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Chapter 1: General introduction 

 

1.1 Striga 

 

Witchweeds (Striga spp.) are parasitic weeds of great agricultural significance, parasitizing 

the roots of their hosts (Sauerborn et al., 2007). There are over 50 species of Striga, but the 

most economically important ones are S. hermonthica, S. asiatica, S. aspera, S. forbesii 

(Plate 1.1) parasitizing cultivated legume and cereal crops like cowpea (Vigna 

unguiculata), finger millet (Eleusine corocana), maize (Zea mays), pearl millet 

(Pennisetum glaucum), rice (Oryza sativa), sugarcane (Saccharum officinarum) and 

sorghum (Sorghum bicolor) (Elzein & Kroschel, 2004; Scholes & Press, 2008). Striga, like 

all other root parasitic weeds, drain essential organic and inorganic resources from their 

hosts leading to poor crop development and low yield (Watson et al., 1998). In Africa, 

about 50 million ha in 30 countries are infested by Striga spp. causing grain loss of cereals 

(Gressel et al., 2004). Estimated yield losses of maize, sorghum, millets (pearl and finger) 

and upland rice are between 30 and 90% (van Ast et al., 2005; Ejeta, 2007; Sauerborn & 

Müller-Stöver, 2009). Although improved cultural practices, herbicide use, and growing 

resistant varieties have been used to control the parasite (Scholes & Press, 2008), the Striga 

problem still remains unsolved to date. The parasite, therefore, is ranked as the leading 

biotic constraint to cereal production in Africa (Ejeta & Butler; 1993) where it has caused 

considerable loss in crop yield quantity and quality (Westwood et al., 2012). The stunted 

and chlorotic appearance which appears as distorted “bewitched” curls of the infected 

crops before Striga emergence is what led to this weed to be called “witchweed”. 

 

1.2 Sorghum 

 

Sorghum, a major Striga host, is an important cereal crop in Africa with an estimated 23 

million hectares under cultivation (FAO, 2012). This scale of production is more than half 

of the global production of 40 million hectares. Despite this large acreage, total and 

average production per hectare is below the global average, making it unable to meet the 

growing demand for human food, animal feed, fuel and building materials in Africa (Jamil 

et al., 2011). Striga has been identified as one on the major biotic constraints (Guo et al., 
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2011) while poor soil fertility, soil degradation and nutrient reduction are the major abiotic 

constraints (Palé et al., 2009) responsible for this underproduction. 

 

   

Plate 1.1 Common Striga species (a) Striga hermonthica (purple witchweed), (b) S. 

forbesii (pink witchweed), (c) S. asiatica (red witchweed) (Photos by 

Lenard Mounde) 

 

Crop damage by Striga is worse under conditions of nutrient limitation and insufficient 

fertilizer use (Gacheru & Rao, 2001; Phoenix & Press, 2005). Nitrogen (N) and phosphorus 

(P) inavailability in soils, low fertilizer use due to high prices (Bekunda et al., 1997; 

Bagayoko et al., 2000) are limiting sorghum production in Africa. Generally, the 

magnitude of yield loss is largely influenced by the level of Striga infestation, soil fertility, 

agro-climatic conditions, land use system, the plant species and the host genotype (Oswald 

& Ransom, 2004). The parasite causes damage even before emergence from the soil and 

currently, there is no universally accepted and adopted control method for Striga (Oswald, 

2005). While some sorghum cultivars have demonstrated some level of resistance through 

low strigolactone and haustorial initiation factors production, parasite avoidance, physical 

barriers to parasite attachment or penetration, and antibiosis (Ejeta et al., 1999), total Striga 

control has not been realized in many sorghum fields. Plate 1.2 shows Striga-free and 

Striga infested sorghum crop in the field. 

 

 

a b c 
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Plate 1.2 Striga-free and Striga infested sorghum crop (a) Striga- free sorghum crop 

under “push and pull” control strategy and (b) a sorghum crop under heavy 

Striga hermonthica infestation in Kenya (Photos by Lenard Mounde) 

 

1.3 Plant growth promoting rhizobacteria 

 

Plant growth promoting rhizobacteria (PGPR) from a number of genera: Acetobacter, 

Azoarcus, Azospirillum, Azotobacter, Bacillus, Beijerincka, Burkholderia, Enterobacter, 

Herbaspirillum, Klebsiella, Paenibacillus, Pseudomonas and Stenotrophomas (Dobbelaere 

et al., 2003) are promising components for integrated solutions to agro-environmental 

problems because inoculants possess the capacity to promote plant growth (Adesemoye et 

al., 2008) and reduce the population of deleterious microbes in the rhizosphere (Lazarovits 

& Nowak, 1997). Mechanisms of promoting plant growth include; (i) aiding in the 

acquisition and uptake of mineral nutrients (ii) preventing pathogenic organisms (e.g. by 

synthesizing antibiotics); or by (iii) directly stimulating plant growth by either providing 

plant hormones such as auxin or cytokinin, or lowering plant ethylene levels through the 

action of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase (Glick et al., 

1999). Most plants use similar defence responses to parasitic plant infection as those used 

in response to pathogens (Westwood et al., 1998; Joel & Portnoy., 1998; Goldwasser et al., 

1999). 

