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1 General introduction 

1.1 Analysis of groups of experiments in agricultural research and meta-analysis 

In agricultural research the same type of experiment for a treatment factor of interest is often 

repeated in different locations, over a number of years or different labs for example. This type 

of research requires methods for combining results from several experiments and analyzing 

them jointly. Methods for analyzing groups of experiments jointly were first published in a 

paper by Yates and Cochran in 1938 (Yates and Cochran, 1938). This paper set the stage for 

methods later developed for meta-analysis and for the combination of estimates from different 

experiments.   

Meta-analysis is a general term for a method which has later been used in several areas of 

research where quantitative experiments are performed to make inference about different 

factors/interventions. So far the most common area for applying meta-analysis and network 

meta-analysis for evidence synthesis has been medicine but these methods are popular in 

other disciplines as well for example psychology (Curran and Hussong, 2009), ecology 

(Koricheva et al., 2013) or agriculture (Madden et al., 2016). 

The term network-meta-analysis has not been used much in agricultural research, but it has 

increasing interest there as well and some methods developed in context of medical research 

have also been applied in in agricultural research (Cordova et al., 2017; Machado et al., 2017; 

Paul et al., 2019; Sauer et al., 2008). 

This thesis will explore and develop evidence synthesis methods in applications to 

randomized clinical trials. 

1.2 Meta-analysis and network meta-analysis of randomized clinical trials 

In medical research an effect of a treatment or medical intervention is often studied in a 

randomized clinical trial. When the same treatment is studied in several trials the need for 

combining results and making unified evidence synthesis arises. In this thesis we will use 

either the term “trial” or “study” for the repeated experiment and the factor of interest is 

called “treatment”. 

In pharmaceutical research it is often necessary to make inferences on more than two 

treatments and their relative efficacy. This inference can be used to support decision making 

in drug development programs, re-imbursement decision of payers and even physicians to 

make decisions: Which treatment is the best choice for my patient?  
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The term meta-analysis is usually used when only two treatments have been compared in 

several trials. The need to compare several treatments leads to an extension of meta-analysis 

and is called network meta-analysis (NMA). In network meta-analysis the included trials may 

have more than two treatments analyzed and the combination of treatments can be different in 

different trials. In network meta-analysis several treatments from several trials are analyzed 

jointly to provide a comparison of all treatments of interest. Figure 1 shows an example of 

indirect and direct comparisons, displayed as a graph, in which the nodes are used to illustrate 

the different treatments and the edges present if the two treatments have been compared in the 

same randomized trial. The treatments form a network which might be connected through 

direct (treatments compared in same study) or indirect (in different studies through same 

comparator) comparisons. Often the network consists of both direct and indirect comparisons 

for different treatments. For example there might be one trial comparing A and B directly and 

two other trials; one where A is compared with C and other where B is compared with C, and 

through C an indirect comparison of A and B is possible. The NMA estimate for the 

comparison A and B is a combination of direct and indirect comparisons. 

 

 

Figure 1 Direct and indirect comparison of treatment A and B. Solid lines present a direct comparison (the treatments A and 
B have been compared in a same trial). Dashed line presents an indirect comparison (treatments A and B have been 

compared with C in separate trials, and they can be compared (indirectly) trough common comparator (C)) 

Having 3 treatments which are compared in two separate trials is the smallest possible 

network. Usually the network of trials includes more treatments and more trials. Figure 2 

illustrates how extensive a network of studies can be; it is the network of data used for the 

application presented in the Chapter 3 of this thesis. The data had over 50 treatments 

compared in over 200 trials. 
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Figure 2 Network diagram for the pain relief network meta-analysis 

The literature on network meta-analysis has largely been based on so-called baseline contrast 

model (Lu and Ades, 2006). In the baseline contrast model one of the treatments (often the one 

which comes alphabetically first) is selected as “baseline” treatment and other treatments are 

modelled as contrasts to this treatment. As not all trials in a network may contain the same 

“baseline”-treatment, the baseline treatment may vary from trial to trial. One alternative 

approach is to use arm-based models as proposed by (Jones et al., 2011; Piepho et al., 2012). 

These types of models can be estimated using standard analysis-of-variance techniques. 

Having trial as fixed factor and treatment as fixed or random factor in the model is very 

similar to the baseline contrast model regarding the assumptions and numerical results from 

estimation.  These arm-based models can be extended to different types of data structures and 

outcomes using the generalized linear models. This thesis focuses on using generalized linear 

mixed model theory in modelling and estimation for network meta-analysis of randomized 

clinical trials. 

The arm-based network meta-analysis is sometimes criticized for not following the principle 

of concurrent control. This is the case for models (both in meta-analysis and in network meta-

analysis) which don’t have any term for trial or if the trial main effect is specified as random 

(Senn, 2000). In this thesis, the models applied always include the main effect for trial as 

fixed and therefore the principle of concurrent control is followed similarly as in baseline 

contrast based models for network meta-analysis. 
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In some cases the arm-based and baseline contrast model result in the same model and/or 

exactly equal estimates. In fixed-effects network meta-analysis the arm-based modelling with 

trial and treatment as fixed factors the model can be easily converted into baseline contrast 

model and they can be seen just as different parameterizations of the same underlying model. 

In random-effects network meta-analysis the two approaches make a different assumption of 

the random effects distributions and the models are different. Even in this case they may yield 

same estimates for the treatment contrast parameters depending on the estimation technique 

and even if not exactly the same in many cases in very close agreement (Jones et al., 2011; 

Piepho et al., 2012; Wiksten et al., 2020). 

1.3 Generalized linear models in network meta-analysis 

In the ANOVA type of model with arm-based parametrization (Jones et al., 2011; Piepho et 

al., 2012) all network analysis models can be specified in a general form of generalized linear 

models by specifying the linear predictor, likelihood, and link function.  

1.3.1 Fixed effect model 

For the fixed effect model the linear predictor can be written as 

𝜂𝜂𝑗𝑗𝑗𝑗 =  𝛼𝛼𝑗𝑗 + 𝜃𝜃𝑘𝑘 

where 𝛼𝛼𝑗𝑗 stands for fixed study effect for trial j and 𝜃𝜃𝑘𝑘 is the fixed treatment effect for 

treatment k (k= 1,2,3,… or k=A,B,C,D…). In fixed effect models the assumption made is that 

the true treatment effect is the same across all trials and any differences seen between trial 

specific treatment effects is only due to random sampling. Even if the treatment effects are 

assumed to be the same there might be differences in other prognostic factors between trials 

and these often unknown prognostic factors (different location of trial, different patient 

populations, etc.) can be taken into account by adding fixed trial effects 𝛼𝛼𝑗𝑗. Having the trial 

effect 𝛼𝛼𝑗𝑗 as fixed means the estimates of treatment contrasts  𝜃𝜃𝑘𝑘2 − 𝜃𝜃𝑘𝑘1 are weighted 

averages, with weights defined by the size of the trial and taking into account the size of the 

trial. The fixed trial effect also ensures that treatment comparison are done within study and 

the model respects the randomization (Senn, 2000).  

1.3.2 Random effects model 

For the random effect model the linear predictor can be written as 

𝜂𝜂𝑗𝑗𝑗𝑗 =  𝛼𝛼𝑗𝑗 + 𝜃𝜃𝑘𝑘 + 𝑢𝑢𝑗𝑗𝑗𝑗 
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where 𝑁𝑁𝑎𝑎𝑗𝑗  denotes the multivariate normal distribution and 𝑎𝑎𝑗𝑗 is the number of treatments in 

the 𝑗𝑗th trial. By adding the random effect 𝑢𝑢𝑗𝑗𝑗𝑗, which is an interaction term, we make an 

assumption that the underlying true treatment effect may not be the same for all trials and we 

need to account for that heterogeneity. In network meta-analysis it is common to make the 

assumption of having a single variance parameter for all treatments (or treatment contrasts). 

Other types of covariance structures may be assumed as well. For example one could make an 

assumption that the between trial variance is heterogeneous for different treatments and this 

would yield to covariance matrix with a different variance parameters for each treatment and 

the variance parameters on the diagonal of the covariance matrix would be unique for each of 

the k treatments. 

1.3.3 Relation to baseline contrast model/parametrization 

When using fixed effect models the more common contrast-based parametrisation of NMA 

(Lu and Ades, 2006) and the arm-based NMA will result in equivalent inference for the 

treatment contrasts  as the contrast-based formulation can be obtained by re-parameterization, 

namely 

𝜂𝜂𝑗𝑗𝑗𝑗 = �
𝜇𝜇𝑗𝑗𝑗𝑗 ,          if 𝑘𝑘 = 𝑏𝑏,  𝑏𝑏 = 𝐴𝐴,𝐵𝐵,𝐶𝐶, …         
𝜇𝜇𝑗𝑗𝑗𝑗 + 𝑑𝑑𝑏𝑏𝑏𝑏, if 𝑘𝑘 alphabetically'after 𝑏𝑏  

where 𝜇𝜇𝑗𝑗𝑗𝑗 = 𝛼𝛼𝑗𝑗 + 𝜃𝜃𝑏𝑏 and 𝑑𝑑𝑏𝑏𝑏𝑏 = 𝜃𝜃𝑘𝑘 − 𝜃𝜃𝑏𝑏 . Of note, the baseline contrast model cannot be 

derived uniquely from arm-based model specification as the selection of baseline treatment is 

not unique. 

For the random effect model the linear predictor for baseline contrast model can be specified 

as  

𝜂𝜂𝑗𝑗𝑗𝑗 = �
𝜇𝜇𝑗𝑗𝑗𝑗 ,          if 𝑘𝑘 = 𝑏𝑏,  𝑏𝑏 = 𝐴𝐴,𝐵𝐵,𝐶𝐶, …         
𝜇𝜇𝑗𝑗𝑗𝑗 + 𝛿𝛿𝑏𝑏𝑏𝑏, if 𝑘𝑘 alphabetically'after 𝑏𝑏  
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Where 𝛿𝛿𝑏𝑏𝑏𝑏 is the study specific treatment effect for treatment k versus the trial specific 

baseline treatment b. The random effects 𝜹𝜹𝒋𝒋 are assumed to be normally distributed as  
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Of note here, 𝑡𝑡𝑗𝑗1 refers to the trial-specific baseline treatment and may differ from trial to 

trials and 𝑡𝑡𝑗𝑗2, 𝑡𝑡𝑗𝑗3, … 𝑡𝑡𝑗𝑗𝑎𝑎𝑗𝑗  may be any combination of treatments B, C, D… depending on 

treatments included in the given trial and selected trial-specific baseline treatment.  

For random effects models, the main difference between classical ANOVA-based 

parametrization and baseline-contrast parametrization is in the assumption of distribution of 

random effects. This is discussed in more detail in Chapter 2 for normally distributed response 

variable. For other type of responses it has been discussed in literature in (Jones et al., 2011; 

Piepho et al., 2018, 2012).  

1.3.4 Model estimation 

The model parameters for both types of models can be estimated in both Bayesian and 

frequentist setting. In case of using “non-informative” or vague priors in Bayesian analysis 

the numerical parameter estimate values will be in close agreement especially if the sample 

size is large enough.  

 

1.4 Motivation and research objectives 

 

The theoretical basis for using the generalized linear models for network meta-analysis with 

arm-based and frequentist approach was set in the publications by (Jones et al., 2011) and 

(Piepho et al., 2012). Both of the papers discussed the idea and presented theoretical 

justifications for the modelling approach with application in the binomial smoking cessation 

dataset from (Hasselblad, 1998).  These two publications set the stage for applying widely used 

statistical methodology and knowledge originally applied mostly to agricultural research for 

network meta-analysis of clinical trials. However, despite the groundbreaking work of Jones 

et al. (2011) and Piepho et al. (2012), there has been a gap of applying and evaluating the 
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usability of the methods in applications arising from urgent medical questions with different 

endpoints and more complicated study designs or analysis problems. The objectives of this 

thesis are to apply and develop the methods in different applications and provide a 

comprehensive summary of the benefits and limitations of the modelling framework and 

provide guidance for other researchers and analysts how to implement the methods for 

different network meta-analysis problems. This will be done through applications, which have 

arisen from real analysis problems in drug development. 

The specific objectives to address some of the urgent research gaps are: 

1. Explore and extend the methods in different applications 

o Different levels of aggregation and modelling treatment-by-covariate 

interactions – this is a very common problem in the pharmaceutical industry, 

where the companies have access to individual patient data from own studies, 

but only aggregated data from studies performed by other organizations. 

o Extensive networks with many treatments and trials – this research problem is 

motivated by actual evidence synthesis need for an extensive network arising 

from pain medications used and studied in over 200 clinical trials. 

o Different type of outcome data (time-to-event) with complicated modelling 

problem – this research problem has become very urgent when the new mode 

of action cancer therapies are compared with the older treatments and the 

assumption of proportional hazards over time may not hold anymore.  

2. Explore the differences between baseline contrast parametrization and arm-based 

parametrization 

o The relationship between the two modelling approaches has been described in 

the original papers where the arm-based models were introduced, however 

using the arm-based methods for different real applications has been lacking 

and one objective of this thesis is to provide more case studies with 

comparison of the methods. 

3. Explore methods of between study variance estimation in meta-analysis and network 

meta-analysis 

o Between study variance estimation is one of the most critical components of 

NMA and the aim of this thesis was to also evaluate the properties of between-

study variance estimation for arm-based models, how it compares with 

baseline contrast model, and provide insights on preferred estimation methods 

for different applications. 
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4. Provide software implementation and example codes for a variety of models 

o The analyses in the thesis are performed using the standard generalized linear 

model functions and procedures from R or SAS. 

1.5 Outline of the thesis 

This thesis is a cumulative thesis and each chapter is based on an individual manuscript or 

journal article.  

Chapters 2-4 explore and develop the methods for three different applications with different 

datatypes and scientific questions. All three manuscripts present different problems and have 

their own challenges making the existing NMA methods potentially complicated to be used, 

as will be outlined briefly further below: 

• Chapter 2 tackles a modelling problem of two different aggregation levels 

• Chapter 3 tackles a problem with extensive network with many trials and treatments 

• Chapter 4 tackles a problem with complex modelling of underlying data   

Chapter 2 General linear models for combining individual patient data and aggregated 

data in network meta-analysis 

This manuscript develops the arm-based methods and models in situations where some of the 

trials provide patient level data and others aggregated data from publications. This is a 

common situation in pharmaceutical companies, where the statistical analysts usually have 

access to data for studies performed in-house, but only aggregated data for competitor studies. 

Similar modelling needs may also arise in agricultural sciences if a research team has access 

to original data of their own experiment but only aggregated published results from other 

experiments. The manuscript introduces meta-regression models to adjust for covariates and 

introduces an approach how to evaluate loss of precision due to aggregated data vs individual 

patient data. 

Chapter 3 Estimating relative efficacy in acute postoperative pain: network meta-

analysis is consistent with indirect comparison to placebo alone 

This paper applies the method in a real life dataset with pain medications used in acute 

postoperative pain. The outcome of interest was binomial, whether a subject experienced pain 

relief or not. The dataset used for NMA included 261 trials with 52 different treatment and 

dose combinations, making it extraordinarily rich and large. The manuscript provides an 

example of analyzing extensive and large network with efficient standard SAS generalized 
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mixed model procedures. We also provide different visualization to present the network and 

compare the treatments. 

Chapter 4 Nonproportional Hazards in Network Meta-Analysis: Efficient Strategies for 

Model Building and Analysis 

This manuscript develops the method for a case of time-to-event-outcome extracted from 

published Kaplan-Meier curves of survival analyses. This re-generated individual patient data 

was then used to model and compare survival functions and hazards of different treatments. 

This manuscript introduces the methodology for a new type of outcome, time to event and 

also introduces efficient and time saving approach to find the most suitable model for non-

proportional hazards. It also compares the existing, baseline contrast model, methodology to 

arm-based modelling in a new type of problem and provides a comparison of the methods. 

