (KIPO) and European patent office (EPO) show a very similar development, both in absolute numbers, as well as in growth, ranging in 2017 at around 200k patent applications.

With the skyrocketing number of patent applications (and patent grants) in China, one certainly may wonder whether and to what degree this number reflects a growth in innovative capability and a shift from imitation to innovation. In fact, a number of researchers and analysts attribute the increase in patent applications to strong subsidies and policies encouraging patent applications.¹⁵⁷

Research estimates that these subsidies increased patent applications by over 30%.¹⁵⁸ Subsidies are paid out for patent applications (with more money available for successful applications¹⁵⁹), with the result that a major share of Chinese patents are of lower quality. Several indicators support this claim: first, a majority of patents get discarded after five years, with owners choosing to discontinue paying expensive licensing fees.¹⁶⁰ Second, Chinese firms are reluctant to gain patent protection abroad, with China ranking only fifth worldwide in terms of international patents.¹⁶¹ Third, subsidies and incentives are paid in a way that it can be financially beneficial for patent examiners at the CNIPA to favorably consider patent applications.¹⁶²

This gives support to the previously discussed statement that patent figures across different patent jurisdictions cannot be reasonably compared, due to differences in evaluation and acceptance standards.

In Table 2-3 the patent applications are broken down to the origin of the (first) applicant. The table shows which percentage of the patents indicated in Table 2-2 have been applied for by an applicant from the respective patent office country or region.¹⁶³

¹⁵⁷ Cf. Heuckeroth (2017).

¹⁵⁸ Cf. Dang and Motohashi (2015).

¹⁵⁹ Cf. Finnie (2019).

¹⁶⁰ Cf. Bloomberg (2018).

¹⁶¹ Cf. WIPO (2018).

¹⁶² Cf. Finnie (2019); Yueh (2009); Warner (2014).

¹⁶³ The IP5 reports this data as "first named applicant" (IP5 Offices, 2017). Patents which are the result of cooperation projects across countries might skew the data. I.e. if a patent by a German (EPO) and Korean (KIPO) firm would be filed at the EPO, it would count here as a "domestic" patent, if the German applicant is named first, but non-domestic if the Korean applicant would be named first. For the purposes of the overview to be given in this sub-chapter, this error is negligible.

The US are very international with only 55% (in 2000) or 50% (in 2017) of its patents applied for by US firms. Europe is even more international, with a share of European applicants at the EPO of consistently less than 50%. This high rate of international firms justifies the use of EPO data.

Japan, on the other hand, has consistently over 80% of its patents applied for by Japanese firms and therefore appears to be not a particular attractive location for foreign firms to patent.

South Korea is similarly domestically oriented and even increased its share of domestic applicants of around 71% in 2000 to 78% in 2017.

China shows a very interesting development: while in 2000 patent applicants were quite foreign dominated and less than half of the patents applied for by Chinese firms, the domestic share has skyrocketed and has been in 2017 at over 90%. Together with the patent application data from Table 2-2, this may indicate how China has built up its knowledge capabilities and shifted from a small 'innovation outpost' for foreign firms to a patent powerhouse.

Country (Patent	2000	2004	2008	2012	2016	2017	CAGR
Office)							'00-'17 (%)
China (CNIPA)	51,747	130,133	289,838	652,777	1,338,503	1,381,594	21.3
US (USPTO)	295,926	356,943	456,321	542,815	605,571	606,956	4.3
Japan (JPO)	436,865	423,081	391,002	342,796	318,381	318,481	-1.8
S. Korea (KIPO)	102,051	140,051	170,632	188,915	208,830	204,775	4.2
Europe (EPO)	100,656	123,859	146,524	149,193	159,085	166,598	3.0
Total	935,498	1,043,934	1,454,317	1,876,496	2,630,370	2,678,404	6.4

Table 2-2: Number and Development of Patents Applied at Major Patent Offices¹⁶⁴

Figure 2-2: Number and Development of Patents Applied at Major Patent Offices¹⁶⁵

Table 2-3: Share of Home Market Patent Applications in Percent¹⁶⁶

Country (Patent Office)	2000	2004	2008	2012	2016	2017
China (CNIPA)	49.0	50.6	67.1	82.0	90.0	90.2
US (USPTO)	55.7	52.3	49.5	50.1	50.0	49.9
Japan (JPO)	88.7	87.1	84.4	83.7	81.7	81.7
South Korea (KIPO)	71.4	75.1	74.5	78.4	78.3	77.7
Europe (EPO)	49.9	49.5	49.3	49.1	47.8	47.1

2.2.7. Excursus: Linking R&D Expenditure and Patents

R&D Expenditure is an input, whereas patents are an intermediary measure to quantify innovation, as discussed in this chapter. Both indices by themselves can never explain the full and true innovative activities: on the one hand, not every R&D activity leads to a patent, i.e.

¹⁶⁵ Own analysis, based on IP5 Offices (2019).

¹⁶⁶ Own analysis, based on IP5 Offices (2019).

more R&D Expenditure does not necessarily increase the number of patents by the same factor. On the other hand, not every patent is based on similar levels of inventive activities. See also the discussion on the validity of both indices in the prior parts of this Chapter. However, as both indices measure inventive activities, a connection between both of them can be expected. In this sub-chapter I connect both indices, i.e. R&D Expenditure and patents, for the four major countries USA, Japan, Germany and China, which I also analyze in detail in the upcoming chapters 3.2 & 6.3.

I divide the R&D Expenditure by the number of total patents. I measure the R&D Expenditure in BERD in Million USD PPP current prices, indicating how much money businesses from the respective country spent in total on R&D. I use the complete number of patents, filed under the PCT, with applicants from the respective country, i.e. all patents filed by a MNC from the USA, Germany etc.

In many cases, the R&D Expenditure within one year will not lead to a patent within the same year, as R&D processes take time. I shift the variable three years apart, meaning that the ratio indicated for the year x gives the R&D Expenditure in year x - 3 divided by the number of patents in year x. This three-year lag is based on feedback in interviews and findings in literature.¹⁶⁷

Two limitations of this approach should be addressed: First, a lag of three years can easily be contested: several pieces of research have attempted to find a link between R&D Expenditure and patents, with limited results.¹⁶⁸ Second, different propensities to patent across industries might explain differences in ratios across countries. If companies from one country mostly operate in industries with a high propensity to patent, they would be likely to also have a lower ratio of R&D Expenditure to number of patents. This would not necessarily mean that companies from that country would be more efficient in turning their money into patents.¹⁶⁹

Furthermore, it should be noted, that having a patent does not mean immediate commercial impact. In a study of the pharma industry, an industry with very knowledge intensive and thereby long R&D processes, the time from the first basic patent to commercialization of the drug has been found to be on average eleven years.¹⁷⁰

¹⁶⁷ Cf. e.g. Heuckeroth (2017).

¹⁶⁸ Cf. e.g. Hall, Griliches, and Hausman (1984); Griliches (1981); Popp, Juhl, and Johnson (2004). The variance of time-lag can be immense. Some companies decide to patent only after waiting and observing the market for several years, if at all.

¹⁶⁹ Cf. Danguy, de Rassenfosse, and van Pottelsberghe de la Potterie (2009), who analyze the R&D-patent relationship across industries.

¹⁷⁰ Cf. Sternitzke (2010).

Table 2-4 shows the ratio of the BERD, measured in current PPP m\$ to the number of patents under the PCT. Therefore, the number indicates the R&D Expenditure per patent. With the included time-lag of three years, we can see this figure very broadly as the cost per patent.

The standard deviation (SD) shows the variation across the years: China shows a stronger change over the years, than Germany or Japan.

	-						
R&D Expenditure in	2002	2005	2008	2011	2014	2017	SD
m\$ current PPPs,							
per patent							
Germany	2.1	2.3	2.5	2.5	3.1	3.6	0.49
USA	3.9	3.9	4.4	4.8	5.0	5.5	0.57
Japan	4.2	2.7	3.0	2.5	2.4	2.4	0.44
China	8.6	6.2	6.1	4.6	5.6	4.8	1.09

Table 2-4: Relationship of R&D Expenditure and Patents under PCT¹⁷¹

Note: SD = Standard Deviation of all values from 2002 to 2017 / Outward R&D variable shifted by respective three years.

¹⁷¹ Own analysis, based on MSTI database – OECD (2020c).

Figure 2-3: Relationship of Host-Country Patents to Outward R&D¹⁷²

Chinese applications have significantly brought the costs per patent over the years: from almost 9m\$ per patent in 2002 to around 5m\$ in more recent years – a similar value to the USA.

China's uprise as an economic power coincides in an increase in its patenting activities. In fact, Chinese patent heavily, although most activities are concentrated in few fields and on few companies.¹⁷³ China considers patents as a good measure of innovative success: its statistical publications are rather limited on R&D Expenditure data, but very detailed in composition, field and origin of its patents.¹⁷⁴ Furthermore, China sees patents as a signal both domestically and abroad, for its economic capabilities and thereby incentives patenting, particularly patenting abroad.¹⁷⁵

Japanese firms spent around 2.5m\$ in recent years and German firms almost 4m\$. Furthermore, the costs per patent have increased in the last years for the USA and Germany.

¹⁷² Own analysis, based on MSTI database – OECD (2020c).

¹⁷³ Cf. Kashcheeva, Wunsch-Vincent, and Zhou (2014).

¹⁷⁴ Cf. National Bureau of Statistics of China (2019).

¹⁷⁵ Cf. China Power (2016); Fischer and von Zedtwitz (2004).

This might give support to the argument of the "innovation slowdown", which posits that less real innovation is conducted due to increasing costs.

For comparability, this analysis shows PCT-patents. It can be argued that not all patents are filed under this treaty, but instead remain on a domestic level. For the USA and Germany, I show the same analysis, but based on the number of patents at the respective domestic patent offices: USPTO and EPO. For Japan (JPO) and China (CNIPA) no equally standardized data is available. Table 2-5 shows the R&D Expenditures per patent from 2002 to 2016, the most recent year with available data.

R&D Expenditure in m\$ current PPPs,	2002	2005	2008	2011	2014	2016	SD
per patent							
Germany (EPO)	1.6	1.7	1.9	2.4	2.9	3.7	0.62
USA (USPTO)	1.3	1.1	1.3	1.6	1.6	2.1	0.27

Table 2-5: Relationship of R&D Expenditure and Patents at Local Patent Offices¹⁷⁶

Note: SD = Standard Deviation of all values from 2002 to 2016 / Outward R&D variable shifted by respective three years

The ratios, i.e. costs per patent are significantly lower, when considering all patents from domestic applicants at the EPO and USPTO and not just those which were filed under the PCT. This comes as little surprise as only particularly promising patents are selected for international protection and thereby filed under the PCT. The number of PCT patents by German or US applicants is therefore lower than those of these applicants at their respective patent office.

However, it again becomes visible how in the last decade the cost per patent has increased, i.e. the ratio of R&D Expenditure per patent has grown.

A detailed breakdown by industry is required and follow in Chapter 6 and 7 to shed more light which industries and companies exactly account for the respective country's innovative activities.

¹⁷⁶ Own analysis, based on MSTI database – OECD (2020c).

2.3. Cultural Distance to Measure Degree of R&D Internationalization

For most parts in this dissertation, we talk about internationalization as if it was a homogeneous group: a company conducts R&D abroad, i.e. internationally, or not; a patent has foreign, i.e. international, (co-)inventors or not. This simplification is common and necessary, after all, we mostly care about only whether there is a step of going abroad or not. A major argument of why international and non-international R&D, patents, business activities etc. yield different results is the diversity in backgrounds. Certainly, a purely German team could not be as creative or bold in its innovation activities than a mixed global team.¹⁷⁷

Yet, when analyzing the effects of internationalization, we might want to look closer and differentiate within the group of internationalization: we ask not just whether something is international or not, but "how much international". Evidently, Germans internationalizing to their southern neighbor country Austria could be considered much less international, then said Germans internationalizing to China. Both cases fall in the category "international", but the latter much more so than the former. To quantify these different kinds of internationalization, I introduce in this chapter to the concept of cultural distance. Cultural distance is my measurement tool to determine how far the involved countries in the internationalization step is.

First, I introduce to the concept of culture. Second, I elaborate on how cultures are measured and quantified. Third, I explain how I calculate cultural distances in this analysis. Fourth, I give a literature overview of the connection of culture, innovation and performance as a justification for this chapter. In my patent analyses, conducted in Chapter 7, I will pick up the tool of cultural distance calculation in order to not just look at international vs. non-international patents, but actually find out how much internationalization pays off the most.

2.3.1. Culture as a Relevant Category of Innovation

The term "culture" refers to the collective programming of individuals, shaped by the environments they were brought up in.¹⁷⁸ It is therefore to a degree shared with individuals who live or have lived in the same social environment.¹⁷⁹ The term "culture" has to be differentiated from "human nature" and "personality". These three terms form the uniqueness of an individual.

¹⁷⁷ Cf. Adler and Gunderson (2008).

¹⁷⁸ Cf. Eliot (2007).

¹⁷⁹ Cf. Martins and Terblanche (2003).

Item	Specificity	Source
Human Nature	Universal	Inherited
Culture	Specific to group or category	Learned
Personality	Specific to individual	Inherited and learned

Table 2-6: Hierarchy of Individuals' Uniqueness¹⁸⁰

Human nature includes is traits all mankind share, e.g. the ability to have fear or joy. On the other side of the spectrum, personality is the uniqueness of the individual, i.e. character traits that do not necessarily have to be shared with another individual. Culture is what binds groups together and is the division between "us" and "them". It can be broken down into different layers of terms such as values or rituals. Even with a changing environment, deeply-rooted values or rituals of a culture do not change quickly.¹⁸¹

Classifying cultures through countries is a rather bold assumption: after all country borders can be drawn rather artificially (e.g. in Africa due to Colonialist history) and not all cultures feel like they belong to the dominant culture of the country they are subject to. Recent examples include Chechens in Russia and Basks in Spain. Yet, using countries and classifying cultures through political borders is common practice, simple because collecting comprehensive data on a large scale is only possible this way.¹⁸² I will elaborate on relevant culture-innovation literature in Chapter 2.3.4.

A general criticism remains: there is certainly an inherent error in putting all nationals of a country into one box. Of course, there are traits which make people say, someone is "typically American" or "typically German". Especially in a globalized world, it might be increasingly hard to equalize country to cultural borders. When analyzing patent inventors, we draw a hard line between inventors based in country X, compared to inventors based in country Y and ignoring migration biographies and other factors. E.g. is a patent inventor located in China necessarily shaped by Chinese culture? However, this limitation is not new, as also the assumption that a China-based inventor implies China-based R&D activity is not necessarily true in all cases.¹⁸³ For the purposes of an academic analysis, we are going to accept certain inherent errors.

¹⁸⁰ Adapted from G. H. Hofstede, Hofstede, and Minkov (2010, p. 6).

¹⁸¹ Cf. G. H. Hofstede, Hofstede, and Minkov (2010).

¹⁸² Cf. Aycan et al. (2000); Martins and Terblanche (2003); Mueller and Thomas (2001).

¹⁸³ For example, in Europe there is quite some significant cross-border commuting, i.e. an inventor might be living in Germany, but actually work in an R&D lab in neighboring Switzerland. The inventor might also be an expat, working far away, but for several reasons might still indicate his old address in the patent application.

Furthermore, in these culture models we are largely neglecting the intra-group variance, i.e. the differences within one culture, and focusing on the inter-group variance, i.e. the differences across cultures.¹⁸⁴ The intra-group can be even larger than the inter-group variance, e.g. the two most distant Germans would be culturally further distant than a particular German and a French.

For this analysis, I measure culture through countries, i.e. I assume all individuals within a country to be sufficiently homogeneous.

2.3.2. Measurement of Cultural Distance

Several attempts have been made to quantify and classify cultures.¹⁸⁵ These studies vary in the cultural categories and exact methodology. Four commonly used country classification studies are by Hofstede, Schwartz, Trompenaars and the GLOBE Project. I have conducted my analysis mainly with the values for Hofstede, so I will focus my explanation on this study. These analyses are generally robust, as I have verified several findings with the values from the Schwartz study.

2.3.2.1. Overview of Cultural Classification Studies

Hofstede has classified countries in six cultural dimensions: power distance, individualism (vs. collectivism), masculinity (vs. feminity), uncertainty avoidance, long-term orientation (vs. short-term) and indulgence (vs. restraint). The study's values are from 2010 and last updated in 2015.¹⁸⁶ I elaborate on these cultural dimensions further below.

Schwartz has raised seven culture value orientations to compare cultural groups: mastery, harmony, hierarchy, egalitarianism, embeddedness, affective autonomy and intellectual autonomy. The cultural values are last updated in 2008¹⁸⁷

Trompenaars has introduced in 1993 together with Hampden-Turner a model of culture classification, including seven categories: universalism vs. particularism, individualism vs. collectivism, neutral vs. emotional, specific vs. diffuse, achievement vs. ascription, sequential vs. synchronic and internal vs. external control.¹⁸⁸ Trompenaars and colleagues have

¹⁸⁴ Cf. Matsumoto (2007); McCrae (2004); Buss (2001).

¹⁸⁵ As discussed in the previous part, culture and country describe the same sets here.

¹⁸⁶ Cf. G. H. Hofstede (2015).

¹⁸⁷ Cf. Schwartz (2008).

¹⁸⁸ Cf. Trompenaars and Hampden-Turner (1997). This citation refers to the second edition of the book, which was first published in 1993.

analyzed 43 cultures for their studies and published the values in 1996.¹⁸⁹ Hofstede challenges the validity of Trompenaars' analyses.¹⁹⁰

The GLOBE (Global Leadership and Organizational Behavior Effectiveness) study, founded by Robert House in 1991, has classified countries in nine cultural dimensions: performance orientation, assertiveness, future orientation, humane orientation, institutional collectivism, in-group collectivism, gender egalitarianism, power distance and uncertainty avoidance. The global study's values were raised and last updated in 2004.¹⁹¹

Occasionally mentioned is the value orientation theory by Kluckhohn and Strodtbeck (1961), defining five basic value orientations: human nature, man-nature, time, activity and relational orientations.

2.3.2.2. Methodology of Hofstede Classification Study

Hofstede ranks cultures in six categories on a scale between 0 and 100, indicating to what degree the respective category applies to the culture. A higher or lower value does not indicate better or worse but can be simply seen as a degree of applicability. The six categories are¹⁹²:

- 1. **Power Distance:** This category refers to what degree members of a culture expect and accept a clear hierarchy and an unequal distribution of power. It refers to the question how a culture handles inequalities across people. Countries with a high degree of power distance are Russia or the UAE. Countries with a low degree, i.e. with a more egalitarian and equal attitude, are Sweden or Austria.
- 2. Individualism (vs. Collectivism): A high value refers to an individualistic culture, i.e. where the individuals focusses mostly on themselves and their direct family. Examples include the US or UK. A low value refers to collectivistic cultures, where the community is more important than the individual. Examples include Pakistan or Vietnam. This category refers to the issue "I vs. We".
- 3. Masculinity (vs. Feminity): A high value refers to competitive cultures with a focus and recognition of heroism, assertiveness and material rewards. Examples include Japan. A low-value culture focusses more on consensus and values cooperation and modesty. Examples include Norway or Sweden. This category can also be described as "tough vs. tender".

¹⁸⁹ Cf. Smith, Dugan, and Trompenaars (1996).

¹⁹⁰ Cf. G. Hofstede (1996).

¹⁹¹ Cf. House et al. (2004).

¹⁹² Cf. G. H. Hofstede, Hofstede, and Minkov (2010).

- 4. **Uncertainty Avoidance:** Cultures with a high value maintain strong codes of belief and behavioral patterns. Examples include Greece or Portugal. Cultures with a low value are more tolerant towards unorthodox ideas and value more practical results than dogma. Examples include Singapore or UK. This category refers to the question to what degree a culture wants to control the future or rather just lets it happen.
- 5. Long-term orientation (vs. short-term orientation): A high value refers to cultures which have a pragmatic approach and value modesty and education in order to prepare for the future. Examples include South Korea or Japan. A low value refers to cultures valuing traditions and norms, while being rather critical of societal changes. Examples include Colombia or Egypt.
- 6. **Indulgence (vs. restraint):** Cultures with a high value allow and tolerate easy gratification of basic human needs relating to joie de vivre. Examples include Mexico or Sweden. Culture with a low value regulate and restrict gratification of needs through rigid social norms. Examples include China or Ukraine.

The first four categories were first introduced in 1980.¹⁹³ Long-term orientation was added in 1991 and indulgence in 2010.¹⁹⁴

2.3.3. Methodology of Cultural Distance Calculation

I will use the cultural distance on patent analyses during this dissertation. For that I will be interested in knowing the cultural distance within each patent's inventor team. I calculate the maximum distance for each patent, by determining the maximum distance for each of the six (for Hofstede) categories of the culture involved and adding up the distances, which is possible due to the linearity of the categories. When several cultures are involved are therefore calculate the distance from the most extreme difference, i.e. highest pair of cultural distance for each category.

For patents without any internationalization, the distance is obviously 0. The theoretical maximum distance would be 600, i.e. if the involved cultures in a certain patent had a value of 0 and 100 respectively in all six parameters. In reality, only few patents have a cultural distance >200. Such patents involve international collaborations for example between the US and China. For very few and usually economically less relevant countries no cultural data is available. These patents are filtered out, in order to not distort results.

¹⁹³ Cf. G. H. Hofstede (2001). This cite is for the second and current version of the book. The first edition was published in 1980.

¹⁹⁴ Cf. G. H. Hofstede, Hofstede, and Minkov (2010): Long-term orientation was added in 1991 (first edition of the cited book) and indulgence in 2010 (third and used edition of the cited book).

2.3.4. Cultural Distance and Innovation

Several pieces of research have analyzed the impact of cultural distance on innovation. The overall number of relevant publications in this field is low and the few publications have mostly focused on pairwise cultural combinations. With this regard, the analysis of a large-scale sample with potentially more than two involved cultures in this dissertation is a novelty.

Cultural measurement as outlined before is an established measurement and mostly discussed in the areas of sociology, intercultural management and leadership, as well as negotiations.¹⁹⁵

This sub-chapter is structured into two parts. First, I will show and discuss relevant literature which discusses the impact of culture and different cultural factors on innovation. Second, I will show and discuss literature which deals with cultural distances, i.e. comparing two or more involved cultures.

2.3.4.1. Impact of Culture on Innovation

Culture is a major determinant in innovation performance: in an older study Feldman (1988) argues that idealism, conformity and selfishness are all characteristics of American culture having both positive and negative effects on business behavior and thereby innovation. He argues that the idealization of product quality leads to a focus on engineering at the expense of marketing. While ideals are generally needed for the innovation process, their effect must be measured in advance so that they do not cannibalize some goals at the expense of other. Feldman posits that innovation requires both a decentralized management structure and decentralized culture. Homogeneous cultures would be conflictive to innovation due to a limitation on sources of creativity to top management. While Feldman talks about organization culture and not explicitly culture in the sense of Hofstede, we can see his arguments as a plea for diversity and internationalization.

Brannen (1991) defines culture as a "historically situated and emergent system of negotiated meanings and practices common to the people in an organization" and thereby endogenous, i.e. developed and shaped over time. She argues that country specific culture, i.e. non-transferable cultural and historical reasons led to the failure of Japanese management techniques in the US.

Some authors, such as Weiss (1984) argue that the success of Japanese firms cannot be explained on different mindsets and attitudes "lower absenteeism, greater corporate loyalty,

¹⁹⁵ Cf. G. H. Hofstede, Hofstede, and Minkov (2010): For managers going abroad intercultural trainings are often an integral part of their preparation program.

and harder working employees". Instead the success is due to a higher share of engineers in the workforce, selective hiring, salary structures which encourage loyalty and a unique capital structure. Ebrahimpour (1985) argues that the success of Japanese firms is therefore not to be explained with culture and country-specific mindsets and attitudes, but rather management practices, which can be adapted and imitated.

Brannen (1991) acknowledges that a detachment of these management techniques from their cultural origin might help to "demystify the Japanese success story" but argues that the inherent cultural differences between the US and Japanese, such as work attitude, are key in the successful implementation of innovations and that generalizable management practices do not necessarily work in different cultures. For example, Bushe (1988) shows that the alleged success practice of Japanese firms of pumping large amounts of money in order to implement technological changes and thereby ensuring success is wrong, as numerous case studies show the failure of this strategy. Brannen (1991) posits that all these failures are at least partially due to cultural barriers to change.

Shane (1993) was one of the first researchers analyzing the different categories of cultural values on innovation, by positing that nations might differ in their rates of innovation due to different cultural values of their citizens. Namely Shane examined the effect of the four Hofstede cultural values of individualism, power distance, uncertainty avoidance and masculinity on national rates of innovation in 33 countries in 1975 and 1980. At this time Hofstede had established the classification of cultures in only these four categories: Long-term orientation and indulgence were added later.¹⁹⁶ Shane found that rates of innovation are most closely associated with a low value in uncertainty avoidance (i.e. a high degree of uncertainty acceptance). Low values in power distance and high in individualism and masculinity also related to high rates of innovations. He includes in his analysis innovation variables, such as patent and trademark statistics and adds countries' economic variables to control for national differences, such as industrial structure and per capita income.

Efrat (2014) expands on Shane and investigated, over twenty years after Shane, the impact of different cultural aspects on countries' motivation both to innovate and to invest in innovation. A main argument and determinant of a country's success in innovation is the presence of a National Innovation System (NIS) as argued by Fagerberg and Srholec (2008): countries with a stable NIS are more innovative and therefore have a higher economic growth. Efrat notes a diminishing relevance of national characteristics in the age of globalization and

¹⁹⁶ Cf. G. H. Hofstede, Hofstede, and Minkov (2010): Long-term orientation was added in 1991 (first edition of the cited book) and indulgence in 2010 (third and used edition of the cited book).

argues that globalization led to the rise of MNCs and therefore to knowledge spillovers, which in turn contributed to a shift from a nation-based to a corporation-based economy. National innovation cultures therefore diminish in relevance, although Efrat acknowledges several cultural factors affecting an innovative national culture both directly and indirectly through a good NIS: openness, an ability to interact with the government and innovate, quality of governance, political system, levels of corruption and civic rights etc. All these indicators interact with the cultural dimensions identified by Hofstede. Efrat concludes that a national culture still significantly affects the performance of R&D units, so MNCs are well advised to identify the relevant cultural factors. The author makes ambivalent findings on the effects of individual cultural factors on innovation and posits that cultural factors are interlinked and connected to other factors.

Tolba and Mourad (2011) strive to combine individual and cultural factors affecting diffusion of innovation. They argue that the diffusion of innovation is greater in high-context, i.e. more implicit, cultures. The authors find that the main cultural factors affecting innovation are individualism and uncertainty avoidance. They argue that one the one hand, a low degree of individualism leads to a higher degree of innovation acceptance in the early stages, where in-groups are highly relevant. On the other hand, innovation diffusion is influenced by the numerous out-groups, meaning that a higher degree of individualism leads to innovation diffusion. A high degree of uncertainty avoidance leads to rather strict rules in a society, implying a slow in both acceptance and diffusion of innovation. The authors furthermore outline the importance of not just the cultural factors, but also the value system of the individual as key to innovation adoption.

Taylor and Wilson (2012) analyze the effects of individualism vs. collectivism on innovation rates. With multi-country datasets, they find on the one hand that generally individualism has a strong positive impact on innovation, even after consideration of a country's relevant policy measures. On the other hand, certain forms of collectivism, such as strong nationalism, can also lead to innovativeness. Collectivism on a small scale, i.e. "familism" or "localism", however, harms not only innovativeness and may even have severe negative impacts on a country's progress in science.

Chua, Roth, and Lemoine (2014) analyze the effect of countries' culture on creativity, a key factor for innovativeness, also with regards to international collaborations. They argue that cultural tightness is the homogeneity of a culture, i.e. the degree to which strong social norms are prevalent. It generally has a negative effect on creativity, meaning that loose cultures are more likely and more successful in engaging in novel and foreign tasks, even more so as the cultural distance of cultural tightness in a collaboration increases and tight cultures are less

receptive to such ideas. The authors also posit that when culturally tight culture works on its own or with culturally close countries, creativity success is pushed. They also point out the challenge of measuring creativity success: in Western cultures novelty and originality tend to be higher rated, compared to usefulness and practicality in Eastern cultures. This, once again, shows the duality of cultural factors. Part of a country's culture can be a dominant religion and ideology, which can affect the culture's innovative capacity (Ruttan, 1988).

Herbig and Dunphy (1998) look at the general links of culture and innovation and conduct a meta-analysis of numerous prior publications. Most of their research analyzed finds that a high degree of individualism in a culture leads to higher innovative capacity or more radical innovations. Collectivist culture, i.e. cultures with a low degree of individualism have less radical, but more process innovations, which can be linked to the close-knit ties between the actors in a collectivist society.

Some research also outlines other cultural factors, such as low hierarchy levels and a high risk-bearing attitude as supportive of innovation. These rather old studies, however, mostly focus on a Western attitude of innovation and innovativeness and have to be taken with a pinch of salt under consideration of today's globalized and complex world.

2.3.4.2. Measuring Cultural Distances

Hofstede and others place numeric values on a few distinct cultural categories for numerous countries. When comparing countries, the question at hand is how to calculate the cultural distance, i.e. how to quantify the difference across cultures.

A classic index to calculate the cultural distance between two countries, in this case the US and another country, has been introduced by Kogut and Singh (1988). They propose the following formula:

Equation 2-1: Kogut-Singh Index

$$KS_j = \frac{1}{4} * \sum_{i=1}^{4} \frac{(I_{ij} - I_{iu})^2}{V_i}$$

Where KS_j is the Kogut-Singh cultural distance of the *j*. country from the US, I_{ij} the index for the *i*. dimension (at this time Hofstede had only 4 cultural dimension), V_i the variance of the index of the *i*. dimension and *u* indicates the US.

Basically, the Kogut-Singh index takes the distance of each cultural dimension and adds up these distances. Shenkar, Luo, and Yeheskel (2008) call this index for measuring cultural distance a "must have".

Some criticism of this index deals with the assumption that the distance of each cultural dimension is assumed to be equally important. In response several authors, such as

Barkema and Vermeulen (1997), Brouthers and Brouthers (2001) or Vermeulen and Barkema (2001), operationalize cultural distance through the Euclidian distance. It computes the cultural distance in a four-dimensional space (at this time we are still talking about four Hofstede dimensions) as the square root of the summed up squared differences between each cultural dimension score. As a formula:

Equation 2-2: Euclidian Cultural Distance

$$EC_j = \sqrt{\sum_{i=1}^{4} \frac{(I_{ij} - I_{iu})^2}{V_i}}$$

Where EC_j is the Euclidian cultural distance of the *j*. country from a base-country (usually the US), I_{ij} the index for the *i*. dimension, V_i the variance of the index of the *i*. dimension and *u* indicates the base-country (here the US).

The Mahalanobis distance by Mahalanobis, Bose, and Roy (1937) and introduced into cultural distance measurement by Berry, Guillén, and Zhou (2010) expands on the Euclidian distance measurements, as it also takes the correlation between the cultural dimensions into account. It considers the full variance – co-variance matrix in calculating cultural distances between two countries. Beugelsdijk, Ambos, and Nell (2018) point out that the Mahalanobis distance particularly pays off for differently scaled indices, whereas the Hofstede cultural distance are similarly scaled, i.e. on a (0;100) scale. For uncorrelated indices, a variance-corrected Euclidian index provides a comparable result (De Maesschalck, Jouan-Rimbaud, and Massart, 2000).

Another approach is to use cultural clustering, e.g. using a dummy variable whether a culture is in the same culture cluster of another culture or not or alternatively a stepwise distance measurement, as done e.g. by Barkema, Bell, and Pennings (1996). For example, Ronen and Shenkar (1985, 2013) condense relevant literature and defined eight cultural clusters: Anglo-Saxon, Germanic, Nordic, Latin European, Latin American, Near East, Far East, Arabic.

Some studies, e.g. Luo (2002), use a rather qualitative approach, by asking managers about the perceived cultural distance. Psychic distance and cultural distance, have to be differentiated, though, as the former term includes the cultural distance, as well as the manager's mindset (Sousa and Bradley, 2006).

The calculation of cultural distance can be complex, with a plethora of methods available. Compared to many other studies, I do not look at only pairwise cultural combination. In fact, patents can involve inventors from numerous countries, requiring a formula which on the one hand is suitable for many countries involved and on the other hand is not too demanding on computational power, with several million observations in the patent data set. I propose and use in this dissertation the following formula:

Equation 2-3: Cultural Distance Calculation

$$CD_p = \sum_{i=1}^{6} I_{i,max} - I_{i,min}$$

Where CD_p is the Cultural Distance of the patent p, $I_{i,max}$ the index for the i. dimension from the inventor country with the highest score and $I_{i,min}$ the index for the i. dimension from the inventor country with the lowest score.

Consider the following example of a patent with inventors involved from three cultures / countries, categorized in three cultural categories, for simplification. Figure 2-4 shows the (example) cultural values for each of the three cultures. For example, in cultural category 3, country A has a rather high level of 80 and Country C a rather medium level of 40.

Figure 2-4: Example for Calculating Cultural Distance

As we are interested in the cultural distance, we assume that it is the extreme values, i.e. the cultures with the highest distance who determine the cultural distance in the inventor team. I therefore calculate the cultural distance by adding the maximum distance for each cultural category. In this example in Figure 2-4 (with only three, instead of six cultural categories), we would have a cultural distance CD of $CD = 160 \rightarrow (60 - 20) + (100 - 20) + (80 - 40)$.

With this approach we will have a co-domain $\in (0; 600)$. 0 would be the cultural distance, if there is actually no distance, i.e. if the cultural values are identical in all categories, which means that there is only one culture involved (there are no cultures with identical values in all categories). 600 would be the (theoretical) cultural distance, if in any of the six Hofstede categories we would have at least one culture with the lowest value of 0 and one with the highest value of 100. In reality, this is quite unlikely, and a CD > 200 is already quite high. For example, for a US-China collaboration, we calculate a CD = 237. The advantage of this formula is, that it is applicable to patent collaborations with many cultures involved.

For the analyses below, I form four groups. The first group are patents with no cultural distance, i.e. CD = 0. The remainder of patents are put in 3-quantiles, i.e. terciles, which means the patents are sorted into three equally large groups, depending on their CD: low, medium and large cultural distance and calculate each group's average quality.

We want to check whether the differences in group means are statistically significant, i.e. whether one group really can be considered to have a higher or lower quality of patents, depending on the respective Cultural Distance (CD). As we have more than two groups, respectively, we cannot run a two-sample independent t-test, but instead run a one-way ANOVA with the following hypotheses:

Equation 2-4: Hypotheses One-Way ANOVA

 $H_0: \mu_1 = \dots = \mu_k$ Where μ_k is the mean patent quality of the k. group of Cultural $H_1: \mu_i \neq \mu_j$ Distance (CD) and i and j are any two groups of cultural distance.

A significant *F*-statistic in our one-way ANOVA would lead us to the rejection of the null hypothesis H_0 , i.e. we would infer that there is a significant difference of means in one of the group-pairs of Cultural Distance. In order to identify these groups, we conduct independent t-tests of all pairwise sets. With additional tests we conduct, the chance of a Type-I error, i.e. erroneously rejecting a true null hypothesis, increases, which requires a correction. I use the Bonferroni correction, which sets the significance cut-off for each test at a fraction of the α by the number of tests.¹⁹⁷ The Type-I error will therefore be approximately α . Other potential corrections such as Fisher's least significant difference (LSD), Tukey's range test, Dunnett and Holm are not the focus of this dissertation and not discussed further. For econometrical details refer to Acock (2018); Rawlings, Pantula, and Dickey (1998) or Simonoff (2003).

2.4. Interviews with Relevant R&D personnel

Interviews with relevant R&D personnel, i.e. managers and heads of R&D departments and other institutions linked to R&D activities, can help to shed light on the precise activities and motives of a firm's R&D, thereby complementing quantitative data.

2.4.1. Methodology of Interview

There are two general types of interviews, differing in approach, setting and goals: structured and unstructured interviews. The structured interview has a rigid structure with fixed question

¹⁹⁷ For our four groups, we have six tests, i.e. mathematically possible pairwise combinations: $\frac{n(n-1)}{2}$, with *n* as the number of groups. The complete test statistics are shown exemplified for Pharmaceutical patents in Appendix-Table 7.

which are asked in a set order. Posing closed questions or rating questions helps to compare the answers across interviews. This type of explicit interview is conducted with a quantitative research question in mind. It uses a strict methodology of interviewing to ensure comparability and minimizing interviewer biases. The interviewer will aim to control and standardize as many factors as possible: from the selection and approach of the interviewee, to the questions to be posed, the setting and tone of the interview, as well as the following analysis and reporting.¹⁹⁸

An unstructured interview, on the other hand, does not give a strict structure, but rather develops individually during the interviewing process. This type of exploratory interview is conducted with a qualitative research question in mind. While the loose framework can appear appealing, it can challenge the comparability of findings.¹⁹⁹

Neither one of these interview types are strictly dominant to each other, but rather have to be carefully selected, depending on the research question and goal of analysis.

The methodology of interview used for this dissertation is a combination of both interview types: the semi-structured interview. A set of questions is prepared in advance, some more quantitative and closed to collect "hard numbers" and some more open to explore motives, goals and strategies. The semi-structured interview therefore combines the advantages of the structured and unstructured interview as detailed above and give a suitable complementary data source for the quantitative measurements, as explained in the previous sub-chapters.

The interview guideline used for this dissertation is given below in sub-chapter 2.4.2. The questions are somewhat standardized, yet sufficient room is given for the interviewee to develop and voice his opinion. The formulation and standardization of questions not only helps in not omitting crucial aspects during an interview, it also prevents posing biased or leading questions. A rigorous record of the interview must be kept, in order to differentiate between hard facts and soft opinions given by the interviewee.²⁰⁰

2.4.2. Interview Guideline

The methodology of semi-structured interviews requires preparation and a formulated list of questions to be discussed with the respective individual. The general structure of the interviews conducted for this dissertation can be divided into two parts: First, in a quantitative part the interviewee gives hard numbers on the R&D conducted by the respective company, comparable to the figures explained in the previous sub-chapters. This part gains in relevance,

¹⁹⁸ Cf. Bryman and Bell (2011, p. 202 ff.); Flick (2009); Kvale (1996); Maynard et al. (2002); Myers (2013).

¹⁹⁹ Cf. Bryman and Bell (2011).

²⁰⁰ Cf. Kvale (2007).

if the company in question does not release in-depth data in its annual report or other publications. These questions are more standardized and can more easily compared across companies and interviews. Second, in a qualitative part, the interview focusses on the motives and structures of R&D in the respective company. These questions are naturally hard to capture in quantitative figures, but are crucial to understand the structure of the respective R&D.

Quantitative Interview Questions

- Q-N1. How much do you spend on R&D abroad, both in absolute terms, as well as a fraction of the total R&D spending?
- Q-N2. How many employees (full-time equivalents) in R&D do you have abroad and what is their fraction to total R&D employees?
- Q-N3. What are your five most relevant foreign R&D locations?
- Q-N4. How is your R&D staff distributed on the most relevant foreign R&D locations?

Qualitative Interview Questions

- Q-L1. What are your most relevant research locations abroad (as opposed to development) and on what research areas are they focusing?
- Q-L2. How are your technology- and development centers distributed on your most relevant foreign locations?
- Q-L3. What are or where your key reasons to shift R&D abroad?
- Q-L4. How do you rate the performance of your R&D centers abroad?
- Q-L5. What key performance indices (KPI) do you use to evaluate your R&D centers and staff?
- Q-L6. How is the cooperation and knowledge transfer between your domestic and foreign R&D centers?
- Q-L7. How do you consider the future development of R&D Internationalization in your company for the years 2020 2025?

2.5. Classification of Countries

For analytical purposes, countries analyzed within this dissertation are classified in one of two categories: developed economies and emerging economies. This classification aids in analysis, as countries with a comparable economic environment are grouped together.

Definition: A developed country within this analysis is a country which has been classified as developed in 1994. All other countries are emerging.

This definition helps particularly in separating the effects of R&D Internationalization as measured on "traditionally developed economies", i.e. economies which have experience economic strength and innovation capabilities for a longer time, versus "newly developed or developing economies", i.e. economies which only recently, if even, have increased their capabilities.

There are several definitions and country classification schematics, usually including economic strength and development, as measured through the nation's gross domestic product (GDP) in both absolute and growth terms. Some countries, particularly those in transition, show attributes which could place them in either of the given categories. China, for example, is classified by the World Bank as an "Upper-Middle-Income Economy", with its Gross National Income (GNI) per capita in the bracket 3,996 to 12,375 USD.²⁰¹ With significant wealth disparities, for example between rich coastal cities like Shanghai and poorer rural areas, the classification of China is not necessarily unequivocal.²⁰² Some classification schemes, such as provided by the 'International Monetary Fund' (IMF) are not based on strict numeric criteria.²⁰³

Over time the classification of a country may change, for example Israel's classification has shifted from emerging to developing economy around 2010 due to its continuous economic growth.²⁰⁴

With heterogeneous evaluation criteria, which are sometimes not even explicitly published, the classification results vary. Greece, for example, is classified by the IMF as a developed country²⁰⁵, whereas the finance company MSCI considers Greece as an emerging country and therefore includes Greek firms in its "MSCI Emerging Markets Index".²⁰⁶

²⁰¹ Cf. World Bank (2019). Status as of 2020. The other country categories are "Low-Income Economies", "Lower-Middle-Income Economies" and "High-Income Economies". The income thresholds are regularly calculated and updated with the "Atlas-Method" (World Bank, 1989).

²⁰² Cf. Lampton, Wallace, and Conrad (2016).

²⁰³ Cf. IMF (2019).

²⁰⁴ Cf. Solomon (2013).

²⁰⁵ Cf. IMF (2018). Developed economies are labelled "Advanced Economies". Other countries are grouped as "Emerging and Developing Economies".

²⁰⁶ Cf. MSCI (2019a). Apart from "Developed" and "Emerging" countries, the MSCI groups countries which are used in the company's indices in the "Frontier" category.

On top of dividing the world's countries into a set of groups, there is also a plethora of palatable labels for certain groups of countries, which, objectively or subjectively, share common economic characteristics. These labels include "BRIC" (Brazil, Russia, India and China – see below), "Pacific Pumas" (Colombia, Chile, Mexico and Peru)²⁰⁷, "Asian Tigers" (or "Asian Dragons": Hong Kong, Taiwan, Singapore, South Korea)²⁰⁸ and its derivative "Tiger Cubs" (Malaysia, Philippines, Thailand, Indonesia, Vietnam)²⁰⁹ and many more.

BRIC:

The term and acronym BRIC was coined in 2001 for the four countries Brazil, Russia, India and China: these countries were unified by their two-digit annual GDP growth rates and assumed to eventually surpass the established Western economies.²¹⁰ The leaders of the BRIC countries regularly meet since 2009, with the addition of South Africa in 2010, thus forming the group known as 'BRICS'²¹¹. However, as it will be shown further below, the idea of the 'BRICS' or 'BRIC' as the most promising emerging countries, has grown too narrow.

For clarity and purposes of this analysis, I use two mutually exclusive categories, as defined above: all countries which have been developed in 1994, the first year of analysis in this dissertation, are categorized as "developed". All remaining countries are emerging countries. Note: With a general upwards global economic development, there has been no downwards classification over the years across all relevant classification schemes, i.e. there has been no shift in categorization from developed to emerging, only vice versa. The definition in this dissertation of a developed country is therefore comparably strict. The list of countries considered to be "developed" is shown in Table 2-7. The status as a developed country does only indicate its relative economic strength, not its absolute: small countries such as Luxembourg are and have been a developed country for a long time, whereas their international economic relevance is negligible.²¹²

²⁰⁷ Cf. George (2014).

²⁰⁸ Cf. Young (2000).

²⁰⁹ Cf. Tani (2017).

²¹⁰ Cf. O'Neill (2001).

²¹¹ Cf. The Economist (2013).

²¹² In 1994 Luxembourg had an absolute GDP of 27,824m\$ (constant prices, constant PPPs, base year 2015), with which it ranged just below Costa Rica (OECD, 2019a).
Developed Country								
Australia	Germany	Norway						
Austria	Ireland	Portugal						
Belgium	Italy	Spain						
Canada	Japan	Sweden						
Denmark	Luxembourg	Switzerland						
EU15 ²¹⁴	Netherlands	United Kingdom						
Finland	New Zealand	United States						
France								

Table 2-7: List of Developed Countries ²¹³

²¹³ Own classification, based on IMF (2018); MSCI (2019b); World Bank (2019).

²¹⁴ The EU15 is listed here, as some data is only published as an EU15-aggregate. The EU15 denotes the 15 member-countries of the European Union prior to 1995 and prior to the ascension of ten additional countries. The EU15 includes: Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain, Sweden and United Kingdom. Note: Greece is the only country of the EU15, which is not considered a developed country in this analysis. The effect of Greece in the EU15-group is, due to the country's small economic size, negligible.

3. Global Trends and Shifts in R&D Expenditure Patterns

In this chapter I analyze the global trends and developments in R&D Internationalization by relevant home- and host-countries, by scrutinizing and analyzing the Business expenditure on R&D (BERD). The BERD is a significant indicator, capturing R&D and innovation activities of businesses around the world. Analyzing the BERD helps us to understand better the size and location of innovation activities.²¹⁵ The detailed methodology has been discussed in the previous chapter.

When enterprises spend money on R&D, not just in their home-country, but abroad (Outward BERD), we can use this information in order to understand where the company conducts foreign R&D activities. Accordingly, we can use the Inward R&D to understand from which country foreign R&D investments are coming.

The following research questions are being answered:

RQ3.1:	What are the structural changes in foreign R&D investment during the period 2000 to 2018?
RQ3.2:	MNCs from which countries invest the most on foreign R&D?
RQ3.3:	What are the major source and target countries for MNCs to invest in R&D internationally?

Data on R&D spending is collected and published on a national level, requiring condensation and consideration of different depths and breadth of data: Some countries, e.g. the United States require companies²¹⁶ for detailed information on the type, destination and amount of R&D investments. Other countries, particularly emerging countries, often do not collect or publish this data in a comparable level of detail. This chapter therefore serves to give a condensed and clear overview, based on the research questions posed above.

²¹⁵ As outlined in the methodology part (Chapter 2.1), I will only list and discuss the business expenditure on R&D, i.e. no expenditure by governments or public research institutes. As explained before, certain measures such as tax breaks for innovation or subsidies are not consistently counted in either category across countries: the individual measures vary, despite definitions in the FRASCATI manual (OECD, 2015b).

²¹⁶ In Chapter 2.1.1 the concept of Ultimate Beneficial Ownership is discussed: a company, while technically registered locally, might be ultimately owned by a foreign entity, so the company's business figures are to be attributed to that foreign entity.

In the first part I will give a global overview of the R&D Expenditure within a country (BERD), as well as an overview of Inward R&D for major economies in the world. This shows general developments and trends in R&D Internationalization.

In the second part I focus on the four major economies Germany, USA, Japan and China and break down their respective Outward and Inward R&D Expenditures.

In this chapter I show how the R&D expenditures by business around the world have skyrocketed in the last twenty years, particularly driven by rising R&D expenditures from foreign-based firms, i.e. the trans-border R&D flows increase. Furthermore, we will see how more countries have increased in relevance, compared to 2000 where almost all of R&D Expenditures was spent in the US, Japan or certain European countries (e.g. Germany). Since then many more countries have increased in relative relevance as R&D locations, such as Switzerland, Sweden, Netherlands, Canada, but also Austria and Belgium. Most notably, however, we see a rise in relevance of emerging countries, particularly in recent years, such as China, Israel, India and some Eastern European countries, e.g. Poland or Czech Republic. I show how particularly the emerging country China has taken the stage, although precise analyses and interpretations are limited by incomplete data and currency exchange effects.

3.1. Overview Global Development of R&D Expenditure

Table 3-1 gives an overview of the Business Expenditure on R&D within the respective country (BERD). It therefore shows in which countries the most money is spent on R&D. While these figures do not reveal any degree of internationalization, they do show which countries are the largest investors for business R&D.

For example, in the year 2007 280 billion USD have been spent within the United States by businesses to conduct R&D. As discussed earlier, the BERD displays the money spent within a country, but does not differentiate which share of that money comes from national businesses and which from foreign businesses investing in the respective country. A breakdown of the most-relevant host-countries in terms of their Outward (outgoing) R&D investments follows in the following sub-chapter.

The most relevant countries in terms of their BERD are listed, separated into Developed Countries and Emerging Countries²¹⁷ and sorted decreasingly by the most recent

²¹⁷ For an overview of the grouping and methodology into Developed and Emerging Countries, see Chapter 2.5.

period (2017). I list the respective Top 10 developed and emerging countries, and in addition the group of the EU15-countries.²¹⁸

Missing data for certain years is replaced by data from the most adjacent year and marked accordingly in the table. In order to not having figures distorted through the World Financial Crisis, I include the year 2007, and not 2009 which would be in the middle of 2000 and 2017.

The raw data is collected and supplied by the OECD, through its Main Science and Technology Indicators (MSTI) database. The source data of relevant countries can be found in Appendix-Table 1. Up until the MSTI 2019/1 publication, the OECD collected and published data on Inward R&D as R&D Expenditures of Foreign Affiliates.²¹⁹ These publications, covering data up until 2016, aided in giving a comprehensive insight into trans-border R&D activities and have been discussed and condensed, e.g. by Gerybadze (2020).²²⁰ Since then the biannual MSTI publications have been shorted and this data has not been made available, requiring a more fine-grained and dedicated approach to discuss more recent years, as shown in my R&D Matrix in Table 3-2 and Table 3-3.

²¹⁸ See Table 2-7 for a breakdown and discussion of the EU15-countries.

 ²¹⁹ OECD (2019a) – MSTI 2019/1, Table 60; OECD (2018) – MSTI 2018/1; Table 61.
²²⁰ Cf. Gerybadze (2020), Table 3.

Cour	ntry		2000	2007	2017	CAGR
						'00-'17 (%)
OEC	D-Tot	al	533,000	661,345	846,939	2.8
		United States	246,145	279,820	353,522	2.2
		EU15	146,348	173,986	223,664	2.5
		Japan	86,698	119,580	122,204	2.0
	ies	Germany	49,278	55,262	76,449	2.6
	ountr	France	26,976	29,983	36,057	1.7
	S S C	United Kingdom	20,348	23,616	29,205	2.1
. <u></u>	elope	Italy	10,129	12,818	17,199	3.2
ERD)	Deve	Canada	12,709	14,331	12,986	0.1
e (BE		Sweden	7,694 ²²²	9,274	11,016	2.1
penditure		Switzerland	5,951	8,226 ²²³	10,899	3.6
		Australia	4,913	11,308	10,880 ²²⁴	4.8
Ш Ш Ш		China	24,465	93,206	345,076	16.8
s R&		South Korea	15,759	31,211	66,903	8.9
ines		Taiwan	7,218	13,951	27,550	8.2
Bus	Itries	Russia	13,587	20,700	22,903	3.1
	Cour	Israel	5,091	7,411	11,055	4.7
	ling (Turkey	1,331	3,451	10,764	13.1
	nerg	Poland	1,263	1,230	6,698	10.3
	Ш	Singapore	2,306	4,792	5,568	5.3
		Czech Republic	1,416	2,176	3,790	6.0
		Mexico	1,372	3,107	3,077	4.9
1						

Table 3-1: Annual Business R&D Expenditure (BERD) by Country in Mio USD²²¹

Note: Values are given in 2010 million USD, constant prices and PPPs. Countries in bold are analyzed below in Chapter 3.2.

²²¹ Own analysis, based on OECD (2019a), MSTI database, extracted on 26. Dec. 2019.

²²² Value from 1999.

²²³ Value from 2008.

²²⁴ Value from 2015.

The United States are clearly the largest location in terms of R&D Expenditure with an annual Business Expenditure on R&D (BERD) of 354 billion \$ per year in the most recent period of 2017. Japan and Germany follow at a significant distance with around 35% and 22% of the US BERD. These three countries have across all periods consistently been the number one, two and three, respectively of all developed countries in terms of their BERD. All developed countries have a CAGR of less than 5%, in the case of Canada even of just 0.1%.

The three biggest BERD countries in Europe are Germany, France and UK, which collectively spend around 63% of the total EU15 BERD. Canada and Australia are two other non-European relevant developed countries.

The Emerging Countries, on the other hand, have undergone a much more dynamic development: with partially much higher annual growth rates, they have consistently increased their BERD. China has undergone the most significant development: with a CAGR of almost 17%, it ranks now directly behind the US of all countries. China has significantly caught up: in 1995, for example China was still on rank 10 of all countries and behind the emerging countries South Korea and Russia. Until 2017, China has consistently reduced the gap in Business Expenditure on R&D to the frontrunner US and only ranks slightly behind it.

Up until here we have analyzed business R&D activities perform within national boundaries.²²⁵ In a next step I focus on trans-border R&D flows, i.e. I investigate how much R&D is spent by businesses in other countries.

Table 3-2 and Table 3-3 show an R&D matrix for 2000 and 2015, respectively, depicting the cross-country inflow of BERD of relevant countries: the column shows the respective declaring country, i.e. the country which reports and in which R&D is invested in (target country). The rows show the investing country or source country, i.e. the country from which the cross-country R&D investment is made from, with a country selection based on Table 3-1. Due to limitations in data availability, the tables are not always completely filled. The emerging countries China and India would be interesting for analysis. However, data on these non-OECD member states is not being presented at this stage, as only rudimentary and comparably imprecise data partly published by these countries is available.

The upcoming tables serve as an overview, showing major R&D Internationalization patterns. In the next sub-chapter, I will show the (international) R&D Expenditures by firms of major countries in more detail.

²²⁵ For a detailed explanation of the nomenclature, refer to Chapter 2.1.1.

	Inward	R&D Exp	penditur	e 2000 in	Mio. US	D, by de	claring /	target co	ountry
Investing Country	US	DE	GB	JP	FR	СА	NL	SE	СН
USA	-		1,846	1,061		1,247	227	1,182	
Germany	5,281	-	180	150		83	33	124	
UK	3,289		-	96		162	80	1,215	
Japan	1,373		212	=		56	26	3	
France	2,205		215	1,709	Ŧ	55	100	67	
Canada			61	8		-	0		
Netherlands			502	182		13	-	148	
Sweden			95				3	-	
Switzerland	2,607		172	37		33	21	210	-
Inward R&D	20,990		4,292	3,591		1,760	642	3,083	
(Total) BERD	199,961	32,881	17,414	100,776	17,870	8,345	4,117	7,208	4,672
Share (%)	10.5		24.6	3.6		21.1	15.6	42.8	

Table 3-2: Inward R&D Matrix by Target Country, 2000²²⁶

Note: Values for United Kingdom from 1999 / BERD for Sweden as average value from 1999 and 2001.

Table 3-2 shows the Inward R&D Matrix for the year 2000. In the columns we see the inward R&D investment per receiving / declaring / target country. For example, in 2000 German firms have invested 5.3 billion USD in R&D in the US.

The US, the biggest economy and biggest R&D spender (highest BERD) in the world, also has a significant influx of R&D Expenditure by multinational corporations from foreign countries. Around 25% of all Inward R&D is attributed to investments from Germany, for which the US are obviously an important R&D location. Other large investing countries include the UK and Switzerland.

From the investing country side, we can observe that firms from Germany and Japan, both investing rather significantly in the US, invest only smaller R&D sums in other countries. This can be an indication of a rather selective strategy: instead of spreading R&D investments broadly across the globe, these countries focus on a select market, here the US. The US, in turn, invests rather evenly in several other countries, including the UK, Japan, its neighbor

²²⁶ Own analysis, based on OECD (2020e), Dataset: Business Enterprise R&D Expenditure, extracted on 3. Oct. 2020 and converted into USD based on respective exchange rate published by the OECD (2020g).

Canada and Sweden. The UK also invests also quite strongly in Sweden, which can be attributed to mostly market-seeking motives.²²⁷

Overall, we can observe in 2000 a quite selective international R&D spending pattern. Furthermore, it is noticeable that the data completeness is not optimal: as data is sourced from a respective country's national reporting, usually statistical offices, this simply shows that a thorough analysis on the origins of foreign R&D investments has not been a core concern for many countries.

We have analyzed so far foreign, i.e. Inward R&D, investments for the base year 2000. In a next step, we see how the patterns have changed compared to the year 2015. This is the latest year for which generally reliable data is available.

Inward	R&D Ex	penditur	e 2015 in	Mio. US	D, by dee	claring /	target co	ountry
US	DE	GB	JP	FR	CA	NL	SE	СН
	4,693	6,421	2,100	1,033	3,231	579	750	
7,269	-	979		848	161	141		
8,377	778	-		362	272	75		
7,776		915	-	150	83	262		
5,355	830	996		-	340	218		
906			8		-			
4,659	2,653			628	80	-		
670	218			330		13	-	
10,042	1,495			1,246	114	37		-
56,731	14,534	16,263	7,629	7,245	4,952			2,104
355,821	67,627	31,908	113,064	34,542	14,040	8,509	11,331	16,272
15.9	21.5	51.0	6.7	21.0	35.3			12.9
	Inward US 7,269 8,377 7,776 5,355 906 4,659 670 10,042 56,731 355,821	Inward R&D Exp US DE 4,693 4,693 7,269 4,693 7,776 7778 5,355 8300 906 2,653 4,659 2,653 670 218 10,042 1,495 56,731 14,534 355,821 67,627 15.9 21.5	Inward R&D Expenditur US DE GB 4,693 6,421 7,269 979 8,377 7778 7,776 915 5,355 830 906 906 906 2,653 10,042 1,495 56,731 14,534 16,263 355,821 67,627 31,908 15.9 21.5 51.0	Inward R&D Expenditure 2015 in US DE GB JP 4,693 6,421 2,100 7,269 979 979 8,377 778 915 7,776 915 - 5,355 830 996 906 914 - 4,659 2,653 - 670 218 - 10,042 1,495 - 56,731 14,534 16,263 7,629 355,821 67,627 31,908 113,064 15.9 21.5 51.0 6.7	Inward R&D Expenditure 2015 in Mio. US US DE GB JP FR 4,693 6,421 2,100 1,033 7,269 979 848 8,377 778 362 7,776 915 362 7,776 915 150 5,355 830 996 150 906 915 628 628 670 2,653 926 628 670 2,18 330 1,246 10,042 1,495 1,246 330 10,042 1,495 7,629 7,245 56,731 14,534 16,263 7,629 7,245 355,821 67,627 31,908 113,064 34,542 15.9 21.5 51.0 6.7 21.0	Inward R&D Expenditure 2015 in Nio. USD, by determinant of the sector of the se	Inward R&D Expenditure 2015 in Mio. USD, by declaring / US DE GB JP FR CA NL 4,693 6,421 2,100 1,033 3,231 579 7,269 - 979 848 161 141 8,377 778 - 362 272 75 7,776 915 - 150 83 262 5,355 830 996 - - - 4,659 2,653 996 - - - 4,659 2,653 996 - - - - 4,659 2,653 996 - - - - - 10,042 1,495 1,246 114 37 - - - - - 56,731 14,534 16,263 7,629 7,245 4,952 - - - - - - - - - -	Inward R&D Expenditure 2015 in Mio. USD, by declaring / target color US DE GB JP FR CA NL SE 4,693 6,421 2,100 1,033 3,231 579 750 7,269 979 848 161 141 141 8,377 778 915 362 272 75 7,776 915 150 83 262 150 5,355 830 996 340 218 14 906 628 80 - - - 4,659 2,653 51.0 628 80 - 670 218 - 330 13 - 10,042 1,495 1,246 114 37 - 56,731 14,534 16,263 7,629 7,245 4,952 - 355,821 67,627 31,908 113,064 34,542 14,040 8,509 11,331 1

Table 3-3: Inward R&D Matrix by Target Country, 2015²²⁸

Note: Values for France from 2014

Table 3-3 shows the R&D matrix for 2015. As a first major observation we can see the increase of Business Expenditure on R&D in the respective countries, as well as an increase in shares

²²⁷ Cf. Braconier, Ekholm, and Knarvik (2001).

²²⁸ Own analysis, based on OECD (2020e), Dataset: Business Enterprise R&D Expenditure, extracted on 3. Oct. 2020 and converted into USD based on respective exchange rate published by the OECD (2020g).

of Inward R&D to BERD. In most countries the BERD has significantly increased: for Germany the BERD has more than doubled in the 15 years to a high value of 68 billion USD, outlining the high and increasing relevance of R&D.²²⁹ The US BERD has grown strong as well, yet at a smaller rate and increased by a total of 78%. Japan, despite a rather high BERD, stands out with its comparably small growth rate and increased by a total of 12%. Switzerland stands it in the other direction: the small yet innovation-strong country has increased its BERD of 4.8 billion USD in 2000 to 16 billion USD in 2015, which corresponds to a staggering increase by the factor 3.5.

Once again, we see strong R&D investments into the US, which has remained as one of the largest and most significant target countries for foreign R&D investments. Germany, the leading R&D investing country in 2000, has dropped in the ranking, as countries such as Japan, UK and Switzerland have increased their R&D investments in a much stronger way. The four most relevant countries Germany, USA, Japan and China will be discussed in more detail, i.e. both from an Inward and Outward R&D spending perspective, in the following sub-chapter.

The US still invest strongly in relevant economies, namely Germany, UK, Japan, France and Canada, for all of which the US is the biggest source of Inward R&D. Switzerland, a rather small country with a strong innovation-based economy appears to be quite internationalized with significant R&D investments in several countries.

Germany, in turn, seems to have maintained its rather selective strategy of focusing strongly on the US and with somewhat relevant investments in the UK and France.

Overall, we can make three major observations from the matrices. First, we see how the level of Business Expenditure of R&D has increased at quite different rates across the selection of major economies. Second, we can see that the US is the leading foreign R&D investor in many economies, yet the dominance has decreased until 2015, i.e. the relative distance of the leading investor US to the following second has decreased.

That shows the clearly an increasing interconnectedness of R&D activities, i.e. more firms from more countries are spending increasingly higher amounts and shares to conduct R&D in an increasing broader range of countries.

²²⁹ A doubling of values in 15 years would correspond to a CAGR (Compound Average Growth Rate) of 4.7%.

In Table 3-4 I show the value and share of Inward R&D of the previous nine countries, to show the absolute and relative relevance of the respective country as a target country for foreign R&D investments.

	Inward to (Total) BERD (%)		Inward R&	D (Mio. \$)	CAGR
Country	2000	2015	2000	2015	'00-'15 (%)
USA	13.1	15.9	26,180	56,731	5.3
Germany	18.7	21.5	6,881	16,838	6.1
UK	31.3	51.5	5,678	15,522	6.9
Japan	3.6	6.7	2,528	8,927	8.8
France	24.3	20.6	5,002	8,078	3.2
Canada	29.2	35.3	2,944	5,074	3.7
Netherlands	26.1	19.1	1,304	1,808	2.2
Sweden	42.8	42.1	3,083	4,545	2.6
Switzerland	9.4	12.9	403	1,639	9.8
COMPOUND	14.5	17.4	54,004	119,163	5.4

Table 3-4: Overview Inward (Foreign Funded) R&D for Selected Developed Countries²³⁰

Note: See Figure 2-1 (p. 25) for terminology of BERD (sub-)sets. / Compound shows calculations based on total for the nine countries shown in the table.

In Table 3-4 I show the total Inward R&D investments, both as an absolute figure and with the corresponding CAGR, as well as in relation to the BERD, i.e. total R&D spending within the country. In Table 3-2 and Table 3-3 I was focusing on a breakdown per country, here we are working with the total aggregates, for which there is better data availability.²³¹

We see in the Table 3-4 the total Inward R&D indicated in million USD at current prices and PPPs. The figures, together with the CAGR, show quite different trends and developments across the countries: several European countries have strongly increased their Inward R&D. The US, as one of the biggest economies in the world, can be considered somewhat of a benchmark with a CAGR of 5%. While we have seen before, that US firms invest globally in

²³⁰ Own analysis, based on Table 23 & 60, MSTI 2019/1 – OECD (2019a) and Table 23 & Table 61, MSTI 2014/1 – OECD (2014) and OECD (2020e).

²³¹ Note: China as a relevant economy would be interesting to include in this sample, however economic data is only available directly through Chinese statistical offices and not standardized through the OECD. Comparing data from such different data-sources leads to compatibility problems, i.e. comparing apples to oranges.

R&D, Table 3-4 shows, how the US have attracted foreign R&D, meaning foreign firms increasingly invest in R&D in the US (Inward R&D).

I give the total for these nine major economies, showing the total Inward R&D in Million USD, as well as the average share of Inward to BERD.

Germany, the UK, Japan and Switzerland stand out with a rather higher CAGR, indicating that they strongly increased the amount of R&D expenditure by foreign firms into their respective countries since 2000. The high CAGR shows how countries have increased their attractiveness.

We can see the relative relevance of R&D Expenditure by foreign firms within a company with the share of Inward R&D to BERD: for example, Japan, a rather un-internationalized country, stands out with low single-digits Inward shares of 4% and 7% respectively, indicating that the overwhelming majority of R&D Expenditure within Japan comes from Japanese firms. On the other side of the spectrum we have the UK, where in 2015 more than half of Business R&D Expenditure in the country came from foreign firms.

We can draw the two major conclusions: First, R&D Internationalization increases as the Inward R&D figures grow mostly at a much stronger rate than the BERD figures. Second, the share of Inward to BERD shows significant differences across countries and thereby reveals structurally different outlines of R&D patterns in each country.

In the next chapter I collect and analyze available Inward and Outward R&D data for the four major economies Germany, USA, Japan and China.

3.2. R&D Expenditure by Country

In this sub-chapter the most relevant countries are analyzed in terms of their Inward- and Outward-oriented R&D Expenditures: Germany, USA, Japan and China. I show how the influx of R&D investments have increased and also diversified, in terms of that increasingly more countries are investing relevant amounts in R&D in a country. Furthermore I also show how the relevance of certain developed countries has shifted and decreased in return to select emerging countries.

The detail, validity and timeliness of the data on Inward R&D are generally higher, compared to Outward R&D, although it highly varies across countries. Countries generally are interested in being attractive investment locations, so measuring the inflows of R&D, can help them to determine which foreign nations are interested in conducting innovative activities within that

nation. The Outward R&D, by contrast, may indicate some weakness or deficiencies of the multinational firms' home country.

The raw data is supplied through the respective countries' publications and partly supplemented with OECD data. Depending on the national legislature and reporting standards, data on R&D is either collected through national agencies, e.g. the national statistical office or the Central bank, often on a mandatory reporting basis or through, usually government-mandated, private research institutions which survey relevant companies. The detail, validity and timeliness of the data therefore highly varies across countries.²³²

The most relevant partner countries are shown separated into Developed Countries and Emerging Countries. If available, I show the values for 2000, 2007 (before the financial crisis, to reduce biases) and 2017 (usually most recent available data).

The values are sorted decreasingly by the most recent period 2017. Amounts of money not published in USD or EUR, are converted with the annual average exchange rate into USD.²³³

For the analysis of Inward R&D I calculate the share of Inward R&D to BERD, i.e. the share of money spent within a country on R&D coming from foreign firms.

For the analysis of Outward R&D I calculate two shares: First, the share of Outward R&D to Total R&D, i.e. which percentage of money R&D Expenditure by companies from that country is spent abroad.²³⁴ Second, the share of BERD to GDP. Intuitively, one might argue in putting a measure of R&D Expenditure in relation to the market value of goods and services within an economy. For policy makers this percentage is a meaningful goal. The European Commission, for example, set for its member countries to spend it least 3% of the respective GDP on R&D²³⁵. Please note, that this calculation includes the GERD, i.e. Inward and National R&D, both by businesses, government and other entities. I chose to remain more specific and continue focusing on the business side, hence the BERD.²³⁶ A high share can indicate that R&D conducted by businesses is important relatively seen to the country's GDP.

²³² It is important to point out that the calculation methods across databases differ: for example what Germany reports as Inward R&D from the US is a different figure than what the US reports as Outward R&D to Germany.

²³³ Cf. World Bank (2020) – Appendix-Table 6.

²³⁴ I call 'Total R&D' the sum of 'National R&D' and 'Outward R&D'. For a recap of terminology: see Chapter 2.1.1.

²³⁵ Cf. European Commission (2010).

²³⁶ To recap the discussion about these kinds of ratios, please read Chapter 2.1.2: Policy makers usually consider the ratio of GERD to GDP, not BERD. The former ratio naturally is higher, yet its explanatory power is more limited.

Generally speaking, the Outward R&D investments of a country's companies are measured consistently and in detail by only few countries. Table 3-5 shows the data collection institutions and sources for relevant countries.

Table 3-5: Data Collection Agencies for Outward Business R&D

Country	Agency	Title of Publication
Germany	Stifterverband	FuE-Erhebung (R&D Survey)
	Wissenschaftsstatistik (for R&D	
	figures)	
	Deutsche Bundesbank (German	Foreign Affiliate Statistics (FATS)
	Federal Bank) (for non-R&D figures)	
USA	Bureau of Economic Analysis (BEA)	Activities of U.S. Multinational
		Enterprises (MNEs)
Japan	Ministry of Economy, Trade and	Survey on Overseas Business Activities
	Industry (METI)	
China	National Bureau of Statistics of	China Statistical Yearbook
	China	China Statistical Yearbook on Science and
		Technology (more detailed R&D figures,
		available for data from 2009 forward)

3.2.1. R&D Expenditure: Germany

Germany's business R&D data is collected by the 'Stifterverband Wissenschaftsstatistik'²³⁷ since the 1970s on behalf of the German Federal Ministry of Education and Research with a survey on a biennial basis. Data is only available for uneven years, so instead of data for 2000, I show 2001 instead in Table 3-6.

Inward R&D

The Stifterverband breaks down the source of foreign R&D investments in Germany only for recent years and only for the major markets Europe (EU & non-EU), as well as USA.

²³⁷ Literal translation to English: Science Statistics of the Foundation's Association. It is a part of the 'Stifterverband für die Deutsche Wissenschaft' (Foundation's Association for German Science), or short 'Stifterverband', whose goal is to analyze, consult and support in the areas of education, science and innovation Stifterverband (2019).

3.2. R&D Expenditure by Country

Inward R&D Expenditure to Germany in m€	2001	2007	2017	CAGR
				'01-'17 (%)
R&D Expenditure in Germany (BERD)	36,166	42,759	68,787	4.1
R&D from abroad (Inward R&D)	8,013	11,208	13,701	3.4
Share Inward R&D/BERD (%)	22.2	26.2	19.9	-
From abroad: EU	-	-	6,418	-
From abroad: Europe, non-EU	-	-	1,978	-
From abroad: USA	-	-	3,834	-

Table 3-6. Overview Inward R&D Investments into Germany ²⁰⁰	Table	3-6:	Overview	Inward R&L) Investments	into (Germany ²³⁸
--	-------	------	----------	------------	---------------	--------	------------------------

Approximately 22% of R&D came from foreign firms in 2001. This share rose to 26%, i.e. more than every fourth R&D Euro came from foreign firms in 2007 and decreased to 20% again in 2017. This shows that the relevance of foreign R&D investors to Germany has increased between 2001 and 2007, but then decreased again until 2017. Compared to previous years the share of Inward R&D to Total R&D (BERD) has decreased, indicating that Germany has become relatively less attractive for foreign R&D investments.

A breakdown for 2017 by origin of the Inward R&D investments reveals that approximately one half of the Inward R&D comes from EU neighbors. Around 28% come from the USA and 15% from European and non-EU countries, which is mostly the southern neighbor Switzerland. The three countries or country-groups, EU, non-EU Europe and USA account for practically all of Germany's Inward R&D. Other countries or regions, e.g. China, therefore do not significantly contribute to Germany's Inward R&D.

Outward R&D

The Stifterverband only surveys the amount of R&D spent abroad vs. domestically. It does not ask for destination countries, so the Outward R&D cannot be broken down to target countries. The Stifterverband, however, is aware of that data limitation and strives to elaborate its questioning in future surveys. In this dissertation I use patent analyses, namely the methodology of Host-Country Patents in Chapter 4 to shed more light on the distribution of countries.

²³⁸ Own analysis, based on Stifterverband (2019), Zahlenwerk, Table 6.1, Inward R&D; Stifterverband (2009), FuE-Datenreport, Table 27; OECD (2020e), Dataset: Inward activity of multinationals by industrial sector (manufacturing) - ISIC Rev 3, extracted on 26. Dec. 2019.

	-	•		
Outward R&D Expenditure by	2001	2007	2017	CAGR
German Companies in m€				'01-'17 (%)
Total R&D ²⁴⁰	40,268	38,595	79,089	4.3
Outward R&D	11,949	9,459	30,144	6.0
Share Outward/Total R&D (%)	29.7	24.5	38.1	-

Table 3-7: Overview Outward R&D Investments by German Companies²³⁹

In the 16 years of analysis the R&D spent by German firms (Total R&D) has increased on average at a rate of 4.3% to almost 80 Billion USD in 2017. The part of the Total R&D spent abroad (Outward R&D) has grown at a higher rate of 6.2% per year. The share of Outward to Total R&D has increased from 30% in 2001 to 38% in 2017, indicating that German firms nowadays have a much more internationalized R&D structure: more than every third Euro on R&D gets spent abroad.

Both tables together show us that, while German firms have increasingly internationalized their R&D Expenditure, Germany itself seems to have lost some of its appeal to foreign R&D investing firms in recent years. This analysis, together with other relevant and older studies²⁴¹ outlines the following: for Germany the countries of focus are clearly the US, a select number of European neighbors and increasingly China. The upcoming patent analysis in Chapter 4 will shed further light on the international composition and distribution of partner countries.

3.2.2. R&D Expenditure: USA

The U.S. Bureau of Economic Analysis (BEA), an agency of the Department of Commerce, collects statistical data on companies and the economy in the US. It self-describes as "one of the world's leading statistical agencies"²⁴². Filing data for the annual survey is mandatory for all US businesses, which explains the comparably high accuracy and detail of the survey.²⁴³ Furthermore the BEA collects detailed data on Inward R&D investments.

²³⁹ Own analysis, based on Stifterverband (2019), Zahlenwerk, Table 6.3, Outward R&D.

²⁴⁰ For years before 2005, calculated based on BERD, provided by OECD (2019a), MSTI database, extracted on 26. Dec. 2019.

²⁴¹ Cf. German Commission of Experts for Research and Innovation: EFI (2014); EFI (2013) and Gerybadze, Schnitzer, and Czernich (2013)

²⁴² Cf. BEA (2019).

²⁴³ US businesses with at least one foreign affiliate file form "BE-10" for the annual survey. Furthermore larger companies are required to file the form "BE-577" for the quarterly survey (BEA, 2004).

Inward R&D

I show the breakdown of Inward R&D investments in Table 3-8, broken down by the most relevant developed and emerging countries by 2017 expenditure. The figures by the BEA are generally higher due to different calculations, than to those by the OECD and reported in Table 3-4. The trends and developments are congruent nonetheless. The recent source data can be found in Appendix-Table 2.

Inward R&D Expenditure to USA in m\$			2000	2007	2017	CAGR
						'00-'17 (%)
R&D	Expe	nditure in USA (BERD)	246,145	279,820	353,522	2.2
R&D	from	abroad (Inward R&D)	29,274	40,967	62,588	4.6
Share	e Inwa	ard R&D/BERD (%)	11.9	14.6	17.7	
		Switzerland	3,886	6,395	9,422	5.3
		Japan	3,436	4,416	9,403	6.1
	Ś	Germany	5,892	5,893	9,122	2.6
	ntrie:	United Kingdom	4,732	9,470	6,659	2.0
	Coul	Netherlands	1,496	1,729	5,571	8.0
	ped	Ireland	369 ²⁴⁵	257	5,262	16.9
_	velo	France	2,977	5,589	4,072	1.9
from	De	Canada	3,741	1,574	980	-7.6
iture		Sweden	386	388	669	3.3
pend		Denmark	187	368	499	5.9
O EX		South Korea	326 ²⁴⁶	215	1,557	9.6
R&I		British West Indies ²⁴⁷	22	82	1,183	26.4
vard		China	12	0	1,422	32.4
ľ	ıtries	Israel	111	149	1,097	14.4
	Cour	Hong Kong	5	75 ²⁴⁸	634	33.0
	ing (Singapore	10	69	403	24.3
	nerg	India	0	6	213	-
	ш	Taiwan	62	110	87	2.0
		Brazil	0	0	27	-
		Russia	0	0	21	-

Table 3-8: Overview Inward R&D Investments into USA²⁴⁴

²⁴⁴ Own analysis, based on BEA (2019), Data on activities of multinational enterprises - Foreign Direct Investment in the U.S. - Research and Development Expenditures; OECD (2020e), MSTI database, BERD at constant prices and 2010 PPP m\$; extracted on 26. Dec. 2019.

²⁴⁵ Value for 2002.

²⁴⁶ Value for 1999.

The Inward R&D has increased both in absolute and relative figures: in 2017 almost 18% of Business R&D Expenditure within the US came from a foreign firm. Most of the biggest R&D investing countries in the US are from Europe: Switzerland, UK, France, Netherlands, Ireland, Sweden and Denmark who collectively invested around 66% of all Inward R&D of the US in 2017. Germany, ranking first in 2000 in terms of Inward R&D investments has dropped to rank three in 2017. Canada in 2000 on rank four with its 3.7 Billion USD R&D investments has dropped in relevance and even experienced a negative CAGR.

The three most relevant emerging countries South Korea, China and Israel stand out with a relatively high CAGR, although their overall contribution to the US Inward R&D is relatively small. The British West Indies can be considered offshore-based US entities and not inherently foreign-based firms. That displays that while the relative importance of the US for Emerging Countries has grown, its absolute relevance is still comparably small.

Outward R&D

Outward R&D investments of US multinational firms are broken down and summarized in Table 3-9. The countries are grouped into developed and emerging countries, as defined in Chapter 2.5 and sorted decreasingly by the most recent value of 2017. Relevant source data can be found in Appendix-Table 3.

²⁴⁷ The British West Indies (BWI) is a collective term for the British overseas territory in the Caribbean, i.e. geographically close to the US, including Anguilla, the Cayman Islands, Turks and Caicos Islands and several others. The tax regimes is generally company friendly, leading to off-shoring by US firms (PwC, 2019).

²⁴⁸ Value for 2006.

504

441

371

1.1

Outward R&D Expenditure by US Companies in m\$			2000	2007	2017	CAGR
						'00-'17 (%)
Total R&D ²⁵⁰			224,623	273,299	347,532	2.6
Outwa	ard R8	&D	20,457	34,446	56,598	6.2
Share	Outw	vard/Total R&D (%)	9.1	12.6	16.3	-
		SUBTOTAL Developed C.	16,870	28,069	38,882	5.0
		Germany	3,115	6,403	8,177	5.8
		United Kingdom	4,111	6,000	6,415	2.7
	ies	Switzerland	286	1,162	4,735	18.0
	ountr	Canada	2,332	2,712	3,513	2.4
	Developed Co	Ireland	465	1,510	3,350	12.3
		Japan	1,630	1,919	2,875	3.4
re in		France	1,465	1,557	2,009	1.9
		Netherlands	369	752	1,377	8.1
nditu		Belgium	412	1,191	1,368	7.3
Expe		Australia	349	1,072	940	6.0
&D E		SUBTOTAL Emerging C.	2,968	6,276	17,196	10.9
ard R		China	506	1,173	3,650	12.3
Outwa		India	43	382	3,586	29.7
	es	Israel	630	1,025	2,621	8.7
	untri	Singapore	551	549	1,421	5.7
	g Ö	South Korea	143	928	1,014	12.2
	ergin	Brazil	253	607	886	7.7
	ШŰ	Malaysia	161	390	612	8.2

Table 3-9: Overview Outward R&D Investments by US Companies²⁴⁹

Note: TOTAL of country groups slightly less than Outward R&D, due to rounding and missing values.

0

0

365

303

97

73

Mexico

Taiwan

Poland

²⁴⁹ Own analysis, based on BEA (2019), Data on activities of multinational enterprises, U.S. Direct Investment abroad, R&D Expenditures.

²⁵⁰ Calculated based on BERD, provided by OECD (2019a), MSTI database.

3.2. R&D Expenditure by Country

In the 17 years of analysis US companies have increased their annual R&D Expenditure by 3% from 225 billion \$ in 2000 to 348 billion \$ in 2017. US firms have increasingly internationalized their R&D investments. From 20 billion \$ in 2000, or 9% of the Total R&D, they have increased their Outward R&D investments to 57 billion \$ or 16% in 2017.

The breakdown of the Outward R&D by country reveals numerous interesting findings.

The biggest target country in terms of received US Business R&D investments is Germany, with over 8 billion \$ in 2017. R&D investments in Germany have grown at a rather strong rate of 5.8% per year, which is above the average growth rate for all developed countries of 5.0%.

In 2000 UK ranked first, but dropped behind Germany with a much smaller growth rate of 2.7%. Canada, also a politically close partner to the US, has similarly grown at a small rate and maintained its rank in the Top Five of all developed countries. France, number five in 2000, has dropped to rank seven, of all developed countries and in the last years even received absolutely less US R&D investments.

Switzerland and Ireland, two comparably smaller economies have received two-digit growth rates in US R&D investments. Closer analysis in upcoming chapters will show in what industries exactly these increases have been.

Overall, the share of R&D investments across the developed countries has spread out: in 2000, the Top 3 countries received 57% of the R&D Expenditure of all developed countries, whereas in 2017 the Top 3 countries received only 50%. The emerging countries have experienced a much more dynamic development and grown in relevance: in 2000 only 15% of all foreign investments went to an emerging country, whereas in 2017 this rate grew to 30%.

R&D investments in emerging countries have grown from 3 billion \$ in 2000 to 17 billion \$ in 2017, with an annual growth rate of 10.9%. The most significant growths of R&D by US firms are observed in China and India, which have received around 3.6 billion \$ in R&D investments from the US in 2017. China has grown with a CAGR of 12% and India at a staggering 30%. With these R&D Expenditures China and India are now on the overall rank of 4 and 5 respectively, directly before Canada.

Israel as a close political ally of the US ranks ninth of all target countries with received R&D investments in the amount of 2.6 billion \$ in 2017. At a distance, Singapore, South Korea and Brazil follow.

Both the amount of Inward and Outward R&D have continuously increased, and are similar in size and development. The degree of internationalization is smaller compared to smaller countries, e.g. Germany with its Outward R&D ratio of 38%.

Put in a nutshell, we find an increasing internationalization and decentralization of R&D as measured by international R&D Expenditures of US firms in two aspects: on the one hand emerging countries, particularly China and India, have entered the stage and US firms have invested heavily in R&D in these countries. On the other hand, we see very different CAGR-rates across (developed) countries, indicating strong shifts in relevance within the group of developed countries, as well.

3.2.3. R&D Expenditure: Japan

The Japanese Ministry of Economy, Trade and Industry (METI) surveys on an annual basis since 1971 the overseas activities of Japanese businesses. Participation is required and additional interviews may be conducted for clarification.²⁵¹ The survey is not as detailed, compared to the US surveys and the country breakdown for Inward and Outward R&D are only surveyed in clusters of few regions.²⁵²

The most recent data is for 2016, which I will therefore use instead of 2017. The reporting unit of Yen is converted into US Dollar with its respective average annual exchange rate.

Inward R&D

Table 3-10 gives an overview of the Inward R&D investments, i.e. R&D investments from non-Japanese firms into Japan. Relevant source data can be found in Appendix-Table 4.

²⁵¹ Cf. METI Japan (2019a).

²⁵² Older data, i.e. up until 2007, in part, reveals a more detailed breakdown. More current data is, however, limited to the regions being shown.

Inward R&D Expenditure to Japan in m\$	2000	2007	2016	CAGR
				'00-'16 (%)
R&D Expenditure in Japan (BERD)	100,783	117,531	122,755	1.2
R&D from abroad (Inward R&D)	3,591	5,839	6,396	3.7
Share Inward R&D/BERD (%)	3.6	5.0	5.2	-
From abroad: Europe	2,279	5,112	5,177	5.3
From abroad: USA	1,061	637	258	-8.5

Table 3-10: Overview Inward R&D Investments into Japan²⁵³

Almost all Inward R&D comes from firms located in Europe or the USA, with the latter heavily decreasing their investments. Data available for 2007 shows that around 68% of Europe's investments can be attributed to France. As mentioned before, no detailed breakdown per country is available since 2008, when the classification and measurement system changed.

The share of Inward R&D to BERD has generally increased over the years, yet is, compared to other countries, at a relatively low rate. Apparently investing in R&D in Japan is not particularly appealing for many foreign companies on an aggregate level. With Japan as the lead-market²⁵⁴, for example in certain technical fields, we can expect a quite high inter-industry variance. An analysis of Host-Country Patents, as conducted in Chapter 4, can help to shed further light on this assumption.

Between 2015 and 2016 the Inward R&D drops by around 25% explaining the noticeable different values between Table 3-4 (2015) and Table 3-10 (2016).

Outward R&D

Table 3-11 gives an overview of Japanese R&D investments between 2016 and 2000.²⁵⁵ Relevant source data can be found in Appendix-Table 5.

²⁵³ Own analysis, based on OECD (2020e), Dataset: Inward activity of multinationals by industrial sector (manufacturing) - ISIC Rev 3 & Rev 4, extracted and last updated on 8. Feb. 2020.

²⁵⁴ See Chapter 1.1.1 for a discussion.

²⁵⁵ The reporting unit of Yen is converted into US Dollar with its respective average annual exchange rate.

Outward R&D Expenditure by			2000	2007	2016	CAGR
Jap	bane	ese Companies in m\$				'00-'16 (%)
Tot	al R	&D	99,962	114,989	123,788	1.3
Outward R&D		d R&D	2,770	3,297	7,430	6.4
Sha	are (Dutward/Total R&D (%)	2.8	2.9	6.0	-
Δ		North America ²⁵⁷	-	-	3,346	-
tward R& in		USA	1,900	1,661	-	-
	<u>.</u>	Asia	-	-	1,971	-
Oui		European Union ²⁵⁸	629	894	1,960	7.4

Table 3-11: Overview Outward R&D Investments by Japanese Companies²⁵⁶

Japanese companies have slightly increased their Total R&D Expenditure from 100 billion \$ in 2000 to 124 billion \$ in 2016, with a compound average growth rate (CAGR) of 1.3%. Investing in R&D abroad has, however, gained in great significance, as the share of Outward to Total R&D increased from 2.8% in 2000 to 6.0% in 2016.

The breakdown per country is, as discussed above, limited to the three major economic regions in 2016: Northern America, Asia (which obviously does not include Japan) and the European Union. The sum of R&D Expenditure in these three regions almost reaches the Outward R&D, indicating that there is only very little R&D Expenditure in countries outside of these three regions.

With limited data sets and several changes in data collection methodology by the METI over the years, further analyses are quite limited. The 'Japan External Trade Organization' (JETRO) aims to incentivize investments in R&D and also somewhat analyzes and incentivizes incoming R&D.²⁵⁹ International R&D activities by Japanese firms are not thoroughly captured.

²⁵⁶ Own analysis, based on METI Japan (2019b): Survey of Trends in Business Activities; METI Japan (2018): 48th Basic Survey on Overseas Business Activities and OECD (2019a), MSTI database, Outward activity of multinationals by country of location - ISIC Rev 4, extracted on 26. Dec. 2019.

²⁵⁷ For 2007 and before the values for United States are shown. Afterwards only an aggregate of North America is available.

²⁵⁸ "European Union" encompasses until 2007 the EU15, from 2008-2012 the EU27 and since 2013 the EU28. Older data indicates that the majority of R&D investments within the EU is conducted in the old EU-states. Comparability across the years is therefore given.

²⁵⁹ Cf. JETRO (2020c); JETRO (2020b); JETRO (2020a).

Japan's internationalization rate is growing, yet very low. Taken as a whole and in terms of R&D Expenditure, Japanese companies are neither extremely interested in conducting R&D abroad, nor are foreign firms to conduct R&D in Japan. Host-country patent analyses will show to what extent there are differences in R&D Internationalization across different industries.

3.2.4. R&D Expenditure: China

China's spectacular economic growth in the last decades warrants a detailed analysis with regards to its R&D activities. The National Bureau of Statistics compiles annually detailed economic statistics for the whole country and includes all large and medium-sized businesses in the high-tech industry. We know that most R&D Expenditure indeed comes from the high-tech industry by larger firms, yet the indicated figures generally underestimate the complete BERD. The "China Statistical Yearbook" makes general economic and other statistical figures available, whereas the specialized "China Statistical Yearbook on Science and Technology" gives R&D figures in more detail, but is only available for data from 2009 forward.

The reporting unit of Renminbi is converted into US Dollar with its respective average annual exchange rate.²⁶⁰

Inward R&D

Table 3-12 shows the Inward R&D in China. As there is no breakdown by country of origin available, we cannot know from where the Inward R&D Expenditure comes. Relevant data reaches only until the year 2016 and instead of 2007 only data for 2005 is available.

²⁶⁰ Cf. Appendix-Table 6.

	-			
Inward R&D Expenditure to China in Mio. \$	2000	2005	2016	CAGR
(High-Tech, large- & medium-sized)				'00-'16 (%)
R&D Expenditure in China (BERD)	1,341	4,424	39,143	23.5
R&D from abroad (Inward R&D)	245	1,244	5,635	21.7
Share Inward R&D/BERD (%)	18.2	28.1	14.4	-

Table 3-12: Overview Inward R&D Investments into China²⁶¹

Note: The three special regions Hongkong, Macao and Taiwan are considered here as non-foreign and parts of China. R&D Expenditures from these regions are therefore not listed in this Table as "from abroad".

The figures clearly show China's immense growth in R&D Expenditure: over 23% growth on average every year to 309 billion \$ in 2016. The Inward R&D has risen as well, although at a smaller rate of 22%. The share of Inward R&D to BERD has increased from 18% in 2000 to 28% and then fallen to 14% in 2016. After the initial growth between 2000 and 2005, foreign R&D investments have grown strongly, albeit at a smaller rate compared to R&D investments from Chinese firms. This shows that while foreign R&D investments are relevant, Chinese firms have grown more in relative relevance.²⁶²

Two aspects limit the interpretation of this table. First, as outlined, only R&D Expenditure by large- and medium-sized high-tech firms is considered. Second, China's currency, the Renminbi, is comparably volatile impacted by political decision. Using the PPP (purchasing power parity) can help comparability, but also can be limited in a highly dynamic country, such as China.²⁶³ In comparison I list in the following table the Total BERD, as listed by the OECD, both in Renminbi and USD.

²⁶¹ Own analysis, based on National Bureau of Statistics of China (2018), Statistical Yearbook on High Technology Industry, Tables 2-1-3 & 2-1-7 and converted into USD based on the respective exchange rate published by the World Bank (2020) and shown in Appendix-Table 6.

²⁶² Cf. Nell (2018).

²⁶³ Cf. Prasad (2017); Subramanian (2010).

Total BERD	2008	2010	2013	2016	2017
Million Renminbi (National Currency)	338,169	518,547	907,585	1,214,396	1,366,023
Million USD, PPP current prices	106,278	155,755	247,732	304,468	326,502
Million USD, PPP constant prices	106,623	153,291	237,456	309,047	332,924

Table 3-13: Overview BERD China by Currency²⁶⁴

For the year 2016 we can calculate here an exchange rate of Renminbi to USD of 3.99 (current prices) and 3.93 (constant prices). The official World Bank's exchange rate for that year is 6.64. For the discussion on PPP vs. real exchange-rates, I refer to the relevant economic literature.²⁶⁵ The main takeaway here is, that a highly dynamic country, such as China can be hardly compared to other countries due to a limitation in data availability and currency exchange effects.

Outward R&D

China does not systematically capture and publish R&D investments by Chinese firms abroad. While the National Bureau of Statistics of China (2019) breaks down in its 'Statistical Yearbook on Science and Technology' R&D Expenditure to 'External Funds', these figures do not describe trans-border R&D activities but rather cross-company business transactions. For Outward R&D activities of Chinese firms we will therefore have to rely on the analyses of Host-Country Patents in Chapter 4.

 ²⁶⁴ Own analysis, based on OECD (2020e) – "Business enterprise R&D expenditure by industry".
²⁶⁵ Cf. Callen (2007); Choudhry (2005); Froot and Rogoff (1995).

4. Outward Host-Country Patents by Country and Field

In this chapter I list and discuss Host-Country Patents (HCP) of relevant countries from an outwards perspective. Analyzing HCPs, i.e. patents by an applicant from country A and at least one inventor from country B can help to show internationalization activities in R&D. In other words: A Host-Country Patent is every patent where at least one inventor is not located in the country of the applicant(s). The applicant is the multinational corporation (MNC) filing for a patent²⁶⁶. Analyzing these patents can help to analyze foreign inventive activities, because we see the location of the inventor as a proxy for the inventive activity. For methodological details, please refer to Chapter 2.2.

Simplified speaking, I look at the patents from all MNCs based in a country, which conducted inventive activities in other countries, hence outward (or "outgoing" patents). For example, for the country of Germany, I show in which other countries German firms such as Siemens, Daimler, Bosch etc. conducted R&D activities.

RQ4.1:	In which countries are the relevant MNCs based, which conduct R&D						
	activities internationally						
5040							

RQ4.2: In which foreign countries locate MNCs from relevant economies their inventive activates R&D and what are the structural changes during the period 2000 to 2015?

This sub-chapter is structured in two parts: First, I give a global overview, to justify my selection of nine countries, of which China is the only emerging country. I show from which countries the big MNCs are coming from which conduct R&D on a global scale. In the second part I break down the most relevant countries, to see which the most-relevant target countries for each home-country are. I give a summary together with the Analysis of Inward Host-Country Patents in the next chapter, namely in part 5.4.

