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1. Summary / Zusammenfassung 

1.1. Summary 

Most current attempts in engineering adipose tissue are based on the supplementation 

with human or animal-derived sera. However, especially the use of animal-derived 

serum is linked to many disadvantages, like potential contaminations, ethical issues 

and in general the missing identification of many ingredients. Therefore, serum 

supplementation impedes the actual application of engineered adipose tissue 

constructs as implants, to substitute lost tissue after tumor resection, severe burnings 

or trauma. Equally, due to a potential cover up of the cellular response by unidentified 

components, it impairs the in vitro use of such models as test systems to elucidate 

mechanisms of disease development, screen for new drugs or generally assess 

pharmaceutical safety levels. To be capable for functional anastomosis with the host 

tissue after implantation and for the use in time- and maturation-dependent in vitro 

purposes, engineered constructs have to exhibit a minimum sustainability.  

So far, only few authors addressed the serum-free, defined differentiation of 

adipocytes. And there are hardly any trials available on the defined maintenance of 

adipocytes. In this study, the development of a defined culture medium for the 

adipogenic differentiation of primary human adipose-derived stem cells (ASCs) was 

aimed. Based on the addition of specific factors for the replacement of serum, ASCs 

were differentiated to viable and characteristic adipocytes for 14 days, which was 

proven through the accumulation of lipids, the expression of perilipin A and by the 

release of leptin and glycerol. Furthermore, a defined maintenance medium was 

developed, which supported the maturation and stability of cells for a long-term period 

of additional 42 days until day 56. 

In order to pursue the goal of a physiological tissue substitute of relevant size, the 

integration of a vascular component is of fundamental importance to allow sufficient 

nutrient supply of all peripheral tissue areas. For this purpose, a natural vascular 

system based on a cellular component would be ideal. Due to the lack of an adequate 

co-culture medium, a major challenge in adipose tissue vascularization is represented 

by the setup of an adipocyte/endothelial cell (EC) co-culture. In this study, the 

development of a tissue-tailored co-culture medium based on adipocyte- and EC-

factors was developed. Thereby the critical role of epidermal growth factor (EGF) and 

hydrocortisone (HC) in adipocyte/microvascular (mv)EC co-culture was determined. 
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Through the adjustment of their supplementation, a functional co-culture of adipocytes 

and mvECs was achieved. In there, mvECs maintained the cell-specific expression of 

von Willebrand factor (vWF) and cluster of differentiation 31 (CD31). Additionally, cells 

kept their ability to incorporate acetylated low density lipoprotein (acLDL). By 

combining the experiences from both mentioned attempts, a defined adipocyte/EC co-

culture medium was developed. Next to the maintenance of functional and 

characteristic adipocytes, the medium facilitated the formation of vascular-like 

structures in the direct co-culture. 

To be able to establish tissue constructs of relevant size, current in vitro attempts have 

to be transferred to a three-dimensional (3D) environment. In this trial, a 3D adipose 

tissue model was set up based on the differentiation of ASCs in a collagen type I 

hydrogel in co-culture with mvECs for 21 days in total. The comparison of these models 

with native adipose tissue demonstrated high accordance in the gene expression 

levels related to differentiation and fatty acid metabolism. Some deviations were found 

mostly in maturation-dependent genes linked to tissue functionality and angiogenic 

mediation. 

Differentiation and the maintenance of a homeostatic tissue state highly rely on the 

physical and chemical characteristics of the applied scaffold. As another part, the 

influence of a novel cellulose-based material (CBM) on defined adipogenic 

differentiation of ASCs and the defined maintenance of mvECs was investigated in this 

thesis. An accelerating effect of CBM on the defined differentiation of ASCs was proven 

by enhanced release of leptin and the increased expression of perilipin A. CBM was 

further shown to facilitate the formation of vascular-like structures by mvECs under 

defined conditions in the absence of another supporting cell type. Additionally, the 

successful co-culture of adipocytes and mvECs was demonstrated on CBM under 

defined conditions. 

Summarized, defined culture media for the differentiation, maintenance and co-culture 

of primary ASC and mvECs were developed. The supporting effect of CBM on the 

defined establishment of cultures was proven. Further the successful setup of a 3D 

adipocyte/mvEC co-culture model with a high predictive power was shown. Combined 

these achievements can be used for the in vitro setup of a 3D vascularized adipose 

tissue under defined conditions.
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1.2. Zusammenfassung 

Die meisten aktuellen Ansätze zum Aufbau eines künstlichen Fettgewebekonstruktes 

basieren auf dem Einsatz von Seren, tierischen oder humanen Ursprungs. Speziell die 

Verwendung von tierischem Serum ist jedoch mit vielen Nachteilen verbunden. Dazu 

zählen potentielle Kontaminationen, große Variationen zwischen den Chargen und die 

vielen, nicht identifizierten Komponenten. Die Supplementierung mit Serum behindert 

so den Einsatz von künstlichen Fettgewebekonstrukten als Implantat zum Ersatz von 

nativem Gewebe nach einer Tumorentfernung, schweren Verbrennungen oder 

Traumata. In vitro Ansätze z.B. zur Aufklärung von Krankheitsentstehungen, der 

Entwicklung oder Sicherheitseinstufung von Medikamenten, basieren auf der 

zellulären Antwort, welche ebenfalls durch Serum-Komponenten verschleiert werden 

kann. Zudem sollten Fettgewebekonstrukte eine grundsätzliche Stabilität aufweisen 

um nach der Implantation eine ausreichende Anastomose mit dem Empfängergewebe 

und die Nutzung für zeit- und reifeabhängige in vitro Fragestellungen zu ermöglichen. 

Die definierte serumfreie Differenzierung von Adipozyten wurde bisher nur von 

wenigen Autoren adressiert. Zum definierten Erhalt von Adipozyten sind kaum Studien 

vorhanden. In dieser Arbeit wurde die Entwicklung definierter Kulturmedien für die 

adipogene Differenzierung humaner primärer Stammzellen aus dem Fettgewebe 

(adipose-derived stem cells, ASCs) angestrebt. Durch die Zugabe von spezifischen 

Faktoren als Alternative zu Serum, erfolgte eine 14-tägige Differenzierung zu viablen 

und charakteristischen Adipozyten, was sich durch die Einlagerung von Lipiden, der 

Expression von Perilipin A und der Freisetzung von Leptin und Glycerol bestätigen 

ließ. Weiterhin wurde ein definiertes Erhaltungsmedium entwickelt, welches die 

Reifung und Stabilität der Adipozyten über einen langfristigen Kulturzeitraum von 

42 Tagen bis zu Tag 56 unterstützte. 

Zur ausreichenden Versorgung, auch peripher gelegener Geweberegionen, ist die 

Integration einer vaskulären Komponente beim Aufbau eines physiologischen 

Gewebeersatzes in relevanter Größe fundamental. Idealerweise sollte das vaskuläre 

System aus einer natürlichen, zellulären Komponente bestehen. Durch den Mangel 

eines adäquaten Co-Kulturmediums, stellt der Aufbau einer Adipozyten/Endothelzell 

(endothelial cell, EC) Co-Kultur bei der Vaskularisierung von Fettgewebe eine zentrale 

Herausforderung dar. In dieser Arbeit wurde ein gewebespezifisches 

Co-Kulturmedium mit Adipozyten- und EC-Faktoren entwickelt. Hierbei zeigte sich die 
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kritische Rolle vom epidermalen Wachstumsfaktor (epidermal growth factor, EGF) und 

Hydrocortison (HC) in der Co-Kultur von Adipozyten und mikrovaskulären (mv)EC. 

Durch die Supplementanpassung ließ sich eine funktionelle Adipozyten/mvEC Co-

Kultur aufbauen. Darin erhielten die mvECs die zellspezifische Expression des von 

Willebrand Faktors (vWF) und des Oberflächenmarkers 31 (Cluster of differentiation, 

CD31). Außerdem behielten sie die Fähigkeit zur Aufnahme von acetyliertem 

Lipoprotein niedriger Dichte (acetylated low density liporotein, acLDL). Durch die 

Erkenntnisse aus beiden Ansätzen ließ sich ein definiertes Adipozyten/EC Co-Kultur-

medium entwickeln. Neben dem Erhalt funktioneller und charakteristischer Adipozyten, 

unterstütze das Medium in direkter Co-Kultur die Ausbildung vaskulärer Strukturen. 

Zum Aufbau von Gewebekonstrukten relevanter Größe ist die Überführung der 

aktuellen Ansätze in eine dreidimensionale (3D) Umgebung notwendig. In dieser 

Thesis wurde ein 3D Fettgewebekonstrukt mit differenzierten ASCs in einem Kollagen 

Typ I Hydrogel in Co-Kultur mit mvECs über insgesamt 21 Tage aufgebaut. Im 

Vergleich der Modelle mit nativem Gewebe zeigte sich eine größtenteils 

übereinstimmende Expression von Genen, die mit der Differenzierung und dem 

Fettstoffwechsel verbunden sind. Einige Abweichungen wurden hingegen bei zumeist 

reifeabhängigen Genen, die im Zusammenhang mit der Gewebefunktionalität und der 

Koordination von angiogenen Prozessen stehen, festgestellt. 

Die Differenzierung und eine homeostatische Gewebeerhaltung hängen maßgeblich 

von den physikalischen und chemischen Eigenschaften des eingesetzten Biomaterials 

ab. In einem weiteren Teil dieser Thesis wurde der Einfluss eines neuartigen Cellulose-

basierten Materials (CBM) auf die definierte adipogene Differenzierung und die 

definierte mvEC Erhaltung untersucht. Die erhöhte Ausschüttung von Leptin und die 

Expression von Perilipin A zeigte einen beschleunigenden Effekt von CBM auf die 

Differenzierung von ASCs. Weiterhin ermöglichte CBM die Ausbildung vaskulärer 

Strukturen in der definierten Kultur ohne die Unterstützung weiterer Zelltypen. 

Schließlich gelang die definierte Co-Kultur von Adipozyten und mvECs auf CBM. 

Zusammengefasst wurden in dieser Arbeit definierte Medien zur Differenzierung, 

Erhaltung und Co-Kultur von primären ASCs mit mvECs entwickelt. CBM zeigte einen 

unterstützenden Effekt im definierten Ansatz dieser Kulturen. Außerdem gelang der 

Aufbau einer 3D Adipozyten/mvEC Co-Kultur. In Kombination können diese 

Ergebnisse zum Aufbau eines vaskularisierten 3D Fettgewebekonstruktes unter 

definierten Bedingungen genutzt werden.
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2. Introduction 

2.1. Human adipose tissue 

2.1.1. Categories, location and structure 

Fatty tissue comprises about 12 % to 25 % of the human body and can be divided into 

brown (BAT) and white adipose tissue (WAT), with regard to its functionality [1]. BAT 

is mainly responsible for heat production and mostly found in newborns. WAT serves 

alongside with other functions as energy reservoir, heat insulation and mechanical 

protection of organs [2, 3]. WAT may be further subdivided into visceral and 

subcutaneous fatty tissue. While visceral fatty tissue is located next to and between 

internal organs, subcutaneous fatty tissue is placed adjacently to the dermal layer on 

top of connective and muscle tissue [4]. Visceral fat is known to produce more pro-

inflammatory cytokines while subcutaneous fat e. g. produces hormones like leptin [5]. 

