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GENERAL INTRODUCTION 

 

In dairy cattle breeding, daughter records are used. Because of the widespread use of artificial 

insemination, the accuracy of sire breeding values is high. Often, daughters of a sire are 

milked in a wide range of environments, which raises the question of the importance of 

genotype-by-environment interaction (GxE). This means, that genotypes respond different to 

changes of the environment. For GxE, some studies (Kolmodin et al., 2002; König et al., 

2005; Strandberg et al., 2009) already exist. To study GxE, reaction norms are used if the 

distribution of the environment is continuous. The intercept of a reaction norm shows the 

level of general production (GP) and the slope shows the environmental sensitivity (ES) (de 

Jong, 1995; Lynch and Walsh, 1998; James, 2009). As an environmental descriptor, mean 

performance of all animals has frequently been used (James, 2009). In dairy cattle, average 

herd production level is a common environmental descriptor (Kolmodin et al., 2002; Calus et 

al., 2002; Lillehammer et al., 2009).  

A problem in dairy cattle is that the cows are very sensitive. Especially, when they are fed at a 

high level, they are very susceptible and reduce production or show diseases. The aim of this 

thesis was to identify SNPs which influence environmental sensitivity. Special attention was 

given to DGAT1 K232A, which is a major gene influencing milk yield and composition.  

 

Putative interaction effects between DGAT1 K232A mutation and a polygenic term (other 

gene) were investigated in chapter one. This was done for milk yield, fat yield, protein yield, 

fat percentage and protein percentage in the German Holstein dairy cattle population. For this, 

we used mixed models and the test for interaction relied on the comparison of polygenic 

variance components depending on sire’s genotype at DGAT1 K232A. Significant interaction 

effect were found for milk fat and protein percentage.  

 

Reaction norm random regression sire models were used in the second chapter to study GxE 

in the German Holstein dairy cattle population. Around 2300 sires with at least 50 daughters 

per sire and at least seven first-lactation test day observations per daughter were analyzed. As 

observations, corrected test day records for milk yield, fat yield, protein yield and somatic cell 

score (SCS) were used. As environmental descriptors, we used herd test day solutions (htds) 

for milk traits, milk energy yield or SCS. Second-order orthogonal polynomial regressions 

were applied to the sire effects. The results show significant slope variances of reaction 

norms, which caused a non-constant additive genetic variance across the environmental 
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ranges considered and point to the presence of GxE effects. When the environment is 

improved, we found an increased additive genetic variance that is higher (lower) for milk 

traits (SCS). Because non-genetic variance increases in an improved environment, this was 

also influenced by pure scaling effects. The heritability was less influenced by the 

environment. Very little re-ranking of the sires could be found for the environmental range 

considered.  

 

The aim of chapter three was to conduct a large scale genome-wide association analysis to 

identify SNPs that affect GP and ES of milk traits in the German Holstein population. Around 

13 million daughter records were used in a linear reaction norm model to calculate sire 

estimates for GP and ES. The daughters were from 2297 sires, which were genotyped with a 

54k chip. As an environmental descriptor, we used average milk energy yield performance of 

herds when the daughter observations were recorded. In a genome-wide association analysis, 

sire estimates of 1797 sires were used. With help of an independent validation set (500 sires 

of the same population), we confirmed significant SNPs. To separate GxE scaling and other 

GxE effects, a log-transformation of the observations was performed. Results from the 

reaction norm model showed GxE effects and some significant SNPs were validated for GP 

and ES. Many SNPs which affected GP also affected ES. We showed that ES of milk traits is 

a typical quantitative trait, which is genetically controlled by many genes with small effects 

and few genes with a larger effect. The log-transformation of the observations reduced the 

number of validated SNPs for ES, suggesting genes that not only caused scaling GxE effects.  

 

Average herd milk production level is frequently used as an environmental descriptor, which 

is mainly influenced by level of feeding or feeding regime. Another important environmental 

factor is the level of udder health and hygiene, for which the average herd level of somatic 

cell count might be a descriptor. In chapter four, we conducted a genome-wide association 

analysis to identify SNPs that affect intercept and slope of milk protein yield reaction norms, 

when the average htds for SCS was used as environmental descriptor. Again around 12 

million daughter records were used to calculate sire estimates for intercept and slope with a 

reaction norm model. The sires were genotyped for 54k SNPs as well. Discovery and 

validation of SNPs were similar as in chapter three. DGAT1 K232A is a known major gene 

which influences protein yield; it was included in the statistical model as a covariable. Some 

SNPs could be detected and validated. Most of them influence intercept and slope. In 

comparison to chapter three, many of the detected SNPs which affect slope were the same, 
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although the two environmental descriptors (average herd milk production level and SCS) had 

a low correlation.  
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SHORT COMMUNICATION: Major gene by polygene interaction in dairy cattle 

 

 

The present study investigated putative interaction effects between the major gene DGAT1 

K232A and the polygenic component (i.e. all other genes except DGAT1 K232A) for milk 

production traits in the German Holstein dairy cattle population. A mixed model approach 

was used. Significant interaction effects were found for milk fat percentage and protein 

percentage. 
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Abstract  

The present study investigated putative interaction effects between the DGAT1 K232A 

mutation and the polygenic term (i.e. all genes except DGAT1) for five milk production traits 

in the German Holstein dairy cattle population. Mixed models were used, and the test for 

interaction relied on the comparison of polygenic variance components depending on the 

sire’s genotypes at DGAT1 K232A. Substitution effects were highly significant for all traits. 

Significant interaction effects were found for milk fat and protein percentage. 

Key words: DGAT1, epistatsis, dairy cattle 

 

The genetic variation of quantitative traits is due to polymorphic loci with additive and non-

additive genetic effects (Falconer and Mackay 1996). Non-additive genetic effects comprise 

usually interactions between alleles at the same loci (dominance) or at different loci 

(epistasis). In outbred populations, most of the genetic variance is additive, which is mainly 

due to the U-shaped distribution of gene frequency (Hill et al. 2008). On the gene or QTL 

level, epistatic effects were frequently found in experimental crosses (e.g. Carlborg and Haley 

2004). They occasionally explained a substantial proportion of the genetic variance, which is 

also due to the intermediate gene frequencies in these crosses. In outbred livestock 

populations (e.g. dairy cattle), however, almost no attempts were made to map epistatic 

effects between QTL, which is most likely due to restricted experimental power. However, 

recently Hinrichs et al. (2010) reported interaction effects between a major gene (i.e. DGAT1 

K232A) and QTL on BTA5 and BTA14 for fat and protein percentage in a dairy cattle 

population. The DGAT1 gene is known to affect milk production traits in dairy cattle (Grisart 

et al. 2002, Winter et al. 2002). DGAT1 encodes an enzyme that catalyzes the reaction of 

diacylglycerol and fatty acyl-CoA to form triglycerides. Both studies found a non-

conservative substitution of lysine by alanine (K232A) in DGAT1 caused by an 

adenine/adenine to guanine/cytosine dinucleotide substitution. DGAT1 K232A effects in the 

German Holstein dairy cattle population were estimated by Thaller et al. (2003) and 

Bennewitz et al. (2004). Both authors found a strong allele substitution effect for milk 

production traits. The lysine variant increased fat yield and percentage as well as protein 

percentage, the alanine variant increased milk and protein yield.  

 

The aim of the present study was to investigate interaction effects between the DGAT1 K232A 

mutation and the polygenic component (i.e. all other genes) for milk production traits in 

German Holsteins. 
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The pedigree contained 1153 progeny-tested and DGAT1 K232A genotyped German 

Holsteins sires. Data from the first lactation for the following five traits were considered: milk 

yield, fat yield, protein yield, fat percentage and protein percentage. For the yield traits, 

daughter yield deviations (DYD) were used, which were multiplied by two. For the 

percentage traits no DYD were available; therefore estimated breeding values (EBV) were 

used. The EBV were not de-regressed, because they showed a high reliability. The DYD and 

EBV were taken from the routine national sire evaluation from 2009. For a summary statistic 

see Table 1.  

 

Table 1. Summary statistics of the dependent variables (n = 1153).  

Trait unit   mean      sd        min     max 
Fat (kg) DYD 4.71 20.08 -56.19 79.05 
Fat (%) EBV -0.01 0.27 -0.84 0.99 
Protein (kg) DYD  4.01 16.76 -47.77 54.68 
Protein (%) EBV -0.01 0.11 -0.39 0.43 
Milk (kg) DYD 156.72 574.78  -1571.88 2192.88 
 

Two statistical models were applied. The first one was 

 eZuXby ++= , (1) 

with y as the vector of phenotypes, b is a 2 x 1 vector containing a fixed mean effect and a 

fixed regression coefficient on the number of lysine alleles (0, 1 or 2) of the animals at 

DGAT1 K232A. The regression coefficient in b represents the average allele substitution 

effect. X is the corresponding incidence matrix, u is the vector of polygenic effects with Z as 

the corresponding design matrix, and e is a vector of residuals. The expectation of y is 

XbyE =)(  and the variance is 2
e

2
u IσZZAσy +′=)var( , with A being the numerator 

relationship matrix among the animals, 2uσ  is the polygenic variance, I is an identity matrix 

and 2
eσ  the residual variance.  

 

In the second model, the polygenic term (i.e. the genetic term corrected for the effect of 

DGAT1 K232A mutation, u in model (1)) was split into a polygametic term of gametes 

associated with the lysine (Lu ) and with the alanine (Au ) variant at DGAT1 K232A. For sires 

being homozygous for lysine (alanine) at DGAT1 K232A, the polygametic lysine (alanine) 

variant affected the phenotype two times, for heterozygous sires each polygametic term 

affected the phenotype one time. Subsequently, the model was  

 euZuZXby A2L1 +++= , (2) 
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with 1Z  and 2Z are design matrices linking the phenotypes to the corresponding polygametic 

effects. 1Z  ( 2Z ) contains a 0, 1 or 2, if the sire carries 0, 1 or 2 copies of the lysine (alanine) 

alleles at DGAT1 K232A. The remaining terms are as defined above. The expectation of y is 

again XbyE =)( , and the variance is ][ 2
e

2

1
2
u,uu

,uu
2
u Iσ

Z

Z

AσAσ

AσAσ
ZZy

AAL

ALL +








′
′












= 21)var( , 

where 2

Luσ is the lysine polygametic variance, 2
Auσ  is the alanine polygametic variance and 

ALuuσ  is the covariance between both. Parameters of both models were estimated using 

ASReml (Gilmour et al., 2006). The REML log-likelihood of model (1) and (2) was 

calculated and was denoted as 1log ml  and 2log ml , respectively.  

 

For the test of putative DGAT1 K232A by polygene interaction effects, the null hypothesis 

was 
ALAL uuuuH ,

22
0 : σσσ == . The alternative hypothesis was 22

1 :
AL uuH σσ ≠ or 

ALAL uuuu ,
22 σσσ ≠= . Under the assumption of the null hypothesis, all three variance 

components in model (2) are the same and 2

Luσ + 2

Auσ +2*
ALuuσ  equals 2

uσ  from model (1). In 

this case the expectations and variances of the observations are the same for each individual, 

and, hence, both models are equivalent. Therefore, the 1log ml  is the log-likelihood under the 

null hypothesis. This leads to the restricted likelihood ratio test with 

)log(log2 12 mm llRLRT −= . With the assumption of between-subject independence, the 

asymptotic distribution of the RLRT under the null hypothesis follows a mixture of two 2χ -

distributions with one and two degrees of freedom (Self and Liang 1987). Because the 

animals are related and hence the assumption of between-subject independence is not 

fulfilled, we used a conservative test with a 2χ -distribution with two degrees of freedom. The 

resulting comparisonwise error probability was denoted as cp . Five tests were conducted, for 

each trait one. The correction for the resulting multiple testing was done using the Bonferroni 

correction, resulting in experimentwise error probabilities, 5)1(1 ce pp −−= .  
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Table 2. Average DGAT1 K232A lysine allele substitution effect (α ) and polygenic variance 

component ( 2ˆ uσ ), results from model with one polygenic effect (i.e. model (1)).  

Trait α̂   
Fat (kg) 7.668 (0.857) 305.207 (39.844) 
Fat (%) 0.281 (0.009) 416.5671 (42.205) 
Protein (kg) -6.508 (0.714) 209.009 (22.843) 

Protein (%) 0.059 (0.005) 114.7901 (9.250) 
Milk (kg) -302 (23.741) 256367 (29672) 
1 Multiplied by 1000 

Standard errors are given in parenthesis 

 

The results of model (1) are presented in Table 2. The average substitution effect of the lysine 

variant is positive for fat yield and the two percentage traits and negative for protein and milk 

yield. These estimates are in agreement with Thaller et al. (2003) and Bennewitz et al. (2004) 

and also with those estimated in the French Holstein breed (Gautier et al. 2007). Allele 

substitution effects were all highly significant (p < 0.001). Results of model (2) and of the test 

for interaction effects are shown in Table 3. Experimentwise significant interaction effects 

were found for fat percentage (ep < 0.05). Additional comparisonwise interaction effects were 

found for protein percentage (cp  < 0.05). These results agree with the interaction effects 

detected by Hinrichs et al. (2010). An additional weak, but not significant, interaction was 

found for fat yield. For these traits, the polygametic alanine variance is between 37% and 41% 

higher compared to the lysine variant (Table 3). Hence, the DGAT1 K232A lysine variant 

increased the mean of the phenotypes (Table 2) but decreased the polygametic variance. The 

correlation between Lu  and Au  was below one for fat yield and especially fat percentage. 

This is not the case for protein percentage ( 99.0ˆ ≈r ), which implies that the improved fit of 

model (2) is due to heterogeneous variances, i.e. LA ucu ∗=  (where 84.0ˆ =c , not shown 

elsewhere). One possible explanation for the detected interaction effects might be the 

relationship between the enzyme activity and amount of end-product (i.e. the amount of milk, 

fat yield, fat percentage, protein yield and protein percentage). DGAT1 catalyses the final step 

of the triglyceride synthesis. Grisart et al. (2004) found a higher enzyme activity level in 

producing triglycerides for the DGAT1 K232A lysine variant. Kacser and Burns (1973) 

developed a metabolic control theory, which modelled the phenotype as an end-product of 

enzyme activity. The enzyme activity causes a flux through metabolic pathways with a 

hyperbolic relationship. At a low flux level, an infinitesimal change of the enzyme activity 

results in a comparable larger change of the flux, and hence of the enzyme end-product (the 

2ˆuσ
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milk traits in our study). The opposite holds, if the flux level is already on a high level. Kacser 

and Burns (1981) used this theory to derive some conclusions for the dominance 

phenomenon, but it might also be valid in this case to explain the detected interaction effects. 

The limiting factor for a higher triglyceride synthesis might be the limited availability of the 

two substrates diacylglycerol and fatty acyl-CoA when forming triglycerides. If animals carry 

the favourable lysine alleles, the effect of additional favourable alleles at other genes might be 

reduced, because they have to compete for the two substrates.  

 

Intuitively one might argue that it is not possible with these data to test for interaction effects. 

Genotypes and phenotypes are not recorded within the same generation and gene 

combinations break down during meiosis. However, the DGAT1 K232A frequencies among 

daughters of DGAT1 K232A homozygous sires and DGAT1 K232A heterozygous sires differ 

by one quarter, and among daughters of alternative DGAT1 K232A homozygous sires by one 

half. These daughters largely determine the DYD and EBV of the sires used in the study. 

With respect to this, it would have been better to estimate the DYD and EBV using a sire 

model and ignoring the relationships between the sires as done by Seidenspinner et al. (2009). 

However, this was not possible in this study. In theory, interaction between genes can be 

classified in additive x additive, additive x dominance etc. interactions (Falconer and Mackay 

1996). The identified interaction terms are most likely due to an interaction between the 

additive DGAT1 K232A effect and the additive polygenic effect, because the phenotypes used 

(DYD and EBV) should contain a part of the additive x additive interaction (Falconer and 

Mackay 1996, p. 154). It may be noted that it is not possible with this data set to detect 

interaction effects within DGAT1 K232A (dominance), because the daughters only inherit the 

additive effect of the sires, but not their dominance effect. 

 

Theoretically, the significant interactions could be used in breeding schemes. For each sire, 

three polygenic breeding values can be calculated, depending on the DGAT1 K232A 

genotypes of the sample, where the sire will be used. In a homozygous lysine (alanine) 

sample, the polygenic EBV would be Lû*2  ( Aû*2 ) and in heterozygous sample it would be 

AL uu ˆˆ + . However, since the DGAT1 K232A genotypes of the samples are often unknown and 

usually heterogeneous, this is not a practical approach. Additionally, rank correlations 

between these three polygenic EBVs were always above 0.95 (data not shown), suggesting 

very little re-ranking of the sires. 
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Table 3. Polygametic variance and covariance components (
ALAL uuuu σσσ ˆˆ,ˆ 22 ), correlation between the two polygametic terms (r̂ ) (results from the 

model with two polygametic effects, i.e. model (2)), and restricted likelihood ratio test statistics (RLRT) with comparisonwise and experimentwise 

error probability (pc and pe, respectively).  

Trait   
ALuuσ̂  r̂  RLRT pc pe 

Fat (kg) 70.14  (10.60) 95.81  (14.07) 74.23  (11.37) 0.906 5.24 0.073 0.315 

Fat (%) 94.421  (12.01) 133.001  (16.80) 87.061  (14.51) 0.777 10.94 0.004 0.019 

Protein (kg) 51.24  (2.14) 57.09  (2.38) 54.05  (2.25) 0.999 n.s. n.s. n.s. 

Protein (%) 24.941  (2.52) 35.281  (3.76) 29.291  (2.86) 0.988 6.98 0.031 0.146 

Milk (kg) 64460  (2687) 63770  (2658) 60300  (2513) 0.941 n.s. n.s. n.s. 

1 Multiplied by 1000 

Standard errors are given in parenthesis

2ˆ
Luσ 2ˆ

Auσ
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Summary 

Reaction norm random regression sire models were used to study genotype by environment 

interactions (GxE) in the German Holstein dairy cattle population. Around 2300 sires with a 

minimum of 50 daughters per sire and seven first lactation test day observations per daughter 

were analysed. Corrected test day records for milk yield, protein yield, fat yield and somatic 

cell score were used. Herd test day solutions for milk traits, milk energy yield or somatic cell 

score were used as environmental descriptors. Second order orthogonal polynomial 

regressions were applied to the sire effects. The results revealed significant slope variances of 

the reaction norms, which caused a non-constant additive genetic variance across the 

environmental ranges considered. This pointed to the presence of minor GxE effects. The 

additive genetic variance increased when the environment improved, i.e. higher (lower) herd 

test day solutions for milk traits (somatic cell score). This was also influenced by pure scaling 

effects, because the non-genetic variance increased in an improved environment and the 

heritability was less influenced by the environment. The GxE effects caused very little re-

ranking of the sires for the environmental range considered in this study. 

 

Key words: environmental sensitivity, random regression, sire model 

 

Introduction  

Genotype by environment interaction (GxE) refers to differences in response of genotypes to 

changes in the environment (Lynch and Walsh, 1998). If GxE effects are not taken into 

account, estimated breeding values (EBVs) may be biased and selection response reduced. 

Additionally, knowledge about existing GxE effects can be used in breeding schemes, e.g. to 

breed robust animals (Knap, 2005). Consequently, GxE effects have received considerable 

attention in dairy cattle breeding (see König et al. (2005), Kolmodin et al. (2002), Kolmodin 

et al. (2004) and references therein). Dairy farm environments in Germany vary in several 

ways, e.g. north vs. south, west vs. east, small vs. large farms or flat vs. mountainous areas. 

König et al. (2005) investigated putative GxE effects in this population. They defined 

geographical region and herd size as distinct environments and applied a multi-trait approach. 

Genetic correlations between eastern and western Germany were between 0.9 and 0.95 for 

protein yield, indicating only minor GxE re-ranking effects. Larger effects were reported 

when herd size was considered as an environmental descriptor. 
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The use of a multi-trait approach is a logical choice if the environment can be regarded as a 

distinct variable. The use of reaction norms, however, might be more appropriate if the 

environment changes gradually and can be measured on a continuous scale. This is because 

fewer parameters have to be estimated and there is no need to cluster individuals in different 

environmental classes. A reaction norm describes the performance of a genotype as a function 

of a gradually changing environment (Lynch and Walsh, 1998). The first derivative of the 

reaction norm function, the slope, is the environmental sensitivity. A non-zero genetic 

variation of the slope indicates the presence of GxE effects. In dairy cattle breeding, analysis 

of GxE effects with reaction norm models was applied by several authors (e.g. Fikse et al. 

(2003), Hayes et al. (2003), Calus et al. (2002), Kolmodin et al. (2002), Strandberg et al. 

(2009), or Lillehammer et al. (2009)). In those studies, the average herd production level 

served as a continuous environmental descriptor and the reaction norms were estimated using 

random regression models. Schaeffer (2004) advised to apply not only linear but also higher 

order orthogonal polynomial regression models in GxE studies. Calus and Veerkamp (2003) 

and Lillehammer et al. (2009) pointed out the importance of modelling heterogeneous residual 

variances, because otherwise matter of scales (Lynch and Walsh 1998) might be interpreted as 

GxE effects.  

  

The aim of the present study was to analyse GxE effects for milk production traits and 

somatic cell score in German Holstein dairy cattle using non-linear reaction norms 

implemented in random regression sire models. 

 

50 60 70 80 90
environment

htds - milk energy

2 3 4
environment

htds - SCS

 
 
Figure 1: Histogram of the environmental descriptor milk energy yield and SCS. 
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Materials and Methods 

Data and data editing 

First lactation test day records of cows were taken from the routine animal recording scheme 

for milk yield, fat yield, protein yield and somatic cell score (SCS). The observations were 

corrected for the fixed effects herd test day, days in milk, age at calving, calving season and 

the random permanent environment effect. These correction factors were obtained from the 

routine animal evaluation, which is an animal test day model. Only daughters with at least 

seven observations per year and with a variation of the corresponding environmental 

descriptor above a certain threshold level were considered. Observations in extreme and rare 

environments were discarded (around two percent of the observations). These restrictions 

ensured that there were enough observations and variation of the environmental descriptor to 

apply reaction norms within individual cows and that the results were not affected by 

(unreliable) extreme and rare environments. The total number of daughters was around 1.3 

million and the number of observations was around 12 million. The number of daughters per 

bull ranged from 50 to 74842 and the number of bulls was around 2300, see Table 1. The sires 

were born between 1983 and 2003. 

 

Table 1: Summary statistics of the herd test day solutions (htds) used as environmental 

descriptors and number of sires and daughters.  

environmental  
descriptor 

unit n µ sd min max nsire ndaughter 

htds – protein  kg 11927970 0.755 0.101 0.272 1.675 2279 1284531 
htds – fat kg 11927970 0.938 0.111 0.295 1.583 2279 1284531 
htds – milk  kg 11927970 22.188 2.742 8.305 35.859 2279 1284531 
htds – energy  
           in milk 

MJ 11927970 71.631 8.364 45.000 95.999 2279 1284531 

htds – SCS  - 12056462 2.583 0.475 1.398 4.052 2291 1300833 
 

The environmental descriptors were herd test day solutions (htds) for milk, protein and fat 

yield (all in kg), and SCS. These were obtained from routine animal evaluation (see Table 1 

for summary statistics). An initial comparison of the three milk trait environmental descriptors 

revealed a high correlation between them (Table 2). Furthermore, it widely known that 

different levels of feeding or housing conditions result in different milk production levels. It is 

desirable to have only one environmental descriptor instead of three highly correlated 

descriptors that reflect these kinds of environmental forces. Therefore, we calculated the htds 

for milk energy yield (in MJ) from the htds of the three milk yields by a linear combination 

(following Nostitz and Mielke, 1995) as  
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.*6.23*4.38*802.0 yieldproteinyieldfatyieldmilkyieldenergy ++=  

The equation assumes constant lactose content of 4.8 %. It is known that lactose content is not 

constant, but lactose content was not available.  

