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GENERAL INTRODUCTION

GENERAL INTRODUCTION

In dairy cattle breeding, daughter records are .uUBedause of the widespread use of artificial
insemination, the accuracy of sire breeding valisebigh. Often, daughters of a sire are
milked in a wide range of environments, which raiske question of the importance of
genotype-by-environment interaction (GxE). This meahat genotypes respond different to
changes of the environment. For GXE, some studledmodin et al., 2002; Koénig et al.,
2005; Strandberg et al., 2009) already exist. TolystGXE, reaction norms are used if the
distribution of the environment is continuous. Tih&ercept of a reaction norm shows the
level of general production (GP) and the slope shtive environmental sensitivity (ES) (de
Jong, 1995; Lynch and Walsh, 1998; James, 2009)amAgnvironmental descriptor, mean
performance of all animals has frequently been {saches, 2009). In dairy cattle, average
herd production level is a common environmentatdpsr (Kolmodin et al., 2002; Calus et
al., 2002; Lillehammer et al., 2009).

A problem in dairy cattle is that the cows are veepsitive. Especially, when they are fed at a
high level, they are very susceptible and reducelymstion or show diseases. The aim of this
thesis was to identify SNPs which influence envinemtal sensitivity. Special attention was

given to DGAT1 K232A, which is a major gene infleerg milk yield and composition.

Putative interaction effects between DGAT1 K232Atation and a polygenic term (other
gene) were investigated amapter one This was done for milk yield, fat yield, proteyreld,
fat percentage and protein percentage in the GeHoéstein dairy cattle population. For this,
we used mixed models and the test for interactaied on the comparison of polygenic
variance components depending on sire’s genotyp&#tTl K232A. Significant interaction

effect were found for milk fat and protein perceyga

Reaction norm random regression sire models wezé imsthesecond chapterto study GXE

in the German Holstein dairy cattle population. #rd 2300 sires with at least 50 daughters
per sire and at least seven first-lactation tegtatservations per daughter were analyzed. As
observations, corrected test day records for méldyfat yield, protein yield and somatic cell
score (SCS) were used. As environmental descripte@sused herd test day solutions (htds)
for milk traits, milk energy yield or SCS. Secondler orthogonal polynomial regressions
were applied to the sire effects. The results slsgymificant slope variances of reaction

norms, which caused a non-constant additive geneti@ance across the environmental
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GENERAL INTRODUCTION

ranges considered and point to the presence of &kets. When the environment is
improved, we found an increased additive genetitamae that is higher (lower) for milk
traits (SCS). Because non-genetic variance incsessan improved environment, this was
also influenced by pure scaling effects. The hiillitg was less influenced by the
environment. Very little re-ranking of the siresut be found for the environmental range

considered.

The aim ofchapter three was to conduct a large scale genome-wide assmtiatialysis to
identify SNPs that affect GP and ES of milk traitshe German Holstein population. Around
13 million daughter records were used in a linesaction norm model to calculate sire
estimates for GP and ES. The daughters were frd@i 2Res, which were genotyped with a
54k chip. As an environmental descriptor, we usestage milk energy yield performance of
herds when the daughter observations were recohdedgenome-wide association analysis,
sire estimates of 1797 sires were used. With hegnandependent validation set (500 sires
of the same population), we confirmed significaMPS. To separate GXE scaling and other
GxE effects, a log-transformation of the observatiovas performed. Results from the
reaction norm model showed GxE effects and sonmfsignt SNPs were validated for GP
and ES. Many SNPs which affected GP also affectdviZe showed that ES of milk traits is
a typical quantitative trait, which is geneticalgntrolled by many genes with small effects
and few genes with a larger effect. The log-trams&iion of the observations reduced the

number of validated SNPs for ES, suggesting gdrasbt only caused scaling GxE effects.

Average herd milk production level is frequentlyedsas an environmental descriptor, which
is mainly influenced by level of feeding or feedireggime. Another important environmental
factor is the level of udder health and hygiene,vibich the average herd level of somatic
cell count might be a descriptor. ¢thapter four, we conducted a genome-wide association
analysis to identify SNPs that affect intercept atupe of milk protein yield reaction norms,
when the average htds for SCS was used as envirtalmgescriptor. Again around 12
million daughter records were used to calculate sstimates for intercept and slope with a
reaction norm model. The sires were genotyped #k SNPs as well. Discovery and
validation of SNPs were similar as in chapter thi2€AT1 K232A is a known major gene
which influences protein yield; it was includedtive statistical model as a covariable. Some
SNPs could be detected and validated. Most of tlmflaence intercept and slope. In

comparison to chapter three, many of the detecidsSwvhich affect slope were the same,
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although the two environmental descriptors (avetege milk production level and SCS) had

a low correlation.

Calus, M. P. L., A. F. Groen, G. de Jong. 2002. dbgre x environment interaction for
protein yield in dutch dairy cattle as quantifieg different models. J. Dairy Sci. 85
3115 - 3123.

de Jong, G. 1995. Phenotypic plasticity as a prodliselection in a variable environment.
Am. Nat. 145: 493 — 512.

James, J. W. 2009. Genotype by environment inferaat farm animals, pp. 151 — 167 in
Adaptation and Fitness in Animal Populations. Etiohary and Breeding Perspectives
on Genetic Resource Management edited by J. vawdef, H.-U. Graser, R. Frankham,
C. Gondro, Springer Science+Business Media B. V.

Konig, S., G. Dietl, I. Raeder, H. H. Swalve. 200Genetic relationships for dairy
performance between large-scale and small-scate ¢anditions. J. Dairy Sci. 88: 4087
— 4096.

Kolmodin, R., E. Strandberg, P. Madsen, J. JensénJorjani. 2002 . Genotype by
environment interaction in nordic dairy cattle seatdusing reaction norms. Acta Agric.
Scand. Sect. A Anim Sci. 52: 11 — 24.

Lillehammer, M., J. @degard, T. H. E. Meuwissen020Reducing the bias of estimates of
genotype by environment interactions in randomeggon sire models. Gen. Sel. Evol.
41:30. d0i:10.1186/1297-9686-41-30.

Lynch, M., B. Walsh. 1998. Genetics and Analysifofantitative Traits. Sinauer Associates
Inc Publishers, Sunderland, MA, USA.

Strandberg, E., S. Brotherstone, E. Wall, M. P.f€of2009. Genotype by environment
interaction for first-lactation female fertilitydits in UK dairy cattle. J. Dairy Sci. 92:
3437 — 3446.



CHAPTER ONE

CHAPTER ONE

Short communication: Evidence for a major gene by plygene interaction for

milk production traits in German Holstein dairy cattle

MELANIE STREIT,* NADINE NEUGEBAUER,* THEO H. E. MEWISSEN!
and JORN BENNEWITZ*

“Institute of Animal Husbandry and Breeding,
University of Hohenheim, Garbenstral3e 17,
70599 Stuttgart, Germany
"Department of Animal and Aquacultural Sciences,
Norwegian University of Life Sciences,
Box 1432, As, Norway

published in:
Journal of Dairy Science (2011) 94: 1597 — 1600
doi: 10.3168/jds.2010-3834

6



CHAPTER ONE

SHORT COMMUNICATION: Major gene by polygene intetia in dairy cattle

The present study investigated putative interacétiacts between the major geBD&ATL
K232A and the polygenic component (i.e. all other gemeseptDGAT1 K232A for milk
production traits in the German Holstein dairy leafiopulation. A mixed model approach
was used. Significant interaction effects were tbdar milk fat percentage and protein

percentage.
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CHAPTER ONE

Abstract

The present study investigated putative interactdiects between th®GAT1 K232A
mutation and the polygenic term (i.e. all genesepkxDGAT]) for five milk production traits

in the German Holstein dairy cattle population. dtixmodels were used, and the test for
interaction relied on the comparison of polygenariance components depending on the
sire’s genotypes dDGAT1 K232A Substitution effects were highly significant falf traits.
Significant interaction effects were found for miét and protein percentage.

Key words: DGAT], epistatsis, dairy cattle

The genetic variation of quantitative traits is dagyolymorphic loci with additive and non-
additive genetic effects (Falconer and Mackay 198@n-additive genetic effects comprise
usually interactions between alleles at the sanme (dominance) or at different loci
(epistasis). In outbred populations, most of theegje variance is additive, which is mainly
due to the U-shaped distribution of gene frequefitiit et al. 2008). On the gene or QTL
level, epistatic effects were frequently found xperimental crosses (e.g. Carlborg and Haley
2004). They occasionally explained a substantiapprtion of the genetic variance, which is
also due to the intermediate gene frequencies @sethcrosses. In outbred livestock
populations (e.g. dairy cattle), however, almost attempts were made to map epistatic
effects between QTL, which is most likely due tstneted experimental power. However,
recently Hinrichs et al. (2010) reported interacteffects between a major gene (D&AT1L
K232A and QTL on BTA5 and BTA14 for fat and protein @amtage in a dairy cattle
population. TheDGAT1gene is known to affect milk production traits iairy cattle (Grisart

et al. 2002, Winter et al. 2002DGAT1 encodes an enzyme that catalyzes the reaction of
diacylglycerol and fatty acyl-CoA to form triglydgdes. Both studies found a non-
conservative substitution of lysine by alanin&k282A in DGAT1 caused by an
adenine/adenine to guanine/cytosine dinucleotidistgution. DGAT1 K232Aeffects in the
German Holstein dairy cattle population were estadaby Thaller et al. (2003) and
Bennewitz et al. (2004). Both authors found a gratiele substitution effect for milk
production traits. The lysine variant increased yigid and percentage as well as protein

percentage, the alanine variant increased milkpaotin yield.

The aim of the present study was to investigaeraction effects between tBE&AT1 K232A
mutation and the polygenic component (i.e. all otgenes) for milk production traits in

German Holsteins.
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The pedigree contained 1153 progeny-tested B@AT1 K232A genotyped German
Holsteins sires. Data from the first lactation fiee following five traits were considered: milk
yield, fat yield, protein yield, fat percentage apubtein percentage. For the yield traits,
daughter vyield deviations (DYD) were used, whichrevenultiplied by two. For the
percentage traits no DYD were available; theresgmated breeding values (EBV) were
used. The EBV were not de-regressed, because tlogyed a high reliability. The DYD and
EBV were taken from the routine national sire eatibn from 2009. For a summary statistic

see Table 1.

Table 1. Summary statistics of the dependent variables h53).

Trait unit mean sd min max
Fat (kg) DYD 4,71 20.08 -56.19 79.05
Fat (%) EBV -0.01 0.27 -0.84 0.99
Protein (kg) DYD 4.01 16.76 -47.77 54.68
Protein (%) EBV -0.01 0.11 -0.39 0.43
Milk (kg) DYD 156.72 574.78 -1571.88 2192.88

Two statistical models were applied. The first orees

y=Xb+Zu+e, (1)
with y as the vector of phenotypdsjs a 2 x 1 vector containing a fixed mean effed a
fixed regression coefficient on the number of Igsialleles (0, 1 or 2) of the animals at
DGAT1 K232A The regression coefficient ib represents the average allele substitution
effect. X is the corresponding incidence matnxis the vector of polygenic effects withas

the corresponding design matrix, aads a vector of residuals. The expectationyois

E(y)=Xb and the variance isvar(y) =ZAs’Z'+l¢2, with A being the numerator
relationship matrix among the animals; is the polygenic variancé,is an identity matrix

and g’ the residual variance.

In the second model, the polygenic term (i.e. teeegic term corrected for the effect of
DGAT1 K232Amutation,u in model (1)) was split into a polygametic term gdmetes
associated with the lysinel() and with the alanineu(, ) variant aDGAT1 K232AFor sires
being homozygous for lysine (alanine) RGAT1 K232Athe polygametic lysine (alanine)
variant affected the phenotype two times, for letggous sires each polygametic term
affected the phenotype one time. Subsequentlymitael was

y=Xb+Zu, +Z,u, +e, (2)



CHAPTER ONE

with Z, and Z, are design matrices linking the phenotypes to treesponding polygametic

effects.Z, (Z,) contains a 0, 1 or 2, if the sire carries 0, 2 @opies of the lysine (alanine)
alleles atDGAT1 K232A The remaining terms are as defined above. Theaapon ofy is

Ac Ac’ Z,

U Ua Ua

As: Ao Z
again E(y) = Xb, and the variance isx/ar(y):[Z1 Zz] [ . “L’”A} { 1}“062’

where UfL is the lysine polygametic variance,jA is the alanine polygametic variance and

0, Is the covariance between both. Parameters of buitels were estimated using

ASReml (Gilmour et al.,, 2006). The REML log-likelindoof model (1) and (2) was

calculated and was denotedlagl,, andlogl,,, respectively.

For the test of putativ®GAT1 K232Aby polygene interaction effects, the null hypoibes

was H,:o0; =0, =0,, - The alternative hypothesis wasH,:0o; # o or

0.2_

u

ajA #0, .- Under the assumption of the null hypothesis, thitee variance

components in model (2) are the same ajd+ o, +2*o,,, equalsg; from model (1). In

LUA
this case the expectations and variances of thergditsons are the same for each individual,

and, hence, both models are equivalent. Therefoedpgl , is the log-likelihood under the
null hypothesis. This leads to the restricted likeid ratio test with
RLRT=2(logl ., —logl,;). With the assumption of between-subject indepecelerthe
asymptotic distribution of thRLRTunder the null hypothesis follows a mixture of two -

distributions with one and two degrees of freeddself( and Liang 1987). Because the

animals are related and hence the assumption afebatsubject independence is not

fulfilled, we used a conservative test withya-distribution with two degrees of freedom. The
resulting comparisonwise error probability was dedas p. . Five tests were conducted, for
each trait one. The correction for the resultingtipld testing was done using the Bonferroni

correction, resulting in experimentwise error piaibes, p, =1- (1- p,)°.

10
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Table 2. AverageDGAT1 K232Alysine allele substitution effectr() and polygenic variance

component §?), results from model with one polygenic effeat (imodel (1)).

Trait a a;

Fat (kg) 7.668 (0.857) 305.207 (39.844)
Fat (%) 0.281 (0.009) 416.567 (42.205)
Protein (kg) -6.508 (0.714) 209.009 (22.843)
Protein (%) 0.059 (0.005) 114.790 (9.250)
Milk (kg) -302 (23.741) 256367 (29672)

! Multiplied by 1000

Standard errors are given in parenthesis

The results of model (1) are presented in TablEh2. average substitution effect of the lysine
variant is positive for fat yield and the two pertage traits and negative for protein and milk
yield. These estimates are in agreement with Thatlal. (2003) and Bennewitz et al. (2004)
and also with those estimated in the French Holsbeeed (Gautier et al. 2007). Allele
substitution effects were all highly significapt<€ 0.001). Results of model (2) and of the test
for interaction effects are shown in Table 3. Expentwise significant interaction effects

were found for fat percentage < 0.05). Additional comparisonwise interaction etfewere
found for protein percentagep( < 0.05). These results agree with the interacétiacts

detected by Hinrichs et al. (2010). An additionadak, but not significant, interaction was
found for fat yield. For these traits, the polygaimalanine variance is between 37% and 41%
higher compared to the lysine variant (Table 3)néée theDGAT1 K232Alysine variant
increased the mean of the phenotypes (Table 2)ldénreased the polygametic variance. The
correlation betweeru, and u, was below one for fat yield and especially fatceatage.
This is not the case for protein percentafe: (099), which implies that the improved fit of
model (2) is due to heterogeneous variances,ui,e= c[lu, (where ¢ = 084, not shown

elsewhere). One possible explanation for the dedeahteraction effects might be the
relationship between the enzyme activity and amotfiend-product (i.e. the amount of milk,
fat yield, fat percentage, protein yield and pnofeercentage]DGAT 1catalyses the final step
of the triglyceride synthesis. Grisart et al. (20@dund a higher enzyme activity level in
producing triglycerides for th®GAT1 K232Alysine variant. Kacser and Burns (1973)
developed a metabolic control theory, which modkelee phenotype as an end-product of
enzyme activity. The enzyme activity causes a flasough metabolic pathways with a
hyperbolic relationship. At a low flux level, anfimtesimal change of the enzyme activity

results in a comparable larger change of the fluxd hence of the enzyme end-product (the

11
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milk traits in our study). The opposite holds,hétflux level is already on a high level. Kacser
and Burns (1981) used this theory to derive somaclasions for the dominance
phenomenon, but it might also be valid in this dasexplain the detected interaction effects.
The limiting factor for a higher triglyceride symi$is might be the limited availability of the
two substrates diacylglycerol and fatty acyl-CoAentforming triglycerides. If animals carry
the favourable lysine alleles, the effect of addi&il favourable alleles at other genes might be
reduced, because they have to compete for theubsirates.

Intuitively one might argue that it is not possiblgh these data to test for interaction effects.
Genotypes and phenotypes are not recorded withen same generation and gene
combinations break down during meiosis. Howeveeg, DIBAT1 K232Afrequencies among
daughters o0DGAT1 K232Ahomozygous sires ardGAT1 K232Aheterozygous sires differ
by one quarter, and among daughters of altern&8i8AT1 K232Ahomozygous sires by one
half. These daughters largely determine the DYD BBY¥ of the sires used in the study.
With respect to this, it would have been betteestimate the DYD and EBV using a sire
model and ignoring the relationships between tressas done by Seidenspinner et al. (2009).
However, this was not possible in this study. Iedity, interaction between genes can be
classified in additive x additive, additive x dorante etc. interactions (Falconer and Mackay
1996). The identified interaction terms are mokellf due to an interaction between the
additiveDGAT1 K232Aeffect and the additive polygenic effect, becahsephenotypes used
(DYD and EBV) should contain a part of the additivedditive interaction (Falconer and
Mackay 1996, p. 154). It may be noted that it i$ possible with this data set to detect
interaction effects withibGAT1 K232A(dominance), because the daughters only inhexit th

additive effect of the sires, but not their domicaeffect.

Theoretically, the significant interactions could bsed in breeding schemes. For each sire,
three polygenic breeding values can be calculatlhending on theDGAT1 K232A

genotypes of the sample, where the sire will beduse a homozygous lysine (alanine)
sample, the polygenic EBV would 12¢ G, (2*U,) and in heterozygous sample it would be
U, +d,. However, since thBGAT1 K232Agenotypes of the samples are often unknown and

usually heterogeneous, this is not a practical @ggr. Additionally, rank correlations
between these three polygenic EBVs were always eldo®5 (data not shown), suggesting

very little re-ranking of the sires.

12
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Table 3. Polygametic variance and covariance componezﬁlfLs, 65A6'ULUA), correlation between the two polygametic term$ (results from the

model with two polygametic effects, i.e. model (Bhd restricted likelihood ratio test statistiBd. RT) with comparisonwise and experimentwise

error probability . andpe, respectively).

A2 ~2 5

A

Trait op o; O, F RLRT R Pe

Fat (kg) 70.14 (10.60) 95.81 (14.07) 74.23 (I1.3 0.906  5.24 0.073  0.315
Fat (%) 94.4>  (12.01) 133.00  (16.80) 87.06  (14.51) 0.777 10.94 0.004  0.019
Protein (kg) 51.24 (2.14) 57.09 (2.38) 54.05 2%2. 0.999 n.s. n.s. n.s.
Protein (%) 24.9% (2.52) 35.28 (3.76) 29.2% (2.86) 0.988 6.98 0.031 0.146
Milk (kg) 64460 (2687) 63770 (2658) 60300 (2513) 0.941 n.s. n.s. n.s.

! Multiplied by 1000

Standard errors are given in parenthesis

13
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CHAPTER TWO

Summary

Reaction norm random regression sire models wezd tes study genotype by environment
interactions (GxE) in the German Holstein dairytlegpopulation. Around 2300 sires with a
minimum of 50 daughters per sire and seven fikthteon test day observations per daughter
were analysed. Corrected test day records for yidld, protein yield, fat yield and somatic
cell score were used. Herd test day solutions fitk traits, milk energy yield or somatic cell
score were used as environmental descriptors. 8eander orthogonal polynomial
regressions were applied to the sire effects. €balts revealed significant slope variances of
the reaction norms, which caused a non-constanitiagldgenetic variance across the
environmental ranges considered. This pointed ¢éoptesence of minor GxE effects. The
additive genetic variance increased when the enmient improved, i.e. higher (lower) herd
test day solutions for milk traits (somatic celbsx). This was also influenced by pure scaling
effects, because the non-genetic variance increaseth improved environment and the
heritability was less influenced by the environmeérite GXE effects caused very little re-
ranking of the sires for the environmental rangesodered in this study.

Key words: environmental sensitivity, random regies, sire model

Introduction

Genotype by environment interaction (GXE) referslifterences in response of genotypes to
changes in the environment (Lynch and Walsh, 19881xE effects are not taken into
account, estimated breeding values (EBVs) may heebi and selection response reduced.
Additionally, knowledge about existing GxE effecan be used in breeding schemes, e.g. to
breed robust animals (Knap, 2005). Consequenthg @ffects have received considerable
attention in dairy cattle breeding (see Konig et(2005), Kolmodin et al. (2002), Kolmodin
et al. (2004) and references therein). Dairy famairenments in Germany vary in several
ways, e.g. north vs. south, west vs. east, smallavge farms or flat vs. mountainous areas.
Konig et al. (2005) investigated putative GXE effein this population. They defined
geographical region and herd size as distinct enuiients and applied a multi-trait approach.
Genetic correlations between eastern and westermdby were between 0.9 and 0.95 for
protein yield, indicating only minor GXE re-rankirgffects. Larger effects were reported

when herd size was considered as an environmesdgatigtor.
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The use of a multi-trait approach is a logical ckoif the environment can be regarded as a
distinct variable. The use of reaction norms, havewmight be more appropriate if the
environment changes gradually and can be measuredcontinuous scale. This is because
fewer parameters have to be estimated and there ieed to cluster individuals in different
environmental classes. A reaction norm describegpénformance of a genotype as a function
of a gradually changing environment (Lynch and Walk998). The first derivative of the
reaction norm function, the slope, is the environtak sensitivity. A non-zero genetic
variation of the slope indicates the presence dE @iects. In dairy cattle breeding, analysis
of GXE effects with reaction norm models was agmply several authors (e.g. Fikse et al.
(2003), Hayes et al. (2003), Calus et al. (2002)Imodin et al. (2002), Strandberg et al.
(2009), or Lillehammer et al. (2009)). In thosedsts, the average herd production level
served as a continuous environmental descriptotfadeaction norms were estimated using
random regression models. Schaeffer (2004) adisegply not only linear but also higher
order orthogonal polynomial regression models ireGxudies. Calus and Veerkamp (2003)
and Lillehammer et al. (2009) pointed out the imt@oce of modelling heterogeneous residual
variances, because otherwise matter of scales fLgnd Walsh 1998) might be interpreted as
GXE effects.

The aim of the present study was to analyse GxEcefffor milk production traits and
somatic cell score in German Holstein dairy cattising non-linear reaction norms

implemented in random regression sire models.

htds - milk energy htds - SCS
| | | | | | | | |
50 60 70 80 90 2 3 4
environment environment

Figure 1: Histogram of the environmental descriptor milk igyeyield and SCS.
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Materials and Methods

Data and data editing

First lactation test day records of cows were takem the routine animal recording scheme
for milk yield, fat yield, protein yield and somatcell score (SCS). The observations were
corrected for the fixed effects herd test day, daysilk, age at calving, calving season and
the random permanent environment effect. Theseectoon factors were obtained from the
routine animal evaluation, which is an animal ®@sy model. Only daughters with at least
seven observations per year and with a variationthef corresponding environmental
descriptor above a certain threshold level weresiclemed. Observations in extreme and rare
environments were discarded (around two percernthefobservations). These restrictions
ensured that there were enough observations amtivarof the environmental descriptor to
apply reaction norms within individual cows and tthihe results were not affected by
(unreliable) extreme and rare environments. Thal todmber of daughters was around 1.3
million and the number of observations was arouanillion. The number of daughters per
bull ranged from 50 to 74842 and the number ofdowks around 2300, see Table 1. The sires
were born between 1983 and 2003.

