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3.1 General representation of stage-wise approaches to compare year-effect adjustment.

Factors were genotype (G), tester (T ), location (L), year (A), trial (S), replicate (R)

and block (B). Grain dry matter yield (Y ) is the response variable in the first stage,

M (1) is the adjusted mean of genotypes across locations used in the second stage,

M (1∗) is the year effect-corrected genotype adjusted mean, M̄ (1)
r represents the simple

mean of genotypes of the r-th year. In the genomic prediction (GP) stage, M(2) is the

n× 1 vector of adjusted means of genotypes by year for Approach 1a and across years

for Approach 2, M(2∗) is the n × 1 vector of adjusted means of year effect-corrected

genotypes in Approach 1b, X and β are respectively the design matrix and parameter

vector of fixed effects, Z is the n × p marker matrix, u is the p-dimensional vector of

SNP effects and e the error vector. Y = G ·T : S/R/B is the shorthand notation of the

model eq. (1) in the text: Yhijkv = (GT )hv+Si+Rij+Bijk+ehijkv,M (1) = G×L×T

stands for the model eq. (2) in the text: M (1)
hsv = Gh +Ls + Tv + (GL)hs + (GT )hv +

(LT )sv+(GLT )hsv+ehsv, andM (1) = (A/T )×G×L represents the extended model

eq. (4) in the text: M (1)
hrsv = Gh + Ls + (AT )rv + (GA)hr + (GAT )hrv + (GL)hs +

(LA)rs+(LAT )rsv +(GLA)hrs+(GLAT )hrsv +ehrsv. The final predictive abilities

(ρ) are presented in the ellipses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 General representation of model comparison through all the stages of the analysis.

Datasets generated from 9 spatial and non-spatial models plus two mixed datasets

generated from best models given the Akaike information criterion (Mix1) and the

predictive abilities (Mix2). Factors in second stage were genotype (G), location (L)

and tester (T ). M (1) represents the adjusted mean of genotypes across locations and

years. M (1) = G × L × T is the shorthand notation for M (1)
hsv = Gh + Ls + Tv +

(GL)hs+(GT )hv +(LT )sv +(GLT )hsv +ehsv. In the genomic prediction (GP) stage

M(2) is the adjusted mean of genotypes across locations, X and β are respectively the

design matrix and parameter vector of fixed effects, Z is the n × p marker matrix, u

is the p-dimensional vector of SNP effects and e the error vector. Sampling methods

in cross validation (CV) were across crosses (AC) and within crosses (WC). The final

predictive abilities (ρ) are presented in the ellipses. . . . . . . . . . . . . . . . . . 53
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3.3 General representation of strategies to compare model selection methods. Factors

were genotype (G), tester (T ), trial (S), replicate (R) and block (B). Grain dry matter

yield (Y ) is the response variable in the first stage. Y = G · T : S/R/B is the

shorthand notation for the model Yhijkv = (GT )hv+Si+Rij+Bijk+ehijkv. Datasets

of 9 spatial and non spatial models plus one mixed dataset (Mix1) generated from best

models given the Akaike information criterion (AIC) and another mixed dataset (Mix2)

generated from best models given the predictive abilities (ρ-GP-CV). . . . . . . . . 60

3.4 Comparison of approaches for year adjustment. In the x-axis, the genotype adjusted

means across-year analysis are plotted. In the y-axis, the year-effect-corrected adjusted

means from the year-wise analysis are depicted. . . . . . . . . . . . . . . . . . . . 65

3.5 Comparison between approaches to fit the year effect. The y-axis represents the

genotype adjusted means [M(2) −Xβ̂ in (A), M(2) in (B) and M(2∗) in (C)] and the

x-axis represents the GEBV (Zû). (A) Year-wise analysis (Approach 1a), fitting year

as fixed effect in the GP stage, (B) Across-years analysis (Approach 2), using year in

the second stage and (C) year-wise analysis using the year effect-corrected genotype

means (Approach 1b). ρGP represents the predictive ability. . . . . . . . . . . . . . 66
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Chapter 1

Introduction

1.1 Overview

Rye (Secale cereale L.) production has tremendously improved in the past 150 years since the

start of rye breeding. In the past few decades the enormous boost has been mainly due to the

discovery of the P-cytoplasm and application of cytoplasmic male sterility (CMS) technology

and, more recently, due to the onset of molecular techniques in genetics. Since rye is an

allogamous species, rye hybrid breeding exploits heterosis resulting from sequential selfings

that generate inbreeding depression, and benefits from the general and specific combination

ability in the final variety [Schlegel, 2016].

Genomic selection (GS) is a tool in the breeding process that uses genomic estimated

breeding values (GEBVs) based on molecular marker information to improve efficiency and

cost-effectiveness [Meuwissen et al., 2001]. Genomic prediction (GP) is the term coined for the

statistical procedures involved in obtaining those predicted GEBVs. The fact that rye is known

to have low linkage disequilibrium (LD) [Li et al., 2011b] makes GP challenging, because there

are many genes with small effects and few genes with strong effects, but also appealing, because

by using many markers, quantitative trait loci (QTL) are more likely to be captured.

The present study was carried out as part of the RYE-SELECT project, funded by the

German Federal Ministry of Education and Research (BMBF). The project involves several

academic partners plus the breeding company KWS-Lochow and aims to study molecular tools

and genetic methods to develop appropriate breeding strategies and evaluate the potential of

GS. To integrate GS into the hybrid rye breeding program of KWS-Lochow, a thorough study

1



2 CHAPTER 1. INTRODUCTION

of GP involving phenotypic and genotypic analyses is imperative. This includes data pre-

processing, evaluation of efficient phenotypic models, identification of effective and suitable GP

approaches, methods to integrate crop growth models within GP, definition of optimal breeding

schemes and studies on appropriate statistical methods for inference on markers effects. To

address the aims of this project, in this thesis outlier detection methods, phenotypic spatial and

non-spatial models and GP approaches were evaluated. The methods were implemented using

empirical data produced in the hybrid rye breeding program of KWS-Lochow during the years

2009 to 2014.

1.2 The hybrid rye breeding program

Within small cereals, rye is of utmost importance due to its tolerance to cold, drought or

poor soils [Schlegel, 2016]. Hybrid rye commercial breeding can be described in two stages:

(i) population improvement, where parent line development is carried out, and (ii) product

development, where the hybrid candidates are submitted to agronomic ranking and evaluation

before commercialization [Wilde et al., 2015].

Parent line development involves: (i) recombination of pre-tested lines, (ii) subsequent

selfing of their progenies, (iii) line per se selection, (iv) testcross and seed production, and

(v) evaluation of general combining ability (GCA) to the opposite pool [Wilde et al., 2015]. A

reliable CMS system is required for the seed parent pool candidates, whereas lines of the pollen

parent pool must carry efficient fertility restoration genes [Geiger and Miedaner, 2009].

Testcross progenies (coming from S2-lines) are evaluated using multi-environment trials

(METs) in so-called GCA1 experiments to assess the GCA of the testcrosses. In a subsequent

experiment (GCA2), the best candidates from the GCA1 experiments are subjected to further

evaluations across more locations and usually with the same testers as in the GCA1 experiments.

Following GCA2, the best lines are tested in a factorial experiment (FACT or GCA3) involving

different and more testers and also more locations than in GCA1 and GCA2 experiments. GCA2

and FACT/GCA3 are considered follow-up experiments to confirm the selection decisions on

the initial GCA1 experiment. After FACT/GCA3 experiments, a new breeding cycle starts.

The new cycle uses the selected genotypes from the previous cycle as parents, so that between

GCA1 in the first cycle and GCA1 of the next cycle five years elapse. Genetic gain accumulates
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from cycle to cycle as a result of genetic progress in variety development [Wilde et al., 2015].

Two breeding programs (one in Germany and the other in Poland) run constantly, that

is, in a given year one breeding cycle starts the parent-crossing stage, and in the same year,

another cycle already undergoes the stage of early-generation testing. In this work, the data

analyzed correspond to GCA1, GCA2 and FACT/GCA3 experiments of both countries. Within

each experiment (which runs in a single year), the series or trials are inter-connected through

checks (commercial well known lines) and subsets of genotypes are evaluated in more than one

location. Hence, connectivity within a year is well established. The connection within breeding

cycles (GCA1 + GCA2 + GCA3) is achieved by the selected genotypes carried forward from

one year to the next, which depending on the stage (and the selection intensity) can amount to

1% to 10% of the genotypes in the preceding year. Different breeding cycles, in the opposite,

remain disconnected, i.e. there are no common genotypes between cycles.

1.3 Residual analysis

Before starting any analysis, breeders (and many other specialists) deal with the uncertainty

as to the reliability of the data. Often the question is whether the assumptions of the linear

(mixed) models are fulfilled, i.e., normally distributed (and independent) errors with zero mean

and homogeneous variance. Breeders often use a standard pipeline with which the data is

quickly analyzed, residuals are estimated and a set of diagnostic plots is produced. This is

the starting point to identify suspicious observations that may further result in poorly selected

models, poor inference and inappropriate decisions [Gumedze et al., 2010]. Some breeders have

developed their own routines to identify those suspicious observations. Scientists and academics

have come up with several solutions, some of them already in-built in statistical software

[Pinheiro and Bates, 2000; Schützenmeister and Piepho, 2012; Utz, 2003] and some others

using more advanced methodologies [Gumedze et al., 2010; Nobre and Singer, 2007]. This

thesis scrutinizes from a statistical and a practical point of view whether methods automatized

in statistical packages and breeder rules of thumb to detect outliers are valid in terms of control

of the Type I error rate (i.e. the probability to falsely declare a null effect to be real or non-zero).

One of the most popular statistical software packages for plant breeding trial analysis in

Germany is PlabStat [Utz, 2003]. Its outlier detection method is one of the most beloved and
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trusted versions among plant breeders. The software is ANOVA-based, freely distributed and

many junior breeders are familiar with PlabStat since they learn how to use the software at

universities. Statistical packages are now mainly using variance estimation methods based on

likelihood theory, e.g., maximum likelihood (ML) estimation and restricted maximum likeli-

hood (REML). The properties of ANOVA and REML have been extensively studied [Littell,

2002; Searle et al., 1992], most of the times giving preference to REML estimation, because

with large sample size, it provides consistent (i.e., asymptotically unbiased and variance tending

to zero), fully efficient (i.e., minimum variance) and normally distributed parameter estimators

[Burnham and Anderson, 1998]. The transition from ANOVA to REML poses a challenge

for users of ANOVA packages such as PlabStat accustomed to in-built facilities, e.g. outlier

identification tools. Other breeders not familiar with PlabStat may have developed their own

rules based on their experiences or stick to the popular ones, such as one that in the present

study is called Studentized residual razor (SRR), also widely used in practical analysis of plant

breeding trials. In this rule, if the absolute value of the Studentized residual of an observation

is beyond the (1 − α/2)-quantile of the normal distribution (with α the expected proportion

of falsely flagged residuals), that observation should be considered an outlier and handled

accordingly.

The problem of judging an observation as an outlier can be seen as a hypothesis test,

requiring a test of significance. When there are several observations to be judged, a multiple

testing problem arises. This problem refers to the fact that with lots of tests, the probability

of finding at least one significant but acceptable outlying observation by chance alone may

be inappropriately large [Snedecor and Cochran, 1980]. Many different methods have been

described to deal with the multiple testing problem, i.e., methods controlling the experiment-

wise Type I error rate. In this work, the Bonferroni-Holm test [Holm, 1979] is considered using

different types of standardized residuals.

The area of diagnostic statistics is very broad and actively studied because many questions

arise in judging reliability and quality of the data. In plant breeding, where data undergo several

analyses (e.g., phenotypic analysis and then genotypic analysis), one of the questions arising is

whether dropping outliers in a preliminary stage has a positive effect on a further stage, e.g.,

in GP. And in such a case, what attributes should the method have to provide a secure outlier

detection for safe and reliable further analyses. This topic is covered in Chapter 2 using a case

study and published field trial datasets.
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1.4 Phenotypic analysis towards genomic prediction

Phenotypic analyses presented in this thesis follow a stage-wise approach. In the first stage or

stages, adjusted genotype means are obtained from fitting a statistical model to the raw plot data.

Next, the adjusted means can be used to obtain GEBVs in a GP stage [Piepho et al., 2012a]. In

this section, the general basis for the phenotypic analysis approach is described followed by the

principles of the GP methodology.

1.4.1 A stage-wise approach for phenotypic and genomic prediction analyses

Linear mixed models (LMM) have been used to analyze advanced trial layouts allowing to

account for random sources of field variation as well as for genetic and environmental covari-

ances commonly found in plant breeding METs [Cooper et al., 2014; Piepho et al., 2008b].

LMM can be implemented as a single-stage model or by a stage-wise approach [Piepho et al.,

2012a; Smith et al., 2001]. A potential drawback of the former approach is the computational

load, specially if there are large sets of genotypes, many locations and complex variance-

covariance structures of the genotype-by-location effects. Thus, in practice, the use of stage-

wise analysis alleviates the computational burden, although accounting for heteroscedasticity

and heterogeneity of covariances among the adjusted means can be challenging [Möhring and

Piepho, 2009]. In addition, when single locations need specific adjustment to characterize the

within-location variation, a stage-wise approach may be more convenient [Piepho et al., 2012a],

and more intuitive because of its simplicity and understandability [van Eeuwijk et al., 2016].

Stage-wise approaches have been found to reproduce well a single-stage analysis [Möhring

and Piepho, 2009; Piepho et al., 2012a]. In general, adjusted genotype means per location are

computed in the first stage and then, to minimize loss of information, a variance-covariance

matrix of those means approximated by some diagonal matrix is used for weighting in the

next stage [Piepho et al., 2012a; Schulz-Streeck et al., 2013a; Smith et al., 2001]. Attention

should be paid to the hierarchy of factors used in the experimental design, as well as to fixed

or random status of an effect in the model. The factors used for the analysis are for example:

genotype, testers, locations, trials within locations, replicates within trials, incomplete blocks

within replicates, and the effects are the model terms defined for these factors [Piepho et al.,

2012a]. Further, a distinction between treatment factors and design factors should be made:
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design factors are innate to the experimental design units, whereas the treatment factors are

those whose levels are randomly allocated to experimental units [Brien, 1983; Piepho et al.,

2012a]. This is important because for the first stage, the level where data will be summarized

to compute adjusted means should be decided. Additionally, caution should be taken when

setting effects as random or fixed across the stages in order to avoid “double shrinkage” [Smith

et al., 2001] and to ensure a proper estimation of the effects across stages [Piepho et al., 2012a].

Paying due attention to these issues, a stage-wise approach fits perfectly into the GP framework,

where adjusted genotype means are the substrate for the prediction of GEBVs.

1.4.2 Genomic prediction and related factors

Genomic selection is the term coined for the process of using not only large QTL but all markers

available along the genome in order to be able to predict GEBVs of genotypes that have not

been tested in the field, i.e., they have no phenotypic observations but genotypic information

is available. GEBVs refer to the purely additive genetic effect calculated as the sum of marker

effects for a given genotype. Selection decisions are informed by the GEBVs [Meuwissen et al.,

2001]. The methodology was developed as an option to overcome the shortcomings of marker

assisted selection (MAS), which was based only on the use of large contrasting QTL effects

[Bernardo, 2008; Jannink et al., 2010]. Thus, GS requires that markers cover all the genome

and are sufficiently separated from one another to use the LD and in this way, the effect of

the marker in a given position can be calculated. The advantage of GS is the increase of the

cost-effectiveness of the breeding cycle, i.e., the gain per unit time [Heffner et al. 2009, 2010],

because it is possible to: (i) pre-select good crosses and (ii) avoid phenotyping all genotypes in

the field, thus increasing the number of evaluated individuals per cross.

In general, GS consist of the following steps:

• Genotype and phenotype a set of genotype entries. This population is called the training

set (TS).

• Only genotype another set of genotype entries, whose GEBVs are to be predicted. This

population is called the validation set (VS).

• Train a model using the TS (phenotyped and genotyped entries) and the molecular marker

information of the VS to predict GEBVs of unphenotyped entries.
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• Select candidate genotypes from the VS according to the predicted GEBVs.

Multiple interrelated factors affect GS accuracy: training and validation sets size [Auinger

et al., 2016; Crossa et al., 2014; Schulz-Streeck et al., 2012], number and type of markers [Hes-

lot et al., 2013b], level of LD between markers and QTL [Habier et al., 2007; Meuwissen et al.,

2001; Riedelsheimer et al., 2012], heritability of the trait under scrutiny [Daetwyler et al., 2013;

Goddard, 2009; Guo et al., 2014b; Habier et al., 2007], non-additive genetic variation [Toro

and Varona, 2010; Wang et al., 2014; Wellmann and Bennewitz, 2011], population structure

[Guo et al., 2014b; Isidro et al., 2015; Windhausen et al., 2012], degree of genetic relatedness

between TS and VS [Crossa et al., 2014; Wientjes et al., 2013] and genotype-by-environment

(GE) interaction [Burgueño et al., 2012; Heslot et al., 2014].

1.4.3 Genomic prediction models

In animal breeding, pedigree-based on the best linear unbiased prediction (BLUP) has been

used long before the advent of molecular markers since, often, the breeding value of an animal

cannot be estimated through direct observations but only through the evaluation of the progeny.

For example, a bull’s breeding value for milk yield can only be estimated via its daughters’ and

grand daughters’ milk yield. To exploit this pedigree information, genetic correlation needs

to be modeled. BLUP allows modeling of those correlations. Conversely, for plant breeders

it is possible to test the same genotype in multiple environments, where a simple mean across

environments provides a rather accurate estimate of the genotypic value, so in the past there

has been little pressure to exploit information from relatives in order to improve precision.

Plant breeders have only fairly recently started to embrace the adoption of BLUP [Piepho et al.,

2008a]. Animal breeders have always used BLUP, so the step towards GP BLUP-based models

was straightforward for them, whereas for plant breeders, who had never used BLUP before and

always relied on simple arithmetic means or best linear unbiased estimators (BLUE), GP took

off later.

High-density marker systems, characterized by a large number of markers (p), represent

a problem in GP since number of genotypes (n) are far less than p, so that standard multiple

regressions are impossible when p >> n. A plethora of GP methods have been proposed

to overcome this limitation and to allow the estimation of marker effects. Most common ap-

proaches involve mixed models [Meuwissen et al., 2001; Piepho, 2009b] and Bayesian methods
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[Gianola, 2013; Meuwissen et al., 2001], but choices are not restricted to these [Heslot et al.,

2012; Ogutu et al., 2012].

Throughout this work, GP will be done exclusively using LMM. The GP model uses the

markers as random factors to be able to compute BLUPs of the marker effects. The model is

based on the assumption that the marker effects are sampled from the same normal distribution.

Thus, all markers have the same variance and are assumed to be very small. The estimated

marker effects are shrunk by a penalty parameter (λ2), thus avoiding over-fitting and stabilizing

the estimation. The GEBV of a genotype is thus the sum of its estimated marker effects.

The ridge regression BLUP (RR-BLUP) method allows to use REML to estimate the penalty

parameter [Piepho, 2009b]. The method RR-BLUP is equivalent to genomic BLUP (GBLUP)

[Goddard, 2009; Habier et al., 2007] and leads to the same results as long as kinship matrices

are equally scaled [Habier et al., 2007] but computation load is different depending on the size

of n and p. If p >> n, GBLUP may be more favorable, whereas for p < n, RR-BLUP is more

convenient.

The disadvantage of assuming marker effects with homogeneous variances (as RR-BLUP

and GBLUP do) is that large QTL effects may be underestimated [Meuwissen et al., 2001]. Sev-

eral Bayesian methods have been developed to overcome this restriction. In general, Bayesian

methods differ in the marker effects’ prior distribution, which may allow for each marker effect

to be shrunk differently and for some marker effects to be zero [Gianola, 2013; Habier et al.,

2013]. Simulations and real data studies that compare GP methods (BLUP- and Bayesian-

based) have shown that similar results are achieved [Piepho, 2009b; Technow et al., 2014;

Wimmer et al., 2013; Zhao et al., 2013], but when there are large QTL effects Bayesian methods

perform better [Habier et al., 2013; Kemper et al., 2015; Pryce et al., 2011; Van den Berg et al.,

2015; Wellmann and Bennewitz, 2012].

Accuracy of predicted GEBVs can be measured using techniques such as k-fold cross

validation (CV), leave-one-out CV or forward validation (FV). Details of these approaches

are introduced in the sub-section 1.5.2. The correlation between predicted GEBVs and the

observed phenotypic values (usually adjusted genotype means) is known as the predictive ability

of the model. When the heritability is taken into account (i.e. predictive ability divided by

square root of heritability), one refers to predictive accuracy [Dekkers, 2007], which assesses

the correlation between true breeding values (TBV) and GEBVs. Throughout the chapters
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of this thesis, the predictive abilities are used to assess the prediction performance of the GP

approaches considered.

1.5 The model choice: linking phenotypes to genotypes

The phenotypic analysis preceding the GP stage may have an influence on the prediction of

GEBVs. The challenges that arise regarding model choice in the phenotypic analysis and

genomic prediction are introduced in this section.

1.5.1 Spatial models as an add-on of the phenotypic model

Spatial models have been used to account for heterogeneity of the growing conditions at the

trial (or location) level [Cullis et al., 2006; Gilmour et al., 1997; Piepho et al., 2008b; Williams

et al., 2006]. The fact that adjacent plots are more similar than non-adjacent plots favors the

use of geostatistical variance-covariance structures. The key idea of modeling a spatial trend

is to fit a “mixture of spatial covariances and/or deterministic functions of spatial coordinates”

[Gilmour et al., 1997].

One- and two-dimensional methods to model spatial trend in the context of field trial have

been extensively studied [Besag and Kempton, 1986; Cullis and Gleeson, 1991], as well as

more sophisticated methods such as using random effects to model large-scale trends [Gilmour

et al., 1997] or using smoothing splines [Verbyla et al., 1999]. In practice, approaches based

on mixed models with a spatial component for local trend have gained popularity because of

their flexibility and step-wise approach to model selection [Piepho et al., 2008b; Piepho and

Williams, 2010; Williams et al., 2006].

The trials of the rye hybrid program from KWS-Lochow are laid out as α-designs with

two replicates. Fields are rectangular and incomplete blocks are laid out longitudinally across

the fields. The experimental plots are identified by row and column numbers, thus besides the

blocks accounting for field heterogeneity, row and column factors can also be included in the

model as post-blocking effects and to account for spatial trend, as an add-on to the non-spatial

models. In Chapter 3, a comparison between spatial and non-spatial models is explored towards

implementation of GP in the hybrid rye program.
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1.5.2 Genomic prediction - cross validation (GP-CV) as a tool for model selection

Model selection in biological sciences in the context of LMM has been addressed by the use of

the Akaike Information Criterion (AIC). The relation of the discrepancy between two models

and the ML allowed practical and theoretical development of model selection theory. The model

with the smallest AIC value represents the best approximation for the information in the data

to the truth, relative to the other models considered in a set of candidate models. It is possible

that none of the models in the set are good, but AIC will select the best approximating model

of those in the candidate set [Burnham and Anderson, 1998].

Cross validation (CV) has been suggested and well studied as basis for model selection

[Arlot and Celisse, 2010]. In general, it consists in partitioning the data into two parts, one is

used for training the model (training set, TS) and the other for validating the model (validation

set, VS). Then, another partition is considered and the process is repeated many times [Burnham

and Anderson, 1998]. The several approaches for CV differ in the number of partitions (folds)

and the number of partitions that are used for the training and the validation set [Arlot and

Celisse, 2010], e.g., leave-one-out, where each data point is successively “left out” from the

sample and used for validation, or k-fold CV, where the data is split into k subsamples of

approximately equal size and each subsample is successively used for validation. Recently,

the prediction of untested scenarios, say future years or unobserved environments, has become

important due to its practical relevance. This validation approach is called forward validation

(GP-FV) [Battenfield et al., 2016; Plieschke et al., 2015].

In the context of GP, k-fold CV is one of the most popular approaches to evaluate the

predictive ability or predictive accuracy (if heritability is considered) of a certain model. In

Chapter 3, spatial and non-spatial models are compared using the AIC and, since marker data

are available, the predictive accuracy of a GP procedure can also be taken as a selection criterion

to decide which phenotypic model fits best the data. This latter approach is called genomic

prediction - cross validation (GP-CV).

To compare models via AIC when REML is used, it is required that the models have

the same fixed effects. If this is not the case, ML can be used [Vaida and Blanchard, 2005;

Wolfinger, 1996]. It would be preferable, however, to use REML given its smaller bias property

[Searle et al., 1992]. The advantage of using GP-CV is that it can also be used with REML to

compare models with different fixed effects structures.
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1.5.3 Accounting for genotype-by-environment (GE) interaction effects

In Section 1.2 the general structure of the rye hybrid program was presented. It is important

to emphasize that breeding cycles, in particular GCA1 experiments from different years, are

disconnected, meaning that they do not share common genotypes. This situation becomes

a problem once it is desired to pull the data together in order to increase the TS-size for

GP. In this disconnected scenario, a genotype-by-year (GY ) interaction effect will become

confounded with genotype main effects, so that an estimation of the mean value of a genotype

becomes inaccurate. For these reasons, plant breeders have preferred to analyze their datasets

by year, where replicates and locations allow them to estimate a reasonably accurate genotype

mean. A paradigm change has come into play with the popularity of GP, where large TS sizes

are important to achieve high accuracy of predictions. Merging multiple years of data from

different cycles is the obvious way to increase TS-size, which is necessary to improve predictive

accuracy. Further, the use of genetic relationships among genotypes across years constitutes a

potential tool to improve the estimates of genotypes across disconnected scenarios. In Chapters

3 and 4 some insights are provided, first, to deal with the disconnectivity problem, and then, to

separate GY from genotype main effects.

Burgueño et al. [2012] report important gains in predictive accuracy MET compared to

single environments. Heslot et al. [2014], Jarquı́n et al. [2014] and Malosetti et al. [2016]

incorporate GE effects in the GP model by explicitly modeling environmental covariables.

That is, the variance-covariance matrix of the GE effects corresponds to the Kronecker product

of a matrix reflecting similarities among genotypes in terms of their markers’ profile (e.g., kin-

ship matrix), and a matrix reflecting similarities among environments induced by the growing

conditions. The authors showed that including environmental covariables allowed predicting

new environments. In the case environmental information is not available, the kinship can still

be used to model GE, where the covariance matrix is the product between an identity matrix,

multiplied by a variance component, and the kinship matrix.

In Chapter 4, the fact is exploited that a rye breeding cycle runs across years, so that splitting

the environmental effect into year, location and interaction effects would allow to separate

the GY effects from the genetic effects. The challenge is that GCA1 trials across years are

disconnected. Hence, one option is to use complete cycles (GCA1 + GCA2 + GCA3) in the

TS, disregarding the fact that GCA2 and GCA3 data are selection-biased, which is appropriate



12 CHAPTER 1. INTRODUCTION

as long as all the data used to make selection decisions are included in the analysis [Piepho

and Möhring, 2006]. Another option is to use the kinship to model the genetic correlations

between genotypes across years (i.e. use kinship to model GY ). This is possible, despite lack

of common genotypes between years, because there is plenty of replication of alleles between

genotypes.

Another problem associated with environmental effects is that, e.g., in a year where there

was a disease pressure or environment stress factors, yield-QTL can be confounded with non-

yield QTL. If there is no sufficient phenotypic information to explicitly separate these effects,

e.g., due to disconnected years, a pre-selection in the TS may potentially help to reduce the

confounding effect. This approach is studied in Chapter 4.

1.6 Objectives and hypotheses

In the RYE-SELECT project, the main objective was to develop genome-based breeding strate-

gies to improve selection efficiency for yield and other agronomically important traits in the rye

hybrid breeding program. Since all of the steps considered in the process are important and can

contribute to the accuracy of predictions in GS, efforts to improve any of these steps are worth

undertaking. The specific objectives in this thesis were to:

1. Scrutinize outlier detection tools currently used by many breeding programs and propose

reliable and easy-to-use outlier detection methods

2. Evaluate the merits of spatial models for phenotypic data analysis

3. Evaluate and compare approaches that allow dissecting genotype from genotype-by-year

effects in disconnected datasets

4. Use a forward validation approach to evaluate the predictive ability of genomic prediction

models under scenarios of common practice for plant breeders, such as prediction of

VS of different relatedness degree with the TS, and prediction of a selection of top

performance genotypes.

In line with the objectives, the hypotheses tested in this thesis are:
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1. Outliers have an effect on the GP predictive ability and choice of detection method is

important

2. Spatial models for phenotypic analysis produce more accurate genotype estimates leading

to a better predictive ability than afforded by purely randomization-based models

3. The genotype effect can be separated from the genotype-by-year effect in disconnected

year-data using the kinship matrix

4. The higher the relatedness between TS and VS, the higher the predictive abilities

1.7 Outline of the thesis

This doctoral work is conceived as a cumulative thesis, where each chapter is a journal article.

All the articles are framed as case studies using empirical data. In Chapter 2, ANOVA- and

REML-based analysis are reviewed towards understanding the PlabStat procedure for outlier

detection, and additional methods are proposed. Chapter 3 covers the analysis of single-year

data using spatial and non-spatial models and a comparison of GP approaches when datasets

are weakly connected. In Chapter 4, multi-year data is used to present different ways to fit

genotype-by-year effects. The models are compared and evaluated using a forward validation

approach, under scenarios of different relatedness between TS and VS and top-yield selection

in the TS. A general discussion is presented in Chapter 5.
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Chapter 2

Outlier detection methods for generalized lattices:

A case study on the transition from ANOVA to

REML1

Angela-Maria Bernal-Vasqueza, H. Friedrich Utzb, Hans-Peter Piephoa

a Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Fruwirthstrasse 23, 70599

Stuttgart, Germany

b Plant Breeding Institute, University of Hohenheim, Fruwirthstrasse 21, 70599 Stuttgart, Germany

2.1 Abstract

Key message: We review and propose several methods for identifying possible outliers and evaluate

their properties. The methods are applied to a genomic prediction program in hybrid rye.

Many plant breeders use ANOVA-based software for routine analysis of field trials. These programs

may offer specific in-built options for residual analysis that are lacking in current REML software. With

the advance of molecular technologies, there is a need to switch to REML-based approaches but without

losing the good features of outlier detection methods that have proven useful in the past. Our aims were

to compare the variance component estimates between ANOVA and REML approaches, to scrutinize the

outlier detection method of the ANOVA-based package PlabStat and to propose and evaluate alternative

procedures for outlier detection.

1A version of this chapter is published as:
Bernal-Vasquez, A.-M., Utz, H.F., & Piepho, H.-P. (2016). Outlier detection methods for generalized lattices: a
case study on the transition from ANOVA to REML. Theoretical and Applied Genetics, 129:787-804.

15
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We compared the outputs produced using ANOVA and REML approaches of four published datasets

of generalized lattice designs. Five outlier detection methods are explained step by step. Their perfor-

mance was evaluated by measuring the true positive rate (TPR) and the false positive rate (FPR) in a

dataset with artificial outliers simulated in several scenarios. An implementation of genomic prediction

using an empirical rye multi-environment trial was used to assess the outlier detection methods with

respect to the predictive abilities of a mixed model for each method.

We provide a detailed explanation how the PlabStat outlier detection methodology can be translated

to REML-based software together with the evaluation of alternative methods to identify outliers. The

method combining the Bonferroni-Holm test to judge each residual and the residual standardization

strategy of PlabStat exhibited good ability to detect outliers in small and large datasets and under a

genomic prediction application. We recommend the use of outlier detection methods as a decision

support in the routine data analyses of plant breeding experiments.

Keywords Generalized lattices (GL), residual, outlier, generalized least squares estimation (GLSE),

restricted maximum likelihood (REML), ANOVA, genomic prediction (GP), receiver operating charac-

teristic (ROC) curve.

2.2 Introduction

Plant breeding companies in Germany have been examining their phenotypic datasets routinely using

statistical programs especially designed for analysis of breeding trials. A popular example is PlabStat

[Utz, 2003], which implements Cochran and Cox [1957] theory based on analysis of variance (ANOVA)

methods. As hardware improved, more complex statistical methods for mixed models [e.g., maximum

likelihood (ML), restricted maximum likelihood (REML), Bayesian methods] became feasible. Although

the transition to these methods may produce some sting when the outputs do not exactly match or do not

offer the same information, the motivation to use them is permanent since new powerful breeding tools,

such as genomic prediction (GP), are usually applied under these statistical frames.

Genomic prediction computes genomic breeding values (GEBV) by using marker information in

best linear unbiased prediction (BLUP) based on phenotypic data [Meuwissen et al., 2001]. Ridge-

regression BLUP (RR-BLUP) has been identified as a simple and accurate method to obtain GEBV

[Piepho, 2009b]. GP is rapidly becoming part of the routine data analysis in breeding companies; thus,

handling the phenotype and genotype analysis under the same format (and software) helps avoiding the

extra file editing and exchange across programs.

A popular part of the outputs offered by the PlabStat software is, for example, a structured residual
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analysis for the identification of possible outlying observations based on analysis of variance (ANOVA)

approach and a special treatment of missing observations, which does not fully coincide with the standard

output of REML-based packages. In this paper we therefore compare the theoretical underpinnings and

results obtained by both approaches.

Breeding trials are typically laid out as multi-environmental trials (METs), that is, trials are per-

formed in several locations and comprise a large number of genotypes. For a large number of genotypes,

generalized lattice (GL) designs are a popular class of designs. GL designs are defined as “block designs

for v = ks varieties in b = rs blocks of k units such that the blocks can be arranged into r complete

replications, i.e., the designs are resolvable” [Williams, 1977]. Square lattice designs (k = s) and

rectangular lattice designs (k = s−1) are included in this definition, as well as α-designs, which involve

a cyclic method of construction based on α-arrays. Analysis of such designs requires mixed models, for

which ANOVA and REML-based analyses are not identical.

Statistical software such as PlabStat makes use of Cochran and Cox [1957] theory. The analysis

of METs in PlabStat uses a stage-wise approach. In the first stage, individual trials are analyzed. The

genotype means obtained in the first stage are then summarized across environments in the second stage.

Normally, in many advanced-generation testing programs, there are several trials in one environment laid

out as GL designs [Piepho et al., 2006], each described by the model

yijh = µ+ γi + τh + bij + eijh, (2.1)

where yijh is the observation of the hth genotype in the jth block within the ith complete replicate, µ is

the general mean, γi is the effect of the ith complete replicate, τh is the effect of the hth genotype, bij

is the effect of the jth incomplete block nested within the ith complete replicate and eijh is the residual

plot error associated with yijh. For the analysis in PlabStat, it is assumed that the error is normally and

independently distributed with mean zero and variance σ2e [eijh ∼ N(0, σ2e)] and the block effects are

normally and independently distributed with mean zero and variance σ2b [bij ∼ N(0, σ2b )]. This latter

assumption implies that ordinary least squares estimation (OLSE) cannot be applied to estimate the fixed

effects because the observations that are in the same block are positively correlated [Cochran and Cox,

1957, p.382]. Instead, generalized least squares estimation (GLSE) can be used. Particularly, PlabStat

follows the iterative procedure suggested by Williams [1977].

The predictions, ŷijh, are defined as

ŷijh = µ̂+ γ̂i + τ̂h + b̂ij , (2.2)
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where b̂ij is the adjusted block effect calculated by weighting factors (or shrinkage) using ANOVA

estimates of the variance components σ2b and σ2e [Cochran and Cox, 1957]. The block effect estimator

corresponds to the BLUP of bij . The estimators µ̂, γ̂ and τ̂ are the best linear unbiased estimators

(BLUEs) of the fixed effects for intercept, replicates and genotypes, respectively.

In PlabStat, missing values are imputed iteratively minimizing the residual mean square following

the method of Yates (1933) (cited by Utz, 2003). The imputation procedure is equivalent to inserting

values for the missing observations by means of the “intra-block” formula, that is, fitting incomplete

blocks as fixed effect and estimating the model parameters using OLSE [Cochran and Cox, 1957]. These

estimates are used as if they were observed data, so that the degrees of freedom for the residual error

sum of squares is the only change made in the analysis of the combined dataset (observed and missing).

The degrees of freedom are equal to those for complete data reduced by the number of estimated missing

observations [Searle, 1987, p.364].

PlabStat uses an ANOVA method to estimate variances, while most common mixed model packages

use REML. Some software packages have the option to switch to the ANOVA method of variance

estimation, so that the PlabStat output can be exactly resembled. For example, the MIXED procedure of

SAS has the option method = type1, which allows ANOVA estimators to be computed from sequential

sum of squares.

Outputs of residuals, predictions and block effects are equal between PlabStat and the REML ap-

proach for balanced datasets, provided the ANOVA estimates of the variance components are positive

[Searle et al., 1992]. However, GL designs exhibit planned unbalancedness (which is sometimes mis-

taken as balanced data), because the blocks are incomplete [Littell, 2002].

In the case of missing values, a REML-package fits the model to the incomplete data whereas

PlabStat, by default, imputes the missing values; hence, the data analyzed are in the end different. There-

fore, even in the case of switching to ANOVA-estimation in the REML-software, variance component

estimates remain different.

Variance components estimation is a permanent area of research in data analysis. Developments

in the last decades relate to the transition from ANOVA to likelihood- and generalized least squares-

based inference [Littell, 2002]. Which variance estimation approach is best, has been widely discussed.

The estimators using the maximum likelihood principle are consistent and asymptotically normal, and

the asymptotic sampling dispersion matrix is known so that confidence intervals and hypothesis test of

parameters are available. ANOVA estimators, on the other hand, are unbiased but often have larger

variance [Searle et al., 1992, p.255].
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It is also worth mentioning the recent developments in outlier detection methods for linear mixed

models (LMM) and generalized linear mixed models (GLMM), that include the variance shift outlier

model (VSOM), determining if each observation has an inflated variance by assessing its individual

likelihood ratio and using score test statistics [Gumedze et al., 2010], a decomposition of a generalized

leverage matrix of the LMM that helps detecting leverage points for marginal and conditional fitted

values [Nobre and Singer, 2011], using residual plots to compare empirical residual distributions to ap-

propriate null distributions constructed using parametric bootstrap [Schützenmeister and Piepho, 2012],

and an extension of the Cook’s distance to factors that allow identifying the influence on the fixed effect

estimation or on the random effects prediction [Pinho et al., 2015].

This work aims to (1) compare the variance component estimates of ANOVA and REML-based

approaches in analysis of plant breeding designs, (2) elucidate the outlier detection method implemented

by PlabStat, and (3) evaluate the ability of alternative procedures to identify outlying observations.

2.3 Materials and Methods

2.3.1 Statistical model

For convenience, we introduce the matrix form of model (2.1):

y = Xβ + Zu + e, (2.3)

where y is the vector of observations, X and Z are the design matrices of fixed and random effects,

respectively, β is a vector of fixed effects, u is the vector of random effects and e is the vector of errors.

The fixed effects in vector β comprise the intercept µ, the replicate effect γi, and the treatment effect τh,

whereas the vector u comprises the block effect nested within replicates, bij .

An outlier is defined as an observation that has a large residual in comparison with most of the other

observations, so that it may need to be treated specially, e.g., as a missing value [Anscombe and Tukey,

1963]. A raw residual, rijh, of the ijhth observation, yijh, is defined as

rijh = yijh − ŷijh, (2.4)

where the fitted value ŷijh is obtained from a given fitted model. The matrix form of Eq. (2.4) is

equivalent to r = y − ŷ, where ŷ = Xβ̂ + Zû
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2.3.2 Description of examples and procedures for variance estimation

We used four known published datasets on GL experiments: an α-design of 24 oats genotypes in three

replicates each consisting on six blocks [John and Williams, 1995, p.146], a 5 × 5 square lattice for 25

soybean varieties [Cochran and Cox, 1957, p.406], a 3× 4 rectangular lattice for 12 treatments [Cochran

and Cox, 1957, p.418] and a 9×9 triple lattice with 81 rice varieties [Gomez and Gomez, 1984, p.55-56].

Datasets are available in Appendix A with a complete description of the design settings. Three versions

of each of these datasets were considered (Table 2.1). First, as originally published, then, deleting some

observations (as representing missing observations) and finally generating outliers.

To assess the similarity of the outputs of a PlabStat analysis and a REML-based software also in the

case of missing observations, we used the original datasets (Examples 1.1, 2.1, 3.1 and 4.1) and the sets

with missing observations (Examples 1.2, 2.2, 3.2 and 4.2) and compared the divergence between the

variance component estimates and the difference in the number of the outliers detected. We used the

MIXED procedure of SAS, which allows to perform a REML analysis and to switch to ANOVA; thus,

we were able to exactly resemble the PlabStat procedure by using the ANOVA method in SAS, hereafter

denoted as SAS-ANOVA, and compare PlabStat with the same procedure but using REML, hereafter

denoted as SAS-REML.

Table 2.1: Labels and description of the examples used for analysis.

Label Description

Example 1.1 α-Design original published [John and Williams, 1995]
Example 1.2 α-Design with three missing observations
Example 1.3 α-Design with three outlying observations
Example 2.1 Triple lattice original published [Gomez and Gomez, 1984]
Example 2.2 Triple lattice with three missing observations
Example 2.3 Triple lattice with three outlying observations
Example 3.1 Square lattice original published [Cochran and Cox, 1957]
Example 3.2 Square lattice with three missing observations
Example 3.3 Square lattice with three outlying observations
Example 4.1 Rectangular lattice original published [Cochran and Cox, 1957]
Example 4.2 Rectangular lattice with three missing observations
Example 4.3 Rectangular lattice with three outlying observations
Example 5.1 Rye MET
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2.3.3 Outlier detection methods

We used the datasets with artificial outliers (Examples 1.3, 2.3, 3.3 and 4.3) to implement the outlier

detection method of PlabStat under a REML-based framework and to compare this output with other

methods described in the following.

In a first approach of all the methods, we computed residuals using model (2.1), i.e., assuming

random incomplete block effects [bij ∼ N(0, σ2b )]. In this case, residuals r depend on other random

effects. In a strict sense, residuals are confounded with the random effects u, since estimating r requires

an estimate of Zu [Nobre and Singer, 2007]; hence, the residuals themselves are biased. Therefore,

assuming fixed incomplete block effects and using OLSE to obtain an unbiased error variance estimate

remains as a potential alternative to scrutinize the datasets and identify outliers [Schützenmeister and

Piepho, 2012]. In a second approach, we implemented all methods using the same model (2.1) but

assuming incomplete blocks as fixed effects. We labelled the methods that considered incomplete blocks

as random with r and the ones that considered blocks as fixed with f (Table 2.2). Hereafter we refer to

the former methods as “r-methods” and to the latter as “f-methods”.

Table 2.2: Labels and short description of outlier detection methods.

Label Method Incomplete blocks

M1r PS PlabStat random
M1f PS PlabStat fixed
M2r BH-SR Bonferroni-Holm with studentized residuals random
M2f BH-SR Bonferroni-Holm with studentized residuals fixed
M3r SRR Studentized residual razor random
M3f SRR Studentized residual razor fixed
M4r BH-MADR Bonferroni-Holm with re-scaled MAD standard-

ized residuals
random

M4f BH-MADR Bonferroni-Holm with re-scaled MAD standard-
ized residuals

fixed

M5r BH-STRO Bonferroni-Holm with robust studentized residu-
als

random

M5f BH-STRO Bonferroni-Holm with robust studentized residu-
als

fixed

Method M1: Outlier detection in PlabStat (PS)

Although the judging process for outlier detection can be purely subjective and difficult for the non-

specialist, in routine analysis, when a large bulk of data or many similar smaller sets need to be analyzed,



22 CHAPTER 2.

the user may also use a rejection rule for outliers in order to be protected against adverse effects of

spurious readings [Anscombe, 1960]. In a classical paper, Anscombe [1960] compares a “householder’s

fire insurance policy” to a rejection rule of residuals in the sense that both involve three key concepts:

a payable premium for using the insurance policy or the rejection rule, a protection level in case of the

event and the real danger of happening. Given the fact that fires or spurious readings do occur, one

should worry more about the premium and the protection level rather than the danger. “The premium

may be taken as the percentage increase in the variance of estimation errors due to using the rejection

rule, when in fact all the observations come from a homogeneous normal source; the protection given is

the reduction in variance (or mean square error) when spurious readings are present” [Anscombe, 1960].

The generalization of the threshold for the rejection rule was published a couple of years later [Anscombe

and Tukey, 1963] and adopted (with some modifications) for plant breeding applications in the PlabStat

software as default outlier detection method [Utz, 2003].

In METs, the outlier detection process of PlabStat comprises one step at the trial level and, depending

on the user’s needs, another step at the across-environments level. In general, a raw residual (rijh) is

computed for each observation. From these, the median absolute deviation (MAD) among raw residuals

is calculated to later define a threshold for outlier identification. The observations flagged as outliers

are the ones whose raw residuals exceed the threshold, which in turn depends on the residual degrees of

freedom, dfe , and the number of observations, n (See description below).

Standardizing raw residuals is useful to define a variant of residual that is independent of the scale

and, thus, easier to judge [Cook and Weisberg, 1982, p.17]. There are different kinds of standardization,

i.e., division by an estimate of the residual’s standard deviation (studentized residuals), division by the

standard deviation of yijh (Pearson residuals), division by a robust scale estimate or, as is used in the

output display of PlabStat, by the square root of the effective error mean square, which is yet to be

explained and which is only computed to judge the relative magnitude of the suspicious observation.

Notice that PlabStat reports raw residuals to flag outliers, but effectively, it uses residuals standard-

ized by a robust scale estimate (sr) to identify outliers since this estimate is used in the computation of

the threshold to flag raw residuals. Additionally, residuals standardized by the square root of the effective

error mean square are printed in the output of the software. The outlier detection method of PlabStat is

described in detail below:

1. Compute raw residuals, rijh = yijh − ŷijh, where ŷijh is given in Eq. (2.2).

2. Compute the effective error mean square (MSEEff) as MSEEff = m.v.d. ∗ rep/2, where m.v.d. is

the mean of the variances of the difference between all pairs of adjusted means and rep stands for

the number of replicates.
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3. Compute the median of absolute deviation from the median, MAD [Iglewicz, 2000, p.408], using

the raw residuals, rijh.