One of the reasons that have hampered effective control of Striga is the complex parasite-

host interaction which remains poorly understood to date (Ejeta & Butler, 1993; Runo et 

al., 2012). Understanding host-parasite interaction is paramount in developing appropriate 

strategies for Striga management (Runo et al., 2011). There are only few studies done on 

Striga control using PGPR compared to other biological control methods e.g use arbuscular 

a b 
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mycorrhiza fungi (AMF), Fusarium and insects (Watson, 2013). However, this group of 

bacteria is generating great interest as effective candidates for biocontrol of parasitic 

weeds. For instance, the use of ethylene producing Pseudomonads and Bradyrhizobium 

japonicum isolates have been reported to induce Striga germination in the absence of host 

plants (Berner et al., 1999; Ahonsi et al., 2002a). Given that a vast majority of host plants 

of Striga are colonized by PGPR, attachment of a parasitic plant to a host plant could lead 

to a tripartite system within which nutrients, water and carbohydrates flow from one 

associate to another. The flow of substances within such a system could be more complex 

if the root parasites are themselves colonized or parasitized by the PGPR, a phenomenon 

commonly referred to as hyperparasitism. Defence mechanisms employed by plants against 

Striga weeds have been reported (Yoder & Scholes, 2010) but it is not clear if some of 

these mechanisms can be elicited by PGPR. Whether these parasites are themselves 

colonized by PGPR or not is not completely understood, perhaps due to few studies that 

have been done on this area. 

Currently, attention is increasingly focusing on Gram-positive members of the aerobic, 

spore-forming genus Bacillus as potential candidates for Striga control. The main reason 

behind this shift of focus is that Bacilli spp. are prevalent in many soils, in immediate 

contact with plant roots, form endospores and produce a broad spectrum of antibiotics 

which offer protection against root pathogens compared to Gram negative bacteria (Kim et 

al., 1997). Among the antibiotics produced include lipopeptide surfactins, iturin and 

fengycin which are very effective in suppressing fungi activities and growth of a wide 

range of plant pathogens (Toure et al., 2004). Bacillus spp. also produce phytohormones, 

indole acetic acid (IAA) (Idris et al., 2007) and cytokinins (Tsavkelova et al., 2006; 

Aslantas et al., 2007 ) which have a positive effect on plant growth (Idris et al., 2007). 

Phytohormones generated by bacteria can be taken up by plants leading to an increase in 

hormone levels in these plants (Patten & Glick., 1996; Barazani & Friedman, 1999). In 

addition, a number of Bacillus strains fix nitrogen; solubilize phosphate and control plant 

diseases (Kloepper et al., 2004) and nematodes (Oostendorp & Sikora, 1990). Their heat-

resistant spores make it easier for the bacteria to be formulated into stable biofertilizer or 

biocontrol products (Deng et al., 2011).  

Strains, particularly those belonging to the Bacillus subtilis and B. amyloliquefaciens group 

(FZB13, FZB14, FZB24, FZB37, FZB38, FZB42, FZB44 and FZB45) possess plant-

growth-promoting, higher crop yields and biological activities against some soil-borne 

http://scialert.net/fulltext/?doi=ppj.2011.146.153#237229_ja
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fungal diseases (Grosch et al., 1999). For instance B. subtilis Bsn5 exhibits in-vitro 

antibiosis and produces lipopeptides (Deng et al., 2011) which controls pathogens. B. 

amyloliquefaciens FZB42 and B. subtilis GBO3 produce volatiles acetoin and 2, 3-

butanediol synthesis, which contribute to IAA synthesis (Idris et al., 2007; Zhang et al., 

2007) thus promoting plant growth. Additionally, B. subtilis GB03 has been found to 

increase photosynthetic efficiency and chlorophyll content in A. thaliana through the 

modulation of endogenous signaling of glucose and abscisic acid sensing (Zhang et al., 

2008). In another study, Minaxi et al. (2012) reported that Bacillus subtilis solubilized P, 

exhibited 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, produced 

ammonia and IAA.  

Since Striga infection lowers IAA levels in hosts (Press et al., 1999) and auxins such as 

IAA are thought to inhibit Striga germination (Miché et al., 2000), Bacillus strains could 

offer growth benefits to sorghum and suppressive effect on Striga due to their IAA 

producing ability. Auxins are also associated with strong inhibition to Striga attachment 

and haustorium development because of their antagonistic nature with cytokinins and 

benzoquinone, both of which favour attachment and haustorium development (Keyes et al., 

2000). Little is known about other suppressive abilities of Bacillus subtilis on Striga 

although Leclère et al. (2005) suggested that B. subtilis produces lipopeptides which 

compete with the parasite over binding sites with strigolactones hence reducing Striga 

germination. In a study involving Orobanche aegyptiaca and O. cernua treated with B. 

subtilis, Barghouthi and Salman (2010) also noticed significant reduction in radicle 

elongation in the presence of a synthetic stimulant GR24.  

Burkholderia sp. strain PsJN which was originally designated Pseudomonas sp. strain PsJN 

(Frommel et al., 1991), has been found to promote plant growth in potato (Solanum 

tuberosum) (Frommel et al., 1991), grapevines (Vitis vinifera) (Ait Barka et al., 2000), 

tomato (Solanum lycopersicum) (Compant et al., 2005) in addition to disease control in 

grapevines (Ait Barka et al., 2002) and tomato (Sharma & Nowak, 1998). The PGPR has 

been found to induce larger roots, stronger stems and vascular system (Nowak, 1998), 

enhance accumulation of chlorophyll and phenolics (Nowak  et al., 1998), cytokinins 

(Lazarovitis & Nowak, 1997) and resistance to pathogens (Salles et al., 2006) in plants. 

The strain is also known to have ACC deaminase activity (Blaha et al., 2006; Weilharter et 

al., 2011) which reduces the level of the growth inhibitory hormone ethylene 

(Ashrafuzzaman et al., 2009). The strain also produces IAA and siderophores (Weilharter 

http://en.wikipedia.org/wiki/Vitis_vinifera
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et al., 2011), which are plant growth enhancing compounds. Mineralization of IAA by 

Burkholderia phytofirmans PsJN has been found to be crucial for efficient root 

colonization of Arabidopsis (Poupin et al., 2013). 