Table 1: Summary statistics of the herd test day solutifrids) used as environmental

descriptors and number of sires and daughters.

environmental unit n vl sd min max e Ndaughter
descriptor

htds — protein kg 11927970 0.758.101 0.272 1.675 2279 1284531
htds — fat kg 11927970 0.93®.111 0.295 1.583 2279 1284531
htds — milk kg 11927970 22.188.742 8.305 35.859 2279 1284531
htds — energy MJ 11927970 71.6318.364 45.000 95.999 2279 1284531

in milk
htds — SCS - 12056462 2.588.475 1.398 4.052 2291 1300833

The environmental descriptors were herd test déytieas (td9g for milk, protein and fat
yield (all in kg), and SCS. These were obtainednfroutine animal evaluation (see Table 1
for summary statistics). An initial comparison bétthree milk trait environmental descriptors
revealed a high correlation between them (TableF2ythermore, it widely known that
different levels of feeding or housing conditioesult in different milk production levels. It is
desirable to have only one environmental descriphgtead of three highly correlated
descriptors that reflect these kinds of environrakfurces. Therefore, we calculated titds
for milk energy yield (in MJ) from thatds of the three milk yields by a linear combination
(following Nostitz and Mielke, 1995) as
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energyyield = 0802* milk yield + 384 * fatyield + 236 * proteinyield.
The equation assumes constant lactose conter® &b 4lt is known that lactose content is not

constant, but lactose content was not available.

The htdswere scaled between -1 and 1 following Calus .e(28102). The following random

regression sire model was applied to all combimatiof traits and environmental descriptors:
u \
Cyy = 4 +Db Ohtds +b, Ohtds; + Zsjm *Bn t Zdijm * Ban T €
m=0 m=0

wherecy are the corrected yields of daughtesf sirej at herd test dak, p is the overall
mean htds(htds) is the herd test day solution at herd testldéyerd test day solution at herd

test dayk squared) with the fixed regression coefficiemtéb,), P, are the covariables based

on Legendre polynomials and related to the stamskdltitds at test dak of orderm, sis the
random sire effect of sireof orderm, d the random daughter effect of daughtef sirej, u
andv are the highest order of the polynomial regressiamde is the random residual. The
variance of the sire regression effects is (fer1, index is suppressed for simplicity)
Va{sﬂ = ADS=AD rﬁz" Jﬂ,

Sl 0-5051 0-51
whereA is the numerator relationship matrix aBds the covariance matrix of the random
regression coefficients for sire effects. The vas@structure of the regression coefficients for

daughter effects is (for= 1, indices andj are suppressed)

d, 05 Tag
Varl °|=10D=10 o,
d, 044,94,

where | is the identity matrix and is the covariance matrix of the random regression
coefficients for daughter effects. For higher osd@r > 1, v > 1) the terms are expanded
straightforwardly. In order to model heterogenemssdual variance across the environments
the observations were ordered according to the@mwiental descriptor and grouped into ten
classes of equal size based on the environmeniia¢s/aResidual variances were estimated

for each class and residual covariance was asstonael zero. Henceyar(e) = X KX, with
X being a known design matrix that assigns eachreéien to an environmental clagsand

K = Diag{c;} (Lillehammer et al. 2009).
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Table 2: Correlations between herd test day solutions Jf@dgironmental descriptors.

fat yield milk yield SCS milk energy yield
protein yield 0.846 0.956 -0.176 0.955
fat yield 0.839 -0.162 0.961
milk yield -0.197 0.949
SCS -0.182

Random regression models were solved using ASReén{GImour et al., 2009). A critical
guestion was the choice of the appropriate orddh@frandom regression models, i.e.uof
andv. For the uncorrelated daughter effects this way wetearlyv = 1 for all trait and
environment combinations except for both SCS ag &ad as environment (see results
section). For SCS as trait and environment 0 was used. The choice of the appropriate
order of the random sire effect was made by apglgimestricted likelihood ratio test, because
a model of a lower order is nested within a model bigher order for a given Additionally
this was done by visual inspection of the eigereslaf the estimated covariance matrix, as

suggested by Kirkpatrick et al. (1990).

Once variance components were calculated, severadtig parameters were estimated for a
defined environmental valuge to evaluate possible GXE effects. Heritabilityaaiinction of
E was estimated as:
~2
he|E=——d
~2 ~2 ~2 !
JqE + Jd|E + Jqu

where ajE (Ule) is the variance of the sire (daughter) as a fancof the environment,
O =4* 04 is the additive genetic variance, amtf. is the residual variance of the
environmental class that included the environmentdlie E. The oi. was calculated as
O =L|E* S*L|E' and theo?, aso?. =L|E*D*L|E'. The vectorL |E contains the
Legendre polynomials fdE. The genetic correlation between different envirental values
was calculated from the entries of the covarian@rimn G of the additive effects at the
environmental values. The matrix G was calculated a
G=4* 03D,

with @ being a matrix with polynomial coefficients fodafined valueE on each row. These
calculations are based on Kirkpatrick et al. (198§ are nicely described in Schaeffer
(2010).EBME of a sire was calculated as

EBV|E=L|E'*S,
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with § being a vector of ordar containing the estimated random regression coeffis of
the sire. Putative GXE effects were evaluated bgstigating the change in additive genetic
variance alongge, the genetic correlation and tE&BV|E rank correlation between several

environmental values.

Table 3: Model numbers with corresponding trait names andrenmental descriptors.

model number trait environmental descriptor

1 protein htds — milk energy yield

2 fat htds — milk energy yield

3 milk htds — milk energy yield

4 protein htds — SCS

5 fat htds — SCS

6 milk htds — SCS

7 SCS htds — SCS

Results

The restricted likelihood ratio test showed thasexond order sire effecu (= 2) was
significantly superior to a first order ong< 0.001 in all cases). Higher order sire effeats (
3) were significant for some traits and environmserdut the variance component of the
higher order level was very small and convergenas very slow (not shown). Additionally,
the last eigenvalues of the covariance meigr u = 3 were very small compared to those of
all other models (not shown), indicating that adiaidnal order explains only a small amount
of the observed phenotypic variation. Thereforseeond order sire effeat € 2) was used in
all models. For the uncorrelated daughter effeet,1 in nearly all cases, except for the model
that used SCS as trait and as environment, asds#teve. Higher order models did not
converge and a lower order £ 0) resulted in a substantially lower restricteg-likelihood

value (not shown).

The results of the models using the milk traits #melhtds of the corresponding milk traits
were almost the same as when usinghtus of the milk energy yield as an environmental
descriptor. This was expected due to the high tairom between the environmental
descriptors (Table 2). Therefore, only the resaftthe seven models with milk energy yield
or SCS as environment (see Table 3) are reportdte distribution of these two
environmental descriptors is presented in FigureBbth are approximately normally

distributed, but with some skewness.
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Table 4: Sire variance components of the random regresanatyses. Standard errors are

shown in parenthesis.

model number Gl gl g2 ** O ™ O, ™ O, ™™
1 1822.55 52.571 1.572 180.041 7.549 6.644
(56.2) (3.550)  (0.337) (10.698)  (4.241)  (0.999)
> 3132 63.487 1.223 326.907 2.355 3.843
(96.966)  (4.731)  (0.379) (17.472)  (7.598)  (1.294)
3 2.18 0.056 0.02 0.245 0.005 0.006
(0.067)  (0.004) (<0.001)  (0.012)  (0.005)  (0.001)
4 1968.490 5.620 0.78 <-0.001 0.211 -0.637
(60.439)  (0.914)  (0.162) (<0.001)  (3.512)  (0.308)
5 3293.2 19.694 0.77 -134.035 -13.058 -1.567
(101.548)  (2.293)  (0.297) (13.179)  (6.983)  (0.693)
6 2.359 0.007 <0.001 -0.068 -0.001 -0.001
(0.072)  (0.001) (<0.001)  (0.007)  (0.003) (<0.001)
7 0.099 0.001 <0.001 0.003 -0.001 <-0.001
(0.003) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

" The trait and environmental descriptor of the med@eé given in Table 3.

** g2 is the sire variance of the intercept; is the sire variance of the slope, afifl is the

second order sire variance.

A

*kk o 0"-

s+ Jss, @nd 6%52 are the covariances between intercept, slope amddbond order

sire variance

The estimated variance components for the sirectsffare shown in Table 4 and for the
daughter effect in Table 5. The significance of thgher order sire effects point to the
presence of GXE effects for all combinations oitdrand environments. The linear sire effect
was much more important than the second order teffeexplaining the variation of the

observations. The additive genetic variance as rection of the environmental value,
J;E =4* UjE, is shown in Figure 2. For the milk traits and thi#k energy as environment
this variance was increasing substantially withrammease in the environment (e.g. from 3 to
6.6 kd for milk yield and from 280 to 530°dor fat yield). The opposite was observed for fat
and milk yield and SCS as the environment. Thetaddgenetic variance of protein yield
was almost constant over the range of SCS. Fort8E€&dditive genetic variance increased

slightly with an increase in SCS. A similar pattezould be observed for the daughter

varianceale (Figure 3) when using milk energy as environmeéit. SCS there seems to be

the lowest daughter variance for intermediate S&8l$ (Figure 3). Note that for both, SCS

as trait and environment,= 0, hence, the variance was not affected by tre@@ment.
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Table 5: Daughter variance components of the random reigressalyses. Standard errors

are shown in parenthesis.

model number 550 ok ajl *x a‘—dodl ok
1 3212.67 544.457 645.489
(6.464) (7.973) (4.329)
> 5703.13 864.755 991.44
(11.892) (15.065) (8.041)
3 4.41 0.913 0.871
(0.008) (0.008) (0.005)
4 3814.31 163.842 <0.001
(6.741) (7.035) (<0.001)
5 6502.85 505.530 -204.036
(12.170) (14.031) (8.616)
6 5.271 0.335 <0.001
(<0.001) (<0.001) (<0.001)
7 0.01 _ _
(<0.001)

" The trait and environmental descriptor of the medeé given in Table 3.

** &jo is the variance of the intercept of the daughﬁaj[, is the variance of the slope of the

daughter andi, , is the covariance between intercept and slope

The residual variance components;_, are shown in Table 6. The residual variance was

clearly heterogeneous and increased with enviroteheralues for those models that used
milk energy as an environment. Due to the abrupnhgk of the residual variance across the

classes the trace of the heritability along theiremvwnental valuesh?| E , was not a smooth

plot, but was peaked at several points. Because theaks were an artefact of the somewhat
arbitrary choice of the ten environmental valudwytare not reported. The trace would
become smoother if the number of environmentalselasvas increased. But in general the
heritability is much less affected by the envirominas the additive genetic variance. The

heterogeneous residual variance was less obvi&GS 3 was the environment.

The genetic correlations of the traits at selepedentile of environments are shown in Table
7. They are generally high (>0.9) even for the textreme environments 0— 100"
guantile).EBVIE rank correlations were all above 0.95 (not shownjicating almost no re-

ranking.
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Table 6: Residual variance components within the orderetr@mmental classes.

environmental model number*

class** 1 2 3 4 5 6 7

1 5069.2 10161.7 3.948 6104.9 11928.2 4,497 0.585
2 5565.2 10921.2 4,182 6242.9 12094.7 4581 0.643
3 5906.9 11455.1 4355 6318.4 12256.1 4626 0.694
4 6154.6 11782.2 4,497 6381.4 12355.6 4661 0.728
5 6328.2 12079.4 4564 6348 12345 4.657 0.768
6 6520.6 12429.1 4.674 6377.1 12393.4 4.683 0.807
7 6676.5 12767.8 4,763 6332.1 12376.3 4.659 0.849
8 6865.7 13164.9 4902 6333.3 12365.3 4,669 0.901
9 7048.5 13705.2 5.036 6258.8 12344.3 4636 0.979
10 7388.4 14940.1 5.322 6005.3 12102.8 4,492 1.139

" The trait and environmental descriptor of the med@eé given in Table 3.

™ Class 1 (10) contains the lowest (highest) enviremtal values.

Table 7: Genetic correlation between selected percentitbeoenvironmental descriptor.

model number r, 0" — 100" percentile 45" — 95" percentile  §25" — 75" percentile

1 0.895 0.904 0.938
2 0.945 0.950 0.968
3 0.925 0.932 0.956
4 0.983 0.985 0.990
5 0.974 0.977 0.986
6 0.987 0.989 0.993
7 0.960 0.964 0.978

" The trait and environmental descriptor of the me@eé given in Table 3.

Discussion

The present study investigates GxE effects in Gerialsteins using non-linear reaction
norm models. A significant substantial slope vaz@mesulted in a varying additive genetic
variance as a function of the changing environnagk in a genetic correlation slightly lower
than one between a trait evaluated at differentrenmental values. This points to the
presence of minor GXE effects. In animal breedingz Gcaling and re-ranking effects are
usually distinguished. The reaction norm modelsidbdifferentiate between scaling and re-
ranking effects and therefore putative re-rankifigots were evaluated in this study by rank-
correlations between EBVs as a function of the mmment. The GxE effects did not result in
re-ranking of sires for the environmental rangesidered in this study.
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trait: protein trait: fat
environment: SCS environment: SCS
1.4 2.7 4 1.4 2.7 4
| | | |
§ 10000 § 10000
@ 9000 @ 9000
S 8000 G 8000
L 7000 S 7000
2 6000 2 6000
Q Qo
o 5000 D 5000
o o i
> 4000 > 4000
T 3000 T 3000
e] ©
T 2000 T 1 © 2000 T |
45 _ 70.5 96 45 _ 705 96
environment: milk energy environment: milk energy
trait: milk trait: SCS
environment: SCS environment: SCS
1.4 2.7 4 1.4 2.7 4
| | | |
g 9 L 0.50
C c
8 8 7] . |
= 7 = 0.40
> >
2 6 £ 0.30
) 5 Q
c o
g 4 L 020 ,.oeeemmmmmmm0
g 3 g
= = 0.10 T
o 2 ©
© ©
@®© 1 T ] © 0 T 1
45 . 705 96 45 _ 705 96
environment: milk energy environment: milk energy

Figure 2: Additive genetic variance as a function of theimmment (solid — milk energy

environment, dotted — SCS environment)

The reaction norm models applied can be seen adtenmative to the multi-trait approach

applied by Konig et al. (2005) to the same popatatirhey also found few re-ranking effects
for the environments they considered. In their gttite environment was regarded as a
distinct variable and the observations had to beuggd in the environmental classes;
individual differences within the classes were oomsidered. In contrast, the reaction norm
model uses the entire environmental variance. #icatiquestion is the appropriate choice of
the environmental descriptor. Several authors (dayes et al. (2003), Calus et al. (2002),
Kolmodin et al. (2002), Strandberg et al. (2009)Litlehammer et al. (2009)) showed that
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the production level of the herd can be a usefulrenmental descriptor. This is also a very
convenient choice, because reliable herd produdéwels can be obtained from the routine
sire evaluation. Following this, we used the averbhgrd production level for milk traits or
SCS, which were available as herd test day solsitisom the routine breeding value
evaluation. It is postulated that different levefsfeeding result in different milk production
levels. The milk energy production level might be most appropriate descriptor, because it
includes milk, fat and protein yields and shouldsttbe more sensitive to the feeding level

than one of the milk traits alone.

trait: protein trait; fat
environment: SCS environment; SCS
1.4 2.7 4 1.4 2.7 4
7000 ! | 7000 ! |
8 6000 - 8 6000
g g
= 5000 ‘= 5000
< a
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45 . 70.5 96 45 _ 705 96
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environment: SCS
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6 | |
()
(&
C
o
a
>
Jai
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Figure 3. Daughter variance as a function of the environmolid — milk energy
environment, dotted — SCS environment). Note tbattlie trait SCS the daughter variance

was constant over the range of the environment.
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For all milk traits and milk environmental descdp the correlation between sire intercept

and first order sire effect is positiver(, > 0, see Table 4), which is in agreement with

Kolmodin et al. (2002), Calus et al. (2002), and/étaet al. (2003). In Figure 4 the reaction
norms of a sample of 15 sires (five with a steepitp@, five with a steep negative and five
with a flat slope) are presented. The reaction goame almost linear, which underlines the
dominance of the first order sire effect in expilagnthe environmental sensitivity. For milk

traits as observation and milk energy yield as ramvnent it can be seen that in a ‘bad’
environment the differences are smaller comparea ‘gpod’ environment. Hence, it seems
more beneficial for dairy farmers with a ‘good’ émmwnment to invest in high quality semen

than for farmers in a ‘bad’ environment.

When using herd test day solutions for SCS as amammental descriptor, it is assumed that
the level of hygiene on the farms, especially tifedtion pressure on the udder, is reflected.
Thus, the decreased additive genetic variance flir and fat yield with an increase of SCS

environmental level (Figure 2) was expected. Thgatiee correlation between sire intercept
and first order sire effectd,, < O, see Table 4) indicates that bulls with a h{giw)

intercept generally have a negative (positive) sldfhis can also be visualized by looking at
the reaction norms of a sample of bulls (Figure B)e reaction norms are generally
somewhat flatter compared to the results obtaindgenwmilk traits are used as the
environmental descriptor (Figure 4). Hence, GxEeal are more obvious when using milk
energy yield as environmental descriptors. Thial$® underlined by the plots of the additive
genetic variance, where variance is less sendiiva changing SCS environment (Figure 2),
especially for protein yield. The low daughter aage at intermediate SCS-levels (Figure 3)
might be due to a non-linear relationship betweddS Sand udder health. In ‘bad’

environments, SCS may measure the ability of thve tmoavoid mastitis, which is heritable.

In ‘good’ environments, somatic cells may be coesd as background noise, which is also
heritable. In intermediate environments both amf@anded, resulting in a lower heritability.

This hypothesis is, however, highly speculative @ndot supported by the trace of the

additive genetic variance.
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Figure 4: Reaction norms of a sample of 15 sires with apspesitive, a steep negative, and a

flat slope, respectively, with milk energy yield esvironmental descriptor.

Lilehammer et al. (2009) showed that the applaatf a sire reaction norm model might
result in heterogeneous error variance, becausalyshree quarters of the additive genetic
variance becomes part of the error variance inr@ siodel. Hence, if the sire variance is
heterogeneous across the environmental range,rtbe \va@riance is heterogeneous, too. In
order to avoid this, we fitted uncorrelated daugkftéects, which captured a remaining part of
the additive genetic variance, and a part of thihimicow variance. Indeed, the daughter
variance component was generally quite substafifiable 5). However, this did not remove
all the heterogeneity of the residual variance acthss-wise residual variance estimation was
necessary (Table 6). This modelling of the residaaiance is in close agreement with the so-
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called IC-model of Lillehammer et al. (2009). Foisensible estimation of the heritability
across the environment it would have been bettbuild more classes than only ten (as done
in this study), because the estimated residuabmeeé component would better match the

environment under consideration.
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Figure 5: Reaction norms of a sample of 15 sires with gospesitive, a steep negative, and a
flat slope, respectively, with SCS as environmedéacriptor.

The increase of the residual variance with an amedn the environmental value and the less
sensitive heritability with respect to the enviramhindicates that a part of the increase in the
additive genetic variance is due to scaling effeaitso caused by GxE. It is, however, difficult

to quantify how much of the change is due to Gxteat$. This problem of interpreting
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reaction norm results was also described by Catds\&eerkamp (2003). The observations
used were corrected for some systematic effectsf@nthe effect of the herd test day. The
herd test day solutions were adjusted for hetereges variances. Hence, it can be assumed
that the GxE results are somewhat conservativeausecsome GxE effects were removed

during the adjustment of the herd variances.

Conclusions

The results of the reaction norm models point tolwdahe presence of minor GXE effects for
milk traits and SCS in the German Holstein popalatiThese did not result in re-ranking
effects of sires for the environmental range ingaeseéd. Modelling heterogeneous residual
variance played an important role in obtaining asbd genetic parameters.
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ABSTRACT

Genotype-by-environment interaction (GxE) has besdfely reported in dairy cattle. One
way to analyse GxE is to apply reaction norm madete first derivative of a reaction norm
is the environmental sensitivity (ES). In the pressgudy we conducted a large scale genome-
wide association analysis to identify SNPs thae@ffeneral production (GP) and ES of milk
traits in the German Holstein population. Sirereates for GP and for ES were calculated
from around 13 million daughter records, usingdinesaction norm models. The daughters
were offspring from 2,297 sires. Sires were genatiyfor 54k SNPs. The environment was
defined as the average milk energy yield perforreaocthe herds at the time where the
daughter observations were recorded. The sire asgnwere used as observations in a
genome-wide association analysis, using 1,797 .s8igmificant SNPs were confirmed in an
independent validation set (500 sires of the saopeljation). In order to separate GXE scaling
and other GxE effects, the observations were lagstfiormed in some analyses. Results from
the reaction norm model revealed GxE effects. Nooesignificant SNPs were validated for
both GP and ES. Many SNPs affecting GP also aE&ctWe showed that ES of milk traits is
a typical quantitative trait, genetically contralley many genes with small effects and few
genes with larger effect. A log-transformation leé bbservation resulted in a reduced number
of validated SNPs for ES, pointing to genes thatomy caused scaling GXE effects. The
results will have implications for breeding for ustness in dairy cattle.

INTRODUCTION

Breeding cattle for milking traits relies on theeusf daughter records for estimation of
breeding values of their sires. Because sires sed widely through artificial insemination,
their breeding values are estimable with a highueszy, which resulted in a substantial
genetic gain for milking traits over the last deeadDekkers and Hospital 2002). It is
expected, that this gain will be even further aeadked with the introduction of genomic
selection methods (Meuwissen et al. 2001, GoddaddHayes 2009). Often, frequently used
sires have daughters that are milked in a wideeariggnvironments. This raises the question
about the importance of genotype-by-environmerdratdtion (GXE). GXE refers to a variable
response of genotypes to changes in the environriviamty studies have been conducted to
qguantify putative GxE effects in dairy cattle (ekplmodin et al. 2002, Kéniget al. 2005,
Strandberget al. 2009 and references therein). The use of reactamms is a powerful
approach to study GxE effects if the environmemt lsa described as a continuous variable.

The slope of a reaction norm, i.e. the first deanxg is the environmental sensitivity (ES) and
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genetic variation of ES can be interpreted as #istence of GXE (de Jong 1995, Lynch and
Walsh 1998, James 2009). A frequently used envieortah descriptor is the mean
performance of all individuals in the environmedarhes 2009). It is assumed that various,
unknown or unobservable environmental forces affde mean performance. Mean
performance is therefore a descriptor that capttinese effects and weights them in a
‘natural’ way, i.e. by their effects on the perfance. In dairy cattle, reaction norm models
which include the average herd production leved @sntinuous environmental descriptor are
widely used to study GxE (Kolmodgt al.2002, Calust al. 2002, Fikseet al. 2003, Hayegt

al. 2003, Strandbergt al. 2009, Lillehammeet al.2009a, Streiet al. 2012). Reaction norms
are frequently fitted using random regression mi@els. The daughter’'s observations are
regressed on the corresponding herd solution. @@eession is nested within sires, yielding a
random sire estimate for the slope and for the¢ef@. The correlation between intercept and
slope depends on where the intersection point efréaction norm model is placed. It is
recommended to place it in the average environriart Tienderen and Koelewijn 1994,
Kolmodin and Bijma 2004). In this case the intetceptimate can be interpreted as an
estimate for average or general production (GP) thedslope as an estimate for ES for
individual sires. A positive correlation betweerentept and slope under this conditions was

frequently reported (e.g. Kolmodin et al. 2002]dhlammer et al. 2009b).