MAD = median {|rijh −median {rijh}|}.

4. Calculate the re-scaled MAD, sr, as sr = MAD×1.4826. The re-scaled MAD is a robust estimate

of the standard deviation. 1.4826 is a scaling factor for the normal distribution [Ruppert, 2011,

p.118]. This is an approximation because the scale assumes independent identically distributed

(i.i.d.) residuals but rijh are not independent or homoscedastic.

5. Compute the threshold [−srCP, srCP ], where sr is the estimated robust standard deviation

calculated in the previous step, C is a given constant [Anscombe and Tukey, 1963] and P = 1.15,

a constant defined based on research experience of the second author.

To calculate the value of C, we use the approximative formula by Anscombe and Tukey [1963]:

C = K

{
1− K2 − 2

4dfe

}√
dfe
n
, (2.5)

where dfe denotes the degrees of freedom of the error, n is the total number of residuals and

K = 1.40 + 0.85N, (2.6)

with N , the value of the normal quantile that can be calculated by solving

premium = 100
n

dfe
Φ(−N) per cent (2.7)

for N , where Φ stands for the standard normal cumulative density and premium is the penalty

(charged as increase in percentage of the variance) to be paid due to the use of a protection. In

practice, for a premium of 2%, “the chance that the spurious observation will escape rejection is

of the order of 0.02”, and “how much premium one is willing to pay depends on how greatly we

fear spurious observations [Anscombe, 1960]”.

The default premium in PlabStat is 0.5%; hence, if n is large and dfe is close to n, n/dfe ∼ 1, a
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premium of 0.5% will lead to an N of about 2.5758 and hence to

K = 1.40 + 0.85× 2.5758 = 3.5895

C = 3.5895
{

1− 2.72
dfe

}
.

If the value of C computed in this way is smaller than 1.5, its value is set to 1.5.

6. Flag as outliers all the observations whose raw residual is greater than the threshold (|rijh| >
srCP ). If the square root of the effective error mean square (

√
MSEEff) is greater than the

threshold, use the square root of the effective error mean square as threshold.

7. For the output report compute standardized residuals, rsijh, as the ratio of the raw residual and the

square root of the effective error mean square: rsijh = rijh/
√

MSEEff. These rsijh are only used

for descriptive purposes in PlabStat, but not for outlier identification.

The calculation of the error degrees of freedom (dfe) is, in any case, straightforward. Residual

degrees of freedom correspond to n − rank(X|Z), where n is the number of observations and X and Z

are the design matrices for fixed and random effects, respectively, as defined for model (2.3).

Method M2: using Bonferroni-Holm test to judge studentized residuals as outliers (BH-

SR)

The problem of outliers can be treated by one of several significance tests of a non-outlier null hypothesis

against an alternative hypothesis [Hampel, 1985]. This simultaneous testing of several hypotheses

implies the so-called multiple testing problem, whence the probability of finding at least one significant

but spurious outlier by chance alone may be inappropriately large [Hochberg and Tamhane, 1987, p.7].

The general problem of multiple testing (not specifically in the context of outlier detection) was

first approached by using the Boole inequality within multiple inference theory (known as classical

Bonferroni test), which basically states that having a family-wise significance level α to test all n

hypotheses, each individual test should be performed at an individual significance level of α/n [Holm,

1979]. This correction has been widely used but it is also criticized for being conservative.

The sequentially rejective Bonferroni test, also known as Bonferroni-Holm technique, is an improve-

ment over the classical Bonferroni test in the sense that the test gains power as long as many hypotheses

are completely wrong. Thus, Bonferroni-Holm test gives the same protection against Type I errors (to
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falsely declare a null effect to be real or non-zero) but also reduces the probability of Type II errors

(failing to declare a real effect) compared to the classical Bonferroni test [Holm, 1979].

For our first Bonferroni-Holm procedure for testing outliers, we used a studentized version of the

residuals proposed by Nobre and Singer [2007] that does not depend on the scale. The authors present a

thorough motivation on the use of this type of residuals to test if the ijhth observation is an outlier. The

procedure for testing outliers is described in the following:

1. Compute absolute values of studentized residuals, rstuijh . A studentized residual is defined as

rstuijh =
rijh

s
√
q̂ijh,ijh

,

where rijh is the raw residual for the ijhth observation, s is the estimate of the error standard

deviation (i.e., square root of the error variance estimate,
√
σ̂2e ) and q̂ijh,ijh is an estimate of

qijh,ijh, the ijhth diagonal element of a matrix Q, whose diagonal elements are a function of the

joint leverage of fixed and random effects [Nobre and Singer, 2007; Schützenmeister and Piepho,

2012]. Matrix Q can be obtained by decomposing V ar(ê) as σ2eΣQΣ (See appendix of Nobre

and Singer [2007] for details).

2. Let H ijh
o be the null hypothesis testing the absolute value of the ijhth studentized residual |rstuijh |,

i.e., H ijh
o : |rstuijh | does not correspond to an outlying observation. Compute the p-value for each

|rstuijh | assuming that the studentized residuals have an approximate standard normal distribution.

The approximate p-value of rstuijh equals 2Φ(−|rstuijh |), where Φ stands for the cumulative distribu-

tion function of the standard normal.

3. Test the no-outlier null hypothesis for each residual using the Bonferroni-Holm method (refer to

Hochberg and Tamhane, 1987, p.57 for details).

The Bonferroni-Holm procedure can be easily implemented in SAS using the PROC MULTTEST

options inpvalues holm. Studentized residuals are printed in the MIXED procedure by adding the option

residuals outp= file name to the model statement. The codes are presented in Appendix A.2.

Method M3: Studentized residual razor (SRR)

Another common practice that is widely used is to plot the studentized residuals against the fitted values

and inspect the observations whose studentized residuals are located beyond a fixed threshold. The

threshold is defined by the researcher and is based on experience; it may vary according to the percentage
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of outlying observations identified. In practice, breeders sometimes try several fixed thresholds till the

residual plots look acceptable and till no more than a certain percentage, e.g., 5%, of the observations are

flagged. The choice of the threshold can be guided. Making the assumption that errors follow a normal

distribution with zero mean and unit variance, if we use threshold [−tSRR, tSRR], where tSRR is the

(1− α/2)-quantile of the standard normal distribution, then we expect a proportion of α falsely flagged

residuals when all observations meet the assumptions. Hereafter, we often use an exemplary threshold

for α = 0.005, which corresponds to a tSRR = 2.8 (threshold [−2.8, 2.8]).

Method M4: using Bonferroni-Holm test to judge residuals standardized by the re-scaled

MAD (BH-MADR)

Combining the strengths of the PlabStat procedure and the Bonferroni-Holm test may lead to an improved

outlier detection method. Here, we suggest to use a robust estimate of the standard deviation, the re-

scaled MAD, to effectively standardize the residuals and then use the Bonferroni-Holm test to decide

for each observation whether it should be flagged as outlier or not. The BH-MADR method operates as

follows:

1. Standardize raw residuals using re-scaled MAD (sr).

rMijh =
rijh
sr

.

2. Proceed as for Method M2 (BH-SR) numerals 2 and 3 using rMijh.

Method M5: using Bonferroni-Holm test to judge studentized residuals using a robust

scale estimate (BH-STRO)

By this method we combine the principle of studentization with a robust scale estimate to standardize

residuals and judge them independently using the Bonferroni-Holm test. Hereafter we refer to robust

studentized residuals (rrsijh) when a robust scale estimate, i.e., sr, instead of the error standard deviation

estimate (s) is used for studentization.

The method is described as follows:

1. Compute robust studentized residuals (rrsijh) as:

rrsijh =
rijh

sr
√
q̂ijh,ijh

,
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where rijh is the raw residual for the ijhth observation, sr is the re-scaled MAD and q̂ijh,ijh is

an estimate of the ijhth diagonal element of a matrix Q, whose diagonal elements are a function

of the joint leverage of fixed and random effects [Nobre and Singer, 2007; Schützenmeister and

Piepho, 2012].

2. Proceed as for Method M2 (BH-SR) numerals 2 and 3 using rrsijh.

2.3.4 Comparison of methods: Premium vs. αB and vs. tSRR

The outlier detection method implemented in PlabStat does not have an explicit α, and although the

premium is meant to protect against “bad observations”, the premium is a completely different rate,

defined as the percentage increase in estimation variance one is willing to pay if all residuals are from

the same homogeneous distribution. Comparing the PlabStat procedure with the sequential Bonferroni-

Holm may not be possible in terms of equating both thresholds as the stepwise Bonferroni-Holm method

has a threshold changing with each step of the procedure. But for comparative purposes, equating the

threshold of PlabStat (a function of the premium, the dfe and the total number of observations n) to

the threshold of a classical Bonferroni test (a function of αB = α/n) may give us an approximation of

the values that the premium can take to produce the same threshold of a classical Bonferroni test. We

propose to solve the premium for the αB to which the classical Bonferroni test would correspond. A

detailed description of the comparison extended to include the SRR threshold is provided in Appendix

A.3.

2.3.5 ROC curves

A way to compare the methods that display different Type I error rates at the same given threshold is

to plot the so-called receiver-operating characteristic (ROC) curves, which are useful for assessing the

accuracy of binary predictions. ROC curves typically plot the true positive rate (TPR) against false

positive rate (FPR) resulting from continuously varying the decision thresholds. On the y-axis is the true

positive rate (TPR), which correspond to the proportion of the number of true outlying observations

correctly declared as outliers, out of the total number of true outlying observations. On the x-axis

is the false positive rate (FPR), defined as the proportion of the number of non-outlying observations

falsely declared as outliers, out of the total number of non-outlying observations. A test with perfect

discrimination has a ROC plot that passes through the upper left corner, where the TPR is 1.0, and the

FPR is 0. The theoretical plot for a test with no discrimination (identical distributions of results for the

true positives and the false positives) is a 45◦ diagonal line from the lower left corner to the upper right
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corner. Qualitatively, the closer the ROC curve is to the upper left corner, the higher the overall accuracy

of the test [Zweig and Campbell, 1993].

We used the original dataset of the triple lattice (Example 2.1) to illustrate the construction of the

ROC curves for low-, medium- and high-contamination scenarios (Scenarios 1, 2 and 3, respectively).

In each scenario we simulated pure shift outliers at one side [Lourenço and Pires, 2014; Rocke and

Woodruff, 1996]. The observations were standardized, so that the mean of the response variable (yield)

was fixed at µ = 0. Outliers were generated from a N(0, 1) distribution and then shifted d units. We

used d = 4, 7, 10 and a contamination percentage of 2%, 5% and 10% . All the combinations of d and

contamination percentage were generated but only representative scenarios were selected to show the

results. For Scenario 1 we used d = 4 and contamination of 2%, for Scenario 2 d = 7 and contamination

of 5%, and for Scenario 3 d = 10 and contamination of 10%. Each scenario was repeated 100 times and

the average FPR and TPR by threshold point was computed and used to plot the ROC curves.

To plot the ROC curve for the PlabStat methods (M1r and M1f) we varied the threshold
(
premium ∗ dfe

n

)
between values very close to 0 and close to 1, i.e., starting from 10−15 and multiplying each step by a

factor of 10/7 until reaching 0.01 and from there progressing towards 1 with increments of 0.01, and

released the restrictions of the method on the minimum value of C and the minimum threshold, which

cannot be less than the effective error mean square. We used the threshold
(
premium ∗ dfe

n

)
to ensure

that N = −Φ−1
[
premium ∗ dfe

n

]
can be computed (See method M1 and Appendix A.3 numeral A.3.1).

For the methods using Bonferroni-Holm test (M2, M4 and M5), we varied the αB from 0.01 to 0.99

with 0.01 increments. And for SRR (M3r and M3f), we used threshold values |tSRR| ranking from 0

to 5 increasing by 0.1. The area under the curve (AUC) was computed using the trapezoids approach,

i.e., the area of one trapezoid was calculated as the distance between two consecutive false positive rates

multiplied by the average of the corresponding true positive rates, and then all trapezoid areas were added

up. For comparison among the methods we pinpointed the values that the threshold takes at FPR=5%

and TPR=95%.

Additionally, knowing the threshold values at fixed rates, we produced again 100 simulations of

outliers in the three scenarios and compared one rate at the fixed level of the other across methods.

2.3.6 Special case: genomic prediction of a rye multi-environment trial using different

outlier detection methods

To evaluate all the outlier detection methods using a large empirical dataset, we used a rye MET (Example

5.1) and validated the results through genomic prediction analysis by comparing the final predictive

abilities of each method. The rye MET was carried out during years 2009 to 2011 at several locations of
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Germany and Poland. The aim of the MET was the selection of promising rye genotypes. The trials were

laid out as α-designs. In the first year, sets of 320 genotypes were evaluated in each trial and testcrossed

with two different testers most of the trials in different locations. At least one location in each country

contained a set of genotypes testcrossed with the two testers. Series of trials were conducted at each

location and were connected through common checks. Approximately 10% of the evaluated genotypes

in the first year were forwarded to a second test in the next year together with more entries. The same

testers were used and some locations were shared with the previous year tests. A further selection of 10%

of the genotypes was performed in the third year using four different testers and more locations. Thus, the

first two years were connected through testers, locations and genotypes and the third year was connected

with the other years through genotypes and locations. A total of 908 genotypes were evaluated across

the three years and 826 had molecular markers information (a more extensive analysis of this dataset is

presented in Bernal-Vasquez et al. [2014]).

The available marker information obtained using a 16K Infinium iSelect HD Custom BeadChip of the

selected genotypes was used to perform GP. We performed a stage-wise analysis, with a pre-processing

step, where we flagged and dropped detected outliers at the trial level using model (2.1). We used the five

methods defined before under the GP approach plus the complete dataset without removing outliers as

control (labeled as Complete set), and another dataset where we removed manually only the observations

reported by the breeders as having problems in the field (labeled as Manual).

Subsequently, in stage 1, genotypic adjusted means by location by year (m
(1)
hrsv) are computed using

the model

yhijkv = µ+ (gt)hv + sk + γik + bijk + ehijkv, (2.8)

where yhijkv represents the observation of the hvth genotype-tester combination of the jth block within

the ith replicate of the kth trial, µ is the general mean, (gt)hv is the effect of the hth genotype testcrossed

with the vth tester, sk is the effect of the kth trial, γik the effect of the ith replicate within the kth trial,

bijk the effect of the jth block within the ith replicate of the kth trial and ehijkv the error associated with

the observation yhijkv. For simplicity, we omit the subscripts for year and location in model (2.8), but it

should be understood that all terms of the model are indexed by location (s) and year (r).

In stage 2, we used the adjusted means of the previous stage to be analyzed across locations and

years using the model

m
(1)
hrsv = µ+gh+ls+(at)rv+(ga)hr+(gat)hrv+(gl)hs+(la)rs+(lat)rsv+(gla)hrv+(glat)hrsv+ehrsv,

(2.9)
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where m(1)
hrsv represents the adjusted mean for the hth genotype with the vth tester within the rth year

in the sth location. The model contains the general mean µ, the main effects of genotypes (gh), testers

within years [(at)rv] and locations (ls), the two-way and three-way interaction effects and the error

ehrsv, which is confounded with the three-way interaction. To overcome this loss of information due to

the confounding, we weighted the adjusted means from the first stage by the diagonal elements of the

inverse of the variance-covariance matrix of the adjusted means of the first stage [Smith et al., 2001]. In

the second stage we computed one adjusted mean for each genotype.

The last stage was the implementation of GP using the model

m(2) = 1nµ+ Zu + e, (2.10)

where m(2) represents a n× 1 vector of adjusted means for genotypes across locations and years, 1n is

a n× 1 vector of ones, µ is the overall mean, Z is the markers matrix for random effects, u is the vector

of random effects, i.e., the SNP effects. It is assumed that u has a normal distribution with zero mean

and variance matrix Iσ2u [u ∼ N(0, Iσ2u)] and the error has a normal distribution with zero mean and

variance matrix R [e ∼ N(0,R)]. R is a diagonal matrix with diagonal elements equal to the inverses

of the diagonal elements of the inverse of the original variance-covariance matrix of the adjusted means

of the second stage [Smith et al., 2001]. Specifically, the GEBV of the hth genotype corresponds to

the estimate of the genotype effect ĝh =
∑W

p=1 zhpûp, with p = 1, · · · ,W where W is the number of

markers, up is the effect of the pth marker and zhp is the SNP genotype of the pth marker for the hth

genotype.

The predictive ability of GP was assessed using 10 replications of fivefold cross validation (CV),

where the dataset was randomly split in 5 subsets 10 times. In each time, i.e., each replicate, groups

of 4 subsets were used to estimate the parameters of the model and predict the observation of the fifth

subset, so that each subset is predicted using the other 4 subsets. Thus, in the end, we had 50 prediction

runs. The predictive ability of each of the ten repeats of the fivefold CV was computed as the Pearson

correlation coefficient between observed values and the predicted GEBV. The estimate of the predictive

ability of the method (ρGP) corresponds to the average of the correlation coefficients of the ten repeats.
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2.4 Results

2.4.1 Comparison of variance estimates for PlabStat and REML-based analysis with all-

cells-filled data of the published GL examples

The datasets where all observations were available are referred to as all-cells-filled data. A cell is defined

by the intersection of a genotype by replicate classification [Searle, 1987, p.8]; thus, the data used in this

case correspond to the original datasets of the examples and the datasets using three artificial outlying

observations each where all cells of the replicate-by-genotype classification were filled (Examples 1.1,

1.3, 2.1, 2.3, 3.1, 3.3, 4.1 and 4.3). A comparison of the variance component estimates obtained for each

example is given in Table 2.3. The variance components obtained by SAS-ANOVA were identical to the

values obtained by PlabStat.

Table 2.3: Comparison of variance component estimates for SAS-REML and PlabStat for datasets with
all cells of the replicate-by-genotype classification filled (cases where all observations were available).

SAS-REML PlabStata

Example σ2
b σ2

e σ2
b σ2

e

1.1 0.062 0.085 0.059 0.084

1.3 0.000 7.458b −1.191 8.493

2.1 0.040 0.265 0.040 0.265

2.3 0.050 2.491 0.051 2.491

3.1 19.630 13.655 19.630 13.655

3.3 21.405 31.293 21.405 31.293

4.1 ∼ 0 ∼ 0 10.472 10−4

4.3 2.621 13.332 3.054 12.938

a Results are identical to SAS-ANOVA
b Using the NOBOUND option in PROC MIXED to allow negative variance estimates, σ2

b = −0.5419 and
σ2
e = 7.9150

Variance component estimates via ANOVA (PlabStat and SAS-ANOVA) and REML (SAS-REML)

were expected to differ because of the planned unbalancedness of the GL designs, but they were also

expected to be very close. In the case of balanced designs yielding positive variance components

estimates, both approaches (ANOVA and REML) coincide. When all cells of the replicate-by-genotype

classification were filled, the biggest differences occurred where a negative or a zero value of the block

variance component was estimated. The negative estimates can only occur in SAS-REML if the user

allows estimation of negative components. This can be done by using the nobound option of the MIXED

procedure (See Appendix A.2).
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In the α-design with three outliers (Example 1.3), we found σ̂2b = 0 in SAS unless the nobound

option was used to allow negative variance estimates in which case σ̂2b = −0.5419; whereas in PlabStat

σ̂2b = −1.1911. The zero block variance means that there is no correction due to incomplete blocks,

i.e., the BLUPs of block effects are zero (b̂ij = 0 ∀ i, j) as if the design were a randomized complete

block design (RCBD) [Cochran and Cox, 1957], with complete blocks corresponding to replicates of

the α-design. The original data from the rectangular lattice (Example 4.1) were generated to force

the error variance estimate to be exactly zero, which makes the likelihood equal infinity; therefore, in

PlabStat, σ̂2e is set to 0.0001, making the analysis feasible. In the rectangular lattice with three outliers

(Example 4.3), PlabStat estimated the variance component of replicates as −0.1310, and because of

the unbalancedness, estimators for blocks and error are dissimilar. Despite these differences, the raw

residuals, the block effect estimates and the treatment adjusted means were highly correlated between

both procedures (correlation ≈ 0.98).

The negative variance estimates in some of the ANOVAs arose due to the presence of the three

outliers in these small datasets. In practice, negative variance estimates are a warning of an incorrect

model or statistical noise obscuring the underlying analysis [Thompson, 1962]. Using REML, estimates

are constrained to be non-negative and set to zero when iterations reach the boundary. Consequently,

an automatic solution is to use REML. Zero estimates with REML can be handled, e.g., dropping the

corresponding effect from the model and re-estimating the others [Searle et al., 1992], providing starting

values of variances as low boundary constrains [Littell et al., 2006], or by regularization of the estimates

using a Bayesian approach [Barnett and Lewis, 2000].

2.4.2 Comparison of variance estimates between PlabStat, ANOVA and REML-based

analysis using data with missing observations of the published GL examples

Since PlabStat imputes the missing values, the analyses of the example with missing observations are

expected to yield different results and more dissimilar outputs. For those datasets (Examples 1.2, 2.2, 3.2

and 4.2) the results were slightly different among the three procedures, i.e., PlabStat, SAS-ANOVA and

SAS-REML. Despite the differences, the Pearson correlation coefficients for outputs of residuals, BLUPs

of block effects and adjusted treatment means between PlabStat and SAS-REML were high (Table 2.4),

reflecting the great similarity between the two approaches.

In Example 4.2 (rectangular lattice with three missing observations), PlabStat imputes the missing

observations with the predicted observations fitting the model as if incomplete blocks were a fixed effect.

The analysis with this value imputation results in a zero or very close to zero estimate of the error variance

as in the original data (Example 4.1). This case differs the most between PlabStat and SAS-ANOVA,
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Table 2.4: Comparison of variance component estimates for PlabStat (PS), SAS-REML (REML) and
SAS-ANOVA (ANOVA) for datasets with missing observations.

PS REML ANOVA Correlations PS - REML
Residuals Adjusted BLUPs of

Example σ2
b σ2

e σ2
b σ2

e σ2
b σ2

e treatment block
means effects

1.2 0.061 0.084 0.066 0.084 0.063 0.084 0.998 13 0.999 48 0.986 54

2.2 0.043 0.268 0.042 0.268 0.042 0.268 0.999 51 0.984 18 0.999 94

3.2 15.860 8.244 15.543 8.198 15.917 8.244 0.990 48 0.998 15 0.998 96

4.2 10.470 10−4 10.166 10−8 8.707 10−12 –a 0.999 99 0.999 92

a Non-estimable because PlabStat residuals are set to zero

which does no imputation. The consequence of the zero residual variance in the REML approach is

again that the likelihood equals infinity and the analysis is not feasible unless the error variance is set

to a very low positive non-zero value. In PlabStat this value is automatically set to 0.0001 and in SAS

the parameter must be held at a tiny value, e.g., 10−8. The BLUPs of the block effects and the adjusted

means of PlabStat and SAS-REML are almost identical. The residuals cannot be correlated because

PlabStat produces zero values and SAS very low values for the residuals close to zero at around±10−10.

Moreover, for all the examples with missing data, the flagged outliers using SAS-REML were

the same as the ones PlabStat identified. The comparison of the re-scaled MAD and the thresholds

obtained for all the examples with missing observations using PlabStat, SAS-ANOVA and SAS-REML

are presented in Table A.5.

2.4.3 Comparison of outlier detection methods using data with artificial outliers of the

published GL examples

The scatter plots of the different types of residuals against predictions according to the method of outlier

detection are depicted in Figs. 2.1, A.2, A.3 and A.4. For the purpose of comparing all the methods

graphically, solid reference lines represent the procedures with fixed thresholds (M1, M3) and dashed

reference lines the procedures with varying thresholds (M2, M4, M5) showing the threshold for the

largest residual. For each method we plotted raw residuals against predictions to be able to visually

compare the methods.

The number of detected outliers varied between methods and between approaches using incomplete

blocks as random or fixed effects. Within methods using random blocks, M5r selected always the greater

number of possible outliers, followed by M1f. M4r selected an intermediate number of outliers and
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M2r and M3r produced the fewest detections. This tendency was similar for the methods that used fixed

blocks and in general “f-methods” identified fewer residuals than “r-methods”.

Figure 2.1: Scatter plots of raw residuals vs. predictions for the α-design with three outlying
observations (Example 1.3) using PlabStat outlier detection method (M1), Bonferroni-Holm test using
studentized residuals (M2), Studentized residual razor (M3), Bonferroni-Holm test using re-scaled MAD
to standardize residuals (M4), and Bonferroni-Holm test using the robust studentized residuals (M5). In
the first row, methods used fixed incomplete block effects and in the second row methods used random
incomplete block effects. Solid reference lines are used for methods with fixed thresholds and dashed
reference lines for methods with varying thresholds representing the threshold calculated for the largest
residual. Flagged outliers are indicated with an empty circle and non-suspicious observations with a
cross.

2.4.4 Comparison of ROC curves

Figs. 2.2, A.5 and A.6 show the ROC curves under scenarios 3, 2 and 1, respectively. Some ROC curves

were not intact because the number of simulated outliers is finite and relatively small (i.e., for 10%

contamination a maximum of 25 outliers are simulated); therefore, some of the computed thresholds do

not cover the full possible range of values of FPR and TPR. For this reason, we think that comparing the

AUC among curves may not be fair. Scenario 3 produced the highest number of complete curves (but

still with some incomplete curves), where the AUC had no trend between fixed and random methods
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(Appendix A.3 Table A.6). We added cut points at fixed FPR and TPR for comparison purposes and

displayed the threshold value in each case. For FPR= 5%, “r-methods” had slightly larger TPR than

“f-methods”. Similarly, for TPR= 95%, “r-methods” had smaller FPR. This could be also observed in

the simulations using fixed rates (Figs. A.7, A.8) especially for scenario 1 and 3. A substantial difference

among the methods within scenarios is not immediately perceptible but a difference between scenarios

can be easily appreciated.

2.4.5 Comparison of outlier detection methods for a genomic prediction analysis using a

rye MET

The complete dataset was composed of a total of 25632 observations on 908 genotypes. The residual

pattern of one trial looked quite unusual due to some observations that had a different yield, leading to

segregated residuals. In Fig. 2.3 we depict the residual plots using the five methods using random and

fixed block effects and the “manual” method (displayed with the fixed block effect methods only for ease

of graphical comparison), which shows the residuals removed manually. Either the two clearly separated

clouds suggest that there is a systematic effect in the data that has not been accounted for, or some severe

bias is present, perhaps due to a problem with the part of the plots of that particular trial. Indeed, the

breeders reported a herbicide drift problem in the outer row of the field (Fig. A.9). These observations

were the ones removed manually.

To minimize the comparison error among outlier detection methods, we kept the seed of the random

number generator of the CV procedures fixed so that the exact same stream of random numbers was

used for each CV. Predictive abilities were calculated for each dataset resulting from the outlier detection

methods, for the dataset with manual removals and for the complete set (Table 2.5). Additionally, a paired

t-test using the least significant difference (LSD, α = 5%) was carried out to compare the predictive

abilities of all datasets. We used a randomized complete block model considering each repetition of

the CV as a block, thus accounting for the dependence among observations from the same sample.

Statistically significant differences were detected across the methods. M4r and the manual outlier

removal had the highest predictive abilities and M2f, M3r and M3f were not significantly different from

the control, i.e., the complete set. The other methods performed slightly better than the control, although

the improvement was not dramatic. The methods using random block effects were classified better than

their homologous method with fixed block effects and, interestingly, the same methods with fixed or

random always were neighbors in the ordered list (Table 2.5).

We could not identify a trend between the number of removed observations (flagged outliers) and

the predictive abilities of the methods, i.e. method M4r removed 99 observations and was classified as
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Figure 2.2: ROC curves of all methods assuming fixed (first column) and random (second column)
incomplete block effects under a scenario with 10% contamination and 10 deviation units from the mean
(Scenario 3). Methods used were PlabStat (M1) outlier detection method, Bonferroni-Holm test using
studentized residuals (M2), Studentized residual razor (M3), Bonferroni-Holm test using re-scaled MAD
to standardize residuals (M4) and Bonferroni-Holm test using robust studentized residuals (M5).
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Figure 2.3: Scatter plots of studentized residuals vs. predictions for one unusual trial of the rye
MET. Methods from the first column of the panel considered incomplete blocks as fixed effects and
in the second column methods that considered incomplete blocks as random effects. Methods used
were PlabStat (M1) outlier detection method, Bonferroni-Holm test using studentized residuals (M2),
Studentized residual razor (M3), Bonferroni-Holm test using re-scaled MAD to standardize residuals
(M4), Bonferroni-Holm test using robust studentized residuals (M5) and Manual removal, which is
displayed with the fixed block effect methods only for graphical comparison purposes. Solid reference
lines are used for methods with fixed thresholds and dashed reference lines for methods with varying
thresholds representing the threshold calculated for the largest residual. Flagged outliers are indicated
with an empty circle and non-suspicious observations with a cross.
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accurate as the manual outlier removal, which took away only 20 observations (Table 2.5). Therefore,

a general overview of the flagged outliers may help to understand the results (Fig 2.4). M1 and M5

identified almost all the peripheral observations and included quite a few observations that belong to the

main cloud. M2 identified the smallest number of peripheral observations and M3 did not flag all periph-

eral observations but some observations from the main cloud. M4 showed a consistent identification of

residuals from the periphery and not affecting the main cloud.

Table 2.5: Predictive abilities (ρGP ) in the GP stage and number of outliers removed using the entire
dataset (Complete set), the dataset with manually removed observations (Manual) and the methods of
outlier detection: PlabStat with fixed and random block effects (M1f, M1r), Bonferroni-Holm using
studentized residuals with fixed and random block effects (M2f, M2r), studentized residual razor with
fixed and random block effects (M3f, M3r), Bonferroni-Holm using re-scaled MAD with fixed and
random block effects (M4f, M4r) and Bonferroni-Holm using robust studentized residuals with fixed
and random block effects (M5f, M5r). Correlations followed by a common letter are not significantly
different (α = 5%) according to the LSD test.

Method ρGP Number of outliers removed

M4r 0.6124a 99
Manual 0.6115a 20
M4f 0.6103b 93
M5r 0.6098b 557
M5f 0.6079c 702
M1r 0.6072cd 422
M1f 0.6063de 440
M2r 0.6058e 67
M2f 0.6046f 64
Complete set 0.6037f 0
M3r 0.6036f 234
M3f 0.6036f 219

2.5 Discussion

In this work, we have demonstrated through some examples that the outputs of an analysis via ANOVA

are not far away from what is obtained using REML. We also reviewed the underlying theory of both

approaches so that the reader can appreciate where any differences come from. We used a common model

to analyze all the datasets, since our goal was to resemble the analysis implemented in PlabStat and not

to evaluate which model fitted best. In general, the results obtained using PlabStat based on ANOVA

estimation were very similar to the ones obtained using SAS based on REML estimation. Other authors
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Figure 2.4: Overview of flagged outliers across all the dataset. Methods from the first column of
the panel considered incomplete blocks as fixed effects and in the second column methods considered
incomplete blocks as random effects. Methods used were PlabStat (M1) outlier detection method,
Bonferroni-Holm test using studentized residuals (M2), Studentized residual razor (M3), Bonferroni-
Holm test using re-scaled MAD to standardize residuals (M4) and Bonferroni-Holm test using robust
studentized residuals (M5). Flagged outliers are indicated with an empty circle and non-suspicious
observations with a cross.
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[Wensch et al., 2013; Wulff, 2008] have also reviewed the properties of ANOVA and REML estimators

under unbalanced data and showed their similarities. A noticeable difference between PlabStat and

REML-based packages is that in PlabStat missing values are imputed, whereas other packages do not do

imputation.

Searle et al. [1992] and Littell [2002] present extensive reviews comparing variance estimation

methods. In most of the cases, they prefer REML over ANOVA. The analysis using REML has some

technical advantages: REML has no problems with missing observations, so long they are missing at

random, while PlabStat, using ANOVA, employs data imputation; goodness-of-fit measures are available

(using the likelihood) using REML. Furthermore, REML can handle correlated random effects such as

time-varying effects using a variance-covariance matrix that accounts for the serial correlations [Searle

et al., 1992]. A special case relevant for breeders is the possibility of modelling genotypic or environ-

mental correlated effects. The ANOVA method only allows estimating simple random effects models,

whereas REML allows a more flexible variance-covariance structure to accommodate heterogeneity of

variances and genetic correlations among environments, e.g., factor-analytic (FA) models [Meyer, 2009].

More recently, modelling genetic correlations using pedigree and marker relationship matrices under

REML frames has been shown to lead to more accurate genomic prediction models [Burgueño et al.,

2012; Lopez-Cruz et al., 2015]. We assessed the outlier detection method implemented in PlabStat, but

instead of using the ANOVA approach as PlabStat does, we used REML and obtained the same flagged

residuals. We showed then that the PlabStat outlier detection implementation produces the same results

(or very similar) within a REML-based environment. For breeders whose experience with PlabStat has

certified the quality of its analyses, the fact that we demonstrate that results using REML lead to the

same conclusions, hopefully gives some confidence that the transition from PlabStat to REML-based

packages can be made safely. Given the mentioned advantages from REML over ANOVA estimates, we

recommend using REML approach.

The rationale behind the outlier detection methods varies in terms of the error rates controlled. The

method used in PlabStat (M1) uses the premium, which is “charged” to the error variance to protect

against bad observations, the Bonferroni-Holm methods, i.e., M2, M4 and M5, use the adaptive adjust-

ment for each p-value of each residual (in turn standardized differently) in order to deal with the multiple

testing problem, and method M2, the Studentized residual razor (SRR), uses a fixed threshold derived

from the standard normal distribution. Likewise, the outlier detection method implemented in PlabStat

depends on the ratio dfe/n, the Bonferroni-Holm methods account for the sample size n, and SRR relies

only on the studentization of the residuals to detect a expected proportion of outlying observations. M4

and M5 involve a mixture of the features from PlabStat, from studentization and from the Bonferroni-

Holm test. Despite these differences among the methods, we were able to show how a family-wise
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significance level αB = α/n from the classical Bonferroni test could be adjusted to correspond to a

given premium from the PlabStat method (Fig. A.1a) in order to flag the same outlying observations.

The SRR method could also be expressed as a function of the premium by finding the corresponding

threshold tSRR for a given αB . In Fig. A.1b the SRR method would select more outliers than a

classical Bonferroni threshold and, compared with PlabStat using premium= 0.005, a higher tSRR

would be needed. This behavior may be attributed to the differences between the re-scaled MAD and

the studentization denominator. These two standardization approaches surely play a big role in outlier

identification since they lead to somewhat different standardized residuals, accounting for the differences

among the outlier detection methods. On the one hand, studentized residuals are suitable to check for

outlying observations, homoscedasticity and normality of residual errors [Schützenmeister and Piepho,

2012] and the use of the leverage in the studentization approach makes the studentized residual reflect

the change of the ijhth fitted value with respect to the ijhth observed value [Nobre and Singer, 2011].

This property is advantageous in the case the covariance matrices are correctly specified. This was

probably the reason why SRR showed good TPR and low FPR in scenarios with low and medium outliers

contamination. On the other hand, using re-scaled MAD produces larger residuals avoiding the inflation

of the estimated standard deviation caused if there are outliers in the data [Swallow and Kianifard,

1996]; thus, robust standardized residuals in combination with the Bonferroni-Holm test allows only

exceptionally large residuals to be judged as outliers.

The ROC curves within “f-methods” and within “r-methods” did not provide enough evidence that

one method was better than the others. This is, in a sense, advantageous, because all methods may have

a similar potential to identify outliers. Outlier simulations fixing the false positive and true positive rates

showed that “f-methods” had slightly lower TPR than “r-methods”, but markedly higher FPR specifically

for scenarios 1 and 3. This behavior may be due to the fact that residuals calculated under models that

contain other random effects (different than the error) may have a supernormal distribution [Nobre and

Singer, 2007; Schützenmeister and Piepho, 2012]. The optimal threshold for each method depends on

how large a TPR and FPR we want to admit. We provide cut points along the ROC curves for all

methods, showing that the same or very similar results (in terms of number of outlier identified) can be

achieved by any method by adjusting the parameters controlling the thresholds. Nevertheless, we can

not recommend any particular value for any of the thresholds because these values are specific for each

case. When possible, ROC curves can be used to exactly define the threshold parameters that lead to a

desired FPR and TPR. Since our objective is to propose an automatic method to identify possible outlying

observations, the methods may be compared with the default parameter settings, i.e., premium in PlabStat

of 0.05%, Bonferroni-Holm α of 0.05 and tSRR of 2.8. Considering the results of the ROC curves (Figs.

2.2, A.5, A.5) and the simulations with fixed FPR and TPR (Figs. A.7, A.8) where no marked or clear
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differences can be observed among methods within each scenario, we do not have enough evidence to

recommend a specific method. Methods that take into account a protection against multiple testing error

(M2, M4 and M5) may have a theoretically founded benefit over the other methods.

The statistical differences observed in the GP analysis showed that manually removing observations

for biological reasons (as in the Manual method) yielded the highest predictive ability statistically equiv-

alent to the predictive ability of M4r, also classified as the best method. These results are surprising

given the variable number of outliers identified (99 for M4r and 20 for Manual). The overview of the

flagged/removed observations by all methods (Fig. 2.4) indicate that methods M4 and M5 (independent

of the fixed or random block effects) led to removing the observations detaching the main cloud, however

M5 picked more observations within the main cloud. Now, the fact that “r-methods” had higher ρGP

than “f-methods” may be explained by efficiency gained from using random incomplete blocks over

fixed incomplete blocks when the number of blocks is higher than 10 [Cochran and Cox, 1957]. The

predictive abilities for “r-methods” vs. “f-methods” are in accordance with the observations derived

from the ROC curves and simulations with fixed FPR and TPR. M4r clearly had a higher predictive

ability followed by M5r, whereas M3 methods were penalized with the lowest predictive ability. The

reason may be that the protection against multiple testing error benefited the performance of methods

M4 and M5.

The consequence of dropping one observation has stronger effects in small datasets than in big

datasets in terms of increasing the unbalancedness. PlabStat seemingly avoids generating more unbal-

ancedness by imputing the dropped data points with the prediction of the observation, taking the block

effect as fixed but one must bear in mind that imputed observations are not equivalent to observed data.

There are now better methods to deal with missing data than imputation, i.e., using REML. Another

option for detecting outliers in small experiments may be a Bayesian approach, e.g., using previous

experiments to derive a priori information to get plausible values of the variance estimates of the model

[Barnett and Lewis, 2000]. Other approaches entail, for example, tetrads [Bradu and Hawkins, 1982]

or Bootstrapping [Marubini and Orenti, 2014]. For regression models, robust approaches have been

used successfully for outlier identification [Cerioli et al., 2013; Lourenço and Pires, 2014; Marubini and

Orenti, 2014; Swallow and Kianifard, 1996] since they can be more efficient on reducing the masking

and swamping effect of the outliers in the residuals.

Outlier detection methods for LMM such as VSOM [Gumedze et al., 2010] have been successfully

implemented and used in different fields [Babadi et al., 2014; Gumedze and Chatora, 2014; Gumedze

and Jackson, 2011]. This method is advantageous for cases where powerful computing resources are

available. We note that for n observations the method requires fitting of n mixed models, one for
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each observation in turn, which poses higher demands on computing time than the simpler methods

we consider. We did not consider the VSOM method since we focused more on a simple and easy-to-use

outlier detection approach that raises a warning on possible spurious observations.

The numerical differences across methods were small in the rye example studied, even when no

outliers were removed or when too many observations were removed. One of the reasons could have

been that the dataset we used was huge (25,632 observations), thus removing 20 or 99 observations

did not have a strong impact on the predictive abilities. An additional test using two smaller subsets

of the complete rye MET, i.e., only one country in one year (7,680 observations each) and comparing

only “r-methods”, revealed more sensitivity among predictive abilities depending more on the type of

outliers rather than on the number of observations detected as outliers. For the Polish dataset, where

there was no trial with manifest outliers (thus no manual removal), predictive abilities ranged from

0.5579 to 0.5665 and the number of identified outlying observations from 1 to 69. These numerical

differences are not practically relevant. By contrast, for the German dataset, where breeders reported

the trial with the herbicide drift problem, predictive abilities of methods that removed all those spurious

observations (M1r and M5r) were the highest with predictive abilities of 0.5922 and 0.5896 with 121

and 180 identified outlying observations, respectively. Methods that kept all (Complete set) or some of

those observations (M2r and M3r) produced the lowest predictive abilities (0.5549, 0.5613, 0.5655 with

0, 20 and 82 observations detected as outliers, respectively), and the Manual method and M4r yielded

intermediate predictive abilities of 0.5781 and 0.5844 with 20 and 54 identified outlying observations,

respectively. Estaghvirou et al. [2014] found that a single outlier can have a marked effect on the

estimation of accuracy and heritability of genomic prediction. They advise to check and eliminate

outliers whenever possible to maximize the phenotypic variance to be captured. We therefore encourage

the use of an outlier detection method that helps with the identification of spurious observations. We

recommend to have in mind the strengths and weaknesses of the selected methods depending on the

size of the dataset and the purpose of the analysis. In this work we reviewed several outlier detection

methods, we dropped the flagged observations and studied what the consequences were. In practice, the

deletion/replacement of an observation should be supported by subject matter knowledge about the trials.

Considering that errors do occur, using an outlier identification procedure in routine analysis is an

insurance policy that helps to detect obvious outlying observations that may escape eye scrutiny. In

our view, the PlabStat method, with the default threshold, is very powerful and sensitive in detecting

conspicuous observations whose residuals are slightly detached from the main cloud. The Bonferroni-

Holm based approaches are simple, easy to program and implement and theoretically well founded. The

SRR approach based on empirical experience demonstrated to be also helpful as outlier identification

method, although the decision on which threshold should be used is always somewhat arbitrary and the
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method does not account for the multiple testing problem. All the methods showed similar performance

in terms of false and true positive rates across simulated scenarios containing outliers and thus we

do not recommend one specific method. One of our favorites is BH-MADR (M4), produced as the

combination of a robust scale estimate to standardize residuals and a test that deals with the multiple

testing problem. This method displayed good properties as outlier detection method under a genomic

prediction application.
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3.1 Abstract

Background: Genomic prediction is becoming a daily tool for plant breeders. It makes use of genotypic

information to make predictions used for selection decisions. The accuracy of the predictions depends on

the number of genotypes used in the calibration; hence, there is a need of combining data across years.

A proper phenotypic analysis is a crucial prerequisite for accurate calibration of genomic prediction

procedures. We compared stage-wise approaches to analyse a real dataset of a multi-environment trial

2A version of this chapter is published as:
Bernal-Vasquez, A.-M., Möhring, J., Schmidt, M., Schönleben, M., Schön, C.-C., & Piepho, H.-P. (2014). The
importance of phenotypic data analysis for genomic prediction - a case study comparing different spatial models
in rye. BMC Genomics, 15:646.
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(MET) in rye, which was connected between years only through one check, and used different spatial

models to obtain better estimates, and thus, improved predictive abilities for genomic prediction. The

aims of this study were to assess the advantage of using spatial models for the predictive abilities of

genomic prediction, to identify suitable procedures to analyse a MET weakly connected across years

using different stage-wise approaches, and to explore genomic prediction as a tool for selection of models

for phenotypic data analysis.

Results: Using complex spatial models did not significantly improve the predictive ability of ge-

nomic prediction, but using row and column effects yielded the highest predictive abilities of all models.

In the case of MET poorly connected between years, analysing each year separately and fitting year as

a fixed effect in the genomic prediction stage yielded the most realistic predictive abilities. Predictive

abilities can also be used to select models for phenotypic data analysis. The trend of the predictive

abilities was not the same as the traditionally used Akaike information criterion, but favoured in the end

the same models.

Conclusions: Making predictions using weakly linked datasets is of utmost interest for plant breed-

ers. We provide an example with suggestions on how to handle such cases. Rather than relying on checks

we show how to use year means across all entries for integrating data across years. It is further shown

that fitting of row and column effects captures most of the heterogeneity in the field trials analysed.

Keywords: Stage-wise analysis, Genomic prediction, Cross validation, Spatial models, Multi-environment

trials (MET), Restricted maximum likelihood (REML).

3.2 Background

Genomic prediction (GP) was first introduced in 2001 [Meuwissen et al., 2001] as a method that allows

the prediction of genomic estimated breeding values (GEBV) for plants and animals by using information

of genetic markers. In plant breeding, GP has been adopted as another stage of the breeding scheme

[Schulz-Streeck et al., 2013b], not diminishing the importance of the phenotypic analysis usually carried

out in several environments. Merging the phenotype and the genotype analyses has been addressed

through the so-called stage-wise analysis [Piepho et al., 2012a]. In the first stage environments are

analysed separately and genotype means are computed, to then in the GP stage predict GEBV based on

dense genetic markers such as single nucleotide polymorphisms (SNPs).

In plant breeding, assessing genotypic adaptability and stability, and predicting breeding values of

the genotypes in other environments and other years, makes use of multi-environment trials (METs),

which aim to evaluate as many genotypes as possible in as many as possible locations [Burgueño et al.,
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2011; Crossa et al., 2006; Piepho et al., 2008a; Smith et al., 2001]. These METs are typically laid out

as generalised lattice designs testing a large number of different genotypes per trial. The number of

tested genotypes is limited by factors such as seed production, production cycle length and availability

of physical resources, e.g. land and budget [Besag and Kempton, 1986].

Within years, genotypes are tested in series of trials, which are connected by checks. Checks are lines

grown in every trial as controls because their performance is known and/or they are already commercial

material. Checks can be also used to connect years. In the rye breeding program considered in this paper,

a completely different set of genotypes is tested in each year, but these genotypes are from the same

breeding population. The accuracy of a genomic prediction model depends on the number of genotypes

used for calibration. So there is definitely a need to combine data across years. Low connectivity across

years is a challenge when trying to combine data across years, and this is one main motivation for this

paper. Furthermore, the unbalancedness due to the design layout and the different and large number of

evaluated genotypes increases the heterogeneity introducing high complexity to the variance-covariance

structure among adjusted genotype means [Piepho et al., 2012a].