 

The htds were scaled between -1 and 1 following Calus et al. (2002). The following random 

regression sire model was applied to all combinations of traits and environmental descriptors: 
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where cy are the corrected yields of daughter i of sire j at herd test day k, µ is the overall 

mean, htds (htds2) is the herd test day solution at herd test day k (herd test day solution at herd 

test day k squared) with the fixed regression coefficients b1 (b2), kmP  are the covariables based 

on Legendre polynomials and related to the standardised htds at test day k of order m, s is the 

random sire effect of sire j of order m, d the random daughter effect of daughter i of sire j, u 

and v are the highest order of the polynomial regressions, and e is the random residual. The 

variance of the sire regression effects is (for u = 1, index j is suppressed for simplicity) 
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where A is the numerator relationship matrix and S is the covariance matrix of the random 

regression coefficients for sire effects. The variance structure of the regression coefficients for 

daughter effects is (for v = 1, indices i and j are suppressed)  
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where I is the identity matrix and D is the covariance matrix of the random regression 

coefficients for daughter effects. For higher orders (u > 1, v > 1) the terms are expanded 

straightforwardly. In order to model heterogeneous residual variance across the environments 

the observations were ordered according to the environmental descriptor and grouped into ten 

classes of equal size based on the environmental values. Residual variances were estimated 

for each class and residual covariance was assumed to be zero. Hence, KXXeVar ′=)( , with 

X being a known design matrix that assigns each observation to an environmental class i, and 

}{ 2

ieDiagK σ= (Lillehammer et al. 2009).  
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Table 2: Correlations between herd test day solutions (htds) environmental descriptors.  

 fat yield milk yield SCS milk energy yield 
protein yield 0.846 0.956 -0.176 0.955 
fat yield  0.839 -0.162 0.961 
milk yield   -0.197 0.949 
SCS    -0.182 
 

Random regression models were solved using ASReml 3.0 (Gilmour et al., 2009). A critical 

question was the choice of the appropriate order of the random regression models, i.e. of u 

and v. For the uncorrelated daughter effects this was very clearly v = 1 for all trait and 

environment combinations except for both SCS as trait and as environment (see results 

section). For SCS as trait and environment v = 0 was used. The choice of the appropriate 

order of the random sire effect was made by applying a restricted likelihood ratio test, because 

a model of a lower order is nested within a model of a higher order for a given v. Additionally 

this was done by visual inspection of the eigenvalues of the estimated covariance matrix, as 

suggested by Kirkpatrick et al. (1990).  

 

Once variance components were calculated, several genetic parameters were estimated for a 

defined environmental value E to evaluate possible GxE effects. Heritability as a function of 

E was estimated as: 

2
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2
|

2
|

2
|
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ˆ
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EeEdEs

EaEh
σσσ
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++

= , 

where 2
|Esσ  ( 2

|Edσ ) is the variance of the sire (daughter) as a function of the environment, 

2
|

2
| *4 EsEa σσ =  is the additive genetic variance, and 2|Eeσ  is the residual variance of the 

environmental class that included the environmental value E. The 2
|Esσ  was calculated as 

ELSELEs ′= |*ˆ*|2
|σ  and the 2

|Edσ  as ELDELEd ′= |*ˆ*|2
|σ . The vector EL |  contains the 

Legendre polynomials for E. The genetic correlation between different environmental values 

was calculated from the entries of the covariance matrix G of the additive effects at the 

environmental values. The matrix G was calculated as  

'ˆ*4ˆ ΦΦ= SG , 

with Φ  being a matrix with polynomial coefficients for a defined value E on each row. These 

calculations are based on Kirkpatrick et al. (1990) and are nicely described in Schaeffer 

(2010). EBV|E of a sire was calculated as  

sELEEBV ˆ*|| ′= , 
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with ŝ  being a vector of order u containing the estimated random regression coefficients of 

the sire. Putative GxE effects were evaluated by investigating the change in additive genetic 

variance along E, the genetic correlation and the EBV|E rank correlation between several 

environmental values. 

 

Table 3: Model numbers with corresponding trait names and environmental descriptors. 

model number trait environmental descriptor 
1 protein htds – milk energy yield 
2 fat htds – milk energy yield 
3 milk htds – milk energy yield 
4 protein htds – SCS  
5 fat htds – SCS 
6 milk htds – SCS 
7 SCS htds – SCS 

 

Results 

The restricted likelihood ratio test showed that a second order sire effect (u = 2) was 

significantly superior to a first order one (p < 0.001 in all cases). Higher order sire effects (u = 

3) were significant for some traits and environments, but the variance component of the 

higher order level was very small and convergence was very slow (not shown). Additionally, 

the last eigenvalues of the covariance matrix S for u = 3 were very small compared to those of 

all other models (not shown), indicating that an additional order explains only a small amount 

of the observed phenotypic variation. Therefore, a second order sire effect (u = 2) was used in 

all models. For the uncorrelated daughter effect, v = 1 in nearly all cases, except for the model 

that used SCS as trait and as environment, as stated above. Higher order models did not 

converge and a lower order (v = 0) resulted in a substantially lower restricted log-likelihood 

value (not shown).  

 

The results of the models using the milk traits and the htds of the corresponding milk traits 

were almost the same as when using the htds of the milk energy yield as an environmental 

descriptor. This was expected due to the high correlation between the environmental 

descriptors (Table 2). Therefore, only the results of the seven models with milk energy yield 

or SCS as environment (see Table 3) are reported. The distribution of these two 

environmental descriptors is presented in Figure 1. Both are approximately normally 

distributed, but with some skewness.  
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Table 4: Sire variance components of the random regression analyses. Standard errors are 

shown in parenthesis. 

model number*  2

0
ˆ sσ **  2

1
ˆ sσ **  2

2
ˆ sσ **  

10
ˆ ssσ ***  

20
ˆ ssσ ***  

21
ˆ ssσ ***  

1 
1822.55 52.571 1.572 180.041 7.549 6.644 

(56.2) (3.550) (0.337) (10.698) (4.241) (0.999) 

2 
3132 63.487 1.223 326.907 2.355 3.843 

(96.966) (4.731) (0.379) (17.472) (7.598) (1.294) 

3 
2.18 0.056 0.02 0.245 0.005 0.006 

(0.067) (0.004) (<0.001) (0.012) (0.005) (0.001) 

4 
1968.490 5.620 0.78 <-0.001 0.211 -0.637 

(60.439) (0.914) (0.162) (<0.001) (3.512) (0.308) 

5 
3293.2 19.694 0.77 -134.035 -13.058 -1.567 
(101.548) (2.293) (0.297) (13.179) (6.983) (0.693) 

6 
2.359 0.007 <0.001 -0.068 -0.001 -0.001 

(0.072) (0.001) (<0.001) (0.007) (0.003) (<0.001) 

7 
0.099 0.001 <0.001 0.003 -0.001 <-0.001 

(0.003) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) 
* The trait and environmental descriptor of the models are given in Table 3. 

** 2

0
ˆ sσ  is the sire variance of the intercept, 2

1
ˆ sσ is the sire variance of the slope, and 2

2
ˆ sσ  is the 

second order sire variance. 

*** 
10

ˆ ssσ , 
20

ˆ ssσ  and 
21

ˆ ssσ are the covariances between intercept, slope and the second order 

sire variance 

 

The estimated variance components for the sire effects are shown in Table 4 and for the 

daughter effect in Table 5. The significance of the higher order sire effects point to the 

presence of GxE effects for all combinations of traits and environments. The linear sire effect 

was much more important than the second order effect in explaining the variation of the 

observations. The additive genetic variance as a function of the environmental value, 

2
|

2
| *4 EsEa σσ = , is shown in Figure 2. For the milk traits and the milk energy as environment 

this variance was increasing substantially with an increase in the environment (e.g. from 3 to 

6.6 kg2 for milk yield and from 280 to 530 g2 for fat yield). The opposite was observed for fat 

and milk yield and SCS as the environment. The additive genetic variance of protein yield 

was almost constant over the range of SCS. For SCS the additive genetic variance increased 

slightly with an increase in SCS. A similar pattern could be observed for the daughter 

variance 2
|Edσ  (Figure 3) when using milk energy as environment. For SCS there seems to be 

the lowest daughter variance for intermediate SCS levels (Figure 3). Note that for both, SCS 

as trait and environment, v = 0, hence, the variance was not affected by the environment. 

 



  CHAPTER TWO  

 25 

Table 5: Daughter variance components of the random regression analyses. Standard errors 

are shown in parenthesis. 

model number* 2

0
ˆ dσ **   2

1
ˆ dσ **   

10
ˆ ddσ **   

1 
3212.67  544.457  645.489  

(6.464)  (7.973)  (4.329)  

2 
5703.13  864.755  991.44  

(11.892)  (15.065)  (8.041)  

3 
4.41  0.913  0.871  

(0.008)  (0.008)  (0.005)  

4 
3814.31  163.842  <0.001  

(6.741)  (7.035)  (<0.001)  

5 
6502.85  505.530  -204.036  

(12.170)  (14.031)  (8.616)  

6 
5.271  0.335  <0.001  

(<0.001)  (<0.001)  (<0.001)  

7 
0.01            _      _  

 (<0.001)      
* The trait and environmental descriptor of the models are given in Table 3. 

** 2

0
ˆ dσ is the variance of the intercept of the daughter, 2

1
ˆ dσ  is the variance of the slope of the 

daughter and 
10

ˆ ddσ  is the covariance between intercept and slope 

 
The residual variance components, 2

|Eeσ , are shown in Table 6. The residual variance was 

clearly heterogeneous and increased with environmental values for those models that used 

milk energy as an environment. Due to the abrupt change of the residual variance across the 

classes the trace of the heritability along the environmental values, Eh |² , was not a smooth 

plot, but was peaked at several points. Because these peaks were an artefact of the somewhat 

arbitrary choice of the ten environmental values, they are not reported. The trace would 

become smoother if the number of environmental classes was increased. But in general the 

heritability is much less affected by the environment as the additive genetic variance. The 

heterogeneous residual variance was less obvious if SCS was the environment.  

 

The genetic correlations of the traits at selected percentile of environments are shown in Table 

7. They are generally high (>0.9) even for the two extreme environments (0th – 100th 

quantile). EBV|E rank correlations were all above 0.95 (not shown), indicating almost no re-

ranking.  
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Table 6: Residual variance components within the ordered environmental classes.  

environmental 
class** 

model number* 
1 2 3 4 5 6 7 

1 5069.2 10161.7 3.948 6104.9 11928.2 4.497 0.585 
2 5565.2 10921.2 4.182 6242.9 12094.7 4.581 0.643 
3 5906.9 11455.1 4.355 6318.4 12256.1 4.626 0.694 
4 6154.6 11782.2 4.497 6381.4 12355.6 4.661 0.728 
5 6328.2 12079.4 4.564 6348 12345 4.657 0.768 
6 6520.6 12429.1 4.674 6377.1 12393.4 4.683 0.807 
7 6676.5 12767.8 4.763 6332.1 12376.3 4.659 0.849 
8 6865.7 13164.9 4.902 6333.3 12365.3 4.669 0.901 
9 7048.5 13705.2 5.036 6258.8 12344.3 4.636 0.979 
10 7388.4 14940.1 5.322 6005.3 12102.8 4.492 1.139 
* The trait and environmental descriptor of the models are given in Table 3. 
**  Class 1 (10) contains the lowest (highest) environmental values.  

 

Table 7: Genetic correlation between selected percentile of the environmental descriptor. 

model number* rg 0
th – 100th percentile rg 5

th – 95th percentile rg 25th – 75th percentile 
1 0.895 0.904 0.938 
2 0.945 0.950 0.968 
3 0.925 0.932 0.956 
4 0.983 0.985 0.990 
5 0.974 0.977 0.986 
6 0.987 0.989 0.993 
7 0.960 0.964 0.978 

* The trait and environmental descriptor of the models are given in Table 3. 

 

Discussion 

The present study investigates GxE effects in German Holsteins using non-linear reaction 

norm models. A significant substantial slope variance resulted in a varying additive genetic 

variance as a function of the changing environment and in a genetic correlation slightly lower 

than one between a trait evaluated at different environmental values. This points to the 

presence of minor GxE effects. In animal breeding GxE scaling and re-ranking effects are 

usually distinguished. The reaction norm models do not differentiate between scaling and re-

ranking effects and therefore putative re-ranking effects were evaluated in this study by rank-

correlations between EBVs as a function of the environment. The GxE effects did not result in 

re-ranking of sires for the environmental range considered in this study.  
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Figure 2: Additive genetic variance as a function of the environment (solid – milk energy 

environment, dotted – SCS environment) 

 

The reaction norm models applied can be seen as an alternative to the multi-trait approach 

applied by König et al. (2005) to the same population. They also found few re-ranking effects 

for the environments they considered. In their study the environment was regarded as a 

distinct variable and the observations had to be grouped in the environmental classes; 

individual differences within the classes were not considered. In contrast, the reaction norm 

model uses the entire environmental variance. A critical question is the appropriate choice of 

the environmental descriptor. Several authors (e.g. Hayes et al. (2003), Calus et al. (2002), 

Kolmodin et al. (2002), Strandberg et al. (2009), or Lillehammer et al. (2009)) showed that 
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the production level of the herd can be a useful environmental descriptor. This is also a very 

convenient choice, because reliable herd production levels can be obtained from the routine 

sire evaluation. Following this, we used the average herd production level for milk traits or 

SCS, which were available as herd test day solutions from the routine breeding value 

evaluation. It is postulated that different levels of feeding result in different milk production 

levels. The milk energy production level might be the most appropriate descriptor, because it 

includes milk, fat and protein yields and should thus be more sensitive to the feeding level 

than one of the milk traits alone.  
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Figure 3: Daughter variance as a function of the environment (solid – milk energy 

environment, dotted – SCS environment). Note that for the trait SCS the daughter variance 

was constant over the range of the environment. 
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For all milk traits and milk environmental descriptors the correlation between sire intercept 

and first order sire effect is positive (
10

ˆ ssσ  > 0, see Table 4), which is in agreement with 

Kolmodin et al. (2002), Calus et al. (2002), and Hayes et al. (2003). In Figure 4 the reaction 

norms of a sample of 15 sires (five with a steep positive, five with a steep negative and five 

with a flat slope) are presented. The reaction norms are almost linear, which underlines the 

dominance of the first order sire effect in explaining the environmental sensitivity. For milk 

traits as observation and milk energy yield as environment it can be seen that in a ‘bad’ 

environment the differences are smaller compared to a ‘good’ environment. Hence, it seems 

more beneficial for dairy farmers with a ‘good’ environment to invest in high quality semen 

than for farmers in a ‘bad’ environment.  

 

When using herd test day solutions for SCS as an environmental descriptor, it is assumed that 

the level of hygiene on the farms, especially the infection pressure on the udder, is reflected. 

Thus, the decreased additive genetic variance for milk and fat yield with an increase of SCS 

environmental level (Figure 2) was expected. The negative correlation between sire intercept 

and first order sire effect (
10

ˆ ssσ  < 0, see Table 4) indicates that bulls with a high (low) 

intercept generally have a negative (positive) slope. This can also be visualized by looking at 

the reaction norms of a sample of bulls (Figure 5). The reaction norms are generally 

somewhat flatter compared to the results obtained when milk traits are used as the 

environmental descriptor (Figure 4). Hence, GxE effects are more obvious when using milk 

energy yield as environmental descriptors. This is also underlined by the plots of the additive 

genetic variance, where variance is less sensitive for a changing SCS environment (Figure 2), 

especially for protein yield. The low daughter variance at intermediate SCS-levels (Figure 3) 

might be due to a non-linear relationship between SCS and udder health. In ‘bad’ 

environments, SCS may measure the ability of the cow to avoid mastitis, which is heritable. 

In ‘good’ environments, somatic cells may be considered as background noise, which is also 

heritable. In intermediate environments both are confounded, resulting in a lower heritability. 

This hypothesis is, however, highly speculative and is not supported by the trace of the 

additive genetic variance.  
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protein fat

milk

 

Figure 4: Reaction norms of a sample of 15 sires with a steep positive, a steep negative, and a 

flat slope, respectively, with milk energy yield as environmental descriptor.  

 

Lillehammer et al. (2009) showed that the application of a sire reaction norm model might 

result in heterogeneous error variance, because usually three quarters of the additive genetic 

variance becomes part of the error variance in a sire model. Hence, if the sire variance is 

heterogeneous across the environmental range, the error variance is heterogeneous, too. In 

order to avoid this, we fitted uncorrelated daughter effects, which captured a remaining part of 

the additive genetic variance, and a part of the within-cow variance. Indeed, the daughter 

variance component was generally quite substantial (Table 5). However, this did not remove 

all the heterogeneity of the residual variance and a class-wise residual variance estimation was 

necessary (Table 6). This modelling of the residual variance is in close agreement with the so-
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called IC-model of Lillehammer et al. (2009). For a sensible estimation of the heritability 

across the environment it would have been better to build more classes than only ten (as done 

in this study), because the estimated residual variance component would better match the 

environment under consideration.  

 

protein fat

milk SCS

 
Figure 5: Reaction norms of a sample of 15 sires with a steep positive, a steep negative, and a 

flat slope, respectively, with SCS as environmental descriptor. 

 

The increase of the residual variance with an increase in the environmental value and the less 

sensitive heritability with respect to the environment indicates that a part of the increase in the 

additive genetic variance is due to scaling effects, also caused by GxE. It is, however, difficult 

to quantify how much of the change is due to GxE effects. This problem of interpreting 
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reaction norm results was also described by Calus and Veerkamp (2003). The observations 

used were corrected for some systematic effects and for the effect of the herd test day. The 

herd test day solutions were adjusted for heterogeneous variances. Hence, it can be assumed 

that the GxE results are somewhat conservative, because some GxE effects were removed 

during the adjustment of the herd variances.  

 

Conclusions 

The results of the reaction norm models point towards the presence of minor GxE effects for 

milk traits and SCS in the German Holstein population. These did not result in re-ranking 

effects of sires for the environmental range investigated. Modelling heterogeneous residual 

variance played an important role in obtaining unbiased genetic parameters.  
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ABSTRACT 

Genotype-by-environment interaction (GxE) has been widely reported in dairy cattle. One 

way to analyse GxE is to apply reaction norm models. The first derivative of a reaction norm 

is the environmental sensitivity (ES). In the present study we conducted a large scale genome-

wide association analysis to identify SNPs that affect general production (GP) and ES of milk 

traits in the German Holstein population. Sire estimates for GP and for ES were calculated 

from around 13 million daughter records, using linear reaction norm models. The daughters 

were offspring from 2,297 sires. Sires were genotyped for 54k SNPs. The environment was 

defined as the average milk energy yield performance of the herds at the time where the 

daughter observations were recorded. The sire estimates were used as observations in a 

genome-wide association analysis, using 1,797 sires. Significant SNPs were confirmed in an 

independent validation set (500 sires of the same population). In order to separate GxE scaling 

and other GxE effects, the observations were log-transformed in some analyses. Results from 

the reaction norm model revealed GxE effects. Numerous significant SNPs were validated for 

both GP and ES. Many SNPs affecting GP also affect ES. We showed that ES of milk traits is 

a typical quantitative trait, genetically controlled by many genes with small effects and few 

genes with larger effect. A log-transformation of the observation resulted in a reduced number 

of validated SNPs for ES, pointing to genes that not only caused scaling GxE effects. The 

results will have implications for breeding for robustness in dairy cattle.  

 

INTRODUCTION 

Breeding cattle for milking traits relies on the use of daughter records for estimation of 

breeding values of their sires. Because sires are used widely through artificial insemination, 

their breeding values are estimable with a high accuracy, which resulted in a substantial 

genetic gain for milking traits over the last decades (Dekkers and Hospital 2002). It is 

expected, that this gain will be even further accelerated with the introduction of genomic 

selection methods (Meuwissen et al. 2001, Goddard and Hayes 2009). Often, frequently used 

sires have daughters that are milked in a wide range of environments. This raises the question 

about the importance of genotype-by-environment interaction (GxE). GxE refers to a variable 

response of genotypes to changes in the environment. Many studies have been conducted to 

quantify putative GxE effects in dairy cattle (e.g. Kolmodin et al. 2002, König et al. 2005, 

Strandberg et al. 2009 and references therein). The use of reaction norms is a powerful 

approach to study GxE effects if the environment can be described as a continuous variable. 

The slope of a reaction norm, i.e. the first derivative, is the environmental sensitivity (ES) and 
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genetic variation of ES can be interpreted as the existence of GxE (de Jong 1995, Lynch and 

Walsh 1998, James 2009). A frequently used environmental descriptor is the mean 

performance of all individuals in the environment (James 2009). It is assumed that various, 

unknown or unobservable environmental forces affect the mean performance. Mean 

performance is therefore a descriptor that captures these effects and weights them in a 

‘natural’ way, i.e. by their effects on the performance. In dairy cattle, reaction norm models 

which include the average herd production level as a continuous environmental descriptor are 

widely used to study GxE (Kolmodin et al. 2002, Calus et al. 2002, Fikse et al. 2003, Hayes et 

al. 2003, Strandberg et al. 2009, Lillehammer et al. 2009a, Streit et al. 2012). Reaction norms 

are frequently fitted using random regression sire models. The daughter’s observations are 

regressed on the corresponding herd solution. The regression is nested within sires, yielding a 

random sire estimate for the slope and for the intercept. The correlation between intercept and 

slope depends on where the intersection point of the reaction norm model is placed. It is 

recommended to place it in the average environment (van Tienderen and Koelewijn 1994, 

Kolmodin and Bijma 2004). In this case the intercept estimate can be interpreted as an 

estimate for average or general production (GP) and the slope as an estimate for ES for 

individual sires. A positive correlation between intercept and slope under this conditions was 

frequently reported (e.g. Kolmodin et al. 2002, Lillehammer et al. 2009b).  

 

It might be worthwhile to consider ES in livestock breeding schemes (de Jong and Bijma 

2002, Knap 2005, Veerkamp et al. 2009). Breeding for high yielding and sensitive individuals 

might be beneficial in high-producing and non-fluctuating environments, because sensitive 

individuals are able to benefit form these environmental conditions. In poor, fluctuating or 

unforeseeable environments, robust individuals are desired, if the robustness does not come at 

the expense of a decline in fitness and increase in health problems. One way to breed 

simultaneously for robustness and GP is to find genes that affect GP and ES of one trait in 

opposite directions, and to apply marker-assisted selection using these genes (Lillehammer et 

al. 2009b). Lillehammer et al. (2009b) applied association analysis using approximately 

10,000 SNPs in the Australian dairy cattle population to find significant SNPs affecting GP 

and ES. Several SNPs were significant and around one third affected GP and ES in opposite 

directions; these SNPs are of special interest with regards to breeding for robustness.  

