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Abstract

We propose a Unified Growth model that analyzes the role of the Sci-

entific Revolution in the takeoff to sustained modern economic growth.

Basic scientific knowledge is a necessary input in the production of applied

knowledge, which, in turn, fuels productivity growth and leads to rising

incomes. Eventually, rising incomes instigate a fertility transition and a

takeoff of educational investments and human capital accumulation. In re-

gions where scientific inquiry is severely constrained (for religious reasons

or because of oppressive rulers), the takeoff to modern growth is delayed

or might not occur at all. The novel mechanism that we propose for the

latent transition towards the takeoff could contribute to our understand-

ing of why sustained growth emerged first in Europe.

JEL classification: O11, O31, O33, O41.

Keywords: Scientific Revolution, Industrial Revolution, Basic Science,

Applied Science, Takeoff to Sustained Growth, Unified Growth Theory.
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Though the world does not change with a change of paradigm, the scientist af-

terward works in a different world.

(Thomas S. Kuhn, 1970)

1 Introduction

Much has been written about causes of the Industrial Revolution, Europe’s little

divergence and the great divergence between Europe and the rest of the world

in the 19th century. Although it is widely accepted that the explanation for

Britain’s success must come from understanding the development and improve-

ment of new technologies, researchers differ on the reasons why Britain and

Europe were more successful than others. Central in this debate is the disputed

role of science. Strong support for an early significant impact of science comes

from Jacob (2014). She pleads to focus on the complexities of science-based

technological change. Or more precisely, on those inventions that could not have

been developed without knowledge of Isaac Newton’s laws of motion, the law

of universal gravitation, and the subsequent research on vacuums in the 17th

century (see also Rosen, 2010).1 Moreover, Mokyr (2002) stresses that the En-

lightenment had a dual impact on the first Industrial Revolution both because

it was conducive to the production of more useful knowledge, while at the same

time reducing access costs by improving incentive structures and promoting bet-

ter economic policy and institutions. For example, the “Republic of Letters”, a

group of scientists and intellectuals who discussed and shared ideas intensively,

changed the way of knowledge dissemination and finally led to the establishment

of the first journals (Mokyr, 2016).

Critics of a causal relationship mainly refer to the textile sector, where nearly

all important innovations such as the spinning jenny, the waterframe, and the

moule were invented by rather uneducated inventors with high creativity who de-

veloped the machines through a learning-by-doing process in a relatively isolated

scientific environment. Mokyr suggests that despite some important inventions

only generating a one-shot increase in productivity that did not translate into

sustained growth, applied knowledge increased nonetheless, which allowed con-

tinuous inventions to follow (see Allen, 2011). Although Allen sees the role of

1The debate already flourished in the 1960s and centered around Musson and Robinson
(1989), who pointed out that the inventions of the Industrial Revolution need more than just
“unlettered empiricism” (Ó Gráda, 2016, 225).
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relative factor prices as most important for the success of British innovations, he

agrees with Mokyr that the inventions of the Industrial Revolution have led to

processes that changed the economy sustainably and made further technological

developments possible. Even though numerous differing opinions on the actual

impact of science on the early industrial take-off exist, there seems to be a gen-

eral agreement that scientific knowledge accumulated over time and was most

important for sustained economic growth from the 1850s onward. This is also

supported by recent research of Cinnirella and Streb (2017). They have shown

for Prussia that the second Industrial Revolution can be seen as the transition

period for the role of human capital. Whereas in the first Industrial Revolution,

useful knowledge of a small group of educated inventors was related to innovation

and growth, in the subsequent twentieth century, the quality of basic education

was important for worker’s productivity and R&D processes.

The Unified Growth Theory as developed in the seminal works of Galor

and Weil (2000) and Galor (2005, 2011)2 led to a better understanding among

economists on the mechanisms that triggered the escape from the Malthusian

trap, resulting in the Industrial Revolution and in the takeoff toward sustained

modern economic growth. This strand of literature usually emphasizes the

quality-quantity tradeoff that affects the size and the education of the labor

force and, with it, the rate at which new ideas are developed. What these mod-

els do not consider is the above explained scientific basis that is necessary for

productive applied R&D to take place. Prettner and Werner (2016) include a

basic scientific research sector in an R&D-based growth framework along the

lines of Romer (1990) and Jones (1995)3 and analyze the extent to which basic

research influences modern economic growth. However, Prettner and Werner

(2016) do not focus on the interactions between basic scientific research and

applied research over the very long run and how these interactions facilitate a

takeoff toward the phase of sustained economic growth.

We aim at contributing to the literature by analyzing the extent to which the

Scientific Revolution could have influenced the following escape from Malthusian

2Other prominent contributions include the works of Jones (2001), Kögel and Prskawetz
(2001), Hansen and Prescott (2002), Galor and Moav (2002, 2004, 2006), Doepke (2004),
Cervellati and Sunde (2005, 2011), Strulik and Weisdorf (2008), Galor et al. (2009), and Strulik
et al. (2013).

3For a non-exhaustive list of contributions in endogenous, semi-endogenous, and Schum-
peterian growth theory, see, for example, Grossman and Helpman (1991), Kortum (1997),
Dinopoulos and Thompson (1998), Peretto (1998), Segerström (1998), Young (1998), Howitt
(1999), Dalgaard and Kreiner (2001), Strulik (2005), Bucci (2008), Peretto and Saeter (2013),
Strulik et al. (2013), and Prettner (2014).
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stagnation. We do this by merging the two strands of Unified Growth Theory and

R&D-based endogenous growth theory with both basic scientific knowledge and

applied patentable knowledge. As is standard in the Unified Growth literature,

the model features utility-maximizing households with a quality-quantity tradeoff

regarding the number of children and the children’s education. An increase

in income over time leads the economy up to a point at which investments in

education become positive and a fertility transition sets in (see, for example,

Strulik et al., 2013). The associated increase in human capital accumulation is

then one of the central divers of the takeoff toward sustained economic growth.

