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Abstract

With the advent of big data, unique opportunities arise for data collection and

analysis and thus for personalized pricing. We simulate a self-learning algorithm

setting personalized prices based on additional information about consumer sensi-

tivities in order to analyze market outcomes for consumers who have a preference

for fair, equitable outcomes. For this purpose, we compare a situation that does

not consider fairness to a situation in which we allow for inequity-averse consumers.

We show that the algorithm learns to charge different, revenue-maximizing prices

and simultaneously increase fairness in terms of a more homogeneous distribution

of prices.

JEL-Codes: D63, D91, L12

Keywords: pricing algorithm, reinforcement learning, Q-learning, price discrimi-

nation, fairness, inequity

1 Introduction

Determining the optimal price of a product or service for a particular customer is complex:

it requires knowledge of the customer’s willingness to pay, estimation of demands, ability

to adjust strategies to competition pricing, and more. With the advent of big data, unique

opportunities arise for data collection and analysis and thus for personalized pricing.

This paper discusses the capacity of reinforcement learning – a type of machine learning
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in which agents learn from interacting autonomously with their environment – to price

discriminate based on a simulation of a price-setting algorithm.1

In the context of the increasing use of big data and the use of price-setting algorithms, con-

cerns have been raised, besides the discussion about collusive behavior2, that self-learning

algorithms might engage in price discrimination3, as they are able to use information

about customers to segment them into ever-smaller groups based on certain characteris-

tics related to their willingness to pay. Reports about customers who had to pay different

prices for the same product or service have been published in the Wall Street Journal,

the Washington Post, and the German magazine Wirtschaftswoche.4 Consumers tend to

be very sensitive to such attempts, as they have a strong sense of fairness.5 This might

explain why price discrimination is still relatively rare in economic reality.6

This begs the question of whether it is possible for price-setting algorithms to learn to

engage in price discrimination on a basis of fairness, in order to avoid upsetting customers

but still maximize expected revenues by charging personalized prices. For this reason,

we will not only discuss the possibilities of algorithms to conduct price discrimination

but also the possibility of self-learning pricing algorithms to consider customers’ fairness

preferences while setting prices. If algorithms are able to consider inequity aversion while

setting differential prices, price discrimination is more likely to occur.7 However, the effect

of personalized pricing on consumer welfare is ambiguous. In many cases, personalized

pricing can be beneficial: for example, the ability to offer targeted discounts might help

new entrants to compete (especially in markets with switching costs) and could expand

output. On the other hand, in some situations, personalized pricing can lead to consumer

harm.8

Effective price discrimination relies on the identification of different customer groups. In

1 Simulations are programmed in Python.
2 For more details, see e.g. Ezrachi and Stucke (2015), Ezrachi and Stucke (2016), and Woodcock

(2017).
3 See e.g. Reinartz (2002) and UK Office of Fair Trading (2013).
4 On Orbitz, Mac Users Steered to Pricier Hotels, in: Wall Street Journal, August 23, 2012; On the

Web, Price Tags Blur, Washington Post, September 27, 2000; Der Preis ist heiß, Wirtschaftswoche,
March 02, 2017.

5 Kahneman et al. 1986.
6 As stated, for example, by Odlyzko (2009), the Executive Office of the President of the United States

(2015), UK Office of Fair Trading (2013), and the UK Competition and Market Authority (2018).
7 This is also in line with growing public policy concerns; see, for example, Bourreau and Streel (2018),

the UK Competition and Market Authority (2018), and the Executive Office of the President of the
United States (2015).

8 According to the report of the UK Competition and Market Authority (2018), this is the case if
there is a lack of competition in the market; if discrimination is particularly complex or opaque to
consumers; or if consumers loose trust in the market and, as a result, withdraw their demand or
decline to participate in the market.
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each group, certain assumptions about price sensitivities must be made. For instance,

groups could be defined by customers’ location, communication channel, click behaviors,

or time spent on a certain website. The price sensitivities within each group should be

taken into account by the algorithm in order to maximize expected revenues. In the

two simulated scenarios studied here, we allow for differential pricing. We simulate an

algorithm setting personalized prices that does and does not consider customers’ notions

of fairness. For simplification, fairness is maximized if everyone pays the same price.