Chapter 5 Hartung–Knapp method is not always conservative compared with fixed-

effect meta-analysis 

This chapter explores different methods for between-study variance estimation in standard 

meta-analysis in a set of 157 meta-analyses from Cochrane database. Estimating between-

study variance is one of the most important part of the evidence synthesis, firstly to evaluate 

the amount of between-trial variance and whether the fixed- or random effects model is 

applicable. Secondly, it is important to properly account for the potential between-trial 

variation in treatment effect estimation. Hartung-Knapp method has been one of the most 

popular methods in standard two-treatment meta-analysis. This paper evaluates the properties 

of the method in large set of trials with binomial outcome and makes recommendations for 

model checking and useful sensitivity analyses. 

 

Chapter 6 provides general discussion and conclusions. Finally, the work is summarized in 

Chapter 7. 
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General linear models for combining individual patient data and

aggregated data in network meta-analysis

Anna Wiksten and Ekkehard Glimm

Abstract

Network meta-analysis (NMA) is a method where multiple treat-
ments from several trials are compared in a single analysis. Pharma-
ceutical companies perform NMAs to support submissions of new drugs
or for market access and reimbursement purposes. Furthermore, in the
development of a new drug, NMA may be used to support planning of
future studies. When NMA is performed within a company, the com-
pany has access to individual patient data (IPD) of their own studies
whereas usually only the aggregated data(AD) is available from the
competitor’s studies. In this presentation, we will introduce different
models to perform NMA with IPD and AD and the methods will be
applied to a case study. Both frequentist and Bayesian approaches will
be considered. We will also present different NMA models for analyz-
ing data with an individual-patient-component that includes additional
covariates with a potential interaction to the treatment effect. Results
from a simulation study comparing performance of the different models
and different types of data will be presented.

1
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1 Introduction

Network meta-analysis(NMA) is a method were more than two treatments from
several clinical trials are compared in a single analysis. The NMAs often used for
decision making by regulatory and government authorities. The pharmaceutical
companies may perform a NMA to support submission of new drug and also
for market access and reimbursement purposes. Also in the development phase
NMAs can be used when making decisions for example continuing from phase
2 to phase 3[1] or planning future studies based on the evidence from NMA.

NMA may be performed either on aggregated data(AD) level or individual
patient data(IPD) level. Generally IPD level analyses are considered as a gold
standard in meta-analysis [13]. When the pharmaceutical companies perform
a NMA inhouse they have of course access to IPD of their own studies as from
compettitor studies usually only the AD is available.

There is a extensive literature on the network meta-analysis of aggregated
data. The Bayesian methods are very popular in the field of NMA, but fre-
quentist methods have been proposed as well[4, 7]. Often bayesian methods are
used with vague priors and the results are very similar with frequentist anal-
yses. The advantages of bayesian methods are clear when we have some prior
information from some of the treatments from studies which are not included in
the NMA and we want to incorporate the information in our NMA as prioirs.
On the other hand when no prior information is available it might be difficult
to find truly un-informative priors.

One important question for decision making is which treatment works best
for which patient population and if there are differencies between treatment
effects in different patient groups. For categorical covariates, e.g. sex, desease
severity etc subgroup analyses may be used to analyse the treatment differences
in different subpopulations. To be able to perform subgroup analyses the orig-
inal studies have to report the results by subgroups or if the studies different
inclusion criteria the overall results can be used. If the studies do not report
the results by subgroups the percentage of categorical covariate value may be
used as continuous covariate in metaregression. Meta-regression may be used to
examine the effect of continuous covariates on the treatment effect, however the
meta-regression with AD suffers from lack of power[5] and is subject ecological
bias. When performing metaregression with aggregated covariate values special
caution should be used.

When the IPD is available the treatment-by-covariate interactions can be
modelled on patient level and the analyses have greater power to detect poten-
tial interactions. Achieving IPD for all of the studies in NMA is usually very
difficult or even impossible. The studies included in the NMA are usually per-
formed by different companies and all parties may not be willing to share their
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data. Recently there has been a growing demand for pharmaceutical companies
to publish all clinical trial data.

There are several papers presenting the combining of IPD and AD in tra-
ditional two treatment meta-analysis[14, 9]. On NMA there are some recent
papers about combining IPD and AD by Jansen[3] and Donegan et. all [2].
Both of these papers are based on the so-called baseline contrast model[6] and
they are fitted in Bayesian framework.

The aim of this article is to extend the NMA methodology based on ANOVA
framework to setting where some of the studies provide IPD and some of the
studies only AD and to extend the models to analyse treatment-by-covariate
interactions. We will apply the proposed methods in to a motivating exam-
ple dataset and compare the results with existing methodology. We will also
evaluate the performance of different models trough a simulation study.

The outline of the article is as follows. We first introduce the motivating
dataset in Section 2. In Section 3 we describe our proposed models and the
existing models and apply the methods in the example dataset. In Section 4
we describe the simulation study and the results from simulations.We conclude
wit discussion in Section 5.

2 Motivating example

For confidentiality reasons the data used in example is simulated, but the sim-
ulations are based on real data. We are interested in comparing the efficacy of
a treatment A with treatment B in a network meta-analysis and we have IPD
available for all in-house studies and aggregated data for other studies. The pri-
mary efficacy outcome is a continuous variable and it is assumed to be normally
distributed. There is a potential continuos treatment effect-modifying-covariate
and we are want to model the interaction between the treatment and covariate.
The aggregated studies are reporting study summaries per treatment arm and
mean covariate value per treatment arm. Table 1 shows the treatments and
sample sizes per each study.

3 Methods for estimating the treatment effects
in network meta-analysis combining IPD and
AD

In this section we will present methods for performing NMA combining IPD
and AD. In all situations we are considering continuous outcome variable and
in the models with effect-modifying-covariate the covariate is continuous and
we will consider both frequentist and bayesian methods for NMA.
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Figure 1: Network diagram of the studies included in the meta-analysis. The nodes represent the treatments
in NMA and the straight lines represent the direct comparisons between two treatments. The size of the nodes
is proportional to the number of subjects in each treatment arm

3 Models without additional treatment-by-covariate in-
teraction

3 Two-way linear model for IPD and AD

Let us first consider situation where we have individual patient data available for
all studies. Now for the IPD network meta-analysis we can use two-way linear
mixed model as proposed by [4] and [7]. The two-way linear mixed model for
IPD is

yijk = αj + θk + ujk + ϵijk

ujk ∼ N(0, σ2
u)

ϵijk ∼ N(0, σ2
j )

(1)

where yijk is the response for ith subject in j th study with treatment k, αj is
the fixed study effect, θk is the fixed treatment effect, and ujk is the random
treatment-by-study interaction term in study j for treatment k and it is assumed
to be normally distributed with mean 0 and between study variance σ2

u, and
ϵijk is the residual error term for observation yijk and σ2

j is the variance of
the residual errors in study j . The random term u2jk and the residual error
term ϵijk are assumed to be stochastically independent. In model 1 we need a
parameter condition for one of the fixed effects. Since we are typically interested
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Study A B C D E F Plac x mean x sd
AD 1 0 200 0 0 0 0 100 0.99 0.42
studies 2 0 100 0 0 50 0 0 1.02 0.44

3 0 360 0 0 0 0 180 0.86 0.37
4 0 854 427 0 0 0 425 1.06 0.44
5 0 1028 45 0 0 542 419 1.07 0.50
6 0 330 0 0 327 0 334 1.07 0.48
7 0 211 0 0 0 0 205 1.09 0.56
8 0 1707 0 0 0 1714 0 0.87 0.3
9 0 760 0 0 0 776 0 1.09 0.43
10 0 161 0 0 0 0 155 1.02 0.48
11 0 150 0 0 0 0 155 1.1 0.5
12 0 473 0 471 0 478 229 1.04 0.48
13 0 260 0 258 0 0 260 1.05 0.46
14 0 251 0 249 0 0 247 0.95 0.48

IPD 15 523 0 0 0 0 266 267 1.11 0.50
studies 16 550 0 0 0 0 0 265 1.06 0.46

17 301 0 0 0 0 0 154 0.87 0.37
18 325 0 0 0 0 326 0 1.04 0.49
19 222 0 0 0 0 0 218 1.06 0.50
20 216 0 0 0 0 0 215 1.04 0.47
21 702 0 0 707 0 689 0 0.85 0.30
All 2839 6896 472 1685 383 4791 3835 1.00 0.44

Table 1: Number of observations in each study

in the differences of the treatments it is a natural choice to put the parameter
condition on θ. If we set θK equal to zero, then all other parameters θ1 to θK−1

represent the treatment difference comparen to the last treatment and the fixed
study effects αj represents the the expected response for treatment K in study
j. No parameter condition is needed for the random effects ujk.

Let us assume that we have only aggregated data available from the studies
included in network meta-analysis. Usually invididual studies report summaries
per treatment arm per study. In case of a normally distributed continuous
outcome the least square mean estimate of the response and its standard error
from each treatment arm in each study are typically reported. If no additional
covariates are included in the analysis of the individual studies the least square
mean estimate is the sample mean and standard error is the square root of the
residual error variance divided by the square root of sample size per treatment
arm. Let us denote the least square mean for treatment k in study j as y·jk.
Now the individual patient data model (1) for aggregated data can be written
as

ȳ·jk =

∑njk

i=1 yijk
njk

=

∑njk

i=1(αj + θk + ujk + ϵijk)

njk

= αj + θk + ujk + ϵ̄·jk

ujk ∼ N(0, σ2
u), ϵ̄·jk ∼ N(0,

σ2
j

njk
)

(2)

Since we observe only one observation per treatment and study, the estimation

Page 22 of 75



of the σ2
j is not possible from the aggregated data. The estimated value of σ2

j

is treated as known parameter and we have

ϵ̄·jk ∼ N(0,
σ̂2
j

njk
)

Since σ̂2
j is considered fixed, it is irrelevant how it was derived. In an ordinary

one-way ANOVA, it would be estimated as

σ̂2
j =

(nj1 − 1)σ̂2
j1 + ...+ (njKj

− 1)σ̂2
jKj

nj −Kj

where Kj is the number of treatments in study j and

σ̂2
jk =

∑njk

i=1(yijk − ȳ.jk)
2

njk − 1

is the residual variance estimate in study j for treatment k.
If we have individual patient data available for some of the studies and ag-

gregated data for the other studies the model for IPD studies takes the form 1
and for AD studies the form 2, and both types of data will contribute to the
estimation of the shared parameters θ1, ..., θk and σ2

u.
In the model 1 the treatment difference A vs B is θ1−θ2. The fixed sudy effect

in these models means that the between-study information on treatment effect
is not recovered and the model respects the principle of concurrent control[11].
Following the principle of concurrent conrol means that treatment effects are
only judged by within study comparisons at the same time and hence randomi-
sation is reserved.

3 Baseline contrast model

A popular model in the field of network meta-analysis is a model based on
baseline contrasts intoduced by Lu and Ades[6]. The baseline contrast model
for IPD is

yijk = µj + I{k ̸=b(j)}δj,b(j)k + ϵijk (3)

δj =

 δj,12
...

δj,1aj

 ∼ Naj−1


 dtj1tj2

...
dtj1tjaj

 ,

 τ 2 τ 2/2 · · · τ 2/2
...

... . . . ...

τ 2/2 τ 2/2
... τ 2




ϵijk ∼ N(0, σ2
j )

and for AD the model can be derived in similar way as in previous section

ȳ·jk = µj + I{k ̸=b(j)}δj,b(j)k + ϵ̄·jk (4)
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δj =

 δj,12
...

δj,1aj

 ∼ Naj−1


 dtj1tj2

...
dtj1tjaj

 ,

 τ 2 τ 2/2 · · · τ 2/2
...

... . . . ...

τ 2/2 τ 2/2
... τ 2




ϵ̄·jk ∼ N(0,
σ̂2
j

njk
)

where yijk and y·jk are the observed responses for IPD and AD as defined
in previous section. The study specific baseline treatment is b and µj is the
expected value for baseline treatment in study j. The parameter δjbk is the
mean treatment effect for treatment k versus baseline treatment in study j,
which are assumed to be realisations from normal distribution with mean dbk
and variance τ 2. Typically the first treatment in treatment list, so treatment
A in our example, is selected to be reference treatment and treatment effects
are estimated related to the reference treatment A and dAks are considered as
basic parameters and other parameters can be written as their functions(i.e.
dbk = dAk − dAb). The correlation between two random effects δjk is set to
τ 2/2 to induce equal between study variation for all treatment comparisons
(i.e. Var(δbk)=Var(δAk)=Var(δAb)).

3 The relation between two-way linear model and baseline contrast model

If we reparametrise the model 3 by substituting µj = αj + θb(j) + ujb(j) and
δj,b(j)k = θk + ujk − (θjb(j) + ujb(j)) we get

yijk = αj + θb(j) + ujb(j) + I{k ̸=b(j)}(θk + ujk − (θjb(j) + ujb(j))) + ϵijk

= αj + θb(j) + ujb(j) + I{k ̸=b(j)}(θk − θjb(j) + ũjk) + ϵijk

ũjk =

uj2 − ujb(j)
...

ujaj − ujb(j)

 ∼ Naj−1


0
...
0

 ,

2σ2
u σ2

u · · · σ2
u

...
... . . . ...

σ2
u σ2

u
... 2σ2

u




ϵijk ∼ N(0, σ2
j )

(5)

From 5 we can see that essentially the only difference between models 1 and
3 is the assumption about the distribution of random effects.

3 Model fitting

The two models presented in previous section can be fitted in both frequentist
and Bayesian framework. When frequentist based approaches are used for the
models 1 or 3 several methods exists for estimating the variance components.
In this paper we concentrate on maximum likelihood(ML) and restricted max-
imum likelihood(REML) methods. The maximum likelihood method is known
to be biased when estimating the variance components. When REML is used,
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both models give equivalent results which is not the case with ML estimation.
The baseline contrast model(3) is often fitted in bayesian framework using vague
priors for the fixed effects and between study variance. As REML is the pre-
ferred method for estimating the variance components we will concentrate on
the model 1 in the following section when discussing models with interactions.

3 Models with treatment-by-covariate interactions

In this sections we present models with treatment-by-covariate interactions.
We are concentrating on continuous covariates, for example age, weight, blood
pressure, or baseline value of the respose.

3 Model with treatment-by-covariate interaction

Let us first consider a model with treatment-by-covariate interaction for indi-
vidual patient data:

yijk = αj + θk + γjxijk + βkxijk + ujk + ϵijk (6)

In this model γj is the fixed slope for study j and βk is the fixed slope for
treatment k, all the other components are equal to model 1. This model makes
an assumtion that the slopes may vary across studies but the difference in
slopes is fixed across treatments. In practice this could mean that in some
trials the covariate has a higher effect on on the outcome for all treatments,
but the effect between Again, like in model 1 we need a parameter condition
for some of the fixed parameters. As we are more interested in the differences
in covariate effects between treatments a natural choice is to set βK to zero.
Now the parameter γj is the slope for treatment K in study j and β1 to βK−1

represent the difference in slopes compared to treatment K.
Let us now consider model 6 for aggregated data:

y·jk =

∑njk

i=1 yijk
njk

=

∑njk

i=1(αj + θk + γjxijk + βkxijk + ujk + ϵijk)

njk

=
njkαj + njkθk + γj

∑njk

i=1 xijk + βk
∑njk

i=1 xijk + njkujk +
∑njk

i=1 ϵijk
njk

= αj + θk + γjx̄·jk + βkx̄·jk + ujk + ϵ·jk
(7)

If studies are reporting only mean covariate values per study , we observe only
x̄·j·. If, in addition, we assume that due to randomization x.jk ≈ x.j. for all k,
model 7 becomes::

y·jk = αj + θk + γjx·j· + βkx·j· + ujk + ϵ·jk

= λj + θk + βkx·j· + ujk + ϵ·jk
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As we observe only one covariate value per study the terms αj and γjx·j· cannot
be estimated separately. Therefore we write αj+γjx·j· = λj. This model makes
an additional assumption that the mean covariate values are similar for all
treatments within study. Since we are working with randomized clinical trials
this assumption should usually hold in practice.

3 Estimation of the interaction term

[12] In this section we will discuss the estimation of the interaction parame-
ters βk’s and their variance. It is obvious that we lose something when the
treatment-covariate interaction is estimated from the AD and next we will pro-
vide an exemplary calculation to assess the quantitative loss of estimating βks
from AD instead of IPD. To simplify the algebra we will make some assumtions:
1) We will consider a fixed effect model(σ2

u = 0)
2) We assume γj to be same for all studies
3) We assume that all studies have same number of treatments and all treat-
ments have same number of patients
4) We assume that the residual variance σ2

j = σ2
ϵ is the same for each study and

5) We assume that the covariate distribution within study is the same for all
treatments.