In contrast to the standard Unified Growth literature, however, there is an

additional engine for the takeoff toward sustained economic growth, which pro-

vides the basis for the rise in the income level that leads to the fertility transition

in the first place. This second driving force is represented by the evolution of

the stock of basic scientific knowledge, which is a necessary input in the pro-

duction of applied knowledge in a purposeful applied R&D sector (Romer, 1990;

Jones, 1995). Applied R&D only becomes profitable and operative once large

enough stocks of basic scientific knowledge and human capital in a society exist.

Only then does the applied research sector start to produce the patents that are

needed in the intermediate goods sector to produce the differentiated machines

that are, in turn, required in the final goods sector to produce the consumption

aggregate. The more basic scientific knowledge exists, the more productive is

applied R&D and the earlier the takeoff to sustained growth can occur.

The structure of our model makes clear that the takeoff of applied R&D

is a central driver of long-run economic development that enables the fertility

transition later on. To avoid inconsistencies, we abstract from technological

advancements during the early phase of the Industrial Revolution. The reason is

that implementing an additional R&D sector that solely builds up on the existing

stock of applied knowledge and disregards science would complicate the model

substantially, while providing little insights on the role of science and human

capital for the economic takeoff.

Overall, our approach fits the historical evidence that over time British en-

dowment of science-based knowledge was growing, but only during the second

Industrial Revolution (1850s), when steam and coal occupied center stage, this

basic knowledge mattered. The sustained takeoff in applied R&D, however, can-

not occur if there is no basic scientific knowledge base in the economy. This

mechanism is our proposed formal modeling of the contribution of the Scien-
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tific Revolution as a major trigger of the second Industrial Revolution and the

takeoff to modern economic growth as described by Wootton (2015) and Mokyr

(2016). We believe that the suggested novel approach enables a more sophis-

ticated understanding of the growth process over the very long run and of the

economic importance of the interaction between the basic scientific knowledge

stock of a society and the accumulation of applied knowledge in the transition

from stagnation to sustained long-run economic progress. As such, our frame-

work may provide an explanation why Britain/Europe was first, if we assume

that the speed of accumulation of as well as the proximity to scientific knowledge

was determined by the Enlightenment.

The paper is organized as follows. In Section 2, we introduce the basic model

assumptions, the structure of the household side, and the properties of the pro-

duction side of the economy. In Section 3, we derive the balanced growth path

analytically. In Section 4, we present the model simulation and discuss com-

parative statics with regards to the timing of the Scientific Revolution and its

effect on the timing of the later Industrial Revolution. Finally, in Section 5, we

summarize our findings and provide suggestions for future research.

2 The model

In this section, we describe the basic knowledge-driven growth framework in the

vein of Romer (1990) and Jones (1995) into which we incorporate an endoge-

nous fertility-education decision (Becker and Lewis, 1973; Galor and Weil, 2000;

Strulik et al., 2013) and a basic science sector that deciphers the laws of nature

and lays the foundations for applied knowledge creation (Prettner and Werner,

2016).

2.1 Basic assumptions

Consider a small open economy that is populated by three overlapping gener-

ations: children, adults, and retirees. Children receive consumption from their

parents and retirees consume out of their savings accumulated in adulthood. At

the end of old-age, individuals die with certainty.4 We conceptualize adults as

4For simplicity, we abstract from pension schemes and from a changing life expectancy
because pension schemes are rather a 20th century development (Boersch-Supan and Wilke,
2004) and the implementation of endogenous life expectancy would complicate the model with-
out altering the central results (for a Unified Growth Model that takes changing mortality into
account, see Cervellati and Sunde, 2005).
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single-sex parents5 that make all economically relevant decisions on i) consump-

tion during adulthood and old-age, ii) the number of their children, and iii) the

education investments in each child. The resulting consumption-saving decision

impacts on intermediate goods production and thereby on the incentives to de-

velop new blueprints in applied R&D. A necessary input in applied R&D is a

basic understanding of the laws of nature, of scientific inquiry, and of the way to

disseminate new insights. This knowledge is generated in a basic scientific sector

by thinkers who decipher how nature works. The better a society’s understand-

ing of the laws of nature, of scientific inquiry, and of knowledge dissemination

is, the more productive is applied R&D. Since applied R&D is one of the main

drivers of long-run economic growth, basic scientific knowledge acts as a catalyst

of the takeoff to sustained economic growth.

The fertility decision of adults determines the evolution of the population

size, whereas the education decision determines individual human capital accu-

mulation. There is a quality-quantity tradeoff of parents in the sense that they

can increase the number of their children but at the expense of lower investments

in the education of each child (and vice versa). For low levels of economic devel-

opment, education investments are a luxury good and parents find it optimal to

choose the corner solution of no education and high fertility. Once income sur-

passes a certain threshold, investment in children’s education becomes positive,

which triggers a quality-quantity substitution of increasing education investments

and falling fertility during the transition to the modern growth regime. As in

standard Unified Growth models, this is another main engine for the takeoff to

sustained economic growth.

2.2 Consumption side

Individuals derive utility from consumption during adulthood, ct, from consump-

tion during retirement, ct+1 = st(1 + r̄), where st are savings and r̄ is the rate

of return, from having children, nt, and from the education investments in their

children, et.
6 For simplicity, we assume a small open economy such that the

5The assumption of single-sex adults is made to abstract from modeling intra-family bar-
gaining processes, which allows us to focus on the macroeconomic effects. For contributions
that investigate the intra-household decision process in more detail see, for example, de la Croix
and Vander Donckt (2010), Bloom et al. (2015), Prettner and Strulik (2017), and Doepke and
Kindermann (2019).

