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Chapter I: General Introduction

1. General Introduction

1.1. Structure of the dissertation

This thesis consists of six chapters that contribute to the knowledge on the role of weed
biodiversity in ecosystem service provision and the simultaneous influence of agricultural
practices on both. Furthermore, the principles of ecosystem service provision by plant
biodiversity were transferred to cover crops. In a comparison between pure stands and
mixtures of cover crops, their respective weed control abilities were evaluated.

The scientific articles were arranged according to the ideas sparked by each other’s actual
or preliminary results. Chapter II is a review article that gives an introduction into the
manifold positive ecosystem services that weeds can provide for practitioners in agriculture
and identifies knowledge gaps to be addressed in future research. The idea for this review
article was initiated during a working group meeting of the European Weed Research Society
(EWRS) and realized by several of their members. In Chapter III influences of agricultural
management were examined in regard to weed community composition, weed biodiversity
and occurrence of rare arable weed species. One of the research gaps in Chapter II was the
missing connection between weed biodiversity and ecosystem service provision. So, Chapter
IV investigates bottom-up effects of weed biodiversity on weed seed predators and their
performance of weed seed removal under a gradient of agricultural intensification. The link
between plant biodiversity and ecosystem service provision can also be utilized to enhance
biological weed control measures. In Chapter V the weed suppression potential of cover crop
pure stands and cover crop mixtures was evaluated. Chapter VI comprises the general
discussion of the research articles and a critical outlook for the topic’s future challenges and
opportunities.

1.2. Objectives

The specific objectives of this thesis were:

1. To summarize current knowledge and identify knowledge gaps in ecosystem service
provision by weeds

2. To identify and understand the management factors shaping weed communities and
affecting weed biodiversity and endangered weed species

3. To investigate the effects of weed biodiversity and farming intensity on weed seed
predation and it’s performing groups

4. To assess weed control abilities of cover crop species sown in pure stands and mixtures

12



Chapter II: Regulating ecosystem services provided by weeds

2. Quantification of Regulating Ecosystem Services Provided by Weeds in Annual
Cropping Systems Using a Systematic Map Approach
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resulting in 129 articles. The most common service regarded pest control and the prevailing
mechanism was that weeds provide a suitable habitat for natural enemies. Other articles
showed that weeds improved soil nutrient content, soil physical properties, and crop
pollinator abundance. Weeds were found to provide some important ecosystem services for
agriculture, but only a small amount of studies presented data on crop yield. Experimental
approaches are proposed that can: 1) disentangle the benefits obtained from ecosystem
services provisioning from the costs due to weed competition, and 2) quantify the contribution
of diverse weed communities in reducing crop competition and in providing ecosystem
services. Existing vegetation databases can be used to select weed species with functional traits
facilitating ecosystem service provisioning while having a lower competitive capacity.
However, for services such as pest control, there are hardly any specific plant traits that have
been identified, and more fundamental research is needed.
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Chapter II: Regulating ecosystem services provided by weeds

2.1.Introduction

Weed research traditionally focuses on the adverse impact that weeds can have on
economic, aesthetic, or environmental aspects of any system and on the approaches used to
limit this. Recently, special attention has been paid to ecosystem services that natural
vegetation can provide to society, and this may include species that are often classified as
weeds. Ecosystem services can be described as the benefits obtained by the human population
from an ecosystem (MEA, 2003). The communities that form (agro)ecosystems can provide
services to humankind in terms of habitat, food and other goods, and clean resources (Daily
1997) thanks to the specific functional traits of the species. The diversity of species traits
present in these communities can also provide an insurance against future changes by hosting
organisms and genes that may become of fundamental importance to guarantee ecosystem
processes under changing environmental conditions (Moonen & Barberi 2008). For example,
insurance could derive from beneficial insect populations tolerant to extreme weather or from
genes that can be used to grow drought-resistant crops. The Common International
Classification of Ecosystem Services contains three main types of ecosystem services:
provisioning services, regulating and maintenance services (hereafter referred to as regulating
services), and cultural services (Haines-Young & Potschin 2011).

In light of current EU agricultural policies, and more specifically Directive 2009/128/EC
on the sustainable use of pesticides and the 2014-2020 CAP reform including numerous
proposals for ‘greening’, it becomes increasingly more important to provide farmers with
concrete data regarding the benefits they can obtain from mixed farming, reduced herbicide
use, inclusion of semi-natural habitats on their farms, and the use of cover crops.
Agroecological farming approaches promote management of the weed community instead of
its complete eradication inside cropped fields. Potentially, this could result in weed
communities that do not negatively affect crop production while providing regulating services
to the agroecosystem (Petit et al. 2015). These approaches can be combined with other
management strategies. The management of agrobiodiversity surrounding cropped fields (e.g.
in semi-natural habitat) can contribute to the provision of regulating ecosystem services such
as increasing beneficial insects for pest control and pollination (e.g. Alignier et al. 2014, Sutter
et al. 2017). However, the effect on actual pest control and crop yield are hardly measured
(Holland et al. 2016).

In most reviews concerning weeds and ecosystem services, weeds are considered as pests
(e.g. Oerke 2006; Shennan 2008). In others, potential benefits that weeds can have on ecosystem
processes and functioning are discussed. These reviews focus on the role that weeds have in
hosting beneficial arthropods (Petit et al. 2011) whether they be pollinators (e.g. Nicholls &
Altieri 2013; Bretagnolle & Gaba 2015) or natural enemies of crop pests (e.g. Hillocks 1998;
Norris & Kogan 2000). Weeds can exert an indirect effect on pest control by attracting
beneficial insects that serve as crop pest predators. The effect of these beneficial insects on pest
control and yield loss reduction is often difficult to establish and explanations for the lack of
response can be similar to the ones hypothesised by Tscharntke et al. (2016) regarding the role
of natural habitats in sustaining beneficial insects. On the other hand, weeds exert a direct
effect on pest regulation by attracting or arresting certain pest species away from crops
(Capinera 2005), by reducing the attractiveness of a crop (Altieri & Whitcomb 1979), or by
making the crop less noticeable to the pest (Root’s (1973) resource concentration hypothesis).
Another mechanism through which weeds can reduce crop pest infestation is by creating an
associational resistance within the crop. This occurs when weeds interact with a crop plant
and increases the crop’s resistance to pest infestation (Ninkovic et al. 2009).
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The aforementioned review articles, however, are descriptive and present little
quantitative data on the services provided by weeds. Assumptions extrapolate the role
‘vegetation” plays in general in ecological processes, to the role ‘weeds” may play. Based on
discussions during a meeting of weed scientists interested in weed diversity conservation
(Meeting of the Weeds and Biodiversity Working Group of the EWRS in Pisa, Italy, held from
18-20 November 2014), it was hypothesised that, in reality, little scientific evidence quantifying
the services provided by weeds exists. Through a subsequent systematic literature mapping
approach, quantitative information was extracted on regulating services provided by weeds
(e.g. data on pest control enhancement) in arable or vegetable cropping systems. The search
was restricted to regulating services in order to have a manageable number of articles in the
search result, and coherent and quantitative results for analysis. At least in theory, it should
be easier to quantify how weeds interact with ecosystem processes than to quantify their
cultural services, which is a rather subjective matter. The objective of this work was to quantify
the amount of empirical data available on weeds providing ecosystem services to identify
perspectives for future research aimed at agroecological weed management by 1) giving a
bibliometric overview of the articles that provided scientific evidence of regulating services
(directly and indirectly) provided by weeds, and 2) identifying the weeds providing ecosystem
services and quantifying the effect on crop yield.

2.2.Materials and Methods

Literature search

The systematic map approach consists of conducting a systematic review and collecting
existing evidence on a broad topic (Haddaway et al. 2016). This approach allows for a more
objective and transparent review compared to the traditional narrative review (Collins and
Fauser 2005). It requires performing an initial search to define the relevant keywords in
relation to the research topic. These terms are then used to perform a final search in an online
database. The systematic map approach differs from a meta-analysis in that it gives an
overview on a research topic as opposed to answering specific hypotheses. This tool has
recently become popular in environmental sciences (e.g. Bernes et al. 2015; Fagerholm et al.
2016).

We followed a similar protocol to previously performed systematic map approaches (e.g.
Holland et al. 2016). The online database Scopus® was used for searching articles. This search
engine contains articles dating back to 1960. No year restriction was placed on the search.
However, results were restricted to those in the field of “agriculture and biological sciences’,
‘environmental science’, and ‘earth and planetary sciences’. The search was made on the 16"
of January 2015. Preliminary searches were carried out to determine the terms associated with
the research question. The search string used circumscribed the search results to papers
focussing on plant species defined as weeds by including ‘weed*” as a search term. Papers
were then limited to studies relevant to arable or vegetable crops in the open field by including
the terms ‘agr®, ‘field* and ‘crop®. Finally, search terms that were included aimed at
extracting papers focussing on at least one of the four key regulating ecosystem services: pest
control, crop pollination, soil physical quality, and nutrient cycle regulation. Therefore, at least
one of the following terms had to be present in the articles: ‘ecosystem service*, ‘ecological
service®, nitr*, carbon, pollination, preda*, ‘natural enem®, ‘pest control’, biocontrol,
‘biological control’, erosion, ‘soil organic matter’, ‘temperature regulation’, microclimate,
‘nutrient cycle’.
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In the preliminary searches, a high number of articles that did not contain information on
weeds providing ecosystem services were found. Therefore, the following strategy was used
to improve the focus of the search. Articles were excluded when the title, abstract or keywords
contained the terms orchard*, forest*, tree*, as the habitat of interest was annual crops. Also,
many unwanted articles appeared because the authors referred to ‘weed control” as “pest
control” and, therefore, “pest control” was not intended as an ecosystem service provided by
weeds. By excluding the terms ‘chemical control’, “mile-a-minute weed’, and knapweed in the
title, abstract, or keywords and the term herbicide* in the title, we were able to avoid collecting
numerous articles that did not contain information on regulating ecosystem services in the
tinal search. Finally, articles containing ‘seed predat* in the title, abstract or keywords were
excluded as well because these articles focussed on the predation of weed seeds and did not
contain information on weeds providing regulating ecosystem services. We did not extract
data on the effect of scale on ecosystem provisioning as articles often did not contain such data
and some reviews have already provided this information, although they did not focus on
weeds (e.g. Mitchell et al. 2013, Veres et al. 2013, and Malinga et al. 2015).

Screening of the search results

In the second phase, abstracts of all retained articles were screened based on four
predefined inclusion criteria. Firstly, the document should provide a quantitative result on at
least one regulating ecosystem service provided by weeds. Secondly, the studied system
should include arable or vegetable crops for human consumption. Thirdly, the document
should be written in English, so that, in the event of an incongruent entry in the map, the article
could be analysed by another author. Lastly, the result(s) of the study should not be obtained
through the use of modelling as primary data was required to obtain values for the ecosystem
services provided.

The abstracts of all the articles in the search result were scanned by the lead author to see
if they met the set criteria. Whenever it was unclear if an article met all the criteria, the article
was treated as if it did. Those that met the criteria were randomly distributed among the
authors and read in full. Information was transcribed into the systematic map, a table
constructed by the authors with issues deemed relevant to the research topic (Supplementary
Information). Information retrieved was related to country of origin, type of experimentation
(on-farm, on-station, controlled environment), ecosystem service targeted, weed species
involved, ecosystem service measured, presence of other organisms benefitting from weed
presence such as predators or pests, and comparison of crop yield in situations with and
without weeds. Review articles that met the criteria were not included in the literature map.
Instead, citations in the reviews that were related to the search topic but not yet included in
the systematic map were collected. They then underwent the same process as the documents
from the search result. Due to the wide variety of services presented, combined with the lack
of uniform quantitative data, not all effect sizes could be analysed quantitatively. Pest control
was the most abundant regulating service for which the range of minimum and maximum
percentage values could be calculated. In thirty studies, the effect of weeds on yield was
reported, however, in only seven of these was it possible to calculate the log response ratios
(InR) as an estimation of the effect size of the presence of weeds on crop yield.
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2.3.Results

In total, 4,449 results were found in the literature search. The abstracts were scanned for
the presence of empirical results on the relation between weeds and regulating ecosystem
service. This yielded 189 articles. A second more thorough evaluation of the results led to the
retention of 129 articles sixty of which did not contain detailed enough information to compile
the systematic literature map despite the positive wording in the abstract.

Ecosystem services

The ecosystem service most often referred to was pest control (Fig. 2.1(A)). In all, 91
articles (71%) contained examples of weeds supporting pest control. Weeds were found to
contribute to nutrient cycling in 28 articles (22%). In 7 articles (5%), weeds were shown to
improve soil physical properties. Finally, benefits of weeds in enhancing crop pollination were
only found in 5 articles (4%), while three articles were found showing evidence of weeds
providing regulating services that were not directly targeted by the search (e.g. reduction of
greenhouse gas emissions).
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Figure 2.1 Partition of articles based on (A) ecosystem service type, (B) pest control mechanism type,
and (C) soil nutrient type. In (A), ‘Others’: regulating ecosystem services that were not targeted by the
search. In (B): ‘Correlation analysis’: no explanation was provided in the manner which weeds provided
pest control.
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Pest control

More than half of the articles contained examples of the presence of weeds benefitting pest
control, although the mechanism through which this service was provided differed. In 38% of
the studies documenting pest control, it was possible to acquire values for the reduction of
pest abundance. An increase in the predation or parasitism of pests was calculated for 10% of
the articles. Most commonly, however, studies calculated an increase in the abundance or
diversity of natural pest enemies due to the presence of weeds (41% of studies). None of the
above information was provided in 29% of the articles. In most cases, this was because the
effects of weeds were not statistically tested either due to a lack of control or weeds not being
directly investigated in the study. In other cases, the benefits of weeds were studied in a
laboratory or in greenhouse experiments measuring the time beneficials spent foraging on
flowers or by analysing their preference for flowers of specific species. For example, Belz et al.
(2013) found a preference of Microplitis mediator Haliday for Iberis amara L. and Cyanus segetum
Hill over Fagopyrum esculentum Moench and Ammi majus L.. Griffin and Yeargan (2002)
demonstrated the preference of the lady beetle Coleomegilla maculata DeGeer to deposit eggs
on Abutilon theophrasti Medik. over eight other broadleaf annual weeds (Acalypha ostryaefolia
Riddell, Acalypha virginica L., Amaranthus hybridus L., Chenopodium album L., Galinsoga ciliata
Ruiz & Pav., Sida spinosa L., Solanum ptychanthum Dunal, Xanthium strumarium L.). In a couple
of cases, the presence of weeds was shown to decrease the number of damaged crop plants
(Franck & Barone 1999; Gill et al. 2010). A few studies were based on mere correlation analysis.
For example, Green (1980) showed that skylark predation on sugarbeet (Beta vulgaris L.)
seedlings decreased with increasing abundance of weed seeds having a dry weight over 1 mg
(e.g. Polygonum spp.). The mechanisms that explained how pest control was provided differed
among studies (Fig. 2.1(B)). By far the most common means was by attracting or arresting
natural enemies of pests (75% of the articles relating to pest control) by offering them a
resource in or around cultivated fields. An increase in natural enemy abundance or diversity
does not, however, necessarily mean that there is a reduction in pest abundance or, eventually,
an increase in crop yield. Often this information was not provided. In seven cases (8%), weeds
repelled pests by producing chemical substances (e.g. Glinwood et al. 2004). In three studies,
weeds contributed to pest control through associational resistance (e.g. Ninkovic et al. 2009).
Two studies found that weeds did not offer suitable resources to pests, which reduced their
numbers (e.g. Alexander & Waldenmaier 2002). Four studies referred to the resource
concentration hypothesis to explain an increase in pest control (e.g. Gill et al. 2010). In four
other articles, weeds contributed to pest control by attracting or arresting pests away from
crops (i.e. weed acting as a trap crop) (e.g. Green 1980). In seven articles, the mechanism with
which weeds contributed to pest control was not explained and data were obtained from
correlation analysis.

The range of values obtained for pest control varied considerably (Table 2.1). The highest
value for pest reduction in the field was obtained from Atakan (2010) in which it was shown
that infestation of the western flower thrips (Frankliniella occidentalis Pergande) on faba bean
(Vicia faba L.) was reduced by a maximum of 98% due to weedy margins that hosted beneficial
insects. For pest predation, the highest value was obtained in a laboratory experiment by Araj
& Wratten (2015) in which they demonstrated that the predation of cabbage aphids Brevicoryne
brassicae L. on Capsella bursa-pastoris L. increased by 255%. Powell et al. (1985) found that the
rove beetle Philonthus cognatus Stephens was 1721% more abundant in plots containing weeds
than in weed-free plots. As for natural enemy diversity, Albajes et al. (2009) reported that pest
enemy diversity rose by a maximum of 213% in the presence of weeds.
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Table 2.1 Range of values for all pest control measurements obtained in 90 articles retrieved. Negative
values indicate a negative effect on pest control measures.

Pest control measurement Mean lower range * SD Mean upper range = SD
(in %)* (in %)*

Reduction in pest abundance 19.4 + 66.32 61.4 £29.39

Increase in predation/parasitism 49.9 +79.32 72.1+£74.16

Increase in pest enemies abundance 93.6 +211.97 423.3 +563.38

Increase in pest enemies diversity 15.0+21.21 131.5+£115.26

*Mean lower/upper range + SD: the average of all the minimum/maximum percentages of pest control
enhancement reported in each study.

Soil nutrients

Twenty-three articles in the literature map provided information on weeds increasing the
amount of nutrients in the soil. In 18 of these (78%), weeds were found to help improve both
available and total nitrogen stock in agricultural soils (Fig. 2.1(C)) often as a consequence of
their capacity to reduce nitrogen leaching by erosion control (available N) and by active N
uptake and fixation (total N), which stabilised N levels in soil organic matter. For example, the
presence of broad-leaved weeds (Amaranthus viridis L., Richardia scabra L., Indigofera hirsuta L.)
led to less microbial immobilization of mineral N than grass weeds, which resulted in faster
net release of mineral N in the following crop (Promsakha Na Sakonnakhon et al. 2006). Also,
Ariosa et al. (2004) found that cyanobacteria in the common rice weed Chara vulgaris L.
significantly improved soil fertility through their capacity to fix nitrogen in the weed biomass.
Eight studies (35%) demonstrated that weed biomass increased carbon inputs in the soil (e.g.
Arai et al. 2014). The same was shown to occur for phosphorus (e.g. Ojeniyi et al. 2012) as well
as for potassium (e.g. Das et al. 2014), soil organic material (de Rouw et al. 2015), calcium, and
magnesium (Swamy & Ramakrishnan 1988).

In seven out of the 13 articles, no values were given for the increase in nutrients due to
weeds. In some cases, this was because there was no treatment factor without weeds (e.g.
Ariosa et al. 2004). Mazzoncini et al. (2011) used correlation analysis to demonstrate the effect
of weeds on soil organic carbon and soil total nitrogen. De Rouw and colleagues (2015) used
carbon isotopes as a proxy for plant contribution to the soil organic pool. In these cases, it was
not possible to accurately measure the contribution of weeds in providing ecosystem services.

Weeds were also shown to provide benefits to the nutrient cycle by promoting arbuscular
mycorrhizal fungi (AMF). The presence of AMF in fields can facilitate nutrient acquisition in
crops (Azaizeh et al. 1995). Vatovec et al. (2005) found that some weed species (e.g. Ambrosia
artemisiifolia L.) were strong hosts to AMF and could potentially increase AMF abundance and
diversity in an agricultural field. A correlation between weed diversity and spore numbers
was also found (Miller & Jackson 1998). In another article weeds were found to promote
rhizobacteria and, in turn, positively affect crop plant growth (Arun et al. 2012).

Soil physical properties

Weeds were found to enhance soil physical properties in seven articles. Most commonly,
weeds had a positive effect by reducing soil loss and runoff (43%) (e.g. Pannkuk et al. 1997) or
by reducing bulk density (29%) (e.g. Yagioka et al. 2014). In some cases, it was unclear if the
positive effect on soil structure was caused by reduced tillage or by the increase in weeds often
observed following reduced tillage (e.g. Arai et al. 2014). Weeds were also reported to benefit
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water storage in soil (e.g. Ojeniyi et al. 2012) while Kabir & Koide (2000) showed an increase
in the proportion of water stable aggregates due to weeds hosting mycorrhizal fungi.

Crop pollination

In all five articles related to pollination, the effect that weeds had on crop pollination was
not directly investigated. Instead, the attraction or arrestment of pollinators to dicotyledonous
species was demonstrated (e.g. Hawes et al. 2003). Therefore, the extent to which weeds
enhanced crop pollination remains unclear. All these studies were observational and were
carried out on real farms. Pollinators belonged mostly to the insect family Hymenoptera. In
some studies, pollinators from the orders Coleoptera, Diptera, Lepidoptera, and the suborder
Heteroptera, were counted as well (Carvalheiro et al. 2011).

In three articles, weeds positively affected pollinator diversity (e.g. Carvalheiro et al. 2011)
by offering a food resource and Hoehn et al. (2008) reported a positive impact of pollinator
diversity on crop yield. Pettis et al. (2013) found that bees visited surrounding weeds as well
as crops. Crop pollination increased near field margins where weeds offered the majority of
alternative forage to pollinators (Gemmill-Herren & Ochieng 2008).

Other regulating and maintenance ecosystem services

Weeds can also play a part in reducing emissions linked to climate change. In rice paddy
tields, weeds can reduce the emission of methane (CH4) by improving the stimulation of CH4
oxidation as well as by reducing methanogenesis rates compared to rice (Holzapfel-Pschorn
et al. 1986). Yagioka et al. (2015) reported that weed cover mulching had a reduced net global
warming potential compared to conventional tillage practices due to a greater soil organic
carbon accumulation. Furthermore, they found that weeds altered the microclimate by
increasing relative humidity.

Weed identity

In 23 studies, the focus was on one individual weed species. In small assemblages of less
than 5 species, the ecosystem service provision was attributed to each of the species. For bigger
assemblages, no single weed species effect was indicated. In 44 articles analysed (34%), the
services were provided by a plant assemblage containing weeds but the main species were not
specified. In these studies, the identity of the plant was not important. High plant diversity or
the presence of vegetation was deemed to enhance the delivery of ecosystem services. Table
2.2 shows the list of weed species most often cited as providing an ecosystem service.
Chenopodium album was the most frequently cited species, often in relation to enhanced pest
control through offering resources, for example, oviposition sites to natural enemies (Smith
1976). Ninkovic et al. (2009) demonstrated that barley (Hordeum vulgare L.) exposed to volatiles
from C. album reduced plant acceptance by aphids. Another study found that C. album dead
mulch released nitrogen more quickly during the following growing season compared to the
grass weed Setaria faberi Herrm. (Lindsey et al. 2013).
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Table 2.2 Number of articles reporting the provision of ecosystem services by weed species.