Mechanisms of Burkholderia phytofirmans in disease or weed suppression are not clearly 

understood although antibiotic compounds phenazine and pyrrolnitrin (El Banna & 

Winkelmann, 1998), antifungal lipopeptides and antibiosis (Kang et al., 1998; Heungens & 

Parke, 2000) have been identified in some strains. There has been a lot of research efforts 

regarding the genomics, growth promoting and disease control mechanisms, among other 

aspects, of Burkholderia phytofirmans PsJN in the recent past (Sessitsch et al., 2005; 

Compant et al., 2008; Theocharis et al., 2012; Kim et al., 2012; Zúñiga et al., 2013). This 

formed the basis of the current investigation on this strain together with Bacillus spp.  

Although there are numerous studies on plant growth promotion and biological control of 

diseases, weeds, nematodes and parasitic weeds using PGPR, little is known about the 

potential of some Bacillus subtilis, B. amyloliquefaciens and Bourkhoderia phytofirmans 

strains in sorghum growth promotion and biotic suppression of Striga infection.  

 

1.4 Research hypothesis 

 

This study hypothesized that; 

i) Extended agar gel assays (EAGA) as proposed by Mohamed et al. (2010a) 

and root chamber experiments as described by Linke et al. (2001) 

incorporating Striga, sorghum and PGPR will provide some understanding 

on the tripartite interaction between PGPR-sorghum roots-Striga 

interactions and provide a generic working model system to assess sorghum 

growth promotion and Striga weed suppression. 

ii) PGPR can reduce Striga infection by directly suppressing underground 

development stages or indirectly by maintaining sorghum biomass in spite 

of Striga infection. 

iii) PGPR have a suppressive effect on Striga germination and radicle growth 

while having a germination and vigor enhancing effect on sorghum seeds.  

iv) PGPR will inhibit Striga germination and radicle elongation through 

production of phytotoxic compounds.  



 

7 

 

1.5 Study objectives 

 

The main objective of the study was to assess the effect of B. subtilis Bsn5, B. subtilis 

GBO3, B. amyloliquefaciens FZB42 and Burkholderia phytofirmans strain PsJN on growth 

promotion of sorghum plants and suppression of Striga development, thus providing a 

basic understanding on the sorghum-PGPR-Striga interaction. Specific objectives were to; 

 apprehend the tripartite interaction between sorghum, Striga and PGPR by 

reviewing the state-of-the-art knowledge in published literature. 

 identify a suitable media for delivering B. subtilis Bsn5, B. subtilis GBO3, 

B. amyloliquefaciens FZB42 and Burkholderia phytofirmans strain PsJN to 

sorghum rhizosphere and understand their effect on sorghum and Striga 

development. 

 investigate the effect of Bacillus strains (B. subtilis Bsn5, B. subtilis GBO3, 

and B. amyloliquefaciens FZB42) and Burkholderia phytofirmans strain 

PsJN on sorghum and Striga germination, sorghum vigor and Striga radicle 

elongation. 

 determine if B. subtilis Bsn5, B. subtilis GBO3, B. amyloliquefaciens 

FZB42 and Burkholderia phytofirmans PsJN can offer any protection 

against Striga and promote early growth of sorghum in root chamber 

experiments. 

 

1.6 Outline of thesis 

 

The overall objective of this thesis was to gain insights into the tripartite interactions 

among sorghum, Striga and plant growth promoting rhizobacteria with emphasis on the 

role of PGPR on sorghum growth and biotic suppression of Striga development. To 

achieve this objective, a comprehensive literature review on the current knowledge on 

tritrophic interaction between sorghum, Striga and PGPR is presented in Chapter 2. 

Research gaps are described and future research directions recommended. Chapter 3 

presents all the procedures and data analysis of all laboratory experiments conducted in an 

effort to seek answers on the role of Bacillus subtilis Bsn5, B. subtilis GBO3, B. 

amyloliquefaciens FZB42 and Burkholderia phytofirmans PsJN  on sorghum growth 
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promotion and Striga suppression. Chapter 4 presents results obtained in Chapter 3. A 

detailed discussion of results is provided in Chapter 5 followed by a general conclusion and 

future research perspectives in Chapter 6.  
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Chapter 2: Tripartite interactions between sorghum, 

witchweeds (Striga spp.) and plant growth promoting 

rhizobacteria 

 

2.1 Introduction 

 

Plant-plant parasitism is a well-established phenomenon where some species of flowering 

plants have evolved over the years and developed parasitic associations with other 

members of the plant kingdom (Kuijt, 1969). Watling & Press (2001) and Runo et al. 

(2012) have estimated that these parasitic plants are in the range of 4000 species, grouped 

in 13 families and occurring in all ecosystems except in aquatic systems. Today, many 

Agricultural Production Systems (APS), mainly in Subsaharan Africa (SSA) and the 

Meditterranean region are experiencing parasitic weed problems (Atera et al., 2011). Those 

parasites that are of great agricultural significance belong to the genera Alectra, Orobanche 

and Striga, parasitizing mainly the roots of their hosts (Sauerborn et al., 2007) where they 

have demonstrated high efficacy in obtaining organic and inorganic resources from the 

affected hosts. Striga and Orobanche demonstrate a close phylogenetic relationship and are 

among the estimated 90 genera in the Orobanchaceae family, a plant family with more 

than 2,000 species (Westwood et al., 2010). The main difference between both genera is 

that Orobanche lacks chlorophyll and depends fully on its host plant for water, inorganic 

and organic nutrients, Striga derives only a part of its carbon, but fully for water, from its 

host except Striga gesnerioides, which like Orobanche doesn’t fix its own carbon. S. 

gesnerioides has poorly developed leaves with low chlorophyll content which don’t fix net 

carbon even on exposure to light (Graves et al., 1992). That explains why Orobanche 

infects both the phloem and xylem while Striga attacks the xylem only (Irving & Cameron, 

2009). Orobanche and S. gesnerioides are therefore collectively known as holoparasites 

attacking solely dicots. Striga (except S. gesnerioides), on the other hand, are hemiparasites 

whose hosts belong mainly to Poaceae family.  

