
Simultaneous lotsizing and scheduling –
extensions and solution approaches

genehmigte Dissertation

zur Erlangung des akademischen Grades

eines Doctor oeconomiae (Dr. oec.)

der Universität Hohenheim

Fakultät Wirtschafts- und Sozialwissenschaften

Institut für Interorganizational Management & Performance

Fachgebiet Betriebswirtschaftslehre,

insbesondere Supply Chain Management

vorgelegt von:

Dipl.-Wirtsch.-Ing. Martin Wörbelauer

Stuttgart 2018



Betreuer: Prof. Dr. Herbert Meyr
Zweitgutachterin: Prof. Dr. Katja Schimmelpfeng
Dekan: Prof. Dr. Karsten Hadwich
Tag der Einreichung: 10.08.2017
Tag der Disputation: 06.12.2017

ii



Acknowledgments

The present PhD thesis was written during my time as a research assistant at the department of Sup-

ply Chain Management at the University of Hohenheim in Stuttgart. Many people have supported,

motivated and accompanied me throughout this process. I am very grateful to each of them.

First of all, I would like to communicate my deep thanks to Prof. Dr. Herbert Meyr for being my

PhD advisor. You always made time to discuss arising problems or to talk about the progress and the

next steps of my work. These conversations were always very helpful due to your broad knowledge

base, your experience and your analytical capability. Moreover, you always maintained a very pleasant

and open communication atmosphere. Thank you very much for this and for your continuous support.

I am also very grateful to Prof. Dr. Katja Schimmelpfeng for acting as co-referee of my thesis and

to Prof. Dr. Robert Jung for being the chairman of my PhD committee.

Special thanks go to my co-authors Dr. Karina Copil, Prof. Dr. Horst Tempelmeier and Prof. Dr.

Bernardo Almada-Lobo for the friendly and productive collaboration.

I would like to express my gratitude to my current and former colleagues at the department of Supply

Chain Management. I am especially grateful to Dr. Stephanie Eppler, Mirko Kiel, Stephan Fichtner

and Dr. Jaime Cano-Belman for their support, for the fruitful discussions about research projects, for

the pleasant non-scientific conversations and for the great atmosphere within our department.

There are many friends outside of the university from whom I also received support, sometimes by

having discussions about research topics, but mostly by helping me to find some occasional distance

from my work. I am sincerely grateful to all of you. Especially, I would like to thank Christine Rau for

backing me and for doing a lot of proofreading in the final phase of my PhD thesis. Finally, I am very

grateful to my family for always motivating me and for giving me confidence. Thank you very much

for being there.

Martin Wörbelauer

iii





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Goals and methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Simultaneous lotsizing and scheduling problems: a classification and review of models 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Classification scheme for simultaneous lotsizing and scheduling models . . . . . . . . 13

2.2.1 Generic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Classification scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 General lotsizing and scheduling problem (GLSP) . . . . . . . . . . . . . . . 24

2.3.2 Capacitated lotsizing problem with sequence-dependent setups (CLSD) . . . . 30

2.3.3 Proportional lotsizing and scheduling problem (PLSP) . . . . . . . . . . . . . 36

2.3.4 Continuous setup lotsizing problem (CSLP) . . . . . . . . . . . . . . . . . . . 39

2.3.5 Discrete lotsizing and scheduling problem (DLSP) . . . . . . . . . . . . . . . 42

2.3.6 Other models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4.1 Attributes and characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4.2 Further extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4.3 Practical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4.4 Solution approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 Simultaneous lotsizing and scheduling considering secondary resources 73
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2.1 Disjunctive resources without substitutes . . . . . . . . . . . . . . . . . . . . 75

3.2.2 Disjunctive resources with substitutes . . . . . . . . . . . . . . . . . . . . . . 78

3.2.3 Cumulative resources without substitutes . . . . . . . . . . . . . . . . . . . . 78

3.2.4 Classification scheme and discussion . . . . . . . . . . . . . . . . . . . . . . 80

v



Contents

3.3 Basic model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4 Extension for secondary resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.4.1 Disjunctive resources without substitutes . . . . . . . . . . . . . . . . . . . . 90

3.4.2 Disjunctive resources with substitutes . . . . . . . . . . . . . . . . . . . . . . 92

3.4.3 Cumulative resources without substitutes . . . . . . . . . . . . . . . . . . . . 94

3.4.4 Cumulative resources with substitutes . . . . . . . . . . . . . . . . . . . . . . 95

3.5 Considering additional features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.5.1 Split of setups into dismounting, cleaning and mounting . . . . . . . . . . . . 97

3.5.2 S-p-c model for disjunctive substitutes and splitting of setups . . . . . . . . . . 100

3.5.3 Capacity restriction of disjunctive resources . . . . . . . . . . . . . . . . . . . 101

3.5.4 Capacity restriction of cumulative resources for a continuously provided resource102

3.5.5 Inventory balancing of cumulative resources . . . . . . . . . . . . . . . . . . . 102

3.5.6 No substitution of cumulative resources during a production lot . . . . . . . . 103

3.5.7 All lines must consume the same resource . . . . . . . . . . . . . . . . . . . . 103

3.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.6.1 Disjunctive resources without substitutes . . . . . . . . . . . . . . . . . . . . 104

3.6.2 Disjunctive resources with substitutes . . . . . . . . . . . . . . . . . . . . . . 105

3.6.3 Cumulative resources with substitutes . . . . . . . . . . . . . . . . . . . . . . 106

3.6.4 A combination of different types of resources . . . . . . . . . . . . . . . . . . 107

3.6.5 A scenario requiring continuous setups . . . . . . . . . . . . . . . . . . . . . 108

3.7 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4 Decomposing large-scaled simultaneous lotsizing and scheduling problems using product
aggregation 113
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.3 GLSPPL model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.4 Solution approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.4.1 Framework of the heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.4.2 Determining parameters of setup families . . . . . . . . . . . . . . . . . . . . 121

4.4.3 Assigning products to setup families . . . . . . . . . . . . . . . . . . . . . . . 127

4.4.3.1 Basic assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.4.3.2 Cluster-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.4.3.3 Cluster-R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.4.4 Disaggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.4.5 Iterative solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.5 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.5.1 Basic settings of the test environment . . . . . . . . . . . . . . . . . . . . . . 142

4.5.2 Test instances and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

vi



Contents

4.6 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5 Summary and outlook 155
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

vii





1 Introduction

The present thesis examines simultaneous lotsizing and scheduling models. These models are used to

determine cost-minimal production plans to fulfill a dynamic demand of several products (see, e.g.,

Drexl and Kimms 1997). The subsequent section describes the detailed planning problem of these

models and explains in general why planning is worthwhile for a company and in which cases simulta-

neous lotsizing and scheduling models are appropriate. Additionally, the main motivations of this thesis

will be described. These main motivations are to overcome shortcomings concerning the mapping of

practical applications by simultaneous lotsizing and scheduling models and to overcome shortcomings

of the solution methods applied to solve such models. Section 1.2 formulates the research goals of

the thesis and explains in which way these goals will be reached. Finally, Section 1.3 describes the

detailed organization of the thesis.

1.1 Motivation

Planning is very important for every organization wanting to generate profits by selling physical prod-

ucts or services. For example, in the case of a manufacturer who disregards planning, it might happen

that necessary production materials are missing because they have not been ordered early enough. As

another example, consider a manufacturer having committed a customer order but being unable to meet

the desired quantities on time since not enough production capacities have been reserved. In detail,

planning is the process of decision preparation. I.e., alternatives must be identified and an appropriate

or even optimal option should be chosen afterwards. (see Fleischmann et al. 2015, p. 71)

Lotsizing is a common planning problem of a manufacturer. A lotsize is defined as the number of

products produced on a machine at once. A basic lotsizing model is the economic order quantity model

of Harris (1913) which considers a single product having a constant demand rate and being produced on

a single machine. The goal of the model is finding a lotsize which minimizes the total costs. Normally,

a setup operation is necessary to prepare the machine and enable the start of the production of a lot.

Each setup operation causes setup costs. Therefore, large lotsizes would be preferable to avoid a high

number of setups. In contrast, large lotsizes will lead to high holding costs for storing the products

until they are used to fulfill the demand. I.e., the total costs, which should be minimized, consist of the

sum of setup and holding costs.

Often, the above described model does not map all characteristics which may arise in a lotsizing

scenario of a practical application. One category of models counteracting this shortcoming is named

simultaneous lotsizing and scheduling models. Such models consider a limited number of production
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1 Introduction

stages. Each stage may consist of several heterogeneous parallel (production) lines1. A limited horizon

is planned and divided into several periods, each having a fixed production capacity. A deterministic

given demand for multiple products may differ from period to period and must be fulfilled without

backlogging. Like in the economic order quantity model, holding costs and setup costs are consid-

ered. Moreover, the setup costs might be sequence-dependent, i.e., they might be different depending

on the previously produced product. Therefore, the sequence of the different lots must be planned as

well. Most of the models incorporate sequence-dependent setup times which define the consumption

of production capacities to prepare a line for the production of a lot. Since there is a strong interde-

pendency between the sequence of the products and the remaining production capacity, lotsizing and

scheduling must be planned simultaneously. Quite often, the models incorporate line-dependent and

product-dependent production costs and production speeds. Additionally, some models respect mini-

mum lotsizes. Typically, simultaneous lotsizing and scheduling models are formulated as mixed integer

programs consisting of an objective function and multiple constraints. (see, e.g., Meyr 1999, Chapter 3)

The following paragraphs classify simultaneous lotsizing and scheduling in a framework of planning

tasks arising in an organization. However, an organization cannot be considered as a stand-alone entity.

Typically, it is connected to other organizations forming a supply chain. A supply chain defines a

“...network of organizations that are involved, through upstream and downstream linkages,

in the different processes and activities that produce value in the form of products and

services in the hands of the ultimate consumer” (Christopher 2005, p. 17).

For example, a supply chain may consist of several suppliers which deliver pre-products to a manu-

facturer who then produces final products. Afterwards, a third-party logistics provider transports the

products to the final customers. If the supply chain members are legally separated, this constellation is

called inter-organizational supply chain. In a large company, the different supply chain members may

merely be different departments of the same company. In this case, it is named intra-organizational

supply chain. (see Stadtler 2015, pp. 3-4)

The task of organizing and planning all processes in a supply chain is called supply chain planning.

Figure 1.1 provides a general overview of the planning tasks arising in a supply chain. (see Fleischmann

et al. 2015, pp. 76-82)

As one can see in Figure 1.1, planning tasks of a supply chain are structured by the main supply

chain processes procurement, production, distribution and sales. Additionally, the planning tasks are

classified by the length of the considered planning horizon. A typical long-term planning horizon

comprises several years. Thus, planning on an aggregated level is essential in order to get a manageable

problem size. For example, it is a common approach to define a time grid based on years or months

instead of weeks or days. Due to the long-term impact of decisions of this planning level, they are

called strategic decisions. An example of a long-term planning task is the definition of plant locations.

1A line may consist of one or several machines. In the case of several machines, the sequence of the machines must be

identical for all products (flow line system). (see, e.g., Günther and Tempelmeier 2016, pp. 13-14)
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1.1 Motivation

Figure 1.1: Supply chain planning matrix (see Rohde et al. 2000 or for the presented English version

Fleischmann et al. 2015, p. 77)

Mid-term planning is more detailed than long-term planning and comprises a planning horizon of

between half a year and two years. Often, this level of planning is named tactical planning. One main

intention of mid-term planning is to define a rough plan of the material flows. This is very useful, e.g.,

in the case of long purchasing lead times of pre-products making it necessary to initiate orders several

months in advance. Sometimes, simultaneous lotsizing and scheduling is applied to define aggregated

production plans for product groups on the mid-term planning level (see Meyr and Mann 2013, p. 729).

Finally, the planning horizon of short-term planning ranges from a few days up to three months. It is

the most detailed planning level and comprises, e.g., the short-term transportation planning. Moreover,

simultaneous lotsizing and scheduling is classified in the section of short-term production planning.

Short-term planning is also called operational planning.

As one can see in the supply chain planning matrix, horizontal information flows occur between the

planning tasks of the different supply chain processes and vertical information flows occur between the

different planning levels. Software, named Advanced Planning Systems, is used to support the supply

chain planning. One aspect of Advanced Planning Systems is to find an optimal or at least very good

plan instead of solely finding a feasible plan. Often, the quality of a plan is defined by its costs arising

during execution. This is also the case for simultaneous lotsizing and scheduling (see, e.g., Meyr 1999,

Chapter 3).

Typically, Advanced Planning Systems use the concept of hierarchical production planning (see Hax

and Meal 1975). Hierarchical production planning supports the decision making, especially in the case

of high interdependencies between the different planning decisions. On the one hand, hierarchical pro-

3



1 Introduction

duction planning is necessary since successive planning cannot incorporate all dependencies between

the different planning decisions. On the other hand, it is impossible to simultaneously perform all

planning tasks in one model due to too long computation times (additional reasons can, e.g., be found

in Meal 1984). Like in a successive planning, hierarchical planning decomposes the overall planning

task into several modules. Decisions on a higher planning level, i.e., concerning a longer planning

horizon, define the framework of decisions on lower planning levels which concern shorter planning

horizons. Moreover, hierarchical planning systems regularly comprise feedback systems from lower

planning levels to higher planning levels (for different organizations of hierarchical planning systems

see Schneeweiß 2003). All in all, one can see that the concept of hierarchical planning is directly

incorporated in the supply chain planning matrix. (see Fleischmann et al. 2015, Chapter 4, which also

provides a deeper explanation of the supply chain planning matrix)

After explaining the relevance of planning and classifying simultaneous lotsizing and scheduling

using the supply chain planning matrix in the paragraphs before, the motivation to the content of

this thesis will be described in more detail. Since the last review especially focusing on simultaneous

lotsizing and scheduling has been published many years ago (Drexl and Kimms 1997), it seems reason-

able to do a comprehensive literature research and analyze the results. Using a detailed classification

scheme known from Meyr (1999), a structured comparison of the different model formulations should

be enabled. Additionally, the classification scheme helps to describe the development of this research

field and to identify current research gaps and trends. One result of this review is that some models

do not only consider production lines as limited (primary) resources, but also consider so-called sec-

ondary resources. However, this topic is not treated to the full extend so far, as will be explained in the

following.

One example of a secondary resource is a setup operator (see, e.g., Tempelmeier and Buschkühl

2008) who is responsible for the setups on multiple lines. Typically, a setup operator can only set up

one line at the same time. Thus, if the setup operator is neglected during planning, it could happen

that the resulting plan schedules two setups at the same time and therefore cannot be implemented.

Raw material defines another secondary resource which is necessary for production (see, e.g., Göthe-

Lundgren et al. 2002). If the raw material is neglected during planning, it might happen that a plan

cannot be realized since the material is missing. Obviously, the incorporation of secondary resources

is very important. However, the existing models are very specialized and in most cases only consider

one kind of secondary resources (e.g., setup operators or raw materials). Hence, it will be very difficult

for a company to find an existing model which fits exactly their production scenario. Thus, there is a

need for a general model which provides a wide applicability.

Another aspect is the performance of solution methods used to solve simultaneous lotsizing and

scheduling models. A company will only use such models if production plans can be built in a reason-

able amount of time. Additionally, a created plan must have a high solution quality, i.e., the resulting

total costs (sum of holding, setup and production costs) must be low. However, practical applications

often comprise several lines and many products have to be planned simultaneously due to high interde-

pendencies. Current solution approaches still show high computation times for large-scaled problems

4



1.2 Goals and methodology

(see, e.g., Meyr and Mann 2013). Thus, a further aspect of research in this thesis is to develop a

solution method which performs better.

In the following section, the detailed research goals of this thesis and the basic methodologies to

reach these goals will be described.

1.2 Goals and methodology

As already addressed in Section 1.1, different types of secondary resources exist and most models

focus only on one type of secondary resources. Therefore, the goal is to formulate a general model

which is capable of mapping all types of secondary resources. Moreover, it should be possible to

“deactivate” unnecessary variables and constraints to decrease the problem complexity. The literature

review mentioned in Section 1.1 identifies all simultaneous lotsizing and scheduling models which con-

sider secondary resources. However, a more detailed analysis of the considered secondary resources

is necessary to identify which types of secondary resources exist and how they can be differentiated.

Additionally, it is worthwhile to think about further types or characteristics of secondary resources

which should be included in the model. The final step is to choose a basic simultaneous lotsizing and

scheduling model and extend it in a way that it becomes capable of mapping all types of secondary

resources.

Especially in the case of large-scaled problems which simultaneously consider multiple lines, current

solution methods still have optimization potential (see Section 1.1). Thus, the goal is to develop a so-

lution approach which performs significantly better. This will enable a wider applicability in practical

applications. One promising approach performing better compared to former heuristics is presented in

Meyr and Mann (2013). The idea is to decompose the multi-line problem into independent single-line

problems. Since the resulting problems are less complex and well-performing heuristics for single-line

problems exist, they can be solved in very short time. Afterwards, the solution of the original problem

can be formed. Meyr and Mann (2013) decompose the multi-line problem as follows: the time grid

of the original model is aggregated, i.e., the number of periods is reduced. Afterwards, the aggregated

problem is solved and the resulting schedule is used to define line-dependent demands for all products.

Since this heuristic performs well but raises long computation times for problems with many products,

it seems worthwhile to try the following adaption: instead of doing a time aggregation, products are

aggregated to so-called setup families. The approach of considering a problem on different aggregation

levels and using the solution of a higher aggregation level as framework for the problem description

on a lower level is also the basis of hierarchical production planning. In the solution heuristic of this

thesis, a so-called formal constructional hierarchy (see Schneeweiß 2003, Chapter 3) is used. I.e., the

hierarchy is only introduced to support the mathematical solving process and symmetric information

exists (for more details see Schneeweiß 2003).
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1 Introduction

1.3 Outline of the thesis

The detailed agenda of the present thesis is organized as follows. Chapter 2 provides a structured

literature review which has already been published in the journal OR Spectrum (Copil et al. 2017).

After an introduction, a generic model formulation of the general lotsizing and scheduling problem

(GLSP) is explained. This model, firstly presented by Meyr (1999, Chapter 4), generalizes other

models for simultaneous lotsizing and scheduling. These other models are the discrete lotsizing and

scheduling problem (DLSP) by Fleischmann (1990), the continuous setup lotsizing problem (CSLP)

by Karmarkar and Schrage (1985), the proportional lotsizing and scheduling problem (PLSP) by Drexl

and Haase (1995) and the capacitated lotsizing problem with sequence-dependent setups (CLSD) by

Haase (1996). Additionally, a classification scheme (see Meyr 1999) to analyze simultaneous lotsizing

and scheduling models is explained. Section 2.3 is separated into six subsections. Each subsection is

devoted to one of the basic model formulations GLSP, CLSD, PLSP, CSLP and DLSP. The last sub-

section comprises model formulations which cannot be explicitly assigned to one of the former basic

models. In each subsection, the main features of the identified models of the literature are described.

An overview table analyzing all described models using the classification scheme known from Section

2.2 closes each subsection. Additionally, a short discussion of each table is added. Section 2.4 analyzes

and summarizes the results of the literature review. It is structured into four subsections, each focusing

on a special aspect. The first subsection discusses the occurrence of different model characteristics

(e.g., whether or not setup times are considered). The next subsection focuses on the occurrence of fur-

ther model extensions like secondary resources or perishability of products. Subsection 2.4.3 discusses

for which practical applications the models have been developed. Finally, the last subsection identifies

trends in the developed solution approaches. Section 2.5 summarizes the results of the literature review

and provides an outlook on future research topics.

Chapter 3 comprises a working paper titled “Simultaneous lotsizing and scheduling considering sec-

ondary resources”. This paper has been written by Martin Wörbelauer, Herbert Meyr2 and Bernardo

Almada-Lobo3. The paper has been submitted to OR Spectrum and the review is still in process.

A short introduction describes the importance of incorporating secondary resources. Additionally, it

points out the necessity of a general formulation which assures a wide applicability. The following

section is devoted to a literature review specialized in simultaneous lotsizing and scheduling models

considering secondary resources. Compared to the literature review of Chapter 2 it explains in detail

which secondary resources are considered and how they are modeled. Therefore, it is structured by

three identified types of secondary resources. Finally, a newly developed classification scheme is pre-

sented and used to classify the different models in a more detailed way. The result is used to formulate

the requirements of a general model considering secondary resources. Section 3.3 presents the basic

model formulation which is an adaption of the general lotsizing and scheduling model for parallel pro-

duction lines (GLSPPL) of Meyr (2002) and Meyr and Mann (2013). The following section introduces

2Department of Supply Chain Management, University of Hohenheim, Stuttgart, Germany.
3INESC-TEC, Faculdade de Engenharia, Universidade do Porto, Portugal.
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1.3 Outline of the thesis

all model extensions necessary to represent all types of secondary resources. Section 3.5 adds addi-

tional features to the model. For example, the setup operation is divided into a dismounting, cleaning

and mounting operation, allowing to represent the resource use in a more detailed way. Numerical ex-

amples demonstrate the wide applicability and show the functionalities of the general model (Section

3.6). Finally, Section 3.7 provides a summary and an outlook.

Chapter 4 proposes a new solution heuristic for large-scaled simultaneous lotsizing and scheduling

problems. Section 4.1 provides an introduction explaining the basic concept of the heuristic. Addition-

ally, it briefly motivates why the GLSPPL is chosen as the model to be solved. The subsequent section

comprises a short literature review which is focused on models using setup families and focused on

GLSP formulations and associated solution approaches. Section 4.3 describes the model formulation of

the GLSPPL. Afterwards, Section 4.4 presents the solution approach in detail. It is structured into sev-

eral subsections. The first subsection describes the detailed framework of the heuristic. Subsequently,

it is described how parameters (e.g., setup times) of setup families can be determined. Subsection 4.4.3

explains the way of assigning products to setup families. For this purpose, two new algorithms are

presented. The first one defines setup families mainly based on setup characteristics, the second one

mainly assigns products to setup families randomly. Subsection 4.4.4 describes how the solution of the

aggregated problem can be disaggregated to form independent single-line problems. Finally, Section

4.4.5 presents an iterative process which should be applied if an iteration of the heuristic does not find

a solution which completely fulfills the given demand. The results of numerical tests are presented

in Section 4.5. Finally, Section 4.6 summarizes the results and provides a short outlook on further

research fields.

Chapter 5 is divided into two subsections. The first one summarizes the content of the thesis, the

second one provides an outlook on further research topics.
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2 Simultaneous lotsizing and scheduling
problems: a classification and review of models

Abstract The current paper4 presents a structured overview over the literature on dynamic simulta-

neous lotsizing and scheduling problems. We introduce a classification scheme, review the historical

development of research in this area and identify recent developments.

The main contribution of the present review is the discussion of the historical development of the

body of knowledge in the field of simultaneous lotsizing and scheduling and the identification of re-

cent trends. This helps to reveal research opportunities, but it can also be helpful in the selection of

appropriate models for industrial applications.

Keywords Dynamic lotsizing, Scheduling, Review

2.1 Introduction

In recent years, there has been an increasing interest in simultaneous lotsizing and scheduling problems,

not only in academia, but also in many companies. Many publications are motivated by observations

made in the process industry. Here, the production system often comprises a limited number of stages.

Each of these stages may consist of several parallel production lines with finite capacities. Demands for

individual products are usually associated with a time period (due date) and vary over time as a result

of a forecasting procedure or due to known customer order arrivals. Holding costs occur for inventory

in stock at the end of each period. A changeover from one product to another causes setup costs as

well as setup times which are often sequence-dependent. Besides this lotsizing problem, there exists

a scheduling problem, which comprises the sequencing of the products. This problem is of special

importance if setup costs or setup times are sequence-dependent as the sequence influences the total

costs and capacity consumption. Thus, instead of a successive planning, the lotsizing and scheduling

problems should be solved simultaneously.

While a large number of reviews on production planning under consideration of setups have been

published in the last years, many of these reviews focus on the lotsizing part of the problem and do not

consider scheduling aspects at all (Buschkühl et al. 2010), or they contain only brief sections devoted

to the simultaneous treatment of lotsizing and scheduling (Zhu and Wilhelm 2006; Jans and Degraeve

2008; Quadt and Kuhn 2008). Solely Drexl and Kimms (1997) focus almost entirely on simultaneous

4This paper has already been published in OR Spectrum (see Copil et al. 2017).
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2 Simultaneous lotsizing and scheduling problems: a classification and review of models

lotsizing and scheduling, thereby considering dynamic, time-varying demands. However, more than

17 years have passed since then.

In the current review, we present a structured overview over the latest literature on simultaneous

lotsizing and scheduling. We confine our discussion to dynamic lotsizing and scheduling models in

discrete time with period-specific demands for individual items. Thereby, it is assumed that the objec-

tive is to fulfill the actual orders or rather forecasted demands as late as possible (just in time) under

consideration of holding and setup costs and with respect to finite capacities. Producing as late as

possible reduces the average amount of stock on hand. A standard argument used in the definition of

a lotsizing model is that low stock on hand induces low capital costs. Hence, holding costs should

be included in the objective function. Günther (2014) has pointed out, that in a short-time planning

horizon, holding costs as out-of-pocket capital costs are usually quite small. As a consequence, he pro-

poses a block planning approach to produce as early as possible using the makespan criterion which

is often used in scheduling. In this approach, first the production events are scheduled, followed by

the determination of the production quantities (lotsizes). However, although it may be worthwhile to

tackle the lotsizing problem in this way, we observed in many practical cases that the amount of stock

on hand as the result of a lotsizing decision is a key performance indicator which is monitored by the

logistic management as well as by financial analysts. Therefore, we focus on standard lotsizing models

which try to find the optimal trade-off between holding and setup costs. Holding costs may then serve

as a parameter to select the products which should be produced in advance in case of scarce capacity.

Considering the number of more than 160 publications included in our review, it is not warranted to

describe each model and solution approach in detail. We rather introduce a classification scheme and

discuss the development of the different models over time in terms of the incorporation of additional

constraints, the application of solution techniques and their potential application in industry. To the best

of our knowledge, there is no up-to-date review which focuses on these aspects. Thus, it is worthwhile

to examine the progress of research that has been achieved particularly in the last two decades.

With respect to the maximum number of setups per period, models based on “microperiods” with

at most one setup per period and models based on “macroperiods” with any number of setups can be

distinguished. For both model classes several basic model formulations have been proposed. Mod-

els based on microperiods are the discrete lotsizing and scheduling problem (DLSP) by Fleischmann

(1990), the continuous setup lotsizing problem (CSLP) by Karmarkar and Schrage (1985) and the pro-

portional lotsizing and scheduling problem (PLSP) by Drexl and Haase (1995). Macroperiods are used

in the formulations of the general lotsizing and scheduling problem (GLSP) by Fleischmann and Meyr

(1997) and of the capacitated lotsizing problem with sequence-dependent setups (CLSD) by Haase

(1996). All these models support lotsizing as well as scheduling decisions with the objective to mini-

mize the sum of setup and holding costs under consideration of due dates and finite capacities. In the

following, we use these five basic models to structure our review. We suggest a classification scheme

which, on the one hand, allows a strong differentiation between the models and, on the other hand,

allows to draw conclusions concerning practical applications.

For the sake of brevity, we do not repeat the model formulations of the DLSP, CSLP, PLSP and the

CLSD. Instead, we present a generic formulation of the GLSP in Sect. 2.2 which allows us to derive
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the other models just by variation of the input data. Section 2.3 is divided into five subsections in which

extensions of the basic models are classified and discussed, respectively. Models which do not directly

fit into this structure are described in an extra Sect. 2.3.6. An overview table is appended to each

subsection helping to derive current trends with respect to extensions of the basic models, practical

applications and solution approaches. A detailed analysis is given in Sect. 2.4. Section 2.5 gives a

brief summary of the results of our analysis and identifies opportunities for future research.

2.2 Classification scheme for simultaneous lotsizing and scheduling
models

In the following, we describe the generic version of the GLSP. Furthermore, we use this model to

discuss the other models (DLSP, CSLP, PLSP and CLSD). In the second part of this chapter, we explain

our classification approach in detail.

2.2.1 Generic model

As mentioned above, one can differentiate between models based on microperiods (small-bucket mod-

els) and models which use macroperiods (large-bucket models). The basic formulations of the DLSP,

CSLP and PLSP are small-bucket models for simultaneous lotsizing and scheduling. The capacitated

lotsizing problem (CLSP) is an early large-bucket model which determines the lotsizes but not the se-

quence of the lots. This feature is introduced by the GLSP and the CLSD. Since these models combine

macroperiods and an approach to sequence the lots, they are also called hybrid models (see Suerie

2005). To some extent, the GLSP generalizes the other models because each of these basic models can

be represented as a special case of the GLSP for a single capacitated production resource. This prop-

erty will be used to illustrate the main differences between the models. For this purpose, a “generic”

version of the GLSP, in the following denoted as gGLSP, will be presented, which has been proposed

by Meyr (1999, Chap. 4).

This model considers several physical products k (k = 1,2, . . . ,K) plus a fictitious dummy product

k = 0 which is used to indicate a neutral setup state of the production resource. For each physical prod-

uct k > 0 and each macroperiod t (t = 1,2, . . . ,T ) a demand dkt has to be fulfilled without backlogging.

The production time per unit of product k is given by the production coefficient ak. Changeovers be-

tween physical products i > 0 and k > 0 cause sequence-dependent setup costs scik. A shutdown of the

production resource is modeled using the neutral state and causes shutdown costs sci0. If no production

takes place but the resource is set up for a physical product, standby costs pck occur for preserving the

setup state for product k > 0 on the production resource. Standby costs pc0 for staying in the neutral

state are typically zero. A startup from the neutral state causes startup costs sc0k. The aim is to schedule

the products on the production resource in a way that the total costs are minimized. The costs comprise

sequence-dependent setup costs, standby costs and holding costs hck, k > 0, on the inventory at the end

of each macroperiod.
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Table 2.1: Symbols used in model gGLSP

Indices and sets:

i,k Product index, i,k = 0,1, . . . ,K, whereat 0 is the neutral state

s Index of microperiods, s = 1,2, . . . ,S

t Index of macroperiods, t = 1,2, . . . ,T

St Set of microperiods s within macroperiod t

Data:

scik Setup costs for a changeover from product i to product k

hck Holding costs for product k > 0 (per unit and per

macroperiod)

pck Standby costs for preserving the setup state of product k on

the production resource (per time unit)

ak Production time per unit of product k (a0 = 1)

stik Setup time for a changeover from product i to product k

Ct Capacity of the production resource in macroperiod t (time)

Ik0 Initial inventory of product k > 0 at the beginning of planning

(units)

dkt Demand of product k in macroperiod t (units)

ωk0 ωk0 = 1 indicates that the production resource is set up for

product k at the beginning of planning (ωk0 = 0, otherwise)

qmin
k Minimal production quantity of product k > 0 (units);

minimal time for neutral state k = 0

Variables:

qks ≥ 0 Production quantity of physical product k > 0 (units) in

microperiod s; time spent in neutral state if k = 0, respectively

qks ≥ 0 Duration (time) for which the setup state of product k is

preserved on the production resource in microperiod s

(q0s = 0 w.l.o.g.)

Ikt ≥ 0 Inventory (units) of product k > 0 at the end of macroperiod t

ωks ∈ {0,1} Setup state variable; ωks = 1 indicates that the production

resource is set up for product k in microperiod s (0 otherwise)

ziks ∈ {0,1} Changeover variable; ziks = 1 indicates a changeover from

product i to product k in microperiod s (0 otherwise)

Microperiods s (s = 1,2, . . . ,S) are used to model the sequence of the products within the macrope-

riods. In a microperiod a single physical product is produced or the setup state for a physical product

is conserved without production or the resource is in the neutral state. Each macroperiod t consists of

a predefined sequence of microperiods. St denotes the set of microperiods s within macroperiod t and
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|St | is the total number of microperiods within macroperiod t. The length of each macroperiod is given

by the capacity Ct of the production resource. While the capacities are input to the model, the lengths

of the microperiods are decision variables. They result from multiplying the production quantities qks

by the production coefficients ak plus setup times or from the time qks in which a setup state is pre-

served. The setup state is defined by a binary variable ωks which is 1 if the production resource is set

up for product k in microperiod s and 0, otherwise. A changeover from setup state i to setup state k in

microperiod s is indicated by the decision variable ziks ∈ {0,1}. A setup causes a sequence-dependent

setup time stik. Finally, the variables Ikt ≥ 0 denote the inventory of product k at the end of macroperiod

t. All parameters and variables used in the model are summarized in Tab. 2.1. The model formulation

of the gGLSP is stated below.

gGLSP:

Objective function:

Min
S

∑
s=1

K

∑
i=0

K

∑
k=0

scik · ziks +
K

∑
k=1

T

∑
t=1

hck · Ikt +
K

∑
k=0

S

∑
s=1

pck ·qks (2.1)

Subject to:

K

∑
k=0

∑
s∈St

(ak ·qks +qks)+
K

∑
i=0

K

∑
k=0

∑
s∈St

stik · ziks =Ct ∀t (2.2)

Ikt = Ik,t−1 + ∑
s∈St

qks−dkt ∀t,k > 0 (2.3)

K

∑
k=0

ωks = 1 ∀s (2.4)

ak ·qks +qks ≤Ct ·ωks ∀k, t,s ∈ St (2.5)

ziks ≥ ωi,s−1 +ωks−1 ∀i,k,s (2.6)

qks ≥ qmin
k (ωks−ωk,s−1) ∀k,s (2.7)

The objective function (2.1) describes the total costs consisting of setup costs, holding costs and

costs for preserving setup states. Equations (2.2) guarantee that the production does not exceed the

capacity in any macroperiod. More precisely, the total time used for production, for preserving setup

states of the production resource and for changeovers is equal to the given capacity per macroperiod.

Equations (2.3) assure that the inventory of the physical product k > 0 at the end of macroperiod t is

equal to the inventory at the end of the previous macroperiod plus the production quantity of period

t minus the demand of that period. Equations (2.4) ensure that in each microperiod the production

resource is set up for exactly one product k (k = 0,1, . . . ,K). The linking-constraints (2.5) guarantee

that if one of the continuous variables qks or qks, k > 0, is greater than zero, the binary variable ωks is

set to one. Otherwise, the resource is in the neutral state (k = 0).

Changeovers are indicated by Equations (2.6). It should be noted that the binary changeover vari-
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ables ziks can be relaxed. In an optimal solution, these decision variables only take the values zero or

one. This is caused by the objective function (a small value for ziks is desired) and Equations (2.6) in

combination with ωks (defined as binary variable). Equations (2.7) are used to realize minimum lot-

sizes qmin
k , which may be necessary due to technical limitations of the production process. Minimum

lotsizes are also important if the triangle inequalities (scik + sck j ≥ sci j) are violated. That means it

is cheaper (or consumes less setup time) to switch from product i to product k and then to product j

than to switch directly from product i to j. For example, the triangle inequality is violated if product k

has a cleansing function. Note that it may be optimal to set up a certain product k more than once per

macroperiod if the triangle inequalities are violated.

Fleischmann and Meyr (1997) actually distinguish between the GLSP with loss of setup state

(GLSPLS) and the GLSP with conservation of setup state (GLSPCS). In the GLSPLS the setup state

is not conserved during “idle” periods, i.e., periods in which no production of physical products takes

place. For example, if there has been production of product k > 0 in microperiod s−2, but no produc-

tion at all (∑k>0 qk,s−1 = 0) in microperiod s−1, then a setup is necessary although the same product

k is produced in microperiod s again. This is different in the GLSPCS. Here, no additional setup is

necessary after such an idle period if the same product is produced again. The GLSPLS can be rep-

resented as a special case of the gGLSP by setting the standby costs to infinity (pck = ∞,k > 0). In

this case, the resource changes into the neutral state k = 0 if it is not completely utilized. On the other

hand, the gGLSP can be specialized to the GLSPCS if the standby costs are set to zero (pck = 0) and

the neutral state is forbidden, e.g., by setting the setup costs for changeovers into the neutral state to

infinity (sck0 = ∞). Deeper insights into GLSP-based models will be given in Sect. 2.3.1.

In the following, we will show that all the abovementioned basic model formulations can also be

represented as specializations of the gGLSP (see Fig. 2.1). Since the other basic models do not

consider minimal production quantities and setup times, we define qmin
k = 0 and stik = 0.

The basic formulation of the CLSD allows the conservation of the setup state, but limits the number

of lots per macroperiod to K. Hence, in the gGLSP, besides requesting pck = 0 and sck0 = ∞, the

number of microperiods per macroperiod is equal to the number of products (|St |= K). Furthermore,

in the CLSD each product can be set up at most once per macroperiod. Inequalities (2.8) enforce this

behavior for the gGLSP (if the triangle inequalities are violated). Section 2.3.2 will present extensions

of the basic CLSD which mitigate these additional constraints.

∑
s∈St

K

∑
i=0
i 6=k

ziks ≤ 1 ∀t,k > 0 (2.8)

In contrast to the CLSD, the basic PLSP allows at most one single changeover per period while the

setup state can be conserved. In total, at most two different products can be produced in a single period.

This can be modeled for the gGLSP by setting |St |= 2 and restricting the total number of changeovers

per macroperiod according to inequalities (2.9). In Sect. 2.3.3 we will discuss various extensions.

∑
s∈St

K

∑
k=0

K

∑
i=0
i 6=k

ziks ≤ 1 ∀t (2.9)
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gGLSP

GLSPCS

CLSD

PLSP

CSLP

GLSPLS

DLSP

pck = ∞ pck = 0
sck0 = ∞

qmin
k = 0, stik = 0

|St |= 1

|St |= 2

|St |= K

∑
s∈St

K
∑

k=0

K
∑

i=0
i6=k

ziks ≤ 1

∑
s∈St

K
∑

i=0
i6=k

ziks ≤ 1

Figure 2.1: Relationship between models (see Meyr, 1999, p. 84)

Like the PLSP, the CSLP allows at most one single changeover per period and the conservation of

the setup state (pck = 0, sck0 = ∞). However, compared to the PLSP, at most one single product

can be produced per period. To cover this constraint in the gGLSP, the number of microperiods per

macroperiod is set to one (|St |= 1). Variations of the basic CSLP are described in Sect. 2.3.4.

The main characteristic of the DLSP is its all-or-nothing assumption. The length of a period is equal

to the capacity of the considered resource. In each period, there is only the choice to produce during the

complete period or not to produce at all. Since this assumption is very restrictive, usually the lengths

of the periods are very short. In this regard, the DLSP is a small-bucket model. In periods without

production the setup state is lost. Thus, the DLSP can be derived from the GLSPLS (and with pck = ∞

from the gGLSP as well; see Fig. 2.1) by fixing the number of microperiods per macroperiod to one

(|St | = 1). Then the length of a microperiod equals its corresponding macroperiod’s length. Since no

setup times exist (stik = 0) and setup states are not conserved (qks = 0), Equations (2.2) either allow

the production of a physical product k > 0 for the whole period length or staying in the neutral state

k = 0. This puts the all-or-nothing assumption into practice. Extensions of the DLSP are discussed in

Sect. 2.3.5.

Note that in Figure 2.1 on the paths gGLSP - GLSPCS - CLSD - PLSP - CSLP and gGLSP - GLSPLS

- DLSP, the models become increasingly restricted and specialized with respect to the assumptions.

This means that less real world applications can be found which match their assumptions. However,

they may provide some bases for more dedicated solution techniques. So far, we have presented a

first basic differentiation between the basic model types available. In the following, we present a

classification scheme that serves as a basis for a more detailed discussion of the models presented in

the literature.
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2.2.2 Classification scheme

In the last decades, numerous modifications and extensions of the lotsizing and scheduling models

presented in Sect. 2.2.1 have been presented. To structure the discussion of these models, we use the

classification scheme presented by Meyr (1999). We first discuss all attributes and their possible values.

Table 2.2 summarizes the classification scheme and defines acronyms. Attributes in curly brackets are

mandatory, while attributes in squared brackets are optional. At the end of Sect. 2.2.2, a classification

of the above basic models will serve as an example.

Table 2.2: Classification scheme
Description Attribute Potential value Acronym
BOM Bill-of-materials structure single-level 1

serial s

assembly a

divergent d

general, acyclic g

Ps Production stage single-stage 1[:Tl]

multi-stage {Nb}:{Sq}[:Tl]

{Nb} Number given, limited number ]

free fr

{Sq} Sequence serial s

cross-linked cl

[:Tl] Transfer of lots before completion (open) o

only after completion (closed) c

M Machines per stage one machine 1

parallel, identical pi

parallel, non-identical pn

Sc Setup costs {Sdp}[:Tie]

{Sdp} Sequence dependence sequence-independent si

sequence-dependent sd

[:Tie] Triangle inequality must be kept ∆k

(from cost perspective) violable ∆v

Css Conservation of setup state continuous setup cs

(from cost perspective) lost setup ls

both possible in model cl

St Setup time {Sdp}:{Lg}[:Per]

{Lg} Length of setups discrete d

upper bound max

free fr

[:Per] Number of considered periods one (macro)period p

limited number of (micro)periods ]

free number of (micro)periods fr

exoT Exogenous time structure free scheduling of exogenous state changes fr

discrete external time grid d:{LotX}

{LotX} Maximum number of lots limited number ]

(per period in external time grid) number of products K

free fr

18



2.2 Classification scheme for simultaneous lotsizing and scheduling models

Description Attribute Potential value Acronym
endoS Endogenous state changes fixed on external time grid fi

free towards exogenous time structure fr

additional discrete internal time grid d:{LotN}:{Time}

{LotN} Maximum number of lots limited number ]

(per period in internal time grid)

{Time} Time of change fixed on internal time grid fi

free towards internal time grid fr

Ls Lotsize discrete, multiple dm

continuous, ≥ 0 c

continuous, ≥ minimum value min

continuous, ≤ maximum value max

continuous, between minimum and maximum value mima

Bill-of-materials structure: The product structure is documented with the bill-of-materials (BOM).

If only one BOM-level is considered, the product structure is called single-level. Otherwise, it

is called multi-level. In the latter case, the product structure is serial if each product has at most

one predecessor and one successor. A product structure is of the assembly (converging) type

if each product has at most one successor but can have multiple predecessors. If a product has

several successors but at most one predecessor, a diverging structure is given. A general product

structure comprises converging and diverging portions.

Production stages: The production system may consist of only one (single-stage) or of multiple

stages of production (multi-stage). In the multi-stage case, some models consider a given, limited

number of production stages. If the number is not restricted, this will be denoted as “free”.

Furthermore, production systems can be distinguished by the sequence of their material flow.

For example, the material flow can be cross-linked in case of a job-shop production, whereas a

flow line system always shows a serial sequence. Furthermore, the transfer of production lots

between the stages may differ. In some cases, a lot is transferred to the next stage as a whole only

after its completion (“closed production”). In other cases, processed parts are already moved to

the next stage before the whole lot has been completed (“open production”).

Machines per stage: One or several parallel machines, showing the same functionality, may be

available to execute a certain production task. Parallel machines are called “homogeneous” if

they show identical costs and production speeds. In case they are not identical, they are called

“heterogeneous”. Note that “lotsplitting” may occur if parallel machines exist.

Setup costs: Setup operations are often associated with costs, e.g., when a machine must be cleaned

before a product is produced. In some industries, these costs are the same no matter which

product has been produced last on this resource (“sequence-independent”). In other industries,

however, the setup costs differ with respect to those predecessors (“sequence-dependent”5). For

example, when colored products are produced, a change from a light to a dark color usually is

5Unfortunately, “sequence-independent” is a typing error in Copil et al. (2017).
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less laborious and cheaper than a change from a dark to a light color. The triangle inequality is

kept if the costs for a changeover from product i to k are lower than the costs of a detour from i to

j to k, i.e., if sci j +sc jk ≥ scik for any j. There are also industries (such as the chemical industry)

in which triangle inequalities may be violated.

Conservation of setup state: As explained in Sect. 2.2.1, the setup state may be conserved (con-

tinuous setup) or get lost after idle periods. As the gGLSP has shown, both situations may be

covered by the same model.

Setup time: Regardless whether setup states are conserved or not, the duration of a setup may be

bound by some discrete time pattern, be limited by some predefined upper bound or not be

restricted in any way (“free”). The latter case is rather common for pure scheduling models, but

not so much for lotsizing and scheduling models. These usually depend on some exogenous time

structure (see below) to represent capacities, inventories and demand. With regard to this time

structure, setup times are often limited by the period length, i.e., setup operations do not exceed

the end of a period and therefore last for at most one period. In contrast, period-overlapping setup

operations do ensure more flexibility. These may be limited by a predefined number of periods

or not be restricted at all (“free”). Like setup costs, setup times may be sequence-dependent.

Exogenous time structure: The exogenous time structure represents the points in time at which ex-

ternally given events, that are defined by the data of the model, are considered. In lotsizing and

scheduling models typically the demands, the capacity consumption and the inventory develop-

ment are concerned. State changes or events relating to these data usually do not occur “freely”

at any point in time, but are bound to a predefined, discrete external time grid. Whether the time

structure represents macroperiods (as in the CLSD, for example) or microperiods (as, e.g., in

the CSLP), depends on the context. As Sect. 2.2.1 has shown, the number of lots per period

may also differ – depending on the model formulation. It may be limited in advance to some

maximum number |St |. For example, |St | equals 2 for the PLSP or the number of products K

for the CLSD. If an integer number |St | can arbitrarily be set, the maximum number of lots per

period is denoted as “free”.

Endogenous state changes: The endogenous time structure represents the points in time at which

internal events are captured by decision variables. These events are, for example, the starting

and ending times of production lots or, in general, changes of the production system’s state like

changeovers. They might occur at any time (“free”), be bound on the external time grid (“fixed”)

or depend on an additional discrete internal time grid. If the latter one exists, state changes can

also be free with respect to this internal time grid or fixed on it. Moreover, the number of lots

can then also be limited for each period of the internal time grid.