It might be worthwhile to consider ES in livestobkeeding schemes (de Jong and Bijma
2002, Knap 2005, Veerkamp et al. 2009). Breedimdnigh yielding and sensitive individuals
might be beneficial in high-producing and non-fluating environments, because sensitive
individuals are able to benefit form these envirental conditions. In poor, fluctuating or
unforeseeable environments, robust individualslassred, if the robustness does not come at
the expense of a decline in fitness and increasheaith problems. One way to breed
simultaneously for robustness and GP is to findegethat affect GP and ES of one trait in
opposite directions, and to apply marker-assisgéecion using these genes (Lillehamraer
al. 2009b). Lillehammeret al. (2009b) applied association analysis using apprasely
10,000 SNPs in the Australian dairy cattle popatatio find significant SNPs affecting GP
and ES. Several SNPs were significant and arouedurd affected GP and ES in opposite

directions; these SNPs are of special interest keiffards to breeding for robustness.

The genetic architecture of dairy cattle milk @dias frequently been analysed (e.g. Cole et

al. 2009, Hayes et al. 2010, Wellmann and Bennefdtrz1). However, it is unknown how
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many genes affect ES, what the sizes and distobsitof the effects are, and where they are
located on the genome. In a recent study we appligder order reaction norm random
regression sire models to investigate GxE effect&Serman Holsteins (Stregt al. 2012).
Herd test day solutions for production were usecemaronmental descriptors. We found
highly significant GXE for milk traits, which regal in substantial scaling and few re-ranking
effects. For a deeper understanding of the natu@xg effects, a partitioning of GXE effects
into that due to scaling and due to changes irrdh& of individuals across environments is
desirable (e.g. Muiet al. 1992, Dutilleul and Potvin 1995, James 2009). Akmious method

to reduce or eliminate scaling effects is to applgata transformation (James 2009). This

would allow partitioning of removable by data trimimation and non-removable interaction.

The aim of the present study was to conduct a &sd genome-wide association analysis to
identify SNPs that affect GP and ES, and basedemdsults, to infer some knowledge of the
genetic architecture of GP and ES. We were espeamérested in the number of validated
SNPs and the size and the sign of the effects ona®P ES. We applied a three-step
procedure. In the first step, sire estimates fora@& for ES were calculated using first-order
random regression sire models. These estimatesugerkin a second step as observations in
an association analysis. In the third step, sigaift SNP associations were confirmed in an
independent validation set of the same populatiorarder to remove GXE causing scaling

effects, the observations were log-transformedmesanalyses.

MATERIALS AND METHODS

Data and data editing

In total 2,356 progeny tested German Holstein siese genotyped with the Illlumina
BovineSNP50 BeadChip, which contains a total of(B4@NPs (lllumina, San Diego, CA,
Matukumalli et al. 2009). The sires were born between 1983 and 20@B raflect a
representative sample of the population (Qandtaal. 2010). Individuals with more than 10%
missing marker genotypes were removed, resultii287 sires. An SNP was excluded if it
had a minor allele frequency less than 3%, a edd fess than 90%, a significant deviation
from the Hardy-Weinberg-equilibriump<€0.001), or if the position on the genome was
unknown. SNPs on the sex chromosome were also aeatluThis data filtering was done
using PLINK (Purcelkt al. 2007). A total of 41,349 SNPs remained in the data Sporadic
missing genotypes were imputed using fastPHASEd&chnd Stephens 2006). The linkage
disequilibrium (LD) structure in this population sveavestigated by Qanbaet al. (2010).
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Around 13 million first lactation test day recorfis protein yield, fat yield and milk yield
from daughters of the sires were used. The numbdawghters per bull ranged from 50 to
74,842 and totalled around 1.3 million. Test dagords were corrected for the fixed effects
herd test day, days in milk, age at calving, caglvseason and the random permanent
environment effect. These correction factors webtaioed from the routine animal genetic
evaluation, which is an animal test day model. Aftes adjustment, the trait population mean
was added to the observations in order to obtadipted trait values.

The environment was described by the mean herdiggsperformance for milk energy yield.
It was calculated as a linear combination of milkld, fat yield and protein yield, i.e.
energyyield = 0802* milk yield + 384 * fat yield + 236 * proteinyield, where the yields
are measured in kg (Nostitz and Mielke 1995). Wadeared this single parameter to describe
the environment, because it combined the highlyetated herd test day performances for the
three milk yield traits; see Stregt al. (2012) for further details. It is assumed thas thi
parameter captures important unobservable and wrknenvironmental effects. The
environmental descriptor was rescaled to have anregaal to O and a standard deviation of
1. Hence, superior (inferior) environments show ifpas (negative) values for the
environmental descriptor, and the ‘average’ envirent shows a value close to zero. The
distribution of the environmental descriptor is winan the Supplemental. It is approximately
normally distributed. Mean herd test day perfornegnof milk yield, protein yield, and fat
yield were obtained from the routine animal genetialuation, see VIT (2013) for a detailed

description.

Statistical analysis

In a previous study we applied a second-order sicglel, which gave an improved fit
compared to a first-order model. However, a finstes sire effect explained most of the
variation of ES (Streiet al. 2012). Therefore, we decided to apply a fist-oslex model in
the present study. The following random regressimadel was applied in the first step for all

three milk yield traits:

1
* htdsm¢' +¢,, 1)

ijm

1 1
Cyy = M +b Ohtdsme +> s, * htdsm¢ + > d
m=0 m=0

wherecyji is the corrected yield of daughieof sirej at herd test daly, p is the overall mean,
htdsme is the herd test day solution for milk energy gielt herd test dak with the fixed

regression coefficienb, sm is the random sire effect of sifeof orderm, djn the random

39



CHAPTER THREE

daughter effect of daughteof sirej of orderm, ande is the random residual. The covariance

gz o
structure of the sire regression effectS/'a{so} =1 D{ % ?Sl}, and that of the daughter
Sl 0-5051 0-51

. d 05 Tag, . . . . . . .
effects |sVar{ 0}:I D{ b , |» with I being the identity matrix. The estimated sire
1 O-dodla-dl

effects were used as observations in an associatatysis (see below). In contrast to
classical sire models, the relationship among sir@s ignored. This could be done, because
there was much progeny information available focheaire, and hence, the sire estimates
were largely influenced by the progeny records anly very little by the pedigree. Indeed,
preliminary results showed that the correlationweein sire estimates with and without

considering the pedigree in model (1) was >0.98 ghown).

In order to model heterogeneous residual variagoesa the environments, the observations
were ordered according to the environmental defsergnd grouped into ten classes of equal
size based on the environmental values. Residuanaes were estimated for each class,
assuming the residual covariance to be zero. Therwelated daughter effects reduce the
heterogeneity of residual variance if GXE effeats aresent (Lillehammesat al. 2009a). The
models were fitted using ASReml 3.0 (Gilmoet al. 2009). Because the mean of the
environmental descriptor was zero, the intercepitems of the sire regression coefficients
were used as sire estimates for GP, i.e. produdeeel in the average environment.

Furthermore, the slope solutions were used as atsafor ES.

Table 1 Sire variance components of the random regressiatyses. Standard errors are

shown in parenthesesog (o3) denotes the intercept (slope) sire variance, with

correlationo g -

Trait Unit 0—; 0'; Pss,
Protein yield g 2379.37 (87.48) 17.02 (0.98) 0.79
Fat yield g 7883.41 (257.12) 46.76 (2.43) 0.93
Milk yield kg 1.30 (0.04) 0.02 (< 0.01) 0.72
In(protein yield)* - 9.50 (< 0.01) 0.11 (< 0.01) 6Q.
In(fat yield)* - 12.70 (< 0.01) 0.13 (< 0.01) 0.73
In(milk yield)* - 10.55 (< 0.01) 0.14 (< 0.01) 0.68

* values are multiplied by 10,000
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The whole data set was randomly split into a discpwata setn(= 1,797 bulls) and a
validation data sein(= 500 bulls). In the second step of the statisaoalysis, we performed
genome-wide association analyses using the disgadata set. To do so, we applied the
following mixed linear model:

Sim = Uy +Sire, +b, * X, +e,, (2)
where éjm Is the estimated random sire effect for @P=0) and ESri = 1). These estimates

were taken from the results of model. (Ihe model was applied for the two traits £ O for
GP andn = 1 for ES) separately. The effect of the SiNWas modelled as a regression on the
number of copies of the allele with the higher treacy (x = 0, 1, or 2), witlp,, being the

regression coefficient. In order to control for gh&pulation structure, we fitted a random sire

effect with the covariance structuker’ , where A is the numerator relationship matrix

calculated from high-quality pedigree informatiordas?, a variance attributable to the sires.

This model was applied for each SKkh turn, resulting in 41,349 association tests tpst.
We declared each SNP with a pointwise error prditatbelow p<0.001 as significant. In
order to judge how many false positives were amthegsignificant associations we applied
the false discovery rate (FDR) technique. We caled for each association test an F§R
value using the software QVALUE (Storey and Tibahir2003). The FDRy-value of the
significant SNP with the lowest test statis{pe:Q.001) provided an estimate of the proportion

of false positives among the significant associegio

Table 2 Number of discovered and validated SNPs for igjer@nd slope for the traits on the
observed scale. The FDRvalues (FDR) of the significant SNP with the lasgerror
probability p=~0.001) in the discovery dataset are shown.

. Discovery dataset Validation dataset
Trait (p< 0.001) FDR 6<0.01)
Intercept protein yield 450 0.07 69
Slope protein yield 351 0.09 44
Intercept fat yield 465 0.07 118
Slope fat yield 385 0.08 99
Intercept milk yield 415 0.08 104
Slope milk yield 416 0.08 98

In the third step, we confirmed significant SNPaasstions within the same population in the
validation set. The same statistical model was ia@plbut only to significant SNPs. We
declared an SNP as confirmed if {ix@alue in the validation set wgs:0.01 and the signs of

the effects were the same in both sets. This rdlaxgnificance criterion was used in the
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validation set, because less multiple testing weatopmed, and a more stringent significance
level would reduce the power to validate SNPs. rAilar protocol was used by Pryce et al.
(2010). For the interpretation of the effects, #simates of the validation set were used,
because it can be assumed that these suffer tesstlie Beavis-effect and are less upwardly
biased (Beavis 1994).

protein intercept

-log10(p-value)

2 4 6 8 10 12 14 16 18 21 24 27
chromosome

protein slope

8 JAWAN A AN AN A 200 AL A -\ JANY . QAN

-log10(p-value)

2 4 6 8 10 12 14 16 18 21 24 27
chromosome

Figure 1 Test statistic profile of SNP effects for proteielgl intercept (top) and protein yield
slope (bottom) in the discovery data set. The nahsignificance leveld<0.001) is indicated

by a solid line. Positions of validated SNPs ackdated by a triangle.

In order to identify SNPs that not only cause scpkffects within the environmental range
considered in our study, we applied the models mldog-transformed observations (Hawts

al. 2003, Lillehammetet al. 2009b). Preliminary results revealed convergenoblpms of
model (1) with log-transformed observations (nadwh), which was caused by the random
regression of the daughter on the environment. &ibe, to ensure convergence, the random
daughter effect was fitted without regression am ¢hvironment. The residual variance was
homogeneous, so only one residual variance compomas estimated. The sire solutions

obtained from model (1) were used subsequentlyddeh(2).
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RESULTS

The main results of the variance component estonadre shown in Table 1. There is slope
variance for all traits on both the observed arel ltg-transformed scales, pointing to the
presence of GXE effects. These GXE effects werdysawh in details and also tested for

significance in an earlier study (Streit et al. 2010n the observed scale, the correlation
between intercept and slope was high and posifivie log-transformation reduced this

correlation. As expected, the daughter variance smuastantial and the residual variance was

heterogeneous across the environmental classésitsron the observed scale (not shown).

fat intercept

-log10(p-value)

2 4 6 8 10 12 14 16 18 21 24 27
chromosome

fat slope
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-log10(p-value)

2 4 6 8 10 12 14 16 18 21 24 27
chromosome

Figure 2 Test statistic profile of SNP effects for fat yialtercept (top) and fat yield slope
(bottom) in the discovery data set. The nominahisigance level p<0.001) is indicated by a
solid line. Positions of validated SNPs are indiddby a triangle.

The results of the association analysis for thigstian the observed scale are shown in Table
2. For all traits, 350 to 450 SNPs showed a nonsi@lificant association in the discovery
data set; the FDR-analysis revealed that arounds/ed these are false positives. For fat and
protein yield, more trait-associated SNPs couldfdaend for intercept than for slope. The

number of validated SNPs was between 44 (protejme$land 118 (fat intercept). The results
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for the log-transformed data sets are shown inél@blFor the intercepts, almost the same
number of significant SNPs was found as on the robse scale, but fewer could be
confirmed. For the slopes, the number of significaNPs was reduced. The FIQRralues of

the significant associations were similar or slighigher.

milk intercept

]
8 - A A A A AN AN A N A V.Y VNN AN ' AN AR

-log10(p-value)

2 4 6 8 10 12 14 16 18 21 24 27
chromosome

milk slope

-log10(p-value)

2 4 6 8 10 12 14 16 18 21 24 27
chromosome

Figure 3 Test statistic profile of SNP effects for milk ydeintercept (top) and milk yield

slope (bottom) in the discovery data set. The nahsignificance leveld<0.001) is indicated

by a solid line. Positions of validated SNPs adkdated by a triangle.

The plots of the test statistic along the chromas®are shown in Figure 1 to 3 for the traits
on the observed scale. Chromosomal positions dflataid SNPs are indicated by a triangle
symbol. The pattern of the test statistic was simibr the intercept and slope within the
traits, although for intercept the signals were egally more pronounced, leading to the
higher number of significant associations. Sigaifit SNPs were found on many
chromosomes, and the clearest signals were obsenveBlTA14. Promising SNP clusters
affecting intercept and slope of all traits wersoaidentified on BTA26. Chromosome 9 is
interesting with regard to protein, as it contaangalidated SNP cluster for both intercept and
slope. For slope, validated SNPs with a remarkaly test statistic were found on BTA20

and BTA25. For fat intercept, a highly significa®NP was found on BTAS5, which also
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affected slope to a lesser extent. For milk slopkdated SNPs were mapped on BTA6 and
BTA20. The test statistic plots for intercept oe thbserved and on the log-scale are almost
identical for all three traits (not shown). For 9 however, the plots differ between the
scales (see Figure 4). Again, SNPs on BTA14 shaWwedtrongest signals for all three log-

transformed traits for slope.

In(protein yield) slope

-log10(p-value)

2 4 6 8 10 12 14 16 18 21 24 27
chromosome

In(fat yield) slope
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-log10(p-value)
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Figure 4 Test statistic profile of SNP effects for In(proteyield) slope (top), In(fat yield)
slope (middle), and In(milk yield) slope (bottorm) the discovery data set. The nominal
significance level <0.001) is indicated by a solid line. Positionsvafidated SNPs are

indicated by a triangle.
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In Figure 5 the estimates of the validation setstw@vn for SNPs that were either significant
for intercept, or for slope, or for both. The slagiéect of the allele that increases the intercept
is shown. It can be seen that every validated Sfé¢eta both traits in the same direction, and
the correlation between the solutions is highlyifpges This was less pronounced if the data
were log-transformed (Figure 6). For In(proteinlg)e many validated SNPs for intercept

showed a small but mostly non-significant negag¥ect for slope. In general, the largest
SNP effects (in units of the standard deviatienwere observed for milk yield, with 11 (4)

SNPs showing an intercept (slope) effect largen th&. For the log-transformed data sets,
the intercept effects are generally larger. Thiss st observed for slope effects. The
estimates of each validated SNP for the traits lo& ¢bserved scale are presented in
Supplemental Table 1; estimates for the log-transéa observations are presented in

Supplemental Table 2.

Table 3 Number of discovered and validated SNPs for iejgr@nd slope for the traits on the
log-scale. The FDR)-values (FDR) of the significant SNP with the laagerror probability

(p=0.001) in the discovery dataset are shown.

. Discovery dataset Validation dataset
Trait (p<0.001) FDR b<0.01)
Intercept In(protein yield) 463 0.07 56
Slope In(protein yield) 313 0.11 64
Intercept In(fat yield) 469 0.07 118
Slope In(fat yield) 320 0.11 80
Intercept In(milk yield) 419 0.08 87
Slope In(milk yield) 386 0.09 68
DISCUSSION

In this study we attempted to identify and confi8NPs for intercept (reflecting GP) and
slope (reflecting ES) of milk traits in the Germidolstein dairy cattle population. Numerous
SNPs were identified and confirmed for both GP B&d Many SNPs affecting GP also affect
ES. We showed that ES of milk traits has a singkmetic architecture as GP and is a typical
guantitative trait, genetically controlled by maggnes with small effects and few genes with
larger effect (Figure 5, Supplemental Table 1).6Bithe FDRg-values of the SNPs in the
discovery set (Tables 2 and 3) it seems that soMiesSwith true associations were not
confirmed. This might be due to the reduced powethe validation set with 500 sires. A
more stringent validation would be to also teshd SNP is significant in another population
(Hayeset al. 2009, Pryceet al. 2010). Such a validation study would also increasgping

precision, because mapping resolution is increadezh using an across-breed approach and
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only those SNPs being in LD with the mutation inttbdreeds would be validated. No
independent population was available, however at@ml across-population validation in this
study.

In our study, the mapping precision is limited dwethe LD structure observed in this
population (Qanbaret al. 2010) in combination with the applied single markssociation
analysis. Alternatively, a combined linkage and biapping approach could have been
applied, which predicts IBD-probabilities at putatiQTL regions using multi-marker and
pedigree information and uses these probabilittesFTL fine-mapping (Meuwissen et al.
2002). This method is, however, computationally deding and needs higher marker
densities. Another multi-marker approach that cdudde been applied is a Bayes-method
originally developed for genomic selection (Meuwisset al. 2001, Goddard and Hayes
2009). These Bayes-methods make use of the LD efntarkers and the mutation and
additionally of the LD between the markers. It ist tompletely clear how to test for
significance when using these methods. Olsen e(28ll1) applied the three approaches
mentioned above to map genes for fertility and mil&duction in dairy cattle. They applied
single marker association analysis for a first sgrdine-mapped the regions using combined
linkage and LD mapping and confirmed the putativasifoons by using BayesA from
Meuwissen et al. (2001).

Some interesting SNP clusters affecting GP argdacelosely to well known candidate genes
which segregate in the German Holstein populafidns is most obvious on BTA14, were
the clear signals for all milk traits for GP and BE®bably reflect the effect dDGAT1
(Grisartet al. 2002, Winteret al. 2002). This gene is known to segregate and a#fiéchilk
traits in this population (Bennewitgt al. 2004a). Several SNPs affecting GP of all three
investigated milk traits were found on BTAG6. Froneyious linkage analyses it is known that
BTAG6 harbours QTL affecting milk traits in this pdpation (Kihnet al. 1999, Bennewitzt

al. 2004b). Putative candidate genes underlying magpdare discussed in Weikaed al.
(2005). ThePPARGC1Agene was postulated as the most plausible generlyimdy a QTL
for fat yield. Additionally, the casein gene compls located on this chromosome, with an
effect on protein yield and protein percentagetdra this population (Prinzenbeeg al.
2003). On BTA5 we found a single SNP with a remblkaiigh test statistic for fat GP,
which was also validated for fat ES. Wagigal. (2012) reported the geePS8to be most
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likely causative for this association. The sigrafit SNPs on BTAZ20 is very likely to be
associated with th@ HR gene (Blottet al. 2003, Wanget al. 2012).
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Figure 5 Estimated SNP effects for the traits on the obskrseale. The ternug (o, )

denotes the sire intercept (slope) standard dewiattach SNP was validated within the

population either for intercept, slope or both.ifBates were taken from the validation set.
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Some validated SNPs for ES are in chromosomal msgamilar to those found in other dairy
cattle populations harbouring genes with GXE effelet the Norwegian Red, milk production
QTL for ES on BTA2, BTA6, BTA7, and BTA16 were raped by Lillehammeket al. (2007,
2008). A detailed analysis of BTA6 with a high marklensity revealed two QTL for milk
yield with an effect on ES, but no QTL with an Effeet for fat and protein yield. In our
population, we were able to validate ES SNPs on 872 milk and fat yield, but not for
protein yield. In the Australian Holstein populatibillehammeret al. (2009b) found several
SNPs with ES effects. Roughly one third of thegn#icant associations affected GP and ES
in opposite directions, which is in contrast to dudings. They stated, however, that this
proportion is probably smaller than one third, heseait is generally more difficult to find
SNPs that affect GP and ES in the same directitrerahan in opposite directions. Our study
is considerably more powerful than that of Lillelraeret al. (2009b), hence we were likely

able to detect more SNPs with effects in the sameetibn.

We previously reported significant GXE resultingsmbstantial scaling effects (Streit al.
2012). In order to remove these scaling effectesgaransformation was applied. The results
from the association analysis applied to the laggformed data revealed SNP that were not
removable by this kind of transformation. Theseidaibd SNPs are of special interest,
because they point to chromosomal regions harbgu@mes with an effect on ES which are
not or not solely due to scaling effects. Some aregjiwith clear signals for ES on the
observed scale could not be found on the log-scHies was especially observed for
In(protein yield) and SNPs on BTA14 close to B@AT1gene, where positive effects on ES
were turned into small negative effects, althouglosthy not significant (Figure 6,
Supplemental Table 2). Hence, these effects weraplately removable by the log-
transformation. It may be noted that the log-transftion is frequently applied, but maybe
another transformation function (e.g. from the Boox-family of transformation) would be
able to eliminate scaling effects more effectivelfnis was not investigated further in this
study. The reduced correlation between intercepd alope when applying the log-
transformation (Table 1) was also observed by hdlameret al. (2009b). This decreased
correlation has the following reason. For largddgehe intercept of a regression is large as
well. Since the logarithm is a concave functiom ithterval containing these yields is mapped
to a smaller interval than an interval of the sasime containing small yields. Thus, the

transformation causes large yields to decreasaviance more drastically than small yields.
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This causes positive slopes of the regression linedarge yields to decrease more than

positive slopes of regression lines for small yseld
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As described in the introduction, breeding for retimess for both milk production and health
traits is an issue in dairy cattle. In this studyyomilk production traits were considered.
Based on our results, it seems that simultanedurslgding for an increase in milk GP and a
decrease in ES by applying marker-assisted setedidlifficult, because no SNPs showed
opposite directions of the effects. Genomic sedectian be seen as marker assisted selection
on a genome-wide scale. It is currently implementedmany dairy cattle populations
(Goddard and Hayes 2009). Improving ES by genormelection should be possible by
considering ES as an additional trait and by estigagenomic assisted breeding values for
this trait. A reference population for the estiroatiof marker effects is needed. Existing
reference populations mainly built by progeny-tddtells can also be used for ES, provided
that the daughters are distributed over a widegarfgenvironments. As done in this study,
the daughter records can then be used for the ashimof sire effects for ES, which in turn,
can be used to estimate marker effects. The mgstoppate method for this estimation
depends on the genetic architecture of the trait,on the number of genes affecting the trait
and on the distribution of the effect size (Hagesal. 2010). The current study shows that for
the estimation of marker effects for ES a modelutthde used that is tailored to traits

affected by many genes with small effects and fetl large effects.