Within WAT, several adipocytes are organized in lobuli, which are in turn separated 

with reticular connective tissue [6, 7]. Human adipose tissue is a highly vascularized 

organ, whereby each adipocyte is thought to be connected to the vascular system 

through at least one capillary [8, 9]. 

 

2.1.2. Functions 

The best known function of adipose tissue is the storage of energy in form of 

triglycerides (TG), consisting of fatty acids (FA) and glycerol [10]. Next to this, adipose 

tissue stabilizes the position of the inner organs and the musculoskeletal system as 

support material, prevents shock damages and thermally insulates vital organs [10]. 

Adipose tissue additionally fulfills an endocrine function, which remained undetected 

for a long time [11] leading to the neglection of the influence of adipose tissue on 

metabolic processes of the body. Today, it is known that adipose tissue does not only 

secrete lipids and free FAs but moreover releases hormones and thereby 

communicates via an endocrine, paracrine or autocrine manner. The hormones leptin 

and adiponectin (adipoQ), secreted by adipose tissue, e. g. regulate energy 

expenditure and food intake, while apolipoprotein E and low-density lipoprotein (LDL) 

mediate the transport of lipids. Adipose tissue is known to secrete cytokines and other 

immunologically active factors like tumor necrosis factor- α (TNF-α), interleukin-6 (IL-

6) or resistin, known to modulate inflammation. Factors coordinating the reaction of the 
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innate immune system, like adipsin or visfatin also originate from adipose tissue [2, 

12]. 

 

2.2. Cells of human adipose tissue 

Adipose tissue comprises a heterogeneous population of cell types (Figure 1), 

embedded in an extracellular matrix (ECM). Mononuclear cells like macrophages 

mediate adipose tissue inflammation [13]. Fibroblasts are found in the stroma and 

participate in matrix production and tissue organization [14]. The characteristic 

functions of adipose tissue like endocrine signaling and lipid storage are implemented 

and mediated by the main cell types of adipose tissue, namely mature adipocytes (MA), 

endothelial cells (EC) and their progenitors like adipose-derived stem cells (ASC).  

 

2.2.1. Adipocytes 

With 30 % to 50 %, MAs are the most common cell type of adipose tissue [15]. 

Adipocytes are surrounded by an outer basal lamina which is produced by themselves 

and consists of laminin, collagen type IV and heparansulfate-proteoglycanes, like 

perlecan [16-18]. They include an unilocular vacuole [19] and can reach diameters of 

50 µm to 100 µm, when terminally differentiated [15]. Depending on the nutritional 

Figure 1: Structure of human adipose tissue. Subcutaneous adipose tissue (subcutis) is 
localized as third layer of the skin, below the epidermis and the dermis. Adipose tissue comprises 
MAs and preadipocytes, organized in lobuli. Blood vessels including ECs cross through the 
tissue. In the vasculogenic zone, perivascular cells respectively ASCs are situated. Cells are 
embedded into the adipose tissue-specific ECM. 



2. Introduction 
 

7 
 

status, adipocyte size may further increase up to pathophysiological levels of 200 µm, 

known as hypertrophy [20]. The incorporated lipid vacuole claims about 95 % of the 

cell’s volume, wherefore the cytoplasm including the cell nucleus is displaced to the 

cell wall [21]. A phospholipid-monolayer, including TGs and cholesterol esters, thereby 

separates the lipid vacuole from the cytoplasm [22].  

MAs are unable to proliferate [23] but may e. g. increase their lipid stores by lipogenesis 

and decrease them by lipolysis or lipid release depending on the energy status [24]. 

Lipogenesis is triggered by insulin, which stimulates the intake of glucose from blood 

into the cells via the glucose transporter-4 (GLUT-4), (compare Figure 2). Following 

pyruvate dehydrogenase and the cyclic adenosine monophosphate (cAMP) 

phosphodiesterase are activated [25]. The incorporated glucose is used to produce 

glycerol-3-phosphate (G3P) via glycolysis. Equally, glucose is metabolized to pyruvate 

and following citrate, which is used in the de novo lipogenesis of FAs by the adenosin 

triphosphate (ATP) citrate lyase (ACLY) and the FA synthase (FAS) [26, 27]. 

Subsequently, TGs are esterified based on either these produced or on free FAs, 

derived from diet or metabolic processes of the liver, in combination with G3P [24]. FAs 

are thereby provided through FA binding protein-4 (FABP-4), lipoprotein lipase (LPL) 

and FA transport protein-1 (FATP-1) and -4, which mediate the uptake of FAs from the 

blood stream [28-30].  

In contrast, the degradation of TGs, namely lipolysis is initiated by catecholamines, like 

epinephrine, binding to β-adrenergic receptors. Following adenylyl cyclase, which is 

elevating the intracellular concentration of cAMP, is activated. CAMP is responsible for 

the phosphorylation of the hormone-sensitive lipase (HSL) which moves to the 

membrane of lipid vacuoles and facilitates the hydrolysis of TGs to G3P and free 

FAs [24]. Before this step is possible, perilipin A, a membrane protein covering about 

20 % of the lipid vacuole of adipocytes and preventing the hydrolysis of TGs [31], is 

equally phosphorylated and separates from the lipid vacuole membrane, pathing the 

way for HSL. Next to the fluctuating increase and decrease of incorporated lipids, 

adipocytes may also dedifferentiate to preadipocytes accompanied by the release of 

all lipids [32], or they may become apoptotic. To compensate this reduction, new 

adipocytes are formed. Consequently, adipose tissue undergoes a turnover rate of 

about 10 % per year [20].  
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Adipocytes indicate the level of their stored lipids via the release of hormones, like 

adipoQ or leptin. In a period of active lipogenesis, released leptin levels are 

proportional to accumulated lipids and high leptin levels indicate a big volume of stored 

lipids per cell. In contrast, adipoQ release indicates low lipid levels and stimulates 

increased energy uptake and lipogenesis [33, 34]. However, increased leptin levels 

might equally be initiated by glucocorticoids (GC) and insulin, showing a multi-

dependent production of the hormone [35]. 

 

2.2.2. Adipose-derived stem cells 

Next to MAs, adipose tissue comprises adipose-derived stem cells (ASC). They are 

classified as mesenchymal stem cells (MSC) and thereby share many surface antigens 

with bone-marrow-derived (BM)-MSCs. According to the International Society for 

Cellular Therapy, these cells show the expression of cluster of differentiation (CD) 73, 

90 and 105, plastic adherence and a proliferative capacity. Additionally, ASCs 

respectively MSCs are capable to differentiate along the mesodermal germ layer, 

giving rise to not only adipocytes but also to chondrocytes, osteoblast and smooth 

muscle cells [36]. 

Figure 2: Metabolic processes of human adipocytes during expansion and 
reduction of lipid stores. 
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In vivo, ASCs are thought to reside within the vessel wall. However, it has not been 

elucidated whether their actual bed is rather in the vasculogenic zone in between 

media and adventitia or in the perivascular niche in direct contact with ECs [37-39]. 

There is evidence for the ability of ASCs to differentiate into perivascular cells and take 

over their position and function [40]. Some voices even classify one cell type as a 

subcategory of the other [41]. In bigger vessels, the perivascular niche is known to be 

occupied by smooth muscle cells [42]. 

ASCs can give rise to MAs. The transcription factors peroxisome proliferator-activated 

receptor-γ (PPAR-γ), CCAAT/enhancer-binding protein-α (C/EBP-α), C/EBP-β, 

C/EBP-δ and sterol regulatory element-binding protein-1 (SREBP-1) play key roles 

during adipogenic differentiation [43, 44]. Within adipogenic differentiation, insulin 

receptor substrate 1 (IRS-1) is partly responsible for the activation of these adipogenic 

regulators [45]. In the determination phase, preadipocytes commit to the adipogenic 

lineage. Although, their morphology remains the same, cells lose their ability to 

proliferate. In the early terminal phase of differentiation, cell’s morphology is changed 

with the beginning lipid accumulation. In the remaining terminal phase, adipocytes 

show increased lipid accumulation and express adipocyte-specific antigens [44]. In 

contrast, delta-like non-canonical Notch ligand-1 (DLK-1) is a known negative regulator 

of adipogenesis [46]. 

 

2.2.3. Endothelial cells 

The vascular system of the human body is covered with ECs [47]. In vivo microvascular 

(mv)ECs show a flat, elongated morphology [48]. The endothelium mainly represents 

a regulator of vascular homeostasis and by the manifestation of close cell-cell contacts 

it functions as a barrier, which separates the circulating blood from the surrounding 

tissues [49]. The cell-contact based barrier consists of tight junctions, which e. g. 

consist of platelet and EC adhesion molecule-1 (PECAM-1), also known as CD31 [50]. 

Through gap junctions, ECs facilitate an intercellular exchange of substances [51]. 

Additionally, ECs regulate the vessel tonus e. g. by the release of nitric oxide (NO), or 

prostaglandin-I2 (PGI2) [52]. Further they mediate blood coagulation [53] e. g. via the 

release of von Willebrand-Factor (vWF) [54]. The assembly of new blood vessels, their 

reconstruction and their degradation is mediated by additional cell types (see 

chapter 3, [55] “3.3 Adipogenesis is linked to angiogenesis”) via various stimuli, like 
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vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), 

transforming growth factor-β (TGF-β), platelet-derived growth factor-β (PDGF-β), 

plasminogen activator inhibitor-1 (PAI-1), or angiopoietin I (Ang I) and II [56]. 

 

2.3. Adipose tissue engineering 

The need for artificially engineered adipose tissue arises from various conditions, like 

congenital deformities, acquired infections, traumata or the loss of tissue after tumor 

resection, respectively the suffering of severe burnings [57]. The current gold standard 

is to treat such conditions by the transfer of autologous fat with the Coleman’s 

technique or cell-assisted lipotransfer from intact body sites [58-60]. With this 

technique, the transplantation of small tissue pieces has been performed successfully 

[61]. Nonetheless, outcomes of adipose tissue transfer are unpredictable as grafts are 

under high risk to become necrotic over time and their retention rate varies from 10 % 

to 90 % [62]. This condition is mainly related to the insufficient nutrient supply in large 

tissue defects and the only slowly progressing neovascularization [63]. Hence, the 

in vitro development of fatty tissue equivalents is urgently needed to treat defects and 

replace lost tissue by designing physiological constructs, which facilitate fast tissue 

anastomosis and cell survival. Tissue engineering (TE) describes an interdisciplinary 

field, which pursues to construct, repair and replace tissue by combining cells and 

biomaterials with specific factors [64]. 