Analysis of METs could be done as single-stage analysis, modelling the complete observed data at

the level of individual plots, or using a stage-wise approach, where experiments are analysed first at the

level of environments (or trials), obtaining adjusted means per genotype, which are then summarised

across environments (or trials) in the next stage [Piepho et al., 2012a]. A single-stage analysis accounts

entirely for the variance-covariance structure of the recorded observations [Smith et al., 2001], therefore

it is regarded as the gold standard. However, it has been shown that in a stage-wise analysis, a loss of

information occurring in the transition through stages can be minimized by an appropriate weighting

scheme [Möhring and Piepho, 2009].

If feasible, a single-stage approach is preferable to a stage-wise analysis [Cullis et al., 1998]. Never-

theless, the latter is acceptable for GP, since it is simple, computationally more efficient and also allows

to easily account for any specifics of randomisation layout and error modelling for each environment

Piepho et al. [2012a]. It should be stressed, however, that in a stage-wise analysis the weights are chosen

to approximate the variance-covariance matrix of adjusted means from previous stages. We used here

a three-stage approach and compared different spatial correlation structures in the first stage to correct

field heterogeneity at the trial level.

Spatial error models may provide more accurate estimates of genotype effects than models not

accounting for spatial adjustment [Duarte and Vencovsky, 2005; Zimmerman and Harville, 1991] but

they are computationally more demanding and convergence may be difficult to reach. Any effort in

terms of improving the genomic predictions would include checking if these improved estimates have
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an effect on the predictive ability when markers are added to the model. The performance of alternative

spatial models can be assessed by k-fold cross validation (CV).

Similarly, the merits of different spatial models used to compute adjusted means in the first stage

can be compared by the same CV procedure, if the same GP procedure is used for each analysis. This

suggests that genomic prediction-cross validation (GP-CV) can be used to identify the best-fitting mixed

model in stage one. The common method of model selection makes use of information criteria based

on the log likelihood, e.g. the Akaike information criterion (AIC) or the Bayesian information criterion

(BIC) [Spilke et al., 2010]. When the restricted maximum likelihood (REML) method is used, models

can only be compared by information criteria if they have the same fixed effects; otherwise, the maximum

likelihood (ML) method should be used [Spilke et al., 2010]. CV is, in this sense, not used to tune

parameters as in many penalization methods (e.g. adaptive Lasso, SCAD (Smoothly Clipped Absolute

Deviation), machine learning methods) but only as a tool to compare models that use REML. REML is

considered the best available method of variance parameter estimation, preferable to ML [Searle et al.,

1992]. Consequently, it is of interest to devise model selection procedures that can use REML and also

can compare models with different fixed effects. GP-CV has already been used to judge environments

in order to optimise the accuracy in GP [Heslot et al., 2013b]. We used this tool here as model selection

method in comparison to the traditional use of AIC.

The aims of this work were: i) to assess the advantage for the predictive ability when using a spatial

model for phenotypic analysis, ii) to compare stage-wise approaches for GP when the data are weakly

connected across years, and iii) to compare AIC and GP-CV as methods of selection of models for

phenotypic data analysis towards GP in rye.

3.3 Methods

3.3.1 Field layout and data set

A commercial rye breeding program by KWS-LOCHOW established in Poland and Germany aims to

develop superior hybrid varieties for the seed market. The implementation of GP within the breeding

program makes use of the measurements of hybrid performance of the first cycles of phenotypic eval-

uation of the material (Cycle1). Selections made in Cycle1 are intensively evaluated in further cycles,

aiming to double-check the selection decisions. For our purposes, these additional cycles do not add

much useful information. Hence, we used only the first cycles of the program. The populations tested in

each year consist of S2 genotypes, which display genetic relatedness and population stratification due to

complex genealogical history [Kang et al., 2008].
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Besides the phenotypic data, a 16K Infinium iSelect HD Custom BeadChip was used to characterise

1610 individuals from Cycle1-2009 and Cycle1-2010 and 6 checks. Several traits were evaluated during

this project: grain dry matter yield, plant height and thousand kernel weight, as well as ordinal scores

of rust, mildew and lodging among others. In this work we used grain dry matter yield measurements

of the phases of selection Cycle1-2009, Cycle1-2010 and Cycle1-2012, and marker information for the

genotypes of 2009 and 2010. Although no marker information of year 2012 was available, it makes sense

to use this dataset to observe the trend in one additional year and in this way, support the results of the

phenotypic analysis of previous years.

A Cycle1 experiment consists of subsets of 320 genotypes from the S2 populations tested in several

locations within each of the two countries involving two testers (Tables 3.1 and 3.2). We define a

trial as the physical unit within a location, where a subset of genotypes that were testcrossed to the

same tester is evaluated. Trials at a location were laid out as α-designs with two replicates. Each

trial was randomized independently from the others using the software CycDesign (VSN International;

http://www.vsni.co.uk/). (However, we are aware that some breeders tend to use the same randomization

layout in several locations. Ideally, each trial should have a different randomization). In our notation,

trials of a Cycle1 experiment are labelled as S1, S2, ..., S24. Row and column coordinates of the plots to

account for spatial variation are available.

Table 3.1: General representation of the testers by locations (Loc) by years classification of Cycle1
year 2009 and 2010 in Germany (G-L1, · · · , G-L8) and Poland (P-L1, · · · , P-L4).

Loc Cycle1-2009 Cycle1-2010

Tester1 Tester2 Tester3 Tester4
G-L1 S1 S2 S3 S10 S11 S12
G-L2 S1 S2 S3 S11 S10
G-L3 S1 S2 S3
G-L4 S1 S2 S3 S1 S2 S3 S10 S11 S12 S10 S11 S12
G-L5 S1 S2 S3 S10 S11 S12
G-L6 S1 S2 S3 S10 S11 S12
G-L7 S1 S2 S3 S11 S12
G-L8 S10 S11 S12

P-L1 S7 S8 S9 S7 S8 S9 S13 S14 S15 S13 S14 S15
P-L2 S7 S8 S9 S7 S8 S9 S13 S14 S15 S13 S14 S15
P-L3 S7 S8 S9 S7 S8 S9 S13 S14 S15 S13 S14 S15
P-L4 S7 S8 S9 S7 S8 S9 S13 S14 S15 S13 S14 S15
Series of trials are represented with the labels S1, S2, · · · S15.
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Table 3.2: General representation of the testers by locations (Loc) classification of Cycle1 year
2012 in Germany (G-L4, · · · , G-L11) and Poland (P-L1, · · · , P-L6).

Loc Cycle1-2012

Tester5 Tester6
G-L4 S16 S17 S18
G-L5 S16 S17 S18
G-L6 S16 S17 S18
G-L7 S16 S17 S18
G-L8 S17 S18
G-L9 S16 S17 S18
G-L10 S16 S16 S17 S18
G-L11 S16 S17 S18

P-L1 S19 S20 S21 S22 S23 S24 S19 S21 S23
P-L2 S19 S20 S21 S22 S23 S24 S19 S20 S21 S22 S23 S24
P-L3 S19 S20 S21 S22 S23 S24 S19 S20 S21 S22 S23 S24
P-L4 S20 S22 S24 S19 S20 S21 S22 S23 S24
P-L5 S31 S33 S35
P-L6 S20 S22 S24
Series of trials are represented with the labels S16, S17, · · · S24.

Normally throughout the program, only a single tester was used per location and year, but in some

locations, some subsets of genotypes were testcrossed with the two available testers. This is the case, for

example, for location G-L4 in Cycle1-2009, where the genotypes evaluated in the trials S1, S2 and S3

were testcrossed with both Tester1 and Tester2, and it is also the case of locations P-L1, P-L2, P-L3 and

P-L4 evaluating genotypes of trials S7, S8 and S9 with both testers. In each year, four common checks

were testcrossed with the testers and grown twice in each trial. Over the years 2009 and 2010 one check

was in common and none was shared with 2012 (Table 3.3).

The field layout of some trials was not perfectly rectangular. Some trials at a given location and year

had fewer blocks but larger size, i.e., there were two different block sizes within a few trials. Blocks

were nested within rows of the field layout.

In the genetic dataset, homozygous marker genotypes were coded as -1 and 1, and the heterozygous

type, missing values and technical failures were coded as 0. 58.7% of the markers corresponded to

homozygous alleles and 16.1% were heterozygous. Only a 0.03% of the markers were recorded as

missing values or technical failures; therefore, an imputation method would not have a strong impact on

the subsequent analyses. Monomorphic markers and markers with minor allele frequency (MAF) less



3.3. METHODS 51

Table 3.3: Year x Check classification in Germany (G) and Poland (P).

2009 2010 2012

G P G P G P

Check1 x x
Check2 x x
Check3 x x x x
Check4 x x
Check5 x x
Check6 x x
Check7 x x
Check8 x x
Check9 x x
Check10 x x
Check11 x x
Check12 x x
Check13 x

than 1% or missing information of more than 10% per marker were dropped. A total of 11285 markers

passed the quality test and were used for GP.

3.3.2 Models

In this chapter we present the models used in the first stage of the analysis and the models of the

approaches followed to adjust the year effect either in the second or the third stage. Figures 3.1 and

3.2 depict a general scheme that helps visualizing the methodology.

First stage

In the first stage we computed adjusted genotype means by location and year. The factors used for the

analysis were genotypes (G), testers (T ), trials (S), replicates (R) nested within trials and blocks (B)

nested within replicates. We defined a baseline model as

Yhijkv = (GT )hv + Si +Rij +Bijk + ehijkv, (3.1)

where Yhijkv is the observed grain dry matter yield of the h-th genotype testcrossed with the v-th tester

in the k-th block within the j-th replicate of the i-th trial, (GT )hv is the effect of the h-th genotype
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Stage 2

Stage 1
Baseline

Y = G · T : S/R/B

Approach 1a
Year-wise

M (1) = G×L× T

Approach 2
Across years

M (1) = (A/T ) × G × L

Approach 1b
M (1∗) = M (1) − M̄

(1)
r

GP
Year fixed

M(2) = Xβ + Zu + e

GP
M(2) = µ1 + Zu + e

GP
M(2∗) = µ1 + Zu + e

ρ ∼ 0.74ρ ∼ 0.70ρ ∼ 0.68

1
Figure 3.1: General representation of stage-wise approaches to compare year-effect adjustment. Factors
were genotype (G), tester (T ), location (L), year (A), trial (S), replicate (R) and block (B). Grain dry
matter yield (Y ) is the response variable in the first stage, M (1) is the adjusted mean of genotypes across
locations used in the second stage, M (1∗) is the year effect-corrected genotype adjusted mean, M̄ (1)

r

represents the simple mean of genotypes of the r-th year. In the genomic prediction (GP) stage, M(2) is
the n× 1 vector of adjusted means of genotypes by year for Approach 1a and across years for Approach
2, M(2∗) is the n × 1 vector of adjusted means of year effect-corrected genotypes in Approach 1b, X

and β are respectively the design matrix and parameter vector of fixed effects, Z is the n × p marker
matrix, u is the p-dimensional vector of SNP effects and e the error vector. Y = G · T : S/R/B is
the shorthand notation of the model eq. (1) in the text: Yhijkv = (GT )hv + Si + Rij + Bijk + ehijkv,
M (1) = G × L × T stands for the model eq. (2) in the text: M (1)

hsv = Gh + Ls + Tv + (GL)hs +

(GT )hv + (LT )sv + (GLT )hsv + ehsv, and M (1) = (A/T )×G×L represents the extended model eq.
(4) in the text: M (1)

hrsv = Gh +Ls + (AT )rv + (GA)hr + (GAT )hrv + (GL)hs + (LA)rs + (LAT )rsv +

(GLA)hrs + (GLAT )hrsv + ehrsv. The final predictive abilities (ρ) are presented in the ellipses.

testcrossed with the v-th tester, Si is the effect of the i-th trial [Si ∼ N(0, σ2S)], Rij is the effect of the

j-th replicate nested within the i-th trial [Rij ∼ N(0, σ2R)], Bijk is the effect of the k-th block nested

within the j-th replicate of the i-th trial [Bijk ∼ N(0, σ2B)] and ehijkv is the plot error associated with

the Yhijkv observation [ehijkv ∼ N(0, σ2e)]. In model equation (3.1) we assumed genotypes crossed

with testers as a fixed effect to be able to compute genotype adjusted means per tester, whereas the other

effects were considered as random effects due to the nested design structure [Piepho et al., 2003].

Table 3.4 summarises the further models. Some SAS code to fit the first stage models is provided
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Stage 2
Year-wise

M (1) = G×L× T

Model 1
...

Model 9
Mix1
Mix2

GP
Year fixed

M(2) = Xβ + Zu + e

CV-WC
Within crosses

CV-AC
Across crosses

ρ ∼ 0.70ρ ∼ 0.39

1
Figure 3.2: General representation of model comparison through all the stages of the analysis. Datasets
generated from 9 spatial and non-spatial models plus two mixed datasets generated from best models
given the Akaike information criterion (Mix1) and the predictive abilities (Mix2). Factors in second
stage were genotype (G), location (L) and tester (T ). M (1) represents the adjusted mean of genotypes
across locations and years. M (1) = G× L× T is the shorthand notation for M (1)

hsv = Gh + Ls + Tv +

(GL)hs + (GT )hv + (LT )sv + (GLT )hsv + ehsv. In the genomic prediction (GP) stage M(2) is the
adjusted mean of genotypes across locations, X and β are respectively the design matrix and parameter
vector of fixed effects, Z is the n× p marker matrix, u is the p-dimensional vector of SNP effects and e

the error vector. Sampling methods in cross validation (CV) were across crosses (AC) and within crosses
(WC). The final predictive abilities (ρ) are presented in the ellipses.

in the supplementary material (Appendix B). The first model (M1) will be referred to as the baseline

model because it was the simplest model and represented the randomisation structure. In the second

model (M2) we considered additionally the effects of the o-th row (Wijo) and the q-th column (Vijq)

both within the j-th replicate of the i-th trial. Subsequently, we added a spatially correlated residual

plot effect different from the baseline model, which uses the independent model (ID) with homogeneous

variances. We fitted one- and two-dimensional spatial models with and without the so-called nugget,

a geostatistical term to designate an independent error effect. As one-dimensional models we used the

autoregressive AR(1) variance-covariance nested within blocks without nugget (M3) and with nugget

(M7), and linear variance LV within blocks with nugget (M4). In the AR(1) we accounted for the

correlation between plots in the same block assuming an exponential decay of correlation with distance,



54 CHAPTER 3.

whereas by using LV, it is assumed that the covariance among plots in the same block decays linearly

with spatial distance [Piepho et al., 2008b; Williams, 1986]. The most common extension of the spatial

model in two dimensions is the direct product structure AR(1) × AR(1), which assumes that an AR(1)

model holds both along rows and along columns [Gilmour et al., 1997]. The two-dimensional models

were fitted along rows and columns within replicates without nugget (M5), with nugget (M8), adding

rows and columns as effects without nugget (M6) and with nugget (M9). The LV model can also be

extended in two dimensions [Piepho and Williams, 2010]; however, for METs, where the arrangement

of the plots might not be perfectly rectangular, this LV × LV model was cumbersome to fit with the

software we used, thus we did not consider this model.

Table 3.4: Spatial and non-spatial models used for the first stage.
Label Model Variance-covariance

structure for error
M1 Yhijkv = (GT )hv + Si +Rij +Bijk + ehijkv ID
M2 Yhijkoqv = (GT )hv + Si +Rij +Bijk +Wijo + Vijq + ehijkoqv ID
M3 Yhijkv = (GT )hv + Si +Rij +Bijk + ehijkv AR(1) within B
M4 Yhijkv = (GT )hv + Si +Rij +Bijk + ehijkv LV within B + nugget
M5 Yhijkoqv = (GT )hv + Si +Rij +Bijk +Wijo + Vijq + ehijkoqv AR(1) × AR(1) within

R

M6 Yhijkv = (GT )hv + Si +Rij +Bijk + ehijkv AR(1) × AR(1) within
R

M7 Yhijkv = (GT )hv + Si +Rij +Bijk + ehijkv Model 3 + nugget
M8 Yhijkv = (GT )hv + Si +Rij +Bijk + ehijkv Model 5 + nugget
M9 Yhijkoqv = (GT )hv + Si +Rij +Bijk +Wijo + Vijq + ehijkoqv Model 6 + nugget
Yhijkv is the observed dry matter yield of the h-th genotype testcrossed with the v-th tester in the k-th block
within the j-th replicate of the i-th trial, (GT )hv is the effect of the h-th genotype testcrossed with the v-th
tester, Si is the effect of the i-th trial [Si ∼ N(0, σ2

S)], Rij is the effect of the j-th replicate nested within the
i-th trial [Rij ∼ N(0, σ2

R)], Bijk is the effect of the k-th block nested within the j-th replicate of the i-th trial
[Bijk ∼ N(0, σ2

B)] and ehijkv is the plot error associated with the Yhijkv observation [ehijkv ∼ N(0, σ2
e)]. In

the models including row and column effects, Wijo is the effect of the o-th row within the j-th replicate of the
i-th trial [Wijo ∼ N(0, σ2

W )] and Vijq is the effect of the q-th column within the j-th replicate of the i-th trial
[Vijq ∼ N(0, σ2

V )]. Spatial variance-covariance structure were independent (ID), autoregressive in one direction
(AR(1)), one-dimension linear variance (LV) and two-dimension autoregressive [AR(1)× AR(1)].

Note that we use (GT )hv as fixed effect, which is necessary to obtain the genotype by tester means.

The purpose is also to recover the information of the entries that are grown in the same locations but

using different testers (e.g. in Cycle1 location G-L4 and the Polish locations P-L1 to P-L4), so that we

captured the effect of the tester in the shared locations.
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Second stage

In the second stage we computed genotype means across locations and testers. This was done either

separately for each year (Approach 1) or also averaging across years (Approach 2). The years 2009

and 2010, where molecular marker data were available, were connected through only one check. The

resulting fundamental question is then how to fit the year effect. Either the year effect is estimated by the

mean of all tested entries (Approach 1) or we rely on the adjustment by the one single check (Approach

2). We assume that genotypes tested in each year can be regarded as a random sample from the same

parent population. Based on the structure of the breeding program, this is a realistic assumption that

motivates the approaches described in the following.

Both approaches were compared using the M (1) resulting from the analysis of the baseline model in

the first stage.

Approach 1: Year-wise analysis

Each year was analysed in the second stage using a three-way interaction model of genotypes (G),

locations (L) and testers (T ) as factors to obtain adjusted genotypes means of each year. The model

was

M
(1)
hsv = Gh + Ls + Tv + (GL)hs + (GT )hv + (LT )sv + (GLT )hsv + ehsv, (3.2)

where M (1)
hsv represents the adjusted mean of grain dry matter yield of the h-th genotype, testcrossed

with the v-th tester in the s-th location, Gh, Ls and Tv are the main effects of the h-th genotype, the

s-th location and the v-th tester, respectively, (GL)hs, (GT )hv and (LT )sv are the two-way interaction

effects, (GLT )hsv is the effect of the three-way interaction and ehsv is the residual error associated with

M
(1)
hsv [ehsv ∼ N(0, σ2e[hsv])], with σ2e[hsv] the variance of the hsv-th adjusted mean (M

(1)
hsv) obtained in

the first stage.

Location was considered as random effect [Ls ∼ N(0, σ2L)] and hence, all the interactions containing

this factor are random [Piepho et al., 2003]. The crossed effect of genotypes and testers [(GT )hv] could

have been a fixed effect since genotypes and testers are taken as fixed factors in this stage. However,

the crossed effects that include G were taken as random here because the factor genotype was used as

random in the GP stage. But note that in the first and the second stage we needed to take genotype

main effects as fixed in order to compute adjusted means [Piepho et al., 2012a]. Besides, since not every



56 CHAPTER 3.

genotype was tested with every tester (e.g. in Cycle1 locations G-L1 to G-L3 and G-L5 to G-L8), we

needed to take (GT )hv random to be able to estimate genotype means across levels of testers.

In this approach, the year effect was adjusted in two ways, hereafter referred as to Approach 1a and

Approach 1b. Approach 1a used years as fixed factors in the GP stage and Approach 1b used a manual

adjustment after the second stage by simply calculating the mean of the genotypes by year (M̄
(1)
r ) and

subtracting it to each genotype adjusted mean of the corresponding year (Figure 3.1). The rationale

behind the latter approach is the assumption that the correction for the year effect is better represented

by the simple mean of the complete sample of genotypes per year than by just a few checks. The

resulting year effect-corrected genotype means (M
(1∗)
hsv ) are forwarded to the GP stage, and through CV

are evaluated as predictors.

As in the transition from the first to the second stage, there is a loss of information in passing on from

the second to the third stage because the (GLT )hsv effect is confounded with the residual error term.

This loss can be minimized by weighting the adjusted means [Piepho et al., 2012a]. We used the Smith

et al. [2001] scheme, where adjusted means are weighted by the diagonal elements of the inverse of their

variance-covariance matrix computed in the first stage.

At this stage, we computed the heritability for each year using the ad hoc method described in Piepho

and Möhring [2007] as

H̄2 =
σ2G

σ2G + v̄/2
, (3.3)

where σ2G is the genetic variance and v̄ is the mean variance of a difference of two adjusted genotype

means, corresponding to the best linear unbiased estimators (BLUE). Even though this is not the best

method to estimate heritability [Estaghvirou et al., 2013], the square root of this heritability estimate

gives a rough idea of an upper limit for the predictive abilities.

Approach 2: Across years analysis

The model to account for the year effect in the second stage through the shared check was

M
(1)
hrsv = Gh + Ls +Drv + (GD)hrv + (GL)hs + (LD)rsv

+ (GLD)hrsv + ehrsv, (3.4)

whereM (1)
hrsv represents the adjusted mean of grain dry matter yield of the h-th genotype, testcrossed

with the v-th tester, in the s-th location and r-th year, Gh is the main effect of the h-th genotype, Ls is
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the main effect of the s-th location and Drv the main effect of the v-th tester within the r-th year, which

can be extended as Drv = Ar + (AT )rv, with Ar the effect of the year and T denoting the tester [Piepho

et al., 2003]. (GD)hrv, (GL)hs and (LD)rsv are the two-way interaction effects, (GLD)hrsv is the effect

of the three-way interaction and ehrsv is the residual error associated to M (1)
hrsv [ehrsv ∼ N(0, σ2e[hrsv])],

with σ2e[hrsv] the variance of the hrsv-th adjusted mean (M
(1)
hrsv) obtained in the first stage. The effects

containing Drv can be extended as (GD)hrv = (GA)hr + (GAT )hrv, (LD)rsv = (LA)rs + (LAT )rsv

and (GLD)hrsv = (GLA)hrs + (GLAT )hrsv.

We considered genotypes and testers as fixed factors and location and year as random factors [Ls ∼
N(0, σ2L) and Ar ∼ N(0, σ2A)]. All effects involving Ar are random except (AT )rv because we do not

want to recover inter-year information since there are only two years and the year by tester classification

is very disconnected (years do not share testers). Moreover, the (AT )rv term is analogous to a block

factor in an incomplete block design because it is free of Gh; therefore, due to the unbalancedness and

the small number of years, we can use it as a fixed effect. Furthermore, the main year effect (Ar) can be

dropped considering that the adjustment of the genotype means is the same for Ar + (AT )rv as for only

(AT )rv.

Including all the effects, the final model (3.4) is

M
(1)
hrsv = Gh + Ls + (AT )rv

+ (GA)hr + (GAT )hrv + (GL)hs + (LA)rs + (LAT )rsv

+ (GLA)hrs + (GLAT )hrsv + ehrsv,

To minimise the loss of information in the transition to the GP stage, we weighted the adjusted means

using the inverse of the squared standard errors, which is also appropriate since we are not fitting random

block effects [Möhring and Piepho, 2009].

Third stage: Genomic prediction

At the third stage, the dataset of p markers was merged with the n grain dry matter yield adjusted means

by years of evaluated models. GP was performed using ridge-regression best linear unbiased prediction

(RR-BLUP), where the genotypic values are predicted using the marker information by regressing each

SNP on the phenotype [Piepho, 2009b].
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The model was

M(2) = Xβ + Zu + e (3.5)

where, M(2) is the n×1 vector of phenotypic records, here, containing the adjusted means calculated

from the second stage, X and β are, respectively, the design matrix and parameter vector of fixed effects,

Z is the n×p marker matrix, whose elements zhm represent the SNP genotype of the m-th marker of the

h-th genotype entry and take the values −1, 0, or +1 for the aa, Aa, and AA genotypes Piepho [2009b],

u is the p-dimensional vector of SNP effects and e is the error vector. The term Zu is interpreted as

the genetic effect and its estimate Zû as the GEBV. The GEBV of the h-th genotype corresponds to

GEBVh =
∑p

m=1 ûmzhm, with m = 1, · · · , p the number of markers, ûm is the estimated effect of the

m-th marker and zhm the SNP genotype of them-th marker for the h-th genotype entry. The assumptions

of the model are that the error is normally distributed with zero mean and variance R [e ∼ N(0,R)] and

that u has a normal distribution with zero mean and variance Ipσ
2
u [u ∼ N(0, Ipσ

2
u)]. R is a diagonal

matrix with diagonal elements equal to the inverses of the diagonal elements of the inverse of the original

variance-covariance matrix of the adjusted means of the second stage Smith et al. [2001]. Ip is the p-

dimensional identity matrix and σ2u represents the proportion of the genetic variance contributed by each

individual SNP.

Under the model equation (3.5) the variance of the observed data is var(M(2)) = Γσ2u + R, in

which Γ = ZZT and ZT denotes the transpose of Z [Piepho, 2009b]. To speed up the computation, Γ

was rescaled by replacing Z with Z/
√
p, with p the number of markers [Piepho et al., 2012b].

In the year-wise analysis (Approach 1a), the genotype adjusted means by year are merged in the M(2)

vector, and vector β contains the intercept and the year effect. In the across-years analysis (Approach 2),

where year effect was already accounted for, M(2) contains the genotype adjusted means and vector β

contains only the intercept. In the year-wise analysis correcting genotype adjusted means for year effects

(Approach 1b), the model used did not include a fixed year factor (since we had already adjusted for it)

but a common intercept, thus the model was the same as for across-years analysis.

To measure the influence of the relationship among the genotypes on the predictions, we used the

adjusted means obtained in the second stage and the pedigree information of the entries in a mixed model

testing genotypes and crosses as random effects, so that the variances of both effects would give us an

estimation of how much the variation is attributed to the pedigree, e.g. the crosses. The model was

M
(2)
ah = Gh + Ca + eah (3.6)

where M (2)
ah is the adjusted mean of the h-th genotype obtained in the second stage, Gh is the effect of
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the h-th genotype, Ca is the effect of the a-th grand parent (gp) cross, e.g. (gp1 × gp2) × (gp3 × gp4),

and eah the associated error. Additionally, we plotted the relationship heat-map of estimated coefficients

of relatedness for individuals based on marker data computed according to VanRaden [2008].

Cross validation for model comparison

To evaluate model performance, k-fold CV was carried out. In CV, the data is split into k subsets t times.

k−1 subsets are used as the training set (TS) and the one other subset is the validation set (VS). The TS is

used to estimate the parameters that then are used to predict the observations in the VS. The performance

of the model was assessed by the Pearson correlation coefficient between the predicted GEBV and the

corresponding observations of the VS. This correlation is referred to as predictive ability [Estaghvirou

et al., 2013]. As in the first stage, the predictive ability was not adjusted by the square root of the

heritability. Although breeding programs are most of the time operating with closely related genotypes,

breeders are also interested in knowing the results in a scenario with more distantly related genotypes,

for example, using genotypes that share the same grandparents either in the TS or in the VS but not in

both. Hence, we wanted to check if accounting for the effect of population structure in the randomisation

of CV would make the spatial error models improve the predictive abilities. We chose two scenarios

given the relatedness level of the entries and followed the suggested sampling schemes from Albrecht

et al. [2011], which takes into consideration this fact in the CV procedure. In the first sampling scheme,

hereafter called “within crosses” (WC), random sampling is done using all genotypes in the dataset; in

the second scheme, hereafter referred to as “across crosses” (AC), genotypes were clustered by cross,

so that complete cross-groups were used randomly either in the VS or the TS. There were 349 crosses

of different sizes, sharing none, one or two grand parents. The general overview of the methodology is

depicted in Figure 3.2.

3.3.3 Model selection

Two strategies for selecting the best phenotypic model were used in the first stage. In strategy one

the best model for all locations is selected, that is, there is no model selection per location but across

locations. In strategy two, model selection is location-specific (Figure 3.3). For both strategies we

computed the AIC and performed genomic prediction-cross validation (GP-CV), both per location-year

combination. To accomplish the GP-CV approach, we used the adjusted means per location and year of

all spatial and non-spatial models. Then, means of genotypes by year-location combination were joined

with the molecular marker data to perform GP-CV, in which genetic values were regressed on markers

and validation of the model was done using k-fold CV. Predictions of unobserved records and predictive
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abilities of each model were obtained for each year-location combination. We assessed the predictive

ability of the models using the Pearson correlation coefficient (ρ) between the predicted GEBV and the

observed phenotypic value. Hereafter we denote this predictive ability as ρ-GP-CV. Predictive abilities

were not adjusted with the square root of the heritability, as suggested by Dekkers [2007], since this adds

an extra error due to heritability computation [Estaghvirou et al., 2013; Heslot et al., 2013b].

Stage 1
Y = G · T : S/R/B

Strategy 1
Across locations

selection

Strategy 2
Location-specific

selection

AIC

ρ-GP-CV

Model 1
...

Model 9

AIC

ρ-GP-CV

Mix 1

Mix 2

1
Figure 3.3: General representation of strategies to compare model selection methods. Factors
were genotype (G), tester (T ), trial (S), replicate (R) and block (B). Grain dry matter yield (Y ) is
the response variable in the first stage. Y = G · T : S/R/B is the shorthand notation for the model
Yhijkv = (GT )hv + Si + Rij + Bijk + ehijkv. Datasets of 9 spatial and non spatial models plus one
mixed dataset (Mix1) generated from best models given the Akaike information criterion (AIC) and
another mixed dataset (Mix2) generated from best models given the predictive abilities (ρ-GP-CV).

For strategy one (across locations model selection), the number of locations with the best fits (either

AIC or ρ-GP-CV) was counted, so that the model with the best fits in the majority of locations was

identified as the best model. For strategy two (location-specific model selection), two datasets were

built: “Mix 1”, containing the adjusted means of the locations with the best fit according to the AIC and

“Mix 2”, containing the adjusted means of the locations with the highest ρ-GP-CV. Thus, after the first

stage we had in total eleven data sets of adjusted means, nine corresponding to each tested model from

strategy one, plus two more datasets from strategy two: A mixed data set (Mix 1) with the best models

per location-year according to the AIC, and another mixed set (Mix 2) with best models per location-year

according to the ρ-GP-CV.

3.3.4 Softwares

All analyses were performed using SAS. Stage 1 and 3 used the MIXED procedure and Stage 2 used

PROC HPMIXED. Relationship matrix was calculated using the Symbreed Package [Wimmer et al.,
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2012] for R 2.15.

3.4 Results

3.4.1 First stage - strategy 1: Model selection across locations

In the first stage - strategy 1, we did model selection across locations using AIC and predictive abil-

ities (ρ-GP-CV) per location-year combination. According to the AIC, the results favoured the two-

dimensional models (Table 3.5). To do a fair comparison between selection methods using AIC and

ρ-GP-CV, we first describe AIC for years 2009 and 2010, for which ρ-GP-CV were also available and

then, as additional information, for year 2012, for which ρ-GP-CV was not available since the marker

information was missing.

For years 2009 and 2010, M9 and M8 had the majority of best fits across locations. M9 (Baseline

+ row + column and AR(1) × AR(1) + nugget) resulted in 12 out of 22 cases as the best model. M8

(Baseline and AR(1) × AR(1) + nugget) was best in seven out of 22 cases. The baseline model + row

+ column (M2) fitted the best 9% of the times and M6 5% of the times.

A similar tendency was observed in 2012, where 43% of the times (six out of 14) M9 had the best

fit and M8 was best 29% of the times. For this year 2012, models M7, M8 and M9 could not be fitted in

some locations. Another third of the times (29%), M2 had best fits. Interestingly, M2 had the best fits in

the locations that had convergence problems for models M8 and M9. M1, M3, M4, M5 and M7 never

had best fits in any of both groups of years.

The predictive abilities (ρ-GP-CV) per location-year combination showed a rather different pattern

for best models within locations; however, the two-dimensional models were also more frequently

selected than one-dimensional models (Table 3.6). M8 (Baseline and AR(1) × AR(1) + nugget) showed

in seven of 22 settings the highest ρ-GP-CV per location-year combination followed by M9 (Baseline +

row + column and AR(1) × AR(1) + nugget) with six out of 22 times. The baseline model + row +

column (M2) was selected twice and models M3, M4 and M6 had also one, three and three selections

out of 22, respectively. M1, M5 and M7 had no best fits at all.

One location of 2009 (P-L3) produced a negative predictive ability for all models. We did not

consider this location in the counting of best fits, since a higher negative number is actually a worse

fit in regard to predictions, but low or high negative are both interpreted as zero prediction. Despite the

negative correlations, this location was included in the mixed datasets produced from the site-specific

model selection. We used the adjusted means produced from the baseline model. Another location
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Table 3.5: Akaike information criterion (AIC) of models at first stage (M1, · · · , M9) by year and
location (L) for grain dry matter yield (Y).

Year L M1 M2 M3 M4 M5 M6 M7 M8 M9

2009 G-L1 101.7 84.3 45.5 47.2 20.4 6.9 45.6 0 1.7
2009 G-L2 83.1 67.5 50.9 38.5 31.4 20.7 40.7 0.5 0
2009 G-L3 45.7 30.4 41.5 31.1 40.1 26.9 31.2 1.0 0
2009 G-L4 125.0 19.1 125.1 114.9 90.3 19.6 115.5 65.0 0
2009 G-L5 29.1 8.0 18.1 24.5 15.3 1.2 – 12.3 0
2009 G-L6 51.6 47.6 37.7 29.5 41.7 35.4 29.4 0 1.2
2009 G-L7 81.5 56.1 55.3 62.8 36.5 11.0 55.5 5.1 0
2009 P-L1 126.4 115.6 121.6 116.3 109.5 108.8 116.2 0 1.9
2009 P-L2 62.3 45.4 62.4 54.6 57.3 47.2 54.9 1.5 0
2009 P-L3 120.9 65.9 116.1 105.5 99.7 49.6 105.5 17.3 0
2009 P-L4 145.9 98.6 132.8 126.4 126.4 80.1 126.4 0.4 0
2010 G-L1 35.5 4.9 35.6 31.5 12.3 0 32.0 12.3 1.8
2010 G-L2 25.0 7.2 27.0 21.7 29.7 11.9 19.7 0 -3.2
2010 G-L4 141.4 74.2 128.7 117.1 130.2 57.4 118.4 5.0 0
2010 G-L5 21.6 0 23.4 22.9 21.9 3.3 22.9 22.1 2.8
2010 G-L6 80.9 60.0 72.8 59.8 55.4 41.5 61.1 0 0.6
2010 G-L7 69.5 22.3 56.2 47.8 37.2 23.6 48.1 2.6 0
2010 G-L8 40.8 24.7 32.1 22.6 27.7 19.6 23.1 0 1.4
2010 P-L1 38.8 5.7 38.8 38.8 39.4 9.4 40.8 39.1 0
2010 P-L2 40.0 0.7 41.6 36.1 39.8 4.1 36.9 4.3 0
2010 P-L3 66.4 0 68.4 67.2 69.5 3.7 70.4 71.5 5.7
2010 P-L4 95.0 80.4 90.5 79.1 87.0 66.7 79.4 0 3.2

Counts 0 2 0 0 0 1 0 7 12
0% 9% 0% 0% 0% 5% 0.00 32% 55%

2012 G-L4 35.3 0 35.3 36.2 26.0 0.6 35.3 24.2 –
2012 G-L5 66.3 2.6 67.0 66.3 42.1 5.9 – 21.5 0
2012 G-L6 148.4 131.4 93.8 93.7 18.7 18.7 89.9 0 0
2012 G-L7 38.3 4.5 40.3 38.3 36.3 0 42.3 – 1.9
2012 G-L8 45.3 39.8 37.7 33.5 35.6 37.3 33.9 1.9 0
2012 G-L9 402.3 321.5 200.9 181.7 81.9 81.9 191.6 0 0
2012 G-L10 39.7 0 41.5 41.4 22.1 3.5 43.5 6.7 1.1
2012 G-L11 18.0 0 19.7 18.0 8.4 1.2 21.6 3.7 –
2012 P-L1 189.5 168.8 158.9 148.9 146.3 137.8 149.1 0 1.7
2012 P-L2 127.4 49.3 129.1 122.6 129.7 49.9 123.9 5.9 0
2012 P-L3 107.8 55.3 103.1 95.0 101.0 49.3 96.1 7.9 0
2012 P-L4 226.3 0.2 226.3 222.1 226.3 0 226.3 226.3 2.0
2012 P-L5 13.2 0 13.2 13.2 11.9 1.5 13.2 13.9 3.5
2012 P-L6 79.0 54.8 70.4 66.9 65.8 37.9 67.0 0 1.7

Counts 0 4 0 0 0 2 0 4 6
0% 29% 0% 0% 0% 14% 0% 29% 43%

Table shows ∆AIC relative to the best model.
Boldfaced entries in the table indicate best model (fit) within location. Empty cells (–) correspond to locations
where the model did not converge. In italics, we report the models that converged but the Hessian matrix was not
positive definite.
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Table 3.6: Predictive abilities of observed and predicted values of a 5-fold-CV by year-location
combination of models at first stage (M1, · · · , M9) for grain dry matter yield (Y), and repeatability
(R) of the trait by location.

Year Loc M1 M2 M3 M4 M5 M6 M7 M8 M9 R

2009 G-L1 0.469 0.473 0.462 0.481 0.448 0.455 0.474 0.481 0.478 0.376
2009 G-L2 0.271 0.272 0.279 0.280 0.282 0.288 0.282 0.270 0.269 0.177
2009 G-L3 0.347 0.344 0.351 0.350 0.345 0.339 0.350 0.355§ 0.355 0.264
2009 G-L4 0.595 0.593 0.597 0.602§ 0.592 0.594 0.602 0.592 0.598 0.440
2009 G-L5 0.495 0.514 0.506 0.505 0.519 0.527 – 0.514 0.529 0.303
2009 G-L6 0.393 0.398 0.357 0.372 0.359 0.360 0.369 0.372 0.378 0.077
2009 G-L7 0.596 0.594 0.586 0.599 0.578 0.565 0.591 0.584 0.577 0.299
2009 P-L1 0.127 0.118 0.132 0.138 0.116 0.114 0.138 0.174 0.167 0.225
2009 P-L2 0.301 0.306 0.303 0.310 0.307 0.309 0.310 0.323 0.323§ 0.338
2009 P-L3 -0.154 -0.165 -0.153 -0.154 -0.169 -0.172 -0.154 -0.158 -0.175 0.247
2009 P-L4 0.520 0.518 0.527 0.525 0.520 0.522 0.525 0.558 0.555 0.362
2010 G-L1 0.428 0.471 0.426 0.432 0.464 0.478 0.431 0.466 0.475 0.263
2010 G-L2 0.394 0.392 0.399 0.407 0.400 0.398 0.406 0.401 0.400 0.248
2010 G-L4 0.470 0.472 0.477§ 0.476 0.478 0.477 0.477 0.404 0.424 0.326
2010 G-L5 0.469 0.485 0.471 0.469 0.476 0.486 0.469 0.479 0.487 0.407
2010 G-L6 0.576 0.583 0.601 0.612 0.601 0.608 0.611 0.619 0.618 0.310
2010 G-L7 0.520 0.552 0.557 0.564 0.541 0.556 0.565 0.579 0.574 0.298
2010 G-L8 0.589 0.600 0.599 0.597 0.605 0.605 0.598 0.603 0.607 0.540
2010 P-L1 0.327 0.334 0.327 0.327 0.326 0.333 0.327 0.327 0.337 0.439
2010 P-L2 0.277 0.310 0.275 0.266 0.275 0.309 0.268 0.311 0.307 0.436
2010 P-L3 0.461 0.466 0.461 0.462 0.459 0.467 0.461 0.459 0.467 0.416
2010 P-L4 0.314 0.322 0.317 0.316 0.315 0.317 0.317 0.317 0.315 0.360

Counts 0 2 1 3 0 3 0 7 6
0% 9% 5% 14% 0% 14% 0% 32% 27%

Boldfaced entries in the table indicate best model (fit) within location. Empty cells correspond to locations where
the model did not converge. In italics, we report the models that converged but the Hessian matrix was not positive
definite.
§ Better than second best model at forth decimal place.

(G-L1 2009) showed way lower predictive abilities than the rest of the locations. To understand these

two situations, we calculated the repeatability of the trait in each location for the baseline model. The

repeatability R is defined as the ratio of the between-individual component to the total phenotypic

variance [Falconer and Mackay, 1996], which in our case, and following the methodology described

by Nakagawa and Schielzeth [2010], corresponds to

R =
σ2GT

σ2GT + σ2S + σ2R + σ2B + σ2e
(3.7)

where σ2GT is the between-groups variance and corresponds to the variance of the effect (GT )hv fitted as
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random effect, and in the denominator, the total phenotypic variance given by the sum of the between-

groups variance σ2GT and the within-groups variances, i.e. replicates within trials (σ2S + σ2R) and blocks

within replicates (σ2B) plus the residual variance (σ2e). The interpretation of this repeatability strictly

refers to the expected within-group correlations among measurements, i.e. the agreement among mea-

surements; thus, the gist of the definition of repeatability is related to the reproducibility of the absolute

values of measurements. A slightly higher repeatability in Cycle1-2009 was observed for location G-

L4 (Table 3.6), which involved more trials, i.e. more genotypes, in comparison with other locations

in Germany. The trend in Cycle1-2010 was in favour of the Polish locations, which overall had more

homogeneous and higher repeatabilities. We discuss the relation between repeatabilities and predictive

abilities in the next section.

3.4.2 Second stage: Fitting genotypes by year vs. across years

From a methodological point of view, fitting the year effect in the GP stage was easier and more direct

than accounting for the year effect in the second stage, in the sense that the model for the latter approach

became too complex and the variance covariance matrix of adjusted means was not possible to be

produced using the procedure HPMIXED of SAS given the high computer power required. Instead,

we computed the adjusted means with corresponding standard errors, which were then used to do the

weighting to pass on from the second to the third stage.

The adjusted means obtained from the across-years analysis (Approach 2) were plotted against

the year effect-corrected genotype adjusted means (from Approach 1b) to compare the difference of

adjustments, in the former case based on one single check against the adjustment given the simple mean

of the genotypes in each year (Figure 3.4). Below the two principal lines, an observation corresponding

to the shared check across years stood out from the others, reflecting the year adjustment. At first glance,

it is clear that the check was the only observation pulled down implying that the year adjustment of this

check was not strong enough to pull down the observations of the whole year. Both approaches were

examined later using the predictive abilities obtained in the GP stage.

3.4.3 Third stage: Genomic prediction

The predictive abilities of the GP stage were taken as the definitive decision criterion for identifying the

best strategy for model selection, the best model, and the most reliable approach to account for year

effects, and to identify the consequences of population stratification in GP. We start by presenting results

of the comparison of the approaches used for fitting the year effect, since with these we only used the
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Figure 3.4: Comparison of approaches for year adjustment. In the x-axis, the genotype adjusted
means across-year analysis are plotted. In the y-axis, the year-effect-corrected adjusted means from the
year-wise analysis are depicted.

baseline model. Then we present the differences between sampling methods for CV together with the

comparison of the models and the model selection strategies.

Comparison of approaches to account for year effect in GP

The GP-CV for the approach using the year as a fixed term in the third stage (Approach 1a) yielded a

predictive ability of 0.70 (Table 3.7), whereas predictive ability for the approach accounting for a fixed

year effect in the second stage (Approach 2) was 0.74. The predictive ability reached 0.68, using the

year-effect-corrected adjusted means in the GP-CV (Approach 1b). The scatter plots of GEBV (Zû)

against the observed phenotypic values (adjusted means) in the three cases are depicted in Figure 3.5.

In Approach 1a, we plotted the GEBV against the corrected observed phenotypic values, calculated as

M(2) −Xβ̂, where M(2) is the vector of genotype adjusted means obtained in the second stage and Xβ̂

the predicted year effect (Figure 3.5A). For Approach 2, the observed phenotypic values M(2) against

Zû are shown (Figure 3.5B). For Approach 1b, M(2∗) against Zû are plotted, with M(2∗) the year-

effect-corrected adjusted means of genotypes (Figure 3.5C).
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Figure 3.5: Comparison between approaches to fit the year effect. The y-axis represents the
genotype adjusted means [M(2) −Xβ̂ in (A), M(2) in (B) and M(2∗) in (C)] and the x-axis represents
the GEBV (Zû). (A) Year-wise analysis (Approach 1a), fitting year as fixed effect in the GP stage, (B)
Across-years analysis (Approach 2), using year in the second stage and (C) year-wise analysis using the
year effect-corrected genotype means (Approach 1b). ρGP represents the predictive ability.
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Table 3.7: Predictive abilities between observed and predicted values for 9 spatial and non-spatial
models (M1, · · · , M9) and mixed datasets using the best locations given the AIC (Mix1) and the
ρ-GP-CV per location-year combination (Mix2).

M1 M2 M3 M4 M5 M6 M7 M8 M9 Mix1 Mix 2

WC 0.700 0.694 0.691 0.679 0.692 0.692 0.691 0.694 0.689 0.689 0.690

a ab ab c ab ab ab ab abc bc abc

AC 0.395 0.398 0.390 0.395 0.391 0.389 0.389 0.395 0.391 0.391 0.390

b a cd de c e de b c c cd
Same letters within rows indicate no significant differences (α = 5%) according to a paired t-test. Sampling
strategies were: Within crosses (WC) and across crosses (AC).