CONCLUSIONS

We presented GxE for milk traits resulting in salpsial scaling effects. Many SNP clusters
affecting GP and ES could be identified and vaédailThe effects of some SNPs for ES were
not removable by a data transformation, indicatimat these are not solely scaling effects.
The positions of these clusters were often founaveti-known candidate regions affecting

milk traits. No validated SNP showed effects for B8 GP in opposite directions. We

showed that ES of milk traits is a typical quariwa trait controlled by many genes with

small and few genes with large effects.
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APPENDIX
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Figure S1Histogram of the environmental descriptor milk rgyeyield.

Table S1Validated SNPs with chromosome (BTA), positiorbase pairs (bp), F-values and
effects for intercept and slope. Effect estimateseataken from the validation set. Validated

SNPs are indicated in bold type F-values and e#fstinates.

F-values in discovery dataset Effectsdin

SNP name BTA bp Intercept Slope Intercept Slope
Protein yield

ARS-BFGL-NGS-54077 1 87338372  7.09 10.96 0.094 0.148
ARS-BFGL-BAC-7205 1 120983738 15.75 16.35 0.117 0.104
ARS-BFGL-NGS-99492 1 12160748616.95 16.54 0.125 0.126
ARS-BFGL-BAC-13578 1 121811393 13.78 7.48 0.121 0.102
ARS-BFGL-NGS-98257 1 12768010813.65 4.44 0.109 0.075
ARS-BFGL-NGS-86079 2 19126180 15.75 6.79 0.136 0.114
Hapmap53232-rs29020795 2 1920235614.56 9.90 0.130 0.109
Hapmap43615-BTA-54400 2 19255900 11.87 7.53 0.139 0.106
Hapmap60669-rs29018484 2 2068735316.88 15.06 0.222 0.140
BTA-101354-no-rs 2 58818593  10.96 11.72 0.067 0.116
Hapmap28102-BTA-152636 2 58842740  10.84 11.37 0.069 0.116
ARS-BFGL-NGS-113152 4 14644971 10.88 8.87 0.143 0.139
ARS-BFGL-NGS-68464 5 18395406 12.71 10.07 0.145 0.090
Hapmap33079-BTA-163567 6 1936 15.61 5.94 0.142 0.068
Hapmap54442-rs29025673 6 3157980614.14 8.19 0.102 0.092
Hapmap27701-BTC-050761 6 40183166 12.68 8.34 0.126 0.094
Hapmap31819-BTA-156590 6 40421547 13.80 9.11 0.126 0.094
Hapmap23201-BTC-072836 6 4065522921.27 17.26 0.113 0.095
Hapmap32946-BTC-046820 6 4112970127.71 15.88 0.137 0.086
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ARS-BFGL-NGS-39570 6 46320087 14.72 3.26 0.169 0.159
ARS-BFGL-NGS-43679 6 10968059513.67 4.00 0.140 0.054
BTB-00281303 6 111612203 15.07 2.41 0.153 0.090
ARS-BFGL-NGS-113181 7 62800839 12.32 10.78 0.129 0.108
ARS-BFGL-NGS-113819 7 63609102 15.25 6.29 0.153 0.089
ARS-BFGL-NGS-109819 7 63664393 15.72 5.91 0.154 0.086
ARS-BFGL-NGS-4062 8 5505897 6.17 11.71 0.116 0.122
Hapmap44053-BTA-28733 8 6369477 15.90 14.16 0.118 0.133
BTB-00389006 9 39062436 16.19 16.89 0.097 0.124
BTA-06997-rs29021351 9 40153426 24.71 22.35 0.220 0.154
BTA-83317-no-rs 9 40393986 26.22 21.89 0.114 0.081
BTA-83528-no-rs 9 41691114 25.23 18.48 0.170 0.112
ARS-BFGL-NGS-37982 9 44200288 22.50 15.00 0.105 0.084
ARS-BFGL-NGS-52530 9 44230587 25.27 25.92 0.215 0.185
ARS-BFGL-NGS-103934 9 44255942 17.63 17.33 0.162 0.115
Hapmap57331-rs29009884 9 45457232 14.35 12.31 0.072 0.096
ARS-BFGL-NGS-75844 9 45497534 1431 12.54 0.072 0.096
ARS-BFGL-NGS-39444 9 45590254 14.31 12.54 0.072 0.096
BTA-10828-no-rs 9 46600974 24.59 23.15 0.096 0.105
BTA-83605-no-rs 9 48362593 13.56 10.43 0.116 0.103
BTB-00391835 9 52160813 11.20 5.70 0.157 0.085
ARS-BFGL-NGS-25071 9 75512134 7.97 11.90 0.051 0.107
ARS-BFGL-NGS-80176 10 64041482 12.30 9.49 0.121 0.129
ARS-BFGL-NGS-88689 11 29901111 7.53 12.41 0.123 0.143
ARS-BFGL-NGS-87426 11 30070765 11.73 12.74 0.114 0.127
ARS-BFGL-NGS-21332 11 30108643 8.61 12.87 0.120 0.132
ARS-BFGL-NGS-118724 11 30366110 12.45 10.44 0.107 0.121
ARS-BFGL-NGS-112015 13 63235775 13.16 2.09 0.108 0.050
Hapmap54034-rs29026486 13 6518378111.97 4.07 0.106 0.073
ARS-BFGL-NGS-63777 13 67075815 21.53 17.56 0.200 0.157
ARS-BFGL-NGS-103635 13 67816926 11.00 1.02 0.104 0.059
ARS-BFGL-NGS-52851 13 77352863 11.87 16.39 0.048 0.110
Hapmap38308-BTA-33903 13 77756882 4.13 11.00 0.045 0.102
Hapmap30383-BTC-005848 14 76704 4565 31.66 0.168 0.134
BTA-34956-no-rs 14 101474 20.91 7.85 0.129 0.112
ARS-BFGL-NGS-57820 14 236533 72.24 56.71 0.193 0.148
ARS-BFGL-NGS-34135 14 260342 33.61 18.35 0.114 0.095
ARS-BFGL-NGS-94706 14 281534 32.30 17.16 0.118 0.093
ARS-BFGL-NGS-4939 14 443936  76.22 55.93 0.189 0.138
ARS-BFGL-NGS-107379 14 679601 61.01 51.65 0.158 0.122
Hapmap25384-BTC-001997 14 835055 27.13 16.99 0.117 0.070
Hapmap24715-BTC-001973 14 856890 22.88 13.75 0.116 0.073
ARS-BFGL-NGS-103064 14 1193335 23.15 9.03 0.109 0.060
Hapmap25486-BTC-072553 14 1285036 19.13 8.43 0.115 0.083
ARS-BFGL-BAC-20965 14 5225005 14.28 8.91 0.136 0.104
Hapmap23851-BTC-048718 14 5387835 17.21 16.92 0.126 0.095
BTB-01988444 14 56535371 3.95 11.67 0.092 0.126
ARS-BFGL-NGS-100131 15 21041772 9.75 11.06 0.099 0.132
BTB-01698088 16 9738423 11.05 16.13 0.086 0.139
ARS-BFGL-NGS-56645 16 23920210 15.37 5.10 0.117 0.092
BTA-38367-no-rs 16 26379579 12.89 9.03 0.096 0.082
ARS-BFGL-NGS-41039 16 27619045 14.91 5.09 0.183 0.109
ARS-BFGL-NGS-38023 16 33318455 18.15 9.91 0.107 0.104
ARS-BFGL-NGS-26559 16 33367687 11.43 6.70 0.124 0.112
ARS-BFGL-NGS-59645 16 73117625 15.94 10.48 0.124 0.092
BTA-97501-no-rs 18 57095120 16.33 8.05 0.108 0.069
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ARS-BFGL-NGS-15837 18 62533851 11.11 4.42 0.110 0.118
ARS-BFGL-BAC-33672 20 44108671  10.68 12.05 0.152 0.185
BTA-17135-no-rs 20 49557519 11.88 16.26 0.132 0.175
BTA-41516-no-rs 20 49593049 10.63 15.64 0.117 0.165
BTB-01251603 20 50418473 9.19 12.88 0.172 0.198
ARS-BFGL-BAC-34291 20 54837742 8.66 13.62 0.123 0.152
Hapmap53927-rs29025287 20 56464296 8.94 13.45 0.135 0.179
BTB-00787949 20 56494412 5.89 12.27 0.150 0.186
ARS-BFGL-BAC-36842 20 58820614 6.51 14.46 0.097 0.146
ARS-BFGL-NGS-38258 20 60185080 11.42 7.68 0.138 0.119
BTA-12959-no-rs 21 10922512 13.46 9.60 0.114 0.104
ARS-BFGL-NGS-101900 21 30314497 14.12 4.85 0.106 0.099
ARS-BFGL-NGS-110044 21 30892171 11.81 2.78 0.158 0.143
ARS-BFGL-NGS-55374 25 28795160 24.40 25.01 0.215 0.185
ARS-BFGL-NGS-2464 26 18709176 20.40 10.13 0.098 0.097
ARS-BFGL-NGS-71584 26 18863914 28.46 15.95 0.091 0.102
ARS-BFGL-NGS-113339 26 19918015 16.35 7.34 0.105 0.083
BTA-62184-no-rs 26 20014035 17.65 9.58 0.118 0.099
BTA-60778-no-rs 26 20090833 21.14 14.75 0.127 0.117
BTB-00932332 26 22551770 15.48 11.32 0.101 0.130
ARS-BFGL-NGS-107403 26 23470277 18.11 12.42 0.098 0.122
Hapmap28763-BTA-162328 26 26472420 12.31 12.37 0.085 0.109
BTB-01622498 28 1436040 3.42 12.49 0.100 0.158
ARS-BFGL-NGS-119076 28 15361777 12.02 8.12 0.126 0.086
ARS-BFGL-NGS-43501 28 17344828 14.42 17.58 0.083 0.136
ARS-BFGL-NGS-118693 28 17493199 10.68 13.14 0.139 0.127
Fat yield

Hapmap38956-BTA-43309 1 98853038 12.91 10.82 0.101 0.114
BTB-01562245 1 113644592 11.25 11.71 0.149 0.175
BTA-104132-no-rs 1 11366978311.95 12.23 0.151 0.178
ARS-BFGL-BAC-7205 1 120983738 12.64 12.33 0.079 0.072
ARS-BFGL-NGS-88388 2 13718482 19.97 18.86 0.076 0.081
ARS-BFGL-NGS-112315 2 40959609 12.86 5.12 0.093 0.091
ARS-BFGL-NGS-44416 2 48557519 11.31 9.45 0.089 0.082
ARS-BFGL-NGS-8503 2 87880854 11.07 11.84 0.117 0.095
BTB-00108243 2 112019423 17.65 21.62 0.137 0.164
BTB-01678000 3 6985014 20.43 20.37 0.077 0.068
BTB-01678060 3 7009487 20.08 21.54 0.092 0.091
ARS-BFGL-NGS-5956 3 8558755 18.73 14.50 0.092 0.093
ARS-BFGL-NGS-112616 3 8598511 17.12 12.48 0.085 0.085
ARS-BFGL-NGS-102139 3 24018818  9.79 11.56 0.067 0.078
Hapmap50814-BTA-89905 3 41486200 11.97 9.50 0.095 0.079
BTB-01851577 3 50093239 11.69 6.77 0.089 0.072
INRA-648 3 54347354  13.39 11.31 0.147 0.168
Hapmap43441-BTA-103289 3 61621627 17.59 20.74 0.068 0.083
BTA-68164-no-rs 3 68215262 13.11 8.02 0.095 0.062
BTB-00131847 3 68241075 13.16 8.09 0.097 0.066
BTA-54952-no-rs 4 11830564 11.96 9.08 0.089 0.090
ARS-BFGL-NGS-20815 4 15021946 15.91 14.68 0.083 0.076
ARS-BFGL-NGS-117196 4 53206872  9.84 12.44 0.073 0.085
ARS-BFGL-NGS-110647 4 77565085 9.95 12.41 0.081 0.093
Hapmap39895-BTA-15668 5 15392995 11.42 7.32 0.093 0.081
ARS-BFGL-NGS-108617 5 98082173 15.12 11.57 0.107 0.110
ARS-BFGL-NGS-95906 5 10035192620.33 17.38 0.090 0.091
Hapmap53294-rs29016908 5 1010904180.43 22.97 0.086 0.095

59



CHAPTER THREE

Hapmap60021-ss46526426 5  1019795821.19 13.64 0.095 0.088
BTB-00270281 6 95770023 16.38 12.12 0.095 0.073
Hapmap58150-rs29020620 6  9672459411.78 8.53 0.076 0.070
BTB-01700063 6 99086447 21.66 16.75 0.114 0.102
Hapmap53916-rs29021982 6  9958126918.46 15.67 0.094 0.094
Hapmap48078-BTA-77495 6 99827767 13.22 14.54 0.076 0.079
ARS-BFGL-NGS-14880 7 53879989 14.95 17.58 0.115 0.104
ARS-BFGL-NGS-113181 7 62800839 17.55 20.39 0.077 0.080
BTB-02035459 7 63196194 11.52 8.67 0.073 0.073
BTB-01219396 7 63221359 11.52 8.67 0.073 0.073
ARS-BFGL-NGS-113819 7 63609102 12.18 13.22 0.071 0.081
ARS-BFGL-NGS-109819 7 63664393  12.02 12.76 0.073 0.083
BTA-12616-no-rs 7 64712171 12.81 8.91 0.074 0.063
ARS-BFGL-NGS-65419 7 66102696 15.93 13.18 0.092 0.094
ARS-BFGL-NGS-12863 7 68960712 16.23 7.43 0.105 0.092
ARS-BFGL-NGS-23091 7 69342623 13.06 6.26 0.110 0.095
BTB-01222854 7 74587278 13.21 11.20 0.105 0.104
BTB-01321253 7 83625073 19.55 20.56 0.083 0.077
Hapmap44053-BTA-28733 8 6369477 15.07 12.22 0.096 0.113
BTA-102639-no-rs 8 29764842  7.33 11.04 0.083 0.105
ARS-BFGL-NGS-68597 8 32188298  9.59 12.15 0.144 0.139
BTB-01184997 8 36171902 11.48 10.62 0.097 0.092
Hapmap31805-BTA-154485 8 36232703 12.95 13.66 0.078 0.084
Hapmap41758-BTA-116042 8 37197678 11.23 7.67 0.105 0.105
BTB-00384442 9 22407445 11.25 8.57 0.094 0.079
BTA-83317-no-rs 9 40393986 18.16 16.64 0.087 0.077
BTA-83528-n0-rs 9 41691114 17.66 15.90 0.132 0.115
Hapmap34441-BES9_Contigl54 536 9  73154821.99 10.47 0.084 0.091
UA-IFASA-2589 9 82175488  9.65 11.75 0.072 0.086
Hapmap30370-BTA-99862 11 14499391 14.20 8.56 0.104 0.100
Hapmap29758-BTC-003619 14 5261  39.73 33.19 0.112 0.109
Hapmap30381-BTC-005750 14 50873 59.46 54.84 0.129 0.129
Hapmap30383-BTC-005848 14 76704  65.31 55.73 0.132 0.132
BTA-34956-n0-rs 14 101474  29.89 29.89 0.106 0.104
ARS-BFGL-NGS-57820 14 236533  147.55 121.82 0.194 0.195
ARS-BFGL-NGS-34135 14 260342 79.17 71.47 0.146 0.144
ARS-BFGL-NGS-94706 14 281534 75.70 68.83 0.143 0.141
ARS-BFGL-NGS-4939 14 443936  159.02 132.41 0.206 0.208
ARS-BFGL-NGS-71749 14 596340 41.77 36.70 0.144 0.147
ARS-BFGL-NGS-107379 14 679601 101.31 78.31 0.163 0.160
ARS-BFGL-NGS-18365 14 741868  46.48 33.09 0.084 0.094
Hapmap30922-BTC-002021 14 763332 49.05 35.93 0.087 0.101
Hapmap25384-BTC-001997 14 835055 63.54 55.55 0.103 0.119
Hapmap24715-BTC-001973 14 856890 60.80 54.16 0.105 0.120
BTA-35941-n0-rs 14 894253  97.39 78.45 0.155 0.156
ARS-BFGL-NGS-101653 14 931163 41.64 36.14 0.133 0.144
ARS-BFGL-NGS-26520 14 996983  69.35 59.88 0.149 0.159
UA-IFASA-6878 14 1044040 36.43 26.64 0.074 0.071
ARS-BFGL-NGS-22866 14 1131951 44.94 42.65 0.126 0.119
ARS-BFGL-NGS-103064 14 1193335 61.80 58.85 0.110 0.138
ARS-BFGL-NGS-3122 14 1264232 33.56 31.89 0.092 0.126
Hapmap25486-BTC-072553 14 1285036 34.57 35.23 0.108 0.121
Hapmap30646-BTC-002054 14 1461084 68.94 51.83 0.142 0.142
Hapmap30086-BTC-002066 14 1490177 110.60 85.69 0.147 0.152
Hapmap30374-BTC-002159 14 1546590 89.52 73.07 0.153 0.154
ARS-BFGL-NGS-74378 14 1889209 48.29 35.14 0.099 0.107
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ARS-BFGL-NGS-117542 14 1913107 28.30 24.11 0.103 0.105
UA-IFASA-9288 14 2201869 48.59 32.70 0.089 0.103
Hapmap24777-BTC-064977 14 2261622 14.06 12.67 0.079 0.095
Hapmap32970-BTC-064990 14 2288509 31.99 24.55 0.080 0.095
Hapmap24986-BTC-065021 14 2313594 31.99 24.55 0.080 0.095
ARS-BFGL-NGS-22111 14 2347218 19.48 18.07 0.059 0.079
UA-IFASA-7269 14 2370255 19.48 18.07 0.059 0.079
Hapmap26072-BTC-065132 14 2391825 24.28 24.38 0.070 0.087
ARS-BFGL-NGS-113575 14 2484498 35.10 30.78 0.085 0.097
ARS-BFGL-NGS-118081 14 2511264 41.29 37.93 0.113 0.116
ARS-BFGL-NGS-56327 14 2580413 60.32 50.89 0.105 0.116
ARS-BFGL-NGS-100480 14 2607582 75.52 63.36 0.121 0.128
UA-IFASA-5306 14 2711614 48.24 32.60 0.099 0.110
Hapmap27703-BTC-053907 14 2826072 27.55 23.02 0.063 0.081
Hapmap22692-BTC-068210 14 3018725 36.91 23.96 0.080 0.086
Hapmap23302-BTC-052123 14 3099634 36.05 20.28 0.090 0.096
UA-IFASA-6329 14 3465238 25.41 16.40 0.094 0.083
ARS-BFGL-NGS-3571 14 3587017 26.21 18.53 0.099 0.101
ARS-BFGL-NGS-110563 14 3799229 25.68 15.99 0.103 0.105
Hapmap32262-BTC-066621 14 3834070 13.39 8.84 0.087 0.083
ARS-BFGL-NGS-115947 14 3865963 34.05 19.86 0.107 0.109
Hapmap30988-BTC-056315 14 4693900 20.44 15.88 0.097 0.091
ARS-BFGL-NGS-110894 14 5282437 15.13 7.87 0.094 0.101
UA-IFASA-6647 14 5808643 21.59 12.18 0.072 0.073
ARS-BFGL-NGS-102953 14 5867265 19.06 9.11 0.076 0.078
ARS-BFGL-NGS-37911 14 14274020 11.29 9.61 0.090 0.096
ARS-BFGL-NGS-16622 15 64781292 11.71 9.29 0.089 0.085
BTA-37324-no-rs 15 64802082 10.94 8.43 0.091 0.083
Hapmap54310-rs29012181 16 8166691 9.72 12.29 0.093 0.092
Hapmap43402-BTA-91283 16 8249735 8.15 11.65 0.086 0.088
ARS-BFGL-NGS-56645 16 23920210 11.80 8.21 0.082 0.073
ARS-BFGL-NGS-26559 16 33367687 11.77 10.10 0.089 0.094
ARS-BFGL-NGS-93660 16 77541689 12.02 12.76 0.088 0.073
ARS-BFGL-NGS-18128 17 22770146 11.24 8.71 0.096 0.100
ARS-BFGL-NGS-91287 18 10052638 17.13 20.25 0.117 0.101
ARS-BFGL-NGS-111247 19 43146804 14.32 15.09 0.075 0.072
ARS-BFGL-NGS-24479 19 45901285 11.09 9.17 0.092 0.087
ARS-BFGL-NGS-113693 19 45926259 12.27 10.29 0.092 0.087
BTB-00783355 20 43550938 10.23 16.06 0.087 0.111
Hapmap48608-BTA-111028 20 52535573 12.29 16.19 0.076 0.088
BTA-12959-no-rs 21 10922512 12.61 11.88 0.074 0.071
ARS-BFGL-NGS-101900 21 30314497 12.99 6.17 0.073 0.066
ARS-BFGL-NGS-39397 26 21166268 12.98 10.82 0.078 0.081
Hapmap46411-BTA-15820 26 21404446 14.10 12.01 0.094 0.103
Hapmap31825-BTA-158647 26 21476707 15.45 11.71 0.073 0.079
ARS-BFGL-NGS-110077 26 21729361 13.86 14.13 0.086 0.086
ARS-BFGL-NGS-18603 26 21853286  21.66 22.77 0.067 0.078
ARS-BFGL-NGS-116481 26 22411701 22.81 22.25 0.077 0.079
Hapmap24832-BTA-138805 26  2244957023.72 23.06 0.077 0.079
ARS-BFGL-NGS-6259 26 22492302 21.27 20.72 0.077 0.079
BTB-00932332 26 22551770 22.91 21.24 0.073 0.084
ARS-BFGL-NGS-1092 26 24837303 17.02 19.39 0.096 0.093
UA-IFASA-4715 26 25330026 16.24 20.09 0.063 0.081
ARS-BFGL-NGS-38386 26 32836475 7.14 11.37 0.065 0.103
ARS-BFGL-NGS-105944 26 34196569 11.04 11.12 0.106 0.109
ARS-BFGL-NGS-53731 26 37801879 13.09 15.19 0.062 0.087
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ARS-USMARC-Parent-EF034086-no-

rs 26 38309860  16.12 17.87 0.054 0.075
Hapmap35000-BES9_Contig272_944 26 38309861 16.12  17.87 0.054 0.075
ARS-BFGL-NGS-60822 28 17252660  16.04 12.16 0.066 0.079
UA-IFASA-6208 28 27379038 12.33 8.31 0.081 0.081
Milk yield