6Following Strulik et al. (2013) we adopt this short-cut formulation in which children’s
education enters the utility function directly. This can be justified by a “warm glow” motive of
giving (cf. Andreoni, 1989) and leads to similar tradeoffs as in the literature in which children’s

6



capital rental rate is determined on the world market. Utility is logarithmic and

determined according to the following function

ut = log(ct) + β log[st · (1 + r̄)] + ξ log(nt) + θ log(et + ē), (1)

where β refers to individual impatience7, ξ represents the preferences of parents

for the number of children, and θ the preferences of parents for children’s ed-

ucation. The parameter ē represents a minimum informal education level that

children acquire through observation and learning-by-doing even if parents do

not invest in the education of their children at all (see Strulik et al., 2013). This

parameter ensures that education is a luxury good and it does not pay off for

poor societies to invest in formal education. Thus, our formulation captures the

situation in agrarian pre-industrial societies—in which children mainly learned

by working alongside their parents and peers on the fields—rather well.

The lifetime budget constraint is given by

(1− ψnt)wtht = ct + st + ηetnt, (2)

where wt is the wage rate per unit of human capital, ht. The price of a unit of

education is given by η, whereas ψ denotes the fraction of parental time that

raising a child requires (Galor and Weil, 2000; Galor, 2005, 2011). The product

wtht is labor income per worker for a given level of individual human capital and

1−ψnt represents the labor force participation rate. Individuals save st of their

wage income for old-age consumption. The reminder is spent on consumption

during adulthood, ct, and on children’s education, ηetnt. Expenditures on ed-

ucation depend, in turn, on the cost of each unit of education, η, the quantity

of education, et, and the number of children, nt. Overall, this setting implies a

quality-quantity tradeoff: on the one hand, more children increase utility; on the

other hand, more children decrease the amount of resources that can be devoted

to the education of each child.8

human capital or children’s income appear in the parental utility function instead of children’s
education. However, the analytical solution can be much easier obtained with the short-cut
formulation.

7The parameter β induces a similar individual behavior as a probability to die between
adulthood and old age. Thus, a small β can also be interpreted as having a relatively short
retirement phase, which fits well to most of human history (Chakraborty, 2004; Baldanzi et al.,
2019b).

8If, instead, the costs of fertility were given by a fixed amount of resources, fertility would
increase perpetually with rising income, which is counterfactual. Since, in this case, educa-
tion also rises with income, the quality-quantity tradeoff that is established theoretically and
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Maximizing (1) subject to (2) yields the following optimality conditions for

consumption, savings, fertility, and education

ct =
wtht

1 + β + ξ
, nt =

(ξ − θ)htwt
(1 + β + ξ)(ψhtwt − ηē)

,

et =
θψhtwt − ξηē
η(ξ − θ)

, st =
βwtht

1 + β + ξ
.

As is intuitive, consumption and savings increase with income, while consumption

decreases with the discount factor and savings increase with the discount factor.

In addition, we observe that fertility stays constant in the long-run limit even for

rising income, which is in line with the literature (Galor and Weil, 2000; Galor,

2005, 2011; Strulik et al., 2013). For fertility to be positive, ξ > θ and htwt >

ηē/ψ have to hold. These parameter restrictions are reasonable because they

rule out the situation in which parents would want to invest in the education of

their children before choosing to have children at all. In addition, the parameter

restrictions ensure a minimum level of income that is needed for positive fertility

(i.e., to prevent the population from becoming extinct in the next generation).

Education investments cannot be negative such that the possibility of a corner

solution emerges for low income levels as follows:

et =

0 for wtht < ξηē/θψ

θψhtwt−ξηē
η(ξ−θ) otherwise.

Altogether, parents only invest in the education of their children after wage

income has surpassed the threshold ξηē/θψ.

2.3 Human capital

Children’s education determines the next generation’s level of human capital

when the children of the previous period become adults and supply their time

on the labor market. To derive adult’s human capital, we set the parental ex-

penditures on education equal to the costs of education (the salaries of teachers)

and isolate the implied employment level of teaching personnel. Aggregate ed-

ucational expenditures of parents are given by ηetntLt, where Lt is the number

of workers/households in period t. Thus, aggregate educational expenditures

amount to education expenditures per child (η · et), multiplied by the number of

empirically (Li and Zhang, 2007; Galor, 2011; Fernihough, 2017) would vanish.
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children (nt), and aggregated over all households that invest in education (Lt).

The costs of education are the wages of teachers given by HE
t wt, with HE

t being

the aggregate human capital employed in education. Equating educational ex-

penditures with educational costs and solving for human capital employment in

the schooling sector yields

HE
t =

ηetntLt
wt

.

Assuming that the human capital of the next generation depends on the

educational resources invested in each child and denoting the productivity of

teachers by µ, individual human capital at time t+ 1 pins down to

ht+1 =
µHE

t

Lt+1

+ ē.

In this expression, µHE
t refers to the provision of economy-wide schooling. Divid-

ing economy-wide schooling by the number of pupils in period t (i.e., the number

of adults in period t + 1), yields educational resources devoted to each child,

which represents the quality of schooling. In case of a poor economy with a low

income level, education expenditures are zero and no teachers are employed in

the economy. Pupils would then solely learn by observing their parents and peers

such that individual human capital stayed equal to the costless informal educa-

tion that each child obtains, ē. This is the situation in the era of the Malthusian

stagnation.

2.4 Production side

Apart from education, there are four sectors, the final goods sector, the inter-

mediate goods sector, the applied R&D sector, and the basic scientific research

sector. The aggregate final good is produced under perfect competition using

workers and an intermediate good as inputs. The intermediate good, in turn,

is produced under Dixit and Stiglitz (1977) monopolistic competition using one

unit of final output to produce one unit of the intermediate good, xt (cf. Aghion

and Howitt, 2009). For the monopolist to produce the intermediate good, a

blueprint needs to be bought from the applied research sector. The necessary

funds are collected by issuing shares that can be purchased using household’s

savings. For simplicity, we abstract from physical capital in the production pro-

cess. Its inclusion would not alter our main findings but it would complicate the
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model substantially (see also Galor and Weil, 2000).

The accumulation of applied knowledge (in the form of patents/blueprints)

follows Romer (1990) and Jones (1995) after the takeoff to modern economic

growth occurred. Applied knowledge is produced in a purposeful R&D sector in

which profit-driven intermediate goods producers invest in the creation of the new

patents/blueprints to derive a stream of profits via the associated monopolistic

competition with other firms. We augment this setting by a basic science sector

that deciphers the laws of nature and invents the methods of scientific inquiry.