Pest Nutrient  Soil physical ~Others  Total
control cycle properties articles
2 0

Q1
N

Chenopodium album L.

Ambrosia artemisifolia L.

Cirsium arvense L.

Acalypha ostryaefolia Riddell
Amaranthus retroflexus L.

Capsella bursa-pastoris (L.) Medik.
Sinapsis arvensis L.

Abutilon theophrasti Medik.
Echinochloa crus-galli (L.) Beauv.
Elytrigia repens (L.) Desv. ex Nevski
Solanum nigrum L.

Ageratum conyzoides L.

Bidens pilosa L.

Brassica rapa L.

Cirsium vulgare (Savi) Ten.
Commelina benghalensis L.
Imperata cylindrica (L.) Rausch.
Lamium amplexicaule L.

Leersia hexandra Sw.

Sonchus oleraceus L.
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*= Imperata cylindrica was reported to have provided two different ecosystem services in one article.

Crops and yield

The most commonly studied crop was maize (Zea mays L.) (26% of studies), followed by
wheat (Triticum spp.) (18%), and barley (11%) (Table 2.3). Cereals were the most studied crop
type in the articles documenting improvement in soil nutrient and soil physical quality.
However, legumes were more studied than cereals in pest control.
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Table 2.3 Number of articles reporting ecosystem services provided by weeds for each crop.

Pest Nutrient ~ Soil physical ~ Pollination = Others Total
control cycle properties
Maize 16 13 4 1 0 33*
Wheat 15 5 2 1 1 23*
Barley 10 3 0 0 0 13
Rice 6 5 0 0 1 12
Rapeseed 7 0 0 1 0 7*
Bean 5 1 0 0 0 6
Soyabean 6 0 0 0 0 6
Tomato 5 1 1 0 0 6*
Lettuce 3 2 1 0 0 5*
Brussels sprout 4 0 0 0 0 4
Cucumber 2 1 0 1 0 4
Beet 2 0 0 1 0 3
Collard 3 0 0 0 0 3
Daikon/radish 1 2 2 0 0 3*
Eggplant 2 1 0 0 1 3*
Oat 3 0 0 0 0 3
Okra 2 1 0 0 1 3*
Pepper 2 1 0 0 1 3*
Potato 2 1 0 0 0 3
Pumpkin/squash 2 1 0 1 1 3*
Allium fistulosum L. 1 1 1 0 0 2%
Cabbage 2 0 0 0 0 2
Faba bean 2 0 0 0 0 2
Pea 1 1 0 0 0 2
Rye 2 0 0 0 0 2
Strawberry 1 0 1 0 0 2
Sunflower 0 1 0 1 0 2
Watermelon 1 0 0 1 0 2

*weeds in this crop were reported to have provided multiple ecosystem services in some articles.

Of all the articles included in the literature map, only 30 (23%) measured the effect of
weeds on crop yield. In 13 (43%) of these articles, the effect of weeds on yield was significantly
negative, in nine (30%) no significant change in yield was reported, while eight (27%)
demonstrated a positive effect of weeds on yield. There was no relation between the effect on
yield and crop type and the relation with weed species could not be analysed because all the
studies contained different species. The log response ratios (InR) representing an estimation
of the effect size of the presence of weeds on crop yield is shown in Fig. 2.2 (15 cases provided
by seven articles). No clear pattern of the effect size distribution emerged. However, we found
more effect sizes with positive values than with negative values.
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Figure 2.2 Log response ratio (InR) estimating the effect size of the presence of weeds on crop yield in
different studies. Whiskers indicate 95 % confidence intervals. The dashed vertical line indicates 0 effect.
Some studies contain more than one entry due to multiple yield data (e.g. yield data for multiple years).
A positive InR indicates that crop yield was higher when weeds were present while a negative InR
indicates that it was lower.

2.4. Gaps in knowledge and future perspectives

The number of articles retained in the systematic map was low considering that the
original search yielded 4,449 results. This reduction is in line with results from other reviews
based on the systematic map approach, such as Holland et al. (2016) who found 2252 references
of which only 152 were retained in the final map. The systematic map has clarified the amount
of scientific evidence that is available on regulating ecosystem services provided by weeds.
Data retrieved in the map also allowed for the quantification of the services provided and, in
some cases, gave an indication of the effects weeds had on crop yield. However, the list of
articles found containing information on regulating ecosystem services provided by weeds is
not exhaustive. This is partly due to the methodology that prescribes only one literature
search. Furthermore, the search was inevitably restricted to articles in which the authors
considered the plant providing the regulating ecosystem service as a weed. For example, Smith
and colleagues (2009) demonstrated that Bassia hyssopifolia (Pall.) Kuntze attracted natural
enemies to various species of tumbleweed. Although B. hyssopifolia is often considered a weed,
the authors did not refer to it as a weed. Furthermore, our search was restricted to the English
language but there are articles written in other languages that contain evidence of weeds
providing regulating ecosystem services (e.g. Cochereau 1976).

Regulating ecosystem services

From this systematic map analysis, a substantial gap in knowledge emerged regarding
two of the four key regulating services that are relevant to farmers; soil properties and crop
pollination. Among the few articles dealing with weed effects on soil properties, over half of
the studies were performed in Asia. This may be due to the observed stagnation in crop
production in that continent (Ray et al. 2012), which has been attributed to the depletion of
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nutrient pools (Bhandari et al. 2002; Manna et al. 2005). Soil erosion rates also tend to be higher
in Asia than elsewhere (Pimentel ef al. 1995; Lal 2003). Similarly, not many articles were found
to demonstrate the benefits of weeds in supporting crop pollination. Since agricultural land
often offers low amounts of nectar compared to other habitats (Baude et al. 2016), it stands to
reason that the presence of weeds would diversify and augment nectar availability, which
could attract more pollinators. In fact, a review published on the pollination services offered
by weeds supports this view (Bretagnolle & Gaba 2015). The review, however, only
demonstrated the potential of weeds in offering floral resources to pollinators but did not give
quantitative data on the consequences for crop pollination or for pollinator abundance and
diversity.

Although the pest control service provided by weeds has been described abundantly, the
articles did not provide much insight into the mechanisms responsible for the beneficial
effects, or for the lack of increased crop yield despite the presence of ecosystem service
providers. More fundamental research aimed at elucidating the complex trophic interactions
between crops, weeds, beneficials, and pests would help to provide more precise management
guidelines for farmers and would possibly also reduce uncertainty in the response of
agroecosystems to manipulation of weed communities.

Research needs at crop yield level

It is difficult to draw a conclusion about the effect of weeds on yield because only 30
papers quantified crop yield in relation to weed abundances. Articles including a measure of
the variability in crop yield are even fewer (seven articles, Fig. 2.2). Therefore, studies that
quantify the effect of weeds on crop yield with a measure of the variability are required.
Despite the common view that weeds have a negative effect on crop yield, over half the articles
that measured yield did not report a significant decrease due to the presence of weeds.
However, this is only true for articles from the systematic map where weeds were supposed
to provide a regulating ecosystem service. The vast majority of studies on weeds, not included
in this systematic map, focus on weed competition with the crop and on their negative effect
on crop production. Furthermore, it is possible that some studies focussing on regulating
ecosystem services provided by weeds did not publish the negative effects weeds had on crop
yield. Looking at the effect sizes (Fig 2.2), we see that they tend to be centred around zero.
There were two cases were the effect sizes were larger than 1 or -1. In Frank & Barone (1999),
there was one unusually large effect size due to total crop failure in the plots without weeds.
In Afun et al. (1999), the service provided by weeds in hosting natural enemies of pests was
completely negated by the strong competition of weeds with the crop. In this case, the yield
loss due to competition was greater than the benefit obtained from service provisioning. A
possible explanation for the small effect size found on crop yield could be that the studies were
performed under optimal external input conditions leaving no margin for measuring a yield
increase. For example, if the aim was to measure the contribution of weeds to soil fertility, in
a system characterised by high soil fertility levels, the weed contribution would not be
detected.

In an agroecological perspective, the role of weeds would be to partly compensate for
reduced external inputs such as fertilisers, pesticides or tillage, with the ecosystem services
they can provide while maintaining competition with the crop at a minimum through
optimisation of resource use efficiency. This means that the yield measured is the result of a
series of parameters as formulated in (Eqn 1):
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Yleld = Ymax— Yloss.comp - Yext.inp + Ygain.ES (1)

where Ymax is the maximum yield that can be obtained for the crop in the optimal growth
condition, Yioss.comp is the yield loss due to competition with the crop, Yex.inp is the yield loss due
to reduced use of the external input that the weed is hypothesised to provide, and Yiaines is the
yield increase due to ecosystem service provisioning by the weed(s). In order to calculate
Yeainks, a series of four experiments needs to be set up as indicated in Table 2.4. This system
allows to estimate Ymax, Yioss.compand Yexinp,. The yield (Y) in the system with weeds providing
ecosystem services is measured and from Eqn 1 Yginesis calculated.

In such a system, the research objective is to select for weed communities that minimise
competition with the crop while providing an ecosystem service that can help to reduce the
use of external inputs. Therefore, two more treatments could be added where the spontaneous
weed community could be replaced by a weed community managed with the aim to increase
service provisioning while decreasing competition by, for example, accepting legume weeds
while suppressing grass species. In that case, Yioss.compin the system with selected weeds is
hypothesised to be lower while Yzainksis hypothesised to be higher than that in the system with
the spontaneous weed community. Ideally, Ygaines would equal the yield loss if all external
inputs were avoided. Since we are dealing with weeds this is rather improbable and this
situation can probably only be created by using functional living mulches or inter cropping.

Table 2.4 Experimental plots needed to calculate the yield gain provided by a predefined ecosystem
service provided by weeds (Yginks) in cropping systems, where the reduced input level refers to a
reduction in those external inputs that are supposed to be replaced by the ecosystem service provided
by the weeds. Y is the yield measured in the four experimental treatments needed to determine the
parameters in Eqn. 1.

No weeds Weeds
. . Y1 Yo*
Optlmal lnput Y1=Ymax Yloss.comp:Yl-YZ
Ys Y4
i t
Reduced lnpu Yext.ir\p:Ymax-Y3 Ygain.ES:Y4-Ymax+YlossAcom+YextAinp

*Y2 is the result of weed competition with the crop where, due to the optimal input level, the ecosystem
service provided cannot result in a yield increase and the only measurable effect is the yield reduction
due to competition.

Research needs at weed species level

The list of weeds providing ecosystem services (Table 2.2) must be interpreted with
caution. The fact that a species is more often cited than others does not necessarily mean that
it is the most beneficial species. Many species listed in Table 2.2 are very common weeds and
their high frequency in literature might simply be related to the higher likelihood of being
studied. In the majority of articles, weeds were studied as an assemblage rather than
investigating the ecosystem services provided by individual species. Norris & Kogan (2000)
warned about this generalisation of weeds and claimed that to describe and elucidate the
complex mechanisms regulating pest control, the weed species identity and their relevant
functional traits must be known. Furthermore, this information is crucial for the development
of agroecological weed management aimed at reducing competition with the crop while
optimising service provisioning. This means that more effort should be spent on the
identification of weed species with effective functional traits for ecosystem service
provisioning. It would be desirable to select these traits from species that have a low
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competitive ability with the crop, a limited seed production capacity, and limited seed
longevity in order to avoid uncontrollable weed problems in the cropped field. At the moment,
there are functional trait databases that contain information on spontaneous vegetation
including many plant species that are considered weeds in the main cropping systems. An R
package has been developed that enables the extraction of information on functional traits for
a list of species from nine publically available databases (Bocci 2015). However, many of the
available traits are response traits (sensu Lavorel & Garnier 2002) while the effect traits
available are mostly limited to provisioning of floral resources to arthropods. Furthermore, it
must also be taken into consideration that traits measured from the spontaneous vegetation
may be slightly different from the traits observed in the same species grown in cropped
systems (Storkey et al. 2015) and, therefore, fundamental research on weed species traits in
relation to ecosystem service provisioning potential would be recommended.

Research needs at weed community diversity level

The hypothesis that an increase in weed diversity may increase ecosystem service
provisioning and that this effect is stronger in systems with low weed diversity is illustrated
in Figure 2.3a. At high levels of weed diversity, with higher levels of redundant functional
traits among the weed species, there will be a higher resilience of the service provisioning
especially under changing environmental or cropping system conditions (Hooper et al. 2005;
Tscharntke et al. 2005). Although weed community diversity was often mentioned as a positive
aspect, none of the studies included weed diversity as a factor for determining its effect on
service provisioning nor did they quantify or explain how diversity reduced competition with
the crop. Smith et al. (2010) formulated the Resource Pool Diversity Hypothesis, which predicts
that, in diversified cropping systems, having a diverse weed community increases resource
use efficiency and, therefore, competition between weeds and crops is expected to decrease.
As far as we know, only Cierjacks et al. (2016) and Ferrero et al. (2017) provided results from
research aimed at testing this relationship. However, they did not manipulate weed densities
and simple correlation analyses were the only means with which weed diversity-crop yield
relationships were tested.

Magnitude of ecosystem service
Magnitude of ecosystem service

v

I II 111 Weed diversity
Weed diversity

Figure 2.3 Theoretical relationship between increase of weed diversity and the increase in magnitude
of ecosystem service provisioning (e.g. increase in beneficial abundance). a) At low levels of diversity
(I), there is a high potential for affecting ecosystem processes. At medium levels of diversity (II), the
magnitude of increase of ecosystem processes is reduced. In diverse weed communities (III) the increase
in diversity increases the resilience of the ecosystem service under changing environmental or farming
system conditions but it will not affect the magnitude of the service provisioning. b) The continuous
function shows the increase in magnitude of the service when weed diversity is randomly increased.
The dashed function shows the increase when management is aimed at conserving those weed species
that are most effective for the desired service while at the same time being little competitive with the
crop.
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As the objectives for increased weed species diversity should be to minimise competition
with the main crop while maximising profitability in terms of ecosystem service provisioning,
a multi-criteria assessment of weed communities should be performed based on weed species
traits in order to determine the most effective weed management strategies. From a research
point of view, stimulating species diversity may provide satisfactory solutions but, from a
management point of view, diversification may result in an exponential increase in
complexity. Therefore, guided diversification by stimulating a few species with the desired
traits is recommended in order to obtain maximum results with a minimum increase in
vegetation complexity in the cropped fields. In theory (comparison of the light grey and
dashed lines in Fig 2.3b), a higher increase in diversity is needed to reach the maximum
functionality if species diversity increases randomly instead of managing it based on the
functional traits of weed species. Equation 1 and the experimental layout proposed in Table
2.4 may be used to compare the efficacy of these diversified systems while the layout of the
Jena Experiment, aimed at establishing plant diversity in relation to ecosystem functioning
(Weisser et al. 2017), is a stimulating example to design experiments testing the effect of weed
diversity on ecosystem services provisioning.

The types of ecosystem services that are most suitable for investigation are services
directly provided by the weeds, such as nitrogen accumulation, amelioration of the physical
soil structure, stimulation of soil arbuscular mycchorhizal fungi, and production of pest
repellent chemicals. Both the weed traits and the service provided can be measured and
quantified, and this can be directly related to crop yield. The indirect services provided by
weeds, such as pest control through supporting pest predators or crop pollination through
supply of nectar and pollen resources to pollinators, occur in successive steps where the
potential benefits derived from the weeds on yield increase can easily be disrupted by external
factors at each step. For example, weeds attract beneficial insects, but if there are many
predators of these beneficial insects, there will be no increase in pest control. In cases where
pest control increases due to the presence of beneficial insects, yield increases may not be
verified due to, for example, adverse weather conditions or diseases. The lack of actual service
provisioning in terms of pest control and crop yield has also been identified in studies
focussing on promotion and conservation of semi-natural habitats around cropped field with
the aim of increasing pest control and, subsequently, crop yield (Tscharntke et al. 2016). Studies
investigating how weeds sustain ecosystem service providers (ESP) should, therefore, focus
on the interactions between the weeds and the ESP by comparing diversity and abundance of
ESP communities in crops with and without weed communities. In the case of weed support
to pest predators, the review by Norris and Kogan (2000), could be a helpful start to plan a
weed management strategy, and care should be taken to evaluate the potential pest species
response to the weed community.

The magnitude of the impact that can be expected from single management tactics for
agroecosystem service provisioning is limited and the ‘many little hammers’ approach for
Integrated Weed Management proposed by Liebmann & Gallant (1997) should be applied.
This means that, in order to increase agroecosystem service provisioning by vegetation, weed
management strategies should be used in conjunction with other vegetation management
strategies, such as intercropping or the establishment of semi-natural habitats, to maximise the
provision of the desired services. By having a low but homogeneous distribution of weeds in
a cropped field we should obtain a homogenous distribution of a service provided by the
weeds. This would complement the services provided by the vegetation present in field
margins and adjacent semi-natural habitats because their influence tends to decline as the
distance from the field edge increases (e.g. Pisani Gareau et al. 2013).
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2.5.Conclusion

In conclusion, this review highlights how few studies have specifically investigated and
quantified the ecosystem services provided by weeds. We proposed an experimental design
able to disentangle the benefits obtained from ecosystem service provisioning from the costs
due to weed competition. The proposed approach can be useful in other studies aiming at the
quantification of the role of weed community diversity in the reduction of competition with
the crop and in determining the magnitude of ecosystem services provisioning by weed
communities with different levels of diversity. Existing vegetation databases can be used to
select weed species with functional traits facilitating ecosystem service provisioning while
having a low competitive ability. However, for services such as pest control there are hardly
any specific plant traits that have been identified, and more fundamental research is needed.
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Abstract: The loss of weed biodiversity in agricultural fields is a global issue that needs to be
counteracted to preserve their supported ecosystem services and food webs. Many short-term
efforts are undertaken to conserve weed species, especially already endangered ones, but
several years after expiration, eventually result in species-poor communities. Understanding
drivers of community composition is key to prevent biodiversity loss. To understand the
factors that shape weed communities and influence weed diversity and endangered weed
species, we monitored conventional and organic cereal fields in two regions of southwestern
Germany. A redundancy analysis was performed on vegetation recordings and data from a
farmer survey. Crop species, herbicide use, farming system, nitrogen, and light availability
had the strongest impact on weed diversity. The weed communities were dominated by
Alopecurus myosuroides, Galium aparine, Viola arvensis, Polygonum convolvulus, and Veronica
persica, and were mainly shaped by crop species, tillage, location in the field, and timing of
herbicide application. Bromus grossus and Bromus secalinus, two endangered weed species,
survived in conventional field margins as a result of the use of herbicides with gaps for Bromus
species. Conservation efforts are not restricted to organic farming and should consider the
major drivers of weed communities. Precision farming techniques are available to create
networks of habitats for endangered and common weed species and subsequently increase
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3.1.Introduction

The Convention on Biological Diversity (CBD) is an international treaty dedicated to the
conservation of biological diversity, its sustainable use, and the sharing of genetic resources.
So far, 168 countries have signed this treaty, which highlights the global importance of
biodiversity (CBD 2018a). The Global Strategy for Plant Conservation (GSPC) within the CBD
aims specifically at stopping the loss of further plant species, conserving their natural habitats,
and using plant diversity in a sustainable manner. As plants are the lowest trophic level, they
support the whole food chain within an ecosystem. Conservation of plant species thus means
also conserving animal species of higher trophic levels (Power et al. 1992, Scherber et al. 2010).
As large areas within countries are naturally used for food production, the tradeoff between
production and conservation becomes a controversial issue (Holt et al. 2016). However, agro-
ecosystems in particular have suffered from species loss in the last decades (Flynn et al. 2009).
Not only plant species (Meyer et al. 2013), but also insects (Hallmann et al. 2017) and larger
vertebrate animals such as birds (Donald et al. 2001), have decreased in population size and
species numbers in agricultural fields. The reasons for this species decline in agro-ecosystems
are manifold; intensification of the production system, excessive use of water, nutrients and
chemicals, as well as pollution of the environment (CBD 2018b). Weeds in particular represent
one of the most important biological constraints for crop production as they affect quantity
and quality of the harvest product as a result of competition (Oerke 2006). On the other hand,
they are the basis for the whole food chain in the agro-ecosystem and provide a range of
important ecosystem services (Blaix et al. 2018). The decline of weed species in agro-
ecosystems is inter alia attributed to high fertilizer inputs, the use of efficient weed control
measures like herbicides, improvements in soil tillage, and the increased competitive abilities
of crop plants since the middle of the 20th century (Marshall et al. 2003, Meyer et al. 2013). Until
today, the number of weed species has declined by 64% (Gerhards et al. 2013). Many of the
species became highly endangered or even extinct (Meyer et al. 2013). A once diverse weed
flora is nowadays dominated by those few species that were able to cope with the agricultural
intensification process.

Conserving weed species, and endangered ones in particular, not only adds to the
conservation of food webs and animals of higher trophic levels (Marshall et al. 2003, Scherber
et al. 2010), it further supports beneficial insects that combat major pests (Atakan 2010) and
preserves potential genetic resources in the gene pool (Briitting et al. 2012). Eventually, these
species represent cultural assets of former agricultural production systems and have an
intrinsic aesthetic value for humans (Gerowitt et al. 2003). In order to protect endangered weed
species (EWS), a wide spectrum of conservation measures has evolved, from in situ
conservation under actual farming to field margin concepts and floral nature reserves (Meyer
et al. 2014). As weeds have co-evolved with the crop plants, they often need specific farming
operations to survive; for example, Agrostemma githago propagates with contaminated crop
seeds (Firbank 1998). Therefore, many in situ conservation strategies give monetary
compensation to farmers in return for particular management restrictions. These restrictions
comprise higher row distances to lower the light competition of the crop, less nitrogen
fertilization and abandonment of herbicides, and other non-chemical weed control methods.
Moreover, they are in line with special requirements of the endangered species like late stubble
tillage to enable species that flower very late to produce seeds or a higher proportion of winter
cereals in the crop rotation, because most endangered species germinate in autumn (Van Elsen
et al. 2009, Meyer et al. 2010). The fields should also be ploughed on a regular basis to prevent
the spread of competitive grass weeds and perennials (Van Elsen et al. 2009). These measures
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aim to increase the chances of survival and propagation of EWS and ultimately increase their
population sizes.

Although conservation measures are used, most of the fields have suffered from the
species decline and display a very low diversity of weed species (Waldhardt et al. 2003, Meyer
et al. 2013). Although, not only the species number, but also their respective coverage and
genetic diversity, have decreased over the years (Fried et al. 2009, Meyer et al. 2013), which in
the long run leads to lower amounts of seeds in the soil seed bank, and ultimately to the
disappearance of species. The resulting modern weed community is impoverished and
exhibits only a handful of species that occur almost everywhere throughout Germany.
Chenopodium album, Viola arvensis, Polygonum convolvulus, Polygonum aviculare, and Galium
aparine are typically among these species (Meyer et al. 2013), as well as Alopecurus myosuroides,
which experienced a dramatic increase due to its development of herbicide resistance (Heap
2014) and higher percentages of winter cereals in the rotation.