All patents analyzed in this chapter are international patent applications, i.e. patents filed under the Patent Cooperation Treaty (PCT), as reported by the OECD²⁶⁷ and detailed in Chapter 2.

²⁶⁶ Not all inventors, i.e. individuals involved in the innovation process and named on the patent, are based in the home-country: some inventors are located in a foreign country, i.e. a host-country. Patents with foreign-based inventors are therefore called Host-Country Patents. Cf. Gerybadze and Merk (2014).

²⁶⁷ Cf. Chapter 2.2.5 for a detailed explanation.

The number of patents from each year is summed up to three-year periods, in order to reduce the effect of potential outlier years. The indicated patent numbers are derived through "full-counting", as explained in Chapter 2.2.3. This also means that the number of "Total Host-Country Patents" can be smaller than the sum of the respective patents across the countries, due to multiple counting.²⁶⁸

The most relevant host-countries are listed separately for developed and emerging country, based on the classification discussed in Chapter 2.5. The tables are sorted decreasingly for the most recent time-period (2015-2017). The source data of relevant countries can be found in Appendix-Table 8.

I will show not only how business increasingly patent with inventors based abroad, but also which these target countries are. Specifically, I will show particularly certain emerging countries, such as China or India have gained in relevance as a location for R&D activities by foreign-based firms. The analyses per country shows also the differences across economies, as naturally the internationalization and global distribution of R&D activities is not identical.

4.1. Global Overview of Outward Host-Countries

In this chapter, I show and discuss the global distribution and development of Outward Host-Country Patents (HCPs).

In Table 4-1 we see the total number of patents worldwide, as well as the number of HCPs and the major home-countries of international patents. The table shows the source countries, i.e. the location of companies which file for patents with foreign inventors. This table therefore shows from where the internationalizing companies come from and justifies the selection of countries for the following Outward patent breakdown per country.

²⁶⁸ For example, if a patent by a German applicant had one German, one French and one Chinese inventor, this one (international) patent would be counted as one patent for each of the three countries, with the latter two being international in this respect.

Global Host-Country Patents,			2000-2002	2006-2008	2011-2013	2015-2017	CAGR
Source Countries							'00-'17
							(%)
Tota	ıl Pat	ents	316,043	464,548	591,681	685,788	5.0
Tota	ıl Hos	st-Country Patents	51,411	76,350	88,321	92,350	3.8
Sha	re H(CP to Total Patents (%)	16.3	16.4	14.9	13.5	-
		United States	16,430	22,829	27,554	27,243	2.8
	ŝ	Germany	7,054	9,815	10,715	10,709	2.8
	ntrie	Switzerland	5,104	8,227	8,861	8,507	3.4
۶	Developed Cour	France	3,010	5,726	6,846	5,607	4.3
s fror		Japan	1,979	3,000	4,122	5,510	7.2
cants		Netherlands	4,106	6,523	5,045	5,097	1.7
Vppli		Sweden	2,450	3,889	4,359	4,234	2.7
vith A		United Kingdom	3,255	3,186	3,328	3,721	0.5
Ps <	<u>.</u>	China	155	995	2,777	5,143	25.0
Р	ount	Cayman Islands	245	425	494	2,506	15.3
	ng C	South Korea	312	1,015	1,689	1,844	13.7
	lergii	Singapore	274	664	1,111	1,013	8.6
	Ш Ш	Hong Kong - China	342	528	560	1,007	7.8

Table 4-1: Global Development of Host-Country Patents, Source Countries²⁶⁹

Despite strong increases in the numbers of HCPs, HCPs grow at a smaller rate than the number of total patents: the share of HCPs to total patents decreases, which would indicate a decline in relative relevance of HCPs. However, it would be far too premature to conclude that we see a shift in (re-) nationalizing R&D activities: When looking at the country-level data below, we can see that the strong increase in domestic patent numbers can be clearly attributed to the surge of domestic patenting in (mostly) China. Most other economies have increased their share of Host-Country Patents. One explanation for China's upswing in domestic patents is that domestic patents imply a higher level of control on a political level and are therefore particularly promoted and incentivized. Alternatively, patents without foreign contribution imply lower research activity and complexity compared to their international

²⁶⁹ Own analysis, based on PCT patent-data by MSTI – OECD (2020c).

counterparts. Therefore, national patents would be based on easier and simpler underlying inventions and therefore faster and cheaper to produce. In the detailed patent analysis in Chapter 7, I will therefore introduce indices of patent quality to show whether HCPs, i.e. patents based on international activities are better compared to their national counterparts or not.

The table shows in which countries MNCs are based which conduct R&D activities abroad. For example, the figure "27,243" for "United States" in the period "2015-2017" indicates that over 27,000 patents have been filed by US firms during that period, which have involved inventors from other nations outside the US. The detailed number and breakdown of HCPs by target country for the US and other major economies can be found in the next chapter.

The detailed figures will be discussed in the sub-chapter for the respective countries below. Generally, we can observe strong activities by multinational corporations from the US, Germany, other European countries, as well as from Japan. Nevertheless, emerging countries, led by China, underwent a very dynamic development with strong growth rates. Clearly Emerging Countries are also the home of multinational companies which have increased R&D and inventive activities abroad, even though still at a lower level.

The relatively high values for the Cayman Islands and Hong Kong can be assumed to be a proxy: both regions are known for their tax-friendly regulations, which attract firms.²⁷⁰ Hong Kong is clearly connected to (Mainland-)China, whereas the Cayman Islands are also home to many Chinese firms. The Chinese car-manufacturer Geely, for example is incorporated in the Cayman Islands with limited liability, although it is headquartered in China.²⁷¹ The official explanation for Chinese companies headquartered in the Cayman Islands, such as Internet firms Alibaba and Tencent, is to have access and the ability to be listed on international stock exchanges, which would not be allowed for China-based firms.²⁷²

So far, we have analyzed the major source or home countries, i.e. the major locations of multinational corporations with significant outward foreign R&D activities.

We now turn to the analysis of relevant host countries for R&D activities, in order to find out where MNCs locate their inventive activities, or more precisely where inventors are located that appear on international patent applications.

²⁷⁰ Cf. PwC (2019).

²⁷¹ Cf. Alvstam, Dolles, and Ström (2014, p. 227).

²⁷² Cf. Ohlberg (2020).

This chapter's patent analysis uses the methodology of full-patent counting, i.e. if a patent had for example an applicant based in the US and one in Germany (Joint-Venture) we would count it as a respective full patent for either country here. Nevertheless, we can clearly see where the internationalizing companies are located: almost all relevant home-countries, i.e. bases for internationalization are developed countries, with the exception of China. The numbers indicate a high concentration of HCPs across countries. Very broadly speaking, every second HCPs comes from a company based in the Top 3: the US, Germany or Switzerland.²⁷³

I select a sample of relevant countries which I analyze further in the following sub-chapter. The figure in brackets behind each country gives the country's share to total HCPs in percent for the latest 2015-2017 period and thereby its relative relevance:

US (29.5), Germany (11.6), Switzerland (9.2), France (6.1), Japan (6.0), China (5.6), Netherlands (5.5), Sweden (4.6), UK (4.0).

For example, 29% of all HCPs in 2015-2017 come from an US applicant. Due to full-counting the sum of percentages can obviously be larger than 100%. Despite the limitations of the full-patent counting method, previously discussed, we can see clearly where the companies are internationalizing their R&D activities to.

4.2. Country Breakdown

In this sub-chapter I list and discuss the Outward Host-Country Patents (HCPs) of relevant economies. The overview for each country is comparable to the global overview in the previous sub-chapter: First, I both list the number of total patents with applicants from the respective home-country, as well as the number of Host-Country Patents, i.e. the number of patents with an applicant from the home-country *X* and at least one inventor not based in that home-country *X*, i.e. the Outward Host-Country Patents. The growth rates for each host-country can help indicate shifts in relevance of the respective host-country. I give the respectively ten most relevant developing and emerging target countries, in terms of the HCP numbers for the latest 2015-2017 period. Furthermore, I give the share of the respective target country's HCPs in 2015-2017 to all HCPs. This indicates the current relative importance of the respective host-country. Both the absolute HCP numbers, as well as the CAGR is important

²⁷³ We have to be careful when adding up the percentages. For example, it would be imprecise to say that over 50% of the international patents come from the Top 3 countries, i.e. US, Germany or Switzerland. For example, Switzerland might be a (complete) subset of Germany and Germany of the US. That means every patent with a Swiss applicant, also has a German applicant and a US applicant. In that (theoretical) example only 29.5% and not 50% of all HCPs would have a US or German or Swiss applicant. In most cases, though, patents can be attributed to one company from one country (Guellec and van Pottelsberghe de la Potterie, 2000), so with the assumption of rather disjoint sets, we can say that around 50% (29.5+11.6+9.2) HCPs come from a Top 3 country.

4.2. Country Breakdown

to determine the importance of a host-country: for example, a given host-country with a strong CAGR of 24% in the period 2000-2017, might actually not be relevant at all, if this CAGR were based on absolute small number of patents.²⁷⁴

Second, I break down the number HCPs by technological field, i.e.by Top-10 IPC classes.²⁷⁵ Showing which of the 126 IPC classes show the most HCPs for each country indicates which technological fields and potentially industries are particularly interesting for R&D Internationalization.²⁷⁶ IPC classes can be different in size, so in addition I show a second table with shares: on the one hand I give the share of patents from applicants of the respective country to all patents. This is an indicator for the technological field. For example, a share of 75% in a certain field would indicate that three out four patents in that field have an applicant from the respective country. On the other hand, I give the share of host-country patents to all patents by applicants from the respective country. This share of HCPs shows the internationalization rate, i.e. which percentage of patents by a country and within a field have a foreign inventor.

This shows the relative importance of the analyzed economy in that technological field in a clearer way.

I list the number of total patents and of total Host-Country Patents, whereas the focus of analysis differs: each table shows for a particular country *X*, the number of patents with (at least) one applicant from country *X* (Total Patents) and the number of patents with at least applicant inventor from country *X* and an inventor from outside of country *X*. The Share of Host-Country Patents therefore indicates here what fraction of patents from a country *X* have an inventor outside of country *X*. This share has sometimes been named the XAFI-rate in the literature, which stands for *X* Applicant of Foreign Inventions.²⁷⁷ For example, the GAFI-rate (German Applicant of Foreign Inventions) is the share of all patents with a foreign, i.e. non-German inventor and (at least) one German applicant, divided by all patents with (at least) one German applicant. To avoid linguistic contortions (e.g. "NLAFI" would stand

²⁷⁴ For example, 1 patent in the year 2000 and 40 patents in 2017 would result in a CAGR of 24%. With a very small starting base few patents have obviously a strong impact on the CAGR.

²⁷⁵ I break the IPCs down to the class, i.e. the three-character classification and list the classes decreasingly for their latest 2015 value. For example, the Class 'F03' describes "Machines or Engines for Liquids; Wind, Spring, or Weight Motors; Producing Mechanical Power or a reactive propulsive thrust, no otherwise provided for". See Table 2-1 for details.

²⁷⁶ See Chapter 1.1 for an overview of motives for R&D Internationalization.

²⁷⁷ Cf. EFI (2013); Gerybadze, Schnitzer, and Czernich (2013).

accordingly for Dutch (Netherland) Applicant of Foreign Inventions and be quite challenging to pronounce) and aid understanding, I stick with 'Share of Host-Country Patents'.

The official IPC Class labels can be somewhat lengthy, so I show in the tables a shortened title. The complete names of the IPCs shown in this chapter are displayed in Table 4-2. While this table is lengthy, indicating that for the countries analyzed there are quite different Top-10 fields, in reality there is a big overlap, meaning that a high number of technological fields appears as a patent-intensive field for many countries.

4.2. Country Breakdown

Table 4-2: Overview Relevant IPC Classes	s for Outward Host-Country Patents
--	------------------------------------

IPC	Official Name
A23	Foods or foodstuffs; their treatment, not covered by other classes
A61	Medical or veterinary science; hygiene
B01	Physical or chemical processes or apparatus in general
B60	Vehicles in general
B65	Conveying; packing; storing; handling thin or filamentary material
C07	Organic chemistry
C08	Organic macromolecular compounds; their preparation or chemical working-up; compositions based thereon
C09	Dyes; paints; polishes; natural resins; adhesives; compositions not otherwise provided for; applications of materials not otherwise provided for
C11	Animal or vegetable oils, fats, fatty substances or waxes; fatty acids therefrom; detergents; candles
C12	Biochemistry; beer; spirits; wine; vinegar; microbiology; enzymology; mutation or genetic engineering
D06	Treatment of textiles or the like; laundering; flexible materials not otherwise provided for
E21	Earth or rock drilling; mining
F01	Machines or engines in general; engine plants in general; steam engines
F02	Combustion engines; hot-gas or combustion-product engine plants
F16	Engineering elements or units; general measures for producing and maintaining effective functioning of machines or installations; thermal insulation in general
F24	Heating; ranges; ventilating
G01	Measuring; testing
G02	Optics
G06	Computing; calculating; counting
H01	Basic electric elements
H02	Generation, conversion, or distribution of electric power
H03	Basic electronic circuitry
H04	Electric communication technique

Source: WIPO (2020b).

It is important to point out that I use different data sets in the respective fourth step: For the country breakdown I rely on aggregated PCT data and for the technological field (IPC) breakdown I analyze individual raw patent data from the EPO.²⁷⁸ The patent numbers and shares can therefore look quite differently.

²⁷⁸ See Chapter 2.2 for a methodological elaboration and discussion.

4.2.1. US Outward Host-Country Patents

This part summarizes the outward international patenting activities of US firms. That means we look at patents filed for by multinational firms based in the US and look at host-country patents, i.e. patents with a non-US based inventor. As shown in Table 4-1, the US, as an economic superpower, is the country with the most HCPs in the latest 2015-2017 period (and actually has been in other periods as well for that matter).

Outward Host-Country			2000-2002 2006-2008 2011-2013 2015-2017				CAGR	Share
Patents, USA							'00-'17	HCPs
							(%)	'15-'17 (%)
Tota	al Pa	tents	123,144	149,806	166,926	165,867	1.6	-
Tota	al Ho	st-Country Patents	16,430	22,829	27,554	27,243	2.8	-
Sha	re H	ost-Country Patents (%)	13.3	15.2	16.5	16.4	-	-
		Germany	2,332	3,186	3,481	3,595	2.3	13.2
		United Kingdom	3,197	3,608	3,449	3,189	-0.2	11.7
	(0	Canada	1,828	2,489	2,540	1,998	0.0	7.3
	ntries	France	1,343	1,786	1,600	1,538	0.9	5.6
	Coul	Japan	1,353	1,770	1,948	1,413	0.9	5.2
	ped	Spain	230	333	490	877	7.6	3.2
c	evelo	Belgium	717	904	920	863	0.4	3.2
	Ğ	Switzerland	534	717	901	826	3.5	3.0
tors i		Netherlands	633	767	670	662	0.2	2.4
nven		Italy	547	719	630	590	0.8	2.2
/ith		China	419	1,329	3,475	3,934	14.6	14.4
Ps v		India	263	927	2,072	2,248	15.0	8.3
Р		Israel	945	1,115	1,711	1,490	1.3	5.5
	Itries	တို့ Chinese Taipei	160	312	408	820	13.2	3.0
	Cour	Singapore	146	324	485	693	9.5	2.5
	jing (South Korea	239	423	601	621	5.7	2.3
	merg	Russia	264	326	575	602	5.0	2.2
	ш	Brazil	97	164	246	380	11.3	1.4
		Malaysia	55	93	180	278	5.4	1.0
		Mexico	72	98	197	246	6.9	0.9

Table 4-3: Development of US Outward Host-Country Patents²⁷⁹

4.2. Country Breakdown

Firms from the US have overall slightly increased their share of Host-Country Patents (HCPs), from 13.3% to 16.4% in the periods 2000-2002 to 2015-2017. In the period 2015-2017 China has claimed the first place for US HCPs, surpassing Germany. With a distance India and Israel, a close ally of the US, follows.

US firms have increased the number of Host-Country Patents from 16,430 to 27,243 during the three-year periods 2000-2002 and 2015-2017. In these periods, the share of HCPs has been increased from 13.3% to 16.4%.

In most developed countries, except Germany, but including Israel, US firms have somewhat lost interest as the number of HCPs in the 2011-2013 to 2015-2017 period has decreased. The strong increase with Spain can be considered an outlying effect and does not change the overall picture, as HCPs with Spain account for approximately only 3% of all US HCPs.

The table clearly shows the relevance of emerging countries as a host for US inventive activities: China is even the most significant host-country of all for the US, but also India and the strong ally Israel have significant shares.

Emerging countries almost exclusively have the most dynamic upward development as host-countries. China and India not only have the largest absolute numbers in HCPs, but also the highest growth rates from 2000 to 2017. Spain stands out with a surprisingly high CAGR, but that might be, as discussed above, an outlying effect, caused by the activities of only a handful of companies. Switzerland has maintained a rather strong position and, as one of the few developed countries, has grown above average. Other somewhat significant emerging countries follow and even Russia, a historic antagonist to the US has received some attention in Host-Country Patents.

²⁷⁹ Own analysis, based on PCT patent-data by MSTI – OECD (2020c).
	Numbe	CAGR			
IPC Class	2000	2007	2012	2015	'00-'15 (%)
Total Patents	33,948	34,395	37,100	36,758	0.5
Total Host-Country Patents	6,179	6,894	6,831	6,904	0.7
Share Host-Country Patents (%)	18.2	20.0	18.4	18.8	-
A61: Medical	1,405	1,364	1,231	1,415	0.0
G06: Computing	931	638	991	1,059	0.9
H04: Electric Communication	940	955	1,131	1,048	0.7
G01: Measuring	610	455	556	527	-1.0
C07: Chemistry	829	536	497	505	-3.3
H01: Electric Elements	529	481	401	448	-1.1
C08: Organic Compounds	410	383	392	393	-0.3
C12: Biochemistry	568	284	287	248	-5.4
C09: Paints	196	225	243	244	1.5
B01: Processes	258	223	248	242	-0.4

Table 4-4: Host-Country Patent Breakdown for US Applicants by IPC²⁸⁰

Note: Full-counting leads to some double counting.

The patent numbers generally have increased between 2000 and 2007, including an increase in share of Host-Country Patents, followed by a small decline. Overall the number of patents has only slightly increased over the whole observation period 2000 to 2015. In 2015 the share of HCPs was at around 19%, meaning that almost every fifth patent by a US applicant had a foreign, i.e. non-US based inventor.

²⁸⁰ Source: Own analysis, based on REGPAT database by the OECD (2020h).

	Share of US App	olicants in	Share of HCPs to all patents			
	Worldwide Pat	ents (%)	of US Applicants (%)			
IPC Class	2000	2015	2000	2015		
A61: Medical	43.4	37.2	16.5	17.0		
G06: Computing	39.9	36.1	19.9	18.5		
H04: Electric Communication	31.8	27.5	18.9	20.3		
G01: Measuring	37.9	28.0	14.4	15.2		
C07: Chemistry	42.0	35.1	17.8	18.7		
H01: Electric Elements	27.2	20.6	16.1	19.1		
C08: Organic Compounds	31.1	23.7	23.6	29.9		
C12: Biochemistry	48.2	39.6	16.0	12.3		
C09: Paints	33.6	25.4	17.5	28.2		
B01: Processes	33.1	27.9	15.6	19.5		

Table 4-5: Total and Host-Country Patent Shares for US Applicants by IPC²⁸¹

Medical, Chemistry, Organic Compounds and Biochemistry are relevant IPC classes, although the number of HCPs has decreased over the years, as well as the worldwide share of HCPs in their respective technological field.

Technical categories, such as Computing, Electric Communication, Electric Elements are the second big group of technological fields. Here, we can partly see an increase between 2000 and 2015 in HCPs, i.e. a positive CAGR, although, again, the share of worldwide HCPs decreases between 2000 and 2015.

Measuring is a rather broad field in the section G (Physics) and also characterized by decreased in HCPs and shares.

Overall, we can observe that the HCP-numbers in the major technological fields have decreased between 2000 and 2015 and furthermore the worldwide shares of HCP in the respective fields have decreased. That means, for these major fields other firms based in countries have increased their number of patents, whereas the dominant economy USA has somewhat lost in relative relevance. The internationalization rate, i.e. the share of host-country

²⁸¹ Source: Own analysis, based on REGPAT database by the OECD (2020h).

patents to all patents by US applicants across technological fields has generally not changed much, indicating that there has not been drastic new internationalization effects.

4.2.2. Germany Outward Host-Country Patents

This part summarizes the outward international patenting activities of German firms. We look at patents filed for by multinational firms based in Germany and look at host-country patents, i.e. patents with a non-Germany based inventor. As shown in Table 4-1, Germany, a major European economy, is the country with the second most HCPs in the latest 2015-2017 period.

Emerging Countries

Hungary

Malaysia

Brazil

Singapore

Romania

Russia

South Korea

Czech Republic

HCPs with Inventors in

Out	ware	d Host-Country	2000-2002	2006-2008	2011-2013	2015-2017	CAGR	Share	
Pate	Patents, Germany						'00-'17	HCPs	
							(%)	'15-'17 (%)	
Tota	al Pa	tents	41,776	53,606	55,164	56,092	2.0	-	
Tota	al Ho	ost-Country Patents	7,054	9,815	10,715	10,709	2.8	-	
Sha	re H	ost-Country Patents (%)	16.9	18.3	19.4	19.1	-	-	
	ntries		United States	2,328	2,366	3,021	3,157	1.3	29.5
		France	729	899	1,103	1,101	2.8	10.3	
		(0	Austria	817	879	772	931	0.9	8.7
		Switzerland	580	904	778	806	1.5	7.5	
	Coul	United Kingdom	522	678	828	668	1.8	6.2	
	ped	Japan	317	332	341	432	3.5	4	
	evelo	Italy	192	283	314	380	3.1	3.5	
Ľ.	ă	Netherlands	433	1387	918	358	-0.4	3.3	
tors		Spain	181	318	229	300	2.9	2.8	
ivent		Belgium	311	371	372	277	-0.1	2.6	
/ith Ir		China	63	377	844	890	18.0	8.3	
N S		India	42	96	239	242	10.7	2.3	

Table 4-6: Developmer

German firms overall have increased their rate of HCPs to 19.1%, from 16.9% in the 2000-2002 period. That means, almost every fifth patent in the latest 2015-2017 period having an international (co-)inventor. The number of HCPs has increased from 7,054 to 10,709 from the 2000-2002 to 2015-2017 period.

42

20

34

29

86

15

5

102

77

44

77

98

125

58

15

96

109

54

89

150

138

82

60

155

215

139

129

125

107

101

95

91

9.3

12.5

10.2

13.2

4.2

15.9

19.9

0.4

2

1.3

1.2

1.2

0.9

0.9

0.8

1

²⁸² Own analysis, based on PCT patent-data by MSTI – OECD (2020c).

German firms are heavily patenting with inventors based in the US: almost one third of all HCPs in the 2015-2017 period are achieved there. France follows with 10%, Germany's close neighbor and political ally, and other European countries. 8% of all HCPs have a (co-)inventor based in China.

China and other emerging countries, such as India, Hungary or Malaysia, have gained strongly as a partner for German HCPs. China is the strongest growth country for Germany, but accounts for only 8% of all German HCPs in the 2015-2017 period. Several European neighbors, as well as Japan have also increased the number of HCPs above average, but only slightly above the average of 2.8%.²⁸³

²⁸³ The CAGR of Total HCPs is 2.76%, and of France 2.83%. France therefore has grown above average, even though rounding to one digit equals both figures.

	Numb	Year	CAGR		
					'00-'15
IPC Class	2000	2007	2012	2015	(%)
Total Patents	22,036	24,259	22,799	21,837	-0.1
Total Host-Country Patents	3,104	4,185	4,316	3,909	1.5
Share Host-Country Patents (%)	14.1	17.3	18.9	17.9	-
A61: Medical	587	665	561	488	-1.2
G01: Measuring	377	352	423	355	-0.4
H01: Electric Elements	367	327	485	336	-0.6
C07: Chemistry	457	375	317	288	-3.0
B60: Vehicles	233	325	224	250	0.5
G06: Computing	164	275	225	250	2.9
F16: Engineering Elements	119	274	259	234	4.6
C08: Organic Compounds	207	248	280	231	0.7
H04: Electric Communication	238	231	163	193	-1.4
C09: Paints	168	155	227	187	0.7

Note: Full-counting leads to some double counting.

The number of HCPs by German applicants has grown between 2000 and 2012 and then slightly dropped until 2015. In many technological fields we see a peak in patent numbers until 2007, followed by (slight) drops. The Host-Country Patent share is 18% in 2018, meaning that almost every fifth patent by a German firm (applicant) has at least one non-Germany based inventor. Among the leading technological fields in terms of HCPs are Medical, Chemistry and Organic Compounds, which, except for the latter, have decreased in HCP-number over the years and also lost in share of worldwide HCPs.

²⁸⁴ Source: Own analysis, based on REGPAT database by the OECD (2020h).

	Share of DE A	pplicants in	Share of HCPs to all patent		
	Worldwide P	Patents (%)	of DE Applicants (%)		
IPC Class	2000	2015	2000	2015	
A61: Medical	12.0	9.7	25.1	22.5	
G01: Measuring	18.8	16.1	17.9	17.8	
H01: Electric Elements	17.2	14.1	17.7	20.9	
C07: Chemistry	14.9	11.7	27.6	31.9	
B60: Vehicles	34.4	24.5	12.5	14.5	
G06: Computing	8.5	6.9	16.6	22.8	
F16: Engineering Elements	28.2	25.0	8.0	14.2	
C08: Organic Compounds	20.4	14.2	18.2	29.4	
H04: Electric Communication	9.9	4.8	15.4	21.3	
C09: Paints	22.1	17.2	22.7	32.0	

Table 4-8: Total and Host-Country Patent Shares for German Applicants by IPC²⁸⁵

Vehicles, a technological field closely connected to one of Germany's leading industries, is one of the few fields with a positive CAGR, although the former dominance in worldwide HCP share of 34% in 2000 has dropped to 25% in 2015. This figure is nevertheless strong and indicates that around every fourth patent in the Vehicles field comes from a German applicant. Engineering Elements is another strong field, which has even increased over the years with a strong CAGR of 4.6% and strong, yet decreasing worldwide share from 28% in 2000 to 25% in 2015. This field can be partly linked to the German Automotive Industry, but also other industries. As outlined before, please note, that there a technological field (IPC class) and industry can only be indirectly linked.

Computing is another field with a positive CAGR, although the worldwide share nevertheless still slightly decreases to 7% in 2015. For many technological fields we can observe strong increases in the share of host-country patents to all patents, meaning that the share of international patents has increased. The most internationalized technological fields are Chemistry with 32% and Organic Compounds with 29% in 2015. That means that almost every third patent by a German multinational corporation (applicant), has a non-Germany based inventor listed on the patent. Medical, an already rather internationalized field shows a slight decrease. Once again, it shall be noted that a decrease in internationalization share only

²⁸⁵ Source: Own analysis, based on REGPAT database by the OECD (2020h).

shows the relative decrease. It could be possible that the number of national patents simply grows at a higher rate than the rate of international or host-country patents, as extensively discussed with the case of China. In this situation, however, we see with the decrease in absolute numbers in Table 4-7, that Medical is indeed a shrinking field in terms of patent numbers for German applicants.

4.2.3. Switzerland Outward Host-Country Patents

This part summarizes the outward international patenting activities of Swiss firms. We look at patents filed for by multinational firms based in Switzerland and look at host-country patents, i.e. patents with a non-Switzerland based inventor. As shown in Table 4-1, Switzerland, the small innovation-driven country in the Alps, is the country with the third most HCPs in the latest 2015-2017 period and a substantial HCP-share.

Out Pate	waro ents	d Host-Country , Switzerland	2000-2002	2006-2008	2011-2013	2015-2017	CAGR '00-'17 (%)	Share HCPs '15-'17 (%)
Tota	al Pa	tents	8,355	12,491	13,647	13,645	3.3	-
Tota	al Ho	st-Country Patents	5,104	8,227	8,861	8,507	3.4	-
Sha	re H	ost-Country Patents (%)	61.1	65.9	64.9	62.3	-	-
		United States	1,812	2,607	2,542	2,327	2.0	27.4
		Germany	1,391	2,301	2,231	2,221	3.5	26.1
	Ś	France	971	1,434	1,645	1,021	-0.4	12
	ntrie	Sweden	260	503	652	722	5.0	8.5
	Cou	United Kingdom	369	547	602	687	5.7	8.1
	ped	Italy	205	345	362	473	4.5	5.6
	evelc	Austria	160	334	305	274	3.5	3.2
. <u> </u>	ă	Netherlands	97	148	169	175	2.1	2.1
tors		Canada	79	153	148	161	6.1	1.9
nven		Japan	138	127	147	132	-0.9	1.6
vith I		China	31	144	326	440	27.0	5.2
Ps v		India	11	104	220	244	20.8	2.9
Я		Russia	22	38	60	75	2.0	0.9
	ntries	Singapore	14	33	69	62	10.7	0.7
	Cour	Czech Republic	11	26	42	59	12.1	0.7
	jing (Poland	11	25	88	57	9.9	0.7
	merç	Brazil	14	25	46	44	11.1	0.5
	ш	Israel	21	103	45	44	7.8	0.5
		Liechtenstein	12	31	26	26	15.7	0.3
		Chinese Taipei	7	7	15	23	5.3	0.3

Table 4-9: Development of Switzerland Outward Host-Country Patents²⁸⁶

The small country of Switzerland has a highly internationalized patent portfolio with almost two thirds of the patents having at least one international (co-)inventor. The very international Swiss firms conduct R&D globally and have over 50% of their patents with at least one US or

²⁸⁶ Own analysis, based on PCT patent-data by MSTI – OECD (2020c).

German (co-)inventor. China and India are the drivers for the emerging countries, whereas their absolute HCP number does not (yet) play a major role.

Swiss firms focus their R&D Internationalization on very few countries: around 50% of all HCPs have a US and / or German (co-)inventor. Emerging countries, such as China or India do not play a major role in the 2015-2017 period, as both countries have a rather small share of all HCPs.

Germany, Switzerland's second-biggest host-country, has grown slightly above average, underlining the strong ties between the two neighboring countries. The emerging countries China and India, while still accounting for a relatively small share of Swiss HCPs, have grown particularly strong with a two-digit CAGR. Other uprising host-countries are mostly in Europe. The strong growth in UK might be attributable to activities by Swiss pharmaceutical companies. Outside of Europe, Canada has gained in attractiveness with a CAGR of 6%. To some degree Canada might be a substitute for activities in the US, as Canada's southern neighbor has grown with a meager 2% CAGR.

Table 4-10: Host-Country Patent Breakdown for Swiss Appl	icants by IPC ²⁸⁷
--	------------------------------

	Numb	Year	CAGR		
					'00-'15
IPC Class	2000	2007	2012	2015	(%)
Total Patents	4,020	5,570	5,679	5,667	2.3
Total Host-Country Patents	2,029	3,371	3,407	3,242	3.2
Share Host-Country Patents (%)	50.5	60.5	60.0	57.2	-
A61: Medical	669	1,231	760	672	0.0
G01: Measuring	228	382	432	362	3.1
C07: Chemistry	415	508	443	333	-1.5
H02: Electric Power	61	100	218	279	10.7
B65: Packing	127	160	176	209	3.4
H01: Electric Elements	80	167	237	208	6.6
G06: Computing	72	194	162	172	6.0
C12: Biochemistry	200	224	176	159	-1.5
B01: Processes	98	118	171	139	2.4
H04: Electric Communication	58	99	175	127	5.4

Note: Full-counting leads to some double counting.

The small country of Switzerland has naturally a comparably high share of HCPs, which increased until 2007 and fallen since to the rate of 57% in 2015. That means that more than every second patent by a Swiss applicant or firm has a non-Switzerland based inventor. With strong internationalization activities, Swiss firms have increased their shares in worldwide HCPs in almost all leading technological fields listed above between 2000 and 2015.

²⁸⁷ Source: Own analysis, based on REGPAT database by the OECD (2020h).

	Share of CH A	pplicants in	Share of HCPs to all patents			
	Worldwide P	atents (%)	of CH Applicants (%)			
IPC Class	2000	2015	2000	2015		
A61: Medical	4.8	4.7	70.9	64.3		
G01: Measuring	3.8	4.9	53.4	59.2		
C07: Chemistry	4.7	6.2	80.0	69.4		
H02: Electric Power	3.9	7.4	53.0	71.7		
B65: Packing	6.2	7.9	47.0	63.0		
H01: Electric Elements	2.0	3.0	32.9	60.5		
G06: Computing	1.8	1.7	34.4	65.2		
C12: Biochemistry	3.3	4.1	81.0	76.8		
B01: Processes	3.4	4.7	57.6	66.8		
H04: Electric Communication	1.3	1.2	28.4	57.7		

Table 4-11: Total and Host-Country Patent Shares for Swiss Applicants by IPC²⁸⁸

The usually quite internationalized fields of Medical, Chemistry and Biochemistry show a comparably small dynamic: these fields have been more or less continuously strong. The very high rate of host-country patents to total patents, i.e. the patent internationalization rate, has decreased until 2015, yet remains at high levels. For these fields we also observe a small decrease in absolute HCP numbers. Other classes in the technological field show a more dynamic development, namely Electric Power, Electric Elements and Computing with significant increases, both in terms of HCP-numbers, as well as worldwide shares. Packing is a rather unusual leading field, related and linked to logistics activities.

The internationalization rate is unsurprisingly high for the small country of Switzerland in many fields. In the technical fields of Electric Elements and Computing this rate almost doubles from 33% and 34% respectively in 2000 to 60% and 65% in 2015, indicating a high dynamic in internationalization. In Electric Communication we see an increase from 28% to 58%.

4.2.4. France Outward Host-Country Patents

This part summarizes the outward international patenting activities of French firms. We look at patents filed for by multinational firms based in France and look at host-country patents, i.e. patents with a non-France based inventor. As shown in Table 4-1, France, next to Germany,

²⁸⁸ Source: Own analysis, based on REGPAT database by the OECD (2020h).

another major European economy, is the country with the fourth most HCPs in the latest 2015-2017 period.

Outward Host-Country		2000-2002	2006-2008	2011-2013	2015-2017	CAGR	Share HCPs	
Pate	ents	, France					'00-'17	'15-'17 (%)
							(%)	
Tota	al Pa	tents	14,752	21,820	26,011	24,599	3.0	-
Tota	al Ho	st-Country Patents	3,010	5,726	6,846	5,607	4.3	-
Sha	re H	ost-Country Patents (%)	20.4	26.2	26.3	22.8	-	-
		United States	1,482	2,536	2,896	2,167	3.2	38.6
		Germany	432	888	883	792	4.2	14.1
	(0	United Kingdom	248	525	665	440	1.6	7.8
	ntrie	Japan	111	209	310	411	10.0	7.3
	Coul	Belgium	143	347	416	291	3.0	5.2
	ped	Italy	197	182	163	204	0.1	3.6
	evelo	Switzerland	99	167	191	191	5.6	3.4
Ē	ď	Canada	83	274	253	154	3.8	2.7
tors i		Spain	71	128	154	114	4.2	2
nven		Netherlands	65	118	146	78	-2.9	1.4
vith I		China	26	405	734	588	19.5	10.5
Ps v		India	18	56	134	123	19.9	2.2
Н		Singapore	21	40	64	91	7.0	1.6
	Itries	Brazil	16	25	86	87	12.1	1.6
	Cour	Russia	22	115	98	71	13.0	1.3
	jing (Poland	10	14	27	45	11.6	0.8
	merg	Korea	6	19	40	45	12.6	0.8
	ш	Saudi Arabia	2	9	34	33	13.7	0.6
		Hong Kong - China	4	13	26	31	11.1	0.6
		Israel	9	19	25	26	7.9	0.5

Table 4-12: Development of France Outward Host-Country Patents²⁸⁹

France's patents are relatively internationalized with a share of HCPs of over 20%. The rate has increased from 20% to 23% in the time periods 2000-2002 to 2015-2017. The absolute

²⁸⁹ Own analysis, based on PCT patent-data by MSTI – OECD (2020c).

4.2. Country Breakdown

number of HCPs in the same periods has increased from 3,010 to 5,607. By far the biggest partner is the US, followed by France's close European neighbors Germany and the UK.

French firms are strongly focusing their international patents on the US: Almost 40% of all HCPs have a (co-)inventor based in the US, followed by France's neighbor Germany with 14%. China and India are the two relevant emerging countries in which French firms have patent inventors located. Other countries include select European neighbors, Japan and Canada.

Unsurprisingly, the emerging countries have strongly gained in relative importance, once again particularly through China and India, whose CAGR is respectively at almost 20%. Brazil and Russia are two other emerging countries which have increased strongly in relative importance, although their absolute share in HCPs is rather small.

	Numbe	Number of HCPs per Priority Year				
					'00-'15	
IPC Class	2000	2007	2012	2015	(%)	
Total Patents	7,387	9,047	9,673	9,738	1.9	
Total Host-Country Patents	1,556	2,172	2,418	1,959	1.5	
Share Host-Country Patents (%)	21.1	24.0	25.0	20.1	-	
H04: Electric Communication	402	605	665	355	-0.8	
A61: Medical	230	275	245	277	1.2	
G06: Computing	127	141	254	215	3.6	
G01: Measuring	87	159	175	155	3.9	
B60: Vehicles	121	149	179	148	1.4	
H01: Electric Elements	185	153	201	131	-2.3	
C07: Chemistry	147	190	135	122	-1.2	
E21: Mining	23	115	105	83	8.9	
F16: Engineering Elements	56	58	59	75	2.0	
C08: Organic Compounds	104	82	118	74	-2.2	

Note: Full-counting leads to some double counting.

The share of France's Host-Country Patents has increased between 2000 and 2012 to 25% and then dropped to 20% in 2015. In fact, for many technological fields we can observe drops in HCP-numbers between 2012 and 2015. About every fifth patent, a figure comparable to that of the US and Germany, of a French applicant or firm has at least one foreign-based inventor. Medical and Chemistry have undergone only smaller changes in HCP-numbers, but the share of worldwide HCPs has increased between 2000 and 2015.

²⁹⁰ Source: Own analysis, based on REGPAT database by the OECD (2020h).

	Share of FR A	pplicants in	Share of HCPs to all patents			
	Worldwide P	atents (%)	of FR Appl	icants (%)		
IPC Class	2000	2015	2000	2015		
H04: Electric Communication	6.9	6.5	37.5	29.3		
A61: Medical	5.6	5.1	21.0	24.3		
G06: Computing	4.7	6.5	23.3	20.8		
G01: Measuring	5.0	7.1	15.6	17.6		
B60: Vehicles	8.9	12.7	24.9	16.6		
H01: Electric Elements	5.5	6.6	28.0	17.5		
C07: Chemistry	4.5	5.2	29.2	30.2		
E21: Mining	7.3	10.9	48.9	65.4		
F16: Engineering Elements	6.4	7.2	16.6	15.8		
C08: Organic Compounds	5.9	5.8	31.3	22.9		

Table 4-14: Total and Host-Country Patent Shares for French Applicants by IPC²⁹¹

Vehicles, a field of a strong French industry has lost in share of worldwide HCPs, whereas Mining, another less common technological field is one of the uprising fields and with a worldwide share of HCPs of 29% in 2015 clearly dominated by French applicants or firms. For the technological fields we see a mixed picture, the strongest field Electric Communication has dropped in numbers and share, as well as the related Electric Elements, whereas Computing has gained in HCPs, despite the 2012 to 2015 drop, and share in worldwide HCPs.

²⁹¹ Source: Own analysis, based on REGPAT database by the OECD (2020h).

4.2.5. Japan Outward Host-Country Patents

This part summarizes the outward international patenting activities of Japanese firms. We look at patents filed for by multinational firms based in Japan and look at host-country patents, i.e. patents with a non-Japan based inventor. As shown in Table 4-1, Japan, is the country with the fifth most HCPs in the latest 2015-2017 period.

Out	ward	d Host-Country	2000-2002	2000-2002 2006-2008 2011-2013 2015-2017			CAGR	Share
Pate	ents	, Japan					'00-'17	HCPs
							(%)	'15-'17 (%)
Tota	al Pa	tents	37,929	84,218	128,058	139,258	9.2	-
Tota	al Ho	st-Country Patents	1,979	3,000	4,122	5,510	7.2	-
Sha	re H	ost-Country Patents (%)	5.2	3.6	3.2	4.0	-	-
		United States	1,213	1,616	1,636	1,782	2.8	32.3
		United Kingdom	134	262	466	518	7.9	9.4
	ŝ	Germany	193	305	383	438	8.7	7.9
	ntrie	Sweden	27	32	110	309	8.8	5.6
	Coul	France	57	140	168	281	10.0	5.1
	ped	Italy	17	33	75	88	11.8	1.6
	evelo	Switzerland	19	35	31	85	11.9	1.5
L	ð	Netherlands	47	21	45	75	6.2	1.4
tors		Belgium	22	36	84	69	8.5	1.3
nven		Australia	24	44	66	57	4.7	1
vith I		China	50	119	638	1,231	23.1	22.3
Ps v		South Korea	52	124	155	199	13.9	3.6
Р		Thailand	4	34	66	109	21.4	2
	Itries	Singapore	49	95	102	108	19.6	2
	Cour	Chinese Taipei	26	17	34	98	10.5	1.8
	jing (India	3	7	32	76	21.4	1.4
	merç	Malaysia	1	7	12	21	17.3	0.4
	Ш	Turkey	0	3	4	16	-	0.3
		Hong Kong - China	1	6	15	10	9.9	0.2
		Poland	17	2	12	10	0.0	0.2

Table 4-15: Development of Japanese Outward Host-Country Patents²⁹²

4.2. Country Breakdown

Japanese MNC have increased the number of PCT patents with foreign inventors from 1,979 to 5,510 between the period 2000-2002 to 2015-2017.

Japanese firms patent very little with international activities: only 4% of the sizeable amount of 139,258 patents in the 2015-2017 period had an international (co-)inventor. This share has decreased from 5.2% in the 2000-2002 period. In the periods in between, we can observe a major decline in the share of HCPs: in the period 2006-2008 the share was 3.6%, and in 2011-2013 it was 3.2%. Therefore, in the last period, we actually observe an increase in share of foreign inventorship.

Over half of these international HCPs can be attributed to either the US or, since recently, China. Other countries follow at a large distance and include select European countries and Asian neighbors.

The largest relative increase in HCPs can be observed for (co-)inventors from China and Singapore with a CAGR of around 20%. South Korea follows at 14%. European developed countries follow at a distance, although we also here can observe relatively high growth rates, namely France, Sweden, Germany and UK.

²⁹² Own analysis, based on PCT patent-data by MSTI – OECD (2020c).

	Numbe	er of HCPs	per Priority	Year	CAGR
					'00-'15
IPC Class	2000	2007	2012	2015	(%)
Total Patents	22,275	22,096	21,995	20,774	-0.5
Total Host-Country Patents	904	1,252	1,104	1,255	2.2
Share Host-Country Patents (%)	4.1	5.7	5.0	6.0	-
H04: Electric Communication	198	457	396	478	6.1
G06: Computing	174	182	153	194	0.7
A61: Medical	144	142	107	125	-0.9
H01: Electric Elements	151	113	70	91	-3.3
G01: Measuring	67	94	77	86	1.7
C08: Organic Compounds	83	68	91	74	-0.8
C07: Chemistry	138	101	68	69	-4.5
D06: Textile Treatment	2	1	0	54	24.6
C09: Paints	46	41	38	46	0.0
F16: Engineering Elements	33	26	28	41	1.5

Note: Full-counting leads to some double counting.

Japanese firms have increased their numbers of HCPs, despite a drop, both in total number and in many technological fields, between 2012 and 2015. The share of HCPs, while still comparably low has increased to 6% in 2015, meaning that only relatively few patents by Japanese applicants have a foreign (co-)inventor.

²⁹³ Source: Own analysis, based on REGPAT database by the OECD (2020h).

	Share of JP A	pplicants in	Share of HCPs to all patents			
	Worldwide F	Patents (%)	of JP Appli	cants (%)		
IPC Class	2000	2015	2000	2015		
H04: Electric Communication	23.6	13.9	5.4	18.3		
G06: Computing	24.2	13.1	6.2	9.3		
A61: Medical	9.9	10.3	7.4	5.4		
H01: Electric Elements	33.2	24.4	3.8	3.3		
G01: Measuring	15.1	15.0	4.0	4.6		
C08: Organic Compounds	23.8	28.9	6.3	4.6		
C07: Chemistry	12.6	9.9	9.8	9.0		
D06: Textile Treatment	12.0	13.8	1.5	37.5		
C09: Paints	24.8	27.1	5.5	5.0		
F16: Engineering Elements	22.1	17.8	2.8	3.5		

Table 4-17: Total and Host-Country Patent Shares for Japanese Applicants by IPC²⁹⁴

The clearly leading technological field is Electric Communication, with a strong CAGR of 6% and a big gap to the second-biggest technological field. The international share of Japanese applicants in this field, however, drops from 24% in 2000 to 14% in 2015. The somewhat related fields of Electric Elements and Computing have developed rather modestly with a similar decrease in worldwide share between 2000 and 2015.

Medical, Chemistry and Organic Compounds do not play a major role in terms of HCPs for Japanese firms, with a negative CAGR between 2000 and 2015. The share of Japanese applicants in this fields, however, increased partially: in 2015 29% of all patents in Organic Compounds came from a Japanese applicant. In the related field of paints, that share was 27%. This means that more than every fourth patent in these fields comes from a Japanese firm.

Measuring is a rather broad field in the section G for Physics. The strong increase of Textile Treatment particularly between 2012 and 2015 leads to the assumption that this effect is attributable to a small number of firms.

²⁹⁴ Source: Own analysis, based on REGPAT database by the OECD (2020h).

4.2.6. China Outward Host-Country Patents

This part summarizes the outward international patenting activities of Chinese firms. As shown in Table 4-1, China is the country with the sixth most HCPs in the latest 2015-2017 period and the only emerging country in this overview. As shown repeatedly in this dissertation, China has a special status of all emerging countries, as it has transformed and overtaken many developed economies in several aspects.²⁹⁵

²⁹⁵ Cf. Zhou and Leydesdorff (2006).

Out	ward	d Host-Country	2000-2002	2006-2008	2011-2013	2015-2017	CAGR	Share
Pate	ents	, China					'00-'17	HCPs
							(%)	'15-'17 (%)
Tota	al Pa	tents	2,980	15,795	54,913	119,874	23.2	-
Tota	al Ho	st-Country Patents	155	995	2,777	5,143	25.0	-
Sha	re H	ost-Country Patents (%)	5.2	6.3	5.1	4.3	-	-
		United States	62	536	1,385	1,761	23.0	34.2
		Canada	6	28	269	913	33.3	17.8
	Ś	Germany	2	38	227	726	34.2	14.1
	ntrie	Japan	14	63	121	381	24.0	7.4
	Cou	Sweden	7	53	133	372	29.5	7.2
	ped	United Kingdom	9	40	57	97	24.9	1.9
	evelo	Australia	2	28	45	84	18.1	1.6
.c	ŏ	France	8	21	61	65	11.7	1.3
tors		Italy	2	11	26	33	10.5	0.6
nven		Austria	0	4	2	28	-	0.5
vith I		Hong Kong - China	15	55	174	300	18.0	5.8
Ps v		Chinese Taipei	3	61	184	262	32.7	5.1
H		India	0	9	25	59	-	1.1
	ntries	Singapore	4	6	34	52	17.3	1
	Cour	South Korea	18	43	56	47	16.3	0.9
	jing (Russia	2	0	8	20	13.8	0.4
	merç	Israel	0	6	6	17	-	0.3
	ш	Malaysia	0	4	6	7	-	0.1
		Poland	0	0	12	6	-	0.1
		United Arab Emirates	0	1	0	4	-	0.1

Table 4-18: Development of Chinese Outward Host-Country Patents²⁹⁶

As an emerging country, China has strongly grown its patent numbers in the last decades. Overall the share of HCPs is quite low and has decreased.²⁹⁷ As China has recently only

²⁹⁶ Own analysis, based on PCT patent-data by MSTI – OECD (2020c).

²⁹⁷ The CAGR of HCPs is higher than that of Total Patents, as the CAGRs are calculated in single years, i.e. from 2000 to 2017 and are therefore more subject to outlying years. The "Share Host-Country Patents (%)" is calculated on the shown three-year aggregates.

gained competencies and capabilities and is a very large economy, it comes as little surprise that outward innovation strategies are not particularly visible on the aggregate level. Certain companies, particularly well-known industry-leaders can have a different strategy and patent strongly with foreign research activities.

Overall the strongest partner for China is the US, with around 34% of all HCPs in the period 2015-2017. Canada, the neighbor of the US, Germany and Japan, which are other strong economies, follow. Hong Kong and Taipei are somewhat connected to China, but are listed as separate entities by OECD standard. We can see that Chinese internationalization is very selective in a small number of developed countries.

While the US is the by far most relevant host-country for China, other countries have particularly grown, most notably Germany with a CAGR of 34%. Canada follows with 33%. This increase can be particularly attributed to growth in the last years and might indicate a slight shift in focus away from the US, and towards its northern neighbor Canada.

	Numbe	er of HCPs	per Priority	Year	CAGR
					'00-'15
IPC Class	2000	2007	2012	2015	(%)
Total Patents	140	1,892	5,225	7,591	30.5
Total Host-Country Patents	36	208	558	935	24.3
Share Host-Country Patents (%)	25.7	11.0	10.7	12.3	-
H04: Electric Communication	4	103	267	395	35.8
G06: Computing	2	19	44	146	33.1
A61: Medical	9	15	43	95	17.0
H01: Electric Elements	12	10	56	87	14.1
D06: Textile Treatment	0	4	1	58	-
H03: Electronic Circuitry	0	2	17	51	-
C07: Chemistry	3	11	36	47	20.1
G02: Optics	1	5	19	29	25.2
B60: Vehicles	0	2	9	23	-
C12: Biochemistry	2	3	7	23	17.2

Table 4-19: Host-Country Patent Breakdown for Chinese Applicants by IPC²⁹⁸

Note: Full-counting leads to some double counting.

China, an emerging economy which has grown in the last years to become an economic power itself, has undergone highly dynamic developments in its Patent and Host-Country Patent (HCP) numbers. It not only is a destination for foreign R&D and patenting activities, but also patents strongly itself. Both the numbers of total patents and HCPs have grown strongly with a two-digit CAGR, but since domestic activities have grown even stronger, the share of HCPs has decreased, although only until 2012 and then increased to 12% in 2015.

²⁹⁸ Source: Own analysis, based on REGPAT database by the OECD (2020h).

	Share of CN A	pplicants in	Share of HCPs to all patents			
	Worldwide P	atents (%)	of CN Appl	icants (%)		
IPC Class	2000	2015	2000	2015		
H04: Electric Communication	0.2	15.3	11.1	13.8		
G06: Computing	0.1	8.5	25.0	10.8		
A61: Medical	0.2	3.5	25.7	12.1		
H01: Electric Elements	0.2	6.0	63.2	12.8		
D06: Textile Treatment	0.0	18.0	-	30.9		
H03: Electronic Circuitry	0.3	8.4	0.0	40.8		
C07: Chemistry	0.2	5.3	15.0	11.5		
G02: Optics	0.0	7.7	100	9.3		
B60: Vehicles	0.0	1.9	0.0	17.2		
C12: Biochemistry	0.2	3.4	16.7	13.1		

Table 4-20: Total and Host-Country Patent Shares for Chinese Applicants by IPC²⁹⁹

The, by far, leading technological field in terms of HCP is Electric Communication, which accounts in 2015 for 15% of worldwide patents. Related fields such as Computing, Electric Elements and Electronic Circuitry also rank highly. The usual Medical and Chemistry have significant HCP-numbers in 2015, although their share of worldwide patents is at 4% and 5% respectively. Other and less common fields include Textile Treatment, with a particular strong increase in HCPs between 2012 and 2015 and a high global share in patents and Optics.

We can see how Chinese firms internationalize their R&D, particularly in the technological fields, with significant numbers of HCPs and noticeable shares of worldwide patents.

4.2.7. Netherlands Outward Host-Country Patents

This part summarizes the outward international patenting activities of Dutch firms. We look at patents filed for by multinational firms based in the Netherlands and look at host-country patents, i.e. patents with a non-Netherlands based inventor. As shown in Table 4-1, the Netherlands, a smaller, but international European economy, is the country with the seventh most HCPs in the latest 2015-2017 period.

²⁹⁹ Source: Own analysis, based on REGPAT database by the OECD (2020h).

Out	ward	d Host-Country	2000-2002	2000-2002 2006-2008 2011-2013 2015-2017			CAGR Share HCP		
Pate	ents	, Netherlands					'00-'17	'15-'17 (%)	
							(%)		
Tota	al Pa	tents	12,320	15,247	13,813	14,088	0.9	-	
Tota	al Ho	st-Country Patents	4,106	6,523	5,045	5,097	1.7	-	
Sha	re H	ost-Country Patents (%)	33.3	42.8	36.5	36.2	-	-	
		United States	1,565	2,847	2,149	2,086	1.5	40.9	
		United Kingdom	882	1,319	887	710	-2.2	13.9	
	(0	Germany	653	751	524	603	1.2	11.8	
	ntrie	Switzerland	97	223	255	218	8.8	4.3	
	Coul	France	371	484	366	189	-4.3	3.7	
	ped	Belgium	179	212	163	122	-2.7	2.4	
	evelo	Italy	101	137	117	104	-3.6	2	
L	ð	Spain	36	56	92	99	4.4	1.9	
tors i		Norway	19	142	78	87	7.5	1.7	
nven		Sweden	106	94	123	86	-1.7	1.7	
vith I		India	84	207	285	372	13.3	7.3	
Ps v		Saudi Arabia	2	10	51	343	34.2	6.7	
Н		Israel	49	38	92	261	9.6	5.1	
	Itries	China	41	223	279	260	23.5	5.1	
	Cour	Russia	25	138	94	73	6.7	1.4	
	jing (Singapore	5	44	34	51	13.8	1	
	merç	South Korea	4	8	14	46	5.9	0.9	
	ш	Malaysia	4	35	34	23	8.5	0.5	
		Ukraine	7	7	5	23	7.8	0.5	
		Brazil	25	29	49	20	-1.3	0.4	

Table 4-21: Development of Dutch Outward Host-Country Patents³⁰⁰

Dutch companies have increased their share of patents with international (co-)inventors from 33% to 36% from the period 2000-2002 to 2015-2017. In this time periods the number of HCPs has increased from 4,106 to 5,067. In 2006-2008 the share of HCPs was even higher at 43%.

³⁰⁰ Own analysis, based on PCT patent-data by MSTI – OECD (2020c).

Dutch firms are clearly targeting the US as a location for R&D: 41% of all international patents have at least one US-based (co-)inventor. Furthermore, the UK and Germany are two developed countries with significant shares in Dutch HCPs. From the emerging countries we see certain differences compared to HCP internationalization patterns of other countries: India has a higher share in HCPs than China, but also Saudi Arabia and Israel play a major role.

Overall the number of HCPs has grown at rather small rate. For several target countries, the number of HCPs has even decreased, resulting in a negative CAGR. Since the overall number of HCPs has changed only little, we can therefore argue for a shift away from several developed European countries towards emerging countries. Particularly Saudi Arabia has significantly increased in relative importance with a CAGR larger than 30%, now ranking fifth in the number of HCPs for the Netherlands. China and India follow with two-digit CAGRs as well. Other emerging countries such as Israel and Russia have strongly increased in relevance as well. However, we also see strong growth rates for certain European developed countries, such as Switzerland or Norway.

Table 4-22: Host-Country Patent Breakdown for Dutch Applicants by IPC ³⁰¹
--

	Numbe	er of HCPs	per Priority	Year	CAGR
					'00-'15
IPC Class	2000	2007	2012	2015	(%)
Total Patents	4,225	4,497	4,340	4,732	0.8
Total Host-Country Patents	1,413	2,045	1,664	1,692	1.2
Share Host-Country Patents (%)	33.4	45.5	38.3	35.8	-
A61: Medical	245	311	243	203	-1.2
G01: Measuring	128	308	244	188	2.6
C08: Organic Compounds	108	137	151	174	3.2
C07: Chemistry	122	125	107	155	1.6
H01: Electric Elements	169	171	135	122	-2.1
H04: Electric Communication	194	201	119	120	-3.2
G06: Computing	111	168	141	103	-0.5
A23: Foods	89	127	118	95	0.4
B01: Processes	51	61	66	94	4.2
E21: Mining	42	110	114	85	4.8

Note: Full-counting leads to some double counting.

Between 2000 and 2015 we can generally observe only small changes in patent numbers, as the CAGR, both for the totals, as well as the respective technological fields, is rather low. In more detail, we can see that the patent numbers mostly strongly increase between 2000 and 2007 and then drop until 2015. This includes the share of Host-Country Patents which drops after an initial increase to 45% in 2007 to 36% in 2015. Therefore, approximately every third patent by a Dutch applicant or firm has a non-Dutch inventor in 2015.

³⁰¹ Source: Own analysis, based on REGPAT database by the OECD (2020h).

	Share of NL A	pplicants in	Share of HCPs to all patents			
	Worldwide F	Patents (%)	of NL Appl	icants (%)		
IPC Class	2000	2015	2000	2015		
A61: Medical	2.9	3.9	43.8	23.2		
G01: Measuring	3.2	4.2	35.4	36.5		
C08: Organic Compounds	3.7	5.4	52.7	58.0		
C07: Chemistry	2.5	3.4	43.1	58.5		
H01: Electric Elements	4.0	2.1	35.3	49.8		
H04: Electric Communication	5.6	1.8	22.3	36.3		
G06: Computing	4.5	2.8	21.1	23.6		
A23: Foods	10.6	10.9	54.3	55.9		
B01: Processes	3.1	4.1	32.9	52.2		
E21: Mining	9.9	10.1	65.6	72.6		

Table 4-23: Total and Host-Country Patent Shares for Dutch Applicants by IPC³⁰²

While Medical and Organic Compounds have decreased in HCP numbers, both fields, together with the related Chemistry have increased their worldwide share of patents.

The technological fields Electric Elements, Electric Communication and Computing have lost in absolute and relative relevance for HCPs, approximately halving the share in worldwide patents. Foods, a less common field is comparably relevant in terms of patent numbers, as it is one of the few fields with a double-digit share in worldwide patents for Dutch applicants. The Netherlands, comparable to the similarly small Switzerland, has quite high internationalization rates, i.e. the share of host-country to total patents is high and increasing for all technological fields. Mining (and the somewhat related Petroleum field not listed in the tables) is the most internationalized field with 73% of all patents, i.e. almost three out of four, by a Dutch firm having a non-Netherlands based inventor.

4.2.8. Sweden Outward Host-Country Patents

This part summarizes the outward international patenting activities of Swedish firms. We look at patents filed for by multinational firms based in Sweden and look at host-country patents, i.e. patents with a non-Sweden based inventor. As shown in Table 4-1, Sweden, a relevant

³⁰² Source: Own analysis, based on REGPAT database by the OECD (2020h).

economy from the Nordics, is the country with the eighth most HCPs in the latest 2015-2017 period.

Outward Host-Country		2000-2002	2006-2008	2011-2013	2015-2017	CAGR	Share HCPs	
Pate	ents	, Sweden					'00-'17	'15-'17 (%)
							(%)	
Tota	al Pa	tents	8,766	10,912	11,132	11,262	0.6	-
Tota	al Ho	st-Country Patents	2,450	3,889	4,359	4,234	2.7	-
Sha	re H	ost-Country Patents (%)	27.9	35.6	39.2	37.6	-	-
		United States	571	1,090	924	956	1.8	22.6
		Germany	395	552	631	645	3.2	15.2
	Ś	Canada	136	215	384	389	3.1	9.2
	ntrie	Finland	175	255	172	379	4.8	9
	Coul	Italy	101	197	339	294	7.2	6.9
	ped	United Kingdom	471	442	264	213	-4.9	5
	svelo	France	126	221	254	195	2.8	4.6
с	ď	Spain	46	118	124	131	9.1	3.1
tors i		Denmark	69	69	71	108	0.6	2.6
nven		Japan	49	123	147	104	0.4	2.5
vith I		China	6	165	532	541	39.5	12.8
Ps v		India	9	19	101	164	17.4	3.9
Н		South Korea	6	2	204	115	9.0	2.7
	Itries	Hungary	30	126	132	104	7.3	2.5
	Cour	Brazil	4	17	44	37	10.3	0.9
	ling (Poland	10	13	9	22	3.3	0.5
	nerg	Czech Republic	3	5	17	17	11.1	0.4
	ш	Turkey	0	0	0	14	-	0.3
		Greece	5	3	8	11	4.2	0.3
		Liechtenstein	0	0	0	11	-	0.3

Table 4-24: Development of Sweden Outward Host-Country Patents³⁰³

The relatively small country of Sweden has a very internationalized patent portfolio with more than every third patent having at least one international (co-)inventor. The rate of HCPs

³⁰³ Own analysis, based on PCT patent-data by MSTI – OECD (2020c).

increased from 28% to 38% in the periods 2000-2002 to 2015-2017. In the same time the absolute number of HCPs increased from 2,450 to 4,234. The US are the biggest partner for Swedish HCPs, followed by Germany, Canada and Finland, a close neighbor to Sweden. China has particularly gained between the periods 2006-2008 and 2011-2013 and is far ahead of all other emerging countries.

The US has clearly the highest share of HCPs of all host countries for Sweden, although for the following countries, the distribution is relatively even. Other relevant developed countries include Germany and other European countries, as well as Canada. For the emerging countries, China accounts for 13% of all Swedish HCPs, and India for 4%.

The biggest increase in relative importance can be observed for the emerging countries China and India, with respectively two-digit growth rates. South Korea and Hungary, with absolutely smaller HCP numbers have grown with high shares, as well. For the developed countries the South-European countries Spain and Italy stand out, whereas other European countries, such as Germany, France or Finland, as well as Canada have grown slightly above average. With a CAGR of 1.8% HCPs in the US have clearly grown below average, indicating a shift away from the US, towards mostly European and some Asian emerging economies.

	Numbe	er of HCPs	per Priority	Year	CAGR
					'00-'15
IPC Class	2000	2007	2012	2015	(%)
Total Patents	2,658	3,346	3,886	3,446	1.7
Total Host-Country Patents	784	1,170	1,529	1,308	3.5
Share Host-Country Patents (%)	29.5	35.0	39.3	38.0	-
H04: Electric Communication	286	545	831	674	5.9
G06: Computing	53	77	100	94	3.9
B60: Vehicles	30	62	89	78	6.6
F16: Engineering Elements	26	68	160	75	7.3
A61: Medical	223	216	95	70	-7.4
D06: Textile Treatment	4	7	4	47	17.9
F24: Heating	5	8	11	43	15.4
G01: Measuring	57	50	95	37	-2.8
F02: Combustion Engines	6	6	16	27	10.5
F01: Machines	3	5	15	27	15.8

Note: Full-counting leads to some double counting.

For Sweden we can overall observe an increase in patent numbers until 2012, followed by a slight drop. The share of Host-Country Patents has developed in a similar pattern and increased from 29% in 2000 to 39% in 2012 and then decreased to 38% in 2015. That means that more than every third patent by a Swedish applicant has an inventor located abroad.

³⁰⁴ Source: Own analysis, based on REGPAT database by the OECD (2020h).

	Share of SE App	Share of SE Applicants in Sh		to all patents	
	Worldwide Pat	tents (%)	of SE Applicants (%)		
IPC Class	2000	2015	2000	2015	
H04: Electric Communication	4.2	7.1	43.9	50.4	
G06: Computing	1.8	1.6	24.9	37.5	
B60: Vehicles	2.1	3.7	26.8	29.8	
F16: Engineering Elements	2.7	3.2	18.2	35.2	
A61: Medical	2.7	1.4	42.6	22.9	
D06: Textile Treatment	0.7	5.4	50.0	83.9	
F24: Heating	4.1	4.8	15.2	51.8	
G01: Measuring	2.0	1.7	25.7	17.6	
F02: Combustion Engines	1.6	2.7	12.5	35.1	
F01: Machines	1.7	2.4	9.4	35.1	

Table 4-26: Total and Host-Country Patent Shares for Swedish Applicants by IPC³⁰⁵

The usually quite strong fields of Medical and Chemistry are not particularly relevant for Swedish applicants. The former shows a particular negative CAGR and decrease in worldwide share in HCPs and while the latter is not shown here in this table, the pattern of development is quite similar. Instead other fields are more relevant for Swedish R&D Internationalization, most notably Electric Communication which always has been the technological field with the most HCPs across all periods and has a particular lead to the second-highest field. Furthermore, the Swedish share of worldwide patents has increased from 4% to 7% in 2015. The somewhat related technological field Computing ranks highly as well. Vehicles and the related field Engineering Elements have both grown with a strong CAGR and have increasing their respective share in worldwide patents. Textile Treatment and Heating are two additional and less common fields which rank highly for Swedish HCPs, including a comparably high share of host-country to total patents (internationalization rate), although the generally small number of HCPs decreases the robustness of such an analysis.

4.2.9. UK Outward Host-Country Patents

This part summarizes the outward international patenting activities of UK firms. We look at patents filed for by multinational firms based in the UK and look at host-country patents, i.e.

³⁰⁵ Source: Own analysis, based on REGPAT database by the OECD (2020h).

patents with a non-UK based inventor. As shown in Table 4-1, the UK, a former member of the European Union, is the country with the ninth most HCPs in the latest 2015-2017 period.

Out	ward	d Host-Country	2000-2002	2006-2008	2011-2013	2015-2017	CAGR	Share HCPs
Pate	ents	, UK					'00-'17	'15-'17 (%)
							(%)	
Tota	al Pa	tents	16,031	16,063	15,394	17,014	0.0	-
Tota	al Ho	st-Country Patents	3,255	3,186	3,328	3,721	0.5	-
Sha	re H	ost-Country Patents (%)	20.3	19.8	21.6	21.9	-	-
		United States	1,185	1,006	1,212	1,592	0.6	42.8
		Germany	261	289	281	378	4.9	10.2
	Ś	Netherlands	368	265	235	192	-4.8	5.2
	ntrie	France	280	216	179	166	-2.3	4.5
	Coul	Italy	160	161	125	128	-0.5	3.4
	ped	Switzerland	115	145	124	111	0.3	3
	svelo	Canada	88	113	137	103	-4.0	2.8
c	Ğ	Spain	54	90	72	94	3.8	2.5
tors i		Sweden	90	108	65	84	-1.5	2.3
nven		Japan	69	60	65	76	-0.3	2
/ith		India	79	190	216	261	10.1	7
Ps v		China	34	98	194	221	15.2	5.9
Я		Israel	78	75	65	52	-2.2	1.4
	Itries	Russia	45	32	43	41	-2.4	1.1
	Cour	South Africa	55	34	20	39	-3.3	1
	ing (Hungary	5	7	14	35	4.2	0.9
	nerg	Saudi Arabia	2	2	9	27	16.8	0.7
	ш	Singapore	15	33	35	26	3.3	0.7
		United Arab Emirates	2	12	28	19	4.2	0.5
		Brazil	22	26	20	18	0.0	0.5

Table 4-27: Development of UK Outward Host-Country Patents³⁰⁶

³⁰⁶ Own analysis, based on PCT patent-data by MSTI – OECD (2020c).

The number of UK total and Host-Country Patents has changed only slightly over the years, with a respective CAGR close to 0%. The share of HCPs has increased from 20% to 22% in the periods 2000-2002 to 2015-2017.

The most relevant country for UK HCPs is by far the US, with 43% of all UK HCPs having at least one US-based inventor. Other European countries and Canada follow. The only two somewhat relevant emerging countries are India and China. It is noteworthy, that unlike for most other countries, China is not the emerging country with the most HCPs, but the second-biggest. India, a country with a strong historical connection to UK has had more HCPs than China in every period.

For many countries we can observe a decrease in HCPs, i.e. we have a negative CAGR. Only few countries have relative patent numbers and a CAGR above average, i.e. larger than 0.5%. Most notably, we can see the two emerging countries China and India, with a respectively two-digit CAGR. From the developed countries Germany stands out with 5%, followed by Spain and the US, which only grew slightly above average.

Table 4-28: Host-Country Patent Breakdown for UK Applicants by IPC ³⁰⁷

	Numbe	er of HCPs	per Priority	Year	CAGR
					'00-'15
IPC Class	2000	2007	2012	2015	(%)
Total Patents	5,085	4,743	4,448	5,001	-0.1
Total Host-Country Patents	1,164	1,075	1,022	1,226	0.3
Share Host-Country Patents (%)	22.9	22.7	23.0	24.5	-
A61: Medical	389	299	250	311	-1.5
C07: Chemistry	248	187	113	166	-2.6
H04: Electric Communication	110	97	93	117	0.4
G01: Measuring	114	81	83	103	-0.7
G06: Computing	82	88	65	87	0.4
H01: Electric Elements	57	36	67	71	1.5
C11: Oils	114	48	55	62	-4.0
A23: Foods	61	80	57	59	-0.2
B01: Processes	52	50	46	53	0.1
H02: Electric Power	8	14	25	44	12.0

Note: Full-counting leads to some double counting.

UK Patents and Host-Country Patents are characterized by a quite static development as very few CAGRs are even larger than 2%. With the UK we can observe a development diametral to what we have seen with several other countries: here the patent numbers mostly decrease between 2000 and 2012, only to increase slightly again for 2015. The share of HCPs has moved around a bit and increased to 25% in 2015, meaning that around every fourth patent by a UK applicant has a foreign-based inventor.

³⁰⁷ Source: Own analysis, based on REGPAT database by the OECD (2020h).
	Share of GB A	pplicants in	Share of HCPs to all patent			
	Worldwide Pa	atents (%)	of GB Appl	icants (%)		
IPC Class	2000	2015	2000	2015		
A61: Medical	5.9	4.1	33.5	33.6		
C07: Chemistry	6.0	5.1	37.2	42.3		
H04: Electric Communication	3.8	2.3	18.5	27.5		
G01: Measuring	5.2	4.3	19.7	19.4		
G06: Computing	4.4	2.9	16.0	19.1		
H01: Electric Elements	2.5	2.4	18.8	26.0		
C11: Oils	13.3	9.5	84.4	84.9		
A23: Foods	6.4	5.3	61.6	71.1		
B01: Processes	4.7	4.3	22.0	27.5		
H02: Electric Power	2.1	3.7	13.1	22.7		

Table 4-29: Total and Host-Country Patent Shares for UK Applicants by IPC³⁰⁸

The two leading technological fields Medical and Chemistry have decreased both in terms of absolute HCP-numbers through the negative CAGR, as well as in relative relevance through the decrease in share of worldwide patents in the respective fields.

The technical fields, i.e. Electric Communication, Computing and Electric Elements have lost comparably less.

The two less common fields Oils and Foods have decreased the number of HCPs and their worldwide share, although both fields remain comparably relevant internationally being the only two technological fields with a two-digit share in worldwide HCPs in 2015.

The internationalization rate, i.e. share of host-country to total patents by UK applicants is rather high and has increased between 2000 to 2016. Particularly internationalized are the fields Oils and Foods.

Overall the relevance of UK multinational firms seems to have dropped, as the only technological field with an increase in worldwide share is Electric Power, with an increase from 2% in 2000 to 4% in 2015.

³⁰⁸ Source: Own analysis, based on REGPAT database by the OECD (2020h).

5. Inward Host-Country Patents by Country and Field

In this chapter I list and discuss Host-Country Patents (HCP) of relevant countries from an inwards perspective. As opposed to the previous chapter, now I look at the target countries, i.e. the countries in which R&D is conducted by foreign multinational corporations. I therefore analyze from where the foreign MNCs are coming from, which conduct R&D in the country.³⁰⁹

Simplified speaking, I look at the international patents created with inventors within a country and list where the foreign MNCs are coming from, hence inward (or "incoming") HCPs. For example, for inventive activities conducted within the country of Germany, I show how much of the foreign firms doing these activities are coming from the US, Japan, China, France etc. That means I show for Germany how much R&D non-German firms such as GE, Toyota, Huawei, Saint-Gobain etc. conduct in Germany.

RQ5.1: Which are the countries in which foreign MNCs conduct the most R&D activities?RQ5.2: In which foreign countries are the MNCs based in, which conduct R&D activities in relevant economies and what are the structural changes during the period 2000 to 2015?

This sub-chapter is again structured in four parts: First, I give a global overview, to justify my selection of six developed and six emerging countries. I show in which foreign countries the big MNCs are particularly conducting R&D in on a global scale. In the second and third part I break down the most relevant developed and emerging countries, respectively, to see which the most-relevant home countries for each host-country is. Fourth, I summarize the findings from this chapter.

All patents analyzed in this chapter are international patent applications, i.e. patents filed under the Patent Cooperation Treaty (PCT), as reported by the OECD³¹⁰ and detailed in Chapter 2.

The number of patents from each year is summed up to three-year periods, in order to reduce the effect of potential outlier years. The indicated patent numbers are derived through

³⁰⁹ For methodological details, please refer to Chapter 2.2.

³¹⁰ Cf. Chapter 2.2.5 for a detailed explanation.

"full-counting", as explained in Chapter 2.2.3. This also means that the number of "Total Host-Country Patents" can be smaller than the sum of the respective patents across the countries, due to multiple counting.³¹¹

The most relevant host-countries are listed separately for developed and emerging country, based on the classification discussed in Chapter 2.5. The tables are sorted decreasingly for the most recent time-period (2015-2017). The source data of relevant countries can be found in Appendix-Table 9.

In this chapter I show which the most relevant countries to conduct R&D in for foreign-based companies are. It comes as little surprise, that the country with the most inwards HCPs is consistently the USA. However, in the breakdown over time, we can see how particularly emerging countries, such as China or India have strongly increased and attracted R&D activities by foreign-based firms in the last years.

5.1. Global Overview of Inward Host-Countries

In this chapter, I show and discuss the global distribution and development of Inward Host-Country Patents (HCPs).

In Table 5-1 the major host-countries of international patents are shown. The table shows the target countries, i.e. depicts in which countries inventors reside who contribute significantly to international patenting activities. Therefore, the table gives us an insight into which countries companies internationalize R&D activities. This table justifies the selection of countries for the following Inward patent breakdown per country.

³¹¹ For example, if a patent by a German applicant had one German, one French and one Chinese inventor, this one (international) patent would be counted as one patent for each of the three countries, with the latter two being international in this respect.

Glo	bal F	lost-Country Patents,	2000-2002	2006-2008	2011-2013	2015-2017	CAGR
Tarç	get C	ountries					'00-'17 (%)
Tota	l Pa	tents	316,043	464,548	591,681	685,788	5.0
Tota	l Ho	st-Country Patents	51,411	76,350	88,321	92,350	3.8
Sha	re H	CP to Total Patents (%)	16.3	16.4	14.9	13.5	-
		United States	14,132	19,678	21,627	22,252	3.1
		Germany	6,763	10,775	11,318	11,745	4.0
	S	United Kingdom	6,814	8,663	8,700	8,112	1.3
	ntrie	France	4,479	6,195	6,471	5,906	1.9
	Cou	Canada	2,737	3,997	4,479	4,464	2.2
	ped	Japan	2,438	3,318	3,970	3,788	3.1
	svelo	Switzerland	1,970	3,085	3,022	2,906	2.8
.u	طّ	Italy	1,715	2,532	2,784	2,710	2.3
tors		Sweden	1,432	2,089	2,266	2,601	2.8
nven		Belgium	1,671	2,299	2,493	2,180	1.4
vith I		China	906	3,658	8,884	11,957	18.1
Ps v		India	487	1,782	3,678	4,270	15.5
Р	<i>(</i> 0	Israel	1,299	1,621	2,224	2,193	2.3
	ntries	Chinese Taipei	242	561	879	1,438	14.1
	Cour	South Korea	376	805	1,328	1,321	8.4
	jing (Singapore	395	782	1,089	1,280	9.0
	merç	Russia	735	938	1,260	1,146	2.2
	Ш	Brazil	212	410	695	793	11.3
		Hong Kong – China	195	423	550	635	7.1
		Poland	167	264	520	614	9.9

Table 5-1: Global Development of Host-Country Patents, Target Countries³¹²

This table shows where inventors are located if the R&D-conducting firm is foreign. This is used as a proxy for significant foreign R&D activity. For example, the figure "22,252" for "United States" in the period "2015-2017" indicates that over 22,000 patents have been filed

³¹² Own analysis, based on PCT patent-data by MSTI – OECD (2020c).

by foreign applicants, i.e. by non-US firms for which at least one US-based inventor is listed in the patent document in that period. The detailed number and breakdown of HCPs by target country for the US and other major economies can be found in the next sub-chapter.

Between 2000 and 2008 the major inventor locations were in the US, Germany, UK, France, Canada and Japan. Only more recently, i.e. since 2011, inventors from emerging nations are becoming more prominent. Here we can see a strong growth of HCPs in China, India, Taiwan, Singapore and South Korea.

For the most recent 2015-2017 period, China has overtaken Germany in numbers of HCPs and has achieved a second position on a global scale only behind the US.

It comes as little surprise that the major economy US is leading in terms of HCPs, with almost double the numbers of its followers China and Germany.

I select a sample of twelve countries which I analyze further in the following sub-chapters. The figure in brackets behind each country gives the country's share to total HCPs in percent for the latest 2015-2017 period and thereby its relative relevance.

<u>Developed Countries:</u> US (24.1), Germany (12.7), UK (8.8), France (6.4), Canada (4.8), Japan (4.1).

<u>Emerging Countries</u>: China (12.9), India (4.6), Israel (2.4), South Korea (1.4), Singapore (1.4), Russia (1.2).

For example, 24% of all HCPs in 2015-2017 had a US-based inventor. Due to full-counting the sum of percentages can obviously be larger than 100%. Despite the limitations of the full-patent counting method, as previously discussed, we can see clearly where the companies are internationalizing their R&D activities to: almost every fourth international patent listed at least one US-based inventor. One the one hand, we can still see a strong dominance of developed countries attracting foreign R&D, such as the US, Germany or UK. On the other hand, we have a smaller concentration than with the applicant countries and see how important emerging countries as a host for foreign R&D activities have become.³¹³

In the next two parts, I list and discuss the Inward Host-Country Patents (HCP) of relevant economies. Again, I list the number of total patents and of total HCPs, whereas the focus of

³¹³ Once again, we have to be careful when simply adding up percentages, due to the methodology of "full counting". For example, it would be imprecise to say almost 20% (12.9+4.6+2.4) of the HCPs have an inventor in a Top 3 emerging country, i.e. every fifth HCP has an inventor based in China, India and / or Israel. In most cases patents, especially HCPs will have several inventors, even though in many cases they will be in one host-country and the home-country. For the justification, please refer to footnote 273.

analysis differs: in each section I focus on one country *X*. I take all patents where at least one inventor is registered in that country *X* and where an applicant is based outside of country *X*. Foreign applicant is used here as an indicator of a foreign multinational corporation. The Share of Host-Country Patents therefore indicates here what fraction of patents with an inventor from country *X* has an applicant from outside of country *X* (Inward Host-Country Patent rate). This share has sometimes been named the FAXI-rate in the literature, which stands for 'Foreign Applicant of *X* Inventions.³¹⁴ For example, the FAGI-rate (Foreign Applicant of German Inventions) is the share of all patents with a foreign, i.e. non-German, applicant and (at least) one German inventor, divided by all patents with (at least) one German inventor. Once again, to avoid linguistic contortions (e.g. "FAJPI" would stand accordingly for Foreign Applicant of Japanese Inventions and be confusing to read and challenging to pronounce) and aid understanding, I stick with "Share of Host-Country Patents".

Each economy is analyzed in two steps. First, I show and discuss the patents by country. This country breakdown indicates to what degree and for which countries the country is relevant to conduct R&D for foreign MNCs. Second, I break down once again the number of HCPs by technological field, i.e.by IPC classes.³¹⁵ Showing which of the 126 IPC classes show the most HCPs in each country indicates which technological fields and potentially industries are particularly interesting in conducting R&D in the respective host-country. The IPC classes are not necessarily equally large: some classes are rather broad and some are more specific. In addition to the absolute number of HCPs for selected years and the corresponding CAGR, I therefore also show the share of HCPs with the particular economy and IPC class in relation to all (Inward) Host-Country Patents (HCP) in that IPC class. This shows the relative importance or attractiveness of the analyzed economy in that technological field in a clearer way.

The official IPC Class categories are somewhat lengthy, so I use a shortened title in the tables. The complete names of the IPCs shown in this chapter are displayed in Table 5-2.

³¹⁴ Cf. EFI (2013); Gerybadze, Schnitzer, and Czernich (2013).

³¹⁵ I break the IPCs down to the class, i.e. the three-character classification and list the classes decreasingly for their latest 2015 value. For example, the Class 'F03' describes "Machines or Engines for Liquids; Wind, Spring, or Weight Motors; Producing Mechanical Power or a reactive propulsive thrust, no otherwise provided for". See Table 2-1 for details.

Table 5-2: Overview Relevant IPC Classes for Inward Host-Country Patents

IPC	Official Name						
A01	Agriculture; forestry; animal husbandry; hunting; trapping; fishing						
A61	Medical or veterinary science; hygiene						
B01	Physical or chemical processes or apparatus in general						
B41	Printing; lining machines; typewriters; stamps						
B60	Vehicles in general						
B64	Aircraft; aviation; cosmonautics						
B65	Conveying; packing; storing; handling thin or filamentary material						
C07	Organic chemistry						
C08	Organic macromolecular compounds; their preparation or chemical working-up; compositions based thereon						
C09	Dyes; paints; polishes; natural resins; adhesives; compositions not otherwise provided for; applications of materials not otherwise provided for						
C11	Animal or vegetable oils, fats, fatty substances or waxes; fatty acids therefrom; detergents; candles						
C12	Biochemistry; beer; spirits; wine; vinegar; microbiology; enzymology; mutation or genetic engineering						
D06	Treatment of textiles or the like; laundering; flexible materials not otherwise provided for						
E21	Earth or rock drilling; mining						
F01	Machines or engines in general; engine plants in general; steam engines						
F16	Engineering elements or units; general measures for producing and maintaining effective functioning of machines or installations; thermal insulation in general						
G01	Measuring; testing						
G02	Optics						
G03	Photography; cinematography; analogous techniques using waves other than optical waves; electrography; holography						
G06	Computing; calculating; counting						
H01	Basic electric elements						
H02	Generation, conversion, or distribution of electric power						
H04	Electric communication technique						

Source: WIPO (2020b).

It is important to point out that I use different data sets in the respective two steps. For the country breakdown I rely on aggregated PCT data and for the technological field (IPC) breakdown I analyze individual raw patent data from the EPO.³¹⁶ The patent numbers can therefore look quite differently.

³¹⁶ See Chapter 2.2 for a methodological elaboration and discussion.

5.2. Developed Countries

In this part I show and discuss the six most relevant developed countries as a location for R&D activities by foreign multinational corporations. These six countries are the US, Germany, UK, France, Canada and Japan and have been selected based on their global HCP numbers outlined in Table 5-1. That means we look at patents filed for by multinational firms based outside the US, Germany etc. respectively and look at host-country patents, i.e. patents with a US- / German- etc. based inventor.

5.2.1. US Inward Host-Country Patents

This part summarizes the inward international patenting activities of foreign firms in the US. As shown in Table 5-1, the US, as an economic superpower, is the country with the most inward HCPs in the latest 2015-2017 period (and actually has been in other periods as well for that matter).

Inward Host-Country Patents,		2000-	2006-	2011-	2015-	CAGR	Share HCPs	
USA	4		2002	2008	2013	2017	'00-'17 (%)	'15-'17 (%)
Tota	al Pat	tents	127,210	155,378	171,358	171,621	1.6	-
Tota	al Ho	st-Country Patents	14,132	19,678	21,627	22,252	3.1	-
Sha	re Ho	ost-Country Patents (%)	11.1	12.7	12.6	13.0	-	-
		Germany	2,328	2,366	3,021	3,157	1.3	14.2
		Switzerland	1,812	2,607	2,542	2,327	2.0	10.5
	ŝ	France	1,482	2,536	2,896	2,167	3.2	9.7
	ntrie	Netherlands	1,565	2,847	2,149	2,086	1.5	9.4
	Coul	Japan	1,213	1,616	1,636	1,782	2.8	8.0
	ped	United Kingdom	1,185	1,006	1,212	1,592	0.6	7.2
	evelc	Sweden	571	1,090	924	956	1.8	4.3
шo	ă	Canada	1,004	1,242	1,278	918	-0.8	4.1
nts fi		Ireland	211	285	360	589	7.4	2.6
plica		Finland	471	369	601	486	2.7	2.2
h Ap		China	62	536	1,385	1,761	23.0	7.9
s wit		South Korea	149	456	645	728	11.9	3.3
4 P		Puerto Rico	7	49	140	603	39.3	2.7
	ntries	Singapore	99	214	349	365	8.6	1.6
	Cour	Chinese Taipei	87	171	217	357	14.3	1.6
	ging (Israel	249	257	292	307	1.4	1.4
	merç	Hong Kong - China	77	99	179	216	7.4	1.0
	ш	Cayman Islands	152	220	149	213	3.1	1.0
		India	50	65	150	182	10.2	0.8
		Saudi Arabia	5	27	124	146	23.5	0.7

Table 5-3: Development of US Inward Host-Country Patents³¹⁷

The United States are the largest target country for Inward R&D and Host-Country Patents (HCPs) by foreign MNCs. The total number of foreign HCPs with at least one US (co-)inventor has increased from 14,132 to 22,252 in the periods 2000-2002 to 2015-2017. The share of HCPs increased from 11% to 13% in the same period. That share is relatively low, but increases indicating that the US is an interesting location for incoming R&D activities.

³¹⁷ Own analysis, based on PCT patent-data by MSTI – OECD (2020c).

5.2. Developed Countries

Furthermore, that share is somewhat lower than the share of R&D investments by foreign firms in the US of around 16% (see Chapter 3.2.2 for details). Two theories can support this discrepancy: First, the discussion of an innovation slowdown, i.e. the observation that increasing R&D expenditures does not transform into an accordingly increasing innovation output. Second, with relatively high labor and commodity costs in the US R&D investments can be expected to be generally higher than the resulting patents.

A lot of different countries are conducting R&D with US inventor participation, as both the high numbers of respective HCPs and the relatively even distribution indicates. Germany, Switzerland and other European countries are leading.

Firms from emerging countries have strongly grown, with China accounting now for a significant 8% share of Inward HCPs. Puerto Rico, an unincorporated territory of the US, is the third biggest emerging country, but can be attributed somewhat to the US, and a proxy for US firms registering there for tax reasons.³¹⁸ France and Belgium are countries from which the Inward HCPs have grown (slightly) above average. To some degree, Ireland might be a proxy of US firms, as well: due to same language and business-friendly taxation, the country is host to many US firms.³¹⁹

³¹⁸ Cf. Deloitte (2019b).

³¹⁹ Cf. McDonald (2015).

Host-Country Patents by Technological Field

Table 5-4. Host-Countr	v Patent Breakdown	for U.S	Inventors b	v IPC ³²⁰
		101 00	Inventors b	

	Numbe	CAGR			
					'00-'15
IPC Class	2000	2007	2012	2015	(%)
Total Patents	34,152	35,963	39,157	38,542	0.8
Total Host-Country Patents	6,383	8,462	8,888	8,688	2.1
Share Host-Country Patents (%)	18.7	23.5	22.7	22.5	-
A61: Medical	1,966	2,163	1,926	2,169	0.7
H04: Electric Communication	817	1,455	1,852	1,440	3.9
G06: Computing	674	833	1,033	1,163	3.7
C07: Chemistry	1,232	967	933	962	-1.6
G01: Measuring	726	613	671	669	-0.5
C08: Organic Compounds	443	468	532	500	0.8
H01: Electric Elements	653	445	554	490	-1.9
C12: Biochemistry	828	427	494	457	-3.9
B01: Processes	295	284	400	326	0.7
A01: Agriculture	223	310	260	297	1.9

Note: Full-counting leads to some double counting.

The share of Host-Country Patents (HCP) with US inventors has increased between 2000 and 2007 and then slightly decreased again to 23% in 2015. That means that almost every fourth patent with (at least) one US-based inventor has a foreign-based applicant. In other words: almost every fourth patent (partly) created with US inventive activity gets filed by a foreign firm. We can see that the number of Host-Country Patents has grown at a higher rate than the number of all patents with an US-based inventor, i.e. including domestic applicants. This shows the increasing internationalization of patent activities over the years, despite the small decline since 2007.

³²⁰ Source: Own analysis, based on REGPAT database by the OECD (2020h).

	Share of US Inventors in		Share of HCPs to all patent		
	Worldwide Pa	tents (%)	of US Inve	ntors (%)	
IPC Class	2000	2015	2000	2015	
A61: Medical	46.3	40.5	21.7	23.9	
H04: Electric Communication	31.0	29.6	16.8	26.0	
G06: Computing	37.7	36.8	15.3	19.9	
C07: Chemistry	45.6	41.0	24.3	30.4	
G01: Measuring	38.9	29.2	16.7	18.5	
C08: Organic Compounds	31.7	25.6	25.0	35.2	
H01: Electric Elements	28.2	20.9	19.2	20.5	
C12: Biochemistry	51.7	43.7	21.7	20.6	
B01: Processes	33.8	29.8	17.4	24.6	
A01: Agriculture	33.6	30.7	23.9	30.5	

Table 5-5: Total and Host-Country Patent Shares for US Inventors by IPC³²¹

The technological fields with the most patents show a clear focus on either Pharma, Biotech, Chemistry, or a technical field. For the two technical IPCs "Measuring" and "Electric Elements" not only the number of HCPs has decreased, but also, quite significantly, the share of US HCPs: while in the year 2000 39% or 28% of patents by foreign applicants had one US-based inventor in the fields "Measuring" and "Electric Elements", that share has fallen to 29% and 21% respectively. This can be an indicator for a decreasing relevance, both absolutely and relatively, likely due to the uprise of other countries, although foreign firms still value the US as a base for R&D activities. The Pharma, Biotech and Chemistry fields all show a high, yet decreasing share of around 40% in 2015, or in other words almost every second patent in these fields have (partly) built on inventive activities in the US.

Interestingly enough almost all of the over 100 IPC classes show a share of >20% in 2015, meaning that at least every fifth patent in any given technological field has at least one US-based inventor. This shows clearly the remarkable relevance of the US for foreign MNCs to conduct R&D in, in many fields.

³²¹ Source: Own analysis, based on REGPAT database by the OECD (2020h).

For all technological fields shown here, we observe an increase in internationalization. That means in 2015 a patent in any given field with a US-based inventor is more likely to be a host-country patent (international patent), compared to 2000.

5.2.2. Germany Inward Host-Country Patents

This part summarizes the inward international patenting activities of foreign firms in Germany. As shown in Table 5-1, Germany, a major European power, has been displaced to the third rank in terms of number of inward HCPs by China in the latest period.

5.2. Developed Countries

Inw	ard I	Host-Country Patents,	2000-	2006-	2011-	2015-	CAGR	Share
Ger	man	у	2002	2008	2013	2017	'00-'17 (%)	HCPs
								'15-'17 (%)
Tota	al Pa	tents	44,320	58,310	59,249	60,837	2.1	-
Tota	al Ho	st-Country Patents	6,763	10,775	11,318	11,745	4.0	-
Sha	re H	ost-Country Patents (%)	15.3	18.5	19.1	19.3	-	-
		United States	2,332	3,186	3,481	3,595	2.3	30.6
		Switzerland	1,391	2,301	2,231	2,221	3.5	18.9
	Ś	France	432	888	883	792	4.2	6.7
	ntrie	Sweden	395	552	631	645	3.2	5.5
	Cou	Netherlands	653	751	524	603	1.2	5.1
	ped	Austria	312	388	459	464	2.2	4.0
	evelo	Japan	193	305	383	438	8.7	3.7
гот	Ď	Finland	193	450	454	385	7.2	3.3
nts f		United Kingdom	261	289	281	378	4.9	3.2
plica		Liechtenstein	37	348	236	353	11.8	3.0
h Ap		China	2	38	227	726	34.2	6.2
s wit		Singapore	20	73	68	83	22.8	0.7
НСР	<i>(</i> 0	Israel	32	27	34	39	4.9	0.3
	ntries	Korea	13	26	242	38	13.8	0.3
	Coul	India	4	12	20	26	12.1	0.2
	ging	Czech Republic	5	7	25	23	8.5	0.2
	merç	Poland	7	3	18	21	9.0	0.2
	Ш	Hong Kong – China	2	21	14	17	8.5	0.1
		Brazil	8	4	19	14	3.3	0.1
		Russia	27	14	22	13	-3.4	0.1

Table 5-6: Development of German Inward Host-Country Patents³²²

The share of HCPs is increasing, whereas the country distribution is quite concentrated: almost 50% of HCPs in Germany comes from either a US or Swiss applicant. The share of Inward HCPs has increased from 15% to 19% in the periods 2000-2002 to 2015-2017. That means that in the last period almost every fifth patent with a German inventor was filed by a

³²² Own analysis, based on PCT patent-data by MSTI – OECD (2020c).

non-German company. That might come insofar as a surprise, as the share of foreign R&D to BERD, i.e. the share of R&D Expenditure by foreign MNCs compared to all R&D Expenditure spent in Germany has decreased over the years, as outlined in Chapter 3.2. With a complex relationship between R&D Expenditure and patent numbers a multitude of factors can explain this phenomenon. Ultimately this underlines the requirement of looking not just at one variable in order to analyze and explain R&D Internationalization.