Adipose tissue interacts with many other organs by endocrine and paracrine signals 

and resulting gives rise to or participates in many diseases, like diabetes or Morbus 

Crohn [65-67]. Currently, e. g. spheroids are designed to model adipose tissue and 

elucidate the mechanism behind the development and heritage of such related 

diseases and for the exploration of new potential drugs [68]. However, lifelike adipose 

tissue models are thought to deliver predictions that are more reliable and are urgently 

needed [67, 69]. Additionally, adipose tissue sequestrates and thus influences the 

bioavailable levels of different drugs and may serve in the investigation of safe and 

effective drug doses [67]. 

 

2.3.1. In vitro vascularization 

In vivo most cells are found in a maximum distance of 200 µm to the next blood vessel. 

Oxygen, nutrients and waste products are known to be able to diffuse across this 
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distance between the vasculature and the peripheral tissue. Engineered tissue 

constructs, which exceed these dimensions, consequently have to include a supplying 

component [70]. The high vascularization level in adipose tissue is considered to be a 

key factor in WAT mass and function [71, 72]. Supply systems for adipose TE have to 

be permeable and cytocompatible. That is why cellular components are included often 

to mimic the native function of blood vessel as good as possible [73]. 

 

2.3.2. Cell sources 

In contrast to BM-MSCs, ASCs are available in high quantities from adipose tissue, 

their harvest shows little donor site morbidity and is cheaper, safer and less invasive 

compared to BM aspiration [37]. In contrast to embryonic stem cells, ASCs are less 

associated to immune reactions [74] and free of ethical concerns [75]. 

ASCs’ capacity to undergo adipogenic differentiation is well described [76, 77] and may 

be initiated in vitro via the application of adipogenic initiators e. g. GCs, like 

dexamethasone (Dex) or hydrocortisone (HC), insulin, isobutylmethylxanthine (IBMX) 

and others [44] (see chapter 3 “Adipogenic differentiation”, [55]). ASCs do not only give 

rise to MAs [78], but also induce and support the adipogenic differentiation of other 

progenitor cell types [79]. ASCs and adipogenic differentiated ASCs (diffASC) were 

confirmed to produce ECM components in vitro [80]. Additionally, ASCs have been 

demonstrated to take up the position of perivascular cells in vitro and modulate and 

support the growth of new vascular structures [81, 82]. Adipose tissue has been 

modelled successfully in vitro in two-dimensional (2D) and three-dimensional (3D) 

mono- and co-culture attempts, based on ASCs. However, only very few data is 

available on the sustainability of formed systems in vitro and the cellular phenotype 

therein [83]. In recent publications, MAs are variously defined as preadipocytes 

differentiated for five to 14 days in vitro [84, 85], although a further adipogenic 

development of cells has been reported at least until day 28 [86, 87].  

Directly isolated primary MAs show the great advantage of an already existing 

physiological cell functionality. Cells exhibit the characteristic adipogenic cell 

morphology, size and metabolic activity as found in native adipose tissue in vivo. MAs 

are non-proliferating cells and therefore cannot be expanded following their isolation. 

Their rapid dedifferentiation in vitro due to a lack of knowledge on their specific culture 

requirements is another major drawback. Starting already few days after isolation, cells 



2. Introduction 
 

12 
 

begin to organize their lipids in several, smaller vacuoles [18, 88, 89], first resulting in 

multivacuolar and finally fibroblast-like, dedifferentiated cells [90]. Some very 

promising studies have recently been published on their successful culture and 

application to build up adipose and full skin tissue models in vitro through the 

optimization of media and matrix properties [91-93]. Nonetheless, MAs are still used 

very rarely in adipose TE attempts and receive little to no attention [57].  

To be able to supply the engineered adipose tissue via a natural system, an EC type 

has to be integrated into the in vitro attempt. ECs are present in almost every tissue of 

the human body but are less concentrated compared to stromal cells [94]. Endothelial 

progenitor cells (EPCs) show the advantage of a high proliferative activity and therefore 

the ability to give rise to high proliferative colonies, capable of forming blood vessels 

[95]. However, they are relatively rare in the human body and only found to low 

percentages e. g. with 0.01 % of circulating mononuclear cells in peripheral blood or in 

the BM [96]. A non-invasive source of ECs is the umbilical cord, which is usually 

discarded as medical waste. Human umbilical cord ECs (HUVEC) exhibit a relatively 

high proliferation capacity and are often used in in vitro attempts [97]. Especially in the 

past decade, concerns on the use of HUVECs in TE attempts increased, as 

fundamental differences in their behavior compared to adult ECs were revealed [98]. 

Adult mvECs only show a limited ability to expand, however the cells are still capable 

to form capillary-like structures [99] and may be isolated from adult human skin, which 

is also available as medical waste from skin tightening surgeries [100]. ECs, as many 

other cell types, are known to vary phenotypically depending on their tissue of origin 

[101]. In order to modulate the microenvironment specifically, the donor and target 

tissue should match at best. Therefore, mvECs derived from human WAT represent 

the most appropriate choice when targeting vascularization of adipose tissue 

constructs. 

 

2.3.3. Current attempts in adipose tissue engineering 

In vivo subcutaneous adipose tissue exhibits a soft viscoelasticity with moduli of about 

1 kPa - 2 kPa [102] and it is known that rather soft materials favor adipogenesis and 

the maturation of adipocytes [103, 104]. In vivo conditions are presumed to be best 

simulated by the use of natural decellularized matrices, which already exhibit the 

appropriate properties like stiffness, pore size, topography and matrix components 
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[105]. To mimic these properties, hydrogels based on collagen type I, fibrinogen, 

hyaluronic acid, or gelatin have been often used next to the classic tissue culture 

polystyrene (TCPS) to set up adipose tissue constructs (reviewed in [106]). However, 

adipocyte generation was also successfully performed on stiff materials like 

polyethersulfone [107]. Similarly, the successful culture of ECs and the formation of 

vascular-like structures are associated to materials with low stiffness [108]. Next to 

collagen and fibrin, synthetic scaffolds like polyacrylate have been used successfully 

through the functionalization with RGD (Arg-Gly-Asp) [73]. A relatively new material in 

the field is represented by bacterial cellulose [109-111]. The material exhibits a natural 

porosity, biocompatibility and biodegradability [109, 112] and was shown to support 

adipogenic differentiation [113, 114] and stimulate an activated state in ECs [115].  

The functionality and sustainability of tissue-engineered constructs highly depends on 

the nutritional status of cellular components. Good achievements have been made by 

the application of a dynamic system to transport nutrients to and waste products away 

from the tissue sites via the flow of a liquid phase [107, 116, 117]. Nevertheless, for 

the generation of physiological tissue conditions, a vascular component has to be 

integrated into the system. Vascularization still represents one of the key challenges 

in TE [118]. According to current attempts, tissue-engineered constructs, may either 

be vascularized by implanting them in vivo, whereby the host tissue guides 

vascularization of the external constructs, or culture cells in vitro by providing some 

support to facilitate the formation of vascular structures [119]. In vitro scaffold-based 

strategies, e. g. with natural decellularized matrices [120], or the artificially formed 

biorap system [73], provide guiding geometrics and facilitate the arrangement of ECs 

in a branched system. De novo angiogenesis on the other hand relies on the intrinsic 

formation of vascular structures by the included ECs [121]. Current strategies for 

de novo in vitro vascularization include cell seeding, cell sheet and spheroid formation 

[122].  

In order to facilitate de novo in vitro adipose tissue vascularization the setup of a 

functional co-culture consisting of an endothelial and an adipose cell type is an 

inevitable prerequisite. Several works have been published on the functional co-culture 

of ECs with either adipogenic differentiated MSCs or MAs [123, 124]. Dynamic culture 

was shown to not only facilitate tissue nutrition, but also particularly support 

characteristic endothelial morphology and the physiological organization of angiogenic 

and vasculogenic processes, as it resembles the native conditions of the EC niche 
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[125]. Wiesner et al. highlighted the positive effect of dynamic culture conditions on the 

parallel seeding and culture of ECs and adipocyte progenitor cells in a decellularized 

natural matrix for the generation of large-scale tissue substitutes [126]. Equally, Abbott 

et al. reported enhanced adipocyte functionality under dynamic conditions [127]. 

Furthermore, Aubin et al. and Abbott et al. managed to maintain engineered adipose 

tissue in vitro for a long-term period of four weeks including MAs [128] and eleven 

weeks based on adipogenic differentiated (diff)ASCs [129], while Bellas et al. 

sustained adipose tissue constructs with integrated vascular cells under dynamic 

conditions [83]. 

 

2.3.4. Current challenges in adipose tissue engineering 

Despite the various attempts, in vitro vascularization of adipose tissue is still not 

achieved sufficiently. In the setup of a functional co-culture for vascularized adipose 

TE, the choice of the co-culture medium plays a fundamental role. Current attempts 

mostly use 1:1 mixtures of adipocyte and EC media or are, presumably due to the 

higher susceptibility of ECs, completely based on EC media [130-135]. In order to allow 

physiological tissue development in in vitro co-culture setups, including adipocyte 

generation and vascularization, co-culture conditions, like the used medium have to be 

adjusted specifically to the cellular requirements of the integrated cell types. 

Media for the culture of mammalian cells are most often composed with a basal 

medium including ingredients with low cell specificity. Due to that, basal media are 

designed and can be used for a range of different cell types [136]. Depending on the 

definition, they include e. g. buffering agents and salts for the osmotic balance and the 

maintenance of the membrane potential [137], carbohydrates as main energy source 

[138], amino acids for anabolic processes [139] and vitamins as general support of 

metabolic and antioxidative pathways [136] (see yellow section in Table 1). On top of 

these basic ingredients, most cell types rely on the availability of additional ingredients, 

like transport or adhesion proteins for the delivery of hormones and also lipids and 

vitamins [138, 140] for the transduction of signals, to store energy or as structural 

element [141] (see orange section in Table 1). Hormones, growth factors and cytokines 

may therein fulfill general roles in cell proliferation, growth and survival, but may also 

act very cell-specifically, promoting differentiation and the maintenance of unique cell 

functions [142-144]. In Table 1 cell specificity of the factors generally increases with 
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their position in the table from the top to the bottom. Serum is a versatile source of 

different factors like proteins, hormones, growth factors, cytokines, lipids, vitamins and 

carbohydrates [136]. In consequence, it serves as an adequate supplier for a wide 

range of different cell types and is used as universal supplement in many cell- and 

tissue culture approaches [136, 142]. Serum containing (SC) media are nevertheless 

associated to some fundamental issues concerning the sought application of TE 

products as in vitro test systems or clinical implants. First, sera pose the risk of potential 

contaminations [145]. Moreover, the composition of sera, independent of their animal 

or human origin is not completely identified and may vary from batch to batch [146].  

These drawbacks have to be eliminated prior to a possible production of TE products 

under good manufacturing practice (GMP)-conform conditions, which is an important 

prerequisite for their clinical application.  