Conservation contracts with famers in Germany are normally effective in preserving the
occurring endangered species (Albrecht 2003), but are also unfortunately subject to time
limitations. Fields whose contracts have expired often display weed communities similar to
conventionally farmed fields after several years (Schumacher 2018). Additionally, there is only
little information about the habitat and management requirements of EWS (Torra et al. 2018),
as well as of common ones. This lack of knowledge diminishes the success of the conservation
efforts themselves and leads to further impoverishment of the weed community. Identifying
key drivers of weed community composition and EWS is urgently needed to derive effective
measures and strategies for successful species conservation.

Within this study, we performed weed vegetation recordings and farmer surveys in two
regions of southwestern Germany where EWS were protected during the last decade, but are
currently not under conservation contracts. The aim of this work was to detect driving factors
of weed community assembly, weed diversity, and particularly of the occurrence of EWS. The
resulting knowledge can be used to improve conservation measures for EWS and the
enhancement of in-field biodiversity. We thus determined the agronomic and environmental
factors in cereal crops that (i) shape the present weed community, and identified those factors
that positively affect (ii) weed species diversity and (iii) the occurrence of EWS.

3.2. Materials and Methods

Experimental areas and field selection

Vegetation recordings were performed in the regions “Gau” and “Swabian Alps” in the
southwestern part of Germany. The “Gau” region is located between the Black Forest and the
Swabian Alps. Soils in the region can range from sandy clay to heavy clay soils. Muschelkalk
(shellbearing limestone) or Unterer Keuper (sandstone or clay) were the parent rocks for these
soils. The long-term mean (1960-1990) of temperature is 7.1-8.0 °C and the mean precipitation
is 900-1000 mm. The Swabian Alps originated to a large extent from Jurassic limestone
(limestone with clay marl and mudstone) that turned into rendzina soils, Terra fusca, vertic
cambisols, or (chromic) luvisols. The long-term mean of temperature on the Swabian Alps is
6.1-7.0 °C and the precipitation ranges from 1000 to 1200 mm.

In 2017, cereal fields were selected in the Gau region on the basis of former recordings of
Bromus grossus, which is an almost extinct species in Germany, by the regional nature
conservation authority (2004-2015). We wanted to determine if this species was still present
in the region. Therefore, fields surrounding the formerly confirmed areas of the occurrence of
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B. grossus were chosen for the recording. We mapped 33 fields, of which 28 were
conventionally farmed and 5 were organically farmed. In 2018, we carried out the same search
pattern in the Swabian Alps region. The recordings of a private nature conservation
organization from 2006 had documented the occurrence of rare weed species such as Bromus
secalinus, Neslia paniculata, Legousia hybrid, and Vaccaria hispanica. In total, 33 fields, consisting
of 30 conventionally farmed and 3 organically farmed, were mapped.

Vegetation recordings and farmer surveys

The vegetation recordings were performed according to van Elsen (1989), who used a2 m
by 50 m area along the field margin and a second strip, parallel to the first, in the middle of
the field. All occurring plant species were noted according to the extended Braun-Blanquet
scale by Wilmanns (1998). The obtained data were afterwards transformed according to Van
der Maarel (2007).

To be able to relate the recorded weed community or the occurrence of rare arable weed
species to farming practices, we performed a farmer survey. The survey retrieved information
about crop species, fertilization, soil tillage, and weed control measures. However, not all
farmers were willing to or could share all their available information. Therefore, we used only
variables that were consistent for all vegetation recordings within a region for the statistical
analysis. Additionally, we measured crop height, nitrate (NO3) and ammonium (NHa4) content
in the soil, and photosynthetic active radiation (PAR) at soil level between the crop rows, and
assessed the soil type. Table 3.1 shows the obtained variables in each region and their levels.

Table 3.1 Levels and ranges of categorical and metric variables assessed by a farmer survey in the Gau
region and the Swabian Alps.

Géiu Region Swabian Alps

Variable

Levels Levels

Location in the field
Farming system

Field margin; field middle
Organic; conventional

Field margin; field middle
Organic; conventional

winter mix I; spelt; winter barley; Oat; rye; spring barley; triticale; winter

Crop species

Photosynthetic active radiation (PAR)
at soil level (%)
Crop cover (%)
Nitrate in the soil in June (NOs)
(kg*ha!)
NHea in the soil in June (kg*ha™)
Soil type

Timing of herbicide application

Total nitrogen fertilization (kg*ha)
Crop row distance (cm)
Seeding density (kg*ha™)
Number of applied herbicides
Number of tillage operations
Tillage
Crop height (cm)

Field size (ha)

Nitrogen fertilization

winter wheat; triticale
1.3-18.4
55.0-95.0
1.7-115.9

0.0-17.5
IT, tL, 'L, uL, tU 2
Spring appl.; autumn appl.; spring +
autumn appl.?
0.0-271.5
12.0-17.0
140.0-260.0
0-3
2-4
Plough; reduced tillage
51-153

barley; winter wheat
2.8-70.0
30.0-97.0

Spring appl.; autumn appl.; spring +
autumn appl.
44.0-110.0
12.2-15.0
100.0-250.0
2-4
Plough; reduced tillage
45-150
0.15-5.00
Mineral; organic; mineral + organic

1 winter mix consists of triticale, rye, winter oat, winter barley, and winter pea; 21T = loamy clay, tL =

clayey loam, t'L = weakly clayey loam, uL = silty loam, tU =loamy silt; ®appl. = application.
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Data analysis

Statistical analysis was performed with the software R (version 3.4.3, R Foundation for
Statistical Computing, Vienna,Austria). Species numbers were analyzed with the standard
analysis of variance (ANOVA) and means compared with a Tukey-HSD-test (p < 0.05).

To detect influences of farming or environmental variables on the weed species
composition, we performed a redundancy analysis (RDA). Species were transformed by the
Hellinger approach (Legendre & Gallagher 2001) prior to analysis. The final model with
environmental and farming variables was selected by a stepwise forward selection with a
threshold of p < 0.05. The generalized variance inflation factor (GVIF) for the variables were
between 1.1 and 6.7 most of the time, except for two levels of the variable “crop”, which were
between 10 and 20. Values of GVIF above 20 indicate collinearity between variables (Fox &
Monette 1992). To detect the effects of single explanatory variables we calculated gross and
net effects of each variable according to Lososova et al. (2004). The gross effect represents the
explained variation of the target variable under a univariate RDA, while the net effect
represents the explained variation under a partial RDA (pRDA) with the target variable as
explanatory variable and the other variables of the model as covariables. The fit for the models
of net effect was tested afterwards using a permutation test with 999 permutations of the
constrained axis for each model.

3.3.Results

Weed species diversity

In total, 140 different weed species were found in the Gau region and 93 weed species in
the Swabian Alps. The average number of weed species in each recorded plot typically ranged
between 10 and 30. We found six variables that significantly affected the weed species number
in the G&au region. These variables were location in the field, crop species, number of herbicide
applications, farming system, total nitrogen fertilization, and the amount of PAR at soil level
(Figure 3.1). Meanwhile, there were only three variables in the Swabian Alps that affected
weed diversity significantly, namely, location in the field, number of different crops in the
crop rotation, and farming system (Figure 3.2).
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Figure 3.1 Factors influencing the mean number of weed species in the Gau region (a) location in the
field; (b) crop species; (c) number of applied herbicides; (d) farming system; (e) total nitrogen
fertilization (y = 27.35 — 0.08x; R? = 0.338); and (f) amount of photosynthetic active radiation at soil level
(y =7.03 + 0.82x; R2=0.197). Means with different letters represent significant differences according to
the Tukey HSD test (p <0.05).
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Species numbers in the Gau region and the Swabian Alps were higher in organic (28.1 and
27.3, respectively) compared with conventional farming (12.9 and 11.2, respectively), and were
always higher at the field margin (20.8 and 16.2, respectively) in comparison with the middle
of the field (9.5 and 10.0, respectively). In the Gau region, a prominent effect of the different
crop species was present, while in the Swabian Alps, the number of crops in the crop rotation
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significantly influenced the weed species numbers. Moreover, in the Gau region, total nitrogen
fertilization was negatively correlated with weed species diversity, while the amount of PAR
was positively correlated (See Figure 3.1e,f). A significantly higher number of weed species
was present if any herbicide application was omitted (28.2 species). However, sprayed plots
also showed rather high species numbers (10.1 to 13.4), although not significantly different
from each other.

Weed species community

The weed species communities in both locations were very similar in terms of weed
species occurrence (Figure 3.3). Alopecurus myosuroides, Galium aparine, Viola arvensis,
Polygonum convolvulus, and Veronica persica were the most frequent species and were present
in more than 50% of the recorded plots. These five species were also within the top ten species
in regard to mean soil cover at both locations. The weed species coverage was generally lower
in the Swabian Alps compared with the Gau region. The majority of species, 73% of all species
in the Gau region and 52% in the Swabian Alps, were not very frequent (<10% occurrence).
More than 75% of the weed species also showed a mean soil cover that was below 0.5% (78%
for the Géau region and 82% for the Swabian Alps).
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Figure 3.3 Values of (a,b) frequency of occurrence (%) and (c,d) mean cover (%) for those 20 weed species
with the highest occurrence or soil cover in the (a,c) Gdu region or the (b,d) Swabian Alps. Abbreviation

of weed species according to the EPPO (European and Mediterranean Plant Protection Organization)
Code.

The stepwise forward selection of the model in the RDA analysis selected six variables for
the Géau region and eight for the Swabian Alps that significantly affected the composition of
the weed communities (Table 3.2). The full model was able to explain more than 40% of the
total variation in the species composition in both locations. The models of both regions share
four variables, namely, crop species, tillage, location in the field, and timing of the herbicide
application. Of these four variables, crop species and timing of herbicide application were the
two variables explaining the biggest part of the species community.
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Table 3.2 Explained variation (%) of the full model, as well as the gross (redundancy analysis (RDA)
with single explanatory variable) and net ((partial) RDA with single explanatory variable and additional
variables held constant) effects of the explanatory variables on weed species composition and their F-
values from the permutation test for the Gau region and the Swabian Alps.

. Géiu Region Swabian Alps
Variables

Gross Effect  Net Effect F-Value Gross Effect Net Effect F-Value
Full model ! 42.54 3.634 *** 46.63 2.185 ***
Crop species 21.92 12.61 2.963 *** 19.05 20.83 2.276 ***

Tillage 7.79 5.37 5.049 *** 3.39 3.31 2.174 **

Number of herbicide applications 7.13 2.60 2.441 % - - -
Location in the field 2.77 2.63 2.471 *** 3.20 3.20 2.101 **
Herbicide timing 16.51 5.93 1.857 *** 11.44 7.51 2.463 ***
NHa 4.56 2.37 2.235 **
Total N 421 4.53 2.968 ***
Farming system 5.59 NA NA

Number of tillage operations 3.11 2.76 1.812 **
Seeding density 2.87 2.53 1.659 *

1 Full model selected by stepwise forward selection with an adjusted R? of 0.3083 at the G&du region and
0.2529 at the Swabian Alps. (*** p <0.001, ** p <0.01, * p < 0.05, NA = not available).

The RDA plots in Figure 3.4 show the association of the respective weed species in each
location to the selected variables from the model. In the Gau region, the first RDA axis was
associated with the number of applied herbicides, the timing of application, and NH4 content
in the soil. The second axis was associated with the tillage and the location of records in the
tield. Polygonum convolvulus and Veronica persica were associated with reduced tillage and
winter wheat or triticale, while Bromus secalinus and Bromus grossus, two endangered species,
were associated with a low content of ammonia in the soil and combined spring and autumn
herbicide applications. Rumex species on the contrary were associated with higher values of
ammonia in the soil. The first axis of the RDA in the Swabian Alps was associated with the
total nitrogen fertilization of the farmer, whereas the second axis was associated with seeding
density, number of tillage operations, crop species, and timing of herbicide application. Galium
aparine had a higher association with oats and winter barley than any other weed species.
Alopecurus myosuroides was present under higher values, while Galium aparine was more
abundant at medium values of nitrogen fertilization. Additionally, Alopecurus myosuroides was
more frequent if the number of tillage operations was low. Polygonum convolvulus and Veronica
persica in the Swabian Alps were also associated with a low number of tillage operations.
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Endangered weed species (EWS)

In the Swabian Alps, only two EWS, namely Bromus secalinus and Neslia paniculata, were
found. Bromus secalinus was discovered in three conventional fields with a population size of
around 10-30 plants, while Neslia paniculata occurred only once inside a conventional field. In
the Gau region, we found Bromus grossus and Bromus secalinus in relatively high numbers, so
that we were able to analyze possible variables affecting the occurrence of these two species.
Figure 3.5 displays the variables affecting the abundance of these two species. Both were found
with significantly higher soil coverage at field margins and under the influence of combined
spring and autumn herbicide applications. Bromus secalinus was mainly present in those fields,
which were not sprayed with Atlantis (0.3 kg*ha; a.i. iodosulfuron and mesosulfuron; Bayer
Crop Science, Langenfeld, Germany) or Broadway (0.22 kg*ha; a.i. pyroxsulam and
florasulam, Dow AgroSciences, Munich, Germany) in autumn and spring, respectively. The
coverage of Bromus grossus was half as much as that of Bromus secalinus in both cases. A
correlation test between the two species was significant (R?=0.572). Bromus secalinus displayed
a significant reaction to soil type, with higher values at heavy soils with high clay content (IT
and tL) and decreasing values towards soils with a higher portion of silt (tU). Bromus grossus
was mainly present in winter barley fields, although not significantly different from the other
crop species. In addition, Bromus arvensis and Galium spurium were found at four field margins
of conventional fields; Veronica triphyllos once at a conventional field margin; and Camelina
alyssum and Ranunculus arvensis once and twice, respectively, restricted to organic fields. The
number of individuals of these species was rarely higher than 5-20 plants.
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Figure 3.5 Factors influencing the mean cover (%) of (a,c,e) Bromus secalinus and (b) Bromus grossus
in the G&u region. (a,b) Timing of herbicide application; (c,d) location in the field; (e) soil type (IT =
loamy clay, tL = clayey loam, t'L = weakly clayey loam, uL = silty loam, tU = loamy silt); and (f) crop
species. Means with different letters represent significant differences according to the Tukey HSD test
(p £0.05).
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3.4.Discussion

Most of the EWS that were once present in the Gau region and the Swabian Alps have
either decreased in their numbers or even disappeared. Camelina alyssum and Bromus grossus
in particular are supposed to be extinct in many regions of Germany. The two regions, Gau
and Swabian Alps, thus have a high responsibility to ensure their conservation and promotion.
Bromus secalinus was the only rather frequent EWS in the Gau region. As itis presumed to have
descended from Bromus grossus (Koch et al. 2016), the identified factors influencing Bromus
secalinus might also help to develop better conservation measures for Bromus grossus. The two
Bromus species were positively affected by herbicide applications, which may be because of
the fact that the applied herbicides in the respective locations are known to have a gap in
effectiveness against Bromus species. Therefore, it might be possible to promote species
conservation not only in organic farming (Van Elsen 2000), but even with the use of herbicides
in conventional farming, at least for these particular species. In contrast, it was assumed that
Bromus grossus was only able to survive in fields if it is reintroduced using uncleaned crop
seeds from previous years (Piqueray et al. 2018). However, the control of other, more
competitive species needs also to be concerned, as this might interfere greatly with the success
of facilitating endangered species. In particular, measures affecting a whole group of weeds,
like the promotion of grassy weeds by conservation tillage (Peigné et al. 2007), might not aid
in conservation. To facilitate the propagation of EWS is of paramount importance, as their
genetic variability is quite low (Briitting et al. 2012) and needs to be increased, if necessary,
even by reintroduction of new seeds (Lang et al. 2018).

As a result of the rapid disappearance of ever more weed species, the weed community is
becoming less diverse and uniform across Germany. This uniform weed community consists
of well adapted dominant species that cause high yield losses, such as Alopecurus myosuroides
and Galium aparine (Keller et al. 2014). These two species were also the most frequently found
weeds in the present study and those displaying the highest soil coverage. Moreover,
Alopecurus myosuroides, Galium aparine, Polygonum convolvulus, and Viola arvensis were
associated with low soil disturbance and higher values of nitrogen. This is in line with other
studies that found weed communities dominated by these species under intensive
conventional farming (Dessaint et al. 2001, Keller et al. 2014). With regard to climate change,
weed communities will further evolve. EWS will become even more vulnerable to the new
weather conditions (Riihl et al. 2015) and difficult to control, and invasive weed species might
spread into more agricultural fields (McDonald et al. 2009). This can shift the weed community
further to one with a higher frequency of dominant species.

The main drivers found in this study that shaped the weed community were crop species,
herbicide use, nitrogen fertilization, and tillage operations. Of these, crop species and timing
of herbicides were the most influential in determining the weed composition. The influence of
crops can be explained by the major differences in cultivation (Nowak et al. 2015), ultimately
leading to the typical weed communities of spring or autumn sown crops (Nagy et al. 2018).
Other authors also found cropland type and surrounding habitats to be major drivers of weed
composition (Nagy et al. 2018). Herbicide use leads to a massive selection pressure upon the
weeds, resulting in very low densities of species per se or the evolution of herbicide resistance
(Heap 2014). They are even potent enough to mask effects of tillage on weed community
composition by leading to uniform weed communities (Derksen 1995). In our study, timing of
herbicides was also identified as a major factor, however, no consistent association between
weeds and the herbicide application timing was found. This might be due to the wide range
of available herbicides, each with its uniquely targeted weed species spectrum. Further studies
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should investigate the influence of herbicides and their active ingredients in more detail.
Nitrogen fertilization was associated with higher abundance of Rumex species and Alopecurus
myosuroides. The reaction of weed species to nitrogen content in the soil is common knowledge
(Chadwigk 1963), however, there are still gaps in knowledge when it comes to its contribution
to weed community composition. In regard to soil tillage, a regular disturbance of the soil
promotes the emergence of more weed species and can also aid in conservation of EWS (Torra
et al. 2018). Apart from management factors, environmental and site conditions have a huge
impact on the weed community composition (De Mol et al. 2015, Pinke et al. 2016, Nagy et al.
2018), which were not available in detail for the present study.

To increase the biodiversity in agricultural fields, the number of different weed species
tirst of all needs to be raised in order to gain further increases in animal species. In this process,
obviously most of the species will first be present in quite low numbers or coverages.
Especially endangered species can contribute substantially to increasing agro-biodiversity, as
they were once well integrated into the weed community. Their associated insect species might
also benefit from the promotion of these weed species and will become more frequent.

Organic farming is promising in terms of biodiversity conservation (Van Elsen 2000), as
no chemical plant protection agents are used and a more diverse crop rotation is practiced.
These are two of the factors that we also found affecting the weed diversity positively. In terms
of crop rotation, a higher diversity of crops seems to enhance weed diversity until a certain
point (De Mol et al. 2015, Zarina et al. 2015). In our study, this was highlighted by a medium
number of crops in the crop rotation. Simple crop rotations promote those species that occur
within the specific crop, thus resulting in one similar simple weed spectrum over the years.
Very diverse rotations on the other hand make use of the weed suppressive effects exerted by
particular timing of farming operations (e.g., tillage, sowing) and available weed control
measures within each crop species. This diverse set of operations in the long-term might be
able to diminish the soil seed bank in general, and species that have a low seed longevity in
particular. Thus, a medium number of crops in the crop rotation might represent a maximum
turning point for weed species diversity. Another important factor for higher diversity is the
tield margin, where fertilization, weed control, and sowing are often not as accurate as in the
crop stand. Therefore, more light reaches the ground and gives many competition-weak weeds
a chance to grow (Kleijn & van der Voort 1997). It would thus be suitable to start increasing
weed diversity at the field margin to help in the conservation of species (Schumacher 1980).
Moreover, field margins are associated with a higher diversity of fauna, including pollinators,
beneficial insects, and farmland birds (Marshall & Moonen 2002). Field margins are a good
start for conservation efforts and more diverse weed communities, but more area with suitable
habitat conditions for a wide spectrum of weeds should be generated. Increasing weed
diversity while simultaneously controlling problematic weeds and ensuring food security is a
process in which every alteration needs to be carefully tested and evaluated. As a potential
solution, there are already some techniques available to successively replace herbicide
applications by mechanical treatments (Kunz ef al. 2015), or to manipulate the competitiveness
of the crop by altering seeding patterns (Kristensen et al. 2008). Furthermore, fertilizers can be
placed quite accurately to the crop roots only (Blackmer & White 1998), so that weeds need to
cope with lower fertilizer levels, which in turn might lead to an increasing species richness if
dominant, nitrogen-loving species decline (Storkey et al. 2010).

In this context, field margin strips or entire fields farmed under nature conservation
regulations and contracts can add a lot to increase biodiversity (Denys & Tscharntke 2002,
Meek et al. 2002, Krompa & Steinberger 2012) and the goals set by the GSPC. This needs to be
coordinated in order to gain a dense network of these programs and to provide the species

47



Chapter III: Management influence on weed communities

with enough habitats linked by corridors, which ensures their future propagation and spread
(Meyer et al. 2008). The disappearance of EWS and the low diversity of weed communities,
especially in the Swabian Alps, emphasizes the need to make long-term contracts between
farmers and nature conservation authorities. In fields, where the soil seed bank is highly
depleted in terms of species diversity, it might be reasonable to reintroduce weed species by
sowing (Lang et al. 2018), otherwise weed diversity is hard to restore. On the other hand, it
might be problematic to introduce weed seeds from completely random areas, as they might
not fit well into the regional weed community and might contain very dominant species. This
approach must thus be executed with caution. Historical assessments of weed communities
are available for many sites and should be taken into consideration for restoration of weed
diversity. Moreover agri-environmental schemes and national strategies help to provide
habitats for species in every type of farming. Furthermore, increasing the diversity in and
around the field by intercropping, mixed cropping, and deliberately manipulating landscape
structures can further assist in the recovery of agro-biodiversity (Landis 2017). To reach this
goal, policy makers, nature conservation authorities, and farmers need to come (and stay)
together to develop practical and sustainable solutions for both crop production and species
conservation (Holt et al. 2016).
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Abstract Weed biodiversity plays a key role in supporting food webs and ecosystem services
in agroecosystems. One important service, reducing the abundance of weeds, is the predation
of weed seeds by invertebrates and vertebrates. Weed biodiversity may be supportive in
maintaining seed predator prevalence, this however, can be highly influenced by farming
systems. In the present study we examined the connections between weed diversity, Carabid
beetle diversity and weed seed predation (WSP) rate. Additionally, the influence of a farming
intensity gradient on WSP rate and predator groups was evaluated. An on-farm experiment
on the Eastern Swabian Alps was set up from 2015 — 2017, where we determined the weed
diversity, Carabid beetle diversity using pitfall traps and WSP rates and predator groups by
utilizing seed cards and exclosure cages. There was a linear correlation between weed
diversity and Carabid beetle diversity as well as a pattern showing that medium diversity of
Carabid beetles (3-8 species) exhibited the highest WSP rates by invertebrates. However, a
direct connection between weed diversity and WSP was not detected. Farming intensity had
no consistent influence on WSP, rather year and specific agronomic measures like cover
cropping most presumably affected WSP. Carabid beetle communities were similar in 2016
and 2017 with omnivorous species dominating in the conventional fields and granivorous
species in extensively managed fields. The most efficient seed predator group were
vertebrates. The promotion of beneficial predators and ecosystem services like WSP is possible
by designing appropriate management strategies. Key components of these strategies should
be the conservation of plant diversity and the utilization of weed control strategies such as
cover cropping that provide suitable habitats for beneficial predators.