Further relevant countries of origin are Germany's European neighbors, particularly Germany's close ally France, and Japan. For the emerging countries, China stands out, accounting for 6% of all incoming HCPs.

The by far strongest growth can be observed for China, with a CAGR of 34%. Over the time periods analyzed, the number of HCPs has skyrocketed and increased more than 100-fold. Other strong growth can be observed for Liechtenstein. The tiny German-speaking nation south of Germany hosts many firms due to a business-friendly taxation regime.³²³ Japanese HCPs have also increased: Germany is one of the few countries Japan somewhat internationalize R&D to. Other above-average growth countries are European neighboring countries of Germany.

³²³ Cf. Deloitte (2019a).

Host-Country Patents by Technological Field

Table 5-7: Host-Countr	v Patent Breakdown	for German	Inventors by I	DC 324

	Numbe	Number of HCPs per Priority Year					
					'00-'15		
IPC Class	2000	2007	2012	2015	(%)		
Total Patents	23,600	26,544	24,246	23,699	0.0		
Total Host-Country Patents	4,668	6,470	5,763	5,771	1.4		
Share Host-Country Patents (%)	19.8	24.4	23.8	24.4	-		
A61: Medical	810	1279	853	849	0.3		
H04: Electric Communication	584	812	626	619	0.4		
G01: Measuring	417	483	439	429	0.2		
H01: Electric Elements	493	447	506	398	-1.4		
C07: Chemistry	598	674	478	394	-2.7		
G06: Computing	288	283	279	363	1.6		
B60: Vehicles	251	329	306	330	1.8		
C08: Organic Compounds	357	371	369	284	-1.5		
F16: Engineering Elements	194	269	311	283	2.5		
B01: Processes	251	215	261	225	-0.7		

Note: Full-counting leads to some double counting.

While the number of patents with a German inventor has only slightly fluctuated between 2000 and 2015, the number of Host-Country Patents has increased. Overall, we see an increase of patent numbers between 2000 and 2007, followed by a decrease, both for the total patent numbers, as well as the patent number across most technological fields.

³²⁴ Source: Own analysis, based on REGPAT database by the OECD (2020h).

	Share of DE I	nventors in	Share of HCPs to all pate		
	Worldwide P	Patents (%)	of DE Inve	ntors (%)	
IPC Class	2000	2015	2000	2015	
A61: Medical	13.1	11.3	31.6	33.5	
H04: Electric Communication	12.1	7.1	30.8	46.4	
G01: Measuring	19.2	16.7	19.5	20.7	
H01: Electric Elements	18.2	14.6	22.4	23.8	
C07: Chemistry	16.2	13.1	33.2	39.0	
G06: Computing	9.5	7.6	25.9	30.0	
B60: Vehicles	34.8	25.7	13.3	18.3	
C08: Organic Compounds	23.1	15.1	27.7	33.8	
F16: Engineering Elements	29.6	25.7	12.4	16.7	
B01: Processes	23.2	18.0	21.6	28.1	

Table 5-8: Total and Host-Country Patent Shares for German Inventors by IPC³²⁵

The share of HCPs with a German inventor is in the two-digits for almost all technological fields, even the ones not shown in the Table 5-8, which is comparable to the observation for the US in Table 5-5: clearly Germany is a relevant location for R&D in many fields, even though these shares have mostly decreased between 2000 and 2015. We can also see the high shares of HCPs to all patents with a Germany-based inventor (international patent), indicating the relevance of foreign MNCs for Germany as an innovation location.

The leading industry in terms of patent numbers, i.e. patents conducted with at least one Germany-based inventor, is once again Medical with related fields such as Chemistry or Organic Compounds in the list as well. Technical relevant technological fields are Electric Communication, Electric Elements and Computing. Measuring is a field attributable rather to natural sciences and Vehicles, together with Engineering Elements is a field which is unsurprisingly quite strong for Germany. This can be indicative that not only German Automotive firms are strong, but the German competence in this area attracts also foreign firms to conduct R&D with German inventors.³²⁶

³²⁵ Source: Own analysis, based on REGPAT database by the OECD (2020h).

³²⁶ See also the Chapter 1.1 on the concept of Lead Markets.

5.2.3. UK Inward Host-Country Patents

This part summarizes the inward international patenting activities of foreign firms in the UK. As shown in Table 5-1, the UK, a former EU member and relevant European economy, has received the fourth-highest number of inward HCPs in the 2015-2017 period.

Inw	ard I	Host-Country Patents,	2000-	2006-	2011-	2015-	CAGR	Share
υκ			2002	2008	2013	2017	'00-'17 (%)	HCPs
								'15-'17 (%)
Tota	al Pa	tents	20,197	22,070	21,194	21,747	0.3	-
Tota	al Ho	st-Country Patents	6,814	8,663	8,700	8,112	1.3	-
Sha	re H	ost-Country Patents (%)	33.7	39.3	41.0	37.3	-	-
		United States	3,197	3,608	3,449	3,189	-0.2	39.3
		Netherlands	882	1,319	887	710	-2.2	8.8
	Ś	Switzerland	369	547	602	687	5.7	8.5
	ntrie	Germany	522	678	828	668	1.8	8.2
	Coul	Japan	134	262	466	518	7.9	6.4
	ped	France	248	525	665	440	1.6	5.4
	evelo	Sweden	471	442	264	213	-4.9	2.6
шo	ă	Finland	123	257	146	186	0.9	2.3
nts fr		Belgium	129	151	143	186	1.3	2.3
plica		Ireland	121	180	191	172	4.1	2.1
h Ap		China	9	40	57	97	24.9	1.2
s wit		South Korea	8	63	129	69	15.1	0.9
ЧСР		Singapore	21	55	69	51	7.2	0.6
	Itries	Hong Kong – China	33	40	31	50	5.1	0.6
	Cour	India	13	20	23	38	5.3	0.5
	jing (Saudi Arabia	2	2	21	34	18.5	0.4
	merç	Mexico	1	16	17	31	13.0	0.4
	Ш	Thailand	0	1	4	28	-	0.3
		Israel	15	30	17	27	7.6	0.3
		South Africa	26	16	9	17	0.0	0.2

Table 5-9: Development of UK Inward Host-Country Patents³²⁷

³²⁷ Own analysis, based on PCT patent-data by MSTI – OECD (2020c).

The UK has a rather high share of HCPs, which has decreased in the latest 2015-2017 period. Parts of this downward trend might be attributed to uncertainties related to Brexit activities and the times around the 2016 United Kingdom European Union membership referendum. For several countries, including the, by far, biggest investing country US, the number of HCPs even decreases, i.e. we have a negative CAGR, despite an increase in the 2006-2008 period.

The share of HCPs is rather high: after continuously increasing from 34% in the period 2000-2002 to 41% in 2011-2013, it has slightly decreased now to 37% in 2015-2017. Nevertheless, this rate is comparably high, indicating that a major share of patents with a UK-based inventor is filed by a foreign firm. These shares are generally smaller than the share of foreign R&D Expenditure within the UK, which was around 51% for 2015³²⁸.

The by far biggest country conducting R&D activities in the UK is the USA, a close political and historical ally of the US, despite a general downwards trend and negative CAGR. Other countries, mostly European, follow at a distance, whereas firms from emerging countries do not play a relevant role. Netherlands is the second-biggest investing country in the UK and home to several major MNCs. Japan accounts for 6% of the Inward HCPs.

Switzerland and Japan are one of the few developed countries which have developed rather positively in a general stagnating or downwards trend. We can see in Table 5-9 that emerging countries have grown with a strong CAGR, however their absolute number of HCPs is negligible. Apart from Switzerland and Japan, other European countries, including UK's neighbor Ireland follow with a smaller CAGR.

Host-Country Patents by Technological Field

Table 5-10 ⁻ Host-Countr	/ Patent Breakdown fo	r UK Inventors by IPC ³²⁹

	Numbe	CAGR			
					'00-'15
IPC Class	2000	2007	2012	2015	(%)
Total Patents	6,928	6,707	6,545	6,842	-0.1
Total Host-Country Patents	3,007	3,039	3,119	3,067	0.1
Share Host-Country Patents (%)	43.4	45.3	47.7	44.8	-
A61: Medical	777	641	544	579	-1.9
H04: Electric Communication	537	495	542	415	-1.7
G06: Computing	416	271	320	382	-0.6
C07: Chemistry	537	380	254	265	-4.6
G01: Measuring	266	260	331	246	-0.5
H01: Electric Elements	208	152	214	238	0.9
C11: Oils	139	59	76	131	-0.4
H02: Electric Power	41	38	99	121	7.5
B65: Packing	128	92	91	105	-1.3
C09: Paints	80	92	104	99	1.4

Note: Full-counting leads to some double counting.

The UK is an economy with quite stagnating patent numbers overall and decreases in major technological fields. Overall a quite high share of between 43% and 48% of patents with an UK-inventor are Host-Country Patents, i.e. patents from a non-UK applicant.

³²⁹ Source: Own analysis, based on REGPAT database by the OECD (2020h).

	Share of GB Inventors in		Share of HCPs	to all patents
	Worldwide F	Patents (%)	of GB Inve	entors (%)
IPC Class	2000	2015	2000	2015
A61: Medical	7.9	5.3	50.2	48.5
H04: Electric Communication	6.5	3.9	52.6	57.4
G06: Computing	7.2	4.7	49.2	50.9
C07: Chemistry	8.6	6.4	56.2	54.0
G01: Measuring	6.5	5.4	36.4	36.4
H01: Electric Elements	3.8	3.9	45.8	54.1
C11: Oils	15.8	18.5	86.9	92.3
H02: Electric Power	3.2	5.1	43.6	44.6
B65: Packing	7.4	5.5	40.0	45.7
C09: Paints	4.8	4.2	50.3	68.8

Table 5-11: Total and Host-Country Patent Shares for UK Inventors by IPC³³⁰

The only relevant technological field with a strong increase between 2000 and 2015 is Electric Power, a class of the section H (Electricity), with the related field of Electric Elements showing a small positive CAGR. For Oils, the quite high global share has even increased from 16% in 2000 to 19% in 2015, despite an overall decrease in patent numbers.

For the internationally growing and highly relevant technological fields, including Medical & Chemistry, as well as IT (Electric Communication, Computing) we can observe drops in shares, indicating the UK has lost in relative relevance for foreign firms as a location to conduct R&D in such fields.

The share of HCPs to total patents with a UK-based inventor is generally quite high, meaning that foreign MNCs play a strong role in comparison to UK MNCs.

5.2.4. France Inward Host-Country Patents

This part summarizes the inward international patenting activities of foreign firms in France. As shown in Table 5-1, France, next to Germany another major European power, ranked fourth in number of inward HCPs in the 2015-2017 period.

³³⁰ Source: Own analysis, based on REGPAT database by the OECD (2020h).

5.2. Developed Countries

Inw	ard I	Host-Country Patents,	2000-	2006-	2011-	2015-	CAGR	Share
Frai	nce		2002	2008	2013	2017	'00-'17 (%)	HCPs
								'15-'17 (%)
Tota	al Pa	tents	16,682	23,039	26,419	25,735	2.5	-
Tota	al Ho	st-Country Patents	4,479	6,195	6,471	5,906	1.9	-
Sha	re H	ost-Country Patents (%)	26.8	26.9	24.5	22.9	-	-
		United States	1,343	1,786	1,600	1,538	0.9	26.0
		Germany	729	899	1,103	1,101	2.8	18.6
	ŝ	Switzerland	971	1,434	1,645	1,021	-0.4	17.3
	ntrie	Luxembourg	77	162	252	412	11.4	7.0
	Cou	Belgium	167	319	280	322	2.6	5.5
	ped	Japan	57	140	168	281	10.0	4.8
	evelo	Sweden	126	221	254	195	2.8	3.3
mo	ð	Netherlands	371	484	366	189	-4.3	3.2
nts fi		United Kingdom	280	216	179	166	-2.3	2.8
plica		Italy	60	83	83	115	2.4	1.9
h Ap		China	8	21	61	65	11.7	1.1
s wit		Singapore	4	7	26	25	11.4	0.4
НСР		South Korea	3	100	33	25	13.8	0.4
	Itries	Israel	18	14	11	17	0.0	0.3
	Cour	Monaco	16	11	16	16	2.0	0.3
	ging	Hong Kong – China	9	13	9	15	6.7	0.3
	merç	Poland	2	8	8	8	8.5	0.1
	ш	Morocco	1	6	6	7	11.1	0.1
		Saudi Arabia	0	1	5	6	-	0.1
		Russia	7	4	1	5	-2.4	0.1

Table 5-12: Development of French Inward Host-Country Patents³³¹

The share of HCPs in France is relatively high but has decreased slightly over the years from 29% in 2000-2002 to around 23% in 2015-2017. The leading countries US, Germany and Switzerland, have held their positions with a rather constant CAGR. Other countries follow at

³³¹ Own analysis, based on PCT patent-data by MSTI – OECD (2020c).

a distance and emerging countries do not play a significant role, with HCP numbers well in the two-digits.

Most of the HCPs, around 61% of the HCPs can be attributed to an applicant from the US, Germany or Switzerland. Other countries, mostly European, follow at a distance.

The strongest growth with a relevant number of HCPs comes from Liechtenstein, a micro-country known for its business-friendly taxation.³³² Japan is also one of the uprising partners, with a CAGR of 10%. Other countries growing above average are France's second-biggest partner Germany, Belgium, as well as Sweden.

Host-Country Patents by Technological Field

	Numbe	CAGR			
					'00-'15
IPC Class	2000	2007	2012	2015	(%)
Total Patents	8,036	9,744	9,974	10,535	1.8
Total Host-Country Patents	2,205	2,869	2,719	2,756	1.5
Share Host-Country Patents (%)	27.4	29.4	27.3	26.2	_
A61: Medical	529	578	433	439	-1.2
G01: Measuring	160	217	234	221	2.2
H04: Electric Communication	302	265	268	218	-2.1
G06: Computing	234	159	159	208	-0.8
C07: Chemistry	375	395	241	195	-4.3
H01: Electric Elements	135	149	175	166	1.4
F16: Engineering Elements	106	110	154	146	2.2
B60: Vehicles	212	227	206	143	-2.6
C08: Organic Compounds	169	184	151	126	-1.9
C09: Paints	72	85	99	91	1.6

Table 5-13: Host-Country Patent Breakdown for French Inventors by IPC³³³

Note: Full-counting leads to some double counting.

³³² Cf. Deloitte (2019a).

³³³ Source: Own analysis, based on REGPAT database by the OECD (2020h).

5.2. Developed Countries

We can observe an increase in host-country patent numbers between 2000 and 2007, followed by a slight decrease. The share of Host-Country Patents increases as well from 27% to 29% from 2000 to 2007 und then decreases to 26% until 2015. Overall the CAGR both on a total and on a technological field level are quite small, indicated relatively little movement.

	Share of FR Inventors in		Share of HCPs	to all patents
	Worldwide P	atents (%)	of FR Inve	ntors (%)
IPC Class	2000	2015	2000	2015
A61: Medical	7.1	5.8	37.9	33.7
G01: Measuring	5.6	7.7	25.4	23.3
H04: Electric Communication	6.2	5.7	31.0	20.3
G06: Computing	5.6	6.5	35.9	20.3
C07: Chemistry	6.6	6.2	51.3	40.9
H01: Electric Elements	5.1	6.9	22.1	21.2
F16: Engineering Elements	7.4	8.3	27.4	26.8
B60: Vehicles	10.6	12.6	36.8	16.2
C08: Organic Compounds	7.1	6.7	42.6	33.6
C09: Paints	4.4	6.3	49.3	42.3

Table 5-14: Total and Host-Country Patent Shares for French Inventors by IPC³³⁴

For several fields we have a negative CAGR and also a decrease on share of worldwide HCPs, indicating a drop both in absolute and relative relevance of France as a location for R&D activities. This includes Medical & Chemistry, as well as some technical fields (Electric Communication). For Engineering Elements, Electric Elements and the natural science field Measuring, however, we have both a positive CAGR and an increase in worldwide share. Measuring, as outlined in Chapter 5.2.2, is a rather broad class in the section G (Physics).

The share of HCPs to all patents with a France-based inventor has generally decreased, meaning that the relative relevance of foreign MNCs conducting R&D in France has decreased in practically all technological fields.

³³⁴ Source: Own analysis, based on REGPAT database by the OECD (2020h).

5.2.5. Canada Inward Host-Country Patents

This part summarizes the inward international patenting activities of foreign firms in Canada. As shown in Table 5-1, Canada, the US's northern neighbor, ranked sixth in number of inward HCPs in the 2015-2017 period.

Table 5-15: Development of Canadian Inward Host-Country Patents³³⁵

Inw	ard I	Host-Country Patents,	2000-2002	2006-2008	2011-2013	2015-2017	CAGR	Share
Can	nada						'00-'17	HCPs
							(%)	'15-'17 (%)
Tota	al Pa	tents	8,211	10,383	11,211	10,678	1.4	-
Tota	al Ho	st-Country Patents	2,737	3,997	4,479	4,464	2.2	-
Sha	re H	ost-Country Patents (%)	33.3	38.5	40.0	41.8	-	-
		United States	1,828	2,489	2,540	1,998	0.0	44.8
		Sweden	136	215	384	389	3.1	8.7
	S	Germany	111	162	149	164	3.1	3.7
	ntrie	Switzerland	79	153	148	161	6.1	3.6
	Cou	France	83	274	253	154	3.8	3.4
	ped	United Kingdom	88	113	137	103	-4.0	2.3
	evelo	Netherlands	31	142	139	59	2.2	1.3
mo	ð	Ireland	75	37	19	52	-1.8	1.2
nts fi		Japan	47	40	61	52	2.6	1.2
plica		Luxembourg	14	49	39	37	3.3	0.8
h Ap		China	6	28	269	913	33.3	20.5
s wit		Singapore	14	37	101	77	9.3	1.7
НСР		India	3	5	10	25	8.5	0.6
	ntries	Hong Kong – China	30	12	11	24	-4.7	0.5
	Cour	Israel	18	19	22	22	4.2	0.5
	jing (Korea	9	23	15	13	2.8	0.3
	merç	United Arab Emirates	0	1	1	13	-	0.3
	ш	Saudi Arabia	0	0	11	9	-	0.2
		Brazil	1	3	8	8	9.9	0.2
		Russia	0	0	3	8	-	0.2

³³⁵ Own analysis, based on PCT patent-data by MSTI – OECD (2020c).

5.2. Developed Countries

It comes as little surprise, that Canada, the US's northern neighbor, receives a significant number of Inward HCPs from just south the border. The share of Inward HCPs is rather high and has increased from 33% in 2000-2002 to 42% in 2015-2017.

US firms account for a staggering 45% of all HCPs in Canada, followed by China with 21%. China has grown to be a strong investor in Canada, presumably due to the cultural and geographic proximity to the US. Sweden follows with 9%, where the next ranks are filled by mostly European firms, each well below 4%.

China is not only the second-largest country by number of HCPs in Canada, it also has the by-far largest growth, increasing its HCPs over the years more than 100-fold. Another emerging country, Singapore, has grown strongly with a CAGR of 9%, although the absolute number of HCPs account for only 2% of HCPs. From the developed countries, Sweden has clearly gained in importance, with a CAGR of 6%, followed by other European countries.

Host-Country Patents by Technological Field

	Number of HCPs per Priority Year				
					'00-'15
IPC Class	2000	2007	2012	2015	(%)
Total Patents	2,055	2,899	2,888	2,302	0.8
Total Host-Country Patents	928	1,407	1,472	1,255	2.0
Share Host-Country Patents (%)	45.2	48.5	51.0	54.5	-
H04: Electric Communication	175	389	520	399	5.6
A61: Medical	257	265	215	194	-1.9
G06: Computing	106	143	222	169	3.2
G01: Measuring	115	98	90	101	-0.9
H01: Electric Elements	55	70	65	82	2.7
C07: Chemistry	164	148	95	77	-4.9
C12: Biochemistry	115	84	51	45	-6.1
B01: Processes	43	38	46	43	0.0
B64: Aviation	2	8	15	41	22.3
G02: Optics	34	25	35	37	0.6

Table 5-16: Host-Country Patent Breakdown for Canadian Inventors by IPC³³⁶

Note: Full-counting leads to some double counting.

For Canada we can observe a quite high share of Host-Country Patents which even increased over the years until 2015 to 55%. That means that more than every second patent with a Canadian inventor has a foreign-based applicant, i.e. gets filed by a foreign MNC. The technological fields show mostly a rather dynamic development with comparably strong CAGRs.

³³⁶ Source: Own analysis, based on REGPAT database by the OECD (2020h).

	Share of CA Ir	nventors in	Share of HCPs	to all patents
	Worldwide Pa	atents (%)	of CA Inve	ntors (%)
IPC Class	2000	2015	2000	2015
H04: Electric Communication	2.3	2.8	47.9	75.4
A61: Medical	2.7	2.0	48.8	43.5
G06: Computing	2.0	2.0	45.9	53.7
G01: Measuring	2.1	1.9	48.3	43.2
H01: Electric Elements	1.2	1.2	36.9	58.6
C07: Chemistry	2.6	2.6	57.3	38.9
C12: Biochemistry	3.3	2.7	47.9	32.8
B01: Processes	1.5	1.9	55.8	51.2
B64: Aviation	1.5	3.5	25.0	68.3
G02: Optics	1.9	1.6	47.2	56.1

Table 5-17: Total and Host-Country Patent Shares for Canadian Inventors by IPC³³⁷

The fields with a positive CAGR and increase in worldwide share are Electric Communication which, despite a decrease in patent numbers from 2012 to 2015 is the, by far, biggest technological field. Another uprising technological field, which is also quite unique for Canada, is Aviation. Companies such as Bombardier might be the reason for Canada possessing competencies in that field and attracting R&D activities by foreign firms, outlined by the strong increase in HCP to total share. With a CAGR of 3% the technological field Computing has kept is relative worldwide relevance of 2% between 2000 and 2015.

Technological fields with stagnation or decreases are Medical, Chemistry and Biochemistry. For these strong fields other countries are apparently becoming slightly more attractive for R&D activities than Canada.

5.2.6. Japan Inward Host-Country Patents

This part summarizes the inward international patenting activities of foreign firms in Japan. As shown in Table 5-1, Japan, an economic power in Asia, ranked eighth in number of inward HCPs in the 2015-2017 period, behind the emerging country India.

³³⁷ Source: Own analysis, based on REGPAT database by the OECD (2020h).

Inwa Japa	ard I an	Host-Country Patents,	2000-2002	2006-2008	2011-2013	2015-2017	CAGR '00-'17	Share HCPs
					100.105		(%)	15-17 (%)
lota	al Pa	tents	38,726	82,512	128,185	130,298	8.5	-
Tota	al Ho	st-Country Patents	2,438	3,318	3,970	3,788	3.1	-
Sha	re H	ost-Country Patents (%)	6.3	4.0	3.1	2.9	-	-
		United States	1,353	1,770	1,948	1,413	0.9	37.3
		Germany	317	332	341	432	3.5	11.4
	(0	France	111	209	310	411	10.0	10.9
	ntrie	Switzerland	138	127	147	132	-0.9	3.5
	Coul	Sweden	49	123	147	104	0.4	2.7
	ped	United Kingdom	69	60	65	76	-0.3	2.0
	velo	Netherlands	148	158	113	74	-6.4	2.0
Шo	De	Finland	41	101	59	68	3.6	1.8
nts fr		Belgium	11	14	51	53	15.5	1.4
plica		Luxembourg	8	24	183	36	9.9	1.0
h Ap		China	14	63	121	381	24.0	10.1
s wit		South Korea	52	77	185	233	11.7	6.2
4C P		Hong Kong – China	13	94	36	110	16.0	2.9
	itries	Thailand	1	12	23	69	25.1	1.8
	Coun	Singapore	10	55	110	66	18.5	1.7
	ing (Chinese Taipei	8	17	14	39	9.1	1.0
	nerg	India	1	1	7	16	9.9	0.4
	ш	Saudi Arabia	0	5	4	10	-	0.3
		Malaysia	0	3	8	8	-	0.2
		Israel	5	5	6	7	2.4	0.2

Table 5-18: Development of Japanese Inward Host-Country Patents³³⁸

Japan has a comparably low share of HCPs, which even decreased over the years: from 6% in 2000-2002 to 3% in 2015-2017. The number of HCPs has increased from 2,438 to 3,788 in the same period, indicating that there is some relevant interest in conducting R&D in Japan, which is however not on a relevant scale compared to domestic patenting activities.

³³⁸ Own analysis, based on PCT patent-data by MSTI – OECD (2020c).

5.2. Developed Countries

Japan strongest partner is the US with 37% of HCPs, followed at a large distance by Germany and France with 11% each, and China with 10%. Korea follows at 6%.

The biggest growth can be observed for China with 24%, and Hong Kong – China, with 16%. South Korea, another emerging country has also strongly increased its HCPs in Japan with a CAGR of 12%. From the developed economies France has clearly ramped up HCPs with a CAGR of 10%, which made it the third-biggest country in terms of HCPs in the 2015-2017 period.

Host-Country Patents by Technological Field

	Numbe	CAGR			
					'00-'15
IPC Class	2000	2007	2012	2015	(%)
Total Patents	22,428	22,028	21,943	20,505	-0.6
Total Host-Country Patents	1,057	1,184	1,052	986	-0.5
Share Host-Country Patents (%)	4.7	5.4	4.8	4.8	-
H04: Electric Communication	109	302	226	225	5.0
A61: Medical	267	185	141	131	-4.6
C08: Organic Compounds	131	87	114	100	-1.8
H01: Electric Elements	159	140	93	93	-3.5
B60: Vehicles	22	37	67	84	9.3
G06: Computing	112	79	66	76	-2.6
C07: Chemistry	180	118	91	62	-6.9
C09: Paints	94	58	71	60	-2.9
D06: Textile Treatment	10	6	2	57	12.3
G01: Measuring	121	89	54	52	-5.5

Table 5-19: Host-Country Patent Breakdown for Japanese Inventors by IPC³³⁹

Note: Full-counting leads to some double counting.

Japan is one of the few countries with an overall decrease of patent numbers since 2000. In fact, some technological fields show a negative CAGR, whereas some others are quite positive. The share of Host-Country Patents is comparably small and after a small increase

³³⁹ Source: Own analysis, based on REGPAT database by the OECD (2020h).

from 4.7% in 2000 to 5.4% in 2007, that share has decreased to 4.8% again in 2012 and 2015. That means that less than every twentieth patent with a Japanese inventor has a foreign-based applicant.

	Share of JP Inventors in		Share of HCPs	to all patents
	Worldwide P	atents (%)	of JP Inve	ntors (%)
IPC Class	2000	2015	2000	2015
H04: Electric Communication	23.1	12.6	3.0	9.5
A61: Medical	10.5	10.3	13.0	5.7
C08: Organic Compounds	24.6	29.3	9.5	6.1
H01: Electric Elements	33.3	24.5	4.0	3.3
B60: Vehicles	22.5	24.2	1.8	4.9
G06: Computing	23.6	12.4	4.1	3.9
C07: Chemistry	13.0	9.9	12.4	8.1
C09: Paints	26.2	27.6	10.7	6.4
D06: Textile Treatment	12.8	14.1	7.2	38.8
G01: Measuring	15.5	14.7	7.0	2.9

Table 5-20: Total and Host-Country Patent Shares for Japanese Inventors by IPC³⁴⁰

The breakdown by technological fields shows interesting developments. The strong and increasing fields are related to industries in which Japan is strong, which, again, relates to the concept of lead markets: Electric Communication and Vehicles. On the other side, Medical and Chemistry have strongly decreased in patent numbers and share in worldwide HCPs, whereas the share of Organic Compounds with Japanese inventors increased to 29% in 2015. Other and rather less common technological fields are Paints and Textile Treatment.

Compared to other countries we immediately notice the small internationalization rate, i.e. the share of HCPs to all patents with a Japan-based inventor, which even decreases until 2015 for almost all technological fields. In relation to Japanese firms, foreign MNCs play a relatively small role in conducting R&D in Japan.

³⁴⁰ Source: Own analysis, based on REGPAT database by the OECD (2020h).

5.3. Emerging Countries

In this part I show and discuss the six most relevant emerging countries as a location for R&D activities by foreign multinational corporations. These six countries are China, India, Israel, South Korea, Singapore and Russia and have been selected based on their global HCP numbers outlined in Table 5-1. That means we look at patents filed for by multinational firms based outside China, India etc. respectively and look at host-country patents, i.e. patents with a Chinese- / Indian- etc. based inventor.

5.3.1. China Inward Host-Country Patents

This part summarizes the inward international patenting activities of foreign firms in China. As shown in Table 5-1, China, the most dynamic and strongest emerging country, has surpassed Germany in number of inward HCPs and ranked second in the 2015-2017 period, behind the US.

Inward Host-Country Patents,			2000-	2006-	2011-	2015-	CAGR	Share HCPs
China			2002	2008	2013	2017	'00-'17	'15-'17 (%)
							(%)	
Total Patents			3,716	18,489	61,613	127,521	22.6	-
Total Host-Country Patents			906	3,658	8,884	11,957	18.1	-
Share Host-Country Patents (%)		24.4	19.8	14.4	9.4	-	-	
		United States	419	1,329	3,475	3,934	14.6	32.9
	ntries	Japan	50	119	638	1,231	23.1	10.3
		Germany	63	377	844	890	18.0	7.4
		France	26	405	734	588	19.5	4.9
	Cou	Sweden	6	165	532	541	39.5	4.5
	ped	Switzerland	31	144	326	440	27.0	3.7
	Develo	Finland	29	204	583	387	27.2	3.2
шo		Netherlands	41	223	279	260	23.5	2.2
h Applicants fr		United Kingdom	34	98	194	221	15.2	1.8
		Canada	16	35	72	75	13.8	0.6
	Emerging Countries	Cayman Islands	0	105	271	2,306	-	19.3
s wit		Hong Kong – China	125	141	164	452	10.0	3.8
HCP		South Korea	28	87	170	267	29.8	2.2
		Singapore	12	57	127	151	17.9	1.3
		Chinese Taipei	33	101	103	130	9.6	1.1
		Malaysia	0	1	13	15	-	0.1
		Israel	0	15	8	13	-	0.1
		Saudi Arabia	0	2	1	13	-	0.1
		United Arab Emirates	0	0	4	6	-	0.1
		Lebanon	0	0	0	4	-	0.0

Table 5-21: Development of China Inward Host-Country Patents³⁴¹

China has become the second most important target country for HCPs during recent years, with strong increases particularly after 2010. The number of HCPs has increased 13-fold from 906 to 11,957 in the periods 2000-2002 to 2015-2017. This growth is still outnumbered by the

³⁴¹ Own analysis, based on PCT patent-data by MSTI – OECD (2020c).

5.3. Emerging Countries

number of total patents, i.e. including domestic applicants. Here the number of patents even increased 34-fold in the periods analyzed.

This has led to a drop in the HCP share from 24.4% to 9.4%, which in turn has a profound impact on the global HCP developments, as discussed in Chapter 3.1. In earlier years China was more dependent on foreign knowledge and investments. Over the years it has ramped up its capabilities and strongly pushed local R&D activities, so that the number of HCPs, while strongly increasing in absolute numbers, has lost in relative relevance to patents with Chinese applicants.

The strongest investor in China is the US, with around 33% of all HCPs. Japan follows at a distance, followed again by Germany. Emerging countries do not play a relevant role.

The surprisingly high value for the Cayman Islands in the period 2015-2017 is not due to a data error (there is not on outlying data value, but instead each respective year's value is similarly high). Instead it can be assumed that the companies filing for patents with Chinese inventors are registered in the Cayman Islands for tax and other legal reasons. For example, car manufacturer Geely is incorporated in the Cayman Islands. Hong Kong, a special administrative region of China, is home for many companies, also for tax reasons.³⁴²

Particularly strong growth rates can be observed by Japan and a number of European countries. Japan might be interested in investing in China due to the geographic proximity and relatively cultural closeness.

³⁴² Cf. PwC (2019).

Host-Country Patents by Technological Field

Table 5-22: Host-Countr	v Patent	Breakdown	for Chinese	Inventors	hv	IPC ³⁴³
	γΓαισπ	Dieakuowii	IUI UIIIIIESE		Dy	

	Number of HCPs per Priority Year				CAGR
					'00-'15
IPC Class	2000	2007	2012	2015	(%)
Total Patents	269	2,551	6,664	8,833	26.2
Total Host-Country Patents	165	867	1,997	2,177	18.8
Share Host-Country Patents (%)	61.3	34.0	30.0	24.6	-
H04: Electric Communication	26	264	781	781	25.5
G06: Computing	15	92	238	324	22.7
A61: Medical	29	108	189	251	15.5
C07: Chemistry	32	102	157	170	11.8
C08: Organic Compounds	8	59	149	141	21.1
H01: Electric Elements	14	69	124	140	16.6
G01: Measuring	15	40	91	88	12.5
C09: Paints	4	22	69	69	20.9
B01: Processes	24	27	53	64	6.8
H02: Electric Power	1	23	67	62	31.7

Note: Full-counting leads to some double counting.

The number of patents with a Chinese inventor has strongly increased since 2000 and grown with a CAGR of 26%. The sub-set of patents with a Chinese inventor and a foreign, i.e. non-Chinese applicant has grown at a smaller, yet impressive rate of 19%. While in 2000 two out of three patents (61%) of patents with a Chinese inventor had a foreign applicant, that share has dropped to one out of four patents (25%). This shows us two things: first, China has grown in high relevance as a R&D location for foreign firms and second, Chinese firms themselves have increased their patent numbers immensely.

³⁴³ Source: Own analysis, based on REGPAT database by the OECD (2020h).

	Share of CN I	nventors in	Share of HCPs to all patents			
	Worldwide P	atents (%)	of CN Inventors (%)			
IPC Class	2000	2015	2000	2015		
H04: Electric Communication	0.4	17.4	44.8	24.0		
G06: Computing	0.2	9.6	71.4	21.1		
A61: Medical	0.3	4.2	52.7	26.6		
C07: Chemistry	0.4	6.9	65.3	32.0		
C08: Organic Compounds	0.3	3.9	47.1	65.3		
H01: Electric Elements	0.2	6.4	66.7	19.1		
G01: Measuring	0.2	3.4	75.0	20.7		
C09: Paints	0.1	2.8	100	71.9		
B01: Processes	0.6	3.4	82.8	42.4		
H02: Electric Power	0.1	5.1	33.3	23.2		

Table 5-23: Total and Host-Country Patent Shares for Chinese Inventors by IPC³⁴⁴

The share of patents with a China-based inventor across all relevant technological fields has increased from negligible figures of less than 1% in 2000 to, partly, two-digit shares in 2015. The most relevant technological field, both in terms of absolute patent numbers, as well as worldwide share is Electric Communications, followed at a distance by Computing. Other relevant technical field is Electric Elements. From the natural sciences Medical, Chemistry, Organic Compounds and Paints stand out. For the engineering side we have measuring. The IPC class G01, being the first class in the section G (Physics) is a rather general class encompassing measuring instruments and other signaling or control devices dealing with measurement or testing.

The share of HCPs to all patents with a China-based inventor has mostly dropped strongly between 2000 and 2015, yet remains at relatively high rates: while in earlier years China was very dependent on foreign MNCs to conduct R&D in China and subsequently patent. In more recent years Chinese MNCs have stepped up and file an increasing share of patents.

³⁴⁴ Source: Own analysis, based on REGPAT database by the OECD (2020h).
5.3.2. India Inward Host-Country Patents

This part summarizes the inward international patenting activities of foreign firms in India. As shown in Table 5-1, India, the uprising emerging country, ranked seventh in number of inward HCPs in the 2015-2017 period and second across all emerging countries.

Table 5-24: Development of Indian Inward Host-Country Patents³⁴⁵

Inw	ard	Host-Country Patents,	2000-	2006-	2011-	2015-	CAGR	Share
Indi	ia		2002	2008	2013	2017	'00-'17 (%)	HCPs
								'15-'17 (%)
Tota	al Pa	tents	1,646	4,491	7,544	8,684	13.8	-
Tota	al Ho	st-Country Patents	487	1,782	3,678	4,270	15.5	-
Sha	re H	ost-Country Patents (%)	29.6	39.7	48.8	49.2	-	-
		United States	263	927	2,072	2,248	15.0	52.6
		Netherlands	84	207	285	372	13.3	8.7
	Ś	United Kingdom	79	190	216	261	10.1	6.1
	ntrie	Switzerland	11	104	220	244	20.8	5.7
	Cou	Germany	42	96	239	242	10.7	5.7
	ped	Sweden	9	19	101	164	17.4	3.8
	Develo	France	18	56	134	123	19.9	2.9
шo		Finland	1	20	146	93	24.0	2.2
nts fi		Japan	3	7	32	76	21.4	1.8
plica		Ireland	3	8	18	68	19.3	1.6
h Ap		South Korea	0	81	163	261	-	6.1
s wit		China	0	9	25	59	-	1.4
4 C D		Singapore	11	10	29	57	10.3	1.3
	Itries	Bermuda	0	9	3	19	-	0.4
	Cour	Israel	3	37	10	17	9.9	0.4
	jing (Malaysia	0	5	12	7	-	0.2
	merç	Iceland	0	41	4	5	-	0.1
	Ш	Cyprus	0	0	0	5	-	0.1
		Cayman Islands	0	5	2	4	-	0.1
		Hong Kong – China	1	4	0	4	4.2	0.1

³⁴⁵ Own analysis, based on PCT patent-data by MSTI – OECD (2020c).

5.3. Emerging Countries

India's share of HCPs has strongly increased, with almost every second patent coming from a foreign applicant: the share increased from 30% to 50% in the periods 2000-2002 to 2015-2017.

We can observe a very high concentration of applicant countries, where the US is clearly leading and dominating incoming R&D activities. Other countries, including the emerging country Korea follows at a large distance. Following the US with 9% is the Netherland and with 6% the UK. India is one of the few countries, where it is not China which is leading for the emerging countries in terms of HCPs. Apart from a general lack of interest, strong political rivalries might guide China to focus its activities elsewhere.

India, being an emerging country, has experienced generally quite high growth rates in incoming HCPs, i.e. the respective CAGR is relatively high. Particularly outstanding, though, in terms of growth rate, is South Korea, followed by Switzerland, which both have grown their number of HCPs with a CAGR of over 20% each.

Host-Country Patents by Technological Field

Table 5-25: Host-Countr	v Patent Breakdown	for Indian	Inventors by	/ IPC ³⁴⁶
			mivence of one	, 0

	Numbe	CAGR			
					'00-'15
IPC Class	2000	2007	2012	2015	(%)
Total Patents	230	814	1,498	1,709	14.3
Total Host-Country Patents	100	493	1,058	1,110	17.4
Share Host-Country Patents (%)	43.5	60.6	70.6	65.0	-
H04: Electric Communication	13	91	238	239	21.4
G06: Computing	10	69	214	213	22.6
A61: Medical	26	87	129	160	12.9
C07: Chemistry	22	93	103	109	11.3
G01: Measuring	7	14	62	64	15.9
C08: Organic Compounds	8	38	58	58	14.1
F01: Machines	0	7	82	57	
H01: Electric Elements	7	38	31	57	15.0
A01: Agriculture	1	13	21	49	29.6
H02: Electric Power	3	20	36	45	19.8

Note: Full-counting leads to some double counting.

India has, typical for an emerging economy, strong growth rates both for the total patent numbers and for the respective technological fields between 2000 and 2015. Between 2012 and 2015 the total number of patents grew stronger than the Host-Country Patents, meaning that after an overall increase in share until 2012, we can observe a decrease to 65% until 2015. In other words: two out of three patents with an Indian inventor have a foreign-based applicant. This shows that relatively speaking foreign firms are quite active in India, whereas Indian firms have yet to increase their own capabilities and patent numbers. The more recent developments, i.e. between 2012 and 2015, can, however, be indicative of a paradigm shift.

³⁴⁶ Source: Own analysis, based on REGPAT database by the OECD (2020h).

	Share of IN Inventors in		Share of HCPs	to all patents
	Worldwide P	atents (%)	of IN Inve	ntors (%)
IPC Class	2000	2015	2000	2015
H04: Electric Communication	0.1	1.6	81.3	80.2
G06: Computing	0.1	2.2	62.5	59.7
A61: Medical	0.5	1.5	28.9	48.2
C07: Chemistry	0.7	3.1	26.8	45.4
G01: Measuring	0.1	0.8	58.3	64.0
C08: Organic Compounds	0.3	1.6	57.1	65.9
F01: Machines	0.0	1.8	-	98.3
H01: Electric Elements	0.1	0.6	70.0	82.6
A01: Agriculture	0.4	1.8	10.0	87.5
H02: Electric Power	0.1	1.0	100	88.2

Table 5-26: Total and Host-Country Patent Shares for India Inventors by IPC³⁴⁷

The strongest technological fields are in ICT and technology, namely Electric Communication, Computing and Electric Elements. Medical, Chemistry and Organic Compounds also plays a somewhat relevant role. The share of patents with an India-based inventor has increased from less than 1% in 2000 to a somewhat visible one-digit rate in 2015 for several fields.

The unsurprisingly high share, for an emerging country, of HCPs to all patents with an India-based inventor has increased until 2015 for many fields, indicating that MNCs play a strongly growing role for conducting R&D in India.

5.3.3. Israel Inward Host-Country Patents

This part summarizes the inward international patenting activities of foreign firms in Israel. As shown in Table 5-1, Israel, a close political ally of the US, ranked twelfth in number of inward HCPs in the 2015-2017 period.

³⁴⁷ Source: Own analysis, based on REGPAT database by the OECD (2020h).

Inw	ard I	Host-Country Patents,	2000-	2006-	2011-	2015-	CAGR	Share
Isra	el		2002	2008	2013	2017	'00-'17 (%)	HCPs
								'15-'17 (%)
Tota	al Pa	tents	4,619	6,417	6,417	7,303	2.2	-
Tota	al Ho	st-Country Patents	1,299	1,621	2,224	2,193	2.3	-
Sha	re H	ost-Country Patents (%)	28.1	25.3	34.7	30.0	-	-
		United States	945	1,115	1,711	1,490	1.3	67.9
		Netherlands	49	38	92	261	9.6	11.9
	Ś	Germany	31	69	32	60	3.9	2.7
	ntrie	United Kingdom	78	75	65	52	-2.2	2.4
	Coul	Switzerland	21	103	45	44	7.8	2.0
	ped	France	9	19	25	26	7.9	1.2
	Develo	Luxembourg	1	7	22	22	-	1.0
щ		Italy	2	7	11	14	-	0.6
nts fi		Canada	24	19	11	11	-4.4	0.5
plica		Australia	5	5	5	9	2.4	0.4
h Ap		Singapore	4	11	27	21	11.1	1.0
s wit		China	0	6	6	16	-	0.7
НСР		Russia	5	7	3	15	15.7	0.7
	ntries	Cyprus	9	16	12	14	0.0	0.6
	Cour	Bermuda	9	19	22	10	9.9	0.5
	ging (Hong Kong – China	4	13	9	9	6.7	0.4
	merç	Cayman Islands	4	3	3	9	-1.7	0.4
	ш	Chinese Taipei	0	4	4	9	-	0.4
		Poland	0	0	4	7	-	0.3
		Croatia	0	0	0	5	-	0.2

Table 5-27: Development of Israeli Inward Host-Country Patents³⁴⁸

Israel, a small country with a strong national innovation system, has a moderately high share of HCPs. The share of HCPs has increased from 28% in the period 2000-2002 to 30% in 2015-2017, with a peak of 35% in 2011-2013.

³⁴⁸ Own analysis, based on PCT patent-data by MSTI – OECD (2020c).

It comes as little surprise that the US, a close strategic ally of Israel dominates the incoming patenting activities with two out of three HCPs coming from a US applicant. Other countries follow at a large distance. The only other somewhat relevant partner country is the Netherlands with 12% of all HCPs in 2015-2017.

The Netherlands has increased its HCPs in Israel the strongest, with a CAGR of 10%, making the country the second-biggest partner in terms of HCPs in 2015-2017. Other strongly growing countries are France and Switzerland, with a CAGR of 8% each, and Germany with 4%. These three countries do not have a significant absolute number of HCPs in Israel, though.

Host-Country Patents by Technological Field

	Numbe	CAGR			
					'00-'15
IPC Class	2000	2007	2012	2015	(%)
Total Patents	1,168	1,397	1,458	1,625	2.2
Total Host-Country Patents	446	414	493	485	0.6
Share Host-Country Patents (%)	38.2	29.6	33.8	29.8	-
G06: Computing	115	92	141	122	0.4
A61: Medical	152	162	126	121	-1.5
H04: Electric Communication	131	59	162	114	-0.9
G03: Photography	25	13	20	42	3.5
G01: Measuring	49	28	39	39	-1.5
C07: Chemistry	45	44	18	29	-2.9
B41: Printing	17	15	15	21	1.4
H01: Electric Elements	26	12	19	17	-2.8
C09: Paints	1	7	14	17	20.8
C12: Biochemistry	40	29	22	16	-5.9

Table 5-28: Host-Country Patent Breakdown for Israeli Inventors by IPC³⁴⁹

Note: Full-counting leads to some double counting.

Israel's Host-Country Patents have only slightly increased in number between 2000 and 2015, whereas the number of total patents, i.e. all patents with an Israeli inventor, regardless of

³⁴⁹ Source: Own analysis, based on REGPAT database by the OECD (2020h).

applicant, have increased at a higher rate. Consequently, the share of HCPs has decreased from 38% in 2000 to 29% in 2015.

	Share of IL Inventors in		Share of HCPs	to all patents	
	Worldwide Pa	atents (%)	of IL Inver	ntors (%)	
IPC Class	2000	2015	2000	2015	
G06: Computing	1.8	1.9	54.8	40.8	
A61: Medical	2.1	2.6	37.4	20.6	
H04: Electric Communication	1.9	1.2	45.0	51.6	
G03: Photography	1.7	4.1	56.8	68.9	
G01: Measuring	1.3	1.4	34.8	22.5	
C07: Chemistry	1.3	1.2	32.1	30.2	
B41: Printing	1.3	2.6	51.5	53.8	
H01: Electric Elements	0.5	0.6	43.3	23.6	
C09: Paints	0.1	0.9	50.0	54.8	
C12: Biochemistry	1.5	1.8	37.0	17.4	

Table 5-29: Total and Host-Country Patent Shares for Israeli Inventors by IPC³⁵⁰

A majority of major technological fields are technical in nature: Computing, Electric Communication and Measuring. For Photography Israel accounts for 4% of all HCPs in that field. We have already discussed that IPCs and industries can only be indirectly linked, so it is unclear whether Photography stems from civilian development, or, more likely from defense and reconnaissance areas, which are strong in Israel. Medical, despite decreasing HCP patent numbers, holds a noticeable and increasing global share of almost 3%. Two additional and rather unusual fields in which Israel has a noticeable number of HCPs are Printing and Paints.

The share of HCPs to all patents with an Israel-based inventor is high, but not as high, as for many other emerging countries and partly decreasing, indicating that Israeli MNCs also hold a relevant, or even growing share in conducting R&D activities in Israel.

³⁵⁰ Source: Own analysis, based on REGPAT database by the OECD (2020h).

5.3.4. South Korea Inward Host-Country Patents

This part summarizes the inward international patenting activities of foreign firms in South Korea. As shown in Table 5-1, South Korea, an uprising Asian nation, was on rank 15 in number of inward HCPs in the 2015-2017 period.

Inw	ard I	Host-Country Patents,	2000-	2006-	2011-	2015-	CAGR	Share
Sou	ith K	orea	2002	2008	2013	2017	'00-'17 (%)	HCPs
								'15-'17 (%)
Tota	al Pa	tents	6,937	21,342	34,993	45,276	12.7	-
Tota	al Ho	st-Country Patents	376	805	1,328	1,321	8.4	-
Sha	re H	ost-Country Patents (%)	5.4	3.8	3.8	2.9	-	-
		United States	239	423	601	621	5.7	47.0
		Japan	52	124	155	199	13.9	15.1
	S	Sweden	6	2	204	115	9.0	8.7
	ntrie	Germany	15	58	82	101	15.9	7.6
	Cou	Netherlands	4	8	14	46	5.9	3.5
	ped	France	6	19	40	45	12.6	3.4
	Develo	Belgium	0	17	29	41	-	3.1
щo		Switzerland	1	15	18	22	15.1	1.7
nts fi		Finland	3	6	3	14	13.0	1.1
plica		United Kingdom	6	10	13	12	5.9	0.9
h Ap		China	18	43	56	47	17.4	3.6
s wit		Singapore	5	15	41	18	13.8	1.4
HCP		Saudi Arabia	0	2	1	11	-	0.8
	ntries	Hong Kong – China	2	15	17	7	2.4	0.5
	Cour	Malaysia	0	1	1	4	-	0.3
	jing (India	0	0	0	3	-	0.2
	merç	Thailand	0	0	1	1	-	0.1
	Ш	Philippines	0	0	0	1	-	0.1
		Lithuania	0	0	0	1	-	0.1
		Bosnia & Herzegovina	0	0	0	1	-	0.1

Table 5-30: Development of South Korean Inward Host-Country Patents³⁵¹

³⁵¹ Own analysis, based on PCT patent-data by MSTI – OECD (2020c).

South Korea has a quite low share of HCPs, which even decreased over the years: from 5% in 2000-2002 to 3% in 2015-2017. The number of HCPs has increased from 376 to 1,321 in the same period, indicating that there is nascent interest in conducting R&D in South Korea, which is however not on a relevant scale compared to domestic patenting activities. In this regard, the situation in South Korea is quite similar to that of its close neighbor Japan, as described in Chapter 5.2.6.

The biggest partner country for Korea is the US, with 47% of all HCPs, followed by Japan with 15%. Other somewhat relevant countries are European, namely Sweden with 9% and Germany with 8%. China accounts for 4% of all HCPs.

Being an emerging country, overall growth rates in HCPs is rather high with an average CAGR of 8%. China and Germany have grown particularly strong, with a CAGR of 17% and 16% respectively. Japan has grown at a strong rate of 14%, making it the second-biggest partner country in terms of HCP. The US are a rather strong historic partner with a CAGR of comparably low 6%.

Host-Country Patents by Technological Field

able 5-31: Host-Country Patent Breakdown for South Korean Inventors by IPC ³⁵²

	Numbe	CAGR			
					'00-'15
IPC Class	2000	2007	2012	2015	(%)
Total Patents	1,309	4,906	6,266	6,753	11.6
Total Host-Country Patents	96	314	382	354	9.1
Share Host-Country Patents (%)	7.3	6.4	6.1	5.2	-
H04: Electric Communication	21	72	163	77	9.0
H01: Electric Elements	19	39	73	69	9.0
A61: Medical	10	25	39	47	10.9
G06: Computing	13	20	32	38	7.4
C07: Chemistry	11	25	25	34	7.8
C09: Paints	6	23	10	26	10.3
G01: Measuring	5	17	14	22	10.4
C08: Organic Compounds	3	9	12	17	12.3
G02: Optics	4	8	10	17	10.1
B01: Processes	1	8	11	14	19.2

Note: Full-counting leads to some double counting.

As several other emerging economies, we can see in South Korea strong growth rates, both in total patent numbers, as well as within the industrial fields. The strong increase in Host-Country Patent numbers is surpassed by a stronger increase in Total Patents, i.e. all patents with at least one South Korean-based inventor. That means that the already rather small share of HCPs decreased over the years, namely from 7% in 2000 to 5% in 2015. Nevertheless, the number of HCPs has more than tripled in the 15 years between 2000 and 2015, whereas the overall relevance of HCPs with South Korean inventors has remained rather small.

³⁵² Source: Own analysis, based on REGPAT database by the OECD (2020h).

	Share of KR Inventors in		Share of HCPs to all patents			
	Worldwide P	atents (%)	of KR Inventors (%)			
IPC Class	2000	2015	2000	2015		
H04: Electric Communication	2.1	8.4	6.3	4.9		
H01: Electric Elements	1.3	10.4	11.9	5.8		
A61: Medical	0.8	3.3	6.6	6.4		
G06: Computing	1.6	7.0	7.0	3.4		
C07: Chemistry	1.1	4.4	9.2	10.0		
C09: Paints	0.9	6.0	20.0	12.7		
G01: Measuring	0.6	2.7	8.1	6.6		
C08: Organic Compounds	1.6	6.0	3.4	5.1		
G02: Optics	1.7	9.5	6.0	4.4		
B01: Processes	0.8	3.8	2.4	8.2		

Table 5-32: Total and Host-Country Patent Shares for South Korean Inventors by IPC³⁵³

Technical fields are leading, including Electric Communication, Electric Elements and Computing. For Electric Elements, patents with a South Korean-based inventor account for over 10% of worldwide patents in 2015. Medical, Chemistry and Organic Compounds have strongly increased, with a noticeable one-digit share in patents. Paints can be considered technologically related to Chemistry, also indicated by the code (C07 is close to C09).

The share of HCPs to all patents with a South Korean-based inventor is comparably small and partly decreasing. South Korean MNCs play a big role in conducting R&D in the country, compared to foreign MNCs. This observation is somewhat comparable to the geographically close Japan, outlined in Chapter 5.2.6.

5.3.5. Singapore Inward Host-Country Patents

This part summarizes the inward international patenting activities of foreign firms in Singapore. As shown in Table 5-1, Singapore, an island-city state, was on rank 16 in number of inward HCPs in the 2015-2017 period.

³⁵³ Source: Own analysis, based on REGPAT database by the OECD (2020h).

Inward Host-Country Patents,		2000-	2006-	2011-	2015-	CAGR	Share HCPs	
Sing	yapo	ore	2002	2008	2013	2017	'00-'17 (%)	'15-'17 (%)
Tota	l Pa	tents	1,110	2,133	2,696	3,117	7.2	-
Tota	l Ho	st-Country Patents	395	782	1,089	1,280	9.0	-
Sha	re H	ost-Country Patents (%)	35.6	36.7	40.4	41.1	-	-
		United States	146	324	485	693	9.5	54.1
		Japan	49	95	102	108	19.6	8.4
	S	Germany	86	125	138	107	4.2	8.4
	ntrie	France	21	40	64	91	7.0	7.1
	Cou	Switzerland	14	33	69	62	10.7	4.8
	ped	Netherlands	5	44	34	51	13.6	4.0
	evelc	United Kingdom	15	33	35	26	3.3	2.0
щo	ŏ	Denmark	0	26	37	16	-	1.3
nts fi		Australia	15	10	11	9	-2.4	0.7
plica		Italy	3	10	1	8	6.7	0.6
h Ap		China	4	6	34	52	17.3	4.1
s wit		Chinese Taipei	0	4	1	16	-	1.3
HCP		India	1	2	3	12	10.6	0.9
	Itries	South Korea	4	4	6	12	6.7	0.9
	Cour	Hong Kong – China	2	6	14	11	7.6	0.9
	jing (Malaysia	6	3	4	9	3.3	0.7
	merç	Israel	1	1	7	7	6.7	0.5
	Ш	Bermuda	0	1	11	5	-	0.4
		United Arab Emirates	0	0	4	5	-	0.4
		Saudi Arabia	0	1	2	3	-	0.2

Table 5-33: Development of Singaporean Inward Host-Country Patents³⁵⁴

Singapore, an uprising emerging country, has a comparably high share of HCPs. The share of HCPs has increased from 26% in the period 2000-2002 to 41% in 2015-2017.

The by far strongest partner country in Singapore in terms of HCPs is the US with 54%, meaning that more than every second patent with a Singaporean inventor and foreign applicant comes from a US firm. Japan and Germany follow with a share of 8% each. France

³⁵⁴ Own analysis, based on PCT patent-data by MSTI – OECD (2020c).

accounts for 7% and Switzerland for 5%. China is the leading emerging country and ranks sixth on the overall scale with a share of 4%.

Being an emerging country, the growth rates of HCPs per country are relatively high, with an average of 9%. Yet some countries stand out particularly: The strongest growing partner countries are Japan with a CAGR of 20% and China with 17%. Switzerland has increased its number of HCPs with a CAGR of 11% and the US has increased slightly above average with a CAGR of 9%³⁵⁵

Host-Country Patents by Technological Field

	Numbe	Year	CAGR		
					'00-'15
IPC Class	2000	2007	2012	2015	(%)
Total Patents	197	358	404	490	6.3
Total Host-Country Patents	116	220	246	292	6.3
Share Host-Country Patents (%)	58.9	61.5	60.9	59.6	-
A61: Medical	9	40	53	65	14.1
G01: Measuring	12	9	24	39	8.2
G06: Computing	13	15	32	37	7.2
H01: Electric Elements	29	33	28	29	0.0
H04: Electric Communication	18	40	22	24	1.9
B01: Processes	6	9	20	17	7.2
C08: Organic Compounds	6	16	19	17	7.2
E21: Mining	2	2	7	16	14.9
C07: Chemistry	7	27	17	15	5.2
G02: Optics	5	7	8	12	6.0

Table 5-34: Host-Country Patent Breakdown for Singaporean Inventors by IPC³⁵⁶

Note: Full-counting leads to some double counting.

 $^{^{355}}$ The CAGR for the US is 9.466% which rounds to 9.5% or 9%.

³⁵⁶ Source: Own analysis, based on REGPAT database by the OECD (2020h).

5.3. Emerging Countries

The small state of Singapore highly depends on foreign R&D activities. Both the number of total patents and Host-Country Patents has grown in step, leading to a quite constant share of HCPs of around 60% between 2000 and 2015.

	Share of SG Inventors in		Share of HCPs to all pate		
	Worldwide Patents (%)		of SG Inve	ntors (%)	
IPC Class	2000	2015	2000	2015	
A61: Medical	0.1	0.6	47.4	52.4	
G01: Measuring	0.2	0.5	66.7	59.1	
G06: Computing	0.3	0.5	39.4	46.8	
H01: Electric Elements	0.3	0.4	72.5	67.4	
H04: Electric Communication	0.2	0.2	62.1	57.1	
B01: Processes	0.1	0.7	100	51.5	
C08: Organic Compounds	0.1	0.4	75.0	85.0	
E21: Mining	0.3	1.6	100	84.2	
C07: Chemistry	0.1	0.6	46.7	34.1	
G02: Optics	0.1	0.4	100	66.7	

Table 5-35: Total and Host-Country Patent Shares for Singaporean Inventors by IPC³⁵⁷

The strongest technological field in HCPs is Medical with 65 HCPs in 2015. Technical industries, namely Computing, Electric Elements, Electric Communication are quite relevant. Measuring and Processes are a quite broad field in the section G (Physics) and B (Performing Operations, Transportation), respectively. Mining is a technological field rather unusual to show up as leading Top-10 technological field for a country, although a HCP-number of 16 in 2015 is not necessarily high and therefore could lead us to an overestimation of that field. Mining is also the only technological field where the share of patents with a Singapore-based inventor is >1%, precisely 1.6%.

The share of HCPs to all patents with a Singapore-based inventor is mostly very high, indicating that it is mostly foreign MNCs which conduct R&D in Singapore. Overall, patents seem to be rather distributed across technological fields, with no clear dominance appearing.

³⁵⁷ Source: Own analysis, based on REGPAT database by the OECD (2020h).

5.3.6. Russia Inward Host-Country Patents

This part summarizes the inward international patenting activities of foreign firms in Russia. As shown in Table 5-1, Russia, was on rank 17 in number of inward HCPs in the 2015-2017 period.

Table 5-36: Development of Russian Inward Host-Country Patents³⁵⁸

Inw	ard I	Host-Country Patents,	2000-	2006-	2011-	2015-	CAGR '00-	Share
Rus	sia		2002	2008	2013	2017	'17 (%)	HCPs '15-
								'17 (%)
Tota	al Pa	tents	2,079	2,784	3,861	3,669	3.7	-
Tota	al Ho	st-Country Patents	735	938	1,260	1,146	2.2	-
Sha	re H	ost-Country Patents (%)	35.4	33.7	32.6	31.2	-	-
		United States	264	326	575	602	5.0	52.5
		Germany	102	96	155	91	0.4	7.9
	Ś	Switzerland	22	38	60	75	2.0	6.5
	ntrie	Netherlands	25	138	94	73	6.7	6.4
	Coul	France	22	115	98	71	13.0	6.2
	ped	United Kingdom	45	32	43	41	-2.4	3.6
	evelo	Canada	26	10	13	18	-5.8	1.6
mo	ď	Finland	11	27	21	13	7.6	1.1
nts fi		Italy	5	9	22	10	0.0	0.9
plica		Japan	24	59	16	9	-4.0	0.8
h Ap		South Korea	22	22	31	50	5.7	4.4
s wit		Cyprus	7	21	25	22	3.5	1.9
4 C D		China	2	0	8	20	10.5	1.7
-	Itries	Ukraine	19	52	10	17	1.1	1.5
	Cour	Israel	40	15	6	13	-11.2	1.1
	ling (Kazakhstan	2	1	6	12	6.7	1.0
	merg	Estonia	2	10	2	7	4.2	0.6
	ш	Hong Kong – China	2	3	2	7	6.7	0.6
		Singapore	0	3	2	6	-	0.5
		Seychelles	0	4	12	4	-	0.3

³⁵⁸ Own analysis, based on PCT patent-data by MSTI – OECD (2020c).

5.3. Emerging Countries

Russia, the by far largest country in the world by area, and an emerging country by economic strength, has a relatively high share of HCPs. This share has decreased from 35% in the period 2000-2002 to 31% in 2015-2017. The number of HCPs in that period has increased from 735 to 1,146, indicating that while foreign presence is strong and relevant in Russia, domestic patenting activities grow at a relatively stronger rate.

Interestingly enough, over half of all HCPs, i.e. 53% of all HCPs come from Russia's political rival, the US. Second place in terms of HCP numbers in the latest 2015-2017 period goes to Germany with 8%, a country which is one of Russia's closes Western business partners³⁵⁹ Switzerland follows at 7%, the Netherlands and France at 6% each. South Korea is the only relevant and leading emerging country with a share of 4%, and the UK, another political adversary of Russia follows at 4%.

The overall number of HCPs in Russia has grown with a CAGR of 2%, which is rather low, particularly considering that Russia is an emerging country, for which we have seen much higher CAGRs in the previous chapters.

France, or more precisely patent numbers by French applicants with Russia-based (co-)inventors, has grown comparably strong with a CAGR of 13%. China, while accounting for a negligible amount of only 20 HCPs in the 2015-2017 period, has grown strongly with a CAGR at 11%. Recent geopolitical developments and closer cooperation between Russia and China might increase this trend further. South Korea, another emerging country has grown its HCPs with CAGR of 6%.

Cyprus, a Mediterranean island country, accounts for a certain number of HCPs, which might be attributable to its tax-friendly regime.³⁶⁰

Relevant developed countries with above-average CAGR, include the Netherlands with 7% and the US with 5%.

³⁵⁹ Cf. German Federal Foreign Office (2020). Despite current political tensions between Germany and Russia, both countries share a deep interlinked history, e.g. Trenin (2018).

³⁶⁰ Cf. Deloitte (2020); Effenberger (2017).

Host-Country Patents by Technological Field

	Numbe	Year	CAGR		
					'00-'15
IPC Class	2000	2007	2012	2015	(%)
Total Patents	292	319	449	364	1.5
Total Host-Country Patents	195	181	261	185	-0.4
Share Host-Country Patents %	66.8	56.7	58.1	50.8	-
G06: Computing	11	7	24	45	9.8
H04: Electric Communication	21	10	61	42	4.7
A61: Medical	23	46	51	30	1.8
H01: Electric Elements	30	16	22	12	-5.9
G01: Measuring	23	22	32	10	-5.4
C08: Organic Compounds	12	5	14	9	-1.9
G02: Optics	16	5	1	8	-4.5
C07: Chemistry	23	28	24	7	-7.6
B01: Processes	23	5	10	7	-7.6
C12: Biochemistry	20	14	9	7	-6.8

Note: Full-counting leads to some double counting.

Russia, an emerging country, has unusually decreased both in absolute and relative relevance as a location for foreign R&D and is one of the few countries with a negative CAGR for HCPs. Consequently, the share of HCPs decreases from 67% in 2000 to 51% in 2018. After increases in HCP-numbers until 2012, we can see particularly 2012 and 2015 declines in patent number for several technological fields.

³⁶¹ Source: Own analysis, based on REGPAT database by the OECD (2020h).

	Share of RU Inventors in		Share of HCPs to all pate		
	Worldwide Pa	atents (%)	of RU Inventors (%)		
IPC Class	2000	2015	2000	2015	
G06: Computing	0.2	0.5	61.1	53.6	
H04: Electric Communication	0.2	0.3	80.8	70.0	
A61: Medical	0.2	0.3	47.9	47.6	
H01: Electric Elements	0.3	0.1	83.3	75.0	
G01: Measuring	0.3	0.2	79.3	47.6	
C08: Organic Compounds	0.2	0.3	100	64.3	
G02: Optics	0.5	0.2	84.2	88.9	
C07: Chemistry	0.3	0.2	76.7	50.0	
B01: Processes	0.5	0.3	88.5	58.3	
C12: Biochemistry	0.3	0.3	90.9	43.8	

Table 5-38: Total and Host-Country Patent Shares for Russian Inventors by IPC³⁶²

Russia has the most HCPs in Computing with a particularly strong increase between 2012 and 2015. Overall 0.5% of all patents in that field have a Russia-based (co-)inventor in 2015. Electric Communication, the second-biggest field in 2016 displays a drop in HCP-numbers by one third between 2012 and 2015, but has slightly increased in worldwide share. Medical is another industry where the share in worldwide HCPs has slightly increased. Other fields are small in absolute HCP numbers and decreased their worldwide shares quite significantly. Adding the mostly decreasing share of HCPs to all patents with a Russia-based inventor, we can see that Russia is clearly of increasingly small interest for foreign R&D activities. Similar to Singapore, patents seem to be rather distributed across technological fields, with no clear dominance appearing.

5.4. Conclusion Outward & Inward Host-Country Patents

In this part, I summarize and condense the major findings from the two previous sub-chapters, i.e. the analysis of Outward HCPs in Chapter 4 and the analysis of Inward HCPs in Chapter 5.

³⁶² Source: Own analysis, based on REGPAT database by the OECD (2020h).

The analysis of Host-Country Patents reveals several main trends and conclusions in patent internationalization over time. We can observe changes and shifts, justifying not a static, but this dynamic analysis.

 Firms stay close: A significant share of foreign collaboration occurs with inventors from countries which are either geographically close (e.g. European Union) or politically / economically or historically close (USA and Israel, UK and India). In several cases we can explain strong connections of HCP with strong political bonds, such as Germany-France or USA-Canada. In other cases, countries account for high shares in HCPs, despite political distances, such as USA-Russia.

This fuels the hypothesis that R&D internationalization is not an isolated and unsystematic phenomenon, but that there rather is a tendency to "stay close" in order to exploit existing channels. This closeness might be attributable to cooperation on other levels, such as political, e.g. Airbus in Germany & France and indicates that R&D Internationalization has to be analyzed holistically in connection with other forms of collaboration. Furthermore, we can observe that patenting is somewhat reciprocal across countries, i.e. we see that if country A holds lots of HCPs with country B, the opposite holds true (e.g. France \rightarrow Germany and Germany \rightarrow France). The reasons and motivators to conduct R&D strongly with a particular partner country can be valid in both directions.

2. Emerging Countries are relevant: Emerging economies, most notably China and India, have greatly increased in significance as hosts or destinations for foreign R&D Internationalization activities. This means that we can see from patent filings that foreign MNCs increasingly conduct inventive activities in emerging countries. While R&D Internationalization into developed countries is still relevant, host-county patent numbers mostly grow, if even, with one-digit annual growth rates, R&D Internationalization into emerging countries has grown at very high rates.

Emerging countries are not only relevant as a host, but also increasingly as a home country: some emerging countries, particularly China, have benefited from the influx of knowledge and in turn started to internationalize their own R&D to other countries – mostly with two-digit annual growth rates. That means that Chinese MNCs conduct R&D in other countries, including developed nations.

The relative importance of developed host-countries has decreased in favor of emerging countries. Not all emerging countries are similarly attractive as R&D hosts for foreign MNCs though, so it would be incorrect to regard this group as homogenous: while, for example China and India have succeeded in attracting foreign R&D activities in relevant fields, other countries, such as Russia have failed to do so and lost in attractiveness over the last years, as displayed by drops in Host-Country Patent numbers.

3. Emerging Countries are selective: Developed countries invest R&D in numerous other relevant economies, but emerging economies are much more selective. Companies from these countries, mostly China, invest in R&D only at a handful of countries e.g. the US or Germany. Countries in the second line, for example France or the UK do not seem to have a particular appeal to emerging country firms. It could be argued, that with a lack of historic or other ties (see point 1) and reasons to invest in a certain country, emerging economy firms focus their, sometimes scarce, resources on the most relevant economies and markets from the first line. The observation of "reciprocity" (see point below) does not seem to hold for a developed – emerging country relationship.

We can observe the selectiveness also in another aspect: R&D Internationalization into emerging countries by technological fields differs in pattern to R&D Internationalization into developed countries. For China and India most Host-Country Patents are in technological areas, whereas for developed countries Natural Sciences (Medical, Chemistry, Biotechnology) are mostly leading. We can often observe an increasing share of the leading fields in the worldwide patent share, indicating an increasing specialization and concentration. This supports the idea that R&D Internationalization, particularly into emerging countries, is very targeted and specific in order to capture specific competencies. Emerging economies which are also large markets and economies, such as China and India, are naturally at an advantage here, as they (also) can serve as relevant distribution and sales markets. It is therefore a somewhat trivial observation that the number of patents coincides with economic strength, whereas smaller economies (e.g. Switzerland) naturally have a generally higher share of HCPs, i.e. higher internationalization rate.

- 4. Patent internationalization is concentrated: Each home-country has a significant number of host-countries, where patent activities are being conducted. The number of respectively significant countries is, however, rather small: usually around ½ of all HCPs can be attributed to the respective top five or less host-countries. As introduced in the point 3, we can argue with the concept of "lead markets" that R&D Internationalization leads to an increasing specialization and concentration of strength, meaning that multinational corporations tend to conduct R&D in markets where they can capture best specific competencies in relevant fields.
- 5. The US is strong but losing towards Asia: Despite certain political changes in recent years and the uprise of other economies, the US is a constantly strong leader in worldwide patenting activities and in many cases the country with the largest share of HCPs. While this observation is of a trivial nature, the interesting finding is the increasing pressure and loss of share observable for the US in many areas: It will be interesting to repeat this analysis in a few years, to observe potential decreases by the US due to (re-)nationalization efforts by the US and aspiring activities by countries, such as China. This is indicated that while the absolute number of HCPs by US firm is often strong, the CAGR tends to be rather low, i.e. there have not been particular upswings in recent years, compared to other ambitious countries. The biggest uprise can be observed in several emerging Asian countries, most notably China, which has strongly both been invested in and invested in other countries. For most countries, China is the by far biggest emerging target country for R&D and China also invests strongly in numerous developed countries.

This also means that the four BRIC-countries Brazil, Russia, India and China, once unified by their similar economic figures and potential have moved apart. China has catapulted itself as a highly sought-after host-country. The US now even have their most HCPs with China. India is also relevant for many economies, with HCP growth-rates in the double-digits. The other two BRIC-countries Brazil and Russia are relatively far behind as a location for foreign HCP. The term BRIC (or BRICS, when including South Africa) as a representation for emerging countries has lost its relevance.

6. Industry Trends and Shifts in R&D Expenditure Patterns

In this chapter the global R&D activities are broken down to their respective industries, in order to answer the following research questions:

- RQ6.1: What are the top R&D spending industries worldwide in 2000, 2007 and 2018?
- RQ6.2: What is the distribution of top R&D spending industries broken down to major economies?

6.1. Overview Top R&D Industries

R&D and innovation are characterized with a high degree of heterogeneity across industries, but also across firms within the same industry. Outlining the R&D Expenditures and R&D Intensity of industries over the years outlines structural changes, i.e. how some industries have risen and fallen in global relevance.

In the following overviews the R&D spending by industry is given. The tables are sorted decreasingly by the R&D spending of the most recent time-period of 2018 and complemented with data for 2010 and 2007.³⁶³

The analysis is based on data provided by the EU Commission's R&D Scoreboard, an annual data collection of the world's largest R&D spending companies. The number of companies analyzed in the scoreboard has been continuously increased from 500 companies in the first scoreboard of 2004 to currently 2500.³⁶⁴ In Table 6-1 I show the business R&D Expenditure worldwide, as well as for the biggest 500, 1000 and 2500 firms for 2018 and outline why focusing on the Top 1000 / 2500 R&D spending companies is sufficiently precise, as it captures a major share of the (estimated) entirety. In fact, an absolute full data completeness could never be ensured, as particularly smaller and usually not publicly listed companies do not have the same reporting requirements as the big and listed firms.

³⁶³ Note: Very shortly before printing this dissertation the Scoreboard covering business data from 2019 has been published by the European Commission (2020). A first analysis shows no surprising findings: The R&D Expenditures have continued to increase, particularly driven by ICT and Health industries. External shocks, as can be expected through the Covid-19 pandemic at a later point in time, are not apparent. The 2018 data therefore can still be considered sufficiently current.

³⁶⁴ The scoreboard publishes data for the previous year. E.g. the Scoreboard 2004 provides data for 2003. Since the Scoreboard 2004 gives growth rates for the three previous years, it was possible to calculate the values for the year 2000.

	Absolute	Share of	ure (%)	
R&D Expenditure	Expenditure in m\$	Тор 2500	Top 1000	Тор 500
Worldwide (BERD)	1,266,399	76.8	68.9	61.5
Тор 2500	972,473	-	89.7	80.1
Тор 1000	872,222	-	-	89.3
Тор 500	779,043	-	-	-

Table 6-1: Overview Concentration of R&D Expenditure on Biggest Firms in 2018³⁶⁵

Note: Worldwide BERD calculated as sum of BERD by OECD and available Non-OECD countries (China, Russia and Taiwan).

We can observe a heavy concentration of R&D Expenditure on the biggest R&D spending firms: around 77% of the worldwide business R&D Expenditure comes from the largest 2500 firms. These 2500 firms are very concentrated on the top firms themselves: over 66% of the worldwide R&D Expenditure comes from the Top 1000 firms.

When looking at the Top 2500 firms, the Top 500, i.e. biggest 20% of the firms, account for 80% of the R&D Expenditure.

The EU estimates that the R&D Expenditure of the 2500 largest R&D spending firms in 2018 account for "approximately 90%" of the global BERD.³⁶⁶ It remains unclear on which global figure this ratio is based on. As a global BERD is based on many assumptions and differing data sources, the true figures might deviate. However, the big picture remains: R&D Expenditure by businesses is heavily concentrated on the biggest firms worldwide.

Therefore, restricting the analysis on the Top 500, 1000 or 2500 firms does not distort the findings substantially, yet is required through the availability of data.

The industries are classified in sectors according to the ICB (Industry Classification Benchmark)³⁶⁷ and NACE Rev. 2 standard.³⁶⁸ Some category names differ slightly in labelling

³⁶⁵ Own analysis, based on EU R&D Scoreboards: European Commission (2019), MSTI database: Business-financed BERD – OECD (2020c); World Bank (2020): Exchange rates shown in Appendix-Table 6.

³⁶⁶ Scoreboard – European Commission (2019, p. 4).

³⁶⁷ Cf. FTSE Russell (2019).

³⁶⁸ NACE abbreviates a French name, which translates to "Statistical classification of economic activities in the European Community". Cf. EUROSTAT (2008).

over the years and are harmonized, for clarity.³⁶⁹ The tables show only the relevant industries of the analyzed years: from the over 30 industry categories of the Scoreboard, some, such as "Forestry & Paper", do not have significant R&D activities. The technology level (high, medium, low) indicates the level of R&D complexity helps to further categorize and cluster industries.³⁷⁰

Some corrections in industry labelling are necessary, as the EU classification is, in parts, rather broad or imprecise. For example, Northrop Grumman is labelled under 'Electronic & Electrical Equipment', although the category 'Aerospace & Defense' would be much more accurate and in line with the business focus.³⁷¹

In this chapter I will show the dynamics and diverse developments of R&D conducting industries. Namely we can observe a structural change towards more IT-related fields and away from classical manufacturing industries. Furthermore, we can observe a shift towards more high-tech fields over the years.

6.1.1. Current Distribution of R&D Expenditure

Table 6-2 gives an overview of the R&D Expenditure distribution of the Top 1000 firms in 2018 across technology level and industry.

³⁶⁹ For example, the Scoreboard for the years 2000-2003 lists the category "Pharma & biotech (48)", whereas for the year 2018 this industry is labelled "Pharmaceuticals & Biotechnology". Both labels obviously describe the same industry.

³⁷⁰ Cf. Hatzichronoglou (1997). The OECD differentiates between Medium-High-tech and Medium-Low-tech. For clarity these categories are subsumed under medium- and low-tech respectively.

³⁷¹ Cf. Northrop Grumman (2020).

		R&D Expenditure of	Share of total R&D
Tecl	nnology Level & Industry	Top 1000 Firms in m€	Expenditure (%)
Tota	Il Top 1000 Firms	738,539	100
	Total High-tech	398,208	53.9
	Pharmaceuticals & Biotechnology	137,305	18.6
tech	Technology Hardware	120,062	16.3
-ligh-	Software & Computer Services	108,107	14.6
	Aerospace & Defense	18,874	2.6
	Health Care Equipment & Services	13,860	1.9
	Total Medium-tech	268,735	36.4
	Automobiles & Parts	123,778	16.8
ech	Electronic & Electrical Equipment	56,544	7.7
um-t	Industrial Engineering	22,996	3.1
Medi	Chemicals	17,753	2.4
	General Industrials	17,748	2.4
	Construction & Materials	13,651	1.8
	Total Low-tech	71,596	9.7
tech	Leisure	14,389	1.9
-ow-1	Banks	11,267	1.5
	Oil & Gas	10,006	1.4

Table 6-2: R&D Expenditure by Relevant Industries of Top 1000 Firms in 2018³⁷²

Note: Only relevant industries (R&D Expenditure > 10bn€) shown. For clarity and comparability, the Top 1000, instead of the Top 2500 companies are used here. The percentage-wise distribution across industries does not differ significantly when analyzing the Top 2500.

We can draw two major conclusions from the table: First, R&D Expenditure is concentrated in high technology industries: over half of the R&D Expenditure is spent within the few high-tech industries. Second, around 66%, is spent within the four biggest industries: Pharmaceuticals & Biotechnology, Technology Hardware, Software & Computer Services and Automobiles & Parts. These four industries are the only ones which individually account for a two-digit share

³⁷² Own analysis, based on EU R&D Scoreboard – European Commission (2019).

of total R&D Expenditure. The fifth largest R&D spending industry is Electronic & Electrical Equipment.

In the following sub-chapters, the growths across the years are shown to display the key changes, which are a shift towards high-tech industries and particularly IT-related fields, whereas traditional manufacturing industries became relatively less relevant in terms of R&D Expenditure.

6.1.2. Recent Developments in R&D Expenditure Distribution

In Table 6-3 the R&D Expenditures between 2007 and 2018 of the Top 1000 firms are compared. By calculating the respective Compound Annual Growth Rate (CAGR) we can see which industries have grown particularly in terms of their R&D Expenditure in the last decade and which have not. The figures, additionally visualized with an arrow, indicate the shift in relative importance.

The benchmark is the overall growth rate of 6.7% of all Top 1000 firms. The arrows indicate the development of each industry: industries with a CAGR of R&D Expenditure somewhat (\nearrow) or particularly larger (1) than this 6.7% benchmark are indicated with an upwards facing arrow and industries with a CAGR somewhat (\checkmark) or particularly smaller (1) than the benchmark with a downwards facing arrow.

Note: A potential distorting effect can be caused as the sample of firms is not identical over the years. Considering that over the years a multitude of factors can influence the status of a company (M&A, spin-off, bankruptcy etc.) only few companies continue with their same focus, and organizational structure over the years.

		R&D Expendi	ture in m€	CAGR	Develop-
Tech	nology Level & Industry	2007	2018	'07-'18 (%)	ment
Tota	l Top 1000 Firms	360,063	738,539	6.7	-
	Total High-tech	181,513	398,208	7.4	7
	Pharmaceuticals & Biotechnology	69,567	137,305	6.4	→
tech	Technology Hardware	66,151	120,062	5.6	У
-igh-	Software & Computer Services	25,024	108,107	14.2	t
	Aerospace & Defense	14,935	18,874	2.2	Ļ
	Health Care Equipment & Services	5,836	13,860	8.2	~
	Total Medium-tech	132,027	268,735	6.7	→
	Automobiles & Parts	68,699	123,778	5.5	Ъ
sch	Electronic & Electrical Equipment	25,100	56,544	7.7	7
um-te	Industrial Engineering	4,342	22,996	16.4	(†)
Medi	Chemicals	15,838	17,753	1.0	Ļ
	General Industrials	7,861	17,748	7.7	7
	Construction & Materials	1,898	13,651	19.6	(†)
	Total Low-tech	46,524	71,596	4.0	Ļ
ech	Leisure	13,622	14,389	0.5	Ļ
-ow-t	Banks	2,729	11,267	13.8	t
	Oil & Gas	7,023	10,006	3.3	ţ

Table 6-3: Development of Top 1000 R&D Spending Companies by Industry³⁷³

Note: Only relevant industries (R&D Expenditure > 10bn€) shown. Arrows show the development compared to the Global CAGR of the Total Top 1000 Firms. Developments marked in brackets have to be interpreted carefully and are discussed in the text below.

³⁷³ Own analysis, based on EU R&D Scoreboards: European Commission (2019), European Commission (2008).

In terms of technology level, we can observe a shift away from low-tech, towards high-tech industries: in the last decade the high-tech industries have, on average, grown at a larger rate than low-tech, whereas medium-tech has grown at an average rate.

Within these classes of technology levels, we can observe significant differences.

- Large increases: The biggest increases, with a two-digit CAGR, are Software & Computer Services, Industrial Engineering, Construction & Materials, and Banks. The uprise in IT, driven by companies such as Alphabet (Google) or Facebook, explains the increase in R&D Expenditure in Software & Computer Services. The other industries are smaller in absolute numbers and require a closer look at a more detailed country-level breakdown in the following sub-chapters. The strong increases of Industrial Engineering and Construction & Materials is almost exclusively attributable to strong increases by Chinese (state-owned) corporations. It can be argued to what degree expenditures labelled as R&D by a construction firm are driven by signaling and regulatory effects.³⁷⁴
- Large decreases: The industries growing with an only small CAGR and well below the worldwide average of 6.7% are Aerospace & Defense, Chemicals and Leisure. These traditional, classical industries have lost in relative importance to the uprising industries named above.
- **Smaller changes:** The other industries, not named previously, have experienced a CAGR of comparably close to the worldwide average. A more detailed discussion and country-level breakdown will be required.

In a next step we replicate this analysis for a longer range to see structural developments and changes in a better way.

6.1.3. Long-term Developments in R&D Expenditure Distribution

I replicate the previous analysis, but include the year of earliest data availability from the Scoreboard: 2000. While the Scoreboard was first published in 2004 and therefore directly only includes data of 2003, it is possible to back-calculate the values for 2000 with the year-on-year growth rates. Due to the smaller sample sizes in the earlier Scoreboards, I analyze the Top 500 companies here. With a high concentration of R&D Expenditure on the largest firms, as shown in Table 6-1, the comparability to the Top 1000 firms as still given.

³⁷⁴ Cf. Wu (2017).

The CAGR for all Top 500 from 2000 to 2018 and therefore the benchmark is 5.3%. Once again, the arrows indicate the respective development of the CAGR compared to this overall benchmark.

R&D Expenditure in m€					CAGR	Develop-
Тес	hnology Level & Industry	2000	2007	2018	'00-'18 (%)	ment
Tota	al Top 500 Firms	258,588	327,528	659,641	5.3	-
	Total High-tech	126,006	167,581	364,520	6.1	7
	Pharmaceuticals & Biotechnology	38,843	65,727	126,026	6.8	ſ
itech	Technology Hardware	61,356	60,976	113,376	3.5	ţ
-ligh-	Software & Computer Services	13,871	22,703	97,014	11.4	t
	Aerospace & Defense	8,138	13,760	17,540	4.4	ţ
	Health Care Equipment & Services	3,797	4,415	10,564	5.8	7
	Total Medium-tech	110,683	119,307	239,727	4.4	У
	Automobiles & Parts	48,891	67,219	118,299	5.0	→
ech	Electronic & Electrical Equipment	28,888	22,150	49,319	3.0	ţ
ium-t	Industrial Engineering	7,223	2,350	17,771	5.1	(→)
Med	General Industrials	5,116	7,128	15,747	6.4	7
	Chemicals	13,917	12,656	13,346	-0.2	ţ
	Construction & Materials	1,623	1,055	12,045	11.8	(1)
	Total Low-tech	21,899	40,641	55,393	5.3	→
tech	Leisure	0	13,158	12,491	-	-
	Banks	0	2,207	9,528	-	-
	Oil & Gas	3,411	6,251	8,317	5.1	→

Table 6-4: Development of Top 500 R&D Spending Companies by Industry³⁷⁵

Note: Only relevant industries (R&D Expenditure > 8bn€) shown. Arrows show the development compared to the Global CAGR of the Total Top 500 Firms. Developments marked in brackets have to be interpreted carefully and are discussed in the text below.

³⁷⁵ Own analysis, based on EU R&D Scoreboards: European Commission (2019), European Commission (2008), European Commission (2004).

We can make two major observations. First, in terms of technology level, we can observe a shift towards High-tech industries and away from Low-tech. Second, the overall CAGR is smaller for the period 2000-2018 compared to the period 2007-2018, as analyzed in Table 6-3. This indicates that a major boost in R&D Expenditure has occurred in the last decade. Therefore, we do not have a linear growth here, but rather an exponential one.³⁷⁶

Across the industries we can observe again significant differences:

- Large increases: The biggest increases are Software & Computer Services, Construction & Materials, and Pharmaceuticals & Biotechnology. Software & Computer Services has a higher CAGR for the more recent period 2007-2018, indicating that the biggest push in R&D Expenditure occurred in recent years, i.e. the last decade. A similar observation can be made for Construction & Materials, as the R&D Expenditure between 2000 and 2007 plummeted. For Pharmaceutical & Biotechnology the opposite holds true: the CAGR is higher for the whole period 2000-2018, indicating that in the beginning of the century we can observe a bigger growth, than in the last decade.
- Large decreases: The industries growing with an only small CAGR and well below the worldwide average of 5.3% are Aerospace & Defense, Chemicals, Technology Hardware and Electronic & Electrical Equipment. For the first two industries we have already made a similar observation for the period 2007-2018 in Table 6-3. For the last two industries we can observe a very clear drop in absolute R&D Expenditure between 2000 and 2007, explaining why the CAGR is comparably lower for the overall period 2000-2018, compared to the period 2007-2018.

Once again, we see the strong increases between 2007 and 2018 for Industrial Engineering and Construction & Materials. These industries drop in R&D Expenditure between 2000 and 2007, showing that the push generated by Chinese firms, discussed in the previous part, only occurred in recent years.

The conclusion stays largely the same: traditional, classical industries have lost in relative importance, with several experiencing a drop in absolute expenditure between 2000 and 2018. The biggest profiteers can be found in the high-tech sector, such as Software & Computer Services, although certain weak developments, for example by Aerospace & Defense, contribute to the cluster's heterogeneity.

³⁷⁶ The sample size is different: In Table 6-3 the Top 1000 firms are analyzed, and in Table 6-4 the Top 500. However, the respective CAGR for the period 2007-2018, but only for the Top 500, are very similar. This means, that even with the exact same dataset, the conclusion does not change.

In the following we will look down in the developments of R&D Expenditure on a country level.

6.2. Relevant R&D Industries by Country

In the previous sub-chapter, I have analyzed the R&D Expenditures across industries. Their development and distribution across countries are certainly different, so in this chapter I break down the R&D Expenditures further by country. This step can help to understand which technological competencies countries develop and what their competitive competencies compared to other countries are.

In a first step I show the R&D Expenditures by country. Next, I break down the R&D Expenditures of relevant industries, as shown in the previous sub-chapter, by country to show which country has a focus on which industry. These relevant industries are the four industries which accounted for 66% of the global R&D Expenditure in 2018: the three high-tech industries Pharmaceuticals & Biotechnology, Technology Hardware, Software & Computer Services and the medium-tech industry Automobiles & Parts.

6.2.1. Aggregated R&D Expenditure by Country

The economic uprise of emerging countries in the last decades can be observes in R&D Expenditure, as well. Table 6-5 shows the distribution of R&D Expenditure between firms from developed and emerging countries.

	Share of R&D Expenditure (%)			
Development Level	2000	2007	2018	
Developed Countries	98.2	94.5	82.8	
Emerging Countries	1.8	5.5	17.2	

Table 6-5: Distribution of R&D Expenditures between Country Types³⁷⁷

Note: Share of R&D Expenditure calculated as shares of Top 500 firms for 2000 and Top 1000 firms for 2007 and 2018.

In 2000 MNCs from emerging countries had practically no relevance in terms of R&D Expenditure: less than 2% were spent by companies from emerging countries. Of this amount almost 40% can be attributed to the R&D Expenditure of one single company: South Korean Samsung. Over the years firms from emerging countries have increased their share and

³⁷⁷ Own analysis, based on EU R&D Scoreboards: European Commission (2019), European Commission (2008), European Commission (2004).

accounted for over 17% in 2018 of all R&D Expenses. In other words: almost every fifth Dollar on R&D has been spent by a company from an emerging country.

Table 6-6 breaks the R&D Expenditure further down to a country level, separated by developmental status and sorted decreasingly by the 2018 value. As in the previous subchapters, I compare the Top 1000 firms in 2007 and 2018. I indicate with an arrow the development of the CAGR of each listed country, compared to the global benchmark of 6.7%.

R&D Expenditure in m€		CAGR	Develop-		
Deve	elopment Level & Country	2007	2018	'07-'18 (%)	ment
Tota	l Top 1000 Firms	360,063	738,539	6.7	-
	Total Developed	340,103	611,656	5.5	ţ
	US	138,466	286,693	6.8	→
Itries	Japan	67,041	99,306	3.6	Ļ
Cour	Germany	39,895	79,397	6.5	\rightarrow
pədc	France	24,586	29,080	1.5	Ļ
evelo	Switzerland	14,258	26,463	5.8	У
	UK	18,483	25,216	2.9	Ļ
	Netherlands	8,587	17,906	6.9	→
	Total Emerging	19,960	126,883	18.3	Ť
tries	China	1,234	76,805	45.6	ſ
Coun	South Korea	10,089	28,744	10.0	t
ging (Taiwan	3,646	12,730	12.0	t
Emer	India	930	3,511	12.8	Ť
	Israel	661	2,439	12.6	t

Table 6-6: Development of Top 1000 R&D Spending Companies by Country³⁷⁸

Note: Only relevant countries shown: listed countries account for 93% of total R&D Expenditure in 2018. Arrows show the development compared to the Global CAGR of the Total Top 1000 Firms.

³⁷⁸ Own analysis, based on EU R&D Scoreboards: European Commission (2019), European Commission (2008).

Firms from developed and emerging countries have undergone a substantially and structurally different development, so the interpretation is accordingly separated:

- **Developed Countries:** In general, developed countries have increased their CAGR at a lower rate compared to the global total. This means they have lost in share towards emerging countries. However, differences across countries can be observed:
 - USA, Japan and Germany consistently have the first three ranks in terms of R&D Expenditure. However only US, German (and Dutch) firms have more or less kept their share in R&D Expenditure, as the CAGR is comparable to the global total.
 - Japan, France and UK have significantly lost in relative relevance, with a CAGR much below the global total. Switzerland has somewhat lost in relative importance
- Emerging Countries: The emerging countries clearly justify the term "emerging" in terms of R&D Expenditure, with a two-digit CAGR each.
 - China has particularly increased its R&D Expenditures and ranks fourth in 2018. More than every tenth Dollar of R&D Expenditure worldwide has been spent by Chinese MNCs.
 - The other Emerging Countries have increased their R&D Expenditures at remarkable rates. However, in absolute terms of R&D Expenditure they still play a comparably smaller role.

In the following sub-chapters I scrutinize the R&D Expenditures of selected industries by country, in order to identify competencies and specializations.

6.2.2. R&D Expenditures in Pharmaceuticals & Biotechnology

In the following table, I break down the R&D Expenditure by firms in the industry Pharmaceuticals & Biotechnology in 2007 and 2018. For a very detailed company-level analysis, I will separate firm-level data for pharmaceutical and biotechnology companies, as the R&D structure can be quite different. For this purpose of a country-level analysis, however, I will stick to the categorization of the EU. I will show the high R&D expenditures by firms from developed countries, although Germany is the only developed country with growth rates above the global average. In turn, several emerging countries have strongly increased their R&D expenditures in this field.

The arrows indicate the development of R&D Expenditure compared to the total CAGR of 6.4%.

		R&D Expenditure in m€		CAGR	Develop-
Pharmaceuticals & Biotechnology		2007	2018	'07-'18 (%)	ment
Total Pharma & Biotechnology		69,567	137,305	6.4	-
Developed Countries	Total Developed	68,854	132,348	6.1	7
	US	34,202	65,866	6.1	У
	Switzerland	9,644	18,236	6.0	7
	Germany	2,947	10,879	12.6	t
	Japan	5,519	10,698	6.2	\rightarrow
	ик	8,399	9,323	1.0	Ļ
	France	4,784	7,296	3.9	Ļ
Emer. Countries	Total Emerging	713	4,957	19.3	Ť
	China	0	2,512	-	Ť
	Israel	397	1,059	9.3	t
	India	183	1,013	16.8	Ť

Table 6-7: Pharmaceuticals & Biotechnology R&D Expenditure by Country³⁷⁹

Note: Only relevant countries are shown. Sample drawn from Top 1000 MNCs. Arrows show the development compared to the Global CAGR of the Total Top 1000 Firms.