Lotsize: The size of a lot can either be discrete or continuous. Discrete means that only integer

multiples of some predefined batch size are allowed. The batch size may be a modeling constraint

(as in the DLSP) and/or a technical requirement (e.g., in chemical industries when reactors or
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Table 2.3: Classification of basic models
References BOM Ps M Sc Css St exoT endoS Ls Industry Heuristics/comments

Meyr (1999) 1 1 pn sd:∆v cl sd:max:p d:fr fr min – Not solved (gGLSP)
Fleischmann and Meyr (1997) 1 1 1 sd:∆v ls – d:fr fr min – Not solved (GLSPLS)
Fleischmann and Meyr (1997) 1 1 1 sd:∆v cs – d:fr fr min FI TA+BA (GLSPCS)
Haase (1996) 1 1 1 sd:∆k cs – d:K fr c – BA (CLSD)
Haase (1994) 1 1 1 sd:∆k cs – d:2 fr c – RR (PLSP)
Karmarkar and Schrage (1985) 1 1 1 si cs – d:1 fr c – B&B+LR (CSLP)
Fleischmann (1990) 1 1 1 si ls – d:K d:1:fi dm – B&B+LR (DLSP)

Table 2.4: Industrial settings acronyms
Acronym Industrial setting

AFI Animal food industry

AI Automobile industry

BI Beverage industry

CGI Consumer goods industry

CHES DuPont, BASF, James River,

Champion international7

CI Chemical industry

EI Electronics industry

FI Food industry

PhI Pharmaceutical industry

PI Process industry

SI Semiconductor industry

ovens must be filled to a certain grade). The production quantity that comprises multiple batches

of the same product consecutively produced is sometimes called a “campaign”. Continuous lots

may also be limited in their size. However, here the minimum or maximum bounds do not equal

each other and thus allow a higher degree of freedom for planning.

In the following, the gGLSP proposed by Meyr (1999) and the basic models of Sect. 2.2.1 are catego-

rized according to this classification. An overview is given in Table 2.3. A dash means that the attribute

is not considered in a model, e.g., if the model does not include setup times.6 An additional column

shows (if available) the underlying industry of the described model formulation. The meaning of the

associated acronyms can be found in Table 2.4. In the last column of Table 2.3, solution approaches

and further interesting characteristics are summarized. Table 2.5 shows the associated acronyms of the

different solution approaches.

The gGLSP is formulated for a single-level product structure and a single production stage. In con-

trast to the simplified version (2.1) – (2.7), the original formulation of Meyr (1999) includes multiple

parallel, non-identical machines. The setup costs are sequence-dependent and may violate the triangle-

inequalities. Depending on the input data, the setup state can be conserved or get lost after idle periods.

Setup times are sequence-dependent and limited to a maximum duration which is equal to the length of

a (macro)period. The discrete external time grid t = 1, . . . ,T defines the exogenous time structure. The
6In the tables shown below, a field will be left empty if it is not possible to identify the value of the attribute.
7Practical problems, not dedicated to an industry, c.f., Baker and Muckstadt Jr. (1989)
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dynamic demands as well as the capacities are related to this time grid. The maximum number of lots

within a macroperiod is free since an integer number of microperiods per macroperiod can arbitrarily

be chosen. Endogenous state changes like changeovers are not bound to the exogenous time structure.

Furthermore, lotsizes are continuous, but can be restricted to a minimum size. Meyr (1999) does not

report experiences about the implementation or solution of this model.

Table 2.5: Solution approaches acronyms
Acronym Solution approaches

ATSP Asymmetric traveling salesman problem

BA Backward-oriented heuristic

BACKADD Backward-oriented, regret-based, biased random sampling method

B&B Branch&bound

B&C Branch&cut

CG Column generation

DP Dynamic programming

DS Demand shuffle

F&O Fix&optimize

F&R Fix&relax

GA Genetic algorithm

GRASP Greedy randomized adaptive search procedure

HLSA Hybrid Lagrangian-simulated annealing-based heuristic

HOPS Hamming-oriented partition search

INSRF Iterative variable neighborhood search with a relax-and-fix construction heuristic

LD Lagrangean decomposition

LP Linear programming

LR Lagrangean relaxation

LS Local search

MA Memetic algorithm

MIP Mixed integer programming

PSO Particle swarm optimization

RH Rolling horizon

RM Randomized measures

RR Randomized regrets

SA Simulated annealing

SPL Simple plant location

STN State-task-network

TA Threshold accepting

TS Tabu search

TSP Traveling salesman problem

TSPTW Traveling salesman problem with time windows

VNDS Variable neighborhood decomposition search

VNS Variable neighborhood search

Both the GLSPLS and GLSPCS introduced by Fleischmann and Meyr (1997) are restricted to a

single machine and do not take setup times into account. They differ with respect to their consideration

of the setup state. While the GLSPLS is not solved, different solution heuristics for the GLSPCS
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are presented. These apply the local search (LS) meta-heuristic threshold accepting (TA) to generate

setup sequences and different backward oriented greedy heuristics (BA) to calculate the lotsizes. In a

backward-oriented heuristic, the solution is created starting in the last period of the planning horizon

and going step by step backwards until the first period is reached. Thereby, predefined operations are

performed in each considered period. The heuristics are tested for problem instances originating from

the food industry (FI).

The CLSD of Haase (1996) considers a single-level product structure and one machine. Setup costs

can be sequence-dependent. Nevertheless, the triangle inequality must hold since each product can be

set up at most once per macroperiod. The setup state is conserved after idle periods, but setup times are

not considered. A discrete time grid is used as exogenous time structure. In each period of this time

grid, the number of lots is limited to the number of products. The endogenous state changes are free

and not bound to the exogenous time structure. Continuous lotsizes are possible. The model is solved

with a backward oriented heuristic.

The PLSP proposed by Haase (1994) is similar to the CLSD. However, the number of lots per

period of the exogenous time grid is limited to two. Haase proposed a randomized regret (RR)-based

heuristic to solve the problem. This heuristic determines which product to schedule in a period using

so-called randomized regrets. These regrets define the lost potential savings if a product is not produced

in a certain period. The product to be scheduled is randomly selected with a probability which is

proportional to the regrets.

The CSLP of Karmarkar and Schrage (1985) covers only sequence-independent setup costs. Be-

sides, its main difference to the PLSP is that at most one product can be produced per period. The

model is solved by a combination of branch&bound (B&B) and Lagrangean relaxation (LR). The LR

generates lower bounds for minimization problems by allowing the violation of a complicating con-

straint and introducing penalty costs with the help of Lagrangean multipliers instead. The Langrangean

decomposition (LD) is a special case which decomposes the overall problem into subproblems. The

lower bound derived by solving the relaxed problem and an upper bound resulting from a (heuristically

generated) feasible solution are updated in an iterative procedure. An adaptation of the multipliers

supports convergence of the lower and upper bound.8

Fleischmann (1990) proposes a model allowing only one setup per period. The production for a

product either runs at full capacity or not at all (all-or-nothing assumption). For comparison reasons

and in order to use data for macroperiod models from the literature, Fleischmann (1990) also describes

a transformation from the CLSP to the DLSP which in general allows to model demand, inventory

holding costs and capacities on basis of macroperiods while the all-or-nothing assumption still holds

for significantly shorter microperiods (see Table 2.3). As his numerical tests show, Fleischmann uses a

discrete external time grid, which limits the number of lots per macroperiod to the number of products,

to model the macroperiods. An additional discrete internal time grid models the microperiods. In

a microperiod of the internal time grid, the production of at most one product is allowed and state

changes are fixed to this internal time grid. This way, the all-or-nothing property is put into practice.

8See Buschkühl et al. (2010), pp. 243-244.
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A lotsize has either to be zero or an integer multiple of a complete microperiod’s total production

quantity. The model is also solved using a combination of branch&bound and Lagrangean relaxation.

As demonstrated in Table 2.3 for the paper of Fleischmann (1990), in the literature review of Sect.

2.3 we classify only the most advanced/functional model of a publication if several models are pro-

posed within the same paper.

2.3 Literature review

In the following we discuss more than 160 publications which are relevant for simultaneous lotsizing

and scheduling according to the criteria explained above. The major focus is set on papers that appeared

in the last two decades. Some earlier papers are included in order to illustrate the genesis of the field.

Sections 2.3.1 – 2.3.5 present the extensions of the basic formulations of the GLSP, CLSD, PLSP,

CSLP and DLSP in the sequence implied by Figure 2.1 and Table 2.3. In Sect. 2.3.6 we discuss

research which we have not been able to uniquely assign to one of these model types. At the end

of each section, a table summarizes the various papers according to the classification of Sect. 2.2.2.

Within each table, the papers are sorted in sequence of their date of publication in order to point out

the historical development of each modeling approach over time.

2.3.1 General lotsizing and scheduling problem (GLSP)

The GLSP has first been presented by Fleischmann and Meyr (1997). Its main characteristics have

already been discussed in the previous sections. Koçlar and Süral (2005) notice that the GLSPCS is

limited by the fact that the minimum lotsize must be fulfilled completely in the first microperiod of a

lot. This restriction is based on modeling reasons and it is relevant at macroperiod boundaries. They

propose a modification of the minimum lotsize constraint which overcomes this restriction.

The gGLSP has first been presented by Meyr (1999) including sequence-dependent setup times

and non-identical parallel machines. As shown in Sect. 2.2.1, it is possible to choose between the

conservation and the loss of a setup state in idle periods. Further variations that can be derived from

the general formulation (c.f., Meyr 1999) are the GLSP with setup times (GLSPST) presented in Meyr

(2000) and the GLSP for parallel lines (GLSPPL) published in Meyr (2002). Both problems are solved

with improved versions of the heuristic of Fleischmann and Meyr (1997). For a fixed setup pattern,

these determine the lotsizes optimally, instead of heuristically, by means of “dual reoptimization”. The

single-machine heuristic performs very well because a fast network flow algorithm can be applied.

The multi-machine heuristic, however, is less satisfying. Thus, Meyr and Mann (2013) propose a

better scalable alternative. They aggregate the original multi-machine problem and solve the reduced

problem heuristically in order to decompose the original GLSPPL into a set of isolated single-machine

problems. These are solved by the above mentioned GLSPST heuristic of Meyr (2000). If some

solution is infeasible with respect to the original problem, the production capacities of the aggregate

multi-machine problem are modified for a new iteration. In this way, different types of real world

problems (production of incontinence pads and acrylic glass, printing of consumer goods’ labels) are
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successfully solved.

Meyr (2004) extends the single-stage GLSP to multiple production stages (GLSPMS). He solves

small test instances using CPLEX. Seeanner and Meyr (2013) improve the model with respect to the

synchronization of the machines. Different model reformulations and MIP-based solution heuristics

such as fix&relax (F&R) are compared. The F&R heuristic divides the binary variables of a model into

distinct subsets and considers these subsets sequentially instead of simultaneously. Thus three groups

of variables result: within the currently considered subset, all variables are binary and have to be opti-

mized. Variables of already earlier considered subsets are fixed and the remaining variables are relaxed.

The subsets are processed in a predefined sequence until all binary variables have been optimized. The

time structure of the multi-stage GLSP is similar to the single-stage formulation. However, the starting

times of microperiods are identical on each machine. Using this common time structure, the synchro-

nization of predecessor and successor relations is facilitated. The GLSPMS is modified by Seeanner

et al. (2013) who allow for changeovers in the first microperiod. Furthermore, the synchronization

between production lines is again formulated more generally and compactly. The authors propose

a combination of variable neighborhood decomposition search (VNDS) and fix&optimize (F&O). In

contrast to the F&R heuristic, the F&O heuristic needs to start with an initial solution. Some subsets of

binary variables of this solution are released and re-optimized. The other binary variables remain fixed

to their current values. This procedure is repeated by varying the subset of variables to be released.

If the initial solution was feasible, newly generated solutions will be feasible, too, and not worse than

already found solutions. An extension of the aforementioned formulation is presented by Seeanner

(2013, p. 143). He considers limited raw materials and setup operators as secondary scarce resources.

A further extension allows microperiod-overlapping setup times and minimum lotsizes (Seeanner 2013,

p. 148).

Another multi-stage GLSP formulation is proposed by Fandel and Stammen-Hegener (2006). In

order to calculate the holding costs more accurately, three types of microperiods are distinguished:

one type for production, one for setups and one for idle time. Unfortunately, the resulting model

formulation is non-linear.

Günther et al. (2006) introduce the concept of block planning. In contrast to the recent paper of

Günther (2014), in which the usefulness of holding costs is called into question, here holding costs

associated with macroperiods are explicitly considered. Block planning groups production orders into

blocks. The sequence of orders and simultaneously the sequence of products within a block are pre-

defined in advance. However, the sizes of the orders and their corresponding processing times are

decision variables. Changeovers within a block cause minor sequence-independent setup costs and

times. Changeovers from one block to another cause major (constant) setup times. Because blocks can

be interpreted as macroperiods and the processing times of the orders can be interpreted as micrope-

riods of variable lengths, the model is closely related to the GLSP. However, since the sequence of

products per block is predefined, it can much easier be solved.

The synchronized and integrated two-level lotsizing and scheduling problem (SITLSP) is proposed

by Toledo et al. (2006). It tackles a problem from the beverage industry. Raw materials are stored in

several tanks which are connected to various bottling lines. Planning concerns the filling of the tanks
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with different flavors, the assignment of the tanks to the bottling lines and the lotsizing and scheduling

of the final products on the bottling lines. Additionally to the GLSP time grid, they use a CSLP-like

time structure to synchronize the two production stages. Only small test instances are solved using

a standard solver. The model is explained in more detail by Toledo et al. (2015). Furthermore, they

propose test instances with benchmark results. Toledo et al. (2008b) heuristically solve the SITLSP

by means of different genetic algorithm (GA) approaches. Further solution heuristics are proposed by

Toledo et al. (2008a). They apply tabu search (TS), TA, GA and a combination of GA with TS and

with TA, respectively. Additionally, Toledo et al. (2009) also propose a GA and test it using data from

a soft drink company. Toledo et al. (2010) concentrate on parallel GA approaches taking advantage of

multi-core processors.

Marinelli et al. (2007) consider a two-stage production system from the food industry. In the first

stage, tanks are supplied with yogurt. In the second stage, the yogurt is filled into pots. Sequence-

independent setup times and costs arise when a tank is refilled and when the package sizes are changed

on the filling stage. A heuristic that decomposes the problem into a scheduling and a lotsizing problem

is proposed. This approach leads to near-optimal solutions in very short computation times using

data of the company. Although the authors classify their model as a “hybrid continuous setup and

capacitated lotsizing problem” (CSLP-CLSP), we prefer to discuss it within the current section because

of its GLSP-typical time structure.

A problem similar to the SITLSP is considered by Ferreira et al. (2009). However, their assumptions

are more restrictive, e.g., that each filling line can only be connected to a single tank at the same point

in time. The tanks and the filling lines are synchronized based on waiting time calculations. The formu-

lation is called two-stage, multi-machine lot-scheduling model (P2SMM). Assuming that the tanks are

no bottlenecks, the single-stage, multi-machine lot-scheduling model (P1SMM) is formulated. After

this model has been solved, the setup variables of the P2SMM are determined (relaxation approach).

Furthermore, F&R strategies are used to solve the P2SMM directly or combined with the relaxation

approach.

A model similar to the P1SMM is proposed by Ferreira et al. (2010). They consider small-scale

soft drink plants with just one filling line. Several tanks are available. Here, the filling line is the

only bottleneck. As a consequence only minimum and maximum filling levels of the tanks must be

considered besides the lotsizing and scheduling of the filling line. Several combinations of CPLEX

strategies (e.g., presolve on/off) and F&R strategies are used to solve the model.

Ferreira et al. (2012) propose different alternative single-stage formulations of the P2SMM. The

variables associated with the tank are omitted because taking the maximum of the setup times of the

tank and the filling line realizes the synchronization. This way it is ensured that the tank is always

ready when filling starts. Numerical tests are carried out with the original P2SMM as a benchmark.

Another solution approach for the P2SMM of Ferreira et al. (2009) is proposed by Toledo et al. (2014).

They apply a GA to determine lot sequences and use an LP model to calculate the lotsizes. Baldo

et al. (2014) modify the P2SMM for an application in the brewery industry. They divide the planning

horizon into two parts. In the first part planning is very detailed, but in the second part only the lotsizing

is considered. F&R combined with F&O solves the problem heuristically.
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Two models for the production planning of animal food compounds are proposed by Toso et al.

(2009). The models differ in the consideration of setup times at macroperiod boundaries. Production

stages are serially arranged, but only one stage is a bottleneck. Thus a single-stage model is sufficient.

The lotsize is based on batches, due to technical and economical reasons. The authors solve the models

using CPLEX and different F&R strategies.

Lang (2010) embeds a State-task-network (STN) approach into a multi-stage GLSP formulation.

For each task, it is possible to define the quantities of the input and the output products. Sequence-

dependent setup costs and times occur if a changeover from one task to another occurs. Using this

formulation, it is possible to consider product substitution.

Based on Fandel and Stammen-Hegener (2006), Mohammadi (2010) proposes a model for a flexible

flow-shop. He also uses three types of microperiods (production, setup and idle type), but defines

the number of microperiods per macroperiod in advance. Thus, the model is easier to solve. This is

done heuristically by rolling horizon (RH) approaches and F&R. Rolling horizon is a specific form of

F&R in which the planning horizon is divided into three subsections. The first subsection uses fixed

variables (frozen zone), the second subsection represents the problem in detail and the third subsection

represents the model in a simplified way, e.g. without setup times. The problem is solved several

times. In each iteration, the detailed results of the previous solution are added to the frozen zone, i.e.

the detailed zone is iteratively shifted until the end of the planning horizon is reached.

Almeder and Almada-Lobo (2011) consider tools as an additional, capacitated resource in a single-

stage, multi-machine problem. It is possible to produce multiple products with the same tool. Thus,

tool changeovers instead of product changeovers are modeled. Since a tool cannot simultaneously be

used on two or more machines, tool synchronization is required. This is accomplished with the help

of continuous variables for the starting and ending times of tool use. The model is compared to a

CLSD-based formulation which is also presented in this publication.

Inspired by a practical case from the process industry, Transchel et al. (2011) formulate a model for

a single machine producing multiple end products from multiple pre-products. In order to account for

the limited availability of pre-products, it is possible to restrict the corresponding production capacities.

The authors propose two reformulations as transportation problems and compare all three models by

numerical tests.

Deterioration and perishability is considered by Pahl et al. (2011). They propose a model including

end products which deteriorate after a maximum lifetime. The model is solved using Xpress.

Camargo et al. (2012) formulate a model for the following planning problem: multiple products are

produced on parallel, non-identical machines. These machines are fed by a single, upstream machine,

which produces different pre-products. Each end product requires exactly one pre-product. Neverthe-

less, a pre-product can be used to produce several end products belonging to the same product family.

In each microperiod, only one single pre-product can be processed. All downstream machines are fed

with this pre-product. That means, that it is possible to produce different end products on different ma-

chines in one microperiod, if all end products require the same pre-product. The model formulation is

compared to a CLSD-based and a continuous formulation in numerical tests using CPLEX. Camargo

et al. (2014) adapt this model for usage in the yarn production. Here, on the first production stage
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different types of fibers are blended on a single machine. In the second stage different yarn types are

processed using the fibers from the first stage. Unlike Camargo et al. (2012), holding costs are only

indirectly considered by using time-varying production costs. A Hamming-oriented partition search

(HOPS) is proposed to solve the problem. This approach uses B&B in combination with F&O. A

partition attractiveness measure, which is calculated using Hamming distances, helps deciding about

which variables to fix.

Santos and Almada-Lobo (2012) propose a model for a pulp and paper mill planning problem. Here,

wood chips are processed in a digester resulting in black liquor and virgin pulp. The black liquor is

used to produce energy and the virgin pulp is combined with recycled pulp to produce different types

of paper. Many specific properties of the production process are taken into account. For example, the

digester has a flexible rotation speed, which affects the output and can only be changed within a limited

range per microperiod. Converting black liquor into energy is also restricted with respect to different

aspects, e.g., by the capacity of the evaporator or concerning the potential steam output. The model is

solved by means of a stochastic F&O approach (see James and Almada-Lobo 2011). A modification of

the above model with the objective to maximize the steam output used to generate electrical energy is

presented by Figueira et al. (2013). These authors propose a new solution approach in which a variable

neighborhood search (VNS) determines the setup pattern. While the rotation speed of the digester is

selected heuristically, the continuous variables of the remaining model (after fixing the setup pattern)

are calculated by an exact method. The solution approach is tested for scenarios based on real world

data. A GA-based solution approach for the problem of Santos and Almada-Lobo (2012) is presented

by Furlan et al. (2013). Furlan et al. (2015) extend this model to the case of parallel non-identical paper

machines. Different GA approaches are used to solve this model.

A planning problem from the wood floor industry is treated by Tiacci and Saetta (2012). These

authors formulate a single-machine model without consideration of setup times. Inspired by de Araujo

et al. (2007), they simplify their model using a rolling horizon approach which accounts for microperi-

ods and setup costs in the first macroperiod only. Since omitting setup costs after the first macroperiod

has a strong influence on the solution and could lead to poor production plans, the authors adapt their

model and approximate setup costs in macroperiods t ≥ 2.

Mohammadi and Poursabzi (2014) present a GLSP formulation for multiple production stages. Two

rolling horizon approaches are proposed.

A multi-stage GLSP formulation for a flexible job-shop problem is presented by Rohaninejad et al.

(2015). Different production stages are synchronized using additional variables to track the starting

and ending times of microperiods. A combination of a GA and a particle swarm optimization (PSO)

algorithm is used to solve the problem.

The presented GLSP models are summarized in Table 2.6. The first publications up to Meyr (2002)

consider only single-level bill-of-materials (BOM = 1) and one production stage (Ps = 1). The first

multi-stage formulation was published by Meyr (2004). Afterwards, most of the models consider

multi-stage bill-of-materials and multiple production stages (e.g. Toledo et al. (2006) consider diver-

gent bill-of-materials and two serially arranged production stages). There is also a focus on parallel

heterogeneous machines per production stage (M = pn). Only a small number of models does not con-
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sider sequence-dependent setup costs and times (Sc and St = si). Examples are Günther et al. (2006)

and Marinelli et al. (2007). The time structure of all models is typical for GLSP formulations: a dis-

crete time grid consisting of macroperiods is used as time structure for externally given events (exoT =

d:K or d:fr). Since microperiods with flexible lengths are used, the endogenous state changes are not

fixed to a time grid (endoS = fr). Usually, the number of lots per macroperiod is free (exoT = d:fr) since

the number of microperiods per macroperiod can be arbitrarily chosen. In some cases, the number of

lots per macroperiod is limited to the number of products (exoT = d:K). This is sometimes directly rep-

resented in the model formulation (see e.g. Rohaninejad et al. 2015). In other cases, allowing a setup

for more than K products per macroperiod would not be appropriate (e.g. if the triangle inequality is

kept Sc = sd:∆k). An example is Camargo et al. (2012). Most of the models permit a continuous lotsize

(Ls = c), often restricted by a lower bound (Ls = min) as it can be found starting with Fleischmann and

Meyr (1997) up to Furlan et al. (2015). Minimum lotsizes are important to appropriately model the

production technology or to correctly model the setup costs if the triangle inequality is violated. Most

of the models are based on real world scenarios which are taken from various industries (see column

industry). To solve the problems, meta-heuristics based on local search or evolutionary principles are

mainly used as it is shown in column heuristics/comments.

Table 2.6: Literature overview GLSP
References BOM Ps M Sc Css St exoT endoS Ls Industry Heuristics/comments

Fleischmann and Meyr (1997) 1 1 1 sd:∆v cs – d:fr fr min FI TA+BA; GLSPLS not
solved

Meyr (1999) 1 1 pn sd:∆v cl sd:max:p d:fr fr min – Not solved
Meyr (2000) 1 1 1 sd:∆v cs sd:max:p d:fr fr min FI TA/SA+dual

reoptimization
Meyr (2002) 1 1 pn sd:∆v cs sd:max:p d:fr fr min CHES TA/SA+dual

reoptimization
Meyr (2004) g fr:cl pn sd:∆v cl sd:max:2 d:fr fr min – MIP-solver
Koçlar and Süral (2005) 1 1 1 sd:∆v cs – d:fr fr min – Not solved
Fandel and Stammen-Hegener
(2006)

g fr:cl pn sd:∆k cl sd:max:p d:K fr c – Not solved; non-linear
formulation

Günther et al. (2006) 1 1 1 si ls si:max d:K fr c CGI MIP-solver; block planning
Toledo et al. (2006) d 2:s pn sd:∆k cs sd:max:2 d:K fr c BI MIP-solver; add. time

structure for synchron.
Marinelli et al. (2007) s 2:s pn si ls si:max:1 d:K fr dm FI Decomposition-heuristic
Toledo et al. (2008a) d 2:s pn sd:∆k cs sd:max:2 d:K fr c BI TS, TA, GA; add. time

structure for synchron.
Toledo et al. (2008b) d 2:s pn sd:∆k cs sd:max:2 d:K fr c BI GA; add. time structure for

synchron.
Ferreira et al. (2009) d 2:s pn sd:∆v cs sd:max:p d:fr fr min BI Relaxation to 1 stage +

secondary resource, F&R
Toledo et al. (2009) d 2:s pn sd:∆k cs sd:max:2 d:K fr c BI GA; add. time structure for

synchron.
Toso et al. (2009) 1 1 1 – cs sd:max:p d:K fr dm AFI MIP-solver, F&R
Ferreira et al. (2010) d 1 1 sd:∆v cs sd:max:p d:fr fr min BI MIP-solver, F&R;

secondary resources
Lang (2010) g fr:cl pn sd:∆v cl sd:max:2 d:fr fr min – Not solved; STN, product

substitution
Mohammadi (2010) s fr:s:c pi sd:∆k cs sd:max:p d:K fr c – RH+F&R
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References BOM Ps M Sc Css St exoT endoS Ls Industry Heuristics/comments

Toledo et al. (2010) d 2:s pn sd:∆k cs sd:max:2 d:K fr c BI GA; add. time structure for
synchron.

Almeder and Almada-Lobo
(2011)

1 1 pn sd:∆k cs sd:max:p d:K fr c SI MIP-solver; secondary
resources

Pahl et al. (2011) 1 1 1 sd:∆v cs sd:max:p d:fr fr min CGI MIP-solver; perishability
Transchel et al. (2011) d 1 1 sd:∆v cs sd:max:p d:fr fr min PI MIP-solver
Camargo et al. (2012) d 1 pn sd:∆k cs sd:max:p d:K fr c PI MIP-solver; secondary

resources
Ferreira et al. (2012) d 1 pn sd:∆v ls sd:max:p d:fr fr mima BI MIP-solver; secondary

resources
Santos and Almada-Lobo
(2012)

g 2:s 1 sd:∆v cs sd:max:p d:fr fr min PI Stochastic F&O; secondary
resources

Tiacci and Saetta (2012) 1 1 1 sd:∆k cs – d:K fr c CGI RH
Figueira et al. (2013) g 2:s 1 sd:∆v cs sd:max:p d:fr fr min PI VNS; secondary resources
Furlan et al. (2013) g 2:s 1 sd:∆v cs sd:max:p d:fr fr min PI GA; secondary resources
Meyr and Mann (2013) 1 1 pn sd:∆v cs sd:max:p d:fr fr min CGI Decomposition
Seeanner (2013, p. 143) g fr:cl pn sd:∆v cl sd:max:2 d:fr fr min – MIP-solver; secondary

resources
Seeanner (2013, p. 148) g fr:cl pn sd:∆v cl sd:fr d:fr fr min – Not solved
Seeanner et al. (2013) g fr:cl pn sd:∆v cl sd:max:2 d:fr fr min CGI VNDS+F&O
Seeanner and Meyr (2013) g fr:cl pn sd:∆v cl sd:max:2 d:fr fr min CGI Reformulations, F&R,

LP&Fix
Baldo et al. (2014) d 2:s pn si cs sd:max:p d:K fr c BI F&R+F&O
Camargo et al. (2014) d 1 pn sd:∆k cs sd:max:p d:K fr c CGI HOPS; secondary

resources
Mohammadi and Poursabzi
(2014)

g fr:cl pn sd:∆k cl sd:max:p d:K fr c – RH

Toledo et al. (2014) d 2:s pn sd:∆v cs sd:max:p d:fr fr min BI GA
Furlan et al. (2015) g 2:s pn sd:∆v cs sd:max:p d:fr fr min PI GA; secondary resources
Rohaninejad et al. (2015) g fr:cl:c pn si ls sd:max:p d:K fr c – GA+PSO
Toledo et al. (2015) d 2:s pn sd:∆k cs sd:max:2 d:K fr c BI MIP-solver; add. time

structure for synchron.

2.3.2 Capacitated lotsizing problem with sequence-dependent setups (CLSD)

Another large-bucket model formulation for simultaneous lotsizing and scheduling is the capacitated

lotsizing problem with linked lotsizes and sequence-dependent setups (CLSD), first formulated by

Haase (1996). Compared to the GLSP, the sequence of the lots within a macroperiod is not modeled by

a predefined order of microperiods. Instead, it is described by a numbering of the products produced

within the period – as it is done in a tour of a traveling salesman problem (TSP). However, in contrast

to a TSP, the first and the last product of a macroperiod (tour) do not have to be equal. Furthermore,

it has to be decided whether a product is produced at all within a macroperiod (i.e., whether it is part

of the TSP tour). In the basic version of Haase (1996), subtour elimination constraints avoid a setup

sequence from a product k back to itself within the same macroperiod. Thus, a product can be produced

at most once per macroperiod. Later in Sect. 2.3.2, extensions of the CLSD will be presented, which

allow to produce the same product several times within a macroperiod (and thus allow a violation

of the triangle inequalities if technically necessary minimum lotsizes are respected). Haase (1996)

uses a backward-oriented heuristic to solve the problem. The heuristic starts in the last macroperiod
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T , creates a production plan for the current period and jumps to the previous period T − 1 until the

first period is reached. For the determination of the products and the associated lotsizes in a period

various priority rules are used. Shim et al. (2011) develop an alternative heuristic for the model of

Haase (1996). After generating an initial solution by first sequencing products and then determining

the corresponding lotsizes, the solution is improved with a backward scheduling method. Afterwards,

the solution is further enhanced with the help of movements from earlier to later periods in a forward

scheduling method.

A model with overtime, sequence-dependent setup times but only product-dependent setup costs

can be found in Laguna (1999). For the solution, lotsizing and scheduling is decomposed and period-

overlapping setups are allowed. A TS heuristic changes the schedule in order to improve the solution.

In the single-stage, parallel-machine model of Clark and Clark (2000), multiple products can be pro-

duced per macroperiod, but a predefined number of N setups must take place per period and machine.

For this reason, a binary variable is introduced which takes the value 0 if the nth setup on machine m in

period t occurs from product i to k. If less than N “real” setups are required, phantom setups are intro-

duced, i.e., a phantom setup from product k to itself on machine m at the nth position in period t with

zero setup time is scheduled. A rolling horizon (RH) approach is applied to speed up the solution pro-

cess. Clark (2003) extends the model for multiple production stages and multi-level product structures,

whereby the products are uniquely assigned to a given number of work centers. Almeder et al. (2015)

present two alternative model formulations for a problem similar to the one of Clark (2003). However,

their models also consider sequence-dependent setup costs. Each machine can produce a predefined set

of products. A product can be produced only on one machine. In order to allow “zero” lead times, the

concrete starting time of the production is recorded per product and (macro)period. “Zero lead times”

means that a successor product can be processed within the same period as its predecessor. The start-

ing times are coordinated for all products within the same period. The first formulation ensures that a

production may not start until the batch of the preceding product is finished. The second formulation

allows lot-streaming, i.e., the production of the successor product may start while the predecessor’s lot

is still produced.

Another multi-level model formulation of the CLSD with a unique assignment of products to ma-

chines is proposed by Grünert (1998). This model also includes positive lead times which means that

a product cannot be produced in the same macroperiod as its predecessor. Since macroperiods are

rather long time buckets, this assumption appears to be unrealistic if the bill-of-materials comprises

many levels. Grünert (1998) also presents a reformulation of the model based on echelon inventory.

Lagrangean decomposition and linear programming are used to generate a feasible solution which is

later improved by a TS heuristic.

Quadt and Kuhn (2005) consider a practical problem observed in the semiconductor industry. The

production system comprises multiple stages, each with several parallel machines. However, there is

a bottleneck stage which is modeled by a single-stage lotsizing and scheduling model. The overall

problem is solved in three steps. In a first step, the lotsizing and scheduling model is solved heuristi-

cally for aggregate products. Instead of introducing a binary setup variable for each product-machine

combination, the authors use integer setup variables denoting the number of machines which are set up
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for a given product. In the following steps, detailed schedules for the end products are constructed and

propagated to the other non-bottleneck stages. Quadt and Kuhn (2009) propose a model for the same

problem with sequence-independent setups. In a first step, the lotsizing problem is solved period by

period with the help of a reduced model formulation including overtime. In a second step, the actual

schedule is determined.

Gupta and Magnusson (2005) develop a single-machine model for a company producing sandpaper.

They introduce new variables which, for example, define whether a product is scheduled as the first or

the last product in a period, or whether at least one or exactly one product is produced in a period. Their

heuristic solution approach consists of three steps: generating an initial solution, shifting quantities by

means of certain rules and executing a greedy scheduling heuristic based on ascending setup costs.

Finally, the production plan is refined, e.g., by combining production quantities of the same product

from different periods.

Pochet and Wolsey (2006, p. 381) propose a model which sequences products in one macroperiod.

The model can easily be adapted to consider multiple macroperiods. Reformulations are proposed.

Almada-Lobo et al. (2007) present an alternative model formulation of the CLSD which is motivated

by a practical case of the glass container industry. Here, cycles without disconnected subtours are

allowed. That means that the first product of a period can be produced a second time within this period

(to efficiently use capacity if the setup already took place in the preceding period). Nevertheless, other

products still can only be produced once per period and disconnected subtours are still forbidden. They

show that their model needs less binary variables than the models of Clark and Clark (2000) and Gupta

and Magnusson (2005). Furthermore, a tighter model formulation and valid inequalities are presented.

A heuristic solution procedure is proposed that consists of multiple steps: first, a lot-for-lot strategy

is applied which may lead to overtime. Secondly, products are scheduled and overtime is eliminated.

Finally, the solution quality is improved by shifting production quantities backward/forward or by

rescheduling to reduce setup or inventory holding costs.

Almada-Lobo and James (2010) develop two meta-heuristics for this problem. They present a vari-

able neighborhood search with variable neighborhood descent heuristic and a TS heuristic. For this

purpose, the problem is represented as a sequence of jobs, each carrying a predefined demand and a

due date. The initial solution is generated by the heuristic of Almada-Lobo et al. (2007). James and

Almada-Lobo (2011) extend the model for parallel machines and propose a combination of an iterative

variable neighborhood search (INS) and a MIP-based approach (F&R) termed INSRF. Motivated by a

practical case of a steel mill, Kwak and Jeong (2011) add a special setup time structure to the model of

Almada-Lobo et al. (2007), whereby setup times depend on two adjacent products’ differences in size.

Kwak and Jeong (2011) decompose the overall problem. First, the lotsizing problem is solved with

estimated setup times and costs and neglected sequence dependencies. Next, based on the resulting

production quantities a schedule is generated. Menezes et al. (2011) also adapt the CLSD of Almada-

Lobo et al. (2007). Again, cycles without disconnected subtours are allowed. However, since minimum

lotsizes are considered, the triangle inequality may also be violated. Additionally, period-overlapping

setups can occur, i.e., setup times (and minimum lotsizes) may be split across adjacent periods. This

is realized by introducing a variable defining the amount of time which is still necessary to finish a
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setup and a new binary variable indicating if such a setup continues to the next period. A method is

presented for identifying and removing disconnected subtours.

An extended formulation of the problem of Almada-Lobo et al. (2007) from the glass container in-

dustry is presented in Almada-Lobo et al. (2008). The production system consists of several furnaces

which transfer melted glass to a set of parallel machines producing the glass containers. For technical

reasons, these machines must be supplied continuously with melted glass. Standard VNS with stochas-

tic and deterministic neighborhood changes and a reduced VNS (random generation of solutions) are

used to solve the problem heuristically.

Clark et al. (2010) propose several models for the problem of an animal feed company described by

Toso et al. (2009) (see Sect. 2.3.1). One model allows setup carry-overs and another one plans initial

setups between periods with the help of dummy products. As some products have cleansing properties,

the triangle inequality may be violated. A minimum production quantity constraint avoids unnecessary

setups. An asymmetric traveling salesman problem (ATSP) solution method is applied. For this reason,

an iterative subtour elimination is incorporated.

Based on the CLSD, Almeder and Almada-Lobo (2011) present an alternative formulation for the

GLSP with common tools (see Sect. 2.3.1). They introduce additional variables, representing the

starting times of the tool attachment and ending times of a tool exchange on a machine. A further

binary variable defines the sequences of tool usages on different machines. Setup state and changeover

variables are tool-dependent in contrast to the usual product-dependent decision variables. A numer-

ical analysis shows that this type of CLSD is superior to the corresponding GLSP-variant in terms of

solution time and quality.

Lang and Shen (2011) describe a problem concerning windshield interlayer production. In the con-

sidered company, some products can be substituted. For example, foils with large width can be used

instead of foils with shorter width. For the end of the planning horizon, final inventory targets are

given. An F&R and an F&O heuristic are used to solve large problem instances. In the F&O heuristic,

different subproblems are created with time-, product- and substitute-based decomposition strategies.

Pahl et al. (2011) consider the CLSD with perishability constraints.

The problem treated by Camargo et al. (2012) consists of two production stages. On the first stage, a

common resource produces a pre-product which is supplied to the second stage with multiple parallel

machines. Since only one pre-product can be processed at the same time, different new variables

are introduced, e.g., defining the starting and ending times of batches on the common resource. In

addition to the GLSP-based formulation, Camargo et al. (2012) propose a CLSD formulation and

an alternative model which neglects the period-based time grid. For a soft drink production system,

Ferreira et al. (2012) present an alternative large-bucket model formulation based on the ATSP with

subtour elimination constraints. This formulation uses the valid inequalities of Almada-Lobo et al.

(2007).

Amorim et al. (2013) compare different single-stage, parallel-machine formulations based on the

models of Amorim et al. (2011) and of Erdirik-Dogan and Grossmann (2008) as well as on the large-

bucket models of Almada-Lobo et al. (2007) and of Kopanos et al. (2011) (see Sect. 2.3.6). They

propose a new formulation with major and minor setups. Guimarães et al. (2013) assume a predefined
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set of setup sequences to be given. Their model chooses between these sequences and simultaneously

computes appropriate lotsizes. Non-triangular setups are possible. Minimum and maximum production

quantities are considered. The authors propose a heuristic to construct the sequences. Another RH-

and F&R-based heuristic generates solutions. Finally, the solution is improved by an F&O heuristic.

In Xiao et al. (2013), an extended formulation for the CLSD is presented for a problem in the

semiconductor manufacturing industry. A single production stage comprising parallel heterogeneous

machines is considered as the main bottleneck. Upstream production stages are indirectly included

by introducing time windows which restrict the starting times of setups. Products can be produced

on a predefined subset of machines. A preference for the underlying machine-product combina-

tion exists, but may be violated. F&O heuristics are developed for solving practical problems. An

F&R heuristic is used for initialization. Xiao et al. (2015) present an alternative solution approach

which combines a Lagrangean relaxation algorithm with a simulated annealing approach to the hybrid

Lagrangean-simulated annealing-based heuristic (HLSA). The problem is decomposed into a lot-sizing

and a parallel-machine scheduling problem within the LR method. The SA improves the solution of

the scheduling problem and provides an upper bound for the sub-gradient optimization of the LR algo-

rithm.

Clark et al. (2014) formulate a model which allows non-triangular setup times. Multiple lots of

the same product can be produced per period. In order to avoid unnecessary setups and inappropriate

cleaning operations, constraints on the minimum lotsize are used. New constraints are introduced

to coordinate sequences, avoid subtours and facilitate backlogs. Guimarães et al. (2014) also allow

multiple lots of a given product per period, but use a single-commodity-flow formulation for subtour

elimination.

Maldonado et al. (2014) present three different model formulations for the soft drink industry prob-

lem of Ferreira et al. (2012). Only one production line is considered. The models differ w. r. t. the

subtour elimination constraints included. The authors present, amongst others, an ATSP-based formu-

lation as well as a new multi-commodity-flow formulation.

Tempelmeier and Copil (2016) consider a scarce setup resource in a single-stage, multi-machine

production system. Since there is only one setup resource, setups and hence production plans must be

coordinated across all machines. In a basic model, a unique assignment of products to machines exists.

The authors also present extensions for parallel machines, batch production with cleaning processes

between batches and shelf life restrictions, which have been observed in the food industry. Considering

the limited capacity of the setup resource, an additional model formulation allows multiple setups per

product and period. An F&R and an F&O heuristic are proposed to solve large instances of practical

size.

An overview of the CLSD-based model formulations is given in Table 2.7. Almost all model formu-

lations correspond to the typical CLSD-structure: each product can be produced once per period (exoT

= d:K) and endogenous events are not limited by an internal grid (endoS = fr). All models consider ei-

ther sequence-dependent setup times (St = sd) and/or sequence-dependent setup costs (Sc = sd). Also,

the triangle inequality usually has to be kept in the basic model formulation (Sc = sd:∆k). However,

there are a few models allowing a violation of the triangle inequality (Sc = sd:∆v) and the production
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of multiple lots of a product per period (exoT = d:fr). These comprise for instance Menezes et al.

(2011), Guimarães et al. (2013) and Guimarães et al. (2014). In these cases, a minimum lotsize has to

be produced (Ls = min). Tempelmeier and Copil (2016) allow multiple lots per period with respect to

the scarce setup resource. Since the triangle inequality is kept, lotsizes can be continuous (Ls = c).

Table 2.7: Literature overview CLSD
References BOM Ps M Sc Css St exoT endoS Ls Industry Heuristics/comments

Haase (1996) 1 1 1 sd:∆k cs – d:K fr c – BA
Grünert (1998) g fr:cl 1 sd:∆k cs sd:max:p d:K fr max – LD, TS
Laguna (1999) 1 1 1 si cs sd:max:p d:K fr c CGI Decomposition, TS
Clark and Clark (2000) 1 1 pn sd:∆k cs sd:max:p d:K fr c – RH, F&R
Clark (2003) g fr:s 1 – cs sd:max:p d:K fr c – RH, F&R
Gupta and Magnusson (2005) 1 1 1 sd:∆k cs sd:max:p d:K fr c CGI Initialization, sequencing,

improvement
Quadt and Kuhn (2005) 1 1 pi sd:∆k cs sd:max:p d:K fr c SI Decomposition
Pochet and Wolsey (2006, p.
381)

1 1 1 sd:∆k ls – d:fr fr c – Reformulation

Almada-Lobo et al. (2007) 1 1 1 sd:∆k cs sd:max:p d:K fr c PI Five-step-heuristic;
MIP-solver

Almada-Lobo et al. (2008) d 1 pn sd:∆k cs sd:max:p d:K fr c PI VNS; secondary resources
Quadt and Kuhn (2009) 1 1 pi si cs si d:K fr c SI Decomposition
Almada-Lobo and James
(2010)

1 1 1 sd:∆k cs sd:max:p d:K fr c – VNS and TS

Clark et al. (2010) 1 1 1 – cs sd:max:p d:K fr min AFI Sequences with ATSP, then
lotsizing

Almeder and Almada-Lobo
(2011)

1 1 pn sd:∆k cs sd:max:p d:K fr c SI MIP-solver; secondary
resources

James and Almada-Lobo
(2011)

1 1 pn sd:∆k cs sd:max:p d:K fr max – INSRF

Kwak and Jeong (2011) 1 1 1 sd:∆k cs sd:max:p d:K fr c PI Hierarchical integration of
lotsizing and sequencing

Lang and Shen (2011) 1 1 1 sd:∆k cs sd:max:p d:K fr c CGI F&R and F&O; product
substitution

Menezes et al. (2011) 1 1 1 sd:∆v cs sd:fr d:fr fr min – MIP-solver
Pahl et al. (2011) 1 1 1 sd:∆k cs sd:max:p d:K fr c CGI MIP-solver; perishability
Shim et al. (2011) 1 1 1 sd:∆k cs – d:K fr c PI Generation and

improvement
Camargo et al. (2012) d 1 pn sd:∆k cs sd:max:p d:K fr c PI MIP-solver; secondary

resources
Ferreira et al. (2012) d 1 pn sd:∆k cs sd:max:p d:K fr mima BI MIP-solver; secondary

resources
Amorim et al. (2013) 1 1 pn sd:∆k cs sd:max:p d:K fr c CGI MIP-solver
Guimarães et al. (2013) 1 1 1 sd:∆v cs sd:max:p d:fr fr mima – Decomp., F&R/F&O
Xiao et al. (2013) 1 1 pn sd:∆k cs sd:max:p d:K fr c SI F&R, F&O
Clark et al. (2014) 1 1 1 si cs sd:max:p d:fr fr min – MIP-solver
Guimarães et al. (2014) 1 1 1 sd:∆v cs sd:max:p d:fr fr min – MIP-solver
Maldonado et al. (2014) 1 1 1 sd:∆k cs sd:max:p d:K fr mima BI MIP-solver; secondary

resources
Tempelmeier and Copil (2016) 1 1 pi sd:∆k cs sd:max:p d:fr fr c FI F&R, F&O; secondary

resources, perishability
Almeder et al. (2015) g fr:s:o 1 sd:∆k cs sd:max:p d:K fr c – MIP-solver
Xiao et al. (2015) 1 1 pn sd:∆k cs sd:max:p d:K fr c SI HLSA

Numerous publications are based on practical cases (from the AFI, CGI, FI, PI or SI). These pub-
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lications show that the consideration of secondary resources or bottleneck machines becomes more

frequent, see for example Almada-Lobo et al. (2008), Almeder and Almada-Lobo (2011), Camargo

et al. (2012), Ferreira et al. (2012), Maldonado et al. (2014) and Tempelmeier and Copil (2016). Sub-

stitution (Lang and Shen 2011) or perishability (Pahl et al. 2011 or Tempelmeier and Copil 2016) are

included into some model formulations. Besides that, starting with Clark and Clark (2000), numerous

models consider parallel machines (M = pn or pi) both for theoretical or practical problems. For the

CLSD, mainly exact or MIP-based solution approaches are used, see column heuristics/comments.