ARS-BFGL-NGS-23720 1 38486179 4.1 10.88 0.146 0.130
ARS-BFGL-BAC-13578 1 12181139313.51 11.19 0.189 0.179
ARS-BFGL-NGS-86079 2 19126180 14.12 9.49 0.194 0.182
Hapmap53232-rs29020795 2 1920235612.91 11.87 0.170 0.161
Hapmap60669-rs29018484 2 2068735313.93 12.24 0.324 0.249
ARS-BFGL-NGS-23786 2 22727721 12.86 8.56 0.170 0.132
UA-IFASA-4555 2 103573252 10.91 7.81 0.347 0.267
ARS-BFGL-NGS-119065 3 56970477  8.93 12.42 0.280 0.256
ARS-BFGL-NGS-75548 4 78246158 15.43 11.18 0.446 0.338
BTA-74090-no-rs 5 7569039  9.55 12.21 0.178 0.147
Hapmap33079-BTA-163567 6 1936  13.03 9.90 0.175 0.098
ARS-BFGL-NGS-117147 6 31235325 10.90 3.52 0.199 0.135
BTA-75680-no-rs 6 31470687 11.66 6.98 0.157 0.102
Hapmap54442-rs29025673 6  3157980612.51 8.27 0.157 0.102
Hapmap31819-BTA-156590 6 40421547  10.20 11.60 0.165 0.124
UA-IFASA-2111 6 85289127 14.59 15.14 0.192 0.122
Hapmap25708-BTC-043671 6  8826365511.16 11.06 0.213 0.111
Hapmap40845-BTA-97263 6 92788189 11.94 7.87 0.196 0.143
BTB-01428914 6 93850918 12.79 8.07 0.157 0.098
BTB-00281303 6  11161220310.87 3.17 0.209 0.093
Hapmap53417-rs29014877 7 1060398683.08 11.74 0.164 0.114
ARS-BFGL-NGS-4062 8 5505897  6.84 11.25 0.199 0.183
Hapmap44053-BTA-28733 8 6369477  13.69 11.43 0.151 0.166
BTA-82314-no-rs 8 97201103  9.03 15.81 0.162 0.172
ARS-BFGL-NGS-52530 9 44230587 12.72 10.89 0.273 0.192
Hapmap49359-BTA-88301 9 45435722  8.60 11.76 0.147 0.149
ARS-BFGL-NGS-75844 9 45497534  7.87 11.04 0.133 0.150
ARS-BFGL-NGS-39444 9 45590254  7.87 11.04 0.133 0.150
BTA-10828-no-rs 9 46600974 15.86 18.25 0.160 0.150
ARS-BFGL-NGS-25071 9 75512134 9.95 13.07 0.083 0.137
ARS-BFGL-NGS-62628 9 82136926  10.06 11.58 0.149 0.133
ARS-BFGL-NGS-105675 11 104891662 11.47 14.14 0.145 0.156
ARS-BFGL-NGS-78549 11  10653468912.38 14.06 0.234 0.220
ARS-BFGL-NGS-56157 13 63208626 13.95 5.96 0.163 0.088
Hapmap54034-rs29026486 13 6518378114.87 4.39 0.188 0.090
ARS-BFGL-NGS-103635 13 67816926 13.47 4.35 0.157 0.081
Hapmap44949-BTA-33430 13 67920496 11.12 5.80 0.209 0.119
Hapmap29758-BTC-003619 14 5261  41.37 45.38 0.175 0.156
Hapmap30381-BTC-005750 14 50873  46.72 39.87 0.280 0.254
Hapmap30383-BTC-005848 14 76704  130.39 113.46 0.373 0.292
BTA-34956-n0-rs 14 101474  69.39 51.08 0.287 0.246
ARS-BFGL-NGS-57820 14 236533 218.33 207.08 0.478 0.372
ARS-BFGL-NGS-34135 14 260342 111.86 96.34 0.305 0.261
ARS-BFGL-NGS-94706 14 281534  109.45 91.11 0.311 0.259
ARS-BFGL-NGS-4939 14 443936  226.90 210.30 0.477 0.371
ARS-BFGL-NGS-71749 14 596340 32.17 24.98 0.205 0.153
ARS-BFGL-NGS-107379 14 679601 165.98 159.61 0.387 0.310
ARS-BFGL-NGS-18365 14 741868  36.88 44.68 0.202 0.115
Hapmap30922-BTC-002021 14 763332 27.70 33.83 0.187 0.111
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Hapmap25384-BTC-001997 14 835055 86.29 71.08 0.294 0.201
Hapmap24715-BTC-001973 14 856890 76.90 63.03 0.290 0.203
BTA-35941-no-rs 14 894253 8151 91.67 0.245 0.196
ARS-BFGL-NGS-101653 14 931163 48.62 43.61 0.228 0.173
ARS-BFGL-NGS-26520 14 996983  55.92 51.37 0.211 0.151
UA-IFASA-6878 14 1044040 82.94 84.88 0.254 0.200
ARS-BFGL-NGS-22866 14 1131951 53.32 49.99 0.190 0.190
ARS-BFGL-NGS-103064 14 1193335 78.12 56.27 0.288 0.196
ARS-BFGL-NGS-3122 14 1264232 56.10 39.10 0.262 0.155
Hapmap25486-BTC-072553 14 1285036 54.16 34.14 0.269 0.185
Hapmap30646-BTC-002054 14 1461084 61.98 70.96 0.216 0.177
Hapmap30086-BTC-002066 14 1490177 77.59 89.06 0.244 0.198
Hapmap30374-BTC-002159 14 1546590 84.37 91.65 0.236 0.193
ARS-BFGL-NGS-74378 14 1889209 51.60 62.95 0.264 0.209
ARS-BFGL-NGS-117542 14 1913107 37.52 38.66 0.239 0.201
UA-IFASA-9288 14 2201869 34.84 42.80 0.209 0.147
Hapmap32970-BTC-064990 14 2288509 19.04 19.18 0.165 0.102
Hapmap24986-BTC-065021 14 2313594 19.04 19.18 0.165 0.102
Hapmap26072-BTC-065132 14 2391825 37.91 27.05 0.221 0.173
Hapmap26527-BTC-005059 14 2418618 26.38 22.86 0.175 0.140
ARS-BFGL-NGS-113575 14 2484498 15.20 18.65 0.173 0.136
ARS-BFGL-NGS-118081 14 2511264 27.04 26.10 0.189 0.167
ARS-BFGL-NGS-56327 14 2580413 37.86 38.51 0.224 0.179
ARS-BFGL-NGS-100480 14 2607582 47.61 45.61 0.243 0.192
ARS-BFGL-NGS-42263 14 2681399 23.44 18.82 0.197 0.165
UA-IFASA-5306 14 2711614  36.83 45.80 0.223 0.171
ARS-BFGL-NGS-54400 14 2736946 21.12 16.78 0.206 0.163
Hapmap22783-BTC-068255 14 2989274 25.42 32.59 0.207 0.178
Hapmap22692-BTC-068210 14 3018725 34.59 45.38 0.199 0.156
Hapmap23302-BTC-052123 14 3099634 36.42 52.77 0.206 0.161
Hapmap25217-BTC-067767 14 3189311 35.96 24.53 0.189 0.094
UA-IFASA-6329 14 3465238 25.58 29.83 0.166 0.133
ARS-BFGL-NGS-56339 14 3498808 15.52 20.81 0.160 0.155
UA-IFASA-8927 14 3640095 18.48 18.50 0.154 0.130
Hapmap32262-BTC-066621 14 3834070 28.92 27.90 0.193 0.140
Hapmap30091-BTC-005211 14 3940999 26.82 23.11 0.225 0.149
ARS-BFGL-BAC-24839 14 3993201 22.12 26.61 0.164 0.137
ARS-BFGL-BAC-24804 14 4157676 42.02 59.28 0.163 0.136
Hapmap51646-BTA-86764 14 4302230 33.30 41.88 0.186 0.111
ARS-BFGL-NGS-112858 14 4956374 25.89 37.11 0.199 0.155
Hapmap51078-BTA-87682 14 5064062 15.80 12.92 0.192 0.127
ARS-BFGL-NGS-55227 14 5085415 19.63 33.44 0.163 0.145
Hapmap32236-BTC-049785 14 5139497 19.37 34.36 0.142 0.131
ARS-BFGL-BAC-20965 14 5225005 23.50 18.29 0.244 0.175
Hapmap33635-BTC-049051 14 5318260 16.46 5.75 0.192 0.103
Hapmap27091-BTC-048823 14 5356987 29.54 27.13 0.197 0.113
Hapmap23851-BTC-048718 14 5387835 28.66 2481 0.236 0.131
Hapmap32234-BTC-048199 14 5640337 32.52 37.23 0.209 0.148
Hapmap26283-BTC-048098 14 5696728 15.08 30.24 0.151 0.128
Hapmap32948-BTC-047992 14 5839289 22.95 32.42 0.190 0.138
Hapmap24756-BTC-047876 14 5915294 20.39 19.47 0.215 0.158
Hapmap25716-BTC-047850 14 5937549 16.11 19.08 0.196 0.139
Hapmap23799-BTC-047701 14 6044245 11.39 12.82 0.212 0.130
ARS-BFGL-BAC-8730 14 6252100 30.95 21.19 0.187 0.118
Hapmap53312-rs29018332 14  6057687220.09 6.88 0.159 0.067
BTA-35525-no-rs 14 72400486 9.43 11.65 0.078 0.154
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ARS-BFGL-BAC-23729 14 73127978  4.90 11.73 0.054 0.168
Hapmap43128-BTA-105550 15 52541506 12.54 7.43 0.155 0.084
Hapmap59019-rs29021918 18 41938135 10.02 16.37 0.118 0.157
ARS-BFGL-NGS-17557 20 1290829 13.98 11.50 0.172 0.127
Hapmap39811-BTA-122745 20 35432864 10.43 13.05 0.161 0.165
BTB-01888575 20 35457272 8.48 11.86 0.177 0.185
BTA-50244-no-rs 20 36466784  6.63 12.12 0.130 0.167
BTA-50402-no-rs 20 36667999 7.94 15.52 0.141 0.179
Hapmap26466-BTA-160199 20 36746234  8.57 13.82 0.151 0.185
BTA-50386-no-rs 20 36837402 6.13 13.57 0.134 0.154
BTA-50376-no-rs 20 36915967 15.87 25.25 0.160 0.170
Hapmap57531-rs29013890 20  3695557413.12 17.52 0.181 0.170
Hapmap54884-rs29017180 20 50564369 8.80 17.44 0.174 0.128
ARS-BFGL-NGS-37182 22 5301596 10.98 10.56 0.267 0.273
ARS-BFGL-NGS-80066 23 20578210 11.18 7.83 0.335 0.200
Hapmap43294-BTA-56514 23 32759583 12.29 8.13 0.303 0.165
ARS-BFGL-NGS-55374 25 28795160 12.07 10.48 0.273 0.192
BTB-02094179 26 467952 7.37 10.98 0.183 0.196
ARS-BFGL-NGS-2127 26 13563198 13.90 8.58 0.158 0.115
ARS-BFGL-NGS-2464 26 18709176 13.00 8.73 0.150 0.134
ARS-BFGL-NGS-77668 26 18760372 19.50 16.74 0.132 0.131
ARS-BFGL-NGS-23064 26 18788121 18.84 15.64 0.132 0.131
ARS-BFGL-NGS-71584 26 18863914 19.45 14.43 0.113 0.127
BTB-00930720 26 21323659 12.27 10.90 0.148 0.151
Hapmap31825-BTA-158647 26 21476707 14.00 11.18 0.160 0.135
BTB-00931481 26 21631982 21.41 17.08 0.157 0.157
ARS-BFGL-NGS-18603 26 21853286 13.82 14.96 0.138 0.139
BTB-00932332 26 22551770 15.47 14.23 0.153 0.177
ARS-BFGL-NGS-107403 26 23470277 18.24 16.31 0.165 0.181
ARS-BFGL-NGS-119314 26 25634039 11.67 14.68 0.130 0.148
ARS-BFGL-NGS-109460 27 46280579 14.33 3.91 0.172 0.101
ARS-BFGL-NGS-116386 28 18996324  7.27 15.71 0.189 0.148
BTB-02080610 28 19938671 12.70 9.76 0.201 0.151
Hapmap58649-rs29011010 28 2818511515.70 9.11 0.154 0.127
ARS-BFGL-NGS-116154 29 49020982 8.01 10.91 0.142 0.165

Table S2Validated SNPs with chromosome (BTA), positiorbase pairs (bp), F-values and
effects for intercept and slope. Effect estimateseataken from the validation set. Validated
SNPs are indicated in bold type F-values and e#fstiinates. Results from the analysis of the

log-transformed data set.

F-values in discovery dataset Effectsd)n

SNP name BTA bp Intercept Slope Intercept Slope
In(Protein)

BTB-00014850 1 33047886  24.41 22.24 0.037 0.120

BTA-17929-no-rs 1 94762863 14.03 10.87 0.130 0.157

ARS-BFGL-BAC-7205 1 120983738 15.50 13.42 0.190 0.124
ARS-BFGL-NGS-99492 1 121607486 16.79 14.24 0.159 0.144

BTB-01116994 1 122957014 13.08 12.97 0.130 0.171

ARS-BFGL-NGS-5956 3 8558755 11.21 6.20 0.225 0.045

Hapmap22861-BTA-141421 3 60025569  10.41 12.01 0.093 0.089

Hapmap39895-BTA-15668 5 15392995 14.67 12.25 0.219 0.085

ARS-BFGL-NGS-68464 5 18395406 12.53 9.43 0.229 0.104

Hapmap23201-BTC-072836 6 40655229  21.27 16.53 0.122 0.110
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Hapmap58150-rs29020620 6 9672459420.75 7.37 0.188 0.096
BTB-00281303 6 111612203 15.31 2.36 0.206 0.104
ARS-BFGL-NGS-14880 7 53879989 12.33 17.75 0.277 0.125
ARS-BFGL-NGS-113181 7 62800839 12.44 10.95 0.186 0.085
Hapmap44053-BTA-28733 8 6369477 16.59 14.72 0.232 0.141
Hapmap31805-BTA-154485 8 36232703 11.49 4.12 0.187 0.074
Hapmap57000-rs29011304 9 26662 13.22 19.26 0.112 0.109
BTB-00389006 9 39062436 16.14 15.30 0.144 0.134
BTA-83317-no-rs 9 40393986 26.21 19.61 0.212 0.119
BTA-83528-no-rs 9 41691114 25.03 16.16 0.330 0.134
BTA-59878-no-rs 9 44095822 28.62 15.86 0.140 0.100
ARS-BFGL-NGS-52530 9 44230587 25.18 25.13 0.275 0.224
ARS-BFGL-NGS-103934 9 44255942 17.70 18.51 0.224 0.138
BTA-10828-no-rs 9 46600974 24.96 21.33 0.109 0.128
Hapmap24524-BTA-107865 9 47934344 10.86 17.83 0.064 0.105
ARS-BFGL-NGS-51043 9 51493578 7.19 11.78 0.004 0.091
BTB-00391835 9 52160813 11.19 5.86 0.202 0.101
ARS-BFGL-NGS-114465 9 79835130 7.21 12.68 0.032 0.099
UA-IFASA-2589 9 82175488 16.53 14.78 0.175 0.095
ARS-BFGL-NGS-88689 11 29901111 7.51 14.05 0.176 0.171
ARS-BFGL-NGS-87426 11 30070765 11.64 14.05 0.140 0.143
ARS-BFGL-NGS-21332 11 30108643 8.57 14.57 0.171 0.159
ARS-BFGL-NGS-118724 11 30366110 12.31 11.69 0.171 0.145
Hapmap45971-BTA-102151 11 71170530 15.89 11.36 0.071 0.107
ARS-BFGL-BAC-12483 13 1310816 9.44 12.89 0.185 0.138
Hapmap45253-BTA-15908 13 1498184 11.23 8.74 0.250 0.159
ARS-BFGL-NGS-63777 13 67075815 21.41 16.44 0.253 0.162
ARS-BFGL-NGS-52851 13 77352863 11.80 15.82 0.114 0.128
Hapmap29758-BTC-003619 14 5261 14.75 11.14 0.271 -0.053
Hapmap30383-BTC-005848 14 76704  45.90 32.63 0.319 -0.148
BTA-34956-no-rs 14 101474 21.25 8.68 0.258 -0.126
ARS-BFGL-NGS-57820 14 236533  72.35 54.42 0.470 -0.162
ARS-BFGL-NGS-34135 14 260342  33.86 17.84 0.354 -0.104
ARS-BFGL-NGS-94706 14 281534  32.66 16.59 0.346 -0.100
ARS-BFGL-NGS-4939 14 443936  76.53 54.67 0.497 -0.157
ARS-BFGL-NGS-107379 14 679601 61.30 51.49 0.391 -0.136
Hapmap25384-BTC-001997 14 835055 27.04 14.45 0.247 -0.061
Hapmap24715-BTC-001973 14 856890 22.96 11.30 0.253 -0.064
BTA-35941-no-rs 14 894253 25.36 22.23 0.375 -0.076
ARS-BFGL-NGS-101653 14 931163 20.57 14.60 0.322 -0.094
ARS-BFGL-NGS-26520 14 996983  20.29 13.50 0.361 -0.058
UA-IFASA-6878 14 1044040 32.09 28.23 0.176 -0.076
ARS-BFGL-NGS-22866 14 1131951 20.13 10.87 0.307 -0.098
ARS-BFGL-NGS-103064 14 1193335 22.91 7.53 0.264 -0.050
ARS-BFGL-NGS-3122 14 1264232 19.19 6.75 0.220 -0.029
Hapmap25486-BTC-072553 14 1285036 19.18 7.04 0.262 -0.076
Hapmap30646-BTC-002054 14 1461084 25.97 27.24 0.346 0.130
Hapmap30086-BTC-002066 14 1490177 22.30 21.27 0.358 -0.091
Hapmap30374-BTC-002159 14 1546590 26.64 21.65 0.370 -0.073
ARS-BFGL-NGS-74378 14 1889209 18.11 16.86 0.236 -0.059
ARS-BFGL-NGS-117542 14 1913107 16.54 12.41 0.249 -0.107
ARS-BFGL-NGS-100480 14 2607582 11.61 6.51 0.292 -0.033
UA-IFASA-5306 14 2711614 11.40 11.87 0.236 -0.029
Hapmap22692-BTC-068210 14 3018725 12.60 13.43 0.193 -0.047
Hapmap23302-BTC-052123 14 3099634 14.23 18.84 0.215 -0.050
UA-IFASA-6329 14 3465238 10.89 16.37 0.231 -0.036
ARS-BFGL-NGS-110563 14 3799229 12.33 14.60 0.250 -0.024
Hapmap32262-BTC-066621 14 3834070 14.68 9.51 0.213 -0.071
Hapmap32236-BTC-049785 14 5139497 12.66 20.47 0.142 0.111
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BTB-01988444 14 56535371  3.79 10.99 0.077 0.143
ARS-BFGL-NGS-100131 15 21041772  9.65 10.88 0.076 0.145
BTB-01698088 16 9738423 11.30 14.27 0.156 0.144
ARS-BFGL-NGS-56645 16 23920210 15.64 5.92 0.199 0.060
ARS-BFGL-NGS-38023 16 33318455  18.62 13.72 0.105 0.128
ARS-BFGL-NGS-26559 16 33367687 11.76 10.47 0.216 0.141
ARS-BFGL-NGS-59645 16 73117625 16.15 10.33 0.235 0.086
ARS-BFGL-NGS-21141 17 3125444 5.55 14.51 0.092 0.105
Hapmap58542-rs29018933 17 29430592 4.76 12.24 0.071 0.087
ARS-BFGL-BAC-33672 20 44108671  10.55 12.67 0.235 0.196
BTA-17135-no-rs 20 49557519 11.68 16.41 0.154 0.168
BTB-01251603 20 50418473 8.95 11.30 0.178 0.214
Hapmap54884-rs29017180 20 50564369 4.84 12.50 0.059 0.087
ARS-BFGL-BAC-34291 20 54837742 8.44 14.24 0.145 0.177
Hapmap53927-rs29025287 20 56464296  8.63 11.17 0.152 0.185
ARS-BFGL-BAC-36842 20 58820614  6.52 11.22 0.125 0.151
BTA-12959-no-rs 21 10922512 13.78 9.40 0.178 0.109
ARS-BFGL-NGS-101900 21 30314497 14.16 5.32 0.176 0.104
ARS-BFGL-NGS-110044 21 30892171 11.75 3.37 0.196 0.050
ARS-BFGL-NGS-55374 25 28795160 24.35 24.33 0.275 0.224
ARS-BFGL-NGS-4066 26 9059815 10.32 13.50 0.064 0.115
ARS-BFGL-NGS-2464 26 18709176  20.66 13.07 0.087 0.126
ARS-BFGL-NGS-77668 26 18760372  22.13 17.22 0.098 0.104
ARS-BFGL-NGS-23064 26 18788121  21.97 16.74 0.098 0.103
ARS-BFGL-NGS-71584 26 18863914  28.62 19.66 0.041 0.134
BTA-62184-no-rs 26 20014035 17.96 11.22 0.078 0.083
BTA-60778-no-rs 26 20090833  21.08 17.89 0.100 0.151
ARS-BFGL-NGS-25126 26 20165024  14.10 13.56 0.049 0.089
ARS-BFGL-NGS-116902 26 20191815  14.47 13.97 0.063 0.090
Hapmap31825-BTA-158647 26 21476707 13.12 7.25 0.174 0.097
ARS-BFGL-NGS-18603 26 21853286  14.86 13.52 0.160 0.095
ARS-BFGL-NGS-116481 26 22411701  10.02 11.08 0.184 0.084
Hapmap24832-BTA-138805 26 22449570 10.14 11.13 0.184 0.084
BTB-00932332 26 22551770 15.62 12.20 0.171 0.140
ARS-BFGL-NGS-107403 26 23470277  18.20 12.99 0.138 0.132
BTB-01622498 28 1436040 3.55 11.44 0.130 0.127
ARS-BFGL-NGS-43501 28 17344828  14.40 14.28 0.099 0.130
ARS-BFGL-NGS-118693 28 17493199 10.91 12.75 0.071 0.100
UA-IFASA-6208 28 27379038 13.36 7.50 0.195 0.038
BTA-99382-no-rs 28 41568645 12.46 12.19 0.187 0.074
In(Fat)

Hapmap38956-BTA-43309 1 98853038 13.07 10.74 0.212 0.206
BTB-01562245 1 113644592 11.37 9.54 0.306 0.290
BTA-104132-no-rs 1 11366978312.14 9.85 0.311 0.293
ARS-BFGL-BAC-7205 1 120983738 12.75 9.11 0.165 0.117
ARS-BFGL-NGS-88388 2 13718482 20.06 16.60 0.162 0.130
ARS-BFGL-NGS-112315 2 40959609 12.90 3.87 0.194 0.128
ARS-BFGL-NGS-44416 2 48557519 11.37 7.58 0.185 0.121
BTB-00108243 2 112019423 17.58 22.93 0.290 0.285
BTB-01678000 3 6985014 20.47 18.76 0.166 0.121
BTB-01678060 3 7009487 19.85 20.49 0.196 0.160
ARS-BFGL-NGS-5956 3 8558755 18.50 14.08 0.195 0.147
ARS-BFGL-NGS-112616 3 8598511 16.94 12.10 0.180 0.133
Hapmap50814-BTA-89905 3 41486200 11.61 7.40 0.197 0.120
INRA-648 3 54347354 13.24 12.30 0.309 0.288
Hapmap43441-BTA-103289 3 61621627  17.33 21.78 0.141 0.137
BTA-68164-no-rs 3 68215262 12.86 6.92 0.199 0.110
BTB-00131847 3 68241075 12.93 7.45 0.203 0.119
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BTA-54952-no-rs
ARS-BFGL-NGS-20815
ARS-BFGL-NGS-117196
BTB-01252613
Hapmap39895-BTA-15668
ARS-BFGL-NGS-108617
ARS-BFGL-NGS-95906
Hapmap53294-rs29016908
Hapmap60021-ss46526426
BTB-00270281
Hapmap58150-rs29020620
BTB-01700063
Hapmap53916-rs29021982
Hapmap48078-BTA-77495
ARS-BFGL-NGS-14880
ARS-BFGL-NGS-113181
BTB-02035459
BTB-01219396
BTA-12616-no-rs
ARS-BFGL-NGS-65419
ARS-BFGL-NGS-12863
ARS-BFGL-NGS-23091
BTB-01222854
BTA-23130-no-rs
BTB-01321253
Hapmap44053-BTA-28733
BTB-01184997
Hapmap31805-BTA-154485
Hapmap41758-BTA-116042
BTB-00384442
BTA-83317-no-rs
BTA-83528-no-rs
ARS-BFGL-NGS-52530
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Hapmap50263-BTA-122214
Hapmap30370-BTA-99862
Hapmap33349-BTA-127624
Hapmap29758-BTC-003619
Hapmap30381-BTC-005750
Hapmap30383-BTC-005848
BTA-34956-no-rs
ARS-BFGL-NGS-57820
ARS-BFGL-NGS-34135
ARS-BFGL-NGS-94706
ARS-BFGL-NGS-4939
ARS-BFGL-NGS-71749
ARS-BFGL-NGS-107379
ARS-BFGL-NGS-18365
Hapmap30922-BTC-002021
Hapmap25384-BTC-001997
Hapmap24715-BTC-001973
BTA-35941-no-rs
ARS-BFGL-NGS-101653
ARS-BFGL-NGS-26520
UA-IFASA-6878
ARS-BFGL-NGS-22866
ARS-BFGL-NGS-103064
ARS-BFGL-NGS-3122
Hapmap25486-BTC-072553