Overall, we can observe a slight shift from developed to emerging countries. These countries still account for a comparably little R&D Expenditure, but have shown strong growth rates. We can observe significant differences and developments across the countries.

- Large increases: The biggest absolute increase can be observed with Germany, which relatively gained strongly in the Pharmaceuticals & Biotechnology. Furthermore, the three relevant emerging countries China, Israel and India have all increased their R&D Expenditure in Pharmaceuticals and Biotechnology to more than 1 Billion EUR per year.
- Large decreases: With a CAGR far below the industry average, the developed countries UK and France have lost some relative importance in terms of R&D Expenditure in the industry Pharmaceuticals & Biotechnology.

³⁷⁹ Own analysis, based on EU R&D Scoreboards: European Commission (2019), European Commission (2008).

• **Smaller changes:** The other countries, namely US, Switzerland and Japan have kept or only lost marginally their relative importance in the industry Pharmaceuticals & Biotechnology.

Conclusion: With only small shifts, the developed countries maintain a leading position in terms of R&D Expenditure, with Germany particularly pushing forward. China accounts for around a half of the R&D Expenditure by Emerging Countries.

6.2.3. R&D Expenditures in Technology Hardware

In the following table, I break down the R&D Expenditure by firms in the industry Technology Hardware in 2007 and 2018. I outline the complexity and heterogeneity of this highly complex field, requiring an additional analysis.

The arrows indicate the development of R&D Expenditure compared to the total CAGR of 5.6%.

	R&D Expenditure in m€		CAGR	Develop-	
Technology Hardware		2007	2018	'07-'18 (%)	ment
Total Technology Hardware		66,151	120,062	5.6	-
Developed Countries	Total Developed	62,242	92,487	3.7	Ļ
	US	34,279	69,589	6.6	7
	Japan	9,983	6,745	-3.5	Ļ
	Netherlands	3,014	4,263	3.2	Ļ
	Finland	5,281	4,044	-2.4	Ļ
	Sweden	2,911	3,484	1.6	Ļ
	Germany	1,254	1,087	-1.3	Ļ
Emer. Countries	Total Emerging	3,909	27,575	19.4	Ť
	China	367	17,959	42.4	Ť
	Taiwan	2,150	7,039	11.4	Ť
	South Korea	431	2,263	16.3	t

Table 6-8: Technology Hardware R&D Expenditure by Country³⁸⁰

Note: Only relevant countries are shown. Sample drawn from Top 1000 MNCs. Arrows show the development compared to the Global CAGR of the Total Top 1000 Firms.

Overall, we can observe a strong shift from developed to emerging countries, particularly pushed by China.

- Large increases: The biggest absolute increase can be observed with Germany, which relatively gained strongly in the Pharmaceuticals & Biotechnology. Furthermore, the three relevant emerging countries China, Israel and India have all their R&D Expenditure in Pharmaceuticals and Biotechnology by at least approximately 1bn€.
- Large decreases: All developed countries, except the US, have experienced strong drops in relative R&D Expenditure. For Japan, Finland and Germany we can even observed an absolute drop in R&D Expenditure with a negative CAGR.

³⁸⁰ Own analysis, based on EU R&D Scoreboards: European Commission (2019), European Commission (2008).
Conclusion: Emerging Countries, particularly China, have strongly increased their share in R&D Expenditure. The relative importance for all developed countries, except the US, has decreased.

The classification 'Technology Hardware' is particularly broad, as discussed in the beginning of this chapter. In the following this industry cluster is therefore manually broken down further. Eight unique subcategories of Technology Hardware have been defined, into which the all companies found in the Technology Hardware in the Top 500 of 2019 have been sorted, i.e. 67 firms, based on their respective business focus. The purpose of this step is to further drill down on country-specific competences and differences within the field Technology Hardware. For illustration I give an example: Huawei, HP and Seiko Epson are all classified in Technology Hardware. The first is a Chinese firm focusing on Telecommunications equipment, the second a US firm producing Computer Hardware and the third is a Japanese firm producing Computer Peripherals, e.g. printer.

Table 6-9 shows the breakdown of Technology Hardware into the seven categories Computer Hardware, Computer Peripherals, IT Services, Optical Equipment, Semiconductor Manufacturing, Semiconductors and Telecommunication Equipment. This table is comparable, yet not identical in sample to Table 6-8: being a more recent analysis, in Table 6-9 I show values for the year 2019, not 2018 and furthermore I analyze the Top 500, not 1000 firms.

Technology Hardware,		R&D Expend	liture in m€	CAGR	
Break	down	2007	2019	'07-'19 (%)	Firms
re e	US	3,473	20,512	16.0	APPLE, DELL, HP
nput dwa	Taiwan	585	3,008	14.6	ASUSTEK COMPUTER, INVENTEC, MEDIATEK, QUANTA COMPUTER
Hai Hai	China	179	1,460	15.9	LENOVO, UNISPLENDOUR
	Japan	3,651	3,905	0.6	BROTHER INDUSTRIES, CANON, RICOH, SEIKO EPSON
outer erals	US	370	2,237	16.2	HARRIS, WESTERN DIGITAL
Comp	Ireland	-	866	-	SEAGATE TECHNOLOGY
0 4	Israel	-	369	-	MELLANOX TECHNOLOGIES
ice	US	357	1,874	10.0	F5 NETWORKS, NETAPP, SNAP
Serv	China	-	332	-	SINA
io al	US	386	741	5.6	CORNING
Opti Equ	Japan	442	553	1.9	KONICA MINOLTA
it g	US	1,220	2,884	7.4	APPLIED MATERIALS, KLA, TERADYNE
nufae	Netherlands	489	1,844	11.7	ASML HOLDING
Sen Mai	Japan	529	1,308	7.8	ADVANTEST, TOKYO ELECTRON
	US	10,516	30,543	8.9	ADVANCED MICRO DEVICES, ANALOG DEVICES, BROADCOM, CIRRUS LOGIC, CYPRESS SEMICONDUCTOR, INTEL, LAM RESEARCH, MARVELL TECHNOLOGY, MAXIM INTEGRATED PRODUCTS, MICROCHIP TECHNOLOGY, MICRON TECHNOLOGY, NVIDIA, ON SEMICONDUCTOR, QORVO, SKYWORKS SOLUTIONS, TEXAS INSTRUMENTS, XILINX
tors	Taiwan	646	3,513	15.2	REALTEK SEMICONDUCTOR, TAIWAN SEMICONDUCTOR, UNITED MICROELECTRONICS
nduc	Netherlands	2,224	2,661	1.5	NXP SEMICONDUCTORS, STMICROELECTRONICS
mico	South Korea	431	2,417	15.4	SK HYNIX
Sel	Germany	1,169	1,068	-0.8	INFINEON TECHNOLOGIES
	China	66	598	20.1	SEMICONDUCTOR MANUFACTURING
	Austria	-	294	-	AMS
	China	301	19,259	15.3	HUAWEI, XIAOMI, ZTE
ation	US	7,871	12,610	4.0	CIENA, CISCO SYSTEMS, JUNIPER NETWORKS, MOTOROLA, QUALCOMM
unic: nent	Finland	5,281	4,411	-1.5	NOKIA
nmm ndinp	Sweden	2,911	3,682	2.0	ERICSSON
elec Ū	Taiwan	93	479	14.6	WISTRON
	Australia	842	458	-5.0	TELSTRA

Table 6-9: Breakdown of Technology Hardware R&D Expenditure by Country³⁸¹

Note: Not all firms in for 2019 existed in 2007. CAGR is calculated based on firms existing in both years.³⁸²

³⁸¹ Own analysis, based on EU R&D Scoreboards: European Commission (2020), European Commission (2008).

We can see strong growth rates in many categories and by many countries. As explained in footnote 382, I calculate the CAGR based on firms existing in both years, to avoid sample mismatching.

We see a very strong position of US firms in Computer Hardware, with larger growth rates compared to the Asian firms and an absolutely much higher R&D Expenditure in 2019. For Computer Peripherals, i.e. equipment connected to a computer, Japanese firms are, in turn, investing very strongly in R&D, putting US firms on a distant second rank. An absolute dominance of US firms can be observed in Semiconductors: the numerous US firms spent in 2019 in sum almost ten times as much as the following country Taiwan. There is clearly a strong competence and focus of R&D activities in the area of Semiconductors in the US, although this is also one of the few fields where European firms are somewhat visible. Chinese firms, strongly uprising in many aspects, dominate the field of Telecommunication Equipment: with very strong growth rates they have overtaken US firms in terms of R&D expenditure and spent over 50% of the aggregated US R&D expenditure in 2019.

This analysis and table expands the analysis and discussion of Table 6-8: Technology Hardware is a highly heterogenous field: for example, while we see a strong growth of Chinese firms' R&D expenditures, this growth is not equally distributed, but heavily focused in the area of Telecommunication Equipment, a field where China's strength regularly leads to political discussions³⁸³, whereas the US lead, by far, the field Semiconductors. Breaking down these numbers in Table 6-9 helps us to further understand where firms from which countries possess relative strengths.

6.2.4. R&D Expenditures in Software & Computer Services

In the following table, I break down the R&D Expenditure by firms in the industry Software & Computer Services in 2007 and 2018: I show the strong growth of R&D expenditures worldwide, underlining the increase in global relevance, with particularly large growth rates by firms from emerging countries.

The arrows indicate the development of R&D Expenditure compared to the total CAGR of 14.2%.

³⁸² In 2019 there are 67 firms in the Top 500 of Technology Hardware, of which 56 firms exist in the Scoreboard for 2007. These 11 missing companies are AMS, CIRRUS LOGIC, HUAWEI, MAXIM INTEGRATED PRODUCTS, MELLANOX TECHNOLOGIES, QORVO, SEAGATE TECHNOLOGY, SINA, SNAP, UNISPLENDOUR, XIAOMI.

³⁸³ Cf. Gold (2020): Some states have excluded Huawei from supplying their nations' 5G network, out of safety concerns.

		R&D Expend	liture in m€	CAGR	Develop-
Soft	ware & Computer Services	2007	2018	'07-'18 (%)	ment
Tota	I Software & Computer Services	25,024	108,107	14.2	-
	Total Developed	24,519	92,502	12.8	Ļ
es	US	19,353	78,532	13.6	У
ountri	Germany	1,620	3,846	8.2	Ļ
ed Co	Japan	1,556	3,382	7.3	Ļ
elope	UK	676	1,814	9.4	Ļ
Dev	France	762	1,634	7.2	Ļ
	Spain	141	1,106	20.6	t
	Total Emerging	505	15,604	36.6	t
es	China	0	13,885	-	Î
ountri	Taiwan	0	845	-	t
er. Co	Israel	55	542	23.0	Ť
Eme	South Korea	61	215	12.2	7
	India	389	117	-10.4	Ļ

Table 6-10: Software & Computer Services R&D Expenditure by Country³⁸⁴

Note: Only relevant countries are shown. Sample drawn from Top 1000 MNCs. Arrows show the development compared to the Global CAGR of the Total Top 1000 Firms.

Overall, we can observe a strong increase in relevance of the industry Software & Computer Services, with the two-digit CAGR. While all countries have therefore strong absolute increases between 2007 and 2018, the relative increase is very visible for emerging countries.

• Large increases: All emerging countries (apart from India, which is less relevant here) and the developed country Spain have increased their relative R&D Expenditure in Software & Computer Services. In absolute terms, the industry is dominated by the US and China.

³⁸⁴ Own analysis, based on EU R&D Scoreboards: European Commission (2019), European Commission (2008).

• Large decreases: With a CAGR far below the industry average, most developed countries, except the US and Spain, have significantly lost in relevance between 2007 and 2018.

Conclusion: The industry Software & Computer Services is highly concentrated on the two countries US and China, which together account for 85% of the total industry's R&D Expenditure in 2018. Other countries have much smaller R&D Expenditures and smaller growth rates, indicating that this concentration even increased over the years. In this relative new industry, we can observe a quick and strong concentration across countries, indicating that only few countries had and have the capabilities to maintain their competitive advantages in this high-tech industry.

6.2.5. R&D Expenditures in Automobiles & Parts

In the following table, I break down the R&D Expenditure by firms in the industry Automobile & Parts in 2007 and 2018. While the previous three industries are considered high-tech, Automobiles & Parts is a medium-tech industry. We will see the strength and strong growth of the leading country Germany, but also several emerging countries have grown strongly over the years.

The arrows indicate the development of R&D Expenditure compared to the total CAGR of 5.5%.

		CAGR	Develop-		
Auto	motive & Parts	2007	2018	'07-'18 (%)	ment
Tota	I Automotive & Parts	68,699	123,778	5.5	-
	Total Developed	66,597	109,957	4.7	7
ies	Germany	20,563	43,987	7.2	ſ
ountr	Japan	18,912	31,764	4.8	7
ed C	US	16,470	17,862	0.7	Ļ
velop	France	5,993	9,779	4.6	У
De	Netherlands	0	4,651	-	Ť
	UK	158	1,365	21.7	Ť
ries	Total Emerging	2,101	13,821	18.7	1
ounti	China	0	7,309	-	t
ler. C	South Korea	1,844	4,222	7.8	Ť
Εu	India	258	2,138	21.2	Ť

Table 6-11: Automotive & Parts R&D Expenditure by Country³⁸⁵

Note: Only relevant countries shown. Sample drawn from Top 1000 MNCs. Arrows show the development compared to the Global CAGR of the Total Top 1000 Firms.

Despite an uprise in emerging countries, the developed countries still dominate the R&D Expenditure in Automotive & Parts. Across the developed countries we can observe diverse findings and developments.

- Large increases: All emerging countries, particularly China and India have increased their R&D expenditures in the automotive industry. China is clearly leading in the group of emerging countries. Globally and across the developed countries, Germany spends the most and even increased its global share. More than every third R&D Dollar in this industry is spent by a German firm. Further increases in share can be observed for the Netherlands and UK.
- Large decreases: With a CAGR far below the industry average, the US have lost in relevance.

³⁸⁵ Own analysis, based on EU R&D Scoreboards: European Commission (2019), European Commission (2008).

• **Smaller changes:** Japan has slightly lost its international share in Automotive & Parts, with a below industry CAGR.

Conclusion: The medium-tech industry Automotive & Parts has a broad band width of development. Traditional car-making nations have developed in different directions in terms of their R&D Expenditure: German has gained, Japan stagnated and the US has lost in international relevance. The emerging countries, most notably China, have increased their share in R&D Expenditure. However, on an absolute scale, they do not play a major role in 2018.

In the next sub-chapter, I will outline and summarize the leading industries for each relevant country, i.e. show in which fields countries have particular competencies.

6.3. Country-Analysis

In this sub-chapter, I summarize and scrutinize the findings from the previous sub-chapters for the four largest countries in terms of R&D Expenditure per the EU R&D Scoreboard: USA, Japan, Germany and China.

This chapter shows stronger and weaker industries per country and the changes over time. The developed countries USA, Japan and Germany lose in respective global shares in almost all industries, which can be attributed to rises by China and other emerging countries. For the respective countries, we can also see the relative increase in relevance for certain high-tech and technological industries, such as Pharma & Biotech and Software & Computer Services.

For each country I list the biggest R&D spending industries, sorted decreasingly by their 2018 R&D Expenditure and add the respective technology status: H (High-tech), M (Medium-tech) or L (Low-tech).

I list the "Global Industry Share" for 2000 and 2018, which shows the percentage of each country's firms in the respective industry spent in relation to all firms worldwide in that industry. For example, the analysis for the US in Table 6-12 shows that US firms in Software & Computer Services have spent 88.5% in 2000 of all R&D Expenditure worldwide in the Software & Computer Services industry and 72.6% in 2018. This figure helps to indicate the relative relevance of a country in a respective industry's R&D activities. Therefore, a high percentage indicates, that the respective country holds a big share of global R&D activities in that field. This high percentage implies a comparably high competence, compared to other countries. A decrease over the years indicates, that this country has lost in relative relevance in terms of R&D expenditures.

I also list the "Country Industry Share" for 2000 and 2018, which indicate the respective industry's R&D Expenditure to the country's total R&D Expenditure in that year. For example, the analysis for the US in Table 6-12 shows that the R&D Expenditure of US firms in Software & Computer Services accounts for 12.8% in 2000 and 27.4% in 2018 of the whole US R&D Expenditure. This figure helps to indicate the relative relevance of an industry within that country. Therefore, a high percentage indicates that the country's R&D Expenditures are highly concentrated in that field. A high concentration can imply competency, but also dependency.

6.3.1. R&D Expenditure by USA

		R&D	Global		Cour	ntry
		Expenditure	Indu	Industry Indus		Share
	Tech-	2018	Shar	e (%)	(%)
Industry	Status	(Million €)	2000	2018	2000	2018
Total	-	286,693	37.1	38.8	-	-
Software & Computer Services	Н	78,532	88.5	72.6	12.8	27.4
Technology Hardware	Н	69,589	49.3	58.0	31.6	24.3
Pharmaceuticals & Biotechnology	Н	65,866	39.1	48.0	15.8	23.0
Automobiles & Parts	М	17,862	29.2	14.4	14.9	6.2
Aerospace & Defense	Н	7,935	41.2	42.0	3.5	2.8
Health Care Equipment & Services	Н	7,358	74.2	53.1	2.9	2.6

Table 6-12: R&D Expenditure Development by US MNCs by Industry³⁸⁶

Note: Only relevant industries (R&D Expenditure > 7 billion €) shown. Shares based on Top 500 firms for 2000 and Top 1000 firms for 2018.

The US as the biggest R&D spending country worldwide, accounting for almost 40% of worldwide R&D spending: 37.1% in 2000 and 38.8% in 2018.

Around 3 out of 4 R&D Dollars were spent the three High-tech industries Software & Computer Services, Technology Hardware and Pharmaceuticals & Biotechnology. Particularly Software & Computer Services has increased in relative importance, i.e. increased the share of US R&D Expenditure from 12.8% in 2000 to 27.4% in 2018.

³⁸⁶ Own analysis, based on EU R&D Scoreboards: European Commission (2019), European Commission (2004).

Country-specific strengths

The three High-tech industries Software & Computer Services, Technology Hardware and Pharmaceuticals & Biotechnology are clearly dominated by US firms. Globally seen, all three industries each account for more than 20% of the global R&D Expenditure. These three industries are strongly concentrated in the US with a global share of between approximately 48% and 73% in 2018.

Software & Computer Services: Companies such as Alphabet, Microsoft, Facebook and Oracle account for the strong US dominance in this industry. Due to the uprise of other countries, the strong dominance of US firms has been slightly reduced over the years, the relevance for the US R&D portfolio has, however, increased, with every fourth US R&D Dollar spent in this industry.

Technology Hardware: The strong concentration of R&D Expenditures by companies such as Apple, Intel, Cisco and Qualcomm have even increased over the years. It can be argued that Software & Computer Services rather addresses intangible products which can be produced or provided in an easier way from other places in the world, than physical products as provided in this industry. The relative share of the US R&D Expenditure portfolio has decreased to around 24%. With a certain degree of generalization, we can argue that there has been a slight shift from Hardware to Software over the years for US R&D activities. Even with breaking down the heterogeneous field of Technology Hardware into its components (see Chapter 6.2.3), a strong and increasing strength of US firms in terms of R&D Expenditure can be observed.

Pharmaceuticals & Biotechnology (Health Care Equipment & Services): Approximately half of the worldwide R&D activities in this industry are pushed by US firms. Companies such as Johnson & Johnson, Merck & Co. (not to be confused with the German Merck Group), Pfizer, Bristol Myers Squibb, Abbvie or Celgene have increased R&D activities, so that more than every fifth R&D Dollar in the US nowadays can be attributed to firms from this industry. Related to Pharmaceuticals & Biotechnology, but somewhat different is Health Care Equipment & Services, represented by companies such as Boston Scientific, Becton Dickinson, Thermo Fisher Scientific or Stryker. While this industry is generally small and accounts for less than 2% of worldwide R&D Expenditure, US firms are here again overrepresented and above world-average. Nevertheless, firms from other countries have gained in relative importance here.

6.3. Country-Analysis

Country-specific weaknesses

Automobiles & Parts: This medium-tech industry, accounting for approximately 15% of worldwide R&D Expenditure is underrepresented in the US. Not only has the contribution of US firms such as Ford, GM or Tesla to this industry almost halved relatively, also the importance within the US has shifted more towards other high-tech industries. With Tesla and its focus on e-mobility as a somewhat exception, the US Automotive Industry is not the most relevant industry on a global scale in terms of R&D activities.

Country-specific constants

Aerospace & Defense: This industry, represented by companies such as Boeing, United Technologies and Lockheed Martin has more or less maintained its position and relevance: both the share of this industry in the global scale has remained rather constant, also the share to the total US R&D Expenditure changed only slightly. It appears that this industry in the US has remained rather robust to developments in the last decade.

6.3.2. R&D Expenditure by Japan

	R&D		Global Industry		Cour	ntry
		Expenditure	Share	e (%)	Industry	Share
	Tech-	2018			(%)
Industry	Status	(Million €)	2000	2018	2000	2018
Total	-	99,306	22.0	13.4	-	-
Automobiles & Parts	М	31,764	24.2	25.7	20.8	32.0
Electronic & Electrical Equipment ³⁸⁸	М	23,092	47.2	34.8	24.0	23.3
Pharmaceuticals & Biotechnology	Н	10,698	9.0	7.8	6.1	10.8
Technology Hardware	Н	6,745	22.5	5.6	24.3	6.8
Chemicals	М	6,464	21.5	36.4	5.3	6.5

Table 6-13: R&D Expenditure Development by Japanese MNCs by Industry³⁸⁷

Note: Only relevant industries (R&D Expenditure > 6bn€) shown. Shares based on Top 500 firms for 2000 and Top 1000 firms for 2018.

Japan is the location of major R&D investing corporations with the aggregated second largest R&D expenditures worldwide³⁸⁹, which accounts for a strongly decreasing share of the worldwide R&D spending, as already seen in Table 6-6: In 2000 Japanese MNCs accounted for 22% of the worldwide spending, whereas until 2018, this share has almost halved to 13%.

Around half of Japanese R&D Expenditure is spent in the top three industries Automobiles & Parts, Electronic & Electrical Equipment and Pharmaceuticals & Biotechnology, with the former significantly increasing the relative share from 21% to 32%.

³⁸⁷ Own analysis, based on EU R&D Scoreboards: European Commission (2019), European Commission (2004).

³⁸⁸ Data merged with category 'Leisure', which includes for Japan technical firms such as Panasonic, Sony and Nintendo. The industry classification 'Leisure' is rather vague and includes a broad array of firms. For example, American toy producer Hasbro is also classified as Leisure underlining the industry's breadth. Interestingly enough the EU classified Sony in the earlier scoreboards in the industry Electronic & Electricals. Therefore, my correction here is not only warranted, but even required.

³⁸⁹ This data refers to the 2018 data of EU R&D Scoreboard. In its most recent scoreboard (European Commission, 2020), data shows a dynamic for China: if only the Top 1000 firms are considered, Japan ranks second, China third and Germany fourth in terms of aggregated R&D Expenditures. If all Top 2500 firms are considered, China overtakes Japan, pushing Japan to the third rank, while Germany remains fourth.

Country-specific strengths

The two medium-tech industries Automobiles & Parts, and Electronic & Electrical Equipment are quite strong in Japan, with Japanese firms in each sector accounting for relevant share of 26 and 35% respectively of the global industry share. Furthermore, a high number of Japanese firms can be found in each industry's Top 10 by R&D expenditure, indicating the concentration of R&D expenditures by Japanese firms.

Automobiles & Parts: Companies such as Toyota, Honda and Nissan contribute strongly to the Japanese economy. These, as well as numerous other companies, have strongly increased their R&D Expenditure in the last decades, making Japanese firms a relevant global force in this industry. Around every third R&D dollar in Automotive is spent by Japanese firms and four of the Top 10 companies by R&D expenditures in Automotive are Japanese.

Electronic & Electric Equipment: This industry, represented by firms such as Hitachi, Mitsubishi, Fujifilm or Sharp is the second-largest industry in Japan in 2018, in terms of R&D Expenditure. Despite its strength, the relative positioning has declined since 2000: while in 2000 almost half, i.e. 47%, of the global R&D Expenditure in this industry was spent by Japanese firms, this share has dropped to 35%, around a third. Despite the increasing pressure by foreign firms, I still consider this industry as a strength of Japan. Five of the Top 10 companies by R&D expenditures in this industry are Japanese. Comparable to the breakdown of Technology Hardware (see Chapter 6.2.3), we can also segment this rather broad field further: particularly in the sub-fields of Electronic Components (Sumitomo, TDK, Murata, Kyocera), as well as and Conglomerate Electronics (Hitachi and Mitsubishi), Japanese firms are among the leading firms in the respective sub-fields in terms of R&D expenditure.

Chemicals: This industry, including firms such as Sumitomo Chemical or Asahi Kasei, is not very big for Japanese R&D, accounting for only 5% in 2000 and 7% in 2018. Looking at the worldwide share, we can, however, observe a competitive positioning of Japan which even increased over the years: while in 2000 around one fifth (21%) of the R&D spending in the Chemicals industry where spent by Japanese firms, this share has risen to over a third (36%) in 2018. Five of the Top 10 companies by R&D expenditures in this industry are Japanese.

Country-specific weaknesses

Technology Hardware: The industry Technology Hardware includes firms such as Hitachi, Canon or Ricoh. Once a key competence of Japan, with a worldwide share in R&D of 23% in 2000, this share has plummeted to a meager 6%, mostly due to the uprise of strong American firms. Hitachi, for example, ranking 15th for the 2000 Scoreboard ranking has dropped to rank 58 in the 2018 ranking. An overall shift in technology and thereby industries, as discussed throughout in this dissertation, accounts for such a shift. The Top 10 by R&D expenditure in this industry is dominated by US firms and one Chinese firm, Huawei, at the top. When differentiated Technology Hardware into more precise sub-fields (see Chapter 6.2.3), the picture does not change: Japan is home to of a couple of firms in the sub-field of Computer Peripherals, e.g. Canon, Ricoh or Brother Industries, but the overall relevance in comparison to other countries has generally decreased.

Country-specific constants

Pharmaceuticals & Biotechnology: Firms such as Takeda or Otsuka are far from the top in the worldwide R&D Expenditure ranking within this industry, yet they account for a noticeably share of almost 8% of all R&D spendings by pharma & biotech firms worldwide. This share has slightly decreased since 2000, but the relevance for Japan has grown, with around 10% of Japanese R&D Expenditure spent in this industry.

6.3.3. R&D Expenditure by Germany

		R&D	Global Industry		Cou	ntry
		Expenditure	Share	e (%)	Industry	Share
	Tech-	2018			(%)
Industry	Status	(Million €)	2000	2018	2000	2018
Total	-	79,397	13.6	10.8	-	-
Automobiles & Parts	М	43,987	31.4	35.5	43.8	55.4
Pharmaceuticals & Biotechnology	н	10,879	6.8	7.9	7.5	13.7
Electronic & Electrical Equipment	М	6,497	19.6	11.5	16.2	8.2
Software & Computer Services	н	3,846	7.0	3.6	2.8	4.8
Chemicals	М	3,136	33.7	17.7	13.4	4.0

Table 6-14: R&D Expenditure Development by German MNCs by Industry³⁹⁰

Note: Only relevant industries (*R*&D Expenditure > 3bn€) shown. Shares based on Top 500 firms for 2000 and Top 1000 firms for 2018.

³⁹⁰ Own analysis, based on EU R&D Scoreboards: European Commission (2019), European Commission (2004).

6.3. Country-Analysis

Germany is the location of major R&D investing corporations with the aggregated third largest R&D expenditures worldwide in 2018³⁹¹, which accounts for around 14% of worldwide R&D Expenditure on R&D (BERD) in 2000 and 11% in 2018. Over 69% of the R&D expenditure by Germany's largest firms is spent in Automobiles & Parts or Pharmaceuticals & Biotechnology. German Automotive firms are known internationally and their relevance in terms of R&D Expenditure stands out clearly from Table 6-14.

Country-specific strengths

The two leading industries by R&D expenditure Automobiles & Parts, as well as Pharmaceuticals & Biotechnology show a high absolute spending on R&D, and an increase both in share within Germany, but also within their respective industry compared internationally. However only Automobiles & Parts can be considered a strength for Germany, whereas Pharmaceuticals & Biotechnology has to be considered with a more critical lens and is therefore categorized here in the 'weakness' category.

Automobiles & Parts: Automotive OEMs such as Volkswagen, Daimler or BMW, as well as Suppliers, such as Continental or ZF contribute strongly to Germany's R&D Expenditure and the German economy overall. German Automobiles & Parts firms even increased their global dominance: in 2000 German firms accounted for 31% of R&D Expenditure in that field, and that share increased to 36% in 2018. Together with the increase in share in relation to all German firms, we can see that Automobiles & Parts is not only strong and highly relevant for German and worldwide R&D activities, but that this relevance even increased until 2018. Four out of the Top 10 firms in this field and the largest two firms by R&D expenditure (Volkswagen, Daimler) are German.

Country-specific weaknesses

In terms of R&D Expenditures the two industries Electronic & Electrical Equipment and Chemicals have lost in relevance and strength in Germany, which can be attributed to strong growths in other industries. From 2000 to 2018 the share of German firms globally within both industries has almost halved.

Electronic & Electrical Equipment: Firms like Siemens are known internationally and part of this industry.³⁹² The share of R&D Expenditure by German firms in Electronic & Electrical

³⁹¹ For 2019, Germany has been pushed to rank 4 by China. See also footnote 389.

³⁹² Siemens actually has a quite broad product portfolio. The EU has classified the Munich-based firm to this industry.

Equipment in relation to firms worldwide has dropped from 20% in 2000 to 11%. Furthermore, the relative relevance within the German R&D spending firms has dropped from 16% to 8% in 2018. Siemens is the second largest firm by R&D expenditure worldwide in this field (behind Samsung) – and both firms can be classified in the sub-field of Conglomerate Electronics (see also the breakdown for Technology Hardware in Chapter 6.2.3). However, Siemens is in fact the only German firm appearing as a somewhat top-ranking German firm by R&D expenditure in that field.³⁹³ That means that the listed R&D expenditure of 6.5 billion Euro is almost exclusively attributable to Siemens.

Chemicals: Firms such as Evonik, Bayer or its spinoff Covestro are examples for German Chemicals firms. In 2000 over 33%, i.e. one out of three Euros spent on R&D in this industry was attributable to a German firm. This share has dropped to 18% in 2018. Furthermore, the relevance of Chemicals within the German R&D landscape has decreased as the share of Chemicals to all German firms has dropped from 13% in 2000 to 4% in 2018. In the worldwide Top 10 ranking by R&D expenditure in this field only BASF and Evonik can be found and for the Top 25 only the two companies Covestro and Symrise are added.

Pharmaceuticals & Biotechnology: Firms such as Bayer, Boehringer Ingelheim or Merck³⁹⁴ contribute to Germany's strength in that field. German firms in that field have a global share within that industry of 8% in 2018, a slight increase from 7% in 2000. Within the German R&D landscape firms in the Pharma & Biotech field account for a share of 14%, the second-largest industry in terms of R&D Expenditure and an increase from rank four in 2000. While the numbers by themselves look positive and show an upwards trend, a detailed analysis of the scoreboard paints a bleaker picture: in the worldwide Top 10 ranking of firms in this field by R&D expenditure, only one German firm is listed: Bayer has the eighth largest R&D expenditures in 2018 by all Pharma & Biotech firms. Even when we expand the list to the Top 25, only two firms are added: Boehringer (rank 16) and Merck (rank 19). The almost 11 billion Euro spent by German firms on R&D in 2018, therefore almost exclusively come from the aforementioned three firms, of which significant portions of R&D activities even come from other areas: Bayer spends significant shares of its R&D expenditures on in the area of plant and pest management and Merck in producing materials for the electronics industry.³⁹⁵ If we focus on the Biotech industry in Germany, the situation looks even more dire, with no German firm spending significantly on R&D in an international comparison.

³⁹³ The second-largest German firm by R&D expenditure in Electronic & Electrical Equipment is the company Sick on rank 601 with an R&D expenditure of 194 Million Euro in 2018.

 ³⁹⁴ The German Merck Group is not to be confused with the US Merck & Co. See also Chapter 6.3.1.
 ³⁹⁵ Cf. Annual Reports – Bayer (2020); Merck (2020).

Software & Computer Services: This industry, including particularly famous SAP, is neither moving particularly upward or downward: while the German industry share has decreased from 7% to 4% in 2018, the relevance within the German industry has increased from 3% to 5%. In fact, we have a situation comparable to Siemens in Electronic & Electrical Equipment: almost all R&D expenditure in this field can be exclusively attributed to the activities of one company – SAP.³⁹⁶ In this field, largely dominated by US firms, German firms do not play any major role. The same finding can be made when looking at the related field of Internet services: German firms, or even European firms, do not play major roles in these uprising fields.

6.3.4. R&D Expenditure by China

		R&D	Global Industry		Cou	ntry
		Expenditure		e (%)	Industry	Share
	Tech-	2018			(%)
Industry	Status	(Million €)	2000	2018	2000	2018
Total	-	76,805	0.1	10.4	-	-
Technology Hardware	Н	17,959	0.0	15.0	0.0	23.4
Software & Computer Services	н	13,885	0.0	12.8	0.0	18.1
Construction & Materials	М	10,600	0.0	77.7	0.0	13.8
Automobiles & Parts	М	7,309	0.0	5.9	0.0	9.5
Electronic & Electrical Equipment	М	5,963	0.0	10.5	0.0	7.8
Industrial Engineering	М	3,592	0.0	15.6	0.0	4.7
Oil & Gas	L	3,427	8.5	34.3	100	4.5

Table 6-15: R&D Expenditure Development by Chinese MNCs by Industry³⁹⁷

Note: Only relevant industries (R&D Expenditure > 3 billion €) shown. Shares based on Top 500 firms for 2000 and Top 1000 firms for 2018.

China is the fourth-biggest R&D spending country worldwide and somewhat different to the previous discussed three countries, as it is the only emerging country. This means, that since 2000 we can observe particular strong movements and developments. In 2000 Chinese firms did not contribute significantly to worldwide R&D Expenditures in any industry, whereas in until 2018 the share has grown to a noticeable 10%. With a development out of almost nothing, it

³⁹⁶ The second-largest company by R&D expenditure in Electronic & Electrical Equipment is the firm Software on rank 885 with 123 Million Euro spent on R&D in 2018.

³⁹⁷ Own analysis, based on EU R&D Scoreboards: European Commission (2019), European Commission (2004).

is futile to compare the years 2018 and 2000 in detail, so instead I will focus here on the particularly relevant industries. Overall, we can observe a relatively even distribution across industries: the largest R&D spending industry, Technology Hardware, accounts for 23% of Chinese R&D Expenditure. For example, Germany's industry is much more concentrated with Automobiles & Parts accounting for over 55% in 2018.

Particularly strong industries

Technology Hardware: Huawei, ZTE, Lenovo or Xiaomi are examples for Chinese firms in the Technology Hardware. Chinese firms have been highly innovative, with Huawei even taken the first spot in the ranking of patent applications with the European Patent Office in 2019.³⁹⁸ These firms spend 15% of the worldwide R&D Expenditure in that industry and that industry accounts for 23% of all Chinese R&D Expenditures. Breaking down this heterogeneous industry by segment (see Chapter 6.2.3), allows for additional insights: Chinese firms are particularly strong, in terms of R&D expenditures, in the sub-fields Telecommunication Equipment (Huawei, ZTE) and Computer Hardware (Lenovo), whereas in Semiconductors firms from other countries / regions, most notably the US, but also Taiwan and South Korea, are much stronger.

Software & Computer Services: Internet companies Alibaba, Tencent or Baidu have contributed to the rise of this industry, accounting for 18% of China's R&D Expenditure. In an international comparison Chinese firms spend 13% of the R&D expenditures in the Software & Computer Services Industry. Overall this industry is still very US-dominated, with only four Chinese companies in the Top 25 list by R&D expenditures in this field. When separating this field further, we can observe that Chinese firms are rather weak in the sub-field of Software, yet comparably strong in Internet firms.

We can observe that both in Technology Hardware and Software & Computer Services, there are rather few Chinese firms in the field of leading companies: while US firms are large in R&D expenditure and numerous, R&D expenditures for Chinese firms seem to be more concentrated on few firms. This could be attributable to very different business environments, including political systems.³⁹⁹

³⁹⁸ Cf. EPO (2020b).

³⁹⁹ Cf. D. Zhang and Guo (2019); Wu (2017).

Other Industries

Construction & Materials: This industry, including several state-owned infrastructure companies, is not particularly known for internationally relevant R&D activities. It can be discussed to what degree these firms conduct R&D in the classic sense. Nevertheless, can the high numbers here be indicative of China's status as an emerging country, i.e. a country with strong infrastructure and construction activities. Furthermore, China's ambitious infrastructure project "New Silk Road" under the "One Belt, One Road" initiative entails heavy construction activities also abroad.⁴⁰⁰. The industry Oil & Gas, the only relevant Chinese industry in 2000, can be regarded similarly, as well as Industrial Engineering, which includes again construction or construction-related firms. Furthermore, it could be argued that some of the R&D expenditures are somewhat engorged due to political specifications.⁴⁰¹

Automobiles & Parts: Chinese firms such as SAIC or Geely are producing heavily, particularly for the large home market. With a global industry share in R&D Expenditure of 6% in 2018, Chinese firms are currently behind the other three major economies discussed previously. In the Top 25 ranking by R&D expenditures in this field, the only China-based company is SAIC.

Electronic & Electrical Equipment: This industry includes firms such as TCL or BOE Technology. These firms, not necessarily known to a broader audience abroad, accounted for 11% of worldwide R&D expenditures in that industry. Overall, Chinese firms do not rank particularly highly in this category in terms of R&D expenditure: BYD, operating in the sub-field of Battery and BOE, operating in the sub-field of Electronic Displays are the only China-based companies in Electronic & Electrical Equipment listed within the first 200 firms of the R&D Scoreboard.⁴⁰²

⁴⁰⁰ Cf. Tweed (2019).

⁴⁰¹ Cf. Jiang et al. (2018); Mozur and Myers (2021).

⁴⁰² BYD ranked 147th with 1,046 Million Euro R&D Expenditure and BOE 187th with 838 Million Euro. BYD manufactures vehicles, yet is classified in Electronic & Electrical Equipment (with the own sub-category of Battery), as the core business and competency rely on battery-powered vehicles. Cf. Annual report – BYD (2020).

7. Patent Analysis for R&D Intensive Industries

In this chapter I analyze the most relevant industries, as discussed in the previous chapters from a patent perspective. Namely, I will break down the industries Pharmaceuticals & Biotechnology, Technology Hardware, Software & Computer Services and Automobiles & Parts. I will show general figures, such as the total number of patents, to indicate the general patenting activities of a respective industry, but also dive deeper with more sophisticated analyses. Since the focus of this dissertation is to analyze internationalization, I will show figures breaking down and evaluating the magnitude and effect of internationalization for the five most relevant technological fields. For this I will use the definitions and methodologies as detailed in Chapter 2.2.

I will show in this chapter where the most patents by technological field, both in terms of applicant, i.e. firm, and inventor, i.e. R&D conducting individual, are coming from. Furthermore, I show how internationalization mostly pays off, i.e. patents with international inventor teams generally generate better patents in terms of performance and competitiveness. A low or medium level of cultural distance in the international teams generally is best, meaning that with too culturally diverse teams patent performance decreases again.

Namely I will pursue answering the following research questions:

- RQ7.1: How have patent numbers developed since 1980?
- RQ7.2: What is the distribution and development of international patents?
- RQ7.3: How has the quality and competitiveness of patents developed?
- RQ7.4: How well perform international patents compared to non-international patents?
- RQ7.5: What patterns and distributions of internationality in patents are best for patent performance?

7.1. Overview Measurement and Methodology

In this chapter I will analyze patents, as applied for at the European Patent Office. The large-scale dataset allows for robust and rigorous time-series analysis. While there is some earlier data available, general and reliable data is available for the priority year 1980 and onward, so for the large-scale analyses I will use this year as a starting point. Due to the time-lag of patent publications, only patents up to 2016 are sufficiently complete to conduct

meaningful analyses (I use the most recent patent database at the point of analysis in 2020). As patents are designed to protect technologies, they are categorized in one or several technology classes: the "International Patent Classification" (IPC), which indicates with a letter-number combination the technological field(s) the respective patent relates to. In Chapter 2.2.3 and Table 2-1 I outline the structure of the IPC and give an example.

I show the concordance, i.e. matching of industry and (major) technological fields, as indicated by the IPC in Table 7-1.

Industry	Major IPC(s) ⁴⁰³
Pharmaceutical	A61K, not A61K-8
Biotechnology	C07G, K & C12M, N, P, Q, R, S
Technology Hardware	H04B, L, W & G06F
Software & Computer Services	G06F, Q, K, T & H04N
Automotive	B60K, R, W & B62D & F02B, D, M & F16H

 Table 7-1: Concordance of Industry and Main Patent Classes (IPC)

For Pharmaceutical and Biotechnology, a clear concordance exists, i.e. there is a connection of industry and technological field.⁴⁰⁴ It has to be pointed again that the industry's IPCs only relate to the major field of operation. In fact, patents are often assigned several and potentially unrelated IPCs, as the underlying technology fits into several categories. For example, the clearly pharmaceutical company Pfizer has also quite a number of patents in the subclass C04B, which is defined as "Lime, Magnesia, Slag, Cements, Cements, Composition thereof [..]".⁴⁰⁵

In order to find the relevant and major IPCs for the other three industries I follow, due to a lack of definition in Schmoch (2008) or other sources, a two-pronged approach: First, I scrutinize and analyze the IPC overview for fitting classes. For example, in Automotive, the subclass B60R "Vehicles, Vehicle Fittings, or Vehicle Parts [...] is a clear fit. Second, I identify relevant IPCs by looking at the patents of major companies in that field. To pick up the example of Automotive again: I look at the patents of Daimler, BMW etc. and identify the major IPCs these companies patent in. Major, in that sense, means that a relevant share of patents is actually

⁴⁰³ Cf. WIPO (2020b) and Schmoch (2008) for Pharmaceutical and Biotechnology.

⁴⁰⁴ Cf. Schmoch (2008).

⁴⁰⁵ Cf. WIPO (2020b), for the complete description of that subclass.

patented in the respective class, across the sample of companies.⁴⁰⁶ For example the Automotive firm Daimler AG holds some patents in fabric technology, i.e. the subclass D03D (Woven Fabrics, Methods of Weaving, Looms)⁴⁰⁷, which, as relevant as they might be in certain aspects, for example for the seat production, are not a core technology closely associated with the Automotive industry in general. I have cross-checked and matched by selection of IPCs to ensure a sufficient robust and reliable analysis.⁴⁰⁸

In order to compare patents, I compute two indices: the NRTA (Normalized Revealed Technological Advantage), as well as the PQCI (Patent Quality Composite Index), which are an indicator for the quality and comparative advantage of each company's patents within a period. An increase over the years can indicate a relatively stronger comparative positioning. The NRTA is scaled, so that $NRTA \in [-1; +1]$: A negative NRTA indicates that the firm has a smaller share of patents in the relevant fields than its competitors. In terms of patent numbers, that company is therefore relatively weaker (at a disadvantage) compared to the industry's average. A positive NRTA indicates a relative advantage, i.e. the company has a higher share of patents in the relevant fields than the competitors. The PQCI is scaled so that $PQCI \in [0; +1]$: the higher the value, the better the patent quality. Patent quality is based on number of citations (received within a certain time-frame), originality, degree of generalization and others. Due to normalization the NRTA is normally distributed, whereas the PQCI is right-skewed (positive skewed). For most industries the mean of PQCI is at approximately 0.3. For methodological details and calculation of these complex indicators, please refer to Chapter 2.2.4.

I measure Cultural Distance, i.e. the degree of internationality through an index, as introduced and discussed in Chapter 2.3, to expand on the dichotomous concept of Host-Country Patents (HCP)⁴⁰⁹. To recap: I put all patents with no internationalization and therefore no cultural distance in one group and distribute the remaining patents, i.e. all patents with an actual

⁴⁰⁶ Cf. Chapter 2.2.3 for the methodological overview of analyzing patents on a company level.

⁴⁰⁷ For example, patent EP2867396B1, titled "Woven Fabric with Light Emitting Layer" applied for by the Daimler AG is filed in D03D (OECD, 2020h).

⁴⁰⁸ For example Neuhäusler, Frietsch, and Kroll (2019) develop a probabilistic concordance between technology fields based on the IPC-class (first three digits) and both industry sectors and scientific disciplines, based on SCOPUS.

⁴⁰⁹ For most of this dissertation, I have used the concept of HCP: a patent is international when there is at least one foreign-based inventor. When we argue that an international team has a different impact on performance compared to a non-international team, it certainly makes a difference "how" international a team is. For example, from a US perspective, i.e. for a US applicant, collaborating with a Canadian inventor can be considered less internationalized and less distant than collaborating with a Chinese inventor. In order to quantify these cultural distances and being able to say how distant or more internationalized a US-Chinese collaboration actually is, I use the cultural classification as introduced by Hofstede (G. H. Hofstede, Hofstede, and Minkov, 2010).

cultural distance and with internationalization by the size of the distance in three equally sized groups. Therefore, I will a have a group with "low" cultural distance, one with "medium" and one with a "high" cultural distance. An example for a "low" cultural distance would be the collaboration US-Canada, for "medium" US-Germany and for "high" US-China.

Grouping the international patents in categories of their respective cultural distance will help us to find out whether strong internationalization pays off the most, if it even pays off in the first place, or whether there is a balance between internationalization. The literature, after all, finds arguments in favor and against internationalization.

For methodological details and calculation of these indicators, please refer to Chapter 2.3.3.

7.2. Patent Analysis by Industry

In this part I conduct the patent analyses per technological field, as detailed in the previous parts. I use the analysis of technological fields as a proxy for the respective industry, i.e. when I analyze patents in the field of the pharmaceutical industry, I see the results as sufficiently representative of the pharmaceutical industry. As detailed in the previous part, certain discrepancies arise, as a company which is attributed to a certain industry does not file its patents exclusively in the corresponding IPC class(es), and not all patents in the corresponding IPC class(es) are filed exclusively by firms from that industry. In order to aid comprehensibility, I mostly refer to "industries" in the following, instead of the more precise term "patents filed by firms in a technological field mainly attributed to industry X".

Every industry is analyzed in a similar manner: First, I show the general number of patents, as well as the internationalization rate, i.e. share of international patents. Second, I calculate the quality indices and compare non-international (domestic) to international patents to see how the general quality and competitiveness has developed and whether internationality pays off. Once again, an "international patent" is any patent with at least one inventor not based in the country of the applicant. Third, I break down internationality and see how much internationalization actually pays off. As discussed in Chapter 2.3.4, there are arguments in favor and against internationalization, so the optimum does not necessarily have to be a boundary solution. As outlined in Chapter 2.3.4.2 I use a one-way ANOVA with a Bonferroni correction to show whether the difference in means between the four groups (no cultural distance) are statistically significant. I report the statistical significance levels for the respective groups, resulting six pair-wise comparisons, in the classic asterisk notation.⁴¹⁰

⁴¹⁰ Cf. Acock (2018).

I analyze all relevant patents as filed with the EPO. Naturally, a certain home-base skew cannot be avoided, as firms headquartered in the region of a particular patent office are more likely to file patents at that patent office. Refer to Chapter 2.2.5 for a detailed discussion on the selection of patent offices. However, elaborate analyses and anecdotal evidence through interviews confirm the general trends outlined in the following parts.

7.2.1. Patent Analysis of Pharmaceutical Industry

In this sub-chapter, I will analyze the pharmaceutical industry, based on the relevant IPCs, as detailed in Table 7-1.

First, I show the general development of patents between 1980 and 2016, as well as the share of international patents, i.e. patents with inventors and / or applicants from different countries.

Second, I compare non-international and international patents between 1980 and 2016, i.e. show whether international patent teams create better performing patents.

7.2.1.1. General Development in Pharmaceutical Industry

Figure 7-1: Overview Patent Development in Pharmaceutical Industry⁴¹¹

⁴¹¹ Source: Own analysis, based on REGPAT database by the OECD (2020h).

Figure 7-1 shows the total number of patents per priority year in the pharma field on the left y-axis and with the continuous black line, and the share of international to total patents on the right y-axis, with the dashed grey line.

We can identify three general stages of patent number development.

1980 – 1993: We see a constant linear growth in patent numbers at around 10% per year. With an increase in R&D Expenditure and R&D activity a growth in patent numbers and internationalization is easily explained.

1993 – 2003: Patent numbers grow exponentially with a plateau around the turn of the millennium. In the steepest stage, we can observe a growth in patent numbers of around 18% in a year. A (partly) exponential growth can be attributed to the increasing relevance and complexity of R&D activities in the pharmaceutical industry. In Chapter 6.1.3 we have looked at the R&D Expenditure within the Pharmaceutical & Biotechnology industry and observed that this industry has one of the biggest growth rates in terms of R&D Expenditure over the years.

2003 – 2015: Since 2005, the number of patents per year has decreased to 8,624 in 2015 or 6,287 in 2016. The numbers for 2016 might not be complete yet, due to publication time lags, which could partially explain the drop of over 25% from 2015 to 2016. It is interesting to observe that the number of patents has decreased substantially since 2005.

Several arguments might explain this counterintuitive trend: First, a paradigm shift: as patenting and all of the surrounding legal processes in itself are rather costly, some firms are increasingly selective whether and what to patent.⁴¹² A drop in patent numbers therefore might not necessarily indicate a plummeting innovativeness, but rather a change in company strategy. It is therefore worthwhile to analyze in a next step not just the number of patents, but also the respective quality indices. Second, a change in firm strategy away from classic pharmaceutical activities and towards bio-pharmaceutical products, which are not necessarily patented in the same category. As we will see in the next chapter, this argument does not hold true, as the development for Biotechnology looks similar. Third, a home-country bias: as we are analyzing EPO data here a strong dominance of non-European, e.g. US, firms might result in dropping patent numbers due to an increasing underrepresentation. However, a separate analysis for the subset of German applicants, i.e. firms, shows quite the same curve. Germany as part of the EPO's home geographical area would certainly not be underrepresented in this analysis. Fourth, the downwards trend is temporarily and goes up after 2015. In fact, the EPO

⁴¹² Cf. Heuckeroth (2017) & Weibel (2016).

as the holder of their data publishes more recent industry aggregates of its patent data. This patent data remains inaccessible in detail for some time to the public (see also Chapter 2.2.5). That data, shows the observed decrease in patent numbers in the pharmaceuticals (and biotechnology field), followed by a strong and continuous increase since 2016.⁴¹³ Furthermore, analyzing PCT-data, instead of EPO confirms the data and trends, with other publications reporting similar trends.⁴¹⁴ As surprising as that decrease in patent numbers therefore might be, it is correct and in line with other analyses and sources.

Overall, i.e. between 1980 and 2005, the number of patents has increased more than eightfold in the 25-year span, i.e. from 1,307 in 1980 to 11,571 in 2005.

The internationality, i.e. the share of international to all patents has developed in a similar pattern to the number of patents: from a share of around 11% in 1980, we have an increase until the share peaks at around 27% in 2006. Since then, the share of international patents has slightly fallen again and it reached around 21% in 2016. Obviously, we will observe a high spread in internationality depending on the country and company of focus: multinational pharma firms in small countries like Switzerland have obviously a much higher internationalization rate, than firms in much large countries, like the US (see also Table 7-3). Generally, the internationality in pharma patents is rather high: every fifth to fourth patent has an international inventor.

7.2.1.2. Development by Applicant Country in the Pharmaceutical Industry

In this step I break down the patent numbers by applicant country. As we focus on recent developments, I include patent data from the priority year 2000 and onward. First, I show the number of patents for the largest applicant countries. Second, I show the share of these patent numbers in relation to the worldwide total. Third, I show the share of international patents for these countries. Due to the incompleteness of data for 2016, I include 2015 as the most recent and sufficiently reliable year for the tables.

⁴¹³ Cf. EPO (2020c): by 2018 the patent numbers for Pharmaceuticals have increased over the pre-drop peak. For Biotechnology they have also strongly increased again, but in 2019 are still by around 1,000 patents less than in 2010.

⁴¹⁴ Cf. Pugatch, Torstensson, and Chu (2012, p. 30), for an analysis of PCT-data in the biotechnology industry, showing a decrease after the year 2000.

Applicant	Number	of Patents	per Priority	/ Year	Share TO	OTAL (%)	CAGR
Country	2000	2007	2012	2015	2000	2015	'00-'15 (%)
TOTAL	10,716	10,190	8,177	8,624	100	100	-1.4
US	4,808	3,647	3,158	3,540	44.9	41.0	-2.0
Japan	943	948	663	682	8.8	7.9	-2.1
Germany	1,197	986	689	594	11.2	6.9	-4.6
Switzerland	517	738	556	451	4.8	5.2	-0.9
UK	731	516	324	424	6.8	4.9	-3.6
France	543	595	500	430	5.1	5.0	-1.5

Table 7-2: Patent Breakdown by Applicant Country in Pharma⁴¹⁵

Note: Full-counting leads to some double counting.

The table shows the six most relevant applicant countries for the number of pharmaceutical patents. As we have already seen in Figure 7-1, the general development since 2000 is downwards, leading to a negative CAGR. All countries listed, except Switzerland, have decreased more strongly than the global total, meaning that other countries have gained in relative relevance. Germany has particularly decreased its number of patents, with a CAGR of -5%. Since one patent can have applicants located in several countries, such a patent would be counted for each country respectively and thereby counted multiple times. This effect can be neglected though, as the number of unique patents in the whole sample is 253,676 and with double-counting of applicants 264,174 patents, i.e. only 4% more.

We can see a clear dominance of the US as a home-location for firms patenting in the field of pharma. In 2015 41% of all pharma patents had an US applicant. Particularly in most recent years we can generally see a downwards trend in percentages, indicating that other countries are taking a relative share from the six major countries outlined here.

⁴¹⁵ Source: Own analysis, based on REGPAT database by the OECD (2020h).

	Share of International Patents (%)						
Country	2000	2007	2012	2015			
TOTAL	24.5	26.4	24.5	21.4			
US	16.9	17.8	18.3	17.4			
Japan	11.0	10.5	10.0	8.9			
Germany	29.0	26.0	27.4	32.0			
Switzerland	86.3	84.1	79.7	71.4			
UK	38.0	35.9	41.0	38.2			
France	26.9	30.3	28.2	26.5			

Table 7-3: Share of Applicant Countries' International Patents in Pharma⁴¹⁶

Table 7-3 shows the share of international patents in relation to all patents by the respective applicant country. The small country of Switzerland clearly stands out, with 86% of all patents having at least one international, i.e. non-Switzerland based inventor in 2000. This share has decreased to 71% in 2015, but that still means that more than two out of three patents by a Swiss applicant have an international inventor. The UK also has a high share of international patents, which even slightly increased over the years from 38.0% in 2000 to 38.2% in 2016.

Overall, the share of international patents worldwide has decreased from 24% in 2000 to 21% in 2016, indicating that non-international patents have gained in relative relevance.

The US, the by far most relevant applicant country for pharma patents, has a below-average share of international patents. Clearly international inventors are not as relevant for this large country, compared to e.g. Switzerland. Japan is comparably un-internationalized with a share of international patents of only 11% in 2000 and 9% in 2015.

With internationalization generally decreasing in relative relevance, it will be interested to see how international patents perform to non-international patents. Before that, i.e. in the next step we will look at the patent development per inventor country.

7.2.1.3. Development by Inventor Country in the Pharmaceutical Industry

In this part I conduct a similar analysis as before, but in Table 7-4 I show the breakdown per inventor country, not applicant country. In order to truly understand where R&D in the pharmaceutical industry happens, we must look at the countries of inventors. The following table therefore show the number of patents with at least one inventor listed on the patent

⁴¹⁶ Source: Own analysis, based on REGPAT database by the OECD (2020h).

based in the respective country. This full-counting leads to some double counting: often patents have several inventors, who might even be based in different countries. Such a patent would be counted for each of the countries involved.

Inventor	Number	of Patents	per Priorit	ty Year	Share TO	OTAL (%)	CAGR
Country	2000	2007	2012	2015	2000	2015	'00-'15 (%)
TOTAL	10,716	10,190	8,177	8,624	100	100	-1.3
US	5,249	4,077	3,558	3,928	49.0	45.5	-1.8
Germany	1,321	1,413	888	720	12.3	8.3	-3.7
Japan	988	954	681	678	9.2	7.9	-2.3
France	781	801	639	536	7.3	6.2	-2.3
China	45	196	304	516	0.4	6.0	16.5
UK	1,040	705	438	488	9.7	5.7	-4.6
Switzerland	364	594	404	343	3.4	4.0	-0.4

Table 7-4: Patent Breakdown by Inventor Country in Pharma⁴¹⁷

Note: Full-counting leads to some double counting.

Above table shows the absolute number of patents per inventor country. For example, from all 8,624 patents in the pharma industry in 2015, 3,928 had at least one US-based inventor. Again, we can see a strong decline in patent numbers, except for China. The emerging country has gained strongly in relevance as a location for pharma patents and became the fifth-largest nation in terms of patents with at least one inventor based in the respective country in 2015.

The table also shows the shares of patents per inventor country. We can see again the strong US-dominance in the Pharmaceutical industry: over 40% of all pharma patents have at least one US-based inventor. This clearly shows the importance and relevance of the country. The shares have decreased over the years, indicating that other countries are becoming increasingly relevant. We can see such an uprise very clearly with the case of China: in 2000 China played a negligible role in pharma patents, with less than 1% of all pharma patents having a China-based inventor. This share has risen to 6% in 2015. China-based firms, i.e. applicants do not play a relevant role at this time, so they are not included in the prior sub/chapter.

⁴¹⁷ Source: Own analysis, based on REGPAT database by the OECD (2020h).

We can also see strong differences to the analysis of applicant countries with the case of Switzerland: the small country is host of several major players in the pharmaceutical field, making Switzerland the fourth-largest applicant country in terms of patent numbers. However, these inventions are rather not conducted in Switzerland, as just a much smaller number of patents are having a Swiss-based inventor. In terms of inventor location, Switzerland ranks only seventh in 2015.

In the next part, I compare international to non-international patents.

7.2.1.4. Comparison Non-International and International Patents in Pharmaceutical Industry

Figure 7-2: NRTA in Pharmaceutical Industry⁴¹⁸

Figure 7-2 shows the average normalized RTA of patents in the pharmaceutical field, separated by patents which are international, i.e. have at least one foreign inventor, and patents which are not. Unsurprisingly, the NRTA over the years is always relatively close to 0: as the NRTA is scaled, so that $NRTA \in [-1; +1]$ and considers the comparative advantage within an industry, an analysis of a whole industry, such as conducted here for Pharma, should

⁴¹⁸ Source: Own analysis, based on REGPAT database by the OECD (2020a, 2020f, 2020h).

yield values around 0. The NRTA is calculated based on the number of patents in a certain field at a certain time.

For almost all years, competitiveness of international patents is higher, than for non-international patents, as the grey dashed line is mostly above the black continuous line. Patents in the field of pharma, created with an international team are more competitive than their domestic counterparts. The overall developments are interesting, as values up until approximately the year 2000 increase and then slightly decrease again. This development is therefore to a certain degree similar to that of the patent numbers, as seen in Figure 7-1. However, this development should not be overestimated: as said before the NRTA is scaled, so that $NRTA \in [-1; +1]$. An increase of 0.03 to 0.09 is therefore not that noteworthy, although the small scale on the y-axis makes such small developments visually dramatic. The distribution of the NRTA across the years (not depicted here) is quite constant. The interesting message here is that regardless of the absolute values, international patents have a higher comparative advantage than non-international ones.

⁴¹⁹ Source: Own illustration, based REGPAT database by the OECD (2020a, 2020f, 2020h).

Figure 7-3 shows the average quality of patents in the pharmaceutical field, based on a composite of quality indices, such as citations, originality etc. Overall patent quality decreases over the years, from around 0.34 in 1980 to 0.2 in 2016. This general decrease in quality could be partially explained with the innovation slowdown discussion: firms have to increasingly spend more money to maintain a level of innovativeness, due to the increasing complexity. However, a certain PQCI figure cannot be directly translated into economic value, i.e. we could not make a conclusion that a PQCI reduction of 30% goes in hand with an increase in costs or decrease in profitability of for example 30%. The distribution of the PQCI over the years is quite constant.

Once again, our focus in this short analysis is not so much the development of values, but rather the comparison of non-international to international patents. We can clearly see that international patents are always, i.e. in all years, of a higher quality than non-international patents. This quality distance is particularly high in the periods 1983 – 1987 and 2007 – 2012.

We have seen that international patents generally perform better than non-international ones. However, we can expect a high spread within the group of international patents. A US inventor collaborating with a Canadian inventor has certainly different implications than collaborating with a Chinese inventor. Therefore, in the next step, I will include cultural distance as a measurement of "how much" internationalization pays off.

7.2.1.5. Cultural Distance as a Measurement for International Patents in Pharmaceutical Industry

Table 7-5 shows the quality (PQCI) of patents in the pharmaceutical industry. I show the values for the whole period and also separated for the period since 2000, to further illustrate recent developments. I separate International Patents into three groups of cultural distance of the involved inventor cultures: "low" cultural distance, "medium" and "high". Furthermore, I give an example of a country pairing, to illustrate what a "low", "medium" or "high" cultural distance means.

Patent	Non-Internat.	International F	International Patents – Cultural Distance					
Quality	Patents	Low	Medium	High	All Patents			
All Years	0.295	0.311	0.306	0.299	0.305			
Since 2000	0.263	0.293	0.289	0.285	0.289			

Table 7-5: Pharma Patent Quality by Cultural Distance⁴²⁰

Note: Standard Deviation for all groups ≈ 0.1. Example for cultural distances: Low: US-Canada; Medium: US-Germany; High: US-China.

We can see the average patent quality of all non-international patents, i.e. all patents with no cultural distance in the first column. For comparison I show the average patent quality for all international patents, i.e. all patents with some cultural distance in the last column. This column is the aggregate of the breakdown into three levels of cultural distance. The standard deviation is constant at around 0.1 for all groups and samples, indicating that there are no outliers distorting the analysis.

Overall, we can see that the average quality has decreased, i.e. the average for the priority years 2000 and onwards is lower than the total sample. We have already seen this in the prior sub-chapter in Figure 7-3.

Cultural Distance (CD)	Non-International	Low CD	Medium CD	
	Patents			
Low CD	Pos. sig. (***)	-	-	
Medium CD	Pos. sig. (***)	Neg. insig.	-	
High CD	Pos. sig. (*)	Neg. sig. (**)	Neg. sig. (**)	

Table 7-6: Group Means Differences (one-way ANOVA) in Pharma Patent Quality

Note: Significance levels given with asterisks: p-Level: * < 0.05 | ** < .01 | *** < 0.001. One-way ANOVA with Bonferroni correction. No differences between "All Years" and "Since 2000", unless explicitly noted. Detailed test statistics shown exemplified for Pharma in Appendix-Table 7.

Two main findings can be observed: First, internationalization pays almost always off on average. For all levels of cultural distance, we always have a (significantly) higher quality average, than those patents without internationalization, although for a high cultural distance the effect is only slightly significant (p < 0.05). Second, a low degree of cultural distance pays off the most. A medium and high cultural distance leads to a smaller average in patent quality,

⁴²⁰ Source: Own illustration, based REGPAT database by the OECD (2020a, 2020f, 2020h).

although the decrease in means between a low and medium CD is not statistically significant. In fact, it seems that the positive effects of internationalization reduce with too much internationalization. In a highly complex research setting, such as Pharma, too much internationalization can therefore be less productive. We can explain this observation with the literature, discussed in Chapter 2.3.4, which finds negative effects of too much internationalization due to a spike in coordination costs. These findings therefore lend support to an inverted U-curve hypothesis, i.e. that the optimal levels of internationalization are not a boundary solution, but somewhat in between.

7.2.1.6. Conclusion Patent Analysis of Pharmaceutical Industry

In this part we have put patents in the pharmaceutical industry under scrutiny. The overall number of patents, as well as the share of patents with international inventors has strongly grown since 1980, with a peak around 2005 and a decrease since then. We have seen a clear dominance of the US in the pharmaceutical industry, both as a location for applicant, i.e. firms, but also as a location for inventors, i.e. base for the actual inventive activities. China has strongly gained in relevance as a location for pharmaceutical R&D activities over the last decade.

International patents are of a higher quality and a higher comparative advantage than non-international patents, although too much internationalization has a diminishing marginal benefit. In fact, patents with a low cultural distance, e.g. a collaboration between US and Canada or Germany and Switzerland have the highest average quality. This is only a first indication. Clear black and white results are not possible in the complex field of Cultural Analysis, as outlined in the theoretical background in Chapter 2.3.

7.2.2. Patent Analysis of Biotechnology Industry

In this sub-chapter, I will analyze the biotechnology industry, based on the relevant IPCs, as detailed in Table 7-1. As outlined before I split pharma & biotech in this analysis, as they are similar and often overlapping industry, yet disjoint with different strategies and approaches.

First, I show the general development of patents between 1980 and 2016, as well as the share of international patents, i.e. patents with inventors and / or applicants from different countries.

Second, I compare in non-international and international patents between 1980 and 2016, i.e. show whether international patent teams create better performing patents.

7.2.2.1. General Development in Biotechnology Industry

Figure 7-4: Overview Patent Development in Biotech⁴²¹

Figure 7-4 shows the total number of patents per priority year in the biotechnology field on the left y-axis and with the continuous black line, and the share of international to total patents on the right y-axis, with the dashed grey line.

We can observe a (almost) continuous and strong growth of patent numbers since 1980 until 2000. Within these 20 years, the number of patents has increased more than 13-fold, i.e. from 597 in 1980 to 8,324 in 2000. Between 1993 and 2000 we even have an approximately exponential growth in patent numbers. Since 2000, the number of patents per year has decreased to 6,782 in 2015 or 4,853 in 2016. The numbers for 2016 might not be complete yet, due to publication time-lags, which could partially explain the strong drop from 2015 to 2016, so again I will include in the tables 2015 as the most recent reliable data point.

It is interesting to observe that, similarly to the pharmaceutical industry, the number of patents has decreased substantially since 2000. For a discussion of the arguments explaining this decrease, please refer to the previous part on the Pharmaceutical Industry (Chapter 7.2.1.1).

⁴²¹ Source: Own analysis, based on REGPAT database by the OECD (2020h).

In a nutshell, the decrease is correct, although since 2016 the patent numbers are increasing again.

The similar developments in the pharma & biotech industry cannot be explained with a large overlap, i.e. the intersection of both patent data sets is rather small. Only 22% of the patents analyzed appear in both datasets, i.e. have an IPC classification from both the pharmaceutical and the biotechnology sector.⁴²² The overlap of firms is, however, much larger: large firms which patent numerously in the biotechnology sector are mostly not clear-cut biotech firms, but also operate strongly in the pharmaceutical sector. Novo Nordisk, a company listed as the second-largest biotech firm in 2019 worldwide⁴²³, operates also strongly in the pharmaceutical field and describes itself more broadly as a "healthcare company"⁴²⁴. While there is a technological difference between pharma & biotech, which warrants the separate patent analysis in this chapter, it is more the small startups which actually embody this technological split – large firms mostly operate in both fields. The EPO, for example, argues that 55% of all patents in biotechnology refer to pharmaceutical products, without giving technical details.⁴²⁵

The internationality, i.e. the share of international to all patents has developed in a similar pattern to the number of patents: from a share of around 12% in 1980, we have an increase until the share peaks at around 23% in 2007. Since then, the share of international patents has slightly fallen again and it reached around 19% in 2016. Obviously, we will observe a high spread in internationality depending on the country and company of focus: multinational pharma firms in small countries like Switzerland have obviously a much higher internationalization rate, than firms in much large countries, like the US. Generally, the internationality in biotechnology patents is rather high: every fifth to fourth patent has an international inventor.

7.2.2.2. Development by Applicant Country in the Biotechnology Industry

In this step I break down the patent numbers by applicant country. As we focus on recent developments, I include patent data from the priority year 2000 and onward. First, I show the number of patents for the largest applicant countries. Second, I show the share of these patent numbers in relation to the worldwide total. Third, I show the share of international patents for these countries.

⁴²² In set notation: $pharma \cup biotech = 354,606 \mid pharma \cap biotech = 76,994$

⁴²³ Cf. GEN (2019).

⁴²⁴ Cf. Annual Report – Novo Nordisk (2020).

⁴²⁵ Cf. EPO (2020a).

Applicant	Number of Patents per Priority Year				Share TOTAL (%)		CAGR
Country	2000	2007	2012	2015	2000	2015	'00-'15 (%)
TOTAL	8,324	6,702	6,037	6,782	100	100	-1.4
US	4,315	2,764	2,671	2,714	48.3	40.0	-2.6
Germany	858	729	592	634	13.0	9.3	-3.5
Japan	1,073	901	701	619	9.8	9.1	-1.8
France	588	396	343	408	4.3	6.0	0.9
Switzerland	468	503	436	369	3.5	5.4	1.7
UK	189	204	203	319	5.6	4.7	-2.4

Table 7-7: Patent Breakdown by Applicant Country Biotech426

Note: Full-counting leads to some double counting.

The table shows the six most relevant applicant countries for the number of biotechnology patents. As we have already seen in Figure 7-4, the general development since 2000 is downwards, leading to a negative CAGR. Germany has particularly decreased its number of patents, with a CAGR of -3.5%. Since one patent can have applicants located in several countries, such a patent would be counted for each country respectively and thereby counted multiple times. As discussed previously, this effect is negligibly small.

We can see a clear dominance of the US as a location for firms patenting in the field of biotechnology. In 2015 40% of all biotech patents had an US applicant. Particularly in most recent years we can generally see a downwards trend in percentages, indicating that other countries are taking a relative share from the six major countries outlined here.

⁴²⁶ Source: Own analysis, based on REGPAT database by the OECD (2020h).
	Share of International Patents (%)					
Country	2000	2007	2012	2015		
TOTAL	20.9	22.8	21.3	19.4		
US	16.0	15.3	16.0	13.3		
Germany	32.7	36.3	24.5	30.9		
Japan	8.1	6.5	6.6	5.0		
France	26.8	31.0	28.3	26.5		
Switzerland	83.3	87.2	82.5	78.9		
UK	32.0	29.0	30.2	21.9		

Table 7-8: Share of Applicant Countries' International Patents in Biotech⁴²⁷

Table 7-8 shows the share of international patents in relation to all patents by the respective applicant country. The small country of Switzerland clearly stands out, with 79% of all patents having at least one international, i.e. non-Switzerland based inventor in 2015. Comparable to the findings in pharma patents, we see again that Japan is comparably little internationalized with a share of international patents in the single-digits.

Overall, the share of international patents worldwide has decreased from 21% in 2000 to 19% in 2015, indicating that non-international patents have gained in relative relevance.

The US, the by far most relevant applicant country for pharma patents, has a below-average share of international patents. Clearly international inventors are not as relevant for this large country, compared to e.g. Switzerland.

With internationalization generally decreasing in relative relevance, it will be interested to see how international patents perform to non-international patents. Before that, i.e. in the next step, we will look at the patent development per inventor country.

7.2.2.3. Development by Inventor Country in the Biotechnology Industry

In this part I conduct a similar analysis as before, but in Table 7-9 I show the breakdown per inventor country, not applicant country. In order to truly understand where R&D in the Technology Hardware industry happens, we must look at the countries of inventors. The following table therefore shows the number of patents with at least one inventor listed on the patent based in the respective country. This full-counting leads to some double counting: often

⁴²⁷ Source: Own analysis, based on REGPAT database by the OECD (2020h).

patents have several inventors, who might even be based in different countries. Such a patent would be counted for each of the countries involved.

Inventor	Number	of Patents	per Priori	ty Year	Share T	OTAL (%)	CAGR
Country	2000	2007	2012	2015	2000	2015	'00-'15 (%)
TOTAL	8,324	6,702	6,037	6,782	100	100	-1.4
US	4,315	2,764	2,671	3,063	51.8	45.2	-2.3
Japan	858	729	592	617	10.3	9.1	-2.2
Germany	1,073	901	701	725	12.9	10.7	-2.6
France	468	503	436	433	5.6	6.4	-0.5
UK	588	396	343	397	7.1	5.9	-2.6
China	36	94	126	261	0.4	3.8	14.1
South Korea	75	136	145	234	0.9	3.5	7.9
Switzerland	189	204	203	216	2.3	3.2	0.9

Table 7-9: Patent Breakdown by Inventor Country Biotech428

Note: Full-counting leads to some double counting.

Above table shows the absolute number of patents per inventor country. For example, from all 6,782 patents in the pharma industry in 2015, 3,063 had at least one US-based inventor. Again, we can see a strong decline in patent numbers.

We also see the shares of patents per inventor country. We can observe again the strong US-dominance in the Biotechnology industry: over 45% of all biotech patents have at least one US-based inventor. This clearly shows the importance and relevance of the country. The shares have decreased over the years, indicating that other countries are becoming increasingly relevant.

We can also see strong differences to the analysis of applicant countries with the case of Switzerland: the small country is host of several major players in the biotechnology field, making Switzerland the fifth-largest applicant country in terms of patent numbers. However, these inventions are rather not conducted in Switzerland, as just a much smaller number of patents have a Swiss-based inventor. In terms of inventor location, Switzerland ranks only eighth in 2015.

⁴²⁸ Source: Own analysis, based on REGPAT database by the OECD (2020h).

In the next part, I compare international to non-international patents.

7.2.2.4. Comparison Non-International and International Patents in Biotechnology Industry

Figure 7-5: NRTA in Biotech429

Figure 7-5 shows the average comparative advantage of patents in the biotechnology field, separated by patents which are international, i.e. have at least one foreign inventor, and patents which are not. Unsurprisingly, the NRTA over the years is always relatively close to 0: as the NRTA is scaled, so that $NRTA \in [-1; +1]$ and considers competitiveness within an industry, an analysis of a whole industry, such as conducted here for biotech, should yield values around 0. The NRTA is calculated based on the number of patents in a certain field at a certain time.

For almost all years, competitiveness of international patents is higher, than for non-international patents, as the grey dashed line is almost always above the black continuous line. Patents in the field of biotech, created with an international team have a higher comparative advantage than their domestic counterparts, meaning there are more patents in

⁴²⁹ Source: Own analysis, based on REGPAT database by the OECD (2020a, 2020f, 2020h).

the relevant fields. The overall developments are interesting, as values up until approximately the year 2000 increase and then slightly decrease again. This development is therefore to a certain degree similar to that of the patent numbers, as seen in Figure 7-4. However, this development should not be overestimated: as said before the NRTA is scaled, so that $NRTA \in [-1; +1]$. The distribution of the NRTA across the years (not depicted here) is again quite constant. The interesting message here is that regardless of the absolute values, international patents are more competitive than non-international ones, except for the short period 1996 - 2000, which shows are peak and somewhat of an anomaly.

Figure 7-6: PQCI in Biotech⁴³⁰

Figure 7-6 shows the average quality of patents in the biotechnology field, based on a composite of quality indices, such as citations, originality etc. Overall patent quality decreases over the years, from around 0.36 in 1980 to 0.2 in 2016. Again, we can somewhat find arguments for a potential innovation slowdown, as discussed above: firms have to increasingly spend more money to maintain a level of innovativeness, due to the increasing complexity.

⁴³⁰ Source: Own illustration, based REGPAT database by the OECD (2020a, 2020f, 2020h).

Once again, our focus in this short analysis is not so much the development of values, but rather the comparison of non-international to international patents. We can clearly see that international patents are always, i.e. in all years, of a higher quality than non-international patents.

We have seen that international patents generally perform better than non-international ones. However, we can expect a high spread within the group of international patents. Therefore, in the next step, I will include cultural distance as a measurement "how much" internationalization pays off.

7.2.2.5. Cultural Distance as a Measurement for International Patents in Biotechnology Industry

Table 7-10 shows the quality (PQCI) of patents in the biotechnology industry. I show the values for the whole period and also separated for the period since 2000, to further illustrate recent developments. I separate International Patents into three groups of cultural distance of the involved inventor cultures: "low" cultural distance, "medium" and "high". Furthermore, I give an example of a country pairing, to illustrate what a "low", "medium" or "high" cultural distance means.

Patent	Non-Internat.	International I	International Patents – Cultural Distance					
Quality	Patents	Low	Medium	High	All Patents			
All Years	0.283	0.303	0.294	0.284	0.286			
Since 2000	0.255	0.282	0.273	0.266	0.258			

Table 7-10: Biotech Patent Quality by Cultural Distance⁴³¹

Note: Standard Deviation for all groups ≈ 0.1. Example for cultural distances: Low: US-Canada; Medium: US-Germany; High: US-China.

We can see the average patent quality of all non-international patents, i.e. all patents with no cultural distance in the first column. For comparison I show the average patent quality for all international patents, i.e. all patents with some cultural distance in the last column. This column is the aggregate of the breakdown into three levels of cultural distance. The standard deviation is constant at around 0.1 for all groups and samples, indicating that there are no outliers distorting the analysis. Overall, we can see that the average quality has decreased, i.e. the average for the priority years 2000 and onwards is lower than the total sample. We have already seen this in the prior sub-chapter in Figure 7-6.

⁴³¹ Source: Own illustration, based REGPAT database by the OECD (2020a, 2020f, 2020h).

Cultural Distance (CD)	Non-International	Low CD	Medium CD	
	Patents			
Low CD	Pos. sig. (***)	-	-	
Medium CD	Pos. sig. (***)	Neg. insig.	-	
High CD	Pos. sig. (***)	Neg. sig. (***)	Neg. sig. (***)	

Table 7-11: Group Means Differences (one-way ANOVA) in Biotech Patent Quality

Note: Significance levels given with asterisks: p-Level: * < 0.05 | ** < .01 | *** < 0.001. One-way ANOVA with Bonferroni correction. No differences between "All Years" and "Since 2000", unless explicitly noted.

The two main findings are identical to what we have seen for patents in the pharmaceutical industry: First, internationalization pays always off on average. Regardless of the respective level of cultural distance, we always have a statistically significantly higher quality average, than those patents without internationalization. Second, a low degree of cultural distance pays off the most. A medium and high cultural distance leads to a smaller average in patent quality, although the difference between the groups of low and medium CD are, again, not statistically significant. In fact, it seems that the positive effects of internationalization reduce with too much internationalization.

Once again, in a highly complex research setting, such as Biotech, too much internationalization can therefore be less productive. We can explain this observation with the literature, discussed in Chapter 2.3.4, which finds negative effects of too much internationalization due to a spike in coordination costs. These findings therefore lend support to an inverted U-curve hypothesis, i.e. that the optimal levels of R&D Internationalization diversity are somewhat moderate: i.e. international teams perform better, if they are not "too international".

7.2.2.6. Conclusion Patent Analysis of Biotechnology Industry

In this part we have put patents in the biotech industry under scrutiny. The overall number of patents, as well as the share of patents with international inventors has strongly grown since 1980, with a peak around 2000 and a decrease since then. We have seen a clear dominance of the US in the biotech industry, both as a location for applicant, i.e. firms, but also as a location for inventors, i.e. base for the actual inventive activities.

International patents are of a higher quality and have a higher comparative advantage than non-international patents, although too much internationalization has a diminishing marginal benefit. In fact, patents with a low cultural distance, e.g. a collaboration between US and Canada or Germany and Switzerland have the highest average quality. Again, this is only a first indication. Clear black and white results are not possible in the complex field of Cultural Analysis, as outlined in the theoretical background in Chapter 2.3.

Overall, the findings of the biotech industry are quite similar to that of the pharmaceutical, although the patent sets are rather disjoint. This indicates that both industries follow similar paths in patent development. Certain differences stand out, though, most notably that while China has grown to be a relevant inventor location for pharmaceutical activities, it does not hold such a position in the biotechnology industry.

7.2.3. Patent Analysis of Technology Hardware Industry

In this sub-chapter, I will analyze the Technology Hardware industry, based on the relevant IPCs, as detailed in Table 7-1 and the same structure shown for the previous industries.

7.2.3.1. General Development in Technology Hardware Industry

Figure 7-7: Overview Patent Development in Tech Hardware⁴³²

⁴³² Source: Own analysis, based on REGPAT database by the OECD (2020h).

Figure 7-7 shows the total number of patents per priority year in the Technology Hardware field on the left y-axis and with the continuous black line, and the share of international to total patents on the right y-axis, with the dashed grey line.

We can observe a (almost) continuous and strong growth of patent numbers since 1980. Between around 1993 and 2000 we can even observe an almost exponential growth, followed by a somewhat linear upwards trend and again exponential growth between 2008 and 2012. The numbers for 2016 might not be complete yet, due to publication time-lags, which could partially explain the strong drop from 2015 to 2016, so again I will include in the tables 2015 as the most recent reliable data point. Between 1980 and 2015 patent numbers have increased by the factor 27.

As opposed to the pharmaceutical and biotechnology field, analyzed before, we do not see real decline in patent numbers (apart from the 2016 drop), but also have the somewhat exponential growth to the 2000s.

The internationality, i.e. the share of international to all patents has developed almost always upwards: 9% in 1980 to 23% in 2015. It comes as little surprise that the internationality is somewhat lower compared to pharma and biotech patents.

7.2.3.2. Development by Applicant Country in the Technology Hardware Industry

In this step I break down the patent numbers by applicant country. As we focus on recent developments, I include patent data from the priority year 2000 and onward. First, I show the number of patents for the largest applicant countries. Second, I show the share of these patent numbers in relation to the worldwide total. Third, I show the share of international patents for these countries.

Applicant	Number	of Patents	per Priorit	y Year	Share TC)TAL (%)	CAGR
Country	2000	2007	2012	2015	2000	2015	'00-'15 (%)
TOTAL	15,617	17,758	22,553	21,799	100	100	2.2
US	5,925	5,371	6,792	7,030	37.9	32.2	1.1
China	32	1,063	2,898	3,164	0.2	14.5	35.8
Japan	3,389	2,935	2,754	2,515	21.7	11.5	-2.0
South Korea	323	1,318	2,066	1,826	2.1	8.4	12.2
Sweden	634	1,094	1,580	1,340	4.1	6.1	5.1
France	944	1,220	1,444	1,255	6.0	5.8	1.9
Germany	1,432	1,265	1,236	1,180	9.2	5.4	-1.3

Table 7-12: Patent Breakdown by Applicant Country Tech Hardware⁴³³

Note: Full-counting leads to some double counting.

The table shows the seven most relevant applicant countries for the number of Technology Hardware patents, sorted decreasingly by their most recent 2015 value. We can observe a strong dominance of firms based in the US: around 32%, i.e. every third patent, has a US-based applicant. Japan and Germany, two classic industrialized economies have slightly decreased their patent numbers, with a respectively negative CAGR between 2000 and 2015. Their respective share to total patent numbers drops, indicating that other countries have gained in relevance. The CAGR also shows us who that us, i.e. the fast climbers: emerging economies China and South Korea with a respectively two-digit CAGR. Particularly China has grown its patent numbers strongly from a mere 32 in 2000 to 3,164 in 2015, making the country the second-largest country in terms of patent applications.

⁴³³ Source: Own analysis, based on REGPAT database by the OECD (2020h).

	Share of International Patents (%)						
Country	2000	2007	2012	2015			
TOTAL	18.7	24.1	23.7	22.6			
US	20.7	20.2	21.3	19.8			
China	6.3	7.8	8.8	13.9			
Japan	5.8	15.8	13.6	19.5			
South Korea	7.1	7.8	10.3	11.9			
Sweden	42.3	47.0	52.4	50.2			
France	35.1	38.8	44.5	30.0			
Germany	17.0	23.0	19.5	19.9			

Table 7-13: Share of Applicant Countries' International Patents in Tech Hardware⁴³⁴

Table 7-13 shows the share of international patents in relation to all patents by the respective applicant country. The small country of Sweden clearly stands out, with 50% of all its patents having at least one international, i.e. non-Sweden based inventor in 2015. The Asian countries China and South Korea are comparably little internationalized, with a share of international patents around 13%. Japan, a country which was usually rather un-internationalized in terms of R&D Expenditure and patents has relatively strongly increased its share of international patents: from 6% to 20% in 2015, which is only slightly below the world-average. The US, as the clearly dominating country in this field, has kept its share of international patents rather constant at around 20%.

With internationalization generally increasing in relative relevance, it will be interested to see how international patents perform to non-international patents. Before that, i.e. in the next step, we will look at the patent development per inventor country.

7.2.3.3. Development by Inventor Country in the Technology Hardware Industry

In Table 7-14 I show the breakdown per inventor country and, as before, I point out how full-counting of patents may lead to some double counting, as patents usually have several inventors.

⁴³⁴ Source: Own analysis, based on REGPAT database by the OECD (2020h).

Inventor	Number	of Patents	per Priorit	y Year	Share TO	OTAL (%)	CAGR
Country	2000	2007	2012	2015	2000	2015	'00-'15 (%)
TOTAL	15,617	17,758	22,553	21,799	100	100	2.2
US	5,574	5,814	7,438	7,345	35.7	33.7	1.9
China	55	1,223	3,453	3,596	0.4	16.5	32.1
Japan	3,321	2,761	2,587	2,259	21.3	10.4	-2.5
South Korea	325	1,281	2,015	1,694	2.1	7.8	11.6
Germany	1,728	1,738	1,603	1,555	11.1	7.1	-0.7
Sweden	496	870	1,255	1,173	3.2	5.4	5.9
France	983	1,036	1,074	1,125	6.3	5.2	0.9

Table 7-14: Patent Breakdown by Inventor Country Tech Hardware⁴³⁵

Note: Full-counting leads to some double counting.

Above table shows the absolute number of patents per inventor country. For example, from all 21,799 patents in the Technology Hardware field in 2015, 7,345 had at least one US-based inventor.

We also see the shares of patents per inventor country. We can observe again the strong US-dominance in the Technology Hardware field and the uprise of China and South Korea. We cannot observe strong differences between the overview by applicant vs inventor countries, meaning that very broadly speaking inventions are more or less created in the country of the applicant, i.e. domestically, whereas international activities only complement and not replace domestic efforts. As Technology Hardware also implies significant production processes, we can explain this observation through a closeness of R&D and manufacturing.

In the next part, I compare international to non-international patents.

⁴³⁵ Source: Own analysis, based on REGPAT database by the OECD (2020h).

7.2.3.4. Comparison Non-International and International Patents in Technology Hardware Industry

Figure 7-8: NRTA in Tech Hardware⁴³⁶

Figure 7-8 shows the average comparative advantage of patents in the Technology Hardware field, separated by patents which are international, i.e. have at least one foreign inventor, and patents which are not. Unsurprisingly, the NRTA over the years is always relatively close to 0: as the NRTA is scaled, so that $NRTA \in [-1; +1]$, and considers competitiveness within an industry, an analysis of a whole industry, should yield values around 0. The NRTA is calculated based on the number of patents in a certain field at a certain time.

Interestingly non-international patents have a consistently higher NRTA, i.e. comparative advantage than international patents due to the relatively higher number of patents. This means that non-international patents have a higher relative strength than international patents. The values for both groups highly correlate with a correlation coefficient > 0.9. This can be clearly seen at the parallel developments since the year 2003.

⁴³⁶ Source: Own analysis, based on REGPAT database by the OECD (2020a, 2020f, 2020h).

The distribution of the NRTA across the years (not depicted here) is again quite constant. The interesting message here is that regardless of the absolute values, international patents are not as competitive than non-international ones.

Figure 7-9: PQCI in Tech Hardware⁴³⁷

Figure 7-9 shows the average quality of patents in the Technology Hardware field, based on a composite of quality indices, such as citations, originality etc. Overall patent quality decreases over the years, particularly since 2012.

Once again, our focus in this short analysis is not so much the development of values, but rather the comparison of non-international to international patents. While non-international patents are slightly better, i.e. the line is almost always above the line for international patents, this difference is very small and we can conclude with a clear superiority of one over the other.

In the next step we differentiate internationality to show some differences within the rather heterogeneous group of international patents.

⁴³⁷ Source: Own illustration, based REGPAT database by the OECD (2020a, 2020f, 2020h).

7.2.3.5. Cultural Distance as a Measurement for International Patents in Technology Hardware Industry

Table 7-15 shows the quality (PQCI) of patents in the Technology Hardware industry. I show the values for the whole period and also separated for the period since 2000, to further illustrate recent developments. As before I separate International Patents into the three groups of cultural distance "low", "medium" or "high".

Patent	Non-Internat.	International P	International Patents – Cultural Distance						
Quality	Patents	Low	Medium	High	All Patents				
All Years	0.300	0.307	0.294	0.290	0.300				
Since 2000	0.290	0.301	0.285	0.282	0.290				

Table 7-15: Technology Hardware Patent Quality by Cultural Distance⁴³⁸

Note: Standard Deviation for all groups ≈ 0.09. Example for cultural distances: Low: US-Canada; Medium: US-Germany; High: US-China.

We can see the average patent quality of all non-international patents, i.e. all patents with no cultural distance in the first column. For comparison I show the average patent quality for all international patents, i.e. all patents with some cultural distance in the last column. This column is the aggregate of the breakdown into three levels of cultural distance. The standard deviation is constant at around 0.9 for all groups and samples, indicating that there are no outliers distorting the analysis. Overall, we can see that the average quality has decreased, i.e. the average for the priority years 2000 and onwards is lower than the total sample. We have already seen this in the prior sub-chapter.

Cultural Distance (CD)	Non-International	Low CD	Medium CD
	Patents		
Low CD	Pos. sig. (***)	-	-
Medium CD	Neg. sig. (***)	Neg. sig. (***)	-
High CD	Neg. sig. (***)	Neg. sig. (***)	Neg. insig.

Table 7-16: Group Means Differences (one-way ANOVA) in Technology Hardware Patent Quality

Note: Significance levels given with asterisks: p-Level: * < 0.05 | ** < .01 | *** < 0.001. One-way ANOVA with Bonferroni correction. No differences between "All Years" and "Since 2000", unless explicitly noted.

⁴³⁸ Source: Own illustration, based REGPAT database by the OECD (2020a, 2020f, 2020h).

We can make two main findings: First, the highest patent quality can be observed on average with a low cultural distance, which is the same finding we have seen for pharma and biotech patents. Second, a medium or even high cultural distance decreases patent quality, even below to the values we have for non-international patents, although the difference between the groups of medium and high CD are not statistically significant.

This result is different to the pharma and biotech patents, where internationalization always pays off. Together with the rather unexpected findings in the previous sub-chapter, this underlines the complexity of internationalization.

However, again we can conclude that too much internationalization can be less productive. We can explain this observation with the literature, discussed in Chapter 2.3.4, which finds negative effects of too much internationalization due to a spike in coordination costs.

7.2.3.6. Conclusion Patent Analysis of Technology Hardware Industry

In this part we have put patents in the Technology Hardware industry under scrutiny. The overall number of patents, as well as the share of patents with international inventors has strongly grown since 1980. We have seen a clear dominance of the US in the Technology Hardware industry, both as a location for applicant, i.e. firms, but also as a location for inventors, i.e. base for the actual inventive activities. Emerging countries, such as China and South Korea have strongly increased their patent numbers in recent years, with the former now even ranking second worldwide.

International patents are not necessarily of a higher quality and more competitive than non-international patents: only patents with a low cultural distance show a gain compared to non-international patents. Together with the strong similarity in patterns of applicant vs. inventor distributions in patents in the Technology Hardware industry, we can conclude that highly international and culturally diverse collaborations are not key in this field.

7.2.4. Patent Analysis of Software & Computer Services Industry

In this sub-chapter, I will analyze the software and computer services hardware industry, based on the relevant IPCs, as detailed in Table 7-1.

First, I show the general development of patents between 1980 and 2016, as well as the share of international patents, i.e. patents with inventors and / or applicants from different countries.

Second, I compare in non-international and international patents between 1980 and 2016, i.e. show whether international patent teams create better performing patents.

7.2.4.1. General Development in Software & Computer Services Industry

Figure 7-10: Overview Patent Development in Software & Computer Services⁴³⁹

Figure 7-10 shows the total number of patents per priority year in the Software & Computer field on the left y-axis and with the continuous black line, and the share of international to total patents on the right y-axis, with the dashed grey line.

We can observe a (almost) continuous and strong growth of patent numbers since 1980. Between around 1993 and 2000 we can even observe an almost exponential growth, followed by a dip after 2004 and local minimum in 2008. 2013 has seen a peak with 18,886 patents. Once again, the number for 2016 has to be taken with a pinch of salt, due to incompleteness. Between 1980 and 2015 patent numbers have increased by the factor 19.

The overall development is comparable to that of the Technology Hardware field from before, although we have here in 2008 a more pronounced dip.

⁴³⁹ Source: Own analysis, based on REGPAT database by the OECD (2020h).

The internationality, i.e. the share of international to all patents has developed almost always upwards and moved around 18% since 2003. Compared to Technology Hardware, internationality is lower for Software & Computer Services by around six percentage points.

7.2.4.2. Development by Applicant Country in the Software & Computer Services Industry

In this step I break down the patent numbers by applicant country, with the same structural approach as for the previous industries.