This equality-based fairness approach is widely used in the relevant literature, such as by

Fehr and Schmidt (1999) or Bolton and Ockenfels (2000). Under this assumption, the

learning procedure of the algorithm should provide homogeneous prices among customer

groups while simultaneously taking into account the price sensitivities within each group

in order to maximize the expected revenue.9 Compared to the situation where fairness

is not considered, an improvement in fairness is seen in the situation where inequity-

averse consumers are considered, and the algorithm maintains the goal of maximizing

revenue.

The paper is organized as follows. Section 2 provides a short introduction into the main

concepts of price discrimination, fairness, and reinforcement learning. The methodology

is then presented in section 3, where the different groups of customers are introduced

and reinforcement learning is applied to the differential pricing problem. The simulation

results are presented and discussed in section 4. Finally, an outlook on further research

is provided in section 5.

2 Basic Concepts

2.1 Price Discrimination

In general, a firm engages in price discrimination when it charges different prices for two

units of the same or similar products, wherein the price difference does not reflect any

cost difference.10 Classic economic literature distinguishes between three types of price

discrimination.11 First-degree price discrimination occurs when the seller charges each

customer the maximum price that he or she is willing to pay.12 Even if firms do not have

enough information to assess each consumer’s reservation price, they can still conduct

imperfect price discrimination, which is known as third-degree price discrimination or

9 The algorithm has only a limited number of periods to learn the setting of the optimal price, as
customers are otherwise assumed to reject buying the product.

10 Stigler 1987.
11 Pigou 1920.
12 Varian 1989.
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group pricing. In this practice, sellers segment their customers into broad categories

according to observable characteristics; these categories are charged different prices. This

is probably the most common form of price discrimination.13

However, if firms are able to use information technologies to collect and process a large

amount of data, they can improve their knowledge of consumers’ preferences. As a result,

they might be able to refine the group segmentation, coming close to the ideal situation

in which each group consists of a single consumer. Thus, first-degree price discrimination

can be seen as an extreme form of group pricing.

First- and third-degree price discrimination rely on the existence of observable and ver-

ifiable indicators of consumers’ willingness to pay. When it is not possible to identify

customer groups with similar levels of willingness to pay, the only opportunity for offering

different prices to different consumers is to propose to all consumers the same menu of

packages (i.e., some combination of price and product characteristics), among which con-

sumers self-select. This practice is known as second-degree price discrimination, nonlinear

pricing, menu pricing, or versioning.14

Successful price discrimination requires the discriminating firm to have at least a small

measure of market power and an ability to segment their customers according to their dif-

ferent price elasticities of demand for goods or services.15 In addition, the firm must either

be able to prevent arbitrage or to exclude arbitrage due to certain product characteristics

(e.g. if the product or service has to be consumed directly). If these conditions are ful-

filled, the firm is able to increase its revenue by using discriminatory pricing strategies. It

should also be mentioned that a unit price can be a special case of price discrimination if

every customer has the exact same willingness to pay. Additionally, it is not possible to

charge every consumer a different price, as there is a smallest monetary unit and therefore

only a limited number of possible prices; therefore, there will always be some consumers

who pay the same price as each other.

In this paper, we focus on third-degree price discrimination. We define different customer

groups, wherein each group has different sensitivities – i.e., different acceptance probabili-

ties for the price bids of the firm. With the advent of big data, self-learning algorithms are

able to differentiate and segment customers into ever-smaller reference groups who have

similar price sensitivities and purchase behaviors and who share common biases and levels

of willpower. Pricing algorithms are able to use data on how other people in an individ-

ual’s group react in order to predict the individual’s reaction under similar circumstances.