Comparison of model selection strategies using different sampling methods in cross vali-

dation

Fitting model (3.6) to measure the influence of the relationship among genotypes on predictions yielded

variance components for genotypes, crosses and error for year 2009 of 4.03, 3.67 and 1.66, respectively,

and for year 2010 of 4.72, 10.70 and 1.32, respectively. Thus, the cross effect in 2009 is contributing in

about 40% and in the next year more than 60% to the total variation explained by the data.

The marker-based relationship heat-map (Figure 3.6) shows some clusters among genotypes of the

same cross indicating genetic relatedness. The predictive abilities using five times fivefold CV of datasets

resulting from first stage analysis of all spatial and non-spatial models plus the mixed datasets were

in general very similar within sampling strategies (Table 3.7). For the across-crosses (AC) sampling

scheme, the predictive abilities were lower than the ones obtained with the within-crosses (WC) sam-

pling scheme. In the AC sampling, we fixed the initial seed of the random number generator used for

randomization in the CV procedure at the same value for all models to be able to compare the models

when the same crosses were used in the training set.

We compared the models and the sampling methods using a paired t-test (α = 5%) by resembling a

randomized complete block design, where the predictive ability of each repetition of the CV was taken

as a block, thus accounting for the dependence among observations from the same samples (Table 3.7).

For the first sampling method (WC), three groups were identified with some overlaps, but showing not

much of a difference among models. From the across-crosses sampling strategy (AC), five groups were

distinguished with some overlaps: M2 had the highest predictive ability and models M4, M6 and M7 had

the worst predictive abilities.

Potential bias of GP is another important element that could be used to compare models. We
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Figure 3.6: Marker-based relationship heat-map. Visualised are pairwise relationship coefficients
estimated from the maker data for genotypes of years 2009 and 2010. Higher values represent a stronger
relationship.

computed the bias as suggested by Le Roy et al. [2012] and Wang et al. [2012]. The comparison of

the biases of all models followed a rather similar trend as the predictive abilities showed in Table 3.7.

We present the analysis of bias as supplementary material (Appendix B.2).

The heritability (square root of heritability) for the baseline model was estimated as 0.68 (0.82) for

year 2009, 0.73 (0.85) for year 2010 and 0.69 (0.83) for 2012 using the equation (3.3). In principle,

the ad hoc method may approximate the true value of heritability but making the unrealistic assumption

of uncorrelated genotypes [Estaghvirou et al., 2013]. We computed the heritability to have a rough idea

of how much could we expect from the predictive abilities. The predictive ability divided by square

root of heritability is an estimate of the accuracy of GP [Estaghvirou et al., 2013], and the square root

of the heritability provides the upper bound for the predictive ability [Falconer and Mackay, 1996],

thus one expects that the predictive abilities are not very far from the square root of heritability. In

this case, the square roots of the heritabilities are somewhat larger than the corresponding predictive

abilities, indicating that the predictions are not sufficiently accurate due to limited data size, thus not

exhausting completely the genetic variance. To explore in which extend could have our models explained

the variance not captured by the markers, we fitted an additional component accounting for the polygenic

effect in the GP stage [Piepho, 2009b]. The baseline model (M1) yielded a genotypic variance of 2.99;

when we incorporated the polygenic effect, the genotypic variance was 2.72 and polygenic variance was

0.36, indicating that about 88% of the total genetic variance was captured by the RR-BLUP model.
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3.5 Discussion

Selecting the models at the first stage produced different results than assessing them in the third stage.

AIC had better scores for the models that used row and column effects, e.g. Models M9, M6 and

M2 (Table 3.5) or M8 that had a two-dimensional variance-covariance error structure. ρ-GP-CV also

picked M8 and M9 (Table 3.6) but the choices were more spread over the models covering even the

baseline model. In general, in the first stage, both AIC and ρ-GP-CV produced better scores for the

two-dimensional models, whereas in the third stage the baseline and one-dimensional models seemed to

be better than the more complex models (Table 3.7). The explanation of this pattern may be related to

the second stage, where the interaction genotype × location played a role. The two-dimensional models

performed very well in modelling heterogeneity within field, but when the means were integrated across

the whole experiment, including all locations and years, the two-dimensional spatial error models seemed

to over-adjust the means, yielding a poorer predictive ability in the GP stage. The one-dimensional spatial

error models and the two-dimensional model without spatial error structure were sufficient to estimate

appropriately adjusted means. This corroborates Piepho and Williams [2010] who concluded that for

small portions of a field, a particular spatial model may hold well but if fitted all across the field it

may fail. In a wheat experiment, Lado et al. [2013] found that using moving averages as covariable

significantly improved the predictive abilities of GP. They recognised strong heterogeneous patterns of

irrigation in the field, that were not controlled with a single blocking system.

Models M1, M3 and M7 were never selected as having the best fits either by AIC or ρ-GP-CV. These

models had in common that none of them used rows and columns as additional factors, strengthening the

conclusion that row-column designs may have the potential to correctly control field heterogeneity and

thus enhance predictive ability of genomic prediction.

Fitting a location-specific error model did not have an advantage over fitting a common model across

locations. Neither did the dataset composed of means computed using models have best AIC fits (Mix

1) nor the second dataset containing the means computed using models with highest ρ-GP-CV (Mix 2)

produce better predictive abilities in the GP stage.

The models with nugget had better fits than the corresponding baseline model without the nugget.

The drawback was that fitting those models was not straightforward, since almost every location required

a separate coding specifying initial values and lower boundary constraints on the covariance parameters.

Good statistical and biological reasons have been presented of why including a nugget to analysis of field

experiment is beneficial [Wilkinson et al., 1983].

If we ignore the two-dimensional spatial models (M5, M6, M8 and M9), the AIC privileges M2 and
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ρ-GP-CV yields more diverse results with the majority of choices for M2 and M4. In fact, when the

spatial component of a resolvable row-column design based on linear variance (LV) does not lead to

an improved fit, returning to classical row-column design provides randomisation protection [Williams

et al., 2006].

Williams and Luckett [1988] performed studies aiming to find the optimal plot size, the optimal plot

arrangements and the best spatial model (the so-called uniformity trials) and showed that in cotton and

barley row and column designs are well suited for variety testing in plant breeding trials. Moreover,

recent simulation studies from Möhring et al. [2014] showed that designs including rows and columns

outperformed one-dimensional blocking. In the same work, the authors mention that blocking in the

direction of plots with common long sides is preferable, which is common in cereal breeding [Patterson

and Hunter, 1983].

We cannot affirm that ρ-GP-CV was better than AIC for model selection or vice versa, nor that the

results showed the same trend; but if we would have used either of these two strategies to select the

best model, we would have selected the M9 with AIC or M8 with ρ-GP-CV. The GP predictive ability

obtained by M2 (Table 3.7) was slightly better than M8 and M9 (specifically AC sampling method);

however, this model (M2) was not highlighted by either of the two selection criteria (AIC or ρ-GP-CV).

In practice, the fact that there were no large statistical differences is good news for the breeders

because the baseline model (M1), or even better, the simplest model with row-column adjustment (M2),

are appropriate for phenotypic analysis towards GP.

As a model selection method, GP-CV is of interest because it may allow to compare models with

different fixed effects, even when REML is used for estimating the variance parameters. No simple

recommendation has been reported concerning the best model selection criterion in the case of spatial

models [Lee and Ghosh, 2009; Spilke et al., 2010]. Predictive abilities have been used between envi-

ronments as similarity measure and then to join similar environments into clusters [Heslot et al., 2013b].

Thus, in a sense ρ-GP-CV allows giving an interpretation to the environment under scrutiny and the

displayed trend do not depart far from the classical AIC. The repeatabilities (R) presented in parallel to

the ρ-GP-CV (Table 3.6) show a low correlation (ρ = 0.36, p-value = 0.0965) with the predictive abilities

from the baseline model. In fact, we expected that for location P-L3 of 2009, which had a negative

predictability, the R was very low almost zero, but this was not the case; hence we could not conclude

that the low predictive ability is mainly due to environmental effects. Riedelsheimer et al. [2013] also

reported negative predictive accuracies when testing unrelated crosses in the CV procedure and observed

that using unrelated crosses could have provided a negative prediction signal due to opposite linkage

phases with important QTL displayed in the TS, suggesting that the negative predictive accuracies are
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associated with the marker pattern.

In this study we explored three ways to adjust the year effect given the weak connectivity across

years. Using the single check (Approach 2) to make the year adjustment was not a better choice than

adjusting by the simple year mean (Approach 1b) or accounting for the year effect in the GP stage

(Approach 1a), even though the estimated predictive ability was the highest. The “year clouds” produced

using Approach 2 (Figure 3.5B) did not overlap perfectly, from which we concluded that the correction

was not appropriate and generated an over-fitting of the markers in the GP-CV procedure due to the fact

that markers also predicted the year effect and not the SNP-effects alone. Using the year-mean correction

for adjusted means in the second stage (Approach 1b) produced a lower ρ-GP-CV, that, given the overlay

of the clouds of predicted vs. observed values, seems to be more realistic. However, fitting the year

effect manually, i.e. using ordinary least squares estimation (OLSE) vs. fitting it as a fixed effect in the

GP stage, i.e. using generalised least squares estimation (GLSE) can definitively yield a more precise

estimate. Indeed, the residual variance in Approach 1b using year effect-corrected adjusted means was

around 3.9 (in average for the five replicates) and in Approach 1a using the year fixed effect in the GP

stage yielded residual variance of 3.0 (in average for the five replicates). In Approach 1a, where we fitted

the year in the GP stage, we removed the year effect from the observed adjusted means derived from the

second stage (M(2) −Xβ̂) to avoid bias of the predictive abilities; however, there would still be some

bias because the subtracted year effect was not the true effect but an estimate of the year effect.

Models were eventually assessed and compared using the ρ-GP-CV in the third stage. The two

sampling scenarios to perform the CV procedure aimed to recreate the cases where the material was

genetically close, with some individuals coming from the same parental cross, and more distantly related

to avoid individuals from the same parental cross in the randomisation procedure of CV. This more

distantly related material shows some identical-by-state (IBS) similarity, therefore it was not unrelated

in the theoretical sense of population genetics. This more distantly related scenario may be seen also

as a case where one tries to predict a scenario whose linking information is weak or lacking, e.g.

different genotypes and/or locations in the TS and VS [Burgueño et al., 2012; Schulz-Streeck et al.,

2013a; Windhausen et al., 2012].

The predictive abilities obtained for GP using WC sampling were located in the middle-high range

and using AC sampling, predictive abilities were placed in the middle range. The predictive ability of

the AC sampling was significantly lower than WC, as expected for GP of a dataset showing population

structure. Riedelsheimer et al. [2013] drew similar conclusions using unrelated biparental maize families.

They concluded that predictive accuracy could be increased by adding crosses (families) sharing both

parents to the TS. In this respect, the use of pedigree and marker information to borrow information from
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both sources is suggested [Burgueño et al., 2012].

3.6 Conclusions

The main conclusions of this study are: (i) Fitting a traditional model including row and column factors

across all locations was good enough to account for field heterogeneity in the first stage under GP frame.

This also suggests that row-column designs may be preferable to designs with a single blocking factor;

(ii) AIC and ρ-GP-CV did not have the same trend in selecting across models, but both favoured in the

end models M8 and M9; however, none of the methods picked the model with highest predictive ability.

Fitting a location-specific error model did not produce an advantage over fitting a common model across

locations; (iii) the baseline model (M1) and the simplest row-column adjustment (M2) had in overall

the best results, which is very good news since in routine analysis complex models may require much

programming expertise and powerful computers; (iv) in a dataset weakly connected across years, a more

reasonable model-wise structure is to account for the year factor in the genomic prediction stage rather

than in a previous stage, to ensure that the effect is not confounded with the markers adjustment, and

(v) datasets of distantly related genotypes may have a poor performance for GP purposes; however,

increasing the size of the crosses may be an opportunity to enhance predictive ability in these cases of

disconnected datasets on related sets of genotypes.



Chapter 4

Genomic prediction in early selection stages using

multi-year data in a hybrid rye breeding program3

Angela-Maria Bernal-Vasqueza, Andres Gordillob, Malthe Schmidtb, Hans-Peter Piephoa

a Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Fruwirthstrasse 23, 70599

Stuttgart, Germany

b KWS LOCHOW GMBH, Ferdinand-von-Lochow-Strasse 5, 29303 Bergen, Germany

4.1 Abstract

Background

The use of multiple genetic backgrounds across years is appealing for genomic prediction (GP)

because past years’ data provide valuable information on marker effects. Nonetheless, single-year GP

models are less complex and computationally less demanding than multi-year GP models. In devising a

suitable analysis strategy for multi-year data, we may exploit the fact that even if there is no replication

of genotypes across years, there is sufficient replication at the level of marker loci. Our principal aim

was to evaluate different GP approaches to simultaneously model genotype-by-year (GY ) effects and

breeding values using multi-year data in terms of predictive ability. The models were evaluated under

different scenarios reflecting common practice in plant breeding programs, such as different degrees of

relatedness between training and validation sets, and using a selected fraction of genotypes in the training

set. We used empirical grain yield data of a rye hybrid breeding program. A detailed description of the

3A version of this chapter is published as:
Bernal-Vasquez, A.-M., Gordillo, A., Schmidt, M. and Piepho, H.-P. Genomic prediction in early selection stages
using multi-year data in a hybrid rye breeding program. BMC Genetics (2017) 18:51.
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prediction approaches highlighting the use of kinship for modeling GY is presented.

Results Using the kinship to model GY was advantageous in particular for datasets disconnected

across years. On average, predictive abilities were 5% higher for models using kinship to modelGY over

model without kinship. We confirmed that using data from multiple selection stages provides valuable

GY information and helps increasing predictive ability. This increase is on average 30% higher when the

predicted genotypes are closely related with the genotypes in the training set. A selection of top-yielding

genotypes together with the use of kinship to model GY improves the predictive ability in datasets

composed of single years of several selection cycles.

Conclusions Our results clearly demonstrate that the use of multi-year data and appropriate modeling

is beneficial for GP because it allows dissectingGY effects from genomic estimated breeding values. The

model choice, as well as ensuring that the predicted candidates are sufficiently related to the genotypes

in the training set, are crucial.

Keywords: Multi-year data, Genomic prediction, Genotype-by-year interaction, Hybrid rye breed-

ing

4.2 Background

Genomic prediction (GP) is a tool for predicting genomic estimated breeding values (GEBV) of selection

candidates based on marker information. A reference set of individuals, called training set (TS), is

phenotyped and genotyped to train a model, which can be used to predict GEBV of another set of

individuals that has only been genotyped but not phenotyped, the so-called prediction or validation set

(VS) [Meuwissen et al., 2001]. Prediction performance of GP procedures can be assessed through cross

validation (GP-CV). In GP-CV the datasets are divided into k folds, where k-1 folds are used for model

training and the remaining fold for model validation. This process is repeated using each of the k folds

in turn as validation set and then repeating the process several times. An alternative method to evaluate

prediction performance is genomic prediction - forward validation (GP-FV), which makes use of data

from previous years for training the model to predict genotypes tested in later years and in this way

validate the model. GP-FV mimics the ultimate goal in plant breeding, where new genotypes in new

environments are to be predicted.

One of the factors determining the accuracy of the predictions is the size of the training and the

validation set [Auinger et al., 2016; Rutkoski et al., 2015; Schmidt et al., 2016; Schulz-Streeck et al.,

2013b]; thus using multi-year data is an attractive approach to train GP procedures because it allows

increasing the TS-size, thereby potentially increasing prediction performance. But using multi-year data
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is challenging because different cycles (in different years) are physically disconnected, that is, there are

no genotypes in common across cycles; therefore, genotype-by-year effects (GY ) and genotype main

effects will be confounded. The only connection across years is genetic, i.e., through the relatedness

within the material, which we expect, since the data comes from a breeding program. The genetic

connectivity has been difficult to exploit with standard phenotypic models. Multi-location field trial data

in breeding programs are often analyzed by year and not over years because: (i) it is simpler and faster,

and (ii) it is difficult to accurately estimate variation across years, partly because few if any genotypes

are common between breeding cycles. If GY effects are not properly modeled, the genomic prediction

procedure will divert part of the marker information into prediction of the GY interaction effects rather

than the GEBV. This situation poses the main challenge when combining data across years.

Several authors have proposed an extension of the GP model to predict genotype-by-environment

interaction effects by incorporating environmental data and crop modeling [Heslot et al., 2014; Jarquı́n

et al., 2014] or assuming a covariance matrix composed of a genotype-related and an environment-related

component [Lado et al., 2016; Malosetti et al., 2016]. In these studies, environment is understood as

the conditions of a given location in a given year, i.e., the conditions in a year-location combination, and

no attempt is made to differentiate the effects of locations and years. Hence, year-location combinations

are represented by a single factor for “environment”. In the structure of the present hybrid rye breeding

program, however, it is crucial to separate the location and year effects, since the program runs in the

same locations across years and the interest of the breeders is in predicting the GEBV free of GY and

genotype-by-location (GL) effects. Most procedures used for GP do not include model terms that dissect

genotype effects, including GEBV and GY , mainly because of the lack of overlapping genotypes across

years (selection cycles in the TS).

We hypothesize that in a multi-year dataset of a breeding program, where there are no common

genotypes across years, GEBV can be dissected from GY based on the genetic correlation between

genotypes via the kinship matrix. Further, genotypes from the same breeding cycle evaluated in multiple

years in the TS will enhance the separation between GEBV and GY effects. In light of this, our

principal objective was to evaluate the merit of different models accounting for the GY effect. In

order to put the different models to a realistic test, we evaluated them under scenarios representing

common practice in breeding programs, i.e., in different relatedness scenarios and top-yield selection

scenarios, where different fractions of genotypes with top-yield performance in the TS were selected.

The top-yield selection scenarios are interesting to breeders because considering only subsets of the best

genotypes would allow reducing the effect of genotypes with confounded yield- and non-yield-QTL

effects, i.e., genotypes whose grain yield is susceptible to be affected by diseases or lodging or other -

environmentally triggered - threshold traits.
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4.3 Materials and Methods

4.3.1 Phenotypic data structure

A first stage of the present hybrid rye program consists of selfing single plants and selecting for line

per se performance in the subsequent selfing generations. After line per se evaluation, selected lines are

crossed to one or more single crosses from the opposite gene pool. The testcross progenies are evaluated

in multi-location trials [Geiger and Miedaner, 2009] to assess their general combining ability (GCA). In

the first year of testcross evaluations, S2 lines are evaluated, from which a selected fraction is subjected

to a more intensive evaluation in the following year (GCA2), across a larger number of environments.

Again, a selected fraction of genotypes is carried forward to a third selection stage (GCA3), where

genotypes are evaluated in more environments and with more testers (See Figure C.1 for a complete

selection cycle description). The minimum generation interval comprises five years, which is the time

from initial crossing to GCA1. In Figure 4.1, we depict the breeding program structure to define the

different GP-FV scenarios.

GCA1-2009

GCA2-2010

GCA3-2011

GCA1-2010

GCA2-2011

GCA3-2012

GCA1-2011

GCA2-2012

GCA3-2013

GCA1-2012

GCA2-2013

GCA3-2014

GCA1-2013

GCA2-2014

GCA3-2015

GCA1-2014

Selection cycle 1 Selection cycle 2 Selection cycle 3 Selection cycle 4 Selection cycle 5 Selection cycle 6

Figure 4.1: Selection cycles structure in the rye hybrid breeding program.

New GCA1 experiments are carried out each year with new testers from the opposite gene pool,
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whereas testers remain the same across GCA1 and GCA2 experiments within the same selection cycle.

At KWS-LOCHOW, a selected fraction of genotypes are test-crossed for GCA3 in combination with a

different set of testers compared to GCA1 and GCA2, whereas the candidates are a selected fraction

of the candidates in GCA1 and GCA2. GCA1 experiments of different selection cycles (e.g. GCA1-

2009, GCA1-2010, GCA1-2011) do not normally share any genotype or check entry. Further, a GCA

experiment consists of multi-environment trials (METs), where subsets of genotypes are evaluated in

series of trials allocated in several locations (in one year). Within a year, trials are connected through

common genotypes and check entries. Trials are laid out as α-designs with two replicates and 32

incomplete blocks of size 12 to 16.

We analyzed grain yield data from two rye hybrid breeding programs located in Germany and Poland

of KWS-LOCHOW. Three datasets were formed, i.e., the German (GER) dataset, with only German

lines, the Polish (PL) dataset, with only Polish lines, and the pooled dataset with German and Polish

lines (GER&PL). The datasets were screened for outliers at the trial level using the method BH-MADR

developed in Bernal-Vasquez et al. [2016]. The genotype sets evaluated at the GCA1 level differ between

the two breeding programs. When selected candidates reach the GCA2 and GCA3 stage, they are

evaluated in one common trial series across locations. We used a GP-FV approach, where GEBV of

a VS with genotypes not included in the TS are predicted. We considered three scenarios that differ in

the composition of their TS, different relatedness scenarios between TS and VS, and additionally, two

different selection fractions for the set of top-yielding genotypes. To assess prediction performance we

computed the predictive abilities of each scenario in the three datasets, i.e., GER, PL and GER&PL.

Predictive abilities are defined in Subsection Predictive abilities of this Section.

In the scenarios described in the following, the use of GCA1, GCA2 and GCA3 data may indirectly

increase the proportion of segregating first-degree relatives in the TS in comparison to a control TS

composed of only GCA1 data. Each scenario is composed of three VS, one complete TS and a control

TS (Figures C.2-C.4). The VS were: VS1: GCA1-2012, VS2: GCA1-2013 and VS3: GCA1-2014. The

control TS scenarios do not include the GCA2 and GCA3 trials. In the control TS, GCA1 data do not

share common genotypes at all, thus we can evaluate if using kinship to modelGY indeed helps to dissect

GY from GEBV, thus allowing a more accurate predictive ability. Complete TS make use of all data in

the cycle in order to check whether having this additional information about some genotypes across the

years also allows to better dissect GY from GEBV with or without the use of kinship to model the GY

effects. This comparison between control TS and complete TS is important because by using control TS

we loose information of the common genotypes evaluated in additional years. In the complete TS, we

exploit the information of those overlapping genotypes, which are very few in the end (approx. 1 to 2 %

in GCA3 from the total in GCA1), but we can evaluate by cross validation whether they are sufficient to
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improve the estimate of the GY effect. Since the minimum generation interval in the breeding scheme

from crossing to GCA1 is five years, one would need to have breeding cycles going back at least five

years to include parental lines in the TS. Hence, it is assumed that, for example, genotypes selected in

GCA1-2009 are most likely to be the parents of genotypes evaluated in GCA1-2014. Thus, GCA1-2014

is likely to be more closely related to GCA1-2009 than GCA1-2013 to GCA1-2009. This theoretical

relatedness cannot always become true, as the parental lines can be renewed any time or kept longer in

the program. With this in mind, many TS-VS combinations can be evaluated as interesting scenarios,

some being more realistic than others. Keeping the TS fixed to evaluate different VS in different years

is more convenient for comparing predictive abilities, acknowledging that some TS-VS scenarios may

not seem entirely realistic in that prediction is backwards rather than forwards in time. We would hold,

however, that temporal direction is not crucial when evaluating predictive accuracy of a model or method.

The first scenario comprises lines from one selection cycle and corresponds to data from GCA1-

2009, GCA2-2010, GCA3-2011 as TS (TS1) to predict VS1, VS2 and VS3 (Figure C.2). The control set

corresponds to GCA1-2009 (controlTS1).

The second scenario comprises lines of two selection cycles with data from GCA1-2009, GCA2-

2010 (from selection cycle 1), GCA1-2010 and GCA2-2011 (from selection cycle 2) as TS (TS2) to pre-

dict VS1, VS2 and VS3 (Figure C.3). As control TS we use GCA1-2009 and GCA1-2010 (controlTS2).

The third scenario comprises lines of three selection cycles with data from GCA1-2009, GCA2-

2010, GCA3-2011 (of selection cycle 1), GCA1-2010, GCA2-2011, GCA3-2012 (of selection cycle 2),

and GCA1-2011, GCA2-2012, GCA3-2013 (of selection cycle 3) as TS (TS3) to predict VS1, VS2, and

VS3 (Figure C.4). The control TS contains GCA1-2009, GCA1-2010 and GCA1-2011 (controlTS3).

To verify our hypothesis that using the kinship matrix helps to separate the GEBV from GY effects,

we evaluated four different models using the complete TS (explained in the following) plus two models

using the control TS of each scenario. The models were evaluated in three relatedness situations for

each of the above described scenarios: all available genotypes (All-scenario) and genotypes with no (0P-

scenario) and with one (1P-scenario) parent in the TS. The TS-size remains fixed and the VS-size changes

according the relatedness degree with the TS. To guarantee a fair comparison with VS of the same size

for the All-, 0P- and 1P-scenarios, a simple random sampling was carried out to ensure VS-size of 100

genotypes. We ran 10 iterations for VS-size = 100 and computed the simple means and confidence

intervals of the estimated predictive abilities. The scenarios for the GER dataset with VS1 used VS-

size = 90, since there were less than 100 available genotypes. Finally, different selection fractions of

top-yielding genotypes in the TS were evaluated TS composed of the 100% (Top100%), 75% (Top75%)

and 50% (Top50%) best yielding genotypes, i.e. TS-sizes vary and VS-sizes remain fixed including all
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available genotypes with markers.

4.3.2 Genotypic data

The marker information was obtained using a 10K Infinium iSelect HD Custom BeadChip (Illumina,

San Diego, CA, USA). Monomorphic markers and markers with minor allele frequency (MAF) less than

1% or missing information of more than 10% per marker were dropped. A total of 10,633 markers

passed the quality test and were used for GP. Homozygous marker genotypes were coded as -1 and 1,

and the heterozygous type, missing values and technical failures were coded as 0 [Estaghvirou et al.,

2014; Piepho, 2009b; Schulz-Streeck et al., 2013a].

4.3.3 Statistical models for the training sets

Mixed models are widely used for multi-environment trial (MET) analysis and can be fitted either in a

single stage or in multiple stages. A single-stage analysis models the entire observed data in one stage at

the level of individual plots, whereas a stage-wise analysis splits the analysis into analyses at the level of

factors that are hierarchically nested, e.g., first by environments and then across environments [Piepho

et al., 2012a].

The single-stage model can be stated as

γ = T : G× Y × L+ T · (G× Y × L) + (Y · L)/S/R/B + e, (4.1)

where γ is the vector of observed genotype yields, G represents the genotypes, T the testers, Y the

years, L the locations, S the trials within locations, R the replicates within trials, B the blocks within

replicates, and e the error associated with the observation γ. In the statement of model (4.1), we have

used the notation described in Piepho et al. [2003], where the dot operator (·) defines crossed effects

(A · B), the crossing operator (×) defines a full factorial model (A × B = A + B + A · B) and the

nesting operator (/) indicates that a factor B is nested within another factor A (A/B = A + A · B).

The colon (:) is used to separate fixed (first) from random effects (last). Our model (4.1) takes all factors

except T as random. It is therefore resolved as
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γ = T : G+ Y + L+G · Y +G · L+ Y · L+G · Y · L+G · T (4.2)

+T · Y + T · L+G · T · Y +G · T · L+ T · Y · L+G · T · Y · L

+Y · L · S + Y · L · S ·R+ Y · L · S ·R ·B + e.

In routine analysis of breeding trials, it is common to analyze the data in stages. For this reason, we

here also consider different stage-wise approaches. The following models are stage-wise representations

of the single-stage model (4.1). They differ in the number of stages and the assumptions to model GY .

As will become apparent, there are several options for stage-wise analysis and it is not obvious which

option is preferable regarding our main objective to dissect GY from GEBV effects, which is why we

compare different approaches. In some models, we move G to the fixed part to enable estimation of

genotype means, for example in the second stage, where we then submit the means to a third stage. It

is stressed here that taking G as fixed during all stages except the last is just a technical requirement to

render the stage-wise analysis equivalent to the single-stage analysis, and this does not change the status

of the genotype factor as random in the full stage-wise analysis [Piepho et al., 2012a]. In the models

where G is kept as fixed, we will have T and G in the fixed part of the model. The interaction G · T
is taken as random because not all genotypes are testcrossed with the same testers and because, as just

mentioned, G keeps its random status in the last stage.

Note the slightly different interpretations of the main effect G depending on the context. This effect

refers in general to the genotypic main effect. In the GP stage, however, where it is modeled with the

marker information (i.e. using kinship), the main effect G refers specifically to the pure additive genetic

part of the genotypic effect, i.e. the GEBV.

Among the models used for the control and the complete datasets, some use kinship to model GY

and others not. For clarity, we differentiate approaches used for the control TS (described first with

labels A1 and A1K) from the approaches using complete TS (with labels A2, A3, A4 and A5). The

distinction is to point out the difference in the connectivity between the control TS and the complete TS.

The control TS do not share common genotypes across years, whereas the complete TS share a fraction

of selected genotypes within selection cycles, i.e., across GCA1 + GCA2 + GCA3 of the same cycle.

Approaches A2 and A3 are a two-stage version of model (4.1), whereas approaches A4 and A5 have

three stages. In A2, A3 and A5 we use kinship to model GY , while for the A4 approach, kinship is not

used to model GY . Table 4.1 summarizes the labels, the short notation (both used indistinctly to better

link the approaches in the Discussion and the Figures) and a brief description with the key elements to
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distinguish the approaches. A detailed explanation of the models A1 to A5 follows next.

Table 4.1: Summary of GP-FV approaches.

Label
Short
notation

TS used
No.
stages

Use of
Kinship
to model
GY

Description

A1
Year-wise
without
kinship

controlTS1,
controlTS2,
controlTS3

2 + GP no Year-wise model and GP
with year as fixed effect

A1K
Year-wise
with
kinship

controlTS2,
controlTS3

2 + GP yes

Year-wise model and GP
with year as fixed effect
and GY modeled using
kinship

A2 2-stg-Kin
TS1, TS2,
TS3

2 yes

Across years model with
GP included in the 2nd
stage and GY modeled
using kinship

A3
2-stg-Kin-
het

TS1, TS2,
TS3

2 yes

Across years model with
GP included in the 2nd
stage and GY modeled
using kinship. Allows
heterogeneous variance
among years in the GY
interaction effect

A4
3-stg-
NoKin

TS1, TS2,
TS3

3 no

Across years model for
the TS using no kinship to
model GY . Third stage is
GP

A5 3-stg-Kin
TS1, TS2,
TS3

3 yes

Across years model for
the TS. Uses kinship in
the 2nd stage of the TS to
model GY . Third stage is
GP

Year-wise approach without (A1) and with (A1K) kinship: modeling for the control sets

All the control TS are composed of independent GCA1 trials in one, two or three years (controlTS1,

controlTS2 and controlTS3, respectively). We denote them as independent because the GCA1 trials

have no checks in common. Thus, one approach was to estimate adjusted genotype means for each year

separately in a first step and then model a fixed year effect while obtaining GEBV for genotypes in the GP

stage [Bernal-Vasquez et al., 2014]. This approach presumes that the mean of the genotypes evaluated in
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one year is a better year effect estimate than the year effect estimate based on a few checks shared across

years. The approach is based on the assumption that the genotypes evaluated in each year are a random

sample of the breeding population. Hereafter, we refer to this method as the year-wise approach (A1).

One disadvantage of this approach is that it disregards annual genetic gain (1 to 2%).

In the first stage, we model the plot data within locations and years as

γ = G · T : S/R/B + e, (4.3)

which is resolved as

γ = G · T : S + S ·R+ S ·R ·B + e, (4.4)

where factors are defined as for model (4.1). Adjusted genotype-by-tester means (m(1)) are com-

puted for each year-location combination and are submitted to the second stage, where adjusted genotype

means (m(2)) are calculated , using a year-wise model defined as

m(1) =G+ T : G · T + L · (G× T ) + ε1 (4.5)

=G+ T : G · T + L ·G+ L · T + L ·G · T + ε1.

All terms are defined as for model (4.1), ε1 is the vector of errors associated with the adjusted means

m(1) with ε1 ∼ N(0,R1) and R1 is a diagonal matrix whose diagonal elements are computed from

the inverse of the variance-covariance matrix estimated in the first stage [Smith et al., 2001]. Hereafter,

m(x) always denotes the adjusted mean and Rx always denotes a diagonal matrix carrying over these

diagonal weights computed in the x−th stage. The model at the GP stage is then

m(2) = Xβ + Zgug + ε2, (4.6)

where m(2) is the vector of adjusted genotype means across years, X is the design matrix of the

years, β is the vector of year effects, Zg is the marker matrix for genotypes, and ug the vector of marker

effects. We assume that ug ∼ N(0, Iσ2ug
), and var(Zgug) = ZgZT

g σ
2
ug

. Furthermore, ε2 is the vector

of errors associated with the adjusted means m(2) with ε2 ∼ N(0,R2).

The alternative approach is to additionally model the GY effects in the GP stage. Hereafter, we

refer to this strategy as the year-wise with kinship approach (A1K). Given the disconnectedness of the

genotypes across years in GCA1 trials, dissecting the genotype main effects G (the GEBV) and the GY
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becomes difficult. If kinship information is included to model the genotypic correlation among relatives,

it may be possible to dissect the G and GY effects, provided that genotypes tested in different years can

be regarded as representative of the same breeding population, which is usually the case. A slight bias

will be incurred though due to genetic progress, but this can be tolerated if more than outweighed by the

improved precision of the year effect estimate. The key idea behind the use of kinship to dissect the GY

effects is that, while there is no replication of genotypes across years, there is plenty of replication across

years at the level of genes and their alleles.

The model for the GP is

m(2) = Xβ + Zgug + Zgyugy + ε2, (4.7)

where m(2), Xβ and Zgug are defined as for model (4.6). TheGY effects are modeled as w = Zgyugy,

with Zgy as the marker matrix for genotypes-by-year effects and ugy the vector of marker-by-year effects

whose variance is var(ugy) = Iσ2ugy
, and hence var(w) = ZgyZT

gyσ
2
ugy

.

In particular, Zgy is a block-diagonal matrix with blocks given by the marker coefficient matrices of

genotypes in a given year (Zgyr), e.g.,

Zgy =



Zgy1 0 0

0 Zgy2 0

0 0 Zgy3


.

Under the mixed model formulation of ridge regression, ZgyZT
gyσ

2
gy represents the linear structure

of the genotype-by-year variance-covariance matrix with covariance of two genotypes within the same

year depending on the similarity in their marker profiles [Piepho, 2009b]. Note that the covariance among

different years is zero. Any covariance between years is captured by the main effect for genotypes via

the Zg matrix.

Two-stage approach with kinship matrix: 2-stg-Kin (A2)

The single-stage model (4.1) can be estimated in a two-stage analysis, where adjusted genotype-tester

means by locations and years are computed in the first stage, and then in the second stage, adjusted

genotype means across locations and years are calculated. GP-FV can be incorporated in this second

stage, allowing to compute GEBVs for a set of genotypes that belong to a new year, i.e. the VS.
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The first stage remains as for the previous approaches and is described by model (4.3). The second-

stage model is

m(1) = T : G× Y × L+ T · (G× Y × L) + ε1. (4.8)

The model is fitted using the adjusted genotype-by-tester means m(1) for the different year-location

combinations computed in the first stage. The four-way factorial in model (4.8) is resolved as

T : G+ Y + L+G · Y +G · L+ Y · L+ T · Y + T · L+G · T (4.9)

+G · Y · L+G · T · Y +G · T · L+ T · Y · L+G · T · Y · L.

Hence, the second-stage model (4.8) can be written as

m(1) = 1µ+ Xβ + Zgug + Zgyugy + Zbub + ε1, (4.10)

where m(1) is the vector of adjusted genotype-tester means obtained in the first stage [model (4.3)],

1 is a m × 1 vector of ones with m the number of genotypes, µ is the intercept, X is the design matrix

for fixed effects, β is the vector of fixed-effects parameters. The tester (T ) is the only fixed effect in

model (4.9). The GEBV G is equivalent to v = Zgug, with Zg the marker matrix for genotypes and

ug the vector of marker effects whose variance is var(ug) = Iσ2ug
, and hence var(v) = ZgZT

g σ
2
ug

.

Similarly, the genotype-by-year effect G · Y is equivalent to w = Zgyugy, where Zgy is the marker

matrix for genotypes-by-year and ugy is the vector of marker-by-year effects whose variance is assumed

to be var(ugy) = Iσ2ugy
, then var(w) = ZgyZT

gyσ
2
ugy

. Zb is the design matrix for the other random

effects between years and ub is the vector of random effects between years, which includes the effects

of G × Y × L + T · (G × Y × L) except G and G · Y . Thus, ub = (uT
b(1),u

T
b(2), ...,u

T
b(t))

T with

ub(k) the vector of the k-th random effect between years, and var(ub) = Σb = ⊕t
k=1Σb(k) with

var(ub(k)) = Σb(k) = Iσ2b(k). The symbol ⊕ denotes the direct sum of matrices and defines block

diagonal matrices [Searle et al., 1992]. The vector of errors is ε1 with ε1 ∼ N(0,R1).

Two-stage approach with kinship matrix and heterogeneous variance: 2-stg-Kin-het (A3)

In this approach, we allow heterogeneity among years in the variance of the interaction G · Y . Thus, for

model (4.10) we assume var(ugy) = Λ = ⊕m
r=1Iσ2ugy(r)

, where σ2ugy(r) is the genotype-by-year variance
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in the r-th year with the genotype entries sorted by year. If w = Zgyugy, then var(w) = ZgyΛZT
gy.

Three-stage approach without kinship: 3-stg-NoKin (A4)

A three-stage approach for GP-FV may alleviate the computational burden imposed by using a two-

stage model. In practice, plant breeders often use the following three-stage approach: In the first stage

adjusted genotype-tester means (m(1)) are estimated per year-location combination using model (4.3).

In the second stage adjusted genotype means across years and locations (m(2)) are estimated using the

model

m(1) = Xβ + Zbub + ε1, (4.11)

where X is the design matrix for fixed effects β. We need G to be fitted as a fixed effect (together

with T ), since we are estimating adjusted genotype means. Except for overlapping genotypes across

different selection stages (GCA1, GCA2, GCA3), within the same selection cycles, the G · Y variance

component is completely confounded with that for G under this model. Zb and ub are the design

matrix and vector for the random effects between years, respectively. The vector includes all random

effects indicated in model (4.8) except G. ub is equivalent to (uT
b(1),u

T
b(2), ...,u

T
b(t))

T with ub(k) the

vector of the k-th random between-year effects. The variance is var(ub) = Σb = ⊕t
k=1Σb(k) where

var(ub(k)) = Σb(k) = Iσ2b(k). This means, G · Y , for example, is synonymous with Zb(1)
ub(1)

, where

Zb(1)
is the design matrix for genotype-by-year effects and ub(1)

the vector of random genotype-by-year

effects with var(ub(1)
) = Iσ2b(1)

. The vector of errors associated with the records of m(1) is ε1 with

ε1 ∼ N(0,R1).

Finally, in the third stage, the GP model is implemented as

m(2) = 1µ+ Zgug + ε2, (4.12)

where m(2) is the vector of adjusted genotype means across locations and years, 1 is a m× 1 vector

of ones, with m the number of genotypes, µ is the intercept, Zg the marker matrix for genotypes, and ug

the vector of marker effects. We assume ug ∼ N(0, Iσ2ug
), thus var(Zgug) = ZgZT

g σ
2
ug

. The vector

of errors is ε2 with ε2 ∼ N(0,R2).

The difference between the two-stage (A2, and A3) and the three-stage (A4) approaches [using model

(4.10) and model (4.12)] for GP-FV is the estimation of the GY effects, which in the first case makes

use of the kinship matrix, whereas in the second case kinship is ignored.
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Three-stage approach with kinship in the second stage: 3-stg-Kin (A5)

The three-stage approach can also make use of the kinship matrix in the second stage to dissectGY from

G main effects.

The second-stage model is written as

m(1) = Xβ + Zgyugy + Zbub + ε1, (4.13)

where X is the design matrix for fixed effects β. We keep G and T as fixed effects. Zb is the

design matrix and ub is the vector of random effects between years for the random effects except the

GY effects, for which we use Zgyugy, where Zgy is the marker matrix for genotypes-by-year effects and

ugy is the vector of marker-by-year effects whose variance is var(ugy) = Iσ2ugy
, such that var(w) =

ZgyZT
gyσ

2
ugy

. The vector of errors associated with the records of m(1) is ε1 with ε1 ∼ N(0,R1). The

third stage is the same as for the 3-stg-NoKin approach [model (4.12)] using the adjusted genotype means

computed in the previous stage.

4.3.4 Calculation of predictive ability - models for validation sets

Predictive abilities (ρGP ) were estimated as the Pearson correlation coefficient between the adjusted

genotype means of the VS (m(2)) and the GEBV (v̂ = Zû). To estimate m(2) (adjusted genotype means)

of the VS, we used a two-stage analysis, with model (4.3) as first stage to obtain adjusted genotype-tester

means (m(1)) across locations and years. In the second stage, the adjusted genotype means m(2) were

estimated for VS1:GCA1-2012 and VS3:GCA1-2014 using the model

m(1) =G+ T : G · T + L · (G× T ) + ε1 (4.14)

=G+ T : G · T + L+ L ·G+ L · T + L ·G · T + ε1,

where all terms are defined as for model (4.1). For VS2:GCA1-2013, we did not include a location L

main effect or a genotype-by-location effect G ·L because testers and locations were totally confounded,

thus the effect L · T represents L+ L · T and G · L · T represents G · L+G · L · T . The model is

m(1) = G+ T : G · T + L · T +G · T · L+ ε1. (4.15)

Adjusted genotype means based on models (4.14) and (4.15) (corresponding to VS1 and VS3, and
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VS2, respectively) are computed using best linear unbiased estimation (BLUE). Hence, predictive ability

in each scenario was the Pearson correlation coefficient between the GEBV (v̂) from models (4.6), (4.7),

(4.10) or (4.12) and m(2) of the VS from models (4.14) and (4.15), i.e.

ρGP = corr(v̂,m(2)). (4.16)

4.4 Results

4.4.1 Structure of datasets and variance components

Variance components were estimated using the two-stage model (4.8) for all datasets (GER&PL, GER

and PL), the three complete TS (TS1 [one cycle data], TS2 [two cycles data] and TS3 [three cycles

data]) and the three VS (VS1:GCA1-2012, VS2:GCA1-2013 and VS3:GCA1-2014) (Table 4.2). The

expected confounding of some effects due to the unbalancedness of the trials and the poor connectivity

across cycles and between TS and VS is illustrated by the asymptotic correlation matrix for variance

component estimates computed from the information matrix [Searle et al., 1992, p. 248], e.g. for the

GER&PL dataset TS1-VS3 (Table C.2 lower diagonal).

The correlation between variance component estimates for G and GY is −0.8747, for L and Y L it

is −0.2556, for GL and GY L it is −0.9229, for GTL and GTY L it is −0.9758 and between GT and

GTY it is −0.9491. The confounding is also observed in the asymptotic correlation matrix for variance

component estimates of the TS1 scenarios (Tables C.3 and C.4). For the TS2 (Tables C.5-C.7) and the

TS3 (Tables C.8-C.10) scenarios, the confounding is still visible, though in rather lower magnitudes.

An asymptotic correlation of ' −1 indicates ill-conditioning [Pinheiro and Bates, 2000, p156].

Confounding of effects is the limiting case of ill-conditioning when the asymptotic correlation between

two effects is exactly −1. It is clear that the extreme unbalancedness of the datasets renders variance

component estimates unstable, in the sense that a few genotypes in the analysis impact strongly on the

relative contribution of each effect to the total variance.

Additionally, variance components for genotype main effects (G) in the PL dataset are most of the

times estimated as zero as well as for GL interaction effects, reflecting the poor connectivity of the

datasets. The asymptotic correlations between the variance component estimates of GL and genotype-

by-year-by-location interaction (GY L) effects were marginally more negative for the Polish scenarios

than for the German ones (Table 4.2). This could be due to a different trial allocation across years

and locations in Poland than in Germany. The GER dataset has more locations per year that are not
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Table 4.2: Summary of variance component estimates in the three datasets. German and Polish
together (GER&PL), only German (GE) and only Polish (PL), for all the training set (TS) and validation
set (VS) combinations. Reported effects use the factors: Genotypes (G), year (Y ) and location (L).
ac(GL,GY L) is the asymptotic correlation between variance component estimates of GL and GY L

effects. na represents non-estimable values due to a zero value of a variance component.