2.3.3 Proportional lotsizing and scheduling problem (PLSP)

The PLSP was introduced by Haase (1994) (see also Drexl and Haase 1995). In comparison to the

GLSP and CLSD, the production of at most two different products per period is possible by allowing

one setup at any time during a period. Thus, in terms of practical application, the length of such a

period will usually be rather short. This marks the PLSP as a small-bucket model. Although Haase

(1994) already included sequence-dependent setup costs in a model formulation, the basic model of

Drexl and Haase (1995) does not consider setup times. It is solved using a backward-oriented, regret-

based, biased random sampling method (BACKADD). The method solves the problem starting in the

last period and moving back one by one period until the first period is reached. Randomized regrets are

used to determine which product should be scheduled in a period. Thereby, the products are randomly

selected with a probability proportional to the regrets depending on potential savings. The “random-

ized regret”-based heuristic is extended by Drexl and Haase (1996). They partition the parameter

search space into subspaces via sequential analysis based on hypothesis testing. More advanced model

variations of the PLSP including setup times or parallel machines, respectively, are also presented by

Drexl and Haase (1995). Here, the modeling approach allows period-overlapping setups. The authors

propose randomized measures to adapt BACKADD accordingly.

Drexl et al. (1995) and Kimms (1996b) extend the PLSP for a general, multi-level product struc-

ture and propose an RR-based solution heuristic. However, still only a single machine is considered.

Kimms (1996a) compares a modification of these RR-based methods with a TS approach. In Kimms

(1997a), an iterative two-phase procedure is proposed. A feasible production plan is constructed using

a backward-oriented approach. Afterwards, demands are shifted, a new production plan is generated

and compared to the currently best solution. The second phase is called demand shuffle (DS). Kimms

(1997b, p. 31) extends the model to multiple production stages. He presents DS-based heuristics and

numerical tests for the special case in which products are uniquely assigned to machines. In addition,

Kimms (1997b, p. 60) proposes a multi-level PLSP model for parallel machines and a corresponding

DS-based heuristic. Kimms and Drexl (1998) summarize the extensions of the PLSP and propose a

backward-oriented RR-heuristic to solve the multi-level, parallel-machine problem. Finally, Kimms

(1999) considers the model with a unique assignment of products to machines and shows that a new

GA is superior to his earlier TS approach with respect to computation time and solution quality.

Chang et al. (2004) extend the model of Kimms (1999) to consider product life cycles. They as-

sume that the capacity consumption depends on the phase of the life cycle. Phase-dependent weights
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are introduced to allocate the available capacity. In addition, setup learning effects are integrated by

changing the setup costs over time. Cash flows are considered by discounting the setup and inventory

holding costs with a rate of return per period and product. A GA with a backward-oriented procedure

is used to solve the lotsizing and scheduling problem.

Wolsey (1997) proposes a general model formulation which includes product-dependent start-up

and sequence-dependent setup costs and fulfills the characteristics of the CSLP (see Sect. 2.3.4) by

allowing the setup for and production of one product per period. Different extensions considering

changeovers are presented. Thereby, one extension allows the production of two products per period

what corresponds to the PLSP.

Suerie (2005) concentrates on selected problem settings found in the chemical industry. These in-

clude, for example, minimum and maximum production quantities to initiate a chemical reaction or

to ensure cleaning operations. Also, production quantities may consist of multiple fillings, so-called

batches. Thus, the whole contiguous production run of a product, that may continue over several

consecutive periods (“campaign”), must be recorded. To ensure this, the author introduces a product-

specific campaign variable, which contains the cumulated production quantity of the product, starting

after the last campaign, summing up to the current period. Suerie (2006) picks up this idea and presents

two new model formulations. These enable the modeling of “period-overlapping” setups. Contrary to

traditional formulations of the PLSP, a setup is not confined to a single period, but may run over mul-

tiple consecutive periods. In the first model formulation (POST1), a continuous variable similar to the

campaign variable of Suerie (2005) is introduced. It cumulates the setup time from the first to the last

period of a setup. A binary variable defines whether a setup has already been finished or still continues

at the end of a period. The second model (POST2) introduces two new variables. They record the

relative share of the overall setup time at the end of a period, on the one hand, or at the beginning

of/within a period, on the other hand.

Pochet and Wolsey (2006, p. 378) present a PLSP model and propose a reformulation to strengthen

the initial model. A model specialized for the process industry is presented by Pochet and Wolsey

(2006, p. 470). Shutdown costs and cleaning times which occur after a lot is finished are considered

instead of setup times and costs. The model formulation is further tightened.

Tempelmeier and Buschkühl (2008) present a model formulation for the PLSP with multiple ma-

chines inspired by a practical problem observed in the automobile industry. Each product is uniquely

assigned to a predefined machine. However, setups are carried out by a single, common setup operator.

Similar to Tempelmeier and Copil (2016), isolated lotsizing for each machine is not possible anymore

as the setups must be coordinated across all machines to avoid overlapping of setups. A new continu-

ous variable records the beginning of a setup on a machine in a microperiod. Another variable stores

the visiting sequence of the setup operator for the machines. A simple plant location reformulation is

proposed. A third model formulation differentiates between minor and major setups.

In order to avoid symmetry, Kaczmarczyk (2011) reformulates the single-stage, parallel-machine

PLSP with respect to a problem of the electronics industry. He introduces integer variables instead of

binaries. Different new constraints help to coordinate flow variables for different machines. Several

model formulations are presented with setup variables or start-up and switch-off variables. Pahl and
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Voß (2010) add perishability to the PLSP similar to the approaches for the GLSP and CLSD.

Stadtler (2011) proposes a formulation for the PLSP with a single machine but a multi-level, general

product structure that allows zero lead times in order to tackle some selected problems of a pharmaceu-

tical company. The author draws upon ideas from Suerie (2005) in order to coordinate the production

sequence of products directly related in the BOM structure. Stadtler (2011) also extends the model for

period-overlapping setup operations and uses modeling techniques of Suerie (2006). Finally, he adds

batch-flow restrictions to the model. Stadtler and Sahling (2013) define two model formulations for the

PLSP with general product structures, multiple serial machines and a unique assignment of a product

to a machine. Similar to Stadtler (2011), period-overlapping setups are modeled with the help of two

continuous variables defining the planned setup time at the end or at the beginning/within a period. A

fixed lead time of one period is used in the first model, but no longer needed in the second formulation.

Two – with respect to the bill-of-materials – consecutive products can be produced within the same

period. F&R is used to create an initial solution, which is improved by F&O.

Table 2.8: Literature overview PLSP
References BOM Ps M Sc Css St exoT endoS Ls Industry Heuristics/comments

Haase (1994) 1 1 1 sd:∆k cs – d:2 fr c – RR
Drexl and Haase (1995, p. 75) 1 1 1 si cs – d:2 fr c – RR
Drexl and Haase (1995, p. 81) 1 1 1 si cs si:fr:fr d:2 fr c – RM
Drexl and Haase (1995, p. 82) 1 1 pn si cs – d:2 fr c – RM
Drexl et al. (1995) g 1 1 si cs – d:2 fr c – RR
Drexl and Haase (1996) 1 1 1 si cs – d:2 fr c – RR, sequential analysis
Kimms (1996a) g 1 1 si cs – d:2 fr c – RR, TS
Kimms (1996b) g 1 1 si cs – d:2 fr c – RR
Kimms (1997a) g 1 1 si cs – d:2 fr c – DS
Kimms (1997b, p. 31) g fr:cl 1 si cs – d:2 fr c – DS; intensive test
Kimms (1997b, p. 60) g fr:cl pn si cs – d:2 fr c – DS; rudimental tests
Wolsey (1997) 1 1 1 sd:∆k cs si:max:1 d:2 fr c – Unit flow formulation
Kimms and Drexl (1998) g fr:cl pn si cs – d:2 fr c – RR
Kimms (1999) g fr:cl 1 si cs – d:2 fr c – GA
Chang et al. (2004) g fr:cl 1 si cs – d:2 fr c – GA
Suerie (2005) 1 1 1 si cs si:max:1 d:2 fr dm CI MIP-solver
Pochet and Wolsey (2006, p.
378)

1 1 1 sd:∆k ls – d:2 fr c – Reformulation

Pochet and Wolsey (2006, p.
470)

g 2:s pn si ls si:max:1 d:2 fr min PI Reformulation

Suerie (2006) 1 1 1 si cs si:fr:fr d:2 fr c CI MIP-solver
Tempelmeier and Buschkühl
(2008)

1 1 1 si cs si:max:1 d:2 fr c AI MIP-solver; secondary
resources

Pahl and Voß (2010) 1 1 1 si ls si:max:1 d:2 fr c CGI MIP-solver; perishability
Stadtler (2011) g 1 1 si cs si:max:fr d:2 fr dm PhI MIP-solver
Kaczmarczyk (2011) 1 1 pi si cs si d:2 fr c EI MIP-solver
Stadtler and Sahling (2013) g fr:s:o 1 si cs si:fr:fr d:2 fr c – F&R as initialization then

F&O

Table 2.8 summarizes the presented formulations for the model PLSP. The number of models is

smaller compared to the number of big bucket formulations. As the column exoT shows, a production

of at most two products is allowed in all models (d:2), which corresponds to the assumptions of the
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PLSP. Endogenous events can be scheduled freely (endoS = fr). Table 2.8 shows that setup costs

are mainly sequence-independent (Sc = si). Positive (also sequence-independent) setup times (St =

si) are predominantly considered in more recent publications, starting with Suerie (2005). Almost all

models considering setup times are based on practical cases (AI, CGI, CI, EI, PhI, PI) which proves the

relevance of these types of constraints. Drexl and Haase (1995, p. 81), Suerie (2006), Stadtler (2011)

and Stadtler and Sahling (2013) present models which additionally allow period overlapping setups (St

= si:fr:fr or St = si:max:fr). Furthermore, Table 2.8 shows that many PLSP-based model formulations

consider a general and multi-level bill-of-materials structure (BOM = g). Lotsizes of Suerie (2006)

and Stadtler (2011) additionally comprise multiple batches (Ls = dm). The first publications for PLSP-

formulations use RR- and DS-based solution methods. However, more recent papers rather rely on

standard MIP-solvers.

2.3.4 Continuous setup lotsizing problem (CSLP)

The CSLP is more restrictive than the PLSP. It allows to produce at most a single product within a

period. Since a period’s capacity does not need to be completely exhausted, “continuous” lotsizes

extending over multiple periods are possible. The CSLP is qualified as a small-bucket model since

this kind of models have only a small number of different products within each period. Karmarkar

and Schrage (1985) propose the first multi-item CSLP formulation. They consider a single machine

and incorporate sequence-independent setup costs and time-dependent production costs. The model is

solved by a B&B approach, in which Lagrangean relaxation is used to determine lower bounds and

to generate subproblems. The subproblems are solved by dynamic programming (DP). Dynamic pro-

gramming means that a problem is divided into subproblems. The optimal solutions of the subproblems

are recursively combined to get the optimal solution of the overall problem. The authors come to the

conclusion that the results are not very encouraging. Pochet and Wolsey (1991) add cuts to the model

which lead to slightly improved results.

A model formulation with non-identical, parallel lines and sequence-dependent setup costs is pro-

posed by de Matta and Guignard (1995). They solve the model using Lagrangean relaxation. As

Table 2.9 shows, the time structure differs from the original one of Karmarkar and Schrage (1985).

The reason is that demand and inventory holding costs are modeled on a macroperiod basis as it has

already been done by Fleischmann (1990) for the DLSP (see Sect. 2.2.2). Since the microperiods

used for production have fixed lengths, the model is not classified as a GLSP. Compared to the DLSP

of Fleischmann (1990), the endogenous state changes are different. Because of the all-or-nothing as-

sumption, the DLSP fixes them to the internal time grid (see Table 2.3), which is not the case in the

CSLP formulation of de Matta and Guignard (1995).

Wolsey (1997) proposes a formulation with sequence-dependent setup times. The objective function

minimizes the sum of the following time-dependent costs: production costs, holding costs, sequence-

dependent and -independent setup costs and costs which occur if the machine is in the state to produce

a certain product. The latter costs do not only occur if the machine is idle, like the standby costs in the

GLSP (Meyr 1999, Chap. 4). They also occur while production takes place. A reformulation using
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a “flow conservation of the setup state” is introduced and further tightened. Numerical tests are not

presented.

Vanderbeck (1998) considers a CSLP formulation with sequence-independent setup times. Column

generation (CG) and a cutting plane algorithm are combined to solve the problem. In general, CG ap-

proaches define a master problem with a reduced number of variables and one or multiple subproblems.

The subproblems decide which variables improve the solution of the master problem and are added to

this problem. The single-item subproblems of Vanderbeck (1998) which arise because initial stocks

are treated as decision variables are solved by dynamic programming. Another CSLP formulation with

sequence-independent setup costs and further costs which occur while the machine is prepared for

production is presented by Constantino (2000). The author incorporates real-life aspects such as min-

imum lotsizes and backlogging. Several valid inequalities are derived. Finally, a branch&cut (B&C)

algorithm is applied to solve the problem. Compared to B&B, the computation times are reduced

significantly.

An injection molding process is considered by Dastidar and Nagi (2005). Production can take place

on parallel, heterogeneous workcenters, but requires additional resources such as conveyors or grinders.

A binary parameter indicates if such a resource is necessary to produce a certain product on a certain

workcenter or not. A decomposition algorithm groups the workcenters and generates subproblems

(two-phase workcenter-based decomposition strategy). This leads to a much better solution perfor-

mance than a monolithic approach.

Pochet and Wolsey (2006, p. 173) present a CSLP model for a machine which bottles cleaning

liquids. They propose valid inequalities and solve the model using F&R and F&O.

A practical case of a foundry is considered by de Araujo et al. (2007). Multiple raw materials are

processed consecutively on a single machine. Changeovers from one raw material to another cause

sequence-dependent setup costs and times. The processing of each raw material simultaneously leads

to several end products. The authors state that the model formulation was inspired by the GLSP. How-

ever, the length of the microperiods is predetermined. Thus, similar to de Matta and Guignard (1995),

we prefer to classify it as a CSLP. A rolling horizon approach combined with an F&R heuristic solves

the problem heuristically. De Araujo et al. (2008) adapt the formulation for sequence-independent

setup costs and times. De Araujo and Clark (2013) convert the model from de Araujo et al. (2007) into

a simple plant location (SPL) formulation to apply the same solution approaches.

A quite general State-task-network model for the process industry is proposed by Gaglioppa et al.

(2008). In a basic version, a single processing unit exists which can carry out different tasks of arbi-

trary lengths. Each task may handle multiple input materials and can lead to multiple end products.

The model is extended to cover multi-stage parallel processing units. The authors formulate valid

inequalities and execute some numerical tests.

A problem from the glass container production is considered by Almada-Lobo et al. (2010). The

production system consists of a furnace supplying multiple parallel molding machines which process

the melted glass. This system is represented as a single-stage model considering the melted glass as an

additional scarce resource which limits the production quantities of the molding machines. For each

molding machine and period, it is possible to determine the output rate by deciding about the number
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of active mold cavities. First, the authors present a formulation in which this number of cavities has to

be integer, then they relax the model by allowing continuous lotsizes. The furnace can be inactive, but

only at the end of the planning horizon. If the furnace is active, the complete capacity of the furnace

should be used. Otherwise, penalty costs are incurred. The model is converted into a formulation with

“flow conservation of the setup state” and decomposed into subproblems by Lagrangean relaxation.

Toledo et al. (2013) consider the same problem, but only allow discrete lotsizes in form of complete

batches. However, these are not fixed to microperiod boundaries as it would be the case in a DLSP

formulation. The authors propose a GA combined with a heuristic to determine the optimal number of

mold cavities.

Pahl and Voß (2010) formulate a DLSP model considering perishability (see Sect. 2.3.5). This

model is relaxed into a CSLP formulation by allowing continuous lotsizes. However, the CSLP is only

an intermediate model and it is directly converted into the PLSP formulation mentioned in Sect. 2.3.3.

Table 2.9 gives an overview of the CSLP based models. Multi-stage bill-of-materials (BOM = d or

g) are only considered by de Araujo et al. (2007), de Araujo et al. (2008), Gaglioppa et al. (2008) and

de Araujo and Clark (2013). Column M shows that most of the models consider only a single machine.

Exceptions are de Matta and Guignard (1995), Dastidar and Nagi (2005), Gaglioppa et al. (2008),

Almada-Lobo et al. (2010) and Toledo et al. (2013). There exist models which consider sequence-

dependent setup costs (Sc = sd) presented for example by de Matta and Guignard (1995) and Wolsey

(1997), while other models proposed e.g. by Karmarkar and Schrage (1985) and Pochet and Wolsey

(1991) consider sequence-independent setup costs. Starting from 1997, nearly all models respect setup

times (see column St).

Table 2.9: Literature overview CSLP
References BOM Ps M Sc Css St exoT endoS Ls Industry Heuristics/comments

Karmarkar and Schrage (1985) 1 1 1 si cs – d:1 fr c – B&B+LR
Pochet and Wolsey (1991) 1 1 1 si cs – d:1 fr c – Cutting planes
de Matta and Guignard (1995) 1 1 pn sd:∆k cs – d:K d:1:fr c PhI LR
Wolsey (1997) 1 1 1 sd:∆k cl sd:max:1 d:1 fr c – Reformulation; not solved
Vanderbeck (1998) 1 1 1 si cs si:max:1 d:1 fr c – CG+ cutting planes
Constantino (2000) 1 1 1 si cl si:max:1 d:1 fr min – B&C
Dastidar and Nagi (2005) 1 1 pn sd:∆k cs sd:max:1 d:1 fr c CGI Decomposition; secondary

resources
Pochet and Wolsey (2006, p.
173)

1 1 1 si ls – d:1 fr mima CGI Valid inequalities, F&R,
F&0

de Araujo et al. (2007) d 1 1 sd:∆v cs sd:max:1 d:fr d:1:fr dm – RH+F&R+LS
de Araujo et al. (2008) d 1 1 si cs si:max:1 d:K d:1:fr dm PI RH+F&R+LS
Gaglioppa et al. (2008) g fr:cl:c pn si cs – d:1 fr c PI Valid inequalities, STN
Almada-Lobo et al. (2010) 1 1 pn sd:∆v cs sd:max:1 d:1 fr mima PI LR; secondary resources
Pahl and Voß (2010) 1 1 1 si ls si:max:1 d:1 fr c CGI Not solved; perishability
de Araujo and Clark (2013) d 1 1 sd:∆v cs sd:max:1 d:fr d:1:fr dm – RH+F&R+LS, SPL

formulation
Toledo et al. (2013) 1 1 pn sd:∆v cs sd:max:1 d:1 fr dm PI GA; secondary resources

In most cases the time structure is CSLP-typical: exogenous events are considered using a discrete

time grid of microperiods (exoT = d). Endogenous events are not bound to a time grid (endoS = fr). The

number of lots per microperiod is limited to at most one (exoT = d:1). Some of the models (de Matta
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and Guignard 1995; de Araujo et al. 2007; de Araujo et al. 2008; de Araujo and Clark 2013) consider

demand on basis of macroperiods which consist of a predefined number of microperiods. In fact, this

results in two time grids: one macroperiod time grid with the possibility of producing K or an arbitrary

number of lots per macroperiod (exoT = d:K or d:fr), and one microperiod time grid which allows one

lot per microperiod but does not further limit the starting and ending times of lots (endoS = d:1:fr).

These models are not classified as GLSP since the lengths of microperiods are defined in advance. As

it is shown in column Ls, lotsizes are continuous (e.g. Karmarkar and Schrage 1985) or discrete (e.g.

de Araujo et al. 2007) and only seldom limited to upper or lower bounds (e.g. Pochet and Wolsey

2006, p. 173). Some models are directly based on industrial scenarios. For instance, Dastidar and

Nagi (2005) consider a case from the consumer goods industry. Solution approaches are e.g. LR (e.g.

de Matta and Guignard 1995), cutting planes (e.g. Vanderbeck 1998) or RH heuristics (e.g. de Araujo

et al. 2007).

2.3.5 Discrete lotsizing and scheduling problem (DLSP)

The term DLSP was first used by Fleischmann (1990). It emphasizes that the resulting lotsizes are

always multiple integers of the period capacity. This fact is founded in the all-or-nothing assumption.

Lasdon and Terjung (1971) present a model formulation for a tire manufacturer based on this assump-

tion. They consider multiple products with dynamic demand which are produced on parallel, identical

machines. Setup times are neglected. A special restriction is that on each machine a die is needed for

production. These dies are only available in a limited number. Furthermore, the model is extended to

respect limited personnel capacity. The personnel is necessary for mounting and dismounting the dies.

The basic model is solved using column generation. Eppen and Martin (1987) use variable redefinition

to reformulate this problem. Furthermore, they apply LP relaxation to determine better bounds for a

B&B procedure.

Schrage (1982) presents a model formulation for a single machine with sequence-dependent setup

costs. He also proposes an LP relaxation as a solution approach. However, numerical experiments are

not presented.

Liberatore and Miller (1985) consider a problem from a tile company. They propose a hierarchi-

cal planning model which includes simultaneous lotsizing and scheduling for parallel, heterogeneous

production lines. In addition, they present a reformulation without inventory variables. The model

is solved using LP relaxation. De Matta and Guignard (1994a) present a solution approach based on

Lagrangean relaxation for the same problem. De Matta and Guignard (1994b) adapt the model for-

mulation with respect to sequence-dependent setup times. However, these setup times are indirectly

modeled as production losses, measured in units of the products produced. They also apply LR and

use real data from a tile manufacturer.

As already mentioned in Sect. 2.2.2, Fleischmann (1990) presents a DLSP formulation considering a

single machine. He eliminates the inventory variables and expresses the cumulated demand by the cor-

responding number of production periods. This results in a much simpler formulation which facilitates

to model demand and inventory costs associated with macroperiods. Nevertheless, there still exists a
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more detailed endogenous time structure on the basis of microperiods to represent the schedule. The

advantage of this mix of periods is that reasonable plans can be constructed despite of the restricting

all-or-nothing assumption. Fleischmann (1990) solves the DLSP using a B&B procedure combined

with LR. A linear description of Fleischmann’s basic DLSP is given by van Hoesel and Kolen (1994).

Furthermore, the authors propose a DP approach. Both approaches are derived using a shortest path

formulation of the DLSP.

A model with conservation of the setup state in idle periods is presented by Magnanti and Vachani

(1990). For this purpose they differentiate between binary variables which indicate setup states,

changeovers and production. It is possible to realize a loss of a setup state by omitting the setup

state variables. The authors also propose an extension to include sequence-independent setup times.

These can last an integer multiple of the period length. Campbell (1992) presents a model for identical,

parallel machines with sequence-independent setup times and costs. Here, setup times are limited to at

most one microperiod. LR is proposed as a solution approach.

Cattrysse et al. (1993) use a model formulation which considers sequence-independent setup times.

They present a heuristic based on dual ascent and column generation methods. For this purpose, they

reformulate the model as a set partitioning problem. Brüggemann and Jahnke (1994) introduce a model

for a two-stage production process. A lot can only be transferred to the second production stage after

its completion on the first production stage. A simulated annealing (SA) algorithm solves the model

heuristically. Later Brüggemann and Jahnke (2000a)9 adapt the single-stage model of Cattrysse et al.

(1993) for a similar transfer strategy: only after finishing the complete lot, the quantity produced gets

available on stock. Therefore, a new variable is introduced, which indicates the last production period

of a lot. Again, the model is solved using SA.

De Matta (1994) compares Lagrangean decomposition with Lagrangean relaxation as solution ap-

proaches for a single-machine problem with sequence-independent setup costs. A model with sequence-

dependent setup costs is presented by Fleischmann (1994). His solution method is based on a refor-

mulation as a traveling salesman problem with time windows (TSPTW) and on LR. Salomon et al.

(1997) extend this DLSP for sequence-dependent setup times. Inspired by Fleischmann (1994), they

reformulate their model as a TSPTW and solve it with the help of the dynamic programming approach

of Dumas et al. (1995).

Göthe-Lundgren et al. (2002) formulate a quite general, multi-stage model and apply it to an oil

refinery. The production system consists of a distillation unit and two different hydro-treatment units.

It is possible to run the three production units in different modes. A “run-mode” of a production

unit defines the input materials consumed and the output products generated. Changeovers between

run-modes can be interpreted as setups because they disturb the production process. Extensions are

also considered. Examples are variable yield levels for run modes, which can be chosen by additional

variables, or common resources, which restrict the choice of run-modes. An exact and a heuristic

approach are proposed to solve the problem. Persson et al. (2004) modify the model to additionally

consider sequence-dependent changeover costs when switching the run-mode. Here, special variants

9Note the erratum Brüggemann and Jahnke (2000b).
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of TS are applied to solve the model.

Wolsey (2002) reviews reformulations, valid inequalities and algorithms for single-item lotsizing

problems. As we have seen above, many solution approaches for the DLSP (like, e.g., LR) use decom-

position of the multi-item model into simpler single-item models. Thus, Wolsey’s findings are rele-

vant for the DLSP, too. Miller and Wolsey (2003) present different DLSP extensions which consider

backlogging, initial inventory variables or both of these characteristics. Furthermore, they incorporate

safety stocks and piecewise-linear holding costs. They reformulate their models to get tight formula-

tions and test them using data taken from practice. A so-called “minimal model” (c.f., Brüggemann

et al. 2003a) of the DLSP is constructed by Brüggemann et al. (2003b). They introduce one parameter

which denotes periods with positive demand and a second parameter which stores the related demand

quantities. Thus it is possible to construct a model which gets along without time-indexed variables.

The authors use this conceptual model for complexity discussions, but they do not solve it.

The multi-stage model presented by Muramatsu et al. (2003) takes general product structures and

parallel, non-identical machines into account. Integer lead times for moving the products from one ma-

chine to another are considered. LR and item-based decomposition are used to create simpler subprob-

lems. These subproblems are solved by DP. Jans and Degraeve (2004) present another single-stage,

parallel-machine DLSP formulation for a tire manufacturer. Tires are cured in heaters. For each curing

process an additional mold is used. Both heaters and molds are scarce resources. The main part of a

setup operation is spent to warm up the molds. Because of the personnel’s availability, this can only

happen at the beginning of a day’s first shift. To prevent the molds from cooling, production must

always run at full capacity (all-or-nothing). The model is solved with a column generation procedure.

Pochet and Wolsey (2006, p. 374) formulate several DLSP models with different characteristics such

as backlogging or sequence-dependent setup costs. They propose different reformulations to get tighter

formulations. Another DLSP model is presented by Pochet and Wolsey (2006, p. 466). They propose

tighter formulations and discuss different accountings of setup costs during idle times if product i is

produced before the idle time and product k afterwards.

Gicquel (2008, p. 36) considers a single-machine DLSP and notes that planners often group change-

overs based on technical considerations and then assign product combinations to these changeover

types with type-specific changeover costs. Grouping product changeovers in this manner reduces the

size of the DLSP model. Gicquel (2008) uses cutting plane generation strategies to solve the aggregated

model based on changeover types and the standard model formulation without changeover grouping.

Thereby, the standard model performs better because of the tighter formulation. Gicquel et al. (2009a)

apply a similar principle. However, they exploit the setup characteristics in a more realistic way. If each

product has different physical attributes, like color or dimension, then sequence-dependent changeover

costs can be considered on this attribute level. If several attributes are changed at the same time, then

the corresponding changeover costs sum up. Because of this aggregation the number of changeover

variables is reduced. Gicquel et al. (2009a) benchmark their approach with a product-dependent formu-

lation. They add valid inequalities to both models. Here, in many cases, the new formulation performs

better. A tight formulation for the DLSP with additional sequence-dependent changeover times is pro-

posed by Gicquel et al. (2009b). They adapt the approach of van Eijl and van Hoesel (1997), referred
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to by Wolsey (2002), and introduce valid inequalities.

Gicquel et al. (2011) present a DLSP formulation for parallel, identical machines and adapt the valid

inequalities of van Eijl and van Hoesel (1997) for this problem. A cutting plane generation procedure

is proposed, which incorporates these inequalities. Gicquel et al. (2012) also consider identical, paral-

lel machines. Integer instead of binary variables help to identify the setup states of the machines and

the changeovers. This aggregate planning of the machines improves the solution performance. The

aggregated formulation is further strengthened by various approaches. The resulting models are com-

pared with each other with the help of numerical experiments. A quadratically constrained, quadratic

binary programming formulation of the DLSP is given by Gicquel et al. (2014). This formulation is

semidefinitely relaxed what leads to stronger lower bounds than linear relaxations.

As mentioned before, Pahl and Voß (2010) also propose a DLSP formulation considering deterio-

ration and perishability. Computational tests show that the PLSP formulation is superior to the DLSP

with perishability constraints. They come to the conclusion that the DLSP is less useful in case of

deterioration and perishability because the all-or-nothing assumption leads to too high stock levels.

Supithak et al. (2010) assume different demands for different products with different, probably10

discrete due dates which have to be fulfilled by a single machine. Furthermore, the model considers

sequence-independent setup costs, holding costs and costs for tardiness. An order can be satisfied by

several lots. Different heuristics are proposed to solve small and large problem instances.

Gicquel and Minoux (2015) consider a single-machine DLSP formulation with “flow conservation

of the setup state”. The authors propose multi-product valid inequalities. The separation problem is

solved using exact and heuristic algorithms.

The aforementioned models are summarized in Table 2.10. Most of the models consider a single

machine (M = 1). Until 2004, only a few models considered sequence-dependent setup costs (Sc = sd).

Examples are Schrage (1982) and Fleischmann (1994). The other models merely respect sequence-

independent setup costs (Sc = si). Some models consider setup times (see column St). See for example

Magnanti and Vachani (1990), Campbell (1992) and Gicquel et al. (2009b). The time structure of most

of the models is DLSP-typical: exogenous events are fixed to a microperiod time grid. At most one

lot is allowed per microperiod (exoT = d:1). Endogenous state changes are also fixed to the external

time grid (endoS = fi). However, in some models (e.g. Fleischmann 1990 and Brüggemann and Jahnke

1994), microperiods are aggregated to macroperiods to create an external time grid with longer periods.

In these cases, K lots are allowed per macroperiod (exoT = d:K). Endogenous events are fixed to the

microperiod structure (endoS = d:1:fi). Based on the all-or-nothing assumption, all lotsizes are integer

multiples of a predefined batch size (Ls = dm). Some models are based on industrial applications.

Examples are Lasdon and Terjung (1971), Liberatore and Miller (1985), Jans and Degraeve (2004) and

Persson et al. (2004). Solution approaches mainly rely on LP relaxation (e.g. Eppen and Martin 1987),

LR (e.g. de Matta 1994), DP (Campbell 1992) and LD (Muramatsu et al. 2003).

10The model formulation is incomplete, but an example is mentioned.
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Table 2.10: Literature overview DLSP
References BOM Ps M Sc Css St exoT endoS Ls Industry Heuristics/comments

Lasdon and Terjung (1971) 1 1 pi si ls – d:1 fi dm PI CG; secondary resources
Schrage (1982) 1 1 1 sd:∆v cs – d:1 fi dm – LP relaxation
Liberatore and Miller (1985) 1 1 pn si ls – d:1 fi dm PI LP-relaxation
Eppen and Martin (1987) 1 1 pi si ls – d:1 fi dm PI Variable redefinition,

LP-relaxation; secondary
resources

Fleischmann (1990) 1 1 1 si ls – d:K d:1:fi dm – B&B+LR
Magnanti and Vachani (1990) 1 1 1 si cs – d:1 fi dm – B&B+cutting planes
Magnanti and Vachani (1990) 1 1 1 si ls si:d:fr d:1 fi dm – Not solved
Campbell (1992) 1 1 pi si cs si:max:1 d:1 fi dm – LR+DP
Cattrysse et al. (1993) 1 1 1 si ls si:d:fr d:1 fi dm – Set partitioning

problem+dual ascent+CG
Brüggemann and Jahnke
(1994)

g 2:s:c 1 si ls si:d:fr d:K d:1:fi dm – SA; non-linear formulation

de Matta (1994) 1 1 1 si ls – d:1 fi dm – LR, LD
de Matta and Guignard
(1994a)

1 1 pn si ls – d:1 fi dm PI LR

de Matta and Guignard
(1994b)

1 1 pn sd:∆v ls sd:max:1 d:1 fi dm PI LR

Fleischmann (1994) 1 1 1 sd:∆v ls – d:fr d:1:fi dm – TSPTW reformulation+LR
van Hoesel and Kolen (1994) 1 1 1 si ls – d:1 fi dm – Linear reformulation, DP
Salomon et al. (1997) 1 1 1 sd:∆v ls sd:d:fr d:1 fi dm – TSPTW reformulation+DP
Brüggemann and Jahnke
(2000a)

1 1:c 1 si ls si:d:fr d:K d:1:fi dm – SA

Göthe-Lundgren et al. (2002) g fr:cl pn si ls – d:1 fi dm PI Valid inequalities, TS;
secondary resources

Brüggemann et al. (2003b) 1 1 1 si cs – d:K d:1:fi dm – Not solved; conceptual
model for complexity
discussion

Miller and Wolsey (2003) 1 1 1 si ls – d:1 fi dm – Tight reformulations
Muramatsu et al. (2003) g fr:cl pn si ls si:d:fr d:1 fi dm – LD, DP
Jans and Degraeve (2004) 1 1 pn si ls si:max:1 d:1 fi dm PI CG; secondary resources
Persson et al. (2004) g fr:cl pn sd:∆v ls – d:1 fi dm PI TS; secondary resources
Pochet and Wolsey (2006, p.
374)

1 1 1 sd:∆v ls – d:1 fi dm – Reformulation

Pochet and Wolsey (2006, p.
466)

1 1 1 sd:∆v cs – d:1 fi dm – Reformulation

Gicquel (2008, p. 36) 1 1 1 sd:∆v cs – d:1 fi dm – Cutting planes; changeover
types

Gicquel et al. (2009a) 1 1 1 sd:∆v ls – d:1 fi dm – Cutting planes; products
described by attributes

Gicquel et al. (2009b) 1 1 1 sd:∆v ls sd:d:fr d:1 fi dm – Valid inequalities
Pahl and Voß (2010) 1 1 1 si ls si:max:1 d:1 fi dm CGI MIP-solver; perishability
Supithak et al. (2010) 1 1 1 si cs – d:1 fi dm – BA, GA
Gicquel et al. (2011) 1 1 pi si ls – d:1 fi dm – Cutting planes
Gicquel et al. (2012) 1 1 pi si cs – d:1 fi dm – Aggregation+cutting

planes
Gicquel et al. (2014) 1 1 1 sd:∆v ls sd:d:fr d:1 fi dm – Semidefinite

relaxation+valid
inequalities; quadratic
formulation

Gicquel and Minoux (2015) 1 1 1 sd:∆v ls – d:1 fi dm – Valid inequalities
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2.3.6 Other models

Different other models can be found in the literature which we have not been able to clearly relate to one

of the model types of Sects. 2.3.1 - 2.3.5. Many of these publications are closer to the scheduling field.

Thus, the focus often rather lies on scheduling operations on continuous time scales and coordinating

their starting and ending times than on solving a lotsizing problem. Nevertheless, the papers consider,

formulate or solve a lotsizing and scheduling model according to the definition of Sect. 2.1 (more or

less) simultaneously. Table 2.11 provides a summary of such problems.

Aras and Swanson (1982) propose a model for a single machine. Holding costs are calculated in a

very detailed manner, even differing within a period. The consequence is that the lot sequence of a

period has an impact on the total costs although setup costs are not considered. A backward-oriented

heuristic is used to solve problem instances taken from a bearing company.

A model considering a packing line in the food processing industry is proposed by Smith-Daniels

and Smith-Daniels (1986). They distinguish between major setups, which occur if a changeover from

one setup family to another setup family takes place, and minor setups, which occur for a changeover

from one product to another product of the same family. In each macroperiod, products of just one

setup family are allowed. Smith-Daniels and Ritzman (1988) propose a model for serially arranged

production stages and serial bills-of-materials.

A model for parallel, non-identical machines and sequence-dependent setup costs and times is for-

mulated by Baker and Muckstadt Jr. (1989). They present the CHES problems, a set of five practical

problems which have been collected by Chesapeake Decision Sciences. A part of the setup costs vi-

olate the triangle inequalities. Kang et al. (1999) propose a “sequence splitting” model and a B&B

heuristic to solve these problems. Although possible in principle, setup times are not taken into ac-

count. However, their idea to split a setup sequence within a macroperiod into sub-sequences, which

contain each product at most once, allows to handle violated triangle inequalities in a quite flexible

manner. The goal is to maximize the contribution margin. Meyr (2002) uses the CHES instances to

compare the performance of his GLSPPL heuristics with the results of Kang et al. (1999).

Heuts et al. (1992) consider a case of the process industry in which different products are man-

ufactured in a reactor before they are stored in tanks. For successful production, the reactor must be

completely filled (batch production). Furthermore, the tank capacities are limited. The authors propose

two heuristics to solve this problem.

Dauzère-Pérès and Lasserre (1994) present a combination of a lotsizing model and a job-shop model.

For solving the problem, the authors iterate between a lotsizing model with a fixed production se-

quence and a scheduling model with given lotsizes. Different solution approaches are presented for

the scheduling problem including a shifting bottleneck procedure and a priority-rule-based dispatch-

ing heuristic. In Dauzère-Pérès and Lasserre (2002), a multi-level capacitated lotsizing model without

setup times is presented which includes scheduling issues. Urrutia et al. (2014) proceed in a similar

way to solve an integrated lotsizing and job-shop scheduling problem. A Lagrangean heuristic with

a fixed sequence and relaxed capacities is used for solving the lotsizing problem. A TS heuristic im-

proves the sequences. Wolosewicz et al. (2015) pick up the underlying problem with setup times, too.
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They propose an additional model formulation generating a production plan based on a given sequence

of operations on a machine. A Lagrangean relaxation approach is used to solve the problem.

Sikora et al. (1996) consider a problem in which different jobs with individual due dates are pro-

cessed on serially arranged machines. Unfortunately, a complete model formulation is missing. A

modified silver/meal heuristic in combination with a sequencing algorithm is proposed to solve the

problem. Sikora (1996) uses a GA to tackle the same planning problem.

A model based on a continuous time scale is introduced by Jordan and Drexl (1998). Different jobs

must be scheduled on a single machine. It is possible to consolidate jobs to save sequence-dependent

setup costs and times. A B&B approach is proposed.

Haase and Kimms (2000) present a lotsizing model which considers predefined sequences calculated

with a TSP algorithm. The model represents a problem of a German company manufacturing printing

machines. It is solved by simultaneously deciding which sequence is the most efficient one and which

production quantity should be produced. During that process the Wagner-Whitin property is kept.

Branch&bound is proposed as a solution method. Kovács et al. (2009) reformulate the model and

improve the pre-processing of sequence generation with DP.

Erdirik-Dogan and Grossmann (2008) propose a single-stage scheduling model with parallel ma-

chines. It comprises an inventory balance equation, includes a profit-oriented objective function and

divides periods into slots. Products are assigned to slots. Binary variables coordinate transitions be-

tween adjacent slots. Furthermore, starting and ending times of slots are recorded and coordinated over

the machines. The problem is decomposed and iteratively solved with multiple steps: first, the model

is relaxed. Here, the focus lies on assigning and sequencing the products. An upper bound is provided

for the profit. In a second step, the original problem is solved ignoring unassigned products. The new

solution is compared to the upper bound.

Mateus et al. (2010) extend the CLSP for backordering and combine it with the model of Rocha

et al. (2008) which treats the parallel-machine scheduling problem. They interpret lots as jobs and

coordinate the starting times and sequences with additional variables, which associate products to

periods and machines. Since the model is hard to solve, they use decomposition. First, a lotsizing

problem is solved to optimality. Next, the lots are decomposed into jobs, which are then sequenced by

a greedy randomized adaptive search procedure (GRASP).

Mohammadi et al. (2010b) and Mohammadi et al. (2010a) present a lotsizing and scheduling model

for a flow-shop. A lot can be transferred from one machine to the next only after it has been completely

finished. Exactly K (number of products) setups must be performed per period and on each machine.

Setups from a product to itself are allowed and do not consume time. Even though the sequence is

coordinated period-overlapping (the first setup in a period is from the last product of the previous

period), a setup state variable does not exist and therefore a production quantity is only positive if a

setup is performed. Mohammadi et al. (2010b) present several heuristics. The first one uses a period-

based decomposition similar to an F&R heuristic. In another heuristic, the sequence is kept equal for

each machine, whereat an F&R approach is used. The remaining heuristics focus on the position of

the setups and solve the problem step by step. Hereby, demand is either fulfilled by production during

the same period (third heuristic) or by producing in earlier periods (fourth heuristic). Mohammadi
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et al. (2010c) describe a more restricted model with similar sequences, but constant lotsizes over all

stages. The model is solved with RH approaches. By contrast, Mohammadi et al. (2011) develop a

GA for this model. Mohammadi and Ghomi (2011) combine the GA with an RH approach. Here, the

GA determines the binary decisions within the predefined time window. Babaei et al. (2014) include

backlogging into the model. Filho et al. (2012) also use this problem and the model of Mohammadi

et al. (2010a) as a basis. However, they present a new variant of the “Asynchronous Team approach”

proposed by de Souza and Talukdar (1993) as a solution procedure. So-called “agents” help to construct

solutions which are saved in shared memory to be improved or deleted again.

Kopanos et al. (2011) consider a single-stage, parallel-machine problem occurring in a bottling facil-

ity. Products are grouped to setup families. Backlogging is possible. The production speed is limited

by a minimum and maximum production rate. The setup state is conserved. Setups are sequence-

dependent across families, but sequence-independent within families, and may be period-overlapping.

In addition, maintenance can be considered.

Karimi-Nasab and Seyedhoseini (2013) present a model formulation for a multi-level lotsizing prob-

lem with flexible machines which includes a job-shop problem because different processes are neces-

sary for each component. Each machine can work with different production modes/speed levels. The

production mode of a machine has to be set before the production starts, i.e., various decisions depend

on the production speed. Karimi-Nasab et al. (2013) include “compressible” process times which may

vary within a defined interval. According to a given bill-of-materials, a sufficient quantity of compo-

nents has to be produced before the end product can be assembled. The production of a component is

associated with setups (e.g., change of tools, machine inspections) and additional cleaning operations.

Each item can be produced only on a predefined set of machines and backlogging is allowed in order

to generate feasible production plans. A memetic algorithm (MA) solves the problem heuristically.

Nearly the same problem is considered by Karimi-Nasab et al. (2015). They consider a consumption

factor of 1 in their bill-of-materials. A PSO algorithm solves the problem. Karimi-Nasab and Modarres

(2015) consider the single-level formulation of this problem and add some valid inequalities within a

B&C approach. A numerical study is carried out with CPLEX.

Ramezanian et al. (2013a) consider a multi-stage capacitated lotsizing and scheduling problem.

Maintenance is also included because the time required for a maintenance task is treated as an ad-

ditional continuous decision variable. An RH approach is applied to solve the problem heuristically.

Ramezanian et al. (2013b) present an extended formulation including setup state conservation. The

model is compared to the formulation of Mohammadi et al. (2010c). Again, RH approaches with

different freezing strategies are used to solve large problem instances.

A specialized model for wine bottling which considers personnel restrictions is presented by Mac Caw-

ley (2014). The products are grouped into product families. A family changeover causes sequence-

independent setup times. Different product sequences for each family are defined in advance. The

setup times for a product changeover are sequence-dependent but can be calculated in advance for

each given sequence. The task is to assign the families to production lines and macroperiods to fulfill

an aggregated demand at the end of the planning horizon for each product. Within each macroperiod,

one of the given sequences corresponding to the assigned product family has to be chosen. Further-
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more, the lotsizes have to be determined. All of these tasks are presented in a single model formulation.

As it is obvious, the model can be decomposed. This is done by aggregating the demand of each prod-

uct family, solving the resulting problem and determining the sequences and lotsizes in a second step.

A similar approach has already been proposed by Meyr and Mann (2013).

Table 2.11 summarizes these models. They mainly consider sequence-dependent setups but vary in

their ability to conserve setup states (Css = ls if setup states are lost and Css = cs if setup states are

conserved). Many of the presented models consider a multi-level production process (Ps 6= 1). Among

these, a serial (Ps = fr:s) and a cross-linked (Ps = fr:cl) flow of materials can be found. For both, a

closed transfer of lots is explicitly assumed in recent years (Ps = fr:s:c and Ps = fr:cl:c). This can

be explained by the high number of models basing on job-shop or flow-shop scheduling problems.

Some frequently used modeling approaches can be identified: lots are often considered as jobs in

the presented models (see for instance Dauzère-Pérès and Lasserre 2002), or multiple sequences are

predefined (e.g. Haase and Kimms 2000) or formulations from lot-sizing and job-shop scheduling

problems are combined (for example Dauzère-Pérès and Lasserre 1994). Almost all kinds of solution

approaches can be found (see column heuristics/comments).