The difference in slopes for treatment 1 and 2 is estimated by β̂1− β̂2 and its
variance for individual patient data is given by

varIPD(β̂1 − β̂2) = varIPD(β̂1) + varIPD(β̂2)

=
σ2
ϵ∑J

j=1

∑nj1

i=1(xij1 − x..1)2
+

σ2
ϵ∑J

j=1

∑nj1

i=1(xij1 − x..2)2

=
σ2
ϵ

Jnσ2
x

+
σ2
ϵ

Jnσ2
x

=
2σ2

ϵ

Jnσ2
x

(8)

where

σ2
x ≈

∑n
i=1(xij1 − x..1)

2

n
≈
∑n

i=1(xij1 − x..2)
2

n
. (9)

For aggregated data the variance of β̂1 − β̂2 is

varAD(β̂1 − β̂2) = varAD(β̂1) + varAD(β̂2)

=
σ2
ϵ/n∑J

j=1(x.j1 − x..1)2
+

σ2
ϵ/n∑J

j=1(x.j1 − x..2)2

=
σ2
ϵ

Jnσ2
x̄

+
σ2
ϵ

Jnσ2
x̄

=
2σ2

ϵ

Jnσ2
x̄

where
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σ2
x̄ ≈

∑J
j=1(x.j1 − x..1)

2

J
≈
∑J

j=1(x.j2 − x..2)
2

J
. (10)

As the variance of x can be written as sum of between study variance of mean
of x and within study variance of x we have σ2

x = σ2
x̄ + σ2

x|x̄. By substituting σ2
x

with σ2
x̄ + σ2

x|x̄ in 8 we get

varAD(β̂1 − β̂2) =
σ2
x̄ + σ2

x|x̄

σ2
x̄

varIPD(β̂1 − β̂2)

=

(
1 +

σ2
x|x̄

σ2
x̄

)
varIPD(β̂1 − β̂2)

(11)

From 11 it can easily be seen that when within study variance of x is zero(i.e.
all subjects within the study have the same covariate value) the variance of
β̂1 − β̂2 estimated from aggregated data is the same as the variance estimated
from the individual patient data. When variance of x̄ approaches zero(i.e. all
studies have the same covariate distribution and sample size is increasing) the
variance estimated from aggregated data approaches infinity. Obviously, the
interaction term can not be estimated from AD in this situation.

When we observe individual patient data for studies including treatment 1
and aggregated data for studies including treatment 2 the variance of β̂1 − β̂2
is simply

varcombined(β̂1 − β̂2) = varIPD(β̂1) + varAD(β̂2)

=
σ2
ϵ

Jnσ2
x

+
σ2
ϵ

Jnσ2
x̄

3 Testing for ecological bias

In the AD studies we have only the aggregated values of the covariate and
performing meta-regression with AD is subject to ecological bias. Ecological
bias means that the effect of the covariate to the treatment effect is different
in aggregated level than individual patient level. If we want to test wether
ecological exists we can separate the regression coefficients for IPD and AD as
proposed by Riley et. all in [9] The network meta-analysis model separating
patient-level and study-level interactions can be written as

y∗ijk = αj + θk + γjx
∗
ijk + βw

k (x
∗
ijk − x̄j) + βa

k x̄j + ujk + ϵ∗ijk (12)

where y∗ijk, ϵ
∗
ijk and x∗ijk are yijk, ϵijk, and xijk for IPD studies and y·jk, ϵ·jk,

and x·j· for AD studies, βw
k is the within-study regression coefficient, βa

k is the
accross-study regression coefficient, and x̄j is the mean covariate value in study
j. Note that for AD studies x̄j = xijk following x̄j − xijk = 0 and therefore
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the within-study regression coefficient cancels out for AD studies and only IPD
studies are used to estimate the within-study regression coefficient. From model
12 the presens of ecological bias can be tested by hypothesis H : βa

k − βw
k = 0.

If all studies provide IPD model 12 can be written as

yijk = αj + θk + γjxijk + βw
k xijk + (βa

k − βw
k )x̄j + ujk + ϵijk

= αj + θk + γjxijk + βw
k xijk + βa−w

k x̄j + ujk + ϵijk
(13)

This is the same model as model 6 with an additional term βa−w
k x̄j which is the

effect of mean covariate value in study j. Therefore testing ecological bias is
the same as testing the effect of mean covariate value in IPD. When ecological
bias is absent βa−w

k x̄j = 0 and model 13 is essentially the same as model 6.

3 Application to the example data
3 Implementation

All methods presented above were applied to the example data. For the frequen-
tist models SAS proc mixed[10] was used with restricted maximum likehood es-
timation(REML). For bayesian analyses we used JAGS[8]. In bayesian analyses
we chose uniform prior distribution for τ ,τ ∼ uniform(0, 2) and gamma distri-
bution for the inverse of σ2

jk. For all other parameters we used normal priors
with mean zero and variance 105. We ran three chains with different starting
values and with 100 000 iterations for each with 50 000 burn in samples for each.
All methods were applied to 3 different types of data. First analysis (IPD) was
all studies with IPD, second analysis (IPD-AD) was studies 1-14 with AD and
studies 15-21 with IPD, and third analysis (AD) was all studies with AD.

3 Results

Table 2 shows the relative treatment effects compared to placebo from the
analyses without treatment-by-covariate interactions. We present the results for
models 1 and 3 using both REML and ML estimation and in addition we present
the results for model 3 using bayesian methods. In model 3 analysis the random
effect was added to the relative treatment effects as in model 1 we put random
effects on each treatment arm within study, therefore the τ 2 is expected to be
twice as large as σ2

u. The point estimates for the treatment effects are in close
agreement with all compared methods. From frequentist methods the REML
estimation gives wider confidence intervals and larger between study variance
σ2
u than ML estimation. The ML estimation for model 3 was more conservative

than for model 1, giving wider confidence intervals and larger between study
variance estimate. The results from Bayesian analysis are close to the REML
estimation. With all models and estimation techniques the results from IPD,
IPD-AD, and AD are in close agreement.
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Estimate and 95% Confidence interval
Model Parameter IPD IPD-AD AD
Models 1 and
3

θA 0.689(0.525,0.852) 0.689(0.525,0.853) 0.69(0.526,0.854)

REML θB 0.543(0.419,0.667) 0.544(0.42,0.668) 0.544(0.421,0.668)
θC 0.592(0.294,0.891) 0.594(0.293,0.894) 0.594(0.294,0.893)
θD 0.555(0.364,0.746) 0.556(0.364,0.748) 0.556(0.365,0.748)
θE 0.236(-0.085,0.557) 0.235(-0.084,0.553) 0.235(-0.083,0.552)
θF 0.448(0.289,0.607) 0.449(0.291,0.608) 0.45(0.291,0.608)
θA − θB 0.145(-0.042,0.332) 0.145(-0.042,0.332) 0.146(-0.041,0.333)
σ2
u 0.0148 0.0148 0.0148

Model 1 ML θA 0.678(0.555,0.8) 0.679(0.557,0.801) 0.681(0.559,0.803)
θB 0.545(0.452,0.639) 0.546(0.453,0.639) 0.547(0.454,0.639)
θC 0.571(0.346,0.796) 0.573(0.345,0.8) 0.573(0.345,0.8)
θD 0.554(0.413,0.695) 0.555(0.414,0.696) 0.556(0.415,0.697)
θE 0.244(-0.004,0.492) 0.243(-0.003,0.489) 0.243(-0.003,0.489)
θF 0.441(0.327,0.556) 0.443(0.329,0.557) 0.444(0.33,0.558)
θA − θB 0.132(-0.005,0.269) 0.132(-0.004,0.269) 0.134(-0.002,0.271)
σ2
u 0.005 0.004 0.005

Model 3 ML dPA 0.683(0.545,0.821) 0.684(0.546,0.822) 0.686(0.548,0.824)
dPB 0.544(0.439,0.649) 0.545(0.44,0.65) 0.545(0.441,0.65)
dPC 0.58(0.326,0.834) 0.582(0.326,0.838) 0.582(0.326,0.837)
dPD 0.555(0.395,0.715) 0.556(0.395,0.716) 0.556(0.396,0.716)
dPE 0.241(-0.035,0.516) 0.239(-0.034,0.512) 0.239(-0.034,0.512)
dPF 0.445(0.313,0.577) 0.447(0.315,0.578) 0.447(0.316,0.578)
dBA 0.139(-0.017,0.296) 0.139(-0.017,0.295) 0.141(-0.015,0.297)
τ2/2 0.008 0.008 0.008

Posterior median and 95% Credibility interval
Model Parameter IPD IPD-AD AD
Model 3
Bayesian

dPA 0.69(0.517,0.864) 0.692(0.516,0.869) 0.69(0.518,0.865)

dPB 0.545(0.413,0.676) 0.545(0.414,0.677) 0.544(0.413,0.675)
dPC 0.596(0.281,0.914) 0.595(0.283,0.915) 0.594(0.281,0.916)
dPD 0.555(0.349,0.758) 0.556(0.352,0.763) 0.556(0.352,0.76)
dPE 0.237(-0.104,0.571) 0.234(-0.101,0.567) 0.234(-0.1,0.569)
dPF 0.449(0.281,0.621) 0.451(0.28,0.622) 0.449(0.281,0.619)
dBA -0.145(-0.349,0.054) -0.147(-0.351,0.052) -0.146(-0.348,0.052)
τ2/2 0.0160 0.0163 0.0160

Table 2: Parameter estimates for models without treatment-covariate interactions

Table 3 shows the parameter estimates from the model with treatment ef-
fect modifying covariate x. Figure 2 shows the estimated treatment difference
and 95% confidence interval between treatment A and B at different covariate
values. With all three data types the estimates and confidence intervals are in
close agreement when the covariate value is close to the mean covariate values.
As expected from analytical consideration in section 3.2.2, if the treatment dif-
ference is estimated at lower or higher covariate values the IPD analysis has
much narrower confidence intervals than the analyses containing AD. Also, the
point estimates vary more at more extreme covariate values.
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Estimate and 95% CI
Model Parameter IPD IPD- AD AD
Model 6 θA 0.658(0.501,0.815) 0.656(0.492,0.82) 0.662(0.476,0.849)
REML θB 0.542(0.423,0.661) 0.541(0.412,0.671) 0.543(0.406,0.68)

θC 0.62(0.319,0.922) 0.81(0.093,1.526) 0.807(0.077,1.538)
θD 0.539(0.356,0.722) 0.539(0.347,0.731) 0.531(0.322,0.74)
θE 0.243(-0.067,0.554) 0.062(-1.028,1.152) 0.063(-1.056,1.182)
θF 0.431(0.279,0.583) 0.432(0.272,0.592) 0.441(0.265,0.618)
θA − θB 0.116(-0.063,0.295) 0.115(-0.074,0.304) 0.12(-0.087,0.327)
βA 0.608(0.397,0.818) 0.66(0.412,0.908) 0.821(-0.262,1.905)
βB -0.023(-0.176,0.129) -0.124(-0.832,0.584) -0.158(-0.925,0.609)
βC -0.168(-0.554,0.217) -1.064(-4.064,1.936) -1.069(-4.155,2.017)
βD 0.253(0.01,0.496) 0.341(-0.193,0.874) -0.012(-2.376,2.352)
βE -0.121(-0.542,0.299) 3.096(-16.113,22.305) 3.073(-16.731,22.877)
βF 0.077(-0.109,0.263) 0.206(-0.144,0.556) -0.003(-1.578,1.572)
βA − βB 0.631(0.398,0.864) 0.784(0.045,1.524) 0.98(-0.274,2.233)
σ2
u 0.0129 0.0147 0.0168

Table 3: Parameter estimates for model with treatment-covariate interaction

Figure 2: Estimated treatment effect A vs B at different covariate values with 95%-confidence bands
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4 Simulation

To compare the proposed models and estimation treatment effects and treatment-
by-covariate interaction under a random effect model we performed a simulation
study.

4 Simulation setting

To compare the models presented in section 3 we performed a simulation
study for network meta-analysis with no additional covariates and with one
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effect modifying covariate. The data for the network meta analysis model
were generated with 4 treatments and different number of studies. The num-
ber of IPD studies was 5 in all simulations and number of AD studies varied
(JAD = 5, 10, 20, 30). The IPD studies were generated with treatments A, B,
and C and AD studies were generated with treatments B, C, and D. The within
study standard deviation was 1 and between study standard deviation varied
σu = 1/8, 1/4, 1/2, corrwsponding to moderate, substantial and large hetero-
geneity values. For each combination of JAD and σu we generated 10000 indi-
vidual patient datasets, which were aggregated for the network meta-analysis
when applicable. For model with the treatment-effect modifying covariate the
true value of β1 − β2 was 0.66 and var(x) was 1 with different combinations
of var((̄x)) and var(x|x̄). In the simulated scenarious 1 to 8 the corresponding
values for var(x̄) were 0,0.05,0.1,0.2,0.4,0.6,0.8,1 and and for var(x|x̄)=1-var(x̄).
We simulated the covariate values in two stages, first we simulated the mean co-
variate value x̃ from N(0, σ2

x̄) and second the individual patient covariate value
from N(x̃, σ2

x|x̄). A new single study comparing A nd B would have 90% power
to detect the interaction with the values used in simulation.

4 Results
4 No treatment effect modifying covariates

Figure 3 sows the estimated between study standard deviation(σu) for model
1 and 3. When REML is used for the estimation no bias can be seen in the
estimation of σu. With ML estimation both models are biased downwards and
model 1 is more biased than model 3. With model 1 no differences between
the different data types can be seen when REML is used and ML estimation all
datatypes are in close agreement except when between study standard deviation
is small(σu = 1).

Figure 4 shows the type 1 error rate under the null hypothesis. The desired
level of type 1 error rate is 5%. Model 1 with REML holds the pre-specified
α-level best, varying between 5.2% and 7.1%. When ML estimation is used,
both models are too liberal, for model 1 the type 1 error rate varies between
12.5% and 17.5% and for model 3 between 5.9% and 12.7%. All models are
less liberal when the number of studies is increasing. This is due to the more
accurate estimation of between study standard deviation and the use of normal
approximation for the hypothesis testing.

4 One treatment effect modifying covariates

Figure 5 shows the power for detecting the treatment-by-covariate interaction
with all 8 different scenarios covariate distributions. The grey reference line
represents the power of detecting the treatment-by-covariate interaction in a
single study directly comparing treatments A and B. If all studies provide IPD
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Figure 3: Estimated between study variance in two-way-linear-mixed model and baseline contrast model
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Figure 4: Type 1 error rate for the treatment difference A vs B in two-way-linear-mixed model and baseline
contrast model

the power for detecting interaction is always 100% for first six studies, which
is natural as having IPD for all studies the sample size of is at least ten times
as large as with one single study. When some or all of the studies provide only
AD the power to detect the interaction is close to 5% in scenario 1(the true
mean of covariate distribution is same in all studies), which is the type 1 error
rate for the test. As the variation in mean covariate values increases the power
of analysis with IPD-AD or AD alone increases, and when there is no within
study variation in covariate values (scenario 8) the all three methods give same
results as expected from analytical consideration in Section 3.2.2.

In scenario 3 in the simulation the covariate value variances are on the same
level as in the example data. From the simulation results we can see that in
order to have 90% power for the treatment-by-covariate test with IPD-AD, we
need 20 AD studies if the other heterogeneity is moderate.

5 Discussion

In this article, we provided a framework for the network meta-analysis of clini-
cal trials combining individual patient data and aggregated data. The proposed
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Figure 5: Power to detect the interaction with equal between- and within-study covariate variances, x̄=4 and
var(x|x̄)=4
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approach is based on the ANOVA framework. Same type of models have been
proposed in the model framework based on baseline contrast mode[3, 2]. In our
opinion the parametrization of the ANOVA framework is easier to understand
and implement than the baseline contrast parametrisation and therefore we pre-
fer the ANOVA approach. When adding covariates and treatment-by-covariate
interactions to the models it is straightforward with the ANOVA framework
whereas with the baseline contrast model the additional complication of the
model parametrisation inherits to the interaction terms as well even though the
treatment-covariate interactions are typically fitted as fixed effects.