10
11
12
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14

11830564 11.77
15021946 16.20

53206872 9.67

1851325 10.90
15392995 10.89
98082173 15.13
10035192620.56
1010904189.46
1019795821.63
95770023 16.41
9672459411.60
99086447 21.30
9958126918.02
99827767 13.14
53879989 14.54
62800839 17.30
63196194 11.49
63221359 11.49
64712171 12.78
66102696 16.31
68960712 16.46
69342623 13.36
74587278 13.33
76690557 11.05
83625073 20.03
6369477 15.72
36171902 11.71
36232703 12.94
37197678 11.21
22407445 10.97
40393986 18.23
41691114 18.04
44230587 13.85
731548202.06
70455224 11.11
14499391 13.90

47348606 10.61

5261 39.84
50873  59.74
76704  64.76

101474 29.60
236533  146.22
260342  78.42
281534 74.85
443936  157.26
596340 41.92
679601  100.53
741868  46.78
763332 49.33
835055 64.12
856890 61.25
894253 97.77
931163  41.53
996983  69.06
1044040 35.95
1131951 44.65
1193335 62.36
1264232 34.28
1285036 34.91
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9.97
14.19
11.42
7.03
6.92
11.12
16.92
25.68
16.47
9.91
5.12
14.69
13.96
12.88
13.67
17.77
7.58
7.58
8.69
13.08
7.71
6.96
9.64
5.66
20.87
11.82
9.07
9.44
6.40
7.61
14.82
15.22
10.44
11.10
9.21
7.21
11.04
35.22
58.91
61.82
33.07
135.30
79.35
76.21
144.90
40.96
86.20
38.21
41.41
62.10
60.82
85.15
38.61
65.29
29.85
45.92
64.75
34.89
40.10

0.184
0.171
0.150
0.182
0.189
0.224
0.192
0.178
0.200
0.201
0.163
0.237
0.196
0.158
0.240
0.161
0.152
0.152
0.154
0.191
0.215
0.227
0.218
0.174
0.175
0.201
0.205
0.162
0.224
0.198
0.183
0.286
0.238
0.175
0.271
0.213
0.176
0.234
0.274
0.276
0.223
0.407
0.307
0.300
0.430
0.306
0.339
0.176
0.181
0.214
0.219
0.324
0.279
0.313
0.152
0.266
0.229
0.190
0.227

0.139
0.121
0.143
0.150
0.131
0.171
0.133
0.153
0.142
0.123
0.100
0.153
0.150
0.116
0.155
0.122
0.102
0.102
0.100
0.130
0.135
0.136
0.151
0.096
0.126
0.183
0.141
0.110
0.160
0.127
0.131
0.207
0.161
0.151
0.198
0.170
0.137
0.181
0.229
0.224
0.179
0.327
0.244
0.240
0.343
0.260
0.263
0.159
0.175
0.208
0.210
0.255
0.240
0.274
0.115
0.201
0.242
0.220
0.221
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Hapmap30646-BTC-002054 14 1461084 68.84 57.75 0.299 0.242
Hapmap30086-BTC-002066 14 1490177 110.42 94.52 0.310 0.255
Hapmap30374-BTC-002159 14 1546590 89.68 76.49 0.320 0.243
ARS-BFGL-NGS-74378 14 1889209 48.22 36.95 0.205 0.172
ARS-BFGL-NGS-117542 14 1913107 28.04 26.03 0.215 0.189
UA-IFASA-9288 14 2201869 48.16 32.53 0.183 0.167
Hapmap24777-BTC-064977 14 2261622 13.82 12.31 0.166 0.163
Hapmap32970-BTC-064990 14 2288509 32.04 27.00 0.167 0.164
Hapmap24986-BTC-065021 14 2313594 32.04 27.00 0.167 0.164
ARS-BFGL-NGS-22111 14 2347218  18.98 18.88 0.122 0.140
UA-IFASA-7269 14 2370255  18.98 18.88 0.122 0.140
Hapmap26072-BTC-065132 14 2391825  23.93 24.54 0.144 0.156
ARS-BFGL-NGS-113575 14 2484498 34.94 31.97 0.178 0.164
ARS-BFGL-NGS-118081 14 2511264 41.44 40.47 0.238 0.199
ARS-BFGL-NGS-56327 14 2580413 60.00 53.41 0.219 0.199
ARS-BFGL-NGS-100480 14 2607582 74.83 67.79 0.253 0.223
UA-IFASA-5306 14 2711614 4761 32.91 0.204 0.185
Hapmap27703-BTC-053907 14 2826072  26.82 24.14 0.131 0.133
Hapmap22692-BTC-068210 14 3018725 36.74 24.94 0.167 0.142
Hapmap23302-BTC-052123 14 3099634 35.66 21.05 0.186 0.154
UA-IFASA-6329 14 3465238 25.62 19.44 0.200 0.159
ARS-BFGL-NGS-3571 14 3587017 26.26 20.08 0.208 0.163
ARS-BFGL-NGS-110563 14 3799229 2521 17.13 0.216 0.161
Hapmap32262-BTC-066621 14 3834070 13.02 8.96 0.185 0.139
ARS-BFGL-NGS-115947 14 3865963 33.68 21.03 0.225 0.177
Hapmap51646-BTA-86764 14 4302230  23.90 16.80 0.128 0.129
Hapmap30988-BTC-056315 14 4693900 20.21 18.28 0.205 0.158
ARS-BFGL-NGS-110894 14 5282437 14.60 9.05 0.197 0.149
UA-IFASA-6647 14 5808643 21.04 13.97 0.152 0.111
ARS-BFGL-NGS-102953 14 5867265 18.86 10.66 0.157 0.114
ARS-BFGL-NGS-16622 15 64781292 11.60 9.80 0.191 0.153
Hapmap54310-rs29012181 16 8166691  9.54 10.99 0.195 0.138
ARS-BFGL-NGS-56645 16 23920210 11.94 8.17 0.172 0.098
ARS-BFGL-NGS-26559 16 33367687 11.84 12.32 0.187 0.148
BTA-16056-no-rs 17 20423826  11.69 11.86 0.368 0.345
ARS-BFGL-NGS-91287 18 10052638 17.05 15.68 0.247 0.154
ARS-BFGL-NGS-111247 19 43146804 14.75 12.96 0.158 0.109
ARS-BFGL-NGS-24479 19 45901285 11.53 6.99 0.188 0.114
ARS-BFGL-NGS-113693 19 45926259 12.69 7.75 0.188 0.114
Hapmap48608-BTA-111028 20 52535573  12.23 16.55 0.159 0.144
BTA-12959-no-rs 21 10922512 12.62 9.98 0.154 0.108
ARS-BFGL-NGS-101900 21 30314497 12.91 7.10 0.153 0.096
ARS-BFGL-NGS-55374 25 28795160 14.21 10.68 0.238 0.161
ARS-BFGL-NGS-39397 26 21166268 13.43 12.13 0.163 0.147
Hapmap46411-BTA-15820 26 21404446 14.57 12.21 0.197 0.179
Hapmap31825-BTA-158647 26 21476707 15.83 12.66 0.151 0.143
ARS-BFGL-NGS-110077 26 21729361 14.14 16.15 0.180 0.149
ARS-BFGL-NGS-116481 26 22411701 22.85 23.56 0.159 0.133
Hapmap24832-BTA-138805 26 22449570 23.76 24.42 0.159 0.133
ARS-BFGL-NGS-6259 26 22492302 21.29 22.06 0.159 0.133
ARS-BFGL-NGS-1092 26 24837303 16.65 19.74 0.195 0.146
UA-IFASA-4715 26 25330026  16.09 18.89 0.128 0.121
ARS-BFGL-NGS-38386 26 32836475  7.32 11.01 0.134 0.157
ARS-BFGL-NGS-105944 26 34196569 11.54 8.78 0.221 0.146
ARS-BFGL-NGS-53731 26 37801879  13.47 15.29 0.131 0.140
UA-IFASA-6208 28 27379038 12.29 8.03 0.169 0.117
In(Milk)

ARS-BFGL-BAC-13578 1 121811393 14.00 12.21 0.197 0.168
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ARS-BFGL-NGS-86079 2 19126180 13.56 7.17 0.203 0.172
Hapmap53232-rs29020795 2 1920235612.37 8.78 0.177 0.149
Hapmap60669-rs29018484 2 2068735314.57 10.61 0.346 0.238
ARS-BFGL-NGS-75548 4 78246158 15.29 8.67 0.462 0.309
ARS-BFGL-NGS-115922 5 29921450 10.99 11.43 0.278 0.228
BTA-75680-no-rs 6 31470687 11.54 6.24 0.161 0.101
Hapmap54442-rs29025673 6 3157980612.50 7.42 0.161 0.101
UA-IFASA-2111 6 85289127 14.17 11.85 0.195 0.119
Hapmap25708-BTC-043671 6 8826365511.20 10.56 0.215 0.109
Hapmap40845-BTA-97263 6 92788189 11.64 5.88 0.203 0.125
BTB-01428914 6 93850918 12.73 7.77 0.159 0.092
Hapmap53417-rs29014877 7 1060398682.83 10.48 0.168 0.106
ARS-BFGL-NGS-4062 8 5505897 7.21 11.81 0.207 0.159
Hapmap31053-BTA-111664 9 27739862 14.86 10.09 0.197 0.139
BTA-59878-no-rs 9 44095822 11.31 8.53 0.165 0.142
ARS-BFGL-NGS-52530 9 44230587 12.96 12.03 0.285 0.201
ARS-BFGL-NGS-38561 9 45373250 8.38 11.34 0.140 0.131
BTA-10828-no-rs 9 46600974 16.48 17.49 0.169 0.157
Hapmap24524-BTA-107865 9 47934344 8.70 13.36 0.126 0.120
ARS-BFGL-NGS-62628 9 82136926 10.01 11.28 0.157 0.139
ARS-BFGL-NGS-78549 11 10653468912.86 11.55 0.250 0.185
ARS-BFGL-BAC-12483 13 1310816 14.05 15.25 0.157 0.156
BTA-15911-no-rs 13 1371524 12.94 12.38 0.170 0.146
ARS-BFGL-NGS-56157 13 63208626 13.37 5.20 0.172 0.079
Hapmap54034-rs29026486 13 6518378114.01 4.09 0.192 0.076
ARS-BFGL-NGS-103635 13 67816926 12.80 4.96 0.163 0.076
Hapmap29758-BTC-003619 14 5261 42.73 42.44 0.184 0.139
Hapmap30381-BTC-005750 14 50873 47.35 38.59 0.295 0.235
Hapmap30383-BTC-005848 14 76704 132.62 116.70 0.386 0.277
BTA-34956-no-rs 14 101474 69.69 49.64 0.300 0.231
ARS-BFGL-NGS-94706 14 281534  110.80 85.22 0.326 0.241
ARS-BFGL-NGS-107379 14 679601 170.53 162.75 0.402 0.299
ARS-BFGL-NGS-18365 14 741868  38.59 45.89 0.204 0.112
Hapmap30922-BTC-002021 14 763332 28.82 33.10 0.188 0.096
Hapmap25384-BTC-001997 14 835055 86.77 65.63 0.304 0.183
Hapmap24715-BTC-001973 14 856890 77.38 57.27 0.299 0.183
BTA-35941-no-rs 14 894253 84.21 90.38 0.255 0.194
ARS-BFGL-NGS-101653 14 931163 49.12 42.64 0.238 0.168
ARS-BFGL-NGS-26520 14 996983  56.71 48.24 0.218 0.139
UA-IFASA-6878 14 1044040 85.46 86.53 0.265 0.190
ARS-BFGL-NGS-22866 14 1131951 54.37 48.14 0.204 0.189
ARS-BFGL-NGS-3122 14 1264232 55.37 35.73 0.272 0.131
Hapmap25486-BTC-072553 14 1285036 53.65 31.62 0.277 0.165
Hapmap30646-BTC-002054 14 1461084 63.96 69.53 0.223 0.160
Hapmap30086-BTC-002066 14 1490177 80.04 85.10 0.253 0.182
Hapmap30374-BTC-002159 14 1546590 86.76 91.59 0.248 0.196
ARS-BFGL-NGS-74378 14 1889209 53.11 61.21 0.276 0.191
ARS-BFGL-NGS-117542 14 1913107 37.97 36.27 0.252 0.190
UA-IFASA-9288 14 2201869 36.57 42.92 0.218 0.122
Hapmap32970-BTC-064990 14 2288509 19.61 18.23 0.171 0.079
Hapmap24986-BTC-065021 14 2313594 19.61 18.23 0.171 0.079
Hapmap26527-BTC-005059 14 2418618 27.21 25.01 0.186 0.130
ARS-BFGL-NGS-113575 14 2484498 15.74 18.23 0.178 0.115
ARS-BFGL-NGS-118081 14 2511264 27.25 25.05 0.196 0.149
ARS-BFGL-NGS-56327 14 2580413 38.75 39.00 0.233 0.156
ARS-BFGL-NGS-100480 14 2607582 48.59 44.93 0.252 0.165
ARS-BFGL-NGS-42263 14 2681399 24.01 17.93 0.209 0.160
UA-IFASA-5306 14 2711614 38.68 4511 0.233 0.145
ARS-BFGL-NGS-54400 14 2736946 21.70 15.31 0.218 0.151
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Hapmap22692-BTC-068210 14 3018725 36.15 43.09 0.208 0.140
Hapmap23302-BTC-052123 14 3099634 38.58 51.15 0.215 0.148
Hapmap25217-BTC-067767 14 3189311 36.24 21.15 0.195 0.076
UA-IFASA-6329 14 3465238 26.01 28.86 0.170 0.106
ARS-BFGL-NGS-56339 14 3498808 16.13 20.80 0.166 0.134
UA-IFASA-8927 14 3640095 18.63 16.26 0.157 0.112
Hapmap30091-BTC-005211 14 3940999 27.46 21.04 0.236 0.119
ARS-BFGL-BAC-24839 14 3993201 22.93 22.70 0.173 0.106
ARS-BFGL-NGS-112858 14 4956374 27.34 35.86 0.208 0.133
Hapmap51078-BTA-87682 14 5064062 16.06 12.13 0.202 0.110
ARS-BFGL-NGS-55227 14 5085415 21.02 33.40 0.171 0.130
Hapmap32236-BTC-049785 14 5139497 20.69 34.26 0.149 0.126
ARS-BFGL-BAC-20965 14 5225005 23.51 18.01 0.255 0.157
Hapmap33635-BTC-049051 14 5318260 15.80 5.33 0.197 0.092
Hapmap27091-BTC-048823 14 5356987 30.86 26.34 0.208 0.098
Hapmap23851-BTC-048718 14 5387835 29.32 22.85 0.244 0.113
Hapmap32234-BTC-048199 14 5640337 33.67 36.21 0.217 0.131
Hapmap26283-BTC-048098 14 5696728 16.56 27.75 0.158 0.107
Hapmap25716-BTC-047850 14 5937549 17.19 17.52 0.208 0.123
Hapmap23799-BTC-047701 14 6044245 12.10 11.67 0.222 0.108
ARS-BFGL-BAC-8730 14 6252100 31.45 21.44 0.194 0.106
Hapmap53312-rs29018332 14  6057687220.04 6.97 0.166 0.070
Hapmap43128-BTA-105550 15 52541506 12.39 6.76 0.160 0.088
Hapmap59019-rs29021918 18 41938135 10.34 16.90 0.128 0.148
Hapmap39811-BTA-122745 20 35432864 10.75 11.29 0.170 0.145
BTA-50235-no-rs 20 35883921 7.85 11.52 0.237 0.294
BTA-50402-no-rs 20 36667999 8.05 14.59 0.152 0.160
Hapmap26466-BTA-160199 20 36746234 8.46 13.28 0.163 0.166
BTA-50376-no-rs 20 36915967 15.91 20.90 0.168 0.137
Hapmap57531-rs29013890 20 3695557413.03 14.21 0.190 0.148
ARS-BFGL-NGS-37182 22 5301596 11.30 10.22 0.282 0.273
Hapmap43294-BTA-56514 23 32759583 11.76 7.34 0.311 0.161
ARS-BFGL-NGS-55374 25 28795160 12.33 11.61 0.285 0.201
ARS-BFGL-NGS-2127 26 13563198 13.62 10.34 0.163 0.130
ARS-BFGL-NGS-2464 26 18709176 12.92 10.90 0.154 0.149
ARS-BFGL-NGS-77668 26 18760372 19.84 2111 0.139 0.154
ARS-BFGL-NGS-23064 26 18788121 19.17 19.93 0.139 0.154
ARS-BFGL-NGS-71584 26 18863914 19.57 17.19 0.119 0.144
BTB-00930720 26 21323659 12.52 11.21 0.154 0.168
Hapmap31825-BTA-158647 26 21476707 13.93 11.98 0.165 0.154
BTB-00931481 26 21631982 21.92 19.19 0.165 0.170
ARS-BFGL-NGS-18603 26 21853286 14.66 16.99 0.145 0.147
ARS-BFGL-NGS-114149 26 22137070 5.96 10.88 0.109 0.137
BTB-00932332 26 22551770 15.99 15.53 0.160 0.184
ARS-BFGL-NGS-107403 26 23470277 18.82 18.04 0.171 0.194
BTA-60935-no-rs 26 23985824 17.32 15.01 0.142 0.146
ARS-BFGL-NGS-119314 26 25634039 12.11 14.59 0.136 0.157
BTB-00935537 26 26325360 17.75 14.89 0.102 0.135
Hapmap28763-BTA-162328 26 26472420 9.67 11.44 0.111 0.129
ARS-BFGL-NGS-109460 27 46280579 13.48 2.64 0.174 0.083
BTB-02080610 28 19938671 12.76 10.74 0.206 0.146
Hapmap58649-rs29011010 28 2818511515.98 8.69 0.162 0.125
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INTERPRETIVE SUMMARY
Genotype-by-environment interaction was frequestlydied in dairy cattle breeding using
reaction norm models. Often the environment is leddyy average herd milk production
levels, but the level of udder health and hygienghinalso be an important environmental
factor. In this article we report the results frartarge scale genome-wide association analysis
for the intercept and slope of milk protein reactimorms when using the average herd test
day solution for somatic cell score as an enviramadedescriptor. We were able to detect and
confirm several SNP cluster affecting intercept alupe. The results may have implications

for breeding robust cows.

ABSTRACT

Genotype-by-environment interaction (GXE) has bestely reported in dairy cattle. If the
environment can be measured on a continuous seat#ion norms can be applied to study
GxE. The average herd milk production level wagjdently used as an environmental
descriptor, which is mainly influenced by the leeéfeeding or the feeding regime. Another
important environmental factor is the level of uddealth and hygiene, for which the average
herd level of somatic cell count might be a degoripln the present study we conducted a
genome-wide association analysis to identify SNig affect intercept and slope of milk
protein yield reaction norms when using the averagel test day solution for somatic cell
score as an environmental descriptor. Sire estsnfaeintercept and slope of the reaction
norms were calculated from around 12 million dasghecords, using linear reaction norm
models. Sires were genotyped for 54k SNPs. Theestienates were used as observations in
the association analysis, using 1,797 sires. Sogmf SNPs were confirmed in an
independent validation set consisting of 500 sikeknown major gene affecting protein yield
was included as a covariable in the statistical @ho& number of 60 (21) SNPs was
confirmed for intercept with p< 0.01 f < 0.001) in the validation set. These figures wete 2
and 11 for slope. Most, but not all, SNPs affecstape affected also intercept. A comparison
with an earlier study revealed that SNPs affectitagpe where in general also significant for
slope when the environment was modelled by the ameerherd milk production level,

although both environmental descriptors were ooly torrelated.

Key Words : genotype-by-environment interactiormatc cell score, association analysis,

reaction norm
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INTRODUCTION

The term genotype x environment interaction (Gx&enrs to differences in response of
genotypes to changes in the environment (Lynch\@atsh, 1998). The environment where
dairy farming is practised varies considerably @odsequently GXE were investigated in
several studies, see e.g. Konig et al. (2005) anan&berg et al. (2009) and references
therein. If the environment can be measured oméragous scale, reaction norm models are
often used to study GxE (e.g. Kolmodin et al., 2082ayes et al., 2003; Strandberg et al.,
2009). In a reaction norm model, the phenotypeadetied as a function of the environment,
where the phenotype is produced. The slope of #aetion norm is a measure of the
environmental sensitivity. Individuals with steeflaf) slope are called environmental

sensitive (robust) individuals. A non-zero varianté¢he slope indicates the presence of GxE.

The choice of an appropriate environmental desarips of fundamental importance.
Frequently, the average herd production level efttait under consideration is used as an
environmental descriptor, because it combines mamybservable environmental factors
affecting the phenotype. In addition, this can bneated with high precision for many dairy
herds, provided that herd size is not too smatbBbly the most important environmental
factor is the level of feeding, which is captured difecting average herd milk production
(Hayes et al., 2003).

Another important environmental factor for dainftis the level of hygiene and of udder
health. This is not recorded routinely in Germamajthough there is a trend towards
implementing special recording schemes on conbrats. However, the level of somatic cell
count (SCC) is routinely collected on many dairynfa for management and breeding
purposes. Barkema et al. (1999) and, in a recam¢we Dufour et al. (2011) pointed out
significant relationships of udder health managenpactise and herd somatic cell count
(SCC). Because somatic cell score (SCS) is incluni¢lde panel of traits for which routinely
genetic evaluations are performed in Germany,bilgiaverage herd SCS levels are available

that can be used as environmental descriptor in & dysis.

Considering environmental sensitivity or, equivdignrobustness is an increasing issue in
dairy cattle breeding (Veerkamp et al., 2009; Hageal., 2009). One way to do this is to
apply marker assisted or genomic selection. In botleding schemes some knowledge of the

genes affecting environmental sensitivity is needdxkrefore, Lillehammer et al. (2009) and
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Hayes et al. (2009) extended classical genome agdeciation analysis (GWAS) towards
considering GxE effects. They estimated for eaclir SN effect for intercept and for slope
and found environmental sensitive and robust SNRs. latter one were significant for the
intercept but not for the slope. In addition, Lilemmer et al. (2009) mapped a higher number
of QTL if GXE was taken into account. Hence, altjltouhe model becomes more complex
and additional parameters have to be estimatedjdenng GXE might result in an increase

in statistical power to map QTL.