 
Component Function 

B
as

ic
 c

on
st

itu
en

ts
 in

cl
ud

ed
 in

  
th

e 
ba

sa
l m

ed
iu

m
 

Buffers 
(e. g. NaHCO3) 

Maintain pH-value [136] 

Phenol red Indicator of pH-value [147] 
Salts 
(e. g. with Na+, K+, Ca2+

, Cl-, HCO3
-) Osmotic balance and membrane potential [137] 

Keto acids  
(e. g. pyruvate & oxaloacetate) 

Carbohydrate metabolism, amino acid 
metabolism [136] 

Non-protein nitrogen compounds 
(e. g. urea, purines, creatinine) Cell growth, amino acid metabolism 

Carbohydrates 
(e. g. glucose, galactose, fructose) Energy source [138] 

Amino acids 
(e. g. glutamine, methionine) 

All anabolic processes like growth and 
proliferation [139] 

Vitamins  
(e. g. ascorbic acid, biotin) 

Growth and proliferation, 
antioxidant [136] 

Trace elements 
(e. g. iron, copper, selenium) 

Cell growth, 
basic biological processes [139] 
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Transport-, and adhesion proteins 
(e. g. albumin, transferrin, fibronectin) 

Transport of water, salts, FAs, hormones and 
vitamins,  
cell protection, cell attachment [138, 140] 

Hormones 
(e. g. insulin, prostaglandins) 

Various cell-type specific functions including 
growth, proliferation, survival, differentiation 
adhesion or migration [142] 

Growth factors and cytokines 
(e. g. PDGF, VEGF, ILs, interferons) 

Various cell-type specific functions including 
growth, proliferation, survival, differentiation 
adhesion or migration [143, 144] 

Lipids  
(e. g. oleic acid, cholesterol) 

Signal transduction, energy storage, structure 
[141] 

Table 1: Cell Culture media components and their functions. 
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Additionally, robustness and reliability of in vitro test systems substantially depend on 

the consistency of the medium composition, as tissue development and homeostasis 

strongly rely on the crosstalk between cells [148-150]. Unidentified serum components 

might interfere with the underlying cell signaling and influence test outcomes 

extensively. The defined setup of engineered vascularized adipose tissue and TE 

products in general, is a central challenge to facilitate their actual application as implant 

or in vitro test system. Nonetheless, the exclusion of serum is often related to impaired 

differentiation, reduced cell adherence and loss of cell-specific features [141]. For this 

reason, the replacement of serum with adequate alternatives is sought. Serum 

replacement may take place to different levels (see Figure 3). Human serum (HS) may 

be used in xeno-free (XF) attempts, in contrast to serum-free (SF) attempts. For the 

completely defined setup of cell culture media, Van der Valk et al. provided a general 

strategy [141]. Based on a basal medium like Dulbecco's Modified Eagle Medium 

(DMEM)/Ham’s F12, supplements are added empirically to optimize a cell culture 

medium cell-specifically. According to his pyramid, cell specificity increases starting 

rather unspecific with the basal medium and the pre-coating of culture vessels with 

adhesion factors over the addition of (un)specific growth factors, hormones and lipids, 

over antioxidants (like β-mercaptoethanol or vitamins) up to very cell specific vitamins 

like retinoic acid [141]. [151] 

There are some current attempts addressing defined WAT engineering e. g. by Rajala 

et al., who successfully performed an adipogenic differentiation under defined 

conditions, however without allocating the efficiency of the differentiation [152].  

Figure 3: Categories of cell 
culture media supplements  
(taken from chapter 4 [151]). 
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To allow for time-dependent investigations in vitro and facilitate host anastomosis after 

implantation, engineered adipose tissue constructs have to be sustainable for a long-

term period of at least several weeks. Vascularization represents an important element 

for the achievement of tissue maintenance. Huttala et al. managed the setup of a 

defined co-culture of ECs and ASCs [153]. However the defined setup of an 

adipocyte/EC co-culture has not been addressed till now. Defined media are urgently 

needed for the efficient adipogenic differentiation of ASCs and the maintenance of 

adipocytes and ECs in mono- and co-culture. An important determining factor, not only 

limited to defined cell culture, is the choice of culture matrix, which on the one hand 

should support tissue development and maturation but on the other hand should 

endure long-term periods without intense degradation.  

 

2.4. Aim of the study 

The aim of this dissertation was the development of novel cell-specifically composed 

culture media for the adipogenic differentiation of ASCs, the long-term maintenance of 

the received adipocytes and mvECs and the functional co-culture of the different cell 

types. In contrast to previous approaches, the media were sought to be developed 

completely defined by the exclusion of sera. Furthermore, a novel cellulose-based 

material (CBM) was to be evaluated concerning its usability to support the sustainable 

maintenance of an adipocyte/EC co-culture under defined conditions. Moreover, the 

transfer of an adipose tissue co-culture model to a 3D environment was sought. 

Therefore the following hypotheses were evaluated: 

(H1) The supplementation with defined media additives facilitates the efficient 

adipogenic differentiation of ASCs and the maintenance of the received 

adipocytes in SF conditions. 

(H2) The maintenance of adipocyte and mvEC characteristics is achieved by the 

variation of the concentrations of EGF and HC in co-culture. 

(H3) The supplementation with defined media additives facilitates the functional co-

culture of adipocytes and mvECs. 

(H4) The CBM supports the defined adipogenic differentiation of ASCs, the defined 

maintenance of mvECs and the defined adipocyte/mvEC co-culture. 

(H5) A lifelike 3D adipose tissue model can be set up based on co-cultured ASCs 

in vitro. 
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Summarized, this dissertation provides an approach to transfer vascularized adipose 

TE to an advanced level by adjusting its setup to defined conditions. Thereby it was 

pursued to accelerate and reinforce the application of engineered adipose tissue 

constructs in regenerative medicine and in vitro investigative approaches. 

 

2.5. Structure of the thesis 

In the following, the peer-reviewed publications, which constitute the main methodical 

and experimental sections of this dissertation, are integrated. The published review 

article “Adipose-derived stem cell differentiation as a basic tool for vascularized 

adipose tissue engineering” gives some general background on the use of ASCs in the 

setup of vascularized WAT in chapter 3 [55]. The published research articles 

“Completely serum-free and chemically defined adipocyte development and 

maintenance” in chapter 4 [151] and “EGF and hydrocortisone as critical factors for the 

co-culture of adipogenic differentiated ASCs and endothelial cells” in chapter 5 [87] 

address the investigation of H1 and H2, respectively. The articles “Completely defined 

co-culture of adipogenic differentiated ASCs and microvascular endothelial cells” in 

chapter 6 [154] and “A cellulose-based material for vascularized adipose tissue 

engineering” in chapter 7 [155] equally relate to the examination of H3 and H4. 

Chapter 8 deals with the analysis of H5 and offers an interrelated summary and 

discussion of the complete results. Chapter 9 resumes the main findings and following 

chapter 10 provides an outlook towards the next sought steps. Furthermore, the cited 

literature is included in chapter 11.
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Abstract 

The development of in vitro adipose tissue constructs is highly desired to cope with 

the increased demand for substitutes to replace damaged soft tissue after high 

graded burns, deformities or tumor removal. To achieve clinically relevant 

dimensions, vascularization of soft tissue constructs becomes inevitable but still 

poses a challenge. Adipose-derived stem cells (ASCs) represent a promising cell 

source for the setup of vascularized fatty tissue constructs as they can be 

differentiated into adipocytes and endothelial cells in vitro and are thereby available 

in sufficiently high cell numbers. 

This review summarizes the currently known characteristics of ASCs and 

achievements in adipogenic and endothelial differentiation in vitro. Further, the 

interdependency of adipogenesis and angiogenesis based on the crosstalk of 

endothelial cells, stem cells and adipocytes is addressed at the molecular level. 

Finally, achievements and limitations of current co-culture conditions for the 

construction of vascularized adipose tissue are evaluated. 
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Abstract 

Background aims: In vitro engineered adipose tissue is in great demand to treat lost or 

damaged soft tissue or to screen for new drugs, among other applications. However, 

today most attempts depend on the use of animal-derived sera. To pave the way for 

the application of adipose tissue–engineered products in clinical trials or as reliable 

and robust in vitro test systems, sera should be completely excluded from the 

production process. In this study, we aimed to develop an in vitro adipose tissue model 

in the absence of sera and maintain its function long-term. 

Methods: Human adipose tissue–derived stem cells were expanded and characterized 

in a xeno- and serum-free environment. Adipogenic differentiation was induced using 

a completely defined medium. Developed adipocytes were maintained in a completely 

defined maturation medium for additional 28 days. In addition to cell viability and 

adherence, adipocyte-specific markers such as perilipin A expression or leptin release 

were evaluated. 

Results: The defined differentiation medium enhanced cell adherence and lipid 

accumulation at a significant level compared with the corresponding negative control. 

The defined maturation medium also significantly supported cell adherence and 

functional adipocyte maturation during the long-term culture period. 

Conclusions: The process described here enables functional adipocyte generation and 

maintenance without the addition of unknown or animal-derived constituents, achieving 

an important milestone in the introduction of adipose tissue–engineered products into 

clinical trials or in vitro screening. 
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Abstract 

In vitro composed vascularized adipose tissue is and will continue to be in great 

demand e.g. for the treatment of extensive high-graded burns or the replacement of 

tissue after tumor removal. Up to date, the lack of adequate culture conditions, mainly 

a culture medium, decelerates further achievements. In our study, we evaluated the 

influence of epidermal growth factor (EGF) and hydrocortisone (HC), often 

supplemented in endothelial cell (EC) specific media, on the co-culture of adipogenic 

differentiated adipose-derived stem cells (ASCs) and microvascular endothelial cells 

(mvECs). In ASCs, EGF and HC are thought to inhibit adipogenic differentiation and 

have lipolytic activities. Our results showed that in indirect co-culture for 14 days, 

adipogenic differentiated ASCs further incorporated lipids and partly gained an 

univacuolar morphology when kept in media with low levels of EGF and HC. In media 

with high EGF and HC levels, cells did not incorporate further lipids, on the contrary, 

cells without lipid droplets appeared. Glycerol release, to measure lipolysis, also 

increased with elevated amounts of EGF and HC in the culture medium. Adipogenic 

differentiated ASCs were able to release leptin in all setups. MvECs were functional 

and expressed the cell specific markers, CD31 and von Willebrand factor (vWF), 

independent of the EGF and HC content as long as further EC specific factors were 

present. Taken together, our study demonstrates that adipogenic differentiated ASCs 

can be successfully co-cultured with mvECs in a culture medium containing low or no 
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amounts of EGF and HC, as long as further endothelial cell and adipocyte specific 

factors are available. 
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Abstract 

Vascularized adipose tissue models are in high demand as alternatives to animal 

models to elucidate the mechanisms of widespread diseases, screen for new drugs or 

assess drug safety levels. Animal-derived sera such as fetal bovine serum (FBS), 

which are commonly used in these models, are associated with ethical concerns, risk 

of contaminations and inconsistencies of their composition and impact on cells. In this 

study, we developed a serum-free, defined co-culture medium and implemented it in 

an adipocyte/endothelial cell (EC) co-culture model. 