The stock of accumulated knowledge in this sector provides the basis for applied

research. Since the laws of nature and the way of performing science cannot be

patented, the output of this sector is non-excludable and this sector is not profit-

driven. The ideas that are generated in this sector are non-rival such that their

use by one scientist in applied research does not impinge on the productivity of

the idea when other applied scientists use them.

We conceptualize the non-excludability of the results of scientific inquiry in

the sense that great minds are either i) intrinsically motivated to think about

how nature works or ii) that they do it because it raises a thinker’s reputation

among her peers. In modern times, basic research is typically funded by gov-

ernments and conducted in research institutes and universities.9 Since we do

not want to overburden our model, we abstract from the public financing of

modern basic science and focus on the potential way how basic scientific discov-

eries could historically have occurred and contributed to the takeoff to modern

knowledge-based economic growth. The underlying assumption is that the num-

ber of eureka moments increases with the size of the population (Kremer, 1993)

and with its education level (Strulik et al., 2013). Scientists might also form so-

cieties/journals to disseminate their thoughts and ideas such that the knowledge

they create diffuses to other parts of society and can be used by the scientists

in the applied research sector to create new patents/blueprints (Mokyr, 2002,

2005, 2016; Wootton, 2015). More generally, the output that this sector pro-

duces could be thought to comprise everything that makes it easier to discover

new technologies and accumulate more basic and applied knowledge. In that

sense, the output of the basic scientific sector can be interpreted as an important

part of the Culture of Growth (Mokyr, 2016) that is necessary for a society to

engage in the creation of new ideas and thereby to foster progress (Wootton,

9For the modeling of a modern basic research sector along these lines, see, for example,
Gersbach et al. (2012), Gersbach and Schneider (2015), Akcigit et al. (2013), Prettner and
Werner (2016), and Gersbach et al. (2018).
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2015).

The aggregate final good is produced according to the Cobb-Douglas produc-

tion function

Yt = (HY
t )1−α

At∑
i=1

(xit)
α,

where HY is human capital employed in final goods production (i.e., the stock of

knowledge of workers in the final goods sector), xi is the amount of intermediate

good i used in production, α ∈ (0, 1) is the elasticity of final output with respect

to the employment of intermediate goods, and At refers to the stock of blueprints

available in period t. Thus, there are At different intermediate goods used in the

production of the final good.

Perfect competition ensures that all production factors are paid their marginal

value products. The wage per unit of human capital of final goods producers and

the price of intermediate good i are therefore given by

wYt = (1− α)
Yt
HY
t

,

pY,it = α
(
HY
t

)1−α (
xit
)α−1

.

Using the second expression, the profit function in the intermediate goods sector

i becomes

πx,it = pY,it xit − xit.

Because the intermediate goods producer utilizes a one-for-one technology, the

costs of production are equal to the amount of final output employed in the

production process. Profit maximization then leads to the optimal pricing rule

pit =
1

α
.

In the standard Romer (1990) framework, the price of intermediate good i ad-

ditionally depends on the capital rental rate. Since we abstract from any sort of

physical capital in our model economy, the capital rental rate drops out in the

pricing decision of intermediate goods producers. The mark-up of the monopolist

only depends on the elasticity of final output with respect to intermediates. An

immediate implication is that all intermediate goods producers charge the same
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mark-up over the price that obtains in a perfectly competitive market such that

prices do not depend on the variety i anymore. The total quantity of intermediate

goods produced pins down to

xt = HY
t α

2
1−α .

Aggregate output, operating profits in the intermediate goods sector, and the

wage rate per unit of human capital in the final goods sector thus simplify to

Yt = At
(
HY
t

) 2α
1−α ,

πxt =
1− α
α

α
2

1−αHY
t ,

wYt = (1− α)Atα
2α
1−α .

The applied research sector follows Prettner and Werner (2016). The stock

of patents increases according to the production function

At+1 − At = δAχt B
σ
t H

A
t ,

where—as in Romer (1990) and Jones (1995)—the development of new ideas

depends on the stock of already existing ideas, At, on the amount of human

capital employed in applied research, HA
t , and on the productivity of scientists

in this sector, δ. To analyze the effect of the Scientific Revolution, we also in-

clude basic scientific knowledge, Bt, as a necessary input for applied knowledge

production. In this setting, χ measures the extent of intertemporal knowledge

spillovers (standing on shoulders externality) in the production of applied knowl-

edge, while σ measures the extent of intersectoral knowledge spillovers from basic

scientific knowledge to applied research. To focus on a meaningful economic so-

lution, human capital employed in R&D (HA
t ) needs to be non-negative. Thus,

the stock of ideas cannot decrease over time.

Already from this formulation, the importance of the Scientific Revolution

for the Industrial Revolution becomes obvious. Overall productivity of applied

research is given by δAχt B
σ
t , which determines the profitability of this sector and

the amount of labor that it employs. Without any knowledge of the laws of

nature, or, for that matter, with a culture that does not foster scientific inquiry,

applied scientists are unproductive and new blueprints/patents cannot be dis-

covered. As a consequence, no applied scientists are employed by firms, which

reduces the frequency at which new ideas are developed to zero. This approx-
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imates, from a formal perspective, the historical state of economies before the

Scientific Revolution (Wootton, 2015). Nature is still arcane and profit-driven

R&D is non-existent.

Once this state is overcome and a positive stock of basic scientific knowledge

exists, applied knowledge production becomes feasible. In more recent times,

applied R&D firms maximize their profits

πAt = pAt δA
χ
t B

σ
t H

A
t − wAt HA

t ,

where the first term on the right-hand side is the revenue of selling ideas at the

price pAt and the second term is the cost of employing human capital HA
t at the

going wage wAt per unit of human capital. Maximizing profits with respect to

the employment of applied scientists, HA
t , yields the following relation between

wages of applied researchers and their effective productivity

wAt = pAt δA
χ
t B

σ
t .