We focused on situation where one of the treatments in the network has in-
dividual patient data and we are comparing with a treatment providing only
aggregated data. This kind of situation can arise in in pharmaceutical indus-
try, when two compounds are developed by different companies and it hasn’t
been possible to use the competitor compound as a comparator in the in-house
studies.

We showed by simulation that when using the REML estimation for con-
tinuous outcome the ANOVA model holds the pre-specified type 1 error rate
and the estimated between-study variance is closer to the true value than when
using maximum likelihood estimation with the ANOVA model or with baseline
contrast model. It was also shown by simulation that when no treatment-by-
covariate interactions are present in the model the aggregated data is sufficient
for performing the network meta-analysis.

We provided the analytical calculations for the variance of the interaction
for fixed effect model and we investigated the situation under random effect
model by simulation. When network meta-analysis is performed with aggre-
gated data and additional treatment effect modifying covariates are included in
the model the distribution of the covariate values between studies is crucial. If
all studies have the same covariate distribution most of the information about
the interaction will be lost when when the data is aggregated.

We systematically evaluated the number of AD studies needed to estimate
the treatment-by-covariate with certain level of power. Our simulation study
shows that both the covariate heterogeneity and other heterogeneity in the
network have an effect on the power. The more heterogeneinty in the mean
covariate values the higher the power and the more other heterogeneity the lower
the power. In other words this means that in order to use AD for analysing
the treatment-by-covariate interactions, the studies should be as heterogeneous
as possible when it comes to the covariate of interest but as homogeneous as
possible respect to all other covariates.

We only covered continuous and normally distributied outcomes in our paper.
When other type of responses are modelled, both the estimation of between
study variance and treatment covariate interactions is affected. First, we can’t
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use REML for other than normal data and the estimation of between study
variation with will be biased. Second when the link funktion is not identity
function the derivation of AD model is not as straightforward as with linear
models.

In summary, we conclude that when treatment-by-covariate interactions are
of interest one should always try to get access to some IPD for all treatment
arms. If the NMA is limited to the use of AD the analyst should carefully evalu-
ate the covariate distributions of the AD studies before making any statemants
on the interactions.
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Abstract: 

In this manuscript a network meta-analysis of pain medication was conducted and compared 

with Cochrane indirect analyses. The network analysis was based on clinical trials of acute 

postoperative pain. The 261 trials published between 1966 and 2016 included 39,753 patients 

examining 52 active drug and dose combinations (27,726 given active drug and 12,027 

placebo), in any type of surgery (72% dental). The outcome of interest was a binomial 

endpoint measuring if certain degree of pain relief was achieved or not. The network meta-

analsis was conducted using generalized mixed models with arm-based modelling. 

This chapter is published as: 

Moore, R.A., Derry, S., Wiffen, P.J., Banerjee, S., Karan, R., Glimm, E., Wiksten, A., 
Aldington, D., Eccleston, C., 2018. Estimating relative efficacy in acute postoperative pain: 
network meta-analysis is consistent with indirect comparison to placebo alone. PAIN 159, 
2234–2244. https://doi.org/10.1097/j.pain.0000000000001322 
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Nonproportional Hazards in Network Meta-Analysis: Efficient Strategies
for Model Building and Analysis

Anna Wiksten, MSc, Neil Hawkins, PhD, Hans-Peter Piepho, PhD, Sandro Gsteiger, PhD*
* Addre
Email: s

1098-30
A B S T R A C T

Objectives: To develop efficient approaches for fitting network meta-analysis (NMA) models with time-varying hazard ratios
(such as fractional polynomials and piecewise constant models) to allow practitioners to investigate a broad range of models
rapidly and to achieve a more robust and comprehensive model selection strategy.

Methods: We reformulated the fractional polynomial and piecewise constant NMA models using analysis of variance–like
parameterization. With this approach, both models are expressed as generalized linear models (GLMs) with time-varying
covariates. Such models can be fitted efficiently with standard frequentist techniques. We applied our approach to the
example data from the study by Jansen et al, in which fractional polynomial NMA models were introduced.

Results: Fitting frequentist fixed-effect NMAs for a large initial set of candidate models took less than 1 second with standard
GLM routines. This allowed for model selection from a large range of hazard ratio structures by comparing a set of criteria
including Akaike information criterion/Bayesian information criterion, visual inspection of goodness-of-fit, and long-term
extrapolations. The “best” models were then refitted in a Bayesian framework. Estimates agreed very closely.

Conclusions: NMA models with time-varying hazard ratios can be explored efficiently with a stepwise approach. A frequentist
fixed-effect framework enables rapid exploration of different models. The best model can then be assessed further in a
Bayesian framework to capture and propagate uncertainty for decision-making.

Keywords: fractional polynomial models, network meta-analysis, nonproportional hazards time-to-event data, piecewise
exponential models.

VALUE HEALTH. 2020; 23(7):918–927
Introduction

Time-to-event (TTE) data showing nonproportional hazards are
becoming increasingly common in network meta-analysis. Two
major reasons are the inclusion of trials with relatively long follow-
up and the advent of interventions with novel mechanisms of ac-
tion. For example, the proportionality between hazard curves for
overall survival or progression-free survival may be a reasonable
approximation for short durations, but the assumption can become
unrealistic as follow-up time increases.1,2 In other instances, an
innovative new treatment class can make the proportional hazards
(PH) assumption unlikely. Cancer immunotherapy, for example,
typically shows a delayed separation of survival curves and a long-
term survival benefit when compared with chemotherapy.3 PH
cannot hold in such situations. Also, it is worth noting that com-
posite endpoints such as progression-free survival are more likely
to display nonproportional hazard ratios (HRs) than their individual
component parts may suggest.4
ss correspondence to: Sandro Gsteiger, PhD, F. Hoffmann-La Roche Ltd, Div
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Network meta-analysis (NMA) requires particular care
regarding the modeling of hazard ratios over time for 2 main
reasons. First, NMA models may combine trials with differences in
follow-up time. Within a single randomized controlled trial, the
hazard ratio can be interpreted as a weighted average of hazard
ratios over small time intervals (on the log scale).5 Therefore, the
overall hazard ratio remains a valid (although arguably limited)
summary and is reported as a primary measure of treatment effect
even if hazards are not proportional throughout the trial period
(see, for example, recent cancer immunotherapy trials).6-8 How-
ever, the overall hazard ratio depends on the follow-up time of the
trial. Therefore, the synthesis of hazard ratios from different trials
violating the PH assumption could be confounded. Second, NMA
results often feed into health economic models involving long-
term extrapolations. Modeling of treatment effects beyond the
observed data represents a major challenge whether PH holds or
not. But time-varying hazard ratios can heavily affect conclusions
and need careful consideration.
ision Pharma, Global Access, Grenzacherstrasse, CH-4070 Basel, Switzerland.
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NMAs with TTE data are most commonly based on hazard ratio
estimates.9 Two simple alternative approaches that substitute
different consistency assumptions are area under the curve (AUC)
models and accelerated failure time (AFT) models. For AUC
models, treatment effects are summarized by mean differences in
the area under the survival curve over a prespecified interval.10

Such models are very general because they do not require any
parametric assumptions (unless follow-up times are very
different, in which case some tail area estimation using parametric
models may be needed). The estimates per se are meaningful
because the AUC estimates the average restricted mean survival
time. However, the approach does not allow for longer-term
extrapolation, and the synthesis imposes the constraint that dif-
ferences in mean survival are consistent across trials and inde-
pendent of differences in absolute survival. Another alternative
replaces the PH assumption by a proportionality assumption on
the time axis itself (ie, the treatment effects are modeled via ac-
celeration factors in an AFT model).11 In this case, the synthesis
imposes the constraint that ratios of acceleration factors are
consistent across trials and independent of differences in absolute
survival. This may work in some cases; however, for example, the
pattern seen with cancer immunotherapy versus chemotherapy
may not be accurately described with AFT models.

More general approaches model the hazard ratio curves over
time. A prominent approach introduced by Jansen12 uses frac-
tional polynomials to describe the log-hazards. This also implies
that the log-hazard ratios will be fractional polynomials of the
same order. In this case, the synthesis imposes the constraint that
all (two in a first-order model, three in a second-order model, etc)
of the relevant parameters in the polynomial are independently
consistent across trials and independent of differences in absolute
survival. The approach is very flexible, but fractional polynomials
can be difficult to use in practice (sensitivity to starting values,
potential convergence issues). In addition, modeling the observed
survival curves more precisely will not guarantee valid extrapo-
lations; more complex models may lead to biologically implau-
sible long-term predictions. Under such circumstances, either
simpler models may be preferred or additional assumptions such
as those described by Jackson et al13 may be applied to ensure
plausible predictions. Piecewise constant models provide another
option: the PH assumption is made within segments, but not
overall.14 Typically, baseline hazards are modeled with the expo-
nential distribution. Although the approach is quite simple, any
desired level of flexibility can be achieved by increasing the
number of segments. More recently, Freeman and Carpenter2

presented an NMA using the Royston-Parmar models (restricted
cubic spline models). The increased flexibility comes at the price
of considerable additional complexity.

So far, the fractional polynomial model has been implemented
using Bayesian Markov chain Monte Carlo techniques. Although
clearly the Bayesian framework provides many appealing prop-
erties, complex models may be time-consuming to fit using
Markov chain Monte Carlo simulation methods, and model
building may not be straightforward. To explore many candidate
models quickly, efficient strategies for model building and selec-
tion are needed for complex TTE NMAs. In this step, a frequentist
framework providing point and interval estimates is often
sufficient.

In this work, we reformulate NMA models with time-varying
hazard ratios using analysis of variance (ANOVA) parameteriza-
tion.15 This approach allows fitting the corresponding fixed-effect
NMAs in a frequentist framework via standard generalized linear
model (GLM) routines, which are available in all major statistical
packages such as R and Stata.16,17 We show how to formulate
Page 41 
fractional polynomials and piecewise exponential (PWE) models
in this framework and how PH models can be expressed as special
cases. The efficiency of the available GLM fitting routines allows
exploring many such complex TTE NMA models very quickly. We
illustrate the approach by reanalyzing the non–small cell lung
cancer (NSCLC) example from the original article by Jansen,12 in
which fractional polynomial NMAs were introduced. Using the
same data as Jansen will ease comparison of approaches, but it
should be noted that the evidence base in NSCLC has changed
considerably since.18
Methods

GLMs for Grouped Survival Data

From published Kaplan-Meier curves, the so-called Guyot al-
gorithm allows the approximation of the underlying individual
participant data (“pseudo” IPD).19 For model fitting, it is conve-
nient to group this underlying individual participant data into
intervals. For study j and treatment k, we thus obtain grouped
survival data given by the number of events rjkt , and the number at
risk njkt in a time interval ½t 2 Dt; t�.

Prentice and Gloeckler showed that grouped survival data can
be modeled with a binomial likelihood rjktwBinðpjkt ;njktÞ and
complementary log-log link function,

cloglog
�
pjkt

�
¼ hjkt1ln

�
Dtjkt

�
;

where hjkt is the linear predictor for treatment k in study j at time t
and lnðDtjktÞ is the offset term accounting for different lengths of
time intervals.20 The hazard function hjkt of an underlying
continuous-time model (with survivor function S(t)) relates to the
event probability pjkt via

pjkt ¼
Sðt2DtÞ2SðtÞ

Sðt2 DtÞ ¼12 e

2

Zt

t2Dt

hðuÞdu
y12e2Dt,hjkt :

The approximation in the last step above assumes the hazard is
constant over the interval ½t 2 Dt;t�, which should be acceptable if
the time steps are relatively small. Transforming this expression
leads to the following approximation (corresponding to equation
[8] from Jansen12),

hjkt y2ln
�
12 pjkt

�.
Dtjkt ;

which shows that

ln
�
hjkt

�
y cloglog

�
pjkt

�
2 ln

�
Dtjkt

�¼ hjkt,

This shows that any survival model with linear log-hazard func-
tion can be fitted as a GLM for grouped survival data. Note that
“linear” means the unknown model parameters enter the log-
hazard function linearly; it does not refer to the time de-
pendency, which can be of any shape.
Specifying Time-Varying Hazard Ratio NMA Models Using
Arm-Based Parameterization

The GLM approach for grouped survival data allows for fitting a
large range of NMA models with time-varying hazard ratios. This
is best seen when using the arm-based or ANOVA
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Table 1. Models applied to the illustrative example and AIC values from frequentist fixed-effect model fits.

Model g0ðtÞ g1ðtÞ g2ðtÞ AIC

Exponential (PH) 1 1053.9

PH with Weibull baseline survival (q1 ¼ 0Þ 1 lnðtÞ 958.3

First-order FP, p1 ¼ 1 , Gompertz 1 t 969.1

First-order FP, p1 ¼ 0 , Weibull 1 lnðtÞ 955.1

First-order FP, p1 ¼ 2 2 1 t22 924.5

Second-order FP, p1 ¼ 2 2, p2 ¼ 1 1 t22 t 866.5

Piecewise exponential with 1 cut point 1 Iðt >2Þ 920.6

Piecewise exponential with 2 cut points 1 Ið2,t # 10Þ Iðt >10Þ 895.0

Piecewise exponential with 2 cut points 1 Ið2,t # 12Þ Iðt >12Þ 853.4

AIC indicates Akaike information criterion; FP, fractional polynomial; PH, proportional hazards.
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parameterization of NMA.21,22 The general form for hjkt in a fixed-
effect NMA with time-varying hazard ratios is

hjkt ¼
XM

m¼0

�
amj 1 qmk

�
gmðtÞ;

where amj are the study-specific coefficients for study j, the qmk are
the treatment-specific coefficients for treatment k, M is the
number of time-varying terms, and gm(t) are a set of time-varying
“basis” functions. For example, by setting gmðtÞ ¼ tpm for a set of
prespecified exponents pm, we obtain the fractional polynomial (of
Mth order) NMA models introduced in Jansen.12 Models with as
few as 1 or 2 time-varying terms lead to great flexibility of the
resulting hazard ratio shapes, such as monotonic increasing/
decreasing, bathtub, and inverse-bathtub shaped. For practical
purposes, M = 1, 2 will often be sufficient.

Similarly, we can express PWE models via step functions. For
example,

hjkt ¼a0j 1 q0k1
�
a1j 1 q1k

�
Iðt$C1Þ

provides a model with 1 cut point at t = C1. In this equation, a0j
corresponds to the log-hazard over the first segment and a1j to the
difference in log-hazards between the second and the first seg-
ments for study j for the reference treatment (whether included in
the study or not). The term q0k corresponds to the contrast be-
tween treatment k and the reference treatment (regardless of
study) over the first segment, and q1k is the difference in contrasts
between the second and first segment. PH models correspond to
the special case

hjkt ¼
XM

m¼0
amjgmðtÞ1q0k;

where the higher-order qmk terms are restricted to zero. Also, the
Gompertz, Weibull, and exponential models fit into this frame-
work (Table 1).

The vectors (q0k, q1k, ., qMk) model the M11 dimensional
treatment effect for comparing treatment k to a reference treat-
ment (k = 1) and qm1 = 0 for all m for identifiability. The hazard
ratio comparing treatment B versus treatment A at time t in this
NMA model is

HRABðtÞ¼ e
PM

m¼0
ðqmB2qmAÞgmðtÞ,

Imposing consistency at the parameter level (qmk) leads to con-
sistency of log-hazard ratios for all time points t, as shown in
Ouwens et al.23
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When using fixed-effect models, the more common contrast-
based parametrization of NMA and the arm-based NMA parame-
terization will be equivalent. The contrast-based formulation can
be obtained by reparameterization, namely,

hjkt ¼

8>><
>>:

XM

m¼0
mmjbgmðtÞ; if k ¼ b; b ¼ A;B;C;.

XM

m¼0

�
mmjb1dmbk

�
gmðtÞ; if k alphabetically after b

where mmjb ¼ amj 1 qmb and dmbk ¼ qmk 2 qmb. In this notation, b
stands for the baseline treatment in study j (and treatments have
been suitably ordered and labelled A, B, C,...). The equivalence
between the 2 parameterizations has been discussed in more
detail for models without time-varying terms,15,21 and these re-
sults extend naturally to our case.