Applicant	Number	of Patents	per Priorit	y Year	Share TO	DTAL (%)	CAGR
Country	2000	2007	2012	2015	2000	2015	'00-'15 (%)
TOTAL	14,290	13,637	17,818	18,337	100	100	1.7
US	5,274	4,315	5,963	6,272	36.9	34.2	1.2
Japan	3,784	2,863	2,919	2,668	26.5	14.5	-2.3
China	9	243	1,057	1,608	0.1	8.8	41.3
South Korea	258	1,067	1,831	1,552	1.8	8.5	12.7
France	751	932	1,112	1,286	5.3	7.0	3.7
Germany	1,165	1,174	1,241	1,175	8.2	6.4	0.1

Table 7-17: Patent Breakdown by Applicant Country Software & Computer Services⁴⁴⁰

Note: Full-counting leads to some double counting.

The table shows the six most relevant applicant countries for the number of Software & Computer Services patents, sorted decreasingly by their most recent 2015 value. We can observe a strong dominance of firms based in the US: around 34%, i.e. every third patent, has a US-based applicant. Japan, as with Technology Hardware patents, has slightly decreased its patent numbers and shows a negative CAGR, and Germany's patent numbers have rather stagnated over the years. The relevant climbers are again emerging economies China and South Korea with a respectively two-digit CAGR. Particularly China has grown its patent numbers strongly from a negligible 9 in 2000 to 1,608 in 2015, making the country the third-largest country in terms of patent applications. Compared to Technology Hardware the developing countries have maintained a stronger position in Software & Computer services, i.e. they show a higher accumulated share compared to the emerging countries.

⁴⁴⁰ Source: Own analysis, based on REGPAT database by the OECD (2020h).

	Share of International Patents (%)						
Country	2000	2007	2012	2015			
TOTAL	15.2	18.1	17.5	18.0			
US	19.2	17.2	19.3	18.5			
Japan	5.5	8.3	7.6	8.5			
China	22.2	16.0	6.4	10.0			
South Korea	11.6	4.6	5.6	11.3			
France	27.2	32.8	30.1	19.9			
Germany	16.3	25.1	19.2	22.5			

Table 7-18: Share of Applicant Countries' International Patents in Software & Computer Services⁴⁴¹

Table 7-18 shows the share of international patents in relation to all patents by the respective applicant country. The Asian countries Japan, China and South Korea are comparably little internationalized with a share of international patents at around 10%. China's internationalization degree decreased, indicating that in earlier years China was more dependent on foreign knowledge and emancipated itself over the years with growing competence. Japan, a country which is usually rather un-internationalized in terms of R&D Expenditure and patents is also the least internationalized relevant country here, with its share of international patents of 8.5% in 2015 being much below the worldwide average of 18%, unlike the relatively high value in the Technology Hardware field. The US, as the clearly dominating country in this field, has kept its share of international patents rather constant at around 18%.

With internationalization generally increasing in relative relevance, it will be interested to see how international patents perform to non-international patents. Before that, i.e. in the next step, we will look at the patent development per inventor country.

7.2.4.3. Development by Inventor Country in the Technology Hardware Industry

In this part I conduct a similar analysis as before, but in Table 7-19 I show the breakdown per inventor country, not applicant country. In order to truly understand where R&D in the biotechnology industry happens, we must look at the countries of inventors. The following table therefore show the number of patents with at least one inventor listed on the patent based in the respective country. This full-counting leads to some double counting: often

⁴⁴¹ Source: Own analysis, based on REGPAT database by the OECD (2020h).

patents have several inventors, who might even be based in different countries. Such a patent would be counted for each of the countries involved.

Inventor	Number	of Patents	per Priorit	ty Year	Share TC	OTAL (%)	CAGR
Country	2000	2007	2012	2015	2000	2015	'00-'15 (%)
TOTAL	14,290	13,637	17,818	18,337	100	100	1.7
US	5,051	4,668	6,050	6,431	35.3	34.2	1.6
Japan	3,696	2,728	2,812	2,534	25.9	20.0	-2.5
China	22	343	1,298	1,813	0.2	2.5	34.2
South Korea	244	1,046	1,783	1,423	1.7	7.7	12.5
Germany	1,342	1,221	1,342	1,315	9.4	9.0	-0.1
France	813	819	973	1,273	5.7	6.0	3.0
UK	983	642	664	825	6.9	4.7	-1.2

Table 7-19: Patent Breakdown by Inventor Country Software & Computer Services⁴⁴²

Note: Full-counting leads to some double counting.

Above table shows the absolute number of patents per inventor country. For example, from all 18,337 patents in the Software & Computer Services field in 2015, 6,431 had at least one US-based inventor.

We also see the shares of patents per inventor country. We can observe again the strong US-dominance in the Software & Computer Services field and the uprise of China and South Korea. We cannot observe strong differences between the overview by applicant vs inventor countries, meaning that very broadly speaking inventions are more or less created in the country of the applicant, i.e. domestically, whereas international activities only complement and not replace domestic efforts. This table includes the UK as a somewhat relevant country as a base for inventors, as opposed to the applicant-country analysis. There the UK had too few patents to be included as a relevant country, meaning that there are not many relevant firms based in the UK filing for patents in the Software & Computer Services field, but there are somewhat relevant inventor bases.

In the next part, I compare international to non-international patents.

⁴⁴² Source: Own analysis, based on REGPAT database by the OECD (2020h).

7.2.4.4. Comparison Non-International and International Patents in Software & Computer Services Industry

Figure 7-11: NRTA in Software & Computer Services⁴⁴³

Figure 7-11 shows the average comparative advantage of patents in the Software & Computer Services field, separated by patents which are international, i.e. have at least one foreign inventor, and patents which are not. Unsurprisingly, the NRTA over the years is always relatively close to 0: as the NRTA is scaled, so that $NRTA \in [-1; +1]$ and considers competitiveness within an industry, an analysis of a whole industry, such as conducted here for biotech, should yield values around 0. The NRTA is calculated based on the number of patents in a certain field at a certain time.

Interestingly non-international patents have again a consistently higher NRTA, i.e. comparative advantage than international patents due to the relatively higher number of patents. This means that non-international patents have a higher relative strength than international patents. However, the differences seem to shrink as both lines are moving towards each other over the years.

⁴⁴³ Source: Own analysis, based on REGPAT database by the OECD (2020a, 2020f, 2020h).

Figure 7-12: PQCI in Software & Computer Services⁴⁴⁴

Figure 7-9 shows the average quality of patents in the Software & Computer Services field, based on a composite of quality indices, such as citations, originality etc. Overall patent quality decreases over the years, particularly since 1998, when also non-international patents (slightly) surpassed international patents.

Once again, our focus in this short analysis is not so much the development of values, but rather the comparison of non-international to international patents. The difference between both groups of patents is very small and we can conclude with a clear superiority of one over the other.

In the next step we differentiate internationality to show some differences within the rather heterogeneous group of international patents.

7.2.4.5. Cultural Distance as a Measurement for International Patents in Software & Computer Services Industry

Table 7-20 shows the quality (PQCI) of patents in the Software & Computer Services industry. I show the values for the whole period and also separated for the period since 2000, to further

⁴⁴⁴ Source: Own illustration, based REGPAT database by the OECD (2020a, 2020f, 2020h).

illustrate recent developments. I separate International Patents into three groups of cultural distance of the involved inventor cultures: "low" cultural distance, "medium" and "high". Furthermore, I give an example of a country pairing, to illustrate what a "low", "medium" or "high" cultural distance actually means.

Patent	Non-Internat.	International I	International Patents – Cultural Distance			
Quality	Patents	Low	Medium	High	All Patents	
All Years	0.305	0.317	0.306	0.303	0.305	
Since 2000	0.294	0.309	0.296	0.295	0.295	

Table 7-20: Software & Computer Services Patent Quality by Cultural Distance⁴⁴⁵

Note: Standard Deviation for all groups ≈ 0.09. Example for cultural distances: Low: US-Canada; Medium: US-Germany; High: US-China.

We can see the average patent quality of all non-international patents, i.e. all patents with no cultural distance in the first column. For comparison I show the average patent quality for all international patents, i.e. all patents with some cultural distance in the last column. This column is the aggregate of the breakdown into three levels of cultural distance. The standard deviation is constant at around 0.9 for all groups and samples, indicating that there are no outliers distorting the analysis. Overall, we can see that the average quality has decreased, i.e. the average for the priority years 2000 and onwards is lower than the total sample. We have already seen this in the prior sub-chapter.

Table 7-21: Group Means Differences (one-way ANOVA) in Software & Computer Services Patent Quality

Cultural Distance (CD)	Non-International	Low CD	Medium CD	
	Patents			
Low CD	Pos. sig. (***)	-	-	
Medium CD	Pos. insig.	Neg. sig. (***)	-	
High CD	Neg. insig. (<i>All Years</i>) Pos. insig. (<i>Since 2000</i>)	Neg. sig. (***)	Neg. insig.	

Note: Significance levels given with asterisks: p-Level: * < 0.05 | ** < .01 | *** < 0.001. One-way ANOVA with Bonferroni correction. No differences between "All Years" and "Since 2000", unless explicitly noted.

We can make two main findings: First, the highest patent quality can be observed on average with a low cultural distance, which is consistent to the findings in prior sub-chapters. Second,

⁴⁴⁵ Source: Own illustration, based REGPAT database by the OECD (2020a, 2020f, 2020h).

a medium or even high cultural distance decreases patent quality, for the latter partly even below to the values we have for non-international patents, although the differences between the groups of non-international patents and patents with a medium or high CD are not statistically significant.

However, again we can conclude that too much internationalization, in terms of cultural diversity, can be less productive or, at least, does not pay off in a higher patent quality compared to non-internationalized patents. We can explain this observation with the literature, discussed in Chapter 2.3.4, which finds negative effects of too much internationalization, due to a spike in coordination costs.

7.2.4.6. Conclusion Patent Analysis of Software & Computer Services Industry

In this part we have put patents in the Software & Computer Services Industry under scrutiny. The overall number of patents, as well as the share of patents with international inventors has strongly grown since 1980. We have seen a clear dominance of the US in the Software & Computer Services Industry, both as a location for applicant, i.e. firms, but also as a location for inventors, i.e. base for the actual inventive activities. Emerging countries, such as China and South Korea have strongly increased their patent numbers in recent years, with the former now even ranking third worldwide, behind Japan.

International patents are not necessarily of a higher quality and more competitive than non-international patents: only patents with a low or medium cultural distance show a, somewhat, gain compared to non-international patents. Together with the strong similarity in patterns of applicant vs. inventor distributions in patents in the Technology Hardware industry, we can conclude that truly international, i.e. culturally diverse, collaborations are not key in this field.

7.2.5. Patent Analysis of Automotive Industry

In this sub-chapter, I will analyze the Automotive Industry, based on the relevant IPCs, as detailed in Table 7-1.

First, I show the general development of patents between 1980 and 2016, as well as the share of international patents, i.e. patents with inventors and / or applicants from different countries.

Second, I compare in non-international and international patents between 1980 and 2016, i.e. show whether international patent teams create better performing patents.

7.2.5.1. General Development in Automotive Industry

Figure 7-13: Overview Patent Development in Automotive⁴⁴⁶

Figure 7-13 shows the total number of patents per priority year in the Automotive field on the left y-axis and with the continuous black line, and the share of international to total patents on the right y-axis, with the dashed grey line.

We can observe a (almost) continuous and strong growth of patent numbers since 1980. Between around 1980 and 1989 we have a linear growth, followed by a dip in 1991 and a stronger linear, or even partly exponential growth until 2000. After a plateau phase until 2007 and a peak of 6,353 patents in 2003, we see a dip in 2007 & 2008, followed by a pre-crisis increase to 6,367 patents in 2015.

The numbers for 2016 might not be complete yet, due to publication time-lags, which could partially explain the strong drop from 2015 to 2016, so again I will include in the tables 2015 as the most recent reliable data point. Between 1980 and 2015 patent numbers have increased by the factor 7.

⁴⁴⁶ Source: Own analysis, based on REGPAT database by the OECD (2020h).

The internationality, i.e. the share of international to all patents has developed almost always upwards since 1984, apart from a drop in around 2011, which might be a lagged effect from the mentioned patent drop in 2007 & 2008. The internationality rate has climbed to 16% in 2015.

7.2.5.2. Development by Applicant Country in the Automotive Industry

In this step I break down the patent numbers by applicant country. As we focus on recent developments, I include patent data from the priority year 2000 and onward. First, I show the number of patents for the largest applicant countries. Second, I show the share of these patent numbers in relation to the worldwide total. Third, I show the share of international patents for these countries.

Applicant	Number	of Patents	per Priori	ty Year	Share TO	OTAL (%)	CAGR
Country	2000	2007	2012	2015	2000	2015	'00-'15 (%)
TOTAL	6,056	5,828	5,737	6,367	100	100	0.3
Japan	1,660	1,795	1,656	1,679	27.4	26.4	0.1
Germany	1,982	1,738	1,547	1,564	32.7	24.6	-1.6
US	1,095	811	671	836	18.1	13.1	-1.8
France	362	538	486	540	6.0	8.5	2.7
Sweden	136	195	333	317	2.2	5.0	5.8
Italy	200	220	159	213	3.3	3.3	0.4

Table 7-22: Patent Breakdown by Applicant Country Automotive⁴⁴⁷

Note: Full-counting leads to some double counting.

The table shows the seven most relevant applicant countries for the number of automotive patents, sorted decreasingly by their most recent 2015 value. We can observe a strong dominance of Japanese and German applicants, accounting each for around 25% of all patents in 2015. Japan has surpassed Germany in terms of patent numbers since the start of the millennium with a slightly higher growth rate. No emerging country has a relevant ranking and the strongest growth, i.e. CAGR can be observed for Sweden with 6%.

⁴⁴⁷ Source: Own analysis, based on REGPAT database by the OECD (2020h).

	Share of International Patents (%)				
Country	2000	2007	2012	2015	
TOTAL	10.5	14.5	12.2	16.4	
Japan	1.4	1.0	1.6	1.5	
Germany	8.5	15.9	12.6	19.7	
US	22.7	48.3	22.2	20.9	
France	6.9	6.7	9.5	9.8	
Sweden	25.0	35.9	25.8	34.1	
Italy	6.0	2.7	11.9	11.7	

Table 7-23: Share of Applicant Countries' International Patents in Automotive⁴⁴⁸

Table 7-23 shows the share of international patents in relation to all patents by the respective applicant country. The small country of Sweden clearly stands out, with 34% of all its patents having at least one international, i.e. non-Sweden based inventor in 2015. The US have an internationality rate of 21%, which is unusually high, i.e. above world average, with a peak, potentially a singularity in 2007. Japan is remarkably low internationalized with only around 1% of all its patents having at least one non-Japan based inventor.

With internationalization generally increasing in relative relevance, it will be interested to see how international patents perform to non-international patents. Before that, i.e. in the next step, we will look at the patent development per inventor country.

7.2.5.3. Development by Inventor Country in the Automotive Industry

In this part I conduct a similar analysis as before, but in Table 7-24 I show the breakdown per inventor country, not applicant country. In order to truly understand where R&D in the biotechnology industry happens, we must look at the countries of inventors. The following table therefore show the number of patents with at least one inventor listed on the patent based in the respective country. This full-counting leads to some double counting: often patents have several inventors, who might even be based in different countries. Such a patent would be counted for each of the countries involved.

⁴⁴⁸ Source: Own analysis, based on REGPAT database by the OECD (2020h).

Inventor	Number	of Patents	per Priori	ty Year	Share TO	OTAL (%)	CAGR
Country	2000	2007	2012	2015	2000	2015	'00-'15 (%)
TOTAL	6,056	5,828	5,737	6,367	100	100	0.3
Japan	1,666	1,809	1,667	1,717	27.5	31.0	0.2
Germany	2,044	1,756	1,565	1,534	33.8	30.1	-1.9
US	1,019	649	669	861	16.8	11.1	-1.1
France	438	618	547	646	7.2	10.6	2.6
Italy	206	259	190	251	3.4	4.4	1.3
Sweden	125	180	267	244	2.1	3.1	4.6

Table 7-24: Patent Breakdown by Inventor Country Automotive⁴⁴⁹

Note: Full-counting leads to some double counting.

Above table shows the absolute number of patents per inventor country. For example, from all 6,367 patents in the Automotive field in 2015, 1,534 had at least one Germany-based inventor.

We also see the shares of patents per inventor country. We can observe again the strong -dominance of Japan and Germany in the Automotive field and that no emerging country is ranking significantly as an inventor location. We cannot observe strong differences between the overview by applicant vs inventor countries, yet can notice, that the Japan-Germany domination is even stronger here, i.e. 61%, almost two out of three, patents are conducted with an inventor based in one of these two countries. Germany has, however, lost in attractiveness or relative relevance whereas Japan has gained its share.

In the next part, I compare international to non-international patents.

⁴⁴⁹ Source: Own analysis, based on REGPAT database by the OECD (2020h).

7.2.5.4. Comparison Non-International and International Patents in Automotive Industry

Figure 7-14: NRTA in Automotive⁴⁵⁰

Figure 7-14 shows the average comparative advantage of patents in the Automotive field, separated by patents which are international, i.e. have at least one foreign inventor, and patents which are not. As found and discussed before, the NRTA is close to 0, which is unsurprising, as we analyze the approximately whole industry.

Interestingly non-international patents have an almost consistently higher NRTA, i.e. comparative advantage than international patents due to the relatively higher number of patents. This means that non-international patents have a higher relative strength than international patents.

The distribution of the NRTA across the years (not depicted here) is again quite constant. Therefore, international patents are not as competitive than non-international ones.

⁴⁵⁰ Source: Own analysis, based on REGPAT database by the OECD (2020a, 2020f, 2020h).

Figure 7-15: PQCI in Automotive⁴⁵¹

Figure 7-15 shows the average quality of patents in the Automotive field, based on a composite of quality indices, such as citations, originality etc. Overall patent quality decreases over the years, particularly since 2009.

Once again, our focus in this short analysis is not so much the development of values, but rather the comparison of non-international to international patents. While international patents are slightly better, i.e. the line is almost always above the line for non-international patents, this difference is very small and we can conclude with a clear superiority of one over the other.

In the next step we differentiate internationality to show some differences within the rather heterogeneous group of international patents.

7.2.5.5. Cultural Distance as a Measurement for International Patents in Automotive Industry

Table 7-25 shows the quality (PQCI) of patents in the Automotive Industry. I show the values for the whole period and also separated for the period since 2000, to further illustrate recent developments. I separate International Patents into three groups of cultural distance of the

⁴⁵¹ Source: Own illustration, based REGPAT database by the OECD (2020a, 2020f, 2020h).

involved inventor cultures: "low" cultural distance, "medium" and "high". Furthermore, I give an example of a country pairing, to illustrate what a "low", "medium" or "high" cultural distance means.

Patent	Non-Internat.	International I	International Patents – Cultural Distance			
Quality	Patents	Low	Medium	High	All Patents	
All Years	0.330	0.352	0.345	0.342	0.331	
Since 2000	0.329	0.352	0.344	0.343	0.330	

Table 7-25: Automotive Patent Quality by Cultural Distance⁴⁵²

Note: Standard Deviation for all groups ≈ 0.09. Example for cultural distances: Low: US-Canada; Medium: US-Germany; High: US-China.

We can see the average patent quality of all non-international patents, i.e. all patents with no cultural distance in the first column. For comparison I show the average patent quality for all international patents, i.e. all patents with some cultural distance in the last column. This column is the aggregate of the breakdown into three levels of cultural distance. The standard deviation is constant at around 0.09 for all groups and samples, indicating that there are no outliers distorting the analysis. Overall, we can see that the average quality has slightly decreased, i.e. the average for the priority years 2000 and onwards is lower than the total sample.

Table 7-26: Group Means Differences (one-way ANOVA) in Automotive Patent Quality

Cultural Distance (CD)	Non-International	Low CD	Medium CD	
	Patents			
Low CD	Pos. sig. (***)	-	-	
Medium CD	Pos. sig. (***)	Neg. sig. (**)	-	
High CD	Pos. sig. (***)	Neg. sig. (**)	Neg. insig.	

Note: Significance levels given with asterisks: p-Level: * < 0.05 | ** < .01 | *** < 0.001. One-way ANOVA with Bonferroni correction. No differences between "All Years" and "Since 2000", unless explicitly noted.

We can make two main findings: First, internationalization pays off. Comparable to Pharma and Biotech, and unlike Technology Hardware and Software & Computer Services, internationalization in Automotive always give a statistically higher patent quality than no internationalization. This finding is in line with the prior chart. Second, as with pharma and

⁴⁵² Source: Own illustration, based REGPAT database by the OECD (2020a, 2020f, 2020h).

biotech, we get the highest average patent quality for a low cultural distance, meaning that the involved inventor countries are culturally relatively close (e.g. US & Canada). The difference of means between the groups of medium and high CD is not statistically significant.

While internationalization pays off, we can conclude that too much internationalization can be less productive. We can explain this observation with the literature, discussed in Chapter 2.3.4, which finds negative effects of too much internationalization due to a spike in coordination costs.

7.2.5.6. Conclusion Patent Analysis of Automotive Industry

In this part we have put patents in the Automotive Industry in the spotlight. The overall number of patents, as well as the share of patents with international inventors has grown since 1980 and particularly until 2000. We have seen a clear dominance of Japan and Germany in the Automotive Industry, both as a location for applicant, i.e. firms, and even more as a location for inventors, i.e. base for the actual inventive activities. Emerging countries, such as China and South Korea, do not play a relevant role in this field.

International patents are of a somewhat higher quality and more competitive than non-international patents – an effect that is most pronounced with a low cultural distance within the inventor team. Again, we can conclude that internationality pays off, but too much reduces the positive effects.

8. Summary and Conclusion

I complete this dissertation with three parts: First, I will summarize the major findings of this dissertation and point out my contribution to the existing knowledge. Second, I will put the findings into perspective and give implications and recommendations for practitioners, i.e. managers for the company-level and policy maker for the country or regional level. Third, I circle back to the academic side and give recommendations and an outlook for further research activities.

8.1. Summary of Findings and Contribution

The overarching research question of this dissertation was to answer to what extent and in what fields MNCs conduct R&D abroad and how these patterns have changed in the last decade.

In Chapter 1 I have presented my research outline after a detailed literature overview. The number of publications on R&D Internationalization has particularly exploded since the beginning of this millennium: while early literature has dealt with R&D Internationalization starting from the 1950s, academics focused more on the internationalization of production, distribution and sales; and R&D Internationalization remained in a niche existence for a longer time. Starting with the 1999 special issue on the topic "The Internationalization of Industrial R&D" in the prestigious journal 'Research Policy' more relevant publications have come forward. I have discussed the reasons and motives for R&D Internationalization, based on my categorization presented in Figure 1-2: Push- & Pull-Factors, Industry-based factors and Company-based factors. The literature shows the complexity of R&D Internationalization and the interplay of numerous factors on several levels. This certainly prohibits an over-generalization and justifies this dissertation's thorough analyses.

In Chapter 2 I have presented my methodology for analyzing R&D Internationalization, namely the quantitative measures of R&D Expenditure and patents, as well as, on a select level, qualitative interviews. From a methodological point of view, I contribute to the academic landscape particularly through my detailed approach on analyzing patents: as the actual purpose of patents is not to serve as an innovation measurement proxy for researchers, the proper analysis, i.e. including and treating relevant patents is not trivial. A simple patent count can therefore easily mislead. In turn, I explain in detail how I analyze patents and minimize measurement errors.

Chapter 3 shows R&D activities through R&D Expenditures, both on a global level, as well as for the four major economies Germany, USA, Japan and China. I show how R&D

Internationalization has not only increased in the last decades, but also shifted in target countries. From a previously small circle of major economies, a much higher number of countries, including emerging countries, have started to play relevant roles in conducting business R&D in the last years. Specifically, the amount of R&D expenditures within the respective country (BERD) has grown at very high rates in recent years, for emerging countries such as China, India and partly some Eastern European countries. This further illustrates the increasing complexity of R&D Internationalization and Globalization in general.

Chapter 4 & 5 use a similar lens of focus, but use patents instead of expenditure data. As patent data is substantially more detailed, i.e. add findings through an increase in detail and a higher amount of measurable countries. The patents, namely the Host-Country Patents shows us in which (foreign) countries MNCs, based in a particular country, have inventors based. In Chapter 4 I have analyzed the Outward Host-Country Patents (HCPs), i.e. show in which foreign countries, firms based in a particular country are conducting R&D. In turn Chapter 5 has shown Inward HCPs, i.e. where foreign-based firms are located conducting R&D in a particular country. I have shown not only the source and target countries, but also outlined in which technological fields MNCs conduct R&D activities. We have seen not only the uprise of emerging economies, e.g. China as a relevant host and home to international R&D activities, but also the shrinking of a few other economies, e.g. the UK. Furthermore R&D Internationalization is not distributed equally across industries, but we rather see how particular countries have strong activities in a select number of technological fields. This relates to a motive of R&D Internationalization discussed in Chapter 1: The Lead-Market, i.e. having competences in a particular field and thereby attracting foreign MNCs in that particular field. We have seen that R&D internationalization is not random, but rather follows two distinct trends: On the one hand firms somewhat stay close, meaning that they tend to internationalize R&D to geographically or politically close countries. On the other hand, we can see the strong uprise of Asia as a location for R&D activities. Some countries, as the USA, have kept its degree of foreign-based R&D internationalization somewhat constant, but shifted R&D activities away from developed countries in Europe and towards emerging countries in Asia. In Chapter 5.4 I condense the findings from both chapters into five precise points.

Chapter 6 drills down to the industry perspective and uses R&D Expenditure patterns as the main method of analysis. In a first step, I have looked which industries spent the most on R&D both on a rather current time-series and a longer, but smaller sized, time-series. The industries which have spent an increasing share of the global R&D Expenditure are from the life sciences and ICT field. In general, we can see a shift towards high-tech industries, whereas some classic manufacturing industries decreased in relative relevance. In a second step, I show the

four most relevant industries, namely Pharmaceuticals & Biotechnology, Technology Hardware, Software & Computer Services and Automobiles & Parts in a country breakdown, i.e. outline in which countries MNCs in the respective fields are based in with relevant R&D Expenditures. We already see here the quite different distribution of industries across countries and the changes over time. Particularly firms from emerging countries have significantly ramped up R&D Expenditure, most prominently visible in the ICT fields, and, in recent years, account for relevant shares in global R&D Expenditures. Third, I have analyzed the R&D Expenditures of MNCs by industry in the four most relevant economies USA, Japan, Germany and China and created an overview of comparably strong and weak industries from a global perspective. While this chapter does not directly outline R&D Internationalization, it shows us in which fields companies possess comparative advantages and disadvantages. These, in turn, can be a strong driver of R&D Internationalization, as discussed in Chapter 1.

Chapter 7 also takes the industry perspective, but with the methodology of a patent analysis. I combine different data-sets to have a quantitative measurement for the quality and technological advantage for each patent. Furthermore, I introduce a measurement of cultural distance to quantify how international a patent inventor is. As opposed to prior analyses with a dichotomous measurement for internationalization, i.e. does the patent inventor team have an international team member or not, I group international teams in three categories depending on how big the cultural distance within the patent inventor team is. When we argue that internationality influences patent quality and eventually performance, it certainly depends how much internationality we have. For example, from a US perspective, collaborating with a Canadian inventor can be considered less internationalized and less distant than collaborating with a Chinese inventor. Combining classical patent data with both patent quality indicators and a measurement for cultural distance is a contribution and novelty of this dissertation.

I analyze the technological fields, i.e. patent classes of the major industries, namely Pharmaceutical, Biotechnology, Technology Hardware, Software & Computer Services and Automotive. I show from which country the MNCs with the most patents are coming from, where the relevant inventor locations are and compare patents with non-international inventor teams to international teams. Generally speaking, I find that while international teams generally produce better performing patents, the best effect can mostly be observed for patents with a low cultural distance. A high distance mostly leads to a reduction in average patent quality, indicating that while internationalization pays off, too much can be detrimental, as well.

8.2. Implications for Economies and Practitioners

This analysis has shown how the historically rather simple distribution of global R&D across a few developed economies has increasingly dissolved. Several emerging countries, such as China, India and some Eastern European countries have significantly caught up in select industries and partly are lead markets, located at the technological frontier. This dissertation gives results and implications for economies and their policy makers and practitioners, i.e. decision maker from companies.

Implications for Policy-makers and Economies

We have seen the increasing internationalization of R&D and specialization on certain industries and technological fields in this dissertation. For policy-makers this implies that a robust and targeted innovation strategy, support and investment schematics are key. This entails funding of relevant institutions, i.e. universities and research labs, the understanding and providing of key infrastructure and legislation required for MNCs to locate R&D in one's country. Not only MNCs are in a global competition, but also countries, meaning that, generally speaking, firms will choose to locate its R&D in a market which is considered best in a certain environment. The innovation strategies of China show vividly how a clear strategy not only attracts foreign R&D to the country, but also learns, adapts and implements the influx of knowledge in a way that turns China itself a technology leader in certain fields. Such an innovation regime and strategy must not be static but constantly observed and adapted based on the developments and roles of the foreign and domestic R&D locations in a country. The analysis of R&D Expenditures and patents, as conducted in this dissertation, can help to identify patterns, trends and areas where intervention might be advisable. A specialization and focus on certain core competencies and fields, i.e. lead market can be an advisable strategy, particularly for developed countries who have, partly, lost some influx of R&D towards emerging nations.

With a grand complexity of R&D, governmental policies and interventions must not be isolated and singular, but rather holistic, in order to not only somewhat attract foreign R&D, but also to keep it and attain the influx of knowledge in a substantial and sustainable way.

Implications for Practitioners

R&D Internationalization, if done properly, can bring substantial opportunities for an MNC and competitive edges, as discussed in Chapter 1.1. It is crucial for decision-makers to understand their respective field of business and innovation area in order to make a profound decision.

An analysis of R&D Expenditures and patents, as conducted in this dissertation, can help to not only understand a company's own quantitative R&D activities, but also that of competitors and the whole market. Such a competitive analysis can outline a company's strength and weaknesses mapped against other players. Patterns and trends can be identified, which can help an MNC to quickly find and access relevant lead markets. Having a clear, focused and comprehensive company strategy on R&D and the whole innovation chain can pay off and help to increase profitability. A company should therefore not just simply decide for or against a certain location, but also what exactly the goal of an R&D activity in each location is and how the connection to the home-base is intended to be. As we have seen in the patent analysis, there is indication that R&D Internationalization, while positive in general, can be overdone: when the cultural distance of inventor teams become too large the differentness can diminish effectiveness and performance.

8.3. Recommendations for Further Research

This dissertation joins the ranks of numerous pieces of research on the topic of Research and Development. In Chapter 1.1 I have outlined, categorized and discussed the relevant research. I have categorized the research into four streams:

- 1. Reasons and motives to internationalize R&D
- 2. Patterns and destinations of R&D Internationalization
- 3. Interplay and environment of home- and host-country bases of companies
- 4. Assessing the effect of R&D Internationalization on firms' performance

In my dissertation I have particularly touched points 1, 2 and 4. I have conducted a macro- and meso-level approach on my analysis. The micro-level has not been this dissertation's core focus, so for point 1 and 3, it can be worthwhile to conduct separate select analyses mainly through large-scale interviews. A behavioral economist approach would help to unravel the more psychological aspects of innovation, including the increasing trends of sustainability and corporate social responsibility. In fact, companies are faced with an increasing discussion on economic interests vs. human and social factors. A recent discussion in Germany on the activities of German MNCs in China are just one example here⁴⁵³ and can fuel research on new influences on the motives of R&D Internationalization and location decision.

Point 2 in my dissertation relies partly on data of R&D Expenditures, where data availability varies highly. With an increasing level of reporting, particularly by emerging countries, future

⁴⁵³ Cf. Handelsblatt – Fröndhoff, Höpner, and Murphy (2019); CNN – Riley (2020).
analyses could be even more fine-grained and recent.⁴⁵⁴ This data can also aid decision-makers in business and politics to implement reasonable measurements, as discussed in Chapter 8.2.

For point 4, I combine existing literature on cultural distance measurements with patent analyses, including performance measurements. Further analyses can elaborate on the operationalization of cultural distance and data used, in order to further dissect the phenomenon of internationality in R&D. Another approach on internationality on R&D can be the analysis of career backgrounds of inventors on the micro-level and what role, for example, migration and international work experience has on innovation, inventive activities and innovation performance.⁴⁵⁵

⁴⁵⁴ The US with their Bureau of Economic Analysis (BEA) and National Science Foundation (NSF) are positive examples of providing a detail of data on R&D activities unrivaled by other countries.

⁴⁵⁵ For example Schmid and Wurster (2017) and Suutari et al. (2018) analyze the international work experience of individuals for their professional success and career paths.

Tables

Table 1-1: Top Five Publications by Citations in 1990 - 1999	5
Table 1-2: Top Five Publications by Citations in 2000 - 2009	6
Table 1-3: Top Five Publications by Citations in 2010 - 2019	7
Table 2-1: Overview IPC Structure with Example	
Table 2-2: Number and Development of Patents Applied at Major Patent Offices	
Table 2-3: Share of Home Market Patent Applications in Percent	
Table 2-4: Relationship of R&D Expenditure and Patents under PCT	41
Table 2-5: Relationship of R&D Expenditure and Patents at Local Patent Offices	
Table 2-6: Hierarchy of Individuals' Uniqueness	45
Table 2-7: List of Developed Countries	60
Table 3-1: Annual Business R&D Expenditure (BERD) by Country in Mio USD	64
Table 3-2: Inward R&D Matrix by Target Country, 2000	
Table 3-3: Inward R&D Matrix by Target Country, 2015	67
Table 3-4: Overview Inward (Foreign Funded) R&D for Selected Developed Countries	69
Table 3-5: Data Collection Agencies for Outward Business R&D	72
Table 3-6: Overview Inward R&D Investments into Germany	73
Table 3-7: Overview Outward R&D Investments by German Companies	74
Table 3-8: Overview Inward R&D Investments into USA	76
Table 3-9: Overview Outward R&D Investments by US Companies	78
Table 3-10: Overview Inward R&D Investments into Japan	81
Table 3-11: Overview Outward R&D Investments by Japanese Companies	
Table 3-12: Overview Inward R&D Investments into China	
Table 3-13: Overview BERD China by Currency	
Table 4-1: Global Development of Host-Country Patents, Source Countries	
Table 4-2: Overview Relevant IPC Classes for Outward Host-Country Patents	
Table 4-3: Development of US Outward Host-Country Patents	
Table 4-4: Host-Country Patent Breakdown for US Applicants by IPC	
Table 4-5: Total and Host-Country Patent Shares for US Applicants by IPC	
Table 4-6: Development of German Outward Host-Country Patents	
Table 4-7: Host-Country Patent Breakdown for German Applicants by IPC	
Table 4-8: Total and Host-Country Patent Shares for German Applicants by IPC	
Table 4-9: Development of Switzerland Outward Host-Country Patents	
Table 4-10: Host-Country Patent Breakdown for Swiss Applicants by IPC	
Table 4-11: Total and Host-Country Patent Shares for Swiss Applicants by IPC	
Table 4-12: Development of France Outward Host-Country Patents	
Table 4-13: Host-Country Patent Breakdown for French Applicants by IPC	
Table 4-14: Total and Host-Country Patent Shares for French Applicants by IPC	

Table 4-15: Development of Japanese Outward Host-Country Patents	112
Table 4-16: Host-Country Patent Breakdown for Japanese Applicants by IPC	114
Table 4-17: Total and Host-Country Patent Shares for Japanese Applicants by IPC	115
Table 4-18: Development of Chinese Outward Host-Country Patents	117
Table 4-19: Host-Country Patent Breakdown for Chinese Applicants by IPC	119
Table 4-20: Total and Host-Country Patent Shares for Chinese Applicants by IPC	120
Table 4-21: Development of Dutch Outward Host-Country Patents	121
Table 4-22: Host-Country Patent Breakdown for Dutch Applicants by IPC	123
Table 4-23: Total and Host-Country Patent Shares for Dutch Applicants by IPC	124
Table 4-24: Development of Sweden Outward Host-Country Patents	125
Table 4-25: Host-Country Patent Breakdown for Swedish Applicants by IPC	127
Table 4-26: Total and Host-Country Patent Shares for Swedish Applicants by IPC	128
Table 4-27: Development of UK Outward Host-Country Patents	129
Table 4-28: Host-Country Patent Breakdown for UK Applicants by IPC	131
Table 4-29: Total and Host-Country Patent Shares for UK Applicants by IPC	132
Table 5-1: Global Development of Host-Country Patents, Target Countries	135
Table 5-2: Overview Relevant IPC Classes for Inward Host-Country Patents	138
Table 5-3: Development of US Inward Host-Country Patents	140
Table 5-4: Host-Country Patent Breakdown for US Inventors by IPC	142
Table 5-5: Total and Host-Country Patent Shares for US Inventors by IPC	143
Table 5-6: Development of German Inward Host-Country Patents	145
Table 5-7: Host-Country Patent Breakdown for German Inventors by IPC	147
Table 5-8: Total and Host-Country Patent Shares for German Inventors by IPC	148
Table 5-9: Development of UK Inward Host-Country Patents	149
Table 5-10: Host-Country Patent Breakdown for UK Inventors by IPC	151
Table 5-11: Total and Host-Country Patent Shares for UK Inventors by IPC	152
Table 5-12: Development of French Inward Host-Country Patents	153
Table 5-13: Host-Country Patent Breakdown for French Inventors by IPC	154
Table 5-14: Total and Host-Country Patent Shares for French Inventors by IPC	155
Table 5-15: Development of Canadian Inward Host-Country Patents	156
Table 5-16: Host-Country Patent Breakdown for Canadian Inventors by IPC	158
Table 5-17: Total and Host-Country Patent Shares for Canadian Inventors by IPC	159
Table 5-18: Development of Japanese Inward Host-Country Patents	160
Table 5-19: Host-Country Patent Breakdown for Japanese Inventors by IPC	161
Table 5-20: Total and Host-Country Patent Shares for Japanese Inventors by IPC	162
Table 5-21: Development of China Inward Host-Country Patents	164
Table 5-22: Host-Country Patent Breakdown for Chinese Inventors by IPC	166
Table 5-23: Total and Host-Country Patent Shares for Chinese Inventors by IPC	167
Table 5-24: Development of Indian Inward Host-Country Patents	168

Table 5-25: Host-Country Patent Breakdown for Indian Inventors by IPC	
Table 5-26: Total and Host-Country Patent Shares for India Inventors by IPC	
Table 5-27: Development of Israeli Inward Host-Country Patents	
Table 5-28: Host-Country Patent Breakdown for Israeli Inventors by IPC	
Table 5-29: Total and Host-Country Patent Shares for Israeli Inventors by IPC	
Table 5-30: Development of South Korean Inward Host-Country Patents	
Table 5-31: Host-Country Patent Breakdown for South Korean Inventors by IPC	
Table 5-32: Total and Host-Country Patent Shares for South Korean Inventors by IPC	
Table 5-33: Development of Singaporean Inward Host-Country Patents	
Table 5-34: Host-Country Patent Breakdown for Singaporean Inventors by IPC	
Table 5-35: Total and Host-Country Patent Shares for Singaporean Inventors by IPC	
Table 5-36: Development of Russian Inward Host-Country Patents	
Table 5-37: Host-Country Patent Breakdown for Russian Inventors by IPC	
Table 5-38: Total and Host-Country Patent Shares for Russian Inventors by IPC	
Table 6-1: Overview Concentration of R&D Expenditure on Biggest Firms in 2018	
Table 6-2: R&D Expenditure by Relevant Industries of Top 1000 Firms in 2018	
Table 6-3: Development of Top 1000 R&D Spending Companies by Industry	
Table 6-4: Development of Top 500 R&D Spending Companies by Industry	
Table 6-5: Distribution of R&D Expenditures between Country Types	
Table 6-6: Development of Top 1000 R&D Spending Companies by Country	
Table 6-7: Pharmaceuticals & Biotechnology R&D Expenditure by Country	201
Table 6-8: Technology Hardware R&D Expenditure by Country	
Table 6-9: Breakdown of Technology Hardware R&D Expenditure by Country	
Table 6-10: Software & Computer Services R&D Expenditure by Country	
Table 6-11: Automotive & Parts R&D Expenditure by Country	
Table 6-12: R&D Expenditure Development by US MNCs by Industry	211
Table 6-13: R&D Expenditure Development by Japanese MNCs by Industry	214
Table 6-14: R&D Expenditure Development by German MNCs by Industry	216
Table 6-15: R&D Expenditure Development by Chinese MNCs by Industry	219
Table 7-1: Concordance of Industry and Main Patent Classes (IPC)	
Table 7-2: Patent Breakdown by Applicant Country in Pharma	
Table 7-3: Share of Applicant Countries' International Patents in Pharma	
Table 7-4: Patent Breakdown by Inventor Country in Pharma	231
Table 7-5: Pharma Patent Quality by Cultural Distance	235
Table 7-6: Group Means Differences (one-way ANOVA) in Pharma Patent Quality	
Table 7-7: Patent Breakdown by Applicant Country Biotech	
Table 7-8: Share of Applicant Countries' International Patents in Biotech	240
Table 7-9: Patent Breakdown by Inventor Country Biotech	
Table 7-10: Biotech Patent Quality by Cultural Distance	

Tables

Table 7-11: Group Means Differences (one-way ANOVA) in Biotech Patent Quality	245
Table 7-12: Patent Breakdown by Applicant Country Tech Hardware	248
Table 7-13: Share of Applicant Countries' International Patents in Tech Hardware	249
Table 7-14: Patent Breakdown by Inventor Country Tech Hardware	250
Table 7-15: Technology Hardware Patent Quality by Cultural Distance	253
Table 7-16: Group Means Differences (one-way ANOVA) in Technology Hardware Patent Quality	253
Table 7-17: Patent Breakdown by Applicant Country Software & Computer Services	256
Table 7-18: Share of Applicant Countries' International Patents in Software & Computer Services	257
Table 7-19: Patent Breakdown by Inventor Country Software & Computer Services	258
Table 7-20: Software & Computer Services Patent Quality by Cultural Distance	261
Table 7-21: Group Means Differences (one-way ANOVA) in Software & Computer Services Patent Quality	261
Table 7-22: Patent Breakdown by Applicant Country Automotive	264
Table 7-23: Share of Applicant Countries' International Patents in Automotive	265
Table 7-24: Patent Breakdown by Inventor Country Automotive	266
Table 7-25: Automotive Patent Quality by Cultural Distance	269
Table 7-26: Group Means Differences (one-way ANOVA) in Automotive Patent Quality	269

Illustrations

Figure 1-1: Development of Publications on R&D Internationalization	4
Figure 1-2: Factors Influencing R&D Internationalization	9
Figure 1-3: Research Questions and Structure of Dissertation	
Figure 2-1: Terminology of R&D Expenditure Sets	25
Figure 2-2: Number and Development of Patents Applied at Major Patent Offices	
Figure 2-3: Relationship of Host-Country Patents to Outward R&D	42
Figure 2-4: Example for Calculating Cultural Distance	54
Figure 7-1: Overview Patent Development in Pharmaceutical Industry	
Figure 7-2: NRTA in Pharmaceutical Industry	232
Figure 7-3: PQCI in Pharmaceutical Industry	233
Figure 7-4: Overview Patent Development in Biotech	237
Figure 7-5: NRTA in Biotech	242
Figure 7-6: PQCI in Biotech	
Figure 7-7: Overview Patent Development in Tech Hardware	
Figure 7-8: NRTA in Tech Hardware	251
Figure 7-9: PQCI in Tech Hardware	
Figure 7-10: Overview Patent Development in Software & Computer Services	
Figure 7-11: NRTA in Software & Computer Services	
Figure 7-12: PQCI in Software & Computer Services	
Figure 7-13: Overview Patent Development in Automotive	
Figure 7-14: NRTA in Automotive	
Figure 7-15: PQCI in Automotive	

Abbreviations

AAGR	Annual Average Growth Rate
AE	Advanced Economies
AI	Artificial Intelligence
APAC	Asia-Pacific
BEA	Bureau of Economic Analysis of the U.S. Department of Commerce
BERD	R&D Performance by the Business Sector
CAGR	Compound Annual Growth Rate
CD	Cultural Distance
CNIPA	China National Intellectual Property Administration
CPC	Cooperative Patent Classification
DAFI	Domestic Applications of Foreign Inventions
DE	Developing Economies
EME	Emerging Market Economies
EPO	European Patent Office
EU28	European Union (28 states)
FDI	Foreign Direct Investment
GAFI	German Applications of Foreign Inventions
GERD	Gross Domestic Expenditure on R&D
GDP	Gross Domestic Product
GNI	Gross National Income
GOVERD	R&D Performance by the Government Sector
HCP	Host-Country Patent
HERD	R&D Performance by the Higher Education Sector
IC	International Corporation
ICB	Industry Classification Benchmark
ICT	Information and Communications Technology
IMF	International Monetary Fund
IP	Intellectual Property
IPC	International Patent Classification
ISIC	International Standard Industrial Classification
ISIN	International Securities Identification Number
KIPO	Korean Intellectual Property Office
KPI	Key Performance Index
M&A	Mergers and Acquisitions

METI	Ministry of Economy, Trade and Industry
MNE	Multinational Enterprise
MNC	Multinational Corporation
NACE	Statistical classification of economic activities in the European
	Community (French translation)
NCSES	National Center for Science and Engineering Statistics
NGO	Non-Governmental Organization
NIS	National Innovation System
NRTA	Normalized Revealed Technological Advantage
NSF	US National Science Foundation
OECD	Organization for Economic Co-operation and Development
PCT	Patent Cooperation Treaty
PNPRD	R&D Performance by the Private Non-Profit Sector
PPP	Prices and purchasing power parities
PQCI	Patent Quality Composite Index
R&D	Research and Development
ROI	Return on Investment
RTA	Normalized Revealed Technological Advantage
SD	Standard Deviation
SEZ	Special Economic Zone
SIPO	State Intellectual Property Office of China
TNC	Transnational Corporation
UBO	Ultimate Beneficial Owner
UNESCO	United Nations Educational, Scientific and Cultural Organization
WIPO	World Intellectual Property Organization

Sources

Academic Sources

Acock, A. C. (2018), A Gentle Introduction to Stata, StataCorp LLC, College Station, Texas.

- Acs, Z. J., Anselin, L., Varga, A. (2002), Patents and Innovation Counts as Measures of Regional Production of New Knowledge, Research Policy, Vol. 31, Iss. 7, pp. 1069-1085.
- Adams, S., Henson-Apollonio, V. (2002), Defensive Publishing: A Strategy for Maintaining Intellectual Property as Public Goods, International Service for National Agricultural Research (ISNAR), Vol. 53.
- Adler, N. J., Gunderson, A. (2008), International Dimensions of Organizational Behavior, Thomson/South-Western, Eagan, MN.
- Aghion, P., Jaravel, X. (2015), Knowledge Spillovers, Innovation and Growth, The Economic Journal, Vol. 125, Iss. 583, pp. 533-573.
- Alcácer, J., Gittelman, M., Sampat, B. (2009), Applicant and Examiner Citations in U.S. Patents: An Overview and Analysis, Research Policy, Vol. 38, Iss. 2, pp. 415-427.
- Alvstam, C. G., Dolles, H., Ström, P. (2014), Asian Inward and Outward Fdi, Palgrave Macmillan, London.
- Amann, E., Cantwell, J. (2012), Innovative Firms in Emerging Market Countries, Oxford University Press, Oxford.
- Ambos, B., Ambos, T. C. (2009), Location Choice, Management and Performance of International R&D Investments in Peripheral Economies, International Journal of Technology Management, Vol. 48, Iss. 1, pp. 24-41.
- Arundel, A. (2001), The Relative Effectiveness of Patents and Secrecy for Appropriation, Research Policy, Vol. 30, Iss. 4, pp. 611-624.
- Asakawa, K. (2001), Organizational Tension in International R&D Management: The Case of Japanese Firms, Research Policy, Vol. 30, Iss. 5, pp. 735-757.
- Asakawa, K., Som, A. (2008), Internationalization of R&D in China and India: Conventional Wisdom Versus Reality, Asia Pacific Journal of Management, Vol. 25, Iss. 3, pp. 375-394.
- Audretsch, D. B., Feldman, M. P. (1996), R&D Spillovers and the Geography of Innovation and Production, The American Economic Review, Vol. 86, Iss. 3, pp. 630-640.
- Awate, S., Larsen, M. M., Mudambi, R. (2015), Accessing Vs Sourcing Knowledge: A Comparative Study of R&D Internationalization between Emerging and Advanced Economy Firms, Journal of International Business Studies, Vol. 46, Iss. 1, pp. 63-86.
- Aycan, Z., Kanungo, R., Mendonca, M., Yu, K., Deller, J., Stahl, G., Kurshid, A. (2000), Impact of Culture on Human Resource Management Practices: A 10-Country Comparison, Applied Psychology, Vol. 49, Iss. 1, pp. 192-221.
- Ayden, Y., Tatoglu, E., Glaister, K. W., Demirbag, M. (2020), Exploring the Internationalization Strategies of Turkish Multinationals: A Multi-Perspective Analysis, Journal of International Management, pp. 100783.
- Baptista, R., Swann, P. (1998), Do Firms in Clusters Innovate More?, Research Policy, Vol. 27, Iss. 5, pp. 525-540.
- Barkema, H. G., Bell, J. H. J., Pennings, J. M. (1996), Foreign Entry, Cultural Barriers, and Learning, Strategic Management Journal, Vol. 17, Iss. 2, pp. 151-166.
- Barkema, H. G., Vermeulen, F. (1997), What Differences in the Cultural Backgrounds of Partners Are Detrimental for International Joint Ventures?, Journal of International Business Studies, Vol. 28, Iss. 4, pp. 845-864.
- Barrett, B. (2002), Defensive Use of Publications in an Intellectual Property Strategy, Nature Biotechnology, Vol. 20, pp. 191.

- Bartlett, C. A., Ghoshal, S. (1990), Managing Innovation in the Transnational Corporation, in C. A. Bartlett, Y. L. Doz, & G. Hedlund (Eds.), Managing the Global Firm (pp. xii, 363 p.), Routledge, London; New York.
- Bayer (2020), Geschäftsbericht 2019, Bayer AG, Leverkusen.
- BCG (2020), The Most Innovative Companies 2020, Boston Consulting Group.
- BEA (2004), A Guide to Bea's Direct Investment Surveys, U.S. Bureau of Economic Analysis.
- BEA (2019), Activities of U.S. Multinational Enterprises: 2017, U.S. Bureau of Economic Analysis.
- Beise, M. (2004), Lead Markets: Country-Specific Drivers of the Global Diffusion of Innovations, Research Policy, Vol. 33, Iss. 6, pp. 997-1018.
- Beise, M., Gemünden, H. G. (2004), Lead Markets: A New Framework for the International Diffusion of Innovation, Management International Review, Vol. 44, Iss. 3, pp. 83-102.
- Berry, H., Guillén, M. F., Zhou, N. (2010), An Institutional Approach to Cross-National Distance, Journal of International Business Studies, Vol. 41, Iss. 9, pp. 1460-1480.
- Bertrand, O., Zuniga, P. (2006), R&D and M&A: Are Cross-Border M&a Different? An Investigation on Oecd Countries, International Journal of Industrial Organization, Vol. 24, Iss. 2, pp. 401-423.
- Bessen, J., Hunt, R. M. (2007), An Empirical Look at Software Patents, Journal of Economics & Management Strategy, Vol. 16, Iss. 1, pp. 157-189.
- Beugelsdijk, S., Ambos, B., Nell, P. C. (2018), Conceptualizing and Measuring Distance in International Business Research: Recurring Questions and Best Practice Guidelines, Journal of International Business Studies, Vol. 49, Iss. 9, pp. 1113-1137.
- Birkinshaw, J. (2002), Managing Internal R&D Networks in Global Firms: What Sort of Knowledge Is Involved?, Long Range Planning, Vol. 35, Iss. 3, pp. 245-267.
- Blind, K., Edler, J., Frietsch, R., Schmoch, U. (2006), Motives to Patent: Empirical Evidence from Germany, Research Policy, Vol. 35, Iss. 5, pp. 655-672.
- Boutellier, R., Gassmann, O., von Zedtwitz, M. (2008), Managing Global Innovation: Uncovering the Secrets of Future Competitiveness, Springer, Berlin; New York.
- Braconier, H., Ekholm, K., Knarvik, K. H. M. (2001), In Search of Fdi-Transmitted R&D Spillovers: A Study Based on Swedish Data, Review of World Economics, Vol. 137, Iss. 4, pp. 644-665.
- Brannen, M. Y. (1991), Culture as the Critical Factor in Implementing Innovation, Business Horizons, Vol. 34, Iss. 6, pp. 59-67.
- Brennan, T., Ernst, P., Katz, J., Roth, E. (2020), Building an R&D Strategy for Modern Times, McKinsey & Company: Strategy & Corporate Finance Practice, McKinsey & Company, New York.
- Breschi, S. (2000), The Geography of Innovation: A Cross-Sector Analysis, Regional Studies, Vol. 34, Iss. 3, pp. 213-229.
- Breschi, S., Lissoni, F. (2001), Knowledge Spillovers and Local Innovation Systems: A Critical Survey, Industrial and Corporate Change, Vol. 10, Iss. 4, pp. 975-1005.
- Brouthers, K. D., Brouthers, L. E. (2001), Explaining the National Cultural Distance Paradox, Journal of International Business Studies, Vol. 32, Iss. 1, pp. 177-189.
- Brouwer, E., Kleinknecht, A. (1999), Innovative Output, and a Firm's Propensity to Patent.: An Exploration of Cis Micro Data, Research Policy, Vol. 28, Iss. 6, pp. 615-624.
- Bruns, S. B., Kalthaus, M. (2020), Flexibility in the Selection of Patent Counts: Implications for P-Hacking and Evidence-Based Policymaking, Research Policy, Vol. 49, Iss. 1.
- Bryman, A., Bell, E. (2011), Business Research Methods, Oxford University Press, Cambridge.
- Buckley, P. J., Munjal, S., Enderwick, P., Forsans, N. (2016), Cross-Border Acquisitions by Indian Multinationals: Asset Exploitation or Asset Augmentation?, International Business Review, Vol. 25, Iss. 4, pp. 986-996.
- Bushe, G. R. (1988), Cultural Contradictions of Statistical Process Control in American Manufacturing Organizations, Journal of Management, Vol. 14, Iss. 1, pp. 19-31.
- Buss, D. M. (2001), Human Nature and Culture: An Evolutionary Psychological Perspective, Journal of Personality, Vol. 69, Iss. 6, pp. 955-978.

BYD (2020), Annual Report 2019, BYD Co Ltd, Shenzhen.

- Callen, T. (2007), Ppp Versus the Market: Which Weight Matters?, Finance and Development, Vol. 44, Iss. 1.
- Cantwell, J., Iammarino, S. (2000), Multinational Corporations and the Location of Technological Innovation in the Uk Regions, Regional Studies, Vol. 34, Iss. 4, pp. 317-332.
- Cantwell, J., Piscitello, L. (2002), The Location of Technological Activities of Mncs in European Regions: The Role of Spillovers and Local Competencies, Journal of International Management, Vol. 8, Iss. 1, pp. 69-96.
- Carrincazeaux, C., Lung, Y., Rallet, A. (2001), Proximity and Localisation of Corporate R&D Activities, Research Policy, Vol. 30, Iss. 5, pp. 777-789.
- Castellacci, F., Zheng, J. (2010), Technological Regimes, Schumpeterian Patterns of Innovation and Firm-Level Productivity Growth, Industrial and Corporate Change, Vol. 19, Iss. 6, pp. 1829-1865.
- Castellani, D., Jimenez, A., Zanfei, A. (2013), How Remote Are R&D Labs? Distance Factors and International Innovative Activities, Journal of International Business Studies, Vol. 44, Iss. 7, pp. 649-675.
- Cavusgil, S. T., Calantone, R. J., Zhao, Y. (2003), Tacit Knowledge Transfer and Firm Innovation Capability, Journal of Business & Industrial Marketing, Vol. 18, Iss. 1, pp. 6-21.
- Chakrabarty, S., Wang, L. (2012), The Long-Term Sustenance of Sustainability Practices in Mncs: A Dynamic Capabilities Perspective of the Role of R&D and Internationalization, Journal of Business Ethics, Vol. 110, Iss. 2, pp. 205-217.
- Chen, C.-J., Huang, Y.-F., Lin, B.-W. (2012), How Firms Innovate through R&D Internationalization? An S-Curve Hypothesis, Research Policy, Vol. 41, Iss. 9, pp. 1544-1554.
- Chesbrough, H. W. (2006), Open Business Models : How to Thrive in the New Innovation Landscape, Harvard Business School Press, Boston, Mass.
- Chittoor, R., Ray, S. (2007), Internationalization Paths of Indian Pharmaceutical Firms a Strategic Group Analysis, Journal of International Management, Vol. 13, Iss. 3, pp. 338-355.
- Choudhry, T. (2005), Asian Currency Crisis and the Generalized Ppp: Evidence from the Far East, Asian Economic Journal, Vol. 19, Iss. 2, pp. 137-157.
- Chua, R. Y. J., Roth, Y., Lemoine, J.-F. (2014), The Impact of Culture on Creativity: How Cultural Tightness and Cultural Distance Affect Global Innovation Crowdsourcing Work, Administrative Science Quarterly, Vol. 60, Iss. 2, pp. 189-227.
- Cincera, M., Cozza, C., Tübke, A. (2010), Drivers and Policies for Increasing and Internationalising R&D Activities of Eu Mnes, IPTS Working Paper on Corporate R&D and Innovation, Vol. 2.
- Coe, D. T., Helpman, E. (1995), International R&D Spillovers, European Economic Review, Vol. 39, Iss. 5, pp. 859-887.
- Coe, D. T., Helpman, E., Hoffmaister, A. W. (1997), North-South R&D Spillovers, The Economic Journal, Vol. 107, Iss. 440, pp. 134-149.
- Cohen, W. M., Levinthal, D. A. (1989), Innovation and Learning: The Two Faces of R&D, The Economic Journal, Vol. 99, Iss. 397, pp. 569-596.
- Cohen, W. M., Nelson, R. R., Walsh, J. P. (2000), Protecting Their Intellectual Assets: Appropriability Conditions and Why Us Manufacturing Firms Patent (or Not), NBER Working Paper Series, Vol. 7552.
- Cowan, R., David, P. A., Foray, D. (2000), The Explicit Economics of Knowledge Codification and Tacitness, Industrial and Corporate Change, Vol. 9, Iss. 2, pp. 211-253.
- Crescenzi, R., Gagliardi, L., Iammarino, S. (2015), Foreign Multinationals and Domestic Innovation: Intra-Industry Effects and Firm Heterogeneity, Research Policy, Vol. 44, Iss. 3, pp. 596-609.

- Criscuolo, P. (2006), The 'Home Advantage' Effect and Patent Families. A Comparison of Oecd Triadic Patents, the Uspto and the Epo, Scientometrics, Vol. 66, Iss. 1, pp. 23-41.
- Criscuolo, P., Narula, R., Verspagen, B. (2005), Role of Home and Host Country Innovation Systems in R&D Internationalisation: A Patent Citation Analysis, Economics of Innovation and New Technology, Vol. 14, Iss. 5, pp. 417-433.
- Dachs, B., Pyka, A. (2010), What Drives the Internationalisation of Innovation? Evidence from European Patent Data, Economics of Innovation and New Technology, Vol. 19, Iss. 1, pp. 71-86.
- Daimler (2020), Annual Report 2019, Daimler AG,, Stuttgart.
- Dang, J., Motohashi, K. (2015), Patent Statistics: A Good Indicator for Innovation in China? Patent Subsidy Program Impacts on Patent Quality, China Economic Review, Vol. 35, pp. 137-155.
- Danguy, J., de Rassenfosse, G., van Pottelsberghe de la Potterie, B. (2009), The R&D-Patent Relationship: An Industry Perspective, EIB Papers, Vol. 14, Iss. 1, pp. 170-195.
- De Maesschalck, R., Jouan-Rimbaud, D., Massart, D. L. (2000), The Mahalanobis Distance, Chemometrics and Intelligent Laboratory Systems, Vol. 50, Iss. 1, pp. 1-18.
- De Meyer, A., Mizushima, A. (1989), Global R&D Management, R&D Management, Vol. 19, Iss. 2, pp. 135-146.
- Degnan, D. A., Huskey, L. A. (2006), Inventorship: What Happens When You Don't Get It Right?, Holland & Hart, Denver.
- Deloitte (2019a), International Tax Liechtenstein Highlights 2019, Deloitte, London.
- Deloitte (2019b), International Tax Puerto Rico Highlights 2019, Deloitte, London.
- Deloitte (2020), Cyprus Tax Facts 2020, Deloitte, London.
- Di Minin, A., Bianchi, M. (2011), Safe Nests in Global Nets: Internationalization and Appropriability of R&D in Wireless Telecom, Journal of International Business Studies, Vol. 42, Iss. 7, pp. 910-934.
- Di Minin, A., Zhang, J., Gammeltoft, P. (2012), Chinese Foreign Direct Investment in R&D in Europe: A New Model of R&D Internationalization?, European Management Journal, Vol. 30, Iss. 3, pp. 189-203.
- Dunning, J. H. (1958), American Investment in British Manufacturing Industry, Allen & Unwin, London.
- Dunning, J. H. (1973), The Determinants of International Production, Oxford Economic Papers, Vol. 25, Iss. 3, pp. 289-336.
- Dunning, J. H. (1993), The Globalization of Business: The Challenge of the 1990s, Routledge, London.
- Dunning, J. H. (1999), Forty Years On: American Investment in British Manufacturing Industry Revisited, Transnational Corporations, Vol. 8, Iss. 2.
- Dunning, J. H., Lundan, S. M. (2008), Multinational Enterprises and the Global Economy, Edward Elgar, Cheltenham.
- Dunning, J. H., Lundan, S. M. (2009), The Internationalization of Corporate R&D: A Review of the Evidence and Some Policy Implications for Home Countries, Review of Policy Research, Vol. 26, Iss. 1-2, pp. 13-33.
- Dunning, J. H., Narula, R. (1995), The R&D Activities of Foreign Firms in the United States, International Studies of Management & Organization, Vol. 25, Iss. 1-2, pp. 39-74.
- Dunning, J. H., Narula, R. (2004), Multinationals and Industrial Competitiveness: A New Agenda, Edward Elgar, Cheltenham.
- Ebrahimpour, M. (1985), An Examination of Quality Management in Japan: Implications for Management in the United States, Journal of Operations Management, Vol. 5, Iss. 4, pp. 419-431.
- EBRD, World Bank (2012), Business Environment and Enterprise Performance Survey (Beeps).
- Edquist, C. (1997), Systems of Innovation: Technologies, Institutions and Organizations, Routledge, London.

- EFI (2012), Report 2012, Commission of Experts for Research and Innovation: Research, Innovation and Technological Performance in Germany, Commission of Experts for Research and Innovation (EFI), Berlin.
- EFI (2013), Report 2013, Commission of Experts for Research and Innovation: Research, Innovation and Technological Performance in Germany, Commission of Experts for Research and Innovation (EFI), Berlin.
- EFI (2014), Report 2014, Commission of Experts for Research and Innovation: Research, Innovation and Technological Performance in Germany, Commission of Experts for Research and Innovation (EFI), Berlin.
- Efrat, K. (2014), The Direct and Indirect Impact of Culture on Innovation, Technovation, Vol. 34, Iss. 1, pp. 12-20.
- Eliot, T. S. (2007), Notes Towards the Definition of Culture Christianity and Culture, Harcourt Brace & Company, Orlando, FL.
- EPO (2016), European Patent Convention.
- EPO (2017), Guidelines for Examination in the European Patent Office, European Patent Office, Munich.
- EPO (2020a), Biotechnology Patents at the Epo, European Patent Office, Munich.
- EPO (2020c), European Patent Applications 2010-2019 Per Field of Technology, European Patent Office.
- European Commission (2004), The 2004 Eu Industrial R&D Investment Scoreboard, EU R&D Scoreboard.
- European Commission (2008), The 2008 Eu Industrial R&D Investment Scoreboard, EU R&D Scoreboard.
- European Commission (2010), Europe 2020: A Strategy for Smart, Sustainable and Inclusive Growth.
- European Commission (2017), The 2017 Eu Industrial R&D Investment Scoreboard, EU R&D Scoreboard, European Union, Luxembourg.
- European Commission (2019), The 2019 Eu Industrial R&D Investment Scoreboard, EU R&D Scoreboard, European Union, Luxembourg.
- European Commission (2020), The 2020 Eu Industrial R&D Investment Scoreboard, EU R&D Scoreboard, European Union, Luxembourg.
- EUROSTAT (2008), Nace Rev. 2 Statistical Classification of Economic Activities in the European Community, European Communities, Luxembourg.
- Evers, L., Miller, H., Spengel, C. (2013), Intellectual Property Box Regimes: Effective Tax Rates and Tax Policy Considerations, Discussion Paper No. 13-070, ZEW, Mannheim.
- Fagerberg, J., Srholec, M. (2008), National Innovation Systems, Capabilities and Economic Development, Research Policy, Vol. 37, Iss. 9, pp. 1417-1435.
- FATF (2014), Transparency and Beneficial Ownership, FATF Guidance, Financial Action Task Force, Paris.
- FDA (2018), The Drug Development Process, U.S. Food & Drug Administration, Maryland.
- Feldman, S. P. (1988), How Organizational Culture Can Affect Innovation, Organizational Dynamics, Vol. 17, Iss. 1, pp. 57-68.
- Finnish Ministry of Education (2009), Evaluation of the Finnish National Innovation System -Policy Report, Helsinki.
- Fischer, W. A., von Zedtwitz, M. (2004), Chinese R&D: Naissance, Renaissance, or Mirage?, R&D Management, Vol. 34, Iss. 4, pp. 349-365.
- Flick, U. (2009), An Introduction to Qualitative Research, Sage Publications, Los Angeles.
- Florida, R. (1997), The Globalization of R&D: Results of a Survey of Foreign-Affiliated R&D Laboratories in the USA, Research Policy, Vol. 26, Iss. 1, pp. 85-103.
- Franzoni, C., Scellato, G. (2010), The Grace Period in International Patent Law and Its Effect on the Timing of Disclosure, Research Policy, Vol. 39, Iss. 2, pp. 200-213.
- Frietsch, R., Schmoch, U. (2010), Transnational Patents and International Markets, Scientometrics, Vol. 82, Iss. 1, pp. 185-200.

- Froot, K. A., Rogoff, K. (1995), Perspectives on Ppp and Long-Run Real Exchange Rates Handbook of International Economics (Vol. 3, pp. 1647-1688), Elsevier.
- FTSE Russell (2019), Industry Classification Benchmark (Equity) V2.6, ICB: Industry Classification Benchmark.
- Fu, W., Revilla Diez, J., Schiller, D. (2013), Interactive Learning, Informal Networks and Innovation: Evidence from Electronics Firm Survey in the Pearl River Delta, China, Research Policy, Vol. 42, Iss. 3, pp. 635-646.
- Gambardella, A., Malerba, F. (1999), The Organization of Economic Innovation in Europe, Cambridge University Press, Cambridge.
- Gassmann, O., Reepmeyer, G., von Zedtwitz, M. (2008), Leading Pharmaceutical Innovation: Trends and Drivers for Growth in the Pharmaceutical Industry, Springer, Berlin.
- Gassmann, O., von Zedtwitz, M. (1998), Organization of Industrial R&D on a Global Scale, R&D Management, Vol. 28, Iss. 3, pp. 147-161.
- Gassmann, O., von Zedtwitz, M. (1999), New Concepts and Trends in International R&D Organization, Research Policy, Vol. 28, Iss. 2, pp. 231-250.
- GEN (2019), Top 25 Biotech Companies of 2019, Genetic Engineering & Biotechnology News, Vol. 39, Iss. 12.
- George, S. (2014), The Pacific Pumas an Emerging Model for Emerging Markets, Bertelsmann Foundation, Gütersloh, Germany.
- German Federal Foreign Office (2020), Germany and Russian Federation: Bilateral Relations, Bilateral Relations, German Federal Foreign Office, Berlin.
- Geroski, P. (1995), Innovation and Competitive Advantage, OECD Economics Department Working Paper, Vol. 159.
- Gersbach, H., Schmutzler, A. (2011), Foreign Direct Investment and R&D-Offshoring, Oxford Economic Papers, Vol. 63, Iss. 1, pp. 134-157.
- Gerybadze, A. (2004a), Knowledge Management, Cognitive Coherence and Equivocality in Distributed Innovation Processes in Mncs, MIR: Management International Review, pp. 103-128.
- Gerybadze, A. (2004b), Technologie- Und Innovationsmanagement, Franz Vahlen, München.
- Gerybadze, A. (2019), Industrial Development Strategies in Asia: The Influence of Friedrich List on Industrial Evolution in Japan, South Korea and China, in H. Hagemann, S. Seiter, & E. Wendler (Eds.), The Economic Thought of Friedrich List (pp. pages cm), Routledge, Abingdon, Oxon; New York, NY.
- Gerybadze, A. (2020), Technology and Innovation Management in a Global Perspective, in R. Tiwari & S. Buse (Eds.), Managing Innovation in a Global and Digital World - Meeting Societal Challenges and Enhancing Competitiveness (pp. 207-225), Springer Gabler, Wiesbaden.
- Gerybadze, A., Merk, S. (2014), Globalisation of R&D and Host-Country Patenting of Multinational Corporations in Emerging Countries, International Journal of Technology Management, Vol. 64, pp. 148-179.
- Gerybadze, A., Meyer-Krahmer, F., Reger, G. (1997), Globales Management Von Forschung Und Innovation, Schäffer-Poeschel, Stuttgart.
- Gerybadze, A., Reger, G. (1999), Globalization of R&D: Recent Changes in the Management of Innovation in Transnational Corporations, Research Policy, Vol. 28, Iss. 2–3, pp. 251-274.
- Gerybadze, A., Schnitzer, M., Czernich, N. (2013), Internationale Forschungs- Und Entwicklungsstandorte, Wirtschaftsdienst, Vol. 93, Iss. 3, pp. 182-188.
- Gerybadze, A., Sommer, D. (2017), Host-Country Patenting and Inventorship in Emerging Countries, in S. L. Prabu & T. N. K. Suriyaprakasha (Eds.), Intellectual Property Rights (pp. 107-117), INTECH.
- Giuliani, E., Gorgoni, S., Günther, C., Rabellotti, R. (2014), Emerging Versus Advanced Country Mnes Investing in Europe: A Typology of Subsidiary Global-Local Connections, International Business Review, Vol. 23, Iss. 4, pp. 680-691.
- Graham, S., Hegde, D. (1999), Do Inventors Value Secrecy in Patenting? Evidence from the American Inventor's Protection Act of 1999, SSRN, Vol. 2170555.

- Griliches, Z. (1981), Market Value, R&D, and Patents, Economics Letters, Vol. 7, Iss. 2, pp. 183-187.
- Grimes, S., Miozzo, M. (2015), Big Pharma's Internationalization of R&D to China, European Planning Studies, Vol. 23, Iss. 9, pp. 1873-1894.
- Guellec, D., van Pottelsberghe de la Potterie, B. (2000), Applications, Grants and the Value of Patent, Economics Letters, Vol. 69, Iss. 1, pp. 109-114.
- Guellec, D., van Pottelsberghe de la Potterie, B. (2001), The Internationalisation of Technology Analysed with Patent Data, Research Policy, Vol. 30, Iss. 8, pp. 1253-1266.
- Guellec, D., van Pottelsberghe de la Potterie, B. (2004), From R&D to Productivity Growth: Do the Institutional Settings and the Source of Funds of R&D Matter?, Oxford Bulletin of Economics and Statistics, Vol. 66, Iss. 3, pp. 353-378.
- Guillén, M. F., García-Canal, E. (2009), The American Model of the Multinational Firm and the "New" Multinationals from Emerging Economies, Academy of Management Perspectives, Vol. 23, Iss. 2, pp. 23-35.
- Haakonsson, S. J., Ujjual, V. (2015), Internationalisation of R&D: New Insights into Multinational Enterprises R&D Strategies in Emerging Markets, Management Revue, Vol. 26, Iss. 2, pp. 101-122.
- Hall, B. H. (2011), The Internationalization of R&D, SSRN, pp. 179-210.
- Hall, B. H., Griliches, Z., Hausman, J. A. (1984), Patents and R&D: Is There a Lag?, NBER Working Paper Series, Vol. 1454.
- Harabi, N. (1995), Appropriability of Technical Innovations an Empirical Analysis, Research Policy, Vol. 24, Iss. 6, pp. 981-992.
- Harhoff, D., Scherer, F. M., Vopel, K. (2003), Citations, Family Size, Opposition and the Value of Patent Rights, Research Policy, Vol. 32, Iss. 8, pp. 1343-1363.
- Hatzichronoglou, T. (1997), Revision of the High-Technology Sector and Product Classification, OECD Science, Technology and Industry Working Papers, Vol. 1997, Iss. 2.
- Hatzichronoglou, T. (2008), The Location of Investment of Multinationals Linked to Innovation, Paper presented at the Global Forum on International Investment, Paris.
- Head, K., Ries, J. (2003), Heterogeneity and the Fdi Versus Export Decision of Japanese Manufacturers, Journal of the Japanese and International Economies, Vol. 17, Iss. 4, pp. 448-467.
- Hegde, D., Hicks, D. (2008), The Maturation of Global Corporate R&D: Evidence from the Activity of U.S. Foreign Subsidiaries, Research Policy, Vol. 37, Iss. 3, pp. 390-406.
- Helpman, E., Melitz, M. J., Yeaple, S. R. (2004), Export Versus Fdi with Heterogeneous Firms, American Economic Review, Vol. 94, Iss. 1, pp. 300-316.
- Herbig, P., Dunphy, S. (1998), Culture and Innovation, Cross Cultural Management: An International Journal, Vol. 5, Iss. 4, pp. 13-21.
- Herman V Youngstown Car Manufacturing Co., (1911), 191 F. 579, 584-585, 112 CCA 185, 6th Cir.
- Hervás, F., Siedschlag, I., Tübke, A. (2014), Boosting the Eu's Attractiveness to International R&D Investments: What Matters? What Works?, JRC Policy Brief.
- Hinze, S., Schmoch, U. (2004), Opening the Black Box, in H. F. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of Quantitative Science and Technology Research - the Use of Publication and Patent Statistics in Studies of S&T Systems (pp. 215-236), Kluwer Academic Publishers, Dordrecht.
- Hofstede, G. (1996), Riding the Waves of Commerce: A Test of Trompenaars' "Model" of National Culture Differences, International Journal of Intercultural Relations, Vol. 20, Iss. 2, pp. 189-198.
- Hofstede, G. H. (2001), Culture's Consequences: Comparing Values, Behaviors, Institutions, and Organizations across Nations, Sage Publications, Thousand Oaks, Calif.
- Hofstede, G. H. (2015), Cultural Dimension Data Matrix.

- Hofstede, G. H., Hofstede, G. J., Minkov, M. (2010), Cultures and Organizations: Software of the Mind - Intercultural Cooperation and Its Importance for Survival, McGraw-Hill, New York.
- Hottenrott, H., Lopes-Bento, C. (2014), (International) R&D Collaboration and Smes: The Effectiveness of Targeted Public R&D Support Schemes, Research Policy, Vol. 43, Iss. 6, pp. 1055-1066.
- House, R. J., Hanges, P. J., Javidan, M., Dorfman, P. W., Gupta, V. (2004), Culture, Leadership, and Organizations - the Globe Study of 62 Societies, SAGE Publications, Thousand Oaks, CA.
- Hsu, C.-W., Lien, Y.-C., Chen, H. (2015), R&D Internationalization and Innovation Performance, International Business Review, Vol. 24, Iss. 2, pp. 187-195.
- Hu, Y.-S. (1992), Global or Stateless Corporations Are National Firms with International Operations, California Management Review, Vol. 34, Iss. 2, pp. 107-126.
- Huggins, R., Demirbag, M., Ratcheva, V. I. (2007), Global Knowledge and R&D Foreign Direct Investment Flows: Recent Patterns in Asia Pacific, Europe, and North America, International Review of Applied Economics, Vol. 21, Iss. 3, pp. 437-451.
- Hurmelinna-Laukkanen, P., Puumalainen, K. (2007), Nature and Dynamics of Appropriability: Strategies for Appropriating Returns on Innovation, R&D Management, Vol. 37, Iss. 2, pp. 95-112.
- Hurtado-Torres, N. E., Aragón-Correa, J. A., Ortiz-de-Mandojana, N. (2017), How Does R&D Internationalization in Multinational Firms Affect Their Innovative Performance? The Moderating Role of International Collaboration in the Energy Industry, International Business Review.
- Hussinger, K. (2006), Is Silence Golden? Patents Versus Secrecy at the Firm Level, Economics of Innovation and New Technology, Vol. 15, Iss. 8, pp. 735-752.
- IMF (2018), World Economic Outlook October 2018.
- IMF (2019), World Economic Outlook October 2019.
- IP5 Offices (2017), Better Services for Users and the Public Brochure on Key Ip5 Initiatives and Major Results
- IP5 Offices (2019), Patent Applications at the Ip5 Offices, IP5.
- IRI (2008), Industrial Research Institute's 10th Annual R&D Leaderboard, Research-Technology Management, Vol. 51, Iss. 6, pp. 13-17.
- Ivarsson, I., Jonsson, T. (2003), Local Technological Competence and Asset-Seeking Fdi: An Empirical Study of Manufacturing and Wholesale Affiliates in Sweden, International Business Review, Vol. 12, Iss. 3, pp. 369-386.
- Jaffe, A. B., Trajtenberg, M. (2002), Patents, Citations, and Innovations: A Window on the Knowledge Economy, MIT Press, Cambridge, Mass.
- Jensen, P. H., Palangkaraya, A., Webster, E. (2005), Disharmony in International Patent Office Decisions, Federal Curcuit Bar Journal, Vol. 15, Iss. 4, pp. 679.
- JETRO (2020a), Jetro Global Trade and Investment Report 2020, Japan External Trade Organization.
- JETRO (2020b), Jetro Invest Japan Report, Japan External Trade Organization.
- JETRO (2020c), Program for Promoting Investment in Japan to Strengthen Supply Chains, Japan External Trade Organization.
- Jiang, H., Qiang, M., Fan, Q., Zhang, M. (2018), Scientific Research Driven by Large-Scale Infrastructure Projects: A Case Study of the Three Gorges Project in China, Technological Forecasting and Social Change, Vol. 134, pp. 61-71.
- Johanson, J., Vahlne, J.-E. (2009), The Uppsala Internationalization Process Model Revisited: From Liability of Foreignness to Liability of Outsidership, Journal of International Business Studies, Vol. 40, Iss. 9, pp. 1411-1431.
- Kafouros, M. I., Buckley, P. J., Sharp, J. A., Wang, C. (2008), The Role of Internationalization in Explaining Innovation Performance, Technovation, Vol. 28, Iss. 1, pp. 63-74.
- Kashcheeva, M., Wunsch-Vincent, S., Zhou, H. (2014), International Patenting Strategies of Chinese Residents: An Analysis of Foreign-Oriented Patent Families, WIPO Economic Research Working Paper, Vol. 20.

- Kennedy, D. M., Cohen, L. (2013), The American Pageant (Vol. 1), Wadsworth Cengage Learning, Boston.
- Kennelly, J. J. (2000), Institutional Ownership and Multinational Firms, Garland Publishing, New York.
- Kinkel, S., Maloca, S. (2008), Fue-Verlagerungen Ins Ausland Ausverkauf Deutscher Entwicklungskompetenz?, Mitteilungen aus der ISI-Erhebung zur Modernisierung der Produktion, Vol. 46.
- Klein, M. (2018), Innovationsstrategien Und Internationale Wettbewerbsfähigkeit Im Bereich Der Windenergie, Springer Gabler, Wiesbaden.
- Kluckhohn, F. R., Strodtbeck, F. L. (1961), Variations in Value Orientations, Row, Peterson, Oxford.
- Kogut, B., Singh, H. (1988), The Effect of National Culture on the Choice of Entry Mode, Journal of International Business Studies, Vol. 19, Iss. 3, pp. 411-432.
- Kuemmerle, W. (1999a), The Drivers of Foreign Direct Investment into Research and Development: An Empirical Investigation, Journal of International Business Studies, Vol. 30, Iss. 1, pp. 1-24.
- Kuemmerle, W. (1999b), Foreign Direct Investment in Industrial Research in the Pharmaceutical and Electronics Industries, Research Policy, Vol. 28, Iss. 2, pp. 179-193.
- Kultti, K., Takalo, T., Toikka, J. (2007), Secrecy Versus Patenting, The RAND Journal of Economics, Vol. 38, Iss. 1, pp. 22-42.
- Kvale, S. (1996), Interviews: An Introduction to Qualitative Research Interviewing, Sage Publications, Thousand Oaks, California.
- Kvale, S. (2007), Doing Interviews, Sage Publications, Thousand Oaks, California.
- Lall, S. (1980), Monopolistic Advantages and Foreign Involvement by Us Manufacturing Industry, in S. Lall (Ed.), The Multinational Corporation: Nine Essays (pp. 3-28), Palgrave Macmillan UK, London.
- Lanjouw, J. O., Schankerman, M. (2004), Patent Quality and Research Productivity: Measuring Innovation with Multiple Indicators, The Economic Journal, Vol. 114, Iss. 495, pp. 441-465.
- Laurens, P., Le Bas, C., Schoen, A., Villard, L., Larédo, P. (2015), The Rate and Motives of the Internationalisation of Large Firm R&D (1994–2005): Towards a Turning Point?, Research Policy, Vol. 44, Iss. 3, pp. 765-776.
- Le Bas, C., Sierra, C. (2002), Location Versus Home Country Advantages in R&D Activities: Some Further Results on Multinationals' Locational Strategies, Research Policy, Vol. 31, Iss. 4, pp. 589-609.
- Ledeneva, A. (2008), Blat and Guanxi: Informal Practices in Russia and China, Comparative Studies in Society and History, Vol. 50, Iss. 1, pp. 118-144.
- Lee, K. (2013), Schumpeterian Analysis of Economic Catch-Up : Knowledge, Path-Creation, and the Middle-Income Trap, Cambridge University Press, Cambridge, United Kingdom; New York.
- Levin, R. C., Klevorick, A. K., Nelson, R. R., Winter, S. G., Gilbert, R., Griliches, Z. (1987), Appropriating the Returns from Industrial Research and Development, Brookings Papers on Economic Activity, Vol. 1987, Iss. 3, pp. 783-831.
- Lewin, A. Y., Massini, S., Peeters, C. (2009), Why Are Companies Offshoring Innovation? The Emerging Global Race for Talent, Journal of International Business Studies, Vol. 40, Iss. 6, pp. 901-925.
- Li, G.-C., Lai, R., D'Amour, A., Doolin, D. M., Sun, Y., Torvik, V. I., . . . Fleming, L. (2014), Disambiguation and Co-Authorship Networks of the U.S. Patent Inventor Database (1975–2010), Research Policy, Vol. 43, Iss. 6, pp. 941-955.
- Lin, B.-W. (2003), Technology Transfer as Technological Learning: A Source of Competitive Advantage for Firms with Limited R&D Resources, R&D Management, Vol. 33, Iss. 3, pp. 327-341.

- Luintel, K. B., Khan, M. (2017), Ideas Production and International Knowledge Spillovers: Digging Deeper into Emerging Countries, Research Policy, Vol. 46, Iss. 10, pp. 1738-1754.
- Luo, Y. (2002), Contract, Cooperation, and Performance in International Joint Ventures, Strategic Management Journal, Vol. 23, Iss. 10, pp. 903-919.
- Mahalanobis, P. C., Bose, R. C., Roy, S. N. (1937), Normalisation of Statistical Variates and the Use of Rectangular Co-Ordinates in the Theory of Sampling Distributions, Sankhyā: The Indian Journal of Statistics, Vol. 3, Iss. 1, pp. 1-40.
- Malerba, F. (2002), Sectoral Systems of Innovation and Production, Research Policy, Vol. 31, Iss. 2, pp. 247-264.
- Malerba, F., Orsenigo, L. (1995), Schumpeterian Patterns of Innovation, Cambridge Journal of Economics, Vol. 19, Iss. 1, pp. 47-65.
- Malerba, F., Orsenigo, L. (1996), Schumpeterian Patterns of Innovation Are Technology-Specific, Research Policy, Vol. 25, Iss. 3, pp. 451-478.
- Mani, D., Srikanth, K., Bharadwaj, A. (2014), Efficacy of R&D Work in Offshore Captive Centers: An Empirical Study of Task Characteristics, Coordination Mechanisms, and Performance, Information Systems Research, Vol. 25, Iss. 4, pp. 846-864.
- Mansfield, E. (1984), R&D and Innovation: Some Empirical Findings, in Z. Griliches (Ed.), R&D, Patents, and Productivity (pp. 127-154), University of Chicago Press, Chicago.
- Mansfield, E., Teece, D. J., Romeo, A. (1980), Overseas Research and Development by Us-Based Firms, The International Executive, Vol. 22, Iss. 1, pp. 10-12.
- Martins, E. C., Terblanche, F. (2003), Building Organisational Culture That Stimulates Creativity and Innovation, European Journal of Innovation Management, Vol. 6, Iss. 1, pp. 64-74.
- Matsumoto, D. (2007), Culture, Context, and Behavior, Journal of Personality, Vol. 75, Iss. 6, pp. 1285-1320.
- Maynard, D. W., Houtkoop-Steenstra, H., Schaeffer, N. C., van der Zouwen, J. (2002), Standardization and Tacit Knowledge: Interaction and Practice in the Survey Interview, Wiley, New York.
- McCrae, R. R. (2004), Human Nature and Culture: A Trait Perspective, Journal of Research in Personality, Vol. 38, Iss. 1, pp. 3-14.
- Merck (2020), Geschäftsbericht 2019, Merck KGaA, Darmstadt.
- Merck Co. Inc. V a Kessler, (1989), 80 F.3d 1543, United States Court of Appeals, Federal Circuit.
- METI Japan (2018), Summary of the 2018 (48th) Survey on Overseas Business Activities, Ministry of Economy, Trade and Industry Japan, Tokyo.
- METI Japan (2019a), 2019 Basic Survey on Overseas Business Activities Guide for Completing the Survey, Ministry of Economy, Trade and Industry Japan, Tokyo.
- METI Japan (2019b), Outline of Survey of Trends in Business Activities of Foreign Affiliates 2019, Ministry of Economy, Trade and Industry Japan, Tokyo.
- Meyer-Krahmer, F., Reger, G. (1999), New Perspectives on the Innovation Strategies of Multinational Enterprises: Lessons for Technology Policy in Europe, Research Policy, Vol. 28, Iss. 7, pp. 751-776.
- Miguelez, E., Fink, C. (2013), Measuring the International Mobility of Inventors: A New Database, WIPO: WIPO Economics & Statistics Series, WIPO, Geneva.
- MSCI (2019a), The Future of Emerging Markets, Research Insights, MSCI, New York.
- MSCI (2019b), Msci Global Market Accessibility Review, MSCI, New York.
- Mueller, S. L., Thomas, A. S. (2001), Culture and Entrepreneurial Potential: A Nine Country Study of Locus of Control and Innovativeness, Journal of Business Venturing, Vol. 16, Iss. 1, pp. 51-75.
- Myers, M. D. (2013), Qualitative Research in Business & Management, Sage Publishing, London.
- Narula, R. (2003), Globalization and Technology: Interdependence, Innovation Systems and Industrial Policy, Polity Press, Cambridge.

- Narula, R. (2004), R&D Collaboration by Smes: New Opportunities and Limitations in the Face of Globalisation, Technovation, Vol. 24, Iss. 2, pp. 153-161.
- Narula, R., Zanfei, A. (2005), Globalisation of Innovation: The Role of Multinational Enterprises, Oxford: Oxford University Press.
- National Bureau of Statistics of China (2003), China Statistical Yearbook 2003, China Statistical Yearbook.
- National Bureau of Statistics of China (2005), China Statistical Yearbook 2005, China Statistical Yearbook.
- National Bureau of Statistics of China (2008), China Statistical Yearbook 2008, China Statistical Yearbook.
- National Bureau of Statistics of China (2009), China Statistical Yearbook 2009, China Statistical Yearbook.
- National Bureau of Statistics of China (2018), China Statistical Yearbook on High Technology Industry 2017, China Statistical Yearbook on High Technology Industry, China Statistics Press.
- National Bureau of Statistics of China (2019), China Statistical Yearbook on Science and Technology 2018, China Statistical Yearbook on Science and Technology, China Statistics Press.
- Nepelski, D., De Prato, G. (2012), Internationalisation of Ict R&D: A Comparative Analysis of Asia, the European Union, Japan, United States and the Rest of the World, Asian Journal of Technology Innovation, Vol. 20, Iss. 2, pp. 219-238.
- Nesta, L., Patel, P. (2004), National Patterns of Technology Accumulation: Use of Patent Statistics, in H. F. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of Quantitative Science and Technology Research the Use of Publication and Patent Statistics in Studies of S&T Systems (pp. 531-551), Kluwer Academic Publishers, Dordrecht.
- Neuhäusler, P., Frietsch, R., Kroll, H. (2019), Probabilistic Concordance Schemes for the Re-Assignment of Patents to Economic Sectors and Scientific Publications to Technology Fields, Fraunhofer ISI Discussion Papers Innovation Systems and Policy Analysis, Vol. 60.
- Nieto, M. J., Rodríguez, A. (2011), Offshoring of R&D: Looking Abroad to Improve Innovation Performance, Journal of International Business Studies, Vol. 42, Iss. 3, pp. 345-361.
- Nobel, R., Birkinshaw, J. (1998), Innovation in Multinational Corporations: Control and Communication Patterns in International R&D Operations, Strategic Management Journal, Vol. 19, Iss. 5, pp. 479-496.
- Northrop Grumman (2020), Annual Report 2019, Virginia.
- Novo Nordisk (2020), Annual Report 2019, Novo Nordisk A/S, Bagsværd.
- NSF (2018), Science & Engineering Indicators 2018 Appendix Tables, National Science Board.
- O'Neill, J. (2001), Building Better Global Economic Brics, Goldman Sachs Global Economics Paper, Vol. 66.
- Odagiri, H., Yasuda, H. (1996), The Determinants of Overseas R&D by Japanese Firms: An Empirical Study at the Industry and Company Levels, Research Policy, Vol. 25, Iss. 7, pp. 1059-1079.
- OECD (2008a), The Internationalisation of Business R&D Evidence, Impacts and Implications, OECD Publishing, Paris.
- OECD (2008b), Oecd Science, Technology and Industry Outlook, OECD Publishing, Paris.
- OECD (2008c), Open Innovation in Global Networks, OECD Publishing, Paris.
- OECD (2008d), Recent Trends in the Internationalisation of R&D in the Enterprise Sector, OECD Publishing, Paris.
- OECD (2009), Innovation in Firms: A Microeconomic Perspective, OECD Publishing, Paris.
- OECD (2011), Attractiveness for Innovation: Location Factors for International Investment, OECD Publishing, Paris.
- OECD (2014), Main Science and Technology Indicators, Volume 2014 Issue 1 (Vol. 2014), OECD Publishing, Paris.

- OECD (2015a), Countering Harmful Tax Practices More Effectively, Taking into Account Transparency and Substance, OECD/G20 Base Erosion and Profit Shifting Project OECD Publishing, Paris.
- OECD (2015b), Frascati Manual 2015: Guidelines for Collecting and Reporting Data on Research and Experimental Development, OECD Publishing, Paris.
- OECD (2018), Main Science and Technology Indicators, Volume 2018 Issue 1 (Vol. 2018), OECD Publishing, Paris.
- OECD (2019a), Main Science and Technology Indicators, Volume 2019 Issue 1 (Vol. 2019), OECD Publishing, Paris.
- OECD (2019b), Patent Quality Indicators Database: 2019.07.
- OECD (2020a), Citations Database: 2020.07.
- OECD (2020b), Han Database: 2020.07.
- OECD (2020c), Main Science and Technology Indicators, Volume 2019 Issue 2 (Vol. 2019), OECD Publishing, Paris.
- OECD (2020d), Main Science and Technology Indicators, Volume 2020 Issue 1 (Vol. 2020), OECD Publishing, Paris.
- OECD (2020e), Oecd.Stat, OECD.
- OECD (2020f), Patent Quality Indicators Database: 2020.07.
- OECD (2020g), Ppps and Exchange Rates
- OECD (2020h), Regpat Database: 2020.01.
- OECD, EUROSTAT (2018), Oslo Manual: Guidelines for Collecting, Reporting and Using Data on Innovation, OECD; EUROSTAT, Paris.
- Oxley, J. E., Sampson, R. C. (2004), The Scope and Governance of International R&D Alliances, Strategic Management Journal, Vol. 25, Iss. 8-9, pp. 723-749.
- Pakes, A., Griliches, Z. (1980), Patents and R&D at the Firm Level: A First Report, Economics Letters, Vol. 5, Iss. 4, pp. 377-381.
- Patel, P., Pavitt, K. (1987), Is Western Europe Losing the Technological Race?, Research Policy, Vol. 16, Iss. 2, pp. 59-85.
- Patel, P., Pavitt, K. (1991), Large Firms in the Production of the World's Technology: An Important Case of "Non-Globalisation", Journal of International Business Studies, Vol. 22, Iss. 1, pp. 1-21.
- Patel, P., Pavitt, K. (2013), The Localised Creation of Global Technological Advantage, in J. Molero (Ed.), Technological Innovation, Multinational Corporations and New International Competitiveness: The Case of Intermediate Countries (pp. 59-74), Routledge, New York.
- Patel, P., Vega, M. (1999), Patterns of Internationalisation of Corporate Technology: Location Vs. Home Country Advantages, Research Policy, Vol. 28, Iss. 2, pp. 145-155.
- Paul, J., Feliciano-Cestero, M. M. (2020), Five Decades of Research on Foreign Direct Investment by Mnes: An Overview and Research Agenda, Journal of Business Research.
- Pavitt, K., Patel, P. (1999), Innovation Policy in a Global Economy, in D. Archibugi, J. Howells,
 & J. Michie (Eds.), Innovation Policy in a Global Economy (pp. 94-119), Cambridge University Press, Cambridge, England; New York.
- Pearce, R. D. (1999), Decentralised R&D and Strategic Competitiveness: Globalised Approaches to Generation and Use of Technology in Multinational Enterprises (Mnes), Research Policy, Vol. 28, Iss. 2, pp. 157-178.
- Picci, L. (2010), The Internationalization of Inventive Activity: A Gravity Model Using Patent Data, Research Policy, Vol. 39, Iss. 8, pp. 1070-1081.
- Polanyi, M. (1966), The Tacit Dimension, Doubleday, New York.
- Polanyi, M. (2005), Personal Knowledge: Towards a Post-Critical Philosophy, Routledge, London.
- Popp, D., Juhl, T., Johnson, D., K. N. (2004), Time in Purgatory: Examining the Grant Lag for U.S. Patent Applications, Topics in Economic Analysis & Policy, Vol. 4, Iss. 1.
- Porter, M. E. (1990), The Competitive Advantage of Nations, Harvard Business Review, Vol. 68, Iss. 2, pp. 73-93.