Human adipose-derived stem cells were differentiated under defined conditions 

(diffASCs) and, like human microvascular ECs (mvECs), cultured in a defined co-

culture medium in mono-, indirect or direct co-culture for 14 days. The defined co-

culture medium was superior when compared to mono-culture media and facilitated 

the functional maintenance and maturation of diffASCs including perilipin A expression, 

lipid accumulation, and also glycerol and leptin release. The medium also allowed 

mvEC maintenance, confirmed by the expression of CD31 and von Willebrand factor 

(vWF), and by acetylated low-density lipoprotein (acLDL) uptake. Thereby mvECs 

showed strong dependence on EC-specific factors. Additionally, mvECs formed 

vascular structures in direct co-culture with diffASCs. 

The completely defined co-culture system allows for the serum-free culture of 

adipocyte/EC co-cultures and thereby represents a valuable and ethically acceptable 

tool for the culture and study of vascularized adipose tissue models. 
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Abstract 

In vitro adipose tissue constructs could on the one side be used as models to screen 

for new drugs or elucidate metabolic pathways and on the other side could serve as 

tissue implants to treat deep wounds or adipose tissue traumata. The integration of a 

vascular component would allow the lasting sustainability of larger constructs but is 

currently missing which prevents the actual clinical use of artificial adipose tissue. With 

this trial, we sought to evaluate a novel material based on bacterial cellulose (CBM) 

concerning its influence on adipogenic differentiation of human adipose-derived stem 

cells (ASCs), the maintenance of differentiated adipocytes (diffASCs) and human 

microvascular endothelial cells (mvECs) in mono- and co-culture under serum-free, 

defined conditions. Defined adipogenic differentiation was slightly supported by CBM 

compared to tissue culture polystyrene (TCPS). With regard to the maintenance of 

generated adipocytes, CBM and TCPS showed a comparable influence. Compared to 

TCPS, the formation of vascular-like structures was significantly supported by CBM in 

the mvEC mono-culture. In the co-culture attempt, CBM and TCPS equally facilitated 

the development and maintenance of vascular-like structures. Summarizing, CBM 

supports engineering of vascular adipose tissue in several respects. CBM does not 

only have the potential to speed up the generation of artificial adipose tissue constructs 

in future attempts, but also simplify their setup requirements. 
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8. Results and Discussion 

8.1. Defined adipocyte generation 

The application of engineered tissues as implants or in vitro test systems would be 

carried forward substantially by methods and materials facilitating their defined setup 

in the absence of sera. Consequently, potential contaminations in their clinical 

implementation could be reduced markedly [146]. Besides that, the reliability, 

robustness and the predictive power of in vitro test systems and models could be 

enhanced, generating a powerful tool, which represents the human body more 

accurately [136]. The transfer of products to a defined setup is pursued in various fields 

of TE. It especially poses a challenge in the differentiation and development of diverse 

cell types, as the formation and conversion of cellular and tissue components relies on 

a broad range of signals and factors. Within adipogenic differentiation, cellular 

commitment is followed by extensive accumulation of lipids in vacuoles [44], which 

finally comprise a multiple of the cell’s original volume [15]. 

As engineered adipose tissue is urgently needed in regenerative medicine and in in 

vitro investigations, defined adipogenic differentiation has been addressed in various 

attempts before. Hauner et al. generated the earliest available results already in 1989 

[156]. In current attempts, Rodriguez et al. and Körner et al. e. g. successfully 

performed an adipogenic differentiation with a defined differentiation mix and received 

characteristic adipocytes [157, 158]. Today, most studies still include undefined 

components in the differentiation process of the cells [159, 160]. In addition, many 

defined approaches still include serum or animal-derived components in the cell 

expansion phase, which represents a major drawback in terms of their applicability. In 

contrast, Rajala et al. used allogenic HS for the expansion phase and developed a 

defined and XF method to differentiate human ASCs adipogenically [152]. The medium 

was nevertheless developed for the parallel differentiation of several cell types like 

induced pluripotent stem cells. Hence, its composition was not tailored specifically to 

ASCs’ requirements and included a wide range of probably non-essential factors. To 

minimize costs and variations of a system and to keep an easy transferability to other 

applications, defined culture media should consist of as few components as possible. 

As a general drawback, the current studies only provide a proof of concept and almost 

none of them includes a comparison of the results, generated under the different 

defined conditions to classically applied SC attempts. By that, an adequate reference 
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to evaluate and classify the results comprehensively is detained. On top, the available 

results do not allow to deduce a conclusion on the differentiation rates and the general 

efficiency.  

With this approach a SF adipogenic differentiation medium, completely defined in its 

composition, should be developed. Further, the efficiency of the differentiation was to 

be compared to classically used SC attempts to be able to rate them. Based on a well-

established SC medium a SF and defined adipogenic differentiation medium was 

developed. Therefore, literature was searched for factors known to generally support 

SF cell culture or specifically promote adipogenic differentiation or maintenance. 

Based on the found information various combinations were evaluated in preliminary 

experiments to find the optimal formulation. Following the selection of the most suitable 

formulation, this cell type-tailored defined differentiation medium (Def-Diff) including 

differentiation specific factors (DIFF) and the defined supplement A, was proven to 

allow for an efficient adipogenic differentiation. Thereby viable adipocytes with a high 

rate of cell adherence of about 100 % were generated in contrast to the negative 

control (Ctrl-Diff), which only contained the DIFF mix [151]. With about 80 % of the 

cells expressing the adipocyte-specific factor perilipin A and released leptin, defined 

differentiated cells showed a rate close to the SC positive control (SC-Diff). In a further 

analysis the adipogenic proteins CEB/P-α, PPAR-γ and adipoQ were demonstrated to 

be expressed to an extent close to SC-Diff (Figure 4). The comparable expression of 

CEB/P-α and PPAR-γ are in line with the high percentage of perilipin A-expressing 

cells. These results indicate a comparable initiation of adipogenic differentiation in the 

presence of serum and the defined supplement. However, the reduced lipid 

Figure 4: Protein expression analysis of diffASCs. 
DiffASCs, differentiated for 14 days, analyzed for the 
expression of the adipogenic proteins C/EBP-α, PPAR-γ 
and adipoQ via a Western Blot, β-actin is displayed as a 
reference gene; positive control (SC-Diff) containing the 
differentiation initiators (DIFF) and serum, defined attempt 
(Def-Diff) containing DIFF and a defined supplement A, 
negative control (Ctrl-Diff) containing solely DIFF, n=1. 
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accumulation in Def-Diff indicates a shortage of available factors, to support de novo 

lipogenesis or the FA uptake from the extracellular surrounding. 

The high leptin levels and percentage of perilipin A-positive cells in the defined attempt 

by that highlight the high differentiation rate compared to the supplement-free Ctrl-Diff, 

close to SC-Diff. Nonetheless, the reduced lipid accumulation indicates a retarded 

maturation process. Hence, the developed differentiation medium did not keep up with 

serum supplementation completely and obviously there were still some serum 

components which have not been met in the supplement and have to be addressed in 

future attempts. Still, for the first time adipogenic differentiation was performed under 

completely defined conditions in vitro with proven efficiency, subsequently to a SF and 

XF expansion phase with human primary ASCs. Bottom line, the method represents a 

valuable tool in the setup of WAT constructs under defined conditions and may serve 

as a reference to rank future outcomes. 

As a major limitation, available trials provide no proof of the long-term stability of the 

generated adipocytes. It is known that MAs dedifferentiate in vitro in case of 

insufficiently adjusted culture conditions [32, 93]. The long-term maintenance of 

differentiated preadipocytes has been demonstrated by Fischbach et al. with a 

3T3-model for 35 days continuously to the differentiation initiation [161] and 

Bellas et al. based on human ASCs for six months [83]. Despite, adipogenic 

differentiation of MSCs may also be followed by dedifferentiation in vitro depending on 

the composition of the medium and other culture parameters [87, 162]. For the 

implementation as in vitro system, tissue sustainability is of substantial importance to 

allow for time- and maturation-dependent investigations. Further, the successful 

implantation of engineered tissue substitutes heavily depends on an adequate host 

anastomosis and long-term implant survival in vivo requires tissue stability of at least 

several weeks [63]. So far, no results on the long-term maintenance under defined 

conditions are available. With this study, the long-term maintenance of adipocytes, 

differentiated under defined conditions, was to be proven via the composition of a 

defined maintenance medium (Def-M), including a defined supplement B next to the 

maintenance mix (MAIN) for at least 28 days post-differentiation. While the positive 

control SC-M included serum instead of supplement B, the negative control (Ctrl-M) 

solely included MAIN as supplement. In contrast to Ctrl-M, Def-M was shown to 

maintain cell adherence comparably to SC-M, indicating an adequate supplementation 

with specific components allowing cell-material junctions. Although lipid accumulation, 
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which is an indicator of the developmental state of MAs, were still reduced in the 

defined attempt compared to the SC-M, leptin levels showed comparable values and 

confirmed a similar level of cell functionality and maturation. Low glycerol levels 

highlighted the reduced lipolytic activity of adipocytes in the defined approach. The 

equal percentage of perilipin A-expressing cells validates the adequate differentiation 

rate, achieved in the defined attempt. Compared to day 0 (directly after the 14-day 

differentiation period) the rate of differentiated adipocytes was decreased independent 

of the supplementation with serum or the defined mix in supplement B, apparent in the 

reduced rate of perilipin A-expressing cells. Coincidently leptin and lipid levels 

increased. Inhibited adipogenesis of ASCs in the presence of MAs has been shown 

before and was assigned to the release of angiontensin II [163]. This effect might be 

explained by the self-organized adjustment of a homeostatic equilibrium of 

differentiated and dedifferentiated cells and is in accordance with the results received 

in this study. As many differentiated cells were present after some days in culture, 

dedifferentiation of some diffASCs was presumably induced through a negative 

feedback loop.  

To test whether the sustainability of adipocytes may continue during an elongated 

in vitro culture period, defined adipogenic diffASCs were maintained for additional 

14 days in the defined maintenance medium until day 42 post differentiation (day 56 

after the start of defined differentiation). Similar to day 28, diffASCs including 

incorporated lipid droplets and perilipin A were sustained in Def-M and SC-M (Figure 
5). Although the size of lipid vacuoles and the level of accumulated lipids was again 

reduced in Def-M with 61.02 (± 13.79) % compared to the SC-M with 104.25 (± 26.50) 

%, the rate of present adipocytes was still comparable. This was visible through the 

ratio of cell nuclei stained with 4, 6-diamidin-2-phenylindol (DAPI) in blue to visible 

perilipin A-lined vacuoles in green. Ctrl-M exhibited values of 12.33 (± 3.13) %. 

Furthermore, no significant reduction in the percentage of perilipin A-expressing cells 

was observed within the different media between day 28 and day 42 (SC-M: 76.77 

(± 37.32) %, Def-M: 64.94 (± 22.77) % and Ctrl-M: 28.77 (± 25.37) %), displaying 

maintained adipocyte stability and supporting the thesis of an adjusted balance of cell 

ratios.  