In a previous study we applied higher order reactiorm random regression models and
found highly significant GXE effects in German Helss for both environmental descriptors
average herd milk production level and average he@b (Streit et al., 2012). Both
descriptors were slightly negatively correlatedX8). In a subsequent study we conducted a
GWAS to identify SNPs for milk production traitdedting slope and intercept of the reaction
norms in German Holsteins (Streit et al., 2013). ¥¥ed the average herd milk energy yield
as a continuous environmental descriptor and ag@imnilar statistical models proposed by
Lillehammer et al. (2009) and Hayes et al. (2008)merous SNPs could be identified that

were significantly associated with intercept arapsl

The aim of the present study was to conduct a lacgéee GWAS for milk protein yield with
the average herd somatic cell score as an envinotanedescriptor. We applied a three-step
procedure. In the first step, estimates for intercand slope of sire reaction norms were
calculated using first-order random regression sigglels. These estimates were used in a
second step as observations in an association sésaly the third step, significant SNP

associations were confirmed in an independent &did set of the same population.

MATERIALS AND METHODS

Data and data editing

In total 2,356 progeny tested German Holstein sikese genotyped with the Illlumina
BovineSNP50 BeadChip (lllumina, San Diego, CA; Matmalli et al., 2009). The sires were
born between 1983 and 2003. Data filtering was dasiag PLINK (Purcell et al., 2007)
using the following criteria. Individuals with motkan 10% missing marker genotypes were
removed (59 individuals). An SNP was excluded iiad a minor allele frequency less than
3%, a call rate less than 90%, a significant demiatfrom the Hardy-Weinberg-equilibrium

(p<0.001), or if the position on the genome was umkmdSNPs on the sex chromosome were
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also excluded. A total of 41,349 SNPs remainechendata set. Sporadic missing genotypes
were imputed using fastPHASE (Scheet and Steph2086). The average linkage
disequilibrium between pairwise SNPs at distandes 25 kb wasr® = 0.3 (Qanbari et al.,
2010).

Around 12 million first lactation test day records milk protein yield from daughters of the
sires were used. The number of daughters per botied from 50 to 74,842 and totalled
around 1.3 million. Test day records were correfbedhe fixed effects herd test day, days in
milk, age at calving, calving season and the rang@mmanent environment effect. These
correction factors were obtained from the routinemal genetic evaluation. Only daughters
with at least seven observations per year wereideresl. The environmental descriptors
were herd test day solutions for somatic cell scatdch was obtained from routine animal
evaluation. Observations in extreme and rare enments were discarded (around two
percent of the observations). These restrictiorssiea that there were enough observations
and variation of the environmental descriptor tplgpeaction norms within individual cows
and that the results were not affected by (unrkd)abxtreme and rare environments. The

environmental descriptor was rescaled to have axrakaero and a standard deviation of one.

Statistical analysis

The following reaction norm random regression madkes applied in the first step:

1)

ijm

1 1
Cyy = M +b Ohtdsscs+ Y_ s, * htdsscg + > d, * htdsscg +g,, ,
m=0 m=0

wherecyix is the corrected protein yield of daughteof sirej at herd test day, p is the
overall meanhtdsscgis the herd test day solution for SCS at herd dagtk with the fixed
regression coefficienb, sm is the random sire effect of sifeof orderm, djn the random

daughter effect of daughteof sirej of orderm, ande is the random residual. The covariance

S

structure of the sire regression effects\/iar{
S

g’ O
}:AD{ % Z’Sil, and of the daughter
CT%%CZi

d O Oag | . o
effects isVar{ 0} = D{ K Zd } with A () being the numerator relationship (identity)
1 04,94,

matrix. The model was fitted using ASReml 3.0 (Gilm et al., 2009). The estimated sire
effects for slope and intercept of the proteind/iedaction norms (estimated in model 1) were

treated as two different traits and were used asmhtions in association analysis (model 2).
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The whole data set was randomly split into a discpwata setn(= 1,797 bulls) and a
validation data sein(= 500 bulls). In the second step of the statisaoalysis, we performed
genome-wide association analyses using the disgodata set. It is known thddGAT1
segregates in this population and shows a substaftect also for protein yield (Thaller et
al., 2003). TheDGAT1 K232A-substitution is not included in the IlllumiridovineSNP50
BeadChip, but the SNP ARS-BFGL-NGS-4939 is in neadmplete linkage disequilibrium

with this substitution in the German Holsteing£ 0.998, Wang et al., 2012). Therefore, we

included this marker as a covariate in the statiktmodel for the association analysis. The
following mixed linear model was applied for eachrier in turn:

S =M +h*z +sire, +h * x, +e;, (2)
where éjt is the estimated sire effect for traitt being intercept and slope, respectively). The

term z denotes the number of copies of the allele with higher frequency of SNP ARS-

BFGL-NGS-4939 (z = 0, 1, or 2) argl is the regression coefficient. The effect of e&NP

k was modelled similarly as a regression on the rarrmobcopies of the allele with the higher

frequency (x = 0, 1, or 2), witl, being the regression coefficient. In order to oointhe

population structure, we fitted a random sire dffeith the covariance structufes?,, where

st

o2 is a variance attributable to the sires. This rhodgs applied for each SNRin turn,
resulting in 41,348 association tests per trait. 8&elared each SNP with a pointwise error
probability belowp<0.001 as significant. In order to judge how maalsdé positives were
among the significant associations we applied #tgefdiscovery rate (FDR) technique. We
calculated for each association test an FpRilue using the software QVALUE (Storey and
Tibshirani, 2003). The FDR)-value of the significant SNP with the lowest tegatistic
(p~=0.001) provided an estimate of the proportion dédapositives among the significant

associations.

In the third step, we confirmed significant SNPaasations within the same population in the
validation set. The same statistical model was iagplbut only to significant SNPs. We
declared an SNP as confirmed if tpevalue in the validation set was eithpx0.001
(stringent) orp<0.01 (less stringent significance level) and tigas of the effects were the
same in both sets. The less stringent significaniderion was used in addition, because less
multiple testing was performed, and the stringégmiScance level would reduce the power

to confirm SNPs. A similar strategy was applieddryce et al. (2010).
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RESULTS

The estimated variance components are shown ireTlablfhe daughter variance components
are larger than the sire variance components. Tdreard errors are small for all estimated
components. The correlation between intercept &pkss negative for both the sire and the
daughter. Table 2 summarises the results from $isecaation analysis. The FDR analysis
revealed that around 8% of the significant assmriatwere false positives for intercept. Less
SNPs were significant for slope and the FDR waghdlly higher. As expected, for both traits

around 60% less SNPs could be confirmed usingttivgent validation compared to the less

stringent validation.

Table 1. Variance components{) and correlations4) of the random regression analyses.

Standard errors are shown in parentheses.

Variance components andestimates

correlations

02,02 0, ,andp,.  845.80 (25.77), 1.04 (0.16), -11.75 (1.76), and -O.

%St !
02,02, 0, P,  1746.38(2.95), 25.36 (1.22), -43.10 (1.26), -ar 5167.07

2.28
and o’ (2.28)

The plots of the test statistic along the chromasom@mre shown in Figure 1. Chromosomal
positions of validated SNPs (less stringent vaiahgt are indicated by a triangle symbol.
Significant SNPs were found on many chromosomeghétit significance was observed for
all three traits for the SNP being in near complietkage disequilibrium withDGAT1
K232A-substitution on BTA14. No other SNP on thibramosome was significant.
Promising SNP clusters affecting intercept werenidied on BTA1L, 6, 7, 9, 13, 16, 18, 26,
and 28. Not all clusters were also significant $tope, see e.g. the SNP clusters on BTAGSG,
BTA13, and BTA16.

The SNPs that could be validated (stringent vabdaatfor at least one trait are shown in
Table 3. The sign of the effects were in the oppadirection for slope and intercept. Again,
it is observable that not all SNPs affecting inéptcwere also significant for slope. In
contrast, some SNPs on BTA11, 16, 18, and 21 walidated for slope, but not significant

for intercept. These SNPs would have been missttuti modelling GXE in the analysis. All
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SNPs that could be validated for at least one (lds stringent validation) are shown in the

Supplemental table.

Table 2. Number of discovered and validated SNPs (stringentless stringent validatiop,
< 0.001 andp < 0.01, respectively) for intercept(protein yieldjdaslope(protein yield). The
FDR g-values (FDR) of the significant SNP with the lasgerror probability §=0.001) in the
discovery dataset are shown.

. Discovery dataset Validation dataset Validation dataset
Trait FDR
(p<0.001) (p<0.01) (p<0.001)
Intercept(protein yield) 407 0.08 60 21
Slope(protein yield) 261 0.12 28 11
DISCUSSION

In the present study numerous SNPs were identifiatl affected intercept and slope of sire
protein reaction norms when the environment waseted as average herd test day SCS
levels. Compared to the intercept variance, théamae of the slopes was small (Table 1).
However, it is important to note that the slopeiarare depends on the range of the
environmental values and a wider range yields gelaslope variance. In a previous study we
found this variance, and therefore the presendexaf with this environmental descriptor, to
be highly significant (Streit et al., 2012). Theredation between intercept and slope depends
on where the intersection point of the reactionnmonodel is placed. As recommended by
Kolmodin and Bijma (2004), we placed it in the ageg environment. In this case the
intercept estimate can be interpreted as an estifoaaverage or general production and the
slope as an estimate for the environmental seitgitiThe negative correlation between
intercept and slope under this condition means Wlitit a decrease in the average herd SCS
level (i.e. in an ‘improved’ environment) the geyme value increases. This trend was
frequently observed also with other environmentabadiptors, e.g. average herd milk
production (Kolmodin et al.,, 2002; Lillehammer dt, 2009). Hence, with an ongoing
selection on general production there will be satigal correlated selection response also for

environmental sensitivity.

Many SNPs were identified and confirmed that anlved in intercept and slope. Some
interesting SNP or SNP clusters are located nextandidate genes for milk protein

segregating in the Germans Holsteins, e.g. on B{Khn et al., 1999; Bennewitz et al.,
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2004a), BTA5, and BTA20 (Wang et al., 2012). Inséiregly, no other SNP on BTA14 next
to the one being in nearly complete linkage disidguum with DGAT1 K232A-substitution
was significantly associated with intercept andpsloHence, this SNP explained the whole
major QTL for milk traits frequently reported inishpopulation (Thaller et al., 2003;
Bennewitz et al., 2004b). The significant SNPs Igoler slope (Table 3) demonstrate the
advantages of considering GXE. For these SNPsligde ¢ghat is superior in one half of the
environment is inferior in the second half and baiteles show a similar effect in the average

environment and, hence, they are not significanirfi@rcept.

Intercept (Protein Yield)

-log10(p-value)

2 4 6 8 10 12 14 16 18 21 24 27
chromosome

Slope (Protein Yield)

-log10(p-value)

2 4 6 8 10 12 14 16 18 21 24 27
chromosome

Figure 1. Test statistic profile of SNP effects for intercepd slope in the discovery data set.
The nominal significance levep€0.001) is indicated by a solid line. Positionsvafidated
SNPs (less stringent validation) are indicated Ryiamgle. The test statistic of SNP ARS-
BFGL-NGS-4939 on BTA14 is 12, both times for intgwt (protein yield) and slope (protein
yield) and is not shown in the figure.

Many SNPs affecting slope in this study affected stope also when average herd milk
production was used as environment (Streit eR@lL3), although the correlation between two

environmental descriptors was low and slightly niega The sign of the effects were almost
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always such, that in an ‘improved’ environment (f@g average milk production or lower

SCS) the effect of the SNP increased (Table 3 adreit &t al., 2013). Hence, for robustness
breeding purposes for both, a fluctuating milk prattbn environment and a fluctuating SCS
environment, a similar set of SNPs is importantcdptions are SNPs on BTA11, 16, 18, and
21 that were significant for slope but not for nept (Table 3). These were not significant
for slope in our previous study, where the envirentrwas modelled as the average herd milk
production (Streit et al., 2013). Hence, these SalBsot involved in general production and

are environmental sensitive only to the SCS enwiremnt.

Lillehammer et al. (2009) discussed the use ofoeet and slope SNPs for breeding of robust
animals. They suggested considering SNPs with tsffler intercept and slope in opposite
directions, i.e. SNPs with a smaller effect in empioved environment, because these SNPs
are not in line with the polygenic correlation beem intercept and slope. This class of SNPs
was not identified in this study. Therefore, if ustness for milk traits in a fluctuating SCS
environment is desired, single marker assistedcsete can not be recommended. Instead,

genomic selection considering important SNPs samglbusly seems to be more promising.

Several environmental descriptors were used intimaoorm models in dairy cattle (Fikse et
al., 2003; Strandberg et al., 2009). In this stasherage herd SCS levels obtained from
routine genetic animal evaluation were used asdicator trait for udder health and hygiene
conditions on the farms at the time where the tyad was recorded. Herd test day
observations were used, which offered the possiliti capture also the within cow variance
(Hayes et al., 2003). Indeed, the daughter variavae substantial (Table 1). It modelled the
additive genetic variance not included in the gifects and some within cow variability. In
addition, it was possible to use the variance @f émvironmental descriptor within herd
among the test days. This might be especially udefuthe average herd test day SCS
environmental descriptor, because it can be exgdbt the SCS fluctuation within herds is
larger compared to milk traits, e.g. due to temppleerd mastitis infections. Mastitis can be
due to different classes of pathogens, e.g. enwiemal associated likeéscherichia colior
contagious associated lilstreptococcus agalactiaandSterptococcus aureuMastitis due to
the first class of pathogens results in genera lower somatic cell count compared to the
second class (Barkema et al., 1998). Hence, avdrageSCS levels as a proxy to describe
the herd level of udder health and hygiene havdtdjnas SCS has as a breeding goal to

improve mastitis resistance.
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Table 3. SNPs with a successful stringent validatipn<(0.001 in the validation set) for at
least one trait with chromosome (BTA), positionbiaise pairs (bp), F-values and sign of the
effct of the allele with the higher frequency fdretthree traits. The trait for which the

validation was successful is indicated in bold tifpealues.

SNP BTA bp F-values (sign of effect)
Intercept Slope
(protein yield)  (protein yield)

ARS-BFGL-BAC-7205 1 120983738 19.03 ) 1411 (+)
ARS-BFGL-NGS-99492 1 121607486 18.91  (-) 13.66 (+)
BTA-114011-no-rs 1 125911737 11.76  (+) 148 (v
BTB-00056059 1 126163013 11.51 () 3.27 (¥
ARS-BFGL-NGS-68464 5 18395406 12.88  (-) 18.06 (+)
Hapmap33079-BTA-163567 6 193611.58 (+) 6.07 ()
BTA-110673-no-rs 6 111383112 11.36 () 6.73  (+)
BTB-00281303 6 111612203 14.34  (-) 7.89 (+)
ARS-BFGL-NGS-113181 7 6280083915.09 (+) 12.83 (-)
ARS-BFGL-NGS-113819 7 6360910217.37 (+) 8.77 ()
ARS-BFGL-NGS-109819 7 6366439317.65 (+) 10.14  (5)
BTB-01880776 7 64095706 11.68 (+) 798 ()
ARS-BFGL-NGS-52530 9 44230587 24.26 () 29.15 (+)
BTB-00391835 9 52160813 11.14 (-) 11.57 (+)
ARS-BFGL-NGS-113322 11 38523074 8.07 (+) 1443 ()
BTA-93012-no-rs 11 38544853 8.03 (+) 1466 ()
ARS-BFGL-NGS-63777 13 6707581521.32 (+) 11.37  (v)
ARS-BFGL-NGS-4939* 14 443936 78.92 (+) 65.82 (-)
ARS-BFGL-NGS-113877 16 2945649712.24  (-) 10.66 (+)
Hapmap38953-BTA-38562 16 2948761312.24 () 10.66 (+)
Hapmap50594-BTA-121054 16 2975724611.34 (+) 4.24 ()
ARS-BFGL-NGS-26559 16 33367687 14.47 () 12.04 (+)
ARS-BFGL-NGS-59645 16 7311762516.58 (+) 10.28 (v)
BTB-02013769 16 74080339 5.84 (+) 1435 ()
ARS-BFGL-NGS-35499 18 50131636 5.47 (+) 11.14 ()
ARS-BFGL-NGS-6001 21 25932661 7.83  (-) 14.69 (+)
Hapmap52867-rs29023496 21 264015007.02 (- 12.11  (+)
ARS-BFGL-NGS-110044 21 3089217112.64 (+) 759 ()
ARS-BFGL-NGS-55374 25 2879516023.44 () 28.25 (+)

* this SNP is in near complete linkage disequiliibmi with DGAT1 K232A-substitution
(Wang et al., 2012)

CONCLUSIONS
GXE for protein yield and average herd SCS as enmental descriptor were detected using
a first order sire reaction norm model. Many SNPSWOIP clusters could be identified that
affected intercept and slope of the reaction ndre number of SNPs affecting intercept was
larger. Some significant SNPs affected only sldpensidering GXE improved the statistical

power to map SNP involved in protein yield variatid\ comparison with an earlier study
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revealed that SNPs affecting slope where in genalsad significant for slope when the
environment was modelled by the average herd milkdyction level, although both
environmental descriptors were only low correlat®d.across breed analysis in combination
with a higher marker density is desired to validhteeffects also in another population and to

fine map the underlying causal mutation.
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APPENDIX

Table S1Validated SNPs with chromosome (BTA), positiorbase pairs (bp), F-values and

effects for intercept and slope. Effect estimateseataken from the validation set. Validated

SNPs are indicated in bold type F-values and eféstimates. SNPs with n. c. are not

converged.

F-values in discovery

dataset Effects (in)
SNP name BTAbp Intercept Slope Intercept Slope
Protein yield
BTB-00046888 1 1047299101.97 20.24 0.139 -0.073
BTB-01744054 1 1168692131.08 8.18 -0.191 0.094
ARS-BFGL-BAC-7205 1 120983738.9.03 14.11 -0.192 0.102
ARS-BFGL-NGS-99492 1 12160748%8.91 13.66 -0.192 0.099
BTA-114011-no-rs 1 1259117311.76 1.48 0.230 -0.064
BTB-00056059 1 1261630131.51 3.27 -0.238 0.109
ARS-BFGL-NGS-98257 1 1276801085.28 10.53 0.170 -0.097
BTB-01929922 2 8730899  9.09 13.34 0.294 -0.129
ARS-BFGL-NGS-86079 2 1912618013.44 8.15 0.187 -0.077
Hapmap53232-rs29020795 2 192023562.97 11.47 0.185 -0.071
ARS-BFGL-NGS-81155 5 15353413 8.27 13.26 0.192 -0.089
Hapmap39895-BTA-15668 5 1539299514.82 22.03 0.164 -0.098
ARS-BFGL-NGS-68464 5 1839540612.88 18.06 -0.241 0.099
Hapmap33079-BTA-163567 6 1936 11.58 6.07 0.201 -0.084
Hapmap23201-BTC-072836 6 406552295.00 10.19 -0.156 0.067
Hapmap32946-BTC-046820 6 411297023.19 11.02 0.193 -0.067
ARS-BFGL-NGS-39570 6 4632008713.56 4.10 0.259 -0.088
Hapmap58150-rs29020620 6 967245922.75 12.20 -0.169 0.060
ARS-BFGL-NGS-43679 6 10968059%1.67 8.67 -0.215 n. c.
BTA-110673-no-rs 6 1113831121.36 6.73 -0.272 n. c.
BTB-00281303 6 1116122034.34 7.89 -0.237 0.109
ARS-BFGL-NGS-14880 7 5387998914.53 8.42 -0.213 0.055
ARS-BFGL-NGS-113181 7 6280083915.09 12.83 0.202 -0.100
BTB-02035459 7 63196194 11.60 12.98 0.164 -0.077
BTB-01219396 7 63221359 11.60 12.98 0.164 -0.077
ARS-BFGL-NGS-113819 7 6360910217.37 8.77 0.220 -0.088
ARS-BFGL-NGS-109819 7 6366439317.65 10.14 0.214 -0.095
BTB-01880776 7 64095706 11.68 7.98 0.268 -0.109
Hapmap51654-BTA-90094 7 7541424Q11.99 10.88 -0.179 0.076
Hapmap44053-BTA-28733 8 6369477 16.02 9.29 0.193 -0.071
Hapmap52337-rs29022325 9 23298098 9.83 12.02 0.173 -0.078
BTA-06997-rs29021351 9 4015342624.52 24.26 -0.312 0.127
BTA-83528-no-rs 9 41691114 24.60 18.46 -0.241 0.092
ARS-BFGL-NGS-37982 9 4420028820.64 21.52 0.155 -0.076
ARS-BFGL-NGS-52530 9 4423058724.26 29.15 -0.306 0.136
ARS-BFGL-NGS-103934 9 4425594216.01 18.00 -0.231 n. c.
Hapmap34923-
BES9_Contig458_891 9 48193041 13.81 13.21 0.139 -0.106
BTA-83605-no-rs 9 48362593 12.38 15.20 -0.157 0.077
BTB-01347039 9 51688446 3.57 11.59 -0.161 0.104
BTB-00391835 9 5216081311.14 11.57 -0.217 0.120
UA-IFASA-2589 9 82175488 15.49 12.47 -0.142 0.087
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ARS-BFGL-NGS-87426 11  3007076511.03 9.95 -0.175 0.053
ARS-BFGL-NGS-118724 11  3036611010.87 10.56 -0.176 0.070
ARS-BFGL-NGS-113322 11 38523074 8.07 14.43 0.245 -0.137
BTA-93012-no-rs 11 38544853 8.03 14.66 0.244 -0.139
ARS-BFGL-NGS-112015 13 6323577514.37 6.43 0.165 -0.065
ARS-BFGL-NGS-63777 13 6707581521.32 11.37 0.302 -0.109
ARS-BFGL-NGS-103635 13  6781692610.88 2.58 0.160 -0.056
ARS-BFGL-NGS-111222 15 57601444 9.10 11.17 0.137 -0.092
ARS-BFGL-NGS-56645 16  2392021016.88 9.95 0.183 -0.080
ARS-BFGL-NGS-41039 16 2761904514.56 5.69 0.249 -0.019
ARS-BFGL-NGS-113877 16 2945649712.24 10.66 -0.221 0.103
Hapmap38953-BTA-38562 16  294876132.24 10.66 -0.221 0.103
Hapmap50594-BTA-121054 16  297572441.34 4.24 0.214 -0.078
ARS-BFGL-BAC-35294 16  3282922411.48 12.56 -0.171 0.074
ARS-BFGL-NGS-38023 16  3331845522.31 16.69 0.162 -0.065
ARS-BFGL-NGS-26559 16  3336768714.47 12.04 -0.194 0.070
Hapmap42928-BTA-38715 16  3389049Q1.06 7.58 0.165 -0.067
ARS-BFGL-NGS-59645 16 7311762516.58 10.28 0.216 -0.082
BTB-02013769 16 74080339 5.84 14.35 0.174 -0.114
ARS-BFGL-NGS-35499 18 50131636 5.47 11.14 0.206 -0.124
ARS-BFGL-BAC-36979 18 52926135 6.35 10.93 0.104 -0.085
ARS-BFGL-NGS-7458 18  5498999518.67 21.69 0.153 -0.062
BTA-97501-no-rs 18 5709512017.32 14.37 0.161 n.c.
ARS-BFGL-NGS-15837 18 6253385112.51 14.48 0.157 n.c.
ARS-BFGL-NGS-38846 18 62814660 10.58 14.62 0.129 -0.088
ARS-BFGL-NGS-78095 20 2263073211.06 5.12 -0.173 0.091
BTB-00783355 20 43550938 12.72 14.13 -0.130 0.105
BTA-12959-no-rs 21 1092251211.14 6.46 0.178 -0.081
ARS-BFGL-NGS-73507 21 20412682 7.63 13.36 0.078 -0.105
ARS-BFGL-NGS-6001 21 25932661 7.83 14.69 -0.214 0.136
Hapmap52867-rs29023496 21 26401500 7.02 12.11 -0.201 0.131
ARS-BFGL-NGS-101900 21  3031449717.87 10.16 0.180 -0.119
ARS-BFGL-NGS-110044 21  3089217112.64 7.59 0.236 n. c.
ARS-BFGL-NGS-55374 25  2879516023.44 28.25 -0.306 0.136
BTA-62184-no-rs 26  2001403516.55 13.00 0.161 -0.063
BTA-60778-no-rs 26  2009083320.71 17.07 0.183 n. c.
BTA-99382-no-rs 28  4156864512.82 12.25 -0.147 0.064
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GENERAL DISCUSSION

The study was divided into two parts: in the feckapter, putative interaction effects between
a major gene and the polygenic term for 5 milktsravere investigated. In the second part
(chapter two to four) the aim was to identify gemdsch influence genotype by environment

interaction. All studies were done for the Germanisitein population.