The Striga problem is aggravated by poor soil fertility and moisture limitations that are 

present in many small holder farms in sub-Saharan Africa. In addition, the majority of the 

affected farmers are resource poor with little capacity to mitigate these challenges or invest 

in alternative crops. As a result of the huge economic impact and food security threat, 

research is ongoing to find long lasting management options to fight this parasite. PGPR 
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might be possible biocontrol agents for Striga due to their ability to colonize roots of host 

crop and promote their growth. It is envisaged that the sorghum-PGPR-Striga interaction 

could have an influence on the parasitic association between Striga and sorghum crops 

especially if colonization is established and functioning before or after invasion of host 

roots by the parasitic plants. 

 

2.2 Interaction between Striga and sorghum 

 

In order to have a clear understanding of the tripartite interaction between Striga, sorghum 

and PGPR, it is important to have an idea of how Striga and sorghum interact in the 

absence of PGPR. Already the chemical cross talk that controls Striga germination and the 

development of physical connections with the host is well understood (Palmer et al., 2004). 

In this situation, the life cycle of the parasite is highly harmonized with that of the host, 

right from germination to maturity (Park & Riches, 1993). However, there are some 

development stages of the parasite that do not require the presence of the host. According 

to Joel et al. (1995) the life cycle of Striga can be divided into two phases; the independent 

phase and parasitic phase. 

 

2.2.1 Independent phase 

 

The independent phase is also referred to as non-parasitic phase. It begins when the Striga 

seed germinates and culminates when the radicles attach to host roots. The parasite can 

develop independently from the host provided the right chemical signals to trigger their 

germination and attachment are present, either artificially or from non-hosts (Bouwmeester 

et al., 2007). These stimulants are a special class of chemicals called strigolactones. Many 

of these chemicals have been isolated and identified. They can trigger germination in both 

Striga and Orobanche almost in equal measure even at very low concentrations (Cook et 

al., 1966). They include, alectrol (Hauck et al., 1992), sorgolactone (Hauck et al., 1992; 

Awad et al., 2006), orobanchol (Yokota et al., 1998), 5-deoxy-strigol, strigol (Sato et al., 

2005; Awad et al., 2006) and sorgomol (Jamil et al., 2013).  

The amount of strigolactones secreted by plants of the same variety is inversely correlated 

to the fertility status of the soil. Ayongwa et al. (2006); Yoneyama et al. (2007) and Jamil 

et al. (2012) demonstrated this fact when they observed that host sorghum plants deficient 

in N and P, secreted more strigolactones to the rhizosphere compared to well-nourished 
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plants. Recently, Jamil et al. (2013) reported that diammonium phosphate (DAP) fertilizer 

can reduce S. hermonthica emergence and increase sorghum grain yield if applied close to 

the root zone by reducing secretion of strigolactones into the rhizosphere. This relationship 

between plant nutritional status or soil fertility and strigolactone production could be one 

of the reasons why there is a huge Striga problem in many developing countries. These 

areas are frequently characterized by poor soils and the farmers have little financial 

resources to invest in expensive inputs such as fertilizers or plant alternative crops (Boone 

et al., 1995). In addition, there are other chemicals that stimulate Striga germination 

although they are not present in root exudates of the host crop. Examples are ethylene, 

cytokinins, jasmonates, amino acids and polyols (Babiker et al., 1993; Galindo et al., 

2004).  

Some chemicals released by plant roots for defence against other competing plants, 

parasites or pathogens have also been found to trigger parasite seed germination. Examples 

of these chemicals are sorgoleone and hydroquinone sorghum xenognosins (SXSg). The 

chemicals are distinct from strigolactones but can trigger Striga germination (Lynn & 

Chang, 1990; Keyes et al., 2001). Sorghum-Striga interaction after germination is 

influenced by other secondary metabolites released by the host, consequently leading to the 

parasitic mode of living. The processes influenced by these metabolites include Striga 

radicle protrusion, orientation towards the host and haustorium development (Dube & 

Oliver, 2001).  

 

2.2.2 Parasitic phase 

 

After germination, Striga must attach to a suitable host within 5 to 7 days. Otherwise they 

will exhaust their energy reserves and die. This requires them to shift from the independent 

to the dependent (parasitic phase). After attachment, host-derived secondary metabolites 

like flavonoids, quinines positively influence formation of the haustorium which is a 

physiological connection between the parasite and the vascular vessels of host plants 

(Riopel & Timko, 1995). Some of these compounds are phenolic in nature such as 2,6-

dimethoxybenzoquinone (DMBQ) (Kim et al., 1998). DMBQ is released from host cell 

walls under the influence of chemicals released by the Striga radical e.g hydrogen peroxide 

and was isolated from sorghum roots through peroxidase-mediated oxidation of sorghum 

cellular components (Chang & Lynn, 1986; Lynn & Chang, 1990). In other words, Striga 

provokes the host to produce a signal necessary for its development in a process termed 
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semagenesis (Keyes et al., 2007). It is not clearly understood how host benzoquinones 

induce haustorial development, but the downregulation of a gene for one Striga expansin 

protein, accompanied by upregulation of genes for two expansins, saExp1 and saExp2 has 

been suggested as a possible mechanism (O’Malley & Lynn, 2000; Torres et al., 2005). 