Clearly, if applied R&D firms can charge higher prices, pAt , for the blueprints

that they sell, the wages of applied scientists are higher such that this sector

could attract more employees and, thus, produce more ideas. If scientists were

more productive (δ were higher), a similar argument held true and employment

of applied scientists and thereby technological progress would be faster. Finally,

a greater stock of basic scientific knowledge Bt also fosters applied research pro-

ductivity and leads to faster technological progress and faster economic growth.

As argued above, if Bt = 0 holds, then the wages of applied scientists were

zero and no technological progress would take place. As the stock of basic scien-

tific knowledge increases, (Bt−Bt−1 > 0), the productivity of applied knowledge

creation rises gradually, such that wages and employment of applied scientists

also rise. This, in turn, fosters technological progress and economic growth and

catalyzes a takeoff toward sustained knowledge-driven economic development.

Labor market clearing implies that the wage rates of workers in the final goods

sector and those of scientists in the applied research sector equalize. Considering

that prices of patents, pAt , are paid for by operating profits, πxt /(1 + r̄), the

amount of human capital employed in final goods production is given by

HY
t =

(1 + r̄)A1−χ
t

αδBσ
t

.
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Turning to the basic scientific research sector, the knowledge base increases

according to the production function

Bt+1 −Bt = κHλ
t ,

where, unlike in the applied research sector, deciphering the laws of nature is

not compensated.10 We follow Kremer (1993) and Strulik et al. (2013) in the

assumption that the discovery of new basic scientific knowledge depends on the

overall number of thinkers in the economy and on their education, i.e., on the

stock of aggregate human capital. We also include a stepping-on-toes externality

as represented by the inverse of λ, to account for potential duplication of research

effort as in Jones (1995). Finally, κ is the productivity in the basic science sector.

A situation in which κ = 0 could be interpreted as capturing a society in which

religion or oppressive institutional settings prevent scientific inquiry. Thus, in

the words of Mokyr (2016), the “Culture of Growth” would be absent.

Putting all the information together, we arrive at the following system of

equations that fully describes the evolution of our model economy over time

At+1 = At + δAχt B
σ
t H

A
t , (3)

Bt+1 = Bt + κHλ
t , (4)

ht+1 =
µHE

t

nt
+ ē, (5)

nt+1 =
(ξ − θ)wt+1ht+1

(1 + β + ξ)(ψwt+1ht+1 − ηē)
, (6)

Lt+1 = ntLt, (7)

wt+1 = (1− α)At+1α
2α
1−α , (8)

HY
t+1 =

(1 + r̄)A1−χ
t+1

αδBσ
t+1

, (9)

HE
t+1 =

ηLt+1nt+1

wt+1

θψwt+1ht+1 − ξηē
η(ξ − θ)

, (10)

HA
t+1 = (1− ψnt+1)ht+1Lt+1 −HY

t+1 −HE
t+1, (11)

yt+1 =
α

2α
1−αAt+1H

Y
t+1

Lt+1

. (12)

10As argued above, introducing compensation of basic scientific knowledge creation via public
funding and taxes is possible but it complicates the model substantially without leading to
new insights. For the workings of the model for a modern economy in which basic scientific
knowledge is created in publicly funded universities and research facilities see Prettner and
Werner (2016). However, these authors are silent on the takeoff to modern economic growth,
on the Scientific Revolution, and on the Unified Growth setting.
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Here, Equation (3) refers to the equilibrium evolution of the stock of applied

knowledge that is needed for the production of differentiated intermediate goods

that are, in turn, used in the production of final output. Equation (4) refers to

the evolution of the stock of basic scientific knowledge that is an essential input in

the production of applied knowledge and lays the foundation for a takeoff toward

modern knowledge-based economic growth. Equation (5) describes the evolution

of individual human capital depending on the knowledge that children acquire by

observing their parents and peers and by the purposeful education investments

of parents. The latter only become positive once an economy has surpassed

a certain income threshold, facilitating the takeoff toward sustained economic

growth. Equation (6) refers to the fertility choice of households that determines

population growth. In line with empirical observations, fertility decreases after

a certain stage of economic development is reached and then converges to a

lower but positive level. Equation (7) captures the evolution of the workforce.

Equation (8) delivers the wage rate per unit of human capital that increases

with the stock of applied knowledge in the economy. Equations (9)–(11) express

employment of human capital in final goods production, education, and R&D,

respectively. Finally, Equation (12) denotes per capita GDP that rises with the

stock of applied knowledge and with average human capital of the population.

Thus, this expression features both of the driving forces of modern economic

growth and it is clear that, as long as neither At nor ht grow, there cannot be

any sustained increase in per capita income.

In the next section, we use this system to derive the balanced growth path

(BGP) analytically. Afterwards, we solve the model numerically to analyze the

extent to which basic scientific knowledge drives the takeoff toward sustained

long-run growth.

3 The long-run balanced growth path

In the following, we denote the growth rate of a variable x between periods t and

t + 1 by gx,t = (xt+1 − xt)/xt. Along the BGP, the growth rates of all variables

and the employment shares remain constant. We observe that positive growth

implies ever rising incomes (limt→∞wtht =∞), such that fertility and education
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investments along the BGP are equal to

n =
ξ − θ

(1 + β + ξ)ψ
, (13)

et =
θψhtwt
η(ξ − θ)

. (14)

Along the BGP, fertility is constant and education is growing with ht · wt. Con-

sidering that consumption, ct, and savings, st, also grow with ht · wt, the BGP

growth rates of individual human capital and of the wage rate need to be deter-

mined. The evolution of individual human capital follows the equation

ht+1 =
µηetntLt
wtLt+1

+ ē.