 

The genetic architecture of dairy cattle milk traits has frequently been analysed (e.g. Cole et 

al. 2009, Hayes et al. 2010, Wellmann and Bennewitz 2011). However, it is unknown how 
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many genes affect ES, what the sizes and distributions of the effects are, and where they are 

located on the genome. In a recent study we applied higher order reaction norm random 

regression sire models to investigate GxE effects in German Holsteins (Streit et al. 2012). 

Herd test day solutions for production were used as environmental descriptors. We found 

highly significant GxE for milk traits, which resulted in substantial scaling and few re-ranking 

effects. For a deeper understanding of the nature of GxE effects, a partitioning of GxE effects 

into that due to scaling and due to changes in the rank of individuals across environments is 

desirable (e.g. Muir et al. 1992, Dutilleul and Potvin 1995, James 2009). An obvious method 

to reduce or eliminate scaling effects is to apply a data transformation (James 2009). This 

would allow partitioning of removable by data transformation and non-removable interaction. 

 

The aim of the present study was to conduct a validated genome-wide association analysis to 

identify SNPs that affect GP and ES, and based on the results, to infer some knowledge of the 

genetic architecture of GP and ES. We were especially interested in the number of validated 

SNPs and the size and the sign of the effects on GP and ES. We applied a three-step 

procedure. In the first step, sire estimates for GP and for ES were calculated using first-order 

random regression sire models. These estimates were used in a second step as observations in 

an association analysis. In the third step, significant SNP associations were confirmed in an 

independent validation set of the same population. In order to remove GxE causing scaling 

effects, the observations were log-transformed in some analyses.  

 

MATERIALS AND METHODS 

Data and data editing 

In total 2,356 progeny tested German Holstein sires were genotyped with the Illumina 

BovineSNP50 BeadChip, which contains a total of 54001 SNPs (Illumina, San Diego, CA; 

Matukumalli et al. 2009). The sires were born between 1983 and 2003 and reflect a 

representative sample of the population (Qanbari et al. 2010). Individuals with more than 10% 

missing marker genotypes were removed, resulting in 2,297 sires. An SNP was excluded if it 

had a minor allele frequency less than 3%, a call rate less than 90%, a significant deviation 

from the Hardy-Weinberg-equilibrium (p<0.001), or if the position on the genome was 

unknown. SNPs on the sex chromosome were also excluded. This data filtering was done 

using PLINK (Purcell et al. 2007). A total of 41,349 SNPs remained in the data set. Sporadic 

missing genotypes were imputed using fastPHASE (Scheet and Stephens 2006). The linkage 

disequilibrium (LD) structure in this population was investigated by Qanbari et al. (2010). 
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Around 13 million first lactation test day records for protein yield, fat yield and milk yield 

from daughters of the sires were used. The number of daughters per bull ranged from 50 to 

74,842 and totalled around 1.3 million. Test day records were corrected for the fixed effects 

herd test day, days in milk, age at calving, calving season and the random permanent 

environment effect. These correction factors were obtained from the routine animal genetic 

evaluation, which is an animal test day model. After this adjustment, the trait population mean 

was added to the observations in order to obtain predicted trait values.  

 

The environment was described by the mean herd test day performance for milk energy yield. 

It was calculated as a linear combination of milk yield, fat yield and protein yield, i.e. 

yieldproteinyieldfatyieldmilkyieldenergy *6.23*4.38*802.0 ++= , where the yields 

are measured in kg (Nostitz and Mielke 1995). We preferred this single parameter to describe 

the environment, because it combined the highly correlated herd test day performances for the 

three milk yield traits; see Streit et al. (2012) for further details. It is assumed that this 

parameter captures important unobservable and unknown environmental effects. The 

environmental descriptor was rescaled to have a mean equal to 0 and a standard deviation of 

1. Hence, superior (inferior) environments show positive (negative) values for the 

environmental descriptor, and the ‘average’ environment shows a value close to zero. The 

distribution of the environmental descriptor is shown in the Supplemental. It is approximately 

normally distributed. Mean herd test day performances of milk yield, protein yield, and fat 

yield were obtained from the routine animal genetic evaluation, see VIT (2013) for a detailed 

description.  

 

Statistical analysis 

In a previous study we applied a second-order sire model, which gave an improved fit 

compared to a first-order model. However, a first-order sire effect explained most of the 

variation of ES (Streit et al. 2012). Therefore, we decided to apply a fist-order sire model in 

the present study. The following random regression model was applied in the first step for all 

three milk yield traits: 
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where cyijk is the corrected yield of daughter i of sire j at herd test day k, µ is the overall mean, 

htdsmek is the herd test day solution for milk energy yield at herd test day k with the fixed 

regression coefficient b, sjm is the random sire effect of sire j of order m, dijm the random 
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daughter effect of daughter i of sire j of order m, and e is the random residual. The covariance 

structure of the sire regression effects is 

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, with I being the identity matrix. The estimated sire 

effects were used as observations in an association analysis (see below). In contrast to 

classical sire models, the relationship among sires was ignored. This could be done, because 

there was much progeny information available for each sire, and hence, the sire estimates 

were largely influenced by the progeny records and only very little by the pedigree. Indeed, 

preliminary results showed that the correlation between sire estimates with and without 

considering the pedigree in model (1) was >0.98 (not shown).  

 

In order to model heterogeneous residual variance across the environments, the observations 

were ordered according to the environmental descriptor and grouped into ten classes of equal 

size based on the environmental values. Residual variances were estimated for each class, 

assuming the residual covariance to be zero. The uncorrelated daughter effects reduce the 

heterogeneity of residual variance if GxE effects are present (Lillehammer et al. 2009a). The 

models were fitted using ASReml 3.0 (Gilmour et al. 2009). Because the mean of the 

environmental descriptor was zero, the intercept solutions of the sire regression coefficients 

were used as sire estimates for GP, i.e. production level in the average environment. 

Furthermore, the slope solutions were used as estimates for ES.  

 

Table 1 Sire variance components of the random regression analyses. Standard errors are 

shown in parentheses. 2

0Sσ  ( 2

1Sσ ) denotes the intercept (slope) sire variance, with 

correlation
10SSρ .  

Trait Unit 2

0Sσ  2

1Sσ  
10SSρ  

Protein yield g 2379.37 (87.48) 17.02 (0.98) 0.79 
Fat yield g 7883.41 (257.12) 46.76 (2.43) 0.93 
Milk yield kg 1.30 (0.04) 0.02 (< 0.01) 0.72 
ln(protein yield)* - 9.50 (< 0.01) 0.11 (< 0.01) 0.61 
ln(fat yield)* - 12.70 (< 0.01) 0.13 (< 0.01) 0.73 
ln(milk yield)* - 10.55 (< 0.01) 0.14 (< 0.01) 0.68 
* values are multiplied by 10,000  
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The whole data set was randomly split into a discovery data set (n = 1,797 bulls) and a 

validation data set (n = 500 bulls). In the second step of the statistical analysis, we performed 

genome-wide association analyses using the discovery data set. To do so, we applied the 

following mixed linear model: 

 
jmjkkmjmmjm exbsires +++= *ˆ µ , (2) 

where jmŝ  is the estimated random sire effect for GP (m = 0) and ES (m = 1). These estimates 

were taken from the results of model (1). The model was applied for the two traits (m = 0 for 

GP and m = 1 for ES) separately. The effect of the SNP k was modelled as a regression on the 

number of copies of the allele with the higher frequency (x = 0, 1, or 2), with kmb  being the 

regression coefficient. In order to control for the population structure, we fitted a random sire 

effect with the covariance structure 2
smAσ , where A is the numerator relationship matrix 

calculated from high-quality pedigree information and 2
smσ  a variance attributable to the sires. 

This model was applied for each SNP k in turn, resulting in 41,349 association tests per trait. 

We declared each SNP with a pointwise error probability below p<0.001 as significant. In 

order to judge how many false positives were among the significant associations we applied 

the false discovery rate (FDR) technique. We calculated for each association test an FDR q-

value using the software QVALUE (Storey and Tibshirani 2003). The FDR q-value of the 

significant SNP with the lowest test statistic (p≈0.001) provided an estimate of the proportion 

of false positives among the significant associations.  

 

Table 2 Number of discovered and validated SNPs for intercept and slope for the traits on the 

observed scale. The FDR q-values (FDR) of the significant SNP with the largest error 

probability (p≈0.001) in the discovery dataset are shown. 

Trait 
Discovery dataset 

FDR 
Validation dataset 

(p ≤ 0.001) (p ≤ 0.01) 
Intercept protein yield  450 0.07 69 
Slope protein yield 351 0.09 44 
Intercept fat yield 465 0.07 118 
Slope fat yield 385 0.08 99 
Intercept milk yield  415 0.08 104 
Slope milk yield 416 0.08 98 
 

In the third step, we confirmed significant SNP associations within the same population in the 

validation set. The same statistical model was applied, but only to significant SNPs. We 

declared an SNP as confirmed if the p-value in the validation set was p<0.01 and the signs of 

the effects were the same in both sets. This relaxed significance criterion was used in the 
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validation set, because less multiple testing was performed, and a more stringent significance 

level would reduce the power to validate SNPs. A similar protocol was used by Pryce et al. 

(2010). For the interpretation of the effects, the estimates of the validation set were used, 

because it can be assumed that these suffer less from the Beavis-effect and are less upwardly 

biased (Beavis 1994).  
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Figure 1 Test statistic profile of SNP effects for protein yield intercept (top) and protein yield 

slope (bottom) in the discovery data set. The nominal significance level (p<0.001) is indicated 

by a solid line. Positions of validated SNPs are indicated by a triangle.  

 

In order to identify SNPs that not only cause scaling effects within the environmental range 

considered in our study, we applied the models also to log-transformed observations (Hayes et 

al. 2003, Lillehammer et al. 2009b). Preliminary results revealed convergence problems of 

model (1) with log-transformed observations (not shown), which was caused by the random 

regression of the daughter on the environment. Therefore, to ensure convergence, the random 

daughter effect was fitted without regression on the environment. The residual variance was 

homogeneous, so only one residual variance component was estimated. The sire solutions 

obtained from model (1) were used subsequently in model (2). 
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RESULTS 

The main results of the variance component estimation are shown in Table 1. There is slope 

variance for all traits on both the observed and the log-transformed scales, pointing to the 

presence of GxE effects. These GxE effects were analysed in details and also tested for 

significance in an earlier study (Streit et al. 2012). On the observed scale, the correlation 

between intercept and slope was high and positive. The log-transformation reduced this 

correlation. As expected, the daughter variance was substantial and the residual variance was 

heterogeneous across the environmental classes for traits on the observed scale (not shown).  
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Figure 2 Test statistic profile of SNP effects for fat yield intercept (top) and fat yield slope 

(bottom) in the discovery data set. The nominal significance level (p<0.001) is indicated by a 

solid line. Positions of validated SNPs are indicated by a triangle.  

 

The results of the association analysis for the traits on the observed scale are shown in Table 

2. For all traits, 350 to 450 SNPs showed a nominal significant association in the discovery 

data set; the FDR-analysis revealed that around 7-9 % of these are false positives. For fat and 

protein yield, more trait-associated SNPs could be found for intercept than for slope. The 

number of validated SNPs was between 44 (protein slope) and 118 (fat intercept). The results 
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for the log-transformed data sets are shown in Table 3. For the intercepts, almost the same 

number of significant SNPs was found as on the observed scale, but fewer could be 

confirmed. For the slopes, the number of significant SNPs was reduced. The FDR q-values of 

the significant associations were similar or slightly higher.  
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Figure 3 Test statistic profile of SNP effects for milk yield intercept (top) and milk yield 

slope (bottom) in the discovery data set. The nominal significance level (p<0.001) is indicated 

by a solid line. Positions of validated SNPs are indicated by a triangle. 

 

The plots of the test statistic along the chromosomes are shown in Figure 1 to 3 for the traits 

on the observed scale. Chromosomal positions of validated SNPs are indicated by a triangle 

symbol. The pattern of the test statistic was similar for the intercept and slope within the 

traits, although for intercept the signals were generally more pronounced, leading to the 

higher number of significant associations. Significant SNPs were found on many 

chromosomes, and the clearest signals were observed on BTA14. Promising SNP clusters 

affecting intercept and slope of all traits were also identified on BTA26. Chromosome 9 is 

interesting with regard to protein, as it contains a validated SNP cluster for both intercept and 

slope. For slope, validated SNPs with a remarkably high test statistic were found on BTA20 

and BTA25. For fat intercept, a highly significant SNP was found on BTA5, which also 
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affected slope to a lesser extent. For milk slope validated SNPs were mapped on BTA6 and 

BTA20. The test statistic plots for intercept on the observed and on the log-scale are almost 

identical for all three traits (not shown). For slope, however, the plots differ between the 

scales (see Figure 4). Again, SNPs on BTA14 showed the strongest signals for all three log-

transformed traits for slope.  
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Figure 4 Test statistic profile of SNP effects for ln(protein yield) slope (top), ln(fat yield) 

slope (middle), and ln(milk yield) slope (bottom) in the discovery data set. The nominal 

significance level (p<0.001) is indicated by a solid line. Positions of validated SNPs are 

indicated by a triangle. 
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In Figure 5 the estimates of the validation set are shown for SNPs that were either significant 

for intercept, or for slope, or for both. The slope effect of the allele that increases the intercept 

is shown. It can be seen that every validated SNP affects both traits in the same direction, and 

the correlation between the solutions is highly positive. This was less pronounced if the data 

were log-transformed (Figure 6). For ln(protein yield), many validated SNPs for intercept 

showed a small but mostly non-significant negative effect for slope. In general, the largest 

SNP effects (in units of the standard deviation, σ) were observed for milk yield, with 11 (4) 

SNPs showing an intercept (slope) effect larger than 0.3σ. For the log-transformed data sets, 

the intercept effects are generally larger. This was not observed for slope effects. The 

estimates of each validated SNP for the traits on the observed scale are presented in 

Supplemental Table 1; estimates for the log-transformed observations are presented in 

Supplemental Table 2. 

 

Table 3 Number of discovered and validated SNPs for intercept and slope for the traits on the 

log-scale. The FDR q-values (FDR) of the significant SNP with the largest error probability 

(p≈0.001) in the discovery dataset are shown. 

Trait 
Discovery dataset 

FDR 
Validation dataset 

(p ≤ 0.001) (p ≤ 0.01) 
Intercept ln(protein yield) 463 0.07 56 
Slope ln(protein yield) 313 0.11 64 
Intercept ln(fat yield) 469 0.07 118 
Slope ln(fat yield) 320 0.11 80 
Intercept ln(milk yield)  419 0.08 87 
Slope ln(milk yield) 386 0.09 68 
 

DISCUSSION 

In this study we attempted to identify and confirm SNPs for intercept (reflecting GP) and 

slope (reflecting ES) of milk traits in the German Holstein dairy cattle population. Numerous 

SNPs were identified and confirmed for both GP and ES. Many SNPs affecting GP also affect 

ES. We showed that ES of milk traits has a similar genetic architecture as GP and is a typical 

quantitative trait, genetically controlled by many genes with small effects and few genes with 

larger effect (Figure 5, Supplemental Table 1). Given the FDR q-values of the SNPs in the 

discovery set (Tables 2 and 3) it seems that some SNPs with true associations were not 

confirmed. This might be due to the reduced power of the validation set with 500 sires. A 

more stringent validation would be to also test if the SNP is significant in another population 

(Hayes et al. 2009, Pryce et al. 2010). Such a validation study would also increase mapping 

precision, because mapping resolution is increased when using an across-breed approach and 
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only those SNPs being in LD with the mutation in both breeds would be validated. No 

independent population was available, however, to do an across-population validation in this 

study.  

 

In our study, the mapping precision is limited due to the LD structure observed in this 

population (Qanbari et al. 2010) in combination with the applied single marker association 

analysis. Alternatively, a combined linkage and LD mapping approach could have been 

applied, which predicts IBD-probabilities at putative QTL regions using multi-marker and 

pedigree information and uses these probabilities for QTL fine-mapping (Meuwissen et al. 

2002). This method is, however, computationally demanding and needs higher marker 

densities. Another multi-marker approach that could have been applied is a Bayes-method 

originally developed for genomic selection (Meuwissen et al. 2001, Goddard and Hayes 

2009). These Bayes-methods make use of the LD of the markers and the mutation and 

additionally of the LD between the markers. It is not completely clear how to test for 

significance when using these methods. Olsen et al. (2011) applied the three approaches 

mentioned above to map genes for fertility and milk production in dairy cattle. They applied 

single marker association analysis for a first screen, fine-mapped the regions using combined 

linkage and LD mapping and confirmed the putative positions by using BayesA from 

Meuwissen et al. (2001).  

 

Some interesting SNP clusters affecting GP are located closely to well known candidate genes 

which segregate in the German Holstein population. This is most obvious on BTA14, were 

the clear signals for all milk traits for GP and ES probably reflect the effect of DGAT1 

(Grisart et al. 2002, Winter et al. 2002). This gene is known to segregate and affect all milk 

traits in this population (Bennewitz et al. 2004a). Several SNPs affecting GP of all three 

investigated milk traits were found on BTA6. From previous linkage analyses it is known that 

BTA6 harbours QTL affecting milk traits in this population (Kühn et al. 1999, Bennewitz et 

al. 2004b). Putative candidate genes underlying mapped QTL are discussed in Weikard et al. 

(2005). The PPARGC1A gene was postulated as the most plausible gene underlying a QTL 

for fat yield. Additionally, the casein gene complex is located on this chromosome, with an 

effect on protein yield and protein percentage traits in this population (Prinzenberg et al. 

2003). On BTA5 we found a single SNP with a remarkably high test statistic for fat GP, 

which was also validated for fat ES. Wang et al. (2012) reported the gene EPS8 to be most 
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likely causative for this association. The significant SNPs on BTA20 is very likely to be 

associated with the GHR gene (Blott et al. 2003, Wang et al. 2012).  
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Figure 5 Estimated SNP effects for the traits on the observed scale. The term Sσ  ( iσ ) 

denotes the sire intercept (slope) standard deviation. Each SNP was validated within the 

population either for intercept, slope or both. Estimates were taken from the validation set. 
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Some validated SNPs for ES are in chromosomal regions similar to those found in other dairy 

cattle populations harbouring genes with GxE effects. In the Norwegian Red, milk production 

QTL for ES on BTA2, BTA6, BTA7, and BTA16 were reported by Lillehammer et al. (2007, 

2008). A detailed analysis of BTA6 with a high marker density revealed two QTL for milk 

yield with an effect on ES, but no QTL with an ES effect for fat and protein yield. In our 

population, we were able to validate ES SNPs on BTA6 for milk and fat yield, but not for 

protein yield. In the Australian Holstein population Lillehammer et al. (2009b) found several 

SNPs with ES effects. Roughly one third of their significant associations affected GP and ES 

in opposite directions, which is in contrast to our findings. They stated, however, that this 

proportion is probably smaller than one third, because it is generally more difficult to find 

SNPs that affect GP and ES in the same direction rather than in opposite directions. Our study 

is considerably more powerful than that of Lillehammer et al. (2009b), hence we were likely 

able to detect more SNPs with effects in the same direction. 

 

We previously reported significant GxE resulting in substantial scaling effects (Streit et al. 

2012). In order to remove these scaling effects, a log-transformation was applied. The results 

from the association analysis applied to the log-transformed data revealed SNP that were not 

removable by this kind of transformation. These validated SNPs are of special interest, 

because they point to chromosomal regions harbouring genes with an effect on ES which are 

not or not solely due to scaling effects. Some regions with clear signals for ES on the 

observed scale could not be found on the log-scale. This was especially observed for 

ln(protein yield) and SNPs on BTA14 close to the DGAT1 gene, where positive effects on ES 

were turned into small negative effects, although mostly not significant (Figure 6, 

Supplemental Table 2). Hence, these effects were completely removable by the log-

transformation. It may be noted that the log-transformation is frequently applied, but maybe 

another transformation function (e.g. from the Box-Cox-family of transformation) would be 

able to eliminate scaling effects more effectively. This was not investigated further in this 

study. The reduced correlation between intercept and slope when applying the log-

transformation (Table 1) was also observed by Lillehammer et al. (2009b). This decreased 

correlation has the following reason. For large yields the intercept of a regression is large as 

well. Since the logarithm is a concave function, the interval containing these yields is mapped 

to a smaller interval than an interval of the same size containing small yields. Thus, the 

transformation causes large yields to decrease in variance more drastically than small yields. 
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This causes positive slopes of the regression lines for large yields to decrease more than 

positive slopes of regression lines for small yields. 
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Figure 6 Estimated SNP effects for the traits on the log-scale. The term Sσ  ( iσ ) denotes the 

sire intercept (slope) standard deviation. Each SNP was validated within the population either 

for intercept, slope or both. Estimates were taken from the validation set.  
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As described in the introduction, breeding for robustness for both milk production and health 

traits is an issue in dairy cattle. In this study only milk production traits were considered. 

Based on our results, it seems that simultaneously breeding for an increase in milk GP and a 

decrease in ES by applying marker-assisted selection is difficult, because no SNPs showed 

opposite directions of the effects. Genomic selection can be seen as marker assisted selection 

on a genome-wide scale. It is currently implemented in many dairy cattle populations 

(Goddard and Hayes 2009). Improving ES by genomic selection should be possible by 

considering ES as an additional trait and by estimating genomic assisted breeding values for 

this trait. A reference population for the estimation of marker effects is needed. Existing 

reference populations mainly built by progeny-tested bulls can also be used for ES, provided 

that the daughters are distributed over a wide range of environments. As done in this study, 

the daughter records can then be used for the estimation of sire effects for ES, which in turn, 

can be used to estimate marker effects. The most appropriate method for this estimation 

depends on the genetic architecture of the trait, i.e. on the number of genes affecting the trait 

and on the distribution of the effect size (Hayes et al. 2010). The current study shows that for 

the estimation of marker effects for ES a model should be used that is tailored to traits 

affected by many genes with small effects and few with large effects.  

 

CONCLUSIONS 

We presented GxE for milk traits resulting in substantial scaling effects. Many SNP clusters 

affecting GP and ES could be identified and validated. The effects of some SNPs for ES were 

not removable by a data transformation, indicating that these are not solely scaling effects. 

The positions of these clusters were often found in well-known candidate regions affecting 

milk traits. No validated SNP showed effects for ES and GP in opposite directions. We 

showed that ES of milk traits is a typical quantitative trait controlled by many genes with 

small and few genes with large effects.  
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APPENDIX  
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Figure S1 Histogram of the environmental descriptor milk energy yield. 

 

Table S1 Validated SNPs with chromosome (BTA), position in base pairs (bp), F-values and 

effects for intercept and slope. Effect estimates were taken from the validation set. Validated 

SNPs are indicated in bold type F-values and effect estimates.  