Concluding, the defined adipogenic differentiation medium enables for the generation 

of a functional culture of MAs. Furthermore, the defined maintenance medium 
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facilitates the sustainable long-term in vitro culture for at least six weeks. Subsequently, 

H1 was positively confirmed.  

 

8.2. Functional (defined) adipocyte endothelial cell co-culture 

Engineered adipose tissue constructs have to be produced in an appropriate size, in 

order to push forward their application in regenerative medicine [23]. The enlargement 

of present products inevitably entails the necessity of a vascular system, which allows 

for the simultaneous nutrition of internal and peripheral parts of the tissue construct. 

Current attempts include the endothelialization of vascular geometries in artificially 

produced scaffolds or decellularized tissue pieces [70, 118]. The most physiological 

model is nonetheless produced by ECs and their associated cells via the self-organized 

de novo formation of capillary-like structures. A fundamental milestone in the setup of 

vascularized WAT is the functional co-culture of ECs and adipocytes respectively 

ASCs, which in turn heavily relies on the use of an appropriate culture medium. The 

medium must meet the requirements of both cell types adequately, which might deviate 

considerably. In terms of adipose TE, adipocytes should be enabled to maturate, 

secrete hormones and function in terms of lipid and glucose metabolism. ECs should 

Figure 5: Maintained diffASCs on day 56 (42 after differentiation). Perilipin A/DAPI 
immunofluorescence staining of diffASCs: perilipin A is shown in green cell nuclei in blue, Oil-red-O 
staining, quantitative analysis of perilipin A expressing cells by IF staining, normalized to SC-Diff day 
14, quantitative analysis of lipid accumulation by Oil-red-O staining, positive control (SC-M) 
containing the maintenance factors (MAIN) and serum, defined attempt (Def-M) containing MAIN 
and a defined supplement B, negative control (Ctrl-M) containing solely MAIN; scale bar: 200 µm, 
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also display cell-specific characteristics like the expression of CD31 and vWF and 

function physiologically e. g. detectable by the uptake of acLDL. Since tissue supply 

depends on the development and maintenance of a vascular system, the medium 

should further facilitate the setup of vascular-like structures via angiogenic processes. 

This developmental process substantially benefits from the interplay of adipocytes, 

ASCs and ECs (reviewed in [55]). An adequate culture medium thereby should be 

designed to support the functionality of the used cell types without covering their 

natural crosstalk. Human primary mvECs have been mono-cultured successfully 

in vitro by the use of cell type-specific media [73, 92, 164]. In those, ECs were provided 

with VEGF and basic fibroblast growth factor (bFGF), as potent mitogens [71, 165-

168], insulin-like growth factor (IGF) for physiological EC metabolism, migration and 

vessel formation (reviewed in [169]) ascorbic acid-2-phosphate (A2P) promoting EC 

growth [170] and EGF as a potent contributor to cell migration [171]. Specific media 

are equally available for adipocytes and include factors supporting lipid metabolism, 

lipogenesis and other anabolic processes like insulin, GCs or vitamins like 

panthothenate and biotin [93, 158, 163, 172, 173]. Due to the complexity of an 

adequate composition, there is currently no adipocyte/EC co-culture medium available. 

Currently performed co-culture attempts are therefore mostly based on either the EC 

or the adipocyte medium or a simple 1:1 mixture of them [126, 131, 174, 175]. In order 

to compose a functional co-culture medium for diffASCs and mvECs in this study, each 

factor used in the mono-culture attempt was reviewed previous to its addition. It was 

found that the role of GCs like HC and Dex are discussed controversially regarding 

their effect on adipocyte and EC functionality. In adipocytes pro- and antilipolytic effects 

were detected so far. Thereby a dose-dependent impact has been held responsible 

[35]. Equally, the impact of EGF on adipogenic differentiation and adipocyte 

functionality is discussed controversially with a reported pro- and anti-adipogenic effect 

within differentiation as well as a lipogenic and a lipolytic effect on differentiated 

adipocytes [176]. Within this study, the effect of EGF and HC and the general 

dependency of mvECs and diffASCs on classically supplemented factors were 

evaluated in mono- and co-culture setups [87]. It was confirmed that mvECs depend 

on the presence of the cell specific factors VEGF, IGF, bFGF and A2P. It was shown 

before, that (diff)ASCs are able to provide several essential EC factors like VEGF, 

hepatocyte growth factor (HGF) or bFGF [177]. Despite that, the available levels in the 

co-culture attempt were obviously not high enough, since the tissue functionality was 
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not yet fully developed. DiffASCs were not affected visibly by the addition of EC-

specific factors. In contrast, the further maturation of diffASCs appeared to profit from 

the EC-factors likewise. Nonetheless, as an important result, diffASC maturation was 

impaired by the presence of EGF and HC in a dose-dependent manner. These results 

are in line with the work of Werner et al. [178], who reported a reduced adipogenic 

differentiation of stem cells and Huber et al. who showed an increased lipolytic 

behavior of MAs in the presence of EGF and HC [92]. The effect is most likely 

associated to a proliferative and anti-adipogenic effect of EGF and high doses of GCs 

[35, 179, 180]. MvECs however appeared to be sufficiently supplied with a minimum 

available amount of EGF and HC. Based on these results it was concluded that an 

adequate adipocyte/EC co-culture medium has to include essential EC factors, like 

VEGF and bFGF and has to be reduced in EGF and HC to keep cell functionality. 

Accordingly, the maintenance of adipocytes and mvECs can be optimized in co-culture 

by the reduction of EGF and HC to 10 % of the original concentration in classical EC 

media, which supports H2. 

With a view to the sought application of the vascularized adipose tissue construct as 

in vitro test system or in vivo implant, the transfer of the co-culture attempt to a defined 

system was aimed. Up to date, the development or usage of a defined co-culture 

medium for the setup of vascularized adipose tissue was not reported. Therefore, 

defined adipocyte/EC co-culture media (CoM) were designed based on the knowledge 

gained during the development of the media for defined adipocyte generation (Def-M) 

and the composition of an appropriate SC co-culture medium. In the course of this, 

cell-specific factors for adipocytes and ECs were combined with pre-evaluated serum 

substitutes. After the selection procedure in preliminary experiments, comparable to 

the preparatory phase mentioned in chapter 8.1, the media were evaluated in mono-, 

indirect and direct co-cultures of diffASCs and mvECs. Therein, ASCs were 

differentiated adipogenically under defined conditions for 14 days prior to the co-culture 

phase, as described in chapter 4 [151]. Based on CoM, a functional co-culture of 

adipocytes and mvECs was achieved under defined conditions for the first time. 

Adipocytes exhibited high cell viability, perilipin A expression and lipid accumulation. 

Additionally, they increased their leptin release at moderate lipolytic levels (chapter 6 

[154]). Simultaneously, mvECs showed the characteristic expression of CD31 and the 

ability to take up acLDL. Further, they formed vascular-like structures in co-culture. 

Thus, the developed defined medium may be categorized as appropriate to maintain 
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and maturate an adipocyte/EC co-culture under defined conditions and thereby led to 

the achievement of an important milestone in the development of vascularized adipose 

tissue constructs in vitro.  

To evaluate the suitability of the defined CoM to maintain the co-culture for an 

expanded long-term culture period, additional experiments were performed in which 

diffASCs and mvECs were co-cultured for 28 days in total (Figure 6). Comparably to 

Figure 6: DiffASCs and mvECs in defined mono- and direct co-culture on day 14 and 28 on 
TCPS. Adipocyte characteristics: quantitative analysis of lipid accumulation, quantitative analysis of 
leptin release and quantitative analysis of glycerol release of diffASCs in defined mono- and co-culture; 
values of diffASCs immediately after differentiation (day 0) were set as 100 %; n=3. 
Perilipin A/CD31/DAPI immunofluorescence staining: specific protein expression of diffASCs and 
mvECs in mono- and co-culture on day 28 is shown in green and red, nuclei were stained in blue. 
Quantitative analysis of vascularization on day 14 and 28 of mvECs in co-culture: values of vascular-
like structures on day 14 in co-culture were set as 100 %; n=2; *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001, n.s = non-significant, n.i. = not investigated, scale bar: 200 μm. 
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day 14, adipocytes continued to express perilipin A. In addition, despite mono- and 

co-cultured attempts showed minimal reductions in their lipid stores 

(day 0: 100 (± 8.1) %, day 14: 204 (± 15.9) % and 198 (± 18.0) %, day 28: 

170 (± 41.2) % and 149 (± 27.9) % respectively for mono- and co-culture), lipid values 

were still found to be around 150 % on day 28 compared to day 0. The co-culture with 

ECs has been connected to both, pro- and anti-adipogenic effects on ASCs and MAs 

[123, 130, 174, 175]. Wnt 1 and 4 signaling has been held responsible for a shift 

towards a perivascular and thereby non-adipogenic cell type in ASCs, which then might 

support vascular structures built by ECs [174]. On the other hand, ECs have been 

shown to support adipogenic processes [87, 130]. In this study, we detected enhanced 

lipid accumulation of diffASCs in indirect contact with mvECs, which however only 

became visible in the SC medium [87]. Direct mvECs/diffASCs contact did not result 

in enhanced lipid accumulation.  

Leptin levels did further increase until day 28 compared to day 0 in all attempts 

(day 0: 100 (± 47.7) %, day 14: 1608 (± 543.1) % and 2581 (± 846.2) %, day 28: 2723 

(± 1484.0) % and 3819 (± 1888.1) % respectively for mono- and co-culture). In 

co-culture this effect was tendentially enhanced, suggesting intensified adipocyte 

signaling in the presence of mvECs. The lipolytic rate of diffASCs did not change 

substantially between day 14 and 28 independent of the attempt (day 0: 100 

(± 13.8) %, day 14: 224 (± 46.0) % and 233 (± 44.8) %, day 28: 186.0 (± 55.9) % and 

176 (± 65.2) % respectively for mono- and co-culture). In brief, the gained results are 

best explained by the development of an equilibrium between adipocytes and de- or 

non-differentiated ASCs. In summary, it can be concluded, that the defined CoM is also 

suitable to maintain functional co-cultures of diffASCs and mvECs during a long-term 

period of at least four weeks. 

Vasculogenic and angiogenic processes in WAT are known to strongly rely on the 

presence of a supportive cell type. Equally, the expansion of adipose tissue by the 

proliferation of progenitor cells or the enlargement of existing adipocytes by additional 

lipid accumulation depend on the crosstalk with ECs [55]. Adipogenesis and 

angiogenesis have to be considered as interconnected processes [148-150].  

Adipocytes and ASCs may both function to support the development, maturation and 

maintenance of vascular structures via soluble factors, like HGF, VEGF and TGF-β 

[132, 135, 181] and direct cell-cell contacts [135, 182]. Thereby the range and 

concentration level of released factors may slightly deviate between adipocytes and 
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ASCs [183]. In this study, a supporting effect of present (diff)ASCs on the cell-specific 

protein expression and functionality of mvECs was detected under defined conditions 

in indirect co-culture (chapter 6 [154]). Obviously, the defined conditions allowed for 

the signaling and mutual support of the different cell types through soluble factors. 