Table 2.11: Literature overview for other models
References BOM Ps M Sc Css St exoT endoS Ls Industry Heuristics/comments

Aras and Swanson (1982) 1 1 1 – cs si:max:p d:K fr c CGI BA
Smith-Daniels and
Smith-Daniels (1986)

1 1 1 si cs sd:max:p d:K fr c FI MIP-solver

Smith-Daniels and Ritzman
(1988)

s fr:s 1 – cs sd:max:p d:K fr c FI MIP-solver

Baker and Muckstadt Jr.
(1989)

1 1 pn sd:∆v cs sd:max:p d:fr fr mima CHES not named

Heuts et al. (1992) 1 1 1 sd:∆k cs sd:max:p d:K fr dm PI Heuristic, incomplete
formulation

Dauzère-Pérès and Lasserre
(1994)

1 fr:cl 1 si ls si d:K fr c – Decomposition

Sikora (1996) 1 fr:s 1 sd sd d:K fr EI GA
Sikora et al. (1996) 1 fr:s 1 sd sd:max:p d:K fr max EI Heuristic
Jordan and Drexl (1998) 1 1 1 sd:∆k ls sd:fr fr fr d – B&B
Kang et al. (1999) 1 1 pn sd:∆v cs – d:fr fr mima CHES CG+B&B+heuristics
Haase and Kimms (2000) 1 1 1 sd:∆k cs sd:max:p d:K fr c CGI B&B
Dauzère-Pérès and Lasserre
(2002)

g fr:cl 1 si ls – d:K fr c – Decomposition

Erdirik-Dogan and Grossmann
(2008)

1 1 pn sd:∆v cs sd:max:p d:fr fr min – Decomposition

Kovács et al. (2009) 1 1 1 sd:∆k cs sd:max:p d:K fr c – MIP-solver
Mateus et al. (2010) 1 1 pn si ls sd:max:p d:K fr c – Decomposition of

heuristics for lotsizing
scheduling (GRASP)

Mohammadi et al. (2010a),
Mohammadi et al. (2010b),
Mohammadi et al. (2010c)

1 fr:s:c 1 sd:∆k ls sd:max:p d:K fr c – RH, F&R

Kopanos et al. (2011) 1 1 pn sd:∆k cs sd:max:2 d:K fr mima PI MIP-solver
Mohammadi and Ghomi
(2011)

1 fr:s:c 1 sd:∆k ls sd:max:p d:K fr c – GA with RH approach

Mohammadi et al. (2011) 1 fr:s:c 1 sd:∆k ls sd:max:p d:K fr c – GA
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References BOM Ps M Sc Css St exoT endoS Ls Industry Heuristics/comments

Filho et al. (2012) 1 fr:s:c 1 sd:∆k ls sd:max:p d:K fr c – Asynchronous Team
approach

Babaei et al. (2014) 1 fr:s:c 1 sd:∆k cs sd:max:p d:K fr c – GA
Karimi-Nasab and
Seyedhoseini (2013)

g fr:cl:c 1 sd:∆k ls sd:max:p d:K fr c – Cutting planes, MIP-solver

Karimi-Nasab et al. (2013) g fr:cl:c 1 sd:∆k ls sd:max:p d:K fr c – MA
Ramezanian et al. (2013a) 1 fr:s:c 1 sd:∆k ls sd:max:p d:K fr c – RH
Ramezanian et al. (2013b) 1 fr:s:c 1 sd:∆k cs sd:max:p d:K fr c – RH
Mac Cawley (2014) 1 1 pn sd:∆v ls sd:max:p d:fr fr mima BI Decomposition; given

product sequences,
secondary resources

Urrutia et al. (2014) 1 fr:cl 1 si ls si d:K fr c – Decomposition, LR, TS
Karimi-Nasab and Modarres
(2015)

1 fr:cl:c 1 sd:∆k ls sd:max:p d:K fr c – Cutting planes/B&C,
MIP-solver

Karimi-Nasab et al. (2015) g fr:cl:c 1 sd:∆k ls sd:max:p d:K fr c – PSO, MIP-solver
Wolosewicz et al. (2015) 1 fr:cl 1 si ls si d:K fr c – LR

2.4 Conclusions

The overview of Sect. 2.3 and especially the Tables 2.6 – 2.11 now allow to identify trends as well

as gaps in the field of simultaneous lotsizing and scheduling. Section 2.4.1 provides an analysis of

attributes and characteristics using the classification scheme of Table 2.2 as a basis. In Sect. 2.4.2,

further extensions are discussed, which have been considered rather seldom in the literature and thus

have only been marked by brief keywords in the “comments” columns of Tables 2.6 – 2.11. Section

2.4.3 summarizes findings on practical applications, which have been shown in the “industry” columns

(see Table 2.4 to decode the acronyms). Finally, trends regarding solution approaches (see columns

“heuristics” and Table 2.5 for the acronyms) are in the focus of Sect. 2.4.4.

2.4.1 Attributes and characteristics

The number of models for a multi-level bill-of-materials structure and multiple production stages
has strongly increased during the recent years. These are often tailored to specific industrial applica-

tions such as soft drink production systems or pulp and paper mills. Among the multi-level bills-of-

materials, divergent and general structures are pre-dominant. Serial bills-of-materials mainly occur in

the context of flow-shops. Many of the multi-stage models are limited to only two production stages

which is typical for make-and-pack environments. Sometimes it is sufficient to schedule just one of

these stages explicitly. Afterwards, the other stage can be modeled in a quantity-based, aggregate man-

ner only, for example, as an additional scarce resource (“secondary resource”) like the pre-product in

a divergent bill-of-materials or as a tank restriction.

Otherwise, the schedules of predecessor and successor stages must be synchronized. This means that

a successor product can only be processed on a successor machine if a single piece (“open” transfer of

lots), a certain batch size or a complete lot (“closed” transfer of lots) of its corresponding predecessor

product has been finished on the predecessor machine. This can easily be ensured by positive lead

times of at least one period if all machines consider the same time grid as a common basis. However,
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this way of modeling becomes the more unrealistic the longer the periods of this time grid are. Thus,

microperiod-based formulations allow to model multi-stage problems in a simple and realistic way,

but suffer from a high number of periods involved and some difficulties in properly representing setup

times (see below). Among the microperiod models, the PLSP seems to be most appropriate because

it shows the highest degree of freedom. On the contrary, macroperiod-based formulations only appear

realistic if pre-products can further be processed within the same macroperiod, i.e., if they allow “zero”

lead times. To achieve this, CLSD-based models introduce further variables measuring and restricting

the starting and ending times of lots. In the GLSP, however, a common time grid for microperiods (see,

e.g., Seeanner and Meyr 2013) or an additional CSLP-like time grid (see, e.g., Toledo et al. 2006 and

Toledo et al. 2015) can be introduced, too. Models for both an open and a closed transfer of lots exist.

Despite the recent, increased interest in multi-stage formulations, the majority of models and so-

lution methods does only consider final items (BOM = 1) of a single-stage production system (Ps =

1). Many of these papers are motivated by industrial applications, too. The authors argue that – even

though the real world production system actually does comprise several stages – only one of them is a

(stationary) bottleneck and needs to be modeled. Often multiple parallel machines can be found on this

bottleneck stage. Sometimes, these are identical (M = pi). Usually they are heterogeneous (M = pn).

The reason probably is that not all of them have been acquired at the same point in time. Therefore,

they may show different degrees of technological maturity in terms of flexibility, speed, capacities,

setup times, setup costs and variable production costs. The GLSP seems to be the first choice for

modeling problems with heterogeneous, parallel machines.

Almost all macroperiod models which are based on the GLSP and CLSD and also most of the other

models presented in Sect. 2.3.6 (see Table 2.11) consider sequence-dependent setup times (St = sd).

In this case, setup costs sometimes do not have to be taken into account or might be considered as

sequence-independent (Sc = si). On the contrary, all microperiod-models consider setup costs, but

only some of them also consider setup times. To be more specific: while setup times were neglected

in early PLSP formulations, almost all models respect setup times beginning with Suerie (2005). The

same trend can be identified for the CSLP, beginning with Wolsey (1997). If setup times are taken into

account, they usually are sequence-independent. Mostly, the same holds true for the setup costs.

Macroperiod-based formulations seem to be first choice when setup times must be modeled. The

reason probably is that “simple” standard formulations assume a complete setup to be executed within

a single period. This is realistic if rather long macroperiods are considered. However, for short mi-

croperiods this assumption would often be too unrealistic. Then, more complex formulations such as

the ones of Drexl and Haase (1995) and Suerie (2006) would be required to ensure that a setup can span

over multiple microperiods (St = si:fr:fr). As Seeanner (2013, p. 148) has shown, period-overlapping

setup times can also be applied within the GLSP. However, for this macroperiod model they only appear

to be required if multi-stage production must be synchronized on a common time grid.

Not all of the models are able to properly deal with problem instances whose changeover charac-

teristics violate the triangle inequalities (Sc = sd:∆v). Such instances can easily be handled by the

GLSP if minimum lotsizes are postulated (see Sect. 2.2.1 and constraints (2.7)). Some minor disad-
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vantage11 might be that the whole minimum lotsize has to fit into a single macroperiod. However, since

macroperiods are rather long and minimum lotsizes do only represent technological requirements, this

assumption should not be crucial. The same holds true for the CLSD. Nevertheless, the CLSD shows an

additional, more serious disadvantage: the subtour elimination constraints of the standard CLSD for-

mulation allow a certain product to be produced at most once per macroperiod. If triangle inequalities

are violated, such a restriction is too limiting and must be relaxed. Thus, some authors (e.g., Menezes

et al. 2011; Guimarães et al. 2013) propose more sophisticated, but also more complex formulations or

sequence generation methods that permit connected, but forbid disconnected subtours. The sequence

splitting model of Kang et al. (1999) offers an alternative way how macroperiod-based models can deal

with violated triangle inequalities. Microperiod-based models generally seem less appropriate because

of their higher probability that a technological necessary minimum lotsize exceeds a single period’s

length.

Most of the CLSD and PLSP models allow the conservation of a setup state (Css = cs). In contrast,

most DLSP models assume that the setup state is lost (Css = ls). In general, both cases may occur, but

usually not within a single model formulation. Only a few CSLP- and GLSP-models have been found

that are able to handle both cases by a mere variation of input data (Css = cl) as shown in Sect. 2.2.1.

The exogenous time structure (exoT) and the endogenous state changes (endoS) of the models

of Sects. 2.3.1 – 2.3.5 by definition naturally coincide with the ones of their corresponding basic

formulations presented in Table 2.3. There are only a few exceptions which can easily be explained.

The GLSP and the CLSD show exoT = d:fr if a product can be set up several times per macroperiod

what makes sense if the triangle inequalities are violated (Sc = sd:∆v) or if secondary resources are

considered. They show exoT = d:K if a product can be set up at most once per macroperiod. This is

reasonable if the triangle inequalities are kept (Sc = sd:∆k) or the setup costs are sequence-independent

(Sc = si). The CSLP can similarly be transformed to a macroperiod model as Fleischmann (1990) has

done for the DLSP (see Sect. 2.2.2). If this was the case, exoT = d:K and endoS = d:1:fr do occur

in Table 2.9 instead of exoT = d:1 and endoS = fr. The other way round, exoT = d:1 and endoS = fi

instead of exoT = d:K and endoS = d:1:fi are shown in Table 2.10 if Fleischmann’s transformation has

not been applied for the DLSP. The only exception is Fleischmann (1994) with exoT = d:fr because

his sequence-dependent, macroperiod-based formulation additionally allows a violation of the triangle

inequalities.

Most of the other models of Sect. 2.3.6 and Table 2.11 either show exoT = d:K or exoT = d:fr.

All of them show endoS = fr. This means that – similar to the GLSP and CLSD – these are also

hybrid models with an exogenous macroperiod structure and free endogenous state changes. However,

the modeling of these state changes does not allow a clear categorization either as GLSP (predefined

sequence of microperiods within a macroperiod) or CLSD (TSP-like definition of the sequence of

products within a macroperiod). The batch sequencing problem (BSP) of Jordan and Drexl (1998) is

the only exception that shows exoT = fr. This model was actually intended for scheduling. Therefore,

demand is represented via due dates for customer orders (“jobs”), which are defined on a continuous

11Which can be mitigated as, for example, Seeanner (2013, p. 148) has shown.
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time scale. Since the authors have proven that the DLSP can be transformed into a BSP, this scheduling

model has also been included into our review.

All in all, it can be summarized that large-bucket models dominate in the meantime. While most of

the models reviewed were based on small-buckets until and during the nineties, the CLSD by Haase

(1996) and the GLSP by Fleischmann and Meyr (1997) obviously revealed new modeling approaches.

Still some research has been done on the small-bucket models DLSP, CSLP and PLSP during the past

five to ten years. However, this has clearly been outnumbered by the macroperiod-based research

presented in Tables 2.6, 2.7 and 2.11.

Concerning the attribute “lotsize” the whole range of potential values presented in Table 2.2 can be

found. Multiple repetitions of a discrete lotsize (Ls = dm) are obligatory for the DLSP because of its

all-or-nothing assumption. Nevertheless, this sometimes also occurs for the other model types. Then,

usually an industrial application with a batch production system is taken into account. If violated

triangle inequalities can be considered, positive minimum lotsizes need to be respected (see Sect.

2.2.1), i.e., either Ls = min, Ls = mima or Ls = dm are valid. Maximum lotsizes (Ls = max, Ls =

dm or Ls = mima) do only occur seldom. If they do, they are usually also motivated by industrial

applications. Technical constraints requiring a maximum lotsize can, for example, exist in the case of

batch production in reactors or tanks, which can continuously be filled up to a certain level, or filters

that contaminate during production and thus at the latest have to be cleaned after a maximum quantity

produced.

2.4.2 Further extensions

Some models consider a second type of scarce resource as a possible extension to the basic formu-

lations presented in Figure 2.1 and Table 2.3. These resources are required in addition to the primary

production resources (e.g., Ct in inequalities (2.2)). If there are multiple machines, this resource may

be required by all or a subset of the machines but cannot be utilized by all of them at the same point

in time. Examples are setup operators, dies or tanks that are additionally needed for a setup or for

carrying out the production. Early works of Lasdon and Terjung (1971) and Eppen and Martin (1987)

concerning the DLSP already considered this problem characteristic. Interestingly, this problem was

not picked up by research for another 15 years. Starting with Göthe-Lundgren et al. (2002), Persson

et al. (2004) and Jans and Degraeve (2004), there seems to be an increased interest in this type of

problem during the recent years. Most of the work is inspired by industrial applications. Many models

concentrate on a single production stage and parallel machines. To coordinate the usage of the scarce

resource over all parallel machines is – because of its all-or-nothing assumption – rather easy in the

DLSP. This explains the DLSP’s early usage for this kind of additional complexity. More general mod-

els track the starting and ending times of setups or production activities and coordinate them across

multiple machines. This is also less difficult for microperiod-based models like the PLSP (see, e.g.,

Tempelmeier and Buschkühl 2008) than for macroperiod-based ones like the GLSP (see, e.g., Almeder

and Almada-Lobo 2011) or the CLSD (see, e.g., Tempelmeier and Copil 2016). However, if sequence-

dependent setup times are important, the additional effort of the macroperiod models is obviously well
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spent.

Pahl and Voß (2010), Pahl et al. (2011) and Tempelmeier and Copil (2016) consider perishability
as an additional extension of the basic formulations, which is of particular interest for the agrifood

business. The idea is to prevent spoilage, decay or general obsolescence of stored products by limiting

the total amount of inventory. The research of Amorim et al. (2011) and Amorim et al. (2012), which

is not further discussed here because it does not specifically consider inventory holding costs (see Sect.

2.1), confirms the impression that perishability issues get an increased attention in the recent past.

Lang (2010) and Lang and Shen (2011) are the only authors who consider product substitution. A

reason might be that simultaneous lotsizing and scheduling is mainly relevant for make-to-stock pro-

duction (see Sect. 2.4.3). There, customers expect that their orders are fulfilled from stock on hand.

Overall, product substitution is a planning task which is mainly relevant for demand fulfillment (see,

e.g., Kilger and Meyr 2015). Nevertheless, Lang and Shen (2011) think one step ahead to save pro-

duction costs by substitution: their idea is that the option of substitution affects the optimal production

sequence and vice versa. Thus it might, for example, be beneficial to save setup times by substituting

products by others instead of producing them at all.

2.4.3 Practical applications

By reviewing Sect. 2.3, it can be observed that many formulations are based on practical cases. Most

frequently, problems from the process industry are used. Examples are Heuts et al. (1992), de Matta and

Guignard (1994a), de Matta and Guignard (1994b), de Araujo et al. (2008), Kopanos et al. (2011) or

Transchel et al. (2011). Santos and Almada-Lobo (2012) and Figueira et al. (2013) consider problems

from a pulp and paper mill. Almada-Lobo et al. (2007), Almada-Lobo et al. (2008), Almada-Lobo

et al. (2010), Kopanos et al. (2011) or Toledo et al. (2013) treat problems observed in, e.g., glass

container production and bottling facilities. Other problems from the process industry can be found in

oil refineries or tire manufacturing. Problems in the consumer goods industry are considered frequently,

too. Laguna (1999), Haase and Kimms (2000), Gupta and Magnusson (2005), Lang and Shen (2011),

Tiacci and Saetta (2012), Seeanner et al. (2013), Seeanner and Meyr (2013) or Camargo et al. (2014)

formulate models for associated problems. Numerous models are based on problems from the beverage

industry, e.g., by Toledo et al. (2006), Ferreira et al. (2009), Ferreira et al. (2012) or Baldo et al.

(2014). The (animal) food industry provides problems for Smith-Daniels and Smith-Daniels (1986),

Smith-Daniels and Ritzman (1988), Toso et al. (2009), Clark et al. (2010) or Tempelmeier and Copil

(2016). Other industries produce automobiles, electronics, semiconductors, or pharmaceutical as well

as chemical products in a broader sense.

All in all, a surprisingly large number of papers is motivated by industrial applications, indicating

that this field of research shows a high practical relevance. Considering the fact that – starting with

Harris (1913) and the economic order quantity model – lotsizing in general has been studied for around

a 100 years and that dynamic lotsizing is also more than half a century old (see Wagner and Whitin

1958), the past 15 years’ boom of simultaneous lotsizing and scheduling research appears somewhat

surprising. It can best be explained by this obvious industrial relevance and a still unsatisfactory support
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for decision making.

Most of the industrial applications consider production systems of the flow-shop type in which con-

tinuous products or a large number of discrete pieces are produced. Almost all of these applications

include setup times, which in most cases are sequence-dependent. Exceptions can mainly be found for

some DLSP- and PLSP-based papers of Sects. 2.3.3 and 2.3.5. Models representing these practical

applications do often only consider a single production stage (Ps = 1), even though the underlying real

world problem may consist of multiple stages. In this case, one stage has been identified as the main,

stationary bottleneck. On this bottleneck stage, parallel production lines may be present – sometimes

homogenous, but mostly heterogeneous. Usually, only the products processed by the bottleneck stage

are simultaneously treated in a lotsizing and scheduling model (BOM = 1). These products do not

need to be end products, but rather may be defined as product families. Even applications in the semi-

conductors industry, actually comprising a large number of stages, can be found which are modeled

this way (see Quadt and Kuhn 2005; Quadt and Kuhn 2009; Xiao et al. 2013). As mentioned above,

sometimes it is sufficient to model a second stage only in an aggregate way by means of an additional

scarce resource (see, e.g., Ferreira et al. 2009).

Within the multi-stage industrial applications, the two-stage, serial models (Ps = 2:s) do prevail.

They often come along with a divergent bill-of-materials (BOM = d). This is, for example, the case

in common make-and-pack situations in which a basic product is produced on the first stage and then

packed or filled in packages of different sizes, brands or country-specific languages on the second

stage. Since the bottleneck may shift depending on the mix of the various products’ demand, all stages

must be considered in detail within an integrated model.

2.4.4 Solution approaches

By comparing the models, it becomes obvious that the GLSP can easier be formulated by means of

standard modeling languages than the CLSD because of its straightforward, sequential ordering of

microperiods and because it does not need any subtour elimination constraints. On the contrary, tight-

ness of bounds and thus solvability with standard branch&bound12 or branch&cut MIP-solvers rather

favor the CLSD (see, e.g., Almeder and Almada-Lobo 2011). Here, the enormous knowledge about

reformulations, valid inequalities etc. concerning the traveling salesman problem can be exploited to

strengthen model formulations. Nevertheless, as long as sequence-dependent setup costs and times are

involved, lower bounds remain disappointing. Thus, optimality can merely be proven for small prob-

lem instances. Heuristics are the only choice to solve problems of industrial size. As Sect. 2.3 shows,

traditional sophisticated solution approaches such as dynamic programming, Lagrangean relaxation,

Lagrangean decomposition or column generation only have successfully been applied to the DLSP

and CSLP. Such methods are able to take advantage of the very restrictive assumptions made by these

microperiod models (like the all-or-nothing assumption; see also Fig. 2.1). The more general a model

formulation is the less this is possible, for example, because a model does not decompose into easily

solvable subproblems any more as it would be needed for an LR.

12Unfortunately, “branch & cut” is a typing error in Copil et al. (2017).
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Thus, the rise of more general models like the PLSP, CLSD and GLSP during the late nineties came

along with the rise of deterministic and randomized meta-heuristics basing on local search (like TA,

SA, TS, RR, RM, DS; see Table 2.5) or evolutionary principles (like GA). Basically, setup sequences

are varied by means of local search or the GA. The corresponding integer variables are fixed and the

solutions are evaluated by solving the resulting continuous lotsizing problems. For the latter, either

rule-based heuristics or LP methods can be applied. The meta-heuristic controls the selection and

acceptance of neighbored candidate sequences or whole populations of sequences. Obviously, such

methods are the more demanding the more setups are involved and the more complex the embedded

lotsizing problems are. However, the solution quality of meta-heuristics often remains unclear as

neither the optimal solutions nor lower bounds (in case of minimization) are available. By contrast,

an LR heuristic always provides a lower bound resulting from the relaxed problem and often also an

upper bound derived by utilizing the Lagrangean multipliers to detect feasible solutions. The difference

between these bounds allows to assess the solution quality.

As a next generation of solution methods for the models of Sect. 2.3, MIP-based approaches like

F&R, F&O and RH can be identified. Similar to LR or LD, they also decompose the original problem

into less complex subproblems that are successively solved. However, these subproblems usually still

have the original MIP formulation. They just show a reduced number of integer variables involved

by either fixing or relaxing the remaining ones. Thus, these approaches strongly rely on the power of

modern MIP-solvers. Apparently, strengthening the original model formulation does also improve the

performance of any MIP-based heuristic applying this formulation. This explains why recent research

often concentrates on tight formulations for small problem instances which are solved either heuristi-

cally (until a certain time limit or optimality gap is reached) or to optimality (zero gap) by a standard

MIP-solver only. The advantage is that even complex model formulations can easily be reused as part

of a solution heuristic, once they have been tested and validated for the first time.

2.5 Outlook

Obviously, the interest in small-bucket models is not that strong anymore. The researchers’ main focus

on industrial applications might be a reason for this. Small-bucket models are indeed suitable for in-

dustrial use, too. However, this is apparently less often the case than for the large-bucket models GLSP

and CLSD. Better hardware and more powerful standard solvers now allow to solve more complex

applications. Thus, some characteristics or constraints which have been considered as less important

in former times do nowadays receive increased attention.

Among these, shifting bottlenecks are probably the most prominent ones. To consider bottlenecks

that may vary depending on a dynamically changing mix of customer demand requires models that

are able to respect several stages of production simultaneously. On the one hand, these models should

not build on unrealistically long lead times, which have only been introduced to ease modeling but do

not exist in industrial practice (see the above discussion on zero lead times and line synchronization).

Thus, microperiod-based models would better suit than macroperiod-based ones. On the other hand,

sufficiently long setup times need to be modeled, too. This is easier accomplished with macroperiod-
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based formulations. Here, further research is needed, for example, to compare the different ideas that

have been presented by Seeanner and Meyr (2013) or Seeanner et al. (2013) and Stadtler (2011) or

Stadtler and Sahling (2013) among each other.

Furthermore, secondary resources have attracted more and more attention in recent times. Such

secondary resources can, for example, be expensive dies or tools, but also specialized personnel like

setup operators, that support setup, production or maintenance processes. However, as the preceding

sections have shown, in an aggregate way, even a second stage of production may have been modeled

as such a scarce secondary resource. Secondary resources, which are required simultaneously with the

production systems’ primary resources (which are typically the machines) introduce additional com-

plexity into the planning problem as now the production schedule must be coordinated across multiple

machines. This prevents the decomposition of a multi-machine problem into multiple single-machine

problems. In light of their growing degree of attention, it seems worthwhile to more deeply analyze

the underlying industrial applications to develop a classification and a general modeling framework for

these kinds of secondary resources.

When considering the GLSP and CLSD from a modeling and methodological point of view, the

CLSD shows advantages if MIP-based solution techniques are applied, which require tight model for-

mulations. Nevertheless, as Almeder and Almada-Lobo (2011) state, it is still necessary to further

strengthen such formulations. On the contrary, some industrial characteristics like changeovers violat-

ing the triangle inequalities are easier to model when using a GLSP-type time structure. “Easier” means

in this context not only less error-prone, but also better extendable for further industrial needs. Here,

local search or evolutionary methods might be more appropriate because they do not rely on the tight-

ness of the MIP formulation. However, math-programming techniques can be applied for the GLSP,

too, at least if smaller MIP-subproblems are considered. Seeanner et al. (2013) proposed a compro-

mise that seems to be an interesting prospect for future research: by combining variable neighborhood

decomposition search and F&O, they use a hybrid of both types of solution approaches.

Traditional job-shop planning separates the lotsizing and the scheduling tasks from each other and

executes them one after the other. It seems that the gap between such a successive planning and the si-

multaneous lotsizing and scheduling models of this review is reducing. Some approaches presented in

Sect. 2.3.6 already bridge this gap by solving integrated lotsizing and job-shop scheduling models in a

hierarchical and repetitive manner. From a methodological point of view, these again can be considered

as iterative decomposition approaches, complementing the ones mentioned in Sect. 2.4.4. They rather

focus on exploiting the bill-of-materials than on taking advantage of time-related aspects as, for exam-

ple, rolling horizon decompositions do. For the multitude of industrial flow-shop applications, which

Table 2.4 and Sect. 2.3 report from, this has not yet been necessary. The products manufactured there

usually show a quite simple structure. However, future research on this type of decompositions may

indeed create the necessary experiences to solve complex multi-stage problems in a more integrated

manner.

Summing up, simultaneous lotsizing and scheduling is a prosperous research area motivated by many

industrial applications. These applications do often comprise a one- or two-stage production system

with one or several parallel, mostly heterogeneous machines (production lines) per stage. Substantial,
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sequence-dependent changeover times do prevail. Many of the applications originate from process

or consumer goods industries including the production of food and beverages. There, products are

demanded in high quantities and usually made to stock. Because of the high effort for the changeovers,

lots of sufficient size have to be determined on the one hand. On the other hand, a clever choice of

their sequence is necessary. The strong interdependency between both types of decisions calls for an

integrated planning approach.

The substantial effort for changeovers does also forbid an extremely high product variety as it is, for

example, well known from premium automobiles’ production. Thus, lean management and a one-piece

flow are not yet an issue in these kinds of industries. Product variety often arises from a few, similar

types of products produced (major setups), which are then packaged in various different formats (minor

setups). Nevertheless, also for these industries there is evidence (see Günther 2014) that production

technology will improve so that setups become less costly and time-consuming, that product variety

will grow, that decreased delivery times will play a more prominent role and that there will be a shift

from a pure make-to-stock (MTS) to a hybrid MTS/make-to-order production. Then, a more integrated

production and distribution planning or block planning approaches as propagated by Günther (2014)

will become more and more important. It would be worthwhile to analyze in more detail whether at

all, when and how a change of paradigm is to be expected and to extend this paper’s review for such

new planning approaches.

Nevertheless, the acquisition of the currently applied production technology has required notable

investments. Such a technology can usually not completely be replaced in a single big bang. The trans-

fer to a more modern production technology will rather go step by step, for example, by replacing one

production line after the other. This may span over dozens of years. Thus, the need for a simultaneous

lotsizing and scheduling will for sure remain for a long time.
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3 Simultaneous lotsizing and scheduling
considering secondary resources

Abstract13 Typical simultaneous lotsizing and scheduling models consider the limited capacity of the

production system by respecting a maximum time the respective machines or production lines can

be available. Further types of resources necessary for production — like setup tools, setup operators

or raw materials — may become bottlenecks and thus cannot be neglected in optimization models.

These are called “secondary resources”. This paper provides a structured overview of the literature

on simultaneous lotsizing and scheduling involving secondary resources. The proposed classification

yields for the first time a unified view of scarce production factors. The insights about different types

of secondary resources help to develop a new model formulation generalizing and extending the cur-

rently used approaches that are specific for some settings. Some illustrative examples demonstrate the

functional principle and flexibility of this new formulation which can thus be used for a wide range of

applications.

Keywords Scheduling, Dynamic lotsizing, Secondary resources, Mixed integer programming

3.1 Introduction

As it has been shown by the literature review of Copil et al. (2017) there has been a great research

interest in simultaneous lotsizing and scheduling over the last decades. The formulated models typi-

cally consider one or just a few production stages. Each production stage may consist of one or more

parallel machines (often aggregated to production flow lines if the sequence of machines is fixed and

identical for all products) with scarce capacities. Furthermore, setup times and costs, which may be

sequence-dependent, occur due to changeovers from one product to another. Product-specific demand

is given per period and varies dynamically over time. If large lotsizes are built, the products have to

be stored, what causes inventory holding costs. Many of the current model formulations are directly

motivated by practical applications. Due to improvements in modeling knowledge, solution techniques

and computing power it is now possible to represent industrial challenges in a more detailed manner.

Nevertheless, most of these simultaneous lotsizing and scheduling models consider the production

capacity of these machines or production lines as the only limiting factor. Just a few also take the

13This paper has been written by Martin Wörbelauer, Herbert Meyr (Department of Supply Chain Management, University

of Hohenheim, Stuttgart, Germany) and Bernardo Almada-Lobo (INESC-TEC, Faculdade de Engenharia, Universidade

do Porto, Portugal). The paper has been submitted to OR Spectrum and the review is still in process.
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capacity of one or more additional, potentially scarce production factors, like raw materials or setup

operators necessary to perform changeover operations, into account. Such further production factors

with limited capacity are called “secondary resources” (SRs; see Copil et al. 2017). If secondary

resources were neglected in the planning process, resulting plans might become infeasible for real-

world industrial applications. For instance, if two or more setups are scheduled in parallel on different

lines, but there is only one setup operator available capable of performing at most one setup at the same

time, this would result in an infeasible production plan. As can also be learned from this example,

secondary resources usually affect several parallel machines or production lines simultaneously.

This paper provides a structured literature overview on simultaneous lotsizing and scheduling mod-

els which take secondary resources into account. The different types of resources that appear in differ-

ent industrial settings are clustered using a unified classification. This overview will illustrate that —

with respect to the secondary resources — the models of the literature are very specialized and suffer

from lack of generality. For example, there are models which only consider a single setup operator

or just secondary production resources. In such cases it is not possible to represent production sce-

narios with two setup operators or limitations in the supply of raw materials. Thus, this paper further

introduces a general model formulation which is capable of handling all types of secondary resources

addressed in the literature until now. Additionally, it also incorporates some functionalities which have

not been represented in the literature so far, but seem reasonable for production planning as, for ex-

ample, the splitting of setups into dismounting and mounting operations. Such modeling features do

allow more flexible and thus more realistic production plans.

The presented model is based on the general lotsizing and scheduling problem (GLSP) of Fleis-

chmann and Meyr (1997) and its single-stage extension for parallel production lines (GLSPPL) by

Meyr (2002). It relies on a discrete time grid consisting of so-called “macroperiods”. In a macroperiod

multiple setups are possible. Nevertheless, for a detailed representation of the product sequence the

model also uses “microperiods” with flexible length. In a microperiod at most one setup is possible.

We use this microperiod structure to assure that, for example, a setup operator can be scheduled on at

most a single production line at the same point in time. Since the GLSP is based on macroperiods it is

called a “large-bucket” model.

The literature review will be given in the following section. It closes with a short discussion of the

presented models and motivates the need for a more general and extended formulation. In Section 3.3,

we modify the GLSPPL in a way that a common, but flexible microperiod time grid is simultaneously

used for all parallel lines. This builds the basis to synchronize the usage of different types of secondary

resources in Section 3.4. Section 3.5 shows how additional features that may become relevant in real-

world applications can be incorporated into the new model. Numerical examples, which demonstrate

the flexibility and broad applicability of the new model, are presented in Section 3.6. Finally, Section

3.7 provides a brief summary and identifies opportunities for future research.
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3.2 Literature review

In the following, we review simultaneous lotsizing and scheduling models which incorporate SRs. We

concentrate on characteristics that are important in the SR context. Additional, more general informa-

tion about the presented models can be found in Copil et al. (2017). The two, probably most important

characteristics are the “shareability” and “substitutability” of SRs. Shareability concerns the question

whether a secondary resource can be used on only a single or on several production lines in parallel

(i.e., at the same point in time) and whether it can only be used once or several times. We denote an

SR as

• “disjunctive” if it can only serve a single production line at a single point in time and if it does

not become part of the final product (e.g., a setup tool or a setup operator). A disjunctive SR can

be used several times consecutively, even on different production lines.

• “cumulative” if it can serve several production lines simultaneously and does become part of

the final product (e.g., fluid raw materials). Thus, a cumulative SR is consumed and can only be

used once.

Substitutability distinguishes whether only a single type of SR could be applied to execute a certain

setup or production process (denoted as “without substitutes”) or whether several different types of

SRs do exist which could alternatively be applied (“with substitutes”). High- and low-skilled workers

can serve as an example: a complex changeover process might only be executed properly by high-

skilled operators (i.e., low-skilled operators cannot serve as substitutes), whereas simple changeovers

could be executed by both types of workers alternatively.

The review is structured on the basis of these resource characteristics into the three subsections

“disjunctive resources without substitutes” (Sect. 3.2.1), “disjunctive resources with substitutes” (Sect.

3.2.2) and “cumulative resources without substitutes” (Sect. 3.2.3). We are not aware of work concern-

ing the remaining combination although industrial applications comprising cumulative resources with

substitutes do certainly exist, for example, if scarce multi-purpose raw materials are involved. Finally,

Table 3.2 (page 83) of Sect. 3.2.4 gives an overview. It further classifies the work on SRs in simulta-

neous lotsizing and scheduling by summarizing additional SR-relevant characteristics that have been

identified and discussed in the preceding sections. This helps us to derive shortcomings of the current

state of the art and to motivate the new model to be introduced in Sect. 3.4.

3.2.1 Disjunctive resources without substitutes

This subsection examines models which incorporate disjunctive SRs such as setup operators, which

perform the changeovers, or cutting tools, which are necessary for production. These disjunctive re-

sources can only be assigned to one production line at the same point in time. These resources are

used but not consumed, i.e., they do not become part of the final product. Additionally, only resources

without substitutes are considered. That means, all publications presented in this subsection assume

that for each process (changeover from product i to j, conservation of the setup state of product j
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(standby) and production of product j) of the production line it is explicitly known which resources

are necessary. For example, there is no decision on which setup operator (e.g., operator A or B with

different skill levels) performs a changeover from product i to j.

Lasdon and Terjung (1971) present a discrete lotsizing and scheduling problem (DLSP)14 formu-

lation for a tire manufacturer. The main characteristic of the DLSP is the all-or-nothing assumption,

i.e., a product is produced for a complete period or there is no production at all. The problem of the

tire manufacturer comprises parallel, identical machines. To produce product j it is necessary that a

machine is set up for this product and that an additional die (secondary resource) is available. Since

the DLSP is a small-bucket model, the synchronization of the resources (assuring that there is no over-

lapping use of the same SR on two or more different lines) comes true using the given time structure,

i.e., the resource is assigned for the complete period to a certain line. In a large-bucket model this

approach is often too restrictive since the resource’s usage on another line would be blocked for quite

a long time. In addition, the model is extended to consider setup operators and other equipment which

is needed to perform a changeover. Eppen and Martin (1987) propose a new solution approach for the

basic model (without setup resources) of Lasdon and Terjung (1971).

A proportional lotsizing and scheduling problem (PLSP, see Drexl and Haase 1995) formulation

which considers secondary resources is presented by Kimms and Drexl (1998, pp. 89f). The PLSP

uses continuous lotsizes and provides the possibility to produce at most two different products per mi-

croperiod on condition that one of the products has already been set up in a previous period. The pre-

sented multi-stage model formulation neglects setup times and assumes that each product is assigned

to exactly one line. Nevertheless, different products can be assigned to the same production line. Each

product requires multiple resources which all must be in the correct setup state. Synchronization of the

resources is performed using the microperiod time grid.

Another example from a tire manufacturer is given by Jans and Degraeve (2004). The model is

formulated as a DLSP with setup times. Tires are produced using different heaters. There can be

multiple identical replicates of a heater type. Additionally, a mold is always necessary to produce a

tire. For each possible tire-heater combination a limited number of molds is available. Due to short

microperiods the molds can be assigned to active tire-heater combinations for complete periods.

A problem from the injection molding sector is considered by Dastidar and Nagi (2005). The authors

use a continuous setup lotsizing problem (CSLP) formulation (Karmarkar and Schrage 1985), i.e.,

continuous lotsizes are possible and the number of products is limited to at most one per microperiod.

Different products are produced on multiple parallel machines. For each product-machine combination

a bundle of different SRs (e.g., grinders, driers) is necessary. There can be multiple replicates of the

same resource. Nevertheless at most one of these replicates is required to produce a product. Again,

resources are assigned to the machines for complete periods. The model respects setup times. The

resources are already necessary during the setups of the products.

Tempelmeier and Buschkühl (2008) consider a common setup resource in their PLSP formulation.

That is, only one setup operator is responsible for all setups. Since each product is dedicated to just one

14This denomination has only later been introduced by Fleischmann (1990).
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line, the setup operator is the only reason for a simultaneous planning of all lines. Continuous variables

are used to record the beginning of a setup on a machine in each microperiod. Binary variables docu-

ment the machine-visiting sequence of the setup operator. The setup operator has a given time budget

per period which can be less than or equal to the production capacity in this period. Constraints assure

that the starting time of each setup is later than the ending time of the preceding setup on the previous

line. Tempelmeier and Copil (2016)15 tackle the same problem but using a CLSD formulation. The

capacitated lotsizing problem with sequence-dependent setups (CLSD) was presented first by Haase

(1996). It is a large-bucket model and uses a numbering of the products within a macroperiod - similar

to a tour of a traveling salesman problem. Tempelmeier and Copil (2016) use variables to track both

the starting and the ending times of setup operations assuring that there is at most one setup in parallel.

The model is adapted to allow production of a given product on more than just a single line in parallel.

Furthermore, the authors propose approaches which make it possible to set up a product several times

per macroperiod.

Santos and Almada-Lobo (2012) consider a problem from the pulp and paper mill industry using a

GLSP formulation. Microperiod lengths are still flexible but identical across all lines. Black liquor and

virgin pulp result from processing wood chips in a digester. The black liquor has to be concentrated in

an evaporator and afterwards burned in a recovery boiler to produce energy. Evaporator and boiler both

show limited capacities. This limitation has influence on the regular production since the virgin pulp’s

output is proportional to the black liquor’s output. Since the SRs just perform a transformation process,

we classify them as disjunctive resources. Nevertheless, synchronization is not necessary because the

SRs are just used for a single production line. The capacity limitation is quite similar to Tempelmeier

and Buschkühl (2008) with the difference that the capacities of the evaporator and the boiler are given

in cubic meters per hour. Figueira et al. (2013) extend the objective function to maximize the steam

output. Furlan et al. (2015) tackle the same problem as Santos and Almada-Lobo (2012), extend the

model for parallel paper machines and present a new solution approach. This extension does not affect

the SRs.

Mac Cawley (2014) proposes a model for wine bottling. Macroperiods help to schedule product

families. Changeovers from one product family to another cause sequence-independent setup times.

For each product family several product sequences are defined in advance. That means, the product

sequencing task is reduced to decide which given sequence should be applied in which period. There-

fore it is not possible to explicitly classify this model as a GLSP or CLSD. If there is production on a

line, a crew is necessary. All crews are assumed as being identical. Furthermore, there is a maximum

number of possible crews in each macroperiod t. A crew is always assigned to a line for a complete

macroperiod. The number of crews can be extended or reduced.

15See also Copil (2016).
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3.2.2 Disjunctive resources with substitutes

The models presented in this subsection also incorporate disjunctive resources, which can be used at

most on one line at the same time. However, now it is possible to choose between different substitute

resources for a single process, i.e., the resource is not fixed a priori for a given process.

A GLSP model which considers tools as SRs is presented by Almeder and Almada-Lobo (2011). It is

predefined which tools (substitute resources) could be used for a certain product-machine combination.

Each product-machine combination requires just a single tool. The tool has to be available for the

complete time, starting from the changeover before production and ending with the changeover after

production. The first step of the synchronization process is to determine which resources are actually

used. To accomplish this, the variables for setup states, changeovers and production quantities are

extended by tool indices. Based on these variables, it is possible to calculate the starting times of

the microperiods, whose lengths can be different on the various production lines, and the tool release

times. Further constraints help to avoid overlapping of the line-specific microperiods when the same

tool is used. The authors also propose a CLSD formulation which models SRs in a similar way.

Seeanner (2013, pp. 144-148) considers multiple different setup operators in a multi-stage GLSP

formulation. For each setup it can be defined which setup operators are capable of performing this

operation, i.e., substitutes are possible. Binary variables record which setup operator actually performs

a setup. Thus, it is simple to assure that a setup operator is at most assigned to a single line per mi-

croperiod. This approach is valid because the multi-stage GLSP has an identical microperiod structure

across all lines. Since it is possible to start a setup in microperiod s− 1 and finish it in microperiod

s (period-overlapping setup operations), further synchronization is necessary. Additional constraints

assure that a microperiod is long enough to finish the setup that has been started in the preceding

microperiod.

Copil (2016, pp. 121-137) adapts the model presented by Tempelmeier and Copil (2016) to consider

multiple setup operators. Every setup operator is capable of performing each changeover. Nevertheless,

setup times depend on the skill-levels of the deployed setup operators. The model is further extended

to represent a practical application of a food producing company in a more detailed way.

3.2.3 Cumulative resources without substitutes

In the following, we describe models which consider cumulative resources, i.e., resources which can

be used on more than one line at the same time. These resources are consumed. Thus they become part

of the final products. Furthermore, the models are without substitutes, i.e., it is fixed which resources

have to be used for a certain process.

Kimms and Drexl (1998, pp. 90f) propose a second extension of their PLSP model (c.f. Section

3.2.1). Here they introduce scarce SRs which can be consumed by multiple lines in parallel. Parameters

define the resource consumption during production. Capacities of these resources are given per interval

of periods (e.g., five periods).

Göthe-Lundgren et al. (2002) present a DLSP formulation for an oil refinery. The multi-stage model

considers different production units which can be run in different modes. A “run-mode” defines the
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materials, which are consumed as input, and products, which are generated as output. Changeovers

between run-modes can be interpreted as setups. The oil refinery consists of a distillation unit and two

different hydro-treatment units. Each run-mode of a hydro-treatment unit needs a different amount of

hydrogen, but the capacity of generating hydrogen is limited. Therefore, not every combination of run-

modes is possible. Furthermore, during the production process unrequested sulphur is generated. The

capacity to handle this undesired output product is also limited and restricts the choice of run-modes.

In the general model formulation it is possible to consider R different SRs. Constraints assure that none

of the given resource capacities is violated in any period. Persson et al. (2004) modify the model to

consider sequence-dependent changeover costs when switching the run-mode.

Seeanner (2013, pp. 143f) extends his multi-stage GLSP formulation (c.f. Section 3.2.2) to also

consider raw materials. Parameters define the consumption of each raw material during the production

of one unit of a product. The overall production may not exceed a given capacity of each resource.

A group of models can be identified which — either directly in the model formulation or as part of

the solution approach — represent a two-stage production process as a single-stage formulation with

SRs. These models will be described in the following:

A GLSP formulation for a problem of the beverage industry is presented by Ferreira et al. (2009).

The production scenario consists of multiple tanks and bottling lines. The tanks are used to prepare

different flavored liquids which are packaged using the bottling lines. Only one flavor can be prepared

in a tank at the same time. Due to technical reasons minimum liquid quantities have to be assured at the

tank filling processes. A tank can be connected to several bottling lines at the same time. Sequence-

dependent setup times and costs are considered for the changeovers of the bottling lines (e.g., setup

of another bottle size) and for the changeovers of the flavors in the tanks. Only empty tanks can be

refilled. First, the authors handle this problem using a two-stage model formulation. Additionally, they

propose a solution approach based on a single-stage formulation with SRs. The single-stage model also

uses binary variables indicating which flavor is in a tank in a certain microperiod. However, it differs

from the two-stage model because these variables do not influence the objective function. After having

solved the single-stage formulation, the resulting setups are used to constrain the two-stage model.

The formulation of Ferreira et al. (2010) is again based on the GLSP. However, it just takes a single

bottling line into account. Although multiple tanks are connected to this line in real-world, it is suffi-

cient to model just a single tank without setup times. The reason is that the next tank can already be

prepared while another one is still supplying the bottling line. Nevertheless, minimum fill levels and

maximum capacities of the tanks must be respected. Binary variables are used to track which flavor is

in each tank in a certain period.

Ferreira et al. (2012) also examine the beverage problem and use a single-stage GLSP formulation

with the tankfuls as SRs. The authors consider a fixed assignment of tanks to bottling lines. To

put a resulting plan into practice, some kind of synchronization between tank filling and bottling is

necessary. Otherwise, bottling on a line could start before its supplying tank had sufficiently been

filled. This is reached by respecting artificial setup times in the single-stage model, which are taken

as the maximum of the tank filling setup time and the bottling setup time. The authors also propose

a CLSD formulation with the same approach for synchronization. Maldonado et al. (2014) present
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different CLSD formulations for the same problem. Note that in the case of cumulative SRs the need

for synchronization results from simplifying a two-stage production process into a single-stage one.

Whereas the synchronization of disjunctive resources in Sections 3.2.1 and 3.2.2 was necessary to

avoid simultaneous usage of the same SR on several parallel lines.

Almada-Lobo et al. (2010) formulate a CSLP to handle a planning task in the glass container indus-

try. Multiple parallel molding machines are supplied with melted glass by a furnace. The furnace’s

capacity is given in tons per period and the furnace can be inactive, but only at the end of the planning

horizon. If the furnace is active, the complete capacity should be used. Otherwise, penalty costs incur.

A single-stage formulation, which incorporates the melted glass as an SR necessary for production and

setups, is used. Compared to the aforementioned problems from the beverage industry, the information

which glass type to melt is known in advance from a mid-term planning. Toledo et al. (2013) restrict

the lotsizes to discrete values for the same problem. Furthermore, melted glass still flows during idle

times and setups and is returned into the furnace, i.e., there is no resource consumption during these

times.

Camargo et al. (2012) consider a problem from the process industry. There exist one upstream

machine and multiple downstream machines. The products which are produced on the downstream

machines are grouped to product families. Each family needs one kind of SR. In each microperiod at

most one SR can be produced on the upstream machine. To begin with the authors present a GLSP

formulation. Setup times and costs of the upstream machine are omitted and a variable is introduced

indicating which SR is produced on the upstream machine in a certain period. Secondary resources’

maximum capacities are defined in advance per microperiod (flexible length). The authors do not dis-

cuss how such capacities of flexible periods of time could be determined for real-world applications.

A capacity check assures that these capacities are not exceeded by consumption of downstream ma-

chines. Again, synchronization has to ensure that all downstream machines can only use the SR that is

currently produced on the upstream machine. This synchronization is performed using a common time

grid for all machines. Thus, the starting and ending times of the microperiods are tracked by variables.

Additionally, the authors propose another formulation based on the CLSD. Camargo et al. (2014) adapt

the problem for the yarn production using a GLSP formulation.