SNP name BTA bp 

F-values in discovery dataset  Effects (in σ) 

       Intercept       Slope   Intercept Slope 

Protein yield            

ARS-BFGL-NGS-54077 1 87338372 7.09  10.96   0.094  0.148  
ARS-BFGL-BAC-7205 1 120983738 15.75  16.35   0.117  0.104  
ARS-BFGL-NGS-99492 1 121607486 16.95  16.54   0.125  0.126  
ARS-BFGL-BAC-13578 1 121811393 13.78  7.48   0.121  0.102  

ARS-BFGL-NGS-98257 1 127680108 13.65  4.44   0.109  0.075  

ARS-BFGL-NGS-86079 2 19126180 15.75  6.79   0.136  0.114  

Hapmap53232-rs29020795 2 19202356 14.56  9.90   0.130  0.109  

Hapmap43615-BTA-54400 2 19255900 11.87  7.53   0.139  0.106  

Hapmap60669-rs29018484 2 20687353 16.88  15.06   0.222  0.140  

BTA-101354-no-rs 2 58818593 10.96  11.72   0.067  0.116  
Hapmap28102-BTA-152636 2 58842740 10.84  11.37   0.069  0.116  
ARS-BFGL-NGS-113152 4 14644971 10.88  8.87   0.143  0.139  

ARS-BFGL-NGS-68464 5 18395406 12.71  10.07   0.145  0.090  

Hapmap33079-BTA-163567 6 1936 15.61  5.94   0.142  0.068  

Hapmap54442-rs29025673 6 31579806 14.14  8.19   0.102  0.092  

Hapmap27701-BTC-050761 6 40183166 12.68  8.34   0.126  0.094  

Hapmap31819-BTA-156590 6 40421547 13.80  9.11   0.126  0.094  

Hapmap23201-BTC-072836 6 40655229 21.27  17.26   0.113  0.095  

Hapmap32946-BTC-046820 6 41129701 27.71  15.88   0.137  0.086  
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ARS-BFGL-NGS-39570 6 46320087 14.72  3.26   0.169  0.159  

ARS-BFGL-NGS-43679 6 109680595 13.67  4.00   0.140  0.054  

BTB-00281303 6 111612203 15.07  2.41   0.153  0.090  

ARS-BFGL-NGS-113181 7 62800839 12.32  10.78   0.129  0.108  

ARS-BFGL-NGS-113819 7 63609102 15.25  6.29   0.153  0.089  

ARS-BFGL-NGS-109819 7 63664393 15.72  5.91   0.154  0.086  

ARS-BFGL-NGS-4062 8 5505897 6.17  11.71   0.116  0.122  
Hapmap44053-BTA-28733 8 6369477 15.90  14.16   0.118  0.133  
BTB-00389006 9 39062436 16.19  16.89   0.097  0.124  
BTA-06997-rs29021351 9 40153426 24.71  22.35   0.220  0.154  

BTA-83317-no-rs 9 40393986 26.22  21.89   0.114  0.081  

BTA-83528-no-rs 9 41691114 25.23  18.48   0.170  0.112  

ARS-BFGL-NGS-37982 9 44200288 22.50  15.00   0.105  0.084  

ARS-BFGL-NGS-52530 9 44230587 25.27  25.92   0.215  0.185  
ARS-BFGL-NGS-103934 9 44255942 17.63  17.33   0.162  0.115  

Hapmap57331-rs29009884 9 45457232 14.35  12.31   0.072  0.096  
ARS-BFGL-NGS-75844 9 45497534 14.31  12.54   0.072  0.096  
ARS-BFGL-NGS-39444 9 45590254 14.31  12.54   0.072  0.096  
BTA-10828-no-rs 9 46600974 24.59  23.15   0.096  0.105  
BTA-83605-no-rs 9 48362593 13.56  10.43   0.116  0.103  

BTB-00391835 9 52160813 11.20  5.70   0.157  0.085  

ARS-BFGL-NGS-25071 9 75512134 7.97  11.90   0.051  0.107  
ARS-BFGL-NGS-80176 10 64041482 12.30  9.49   0.121  0.129  

ARS-BFGL-NGS-88689 11 29901111 7.53  12.41   0.123  0.143  
ARS-BFGL-NGS-87426 11 30070765 11.73  12.74   0.114  0.127  
ARS-BFGL-NGS-21332 11 30108643 8.61  12.87   0.120  0.132  
ARS-BFGL-NGS-118724 11 30366110 12.45  10.44   0.107  0.121  

ARS-BFGL-NGS-112015 13 63235775 13.16  2.09   0.108  0.050  

Hapmap54034-rs29026486 13 65183781 11.97  4.07   0.106  0.073  

ARS-BFGL-NGS-63777 13 67075815 21.53  17.56   0.200  0.157  
ARS-BFGL-NGS-103635 13 67816926 11.00  1.02   0.104  0.059  

ARS-BFGL-NGS-52851 13 77352863 11.87  16.39   0.048  0.110  
Hapmap38308-BTA-33903 13 77756882 4.13  11.00   0.045  0.102  
Hapmap30383-BTC-005848 14 76704 45.65  31.66   0.168  0.134  
BTA-34956-no-rs 14 101474 20.91  7.85   0.129  0.112  

ARS-BFGL-NGS-57820 14 236533 72.24  56.71   0.193  0.148  
ARS-BFGL-NGS-34135 14 260342 33.61  18.35   0.114  0.095  

ARS-BFGL-NGS-94706 14 281534 32.30  17.16   0.118  0.093  

ARS-BFGL-NGS-4939 14 443936 76.22  55.93   0.189  0.138  
ARS-BFGL-NGS-107379 14 679601 61.01  51.65   0.158  0.122  
Hapmap25384-BTC-001997 14 835055 27.13  16.99   0.117  0.070  

Hapmap24715-BTC-001973 14 856890 22.88  13.75   0.116  0.073  

ARS-BFGL-NGS-103064 14 1193335 23.15  9.03   0.109  0.060  

Hapmap25486-BTC-072553 14 1285036 19.13  8.43   0.115  0.083  

ARS-BFGL-BAC-20965 14 5225005 14.28  8.91   0.136  0.104  

Hapmap23851-BTC-048718 14 5387835 17.21  16.92   0.126  0.095  

BTB-01988444 14 56535371 3.95  11.67   0.092  0.126  
ARS-BFGL-NGS-100131 15 21041772 9.75  11.06   0.099  0.132  
BTB-01698088 16 9738423 11.05  16.13   0.086  0.139  
ARS-BFGL-NGS-56645 16 23920210 15.37  5.10   0.117  0.092  

BTA-38367-no-rs 16 26379579 12.89  9.03   0.096  0.082  

ARS-BFGL-NGS-41039 16 27619045 14.91  5.09   0.183  0.109  

ARS-BFGL-NGS-38023 16 33318455 18.15  9.91   0.107  0.104  

ARS-BFGL-NGS-26559 16 33367687 11.43  6.70   0.124  0.112  

ARS-BFGL-NGS-59645 16 73117625 15.94  10.48   0.124  0.092  

BTA-97501-no-rs 18 57095120 16.33  8.05   0.108  0.069  
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ARS-BFGL-NGS-15837 18 62533851 11.11  4.42   0.110  0.118  

ARS-BFGL-BAC-33672 20 44108671 10.68  12.05   0.152  0.185  
BTA-17135-no-rs 20 49557519 11.88  16.26   0.132  0.175  
BTA-41516-no-rs 20 49593049 10.63  15.64   0.117  0.165  
BTB-01251603 20 50418473 9.19  12.88   0.172  0.198  
ARS-BFGL-BAC-34291 20 54837742 8.66  13.62   0.123  0.152  
Hapmap53927-rs29025287 20 56464296 8.94  13.45   0.135  0.179  
BTB-00787949 20 56494412 5.89  12.27   0.150  0.186  
ARS-BFGL-BAC-36842 20 58820614 6.51  14.46   0.097  0.146  
ARS-BFGL-NGS-38258 20 60185080 11.42  7.68   0.138  0.119  

BTA-12959-no-rs 21 10922512 13.46  9.60   0.114  0.104  

ARS-BFGL-NGS-101900 21 30314497 14.12  4.85   0.106  0.099  

ARS-BFGL-NGS-110044 21 30892171 11.81  2.78   0.158  0.143  

ARS-BFGL-NGS-55374 25 28795160 24.40  25.01   0.215  0.185  
ARS-BFGL-NGS-2464 26 18709176 20.40  10.13   0.098  0.097  

ARS-BFGL-NGS-71584 26 18863914 28.46  15.95   0.091  0.102  
ARS-BFGL-NGS-113339 26 19918015 16.35  7.34   0.105  0.083  

BTA-62184-no-rs 26 20014035 17.65  9.58   0.118  0.099  

BTA-60778-no-rs 26 20090833 21.14  14.75   0.127  0.117  
BTB-00932332 26 22551770 15.48  11.32   0.101  0.130  
ARS-BFGL-NGS-107403 26 23470277 18.11  12.42   0.098  0.122  
Hapmap28763-BTA-162328 26 26472420 12.31  12.37   0.085  0.109  
BTB-01622498 28 1436040 3.42  12.49   0.100  0.158  
ARS-BFGL-NGS-119076 28 15361777 12.02  8.12   0.126  0.086  

ARS-BFGL-NGS-43501 28 17344828 14.42  17.58   0.083  0.136  
ARS-BFGL-NGS-118693 28 17493199 10.68  13.14   0.139  0.127  
            
Fat yield            

Hapmap38956-BTA-43309 1 98853038 12.91  10.82   0.101  0.114  

BTB-01562245 1 113644592 11.25  11.71   0.149  0.175  
BTA-104132-no-rs 1 113669783 11.95  12.23   0.151  0.178  
ARS-BFGL-BAC-7205 1 120983738 12.64  12.33   0.079  0.072  

ARS-BFGL-NGS-88388 2 13718482 19.97  18.86   0.076  0.081  
ARS-BFGL-NGS-112315 2 40959609 12.86  5.12   0.093  0.091  

ARS-BFGL-NGS-44416 2 48557519 11.31  9.45   0.089  0.082  

ARS-BFGL-NGS-8503 2 87880854 11.07  11.84   0.117  0.095  
BTB-00108243 2 112019423 17.65  21.62   0.137  0.164  
BTB-01678000 3 6985014 20.43  20.37   0.077  0.068  

BTB-01678060 3 7009487 20.08  21.54   0.092  0.091  
ARS-BFGL-NGS-5956 3 8558755 18.73  14.50   0.092  0.093  
ARS-BFGL-NGS-112616 3 8598511 17.12  12.48   0.085  0.085  
ARS-BFGL-NGS-102139 3 24018818 9.79  11.56   0.067  0.078  
Hapmap50814-BTA-89905 3 41486200 11.97  9.50   0.095  0.079  

BTB-01851577 3 50093239 11.69  6.77   0.089  0.072  

INRA-648 3 54347354 13.39  11.31   0.147  0.168  
Hapmap43441-BTA-103289 3 61621627 17.59  20.74   0.068  0.083  
BTA-68164-no-rs 3 68215262 13.11  8.02   0.095  0.062  

BTB-00131847 3 68241075 13.16  8.09   0.097  0.066  

BTA-54952-no-rs 4 11830564 11.96  9.08   0.089  0.090  

ARS-BFGL-NGS-20815 4 15021946 15.91  14.68   0.083  0.076  

ARS-BFGL-NGS-117196 4 53206872 9.84  12.44   0.073  0.085  
ARS-BFGL-NGS-110647 4 77565085 9.95  12.41   0.081  0.093  
Hapmap39895-BTA-15668 5 15392995 11.42  7.32   0.093  0.081  

ARS-BFGL-NGS-108617 5 98082173 15.12  11.57   0.107  0.110  
ARS-BFGL-NGS-95906 5 100351926 20.33  17.38   0.090  0.091  
Hapmap53294-rs29016908 5 101090418 40.43  22.97   0.086  0.095  
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Hapmap60021-ss46526426 5 101979581 21.19  13.64   0.095  0.088  
BTB-00270281 6 95770023 16.38  12.12   0.095  0.073  

Hapmap58150-rs29020620 6 96724594 11.78  8.53   0.076  0.070  

BTB-01700063 6 99086447 21.66  16.75   0.114  0.102  
Hapmap53916-rs29021982 6 99581269 18.46  15.67   0.094  0.094  
Hapmap48078-BTA-77495 6 99827767 13.22  14.54   0.076  0.079  
ARS-BFGL-NGS-14880 7 53879989 14.95  17.58   0.115  0.104  
ARS-BFGL-NGS-113181 7 62800839 17.55  20.39   0.077  0.080  
BTB-02035459 7 63196194 11.52  8.67   0.073  0.073  

BTB-01219396 7 63221359 11.52  8.67   0.073  0.073  

ARS-BFGL-NGS-113819 7 63609102 12.18  13.22   0.071  0.081  
ARS-BFGL-NGS-109819 7 63664393 12.02  12.76   0.073  0.083  
BTA-12616-no-rs 7 64712171 12.81  8.91   0.074  0.063  

ARS-BFGL-NGS-65419 7 66102696 15.93  13.18   0.092  0.094  
ARS-BFGL-NGS-12863 7 68960712 16.23  7.43   0.105  0.092  

ARS-BFGL-NGS-23091 7 69342623 13.06  6.26   0.110  0.095  

BTB-01222854 7 74587278 13.21  11.20   0.105  0.104  
BTB-01321253 7 83625073 19.55  20.56   0.083  0.077  
Hapmap44053-BTA-28733 8 6369477 15.07  12.22   0.096  0.113  
BTA-102639-no-rs 8 29764842 7.33  11.04   0.083  0.105  
ARS-BFGL-NGS-68597 8 32188298 9.59  12.15   0.144  0.139  
BTB-01184997 8 36171902 11.48  10.62   0.097  0.092  

Hapmap31805-BTA-154485 8 36232703 12.95  13.66   0.078  0.084  
Hapmap41758-BTA-116042 8 37197678 11.23  7.67   0.105  0.105  

BTB-00384442 9 22407445 11.25  8.57   0.094  0.079  

BTA-83317-no-rs 9 40393986 18.16  16.64   0.087  0.077  

BTA-83528-no-rs 9 41691114 17.66  15.90   0.132  0.115  

Hapmap34441-BES9_Contig154_536 9 73154820 11.99  10.47   0.084  0.091  

UA-IFASA-2589 9 82175488 9.65  11.75   0.072  0.086  
Hapmap30370-BTA-99862 11 14499391 14.20  8.56   0.104  0.100  

Hapmap29758-BTC-003619 14 5261 39.73  33.19   0.112  0.109  
Hapmap30381-BTC-005750 14 50873 59.46  54.84   0.129  0.129  
Hapmap30383-BTC-005848 14 76704 65.31  55.73   0.132  0.132  
BTA-34956-no-rs 14 101474 29.89  29.89   0.106  0.104  
ARS-BFGL-NGS-57820 14 236533 147.55  121.82   0.194  0.195  
ARS-BFGL-NGS-34135 14 260342 79.17  71.47   0.146  0.144  
ARS-BFGL-NGS-94706 14 281534 75.70  68.83   0.143  0.141  
ARS-BFGL-NGS-4939 14 443936 159.02  132.41   0.206  0.208  
ARS-BFGL-NGS-71749 14 596340 41.77  36.70   0.144  0.147  
ARS-BFGL-NGS-107379 14 679601 101.31  78.31   0.163  0.160  
ARS-BFGL-NGS-18365 14 741868 46.48  33.09   0.084  0.094  
Hapmap30922-BTC-002021 14 763332 49.05  35.93   0.087  0.101  
Hapmap25384-BTC-001997 14 835055 63.54  55.55   0.103  0.119  
Hapmap24715-BTC-001973 14 856890 60.80  54.16   0.105  0.120  
BTA-35941-no-rs 14 894253 97.39  78.45   0.155  0.156  
ARS-BFGL-NGS-101653 14 931163 41.64  36.14   0.133  0.144  
ARS-BFGL-NGS-26520 14 996983 69.35  59.88   0.149  0.159  
UA-IFASA-6878 14 1044040 36.43  26.64   0.074  0.071  

ARS-BFGL-NGS-22866 14 1131951 44.94  42.65   0.126  0.119  
ARS-BFGL-NGS-103064 14 1193335 61.80  58.85   0.110  0.138  
ARS-BFGL-NGS-3122 14 1264232 33.56  31.89   0.092  0.126  
Hapmap25486-BTC-072553 14 1285036 34.57  35.23   0.108  0.121  
Hapmap30646-BTC-002054 14 1461084 68.94  51.83   0.142  0.142  
Hapmap30086-BTC-002066 14 1490177 110.60  85.69   0.147  0.152  
Hapmap30374-BTC-002159 14 1546590 89.52  73.07   0.153  0.154  
ARS-BFGL-NGS-74378 14 1889209 48.29  35.14   0.099  0.107  
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ARS-BFGL-NGS-117542 14 1913107 28.30  24.11   0.103  0.105  
UA-IFASA-9288 14 2201869 48.59  32.70   0.089  0.103  
Hapmap24777-BTC-064977 14 2261622 14.06  12.67   0.079  0.095  
Hapmap32970-BTC-064990 14 2288509 31.99  24.55   0.080  0.095  
Hapmap24986-BTC-065021 14 2313594 31.99  24.55   0.080  0.095  
ARS-BFGL-NGS-22111 14 2347218 19.48  18.07   0.059  0.079  
UA-IFASA-7269 14 2370255 19.48  18.07   0.059  0.079  
Hapmap26072-BTC-065132 14 2391825 24.28  24.38   0.070  0.087  
ARS-BFGL-NGS-113575 14 2484498 35.10  30.78   0.085  0.097  
ARS-BFGL-NGS-118081 14 2511264 41.29  37.93   0.113  0.116  
ARS-BFGL-NGS-56327 14 2580413 60.32  50.89   0.105  0.116  
ARS-BFGL-NGS-100480 14 2607582 75.52  63.36   0.121  0.128  
UA-IFASA-5306 14 2711614 48.24  32.60   0.099  0.110  
Hapmap27703-BTC-053907 14 2826072 27.55  23.02   0.063  0.081  
Hapmap22692-BTC-068210 14 3018725 36.91  23.96   0.080  0.086  
Hapmap23302-BTC-052123 14 3099634 36.05  20.28   0.090  0.096  
UA-IFASA-6329 14 3465238 25.41  16.40   0.094  0.083  
ARS-BFGL-NGS-3571 14 3587017 26.21  18.53   0.099  0.101  
ARS-BFGL-NGS-110563 14 3799229 25.68  15.99   0.103  0.105  
Hapmap32262-BTC-066621 14 3834070 13.39  8.84   0.087  0.083  

ARS-BFGL-NGS-115947 14 3865963 34.05  19.86   0.107  0.109  
Hapmap30988-BTC-056315 14 4693900 20.44  15.88   0.097  0.091  
ARS-BFGL-NGS-110894 14 5282437 15.13  7.87   0.094  0.101  

UA-IFASA-6647 14 5808643 21.59  12.18   0.072  0.073  

ARS-BFGL-NGS-102953 14 5867265 19.06  9.11   0.076  0.078  

ARS-BFGL-NGS-37911 14 14274020 11.29  9.61   0.090  0.096  

ARS-BFGL-NGS-16622 15 64781292 11.71  9.29   0.089  0.085  

BTA-37324-no-rs 15 64802082 10.94  8.43   0.091  0.083  

Hapmap54310-rs29012181 16 8166691 9.72  12.29   0.093  0.092  
Hapmap43402-BTA-91283 16 8249735 8.15  11.65   0.086  0.088  
ARS-BFGL-NGS-56645 16 23920210 11.80  8.21   0.082  0.073  

ARS-BFGL-NGS-26559 16 33367687 11.77  10.10   0.089  0.094  

ARS-BFGL-NGS-93660 16 77541689 12.02  12.76   0.088  0.073  

ARS-BFGL-NGS-18128 17 22770146 11.24  8.71   0.096  0.100  

ARS-BFGL-NGS-91287 18 10052638 17.13  20.25   0.117  0.101  
ARS-BFGL-NGS-111247 19 43146804 14.32  15.09   0.075  0.072  

ARS-BFGL-NGS-24479 19 45901285 11.09  9.17   0.092  0.087  

ARS-BFGL-NGS-113693 19 45926259 12.27  10.29   0.092  0.087  

BTB-00783355 20 43550938 10.23  16.06   0.087  0.111  
Hapmap48608-BTA-111028 20 52535573 12.29  16.19   0.076  0.088  
BTA-12959-no-rs 21 10922512 12.61  11.88   0.074  0.071  

ARS-BFGL-NGS-101900 21 30314497 12.99  6.17   0.073  0.066  

ARS-BFGL-NGS-39397 26 21166268 12.98  10.82   0.078  0.081  

Hapmap46411-BTA-15820 26 21404446 14.10  12.01   0.094  0.103  
Hapmap31825-BTA-158647 26 21476707 15.45  11.71   0.073  0.079  
ARS-BFGL-NGS-110077 26 21729361 13.86  14.13   0.086  0.086  
ARS-BFGL-NGS-18603 26 21853286 21.66  22.77   0.067  0.078  
ARS-BFGL-NGS-116481 26 22411701 22.81  22.25   0.077  0.079  
Hapmap24832-BTA-138805 26 22449570 23.72  23.06   0.077  0.079  
ARS-BFGL-NGS-6259 26 22492302 21.27  20.72   0.077  0.079  
BTB-00932332 26 22551770 22.91  21.24   0.073  0.084  
ARS-BFGL-NGS-1092 26 24837303 17.02  19.39   0.096  0.093  
UA-IFASA-4715 26 25330026 16.24  20.09   0.063  0.081  
ARS-BFGL-NGS-38386 26 32836475 7.14  11.37   0.065  0.103  
ARS-BFGL-NGS-105944 26 34196569 11.04  11.12   0.106  0.109  
ARS-BFGL-NGS-53731 26 37801879 13.09  15.19   0.062  0.087  
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ARS-USMARC-Parent-EF034086-no-
rs 26 38309860 16.12  17.87   0.054  0.075  
Hapmap35000-BES9_Contig272_944 26 38309861 16.12  17.87   0.054  0.075  
ARS-BFGL-NGS-60822 28 17252660 16.04  12.16   0.066  0.079  
UA-IFASA-6208 28 27379038 12.33  8.31   0.081  0.081  

            
Milk yield            

ARS-BFGL-NGS-23720 1 38486179 4.91  10.88   0.146  0.130  
ARS-BFGL-BAC-13578 1 121811393 13.51  11.19   0.189  0.179  
ARS-BFGL-NGS-86079 2 19126180 14.12  9.49   0.194  0.182  

Hapmap53232-rs29020795 2 19202356 12.91  11.87   0.170  0.161  
Hapmap60669-rs29018484 2 20687353 13.93  12.24   0.324  0.249  

ARS-BFGL-NGS-23786 2 22727721 12.86  8.56   0.170  0.132  

UA-IFASA-4555 2 103573252 10.91  7.81   0.347  0.267  

ARS-BFGL-NGS-119065 3 56970477 8.93  12.42   0.280  0.256  
ARS-BFGL-NGS-75548 4 78246158 15.43  11.18   0.446  0.338  
BTA-74090-no-rs 5 7569039 9.55  12.21   0.178  0.147  
Hapmap33079-BTA-163567 6 1936 13.03  9.90   0.175  0.098  

ARS-BFGL-NGS-117147 6 31235325 10.90  3.52   0.199  0.135  

BTA-75680-no-rs 6 31470687 11.66  6.98   0.157  0.102  

Hapmap54442-rs29025673 6 31579806 12.51  8.27   0.157  0.102  

Hapmap31819-BTA-156590 6 40421547 10.20  11.60   0.165  0.124  
UA-IFASA-2111 6 85289127 14.59  15.14   0.192  0.122  