Furthermore, the setup of vascular structures was facilitated based on the presence of 

(diff)ASCs in direct co-culture. As this behavior was not detected in indirect conditions 

in either the SC or the defined attempt (chapter 6 [154]), it was concluded, that this 

effect is rather based on direct cell-cell contacts or the interaction with produced 

extracellular components than the communication via soluble factors. MvECs might 

have released PDGF-β for the purpose of perivascular cell recruitment in order to 

stabilize formed vascular structures [135, 167, 184, 185]. PDGF-β, locally immobilized 

to surrounding ECM components, might have facilitated mural cell attachment [167]. 

This is e. g. confirmed by the results of Merfeld-Clauss and his coworkers, who 

detected enhanced expression of α-smooth muscle actin, a characteristic protein of 

perivascular cells like pericytes and smooth muscle cells, in ASCs following co-culture 

with ECs [184, 186]. More evidence is delivered by Rohringer et al., who reported on 

the expression of neuron glial antigen 2 (NG2) by ASCs after direct contact to ECs 

[135]. As ASCs have been cultured for more than 14 days prior to the addition of 

mvECs, they most likely formed an interstitial network consisting of ECM components, 

like laminin, fibronectin or collagen type IV [124, 187]. Angiogenic processes are 

facilitated through the presence of such ECM components [188-190]. The availability 

of compatible binding sites for cell attachment and sequences for the degradation 

through matrix metalloproteinases most likely contributed to the enhanced 

development and maintenance of vascular-like structures substantially. In short, a 

defined adipocyte/EC co-culture medium was developed for the first time, which 

supports the maintenance and maturation of functional adipocytes and mvECs. 

Additionally, the defined system represents an appropriate platform to facilitate 

adipocyte/EC crosstalk, which is the most important prerequisite in the setup of 

physiological vascularized adipose tissue constructs in vitro.  

Altogether the specific composition of the defined CoM allowed for functional co-culture 

of mvECs and (diff)ASCs including the formation of vasculuar-like structures and the 

long-term maintenance of the adipogenic and endothelial structures which confirms 

H3. 
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8.3. Bacterial cellulose for the defined setup of vascular adipose tissue 

Next to a suitable cell source and the adjustment of the biochemical surrounding via 

the media composition, scaffolds play an important role in the setup of TE products, as 

they may provide varying mechanical properties and geometries and may thereby 

influence cellular behavior substantially [191]. It was shown before that adipogenic 

differentiation is favored by soft biomaterials [103, 104]. The underlying mechanism 

was attributed to reduced cell spreading on soft materials, leading to low cell tension 

and thereby to the blockage of the Rho/ROCK pathway and connected the Wnt/β-

catenin signaling pathway [192]. Equally, the enhanced formation of vascular 

structures on soft materials was confirmed [108]. 

Regardless, adipogenic differentiation was also successfully performed on relatively 

stiff materials like polyethersulfone [107] or TCPS [174]. Natural materials like collagen 

type I or gelatin possess the advantage of included binding sites for the cells. Bacterial 

cellulose is a natural biopolymer e. g. synthesized by gluconacetobacter xylinus. With 

99 % water it possesses characteristics of a hydrogel. Its modulus was detected at 

0.33 mPa [193]. Thereby the material shows higher stiffness compared to native 

subcutaneous adipose tissue [103]. Anyway, the material was reported to transfer cells 

into a quiescent state, thereby supporting their specific characteristics and 

functionalities [115]. Aiming for the long-term culture of developed vascularized 

adipose tissue constructs, such an influence could bring substantial benefits in the 

physiological maintenance of adipocytes and ECs. Especially when SF defined culture 

conditions are sought, reduced cell adherence, impaired differentiation and loss of cell-

specific features are an issue, due to the absence of potential non-identified serum 

components [141]. 

In this trial, the influence of CBM on the defined culture of mvECs was to be 

investigated in order to categorize the material with regard to its suitability for the use 

in vascularized adipose TE. In the present work, both, CBM and TCPS facilitated the 

maintenance of EC characteristics like the expression of CD31 and the capability to 

take up acLDL [155]. It was nevertheless remarkable, that mvECs formed vascular-like 

structures on CBM in the absence of any supporting cell type at all. The structures 

were still present on day 28 of the defined culture attempt. This effect was hardly 

detected at all on TCPS. Again, the softer material properties might be held responsible 

for this effect [108]. On the other hand, an enhanced matrix formation of mvECs in 

consequence to the quietening effect of CBM is feasible [194]. The built ECM 
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components might have supported angiogenic processes and the maintenance of 

generated structures.  
An enhancing effect of nanocellulose on lipid accumulation and adipogenic gene 

expression was detected before for adipocytes in a 3D setup [114]. Next to the 

material’s effect on vascularization, the influence of CBM on the adipogenic 

differentiation of ASCs and the maintenance of functional adipocyte features was to be 

evaluated in this study. In preliminary experiments addressing ASC long-term culture, 

CBM but not TCPS facilitated the sustainable culture of an intact cell sheet without the 

detachment of the culture surface even after 42 days of ASC expansion (Figure 7). 

By addressing the differentiation and maintenance of adipocytes under defined 

conditions, we achieved considerable adipogenic development (chapter 4 [151]). 

Despite this, a slight deceleration in lipid accumulation was received and differentiated 

adipocytes exhibited a minor reduced maturation level. Based on the gained results, 

CBM positively influenced the defined adipogenic differentiation compared to TCPS, 

visible through a markedly enhanced leptin release and the intensified expression of 

perilipin A. As the molecular basis of cellulose does not indicate the potential of a 

biochemically induced enhancement of adipogenic differentiation, it was concluded, 

that cell density and the orientation of ASCs in the environment with reduced cell 

tension were responsible for this supportive effect, as it was described before in other 

attempts [195, 196]. The supporting effect of CBM however was somehow 

compensated in the consecutive maintenance phase by TCPS. It is likely that CBM, 

Figure 7: ASCs maintained on CBM or TCPS till day 42 post-confluence. Phase contrast 
images of ASC cultures in SF and XF MSC growth medium for up to 42 days on either CBM or 
TCPS, scale bar: 200 µm, n=3. 
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despite its supporting effect on adipogenic differentiation, did not especially favor the 

maintenance of diffASCs over TCPS. Furthermore, (diff)ASCs might have secreted 

and integrated ECM components in their environment in both attempts equally, 

covering the effect of CBM through the additional supportive layer with adipose tissue 

specific properties [124]. This would equally explain the comparable extent of vascular-

like structure formation, found in the co-culture attempts on either CBM or TCPS in 

contrast to the results in the mono-culture attempt, which clearly indicated a beneficial 

effect of CBM. Concluding, H4 is considered to be approved concerning a supporting 

effect on defined adipogenic differentiation and defined mvEC maintenance. However, 

an additional promotion of adipocyte maintenance and adipocyte/EC co-culture was 

not detectable in this study. 

 

8.4. 3D setup of adipose tissue 

The native microenvironment of adipose tissue has to be modeled at the best to 

facilitate a physiological response of the cellular components [197, 198]. Next to the 

provision of essential factors, the presence of associated cell types and a tissue-

specific matrix, the orientation of cells plays a fundamental role. The later mentioned 

is substantially affected by the 2D or 3D environment, the cells are exposed to [199, 

200]. Additionally, the 3D setup is the prerequisite for the generation of tissue models 

and substitutes of relevant size. In this trial, the in vitro system based on human 

diffASCs was transferred to a 3D setup to further adjust the microenvironment to native 

conditions. As shown in the preceding chapters 5 [87], 6 [154] and 7 [155], mvECs 

were integrated into the system with regard to the sought vascularization of the model. 

For the evaluation of in vitro models suitability to represent and replace native WAT, 

the models were compared to native subcutaneous WAT.  

After the integration of human primary ASCs in collagen type I hydrogels and their 

differentiation for 14 days, 3D models were either indirectly co-cultured with human 

primary mvECs seeded in 2D in a SC medium or mono-cultured in a SC adipocyte 

medium as described in chapter 5 [87]. The co-culture was continued for seven days 

until day 21 after the 3D arrangement of diffASCs. Co-cultured mvECs thereby equally 

built and maintained a dense monolayer and cell sheet integrity as shown in Figure 8. 
Furthermore, they kept their ability to take up acLDL. Encapsulated ASCs were viable 

after the differentiation process on day 1 and after the co- and mono-culture phase on 
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day 7 and expressed perilipin A (Figure 9). Lipid vacuoles did not reach the diameters 

as found in native adipose tissue, however an increase of their volume was received 

between day 1 and 7 mainly in the co-culture attempt. The ratio of cells to matrix 

volume was lower in the in vitro models compared to native adipose tissue.  

To be able to further compare engineered adipose tissue co-culture attempts to native 

adipose tissue, gene expression levels of different genes associated to adipogenic 

differentiation, FA metabolism, adipocyte functionality and angiogenesis were 

FDA/Hoechst33342 Perilipin A 

Figure 9: DiffASCs in 3D collagen type I gels after seven days in 
mono- and co-culture with mvECs. Left: live/Hoechst 33342 staining of 
diffASCs on day 1 and 7 with viable cells stained with fluorescein 
diacetate in green and cell nuclei stained with Hoechst33342 in blue. 
Right: perilipin A/DAPI immunofluorescence staining of diffASCs on day 1 
and 7 in mono- and co-culture and native human subcutaneous adipose 
tissue, with perilipin A in green and cell nuclei stained with DAPI in blue, 
scale bar 200 µm, n=3. 

Figure 8: MvECs after seven days in 
mono- and co-culture with diffASCs in 3D 
collagen type I gels. CD31/DAPI 
immunofluorescence staining: CD31 shown 
in red and cell nuclei stained with DAPI in 
blue, acLDL assay: with accumulated acLDL 
in green and cell nuclei stained with Hoechst 
33342 and displayed in blue, scale bar 
200 µm, n=3. 
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analyzed via the available mRNA levels with a Taqman Low Density Array and 

compared to the levels found in native adipose tissue. 