13 Varian 1989.
14 Ibid.
15 Federal Trade Commission and U.S. Department of Justice, Horizontal Merger Guidelines.
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This method enables the algorithm to adjust prices for products and services according

to the estimated willingness to pay; consequently, the more data the algorithm obtains,

the closer those personalized prices can be set to a consumer’s reservation price.16

2.2 Fairness

The fairness concerns of consumers have been a discussion point in economics at least

since the works of Fehr and Schmidt (1999) and Bolton and Ockenfels (2000). Many

experiments have shown that economic agents do not just care about their own payoffs,

but rather also about the payoffs of others, and they act accordingly. Fehr and Schmidt

(1999) modeled fairness as inequity aversion, which means that people resist inequitable

outcomes and are willing to give up some material payoff to move in the direction of more

equitable outcomes. Thus, fairness or unfairness with regard to prices is evaluated by a

comparison to prices offered to other customers under similar circumstances.17 A way to

measure the fairness of a given distribution is provided by Jain et al. (1984), who take

into account consumers’ preference for equality, which drives similarly distributed – i.e.,

homogeneous—prices. The proposed fairness index is:

f(x) =
[
∑
xi]

2

n
∑
x2i
∈ [0, 1] , (1)

where f measures the fairness if resources are allocated to n individuals such that the ith

individual receives an allocation xi.
18 For the purpose of this paper, n is interpreted as the

number of customer groups, which are labeled by i. The variable xi can represent either

the price that is charged or the quantity that is sold to a particular customer group i. The

index measures the equality of the allocation x: if all consumers get the same amount or

pay the same price – i.e., all xi’s are equal – then the index is 1, and the policy is 100%

fair. If disparity increases, fairness decreases; a policy which favors only a selected few

consumers has a fairness index near 0. The index is dimensionless and independent of

scale; it is bounded between 0 and 1; and it is continuous, so that any slight change in xi

changes the index.

16 Ezrachi and Stucke 2016.
17 The approach of Fehr and Schmidt (1999) also includes the aspect of self-centered inequity aversion,

which means that consumers suffer more from inequality that is to their disadvantage (they have to
pay a higher price) than from inequality that is to their advantage (they have to pay a lower price).
However, for the sake of simplicity, we only consider a “general” inequity aversion.

18 Jain et al. 1984.
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2.3 Reinforcement Learning

As this study examines price discrimination and fairness through self-learning algorithms,

we introduce reinforcement learning as a basic machine learning concept. Reinforcement

learning is learning what to do, or how to map situations to actions so as to maximize a

numerical reward signal. The learning agent is not told which actions to take but instead

must discover which actions yield the most reward through trial. Reinforcement learning

uses the formal framework of Markov decision processes to define the interaction between

a learning agent and its environment in terms of states, actions, and rewards.19

One of the challenges that arises in reinforcement learning is the trade-off between explo-

ration and exploitation. To obtain a high reward, a reinforcement learning agent must

prefer actions that it has tried in the past and found to be effective in producing re-

ward. However, to discover such actions, it has to try actions that it has not tried before.

Therefore, the algorithm should use a dynamic action selection policy that balances ex-

ploitation (or choosing the optimal action as currently perceived) and exploration (or

choosing another action to improve action selections in the future.20

Independent Q-learning21 is a simple but well-established reinforcement learning algo-

rithm. Interacting with its environment, the algorithm learns according to a so-called

Q-function Q(s, a) that matches the optimal long-run value of choosing any action a ∈ A
facing any given state s ∈ S. During this interaction, the algorithm uses a dynamic

action selection policy that balances exploitation and exploration. The Q-function can

be represented as an |S| × |A| matrix. If the Q-matrix is known, the algorithm can then

easily calculate the optimal action for any given state. However, Q-learning is a method

for estimating the Q-matrix without knowing the underlying model through an iterative

procedure. Starting from an arbitrary initial matrix Q0, the algorithm chooses action at

in state st, observes rt and st+1, and updates the corresponding cell of the matrix Q(st, at)

according to the following recursive relationship:

Q(st, at)← (1− α)Q(st, at) + α
(
rt + δmax

a
Q(st+1, a)

)
, (2)

where the updated value Q(st, at) is a convex combination of the previous value Q(st, at)

and the reward obtained after performing action at in state st plus the discounted value

of the state that is reached in the following period. For all other cells of the matrix, the

Q-value does not change. The parameter α ∈ (0, 1) is the learning rate and δ ∈ [0, 1) is

the discount factor. Action a denotes the optimal strategy (i.e., the action leading to the

19 For a comprehensive introduction to single-agent reinforcement learning, see Sutton and Barto (2018).
20 Ibid.
21 Watkins and Dayan 1992.
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highest reward) until this time step.