Hapmap25708-BTC-043671 6 88263655 11.16  11.06   0.213  0.111  

Hapmap40845-BTA-97263 6 92788189 11.94  7.87   0.196  0.143  

BTB-01428914 6 93850918 12.79  8.07   0.157  0.098  

BTB-00281303 6 111612203 10.87  3.17   0.209  0.093  

Hapmap53417-rs29014877 7 106039868 13.08  11.74   0.164  0.114  

ARS-BFGL-NGS-4062 8 5505897 6.84  11.25   0.199  0.183  
Hapmap44053-BTA-28733 8 6369477 13.69  11.43   0.151  0.166  
BTA-82314-no-rs 8 97201103 9.03  15.81   0.162  0.172  
ARS-BFGL-NGS-52530 9 44230587 12.72  10.89   0.273  0.192  

Hapmap49359-BTA-88301 9 45435722 8.60  11.76   0.147  0.149  
ARS-BFGL-NGS-75844 9 45497534 7.87  11.04   0.133  0.150  
ARS-BFGL-NGS-39444 9 45590254 7.87  11.04   0.133  0.150  
BTA-10828-no-rs 9 46600974 15.86  18.25   0.160  0.150  
ARS-BFGL-NGS-25071 9 75512134 9.95  13.07   0.083  0.137  
ARS-BFGL-NGS-62628 9 82136926 10.06  11.58   0.149  0.133  
ARS-BFGL-NGS-105675 11 104891662 11.47  14.14   0.145  0.156  
ARS-BFGL-NGS-78549 11 106534689 12.38  14.06   0.234  0.220  
ARS-BFGL-NGS-56157 13 63208626 13.95  5.96   0.163  0.088  

Hapmap54034-rs29026486 13 65183781 14.87  4.39   0.188  0.090  

ARS-BFGL-NGS-103635 13 67816926 13.47  4.35   0.157  0.081  

Hapmap44949-BTA-33430 13 67920496 11.12  5.80   0.209  0.119  

Hapmap29758-BTC-003619 14 5261 41.37  45.38   0.175  0.156  
Hapmap30381-BTC-005750 14 50873 46.72  39.87   0.280  0.254  
Hapmap30383-BTC-005848 14 76704 130.39  113.46   0.373  0.292  
BTA-34956-no-rs 14 101474 69.39  51.08   0.287  0.246  
ARS-BFGL-NGS-57820 14 236533 218.33  207.08   0.478  0.372  
ARS-BFGL-NGS-34135 14 260342 111.86  96.34   0.305  0.261  
ARS-BFGL-NGS-94706 14 281534 109.45  91.11   0.311  0.259  
ARS-BFGL-NGS-4939 14 443936 226.90  210.30   0.477  0.371  
ARS-BFGL-NGS-71749 14 596340 32.17  24.98   0.205  0.153  

ARS-BFGL-NGS-107379 14 679601 165.98  159.61   0.387  0.310  
ARS-BFGL-NGS-18365 14 741868 36.88  44.68   0.202  0.115  

Hapmap30922-BTC-002021 14 763332 27.70  33.83   0.187  0.111  
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Hapmap25384-BTC-001997 14 835055 86.29  71.08   0.294  0.201  
Hapmap24715-BTC-001973 14 856890 76.90  63.03   0.290  0.203  
BTA-35941-no-rs 14 894253 81.51  91.67   0.245  0.196  
ARS-BFGL-NGS-101653 14 931163 48.62  43.61   0.228  0.173  
ARS-BFGL-NGS-26520 14 996983 55.92  51.37   0.211  0.151  
UA-IFASA-6878 14 1044040 82.94  84.88   0.254  0.200  
ARS-BFGL-NGS-22866 14 1131951 53.32  49.99   0.190  0.190  
ARS-BFGL-NGS-103064 14 1193335 78.12  56.27   0.288  0.196  
ARS-BFGL-NGS-3122 14 1264232 56.10  39.10   0.262  0.155  
Hapmap25486-BTC-072553 14 1285036 54.16  34.14   0.269  0.185  
Hapmap30646-BTC-002054 14 1461084 61.98  70.96   0.216  0.177  
Hapmap30086-BTC-002066 14 1490177 77.59  89.06   0.244  0.198  
Hapmap30374-BTC-002159 14 1546590 84.37  91.65   0.236  0.193  
ARS-BFGL-NGS-74378 14 1889209 51.60  62.95   0.264  0.209  
ARS-BFGL-NGS-117542 14 1913107 37.52  38.66   0.239  0.201  
UA-IFASA-9288 14 2201869 34.84  42.80   0.209  0.147  
Hapmap32970-BTC-064990 14 2288509 19.04  19.18   0.165  0.102  

Hapmap24986-BTC-065021 14 2313594 19.04  19.18   0.165  0.102  

Hapmap26072-BTC-065132 14 2391825 37.91  27.05   0.221  0.173  
Hapmap26527-BTC-005059 14 2418618 26.38  22.86   0.175  0.140  
ARS-BFGL-NGS-113575 14 2484498 15.20  18.65   0.173  0.136  
ARS-BFGL-NGS-118081 14 2511264 27.04  26.10   0.189  0.167  
ARS-BFGL-NGS-56327 14 2580413 37.86  38.51   0.224  0.179  
ARS-BFGL-NGS-100480 14 2607582 47.61  45.61   0.243  0.192  
ARS-BFGL-NGS-42263 14 2681399 23.44  18.82   0.197  0.165  
UA-IFASA-5306 14 2711614 36.83  45.80   0.223  0.171  
ARS-BFGL-NGS-54400 14 2736946 21.12  16.78   0.206  0.163  
Hapmap22783-BTC-068255 14 2989274 25.42  32.59   0.207  0.178  
Hapmap22692-BTC-068210 14 3018725 34.59  45.38   0.199  0.156  
Hapmap23302-BTC-052123 14 3099634 36.42  52.77   0.206  0.161  
Hapmap25217-BTC-067767 14 3189311 35.96  24.53   0.189  0.094  

UA-IFASA-6329 14 3465238 25.58  29.83   0.166  0.133  
ARS-BFGL-NGS-56339 14 3498808 15.52  20.81   0.160  0.155  
UA-IFASA-8927 14 3640095 18.48  18.50   0.154  0.130  
Hapmap32262-BTC-066621 14 3834070 28.92  27.90   0.193  0.140  
Hapmap30091-BTC-005211 14 3940999 26.82  23.11   0.225  0.149  
ARS-BFGL-BAC-24839 14 3993201 22.12  26.61   0.164  0.137  
ARS-BFGL-BAC-24804 14 4157676 42.02  59.28   0.163  0.136  
Hapmap51646-BTA-86764 14 4302230 33.30  41.88   0.186  0.111  

ARS-BFGL-NGS-112858 14 4956374 25.89  37.11   0.199  0.155  
Hapmap51078-BTA-87682 14 5064062 15.80  12.92   0.192  0.127  
ARS-BFGL-NGS-55227 14 5085415 19.63  33.44   0.163  0.145  
Hapmap32236-BTC-049785 14 5139497 19.37  34.36   0.142  0.131  
ARS-BFGL-BAC-20965 14 5225005 23.50  18.29   0.244  0.175  
Hapmap33635-BTC-049051 14 5318260 16.46  5.75   0.192  0.103  

Hapmap27091-BTC-048823 14 5356987 29.54  27.13   0.197  0.113  

Hapmap23851-BTC-048718 14 5387835 28.66  24.81   0.236  0.131  
Hapmap32234-BTC-048199 14 5640337 32.52  37.23   0.209  0.148  
Hapmap26283-BTC-048098 14 5696728 15.08  30.24   0.151  0.128  
Hapmap32948-BTC-047992 14 5839289 22.95  32.42   0.190  0.138  
Hapmap24756-BTC-047876 14 5915294 20.39  19.47   0.215  0.158  
Hapmap25716-BTC-047850 14 5937549 16.11  19.08   0.196  0.139  
Hapmap23799-BTC-047701 14 6044245 11.39  12.82   0.212  0.130  

ARS-BFGL-BAC-8730 14 6252100 30.95  21.19   0.187  0.118  

Hapmap53312-rs29018332 14 60576872 20.09  6.88   0.159  0.067  

BTA-35525-no-rs 14 72400486 9.43  11.65   0.078  0.154  
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ARS-BFGL-BAC-23729 14 73127978 4.90  11.73   0.054  0.168  
Hapmap43128-BTA-105550 15 52541506 12.54  7.43   0.155  0.084  

Hapmap59019-rs29021918 18 41938135 10.02  16.37   0.118  0.157  
ARS-BFGL-NGS-17557 20 1290829 13.98  11.50   0.172  0.127  

Hapmap39811-BTA-122745 20 35432864 10.43  13.05   0.161  0.165  
BTB-01888575 20 35457272 8.48  11.86   0.177  0.185  
BTA-50244-no-rs 20 36466784 6.63  12.12   0.130  0.167  
BTA-50402-no-rs 20 36667999 7.94  15.52   0.141  0.179  
Hapmap26466-BTA-160199 20 36746234 8.57  13.82   0.151  0.185  
BTA-50386-no-rs 20 36837402 6.13  13.57   0.134  0.154  
BTA-50376-no-rs 20 36915967 15.87  25.25   0.160  0.170  
Hapmap57531-rs29013890 20 36955574 13.12  17.52   0.181  0.170  
Hapmap54884-rs29017180 20 50564369 8.80  17.44   0.174  0.128  
ARS-BFGL-NGS-37182 22 5301596 10.98  10.56   0.267  0.273  

ARS-BFGL-NGS-80066 23 20578210 11.18  7.83   0.335  0.200  

Hapmap43294-BTA-56514 23 32759583 12.29  8.13   0.303  0.165  

ARS-BFGL-NGS-55374 25 28795160 12.07  10.48   0.273  0.192  

BTB-02094179 26 467952 7.37  10.98   0.183  0.196  
ARS-BFGL-NGS-2127 26 13563198 13.90  8.58   0.158  0.115  

ARS-BFGL-NGS-2464 26 18709176 13.00  8.73   0.150  0.134  

ARS-BFGL-NGS-77668 26 18760372 19.50  16.74   0.132  0.131  
ARS-BFGL-NGS-23064 26 18788121 18.84  15.64   0.132  0.131  
ARS-BFGL-NGS-71584 26 18863914 19.45  14.43   0.113  0.127  
BTB-00930720 26 21323659 12.27  10.90   0.148  0.151  
Hapmap31825-BTA-158647 26 21476707 14.00  11.18   0.160  0.135  
BTB-00931481 26 21631982 21.41  17.08   0.157  0.157  
ARS-BFGL-NGS-18603 26 21853286 13.82  14.96   0.138  0.139  
BTB-00932332 26 22551770 15.47  14.23   0.153  0.177  
ARS-BFGL-NGS-107403 26 23470277 18.24  16.31   0.165  0.181  
ARS-BFGL-NGS-119314 26 25634039 11.67  14.68   0.130  0.148  
ARS-BFGL-NGS-109460 27 46280579 14.33  3.91   0.172  0.101  

ARS-BFGL-NGS-116386 28 18996324 7.27  15.71   0.189  0.148  
BTB-02080610 28 19938671 12.70  9.76   0.201  0.151  

Hapmap58649-rs29011010 28 28185115 15.70  9.11   0.154  0.127  

ARS-BFGL-NGS-116154 29 49020982 8.01  10.91   0.142  0.165  
 
 
Table S2 Validated SNPs with chromosome (BTA), position in base pairs (bp), F-values and 

effects for intercept and slope. Effect estimates were taken from the validation set. Validated 

SNPs are indicated in bold type F-values and effect estimates. Results from the analysis of the 

log-transformed data set. 

SNP name BTA bp 
F-values in discovery dataset  Effects (in σ) 
Intercept Slope   Intercept Slope 

ln(Protein)            
BTB-00014850 1 33047886 24.41  22.24   0.037  0.120  
BTA-17929-no-rs 1 94762863 14.03  10.87   0.130  0.157  
ARS-BFGL-BAC-7205 1 120983738 15.50  13.42   0.190  0.124  
ARS-BFGL-NGS-99492 1 121607486 16.79  14.24   0.159  0.144  
BTB-01116994 1 122957014 13.08  12.97   0.130  0.171  
ARS-BFGL-NGS-5956 3 8558755 11.21  6.20   0.225  0.045  
Hapmap22861-BTA-141421 3 60025569 10.41  12.01   0.093  0.089  
Hapmap39895-BTA-15668 5 15392995 14.67  12.25   0.219  0.085  
ARS-BFGL-NGS-68464 5 18395406 12.53  9.43   0.229  0.104  
Hapmap23201-BTC-072836 6 40655229 21.27  16.53   0.122  0.110  
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Hapmap58150-rs29020620 6 96724594 20.75  7.37   0.188  0.096  
BTB-00281303 6 111612203 15.31  2.36   0.206  0.104  
ARS-BFGL-NGS-14880 7 53879989 12.33  17.75   0.277  0.125  
ARS-BFGL-NGS-113181 7 62800839 12.44  10.95   0.186  0.085  
Hapmap44053-BTA-28733 8 6369477 16.59  14.72   0.232  0.141  
Hapmap31805-BTA-154485 8 36232703 11.49  4.12   0.187  0.074  
Hapmap57000-rs29011304 9 26662 13.22  19.26   0.112  0.109  
BTB-00389006 9 39062436 16.14  15.30   0.144  0.134  
BTA-83317-no-rs 9 40393986 26.21  19.61   0.212  0.119  
BTA-83528-no-rs 9 41691114 25.03  16.16   0.330  0.134  
BTA-59878-no-rs 9 44095822 28.62  15.86   0.140  0.100  
ARS-BFGL-NGS-52530 9 44230587 25.18  25.13   0.275  0.224  
ARS-BFGL-NGS-103934 9 44255942 17.70  18.51   0.224  0.138  
BTA-10828-no-rs 9 46600974 24.96  21.33   0.109  0.128  
Hapmap24524-BTA-107865 9 47934344 10.86  17.83   0.064  0.105  
ARS-BFGL-NGS-51043 9 51493578 7.19  11.78   0.004  0.091  
BTB-00391835 9 52160813 11.19  5.86   0.202  0.101  
ARS-BFGL-NGS-114465 9 79835130 7.21  12.68   0.032  0.099  
UA-IFASA-2589 9 82175488 16.53  14.78   0.175  0.095  
ARS-BFGL-NGS-88689 11 29901111 7.51  14.05   0.176  0.171  
ARS-BFGL-NGS-87426 11 30070765 11.64  14.05   0.140  0.143  
ARS-BFGL-NGS-21332 11 30108643 8.57  14.57   0.171  0.159  
ARS-BFGL-NGS-118724 11 30366110 12.31  11.69   0.171  0.145  
Hapmap45971-BTA-102151 11 71170530 15.89  11.36   0.071  0.107  
ARS-BFGL-BAC-12483 13 1310816 9.44  12.89   0.185  0.138  
Hapmap45253-BTA-15908 13 1498184 11.23  8.74   0.250  0.159  
ARS-BFGL-NGS-63777 13 67075815 21.41  16.44   0.253  0.162  
ARS-BFGL-NGS-52851 13 77352863 11.80  15.82   0.114  0.128  
Hapmap29758-BTC-003619 14 5261 14.75  11.14   0.271  -0.053  
Hapmap30383-BTC-005848 14 76704 45.90  32.63   0.319  -0.148  
BTA-34956-no-rs 14 101474 21.25  8.68   0.258  -0.126  
ARS-BFGL-NGS-57820 14 236533 72.35  54.42   0.470  -0.162  
ARS-BFGL-NGS-34135 14 260342 33.86  17.84   0.354  -0.104  
ARS-BFGL-NGS-94706 14 281534 32.66  16.59   0.346  -0.100  
ARS-BFGL-NGS-4939 14 443936 76.53  54.67   0.497  -0.157  
ARS-BFGL-NGS-107379 14 679601 61.30  51.49   0.391  -0.136  
Hapmap25384-BTC-001997 14 835055 27.04  14.45   0.247  -0.061  
Hapmap24715-BTC-001973 14 856890 22.96  11.30   0.253  -0.064  
BTA-35941-no-rs 14 894253 25.36  22.23   0.375  -0.076  
ARS-BFGL-NGS-101653 14 931163 20.57  14.60   0.322  -0.094  
ARS-BFGL-NGS-26520 14 996983 20.29  13.50   0.361  -0.058  
UA-IFASA-6878 14 1044040 32.09  28.23   0.176  -0.076  
ARS-BFGL-NGS-22866 14 1131951 20.13  10.87   0.307  -0.098  
ARS-BFGL-NGS-103064 14 1193335 22.91  7.53   0.264  -0.050  
ARS-BFGL-NGS-3122 14 1264232 19.19  6.75   0.220  -0.029  
Hapmap25486-BTC-072553 14 1285036 19.18  7.04   0.262  -0.076  
Hapmap30646-BTC-002054 14 1461084 25.97  27.24   0.346  0.130  
Hapmap30086-BTC-002066 14 1490177 22.30  21.27   0.358  -0.091  
Hapmap30374-BTC-002159 14 1546590 26.64  21.65   0.370  -0.073  
ARS-BFGL-NGS-74378 14 1889209 18.11  16.86   0.236  -0.059  
ARS-BFGL-NGS-117542 14 1913107 16.54  12.41   0.249  -0.107  
ARS-BFGL-NGS-100480 14 2607582 11.61  6.51   0.292  -0.033  
UA-IFASA-5306 14 2711614 11.40  11.87   0.236  -0.029  
Hapmap22692-BTC-068210 14 3018725 12.60  13.43   0.193  -0.047  
Hapmap23302-BTC-052123 14 3099634 14.23  18.84   0.215  -0.050  
UA-IFASA-6329 14 3465238 10.89  16.37   0.231  -0.036  
ARS-BFGL-NGS-110563 14 3799229 12.33  14.60   0.250  -0.024  
Hapmap32262-BTC-066621 14 3834070 14.68  9.51   0.213  -0.071  
Hapmap32236-BTC-049785 14 5139497 12.66  20.47   0.142  0.111  
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BTB-01988444 14 56535371 3.79  10.99   0.077  0.143  
ARS-BFGL-NGS-100131 15 21041772 9.65  10.88   0.076  0.145  
BTB-01698088 16 9738423 11.30  14.27   0.156  0.144  
ARS-BFGL-NGS-56645 16 23920210 15.64  5.92   0.199  0.060  
ARS-BFGL-NGS-38023 16 33318455 18.62  13.72   0.105  0.128  
ARS-BFGL-NGS-26559 16 33367687 11.76  10.47   0.216  0.141  
ARS-BFGL-NGS-59645 16 73117625 16.15  10.33   0.235  0.086  
ARS-BFGL-NGS-21141 17 3125444 5.55  14.51   0.092  0.105  
Hapmap58542-rs29018933 17 29430592 4.76  12.24   0.071  0.087  
ARS-BFGL-BAC-33672 20 44108671 10.55  12.67   0.235  0.196  
BTA-17135-no-rs 20 49557519 11.68  16.41   0.154  0.168  
BTB-01251603 20 50418473 8.95  11.30   0.178  0.214  
Hapmap54884-rs29017180 20 50564369 4.84  12.50   0.059  0.087  
ARS-BFGL-BAC-34291 20 54837742 8.44  14.24   0.145  0.177  
Hapmap53927-rs29025287 20 56464296 8.63  11.17   0.152  0.185  
ARS-BFGL-BAC-36842 20 58820614 6.52  11.22   0.125  0.151  
BTA-12959-no-rs 21 10922512 13.78  9.40   0.178  0.109  
ARS-BFGL-NGS-101900 21 30314497 14.16  5.32   0.176  0.104  
ARS-BFGL-NGS-110044 21 30892171 11.75  3.37   0.196  0.050  
ARS-BFGL-NGS-55374 25 28795160 24.35  24.33   0.275  0.224  
ARS-BFGL-NGS-4066 26 9059815 10.32  13.50   0.064  0.115  
ARS-BFGL-NGS-2464 26 18709176 20.66  13.07   0.087  0.126  
ARS-BFGL-NGS-77668 26 18760372 22.13  17.22   0.098  0.104  
ARS-BFGL-NGS-23064 26 18788121 21.97  16.74   0.098  0.103  
ARS-BFGL-NGS-71584 26 18863914 28.62  19.66   0.041  0.134  
BTA-62184-no-rs 26 20014035 17.96  11.22   0.078  0.083  
BTA-60778-no-rs 26 20090833 21.08  17.89   0.100  0.151  
ARS-BFGL-NGS-25126 26 20165024 14.10  13.56   0.049  0.089  
ARS-BFGL-NGS-116902 26 20191815 14.47  13.97   0.063  0.090  
Hapmap31825-BTA-158647 26 21476707 13.12  7.25   0.174  0.097  
ARS-BFGL-NGS-18603 26 21853286 14.86  13.52   0.160  0.095  
ARS-BFGL-NGS-116481 26 22411701 10.02  11.08   0.184  0.084  
Hapmap24832-BTA-138805 26 22449570 10.14  11.13   0.184  0.084  
BTB-00932332 26 22551770 15.62  12.20   0.171  0.140  
ARS-BFGL-NGS-107403 26 23470277 18.20  12.99   0.138  0.132  
BTB-01622498 28 1436040 3.55  11.44   0.130  0.127  
ARS-BFGL-NGS-43501 28 17344828 14.40  14.28   0.099  0.130  
ARS-BFGL-NGS-118693 28 17493199 10.91  12.75   0.071  0.100  
UA-IFASA-6208 28 27379038 13.36  7.50   0.195  0.038  
BTA-99382-no-rs 28 41568645 12.46  12.19   0.187  0.074  
            