- Prasad, E. S. (2017), Gaining Currency: The Rise of the Renminbi, Oxford University Press, New York.
- Pugatch, M. P., Torstensson, D., Chu, R. (2012), Taking Stock: How Global Biotechnology Benefits from Intellectual Property Rights, Pugatch Consilium, Pugatch Consilium, Washington.
- PwC (2019), The Cayman Islands Substance Requirements, PricewaterhouseCoopers, London.
- Ramirez, M., Li, X. (2009), Learning and Sharing in a Chinese High-Technology Cluster: A Study of Inter-Firm and Intra-Firm Knowledge Flows between R&D Employees, New Technology, Work and Employment, Vol. 24, Iss. 3, pp. 277-296.
- Rassenfosse, G. d., Dernis, H., Guellec, D., Picci, L., van Pottelsberghe de la Potterie, B. (2013), The Worldwide Count of Priority Patents: A New Indicator of Inventive Activity, Research Policy, Vol. 42, Iss. 3, pp. 720-737.
- Rawlings, J. O., Pantula, S. G., Dickey, D. A. (1998), Applied Regression Analysis : A Research Tool, Springer, New York.
- Reddy, P. (2011), Global Innovation in Emerging Economies, Routledge, New York.
- Reinert, E. S. (2007), How Rich Countries Got Rich and Why Poor Countries Stay Poor, Constable, London.
- Ronen, S., Shenkar, O. (1985), Clustering Countries on Attitudinal Dimensions: A Review and Synthesis, Academy of Management Review, Vol. 10, Iss. 3, pp. 435-454.
- Ronen, S., Shenkar, O. (2013), Mapping World Cultures: Cluster Formation, Sources and Implications, Journal of International Business Studies, Vol. 44, Iss. 9, pp. 867-897.
- Ronstadt, R. C. (1978), International R&D: The Establishment and Evolution of Research and Development Abroad by Seven U. S. Multinationals, Journal of International Business Studies, Vol. 9, Iss. 1, pp. 7-24.
- Roussel, P. A., Saad, K. N., Erickson, T. J. (1991), Third Generation R&D: Managing the Link to Corporate Strategy, Arthur D. Little, Boston.
- Ruttan, V. W. (1988), Cultural Endowments and Economic Development: What Can We Learn from Anthropology?, Economic Development and Cultural Change, Vol. 36, Iss. S3, pp. S247-S271.
- Rysman, M., Simcoe, T. (2008), Patents and the Performance of Voluntary Standard-Setting Organizations, Management Science, Vol. 54, Iss. 11, pp. 1920-1934.
- Safarian, A. E. (1967), Foreign Ownership of Canadian Industry, McGraw-Hill Co. of Canada, Toronto; New York.
- Sanna-Randaccio, F., Veugelers, R. (2007), Multinational Knowledge Spillovers with Decentralised R&D: A Game-Theoretic Approach, Journal of International Business Studies, Vol. 38, Iss. 1, pp. 47-63.
- Schaffland, H. (2017), Globalisierung Von Forschung Und Entwicklung in Der Ikt-Industrie, Springer Gabler, Wiesbaden.
- Schasse, U., Belitz, H., Kladroba, A., Stenke, G. (2014), Forschungs- Und Entwicklungsaktivitäten Der Deutschen Wirtschaft, Deutsches Institut für Wirtschaftsforschung Berlin (DIW) & Stifterverband: Studien zum deutschen Innovationssystem, Berlin.
- Schmid, S., Wurster, D. J. (2017), International Work Experience: Is It Really Accelerating the Way to the Management Board of Mncs?, International Business Review, Vol. 26, Iss. 5, pp. 991-1008.
- Schmoch, U. (2008), Concept of a Technology Classification for Country Comparisons, WIPO, Geneva.
- Schwartz, S. (2008), The 7 Schwartz Cultural Value Orientation Scores for 80 Countries.
- SCOPUS (2020), Scopus Database, Elsevier.
- Shane, S. (1993), Cultural Influences on National Rates of Innovation, Journal of Business Venturing, Vol. 8, Iss. 1, pp. 59-73.

- Shenkar, O., Luo, Y., Yeheskel, O. (2008), From "Distance" to "Friction": Substituting Metaphors and Redirecting Intercultural Research, Academy of Management Review, Vol. 33, Iss. 4, pp. 905-923.
- Simonoff, J. S. (2003), Analyzing Categorical Data, Springer Science, New York.
- Singh, J. (2008), Distributed R&D, Cross-Regional Knowledge Integration and Quality of Innovative Output, Research Policy, Vol. 37, Iss. 1, pp. 77-96.
- Smith, P. B., Dugan, S., Trompenaars, F. (1996), National Culture and the Values of Organizational Employees: A Dimensional Analysis across 43 Nations, Journal of Cross-Cultural Psychology, Vol. 27, Iss. 2, pp. 231-264.
- Soete, L. (1987), The Impact of Technological Innovation on International Trade Patterns: The Evidence Reconsidered, Research Policy, Vol. 16, Iss. 2, pp. 101-130.
- Sommer, D., Bhandari, K. R. (2018), Internationalization of R&D, Innovation and Firm Performance: The Case of Pharma, Paper presented at the 17th ISS Conference "Innovation, Catch-Up, and Sustainable Development", Seoul.
- Sorescu, A. B., Chandy, R. K., Prabhu, J. C. (2003), Sources and Financial Consequences of Radical Innovation: Insights from Pharmaceuticals, Journal of Marketing, Vol. 67, Iss. 4, pp. 82-102.
- Sosnovskikh, S. (2017), Industrial Clusters in Russia: The Development of Special Economic Zones and Industrial Parks, Russian Journal of Economics, Vol. 3, Iss. 2, pp. 174-199.
- Sousa, C. M. P., Bradley, F. (2006), Cultural Distance and Psychic Distance: Two Peas in a Pod?, Journal of International Marketing, Vol. 14, Iss. 1, pp. 49-70.
- Squicciarini, M., Dernis, H., Criscuolo, C. (2013), Measuring Patent Quality, OECD Science, Technology and Industry Working Papers, Vol. 2013, Iss. 3.
- Sternitzke, C. (2010), Knowledge Sources, Patent Protection, and Commercialization of Pharmaceutical Innovations, Research Policy, Vol. 39, Iss. 6, pp. 810-821.
- Stifterverband (2009), Fue-Datenreport 2009 Tabellen Und Daten, Wissenschaftsstatistik GmbH.
- Stifterverband (2019), Arendi Zahlenwerk 2019.
- Subramanian, A. (2010), New Ppp-Based Estimates of Renminbi Undervaluation and Policy Implications, Policy Brief, Peterson Institute for International Economics, Washington.
- Suutari, V., Brewster, C., Mäkelä, L., Dickmann, M., Tornikoski, C. (2018), The Effect of International Work Experience on the Career Success of Expatriates: A Comparison of Assigned and Self-Initiated Expatriates, Human Resource Management, Vol. 57, Iss. 1, pp. 37-54.
- Taylor, M. Z., Wilson, S. (2012), Does Culture Still Matter?: The Effects of Individualism on National Innovation Rates, Journal of Business Venturing, Vol. 27, Iss. 2, pp. 234-247.
- Teece, D. J. (1986), Profiting from Technological Innovation: Implications for Integration, Collaboration, Licensing and Public Policy, Research Policy, Vol. 15, Iss. 6, pp. 285-305.
- Thursby, J., Thursby, M. (2006), Here or There? A Survey of Factors in Multinational R&D Location, The National Academies Press, Washington.
- Tiwari, R., Herstatt, C. (2012), India a Lead Market for Frugal Innovations? Extending the Lead Market Theory to Emerging Economies, TIM/TUHH Working Paper, Vol. 67.
- Tolba, A. H., Mourad, M. (2011), Individual and Cultural Factors Affecting Diffusion of Innovation, Journal of International Business and Cultural Studies, Vol. 5, pp. 1.
- Trenin, D. (2018), Russia and Germany: From Estranged Partners to Good Neighbors, Carnegie Moscow Center, Moscow.
- Trompenaars, F., Hampden-Turner, C. (1997), Riding the Waves of Culture: Understanding Cultural Diversity in Business, Nicholas Brealey Publishing, London.
- U.S. Department of Commerce (1992), U.S. Direct Investment Abroad 1989 Benchmark Survey Final Results, Washington DC.
- UNCTAD (2005), World Investment Report 2005, UNCTAD, Geneva.
- UNCTAD (2017), World Investment Report 2017, UNCTAD, Geneva.
- United Nations (1990), International Standard Industrial Classification of All Economic Activities (Isic), Rev. 3, Statistical Papers, United Nations, New York.

- United Nations (2002), International Standard Industrial Classification of All Economic Activities (Isic), Rev. 3.1, Statistical Papers, United Nations,, New York.
- United Nations (2008), International Standard Industrial Classification of All Economic Activities (Isic), Rev. 4, Statistical Papers, United Nations, New York.
- USPTO (2018), Manual of Patent Examining Procedure, United States Patent and Trademark Office, Alexandria.
- Vahlne, J.-E., Schweizer, R., Johanson, J. (2012), Overcoming the Liability of Outsidership the Challenge of Hq of the Global Firm, Journal of International Management, Vol. 18, Iss. 3, pp. 224-232.
- Vermeulen, F., Barkema, H. (2001), Learning through Acquisitions, Academy of Management Journal, Vol. 44, Iss. 3, pp. 457-476.
- von Zedtwitz, M. (2005), International R&D Strategies in Companies from Developing Countries - the Case of China, Paper presented at the UNCTAD Expert Meeting on the Impact of FDI on Development, Geneva.
- von Zedtwitz, M., Gassmann, O. (2002), Market Versus Technology Drive in R&D Internationalization: Four Different Patterns of Managing Research and Development, Research Policy, Vol. 31, Iss. 4, pp. 569-588.
- von Zedtwitz, M., Gassmann, O. (2016), Global Corporate R&D to and from Emerging Economies, in Cornell University, INSEAD, & WIPO (Eds.), The Global Innovation Index 2016 (Vol. 8, pp. 125-131), WIPO, Geneva.
- Warner, E. (2014). *Patenting and Innovation in China: Incentives, Policy, and Outcomes.* (PhD), Santa Monica, CA.
- Weibel, B. (2016), Corporate Intellectual Property Management: The Case of Siemens.
- Weiss, A. (1984), Simple Truths of Japanese Manufacturing, Harvard Business Review, Vol. 62, Iss. 4, pp. 119-125.
- Westney, D. E. (1993), Cross-Pacific Internationalization of R&D by U.S. And Japanese Firms, R&D Management, Vol. 23, Iss. 2, pp. 171-181.
- Williams, C., Vrabie, A. (2018), Host Country R&D Determinants of Mne Entry Strategy: A Study of Ownership in the Automobile Industry, Research Policy, Vol. 47, Iss. 2, pp. 474-486.
- WIPO (2017), Patent Cooperation Treaty Yearly Review 2017 the International Patent System, World Intellectual Property Organization, Geneva.
- WIPO (2018), World Intellectual Property Indicators 2018, World Intellectual Property Organization, Geneva.
- WIPO (2020a), Guide to the International Patent Classification (Ipc), World Intellectual Property Organization, Geneva.
- WIPO (2020b), International Patent Classification (Ipc) (2021.01 Edition), World Intellectual Property Organization, Geneva.
- World Bank (1989), Per Capita Income: Estimating Internationally Comparable Numbers, World Bank, Washington.
- World Bank (2019), World Bank List of Economies, World Bank.
- World Bank (2020), Database.
- Wu, A. (2017), The Signal Effect of Government R&D Subsidies in China: Does Ownership Matter?, Technological Forecasting and Social Change, Vol. 117, pp. 339-345.
- Young, T. (2000), Re-Assessing the Health of the Asian Tigers, Graziadio Business Review, Vol. 3, Iss. 1.
- Yueh, L. (2009), Patent Laws and Innovation in China, International Review of Law and Economics, Vol. 29, Iss. 4, pp. 304-313.
- Zaheer, S. (1995), Overcoming the Liability of Foreignness, The Academy of Management Journal, Vol. 38, Iss. 2, pp. 341-363.
- Zander, I. (2002), The Formation of International Innovation Networks in the Multinational Corporation: An Evolutionary Perspective, Industrial and Corporate Change, Vol. 11, Iss. 2, pp. 327-353.

- Zhang, D., Guo, Y. (2019), Financing R&D in Chinese Private Firms: Business Associations or Political Connection?, Economic Modelling, Vol. 79, pp. 247-261.
- Zhang, Y., Li, H., Hitt, M. A., Geng, C. (2007), R&D Intensity and International Joint Venture Performance in an Emerging Market: Moderating Effects of Market Focus and Ownership Structure, Journal of International Business Studies, Vol. 38, Iss. 6, pp. 944-960.
- Zhou, P., Leydesdorff, L. (2006), The Emergence of China as a Leading Nation in Science, Research Policy, Vol. 35, Iss. 1, pp. 83-104.

Interviews

Effenberger, B. (2017, 22. Jul.), Chamber of Commerce and Industry / Interviewer: D. Sommer. Stuttgart.

Heuckeroth, V. (2017, 7. Jun.), Patent Lawyer Witteweller / Interviewer: D. Sommer. Stuttgart.

Nell, J. (2018, 15. Dec.), Geely - Senior Chief Motion Integration Engineer / Interviewer: D. Sommer. Shanghai.

News Articles

- Bloomberg. (2018, 27. Sep.). China Claims More Patents Than Any Country but Most Are Worthless. South China Morning Post. Retrieved from https://www.scmp.com/print/tech/article/2165908/china-claims-more-patents-anycountry-most-are-worthless
- China Power. (2016, 5. Feb.). Are Patents Indicative of Chinese Innovation? *China Power*. Retrieved from https://chinapower.csis.org/patents/
- EPO. (2018, 5. Sep.). China: Sipo Has Been Renamed to Cnipa. Retrieved from https://www.epo.org/searching-for-patents/helpful-resources/asian/asiaupdates/2018/20180905.html
- EPO. (2020b, 12. Mar.). Digital Technologies Take Top Spot in European Patent Applications. *European Patent Office*. Retrieved from https://www.epo.org/newsevents/press/releases/archive/2020/20200312.html
- Finnie, P. (2019, 11. Feb.). Why China's Impressive Patent Rates Don't Tell the Whole Story. *NS Tech*. Retrieved from https://tech.newstatesman.com/guest-opinion/china-patentrates
- Fröndhoff, B., Höpner, A., Murphy, M. (2019, 27. Nov.). Heikle China-Geschäfte: Vw, Basf Und Siemens Geraten in Erklärungsnot [Delicate China Dealings: VW, BASF and Siemens at a Loss to Explain]. *Handelsblatt*. Retrieved from https://www.handelsblatt.com/unternehmen/management/unterdrueckung-vonminderheiten-heikle-china-geschaefte-vw-basf-und-siemens-geraten-inerklaerungsnot-/25270466.html
- Gold, H. (2020, 14. Jul.). Uk Bans Huawei from Its 5g Network in Rapid About-Face. *CNN*. Retrieved from https://edition.cnn.com/2020/07/14/tech/huawei-uk-ban/index.html
- Lampton, D. M., Wallace, J., Conrad, B. (2016, 9. Mar.). Is China a Developed Country? *China Power*. Retrieved from https://chinapower.csis.org/is-china-a-developed-country/
- McDonald, H. (2015, 5. Mar.). 700 Us Companies Now Located in Ireland as Direct Investment Soars The Guardian. Retrieved from https://www.theguardian.com/world/2015/mar/05/ireland-attracts-soaring-level-of-usinvestment
- Mozur, P., Myers, S. L. (2021, 10. Mar.). Xi's Gambit: China Plans for a World without American Technology. *The New York Times*.
- Ohlberg, M. (2020, 3. Aug.). Microsoft Hat "Interesse" an Chinesischer Videoplattform Tiktok [Microsoft Shows "Interest" in Chinese Videoplattform Tiktok]. *Deutschlandfunk*.

XXXII

Retrieved from https://www.deutschlandfunk.de/politische-vorsicht-odermachtkalkuel-microsoft-hat.2907.de.html?dram:article_id=481673

- Riley, C. (2020, 30. Dec.). Europe Strikes Major Investment Deal with China Despite Us Concerns. *CNN*. Retrieved from https://edition.cnn.com/2020/12/30/business/euchina-investment/index.html
- Solomon, S. (2013, 23. Aug.). Israel Struggles with Upgrade from Emerging to Developed Market. *Bloomberg*. Retrieved from https://www.bloomberg.com/news/articles/2013-08-22/israel-struggles-with-upgrade-from-emerging-to-developed-market
- Tani, M. (2017, 2. Aug.). Asia's 'Tiger Cubs' Will Feast on Fdi in Next Decade: Nomura. *Nikkei Asian Review*. Retrieved from https://asia.nikkei.com/Economy/Asia-s-tiger-cubs-will-feast-on-FDI-in-next-decade-Nomura

The Economist. (2013, 29. Mar.). Why Is South Africa Included in the Brics. The Economist.

Tweed, D. (2019, 16. Apr.). China's New Silk Road. *Bloomberg*. Retrieved from https://www.bloomberg.com/quicktake/china-s-silk-road

In this segment select original data from online sources is displayed.

Appendix-Table 1 Total BERD, https://stats.oecd.orgXXXV
Appendix-Table 2 Selected Data of Majority-Owned U.S. Affiliates by Country of Ultimate Beneficial Owner 2017, US Bureau of Economic AnalysisXXXVII
Appendix-Table 3 U.S. Direct Investment Abroad, All Majority-owned Foreign Affiliates (data for 2009 and forward), US Bureau of Economic AnalysisXXXIX
Appendix-Table 4 Japan Inward activity of multinationals by investing country total manufacturing - ISIC Rev 3, https://stats.oecd.orgXLIV
Appendix-Table 5 Japan Outward activity of multinationals by country of location - ISIC Rev 3, https://stats.oecd.orgXLVII
Appendix-Table 6 Exchange Rates to USD, https://data.worldbank.orgL
Appendix-Table 7 Test Statistics One-Way ANOVA with Bonferroni correction for Patents in Pharmaceutical Industry, all years, OECD (2020a, 2020f, 2020h)LVI
Appendix-Table 8 Outward Host-Country Patents, https://stats.oecd.orgLVII
Appendix-Table 9 Inward Host-Country Patents, https://stats.oecd.orgLXIX

Appendix-Table 1 Total BERD, https://stats.oecd.org

MSTI Variables	BERD at constant prices and PPP \$																	
Unit	US Dollar, I	Villions, 2010																
Year	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Country																		
Australia	4 912 73	5 935 31	6 451 81	6 991 62	7 521 69	8 607 14	9 928 54	11,308.4 1	12,375.6	11 856 78	11,989.5 2	11,974.5 2		12,163.0		10,879.8		
Austria	.,		4 287 83	.,	4 725 62	5 452 50	5 657 76	6 028 98	6 385 26	6 099 52	6 554 32	6 637 34	7 472 09	7 620 20	8 058 96	8 075 13	8 300 17	8 599 61
<u>Belgium</u>	5 164 77	5 527 14	5 077 11	4 905 33	4,720.02	4 928 42	5 238 17	5 528 78	5 706 69	5 571 04	6 009 40	6 577 79	7 065 82	7 229 07	7 538 40	7 911 68	8 175 90	9 001 93
<u>Canada</u>	12,708.7	44,000,00	13,493.7	13,597.1	14,149.9	44.400.00	14,551.7	14,331.1	13,689.1	40,500,04	12,936.3	13,396.0	13,083.7	12,781.8	13,753.2	13,686.2	13,658.6	12,985.7
Chile	/	14,388.33	8	1	3	14,168.82	4	200.00	450.70	13,502.84	1	7	121.00	4	459.00	100.00		8 460 70
Czech Republic								306.60	450.79	302.21	302.42	393.43	431.00	490.20	456.99	409.92	0.014.04	409.72
Denmark	1,415.65	1,449.10	1,493.47	1,608.63	1,724.47	1,745.63	1,982.88	2,176.36	2,124.96	2,027.68	2,195.06	2,496.94	2,755.05	2,949.54	3,257.25	3,299.69	3,314.81	3,790.06
Estonia		3,551.33	3,771.05	3,898.13	3,796.61	3,856.04	3,945.32	4,350.29	4,773.61	4,992.20	4,664.80	4,749.57	4,736.31	4,601.24	4,617.86	4,931.67	5,259.91	5,244.73
Finland	28.12	52.06	51.58	65.62	89.00	122.11	160.45	175.59	179.31	175.22	227.99	450.48	393.80	270.19	210.47	232.74	229.01	227.47
France	4,040.14 26,975.5	4,094.41	4,167.56 29,243.4	4,346.97 28,456.5	4,511.21 29,136.9	4,704.66	4,939.77 29,703.7	5,281.44 29,983.3	5,792.03 30,483.3	5,401.34	5,390.57 32,121.8	5,463.66 33,438.2	4,936.37 34,418.5	4,718.60 34,776.0	4,445.57 35,190.3	4,013.37 35,491.4	3,863.60 35,779.5	3,951.77 36,056.7
Germany	7 49.278.1	28,404.03	49.828.9	7 50.672.5	6 50.564.5	28,557.79	0 53.737.3	2 55.262.3	6 58.672.7	31,249.11	8 58.289.3	6 62.769.7	3 65.100.9	9 63.580.3	7 66.482.6	0 69.716.6	2 70.892.9	5 76.449.0
Greece	7	49,657.15	9	2	3	50,629.92	7	8	9	56,661.02	2	6	5	6	1	8	8	2
	371.66	500.44	499.90	527.63	518.28	570.80	566.87	572.33	716.21	749.89	738.73	667.58	632.46	690.19	725.63	810.76	1,071.53	1,430.03
	616.66	669.20	666.49	670.29	738.08	865.99	1,071.10	1,093.82	1,179.66	1,386.33	1,467.70	1,624.77	1,785.80	2,120.04	2,218.76	2,373.84	2,166.44	2,491.53
Incland	140.83	168.95	164.01	145.37		164.81	192.99	190.69	189.78	170.23	160.71	164.47		128.57	164.28	209.76	211.44	218.35
	1,158.63	1,158.82	1,209.02	1,300.10	1,414.31	1,507.13	1,605.81	1,734.37	1,831.94	2,127.64	2,158.27	2,224.96	2,296.70	2,336.09	2,439.96	2,407.57	2,493.05	3,000.46
Israel	5,091.11	5,446.91	5,318.25	4,967.45	5,305.48	5,864.97	6,368.92	7,410.79	7,414.56	7,190.03	7,188.09	7,768.16	8,272.27	8,488.01	9,050.57	9,521.73	10,275.3 7	11,055.0 7
Italy	10,128.5 7	10,499.96	10,762.5 6	10,316.1 7	10,514.9 5	11,116.48	11,401.6 2	12,817.6 6	13,458.0 2	13,283.67	13,682.5 3	13,798.2 1	13,964.7 9	14,261.1 7	15,188.0 3	15,709.1 1	16,978.4 8	17,199.4 1
<u>Japan</u>	86,698.0 3	92,435,37	94,834.0 4	97,908.9 1	99,910.7 2	108,432.2 7	114,390. 18	119,580. 15	119,053. 68	105,284.2	107,552. 61	111,767. 96	111,695. 94	116,871. 28	122,961. 16	121,259. 14	117,688. 49	122,204. 38
Korea	15,759.5	18 197 90	18,667.1	20,189.0	22,995.4	24 826 08	28,292.5	31,211.1	33,027.1	34 554 22	39,010.1	44,699.8	50,077.0	53,486.7	56,929.6	57,027.8	59,001.3	66,902.6
Latvia	44.67	30.74	48.54	38.90	60.68	81 / 1	138 / 2	83.72	65 17	63 17	83.26	75 79	61 16	72 10	104.08	67 70	48.20	64.88
Lithuania	51 15	84.08	51 20	71.26	87.65	89.44	139.36	160.00	134 58	123.89	143 33	156 37	165.06	171.65	233 57	213 58	226.07	263.91
Luxembourg	485.65	04.00	01.20	521 29	524.48	522 57	580.36	583.63	547.05	526.86	432.10	429.12	312.05	314.26	325.62	330.15	357 32	351.25
Mexico	1 372 15	1 473 40	1 873 03	2 001 63	2 618 30	3 025 88	3 0/9 17	3 106 67	2 804 06	3 137 71	3 270 29	3 220 47	2 704 30	2 951 93	3 095 /6	3 159 79	3 077 49	551.25
Netherlands	6 447 52	6 541 14	6 077 38	6 290 02	6 560 62	6 557 01	6 777 93	6 658 50	6 233 61	5 790 89	6 109 25	8 088 33	8 152 59	8 069 10	8 432 87	8 633 40	0 238 08	9 556 87
New Zealand	0,447.52	429.04	0,077.30	552 79	0,000.02	500 1E	0,777.93	662.02	0,233.01	704.27	0,109.25	791 10	0,152.55	792.02	0,432.07	002.01	9,230.90	1 262 20
Norway		2 100 40	2 076 56	2 157 00	2 026 25	2 070 00	2 120 60	2 356 22	2 509 29	2 4 4 6 4	2 304 04	2 514 20	2 509 24	2 694 17	2 840 00	3 110 67	3 172 94	3 367 45
Poland	1 262 54	1 221 25	2,070.00	2,107.09	2,020.20	2,070.00	2,109.00	1,000.23	2,000.20	2,444.01	2,394.04	2,014.29	2,090.21	2,004.17	2,040.00	3,119.07	6.064.27	3,307.15
Portugal	1,202.51	1,231.35	030.91	001.37	971.42	1,100.01	1,170.11	1,229.65	1,393.19	1,400.77	00.000	1,090.04	2,000.75	3,209.43	3,910.07	4,342.71	0,004.37	0,090.39
Slovak Republic	537.73	664.94	645.55	631.30	729.59	815.49	1,259.68	1,679.02	2,114.54	2,117.40	2,032.02	1,957.14	1,863.15	1,694.81	1,624.27	1,592.83	1,746.56	1,939.04
	350.99	363.11	326.84	294.92	246.62	262.81	237.06	227.37	268.42	248.90	349.01	341.19	468.19	543.98	475.58	500.50	626.14	776.80

XXXVI

Appendix – Tables

Slovenia		000.04	004.07	404.05	000 50	450.54	400.07	500.00	500.00	000.00	050.00	700.00	4 000 00	4 004 04	4 000 70	1 007 10	070.40	000.00	070.00
		333.91	381.67	401.25	382.56	459.51	433.37	508.80	502.03	638.88	658.69	792.88	1,023.86	1,084.94	1,086.72	1,037.49	970.40	909.99	872.08
Spain		5 660 F7	5 700 10	6 602 62	7 200 51	7 670 92	0 212 75	0 550 07	10,515.4	11,151.4	10 426 20	10,325.4	10,171.1	0 740 09	0 457 44	0 209 41	0 446 11	0 600 02	10,391.3
0		5,009.57	5,700.10	0,093.03	7,209.01	1,019.03	0,313.75	9,559.07	5	10 044 7	10,420.30	0	2	9,749.00	9,437.44	9,306.41	9,440.11	9,090.02	11.010.0
Sweden			0 740 00		0.004.47	0 740 00	0.000.44	0.005.00	0.074.04	10,044.7	0.000.04	0.000.05	0.000.50	0.000.04	0.014.04	0 747 07	0.005.00	10,130.1	11,016.0
0 11 1			9,749.68		9,031.47	8,743.62	8,890.11	9,865.23	9,274.34	9	9,003.64	8,623.05	8,986.52	8,880.94	9,214.04	8,747.37	9,865.32	4	4
Switzerland	<u>d</u>					7 405 07				0 000 17							10,795.0		10,898.8
- .		5,950.60				7,125.37				8,226.47				9,720.38			3		6
lurkey																			10,764.0
		1,330.71	1,420.52	1,253.11	980.40	1,196.88	2,069.73	2,375.82	3,451.07	3,735.95	3,761.64	4,283.99	4,837.84	5,507.79	6,186.08	7,174.30	7,829.83	9,386.48	
United Kine	<u>gdom</u>	20,347.9		21,398.2	21,243.9	20,717.8		22,164.0	23,616.4	23,353.2		22,878.2	24,320.6	23,531.6	24,911.7	26,466.9	27,608.4	28,785.7	29,204.7
		4	21,004.32	3	8	3	21,225.59	2	7	6	22,587.68	9	5	7	3	6	3	2	4
United Stat	tes	246,144.	243,338.1	229,886.	233,676.	236,139.	248,639.5	264,289.	279,820.	296,309.	285,683.5	278,977.	288,074.	290,495.	304,637.	315,852.	326,353.	339,937.	353,521.
		75	9	15	25	79	5	71	30	96	9	00	37	19	36	25	53	97	96
European	Union (28 countries)	151,435.	156,987.6	158,390.	159,132.	160,749.	163,572.7	173,665.	180,889.	188,499.	183,864.4	188,066.	199,652.	204,115.	205,315.	212,700.	220,728.	228,621.	241,242.
		88	7	66	78	66	6	94	33	48	3	66	76	64	52	31	91	28	20
European	Union (15 countries)	146,347.	151,725.9	153,694.	154,104.	155,223.	157,754.7	167,117.	173,986.	181,276.	176,559.2	180,004.	190,279.	193,137.	193,497.	199,622.	206,576.	212,794.	223,663.
		59	4	50	41	81	0	50	33	95	9	58	97	27	83	23	69	49	62
OECD - To	otal	533,000.	547,715.4	538,372.	548,070.	559,436.	588,615.3	626,759.	661,344.	687,774.	659,846.2	664,466.	697,178.	710,264.	735,552.	765,946.	783,909.	806,414.	846,939.
		46	2	13	20	34	0	95	98	98	6	45	46	75	83	80	10	50	01
Non-OE	Argentina																		
CD	-	565.90	461.40	432.29	550.21	728.36	807.27	884.10	978.79	941.93	1,114.79	1,151.80	1,258.89	1,283.15	1,224.05	940.70	1,068.67	1,008.90	1,105.44
Econo-	China (People's	24,464.6		34,957.1	41,527.8	53,131.9		79,931.3	93,206.4	109,025.	137,263.0	156,744.	183,998.	214,306.	242,748.	266,963.	288,547.	318,560.	345,076.
mies	Republic of)	4	28,124.71	4	0	7	65,139.73	3	2	99	7	81	00	38	00	94	23	47	21
	Romania																		
		577.39	576.13	574.19	597.19	614.81	613.00	714.94	737.06	625.85	637.66	601.38	629.42	674.38	440.33	606.71	853.86	1,104.88	1,274.52
	Russia	13,586.9		17,530.4	18,986.0	18,386.2		19,021.3	20,699.8	19,964.2		20,017.6	20,289.5	20,408.8	21,548.8	22,286.4	22,088.3	21,813.1	22,903.1
		4	15,893.40	4	0	9	17,854.69	8	5	1	21,872.32	3	0	6	4	2	3	3	0
	Singapore																		
		2,306.44	2,585.61	2,631.10	2,675.00	3,210.61	3,689.63	3,943.47	4,792.46	5,882.85	4,112.37	4,202.45	4,897.53	4,649.00	4,748.84	5,495.69	5,846.18	5,610.48	5,568.06
	South Africa		1 000 75		1 070 07	0.045.65		0 707 4-	0.004.45	0 000 75	0.500.45	0 400 05	0 4 47 57	0 000 0 ·	0.400 7.	0.040.05	0.005.05	0 000 0-	
			1,688.70		1,976.27	2,245.05	2,593.91	2,737.15	2,921.42	3,082.70	2,590.16	2,199.30	2,147.57	2,060.61	2,163.71	2,312.38	2,285.39	2,280.87	
	Chinese Taipei					10,044.1		12,542.7	13,950.6	15,530.1		17,939.1	19,540.9	20,765.6	21,996.0	23,304.4	24,030.2	25,186.2	27,550.2
		7,217.76	7,527.86	8,096.52	8,978.56	8	11,284.60	0	2	4	16,081.64	4	3	6	6	6	2	9	0

Data extracted on 26 Dec 2019 10:31 UTC (GMT) from OECD.Stat

XXXVII

			Mi	llions of dollars					Millions of dollars			
			Expenditures								Research and	
		Gross property, plant_and equip-	for property,				Compensation of	Thousands of	U.S. exports of goods shipped by	U.S. imports of goods shipped to	development performed by	
	Total assets	ment	equipment	Sales	Net income	Value added	employees	employees	affiliates	affiliates	affiliates	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	
All countries	14,475,586	2,579,660	266,780	4,564,418	120,724	1,034,719	621,050	7,661.3	364,408	689,219	62,812	
Canada	2,214,950	406,461	27,244	369,228	18,316	99,604	55,603	755.5	14,417	17,282	980	
Europe	8,014,336	1,332,880	136,004	2,487,374	84,278	633,814	388,749	4,720.0	199,385	312,076	43,413	
Beigium	203,215	25,509	1,621	34,833	-1,023	9,360	4,852	63.2	3,413	6,260	273	
	34,803	8,977	1,215	27,910	963	6,196	3,810	41.7	1,419	12,125	499	
Finland	24,650	6,817	492	22,280	-3,616	6,765	4,616	37.2	2,344	4,065	(D)	
France	1,172,358	110,885	7,994	298,217	12,416	87,872	54,588	744.4	24,443	26,682	4,072	
Germany	1,416,345	273,080	40,704	492,649	26,271	114,108	69,319	815.8	40,764	82,942	9,122	
Ireland	518,519	53,375	4,476	141,164	6,588	48,659	34,234	319.0	10,426	7,257	5,262	
Italy	79,528	36,863	2,577	40,735	1,866	10,370	5,715	86.7	1,619	5,502	208	
Netherlands	834,463	112,668	14,181	352,371	18,405	63,930	39,568	557.2	42,657	62,231	5,571	
Spain	369,618	69,581	4,881	57,739	507	12,600	9,067	90.2	1,241	1,264	162	
Sweden	178,327	20,907	1,911	73,379	2,914	20,725	13,803	221.8	6,928	9,748	669	
Switzerland	1,094,603	86,283	6,953	242,784	9,022	74,127	49,188	457.5	16,783	12,352	9,422	
United Kingdom	1,923,134	416,616	37,029	628,927	8,656	165,212	94,319	1,214.7	44,559	63,647	6,659	
Other	164,773	111,320	11,968	74,387	1,310	13,890	5,670	70.6	2,788	18,002	(D)	
Latin America and Other Western Hemisphere	536,458	107,173	10,583	307,538	7,047	48,692	31,394	373.0	33,371	24,146	1,546	
South and Central America	217,096	58,979	4,528	126,820	4,703	23,568	13,262	197.2	10,003	13,375	91	
Brazil	96,735	21,536	1,593	52,180	2,125	10,814	5,728	91.8	4,362	3,456	27	
Mexico	52,570	18,614	1,349	39,935	2,602	8,349	5,443	83.3	1,101	4,081	(D)	
Venezuela	22,277	(D)	290	(D)	265	(D)	(D)	1	(D)	(D)	0	
Other	45,514	(D)	1,296	(D)	-290	(D)	(D)	J	(D)	(D)	(D)	
Other Western Hemisphere	319,362	48,194	6,055	180,717	2,344	25,124	18,132	175.8	23,368	10,771	1,455	
Bermuda	222,954	19,443	(D)	91,646	1,633	11,945	8,894	61.8	(D)	3,941	(D)	
United Kingdom Islands, Caribbean	52,794	(D)	2,488	47,592	342	7,917	6,008	85.4	4,315	(D)	(D)	
Other	43,614	(D)	(D)	41,479	368	5,262	3,230	28.6	(D)	(D)	(D)	
Africa	21,791	(D)	(D)	5,094	396	1,547	702	6.4	(D)	(D)	(D)	
South Africa	7,377	(D)	(D)	4,237	359	1,309	497	4.2	(D)	(D)	(D)	
Other	14,413	162	16	858	37	238	205	2.2	0	0	(D)	
Middle East	196.913	47,201	3,790	64.161	-14.308	13.276	6.652	69.0	3.697	16.079	1.936	
Israel	107,014	7,861	702	24,157	(D)	5,949	3,042	28.9	839	5,611	1,097	
Saudi Arabia	26,501	17,660	630	(D)	(D)	3,806	1,581	9.1	2,103	(D)	(D)	

Appendix-Table 2 Selected Data of Majority-Owned U.S. Affiliates by Country of Ultimate Beneficial Owner 2017, US Bureau of Economic Analysis

XXXVIII

Appendix – Tables

United Arab Emirates	48 537	14 068	(D)	9 942	2 013	1 548	1 045	12.0	(D)	(D)	(D)
Other	14,860	7.612	(D)	(D)	2,010	1,973	984	19.1	(D)	204	6
	,		()	()	-	,				-	
Asia and Pacific	3,181,875	663,191	85,751	1,270,249	23,107	216,100	119,531	1,410.8	109,455	315,035	14,025
Australia	262,000	77,508	4,648	49,934	-1,491	14,165	7,835	81.3	2,732	2,646	(D)
China	249,534	51,456	5,520	74,805	-2,088	14,216	9,021	142.4	5,235	10,093	1,422
Hong Kong	36,365	17,108	1,749	31,934	325	3,766	2,288	27.3	917	10,020	634
India	59,226	10,710	1,015	33,794	102	7,924	6,244	65.5	2,028	4,784	213
Japan	2,280,036	418,229	64,600	840,334	24,227	155,642	80,436	922.4	80,581	180,493	9,403
Korea, Republic of	137,201	60,567	5,719	161,073	1,668	9,827	6,222	66.7	14,193	94,941	1,557
Singapore	73,548	9,894	1,128	20,136	-100	3,269	3,041	45.5	1,237	1,057	403
Taiwan	48,019	5,950	434	38,911	86	2,470	1,435	16.1	1,051	8,225	87
Other	35,946	11,767	936	19,329	379	4,821	3,010	43.7	1,479	2,775	(D)
United States	309,263	(D)	(D)	60,774	1,888	21,687	18,419	326.5	(D)	(D)	(D)
Addenda:											
European Union (28)	6,832,625	1,198,938	124,532	2,218,297	74,570	553,999	337,489	4,242.9	181,427	296,725	33,909
OPEC	111,674	46,911	3,193	63,067	3,312	8,651	3,809	29.6	6,383	14,410	833

XXXIX

	Research and Development Expenditures											
	2009	2010	2011		2012	2013	2014	2015	2016	2017		
All Countries Total	39205	39887	4	4684	44983	49221	55278	56096	54307	56598		
Canada	2920	2765		2964	2864	3160	3558	3447	3443	3513		
Europe	25044	23902	2	7396	26742	29835	32435	32646	32556	32877		
Austria	296	278		289	257	283	580	536	548	533		
Belgium	2378	2031		2431	2547	2588	1198	1121	1726	1368		
Czech Republic	81	56		60	75	63	105	88	75	127		
Denmark	185	199		185	237	510	515	587	621	660		
Finland	145	221		224	191	195	433	1089	525	268		
France	1943	2021		2109	2031	2373	2469	2231	1856	2009		
Germany	7528	6717		7230	8027	8248	8373	8768	9133	8177		
Greece	32	27		26	21	18	45	43	29	40		
Hungary	45	65		77	75	89	104	99	105	108		
Ireland	1046	1431		1419	1465	1874	2797	3113	3065	3350		
Italy	788	596		939	683	796	890	840	772	849		
Luxembourg	(D)	(D)	(D)		302	(D)	237	147	177	172		
Netherlands	1022	1282		1422	1489	1495	1238	1230	1230	1377		
Norway	53	136		146	299	279	297	358	312	287		
Poland	140	135		197	207	201	248	245	278	371		
Portugal	36	56		58	52	52	53	54	52	55		
Russia	68	65		163	130	147	213	169	176	201		
Spain	570	361		398	272	285	439	379	364	421		
Sweden	1133	400		544	572	644	822	706	713	844		
Switzerland	1436	1588		2306	2364	3749	4441	4223	4410	4735		
Turkey	39	54		61 (D))	(D)	61	85	89	87		
United Kingdom	5792	5788		6604	5206	5364	6540	6176	5902	6415		
Other	(D)	(D)	(D)	(D))	(D)	336	360	399	423		
Albania	(0		0	0	0	0	0	0	0		
Andorra	(0		0	0	0	n.s.	n.s.	n.s.	n.s.		
Armenia	(0		0	0	0	0	0	0	0		
Azerbaijan	C	0		0	0	0	0	0	0	0		
Belarus	C	0		0	0	0	1	1	1	1		
Bosnia and Herzegovina	C	0	(*)	(*)		0	0	0	0	0		
Bulgaria	(*)	(*)	(*)		1	1	17	16	16	18		
Croatia	2	2		2	2	2	7	7	17	18		
Cyprus	(0 0		0	0	0	5	5	(D)	(D)		
Estonia	4	. 5		6	28	(D)	(D)	(D)	(D)	(D)		
Georgia	0	0 0		0	0	0	2	2	2	2		
Gibraltar	0	0 0		0	0	0	0	0	0	0		
Greenland	0	0 0		0	0	0	0	0	0	0		
Iceland	0	(*)		1 (D))	(D)	(D)	(D)	(D)	(D)		
Kazakhstan	0	0 0		0	0	0	(*)	(*)	(*)	1		
Kosovo	0	n.s.	n.s.	n.s.	i.	n.s.	n.s.	n.s.	0	0		
Kyrgyzstan	0	0 0		0	0	0	0	0	0	0		
Latvia	2	2		2 (D))	2	4	4	4	4		
Liechtenstein	C	0 0		0	0	0	0	0	0	0		
Lithuania	3	3		3 (D))	3	4	(D)	(D)	(D)		
Macedonia	C	0 0		0	0	0	0	0	0	0		
Malta	5	(D)	(D)	(D))	2	(D)	(D)	(D)	(D)		

Appendix-Table 3 U.S. Direct Investment Abroad, All Majority-owned Foreign Affiliates (data for 2009 and forward), US Bureau of Economic Analysis

XL

Appendix – Tables

Moldova	(*)		(*)		(*)		(*)		(*)		(*)		(*)		(*)		(*)	
Monaco		0		1		1		0		0		1		1		1		1
Montenegro		0		0		0		0		0		0		0		0		0
Romania		21		84		128		31		50		45		57		60		64
San Marino		0	n.s.		n.s.		n.s.		n.s.		n.s.		n.s.		n.s.		n.s.	
Serbia		3		3		3		3		2	(*)		(*)		(*)		(*)	
Slovakia	(D)			17		19		16		35		64		61		64		66
Slovenia		4		4		4		3		3		4		4		4		5
Tajikistan		0	n.s.		n.s.		n.s.		n.s.			0		0		0		0
Turkmenistan		0		0		0		0		0		0		0		0		0
Ukraine	(D)			8		8		8		8	(D)		(D)		(D)		(D)	
Uzbekistan		0		0		0		0		0	. ,	0	. ,	0	. ,	0	. ,	0
Vatican City		0	n.s.		n.s.		n.s.		n.s.		n.s.		n.s.		n.s.		n.s.	
Latin America and Other Western Hemisphere		1465		2553		2536		2747		2785		2610		2383		1917		2234
South America		1144	(D)			1575		1569		1543		1561		1267		1125		1269
Argentina		92	()	117		136		161		162		156		151		130		130
Brazil		955		1389		1325		1285		1220		1212		884		793		886
Chile		20		21		21		23		25		29		32		35		52
Colombia		26	(D)			32		37		63		62		64		64		73
Ecuador		_0	(2)	1		2		2		1		2	(D)	0.		1		4
Peru		22		. 8		- 8		9		30		44	(2)	90		79		107
Venezuela		25		27		47		48		38		55		42		21		15
Other		- 20	(D)	21		3		3		3		1	(D)	-12		21		2
Bolivia		0	(8)	0		0		0		0			(*)		(*)	-		1
French Guiana		0		0		0		0		0		0	()	0	()	٥		0
Guyana		1		1		1		1		1		0		0		0		0
Baraguay		0		1		1		0		0	(*)	0	(*)	0	(*)	0	(*)	0
Falayuay		1		0		1		1		1	()				()	1	()	
		1	(D)	1		1		1		1	()	1	(D)	1		1	()	1
Control Amorico		214		265			(D)	1		1		706		760		F10		622
Central America		0		305	(D)		(D)		(D)	80		/90		709		019		104
		0		20	(D)	2	(D)	4		00		40		5		04 E		104
Holiduras	(D)	201		227		322		4		4		700		671		412		4 504
Benemo		201		337		332		405		410		122		10		412		14
Fallallia Other		2		2		2	(D)	5	(D)			22		10		13		14
Baliza	(D)	0		2	(D)	0	(D)	0	(D)	0		7		/		0		1
Belize		0		0		0		0		0		0		0		0		0
El Salvadol		1	(*)	2	(D) (*)		(D) (*)		(D)	1		3		3		3		3
Niperague	(D)	0	0	0	0	0	()	0	(*)	1	(*)	4	(*)	3	(*)	3	(*)	4
Other Western Hemiophere		0		0		0	(D)	0			()	252	0	247	0	272	()	222
Darbedee	(*)	0	(D) (*)		(D)	4	(D)		(D)			253		347		212		332
Barbados	()	-	() (D)			1	(D)		(D)			0		1		50		1
Berlinuda Deminisen Benublie		5	(D)	2	(D)	4	(D)	4	(D)	4		9		07		55		
Dominican Republic		2		2		1	(+)	I	(+)	I		1		3		3		Z
Onited Kingdom Islands, Caribbean		1		2		1	(*)		(*)		(D)		(D)		(D)		(D)	
Other		1		1		1		1		1	(D)	0	(D)	0	(D)	0	(D)	0
Anguilla		0		0		0		0		0		0		0		0		0
Antigua and Barbuda		0		0		0		0		0		0		0		0		0
Aruba		0		0		0		0		0		0		0		0		0
Banamas		0		0		0		0		0	(D)		(D)		(D)		(D)	
		0		0		0		0		0	n.s.	~	n.s.	~	n.s.	~	n.s.	~
Curacao	n.s.		n.s.		(*)	0	(*)	0		0	(*)	0	(a)	0	(4)	0	(4)	0
Dominica		0	(*)	-	(*)	-	(*)	-		0	(*)	_	(*)	-	(*)	_	(*)	-
French Islands, Caribbean		0		0		0		0		0		0		0		0		0

Grenada		C)	0		0		0		0		0		0		0		0
Haiti		C)	0		0		0		0		0		0		0		0
Jamaica		1	1	1		1		1		1		0		0		0		0
Netherlands Antilles		C)	0	n.s.		n.s.		n.s.		n.s.		n.s.		n.s.		n.s.	
Netherlands Islands, Caribbean	n.s		n.s.			0		0		0		0		0		0		0
Sint Maarten	n.s		n.s.			0		0		0		0		0		0		0
St. Kitts and Nevis		C)	0		0		0		0		0		0		0		0
St. Lucia		C)	0		0		0		0		0		0		0		0
St. Pierre and Miquelon		C) n.s.		n.s.		n.s.		n.s.		n.s.		n.s.		n.s.		n.s.	
St. Vincent and the Grenadines		C)	0		0		0		0		0		0		0		0
Trinidad and Tobago		C)	0		0		0		0		0	(*)		(*)		(*)	
United Kingdom Islands, Atlantic (OWH)		C)	0		0		0		0		0		0		0		0
Africa		94	1	86		102		129		133		114		149		114		116
Egypt		6	6	6		2		2		3		19		43		23		20
Nigeria	(*)			3		3	(D)		(D)			1	(D)		(D)		(D)	
South Africa		83	3	71		90		102		99		68		42		58		62
Other		5	5	6		7	(D)		(D)			26	(D)		(D)		(D)	
Algeria		C)	1		1	. ,	0	. ,	0		0	. ,	1	(D)		(D)	
Angola	(*)		(*)		(*)		(*)		(*)			0		0	. ,	0	. ,	0
Benin		C)	0	()	0	()	0	()	0	(D)			1		1		1
Botswana		C)	0		0		0		0	()	0		0		0		0
Burkina Faso		C) n.s.		n.s.		n.s.		n.s.		n.s.		n.s.		n.s.		n.s.	
Burundi		C)	0		0		0		0		0		0		0		0
Cameroon		C)	0		0		0		0		0		0		0		0
Cape Verde		0) n.s.		n.s.		n.s.		n.s.		n.s.		n.s.		n.s.		n.s.	
Central African Republic		0)	0		0		0		0		0		0		0		0
Chad		, C)	0		0		0		0		0		0		0		0
Comoros		, C) ns	0	ns	0	ns	°,	ns	Ū		0		0		0		0
Congo (Brazzaville)		- -))	0		0		0		0		0	(*)	•	(*)		(*)	
Congo (Kinshasa)		- -	,)	0		0		0		0		0	()	0	()	0	()	0
Cote D'Ivoire		c c	, 1	0		0		0		0		0		0		0		0
Diibouti		c c	, 1	0		0		0		0		0		0		0		0
Equatorial Guinea		0	, 1	0		0		0		0		0		0		0		0
Fritree		0	, 1	0		0		0		0		0		0		0		0
Ethiopia		0	, 1	0		0		0		0	(D)	0	(*)	0	(*)	0	(*)	0
Gabon		C)) (*)	0	(*)	0		0		0	(D)	0	()		()		()	
Gambia		C	, () ,	0	()	0		0		0	ne	0	()		()		()	
Ghana		1	1	1		1		1		1	11.5.	2	11.5.	2	11.5.	2	11.5.	3
Guinea			י ז	0		1		1		0		2		2		2		0
Guinea Bissau				0	ne	0	ne	0	ne	0	ne	0	ne	0	ne	0	ne	0
Kenva	(*)	· · · ·	/*)		(*)		11.5.	1	11.5.	1	(D)		(*)		(*)		(*)	
Lesethe	()	·		0	()	0		1		1	(D)	0	()	0	()	0	()	0
Lesoino			, ,	0		0		0		0		0		0		0		0
)) (*)	0	(*)	0	(*)	0	(*)	0		0	(*)	0	(*)	0	(*)	0
Libya		C C		0	()	0	()	0	()	0	(D)	0	()	0	()	0	()	0
Madagascar		C C)	0		0		0		0		0		0		0		0
Malawi		C C)	0		0		0		0		0		0		0		0
		0	,	0		0		0		0		0		0		0		0
Mauritania		C	J	0		0		0		0		0		0		0		0
wauritius	(*)			0	(*)	0	(*)	0	(*)	U	(D)		(U)	-		4		4
IVIOFOCCO		1	i (*)	-	(^)	-	(^)	-	(^)	-		1		2		1		1
wozambique		C	J	0		0		0		U		0		0		0		0
Namibia		C)	0		0		0		0		0		0		0		0

XLI

XLII

Niger		0	0		0	0		0	n.s.	n.s.		n.s.	n.s.	
Rwanda		0	0		0	0		0	0		0		0	0
Sao Tome and Principe	(*)		0		0	0		0	0		0		0	0
Senegal		0	0		0 (*)		(*)		(D)		2	(*)		1
Seychelles		0	0		0	0		0	0		0		0	0
Sierra Leone		0	0		0	0		0	0		0		0	0
Somalia		0	0		0	0		0	n.s.	n.s.		n.s.	n.s.	
South Sudan	n.s.		n.s.	n.s.	n.s.		n.s.		0		0		0	0
Sudan		0	0		0	0		0	n.s.	n.s.		n.s.	n.s.	
Swaziland		0	0		0	0		0	(*)	(*)		(D)	(*)	
Tanzania		0	0		0	0		0	0		0		0	0
Тодо		0	0		0	0		0	0		0		0	0
Tunisia		3	4		4 (D)		(D)		0		0		0	0
Uganda		0	0		0	0		0	0		0		0	0
United Kingdom Islands, Atlantic (Africa)		0	0		0	0		0	0		0		0	0
Western Sahara		0	n.s.	n.s.	n.s.		n.s.		n.s.	n.s.		n.s.	n.s.	
Zambia		0	0		0	0		0	0		0		0	0
Zimbabwe		0	0		0	0		0	0		0		0	0
Middle East		1856	2016	206	0	2033		2182	2856		3150	266	8	2832
Israel		1845	2000	204	5	2012		2148	2645		2955	251	8	2621
Saudi Arabia	(*)		1		1	7	(D)		(D)		16	1	5	15
United Arab Emirates		11	15	1	3 (D)		(D)		(D)		177	13	2	194
Other		1	1		1 (D)			1	(D)		2		2	2
Bahrain		0	0		0	0		0	(D)	(D)		(*)	(*)	
Iran		0	0		0	0		0	n.s.	n.s.		n.s.	n.s.	
Irag		0	0		0	0		0	0		0		0	0
Jordan	(*)		(*)		0	0		0	0		0		0	0
Kuwait	()	0	0		0	0		0	0		0		0	0
Lebanon		0	0		0	0		0	0	(*)	-	(*)	(*)	-
Oman		0	0		0	0		0	0	()	1	()	1	1
Qatar		1	1		1 (D)	0		1	1	(D)	·		1	1
Svria		. 0	0		0	0		0	0	(2)	0		0	. 0
Yemen		0	0		0	0		0	0		0		0	0
Asia and Pacific		7826	8564	962	6	10470		1128	13704		14321	1361	0	15026
Australia		751	982	108	1	1153		1113	1271		1053	86	9	940
China		1579	1535	165	3	2012		2201	3048		3423	328	0	3650
Hong Kong		70	148	16	4	154		151	172		150	15	6	197
India		1377	1716	207	5	2289		2557	2905		3171	328	9	3586
Indonesia		23	28	207	7	18	(D)	2001	2000		10	020	1	20
Japan		1835	1812	216	, 9	2314	(2)	2392	2674		2504	278	8	2875
Korea, Republic of		746	824	210	1	808		012	996		085	01	5	1014
Malaysia		376	3/8	30		655		512	437		505	57	8	612
New Zealand		21	21	3	7	37		33			27	32	0	3/
Philippines		51	54	6	0	67		53	30 72		75	c s	1	102
Singapore		706	738	77	2	500		717	1521		1788	116	- 7	1421
Taiwan		106	278	24	2	274		260	1321		1700	30	2	1421
Thailand		190	210	24	<u>د</u> 1	2/4		104	443		423		8	441
		30	10	11	1	09	(D)	104	108		9/ 0		4	111
		2	2		0	2	(D)	0	6		d o	Ĩ	4 0	14
Pangladach		0	0		0	U	(*)	U	0	(*)	U	(*)	U (*)	U
Phytop		0	0		0	U	()	0	0	()	0	0	0	0
Dhulan Prunci		U	0		0	U		0	0		U		0	U
Diunei		0	0		0	0		0	0		0		0	0
Duillia		0	0		U	0		U	0		0		U	0

Cambodia		0		0		0		0		0		0	(*)		(*)		(*)	
East Timor		0	n.s.															
Fiji		0		0		0		0		0		0		0		0		0
French Islands, Indian Ocean		0		0		0		0		0		0		0		0		0
French Islands, Pacific		0		0		0		0		0		0		0		0		0
Kiribati		0	n.s.															
Laos		0		0		0	n.s.		n.s.			0		0		0		0
Macau		2		2		0		0		0		0		0		4		5
Maldives		0		0		0		0		0		0		0		0		0
Marshall Islands		0		0		0		0		0		0		0		0		0
Micronesia		0		0		0		0		0		0		0		0		0
Mongolia		0		0		0		0		0		0		0		0		0
Nauru		0	n.s.															
Nepal		0		0		0		0		0		0		0		0		0
North Korea		0	n.s.															
Pakistan	(*)		(*)		(*)			1		1		1		1		1		2
Palau		0		0		0		0		0		0		0		0		0
Papua New Guinea		0		0		0		0		0		0		0		0		0
Samoa		0		0		0		0		0		0		0		0		0
Solomon Islands		0	n.s.															
Sri Lanka		0		0		0		0		0	(*)		(*)		(*)		(*)	
Timor-Leste	n.s.			0		0		0		0	n.s.		n.s.		n.s.		n.s.	
Tonga		0	n.s.															
Tuvalu		0		0		0		0		0	n.s.		n.s.		n.s.		n.s.	
United Kingdom Islands, Indian Ocean		0	n.s.															
United Kingdom Islands, Pacific		0		0		0		0		0		0		0		0		0
Vanuatu		0		0		0		0		0		0		0		0		0
Vietnam	(*)		(*)		(*)			1	(D)			5		6		7		6
Addenda:																		
European Union		23435		22046		24706		23837		25509		27295		27665		27401		27385
OPEC		37		49		69		89		98		270		268		217		255
XLIV

Appendix-Table 4 Japan Inward activity of multinationals by investing country total manufacturing - ISIC Rev 3, https://stats.oecd.org

	Variables	R&D expenditures							
	Country	Japan	-	-	-	-	-	-	-
	Sources	Source 1							
	Year	2000	2001	2002	2003	2004	2005	2006	2007
World									
OECD		386,954	373,622	403,450	483,682	584,329	632,617	701,963	687,059
United States					480,672	579,941	630,088	697,339	681,209
Canada		114,357	75,860	70,365	36,242	62,306	64,828	69,878	75,010
Mexico					991	925	1,022	0	
Japan				<u>.</u>	0	0	0	0	0
Korea									
Australia					21	0	1	2	4,060
New Zeelend									
					0	0	0	0	0
Europe					442,818	516,272	563,778	626,907	601,506
European Union (27)									599,366
European Union (25)							560 733	625.086	599 366
European Union (15)							500,700	025,000	500,000
Austria		245,540	287,357	318,591	438,323	510,301	560,733	625,086	599,366
Belgium					2	11	1	1	0
Denmark			<u> </u>	<u>.</u>	541	0	2,186	5,738	6,563
Finland					295	538	390	143	97
France					0	0	0	0	
Germany		184,211	216,847	246,207	287,920	359,878	389,174	403,812	406,135
Greece		16,175	18,241	16,013	49,227	50,057	44,428	46,620	39,968
Ireland					0	0	0	0	0
Italy								22,680	
Luxembourg					1,115	319	276	0	0
Netherlands						947		2,132	2,562
Nethenanus		19,604	17,659	35,910	57,418	56,992	60,375	103,437	91,010

Portugal				0	0	0	0	0
Spain				0				
Sweden				186	162	19,629	21,847	14,309
United Kingdom	10 332	15 861	16 749	17 437	16 131	16 699	17 142	13 834
Czech Republic				0	0	0	0	0
Hungary				0	0	0	0	0
Iceland				0	0	0	0	0
Norway				0	0	0	0	0
Poland				0	0	0	0	0
Slovak Republic				0	0	0	0	0
Switzerland	3,936	4,677	4,162	4,495	5,964	3,013	1,795	2,140
Turkey				0	0	0	0	0
Other European coun- tries				0	7			
Baltic countries				0	0	0	0	0
Estonia				0	0	0	0	0
Latvia				0	0	0	0	0
Lithuania				0	0	0	0	0
Bulgaria				0	0	0	0	0
Croatia				0	0	0	0	0
Romania				0	0	0	0	0
Russia				0	0	0	0	0
Serbia						0	0	0
Slovenia				0	0	0	0	0
Ukraine				0	0	0	0	0
Non-OECD Asia	306	584	1.760	1.717	1.582	1.097	730	1.143
China			.,	4	7	7	123	56
Hong-Kong, China					007	383	304	451
India					0		0	451
Indonesia				0	0	0	0	
Malaysia				0	0	0	0	0

XLVI

Philippines								
				0	0	0	0	0
				0	0	0	0	0
Singapore								
				121	161	8	97	
Ohimana Taimai				121	101		01	
Chinese Taipei								
				1.565	1.187	680	206	353
Thailand				.,	.,			
Thallanu								
				0	0		0	0
Middle East								
Inidato Edot								
				63	31	14	31	260
Israel								
						0	0	0
						0	0	0
Africa								
				0	0	0	0	0
M					Ů		Ŭ	
IVIOFOCCO								
				0	0	0	0	0
South Africa								
South Anica								
				0	0	0	0	0
Latin America								
	1 000	5.005	0.000	4 000	0.700	1 000	0.704	
	4,002	5,065	6,690	1,230	2,768	1,360	3,784	
Argentina								
•							0	
D							0	
Brazil								
				0	0	0	0	0
Chile							Ŭ	
Onne								
				0	0	0	0	

	Country	<u>Japan</u>	-	-	-	-	-	-	-	-	-	-
	ISIC3	Total Business Enterp	orise									
	Variables	R&D expenditures										
	Year	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007
Partner Coun- tries												
Africa												
Argentina												
Non-OECD Asia		10.398		22.448	19.841	32.434	29.997	36.818	73.188	49.780	51,445	62.405
Australia		·				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · ·		
Austria												
Baltic countries												
Belgium												
Bulgaria												
Brazil												
Canada												
Switzerland												
Chile												
China												
Czech Republic												
Germany		16,770		17,774	16,076	12,860	16,837	20,883	14,270	14,033	21,665	22,283
Denmark												
Spain												
Estonia												
European Union (15)		58.357		65.151	67.787	93.316	103.440	121.636	97.519	115.537	114.212	105.247
European Union (25)										,		
European Union (27)												
Europe												
Finland												

Appendix-Table 5 Japan Outward activity of multinationals by country of location - ISIC Rev 3, https://stats.oecd.org

XLVIII

France	5,661	 8,155	10,106	12,392	8,929		9,272	8,666	9,217	7,300
United Kingdom	20 522	15 721	10.422	41 901	22 772	25 102	27 514	20.625	26 106	20.072
Greece	20,323	 13,731	19,400	41,001	55,775	55,152	37,014	23,033	20,100	25,512
Hong-Kong,		 								
Croatia		 								
Hungary		 		10.10612.3928.9299.2728.6669.219.43341.80133.77335.19237.51429.63526.1129.63526.1129.63526.1129.63526.1129.63526.1129.63526.1129.63526.11						
Indonesia		 								
India		 								
Ireland		 								
Iceland		 								
Israel		 								
Italy		 			12.392 $8,629$ $9,272$ $8,666$ $9,2''$ 41.801 33,773 35,192 $37,514$ $29,635$ $26,10$ </th <th></th> <th></th>					
Japan		 								
Korea		 								
Latin America		 	726	1 3/0						
Lithuania		 	120	1,040						
Luxembourg		 								
Latvia		 								
Morocco		 								
Mexico		 								
Middle East		 								
Malaysia		 								
Netherlands										
Norway		 								
New Zealand		 								
OECD		 								
Other European countries		 								
Philippines		 								
Poland		 								
Portugal		 								
Romania		 								

Russia		 								
Singapore		 								
Serbia		 								
Slovak Republic		 								
Slovenia		 								
Sweden		 								
Thailand		 								
Turkey		 								
Chinese Taipei		 								
Ukraine		 								
United States	151,568	 199,987	204,782	154,084	208,652	165,607	148,426	161,812	195,058	195,515
Western and Eastern Europe	490	 	70		707	1,178	8,497	5,332	5,084	2,577
World	223,707	 294,614	298,525	286,010	353,816	337,447	347,870	349,949	387,301	387,963
South Africa		 								

Data extracted on 01 Jan 2020 19:39 UTC (GMT) from OECD.Stat

XLIX

Appendix-Table 6 Exchange Rates to USD, https://data.worldbank.org

Country Name	Code	Name	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Aruba	ABW	LCU per US\$ I CU per	1.79 47 3575	1.79 47 5000	1.79	1.79 48 7627	1.79 47 8453	1.79 49 4945	1.79 49 9253	1.79 49 9620	1.79 50 2496	1.79	1.79 46 4524	1.79 46 7470	1.79	1.79	1.79	1.79 61 1434	1.79 67 8660	1.79 68 0269	1.79 72 0832
Afghanistan	AFG	US\$ LCU per	7473	1452 22.0578	47.263 43.5302	5358 74.6063	125 83.5413	975 87.1591	3083 80.3680	1777 76.7061	1474 75.0333	50.325 79.3281	61 91.9057	0774 93.9347	50.9214 95.4679	55.3775 96.5182	57.2475 98.3024	6154 120.060	8577 163.656	0408 165.915	4718 252.855
Angola	AGO	US\$ LCU per	4417 143.709	6167 143.484	0667 140.154	0083 121.863	625 102.780	4167 99.8702	7206 98.1033	4275 90.4278	5417 83.8946	6667 94.9781	2034 103.936	5 100.895	5542 108.184	7948 105.669	1686	7017 125.961	4341 124.142	9507	7477 107.989
Albania United Arab Emir-	ALB	US\$ LCU per	4167	8333	5159	25	0512	5448	7709	9383	041	1982	6667	8333	1667	1667	105.48	6667	5	119.1	1667
ates	ARE	US\$ LCU per	3.6725	3.6725	3.6725 3.06325	3.6725 2.90062	3.6725 2.92330	3.6725 2.90365	3.6725 3.05431	3.6725 3.09564	3.6725 3.14416	3.6725 3.71010	3.6725 3.89629	3.6725 4.11013	3.6725 4.53693	3.6725 5.45935	3.6725 8.07527	3.6725 9.23318	3.6725 14.7581	3.6725 16.5627	3.6725 28.0949
Argentina	ARG	US\$ LCU per	0.9995 539.525	0.9995 555.078	6667 573.353	9167 578.762	0819 533.450	75 457.686	3333 416.040	8849 342.079	456 305.969	6831 363.283	5154 373.660	9576 372.500	436 401.763	2665 409.625	5993 415.919	5525 477.918	7509 480.488	0693 482.716	9167 482.987
Armenia Antigua and Bar-	ARM	US\$ LCU per	8333	2583	3333	9545	8333	9406	3697	1162	4003	2856	4667	8824	9756	7493	7892	3066	1508	3938	9466
buda	ATG	US\$ LCU per	2.7 1.72482	2.7 1.93344	2.7 1.84056	2.7 1.54191	2.7 1.35975	2.7 1.30947	2.7 1.32797	2.7 1.19507	2.7 1.19217	2.7 1.28218	2.7 1.09015	2.7 0.96946	2.7 0.96580	2.7 1.03584	2.7 1.10936	2.7 1.33109	2.7 1.34521	2.7 1.30475	2.7 1.33841
Australia	AUS	US\$ LCU per	6667 0.89483	25 0.93131	25 0.97216	4167 0.98214	25 0.98269	3333 0.94542	3441 0.89344	25 0.85812	8333 0.82161	881 0.80378	9486	3201 0.78968	1031 0.78564	3097 0.78454	3293 0.78434	0262 1.02456	3976 1.59572	8077 1.72115	2146 1.70001
Azerbaijan	AZE	LCU per	075 720.673	6667 830.353	4167 930.749	6	55	1 1081.57	5 1028.68	3808 1081.86	9579 1185.69	3333 1230.17	0.80265	6389 1261.07	5349 1442.50	1075 1555.09	75 1546.68	3819 1571.89	1573 1654.62	4802 1729.05	1782.87
Burunai	BDI	LCU per	710.207	732.397	693.713	579.897	527.338	527.258	3553 522.425	478.633	446.000	470.293	494.794	471.248	5625 510.556	493.899	493.757	591.211	592.605	5 580.656	555.446
Benin	BEN	LCU per	977 711.976	733.038	696.988	4262 581.200	528.284	3626 527.468	522.890	479.266	447.805	4233	495.277	471.866	510.527	494.040	494.414	591.449	593.008	7496 582.094	4584 555.717
Burkina Faso	BCD	LCU per	52.1416	55.8066	2030	58.1500	59.5126	64.3274 75	68.9332	68.8748 75	2556 68.5982	69.0390	69.6492	74 1524	81.8626	78.1032	9529 77.6414	77.9469	78.4680	80.4375	83.4662 0102
Bulgaria	BGD	LCU per	2.12327	2.18470	2.07697	1.73270	1.57510	1.57413	1.55926	1 4 2 9 0 5	1.33711	1.40669	1.47739	1.40645	1 52205	1.47356	1.47418	1 7644	1.76804	1.73545	1.65704
Babrain	BHR	LCU per	0.376	0.376	0.376	0.376	0.376	0.376	0.376	0.376	0.376	0.376	0.376	0.376	0.376	0.376	0.376	0.376	0 376	0.376	0.376
Bahamas The	BHS	LCU per	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Bosnia and Herze- govina	BIH	LCU per US\$	2.12285 9512	2.18565 9583	2.07817 0426	1.73293 2204	1.57515 7028	1.57272 202	1.55907 1956	1.42900 2742	1.33519 568	1.40789 1238	1.47673 9568	1.40693 6586	1.52220 9974	1.47305 1323	1.47416 9187	1.76349 1647	1.76813 9024	1.73535 2713	1.65698 5441
Belarus	BLR	LCU per US\$	0.08767 5	0.139	0.17909 1667	0.20512 7083	0.21602 575	0.21538 2	0.21445 6417	0.21460 7833	0.21363 975	0.27930 4922	0.29785 1	0.49746 3333	0.83368 9833	0.88800 525	1.02241 025	1.59259 8833	1.98956 2833	1.93234 1667	2.03760 8333
Belize	BLZ	LCU per US\$	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Bermuda	BMU	LCU per US\$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Bolivia	BOL	US\$	6.18354 1667	6667	7.17	7.65916 6667	7.93626 6667	8.06606	8.01161 6667	7.85124 5161	7.23832 0699	7.02	7.01666 6667	6.93696 25	6.91	6.91	6.91	6.91	6.91	6.91	6.91
Brazil	BRA	US\$	3122	2.34903	3018	5118	945	0036	6667	8333	6667	8173	6711	8755	8611	9151	1963	4383	3422	9446	5361
Barbados	BRB	US\$	2	2 1 79172	2 1 79058	2 1 74218	2 1 69022	2 1 66439	2 1 58893	2 1 50710	2 1 41716	2 1 45456	2 1 36350	2 1 25791	2 1 24956	2 1 25116	2 1 26704	2 1 37491	2 1 38134	2 1 38089	2 1 34891
Brunei Darussalam	BRN	US\$ LCU per	3333 44.9416	25 47.1864	8333 48.6103	3333 46.5832	8333 45.3164	75 44.0999	3333 45.3070	1667 41.3485	6667 43.5051	9273 48.4052	9474 45.7258	302 46.6704	7016 53.4372	567 58.5978	0123	0845 64.1519	6877 67,1953	1164 65.1215	8565 68.3894
Bhutan	BTN	US\$ LCU per	05 5.10224	1417 5.84141	1917 6.32779	8417 4.94966	6667 4.69383	75	0833	3333 6.13940	8333 6.82685	6667 7.15514	1212 6.79362	6667 6.83823	3333 6.83823	4542 8.39890	1446 8.97608	4446 10.1289	1281 10.9011	6865 10.3474	6709 10.1999
Botswana Central African Re-	BWA	US\$ LCU per	1667 711.976	6667 733.038	1667 696.988	6667 581.200	3333 528.284	5.11675 527.468	5.8303 522.890	8333 479.266	8333 447.805	1667 472.186	5 495.277	3333 471.866	3333 510.527	8333 494.040	3333 494.414	9167 591.449	5833 593.008	1667 582.094	75 555.717
public	CAF	US\$ LCU per	2744 1.48539	5071 1.54883	2036 1.57034	3139 1.40101	8093 1.30128	1428 1.21140	1096 1.13434	7826 1.07404	2556 1.06708	2908 1.14153	0216 1.03011	1141 0.98925	1359 0.99936	0374 1.03013	9529 1.10474	5075 1.27878	1704 1.32561	5501 1.29793	8304 1.29581
Canada	CAN	US\$ LCU per	4095 1.68884	9955 1.68761	2834 1.55860	4548 1.34665	1595 1.24349	5134 1.24517	4726 1.25384	5622 1.20036	6918	5406 1.08814	2735 1.04290	8159 0.88804	4744 0.93768	7364 0.92690	7132 0.91615	6204 0.96238	5164 0.98539	5846 0.98469	7928 0.97788
Switzerland	CHE	US\$ LCU per	25 539.587	5 634.938	75 688.936	0833 691.397	5833 609.529	6667 559.767	3333	5833 522.464	1.08309 522.461	1696 560.859	5646 510.249	2028 483.667	4481 486.471	3548 495.272	1047 570.348	1328 654.124	4394 676.957	1667 648.833	3333 641.276
Chile	CHL	US\$ LCU per	5 8.27850	3333 8.27706	6667 8.27695	5 8.27703	1667 8.27680	5 8.19431	530.275 7.97343	1667 7.60753	0358 6.94865	8948 6.83141	1667 6.77026	5 6.46146	3034 6.31233	8776 6.19575	2161 6.14343	0843 6.22748	736 6.64447	7926 6.75875	8131 6.61595
China	CHN	US\$	4167	8333	75	6667	0833	6667	8333	25	5	6052	9029	1327	2827	8346	4094	8673	7829	5086	7177

Cote d'Ivoire	CIV	LCU per US\$	711.976 2744	733.038 5071	696.988 2036	581.200 3139	528.284 8093	527.468 1428	522.890 1096	479.266 7826	447.805 2556	472.186 2908	495.277 0216	471.866 1141	510.527 1359	494.040 0374	494.414 9529	591.449 5075	593.008 1704	582.094 5501	555.717 8304
Cameroon	CMR	LCU per US\$	711.976 2744	733.038 5071	696.988 2036	581.200 3139	528.284 8093	527.468 1428	522.890 1096	479.266 7826	447.805 2556	472.186 2908	495.277 0216	471.866 1141	510.527 1359	494.040 0374	494.414 9529	591.449 5075	593.008 1704	582.094 5501	555.717 8304
Congo, Dem. Rep.	COD	LCU per US\$	21.8183 3333	206.617 4999	346.484 9999	405.178 1832	399.475 7917	473.908 0083	468.278 825	516.749 8917	559.292 5083	809.785 8333	905.913 4583	919.491 3	919.755 0167	919.565 9074	925.226 2825	925.984 9613	1010.30 2757	1464.41 7932	1622.52 3502
Congo, Rep.	COG	LCU per US\$	711.976 2744	733.038 5071	696.988 2036	581.200 3139	528.284 8093	527.468 1428	522.890 1096	479.266 7826	447.805 2556	472.186 2908	495.277 0216	471.866 1141	510.527 1359	494.040 0374	494.414 9529	591.449 5075	593.008 1704	582.094 5501	555.717 8304
Colombia	COL	LCU per US\$	2087.90 3842	2299.63 3156	2504.24 1331	2877.65 2458	2628.61 2903	2320.83 4177	2361.13 9408	2078.29 1837	1967.71 1309	2158.25 5903	1898.56 9636	1848.13 947	1796.89 5912	1868.78 5327	2001.78 1048	2741.88 0855	3054.12 1673	2951.32 7402	2955.70 397
Comoros	СОМ	LCU per US\$	532.655 9828	549.298 2699	520.284 9199	434.923 0696	395.503 5242	395.443 772	391.819 2187	358.975 2889	334.500 0311	352.720 0675	371.095 6967	353.436 4693	382.917 2538	370.424 7179	370.317 9974	443.408 7735	444.454 2113	435.492 5622	416.584 8438
Cabo Verde	CPV	LCU per	115.876	123.213	117.255	97 7875	88.7479 249	88.6461	87.9260 6491	80.6150 2716	75.3360	80.0354 1773	83.2786	79.2768 8148	86.3189 5418	83 0725	83 0345	99.3856 9354	99.6881 1364	97.8069 3777	93.4135
Casta Risa	CPI	LCU per	308.186	328.870	359.817	398.662	427.025	477.786	511.301	516.617	526.235	573.287	525.829	505.664	502.901	499.766	538.317	534.565	544.739	567.513	576.972
Costa Rica	CRI	LCU per	0007	0333	5269		437.935	7415	0179	3902	5134	9507	2007	2399	402	0320	2003	11	3072	0903	5012
Curacao	CUW	US\$ LCU per												1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79
Cayman Islands	CYM	US\$ LCU per	0.83333 38.5984	0.83333 38.0353	0.83333 32.7385	0.83333	0.83333 25.6997	0.83333 23.9574	0.83333 22.5955	0.83333 20.2936	0.83333 17.0716	0.83333	0.83333 19.0982	0.83333 17.6959	0.83333	0.83333 19.5705	0.83333	0.83333 24.5987	0.83333 24.4399	0.83333 23.3763	0.83333 21.7299
Czech Republic	CZE	US\$ I CU per	1667	2833	1833	28.209	5	1667	8333	6667	6667	19.063	5	1667	19.5775	8333	20.7575 177 720	5	1667	3333	1667
Djibouti	DJI	US\$	177.721	177.721	177.721	177.721	177.721	177.721	177.721	177.721	177.721	177.721	177.721	177.721	177.721	177.721	8333	177.72	177.72	177.72	177.72
Dominica	DMA	US\$	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
Denmark	DNK	US\$	8.08314 4167	8.32281	4167	3333	5.99105 6667	5.99691	5.94677 8333	5.44370 0833	0833	5.36086 6667	5.62407	5.36871	5.79247 5537	1686	5.61246 6667	6.72790	6.73171 8257	6.60289 3466	6.31461 8787
Dominican Republic	DOM	US\$	16.1814 5768	16.6909 6152	17.5930 4369	29.3699 9962	41.9303 1457	30.2828 0818	33.3000 352	33.1718 7058	34.5293 6096	35.9718 6555	36.8212 9187	38.0875 8487	39.3203 0084	41.7945 0343	43.5496 7262	45.0454 9907	46.0644 4394	47.5343 582	49.5099 9286
Algeria	DZA	LCU per US\$	75.2597 9167	77.2150 2083	79.6819	77.3949 75	72.0606 5	73.2763 0833	72.6466 1667	69.2924	64.5828	72.6474 1667	74.3859 8333	72.9378 8333	77.5359 6667	79.3684	80.5790 1667	100.691 4333	109.443 0667	110.973 0167	116.593 7917
Ecuador	ECU	LCU per US\$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Egypt Arab Rep	FGY	LCU per	3 47205	3 973	4.49966 6667	5.85087 5	6.19624 1667	5.77883 3333	5.73316 6667	5.63543 3333	5 4325	5.54455 3309	5.62194 2918	5.93282 7652	6.05605 8333	6.87032 5	7.07760 8561	7.69125 8333	10.0254 0079	17.7825 3352	17.7672 9042
Euro area	EMIL	LCU per	1.08270	1.11653	1.05755	0.88404	0.80392	0.80380	0.79643	0.72967	0.67992	0.71695	0.75430	0.71841	0.77833	0.75294	0.75272	0.90129	0.90342	0.88520	0.84677
Euro area	EIVIO	LCU per	5061	11.3094	13.9581	13.8778	1040	15.3679	2731	24	200	1102	099	3699	012	5125	6197	0423	1430	5506	2007
Eritrea	ERI	LCU per	9.625 8.21725	5208 8.45749	9417	9058 8.59968	13.7875 8.63558	1667 8.66644	15.375 8.69861	15.375	15.375 9.59974	15.375 11.7775	15.375 14.4095	15.375 16.8992	15.375 17.7047	15.375 18.6266	15.375 19.5857	15.375 20.5768	15.35 21.7315	15.075 23.8661	15.075 27.4293
Ethiopia	ETH	US\$ LCU per	8333 2.12862	1667 2.27663	8.56775 2.18669	3333	3333	1667 1.69096	5833 1.73118	8.96595 1.61028	1667 1.59370	9967 1.95570	8981 1.91830	2576 1.79319	6138 1.78989	2896 1.84138	8991 1.88734	4875 2.09762	4722 2.09468	0446 2.06688	8659 2.08738
Fiji	FJI	US\$ LCU per	5 8.08314	3333 8.32281	1667 7.89471	1.8956 6.58767	1.73295 5.99105	6667	3333 5.94677	3333 5.44370	8333 5.09813	8333 5.36086	8333 5.62407	4258 5.36871	3922 5.79247	7986 5.61631	9723 5.61246	3233 6.72790	3036 6.73171	3333	2441
Faroe Islands	FRO	US\$	4167	75	4167	3333	6667 528 284	5.99691 527 468	8333	0833	0833	6667 472 186	5	1535	5537	1686	6667	6831 591 449	8257 593.008	582 094	555 717
Gabon	GAB	US\$	2744	5071	2036	3139	8093	1428	1096	7826	2556	2908	0216	1141	1359	0374	9529	5075	1704	5501	8304
United Kingdom	GBR	US\$	0.00093	0.09405	3333	25	0.54618	8333	6667	1667	625	9263	9346	0.02414	6989	0.03900	9627	5479	4464	6682	154
Georgia	GEO	US\$	1.97616 6667	2.07301 6667	2.19567 5	2.14565	1.91665	1.81267 5	1.78043 3333	1.67049 1667	1.49079 1667	1.67048 7097	1.78234 1667	1.68649 543	1.65125 8333	1.66335	1.76566 6667	2.26934 1667	2.36672	2.50954 1667	2.53411 0833
Ghana	GHA	LCU per US\$	0.54491 9176	0.71630 5158	0.79241 7084	0.86676 4327	0.89949 4854	0.90627 897	0.91645 1773	0.93524 7846	1.05785 8333	1.4088	1.43102 5	1.51185	1.79581 6667	1.95405	2.89977 5	3.66802 5	3.9098	4.35074 1667	4.58681 6667
Gibraltar	GIB	LCU per US\$	0.66093 0833	0.69465 5	0.66722 3333	0.61247 25	0.54618	0.54999 8333	0.54348 6667	0.49977 1667	0.54396 625	0.64191 9263	0.64717 9346	0.62414 0836	0.63304 6989	0.63966 0578	0.60772 9627	0.65454 5479	0.74063 4464	0.77697 6682	0.74953 154
Guinea	GIN	LCU per US\$	1746.86 9917	1950.55 8333	1975.84 375	1984.93 125	2243.93 125	3644.33 3333	5148 75	4197.75 2004	4601.69 1004	4801.08 3238	5726.07 1021	6658.03 1258	6985.82 9026	6907.87 807	7014.11 8777	7485.51 6742	8959.71 6125	9088.31 9508	9011.13 4179
Cambia The	GMB	LCU per	12.7876	15.6871	19.9178	28.5305	30.0300	28.5754	28.0657	24.8734	22.1923	26.6443	28.0119	29.4615	32.0771	35.9575	41.7329	42.5062	43.8846	46.6075	48.1513
Gambia, me	GIVID	LCU per	711.976	733.038	696.988	581.200	528.284	527.468	522.890	479.266	447.805	472.186	495.277	471.866	510.527	494.040	494.414	591.449	593.008	582.094	555.717
Guinea-Bissau	GNB	LCU per	711.976	733.038	2036 696.988	581.200	528.284	1428 527.468	522.890	479.266	2556 447.805	2908 472.186	495.277	471.866	510.527	494.040	9529 494.414	5075 591.449	593.008	5501 582.094	8304 555.717
Equatorial Guinea	GNQ	US\$ LCU per	2744	5071	2036	3139	8093	1428	1096	7826	2556	2908	0216	1141	1359	0374	9529	5075	1704	5501	8304
Grenada	GRD	US\$ LCU per	2.7 8.08314	2.7 8.32281	2.7 7.89471	2.7 6.58767	2.7 5.99105	2.7	2.7 5.94677	2.7 5.44370	2.7 5.09813	2.7 5.36086	2.7 5.62407	2.7 5.36871	2.7 5.79247	2.7 5.61631	2.7 5.61246	2.7 6.72790	2.7 6.73171	2.7	2.7
Greenland	GRL	US\$	4167	75	4167	3333	6667	5.99691	8333	0833	0833	6667	5	1535	5537	1686	6667	6831	8257		

LII

Guatemala	GTM	LCU per	7.76315	7.85859 25	7.82164	7.94084	7.94649	7.63394	7.60263	7.67330	7.56002	8.16155 5417	8.05777	7.78541	7.83360	7.85681	7.73223	7.65481	7.59993	7.34793	7.51916
Guvana	GUY	LCU per US\$	182.43	187.320 8333	190.665	193.878 3333	198.307 5	199.875	200.188 3333	202.346 6667	203.633 3333	203.95	203.635 8333	204.017 5	204.358 3333	205.394 1667	206.449 1667	206.5	206.5	206.5	207.716 6667
Hong Kong SAR, China	HKG	LCU per US\$	7.79116 6667	7.79875	7.79891 6667	7.78675	7.788	7.77733 3333	7.76783 3333	7.80141 6667	7.78683 3333	7.75175	7.76916 6667	7.784	7.75641 6667	7.756	7.75408 3333	7.75175	7.76225	7.79325	7.8385
Honduras	HND	LCU per US\$	14.8406 25	15.4768 25	16.4370 5833	17.3524 9167	18.2097 25	18.8323 4167	18.8952 0833	18.8951	18.9037 5833	18.8951	18.8951	18.9171 4167	19.5022 4951	20.3537 7917	20.9871 5833	21.9451 75	22.8350 1839	23.4870 8394	23.9027 2829
Croatia	HRV	LCU per US\$	8.27766 6417	8.34154 1	7.87168 25	6.70496 8833	6.03434 0667	5.94923 6917	5.83779 325	5.36453 5667	4.93503 975	5.28394 6417	5.49801 0583	5.34386 975	5.85029 1833	5.70488 0167	5.74816 5417	6.85830 375	6.80599 0167	6.62383 1	6.27902 525
Haiti	нті	LCU per US\$	21.1706 6667	24.4290 8333	29.2504 8333	42.3667 5833	38.3520 3333	40.4485 5	40.4085 1667	36.8614 1667	39.1075 9167	41.1976 0833	39.7974	40.5228 2194	41.9497 2295	43.4627 8333	45.2159 8089	50.7064 2667	63.3358 1837	64.7696 8028	68.0317 5398
Hungary	HUN	LCU per US\$	282.179 1667	286.49	257.886 6667	224.306 6667	202.745 8333	199.582 5	210.39	183.625 8333	172.113 3333	202.341 6667	207.944 1667	201.055	225.104 1667	223.695	232.601 6667	279.332 5	281.523 3333	274.433 3333	270.211 6667
Indonesia	IDN	LCU per US\$	8421.77 5	10260.8 5	9311.19 1667	8577.13 3333	8938.85	9704.74 1667	9159.31 6667	9141	9698.96 25	10389.9 375	9090.43 3333	8770.43 3333	9386.62 9167	10461.2 4	11865.2 113	13389.4 1294	13308.3 268	13380.8 3388	14236.9 3877
Isle of Man	IMN	LCU per US\$	0.66093 0833	0.69465 5	0.66722 3333	0.61247 25	0.54618	0.54999 8333	0.54348 6667	0.49977 1667	0.54396 625	0.64191 9263	0.64717 9346	0.62414 0836	0.63304 6989	0.63966 0578	0.60772 9627	0.65454 5479	0.74063 4464	0.77697 6682	0.74953 154
India	IND	LCU per US\$	44.9416 05	47.1864 1417	48.6103 1917	46.5832 8417	45.3164 6667	44.0999 75	45.3070 0833	41.3485 3333	43.5051 8333	48.4052 6667	45.7258 1212	46.6704 6667	53.4372 3333	58.5978 4542	61.0295 1446	64.1519 4446	67.1953 1281	65.1215 6865	68.3894 6709
Iran, Islamic Rep.	IRN	LCU per US\$	1764.85 6069	1753.98 5685	6907.03 4456	8193.88 7519	8613.98 9421	8963.95 8907	9170.94 2878	9281.15 1828	9428.52 8261	9864.30 2456	10254.1 7647	10616.3 0664	12175.5 4722	18414.4 4801	25941.6 6414	29011.4 9138	30914.8 5244	33226.2 9815	40864.3 2901
Iceland	ISL	LCU per US\$	78.6159 4667	97.4246 0333	91.6616 6667	76.7089 825	70.1916 6667	62.9816 6667	70.18	64.055	87.9479 1667	123.638 3814	122.241 8112	115.954 0398	125.082 787	122.179 1213	116.767 3525	131.918 7084	120.811 5481	106.839 572	108.300 1763
Israel	ISR	LCU per US\$	4.07733 3333	4.20565	4.73782 5	4.55413 3333	4.48198 3333	4.4877	4.45580 8333	4.10808 2949	3.58802 1194	3.93233 5478	3.73897 5	3.57812 9306	3.85592 1825	3.61075 8333	3.57792 5	3.88683 3333	3.84056 6667	3.59955 5548	3.59055 8127
Jamaica	JAM	LCU per US\$	42.9857	45.9962 5	48.4159 4167	57.7408 7375	61.1972	62.2807 1494	65.7438 5754	69.1921 6185	72.7562 0341	87.8941 1981	87.1961 4633	85.8934 632	88.7498 0239	100.397 8832	110.934 5278	116.969 7766	125.095 0346	127.964 5442	128.871 5191
Jordan	JOR	LCU per US\$	0.709	0.70898 3174	0.70899 9833	0.709	0.709	0.709	0.709	0.70899 9767	0.70966 655	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71
Japan	JPN	LCU per US\$	107.765 4983	121.528 9475	125.388 0192	115.933 4642	108.192 5692	110.218 2117	116.299 3117	117.753 5292	103.359 494	93.5700 8909	87.7798 75	79.8070 1983	79.7904 5542	97.5956 5828	105.944 781	121.044 0257	108.792 9	112.166 1411	110.423 1793
Kazakhstan	KAZ	LCU per US\$	142.133 3333	146.735 8333	153.279 1667	149.575 8333	136.035	132.88	126.089 4306	122.554 1667	120.299 1667	147.496 6667	147.355	146.620 8333	149.112 5	152.129 1667	179.191 6667	221.728 3333	342.16	326.001 0227	344.705 8333
Kenya	KEN	LCU per US\$	76.1755 4167	78.5631 95	78.7491 4167	75.9355 6944	79.1738 7606	75.5541 0945	72.1008 3502	67.3166 6667	69.1758 3333	77.3508 3333	79.2333 3333	88.8116 6667	84.53	86.1233 3333	87.9225	98.1791 6667	101.504 1667	103.410 4462	101.301 574
Kyrgyz Republic	KGZ	LCU per US\$	47.7038 3333	48.3779 5833	46.9370 6667	43.6483 75	42.6499 4167	41.0118 2051	40.1528 9995	37.3162 5681	36.5745 9167	42.9041 0833	45.9642 614	46.1439 0132	47.0044 7914	48.4380 5901	53.6540 5831	64.4621 0827	69.9140 6583	68.8666 6786	68.8403 2033
Cambodia	KHM	LCU per US\$	3840.75	3916.33 3333	3912.08 3333	3973.33 3333	4016.25	4092.5	4103.25	4056.16 6667	4054.16 6667	4139.33 3333	4184.91 6667	4058.5	4033	4027.25	4037.5	4067.75	4058.69 4579	4050.57 9986	4051.16 69
Kiribati	KIR	LCU per US\$	1.72482 6667	1.93344 25	1.84056 25	1.54191 4167	1.35975 25	1.30947 3333	1.32797 3441	1.19507 25	1.19217 8333	1.28218 881	1.09015 9486	0.96946 3201	0.96580 1031	1.03584 3097	1.10936 3293	1.33109 0262	1.34521 3976	1.30475 8077	1.33841 2146
St. Kitts and Nevis	KNA	LCU per US\$	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
Korea, Rep.	KOR	LCU per US\$	1130.95 75	1290.99 4583	1251.08 8333	1191.61 4167	1145.31 9167	1024.11 6667	954.790 5158	929.257 2617	1102.04 6667	1276.93	1156.06 0988	1108.29 2125	1126.47 0826	1094.85 2917	1052.96 0833	1131.15 75	1160.43 3435	1130.42 4621	1100.5
Kuwait	KWT	LCU per US\$	0.30675	0.30668	0.30391 4252	0.29801	0.2947	0.292	0.29017 6225	0.28421 3958	0.26882 8367	0.28778 5417	0.28660	0.27597 8944	0.27993 5558	0.28358 9442	0.28456 7142	0.30085	0.30213	0.30334 9758	0.30195 6494
Lao PDR	LAO	US\$	7887.64 3333	8954.58 3333	10056.3 3333	10569.0 375	10585.3 75	10655.1 6667	10159.9 3917	9603.16 0306	8744.22 4088	8516.05 2615	8258.77 0086	8030.05 5	8007.75 75	7860.13 75	8048.96 0333	8147.90 7956	8179.26 8333	8351.52 6075	8489.23 9909
Lebanon	LBN	US\$	1507.5	1507.5	1507.5	1507.5	1507.5	1507.5	1507.5	1507.5	1507.5	1507.5	1507.5	1507.5	1507.5	1507.5	1507.5	1507.5	1507.5	1507.5	1507.5
Liberia	LBR	US\$	40.9025	48.5919	6667	3333	3333	3333	3333	2222	63.2075	6667	3333	6667	73.5147 7208	77.52	83.8925	6657	94.4272 4359	6667	5758
Libya	LBY	US\$	9613	4254	9174	4128	6144	4824	1.31357 1625	4868	2393	4489	941	2495	9638	1821	2067	986	8679	0011	6667
St. Lucia	LCA	US\$	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
Sri Lanka	LKA	US\$	1667	1333	65 10 5407	5083	4575	0517	4458	2333	7627	7833	4804	2079	3535	0309	6852	9128	6675	4139	8587
Lesotho	LSO	US\$	8333	0833	4667	9167 902124	0.45909 25 8.02217	8333	9167 900142	7.04530 5 8.03585	3333 8 02010	4158	1961	2132	8627	9.05505 6069 7.08025	5557	3088	14.7090	8146	1113
Macao SAR, China	MAC	US\$	8.0259	8.0335	3333	1167	1083	4583	6167	3917 8 10233	9917 7 75032	3333	6667 8 41715	8333	35	5333	9	0417	425	0.02000	7417
Morocco	MAR	US\$	3617	75	8333	3333	6667	8333	3333	3333	10 3920	8.0571	8333	5 11 7386	4583	3917	6688 14 0356	828 18 8184	6032	7889	2421
Moldova	MDA	US\$	12.4342	4167	975	8333	1667	25	5833	4497	4368	7543	6096	1249	3682	5623	3005	7515	2756	3489	5172
Madagascar	MDG	US\$	6167	8833	1167	7667	7833	5833	1667	6667	0833	5833	2089.95	75	6667	4167	1667	8333	9167	3116.11	2255