Dataset TS VS G GY L GL Y L GY L ac(GL,GY L)

GER&PL TS1 VS1 0.00 6.44 145.10 0.00 93.30 4.48 na
GER&PL TS1 VS2 2.29 2.19 109.86 1.36 161.58 3.71 -0.89
GER&PL TS1 VS3 6.45 2.72 166.48 2.41 117.31 5.08 -0.92
GER TS1 VS1 6.75 0.58 143.57 1.11 92.65 3.83 -0.89
GER TS1 VS2 3.74 1.04 113.46 1.08 169.73 4.03 -0.88
GER TS1 VS3 4.55 0.93 173.53 1.41 108.66 4.68 -0.92
PL TS1 VS1 0.00 5.68 160.05 0.00 85.39 4.28 na
PL TS1 VS2 0.00 3.41 108.72 1.72 155.03 3.03 -0.90
PL TS1 VS3 0.00 11.28 173.99 3.24 94.82 5.17 -0.98
GER&PL TS2 VS1 5.85 1.77 132.51 0.80 89.24 3.17 -0.96
GER&PL TS2 VS2 4.18 1.54 110.06 1.27 149.52 2.78 -0.96
GER&PL TS2 VS3 7.42 1.56 166.22 1.60 108.97 3.92 -0.97
GER TS2 VS1 8.00 0.29 142.97 1.15 89.21 3.06 -0.93
GER TS2 VS2 5.98 0.44 112.15 1.49 161.93 2.92 -0.94
GER TS2 VS3 6.89 0.13 172.96 1.62 109.00 3.44 -0.93
PL TS2 VS1 0.00 6.12 135.17 0.00 84.60 4.17 na
PL TS2 VS2 0.00 4.22 89.73 0.004 155.83 4.00 -0.97
PL TS2 VS3 0.00 9.97 158.31 0.00 92.84 6.13 na
GER&PL TS3 VS1 2.24 4.53 163.69 0.68 86.92 3.89 -0.87
GER&PL TS3 VS2 5.09 1.51 159.44 1.11 93.36 4.07 -0.81
GER&PL TS3 VS3 7.32 1.02 176.06 1.18 85.59 4.84 -0.86
GER TS3 VS1 7.19 1.10 170.60 0.78 86.35 3.66 -0.80
GER TS3 VS2 7.02 0.38 186.59 1.18 84.42 4.14 -0.80
GER TS3 VS3 7.01 0.32 166.34 1.16 88.32 3.69 -0.76
PL TS3 VS1 0.00 5.33 156.13 0.77 84.70 3.80 -0.94
PL TS3 VS2 0.67 5.00 144.19 0.97 93.47 4.10 -0.85
PL TS3 VS3 5.19 3.61 161.72 0.99 81.25 5.20 -0.90

TS1: GCA1-2009 + GCA2-2010 + GCA3-2011, TS2: GCA1-2009 + GCA2-2010 + GCA1-2010 + GCA2-2011, TS3: GCA1-2009 + GCA2-2010 + GCA3-2011 + GCA1-2010 +

GCA2-2011 + GCA3-2012 + GCA1-2011 + GCA2-2012 + GCA3-2013, VS1: GCA1-2012, VS2: GCA1-2013, VS3: GCA1-2014

repeated across the other years, whereas in the PL dataset fewer locations are used across years, that is,

more locations are repeated across years, i.e., the number of location-year combinations compared to

the number of total locations across years are greater in the GER than in the PL datasets (Table C.1).
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This situation reflects more confounding for the PL dataset, and as a consequence, the PL dataset does

not have as many GL or GY L effects as the GER dataset, so that asymptotic correlations between the

variance estimates forGL andGY L effects are slightly higher in absolute value for the PL program than

for the GER program (Table 4.2). The confounding is diminished when more years are used in the TS

because the number of year-location combinations increases.

4.4.2 Predictive abilities

Predictive abilities were calculated using equation (4.16) (Figures 4.2-4.4). Notice that the year-wise

with kinship approach (A1K) is not used for controlTS1 because the control TS is composed of only one

year, thus fitting a GY effect would over-parametrize the model.

There are years or cycles that are easier to predict than others. Predicting the VS1:GCA1-2012

had, across all datasets, the highest predictive abilities. VS2:GCA1-2013 had also relatively high ρGP

compared to VS3:GCA1-2014.

There was a marginal increase in ρGP along the approaches from TS covering data from two and

three selection cycles (TS2 and TS3) over TS1 (one selection cycle). In the GER&PL program, this

increase is observed especially for VS1 and for the 1P-scenario of VS2. In Germany the difference

between TS2 and TS3 is small, though there is a general increase of the predictive ability in these two

datasets over TS1. In the PL dataset, ρGP obtained using TS3 or TS2 are not always better than TS1.

They depend on the model and the VS used.
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Figure 4.2: Predictive abilities (y-axis) of the German and Polish dataset for the three scenarios. TS1 and controlTS1, TS2 and controlTS2, and TS3 and
controlTS3 to predict the validation sets VS1, VS2 and VS3 with All, 0P and 1P-scenarios. Black lines for each bar represent the 95% confidence intervals of the
predictive ability. Year-wise approach (A1) and year-wise with kinship approach (A1K) were fitted to the control sets, approaches 2-stg-Kin (A2), 2-stg-Kin-het
(A3), 3-stg-NoKin (A4) and 3-stg-Kin (A5) to the complete sets. TS1: GCA1-2009 + GCA2-2010 + GCA3-2011, controlTS1: GCA1-2009, TS2 : GCA1-2009 + GCA2-2010 + GCA1-2010 + GCA2-2011, controlTS2: GCA1-2009 +

GCA1-2010, TS3: GCA1-2009 + GCA2-2010 + GCA3-2011 + GCA1-2010 + GCA2-2011 + GCA3-2012 + GCA1-2011 + GCA2-2012 + GCA3-2013, controlTS3: GCA1-2009 + GCA1-2010 + GCA1-2011, VS1: GCA1-2012, VS2: GCA1-2013, VS3: GCA1-2014.
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Figure 4.3: Predictive abilities (y-axis) of the German dataset for the three scenarios. TS1 and controlTS1, TS2 and controlTS2, and TS3 and controlTS3 to
predict the validation sets VS1, VS2 and VS3 with All-, 0P- and 1P-scenarios. Black lines for each bar represent the 95% confidence intervals of the predictive
ability. Year-wise approach (A1) and year-wise with kinship approach (A1K) were fitted to the control sets, approaches 2-stg-Kin (A2), 2-stg-Kin-het (A3),
3-stg-NoKin (A4) and 3-stg-Kin (A5) to the complete sets. TS1: GCA1-2009 + GCA2-2010 + GCA3-2011, controlTS1: GCA1-2009, TS2: GCA1-2009 + GCA2-2010 + GCA1-2010 + GCA2-2011, controlTS2: GCA1-2009 + GCA1-2010,

TS3: GCA1-2009 + GCA2-2010 + GCA3-2011 + GCA1-2010 + GCA2-2011 + GCA3-2012 + GCA1-2011 + GCA2-2012 + GCA3-2013, controlTS3: GCA1-2009 + GCA1-2010 + GCA1-2011, VS1: GCA1-2012, VS2 : GCA1-2013, VS3 : GCA1-2014.



92
C

H
A

P
TE

R
4.

Figure 4.4: Predictive abilities (y-axis) of the Polish dataset for the three scenarios. TS1 and controlTS1, TS2 and controlTS2, and TS3 and controlTS3 to
predict the validation sets VS1, VS2 and VS3 with All-, 0P- and 1P-scenarios. Black lines for each bar represent the 95% confidence intervals of the predictive
ability. Year-wise approach (A1) and year-wise with kinship approach (A1K) were fitted to the control sets, approaches 2-stg-Kin (A2), 2-stg-Kin-het (A3),
3-stg-NoKin (A4) and 3-stg-Kin (A5) to the complete sets. TS1: GCA1-2009 + GCA2-2010 + GCA3-2011, controlTS1: GCA1-2009, TS2: GCA1-2009 + GCA2-2010 + GCA1-2010 + GCA2-2011, controlTS2: GCA1-2009 + GCA1-2010,

TS3: GCA1-2009 + GCA2-2010 + GCA3-2011 + GCA1-2010 + GCA2-2011 + GCA3-2012 + GCA1-2011 + GCA2-2012 + GCA3-2013, controlTS3: GCA1-2009 + GCA1-2010 + GCA1-2011, VS1: GCA1-2012, VS2 : GCA1-2013, VS3 : GCA1-2014.
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When relatedness between TS and VS increased, there was a general increase in ρGP . The increment

depends on the dataset, the target VS and the model (particularly for the PL dataset). For example, in the

VS1 of the GER dataset, the increase in ρGP from the 0P- to the 1P-scenario was from∼ 0.30 to∼ 0.60,

and in the pooled dataset (GER&PL) from ∼ 0.40 to ∼ 0.50, whereas in the PL dataset the 1P-scenario

had too wide confidence intervals and varying predictive abilities across models, so that no general trend

can be recognized. For VS3, there was no increase in ρGP from the 0P- to the 1P-scenario. This is in

agreement with the Euclidean distances presented in Table C.11.

Predictive abilities were on average higher for the GER dataset (0.2741) than for the GER&PL

program (0.2407) and markedly higher than for the PL dataset (0.1424). When splitting German and

Polish genotypes within the GER&PL dataset, ρGP for only Polish lines was lower than the ρGP obtained

when only considering the PL program, whereas the ρGP obtained for German lines within the GER&PL

dataset was higher than that obtained from the GER dataset alone. The principal component analysis

(PCA) of the marker data in Figure 4.5 shows that the genotypes from the PL program form a more

compact cloud than those from the GER program and that the Polish lines are well contained within the

cloud of the German lines. Although the first two principal components capture little variance (< 15%),

the PCA shows that lines in the PL program are more closely related than lines in the GER program,

so that some far related German lines could cause a bias in the prediction of the Polish lines within the

GER&PL dataset.

For controlTS2 and controlTS3, approach A1K (year-wise with kinship) was on average 17% higher

in predictive ability than A1 (year-wise without kinship) across programs, relatedness scenarios, TS and

VS (17.3 % in the GER dataset, 21.8% in the PL dataset and 13.0% in the GER&PL dataset). Approaches

A2 (2-stg-Kin), A3 (2-stg-Kin-het) and A4 (3-stg-NoKin) yielded very similar predictive abilities across

datasets, relatedness scenarios and VS for TS2 and TS3 (on average 0.2497), and were also very close

to predictive abilities obtained by A1K (on average 0.2477). The worst approach was A5 (3-stg-Kin),

which led on average to 23% lower ρGP than the average of A2, A3 and A4 across programs, relatedness

scenarios and VS.
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Figure 4.5: Principal component (PC) plots for the training datasets TS1, TS2 and TS3 of the German (GER) and the Polish (PL) programs. TS1: GCA1-2009

+ GCA2-2010 + GCA3-2011, TS2: GCA1-2009 + GCA2-2010 + GCA1-2010 + GCA2-2011, TS3: GCA1-2009 + GCA2-2010 + GCA3-2011 + GCA1-2010 + GCA2-2011 + GCA3-2012 + GCA1-2011 + GCA2-2012 + GCA3-2013
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Predictive abilities in sampling scenarios

To avoid the confounding effect of the VS-size and to objectively compare parent scenarios and models,

we defined a VS-size of 100 genotypes to be predicted and iterated the GP-FV 10 times. Results are

depicted in Figures C.5 - C.7. The predictive abilities and their 95% confidence intervals are based on

the mean of the 10 sample draws.

The predictive abilities obtained for the scenarios with samples of 100 genotypes in the VS confirmed

the trends observed for scenarios with complete validation sets (Figures 4.2-4.4). The size of the confi-

dence intervals varied between the sampling scenarios and the scenarios using all available genotypes.

For smaller VS-size (sampling 100 genotypes), confidence intervals are wider, suggesting that more and

better data would allow better genotype estimates, as expected.

4.4.3 Relatedness scenarios

A PCA for each combination TS-VS-relatedness scenario in all the datasets (GER&PL, GER and PL)

showed that PC1 and PC2 captured only little variance (< 15%) (Figures C.8-C.16), but still showed

that TS and VS are genetically structured and there is no clear separation for TS and VS using different

relatedness degrees, i.e., different parent number in the TS.

Additionally, the mean of the Euclidean distance using the marker matrix for genotypes in TS and

all relatedness scenarios of VS (Table C.11), showed no strong variation between relatedness scenarios

and between TS-VS combinations. The values were in general slightly higher for the PL dataset than

for the GER dataset, showing that the two groups are closely related within themselves but marginally

genetically divergent between them. The results are consistent with the PCAs, since there was no clear

pattern from the 1P-scenarios that would suggest a closer relatedness between TS and VS than the 0P-

scenarios or the All-scenarios.

For the three relatedness scenarios (All, 0P- and 1P-scenarios) across all the datasets (GER, PL and

GER&PL), approach A1K (year-wise with kinship) produced, in general, very similar predictive abilities

than approaches A2 (2-stg-Kin), A3 (2-stg-Kin-het) and A4 (3-stg-NoKin), and these four approaches

were on average 18% better than approaches A1 (year-wise without kinship) and A5 (3-stg-Kin) in terms

of ρGP . In the GER and GER&PL datasets, A1K produced slightly higher predictive abilities than A2,

A3 and A4 for All- and 0P-scenarios, whereas for 1P-scenario there was no markedly difference between

A1K and A2, A3 and A4. In the PL program, A4 had on average 13% and 8% higher ρGP than A1K for

the 0P- and 1P-scenario, respectively. For the All-scenario, A4 showed no difference with A1K and both

approaches yielded on average 14% better ρGP than A2 and A3.



96 CHAPTER 4.

4.4.4 Top-yield scenarios

In the present study, using a selected fraction of individuals in the TS was useful only in the control TS,

i.e., when a given selection cycle (genetic background) was represented by only one year of (GCA1)

data (Figures 4.6 - 4.8). In this case, the effects of non-yield QTL are confounded within each genetic

background with the GY effects. Consequently, a selected fraction of individuals with higher grain yield

performance will reduce variation due to non-yield QTL and, therefore, reduce bias due to confounding

effects. In contrast, when two or more years of data are available per genetic background, environmental

and non-yield QTL effects can be estimated separately, thus rendering the use of selected fractions in the

TS (Top75% or Top50%) non-effective.

For the control TS across all datasets, the Top75% and Top100% scenarios using the year-wise (A1)

approach and year-wise with kinship (A1K) approach had a higher ρGP than the Top50% scenario. For

the GER and GER&PL datasets A1K using Top75% was marginally better than A1K using Top100%

(on average 4% better) and across all datasets, A1K had 13% higher ρGP than A1. Additionally,

for A2 (2-stg-Kin), A3 (2-stg-Kin-het), A4 (3-stg-NoKin) and A5 (3-stg-Kin) the Top100% scenarios

outperformed the Top75% and Top50% scenarios in terms of ρGP .
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Figure 4.6: Predictive abilities (y-axis) of the German and Polish dataset for selection scenarios of top-yield performance. Selection in the training set
(TS): 50% of highest yielding genotypes (gray bars), 75% of highest yielding genotypes (yellow bars) and 100% of the genotypes (blue bars), using validation
sets VS1, VS2 and VS3. Black lines for each bar represent the 95% confidence intervals of the predictive ability. Year-wise approach (A1) and year-wise with
kinship approach (A1K) were fitted to the control TS, approaches 2-stg-Kin (A2), 2-stg-Kin-het (A3), 3-stg-NoKin (A4) and 3-stg-Kin (A5) to the complete TS.
TS1: GCA1-2009 + GCA2-2010 + GCA3-2011, controlTS1: GCA1-2009, TS2: GCA1-2009 + GCA2-2010 + GCA1-2010 + GCA2-2011, controlTS2: GCA1-2009 + GCA1-2010, TS3: GCA1-2009 + GCA2-2010 + GCA3-2011 + GCA1-2010 + GCA2-2011 + GCA3-2012 + GCA1-2011 +

GCA2-2012 + GCA3-2013, controlTS3: GCA1-2009 + GCA1-2010 + GCA1-2011, VS1: GCA1-2012, VS2: GCA1-2013, VS3: GCA1-2014.
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Figure 4.7: Predictive abilities (y-axis) of the German dataset for selection scenarios of top-yield performance. Selection in the training set (TS): 50% of
highest yielding genotypes (gray bars), 75% of highest yielding genotypes (yellow bars) and 100% of the genotypes (blue bars), using validation sets VS1, VS2

and VS3. Black lines for each bar represent the 95% confidence intervals of the predictive ability. Year-wise approach (A1) and year-wise with kinship approach
(A1K) were fitted to the control TS, approaches 2-stg-Kin (A2), 2-stg-Kin-het (A3), 3-stg-NoKin (A4) and 3-stg-Kin (A5) to the complete TS. TS1: GCA1-2009 + GCA2-2010

+ GCA3-2011, controlTS1: GCA1-2009, TS2: GCA1-2009 + GCA2-2010 + GCA1-2010 + GCA2-2011, controlTS2: GCA1-2009 + GCA1-2010, TS3: GCA1-2009 + GCA2-2010 + GCA3-2011 + GCA1-2010 + GCA2-2011 + GCA3-2012 + GCA1-2011 + GCA2-2012 + GCA3-2013,

controlTS3 : GCA1-2009 + GCA1-2010 + GCA1-2011, VS1: GCA1-2012, VS2: GCA1-2013, VS3: GCA1-2014.
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Figure 4.8: Predictive abilities (y-axis) of the Polish dataset for selection scenarios of top-yield performance. Selection in the training set (TS): 50% of
highest yielding genotypes (gray bars), 75% of highest yielding genotypes (yellow bars) and 100% of the genotypes (blue bars), using validation sets VS1, VS2

and VS3. Black lines for each bar represent the 95% confidence intervals of the predictive ability. Year-wise approach (A1) and year-wise with kinship approach
(A1K) were fitted to the control TS, approaches 2-stg-Kin (A2), 2-stg-Kin-het (A3), 3-stg-NoKin (A4) and 3-stg-Kin (A5) to the complete TS. TS1: GCA1-2009 + GCA2-2010

+ GCA3-2011, controlTS1: GCA1-2009, TS2: GCA1-2009 + GCA2-2010 + GCA1-2010 + GCA2-2011, controlTS2: GCA1-2009 + GCA1-2010, TS3: GCA1-2009 + GCA2-2010 + GCA3-2011 + GCA1-2010 + GCA2-2011 + GCA3-2012 + GCA1-2011 + GCA2-2012 + GCA3-2013,

controlTS3 : GCA1-2009 + GCA1-2010 + GCA1-2011, VS1: GCA1-2012, VS2: GCA1-2013, VS3: GCA1-2014.
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4.5 Discussion

The key contribution of this paper was an evaluation of the use of kinship to model GY effects in

disconnected datasets for a better separation from GEBV. We presented a detailed step-by-step genomic

prediction analysis modeling GY with different approaches and extending the use of molecular markers

to deal with disconnected trials. We also use a validation set system across years that approximates to

the breeders’ aim of empirical validation.

In the analyzed datasets, we found that G and GY effects (and other effects that include factor

G) were confounded. This was evident from the large negative asymptotic correlations that reflect ill-

conditioning (Tables 4.2, C.2-C.4). Using multiple genetic backgrounds as in TS2 (two selection cycles)

and TS3 (three selection cycles), it is possible in principle to build bridges across years given that GY is

specific to the genetic background. Nonetheless, the unbalancedness of the design was still so strong that

those effects remained confounded (Tables C.5-C.10). The use of several cycles improved the estimate

of the variance of genotype effects because there were more lines repeated across years within cycles

(especially in the PL dataset), thus solving the problem of a zero variance estimate with single-cycle

data. By contrast, the use of multiple cycles did not solve the ill-conditioning problem.

The main advantage expected from pooling GCA1+GCA2+GCA3 data in the TS is that a better

bridge is built between years, leading to more precise adjusted means, thus allowing to dissect GY from

GEBV. If most of the interaction is specific to the genetic background (as we assume it to be), multiple

genetic backgrounds (selection cycles) are needed for a better separation of main SNP effects, such as

in TS2 and TS3. Auinger et al. [2016] recently found that aggregating data from several consecutive

cycles connected by a sufficient number of common ancestors improves the accuracy of the predictions of

candidate genotypes. Our results confirm their conclusion and complement the recommendation towards

using additionally a selected fraction of 75% best yielding genotypes in the TS to reduce biasing effects

due to non-yield QTL. The most surprising result is that the highest and most stable results are obtained

with the controlTS2 and controlTS3 with A1K, i.e., using GCA2 and GCA3 data apparently is not only

advantageous, but leads to a slight reduction in prediction abilities in comparison to using multiple

consecutive GCA1 data, as in A1K. This is probably due to a biased segregation and variation of QTL

effects in the selected fractions of GCA2 and GCA3 with respect to the non-selected GCA1 datasets.

The advantage of using a whole cycle with GCA1 to GCA3 is that the genotypes making it to GCA2

and GCA3 have been seen in more than one year, thus models that use a complete TS benefit from the TS

structure, allowing reasonable GY estimates with or without kinship. By using only GCA1 experiments

(i.e., control TS), a good coverage of the genetic target population is achieved and the use of kinship to

model the genetic connection across years (specifically with model A1K) seems to be powerful enough
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to estimate GY fairly independent from GEBVs.

The PL dataset produced markedly lower predictive abilities than the GER and the GER&PL datasets.

We had stated that the German genotypes profited from the Polish ones but not vice versa, perhaps

because the GER program is genetically more diverse than the PL program (Figure 4.5), so that there are

some SNPs that are monomorphic for the Polish lines but not for the German lines causing a bias in the

prediction of the Polish lines within the GER&PL dataset. Probably the main reason why the PL dataset

had markedly lower predictive abilities than the GER dataset is that the Polish data have a higher error,

i.e, GY , GL and GY L interaction effects are estimated less accurately. The fact that in Poland there are

fewerGL andGY L evaluations (Table C.1) could explain why the Polish predictive abilities were lower.

Endelman et al. [2014] show that having larger populations spread across more environments produces

higher predictive abilities than evaluating the same genotypes in fewer environments. The GER dataset

has a higher number of GL and GY L combinations because trials with Tester 1 and Tester 2 are not

evaluated in exactly the same locations, whereas in the PL dataset, there is a balanced design of testers

across locations within a year.

Predictive abilities were in general 26% higher for the 1P-scenarios than the 0P-scenarios and 15%

higher than for the All-scenarios, reinforcing the findings of other genomic prediction studies on the

effect of relationships between TS and VS [Albrecht et al., 2011; Brøndum et al., 2011; Daetwyler et al.,

2013; Habier et al., 2007; Pszczola et al., 2012]. The use of the kinship to model GY in 0P-scenarios did

not consistently compensate the lack of relatedness. Although the three relatedness scenarios (All-, 0P-

and 1P-scenarios) showed small differentiation by the mean Euclidean distance (Table C.11) and not so

marked divergence in the PCA plots (Figures C.8-C.16), a realized relationship between TS and VS does

have a positive impact on the predictive abilities. In the best case, i.e. the GER dataset - VS1:GCA1-

2012, predictive abilities ranged from ∼ 0.14 to ∼ 0.38 in the 0P-scenario and from ∼ 0.50 to ∼ 0.73

in the 1P-scenario.

All approaches revealed marked variation in predictive abilities across scenarios. In general, there

was a modest increment of the year-wise with kinship approach (A1K) over the year-wise approach

(A1), in particular controlTS2:GCA1-2009 + GCA1-2010 and controlTS3:GCA1-2009 + GCA1-2010

+ GCA1-2011 over controlTS1:GCA1-2009. The confidence intervals of the predictive abilities of the

year-wise approach (A1) overlapped most of the times with predictive abilities of the year-wise with

kinship approach (A1K) (black lines of Figures 4.2-4.4), but even so, in challenging programs as the

Polish one, the benefit of using the kinship was worth about 22% on the correlation scale. In the GER

and GER&PL datasets the approaches A2, A3 and A4 had consistent and very similar predictive abilities.

Only A5 was almost always markedly lower in predictive ability than the other models. From these
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results we conclude first, that using the kinship to model GY for settings of disconnected years is safer

than estimating the year effect as the simple average of the genotypes evaluated in a given year, and

second, when the datasets cover multiple genetic backgrounds in the same year (as datasets used for A2,

A3, A4 and A5), it is possible to estimate GY effects either by using kinship directly in the GP stage

(A2 and A3) or simply using the correct model in the TS to obtain adjusted genotype means across years

(A1K) and submit them to GP. Hence, kinship is helpful in the case of disconnected data and no harm

is done using it in other cases. Although computational load may increase with the use of kinship to

model GY , novel approaches that combine dense and sparse matrix methods alleviate this burden and

are starting to become freely available [De Coninck et al., 2016].

It was surprising that the 3-stg-Kin approach (A5) had markedly lower predictive abilities than the

approach 3-stg-NoKin (A4) because the difference between both approaches is that in A5, we use kinship

to model the GY whereas in A4 we do not, so we would have expected that using kinship in modeling

GY improves predictive ability. While this expectation was confirmed in the other approaches that used

kinship (A2 and A3), this was not the case here. All methods are designed to approximate the same

single-stage model (4.1), so that it was not obvious which one should work better because it uses kinship

to model the GY effects, as does model (4.1). While both A5 and A1K seek to approximate the single-

stage model (4.1), A1K makes somewhat weaker assumptions because it does not use kinship to model

GY in the second stage. So while A5 better approximates the single-stage model, there is no guarantee

that the single-stage model is the best model for GP. This may explain why A1K does better in terms of

predictive accuracy and also why A4 fared better than A5.

Predictive abilities for VS1:GCA1-2012 ranged from ∼ 0.24 on average in the PL dataset to max-

imum ∼ 0.73 in the GER dataset, and the lowest ρGP occurred for VS3:GCA1-2014 ranging from

zero (or negative) in the worst case of the PL dataset to ∼ 0.33 the best case in the GER dataset.

The results that we obtained are in accordance with the predictive abilities reported by Auinger et al.

[2016], which ranged between 0.39 and 0.58 (with an average heritability of 0.83) and were based on

GP-FV. The validation sets VS1:GCA1-2012 and VS2:GCA1-2013 could be predicted more accurately

than VS3:GCA1-2014. Data from the year 2014 has been identified as problematic, since it is not easy

to predict within the GP program from KWS-LOCHOW. We acknowledge the fact that the scenarios

TS3-VS1 and TS3-VS2 are less realistic in the sense that data from the same year of prediction is used

in TS and VS, but we consider those scenarios because the number of genotypes in GCA3-2012 and

GCA3-2013 is low (less than 30 shared genotypes within cycles in all the programs) and there are no

genotypes in common between TS and VS, keeping our condition of disconnected TS and VS valid for

the presented scenarios. Moreover, removing data from GCA3-2012 or GCA3-2013 from TS3 led to

only a slight variation in the value of the reported predictive abilities, with changes occurring after the
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third or fourth decimal place.

Besides focusing in the mean performance across years, another important target in plant breeding

is to investigate stability, which refers to the variability from year to year. In the context of genomic

prediction, it makes sense to also study the expected consistency of year to year performance aiming to

minimize this variability [Malosetti et al., 2016; Mühleisen et al., 2014]. This stability aspect deserves

further study.

The results obtained for the top-yield scenarios led us to conclude that using a multiple genetic

background in the TS allows capturing the true QTL for yield, whereas when having only one year in

the TS (i.e. control sets), the model is not able to do this distinction and hence, a pre-selection of best

yielding genotypes may improve the predictive abilities. This explains the ability of the year-wise with

kinship approach (A1K) to improve ρGP using 75% of the best-yielding genotypes even if the TS-size

was reduced. Selecting a top fraction of best yielding genotypes for the TS basically allows to reduce the

genotype-by-year effects that cannot be accurately estimated due to absence of connectivity across years.

In this work, we randomly used 75% top fraction, but other values (e.g 95%, 90%, 85%, 80%) should be

further considered. The implementation of the A1K (year-wise with kinship) approach is advantageous

from the technical point of view, since the analysis requires lower computing power than using 100% data

from complete cycles as for A2, A3 and A4. Given our results, we recommend that for GP in a breeding

program with a similar structure to the program described in the present work, the year-wise with kinship

(A1K) approach with TS composed of minimum two single years of multiple genetic backgrounds (i.e.

controlTS2 and controlTS3) should be used.

4.6 Conclusions

The main conclusions of this study are: (i) Using multi-year datasets is advantageous, (ii) the year-wise

with kinship approach (A1K) with two or three years in the TS (controlTS2 or controlTS3) led to slightly

better and more consistent ρGP than any other approach, (iii) the use of kinship to model GY in multi-

year datasets is encouraged, especially for datasets covering multiple genetic backgrounds and where

disconnected trials across years are evaluated, i.e. year-wise with kinship approach (A1K), (iv) if only

data from one selection cycle is available (TS1) there is a loss in ρGP with no options to improve via

kinship or other models, (iv) predictive abilities improved in scenarios where TS and VS were more

related (1P-scenario), and (v) pre-selection of top-yielding genotypes is recommended in cases where

several single-year data are available within selection cycles and in such cases, the use of the kinship to

model GY is also advisable.
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Chapter 5

General discussion

The three main results of this work pertain to data pre-processing, phenotypic analysis and genomic

prediction as key components of genomic selection programs. The results can be summarized as follows:

(i) an outlier detection step before phenotypic and genotypic analyses is justified and can only improve

predictive performance in GP analysis, (ii) for the studied field designs, it was enough to model the

blocking factors (incomplete block, row and column) to control for the field heterogeneity, whereas

spatial modeling provided little improvement in accuracy, and (iii) using the kinship to dissect genotype

and GY effects for multi-year data was worthwhile, in particular for TS with disconnected years.

The broader implications of these results are discussed in this chapter and are aligned with current

literature on genomic prediction. The three main thematic areas are covered and perspectives for future

research are included as closing remarks.

5.1 An evaluation of outlier detection methods

It was shown that the outlier identification methods helped scanning datasets for spurious observations,

especially when datasets are large and fast-return-decision is needed (Chapter 2). The decision of what

to do after flagging an observation as an outlier is crucial and needs to be made based on sufficient

knowledge of the field trials and problems that occurred during their conduct. Identifying outliers may

lead to improving the residual plots, hence ensuring that assumptions of normality and homogeneity of

error variance (within groups) are fulfilled. These assumptions are essential for LMM analyses, which

have been the cornerstone of the models considered in this work. In practice, in later stages of a breeding

program, one can afford removing some suspicious observations, whereas in screening trials or other

kinds of experiments in different areas of plant science, where data size is usually small and there are no

or few field replications, the decision about keeping, replacing or removing an observation may have a
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stronger impact; e.g., a breeder may inadvertently discard a promising variety.

In Chapter 2, it was shown that removing outliers in empirical datasets used for GP did not reduce

the predictive abilities relative to the use of all available observations. The datasets scrutinized were

relatively large (i.e. N ' 25, 000), so one could argue that removing around 100 observations may not

have a strong impact on the predictive ability, which was indeed the result of the comparison of different

outlier detection methods. The methods varied only by around 0.01 units on the correlation scale. Using

less than half of the data (i.e. N ' 7, 000) led to predictive ability differences between outlier detection

methods of around 0.05 units on the correlation scale, hence, raising the question regarding the usefulness

of flagging, removing or down-weighting outliers when datasets for GP are large (e.g. N ≥ 20, 000),

middle-sized (e.g. 2, 000 < N < 10, 000) or relatively small (e.g. N < 2, 000). Estaghvirou et al.

[2014] concluded that effects of outliers on the predictive accuracies of genomic selection are greater

for small than for large datasets, which confirms the findings in this work. Nonetheless, the methods

implemented in Chapter 2 were all performed at the level of the trial, that is, outliers were identified

based on local conditions and not global trends, thus detection of outliers was independent of the GP

dataset size. One could argue here that other factors such as TS-size are more likely to be responsible

of the small or large differences across predictive abilities when comparing outlier detection methods.

Independent of the size of the dataset used for GP, identifying outliers at the trial level ensures that

adjusted means or genotypes are not severely biased due to outliers increasing variability of records

within a group [Yang et al., 2004].

Even though methods of outlier detection seem to be fallible, their use is always suggested as a first

step in any analysis procedure [Besag and Kempton, 1986; Schützenmeister et al., 2012; Schützenmeister

and Piepho, 2012]. In this work, a variety of methods are proposed to meet this need (Chapter 2). One

of the crucial observations on the analysis of the outlier identification methods was that using the robust

scale estimate median absolute deviation (MAD) to standardize residuals, which is also implemented

in the PlabStat package, showed good properties also when used in a REML framework, reflected in

that the predictive abilities obtained later in GP were slightly higher for the methods that considered a

robust scale estimate (i.e. M4:BH-MADR , M5:BH-STRO and M1:PlabStat). In general, robust methods

in the context of linear models have shown to be valuable tools as they ensure that the analysis is not

significantly disturbed by any outlying observation [Lourenço and Pires, 2014].

An additional concern regarding GP using multi-year and/or multi-location data is that this kind

of data is per se environmentally-driven heterogeneous, which has an impact on prediction of GEBVs

[Ou et al., 2015]. This situation has led to other outlier concepts in GP, such as outlier environments,

outlier trials or outlier cycles and also to propose GP models that account for heterogeneous residual
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variance. Heslot et al. [2013a], for example, used environmental clustering based on Euclidean distances

and on predictive accuracies between pairs of environments to identify possible outlier environments.

They found that removing environments with a low ability to predict other environments led to higher

predictive accuracies. Another example is the identification of outlier breeding cycles. In a GP study

across multiple breeding cycles in wheat breeding, Michel et al. [2016] evaluated possibilities to increase

the prediction ability. They found that in a between-cycles cross validation scheme, dropping outlier

cycles raised predictive abilities for grain yield and protein content of wheat. These two approaches

of removing complete environments or breeding cycles from the TS can be very controversial. First,

a major conceptual problem can be stressed using a very simple example: if for any dataset on (y, x)

paired data a regression is fitted, and then sequentially, residuals are computed and the most outlying

(y, x) pair is removed, the fit of the regression will improve till the fit is perfect R2 = 1 for a final

dataset comprising two (x, y) pairs. And second, eliminating a complete outlying environment or cycle

may improve predictive ability in a given set of environments but may lead to a loss of predictive power

with respect to the target population of environment (TPE). The concept of TPE designates the expected

mixture of environmental conditions likely to occur across multiple years in a given geographical area

[Comstock, 1977]. The breeder creates and selects improved genotypes within this geographical and

temporal sets of environments. The authors justify the elimination of outlier environments based on the

assumption that the initial dataset is an approximate sample of the TPE, so that environments, which on

average have a poor prediction accuracy of other environments, are likely to be less frequent in the TPE.

Thus, they see their method as a weighting approach, where some environments receive zero weight. It is

crucial to conduct METs for a representative sample of environments from the TPE [Piepho and Möhring,

2005; van Eeuwijk et al., 2016], so if there is a random sample of environments to begin with, dropping

environments based on outlier detection may be problematic, because the remaining set of environments

may become biased with respect to the TPE. An approach detecting outliers per trial at the level of plots

(Chapter 2) is much more conservative, because no entire environment will be removed. One should also

keep in mind that the precision of a genotypic value estimate based on MET data primarily depends on

the number of environments [Chapman et al., 2000; Endelman et al., 2014]. With efficient weighting

methods in place [Damesa et al., 2017; Möhring and Piepho, 2009; Piepho et al., 2012a; Smith et al.,

2001], there is no good reason to drop an entire environment.

A different approach was used by Ou et al. [2015], who evaluated simulated data with different

degrees of heterogeneous residual variance. They showed that models accounting for heterogeneous

residual variance improved predictive accuracies in scenarios with high degree of residual heterogeneity.

Thus, since METs are environmentally heterogeneous per se, the use of those models in combination with
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outlier robustness extensions at the plot level is recommended. This approach ties in well with the stage-

wise analyses used in this thesis for genomic prediction procedures. Other studies in the plant breeding

context have also highlighted the advantages of stage-wise approaches [Damesa et al., 2017; Piepho

et al., 2012a; Schulz-Streeck et al., 2013b]. Foremost, stage-wise analysis allows fitting specificities

innate to a given trial. If a trial has low coefficient of variation, the weighting scheme used to pass on

from one stage to another will have the ability to account for the precision of the trial, giving little weight

to those trials where variation was high. This suggests that breeders should not discard entire trials

just because precision is low. It is always worthwhile to include such trials (unless they show extreme

atypical ranking of genotypes compared to the TPE), because any trial in a different environment provides

valuable information on the genotype-by-environment interaction in the TPE.

5.2 Merit of spatial modeling

Phenotypic analysis has not been a frequent target of attention for GP, but dedicating some effort to

selecting an appropriate phenotypic model is justified [Schulz-Streeck et al., 2012, 2013b, Chapter 3,

Chapter 4]. This thesis evaluated whether using spatial or non-spatial models has a positive effect on the

prediction performance in the GP stage (Chapter 3). Then, it was investigated if the use of genotypic

data could also help to model effects that usually are handled only at the phenotypic analysis stage and

lead to higher predictive abilities (Chapter 4). In both cases, the choice of an appropriate model for

the phenotypic data was crucial. Conversely, when model choice is sub-optimal, confounding effects,

over-parametrization or low-quality data can lead to biased estimates and singularity problems [Besag

and Kempton, 1986; Pinheiro and Bates, 2000].

Piepho and Williams [2010] proposed extensions of the common experimental designs used to

randomize field trials from plant breeding and variety testing (e.g., resolvable block or row-column

designs) towards an improvement by post-blocking or addition of spatial model components. They

argue that a proper randomization accounting for blocking factors is an efficient strategy, hence spatial

modeling should be regarded only as an add-on component of models with a block structure. In Chapter

3, spatial models were used in the phenotypic analysis in comparison to a baseline model (the basic

randomization-based model for an α-design) and a baseline model plus post-blocking for rows and

columns. As row and column coordinates were available from the trial layout of the rye METs, the

addition of these factors during the data analysis to account for other source of variation in the field

was straightforward: the initial blocking factors were kept (i.e. replicates and blocks within replicates),

and post-blocking factors were added (i.e. rows within replicates and columns within replicates). The

extension to fitting a spatial trend can be implemented in the directions of the post-blocking factors.
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With the empirical data available for the present study, it turned out that the spatial models did not

markedly improve the predictive abilities but the bidirectional post-bocking did yield better prediction

performance. This result implies that under the climatic and pedological conditions of the trial locations

studied in this thesis attention paid to the blocking settings on the field can be enough to control field

heterogeneity, rendering row-column designs as an appealing trial choice to consider. Lado et al. [2013]

in the opposite, found that accounting for spatial variation was worthwhile for GP. They used data

from three different water regimes in Mediterranean conditions. It seems that in more stress-prone

environments, where water may be limiting or heat excessive, a larger gain in precision is found by

using spatial models [Leiser et al., 2012] than for example in Germany, where rain and fertilizer levels

may not be stress factors.

5.2.1 The model selection controversy

In Chapter 3, it is shown that GP can also be used for selection of phenotypic models. A step-by-step

description of the model construction and the way to select a proper model comparing predictive abilities

obtained from GP-CV vs. AIC-based selection was depicted. These two approaches selected the same

models but showed a different pattern in selection across models, and either any approach selected the

model that in overall had the highest predictive ability. An advantage of AIC is that it does not require

more calculations after a model has been fitted, but, once a GP-CV pipeline has been established, the

GP-CV model selection approach does not need too much computation time. A question here is why

sometimes AIC selects a different model than GP-CV. A better understanding of what the model selection

aim is and what the validation methods’ purposes are would help clarifying the question. The goal of

model selection can be estimation or identification; estimation when the goal is to minimize the loss

between the “true model” and an approximating model, and identification when it is aimed to identify

the “true model”. AIC is typically built for estimation, whereas CV has been used for both estimation and

identification [Arlot and Celisse, 2010]. AIC and other likelihood-based methods may allow selecting

the best model within a set of candidate models hoped to well approximate the true model, but if there

are no good models, they cannot be identified by model selection algorithms. Thus, uncertainty plays

always a role when selecting a particular model, first, because it is unknown if a good approximating

model is in the candidate set, and second, because even if there is a good approximating model in the

candidate set, it is unsure that the model selection algorithm identifies the best approximation thereof

[Burnham and Anderson, 1998]. Different types of CV display intrinsic properties in terms of bias and

variance that may be the cause of the different results between CV and AIC model selection. The TS

and VS sizes affect prediction accuracy in GP. Large TS and small VS may lead to high accuracies

and higher variances [Erbe et al., 2010]. Thus, the choice of number of folds for TS and VS becomes
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important. Other model selection criteria proposed in the literature could be potential alternatives to

explore model selection. For example, conditional AIC (cAIC) [Hurvitch and Tsai, 1989], unbiased

AIC [McQuarrie et al., 1997] or generalized CV criterion [Ansley and Kohn, 1987]. More recently,

Vaida and Blanchard [2005] proposed a cAIC for mixed models considering the degrees of freedom

accounting for shrinkage in the random effects. This criterion is more appropriate when the focus is on

“clusters” instead of population parameters, e.g. when the interest is to know the effect of the genotype

at a specific environment. The cAIC, however, has some limitations as it ignores the uncertainty in

the estimation of the covariance matrix of random effects, i.e. it uses a correction term for the bias

that assumes known variance. Greven and Kneib [2010] proposed a corrected cAIC that accounts for

the estimation of the variance parameters and avoids the high computational cost of other methods also

addressing this problem. Likewise, measuring the uncertainty associated with a selected model (e.g.,

using bootstrap techniques) may add suitable information to the model selection decision [Burnham and

Anderson, 1998].

5.2.2 Spatial adjustment in the genomic prediction model

Geostatistical models using marker covariates as “spatial” coordinates also offer a convenient alternative

to model the variance-covariance matrix for the markers in the GP stage. Piepho [2009b] and Schulz-

Streeck and Piepho [2010] used different spatial variance-covariance structures as function of genomic

distances between pairs of genotypes in GP. In both studies, it was found that RR-BLUP, which is

equivalent to the quadratic model, was slightly better than the other spatial models (i.e., linear, expo-

nential, spherical, Gaussian, power). Piepho [2009b] demonstrates that accounting for epistatic effects

in the GBLUP model is equivalent to fit an additional effect that assumes a Gaussian spatial variance-

covariance for the additive × additive epistatic kinship. Likewise, Jiang and Reif [2015] used a Taylor

argument to motivate the equivalence of the extended GBLUP (EG-BLUP) model and Reproducing

Kernel Hilbert Space (RKHS) method, both accounting for epistatic effects, and Ober et al. [2011]

applied the geostatistical concept of kriging to consider additive, additive-dominance, and epistatic gene-

action models.

The use of spatial models is hence not restricted to phenotypic analysis to account for geographical

variation, but it is also easily extended to model marker effects in GP. The LMM framework allows

this extensions for a high-dimensional space. Consequently, the models described throughout this work

are malleable material to further account for additional gene effects, whose covariance structure can be

modeled using nonlinear functions of the SNP covariates.
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5.3 Importance of modeling genotype-by-year (GY) interaction effects

The model choice at the phenotypic analysis stage is decisive to ensure precise genotype estimates and,

further, accurate GEBVs at the GP stage. For example, the control datasets used in Chapter 4 were

disconnected across years (i.e., there were no common genotypes or check entries across years). A first

approach to analyze these data was to perform a phenotypic analysis by year and then submit the adjusted

genotype means computed by year to a GP stage, where the simple mean of genotypes per year could

be used as the year effect estimate (Chapter 3). In the case of disconnected or weakly connected data

across years, this is a promising approach and ensures a more accurate year estimate than using a few

checks to estimate year effects (Chapter 3). In this approach, however, it cannot be ensured that GEBVs

are not confounded with GY effects. Besides, the annual gain from selection (∼ 1%− 2%) across years

in the program is disregarded. To overcome these limitations, another approach including multi-year and

multiple genetic backgrounds was studied (Chapter 4). The result was that using kinship to model GY

helps to dissect GEBVs from GY effects. There are several studies that support this finding. On the one

hand, doing the analysis by year seems to make sense because year-to-year variation is known to be very

strong [Lado et al., 2016; Laidig et al., 2008; Piepho et al., 2014], but on another hand, if environments

are understood as location-year combinations, fitting GE effects, at any level in the analysis, would

absorb great part of the GY variation [Heslot et al., 2014; Jarquı́n et al., 2014; Malosetti et al., 2016,

2013].

It is argued that with the available dataset from KWS-Lochow in Chapter 4, splitting the environ-

mental effect into year and location effects is crucial since: (i) year-to-year variation contributes to a

large proportion of GE [Heslot et al., 2014; Laidig et al., 2008] and (ii) several breeding cycles are run

in the same year, so that genetic effects can be separated from the GY effects. It is shown that either

using several genetic backgrounds in the TS or kinship to estimate GY have a positive effect on the

predictive ability (Chapter 4). Extensions of this model could be explored, e.g., using a covariate matrix

of environmental information (as in Heslot et al. [2014]; Malosetti et al. [2016]) or also testing other

variance-covariance structures such as factor analytical [Malosetti et al., 2013; Piepho, 1997, 1998] for

GY or genotype-by-location interaction effects.

The advantages of the models used all throughout this work are that the models can be easily

implemented using existing statistical software (e.g. SAS, ASReml, R) and can be extended to account

for genetic effects not captured by markers, to accommodate location-specific variances or to assume

that each marker has its own variance. Although the more extensions are added to the models, the

more complex they become and the more computing power is required, novel computing tools are

closing the gap between big-data and complex model analysis. Breeding companies producing thousands
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of data records across years will be able to benefit from all those developments. Free R packages

developed for GP, e.g., synbreed [Wimmer et al., 2012], BGLR [Perez and de los Campos, 2014], RR-

BLUP [Endelman, 2011] and Needles [De Coninck et al., 2016]), are becoming popular and easy-to-use

functions will start to be spread.

5.4 Genomic prediction: validation and implementation

Genotype adjusted means estimated from stage-wise analyses are the core unit of phenotypic information

used for GP and also for CV. As adjusted means usually come from unbalanced designs, they are not in-

dependent and thus the basic assumption of independent and identically distributed errors is not fulfilled.

In Chapter 4 a forward validation (GP-FV) approach is evaluated, where genotypes of a new breeding

cycle or a new year not included in the TS are predicted. In this way, the adjusted means from the TS

are independent from the means in the VS. One approach to avoid correlated adjusted means within the

TS or the VS is to use spectral decomposition of the means to obtain rotated (orthogonalized) means

as proposed by Schulz-Streeck et al. [2013b]. Another simpler but not necessarily less computationally

demanding approach is to use a full-efficient stage-wise phenotypic analysis [Damesa et al., 2017], where

the complete error variance-covariance matrix is submitted from one stage to the other.

Across the stage-wise analyses used in this work, the method suggested by Smith et al. [2001] is the

selected method to pass on the information on precision from one stage to the next. This method consists

of using as weights the diagonal values of the inverse variance-covariance matrix from the preceding

stage. The best approximation in a least-squares sense of the inverse of the variance-covariance matrix is

its diagonal matrix [Smith et al., 2001]. It is reasonable to approximate the inverse variance-covariance

because it is this matrix that is part of the mixed model equations. This approximation is useful because

it allows to identify the weight of an observation as one single measurement reducing the computational

load that a fully-efficient analysis entails [Damesa et al., 2017; Möhring and Piepho, 2009].