3.2.4 Classification scheme and discussion

Table 3.2 on page 83 further classifies and summarizes the models described. Table 3.1 gives an

overview of the acronyms used. Besides “shareability” and “substitutability” additional attributes,

which distinguish the various approaches found in the literature, help to characterize SRs’ usage in

greater detail. These are:

Basic model: This attribute specifies which basic model has been extended for the use of secondary

resources. Possible values are DLSP, CSLP, PLSP, CLSD, GLSP or just big bucket if neither an explicit

assignment to CLSD nor to GLSP is possible.

States concerned: Secondary resources may be necessary for production (p) or setups (s) or while

setup states of production lines are conserved (c). Note that these tasks “production”, “setup” and
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Table 3.1: Classification scheme of models considering secondary resources
Description Attribute Potential value Acronym
Bm Basic model discrete lotsizing and scheduling problem DLSP

continuous setup lotsizing problem CSLP

proportional lotsizing and scheduling problem PLSP

capacitated lotsizing problem CLSD

with sequence-dependent setups

general lotsizing and scheduling problem GLSP

big bucket big bucket

Share Shareability disjunctive disj

cumulative cum

disjunctive and cumulative disj/cum

Sub Substitutability without wo

with (includes without) w

Sc States concerned production p

setup s

conservation of setup state c

addressed states need the same substitutable SRs s-p-c

addressed states may use different substitutable SRs s:p:c

Qr Quantity of different resources limited number #

unlimited fr

Rpr Resource-to-process-relation one-to-one 1:1

one-to-many 1:pr

many-to-one r:1

many-to-many r:pr

I Industry automobile industry AI

beverage industry BI

consumer goods industry CGI

food industry FI

process industry PI

semiconductor industry SI

“conservation of the setup state” in the following will be termed as “states” if they are generally

addressed and as “processes” if they are addressed in connection with a production line and a product

that is produced, that is set up or whose setup state is merely conserved. This denomination has also

already been used since the beginning of Section 3.2.1. If substitutes are not possible (Sub=wo), the

assignment of an SR to a process is unique. Thus it suffices to list all tasks a model is able to consider.

However, if substitutes do exist (Sub=w), two cases may occur:

1. Either the same SR has to be used for several subsequent processes although a substitute would

exist. For example, if two alternative tools could be installed during a setup and then be used for

production, either the first or the second one had to be used for both processes.

2. Or the substitutes can freely be exchanged. For example, if two workers had the capabilities to
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execute a setup and monitor the subsequent production process, the first one could do the setup

and the second one the monitoring.

In the following, case 1 will be marked by an “-” and case 2 by an “:”. Thus, the first example would

be abbreviated as s-p whereas the second example would be denoted as s:p.

Quantity of different resources: There exist model formulations which consider just a limited

number of non-identical secondary resources. In most of these cases, there is only one resource like,

e.g., a single setup operator who is responsible for all setups. In order to keep the classification scheme

compact, our notation will not distinguish whether just a single resource or multiple identical replicates

of this resource are available. However it will be marked if models provide the possibility to consider

an unlimited number of different resources.

Resource-to-process-relation: This attribute provides information about the relation between re-

sources r (only non-identical resources are considered here) and processes pr. There can be a one-to-

one (1:1) assignment, i.e., each resource is uniquely assigned to a single process only. For example,

a certain mold can only be used to produce a single type of tire. It is also possible that an SR can be

assigned to several processes, called one-to-many (1:pr), for example, if a setup operator is able to ex-

ecute two different setup operations. If multiple types of SRs are necessary for a single process this is

named many-to-one (r:1). For instance, this is the case if both a tool and a setup operator are necessary

to perform a certain setup operation. Furthermore, there can be a many-to-many (r:pr) assignment,

for example, if a tool and a certain setup operator are needed for some setup operation and the same

setup operator is also required for another setup operation. The different relationships between SRs

and processes are summarized in Figure 3.1. Note that all relationships can be represented by a general

formulation that is able to model the r:pr relation.

1:1

1:pr

r:1

r:pr

resource r necessary
for process pr

Figure 3.1: Resource-to-process-relation

Industry: Most of the models discussed are motivated by real-world applications. These stem from

automotive, beverage, consumer goods, food, process and semiconductor industries. These industries

typically rely on a flow line organization. This is the reason why we will rather use the term “production

lines” than “machines” in the remainder of the paper.

When inspecting Table 3.2 and reconsidering Sections 3.2.1 – 3.2.3 the following conclusions can

be drawn:
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Table 3.2: Literature overview: models considering secondary resources
Author Bm Share Sub Sc Qr Rpr I Comments

Lasdon and Terjung

(1971)

DLSP disj wo p,s fr 1:1 PI for setup: Qr =1 and Rpr =

1:pr

Eppen and Martin

(1987)

DLSP disj wo p fr 1:1 PI

Kimms and Drexl

(1998, pp. 89f)

PLSP disj wo p,c fr r:pr - SR must be in the correct

setup state; capacity of SR ≤
period capacity; multi-stage

Jans and Degraeve

(2004)

DLSP disj wo p fr 1:1 PI

Dastidar and Nagi

(2005)

CSLP disj wo s,p,c fr r:pr CGI

Tempelmeier and

Buschkühl (2008)

PLSP disj wo s 1 1:pr AI capacity of SR ≤ period ca-

pacity

Santos and Almada-

Lobo (2012)

GLSP disj wo p 2 1:pr PI SR restricts single line; ca-

pacity of SR ≤ period capac-

ity; two-stage

Figueira et al. (2013) GLSP disj wo p 2 1:pr PI SR restricts single line; ca-

pacity of SR ≤ period capac-

ity; two-stage

Mac Cawley (2014) big bucket disj wo s,p 1 1:pr BI

Tempelmeier and

Copil (2016)

CLSD disj wo s 1 1:pr FI

Furlan et al. (2015) GLSP disj wo p 2 1:pr PI SR restricts single line; ca-

pacity of SR ≤ period capac-

ity; two-stage

Almeder and

Almada-Lobo (2011)

GLSP & CLSD disj w s-p-c fr 1:pr SI

Seeanner (2013, pp.

144-148)

GLSP disj w s fr 1:pr - multi-stage

Copil (2016, pp.

121-137)

CLSD disj w s fr 1:pr FI

Kimms and Drexl

(1998, pp. 90f)

PLSP cum wo p fr r:pr - multi-stage

Göthe-Lundgren

et al. (2002)

DLSP cum wo p fr r:pr PI multi-stage

Persson et al. (2004) DLSP cum wo p fr r:pr PI multi-stage

Ferreira et al. (2009) GLSP cum wo p fr 1:pr BI use of SR as solution ap-

proach for two-stage model

Almada-Lobo et al.

(2010)

CSLP cum wo s,p 1 1:pr PI

Ferreira et al. (2010) GLSP cum wo p fr 1:pr BI just one production line; SR

used to represent a two-stage

model

Camargo et al.

(2012)

GLSP & CLSD cum wo p fr 1:pr PI SR used to represent a two-

stage model
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Author Bm Share Sub Sc Qr Rpr I Comments

Ferreira et al. (2012) GLSP & CLSD cum wo p fr 1:pr BI SR used to represent a two-

stage model

Seeanner (2013, pp.

143f)

GLSP cum wo p fr r:pr - multi-stage

Toledo et al. (2013) CSLP cum wo p,c 1 1:pr PI

Camargo et al.

(2014)

GLSP cum wo p fr 1:pr CGI SR used to represent a two-

stage model

Maldonado et al.

(2014)

CLSD cum wo p fr 1:pr BI SR used to represent a two-

stage model

New model formula-

tion

GLSP disj/cum w s:p:c/s-p-c fr r:pr -

• Model for cumulative resources with substitutes is missing: We identified models for three

types of resources: disjunctive resources without and with substitutes and cumulative resources

without substitutes. To the best of our knowledge, there does not exist any publication taking

cumulative resources with substitutes into account. Nevertheless, being able to model such a

situation might offer significant advantages as shown in the following example. In the spinning

industry, one must determine the size and sequence of yarn production lots as well as which

cotton bales (secondary resources) will provide fiber blend that ensures quality attributes (e.g.,

grade, color and fiber lengths) to produce the required yarns. Each blend must be set by means

of different combinations of cotton bales. Nevertheless, different cotton bale combinations (sub-

stitutes) can be used to fulfill the quality attributes of a yarn.

• Models cannot be applied to different scenarios: The presented models are very specialized.

This can easily be explained because most of these models have been tailored to a specific,

practical planning problem of a certain company. Then, the advantage is that the model is not

bloated by extra features which are needless for this respective company. Nevertheless, it shows

the disadvantage that another company with a slightly different planning problem may not be

able to also apply such a model.

• Models might be too complex: One very general model formulation is the one of Seeanner

(2013). His formulation of disjunctive resources with substitutes can also be used for disjunctive

resources without substitutes by a mere variation of the input parameters. However, in this latter

case the model includes more variables than actually necessary.

• Concerned states are limited: Another quite general formulation is the one of Almeder and

Almada-Lobo (2011). However, it also shows the shortcoming of many other models that with s-

p-c always the same SRs have to be used for a sequence of setup, production and conservation. A

more general model would be preferable that could handle an s:p:c situation, too, if this occurred

in real-world. The model presented in Sections 3.3-3.5 will be capable of handling both cases.
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• Resource-to-process-relation is limited: When looking at Table 3.2 it can be seen that models

for the most general resource-to-process-relation Rpr = r:pr occur quite seldom. No model

can be found at all, which is able to represent disjunctive resources with substitutes in a many-

to-many relation. Nevertheless, such scenarios are easy to imagine. For example, think of a

situation where a tool out of a set of alternative tools and an additional worker with a minimum

skill-level out of a group of incrementally trained employees are both necessary for production.

To sum up, a general model must be able to represent disjunctive and cumulative SRs with and

without substitutes. Nevertheless — to keep the model lean and to leverage solvability — it should be

easy to waive unnecessary parts of the model if they are irrelevant for a certain real-world application.

It should be possible to define resource usage for each state separately, but also to enforce retention

of the same SR. Furthermore, a process should be allowed to require more than just a single SR.

Additionally, SRs should be able to be assigned to several processes simultaneously. Such a general

model will be presented in the following sections. A classification of this model can be found in the

last row of Table 3.2.

3.3 Basic model formulation

The first step is to formulate a model that can be used as basis for all types of SRs. One important

aspect, which must already be considered in the basic formulation, is the synchronization of disjunctive

resources. To accomplish this we will build on top of the GLSP for heterogeneous parallel production

lines (GLSPPL) of Meyr (2002) and Meyr and Mann (2013). This is a single-stage formulation (for

multiple stages see the outlook in Section 3.7). The GLSPPL is adapted to a common time structure

across all lines as it has been done in the GLSP for multiple production stages (GLSPMS) in order to

synchronize the different stages (c.f., Meyr 2004, Seeanner and Meyr 2013 and Seeanner et al. 2013).

Just one state is allowed per line and microperiod. Thus, the synchronization of disjunctive SRs across

the parallel lines of a single stage of production can also be based on a common microperiod time grid.

To assure more flexibility, period-overlapping setup times (so-called “continuous setups”) are allowed.

Suerie (2005) applies this approach of spreading long setup times over several consecutive periods of

large-bucket and small-bucket models. We adapt his formulation to the GLSPPL as it has in a similar

way been done by Seeanner (2013) concerning the GLSPMS.

The production system comprises multiple parallel production lines l (l = 1,2, ...,L). These produc-

tion lines are used to produce several “real” products j ( j = 1,2, ...,J). An additional product j = 0

is added to represent a “neutral state” of a line when it is not set up for a certain real product. There

does not exist any demand for this fictitious dummy product. For all other products j > 0 a demand d jt

is given for each macroperiod t (t = 1,2, ...,T ). The production coefficient al j defines the production

time which is necessary to produce one unit of product j on line l. Before production of a product j

can take place on line l, a changeover from the previous product i to product j has to be done. These

setups cause sequence-dependent setup costs sli j and times stli j. Shutdown costs to switch to the neu-

tral state of a line l are indicated by sli0. On the other hand, the activation of lines from the neutral state
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3 Simultaneous lotsizing and scheduling considering secondary resources

triggers startup costs sl0 j. If a line does not produce, it is called “idle”. If a line l is not shut down but

nevertheless idle, the current setup state j is merely conserved. This conservation of setup states causes

standby costs bl per time unit. Holding costs h j are accounted for inventory of each product j > 0 at

the end of each macroperiod. Moreover, cl j defines the production costs which incur when producing

one unit of a product j on line l.

The planning horizon is divided into S microperiods. At most one product j can be produced in

each microperiod s (s = 1, ...,S). Thus, these microperiods are used to define the product sequence.

Each macroperiod t consists of |St | microperiods, whereat St defines the set of microperiods within

macroperiod t. The first microperiod of a macroperiod has always a fixed starting time ws. There-

fore, the lengths of macroperiods are defined by the starting times of fixed microperiods, which are

subsumed by the set Φ. An additional microperiod S+ 1 is used to represent the end of the planning

horizon. Macroperiod lengths represent the production capacities of the lines. Microperiod lengths are

flexible and, in our representation, identical for all lines. The common time structure of all lines is

realized using variables ws which represent the starting times of the microperiods s.

Continuous variables xl js and xl js are used to measure the production quantity of a product j in

microperiod s on line l and the idle time, where the setup state is conserved, respectively. Minimum

lotsizes ml j must be respected. I jt denotes the inventory of product j at the end of macroperiod t. The

binary variables yl js ∈ {0;1} and vl js ∈ {0;1} represent whether there is production of product j on

line l in microperiod s and whether there is conservation of the setup state, respectively.

The following variables are necessary to consider continuous setups: x f
ls defines the (potentially)

fractional time of a setup spent on line l in microperiod s. The continuous variables zli js take the value

1 if a changeover from product i to product j on line l is completed in microperiod s. Otherwise, their

value is 0. If a changeover from product i to product j is spread over several consecutive microperiods,

all periods s of this changeover except for this last completion period are marked by a binary variable

zc
li js ∈ {0;1} taking on the value 1. These microperiods will be denoted as “to be continued (tbc)” in

the following. Note that it is important for the resource consideration that the information about the

concerned products is known, thus, the indices i and j in the variable zc
li js are necessary. Furthermore,

two variables are used to accumulate fractional setup times. τls determines a lower bound of the up to

period s cumulated setup times and σls defines an upper bound.

All parameters and variables used in the model are summarized in Table 3.3. The model formulation

is stated below.

Objective function of the GLSPPL with a common time structure:

Min∑
t, j

h jI jt + ∑
l,i, j 6=i,s

sli jzli js + ∑
l, j,s

cl jxl js + ∑
l, j,s

blxl js (3.1)
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Table 3.3: Symbols of the GLSPPL with a common time structure

Indices and sets:

i, j = 1, ...,J products; i, j = 0 neutral product

l = 1, ...,L production lines

s = 1, ...,S microperiods

s = S+1 dummy microperiod modeling the end of the last macroperiod

t = 1, ...,T macroperiods

St set of microperiods s belonging to macroperiod t

Φ set of all microperiods with fixed starting times

Data:

al j capacity consumption (time) needed to produce one unit of product j on

line l

bl standby costs of line l (per time unit)

cl j production costs of product j (per unit) on line l

d jt demand of product j in macroperiod t (units)

h j holding costs of product j (per unit and per macroperiod)

I j0 initial inventory of product j at the beginning of planning (units)

ml j minimum lotsize of product j (units) if produced on line l

ml0 minimum time line l has to remain shut down

sli j setup cost of a changeover from product i to product j on line l

stli j setup time of a changeover from product i to product j on line l

vl j0 equals 1 if the setup state of product j is conserved on line l at the

beginning of planning (0 otherwise)

ws starting time of fixed microperiod s ∈Φ

yl j0 equals 1 if line l is set up for product j at the beginning of planning (0

otherwise)

zli j0 equals 1 if a changeover from product i to product j has been completed

on line l before the beginning of planning (0 otherwise)

zc
li j0 = 0 continued setups are not allowed before the beginning of planning

Variables:

I jt ≥ 0 inventory of product j at the end of macroperiod t (units)

vl js ∈ {0;1} equals 1 if the setup state of product j is conserved on line l in micrope-

riod s (0 otherwise)

ws ≥ 0 starting time of microperiod s

σls ≥ 0 cumulated setup time on line l until the end of microperiod s (upper

bound)

τls ≥ 0 cumulated setup time on line l until the end of microperiod s (lower

bound)
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3 Simultaneous lotsizing and scheduling considering secondary resources

xl js ≥ 0 quantity of product j produced during microperiod s on line l (units)

x f
ls ≥ 0 (potentially) fractional setup time on line l in microperiod s

xl js ≥ 0 time used for conserving the setup state j on line l in microperiod s (idle

time)

yl js ∈ {0;1} equals 1 if production of product j takes place on line l in microperiod

s (0 otherwise)

zli js ≥ 0 equals 1 if a changeover from product i to product j is completed on line

l in microperiod s (0 otherwise)

zc
li js ∈ {0;1} setup to be continued (tbc); equals 1 if a changeover from product i to

j takes place on line l in microperiod s, but is not yet completed in this

microperiod (0 otherwise)

Constraints of the GLSPPL with a common time structure:

ws = ws ∀s ∈Φ (3.2)

I jt = I j,t−1 + ∑
l,s∈St

xl js−d jt ∀ j, t (3.3)

∑
i, j 6=i

zc
li js + ∑

i, j 6=i
zli js +∑

j
yl js +∑

j
vl js = 1 ∀l,s (3.4)

∑
j

al jxl js +∑
j

xl js + x f
ls = ws+1−ws ∀l,s (3.5)

al jxl js ≤ wS+1yl js ∀ j, l,s (3.6)

xl js ≤ wS+1vl js ∀ j, l,s (3.7)

x f
ls ≤ wS+1 ∑

i, j 6=i
(zc

li js + zli js) ∀l,s (3.8)

s+1

∑
r=s

xl jr ≥ ml j ∑
i6= j

zli j,s−1 ∀ j, l,s (3.9)

yl j,s−1 +∑
i 6= j

zc
l ji,s−1 +∑

i6= j
zli j,s−1 + vl j,s−1 = yl js +∑

i6= j
zc

l jis +∑
i6= j

zl jis + vl js ∀ j, l,s (3.10)

zc
li j,s−1 ≤ zc

li js + zli js ∀l, i, j 6= i,s (3.11)

τls ≥ ∑
i, j 6=i

stli jzli js ∀l,s (3.12)

τls ≤ τl,s−1 + x f
ls ∀l,s (3.13)

τls ≤ x f
ls +wS+1 ∑

i, j 6=i
zc

li j,s−1 ∀l,s (3.14)

σls ≥ σl,s−1 + x f
ls− ∑

i, j 6=i
stli jzli j,s−1 ∀l,s (3.15)

σls ≤ ∑
i, j 6=i

stli jzli js + ∑
i, j 6=i

wS+1zc
li js ∀l,s (3.16)

zc
li jS = 0 ∀l, i, j 6= i (3.17)

The objective function (3.1) minimizes the total costs, namely, the sum of holding costs, setup costs,
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production costs and standby costs.

Constraints (3.2) create the macroperiod time structure using the fixed starting times ws of micrope-

riods s ∈ Φ. Equations (3.3) are the typical inventory balancing equations for each macroperiod. Ex-

actly one of the states “setup to be continued”, “setup completion”, “production” or “conservation” is

allowed per production line and microperiod (3.4). This restriction is important to synchronize SRs

as will be shown later. Equations (3.5) define the length of microperiod s as the difference between

the starting time of the following and the current microperiod. The time budget of such a microperiod

must be completely used for either production or conservation of the setup state or for setups.

The values of the binary variables yl js and vl js are defined by constraints (3.6) and (3.7), respectively.

If there is production xl js > 0 or conservation of a setup state xl js > 0, the corresponding binary variable

takes the value 1. Constraints (3.8) assure that positive setup time can only be charged if a setup takes

place. In these three types of constraints, the planning horizon wS+1 serves as a big number linking the

continuous with the binary variables.

Similarly to Koçlar and Süral (2005), it is sufficient to fulfill the minimum lotsizes during the first

two microperiods after a setup (3.9). This approach offers more flexibility than just using xl js on the

left-hand side. Thus, for instance, conservation of the setup state in the first microperiod after a setup

is possible.

Equations (3.10) ensure the correct flow of the different states of a line. For example, if product j

has been set up in period s− 1 (left-hand side = 1), but is not needed any longer in following period

(yl js = vl js = 0), a changeover to another product i has to be started in period s, which can either also be

finished in period s (i.e., ∑i6= j zl jis = 1) or has to be continued in period s+1 (i.e., ∑i 6= j zc
l jis = 1). Note

that Equations (3.11) and not Equations (3.10) are responsible for the correct flow of the tbc-periods.

Nevertheless, Equations (3.10) include a ∑i 6= j zc
l ji,s−1 on the left-hand side. Otherwise, it would never

be possible to switch from a tbc-period to the completion of a setup.16 Further note that because of

(3.10), in any optimal solution, the variables zli js will only take zero or one as values.

The remaining constraints are necessary to model the period-overlapping setups. Constraints (3.11)

assure that a continuous setup is not interrupted. Once started (zc
li j,s−1 = 1) in or before period s− 1,

because of (3.4), it either has to be continued (zc
li js = 1) or finished (zli js = 1) in the following period

s. Constraints (3.12) ensure that sufficient setup time τls will be accumulated until the setup has been

completed in period s. The accumulation is put into practice by constraints (3.13). It finally needs

to reach stli j, but can at most be increased from a preceding period to its subsequent period by the

fractional setup time x f
ls. Reading constraint (3.13) as x f

ls ≥ τls− τl,s−1∀l,s clarifies why τ is called a

“lower bound” for the setup time to be spent. Because of (3.5), its increment has to be reserved on

line l for each continuous setup period affected. After a setup has been completed (zli j,s−1 = 1) in a

period s−1, at the beginning of the next period s the cumulated setup time τ needs to be reset to zero.

Constraints (3.14) do this indirectly by limiting the setup time τls, that has been accumulated until the

end of period s, to the fractional setup time x f
ls accounted for period s. The added term wS+1 ∑i, j zc

li j,s−1

turns this constraint non-active in tbc-periods.

16Using the same index sequence ji three times for zc
l ji,s−1, zc

l jis and zl jis allows (3.10) to carry the information, which

product had been produced last, over all microperiods of a continued setup.
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3 Simultaneous lotsizing and scheduling considering secondary resources

If the costs for conserving the setup state were very high, the model presented so far would artificially

stretch the setup times and accumulate more fractional setup times x f
ls than actually necessary. If

this shall be prevented, penalty costs for x f
ls could be imposed or constraints (3.15)–(3.17) could be

introduced. Like τls the variables σls accumulate the fractional setup times. Constraints (3.15) force

the σls of period s to sum the preceding period’s σl,s−1 and the current period’s fractional setup time x f
ls

as long as the setup has not been completed in the preceding period (∑i, j stli jzli j,s−1 = 0). If the setup

has been completed, σls is reset to zero. Reading (3.15) as x f
ls ≤ σls−σl,s−1+∑i, j stli jzli j,s−1 illustrates

why σ is called an “upper bound” on the fractional setup times. According to constraints (3.16), the

accumulated setup time σls itself is bounded by stli j if a changeover from product i to product j has

been completed (∑i, j zli js = 1,∑i, j zc
li js = 0) in period s. In tbc-periods (∑i, j zc

li js = 1,∑i, j zli js = 0),

however, constraints (3.16) do not show any effect. Equations (3.17) finally forbid unfinished setups at

the end of the planning horizon (see also Table 3.3).

3.4 Extension for secondary resources

The following subsections introduce practically relevant extensions to the base formulation to consider

secondary resources. We structure the presentation according to the four different types of SRs that

emerged from the literature review in Section 3.2. If all presented constraints are simultaneously used

in a single model, each type of SR can be represented. We indicate this by using different indices

for the different types of SRs. Of course, it is also possible to neglect some type of SR and omit its

corresponding constraints if this was sufficient for a certain industrial application. Some additional

optional features, helping to further adapt the model formulation to industrial needs, will be presented

in Section 3.5.

3.4.1 Disjunctive resources without substitutes

The basic model stated up to now will in the following be extended to consider disjunctive resources

without substitutes. An example would be a scenario with two setup operators who are necessary to

perform setups, a tool which is bounded to the machines during setups, production and conservation

of setup states and a worker who is responsible for the machine during production. In terms of our

classification scheme of Section 3.2.4, a process may need several SRs, i.e., multiple resources are

considered and the resource-to-process-relation is flexible (r:pr). Nevertheless, there are no substitutes.

There are several disjunctive resources p = 1,2, ...,P. We assume that each resource is available for

the complete planning horizon. For each potential process (conservation of the setup state of product j,

production of product j and changeover from product i to j) it is possible to define whether resource p

is necessary or not by introducing further binary parameters bc
jp, bp

jp and bs
i jp, respectively. Of course,

these parameters could also be declared as line-dependent if necessary. These additional parameters

are summarized in Table 3.4 (new variables are not needed). The necessary additional constraints are

stated below.
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3.4 Extension for secondary resources

Table 3.4: Symbols for disjunctive resources without substitutes

Indices:

p = 1, ...,P disjunctive resources without substitutes

Data:

bc
jp = 1 if resource p is needed for conservation of setup state j (0 otherwise)

bp
jp = 1 if resource p is needed for production of product j (0 otherwise)

bs
i jp = 1 if resource p is needed for a changeover from product i to product

j (0 otherwise)

Additional constraints for disjunctive resources without substitutes:

∑
l,i, j 6=i

bs
i jp(zli js + zc

li js)+∑
l, j

bp
jpyl js +∑

l, j
bc

jpvl js ≤ 1 ∀s, p (3.18)

Constraints (3.18) avoid double usage of SRs and thus synchronize the use of SRs across all parallel

lines. Since there is a common time structure with exactly one state per microperiod, it is sufficient to

check that each SR p is used on at most one line in every microperiod s. Note that — now and in the

following — for ease of simplicity we assume that there do not occur any transportation times if an SR

is transferred from one production line to another.

Figure 3.2 shows an exemplary production plan with a common time structure and a single state

per microperiod. If resource p = 1 is necessary for the setup on line 1 in microperiod 1, this resource

cannot be used on another line in the same microperiod. A binary parameter like bs
i jp ensures that

several setups can be executed in the same microperiod if they use different SRs. Thus, both setups

(from product 1 to 2 on line 1 and from product 3 to 4 on line 2) in microperiod s = 1 are possible if

there are two different tools p = 1 and p = 2 with bs
121 = bs

342 = 1.

variablevariable variable

fixed

�𝑤𝑤1                                  w2                                                                                        w3                                                                       �𝑤𝑤4                                         

s = 1                                     s = 2                                                  s = 3 s = 4

time

l = 1

l = 2

starting time: fixed                      free                                                        free fixed 

length of period:

setup j=1 to j=2 production j=2 standby j=2

continuous setup j=3 to j=4 production j=4

Figure 3.2: Example production plan with common time structure and exactly one state per line and

microperiod
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3.4.2 Disjunctive resources with substitutes

Now, the base model (Equations (3.1)–(3.17)) is extended to consider disjunctive resources with substi-

tutes. For instance, it is possible to choose whether worker 1 or worker 2 performs a given setup. This

opportunity is of particular interest if the workers are heterogeneous, e.g., if they have different skills

and can take care of different processes. For instance, worker 1 can perform every setup operation and

worker 2 can only perform simple setup operations. Then, substitutability leads to more flexibility to

construct feasible production plans. Again, the formulation is capable of handling the most general

case concerning the resource-to-process-relations (r:pr). In this section, we only consider the case

s:p:c where substitutable SRs may be switched from period to period. Later on in Section 3.5.2, we

will present an extension for the s-p-c case.

Resources are defined using the index q = 1,2, ...,Q. The index u = 1,2, ...,U distinguishes different

skills, e.g., the skill of a worker to execute a simple or a more complex setup or the skill of a tool to

execute a certain production process. The substitute set Θu contains all resources q with skill u which

are substitutes for each other (see also Figure 3.3 for a better understanding). For example, if worker

q = 4

q = 2

q = 3

q = 1

substitute set u = 1

substitute set u = 2

process, 
e.g., production of j = 1 

Ω𝑗𝑗=1
𝑝𝑝 = 1; 2 , i.e., one resource out of 

Θ𝑢𝑢=1 and one resource out of Θ𝑢𝑢=2 are 
necessary to produce product j = 1

and

Figure 3.3: Example for substitute consideration

1 is defined as q = 1 and worker 2 as q = 2, both are substitutes for each other because both show

skill u = 1, then Θ1 = {1;2}. A process may require several skills simultaneously. For example, a

low-skilled worker (u = 1) and a 9mm drill (u = 2) may be necessary simultaneously to produce a

certain product j = 1. The process sets Ωc
j, Ω

p
j and Ωs

i j describe which skills u are necessary for

conservation of setup state j, for production of product j and for a changeover from product i to
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product j, respectively.17 Then the process set Ω
p
1 = {1;2} represents the simultaneous necessity of

both skills in the above example.

A resource can have more than one skill and thus belong to more than one substitute set. For

example, worker q = 1 may be able to execute a simple setup (u = 1) and a complex setup (u = 3),

whereas worker q = 2 is only able to execute the simple setup (u = 1). In addition, a 9mm diamond

drill q = 3 may be able to drill 9mm holes in soft (u = 2) and hard (u = 4) surfaces, whereas a 9mm

metal drill q = 4 may only be able to perforate soft surfaces (u = 2), altogether resulting in the four

substitute sets Θ1 = {1;2}, Θ2 = {3;4}, Θ3 = {1} and Θ4 = {3}. However, for ease of simplicity, we

assume that the same resource cannot be in two different substitute sets of the same process set. When

looking at the graphical representation in Figure 3.3, this would mean that a resource cannot be found

more than once in the large circle (e.g., q = 1 cannot be in Θu=1 and Θu=2 because they are both part of

Ω
p
j=1). Relaxing this restriction would lead to significantly more variables in the model. As the above

example demonstrates, this assumption is not really crucial because reasonable skill requirements can

nevertheless be modeled, e.g., production processes needing low-skilled workers and simple drills

(Ωp
1 = {1;2}) as well as processes needing high-skilled workers and complex drills (Ωp

2 = {3;4}).

Table 3.5: Symbols for disjunctive resources with substitutes

Indices and sets:

q = 1, ...,Q disjunctive resources with substitutes

u = 1, ...,U skills

Θu substitute set, listing alternative resources q with skill u

Ωc
j process set, listing all skills u necessary for conserving the

setup state j

Ω
p
j process set, listing all skills u necessary for producing

product j

Ωs
i j process set, listing all skills u necessary for a changeover

from product i to product j

Variables:

yc
lqs ∈ {0;1} equals 1 if resource q is used to conserve a setup state on

line l in microperiod s (0 otherwise)

yp
lqs ∈ {0;1} equals 1 if resource q is used to produce a product on line

l in microperiod s (0 otherwise)

ys
lqs ∈ {0;1} equals 1 if resource q is used to perform a setup on line l

in microperiod s (0 otherwise)

It is necessary to track which resources are used in order to ensure the correct synchronization of

substitutes. Thus, three new variables are introduced: yc
lqs indicates whether resource q is used to

conserve a setup state on line l in microperiod s, yp
lqs indicates if resource q is used during a production

17We omit the index l of the production lines for ease of readability.
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process on line l in microperiod s and ys
lqs triggers the use of resource q to perform a setup on line l

in microperiod s. Additional symbols are summarized in Table 3.5 and the additional constraints are

stated afterwards.

Additional constraints for disjunctive resources with substitutes read:

∑
q∈Θu

yp
lqs ≥ yl js ∀l, j,s,u ∈Ω

p
j (3.19)

∑
q∈Θu

yc
lqs ≥ vl js ∀l, j,s,u ∈Ω

c
j (3.20)

∑
q∈Θu

ys
lqs ≥ (zli js + zc

li js) ∀l, i, j 6= i,s,u ∈Ω
s
i j (3.21)

∑
l
(yc

lqs + yp
lqs + ys

lqs)≤ 1 ∀s,q (3.22)

For each skill u of process set Ω
p
j , inequalities (3.19) attach a suitable SR if product j needs to be

produced on line l in microperiod s. As an example, let substitute set 1 again consists of workers q = 1

and q = 2 with skill u = 1 (Θ1 = {1;2}) and substitute set 2 consists of tools q = 3 and q = 4 with skill

u = 2 (Θ2 = {3;4}), respectively. Product 1 is produced (yl1s = 1), requiring both skills (Ωp
1 = {1;2}).

On the one hand, (3.19) turns into ∑q∈Θ1 yp
lqs ≥ 1, forcing yp

l1s or yp
l2s to be set to 1. On the other hand,

(3.19) yields ∑q∈Θ2 yp
lqs ≥ 1. Consequently yp

l3s or yp
l4s must take 1, assuring that at least one resource

out of each substitute set is assigned to the production process of product 1.

The variables could also be continuous. This would lead to production plans with processes per-

formed by combinations of disjunctive resources, e.g., 30% of the work is done by worker 1 and 70%

of the work is done by worker 2. This is possible (when assuming zero transfer times), but normally

not desired. Inequalities (3.20) and (3.21) are constructed in the same way as (3.19). They assure

correct standbys and setups, respectively. Up to now, the decision variables only indicate the usage of

the resources. Inequalities (3.22) enforce that the same resource q cannot be attached to several lines

in the same microperiod.

Note the difference between the case without (Sect. 3.4.1) and with (Sect. 3.4.2) substitutes: in

(3.18), resource usage only depends on whether the process is active or not. Inequalities (3.19)–(3.21)

additionally provide the possibility to choose which resources are used if a process is active.

3.4.3 Cumulative resources without substitutes

In this subsection, the model is extended to consider cumulative resources without substitutes, e.g., a

raw material which is used for parallel production of two different products on two lines. Raw materi-

als can also be necessary during setups for test runs and adjustment processes of the production lines.

It is predefined how many units of a resource are necessary to perform a certain process. Storing of

resources is not possible, i.e., if the resource’s capacity is not completely needed in a certain macrope-

riod, the remaining capacity cannot be used in the following macroperiod. An extension for storing

resources will be presented in Section 3.5.5. The resource-to-process-relation is general (r:pr). The

resources’ availability is already known.
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3.4 Extension for secondary resources

The index r = 1,2, ...,R denotes the different resources. Each resource has a given capacity Krt

per macroperiod t. The consumption of resource r is defined by parameters ec
jr, ep

jr and es
i jr for con-

servation, production and setup processes. Table 3.6 shows concrete definitions of these additional

parameters.

Table 3.6: Parameters for cumulative resources without substitutes

Indices and sets:

r = 1, ...,R cumulative resources without substitutes

Data:

ec
jr consumption of resource r while the setup state of product

j is conserved for one time unit

ep
jr consumption of resource r while one unit of product j is

produced

es
i jr consumption of resource r while a setup from product i to

product j is performed

Krt capacity of resource r in macroperiod t

With the above assumptions, the additional constraints (3.23) suffice to model cumulative resources

without substitutes:

∑
l,i, j 6=i,s∈St

es
i jrzli js + ∑

l, j,s∈St

ep
jrxl js + ∑

l, j,s∈St

ec
jrxl js ≤ Krt ∀r, t (3.23)

They assure that the aggregate capacity of each resource r is respected in every macroperiod t. Since

we only consider an SR’s aggregate capacity per macroperiod in this section, it is sufficient to assume

that the total amount es
i jr of a cumulative setup resource r (e.g., a raw material used for cleaning) will

be merely consumed in the last microperiod of a continuous setup. A more detailed modeling of per-

manently used SRs will be discussed in Section 3.5.4.

3.4.4 Cumulative resources with substitutes

Finally, cumulative SRs with substitutes are considered. For example, it is possible to produce product

1 using raw material 1 or raw material 2. The index n = 1,2, ...,N defines the different cumulative

resources. The index o = 1, ...,O distinguishes different properties these resources may show, e.g.,

whether they stem from a local or a global supplier or from organic or conventional cultivation. Simi-

larly to Θu in Subsection 3.4.2, substitute sets Ξo are introduced, which list the resources n that share

property o and can alternatively be used. For example, the raw materials of a conventional final product

could stem from both conventional and organic cultivation, whereas the raw materials of an organic

final product would not allow such a substitution. We assume that the resources of a substitute set can
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3 Simultaneous lotsizing and scheduling considering secondary resources

be combined to fulfill a process, e.g., if 30 units of product 1 are produced in microperiod s, 10 of them

can be produced using raw material 1 and 20 using raw material 2.

Table 3.7: Symbols for cumulative resources with substitutes

Indices and sets:

n = 1, ...,N cumulative resources with substitutes

o = 1, ...,O properties

Ξo substitute set, listing all cumulative resources n with prop-

erty o

Λc
j process set, listing all properties o necessary for conserving

the setup state j

Λ
p
j process set, listing all properties o necessary for producing

product j

Λs
i j process set, specifying all substitute sets o necessary for

changing from product i to product j

Data:

f c
jo consumption of resources with property o while the setup

state of product j is conserved for one time unit

f p
jo consumption of resources with property o while one unit

of product j is produced

f s
i jo consumption of resources with property o while a setup

from product i to j is performed

Kc
nt capacity of resource n in macroperiod t

Variables:

xc
lns ≥ 0 consumption of resource n to conserve a setup state on line

l in microperiod s

xp
lns ≥ 0 consumption of resource n to produce a product on line l

in microperiod s

xs
lns ≥ 0 consumption of resource n to perform a setup on line l in

microperiod s

The properties o that are necessary for conservation of the setup state of product j, for production of

product j, and for setups from i to j are declared by the process sets Λc
j, Λ

p
j and Λs

i j, respectively. Kc
nt

denotes the overall capacity of resource n in macroperiod t. f c
jo denotes the overall amount of SRs with

property o that is necessary to conserve setup state j for one time unit. f p
jo and f s

i jo state the amount

of SRs with property o necessary for the production of one unit of product j and during a setup from

product i to j, respectively. Similarly to the case of cumulative resources without substitutes, f s
i jo is

only used in the last microperiod of a continuous setup. The continuous variables xc
lns, xp

lns and xs
lns

distinguish the consumption of resource n on line l in microperiod s for conservation, production and
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3.5 Considering additional features

setups. This notation is summarized in Table 3.7.

Additional constraints for cumulative resources with substitutes:

∑
n∈Ξo

xp
lns ≥ f p

joxl js ∀l, j,s,o ∈ Λ
p
j (3.24)

∑
n∈Ξo

xc
lns ≥ f c

joxl js ∀l, j,s,o ∈ Λ
c
j (3.25)

∑
n∈Ξo

xs
lns ≥ f s

i jozli js ∀l, i, j 6= i,s,o ∈ Λ
s
i j (3.26)

∑
l,s∈St

xp
lns + ∑

l,s∈St

xc
lns + ∑

l,s∈St

xs
lns ≤ Kc

nt ∀n, t (3.27)

Inequalities (3.24) determine the values of variables xp
lns. It is assured that enough resource quantities

from substitute set Ξo are reserved for the production quantity xl js. These quantities can be fulfilled

by only one resource or a combination of different resources of the substitute set of property o. Note

that here the same resource may be in several substitute sets of the same process set. For example,

assume that multivitamin juice ( j = 1) has to be mixed from orange and pineapple concentrate. Orange

concentrate can be bought from a Spanish (n = 1) and Mexican (n = 2) supplier, pineapple concentrate

can be bought from a Thai (n = 3) and Brazilian (n = 4) supplier. The juice needs to have shares of at

least 20 % of both orange (o = 1) and pineapple (o = 2) concentrate ( f p
11 = f p

12 = 0.2). However, the

overall share of fruit concentrate (o = 3) has to be at least 50 % ( f p
13 = 0.5). Then, the three substitute

sets Ξ1 = {1;2}, Ξ2 = {3;4} and Ξ3 = {1;2;3;4} result, which all belong to the same process set

Λ
p
1 = {1;2;3}.18

Inequalities (3.25) and (3.26) are constructed in the same way and assure that enough resources are

assigned for the conservation of setup states and for the setups, respectively. Equations (3.27) ensure

that the available resource capacities Kc
nt are respected for each resource n in each macroperiod t.

3.5 Considering additional features

This section demonstrates how the model can be applied and how it may easily be adapted to incor-

porate further SR-relevant features. For some companies, these features can be of great help to create

realistic production plans. It is possible to combine the constraints of the different scenarios described

in Sections 3.4.1–3.4.4. For instance, if a company has disjunctive resources with substitutes and cu-

mulative resources without substitutes, as well, Equations (3.1)–(3.17), (3.19)–(3.22) and (3.23) can

be combined to address this case.

3.5.1 Split of setups into dismounting, cleaning and mounting

In some industrial settings it may be important to split a changeover from product i to product j into

a dismounting operation of product i, a cleaning operation and a mounting operation of product j.

18If a property o does only refer to some ingredient of the SRs, as for example the sugar content of orange and pineapple

concentrate, a corresponding factor aon can be introduced and (3.24) can be changed to ∑n∈Ξo
aonxp

lns ≥ f p
joxl js.
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3 Simultaneous lotsizing and scheduling considering secondary resources

Sections 3.4.1 and 3.4.2 assume that disjunctive resources (e.g., cutting tools), which are necessary for

product i, and disjunctive resources, which are necessary for product j, are assigned to the production

line for the complete setup from product i to j. This assumption can be too restrictive. For instance,

if the overall setup time is 6 hours and dismounting, cleaning and mounting last 1, 2 and 3 hours,

the disjunctive resources which are necessary for product i will be assigned to the production line

for 6 hours. By splitting the operation into dismounting, cleaning and mounting, the resources only

necessary for product i already get available 1 hour after starting the changeover.

The three new states “dismounting”, “cleaning” and “mounting” replace the state “setup”. We in-

troduce the identifiers D, E and M to distinguish these states. For example, the former aggregate setup

time stli j = 6 will be replaced by stD
li j = 1 for dismounting, stE

li j = 2 for cleaning and stM
li j = 3 for

mounting. Sequence dependency of these times is still important, as it could be the case that some

tools, which have been necessary for product i, are still needed for product j and can be left mounted,

whereas others have to be dismounted. This fact enforces to track the sequence. Note that the restric-

tion of having exactly one state per line and microperiod is still valid. Furthermore, we assume that

these three processes are always in the order dismounting→ cleaning→ mounting and that there is no

idle time in between. Nevertheless, each of these three states may be spread over several periods.

Besides setup times further parameters (zli j0, zc
li j0; cf. Table 3.3) and variables (σls, τls, x f

ls, zli js,

zc
li js) have to differentiate the three new states in order to adapt the basic model accordingly. We

use the same logic to distinguish them, but introduce an abbreviation for our notation: an asterisk *

marks that a constraint has to be executed for each of the three states with the corresponding state-

specific parameters and variables. For example, x f∗
ls ≥ 0 ∀l,s,∗ would abbreviate the non-negativity

constraints x f D
ls ≥ 0,x f E

ls ≥ 0 and x f M
ls ≥ 0 ∀l,s of the fractional setup times x f D

ls , x f E
ls and x f M

ls of the

states “dismounting”, “cleaning” and “mounting”.

Compared to basic model’s objective (3.1) the only change of the new objective function (3.28) is

that the zli js are substituted by zM
li js:

Min∑
t, j

h jI jt + ∑
l,i, j 6=i,s

sli jzM
li js + ∑

l, j,s
cl jxl js + ∑

l, j,s
blxl js (3.28)

The adapted constraints of the basic model (3.1)–(3.17) are presented and explained in the following

(constraints (3.2), (3.3), (3.6) and (3.7) are still valid):

∑
i, j 6=i

(zcD
li js + zD

li js + zcE
li js + zE

li js + zcM
li js + zM

li js)+∑
j

yl js +∑
j

vl js = 1 ∀l,s (3.29)

∑
j

al jxl js +∑
j

xl js + x f D
ls + x f E

ls + x f M
ls = ws+1−ws ∀l,s (3.30)

x f∗
ls ≤ wS+1 ∑

i, j 6=i
(zc∗

li js + z∗li js) ∀l,s,∗ (3.31)

s+1

∑
r=s

xl jr ≥ ml j ∑
i6= j

zM
li j,s−1 ∀ j, l,s (3.32)

yl j,s−1 +∑
i 6= j

zcD
l ji,s−1 +∑

i6= j
zM

li j,s−1 + vl j,s−1 = yl js +∑
i 6= j

zcD
l jis +∑

i6= j
zD

l jis + vl js ∀ j, l,s (3.33)
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3.5 Considering additional features

zc∗
li j,s−1 ≤ zc∗

li js + z∗li js ∀l, i, j 6= i,s,∗ (3.34)

zD
li j,s−1 ≤ zcE

li js + zE
li js ∀l, i, j 6= i,s (3.35)

zE
li j,s−1 ≤ zcM

li js + zM
li js ∀l, i, j 6= i,s (3.36)

τ
∗
ls ≥ ∑

i, j 6=i
st∗li jz

∗
li js ∀l,s,∗ (3.37)

τ
∗
ls ≤ τl,s−1 + x f∗

ls ∀l,s,∗ (3.38)

τ
∗
ls ≤ x f∗

ls +wS+1 ∑
i, j 6=i

zc∗
li j,s−1 ∀l,s,∗ (3.39)

σ
∗
ls ≥ σ

∗
l,s−1 + x f∗

ls − ∑
i, j 6=i

st∗li jz
∗
li j,s−1 ∀l,s,∗ (3.40)

σ
∗
ls ≤ ∑

i, j 6=i
st∗li jz

∗
li js + ∑

i, j 6=i
wS+1zc∗

li js ∀l,s,∗ (3.41)

zc∗
li jS = 0 ∀l, i, j 6= i,∗ (3.42)

Equations (3.4) are substituted by (3.29) to assure that at most one state is allowed per microperiod

and production line. The capacity restrictions (3.5) are adapted to (3.30) in order to respect all five

states that are now possible. Inequalities (3.8) are changed to (3.31) to respect all three states involved

into a setup. As in (3.9), the minimum lotsizes of (3.32) still have to be produced within two subsequent

microperiods. However, now zM
li js indicates the end of a setup.