ln(Fat)            
Hapmap38956-BTA-43309 1 98853038 13.07  10.74   0.212  0.206  
BTB-01562245 1 113644592 11.37  9.54   0.306  0.290  
BTA-104132-no-rs 1 113669783 12.14  9.85   0.311  0.293  
ARS-BFGL-BAC-7205 1 120983738 12.75  9.11   0.165  0.117  
ARS-BFGL-NGS-88388 2 13718482 20.06  16.60   0.162  0.130  
ARS-BFGL-NGS-112315 2 40959609 12.90  3.87   0.194  0.128  
ARS-BFGL-NGS-44416 2 48557519 11.37  7.58   0.185  0.121  
BTB-00108243 2 112019423 17.58  22.93   0.290  0.285  
BTB-01678000 3 6985014 20.47  18.76   0.166  0.121  
BTB-01678060 3 7009487 19.85  20.49   0.196  0.160  
ARS-BFGL-NGS-5956 3 8558755 18.50  14.08   0.195  0.147  
ARS-BFGL-NGS-112616 3 8598511 16.94  12.10   0.180  0.133  
Hapmap50814-BTA-89905 3 41486200 11.61  7.40   0.197  0.120  
INRA-648 3 54347354 13.24  12.30   0.309  0.288  
Hapmap43441-BTA-103289 3 61621627 17.33  21.78   0.141  0.137  
BTA-68164-no-rs 3 68215262 12.86  6.92   0.199  0.110  
BTB-00131847 3 68241075 12.93  7.45   0.203  0.119  
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BTA-54952-no-rs 4 11830564 11.77  9.97   0.184  0.139  
ARS-BFGL-NGS-20815 4 15021946 16.20  14.19   0.171  0.121  
ARS-BFGL-NGS-117196 4 53206872 9.67  11.42   0.150  0.143  
BTB-01252613 5 1851325 10.90  7.03   0.182  0.150  
Hapmap39895-BTA-15668 5 15392995 10.89  6.92   0.189  0.131  
ARS-BFGL-NGS-108617 5 98082173 15.13  11.12   0.224  0.171  
ARS-BFGL-NGS-95906 5 100351926 20.56  16.92   0.192  0.133  
Hapmap53294-rs29016908 5 101090418 39.46  25.68   0.178  0.153  
Hapmap60021-ss46526426 5 101979581 21.63  16.47   0.200  0.142  
BTB-00270281 6 95770023 16.41  9.91   0.201  0.123  
Hapmap58150-rs29020620 6 96724594 11.60  5.12   0.163  0.100  
BTB-01700063 6 99086447 21.30  14.69   0.237  0.153  
Hapmap53916-rs29021982 6 99581269 18.02  13.96   0.196  0.150  
Hapmap48078-BTA-77495 6 99827767 13.14  12.88   0.158  0.116  
ARS-BFGL-NGS-14880 7 53879989 14.54  13.67   0.240  0.155  
ARS-BFGL-NGS-113181 7 62800839 17.30  17.77   0.161  0.122  
BTB-02035459 7 63196194 11.49  7.58   0.152  0.102  
BTB-01219396 7 63221359 11.49  7.58   0.152  0.102  
BTA-12616-no-rs 7 64712171 12.78  8.69   0.154  0.100  
ARS-BFGL-NGS-65419 7 66102696 16.31  13.08   0.191  0.130  
ARS-BFGL-NGS-12863 7 68960712 16.46  7.71   0.215  0.135  
ARS-BFGL-NGS-23091 7 69342623 13.36  6.96   0.227  0.136  
BTB-01222854 7 74587278 13.33  9.64   0.218  0.151  
BTA-23130-no-rs 7 76690557 11.05  5.66   0.174  0.096  
BTB-01321253 7 83625073 20.03  20.87   0.175  0.126  
Hapmap44053-BTA-28733 8 6369477 15.72  11.82   0.201  0.183  
BTB-01184997 8 36171902 11.71  9.07   0.205  0.141  
Hapmap31805-BTA-154485 8 36232703 12.94  9.44   0.162  0.110  
Hapmap41758-BTA-116042 8 37197678 11.21  6.40   0.224  0.160  
BTB-00384442 9 22407445 10.97  7.61   0.198  0.127  
BTA-83317-no-rs 9 40393986 18.23  14.82   0.183  0.131  
BTA-83528-no-rs 9 41691114 18.04  15.22   0.286  0.207  
ARS-BFGL-NGS-52530 9 44230587 13.85  10.44   0.238  0.161  
Hapmap34441-BES9_Contig154_536 9 73154820 12.06  11.10   0.175  0.151  
Hapmap50263-BTA-122214 10 70455224 11.11  9.21   0.271  0.198  
Hapmap30370-BTA-99862 11 14499391 13.90  7.21   0.213  0.170  
Hapmap33349-BTA-127624 12 47348606 10.61  11.04   0.176  0.137  
Hapmap29758-BTC-003619 14 5261 39.84  35.22   0.234  0.181  
Hapmap30381-BTC-005750 14 50873 59.74  58.91   0.274  0.229  
Hapmap30383-BTC-005848 14 76704 64.76  61.82   0.276  0.224  
BTA-34956-no-rs 14 101474 29.60  33.07   0.223  0.179  
ARS-BFGL-NGS-57820 14 236533 146.22  135.30   0.407  0.327  
ARS-BFGL-NGS-34135 14 260342 78.42  79.35   0.307  0.244  
ARS-BFGL-NGS-94706 14 281534 74.85  76.21   0.300  0.240  
ARS-BFGL-NGS-4939 14 443936 157.26  144.90   0.430  0.343  
ARS-BFGL-NGS-71749 14 596340 41.92  40.96   0.306  0.260  
ARS-BFGL-NGS-107379 14 679601 100.53  86.20   0.339  0.263  
ARS-BFGL-NGS-18365 14 741868 46.78  38.21   0.176  0.159  
Hapmap30922-BTC-002021 14 763332 49.33  41.41   0.181  0.175  
Hapmap25384-BTC-001997 14 835055 64.12  62.10   0.214  0.208  
Hapmap24715-BTC-001973 14 856890 61.25  60.82   0.219  0.210  
BTA-35941-no-rs 14 894253 97.77  85.15   0.324  0.255  
ARS-BFGL-NGS-101653 14 931163 41.53  38.61   0.279  0.240  
ARS-BFGL-NGS-26520 14 996983 69.06  65.29   0.313  0.274  
UA-IFASA-6878 14 1044040 35.95  29.85   0.152  0.115  
ARS-BFGL-NGS-22866 14 1131951 44.65  45.92   0.266  0.201  
ARS-BFGL-NGS-103064 14 1193335 62.36  64.75   0.229  0.242  
ARS-BFGL-NGS-3122 14 1264232 34.28  34.89   0.190  0.220  
Hapmap25486-BTC-072553 14 1285036 34.91  40.10   0.227  0.221  
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Hapmap30646-BTC-002054 14 1461084 68.84  57.75   0.299  0.242  
Hapmap30086-BTC-002066 14 1490177 110.42  94.52   0.310  0.255  
Hapmap30374-BTC-002159 14 1546590 89.68  76.49   0.320  0.243  
ARS-BFGL-NGS-74378 14 1889209 48.22  36.95   0.205  0.172  
ARS-BFGL-NGS-117542 14 1913107 28.04  26.03   0.215  0.189  
UA-IFASA-9288 14 2201869 48.16  32.53   0.183  0.167  
Hapmap24777-BTC-064977 14 2261622 13.82  12.31   0.166  0.163  
Hapmap32970-BTC-064990 14 2288509 32.04  27.00   0.167  0.164  
Hapmap24986-BTC-065021 14 2313594 32.04  27.00   0.167  0.164  
ARS-BFGL-NGS-22111 14 2347218 18.98  18.88   0.122  0.140  
UA-IFASA-7269 14 2370255 18.98  18.88   0.122  0.140  
Hapmap26072-BTC-065132 14 2391825 23.93  24.54   0.144  0.156  
ARS-BFGL-NGS-113575 14 2484498 34.94  31.97   0.178  0.164  
ARS-BFGL-NGS-118081 14 2511264 41.44  40.47   0.238  0.199  
ARS-BFGL-NGS-56327 14 2580413 60.00  53.41   0.219  0.199  
ARS-BFGL-NGS-100480 14 2607582 74.83  67.79   0.253  0.223  
UA-IFASA-5306 14 2711614 47.61  32.91   0.204  0.185  
Hapmap27703-BTC-053907 14 2826072 26.82  24.14   0.131  0.133  
Hapmap22692-BTC-068210 14 3018725 36.74  24.94   0.167  0.142  
Hapmap23302-BTC-052123 14 3099634 35.66  21.05   0.186  0.154  
UA-IFASA-6329 14 3465238 25.62  19.44   0.200  0.159  
ARS-BFGL-NGS-3571 14 3587017 26.26  20.08   0.208  0.163  
ARS-BFGL-NGS-110563 14 3799229 25.21  17.13   0.216  0.161  
Hapmap32262-BTC-066621 14 3834070 13.02  8.96   0.185  0.139  
ARS-BFGL-NGS-115947 14 3865963 33.68  21.03   0.225  0.177  
Hapmap51646-BTA-86764 14 4302230 23.90  16.80   0.128  0.129  
Hapmap30988-BTC-056315 14 4693900 20.21  18.28   0.205  0.158  
ARS-BFGL-NGS-110894 14 5282437 14.60  9.05   0.197  0.149  
UA-IFASA-6647 14 5808643 21.04  13.97   0.152  0.111  
ARS-BFGL-NGS-102953 14 5867265 18.86  10.66   0.157  0.114  
ARS-BFGL-NGS-16622 15 64781292 11.60  9.80   0.191  0.153  
Hapmap54310-rs29012181 16 8166691 9.54  10.99   0.195  0.138  
ARS-BFGL-NGS-56645 16 23920210 11.94  8.17   0.172  0.098  
ARS-BFGL-NGS-26559 16 33367687 11.84  12.32   0.187  0.148  
BTA-16056-no-rs 17 20423826 11.69  11.86   0.368  0.345  
ARS-BFGL-NGS-91287 18 10052638 17.05  15.68   0.247  0.154  
ARS-BFGL-NGS-111247 19 43146804 14.75  12.96   0.158  0.109  
ARS-BFGL-NGS-24479 19 45901285 11.53  6.99   0.188  0.114  
ARS-BFGL-NGS-113693 19 45926259 12.69  7.75   0.188  0.114  
Hapmap48608-BTA-111028 20 52535573 12.23  16.55   0.159  0.144  
BTA-12959-no-rs 21 10922512 12.62  9.98   0.154  0.108  
ARS-BFGL-NGS-101900 21 30314497 12.91  7.10   0.153  0.096  
ARS-BFGL-NGS-55374 25 28795160 14.21  10.68   0.238  0.161  
ARS-BFGL-NGS-39397 26 21166268 13.43  12.13   0.163  0.147  
Hapmap46411-BTA-15820 26 21404446 14.57  12.21   0.197  0.179  
Hapmap31825-BTA-158647 26 21476707 15.83  12.66   0.151  0.143  
ARS-BFGL-NGS-110077 26 21729361 14.14  16.15   0.180  0.149  
ARS-BFGL-NGS-116481 26 22411701 22.85  23.56   0.159  0.133  
Hapmap24832-BTA-138805 26 22449570 23.76  24.42   0.159  0.133  
ARS-BFGL-NGS-6259 26 22492302 21.29  22.06   0.159  0.133  
ARS-BFGL-NGS-1092 26 24837303 16.65  19.74   0.195  0.146  
UA-IFASA-4715 26 25330026 16.09  18.89   0.128  0.121  
ARS-BFGL-NGS-38386 26 32836475 7.32  11.01   0.134  0.157  
ARS-BFGL-NGS-105944 26 34196569 11.54  8.78   0.221  0.146  
ARS-BFGL-NGS-53731 26 37801879 13.47  15.29   0.131  0.140  
UA-IFASA-6208 28 27379038 12.29  8.03   0.169  0.117  
            
ln(Milk)            
ARS-BFGL-BAC-13578 1 121811393 14.00  12.21   0.197  0.168  
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ARS-BFGL-NGS-86079 2 19126180 13.56  7.17   0.203  0.172  
Hapmap53232-rs29020795 2 19202356 12.37  8.78   0.177  0.149  
Hapmap60669-rs29018484 2 20687353 14.57  10.61   0.346  0.238  
ARS-BFGL-NGS-75548 4 78246158 15.29  8.67   0.462  0.309  
ARS-BFGL-NGS-115922 5 29921450 10.99  11.43   0.278  0.228  
BTA-75680-no-rs 6 31470687 11.54  6.24   0.161  0.101  
Hapmap54442-rs29025673 6 31579806 12.50  7.42   0.161  0.101  
UA-IFASA-2111 6 85289127 14.17  11.85   0.195  0.119  
Hapmap25708-BTC-043671 6 88263655 11.20  10.56   0.215  0.109  
Hapmap40845-BTA-97263 6 92788189 11.64  5.88   0.203  0.125  
BTB-01428914 6 93850918 12.73  7.77   0.159  0.092  
Hapmap53417-rs29014877 7 106039868 12.83  10.48   0.168  0.106  
ARS-BFGL-NGS-4062 8 5505897 7.21  11.81   0.207  0.159  
Hapmap31053-BTA-111664 9 27739862 14.86  10.09   0.197  0.139  
BTA-59878-no-rs 9 44095822 11.31  8.53   0.165  0.142  
ARS-BFGL-NGS-52530 9 44230587 12.96  12.03   0.285  0.201  
ARS-BFGL-NGS-38561 9 45373250 8.38  11.34   0.140  0.131  
BTA-10828-no-rs 9 46600974 16.48  17.49   0.169  0.157  
Hapmap24524-BTA-107865 9 47934344 8.70  13.36   0.126  0.120  
ARS-BFGL-NGS-62628 9 82136926 10.01  11.28   0.157  0.139  
ARS-BFGL-NGS-78549 11 106534689 12.86  11.55   0.250  0.185  
ARS-BFGL-BAC-12483 13 1310816 14.05  15.25   0.157  0.156  
BTA-15911-no-rs 13 1371524 12.94  12.38   0.170  0.146  
ARS-BFGL-NGS-56157 13 63208626 13.37  5.20   0.172  0.079  
Hapmap54034-rs29026486 13 65183781 14.01  4.09   0.192  0.076  
ARS-BFGL-NGS-103635 13 67816926 12.80  4.96   0.163  0.076  
Hapmap29758-BTC-003619 14 5261 42.73  42.44   0.184  0.139  
Hapmap30381-BTC-005750 14 50873 47.35  38.59   0.295  0.235  
Hapmap30383-BTC-005848 14 76704 132.62  116.70   0.386  0.277  
BTA-34956-no-rs 14 101474 69.69  49.64   0.300  0.231  
ARS-BFGL-NGS-94706 14 281534 110.80  85.22   0.326  0.241  
ARS-BFGL-NGS-107379 14 679601 170.53  162.75   0.402  0.299  
ARS-BFGL-NGS-18365 14 741868 38.59  45.89   0.204  0.112  
Hapmap30922-BTC-002021 14 763332 28.82  33.10   0.188  0.096  
Hapmap25384-BTC-001997 14 835055 86.77  65.63   0.304  0.183  
Hapmap24715-BTC-001973 14 856890 77.38  57.27   0.299  0.183  
BTA-35941-no-rs 14 894253 84.21  90.38   0.255  0.194  
ARS-BFGL-NGS-101653 14 931163 49.12  42.64   0.238  0.168  
ARS-BFGL-NGS-26520 14 996983 56.71  48.24   0.218  0.139  
UA-IFASA-6878 14 1044040 85.46  86.53   0.265  0.190  
ARS-BFGL-NGS-22866 14 1131951 54.37  48.14   0.204  0.189  
ARS-BFGL-NGS-3122 14 1264232 55.37  35.73   0.272  0.131  
Hapmap25486-BTC-072553 14 1285036 53.65  31.62   0.277  0.165  
Hapmap30646-BTC-002054 14 1461084 63.96  69.53   0.223  0.160  
Hapmap30086-BTC-002066 14 1490177 80.04  85.10   0.253  0.182  
Hapmap30374-BTC-002159 14 1546590 86.76  91.59   0.248  0.196  
ARS-BFGL-NGS-74378 14 1889209 53.11  61.21   0.276  0.191  
ARS-BFGL-NGS-117542 14 1913107 37.97  36.27   0.252  0.190  
UA-IFASA-9288 14 2201869 36.57  42.92   0.218  0.122  
Hapmap32970-BTC-064990 14 2288509 19.61  18.23   0.171  0.079  
Hapmap24986-BTC-065021 14 2313594 19.61  18.23   0.171  0.079  
Hapmap26527-BTC-005059 14 2418618 27.21  25.01   0.186  0.130  
ARS-BFGL-NGS-113575 14 2484498 15.74  18.23   0.178  0.115  
ARS-BFGL-NGS-118081 14 2511264 27.25  25.05   0.196  0.149  
ARS-BFGL-NGS-56327 14 2580413 38.75  39.00   0.233  0.156  
ARS-BFGL-NGS-100480 14 2607582 48.59  44.93   0.252  0.165  
ARS-BFGL-NGS-42263 14 2681399 24.01  17.93   0.209  0.160  
UA-IFASA-5306 14 2711614 38.68  45.11   0.233  0.145  
ARS-BFGL-NGS-54400 14 2736946 21.70  15.31   0.218  0.151  
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Hapmap22692-BTC-068210 14 3018725 36.15  43.09   0.208  0.140  
Hapmap23302-BTC-052123 14 3099634 38.58  51.15   0.215  0.148  
Hapmap25217-BTC-067767 14 3189311 36.24  21.15   0.195  0.076  
UA-IFASA-6329 14 3465238 26.01  28.86   0.170  0.106  
ARS-BFGL-NGS-56339 14 3498808 16.13  20.80   0.166  0.134  
UA-IFASA-8927 14 3640095 18.63  16.26   0.157  0.112  
Hapmap30091-BTC-005211 14 3940999 27.46  21.04   0.236  0.119  
ARS-BFGL-BAC-24839 14 3993201 22.93  22.70   0.173  0.106  
ARS-BFGL-NGS-112858 14 4956374 27.34  35.86   0.208  0.133  
Hapmap51078-BTA-87682 14 5064062 16.06  12.13   0.202  0.110  
ARS-BFGL-NGS-55227 14 5085415 21.02  33.40   0.171  0.130  
Hapmap32236-BTC-049785 14 5139497 20.69  34.26   0.149  0.126  
ARS-BFGL-BAC-20965 14 5225005 23.51  18.01   0.255  0.157  
Hapmap33635-BTC-049051 14 5318260 15.80  5.33   0.197  0.092  
Hapmap27091-BTC-048823 14 5356987 30.86  26.34   0.208  0.098  
Hapmap23851-BTC-048718 14 5387835 29.32  22.85   0.244  0.113  
Hapmap32234-BTC-048199 14 5640337 33.67  36.21   0.217  0.131  
Hapmap26283-BTC-048098 14 5696728 16.56  27.75   0.158  0.107  
Hapmap25716-BTC-047850 14 5937549 17.19  17.52   0.208  0.123  
Hapmap23799-BTC-047701 14 6044245 12.10  11.67   0.222  0.108  
ARS-BFGL-BAC-8730 14 6252100 31.45  21.44   0.194  0.106  
Hapmap53312-rs29018332 14 60576872 20.04  6.97   0.166  0.070  
Hapmap43128-BTA-105550 15 52541506 12.39  6.76   0.160  0.088  
Hapmap59019-rs29021918 18 41938135 10.34  16.90   0.128  0.148  
Hapmap39811-BTA-122745 20 35432864 10.75  11.29   0.170  0.145  
BTA-50235-no-rs 20 35883921 7.85  11.52   0.237  0.294  
BTA-50402-no-rs 20 36667999 8.05  14.59   0.152  0.160  
Hapmap26466-BTA-160199 20 36746234 8.46  13.28   0.163  0.166  
BTA-50376-no-rs 20 36915967 15.91  20.90   0.168  0.137  
Hapmap57531-rs29013890 20 36955574 13.03  14.21   0.190  0.148  
ARS-BFGL-NGS-37182 22 5301596 11.30  10.22   0.282  0.273  
Hapmap43294-BTA-56514 23 32759583 11.76  7.34   0.311  0.161  
ARS-BFGL-NGS-55374 25 28795160 12.33  11.61   0.285  0.201  
ARS-BFGL-NGS-2127 26 13563198 13.62  10.34   0.163  0.130  
ARS-BFGL-NGS-2464 26 18709176 12.92  10.90   0.154  0.149  
ARS-BFGL-NGS-77668 26 18760372 19.84  21.11   0.139  0.154  
ARS-BFGL-NGS-23064 26 18788121 19.17  19.93   0.139  0.154  
ARS-BFGL-NGS-71584 26 18863914 19.57  17.19   0.119  0.144  
BTB-00930720 26 21323659 12.52  11.21   0.154  0.168  
Hapmap31825-BTA-158647 26 21476707 13.93  11.98   0.165  0.154  
BTB-00931481 26 21631982 21.92  19.19   0.165  0.170  
ARS-BFGL-NGS-18603 26 21853286 14.66  16.99   0.145  0.147  
ARS-BFGL-NGS-114149 26 22137070 5.96  10.88   0.109  0.137  
BTB-00932332 26 22551770 15.99  15.53   0.160  0.184  
ARS-BFGL-NGS-107403 26 23470277 18.82  18.04   0.171  0.194  
BTA-60935-no-rs 26 23985824 17.32  15.01   0.142  0.146  
ARS-BFGL-NGS-119314 26 25634039 12.11  14.59   0.136  0.157  
BTB-00935537 26 26325360 17.75  14.89   0.102  0.135  
Hapmap28763-BTA-162328 26 26472420 9.67  11.44   0.111  0.129  
ARS-BFGL-NGS-109460 27 46280579 13.48  2.64   0.174  0.083  
BTB-02080610 28 19938671 12.76  10.74   0.206  0.146  
Hapmap58649-rs29011010 28 28185115 15.98  8.69   0.162  0.125  
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INTERPRETIVE SUMMARY 

Genotype-by-environment interaction was frequently studied in dairy cattle breeding using 

reaction norm models. Often the environment is modelled by average herd milk production 

levels, but the level of udder health and hygiene might also be an important environmental 

factor. In this article we report the results from a large scale genome-wide association analysis 

for the intercept and slope of milk protein reaction norms when using the average herd test 

day solution for somatic cell score as an environmental descriptor. We were able to detect and 

confirm several SNP cluster affecting intercept and slope. The results may have implications 

for breeding robust cows.  

 

ABSTRACT 

Genotype-by-environment interaction (GxE) has been widely reported in dairy cattle. If the 

environment can be measured on a continuous scale reaction norms can be applied to study 

GxE. The average herd milk production level was frequently used as an environmental 

descriptor, which is mainly influenced by the level of feeding or the feeding regime. Another 

important environmental factor is the level of udder health and hygiene, for which the average 

herd level of somatic cell count might be a descriptor. In the present study we conducted a 

genome-wide association analysis to identify SNPs that affect intercept and slope of milk 

protein yield reaction norms when using the average herd test day solution for somatic cell 

score as an environmental descriptor. Sire estimates for intercept and slope of the reaction 

norms were calculated from around 12 million daughter records, using linear reaction norm 

models. Sires were genotyped for 54k SNPs. The sire estimates were used as observations in 

the association analysis, using 1,797 sires. Significant SNPs were confirmed in an 

independent validation set consisting of 500 sires. A known major gene affecting protein yield 

was included as a covariable in the statistical model. A number of 60 (21) SNPs was 

confirmed for intercept with a p ≤ 0.01 (p ≤ 0.001) in the validation set. These figures were 28 

and 11 for slope. Most, but not all, SNPs affecting slope affected also intercept. A comparison 

with an earlier study revealed that SNPs affecting slope where in general also significant for 

slope when the environment was modelled by the average herd milk production level, 

although both environmental descriptors were only low correlated. 

 

Key Words : genotype-by-environment interaction, somatic cell score, association analysis, 

reaction norm 
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INTRODUCTION 

The term genotype x environment interaction (GxE) refers to differences in response of 

genotypes to changes in the environment (Lynch and Walsh, 1998). The environment where 

dairy farming is practised varies considerably and consequently GxE were investigated in 

several studies, see e.g. König et al. (2005) and Strandberg et al. (2009) and references 

therein. If the environment can be measured on a continuous scale, reaction norm models are 

often used to study GxE (e.g. Kolmodin et al., 2002; Hayes et al., 2003; Strandberg et al., 

2009). In a reaction norm model, the phenotype is modelled as a function of the environment, 

where the phenotype is produced. The slope of the reaction norm is a measure of the 

environmental sensitivity. Individuals with steep (flat) slope are called environmental 

sensitive (robust) individuals. A non-zero variance of the slope indicates the presence of GxE.  

 

The choice of an appropriate environmental descriptor is of fundamental importance. 

Frequently, the average herd production level of the trait under consideration is used as an 

environmental descriptor, because it combines many unobservable environmental factors 

affecting the phenotype. In addition, this can be estimated with high precision for many dairy 

herds, provided that herd size is not too small. Probably the most important environmental 

factor is the level of feeding, which is captured by affecting average herd milk production 

(Hayes et al., 2003).  