Keywords: agricultural intensity; Carabid beetle community; ecosystem service; food web;
seed predation
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4.1.Introduction

All food webs are built on the first trophic level of producers, which are plants. Primary
producers are supporting all other higher levels including herbivores, their predators and
other top predators (Power 1992, Macfadyen et al. 2009, Scherber et al. 2010, Evans et al. 2011).
The importance of plants in food webs is emphasized by studies examining plant species
declines in natural and agricultural systems (Marshall et al. 2003). In agroecosystems weeds
provide food, shelter (mainly by cover), oviposition and mating sites (Norris & Kogan 2000).
Therefore, the decline of weed species affects higher trophic levels (Donald et al. 2001, Seibold
et al. 2019). Especially invertebrate species closely associated with particular weed species
have vanished along with their resources (Marshall et al. 2003). Conservation of weed species
diversity therefore is key to the conservation of higher order taxa (invertebrates and
vertebrates) in the food web (Barberi et al. 2010.

In this context, weeds are not only supporting overall species diversity and food webs,

but they also provide several ecosystem services (ES) (Blaix et al. 2018). These services are
beneficial for the farmer and the agroecosystem. They rely on the species and the diversity of
the species performing the respective service (Hooper et al. 2005, Storkey et al. 2013) and their
functional interactions to work properly (Wall and Nielsen 2012, Birkhofer et al. 2015). This
assumption is based on the “sampling effect” (Tilman et al. 1997) and the “niche
complementarity” (Macarthur & Levins 1967) in ecological theory leading to more resilient or
productive services if communities are more diverse (Wall & Nielsen 2012). This connection
between biodiversity and ES provision in agricultural systems has been described for
grasslands (Sanderson et al. 2007, Scherber et al. 2010) and cover crops (Storkey et al. 2015,
Baraibar et al. 2018), but rarely for weed communities (Blaix et al. 2018). Weeds are indirectly
supporting crop pollination and enhancing pest control by attracting pollinators and
beneficials or by diverting pest species (Norris & Kogan 2000, Blaix et al. 2018).
One of the most examined and most important services in the agricultural context is pest
control (Blaix et al. 2018). Among pests, especially weeds can cause substantial yield losses
(Oerke 2006). Although the majority of weed species has little influence on yield quality and
quantity, there are problematic weed species that impact yield parameters considerably. One
ecosystem service providing weed control is weed seed predation (WSP). Weed seed
predation although is not a service that affects weed plants in the current cropping season, but
it prevents weed seeds from entering the soil seed bank and therefore reduces the potential
weed infestation in the following crops (Westerman et al. 2003a). As WSP occurs mainly after
seed shed of weeds, it is complementary to the weed control measures of the farmer, because
the newly built seeds of the remaining weed plants are consumed. Seed predators are able to
consume up to 90% of the freshly produced weed seeds (Westerman et al. 2003, Davis et al.
2011). The service of WSP is carried out by several species belonging to different taxa. They
can be classified into the group of vertebrates, including birds (Holmes & Froud-Williams
2005) and mice (Daedlow et al. 2014, Tschumi et al. 2018), and the group of invertebrates with
crickets (White et al. 2007), ants (Torra et al. 2016) and beetles (Kulkarni et al. 2015).

The disturbances exerted by agricultural practices are a major factor influencing not
only weed species, but also higher trophic levels as well as the ES performed by both. The
weed community in agricultural fields is the results of several agricultural measures like crop
type, tillage or herbicide use, that select a specific set of weed species from the soil seed bank
(Ryan et al. 2010, Schumacher et al. 2018). In addition, direct weed control and other agronomic
measures in the crop impact weed species composition (Hawes et al. 2010, Ryan et al. 2010),
leading for example to 15 - 40% more species rich weed communities in organic compared to
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conventional farming systems (Ryan et al. 2010). Therefore, management decisions of the
farmer are reflected by the weed community composition and diversity and are often linked
to a certain agricultural intensity (Hawes et al. 2010, Flohre et al. 2011). Some of these
measures, like soil tillage (Shearin et al. 2008, Menalled et al. 2007, Baraibar et al. 2009) with
no-till systems exhibiting 5 — 40 % higher WSP rates and harrowing (Navntoft et al. 2016) with
more frequent harrowing negatively impacting the arthropod diversity through direct lethal
effects and habitat disruptions as well as the farming system in general (Navntoft et al. 2009)
can furthermore affect the populations of seed predators. Herbicide use has been documented
to cause a decrease in seed removal of 10 — 20 % (Sanguankeo & Ledn al. 2011) most
presumably through removal of aboveground vegetation. Seed predation rate has been shown
to decrease by 8 % if chisel ploughing instead of no-till or moldboard ploughing was used
(Cromar et al. 1999). WSP rates are therefore influenced by particular farming practices and
their intensity. It is presumed that the resulting impact of farming measures is more
pronounced if the food web depends on few strong links in contrast to many weak links (Wall
& Nielsen 2012).

A diverse weed flora provides a wide spectrum of different seeds for seed predators.
The food preferences of the predators can differ significantly already at the species level
(Honek et al. 2007, Petit et al. 2014, Saska et al. 2014, Kulkarni et al. 2016). Therefore, an
increased food resource diversity has most likely a positive effect on food web interactions
(Harvey et al. 2008) with pronounced effects on lower trophic levels (Scherber et al. 2010)
sustaining a larger spectrum of seed predators. A diverse seed predator community should in
turn be able to perform WSP more efficiently or be more resilient to agricultural and
environmental disturbances. Previous studies revealed that there is a link between weed
density and carabid beetle activity-density (Kulkarni et al. 2017), as well as a close connection
between carabid beetle diversity and WSP rate (Gaines and Gratton 2010). However, the link
between weed species diversity and carabid beetle diversity to the performance of WSP has
never been investigated.

Within this study, we recorded weed vegetation, carabid beetles and the rate of weed
seed consumption in an on-farm experiment with cereal fields in Southwestern Germany
between 2015 and 2017. Farming types comprised conventional, organic and extensive (nature
conservation fields) farming, that displayed a gradient of farming intensity and a broad range
of associated weed diversity. Our work is aimed at determining if there are positive effects of
weed diversity on carabid beetle diversity and the performance of WSP along a gradient of
farming intensity. Findings could be utilized to promote and enhance ecosystem services
based on weeds and to preserve in-field biodiversity. The objectives of this study were to
determine (i) if there is a connection between weed species diversity, carabid beetle diversity
and the rate of weed seed consumption, (i) if the rate of WSP is influenced by year and the
type of farming system and decreasing as farming becomes more intensive and (iii) if the
groups performing weed seed predation are affected by year and the type of farming.

4.2. Material and Methods

We conducted on-farm field trials from 2015 to 2017 on eight (2015 and 2016) and nine (2017)
different cereal fields on the Eastern Swabian Alb, Germany. The region is characterized by
high differences in altitude (450 — 600 m above NN), a mean temperature of 7.5 °C and a yearly
amount of precipitation of 800 - 900 mm. The fields were grouped into three different blocks
with a conventional (CF), an organic (OF) and an extensively (EF) managed field, each. Each
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tield (replicate) contained four (pseudo) replicates (5 m x 12 m plots) that were set up
randomly inside the field with at least 10 m distance from the field margin. The plots were
located in the field centre to avoid edge effects and inhomogeneous agronomic measures that
are often observed at field margins. The third block was lacking the EF in 2015 and 2016. The
fields represented an increasing farming intensity gradient from EF to OF to CF, with EF
representing the lowest possible input. Grouping into blocks was based on soil characteristics,
inclination of the field, landscape context and field history. Extensively farmed fields (nature
conservation fields) are part of a national conservation program for endangered weed species.
The management of these fields is designed to promote occurrence and abundance of rare
arable weed species. No management is carried out on these fields between sowing and
harvest. Crop rotation is diverse, including summer and winter crops as well as grass-clover-
mixtures to suppress noxious weeds, if deemed necessary. Extensive fields are scarce.
Therefore, in terms of geological base substrate and surrounding landscape structure, these
tields set the search standards for the fields of the other farming types. Due to the crop rotation,
the experimental fields switched from year to year. However, examined fields were not more
than 300 m away from the fields examined in the previous year and still fit into the initially
determined block characteristics.

Questionnaire for farming operations

Farming operations and their timings were assessed each year by a questionnaire filled in by
the participating farmers. The questionnaire recorded management measures (crop protection,
tillage, fertilization) as well as crop selection and harvest dates. Agronomic measures
performed by the farmers were very heterogeneous in application time and use of equipment.
For comparison between farming types Table 1 gives a summary of operations and weed
control measures in a very basic form.
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Table 4.1 Agronomic measures performed by the farmers in the years 2015 — 2017 in conventional (CF),
organic (OF) and extensively (EF) managed fields at the Eastern Swabian Alb, Germany. Farmer code
represents individual fields; tillage operations gives the number of repeated stubble tillage operations
plus plough use before crop sowing; mechanical weed control and herbicide application indicate the
number of applications of the respective operation in the crop.

year farming farmer crop fertilization tillage mechanical  herbicide cover crop/ yield [t/ha]
code operations ~ weed control application living mulch
CF HM-N triticale mineral and organic 2 - 2 cover crop 7.6
HM-S triticale mineral and organic 2 - 2 - 7.5
SZ-C  winter wheat mineral and organic 2 - 2 - 5.6
2015 OF VW winter wheat organic 2 1 - - 2.2
SH spelt organic 3 2 - - 2.0
WM oat organic 2 - - - 3.4
EF HM-I  winter wheat organic 3 - - - 1.5
HM-II  winter wheat organic 3 - - - 1.9
CF HM-N triticale mineral 2 - 2 - 7.0
HM-S  winter wheat mineral 2 - 2 cover crop 49
SZ-C  winter barley mineral 2 - 2 - 49
2016 OF VW winter wheat organic 2 1 - - 52
SH spelt organic 3 1 - - 1.5
WM winter wheat organic 2 1 - - 2.1
EF HM-I  winter wheat organic 3 - - - 0.9
HM-II triticale organic 3 - - - 3.1
CF HM-N  winter barley mineral and organic 2 - 2 cover crop 7.1
HM-S  winter wheat mineral and organic 2 - 2 - 6.0
SZ-C  winter barley mineral 2 - 1 - 5.8
OF VW oat organic 2 1 - living mulch 2.8
2017 SH spelt organic 4 1 - - 24
WM triticale organic 2 2 - - 4.7
EF HM-I oat organic 2 - - - 1.1
HM-IT oat organic 2 - - - 1.3
SZ-E  spring barley organic 2 - - - 14

Weed diversity and density

To assess weed species diversity and abundance we performed relevées (vegetation
recordings) according to a modified Braun-Blanquet scale (Wilmanns 1998) within each
replicate (4 relevées of a field). The Braun-Blanquet scale is a cover-abundance measure,
providing a species specific combination of soil cover and population size (for details see
supplementary table S1). Vegetation recordings took place in April and July each year to
ensure a complete recording of the weed species spectrum. Weed species were determined to
the species level. First all weed species present within a plot were recorded and then the cover-
abundance of each species was estimated according to the modified Braun-Blanquet scale.
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Weed seed predation (WSP)

Within each plot, we studied WSP by monitoring weed seed removal using openly
displayed seed cards and exclosure cages with seed cards (Westerman 2003b). The exclosure
cages were made of metal and had a mesh width of 10 mm to exclude larger vertebrates.
Additionally, control cages with 1 mm mesh width were used to exclude any predator and
account for the seed loss due to weather conditions and handling of the cards. The seed cards
were made of high-quality sand paper (45mm x 115mm, grain size 60 or 80) and sprayed with
repositionable glue (Lyreco, Switzerland, art.no. 3.047.832). The high quality of the sand paper
ensured that it did not bend or soak under moist conditions. 50 weed seeds composed of 4 - 5
different species, each field specific and thus representing the actual resources present in the
tield, were glued to the sand paper and the remaining glue was covered with fine sand to
prevent insects from sticking to it. Weed seeds were either purchased (Herbiseed, Twyford,
England) or obtained directly from the specific field. The field-specific seed set-up was chosen
due to most closely address the research question to assess if there is a relation between weed
biodiversity and WSP (Table 2). To reflect the naturally occurring weed seed consumption,
weed seed species offered on the seed cards to the endemic weed seed predator community
have to mirror the resources that are actually present in the field. With the hypothesis being
based on weed species diversity, the assessment of WSP through one particular weed species
across treatments would not respect the initial research question and could measure seed
consumption that might not occur naturally. The weed community for each field was assessed
in March/April of the respective year and the 4 - 5 most abundant weed species were utilized
to reflect the “naturally” present weed seeds. Moreover, the endemic seed predator species are
adapted to a certain spectrum of weed seeds that serve as their food source. A field-specific
set-up of weed seeds additionally takes this food spectrum of the seed predators into account.
During the experimental period, the seed cards were replaced every two days. In the field,
seed cards as well as exclosure cages were fastened to the ground using nails. WSP
measurements were performed four times: in May, June and July and 4 weeks after harvest in
the mid of September. In 2015, we did not record WSP in May and June, but additionally
assessed WSP directly after harvest at the beginning of August. In the following years 2016
and 2017, the timing of the soil disturbance by repeated stubble tillage was too heterogeneous
between farmers to allow assessments of WSP in August. In general, seed cards were exposed
to predators for 8 days during each assessment period.
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Table 4.2 Setup of seed cards in the years 2015 — 2017 with weed species names and the respective
number of seeds on the seed cards. Seed choice and numbers reflect the four to five most abundant
weed species in each experimental field and year. Farming type abbreviations are: conventional farming
(CF), organic farming (OF) and extensive farming (EF). Farmer code represents abbreviations for
individual fields.

2015 2016 2017
farming type farmer code weed species number of weed species number of weed species number of
seeds seeds seeds
HM-N Galeopsis tetrahit 12 Galium aparine 18 Veronica persica 15
Convolvulus arvensis 12 Stellaria media 18 Convolvulus arvensis 15
Thiaspi arvense 13 Veronica persicaria 8 Viola arvensis 12
Polygonum convolvulus 13 Viola arvensis 6 Lamium purpureum 8
HM-S Alopecurus myosuroides 12 Galium aparine 18 Veronica persica 15
CF Veronica hederifolia 12 Stellaria media 18 Lamium purpureum 15
Chenopodium album 13 Veronica persicaria 8 Stellaria media 12
Polygonum convolvulus 13 Viola arvensis 6 Thlaspi arvense 8
SZ-C Viola arvensis 12 Viola arvensis 18 Viola arvensis 12
Stellaria media 13 Geranium dissectum 10 Stellaria media 13
Veronica hederifolia 13 Stellaria media 14 Veronica hederifolia 13
Polygonum convolvulus 12 Galium aparine 8 Polygonum convolvulus 12
VW Viola arvensis 12 Stellaria media 14 Alopecurus myosuroides 14
Myosotis arvensis 12 Veronica hederifolia 12 Stellaria media 12
Alopecurus myosuroides 13 Galium aparine 10 Veronica hederifolia 10
Stellaria media 13 Ranunculus repens 7 Ranunculus repens 7
Viola arvensis 7 Lamium amplexicaule 7
SH Galeopsis tetrahit 13 Stellaria media 15 Ranunculus repens 15
OF Thlaspi arvense 13 Veronica hederifolia 15 Veronica hederifolia 15
Polygonum convolvulus 12 Geranium dissectum 12 Polygonum aviculare 8
Geranium dissectum 12 Viola arvensis 8 Alopecurus myosuroides 12
WM Viola arvensis 13 Alopecurus myosuroides 14 Centaurea cyanus 14
Viccia tetrasperma 13 Centaurea cyanus 12 Lamium purpureum 12
Centaurea cyanus 12 Geranium dissectum 7 Viola arvensis 8
Polygonum convolvulus 12 Thlaspi arvense 7 Galeopsis tetrahit 8
Stellaria media 10 Veronica persica 8
HM-T Convolvulus arvensis 13 Alopecurus myosuroides 15 Sinapis arvensis 15
Rhinantus alectorolophus 12 Viccia tetrasperma 13 Alopecurus myosuroides 13
Consolida regalis 13 Consolida regalis 8 Viccia tetrasperma 8
Alopecurus myosuroides 12 Polygonum convolvulus 7 Rhinantus alectorolophus 7
Rhinantus alectorolophus 7 Consolida regalis 7
HM-II Convolvulus arvensis 13 Alopecurus myosuroides 15 Sinapis arvensis 15
Rhinantus alectorolophus 13 Viccia tetrasperma 13 Alopecurus myosuroides 13
EF Viccia tetrasperma 12 Consolida regalis 8 Viccia tetrasperma 8
Alopecurus myosuroides 12 Polygonum convolvulus 7 Rhinantus alectorolophus 7
Rhinantus alectorolophus 7 Consolida regalis 7
SZ-E Centaurea cyanus 15
Alopecurus myosuroides 12
Viola arvensis 9
Polygonum convolvulus 7
Spergula arvensis 7

WSP rates were calculated according to Westerman et al. (2003b) as following;:

Myertepr. = R
c

Minvertebr. = R
c

where Minerterr. describes the proportion of weed seeds consumed by invertebrates and Meerter.
the proportion by vertebrates in each assessment period. R represents the number of
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remaining seeds and N the number of initial seeds in the control (c), under exclosure cages (e)
or openly displayed (o).

To determine the dominant predator group, we generated an index that reflects the ratio
between WSP of vertebrates and WSP of invertebrates. This index was calculated as:

Mvertebr.
ly; =logyo |\

M invertebr.

The logarithm of the ratio is necessary to gain equal distances of the index values towards the
zero line, which represents equal removal rates of both groups.

Assessment of Carabid beetle diversity

Each year in July and September, we simultaneously assessed the activity-density of
carabid beetles using barber traps. Traps consisted of a plastic beaker (diameter: 8 cm; total
volume: 0.3 L) that was buried into the soil so that the top rim lay flush with the soil surface.
We added 40 mL of a mixture of water and ethylene glycol (50:50) to each barber trap. The top
of each trap was covered with the same metal mesh as used for the exclosure cages (10 mm
mesh width). This ensured recording only those species that were actually able to feed on the
weed seeds and additionally prevented larger animals from damaging the trap. Traps were
emptied every two days and carabid beetles stored in “Scheerpeltz-solution” (70% ethanol,
25% destilled water, 5% acetic acid) for a later counting and determination of the species
according to Freude et al (1976). When determination of species was ambiguous, experts from
the department of applied entomology of the university of Hohenheim were consulted. The
determination of species level within the genus Amara, was performed using the collection of
Amara of the State Museum of Natural History of Stuttgart as comparison, as well as
consultation of the museum’s experts on Coleoptera.

Statistical Analysis

The analysis was carried out using the statistical software R® (Version 3.4.3, R Foundation
for Statistical Computing, Vienna, Austria). WSP data was analysed with a linear model
containing farming type, year and month as fixed effects as well as their respective interactions
and a normal distributed error term with zero mean and homogenous variance. A standard
analysis of variance (ANOVA) revealed that interactions year by month, year by farming type
and month by farming type are significant (see supplementary table S2). To separate the
temporal effects from the farming type, analyses were carried out within each year.

The WSP data for the farming types (EF, OF, CF) in each month was then analyzed using
a linear mixed model (package “nlme”) with a correlation structure to account for repeated
measurements in the field within each year. If yix denotes the observation of the total WSP rate
in the ith (i=1,..., I) month for the kth (k=1,..., K) farming type in the jth (j=1,..., ]) block, then
the model is written as

Yijik = U+ ax + Bi +bj + (B.b)ij + (a.b) jx + (a. B)ix + (. B.b)jx + €ijk
where p denotes the general mean and a; and f; are the fixed effect of the kth farming

type in the ith month. The block effect of jth block b;, month x block interaction, block x
farming type interaction, month x farming type interaction and month x block x farming type
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interaction are taken as random effect. The error term e;;; was taken as normal distributed
with zero mean and homogenous variance g2. Since the data includes repeated measures,
errors are correlated. Therefore, a correlation structure for errors is required. Several
correlation structures e.g. Gaussion, Linear, Exponential and Compound symmetry were
considered. Normality of data distribution and homogeneity of variance were checked
through residual plots (“residual vs. predicted” plot and a quantile-quantile-plot). The
residual plots revealed that a data transformation is required to achieve the assumptions of
error term. The square root transformation achieved the normality and variance homogeneity
of errors. Optimal model fitting and covariance structure were selected according to Akaike’s
Information Criterion (AIC), yielding a Compound symmetry correlation structure.

The significance of factors was tested using analysis of variance (ANOVA) on final fitted
model. Pairwise comparisons of farming type within each month were tested with least-square
means (p < 0.05) (package “emmeans”). WSP results represent the back-transformed values.

Correlations between assessed parameters (number of carabid beetle species vs. number
of weed species, seed predation rate of invertebrates vs. carabid species diversity, proportion
of weed seeds predated vs. number of weed species) were determined using Pearson’s product
momentum correlation coefficient. The method of least square means was used to estimate
regression lines.

Diversity indices for carabid beetles were calculated using the package “vegan”. Analysis
of variance (ANOVA) was used to analyse diversity indices of carabid beetles as well as
species numbers of weeds and carabid beetles. Means were compared with a Tukey-HSD-test
(p <0.05).
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4.3.Results

Weed diversity, Carabid beetle diversity and weed seed predation (WSP)
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Figure 4.1 Correlations between the number of weed species and the number of Carabid beetle species.
Correlation according to Pearson is significant (p < 0.001) in 2015 (triangle), 2016 (diamond) and 2017
(circle) and across years. Farming types are represented by colors: conventional farming (black), organic
farming (grey) and extensive farming (white).