The correct flow of states is assured by (3.33)–(3.36) which substitute (3.10) and (3.11). Equations

(3.33) switch from a preceding state in period s− 1 to one of the states “production”, “dismounting”

or “conservation” in period s. If a setup had been started in s− 1 by switching to the dismounting

state, constraints (3.34) enforce a correct flow of states during a continuous dismounting. Likewise,

continuity of cleaning and mounting are ensured if the ∗ in (3.34) is substituted by E and M, respec-

tively. Constraints (3.35) enable a change from dismounting to cleaning. Constraints (3.36) enforce

the subsequent transition from cleaning to mounting. If a mounting had been completed in period s−1

because of zM
li j,s−1 = 1, Equations (3.33) again control the flow of states until the next setup starts with

a dismounting operation. For example, let us assume that a changeover takes place from product i′ to

product j′ where a continued dismount is finished in period s′, i.e., ∑i6= j zcD
l ji,s−1 = 1 and ∑i 6= j zD

l jis = 1

for j = i′ and period s = s′. Then the left-hand side of (3.33) has to become 0 for all j in period

s = s′+ 1 because of (3.29). Furthermore, zcE
li′ j′,s′+1 or zE

li′ j′,s′+1 have to take the value 1 because of

(3.35). This is not hindered by (3.33) because none of the variables indicating a cleaning operation ap-

pear in (3.33). If this cleaning ends in period s′′ ≥ s′+1 by zE
li′ j′s′′ = 1, a mounting process has to start

in period s′′+1 (either zcM
li′ j′,s′′+1 = 1 or zM

li′ j′,s′′+1 = 1) because of (3.36). If this mounting is finished in

some period s′′′ ≥ s′′+ 1, in the following period, the left-hand side of (3.33) becomes 1 for product

j = j′ and production, conservation (or dismounting) of product j′ might start (see Table 3.8). All in

all, ∑i 6= j zcD
l ji,s−1 on the left-hand side of (3.33) serves the same purpose as ∑i6= j zc

l ji,s−1 did in (3.10).

Constraints (3.37)–(3.42) replace (3.12)–(3.17), however, mirrored for the states “dismounting”,

“cleaning” and “mounting”.
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3 Simultaneous lotsizing and scheduling considering secondary resources

Table 3.8: Example for the transition from dismounting of product i′ to the mounting of product j′

period s = active state all other states LHS and RHS of (3.33)

s′−1 ∑i 6=i′ zcD
li′is = 1 0 = 1 for j = i′

s′ ∑i 6=i′ zD
li′is = 1 0 = 1 for j = i′

s′+1 zcE
li′ j′s or zE

li′ j′s = 1 0 = 0 ∀ j

s′′ ≥ s′+1 zE
li′ j′s = 1 0 = 0 ∀ j

s′′+1 zcM
li′ j′s or zM

li′ j′s = 1 0 = 0 ∀ j

s′′′ ≥ s′′+1 ∑i 6= j′ zM
li j′s = 1 0 = 0 ∀ j

s′′′+1 yl j′s or vl j′s = 1 0 = 1 for j = j′

The constraints for the different resource types can easily be adapted to consider dismounting, clean-

ing and mounting, as well. As an example, this is done for disjunctive resources with substitutes (c.f.

Section 3.4.2). The process sets Ωs
i j, representing the information which skills u are necessary for a

changeover from product i to product j, are replaced by new process sets ΩD
i , ΩE

j and ΩM
j represent-

ing the information which skills u are necessary during dismounting of product i and cleaning and

mounting of product j, respectively. The variables ys
lqs are replaced by corresponding variables y∗lqs.

Then, constraints (3.21) and (3.22) of Sect. 3.4.2 have to be replaced by the following adapted

constraints (3.43)–(3.45) and (3.46):

∑
q∈Θu

yD
lqs ≥∑

j 6=i
(zD

li js + zcD
li js) ∀l, i,s,u ∈Ω

D
i (3.43)

∑
q∈Θu

yE
lqs ≥∑

i 6= j
(zE

li js + zcE
li js) ∀l, j,s,u ∈Ω

E
j (3.44)

∑
q∈Θu

yM
lqs ≥∑

i 6= j
(zM

li js + zcM
li js) ∀l, j,s,u ∈Ω

M
j (3.45)

∑
l
(yc

lqs + yp
lqs + yD

lqs + yE
lqs + yM

lqs)≤ 1 ∀s,q (3.46)

Constraints (3.43)–(3.45) determine which disjunctive SRs of the substitute sets Θu are actually used

in the different states. Because of (3.46), each SR q is at most applied once per microperiod s.

3.5.2 S-p-c model for disjunctive substitutes and splitting of setups

In this section, we introduce additional constraints to represent the s-p-c case. If splitting of setups

is allowed, too, this means that it is mandatory that the same resource (e.g., a tool) is used during

mounting, production or conservation and dismounting.

Constraints (3.47)–(3.50) assure that the same resource is used during all subsequent microperiods
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of this sequence of processes:

yD
lq,s−1 ≤ yD

lqs + ∑
i, j 6=i

zD
li j,s−1 ∀l,s,q (3.47)

yM
lq,s−1 ≤ yM

lqs + ∑
i, j 6=i

zM
li j,s−1 ∀l,s,q (3.48)

yp
lq,s−1 + yc

lq,s−1 ≤ yp
lqs + yc

lqs + ∑
i, j 6=i

(zcD
li js + zD

li js) ∀l,s,q (3.49)

yM
lq,s−1 + yp

lq,s−1 + yc
lq,s−1 ≤ yM

lqs + yp
lqs + yc

lqs + yD
lqs ∀l,s,q (3.50)

Constraints (3.47) assure that an SR q, which is used for dismounting on line l in microperiod s− 1,

is also used for dismounting on the same line in microperiod s. This flow can only be interrupted if

dismounting also had been finished in microperiod s− 1, i.e., if ∑i, j 6=i zD
li j,s−1 = 1. Constraints (3.48)

work in the same way to consider resource flows during mounting. The resource flow during production

and conservation of a setup state is respected using constraints (3.49). They allow an arbitrary change

between the states production and conservation until dismounting begins. Constraints (3.50) enforce

that mounting can only be followed by mounting or the sequence defined by (3.49). Overall, the

resource can only be released from this production line using a dismounting operation.

If a cleaning process required the same SR q during all cleaning periods, this could be modeled in a

similar fashion.

3.5.3 Capacity restriction of disjunctive resources

Section 3.4.1 assumed that a disjunctive SR p is — like the primary resource — always available

for the complete planning horizon. In the literature of disjunctive resources without substitutes, this

assumption is sometimes relaxed (c.f. Table 3.2). For example, a setup operator p might only be

available for 7 hours within an 8 hour macroperiod. With Kd
pt denoting the available capacity of SR p

in macroperiod t, constraints (3.51) and (3.52) extend the model of Section 3.4.1:

xh
li js ≥ x f

ls−wS+1 ∗ (1− zli js− zc
li js) ∀l, i, j,s (3.51)

∑
l,i, j 6=i,s∈St

bs
i jpxh

li js + ∑
l, j,s∈St

bp
jpal jxl js + ∑

l, j,s∈St

bc
jpxl js ≤ Kd

pt ∀p, t (3.52)

The fractional setup time x f
ls of the basic model does not identify the products i and j responsible

for a changeover. Thus constraints (3.51) do establish this missing link by setting the newly introduced

variables xh
li js(≥ 0) to x f

ls if i and j cause a setup and to 0, otherwise. With this knowledge, constraints

(3.52) can aggregate the usage of SR p (c.f. Table 3.4) within macroperiod t and limit it by its available

capacity Kd
pt .
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3.5.4 Capacity restriction of cumulative resources for a continuously provided resource

If non-substitutable cumulative resources are provided in a continuous manner, e.g., because there is

a continuous flow from a pipeline, it might not be sufficient to respect the SR’s capacity only per

macroperiod in an aggregate manner, as it has been done using constraints (3.23) of Section 3.4.3. For

example, if a macroperiod consisted of 10 microperiods, each lasting 1 minute, if an SR was provided

with a rate of 1 unit per minute and if there were two production lines, each needing 5 units of the SR in

the first 5 minutes, such a schedule would indeed satisfy (3.23), but nevertheless be unrealistic because

in each of the first five microperiods two units of the resource were required with only one being

provided. In this case, the SR’s capacity needs to be modeled in more detail, e.g., on a microperiod

basis. Then, constraints (3.23) have to be substituted by (3.53) where the capacity of a secondary

resource r is defined by a maximum flow rate K fr (measured in units of the SR per unit of time):

∑
l,i, j 6=i

es
i jrx

h
li js +∑

l, j
ep

jrxl js +∑
l, j

ec
jrxl js ≤ K fr(ws+1−ws) ∀r,s (3.53)

In this case of a continuous supply it is also no longer reasonable that an SR is only consumed in

the last microperiod of a continuous setup. Thus, the auxiliary variables xh
li js of Section 3.5.3 need to

be used again and es
i jr needs to be re-defined as the consumption of resource r during one time unit

of a setup from product i to product j (c.f. Table 3.6). Then, the left-hand side of (3.53) represents

the SR’s total consumption during microperiod s, whereas the right-hand side represents its maximum

availability in the same microperiod. Note that nevertheless all microperiods are still of flexible length.

3.5.5 Inventory balancing of cumulative resources

If unused cumulative resources can be stored, the development of the resulting inventories should be

tracked over time. This can also be done on a macro- or microperiod basis by introducing variables

Īrt ≥ 0 or Îrs ≥ 0 representing the inventory of resource r at the end of macroperiod t or microperiod s,

respectively. Let K̄rt now denote a predefined, given supply of resource r in macroperiod t (e.g., by a

mid-term contract with a supplier of r) and K̂ f r denote a constant inflow rate of resource r per unit of

time (e.g., from a preceding, independent stage of production).

Then the model of Section 3.4.3 can be adapted by replacing constraints (3.23) with

Īrt = Īr,t−1 + K̄rt − ∑
l,i, j 6=i,s∈St

es
i jrzli js− ∑

l, j,s∈St

ep
jrxl js− ∑

l, j,s∈St

ec
jrxl js ∀r, t (3.54)

and the model of Section 3.5.4 can be adapted by replacing constraints (3.53) with

Îrs = Îr,s−1 + K̂ f r(ws+1−ws)− ∑
l,i, j 6=i

es
i jrx

h
li js−∑

l, j
ep

jrxl js−∑
l, j

ec
jrxl js ∀r,s. (3.55)

Constraints (3.54) and (3.55) are standard inventory balancing constraints analogous to constraint

(3.3). Note that holding costs could easily be introduced for Īrt since the length of a macroperiod is

known in advance. However, this is not the case for Îrs because the length of a microperiod is variable.
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3.5.6 No substitution of cumulative resources during a production lot

The formulation in Section 3.4.4 allows a combination of substitutable cumulative resources when

producing a certain product. Sometimes, it is not desired to switch between alternative raw materials

while producing a single lot. For instance, one would like to avoid switching the providing tank several

times for a single production lot lasting just a few minutes. To hinder substitution within a single lot,

the model from Section 3.4.4 needs to be adapted. We just sketch the general idea but do not present

the complete model:

xp
lns ≤Mybp

lns ∀l,n,s (3.56)

∑
n∈Ξo

ybp
lns ≤ 1 ∀l,s,o (3.57)

The additional binary variables ybp
lns are set to 1 if resource n is used for production on line l in

microperiod s (otherwise 0). Constraints (3.56) assure this by means of a big constant M. To forbid

switching, at most one type of SR of each substitute set Ξo is allowed per line, microperiod and property

o (3.57). If desired, analogous constraints must be formulated for the other potential states of the line,

too. Since a production lot may span over several microperiods, it is still possible that line l uses one

raw material of substitute set Ξo in microperiod s and another one in microperiod s+ 1. To prevent

this, flow constraints similar to (3.49) are necessary.

3.5.7 All lines must consume the same resource

The following extension represents the case of Camargo et al. (2012). The authors consider a scenario

where all production lines must consume the same resource at the same time. This way they model

a furnace which feeds several lines in parallel. The material can differ from period to period. Our

model from Section 3.4.3 can be used as a basis. Thus, cumulative resources without substitutes are

considered, and the following constraints added:
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)
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The left-hand side of (3.58) constitutes the total consumption of resource r on all lines in microperiod

s, whereas the brackets of the right-hand side constitute the consumption of the same resource in the

same microperiod, but only on line l. Thus, with M again being a large positive constant, (3.58) ensure

that all other lines are forced to use resource r if at least one line uses this resource. Note that a line

may still require more than just a single SR.

3.6 Examples

The following examples demonstrate the functionality of the model. The focus is on the secondary

resources. Thus, the basic production scenario is very simple and all models are kept small in order
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to remain comprehensive. In Section 3.6.1 disjunctive resources without substitutes are addressed.

The subsequent section is devoted to disjunctive resources with substitutes. Section 3.6.3 addresses

cumulative resources with substitutes. Afterwards an example with all types of resources is presented.

The final scenario of Section 3.6.5 requires continuous setups.

The exemplary models have been implemented using GMPL 4.50 as a modeling language and GLPK

4.55 as a solver. All experiments have been performed on an IntelCore i5-4300 CPU 1.9 Ghz, 8 GB

RAM. However, computation time is not the focus of this section, but rather the flexibility of the

underlying mixed-integer programming models.

3.6.1 Disjunctive resources without substitutes

The basic production scenario comprises two lines and two products (plus a product j = 0 to represent

the neutral state). It lasts 1 time unit to produce 1 unit of each product. Production of product 1 is

only possible on line 1 and product 2 can be produced exclusively on line 2. Production costs are 2

monetary units per unit of each product. Setup costs are set to 1 monetary unit and setup times are set

to 1 time unit for every product combination. Both lines are in the neutral state ( j = 0) at the beginning

of the planning horizon. Two macroperiods containing three microperiods each are considered. Each

of them has a capacity of 10 time units. If 1 unit of a product is stored for one macroperiod, holding

costs of 1 monetary unit occur. Standby costs are zero and the demand of product 1 and 2 is 8 units,

each, at the end of the second macroperiod. Minimum lotsizes are set to one. The optimal production

plan without consideration of secondary resources is presented in Figure 3.4.

Figure 3.4: Production plan without consideration of secondary resources

The length of microperiods s = 1 and s = 2 is zero. In microperiods s = 3 and s = 4 the initial setup

state ( j = 0) is conserved (standby) on both lines. Microperiod s = 5 is used to perform the setups from

product 0 to 1 on line 1 and from product 0 to 2 on line 2. The last microperiod has a length of 8 time

units and is used for production on both lines. The total costs are 34 monetary units.

Now, there are three different secondary resources: workers A and B, and tool C. Worker A is neces-

sary for every setup which involves product 1 and worker B is necessary for every setup which involves

product 2. Tool C is necessary for every setup which involves product 1 and 2 and for production and

standby of the products 1 and 2. The production plan resulting from solving model (3.1)-(3.18) is

shown in Figure 3.5.

Since tool C is necessary for the production of both products, it is not possible to produce them at the
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Figure 3.5: Production plan with consideration of disjunctive resources

same time. Furthermore, tool C is also necessary for the standby of the products. Thus, it is not possible

that line 2 stays set up for product 2 after production. Additional costs occur due to the changeover

from product 2 to 0 in microperiod 4. The tool is still necessary during this setup operation, thus, this

setup has to be finished before the setup on line 1 can start in microperiod 5. Due to preproduction

in microperiod 3 holding costs of 8 monetary units occur. Nevertheless, an optimal production plan,

which would be feasible in this practical application, has been created.

3.6.2 Disjunctive resources with substitutes

The considered scenario is similar to the scenario described in Section 3.6.1. The only difference is

the existence of an additional tool D, which can be installed instead of tool C for both products. For

workers A and B, constraints (3.18) of the model without substitutes can still be used. Nevertheless, it

is also possible to apply the constraints for resources with substitutes. In this case, there would be just

one resource in the substitute set and the model would involve unnecessary variables. However, for

tools C and D the formulation of Section 3.4.2 is mandatory. The resulting production plan is presented

in Figure 3.6.

Figure 3.6: Production plan with consideration of disjunctive resources with substitutes

As can be seen, complete production takes place in macroperiod t = 2. Thus, the total costs are 34

monetary units. The usage of tools C and D is indicated by the variables ys
lqs, yp

lqs and yc
lqs. As shown

in Figure 3.6, each resource is used at most on one line in each microperiod.

Since a frequent switching of SRs is not always welcome, in the following we apply the s-p-c

formulation of Section 3.5.2. We assume that dismounting, cleaning and mounting lasts 1 time unit,

each. Substitute set 1, consisting of tools C and D, is necessary during the mounting and production of
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the products j = 1 and j = 2. The resulting production plan is presented in Figure 3.7.

Figure 3.7: Production plan of the s-p-c case

Setups are split into dismounting in microperiod 2, cleaning in microperiod 4 and mounting in

microperiod 5. Production takes place in microperiod 6. The total costs are 34 monetary units. Tool

C is used on line 1 during mounting and production. Tool D is used on line 2 for the same sequence

of states. A comparison with Figure 3.6 reveals that s-p-c model works as expected. The schedule of

Figure 3.7 is also a feasible and optimal plan for the previous model. However, as already mentioned,

the schedule of Figure 3.6 would not be feasible for the s-p-c case.

3.6.3 Cumulative resources with substitutes

Now, the basic production scenario is extended by cumulative SRs only. We assume that 2 units of

resource 1 (e.g., a raw material) are necessary to produce product 1. Furthermore, we assume that 3

units of resource 1, 2 or 3 are necessary to produce product 2. The model with substitutes of Section

3.4.4 is used. Substitute set 1 consists of resource 1 and substitute set 2 consists of resources 1, 2 and

3. The availability of resource 1 is 10 units per macroperiod. Each of the two other resources has an

availability of 5 units per macroperiod. The resulting production plan is presented in Figure 3.8.

Figure 3.8: Production plan with consideration of cumulative resources

The setups from product 0 to 1 and from product 0 to 2 take place in microperiod 2. Product 1 is set

up on line 1 and product 2 on line 2. Production of 4 units of each product takes place in microperiod

3. Note that resource 1 is used on both lines in parallel in microperiod 3 as expected under the setting

of cumulative resources. As can be seen, the resources of substitute set 2 are combined to fulfill the
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requested quantity of resources to produce 4 units of product 2. The missing units of products 1 and 2

are produced in macroperiod 2. Since the pre-production of 4 units each is necessary due to resource

restrictions, the costs sum up to 42 monetary units including 8 monetary units for storing 4 units of

product 1 and 4 units of product 2.

3.6.4 A combination of different types of resources

The following scenario demonstrates the combination of disjunctive and cumulative SRs. Furthermore,

it also considers the case that a process needs resources of more than just one substitute set. The basic

scenario is not changed. A setup which involves product 1 needs the following resources: one worker

of a group of two high skilled workers (substitute set Θ1 including disjunctive resources 1 and 2), one

worker of a group of three lower skilled workers (substitute set Θ2 including disjunctive resources

3, 4 and 5) and one crane (disjunctive resource 6) whereof just one replica exists. There are two

different substitute sets of cumulative resources (Ξ1 and Ξ2), each consisting of two raw materials.

A setup consumes 10 units of each of these substitute sets to perform test runs and adjustments of

the production line. Production of product 1 requires 2 units of each of these substitute sets for each

produced unit. Furthermore, one worker of substitute set Θ2 is necessary. Setup and production of

product 2 require exactly the same resources. Disjunctive resources are available during the complete

planning horizon. Raw materials 1 and 2 (substitute set Ξ1) are limited to 20 units per period, each.

The same holds for substitute set Ξ2 (raw materials 3 and 4). Figure 3.9 shows the resulting production

plan.

Figure 3.9: Production plan with different types of resources

The total costs are 34 monetary units. As can be seen, all requirements are considered. For instance,

disjunctive resource 3 is used for production on line 1, and disjunctive resource 5 for production on line

2 in microperiod 4. Both are substitutes for each other and disjunctive. Thus, for example, resource 3

cannot be used in parallel on both lines and another resource is used for line 2. Setting up both lines in

parallel is not possible because disjunctive resource 6 is necessary for both of them. Also note that the

minimum lotsize on line 2 is ensured in the second microperiod after the setup operation (c.f. constraint
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(3.9)).

3.6.5 A scenario requiring continuous setups

The last scenario necessitates continuous setup times. Besides the following changes all parameters

remain the same as before. Demand occurs only in the second macroperiod: 10 units of product 1

and 5 units of product 2. The setup times are re-defined: each setup on line 1 lasts 3 time units and

each setup on line 2 lasts 11 time units. Only one cumulative resource with a capacity of 10 units per

macroperiod is considered. To produce one unit of product 1 or 2 one unit of the cumulative resource

is necessary. The resulting production plan is shown in Figure 3.10.

Figure 3.10: Production plan with cumulative resources and a continuous setup

Obviously, it is impossible to produce all products in macroperiod 2. The limited availability of the

cumulative resource is the reason for this. Thus, 5 units of product 1 are produced in macroperiod 1

and stored until macroperiod 2. As intended, on line 2, there is a setup which continues over three

microperiods and even exceeds a macroperiod boundary.

3.7 Summary and outlook

A mixed-integer, linear programming model for single-stage, simultaneous lotsizing and scheduling

considering secondary resources (SRs) has been presented. In this field of research, besides the limited

capacity of the primary resources (several parallel production lines of a single stage of production)

also the limited availability of further (“secondary”), potentially scarce resources like setup tools, setup

operators or raw materials has to be respected.

A comprehensive literature research has revealed that most of the existing SR-models are tailored

to specific practical applications. It has also helped to develop a classification scheme for SRs, which

comprises four different types of resources: disjunctive resources with and without substitutes and cu-

mulative resources with and without substitutes. While disjunctive SRs can only serve a single produc-

tion line at a single point in time, do not become part of the final product and can be used several times

consecutively (like setup tools), cumulative SRs can serve several production lines simultaneously, do

become part of the final product and can be consumed only once (e.g., raw materials). Substitutability

distinguishes whether only a single type of SR or several alternative types of SRs could be applied for

a certain setup or production process.
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The developed model is based on the general lotsizing and scheduling problem for parallel pro-

duction lines (GLSPPL) and can represent general situations which combine all four types of SRs.

Synchronization of SRs is realized using a common time structure on all parallel production lines.

Substitutes for different skills and properties of SRs are incorporated using substitute sets. Additional

index sets define which skills and properties are necessary to perform a certain process.

The major advantage of the model is that it unifies nearly all SR-constraints and -applications found

in the literature within a single formulation. This formulation still remains compact since features,

which were unnecessary for a certain application, could easily be left out by omitting the corresponding

constraints and variables. Some features, which have not been dealt with in science so far but are of

practical relevance, can also be incorporated. Examples are cumulative SRs with substitutes or the

ability to refine the modeling of changeovers by distinguishing between dismounting, cleaning and

mounting. Such an approach allows to construct more flexible and thus more realistic schedules.

Some examples have been presented which demonstrate the applicability of the new model. How-

ever, extensive numerical tests on the computational performance of the new model have not been

performed. This would have gone beyond the scope of a single publication. Thus, future research

has to analyze and, where possible, improve the performance of the formulation, but mainly to design

scalable solution heuristics for problem instances of industrial size. If these base on the new model,

they promise to be more generally applicable than current SR-heuristics are. Nevertheless, the already

existing models and heuristics for specific applications, which have been referred to in Section 3.2,

may serve as benchmarks for comparison. Another challenge for future research is to extend the model

for multiple stages of production.
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4 Decomposing large-scaled simultaneous
lotsizing and scheduling problems using
product aggregation

Abstract During the last decades, many heuristics have been introduced to solve simultaneous lot-

sizing and scheduling problems. However, many problems of practical relevance are large-scaled in

terms of the number of products and machines which must be considered simultaneously. Present

heuristics often provide an unsatisfying performance to solve these problems, i.e., it is impossible to

find cost-efficient, or at least feasible production plans in an adequate time. We present a new heuristic,

which creates a modified multi-line master problem by aggregating products into groups. The result-

ing problem is less complex and its solution can be used to define single-line sub problems. These sub

problems are solved by present heuristics and the results are then combined to form a solution to the

original problem. The new heuristic provides a superior alternative to solve large-scaled problems.

Keywords Scheduling, Heuristics, Simultaneous lotsizing and scheduling, Production

4.1 Introduction

Consumer goods, such as dairy products or drugstore products, will always be in demand. From

a producer’s perspective, these products have certain characteristics such as involving only a small

number of production stages within the production process. We use the dairy industry as example

(see e.g., Smith-Daniels and Smith-Daniels 1986 and Seeanner and Meyr 2013): producing a yoghurt

utilizes two stages. One stage for blending yoghurt and a second stage to fill the final product into

cups. This type of production is called make-and-pack. A stage may involve several consecutive

machines, showing similar production speeds. Since products run through these machines in the same

order and transportation times between the machines can be neglected, they can be planned as one

unit, which is called (production) line. Furthermore, in make-and-pack scenarios, often only one stage

defines a bottleneck, i.e., a stage which has significantly less production capacity than the other stages.

Therefore, it is sufficient to plan this bottleneck stage in detail and propagate the resulting plan to

the non-bottleneck stages. A bottleneck stage normally consists of several parallel production lines

which often have the same functionality, i.e., are capable of producing the same products. On the other

hand, these lines normally are heterogeneous, i.e., they have different levels of efficiency, since they

have been bought step by step over a long period of time. As a result, there might be line-dependent
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parameters like production costs and production speeds. All in all, this leads to dependencies between

the lines and they must be planned simultaneously.

Sequence-dependent changeover costs and times may occur if there is a changeover from one prod-

uct to another product on a line. Thus, not only the line assignment, but also the sequence of the

products must be planned. Due to a high indifference of customers between similar products of two

consumer goods producing companies, it is very important to fulfill the demand without backlogging

to avoid lost sales. Normally, the demand is forecasted and can be assumed as deterministically known.

Furthermore, the demand for each product may change in each period (days or weeks) of a finite plan-

ning horizon (months or quarters). If due to the necessity of short lead-times and the occurrence of

large setup times, consumer goods are produced on stock, which is the normal case, holding costs must

be considered until stocked products are used to fulfill the forecasted demand. I.e., a lotsizing problem

must be solved too. Due to given limited capacities of the production lines, a high interdependency be-

tween the different planning problems occurs and requires a simultaneous planning. For example, due

to sequence-dependent setup times, it is impossible to define lotsizes without considering the schedul-

ing. Previously described problems are named simultaneous lotsizing and scheduling problems. (see,

e.g., Meyr 1999, Chapter 3)

Many publications examine simultaneous lotsizing and scheduling problems. Usually, they focus

on extended model formulations or new solution heuristics. An up-to-date review can be found in

Copil et al. (2017). Former reviews are provided by Drexl and Kimms (1997) and Zhu and Wilhelm

(2006). We focus on the general lotsizing and scheduling problem for parallel lines (GLSPPL) of Meyr

(2002), since it is quite general and can be used for problems of practical relevance (Meyr and Mann

2013). A solution heuristic for the GLSPPL has been introduced in Meyr (2002). Another solution

procedure, which focuses more on large-scaled problems, can be found in Meyr and Mann (2013). In

fact, the GLSPPL and other simultaneous lotsizing and scheduling models are not used to create plans

for products but for (setup) families. A setup family includes several products which have no or only

very small setup times between each other. Nevertheless, switching from one setup family to another

one causes long setup times. (see, e.g., Meyr 2002, p. 277) Thus, the problems solved are smaller

compared to the product-based original problems. Indeed, considering setup families is a reasonable

approach. Nevertheless, companies often do not know which products constitute a setup family or they

aggregate products to families in a way which still provides optimization potential to further reduce

the model size.

We take-up this issue and propose a solution heuristic which creates setup families to reduce the

model size. This heuristic significantly helps to solve large-scaled problems and also generates ad-

vantages if problems already consist of setup families since often further aggregation is possible to

improve the solution performance. At the same time, we provide helpful insights about creating setup

families in the case of sequence-dependent setup times which, to the best of our knowledge, has not

been considered in literature so far. In detail, the first step of the heuristic aggregates products to setup

families to formulate a modified master problem which is less complex than the original problem. In

the following step, an up-to-date heuristic is used to solve the modified multi-line problem. The result

is disaggregated to determine line-dependent demands. The resulting single-line problems are solved
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with another up-to-date heuristic and the production plan of the original problem is formed. Different

settings are examined in numerical tests and prove the applicability of the approach to solve problems

of practical relevance.

In Section 4.2, a short review provides insight into the literature of simultaneous lotsizing and

scheduling. The GLSPPL is presented in Section 4.3. Afterwards, Section 4.4 is devoted to the ex-

planation of the new solution approach. Numerical tests and their results are explained in Section 4.5.

Finally, Section 4.6 summarizes the results and provides a short outlook on further research.

4.2 Literature review

The GLSPPL, mentioned in Section 4.1, generalizes other formulations of simultaneous lotsizing and

scheduling problems. I.e., it is possible to restrict the GLSP by adapting the input parameters to form

all of the following basic models (see Meyr 1999, pp. 82-84 or Copil et al. 2017, pp. 6-8): the dis-

crete lotsizing and scheduling problem (DLSP) was first named by Fleischmann (1990). It consists of

so-called microperiods, which allow at most one setup per period. Furthermore, production must take

place for the complete period, or not at all (all-or-nothing assumption). Lasdon and Terjung (1971)

already introduced a formulation based on this assumption but did not name it DLSP. The continuous

setup lotsizing problem (CSLP) by Karmarkar and Schrage (1985) eliminates the all-or-nothing as-

sumption but still allows only one product per microperiod. The proportional lotsizing and scheduling

problem (PLSP) of Haase (1994) allows two products per microperiod if the first product was already

set up in a former period. Finally, the capacitated lotsizing problem with sequence-dependent setups

(CLSD) of Haase (1996) uses so-called macroperiods which allow several products per period. The

sequence of the products during a macroperiod is formed by numbering the products during the period.

Many extensions and different solution methods for all of these models exist and are summarized in

Copil et al. (2017). The following paragraphs describe publications which put their focus on setup

families and publications concerning the GLSP.

The main characteristic of setup families is having only small or even no setup times (minor setups)

between products of the same family and longer setup times (major setups) between different families

(see, e.g., Fleischmann 1994, p. 401, Smith-Daniels and Smith-Daniels 1986, p. 278 or Hax and Meal

1975). In most publications concerning simultaneous lotsizing and scheduling the term “product” is

used in the model description. Of course, depending on the aggregation level of the input data, the

term “product” can also represent setup families. Only a few publications directly use the word “setup

family” (see, e.g., Toso et al. 2009). Nevertheless, there also exist model formulations which explicitly

include the differentiation between minor and major setups. For example, Tempelmeier and Buschkühl

(2008) consider products which differ in the characteristics color and tool use. Products which need

the same tool are combined in setup families. Tool changes cause major sequence-independent setups.

Additionally, color changes cause minor sequence-independent setups. Almeder and Almada-Lobo

(2011) propose a model for a different problem and assume that minor setup times are zero and that

sequence-dependent setup times between products which need different tools exist. Gicquel et al.

(2009) propose an approach to reduce the changeover variables of a DLSP model. They assume that
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all products differ in the specification of several physical attributes, like color or dimension. Setup

costs are accounted on basis of attribute changes. The authors also point out that if there are only two

attributes, a major-minor-setup structure can be easily defined. However, none of the aforementioned

publications put the focus on defining setup families and the corresponding parameters like production

costs of a family.

The first GLSP formulation has been introduced by Fleischmann and Meyr (1997). This formu-

lation represents sequence-dependent setup costs, minimum lotsizes and continuous setup states, i.e.,

the setup state is not lost during idle periods. In Meyr (1999), the formulation additionally includes

sequence-dependent setup times and allows a continuous setup state or the loss of the setup state by

defining the input parameters. Subsequently, many extensions of the model have been introduced.

For example, several of the formulations incorporate multi-level bill-of-material structures and multi-

ple production stages (to mention only a few: Meyr 2004, Fandel and Stammen-Hegener 2006, Lang

2010, Seeanner and Meyr 2013 or Mohammadi and Poursabzi 2014). Often, model development was

inspired by practical applications. For instance, by the consumer goods industry in general (Günther

et al. 2006, Pahl et al. 2011, Tiacci and Saetta 2012, Meyr and Mann 2013, Seeanner 2013, Seeanner

and Meyr 2013 or Camargo et al. 2014) or more specifically by the food industry (Fleischmann and

Meyr 1997, Meyr 2000 or Marinelli et al. 2007) or the beverage industry (Toledo et al. 2008a, Toledo

et al. 2008b, Ferreira et al. 2009, Toledo et al. 2009, Ferreira et al. 2010, Toledo et al. 2010, Ferreira

et al. 2012, Baldo et al. 2014, Toledo et al. 2014 or Toledo et al. 2015).

Research takes not only place within the scope of modeling, but also in the field of developing solu-

tion heuristics. Quite a lot of these heuristics are meta-heuristics based on local search or evolutionary

algorithms (e.g., Meyr 2000, Meyr 2002, Toledo et al. 2008a or Figueira et al. 2013). Furthermore,

MIP-based19 approaches like fix&relax, fix&optimize and rolling horizon approaches are used in con-

temporary models (examples are Toso et al. 2009, Ferreira et al. 2010, Mohammadi 2010 or Baldo

et al. 2014).

In the following, the focus is placed on heuristics being used during our decomposition approach to

solve sub problems. Meyr (2000) proposes a heuristic for the single-line GLSP, which uses the local

search meta-heuristic threshold accepting. In each iteration, he generates a setup sequence randomly

from the neighborhood of the previous setup sequence. A new sequence is accepted if the resulting

objective value is better or not worse than a certain threshold. The threshold values are lowered to

reach convergence of the algorithm. The setup costs can be directly calculated by the sequence. For

the calculation of the minimum holding costs, a network flow problem must be solved. To solve this

problem, a dual network flow problem algorithm is used and the current solution is re-optimized each

time the setup pattern is adapted. Using the dual network flow problem it becomes possible to refuse

candidates without solving the problem to optimality. This algorithm is called TADR. It is adapted

to the multi-line case in Meyr (2002). The main difference is having to solve a generalized network

flow problem. This makes the approach only useful for medium-sized instances with two lines, eight

periods and 19 products. This approach is called TAPLS.

19MIP – Mixed integer programming.
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4.3 GLSPPL model formulation

Meyr and Mann (2013) propose a decomposition approach (TA-agg), which shows similarities in

the basic structure compared to our heuristic. The authors initiate a time aggregation of the original

multi-line problem to create a less complex master problem. I.e., several macroperiods of the original

model are aggregated to form one macroperiod of the adapted model. The reduced model is solved by

a reimplementation of TAPLS which uses the standard solver GLPK instead of the algorithm for the

generalized network flow problem (this algorithm is called TA-GLPK). After solving the aggregated

multi-line problem, line-dependent demands are calculated based on the result. Afterwards, the single-

line problems are solved using TADR. The results of the single-line problems serve as fixed setup

pattern for a linear programming representation of the original model. Finally, the linear program (LP)

is solved to further optimize the solution.

The solution approach we present is sketched in Meyr (1999, pp. 175-181). However, in this ap-

proach the time is aggregated as well which will be omitted in the following. Furthermore, we essen-

tially improve the approach and provide important insights about the realization of the several steps of

the algorithm.

Additionally, a decomposition approach which also relies on setup families is proposed by Mac Caw-

ley (2014). However, his approach solves a very specialized simultaneous lotsizing and scheduling

problem for wine bottling (see also Copil et al. 2017, p. 49). Based on the bottle type, the products are

assigned to setup families. Major sequence-independent setups occur for changing the bottle type and

minor sequence-dependent setups are respected for product changeovers. Macroperiods are used to

represent eight-hour shifts. A major setup always lasts for a complete shift and only two minor setups

are allowed per macroperiod. Product-specific demands must be fulfilled at the end of the planning

horizon. Aggregating the demand for each setup family leads to a problem which is solved by a stan-

dard solver. Afterwards, the sequences and lotsizes of the products are determined. All in all, the model

has many additional restrictions compared to the basic GLSPPL formulation. Therefore, the solution

approach cannot be directly applied to solve GLSPPL models missing these special characteristics.

To sum up, the GLSP is a widely used and accepted model formulation for simultaneous lotsizing

and scheduling problems. Several extensions and solution approaches exist as shown in the previous

paragraphs. Nevertheless, there is still a need for faster solution approaches, especially for large-sized

practical problems (see, e.g., Meyr and Mann 2013 concerning the GLSP).

4.3 GLSPPL model formulation

The GLSPPL formulation considers several products j ( j = 1,2, ...,J) which can be produced on mul-

tiple parallel production lines l (l = 1,2, ...,L). The planning horizon is divided into multiple macrope-

riods t (t = 1,2, ...,T ). A given (time) capacity Klt limits production on line l in macroperiod t. The

consumed capacity while producing one unit of product j on line l is defined by al j. If a changeover

from product i to product j takes place on line l, the given capacity is further reduced by a setup time

stli j. Additionally, setup costs sli j occur. Upon completion of a setup, minimum lotsizes ml j must be

respected. Moreover, production costs cl j must be calculated for each produced unit of product j on

line l. A given demand d jt must be met without backlogging for product j in macroperiod t. However,
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4 Decomposing large-scaled simultaneous lotsizing and scheduling problems using product aggregation

positive inventory is allowed and has to be penalized by holding costs h j for storing one unit of product

j for the length of one macroperiod.

Additionally to the macroperiod time grid, the planning horizon is further divided into microperiods

s (s = 1,2, ...,S). St defines the set of microperiods within macroperiod t. Thus, |St | defines the number

of microperiods in macroperiod t. The main functionality of microperiods is to define the sequence of

produced products. This is realized by allowing at most one product per microperiod. The lengths of

microperiods are not defined in advance and it is also possible that a microperiod has a length of zero.

Table 4.1: Symbols of the GLSPPL

Indices and sets:

i, j = 1, ...,J products; i, j = 0 neutral product

l = 1, ...,L production lines

s = 1, ...,S microperiods

t = 1, ...,T macroperiods

St set of microperiods s belonging to macroperiod t

Data:

al j capacity consumption (time) needed to produce one unit of product j on

line l

cl j production costs of product j (per unit) on line l

d jt demand of product j in macroperiod t (units)

h j holding costs of product j (per unit and macroperiod)

I j0 initial inventory of product j at the beginning of planning (units)

Klt capacity of line l in macroperiod t (time)

ml j minimum lotsize of product j (units) if produced on line l

sli j setup cost of a changeover from product i to product j on line l

stli j setup time of a changeover from product i to product j on line l

yl j0 equals 1 if line l is set up for product j at the beginning of planning (0

otherwise)

Variables:

I jt ≥ 0 inventory of product j at the end of macroperiod t (units)

xl js ≥ 0 quantity of product j produced during microperiod s on line l (units)

yl js ∈ {0;1} setup state: yl js equals 1 if line l is set up for product j in microperiod s

(0 otherwise)

zli js ≥ 0 equals 1 if a changeover from product i to product j takes place on line

l in microperiod s (0 otherwise)

xl js defines the production quantity of product j on line l in microperiod s. The inventory of product

j at the end of macroperiod t is denoted by I jt . It is possible to define a starting inventory I j0 of product

j which is already available before macroperiod t = 1. The following variables are used to define and
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4.3 GLSPPL model formulation

track the changeovers: zli js takes on 1 if a changeover from product i to product j takes place on line l

in microperiod s (otherwise, its value is 0). If line l is set up for product j in microperiod s, the variable

yl js takes on 1 (otherwise, its value is 0). yl j0 defines the initial setup state. It is equal to 1, if line l is

set up for product j before the beginning of planning.

A product j = 0 is introduced to represent an idle state of a line at the beginning of planning. There

is no demand of this product and after the first changeover on each line the product j = 0 is never

used again, since the model formulation assumes that setup states are conserved during idle times

(stl j j = sl j j = 0 ∀l, j).

All parameters and variables used in the model are summarized in Table 4.1. The model formulation

is stated below.

Objective function:

Min∑
t, j

h jI jt + ∑
l,i, j,s

sli jzli js + ∑
l, j,s

cl jxl js (4.1)

Constraints:

I jt = I j,t−1 + ∑
l,s∈St

xl js−d jt ∀ j, t (4.2)

∑
j,s∈St

al jxl js ≤ Klt − ∑
i, j,s∈St

stli jzli js ∀l, t (4.3)

xl js ≤
Klt

al j
yl js ∀l, j, t,s with s ∈ St (4.4)

xl js ≥ ml j(yl js− yl j,s−1) ∀l, j,s (4.5)

∑
j

yl js = 1 ∀l,s (4.6)

zli js ≥ yli,s−1 + yl js−1 ∀l, i, j,s (4.7)

The objective function (4.1) sums holding, sequence-dependent setup and production costs. The re-

sulting sum must then be minimized. The inventory of product j in macroperiod t is defined as the

inventory of the previous period plus the production quantities of the current macroperiod minus the

demand in macroperiod t (4.2). Constraints (4.3) assure that the capacity minus the time consumed

during setups is not exceeded by the time used for production. Inequalities (4.4) assure that production

of product j on line l in microperiod s can only take place (xl js > 0) if the line is set up for product

j (yl js = 1). After a setup in microperiod s, the production quantity in microperiod s must be at least

as big as the minimum lotsize ml j (4.5). As already mentioned, only one product is allowed per mi-

croperiod and the setup state is conserved during idle periods, thus line l must be set up for exactly one

product in each microperiod s (4.6). The correct recording of changeovers is realized by constraints

(4.7). It should be mentioned that in an optimal solution the continuous variable zli js only takes on

1 or 0 (see (4.7) and (4.1)). Since the setup states are conserved during idle time, it is assumed that

stli j = sli j = 0 ∀l, i, j = i holds in the following.
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4 Decomposing large-scaled simultaneous lotsizing and scheduling problems using product aggregation

4.4 Solution approach

In the following, a new decomposition heuristic to solve the GLSPPL is explained. The heuristic uses

setup families to define an aggregated problem. Therefore, we propose two heuristics which differ in

the assignment of products to families. Aggr-P constructs setup families based on considerations of

how the aggregated plan represents the original problem as detailed as possible. A second approach,

Aggr-PR, mainly uses random numbers to assign products to setup families. The general framework

of the solution approach is explained in Subsection 4.4.1. The subsequent subsections provide detailed

information about each step of the algorithm.

4.4.1 Framework of the heuristic

The starting point of the heuristic is the detailed model (4.1)-(4.7). The model is named PL/O and the

iteration counter i of the heuristic is set to zero (see here and in the following Figure 4.1). Without

loss of generality, let us assume that the initial inventory is zero and that there is positive demand for

each product in at least one macroperiod. Section 4.4.2 explains why these assumptions are necessary

for the heuristic and how they can easily be realized without changing the basic problem. At first,

the complexity of the model is reduced by aggregating products to setup families g (g = 1,2, ...,G)

(step 1) and defining parameters (like production coefficients) for the resulting families (step 2). The

following subsections start with the explanation of step 2. Afterwards, the assignment of products to

setup families is explained. We changed the order of explanation because the difficulties at determining

parameters of setup families provide many insights on how setup families should be constructed.

After this preliminary work, the first iteration i = 1 starts. The results of step 1 and 2 form a model

which is identical to the formulation (4.1)-(4.7) despite of the fact that setup families are considered

instead of products. Since this master problem PL/Aggr is of less complexity compared to the original

problem, it can be solved with up-to-date heuristics within a satisfying amount of time (step 3). The

resulting schedule is disaggregated to obtain line-dependent product-specific demand quantities which

are used to decompose the problem into several single-line problems SLl (step 4). Each single-line

problem is less complex compared to the original model and can be solved using up-to-date heuristics

(step 5). Afterwards, the single-line production plans are used to form a fixed setup pattern for the

original problem PL/O. Using this fixed setup pattern, PL/O can be formulated as linear program

(LP) which is solved by, e.g., Gurobi Optimizer (step 6). This step may lead to a further optimized

production plan.

It might happen that the final solution is infeasible due to an aggregation error, e.g., the accounted

setup time of a setup family’s lot is shorter than the sum of the setup times of the products which are

assigned to this lot during disaggregation. If this is the case, it might happen that there is not enough

remaining capacity to fulfill the complete line-dependent demand. Therefore, a further iteration is

started, using reduced capacities Klt (step 7). The intention is to reserve capacities which can be used in

the single-line problems to compensate the lack of capacity caused by aggregation errors. The heuristic

is stopped if step 6 creates a feasible plan or if a maximum number of iterations imax is reached.

Comparing our algorithm to Meyr and Mann (2013), one will realize similarities. However, since
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Meyr and Mann (2013) apply time aggregation, the heuristics have strong differences in their imple-

mentations.

Figure 4.1: Framework of the heuristic

4.4.2 Determining parameters of setup families

The aim is to create an aggregated model which represents the original model as detailed as possible.

Problems arise due to the aggregation of parameters because information gets lost. For example, in

the detailed model, there are different production coefficients for product 1 and 2 and both products

are assigned to setup family 1 which has only one production coefficient, thus, the detailed informa-

tion of the production coefficients gets lost. In the following, we will look at all product-dependent

parameters (i.e., Klt is omitted since it is identical in the original and the aggregated model). There will

be information about the arising difficulties, about how the parameters are aggregated and about the

impacts on the process of assigning products to setup families. Used symbols can be found in Table

4.1. Additionally, the indices g and h (g,h = 1,2, ...,G) define setup families. The set SFg defines

which products are included in setup family g, e.g., if product 1 and 2 are products of setup family 1,

this is indicated by SF1 = {1,2}. Furthermore, the superscript g is used to explicitly define parameters

of setup families or the aggregated model PL/Aggr in general, e.g., dg
gt defines the demand of setup

family g in period t.