The prediction model can be validated through GP-CV or GP-FV, where predictive accuracy, the

ratio between predictive ability and square root of heritability, is used to assess the prediction perfor-

mance of the model. There are, however, better ways to estimate predictive accuracy than this “naive”

way. Estaghvirou et al. [2013] demonstrate that combining conflicting assumptions in the estimation

of predictive ability and heritability renders predictive accuracy inestimable. For instance, RR-BLUP

assumes that genotypes are correlated whereas an ad hoc estimate of heritability assumes independent

genotypes. One method proposed by Estaghvirou et al. [2013] and another one commonly used in animal

breeding [Mrode and Thompson, 2005] consistently produced less bias and more precise estimates of
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predictive accuracy.

5.4.1 The impact of the relatedness between TS and VS on predictive accuracy

The relatedness degree within the TS and between the TS and the VS are factors determining predictive

abilities of GP [Auinger et al., 2016; Daetwyler et al., 2013; Habier et al., 2007; Pszczola et al., 2012;

Riedelsheimer et al., 2013]. It has been shown that the RR-BLUP model is strongly sensitive to genetic

relationships among individuals so that its efficiency depends in great part on the relatedness degree

between TS and VS. Other methods such as BayesB utilize more efficiently the information of LD

between QTL and markers because only a small proportion of the total number of markers is fitted

[Habier et al., 2007]. Pszczola et al. [2012] demonstrated through simulations that predictive abilities of

a dairy cattle population could be improved if the relationships among animals in the TS was minimized

and genetic relatedness degree between TS and VS was maximized. Using empirical data of maize

double haploids (DH), Riedelsheimer et al. [2013] showed that including additional crosses in the TS

when both parents of the individuals of the VS are already in the TS did not improve predictive abilities.

These works have led to investigation of optimization approaches to construct the TS [Bustos-Korts

et al., 2016; Isidro et al., 2015; Rincent et al., 2012]. One approach consists on choosing genotypes in

the TS that maximize the generalized coefficient of determination (CD) between TS and VS, i.e. the

precision of the contrast between each genotype in the VS and the mean of the TS is maximized [Rincent

et al., 2012]. An extension of this method is to use a stratified sampling among subpopulations and apply

the coefficient of determination mean criterion (CDmean) [Isidro et al., 2015]. Bustos-Korts et al. [2016]

suggest constructing a TS by uniformly covering the genetic space of the population of genotypes. All

these methods are based on the use of cross validation within a breeding population, where VS are a

subset of the complete population. Thus, it makes full sense to ensure that all families or subpopulations

have representation in the TS. In Chapter 3, two GP-CV schemes were presented: within crosses (WC)

and across crosses (AC). In the WC approach, a random sample of genotypes from each and all the

crosses were included in the TS, whereas in the AC approach complete crosses were either kept in the

TS or dropped. As expected, the WC approach (ρGP ∼= 0.69) that covered the population genetic space

outperformed the AC approach (ρGP ∼= 0.39). In Chapter 4, using the GP-FV approach, predictive

abilities of ∼ 0.65 were reached for a specific scenario of the German program (i.e. VS:GCA1-2012 -

1P-scenario, high relatedness between TS and VS), whereas for the Polish program in the same scenario

predictive abilities were ∼ 0.17. Studies that compare GP-CV against GP-FV report different results.

Albrecht et al. [2014] suggest that GP-FV with an appropriate choice of testers and genetic relationships

between TS and VS for grain yield and dry matter content of maize led to only slightly reduced accuracies
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compared to GP-CV. Auinger et al. [2016] report substantially lower predictive abilities of across-cycles

scenarios (i.e. GP-FV) in comparison to within-cycle scenarios (i.e. GP-CV) for grain dry matter yield,

plant height and thousand kernel weight in a rye hybrid breeding program.

The choice of a validation scheme that represents a real breeding scenario is of major importance

in the evaluation of GP. Efforts to optimize the construction of TS and VS have led to the conclusions

that the more related the validation individuals to the TS are, and the higher the genetic coverage in

the TS is, the higher the probability of predicting individuals with more accuracy. The breeders’ main

objective is to predict the average performance of a genotype across time. Therefore, an interesting

scenario would be to predict the GEBV of a genotype that has been evaluated in several years. In the

rye dataset, one could predict genotypes of a FACT/GCA3 experiment, which have undergone three (or

more) years of evaluations, allowing the estimation of genotype main effects free of GY effects. The

limitation is that the number of genotypes in FACT/GCA3 experiments is usually less than 50, which

is a small VS-size that may lead to high prediction abilities with large standard errors [Schulz-Streeck

et al., 2013a; Chapter 4]. Nevertheless, GP-FV using complete cycles in the VS opens up the way to

investigate validation scenarios for stability of the genetic material, i.e., the expected consistency of the

performance of genotypes across years.

5.5 Merit of the extensions of the genomic prediction model

Among some reasons for extensions of the GP model towards increasing the prediction accuracy, the

following can be listed: First, the presence of genotype-by-environment interaction effects [Griffiths

et al., 2000; Laidig et al., 2008; Malosetti et al., 2013], second, phenotypic variation is not only due

to additive effects but to non-additive effects [Technow et al., 2012; Viana et al., 2016; Wellmann and

Bennewitz, 2012], i.e. dominance and epistatic effects, and third, breeding programs aim to improve

several traits at the same time [Falconer and Mackay, 1996; Schulthess et al., 2016].

In a LMM framework, GP allows using REML for the variance estimation and further, allows

accounting for other sources of variation by adding fixed and random effects [Piepho, 2009b]. Also,

the LMM can be customized to account for other assumptions closer to Bayesian methods. For example,

to drop the assumption of homogeneous marker variances assumed in RR-BLUP, one could assume an

heterogeneous marker variance so that the model mimic the assumption of BayesB from Meuwissen

et al. [2001] [Piepho, 2009b]. Assuming a non-normal distribution for the marker effects instead of a

normal distribution could be implemented via h-likelihood in a frequentist setting using the so-called

hierarchical generalized linear models (HGLM) [Lee et al., 2006], although the option to select such
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non-normal distributions is not yet very broadly used.

5.5.1 Models including non-additive effects

The extension of the GP model towards including dominance effects is relatively straightforward. An

additional design matrix identifying the homozygous and heterozygous alleles is used. In general, the

alleles can be coded as {0,1,0} for {AA, Aa, aa}, respectively [Technow et al., 2012; Xiang et al.,

2016]. There are several studies supporting advantages of GP models that account for non-additive

effects [Guo et al., 2013; Massman et al., 2013; Toro and Varona, 2010]. Also, in the simulations carried

out by Technow et al. [2012] assuming no epistatic effects, it was found that modeling dominance effects

in the GP model for simulated traits of maize (grain yield and moisture) produced higher predictive

accuracies, specially when BayesB was used. Wellmann and Bennewitz [2012] proposed a Bayesian

approach named BayesD (and submodels) particularly suited for traits that show overdominance. They

demonstrated that depending on the marker panel, the inclusion of dominance effects increased the

accuracy of GEBVs.

There are as well studies which favored the pure GP additive model, e.g., for grain yield, oil yield

and oil content in sunflower [Reif et al., 2013] and grain yield in wheat [Zhao et al., 2013]. Xu et al.

[2014] carried out an analysis on rice hybrid using three GP methods accounting for additive, additive

and dominance, and additive, dominance and epistatic effects. They found no noticeable improvement

from non-additive models over additive models, probably due to the small TS-size used causing high

correlations among the different types of kinship matrices (additive, dominance and epistatic kinship

matrices). Xu and Jia [2007] proposed to model epistatic effects by adding a marker-by-marker in-

teraction effect. They use a model that includes a main effect of a locus l and an epistatic effect

between loci l and l′. The main difficulty in the implementation of such models is the computational

load due to the large number of marker-by-marker interactions. Jiang and Reif [2015] demonstrated,

however, that extended GBLUP and RKHS models are equivalent and are an alternative to explicitly

model epistasis with reduced computational load. Recently, Xiang et al. [2016] demonstrated that

accounting for inbreeding depression had a great impact on predictive accuracy of a trait whose gene

action was mainly additive. Legarra et al. [2008] suggest to be cautious when including additional non-

additive effects since including these effects in the model may decrease accuracy when they are not

truly present. Additive and non-additive effects can show some degree of collinearity. Thus, associated

variance components are difficult to estimate accurately [Xu et al., 2014]. Multicollinearity may occur

for example, when covariates for epistasis are computed from covariates for the additive effects.

The increase in prediction abilities due to using a GP model that accounts for non-additive effects
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seems to strongly depend on the trait architecture [Guo et al., 2013] and on the ratio between dominance

variance and additive variance, where dominance variance must be relatively important [Guo et al., 2013;

Reif et al., 2013], but there is no threshold yet known that defines how large the dominance variance

should be in relation to the total variance.

A simpler approach to account for polygenic variance (the genetic variance not captured by the

markers) includes fitting an independent between-individual effect that is required to be separated from

the within-individual error component [Piepho, 2009b; Schulz-Streeck and Piepho, 2010]. In practice,

fitting a polygenic effect in a GP model can be achieved by fixing the error variance, using for example

the square standard error of adjusted genotype means or the Smith weights [Smith et al., 2001] obtained

in a previous stage of a stage-wise analysis, the latter being the preferred method all throughout this

study.

Goncharenko et al. [2015] found that in rye the expression of the quantitative traits number of

productive stalks per square meter, number of grains per ear, plant height and starch content strongly

depended on dominance and epistatic effects. Also, frost tolerance, an important trait in rye (due to

being the most tolerant species among small grain cereals), is known to be a complex trait with polygenic

inheritance [Li et al., 2011a]. It would make sense to exploit extensions of the GP model towards

accounting for non-additive effects, especially for traits known to display dominance or epistasis.

In Chapter 3, a polygenic effect was incorporated in the baseline model (M1) for grain dry matter

yield. It was found that about 88% of the total genetic variance was captured by the additive effects in the

RR-BLUP model. This result suggests that RR-BLUP or GBLUP may be sufficient for dry grain matter

yield in rye, which coincide with studies that favored the pure GP additive model [Reif et al., 2013; Xu

et al., 2014; Zhao et al., 2013]. The GP-CV methodology constitutes an alternative to evaluate whether

accounting for additional non-additive effects in the baseline GP model is advantageous.

5.5.2 Multi-trait genomic prediction

The trait considered throughout this thesis has been dry grain matter yield, which is one of the most

relevant traits towards improving productivity. Nonetheless, many economically important traits are also

part of the breeding objectives for rye, such as protein content, single ear weight, frost tolerance or

degree of resistance/susceptibility to a certain disease [Laidig et al., 2017]. It is often desired to improve

several traits at a time, to improve a given trait without reducing performance of another trait and to

improve traits that are expensive or difficult to record [Falconer and Mackay, 1996]. Different strategies

can be adopted, e.g., use of selection indices, recording the performance of an indicator trait from a

trait of interest and using pedigree or marker information [Cooper et al., 2014; Mrode and Thompson,
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2005]. Modeling multiple traits takes into account the fact that traits are most likely associated and

share a biological basis [Scutari et al., 2014]. Simulation GP approaches have shown that simultaneously

modeling multiple quantitative traits results in higher predictive power than using individual traits [Calus

and Veerkamp, 2011; Guo et al., 2014a; Hayashi and Iwata, 2013; Jia and Jannink, 2012]. In theory,

multi-trait models are most advantageous when the genetic correlation among the traits analyzed is high

[Piepho et al., 2008a], and further, a trait which is difficult to measure with good precision leads to

low heritability, so that indirect selection using a genetically correlated trait with higher heritability is

beneficial [Falconer and Mackay, 1996].

In an applied GS study using a two-trait GS model for grain yield and protein content, which in rye

are negatively correlated traits (the higher the grain yield the lower the protein content), Schulthess et al.

[2016] confirmed that the multi-trait GS approach make sense when the aim is to predict a low heritability

trait with scarce phenotypic records which is supported by a genetically correlated indicator trait highly

heritable and extensively phenotyped. Also, Wang et al. [2016] fitted a multi-trait GP model including

additive and dominance effects for hybrid rice. They concluded that the prediction accuracy of this model

was superior over single-trait GP models, in particular when the trait of interest with low heritability was

supported by highly correlated auxiliary traits, whereas for a high-heritability trait, single-trait GP was

sufficient. In general, if there is sufficient correlation between a covariate and a variable of interest, using

a covariate may lead to considerable gain in accuracy [Piepho and McCulloch, 2002].

As multi-trait GP may become computationally demanding, in particular when the number of traits

and phenotypic records increases, a selection index method may be an option to potentially close the gap

between GP and multi-trait improvement. It has been advocated that selection index methods are optimal

only for balanced phenotypic information, thus they cannot yet benefit from the advantages of multi-trait

analysis such as borrowing information from other traits with more phenotypic observations [Schulthess

et al., 2016]. Selection index methods are, however, closely related to BLUP-based analysis. Selection

indices are essentially a linear combination of genotypic effects of traits with coefficients corresponding

to economic weights. In case of unbalanced data, the genotypic effects can be estimated via BLUPs and

subsequently be plugged into the linear combination allowing the calculation of the index, and therefore

the application of GP for selection indices is feasible.

5.5.3 Non-normally distributed traits

In Chapter 2 the assumptions of the LMM are scrutinized and outlier detection methods are presented

as consideration to improve, in particular, the homogeneous error variance assumption. An alternative

approach is the use of generalized linear mixed models (GLMM) [Lee et al., 2006; Stroup, 2012], which
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allow to relax the distributional assumptions while focusing in searching for a suitable transformation

(link function in GLMMs) to achieve linearity or additivity. Extensions of the GP models using GLMM

allowing to fit dichotomous, ordinal, or count traits have been studied [Montesinos-López et al., 2015a,b;

Technow and Melchinger, 2013]. In the analysis of those traits, one could disregard the fact that the

underlying distribution is not normal and use a GBLUP model that assumes that phenotypes follow a

normal distribution and that the variance is constant and not a function of the mean value, given the

premise that for large sample size and, in the case of ordinal data, a large number of categories, the data

may follow an approximate normal distribution [Atkinson, 1988]. Likewise, in plant sciences it is very

common to use transformations to stabilize variance, which could be an alternative. It has been shown

that transformations can be ineffective and may fail to address the problem of skewness [Stroup, 2015],

but also that a correct transformation can be advantageous allowing the use of LMM and facilitating the

interpretation [Piepho, 2009a].

In general, the studies on GP using non-normally distributed traits have led to the conclusion that

extension of the GP towards GLMM is a viable alternative to deal with non-quantitative data, but have not

totally ruled out the use of GBLUP with transformed or untransformed traits [Montesinos-López et al.,

2015b; Technow and Melchinger, 2013]. The merit of all these extensions, even if they do not always

lead to significantly higher predictive abilities, is that they allow to relax the normality assumption as

well as the assumption of homogeneity of variance. This is advantageous but there is still a price to pay,

which is that interpretation may be seemingly more difficult for breeders, as they are used to the mean

and variance output from a LMM framework. In practice, this translates into curtailment of the take-off

of GP based on GLMM models.

5.6 Future perspectives

The results in this thesis demonstrated that genomic selection in hybrid rye breeding is a worthwhile

enterprise and goes hand in hand with a holistic analysis process, including pre-processing data, pheno-

typic analysis and genomic prediction. A refined start for data management towards implementation of

genomic selection is provided. The models and procedures are flexible and allow further modifications

that may come in the future.

Parallel to the development of GP methods, optimization to the breeding methodology is of great im-

portance since it determines effective resource allocation in routine hybrid breeding schemes [Marulanda

et al., 2016]. Certainty on where in the program GS gives the most profit may lead to a more efficient

breeding scheme. Research to develop such hybrid schemes (phenotypic and genomic selection) is well
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justified.

Preparation for GS using whole-genome sequence (WGS) data should also be a matter of further

study. The main advantage of WGS over dense marker data is that the former allows tagging precisely

genetic variations (i.e., causal mutations). The computational load for GP methodology represents a

remaining challenge. Some simulations of GP using WGS data have already been conducted and show

that genotyping by sequencing produces no advantage compared to other marker data [Ober et al., 2012;

Pérez-Enciso et al., 2015; van Binsbergen et al., 2015] since there are still the same limitations, such

as excessive number of linked and uninformative markers [Gianola, 2013; Pérez-Enciso et al., 2015].

Nonetheless, cases were TS-size is small, WGS integrated with the use of multiple populations and

variable selection methods may be advantageous [Iheshiulor et al., 2016]. Since multicollinearity among

predictors may lead to incorrect inference of marker effects, recent proposals of whole genome predic-

tion approaches are recently incorporating the correlation among chromosome segments by modeling

covariances between SNP effects, e.g., using a first-order antedependence correlation structure [Yang

and Tempelman, 2012], or as an autoregressive prior derived from the haplotype frequencies of the

population from which an individual parent was derived [Wittenburg et al., 2016].

Optimization of GP methods may generate some advance in prediction accuracies, however, it seems

that the main gain lies in the incorporation of meaningful biological information into the prediction

model [MacLeod et al., 2016; Pérez-Enciso et al., 2015; van Binsbergen et al., 2015]. Revolutionizing

genotyping is tightly linked with a revolution in phenotyping. Information from crop-growth models

constitutes a promising source of information to improve GP models and moving from a purely statistical

view to an ecophysiological understanding [Malosetti et al., 2016; van Eeuwijk et al., 2005]. A gain in

knowledge about genetic factors underlying a trait via GP is only possible if GP is used together with

additional genetic analyses, e.g. QTL mapping, genome-wide association analysis (GWAS). This issue

has recently been addressed in the frequentist [Bernardo, 2014; Spindel et al., 2016] and the Bayesian

contexts [Bennewitz et al., 2017]. Moreover, functional information such as presence or absence of

transcription factors and empirical information from population genetic studies (e.g., selective sweeps

evidence) constitutes potential biological information to feed into GP methods [Pérez-Enciso et al.,

2015]. Exploitation of a better understanding of the selection traits’ architecture is another route to

extend GP models.
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Chapter 6

Conclusions

This thesis developed models at phenotypic level towards incorporating high-dimensional marker data

for genomic prediction in a rye hybrid breeding program. Here, the most important conclusions from

this work are summarized:

• The linear mixed model framework constitutes a flexible means for data analysis towards genomic

selection. Verification of the assumptions in routine analysis can be achieved by implementation

of robust outlier detection methods. The routine use of such procedures pinpoints spurious data,

controls family-wise error rate and can improve prediction accuracy in further analyses.

• In the German and Polish multi-environment trials analyzed, there was no advantage of spatial

modeling over baseline model plus row and column post-blocking factors. Row-column designs

may be a promising experimental design alternative in order to account for field heterogeneity and

further, allowing a framework to extend to spatial modeling when disease or stress pressure may

emerge.

• A viable option for plant breeders is to use historical data to increase training set size and thereby

improve predictive accuracy. Bulked multi-year datasets are usually disconnected, making it

challenging to precisely dissect year effects from genetic variation. The use of the genetic kinship

in modeling genotype-by-year effects allows the separation of genotype-by-year from GEBVs.
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Chapter 7

Summary

Technical progress in the genomic field is accelerating developments in plant and animal breeding

programs. The access to high-dimensional molecular data has facilitated acquisition of knowledge of

genome sequences in many economically important species, which can be used routinely to predict

genetic merit. Genomic prediction (GP) has emerged as an approach that allows predicting the genomic

estimated breeding value (GEBV) of an unphenotyped individual based on its marker profile. The

approach can considerably increase the genetic gain per unit time, as not all individuals need to be

phenotyped. Accuracy of the predictions are influenced by several factors and require proper statistical

models able to overcome the problem of having more predictor variables than observations.

Plant breeding programs run for several years and genotypes are evaluated in multi-environment

trials. Selection decisions are based on the mean performance of genotypes across locations and later

on, across years. Under this conditions, linear mixed models offer a suitable and flexible framework

to undertake the phenotypic and genomic prediction analyses using a stage-wise approach, allowing

refinement of each particular stage. In this work, an evaluation and comparison of outlier detection

methods, phenotypic analyses and GP models were considered. In particular, it was studied whether at

the plot level, identification and removal of possible outlying observations has an impact on the predictive

ability. Further, if an enhancement of phenotypic models by spatial trends leads to improvement of GP

accuracy, and finally, whether the use of the kinship matrix can enhance the dissection of GEBVs from

genotype-by-year (GY ) interaction effects. Here, the methods related to the mentioned objectives are

compared using experimental datasets from a rye hybrid breeding program.

Outlier detection methods widely used in many German plant breeding companies were assessed in

terms of control of the family-wise error rate and their merits evaluated in a GP framework (Chapter

2). The benefit of implementation of the methods based on a robust scale estimate was that in routine
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analysis, such procedures reliably identified spurious data. This outlier detection approach per trial at

the plot level is conservative and ensures that adjusted genotype means are not severely biased due to

outlying observations. Whenever it is possible, breeders should manually flag suspicious observations

based on subject-matter knowledge. Further, removing the flagged outliers identified by the recom-

mended methods did not reduce predictive abilities estimated by cross validation (GP-CV) using data of

a complete breeding cycle.

A crucial step towards an accurate calibration of the genomic prediction procedure is the identifi-

cation of phenotypic models capable of producing accurate adjusted genotype mean estimates across

locations and years. Using a two-year dataset connected through a single check, a three-stage GP

approach was implemented (Chapter 3). In the first stage, spatial and non-spatial models were fitted

per locations and years to obtain adjusted genotype-tester means. In the second stage, adjusted genotype

means were obtained per year, and in the third stage, GP models were evaluated. Akaike information

criterion (AIC) and predictive abilities estimated from GP-CV were used as model selection criteria in

the first and in the third stage. These criteria were used in the first stage, because a choice had to be made

between the spatial and non-spatial models and in the third stage, because the predictive abilities allow

a comparison of the results of the complete analysis obtained by the alternative stage-wise approaches

presented in this thesis. The second stage was a transitional stage where no model selection was needed

for a given method of stage-wise analysis. The predictive abilities displayed a different ranking pattern

for the models than the AIC, but both approaches pointed to the same best models. The highest predictive

abilities obtained for the GP-CV at the last stage did not coincide with the models that AIC and predictive

ability of GP-CV selected in the first stage. Nonetheless, GP-CV can be used to further support model

selection decisions that are usually based only upon AIC. There was a trend of models accounting for

row and column variation to have better accuracies than the counterpart model without row and column

effects, thus suggesting that row-column designs may be a potential option to set up breeding trials.

While bulking multi-year data allows increasing the training set size and covering a wider genetic

background, it remains a challenge to separate GEBVs from GY effects, when there are no common

genotypes across years, i.e., years are poorly connected or totally disconnected. First, an approach

considering the two-year dataset connected through a single check, adjusted genotype means were

computed per year and submitted to the GP stage (Chapter 3). The year adjustment was done in the

GP model by assuming that the mean across genotypes in a given year is a good estimate of the year

effect. This assumption is valid because the genotypes evaluated in a year are a sample of the population.

Results indicated that this approach is more realistic than relying on the adjustment of a single check.

A further approach entailed the use of kinship to dissect GY effects from GEBVs (Chapter 4). It
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was not obvious which method best models the GY effect, thus several approaches were compared and

evaluated in terms of predictive abilities in forward validation (GP-FV) scenarios. It was found that

for training sets formed by several disconnected years’ data, the use of kinship to model GY effects was

crucial. In training sets where two or three complete cycles were available (i.e. there were some common

genotypes across years within a cycle), using kinship or not yielded similar predictive abilities. It was

further shown that predictive abilities are higher for scenarios with high relatedness degree between

training and validation sets, and that predicting a selection of top-yielding genotypes was more accurate

than predicting the complete validation set when kinship was used to model GY effects.

In conclusion, stage-wise analysis is recommended and it is stressed that the careful choice of phe-

notypic and genomic prediction models should be made case by case based on subject-matter knowledge

and specificities of the data. The analyses presented in this thesis provide general guidelines for breeders

to develop phenotypic models integrated with GP. The methods and models described are flexible and

allow extensions that can be easily implemented in routine applications.
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Chapter 8

Zusammenfassung

Der technische Fortschritt auf dem Gebiet der Genomik ermöglicht eine schnellere Entwicklung in

Pflanzen- und Tierzuchtprogrammen. Die Verfügbarkeit von hochdimensionalen, molekularen Daten

in vielen ökonomisch wichtigen Tier- und Pflanzenarten erlaubt dessen routinemäßigen Einsatz zur

Schätzung und Vorhersage von genetischen Werten. Die genomische Vorhersage (genomic prediction =

GP) ermöglicht die Schätzung des genomischen Zuchtwertes eines nicht phänotypisierten Individuums

allein auf Grund des Markerprofils. Da nicht alle Individuen phänotypisiert werden müssen, erreicht

man mit dieser Herangehensweise einen höheren Selektionsgewinn pro Zeiteinheit. Die Vorhersage-

genauigkeit wird durch verschiedene Faktoren beeinflusst und bedarf geeigneter statistischer Modelle.

Diese müssen in der Lage sein, Lösungen für ein Gleichungssystem zu finden, obwohl es mehr erklärende

Variablen als Beobachtungen gibt. Pflanzenzuchtprogramme erstrecken sich über mehrere Jahre in

denen Genotypen an mehreren Versuchsorten wiederholt geprüft werden. Die Selektionsentscheidungen

basieren auf der durchschnittlichen Leistung der Genotypen standortübergreifend und später über Jahre

hinweg. Für diese Daten stellen gemischte lineare Modelle ein geeignetes und flexibles Werkzeug dar,

um die Zuchtwerte der Individuen anhand von phänotypischen oder genetischen Daten vorherzusagen.

Die Anwendung dieser Modelle zur Zuchtwertvorhersage kann in zwei Stufen erfolgen, wobei in den bei-

den Stufen verschiedene Aspekte berücksichtigt werden müssen, um eine valide Zuchtwertschätzung zu

erhalten. In dieser Arbeit wurden verschiedene Verfahren zur Bestimmung von Ausreißern, phänotypische

Analysen und genomische Vorhersage-Modelle betrachtet. Insbesondere wurde untersucht, ob anhand

der Beobachtungsdaten die Identifizierung und Entfernung von möglichen Ausreißern einen Einfluss

auf die Vorhersagefähigkeit der verwendeten Modelle hat. Ferner wurde analysiert, ob geostatistische

Modelle zu einer Verbesserung der genomischen Vorhersagegenauigkeit führen. Ein weiteres Ziel dieser

Arbeit bestand darin, herauszufinden, ob die Verwandtschaftsmatrix eine Trennung des Zuchtwertes von
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der Genotyp-Jahr-Interaktion ermöglicht. Die genannten Ziele wurden mit Hilfe eines Hybridroggen-

datensatzes aus einem Züchtungsprogramm untersucht.

In deutschen Züchtungsunternehmen weitverbreitete Ausreißeridentifizierungsmethoden wurden im

Hinblick auf Kontrolle der versuchsbezogenen Irrtumswahrscheinlichkeit und in Bezug auf Verbes-

serung der genomischen Selektion untersucht (Kapitel 2). Dabei stellte sich heraus, dass diese Verfahren

die Ausreißer zuverlässig identifizieren. Dieser Ansatz zur Ausreißererkennung auf Grund von Beobach-

tungswerten ist konservativ und gewährleistet, dass adjustierte genotypische Mittelwerte nicht aufgrund

von Ausreißern verzerrt werden. Züchter sollten verdächtige Beobachtungen basierend auf ihrer Fach-

kenntnis markieren. Ferner hat ein Entfernen der so identifizierten Ausreißer die Vorhersagefähigkeit

nicht reduziert. Die Vorhersagefähigkeit wurde über eine Kreuzvalidierung (cross validation = CV)

bestimmt.

Ein entscheidender Schritt zu einer genauen Kalibrierung des genomischen Vorhersageverfahrens

ist die Identifizierung von phänotypischen Modellen, die fähig sind, genaue adjustierte genotypische

Mittelwerte über Standorte und Jahre hinweg zu liefern. In der vorliegenden Arbeit wurde eine drei-

stufige GP-Auswertung für einen zweijährigen Datensatz implementiert. Die Daten beider Jahre sind

über eine einzige Standardsorte verbunden (Kapitel 3). In der ersten Stufe wurden räumliche und

nicht räumliche Modelle an die Daten jedes Standorts und jedes Jahrs angepasst, um die adjustierten

Genotyp-Testermittelwerte zu erhalten. In der zweiten Stufe wurden adjustierte genotypische Mittel-

werte pro Jahr ermittelt und in der dritten Stufe wurde die Vorhersagegüte der Modelle bewertet. Hier-

für wurde sowohl das Akaike Informationkriterium (Akaike information criteria = AIC) als auch die

Vorhersagefähigkeit der GP-CV in der ersten und dritten Stufe als Modellauswahlkriterium eingesetzt.

In der ersten Stufe wurden diese Kriterien verwendet, weil eine Entscheidung über räumliches und nicht

räumliches Modell getroffen werden musste. In der dritten Stufe wurden diese Kriterien verwendet,

weil die Vorhersagefähigkeit einen Vergleich der verschiedenen Analysemethoden, die in dieser Arbeit

verwendet wurden, ermöglicht. Die zweite Stufe war eine Übergangsstufe, in der keine Modellauswahl

benötigt wurde. Die Vorhersagefähigkeit der Modelle zeigt unterschiedliche Rangfolgen, aber beide

Modellauswahlkriterien präferieren dasselbe Modell. Das mit GP-CV in der letzten Stufe bestimmte

Modell mit der besten Vorhersagefähigkeit, stimmte nicht mit den mittels AIC und mittels GP-CV in der

ersten Stufe präferierten Modellen überein. Nichtsdestotrotz kann GP-CV anstelle des AIC zur Modell-

selektion verwendet werden. Es gab eine Tendenz, dass Modelle, die Zeilen- und Spaltenvariabilität

erfassen, eine bessere Vorhersagegenauigkeit aufweisen als Modelle ohne Zeilen- und Spalteneffekte.

Dies suggeriert, dass Zeilen-Spalten-Designs eine mögliche Option darstellen, Zuchtversuche anzulegen.

Während kombinierte, mehrjährige Daten größere Trainingsdatensätze erlauben und eine größere
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genetischen Variabilität abdecken, bleibt es eine Herausforderung, die Zuchtwerte von der Genotyp-

Jahr-Interaktion zu trennen, wenn es kaum oder keine gemeinsame Genotypen über Jahre hinweg gibt. In

dem Fall sind Jahre nur schwach verbunden oder komplett unabhängig. Zunächst wurde der zweijährige

Datensatz ausgewertet, wobei die Jahre nur über eine einzelne Standardsorte verbunden sind. Es wurden

adjustierte genotypische Mittelwerte pro Jahr berechnet, und anschließend in der GP-Stufe verwendet

(Kapitel 3). Die Jahreseffekte wurden im GP-Modell als Mittelwert der Genotypen in den verschiedenen

Jahren geschätzt. Diese Annahme ist gültig, weil die Genotypen eines Jahres eine Stichprobe der

Grundgesamtheit sind. Die Ergebnisse weisen darauf hin, dass dieser Ansatz realistischer ist, als das

Abschätzen der Jahreseffekte durch die Standardsorte. Ein weiterer Ansatz bestand darin, Genotyp-

Jahr-Interaktionen vom Zuchtwert durch die Nutzung der Verwandtschaftsmatrix zu separieren (Kapitel

4). Hierbei war jedoch nicht offensichtlich, welche Methode die Genotyp-Jahr-Interaktion am besten

abbildet. Daher wurden verschiedene Ansätze hinsichtlich der Vorhersagefähigkeit in einer Vorwärts-

Validierung verglichen. Dabei stellte sich heraus, dass die Nutzung der Verwandtschaftsmatrix insbeson-

dere dann, wenn es keine gemeinsame Standardsorte gibt, zu einer Verbesserung der Vorhersagefähigkeit

führt.

Wenn jedoch ausreichend Genotypen, die in mehreren Jahren getestet wurden, benutzt werden, um

Jahreseffekte im GP Modell anzupassen, hat die Nutzung der Verwandtschaftsmatrix weniger Einfluss

auf die Vorhersagefähigkeit. Außerdem wurde in den Analysen deutlich, dass bei zunehmendem Ver-

wandtschaftsgrad der Genotypen in den Trainingsdatensätzen die Vorhersagefähigkeit verbessert werden

kann und dass die Vorhersagefähigkeit von Genotypen mit den höchsten Zuchtwerten größer ist als die

Vorhersagefähigkeit für die restlichen Genotypen. Zusammenfassend kann eine stufenweise Analyse

empfohlen werden. Es sei darauf hingewiesen, dass die Modellauswahl für die genomische Selektion

von Fall zu Fall, also in Abhängigkeit der Daten und anhand von fachspezifischen Entscheidungen,

getroffen werden sollte. Die hier vorgestellten Analysen und Methoden stellen generelle Richtlinien zur

Modellselektion in der genomischen Selektion dar, die von Züchtern angewandt werden können.
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Damesa, T., Möhring, J., Worku, M., and Piepho, H.-P. (2017). One step at a time: stage-wise analysis

of series of experiments. Agron J, 109:1–13.

De Coninck, A., De Baets, B., Kourounis, D., Verbosio, F., Schenk, O., Maenhout, S., and Fostier,

J. (2016). Needles: toward large-scale genomic prediction with marker-by-environment interaction.

Genetics, 203:543–555.

Dekkers, J. C. M. (2007). Prediction of response to marker-assisted and genomic selection using selection

index theory. J Anim Breed Genet, 124:331–341.

Duarte, J. B. and Vencovsky, R. (2005). Spatial statistical analysis and selection of genotypes in plant

breeding. Pesqui Agropecu Bras, 40:107–114.

Endelman, J. B. (2011). Ridge regression and other kernels for genomic selection with R package

rrBLUP. Plant Genome, 4:250–255.

Endelman, J. B., Atlin, G. N., Beyene, Y., Semagn, K., Zhang, X., Sorrells, M. E., and Jannink, J.-L.

(2014). Optimal design of preliminary yield trials with genome-wide markers. Crop Sci, 54:48–59.

Erbe, M., Pimentel, E., Sharifi, A., and Simianer, H. (2010). Assessment of cross-validation strategies

for genomic prediction in cattle. In Book of Abstracts of the 9th World Congress of Genetics Applied

to Livestock Production, page S 129, Leipzig, Germany.

Estaghvirou, S. B. O., Ogutu, J. O., and Piepho, H.-P. (2014). Influence of outliers on accuracy estimation

in genomic prediction in plant breeding. G3 (Bethesda), 4:2317–2328.

Estaghvirou, S. B. O., Ogutu, J. O., Schulz-Streeck, T., Knaak, C., Ouzunova, M., Gordillo, A., and

Piepho, H.-P. (2013). Evaluation of approaches for estimating the accuracy of genomic prediction in

plant breeding. BMC Genomics, 14:860.

Falconer, D. S. and Mackay, T. F. C. (1996). Introduction to quantitative genetics. Pearson Prentice Hall,

Harlow, fourth edition.



REFERENCES 135

Geiger, H. H. and Miedaner, T. (2009). Rye Breeding. In Carena, M., editor, Cereals, pages 157–181.

Springer.

Gianola, D. (2013). Priors in whole-genome regression: the Bayesian alphabet returns. Genetics,

194:573–596.

Gilmour, A., Cullis, B., and Verbyla, A. P. (1997). Accounting for natural and extraneous variation in

the analysis of field experiments. J Agric Biol Environ Stat, 2:269–293.

Goddard, M. (2009). Genomic selection: prediction of accuracy and maximisation of long term response.

Genetica, 136:245–257.

Gomez, K. A. and Gomez, A. A. (1984). Statistical Procedures for Agricultural Research. John Wiley

& Sons, New York.

Goncharenko, A., Krahmalev, S., Makarov, V., and Yermakov, S. (2015). Genetic research of quantitative

traits of inbred lines of winter rye (Secale cereale L.) in diallel crossings. Agricultural Biology, 50:75–

84.

Greven, S. and Kneib, T. (2010). On the behaviour of marginal and conditional AIC in linear mixed

models. Biometrika, 97:773–789.

Griffiths, A. J., Miller, J. H., , Suzuki, D. T., Lewontin, R. C., and Gelbart, W. M. (2000). An Introduction

to Genetic Analysis. Freeman and Company, New York, seventh edition.

Gumedze, F. N. and Chatora, T. D. (2014). Detection of outliers in longitudinal count data via

overdispersion. Comput Stat Data An, 79:192–202.

Gumedze, F. N. and Jackson, D. (2011). A random effects variance shift model for detecting and

accommodating outliers in meta-analysis. BMC Med Res Methodol, 11:19.

Gumedze, F. N., Welham, S. J., Gogel, B. J., and Thompson, R. (2010). A variance shift model for

detection of outliers in the linear mixed model. Comput Stat Data An, 54:2128–2144.

Guo, G., Zhao, F., Wang, Y., Zhang, Y., Du, L., and Su, G. (2014a). Comparison of single-trait and

multiple-trait genomic prediction models. BMC Genet, 15:30.

Guo, T., Li, H., Yan, J., Tang, J., Li, J., Zhang, Z., Zhang, L., and Wang, J. (2013). Performance

prediction of F1 hybrids between recombinant inbred lines derived from two elite maize inbred lines.

Theor Appl Genet, 126:189–201.



136 REFERENCES

Guo, Z., Tucker, D. M., Basten, C. J., Gandhi, H., Ersoz, E., Guo, B., Xu, Z., Wang, D., and Gay, G.

(2014b). The impact of population structure on genomic prediction in stratified populations. Theor

Appl Genet., 127:749–762.

Habier, D., Fernando, R. L., and Dekkers, J. C. M. (2007). The impact of genetic relationship information

on genome-assisted breeding values. Genetics, 177:2389–2397.

Habier, D., Fernando, R. L., and Garrick, D. J. (2013). Genomic BLUP decoded: a look into the black

box of genomic prediction. Genetics, 194:597–607.

Hampel, F. R. (1985). The breakdown points of the mean combined with some rejection rules.

Technometics, 27:95–107.

Hayashi, T. and Iwata, H. (2013). A Bayesian method and its variational approximation for prediction of

genomic breeding values in multiple traits. BMC Bioinformatics, 14:34.

Heffner, E. L., Sorrells, M. E., and Jannink, J.-L. (2009). Genomic selection for crop improvement. Crop

Sci, 49:1–12.

Heslot, N., Akdemir, D., Sorrells, M. E., and Jannink, J.-L. (2014). Integrating environmental covariates

and crop modeling into the genomic selection framework to predict genotype by environment

interactions. Theor Appl Genet, 127:463–480.

Heslot, N., Jannink, J.-L., and Sorrells, M. E. (2013a). Using genomic prediction to characterize

environments and optimize prediction accuracy in applied breeding data. Crop Sci, 53:921–933.

Heslot, N., Rutkoski, J., Poland, J., Jannink, J.-L., and Sorrells, M. E. (2013b). Impact of marker

ascertainment bias on genomic selection accuracy and estimates of genetic diversity. PLoS ONE,

8:e74612.

Heslot, N., Yang, H.-P., Sorrells, M. E., and Jannink, J.-L. (2012). Genomic selection in plant breeding:

a comparison of models. Crop Sci, 52:146–160.

Hochberg, Y. and Tamhane, A. C. (1987). Multiple Comparison Procedures. John Wiley & Sons, New

York.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scand J Stat, 6:65–70.

Hurvitch, C. M. and Tsai, C.-L. (1989). Regression and time series model selection in small samples.

Biometrika, 76:297–307.



REFERENCES 137

Iglewicz, B. (2000). Robust scale estimators and confidence intervals for location. In Hoaglin, D.,

Mosteller, F., and Tukey, J. W., editors, Understanding Robust and Exploratory Data Analysis. John

Wiley & Sons, New York.

Iheshiulor, O. O. M., Woolliams, J. A., Yu, X., Wellmann, R., and Meuwissen, T. H. E. (2016).

Within- and across-breed genomic prediction using whole-genome sequence and single nucleotide

polymorphism panels. Genet Sel Evol, 48:15.

Isidro, J., Jannink, J.-L., Akdemir, D., Poland, J., Heslot, N., and Sorrells, M. E. (2015). Training set

optimization under population structure in genomic selection. Theor Appl Genet, 128:145–158.

Jannink, J.-L., Lorenz, A. J., and Iwata, H. (2010). Genomic selection in plant breeding: from theory to

practice. Brief Funct Genomics, 9:166–177.

Jarquı́n, D., Crossa, J., Lacaze, X., Du Cheyron, P., Daucourt, J., Lorgeou, J., Piraux, F., Guerreiro, L.,
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Legarra, A., Robert-Granié, C., Manfredi, E., and Elsen, J.-M. (2008). Performance of genomic selection

in mice. Genetics, 180:611–618.

Leiser, W. L., Rattunde, H. F., Piepho, H.-P., and Parzies, H. K. (2012). Getting the most out of sorghum

low-input field trials in West Africa using spatial adjustment. J Agron Crop Sci, 198:349–359.
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Möhring, J., Williams, E. R., and Piepho, H.-P. (2014). Efficiency of augmented p-rep designs in multi-

environmental trials. Theor Appl Genet, 127:1049–1060.



140 REFERENCES
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Montesinos-López, O. A., Montesinos-López, A., Pérez-Rodrı́guez, P., Eskridge, K., He, X., Juliana, P.,

Singh, P., and Crossa, J. (2015b). Genomic prediction models for count data. J Agric Biol Environ

Stat, 20:533–554.

Mrode, R. A. and Thompson, R. (2005). Linear Models for the Prediction of Animal Breeding Values.

CABI Publishing, Wallingford, UK, second edition.

Mühleisen, J., Piepho, H.-P., Maurer, H. P., Longin, C. F. H., and Reif, J. C. (2014). Yield stability of

hybrids versus lines in wheat, barley, and triticale. Theor Appl Genet, 127:309–316.

Nakagawa, S. and Schielzeth, H. (2010). Repeatability for Gaussian and non-Gaussian data: a practical

guide for biologists. Biol Rev, 85:935–956.

Nobre, J. S. and Singer, J. M. (2007). Residual analysis for linear mixed models. Biom J, 49:863–875.

Nobre, J. S. and Singer, J. M. (2011). Leverage analysis for linear mixed models. J Appl Stat, 38:1063–

1072.

Ober, U., Ayroles, J. F., Stone, E. A., Richards, S., Zhu, D., Gibbs, R. A., Stricker, C., Gianola, D.,

Schlather, M., Mackay, T. F. C., and Simianer, H. (2012). Using whole-genome sequence data to

predict quantitative trait phenotypes in Drosophila melanogaster. PLoS Genet, 8:e1002685.

Ober, U., Erbe, M., Long, N., Porcu, E., Schlather, M., and Simianer, H. (2011). Predicting genetic

values: A kernel-based best linear unbiased prediction with genomic data. Genetics, 188:695–708.

Ogutu, J. O., Schulz-Streeck, T., and Piepho, H.-P. (2012). Genomic selection using regularized linear

regression models: ridge regression, Lasso, elastic net and their extensions. BMC Proc, 6 Suppl 2:S10.

Ou, Z., Tempelman, R. J., Steibel, J. P., Ernst, C. W., Bates, R. O., and Bello, N. M. (2015). Genomic

prediction accounting for residual heteroskedasticity. G3 (Bethesda), 6:1–13.

Patterson, H. D. and Hunter, E. A. (1983). The efficiency of incomplete block designs in national list

and recommended list cereal variety trials. J Agric Sci, 101:427–433.

Perez, P. and de los Campos, G. (2014). BGLR : A statistical package for whole genome regression and

prediction. Genetics, 198:483–495.



REFERENCES 141
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Appendix A

Supplementary material of Chapter 2

A.1 Published datasets: original, with 3 missing observation and with 3
outlying observations

Table A.1: Alpha design Dataset from John and Williams, 1995, p. 146. Yield of 24 oats
genotypes (gen) were laid out as a -design using 3 replicates (rep) each consisting on six blocks
(bl). Three observations were randomly removed, noted as missing values (w3miss), and also
modified as representing outliers (w3outl).

Obs rep bl gen yield w3miss w3outl Obs rep bl gen yield w3miss w3outl

1 1 5 1 5.1202 5.1202 5.1202 51 3 17 24 3.5655 3.5655 3.5655
2 2 10 1 5.7161 . 25.7161 52 1 4 3 3.342 3.342 3.342
3 3 13 1 4.6512 4.6512 4.6512 53 2 8 3 3.7999 3.7999 3.7999
4 1 2 10 4.1736 4.1736 4.1736 54 3 18 3 2.8873 2.8873 2.8873
5 2 10 10 4.9057 4.9057 4.9057 55 1 1 4 4.4461 4.4461 4.4461
6 3 16 10 4.0875 4.0875 4.0875 56 2 7 4 4.3599 4.3599 4.3599
7 1 1 11 4.1172 . -0.8828 57 3 15 4 4.396 4.396 4.396
8 2 9 11 5.1163 5.1163 5.1163 58 1 1 5 5.8757 5.8757 5.8757
9 3 13 11 3.9205 3.9205 3.9205 59 2 10 5 5.1202 5.1202 5.1202

10 1 6 12 5.256 5.256 5.256 60 3 18 5 4.1972 4.1972 4.1972
11 2 9 12 5.3127 5.3127 5.3127 61 1 6 6 4.7085 . -5.2915
12 3 16 12 4.1746 4.1746 4.1746 62 2 12 6 5.1751 5.1751 5.1751
13 1 4 13 4.253 4.253 4.253 63 3 15 6 4.2474 4.2474 4.2474
14 2 11 13 5.484 5.484 5.484 64 1 5 7 4.1505 4.1505 4.1505
15 3 16 13 4.7512 4.7512 4.7512 65 2 12 7 4.6297 4.6297 4.6297
16 1 3 14 4.7572 4.7572 4.7572 66 3 18 7 3.6096 3.6096 3.6096
17 2 7 14 4.5294 4.5294 4.5294 67 1 4 8 4.9989 4.9989 4.9989
18 3 13 14 4.3887 4.3887 4.3887 68 2 7 8 3.9926 3.9926 3.9926
19 1 5 15 5.0902 5.0902 5.0902 69 3 14 8 3.9821 3.9821 3.9821
20 2 8 15 4.9114 4.9114 4.9114 70 1 6 9 3.3986 3.3986 3.3986
21 3 14 15 4.6783 4.6783 4.6783 71 2 10 9 4.2955 4.2955 4.2955
22 1 3 16 4.4906 4.4906 4.4906 72 3 14 9 3.1407 3.1407 3.1407

149
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Continue Table A.1
Obs rep bl gen yield w3miss w3outl Obs rep bl gen yield w3miss w3outl

23 2 12 16 5.3024 5.3024 5.3024 38 2 7 20 3.6056 3.6056 3.6056
24 3 17 16 4.3852 4.3852 4.3852 39 3 18 20 3.7349 3.7349 3.7349
25 1 5 17 4.7876 4.7876 4.7876 40 1 2 21 4.654 4.654 4.654
26 2 9 17 5.0744 5.0744 5.0744 41 2 9 21 5.3802 5.3802 5.3802
27 3 15 17 4.3234 4.3234 4.3234 42 3 17 21 4.413 4.413 4.413
28 1 3 18 3.9737 3.9737 3.9737 43 1 1 22 4.5784 4.5784 4.5784
29 2 11 18 5.0988 5.0988 5.0988 44 2 11 22 5.0969 5.0969 5.0969
30 3 15 18 4.2486 4.2486 4.2486 45 3 17 22 4.2397 4.2397 4.2397
31 1 4 19 4.7269 4.7269 4.7269 46 1 3 23 4.2323 4.2323 4.2323
32 2 12 19 5.3148 5.3148 5.3148 47 2 8 23 4.3042 4.3042 4.3042
33 3 13 19 4.5552 4.5552 4.5552 48 3 16 23 3.8721 3.8721 3.8721
34 1 2 2 4.335 4.335 4.335 49 1 6 24 4.9577 4.9577 4.9577
35 2 11 2 5.1566 5.1566 5.1566 50 2 8 24 3.9039 3.9039 3.9039
36 3 14 2 4.051 4.051 4.051
37 1 2 20 4.0141 4.0141 4.0141

Table A.2: Triple lattice design Dataset from Gomez and Gomez, 1984, p.55-56. Triple
lattice design - dataset. Grain yield data (yield) in ton/ha from a trial of 81 upland rice varieties
was conducted in a 9 x 9 triple lattice design [9 replicates (rep) and 9 blocks (block)]. ). Three
observations were randomly removed, noted as missing values (w3miss), and also modified as
representing outliers (w3outl).