Maldives	MDV	LCU per US\$	11.77	12.2420 8333	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	12.8	14.6020 084	15.3648 3532	15.3667 1003	15.3803 9352	15.3663 3122	15.3684 0768	15.3869 6851	15.3908 3727
Mexico	MEX	LCU per US\$	9.45555 8333	9.34234 1667	9.65595 8333	10.7890 1917	11.2859 6667	10.8978 9167	10.8992 4167	10.9281 9167	11.1297 1667	13.5134 75	12.6360 0833	12.4233 25	13.1694 5833	12.7719 9167	13.2924 5	15.8482 6667	18.6640 5833	18.9265 1667	19.2443 4167
North Macedonia	MKD	LCU per US\$	65.9038 6667	68.0371 3333	64.3497 9167	54.3222 5833	49.4099 3333	49.2836 8333	48.8017 6667	44.7298 1667	41.8676 8333	44.1005 75	46.4853 9167	44.2308 25	47.8902 5	46.3953 4167	46.4371 3083	55.5370 75	55.7317 25	54.6654 5833	52.1071 0833
Mali	MLI	LCU per US\$	711.976 2744	733.038 5071	696.988 2036	581.200 3139	528.284 8093	527.468 1428	522.890 1096	479.266 7826	447.805 2556	472.186 2908	495.277 0216	471.866 1141	510.527 1359	494.040 0374	494.414 9529	591.449 5075	593.008 1704	582.094 5501	555.717 8304
Myanmar	MMR	LCU per	6.51672 5	6.74890 8333	6.64208 3333	6.13892 5	5.80583 3333	5.81816 6667	5.84294 1667	5.61688 3333	5 44145	5.57636 6667	5.63488 3333	5.44410 8333	640.653 4167	933.570 4564	984.345 7476	1162.61 5329	1234.86 9517	1360.35 8707	1429.80 7975
Montenegro	MNE	LCU per	1.08540	1 11751	1.06255	0.88603	0.80536	0.80412	0.79714	0.73063	0.68267	0.71984	0.75504	0.71935	0.77829	0.75315	0.75373	0.90165	0.90403	0.88739	0.84718
Manualia		LCU per	1076.66	1097.69	1007	1146.54	1185.29	1205.24	1179.69	1170.40	1165.80	1437.79	1357.06	1265.51	4057.50	1523.92	1817.93	1970.30	2140.29	2439.77	2472.48
wongolia	MING	LCU per	15.2272	20.7036	23.6779	25 23.7822	75 22.5813	23.0609	25.4007	25.8403	24.3006	5 27.5182	4167 33.9600	5833 29.0675	28.3729	75 30.1041	31.3526	9167 39.9824	63.0562	63.5843	4051 60.3262
Mozambique	MOZ	US\$ LCU per	5 23.8923	4083 25.5629	5667 27.1739	675	425	65 26.5528	7917	4145 25.8586	4247 23.8203	9996 26.2365	988 27.5894	9993 28.1118	8448	1109 30.0681	877	7415 32.4671	3273 35.2370	2291 35.7944	0764
Mauritania	MRT	US\$ LCU per	3333 26.2495	1667 29.1292	1667	26.303 27.9014	27,4985	3333 29.4962	26.86 31.7080	6667 31.3136	3333 28.4528	8333	1667	3333 28,7059	29.662 30.0499	6667 30.7013	30.2725 30.6216	6667	8333 35.5418	1667 34.4814	35.6775 33.9344
Mauritius	MUS	US\$	5833	5833	29.962	75	1667	3333	6667 136 012	5625	375	31.9598	30.7844	5	7167	5833	1667	35.0567	8333	0833	5
Malawi	MWI	US\$	0833	3333	0833	97.4324 75	5083	118.42	5	5	6667	3333	8333	8333	6667	8333	6667	8333	718.005	5	3333
Malaysia	MYS	US\$	3.8	3.8	3.8	3.8	3.8	3.78709 1667	3.66817 6958	3.43756 9382	3.33583 3333	3.52450 2911	3.22108 6915	3.06000	3.08880 0867	3.15090 855	3.27285 9746	3.90550 0263	4.14830 0663	4.30044 0878	4.03513 0137
Namibia	NAM	LCU per US\$	6.93982 8333	8.60918 0833	10.5407 4667	7.56474 9167	6.45969 25	6.37711 6667	6.76715	7.05439 1667	8.25174 1667	8.52281 9833	7.33025	7.30002 5	8.19377 0833	9.75007 5	10.8428 875	12.8819 2083	14.7087 6667	13.3129	13.2339 4167
New Caledonia	NCI	LCU per US\$	129.522 7266	133.354 3681	126.796 0967	105.731 9634	96.1055 7457	95.9570 066	95.1241 7078	87.1882 1496	81.4647 3384	85.9001 3186	90.1007 977	85.8418 8532	92.8750 9856	89.8757 6554	89.9439 7015	107.596 4967	107.880 0487	105.894 6428	101.096 1899
Nigor	NED	LCU per	711.976	733.038	696.988	581.200	528.284	527.468	522.890	479.266	447.805	472.186	495.277	471.866	510.527	494.040	494.414	591.449	593.008	582.094	555.717
Niger	NER	LCU per	101.697	111.231	120.578	129.222	132.888	131.274	128.651	125.808	118.546	148.901	150.298	153.861	157.499	157.311	158.552	192.440	1704	305.790	306.083
Nigeria	NGA	US\$ LCU per	3333 12.6843	25 13.3719	1583 14.2513	35 15.1046	025 15.9372	3333 16.7333	6667 17.5699	1083 18.4485	0167 19.3718	7417 20.3394	025 21.3564	6083 22.4242	4258 23.5466	225 24.7227	6417 25.9589	3333 27.2568	253.492 28.6209	1092 30.0509	6882 31.5532
Nicaragua	NIC	US\$ LCU per	9167 8.80184	4167 8.99165	2525 7.98377	4333 7.08021	4732 6.74083	2953	9843 6.41333	0616 5.86166	9641	8187 6.28833	4868 6.04416	7062 5.60460	6353	6417	0037 6.30166	4494 8.06416	6241	4134 8.27166	1233
Norway	NOR	US\$ LCU per	1667 71 0937	4167 74 9492	8833 77 8766	6667 76 1414	3333 73 6735	6.4425	3333 72 7556	6667 66 4150	5.64 69 7616	3333 77 5734	6667 73 2623	7307	5.8175 85 2257	5.875 93.0843	6667 97 5548	6667 102 405	8.4 107 383	6667 104 511	8.1325
Nepal	NPL	US\$	9583	5	1917	475	9667	71.3675	0583	275	95	3074	5902	74.02	5599	9381	4216	1343	8152	8852	1341
Nauru	NRU	US\$	6667	25	25	4167	25	3333	3441	25	8333	881	9486	3201	1031	3097	3293	0262	3976	8077	2146
New Zealand	NZL	LCU per US\$	2.20114 9167	2.37875 0833	2.16219 0833	1.72209 9146	1.50868 1271	1.42027 3457	1.54205 5757	1.36067 5229	1.42272 681	1.60087 7295	1.38783 3828	1.26581 0697	1.23428 3655	1.21940 7974	1.20543 3333	1.43397 5	1.43652 5	1.40740 8333	1.44525 8333
Oman	OMN	LCU per US\$	0.3845	0.3845	0.3845	0.3845	0.3845	0.3845	0.3845	0.3845	0.3845	0.3845	0.3845	0.3845	0.3845	0.3845	0.3845	0.3845	0.3845	0.3845	0.3845
Pakistan	PAK	LCU per US\$	53.6481 865	61.9271 6167	59.7237 8167	57.7519 9667	58.2578 6333	59.5144 75	60.2713 35	60.7385 1583	70.4080 3333	81.7128 9167	85.1938 1633	86.3433 8333	93.3951 9722	101.628 8992	101.100 0884	102.769 2716	104.769 117	105.455 1621	121.824 0689
Panama	PAN	LCU per	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Dami		LCU per	2.40	3.50683	2 5465	3.47846	3.41317	3.29584	3.27403	3.12804	2.92440	3.01150	2.82512	0.7544	2.63758	2.70189	2.83904	3.18443	3.37506	3.26048	3.28660
Felu	PER	LCU per	44.1922	50.9926	51.6035	54.2033	56.0399	55.0854	51.3142	46.1483	44.3232	47.6796	45.1096	43.3131	42.2287	42.4461	44.3951	45.5028	47.4924	50.4037	52.6614
Philippines	PHL	US\$ LCU per	5 2.78215	5 3.38871	6667 3.89522	3333 3.56345	1667 3.22254	9167 3.10194	725 3.05673	9118 2.96534	8761 2.70008	8845 2.75514	6418 2.71929	3692 2.37096	9473 2.08364	8483	543 2.46138	3994 2.76841	6386 3.13302	1979 3.18878	2995 3.27903
Papua New Guinea	PNG	US\$ LCU per	6667 4.34607	5065	0802 4.08003	2875 3.88907	0104 3.65764	98 3.23548	4787 3.10315	5833	8333 2.40924	3333 3.12014	4167	9949 2.96284	8339 3.25654	2.24451 3.16061	5 3.15454	1667	9302 3.94278	8383 3.77933	6634 3.61171
Poland	POL	US\$ LCU per	5 3486 35	4.0939 4105 92	3333 5716 25	5 6424 33	1667 5974 57	3333 6177 93	8333 5635.09	2.76795 5032 71	1667 4363 29	1667 4966 68	3.0153 4758 43	7778 4193 80	1667 4421 65	6667 4303 88	1667 4462 18	3.7695 5204 92	3333 5670 54	3333 5618 93	6667 5732 10
Paraguay	PRY	US\$	3333	5	8333	9167	75	4947	3939	1576	1608	2297	0129	2308	9286	2566	5288	0808	0898	3452	4556
French Polynesia	PYF	US\$	7266	133.354 3681	0967	9634	96.1055 7457	95.9570 066	95.1241 7078	1496	81.4647 3384	85.9001 3186	90.1007 977	85.8418 8532	92.8750 9856	89.8757 6554	89.9439 7015	4967	0487	105.894 6428	101.096
Qatar	QAT	US\$	3.64	3.64	3.64	3.64	3.64	3.64	3.64	3.64	3.64	3.64	3.64	3.64	3.64	3.64	3.64	3.64	3.64	3.64	3.64
Romania	ROU	US\$	2083	2.90607	3.30554	3.32000 7083	3.20305 6833	2.91305	2.00098	2.43825	2.01005	3.04932	3.1779	8333	3.4682	5.52791 6667	5	4.00566	3333	4.05249	6667
Russian Federation	RUS	LCU per US\$	28.1291 6667	29.1685 25	31.3484 8333	30.6920 25	28.8137 4167	28.2844 4167	27.1909 5833	25.5808 4537	24.8528 75	31.7403 5833	30.3679 1534	29.3823 4137	30.8398 3135	31.8371 4364	38.3782 0714	60.9376 5011	67.0559 3333	58.3428 0119	62.6681 3333
Rwanda	RWA	LCU per US\$	389.696 2167	442.991 8917	475.365 2417	537.654 9848	577.448 9746	557.822 6408	551.710 3333	546.955	546.848 6532	568.281 3268	583.130 9066	600.306 5198	614.295 1424	646.635 9745	681.861 719	720.975 109	787.251 5218	831.530 7869	861.093 4122

LCU per

Saudi Arabia	SAU	US\$	3.75	3.75	3.75	3.75	3.75	3.75	3.75	3.75	3.75	3.75	3.75	3.75	3.75	3.75	3.75	3.75	3.75	3.75	3.75
Sudan	SDN	US\$	2.57122 5 711.976	2.56702 1042 733.038	2.03305 8333 696.988	2.00963 4333 581 200	2.57905	2.43005 8333 527.468	2.17153 3333 522.800	2.0161	2.09016 2829 447.805	2.30153 3333 472 186	2.30600 092 495 277	2.00001 9622 471.866	3.57295 8333 510 527	4.75676 0547	5.73000 6667 494 414	0.02573 2598 591 449	3646 593.008	6.68336	24.3209 109 555 717
Senegal	SEN	US\$	2744	5071	2036	3139 1 74218	8093 1 69022	1428	1096	7826	2556	2908	0216	1141	1359	0374	9529	5075	1704 1 38154	5501 1 38092	8304
Singapore	SGP	US\$ LCU per	3333	25 5.27798	8333 6.74877	3333	8333 7.48474	7.52987	3333	1667	0833	4713	8333 8.06450	5877	6204 7.35520	1.2513 7.30213	1.26705 7.37534	7.91468	6364 7.94815	7.88739	1667
Solomon Islands	SLB	US\$ LCU per	0833	4953 1986.15	2103 2099.03	3749 2347.94	3906 2701.29	3025 2889.58	8333 2961.90	7.652 2985.18	6667 2981.51	1667	1344 3978.08	903 4349.16	2847 4344.03	51 4332.49	5354 4524.15	8977 5080.74	2938 6289.94	0369 7384.43	4861 7931.63
Sierra Leone	SLE	US\$ LCU per	5	4167	3866	1667	6667	75	9167	5833	4658	3385.65	7527	2135	7642	9099	7882	7136	0085	2222	175
El Salvador	SLV	US\$	8.755 1.08540	1	1 1 06255	1 0 88603	1 0 80536	1	1 0 79714	1 0 73063	1 0.68267	1 0 71984	1 0 75504	1 0 71935	1 0 77829	1 0 75315	1 0 75373	1 0 90165	1 0 90403	1 0 88739	1 0 84718
San Marino	SMR	US\$	0833	1.11751	1667	4167	5	0.80412	0833	75	4711	336 31558 9	4952 31269.6	5254 29966 8	3601 22516 0	9182 19283 7	0737	8962 22254 2	5128 23061 7	7421 23097 9	6371
Somalia	SOM	US\$		66 9136	64 3982	57 5854		66 7138	67 1458	58 4535	55 7234	0548	6257 77 7289	3544	003	9995 85 1588	2913 88 4053	3568 108 811	8431 111 277	8732 107 758	100 175
Serbia	SRB	US\$ LCU per	63.1659	6	5127	25	58.3814	0833	1667	25	8333	67.5806	3333	73.3334	87.9733	5	0833	425 3.60416	85 46.7291	85 113.647	075
South Sudan Sao Tome and Prin-	SSD	US\$ LCU per	7.97817	8.84210	9.08832	9.34758	9.90232	10.5579	12.4486	13.5367	14.6952	16.2084	18.4986	2.98895 17.6229	2.95 19.0684	2.95 18.4499	2.95 18.4664	6667 22.0906	6667 22.1488	5 21.7411	8333 20.7508
cipe	STP	US\$ LCU per	1667 1.32249	9167 2.17818	5	3333 2.60133	4167 2.73358	7033 2.73166	425	55	0167	5125	0132 2.74541	3501	1681	5262	0305	4456 3.41666	6063 6.22863	3836 7.48766	5924 7.46251
Suriname	SUR	US\$ LCU per	0515 9.16224	2254 10.3291	2.34675 9.73712	3333 8.08630	2976 7.34888	6665 7.47308	2.74375 7.37824	2.745	2.745 6.59109	2.745 7.65381	6667 7.20752	3.268 6.49354	3.3 6.77501	3.3 6.51397	3.3 6.86078	6667 8.43484	0278 8.56199	1125 8.54886	1198 8.69251
Sweden	SWE	US\$ LCU per	4167 6.93982	3583 8.60918	3333 10.5407	4167 7.56474	6667 6.45969	8333 6.35932	9167 6.77154	6.75877 7.04536	9167 8.26122	9167 8.47367	4167 7.32122	3333 7.26113	5833 8.20996	1667 9.65505	5 10.8526	0833 12.7589	1667 14,7096	0833 13.3337	8333 13.2409
Eswatini Sint Maarten (Dutch	SWZ	US\$ LCU per	8333	0833	4667	9167	25	8333	9167	5	3333	4158	1961	2132	8627	6069	5557	3088	1089	8146	1113
part)	SXM	US\$ LCU per	5.71381	5.85754	5.48003	5.40071			5.51969	6.70105	9.45724	13.6099	12.0677	1.79 12.3810	1.79 13.7040	1.79 12.0583	1.79 12.7470	1.79 13.3139	1.79 13.3191	1.79 13.6478	1.79 13.9111
Seychelles Syrian Arab Repub-	SYC	US\$ LCU per	6667	1667	3333	6667	5.5	5.5	1667	9538	3283	4045	5664	3191 48.3366	3121 64.5808	1667 108.733	3333	25 237.029	1667 460.275	4167 492.610	1667
lic	SYR	US\$ LCU per	11.225 711.976	11.225 733.038	11.225 696.988	11.225 581.200	11.225 528.284	11.225 527.468	11.225 522.890	11.225 479.266	11.225 447.805	11.225 472.186	11.225 495.277	6667 471.866	3333 510.527	3333 494.040	154.13 494.414	1667 591.449	8333 593.008	8333 582.094	555.717
Chad	TCD	US\$ LCU per	2744 711.976	5071 733.038	2036 696.988	3139 581.200	8093 528.284	1428 527.468	1096 522.890	7826 479.266	2556 447.805	2908 472.186	0216 495.277	1141 471.866	1359 510.527	0374 494.040	9529 494.414	5075 591.449	1704 593.008	5501 582.094	8304 555.717
Тодо	TGO	US\$ LCU per	2744 40.1118	5071	2036 42.9600	3139 41.4846	8093 40.2224	1428 40.2201	1096 37.8819	7826 34.5181	2556 33.3133	2908 34.2857	0216 31.6857	1141 30.4917	1359 31.0830	0374 30.7259	9529 32.4798	5075 34.2477	1704 35.2963	5501 33.9398	8304 32.3102
Thailand	THA	US\$ LCU per	0333	44.4319 2.37219	8333 2.76413	1667 3.06136	1492 2.97050	3021 3.11656	8322 3.29840	8059 3.44248	0064 3.43072	7412 4.14270	05 4.37896	3333 4.61018	9167 4.73770	6667 4.76423	3333 4.93756	1667 6.16311	8333 7.83567	1106 8.54974	2574 9.15121
Tajikistan	TJK	US\$ LCU per	2.07625	1667	3333	6667	8333	6667	8333	3333	5	8333	6667	3333	8333	3333	6667	6667	5	1667	6667
Timor-Leste	TLS	US\$ LCU per	1 1.75850	1 2.12357	1 2.19518	1 2.14589	1 1.97156	1 1.94303	1 2.02588	1 1.97093	1 1.94244	1 2.03449	1 1.90598	1 1.72895	1 1.71950	1 1.77371	1 1.84677	1 2.10576	1 2.21566	1 2.20597	1 2.23657
Tonga Trinidad and To-	TON	US\$ LCU per	2604 6.29979	4169 6.23321	7335 6.24868	2252	2793 6.29899	6217 6.29955	0795 6.31228	3657 6.32803	4257 6.28943	3613 6.32490	7842 6.37550	071 6.40930	7016 6.42960	3119 6.44262	3685 6.40909	3257 6.37744	1104 6.66896	2697 6.77952	1476 6.77075
bago	TTO	US\$ LCU per	6667 1.37068	6667 1.43871	3333 1.42173	6.2951 1.28845	1667 1.24546	8333 1.29743	3333 1.33102	3333 1.28135	3333 1.23214	8333 1.35027	8333	0706 1.40778	2656 1.56189	9398 1.62465	4578 1.69767	1667 1.96162	6667 2.14803	5 2.41942	0898 2.64686
Tunisia	TUN	US\$ LCU per	3333 0.62521	25 1.22558	3333 1.50722	8333 1.50088	6667 1.42553	3333 1.34358	5 1.42845	8333 1.30293	1667 1.30152	5 1.54995	1.4314 1.50284	3333 1.67495	1667 1.79600	8333 1.90376	5 2.18854	5 2.72000	3333 3.02013	5 3.64813	6667 4.82837
Turkey	TUR	US\$ LCU per	85 800.408	8083 876.411	6417 966.582	5209 1038.41	725 1089.33	3108 1128.93	3413 1251.89	0905 1245.03	1703 1196.31	9776 1320.31	863 1395.62	4552 1557.43	0944 1571.69	8242 1597.55	2418 1653.23	8528 1991.39	4748 2177.08	2635 2228.85	0147 2263.78
Tanzania	TZA	US\$ LCU per	5167 1644.47	6667 1755.65	7843 1797.55	9007 1963.72	4771 1810.30	4179 1780.54	9973 1831.45	5464 1723.49	0709 1720.44	2061 2030.48	4943 2177.55	3373 2522.80	7999 2504.56	5751 2586.88	2013 2599.78	0964 3240.64	5954 3420.09	7629 3611.22	0634 3727.06
Uganda	UGA	US\$ LCU per	5333 5.44023	875 5.37215	05 5.32662	0083 5.33268	4714 5.31918	0261 5.12472	1851	1587	3879 5.26722	8074 7.79124	7507 7.93563	2033 7.96756	3078 7.99102	9569	8201 11.8866	542 21.8446	8007 25.5513	4458 26.5966	8995 27.2004
Ukraine	UKR	US\$ LCU per	3333 12.0995	8333 13.3191	5 21.2569	8333 28.2086	0667 28.7037	9	5.05 24.0733	5.05 23.4710	1417 20.9493	0333 22.5679	9417 20.0592	2833 19.3142	9333 20.3105	7.993 20.4816	5942 23.2460	9777 27.3273	3412	063	9233 30.7252
Uruguay	URY	US\$ LCU per	9167	1667	6667	8333	3333	24.4786	5833	25	1667	8333	75	0833	75	0833	25	6667	30.1626	28.6764	5833
United States	USA	US\$ LCU per	1 236.608	1	1	1	1	1	1	1	1	1	1	1	1	1 2094.98	1 2310.94	1 2567.98	1 2965.25	1 5113.87	1 8069.60
Uzbekistan St. Vincent and the	UZB	US\$ LCU per	3333													8465	8159	7213	3499	8946	6237
Grenadines	VCT	US\$ LCU per	2.7 14167.7	2.7 14725.1	2.7	2.7 15509.5	2.7	2.7 15858.9	2.7 15994.2	2.7 16105.1	2.7 16302.2	2.7 17065.0	2.7 18612.9	2.7 20509.7	2.7	2.7 20933.4	2.7	2.7 21697.5	2.7 21935.0	2.7 22370.0	2.7 22602.0
Vietnam	VNM	US\$	5	6667	15279.5	8333	15746	1667	5	25	5	8333	1667	5	20828	1667	21148	675	0083	8667	5

			407.040	445.040	400 400	400 400		400.045	440.040	400 407	404 004	400 740	00 0050	00 4004			07 0740	100.000		407.000	110 100
		LCU per	137.643	145.312	139.198	122.189		109.245	110.640	102.437	101.334	106.740	96.9058	89.4691			97.0716	108.989		107.820	110.168
Vanuatu	VUT	US\$	3333	5	3333	1667	111.79	8333	8333	5	1667	8333	3333	6667	92.6375	94.5425	6667	1667	108.475	8333	3333
		LCU per	3.28636	3.47804	3.37625	2.97323	2.78072	2.71033	2.77929	2.61657	2.64417	2.73077	2.48465	2.31747	2.29231	2.31090	2.33176	2.56087	2.56492	2.55437	2.58727
Samoa	WSM	US\$	1525	0072	8103	7658	3431	6734	4045	2472	628	851	6585	2012	195	0035	8846	3688	9673	7116	9951
		LCU per			1.06255	0.88603	0.80536		0.79714	0.73063	0.68267	0.71984	0.75504	0.71935	0.77829	0.75315	0.75373	0.90165	0.90403	0.88739	0.84718
Kosovo	XKX	US\$			1667	4167	5	0.80412	0833	75	4711	336	4952	5254	3601	9182	0737	8962	5128	7421	6371
		LCU per	161.718	168.671		183.448	184.775	191.509	197.049	198.953	199.764	202.846			214.350						
Yemen, Rep.	YEM	US\$	3333	6667	175.625	3333	8333	1667	1667	3333	1667	6667	219.59	213.8	8333	214.89	214.89	214.89	214.89	214.89	214.89
		LCU per	6.93982	8.60918	10.5407	7.56474	6.45969	6.35932	6.77154	7.04536	8.26122	8.47367	7.32122	7.26113	8.20996	9.65505	10.8526	12.7589	14.7096	13.3238	13.2339
South Africa	ZAF	US\$	8333	0833	4667	9167	25	8333	9167	5	3333	4158	1961	2132	8627	6069	5557	3088	1089	0142	2647
		LCU per	3.11084	3.61093	4.39859	4.73327	4.77887	4.46350	3.60307	4.00252	3.74566	5.04610	4.79713	4.86066	5.14725	5.39588	6.15281	8.63235	10.3130	9.51950	10.4581
Zambia	ZMB	US\$	4167	5	5	1046	5386	3311	2043	2665	069	9245	6875	5532	2665	7068	6248	5962	5323	142	4322

Appendix-Table 7 Test Statistics One-Way ANOVA with Bonferroni correction for Patents in Pharmaceutical Industry, all years, OECD (2020a, 2020f, 2020h)

	Ana	alysis of Va	riance		
Source	SS	df	MS	F	Prob > F
Between groups	1.68439791	3	0.561465971	54.27	0.0000
Within groups	1059.94754	102457	0.010345292		
Total	1061.63194	102460	0.010361428		

Bartlett's test for equal variances: chi2(3) = 33.2884 Prob>chi2 = 0.000

Cor	nparison of Gr	oups (Bonferroni	i)
Row Mean –			
Col Mean	0	1	2
	0.015343		
1	0.000		
	0.011167	-0.004176	
2	0.000	0.228	
	0.004419	-0.0077	-0.006749
3	0.017	0.008	0.005

LVI

Appendix-Table 8 Outward Host-Country Patents, https://stats.oecd.org

Reference D	ate			Priority dat	te														
Patent office	e			Patent app	lications filed	d under the I	РСТ												
Type of Inte	rnational Coope	ration in Pa	tenting	Domestic o	ownership of	inventions n	nade abroad												
Unit				Number															
	Time	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Country	<u>Partner</u> Country																		
Germany	Total Patents	13,678.0	13,893.0	14,205.0	14,973.0	15,863.0	16,774.0	17,794.0	18,687.0	17,125.0	17,508.0	18,851.0	19,022.0	18,285.0	17,857.0	17,857.0	18,161.0	18,868.0	19,063.0
	Total co-op- eration with abroad	2,275.0	2.417.0	2.362.0	2.445.0	2.542.0	2.964.0	3.249.0	3.377.0	3,189.0	3.347.0	3.613.0	3.667.0	3.606.0	3.442.0	3.325.0	3.445.0	3.648.0	3.616.0
	Australia	21.0	31.0	21.0	23.0	15.0	26.0	39.0	37.0	23.0	25.0	26.0	31.0	15.0	16.0	28.0	20.0	17.0	22.0
	Austria	256.0	275.0	286.0	253.0	242.0	316.0	333.0	300.0	246.0	265.0	277.0	243.0	297.0	232.0	247.0	294.0	338.0	299.0
	Belgium	109.0	100.0	102.0	88.0	118.0	116.0	130.0	110.0	131.0	133.0	140.0	156.0	96.0	120.0	101.0	75.0	94.0	108.0
	Canada	34.0	34.0	43.0	51.0	59.0	53.0	54.0	63.0	45.0	65.0	54.0	55.0	51.0	43.0	51.0	55.0	52.0	57.0
	Chile	3.0	2.0	1.0	1.0	4.0	5.0	3.0	11.0	3.0	1.0	0.0	3.0	2.0	2.0	1.0	4.0	0.0	4.0
	Czech Repub- lic	9.0	12.0	13.0	10.0	19.0	18.0	22.0	34.0	21.0	21.0	14.0	23.0	26.0	40.0	43.0	39.0	43.0	47.0
	Denmark	27.0	16.0	27.0	32.0	24.0	27.0	37.0	37.0	39.0	62.0	87.0	56.0	62.0	36.0	39.0	40.0	57.0	45.0
	Estonia	3.0	0.0	2.0	0.0	0.0	1.0	0.0	3.0	3.0	3.0	2.0	2.0	1.0	4.0	3.0	1.0	0.0	
	Finland	15.0	14.0	12.0	8.0	11.0	10.0	15.0	24.0	28.0	23.0	24.0	16.0	16.0	25.0	25.0	11.0	11.0	10.0
	France	227.0	258.0	244.0	265.0	256.0	276.0	271.0	295.0	333.0	349.0	406.0	405.0	361.0	337.0	348.0	376.0	360.0	365.0
	Germany																		
	Greece	5.0	6.0	5.0	7.0	4.0	5.0	5.0	8.0	4.0	5.0	3.0	4.0	8.0	12.0	7.0	2.0	5.0	6.0
	Hungary	15.0	12.0	15.0	22.0	16.0	23.0	15.0	29.0	33.0	31.0	27.0	27.0	34.0	48.0	66.0	70.0	77.0	68.0
	Iceland	0.0	1.0	3.0	5.0	0.0	2.0	0.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Ireland	6.0	3.0	7.0	9.0	6.0	5.0	14.0	9.0	20.0	16.0	9.0	16.0	17.0	24.0	16.0	17.0	18.0	20.0
	Israel	13.0	10.0	8.0	12.0	25.0	18.0	15.0	32.0	22.0	17.0	16.0	11.0	15.0	6.0	11.0	20.0	15.0	25.0
	Italy	68.0	56.0	68.0	80.0	75.0	91.0	83.0	102.0	98.0	120.0	82.0	81.0	121.0	112.0	117.0	117.0	149.0	114.0
	Japan	102.0	95.0	120.0	117.0	105.0	88.0	116.0	113.0	103.0	123.0	151.0	128.0	115.0	98.0	114.0	128.0	122.0	182.0
	Luxombourg	3.0	7.0	5.0	19.0	17.0	14.0	13.0	20.0	25.0	32.0	32.0	34.0	26.0	22.0	25.0	40.0	24.0	37.0
	Mexico	5.0	1.0	2.0	1.0	4.0	6.0	4.0	2.0	7.0	7.0	13.0	11.0	7.0	7.0	3.0	2.0	2.0	5.0
	Netherlands	4.0	1.0	1.0	5.0	5.0	11.0	8.0	8.0	4.0	7.0	5.0	6.0	6.0	4.0	11.0	12.0	4.0	8.0
	New Zealand	112.0	187.0	134.0	135.0	180.0	258.0	474.0	466.0	447.0	458.0	351.0	381.0	313.0	224.0	168.0	109.0	144.0	105.0
	Norway	1.0	2.0	5.0	4.0	3.0	1.0	5.0	3.0	6.0	3.0	4.0	3.0	4.0	2.0	5.0	3.0	4.0	3.0
	Poland	13.0	19.0	22.0	7.0	12.0	21.0	25.0	14.0	13.0	22.0	29.0	24.0	23.0	29.0	33.0	24.0	16.0	20.0
	Portugal	9.0	5.0	12.0	9.0	12.0	7.0	16.0	13.0	18.0	23.0	22.0	31.0	27.0	23.0	23.0	29.0	28.0	27.0
	Slovak Ro-	1.0	2.0	5.0	2.0	10.0	21.0	27.0	8.0	12.0	5.0	15.0	9.0	9.0	7.0	8.0	4.0	11.0	24.0
	public	5.0	6.0	10.0	11.0	4.0	11.0	11.0	15.0	12.0	6.0	9.0	10.0	7.0	14.0	11.0	16.0	19.0	16.0
	Slovenia	28.0	19.0	18.0	5.0	10.0	24.0	25.0	16.0	17.0	13.0	18.0	7.0	8.0	9.0	16.0	13.0	13.0	24.0

Spain	61.0	62.0	58.0	90.0	75.0	75.0	86.0	121.0	111.0	94.0	96.0	93.0	82.0	54.0	91.0	88.0	113.0	99.0
Sweden	62.0	51.0	64.0	65.0	45.0	63.0	64.0	55.0	54.0	55.0	57.0	49.0	55.0	62.0	60.0	49.0	63.0	60.0
Switzerland	183.0	205.0	102.0	227.0	273.0	322.0	282.0	337.0	285.0	252.0	275.0	302.0	264.0	212.0	220.0	267.0	305.0	234.0
Turkey	10.0	5.0	192.0	7.0	12.0	12.0	202.0	11.0	16.0	18.0	17.0	26.0	204.0	212.0	220.0	34.0	11.0	10.0
United King-	10.0	5.0	4.0	7.0	12.0	12.0	5.0	11.0	10.0	10.0	17.0	20.0	22.0	20.0	23.0	34.0	11.0	10.0
dom United States	135.0	175.0	212.0	195.0	227.0	199.0	247.0	203.0	228.0	279.0	386.0	277.0	271.0	280.0	276.0	250.0	234.0	184.0
European Un-	801.0	786.0	741.0	764.0	697.0	789.0	789.0	841.0	736.0	756.0	843.0	924.0	1,020.0	1,077.0	919.0	1,067.0	1,089.0	1,001.0
ion (28 coun-																		
tries)	1,098.0	1,220.0	1,244.0	1,215.0	1,284.0	1,488.0	1,801.0	1,773.0	1,779.0	1,903.0	1,944.0	1,834.0	1,761.0	1,603.0	1,604.0	1,572.0	1,717.0	1,610.0
Argena	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0
Andorra	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Argentina	2.0	2.0	1.0	3.0	4.0	4.0	3.0	2.0	3.0	8.0	3.0	0.0	8.0	2.0	1.0	0.0	1.0	0.0
Armenia	0.0	0.0	1.0	1.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Belarus	1.0	2.0	2.0	3.0	1.0	0.0	0.0	3.0	2.0	3.0	3.0	0.0	0.0	1.0	2.0	0.0	3.0	1.0
Bermuda	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Bosnia and Herzegovina	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	0.0	1.0	0.0	2.0	2.0	0.0	1.0	1.0
Brazil	5.0	15.0	9.0	16.0	32.0	27.0	34.0	29.0	35.0	37.0	30.0	39.0	45.0	66.0	41.0	32.0	52.0	41.0
Bulgaria	0.0	1.0	2.0	0.0	1.0	8.0	8.0	4.0	7.0	3.0	3.0	3.0	6.0	3.0	1.0	5.0	3.0	0.0
Cayman Is-	0.0		2.0	0.0		0.0	0.0		1.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
lands China	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Chinese Tai-	22.0	20.0	21.0	40.0	40.0	71.0	92.0	128.0	157.0	177.0	227.0	318.0	278.0	248.0	262.0	241.0	282.0	367.0
pei	6.0	4.0	18.0	22.0	7.0	9.0	14.0	15.0	11.0	10.0	18.0	19.0	8.0	16.0	14.0	16.0	11.0	13.0
Colombia	1.0	0.0	1.0	1.0	0.0	0.0	0.0	3.0	7.0	6.0	2.0	1.0	3.0	2.0	3.0	1.0	1.0	2.0
Costa Rica	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	1.0	2.0
Croatia	0.0	0.0	0.0	2.0	3.0	8.0	7.0	2.0	2.0	0.0	1.0	0.0	3.0	3.0	6.0	3.0	2.0	4.0
Cuba	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cyprus	0.0	0.0	0.0	2.0	1.0	2.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0
Democratic People's Re-																		
public of Ko-																		
rea Diibouti	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ecuador	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Equation	0.0	0.0	0.0	1.0	2.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	2.0	2.0
El Salvador	1.0	0.0	2.0	2.0	1.0	1.0	1.0	1.0	0.0	2.0	0.0	2.0	6.0	4.0	2.0	1.0	2.0	3.0
Serbia and	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Montenegro	1.0	0.0	0.0	1.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
North Mace-	0.0	0.0	1.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0
Georgia	0.0	0.0	0.0	1.0	2.0	0.0	0.0	1.0	1.0	0.0	1.0	1.0	0.0	0.0	3.0	0.0	0.0	0.0
Guatemala	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Hong	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Kong - China	8.0	5.0	3.0	6.0	13.0	21.0	23.0	8.0	10.0	14.0	19.0	9.0	12.0	9.0	20.0	13.0	22.0	10.0
Indonacia	17.0	9.0	16.0	27.0	19.0	29.0	31.0	34.0	31.0	52.0	71.0	70.0	85.0	84.0	97.0	81.0	66.0	95.0
Indonesia	1.0	3.0	0.0	1.0	1.0	3.0	3.0	1.0	1.0	5.0	2.0	1.0	2.0	2.0	2.0	1.0	3.0	1.0

Iran (Islamic Republic of)	2.0	1.0	1.0	10	0.0	2.0	0.0	1.0	1.0	1.0	10	0.0	1.0	2.0	6.0	0.0	2.0	0.0
Jamaica	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0
Jordan	0.0	0.0	0.0	0.0	0.0	0.0	16.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Kazakhstan	1.0	0.0	0.0	0.0	0.0	5.0	10.0	3.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	2.0	
Kenya	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0
Kuwait	0.0	0.0	2.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0
Latvia	0.0	0.0	2.0	2.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Lebanon	3.0	2.0	1.0	4.0	2.0	7.0	0.0	2.0	5.0	5.0	5.0	4.0	0.0	0.0	0.0	0.0	0.0	3.0
Liechtenstein	2.0	1.0	1.0	1.0	5.0	0.0	0.0	2.0	1.0	1.0	0.0	0.0	10.0	7.0	10.0	22.0	2.0	19.0
Lithuania	2.0	0.0	2.0	1.0	0.0	2.0	4.0	2.0	2.0	0.0	1.0	2.0	5.0	1.0	10	1.0	32.0	18.0
Malaysia	8.0	2.0	5.0	12.0	0.0	2.0	12.0	17.0	15.0	22.0	26.0	17.0	16.0	4.0	21.0	38.0	4.0	59.0
Malta	0.0	1.0	0.0	2.0	9.0	21.0	0.0	0.0	0.0	0.0	20.0	0.0	0.0	21.0	21.0	1.0	42.0	2.0
Monaco	2.0	0.0	0.0	0.0	3.0	3.0	3.0	6.0	2.0	2.0	0.0	3.0	2.0	0.0	4.0	0.0	0.0	0.0
Mongolia	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Morocco	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
Nigeria	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0
Pakistan	0.0	0.0	0.0	0.0	0.0	1.0	0.0	2.0	1.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	2.0	1.0
Panama	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Peru	0.0	0.0	0.0	0.0	2.0	1.0	2.0	1.0	1.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
Philippines	0.0	1.0	2.0	0.0	2.0	1.0	1.0	2.0	4.0	11.0	3.0	0.0	3.0	1.0	2.0	0.0	3.0	1.0
Puerto Rico	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Republic of	0.0	0.0	1.0	0.0	2.0	2.0	2.0	4.0	10	2.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0
Romania	2.0	1.0	2.0	5.0	2.0	2.0	2.0	4.0	6.0	2.0	5.0	18.0	16.0	26.0	18.0	20.0	22.0	44.0
Russian Fed-	2.0	1.0	2.0	5.0	2.0	1.0	4.0	5.0	0.0	4.0	5.0	10.0	10.0	20.0	10.0	29.0	22.0	44.0
eration Saudi Arabia	31.0	38.0	33.0	31.0	33.0	37.0	37.0	26.0	33.0	34.0	34.0	38.0	64.0	53.0	29.0	33.0	25.0	33.0
Sevchelles	0.0	0.0	0.0	0.0	5.0	17.0	2.0	6.0	5.0	5.0	1.0	9.0	3.0	5.0	2.0	7.0	5.0	2.0
Singapore	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
South Africa	17.0	28.0	41.0	21.0	39.0	43.0	30.0	45.0	50.0	30.0	43.0	38.0	37.0	63.0	47.0	33.0	40.0	34.0
Sri Lanka	2.0	7.0	6.0	2.0	9.0	9.0	5.0	12.0	2.0	2.0	6.0	8.0	7.0	2.0	8.0	10.0	5.0	4.0
Thailand	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0
Trinidad and	6.0	4.0	3.0	7.0	6.0	1.0	1.0	3.0	6.0	3.0	4.0	4.0	1.0	1.0	4.0	2.0	8.0	3.0
Tobago	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0
	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	0.0	1.0	
Ukraine	4.0	3.0	4.0	4.0	4.0	3.0	3.0	2.0	2.0	6.0	4.0	1.0	2.0	3.0	3.0	4.0	2.0	3.0
Emirates	0.0	0.0	0.0	1.0	0.0	7.0	6.0	0.0	3.0	2.0	6.0	2.0	2.0	6.0	3.0	8.0	5.0	0.0
Uruguay	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Uzbekistan	0.0	0.0	0.0	1.0	2.0	1.0	1.0	2.0	0.0	1.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0
Venezuela	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
Zimbabwe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

pan	Total Patents	10.774.0	12,268.0	14.887.0	19.418.0	24.412.0	26.434.0	26.901.0	29.097.0	28,220.0	31,189.0	37.412.0	42.046.0	43,737.0	42,275.0	43,253.0	44.357.0	47.034.0	47.867.0
	Total co-op- eration with abroad	599.0	595.0	785.0	954.0	1.052.0	1,105.0	1.058.0	1.014.0	928.0	1.018.0	1,136.0	1.310.0	1,269.0	1.543.0	1.601.0	1.657.0	1.893.0	1.960.0
	Australia	10.0	6.0	8.0	14.0	11.0	20.0	17.0	16.0	11.0	11.0	6.0	12.0	24.0	30.0	19.0	15.0	20.0	22.0
	Austria	2.0	2.0	6.0	1.0	4.0	0.0	7.0	4.0	0.0	2.0	5.0	2.0	1.0	5.0	4.0	4.0	9.0	4.0
	Belgium	6.0	5.0	11.0	7.0	10.0	6.0	0.0	12.0	15.0	30.0	37.0	28.0	26.0	30.0	24.0	18.0	27.0	24.0
	Canada	13.0	16.0	18.0	17.0	15.0	8.0	17.0	8.0	15.0	8.0	0.0	15.0	20.0	22.0	24.0	14.0	18.0	24.0
	Chile	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	0.0	24.0	0.0	23.0	0.0	0.0	20.0
	Czech Repub-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	lic Denmark	1.0	0.0	0.0	0.0	1.0	2.0	0.0	0.0	0.0	2.0	0.0	2.0	4.0	1.0	2.0	1.0	3.0	2.0
	Estonia	1.0	4.0	2.0	0.0	1.0	1.0	0.0	4.0	2.0	0.0	9.0	7.0	3.0	0.0	8.0	16.0	8.0	5.0
	Einland	1.0	1.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0
	Finiditu	1.0	3.0	4.0	5.0	1.0	0.0	2.0	2.0	2.0	3.0	7.0	41.0	24.0	18.0	20.0	14.0	4.0	2.0
	Composition	22.0	17.0	18.0	32.0	31.0	41.0	48.0	55.0	37.0	44.0	43.0	62.0	41.0	65.0	60.0	67.0	102.0	112.0
	Germany	47.0	55.0	91.0	109.0	131.0	80.0	96.0	120.0	89.0	118.0	103.0	118.0	119.0	146.0	107.0	96.0	148.0	194.0
	Greece	0.0	0.0	0.0	0.0	0.0	1.0	0.0	4.0	0.0	6.0	0.0	0.0	2.0	1.0	1.0	0.0	0.0	0.0
	Hungary	0.0	1.0	2.0	1.0	0.0	3.0	11.0	4.0	1.0	1.0	2.0	0.0	2.0	3.0	4.0	0.0	2.0	2.0
	Iceland	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Ireland	0.0	3.0	1.0	0.0	1.0	2.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	1.0	3.0
	Israel	1.0	1.0	5.0	2.0	2.0	2.0	4.0	3.0	2.0	3.0	1.0	2.0	1.0	0.0	2.0	2.0	1.0	6.0
	Italy	3.0	1.0	13.0	3.0	9.0	3.0	8.0	12.0	13.0	16.0	19.0	29.0	22.0	24.0	26.0	24.0	44.0	20.0
	Japan																		
	Korea	8.0	14.0	30.0	33.0	33.0	47.0	43.0	25.0	56.0	28.0	65.0	63.0	55.0	37.0	49.0	71.0	55.0	73.0
	Luxembourg	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	2.0	1.0	2.0	2.0	1.0	0.0	3.0	0.0
	Mexico	2.0	0.0	0.0	0.0	2.0	0.0	2.0	1.0	2.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	2.0	0.0
	Netherlands	9.0	19.0	19.0	6.0	6.0	14.0	5.0	5.0	11.0	13.0	15.0	21.0	10.0	14.0	15.0	27.0	23.0	25.0
	New Zealand	1.0	0.0	1.0	0.0	1.0	1.0	0.0	1.0	2.0	0.0	0.0	0.0	3.0	1.0	0.0	1.0	0.0	0.0
	Norway	3.0	1.0	2.0	1.0	2.0	0.0	3.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	3.0	5.0	0.0	0.0
	Poland	1.0	6.0	10.0	0.0	3.0	0.0	0.0	1.0	1.0	1.0	5.0	6.0	5.0	1.0	2.0	9.0	0.0	1.0
	Portugal	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0	0.0	2.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0
	Slovak Re-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0	0.0	4.5	10	10	4.0	4.0	0.0	10
	Slovenia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	6.0	3.0	4.0	1.0	1.0	1.0	1.0	0.0	1.0
	Spain	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Sweden	5.0	4.0	6.0	2.0	5.0	3.0	2.0	4.0	3.0	5.0	7.0	6.0	6.0	4.0	2.0	2.0	7.0	6.0
	Switzerland	23.0	2.0	2.0	4.0	1.0	3.0	10.0	10.0	12.0	16.0	20.0	11.0	18.0	81.0	180.0	120.0	92.0	97.0
	Turkey	4.0	7.0	8.0	12.0	4.0	6.0	11.0	16.0	8.0	9.0	16.0	10.0	4.0	17.0	20.0	32.0	26.0	27.0
	United King-	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	3.0	1.0	0.0	0.0	2.0	2.0	1.0	3.0	6.0	7.0
	dom	51.0	35.0	48.0	55.0	62.0	91.0	79.0	87.0	96.0	111.0	120.0	144.0	152.0	170.0	168.0	159.0	174.0	185.0
	United States	381.0	374.0	458.0	610.0	648.0	709.0	613.0	529.0	474.0	483.0	491.0	505.0	519.0	612.0	526.0	540.0	637.0	605.0
	European Un- ion (28 coun- tries)	166.0	154 0	216.0	216.0	257 0	237 0	265.0	316.0	280.0	354 0	353.0	438.0	419.0	536.0	593.0	538.0	616.0	644 0
	Algeria	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Avenemi 000	Andorra	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Immen 00 0.0 <td>Argentina</td> <td>0.0</td> <td>0.0</td> <td>1.0</td> <td>0.0</td> <td>1.0</td> <td>0.0</td> <td>0.0</td>	Argentina	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0
International 0.0 <	Armenia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
bernal 0.0<	Belarus	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0
Josefia and Herzsgeving Co. Co. <thco.< th=""> Co. <thco.< th=""> Co. <thco.< th=""></thco.<></thco.<></thco.<>	Bermuda	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Instal 10 00 <th< td=""><td>Bosnia and Herzegovina</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></th<>	Bosnia and Herzegovina	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Iblight 1.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0	Brazil	1.0	0.0	0.0	0.0	1.0	1.0	0.0	2.0	2.0	2.0	4.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0
Cyman II- onds Colo	Bulgaria	1.0	0.0	0.0	0.0	1.0	1.0	1.0	2.0	2.0	3.0	4.0	1.0	0.0	0.0	1.0	0.0	5.0	1.0
Chine Ha	Cayman Is-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0	0.0	0.0	0.0
Chinestrai Chine Lab Color Lab Color Lab Color Lab Color Lab Color Color <thcolor< th=""> <thcolor< th=""> <thcolor< <="" td=""><td>China</td><td>14.0</td><td>14.0</td><td>22.0</td><td>30.0</td><td>27.0</td><td>41.0</td><td>30.0</td><td>42.0</td><td>38.0</td><td>83.0</td><td>145.0</td><td>224.0</td><td>108.0</td><td>216.0</td><td>272.0</td><td>337.0</td><td>413.0</td><td>481.0</td></thcolor<></thcolor<></thcolor<>	China	14.0	14.0	22.0	30.0	27.0	41.0	30.0	42.0	38.0	83.0	145.0	224.0	108.0	216.0	272.0	337.0	413.0	481.0
Colombia Ob <	Chinese Tai-	6.0	5.0	15.0	19.0	14.0	6.0	3.0	42.0	6.0	21.0	12.0	9.0	11.0	14.0	272.0	33.0	32.0	33.0
Costa Rica 0.0	Colombia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.0	0.0	0.0	0.0
Creatia 0.0	Costa Rica	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cuba 0.0 <td>Croatia</td> <td>0.0</td>	Croatia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cyprus 0.0<	Cuba	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Democratic public of Ko- era Col	Cyprus	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
People Re- rea 0 00	Democratic	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0	0.0	0.0	0.0
res 0.0 0.0 1.0 0.0 <td>People's Re- public of Ko-</td> <td></td> <td></td> <td>4.0</td> <td></td>	People's Re- public of Ko-			4.0															
Ecuador 0.0	Djibouti	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
Expr 0.0 <td>Fcuador</td> <td>0.0</td>	Fcuador	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Image: Solution of the	Favot	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Berolands 0.0 0	El Salvador	0.0	2.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	1.0	1.0	0.0
Sector and Montenegro donia 0.0<	Er Salvador	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Norm Mace- donia 0.0	Montenegro	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Georgia 0.0	donia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Guatemala 0.0 0	Georgia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0
Hong Kong - China 0.0 1.0 0.0 0.0 6.0 4.0 2.0 4.0 0.0 3.0 10.0 5.0 7.0 3.0 9.0 1.0 5.0 4.0 India 1.0 0.0 2.0 6.0 2.0 3.0 4.0 0.0 3.0 2.0 3.0 7.0 1.0 1.4 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 7.0 1.0 1.4 1.0 2.0 2.0 2.0 3.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0	Guatemala	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
India 1.0 0.0 2.0 6.0 2.0 3.0 4.0 0.0 3.0 2.0 3.0 7.0 11.0 14.0 13.0 28.0 21.0 27.0 Indonesia 3.0 0.0 0.0 0.0 1.0 1.0 1.0 2.0 3.0 1.0 1.0 1.0 3.0 1.0 5.0 6.0 1.0 3.0 4.0 3.0 Iran (Islamic Republic of) 0.0	Hong Kong - China	0.0	1.0	0.0	0.0	6.0	4.0	2.0	4.0	0.0	3.0	10.0	5.0	7.0	3.0	9.0	1.0	5.0	4.0
Indonesia 3.0 0.0 0.0 0.0 9.0 0.0 1.0 1.0 2.0 3.0 1.0 5.0 6.0 1.0 3.0 4.0 3.0 Iran (Islamic Republic of) 0.0 0	India	1.0	0.0	2.0	6.0	2.0	3.0	4.0	0.0	3.0	2.0	3.0	7.0	11.0	14.0	13.0	28.0	21.0	27.0
Iran (Islamic Republic of) 0.0 </td <td>Indonesia</td> <td>3.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>9.0</td> <td>0.0</td> <td>1.0</td> <td>1.0</td> <td>1.0</td> <td>2.0</td> <td>3.0</td> <td>1.0</td> <td>5.0</td> <td>6.0</td> <td>1.0</td> <td>3.0</td> <td>4.0</td> <td>3.0</td>	Indonesia	3.0	0.0	0.0	0.0	9.0	0.0	1.0	1.0	1.0	2.0	3.0	1.0	5.0	6.0	1.0	3.0	4.0	3.0
Jamaica 0.0 0.0 0.0 0.0 0.0 2.0 1.0 0.0 2.0 0.0 0.0 1.0 0.0	Iran (Islamic Republic of)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Jordan 0.0<	Jamaica	0.0	0.0	0.0	0.0	2.0	1.0	1.0	0.0	2.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0
Kazakhstan 0.0	Jordan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Kenya 0.0 0.0 1.0 0.0 </td <td>Kazakhstan</td> <td>0.0</td>	Kazakhstan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Kuwait 0.0<	Kenya	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Latvia 1.0 0.0 1.0 0.0<	Kuwait	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Latvia	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Lebanon	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10

	Liechtenstein	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Lithuania	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Malaysia	0.0	0.0	1.0	0.0	2.0	1.0	2.0	0.0	5.0	2.0	6.0	5.0	4.0	3.0	10.0	7.0	9.0	5.0
	Malta	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Monaco	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Mongolia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
	Morocco	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Nigeria	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Pakistan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	1.0	0.0
	Panama	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Peru	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Philippines	1.0	2.0	0.0	0.0	1.0	0.0	2.0	0.0	2.0	0.0	0.0	1.0	2.0	2.0	4.0	1.0	3.0	1.0
	Puerto Rico	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Republic of	0.0			0.0			0.0	0.0		0.0	0.0	0.0	0.0			0.0		0.0
	Moldova Romania	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Russian Fed-	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0
	eration	6.0	5.0	13.0	17.0	15.0	20.0	34.0	13.0	12.0	8.0	14.0	6.0	4.0	6.0	3.0	2.0	4.0	3.0
	Saudi Arabia	0.0	0.0	0.0	0.0	0.0	0.0	1.0	2.0	2.0	2.0	2.0	1.0	1.0	2.0	1.0	1.0	6.0	
	Seychelles	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Singapore	2.0	15.0	32.0	21.0	39.0	35.0	35.0	42.0	18.0	36.0	23.0	39.0	26.0	37.0	39.0	32.0	34.0	42.0
	South Africa	1.0	2.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	1.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0
	Sri Lanka	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Thailand	0.0	1.0	3.0	6.0	7.0	4.0	9.0	12.0	13.0	12.0	9.0	13.0	14.0	39.0	41.0	50.0	36.0	23.0
	Trinidad and Tobago	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Tunisia	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
	Ukraine	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0
	United Arab	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Uruguay	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Uzbekistan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Venezuela	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Zimbabwe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
United	Total Patents	0.0	10.020.0	40.070.0	42,620,0	46.244.0	50 705 0	52 001 0	51 020 0	45 565 0	12 664 0	0.0	0.0 E1 078 0	0.0	0.0	56,022,0	0.0 EE 452.0	0.0	0.0
States	Total co-op- eration with	41,935.0	40,930.0	40,279.0	42,629.0	40,341.0	50,705.0	53,221.0	51,020.0	45,505.0	43,004.0	40,172.0	51,076.0	54,035.0	61,213.0	50,022.0	55,452.0	55,930.0	54,465.0
	abroad	5,388.0	5,498.0	5,544.0	6,041.0	6,729.0	7,456.0	7,954.0	7,845.0	7,030.0	6,839.0	7,367.0	8,631.0	9,101.0	9,822.0	9,496.0	9,296.0	9,297.0	8,650.0
	Austria	146.0	160.0	192.0	203.0	215.0	205.0	223.0	193.0	198.0	168.0	139.0	162.0	240.0	249.0	230.0	225.0	177.0	156.0
	Belgium	49.0	16.0	47.0	24.0	39.0	36.0	54.0	80.0	58.0	64.0	60.0	76.0	66.0	63.0	58.0	58.0	65.0	53.0
	Canada	243.0	239.0	235.0	248.0	250.0	271.0	340.0	296.0	268.0	281.0	281.0	305.0	315.0	300.0	299.0	307.0	298.0	258.0
	Chile	611.0	611.0	606.0	625.0	702.0	780.0	802.0	897.0	790.0	771.0	811.0	812.0	888.0	840.0	752.0	697.0	685.0	616.0
	Chile	7.0	1.0	8.0	6.0	9.0	8.0	10.0	13.0	5.0	4.0	9.0	10.0	11.0	9.0	7.0	11.0	9.0	6.0
	lic	8.0	10.0	14.0	10.0	14.0	28.0	18.0	22.0	31.0	27.0	18.0	18.0	31.0	28.0	38.0	24.0	11.0	32.0

Denmark	59.0	75.0	83.0	112.0	122.0	113.0	117.0	126.0	99.0	91.0	83.0	103.0	84.0	92.0	53.0	49.0	76.0	72.0
Estonia	2.0	1.0	1.0	2.0	1.0	1.0	1.0	1.0	1.0	0.0	3.0	0.0	2.0	3.0	4.0	2.0	4.0	2.0
Finland	66.0	56.0	40.0	44.0	66.0	66.0	70.0	54.0	44.0	31.0	44.0	71.0	109.0	71.0	84.0	66.0	77.0	49.0
France	428.0	433.0	482.0	506.0	559.0	601.0	659.0	604.0	523.0	468.0	496.0	520.0	514.0	566.0	502.0	566.0	475.0	497.0
Germany	790.0	751.0	791.0	785.0	894.0	1,016.0	1,110.0	1,082.0	994.0	973.0	1,018.0	1,100.0	1,106.0	1,275.0	1,183.0	1,220.0	1,218.0	1,157.0
Greece	13.0	12.0	12.0	14.0	9.0	16.0	15.0	24.0	16.0	18.0	19.0	14.0	19.0	19.0	16.0	11.0	17.0	20.0
Hungary	26.0	6.0	13.0	21.0	19.0	21.0	23.0	31.0	27.0	16.0	34.0	42.0	20.0	27.0	21.0	13.0	19.0	21.0
Iceland	8.0	7.0	3.0	6.0	2.0	6.0	4.0	3.0	4.0	0.0	3.0	12.0	4.0	3.0	0.0	4.0	2.0	4.0
Ireland	39.0	62.0	72.0	77.0	75.0	87.0	96.0	133.0	120.0	99.0	111.0	147.0	119.0	128.0	139.0	177.0	186.0	163.0
Israel	339.0	313.0	293.0	315.0	285.0	377.0	444.0	343.0	328.0	309.0	335.0	548.0	560.0	603.0	542.0	523.0	542.0	425.0
Italy	186.0	196.0	165.0	165.0	212.0	231.0	264.0	261.0	194.0	220.0	217.0	237.0	183.0	210.0	242.0	185.0	193.0	212.0
Japan	467.0	463.0	423.0	500.0	615.0	642.0	614.0	601.0	555.0	493.0	503.0	618.0	698.0	632.0	476.0	394.0	471.0	548.0
Korea	69.0	71.0	99.0	122.0	155.0	126.0	153.0	156.0	114.0	123.0	130.0	175.0	227.0	199.0	162.0	197.0	246.0	178.0
Luxembourg	5.0	5.0	17.0	5.0	18.0	4.0	11.0	7.0	11.0	7.0	8.0	8.0	11.0	6.0	6.0	11.0	13.0	2.0
Mexico	26.0	26.0	20.0	34.0	42.0	40.0	35.0	31.0	32.0	47.0	50.0	64.0	69.0	64.0	78.0	83.0	82.0	81.0
Netherlands	208.0	213.0	212.0	246.0	234.0	254.0	276.0	228.0	263.0	189.0	212.0	232.0	196.0	242.0	267.0	240.0	208.0	214.0
New Zealand	35.0	22.0	34.0	48.0	36.0	35.0	50.0	54.0	44.0	43.0	40.0	50.0	51.0	52.0	48.0	32.0	43.0	34.0
Norway	31.0	28.0	42.0	30.0	34.0	40.0	43.0	62.0	52.0	37.0	53.0	50.0	85.0	93.0	70.0	41.0	52.0	48.0
Poland	16.0	15.0	17.0	15.0	18.0	25.0	22.0	32.0	22.0	35.0	30.0	40.0	31.0	48.0	68.0	67.0	79.0	47.0
Portugal	8.0	9.0	4.0	4.0	3.0	13.0	15.0	15.0	13.0	11.0	11.0	10.0	12.0	9.0	14.0	22.0	18.0	11.0
Slovak Re-	4.0	0.0	2.0	10	0.0	2.0	2.0	0.0	2.0	2.0	2.0	3.0	3.0	10.0	5.0	0.0	8.0	5.0
Slovenia	3.0	1.0	4.0	2.0	1.0	3.0	1.0	4.0	4.0	3.0	8.0	4.0	10.0	10.0	12.0	3.0	7.0	12.0
Spain	72.0	85.0	73.0	77.0	98.0	117.0	119.0	117.0	97.0	99.0	122.0	157.0	162.0	171.0	274.0	310.0	318.0	249.0
Sweden	140.0	114.0	98.0	95.0	134.0	142.0	160.0	172.0	144.0	143.0	108.0	116.0	138.0	128.0	98.0	119.0	144.0	111.0
Switzerland	154.0	195.0	185.0	180.0	215.0	203.0	235.0	230.0	252.0	230.0	294.0	278.0	316.0	307.0	230.0	257.0	294.0	275.0
Turkey	6.0	8.0	11.0	17.0	19.0	23.0	21.0	11.0	12.0	24.0	17.0	16.0	28.0	23.0	28.0	15.0	30.0	24.0
United King-	1.040.0			4 407 0		4 000 0	1.057.0	4 050 0	4 000 0	1 000 0	4 000 0	4 475 0	4.040.0	4 005 0	4 405 0	4 000 0	4 005 0	4 000 0
United States	1,042.0	1,114.0	1,041.0	1,137.0	1,249.0	1,228.0	1,257.0	1,253.0	1,098.0	1,009.0	1,063.0	1,175.0	1,049.0	1,225.0	1,185.0	1,096.0	1,085.0	1,008.0
European Un-																		
ion (28 coun-	3 163 0	3 204 0	3 166 0	3 362 0	3 750 0	3 000 0	4 300 0	4 176 0	3 707 0	3 475 0	3 621 0	4 003 0	3 808 0	1 302 0	4 172 0	4 202 0	4 088 0	3 855 0
Algeria	0.0	1.0	1.0	0.0	0.0	3,990.0	4,309.0	4,170.0	3,707.0	1.0	0.0	4,003.0	0.0	4,302.0	4,172.0	4,202.0	4,000.0	0.0
Andorra	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Argentina	16.0	14.0	23.0	23.0	19.0	41.0	33.0	63.0	19.0	23.0	28.0	34.0	27.0	34.0	35.0	58.0	26.0	24.0
Armenia	1.0	2.0	1.0	0.0	1.0	1.0	1.0	0.0	0.0	0.0	3.0	13.0	1.0	8.0	4.0	5.0	20.0	6.0
Belarus	2.0	3.0	1.0	1.0	3.0	3.0	0.0	2.0	1.0	3.0	3.0	2.0	0.0	4.0	4.0	0.0	2.0	2.0
Bermuda	3.0	1.0	0.0	2.0	2.0	4.0	1.0	1.0	1.0	1.0	0.0	1.0	0.0		0.0	0.0	0.0	0.0
Bosnia and	0.0	1.0	0.0	2.0	2.0	4.0	1.0	1.0	1.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
Herzegovina Brazil	0.0	2.0	0.0	1.0	0.0	1.0	0.0	0.0	1.0	1.0	1.0	2.0	0.0	1.0	2.0	0.0	0.0	
Bulgaria	20.0	46.0	31.0	33.0	47.0	53.0	43.0	72.0	49.0	49.0	100.0	63.0	78.0	105.0	105.0	131.0	125.0	124.0
Duigunu	1.0	3.0	2.0	3.0	2.0	1.0	2.0	7.0	1.0	3.0	2.0	4.0	8.0	11.0	9.0	3.0	7.0	2.0

Cayman Is-	20	1.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	10	0.0	0.0	3.0	1.0	2.0	2.0	2.0	4.0
China	124.0	125.0	170.0	234.0	206.0	328.0	444.0	451.0	434.0	527.0	648.0	982.0	1 157 0	1 336 0	1 541 0	1 275 0	1 408 0	1 251 0
Chinese Tai-	124.0	120.0	170.0	204.0	200.0	020.0		401.0	-0-1.0	021.0	040.0	002.0	1,107.0	1,000.0	1,041.0	1,210.0	1,400.0	1,201.0
pei Colombia	40.0	56.0	64.0	67.0	98.0	110.0	122.0	110.0	80.0	104.0	92.0	111.0	132.0	165.0	210.0	248.0	245.0	327.0
Costa Bisa	4.0	5.0	3.0	6.0	3.0	1.0	4.0	5.0	6.0	8.0	5.0	12.0	18.0	17.0	15.0	16.0	23.0	15.0
Custa Rica	2.0	1.0	4.0	1.0	1.0	6.0	0.0	3.0	7.0	5.0	7.0	3.0	5.0	11.0	6.0	25.0	11.0	10.0
Croatia	3.0	8.0	2.0	7.0	2.0	4.0	0.0	2.0	1.0	8.0	2.0	0.0	3.0	1.0	4.0	2.0	7.0	2.0
Cuba	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0
Cyprus	0.0	5.0	1.0	5.0	1.0	3.0	3.0	2.0	0.0	1.0	2.0	1.0	1.0	5.0	2.0	4.0	2.0	2.0
Democratic People's Re- public of Ko- rea	1.0	0.0	2.0	10	0.0	10	0.0	0.0	0.0	0.0	1.0	0.0	0.0	4.0	10	0.0	1.0	0.0
Djibouti	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ecuador	1.0	1.0	0.0	0.0	3.0	0.0	0.0	2.0	1.0	1.0	2.0	2.0	1.0	2.0	1.0	0.0	2.0	2.0
Egypt	3.0	4.0	11.0	6.0	3.0	11.0	8.0	6.0	8.0	15.0	9.0	13.0	13.0	21.0	22.0	11.0	12.0	9.0
El Salvador	0.0	1.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	10	0.0	10	0.0	0.0	1.0	0.0
Serbia and	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	1.0	0.0
Montenegro North Mace-	3.0	2.0	0.0	4.0	2.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
donia	0.0	0.0	1.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	1.0	2.0	0.0	0.0
Georgia	6.0	1.0	2.0	2.0	4.0	6.0	2.0	2.0	3.0	0.0	2.0	0.0	0.0	0.0	1.0	2.0	4.0	0.0
Guatemala	0.0	1.0	0.0	0.0	1.0	1.0	0.0	1.0	0.0	0.0	0.0	2.0	1.0	0.0	0.0	3.0	3.0	2.0
Hong Kong - China	29.0	30.0	54.0	54.0	64.0	60.0	80.0	70.0	53.0	64.0	89.0	68.0	48.0	52.0	60.0	47.0	44.0	33.0
India	66.0	90.0	107.0	166.0	229.0	315.0	306.0	321.0	300.0	347.0	459.0	606.0	651.0	815.0	804.0	806.0	736.0	706.0
Indonesia	5.0	3.0	2.0	1.0	7.0	1.0	4.0	6.0	1.0	4.0	4.0	1.0	7.0	5.0	1.0	3.0	1.0	4.0
Iran (Islamic	0.0	2.0	2.0	2.0	0.0	1.0	2.0	2.0	10	1.0	2.0	10	0.0	5.0	4.0	4.0	4.0	10
Jamaica	0.0	2.0	3.0	3.0	0.0	1.0	2.0	3.0	1.0	1.0	2.0	1.0	0.0	5.0	4.0	4.0	4.0	1.0
Jordan	0.0	1.0	1.0	0.0	1.0	0.0	0.0	3.0	1.0	0.0	1.0	0.0	0.0	2.0	0.0	3.0	2.0	1.0
Kazakhstan	0.0	0.0	1.0	0.0	1.0	3.0	3.0	18.0	19.0	0.0	1.0	1.0	0.0	1.0	1.0	0.0	1.0	0.0
Kenya	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	3.0	1.0	1.0	2.0	0.0	2.0
, Kuwait	0.0	2.0	4.0	3.0	2.0	5.0	2.0	0.0	3.0	0.0	3.0	1.0	0.0	2.0	3.0	4.0	2.0	1.0
Latvia	1.0	0.0	2.0	1.0	0.0	1.0	0.0	2.0	2.0	0.0	1.0	0.0	2.0	0.0	4.0	1.0	4.0	5.0
Lebanon	1.0	0.0	0.0	0.0	0.0	2.0	1.0	2.0	0.0	0.0	0.0	2.0	1.0	1.0	1.0	1.0	0.0	2.0
Liechtenstein	0.0	1.0	0.0	0.0	4.0	0.0	4.0	3.0	1.0	1.0	3.0	2.0	0.0	1.0	5.0	5.0	2.0	8.0
Lithuania	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0
Malaysia	1.0	1.0	1.0	1.0	1.0	3.0	3.0	1.0	6.0	0.0	2.0	0.0	1.0	0.0	1.0	2.0	4.0	4.0
Malta	23.0	11.0	21.0	16.0	21.0	36.0	29.0	27.0	37.0	29.0	36.0	68.0	63.0	49.0	40.0	90.0	132.0	56.0
Monaco	0.0	1.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	1.0	0.0	0.0	3.0
Mongolia	1.0	0.0	0.0	1.0	1.0	1.0	1.0	1.0	1.0	0.0	0.0	1.0	0.0	3.0	1.0	1.0	0.0	
Morocco	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0
Nigeria	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	2.0
Dakistan	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	1.0	1.0	0.0	0.0	2.0	0.0	2.0	3.0
Pakistan	3.0	2.0	0.0	2.0	1.0	3.0	1.0	5.0	1.0	1.0	4.0	7.0	4.0	2.0	6.0	3.0	0.0	4.0
Panama	0.0	1.0	2.0	1.0	1.0	0.0	0.0	1.0	2.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0

	Peru	0.0	0.0	0.0	1.0	0.0	2.0	5.0	0.0	4.0	0.0	2.0	3.0	0.0	1.0	2.0	0.0	2.0	1.0
	Philippines	11.0	3.0	13.0	4.0	20.0	22.0	16.0	15.0	14.0	5.0	17.0	9.0	9.0	5.0	17.0	14.0	8.0	8.0
	Puerto Rico	0.0	4.0	3.0	5.0	9.0	11.0	4.0	3.0	4.0	5.0	4.0	10.0	7.0	11.0	4.0	9.0	11.0	11.0
	Republic of Moldova	0.0	0.0	1.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0	1.0	1.0	2.0	2.0
	Romania	6.0	4.0	8.0	7.0	20.0	13.0	23.0	10.0	24.0	14.0	10.0	14.0	26.0	24.0	28.0	21.0	12.0	9.0
	Russian Fed- eration	88.0	98.0	78.0	93.0	98.0	135.0	125.0	113.0	88.0	96.0	94.0	168.0	203.0	204.0	144.0	174.0	227.0	201.0
	Saudi Arabia	4.0	4.0	9.0	13.0	11.0	14.0	14.0	23.0	18.0	31.0	30.0	39.0	22.0	23.0	18.0	25.0	16.0	18.0
	Seychelles	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Singapore	49.0	53.0	44.0	67.0	66.0	89.0	108.0	98.0	118.0	111.0	124.0	161.0	138.0	186.0	249.0	238.0	227.0	228.0
	South Africa	17.0	15.0	15.0	25.0	21.0	8.0	24.0	27.0	33.0	20.0	21.0	24.0	33.0	37.0	24.0	33.0	26.0	15.0
	Sri Lanka	0.0	0.0	2.0	1.0	1.0	2.0	4.0	2.0	4.0	3.0	2.0	1.0	4.0	0.0	2.0	1.0	5.0	4.0
	Thailand	21.0	16.0	10.0	10.0	14.0	34.0	13.0	23.0	8.0	13.0	19.0	17.0	16.0	17.0	14.0	14.0	11.0	12.0
	Trinidad and Tobago	0.0	1.0	2.0	0.0	0.0	1.0	0.0	0.0	2.0	4.0	4.0	3.0	0.0	0.0	0.0	2.0	0.0	0.0
	Tunisia	0.0	1.0	0.0	1.0	2.0	1.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	2.0	0.0	0.0	2.0	0.0
	Ukraine	15.0	15.0	14.0	14.0	9.0	17.0	16.0	39.0	17.0	18.0	13.0	16.0	33.0	22.0	20.0	21.0	21.0	18.0
	United Arab Emirates	3.0	4.0	3.0	4.0	2.0	1.0	4.0	4.0	14.0	7.0	10.0	14.0	13.0	20.0	18.0	21.0	23.0	12.0
	Uruguay	2.0	3.0	3.0	4.0	4.0	2.0	5.0	4.0	1.0	0.0	2.0	7.0	4.0	11.0	2.0	5.0	5.0	4.0
	Uzbekistan	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0
	Venezuela	6.0	8.0	5.0	2.0	3.0	1.0	8.0	10.0	1.0	3.0	2.0	0.0	9.0	5.0	6.0	2.0	1.0	3.0
	Zimbabwe	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0
<u>World</u>	Total Patents	102,746. 0	104,710. 0	108,587. 0	118,594. 0	132,449. 0	144,892.	154,406. 0	159,880. 0	150,262. 0	156,622. 0	172,190. 0	188,385. 0	196,348. 0	206,948.	207,806. 0	218,227. 0	232,490. 0	235,071.
	Total co-op- eration with abroad	16,026.0	16,902.0	18,483.0	20,006.0	21,679.0	23,773.0	25,231.0	26,481.0	24,638.0	24,591.0	26,247.0	28,101.0	29,525.0	30,695.0	30,623.0	31,048.0	31,288.0	30,014.0
	Australia	335.0	344.0	377.0	395.0	445.0	458.0	473.0	443.0	465.0	442.0	399.0	437.0	511.0	487.0	488.0	452.0	400.0	388.0
	Austria	399.0	410.0	489.0	476.0	512.0	597.0	691.0	717.0	541.0	472.0	506.0	533.0	577.0	562.0	567.0	619.0	694.0	600.0
	Belgium	555.0	540.0	576.0	587.0	655.0	713.0	776.0	765.0	758.0	813.0	843.0	892.0	839.0	762.0	784.0	759.0	716.0	705.0
	Canada	911.0	920.0	906.0	978.0	1.087.0	1.214.0	1.370.0	1.394.0	1.233.0	1.236.0	1.368.0	1.344.0	1.548.0	1.587.0	1.525.0	1.595.0	1.553.0	1.316.0
	Chile	14.0	11.0	12.0	11.0	25.0	25.0	19.0	34.0	26.0	22.0	29.0	41.0	36.0	34.0	31.0	40.0	27.0	19.0
	Czech Repub-	10.0		40.0	10.0		0				05.0	74.0			400.0	400.0	404.0		
	Denmark	42.0	52.0	46.0	49.0	44.0	77.0	68.0	113.0	96.0	85.0	71.0	90.0	113.0	132.0	162.0	134.0	118.0	149.0
	Estonia	213.0	253.0	248.0	281.0	295.0	318.0	353.0	346.0	324.0	317.0	362.0	346.0	337.0	325.0	251.0	286.0	307.0	289.0
	Finland	0.0	105.0	157.0	149.0	100.0	7.0	13.0	21.0	33.0	15.0	35.0	12.0	0.0	22.0	20.0	208.0	246.0	202.0
	France	214.0	1 450.0	107.0	1 840.0	1 005 0	212.0	249.0	240.0	201.0	210.0	245.0	206.0	320.0	299.0	2.025.0	308.0	340.0	392.0
	Germany	1,304.0	1,450.0	1,000.0	1,049.0	1,905.0	2,024.0	2,077.0	2,117.0	2,001.0	1,994.0	2,112.0	2,213.0	2,127.0	2,131.0	2,025.0	2,103.0	1,912.0	1,091.0
	Greece	2,020.0	2,151.0	2,592.0	2,932.0	3,111.0	3,337.0	3,348.0	3,948.0	3,479.0	3,497.0	3,030.0	3,004.0	3,872.0	3,782.0	3,704.0	3,819.0	4,020.0	3,906.0
	Hungary	33.0	31.0	48.0	39.0	30.0	45.0	33.0	59.0	36.0	61.0	53.0	40.0	57.0	61.0	57.0	34.0	65.0	66.0
	Teelend	97.0	61.0	62.0	97.0	86.0	97.0	108.0	140.0	147.0	140.0	184.0	181.0	169.0	165.0	194.0	195.0	193.0	154.0
	Iceland																		
	Ireland	12.0	10.0	13.0	13.0	5.0	18.0	9.0	5.0	7.0	6.0	10.0	15.0	7.0	9.0	3.0	8.0	3.0	7.0