The demand dg
gt of setup family g in period t should be calculated by summing the demand parame-

ters d jt of all products of family g (see Eq. (4.8)) like it has already been done in Bitran and Hax (1977,
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4 Decomposing large-scaled simultaneous lotsizing and scheduling problems using product aggregation

p. 42) for example. This approach directly implies that each product should be assigned exactly to one

setup family (see Section 4.4.3.1 for a more detailed description of the basic assumptions concerning

setup families).

dg
gt = ∑

j∈SFg

d jt ∀g, t (4.8)

Directly connected to the demand is the initial inventory I j0, since it will be used to fulfill fractions

of the demand. If the initial inventory is positive and would be summed up similarly to the demand

(Eq. (4.8)), most probably aggregation errors will occur. Consider the following example: the initial

inventories of products 1 and 2 are 3 and 2 units, respectively. Furthermore, the demand of product 1

is 5 units in period 1 (no demand of product 2). If both products belong to setup family 1 (i.e., Ig
10 = 5),

it might result in a feasible aggregated plan which defines to produce nothing in period 1. However,

disaggregation is impossible because only 3 units of the necessary 5 units can be satisfied by the initial

inventory of product 1. These considerations lead to the following procedure: calculate the net demand

(also called effective demand) and set I j0 and Ig
g0 to 0 for all products and setup families. The net

demand dnet
jt of each product j is calculated in Equations (4.9) and should be applied in Equations (4.8)

to calculate the net demand of all setup families.

dnet
jt =

max
{

0,∑t
u=1 d ju− I j0

}
, ∀ j, t = 1, ..., t∗

d jt ∀ j, t = t∗+1, ...,T
(4.9)

In Equations (4.9), t∗ defines the period in which the initial stock level reaches zero. I.e., from period

t∗+ 1 the net demand is equal to the original demand. (See Bitran and Hax 1977, p. 41 and Stadtler

1988, pp. 97f). Notice, for a fair comparison with other heuristics, holding costs of initial inventories

have to be externally calculated.

Concerning the assignment of products to setup families, which is described in detail in Section

4.4.3, it is necessary to decide if products which show zero net demand in all periods should be con-

sidered in the new solution approach. Of course, if a company plans frequently due to a short planning

horizon and the scenario changes only in the demand pattern, computing time to determine setup fam-

ilies could be saved by doing the assignment of products to families only once. Nevertheless, we have

decided to exclude all products with zero net demand, to reduce the complexity of the model and to

avoid any influence of those products to the families’ parameters (influences might occur if the average

of product-dependent parameters is calculated and serves as parameter of a family).

To avoid disaggregation problems, it is preferable that the production coefficient al j is identical

for all products of a family. In this case it would be possible to take the production coefficient of one

product of the family to represent the production coefficient of the setup family20 (see Leisten 1996,

p. 20; this approach is also called projection, see Steven 1994, p. 49). For example, if the production

coefficient of each product of a family is 1 time unit per produced unit, the production coefficient of

the family would also be set to 1. If an aggregated plan schedules 5 units of the family in period 1,

regarding the production coefficients, this reserved time can be used to produce 5 units as an arbitrary

20Notice, the production coefficients could still be different for each line since ag
lg is also line-dependent.
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combination of products of the affected family. On the contrary, assume that one product of this family

has a production coefficient of 2 time units per produced unit, all other products show 1 as production

coefficient and 1 is chosen as production coefficient of the family. Then, there might arise problems

during disaggregation, since the resulting production quantities depend on the products assigned to the

reserved time.

Of course, it will be necessary to assign products with different production coefficients to the same

setup family in order to reach a sufficiently small number of setup families. In this case, it seems

reasonable to create the production coefficients of the families by weighting the production coefficients

of the corresponding products using the net demand. The process of weighting to create parameters

of a family (also called aggregation, see Kleindienst 2004, p. 5) is a very common approach and can

be found in many publications, see, e.g., Hallefjord et al. (1993, p. 105), Storoy (1996, p. 30) and

Schneeweiß (2003, p. 175). Equations (4.10) show how the production coefficient ag
lg of family g of

line l is determined (see Kleindienst 2004, p. 72).

ag
lg =

∑ j∈SFg(∑t dnet
jt )al j

∑t, j∈SFg dnet
jt

∀l,g (4.10)

In the enumerator of Equations (4.10), the production coefficient of each product and line is mul-

tiplied by the total net demand of this product. Afterwards, the resulting values are summed over all

products of the currently calculated setup family g. The denominator shows the total net demand of all

products of setup family g.

In practical cases, not every product can be produced on all lines. This could be implemented by

choosing a very high production coefficient for products which are forbidden on a line. However,

this could induce numerical problems. Therefore, we define that a production coefficient al j = −1

indicates that product j cannot be produced on line l and incorporate this in our implementation of the

decomposition heuristic. Furthermore, we introduce the term “al j-functionality” and define that two

products i and j have the same al j-functionality if the following condition is true: (al j = ali =−1) or

(al j > 0 and ali > 0) ∀l.
Since al j = −1 will lead to unreasonable production coefficients, it seems useful to substitute the

first sum in the denominator of Eq. (4.10) by ∑ j∈SFg,al j>0, i.e., exclude products which cannot be

produced on line l. However, this could lead to problems as the following example shows. Think

about two lines and two products of the same setup family (g = 1). Both products show positive net

demand and can be produced on line 2, thus, Equations (4.10) can be used to calculate the family’s

production coefficient of line 2. For line 1 product 1 has a production coefficient of a11 = 1 and product

2 cannot be produced at all (a12 = −1). Two general possibilities exist in this case. In the first one,

setup family 1 can be produced on line 1, in the second one, this is forbidden. In the first case, it might

happen that in the aggregated plan no capacity for family 1 is left over on line 2 since it is used for

other families and all necessary capacity for family 1 is reserved on line 1. In this case, it is impossible

to disaggregate the plan, since product 2 cannot be produced on line 1. In the other case, where the

production of setup family 1 is forbidden on line 1, it might happen that the capacity of line 2 might

not be enough to produce the complete demand of product family 1 which also leads to feasibility
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problems. It should be mentioned that there is a chance that in both cases no problems arise but this

is mainly based on fortune. In order to avoid this problem and following the main assumption that

only products which have identical or nearly identical production coefficients should be aggregated

in a family, products with different al j-functionalities are not aggregated in a setup family (see also

Section 4.4.3). Therefore, ag
lg is set to −1 for all l,g with al j =−1 and j ∈ SFg.

Considering the production costs cl j, it is ideal as well if they are identical or at least quite similar

among the products of a setup family. Obviously, they have no direct influence on the possibility to

disaggregate the aggregated plan in a feasible way. However, they have an influence on the quality of

the resulting plans. Since the total production costs of the detailed plan are dependent on the produc-

tion quantities, production costs parameters should be weighted by the net demand as it is shown in

Equations (4.11).

cg
lg =

∑ j∈SFg(∑t dnet
jt )cl j

∑t, j∈SFg dnet
jt

∀l,g (4.11)

Holding costs h j have no direct influence on the feasibility of the disaggregation process, but will

influence the resulting production plans. Again, it is preferable that they are identical or nearly identical

for all products of a setup family. Since the stored quantities of the different products are not known in

advance, it might be a good approach to average the different holding costs like it is done in Equations

(4.12) (|SFg| defines the number of products in setup family g).

hg
g =

∑ j∈SFg h j

|SFg|
∀g (4.12)

Contrary to the aforementioned parameters, identical minimum lotsizes ml j of products belonging

to the same setup family provide no advantage. For minimum lotsizes, it is preferable that they are zero

or at least very small. To clarify this, think about a setup family g = 1 consisting of eight products.

Each product has a minimum lotsize of 20 units and the production coefficients of each product-line-

combination are al j = 1. It is impossible to estimate how much time has to be reserved to produce

minimum lotsizes if a lot of setup family 1 is started, because it is unpredictable how many different

product lots will be assigned to this setup family’s lot during disaggregation. If all products are pro-

duced during this lot, the minimum lotsize is 160 units, if only one product is assigned to this lot, the

minimum lotsize is 20 units. Over- and underestimation of the family’s minimum lotsize can lead to

problems. If the minimum lotsize is too big, it might be impossible to find a feasible plan for PL/Aggr

due to the restricted overall capacity. If the reserved time is too short, there might be problems to solve

the single line problems SLl since not enough time is reserved to fulfill the minimum lotsizes of all

products which are assigned to a setup family’s lot.

However, if the minimum lotsize is underestimated in PL/Aggr, it could happen that the lotsize of

the setup family is big enough to fulfill all minimum lotsizes of the associated products. Thus, the

minimum lotsize is defined as the average of all minimum lotsizes of all products of a setup family. In

the case of different production coefficients of the products of a family, it seems reasonable to transfer

the minimum lotsizes to minimum time spans, take the average and transfer this value back to units by

multiplying it by the production coefficient of the family. The approach of transferring a measuring
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unit of a parameter from units to time units is already used in Kleindienst (2004, p. 56). Equations

(4.13) formally show how the minimum lotsizes of setup families are defined.

mg
lg =

∑ j∈SFg ml jal j

|SFg|
∗ 1

ag
lg
∀l,g (4.13)

The initial setup state yg
lg0 can be easily defined by calculating the maximum of the initial setup

states of all products of a family.21 I.e., if the product which is set up on line l at the beginning of the

planning horizon is included in family g, line l is initially setup for family g. This can be represented

formally using Equations (4.14).

yg
lg0 = max

j∈SFg
{yl j0} ∀l,g (4.14)

This paragraph explains how setup times stg
lgh of changeovers from family g to h are calculated. The

following example, which can easily be generalized, shows why it is difficult to define the setup time

of a changeover from setup family g = 1 to setup family h = 2. Setup family 1 consists of products

1 and 2 and setup family 2 consists of products 3 and 4. The corresponding (non-preferable) setup

times of line 1 are shown in Table 4.2. Obviously, there exist “setup times between products of the

same family” (i.e., for the switchover from product 1 to 2 and vice versa and for the switchover from

3 to 4 and vice versa) and there are “setup times between the products of the different families” (i.e.,

for the changeovers from 1 to 3, from 2 to 3, from 1 to 4, from 2 to 4 and all resulting vice versa

combinations).

Table 4.2: Example: setup times between products

st1i j 1 2 3 4

1 0 5 2 13

2 3 0 4 15

3 6 7 0 6

4 8 9 4 0

In order to estimate the setup time of the changeover from family 1 to 2, it is necessary to determine

the arising setup time in the disaggregated case. At first, consider the setup times between the products

of different families (setup times between products of the same family are considered later on by

adapting the production coefficients). The disaggregated setup time depends on the product produced

last of family 1 ( j = 1 or 2) and it also depends on the product which is the first product of family 2

(i.e., whether product 3 or 4 is produced), i.e., it differs between 2 and 15 time units. It is impossible

to estimate the first and last product of each lot of a setup family in advance, thus, it is reasonable

to choose the average (stg
112 = 8.5 time units in the example). Obviously, the aggregation error is

smaller if the setup times are nearly identical or is even zero if the setup times are identical. Thus, it

is favored to construct setup families g having identical setup times from all products of family g to all

21It is also possible to take the sum of all initial setup state parameters of all products of a family.
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products of setup family h(6= g) (see Section 4.4.3.2). Equations (4.15) define how the average of the

product dependent setup times is calculated to determine the setup times stg
lgh (remember, each product

is assigned to exactly one family). Setup times of changeovers from a setup family to itself are set to 0

(see Eq. (4.16)) since setup states are conserved during idle periods in the model of Section 4.3.

stg
lgh =

∑i∈SFg, j∈SFh
stli j

|SFg| ∗ |SFh|
∀l,g,h 6= g (4.15)

stg
lgh = 0 ∀l,g,h = g (4.16)

In the following, the influences of the setup times between the products of a setup family are dis-

cussed. In the example, it is possible to increase the setup time stg
112 to also consider the setup times

which occur between products in the lot of setup family h = 2. Estimating this setup time is even more

difficult because it depends on the number of product lots and on the products which are affected. Thus,

it would be preferable if the setup times between products of the same family are zero or at least very

small. Nevertheless, in most cases the setup times will not be small enough to be ignored. However,

the approach of increasing the setup time seems to be too imprecise. Therefore, the following approach

is applied.

It can be assumed that there is a positive correlation between the length of a setup family lot and the

number of products which are produced during the reserved time of this lot. Since the lotsizes are not

known in advance, it seems to be a good approach to add a supplement on the production coefficient

which represents the occurring setup times between products of a setup family. The advantage is that

in a bigger lot more time and in a smaller lot less time is reserved for setups between products of a

family. Equations (4.17) show how the production coefficient supplement can be calculated. The first

term in the enumerator defines the average setup time between two products of setup family g (−|SFg|
excludes the changeovers from one product to itself). For the calculation, we assume that each setup

family is only set up once in the planning horizon and all products of the family are produced during

this lot. This assumption is represented by the second term of the enumerator (notice, the setup time

of the first product of the lot is already included in the family setup time). All in all, the enumerator

defines the time which should be reserved for setups. This time is divided by the total net demand of

family g. The resulting value defines how many time units should be reserved for setups per produced

unit of setup family g. Depending on the demand structure, it might happen that there is a very large

lot which is used to produce only two products. In this case, the reserved time for setups will be too

long. To counteract this effect, the supplement to the production coefficient is divided in half, since

not further documented tests runs have shown that this value seems to be reasonable. This correction

supplement still is an approximation but increases the probability of feasible solutions of PL/Aggr.

The production coefficient supplement must be added to the production coefficient of Eq. (4.10).

correction supplement of ag
lg :=

∑i∈SFg , j∈SFg ,i6= j stli j

|SFg|∗|SFg|−|SFg| ∗ (|SFg|−1)

∑t, j∈SFg dnet
jt

∗0.5 ∀l,g (4.17)

Setup costs sli j are treated similar to the setup times. Nevertheless, they have no direct influence

on the feasibility of the plans. The setup costs of a changeover from family g to h are defined as the
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average setup costs of all changeovers from all products of family g to all products of family h (see

Eq. (4.18)). The setup costs of a changeover from a family to itself are set to 0 (see Eq. (4.19)), since

the setup state is conserved. The costs of changeovers between products of the same setup family are

ignored. Of course, it is possible to adapt the production costs like it was done for the production

coefficient in Eq. (4.17) or add a supplement to the setup costs of Equations (4.18). However, the

benefit is unpredictable, thus, it is omitted.

sg
lgh =

∑i∈SFg, j∈SFh
sli j

|SFg| ∗ |SFh|
∀l,g,h 6= g (4.18)

sg
lgh = 0 ∀l,g,h = g (4.19)

Finally, the number of microperiods per macroperiod |Sg
t | of PL/Aggr must be defined. A com-

mon approach is to set the number of microperiods per macroperiod to the number of products (see

Meyr 1999, p. 84) and increase it if necessary. This approach crucially reduces the number of result-

ing variables compared to the detailed model. Equations (4.20) show the formal representation of this

approach.

|Sg
t |= G ∀t (4.20)

4.4.3 Assigning products to setup families

The following sections describe how products are assigned to setup families. Generally, this process of

aggregating objects with similar characteristics into groups is called “clustering” (for a detailed review

see, e.g., Jain et al. 1999). To the best of our knowledge, no publications which consider clustering

in the context of sequence-dependent setup times or different al j-functionalities exist. Also common

clustering methods, like k-means (see, e.g., Jain et al. 1999, pp. 278f), do not directly consider these

topics. Thus, the insights of Section 4.4.2 are used to formulate a clustering algorithm. Since setup

times are one of the main aspects, the algorithm is called Cluster-S. Additionally, an approach which

does the assignment mainly based on random choice (Cluster-R) is proposed to serve as benchmark.

It should be mentioned that sometimes there is a natural clustering pre-defined by the product charac-

teristics and setup process itself. For example, if there are two product characteristics, like size and

color, and it is known that a size change is complicated and consumes a lot of time and a color change

consumes only a few minutes, obviously, all products of the same size should be aggregated in a setup

family. Of course, Cluster-S is intended to exactly lead to the same result. Nevertheless, Cluster-S will

also work well if only the setup times without further information of characteristics are available.

Section 4.4.3.1 defines some basic assumptions concerning the clustering algorithms. The subse-

quent section explains the Cluster-S algorithm. Later on, in Section 4.4.3.3 Cluster-R is introduced.

4.4.3.1 Basic assumptions

In the following, we assume that each product must exactly be assigned to one setup family. However,

it is allowed that a setup family consists of only one or multiple products. Equations (4.21)-(4.23)
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4 Decomposing large-scaled simultaneous lotsizing and scheduling problems using product aggregation

summarize these assumptions in a mathematical way (see Steven 1994, p. 47). Notice, the assignment

of products to families is identical for all lines.

SFg∩SFh = /0 ∀g,h 6= g (4.21)

SFg 6= /0 ∀g (4.22)⋃
g

SFg = {1, ...,J} (4.23)

Product j = 0, the product which indicates the idle state and which only might be used at the begin-

ning of planning, is always assigned to family g = 0. It is not allowed to assign an additional product

to this setup family.

4.4.3.2 Cluster-S

This section describes the Cluster-S algorithm. The algorithm is based on the insights of Section 4.4.2,

thus, one main aspect is the consideration of setup time characteristics. Figure 4.2 shows an example

of setup times and product-to-family-assignments which, concerning the setup times, will lead to no

aggregation error.

Figure 4.2: Setup times and product-to-family-assignments which, concerning the setup times, will

lead to none aggregation error

Setup family g = 1 consists of products 1 and 2, setup family g = 2 includes products 3 and 4 and

product 5 is solely assigned to setup family g= 3. The setup times between products of the same family

are zero. Furthermore, the setup times of changeovers from all products of family 1 to all products of

family 2 are identical (5 time units). Additionally, all setup times of changeovers from products of

family 1 to the single product of setup family 3 are identical as well (7 time units). Looking at the

other setup times, the same scheme can be identified. Both characteristics shown in the example are

mathematically represented in the Equations (4.24) and (4.25).

stli j = 0 ∀l,g, i and j ∈ SFg, i 6= j (4.24)
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stlik = stl jn ∀l,g,h 6= g, i and j ∈ SFg,k and n ∈ SFh (4.25)

Equations (4.24) define that the setup time of a changeover between two products of the same family

g must be zero. This must hold for the concerned setup times of all lines and for all setup families.

Recognize, by iterating over all i and j, not only the changeovers from product i to j but also vice versa

changeovers are included (e.g., if there is one line and one setup family consisting of the products 1

and 2, the following i- j combinations arise: 1-2 and 2-1).

Equations (4.25) postulate that the setup time of a changeover from product i of family g to product k

of family h(6= g) on line l must be identical to the setup time of a changeover from product j of family

g to product n of family h on line l. This equation must be feasible for all combinations of lines, setup

families and concerned products. Notice, Equations (4.25) include all changeovers from family g to h

and vice versa (e.g., if there are three setup families and only one line, there will be six equations with

the following g-h combinations (for demonstrational reasons, combinations from and to family 1 are

underlined): 1-2, 1-3, 2-1, 2-3, 3-1 and 3-2).

Since Cluster-S defines the setup families step by step, it is necessary to formulate Equations (4.25)

more general like it is done in Equations (4.26).

stlik = stl jk and stlki = stlk j ∀l,g, i and j ∈ SFg,k /∈ SFg (4.26)

Equations (4.26) claim that the setup time from one product i of family g to product k, which is

not included in family g, is identical to the setup time from product j of family g to the same product

k. Additionally, the setup time from k to i must be identical to the setup time from k to j. For the

Cluster-S algorithm, it is necessary to interpret Equations (4.26) in the following way: two products i

and j should be in the same family if they fulfill the characteristic represented in Equations (4.27).

stlik = stl jk and stlki = stlk j ∀l,k (4.27)

This can be formulated similarly for Equations (4.24): the products i and j should be aggregated in

a setup family if Equations (4.28) hold.

stli j = 0 and stl ji = 0 ∀l (4.28)

It is unreasonable to construct an algorithm that generates setup families which strictly fulfill Equa-

tions (4.27) and (4.28) because in this case, the number of families will not be much smaller than the

original number of products. The extreme case would be that each product has to be solely assigned

to a setup family, resulting in an aggregated problem which is identical to the original problem. Thus,

the postulations of the equations are relaxed in the Cluster-S algorithm. Equations (4.28) are relaxed

considering two aspects. One aspect (“relaxation 1”) is that setup times must only be lower than or

equal to a certain value stsmall(≥ 0). If this is the case, we will refer to such a setup time as “small setup

time” in the following. The other aspect is that even the postulation stli j ≤ stsmall and stl ji ≤ stsmall ∀l
can be disregarded for some changeovers (“relaxation 2”). I.e., two products i and j can be aggregated

in a family even if some setup times are higher than stsmall (stli j > stsmall or stl ji > stsmall for some

l). Equations (4.27) could be relaxed in a similar way. However, many equations would have to be
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considered. Therefore, we decided to formulate it more compact as shown in Equation (4.29). Two

products i and j should be in the same family if they fulfill the characteristic represented in Equations

(4.29).

∑
l,k
|stlik− stl jk|+∑

l,k
|stlki− stlk j|= 0 (4.29)

I.e., all absolute values of deviations of setup times stlik and stl jk and of setup times stlki and stlk j

are summed up. The outcoming sum must be equal to zero. The postulation of Equation (4.29) can

easily be relaxed by allowing values greater than zero on the right-hand side (“relaxation 3”). Later on,

we will refer to the characteristic represented in Equation (4.29) as “similarity of two products” or as

“deviation between two products”. For example, Equation (4.29) shows that product i and j are very

“similar” (in this case, even identical) or accordingly, the products are only a little bit (in this case,

even not at all) “different”. Defining similarity measures is a common approach used in clustering

methods (see, e.g., Jain et al. 1999, pp. 271-274). Notice, the intensity of the relaxations, i.e., in the

case of relaxation 3, the allowed deviation from zero on the right-hand side of Eq. (4.29), influences the

number of resulting setup families G, thus, the number of setup families cannot be defined in advance.

The intensity of the relaxations must be defined considering the tradeoff between a low aggregation

error, reached due to a high number of homogeneous setup families (weak relaxation, i.e., in the case

of relaxation 3, low value on the right-hand side of Eq. (4.29)), and a low number of heterogeneous

setup families (strong relaxation, i.e., in the case of relaxation 3, high value on the right-hand side of

Eq. (4.29)) which will lead to a less complex aggregated problem PL/Aggr.

The Cluster-S algorithm divides into two phases. The first phase defines product pairs (i, j) which

show small setup times for the changeovers from i to j and vice versa (Eq. (4.28)). The second

phase examines if the products i and j of a pair of phase 1 are similar as postulated by Equation

(4.29). If the products are similar, they are assigned to the same setup family. Furthermore, it is

examined if other setup pairs (i, j) should be assigned to this family as well. The following paragraphs

explain the Cluster-S algorithm in detail. The main aspects discussed are the detailed definition of the

relaxations and the handling of difficulties which arise due to products which are forbidden on some

lines (al j =−1).

The first step of phase 1 (see Algorithm 1 Line 1)22 is to define a list which includes all possible

product pairs (i, j). At the beginning, this list of possible pairs consists of all combinations M×N|M =

{i|i = 1,2, ...,J},N = { j| j = 1,2, ...,J}, i < j, i 6= j.23 For example, for a scenario consisting of three

products the list is defined as {(1,2),(1,3),(2,3)}.
The next step (see Line 2) deletes all product pairs (i, j) which do not have the same al j-functionality

(see page 123) from the list of possible pairs. I.e., product pairs which show ali =−1 (i is forbidden on

line l) and al j > 0 ( j can be produced on line l) on at least one line are deleted since otherwise problems

arise by defining production coefficients of the families (see Section 4.4.2 for a deeper motivation).

Product pairs, of which both products cannot be produced on one or several lines, remain in the list of

possible pairs. Additionally, a second list relevant info is created on basis of the current list of possible
22Pseudocodes in this publication does not show every step in detail.
23× defines the cartesian product (A×B = {(x,y)|x ∈ A,y ∈ B}).
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pairs. The new list consists of (l, i, j)-combinations and will be used later on to identify changeovers

which show small setup times. To provide a very small example how the list is constructed (see Lines

3-9 of Algorithm 1) consider the following scenario. There are two production lines, the current list of

possible pairs consists of the single pair (2,3) and the products 2 and 3 can only be produced on line

2. In this case, the list relevant info is defined as {(2,2,3),(2,3,2)}, i.e., changeovers on the forbidden

line are excluded. As it can be seen in Line 4 of the algorithm, a counter cirr_l
(i, j) is introduced. This

counter of irrelevant lines of pair (i, j) is increased by 2 if both products i and j cannot be produced

on a line. This is necessary, since later on the number of small setup times of a product pair (i, j) will

be counted to create a ranking. For this ranking, setup times of changeovers of possible pairs (i, j)

which can never occur, like those counted by cirr_l
(i, j) , are defined as small setup times to assure a fair

ranking. The following example should clarify the problem. Assume two production lines and four

products i, j, m and n. Products i and j can be produced on both lines, while product m and n can only

be produced on line 1. The setup times for a changeover from i to j and vice versa on line 1 are 0. The

setup times for a changeover from i to j and vice versa on line 2 are 900, which is assumed as very

large setup times. As one can see, the pairs (i, j) and (m,n) have an identical number of small setup

times. However , (m,n) only consists of small setup times while (i, j) also shows large setup times.

In Lines 10-20 (l, i, j)-combinations which show large setup times are deleted from the list relevant

info. I.e., after this procedure, the list consists merely of (l, i, j)-combinations which have small setup

times. The first step is to sort the list relevant info by increasing setup times (see Line 10). The next

step is to iterate over all (l, i, j)-combinations of the list relevant info. If the associated setup time

is smaller than or equal to a certain boundary stsmall (relaxation 1), the (l, i, j)-combination is left in

the list and it is continued with the next iteration. However, a strict boundary can cause undesired

effects. Think about the following setup times of a possible product pair (i, j) sorted in increasing

order: 0.5,0.8,1.1,4.7,4.7,5 time units. If a setup time smaller than or equal to stsmall = 1 time unit

is defined as small setup time, only the first two setup times are defined as small. Nevertheless, it

seems reasonable that the setup time 1.1 should also be defined as small because it is very close to the

previous setup time. However, 4.7 should not be defined as small setup time since it is much higher

than 1.1. However, practical instances have much more products and thus much more setup times. In

such cases, it is desired to detect the boundary between small and large setup times in a more automatic

way. Therefore, setup times which are greater than stsmall and smaller than or equal to an upper bound

st large are analyzed in the following way (see Line 14). Calculate the difference between the setup time

of the current iteration of the for-loop which iterates over the sorted list relevant info (Line 12) and

the setup time of the previous iteration stli j,prev. If this difference is smaller than or equal to a given

boundary stmax_di f f , the setup time is defined as small. Otherwise, it is a large setup time and must be

deleted from the list of relevant info (see Line 17). After the first large setup time is identified, all setup

times of the following iterations are defined as large setup times and deleted from the list. The variable

vhel p helps to implement this functionality (see Lines 11, 13, 18 and 20). Notice, setup times which are

higher than st large are definitely deleted from the list relevant info (see Line 14).

To allow simple setting, the values of stsmall , st large and stmax_di f f are defined as follows. The param-

eters stsmall and st large are defined as percentage of the maximum setup time of the current scenario.
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Algorithm 1: Cluster-S phase 1 (main input: al j, stli j)

11 possible pairs := {M×N|M = {i|i = 1,2, ...,J},N = { j| j = 1,2, ...,J}, i < j, i 6= j}; // create the

list possible pairs

22 if i and j do not have the same al j-functionality, delete (i, j) from the list possible pairs;
33 forall (i, j) ∈ possible pairs do // create list relevant info:

44 cirr_l
(i, j) := 0; // counter of irrelevant lines

5 forall l do
6 if ali and al j > 0 then
7 add (l, i, j) and (l, j, i) to the list relevant info;
8 else // i.e., ali and al j =−1

9 cirr_l
(i, j) := cirr_l

(i, j) +2;

1010 sort the list relevant info by increasing setup times;
1111 vhel p := 0;
1212 forall (l, i, j) ∈ relevant info do // delete large setup times from the list relevant

info:

1313 if vhel p == 0 then
1414 if stli j ≤ stsmall or (stli j ≤ st large and stli j− stli j,prev ≤ stmax_di f f ) then
15 continue with next iteration of forall-loop;
16 else
1717 delete (l, i, j) from the list relevant info;
1818 vhel p := 1;

19 else
20 delete (l, i, j) from the list relevant info;

2121 forall (i, j) ∈ possible pairs do // consider relaxation 2:

2222 small_stnum
(i, j) := 0;

23 forall l do
24 if (l, i, j) ∈ relevant info then
25 small_stnum

(i, j) := small_stnum
(i, j)+1;

26 if (l, j, i) ∈ relevant info then
2727 small_stnum

(i, j) := small_stnum
(i, j)+1;

2828 small_stnum
(i, j) := small_stnum

(i, j)+ cirr_l
(i, j) ;

2929 small_st perc
(i, j) := (small_stnum

(i, j))/(2L);

3030 if small_st perc
(i, j) < small_st perc_allowed then

3131 delete (i, j) from the list possible pairs;

And stmax_di f f is defined as percentage of the maximum difference which arises between two con-

secutive setup times of a list including all setup times in an increasing order. As already mentioned,

the choice of the aforementioned parameters which relax Equations (4.28) is affected by the tradeoff

between a high number of homogenous setup families and a low number of inhomogeneous setup
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families.

The next step considers relaxation 2. At first, iterate over all pairs (i, j) of the list of possible pairs

(see Line 21) and calculate how often Equation (4.28) or the relaxation of it is fulfilled. I.e., calculate

the number of combinations (l, i, j) and (l, j, i) which are associated with small setup times (see Lines

22-27) and store the result in the variable small_stnum
(i, j). Additionally, the number of irrelevant lines

cirr_l is added to small_stnum
(i, j) since setup times of changeovers which do not occur (both products are

forbidden on a line) are defined as small setup times as well (see Line 28). The maximum number of

small setup times which can arise for a pair (i, j) is 2L, i.e., both directions of changeovers (i to j and j

to i) are considered for all lines. As shown in Line 29, the percentage of small setup times, in relation

to the maximum possible number of small setup times, is calculated for all pairs (i, j) and stored in

the variable small_st perc
(i, j) . Equation (4.28) does not have to be fulfilled for all possible changeovers

of a pair (i, j) (relaxation 2). I.e., pairs (i, j) which have a small small_st perc
(i, j) -value which is greater

or equal to a parameter small_st perc_allowed(> 0) are still potential candidates which may be assigned

together to one setup family. As result, all pairs not fulfilling small_st perc
(i, j) ≥ small_st perc_allowed must

be deleted from the list of possible pairs (see Lines 30-31). Notice, all product pairs (i, j) of which all

changeovers cause large setup times are deleted from the list of possible pairs. Consequently, products

i and j of such a pair will never be aggregated in one setup family.

Phase 2 of Cluster-S (see Algorithm 2) decides which products should be actually aggregated in a

setup family. The list of possible pairs of phase 1 of Cluster-S serves as starting point. Since pairs

having a high small_st perc
(i, j) -value fulfill Equation (4.28) in many cases, it is reasonable to start the deci-

sion process with such candidates. I.e., the list of possible pairs is ordered by decreasing small_st perc
(i, j)

values (see Line 1 of Algorithm 2). There might be pairs which have an identical small_st perc
(i, j) value.

In these cases, the pairs are ranked by increasing average deviations devav
(i, j) (see Lines 2-4). Equations

(4.30) are an adaption of Equation (4.29) and show how devav
(i, j) is calculated. Since these deviations

are also used later on to decide if two products i and j are similar enough to be assigned to one setup

family, devav
(i, j) is directly calculated for all product pairs of the list of possible pairs (see Equations

(4.30) and Lines 2-3 of the algorithm).

devav
(i, j) =

∑
l,k,alk>0,ali>0

|stlik− stl jk|+ ∑
l,k,alk>0,ali>0

|stlki− stlk j|

∑
l,k,alk>0,ali>0

2
∀(i, j) ∈ possible pairs (4.30)

The enumerator of Equation (4.30) defines the sum of the absolute values of the deviations between

setup times of changeovers from i to k and from j to k and vice versa. Different to Equation (4.29),

all changeovers which never occur because at least one of the products cannot be produced on a line,

are excluded (alk > 0 and ali > 0 in the sigma signs; notice, al j > 0 can be omitted since product pairs

(i, j) in the list of possible pairs have the same al j-functionality). Finally, the denominator of Equation

(4.30) defines the number of summands in the enumerator and is used to calculate the average deviation.

If the value of devav
(i, j) is small, the products i and j are similar in their setup characteristics and should

be aggregated in a setup family. Notice, changeovers from i to j and vice versa are also considered in

Equations (4.30). This situation is motivated as following: not all setup times between products i and
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j of a pair (i, j) of the list possible pairs have been defined as small setup times (remember phase 1 of

Cluster-S and relaxation 2). Up to now, the lengths of the large setup times have not been analyzed in

detail. I.e., there might be a wide range of setup times (starting from > stsmall up to the maximum setup

time of a scenario) which have been defined as large. Thus, it is reasonable to incorporate them in the

decision process whether two products should be aggregated in a setup family or not. For instance,

the term |stl11− stl21| will arise for the calculation of devav
(i, j) for the products i = 1 and j = 2. The

parameter stl11 is equal to 0 (see page 119) and parameter stl21 defines the setup time of a changeover

from j to i. As one can see, smaller values of stl21, i.e., small setup times between two products which

will possibly be assigned to the same family, lead to smaller values of devav
(i, j). Therefore, the intention

of Equations (4.24) is additionally incorporated in Equations (4.30).

After sorting the list of possible pairs, create an empty list storing the products which are already

assigned to setup families (see Line 6). Start iterating over all entries of the list possible pairs (see

Line 7). In the first iteration (see Lines 8-13), both products i and j are not represented in the list

already assigned, thus, verify if the deviation devav
(i, j) between product i and j is lower than or equal

to a given limit devlimit which is defined as percentage of the maximum setup time (relaxation 3). If

the deviation is greater than devlimit , continue with the next pair (i, j). Otherwise, assign i and j to a

new setup family (g = 1 in this case) and add these products to the list already assigned. Additionally,

the variable f amily_updated is set to 1 which indicates that one or two products have been added

to a family. The next step is to search for products which should also be added to the newly-created

family. The applied procedure is described in the following (see Lines 14-24). At first, start a second

forall-loop which iterates over all product pairs (m,n) of the list of possible pairs. If exactly one of

the products, e.g., product m, of a pair (m,n) is part of the list of already assigned products, proceed

with the following (see Lines 19-24). Calculate all deviation values devav
(n,k) between product n and all

products k which are included in family g. For example, the first setup family consists of the products

1 and 3 and the next pair is (m,n) = (3,9). Obviously, product m = 3 is part of setup family g = 1.

Thus, the following deviations devav
(n,k) are calculated: devav

(9,1) and devav
(9,3). If all resulting deviations

are smaller than or equal to the given limit devlimit , product 9, or in general, product n, is assigned

to setup family g.24 Additionally, product n is added to the list of already assigned products and the

variable f amily_updated is set to 1 to assure a further iteration of the while-loop (see Line 14). I.e.,

whenever an additional product is added to a family ( f amily_update = 1), it is required to repeat the

procedure one more time, since the list already assigned has been updated and the if-question of Line

19 could switch to a “yes” for pairs which have led to a “no” before. If at least one deviation is higher

than devlimit , product 9 is not assigned to a family right now and the algorithm continues with the next

iteration of the forall-(m,n)-loop. If there is no further product which can be added to this family, the

main forall-(i, j)-loop continues (see Line 7). If both products of the next iteration are again not in the

list of already assigned products and fulfill devav
(i, j) ≤ devlimit , create another setup family and repeat

the previously described process.

24In some cases, it also might be helpful to check if all setup times which could occur between products of the family are

small enough. Additionally, it might also be necessary to define a maximal number of products which can be assigned to

a family. For our numerical tests, both adaptions have not been necessary.
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Algorithm 2: Cluster-S phase 2 (main input: output of phase 1)

11 sort the list possible pairs by decreasing small_st perc
(i, j) values;

22 forall (i, j) ∈ possible pairs do // calculate the deviation between i and j:

33 devav
(i, j) =

∑
l,k,alk>0,ali>0

|stlik−stl jk|+ ∑
l,k,alk>0,ali>0

|stlki−stlk j |

∑
l,k,alk>0,ali>0

2 ;

44 sort all (i, j) in possible pairs which have identical small_st perc
(i, j) values by increasing devav

(i, j) values;

5 g := 0; // family counter

66 already assigned= {}; // list of products which are already assigned to a setup

family

77 forall (i, j) ∈ possible pairs do // assign products to families:

88 if i and j /∈ already assigned then
9 if devav

(i, j) ≤ devlimit then
10 g := g+1;
11 assign i and j to family g;
1212 add i and j to the list already assigned;
1313 f amily_updated := 1; // indicates that a family has been updated

1414 while f amily_updated == 1 do
1515 f amily_updated := 0;
1616 forall (m,n) ∈ possible pairs do
1717 if (m and n /∈ already assigned) or (m and n ∈ already assigned) then
1818 continue with next iteration of forall-(m,n)-loop;
1919 else if m (respectively n) ∈ already assigned then
2020 calculate devav

(n,k) (respectively devav
(m,k)) ∀k ∈ SFg;

21 if all devav
(i, j) values calculated in Line 20 ≤ devlimit then

22 assign n (respectively m) to family g;
2323 add n (respectively m) to the list already assigned;
2424 f amily_updated := 1;

2525 else if i and j ∈ already assigned then
2626 continue with next iteration of forall-loop;

2727 assign all remaining products solely to newly-created families;

If in an iteration (i, j) both products are in the list of already assigned products, the algorithm directly

starts the next iteration (see Lines 25 and 26). For instance, the families (1,3) and (6,8) already exist

and the next pair is (3,8). Obviously, both products are already in setup families, consequently, skip to

the next iteration. Since the iteration order is based on a ranking, it has been reasonable to assign the

products 3 and 8 to two different setup families and not to merge them into one as proposed by the pair

(3,8).

After iterating over all pairs of the list of possible pairs, there might be products which have not

been assigned to setup families so far. Either, because they are not in the list of possible products, or

the deviations devav
(i, j) are not small enough. Each of these remaining products is solely assigned to a
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4 Decomposing large-scaled simultaneous lotsizing and scheduling problems using product aggregation

newly-created setup family (see Line 27).

To sum up, Cluster-S is capable of handling sequence-dependent setup times and products which

are forbidden on some production lines. The outcome of the algorithm are setup families which have

low setup times between products of the same family. Additionally, the products of a family are as

homogenous as possible in the characteristic of occurring setup times to and from products of other

families. The approach does not allow to define the number of setup families in advance. However,

the number of setup families is a result of the algorithm. Nevertheless, it seems simple to create an

iteration process which adapts the boundaries, such as stsmall or devlimit , to create a higher or lower

number of setup families.

4.4.3.3 Cluster-R

The Cluster-R algorithm assigns products to setup families based on random numbers. The basic

assumptions are the same as for Cluster-S: initial inventory is zero, only products which show net

demand in at least one period are included and product j = 0 is assigned to family g = 0. To make the

resulting setup families comparable to the first algorithm, it is necessary to define the desired number

of setup families Gdes(≤ J) in advance.

As discussed earlier, it is a crucial problem to define production coefficients if products with different

al j-functionalities would be assigned to the same setup family. Thus, the first step (see Algorithm 3

Line 1) is to assign products which show the same al j-functionality to the same family. If there is a

single product showing a certain al j-functionality, this product is solely assigned to a family.

If the resulting number of families (see the paragraph before) is higher than the desired number of

families (G>Gdes), the algorithm is stopped. The reason is, it is impossible to reach the desired number

of families without violating the basic request of only grouping products together which show the same

al j-functionality. Nevertheless, since Cluster-S respects the same request, Cluster-S will not define a

smaller number of setup families than Cluster-R. I.e., both algorithms will always be comparable.

Algorithm 3: Cluster-R (main input: al j, Gdes)

11 assign products j which show the same al j-functionality to the same family g;
22 // increase the number of families G to the desired number Gdes:

33 while G < Gdes do
4 randomly choose a family g which consists of more than one product;
5 randomly choose a number n (between 1 and |SFg|−1) which defines how many products of family

g will be reassigned to a new family;
6 randomly choose n different products of family g and reassign them to a newly-created family;
77 G := G+1;

If there are less families compared to the desired number of families, new families must be created

and some products of the existing families must be reassigned to the new families (see Lines 3-7). The

reassignment process works as following. Randomly choose an existing setup family g which consists

of more than one product (splitting a setup family which consists of a single product does not work).
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Then, randomly choose a number n which defines how many products of family g will be reassigned to

a new family. Notice, only values between 1 and the number of products of family g reduced by 1 make

sense, since at least one product must be reassigned to a new family and at least one product must stay

in family g. Afterwards, n different products of setup family g are randomly chosen and reassigned to

a newly-created setup family. If the number of setup families is still smaller than the desired number

of setup families, the aforementioned process is repeated until the desired number Gdes is reached.

4.4.4 Disaggregation

Linking the GLSPPL model formulation (4.1)-(4.7) with aggregated input data (see Sections 4.4.2 and

4.4.3) leads to the aggregated model PL/Aggr. In our case, this model is solved using a heuristic,

known from Meyr and Mann (2013) (for details see Section 4.5). The resulting solution defines pro-

duction quantities xg
lgs of family g on line l in microperiod s. These quantities must be disaggregated

to determine line- and product-specific demand parameters dl jt of each period t which will be used

to form independent single-line problems SLl . If a family is exclusively scheduled on one line within

the aggregated plan, disaggregation can be done applying a backward oriented heuristic. However, if

a family is assigned to several lines, the problem is more complex due to different production costs25.

In this case, it is useful to formulate an assignment problem (inspired by Meyr 1999, pp. 178f, but

essentially adapted). Since it happens quite often that a family is assigned to several lines, we decided

to solve the following optimization model for each setup family g = 1,2, ...,G, no matter if the family

is produced on one or several lines.

The variable xlu jt reports the assignment of quantities of family g which are produced on line l in

macroperiod u to the demand of product j ( j ∈ SFg) in macroperiod t. Correspondingly, clu jt defines the

costs for producing one unit of product j on line l in macroperiod u and store it until the demand arises

in macroperiod t. As shown in Equations (4.31), these costs consist of the production costs of product

j on line l plus the holding costs which occur for storing one unit of product j from macroperiod u

until macroperiod t.

clu jt = cl j +(t−u)∗h j ∀l,u, j, t (4.31)

If a setup family is scheduled on several lines, it might happen that one or several products of this

family are assigned to several lines as well. However, assigning products to several lines increases

the number of products which must be simultaneously considered in each single-line problem SLl .

Additionally, if a product is produced on several lines, it must be set up on several lines which causes

25Example: assume two production lines, two macroperiods and one setup family consisting of two products. Production

costs of product 2 are identical on both lines, but, production of product 1 is cheaper on line 1 than on line 2. Furthermore,

holding costs of product 1 are more expensive compared to the holding costs of product 2. Setup times, setup costs and

minimum lotsizes are neglected. The aggregated production plan schedules setup family 1 on line 1 in macroperiod 1 and

on line 2 in macroperiod 2. Both production slots must be completely used to fulfill the identical demand of both products

at the end of macroperiod 2. Looking at the production costs, it is preferable to produce product 1 on line 1. However,

looking at the holding costs, it is preferable to produce product 1 as late as possible which would mean to produce it on

line 2. Obviously, the problem is not trivial.
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higher setup times and costs. Normally, the costs clu jt control the assignment of products to lines. I.e.,

if possible, a product will be produced exclusively on the cheapest line. However, it is possible that a

constellation of production- and holding-costs arises which unnecessarily assigns a product to several

lines. For example, if the costs clu jt of product j are identical for all lines, no incentive exists to assign

product j exclusively to a single line. Thus, a binary variable lul j which indicates whether product j

is assigned to line l at least once within the planning horizon (lul j = 1) or not (lul j = 0) is introduced

and connected to penalty costs cl.

The penalty costs cl arise if a product is produced on a line at least once within the planning horizon.

The costs for line use cl are set to a high value, e.g., to the maximum of all cost parameters (cl =

maxl,i, j{sli j,cl j,h j}).
To assure solvability, the heuristic applied to solve the aggregated problem PL/Aggr (step 3 of Fig.

4.1) allows unlimited supply of all products, i.e., lost sales are possible, but charged with high penalty

costs. In this way, the total production quantity in real periods (s = 1, ...,S) of the aggregated plan

(∑l,g,s xg
lgs) does not always represent the necessary quantity to fulfill the total demand (∑ j,t d jt) of the

original problem PL/O. Therefore, it is possible to extend the provided production quantities xg
lgs of

setup family g. The variables xalt define the additionally used quantities on line l in macroperiod t

(notice, the measuring unit of xalt is quantity units of family g).

It also seems reasonable to use additional quantities xalt to reduce the number of lines employed

to produce a product. The following example explains this in more detail. If the assignment model

presented later on assigns 30 units of product 1 to line 1 and only 2 units to line 2, using the provided

capacities xg
lgs, it seems reasonable to add two additional units (∑t xa1t = 2) to the provided capacity of

line 1 in order to schedule product 1 exclusively on line 1.

The costs calt for using one additional unit of family g on line l in macroperiod t are defined based

on the following considerations. The costs calt should be low if there is idle production time eg
lt (time

units) on line l in macroperiod t, i.e., if there is time which is neither used for production nor for setups

within the aggregated plan. On the other hand, if there is no idle time on line l in macroperiod t, the

costs should be high. This idle time eg
lt can be calculated as shown in Equations (4.32).

eg
lt = Klt − ∑

g,s∈Sg
t

xg
lgsa

g
lg− ∑

g,h,s∈Sg
t

stg
lghzg

lghs ∀l, t (4.32)

Equations (4.32) subtract the used production time on line l in period t of model PL/Aggr and the

associated setup times from the given capacity Klt .

However, it is only reasonable to use this idle production time if it is necessary due to lost sales within

the aggregated plan or if costs for line use cl can be saved. Otherwise, the reserved time in terms of

xg
lgs should be used. Nevertheless, the additional quantities xalt cannot be limited to the corresponding

idle production time eg
lt since solvability must be assured. Notice, even in the case of zero idle time and

positive additional quantities, it is possible to find feasible plans later on in the single-line problems

SLl (step 5 of Fig. 4.1). The reason is that the reserved setup and production time of a setup family’s

lot might allow producing more units of a product due to aggregation errors concerning setup times

and production coefficients.
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Using idle time should be cheaper than using an additional line for a certain product. I.e., in the

extreme case, all idle time should be used to avoid producing a product on an additional line. The basic

approach to determine the costs for using one additional unit calt is to determine how many quantity

units of family g can be produced within the idle time eg
lt and divide the costs for line use cl by this

value. For instance, if it is possible to produce 20 units within the idle time and the costs for line use

are cl = 500 monetary units, the costs for using one additional unit (xalt = 1) are calt = 500/20 = 25

monetary units. In this case, using 1 to 20 additional units is cheaper or equally expensive (costs: 25

to 500) compared to producing the product on one additional line. As desired, 21 units will never be

used to avoid producing the product on an additional line, since the costs of 21 ∗ 25 = 525 monetary

units are higher than the line use costs. The following paragraphs describe the determination of calt in

detail.