To balance exploration and exploitation, the Q-learning algorithm adopts a probabilistic

action selection policy. Using what is called a ε-greedy strategy, the algorithm follows a

random action (exploration) within a given interval [amin, amax] with ε(t) ∈ [0, 1] prob-

ability and exploitative action with 1 − ε(t) probability. In the case of multiple actions

sharing the same highest Q-value under exploitation, the algorithm randomizes across

these actions.22

at =

[amin, amax] with probability ε(t)

arg maxaQ(st, a) with probability 1− ε(t)
(3)

The probability of exploration is determined by:

ε(t) = ε(0)(1− θ)t, (4)

where ε(0) ∈ [0, 1] is the initial exploration probability and θ ∈ [0, 1] is a decay param-

eter. Whenever θ > 0, the decay in exploration ensures convergence to a deterministic

strategy.

Although other more complex independent-learning algorithms (such as deep learning)

are currently being applied to diverse strategic settings, this paper focuses on a simple

Q-learning algorithm. In contrast to more sophisticated algorithms, this simple algorithm

can be fully described by just two parameters: the learning rate α and the experimenta-

tion parameter θ.23 A disadvantage of this algorithm is the slowness of learning, which

increases with the complexity of the environment. However, since the environment in this

paper is very simple, Q-learning provides an adequate approach for this problem.

3 Methodology

Customer groups gi with i = 1, 2, . . . , n are defined in advance. This can be interpreted

as an algorithm that divides customers into groups based on collected and analyzed data.

The characteristics used to classify customers must have an effect on their willingness to

pay. For the sake of simplicity, customer groups in this paper are exogenous. Therefore,

the processes of defining customer groups, allocating customers, and setting prices are

22 Approach based on Klein (2018).
23 For example, with deep learning algorithms, in addition to the learning and experimentation parame-

ters, one must specify a functional form for the Q-function, the number of estimation layers, and the
structure of the neural network in each layer.
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sequential.

Furthermore, we assume that customers are equally uniformly distributed in the interval

[0, 1]; thus, we assume a unit mass of consumers and unit demand. We start by defining

only two customer groups i = 1, 2 which can be expanded in later simulations. Every

customer belongs to exactly one group (either g1 or g2), and each customer responds to

each price bid with the following probability function φ ∈ [0, 1]:

φ(a) =
[
1 + e−(si+wi·a)

]−1
, (5)

where a is the action chosen by the algorithm (the price bid), and si and wi are parameters

defining the sensitivity of each group, defined in Table 1.24

Group s w
1 18.229 −23.69
2 4.4757 −15.526

Table 1: Weights for the probability function φ

The larger the parameter s is, the higher the acceptance probability of the customer

group. For s = 100, the acceptance probability equals 1.0 for any given price. For s < 10,

the acceptance probability for a price of zero is < 1. Parameter w determines how strong

and in which direction (positive or negative) the consumer reacts to a change in the price.

If w > 0, the customers’ acceptance rate increases with the price. This happens when

consumers judge quality by price. If w < 0, the acceptance rate decreases when the price

increases.

We provide a scenario simulating two different types of consumer behavior. Customers in

g1 accept much higher prices (also in terms of the initial acceptance rate) than customers

in g2. Both groups show a decrease in the acceptance probability if the price increases.

The acceptance probability functions of the two customer groups for the price interval

[0, 1] are shown in Figure 1.

The action space is defined as an interval for the action bid a ∈ [amin, amax] – i.e., the

price. Since Q-learning requires a finite action space, the action bid is a discrete variable

scaled between 0 and 1 with k equally-sized intervals; thus, actions are taken from a

discrete set A = {0, 1
k
, 2
k
, . . . , 1}.

The state space of group i is given by all prices that can be set for group j and vice versa.