Weed species diversity was significantly different between farming types in general, with
EF exhibiting the highest mean species diversity (22.75 species/relevée). Diversity in OF
systems was intermediate (15.69 species/relevée) and CF showed the lowest mean diversity
(2.25 species/relevée). Weed species diversity was positively correlated to carabid beetle
diversity (Pearson’s product-momentum correlation, significant, p < 0.001) (Figure 1). A
tenfold increase in weed species numbers roughly elevated the carabid species diversity by
one species. The R? values ranged from 13.29 to 33.6, in 2017 and 2015 respectively. In 2017, a
higher diversity of carabid beetles (see also Table 4) and weed species was present (see
supplementary table S3) compared to 2015 and 2016.
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Figure 4.2 Correlation between the number of Carabid beetle species and the proportion of weed seed
predation by invertebrates. Correlation according to Pearson is not significant (p = 0.3101) in 2015
(triangle), 2016 (diamond) and 2017 (circle). Farming types are represented by colors: conventional

farming (black), organic farming (grey) and extensive farming (white).

The correlation of carabid species diversity and WSP rate of invertebrate species was not
significant (Pearson’s product-momentum correlation not significant, p=0.3101), but exhibits a
distinct pattern (Figure 2). Very low (<2 species) and very high (>9 species) diversity in the
carabid community showed low WSP rates of below 10 % seed removal (except the outliers at
1 species with 60 —80 % removal). Higher WSP rates were observed if species numbers of
carabid beetles ranged between 2 to 8 species with rates between 10 -50 %. In total we found
15, 36 and 48 different carabid beetle species across farming types in 2015, 2016 and 2017,

respectively.
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Figure 4.3 Correlation between weed species number and the proportion of weed seeds predated in
2015 (triangle), 2016 (diamond) and 2017 (circle). Farming types are represented by colors: conventional
farming (black), organic farming (grey) and extensive farming (white). Correlation according to Pearson
was not significant (p=0.6435).

In total, from 2015 to 2017, we recorded 100 weed species across the farming types. The
correlation analysis revealed no significant influence of weed species number on WSP in any
year (Figure 3). The year 2015 showed high WSP rates up to total consumption of weed seeds
independent from weed species diversity, while in 2016 and 2017 the mean WSP rate was
generally low to medium (42 to 18 %, respectively). Across the years, the proportion of weed
seeds removed in CF ranged from 0 to 1 while exhibiting a very low number of weed species
(below 10). OF and EF also covered the whole range of the scale, but with substantially higher
weed species numbers (up to 24 and 37 weed species, respectively). There were no significant
differences between farming types.
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Weed seed predation (WSP) rates
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Figure 4.4 Proportion of weed seeds predated in July, August and September of the year 2015 and May,
June, July and September of the years 2016 and 2017 in conventional (CF, black), organic (OF, grey) and
extensively (EF, white) farmed fields.

The WSP rates were significantly influenced by the year (Figure 4a). In 2015, we found a
distinct and significant separation between the three farming types. In July 2015, the highest
WSP rate was observed in EF (91 %), followed by CF (70 %) and OF (57 %). This pattern was
also present in the following months, however at a level below 30 % seed removal.

In 2016, we found no significant influence of farming type on the WSP rate (Figure 4b).
The WSP rate also remained quite stable across the months (May and June 34 % and September
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24 %) with one significantly higher value from EF in July (43 %, compared to CF (23 %) and
OF 24 %). The year 2017 showed a continuous decline of WSP in the organically farmed fields,
dropping from 35 % to 13 % from May to September (Figure 4c). The predation rate in OF was
significantly higher in May than within any of the other farming types (35 % compared to 13
% (CF) and 14 % (EF)). In EF, we found the significantly highest WSP rate in June at 38 %. In
CF the highest weed seed removal was 36 % in September. The WSP rates for the other months
and farming types were quite low, ranging between 10 % (EF in September) and 25 % (OF in
June).

Seed predator groups and Carabid beetle communities

We found significant differences between both seed predation groups, but always in
combination with either the particular year, the farming type or both. When the field exhibited
a low level of WSP, we found no significant impact of the predator group on the WSP ratio.
Under high seed predation pressure, as in the year 2015, we found that vertebrates were the
dominant predators. The interaction between the months and farming types showed similar
index patterns in the years 2016 and 2017 (Figure 5). Differences in index values between
farming types within each month and year were mostly not significant.
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Figure 4.5 Dominance index of seed predation groups from May to September in 2015 — 2017 in
conventional (CF), organic (OF) and extensively (EF) managed fields. Values above zero represent
relative dominance of vertebrates, while values below zero represent relative dominance of
invertebrates. The higher the values are above or below zero, the higher is the relative dominance of the
respective seed predator group.
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Table 4.3 Mean activity density (£SE) of the five most abundant Carabid beetle species as well as mean
number of Carabid beetles per plot in July 2015 — 2017 separated by farming type. Farming types are
abbreviated: conventional farming (CF), Organic farming (OF) and extensive farming (EF). Letters that
are not identical within rows indicate significant differences according to Tukey HSD test (p < 0.05).
Root transformation of data prior to the analysis of variance is indicated by #

year  Carabid beetle spectrum diet type CF OF EF p value
2015 Pterostichus melanarius omnivorous 34.17 (+x11.36) a 2.08 (+0.82) b 1.88 (+1.01) b <0.001#
Pterostichus niger carnivorous 0.00 (+0.00) b 11.67 (£5.63) a 11.88 (+5.37) a 0.0480#
Harpalus rufipes granivorous 0.33 (x0.19) b 4.17 (¥2.97) b 20.88 (+5.09) a <0.001
Nebria brevicolis carnivorous 0.33 (+0.22) b 7.67 (+3.42) a 0.00 (+0.00) b 0.0314
Poecilus cupreus omnivorous 1.75 (x0.65) b 4.83 (+1.15) a 1.00 (x0.27) b 0.0095
Mean number of Carabids 38.50 (+11.31) a 34.58 (+8.34) a 42.75 (£8.92) a 0.8584
2016 Poecilus cupreus omnivorous 5.13 (¥2.17) b 34.58 (+8.59) a 10.88 (3.59) b 0.0085
Harpalus rufipes granivorous 1.38 (+0.65) b 7.17 (¥1.22) ab 10.13 (+2.81) a 0.0073
Brachinus crepitans carnivorous 0.00 (+0.00) b 0.58 (+0.50) b 14.88 (+6.76) a 0.0084
Pterostichus niger carnivorous 3.63 (£1.05) a 1.08 (+0.29) b 0.13 (x0.13) b 0.0016#
Amara ovata granivorous 0.00 (+0.00) b 0.42 (x0.34) b 3.63 (+0.65) a <0.001#
Mean number of Carabids 11.75 (+2.80) b 48.67 (+9.46) a 42.50 (+12.95) ab 0.030
2017 Poecilus cupreus omnivorous 7.67 (£1.43) a 22.17 (x10.27) a 9.67 (+2.54) a 0.2125
Harpalus rufipes granivorous 2.75(+0.81) a 6.33 (x2.11) a 6.42 (+1.28) a 0.1583
Brachinus crepitans carnivorous 0.17 (z0.11) b 0.42 (x0.42) b 13.75 (+5.03) a 0.0027
Harpalus affinis granivorous 0.75 (+0.66) b 0.83 (x0.34) b 5.92 (+1.55) a <0.001#
Pterostichus melanarius omnivorous 3.17 (+1.60) a 2.58 (+0.82) a 1.08 (+0.47) a 0.3757
Mean number of Carabids 19.33 (+3.18) a 39.25 (+14.47) a 50.00 (+9.89) a 0.1172

The total number of carabid beetles caught differed considerably between the years and
farming types. The total activity-density (sum of catches across all fields per treatment) of
carabid beetles in 2015 was 462 (CF), 415 (OF) and 342 (EF). In 2016, the total activity density
was significantly higher in OF (904) than in CF (481) and in EF (503). Activity-density in 2017
showed huge differences in numbers following the intensity gradient from CF (655) to OF
(1445) to EF (2140). However, these differences were not significant. Within the carabid beetle
communities we found Harpalus rufipes (granivorous), Pterostichus melanarius (omnivorous)
and Pterostichus niger (carnivorous) to be the dominant species in 2015 and 2016, while Poecilus
cupreus (omnivorous), H.rufipes and Brachinus crepitans (likely carnivorous) dominated the
community in 2017 (Table 3). Between the farming types, the composition of the five most
abundant species differed considerably in 2015 and 2016. In 2015, P. melanarius was most
common in conventional fields and H. rufipes in organic and extensively managed fields. The
dominant species in 2016 was P. cupreus in conventional and organic fields and H. rufipes in
extensively managed fields.
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Table 4.4 Carabid beetle diversity per plot expressed as mean species numbers (+SE), Shannon index
(£SE) and Simpson’s index of diversity (1-D) (+SE) in 2015 — 2017 separated by farming type. Farming
types are abbreviated: conventional farming (CF), organic farming (OF) and extensive farming (EF).
Different letters show significant differences within rows according to Tukey HSD test (p < 0.05).

year Carabid beetle diversity CF OF EF p value
2015 Mean species number of Carabid beetles 3.25 (+0.52) a 3.75 (£0.22) a 438 (x0.32) a 0.179
Shannon index 0.50 (20.15) b 1.06 (20.07) a 1.02 (20.12) a 0.0023
Simpson's index of diversity (1-D) 0.26 (x0.07) b 0.59 (+0.03) a 0.54 (+0.06) a 0.0006
2016 Mean species number of Carabid beetles 292 (+0.45) b 3.83 (+0.21) ab 4.25 (+0.25) a 0.0323
Shannon index 0.46 (0.14) b 1.08 (x0.06) a 1.03 (z0.11) a 0.0005
Simpson's index of diversity (1-D) 0.24 (x0.07) b 0.60 (+0.03) a 0.55 (+0.06) a 0.0002
2017 Mean species number of Carabid beetles 5.00 (+0.72) a 5.75 (£1.04) a 7.33 (£0.93) a 0.1931
Shannon index 1.14 (x0.17) a 1.12 (x0.13) a 1.52 (x0.16) a 0.1311
Simpson's index of diversity (1-D) 0.56 (x0.07) b 0.55 (x0.06) b 0.77 (+0.03) a 0.0156

Mean species numbers in the carabid beetle community differed significantly only
between farming types in 2016. Shannon index and Simpson’s index of diversity showed
similar results in 2015 and 2016 with significantly lower index values for CF compared to OF
and EF. In 2017, only Simpson’s index of diversity indicated significant differences between
farming types. Overall, EF displayed in most cases the highest index values, though not always
significant (Table 4). There was also a temporal pattern with higher index values and species
numbers in 2017 compared to 2015 and 2016.

4.4. Discussion

Weed diversity, Carabid beetle diversity and weed seed predation (WSP)

Weed species diversity and carabid beetle diversity did significantly correlate in this
study. This agrees with the first part of our hypothesis, that an increasing spectrum of different
weed seeds supports a higher diversity of carabid beetles, that consume weed seeds either as
part of their diet or are completely dependent on them. Saska et al. (2014) already
hypothesized a positive influence of a diverse weed community on carabid beetle diversity
and the subsequent ecosystem services performed. A positive correlation between weed or
plant diversity with carabid beetles or other invertebrates in the order Coleoptera has been
described for natural and agricultural systems (Crisp et al. 1998, Liu et al. 2015, Koricheva &
Hayes 2018). In the present study, weed diversity was also strongly associated with the
farming system (intensity), which was utilized to create a gradient of increasing weed species
diversity for the initial hypotheses. Flohre et al. (2011) discovered that contrary to plant and
bird diversity, carabid beetle diversity was not affected by a gradient of agricultural
intensification. This was explained by the broad range of realized farming operations already
on a local scale and the ability of beetles to effectively colonize fields from surrounding habitat
structures. This effect might also explain the unexpectedly low, but still significant correlation
between weed diversity and carabid beetle diversity identified in this study.

Carabid beetle diversity showed a pattern regarding WSP rates with highest seed removal
at a medium diversity level. The low WSP rate at higher diversity levels might be attributed
to additional species in the carabid beetle community that are carnivorous. These may have
preyed on the granivorous beetles, which in turn might have decreased their populations or
affected their feeding behaviour (Charalabidis et al. 2017). The majority of beetle species
recorded in the current study were, however, either omnivorous or granivorous species with
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weed seeds constituting the major source of their diet (Frei et al. 2019). Trichard et al. (2013)
found a significant positive correlation between WSP and species diversity of strictly
granivorous carabid beetles as well as the activity-density of omnivorous species. A positive
effect of carabid beetle diversity on the WSP rate has been reported before (Gaines and Gratton
2010, Jonason et al. 2013). Gaines and Gratton (2010) explained this effect with a better ability
in service performance by a functionally diverse beetle community. Accordingly, ecosystem
services provided by species-poor communities are more prone to disturbances (Wall &
Nielsen 2012). For this reason, WSP might strongly fluctuate if carabid beetle diversity is very
low. In the present study, this was indicated by huge differences in invertebrate WSP rates if
only one carabid beetle species was recorded in the pitfall traps. Another reason might be the
pre-selection of carabid beetles by the limited weed seed spectrum on the seed cards yielding
improper accounts of seed predation potentials. Petit et al. (2014) found that in field
experiments two out of the five weed seed species offered were particularly preferred by the
endemic invertebrate seed predators. Moreover, the size of a potentially consumed weed seed
is linked to the carabid beetle’s size and their taxonomic division (Honek et al. 2007).

We found no direct connection between weed species diversity and WSP rate. In contrast,
several authors describe positive correlations between plant species diversity and the
performance of ecosystem services (Isbell et al. 2011, Balvanera et al. 2006, Harrison et al. 2014).
Storkey et al. (2015) showed that the provision of ecosystem services by plants in an
agricultural context was optimal at a low to intermediate diversity level. They assumed that
functional contrasts of specific plant traits were the decisive factor for ES provision in their
study system. Therefore, functional diversity rather than weed diversity per se might give more
insights into the link between biological diversity and ecosystem services such as WSP.

Farming impact

The farming system had no consistent impact on WSP rate. Rather, the study year
determined weed consumption. Furthermore, we presume that other factors like cover
cropping affected the predation rate (Gallandt et al. 2005). Other authors examining WSP
found seasonal patterns of crop growth or harvest to be more relevant than farming type
(Heggenstaller et al. 2006). Moreover, landscape mosaic may have a larger influence on WSP
than local management (Trichard et al. 2013). Thus, promotion of ecosystem services or
beneficial predators should start with designing management strategies at a scale larger than
tields or single farms.

Contrary to our initial assumption, CF did not exhibit the lowest WSP rates. This may
have resulted from changes in the food web structure. The chemical control of weeds by
herbicides might have removed the major food source for granivors and favored omnivorous
carabids instead. With no naturally available seeds, the seed predators might have responded
to the additional seed input via seed cards over-proportionally (Frank et al. 2011). This might
explain the high WSP rates in conventional fields, even if only one seed predator species was
present. Additionally, the use of insecticides can negatively affect carabid beetles (Labruyere
et al. 2016). In organic farming the mechanical weed control by harrowing during the
vegetation phase is common practice. Frequent soil disturbance can also lower the activity of
carabids and thereby lowering the WSP rate (Blubaugh & Kaplan 2015). Navntoft et al. (2009)
showed that there was no significant difference in seed removal between conventional and
organic fields. Rather, interactions linked to the distance of sampling sites from the field
margin and total plant cover influenced WSP rates. Extensive farming, exhibiting no
disturbances between sowing and harvest, showed predominantly high WSP rates, although
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not always significantly different from the other farming types.

The positive response of mice and carabid beetles, in particular, to plant cover is quite
prominent (Navntoft et al. 2016, Meiss et al. 2010). This might explain the seed predation
pattern in 2017, when peaks in WSP rates can be attributed to vegetation cover. In May living
mulch (Davis & Liebman 2003) was grown in the majority of the organic fields, in June weed
cover was high in the extensive fields (Kulkarni et al. 2017) and in September the presence of
a cover crop mixture (Shearin et al. 2008, Blubaugh et al. 2016) in conventional farming
provided quite dense coverage for seed predators. The temporal pattern of June and July
exhibiting the highest WSP rates might be explained by the provision of weed cover
(Heggenstaller et al. 2006) and the availability of weed seeds. This further suggests that WSP
can be positively influenced by biological weed control strategies involving living mulch and
cover crops (Gallandt et al. 2005) and is not limited to extensive or organic farming
management.

Predominant weed seed predator group

The measured predation rates in this study were higher for vertebrates than for
invertebrates. In contrast, it was initially presumed that the temporal coincidence between
food demand and seed shed in cereals is attributing a higher potential of weed control in
favour of invertebrates (Westerman et al. 2003b). Also, the amount of seed rain by weed plants
is affecting WSP by carabid beetles positively (Bohan et al. 2011). Therefore, WSP by
invertebrates should have been very high in EF and very low in CF, according to the weed
coverage. However, there was no such trend in the present study.

The dominant seed predators in this study were vertebrates, most presumably mice, that
exhibited also quite high predation rates of weed seeds. If WSP was low, both predator groups
were similarly efficient in weed seed consumption. Vertebrates are able to consume much
more seeds per individual, while invertebrates may compensate their low seed intake per
individual through their high population sizes. A consistently positive correlation between
ground beetle abundance and WSP rate has not been shown yet. However, the majority of
studies report high correlations (e.g. Menalled et al. 2007, Trichard et al. 2013), while others
disagree with this (Saska et al. 2008). Therefore, WSP of both groups can be rather similar.
Actual dominance of seed predator groups in overall seed consumption may ultimately be
determined by environmental factors such as temperature (Saska et al. 2010) or initial
population sizes. In 2015, for example, we had high populations of mice, indicated by feces in
close vicinity to the seed cards and a huge number of nests. The same was experienced in 2015
by Pannwitt et al. 2017 in Northern Germany. This year exhibited the highest recorded WSP
rates and dominance indices for vertebrates. However, the present study did not differentiate
between different types of vertebrate predators. Other vertebrate seed predators such as birds
might also have consumed the offered weed seeds (Orlowski & Czarnecka 2009), although
their role in post-dispersal WSP has been found to be quite low (Holmes & Froud-Williams
2005).

The most abundant and active predators in the group of invertebrates were omnivorous
carabid beetles like Pterostichus melanarius and Poecilus cupreus. Granivorous beetles such as
Harpalus rufipes and Amara ovata were common, but mainly in the extensive or organically
farmed fields. Kromp (1989) described a correlation of two granivorous carabid beetles,
namely Amara consularis and Harpalus rufipes, with weed vegetation independent of the
farming type. They also found a high abundance of Pterostichus melanarius in conventional
tields (Kromp 1989). Because omnivorous species can switch between plant and animal food,
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their contribution to WSP is difficult to quantify and might also negatively affect WSP by
consumption of granivorous species (Trichard et al. 2013, Charalabidis 2017).

The diversity indices and abundances of carabid beetles were low in 2015 and 2016, but
high in 2017. We presume that the massive number of mice in 2015 might have consumed a
large portion of carabid beetles as additional food, reducing their population sizes
tremendously. Therefore, the group of vertebrates and especially mice, were not only
performing positive services (WSP) but also disservices (Tschumi et al. 2018). Due to less
predation pressure by vertebrates, the carabid beetle species recovered over time, which was
reflected in elevated index values in 2017. The population reductions might also help explain
the overall low WSP rates in the years following 2015.

The Eastern Swabian Alb is characterized by small fields and high landscape complexity.
Thus, exchange of species between habitats (grassland, field, woody structures) is more likely
than in simplified landscapes. Accordingly, a higher species diversity is present per se and
could have masked the effect of farming type on WSP and the carabid beetle spectrum. Also,
Jonason et al. (2013) discovered that landscape context explains the variation in WSP of carabid
beetles better than local farming practices. However, they also found that WSP was higher in
simplified landscapes with a high proportion of annual crops. The last point is controversial,
as increasing environmental heterogeneity favours the diversity of seed predators (Diekotter
et al. (2010)) and landscape complexity and farming type are often influencing carabid
communities and WSP simultaneously and in conjunction (Fischer et al. 2011).

4.5. Conclusion

Weed diversity was positively correlated to carabid beetle diversity and this in turn
contributed to WSP if diversity was intermediate (2-8 species). Although there was no
indication of a direct relation between weed diversity and WSP, we were able to shed some
light on the effects of weed diversity on carabid beetles and the effectuated WSP. In total,
farming intensity did not affect WSP rates consistently, rather year and provision of cover
were more important determinants of WSP. Extensive farming exhibited the highest weed and
carabid beetle diversity in all experimental years. Omnivorous carabid species were the most
common diet type in every farming type and in every year. This in turn means that the carabid
beetles present were not only performing the ecosystem service of weed control, but also of
(arthropod) pest control (Pretorius et al. 2018). This makes the promotion of beneficial
predators also attractive for conventional farming. The results highlight weed seed predation
as an important component of integrated weed management. Management strategies should
aim at preserving weed diversity and consider weed control measures such as living mulch
and cover crops that also provide suitable habitats for beneficial predators.
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Supplementary table S1: Modified Braun-Blanquet scale according to Wilmanns (1998)

code abundance coverage
r 1 - 2 individuals rare
+ 2 - 5 individuals <5%
1 6 - 50 individuals <5%
2m > 50 individuals <5%
2a very abundant 5-15%
2b very abundant 16 -25 %
3 very abundant 25-50 %
4 very abundant 51-75%
5 very abundant 76 - 100 %

Supplementary table S2: Output of the analysis of variance (ANOVA) of weed seed predation rate
explained by year (2015, 2016, 2017), month (May, June, July, August, September) and farming type
(conventional, organic, extensive farming) as well as their interactions. Weed seed predation rate was
square root transformed prior to analysis. ns=not significant

explanatory variable df F value p value
year 2 11.84 <0.001
month 4 9.48 <0.001
farming type 2 0.90 ns
year:month 4 11.95 <0.001
year:farming type 4 3.34 0.01
month:farming type 8 3.78 <0.001
year:month:farming type 8 1.53 ns

Supplementary table S3: Total species richness and mean species numbers of weeds (+SE) per relevée
in 2015 — 2017 separated by farming type. Farming types are abbreviated: conventional farming (CF),
organic farming (OF) and extensive farming (EF). Different letters show significant differences within
rows according to Tukey HSD test (p <0.05).

year  weed species diversity CF OF EF p value
2015  Total species richness 15 43 100

Mean species number of weeds 2.75 (#1.32) ¢ 15.42 (+1.35) b 22.50 (+0.82) a <0.001
2016  Total species richness 8 34 100

Mean species number of weeds 1.42 (+0.80) b 17.08 (x0.96) a 17.75 (x0.63) a <0.001
2017  Total species richness 12 37 61

Mean species number of weeds 2.58 (+1.41) c 14.58 (+1.70) b 26.25 (+0.29) a <0.001
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5. Weed Control Ability of Single Sown Cover Crops Compared to Species
Mixtures
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Abstract: To achieve efficient weed control through cover cropping, the plant species chosen
needs particular consideration. Combing different cover crop (CC) species in mixtures may
increase the number of provided ecosystem services, including reliable suppression of weeds.
We tested the weed suppression ability of single CC species and CC mixtures in a field trial
during the autumn-to-winter growing season of 2016 and 2017. Anethum graveolens L. (dill),
Raphanus sativus var. oleiformis Pers. (oilseed radish), Avena strigosa Schreb. (black oat),
Carthamus tinctorius L. (safflower), Vicia sativa L. (vetch) and Phacelia tanacetifolia Benth.
(phacelia) were sown in monocultures, as well as in mixtures with three or six species.
Treatments with favorable establishment and above-average biomass yields tended to
suppress weeds by showing lower weed dry matter and weed numbers. The highest weed
control efficacy within the monocultures was reached in 2017 by black oat and oilseed radish
with 72 and 83 %, respectively. The mixture treatments reached a generally lower soil cover,
aboveground dry matter and weed control efficacy (with an average of 57 % in 2017). Even
though mixtures were not as effective as the best performing single sown CCs, species
combinations increased resilience against adverse weather conditions, an advantage to
achieving efficient weed control over a long-term period. Therefore, species composition
within mixtures is more relevant than the number of species included.
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5.1.Introduction

The incorporation of cover crops (CCs) into crop rotations has become a practical strategy
by producers. The European Union further promotes the use of CCs in agriculture by their
“greening” strategy (EU Regulation 1307/2013). The increasing interest of producers and
researchers in CCs might have been encouraged by the manifold positive aspects which are
attributed to cover cropping. CCs are normally grown between two main crops to reduce
erosion and to improve soil characteristics like nitrogen content, phosphor availability and soil
structure (Hartwig & Ammon 2002). Additionally, they serve as a pollen and nectar source for
pollinators and overwintering habitat for beneficials (Ellis & Barbercheck 2015, Dunbar et al.
2017). They also provide services that reduce pests, pathogens and weeds (Farooq et al. 2011,
Fourie et al. 2016). CCs offer different temporal and spatial (niche) possibilities as well as
physical and biochemical mechanisms to control weeds.