The involvement of auxin in modifying cell shape has been implicated too (Tomilov et al., 

2005).  

 

 
Figure 2.1 Generalized illustration of Striga life cycle. Source: Ejeta & Butler, 1993 

 

Haustorium penetration into host root takes place under the aid of hydrolytic enzymes 

produced by the parasite, eventually forming a haustorial connection with the host (Losner-

Goshen et al., 1998). Cell wall-degrading enzymes are involved whereby they alter 

sorghum cell walls at the point of infection (Olivier et al., 1991). Striga shoots will emerge 

after about one month and take another 30 to 40 days before flowering (Stewart & Press, 

1990). Flowering and seed production will then follow consequently signaling the start of 

another life cycle. A generalized illustration of Striga life cyle is shown (Figure 2.1). The 

soil seed bank then continues to increase after each successful life cycle (Bouwmeester et 
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al., 2003). This continuous addition of seeds into the soil is one of the factors that have 

made Striga control challenging to date. Moreover, the seeds have a long viability (>10 

years) in the soil (Hearne, 2009). 

 

2.2.3 Impact of Striga on sorghum 

 

Plants capable of supporting parasite from germination to seed production are considered 

hosts (Timko et al., 2012). As the host crop support the parasite, the crop faces a lot of 

negative consequences. After successful connection of Striga to its host, the parasite 

becomes a sink for metabolites and water from the host (Joel et al., 2007). The haustorium 

is the organ that the parasite uses to withdraw water, mineral nutrients and assimilates from 

the host. Dörr (1996) reported that all parasitic weeds are capable of acquiring resources 

from the host xylem because of the luminal contact with the xylem of their hosts. The 

parasite is a strong sink for water and solutes because of two reasons. The first reason is its 

unique ability to maintain high stomatal conductance (open stomata) at all times (Jiang et 

al., 2003). The second reason is its ability to accumulate high amounts of osmotically 

active compounds such as mineral ions (e.g. potassium), sugars and sugar alcohols (Irving 

& Cameron, 2009). Open stomata lowers water potentials in parasites leading to elevated 

transpiration which in turn creates a high demand for water from the host even when the 

host is under severe water stress (Smith & Stewart, 1990). Osmotically active substances 

create a high negative water potential enabling solute flow from the host to the parasite. 

The water loss impact on crops is worsened if the crop is growing under water stress 

conditions.  

Striga is a xylem-invading parasite. Then the question arises. How does it obtain carbon 

from sorghum? Press & Whitaker (1993) found out that it can do so from the xylem sap or 

use other apoplastic means. Westwood (2013) describes apoplastic loading as a process 

involving exporting sugars from cells around the vein into the apoplastic space and then 

rapidly re-importing them into the phloem companion cells. It is an active process with an 

energy cost implication. Before emergence, Striga seedlings depend totally on their hosts 

for carbon because of their inability to access light (Graves et al., 1990). The parasite 

derives between 35 to 65% of its C from sorghum (Graves et al., 1989; Pageau et al., 1998) 

and the amount withdrawn from the host depends on the concentration of N in the soil. 

Cechin & Press (1993) reported that the higher the concentration of N in the soil, the lesser 
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the C taken by Striga. No explanation is available yet on this relationship but may partly 

explain the severity of Striga infection in N poor soils in Striga- dominant areas.  

A decreasing and increasing parasite dependence on the host for C and N, respectively, as 

the parasite matures has been observed too. Aflakpui et al. (2005) reported a 100% Striga 

dependence of C on host but only 59% of N before emergence but N dependence increased 

to nearly 100% as the parasite matured. Total Striga dependence on host for N has been 

explained by the parasite’s low nitrate reductase and glutamate synthetase activity which in 

turn reduces N assimilation (Press et al., 1986). So the parasite has to obtain all its N 

requirements in fully reduced forms such as ammonium or amino acids (Westwood, 2013). 

More evidence has shown that, although enhancing N fertilization e.g ammonium nitrate in 

sorghum-Striga association led to higher accumulation of nitrogen in leaves and higher 

photosynthetic rate of the parasite, there was decreased biomass production because of its 

low N assimilation capacity (Cechin & Press, 1993). This may explain why Striga grows 

poorly in soils rich in N (Igbinnosa & Thalouram, 1996). It has been revealed that Striga 

infection can induce an increase of nitrates and free amino acids in sorghum xylem sap 

(Pageau et al., 2003) to make it easier for the parasite to withdrawal  these resources from 

the crop (Nemec, 1995).  

In general, it is estimated that between 20 and 80% of all Striga biomass is taken from their 

hosts (Tenakoon & Pate, 1996; Teˇsˇitel et al., 2010). This huge variation takes care of 

species differences and life cycle stages of the parasite. This resource withdrawal has a 

direct impact on crop performance and yield. For instance, while carbon withdrawal ranged 

between 28 and 35% (Press et al., 1987a), sorghum shoot yield reduction varied between 

77 and 86% depending on Striga species (Press et al., 1987b). This shows that host yield 

reduction cannot be explained only by the carbon withdrawn by the parasite. This argument 

is made strong when the amount of resources removed Striga-infected crops has been 

found to be more than Striga biomass, sometimes even 30 times more (Press et al., 1996). 