Substituting et from Equation (14) and using that Lt+1/Lt = nt, we arrive at

ht+1 =
µθψht
ξ − θ

+ ē. (15)

Along the BGP, ē becomes negligibly small compared with formal schooling as

represented by the first term in Equation (15). Therefore, the BGP growth rate

of individual human capital can be expressed as

gh =
µθψ

ξ − θ
− 1. (16)

Wage growth solely depends on growth in productive ideas as we know from

Equation (8). From Equation (3) we get

gA,t =
δBσ

t H
A
t

A1−χ
t

. (17)

By definition, the growth rate of A must be constant along the BGP, i.e., we

have that gA,t = gA,t+1 holds for all t. This occurs if

gA,t =

(
Bt+1

Bt

) σ
1−χ
(
HA
t+1

HA
t

) 1
1−χ

− 1, (18)

is fulfilled such that the numerator and the denominator of Equation (17) grow

at the same rate. In addition, also the growth rate of B must be constant, i.e.,
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we must have gB,t = gB,t+1, which holds for

Bt+1

Bt

=

(
Ht+1

Ht

)λ
. (19)

Next, we derive the expression Ht+1/Ht in Equation (19) by substituting for

aggregate human capital, using that fertility is constant along the BGP, and

taking advantage of Equation (16)

Ht+1

Ht

=
Lt+1ht+1

Ltht
= n

µθψ

ξ − θ
. (20)

Inserting Equation (20) into Equation (19), the growth factor of scientific knowl-

edge along the BGP becomes

Bt+1

Bt

=

(
n
µθψ

ξ − θ

)λ
. (21)

Finally, the BGP expression for HA
t+1/H

A
t has to be determined. Along the

BGP, the share of human capital in applied research is constant. Therefore,

gHA = gH has to hold, which implies

HA
t+1

HA
t

=
Ht+1

Ht

. (22)

Using equations (20), (21), and (22) in Equation (18), the growth rate of applied

knowledge along the BGP follows as

gA =

(
n
µθψ

ξ − θ

) 1+λσ
1−χ

− 1.

Substituting in the fertility rate from Equation (13), we finally arrive at the long

run BGP growth rate in the modern growth regime:

gA =

(
θµ

1 + β + ξ

) 1+λσ
1−χ

− 1. (23)

From this expression, a number of intuitive results that are in line with the

standard literature (cf. Strulik et al., 2013; Prettner and Werner, 2016; Baldanzi

et al., 2019a) follow. The preference parameter for education, θ, raises individual

human capital accumulation of the next generation and reduces fertility, whereas

the reverse holds true for the preference parameter for the number of children,
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ξ. In line with Strulik et al. (2013), the negative effect of decreasing fertility on

aggregate human capital accumulation is overcompensated by the positive effect

of accumulating human capital faster. The reason is that a decline in fertility

sets free additional resources via the budget constraint that can be used to invest

in education. Thus, economic growth increases with θ and decreases with ξ.

There is an additional positive effect represented by µ, which is the productivity

of teachers. If teachers are more productive, then, for a given investment in

education, human capital accumulates faster. This does not affect fertility and

only raises human capital accumulation. Thus, technological progress and income

growth increase. We summarize these effects in the following proposition.

Proposition 1.

i) An increase in education investments and a decline in fertility as triggered

by an increase in the parameter θ or a decrease in the parameter ξ un-

ambiguously raise long-run economic growth because the positive effects

of greater education investments on aggregate human capital accumulation

outweigh the negative effects of lower fertility.

ii) An increase in teaching productivity, µ, unambiguously raises long-run eco-

nomic growth.

On top of these results, the long-run growth rate increases with the standing

on shoulders effect, λ, because it determines the rate at which basic scientific

knowledge accumulates and the long-run growth rate increases with intersectoral

knowledge spillovers, σ, because they increase the importance of basic scientific

knowledge in the production of new patents. Both of these effects increase the

productivity of human capital employed in applied research and thereby raise

the rate at which new patents are developed. This, in turn, raises final goods

production and income growth. We summarize these results in the following

proposition.

Proposition 2. For χ < 1, long-run economic growth increases unambiguously

with faster accumulation of basic scientific knowledge as represented by the terms

λ and σ. Thus, basic scientific knowledge is an important driver of economic

prosperity.

This proposition shows the importance of basic scientific knowledge for long-

run economic growth in the modern regime. Irrespective of the assumption
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χ < 1, which usually implies that long-run growth is only a function of popula-

tion growth (as in Jones, 1995), our result shows that basic scientific knowledge

accumulation and education attain crucial roles in determining economic pros-

perity.

4 Simulation

4.1 Data

The simulation resembles developments of total factor productivity (TFP), basic

scientific knowledge, wage income, the net fertility rate, and individual human

capital. Our aim is to use long term data from the United Kingdom that reach

back before the Industrial Revolution. We choose the UK as a reference because

it is an important forerunner in both the Scientific Revolution and the Industrial

Revolution (Galor, 2005, 2011; Wootton, 2015; Mokyr, 2016). In addition, the

data coverage and the data quality for the UK both tend to be better over such

a long time horizon than for other countries.

We take the data on TFP from FRED (2017) that contains annual TFP

growth rates from 1761 onward and is based on Broadberry et al. (2015). Using

25-years averages to eliminate business-cycle fluctuations, we derive the change

in the level of TFP over time. We approximate basic scientific knowledge by

means of the annual number of cited references from 1651 onward (Bornmann

and Mutz, 2015).11 As explained in Section 2.4, basic scientific knowledge is

useful for applied research without, however, being patentable, i.e., it is non-

rival and non-excludable. We are well aware of the fact that the number of

citations is only a crude indicator for scientific activity but it is the best that we

have at our disposal. In addition, more citations would surely imply a higher rate

of knowledge diffusion and, thus, indicate a more intensive use of basic scientific

research in applied research.

Since we abstract from physical capital in the production process, a direct

indicator for economic development in terms of income growth is the wage per

worker. As a proxy for this wage rate in the UK, we refer to the real wage

of UK craftsmen during 1700–2000 as reported by Clark (2005). Given that

the majority of the population was low-skilled historically, this is arguably an

11The annual number of cited references is derived by analyzing the entire spectrum of
publications between 1980–2012. A comprehensive overview of scientific journal publishing
can be found in Ware and Mabe (2015).
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acceptable proxy.