Consequently, the state space is given by S = {0, 1
k
, 2
k
, . . . , 1}.

24 Similar functions were used by Maestre et al. (2019), who dealt with a more complex reinforcement
learning approach in a dynamic pricing context.
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Figure 1: Acceptance probability functions of customer groups g1 and g2

Whether a price distribution is considered fair is measured by the following fairness in-

dex:

f(a) =
[
∑

i amax − ai]
2

n
∑

i(amax − ai)2
, (6)

where amax is the maximum price that can be set (i.e., the maximum price of the given

action set) and ai is the price set for group gi. This index is based on the index of Jain et

al. (1984) shown in equation (1). Using the original index, a large and homogeneous value

of resources x increases the index and thus the fairness. However, in a differential pricing

context, large prices are not perceived as fair. With such an index modification, lower,

homogeneously-distributed prices lead to a higher fairness index. In order to consider the

consumers’ notions of fairness, the fairness parameter is integrated into the acceptance

probability function such that a low fairness index decreases the acceptance probability

and vice versa. The modified acceptance probability is given as:

φ(a) =
[
1 + e−(si+wi·a)+β(1−f(a))

]−1
, (7)

where β denotes a parameter for considering fairness (β = 1) or not considering fairness

(β = 0). The modified acceptance probabilities are shown in Figure 2 for different values

of the fairness parameter f .25

As customers are equally uniformly distributed within each group gi, the reward – i.e.,

the expected revenue – is defined as the price multiplied by the acceptance probability

25 Customers’ aversion to higher prices is captured in both the acceptance probability function (ac-
ceptance probability decreases with a higher price) and the fairness index (f is larger for lower,
homogeneously-distributed prices). Nevertheless, to see how fairness develops over time, it is neces-
sary to capture this feature as a separate consideration of the fairness index.
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Figure 2: Acceptance probability functions of customer groups g1 and g2 for different
fairness levels

from equation (7), where i = 1, 2 denotes the respective customer group.

ri = ai · φi (8)

The Q-learning is simulated as follows. In t = 1, the algorithm sets a price for each

group. For all subsequent periods, the algorithm sets prices alternately, wherein the last

price set for one group serves as the current state for the other group. Additionally, this

price serves as the comparative price for the fairness index. Depending on the selected

parameter values, the reward is either independent of the state (β = 0, if no fairness

is considered) or dependent on the current state (β = 1, if fairness is considered). The

algorithm learns to set the optimal price for each group by updating its Q-function for

customer group i according to the following recursive relationship:

Qi(aj, ai)← (1− α)Qi(aj, ai) + α
(
ri + δr′j + δ2 max

a
Qi(a

′
j, a)

)
(9)

where action ai denotes the price set for group i and aj denotes the price set for group

j, which determines the state for the Q-function of customer group i. The updated value

Qi(aj, ai) is a combination of the previous value Qi(aj, ai), the reward obtained for group

i, the discounted reward r′j for group j that will be achieved in the following period, and

the discounted value of the new state a′j that will be reached in the following period.

The pseudocode for the Q-learning algorithm is provided below.
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Pseudocode Q-learning
1 Set probability function φ, parameters s, w, β, k, α, δ, ε(0)

and θ for group gi
2 Initialize Q1 and Q2 as empty matrices
3 Initialize a1,1 and a2,1 randomly
4 Initialize t = 2, i = 1 and j = 2
5 Loop over each period
6 | Set action bid ai,t according to (3)
7 | Calculate reward according to (8)
8 | Update Qi(aj, ai) according to (9)
9 | Update t← t+ 1
10 Until t = T (specified number of periods)

4 Results and Discussion

To constrain the number of possible actions, we use the discrete action set A = {0, 1
k
, 2
k
,

. . . , 1} with k = 10. Consequently, there are a total of eleven possible price bids. The

action set might be extended in further simulations.26 We consider two customer groups,

making i = 1, 2. We take an initial exploration probability ε(0) = 1, decay parameter θ =

0.000046, learning rate α = 0.1, and discount factor δ = 0.9. To assess the performance

of the algorithm, the statistics are computed over 100 runs. In each run, 100000 price

bids (periods) are simulated. Over these 100000 periods, the probability of exploration

drops to below 1%. For each period, we average over the 100 simulated runs to see how

an average market price and reward develop over time.