It should be noted that the fixed study effects in our model
ensure that all inference is based on within-study information
(contrasts). This means the approach does respect randomization,
which is an important feature of valid cross-trial synthesis
methods. Other authors use a different notion of “arm-based
models.” For them, arm-based models are formulated in a way
that recovers arm-level interstudy information, for example, by
putting an exchangeability assumption on arm-level (absolute)
outcomes from common treatments.24-26

Extension to Random-Effects Models

The model can be extended to account for between-trial het-
erogeneity by adding random treatment by study interaction
terms.15,21,27 In the most general version, such terms are added to
each function gm(t), leading to multivariate random effects.

Inpractice, a simplermodel restricted to random intercept terms
may suffice.12 Such a restrictedmodel would assume heterogeneity
on the proportional part but not on the time-varying part of the
hazard functions. In this case, the linear predictor becomes

hjkt ¼a0j 1 q0k 1ujk1
XM

m¼1

�
amj 1 qmk

�
gmðtÞ;

where ujk is a random intercept term with E(ujk) = 0 to model
between-trial heterogeneity. Different assumptions are possible to
model heterogeneity, the simplest being independent normally
distributed random effects with (same) variance Var(ujk) = s2. The
Supplementary Material (found at https://doi.org/10.1016/j.jval.2
020.03.010) provides R and SAS code to fit such random-effects
models.
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Figure 1. Kaplan-Meier curves for the example data.
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More general random-effects models and the relationship be-
tween different model parameterizations have been discussed (for
NMA models without time-varying terms) in the aforementioned
literature.15,21,27 These results could be extended to our case,
although this is beyond the scope of this work.

One should note that maximum likelihood estimation can be
problematic in situations such as this, in which the number of
parameters increases with the number of studies. Recent work
shows that satisfactory results are achieved when using penalized
quasi-likelihood/pseudo-likelihood methods.27,28

In what follows, we will concentrate on fixed-effect NMA
models because our focus is on modeling the underlying time-
varying hazard ratios.

Model Fitting, Model Building, and Model Selection

The models presented earlier can be fitted in a Bayesian or a
frequentist framework. In the former case, the model needs be
Page 43 
completed with suitable priors. For the frequentist analysis,
standard programs such as glm() in R or PROC GLIMMIX in SAS
may be used.

If flat priors were used, the fixed-effect NMAmodel would lead
to estimates in close agreement between the Bayesian and the
frequentist fits, and also the (posterior mean) deviance informa-
tion criterion (DIC) from the Bayesian fit should be close to the
(frequentist) Akaike information criterion (AIC).

Bayesian analysis using the random-effects model would
require careful specification of the prior for between-study het-
erogeneity. Suitable priors for the random effects in (network)
meta-analysis have been discussed elsewhere.29-35

Time-varying hazard ratio models are much more flexible
than traditional TTE NMAs based on (single) hazard ratio esti-
mates. Such flexibility comes at some risk of overfitting and
requires careful model building and model selection strategies
(see also chapter 10 of Dias et al35). Model selection should
of 75



Figure 2. Hazard ratios (other treatments vs docetaxel) over time (frequentist fixed-effect models).
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consider model fit but also other aspects. We suggest analysts
assess their models by inspecting model fit statistics (such as
AIC or DIC), correlations between the multidimensional treat-
ment effect estimates, visual inspection of model predictions
against observed data, and the clinical plausibility of model
extrapolations. Because the GLM approach allows the explora-
tion of a large number of models very quickly, we propose a 2-
step strategy for model building. In the first step, a large set of
candidate models are fitted in a fixed-effect frequentist frame-
work. This step serves to identify the “best” model(s), which
should perform well on all criteria listed earlier. For the second
step, the best structure is put into the Bayesian framework, in
which both fixed- and random-effect(s) versions can be
explored (the Bayesian implementation follows closely the
example in Jansen12).

In cases in which overfitting is a concern, simplified models
may be useful where the higher-order time-varying treatment
effects qmk are set to zero, whereas the corresponding study effects
Page 44 
amj are kept in the model. This allows flexibility for the baseline
model but reduces the risk of overfitting by putting stronger re-
strictions on the treatment effect (including the special case of PH
as discussed previously).

Consistency Assessment

The ANOVA-like parameterization allows for consistency
assessment by the introduction of trial type and trial type by
treatment interaction terms, where trial type refers to the set of
treatments being compared in a given study.22 In principle, our
model could be extended by adding such interactions on all
relevant terms (eg, g0, g1, g2).

Illustrative Example

In the next section, we will apply the presented models to the
example data from Jansen.12 The example consists of survival data
of 75



Figure 3. Predicted survival, Kim (2008)36 as baseline survival (frequentist fixed-effect models).
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from 7 studies and 4 treatments (docetaxel, pemetrexed, gefitinib,
and best supportive care [BSC]; Figure 1).
Results

We fit the first- and second-order fractional polynomial and
PWE fixed-effect models using ANOVA parametrization in a fre-
quentist framework. For fractional polynomials, we included all
models presented in the original publication by Jansen.12 For PWE
models, we explored models with 1 or 2 cut points in the observed
time range. For all fractional polynomial models, the AIC were
similar to the DIC reported in Jansen12 and also the parameter
estimates matched. Results for all models can be produced with
the R-code given in the Supplementary Material on the journal
webpage.

Table 1 presents the AIC from a set of selected fractional
polynomial and PWE models. The fractional polynomial model
Page 45 
with the smallest AIC is the model with p1 ¼22 and p2 ¼ 1 for tpm .
From the PWE models, the smallest AIC has the model with two
cut points, one at 2 months and one at 12 months. The AIC for the
best PWE model is 853.4 and for the best fractional polynomial
model 866.5. If the model selection would be made purely based
on AIC (or DIC in Bayesian framework), the PWE model with cut
points at 2 and 12 months would be selected. Figure 2 shows the
hazard ratios over time for the 9 models presented in Table 1. For
all models, the comparison of pemetrexed versus docetaxel and
gefitinib versus docetaxel produce similar shapes for hazard ratio
over time. For the comparison of BSC versus docetaxel, the shape
of the hazard ratio over time varies between different models. For
the best model based on AIC, the PWE with two cut points, the
hazard ratio versus docetaxel increased over time, whereas for the
best fractional polynomial model, the hazard ratio initially
increased but then decreased over time.

Figure 3 presents the predicted survival curves for the selected
models using Kim (2008)36 as the baseline study. Although the
of 75



Figure 4. Predicted versus observed data on log-hazard scale for the piecewise exponential and fractional polynomial models with
lowest Akaike information criterion (frequentist fixed-effect models).
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hazard ratios have very different shapes for the best fractional
polynomial and PWE model, the predicted survival from both
models are similar. It should be noted that the choice of baseline
study can markedly affect the absolute survival estimates
(whichever approach is used, the glm framework proposed here
or the original method by Jansen). Supplementary Figure 1 shows
the predicted survivor functions from the second-order fractional
polynomial model obtained for each study in the data set selected
as baseline. In practice, the choice of baseline fromwhich to derive
absolute outcomes requires special care.35 In some cases, one
study in the network may be a natural choice (as, for example, a
pivotal trial for a new compound of interest). In other cases, an
Page 46 
average baseline estimate from the studies in the network may be
more suitable. Finally, a baseline estimate based on external data
may be most appropriate in special circumstances too.

Figure 4 shows the observed data versus the predicted for the
models with lowest AICs. The data are presented on the linear
predictor scale. For Chang (2006)37 and Cufer (2006),38 there are
only single data points in the last segment of the PWE model, and
therefore the predicted value will match exactly the observed.

For comparison, we also fitted the second-order fractional
polynomial model and one PWE model in a Bayesian framework
using the baseline-contrast parameterization. Results were very
similar between the frequentist and Bayesian fits (Table 2).
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Table 2. Parameter estimates for the selected (fixed-effect) models.

Second-order fractional polynomial

Frequentist glm fit Bayesian baseline contrast fit

Estimate 95% confidence interval Posterior median 95% credible interval

BSC vs docetaxel q0B 1.668 (1.127-2.21) d0BA 1.672 (1.133-2.212)

Gefitinib vs docetaxel q0C 0.172 (20.061 to 0.405) d0CA 0.172 (20.063 to 0.403)

Pemetrexed vs docetaxel q0D 0.127 (20.454 to 0.707) d0DA 0.126 (20.455 to 0.71)

BSC vs docetaxel q1B 25.836 (28.479 to 23.193) d1BA 25.866 (28.536 to 23.297)

Gefitinib vs docetaxel q1C 20.055 (21.445 to 1.335) d1CA 20.056 (21.44 to 1.337)

Pemetrexed vs docetaxel q1D 21.313 (24.404 to 1.779) d1DA 21.312 (24.445 to 1.735)

BSC vs docetaxel q2B 20.106 (20.167 to 20.045) d2BA 20.107 (20.168 to 20.047)

Gefitinib vs docetaxel q2C 20.015 (20.032 to 0.003) d2CA 20.015 (20.032 to 0.003)

Pemetrexed vs docetaxel q2D 20.008 (20.06 to 0.044) d2DA 20.008 (20.061 to 0.043)

Piecewise exponential with 2 cut points, 2 and 12 months

Frequentist glm fit Bayesian baseline contrast fit

Estimate 95% confidence interval Posterior median 95% credible interval

BSC vs docetaxel q0B 0.045 (20.35 to 0.44) d0BA 0.042 (20.374 to 0.436)

Gefitinib vs docetaxel q0C 0.144 (20.098 to 0.385) d0CA 0.147 (20.092 to 0.39)

Pemetrexed vs docetaxel q0D 20.194 (20.703 to 0.315) d0DA 20.195 (20.723 to 0.317)

BSC vs docetaxel q1B 0.749 (0.323 to 1.175) d1BA 0.752 (0.326-1.197)

Gefitinib vs docetaxel q1C 20.082 (20.348 to 0.185) d1CA 20.085 (20.351 to 0.178)

Pemetrexed vs docetaxel q1D 0.222 (20.331 to 0.775) d1DA 0.222 (20.332 to 0.797)

BSC vs docetaxel q2B 1.254 (21.552 to 4.061) d2BA 1.272 (22.421 to 4.918)

Gefitinib vs docetaxel q2C 20.257 (20.567 to 0.053) d2CA 20.262 (20.572 to 0.047)

Pemetrexed vs docetaxel q2D 0.138 (20.52 to 0.797) d2DA 0.139 (20.53 to 0.809)

BSC indicates best supportive care.
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Differences between the 2 frameworks would be mainly expected
in the case of random-effects models with few degrees of freedom
to estimate heterogeneity.
Discussion

TTE NMAs with time-varying hazard ratios can be fitted effi-
ciently if the underlying log-hazard curves decompose as linear
models. We have shown that both the now-prominent fractional
polynomial models and the extremely flexible PWE models fall
within this class. Via ANOVA parameterization of NMA, parameter
estimation for these models is achieved via standard GLM rou-
tines. The frequentist fixed-effect version of these NMA models
can serve to explore a large set of candidate structures rapidly.
Analysts can therefore try out many hazard ratio shapes, compare
model fit, and explore model properties and derived parameters.
The best model from this step can then be analyzed more
thoroughly.

Our fitting and model-building scheme works with grouped
survival data, similar to the work in which fractional poly-
nomial NMAs were introduced.12 This is a limitation because in
principle, the underlying continuous TTE data should be more
informative than a discretized version. Also, all assumptions
needed for NMA apply. Another limitation relates to the flex-
ibility to use many different models itself. Although complex
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models with time-varying hazard ratios are appealing concep-
tually, they may be difficult to interpret and communicate.
Fractional polynomials need upfront selection of order and
exponents, and PWE models require selection of the number
and location of cut points. In rare cases with a particularly
large evidence base, structural unknowns such as the cut
points might be estimated from the data. More often, clinical
expertise may guide such choices. A structured framework for
selecting these model “constants” is currently lacking and re-
mains an area for future research. Our approach should not be
taken as an invitation to fit blindly a large set of models
without conceptual underpinning (“more” is not necessarily
“better”).

The ability to fit complex TTE NMA models with standard GLM
routines is certainly a strength of our approach. Such routines
exist in all major statistical packages, are well developed and
robust, and fitting is usually extremely fast. Practical experience
shows that, in particular, the fractional polynomial models can be
time-consuming to fit in a Bayesian framework.39 Even for the
simple example used here, some models take several minutes to
converge on a standard laptop. Although the frequentist result is
certainly less informative than a full posterior, fitting a large set of
candidate models in less than a second provides a very useful tool
to the practitioner.

Our approach breaks down complexity of TTE NMAs with
time-varying hazard ratios by first focusing on model structure,
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for which a frequentist fixed-effect framework is appropriate.
More detailed analysis including modelling of heterogeneity (via
random effects) and capturing and propagation of uncertainty (via
Bayesian methods) can follow in a second step. Similar guidance
has been given by Gelman and Hill40 for multilevel hierarchical
model building. This acknowledges that structural model selection
goes beyond simple criteria of fit, such as AIC or DIC. Additional
factors such as biological knowledge and plausibility of extrapo-
lations matter greatly as well.35 NMA results often feed into eco-
nomic evaluations, where Bayesian methods have proven
particularly useful to support decision-making.41-43

We did not explore the full space of TTE models for which our
approach applies. The ANOVA-based parameterization works, in
principle, whenever the log-hazard is a linear function of the
model parameters. For example, spline-based log-hazards could
also be used. Such models would closely resemble Royston-
Parmar models, in which the log-cumulative hazard is expressed
as a spline function.44 It remains an open research question how
far beyond fractional polynomials and PWE models the approach
presented here can reach. We also focused on the fixed-effect
NMA case, although random-effects NMAs can be expressed via
the ANOVA parameterization and generalized linear mixed model
(GLMM) fitting routines are well established. However, the
baseline-contrast parameterization and the arm-level ANOVA
parameterization can lead to different interpretations of the
random effects.21 Appropriate restrictions on the (in this case
multivariate) random effects would be required. This can be
handled using residual pseudo-likelihood as shown in Piepho
et al.27 Finally, we have only briefly touched upon the (important)
topic of inconsistency assessment. The model could be extended
to include type 3 treatment interactions to assess inconsistency.
However, such an assessment at the level of each time-varying
component might be difficult to interpret in practice. Optimal
strategies for testing inconsistency with complex models repre-
sent an area for future research.

Our work extends the fundamental paper by Jansen12 in which
fractional polynomial NMAs were introduced. Although conceptu-
ally appealing, these models proved difficult to use in practice. Our
approach makes a broad set of complex TTE models, including
fractional polynomials, readily available for practitioners. Also, our
approach fosters a holistic view on model building as typically
needed in medical decision making. NMA often provides compar-
ative effectiveness estimates as a basis to subsequent health eco-
nomic evaluation. This requires thorough evaluation of model
properties beyond statistical fit. Our approach allows exploring
meaningful candidate model structures more efficiently. This will
help analysts to better investigate, understand, and communicate
the properties of time-varying hazard ratio models. Hopefully, this
will ultimately result in better decision making when nonpropor-
tional hazards TTE data are part of the evidence base.

Supplemental Material

Supplementary data associated with this article can be found in the
online version at https://doi.org/10.1016/j.jval.2020.03.010.
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Hartung–Knapp method is not always
conservative compared with fixed-effect
meta-analysis
Anna Wiksten,a*† Gerta Rückerb and Guido Schwarzerb

A widely used method in classic random-effects meta-analysis is the DerSimonian–Laird method. An alternative
meta-analytical approach is the Hartung–Knapp method. This article reports results of an empirical compari-
son and a simulation study of these two methods and presents corresponding analytical results. For the empirical
evaluation, we took 157 meta-analyses with binary outcomes, analysed each one using both methods and per-
formed a comparison of the results based on treatment estimates, standard errors and associated P-values. In
several simulation scenarios, we systematically evaluated coverage probabilities and confidence interval lengths.
Generally, results are more conservative with the Hartung–Knapp method, giving wider confidence intervals and
larger P-values for the overall treatment effect. However, in some meta-analyses with very homogeneous indi-
vidual treatment results, the Hartung–Knapp method yields narrower confidence intervals and smaller P-values
than the classic random-effects method, which in this situation, actually reduces to a fixed-effect meta-analysis.
Therefore, it is recommended to conduct a sensitivity analysis based on the fixed-effect model instead of solely
relying on the result of the Hartung–Knapp random-effects meta-analysis. Copyright © 2016 John Wiley & Sons,
Ltd.