While levels of adipogenic differentiation and FA metabolism were found to be 

consistent with the physiological state in vivo in most cases, genes associated to 

adipocyte functionality and angiogenesis were found to deviate occasionally (Figure 
10). As seen in the first part of Figure 10, genes involved in adipogenesis, like CEBP-α, 

PPAR-γ, CEBP-β and -δ or IRS-1 and angiotensinogen (AGT) [201, 202] are especially 

increased in the mono-culture attempts, while inhibiting genes, like TGF-β2 [203] were 

tendentially elevated in co-culture. Taken together, these results indicate an increased 

level of adipogenic differentiation in the absence of mvECs. As co-cultures however 

exhibit a noticeably increased level of leptin it is to be assumed, that adipogenic 

Figure 10: Gene expression analysis of diffASCs in 3D collagen type I gels after seven days 
in mono- and co-culture with mvECs. Gene expression was analyzed for genes associated to 
adipogenic differentiation, fatty acid metabolism, adipocyte functionality and angiogenesis based on 
the available mRNA and compared to native subcutaneous adipose tissue for diffASCs in mono-
culture and in co-culture with mvECs after seven days in a 3D microenvironment. Expression of genes 
was referred to the level of human adipose tissue (=1). Green areas indicate an expression level in 
between 50 % and 150 % compared to human adipose tissue respectively, *p < 0,05, n=3. 
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differentiation was pushed in an earlier stage and the displayed snapshot on day 7 of 

co-culture already shows a state of beginning deregulation, probably initiated by 

mvECs. Until day 7, mvECs proliferated and formed a confluent monolayer, which 

shares characteristics of a vascular network in terms of cell-cell contacts. Presumably, 

mvECs released signals to promote the attraction of mural cells and thereby inhibited 

further adipogenic differentiation [167, 182]. AdipoQ is an indicator of low lipid stores 

and thereby considered as a promoter of glucose uptake and adipogenic differentiation 

[2, 33]. As it is expressed contrary to leptin in mono- and co-cultures, this hypothesis 

is supported. The upregulation of the negative regulator of adipogenesis DLK-1 is 

attributed to the immature state of diffASCs [204]. Its general upregulation indicates an 

immature state in all attempts independent of the presence of ECs.  

When looking at genes responsible for FA metabolism, the stated effect of reduced 

adipogenic differentiation by mvECs is confirmed as all of the associated genes are 

expressed to a higher extent in the mono- compared to the co-culture trials. The 

reduced expression might again be induced by mvECs in a deregulation of adipogenic 

differentiation towards a homeostatic state of the setting. SREBP-1 is the master 

regulator of FA metabolism. ACLY and FAS participate in the generation of FAs [26, 

27]. FABP-4, LPL and FATP-1 and -4 play an important role in the uptake of FAs from 

the surrounding [28-30]. GLUT-4 facilitates glucose uptake from the extracellular space 

[205]. It is remarkable that genes, responsible for the de novo synthesis of FAs like 

GLUT-4, are rather expressed compared to those addressing the uptake of FAs like 

LPL. Apparently, de novo lipogenesis is the preferred metabolic process in lipid 

accumulation taking place in diffASCs in mono- and co-culture in this event.  

Next to adipoQ and leptin, adipsin, visfatin, resistin and TNF-α were classified as 

indicators of adipocyte functionality. Adipsin is responsible for the suppression of 

infectious agents in the innate immune system [206], TNF-α and resistin are equally 

linked to inflammatory processes [12, 207]. The low expression of these genes might 

be led back to the simplified and sterile environment generated in vitro. Additionally, 

the absence of other tissue cell types like macrophages, which play an essential role 

in processes within the generation of an immune response, may be responsible for this 

condition. The elevated levels of visfatin may be attributed to facilitated glucose uptake 

and the adipocyte-mediated initiation of vessel maturation [208]. Both processes are 

in accordance to the actual state of the in vitro setup, in which adipose tissue 

functionalities are still developing. 
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Within angiogenic factors, Ang II is known to facilitate the loosening of mural cell/EC 

contacts and the promotion of proliferation and migration of cells in the presence of 

VEGF-A, while Ang I in contrary supports vessel maturation via mural cell attachment 

[167, 209]. DiffASCs in co-culture presumably receive paracrine signals from mvECs 

and are thereby informed about their presence. Consequently, they might try to attract 

them to non-vascularized tissue areas through the release of factors with a 

reconstructive function, like Ang II or VEGF-A. Conclusively, VEGF-D, which is 

connected to EC proliferation, is increased in the mono-culture attempt, where 

paracrine signaling from mvECs is not available [210]. The intense upregulation of 

PAI-1, for which only a few functions are known apart from the support of angiogenesis 

[211], is striking. It might be linked to the high available concentration of insulin in vitro 

in all attempts [212], or the hypoxic state of diffASCs located in internal areas of the 

3D constructs. 

This attempt represents a first time comparison of an in vitro engineered 3D adipose 

tissue model based on diffASCs and mvECs with native human WAT. In short, the 

adipose tissue model exhibits high viability and shares many features and 

functionalities with native adipose tissue. Deviating expressed genes are mostly 

attributed to the immature state of the diffASCs after three weeks of in vitro culture. 

Other differences like in the expression of genes associated to adipose tissue 

functionalities are presumably owed to the absence of other cell types or the organoid 

network in contrast to the in vivo situation. Future attempts should address the 

adjustment of the underlying reasons of the elucidated divergences, like the addition 

of other cell types and the setup of direct co-cultures with refined cell ratios, to optimize 

the system to a more reliable model of human adipose tissue in vivo. Concluding, H5 

is only partially applicable. DiffASCs represent native adipose tissue well in vitro in 

terms of differentiation and FA metabolism and partly within the interaction in 

angiogenic processes. Nonetheless, the hypothesis cannot be verified completely until 

further adjustments like the inclusion of additional cell types, dynamic culture 

conditions and an elongation of the culture period are implemented to further optimize 

adipocyte functionality and physiological cell-cell interaction.
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9. Conclusion 

The use of serum as cell culture supplement is associated to potential contaminations 

and the cover up of the cellular response in vitro. However, inadequate 

supplementation results in dedifferentiation, loss of cell integrity and apoptosis. In this 

thesis, the SF generation and maintenance of adipocytes was aimed. By the addition 

of cell-specific factors, a completely defined adipogenic differentiation medium was 

developed, which facilitated the differentiation of functional and characteristic 

adipocytes based on human primary ASCs. Additionally, another supplementation 

allowed for the sustainable maintenance of the generated adipocytes through a long-

term culture period of up to 56 days in total.  

To be able to engineer physiological and sustainable adipose tissue constructs of 

relevant size, a vascular component has to be integrated into the system. With regard 

to the addition of a natural vascular system to adipose tissue models, the functional 

co-culture of adipocytes and ECs is an important prerequisite. In this study, the 

composition of a suitable co-culture medium for human primary mvECs and diffASCs 

was sought. By the optimization of a medium based on adipocyte- and EC-specific 

factors, with particular regard to the controversially discussed factors EGF and HC, an 

improved co-culture medium was developed. The medium adequately supported the 

maturation and maintenance of diffASCs in co-culture without affecting mvEC 

behavior. 

For the defined setup of vascularized adipose tissue constructs, the development of a 

defined co-culture medium for adipocytes and mvECs represented a subsequent 

objective of this thesis. Based on the gained experience from the defined adipogenic 

differentiation and the adjustment of the SC co-culture medium, a SF and defined 

co-culture medium was developed for adipocytes and mvECs. The medium supported 

functional adipocyte and mvECs maintenance. Further, the medium facilitated the 

formation of interconnected vascular-like structures in the direct co-culture setup of 

adipocytes and mvECs. The structures were maintained for up to 28 days. 

It is known, that physiological response of primary adipocytes and ECs strongly relies 

on their structural environment. Another focus of this study was the examination of the 

influence of a novel CBM on the setup of vascularized adipose tissue under defined 

conditions. An accelerating effect of CBM on the lipid accumulation during defined 

adipogenic differentiation was detected. Moreover, CBM led to the formation and 
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stabilization of vascular-like structures by mvECs in the absence of another supportive 

cell type. CBM additionally facilitated the defined direct co-culture of mvECs and 

diffASCs for 14 days including the formation and maintenance of vascular structures 

comparably to TCPS. 

To further adjust the in vitro environment to native conditions and receive substitutes 

of relevant size, TE attempts have to be transferred to a 3D setup. In a last step, the 

establishment of a 3D adipose tissue model in co-culture with mvECs was addressed. 

The model’s features, functionalities and gene expression profiles were compared to 

native adipose tissue to allow a classification of its imitative power. A functional and 

characteristic 3D adipose tissue model was established. The engineered models 

altogether showed natural expression levels of adipocyte genes. A partly deviating 

expression of differentiation and functionality genes was mainly ascribed to the 

immature state of diffASCs and the isolated and artificial in vitro culture setup. 

This thesis provides a tool set for the defined setup of vascularized adipose tissue 

constructs based on human primary ASCs and human primary mvECs. The results 

gained through the adjustments in the structural surrounding by matrix and cell 

orientation may be used to further optimize in vitro adipose tissue constructs. With the 

developed defined media the entry of corresponding products into the clinical 

application as implant and the in vitro application as predictive instrument can be 

accelerated considerably. Furthermore, the experiences gained on the development of 

defined media in this study may be transferred and adjusted to other tissues and 

applications to generally reduce the dependency on (animal-derived) sera in cell 

culture. 
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10. Outlook 

In this thesis, the defined development of functional adipocytes including the 

accumulation of lipids, the expression of perilipin A and the release of leptin and 

glycerol was performed successfully. Nonetheless, the level of differentiation of SC 

attempts was only achieved to 80 % for perilipin A expressing cells and about 50 % 

concerning the lipid accumulation. Further investigations have to search for additional, 

possibly so far unidentified factors, which support general and cell specific functions. 

Following, the set up systems have to be analyzed in comparison to SC attempts with 

regard to their reliability, robustness and predictive power. Finally, their validation as 

in vitro models has to prove their suitability to mimic native adipose tissue. 

The successful long-term culture of adipocytes and the co-culture with mvECs under 

defined conditions was shown within this thesis. To further increase the chance of 

adequate anastomosis of implants with the host tissue, this long-term culture period 

should be further elongated to at least three months. Therefore, a dynamic culture of 

the system with a circulating liquid component, transporting nutrients and waste 

products shows high potential. 

Through the 3D setup of adipose tissue models, tissue substitutes close to native 

tissue were engineered. The 3D arrangement under defined conditions promises to 

combine the advantages of both attempts and might underline its superior features. In 

future attempts, the procedure could further be transferred to an additive 

manufacturing process to allow its production with high throughput techniques.  

The beneficial influence of CBM on the defined adipogenic differentiation and 

vascularization under defined conditions were demonstrated in this trial. Thereby the 

suitability of CBM for the setup of vascularized adipose tissue was highlighted. The 

application of CBM in 3D setups would be highly desirable. Future attempts have to 

address the modification of CBM to facilitate its application in individual free-form 

attempts. Furthermore, CBM could be modified concerning its stiffness and binding 

sites, to resemble adipose tissue ECM more naturally. 

Substantial de novo vascularization was achieved in this thesis in mono- and co-culture 

attempts under defined conditions for the first time. With regard to the setup of enlarged 

tissue constructs, de novo vascularization might not be sufficient to supply all 

peripheral tissue areas adequately before cell death occurs, caused by nutrient 

deficiency. Therefore, the combination of de novo vascularization with predefined 

vascular geometries for the larger vessels are conceivable. This combined approach 
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would also allow for an appropriate connection to the dynamic flow of a bioreactor. 

Furthermore, the miniaturization of this dynamic system to a fat-on-a-chip model would 

allow scaling up the number of investigated variables in in vitro approaches. 

As a further adjustment to mimic native adipose tissue, additional cell types, like 

macrophages have to be integrated into the construct to be able to recreate tissue 

specific processes, like adipose tissue inflammation. 
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