Major gene by polygene effects

In chapter one, interaction effects between a mggore (DGAT1 K232A) and a polygenic
term were analysed. Only one major gene was comsidend proof of principles was done. It
would be desirable to enlarge these analyses &r génes to detect more interactions. With
respect to interaction, only additive x additivéenactions were considered, because daughter
observations of genotyped sires were used, buthdexggywere not genotyped. For further
analyses, it would be desirable to consider almforof interaction (additive x dominant,
dominant x additive and dominant x dominant), behaypes and observations have to be
available for the same animals to do so. This means need to have observations as well as
genotypes. As more and more cows are being gersbtymeldwide, this should soon be

possible.

Genotype by environment interaction

The ability to alter phenotype in response to clkangn the environment is called
environmental sensitivity (ES) and is often usedmmal breeding literature (Falconer and
Mackay, 1996). A difference in ES results in gepetyoy environment interaction (GxE),
which means that changes in the environment leadifferences in genotype responses.
Effects of GXE can appear in two different waysstfiit can cause scaling effects, when the
difference between the phenotypes of two genotyplesnges in magnitude between
environments, but not in prefix. Secondly, it caauge re-ranking effects, when these
difference cause changes in prefix. Re-ranking dmaiies animal breeding, because the best
allele in one environment is not the best in allimnments. But re-ranking is rare, scaling
appears more often (Calus et al., 2002; Kolmodial¢t2002) whereas each scaling effects
becomes a re-ranking effect if the environment uramsideration varies enough. In our
analyses, we found large scaling-effects, but éalyand small re-ranking effects.
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Reaction norm vs. multiple trait model

According to Lynch and Walsh (1998), there are difterent possibilities to study GxE: use
of a multiple trait or a reaction norm model. letHistribution of the environment is discrete,
a multiple trait model is the logical choice. Inisthcase, the phenotypes in different
environments are treated as different traits aedytimetic correlation is calculated. If there is
a low correlation, the traits are different andytlee influenced by different genes. If there is
a high correlation, nearly the same genes influethee traits. If the distribution of the
environment is continuous, this model has the disathges that there is a loss of information
because of building classes and time and capamitgdiculation is very high. In this case, a
reaction norm model would be the logical choicergil@ term for GxXE is included into a
traditional quantitative model. A reaction norm ddéses the performance of a genotype as a
function of a gradually changing environment (Lyrasid Walsh, 1998). The first derivative
of the reaction norm, the slope, is defined as &5Jong, 1995). In our studies, we used a
reaction norm model, because the distributions hif environmental descriptors were
continuous. The entire environmental variance wseslland thereby the accuracy increased.
In chapter two, models with higher order were choge the results of this chapter, it was
shown that the reaction norms are nearly lineaicaBse higher order models are more
complex to calculate, we used a linear model fer fibllowing studies in agreement with
Kolmodin et al. (2002) and Calus and Veerkamp (2@6Bapter three and four).

To map SNPs, a genome-wide association analysis wittwo-step-method was used.
Lilehammer et al. (2009) used a one-step-methodbeecause we had about 13 million
observations, this would be to complex to calcul&e, we decided to calculate breeding
values with a reaction norm model in the first stefal we did a genome-wide association

analysis in the second step.

Data

Our data were first lactation test day recordsexmiad for the fixed effects herd test day, days
in milk, age at calving and calving season. Arotwmd percent of the observations in extreme
and rare environments were discarded to have enaarggtion in each environment. Because
of these corrections, the estimated GxE effectparbably somewhat smaller. The advantage
of test day records as opposed to lactation reasrtfsat within-cow variation can be used.

The disadvantage or difficulty is the mass of obsons. Our cows had at least seven
observations in the first lactation and each siael la minimum of 50 daughters, which

resulted in nearly 13 million observations. In ordie identify SNPs which not only cause
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scaling effects within the environmental range adered in our study, we log-transformed

the observations in chapter three (Hayes et ab320llehammer et al., 2009).

Environmental descriptor

The choice of an environmental descriptor is prhop#ie most important point when doing
GxE-analyses. All components which are non-genefin be seen as environment, i.e.
temperature, herd size, ... (Falconer and Mackay619&XE appears because of two
reasons: some genes can be expressed only in g@tiéicsenvironments and sometimes a
change in regulation of genes depends on the emaigat. That's a reason why different
studies with different environmental descriptors aketect different SNPs. For statistical
analyses, it is important to have a lot of obseovst In dairy cattle breeding, artificial
insemination is used in a wide field of productEmvironments and a lot of observations for
each sire are available with a continuous distiilbutProduction level is used very often as an
environmental descriptor (Calus et al., 2002; Kalmoet al., 2002). The advantage is a
continuous distribution. However, it is more a daggmon of the reaction on the environment
than an environmental descriptor. According to Satal. (2004) GxE effects can be under-
estimated, because the correlation between trueoanvental parameter and environmental
descriptor is less than one. Use of a true envisortat descriptor would be better, but in this
case, often fewer observations are available andrdang is more expensive. A solution
could be not to use only one environmental desarjfiut to combine some descriptors to a
new one (Lillehammer et al., 2009). In our analyses used different environmental
descriptors. In chapter two, herd test day solstifintds) for the corresponding trait under
observation were used. The advantages of htds et they summarize a complex
environment, they are easily available and betwaem-and within-cow variation can be used
(Hayes et al., 2003). The disadvantage is thatettpanatory variable contains partly the
same information as the dependent variable. Additlg, a new environmental descriptor
called htds milk energy yield, which is a combipatiof htds protein, htds fat and htds milk,
was implemented. As it can be seen in chapter tis®,correlations between the new htds
milk energy yield and the htds for each trait wieigh; therefore only this descriptor was used
in chapter three. Htds milk energy yield can bensge an indicator for level of feeding and
summarizes the single htds in an appropriate waychpter four, htds SCS (somatic cell
score) was used as an indicator for level of hygi&SCS as an environmental descriptor can
be interesting, because it can be expected thaS@® fluctuation within herds is larger

compared to milk traits, e.g. due to temporary heraistitis infections. Mastitis can be
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environmentally associated or contagiously assediain chapter three and four, the same
models were used. As environmental descriptor, htidls energy yield was used in chapter
three and in chapter four htds SCS was used. Fore schromosomes, SNPs could be
validated with both environmental descriptors. Rtts milk energy yield, SNPs were found
on BTA 8, 9, 14, 26, 27, and 28. With htds SCS, $Mere found on BTA 5, 7, 9, 18, and
21. There are some SNPs which are only significameference to a special environment.
Additionally, a lot of validated SNPs are found Bmth environmental descriptors, even if the
correlation between the descriptors is low. Theeesame SNPs which react to environmental

changes in general.

Validation

The widespread use of a limited number of siredaiiny cattle leads to high degree of linkage
disequilibrium (LD), even of SNPs that are sepatdig several hundred kbp. Additionally,
there are a lot of related animals in the studieshis is not considered in genome-wide
association analyses, this leads to a lot of fptsgtives. A good solution can be to validate
found SNPs in other populations, because therelasvgrobability that SNP will be found
twice in different populations as false positivenisT is called an across-breed-validation
(Hayes et al., 2003; Pryce et al., 2010). We hatalane this validation in chapters three and
four, because we did not have data of other pojpulat Instead, we split our dataset, which
consisted of 2,297 sires into a discovery dataset {,797 sires) and an independent smaller
validation dataset (n = 500 sires). It can be etquethat some of our detected and validated
loci are false positives. Otherwise, a lot of oatidated SNPs are in well-known regions on
the chromosomes, where genes that affect milk mtomlu can be found. In case of the
population under study in this thesis (German Hatdf German Simmental could be a

possible population for an across-breed validation.

Consider GxE in dairy cattle breeding?

Today, GXE is not considered in dairy cattle bregdn Germany. To include it will be very
complex, because for testing it is important toehalsservations of daughters of each sire in a
wide range of environments. Additionally, it woulbe difficult to use in practice. In our
studies in chapter two, we found only few and smaltanking effects for milk traits and
SCS. Hence, it is not necessary to include GxE@eding value estimation for the German

Holstein population. A reason for this could bet #wavironmental differences in Germany are
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comparable small and the environmental range uobgervation is too small to show large
re-ranking effects.

In chapters three and four, we did genome-wide cason analyses to find SNPs which
influence ES. To improve ES, the optimum would beuse SNPs with a high level of GP
(intercept) and a flat or even negative ES (slopepur studies, we did not find such SNPs.

Improvement of ES is only possible at cost of GP.

Future research

For future researches, it will be of interest te mshigher marker density (e. g. use of a 700 K
SNP chip), to have more data and to possibly fomdes SNPs which influence GP and ES in
a different way. Another point could be the dedonpof the environment. If data of e. g.
feeding regime, hygienic status, geographical megio would be available for a lot of cows,
GXE could be calculated more accurately. For vébda it will be good to use an across-
breed-approach. For data of German Holstein, Ger@ammental could be a possible
population, because they live in the same enviroinand can therefore be used for
validation. Additionally, other genomic methods g@nome-wide association analyses can be
used, e. g. Bayesian methods (Meuwissen et all)2@®ich account simultaneously for LD

among markers and not only for LD between marker@mL.

REFERENCES

Calus, M. P. L., A. F. Groen, G. de Jong. 2002. ddgre x Environment Interaction for
Protein Yield in Dutch Dairy Cattle as Quantifieg Different Models. J. Dairy Sci. 85:
3115 - 3123.

Calus, M. P. L., R. F. Veerkamp. 2003. EstimatidrEnvironmental Sensitivity of Genetic
Merit for Milk Production Traits Using a Random Regsion Model. J. Dairy Sci. 86:
3756 — 3764.

Calus, M. P. L., P. Bijma, R. F. Veerkamp. 2004eEifs of data structure on the estimation of
covariance functions to describe genotype by envi@nt interactions in a reaction norm
model. Genet. Sel. Evol. 36: 489 — 507.

Falconer, D. S., T. F. C. Mackay. 1996. Introduttim quantitative genetics. 4th ed.
Longman Scientific and Technical, New York, NY.

Hayes, B. J., M. Carrick, P. Bowman, M. E. Godda2003. Genotype x Environment
Interaction for Milk Production of Daughters of Atalian Dairy Sires from Test-Day
Records. J. Dairy Sci. 86: 3736 — 3744.

92



GENERAL DISCUSSION

Kolmodin, R., E. Strandberg, P. Madsen, J. JensénJorjani. 2002. Genotype by
Environment Interaction in Nordic Dairy Cattle Siedl Using Reaction Norms. Acta
Agric. Scand., Sect. A, Animal Sci. 52: 11 — 24.

Lilehammer, M., B. J. Hayes, T. H. E. Meuwissen, K. Goddard. 2009. Gene by
environment interactions for production traits insialian dairy cattle. J. Dairy Sci. 92:
4008 — 4017.

Lynch, M., B. Walsh. 1998. Genetics and Analysifuofantitative Traits. Sinauer Associates
Inc Publishers, Sunderland, MA, USA.

Meuwissen, T. H. E., B. J. Hayes, M. E. Goddard12@Prediction of Total Genetic Value
Using Genome-Wide Dense Marker Maps. Genet. 1519 181829.

Pryce, J. E., S. Bolormaa, A. J. Chamberlain, Bodvman, K. Savin, M. E. Goddard, B. J.
Hayesl. 2010. A validated genome-wide associationysin 2 dairy cattle breeds for
milk production and fertility traits using variablength haplotypes. J. Dairy Sci. 93:
3331 — 3345.

93



GENERAL SUMMARY (ENGLISH)

GENERAL SUMMARY (ENGLISH)

The aim of this thesis was to analyze the influeaEdGAT1 and to find SNPs which
influence environmental sensitivity (ES). ES is flist derivative of reaction norm models,
which are used to analyze genotype-by-environmetetractions (GxE). All analyses were

done for German Holstein dairy cattle.

Putative interaction effects between DGAT1 K232Atation and the polygenic terms (all
genes except DGAT1) were investigated cimapter one This was done for five milk
production traits (milk yield, protein yield, fateyd, protein percentage and fat percentage) in
the German Holstein dairy cattle population. Theref mixed models are used. The test for
interaction relied on the comparison of polygenariance components depending on the
sire’s genotypes at DGAT1 K232A. Found substitutdiects were highly significant for all
traits. Significant interactions between DGAT1 K232nd the polygenic term were found for
milk fat and protein percentage. These interactioosld be used in breeding schemes.
Depending on the DGAT1 K232A genotypes of the samipl which the sire will be used,
three polygenic breeding values of a sire can beuleded. Because the genotypes of the
samples are often unknown and usually heterogen#tigss not a practical approach. Rank
correlations between the three polygenic EBVs wadveays above 0.95, which suggested

very little re-ranking.

GxE were studied irthapter two. For this, reaction norm random regression sirelets
were used in the German Holstein dairy cattle pajpord. Around 2300 sires with a minimum
of 50 daughters per sire and at minimum seven-ladation test day observations per
daughter were analyzed. As traits, corrected tagtrdcords for milk yield, protein yield, fat
yield and somatic cell score (SCS) were used. Ag@mmental descriptors, we used herd test
day solutions (htds) for milk traits, milk energyel or SCS. Second-order orthogonal
polynomial regressions were applied to the sirea$l Results showed significant slope
variances of the reaction norms, which caused acoostant additive genetic variance across
the environmental ranges considered, which poitdethe presence of minor GXE effects.
When the environment improved, the additive genesidance increased, meaning higher
(lower) htds for milk traits (SCS). This was alsdliuenced by pure scaling effects, because
the non-genetic variance increased in an improvedt@ment and the heritability was less
influenced by the environment. For the environmlerdages considered in this study, GXE
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effects caused very little re-ranking of the sifBs.obtain unbiased genetic parameters, it was

important to model heterogeneous residual variances

A large genome-wide association analysis was cdedua chapter three to identify SNPs
that affect general production (GP) and environesgnsitivity (ES) of milk traits. Around
13 million daughter records were used to calcudake estimates for GP and ES with help of
linear reaction norm models. Daughters were offgprirom 2297 sires. The sires were
genotyped with a 54k SNP chip. As environmentatdptor, the average milk energy yield
performance of the herds at the time where theldaugbservations were recorded was used.
The sire estimates were used as observations ongewide association analyses using 1797
sires. With help of an independent validation s8®0( sires of the same population),
significant SNPs were confirmed. To separate Gx&lirsg and other GxE effects, the
observations were log-transformed. GxE effects acdng found with help of reaction norm
models and numerous significant SNPs could be atd for GP and ES, whereas many
SNPs affecting GP also affected ES. ES of milkdra a typical quantitative trait, which is
controlled by many genes with small effects and g@nes with larger effect. Effects of some
SNPs for ES were not removable by log-transfornmatibobservations, indicating that these
are not solely scaling effects. Positions of fouhddusters were often in well-known
candidate regions affecting milk traits. No SNP$ich show effects for GP and ES in

opposite directions could be found.

Environmental descriptor in GXE analyses is oftedelled by average herd milk production
levels. Another possibility could be the level gfgilene and udder health. @iapter four,
the same models were used as in chapter threendnmgewide association analysis was done
using htds for SCS as an environmental descripbih help of this, several SNP clusters
affecting intercept and slope could be detected emwfirmed. Many SNPs or clusters
affecting intercept and slope could be identifiedt in total, the number of SNPs affecting
intercept was larger. The same SNPs could be éetembd validated with and without
considering GXE in reaction norm models. Some Saffesting only slope were found. For
slope, nearly the same SNPs could be found with 8€%n environmental descriptor as
presented in chapter three, although both enviromshedescriptors were only slightly
correlated.
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Ziel dieser Arbeit war es den Einfluss von DGAT1untersuchen und SNPs zu finden, die
die Umweltsensitivitdit (ES) beeinflussen. ES iste dierste Ableitung eines
Reaktionsnormmodells und wird genutzt, um Genotypaélt-Interaktionen (GxE) zu
analysieren. Alle Untersuchungen wurden anhand aten der Rasse Deutsche Holstein

durchgefuhrt.

Mdogliche Interaktionseffekte zwischen der DGAT1 R23Mutation und einem polygenen
Term (alle Gene aul3er DGAT1) wurderKapitel eins untersucht. Dies geschah fur die funf
Milchproduktionsmerkmale Milchmenge, ProteinmengEettmenge, Proteinanteil und
Fettanteil in der deutschen Holstein Populatiorerti wurden gemischte Modelle genutzt.
Der Test auf Interaktion beruhte auf dem Verglaien polygenen Varianzkomponenten in
Abhangigkeit des Genotyps des Bullen an dem Gen DIGK232A. Die gefundenen
Substitutionseffekte waren hoch signifikant fireaMerkmale. Signifikante Interaktionen
zwischen DGAT1 K232A und dem polygenen Term konnfién Fett- und Proteingehalt
gefunden werden. Diese Interaktionen koénnen in Hwolgrammen genutzt werden.
Abhangig vom DGAT1 K232A Genotyp der Kihe, an die Bulle angepaart werden soll,
kénnen drei polygene Zuchtwerte eines Bullen barectverden. Da die Genotypen der Kilhe
oft unbekannt und normalerweise heterogen sind,diss allerdings keine praxisnahe
Vorgehensweise. Die berechneten Rangkorrelationgnsckhen den drei polygenen
Zuchtwerten waren immer grof3er 0.95, was bededésts sehr wenige Rangierungseffekte

aufgetreten sind.

GxE wurden mit zufélligen Reaktionsnormregressiatsimodellen innerhalb der deutschen
Holstein-Population inKapitel zwei untersucht. Die Daten von ca. 2300 Bullen mit
mindestens 50 Tochtern pro Bulle und mindesterisesid esttagsbeobachtungen pro Tochter
innerhalb der ersten Laktation wurden analysierte Detrachteten Merkmale waren
korrigierte Testtagsbeobachtungen fir Milchmengetdhmenge, Fettmenge und Zellzahl
(SCS). Als Umweltparameter wurden Herdentesttagkedf fir die Milchmerkmale, den
Milchenergiegehalt und SCS hinzugezogen. OrthogorRblynomregressionen zweiter
Ordnung wurden fir die Vatereffekte betrachtet. [Begebnisse zeigten signifikante
Varianzen der Steigung der Reaktionsnormen, was eicht konstante additiv genetische
Varianz innerhalb des gewéhlten UmweltbereichednigédDas deutet wiederum auf das
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Vorkommen Kkleiner GxE-Effekte hin. Verbessert sidie Umwelt, steigt die additiv

genetische Varianz, was bedeutet, das hodhere igeee) Herdentesttagseffekte fur
Milchmerkmale (SCS) auftreten. Begrindet sind digeednderungen durch Skaleneffekte,
da die nichtgenetische Varianz in einer besserenwélimansteigt und dadurch die
Heritabilitdt von der Umwelt weniger beeinflusstraviFir den ausgewahlten Umweltbereich
dieser Studie erklaren GXE nur wenige Rangierumgisef der Bullen. Um unabhéngige
genetische Parameter zu erhalten, war es wichgigRdstvarianz heterogen zu modellieren.

Eine genomweite Assoziationsanalyse (GWAS) wurdeKapitel drei durchgefuhrt, um
SNPs zu finden, die Produktionsniveau (GP) und &Suilchmerkmale beeinflussen. Ca. 13
Millionen Beobachtungen der Téchter wurden genuit,Schatzer fir GP und ES der Bullen
mit Hilfe eines linearen Reaktionsnormmodells zt&zen. Die Tochter waren von 2297
verschiedenen Bullen, die mit einem 54k SNP Chipnoggisiert wurden. Als
Umweltparameter wurde die durchschnittliche Milobigmemenge der Herden betrachtet, die
zeitgleich zu den Tochterbeobachtungen gemessetiewie Schatzwerte von 1797 Bullen
wurden anschlieBend in einer GWAS untersucht. MitlfeH eines unabhangigen
Validierungsdatensatzes (500 Bullen derselben Rtipn), konnten signifikante SNPs
bestatigt werden. Um bei den GxE reine Skaleneffekt sonstigen Effekten trennen zu
kbnnen, wurden die Daten logarithmiert. GxE-Effekieonnten mit Hilfe der
Reaktionsnormmodelle gefunden werden und zahlresitpeifikante SNPs fur GP und ES
validiert werden, wobei viele SNPs sowohl GP alxchalES beeinflussen. ES der
Milchmerkmale ist ein typisches quantitatives Medindas von vielen Genen mit kleinen
Effekten und wenigen Genen mit grol3en Effektenrfkesst wird. Die Effekte einiger SNPs
fur ES konnten durch das Logarithmieren nicht entfeverden. Das zeigt, dass diese Effekte
nicht nur Skaleneffekte sind. Die Positionen deflugéenen Cluster sind oft in bekannten
Kandidatengenregionen fur Milchmerkmale. Es konrikeme SNPs gefunden werden, die
GP und ES in unterschiedlichen Richtungen beeiséns

Der Umweltparameter in  GxE-Analysen wird oft als rahschnittliches
Milchproduktionsniveaus der Herde modelliert. Eim@dere Moglichkeit kdnnen das
Hygieneniveau und die Eutergesundheit seinKapitel vier wurden die gleichen Modelle
wie in Kapitel drei genutzt. Bei der anschlieRen@NAS wurden Herdentesttagseffekte fur
SCS als Umweltparameter genutzt. Dadurch konntele @NP-Cluster entdeckt und bestétigt

werden, die das Produktionsniveau und die Steidweminflussen. Weiterhin konnten viele
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Cluster identifiziert werden. Wobei die Anzahl d8&8NPs, die das Produktionsniveau
beeinflussen hoher war. Auch wenn die Umweltvadatitht betrachtet wurde, konnten fir
das Produktionsniveau die gleichen SNPs gefundemleme Aber es wurden auch einige
SNPs gefunden, die nur die Steigung beeinflussess Waren fast die gleichen SNPs, wie die

in Kapitel drei gefundenen SNPs (Umweltparametdcivinergiemenge).
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