Keywords: meta-analysis; Hartung–Knapp method; DerSimonian-Laird method; empirical evaluation

1. Introduction

A common problem in meta-analysis is the decision between fixed-effect and random-effects model. In
a fixed-effect model, the true treatment effect is assumed to be the same in all studies, and the observed
treatment effects vary only because of random errors inherent in each study. This assumption is often not
reasonable because studies vary by several items, for example, inclusion criteria, geographical location
or the implementation of interventions, which typically leads to greater heterogeneity between-study
specific treatment estimates. Treatment effects are called heterogeneous if the observed treatment effects
vary more than we would expect by chance. In this case, the use of a random-effects model is commonly
recommended.

The DerSimonian–Laird method [1] is the most widely used method to estimate the between-study
variance in systematic reviews and meta-analyses. For example, this is the only method available in
Review Manager 5 [2], the software programme of the Cochrane Collaboration to prepare and maintain
Cochrane reviews. Several other methods to estimate the between-study variance have been proposed
[3, 4].

Hartung and Knapp [5–7] introduced an alternative meta-analytical approach based on a different vari-
ance estimator in the random-effects model. Sidik and Jonkman [8] independently proposed the same
method a couple of years after the initial publication by Hartung [5]. Accordingly, this approach is some-
times called the Hartung–Knapp–Sidik–Jonkman method [9]. It has been shown in simulations [7,9,10]
that a test based on the Hartung–Knapp modification holds the prespecified significance level much better
than tests based on the classic fixed-effect and random-effects model.

aStatistical Methodology, Development, Novartis Pharma AG, Basel, Switzerland
bInstitute for Medical Biometry and Statistics, Medical Center - University of Freiburg, Freiburg, Germany
*Correspondence to: Anna Wiksten, Statistical Methodology, Development, Novartis Pharma AG, CH-4002 Basel,Switzerland.
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In recent publications, the use of the classic DerSimonian–Laird method has been condemned, and the
Hartung–Knapp method was suggested as possible alternative both in simulations [9] and in empirical
evaluations either based on 689 meta-analyses from Cochrane reviews [9] or a single classic example
[11].

Note, both classic random-effects method and Hartung–Knapp modification use the same pooled
treatment-effect estimate; however, formulae for standard errors are different, and quantiles of the stan-
dard normal distribution (classic method) and t-distribution (Hartung–Knapp approach) are used in order
to construct confidence intervals and calculate P-values. These differences affect the length of confidence
intervals and P-values.

The aim of this article is to compare the Hartung–Knapp method and standard DerSimonian–Laird
method empirically in a set of 157 meta-analyses and to support the findings with analytical and sim-
ulation results. We use the set of 157 meta-analyses with binary outcomes provided by Jüni [12] and
described by us in [13]. The number of studies in each meta-analysis ranges from 4 to 66 (median 8), and
the number of patients in the component studies ranges from 2 to 15280 (median 103). For each study
within each meta-analysis, data are available on the number of patients and number of events in each
treatment group.

The plan for the rest of the article is as follows. Section 2 reviews the compared methodologies. In
Section 3, we briefly describe our empirical evaluation and report the results. In Section 4, we present
results from a simulation study comparing the two methods, and in Section 5, we discuss our findings.

2. Review of the compared methods

In this section, we briefly review the fixed-effect model and two random-effects approaches, namely the
classic DerSimonian–Laird and Hartung–Knapp methods. All methods require from each included study
an estimated treatment effect and its standard error as input. In meta-analyses with binary outcomes, the
log odds ratio or the log risk ratio is typically used as measure of treatment effect.

2.1. Fixed-effect meta-analysis

The general fixed-effect model is

𝜃̂k = 𝜃 + 𝜎k𝜖k, 𝜖k ∼ N(0, 1) (1)

where 𝜃̂k is the observed treatment effect in study k, k = 1,… ,K, 𝜎2
k is the study specific variance and

𝜃 is the unknown true treatment effect, which is common for all studies. The fixed-effect estimate of 𝜃 is
denoted by 𝜃̂F. Given

(
𝜃̂k, 𝜎̂k

)
, k = 1,… ,K, the maximum likelihood estimate under model (1) is

𝜃̂F =
∑K

k=1 𝜃̂k∕𝜎̂2
k∑K

k=1 1∕𝜎̂2
k

=
∑K

k=1 wk ⋅ 𝜃̂k∑K
k=1 wk

(2)

with weights wk = 1∕𝜎̂2
k .

The variance of 𝜃̂F is estimated by

V̂ar
(
𝜃̂F

)
= 1∑K

k=1 wk

. (3)

A (1-𝛼) confidence interval for 𝜃̂F can be calculated by

𝜃̂F ± z1− 𝛼

2
× S.E.

(
𝜃̂F

)
(4)

with standard error S.E.
(
𝜃̂F

)
=
√

V̂ar
(
𝜃̂F

)
and z1− 𝛼

2
denoting the 1− 𝛼

2
quantile of the standard normal

distribution. A corresponding test for an overall treatment effect can be constructed using 𝜃̂F

/
S.E.

(
𝜃̂F

)
as test statistic.
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2.2. Classic random-effects meta-analysis using DerSimonian–Laird method

In contrast to a fixed-effect model, a random-effects model allows that the underlying true treatment
effects in individual studies vary, typically according to a normal distribution

𝜃̂k = 𝜃k + 𝜎k𝜖k, 𝜖k ∼ N(0, 1); 𝜃k ∼ N
(
𝜃, 𝜏2

)
. (5)

The fixed-effect model is a special case of the random effects model when the between-study variance
𝜏2 = 0. The between-study variance 𝜏2 is an additional parameter that has to be estimated in the random-
effects model.

Several methods have been proposed for the estimation of 𝜏2 [3,4], of which so far the most popular is
the DerSimonian–Laird method [1]. It is a non-iterative, moment-based estimator for the between-study
variance 𝜏2

𝜏2 = Q − (K − 1)∑K
k=1 wk −

∑K
k=1 w2

k∑K
k=1 wk

(6)

where Q is the heterogeneity statistic given by Q =
∑K

k=1 wk

(
𝜃̂k − 𝜃̂F

)2
and wk = V̂ar

(
𝜃̂k

)−1
. By

definition, a variance cannot have negative values, and therefore, the estimate 𝜏2 is set to zero if Q < K−1,
which corresponds to using a fixed-effect model.

The random effects estimate 𝜃̂R and its variance can be calculated as

𝜃̂R =
∑K

k=1 w∗
k ⋅ 𝜃̂k∑K

k=1 w∗
k

V̂ar (𝜃̂R) =
1∑K

k=1 w∗
k

(7)

with weights w∗
k = 1∕

(
𝜎̂2

k + 𝜏2
)
. Note, compared with the fixed-effect model, calculating an overall

effect estimate will pay greater attention to effect estimates from smaller studies. We will come back to
this point in the discussion.

A (1-𝛼) confidence interval for 𝜃̂R can be calculated by

𝜃̂R ± z1− 𝛼

2
× S.E.

(
𝜃̂R

)
(8)

with standard error S.E. (𝜃̂R) =
√

V̂ar
(
𝜃̂R

)
and z1− 𝛼

2
denoting the 1 − 𝛼

2
quantile of the standard normal

distribution. A corresponding test for an overall treatment effect can be constructed using 𝜃̂R

/
S.E.

(
𝜃̂R

)
as test statistic.

2.3. Hartung–Knapp method

Hartung and Knapp [5–7] introduced a new meta-analysis method based on a refined variance estimator
in the random-effects model.

The overall treatment estimate in the Hartung–Knapp method is the same as in the classic random-
effects model; however, instead of using the variance estimate given in (7), Hartung and Knapp propose
to use the following variance estimator for 𝜃̂R:

V̂ar HK(𝜃̂R) =
1

K − 1

K∑
k=1

w∗
k

w∗

(
𝜃̂k − 𝜃̂R

)2
(9)

with weights w∗
k = 1∕

(
𝜎̂2

k + 𝜏2
)

and w∗ =
∑K

k=1 w∗
k . Note, the Hartung–Knapp method is based on the

weights w∗
k and the estimate 𝜃̂R from the classic random-effects model. Accordingly, an estimate of the

between-study variance 𝜏2 is also needed for the Hartung–Knapp method. In principle, any method to
estimate 𝜏2 [4] can be used in the Hartung–Knapp method. Here, we will use the DerSimonian–Laird
estimate of the between-study variance.

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 2503–2515
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Hartung [5] showed that

𝜃̂R − 𝜃

S.E. HK

(
𝜃̂R

)
with standard error S.E. HK

(
𝜃̂R

)
=
√

V̂arHK

(
𝜃̂R

)
follows a t-distribution with K − 1 degrees of freedom.

Accordingly, a (1-𝛼) confidence interval for 𝜃̂R based on the Hartung–Knapp method can be
calculated by

𝜃̂R ± tK−1;1− 𝛼

2
× S.E. HK

(
𝜃̂R

)
(10)

with tK−1;1− 𝛼

2
denoting the 1 − 𝛼

2
quantile of the t-distribution with K − 1 degrees of freedom. A corre-

sponding test for an overall treatment effect can be constructed using 𝜃̂R

/
S.E. HK

(
𝜃̂R

)
as test statistic.

It has been shown in simulations [9, 14] that a test based on the Hartung–Knapp modification holds
the prespecified significance level much better than tests based on S.E.

(
𝜃̂F

)
and S.E.

(
𝜃̂R

)
, respectively.

3. Empirical evaluation

To compare the methods, we performed a random-effects meta-analysis based on the DerSimonian–Laird
and Hartung–Knapp method in all 157 data sets. For each data set, we calculated the overall effect estimate
with 95% confidence interval and corresponding P-value for the test of an overall treatment effect. We
also calculated the P-value of the test for heterogeneity based on Cochran’s Q for each data set. We
used R package meta [15] to conduct meta-analyses using both DerSimonian–Laird and Hartung–Knapp
methods. These methods are also available in R package metafor [16], which implements additional
methods to estimate the between-study variance.
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Figure 1. Comparison of treatment effect P-values between DerSimonian–Laird and Hartung–Knapp method.
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Figure 1 shows the P-value for an overall treatment effect in the 157 meta-analyses, both for
DerSimonian–Laird and Hartung–Knapp methods. Generally, we see a clear tendency – as expected
from simulation studies [9,14] – that P-values are greater with the Hartung–Knapp method. However, in
several meta-analyses (33 out of 157), P-values are smaller with the Hartung–Knapp method than with the
DerSimonian–Laird method. In Figure 1, we can see three meta-analyses (filled triangles) where the over-
all treatment effect is statistically significant with the Hartung–Knapp method, however, non-significant
with the DerSimonian–Laird method.

We have a closer look at two extreme examples in order to investigate why the P-value of the Hartung–
Knapp method is so markedly smaller. These two examples with five and seven studies have P-values for
the DerSimonian–Laird method close to 0.05 and close to 0.001 for the Hartung–Knapp method.

3.0.1. Two illustrative examples. Figures 2 and 3 show the forest plots from the two most extreme meta-
analyses. For the meta-analysis in Figure 2, the P-value for an overall treatment effect is 0.073 and 0.002
using the DerSimonian–Laird and Hartung–Knapp methods, respectively. In Figure 3, the respective
P-values are 0.039 and 0.001. When we have a closer look at the forest plots, we see that in both meta-
analyses, the estimated between-study variance 𝜏2 is zero, and the P-value for the heterogeneity test is
very close to 1. In both examples, the heterogeneity statistic Q is far below its expected value. Accord-
ingly, in these meta-analyses, the result for the DerSimonian–Laird method corresponds to the result from
a fixed-effect meta-analysis.

3.0.2. Comparison of the methods by significance of heterogeneity test. Based on the findings in the two
extreme meta-analyses, we wanted to further evaluate the difference in P-values for the test of an overall
treatment effect based on the level of heterogeneity. Results from this evaluation are shown in Figure 4.
Meta-analyses were divided into three groups according to the P-value of the heterogeneity test based on
Cochran’s Q.

Left and middle panels of Figure 4 clearly show that the P-value for an overall treatment effect is
typically greater using the Hartung–Knapp method than using the DerSimonian–Laird method; most of
the points (51 out 52 in the left panel, 66 out of 76 in the middle panel) lie above the identity line for
P-values of the heterogeneity test below 0.7. This observation is in agreement with results from simulation
studies [9, 14].

On the contrary, we see that the majority of points (22 out of 28) lie below the identity line in
meta-analyses without indication of between-study heterogeneity (right panel in Figure 4, P-value
of heterogeneity test above 0.7). In these 28 meta-analyses, the DerSimonian–Laird estimate of the
between-study variance is always zero, which corresponds to using a fixed-effect meta-analysis.
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Figure 2. Forest plot for illustrative example 1.
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Figure 3. Forest plot for illustrative example 2.
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P−value of treatment effect (Classic random effects method)
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Figure 4. Comparison of treatment effect P-values between DerSimonian–Laird and Hartung–Knapp methods
by the P-value of the heterogeneity test
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Figure 5. Comparison of treatment effect P-values between DerSimonian–Laird and Hartung–Knapp methods
by 𝜏2

DSL values

3.0.3. Comparison of the methods by the between-study variance. The estimated between-study variance
was zero in most of the cases (31 out of 33) if the DerSimonian–Laird method was conservative compared
with the Hartung–Knapp method; actually, in the two meta-analyses with an estimated between-study
variance greater than zero, the P-values for an overall treatment effect were very similar: p = 0.1705
versus p = 0.1702 and p = 0.295 versus p = 0.281, respectively. Figure 5 shows the comparison
of the P-values in subgroups defined by the estimated between-study variance

(
𝜏2 > 0 vs 𝜏2 = 0

)
. In

the left panel, we see that almost all points (97 out of 99) lie above the identity line if the estimated
between-study variance is greater than zero, whereas in the right panel more points (31 out of 58) lie
below the identity line meaning that the DerSimonian–Laird method is conservative compared with the
Hartung–Knapp method.

3.0.4. Comparison of standard error of treatment effect by the between-study variance. In Figure 6, we
compare the standard errors of the random effects treatment estimates in subgroups defined by the value
of the between-study variance. We see that the standard error of the treatment effect is always smaller
for the Hartung–Knapp method than for the DerSimonian–Laird method if the between-study variance
is zero (right panel); as noted before, the P-value for the DerSimonian–Laird method is actually based
on a fixed-effect model.
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Standard error of treatment effect (Classic random effects method)
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Figure 6. Comparison of standard errors of treatment effect between DerSimonian–Laird and Hartung–Knapp
methods by 𝜏2

DSL values

We provide a proof that the standard error of the treatment effect is always smaller or equal for the
Hartung–Knapp method than for the DerSimonian–Laird method if the between-study variance estimate
is zero. In this special case, we can rewrite Eq. 9 in the following way:

V̂ar HK(𝜃̂R) =
1

K − 1

K∑
k=1

w∗
k

w∗

(
𝜃̂k − 𝜃̂R

)2

=
∑K

k=1 w∗
k

(
𝜃̂k − 𝜃̂R

)2

K − 1
1∑K

k=1 w∗
k

=
∑K

k=1 wk

(
𝜃̂k − 𝜃̂F

)2

K − 1
1∑K

k=1 wk

= Q
K − 1

V̂ar
(
𝜃̂F

)
.

(11)

In the third line, we replace w∗
k and 𝜃̂R with wk and 𝜃̂F, respectively, which is justified as w∗

k =
1∕

(
𝜎̂2

k + 𝜏2
)
= 1∕

(
𝜎̂2

k + 0
)
= 1∕𝜎̂2

k = wk; 𝜃̂R = 𝜃̂F follows accordingly. In the fourth line, we notice that
the nominator is equal to the heterogeneity statistic Q and that the estimated variance of the fixed-effect
estimate is equal to the inverse of the sum of weights wk.