The loss of crop biomass is a clear indicator that not all the resources the host loses are 

taken up by the parasite (Parker et al., 1984) suggesting that the parasite has more 

detrimental effects on their hosts in addition to simple draining of resources (Press et al., 

1996). The loss of crop biomass inflicted by Striga infection indicates the involvement of 

other mechanisms other than source/sink-based relations. Some of these mechanisms 

include disruption of photosynthesis and metabolism, hormonal imbalances, toxins among 
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others. Specifically, the percent of carbon gained by S. hermonthica from sorghum was 

estimated to be around 40% (Press & Graves, 1991).  

Besides the withdrawal of carbon from the host, Striga can also negatively influence host 

photosynthetic process. Although capable of fixing carbon (Cameron et al., 2008), high 

respiratory rates of Striga makes it to utilize more carbon than they synthesize. So the net 

carbon gain is small (Press, 1989) creating a huge demand for the resource from their 

hosts. Gurney et al. (1995) has reported already on lower photosynthetic rates in leaves of 

Striga/infected sorghum plants. This can be directly or indirectly through reduced leaf sizes 

in hosts due to Striga infection (Press & Stewart, 1987). A direct effect is linked to 

reduction of carbon fixation where it has been estimated that over 80% of sorghum growth 

reduction is due to Striga-induced reduction in photosynthesis (Graves et al., 1989) and 

reduced leaf expansion (Aflakpui et al., 2002). There are two possible ways by which this 

disruption can take place. First, is the reduction of plant size and total leaf area. This is one 

of the responses of sorghum to Striga infection (Walting & Press, 1997). Short plants, 

leaves and reduced leaf area minimize light capture and reduce the surface area for 

photosynthesis respectively. The consequence is that the overall amount of fixed carbon is 

lowered. The second mechanism is a direct effect linked to reduction of carbon fixation. 

Gurney et al. (1995) attributed lower photosynthetic rates in leaves of Striga-infected 

sorghum to their reduced biomass. Striga infected plants also tend to close their stomata 

due to lower stomatal conductance (Frost et al., 1997). However, studies by Walting and 

Press. (1998) on wild grass (Achnatherum hymenoides) did not find any involvement of 

Striga on the photosynthetic process of the host.  

The other issue that needs further discussion and research is whether sorghum, being a C4 

plant requires open stomata to concentrate more CO2. C4 plants are known to have other 

mechanisms of concentrating CO2 through its Kranz anatomy. A study conducted by 

Watling and Press (1997) demonstrated that, in terms of growth, sorghum responds 

positively to increased CO2 better than Striga which is a C3 plant. Elevated CO2 levels 

were even detrimental to the parasite. However, no significant reduction of its negative 

impact on sorghum was observed. Infected sorghum showed similar growth in both 

ambient and elevated CO2 conditions. These results show that increased carbon still 

doesn’t offer solution to the Striga threat. The photosynthetic capacity of emerged Striga 

can also be reduced by competition for light posed by host plants and nearby plants in 

addition to its cellular and physiological limitations as described by Tuohy et al. (1986); 
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Press et al. (1986) and Salle et al. (1987). However, there is likelihood that this 

competition could have little effect on Striga performance. For instance, Dörr (1997) 

demonstrated that Striga can grow to maturity even in darkness as long as the host is 

exposed to light.  

Disruption of host`s hormone stability has also been suggested as another cause of Striga 

damage to cereals. Generally, there is a sharp increase of abscisic acid (ABA) and 

cytokinins in Striga after attachment to hosts (Lechowski & Bialczyk, 1996; Taylor et al., 

1996). ABA, being a drought-stress hormone is thought to be stimulated in the parasite 

because of the low water potential experienced by Striga (Jiang et al., 2010). However, 

parasites are less sensitive to ABA than hosts hence will have open stomata despite high 

ABA content in cell sap (Jiang et al., 2003). Furthermore, high cytokinins content in Striga 

leaves antagonizes ABA and keeps the stomata open (Lechowski, 1997; Westwood., 

2013).  

Elevated levels of ABA in sorghum leaf tissue and xylem sap after the infection process 

have also been reported (Frost et al., 1997) although no explanation on the role of this 

hormone in host crops has been offered (Jiang et al., 2010). Several authors have suggested 

that elevated levels of ABA in the host crop may play a role in reducing photosynthesis 

through regulating stomatal opening (Frost et al., 1997). Minimal stomata opening by a 

host can be beneficial to Striga because of a shift in water use from the host to the parasite 

(Westwood, 2013). High ABA content in hosts also lowers defence responses, especially 

those associated with salicyclic acid, in infected host roots (Vieira Dos Santos et al., 2003; 

Grifitts et al., 2004). These effects can have a negative consequence on the amount of 

carbon fixed. Increased root hydraulic conductivity as stimulated by ABA could also lead 

to more water loss from the host to the parasite (Jiang et al., 2004).  

It has been argued that host plants might also be affected by toxins produced by Striga 

species. This is only possible if there will be a parasite-to-host movement (reverse flow) of 

materials. There is evidence that the movement is possible. Okonkwo (1966) showed that 

radiolabbed CO2, urea and sulphur applied on Striga senegalensis also moved into the 

sorghum host. There is more recent evidence of reverse flow in Orobanche (Aly et al., 

2011) suggesting the possibility of toxic material moving from Striga to sorghum. 

Musselman (1980) and Parker (1984) suggested that stunted growth in Striga-infected 

cereals was due a toxin released by the parasite and translocated to the cereal crop. Ransom 

et al. (1996) also reported that Striga- produced toxins could lead to enzymatic and 
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hormonal disruptions which will lead to poor water uptake and photosynthesis by the host. 