In our model, fertility is the number of children per unisex adult. Choosing

fertility in the UK as a comparison would be misleading because of high rates of

child mortality, especially before the twentieth century (see Kögel and Prskawetz,

2001; Doepke, 2005). We therefore combine the data set of Ajus and Lindgre

(2015) on fertility rates in the UK with the data set of Johansson et al. (2015) on

child mortality in the UK to calculate the net reproduction rate. The resulting

time series on the net reproduction rate per woman is then transformed into the

unisex net fertility rate as used in our model and it covers the period 1800–2000.

Finally, education and with it individual human capital is one of the main

driving forces of the transition to sustained economic growth. Thus, our sim-

ulation should match the corresponding data. We use the time series on mean

years of schooling in the UK from Madsen and Murtin (2017) and apply a Mincer

equation as in Hall and Jones (1999) and Prettner et al. (2013) to transform the

education data from 1700–2000 into units of human capital.12

4.2 Simulation results

For our simulation we have data covering up to 300 years. We choose the follow-

ing parameter values and initial conditions to match these data. The elasticity of

final output with respect to intermediates is set to α = 0.3, which is in line with

the literature (Jones, 1995; Acemoglu, 2009). Similar to Strulik et al. (2013),

the time costs for raising one child are 8%, i.e., ψ = 0.08. The yearly individual

discount rate is approximately 3%, which corresponds to a discount factor of

β = 0.3 over 40 years (Cropper et al., 2014). All other parameter values are set

to fit the data as precisely as possible. In so doing, we set ξ = 0.35, ē = 0.5,

θ = 0.23, η = 0.1, δ = 1.15, κ = 0.4, χ = 0.59, µ = 5.4, σ = 0.15, and λ = 1.13

The initial values for productivity, basic scientific knowledge, and the size of the

workforce are taken as A0 = 10, B0 = 10, and L0 = 1.

Figure 1 shows the evolution of TFP over time, with the data (dashed red

line) and the model results (solid blue line) being normalized to unity in 1820.

Broadly consistent with existing works, TFP is stagnant for decades until the

mid-nineteenth century, when the Industrial Revolution altered production pos-

12For further works on the relationship between education, human capital formation, and
economic growth, see Hanushek and Kimko (2000); Hanushek and Woessmann (2012a,b).

13Note that the intertemporal spillovers, χ, are substantially greater than the intersectoral
spillovers, σ. By that we avoid a situation in which basic scientific knowledge is the main driver
of economic progress.
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sibilities in a fundamental way (Galor and Weil, 2000; Galor, 2005, 2011; Mokyr,

2005; Strulik et al., 2013). Not only does our TFP calibration match the onset

of the second Industrial Revolution, it also predicts the length and the magni-

tude of the takeoff as well as the phase of sustained economic growth from the

twentieth century onward reasonably well.
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Figure 1: Evolution of TFP (model prediction: solid blue line; data: dashed red
line)
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Figure 2: Logarithm of the stock of basic scientific knowledge (model prediction:
solid blue line; data: dashed red line)

Which dynamics pave the way to sustained economic growth? Before the

onset of the Industrial Revolution, wage income is low. Accordingly, educational

investments are low, whereas the fertility rate is high. Productive R&D increases

with the stock of existing blueprints, with the stock of basic scientific knowledge,

and with the amount of human capital devoted to applied research. For early

stages of development, productivity and basic scientific knowledge are small,

as is the stock of aggregate human capital. Scientists in the applied research

sector are relatively unproductive, which is why the labor force is employed in

final goods production, leaving productivity stagnant. A growing population

and almost constant education slowly but gradually raise the aggregate stock of

human capital. Due to decreasing marginal productivity in the final goods sector

and a slow increase in the stock of basic scientific knowledge that comes with

the rise in the population size, productivity in the applied researcher sector rises
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and becomes high enough for researchers to be increasingly attracted into this

sector. This is the time when productivity levels start to rise slowly at first and

at a faster pace later.

Additional insights are obtained from Figure 2 by taking a closer look at the

role of basic scientific knowledge in the process towards the takeoff. While the

Industrial Revolution and with it productivity growth started around the turn of

the nineteenth century (Ashton, 1997), the takeoff in basic scientific discoveries

occurred about one century before. The increase in the growth rate of citations

is stronger in the data than the increase in the growth rate of basic scientific

knowledge in the model. The main reason is that in our model all basic scientific

discoveries are productive, i.e., they raise productivity in applied research imme-

diately. However, as we all tend to know only too well from personal experience,

not all scientific research is useful for applications. In particular, over time, basic

scientific research has broadened. While in the past, the share of research in the

natural sciences was comparatively high, it has decreased as other disciplines,

such as economics, have gained importance. Therefore, over time, the share of

scientific research that is useful for applied research might have decreased, which

could explain the gap between the model predictions and the data.

Wage income is depicted in Figure 3 and is also normalized to unity in 1820.

The value derived from the simulation is the available income per worker. As for

TFP, we predict the takeoff approximately right. The income gap that emerges

during the twentieth century can be attributed to the presence of skilled workers

and an associated increase in the skill premium (Acemoglu, 1998). Since our

model incorporates production workers as well as scientists, one would expect a

steeper increase in wages compared to craftsmen’s wages.

In Figure 4, the fertility rate in the model decreases over time and the

quantity-quality trade-off induces an even stronger decrease after the takeoff in

income growth. Comparing the model outcome to UK data, a similar trend can

be observed. Importantly, the fertility rate is high for low levels of development

and it decreases below replacement fertility at the end of the twentieth century.

The main differences between the series are due to changes in life expectancy over

time that our model does not capture. High mortality rates before the onset of

the demographic transition slowed down population growth in the UK and in

the rest of the world (Human Mortality Database, 2019). This negative pressure

on the population size is not present in our model because life expectancy is

assumed to be constant. Therefore, for the pre-industrialization area, the model
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Figure 3: Evolution of available income (model prediction: solid blue line; data:
dashed red line)

1700 1750 1800 1850 1900 1950 2000

Year

0

0.5

1

1.5

2

F
e

rt
ili

ty
 r

a
te

Figure 4: Evolution of fertility (model prediction: solid blue line; data: dashed
red line)

fertility rate can be smaller than the fertility rate in the data.