For the DerSimonian–Laird method, the estimated between-study variance 𝜏2 is equal to zero if and
only if Q ⩽ (K − 1) (Eq. 6). Therefore, the following relationship holds if the estimated between-study
variance is zero as Q∕(K − 1) ⩽ 1:

V̂ar HK(𝜃̂R) ⩽ V̂ar
(
𝜃̂F

)
.

This relationship also holds for the standard error, that is, the square-root of the variance.
Although the standard error of the treatment effect is always smaller in this situation with the Hartung–

Knapp method, the P-value is greater in roughly half of the cases (Figure 5, right panel). The explanation
is that the Hartung–Knapp method uses a quantile of the t-distribution in the calculation of the P-value,
whereas the DerSimonian–Laird method uses a quantile of the standard normal distribution, which is
always smaller or equal than the quantile of a t-distribution.

When the estimated between-study variance is greater than zero, the estimated treatment-effect stan-
dard error by the Hartung–Knapp method is smaller than with the DerSimonian–Laird method in 31 of
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99 cases. We will show, if the between-study variance 𝜏2 is known, that the probability of V̂ar HK

(
𝜃̂R

)
being smaller than V̂ar

(
𝜃̂R

)
is always greater than 0.5. The formula for V̂ar HK

(
𝜃̂R

)
is

V̂ar HK

(
𝜃̂R

)
= 1

K − 1

K∑
k=1

w∗
k

w∗

(
𝜃̂k − 𝜃̂R

)2
.

By multiplying both sides by w∗ and K − 1, we get

w∗ (K − 1) V̂ar HK

(
𝜃̂R

)
=

K∑
k=1

w∗
k

(
𝜃̂k − 𝜃̂R

)2

=
K∑

k=1

(
𝜃̂k − 𝜃̂R

)2

𝜎̂2
k + 𝜏2

.

(12)

From Eq. 12, we can see that, given
(
𝜃̂k, 𝜎̂k, 𝜏

2
)
, w∗ (K − 1) V̂ar HK

(
𝜃̂R

)
follows a 𝜒2-distribution with

K − 1 degrees of freedom. As the expected value of this distribution is K − 1, the expected value of
V̂ar HK

(
𝜃̂R

)
is 1∕w∗ = Var (𝜃R). Hence,

Pr
(

V̂ar HK(𝜃R) < V̂ar (𝜃R)
)

= Pr
(
𝜒2

K−1 < K − 1
)
.

Because the 𝜒2-distribution is skewed to the right, its expectation (K − 1) exceeds its median,
and therefore,

Pr
(
𝜒2

K−1 < K − 1
)
> 0.5 .

Therefore, the probability that V̂ar HK(𝜃R) < V̂ar (𝜃R) is always larger than 0.5, converging to 0.5 as the
number of studies goes to ∞.

3.0.5. Confidence interval lengths. As shown in (11), the DerSimonian–Laird method collapses to the
fixed-effect model, and the variance of the Hartung–Knapp method can be written as Q

K−1
V̂ar

(
𝜃̂F

)
, if

𝜏2 = 0. In this case, the length of the confidence interval for the DerSimonian–Laird method is

2 × z1− 𝛼

2
× S.E.

(
𝜃̂F

)
, (13)

and for the Hartung–Knapp method,

2 × tK−1;1− 𝛼

2
×
√

Q
K − 1

S.E.
(
𝜃̂F

)
. (14)

Following (13) and (14), the Hartung–Knapp method is anti-conservative if and only if

H2 = Q
K − 1

<

(
z1− 𝛼

2

tK−1;1− 𝛼

2

)2

(15)

where H2 is a so-called scaling factor [14, 17].

4. Simulation study

We performed a simulation study to confirm the findings of the empirical evaluation and to further evalu-
ate the properties of the two meta-analysis methods. We generated several simulation scenarios by varying
the number of studies, K, the between-study variance, 𝜏2, and the average probability of an event in treat-
ment and control group, p. Sample sizes for treatment groups were determined by randomly selecting
studies from the set of 157 meta-analyses. We simulated the data from a binomial distribution and used
log odds ratio and normal approximation for the analysis of individual studies in each meta-analysis.
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We considered two simulation settings to evaluate different properties of the two approaches. In the
first setting, we varied the number of studies in meta-analysis from K = 2 to 1000 in order to investigate
small and large sample properties (with respect to the number of studies). In the second setting, we
considered meta-analyses with K = 5, 10 and 50 studies in order to look in more detail on properties
in typical meta-analyses (K = 5, 10). In both simulation settings, an average probability of p = 0.1 and
0.5 was considered. The study specific true treatment effect 𝜃k was simulated from a normal distribution
with mean 𝜃 = 0 (odds ratio of 1) and the following values for the between-study variance: 𝜏2 = 0,
0.05, 0.1 and 0.2 (first setting) and 𝜏2 = 0, 0.1 (second setting). For each combination of K, 𝜏2 and p,
we conducted 10 000 (first setting)/100 000 (second setting) classic random effects and Hartung–Knapp
meta-analyses using the DerSimonian–Laird method to estimate the between-study variance.

Results of the first simulation setting are summarised in Figure7 showing the relation between number
of studies per meta-analysis (x-axis) and proportion of runs where the Hartung–Knapp confidence interval
is shorter than the fixed-effect model confidence interval (y-axis). For K = 2, the confidence interval of
the Hartung–Knapp method is shorter (anti-conservative) in approximately 10% of runs regardless of the
underlying size of the between-study heterogeneity.

Under the fixed-effect model
(
𝜏2 = 0

)
, the proportion of anti-conservative Hartung–Knapp confidence

intervals is (almost monotonically) increasing, which can be explained as follows: (i) an estimate 𝜏2 = 0 is
rather likely under a fixed-effect model; (ii) if 𝜏2 = 0, standard error is always smaller for Hartung–Knapp
approach than classic fixed-effect or random-effects meta-analysis (11); and (iii) influence of standard
error on confidence-interval length is increasing with growing number of studies in meta-analysis as
quantiles of t-distribution and z-distribution are getting more and more similar. For p = 0.1, the proportion
of anti-conservative Hartung–Knapp confidence intervals is much higher than for p = 0.5. The probable
reason for this phenomenon is that underdispersion of binomial responses is more likely in the case
of rare events [18], and therefore, meta-analysis results are more homogeneous than expected under a
fixed-effect model.

Under a random-effects model
(
𝜏2 > 0

)
, the proportion of anti-conservative Hartung–Knapp results

increases for small number of studies (e.g. K < 5 for 𝜏2 = 0.2 and p = 0.1); however, with increasing
number of studies, the proportion decreases and approaches zero for very large numbers of studies; the
decrease is faster for larger 𝜏2 and p = 0.5. This behaviour can be explained as follows: (i) an estimate
𝜏2 = 0 is more likely under a random-effects model for a small number of studies and small 𝜏2, and
(ii) in general, the precision of 𝜏2 is very low for small number of studies resulting in larger variation
in estimates and thus a larger proportion with 𝜏2 = 0. For very large numbers of studies, we extremely
rarely observe runs with 𝜏2 = 0 under a random-effects model

(
𝜏2 > 0

)
.

In the second simulation setting, we calculated the observed H2 for each simulation run and divided
the 100 000 runs into eleven H2 categories by using the following cutpoints: 0.2, 0.4, 0.6, 0.8, 1.0, 1.2,
1.4, 1.6, 1.8 and 2.0. Note, if the scaling factor H2 is smaller or equal to 1, the classic random-effects
model collapses to the fixed-effect model as 𝜏2 = 0.

In Figure 8, we show, for each H2 category, coverage probabilities of both meta-analysis methods
and proportions of simulation runs within each H2 category. Information on the median I2 value and
overall coverage probability is printed on the top of each panel. Overall coverage is similar to previously
published results [14]; generally, results of the Hartung–Knapp method are closer to the nominal coverage
probability, whereas the DerSimonian–Laird method is conservative for small K if 𝜏2 = 0 and anti-
conservative if 𝜏2 > 0. However, in very homogeneous simulation runs (H2 < 0.4), we observe in most

Figure 7. Proportion of simulations with shorter confidence interval for Hartung–Knapp method than fixed-effect
meta-analysis
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Figure 8. Comparison of the coverage probabilities of DerSimonian–Laird and Hartung–Knapp methods. The
vertical lines represent the 95% confidence interval for the observed coverage probability. The I2 values given

represent the median of all values observed. DSL, DerSimonian–Laird; HK, Hartung–Knapp.

simulation scenarios that the coverage probability of the Hartung–Knapp method is smaller as compared
with the classic random-effects meta-analysis. The proportion of very homogeneous simulation decreases
with increasing K and 𝜏2.

Table I contains information on the ratio of confidence-interval length for fixed-effect meta-analysis
and Hartung–Knapp method, in the second simulation setting. Values greater than one correspond to a
shorter confidence interval for the Hartung–Knapp method. We calculated the proportion of runs above
several threshold values: > 1, > 1.5, > 2, > 3, > 5. Note, the first column (> 1) contains the same
information as Figure 7, albeit for the second simulation setting. The second column reports proportions
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Table I. Proportion of simulations where the ratio of the lengths of fixed-effect and Hartung–Knapp
confidence intervals is greater than the given value

Ratio of the lengths of fixed-effect and Hartung–Knapp confidence intervals

p K 𝜏2 > 1 > 1.5 > 2 > 3 > 5

0.1 5 0 0.26566 0.07167 0.02478 0.00578 0.00078
0.1 0.12927 0.03138 0.01055 0.00219 0.00027

10 0 0.36598 0.03613 0.00445 0.00021 0.00000
0.1 0.09748 0.00587 0.00049 0.00002 0.00000

50 0 0.55776 0.00010 0.00000 0.00000 0.00000
0.1 0.00464 0.00000 0.00000 0.00000 0.00000

0.5 5 0 0.25966 0.07187 0.02619 0.00592 0.00084
0.1 0.06069 0.01409 0.00482 0.00097 0.00014

10 0 0.33471 0.03501 0.00431 0.00023 0.00001
0.1 0.02109 0.00121 0.00010 0.00000 0.00000

50 0 0.42919 0.00011 0.00000 0.00000 0.00000
0.1 0.00002 0.00000 0.00000 0.00000 0.00000

where the fixed-effect confidence interval is at least 50% longer than the Hartung–Knapp confidence
interval with largest values for K = 5 and 𝜏2 = 0: 7.17% (for p = 0.1) and 7.19% (p = 0.5). For larger
ratios, the proportion of runs with shorter Hartung–Knapp method confidence intervals is further reduced:
below 3% (ratio > 2), below 1% (ratio > 3) and below 0.1% (ratio > 5). For ratios above 1.5, the largest
proportions were always seen in simulation scenarios with K = 5 and 𝜏2 = 0.

5. Discussion

In our empirical evaluation of the DerSimonian–Laird and Hartung–Knapp methods, we confirm the well-
known property that the use of the Hartung–Knapp method results in most cases in a more conservative
result as compared with the DerSimonian–Laird method with greater P-values for the test of an overall
treatment effect and wider confidence intervals. In addition, we show in the empirical evaluation and
simulations that the Hartung–Knapp method can result in much narrower confidence intervals and smaller
P-values than the DerSimonian–Laird method in meta-analyses with very homogeneous study results.
Actually, in these situations, the between-study variance is estimated to be zero, and thus, the comparison
is between a fixed-effect model and the Hartung–Knapp random-effects model.

Looking at Eqs 10 and (8) to calculate the confidence interval for the Hartung–Knapp and
DerSimonian–Laird methods, we observe that (i) the same treatment estimate is used in both equations
and (ii) the quantile of the t-distribution is always greater or equal than the quantile of the standard nor-
mal distribution. Thus, a narrower confidence interval and correspondingly a smaller P-value can only
result from a smaller standard error in the Hartung–Knapp method.

The two meta-analyses shown in Figures 2 and 3 are based on five and seven studies, respectively.
The 97.5% quantile for a t-distribution with 4 and 6 degrees of freedom is 2.78 and 2.45, respectively.
These values are about 40% and 25% greater than 1.96, the corresponding quantile of the standard normal
distribution used in the calculation of the 95% confidence interval for the DerSimonian–Laird method.
Nevertheless, the confidence interval of the Hartung–Knapp method is much narrower than the confidence
interval of the fixed-effect model indicating a substantially smaller standard error for the Hartung–Knapp
method.

As described before, if the estimated between-study variance is zero, we can show analytically that
the standard error of the Hartung–Knapp method is always smaller or equal than the standard error of
the DerSimonian–Laird method. If the between-study variance is greater than zero and it is assumed to
be known, then the probability for a smaller standard error with the Hartung–Knapp method compared
with the DerSimonian–Laird method is always greater than 0.5; this probability is approaching 0.5 as
the number of studies in meta-analysis is increasing. Accordingly, in this situation, the estimation of
the standard error with the Hartung–Knapp method is on average anti-conservative compared with the
classic random-effects model. These analytical results support our view that the reason for the Hartung–
Knapp method being conservative is mainly based on the use of a quantile of the t-distribution instead
of the standard normal distribution. Concerns have been expressed [19] whether the Hartung–Knapp
method is any better than simply replacing z-quantile with corresponding t-quantile in the classic random
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effects method. However, simulation studies showed [6, 7] that the Hartung–Knapp method holds the
prespecified significance level well in all simulation scenarios, whereas the classic random effects method
is conservative for few studies when the underlying between-study heterogeneity is low and gets liberal
when heterogeneity increases. Therefore, replacing z-quantile with t-quantile in the classic random-effect
method would yield too conservative results for low between-study heterogeneity.

In fact, the possibility that the standard error for the Hartung–Knapp method can be smaller than the
standard error from the DerSimonian–Laird method has been noted more than 10 years ago by Knapp and
Hartung in the context of random-effects meta-regression [14]. They proposed an ad hoc modification
of the Hartung–Knapp variance estimate, which guarantees that the width of the confidence interval of
the Hartung–Knapp method is always greater or equal than the confidence interval of the DerSimonian–
Laird method. This modification has been implemented in the metareg command in Stata [20]; to our
knowledge, this is the only implementation.

As we note in the description of the Hartung–Knapp method, an estimate of the between-study variance
is needed to apply this method. For simplicity, we use the DerSimonian–Laird estimate of the between-
study variance in this paper. In principle, any other estimation method for the between-study variance
can be used to conduct the Hartung–Knapp method. We did not systematically evaluate the implication
of using a different estimate of the between-study variance. As a sensitivity analysis, we ran simulations
using the Paule–Mandel method [21], and results were similar to those presented for the DerSimonian–
Laird method.

Based on our empirical evaluation and analytical results, we suggest that meta-analysts using the
Hartung–Knapp method as the primary statistical approach should conduct a sensitivity analysis using
the fixed-effect model. This sensitivity analysis can also be used as a first check whether small study
effects are present in the meta-analysis, which are often an indication of publication bias; as the random-
effects meta-analysis gives more weight to small studies than the fixed-effect model, a large different in
point estimates between these two methods is an indication of small study effects [22–24].

The refined method has also been evaluated in the context of multivariate meta-analysis [17]. This paper
also noted that the refined method may produce shorter confidence intervals than the fixed-effect model
when the scaling factor H2 is less than one. We did not cover multivariate meta-analysis in our paper, but
the simulation study in [17] suggests that our results can be transferred to the multivariate setting.

In summary, we agree with previous statements [9,11] that the Hartung–Knapp method appears supe-
rior to the use of a random-effects model based on the DerSimonian–Laird method. However, we suggest
to use the fixed-effect model in a sensitivity analysis, which somewhat ironically is a special case of the
DerSimonian–Laird method marked as inferior to the Hartung–Knapp method.
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6 General discussion and conclusions 

6.1 Arm based vs baseline contrast models and parametrizations 

One of the main objectives of this thesis was to evaluate and extend the use of the arm-based 

modelling to different applications in medical research and drug development. As shown in 

the Introduction (Section 1.3.3), for the fixed-effects model the proposed modelling 

framework is the same but just using a different parametrization than the baseline contrast 

approach. For random-effects models the model itself is different leading to different 

assumption for the random effects’ variance covariance matrix. Depending on the likelihood 

function and estimation method even in case of a random-effects model the two different 

assumptions can lead to exactly same or very similar point estimates of mean and variance 

parameters and yielding the same inference and conclusion of differences between the 

treatments of interest. This is discussed in more detail in the next section. 