Iridoid glucosides (iridoid glucosides (mussaenosidic acid, mussaenoside, gardoside 

methyl ester, bartsioside, isoaucubin, melittoside, aucubin and eurostoside), caffeoyl 

phenylethyl glycosides (calceolarioside A and verbascoside), shikimic acid and 

trigonelline, all known for their toxicity on cereal herbivorous pests (Adler et al., 1995) 

have been isolated in Striga hermonthica and S. asiatica parasitic to sorghum (Rank et al., 

2004). However, little is known about possible toxicity of these metabolites on Striga-

infected sorghum plants. 

In general, the overall impact of Striga on their hosts include; the loss of water, mineral 

nutrients and photosynthates often leading to stunted growth, chlorosis and even death, 

followed by poor economic yield (Parker, 1991). It is rare for host crops, especially 

domesticated varieties, to exhibit complete resistance to Striga infection. However, some 

wild relatives of crop species tend to demonstrate some resistance and tolerance to 

infection (Scholes & Press, 2008; Hearne, 2009). Improved cultivars that are resistant or 

tolerant to Striga are also available in the seed market. In the following text, existing host 

resistance responses to Striga infection is reviewed. 

 

2.2.4 Sorghum resistance responses to Striga infection 

 

Resistance is defined as the ability of a plant, whether host or non-host, to endure parasite 

attack in a manner that prevents establishment and growth of the parasite (Timko & 

Scholes, 2013). Plants can respond to Striga infections at all stages of growth, before or 

after the parasite attaches (Rodenburg et al., 2010).  

 

2.2.4.1 Pre-attachment mechanisms 

Pre-attachment resistance includes all mechanisms that allow sorghum to avoid or prevent 

Striga attachment. The mechanisms include; absence or reduced production of germination 

stimulants, interference with haustorial formation and development and mechanical 

barriers to infection (Timko & Scholes, 2013). Even when attachment does occur, it 

doesn’t result in parasitism unless a functional haustorium is established.  

According to Reda et al. (1994), low germination stimulant production is among the well-

known resistance mechanisms that have been used for breeding sorghum against Striga. It 

has so far produced encouraging results (Haussmann et al., 2000a). This trait has also been 
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observed in some wild and cultivated varieties of sorghum (Rich et al., 2004) and is 

controlled by a single recessive gene with additive gene action (Volgler et al., 1996). Ejeta 

(2007) noticed low Striga germination in fields planted with genotypes characterized by 

low strigolactone production. This mechanism has since remained the only 

comprehensively used trait for breeding resistant varieties in sorghum (Mohamed et al., 

2010b). However, Olivier and Leroux (1992) suggested that low production of germination 

stimulant could only partly explain the resistance demonstrated by resistant sorghum 

varieties although the possibility of other unknown compounds inhibiting Striga 

germination could not be ruled out. Yoneyama et al. (2010) reported that the type of 

strigolactones secreted by resistant genotypes could be more crucial in Striga prevention 

rather than the overall amount of secreted stimulants. This may not be a solution to Striga 

control because some parasites can still respond to these other strigolactones.  

Sorghum may also respond to Striga infection by inhibiting germination inspite of 

producing strigolactones. Weerasuriya et al. (1993) reported the presence of a germination 

inhibitor in some sorghum cultivars that hampered Striga germination although the 

inhibitor was never identified. Later on, Rich et al. (2004) observed inhibited Striga 

germination in some wild accessions of sorghum following low germination stimulant 

production and low haustorial initiation activity. Striga seeds exposed to these plants were 

not induced  to germinate by low levels of xenognosin activity, suggesting that either the 

biosynthesis of xenognosin and germination stimulants are co-regulated or are inhibited by 

the same host factors. Mohammed et al. (2010a) also observed Striga germination 

inhibition in sorghum under EAGA experiment but the cause(s) of the inhibition was not 

established. 

In some cases, Striga germination and attachment may take place but the seedling fails to 

form haustorium. Reda et al. (1994) confirmed that even if some sorghum varieties induce 

high Striga germination, few haustoria are formed. This strategy is important in Striga 

control because if germinated Striga doesn’t form haustoria and connect to the sorghum 

root, no parasitism will take place. The seeds will exhaust their energy reserves and die 

shortly afterwards. The low haustorial initiation may be attributed to the host producing 

inhibitors (Rich et al., 2004) or low amounts of haustorial inducing factor (Gurney et al., 

2003). Low production of haustorial initiation factors is said to be controlled by a single 

dominant gene (Ejeta, 2007). 
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Some resistant sorghum cultivars have demonstrated a hypersensitive response that is 

characterized by necrosis at the infection point (Mohamed et al., 2010a). This is a defence 

strategy because once the host cells are dead it becomes difficult for the parasite to attach 

since living cells are required.  

Host crops can also avoid Striga infection by minimizing contact with parasitic seeds. It 

has been revealed that parasitic attachment can be stopped if contact between sorghum and 

Striga seeds is minimized during the formative stages of development (van Ast et al., 

2005). The ability of a deeper root system to delay infection or reduce Striga attachment 

host crops is well known (van Delft et al., 2000). Although not followed by significant 

increases in crop yields, a combination of deep sorghum planting, the use of pre-

germinated seedlings and superficial soil cultivation can keep Striga parasitism to 

minimum levels, both in pot and field experiments (van Ast et al., 2005). When Striga 

sheds its mature seeds, they tend to remain on the upper soil layers, usually up to 5 cm 

deep, if the soil is not disturbed. If the soil is disturbed through deep tilling, the seeds get 

evenly distributed and move down the horizon up to a maximum of 15 cm (van Delft et al., 

1997). The implication of this scenario therefore is that Striga infection can be reduced if 

(i) soil tillage is reduced, (ii) the crop is planted deeply and (iii) the crops develop a deeper 

root system. It is also possible that Striga seeds in deeper soil layers may take long to 

emerge, thus delaying maturation of the parasite. 