The first step is to calculate the number of quantity units qlt of family g which can be produced

during idle time on line l in macroperiod t.

qlt =
∑u dg

gu

∑
h≥g,u : ag

lh>0
dg

hu
eg

lt
1

ag
lg
∀l, t : ag

lg > 0 (4.33)

Equations (4.33) weight the idle capacities eg
lt (time units) and transfer the resulting values to quan-

tity units of family g. The weighting is calculated by dividing the demand of family g which maximally

could occur on line l by the total demand of all families which could occur on line l. The total demand

of all families which could occur depends on the families which must still be disaggregated. Remem-

ber, the described assignment problem is solved consecutively for each family g = 1,2, ...,G, thus, if

the demand of a family is already assigned to single-line problems, it is not useful to still reserve idle

time for this family. As shown in Equations (4.34), qlt is set to zero if family g cannot be produced on

a line.

qlt = 0 ∀l, t : ag
lg =−1 (4.34)

Finally, the costs for line use cl are divided by the number of quantity units of family g which can

be produced during idle time on line l in macroperiod t (see Equations (4.35)). As one can see, using

idle time to save line use costs should only be done if there is enough idle capacity to produce at least

one unit. In all other cases, the costs calt are set to line use costs times five (see Equations (4.36)),

since not further documented tests runs have shown that this value seems to be reasonable. Table 4.3

summarizes the symbols used in the following model.

calt =
cl
qlt

∀l, t : qlt ≥ 1 (4.35)

calt = 5∗ cl ∀l, t : qlt < 1 (4.36)
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Table 4.3: Symbols for disaggregation model of setup family g

Indices:

u = 1, ...,U macroperiods

Data:

clu jt costs for producing one unit of product j on line l in macroperiod u and

store it until macroperiod t

calt costs for using one additional unit of setup family g to extend the pro-

vided quantities on line l in macroperiod t

cl line use costs which occur once in the planning horizon if the production

quantity of a product on a line is positive

d jt demand of product j in macroperiod t (known from the original problem

PL/O)

xg
lgs production quantity of family g on line l in microperiod s (known from

the aggregated production plan)

Variables:

xlu jt ≥ 0 quantities of setup family g which are scheduled on line l in macroperiod

u and assigned to the demand of product j ( j ∈ SFg) in macroperiod t

xalt ≥ 0 number of additionally used quantity units of setup family g on line l in

macroperiod t

lul j ∈ {0;1} equals 1 if product j is produced on line l at least once in the planning

horizon (0 otherwise)

Objective function:

Min ∑
l,u,t, j∈SFg

clu jtxlu jt +∑
l,t

caltxalt + ∑
l, j∈SFg

cl ∗ lul j (4.37)

Constraints:

∑
j∈SFg

T

∑
t=u

xlu jt ≤ ∑
s∈Su

xg
lgs + xalu ∀l,u : alg > 0 (4.38)

∑
l : ag

lg>0

t

∑
u=1

xlu jt = d jt ∀t, j ∈ SFg (4.39)

∑
u,t

xlu jt ≤ lul j ∑
t

d jt ∀l, j ∈ SFg : alg > 0 (4.40)

The objective function (4.37) minimizes the total costs. These costs consist of the costs for assigning

quantities of family g to product-dependent demand, the costs for additional quantities and the costs

for line use.

Constraints (4.38) assure that the quantities of family g which are assigned to product-dependent

demand xlu jt do not exceed the provided production quantities of setup family g plus the additional
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used quantities xalt . The given product-dependent demand d jt of each product j ∈ SFg in each period

t must exactly be fulfilled by the assigned quantities xlu jt (see Equations (4.39)). Notice, alg > 0 in

the sigma sign assures that products are only assigned to lines which are capable of producing these

products. Inequalities (4.40) assure that if product j is assigned to line l, the line use indicator lul j is

set to 1. After solving the model for family g and before solving it for family g+1, the idle times used

in Equations (4.33) should be adapted in the following way: eg
lt := eg

lt − xalt ∀l, t.
The resulting quantities xlu jt can easily be transferred to line-dependent, product-specific demand

parameters dl jt , like it is formalized in Equations (4.41).

dl jt =
t

∑
u=1

xlu jt ∀l, j, t (4.41)

After solving the model (4.37)-(4.40), the resulting demand dl jt can be combined with the GLSP

model (4.1)-(4.7) to form single-line problems SLl . It should be mentioned that the model size of the

single-line problems can be reduced further by adapting the number of microperiods per macroperiod

|St | to the number of products which will be produced on this line. Furthermore, all variables and

parameters must only be defined for the relevant products and product j = 0 for each line. By doing

so, one special case may arise. If the initial product of a line is not product j = 0, this is no problem

as long as demand of the initial product is assigned to this line. If, e.g., product 1 is the initial product

of line 1, but only demand for products 2 and 3 occurs on this line, necessary parameters are missing.

For example, the setup times from product 1 to 2 or 1 to 3 are not incorporated in the provided data.

To avoid further implementation difficulties, the initial product is named as product 0 and all neces-

sary parameters of the original initial product are transferred to product 0. I.e., the new setup times

concerning the initial product of a line l which shows the aforementioned characteristic are defined as

st10 j := st1a j ∀ j with a representing the original initial state, i.e., in the aforementioned example a = 1.

4.4.5 Iterative solution

After solving the single line problems SLl , the resulting setup patterns are used to formulate a linear

programming representation of the original model (step 6 of Fig. 4.1). The generated model can be

solved using a standard solver (in our case, Gurobi Optimizer). If no feasible solution exists, but the

model (PL/Aggr) has been feasibly solved (i.e., no lost sales), the feasibility-problems are induced

by aggregation errors. I.e., the time spans reserved for setup families do not match the time which

is necessary for production and setup of the single products of the families. Thus, it is worthwhile

to reserve some production capacity which cannot be used in the aggregated model PL/Aggr, but is

available in the single-line problems SLl (see step 7 of Fig. 4.1). This approach hopefully leads to dif-

ferent aggregated production plans and consequently to different single-line demand values compared

to the previous iteration. The reduced capacities are calculated using a slightly adapted26 version of

the algorithm proposed in Meyr and Mann (2013, pp. 722f).

26Meyr and Mann (2013) reserve both production time and setup time for the missing quantities. We omit the consideration

of setup times, since it often leads to a too strong reduction of capacity in the numerical tests.
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Algorithm 4: Calculation of adapted capacity (main input: dl jt , xl js, original Klt)

11 forall l, j, t = 1, ...,T do // forward calculation of shortages:

2 Il jt := Il j,t−1 +∑s∈St xl js−dl jt ;
3 if Il jt < 0 then
4 SQl jt :=−Il jt ; // short quantity

5 Il jt := 0;

6 else
77 SQl jt := 0;

88 forall l do
9 CR := 0; // capacity reduction

10 forall t = T, ...,1 do // backward calculation of reduced capacities:

11 CR :=CR+∑ j al jSQl jt ;
12 // capacity reduction:

13 if CR > Klt then
14 CR :=CR−Klt ;
15 Klt := 0;

16 else
17 Klt := Klt −CR;
1818 CR := 0;

Lines 1-7 of Algorithm 4 show the calculation of the shortage quantities SQl jt of product j on line l

in macroperiod t. Afterwards, a backward calculation (see Lines 8-18) is used to determine the reduced

capacities Klt which will be used in PL/Aggr in the next iteration.

4.5 Numerical tests

In the following, the performances of the new heuristics Aggr-P (using Cluster-S) and Aggr-PR (using

Cluster-R) are tested. The heuristics are used to solve two large-scaled practical problems. The decom-

position heuristic TA-agg of Meyr and Mann (2013) (for a short description see Section 4.2) serves as

benchmark. Section 4.5.1 describes the basic settings of the test environment. Section 4.5.2 introduces

the test instances and discusses the results of the experiments.

4.5.1 Basic settings of the test environment

All tests haven been executed using a laptop showing the following technical specifications: intel Core

i7-6500U 2.5 GHz DC CPU, 8 GB RAM, Win 10 Pro 64 bit. The new heuristics have been imple-

mented using Python 2.7.12. Furthermore, Gurobi Optimizer has been used to solve the disaggregation

problem (4.37)-(4.40) and the linear programming representation of PL/O (see step 6 in Figure 4.1).

Depending on the experiment, the aggregated problem PL/Aggr (step 3 of Fig. 4.1) has been solved

using TA-GLPK or TA-agg (see Section 4.2). To avoid re-implementation of these heuristics, the orig-
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inal implementations of Meyr and Mann (2013) have been embedded as exe-files. Additionally, TADR

(see Section 4.2) has been used to solve the single-line problems SLl (step 5 of Fig. 4.1).

For the threshold accepting concepts of TADR and TA-GLPK, the threshold values of Meyr (2000)

and Meyr (2002) are used, respectively. Furthermore, the threshold multiplier TM is set to 100 for

TADR and to 2000 for TA-GLPK. The threshold multiplier T M is used to control the threshold accept-

ing process. In detail, after T M iterations without any improvement of the objective function value, the

next lower threshold value is applied. After 5∗T M iterations without any change, the complete run is

finished. Finally, 2∗T M defines the maximal number of iterations executed for each threshold value.

Notice, these parameters are applied for TADR and TA-GLPK in every experiment, no matter in which

heuristic they are used.

Each time TADR is used in an iteration of a heuristic it is repeated 10 times using different seed

values for generating the random numbers which are applied during the threshold accepting procedures.

Afterwards, the best result of these 10 runs is chosen.

TA-agg provides further setting options: we choose the version TA-agg1-s for the benchmark. In

this version, the aggregation factor is set to 1 which means that the problem is not aggregated at all.

However, the problem is decomposed into single-line problems. The “s” in TA-agg1-s indicates that

the number of microperiods per macroperiod are reduced if reasonable (for details see Meyr and Mann

2013, p. 729). If TA-agg is used in Aggr-P or Aggr-PR, an aggregation factor of 4 is applied, i.e., the

aggregated model comprises T
4 macroperiods (T is the number of macroperiods in the original model).

The number of microperiods per macroperiod is not decreased. In the following, this heuristic will be

called TA-agg4.

If the result of the first iteration of TA-agg1-s, Aggr-P or Aggr-PR is infeasible, the capacities of the

aggregated problem are reduced based on the missing quantities (see algorithm 1 of Meyr and Mann

(2013) and Algorithm 4 of the present paper) and a second iteration is started. However, the heuristics

are stopped after completion of the second iterations, no matter if feasible solutions have been found

or not.

Notice, we choose TA-agg1-s combined with the above mentioned threshold multipliers, because it

performed very well in Meyr and Mann (2013), especially for the problem instances considered in the

following.

4.5.2 Test instances and results

The first test instance will be called J51 since it comprises J = 51 products (notice, only 50 products

show net demand). This instance has been introduced by Meyr (1999, pp. 180f). It is a practical

problem occurring in the acrylic glass production and was formulated to execute a mid-term planning.

It consists of L = 3 lines and T = 12 macroperiods and has several characteristics which make it

difficult to solve: e.g., minimum lotsizes must be respected for each product and not every product can

be produced on all lines as well as sequence-dependent setup times and costs exist.

The second problem instance comprises J = 72 setup families and will be called J72. It is provided

by a label printing company. The labels are used to declare consumer goods. The company already did
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a basic assignment of products to setup families. However, the high number of 72 setup families sug-

gests that potential for further aggregation exists. Identically to instance J51, the problem comprises

T = 12 macroperiods and is applied for mid-term planning. Furthermore, L = 7 lines must be consid-

ered. Due to the high number of lines and the presumption that the necessary setups will be spread

over all lines, the number of microperiods per macroperiod |St | is set to 20. Identically to problem J51,

not every product can be produced on all lines and minimum lotsizes as well as sequence-dependent

setup times and costs exist.

Both problems are solved using TA-agg1-s, Aggr-P(TA-GLPK), Aggr-P(TA-agg4), Aggr-PR(TA-

GLPK) and Aggr-PR(TA-agg4). The information in brackets defines the heuristic applied to solve the

aggregated multi-line problem PL/Aggr. Since the threshold accepting concepts of TADR and TA-

GLPK use random numbers, all combinations of instances and heuristics are performed at least 60

times. Due to different seed values of the random number generators, these runs will lead to different

results.

We decided to do the aggregation in a way that the number of setup families is approximately one

third of the number of products. In detail, the number of setup families of instance J51 is 19 and

the number of setup families of instance J72 is 25. The following parameters have been used to

fulfill the desired number of setup families: for J51: stsmall = 0.1, st large = 0.2, stmax_di f f = 0.1,

smallperc_allowed
st = 1 and devlimit = 0.002. For J72: stsmall = 0.5, st large = 0.6, stmax_di f f = 0.1,

smallperc_allowed
st = 0.4 and devlimit = 0.1. For comparability reasons, Aggr-PR uses the same num-

ber of setup families as Aggr-P. Notice, Aggr-PR randomly generates new setup families for each run

since the associated seed value of the random number generator is changed as well (see Algorithm 3).

Table 4.4 summarizes the results. There, one can find the average percentage deviation from the

best known objective function value27 (“av. obj”). In the following, the aforementioned performance

indicator will be called “objective deviation”. Furthermore, the percentage of runs with lost sales is

documented in italic letters. Additionally, the average computing times (excluding the solutions with

lost sales) in seconds (“av. cpu”) can be found in the table. For each problem instance, the best values

of objective deviation, computing time and percentage of lost sales are marked in bold letters.

Table 4.4: Results of solving the instances J51 and J72 with different heuristics. “Av. obj” defines the

average percentage deviations from the best known objective values. “Av. cpu” defines the

average computing time. Percentages of runs with lost sales are documented in italic letters.

TA-agg1-s Aggr-P Aggr-P Aggr-PR Aggr-PR

(TA-GLPK) (TA-agg4) (TA-GLPK) (TA-agg4)

J51
av. obj [%] ls [%] 4.0 50 2.5 65 2.4 32 4.1 55 4.3 63

av. cpu [s] 432 257 119 232 130

J72
av. obj [%] ls [%] 0.7 0 0.5 32 0.9 12 0.6 78 0.8 40

av. cpu [s] 1426 549 561 794 753

27Best objective function value known from Meyr and Mann (2013), updated if better solutions have been found.
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4.5 Numerical tests

This paragraph discusses the results of the test instance J51: as one can see in Table 4.4, Aggr-P(TA-

agg4) performs best. Especially in comparison to TA-agg1-s and both Aggr-PR heuristics, it shows a

significantly lower average objective deviation. Additionally, Aggr-P(TA-agg4) is approximately 3.5

times faster compared to TA-agg1-s. Comparing Aggr-P with Aggr-PR, in terms of average objective

deviations, Aggr-P performs better. Nevertheless, comparing the percentage of lost sales, Aggr-PR

performs not that bad compared to the other heuristics. The reason might be that the assignment of

products to setup families is changed for each run. The new heuristics which use TA-agg4 are faster

compared to the ones which apply TA-GLPK. Additionally, there is no relevant difference between the

computing times of Aggr-P and Aggr-PR while applying the same heuristic to solve the aggregated

problem.

In the following paragraph, the results of test instance J72 are discussed: in terms of the average

objective deviation, all heuristics perform very well (average objective deviations are less than 1%).

However, Aggr-P(TA-GLPK) performs best and Aggr-P(TA-agg4) performs worst. Both Aggr-PR

heuristics show the highest lost sales and TA-agg1-s shows no lost sales at all. However, TA-agg1-s is

quite slow, taking up 1426 seconds on average. Compared to instance J51, the difference is that Aggr-P

and Aggr-PR do not show similar computing times if the same sub-heuristic (e.g. TA-GLPK) is applied.

In detail, Aggr-PR needs approximately 200-250 seconds longer compared to the corresponding Aggr-

P heuristic.

Since it is difficult to get a complete picture by analyzing three different performance parameters like

it was done in Table 4.4, it seems worthwhile to additionally use another way of result representation

(see Meyr and Mann 2013, pp. 726f). The basic approach is to set solution quality and computing time

in relation. Obviously, during the time necessary to solve J72 using TA-agg1-s, it is possible to run

Aggr-P(TA-agg4) twice and choose the smaller resulting objective function value. I.e., if a heuristic

with stochastic components is executed twice, the two resulting running times (including running times

of results which show lost sales) have to be summed and the best run concerning the objective function

value has to be chosen. In our approach, we will do this type of calculation for different sizes of

“packages” (1,2,3, ...). Afterwards, the computing times and the objective deviations of all packages

of a package size will be averaged.

The results of the (at least) 60 runs of, e.g., instance J51 solved by Aggr-P(TA-GLPK), are stored

as a list. Since they are independent, each run has the same probability to occur. Thus, each combi-

nation of runs should be considered. I.e., if the package size is 2, it would be the best to calculate the

objective deviations and computing times for all possible combinations of two runs of this list of 60

runs. However, a package size of 6 will already lead to 606 = 4.7∗1010 combinations. Thus, to keep

the handling simple, the packages are merely built by iterating subsequently over the given list of 60

runs. I.e., if the package size is 2, the first two runs, run 3 and 4, run 5 and 6 and so on are combined.

Lost sales are considered in more detail as described in the following. If all runs of a package show

lost sales, this package will be marked as “lost sales package”, otherwise the package will be marked

as “feasible package”. Now, the average running times of each package size are multiplied using the

following factor number o f all packages
number o f f easible packages (this calculation is only possible if there is at least one feasible

package). This factor defines the average number of runs of a certain package size which must be per-
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4 Decomposing large-scaled simultaneous lotsizing and scheduling problems using product aggregation

formed to find a feasible solution. Using the aforementioned factor, the average running time to find a

feasible solution for each package size is estimated.

Figure 4.3 shows the results of instance J51. The complete running time is limited to 7200 seconds

(i.e., the package size is increased until an average computing time of 7200 seconds is reached) and

only the convex hull of each heuristic is plotted.
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Figure 4.3: Objective deviation depending on computing time for instance J51

In Figure 4.3, one can see that both Aggr-P heuristics perform very well. As expected, due to the

randomly created setup families, both Aggr-PR heuristics perform not that well. However, up to the

computing time of nearly two hours, both are preferable compared to TA-agg1-s. Additionally, one can

see that the time to find a first feasible solution is quite short for Aggr-P(TA-agg4) and nearly identical

for both Aggr-PR heuristics. Aggr-P(TA-GLPK) needs approximately 805 seconds and TA-agg1-s

need approximately 1150 seconds.

A similar figure is created to represent the results of instance J72. In this case, the running time was

extended to three hours. The results can be found in Figure 4.4.

Figure 4.4 shows that Aggr-P(TA-GLPK) performs best. However, Aggr-P(TA-agg4) finds the first

feasible solution already within 677 seconds (Aggr-P(TA-GLPK) needs 940 seconds). This difference

is caused by a higher percentage of lost sales of Aggr-P(TA-GLPK) (see Table 4.4). TA-agg1-s needs

1426 seconds to find a first feasible solution despite zero lost sales (see Table 4.4). However, from find-

ing its first feasible solution up to approximately 3850 seconds, TA-agg1-s performs better compared

to Aggr-P(TA-agg4). Aggr-PR(TA-GLPK) needs approximately 4300 seconds to find a first feasible

solution. Whereas, Aggr-PR(TA-agg4) does so in a much shorter time. This must be due to the higher

percentage of lost sales of Aggr-PR(TA-GLPK) (see Table 4.4).

A further test was initiated using the test instance J51 and the heuristic Aggr-P(TA-agg4) which was

the best heuristic to solve this problem. Now, the setting was changed in a way that the 51 products
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0 2000 4000 6000 8000 10000
computing time [s]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

o
b
je

ct
iv

e
 d

e
v
ia

ti
o
n
 [

%
]

Aggr-P(TA-GLPK)

Aggr-P(TA-agg4)

Aggr-PR(TA-GLPK)

Aggr-PR(TA-agg4)

TA-agg1-s

Figure 4.4: Objective deviation depending on computing time for instance J72

have been condensed to 5, 14 and 37 families28. The results are shown in Figure 4.5 up to a computing

time of 3300 seconds. For comparison reasons the result of the experiment with 19 families and Aggr-

P(TA-agg4) is plotted as well.

0 500 1000 1500 2000 2500 3000
computing time [s]

0

1

2

3

o
b
je

ct
iv

e
 d

e
v
ia

ti
o
n
 [

%
]

 5 families

14 families

19 families

37 families

Figure 4.5: Objective deviation depending on computing time for instance J51 solved by Aggr-P(TA-

agg4) applying different numbers of setup families

As Figure 4.5 shows, a high number of setup families leads to bad results. The reason for this is

the higher computing time to solve an aggregated problem with 37 families compared to an aggregated

28Applied settings defined in the order stsmall , st large, stmax_di f f , smallperc_allowed
st , devlimit : for 5 families:

0.99,0.999,0.1,0,0.99. For 14 families: 0.1,0.2,0.1,1,0.003. For 37 families: 0.1,0.2,0.1,1,0.001.
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4 Decomposing large-scaled simultaneous lotsizing and scheduling problems using product aggregation

model with e.g., 19 families. As expected, an aggregated problem of bigger size is more difficult to

solve. The experiments with 5 and 14 families show better results than the experiment with 19 families.

However, using the lowest possible number of setup families also shows disadvantages. As one can

see, the experiment with 5 families never reaches objective deviations which are as small as for the

experiment with 14 families. One reason might be that too much information has been lost during the

aggregation of parameters. However, in the scenario with 5 families only 6.7% of the runs show lost

sales. In the case with 14 families, 30% of the runs have lost sales. I.e., the reason is not an aggregation

error which occurs due to an underestimation of necessary production capacity in the aggregated case.

Most probably, the reason of worse objective function values is that the line assignment which is done

during the aggregation-disaggregation process does not allow finding better production plans for the

single-line problems. The following example explains this case. Assume that in the optimal solution

of a multi-line problem product 1 has to be produced on line 1. If this product is assigned to line

2 during the aggregation-disaggregation process, the optimal solution of the original problem never

can be found during the further steps of the decomposition heuristic. However, Figure 4.5 shows that

Aggr-P provides very good results even for a relatively wide range of numbers of setup families.

4.6 Summary and outlook

A new solution approach for large-scaled GLSPPL problem instances has been introduced. The ap-

proach is based on decomposition and works as follows: by aggregating products to setup families, the

original multi-line problem is transformed into a smaller problem. The problem consisting of setup

families is solved using the heuristics TA-GLPK or TA-agg4 (both known from Meyr and Mann 2013).

The resulting production plan is used to form single-line problems which consider products. These

single-line problems are subsequently solved by the heuristic TADR (see Meyr 2000) within a few

seconds. Afterwards, the setup patterns of the single-line production plans are used to formulate a

linear program of the original problem. Since all variables are continuous, the problem is solved by a

standard solver within a very short time. If the final solution includes lost sales, the capacities of the

aggregated model are reduced and a second iteration of the algorithm is started.

One important step of the new heuristic is the assignment of products to setup families. Therefore,

we proposed two different heuristics. The first method, Cluster-S, defines setup families based on

setup characteristics of the test instances. The approach is capable of handling sequence-dependent

setup times which can be line-dependent as well. Different settings of this algorithm lead to more, but

homogenous, or less, but heterogeneous setup families. At the same time, Cluster-S is also capable of

handling cases with products which cannot be produced on all lines. As a benchmark, the algorithm

Cluster-R is proposed which only considers the fact that not every product can be produced on all lines.

The further assignment of products to families is done randomly. Cluster-R allows to define the number

of desired setup families in advance which enables a fair comparison between heuristics using Cluster-

R and heuristics using Cluster-S. For Cluster-S and Cluster-R, we defined identical formulas how

parameters, like production coefficients, of the families should be calculated after assigning products

to families.
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4.6 Summary and outlook

For the disaggregation process (defining line- and product-dependent demands based on the aggre-

gated plan), we formulated a mixed integer programming model. One important part of this model are

the “line use costs”. I.e., costs are accounted each time a product j is produced at least once during the

planning horizon on a production line. These penalty costs assure that a product is not assigned to a

unnecessarily high number of lines which could happen if a setup family is produced on several lines.

Therefore, this approach saves a high amount of setup costs and setup times in the single-line problems

SLl compared to a disaggregation which does not avoid unnecessary assignment of a product to several

lines.

Four different heuristics have been defined: Aggr-P(TA-GLPK), Aggr-P(TA-agg4), Aggr-PR(TA-

GLPK) and Aggr-PR(TA-agg4). Both Aggr-P heuristics use Cluster-S to define the setup families

and both Aggr-PR heuristics use Cluster-R. The heuristics named in brackets are used to solve the

aggregated problems. Two practical applications showing 51 and 72 products have been solved in the

numerical tests. Since the heuristic TA-agg1-s has performed very well for both test instances (J51

and J72) in Meyr and Mann (2013), it serves as a benchmark. Notice, the instance with 72 products

originally consists of even more products but has already been aggregated to these 72 products by the

company.

For the numerical tests, the instance with 51 products has been condensed to 19 families and the

instance with 72 products has been condensed to 25 families. For both problem instances Aggr-P(TA-

GLPK) is superior to TA-agg1-s in terms of objective deviation and computing time. For the smaller

instance, Aggr-P(TA-agg4) is even better than Aggr-P(TA-GLPK). In the case of 72 products, Aggr-

P(TA-agg4) performs similar to TA-agg1-s. However, it is able to find a first feasible solution earlier

and finds better solutions if the running time of both heuristics is longer than approximately 3850

seconds.

As expected, both Aggr-PR heuristics perform worse compared to the Aggr-P heuristics. However,

in case of the instance with 51 products, both show better results compared to TA-agg1-s. In the case

of 72 products, the objective deviations are also quite good with less than 1%. However, in this case,

Aggr-PR(TA-GLPK) takes a very long time to find a first feasible solution due to a high number of

solutions showing lost sales.

A further experiment tests Aggr-P(TA-agg4) with different numbers of families. The instance with

51 products is considered and the results show that a stronger aggregation, i.e., less setup families,

leads to better results. The reason is that a smaller aggregated problem can be solved in a better

way concerning solution time and objective function value. However, an experiment with 5 families

shows that a number of families which is too low leads to disadvantages. In this case, the objective

deviations are never as small as for the scenario with 14 families. However, the percentage of lost

sales is much lower in the case of 5 families. The reason might be that the aggregation-disaggregation

process creates single-line problems which do not allow to find better production plans for the original

problem. However, the result is still very good and better compared to TA-agg1-s.

All in all, it has been shown that the new heuristics Aggr-P(TA-GLPK) and Aggr-P(TA-agg4) are

very good at solving the considered large-scaled simultaneous lotsizing and scheduling problems.

Aggr-PR is a bit worse. However, this difference between Aggr-P and Aggr-PR shows that Cluster-S
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4 Decomposing large-scaled simultaneous lotsizing and scheduling problems using product aggregation

works very well and provides advantages.

Further research should focus on the refinement and a deeper analysis of the approaches. Therefore,

it will be useful to examine additional or adapted test instances. Especially by adapting the current test

instances, it will be possible to find out why the solution heuristics perform so differently for instance

J51 and J72. As one can see in Section 4.5.2, all tested heuristics perform similarly well in terms of

the objective deviation for instance J72. However, this is not the case for instance J51, where Aggr-

P(agg-4) performs best. These differences do not only occur for the new heuristics, TA-agg1-s also

shows strong differences in the number of runs having lost sales (J51 has 50% lost sales, whereas,

J72 has 0 lost sales). Adapting, for example, the production capacities, the minimum lotsizes or the

cost structure of the problems will provide further insights of why the aforementioned differences

between J51 and J72 exist. Afterwards, it is possible to think about the impact of these insights on

the heuristics. Correlating with this, it should be examined how the best number of families can be

determined in advance and in which cases TA-GLPK or TA-agg4 or even another heuristic (e.g., TA-

agg1-s) is preferable to solve the aggregated problem.

Moreover, the percentage of lost sales is still very high for all new heuristics of this thesis (see

Table 4.4). As Meyr and Mann (2013) already proposed, it could be helpful to increase production

coefficients instead of reducing capacities in a second iteration of the decomposition heuristic. This

approach enables a more detailed reaction to the arising lost sales since it is setup-family-specific and

not only line-specific. However, it could happen that an increased production coefficient leads to fea-

sibility problems due to scarce capacities in the aggregated model. Therefore, it might also be useful

to introduce time-dependent production coefficients. Thereby, it will be possible to increase the pro-

duction coefficient of family g only in macroperiods with occurring lost sales for the products of this

setup family.
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5 Summary and outlook

The present thesis focuses on simultaneous lotsizing and scheduling. The intention was to create sig-

nificant improvements for solving simultaneous lotsizing and scheduling problems arising in practical

applications. In detail, the thesis is structured into three main topics: providing a comprehensive

literature review concerning simultaneous lotsizing and scheduling, formulating a general model to

consider secondary resources and developing a heuristic to solve large-scaled simultaneous lotsizing

and scheduling problems. The following section describes the results in detail. Additionally, further

research topics are discussed in Section 5.2.

5.1 Summary

Simultaneous lotsizing and scheduling problems often consist of only one bottleneck production stage

which may comprise multiple parallel production lines having limited capacities. Since a product can

be produced on more than one line, a simultaneous planning of all lines is necessary. Furthermore,

parameters like production costs or production speeds are line- and product-dependent. Changeovers

from one product to another product cause sequence-dependent setup times and setup costs. I.e., the

previously produced product influences the amount of setup times and setup costs. Moreover, holding

costs occur for storing the products until they are used to fulfill a dynamic demand for several products.

Therefore, it is necessary to solve a lotsizing problem as well. All in all, due to strong interdependen-

cies, the lotsizes, the sequences and the scheduling on the different lines must be planned simulta-

neously. Usually, simultaneous lotsizing and scheduling problems are formulated as mixed integer

programming models having an objective function which sums up all costs and has to be minimized.

Since the problems are complex, especially for real world applications, several solution heuristics have

been developed to solve them. (see, e.g., Meyr 1999, Chapter 3 and Copil et al. 2017)

Chapter 2 provides a comprehensive literature review of simultaneous lotsizing and scheduling prob-

lems. The focus of the review is placed on the different model formulations. Therefore, more than

160 different formulations have been identified and are briefly described. To enable the identifica-

tion of differences between the model formulations, a detailed classification scheme is used (see Meyr

1999). Aspects, included in the classification scheme are, for example, the number of considered pro-

duction stages, the used time structure of the model formulations and the setup characteristics, i.e.,

among others, whether setup times and setup costs exist and whether they are sequence-dependent or

sequence-independent. If model formulations have been developed to solve real world applications, the

concerned industries are specified as well. Moreover, used solution heuristics and additional features
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such as the consideration of perishable products are documented too. Using this classification scheme,

it is possible to describe the development of simultaneous lotsizing and scheduling and particularly to

identify research gaps.

One important key finding is that recent models describe the planning problems in more detail. One

reason for this are the improved possibilities (better hardware and improved standard solvers) to solve

more complex models. Moreover, the models are often formulated to be applied in practice. There-

fore, it is essential that all relevant aspects are considered. For example, many recent models consider

multi-level bill-of-materials structures and multiple production stages which is important if the bottle-

neck production stage shifts depending on the demand. Additionally, some recent formulations do not

only consider the production lines (primary resources) as scarce capacities, but also some secondary

(scarce) resources, like personnel or raw materials. This is picked up in Chapter 3 of the present thesis

and will be summarized in the following.

As described before, some models include secondary resources. Secondary resources have to be

considered if their availability is limited which is usually the case if they are expensive, like personnel,

or if purchasing problems exist as it could be the case for some raw materials. The importance of

including secondary resources can be easily shown using the following example. Assume that there is

only one setup operator which is responsible for the setups on two production lines, but is only capable

of setting up one line at the same time. If the setup operator is ignored during planning, it might happen

that both lines should be set up simultaneously. Obviously, this plan is infeasible in reality, since the

setup operator cannot set up both lines in parallel.

Since the literature review of Chapter 2 is focused on simultaneous lotsizing and scheduling in gen-

eral, a further review is provided which analyzes the models incorporating secondary resources in

more detail (see Section 3.2). It is described which secondary resources are incorporated in the dif-

ferent problems of the literature and how they are modeled. Moreover, a new classification scheme

has been developed to structure the reviewed literature. Two main attributes of secondary resources –

shareability and substitutability – have been identified. Shareability has two different potential values:

on the one hand, a disjunctive resource can only be used on a single line at the same time, but it can

be used several times such as a setup operator. On the other hand, a cumulative resource can be sup-

plied simultaneously to multiple lines, but it can only be used once like a raw material. Substitutability

differentiates between the following potential values: in case without substitutes, it is clearly defined

which resources have to be used. If substitutes exist (with substitutes), alternative resources (e.g., high

and low skilled workers) are available which can perform the same (simple) operation. Using substi-

tutes, the flexibility of the model is increased. Especially, if the skill level is considered more generally

as capability of performing a task. For example, if there are three lines and two setup operators, and

the first setup operator is specialized in line 1 and 2 and the second setup operator is specialized in

line 2 and 3, all combinations of two simultaneous setups are possible (line 1 and 2 or line 1 and 3

or line 2 and 3). This is not the case if only one of the two setup operators is specialized in line 2.

Based on the aforementioned four main attributes, the following types of secondary resources have

been identified: disjunctive resources with and without substitutes and cumulative resources with and
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without substitutes. Among others, the classification scheme also describes which states (production,

setup and conservation of a setup state) require secondary resources and whether a state requires only

one or several different secondary resources.

The review shows that many models are very specialized. For example, there are models which only

consider a single setup operator or only raw materials. If this is the case, it is impossible to represent

a production scenario which considers two setup operators and raw materials simultaneously. There-

fore, a general model (see Section 3.3-3.5) has been developed which has the following characteristics

concerning secondary resources:

• All four types of secondary resources can be represented at the same time. For example, it is

possible to have a scenario which exactly defines which raw materials are necessary for which

processes (changeover from product i to j, conservation of the setup state of product j (standby)

and production of product j) and at the same time considers two setup operators of which one

can do every setup and the other one is only capable of doing simple setups.

• Unnecessary variables and constraints can be “deactivated”. I.e., if a planning problem does not

consider substitutes, all constraints and variables concerning substitutes can be easily omitted in

the model to reduce complexity.

• It is possible that a process requires several different secondary resources. I.e., it is possible to

represent a scenario in which two different setup operators and a tool are necessary during the

changeover from product i to j. Additionally, it is possible that a secondary resource is capable

of taking care of different processes, e.g., the tool can also be necessary for producing product j.

• The model formulation allows that each process needs secondary resources. For example, it is

possible that a worker is necessary during the changeover from product 1 to 2, and a tool is

required for the changeover from product 2 to 3 and during production of product 3. Addition-

ally, it is also possible to assure that a substitute resource must be used for several consecutive

processes on a certain line. Consider that tool A and B are substitutes for each other and one

of the two tools is required for the setup of product 1 and for production of product 1. In this

case, it is possible to assure that the tool mounted during the changeover also has to be used for

production.

Most but not all of these characteristics are already incorporated in model formulations. However,

often, only a few of these characteristics are considered in a single model formulation and no model

exists which considers all of them simultaneously.

The new model is based on a simultaneous lotsizing and scheduling model named general lotsizing

and scheduling problem for parallel lines (GLSPPL) (see Meyr 2002). The model considers a limited

planning horizon which is divided into several macroperiods. Each macroperiod itself consists of

several microperiods. In the original model formulation these microperiods can have different lengths

on all lines. However, in the new model, the microperiod time grid is identical on all lines. Moreover,

only one process is allowed per microperiod. This enables the synchronization of disjunctive secondary
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resources without unnecessarily long assignments of secondary resources to production lines. For

example, if a setup operator is assigned to line 1 in microperiod 1, he can be used on another line

in microperiod 2. A common time grid combined with the restriction of only allowing one state per

microperiod reduces the flexibility of the model. Assume two production lines which should be set up

in microperiod 1. The setup on line 1 lasts for 30 minutes and the setup on line 2 lasts for 40 minutes.

Obviously, it is impossible to set up both lines in the first microperiod, since only one state is allowed

per microperiod and the starting and ending times of all microperiods must be identical on all lines.

Therefore, the new model allows continuous setups, i.e., setups can last for several microperiods. Thus,

the first microperiod has a length of 30 minutes and the second microperiod will be 10 minutes long to

finish the setup on line 2.

Section 3.5 proposes additional features which only seem relevant in some practical applications.

One important topic is the splitting of setup operations into dismounting, cleaning and mounting op-

erations. This splitting provides more flexibility to find feasible production plans. Assume a setup

operation which takes five hours, but dismounting takes only 10 minutes. Using the model without

splitting of the different setup operations, a tool which has been mounted on a machine to produce

a product is assigned to the machine for the complete changeover from this product to the following

product, i.e., for five hours. If the model considers splitting the setup operations, the tool can be set

free after 10 minutes and can then be used on another line. To the best of our knowledge, this is the

first simultaneous lotsizing and scheduling model which considers the setup process in such detail.

Small experiments demonstrate the applicability of the general model formulation. Future research

should focus on extensive numerical tests and the development of solution heuristics. This will be

further discussed in Section 5.2.

Finally, since up-to-date heuristics still need long computation times to solve large-scaled instances,

Chapter 4 proposes a decomposition heuristic for the GLSPPL. At first, products of the original prob-

lem are aggregated to setup families. Therefore, two algorithms – Cluster-S and Cluster-R – have been

developed. Since some products cannot be produced on all lines, both algorithms respect the following

assumption: product i and j only can be assigned to the same setup family if they are identical in the

characteristic of being able to be produced on line l or not (∀ l). I.e., if both products can be produced

on line 1 and both products cannot be produced on line 2, they can be assigned to the same setup fam-

ily. If only product j can be produced on line 1, the products i and j cannot be assigned to the same

family. Additionally, Cluster-S considers the setup times to decide which product should be assigned

to which setup family. The intention is to reduce the loss of information which could arise if the setup

times of all products of a family are aggregated to a single setup time of the family. Cluster-R assigns

products to setup families, despite of the abovementioned restriction, based on random numbers.

Using the setup families, an aggregated version of the original problem is generated. The resulting

problem is solved using the heuristics TA-GLPK or TA-agg4 (see Meyr and Mann 2013). The sched-

uled setup families’ lotsizes are disaggregated to define line- and product-specific demands using an

assignment problem formulated as mixed integer program. If a setup family, e.g., consisting of three

products is scheduled on, e.g., two lines, it is possible that all three products are assigned to both lines.
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In most cases, this is unnecessary and thus undesired. Disadvantages which arise based on such an as-

signment are that the resulting single-line problems comprise a high number of products and that setup

costs and setup times for all products will arise on both lines. Sometimes, the described effect can be

avoided by merely incorporating production and holding costs in the assignment problem. However,

depending on the cost structure, the desired effect is not always achieved. Therefore, penalty costs are

introduced to avoid the aforedescribed problem.

The line-dependent demands are used to formulate single-line problems which are solved indepen-

dently using the fast single-line heuristic TADR (see Meyr 2000). The single-line schedules altogether

form a solution for the multi-line problem. However, sometimes further optimization potential exists,

thus, the setup patterns of the single-line schedules are used to generate a linear programming formu-

lation of the original multi-line problem. If the solution of this problem does not completely satisfy

the total demand, a second iteration of the heuristic is started. In this second iteration, the production

capacities of the aggregated problem are modified to hopefully influence the aggregated production

schedule in a way that a final solution without lost sales can be found.

For numerical tests, four new heuristics have been defined Aggr-P(TA-GLPK), Aggr-P(TA-agg4),

Aggr-PR(TA-GLPK) and Aggr-PR(TA-agg4). Aggr-P uses Cluster-S and Aggr-PR uses Cluster-R

to define setup families. The heuristic names in parentheses define the heuristic used to solve the

aggregated problem. The heuristic TA-agg1-s of Meyr and Mann (2013) serves as benchmark since

it performed better than other heuristics to solve large-scaled problems so far. Two test instances

from industrial applications have been solved. The first one is from the acrylic glass production. It

comprises 51 products, three production lines and 12 macroperiods. The second instance is from a label

printing company and comprises 72 products, seven lines and 12 macroperiods. Since all heuristics

have stochastic components, several runs of each instance-heuristic-combination have been performed

and performance measures like average computing time, “objective deviation”29 and “percentage of

lost sales”30 are considered. In the case of 51 products (condensed to 19 setup families), both Aggr-P

heuristics perform very well (Aggr-P(TA-agg4) performs best having an objective deviation of 2.4%

and an average computing time of 119 seconds). As expected, both Aggr-PR heuristics perform a

bit worse compared to Aggr-P (Aggr-PR(TA-GLPK) has an objective deviation of 4.1% and Aggr-

PR(TA-agg4) of 4.3%). However, they are still preferable to TA-agg1-s which has an average objective

deviation of 4.0% but is slower (432 seconds compared to Aggr-PR(TA-GLPK) needing 232 seconds

and Aggr-PR(TA-agg4) needing only 130 seconds). In the case of 72 products (condensed to 25 setup

families) the picture is not that clear. Each heuristic performs acceptably well having an objective

deviation below 1%. Aggr-P(TA-agg4) is the fastest heuristic in finding a first feasible solution. It

is even a bit faster compared to Aggr-P(TA-GLPK) which performs best concerning the objective

deviation. Aggr-PR(TA-GLPK) needs a very long time to find a first feasible solution. However, since

Aggr-PR was initially intended to serve as a benchmark meaning to show that defining setup families

by a reasonable approach generates advantages compared to a mainly random assignment, such a result

has been expected.

29Average percentage deviation from the best known objective function value.
30Percentage of runs with lost sales.
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A further experiment using instance J51 shows that the number of setup families has a high influence

on the solution quality. As expected, high numbers of setup families perform worse, since the aggre-

gated problem is still very complex. However, a scenario with 5 families has never reached objective

deviations as small as for a scenario with 14 families. The reason might be the loss of information while

defining the aggregated parameters of the problem. As a consequence, the aggregation-disaggregation

process might create single-line problems which do not include the optimal solution of the original

problem anymore. Nevertheless, the scenario with 5 families has a lower percentage of runs with lost

sales compared to the scenario with 14 families.

Altogether, the new heuristics can serve as alternatives to previous heuristics. Further numerical tests

are necessary to analyze if the heuristics provide relevant improvements like, e.g., for test instance J51

or if they only perform similarly or sometimes even worse to former heuristics like, e.g., for test in-

stance J72.

5.2 Outlook

One aspect worth considering in future research is the incorporation of multi-stage bill-of-materials

and multiple production stages. Chapter 2 has shown this to be a relevant topic, especially in practical

applications. As one can see for example in Seeanner and Meyr (2013), synchronization between the

different production stages is an important issue. One approach is to assume that quantities produced

in a period on one production stage can serve as pre-products for another production stage in the

following period (see, e.g., Meyr 2004). Obviously, comparing large-bucket and small-bucket models,

the resulting lead time from producing a product until its usage on another production stage is shorter

in the latter case. However, in the GLSPPL formulation of Meyr (2002), microperiods cannot be used

for synchronization of production stages directly since the starting times of the microperiods can be

different on each line. Therefore, Meyr (2004) has introduced an identical microperiod time grid on all

lines to synchronize the different production stages. (see also Seeanner and Meyr 2013) This common

time grid has already been used in the model formulation of Chapter 3 to assure the synchronization

of disjunctive resources. Thus, extending the new model to multiple production stages does not seem

difficult. However, up-to-date multi-stage models allow several states (e.g., setup and production) in

one microperiod and enable to use a product of a previous production stage on a successor stage in

the same microperiod (see, e.g. Seeanner and Meyr 2013). Allowing several states per microperiod

requires significant adaptions of the model. However, this adaption will reduce the necessary number

of microperiods as shown in the following.

Allowing only one state per microperiod in the model formulation of Chapter 3 may lead to a high

number of microperiods and thus to a high number of variables. Therefore, it seems reasonable to relax

this restriction (see the example on page 158: allowing conservation of a setup state and a changeover

in one microperiod, enables to do both setups in the first microperiod instead of needing two micrope-

riods). However, on average, microperiods will be longer and therefore it seems reasonable to allow

disjunctive resources to be assigned consecutively to two lines in one microperiod. As shown before,
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multi-stage simultaneous lotsizing and scheduling models already allow several states per microperiod.

Therefore, for example Seeanner and Meyr (2013) propose constraints which assure the synchroniza-

tion between different production stages within the same microperiod. Such constraints would also be

necessary for the synchronization of secondary resources within a microperiod. To give an example

of how this concept could be applied, consider two production lines and a worker who is responsible

for changeovers on both lines. Both lines should be set up in microperiod 1. Therefore, a constraint is

necessary which assures that on one of both lines the previous setup state is conserved until the setup

on the other line is finished. I.e., the restriction must assure that the microperiod is long enough to

subsequently perform both setups. Of course, this approach has to be worked out in detail to consider

all types of resources and all concerned states.

Moreover, it is necessary to do further numerical tests using different and bigger instances. Despite

the aforementioned approach of reducing microperiods and therefore variables, it will be necessary to

develop heuristics which are capable of solving the problem for test instances of practical relevance.

Since the decomposition heuristics of Chapter 4 have only been tested using two instances, it is

necessary to do further extensive numerical tests. Particularly, since, for test instance J72, the new

heuristics showed similar performance results compared to previous heuristics. In this case, it seems

worthwhile to adapt instance J72, e.g., in terms of the given capacities, the minimum lotsizes or the

setup costs and times. This will help to identify if this instance has a particular characteristic which has

led to low objective deviations for all tested heuristics and has led to the result that Aggr-P(TA-agg4)

has not performed best like it was the case for test instance J51. The insights of the further numerical

tests will help to improve the solution approach.

The heuristics of Chapter 4 still have high percentages of lost sales (see Table 4.4). I.e., the approach

of reducing capacities in the second iteration of the decomposition heuristic does not perform well

in every case. As already proposed by Meyr and Mann (2013, p. 730), it could help to increase

the production coefficients of those setup families showing lost sales. This approach reserves time

which only can be used in the single-line problems specifically for the products of the setup family

which has had lost sales in the previous iteration. However, it could lead to feasibility problems in

the aggregated problem, since more production time is needed than before. To counteract this, time-

dependent production coefficients (see Meyr and Mann 2013, p. 723) will be useful. In this case, it is

possible to increase the production coefficients only for setup families and macroperiods which have

had lost sales in the previous iteration of the decomposition heuristic.
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