6.2 Estimation methods for between study variance 

It has been noted that depending on the likelihood and link function the model with arm-based 

parametrization may lead (especially with maximum likelihood estimation) to under-

estimation of between study variance, which leads to shorter confidence intervals for 

treatment contrast estimates and may lead to inflated type one error rate for treatment 

comparisons (Jones et al., 2011).  

In case of a normal likelihood and identity link function this can be taken care of at the 

estimation stage by using restricted maximum likelihood which corrects for the loss of 

degrees of freedom and leads to similar result as baseline contrast model and gives unbiased 

estimates of the between study variance (Littell et al., 2006). For other types of responses 

(binomial and Poisson for example) restricted maximum likelihood is not available. Several 

techniques for estimating the between-study variance are available in common software 

packages like SAS and some of these can be used to ensure less biased between-study 

variance estimation as shown by simulation in (Piepho et al., 2018). For example, using the 

residual pseudo-likelihood estimation for binomial and count data is same type of estimation 

as REML for normally distributed response data. One should keep in mind that even though 

the residual pseudo-likelihood makes REML type of estimation available it is based on 

approximation and has limitations if the binomial sample sizes are small. In practice this is 

often not a problem in clinical trials as the sample sizes are relatively large, especially for late 

stage confirmatory clinical trials. However, even in network meta-analysis of large phase 3 
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trials it might become a problem if the event itself is rare, like for example some rare adverse 

event which occurs less than 1 in 1000. The challenges of rare events and how to overcome it 

has been discussed in several recent published research papers (Efthimiou et al., 2019; 

Günhan et al., 2020; Zabriskie et al., 2021). 

Regardless of baseline contrast model or arm based model or parametrization the estimation 

of between study variance in meta-analysis has been subject to extensive research (Veroniki et 

al., 2016). As the number of studies in meta-analysis is often limited, the between-study 

variance estimation has limitations. For example, if a simple two-treatment meta-analysis 

contains 3 studies, the degrees of freedom for between study variance estimation is 2, leading 

to a very wide distribution of the between-study variance estimate and hence considerable 

uncertainty about the heterogeneity between studies.  

Chapter 5 was based on evaluation different between study variance methods in traditional 

two-treatment meta-analysis. The main finding of the paper was that in some cases random 

effect meta-analysis using Hartung-Knapp method may yield shorter confidence intervals for 

combined treatment effect than fixed effect meta-analysis. This was likely to happen if the 

observed differences between average treatment effect estimates was less than one would 

expect based on the within study variance of included trials.  

6.3 Model selection in non-proportional hazards NMA 

The second real life example, presented in Chapter 4, contained an example of using the 

framework for a more complicated modelling problem. This work was motivated by the need 

for more efficient ways to apply the method of fractional polynomials NMA (Jansen, 2011). 

The method by Jansen is often used for evidence synthesis of immunotherapies (Herbst et al., 

2021; Schulz et al., 2019) and to support decision making at different health technology 

assessment agencies like NICE (The National Institute for Health and Care Excellence). For 

this type of model it has proven to be difficult to find starting values for parameters. 

Furthermore, exploration of model convergence can be time consuming. The model building 

approach presented in Chapter 4 has been applied for example in comparison of different 

treatments for HER2-positive metastatic breast cancer after HER2-targeted therapy (DeBusk 

et al., 2021). It has been also acknowledged in (Freeman et al., 2022) that the proposed 

method has potential to speed up the model selection process, however they address the need 

for further evaluation of similarity of using the Akaike’s Information Criterion (AIC) versus 

the  deviance information criterion (DIC). Due to the analogy of AIC and DIC this is likely 
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not to be an issue in case of fixed effect models with uninformative priors. Generally, the 

model selection criteria and algorithms for these types of model would require further 

research. For example, it is not guaranteed that same fractional polynomial or piecewise 

exponential model would be selected within fixed or random effects NMA. The challenges for 

selecting the best model to take into account the non-proportionality of the hazards apply to 

both frequentist and Bayesian models. As many models may need to be explored, the 

frequentist ANOVA type of model enables rapid exploration of different models and is also 

less prone to human errors in coding of the complicated models. 

  

6.4 Level of aggregation 

The manuscript in Chapter 2 explored the network meta-analysis in a setting where some of 

the trials provide individual patient data and some only aggregated data. In this setting the 

aggregated data may be often sufficient if individual trials are analysed in a consistent manner 

and variance estimates of treatments means are given. In principle, if the aggregated trials 

report sufficient statistics for the NMA the results of the NMA will be equal from both 

individual patient data NMA and aggregated data NMA. Similar comparisons of single-stage 

(individual patient data meta-analysis) and two-stage (aggregated study level data meta-

analysis) has also been discussed in the context of multi-environment trials with similar 

conclusions (Damesa et al., 2017). If some treatment effect modifying covariates are present 

and needed in analysis, then having individual patients data is often necessary to be able to 

reliably estimate treatment effects at different covariate values. 

In the third application presented in Chapter 4 it is possible to extract the individual patient 

data for the response variable by using digitalization of published Kaplan-Maier curves and 

algorithms to recover the individual survival times (Guyot et al., 2012). Even in this case the 

challenge of taking into account the impact of potential differences in baseline covariates 

remains. 

In case of having access to individual patient data for one of the studies and aggregated data 

for other studies, like in the example of Chapter 2 it is possible to weigh the individual patient 

data to “match” the aggregated baseline covariates using for example so called matching 

adjusted in direct comparison(MAIC) method (Signorovitch et al., 2012). For meta-analysis 

and network-meta analysis with more than two studies the challenge of having several 
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different baseline populations remains. Also, all relevant baseline covariates may not be 

collected or reported in a similar way in different studies. 

 

6.5 Software implementations 

For frequentist analysis of GLM with arm-based parametrization basically any standard 

software package can be used. This thesis used both SAS and R for fitting the models. Both 

software have their advantages. In drug development SAS has traditionally been the software 

used for reporting clinical trials, however R enjoys increasing popularity and is also accepted 

by health authorities. 

The first real life application of the network meta-analysis presented in Chapter 3 included 

over 200 trials and 60 treatments, with ANOVA type of model with arm-based 

parametrization and frequentist estimation the model was possible to be fitted with standard 

SAS procedures with minimal coding and computational time. Specifying this extensive 

application with baseline contrast model and Bayesian estimation method would have 

required priors and starting values for 200 trials and 60 treatments leading to very extensive 

computation.  

Of note, there is no reason why the ANOVA based methods for meta-analysis and network 

meta-analysis couldn’t be fitted in a Bayesian framework as well. This can be done for 

example using the SAS procedure PROC BGLIMM (Piepho and Madden, 2022; Rott et al., 

2021). 

6.6 Future perspectives 

One of the most topical research interests in drug development is how to use external control 

arms to provide evidence on the efficacy of new drugs compared to existing treatment options 

(Burger et al., 2021; Davi et al., 2020; Schmidli et al., 2020). The development of use of 

external control data has many issues in common with indirect treatment comparisons, one of 

the most important being that the treatments are compared in similar populations and the 

differences in potential confounding patient characteristics and different clinical practices are 

properly considered in analyses. Also, the question of how to include trials with 

outrandomized control arm into existing networks could be a potential topic for future 

research. 
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Traditionally the aim of statistics in medical publications has been to aggregate the collected 

data for making more general conclusions of the research question. However, usually when 

data is aggregated, some information is also lost. Given the development of new digital tools 

for exploring information from different sources, it has become possible to extract more 

precise data from figures, which are showing some aggregated data, for example. Building on 

methods to efficiently extract the data given in summary figures could open possibilities to 

make more precise analyses and evidence synthesis of older publications. 

Giving the increasing number of treatment options for many diseases it is important, when 

developing a new drug for a disease, to be able to compare in objective way the existing 

treatments and show some benefit compared to existing treatment options.  Combining 

evidence synthesis methods efficiently with adaptive designs could enable making better 

informed decision whether drug development programs of new compounds should be 

continued or discontinued or if there is need for adjustment in development programs in order 

to fill the most important unmet clinical needs with the newly developed drugs. 

6.7 Conclusions 

This thesis explored and developed the use of generalized linear mixed models in a setting of 

network meta-analysis of randomized clinical trials. In practice the most popular analysis 

method in the field of network meta-analysis has been the baseline contrast model which is 

usually fitted in a Bayesian framework. The baseline contrast model and Bayesian estimation 

provides great flexibility, but also comes with some unnecessary complications for certain 

types of analyses. 

This thesis showed how methods originally developed and extensively used in agricultural 

research can be used in network meta-analysis of clinical trials providing efficient calculation, 

estimation, and inference. Some of the examples used in this thesis arose from analyses 

needed for real applications in drug development and were directly used in medical research. 
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7 Summary 

Network meta-analyses of published clinical trials has received increased attention over the 

past years with some meta-analytic publications having had a big impact on the cost-benefit 

assessment of important drugs. Much of the research has been based on Bayesian analysis 

using so called base-line contrast model. The research in network meta-analysis methodology 

has in parts been isolated from other fields of mathematical statistics and is lacking an 

integrative framework clearly separating statistical models and assumptions, inferential 

principles, and computational algorithms. The very extensive past research on ANOVA and 

MANOVA of un- balanced designs, variance component models, generalised linear models 

with fixed and/or random effects, provides a wealth of useful approaches and insights. These 

models are especially common in agricultural statistics and this thesis extended the use of the 

general statistical methods mainly applied in agricultural statistics to applications of network 

meta-analysis of clinical trials.  

The methods were applied to four different research problems in separate manuscripts.  

The first manuscript was based on a simulated case (based on real example) where some of 

the trials provided individual patient data and some only aggregated data. The outcome type 

considered was continuous normally distributed data. This manuscript provides models for 

jointly model the individual patient data and aggregated data. It was also explored how much 

information is lost if data is aggregated and how to quantify the amount of lost information. 

The second manuscript was based a real life dataset with pain medications used in acute 

postoperative pain. The outcome of interest was binomial, whether a subject experienced pain 

relief or not. The dataset used for NMA included 261 trials with 52 different treatment and 

dose combinations, making it extraordinarily rich and large network.  

The third manuscript developed methods for a case of time-to-event-outcome extracted from 

published Kaplan-Meier curves of survival analyses. This re-generated individual patient data 

was then used to model and compare the Kaplan-Meier curves and hazards of different 

treatments.  

The fourth manuscript of the thesis was tackling the problem of between-trial variance 

estimation for a specific method of Hartung-Knapp in classical two-treatment meta-analysis. 

The main finding of the paper was that in some cases random effect meta-analysis using 

Hartung-Knapp method may yield shorter confidence intervals for combined treatment effect 

Page 69 of 75



than fixed effect meta-analysis and therefore the recommendation is to always compare 

results from Hartung-Knapp method with fixed effect meta-analysis. 

This thesis explored and developed the use of generalized linear mixed models in a setting of 

network meta-analysis of randomized clinical trials. In practice the most popular analysis 

method in the field of network meta-analysis has been the baseline contrast model which is 

usually fitted in a Bayesian framework. The baseline contrast model and Bayesian estimation 

provides great flexibility, but also come with some unnecessary complications for certain 

types of analyses. 

This thesis showed how methods originally developed and extensively used in agricultural 

research can be used in other field providing efficient calculation, estimation, and inference. 

Some of the examples used in this thesis arose from analyses needed for real applications in 

drug development and were directly used in medical research. 
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8 Zusammenfassung 

In den letzten Jahren haben Netzwerk-Meta-Analysen von publizierten Ergebnissen klinischer 

Studien viel Aufmerksamkeit erhalten und die Kosten-Nutzen-Einschätzung wichtiger 

pharmazeutischer Präparate in erheblichem Umfang beeinflusst. Ein Großteil der 

methodischen Forschung zur Meta-Analyse konzentrierte sich dabei auf Bayessche Methoden 

im sogenannten Baseline-Contrast-Modell. Diese methodischen Untersuchungen haben z.T. 

losgelöst von anderen Bereichen der mathematischen Statistik stattgefunden. Daher fehlte ein 

integrativer Rahmen, welcher mathematische Modelle und Annahmen, Prinzipien der Inferenz 

und Algorithmen zur Ermittlung von Effektschätzungen klar voneinander trennte. Die sehr 

umfangreichen Erkenntnisse zur Varianzanalyse (ANOVA und MANOVA) unbalanzierter 

Versuchsanordnungen, Varianzkomponentenmodellen sowie generalisierten linearen 

Modellen mit festen und zufälligen Effekten, welche in der Vergangenheit, nicht zuletzt im 

Bereich der Agrarwissenschaften, erlangt wurden, sind auch für die Methodik der Meta-

Analyse sehr nützlich. Diese Arbeit erweitert die Nutzung solcher Methoden auf die 

Netzwerk-Meta-Analyse klinischer Studien. 

Die Anwendung dieser Methoden wird in vier Manuskripten dieser kumulativen Thesis 

dargestellt. 

Im ersten Manuskript wird eine Situation untersucht, bei der für einen Teil der untersuchten 

klinischen Studien individuelle Patientendaten (IPD) vorliegen, für einen anderen Teil indes 

nur aggregierte Daten (AD). Das Manuskript stellt Modelle vor, welche sich für die 

gemeinsame Analyse solcher Daten eignen. Es wird angenommen, dass die Daten 

Normalverteilungen entstammen. Die Daten wurden basierend auf realen Studiendaten 

simuliert. Das Manuskript untersucht, wieviel Information durch die Datenaggregation 

verloren geht und wie dieser Informationsverlust quantifiziert werden kann. 

Das zweite Manuskript untersucht einen Datensatz aus 261 klinischen Studien, in denen 

insgesamt 52 verschiedene Behandlungen gegen akute postoperative Schmerzen geprüft 

wurden. Die Zielgröße ist binär und hält fest, ob Schmerzlinderung erzielt wurde oder nicht. 

Aufgrund der vielen Studien und Behandlungen liegt hier ein aussergewöhnlich 

umfangreiches und komplexes Netzwerk vor.  

Im dritten Manuskript werden Methoden zur Analyse von Überlebenszeitdaten vorgestellt. 

Die Daten wurden mithilfe von Softwaretools aus publizierten Kaplan-Meier-Kurven 

extrahiert. Die so gewonnenen individuellen Patientendaten wurden benutzt, um die 
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Überlebenskurven zu modellieren und die Hazardraten verschiedener Behandlungen zu 

vergleichen.  

Das vierte Manuskript betrachtet einen speziellen Aspekt der Inter-Studien-Varianzschätzung 

in der klassischen Meta-Analyse mit zwei Behandlungsarmen. Das Hauptergebnis dieser 

Untersuchung ist, dass die sogenannte Hartung-Knapp-Methode in Modellen mit zufälligen 

Effekten in bestimmten Fällen zu kürzeren Konfidenzintervallen für die kombinierte 

Behandlungseffektschätzung führen kann als die entsprechende Schätzung in einem Modell 

mit festen Effekten. Daher wird empfohlen, in konkreten Analysen beide Methoden zu 

verwenden und die Ergebnisse zu vergleichen. 

Übergreifendes Thema dieser Thesis ist die Untersuchung generalisierter linearer gemischter 

Modelle für Netzwerk-Meta-Analysen klinischer Studien. In der Praxis ist in diesem Bereich 

das Baseline-Kontrast-Modell mit Bayesschen Effektschätzungen das populärste Modell. 

Dieses Modell und die Methode der Bayes-Schätzung erlauben hohe Flexibilität, aber in 

manchen Fällen verkomplizieren sie die Analyse auf unnötige Weise.  

Diese Arbeit zeigt, wie Methoden, die ursprünglich in den Agrarwissenschaften entwickelt 

wurden und ausgiebig genutzt werden, auch für die Meta-Analyse klinischer Studien 

effiziente Schätz- und Inferenzmethoden zur Verfügung stellen. Einige der Beispiele in dieser 

Arbeit sind durch Anwendungen in der Medikamentenentwicklung motiviert und wurden 

bereits in konkreten medizinischen Forschungsvorhaben eingesetzt. 
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