Finally, inspecting Figure 5, individual human capital in the data and in the

model increase at the same rate until the Industrial Revolution, after which an

increase in the growth rate can be observed in the data that the model does not

match fully. One important reason is again the absence of differential skills, which

would induce higher investments in eduction of some parts of the population

(Acemoglu, 1998). Another reason for the discrepancy might be that the data

only reflect the quantity of schooling without controlling for quality, which our

model captures.
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Figure 5: Individual human capital (model prediction: solid blue line; data:
dashed red line)
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4.3 Comparative statics

So far we have shown the importance of the Scientific Revolution for long-run

economic growth from an analytical and from a numerical perspective. Exploit-

ing the model framework, it is now possible to better understand its implications

for the timing of the takeoff toward sustained long-run growth by employing a

comparative statics analysis. Changing the evolution of the stock of basic sci-

entific knowledge and its inclusion in applied research, we can analyze how a

different timing of scientific discoveries might have altered economic progress

and the timing of the takeoff.

In Figure 6, we show the evolution of wages given different assumptions on

the productivity of thinkers in the basic scientific research sector. With the

exception of κ and B0, all parameter values and initial values are as in Section

4.2. The baseline case of κ = 0.4 is displayed as the red line. By varying κ, basic

scientific knowledge accumulates at a different rate, which, in turn, affects the

productivity of scientists working in applied R&D and, thus, economic progress.
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Figure 6: Wages for different values of κ and initial levels of B0

Overall, the rate of economic growth increases with κ such that the takeoff to

long-run growth is steeper. The logic behind is that more basic scientific knowl-

edge is available, which makes applied research more profitable. By contrast, the

timing of the Industrial Revolution is postponed with a decrease of κ. In the

extreme case of κ = 0, B is constant over time at the initial value. In this case

the takeoff is postponed by one generation (as shown by the yellow line). Since

productivity of scientists in the applied research sector is determined not solely

by scientific knowledge but also by education, i.e., human capital, the economy

reaches the threshold at which applied research becomes profitable later. Even-

tually, better educated scientists are able to compensate the lack of growth in

basic scientific knowledge and the Industrial Revolution takes its course. While

a setback of one generation might seem little over the course of human history,
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such a setback would imply that we had an income level today similar to the one

in 1980, which is substantially less.

Changing the intersectoral spillovers, σ, and keeping everything else constant,

also affects wages and follows a very similar logic. As obvious from Figure 7, the

timing of the takeoff crucially hinges on the degree of transmission of scientific

knowledge in applied knowledge production. For low spillovers, i.e., if the trans-

mission of scientific advances to the development of productive R&D is lower

(e.g., in case of poor knowledge diffusion or for cultural reasons), the takeoff in

wages occurs later. Again, the reason is that basic scientific knowledge increases

the productivity of applied researchers. If there is a fast rate of scientific discover-

ies but these discoveries are not considered in applied research, the productivity

in and profitability of developing new blueprints is low, which delays the takeoff.

These observations lead to the following remark.
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Figure 7: Wages for different values of σ

Remark 1. Basic scientific research and with it the Scientific Revolution play

a crucial role in the timing of the Industrial Revolution. A postponement of the

Scientific Revolution or a reduced transmission of basic scientific knowledge to

applied research would have delayed economic progress severely.

As discussed in Remark 1, growth in basic scientific knowledge is not necessary

for the economy to take off (as long as the level of B0 is positive) but a lack of

it can postpone the takeoff substantially. What happens if not only gB were

zero but also B0? Such a scenario is shown in Figure 6. The economy would

not take off at all because without any understanding of the natural laws and of

scientific inquiry, no productive R&D is possible, leaving the economy stagnant

indefinitely. We emphasize this in the following remark.

Remark 2. Scientific knowledge is indispensable for an economy to take off

because productive applied R&D requires scientists to have, at least, a basic un-

derstanding of the laws of nature and of scientific inquiry.
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5 Conclusions

We propose a novel Unified Growth model that sheds light on the role of the Sci-

entific Revolution in the process of the convergence toward a takeoff to sustained

economic growth. We show that the accumulation of basic scientific knowledge

(comprising knowledge about the laws of nature, knowledge about the scientific

method, and knowledge about the ways to disseminate ideas) and its application

in applied research is a crucial driver of economic progress in the long run. If

the stock of scientific knowledge does not grow or if the transmission of scientific

achievements to applied research is limited, the takeoff to sustained economic

growth will be delayed. This fits the historical evidence that over time British

endowment of science-based knowledge was growing, but only during the second

Industrial Revolution around the 1850s, this basic knowledge started to matter.

In the extreme case in which scientific inquiry is prevented altogether, e.g., for

religious reasons or by oppressive rulers, the takeoff to sustained growth might

be delayed indefinitely.

Our theory can explain why some countries and regions experienced the fer-

tility transition and the takeoff to modern economic growth much later than

others. For example, China was technologically more advanced than European

countries in the middle ages but then the Ming Dynasty decided to pursue iso-

lationist policies. Science did not progress as quickly as previously and China

was eventually overtaken by Europe, where the Industrial Revolution occurred

first. In fact China, which was among the richest countries in the world around

1000 AD became one of the poorest countries in the world in the midst of the

twentieth century (Morris, 2010). We believe that our proposed framework can

be helpful in understanding the reasons why this was the case.

As far as promising avenues for further research are concerned, a need exists

for better data on the calibration of the model for the time period 1500 onward.

Particularly helpful would be a database that allowed the quantification of major

scientific insights and major breakthroughs in applied knowledge creation over

that time period. Another interesting topic is to analyze the extent to which

institutions and knowledge interacted in the emergence of the Culture of Growth.
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