Obs rep block gen yield w3miss w3out Obs rep block gen yield w3miss w3out

1 1 1 1 2.7 2.7 2.7 26 1 3 26 5.87 5.87 5.87
2 1 1 2 1.6 1.6 1.6 27 1 3 27 4.2 4.2 4.2
3 1 1 3 4.45 4.45 4.45 28 1 4 28 3.74 3.74 3.74
4 1 1 4 2.91 2.91 2.91 29 1 4 29 3.05 3.05 3.05
5 1 1 5 2.78 2.78 2.78 30 1 4 30 5.16 5.16 5.16
6 1 1 6 3.32 3.32 3.32 31 1 4 31 4.76 4.76 4.76
7 1 1 7 1.7 1.7 1.7 32 1 4 32 3.75 3.75 3.75
8 1 1 8 4.72 . 14.72 33 1 4 33 3.66 3.66 3.66
9 1 1 9 4.79 4.79 4.79 34 1 4 34 4.52 4.52 4.52

10 1 2 10 4.2 4.2 4.2 35 1 4 35 4.64 4.64 4.64
11 1 2 11 5.22 5.22 5.22 36 1 4 36 5.36 5.36 5.36
12 1 2 12 3.96 3.96 3.96 37 1 5 37 4.76 4.76 4.76
13 1 2 13 1.51 1.51 1.51 38 1 5 38 4.43 4.43 4.43
14 1 2 14 3.48 3.48 3.48 39 1 5 39 5.36 5.36 5.36
15 1 2 15 4.69 4.69 4.69 40 1 5 40 4.73 4.73 4.73
16 1 2 16 1.57 1.57 1.57 41 1 5 41 5.3 5.3 5.3
17 1 2 17 2.61 2.61 2.61 42 1 5 42 3.93 3.93 3.93
18 1 2 18 3.16 3.16 3.16 43 1 5 43 3.37 3.37 3.37
19 1 3 19 4.63 4.63 4.63 44 1 5 44 3.74 3.74 3.74
20 1 3 20 3.33 3.33 3.33 45 1 5 45 4.06 4.06 4.06
21 1 3 21 6.31 6.31 6.31 46 1 6 46 3.45 3.45 3.45
22 1 3 22 6.08 6.08 6.08 47 1 6 47 2.56 2.56 2.56
23 1 3 23 1.86 1.86 1.86 48 1 6 48 2.39 2.39 2.39
24 1 3 24 4.1 4.1 4.1 49 1 6 49 2.3 2.3 2.3
25 1 3 25 5.72 5.72 5.72 50 1 6 50 3.54 3.54 3.54
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Continue Table A.2

Obs rep block gen yield w3miss w3out Obs rep block gen yield w3miss w3out

51 1 6 51 3.66 3.66 3.66 106 2 7 25 5.55 5.55 5.55
52 1 6 52 1.2 1.2 1.2 107 2 8 26 5.14 5.14 5.14
53 1 6 53 3.34 3.34 3.34 108 2 9 27 3.94 3.94 3.94
54 1 6 54 4.04 4.04 4.04 109 2 1 28 3.75 3.75 3.75
55 1 7 55 3.99 3.99 3.99 110 2 2 29 4.06 . 24.06
56 1 7 56 4.48 4.48 4.48 111 2 3 30 4.99 4.99 4.99
57 1 7 57 2.69 2.69 2.69 112 2 4 31 3.71 3.71 3.71
58 1 7 58 3.95 3.95 3.95 113 2 5 32 4.34 4.34 4.34
59 1 7 59 2.59 2.59 2.59 114 2 6 33 3.84 3.84 3.84
60 1 7 60 3.99 3.99 3.99 115 2 7 34 3.52 3.52 3.52
61 1 7 61 4.37 4.37 4.37 116 2 8 35 4.32 4.32 4.32
62 1 7 62 4.24 4.24 4.24 117 2 9 36 4.51 4.51 4.51
63 1 7 63 3.7 3.7 3.7 118 2 1 37 4.08 4.08 4.08
64 1 8 64 5.29 5.29 5.29 119 2 2 38 3.89 3.89 3.89
65 1 8 65 3.58 3.58 3.58 120 2 3 39 4.58 4.58 4.58
66 1 8 66 2.14 2.14 2.14 121 2 4 40 4.85 4.85 4.85
67 1 8 67 5.54 5.54 5.54 122 2 5 41 4.36 4.36 4.36
68 1 8 68 5.14 5.14 5.14 123 2 6 42 4.25 4.25 4.25
69 1 8 69 5.73 5.73 5.73 124 2 7 43 4.03 4.03 4.03
70 1 8 70 3.38 3.38 3.38 125 2 8 44 3.47 3.47 3.47
71 1 8 71 3.63 3.63 3.63 126 2 9 45 3.1 3.1 3.1
72 1 8 72 5.08 5.08 5.08 127 2 1 46 3.88 3.88 3.88
73 1 9 73 3.76 3.76 3.76 128 2 2 47 2.6 2.6 2.6
74 1 9 74 6.45 6.45 6.45 129 2 3 48 3.17 3.17 3.17
75 1 9 75 3.96 3.96 3.96 130 2 4 49 2.87 2.87 2.87
76 1 9 76 3.64 3.64 3.64 131 2 5 50 3.24 3.24 3.24
77 1 9 77 4.42 4.42 4.42 132 2 6 51 3.9 3.9 3.9
78 1 9 78 6.57 6.57 6.57 133 2 7 52 1.2 1.2 1.2
79 1 9 79 6.39 6.39 6.39 134 2 8 53 3.41 3.41 3.41
80 1 9 80 3.39 3.39 3.39 135 2 9 54 3.59 3.59 3.59
81 1 9 81 4.89 4.89 4.89 136 2 1 55 2.14 2.14 2.14
82 2 1 1 3.06 3.06 3.06 137 2 2 56 4.19 4.19 4.19
83 2 2 2 1.61 1.61 1.61 138 2 3 57 2.69 2.69 2.69
84 2 3 3 4.19 4.19 4.19 139 2 4 58 3.79 3.79 3.79
85 2 4 4 2.99 2.99 2.99 140 2 5 59 3.62 3.62 3.62
86 2 5 5 3.81 3.81 3.81 141 2 6 60 3.64 3.64 3.64
87 2 6 6 3.34 3.34 3.34 142 2 7 61 4.36 4.36 4.36
88 2 7 7 2.98 2.98 2.98 143 2 8 62 3.74 3.74 3.74
89 2 8 8 4.2 4.2 4.2 144 2 9 63 2.7 2.7 2.7
90 2 9 9 4.75 4.75 4.75 145 2 1 64 3.68 3.68 3.68
91 2 1 10 2.08 2.08 2.08 146 2 2 65 3.14 3.14 3.14
92 2 2 11 5.3 5.3 5.3 147 2 3 66 2.57 2.57 2.57
93 2 3 12 3.33 3.33 3.33 148 2 4 67 5.28 5.28 5.28
94 2 4 13 2.5 2.5 2.5 149 2 5 68 4.49 4.49 4.49
95 2 5 14 3.48 3.48 3.48 150 2 6 69 5.09 5.09 5.09
96 2 6 15 3.3 3.3 3.3 151 2 7 70 3.18 3.18 3.18
97 2 7 16 2.69 2.69 2.69 152 2 8 71 3.67 3.67 3.67
98 2 8 17 2.69 2.69 2.69 153 2 9 72 4.4 4.4 4.4
99 2 9 18 2.59 2.59 2.59 154 2 1 73 2.85 2.85 2.85

100 2 1 19 2.95 2.95 2.95 155 2 2 74 4.82 4.82 4.82
101 2 2 20 2.75 2.75 2.75 156 2 3 75 3.82 3.82 3.82
102 2 3 21 4.67 4.67 4.67 157 2 4 76 3.32 3.32 3.32
103 2 4 22 4.87 4.87 4.87 158 2 5 77 3.62 3.62 3.62
104 2 5 23 1.87 1.87 1.87 159 2 6 78 6.1 6.1 6.1
105 2 6 24 3.68 3.68 3.68 160 2 7 79 6.77 6.77 6.77



152 APPENDIX A.

Continue Table A.2

Obs rep block gen yield w3miss w3out Obs rep block gen yield w3miss w3out

161 2 8 80 2.27 2.27 2.27 211 3 4 47 2.58 2.58 2.58
162 2 9 81 4.86 4.86 4.86 212 3 5 48 1.89 1.89 1.89
163 3 1 1 3.52 3.52 3.52 213 3 6 46 4.18 4.18 4.18
164 3 2 2 0.79 0.79 0.79 214 3 7 50 2.87 2.87 2.87
165 3 3 3 4.69 4.69 4.69 215 3 8 51 3.35 3.35 3.35
166 3 4 4 3.06 3.06 3.06 216 3 9 49 3.05 3.05 3.05
167 3 5 5 3.79 3.79 3.79 217 3 1 58 3.75 3.75 3.75
168 3 6 6 3.34 3.34 3.34 218 3 2 59 3.59 3.59 3.59
169 3 7 7 2.35 2.35 2.35 219 3 3 60 4.66 4.66 4.66
170 3 8 8 4.51 4.51 4.51 220 3 4 61 4.27 4.27 4.27
171 3 9 9 4.21 4.21 4.21 221 3 5 62 3.73 3.73 3.73
172 3 1 12 2.18 2.18 2.18 222 3 6 63 2.7 2.7 2.7
173 3 2 10 3.58 3.58 3.58 223 3 7 55 2.99 2.99 2.99
174 3 3 11 5.33 5.33 5.33 224 3 8 56 3.61 3.61 3.61
175 3 4 15 4.3 4.3 4.3 225 3 9 57 3.19 3.19 3.19
176 3 5 13 0.88 0.88 0.88 226 3 1 69 4.45 4.45 4.45
177 3 6 14 3.94 3.94 3.94 227 3 2 67 5.06 5.06 5.06
178 3 7 18 2.87 2.87 2.87 228 3 3 68 4.5 4.5 4.5
179 3 8 16 1.26 1.26 1.26 229 3 4 72 4.84 4.84 4.84
180 3 9 17 3.17 3.17 3.17 230 3 5 70 3.51 3.51 3.51
181 3 1 20 3.5 3.5 3.5 231 3 6 71 3.96 3.96 3.96
182 3 2 21 4.83 4.83 4.83 232 3 7 66 1.62 1.62 1.62
183 3 3 19 4.43 4.43 4.43 233 3 8 64 4.52 4.52 4.52
184 3 4 23 2.02 2.02 2.02 234 3 9 65 2.63 2.63 2.63
185 3 5 24 3.4 3.4 3.4 235 3 1 77 4.14 4.14 4.14
186 3 6 22 5.72 5.72 5.72 236 3 2 78 6.51 . 0.51
187 3 7 26 5.5 5.5 5.5 237 3 3 76 4.5 4.5 4.5
188 3 8 27 4.2 4.2 4.2 238 3 4 80 2.74 2.74 2.74
189 3 9 25 5.03 5.03 5.03 239 3 5 81 3.5 3.5 3.5
190 3 1 34 3.3 3.3 3.3 240 3 6 79 3.48 3.48 3.48
191 3 2 35 3.63 3.63 3.63 241 3 7 74 5.33 5.33 5.33
192 3 3 36 5.31 5.31 5.31 242 3 8 75 3.38 3.38 3.38
193 3 4 28 3.57 3.57 3.57 243 3 9 73 4.06 4.06 4.06
194 3 5 29 4.92 4.92 4.92
195 3 6 30 5.34 5.34 5.34
196 3 7 31 2.72 2.72 2.72
197 3 8 32 3.19 3.19 3.19
198 3 9 33 3.34 3.34 3.34
199 3 1 45 3.88 3.88 3.88
200 3 2 43 3.02 3.02 3.02
201 3 3 44 4.13 4.13 4.13
202 3 4 39 5.8 5.8 5.8
203 3 5 37 2.12 2.12 2.12
204 3 6 38 4.47 4.47 4.47
205 3 7 42 4.2 4.2 4.2
206 3 8 40 4.76 4.76 4.76
207 3 9 41 5.31 5.31 5.31
208 3 1 53 2.45 2.45 2.45
209 3 2 54 4.2 4.2 4.2
210 3 3 52 1.98 1.98 1.98
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Table A.3: Square lattice Dataset from Cochran and Cox, 1987, p 406. Yield (obs) of 25
soybean varieties (t) laid out in a 5 x 5 simple lattice [5 replicates (rep) and 5 blocks (bl)]. Three
observations were randomly removed, noted as missing values (obs 3m), and also modified as
representing outliers (3outl).

Obs rep bl t obs obs 3m 3outl

1 1 1 1 6 . 6
2 2 6 1 24 24 44
3 1 1 2 7 7 7
4 2 7 2 21 21 21
5 1 1 3 5 5 5
6 2 8 3 16 16 16
7 1 1 4 8 8 8
8 2 9 4 17 17 17
9 1 1 5 6 6 6

10 2 10 5 15 15 15
11 1 2 6 16 16 6
12 2 6 6 13 13 13
13 1 2 7 12 12 12
14 2 7 7 11 11 11
15 1 2 8 12 12 12
16 2 8 8 4 4 4
17 1 2 9 13 13 13
18 2 9 9 10 10 10
19 1 2 10 8 8 8
20 2 10 10 15 15 15
21 1 3 11 17 17 12
22 2 6 11 24 24 24
23 1 3 12 7 . 7
24 2 7 12 14 14 14
25 1 3 13 7 7 7
26 2 8 13 12 12 12
27 1 3 14 9 9 9
28 2 9 14 30 . 30
29 1 3 15 14 14 14
30 2 10 15 22 22 22
31 1 4 16 18 18 18
32 2 6 16 11 11 11
33 1 4 17 16 16 16
34 2 7 17 11 11 11
35 1 4 18 13 13 13
36 2 8 18 12 12 12
37 1 4 19 13 13 13
38 2 9 19 9 9 9
39 1 4 20 14 14 14
40 2 10 20 16 16 16
41 1 5 21 14 14 14
42 2 6 21 8 8 8
43 1 5 22 15 15 15
44 2 7 22 23 23 23
45 1 5 23 11 11 11
46 2 8 23 12 12 12
47 1 5 24 14 14 14
48 2 9 24 23 23 23
49 1 5 25 14 14 14
50 2 10 25 19 19 19
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Table A.4: Rectangular lattice Dataset from Cochran and Cox, 1987, p 418. Artificial data
(obs) for 12 treatments (t) laid out in a 3 x 4 rectangular lattice [3 replicates (rep) and 4 blocks
(bl)]. Three observations were randomly removed, noted as missing values (obs3m), and also
modified as representing outliers (obs3outl).

Obs rep bl t obs obs3m obs3outl

1 1 1 1 16 16 16
2 2 6 1 17 . 37
3 3 12 1 22 22 22
4 1 1 2 9 9 9
5 2 7 2 10 10 10
6 3 10 2 15 15 15
7 1 1 3 4 4 4
8 2 8 3 11 11 11
9 3 11 3 3 3 3

10 1 2 4 0 0 0
11 2 5 4 5 5 5
12 3 11 4 1 1 1
13 1 2 5 3 3 3
14 2 7 5 6 6 6
15 3 12 5 11 11 11
16 1 2 6 11 11 11
17 2 8 6 20 . 10
18 3 9 6 15 15 15
19 1 3 7 16 16 16
20 2 5 7 14 14 14
21 3 12 7 17 17 17
22 1 3 8 23 23 23
23 2 6 8 19 19 19
24 3 9 8 20 20 20
25 1 3 9 15 15 15
26 2 8 9 17 17 17
27 3 10 9 16 16 16
28 1 4 10 7 7 7
29 2 5 10 6 6 6
30 3 10 10 9 9 9
31 1 4 11 11 . 6
32 2 6 11 8 8 8
33 3 11 11 6 6 6
34 1 4 12 12 12 12
35 2 7 12 9 9 9
36 3 9 12 10 10 10
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A.2 Codes - SAS and R

Codes for generalized lattice model

************************** CODES IN SAS ************************************;

*** Code to resemble PlabStat (ANOVA) procedure for analysis
of generalized lattices ------------------------------------;

proc mixed data=dataset_name method=type1;

* method=type1 switch to ANOVA approach;
class rep block genotype;
model yield = rep genotype ;
random rep*block ;
run;

*** Code for REML-based analysis
of generalized lattices ------------------------------------;

proc mixed data=dataset_name method=reml; *nobound;

* method=reml is the default method in SAS. The user can also omit this option;

* nobound allows computation of negative variance components;
class rep block genotype;
model yield = rep genotype;
random rep*block ;
run;

############################# CODES IN R ################################

### Code to resemble REML procedure for analysis
### of generalized lattices

# Set working directory
Setwd("E:/Folder")
# Libraries
library(lme4)
library(lsmeans)
library(pbkrtest)

# Read file
dataset_name <- read.delim("E:/Folder/dataset_name.txt")

# Set as factors
dataset_name $rep=as.factor(dataset_name $rep)
dataset _name $block=as.factor(dataset_name $block)
dataset _name $gen=as.factor(dataset_name $gen)

# Analysis for original data
lmer.data=lmer(yield ˜ gen + rep + (1|rep:block), data= dataset_name )

################################## Using ASReml-R ########################
library(asreml)

attach(dataset_name)



156 APPENDIX A.

asreml.data = asreml(fixed= yield ˜ gen + rep, random=˜rep:block,
data=dataset_name,
na.method.Y="omit",
na.method.X="omit", maxiter=100,
workspace=1e9)

summary(asreml.data)
# Values are slightly different.
# We only use ASReml to produce the student residuals.

Codes for outlier methods

************************** CODES IN SAS ************************************;

*****************************************************************************;

**** Method 1: PlabStat - REML (PS-REML) ************************************;

*****************************************************************************;

*** Analysis of generalized lattice and generation of residuals *************;

*** M1r: PlabStat using incomplete blocks as random effects *****************;
proc mixed data=dataset_name method=reml ;
class rep block genotype;
model yield = rep genotype /s residual outp=file_with_residuals;

* file_with_residuals is the file containing residuals and

* error degrees of freedom;
random rep*block /s;
lsmeans genotype /diff;

* Produce pair-wise comparisons of treatment or genotype means;
ods output diffs= diffs;

* Save comparisons and standard errors in a file called diffs;
run;

*** M1f: PlabStat using incomplete blocks as fixed effects *****************;
proc mixed data=dataset_name method=reml ;
class rep block genotype;
model yield = rep genotype rep*block /s residual outp=file_with_residuals;
lsmeans genotype /diff;
ods output diffs= diffs;
run;

**********************;

*** Flag the outliers (procedure is the same for M1r and M1f);

** Produce a variable with the variance of each comparison;
data diffs;
set diffs;
vd = stderr**2;
run;

** Produce a file (mvd) containing the mean of the variance of the
differences between treatment or genotype means ;
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proc means data=diffs noprint;
VAR vd;
output out=mvd mean=mean;
run;

** Store the mean of the variance of the difference between treatment means
in a variable called mvd;

data _null_;
set mvd;
call symput(’mvd’,mean); /*call symput(’macro_variable’,value) */
run;

** Calculate the standard factor. Rep_num is the number of replicates
and is given manually;

data MSE_Eff;
MSE_Eff = sqrt( &mvd * Rep_num/2);
run;

** Store the standard factor in a variable called MSE_Eff;
data _null_;
set MSE_Eff;
call symput(’MSE_Eff’,MSE_Eff); /*call symput(’macro_variable’,value) */
run;

** Compute the MAD of the residuals and store it in a file named Mad;
proc univariate data=file_with_residuals noprint;
output out=Mad MAD=MAD n=n;
var resid;
run;

** Compute the re-scaled MAD in a variable called re_MAD;
data Mad;
set Mad;
re_MAD = MAD*1.4826;
run;

** Store the re-scaled MAD in a variable called s_rob;
data _null_;
set Mad;
call symput(’re_MAD’,re_MAD); /*call symput(’macro_variable’,value) */
call symput(’n’,n);
run;

/* PlabStat-Reml main procedure */
data PS_file;
set file_with_residuals;

MSE_Eff = &MSE_Eff;
res_PS = resid/MSE_Eff;

z = 1 - (DF*0.005/&n); /* z = dfe*premium/n_obs, premium = 0.005, DF=errorDF */
Gau_z = probit(z); /* inverse of the standard normal cdf of z */
K = 1.40 + 0.85*Gau_z;
C = K*(1 - ((K**2 - 2) / (4 * DF)))* sqrt(DF/&n);
if C < 1.5 then C = 1.5;

s_thresh = &re_MAD * C * 1.15;
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if MSE_Eff < s_thresh then res_tresh = s_thresh;
else res_tresh = MSE_Eff;

if abs(resid) > res_tresh then PS_out=1; else PS_out = 0;

* Outliers are the observations flagged with 1;
run;

*****************************************************************************;

**** Method 2: Bonferroni-Holm using studentized residual (BH-ST) ***********;

*****************************************************************************;

*** Analysis of generalized lattice and generation of residuals *************;

*** M2r: Bonferroni-Holm using studentized residuals and with
incomplete blocks as random effects;

proc mixed data=dataset_name method=reml;
class rep block genotype ;
model w3outl = rep genotype /s residual outp=file_with_residuals;
random rep*block/s;
run;

*** M2f: Bonferroni-Holm using studentized residuals and with
incomplete blocks as fixed effects;

proc mixed data=dataset_name method=reml;
class rep block genotype ;
model w3outl = rep genotype rep*block /s residual outp=file_with_residuals;
run;

*** Generate two variables: one with the absolute values of the studentized
residuals, the other with the corresponding p-value.
The name of this second variable must be
raw_p to let the multtest procedure recognize the p-values
-------------------------;

data file_with_residuals;
set file_with_residuals;
stud_res = abs(StudentResid);
raw_p = 2 * (1 - probnorm(stud_res));
run;

*** Sort by p-value;
proc sort data =file_with_residuals;
by raw_p ;
run;

*** Bonferroni-Holm test ;
proc multtest inpvalues=file_with_residuals holm out=bholm_file;
run;

*** Flag observations with significant test;
data bholm_file ;
set bholm_file ;
if stpbon_p < 0.05 then out_bon_res = 1; else out_bon_res = 0;

* Outliers are the observations flagged with 1;
run;

*****************************************************************************;
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**** Method 3: Studentized residual razor (SRR) *****************************;

*****************************************************************************;

*** Analysis of generalized lattice and generation of residuals *************;

*** M3r: Studentized residual razor with blocks as random effects;
proc mixed data=dataset_name method=reml;
class rep block genotype ;
model w3outl = rep genotype /s residual outp=file_with_residuals;
random rep*block/s;
run;

*** M3f: Studentized residual razor with blocks as fixed effects;
proc mixed data=dataset_name method=reml;
class rep block genotype ;
model w3outl = rep genotype rep*block /s residual outp=file_with_residuals;
run;

*** Generate a variable with the absolute values of the studentized residuals
and flag the observations with absolute value of studentized residual
greater than 2.8;

data srr_file;
set file_with_residuals;
stud_res = abs(StudentResid);
if stud_res > 2.8 then out_stud = 1; else out_stud = 0;

* Outliers are the observations flagged with 1;
run;

*****************************************************************************;

**** Method 4: Bonferroni-Holm using re-scaled MAD for standardizing *******;

*************************** residuals (BH-MADR) *****************************;

*****************************************************************************;

*** Analysis of generalized lattice and generation of residuals *************;

*** M4r: Bonferroni-Holm using re-scaled MAD and incomplete blocks as random;
proc mixed data=dataset_name method=reml;
class rep block genotype ;
model w3outl = rep genotype /s residual outp=file_with_residuals;
random rep*block/s;
run;

*** M4f: Bonferroni-Holm using re-scaled MAD and incomplete blocks as fixed;
proc mixed data=dataset_name method=reml;
class rep block genotype ;
model w3outl = rep genotype rep*block /s residual outp=file_with_residuals;
run;

** Compute the MAD of the residuals and store in a file called Mad;
proc univariate data=preds noprint;
output out=Mad MAD=MAD n=n;
var resid;
run;

** Compute the re-scaled MAD in a variable called re_MAD;
data Mad;
set Mad;
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re_MAD = MAD*1.4826;
run;

*** Store the re-scaled MAD in a variable called re_MAD;
data _null_;
set Mad;
call symput(’re_MAD’,re_MAD); /*call symput(’macro_variable’,value) */
call symput(’n’,n);
run;

*** Generate two variables: one with the absolute values of the residuals
standadized using the re-scaled MAD (re_MAD), the other with the
corresponding p-value. The name of this second variable must be
raw_p to let the multtest procedure recognize the values -------------;

data BHmad_file;
set file_with_residuals;
studMAD_res = abs(resid/&re_MAD);
raw_p = 2 * (1 - probnorm(studMAD_res));
run;

*** Sort by p-value;
proc sort data=BHmad_file;
by raw_p;
run;

*** Bonferroni-Holm test ;
proc multtest inpvalues=BHmad_file holm out=holm_BHmad_file noprint;
run;

*** Flag observations with significant test;
data holm_BHmad_file;
set holm_BHmad_file;
if stpbon_p < 0.05 then bhmad_res = 1; else bhmad_res = 0;

* Outliers are the observations flagged with 1;
if raw_p = . then bhmad_res = 0;

* This step needs to be added to avoid flagging missing
observations as outliers;

run;

*****************************************************************************;

**** Method 5: Bonferroni-Holm using studentized residuals by a *************;

**************** robust scale estimate (BH-STRO) ****************************;

*****************************************************************************;

*** Analysis of generalized lattice and generation of residuals *************;

*** M5r: Bonferroni-Holm using a robust scale estimate for
studentization of residuals and incomplete blocks as random;

proc mixed data=dataset_name method=reml;
class rep block genotype ;
model w3outl = rep genotype /s residual outp=file_with_residuals;
random rep*block/s;
ods output CovParms=cp_file;

* save variance components in a file called cp_file;
run;

*** M5f: Bonferroni-Holm using a robust scale estimate for
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studentization of residuals and incomplete blocks as fixed;
proc mixed data=dataset_name method=reml;
class rep block genotype ;
model w3outl = rep genotype rep*block /s residual outp=file_with_residuals;
ods output CovParms=cp_file;

* save error variance in a file called cp_file;
run;

*** Store the square root of the error mean square in a variable called sqrt_mse;
data _null_;
set cp_file;
if CovParm = ’Residual’;
s_estimate = sqrt(estimate);
call symput(’sqrt_mse’,sqrt_mse);
run;

** Compute the MAD of the residuals and store in a file called Mad;
proc univariate data=preds noprint;
output out=Mad MAD=MAD n=n;
var resid;
run;

** Compute the re-scaled MAD in a variable called re_MAD;
data Mad;
set Mad;
re_MAD = MAD*1.4826;
run;

*** Store the re-scaled MAD in a variable called s_rob;
data _null_;
set Mad;
call symput(’re_MAD’,re_MAD);
call symput(’n’,n);
run; *---------------------------------;

*** Generate two variables: one with the absolute values of the residuals
studentized using the re-scaled MAD (stud_rob_restest), the other with the
corresponding p-value. The name of this second variable must be
raw_p to let the multtest procedure recognize the values -------------;

data BHSTRO_file;
set file_with_residuals;
stud_rob_res = StudentResid * &sqrt_mse / &re_MAD;
stud_rob_restest = abs(stud_rob_res);
raw_p = 2 * (1 - probnorm(stud_rob_restest));
run;

*** Sort by p-value;
proc sort data =BHSTRO_file;
by raw_p ;
run;

*** Bonferroni-Holm test ;
proc multtest inpvalues=BHSTRO_file holm out=holm_BHSTRO_file ;
run;

*** Flag observations with significant test;
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data holm_BHSTRO_file;
set holm_BHSTRO_file;
if stpbon_p < 0.05 then out_stud_rob = 1; else out_stud_rob = 0;

* Outliers are the observations flagged with 1;
if raw_p = . then out_stud_rob = 0;

* This step needs to be added to avoid flagging missing
observations as outliers;

run;

############################# CODES IN R ################################

##########################################################################
### Basic model for methods using random incomplete blocks effects
# Analysis for original data

lmer.data=lmer(yield ˜ gen + rep + (1|rep:block), data= dataset_name )

##########################################################################
######## METHOD 1: PlabStat #############################################
##########################################################################

# Print predictions
pred=cbind(predict(lmer.data))
summary(lmer.data)

# m.v.d. and MSE_Eff
diffs=lsmeans(lmer.data ,pairwise ˜ gen, lsm.options(disable.pbkrtest=TRUE))
sum.diffs=summary(diffs)
vd=(cbind(sum.diffs[[2]][3]))**2
mvd=(mean(vd, na.omit=TRUE))*(length(unique(dataset_name$rep)))/2
#"(length(unique(dataset_name$rep)))" is the number of replicates
MSE_Eff=mvd**.5
# end

# Re-scaled MAD
resi=cbind(residuals(lmer.data,type = "response" ))
median=median(resi)
MAD=median((abs(resi - median)))
re_MAD=MAD*1.4826
# end

# Plabstat standardized residuals
res_PS = resi /MSE_Eff
# end

# get DF
aov=summary(aov(yield ˜ gen + rep + rep:block, data= dataset_name))
DF=aov[[1]]$Df[4]
n=length(resi)
# end

premium=0.005
z=1- (premium*DF)/n
N=qnorm(z)
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K=1.4+.85*N

C=K*(1-(K**2-2)/(4*DF))*(DF/n)**.5
C=ifelse(C<1.5,1.5,C)

#threshold
s_thresh = re_MAD*C*1.15

res_thresh=ifelse(MSE_Eff< s_thresh, res_thresh<- s_thresh,
res_thresh<-MSE_Eff)

absresi=cbind(abs(resi))

test=ifelse(absresi>res_thresh, "OUTLIER ", ".")

#Reduce file: Drop "NA’s" to get same length as resi and test
dataset_name.1= subset(dataset_name, dataset_name$yield!="NA")

all=cbind(dataset_name.1, resi, test)
# all contains the data-labels, the residuals and the "outlier" labels.

# Take a look at the outliers
outliers_PS <- all[which(all$test!="."),]
#all[which(all$test=="OUTLIER "),]
##########################################################################

##########################################################################
### METHOD 2: Bonferroni-Holm using studentized residuals (BH-ST) ########
##########################################################################
#### This method uses the ASReml-R package
#### For code using lme4, please contact the authors
library(asreml)

attach(dataset_name)
asreml.data = asreml(fixed = yield ˜ gen + rep, random = ˜ rep:block,

data=dataset_name,
na.method.Y="omit", na.method.X="omit", maxiter=100,
workspace=1e9)

summary(asreml.data)
# Warning: SE are slightly different than the ones computed with lmer

# Produce externally studentized residuals
studresid.data <- asreml.data$resid/sd(asreml.data$resid, na.rm=TRUE)

# Install package "multtest" from the bioconductor
source("http://bioconductor.org/biocLite.R")
biocLite("multtest")
library(multtest)

# Calculate adjusted p-values
rawp.BHStud = 2 * (1 - pnorm(abs(studresid.data)))

#Combine the dataset, the residuals and the adjusted p-values
rawp.BHStud.all <- cbind(dataset_name, studresid.data, rawp.BHStud)
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#Produce a Bonferroni-Holm tests for the adjusted p-values
#The output is a list
test.BHStud<-mt.rawp2adjp(rawp.BHStud,proc=c("Holm"))

#Create vectors/matrices out of the list of the BH tests
adjp = cbind(test.BHStud[[1]][,1])
bholm = cbind(test.BHStud[[1]][,2])
index = cbind(test.BHStud[[2]])

# Condition to flag outliers according to the BH test
out_flag = ifelse(bholm<0.05, "OUTLIER ", ".")

#Create a matrix with all the output of the BH test
BHStud_test = cbind(adjp,bholm,index,out_flag)

#Order the file by index
BHStud_test2 = BHStud_test[order(index),]

#Label colums
names = c("rawp","bholm","index","out_flag")
colnames(BHStud_test2) <- names

#Create a final file, with the data and the test and the labels
#for the outliers
total.m2_data <- cbind(rawp.BHStud.all, BHStud_test2)

# Take a look at the outliers
outliers_BH <- total.m2_data[which(total.m2_data$out_flag!="."),]
##########################################################################

##########################################################################
######## METHOD 3: Studentized residual razor (SRR) ######################
##########################################################################

#### This method uses the ASReml-R package
#### For code using lme4, please contact the authors
library(asreml)

attach(dataset_name)
asreml.data = asreml(fixed = yield ˜ gen + rep, random = ˜ rep:block,

data=dataset_name,
na.method.Y="omit", na.method.X="omit", maxiter=100,
workspace=1e9)

summary(asreml.data)
# Warning: SE are different than the ones computed with lmer

# Produce externally studentized residuals
studresid.data <- asreml.data$resid/sd(asreml.data$resid, na.rm=TRUE)

# number of outliers detected

# Rule for flagging residuals
test.SRR=ifelse(abs(studresid.data) > 2.8, "OUTLIER ", ".")

# File containing all the dataset info + student residuals + test output
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all.data.SRR=cbind dataset_name, studresid.data, test.SRR)

# Take a look at the outliers
outliers_SRR <- all.data[which(test.SRR=="OUTLIER "),]
##########################################################################

##########################################################################
### METHOD 4: Bonferroni-Holm using re-scaled MAD for ####################
################# standardizing residuals (BH-MADR) ######################
##########################################################################

## Basic model
# Analysis for original data
lmer.data=lmer(yield ˜ gen + rep + (1|rep:block), data=dataset_name)

# re-scaled MAD
resi=cbind(residuals(lmer.data, type = "response" ))
median=median(resi)
MAD=median((abs(resi - median)))
re_MAD=MAD*1.4826
# end

# MAD standardized residuals
res_MAD = resi /re_MAD
# end

# Install package "multtest" from the bioconductor
source("http://bioconductor.org/biocLite.R")
biocLite("multtest")
library(multtest)

# Calculate adjusted p-values
rawp = 2 * (1 - pnorm(abs(res_MAD)))

#Reduce the dataset in case of missing values.
#These are not carried over to the rawp matrix
dataset_name.1= subset(dataset_name, dataset_name$yield!="NA")
#Warning: Change variable that is under analysis, in this case yield

#Combine the dataset, the residuals and the adjusted p-values
rawp2 <- cbind(dataset_name.1, resi, res_MAD, rawp)

#Produce a Bonferroni-Holm tests for the adjusted p-values
#The output is a list
res2<-mt.rawp2adjp(rawp,proc=c("Holm"))

#Create vectors/matrices out of the list of the BH tests
adjp = cbind(res2[[1]][,1])
bholm = cbind(res2[[1]][,2])
index = cbind(res2[[2]])

# Condition to flag outliers according to the BH test
out_flag = ifelse(bholm<0.05, "OUTLIER ", ".")
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#Create a matrix with all the output of the BH test
bholm_test = cbind(adjp,bholm,index,out_flag)

#Order the file by index
bholm_test2 = bholm_test[order(index),]

#Label colums
names = c("rawp","bholm","index","out_flag")
colnames(bholm_test2) <- names

#Create a final file, with the data and the test and the labels for the outliers
total.m4_data <- cbind(rawp2,bholm_test2)

# Take a look at the outliers
outliers_BHMAD <- total.m4_data[which(total.m4_data$out_flag!="."),]
##########################################################################

A.3 Additional information - Online resource 3

A.3.1 Comparison of methods: Premium vs. αB vs. tSRR

The PlabStat threshold includes the robust standard deviation estimate sr. Raw residuals can be stan-
dardized by this robust estimate, so that the threshold can be re-expressed as only CP , with C and P two
constants defined in Materials and Methods Section (See Method M1). The same standardized residuals
can be used for the classical Bonferroni test.

To obtain the α/n of the classical Bonferroni test that corresponds to a given premium, we may
equate the threshold CP , corresponding to the PlabStat premium, to the (1 − αB/2)-quantile of the
standard normal distribution, corresponding to the positive bound of the Bonferroni threshold of a two-
sided test, where αB = α/n is the significance level for an individual test:

Φ−1
(

1− α

2n

)
= CP or Φ−1

( α
2n

)
= −CP (A.1)

where Φ−1 stands for the inverted cumulative distribution of the standard normal.

Let

αB =
α

n
,

then we solve for αB the equation

Φ−1
(

1− αB
2

)
= CP,
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where C is a function of the premium.

By Eq. (2.5) we have

Φ−1
(

1− αB
2

)
=

[
K

{
1− K2 − 2

4dfe

}√
dfe
n

]
P

By Eq. (2.6)

Φ−1
(

1− αB
2

)
=

[
(1.4 + 0.85N)

{
1− (1.4 + 0.85N)2 − 2

4dfe

}√
dfe
n

]
P

where, by Eq. (2.7)

Φ(−N) =
premium ∗ dfe

n

Φ−1 [Φ(−N)] = Φ−1
[
premium ∗ dfe

n

]
N = −Φ−1

[
premium ∗ dfe

n

]
.

Then, from

Φ−1
(

1− αB
2

)
={1.4− 0.85 · Φ−1
(
premium ∗ dfe

n

)}1−

[
1.4− 0.85 · Φ−1

(
premium ∗ dfe

n

)]2
− 2

4dfe


√

dfe
n

P
(A.2)

it is possible to see the complexity of the relationship between αB and premium.

If n is large and dfe close to n, then dfe/n ∼ 1 and the expression above simplifies to

Φ−1
(

1− αB
2

)
=

[{
1.4− 0.85 · Φ−1 (premium)

}{
1−

[
1.4− 0.85 · Φ−1 (premium)

]2 − 2

4dfe

}]
P

Further, if dfe is large ∼ ∞, then
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Φ−1
(

1− αB
2

)
=
[
1.4− 0.85 · Φ−1 (premium)

]
P

Φ
[
Φ−1

(
1− αB

2

)]
= Φ

{[
1.4− 0.85 · Φ−1 (premium)

]
P
}

1− αB
2

= Φ
{[

1.4− 0.85 · Φ−1 (premium)
]
P
}

αB = 2
(
1− Φ

{[
1.4− 0.85 · Φ−1 (premium)

]
P
})

(A.3)

and thus a small premium lead to very small αB , though somewhat higher than a fixed αB = 0.05/n,
with n large (Fig. A.1a).

The fundamental outcome of this comparison (premium vs. αB) is that the PlabStat method, at a
fixed premium of 0.005, may flag more outlying observations than the classical Bonferroni test with
αB = 0.05/n. As an example, let a trial have n = 100 and dfe = 60, keeping premium fixed at 0.005,
we would need αB ∼= 0.00157, that is, an α ∼= 0.157, to get the same thresholds (using equation Eq.
A.2). For trials with large n (as is the case of the rye example), using premium = 0.005 flags more
outliers than the classical Bonferroni test with α = 0.05. This effect is clear because more observations
can fall within the area between the two thresholds, increasing the number of flagged outliers for PlabStat
procedure. A big difference is not anticipated in case of small trials, where fewer outliers are expected
(otherwise it would be better to resort to transformations or a different type of analysis), and when
residuals clearly stand out from the main data cloud, having low p-values that are prone to fall in the
rejection area of both methods (Figs. 1, S2, S3 and S4).

We can identify the αB that corresponds to the SRR threshold tSRR from:

Φ−1
(

1− αB
2

)
= tSRR ⇔ αB = 2[1− Φ(tSRR)]

and plot the SRR threshold varying across the premium grid (Fig. A.1b).

Under simplification in Fig. A.1, with df e/n ∼ 1 and df e ∼ ∞, if premium= 0.005 (as in PlabStat),
αB is very low and tSRR is very high. An exemplary SRR threshold, say tSRR = 2.8, would be reachead
by using a premium of 0.112. What we grasp from Fig. A.1b is that the classical Bonferroni threshold in
comparison to SRR would flag a lot less outliers and as long as the premium increases, the corresponding
SRR threshold reduces. Thus, for a premium = 0.005 a high SRR threshold is needed to select the
same outliers. In practice, however, this behaviour of SRR flagging more outliers than PlabStat is not
observed. What we see is that PlabStat with premium = 0.005 declares more (or the same) outliers than
SRR (which may be false positives), but this response cannot be depicted as it is in Fig. A.1 since we are
using a simplification and we are not considering strictly the difference attributed to the standardization
of the residuals.
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(a) (b)

Figure A.1: Correspondence of (a) αB = α
n values of the classical Bonferroni test and (b) threshold

values tSRR of the Studentized residual razor (SRR) for a grid of premiums of the PlabStat procedure
assuming dfe/n ∼ 1 and dfe ∼ ∞. The solid blue line represents the PlabStat threshold varying
according to the premium, the dashed red line represents the classical Bonferroni threshold at (a) αB =
0.05
n with n large, and (b) Φ−1

(
1− αB

2

)
, and the dotted green line shows the Studentized residual razor

(SRR) threshold tSRR varying according to the premium.

A.3.2 Threshold and re-scaled MAD comparison

Table A.5: Comparison of re-scaled MAD (sr) and thresholds computed in the datasets with missing
observations using PlabStat (PS), SAS-REML (REML) and SAS-ANOVA (ANOVA). Threshold is
srCP , where sr is the re-scaled MAD, C is a constant depending on degrees of freedom of the error dfe
and total number of observations n, and P = 1.15.

Threshold sr

Example # outliers PS REML ANOVA PS REML ANOVA

1.2 5 0.161 0.155 0.154 0.395 0.379 0.376
2.2 2 1.193 1.192 1.184 0.378 0.381 0.381
3.2 0 3.243 3.503 3.515 1.681 1.593 1.608
4.2 0 0.016 0.000 –§ 0.000 0.000 –§

§ Not computed
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A.3.3 Residual plots for the methods and the examples

Figure A.2: Scatter plots of raw residuals vs. predictions for the triple lattice design with 3 outlying
observations (Example 2.3) using PlabStat outlier detection method (M1), Bonferroni-Holm test using
studentized residuals (M2), Studentized residual razor (M3), Bonferroni-Holm test using re-scaled MAD
to standardize residuals (M4), and Bonferroni-Holm test using the robust studentized residuals (M5). In
the first row, methods that used fixed incomplete block effects and in the second row methods that used
random incomplete block effects. Solid reference lines are used for methods with fixed thresholds and
dashed reference lines for methods with varying thresholds representing the threshold calculated for the
largest residual. Flagged outliers are indicated with an empty circle and non-suspicious observations
with a cross.
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Figure A.3: Scatter plots of raw residuals vs. predictions for the square lattice design with 3 outlying
observations (Example 3.3) using PlabStat outlier detection method (M1), Bonferroni-Holm test using
studentized residuals (M2), Studentized residual razor (M3), Bonferroni-Holm test using re-scaled MAD
to standardize residuals (M4), and Bonferroni-Holm test using the robust studentized residuals (M5). In
the first row, methods that used fixed incomplete block effects and in the second row methods that used
random incomplete block effects. Solid reference lines are used for methods with fixed thresholds and
dashed reference lines for methods with varying thresholds representing the threshold calculated for the
largest residual. Flagged outliers are indicated with an empty circle and non-suspicious observations
with a cross.
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Figure A.4: Scatter plots of raw residuals vs. predictions for the rectangular lattice design with 3
outlying observations (Example 4.3) using PlabStat outlier detection method (M1), Bonferroni-Holm
test using studentized residuals (M2), Studentized residual razor (M3), Bonferroni-Holm test using
re-scaled MAD to standardize residuals (M4), and Bonferroni-Holm test using the robust studentized
residuals (M5). In the first row, methods that used fixed incomplete block effects and in the second
row methods that used random incomplete block effects. Solid reference lines are used for methods
with fixed thresholds and dashed reference lines for methods with varying thresholds representing the
threshold calculated for the largest residual. Flagged outliers are indicated with an empty circle and
non-suspicious observations with a cross.
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A.4 ROC curves (additionals)

Figure A.5: ROC curves of all methods using fixed (first column) and random (second column)
incomplete block effects under a scenario with 5% contamination and 7 deviation units from the mean
(Scenario 2). Methods used were PlabStat (M1) outlier detection method, Bonferroni-Holm test using
studentized residuals (M2), Studentized residual razor (M3), Bonferroni-Holm test using re-scaled MAD
to standardize residuals (M4) and Bonferroni-Holm test using robust studentized residuals (M5).
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Figure A.6: ROC curves of all methods using fixed (first column) and random (second column)
incomplete block effects under a scenario with 2% contamination and 4 deviation units from the mean
(Scenario 1). Methods used were PlabStat (M1) outlier detection method, Bonferroni-Holm test using
studentized residuals (M2), Studentized residual razor (M3), Bonferroni-Holm test using re-scaled MAD
to standardize residuals (M4) and Bonferroni-Holm test using robust studentized residuals (M5).
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Table A.6: Area under the curve (AUC) for low (Scenario 1), medium (Scenario 2) and high (Scenario
3) contamination scenarios for the methods: PlabStat (M1f and M1r) with fixed and random block
effects, Bonferroni-Holm using studentized residuals (M2f and M2r) with fixed and random block
effects, studentized residual razor (M3f and M3r) with fixed and random block effects, Bonferroni-Holm
using re-scaled MAD (M4f and M4r) with fixed and random block effects, and Bonferroni-Holm using
robust studentized residuals (M5f and M5r) with fixed and random block effects.