 

Another important environmental factor for dairy cattle is the level of hygiene and of udder 

health. This is not recorded routinely in Germany, although there is a trend towards 

implementing special recording schemes on contract herds. However, the level of somatic cell 

count (SCC) is routinely collected on many dairy farms for management and breeding 

purposes. Barkema et al. (1999) and, in a recent review, Dufour et al. (2011) pointed out 

significant relationships of udder health management practise and herd somatic cell count 

(SCC). Because somatic cell score (SCS) is included in the panel of traits for which routinely 

genetic evaluations are performed in Germany, reliable average herd SCS levels are available 

that can be used as environmental descriptor in GxE analysis.  

  

Considering environmental sensitivity or, equivalently, robustness is an increasing issue in 

dairy cattle breeding (Veerkamp et al., 2009; Hayes et al., 2009). One way to do this is to 

apply marker assisted or genomic selection. In both breeding schemes some knowledge of the 

genes affecting environmental sensitivity is needed. Therefore, Lillehammer et al. (2009) and 
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Hayes et al. (2009) extended classical genome wide association analysis (GWAS) towards 

considering GxE effects. They estimated for each SNP an effect for intercept and for slope 

and found environmental sensitive and robust SNPs. The latter one were significant for the 

intercept but not for the slope. In addition, Lillehammer et al. (2009) mapped a higher number 

of QTL if GxE was taken into account. Hence, although the model becomes more complex 

and additional parameters have to be estimated, considering GxE might result in an increase 

in statistical power to map QTL.  

 

In a previous study we applied higher order reaction norm random regression models and 

found highly significant GxE effects in German Holsteins for both environmental descriptors 

average herd milk production level and average herd SCS (Streit et al., 2012). Both 

descriptors were slightly negatively correlated (-0.18). In a subsequent study we conducted a 

GWAS to identify SNPs for milk production traits affecting slope and intercept of the reaction 

norms in German Holsteins (Streit et al., 2013). We used the average herd milk energy yield 

as a continuous environmental descriptor and applied similar statistical models proposed by 

Lillehammer et al. (2009) and Hayes et al. (2009). Numerous SNPs could be identified that 

were significantly associated with intercept and slope. 

 

The aim of the present study was to conduct a large scale GWAS for milk protein yield with 

the average herd somatic cell score as an environmental descriptor. We applied a three-step 

procedure. In the first step, estimates for intercept and slope of sire reaction norms were 

calculated using first-order random regression sire models. These estimates were used in a 

second step as observations in an association analysis. In the third step, significant SNP 

associations were confirmed in an independent validation set of the same population. 

  

MATERIALS AND METHODS 

Data and data editing 

In total 2,356 progeny tested German Holstein sires were genotyped with the Illumina 

BovineSNP50 BeadChip (Illumina, San Diego, CA; Matukumalli et al., 2009). The sires were 

born between 1983 and 2003. Data filtering was done using PLINK (Purcell et al., 2007) 

using the following criteria. Individuals with more than 10% missing marker genotypes were 

removed (59 individuals). An SNP was excluded if it had a minor allele frequency less than 

3%, a call rate less than 90%, a significant deviation from the Hardy-Weinberg-equilibrium 

(p<0.001), or if the position on the genome was unknown. SNPs on the sex chromosome were 
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also excluded. A total of 41,349 SNPs remained in the data set. Sporadic missing genotypes 

were imputed using fastPHASE (Scheet and Stephens, 2006). The average linkage 

disequilibrium between pairwise SNPs at distances of < 25 kb was 3.02 =r  (Qanbari et al., 

2010). 

 

Around 12 million first lactation test day records for milk protein yield from daughters of the 

sires were used. The number of daughters per bull ranged from 50 to 74,842 and totalled 

around 1.3 million. Test day records were corrected for the fixed effects herd test day, days in 

milk, age at calving, calving season and the random permanent environment effect. These 

correction factors were obtained from the routine animal genetic evaluation. Only daughters 

with at least seven observations per year were considered. The environmental descriptors 

were herd test day solutions for somatic cell score, which was obtained from routine animal 

evaluation. Observations in extreme and rare environments were discarded (around two 

percent of the observations). These restrictions ensured that there were enough observations 

and variation of the environmental descriptor to apply reaction norms within individual cows 

and that the results were not affected by (unreliable) extreme and rare environments. The 

environmental descriptor was rescaled to have a mean of zero and a standard deviation of one.  

 

Statistical analysis 

The following reaction norm random regression model was applied in the first step: 
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, with A (I) being the numerator relationship (identity) 

matrix. The model was fitted using ASReml 3.0 (Gilmour et al., 2009). The estimated sire 

effects for slope and intercept of the protein yield reaction norms (estimated in model 1) were 

treated as two different traits and were used as observations in association analysis (model 2). 
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The whole data set was randomly split into a discovery data set (n = 1,797 bulls) and a 

validation data set (n = 500 bulls). In the second step of the statistical analysis, we performed 

genome-wide association analyses using the discovery data set. It is known that DGAT1 

segregates in this population and shows a substantial effect also for protein yield (Thaller et 

al., 2003). The DGAT1 K232A-substitution is not included in the Illumina BovineSNP50 

BeadChip, but the SNP ARS-BFGL-NGS-4939 is in nearly complete linkage disequilibrium 

with this substitution in the German Holsteins (2r = 0.998, Wang et al., 2012). Therefore, we 

included this marker as a covariate in the statistical model for the association analysis. The 

following mixed linear model was applied for each marker in turn: 

 
jtjkktjtjttjt exbsirezbs ++++= **ˆ µ , (2) 

where jtŝ  is the estimated sire effect for trait t (t being intercept and slope, respectively). The 

term z denotes the number of copies of the allele with the higher frequency of SNP ARS-

BFGL-NGS-4939 (z = 0, 1, or 2) and tb  is the regression coefficient. The effect of each SNP 

k was modelled similarly as a regression on the number of copies of the allele with the higher 

frequency (x = 0, 1, or 2), with ktb  being the regression coefficient. In order to control the 

population structure, we fitted a random sire effect with the covariance structure 2
stAσ , where 

2
stσ  is a variance attributable to the sires. This model was applied for each SNP k in turn, 

resulting in 41,348 association tests per trait. We declared each SNP with a pointwise error 

probability below p<0.001 as significant. In order to judge how many false positives were 

among the significant associations we applied the false discovery rate (FDR) technique. We 

calculated for each association test an FDR q-value using the software QVALUE (Storey and 

Tibshirani, 2003). The FDR q-value of the significant SNP with the lowest test statistic 

(p≈0.001) provided an estimate of the proportion of false positives among the significant 

associations.  

 

In the third step, we confirmed significant SNP associations within the same population in the 

validation set. The same statistical model was applied, but only to significant SNPs. We 

declared an SNP as confirmed if the p-value in the validation set was either p<0.001 

(stringent) or p<0.01 (less stringent significance level) and the signs of the effects were the 

same in both sets. The less stringent significance criterion was used in addition, because less 

multiple testing was performed, and the stringent significance level would reduce the power 

to confirm SNPs. A similar strategy was applied by Pryce et al. (2010). 
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RESULTS 

The estimated variance components are shown in Table 1. The daughter variance components 

are larger than the sire variance components. The standard errors are small for all estimated 

components. The correlation between intercept and slope is negative for both the sire and the 

daughter. Table 2 summarises the results from the association analysis. The FDR analysis 

revealed that around 8% of the significant associations were false positives for intercept. Less 

SNPs were significant for slope and the FDR was slightly higher. As expected, for both traits 

around 60% less SNPs could be confirmed using the stringent validation compared to the less 

stringent validation.  

 

Table 1. Variance components (2σ ) and correlations (ρ ) of the random regression analyses. 

Standard errors are shown in parentheses.  

Variance components and 

correlations 

estimates 

2

0sσ , 2

1s
σ  , 

10ssσ , and
10ssρ   845.80 (25.77), 1.04 (0.16), -11.75 (1.76), and -0.4 

2

0dσ , 2

1dσ , 
10ddσ  , 

10ddρ , 

and 2
eσ  

1746.38 (2.95), 25.36 (1.22), -43.10 (1.26), -0.2, and 5167.07 

(2.28) 

 

The plots of the test statistic along the chromosomes are shown in Figure 1. Chromosomal 

positions of validated SNPs (less stringent validation) are indicated by a triangle symbol. 

Significant SNPs were found on many chromosomes. Highest significance was observed for 

all three traits for the SNP being in near complete linkage disequilibrium with DGAT1 

K232A-substitution on BTA14. No other SNP on this chromosome was significant. 

Promising SNP clusters affecting intercept were identified on BTA1, 6, 7, 9, 13, 16, 18, 26, 

and 28. Not all clusters were also significant for slope, see e.g. the SNP clusters on BTA6, 

BTA13, and BTA16.  

 

The SNPs that could be validated (stringent validation) for at least one trait are shown in 

Table 3. The sign of the effects were in the opposite direction for slope and intercept. Again, 

it is observable that not all SNPs affecting intercept were also significant for slope. In 

contrast, some SNPs on BTA11, 16, 18, and 21 were validated for slope, but not significant 

for intercept. These SNPs would have been missed without modelling GxE in the analysis. All 
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SNPs that could be validated for at least one trait (lees stringent validation) are shown in the 

Supplemental table. 

 

Table 2. Number of discovered and validated SNPs (stringent and less stringent validation, p 

≤ 0.001 and p ≤ 0.01, respectively) for intercept(protein yield) and slope(protein yield). The 

FDR q-values (FDR) of the significant SNP with the largest error probability (p≈0.001) in the 

discovery dataset are shown. 

Trait 
Discovery dataset  

(p ≤ 0.001) 
FDR 

Validation dataset  

(p ≤ 0.01) 

Validation dataset  

(p ≤ 0.001) 

Intercept(protein yield)  407 0.08 60 21 

Slope(protein yield) 261 0.12 28 11 

 

DISCUSSION 

In the present study numerous SNPs were identified that affected intercept and slope of sire 

protein reaction norms when the environment was modelled as average herd test day SCS 

levels. Compared to the intercept variance, the variance of the slopes was small (Table 1). 

However, it is important to note that the slope variance depends on the range of the 

environmental values and a wider range yields a larger slope variance. In a previous study we 

found this variance, and therefore the presence of GxE with this environmental descriptor, to 

be highly significant (Streit et al., 2012). The correlation between intercept and slope depends 

on where the intersection point of the reaction norm model is placed. As recommended by 

Kolmodin and Bijma (2004), we placed it in the average environment. In this case the 

intercept estimate can be interpreted as an estimate for average or general production and the 

slope as an estimate for the environmental sensitivity. The negative correlation between 

intercept and slope under this condition means that with a decrease in the average herd SCS 

level (i.e. in an ‘improved’ environment) the genotype value increases. This trend was 

frequently observed also with other environmental descriptors, e.g. average herd milk 

production (Kolmodin et al., 2002; Lillehammer et al., 2009). Hence, with an ongoing 

selection on general production there will be substantial correlated selection response also for 

environmental sensitivity.  

 

Many SNPs were identified and confirmed that are involved in intercept and slope. Some 

interesting SNP or SNP clusters are located next to candidate genes for milk protein 

segregating in the Germans Holsteins, e.g. on BTA6 (Kühn et al., 1999; Bennewitz et al., 



   CHAPTER FOUR  

 80 

2004a), BTA5, and BTA20 (Wang et al., 2012). Interestingly, no other SNP on BTA14 next 

to the one being in nearly complete linkage disequilibrium with DGAT1 K232A-substitution 

was significantly associated with intercept and slope. Hence, this SNP explained the whole 

major QTL for milk traits frequently reported in this population (Thaller et al., 2003; 

Bennewitz et al., 2004b). The significant SNPs solely for slope (Table 3) demonstrate the 

advantages of considering GxE. For these SNPs the allele that is superior in one half of the 

environment is inferior in the second half and both alleles show a similar effect in the average 

environment and, hence, they are not significant for intercept.  
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Figure 1. Test statistic profile of SNP effects for intercept and slope in the discovery data set. 

The nominal significance level (p<0.001) is indicated by a solid line. Positions of validated 

SNPs (less stringent validation) are indicated by a triangle. The test statistic of SNP ARS-

BFGL-NGS-4939 on BTA14 is 12, both times for intercept (protein yield) and slope (protein 

yield) and is not shown in the figure.  

 

Many SNPs affecting slope in this study affected the slope also when average herd milk 

production was used as environment (Streit et al., 2013), although the correlation between two 

environmental descriptors was low and slightly negative. The sign of the effects were almost 
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always such, that in an ‘improved’ environment (higher average milk production or lower 

SCS) the effect of the SNP increased (Table 3 and Streit et al., 2013). Hence, for robustness 

breeding purposes for both, a fluctuating milk production environment and a fluctuating SCS 

environment, a similar set of SNPs is important. Exceptions are SNPs on BTA11, 16, 18, and 

21 that were significant for slope but not for intercept (Table 3). These were not significant 

for slope in our previous study, where the environment was modelled as the average herd milk 

production (Streit et al., 2013). Hence, these SNPs are not involved in general production and 

are environmental sensitive only to the SCS environment.  

 

Lillehammer et al. (2009) discussed the use of intercept and slope SNPs for breeding of robust 

animals. They suggested considering SNPs with effects for intercept and slope in opposite 

directions, i.e. SNPs with a smaller effect in an improved environment, because these SNPs 

are not in line with the polygenic correlation between intercept and slope. This class of SNPs 

was not identified in this study. Therefore, if robustness for milk traits in a fluctuating SCS 

environment is desired, single marker assisted selection can not be recommended. Instead, 

genomic selection considering important SNPs simultaneously seems to be more promising.  

 

Several environmental descriptors were used in reaction norm models in dairy cattle (Fikse et 

al., 2003; Strandberg et al., 2009). In this study average herd SCS levels obtained from 

routine genetic animal evaluation were used as an indicator trait for udder health and hygiene 

conditions on the farms at the time where the trait yield was recorded. Herd test day 

observations were used, which offered the possibility to capture also the within cow variance 

(Hayes et al., 2003). Indeed, the daughter variance was substantial (Table 1). It modelled the 

additive genetic variance not included in the sire effects and some within cow variability. In 

addition, it was possible to use the variance of the environmental descriptor within herd 

among the test days. This might be especially useful for the average herd test day SCS 

environmental descriptor, because it can be expected that the SCS fluctuation within herds is 

larger compared to milk traits, e.g. due to temporary herd mastitis infections. Mastitis can be 

due to different classes of pathogens, e.g. environmental associated like Escherichia coli or 

contagious associated like Streptococcus agalactiae and Sterptococcus aureus. Mastitis due to 

the first class of pathogens results in general in a lower somatic cell count compared to the 

second class (Barkema et al., 1998). Hence, average herd SCS levels as a proxy to describe 

the herd level of udder health and hygiene have limits, as SCS has as a breeding goal to 

improve mastitis resistance.  
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Table 3. SNPs with a successful stringent validation (p ≤ 0.001 in the validation set) for at 

least one trait with chromosome (BTA), position in base pairs (bp), F-values and sign of the 

effct of the allele with the higher frequency for the three traits. The trait for which the 

validation was successful is indicated in bold type F-values.  

SNP BTA bp F-values (sign of effect) 
Intercept  

(protein yield) 
Slope  

(protein yield) 
ARS-BFGL-BAC-7205 1 120983738 19.03 (-) 14.11 (+) 
ARS-BFGL-NGS-99492 1 121607486 18.91 (-) 13.66 (+) 
BTA-114011-no-rs 1 125911737 11.76 (+) 1.48 (-) 
BTB-00056059 1 126163013 11.51 (-) 3.27 (+) 
ARS-BFGL-NGS-68464 5 18395406 12.88 (-) 18.06 (+) 
Hapmap33079-BTA-163567 6 1936 11.58 (+) 6.07 (-) 
BTA-110673-no-rs 6 111383112 11.36 (-) 6.73 (+) 
BTB-00281303 6 111612203 14.34 (-) 7.89 (+) 
ARS-BFGL-NGS-113181 7 62800839 15.09 (+) 12.83 (-) 
ARS-BFGL-NGS-113819 7 63609102 17.37 (+) 8.77 (-) 
ARS-BFGL-NGS-109819 7 63664393 17.65 (+) 10.14 (-) 
BTB-01880776 7 64095706 11.68 (+) 7.98 (-) 
ARS-BFGL-NGS-52530 9 44230587 24.26 (-) 29.15 (+) 
BTB-00391835 9 52160813 11.14 (-) 11.57 (+) 
ARS-BFGL-NGS-113322 11 38523074 8.07 (+) 14.43 (-) 
BTA-93012-no-rs 11 38544853 8.03 (+) 14.66 (-) 
ARS-BFGL-NGS-63777 13 67075815 21.32 (+) 11.37 (-) 
ARS-BFGL-NGS-4939* 14 443936 78.92 (+) 65.82 (-) 
ARS-BFGL-NGS-113877 16 29456497 12.24 (-) 10.66 (+) 
Hapmap38953-BTA-38562 16 29487613 12.24 (-) 10.66 (+) 
Hapmap50594-BTA-121054 16 29757246 11.34 (+) 4.24 (-) 
ARS-BFGL-NGS-26559 16 33367687 14.47 (-) 12.04 (+) 
ARS-BFGL-NGS-59645 16 73117625 16.58 (+) 10.28 (-) 
BTB-02013769 16 74080339 5.84 (+) 14.35 (-) 
ARS-BFGL-NGS-35499 18 50131636 5.47 (+) 11.14 (-) 
ARS-BFGL-NGS-6001 21 25932661 7.83 (-) 14.69 (+) 
Hapmap52867-rs29023496 21 26401500 7.02 (-) 12.11 (+) 
ARS-BFGL-NGS-110044 21 30892171 12.64 (+) 7.59 (-) 
ARS-BFGL-NGS-55374 25 28795160 23.44 (-) 28.25 (+) 
* this SNP is in near complete linkage disequilibrium with DGAT1 K232A-substitution 

(Wang et al., 2012) 

 

CONCLUSIONS 

GxE for protein yield and average herd SCS as environmental descriptor were detected using 

a first order sire reaction norm model. Many SNP or SNP clusters could be identified that 

affected intercept and slope of the reaction norm. The number of SNPs affecting intercept was 

larger. Some significant SNPs affected only slope. Considering GxE improved the statistical 

power to map SNP involved in protein yield variation. A comparison with an earlier study 
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revealed that SNPs affecting slope where in general also significant for slope when the 

environment was modelled by the average herd milk production level, although both 

environmental descriptors were only low correlated. An across breed analysis in combination 

with a higher marker density is desired to validate the effects also in another population and to 

fine map the underlying causal mutation.  
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APPENDIX  

 

Table S1 Validated SNPs with chromosome (BTA), position in base pairs (bp), F-values and 

effects for intercept and slope. Effect estimates were taken from the validation set. Validated 

SNPs are indicated in bold type F-values and effect estimates. SNPs with n. c. are not 

converged. 

SNP name BTA bp 

F-values in discovery 
dataset  Effects (in σ) 
       Intercept       Slope   Intercept Slope 

Protein yield            
BTB-00046888 1 104729910 11.97  20.24   0.139  -0.073  
BTB-01744054 1 116869213 11.08  8.18   -0.191  0.094  
ARS-BFGL-BAC-7205 1 120983738 19.03  14.11   -0.192  0.102  
ARS-BFGL-NGS-99492 1 121607486 18.91  13.66   -0.192  0.099  
BTA-114011-no-rs 1 125911737 11.76  1.48   0.230  -0.064  
BTB-00056059 1 126163013 11.51  3.27   -0.238  0.109  
ARS-BFGL-NGS-98257 1 127680108 15.28  10.53   0.170  -0.097  
BTB-01929922 2 8730899 9.09  13.34   0.294  -0.129  
ARS-BFGL-NGS-86079 2 19126180 13.44  8.15   0.187  -0.077  
Hapmap53232-rs29020795 2 19202356 12.97  11.47   0.185  -0.071  
ARS-BFGL-NGS-81155 5 15353413 8.27  13.26   0.192  -0.089  
Hapmap39895-BTA-15668 5 15392995 14.82  22.03   0.164  -0.098  
ARS-BFGL-NGS-68464 5 18395406 12.88  18.06   -0.241  0.099  
Hapmap33079-BTA-163567 6 1936 11.58  6.07   0.201  -0.084  
Hapmap23201-BTC-072836 6 40655229 15.00  10.19   -0.156  0.067  
Hapmap32946-BTC-046820 6 41129701 23.19  11.02   0.193  -0.067  
ARS-BFGL-NGS-39570 6 46320087 13.56  4.10   0.259  -0.088  
Hapmap58150-rs29020620 6 96724594 22.75  12.20   -0.169  0.060  
ARS-BFGL-NGS-43679 6 109680595 11.67  8.67   -0.215  n. c.   
BTA-110673-no-rs 6 111383112 11.36  6.73   -0.272  n. c.  
BTB-00281303 6 111612203 14.34  7.89   -0.237  0.109  
ARS-BFGL-NGS-14880 7 53879989 14.53  8.42   -0.213  0.055  
ARS-BFGL-NGS-113181 7 62800839 15.09  12.83   0.202  -0.100  
BTB-02035459 7 63196194 11.60  12.98   0.164  -0.077  
BTB-01219396 7 63221359 11.60  12.98   0.164  -0.077  
ARS-BFGL-NGS-113819 7 63609102 17.37  8.77   0.220  -0.088  
ARS-BFGL-NGS-109819 7 63664393 17.65  10.14   0.214  -0.095  
BTB-01880776 7 64095706 11.68  7.98   0.268  -0.109  
Hapmap51654-BTA-90094 7 75414240 11.99  10.88   -0.179  0.076  
Hapmap44053-BTA-28733 8 6369477 16.02  9.29   0.193  -0.071  
Hapmap52337-rs29022325 9 23298098 9.83  12.02   0.173  -0.078  
BTA-06997-rs29021351 9 40153426 24.52  24.26   -0.312  0.127  
BTA-83528-no-rs 9 41691114 24.60  18.46   -0.241  0.092  
ARS-BFGL-NGS-37982 9 44200288 20.64  21.52   0.155  -0.076  
ARS-BFGL-NGS-52530 9 44230587 24.26  29.15   -0.306  0.136  
ARS-BFGL-NGS-103934 9 44255942 16.01  18.00   -0.231  n. c.  
Hapmap34923-
BES9_Contig458_891 9 48193041 13.81  13.21   0.139  -0.106  
BTA-83605-no-rs 9 48362593 12.38  15.20   -0.157  0.077  
BTB-01347039 9 51688446 3.57  11.59   -0.161  0.104  
BTB-00391835 9 52160813 11.14  11.57   -0.217  0.120  
UA-IFASA-2589 9 82175488 15.49  12.47   -0.142  0.087  
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ARS-BFGL-NGS-87426 11 30070765 11.03  9.95   -0.175  0.053  
ARS-BFGL-NGS-118724 11 30366110 10.87  10.56   -0.176  0.070  
ARS-BFGL-NGS-113322 11 38523074 8.07  14.43   0.245  -0.137  
BTA-93012-no-rs 11 38544853 8.03  14.66   0.244  -0.139  
ARS-BFGL-NGS-112015 13 63235775 14.37  6.43   0.165  -0.065  
ARS-BFGL-NGS-63777 13 67075815 21.32  11.37   0.302  -0.109  
ARS-BFGL-NGS-103635 13 67816926 10.88  2.58   0.160  -0.056  
ARS-BFGL-NGS-111222 15 57601444 9.10  11.17   0.137  -0.092  
ARS-BFGL-NGS-56645 16 23920210 16.88  9.95   0.183  -0.080  
ARS-BFGL-NGS-41039 16 27619045 14.56  5.69   0.249  -0.019  
ARS-BFGL-NGS-113877 16 29456497 12.24  10.66   -0.221  0.103  
Hapmap38953-BTA-38562 16 29487613 12.24  10.66   -0.221  0.103  
Hapmap50594-BTA-121054 16 29757246 11.34  4.24   0.214  -0.078  
ARS-BFGL-BAC-35294 16 32829224 11.48  12.56   -0.171  0.074  
ARS-BFGL-NGS-38023 16 33318455 22.31  16.69   0.162  -0.065  
ARS-BFGL-NGS-26559 16 33367687 14.47  12.04   -0.194  0.070  
Hapmap42928-BTA-38715 16 33890490 11.06  7.58   0.165  -0.067  
ARS-BFGL-NGS-59645 16 73117625 16.58  10.28   0.216  -0.082  
BTB-02013769 16 74080339 5.84  14.35   0.174  -0.114  
ARS-BFGL-NGS-35499 18 50131636 5.47  11.14   0.206  -0.124  
ARS-BFGL-BAC-36979 18 52926135 6.35  10.93   0.104  -0.085  
ARS-BFGL-NGS-7458 18 54989995 18.67  21.69   0.153  -0.062  
BTA-97501-no-rs 18 57095120 17.32  14.37   0.161  n. c.  
ARS-BFGL-NGS-15837 18 62533851 12.51  14.48   0.157  n. c.  
ARS-BFGL-NGS-38846 18 62814660 10.58  14.62   0.129  -0.088  
ARS-BFGL-NGS-78095 20 22630732 11.06  5.12   -0.173  0.091  
BTB-00783355 20 43550938 12.72  14.13   -0.130  0.105  
BTA-12959-no-rs 21 10922512 11.14  6.46   0.178  -0.081  
ARS-BFGL-NGS-73507 21 20412682 7.63  13.36   0.078  -0.105  
ARS-BFGL-NGS-6001 21 25932661 7.83  14.69   -0.214  0.136  
Hapmap52867-rs29023496 21 26401500 7.02  12.11   -0.201  0.131  
ARS-BFGL-NGS-101900 21 30314497 17.87  10.16   0.180  -0.119  
ARS-BFGL-NGS-110044 21 30892171 12.64  7.59   0.236  n. c.  
ARS-BFGL-NGS-55374 25 28795160 23.44  28.25   -0.306  0.136  
BTA-62184-no-rs 26 20014035 16.55  13.00   0.161  -0.063  
BTA-60778-no-rs 26 20090833 20.71  17.07   0.183  n. c.  
BTA-99382-no-rs 28 41568645 12.82  12.25   -0.147  0.064  
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GENERAL DISCUSSION 

 

The study was divided into two parts: in the first chapter, putative interaction effects between 

a major gene and the polygenic term for 5 milk traits were investigated. In the second part 

(chapter two to four) the aim was to identify genes which influence genotype by environment 

interaction. All studies were done for the German Holstein population.  