Israel	469.0	446.0	384.0	412.0	468.0	564.0	610.0	539.0	472.0	453.0	492.0	714.0	760.0	750.0	692.0	750.0	752.0	691.0
Italy	576.0	617.0	522.0	629.0	678.0	717.0	807.0	900.0	825.0	829.0	858.0	917.0	955.0	912.0	944.0	910.0	957.0	843.0
Japan	806.0	791.0	841.0	906.0	1,055.0	1,140.0	1,078.0	1,204.0	1,036.0	1,054.0	1,093.0	1,228.0	1,421.0	1,321.0	1,231.0	1,122.0	1,309.0	1,357.0
Korea	100.0	106.0	170.0	210.0	249.0	283.0	273.0	263.0	269.0	249.0	371.0	453.0	461.0	414.0	407.0	476.0	451.0	394.0
Luxembourg	33.0	13.0	27.0	15.0	31.0	18.0	24.0	25.0	27.0	29.0	43.0	30.0	37.0	30.0	18.0	33.0	36.0	23.0
Mexico	46.0	40.0	41.0	59.0	66.0	77.0	66.0	77.0	61.0	74.0	75.0	86.0	101.0	93.0	112.0	122.0	117.0	104.0
Netherlands	685.0	839.0	702.0	803.0	839.0	1.012.0	1.176.0	1.159.0	1,148.0	1.047.0	965.0	1.038.0	959.0	954.0	834.0	707.0	701.0	582.0
New Zealand	77.0	62.0	69.0	101.0	90.0	81.0	110.0	101.0	104.0	80.0	81.0	104.0	104.0	107.0	107.0	84.0	80.0	67.0
Norway	167.0	140.0	174.0	124.0	154.0	173.0	226.0	240.0	202.0	189.0	199.0	173.0	225.0	238.0	209.0	179.0	168.0	150.0
Poland	40.0	60.0	67.0	50.0	57.0	59.0	75.0	86.0	103.0	141.0	162.0	180.0	165.0	175.0	190.0	216.0	200.0	198.0
Portugal	18.0	23.0	16.0	21.0	23.0	46.0	66.0	54.0	59.0	56.0	66.0	54.0	46.0	50.0	51.0	76.0	71.0	71.0
Slovak Re-	40.0	10.0	00.0	00.0	40.0	01.0	00.0	00.0	07.0	00.0	07.0	40.0	05.0	50.0	54.0	40.0	00.0	40.0
Slovenia	18.0	18.0	29.0	23.0	16.0	24.0	32.0	38.0	37.0	30.0	27.0	48.0	35.0	52.0	54.0	49.0	62.0	48.0
Spain	41.0	20.0	30.0	19.0	22.0	40.0	40.0	31.0	32.0	30.0	37.0	30.0		40.0	656.0	702.0	43.0	49.0
Sweden	248.0	278.0	260.0	281.0	331.0	357.0	422.0	447.0	409.0	401.0	453.0	457.0	482.0	478.0	050.0	703.0	731.0	647.0
Switzerland	514.0	477.0	441.0	455.0	534.0	598.0	693.0	121.0	675.0	748.0	767.0	0000.0	769.0	809.0	901.0	881.0	899.0	821.0
Turkey	590.0	678.0	702.0	732.0	797.0	879.0	852.0	1,272.0	961.0	873.0	50.0	963.0	1,041.0	1,018.0	880.0	993.0	972.0	941.0
United King-	19.0	10.0	22.0	34.0	40.0	44.0	30.0	30.0	40.0	50.0	50.0	54.0	/ 3.0	74.0	79.0	77.0	71.0	56.0
dom	2,106.0	2,213.0	2,495.0	2,563.0	2,767.0	2,738.0	2,906.0	2,896.0	2,861.0	2,665.0	2,892.0	2,925.0	2,701.0	3,074.0	2,985.0	2,852.0	2,652.0	2,608.0
Furencen Un	4,368.0	4,555.0	5,209.0	5,541.0	5,831.0	6,278.0	6,679.0	6,846.0	6,153.0	6,242.0	6,579.0	6,804.0	7,302.0	7,521.0	7,172.0	7,444.0	7,450.0	7,358.0
ion (28 coun																		
1011 (28 COUIT-																		
tries)	8,514.0	9,057.0	9,751.0	10,511.0	11,376.0	12,160.0	12,978.0	13,719.0	12,831.0	12,556.0	13,114.0	13,499.0	13,556.0	13,804.0	13,730.0	13,716.0	13,682.0	13,083.0
tries) Algeria	8,514.0 2.0	9,057.0 2.0	9,751.0 1.0	10,511.0 0.0	11,376.0 3.0	12,160.0 1.0	12,978.0 3.0	13,719.0 1.0	12,831.0 4.0	12,556.0 1.0	13,114.0 3.0	13,499.0 3.0	13,556.0 3.0	13,804.0 3.0	13,730.0 4.0	13,716.0 2.0	13,682.0 3.0	13,083.0 3.0
tries) Algeria Andorra	8,514.0 2.0 0.0	9,057.0 2.0 0.0	9,751.0 1.0 1.0	10,511.0 0.0 0.0	11,376.0 3.0 1.0	12,160.0 1.0 3.0	12,978.0 3.0 0.0	13,719.0 1.0 0.0	12,831.0 4.0 1.0	12,556.0 1.0 1.0	13,114.0 3.0 1.0	13,499.0 3.0 3.0	13,556.0 3.0 2.0	13,804.0 3.0 0.0	13,730.0 4.0 4.0	13,716.0 2.0 5.0	13,682.0 3.0 4.0	13,083.0 3.0 6.0
Algeria Argentina	8,514.0 2.0 0.0 43.0	9,057.0 2.0 0.0 33.0	9,751.0 1.0 1.0 46.0	10,511.0 0.0 0.0 64.0	11,376.0 3.0 1.0 48.0	12,160.0 1.0 3.0 75.0	12,978.0 3.0 0.0 63.0	13,719.0 1.0 0.0 106.0	12,831.0 4.0 1.0 46.0	12,556.0 1.0 1.0 51.0	13,114.0 3.0 1.0 59.0	13,499.0 3.0 3.0 56.0	13,556.0 3.0 2.0 59.0	13,804.0 3.0 0.0 51.0	13,730.0 4.0 4.0 54.0	13,716.0 2.0 5.0 84.0	13,682.0 3.0 4.0 54.0	13,083.0 3.0 6.0 50.0
Algeria Andorra Argentina Armenia	8,514.0 2.0 0.0 43.0 1.0	9,057.0 2.0 0.0 33.0 4.0	9,751.0 1.0 1.0 46.0 6.0	10,511.0 0.0 0.0 64.0 3.0	11,376.0 3.0 1.0 48.0 4.0	12,160.0 1.0 3.0 75.0 5.0	12,978.0 3.0 0.0 63.0 2.0	13,719.0 1.0 0.0 106.0 2.0	12,831.0 4.0 1.0 46.0 1.0	12,556.0 1.0 1.0 51.0 3.0	13,114.0 3.0 1.0 59.0 5.0	13,499.0 3.0 3.0 56.0 15.0	13,556.0 3.0 2.0 59.0 3.0	13,804.0 3.0 0.0 51.0 8.0	13,730.0 4.0 4.0 54.0 5.0	13,716.0 2.0 5.0 84.0 11.0	13,682.0 3.0 4.0 54.0 11.0	13,083.0 3.0 6.0 50.0 9.0
Algeria Algeria Andorra Argentina Armenia Belarus	8,514.0 2.0 0.0 43.0 1.0 11.0	9,057.0 2.0 0.0 33.0 4.0 12.0	9,751.0 1.0 1.0 46.0 6.0 8.0	10,511.0 0.0 0.0 64.0 3.0 14.0	11,376.0 3.0 1.0 48.0 4.0 13.0	12,160.0 1.0 3.0 75.0 5.0 9.0	12,978.0 3.0 0.0 63.0 2.0 4.0	13,719.0 1.0 0.0 106.0 2.0 10.0	12,831.0 4.0 1.0 46.0 1.0 9.0	12,556.0 1.0 1.0 51.0 3.0 14.0	13,114.0 3.0 1.0 59.0 5.0 14.0	13,499.0 3.0 3.0 56.0 15.0 14.0	13,556.0 3.0 2.0 59.0 3.0 5.0	13,804.0 3.0 0.0 51.0 8.0 19.0	13,730.0 4.0 4.0 54.0 5.0 14.0	13,716.0 2.0 5.0 84.0 11.0 14.0	13,682.0 3.0 4.0 54.0 11.0 21.0	13,083.0 3.0 6.0 50.0 9.0 22.0
Algeria Andorra Argentina Argentina Belarus Bermuda	8,514.0 2.0 0.0 43.0 1.0 11.0 3.0	9,057.0 2.0 0.0 33.0 4.0 12.0 1.0	9,751.0 1.0 1.0 46.0 6.0 8.0 0.0	10,511.0 0.0 64.0 3.0 14.0 2.0	11,376.0 3.0 1.0 48.0 4.0 13.0 2.0	12,160.0 1.0 3.0 75.0 5.0 9.0 4.0	12,978.0 3.0 0.0 63.0 2.0 4.0 1.0	13,719.0 1.0 0.0 106.0 2.0 10.0 1.0	12,831.0 4.0 1.0 46.0 1.0 9.0 2.0	12,556.0 1.0 1.0 51.0 3.0 14.0 1.0	13,114.0 3.0 1.0 59.0 5.0 14.0 0.0	13,499.0 3.0 3.0 56.0 15.0 14.0 1.0	13,556.0 3.0 2.0 59.0 3.0 5.0 0.0	13,804.0 3.0 0.0 51.0 8.0 19.0 0.0	13,730.0 4.0 4.0 54.0 5.0 14.0 0.0	13,716.0 2.0 5.0 84.0 11.0 14.0 0.0	13,682.0 3.0 4.0 54.0 11.0 21.0 2.0	13,083.0 3.0 6.0 50.0 9.0 22.0 1.0
Algeria Andorra Argentina Argentina Belarus Bermuda Bosnia and Herzegovina	8,514.0 2.0 43.0 1.0 11.0 3.0 0.0	9,057.0 2.0 33.0 4.0 12.0 1.0 6.0	9,751.0 1.0 46.0 6.0 8.0 0.0	10,511.0 0.0 64.0 3.0 14.0 2.0 1.0	11,376.0 3.0 1.0 48.0 4.0 13.0 2.0 0.0	12,160.0 1.0 3.0 75.0 5.0 9.0 4.0 1.0	12,978.0 3.0 0.0 63.0 2.0 4.0 1.0 2.0	13,719.0 1.0 0.0 106.0 2.0 10.0 1.0 1.0	12,831.0 4.0 1.0 46.0 1.0 9.0 2.0 3.0	12,556.0 1.0 51.0 3.0 14.0 1.0 1.0	13,114.0 3.0 1.0 59.0 5.0 14.0 0.0 2.0	13,499.0 3.0 56.0 15.0 14.0 1.0 3.0	13,556.0 3.0 2.0 59.0 3.0 5.0 0.0 1.0	13,804.0 3.0 51.0 8.0 19.0 0.0 5.0	13,730.0 4.0 54.0 54.0 5.0 14.0 0.0 5.0	13,716.0 2.0 5.0 84.0 11.0 14.0 0.0 1.0	13,682.0 3.0 4.0 54.0 11.0 21.0 2.0 6.0	13,083.0 3.0 6.0 50.0 9.0 22.0 1.0 2.0
Algeria Algeria Andorra Argentina Armenia Belarus Bermuda Bosnia and Herzegovina Brazil	8,514.0 2.0 0.0 43.0 1.0 11.0 3.0 0.0 42.0	9,057.0 2.0 33.0 4.0 12.0 1.0 6.0 90.0	9,751.0 1.0 46.0 6.0 8.0 0.0 0.0 80.0	10,511.0 0.0 64.0 3.0 14.0 2.0 1.0 100.0	11,376.0 3.0 1.0 48.0 4.0 13.0 2.0 0.0 108.0	12,160.0 1.0 3.0 75.0 5.0 9.0 4.0 1.0 109.0	12,978.0 3.0 63.0 2.0 4.0 1.0 2.0 1.10	13,719.0 1.0 0.0 106.0 2.0 10.0 1.0 1.0 1.0 158.0	12,831.0 4.0 1.0 46.0 1.0 9.0 2.0 3.0 141.0	12,556.0 1.0 51.0 3.0 14.0 1.0 1.0 1.0 143.0	13,114.0 3.0 1.0 59.0 5.0 14.0 0.0 2.0 189.0	13,499.0 3.0 56.0 15.0 14.0 1.0 3.0 186.0	13,556.0 3.0 2.0 59.0 3.0 5.0 0.0 1.0 233.0	13,804.0 3.0 51.0 8.0 19.0 0.0 5.0 276.0	13,730.0 4.0 54.0 55.0 14.0 0.0 5.0 245.0	13,716.0 2.0 5.0 84.0 11.0 14.0 0.0 1.0 259.0	13,682.0 3.0 4.0 54.0 11.0 21.0 2.0 6.0 275.0	13,083.0 3.0 6.0 50.0 9.0 22.0 1.0 2.0 2.0 259.0
Algeria Algeria Andorra Argentina Armenia Belarus Bermuda Bosnia and Herzegovina Brazil Bulgaria	8,514.0 2.0 0.0 43.0 1.0 11.0 3.0 0.0 42.0 8.0	9,057.0 2.0 33.0 4.0 12.0 1.0 6.0 90.0 16.0	9,751.0 1.0 46.0 6.0 8.0 0.0 0.0 80.0 9.0	10,511.0 0.0 64.0 3.0 14.0 2.0 1.0 100.0 9.0	11,376.0 3.0 1.0 48.0 4.0 13.0 2.0 0.0 108.0 7.0	12,160.0 1.0 3.0 75.0 5.0 9.0 4.0 1.0 109.0 16.0	12,978.0 3.0 0.0 63.0 2.0 4.0 1.0 2.0 111.0 20.0	13,719.0 1.0 0.0 106.0 2.0 10.0 1.0 1.0 1.0 158.0 17.0	12,831.0 4.0 1.0 46.0 1.0 9.0 2.0 3.0 141.0 15.0	12,556.0 1.0 51.0 3.0 14.0 1.0 1.0 1.0 143.0 14.0	13,114.0 3.0 1.0 59.0 5.0 14.0 0.0 2.0 189.0 19.0	13,499.0 3.0 56.0 15.0 14.0 1.0 3.0 186.0 14.0	13,556.0 3.0 59.0 3.0 5.0 0.0 1.0 233.0 20.0	13,804.0 3.0 51.0 8.0 19.0 0.0 5.0 276.0 21.0	13,730.0 4.0 54.0 55.0 14.0 0.0 5.0 245.0 25.0	13,716.0 2.0 5.0 84.0 11.0 14.0 0.0 1.0 259.0 18.0	13,682.0 3.0 4.0 54.0 11.0 21.0 2.0 6.0 275.0 22.0	13,083.0 3.0 6.0 50.0 9.0 22.0 1.0 2.0 2.0 2.0 2.0 0 2.0 0 0.0 0.0
Algeria Algeria Andorra Argentina Armenia Belarus Bermuda Bosnia and Herzegovina Brazil Bulgaria Cayman Is- Iands	8,514.0 2.0 0.0 43.0 1.0 11.0 3.0 0.0 42.0 8.0	9,057.0 2.0 0.0 33.0 4.0 12.0 1.0 6.0 90.0 16.0	9,751.0 1.0 1.0 46.0 6.0 8.0 0.0 0.0 80.0 9.0 2.0	10,511.0 0.0 64.0 3.0 14.0 2.0 1.0 100.0 9.0	11,376.0 3.0 1.0 48.0 4.0 13.0 2.0 0.0 108.0 7.0	12,160.0 1.0 3.0 75.0 9.0 4.0 1.0 109.0 16.0 2.0	12,978.0 3.0 0.0 63.0 2.0 4.0 1.0 2.0 111.0 20.0 0.0	13,719.0 1.0 0.0 106.0 2.0 10.0 1.0 1.0 1.0 158.0 17.0 0.0	12,831.0 4.0 1.0 46.0 9.0 2.0 3.0 141.0 15.0	12,556.0 1.0 51.0 3.0 14.0 1.0 1.0 143.0 143.0 14.0 10	13,114.0 3.0 1.0 59.0 5.0 14.0 0.0 2.0 189.0 19.0	13,499.0 3.0 56.0 15.0 14.0 1.0 3.0 186.0 14.0	13,556.0 3.0 59.0 3.0 5.0 0.0 1.0 233.0 20.0	13,804.0 3.0 0.0 51.0 8.0 19.0 0.0 5.0 276.0 21.0	13,730.0 4.0 54.0 55.0 14.0 0.0 5.0 245.0 25.0 3.0	13,716.0 2.0 5.0 84.0 11.0 14.0 0.0 1.0 259.0 18.0 2.0	13,682.0 3.0 4.0 54.0 11.0 21.0 2.0 6.0 275.0 22.0 3.0	13,083.0 3.0 6.0 9.0 22.0 1.0 2.0 2.0 2.0 2.0 1.0 5.0
Algeria Algeria Andorra Argentina Armenia Belarus Bermuda Bosnia and Herzegovina Brazil Bulgaria Cayman Is- Iands China	8,514.0 2.0 0.0 43.0 1.0 11.0 3.0 0.0 42.0 8.0 3.0 239.0	9,057.0 2.0 0.0 33.0 4.0 12.0 1.0 6.0 90.0 16.0 1.0 259.0	9,751.0 1.0 1.0 46.0 6.0 8.0 0.0 0.0 80.0 9.0 2.0 408.0	10,511.0 0.0 64.0 3.0 14.0 2.0 1.0 100.0 9.0 1.0	11,376.0 3.0 1.0 48.0 4.0 13.0 2.0 0.0 108.0 7.0 1.0 612.0	12,160.0 1.0 3.0 75.0 9.0 4.0 1.0 109.0 16.0 2.0 870.0	12,978.0 3.0 0.0 63.0 2.0 4.0 1.0 2.0 111.0 20.0 0.0 1.046.0	13,719.0 1.0 0.0 106.0 2.0 10.0 1.0 1.0 1.0 158.0 17.0 0.0 1.241.0	12,831.0 4.0 1.0 46.0 9.0 2.0 3.0 141.0 15.0 0.0	12,556.0 1.0 1.0 51.0 3.0 14.0 1.0 143.0 143.0 14.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	13,114.0 3.0 1.0 59.0 5.0 14.0 0.0 2.0 189.0 19.0 0.0 1986.0	13,499.0 3.0 56.0 15.0 14.0 1.0 3.0 186.0 14.0 0.0 2,556.0	13,556.0 3.0 59.0 3.0 5.0 0.0 1.0 233.0 20.0 3.0 2.0 5.0	13,804.0 3.0 0.0 51.0 8.0 19.0 0.0 5.0 276.0 21.0 1.0 3 374.0	13,730.0 4.0 54.0 55.0 14.0 0.0 5.0 245.0 25.0 3.0 3 771.0	13,716.0 2.0 5.0 84.0 11.0 14.0 0.0 1.0 259.0 18.0 2.0 3 870.0	13,682.0 3.0 4.0 54.0 11.0 21.0 2.0 6.0 275.0 22.0 3.0 4.043.0	13,083.0 3.0 6.0 9.0 22.0 1.0 2.0 2.0 2.0 2.0 10.0 5.0 4.044.0
Algeria Algeria Andorra Argentina Armenia Belarus Bermuda Bosnia and Herzegovina Brazil Bulgaria Cayman Is- Iands China Chinese Tai-	8,514.0 2.0 0.0 43.0 1.0 11.0 3.0 0.0 42.0 8.0 3.0 239.0	9,057.0 2.0 0.0 33.0 12.0 1.0 6.0 90.0 16.0 1.0 259.0	9,751.0 1.0 1.0 46.0 6.0 8.0 0.0 0.0 80.0 9.0 2.0 408.0	10,511.0 0.0 0.0 64.0 3.0 14.0 2.0 1.0 100.0 9.0 1.0 554.0	11,376.0 3.0 1.0 48.0 13.0 2.0 0.0 108.0 7.0 1.0 612.0	12,160.0 1.0 3.0 75.0 9.0 4.0 1.0 109.0 16.0 2.0 870.0	12,978.0 3.0 0.0 63.0 2.0 4.0 1.0 2.0 111.0 20.0 0.0 1,046.0	13,719.0 1.0 0.0 106.0 2.0 10.0 1.0 1.0 158.0 17.0 0.0 1,241.0	12,831.0 4.0 1.0 46.0 0.0 2.0 2.0 3.0 141.0 15.0 0.0 1,371.0	12,556.0 1.0 1.0 51.0 3.0 14.0 1.0 143.0 143.0 14.0 1.0 14.0 1.0 1,673.0	13,114.0 3.0 1.0 59.0 5.0 14.0 0.0 2.0 189.0 19.0 0.0 1,986.0	13,499.0 3.0 3.0 56.0 15.0 14.0 1.0 3.0 186.0 14.0 0.0 2,556.0	13,556.0 3.0 2.0 59.0 3.0 5.0 0.0 1.0 233.0 20.0 3.0 2,954.0	13,804.0 3.0 0.0 51.0 8.0 19.0 0.0 5.0 276.0 21.0 1.0 3,374.0	13,730.0 4.0 54.0 55.0 14.0 0.0 5.0 245.0 25.0 3.0 3,771.0	13,716.0 2.0 5.0 84.0 11.0 14.0 0.0 1.0 259.0 18.0 2.0 3,870.0	13,682.0 3.0 4.0 54.0 11.0 21.0 2.0 6.0 275.0 22.0 3.0 4,043.0	13,083.0 3.0 6.0 9.0 22.0 1.0 259.0 10.0 5.0 4,044.0
Algeria Algeria Andorra Argentina Armenia Belarus Bermuda Bosnia and Herzegovina Brazil Bulgaria Cayman Is- lands China Chinese Tai- pei Colombia	8,514.0 2.0 43.0 1.0 11.0 3.0 0.0 42.0 8.0 3.0 239.0 62.0	9,057.0 2.0 0.0 33.0 4.0 12.0 1.0 6.0 90.0 16.0 1.0 259.0 78.0	9,751.0 1.0 1.0 46.0 6.0 8.0 0.0 80.0 9.0 2.0 408.0 102.0	10,511.0 0.0 64.0 3.0 14.0 2.0 1.0 100.0 9.0 1.0 554.0	11,376.0 3.0 1.0 48.0 4.0 13.0 2.0 0.0 108.0 7.0 1.0 612.0 139.0	12,160.0 1.0 3.0 75.0 9.0 4.0 1.0 109.0 16.0 2.0 870.0 154.0	12,978.0 3.0 0.0 63.0 2.0 4.0 1.0 2.0 111.0 20.0 1,046.0 203.0	13,719.0 1.0 106.0 2.0 10.0 1.0 1.0 1.0 1.58.0 17.0 0.0 1,241.0 194.0	12,831.0 4.0 1.0 46.0 9.0 2.0 3.0 141.0 15.0 0.0 1,371.0 164.0	12,556.0 1.0 51.0 3.0 14.0 1.0 143.0 143.0 143.0 1.0 1,673.0 219.0	13,114.0 3.0 1.0 59.0 14.0 0.0 2.0 189.0 19.0 0.0 1,986.0 222.0	13,499.0 3.0 56.0 15.0 14.0 1.0 3.0 186.0 14.0 0.0 2,556.0 259.0	13,556.0 3.0 59.0 3.0 5.0 0.0 1.0 233.0 20.0 3.0 2,954.0 277.0	13,804.0 3.0 0.0 51.0 8.0 19.0 0.0 5.0 276.0 21.0 1.0 3,374.0 343.0	13,730.0 4.0 54.0 5.0 14.0 0.0 5.0 245.0 25.0 3.0 3,771.0 406.0	13,716.0 2.0 5.0 84.0 11.0 14.0 0.0 1.0 259.0 18.0 2.0 3,870.0 436.0	13,682.0 3.0 4.0 54.0 11.0 21.0 2.0 6.0 275.0 22.0 3.0 4,043.0	13,083.0 3.0 6.0 50.0 9.0 22.0 1.0 229.0 259.0 10.0 5.0 4,044.0
Algeria Algeria Andorra Argentina Armenia Belarus Bermuda Bosnia and Herzegovina Brazil Bulgaria Cayman Is- Iands China Chinese Tai- pei Colombia Costa Rica	8,514.0 2.0 0.0 43.0 1.0 11.0 3.0 0.0 42.0 8.0 3.0 239.0 62.0 8.0	9,057.0 2.0 0.0 33.0 4.0 12.0 1.0 6.0 90.0 16.0 1.0 259.0 78.0 8.0	9,751.0 1.0 1.0 46.0 6.0 8.0 0.0 80.0 9.0 2.0 408.0 102.0 4.0	10,511.0 0.0 64.0 3.0 14.0 2.0 1.0 100.0 9.0 1.0 554.0 125.0 11.0	11,376.0 3.0 1.0 48.0 4.0 13.0 2.0 0.0 108.0 7.0 612.0 139.0 7.0	12,160.0 1.0 3.0 75.0 9.0 4.0 1.0 109.0 16.0 2.0 870.0 154.0 5.0	12,978.0 3.0 0.0 63.0 2.0 4.0 1.0 2.0 111.0 20.0 1,046.0 203.0 8.0	13,719.0 1.0 0.0 106.0 2.0 10.0 1.0 1.0 1.0 158.0 17.0 0.0 1,241.0 194.0 14.0	12,831.0 4.0 1.0 46.0 2.0 2.0 3.0 141.0 15.0 0.0 1,371.0 164.0 17.0	12,556.0 1.0 51.0 3.0 14.0 1.0 143.0 143.0 143.0 143.0 143.0 219.0 24.0	13,114.0 3.0 1.0 59.0 5.0 14.0 0.0 2.0 189.0 19.0 0.0 1,986.0 222.0 20.0	13,499.0 3.0 56.0 15.0 14.0 1.0 3.0 186.0 14.0 0.0 2,556.0 259.0 24.0	13,556.0 3.0 59.0 3.0 5.0 0.0 1.0 233.0 20.0 3.0 2,954.0 2,77.0 28.0	13,804.0 3.0 0.0 51.0 8.0 19.0 0.0 5.0 276.0 276.0 21.0 3,374.0 343.0 33.0	13,730.0 4.0 54.0 55.0 14.0 0.0 5.0 245.0 25.0 3,771.0 406.0 25.0	13,716.0 2.0 5.0 84.0 11.0 14.0 0.0 1.0 259.0 18.0 2.0 3,870.0 436.0 30.0	13,682.0 3.0 4.0 54.0 11.0 21.0 2.0 6.0 275.0 22.0 3.0 4,043.0 414.0 31.0	13,083.0 3.0 6.0 9.0 22.0 1.0 259.0 10.0 5.0 4,044.0 588.0 27.0
Algeria Algeria Andorra Argentina Armenia Belarus Bermuda Bosnia and Herzegovina Brazil Bulgaria Cayman Is- Iands China Chinese Tai- pei Colombia Costa Rica Croatia	8,514.0 2.0 0.0 43.0 1.0 11.0 3.0 0.0 42.0 8.0 3.0 239.0 62.0 8.0 8.0	9,057.0 2.0 0.0 33.0 4.0 12.0 1.0 6.0 90.0 16.0 1.0 259.0 78.0 8.0 8.0	9,751.0 1.0 1.0 46.0 6.0 8.0 0.0 80.0 9.0 2.0 408.0 102.0 4.0 5.0	10,511.0 0.0 64.0 3.0 14.0 2.0 1.0 100.0 9.0 1.0 554.0 125.0 11.0 2.0	11,376.0 3.0 1.0 48.0 4.0 13.0 2.0 0.0 108.0 7.0 612.0 139.0 7.0 4.0	12,160.0 1.0 3.0 75.0 9.0 4.0 1.0 109.0 16.0 2.0 870.0 154.0 5.0 8.0	12,978.0 3.0 0.0 63.0 2.0 4.0 1.0 2.0 1.0 2.0 1.11.0 20.0 1,046.0 203.0 8.0 4.0	13,719.0 1.0 0.0 106.0 2.0 10.0 1.0 1.0 1.0 158.0 17.0 0.0 1,241.0 194.0 14.0 4.0	12,831.0 4.0 1.0 46.0 2.0 2.0 3.0 141.0 15.0 0.0 1,371.0 164.0 17.0 9.0	12,556.0 1.0 51.0 3.0 14.0 1.0 143.0 143.0 143.0 143.0 143.0 219.0 24.0 7.0	13,114.0 3.0 1.0 59.0 5.0 14.0 0.0 2.0 189.0 19.0 1,986.0 222.0 20.0 11.0	13,499.0 3.0 56.0 15.0 14.0 1.0 3.0 186.0 14.0 0.0 2,556.0 259.0 24.0 4.0	13,556.0 3.0 59.0 3.0 5.0 0.0 1.0 233.0 20.0 2,954.0 2,954.0 2,954.0 2,954.0 2,954.0	13,804.0 3.0 0.0 51.0 8.0 19.0 0.0 5.0 276.0 21.0 1.0 3,374.0 343.0 33.0 15.0	13,730.0 4.0 54.0 5.0 14.0 0.0 5.0 245.0 25.0 3,771.0 406.0 25.0 10.0	13,716.0 2.0 5.0 84.0 11.0 14.0 0.0 1.0 259.0 18.0 2.0 3,870.0 436.0 30.0 27.0	13,682.0 3.0 4.0 54.0 11.0 21.0 2.0 6.0 275.0 22.0 3.0 4,043.0 414.0 31.0 15.0	13,083.0 3.0 6.0 9.0 22.0 1.0 259.0 10.0 5.0 4,044.0 588.0 27.0 15.0
Algeria Algeria Argentina Argentina Armenia Belarus Bermuda Bosnia and Herzegovina Brazil Bulgaria Cayman Is- lands China Chinese Tai- pei Colombia Costa Rica Croatia Cuba	8,514.0 2.0 0.0 43.0 1.0 11.0 3.0 0.0 42.0 8.0 3.0 239.0 62.0 8.0 3.0 3.0 5.0	9,057.0 2.0 0.0 33.0 4.0 12.0 1.0 90.0 16.0 90.0 16.0 1.0 259.0 78.0 8.0 2.0 2.0	9,751.0 1.0 1.0 46.0 6.0 8.0 0.0 80.0 9.0 2.0 408.0 102.0 4.0 5.0 10.0	10,511.0 0.0 64.0 3.0 14.0 2.0 1.0 100.0 9.0 1.0 554.0 125.0 111.0 2.0 18.0	11,376.0 3.0 1.0 48.0 4.0 13.0 2.0 0.0 108.0 7.0 612.0 139.0 7.0 4.0 4.0	12,160.0 1.0 3.0 75.0 9.0 4.0 1.0 109.0 16.0 2.0 870.0 154.0 5.0 8.0 18.0	12,978.0 3.0 0.0 63.0 2.0 4.0 1.0 2.0 1.11.0 20.0 1,046.0 203.0 8.0 4.0 20.0	13,719.0 1.0 0.0 106.0 2.0 10.0 1.0 1.0 1.0 1.0 1.0 1.0	12,831.0 4.0 1.0 46.0 2.0 2.0 3.0 141.0 15.0 0.0 1,371.0 164.0 17.0 9.0	12,556.0 1.0 51.0 3.0 14.0 1.0 143.0 143.0 143.0 143.0 143.0 24.0 7.0 18.0	13,114.0 3.0 1.0 59.0 5.0 14.0 0.0 2.0 189.0 19.0 0.0 1,986.0 222.0 20.0 11.0 24.0	13,499.0 3.0 56.0 15.0 14.0 1.0 3.0 186.0 14.0 0.0 2,556.0 259.0 24.0 4.0 17.0	13,556.0 3.0 2.0 59.0 3.0 0.0 1.0 233.0 20.0 3.0 2,954.0 2,954.0 2277.0 28.0 9.0	13,804.0 3.0 0.0 51.0 8.0 19.0 0.0 5.0 276.0 21.0 1.0 3,374.0 343.0 33.0 15.0 18.0	13,730.0 4.0 54.0 55.0 14.0 0.0 5.0 245.0 25.0 3,771.0 406.0 25.0 10.0	13,716.0 2.0 5.0 84.0 11.0 14.0 0.0 1.0 259.0 18.0 2.0 3,870.0 436.0 30.0 27.0 15.0	13,682.0 3.0 4.0 54.0 21.0 2.0 6.0 275.0 22.0 3.0 4,043.0 4,043.0 414.0 31.0 15.0 24.0	13,083.0 3.0 6.0 9.0 22.0 1.0 229.0 10.0 5.0 4,044.0 588.0 27.0 15.0 19.0
Algeria Algeria Andorra Argentina Argentina Belarus Bermuda Bosnia and Herzegovina Brazil Bulgaria Cayman Is- lands China Chinese Tai- pei Colombia Costa Rica Croatia Cuba	8,514.0 2.0 0.0 43.0 11.0 11.0 3.0 42.0 8.0 3.0 239.0 62.0 8.0 3.0 5.0 0.0	9,057.0 2.0 0.0 33.0 4.0 12.0 1.0 90.0 16.0 90.0 16.0 1.0 259.0 78.0 78.0 8.0 2.0 15.0 0.0	9,751.0 1.0 1.0 46.0 6.0 8.0 0.0 80.0 9.0 2.0 408.0 102.0 4.0 5.0 10.0 5.0	10,511.0 0.0 64.0 3.0 14.0 2.0 1.0 100.0 9.0 1.0 554.0 125.0 111.0 2.0 18.0 3.0	11,376.0 3.0 1.0 48.0 4.0 13.0 2.0 0.0 108.0 7.0 612.0 139.0 7.0 4.0 12.0 12.0	12,160.0 1.0 3.0 75.0 9.0 4.0 1.0 109.0 16.0 2.0 870.0 154.0 5.0 8.0 18.0 5.0	12,978.0 3.0 0.0 63.0 2.0 4.0 1.0 2.0 1.11.0 20.0 1.046.0 203.0 8.0 4.0 20.0 1.0	13,719.0 1.0 0.0 106.0 2.0 10.0 1.0 1.0 1.0 1.0 1.0 1.0	12,831.0 4.0 1.0 9.0 2.0 3.0 141.0 15.0 0.0 1,371.0 164.0 17.0 9.0 20.0	12,556.0 1.0 51.0 3.0 14.0 1.0 143.0 143.0 143.0 143.0 143.0 219.0 24.0 7.0 18.0 0.0	13,114.0 3.0 1.0 59.0 5.0 14.0 0.0 2.0 189.0 19.0 19.0 0.0 1,986.0 222.0 20.0 11.0 24.0 3.0	13,499.0 3.0 3.0 56.0 15.0 14.0 1.0 3.0 186.0 14.0 0.0 2,556.0 259.0 24.0 4.0 17.0 2.0	13,556.0 3.0 2.0 59.0 3.0 5.0 0.0 1.0 233.0 20.0 3.0 2,954.0 277.0 28.0 9.0 12.0	13,804.0 3.0 0.0 51.0 8.0 19.0 0.0 276.0 21.0 1.0 3,374.0 343.0 343.0 33.0 15.0 18.0 4.0	13,730.0 4.0 4.0 54.0 5.0 14.0 0.0 5.0 245.0 25.0 3,771.0 406.0 25.0 10.0 25.0 1.0	13,716.0 2.0 5.0 84.0 11.0 14.0 0.0 1.0 259.0 18.0 2.0 3,870.0 436.0 3,870.0 436.0 30.0 27.0 15.0 1.0	13,682.0 3.0 4.0 54.0 21.0 2.0 6.0 275.0 22.0 3.0 4,043.0 414.0 31.0 15.0 24.0	13,083.0 3.0 6.0 9.0 22.0 1.0 259.0 10.0 5.0 4,044.0 588.0 27.0 15.0 19.0 19.0
Algeria Algeria Andorra Argentina Armenia Belarus Bermuda Bosnia and Herzegovina Brazil Bulgaria Cayman Is- lands China Chinese Tai- pei Colombia Costa Rica Croatia Cuba Cyprus Democratic	8,514.0 2.0 0.0 43.0 11.0 11.0 3.0 0.0 42.0 8.0 3.0 239.0 62.0 8.0 3.0 5.0 0.0 4.0	9,057.0 2.0 0.0 33.0 4.0 12.0 1.0 90.0 16.0 90.0 16.0 1.0 259.0 78.0 78.0 8.0 2.0 15.0 0.0	9,751.0 1.0 1.0 46.0 6.0 8.0 0.0 80.0 9.0 2.0 408.0 102.0 102.0 10.0 5.0 7.0	10,511.0 0.0 0.0 64.0 3.0 14.0 2.0 1.0 100.0 9.0 1.0 554.0 125.0 111.0 2.0 18.0 3.0 9.0	11,376.0 3.0 1.0 48.0 4.0 13.0 2.0 0.0 108.0 7.0 1.0 612.0 139.0 7.0 1.2,0 1.0 12.0	12,160.0 1.0 3.0 75.0 9.0 4.0 1.0 109.0 16.0 2.0 870.0 154.0 5.0 8.0 18.0 5.0 18.0	12,978.0 3.0 0.0 63.0 2.0 4.0 1.0 2.0 111.0 20.0 1,046.0 203.0 8.0 4.0 20.0 1.0 6.0	13,719.0 1.0 0.0 106.0 2.0 10.0 1.0 1.0 1.0 1.0 1.0 1.0	12,831.0 4.0 1.0 9.0 2.0 3.0 141.0 15.0 0.0 1,371.0 164.0 17.0 9.0 20.0 2.0 1.0	12,556.0 1.0 51.0 3.0 14.0 1.0 143.0 143.0 143.0 143.0 143.0 219.0 24.0 7.0 18.0 0.0 8.0	13,114.0 3.0 1.0 59.0 5.0 14.0 0.0 2.0 189.0 19.0 1,986.0 222.0 20.0 21.0 20.0 11.0 24.0 3.0 4.0	13,499.0 3.0 3.0 56.0 15.0 14.0 1.0 3.0 186.0 14.0 0.0 2,556.0 259.0 24.0 4.0 17.0 2.0 9.0	13,556.0 3.0 2.0 59.0 3.0 5.0 0.0 1.0 233.0 20.0 3.0 2,954.0 2,954.0 2277.0 28.0 9.0 12.0 2.0 4.0	13,804.0 3.0 0.0 51.0 8.0 19.0 0.0 276.0 21.0 1.0 3,374.0 343.0 343.0 15.0 18.0 4.0 11.0	13,730.0 4.0 4.0 54.0 5.0 14.0 0.0 5.0 245.0 25.0 3,771.0 406.0 25.0 10.0 25.0 1.0 1.0	13,716.0 2.0 5.0 84.0 11.0 14.0 0.0 1.0 259.0 18.0 2.0 3,870.0 436.0 30.0 27.0 15.0 1.0 8.0	13,682.0 3.0 4.0 54.0 21.0 2.0 6.0 275.0 22.0 3.0 4,043.0 4,043.0 414.0 31.0 15.0 24.0 1.0 8.0	13,083.0 3.0 6.0 9.0 22.0 1.0 259.0 10.0 5.0 4,044.0 588.0 27.0 15.0 19.0 19.0 2.0

Republic of																		
Djibouti	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0
Ecuador	1.0	0.0	1.0	0.0	5.0	0.0	1.0	0.0	0.0	1.0	5.0	1.0	0.0	0.0	2.0	2.0	0.0	5.0
Egypt	7.0	3.0	17.0	2.0	5.0	10.0	17.0	4.0	2.0	1.0	5.0	3.0	0.0	3.0	3.0	3.0	10.0	5.0
El Salvador	7.0	10.0	17.0	9.0	0.0	19.0	17.0	16.0	21.0	20.0	19.0	24.0	20.0	29.0	39.0	18.0	19.0	17.0
Serbia and	4.0	1.0	4.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	2.0	2.0	0.0	0.0	1.0	0.0
Montenegro	5.0	8.0	1.0	6.0	6.0	5.0	1.0	2.0	2.0	0.0	3.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0
donia	0.0	0.0	2.0	0.0	5.0	2.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	3.0	1.0	3.0	2.0	0.0
Georgia	7.0	5.0	5.0	4.0	8.0	7.0	4.0	8.0	6.0	0.0	6.0	3.0	5.0	2.0	5.0	4.0	5.0	5.0
Guatemala	0.0	2.0	0.0	1.0	1.0	1.0	0.0	1.0	0.0	0.0	0.0	2.0	1.0	0.0	0.0	3.0	3.0	2.0
Hong Kong - China	54.0	58.0	83.0	94.0	128.0	149.0	158.0	135.0	130.0	152.0	205.0	183.0	174 0	193.0	210.0	194.0	268.0	173.0
India	125.0	162.0	200.0	299.0	358.0	474.0	526.0	632.0	624.0	698.0	942.0	1 093 0	1 199 0	1 386 0	1 402 0	1 466 0	1 365 0	1 439 0
Indonesia	17.0	10.0	10.0	11.0	23.0	15.0	20.0	17.0	16.0	20.0	20.0	15.0	34.0	32.0	14.0	20.0	20.0	17.0
Iran (Islamic	11.0	10.0	10.0	11.0	20.0	10.0	20.0	11.0	10.0	20.0	20.0	10.0	04.0	02.0	14.0	20.0	20.0	17.0
Jamaica	4.0	9.0	7.0	5.0	4.0	6.0	12.0	5.0	11.0	5.0	9.0	5.0	10.0	12.0	18.0	8.0	9.0	12.0
Jordan	0.0	1.0	2.0	0.0	3.0	2.0	1.0	3.0	3.0	1.0	1.0	1.0	0.0	3.0	0.0	3.0	2.0	1.0
Kazakhstan	1.0	3.0	1.0	0.0	1.0	10.0	20.0	23.0	21.0	0.0	4.0	4.0	7.0	3.0	2.0	1.0	5.0	5.0
Kenva	2.0	2.0	2.0	3.0	2.0	3.0	2.0	4.0	2.0	9.0	8.0	6.0	7.0	4.0	2.0	6.0	11.0	7.0
Kuwait	1.0	4.0	6.0	3.0	2.0	6.0	5.0	3.0	4.0	0.0	7.0	6.0	8.0	5.0	5.0	8.0	4.0	2.0
Latvia	1.0	0.0	3.0	5.0	0.0	2.0	2.0	4.0	2.0	1.0	1.0	0.0	4.0	0.0	4.0	3.0	5.0	5.0
Lebanon	16.0	7.0	7.0	12.0	8.0	27.0	15.0	13.0	9.0	14.0	12.0	7.0	7.0	4.0	2.0	7.0	8.0	13.0
Liechtenstein	2.0	3.0	2.0	7.0	6.0	4.0	10.0	7.0	12.0	6.0	15.0	13.0	14.0	13.0	21.0	15.0	14.0	24.0
Lithuania	3.0	5.0	10.0	4.0	10.0	8.0	11.0	20.0	11.0	8.0	22.0	10.0	22.0	19.0	29.0	38.0	50.0	30.0
Malaysia	9.0	6.0	3.0	3.0	8.0	11.0	7.0	7.0	11.0	2.0	5.0	5.0	11.0	5.0	6.0	7.0	16.0	13.0
Malta	60.0	40.0	57.0	66.0	63.0	93.0	87.0	79.0	103.0	96.0	101.0	127.0	120.0	118.0	114.0	188.0	222.0	149.0
Monaco	0.0	3.0	1.0	2.0	5.0	5.0	4.0	6.0	3.0	3.0	1.0	2.0	4.0	5.0	7.0	6.0	3.0	11.0
Mongolia	16.0	14.0	16.0	17.0	13.0	17.0	15.0	17.0	14.0	13.0	11.0	14.0	13.0	12.0	16.0	12.0	11.0	17.0
Morocco	1.0	0.0	0.0	1.0	0.0	0.0	0.0	2.0	2.0	0.0	2.0	0.0	0.0	1.0	0.0	1.0	2.0	2.0
Nigeria	7.0	6.0	9.0	9.0	2.0	3.0	5.0	18.0	5.0	8.0	2.0	6.0	9.0	9.0	2.0	6.0	3.0	11.0
Pakistan	0.0	1.0	0.0	2.0	1.0	1.0	3.0	1.0	2.0	1.0	1.0	2.0	1.0	1.0	4.0	3.0	5.0	4.0
Panama	5.0	2.0	1.0	3.0	4.0	4.0	5.0	10.0	4.0	8.0	7.0	11.0	11.0	8.0	18.0	10.0	13.0	11.0
Poru	1.0	1.0	2.0	2.0	1.0	3.0	0.0	1.0	2.0	1.0	3.0	5.0	7.0	6.0	1.0	2.0	2.0	2.0
Philippines	0.0	0.0	2.0	3.0	5.0	4.0	9.0	4.0	10.0	2.0	5.0	8.0	3.0	2.0	4.0	3.0	6.0	32.0
Puerto Rico	22.0	11.0	17.0	14.0	35.0	37.0	32.0	25.0	29.0	24.0	26.0	29.0	28.0	18.0	31.0	24.0	25.0	20.0
Republic of	1.0	4.0	3.0	5.0	10.0	13.0	5.0	4.0	4.0	6.0	4.0	11.0	7.0	13.0	5.0	10.0	11.0	11.0
Moldova	2.0	2.0	3.0	2.0	3.0	5.0	3.0	7.0	2.0	2.0	0.0	2.0	4.0	1.0	1.0	3.0	3.0	2.0
Romania	12.0	9.0	12.0	21.0	27.0	24.0	42.0	44.0	50.0	30.0	36.0	47.0	70.0	74.0	86.0	79.0	66.0	64.0
Russian Fed- eration	245.0	273.0	217.0	276.0	245.0	347.0	343.0	318.0	277.0	302.0	297.0	403.0	444.0	413.0	424.0	393.0	401.0	352.0
Saudi Arabia	6.0	8.0	13.0	16.0	18.0	34.0	21.0	34.0	36.0	49.0	56.0	74.0	51.0	59.0	128.0	178.0	141.0	167.0
Seychelles	10	0.0	0.0	10	20	10	0.0	0.0	0.0	0.0	10	1.0	0.0	0.0	0.0	0.0	0.0	0.0

LXVIII

Appendix – Tables

Singapore	99.0	133.0	163.0	162.0	203.0	224.0	249.0	254.0	279.0	268.0	292.0	345.0	320.0	424.0	460.0	438.0	416.0	426.0
South Africa	73.0	61.0	54.0	51.0	77.0	56.0	78.0	81.0	70.0	54.0	81.0	80.0	86.0	67.0	62.0	79.0	67.0	43.0
Sri Lanka	3.0	3.0	4.0	3.0	2.0	2.0	6.0	5.0	11.0	5.0	7.0	7.0	8.0	3.0	2.0	9.0	17.0	22.0
Thailand	45.0	33.0	29.0	39.0	43.0	52.0	51.0	62.0	48.0	58.0	58.0	60.0	64.0	82.0	80.0	85.0	75.0	65.0
Trinidad and Tobago	0.0	1.0	2.0	4.0	3.0	4.0	6.0	5.0	3.0	4.0	4.0	3.0	1.0	0.0	1.0	4.0	2.0	0.0
Tunisia	3.0	7.0	3.0	9.0	4.0	6.0	8.0	6.0	4.0	11.0	8.0	12.0	16.0	9.0	13.0	3.0	13.0	4.0
Ukraine	44.0	53.0	50.0	42.0	41.0	47.0	49.0	73.0	48.0	47.0	77.0	55.0	87.0	56.0	62.0	81.0	61.0	54.0
United Arab Emirates	7.0	8.0	10.0	15.0	8.0	12.0	21.0	16.0	41.0	24.0	47.0	38.0	49.0	80.0	50.0	58.0	75.0	60.0
Uruguay	4.0	5.0	7.0	9.0	9.0	7.0	24.0	13.0	9.0	5.0	5.0	13.0	17.0	14.0	7.0	10.0	10.0	7.0
Uzbekistan	2.0	1.0	0.0	2.0	5.0	2.0	3.0	4.0	0.0	2.0	2.0	2.0	4.0	1.0	0.0	0.0	3.0	3.0
Venezuela	6.0	10.0	6.0	5.0	5.0	6.0	12.0	15.0	2.0	8.0	4.0	6.0	12.0	14.0	8.0	6.0	4.0	7.0
Zimbabwe	1.0	2.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	

Data extracted on 26 Apr 2020 11:26 UTC (GMT) from OECD.Stat

Appendix-Table 9 Inward Host-Country Patents, https://stats.oecd.org

Patent office	ce			Patent app	lications file	d under the	PCT												
Reference	Date			Priority da	te														
Type of Int	ernational Cooperation	in Patentin	ıg	Foreign ow	nership of c	lomestic inv	entions												
Unit				Number															
	Time	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Country	Partner Country																		
Germany	Total Patents	14 368 0	14 650 0	15 203 0	16 230 0	17 305 0	18 223 0	10 145 0	20 518 0	18 647 0	18 001 0	20 121 0	20 240 0	10 647 0	19,353.	10 560 0	10 805 0	20,543.	20 480 0
	Total co-operation	14,300.0	14,039.0	13,293.0	10,239.0	17,303.0	10,223.0	19,145.0	20,310.0	10,047.0	10,901.0	20,121.0	20,249.0	19,047.0		19,309.0	19,005.0	0	20,409.0
	with abroad Australia	2,020.0	2,151.0	2,592.0	2,932.0	3,111.0	3,337.0	3,348.0	3,948.0	3,479.0	3,497.0	3,636.0	3,664.0	3,872.0	3,782.0	3,704.0	3,819.0	4,020.0	3,906.0
	Austria	13.0	4.0	25.0	22.0	14.0	16.0	20.0	16.0	15.0	7.0	13.0	15.0	9.0	16.0	14.0	5.0	5.0	6.0
	Belgium	89.0	106.0	117.0	157.0	133.0	121.0	148.0	119.0	121.0	134.0	149.0	134.0	175.0	150.0	157.0	170.0	165.0	129.0
	Canada	38.0	32.0	27.0	35.0	49.0	61.0	61.0	70.0	60.0	71.0	84.0	84.0	69.0	77.0	67.0	51.0	123.0	102.0
	Chile	46.0	32.0	20.0	23.0	26.0	13.0	21.0	38.0	34.0	44.0	42.0	25.0	34.0	38.0	26.0	26.0	22.0	17.0
	Czech Republic	0.0	0.0	0.0	1.0	0.0	1.0	0.0	1.0	0.0	0.0	1.0	0.0	2.0	1.0	1.0	0.0	0.0	1.0
	Denmark	1.0	4.0	0.0	2.0	16.0	7.0	2.0	3.0	2.0	4.0	5.0	5.0	12.0	8.0	4.0	10.0	9.0	4.0
	Estonia	24.0	20.0	36.0	20.0	33.0	40.0	27.0	35.0	48.0	55.0	89.0	54.0	37.0	43.0	45.0	47.0	59.0	44.0
	Finland	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	3.0	0.0
	France	43.0	72.0	78.0	71.0	105.0	64.0	60.0	188.0	202.0	167.0	152.0	152.0	172.0	130.0	121.0	117.0	128.0	140.0
	Germany	130.0	167.0	135.0	191.0	208.0	256.0	291.0	270.0	327.0	264.0	282.0	312.0	291.0	280.0	257.0	262.0	267.0	263.0
	Greece																		
	Hungary	0.0	1.0	1.0	0.0	1.0	1.0	0.0	2.0	0.0	1.0	0.0	1.0	1.0	3.0	0.0	1.0	0.0	
	Iceland	4.0	4.0	2.0	4.0	8.0	6.0	5.0	4.0	7.0	4.0	5.0	4.0	4.0	5.0	2.0	1.0	5.0	3.0
	Ireland	0.0	10.0	2.0	3.0	1.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0
	Israel	17.0	16.0	17.0	11.0	11.0	17.0	12.0	27.0	25.0	16.0	21.0	24.0	27.0	29.0	32.0	27.0	38.0	21.0
	Italy	8.0	10.0	14.0	12.0	8.0	6.0	9.0	10.0	8.0	9.0	22.0	17.0	9.0	8.0	12.0	11.0	10.0	18.0
	Japan	31.0	26.0	31.0	44.0	29.0	37.0	30.0	39.0	43.0	51.0	34.0	44.0	35.0	45.0	29.0	31.0	39.0	35.0
	Korea	47.0	55.0	91.0	109.0	131.0	80.0	96.0	120.0	89.0	118.0	103.0	118.0	119.0	146.0	107.0	96.0	148.0	194.0
		2.0	9.0	2.0	9.0	10.0	33.0	13.0	8.0	5.0	53.0	100.0	89.0	103.0	50.0	28.0	12.0	8.0	18.0
	Mexico	22.0	12.0	20.0	33.0	34.0	55.0	66.0	96.0	62.0	88.0	96.0	115.0	122.0	117.0	99.0	111.0	131.0	67.0
	Netherlands	0.0	0.0	1.0	1.0	1.0	0.0	2.0	0.0	1.0	0.0	1.0	0.0	1.0	2.0	6.0	4.0	3.0	3.0
	New Zealand	111.0	84.0	458.0	544.0	483.0	552.0	257.0	257.0	237.0	223.0	193.0	153.0	187.0	184.0	160.0	242.0	226.0	135.0
	Norway	1.0	1.0	0.0	2.0	3.0	4.0	2.0	0.0	2.0	1.0	0.0	1.0	1.0	1.0	1.0	6.0	2.0	3.0
	Poland	6.0	10.0	17.0	4.0	8.0	6.0	9.0	15.0	9.0	6.0	11.0	9.0	14.0	21.0	17.0	7.0	25.0	16.0
	Portugal	0.0	3.0	4.0	5.0	7.0	2.0	1.0	0.0	2.0	6.0	4.0	4.0	10.0	4.0	5.0	7.0	4.0	10.0
	Slovak Republic	2.0	2.0	0.0	0.0	1.0	1.0	2.0	1.0	5.0	1.0	3.0	2.0	2.0	1.0	0.0	0.0	1.0	0.0
	Slovenia	0.0	0.0	0.0	1.0	0.0	0.0	2.0	1.0	3.0	2.0	1.0	2.0	0.0	3.0	2.0	1.0	1.0	0.0
	Spain	0.0	2.0	0.0	0.0	0.0	4.0	0.0	1.0	2.0	5.0	0.0	3.0	2.0	1.0	1.0	4.0	2.0	1.0
	Sweden	4.0	4.0	14.0	7.0	11.0	9.0	11.0	19.0	17.0	23.0	15.0	21.0	18.0	22.0	15.0	14.0	18.0	23.0
	Sweden	127.0	133.0	135.0	159.0	140.0	143.0	160.0	179.0	213.0	192.0	232.0	235.0	204.0	192.0	242.0	215.0	212.0	218.0

Switzerland	413.0	466.0	512.0	639.0	669.0	671.0	763.0	825.0	713.0	769.0	750.0	761.0	832.0	638.0	702.0	729.0	754.0	738.0
Turkey	3.0	3.0	2.0	5.0	0.0	0.0	1.0	2.0	3.0	2.0	1.0	0.0	9.0	4.0	12.0	4.0	3.0	5.0
United Kingdom	71.0	110.0	80.0	80.0	89.0	79.0	90.0	105.0	94.0	91.0	89.0	80.0	99.0	102.0	119.0	107.0	112.0	159.0
United States	790.0	751.0	791.0	785.0	894.0	1,016.0	1,110.0	1,082.0	994.0	973.0	1,018.0	1,100.0	1,106.0	1,275.0	1,183.0	1,220.0	1,218.0	1,157.0
European Union (28 countries)	698.0	790.0	1,136.0	1,344.0	1,332.0	1,447.0	1,214.0	1,404.0	1,462.0	1,389.0	1,437.0	1,415.0	1,439.0	1,372.0	1,348.0	1,401.0	1,514.0	1,340.0
Algeria	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Andorra	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
Argentina	0.0	0.0	0.0	1.0	1.0	0.0	1.0	1.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0
Armenia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Belarus	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Bermuda	1.0	2.0	3.0	3.0	2.0	1.0	6.0	9.0	2.0	1.0	2.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0
Bosnia and Herze-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Brazil	0.0	5.0	3.0	3.0	3.0	2.0	2.0	1.0	1.0	6.0	0.0	2.0	10.0	7.0	3.0	5.0	5.0	4.0
Bulgaria	0.0	0.0	1.0	0.0	0.0	1.0	0.0	1.0	0.0	1.0	2.0	0.0	1.0	0.0	0.0	3.0	0.0	1.0
Cayman Islands	3.0	2.0	19.0	4.0	6.0	3.0	7.0	15.0	21.0	11.0	0.0	2.0	2.0	1.0	0.0	0.0	0.0	5.0
China	2.0	0.0	0.0	2.0	6.0	9.0	7.0	12.0	19.0	26.0	57.0	65.0	75.0	87.0	102.0	187.0	241.0	298.0
Chinese Taipei	1.0	7.0	4.0	16.0	7.0	1.0	4.0	2.0	1.0	3.0	4.0	0.0	0.0	3.0	0.0	0.0	0.0	200.0
Colombia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0
Costa Rica	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
Croatia	0.0	0.0	0.0	0.0	1.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0
Cuba	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cyprus	3.0	2.0	3.0	0.0	2.0	2.0	1.0	3.0	2.0	2.0	3.0	3.0	2.0	0.0	0.0	1.0	0.0	1.0
Democratic People's Republic of Korea	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Djibouti	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ecuador	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0
Egypt	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
El Salvador	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Serbia and Montene-	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
North Macedonia	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Georgia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Guatemala	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Hong Kong - China	1.0	1.0	0.0	1.0	4.0	2.0	6.0	7.0	8.0	1.0	5.0	7.0	5.0	2.0	7.0	6.0	7.0	4.0
India	0.0	0.0	4.0	6.0	4.0	5.0	4.0	1.0	7.0	9.0	4.0	8.0	5.0	7.0	5.0	2.0	8.0	16.0
Indonesia	0.0	0.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0
Iran (Islamic Repub- lic of)	0.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0
Jamaica	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Jordan	0,0	0.0	0.0	0,0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Kazakhstan	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0
Kenya	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Japan

Kuwait	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Latvia	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0
Lebanon	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	
Liechtenstein	18.0	13.0	6.0	7.0	18.0	14.0	10.0	319.0	19.0	35.0	43.0	31.0	94.0	111.0	125.0	123.0	111.0	119.0
Lithuania	1.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	2.0	0.0
Malaysia	0.0	1.0	0.0	1.0	2.0	7.0	5.0	7.0	2.0	6.0	1.0	3.0	3.0	2.0	3.0	1.0	2.0	0.0
Malta	1.0	1.0	0.0	2.0	1.0	4.0	5.0	0.0	4.0	4.0	4.0	5.0	5.0	2.0	7.0	5.0	5.0	3.0
Monaco	0.0	1.0	0.0	2.0	0.0	0.0	2.0	1.0	1.0	0.0	3.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
Mongolia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Morocco	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Nigeria	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Pakistan	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Panama	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0
Peru	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Philippines	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
Puerto Rico	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	1.0	0.0	
Republic of Moldova	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Romania	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	2.0	0.0	0.0	1.0
Russian Federation	9.0	5.0	13.0	6.0	7.0	1.0	5.0	5.0	4.0	5.0	5.0	5.0	10.0	7.0	9.0	4.0	4.0	5.0
Saudi Arabia	1.0	0.0	0.0	1.0	3.0	17.0	2.0	7.0	3.0	5.0	2.0	6.0	7.0	9.0	10.0	3.0	2.0	2.0
Seychelles	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Singapore	1.0	10.0	9.0	5.0	7.0	10.0	26.0	18.0	29.0	29.0	47.0	17.0	32.0	19.0	24.0	25.0	25.0	33.0
South Africa	5.0	2.0	1.0	1.0	1.0	3.0	1.0	9.0	2.0	2.0	0.0	9.0	5.0	1.0	4.0	8.0	1.0	3.0
Sri Lanka	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0
Thailand	0.0	1.0	1.0	0.0	2.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	1.0
Trinidad and Tobago	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Tunisia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
Ukraine	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	1.0	0.0	0.0	1.0	1.0	1.0	0.0	1.0
United Arab Emirates	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	1.0	2.0	2.0	3.0	2.0	0.0	0.0	1.0	3.0
Uruguay	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Uzbekistan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Venezuela	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
Zimbabwe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Patents	11 047 0	12 573 0	15 106 0	18 /68 0	22 700 0	23 083 0	24 650 0	20 400 0	28 462 0	31 306 0	37 554 0	42 161 0	44 005 0	41,929.	40 495 0	41 736 0	44,199.	44 363 0
Total co-operation	11,047.0	12,575.0	13,100.0	10,400.0	22,709.0	23,903.0	24,030.0	29,400.0	20,402.0	31,390.0	37,334.0	42,101.0	44,095.0	0	40,493.0	41,730.0		44,303.0
with abroad Australia	806.0	791.0	841.0	906.0	1,055.0	1,140.0	1,078.0	1,204.0	1,036.0	1,054.0	1,093.0	1,228.0	1,421.0	1,321.0	1,231.0	1,122.0	1,309.0	1,357.0
Austria	5.0	3.0	3.0	8.0	2.0	2.0	6.0	3.0	4.0	7.0	2.0	5.0	2.0	7.0	1.0	2.0	3.0	4.0
Belgium	1.0	6.0	5.0	8.0	5.0	6.0	1.0	4.0	1.0	1.0	0.0	4.0	7.0	0.0	3.0	1.0	7.0	5.0
Canada	2.0	6.0	3.0	2.0	1.0	4.0	4.0	7.0	3.0	10.0	12.0	14.0	23.0	14.0	12.0	13.0	17.0	23.0
Calidua	15.0	12.0	9.0	11.0	18.0	13.0	11.0	25.0	19.0	21.0	17.0	22.0	14.0	10.0	3.0	11.0	14.0	6.0

Chile	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Czech Republic	0.0	0.0	2.0	0.0	1.0	3.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0
Denmark	8.0	7.0	6.0	3.0	4.0	2.0	5.0	18.0	11.0	11.0	24.0	18.0	14.0	6.0	8.0	3.0	11.0	10.0
Estonia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0
Finland	12.0	8.0	21.0	23.0	18.0	27.0	39.0	52.0	10.0	18.0	31.0	27.0	18.0	14.0	32.0	30.0	16.0	22.0
France	36.0	36.0	39.0	38.0	56.0	63.0	57.0	94.0	58.0	107.0	77.0	89.0	106.0	115.0	105.0	96.0	134.0	181.0
Germany	102.0	95.0	120.0	117.0	105.0	88.0	116.0	113.0	103.0	123.0	151.0	128.0	115.0	98.0	114.0	128.0	122.0	182.0
Greece	0.0	0.0	0.0	0.0	0.0	1.0	0.0	3.0	0.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Hungary	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	0.0	1.0	1.0	0.0	1.0	0.0	2.0	0.0
Iceland	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ireland	1.0	1.0	4.0	4.0	6.0	10.0	5.0	8.0	4.0	15.0	29.0	38.0	7.0	0.0	6.0	2.0	0.0	0.0
Israel	2.0	1.0	2.0	4.0	1.0	2.0	3.0	0.0	2.0	1.0	4.0	3.0	1.0	2.0	1.0	1.0	3.0	3.0
Italy	4.0	3.0	5.0	2.0	4.0	6.0	1.0	5.0	4.0	4.0	6.0	9.0	3.0	6.0	7.0	5.0	8.0	3.0
Japan																		
Korea	12.0	14.0	26.0	22.0	40.0	37.0	23.0	25.0	29.0	36.0	50.0	63.0	57.0	65.0	73.0	84.0	70.0	79.0
Luxembourg	2.0	1.0	5.0	3.0	10.0	5.0	5.0	9.0	10.0	2.0	4.0	2.0	78.0	103.0	20.0	14.0	22.0	0.0
Mexico	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Netherlands	40.0	35.0	73.0	36.0	55.0	88.0	46.0	73.0	39.0	46.0	33.0	30.0	35.0	48.0	25.0	38.0	23.0	13.0
New Zealand	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	2.0	1.0	1.0	0.0	0.0	0.0	2.0	0.0	0.0
Norway	1.0	1.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	5.0	1.0	1.0	0.0
Poland	2.0	8.0	9.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0
Portugal	0.0	0.0	1.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Slovak Republic	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Slovenia	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Spain	2.0	0.0	4.0	3.0	0.0	1.0	0.0	2.0	3.0	1.0	3.0	0.0	7.0	2.0	3.0	1.0	2.0	2.0
Sweden	29.0	11.0	9.0	27.0	22.0	24.0	23.0	52.0	48.0	56.0	54.0	39.0	60.0	48.0	45.0	44.0	29.0	31.0
Switzerland	47.0	46.0	45.0	52.0	41.0	38.0	43.0	46.0	38.0	43.0	40.0	41.0	49.0	57.0	79.0	60.0	32.0	40.0
Turkey	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	2.0	0.0	1.0	2.0
United Kingdom	23.0	23.0	23.0	36.0	44.0	39.0	18.0	18.0	24.0	13.0	17.0	28.0	23.0	14.0	18.0	30.0	24.0	22.0
United States	467.0	463.0	423.0	500.0	615.0	642.0	614.0	601.0	555.0	493.0	503.0	618.0	698.0	632.0	476.0	394.0	471.0	548.0
European Union (28 countries)	257.0	234.0	319.0	291.0	320.0	352.0	304.0	428.0	301.0	390.0	428.0	417.0	485.0	440.0	391.0	391.0	415.0	493.0
Algeria	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Andorra	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Argentina	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0
Armenia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Belarus	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Bermuda	1.0	1.0	1.0	1.0	1.0	1.0	0.0	1.0	0.0	0.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Bosnia and Herze- govina	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Brazil	0.0	0.0	0.0	1.0	1.0	0.0	0.0	2.0	1.0	0.0	2.0	1.0	1.0	0.0	1.0	0.0	3.0	2.0
Bulgaria	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Cayman Islands	0.0	2.0	1.0	0.0	0.0	2.0	1.0	0.0	1.0	0.0	0.0	2.0	0.0	0.0	1.0	3.0	0.0	0.0
China	3.0	5.0	6.0	4.0	4.0	16.0	8.0	30.0	25.0	15.0	34.0	35.0	55.0	31.0	88.0	92.0	172.0	117.0
Chinese Taipei	0.0	6.0	2.0	2.0	3.0	1.0	6.0	7.0	4.0	7.0	4.0	6.0	6.0	2.0	10.0	17.0	17.0	5.0
Colombia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Costa Rica	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Croatia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cuba	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cyprus	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Democratic People's	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Djibouti	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ecuador	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Egypt	0.0	1.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
El Salvador	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Serbia and Montene-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
gro North Macedonia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Georgia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Guatemala	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Hong Kong - China	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
India	2.0	0.0	11.0	15.0	13.0	22.0	41.0	36.0	17.0	25.0	7.0	12.0	17.0	7.0	27.0	13.0	72.0	25.0
Indonesia	1.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	1.0	2.0	1.0	2.0	3.0	2.0	3.0	7.0	4.0	5.0
Iran (Islamic Repub-	1.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	2.0	2.0	3.0	2.0	3.0	0.0	0.0	2.0	3.0	1.0
lic of)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Jamaica	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Jordan	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Kazakhstan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Kenya	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Kuwait	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Leoditori	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Lithuania	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	0.0	1.0	2.0	0.0	0.0	1.0	1.0	0.0	0.0
Litinudilid	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Malta	0.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	2.0	3.0	4.0	2.0	3.0	3.0	6.0	3.0	2.0	3.0
Maila	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mongolia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0
Morocco	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Nigoria	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dakistan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Pakistan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Panama	0.0	0.0	1.0	4.0	4.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
Peru	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

LXXIV

	Philippines	2.0	0.0	0.0	2.0	0.0	3.0	2.0	0.0	1.0	0.0	1.0	4.0	12.0	2.0	0.0	0.0	0.0	0.0
	Puerto Rico	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Republic of Moldova	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Romania	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Russian Federation	1.0	0.0	5.0	0.0	3.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0
	Saudi Arabia	0.0	0.0	0.0	0.0	0.0	0.0	1.0	3.0	1.0	0.0	1.0	1.0	1.0	2.0	1.0	2.0	5.0	3.0
	Seychelles	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Singapore	1.0	6.0	3.0	9.0	6.0	10.0	10.0	18.0	27.0	23.0	5.0	17.0	31.0	62.0	55.0	34.0	14.0	18.0
	South Africa	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	7.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	1.0	0.0
	Sri Lanka	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Thailand	0.0	0.0	1.0	2.0	4.0	1.0	1.0	7.0	4.0	12.0	7.0	6.0	5.0	12.0	29.0	20.0	28.0	21.0
	Trinidad and Tobago	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Tunisia	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
	Ukraine	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	United Arab Emirates	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	3.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0
	Uruguay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Uzbekistan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Venezuela	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Zimbabwe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
United	Total Patents	40.074.0	40.400.0	42,406,0	44 542 0	49.077.0	50 400 0	E4 070 0	52.044.0	47.050.0	45 604 0	40.000.0	52,600,0	56 119 0	62,631.	E7 606 0	57 200 0	57,882.	56 250 0
States	Total co-operation	42,574.0	42,130.0	42,100.0	44,545.0	40,077.0	52,450.0	54,970.0	55,044.0	47,330.0	43,001.0	40,200.0	52,009.0	50,110.0	0	57,000.0	57,509.0	0	30,330.0
	with abroad	4,368.0	4,555.0	5,209.0	5,541.0	5,831.0	6,278.0	6,679.0	6,846.0	6,153.0	6,242.0	6,579.0	6,804.0	7,302.0	7,521.0	7,172.0	7,444.0	7,450.0	7,358.0
	Austria	65.0	53.0	45.0	69.0	94.0	111.0	106.0	86.0	74.0	72.0	77.0	91.0	72.0	79.0	69.0	88.0	73.0	98.0
	Belgium	75.0	68.0	98.0	79.0	72.0	106.0	74.0	15.0	12.0	16.0	17.0	18.0	31.0	33.0	25.0	38.0	31.0	49.0
	Canada	86.0	83.0	113.0	121.0	158.0	166.0	183.0	133.0	117.0	123.0	105.0	135.0	121.0	117.0	129.0	139.0	138.0	167.0
	Chile	346.0	337.0	321.0	286.0	309.0	363.0	385.0	439.0	418.0	377.0	421.0	453.0	431.0	394.0	313.0	274.0	344.0	300.0
	Czech Republic	1.0	1.0	1.0	2.0	1.0	1.0	1.0	4.0	2.0	0.0	0.0	1.0	3.0	0.0	4.0	2.0	4.0	4.0
	Denmark	0.0	1.0	0.0	0.0	0.0	1.0	3.0	5.0	2.0	4.0	1.0	4.0	6.0	2.0	7.0	7.0	4.0	13.0
	Estonia	41.0	66.0	56.0	71.0	87.0	72.0	68.0	78.0	102.0	118.0	144.0	135.0	105.0	93.0	105.0	106.0	113.0	88.0
	Finland	0.0	0.0	0.0	1.0	0.0	1.0	1.0	0.0	1.0	0.0	3.0	1.0	1.0	2.0	1.0	1.0	4.0	1.0
	France	127.0	160.0	184.0	203.0	217.0	197.0	143.0	119.0	107.0	96.0	139.0	189.0	236.0	176.0	140.0	144.0	141.0	201.0
	Germany	344.0	516.0	622.0	492.0	555.0	638.0	762.0	925.0	849.0	981.0	963.0	934.0	984.0	978.0	976.0	962.0	613.0	592.0
	Greece	801.0	786.0	741.0	764.0	697.0	789.0	789.0	841.0	736.0	756.0	843.0	924.0	1,020.0	1,077.0	919.0	1,067.0	1,089.0	1,001.0
	Hungary	6.0	1.0	0.0	3.0	0.0	1.0	1.0	5.0	2.0	1.0	3.0	3.0	5.0	6.0	1.0	2.0	1.0	4.0
	Iceland	6.0	0.0	4.0	4.0	6.0	3.0	6.0	7.0	12.0	9.0	7.0	1.0	6.0	6.0	6.0	13.0	6.0	6.0
	Ireland	4.0	5.0	12.0	18.0	17.0	19.0	14.0	22.0	11.0	11.0	8.0	8.0	14.0	10.0	10.0	14.0	8.0	7.0
	Israel	55.0	76.0	80.0	75.0	81.0	132.0	97.0	98.0	90.0	110.0	122.0	122.0	131.0	107.0	114.0	188.0	216.0	185.0
	Italy	105.0	77.0	67.0	71.0	67.0	75.0	95.0	90.0	72.0	81.0	80.0	78.0	106.0	108.0	94.0	89.0	86.0	132.0
	lanan	50.0	55.0	46.0	49.0	45.0	55.0	43.0	48.0	45.0	59.0	42.0	82.0	66.0	60.0	54.0	65.0	63.0	71.0
	Korea	381.0	374.0	458.0	610.0	648.0	709.0	613.0	529.0	474.0	483.0	491.0	505.0	519.0	612.0	526.0	540.0	637.0	605.0
	Kulea	32.0	57.0	60.0	69.0	67.0	128.0	159.0	151.0	146.0	176.0	179.0	185.0	230.0	230.0	272.0	248.0	262.0	218.0

Luxembourg	27.0	40.0	56.0	51.0	45.0	48.0	45.0	44.0	46.0	57.0	75.0	78.0	73.0	75.0	78.0	65.0	64.0	36.0
Mexico	4.0	3.0	16.0	17.0	38.0	28.0	28.0	28.0	22.0	10.0	22.0	12.0	14.0	17.0	24.0	19.0	13.0	16.0
Netherlands	423.0	407.0	735.0	729.0	706.0	704.0	849.0	1.012.0	986.0	835.0	747.0	629.0	700.0	820.0	816.0	887.0	657.0	542.0
New Zealand	17.0	9.0	19.0	18.0	14.0	12.0	15.0	13.0	15.0	15.0	17.0	12.0	24.0	22.0	23.0	20.0	28.0	16.0
Norway	10.0	16.0	13.0	9.0	15.0	9.0	20.0	18.0	22.0	26.0	23.0	15.0	26.0	49.0	48.0	52.0	65.0	38.0
Poland	2.0	5.0	9.0	3.0	3.0	0.0	3.0	6.0	4.0	2.0	0.0	0.0	3.0	5.0	7.0	8.0	12.0	4.0
Portugal	0.0	2.0	0.0	2.0	4.0	4.0	5.0	4.0	9.0	4.0	11.0	2.0	4.0	1.0	1.0	4.0	1.0	4.0
Slovak Republic	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	2.0	0.0	0.0	4.0	1.0	0.0	0.0	0.0
Slovenia	1.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	2.0	3.0	1.0	0.0	0.0	2.0	2.0
Spain	8.0	8.0	11.0	18.0	13.0	7.0	16.0	24.0	22.0	19.0	31.0	17.0	30.0	29.0	23.0	27.0	20.0	35.0
Sweden	234.0	177.0	160.0	225.0	296.0	285.0	344.0	395.0	351.0	258.0	231.0	269.0	342.0	313.0	360.0	330.0	310.0	316.0
Switzerland	501.0	635.0	676.0	674.0	688.0	783.0	826.0	900.0	881.0	892.0	904.0	792.0	842.0	908.0	817.0	766.0	855.0	706.0
Turkey	0.0	1.0	0.0	3.0	2.0	2.0	5.0	1.0	1.0	5.0	2.0	3.0	6.0	10.0	4.0	2.0	6.0	4.0
United Kingdom	477.0	349.0	359.0	348.0	373.0	352.0	338.0	368.0	300.0	292.0	343.0	443.0	346.0	423.0	442.0	495.0	567.0	530.0
United States																		
European Union (28	2 629 0	2 664 0	2 116 0	2 111 0	2 222 0	2 422 0	2 590 0	2 759 0	2 456 0	2 462 0	2 561 0	2 706 0	2 904 0	2 040 0	2 972 0	4 159 0	2 952 0	2 669 0
Algeria	2,020.0	2,004.0	3,110.0	3,111.0	3,222.0	0.0	3,569.0	3,736.0	3,450.0	3,402.0	3,301.0	3,700.0	3,694.0	3,949.0	3,673.0	4,156.0	3,655.0	3,000.0
Andorra	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Argentina	1.0	1.0	0.0	5.0	4.0	5.0	4.0	0.0	4.0	2.0	0.0	1.0	4.0	6.0	1.0	4.0	2.0	5.0
Armenia	0.0	0.0	0.0	0.0	4.0	0.0	4.0	9.0	4.0	2.0	0.0	0.0	4.0	1.0	2.0	4.0	2.0	0.0
Belarus	1.0	0.0	0.0	0.0	2.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0
Bermuda	24.0	47.0	60.0	108.0	107.0	1/3.0	181.0	152.0	45.0	39.0	28.0	21.0	25.0	34.0	18.0	5.0	13.0	17.0
Bosnia and Herze-	24.0	47.0	00.0	100.0	107.0	140.0	101.0	102.0	+0.0	00.0	20.0	21.0	20.0	54.0	10.0	5.0	10.0	17.0
govina Brazil	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
Bulgaria	3.0	5.0	8.0	7.0	3.0	3.0	6.0	14.0	11.0	5.0	13.0	14.0	16.0	15.0	13.0	13.0	17.0	23.0
Cavman Islands	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	2.0	3.0	0.0	2.0	0.0	0.0	0.0
China	49.0	47.0	56.0	54.0	34.0	59.0	76.0	97.0	47.0	60.0	53.0	55.0	41.0	53.0	47.0	71.0	59.0	83.0
Chinese Taipei	21.0	15.0	26.0	28.0	55.0	81.0	169.0	190.0	177.0	250.0	345.0	408.0	524.0	453.0	541.0	508.0	547.0	706.0
Colombia	13.0	30.0	44.0	39.0	48.0	45.0	53.0	54.0	64.0	44.0	61.0	57.0	72.0	88.0	106.0	104.0	127.0	126.0
Costa Rica	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	1.0	2.0	0.0	2.0	6.0	8.0	2.0	1.0	5.0	5.0
Croatia	0.0	0.0	0.0	1.0	0.0	3.0	0.0	0.0	0.0	0.0	1.0	0.0	2.0	1.0	0.0	0.0	5.0	0.0
Cuba	2.0	3.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	1.0	0.0	0.0
Cyprus	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Democratic People's	3.0	2.0	1.0	1.0	1.0	0.0	4.0	8.0	3.0	3.0	5.0	7.0	5.0	2.0	2.0	3.0	8.0	6.0
Republic of Korea	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Djibouti	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ecuador	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0
Eyypt	1.0	1.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	6.0	2.0	0.0	3.0	2.0	1.0	2.0
	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0
gro	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

LXXVI

North Macedonia	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0
Georgia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0
Guatemala	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0
Hong Kong - China	24.0	24.0	29.0	40.0	53.0	62.0	38.0	33.0	28.0	48.0	44.0	53.0	51.0	75.0	73.0	64.0	71.0	81.0
India	12.0	18.0	20.0	41.0	49.0	36.0	16.0	24.0	25.0	34.0	55.0	42.0	61.0	47.0	59.0	60.0	59.0	63.0
Indonesia	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	0.0	0.0	0.0	2.0	2.0
Iran (Islamic Repub-	0.0	0.0	0.0	10	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	10
Jamaica	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	2.0	0.0	1.0	1.0	1.0
Jordan	0.0	0.0	0.0	0.0	1.0	2.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
Kazakhstan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0
Kenya	0.0	0.0	0.0	2.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0
Kuwait	1.0	1.0	1.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0
Latvia	0.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0
Lebanon	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0,0	0.0	2.0	0.0	0.0	3.0
Liechtenstein	2.0	2.0	2.0	0.0	1.0	2.0	5.0	2.0	2.0	5.0	2.0	4.0	1.0	6.0	1.0	8.0	11.0	23.0
Lithuania	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	1.0	1.0	3.0	1.0	3.0	2.0	2.0	2.0
Malaysia	3.0	1.0	5.0	5.0	2.0	2.0	1.0	6.0	9.0	14.0	8.0	13.0	35.0	15.0	6.0	11.0	0.0	6.0
Malta	0.0	0.0	0.0	0.0	1.0	0.0	0.0	3.0	2.0	6.0	7.0	3.0	4.0	6.0	6.0	9.0	0.0	11.0
Monaco	2.0	2.0	1.0	0.0	7.0	3.0	2.0	1.0	2.0	3.0	3.0	7.0	8.0	16.0	13.0	8.0	4.0	4.0
Mongolia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Morocco	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	0.0	0.0	0.0	0.0	1.0
Nigeria	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0
Pakistan	0.0	0.0	0.0	0.0	0.0	3.0	4.0	0.0	0.0	1.0	0.0	0.0	2.0	0.0	1.0	0.0	0.0	1.0
Panama	7.0	3.0	9.0	10.0	14.0	0.0	2.0	4.0	3.0	0.0	1.0	0.0	0.0	1.0	2.0	0.0	0.0	0.0
Peru	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	1.0
Philippines	1.0	0.0	0.0	0.0	2.0	7.0	2.0	0.0	1.0	0.0	1.0	1.0	2.0	5.0	0.0	1.0	0.0	0.0
Puerto Rico	1.0	3.0	3.0	7.0	10.0	12.0	9.0	25.0	15.0	26.0	42.0	36.0	50.0	54.0	47.0	108.0	214.0	281.0
Republic of Moldova	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	1.0	1.0	0.0	0.0	0.0	
Romania	0.0	0.0	0.0	0.0	2.0	0.0	3.0	1.0	0.0	1.0	0.0	0.0	1.0	2.0	1.0	0.0	0.0	2.0
Russian Federation	6.0	13.0	9.0	17.0	24.0	9.0	16.0	27.0	14.0	7.0	13.0	14.0	24.0	31.0	9.0	18.0	18.0	11.0
Saudi Arabia	2.0	0.0	3.0	6.0	8.0	17.0	3.0	10.0	14.0	18.0	17.0	36.0	46.0	42.0	25.0	34.0	40.0	72.0
Seychelles	0.0	0.0	1.0	3.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0
Singapore	27.0	35.0	37.0	49.0	62.0	36.0	76.0	64.0	74.0	80.0	99.0	96.0	126.0	127.0	117.0	148.0	108.0	109.0
South Africa	12.0	13.0	4.0	6.0	6.0	0.0	1.0	3.0	14.0	12.0	10.0	4.0	8.0	5.0	11.0	12.0	6.0	6.0
Sri Lanka	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Thailand	2.0	4.0	2.0	3.0	3.0	1.0	1.0	4.0	1.0	2.0	3.0	2.0	0.0	2.0	5.0	5.0	4.0	5.0
Trinidad and Tobago	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
Ukraine	3.0	4.0	2.0	13.0	2.0	2.0	2.0	16.0	2.0	1.0	2.0	1.0	7.0	4.0	2.0	2.0	2.0	4.0
United Arab Emirates	0.0	0.0	0.0	1.0	0.0	1.0	2.0	3.0	1.0	2.0	5.0	4.0	7.0	6.0	9.0	7.0	7.0	4.0
Uruguay	0.0	0.0	1.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	1.0	3.0	3.0	0.0	0.0	1.0

	Uzbekistan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
	Venezuela	1.0	1.0	0.0	0.0	1.0	0.0	2.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0
	Zimbabwe	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
China (People's	Total Patents	1,547.0	882.0	1,287.0	1,693.0	2,300.0	3,855.0	5,206.0	6,430.0	6,853.0	10,723.0	14,098.0	18,097.0	19,984.0	23,532. 0	26,983.0	34,197.0	44,073. 0	49,251.0
Republic of)	Total co-operation with abroad	239.0	259.0	408.0	554.0	612.0	870.0	1,046.0	1,241.0	1,371.0	1,673.0	1,986.0	2,556.0	2,954.0	3,374.0	3,771.0	3,870.0	4,043.0	4,044.0
	Australia	1.0	0.0	0.0	5.0	3.0	9.0	6.0	9.0	10.0	12.0	15.0	9.0	9.0	7.0	8.0	8.0	13.0	16.0
	Austria	0.0	0.0	1.0	1.0	1.0	4.0	2.0	2.0	2.0	3.0	2.0	1.0	7.0	9.0	2.0	6.0	15.0	20.0
	Belgium	0.0	3.0	0.0	4.0	1.0	5.0	4.0	5.0	4.0	16.0	12.0	12.0	18.0	15.0	7.0	16.0	12.0	20.0
	Canada	3.0	11.0	2.0	5.0	12.0	10.0	14.0	9.0	12.0	6.0	17.0	28.0	18.0	26.0	24.0	27.0	21.0	27.0
	Chile	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0
	Czech Republic	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	3.0	0.0	0.0	0.0	
	Denmark	2.0	2.0	3.0	4.0	7.0	3.0	7.0	11.0	12.0	21.0	22.0	27.0	29.0	11.0	16.0	21.0	13.0	28.0
	Estonia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0
	Finland	3.0	10.0	16.0	13.0	41.0	28.0	40.0	56.0	108.0	113.0	155.0	155.0	227.0	201.0	114.0	88.0	119.0	180.0
	France	8.0	9.0	9.0	16.0	17.0	35.0	98.0	153.0	154.0	217.0	264.0	220.0	262.0	252.0	186.0	207.0	216.0	165.0
	Germany	22.0	20.0	21.0	40.0	40.0	71.0	92.0	128.0	157.0	177.0	227.0	318.0	278.0	248.0	262.0	241.0	282.0	367.0
	Greece	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Hungary	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Iceland	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Ireland	0.0	1.0	0.0	1.0	0.0	3.0	0.0	4.0	2.0	7.0	2.0	7.0	5.0	9.0	6.0	16.0	17.0	9.0
	Israel	0.0	0.0	0.0	1.0	3.0	3.0	5.0	4.0	6.0	2.0	0.0	3.0	3.0	2.0	1.0	5.0	2.0	6.0
	Italy	1.0	1.0	1.0	0.0	0.0	0.0	1.0	2.0	2.0	6.0	4.0	11.0	1.0	3.0	10.0	8.0	9.0	3.0
	Japan	14.0	14.0	22.0	30.0	27.0	41.0	39.0	42.0	38.0	83.0	145.0	224.0	198.0	216.0	272.0	337.0	413.0	481.0
	Korea	1.0	6.0	21.0	18.0	15.0	16.0	14.0	31.0	42.0	36.0	36.0	45.0	82.0	43.0	97.0	98.0	85.0	84.0
	Luxembourg	0.0	0.0	0.0	10	10	5.0	2.0	2.0	0.0	3.0	0.0	1.0	2.0	0.0	3.0	0.0	3.0	1.0
	Mexico	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	1.0
	Netherlands	2.0	4.0	35.0	70.0	90.0	132.0	71.0	70.0	82.0	99.0	63.0	83.0	109.0	87.0	77.0	97.0	91.0	
	New Zealand	0.0	1.0	2.0	10	1.0	0.0	2.0	2.0	0.0	3.0	0.0	1.0	1.0	3.0	1.0	3.0	3.0	3.0
	Norway	0.0	0.0	0.0	0.0	0.0	1.0	3.0	1.0	0.0	2.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	3.0
	Poland	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	1.0	1.0	0.0	0.0	0.0
	Portugal	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0
	Slovak Republic	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Slovenia	0.0	0.0	0.0	0.0	1.0	1.0	2.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0
	Spain	0.0	0.0	0.0	0.0	0.0	3.0	2.0	2.0	0.0	0.0	2.0	3.0	2.0	2.0	2.0	3.0	1.0	2.0
	Sweden	0.0	1.0	5.0	6.0	10.0	20.0	31.0	55.0	70.0	67.0	01.0	140.0	103.0	100.0	168.0	175.0	160.0	2.0
	Switzerland	0.0	10.0	10.0	10.0	32.0	20.0	36.0	51.0	57.0	73.0	71.0	84.0	193.0	122.0	145.0	1/10	182.0	117.0
	Turkey	2.0	0.0	19.0	19.0	32.0	30.0	30.0	0.0	57.0	13.0	/1.0	04.0	120.0	0.0	140.0	141.0	102.0	0.0
	United Kingdom	0.0	0.0	17.0	14.0	0.0	0.0	0.0	16.0	0.0	64.0	70.0	0.0	0.0	50.0	0.0 E0.0	0.0	76.0	0.0
	United States	0.0	9.0	170.0	14.0	24.0	29.0	33.0	10.0	49.0	507.0	70.0	02.0	1 457 0	1 226 0	30.0	1.075.0	1 409 0	1 054 0
		124.0	125.0	170.0	234.0	200.0	320.0	444.0	431.0	434.0	527.0	040.0	902.0	1,157.0	1,330.0	1,341.0	1,2/3.0	1,400.0	1,201.0

LXXVII

LXXVIII

European Union (28 countries)	45.0	57.0	107.0	164.0	225.0	327.0	371.0	482.0	627.0	763.0	881.0	1,014.0	1,144.0	1,060.0	886.0	898.0	954.0	1,124.0
Algeria	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Andorra	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Argentina	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Armenia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Belarus	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Bermuda	0.0	0.0	1.0	1.0	0.0	10.0	6.0	7.0	2.0	1.0	1.0	1.0	2.0	0.0	2.0	0.0	0.0	0.0
Bosnia and Herze-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Brazil	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	2.0	1.0	0.0	0.0	2.0	0.0	2.0	1.0	0.0	0.0
Bulgaria	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cayman Islands	0.0	0.0	0.0	0.0	4.0	3.0	20.0	38.0	47.0	66.0	62.0	72.0	102.0	97.0	434.0	893.0	725.0	688.0
China	0.0	0.0	0.0	0.0	4.0	0.0	20.0	00.0	47.0	00.0	02.0	12.0	102.0	01.0		000.0	120.0	000.0
Chinese Taipei	9.0	5.0	 19.0	21.0		18.0	16.0	42.0	43.0	50.0	39.0	26.0	26.0	51.0	56.0	45.0	42.0	43.0
Colombia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Costa Rica	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Croatia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cuba	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0
Cyprus	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0
Democratic People's	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Djibouti	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ecuador	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Egypt	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
El Salvador	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Serbia and Montene-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
gro North Macedonia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Georgia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Guatemala	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Hong Kong - China	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
India	34.0	33.0	58.0	54.0	52.0	48.0	53.0	54.0	34.0	50.0	46.0	59.0	38.0	67.0	83.0	93.0	187.0	172.0
Indonesia	0.0	0.0	0.0	0.0	1.0	1.0	0.0	0.0	1.0	4.0	0.0	1.0	2.0	1.0	1.0	1.0	1.0	1.0
Iran (Islamic Repub-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
lic of)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Jamaica	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Jordan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Kazakhstan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Kenya	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Kuwait	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Latvia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Lebanon	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	3.0	1.0	0.0
Liechtenstein	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	3.0	3.0

World

Lithuania	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Malaysia	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	4.0	0.0	5.0	3.0	5.0	2.0	12.0	2.0	1.0
Malta	1.0	0.0	0.0	0.0	0.0	3.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Monaco	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mongolia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0
Morocco	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Nigeria	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Pakistan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Panama	1.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Peru	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Philippines	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	2.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0
Puerto Rico	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	0.0	0.0	0.0	2.0	1.0
Republic of Moldova	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Romania	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Russian Federation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	4.0	2.0	0.0	2.0	1.0	0.0
Saudi Arabia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	1.0	0.0	0.0	1.0	3.0	3.0	7.0
Seychelles	0.0	0.0	0.0	6.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0
Singapore	3.0	5.0	4.0	9.0	10.0	10.0	14.0	20.0	23.0	10.0	31.0	24.0	42.0	61.0	81.0	50.0	52.0	49.0
South Africa	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	0.0
Sri Lanka	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Thailand	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	1.0	0.0	0.0	1.0	1.0	2.0	0.0
Trinidad and Tobago	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Tunisia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ukraine	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
United Arab Emirates	5 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	2.0	5.0	1.0	0.0	5.0
Uruguay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Uzbekistan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Venezuela	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Zimbabwe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Patents	102,746.	104,710.	108,587.	118,594. 0	132,449.	144,892. 0	154,406. 0	159,880.	150,262.	156,622.	172,190.	188,385. 0	196,348. 0		207,806.	218,227. 0	######	235,071. 0
Total co-operation						0								30,695.			31,288.	
with abroad Australia	16,026.0	16,902.0	18,483.0	20,006.0	21,679.0	23,773.0	25,231.0	26,481.0	24,638.0	24,591.0	26,247.0	28,101.0	29,525.0	0	30,623.0	31,048.0	0	30,014.0
Austria	146.0	142.0	127.0	181.0	203.0	210.0	222.0	214.0	182.0	177.0	196.0	203.0	170.0	218.0	166.0	179.0	175.0	201.0
Belgium	222.0	252.0	284.0	332.0	293.0	296.0	294.0	217.0	272.0	264.0	315.0	333.0	376.0	372.0	362.0	406.0	401.0	367.0
Canada	253.0	252.0	326.0	368.0	404.0	463.0	530.0	487.0	465.0	496.0	521.0	548.0	593.0	500.0	481.0	483.0	578.0	529.0
Chile	591.0	537.0	499.0	456.0	505.0	507.0	565.0	644.0	584.0	588.0	659.0	656.0	655.0	647.0	530.0	468.0	515.0	469.0
Czech Republic	1.0	5.0	2.0	4.0	3.0	1.0	1.0	9.0	7.0	6.0	8.0	8.0	15.0	6.0	9.0	7.0	12.0	14.0
Denmark	9.0	16.0	7.0	13.0	27.0	20.0	16.0	23.0	19.0	28.0	14.0	37.0	51.0	55.0	49.0	46.0	43.0	41.0
Estonia	162.0	197.0	214.0	222.0	259.0	224.0	235.0	293.0	354.0	341.0	449.0	439.0	343.0	360.0	372.0	358.0	377.0	348.0
Lotonia	2.0	3.0	1.0	1.0	4.0	4.0	7.0	13.0	10.0	6.0	11.0	5.0	6.0	7.0	9.0	7.0	18.0	17.0

LXXIX
LXXX

Finland	355.0	469.0	506.0	489.0	563.0	531.0	565.0	727.0	692.0	625.0	720.0	738.0	840.0	685.0	585.0	521.0	572.0	727.0
France	825.0	1,050.0	1,135.0	1,127.0	1,251.0	1,419.0	1,779.0	1,961.0	1,986.0	2,140.0	2,197.0	2,137.0	2,290.0	2,419.0	2,257.0	2,176.0	1,754.0	1,677.0
Germany	2,275.0	2,417.0	2,362.0	2,445.0	2,542.0	2,964.0	3,249.0	3,377.0	3,189.0	3,347.0	3,613.0	3,667.0	3,606.0	3,442.0	3,325.0	3,445.0	3,648.0	3,616.0
Greece	9.0	4.0	2.0	6.0	3.0	10.0	4.0	18.0	8.0	14.0	9.0	6.0	9.0	13.0	4.0	8.0	11.0	8.0
Hungary	18.0	14.0	13.0	17.0	28.0	21.0	17.0	21.0	29.0	18.0	18.0	14.0	25.0	17.0	15.0	22.0	20.0	19.0
Iceland	8.0	17.0	26.0	23.0	20.0	25.0	22.0	43.0	38.0	23.0	23.0	15.0	16.0	20.0	11.0	20.0	9.0	10.0
Ireland	137.0	209.0	202.0	206.0	212.0	320.0	261.0	304.0	315.0	293.0	336.0	331.0	312.0	295.0	283.0	388.0	403.0	349.0
Israel	154.0	135.0	122.0	116.0	141.0	154.0	169.0	186.0	150.0	135.0	149.0	138.0	172.0	161.0	173.0	159.0	178.0	206.0
Italy	167.0	172.0	164.0	169.0	177.0	212.0	182.0	218.0	187.0	239.0	204.0	270.0	216.0	252.0	230.0	277.0	289.0	253.0
Japan	599.0	595.0	785.0	954.0	1,052.0	1,105.0	1,058.0	1,014.0	928.0	1,018.0	1,136.0	1,310.0	1,269.0	1,543.0	1,601.0	1,657.0	1,893.0	1,960.0
Korea	73.0	112.0	127.0	159.0	188.0	307.0	340.0	347.0	328.0	409.0	537.0	532.0	612.0	545.0	637.0	601.0	599.0	644.0
Luxembourg	132.0	129.0	168.0	168.0	197.0	227.0	267.0	286.0	236.0	342.0	354.0	412.0	483.0	492.0	434.0	425.0	398.0	315.0
Mexico	10.0	5.0	17.0	22.0	43.0	37.0	43.0	42.0	41.0	17.0	46.0	24.0	32.0	38.0	44.0	46.0	37.0	40.0
Netherlands	1,037.0	955.0	2,114.0	2,233.0	2,307.0	2,270.0	2,009.0	2,271.0	2,243.0	1,899.0	1,692.0	1,557.0	1,704.0	1,784.0	1,748.0	2,060.0	1,649.0	1,388.0
New Zealand	40.0	31.0	43.0	43.0	34.0	35.0	49.0	42.0	36.0	47.0	40.0	40.0	41.0	48.0	47.0	47.0	60.0	43.0
Norway	68.0	92.0	104.0	48.0	79.0	94.0	104.0	105.0	87.0	124.0	120.0	93.0	120.0	160.0	149.0	126.0	173.0	124.0
Poland	8.0	17.0	20.0	14.0	23.0	13.0	18.0	12.0	22.0	29.0	22.0	25.0	25.0	27.0	34.0	24.0	35.0	33.0
Portugal	8.0	20.0	10.0	11.0	17.0	18.0	21.0	20.0	28.0	27.0	27.0	20.0	23.0	19.0	18.0	30.0	31.0	28.0
Slovak Republic	4.0	3.0	2.0	3.0	2.0	4.0	8.0	6.0	7.0	4.0	10.0	8.0	8.0	12.0	12.0	6.0	10.0	12.0
Slovenia	5.0	6.0	5.0	2.0	7.0	13.0	15.0	14.0	11.0	18.0	10.0	13.0	13.0	15.0	23.0	13.0	14.0	11.0
Spain	40.0	41.0	69.0	75.0	73.0	60.0	98.0	118.0	132.0	128.0	139.0	138.0	165.0	147.0	137.0	140.0	137.0	154.0
Sweden	900.0	865.0	685.0	909.0	927.0	1,019.0	1,116.0	1,351.0	1,422.0	1,147.0	1,214.0	1,283.0	1,540.0	1,536.0	1,586.0	1,493.0	1,335.0	1,406.0
Switzerland	1,496.0	1,750.0	1,858.0	2,044.0	2,204.0	2,461.0	2,623.0	2,866.0	2,738.0	2,856.0	2,928.0	2,939.0	3,053.0	2,869.0	3,031.0	2,925.0	2,956.0	2,626.0
Turkey	9.0	5.0	8.0	8.0	5.0	7.0	10.0	5.0	6.0	12.0	11.0	12.0	24.0	23.0	31.0	15.0	17.0	20.0
United Kingdom	1,151.0	1,082.0	1,022.0	1,060.0	1,085.0	1,103.0	1,083.0	1,124.0	979.0	968.0	1,015.0	1,161.0	1,065.0	1,102.0	1,088.0	1,190.0	1,284.0	1,247.0
United States	5,388.0	5,498.0	5,544.0	6,041.0	6,729.0	7,456.0	7,954.0	7,845.0	7,030.0	6,839.0	7,367.0	8,631.0	9,101.0	9,822.0	9,496.0	9,296.0	9,297.0	8,650.0
countries)	7,382.0	7,800.0	8,942.0	9,514.0	10,012.0	10,829.0	11,338.0	12,114.0	11,881.0	11,722.0	12,213.0	12,459.0	12,992.0	12,793. 0	12,369.0	12,708.0	12,375. 0	11,993.0
Algeria	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	1.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0
Andorra	1.0	2.0	0.0	0.0	2.0	0.0	2.0	1.0	1.0	0.0	2.0	1.0	1.0	2.0	0.0	1.0	4.0	6.0
Argentina	1.0	4.0	0.0	9.0	6.0	11.0	6.0	17.0	6.0	7.0	7.0	6.0	12.0	12.0	4.0	13.0	11.0	15.0
Armenia	2.0	2.0	2.0	1.0	2.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	2.0	2.0	5.0	0.0	0.0
Belarus	6.0	0.0	1.0	2.0	3.0	2.0	3.0	1.0	0.0	2.0	2.0	0.0	0.0	2.0	3.0	2.0	3.0	4.0
Bermuda	34.0	59.0	76.0	138.0	144.0	162.0	200.0	169.0	57.0	51.0	55.0	34.0	41.0	57.0	24.0	8.0	30.0	30.0
Bosnia and Herze- govina	0.0	2.0	0.0	0.0	0.0	0.0	2.0	0.0	1.0	0.0	0.0	0.0	1.0	2.0	0.0	0.0	1.0	0.0
Brazil	11.0	20.0	23.0	26.0	20.0	18.0	25.0	33.0	30.0	25.0	35.0	32.0	48.0	49.0	44.0	40.0	44.0	52.0
Bulgaria	5.0	1.0	5.0	13.0	2.0	3.0	3.0	6.0	3.0	5.0	4.0	3.0	8.0	6.0	10.0	10.0	2.0	6.0
Cayman Islands	69.0	79.0	97.0	84.0	65.0	87.0	134.0	171.0	120.0	143.0	178.0	157.0	160.0	177.0	495.0	958.0	777.0	771.0
China	43.0	36.0	76.0	78.0	129.0	221.0	306.0	339.0	350.0	467.0	669.0	785.0	994.0	998.0	1,217.0	1,481.0	1,760.0	1,902.0
Chinese Taipei	28.0	67.0	96.0	102.0	114.0	92.0	107.0	123.0	126.0	117.0	118.0	108.0	109.0	144.0	177.0	171.0	205.0	199.0
Colombia	0.0	0.0	0.0	1.0	3.0	4.0	6.0	9.0	3.0	7.0	0.0	3.0	8.0	11.0	7.0	16.0	10.0	9.0

Appendix – Tables

Costa Rica	0.0	2.0	1.0	2.0	3.0	3.0	0.0	1.0	3.0	1.0	2.0	2.0	4.0	2.0	1.0	3.0	6.0	3.0
Croatia	6.0	7.0	0.0	9.0	6.0	8.0	5.0	6.0	2.0	4.0	4.0	2.0	0.0	1.0	3.0	4.0	6.0	2.0
Cuba	1.0	1.0	4.0	3.0	2.0	0.0	1.0	2.0	1.0	0.0	2.0	1.0	2.0	1.0	0.0	1.0	0.0	2.0
Cyprus	38.0	19.0	30.0	24.0	41.0	37.0	61.0	38.0	32.0	50.0	34.0	43.0	36.0	32.0	55.0	33.0	34.0	33.0
Democratic People's		4.0						10	0.0	0.0		10	0.0	10	4.0		0.0	0.0
Djibouti	0.0	1.0	2.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	1.0	1.0	0.0	0.0	0.0
Ecuador	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Egypt	0.0	2.0	1.0	1.0	2.0	2.0	5.0	1.0	2.0	0.0	0.0	3.0	0.0	2.0	0.0	3.0	0.0	0.0
El Salvador	2.0	1.0	1.0	3.0	1.0	2.0	2.0	0.0	1.0	4.0	4.0	11.0	6.0	1.0	4.0	3.0	2.0	6.0
Serbia and Montene-	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0
gro North Macadania	0.0	3.0	0.0	2.0	1.0	2.0	1.0	1.0	3.0	0.0	3.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	1.0	0.0
Georgia	1.0	1.0	1.0	1.0	0.0	0.0	2.0	2.0	1.0	0.0	1.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0
Guatemaia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0
Hong Kong - China	99.0	99.0	144.0	148.0	162.0	175.0	187.0	184.0	157.0	210.0	161.0	187.0	166.0	207.0	278.0	232.0	422.0	353.0
India	21.0	32.0	55.0	68.0	77.0	65.0	40.0	52.0	56.0	85.0	89.0	91.0	95.0	88.0	110.0	120.0	124.0	143.0
Indonesia	3.0	1.0	1.0	0.0	2.0	1.0	2.0	5.0	5.0	3.0	4.0	3.0	10.0	1.0	1.0	2.0	5.0	6.0
Iran (Islamic Repub- lic of)	1.0	1.0	1.0	1.0	0.0	1.0	3.0	1.0	2.0	0.0	0.0	0.0	0.0	0.0	4.0	1.0	0.0	4.0
Jamaica	0.0	0.0	2.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	1.0	0.0	0.0	2.0	0.0	1.0	1.0	0.0
Jordan	0.0	1.0	1.0	1.0	1.0	3.0	0.0	0.0	1.0	1.0	2.0	2.0	0.0	5.0	0.0	1.0	0.0	2.0
Kazakhstan	1.0	1.0	0.0	5.0	0.0	0.0	1.0	1.0	0.0	6.0	2.0	4.0	2.0	3.0	5.0	3.0	10.0	3.0
Kenya	0.0	1.0	0.0	3.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	2.0	2.0	1.0	1.0
Kuwait	1.0	1.0	1.0	2.0	0.0	1.0	0.0	1.0	0.0	0.0	1.0	1.0	0.0	0.0	2.0	2.0	0.0	
Latvia	5.0	2.0	3.0	3.0	4.0	3.0	8.0	2.0	3.0	2.0	6.0	1.0	3.0	4.0	0.0	2.0	8.0	4.0
Lebanon	0.0	1.0	0.0	1.0	1.0	1.0	0.0	1.0	1.0	1.0	0.0	3.0	1.0	3.0	4.0	9.0	2.0	10.0
Liechtenstein	43.0	45.0	39.0	34.0	52.0	58.0	50.0	357.0	45.0	66.0	81.0	84.0	175.0	198.0	212.0	243.0	234.0	259.0
Lithuania	3.0	1.0	2.0	1.0	2.0	7.0	4.0	1.0	2.0	4.0	4.0	5.0	9.0	9.0	6.0	9.0	7.0	7.0
Malaysia	12.0	11.0	16.0	16.0	15.0	23.0	21.0	34.0	24.0	50.0	25.0	45.0	60.0	40.0	27.0	44.0	21.0	25.0
Malta	2.0	5.0	4.0	6.0	7.0	18.0	23.0	22.0	17.0	35.0	38.0	37.0	57.0	51.0	43.0	43.0	28.0	30.0
Monaco	7.0	11.0	9.0	12.0	16.0	7.0	9.0	8.0	11.0	9.0	12.0	11.0	15.0	29.0	24.0	14.0	8.0	12.0
Mongolia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0
Morocco	0.0	1.0	0.0	0.0	0.0	1.0	3.0	5.0	0.0	1.0	2.0	3.0	4.0	3.0	3.0	3.0	3.0	8.0
Nigeria	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0
Pakistan	0.0	0.0	0.0	0.0	0.0	4.0	5.0	0.0	0.0	1.0	1.0	0.0	3.0	0.0	1.0	0.0	2.0	2.0
Panama	19.0	11.0	31.0	30.0	29.0	15.0	14.0	14.0	7.0	8.0	7.0	11.0	10.0	10.0	7.0	1.0	7.0	29.0
Peru	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	4.0	1.0	0.0	2.0	2.0	2.0	2.0	1.0	1.0	2.0
Philippines	3.0	0.0	0.0	2.0	4.0	12.0	5.0	4.0	3.0	3.0	5.0	6.0	16.0	10.0	2.0	5.0	2.0	3.0
Puerto Rico	1.0	3.0	5.0	7.0	12.0	17.0	9.0	29.0	15.0	26.0	43.0	39.0	50.0	58.0	48.0	110.0	214.0	281.0
Republic of Moldova	2.0	1.0	0.0	1.0	0.0	0.0	1.0	20.0	0.0	1.0	1.0	2.0	1.0	1.0	0.0	1.0	0.0	201.0
Romania	0.0	3.0	0.0	1.0	3.0	2.0	4.0	1.0	2.0	3.0	3.0	2.0	6.0	4.0	5.0	4.0	4.0	4.0

LXXXI

LXXXII

Appendix – Tables

Russian Federation	50.0	54.0	66.0	46.0	70.0	40.0	46.0	68.0	40.0	49.0	77.0	67.0	64.0	66.0	61.0	59.0	68.0	73.0
Saudi Arabia	5.0	2.0	6.0	11.0	19.0	40.0	12.0	27.0	34.0	39.0	35.0	75.0	109.0	123.0	92.0	61.0	70.0	129.0
Seychelles	2.0	1.0	1.0	12.0	3.0	5.0	5.0	9.0	10.0	11.0	7.0	14.0	7.0	12.0	9.0	5.0	5.0	3.0
Singapore	76.0	99.0	99.0	136.0	153.0	142.0	217.0	203.0	244.0	246.0	287.0	302.0	387.0	422.0	442.0	398.0	308.0	307.0
South Africa	37.0	28.0	22.0	15.0	21.0	21.0	19.0	20.0	39.0	28.0	24.0	36.0	30.0	19.0	40.0	38.0	29.0	25.0
Sri Lanka	0.0	0.0	1.0	0.0	1.0	0.0	1.0	0.0	1.0	1.0	1.0	0.0	1.0	1.0	0.0	3.0	2.0	1.0
Thailand	2.0	5.0	4.0	5.0	9.0	3.0	4.0	17.0	8.0	14.0	16.0	15.0	10.0	25.0	47.0	38.0	54.0	42.0
Trinidad and Tobago	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	2.0
Tunisia	2.0	1.0	2.0	4.0	4.0	1.0	4.0	1.0	3.0	2.0	0.0	0.0	6.0	3.0	0.0	1.0	3.0	0.0
Ukraine	13.0	15.0	14.0	24.0	11.0	15.0	11.0	47.0	9.0	12.0	13.0	10.0	13.0	16.0	11.0	9.0	8.0	14.0
United Arab Emirates	3.0	1.0	4.0	7.0	10.0	6.0	13.0	6.0	17.0	19.0	24.0	15.0	28.0	42.0	34.0	33.0	36.0	38.0
Uruguay	4.0	4.0	9.0	6.0	6.0	1.0	3.0	1.0	5.0	2.0	2.0	3.0	4.0	5.0	6.0	4.0	6.0	4.0
Uzbekistan	0.0	0.0	0.0	0.0	2.0	1.0	0.0	0.0	0.0	1.0	0.0	3.0	3.0	1.0	0.0	0.0	0.0	1.0
Venezuela	1.0	1.0	0.0	0.0	1.0	2.0	2.0	0.0	1.0	0.0	2.0	0.0	1.0	1.0	0.0	0.0	1.0	1.0
Zimbabwe	0.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Data extracted on 30 May 2020 12:50 UTC (GMT) from OECD.Stat