Two different scenarios are conducted in order to compare the outcomes of different

objectives. In the first scenario, the algorithm learns to set different prices for each

customer group. Fairness is not considered in this case, so the parameter β is set equal

to zero. Therefore, the acceptance probability simplifies to equation (5). The reward

is determined as ri = ai · φi. Since the fairness index has been dropped, the reward

of a chosen action does not depend on the current state (i.e., the price of the other

group).27 The corresponding action and reward history are shown in Appendix A. In

scenario II, fairness considerations are included (β = 1); thus, prices ai and aj depend

on each other, due to the fairness index. Customers are assumed to be inequity averse

– i.e., they have a strong preference for equitable, homogeneous prices. As a result, the

acceptance probability decreases with a decreasing value of the fairness parameter. The

26 A large action set negatively affects learning convergences; consequently, the algorithm would take
much longer to learn the optimal pricing strategy.

27 This simplified setting implies a one-stationary problem, which could be solved more efficiently by a
multi-armed bandit algorithm. However, for a better comparison, the Q-learning algorithm is also
applied in this case.
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reward is calculated the same way as in scenario I, with the only difference being that

the acceptance probability φ now depends on the fairness parameter f . Consequently,

the algorithm learns to increase the price within each group (maximizing the expected

revenue, as seen in the previous scenario) while reducing price differences between groups,

in order to achieve both maximum revenue and fairness. It is assumed that maintaining

a balance of price distribution among groups of customers leads to fairer prices, as these

prices are chosen by considering customers’ preference for equality. The corresponding

action and reward history are shown in Appendix B; the average prices of the two scenarios

are displayed in Figures 3 and 4.

The average market outcomes of both settings of the final 1000 periods are presented in

Table 2. In the first scenario, the Q-learning agent is able to conduct price discrimination

and does not consider fairness. Accordingly, the value of the fairness parameter is lower

than 1, since consumers are charged different prices. If inequity aversion is introduced

(scenario II), the price for group 2 remains nearly unchanged, while the price charged

to group 1 decreases. As a result, prices are more homogeneously distributed (although

there is no unit price), since the price-setting policy balances between maximizing revenue

and providing a fair market outcome. This is further illustrated by a higher value of the

fairness parameter than in scenario I. The higher reward is obtained in scenario I, where

prices are set on a discriminatory basis without considering fairness. However, the reward

obtained when setting differential prices while simultaneously taking customers’ inequity

aversion into account is just slightly lower than that in scenario I.

Hyperparameters Results

Scenario α δ k β ā1 ā2 r̄ f̄

I 0.10 0.90 10 0 0.636 0.204 0.742 0.874

II 0.10 0.90 10 1 0.599 0.204 0.740 0.900

Table 2: Parameter values and averaged results of the final 1000 periods

In order to compare the results of the algorithmic learning procedure with the analytical

solution of the profit maximization problem28, the market outcomes for both scenarios

are calculated. If fairness is not considered, it can be seen here that it is beneficial for a

monopolist to charge a price that is almost equal to the willingness to pay of customer

group g1 in order to extract as much consumer surplus as possible from this group. The

results of the analytical calculation are shown in table 3.29

28 Since we assume zero marginal cost, profit equals revenue in this case.
29 Because we only allow for numbers with one decimal place (in the case of k = 10), the simulation

results are not able to converge to the exact numbers of the analytical solution.
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Prices Profits (Revenues)

Scenario a∗1 a∗2 r∗1 r∗2
I 0.656 0.228 0.614 0.164

II 0.649 0.225 0.609 0.158

Table 3: Analytical solution

Certainly, this approach has some limitations. For example, the assumptions made above

do not reflect the economic reality. In a perfectly competitive market, price discrimination

is not feasible, as firms undercut each other until they end up in a (unit) price that equals

marginal cost. However, prices might be differentiated due to search costs, lock-in effects,

transportation costs, or asymmetric information. As a result, firms compete with each

other, but markets do not seem to be perfectly competitive, and differential prices are

likely to occur.30 Another assumption that applies in reality is that of a limited action

space: since firms have a price limit under which they would never sell the product

(typically under average or marginal cost) the price interval has a lower bound31, and the

upper bound of the price interval is potential customers’ maximum willingness to pay.