 

Major gene by polygene effects 

In chapter one, interaction effects between a major gene (DGAT1 K232A) and a polygenic 

term were analysed. Only one major gene was considered and proof of principles was done. It 

would be desirable to enlarge these analyses to other genes to detect more interactions. With 

respect to interaction, only additive x additive interactions were considered, because daughter 

observations of genotyped sires were used, but daughters were not genotyped. For further 

analyses, it would be desirable to consider all forms of interaction (additive x dominant, 

dominant x additive and dominant x dominant), but genotypes and observations have to be 

available for the same animals to do so. This means cows need to have observations as well as 

genotypes. As more and more cows are being genotyped worldwide, this should soon be 

possible.  

 

Genotype by environment interaction 

The ability to alter phenotype in response to changes in the environment is called 

environmental sensitivity (ES) and is often used in animal breeding literature (Falconer and 

Mackay, 1996). A difference in ES results in genotype by environment interaction (GxE), 

which means that changes in the environment lead to differences in genotype responses. 

Effects of GxE can appear in two different ways: first, it can cause scaling effects, when the 

difference between the phenotypes of two genotypes changes in magnitude between 

environments, but not in prefix. Secondly, it can cause re-ranking effects, when these 

difference cause changes in prefix. Re-ranking complicates animal breeding, because the best 

allele in one environment is not the best in all environments. But re-ranking is rare, scaling 

appears more often (Calus et al., 2002; Kolmodin et al., 2002) whereas each scaling effects 

becomes a re-ranking effect if the environment under consideration varies enough. In our 

analyses, we found large scaling-effects, but only few and small re-ranking effects.  
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Reaction norm vs. multiple trait model 

According to Lynch and Walsh (1998), there are two different possibilities to study GxE: use 

of a multiple trait or a reaction norm model. If the distribution of the environment is discrete, 

a multiple trait model is the logical choice. In this case, the phenotypes in different 

environments are treated as different traits and the genetic correlation is calculated. If there is 

a low correlation, the traits are different and they are influenced by different genes. If there is 

a high correlation, nearly the same genes influence the traits. If the distribution of the 

environment is continuous, this model has the disadvantages that there is a loss of information 

because of building classes and time and capacity for calculation is very high. In this case, a 

reaction norm model would be the logical choice. Here, a term for GxE is included into a 

traditional quantitative model. A reaction norm describes the performance of a genotype as a 

function of a gradually changing environment (Lynch and Walsh, 1998). The first derivative 

of the reaction norm, the slope, is defined as ES (de Jong, 1995). In our studies, we used a 

reaction norm model, because the distributions of the environmental descriptors were 

continuous. The entire environmental variance was used and thereby the accuracy increased. 

In chapter two, models with higher order were chosen. In the results of this chapter, it was 

shown that the reaction norms are nearly linear. Because higher order models are more 

complex to calculate, we used a linear model for the following studies in agreement with 

Kolmodin et al. (2002) and Calus and Veerkamp (2003) (chapter three and four).  

To map SNPs, a genome-wide association analysis with a two-step-method was used. 

Lillehammer et al. (2009) used a one-step-method but because we had about 13 million 

observations, this would be to complex to calculate. So, we decided to calculate breeding 

values with a reaction norm model in the first step and we did a genome-wide association 

analysis in the second step.  

 

Data 

Our data were first lactation test day records corrected for the fixed effects herd test day, days 

in milk, age at calving and calving season. Around two percent of the observations in extreme 

and rare environments were discarded to have enough variation in each environment. Because 

of these corrections, the estimated GxE effects are probably somewhat smaller. The advantage 

of test day records as opposed to lactation records is that within-cow variation can be used. 

The disadvantage or difficulty is the mass of observations. Our cows had at least seven 

observations in the first lactation and each sire had a minimum of 50 daughters, which 

resulted in nearly 13 million observations. In order to identify SNPs which not only cause 
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scaling effects within the environmental range considered in our study, we log-transformed 

the observations in chapter three (Hayes et al., 2003; Lillehammer et al., 2009).  

 

Environmental descriptor 

The choice of an environmental descriptor is probably the most important point when doing 

GxE-analyses. All components which are non-genetic can be seen as environment, i.e. 

temperature, herd size, … (Falconer and Mackay, 1996). GxE appears because of two 

reasons: some genes can be expressed only in some specific environments and sometimes a 

change in regulation of genes depends on the environment. That’s a reason why different 

studies with different environmental descriptors can detect different SNPs. For statistical 

analyses, it is important to have a lot of observations. In dairy cattle breeding, artificial 

insemination is used in a wide field of production environments and a lot of observations for 

each sire are available with a continuous distribution. Production level is used very often as an 

environmental descriptor (Calus et al., 2002; Kolmodin et al., 2002). The advantage is a 

continuous distribution. However, it is more a description of the reaction on the environment 

than an environmental descriptor. According to Calus et al. (2004) GxE effects can be under-

estimated, because the correlation between true environmental parameter and environmental 

descriptor is less than one. Use of a true environmental descriptor would be better, but in this 

case, often fewer observations are available and recording is more expensive. A solution 

could be not to use only one environmental descriptor, but to combine some descriptors to a 

new one (Lillehammer et al., 2009). In our analyses, we used different environmental 

descriptors. In chapter two, herd test day solutions (htds) for the corresponding trait under 

observation were used. The advantages of htds are that they summarize a complex 

environment, they are easily available and between-cow and within-cow variation can be used 

(Hayes et al., 2003). The disadvantage is that the explanatory variable contains partly the 

same information as the dependent variable. Additionally, a new environmental descriptor 

called htds milk energy yield, which is a combination of htds protein, htds fat and htds milk, 

was implemented. As it can be seen in chapter two, the correlations between the new htds 

milk energy yield and the htds for each trait were high; therefore only this descriptor was used 

in chapter three. Htds milk energy yield can be seen as an indicator for level of feeding and 

summarizes the single htds in an appropriate way. In chapter four, htds SCS (somatic cell 

score) was used as an indicator for level of hygiene. SCS as an environmental descriptor can 

be interesting, because it can be expected that the SCS fluctuation within herds is larger 

compared to milk traits, e.g. due to temporary herd mastitis infections. Mastitis can be 
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environmentally associated or contagiously associated. In chapter three and four, the same 

models were used. As environmental descriptor, htds milk energy yield was used in chapter 

three and in chapter four htds SCS was used. For some chromosomes, SNPs could be 

validated with both environmental descriptors. For htds milk energy yield, SNPs were found 

on BTA 8, 9, 14, 26, 27, and 28. With htds SCS, SNPs were found on BTA 5, 7, 9, 18, and 

21. There are some SNPs which are only significant in reference to a special environment. 

Additionally, a lot of validated SNPs are found for both environmental descriptors, even if the 

correlation between the descriptors is low. There are some SNPs which react to environmental 

changes in general.  

 

Validation 

The widespread use of a limited number of sires in dairy cattle leads to high degree of linkage 

disequilibrium (LD), even of SNPs that are separated by several hundred kbp. Additionally, 

there are a lot of related animals in the studies. If this is not considered in genome-wide 

association analyses, this leads to a lot of false positives. A good solution can be to validate 

found SNPs in other populations, because there is a low probability that SNP will be found 

twice in different populations as false positive. This is called an across-breed-validation 

(Hayes et al., 2003; Pryce et al., 2010). We have not done this validation in chapters three and 

four, because we did not have data of other populations. Instead, we split our dataset, which 

consisted of 2,297 sires into a discovery dataset (n = 1,797 sires) and an independent smaller 

validation dataset (n = 500 sires). It can be expected that some of our detected and validated 

loci are false positives. Otherwise, a lot of our validated SNPs are in well-known regions on 

the chromosomes, where genes that affect milk production can be found. In case of the 

population under study in this thesis (German Holstein), German Simmental could be a 

possible population for an across-breed validation.  

 

Consider GxE in dairy cattle breeding? 

Today, GxE is not considered in dairy cattle breeding in Germany. To include it will be very 

complex, because for testing it is important to have observations of daughters of each sire in a 

wide range of environments. Additionally, it would be difficult to use in practice. In our 

studies in chapter two, we found only few and small re-ranking effects for milk traits and 

SCS. Hence, it is not necessary to include GxE in breeding value estimation for the German 

Holstein population. A reason for this could be that environmental differences in Germany are 
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comparable small and the environmental range under observation is too small to show large 

re-ranking effects.  

In chapters three and four, we did genome-wide association analyses to find SNPs which 

influence ES. To improve ES, the optimum would be to use SNPs with a high level of GP 

(intercept) and a flat or even negative ES (slope). In our studies, we did not find such SNPs. 

Improvement of ES is only possible at cost of GP.  

 

Future research 

For future researches, it will be of interest to use a higher marker density (e. g. use of a 700 K 

SNP chip), to have more data and to possibly find some SNPs which influence GP and ES in 

a different way. Another point could be the descriptor of the environment. If data of e. g. 

feeding regime, hygienic status, geographical region, … would be available for a lot of cows, 

GxE could be calculated more accurately. For validation, it will be good to use an across-

breed-approach. For data of German Holstein, German Simmental could be a possible 

population, because they live in the same environment and can therefore be used for 

validation. Additionally, other genomic methods for genome-wide association analyses can be 

used, e. g. Bayesian methods (Meuwissen et al., 2001), which account simultaneously for LD 

among markers and not only for LD between marker and QTL. 
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GENERAL SUMMARY (ENGLISH) 

 

The aim of this thesis was to analyze the influence of DGAT1 and to find SNPs which 

influence environmental sensitivity (ES). ES is the first derivative of reaction norm models, 

which are used to analyze genotype-by-environment interactions (GxE). All analyses were 

done for German Holstein dairy cattle.  

 

Putative interaction effects between DGAT1 K232A mutation and the polygenic terms (all 

genes except DGAT1) were investigated in chapter one. This was done for five milk 

production traits (milk yield, protein yield, fat yield, protein percentage and fat percentage) in 

the German Holstein dairy cattle population. Therefore, mixed models are used. The test for 

interaction relied on the comparison of polygenic variance components depending on the 

sire’s genotypes at DGAT1 K232A. Found substitution effects were highly significant for all 

traits. Significant interactions between DGAT1 K232A and the polygenic term were found for 

milk fat and protein percentage. These interactions could be used in breeding schemes. 

Depending on the DGAT1 K232A genotypes of the sample, in which the sire will be used, 

three polygenic breeding values of a sire can be calculated. Because the genotypes of the 

samples are often unknown and usually heterogeneous, this is not a practical approach. Rank 

correlations between the three polygenic EBVs were always above 0.95, which suggested 

very little re-ranking.  

 

GxE were studied in chapter two. For this, reaction norm random regression sire models 

were used in the German Holstein dairy cattle population. Around 2300 sires with a minimum 

of 50 daughters per sire and at minimum seven first-lactation test day observations per 

daughter were analyzed. As traits, corrected test day records for milk yield, protein yield, fat 

yield and somatic cell score (SCS) were used. As environmental descriptors, we used herd test 

day solutions (htds) for milk traits, milk energy yield or SCS. Second-order orthogonal 

polynomial regressions were applied to the sire effects. Results showed significant slope 

variances of the reaction norms, which caused a non-constant additive genetic variance across 

the environmental ranges considered, which pointed to the presence of minor GxE effects. 

When the environment improved, the additive genetic variance increased, meaning higher 

(lower) htds for milk traits (SCS). This was also influenced by pure scaling effects, because 

the non-genetic variance increased in an improved environment and the heritability was less 

influenced by the environment. For the environmental ranges considered in this study, GxE 
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effects caused very little re-ranking of the sires. To obtain unbiased genetic parameters, it was 

important to model heterogeneous residual variances.  

 

A large genome-wide association analysis was conducted in chapter three to identify SNPs 

that affect general production (GP) and environmental sensitivity (ES) of milk traits. Around 

13 million daughter records were used to calculate sire estimates for GP and ES with help of 

linear reaction norm models. Daughters were offspring from 2297 sires. The sires were 

genotyped with a 54k SNP chip. As environmental descriptor, the average milk energy yield 

performance of the herds at the time where the daughter observations were recorded was used. 

The sire estimates were used as observations in genome-wide association analyses using 1797 

sires. With help of an independent validation set (500 sires of the same population), 

significant SNPs were confirmed. To separate GxE scaling and other GxE effects, the 

observations were log-transformed. GxE effects could be found with help of reaction norm 

models and numerous significant SNPs could be validated for GP and ES, whereas many 

SNPs affecting GP also affected ES. ES of milk traits is a typical quantitative trait, which is 

controlled by many genes with small effects and few genes with larger effect. Effects of some 

SNPs for ES were not removable by log-transformation of observations, indicating that these 

are not solely scaling effects. Positions of founded clusters were often in well-known 

candidate regions affecting milk traits. No SNPs, which show effects for GP and ES in 

opposite directions could be found.  

 

Environmental descriptor in GxE analyses is often modelled by average herd milk production 

levels. Another possibility could be the level of hygiene and udder health. In chapter four, 

the same models were used as in chapter three. A genome-wide association analysis was done 

using htds for SCS as an environmental descriptor. With help of this, several SNP clusters 

affecting intercept and slope could be detected and confirmed. Many SNPs or clusters 

affecting intercept and slope could be identified, but in total, the number of SNPs affecting 

intercept was larger. The same SNPs could be detected and validated with and without 

considering GxE in reaction norm models. Some SNPs affecting only slope were found. For 

slope, nearly the same SNPs could be found with SCS as an environmental descriptor as 

presented in chapter three, although both environmental descriptors were only slightly 

correlated.  
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GENERAL SUMMARY (GERMAN) 

 

Ziel dieser Arbeit war es den Einfluss von DGAT1 zu untersuchen und SNPs zu finden, die 

die Umweltsensitivität (ES) beeinflussen. ES ist die erste Ableitung eines 

Reaktionsnormmodells und wird genutzt, um Genotyp-Umwelt-Interaktionen (GxE) zu 

analysieren. Alle Untersuchungen wurden anhand von Daten der Rasse Deutsche Holstein 

durchgeführt. 

 

Mögliche Interaktionseffekte zwischen der DGAT1 K232A Mutation und einem polygenen 

Term (alle Gene außer DGAT1) wurden in Kapitel eins untersucht. Dies geschah für die fünf 

Milchproduktionsmerkmale Milchmenge, Proteinmenge, Fettmenge, Proteinanteil und 

Fettanteil in der deutschen Holstein Population. Hierzu wurden gemischte Modelle genutzt. 

Der Test auf Interaktion beruhte auf dem Vergleich der polygenen Varianzkomponenten in 

Abhängigkeit des Genotyps des Bullen an dem Gen DGAT1 K232A. Die gefundenen 

Substitutionseffekte waren hoch signifikant für alle Merkmale. Signifikante Interaktionen 

zwischen DGAT1 K232A und dem polygenen Term konnten für Fett- und Proteingehalt 

gefunden werden. Diese Interaktionen können in Zuchtprogrammen genutzt werden. 

Abhängig vom DGAT1 K232A Genotyp der Kühe, an die ein Bulle angepaart werden soll, 

können drei polygene Zuchtwerte eines Bullen berechnet werden. Da die Genotypen der Kühe 

oft unbekannt und normalerweise heterogen sind, ist dies allerdings keine praxisnahe 

Vorgehensweise. Die berechneten Rangkorrelationen zwischen den drei polygenen 

Zuchtwerten waren immer größer 0.95, was bedeutet, dass sehr wenige Rangierungseffekte 

aufgetreten sind.  

 

GxE wurden mit zufälligen Reaktionsnormregressionsvatermodellen innerhalb der deutschen 

Holstein-Population in Kapitel zwei untersucht. Die Daten von ca. 2300 Bullen mit 

mindestens 50 Töchtern pro Bulle und mindestens sieben Testtagsbeobachtungen pro Tochter 

innerhalb der ersten Laktation wurden analysiert. Die betrachteten Merkmale waren 

korrigierte Testtagsbeobachtungen für Milchmenge, Proteinmenge, Fettmenge und Zellzahl 

(SCS). Als Umweltparameter wurden Herdentesttagseffekte für die Milchmerkmale, den 

Milchenergiegehalt und SCS hinzugezogen. Orthogonale Polynomregressionen zweiter 

Ordnung wurden für die Vatereffekte betrachtet. Die Ergebnisse zeigten signifikante 

Varianzen der Steigung der Reaktionsnormen, was eine nicht konstante additiv genetische 

Varianz innerhalb des gewählten Umweltbereiches bedingt. Das deutet wiederum auf das 
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Vorkommen kleiner GxE-Effekte hin. Verbessert sich die Umwelt, steigt die additiv 

genetische Varianz, was bedeutet, das höhere (niedrigere) Herdentesttagseffekte für 

Milchmerkmale (SCS) auftreten. Begründet sind diese Veränderungen durch Skaleneffekte, 

da die nichtgenetische Varianz in einer besseren Umwelt ansteigt und dadurch die 

Heritabilität von der Umwelt weniger beeinflusst wird. Für den ausgewählten Umweltbereich 

dieser Studie erklären GxE nur wenige Rangierungseffekte der Bullen. Um unabhängige 

genetische Parameter zu erhalten, war es wichtig die Restvarianz heterogen zu modellieren.  

 

Eine genomweite Assoziationsanalyse (GWAS) wurde in Kapitel drei  durchgeführt, um 

SNPs zu finden, die Produktionsniveau (GP) und ES der Milchmerkmale beeinflussen. Ca. 13 

Millionen Beobachtungen der Töchter wurden genutzt, um Schätzer für GP und ES der Bullen 

mit Hilfe eines linearen Reaktionsnormmodells zu schätzen. Die Töchter waren von 2297 

verschiedenen Bullen, die mit einem 54k SNP Chip genotypisiert wurden. Als 

Umweltparameter wurde die durchschnittliche Milchenergiemenge der Herden betrachtet, die 

zeitgleich zu den Töchterbeobachtungen gemessen wurde. Die Schätzwerte von 1797 Bullen 

wurden anschließend in einer GWAS untersucht. Mit Hilfe eines unabhängigen 

Validierungsdatensatzes (500 Bullen derselben Population), konnten signifikante SNPs 

bestätigt werden. Um bei den GxE reine Skaleneffekt von sonstigen Effekten trennen zu 

können, wurden die Daten logarithmiert. GxE-Effekte konnten mit Hilfe der 

Reaktionsnormmodelle gefunden werden und zahlreiche signifikante SNPs für GP und ES 

validiert werden, wobei viele SNPs sowohl GP als auch ES beeinflussen. ES der 

Milchmerkmale ist ein typisches quantitatives Merkmal, das von vielen Genen mit kleinen 

Effekten und wenigen Genen mit großen Effekten beeinflusst wird. Die Effekte einiger SNPs 

für ES konnten durch das Logarithmieren nicht entfernt werden. Das zeigt, dass diese Effekte 

nicht nur Skaleneffekte sind. Die Positionen der gefundenen Cluster sind oft in bekannten 

Kandidatengenregionen für Milchmerkmale. Es konnten keine SNPs gefunden werden, die 

GP und ES in unterschiedlichen Richtungen beeinflussen.  

 

Der Umweltparameter in GxE-Analysen wird oft als durchschnittliches 

Milchproduktionsniveaus der Herde modelliert. Eine andere Möglichkeit können das 

Hygieneniveau und die Eutergesundheit sein. In Kapitel vier  wurden die gleichen Modelle 

wie in Kapitel drei genutzt. Bei der anschließenden GWAS wurden Herdentesttagseffekte für 

SCS als Umweltparameter genutzt. Dadurch konnten viele SNP-Cluster entdeckt und bestätigt 

werden, die das Produktionsniveau und die Steigung beeinflussen. Weiterhin konnten viele 
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Cluster identifiziert werden. Wobei die Anzahl der SNPs, die das Produktionsniveau 

beeinflussen höher war. Auch wenn die Umweltvariable nicht betrachtet wurde, konnten für 

das Produktionsniveau die gleichen SNPs gefunden werden. Aber es wurden auch einige 

SNPs gefunden, die nur die Steigung beeinflussen. Dies waren fast die gleichen SNPs, wie die 

in Kapitel drei gefundenen SNPs (Umweltparameter Milchenergiemenge).  
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