After sowing, CCs provide direct weed control during their establishment by releasing
allelochemical compounds into the environment (Gfeller et al. 2018) and competing with
weeds for light, water, nutrients and space (Blanco-Canqui et al. 2015). This can severely
hamper the development of weeds (Brennan & Smith 2005) or even prevent them from
emerging. Some cover crop (CC) species are able to survive the harsh conditions over winter
and continue to provide this service in early spring. CCs are normally terminated by
mechanical or chemical methods before sowing of the next main crop. In any case, CC residues
are either incorporated into the soil or retained on the soil surface (Creamer et al. 1996). Under
both strategies, plant residues continue to release the remaining allelochemicals that are
contained in the dead plant material (Putnam et al. 1983, Tabaglio et al. 2013). If CC residues
are left on the soil surface, they additionally act as a physical layer that small weed seedlings
need to penetrate (Teasdale et al. 1991, Teasdale & Mohler 1993). This slows down the
development of the weed populations in spring after the main crop has already been sown
(Wayman et al. 2015). Therefore, CCs are able to affect weed populations from their sowing
date until a certain time after the subsequent main crop is established (Falquet et al. 2015).
Naturally, the weed suppressive ability of a CC depends on several environmental influences
that determine, e.g., the level and activity of allelochemicals (Belz 2007), the speed of CC
development and the build-up of biomass (Hiltbrunner et al. 2007). Under unfavorable
conditions, a single sown CC might not be able to provide a sufficient level of weed
suppression.

Crop stands of single CC species are not able to buffer rapidly changing environmental
conditions. Therefore, many studies have investigated the adaptability of mixtures (Finckh et
al. 2000, Tilman et al. 2001, Hajjar et al. 2008). Higher species diversity increases the likelihood
that some of the species in a mixture are more productive, because they are better adapted to
a certain set of environmental conditions (sampling effect) (Huston 1997, Tilman et al. 1997).
The CC species Vicia sativa L. and Phacelia tanacetifolia Benth. were not germinating well under
high temperatures, whereas Guizotia abyssinica (L.f.) Cass. performed well (Tribouillois et al.
2016). Combinations of contrasting species in regard to environmental conditions, therefore,
might provide resilience to weather conditions and provide stability in their service provision.
The conditions that drive CC species performance are also dependent on agronomic measures
such as sowing date and termination method (Constantin et al. 2015). CC mixtures might not
only be resilient to environmental conditions, but also to failures in the conductance of
agronomic measures by the producer. One of the upcoming major challenges will be the
handling of climate change and extreme weather events in agriculture (Stott et al. 2004) and
the question of how to design appropriate CC mixtures to deal with them.
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Additionally, more diverse mixtures host species that have different acquisition and
competition strategies. The “niche complementarity” (MacArthur & Levins 1967) describes the
actual function of a mixture based on the traits of the single species. The more diverse or
different the setup of these traits for every single species within a mixture, the more likely it is
that they occupy different niches and are more productive. CC species with different plant
canopy features might intercept and use light more efficiently and therefore reduce the
availability of light on the soil surface, leading to a reduced emergence of weeds. The unique
root growth patterns and abilities to take up and mobilize nutrients in the soil by CC species
in mixtures might be able to use nutrients more efficiently and consequently leave fewer
resources for weeds (Abraham & Singh 1984, Tribouillois et al. 2015). Regarding weed
suppressive abilities, cereal species are often more effective than legume species (Ofori & Stern
1987, Brainard et al. 2011, Baraibar et al. 2018), which makes the former preferable components
of CC mixtures dedicated to controlling weeds while the latter can add value by fixing
nitrogen. It might also be possible to combine CC species with predominant physical or
biochemical effects to further enhance the weed control abilities of these mixtures. Poaceae
and Brassicaceae species have proven to be allelopathic (Hartwig & Ammon 2002, Belz 2007),
while others like vetch (Vicia villosa Roth) seem to act predominantly via competition (Inderjit
2001). As the weed control efficiency is dependent on both of these effects, the use of CC
mixtures was already advised and examined by several authors (Kunz et al. 2016, Baraibar et
al. 2018). One, yet unsolved, issue is how to separate between competition and biochemical
effects and their contribution to weed control in the field (Tschuy et al. 2014, Sturm et al. 2018).
Another important question is: which traits of CCs are affecting their level of weed control?
The usual reasoning that higher biomass production leads to a higher competitive ability and
therefore more efficient weed control (Teasdale 1996) might not hold true in all cases. Several
recent studies reported no correlation between biomass and weed reduction (Kunz et al. 2016,
Baraibar et al. 2018). There might be other or additional factors that may determine the level of
weed control.

Sampling effect and niche complementarity have been examined well in natural plant
communities (Tilman 1999, Hooper et al. 2005), but also to some extend for agricultural
systems (Hector et al. 1999, Prieto et al. 2015). All these systems, natural and agricultural alike,
perform ecosystem services based on the functions that the plants provide and these are often
enhanced if species diversity is increased. A combination of the effects of species mixtures with
the multiple advantages that CCs offer, can result in a very productive CC stand. This
productivity does not normally lead to a harvest good, but might enhance the services
provided by the CCs (Blesh 2018). How many CC species or which particular traits are
necessary to ensure weed control is still under investigation (Wortman et al. 2012, Holmes et
al. 2017, Finney & Kaye 2017, Baraibar et al. 2018). Ultimately, carefully designed species
mixtures may be more stable in terms of weed control efficiency and reaction to changing
weather conditions than single sown CCs, providing reassurance for the producer.
Recognizing this great potential of CC mixtures along with the still scarce knowledge on
service provision and reaction to climate, this study investigated the weed control ability of
single sown CCs and CC mixtures in two very contrasting years. Within the study, the
following hypotheses were investigated: i) CC dry matter does not determine the weed
suppression ability; ii) mixtures have a better ability to suppress weeds in comparison to CC
monocultures; iii) species-rich mixtures suppress weeds more efficiently than species-poor
mixtures.
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5.2.Materials and Methods

Experimental sites

The experimental field trials were conducted at the research station of the University of
Hohenheim (48.74° N, 8.92° E, 475 m a.s.l.) in Southwest-Germany from August until
December 2016 and 2017. After CC sowing in 2016 a long dry period followed. During the
cover cropping season in 2017 the frequency and the amount of water provided ideal growing
conditions for the CCs (Figure 5.1).
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Figure 5.1 Temperature and precipitation from August to December 2016 (a) and 2017 (b).

The soil type at the field site during the season 2016 was classified as a silty clay (6% sand,
53% silt and 41% clay). During the 2017 season, the field site was classified as a silty loamy soil
(27% sand, 48% silt and 25% clay). Table 5.1 shows details about the crop rotation and field
preparations.

Table 5.1 Experimental set-up and conditions for the field trials in Southwest Germany in 2016 and
2017.

Management 2016 2017

Crop rotation Winter wheat - cover crop Winter barley - cover crop
Cereal harvest date 8 August 2016 5 August 2017

Stubble cultivator + Stubble cultivator +
Soil preparation (depth) deep tillage (15 cm) + deep tillage (15 cm) +
power harrow (6-8 cm) power harrow (6-8 cm)
Sowing date 19 August 2016 25 August 2017
Sowing depth 2cm 2 cm

Six CCs (provided by Deutsche Saatveredelung AG (DSV)): Anethum graveolens L. (A.
graveolens), Raphanus sativus var. oleiformis Pers. (R. sativus), Avena strigosa Schreb. (A. strigosa),
Carthamus tinctorius L. (C. tinctorius), Vicia sativa L. (V. sativa) and Phacelia tanacetifolia Benth.
(P. tanacetifolia) were sown in both years (Table 5.2) in monocultures and in five mixtures
including the same species as for the monocropping treatments. The untreated control
treatment was left as a weed fallow without CCs. The mixing ratios refer to the seed weight
and recommend seeding densities as for the single sown CCs.
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Table 5.2 Twelve treatments including an untreated control treatment without cover crops, six single
sown cover crops and five cover crop mixtures.

Treatment Crop species Seed density (kg ha)
Control Without cover crops -

A. graveolens Single sown Anethum graveolens L. 25
R. sativus Single sown Raphanus sativus var. oleiformis Pers. 25
A. strigosa Single sown Avena strigosa Schreb. 120
C. tinctorius Single sown Carthamus tinctorius L. 40
V. sativa Single sown Vicia sativa L. 100
P. tanacetifolia Single sown Phacelia tanacetifolia Benth. 10
Mixture 1 Mixture with 33% A. graveolens, 33% R. sativus, 33% A. strigosa 57
Mixture 2 Mixture with 33% P. tanacetifolia, 33% C. tinctorius, 33% V. sativa 50
Mixture 3 50% Mixture 1, 50% Mixture 2 53
Mixture 4 20% Mixture 1, 80% Mixture 2 51
Mixture 5 80% Mixture 1, 20% Mixture 2 55

Data collection

Percent of soil coverage by CCs was estimated four times in a 0.1 m? area randomly
selected in each plot. Soil coverage was recorded seven (2016) and four times (2017) after
sowing until 12 weeks after sowing (WAS). Seven and 12 WAS the weed density and
community were determined. Fresh matter of CCs and weeds was cut 7 and 12 WAS within
an area of 0.25 m2. The fresh matter was cleaned with water and afterwards placed in the oven
at 100 °C for 24 hours to obtain biomass on a dry matter basis.

Data analysis

The data were analyzed with the software R (Version 3.5.1). Normal distribution and
homogeneity of variance were visually checked before analyzing the data. Linear regression
was used to test for correlations. A log data transformation, prior to using an analysis of
variance (ANOVA), was necessary for the weed density (12 WAS 2017) data. Means of
different treatments were compared using the Tukey-HSD test (p < 0.05). According to
Rasmussen (1991), the weed control efficacy (WCE) based on the weed density was calculated
as

WCE (%) = 100 — wt (0.01 x wc)!

whereby wt is the weed density (weeds m?) of the weed management treatments and wc the
weed density (weeds m?) of the untreated control.

5.3.Results

Cover crop and weed development

At the beginning of the CC growing season in 2016, the R. sativus and P. tanacetifolia
treatments displayed the highest soil cover among the single sown CCs (Figure 5.2). The P.
tanacetifolia treatment had the highest soil cover (79%) during the beginning of November
while R. sativus reached a maximum of 50% soil cover during this same period. In 2017, the A.
strigosa and the P. tanacetifolia treatments reached the highest soil cover among all treatments
with a maximum of 92 and 83%, respectively, in late November. The mixtures generally
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showed less soil cover than the best performing single sown CC treatments in both years. The
soil cover of the mixtures was generally quite homogeneously distributed and ranged between
39-67 % (4 November) in 2016 and 68-79% (15 November) in 2017.
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Figure 5.2 Cover crop soil cover (%) for the six single sown cover crops (a, c) and the five mixtures (b,
d) from the end of September until the end of November in 2016 (a, b) and 2017 (c, d). Dates in the x-
axis in the format dd.MM.
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In both years, volunteer crops like Brassica napus L. (2016), Triticum aestivum L. (2016) and
Hordeum vulgare L. (2017) belonged to the dominant weeds. Dicotyledonous weeds were the
dominant weed species in addition to volunteer crops. In 2016, the dominant weed species
were Galium aparine L., Chenopodium album L., Veronica persica Poir. and Capsella bursa-pastoris
(L.) Medik.. In 2017, there was a broader species diversity, including species like Matricaria
spp., Lamium purpureum L., Capsella bursa-pastoris (L.) Medik., Veronica persica Poir., Stellaria
media Vill.,, Chenopodium album L. and Cirsium arvense (L.) Scop. The untreated control
treatment in 2016 showed a mean weed infestation of 62.5 plants m™ (Table 5.3). In 2017, the
untreated control showed a 10-times higher (678.8 plants m2 12 WAS) weed density than in
2016. In 2016, the significantly lowest number of weeds was counted in the R. sativus (13.1
plants m™2) and Mixture 4 (14.4 plants m2) treatments. In 2017, the significantly lowest number
of weeds was observed in the A. strigosa treatment with 112.5 plants m2. Similarly, high weed
densities as in the untreated control were counted in the A. graveolens, C. tinctorius and V. sativa
treatments, which had shown a generally weak performance within the two years regarding
CC soil cover and CC dry matter. There were no significant differences between any
treatments concerning total weed density 7 WAS in 2017.

The weed densities 12 WAS in 2016 and 2017 showed a correlation with an R? of 0.58. The
regression between those two parameters was significant (p = 0.004), which shows that the
occurrence of weeds within the treatments was not random within both years.

Table 5.3 Total weed density for the six single sown and five cover crop mixtures 12 weeks after sowing
in 2016 and 2017. Different capital letters within one column show significant differences according to
Tukey-HSD test (p < 0.05).

Treatments Total weed density (plants m?)
2016 2017
Control 6254 678.8 A
A. graveolens 49.9 A8 433.8 ABC
R. sativus 13.1¢ 196.6 BC
A. strigosa 29.4 B¢ 1125¢
C. tinctorius 41.9 ABC 4525 ABC
V. sativa 37.5 ABC 483.8 AB
P. tanacetifolia 20.0 B¢ 382.5 ABC
Mixture 1 30.0 B¢C 168.8 BC
Mixture 2 25.6 BC 370.0 ABC
Mixture 3 28.8 BC 326.3 ABC
Mixture 4 144¢ 237.5 ABC
Mixture 5 27.58C 272.5 ABC

Due to the four weeks of drought after sowing in 2016, the CCs were only sparsely
developed 7 WAS (Figure 5.3a). The R. sativus treatment reached the significantly highest
aboveground dry matter (1210 kg ha™) 7 WAS in 2016. Except for the A. graveolens and Mixture
2 treatment, all treatments were able to significantly reduce the dry matter amount of weeds
(7 WAS) compared to the untreated control. The generally low weed infestation and the poor
growing conditions in 2016 season led to a maximum weed dry matter of 206 kg ha™.

None of the CC treatments were able to show a significantly lower weed dry matter than
the untreated control 12 WAS in 2016 (Figure 5.3b). The R. sativus and P. tanacetifolia treatments
reached the significantly highest amount of CC dry matter within the single sown species with
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1626 and 2068 kg ha™, respectively. Among all treatments, Mixture 2 and 3 achieved with 2396
and 2350 kg ha™! the highest amount of CC dry matter.

The amount of weed dry matter of the untreated control 7 WAS in 2017 was, with 467 kg
ha™, almost twice as high as 7 WAS in 2016 (Figure 5.3c). Among the single sown CCs, only
the treatments R. sativus and A. strigosa, with 1247 and 1450 kg ha™ aboveground dry matter,
respectively, were able to significantly reduce the amount of weed dry matter compared to the
untreated control 7 WAS in 2017. Compared to the untreated control all mixtures, except for
Mixture 2, significantly reduced the weed dry matter.

In 2017, the P. tanacetifolia treatment had the highest amount of CC dry matter with 2247
kg ha™ but did not significantly reduce the amount of weed dry matter compared to the
untreated control 12 WAS (Figure 5.3d). The treatment A. strigosa showed the lowest amount
of weed dry matter with 97 kg ha! among all treatments and reached an aboveground dry
matter of 2197 kg ha™'. The mixtures, except for Mixture 4, were able to significantly reduce
the dry matter of weeds compared to the untreated control, but showed generally lower
numbers of CC dry matter compared to the previous year, reaching a maximum of 1674 kg
ha™ (Mixture 1).
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Figure 5.3 Cover crop (grey) and weed (black) aboveground dry matter in kg ha-1 for the six single
sown and five cover crop mixtures 7 weeks after sowing (WAS) in 2016 (a) / 2017 (c) and 12 WAS in
2016 (b) / 2017 (d). Different small letters within one graph show significant differences concerning the
cover crop dry matter according to Tukey-HSD test (p < 0.05). Different capital letters within one graph
show significant differences concerning the weed dry matter according to Tukey-HSD test (p < 0.05).
Means for weed dry matter with no capital letters do not differ significantly. * Due to space limitations
in the graph (c): Control A, A. graveolens ABC, R. sativus BCD, A. strigosa D, C. tinctorius ABCD, V.
sativa AB, P. tanacetifolia ABCD, Mixture 1 BCD, Mixture 2 ABCD, Mixture 3 BCD, Mixture 4 BCD,
Mixture 5 CD.

Weed control efficacy

In 2016, among the mixtures, the highest WCE was reached 12 WAS by the Mixture 4
treatment with 47% (Figure 5.4). Across all treatments, the R. sativus treatment had the highest
WCE with 60%. The highest WCE 12 WAS in 2017 among all treatments was reached by the
A. strigosa treatment with 83% followed by the treatments Mixture 1 and R. sativus with 75%

and 72%, respectively. The differences in WCE between the treatments were not significant in
2016 and 2017 (12 WAS).
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Figure 5.4 Weed control efficacy (WCE) of the six single sown and five cover crop mixtures 12 weeks
after sowing in 2016 (a) and 2017 (b). Means with no letters do not differ significantly according to
Tukey-HSD test (p < 0.05).

5.4.Discussion

The highest WCE within both years was achieved by the A. strigosa treatment with 83%
(12WASin 2017). Brust and Gerhards (2012) showed a similarly high weed suppression ability
of A. strigosa with 90%. CCs seem to be able to significantly reduce the number of weeds but
have not shown complete weed control within this study due to a severe drought period after
sowing in 2016 and the generally high weed infestation in the 2017 season.

As expected, the CC dry matter is not necessarily a predictor of the weed suppression
ability. No correlations between CC biomass and weed dry matter/density were determined.
This agrees with Kunz et al. (2016) and Baraibar et al. (2018) who also did not find correlations
between CC dry matter and weed density. Finney et al. (2016) pointed out that biomass driven
CCs do generally have a more effective weed suppression potential. However, it seems like
this is only relevant to a certain extent. Gfeller et al. (2018) name the threshold of 3 t ha™, until
which the CC biomass and the suppression of Amaranthus retroflexus L. were negatively
correlated. Onwards, other parameters, like chemical or other physical parameters might have
a higher importance to contribute to an efficient weed control. Within their study, also some
CCs with low biomass yields, like Brassicaceae and A. strigosa, were able to achieve an efficient
weed control against Amaranthus retroflexus L. (Gfeller et al. 2018). This agrees with the data
presented for the season 2016, whereby the A. strigosa treatment reached a WCE of 33%
(average WCE across all treatments: 24%), with a simultaneously low amount of dry matter.
This might be attributed to the allelopathic potential of A. strigosa (Rueda-Ayala 2015, Gfeller
et al. 2018). R. sativus was, within the experiment, one of the most efficient single sown CC,
reaching an average WCE within the two seasons of 66% (12 WAS). R. sativus is able to reach
weed suppression efficacies of more than 90% (Brust et al. 2014, Sturm et al. 2017) under ideal
conditions and sowing dates. This is probably caused by the relatively high dry matter
production (negative correlation between weed and brassica CC biomass (Baraibar et al. 2018)
and the well-reported allelopathic potential of Brassicaceae species (Petersen et al. 2001,
Haramoto & Gallandt 2005).
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Additionally, Brennan and Smith (2005) and Dorn et al. (2015) suggest that rapid plant
development after sowing is more important than the final CC biomass (Baraibar et al. 2018).
For some examples, these results can be referred to the data presented. In late September 2017,
the treatments R. sativus, A. strigosa and P. tanacetifolia showed the highest soil cover with 52—
55%. Both, the R. sativus and the A. strigosa treatment achieved the highest WCE among the
single sown CCs with 72% and 83%, respectively. In contrast, the P. tanacetifolia treatment,
even though biomass and soil cover were well developed, performed as poorly as the very
weak established treatments A. graveolens and C. tinctorius with less than 13% of soil cover.

The mixtures were not more efficient at suppressing weeds than the monocultures, which
agrees with several studies (Brust et al. 2014, Smith et al. 2014, Finney et al. 2016, Baraibar et al.
2018). The most efficient single sown CCs showed a higher suppression ability than the most
efficient mixture in both years, which is also shown by Smith et al. (2014). According to
Baraibar et al. (2018), CC mixtures containing grasses are more efficient to suppress weeds than
monocultures with Brassicaceae species or legumes. Within both years, all mixtures were
clearly more efficient at suppressing weeds than V. sativa. This can be inferred from the studies
of Baraibar et al. (2018) and Hayden et al. (2012), who conclude that CCs with early canopy
closing, to which vetch does not belong, generally show better weed suppression. In 2016, the
R. sativus treatment reached the highest WCE with 60%, while in 2017 the Mixture 1 and the
R. sativus treatment showed a similar WCE of 75% and 72%, respectively. All other mixtures
only reached a WCE between 42% and 62%. Finney et al. (2016) state as a reason that highly
productive single sown CCs may produce as much biomass as diverse species mixtures. In
October 2016 and 2017, particularly the single sown treatments like R. sativus and P.
tanacetifolia were achieving higher dry matter yields than the mixtures. However, as discussed,
the biomass of CC monocultures and mixtures is not, or only weakly, related to the weed
suppression potential. Generally, species-specific mechanisms for weed suppression are still
not well understood. How different mechanisms of weed suppression act or interact also need
further investigation (Baraibar et al. 2018). Even though mixtures might not be an improved
tool for weed management in cover cropping systems, many other benefits are attributed to
CC mixtures. In consideration of the dry matter, soil cover and the reduction of weeds during
the 2016 season, the mixtures showed the ability to withstand unfavorable weather conditions
better than many of the single sown CCs. The resilience of mixtures towards severe weather
conditions or management errors (Wortman et al. 2012), might compensate their less efficient
weed control compared to monocultures. However, only high crop densities are an effective
tool for weed suppression (Weiner et al. 2010). As species mixtures follow the idea to be able
to buffer the failure of other species, increasing the sowing density of all species included in
the mixture should be considered. This might be relevant in order to achieve similar crop
stands under unfavorable conditions than within well-performing single sown treatments,
resulting in an improved weed suppression potential.