However, it should be mentioned that each customer’s actual willingness to pay cannot

be determined by firms, as they only obtain imperfect information about each consumer.

For this reason, personalized prices are not identical to perfect price discrimination.

Additionally, the implications of personalized pricing for consumer and total welfare are

ambiguous, welfare could move in many directions relative to the benchmark of a unified

market. Bergemann et al. (2015) showed that while obtaining additional information

about consumers can never hurt the seller, it can increase both total and consumer surplus,

decrease both, or increase one and decrease the other. Which form of market segmentation

is used in practice is influenced by many factors, which may include both technological

and legal limitations on how information can be collected and used. In our simulation,

customer group 2 benefits from fair personalized pricing since they pay a lower price, while

customer group 1 is worse off since they pay a higher price. With these specific numbers

and parameters, the decrease in consumer surplus of customer group 1 is higher than

the increase in consumer surplus of customer group 2. However, this distribution might

change if the values for s and w (which determine the acceptance probability φ) change,

30 Much empirical work tests for the presence of price discrimination in imperfectly competitive envi-
ronments, e.g. Shepard (1991) in the gasoline market, Goldberg (1995) in the market for European
automobiles, and Leslie (2004) in the Broadway theater market. For a survey of price discrimination
in imperfectly competitive markets, see Armstrong (2006).

31 Despite the willingness to obtain negative profits in particular situations, retailers in the EU are not
allowed to sell below cost (called predatory pricing) according to TFEU, Art. 102. The reason given
is that such behavior, exercised over a longer period, can drive smaller competitors out of the market.
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or if more customer groups with different acceptance probabilities are introduced.32 In

our setting, both the average market price and the expected revenue increase whenever

personalized prices are introduced. This is also in line with economic literature in the

monopolistic (single-agent) setting.

5 Further Research

Using reinforcement learning, this paper shows how to maximize prices while maintain-

ing a balance between revenue and fairness. Compared to the “standard” case of price

discrimination, the results show an improvement in fairness while also obtaining the goal

of maximizing revenue. However, compared to uniform pricing, the average market price

increases.

Future research might include possible extensions of this study. First, the parameters (ε,

f) could be refined in order to do justice to the complexity of this approach. For example,

Jain’s index does not account for self-centered inequity aversion, which occurs when people

do not care about inequity that exists among other people and are only interested in the

fairness of their own material payoff relative to the payoffs of others. According to Fehr

and Schmidt (1999), the judgment and feelings associated with advantaged and disadvan-

taged price inequality are different, because consumers suffer more from inequality that is

to their disadvantage (which is not considered in the current index). Second, the action

space and the state space could be extended to allow for more prices (an increase in k).

Additionally, more customer groups may be added. Finally, the comparison with other

reinforcement learning methods, such as deep learning, and with evolutionary algorithms

could be useful for obtaining further insights. The complexity of the algorithm might

also be increased by including the processes of defining and refining customer groups as

well as setting prices simultaneously. Using different algorithms might also allow for the

investigation of multi-agent learning by simulating a competitive environment instead of

a monopolistic structure, the outcomes of which are unclear in economic literature.

32 Dubé and Misra (2019) conducted an experiment with an online recruiting company, comparing the
existing uniform price, an optimized uniform price, and targeted prices. They found that customer
surplus declines slightly with personalized pricing relative to uniform pricing. However, over 60% of
customers benefit from personalized prices that are lower than the optimal uniform price.
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A Results Scenario I
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Figure 5: Action history scenario I

0 20000 40000 60000 80000 100000

Number of periods

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
ev

en
u
e

Group 1

Group 2

Figure 6: Reward history scenario I
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B Results Scenario II
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Figure 7: Action history scenario II
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Figure 8: Reward history scenario II
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