Method Scenario 1 Scenario 2 Scenario 3

M1f 0.9721 0.9798 0.9524

M1r 0.9716 0.9794 0.9543

M2f 0.9513 0.9632 0.9385

M2r 0.9565 0.9627 0.9308

M3f 0.9528 0.9608 0.9413

M3r 0.9606 0.9616 0.9369

M4f 0.9592 0.9657 0.9356

M4r 0.9597 0.9707 0.9493

M5f 0.9595 0.9704 0.9429

M5r 0.9615 0.9573 0.9285
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A.4.1 TPR and FPR with fixed rates

Figure A.7: Expected true positive rate (TPR) fixing FPR=5% of five outlier detection methods across
low (Scenario 1), medium (Scenario 2) and high (Scenario 3) contamination scenarios of simulated
outliers using a triple lattice experiment and assuming incomplete blocks as random and fixed for
methods: PlabStat (M1) outlier detection method, Bonferroni-Holm test using studentized residuals
(M2), Studentized residual razor (M3), Bonferroni-Holm test using re-scaled MAD to standardize
residuals (M4) and Bonferroni-Holm test using robust studentized residuals (M5).
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Figure A.8: Expected false positive rate (FPR) fixing TPR=95% of five outlier detection methods
across low (Scenario 1), medium (Scenario 2) and high (Scenario 3) contamination scenarios of simulated
outliers using a triple lattice experiment and assuming incomplete blocks as random and fixed for method:
: PlabStat (M1) outlier detection method, Bonferroni-Holm test using studentized residuals (M2),
Studentized residual razor (M3), Bonferroni-Holm test using re-scaled MAD to standardize residuals
(M4) and Bonferroni-Holm test using robust studentized residuals (M5).
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A.5 Heatmap of an exemplary rye trial

Figure A.9: Heatmap of grain dry matter yield (dt/ha) of a rye trial affected by a herbicide drift.
Abscissas represent the rows and ordinates the columns on the field layout.
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Supplementary material of Chapter 3

B.1 SAS codes (version 9.3) used to implement first stage of phenotypic
analysis referred in Table 3.4

/**********************************************************************
*********************** Appendix A*************************************
********** Some SAS code to fit the models of the first stage *********
*************************referred in Table 4***************************
***********************************************************************/

**** Model 1. Baseline model -------------------------------;

proc mixed data=data1 ;
ods output FitStatistics=fits_M1 lsmeans= adjmeans_M1 covparms=cp_M1;
by year loc;
class year loc genotype tester trial rep block row column ;
model y1=genotype*tester/ddfm=residual solution ;
random int rep rep*block / sub=trial;
lsmeans genotype*tester /cov;
run;

**** Model 2. Baseline + row + column -----------;

proc mixed data=data1;
ods output FitStatistics=fits_M2 lsmeans= adjmeans_M2 covparms=cp_M2;
by year loc;
class year loc genotype tester trial rep block row column ;
model y1=genotype*tester/ddfm=residual solution ;
random int rep rep*block / sub=trial;
random row / sub=trial*rep;
random column /sub=trial*rep;
lsmeans genotype*tester /cov;
run;

**** Model 3. Baseline --------- AR(1) ;

proc mixed data=data1;
ods output FitStatistics=fits_M3 lsmeans= adjmeans_M3 covparms=cp_M3;
by year loc;

179
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class year loc genotype tester trial rep block row column plot ;
model y1=genotype*tester/ddfm=residual solution ;
random int rep rep*block / sub=trial;
repeated plot / sub=trial*rep*block type=AR(1);
lsmeans genotype*tester /cov;
parms 1 1 1 0.1 1 / lowerb= . , . , . , 1e-8 , . ;
run;

*** Model 4. Baseline --------- LV + nugget ;

proc mixed data=data1;
ods output FitStatistics=fits_M4 lsmeans= adjmeans_M4 covparms=cp_M4;
by year loc;
class year loc genotype tester trial rep block row column plot ;
model y1=genotype*tester/ddfm=residual solution ;
random int rep rep*block / sub=trial;
random plot / sub=trial*rep*block type=LIN(1) ldata=LV_matrix;
lsmeans genotype*tester /cov;
parms 1 1 1 0.1 1 / lowerb=. , . , . , 1e-8, . ;
run;

*** Model 5. Baseline --------- AR(1) x AR(1);

proc mixed data=data1;
ods output FitStatistics=fits_M5 lsmeans= adjmeans_M5 covparms=cp_M5;
by year loc;
class year loc genotype tester trial rep block row column plot ;
model y1=genotype*tester/ddfm=residual solution ;
random int rep rep*block / sub=trial;
repeated row*column / sub=trial*rep type=SP(POWA) (ro co);
lsmeans genotype*tester /cov;
parms 1 1 1 0.1 0.1 1 / lowerb= . , . , . , 1e-8 , 1e-8 , . ;
run;

*** Model 6. Baseline + row + column --------- AR(1) x AR(1);

proc mixed data=data1;
ods output FitStatistics=fits_M6 lsmeans= adjmeans_M6 covparms=cp_M6;
by year loc;
class year loc genotype tester trial rep block row column plot ;
model y1=genotype*tester/ddfm=residual solution ;
random int rep rep*block / sub=trial;
random row / sub=trial*rep;
random column/ sub=trial*rep;
repeated row*column / sub=trial*rep type=SP(POWA) (ro co);

* ro and co are numerical variables with row and column coordinates;
lsmeans genotype*tester /cov;
parms 1 1 1 1 1 0.1 0.1 1 / lowerb= . , . , . , . , . , 1e-8 , 1e-8 , . ;
run;

*** Model 7. Baseline --------- AR(1) + nugget ;

proc mixed data=data1;
ods output FitStatistics=fits_M7 lsmeans= adjmeans_M7 covparms=cp_M7;
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by year loc;
class year loc genotype tester trial rep block row column plot ;
model y1=genotype*tester/ddfm=residual solution ;
random int rep rep*block / sub=trial;
repeated plot / sub=trial*rep*block local type=AR(1);
lsmeans genotype*tester /cov;
parms (0 1) (1) (1) (1) (0.1) (1) / lowerb= . , . , . , . , 1e-8 , . ;
run;

*** Model 8. Baseline --------- AR(1) x AR(1) + nugget;

proc mixed data=data1;
ods output FitStatistics=fits_M8 lsmeans= adjmeans_M8 covparms=cp_M8;
by year loc;
class year loc genotype tester trial rep block row column plot ;
model y1=genotype*tester/ddfm=residual solution ;
random int rep rep*block / sub=trial;
random row / sub=trial*rep;
repeated row*column / sub=trial*rep local type=SP(POWA) (ro co);

* ro and co are numerical variables with row and column coordinates;
lsmeans genotype*tester /cov;
parms 1 1 1 1 0.1 0.1 1 / lowerb= . , . , . , . , 1e-8 , 1e-8 , . ;
run;

*** Model 9. Baseline + row + column --------- AR(1) x AR(1) + nugget;

proc mixed data=data1;
ods output FitStatistics=fits_M8 lsmeans= adjmeans_M8 covparms=cp_M8;
by year loc;
class year loc genotype tester trial rep block row column plot ;
model y1=genotype*tester/ddfm=residual solution ;
random int rep rep*block / sub=trial;
random row / sub=trial*rep;
random column/ sub=trial*rep;
repeated row*column / sub=trial*rep local type=SP(POWA) (ro co);

* ro and co are numerical variables with row and column coordinates;
lsmeans genotype*tester /cov;
parms 1 1 1 1 1 1 0.1 0.1 1 / lowerb= .,.,.,.,.,1e-8,1e-8,.;*hold=6,7;
run;

B.2 Analysis of bias of genomic prediction

One reviewer pointed out that genomic prediction is biased and suggested to investigate the potential bias
by regressing observations on the predictions from the same cross validation procedure. Other authors
(Le Roy et al., 2012; Wang et al., 2012) have used the method to compare genomic prediction models that
make use of different penalization tools, such as RR-BLUP, Bayes, Lasso or any other machine learning
method. Although we use here only RR-BLUP, we computed the bias of each error spatial model.

Results Below the results for bias of the models and the mixed datasets for both sampling strategies
(WC and AC).
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Table B.1: Bias (regression coefficient between observations and predictions) for 9 spatial and non-
spatial models (M1, · · · , M9) and mixed datasets using the best locations given AIC (Mix1) and ρ-GP-
CV (Mix2). Comparisons were performed using the absolute deviation of the regression coefficient from
one. Same letters within rows indicate no significant differences (α = 5%) according to a paired t-test.
Sampling strategies were: Within crosses (WC) and across crosses (AC).

M1 M2 M3 M4 M5 M6 M7 M8 M9 Mix1 Mix2

WC 0.958 0.959 0.944 0.916 0.94 0.939 0.947 0.95 0.933 0.933 1.138
ab a ab c abc abc ab ab bc bc d

AC 0.553 0.556 0.546 0.545 0.551 0.549 0.544 0.553 0.548 0.546 0.539
ab a def ef bc cd f bc de def g

For both strategies, it turned out that the less biased model was M2, confirming the conclusions
throughout the paper that the model with the simplest row-column adjustment had in overall the best
results.
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Supplementary material of Chapter 4

C.1 Complete selection breeding program
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Figure C.1: Flow diagram of a complete selection cycle of the pollen parent pool. Sx = selfing
generation x, SP = single plant, L = line, T = tester, GCAX = general combining ability X trial, MGI =
minimum generation interval, DT = datasets used.
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C.2 Diagrams of prediction scenarios

TS1

GCA1-2009 controlTS1

GCA2-2010

GCA3-2011

GCA1-2012

GCA1-2013

GCA1-2014

VS3VS2VS1

Figure C.2: Diagram of the first scenario. TS1 with dotted background and control set (controlTS1)
filled in gray. Arrows represent the prediction goals VS1, VS2 and VS3.

TS2

GCA1-2009 controlTS2

GCA2-2010 GCA1-2010

GCA2-2011

GCA1-2012

GCA1-2013

GCA1-2014

VS3
VS2VS1

Figure C.3: Diagram of the second scenario. TS2 with dotted background and control set
(controlTS2) filled in gray. Arrows represent the prediction goals VS1, VS2 and VS3.
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TS3

GCA1-2009 controlTS3

GCA2-2010

GCA3-2011

GCA1-2010

GCA2-2011

GCA3-2012

GCA1-2011

GCA2-2012

GCA3-2013

GCA1-2012

GCA1-2013

GCA1-2014

VS3
VS2VS1

Figure C.4: Diagram of the third scenario. TS3 with dotted background and control set (controlTS3)
filled in gray. Arrows represent the prediction goals VS1, VS2 and VS3.

C.3 Number of locations and Location-year combinations
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Table C.1: Number of locations (L) and year-location combinations (Y L) for the German (GER) and
the Polish (PL) datasets. Last column shows the ratio between Y L and L.

Program TS VS L Y L Y L/L

GER TS1 VS1 25 28 1.1
GER TS1 VS2 24 31 1.3
GER TS1 VS3 23 32 1.4
PL TS1 VS1 23 23 1.0
PL TS1 VS2 23 25 1.1
PL TS1 VS3 22 26 1.2
GER TS2 VS1 22 31 1.4
GER TS2 VS2 21 29 1.4
GER TS2 VS3 20 30 1.5
PL TS2 VS1 21 25 1.2
PL TS2 VS2 20 23 1.2
PL TS2 VS3 19 24 1.3
GER TS3 VS1 30 55 1.8
GER TS3 VS2 29 56 1.9
GER TS3 VS3 29 65 2.2
PL TS3 VS1 29 49 1.7
PL TS3 VS2 28 50 1.8
PL TS3 VS3 28 59 2.1

TS1: GCA1-2009 + GCA2-2010 + GCA3-2011, TS2: GCA1-2009 + GCA2-2010 + GCA1-2010 + GCA2-2011, TS3: GCA1-2009 + GCA2-2010 + GCA3-2011 + GCA1-2010 +

GCA2-2011 + GCA3-2012 + GCA1-2011 + GCA2-2012 + GCA3-2013, VS1: GCA1-2012, VS2: GCA1-2013, VS3: GCA1-2014.
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C.4 Asymptotic correlation and variance-covariance matrices

Table C.2: Asymptotic correlation (lower diagonal) and covariance (upper diagonal) matrix for TS1-
VS3 German and Polish (GER&PL) dataset. TS1: GCA1-2009 + GCA2-2010 + GCA3-2011, VS3:
GCA1-2014. The factors are genotypes (G), testers (T ), years (Y ) and locations (L).

G GY Y L GL TL GTL GT TY GTY YL GYL TYL GTYL

G 1 -0.4388 0.0102 0.0048 -0.0258 0 0.0016 -0.03 0 0.0279 -0.0008 0.0241 -0.0003 -0.0024
GY -0.8747 1 -0.0101 -0.0069 0.0247 0 -0.002 0.027 0 -0.0314 0.0023 -0.0291 0.0005 0.0049
Y 0.4842 -0.4283 1 -103.93 0.0367 0 -0.0074 0.0442 0 -0.0447 -73.5891 -0.0388 0.0507 0.0079
L 0.0001 -0.0001 -0.0219 1 -0.0241 0 -0.0002 -0.0025 0 0.0025 -682.792 0.0226 -1.7145 0.0013
GL -0.0553 0.0596 0.0009 -0.0005 1 0 -0.163 0.0094 0 -0.0093 -0.015 -0.3634 -0.0003 0.1556
TL - - - - - 1 0 0 0 0 0 0 0 0
GTL 0.0022 -0.0032 -0.0001 0 -0.2809 - 1 -0.064 0 0.0629 0.0004 0.1544 0.0014 -0.8584
GT -0.1106 0.112 0.0019 -0.0001 0.7852 - -0.1898 1 0 -0.1247 -0.0056 -0.0095 0.0016 0.0629
TY - - - - - - - - 1 0 0 0 0 0
GTY 0.1022 -0.129 -0.0019 0.0001 -0.0413 - 0.1849 -0.9491 0 1 0.006 0.012 -0.0016 -0.0682
YL -3E-05 0.0001 -0.0326 -0.2556 -0.0007 - 1.2E-05 -0.0004 0 0.0005 1 0.0135 -10.6168 -0.0001
GYL 0.0505 -0.0686 -0.001 0.0005 -0.9229 - 0.2601 -0.0414 0 0.0519 0.0006 1 0.0008 -0.1798
TYL -0.0001 0.0002 0.0002 -0.0058 -0.0001 - 0.0004 0.0012 0 -0.0011 -0.0759 0.0003 1 -0.0021
GTYL -0.0033 0.0078 0.0001 1.8E-05 0.2665 - -0.9758 0.1851 0 -0.1991 0 -0.3010 -0.0006 1

Table C.3: Asymptotic correlation (lower diagonal) and covariance (upper diagonal) matrix for TS1-
VS2 German and Polish (GER&PL) dataset. TS1: GCA1-2009 + GCA2-2010 + GCA3-2011, VS2:
GCA1-2013. The factors are genotypes (G), testers (T ), years (Y ) and locations (L).

G GY Y L GL TL GTL GT TY GTY YL GYL TYL GTYL

G 1 -0.2593 0.0102 -0.0003 -0.0131 0 0.0045 -0.0564 0 0.0509 0.0033 0.0125 -0.0008 -0.0043
GY -0.9082 1 -0.0097 -0.0005 0.0131 0 -0.0042 0.0499 0 -0.0546 -0.0039 -0.0167 0.0009 0.0066
Y 0.3735 -0.3420 1 -200.189 0.0207 0 -0.0004 0.0607 0 -0.0639 -71.0256 -0.023 0.0358 0.0018
L 0.0000 0.0000 -0.0454 1 -0.0231 0 -0.0026 0.0027 0 -0.0021 -1206.04 0.0211 0.0789 0.0038
GL -0.051 0.0531 0.0007 -0.0007 1 0 -0.1314 0.0081 0 -0.0084 -0.0095 -0.2118 -0.0003 0.1268
TL - - - - - 1 0 0 0 0 0 0 0 0
GTL 0.0095 -0.0092 0.0000 0.0000 -0.3215 - 1 -0.0539 0 0.0529 0.0016 0.128 0.0012 -0.7415
GT -0.238 0.2191 0.0021 0.0001 0.6708 - -0.1431 1 0 -0.1772 -0.0112 -0.0095 0.0028 0.0536
TY - - - - - - - - 1 0 0 0 0 0
GTY 0.2171 -0.2420 -0.0022 -0.0001 -0.0415 - 0.1419 -0.9470 - 1 0.0112 0.0107 -0.0027 -0.0578
YL 0.0001 -0.0002 -0.0217 -0.3748 -0.0004 - 3.8E-05 -0.0005 - 0.0005 1 0.0094 -14.4578 -0.0015
GYL 0.0459 -0.0638 -0.0007 0.0006 -0.8986 - 0.2956 -0.0436 - 0.0497 0.0004 1 0.0008 -0.1544
TYL -0.0003 0.0004 0.0001 0.0003 -0.0001 - 0.0003 0.0014 - -0.0014 -0.0664 0.0003 1 -0.0019
GTYL -0.009 0.0144 0.0000 0.0001 0.3059 - -0.9736 0.1403 - -0.1527 0.0000 -0.3515 -0.0005 1
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Table C.4: Asymptotic correlation (lower diagonal) and covariance (upper diagonal) matrix for TS1-
VS1:GCA1-2012 German and Polish (GER&PL) dataset. TS1: GCA1-2009 + GCA2-2010 + GCA3-
2011, VS1: GCA1-2012. The factors are genotypes (G), testers (T ), years (Y ) and locations (L).

G GY Y L GL TL GTL GT TY GTY Y L GY L TY L GTY L

G 1 0 0 0 0 0 0 0 0 0 0 0 0 0
GY - 1 -0.0042 0.0062 0 -0.0006 0.0035 -0.0008 0 -0.0074 -0.0003 -0.0076 0.0004 0
Y - -0.0002 1 -71.8508 0 11.8454 0.0008 0.1002 0 -0.0979 -40.1089 -0.0006 -11.9180 0
L - 0.0003 -0.0224 1 0 4.5978 -0.0015 -0.0023 0 0.0026 -357.1928 -0.0009 -5.6630 0
GL - - - - 1 0 0 0 0 0 0 0 0 0
TL - -0.0001 0.0158 0.0055 - 1 -0.0028 -0.0194 0 0.0202 -23.6140 0.0018 -182.2474 0
GTL - 0.0546 0.0001 -0.0001 - -0.0010 1 -0.0027 0 -0.0044 0.0023 -0.0240 0.0005 0
GT - -0.0063 0.0049 -0.0001 - -0.0036 -0.0371 1 0 -0.1423 -0.0021 0.0016 0.0207 0
TY - - - - - - - - 1 0 0 0 0 0
GTY - -0.0557 -0.0046 0.0001 - 0.0037 -0.0571 -0.9440 - 1 0.0018 0.0015 -0.0210 0
Y L - 0.0000 -0.0268 -0.2138 - -0.0605 0.0004 -0.0002 - 0.0002 1 -0.0027 12.0806 0
GY L - -0.1057 -0.0001 -0.0001 - 0.0006 -0.5756 0.0196 - 0.0173 -0.0004 1 -0.0003 0
TY L - 0.0001 -0.0163 -0.0069 - -0.9551 0.0002 0.0040 - -0.0039 0.0317 -0.0001 1 0
GTY L - - - - - - - - - - - - - 1

Table C.5: Asymptotic correlation (lower diagonal) and covariance (upper diagonal) matrix for TS2-
VS3:GCA1-2014 German and Polish (GER&PL) dataset. TS2: GCA1-2009 + GCA2-2010 + GCA1-
2010 + GCA2-2011, VS3: GCA1-2014. The factors are genotypes (G), testers (T ), years (Y ) and
locations (L).

G GY Y L GL TL GTL GT TY GTY Y L GY L TY L GTY L

G 1 -0.1791 0.0089 -0.0124 -0.0373 0 0.0115 -0.0365 0 0.0336 0.0102 0.0373 -0.0081 -0.0125
GY -0.8111 1 -0.0090 0.0086 0.0373 0 -0.0119 0.0338 0 -0.0369 -0.0069 -0.0420 0.0069 0.0154
Y 0.2371 -0.1994 1 12.2686 0.0398 0 -0.0149 0.0045 0 -0.0064 -74.2372 -0.0397 -0.3763 0.0140
L -0.0003 0.0003 0.0032 1 -0.0291 0 -0.0058 0.0031 0 -0.0025 -458.0833 0.0284 -0.3409 0.0062
GL -0.0915 0.1094 0.0010 -0.0005 1 0 -0.3417 0.0147 0 -0.0142 0.0090 -0.6169 -0.0015 0.3356
TL - - - - - 1 0 0 0 0 0 0 0 0
GTL 0.0275 -0.0342 -0.0004 -0.0001 -0.5319 - 1 -0.0385 0 0.0378 -0.0097 0.3364 0.0023 -0.6483
GT -0.2562 0.2843 0.0003 0.0002 1.1782 - -0.1716 1 0 -0.0710 -0.0042 -0.0143 0.0001 0.0373
TY - - - - - - - - 1 0 0 0 0 0
GTY 0.2345 -0.3084 -0.0004 -0.0001 -0.0644 - 0.1676 -0.9205 - 1 0.0044 0.0170 -0.0002 -0.0433
Y L 0.0006 -0.0005 -0.0471 -0.2043 0.0004 - -3.9E-04 -0.0005 - 0.0005 1 -0.0095 -3.1882 0.0095
GY L 0.0900 -0.1214 -0.0010 0.0005 -0.9657 - 0.5157 -0.0641 - 0.0758 -0.0004 1 0.0013 -0.3594
TY L -0.0075 0.0076 -0.0035 -0.0022 -0.0009 - 0.0013 0.0002 - -0.0003 -0.0496 0.0008 1 -0.0021
GTY L -0.0294 0.0436 0.0003 0.0001 0.5128 - -0.9701 0.1633 - -0.1884 0.0004 -0.5409 -0.0012 1
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Table C.6: Asymptotic correlation (lower diagonal) and covariance (upper diagonal) matrix for TS2-
VS2:GCA1-2013 German and Polish (GER&PL) dataset. TS2: GCA1-2009 + GCA2-2010 + GCA1-
2010 + GCA2-2011, VS2: GCA1-2013. The factors are genotypes (G), testers (T ), years (Y ) and
locations (L).

Y G GY L GL TL GTL GT TY GTY Y L GY L TY L GTY L

G 1 -0.1341 0.0084 -0.0123 -0.0243 0 0.0106 -0.0475 0 0.0425 0.0110 0.0240 -0.0060 -0.0106
GY -0.8469 1 -0.0080 0.0097 0.0245 0 -0.0107 0.0429 0 -0.0460 -0.0093 -0.0281 0.0052 0.0137
Y 0.1754 -0.1511 1 3.5213 0.0199 0 -0.0064 0.0044 0 -0.0078 -120.6435 -0.0203 -0.3188 0.0063
L -0.0005 0.0004 0.0011 1 -0.0195 0 -0.0107 0.0045 0 -0.0036 -837.9200 0.0187 0.0361 0.0112
GL -0.0913 0.1020 0.0006 -0.0005 1 0 -0.2598 0.0117 0 -0.0115 0.0059 -0.3946 -0.0008 0.2552
TL - - - - - 1 0 0 0 0 0 0 0 0
GTL 0.0345 -0.0388 -0.0002 -0.0002 -0.5584 - 1 -0.0325 0 0.0320 -0.0063 0.2563 0.0018 -0.5317
GT -0.3540 0.3555 0.0003 0.0002 0.9334 - -0.1385 1 0 -0.0933 -0.0064 -0.0117 0.0004 0.0316
TY - - - - - - - - 1 0 0 0 0 0
GTY 0.3204 -0.3847 -0.0005 -0.0002 -0.0570 - 0.1378 -0.9229 - 1 0.0064 0.0137 -0.0004 -0.0367
Y L 0.0006 -0.0006 -0.0572 -0.3189 0.0002 - -2.0E-04 -0.0005 - 0.0005 1 -0.0063 -4.4431 0.0063
GY L 0.0878 -0.1147 -0.0006 0.0005 -0.9563 - 0.5378 -0.0564 - 0.0666 -0.0002 1 0.0007 -0.2779
TY L -0.0058 0.0057 -0.0026 0.0002 -0.0005 - 0.0010 0.0004 - -0.0005 -0.0430 0.0004 1 -0.0016
GTY L -0.0337 0.0484 0.0002 0.0002 0.5361 - -0.9671 0.1319 - -0.1547 0.0002 -0.5700 -0.0009 1

Table C.7: Asymptotic correlation (lower diagonal) and covariance (upper diagonal) matrix for TS2-
VS1:GCA1-2012 German and Polish (GER&PL) dataset. TS2: GCA1-2009 + GCA2-2010 + GCA1-
2010 + GCA2-2011, VS1: GCA1-2012. The factors are genotypes (G), testers (T ), years (Y ) and
locations (L).

G GY Y L GL TL GTL GT TY GTY Y L GY L TY L GTY L

G 1 -0.1526 0.2375 0.0016 -0.0222 0 0.0086 -0.0326 0 0.0294 0.0011 0.0210 -0.0067 -0.0083
GY -0.7924 1 -0.1947 0.0024 0.0222 0 -0.0089 0.0296 0 -0.0330 -0.0013 -0.0258 0.0053 0.0116
Y 0.0089 -0.0087 1 0.7995 0.0208 0 -0.0048 0.0057 0 -0.0084 -46.5272 -0.0219 -0.3627 0.0045
L 0.0001 0.0001 0.0003 1 -0.0164 0 -0.0050 0.0007 0 -0.0003 -243.4461 0.0143 -0.2184 0.0051
GL -0.0764 0.0908 0.0006 -0.0005 1 0 -0.2234 0.0107 0 -0.0103 0.0042 -0.3623 -0.0006 0.2200
TL - - - - - 1 0 0 0 0 0 0 0 0
GTL 0.0259 -0.0319 -0.0001 -0.0001 -0.5329 - 1 -0.0288 0 0.0282 -0.0069 0.2200 0.0016 -0.4705
GT -0.2527 0.2739 0.0004 0.0000 0.0652 - -0.1548 1 0 -0.0667 -0.0021 -0.0099 0.0002 0.0276
TY - - - - - - - - 1 0 0 0 0 0
GTY 0.2259 -0.3026 -0.0006 0.0000 -0.0624 - 0.1507 -0.9122 - 1 0.0020 0.0124 -0.0001 -0.0329
Y L 0.0001 -0.0001 -0.0343 -0.1802 0.0003 - -0.0004 -0.0003 - 0.0003 1 -0.0043 -3.3215 0.0071
GY L 0.0703 -0.1033 -0.0006 0.0004 -0.9589 - 0.5123 -0.0593 - 0.0737 -0.0003 1 0.0005 -0.2364
TY L -0.0063 0.0060 -0.0029 -0.0018 -0.0004 - 0.0011 0.0003 - -0.0002 -0.0615 0.0004 1 -0.0015
GTY L -0.0247 0.0409 0.0001 0.0001 0.5149 - -0.9685 0.1455 - -0.1719 0.0004 -0.5399 -0.0009 1
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Table C.8: Asymptotic correlation (lower diagonal) and covariance (upper diagonal) matrix for TS3-
VS3:GCA1-2014 German and Polish (GER&PL) dataset. TS3: GCA1-2009 + GCA2-2010 + GCA3-
2011 + GCA1-2010 + GCA2-2011 + GCA3-2012 + GCA1-2011 + GCA2-2012 + GCA3-2013, VS3:
GCA1-2014. The factors are genotypes (G), testers (T ), years (Y ) and locations (L).

G GY Y L GL TL GTL GT TY GTY Y L GY L TY L GTY L

G 1 -0.0427 -0.0394 -0.0046 -0.0045 0.0017 -0.0004 -0.0108 0 0.0091 0.0021 0.0039 -0.0011 0.0001
GY -0.6425 1 0.0300 0.0028 0.0038 -0.0009 -0.0001 0.0089 0 -0.0108 -0.0012 -0.0058 0.0006 0.0015
Y -0.0027 0.0030 1 -11.3578 0.0015 -3.6709 0.0090 -0.0039 0 0.0029 -13.0843 -0.0009 2.9638 -0.0091
L -0.0003 0.0002 -0.0042 1 -0.0005 -2.4570 -0.0026 0.0003 0 0.0000 -95.7799 0.0015 1.7234 0.0019
GL -0.0544 0.0687 0.0001 0.0000 1 0.0005 -0.0342 0.0018 0 -0.0019 0.0042 -0.0649 -0.0004 0.0333
TL 0.0010 -0.0008 -0.0150 -0.0082 0.0003 1 0.0006 -0.0010 0 0.0000 1.3346 0.0015 -22.8760 -0.0018
GTL -0.0028 -0.0013 0.0004 -0.0001 -0.2839 0.0003 1 -0.0130 0 0.0129 -0.0020 0.0329 0.0001 -0.2099
GT -0.1873 0.2286 -0.0005 0.0000 0.0371 -0.0010 -0.1531 1 0 -0.0297 -0.0007 -0.0018 0.0009 0.0126
TY - - - - - - - - 1 0 0 0 0 0
GTY 0.1601 -0.2815 0.0003 0.0000 -0.0398 0.0000 0.1538 -0.8880 - 1 0.0007 0.0029 0.0004 -0.0152
Y L 0.0004 -0.0003 -0.0165 -0.0981 0.0009 0.0150 -0.0003 -0.0002 - 0.0002 1 -0.0044 -4.4463 0.0020
GY L 0.0430 -0.0940 -0.0001 0.0001 -0.8576 0.0010 0.2468 -0.0333 - 0.0553 -0.0009 1 -0.0016 -0.0445
TY L -0.0007 0.0006 0.0127 0.0060 -0.0003 -0.8751 0.0000 0.0010 - 0.0004 -0.0525 -0.0011 1 0.0007
GTY L 0.0006 0.0149 -0.0004 0.0001 0.2688 -0.0007 -0.9604 0.1435 - -0.1768 0.0003 -0.3239 0.0003 1

Table C.9: Asymptotic correlation (lower diagonal) and covariance (upper diagonal) matrix for TS3-
VS2:GCA1-2013 German and Polish (GER&PL) dataset. TS3: GCA1-2009 + GCA2-2010 + GCA3-
2011 + GCA1-2010 + GCA2-2011 + GCA3-2012 + GCA1-2011 + GCA2-2012 + GCA3-2013, VS2:
GCA1-2013. The factors are genotypes (G), testers (T ), years (Y ) and locations (L).

G GY Y L GL TL GTL GT TY GTY Y L GY L TY L GTY L

G 1 -0.0489 -0.0526 0.0053 -0.0033 0.0038 -0.0001 -0.0116 0 0.0093 0.0018 0.0027 -0.0001 0.0001
GY -0.6967 1 0.0438 -0.0054 0.0028 -0.0028 -0.0003 0.0087 0 -0.0110 -0.0020 -0.0047 -0.0003 0.0016
Y -0.0037 0.0040 1 -10.9361 0.0002 -4.7179 0.0079 -0.0066 0 0.0051 -17.3793 -0.0001 3.8107 -0.0080
L 0.0003 -0.0004 -0.0042 1 -0.0001 -3.3662 -0.0035 -0.0011 0 0.0012 -131.2160 0.0006 2.6769 0.0034
GL -0.0506 0.0550 0.0000 0.0000 1 0.0016 -0.0254 0.0013 0 -0.0015 0.0011 -0.0434 -0.0024 0.0248
TL 0.0023 -0.0021 -0.0176 -0.0110 0.0013 1 -0.0001 -0.0019 0 0.0005 2.5194 0.0002 -25.7527 -0.0008
GTL -0.0010 -0.0031 0.0004 -0.0001 -0.2712 0.0000 1 -0.0118 0 0.0116 -0.0002 0.0246 0.0012 -0.1867
GT -0.1988 0.1937 -0.0007 -0.0001 0.0316 -0.0017 -0.1408 1 0 -0.0311 -0.0016 -0.0014 0.0012 0.0113
TY - - - - - - - - 1 0 0 0 0 0
GTY 0.1659 -0.2552 0.0006 0.0001 -0.0366 0.0005 0.1447 -0.8708 - 1 0.0016 0.0025 0.0003 -0.0140
Y L 0.0003 -0.0004 -0.0187 -0.1234 0.0003 0.0230 0.0000 -0.0004 - 0.0004 1 0.0040 -5.4092 -0.0036
GY L 0.0365 -0.0819 0.0000 0.0000 -0.8136 0.0002 0.2281 -0.0290 - 0.0536 0.0008 1 -0.0001 -0.0359
TY L -0.0001 -0.0002 0.0152 0.0094 -0.0021 -0.8720 0.0005 0.0012 - 0.0004 -0.0528 -0.0001 1 -0.0001
GTY L 0.0011 0.0155 -0.0004 0.0001 0.2561 -0.0003 -0.9560 0.1306 - -0.1677 -0.0004 -0.3222 0.0000 1
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Table C.10: Asymptotic correlation (lower diagonal) and covariance (upper diagonal) matrix for TS3-
VS1:GCA1-2012 German and Polish (GER&PL) dataset. TS3: GCA1-2009 + GCA2-2010 + GCA3-
2011 + GCA1-2010 + GCA2-2011 + GCA3-2012 + GCA1-2011 + GCA2-2012 + GCA3-2013, VS1:
GCA1-2012. The factors are genotypes (G), testers (T ), years (Y ) and locations (L).

G GY Y L GL TL GTL GT TY GTY Y L GY L TY L GTY L

G 1 -0.2622 -0.4926 0.0179 -0.0056 -0.0058 -0.0007 -0.0140 0.0002 0.0122 -0.0096 0.0052 0.0050 0.0005
GY -0.8915 1 0.4666 -0.0146 0.0049 0.0054 0.0007 0.0118 -0.0007 -0.0148 0.0088 -0.0082 -0.0050 0.0012
Y -0.0158 0.0153 1 -8.4482 -0.0009 -7.1051 0.0157 -0.0194 -2.3148 0.0149 -15.8806 -0.0016 6.4270 -0.0130
L 0.0006 -0.0005 -0.0027 1 -0.0126 -2.8175 0.0006 0.0003 -0.2087 0.0002 -118.7310 0.0130 2.1704 -0.0017
GL -0.0351 0.0310 -0.0001 -0.0008 1 -0.0009 -0.0455 0.0023 -0.0009 -0.0025 0.0114 -0.0821 -0.0012 0.0445
TL -0.0022 0.0020 -0.0255 -0.0106 -0.0006 1 -0.0006 -0.0001 1.8393 0.0005 1.8097 0.0032 -19.5968 -0.0018
GTL -0.0027 0.0028 0.0006 0.0000 -0.3169 -0.0002 1 -0.0160 -0.0007 0.0159 -0.0048 0.0437 0.0027 -0.2373
GT -0.1163 0.1001 -0.0016 0.0000 0.0365 -0.0001 -0.1481 1 -0.0017 -0.0431 -0.0015 -0.0021 0.0001 0.0151
TY 0.0003 -0.0009 -0.0275 -0.1586 -0.0020 0.2532 -0.0010 -0.0051 1 0.0029 0.1432 0.0006 -2.0138 0.0002
GTY 0.1014 -0.1257 0.0012 0.0000 -0.0392 0.0004 0.1472 -0.8951 0.0088 1 0.0011 0.0038 0.0000 -0.0190
Y L -0.0010 0.0009 -0.0153 -0.1190 0.0021 0.0201 -0.0005 -0.0004 0.0053 0.0003 1 -0.0106 -4.2475 0.0045
GY L 0.0296 -0.0473 -0.0001 0.0007 -0.8693 0.0020 0.2753 -0.0293 0.0012 0.0542 -0.0018 1 -0.0020 -0.0568
TY L 0.0020 -0.0020 0.0244 0.0086 -0.0009 -0.8614 0.0012 0.0001 -0.2934 0.0000 -0.0500 -0.0013 1 -0.0006
GTY L 0.0019 0.0043 -0.0005 -0.0001 0.3016 -0.0007 -0.9553 0.1362 0.0003 -0.1720 0.0005 -0.3480 -0.0002 1

C.5 Predictive abilities of sampling scenarios
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Figure C.5: Predictive abilities (y-axis) of the German dataset using VS-size of 100 genotypes for the three scenarios. TS1 and controlTS1, TS2 and
controlTS2, and TS3 and controlTS3 to predict the validation sets VS1, VS2 and VS3 with All-, 0P- and 1P-scenarios. Black lines for each bar represent the
95% confidence intervals of the mean predictive ability. Year-wise approach (A1) and year-wise with kinship approach (A1K) were fitted to the control sets,
approaches 2-stg-Kin (A2), 2-stg-Kin-het (A3), 3-stg-NoKin (A4) and 3-stg-Kin (A5) to the complete sets. TS1 : GCA1-2009 + GCA2-2010 + GCA3-2011, controlTS1: GCA1-2009, TS2: GCA1-2009

+ GCA2-2010 + GCA1-2010 + GCA2-2011, controlTS2: GCA1-2009 + GCA1-2010, TS3: GCA1-2009 + GCA2-2010 + GCA3-2011 + GCA1-2010 + GCA2-2011 + GCA3-2012 + GCA1-2011 + GCA2-2012 + GCA3-2013, controlTS3: GCA1-2009 + GCA1-2010 + GCA1-2011, VS1:

GCA1-2012, VS2 : GCA1-2013, VS3 : GCA1-2014.
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Figure C.6: Predictive abilities (y-axis) of the Polish dataset using VS-size of 100 genotypes for the three scenarios. TS1 and controlTS1, TS2 and
controlTS2, and TS3 and controlTS3 to predict the validation sets VS1, VS2 and VS3 with All-, 0P- and 1P-scenarios. Black lines for each bar represent the
95% confidence intervals of the mean predictive ability. Year-wise approach (A1) and year-wise with kinship approach (A1K) were fitted to the control sets,
approaches 2-stg-Kin (A2), 2-stg-Kin-het (A3), 3-stg-NoKin (A4) and 3-stg-Kin (A5) to the complete sets. TS1 : GCA1-2009 + GCA2-2010 + GCA3-2011, controlTS1: GCA1-2009, TS2: GCA1-2009

+ GCA2-2010 + GCA1-2010 + GCA2-2011, controlTS2: GCA1-2009 + GCA1-2010, TS3: GCA1-2009 + GCA2-2010 + GCA3-2011 + GCA1-2010 + GCA2-2011 + GCA3-2012 + GCA1-2011 + GCA2-2012 + GCA3-2013, controlTS3: GCA1-2009 + GCA1-2010 + GCA1-2011, VS1:

GCA1-2012, VS2 : GCA1-2013, VS3 : GCA1-2014.
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Figure C.7: Predictive abilities (y-axis) of the German and Polish dataset using VS-size of 100 genotypes for the three scenarios. TS1 and controlTS1,
TS2 and controlTS2, and TS3 and controlTS3 to predict the validation sets VS1, VS2 and VS3 with All-, 0P- and 1P-scenarios. Black lines for each bar represent
the 95% confidence intervals of the mean predictive ability. Year-wise approach (A1) and year-wise with kinship approach (A1K) were fitted to the control sets,
approaches 2-stg-Kin (A2), 2-stg-Kin-het (A3), 3-stg-NoKin (A4) and 3-stg-Kin (A5) to the complete sets. TS1 : GCA1-2009 + GCA2-2010 + GCA3-2011, controlTS1: GCA1-2009, TS2: GCA1-2009

+ GCA2-2010 + GCA1-2010 + GCA2-2011, controlTS2: GCA1-2009 + GCA1-2010, TS3: GCA1-2009 + GCA2-2010 + GCA3-2011 + GCA1-2010 + GCA2-2011 + GCA3-2012 + GCA1-2011 + GCA2-2012 + GCA3-2013, controlTS3: GCA1-2009 + GCA1-2010 + GCA1-2011, VS1:

GCA1-2012, VS2 : GCA1-2013, VS3 : GCA1-2014.
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C.6 PCA plots

Figure C.8: Principal component (PC) plots for the German dataset between TS1 and all VS. TS1

and relatedness scenarios (All-, 0P- and 1P-scenarios) for VS1, VS2 and VS3. TS1:GCA1-2009 + GCA2-2010 + GCA3-2011,

VS1:GCA1-2012, VS2 :GCA1-2013, VS3 :GCA1-2014.
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Figure C.9: Principal component (PC) plots for the German dataset between TS2 and all VS. TS2

and relatedness scenarios (All-, 0P- and 1P-scenarios) for VS1, VS2 and VS3. TS2:GCA1-2009 + GCA2-2010 + GCA1-2010

+ GCA2-2011, VS1:GCA1-2012, VS2:GCA1-2013, VS3:GCA1-2014.
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Figure C.10: Principal component (PC) plots for the German dataset between TS3 and all VS.
TS3 and relatedness scenarios (All-, 0P- and 1P-scenarios) for VS1, VS2 and VS3. TS3:GCA1-2009 + GCA2-2010 +

GCA3-2011 + GCA1-2010 + GCA2-2011 + GCA3-2012 + GCA1-2011 + GCA2-2012 + GCA3-2013, VS1:GCA1-2012, VS2:GCA1-2013, VS3:GCA1-2014.
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Figure C.11: Principal component (PC) plots for the Polish dataset between TS1 and all VS. TS1

and relatedness scenarios (All-, 0P- and 1P-scenarios) for VS1, VS2 and VS3. TS1:GCA1-2009 + GCA2-2010 + GCA3-2011,

VS1:GCA1-2012, VS2 :GCA1-2013, VS3 :GCA1-2014.
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Figure C.12: Principal component (PC) plots for the Polish dataset between TS2 and all VS. TS2

and relatedness scenarios (All-, 0P- and 1P-scenarios) for VS1, VS2 and VS3. TS2:GCA1-2009 +

GCA2-2010 + GCA1-2010 + GCA2-2011, VS1 :GCA1-2012, VS2 :GCA1-2013, VS3 :GCA1-2014.
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Figure C.13: Principal component (PC) plots for the Polish dataset between TS3 and all VS. TS3

and relatedness scenarios (All-, 0P- and 1P-scenarios) for VS1, VS2 and VS3. TS3:GCA1-2009 + GCA2-2010 + GCA3-2011

+ GCA1-2010 + GCA2-2011 + GCA3-2012 + GCA1-2011 + GCA2-2012 + GCA3-2013, VS1 :GCA1-2012, VS2 :GCA1-2013, VS3:GCA1-2014.
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Figure C.14: Principal component (PC) plots for the German and Polish dataset between TS1 and
all VS. TS1 and relatedness scenarios (All-, 0P- and 1P-scenarios) for VS1, VS2 and VS3.
TS1:GCA1-2009 + GCA2-2010 + GCA3-2011, VS1:GCA1-2012, VS2:GCA1-2013, VS3:GCA1-2014.
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Figure C.15: Principal component (PC) plots for the German and Polish dataset between TS2 and
all VS. TS2 and relatedness scenarios (All-, 0P- and 1P-scenarios) for VS1, VS2 and VS3. TS2 :GCA1-2009 +

GCA2-2010 + GCA1-2010 + GCA2-2011, VS1 :GCA1-2012, VS2 :GCA1-2013, VS3 :GCA1-2014.
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Figure C.16: Principal component (PC) plots for the German and Polish dataset between TS3 and
all VS. TS3 and relatedness scenarios (All-, 0P- and 1P-scenarios) for VS1, VS2 and VS3. TS3 :GCA1-2009 +

GCA2-2010 + GCA3-2011 + GCA1-2010 + GCA2-2011 + GCA3-2012 + GCA1-2011 + GCA2-2012 + GCA3-2013, VS1:GCA1-2012, VS2:GCA1-2013, VS3:GCA1-2014.
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C.7 Euclidean distance

Table C.11: Means of Euclidean distance between all TS and VS combinations of the three datasets:
German (GER), Polish (PL) and German and Polish (GER&PL), with All-, 0P- and 1P-scenarios.

GER&PL GER PL

TS1 TS2 TS3 TS1 TS2 TS3 TS1 TS2 TS3

VS1

All 101.089 101.596 101.847 99.173 99.524 100.114 101.977 102.388 102.533
0P 100.923 101.551 101.854 98.226 99.073 99.862 102.339 102.616 102.749
1P 100.080 101.175 101.590 97.247 98.536 99.460 101.774 102.347 102.609

VS2

All 100.839 101.453 101.764 98.168 98.826 99.624 102.170 102.726 102.883
0P 100.265 101.187 101.613 96.860 98.365 99.368 102.238 102.654 102.840
1P 100.657 101.428 101.771 97.543 98.509 99.452 102.321 102.781 102.928

VS3

All 100.162 100.868 101.222 98.271 98.815 99.511 100.783 101.792 102.039
0P 99.758 100.944 101.387 95.601 98.076 99.126 101.879 102.358 102.562
1P 100.417 101.131 101.511 97.548 98.800 99.593 101.687 102.349 102.544
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