The six species mixtures (Mixture 3-5) did not show a more efficient weed suppression
potential than the three species mixtures (Mixture 1-2). As demonstrated by Kunz et al. (2017),
a five species mixture was not better than a mixture with seven species in terms of weed
control. This leads to the conclusion that the quantity of plant species within a mixture is less
relevant than the mixture composition. Brassicaceae and Poaceae species, for example,
respond well to dry conditions, while Fabaceae species do not (Tribouillois et al. 2016). Mixture
1, with R. sativus, A. strigosa and A. graveolens showed the best weed control performance and
was able to significantly reduce the weed density in both years compared to the control.
Baraibar et al. (2018) concluded that a high proportion of grass species achieves a large
reduction of weed biomass, as grass species are also highly suppressive in monocultures.
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Mixtures with an increasing proportion of rye were able to decrease the weed biomass as
observed by Akemo et al. (2000). This might be the reason why Mixture 1 with the highest
proportion of A. strigosa performed best, while Mixture 2, as the only mixture without grass
species, showed a comparably slow soil cover and weak WCE in 2017. Mixture 3-5 with
different proportions of A. strigosa showed a reliable establishment and an adequate weed
suppression ability. Sufficient weed control might already be provided by low proportions of
grass species within mixtures, meanwhile other species may fulfill important ecosystem
services (Baraibar et al. 2018).

5.5.Conclusions

Out of the two years of data presented, R. sativus and A. strigosa are the two most
promising single sown CCs, because they showed a fast establishment along with the highest
weed suppression potential. In order to fulfill the requirements of diverse ecosystem services
and weed control, CC mixtures like Mixture 1 seem to be suitable for cover cropping. In
general, mixtures need to be composed reasonably in order to avoid weed problems caused
by poorly competitive species (McLaren et al. 2019). Combing CC species with physical and
chemical weed suppression mechanisms may increase the weed control success. Species with
chemical mechanisms thereby, for example, contribute to an efficient weed control under
unfavorable circumstances when CC development and biomass yield is low. CC mixtures
might substantially contribute to the success of biological weed control if the weed
suppression mechanisms of different plant species and their ideal composition within
mixtures can be identified.
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6. General Discussion and future perspectives

In this chapter, the main results of the preceding chapters are accentuated and discussed
in a general overview of the thesis. The presented research papers have contributed
knowledge to species conservation known as the A to B (agriculture contributes to
biodiversity) approach and gained insights into the B to A (biodiversity important for
agriculture) approach (Barberi et al. 2010) by examining weed seed predation. Moreover, the
general principles underlying B to A were transferred to enhance weed control by cover crop
mixtures. The results obtained in this work are helpful to further optimize conservation
effectiveness and weed control strategies and to understand interdependencies between
farming practice, plant biodiversity and ecosystem service provision. Insights into current and
future challenges and opportunities for the examined topics are given as well as potential
future research topics.

Political background and basics

“Biodiversity” is currently a very popular term used in politics and has raised public
awareness for species conservation. We currently are in the “United Nations Decade on
Biodiversity”, which runs from 2011 to 2020 and aims at implementing the strategic plan for
biodiversity set by the Aichi biodiversity targets (CBD 2019). These targets include, among
others, raising public awareness on the topic of biodiversity, reducing the pressure on
biodiversity while simultaneously promoting its sustainable use and enhancing the benefits
from biodiversity and ecosystem services. In Germany, the “Nationale Strategie zur
Biologischen Vielfalt” (NBS) was passed by the Federal Government in 2007 in accordance to
their commitment at the “Convention on Biological Diversity” (CBD) in 1993 to achieve the
Aichi goals (CBD 2019). Actual implementations are conservation of endemic species,
payments for ecosystem services and promotion of biological “hotspot regions” (BMUB 2007).
Although conservation measures are predominantly aiming at vertebrate and invertebrate
species, plants play a major role in supporting biodiversity, as they represent the basis of the
food chain in terrestrial ecosystems (Power et al. 1992, Scherber et al. 2010). This connection is
especially affected in ecosystems that are characterized by a high amount of disturbances such
as agroecosystems (Evans et al. 2011). There, the primary producers, that are the foundation of
food webs, are, along with the crop, weeds. As weeds exist in highly disturbed ecosystems,
weed biodiversity per se and any ecosystem service directly or indirectly provided by them, is
affected by agricultural management practices (Petit et al. 2011).

Status quo: Rare weed species and biodiversity of weed communities

The form and intensity of agricultural practices have severely changed during the last
decades, impacting particular weed species negatively and driving some of them to the brink
of extinction (Meyer et al. 2013). Currently 20% of all endemic plant species, including weeds,
are on the red list of vascular plants in Germany (Ludwig & Schnittler 1996). This list was last
updated in 1996, but is currently revised and will most likely reveal a higher number of species
in need of conservation (personal communication Stefan Meyer, University of Gottingen). In
the course of a decline in spatial and temporal occurrence of particular species, a reduction in
population sizes is inevitable and subsequent genetic erosion is the consequence (Briitting et
al. 2012). This in turn leads to further susceptibility to environmental and management
disturbances. Not only particular species are affected, but also weed communities, once quite
diverse, have undergone a major structural change along with the loss of multiple species due
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to the trends in agricultural intensification (Storkey et al. 2012). Nowadays weed communities
in Germany are often quite uniform within the major crops and dominated by a few
competitive weed species (Waldhardt et al. 2003, Meyer et al. 2013).

To prevent a further decline, the conservation of weed species diversity in general and
endangered weed species (EWS) in particular is of paramount importance to conserve the
associated food webs and animals of higher orders (Scherber et al. 2010, Marshall et al. 2003).
Furthermore, several positive aspects are provided by weeds. Attracting beneficial insects to
enhance biological pest control (Atakan 2010 and see Chapter IV) or utilizing potential genes
to breed crops that are more resilient to extreme environmental conditions (Moonen & Barberi
2008) are just some of them. In order to put conservation efforts into action effectively, the key
drivers behind weed biodiversity and occurrence of weed species need to be identified and
understood.

6.1. Weed communities and endangered weed species (EWS)

In Chapter III we examined the effects of farming practice on weed biodiversity, EWS and
weed community composition. Using multivariate statistic procedures on vegetation and
management data of On-farm experiments in Southwestern Germany, we were able to
determine major factors affecting weed biodiversity and community composition. Among
these factors crop species, herbicide use, nitrogen fertilization as well as tillage operations had
the highest influence on the weed community and in parts also on weed biodiversity.
Moreover, weed biodiversity was significantly higher in field margins compared to the field
center and increased with an increasing amount of light at the soil level. These findings were
in line with several authors and highlighted the overall decline of weed species diversity and
the subsequent simplification of weed communities. Particular factors influencing the EWS
Bromus grossus and its descendant Bromus secalinus were, clay content in the soil, location in
the field and the timing of herbicide application. Additionally, we presume that these two
EWS only occurred because herbicides with effectivity gaps against Bromus species were used.

By utilizing the knowledge about driving factors in community composition, it is possible
to adjust farming techniques to enhance biodiversity and EWS conservation. Moreover, if
integrated into mechanistic models, predictions about weed pressure and the occurrence of
problematic species are possible (Gonzalez-Diaz et al. 2015) and can aid in adapting farming
strategies accordingly.

Farming strategies in weed conservation

Weeds have co-evolved with the crop plant and are thus adapted to specific disturbances
exerted by farming (management) within particular crops (Firbank 1988). Executing
management practices is therefore of paramount importance for the conservation of EWS.
Conservation strategies often comprise less fertilization and omitted pest control practices,
lowering the competitiveness of the crop and reflecting farming strategies of the mid 20th
century (Schumacher 1980, Albrecht 2003). The same recommendations, of reduced nitrogen
fertilization and seeding rate, as well as a reduction in herbicide input, were deduced from
Chapter III. Although these conservation measures are often effective, they are simultaneously
time-limited. Therefore, we are currently studying weed communities and the occurrence of
particular EWS in agricultural fields along a temporal conservation gradient. The methods are
the same as applied in Chapter III. Vegetation recordings document the development of the
weed flora in specific time intervals since the withdrawal of subsidies from conservation fields.
This is based on a preliminary study (Schumacher et al. 2018) that indicated a rapid conversion
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of former conservation field flora to similar communities as in conventional fields. A reduction
of weed diversity and loss of EWS were recorded in this conversion process. A comparable
trend is discussed in Chapter III, where the majority of EWS populations were found to consist
only of a small number of individuals. As this is not the goal of conservation efforts, more
permanent conservation solutions should be pursued.

Factors for successful conservation

From the view of a conservation biologist, three prerequisites have to be fulfilled to ensure
the conservation of species (Haddad 2019). At first, knowledge on the biology of species is
crucial to understand the basic requirements of habitat factors, the competitive ability and
vulnerable stages in the life cycle. Secondly, adequate habitat disturbances need to be
identified and applied. Finally, the conservation habitats should be connected to ensure
migration of individuals or propagules in order to achieve genetic exchange between
populations. Experiments conducted in Chapter III contributed knowledge for the first and
second point for the conservation of Bromus grossus.

From personal experience and communication with farmers during the experiments in
Chapters III and IV, we can additionally derive two more prerequisites, namely economic and
social/psychological aspects, for the implementation of conservation. Although there are
several sources of money for agri-environmental schemes, ranging from EU to national to the
federal state level, farmers are often cautious about applying (Gatto et al. 2019). Farmers
sometimes view these contracts as a burden and are anxious about unfair sanctions. If the
farmer is granted a fair amount of money along with a certain degree of management freedom
or has good guidance by nature conservation authorities, the conservation projects are more
likely to come into existence and to be continued.

Precision farming technology

A set of novel and proven techniques in farming is available to take further steps in
targeted conservation of species and biodiversity in every farming system. Novel techniques
involve the use of precision agriculture tools, such as sensor-based (Peteinatos et al. 2014) and
neural-network evaluated recognition of individual weed plants along with site-specific
adjustments of weed control implements (Gerhards & Christensen 2003). Although weed
recognition is currently not precise enough to identify all weed species, the recent
development of neural networks and deep learning promises a big leap forward in this regard
(dos Santos Ferreira et al. 2019, Yu et al. 2019). This precision farming technique holds great
potential to identify EWS in the field and spare them from weed control measures. In the
future, it may be possible to utilize unmanned aerial vehicles (UAVs) in an offline procedure
to map the weed vegetation before actually driving into the field and setting specific species-
related thresholds (Mink et al. 2018). That way, one might reduce weed abundance to a level
below the economic threshold while protecting weed species richness and EWS.

Field margin strips

Field margin strips are a quite common method in EWS and biodiversity conservation
(Marshall & Moonen 2002, Holland et al. 2016). The results of the study presented in Chapter
III showed significantly higher weed biodiversity and occurrence of EWS in field margins
compared to the center of the field. In field margins, species, plants and animals alike, are able
to migrate from semi-natural or natural habitats to agricultural production areas. As they
represent transition areas, species occurrence and abundance are also influenced by landscape
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structure and connectivity of these habitat types (Marshall & Moonen 2002). Moreover, pest
control, fertilization and sowing are often not as accurately achieved as in the field center. This
makes margins a habitat with less intense disturbance and competition by the crop. Field
margins have also been studied in relation to beneficial insect promotion (Thomas & Marshall
1999). Especially diversity and abundance of pollinators and Carabid beetles increase at the
tield margin (Fusser et al. 2018). Cover by weeds (Heggenstaller et al. 2006, Blubaugh et al.
2011) and increased or continuous food availability (Diehl et al. 2012, Schellhorn et al. 2015)
and diversity might be attracting factors for beneficial species. Moreover, ecosystem services
such as pollination, reduced run-off and biological pest control can emanate from field
margins (Olson & Wackers 2007, Nicholls & Altieri 2013) and extend into the field. Taking all
these aspects together, field margins are destined to serve as a conservation measure.

Combining technology and agroecology

The combination of precision agriculture with conservation strategies holds a great
potential to expand and connect habitats of EWS at field margins and within the field. If
applied to a larger scale, it aids in connecting habitats of species to ensure genetic exchange.
This melt might be particularly important as the current trend in agricultural structure is for
larger fields and more area per producer. This in turn means fewer margins, but
simultaneously a more intense reliance on technology. The landscape level plays a crucial role
in biodiversity research as it determines the dimension of habitats and thus connections for
exchange of species or propagules (Tambosi et al. 2014). Also, environmental conditions like
drought periods, altered vegetation periods and occurrence of frost events during winter can
affect species on all trophic levels quite considerably. The combination of agroecology with
technology can lead to a more sustainable weed management strategy that ensures resilience
against weed adaptation, weed invasions and climate change (Neve et al. 2018). The utilization
and implementation of precision agriculture in field margin management for species
conservation gains even more in importance when considering challenges like climate change
and food security ahead.

6.2. Weed diversity, Carabid beetles and weed seed predation

The positive effects of increased weed diversity along with less agricultural input at field
margins might also enhance weed seed predation as presented in Chapter IV. With the help
of seed cards and exclosure cages we measured weed seed predation (WSP) along a farming
intensity gradient and simultaneously assessed the weed vegetation and Carabid beetle
community. This study aimed to find connections between weed biodiversity and the
ecosystem service of WSP mediated by Carabid beetles as well as to evaluate the role of
agricultural intensity in this context. A positive correlation between weed biodiversity and
Carabid beetle diversity was discovered along with a pattern indicating highest weed seed
removal by a medium diversity of Carabid beetles (2-8 species). However, there was no
evidence for a direct connection between weed biodiversity and WSP. Farming intensity did
not affect WSP consistently, but weed diversity and Carabid beetle community composition.
Omnivorous Carabid beetles were the most abundant species and especially dominated the
communities of conventional fields, while granivorous species were more abundant in
extensive fields. We determined that WSP was more affected by year and particular farming
practices like presumably cover cropping, than by farming intensity itself. Diversity of weed
species and Carabid beetles was on the other hand tendentially higher in extensive compared
to intensive farming strategies. Weed diversity is important to support the food web in
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agroecosystems and also the subsequent ecosystem service provision. Management strategies
that comprise cover cropping (Shearin et al. 2008, Ward et al. 2011) and facilitate weed
biodiversity (Saska et al. 2014), can hence substantially contribute to natural pest control.

Improving weed seed predation

The service of WSP is performed by a spectrum of different species from different taxa,
like beetles (Kulkarni et al. 2015), crickets (White et al. 2007), ants (Westerman et al. 2012, Torra
et al. 2016), slugs, mice (Daedlow et al. 2014) and birds (Holmes & Froud-Williams 2005). When
examining the effects of farming on WSP, these species might be affected by particular
management operations quite differently. Beetles can, for instance, be severely disturbed by
tillage operations (Blubaugh & Kaplan 2015), while birds might not be affected at all. Beside
management practices, seed predators and their WSP performance are influenced by
environmental conditions (Saska et al. 2010), landscape characteristics (Labruyere et al. 2016)
and food distribution (Daedlow et al. 2014). It is therefore difficult to predict the influence of
single factors (like management operations) on the performance of WSP, especially if weed
seeds are consumed by several different species simultaneously.

However, there are two major factors that can be used to improve weed seed predation.
At first, all weed seed predators, irrespective of their taxa, rely in parts or entirely on weed
seeds in their diet (Saska et al. 2014, Kulkarni et al. 2016). Increasing weed diversity, for
example by methods described earlier in this chapter or the previous ones, also increases food
resource diversity and availability for seed predators. This has most likely a positive effect on
WSP by sustaining a larger spectrum and abundance of weed seed predators (Harvey et al.
2008, Scherber et al. 2010). The second factor is the availability of cover. Especially Carabid
beetles, but also mice respond positively to plant cover (Meiss et al. 2010, Navntoft et al. 2016).
By providing cover, for example by a denser weed vegetation (Heggenstaller et al. 2006,
Kulkarni et al. 2017) in field margin strips or by sowing living mulches (Davis & Liebman 2003)
and cover crops (Blubaugh et al. 2016), it may be possible to attract or retain seed predators in
the field. Both approaches might be viable to improve WSP in the field, however also
disservices, like crop seed consumption, can arise from unspecific facilitation of insect or
vertebrate groups (Tschumi et al. 2018).

We examine in a current study, that is not included in this dissertation, the combination
of these two major factors. In a field experiment, several cover crops and living mulches are
sown in non-tilled and tilled plots to determine the influence of weed seed availability on the
soil surface and the provision of plant cover on WSP and weed emergence after cereal harvest.
Preliminary results indicate that living mulches are able to keep the WSP rates at a level similar
to pre-harvest of the cereals. We aim to derive recommendations for farmers with this study
to improve biological weed control via WSP and cover crops.

6.3. Weed suppression ability of cover crops and species mixtures

A range of positive aspects and ecosystem services is attributed to cover crops, such as
reduced erosion and N leaching, promotion of pollinators and weed control. The use of
mixtures in cover cropping, is currently facilitated by the European Union’s “greening”
strategy. The combination of different species in mixtures might increase the number of
provided services and their resilience towards external influences. According to the
underlying ecological principles and results of Chapter IV, we examined six single sown cover
crops and created species mixtures to test their effects on weed control efficacy and reliability
in Chapter V. Cover crop mixtures contained either three or six species in varying proportions.
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Single sown Raphanus sativus var. oleiformis (oilseed radish) and Avena strigosa (black oat) were
the most efficient species in terms of density and dry matter reduction of weeds. In general,
cover crop mixtures reached a lower soil cover, dry matter and weed control efficacy
compared to the two before mentioned single sown species. Nevertheless, weed control was
performed more reliable by mixtures than by single sown cover crops, albeit not always as
effective. The cover crop mixtures performed much more homogeneous in terms of soil cover,
dry matter and weed control efficacy than the single sown cover crop species. This indicates
an increased resilience of species mixtures towards adverse weather conditions and is an
advantage for long-term weed control. However, cover crop diversity per se was in this study
not related to the efficacy of weed control, we presume that species composition within the
mixtures had a much bigger influence on service provision.

Florence et al. (2018) argued that productive single sown cover crops are also very
productive in cover crop mixtures. A logical choice for cover crop mixtures, according to the
results of Chapter IV, would therefore be A. strigosa or R. sativus. Increasing the proportion of
Poaceae species in a mixture was found to enhance weed control efficacy (Baraibar et al. 2018,
McLaren et al. 2018). This concurs with the contrasting performances of the highly weed
suppressive mixture 1 that contained A. strigosa and mixture 2 without it, which exhibited also
a high dry matter production but a significantly lower weed control efficacy. Likewise,
ecosystem functioning in natural ecosystems largely depends on a certain number of dominant
species, while the subordinate species do not greatly contribute to the actual functioning
(Schwartz et al. 2000). Their importance, however, might increase if environmental conditions
change (Muillot et al. 2013, Grime 1998). If dominant species fail to provide a particular
function, their role can be taken over by functionally redundant species. This is called “risk
spreading” (MacArthur 1955) or “insurance hypothesis” (Yachi & Loreau 1999). To gain stable
performance of an ecosystem service thus requires a set of species providing the same
ecosystem service (effect trait) but differing in their response to environmental conditions
(response trait) (Lavorel & Garnier 2002).

Functional biodiversity

In Chapters III and IV we focused predominantly on the community level of Carabid
beetles and weeds and their response to farming practices. As already indicated in Chapter II,
the knowledge of effect traits of weeds is so far limited to the provision of floral resources
(Gaba et al. 2017). The use of response- and effect-traits from functional biodiversity might
therefore reveal more details about weed community composition and its connection to the
provision of ecosystem services (Barberi et al. 2018). If applied to Chapter IV, seed size, seed
coat thickness and number of seeds available could be effect traits of the different weed species
impacting Carabid beetle diversity or their WSP performance. The results from Chapter III
could be re-evaluated with a functional approach as well (Storkey et al. 2013).

In Chapter V pure cover crop stands and cover crop mixtures were analysed exclusively
regarding their effect traits like soil cover, biomass production and weed density reduction.
However, weed control ability can arise from several more effects like early emergence, time
of canopy closure and level of produced allelochemicals, which in turn are also a response to
environmental conditions (Belz et al. 2007). In general, species-specific mechanisms for weed
suppression and their interactions are still not well understood (Baraibar et al. 2018). We
presumed for example in Chapter V that weed suppression of R. sativus was mainly due to
high biomass production, while A. strigosa acted predominantly via allelopathy. However,
both species are able to produce a large amount of biomass and are said to be allelopathic. The
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predominant weed control mechanism exerted by a species might therefore be dependent on
their response to environmental conditions. Applying the concepts of functional ecology to
investigate the connection of response and effect traits of single species might aid in designing
cover crop mixtures (Blesh 2018) with enhanced weed control abilities. To gain reliable weed
control, mixture composers should furthermore take into account the “insurance hypothesis”
and utilize functionally redundant species that differ in environmental responses. This
partially validates the conclusion from Chapter V that species composition of cover crop
mixtures is more important than species numbers alone. Also, Finney and Kaye (2017) found
that functional diversity was a much better predictor of multifunctionality in cover crops than
species richness. Cover crops are not exclusively grown to suppress weeds, but to reduce
erosion and retain nitrogen. Focusing on one aspect, like weed control might compromise
other important services. Mixtures should therefore be designed carefully to increase their
productivity and ecosystem service provision.

In a current study, which is not included in this dissertation, we examine the effect and
response traits of ten single sown cover crops and several mixtures arising from this species
pool. The aim is to evaluate the resilience and flexibility of the species in mixtures in
comparison to their single sown counterparts in response to weather conditions. Furthermore,
their effects on weed control and the subsequent yield of the spring crop are determined. We
hope to identify traits (and species) that are complementary in mixtures and provide
successful weed control under a range of weather conditions.

6.4.Future challenges

Climate change

Especially EWS exhibit traits that morphologically explain their vulnerability to intensive
management, such as large seeds, late flowering and short growth, commonly regarded as
“rare weed trait syndrome”. Atop of that, they are more prone to changes in weather
conditions such as more frequent drought events and higher temperatures (Riihl et al. 2015,
Riihl et al. 2016). The currently projected climate scenarios for Europe under climate change
(IPCC 2015), may, therefore, affect the already small EWS populations dramatically. As a
consequence, species decline will continue or even accelerate in the future. An even bigger
issue is the invasion of weed communities by new, competitive weed species due to shifted
temperature contour lines (isotherms) (Zhu et al. 2007, Sheppard et al. 2014). The removal of
weed species by agricultural measures or weather conditions results in open niches (or niche
gaps) (Erikson 2013), creating opportunities for invaders. In diverse weed communities these
gaps can be filled by species from the species pool (Booth and Swanton 2002), while in species-
poor communities this might not be the case (Rejmanek 1989). The latter are therefore more
prone to invasion. There is already an indication that the current weed communities have
changed in regard to temperature by higher abundances of weeds that are adapted to warm
and dry summers (Peters et al. 2014). Invasive species often outcompete native species and are
able to trigger huge changes in biodiversity by altering the original food webs of
agroecosystems (Froud-Williams 1997) not to mention their severe influence on crop yield
(Vila et al. 2004).

Also, arthropod pest species are promoted by increased mean temperature and prolonged
vegetation period. Some species might even be able to complete several life cycles instead of
only one, thereby increasing the pest pressure on the crop (Delgado et al. 2011). In contrast, a
diverse weed community might also help to mitigate negative effects of climate change by
hosting beneficial insect populations that are tolerant to extreme weather conditions.
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However, increased pest pressure will most likely lead to heavy use of insecticides, affecting
Carabid beetles and their performance of WSP as well as other beneficial insects and their
provided ecosystem services negatively (Biondi et al. 2012). As extreme weather events will be
more likely, cover cropping needs to be adapted to changing weather conditions. It might
therefore be reasonable to combine species that are effectively suppressing weeds under dry
and moist conditions. Moreover, agronomic measures like sowing date and technique can be
used to improve cover crop establishment (Sturm et al. 2017).

Food production vs. conservation

As the majority of agricultural land within countries is normally utilized to produce food,
the trade-off between food production and species conservation creates an area of conflict.
Especially the conservation of weeds is a controversial issue. On the one hand, they affect crop
yield quantity and quality severely (Oerke 2006). On the other hand, they support higher-order
diversity and can provide positive services that enhance crop productivity such as pollination
(Carvalheiro et al. 2011). As mentioned earlier, conservation methods rely to a large extent on
omitting pesticides and fertilizer inputs, thus reducing the potential productivity of the crop.
The cropping of plants for bioenergy purposes further intensifies this issue, as agricultural
production areas have to fulfill three potential assignments. Let alone the increasing area
requirements for infrastructure, settlements and renewable energy. The last issue creates
further area consumption as construction projects need to have functional compensation areas
that often use agricultural land.

We already hypothesized that precision farming technologies are able to create more
suitable habitats for weeds while supporting the crop more precisely. In combination with
tield margin conservation strategies, this might lead to a better habitat connection and partially
alleviates the pressure on food production. To enhance weed diversity and overall biodiversity
of agro-ecosystems, we need to re-evaluate and adjust our current cropping systems. The
desired solution would be systems that manage the weed vegetation in a way that diversity is
maximized while weed abundance is reduced below the economic thresholds. Many ideas
have been proposed to serve this ideal. Intercropping to create niches for endangered weed
species (Brooker et al. 2016) and the use of crop cultivar mixtures are just some examples.
Others propose solutions that target the landscape scale instead of the farm scale (Holt et al.
2016).

To reduce the adverse effects of pesticides on species and other ecosystems is probably
one of the most obvious steps that needs to be taken. In Germany, the “Nationale Aktionsplan
Pflanzenschutz” (BMEL 2013) that was set up in 2013 is dealing with the legal implementation
of this step. The concept to use herbicides as a last possible measure if all other options cannot
reduce the weed pressure is quite old and comprised in the Integrated Weed Management
(IWM) concept. However, the low costs for herbicides, or pesticides in general, compared to
other control measures, led to an intensive use that created resistance problems along the way
(Heap 2014). Finally utilizing the knowledge of ecological weed management principles
(Bastiaans et al. 2008) and the “many little hammers” approach (Liebman & Gallandt 1997)
would help to manage the weed vegetation more sustainably without the use of herbicides.
Besides legal regulations to reduce herbicide use, financial incentives are provided for farmers
to implement agri-environmental schemes. These schemes entail conservation of particular
species (Aavik & Liiraa 2009) up to species diversity per se (Ulber et al. 2009).
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6.5. Conclusion

Many concepts are available to adjust cropping systems in order to enhance biodiversity
in agroecosystems and to conserve EWS. This chapter highlighted approaches such as the
combination of precision agriculture technology with conservation strategies or the utilization
of functional biodiversity for future research. However, to find a balance between the necessity
of weed control to ensure food production and the conservation of weed diversity remains a
challenge. Deliberately integrating weed biodiversity into agricultural production systems in
order to utilize the ecosystem services provided by weeds, might be a first step to reconcile
these contrasting positions. Identifying weed species with functional traits that facilitate
ecosystem services while being weak competitors for the crop, is still an ongoing research goal.
Promoting biodiversity, either of weeds or cover crops, through suitable management
decisions, might even enhance WSP and weed control. Designing the landscape to include
more semi-natural habitats and to increase connectivity will help to increase biodiversity in
agroecosystems and on the landscape level (Landis 2017). To realize these steps, farmers,
nature conservation authorities, landscape architects and policy makers must act together to
develop practical and sustainable solutions. This serves to create more diverse
agroecosystems, utilize provided ecosystem services and to reach some of the Aichi
biodiversity targets. How climate change will impact weed community compositions, their
diversity and provided services in the future, remains to be seen. Most likely arable farming
systems will need to evolve to mitigate the effects of adverse weather conditions by creating
more resilient and sustainable crop production strategies.
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7. Summary

7.1. Abstract

In terrestrial ecosystems plants represent the basis of food webs and provide important
ecosystem services. There is evidence that diverse plant communities are either more stable or
more productive in terms of food web support and ecosystem service provision. In agro-
ecosystems, characterized by high disturbance and external inputs, plant diversity and their
services can only be provided by weeds. Weeds, however, are a major constraint for crop
production and need to be managed in order to produce adequate yield quality and quantity.
Conserving weeds and biodiversity on the other hand means conserving food webs and
utilizing the potential of ecosystem services including weed control. The current study
comprises three experiments focusing mainly on the interactions between farming
management factors, plant diversity and weed control related ecosystem service provision in
agroecosystems.

In the first study, vegetation recordings and farmer surveys were conducted in on-farm
experiments in two regions of Southwestern Germany. The aim was to examine the effects of
agricultural management on weed community composition, weed biodiversity and
occurrence of rare arable weed species in cereal fields. Weed biodiversity was influenced
mainly by crop species, herbicide use and farming system as well as nitrogen and light
availability. Moreover, field margins exhibited a higher diversity than the center of fields.
Weed communities were quite similar in both study regions and dominated by Alopecurus
myosuroides, Galium aparine, Viola arvensis, Polygonum convolvulus and Veronica persica. A
redundancy analysis revealed that the weed community was mainly shaped by crop species,
tillage, location in the field and timing of herbicide application. The dominating weed species
were furthermore positively affected by medium to high nitrogen fertilization and a low
number of tillage operations. The only rare arable weed species occurring in sufficient number
for analysis were Bromus grossus and Bromus secalinus. Both were present in field margins of
conventional fields as a result of the use of herbicides with gaps for Bromus species. Additional
rare weed species such as Neslia paniculata, Camelina alyssum and Veronica triphyllos were found
but their total population was rarely larger than 5-20 plants. The results highlight the erosion
of weed communities due to intensive agricultural practices and emphasize the conservation
of weed biodiversity per se and rare arable weed species in particular. Conservation efforts
need not to be restricted to organic farming but should rather take the biologic requirements
of species and the major drivers of weed community composition into consideration. Agro-
biodiversity in total would profit from the utilization of precision farming techniques to create
habitat connections on a larger scale.

Having identified major factors in weed biodiversity determination, the next aim was to
examine if this biodiversity is able to support weed control related ecosystem services in the
field. An important regulating ecosystem service originating from the food chain is the
predation of weed seeds by invertebrate and vertebrate species. The objectives of this study
were to investigate the connection between weed biodiversity, Carabid beetle diversity and
weed seed predation as well to evaluate the role of farming intensity in this sequence. On-farm
experiments were performed on the Eastern Swabian Alps measuring weed seed predation,
Carabid beetle diversity and weed biodiversity by utilizing seed cards, pitfall traps and
vegetation recordings, respectively. Measurements were taken from 2015 to 2017 along a
farming intensity gradient represented by conventionally, organically and extensively farmed
cereal fields to create a gradient of weed biodiversity. A positive correlation between weed
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biodiversity and Carabid beetle diversity was identified as well as a pattern of medium
Carabid beetle diversity (2-8 species) providing the highest weed seed predation. Carabid
beetle communities were similar in the last two experimental years with granivorous species
more abundant in extensive fields and omnivorous species dominating the conventional
farming type. A direct connection between weed biodiversity and weed consumption rates
was not detected. There was no consistent influence of farming intensity on weed seed
predation, rather year and particular farming practices, such as cover cropping, affected seed
consumption. In total vertebrate seed predators were more efficient in consuming weed seeds
than invertebrates. The revealed connection between weed diversity, Carabid beetle diversity
and weed seed predation highlights the role of plants in food web support and subsequent
ecosystem service provision. The utilization of these services depends on the promotion of
biodiversity by designing appropriate management strategies. Key components of these
systems are integration of cover cropping and facilitation of weed biodiversity.

In the next step, the general principles underlying ecosystem service provision by
biodiversity, namely niche complementarity and sampling effect, were conveyed to a cover
cropping system. The aim was to test single sown cover crops and species mixtures in terms
of weed suppression efficacy and reliability. For this purpose, six cover crop species, Anethum
graveolens, Raphanus sativus var oleiformis, Avena strigosa, Carthamus tinctorius, Vicia sativa and
Phacelia tanacetifolia, were sown singly and as mixtures in a field experiment during the
autumn-to-winter growing season. The mixtures contained either three or six of the species in
varying proportions. Lower weed dry matter and weed densities were found predominantly
in treatments with favorable establishment and above-average biomass production. In 2017 A.
strigosa and R. sativus exhibited the highest weed control efficacy of 72% and 83%, respectively.
In contrast, mixtures were generally lower in regard to soil cover, aboveground dry matter
and weed control efficacy, reaching average values of 57% in 2017. But then again mixtures
performed much more homogeneous in regard to the measured parameters compared to
single sown cover crops. This observed resilience towards adverse weather conditions
provides an insurance for the farmer in terms of weed suppression over a long-term period.
The results suggest that, although particular single sown cover crops are more effective to
control weeds than mixtures, mixtures are more reliable under changing conditions.
Additionally, the composition of the mixtures seems to be more relevant than number of
species included. Altering the species composition of cover crop mixtures according to more
complementary traits might further improve their weed control efficacy.

The results of this thesis demonstrate the importance of plant biodiversity in the provision
and reliability of weed control related ecosystem services, either by weeds themselves or by
specifically designed cover crop mixtures. Furthermore, management factors influencing
weed biodiversity were determined, which can aid in the creation of more sustainable
management strategies for a diverse agroecosystem and the conservation of rare arable weed
species. This work aims to understand the interactions of farming practice, plant biodiversity
and ecosystem service provision and to use this knowledge in optimizing conservation
effectiveness and creating (ecology inspired) biological weed control strategies. Future
challenges in this regard will be the reconciliation of food production and security with
conservation efforts as well as the large-scale impacts of climate change. Advancing
technologies in precision agriculture and increasing knowledge of multi-functional
biodiversity provide an opportunity to create more sustainable and economically sound, yet
diverse, agricultural systems in the future.
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7.2.Zusammenfassung

In terrestrischen Okosystemen sind Pflanzen die Grundlage fiir Nahrungsnetze und
stellen wichtige Okosystemdienstleistungen bereit. Man nimmt weiterhin an, dass
artenreichere Pflanzengesellschaften eine stabilere Unterstiitzung des Nahrungsnetzes
gewihrleisten und produktiver in der Bereitstellung von Okosystemdienstleistungen sind. In
Agrarokosystemen, die sich durch hohe Storungsfrequenzen und externe Inputs auszeichnen,
konnen Pflanzenvielfalt und deren Leistungen nur durch Unkrauter bereitgestellt werden.
Unkrauter sind jedoch ein limitierender Faktor fiir die Pflanzenproduktion und miissen
bekdampft werden, um eine angemessene Ertragsqualitdt und -quantitit zu erzielen. Die
Erhaltung von Unkrautern und Biodiversitat im Feld kann dazu fithren Nahrungsnetze zu
erhalten und das Potenzial von Okosystemdienstleistungen, einschlieflich dem der
Unkrautbekdmpfung, zu nutzen. Die vorliegende Dissertation umfasst drei Experimente, die
sich hauptsachlich auf die Wechselwirkungen zwischen landwirtschaftlichen
Bewirtschaftungsfaktoren, Pflanzenvielfalt und deren Bereitstellung von
Okosystemdienstleistungen zur Unkrautbekdmpfung in Agrardkosystemen konzentrieren.

In der ersten Studie wurden Vegetationsaufnahmen in On-Farm-Experimenten und
Umfragen unter Landwirten in zwei Regionen Stidwestdeutschlands durchgefiihrt. Ziel war
es, die Auswirkungen der landwirtschaftlichen Bewirtschaftung auf die Zusammensetzung
der Unkrautgesellschaften, die Unkraut-Biodiversitit und das Vorkommen seltener
Ackerunkrauter in Getreidefeldern zu untersuchen. Die Biodiversitat von Unkrautern wurde
hauptsdachlich durch die Kulturpflanzenart, den Einsatz von Herbiziden und das
Anbausystem sowie Stickstoff- und Lichtverfiigbarkeit beeinflusst. Dariiber hinaus zeigten die
Feldrander eine hohere Vielfalt an Unkrédutern als die Feldmitte. Die Unkrautgesellschaften
waren in beiden Studienregionen sehr dhnlich zusammengesetzt und wurden von Alopecurus
myosuroides, Galium aparine, Viola arvensis, Polygonum convolvulus und Veronica persica
dominiert. Fine Redundanzanalyse ergab, dass die Unkrautgesellschaft hauptsachlich durch
Kulturpflanzenart, Bodenbearbeitung, Lage der Aufnahmeflache im Feld und Zeitpunkt der
Herbizidanwendung gepragt wurde. Dabei wurden die dominierenden Unkrautarten durch
eine mittlere bis hohe Stickstoffdiingung und eine geringe Anzahl von
Bodenbearbeitungsvorgangen gefordert. Die einzigen gefdhrdeten Unkrautarten, die in
ausreichender Anzahl fiir die Analyse vorzufinden waren, waren Bromus grossus und Bromus
secalinus. Beide kamen tiberwiegend in den Feldrandern konventioneller Felder als Folge des
Einsatzes von Herbiziden mit Wirkstoffliicken fiir Trespenarten vor. Weitere seltene
Unkrautarten wie Neslia paniculata, Camelina alyssum und Veronica triphyllos waren zwar
vorhanden, aber ihre Gesamtpopulationen waren selten grofier als 5-20 Individuen. Die
erzielten Ergebnisse weisen auf einen Riickgang der Diversitit von Unkrautgesellschaften
durch intensive landwirtschaftliche Praktiken hin. Weiterhin verdeutlichen sie die
Notwendigkeit der Erhaltung der Unkrautbiodiversitdt an sich und den Schutz seltener
Unkrautarten im Besonderen. Die Schutzbemiihungen diirfen sich jedoch nicht auf den
okologischen Landbau beschranken, sondern sollten vielmehr die biologischen
Anforderungen der Arten und die wichtigsten Faktoren fiir die Zusammensetzung der
Unkrautgesellschaften beriicksichtigen. Die Biodiversitat in Agrarokosystemen wiirde von
der Anwendung von Precision Farming Techniken profitieren, um damit eine Vernetzung von
Lebensraumen in grofferem Mafistab herzustellen.

Nachdem die wichtigsten Faktoren fiir das Zustandekommen von Unkrautbiodiversitat
identifiziert wurden, sollte untersucht werden, ob diese biologische Vielfalt in der Lage ist,
Okosystemdienstleistungen, die zur Unkrautbekdmpfung beitragen, zu unterstiitzen. Eine
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wichtige regulierende Okosystemdienstleistung, die durch die Nahrungskette bereitgestellt
wird, ist der Verzehr von Unkrautsamen durch wirbellose Tiere und Wirbeltiere. Die Studie
hatte zum Ziel, den Zusammenhang zwischen Unkrautbiodiversitat, Laufkaferdiversitat und
Unkraut-Samenpréadation zu untersuchen sowie die Rolle der landwirtschaftlichen Intensitat
in dieser Abfolge zu bewerten. Zu diesem Zweck wurden im Ostalbkreis On-Farm-
Experimente angelegt und, unter Verwendung von Vegetationsaufnahmen, Bodenfallen und
Samenkarten, die Unkrautbiodiversitat, Lautkaferdiversitit und Unkraut-Samenpradation
gemessen. Diese Messungen fanden von 2015 bis 2017 entlang eines landwirtschaftlichen
Intensitatsgradienten statt. Dieser Gradient enthielt konventionell, 6kologisch und extensiv
bewirtschaftete Getreidefelder und stellte zudem eine zunehmende Unkrautbiodiversitat dar.
Es wurde ein positiver Zusammenhang zwischen der Unkrautbiodiversitit und der
Laufkaferdiversitat festgestellt. Die Ergebnisse zeigten, dass eine mittlere Laufkaferdiversitat
(2-8 Arten) das hochste Level an Unkraut-Samenpradation aufwies. Die
Laufkafergemeinschaften waren in den letzten beiden Untersuchungsjahren sehr dhnlich,
wobei granivore Arten haufiger unter extensiver Bewirtschaftung vorhanden waren und
omnivore Arten im konventionellen Anbau dominierten. Ein direkter Zusammenhang
zwischen Unkrautbiodiversitdit und der Verzehrsrate von Unkrautsamen wurde nicht
festgestellt. Die Bewirtschaftungsintensitdt hatte keinen einheitlichen Einfluss auf die
Unkraut-Samenpradation,  viel = eher  waren das Jahr und  bestimmte
Bewirtschaftungsmethoden, wie z.B. der Anbau von Zwischenfriichten, mafigebend fiir die
Rate der Samenpradation. Insgesamt waren Wirbeltiere effizienter im Verzehr von
Unkrautsamen als wirbellose Tiere. Der festgestellte Zusammenhang zwischen
Unkrautvielfalt, Laufkaferdiversitat und Unkraut-Samenpradation verdeutlicht die Rolle von
Pflanzen in Nahrungsnetzen und deren Bereitstellung von Okosystemdienstleistungen. Um
diese Dienstleistungen zu nutzen, muss Biodiversitit durch die Gestaltung geeigneter
Bewirtschaftungssysteme gefordert werden. Schliisselkomponenten dieser Systeme sind die
Einbindung von Zwischenfriichten in die Fruchtfolge und der Erhalt der biologischen Vielfalt
von Unkrdutern.

In der dritten Studie wurden die grundlegenden Prinzipien der Bereitstellung von
Okosystemdienstleistungen durch Biodiversitdt, namlich Nischenergénzung (,niche
complementarity”) und Stichprobeneffekt (,sampling effect”), auf den Anbau von
Zwischenfriichten tibertragen. Das Ziel dabei war, Artenmischungen und Zwischenfriichte in
Reinsaat auf die Wirksamkeit und Zuverlassigkeit der Unkrautunterdriickung zu testen. Zu
diesem Zweck wurden sechs Zwischenfruchtarten, namlich Anethum graveolens, Raphanus
sativus var oleiformis, Avena strigosa, Carthamus tinctorius, Vicia sativa und Phacelia tanacetifolia,
einzeln und als Mischungen in einem Feldversuch ausgesdt und in der Herbstsaison
untersucht. Die Mischungen enthielten drei oder sechs der Arten zu unterschiedlichen
Anteilen.  Behandlungen mit guter Etablierung der Zwischenfriichte und
iiberdurchschnittlicher ~ Biomasseproduktion wiesen {iberwiegend die geringsten
Unkrauttrockenmassen und -dichten auf. A. strigosa und R. sativus zeigten die hochste
Wirksamkeit bei der Unkrautbekdampfung im Jahr 2017 von jeweils 72% bzw. 83%. Im
Gegensatz dazu schnitten die Mischungen im Allgemeinen schlechter ab und erreichten in
Bezug auf Bodenbedeckung, oberirdische Trockensubstanz und Unkrautbekdmpfung
Durchschnittswerte von ca. 57%. Nichtsdestoweniger verhielten sich die Mischungen, in
Bezug auf die gemessenen Parameter, wesentlich einheitlicher als die Zwischenfriichte in
Reinsaat. Diese beobachtete Widerstandsfahigkeit gegen ungiinstige Wetterbedingungen
ermdglicht dem Landwirt eine zuverlassigere Unkrautbekampfung iiber einen langfristigen
Zeitraum. Obwohl bestimmte Zwischenfriichte in Reinsaat effektiver bei der
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Unkrautbekdmpfung waren, deuten die Ergebnisse darauf hin, dass Mischungen unter
wechselnden Bedingungen zuverlassiger sind. Dariiber hinaus scheint die Zusammensetzung
von Zwischenfruchtmischungen wichtiger zu sein als die Anzahl der enthaltenen Arten. Eine
Anderung der Artenzusammensetzung der Zwischenfruchtmischungen durch Auswahl von
sich ergdnzenden Pflanzeneigenschaften konnte deren  Wirksamkeit in der
Unkrautbekdmpfung weiter verbessern.

Die Ergebnisse der vorliegenden Dissertation veranschaulichen die Bedeutung der
pflanzlichen  Biodiversitit fiir die Bereitstellung und  Zuverldssigkeit von
Okosystemdienstleistungen mit Unkrautbekdmpfungscharakter. Diese werden dabei
entweder durch Unkrauter selbst oder durch speziell entwickelte Zwischenfruchtmischungen
bereitgestellt. Diese Arbeit hatte zum Ziel, die Wechselwirkungen zwischen
landwirtschaftlicher Praxis, Artenvielfalt der Pflanzen und Okosystemdienstleistungen zu
untersuchen und das gewonnene Wissen zur Optimierung von Naturschutzbemiihungen und
zur Entwicklung (6kologisch inspirierter) biologischer Unkrautbekdmpfungsstrategien zu
nutzen. Die Weiterentwicklung von Precision Farming Technologien und das zunehmende
Wissen iiber die Multifunktionalitdt der biologischen Vielfalt bieten die Chance, in Zukunft
nachhaltigere und wirtschaftlich sinnvollere, aber trotzdem vielfaltige
Bewirtschaftungssysteme zu schaffen.
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