 

2.2.4.2 Post-attachment mechanisms 

Post attachment resistance mechanisms are employed by host plants after haustorial 

formation and as the parasite tries to penetrate host roots to form vascular connections. The 

mechanisms include; secretion of phytotoxic compounds such as phenolics and 

phytoalexins (abiosis), physical barriers to parasite penetration e.g lignification and 

suberization of cell walls and hypersensitive response (HR) causing programmed cell death 

(PCD) at the parasite infection points (Timko & Scholes, 2013). 

Some cultivated varieties and wild accessions of sorghum have exhibited HR through death 

of S. asiatica haustorial cells before connecting to the host vascular tissues (Mohamed et 

al., 2003). Reduced nutrient flow to the haustorium or accumulation of phenolic 

compounds at the sites of infection has also been found to cause inhibition of haustorial 

development (Arnaud et al., 1998; 1999). Olivier et al. (1991) reported that sorghum 

accumulated phenolic compounds at the host-Striga hermonthica interface as a defence 
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strategy while Gurney et al. (2003) reported the presence of a compound released by a 

resistant wild relative of maize, Tripsacum dactyloides, which inhibited haustorial 

formation in S. hermonthica. This compound was speculated to have been taken up by the 

parasite together with water and assimilates and inhibited haustorial formation.  

Plants can also employ post-attachement resistance responses soon after the parasite has 

established vascular connections with the host. Death of parasite tubercles is the main 

indicator of these strategies. This can happen either at the root cortex or endodermis where 

further parasite development will be hindered. Resistance to vascular penetration of Striga 

at the endodermis has been observed in sorghum (Maiti et al., 1984; Haussmann et al., 

2004). 

Toxins have been touted as another mechanism that resistant sorghum cultivars use against 

Striga. This mechanism is called abiosis, where compounds that are injurious to Striga 

haustorial development have been reported to be released by sorghum plants. For instance, 

pectone epitones (Arabinogalactan) proteins JIM5 and JIM7, hydroxyproline-rich 

glycoproteins (HRGP), lignins and phenolic compounds caused death of Striga cells at the 

point of infection on sorghum root cells (Neumann et al., 1999). Accumulation of a 

compound suspected to phenolic in nature were also observed by Arnaud et al. (1999) on 

resistant sorghum variety (Framida) conductive tissues which reduced parasite growth and 

belated emergence even after successful haustorial connection. It was suggested that a 

toxin may have contributed to this incompatibility although this was not verified. Abiosis 

has also been reported in Tripsacum dactyloides (Gurney et al., 2003) and rice (Gurney et 

al., 2006) parasitized by S. hermonthica.  

 

2.3 Interaction between sorghum and plant growth promoting 

rhizobacteria 

 

The amount of carbon and nitrogen-rich compounds released by plants contribute to a huge 

population of rhizosphere organisms, interacting either in a beneficial or deleterious 

manner (Choudhary &Johri, 2009). These organisms include bacteria (McLellan et al., 

2007; Belimov & Wenzel, 2009; Karthikeyan et al., 2009).  
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2.3.1 Growth promotion 

 

Crop yields are positively influenced by PGPR through a number of direct or indirect 

mechanisms (Ryu et al., 2005; Lugtenberg & Kamilova, 2009). Several PGPR strains play 

crucial roles in cell elongation, increasing ACC deaminase activity and plant growth 

promotion (Sgroy et al., 2009). Bacillus spp. has been found to increase yield in sorghum 

(Broadbent et al., 1977) and enhanced uptake of NO
3-

, K
+
, and H2PO4 followed by higher 

crop yields in sorghum inoculation with Azospirillum brasilense (Okon & Kapulnik, 1986). 

Besides fixing nitrogen, A. brasilense also increase crop yield through improved root 

development that leads to increased rates of water and mineral uptake (Okon et al., 1998). 

Other PGPR that have had positive growth effect on sorghum include; Azoarcus ssp. (Stein 

et al., 1997), and Herbaspirillum spp. (James et al., 1997). PGPR also produce metabolites 

such as lipo-chitooligosaccharides (LCOs) which stimulate sorghum growth (Dakora et al., 

2002). Photosynthetic efficiency and chlorophyll content in A. thaliana has been shown to 

be improved by B. subtilis GB03 through the modulation of endogenous signaling of 

glucose and ABA sensing (Zhang et al., 2008). The same effect might be expected in 

sorghum because A. thaliana is a model plant. Recently, Pantoea sp., Bacillus sp., and 

Pseudomonas sp. have been found to increase germinability and seedling vigor of sorghum 

(Malleswari & Bagyanarayana, 2013) while foliar application of Pseudomonas putida and 

Pseudomonas fluorescens promoted growth and yield of forage sorghum (Afshar et al., 

2011).  

 

2.3.2 Disease and pest control 

 

Different mechanisms have been used to control diseases and pests. Seed coating of some 

plants with PGPR strains have also led to ISR in treated plants against rhizosphere 

pathogens and parasites (van Loon et al., 1998; Ryu et al., 2004). Bacillus spp., 

Brevibacterium laterosporus, Pseudomonas fluorescens and Serratia marcescens are 

associated with ISR has been reported in sorghum against Pythium ultimum, the 

aetiological agent for root rot (Idris et al., 2008). It has been proposed that volatiles such as 

2, 3-butanediol and acetoin (Ryu et al., 2003) and lipopeptide biosurfactants (Ongena et 

al., 2007) produced by Bacillus spp. can be involved in biocontrol. 
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2.4 Interaction between Striga and plant growth promoting 

rhizobacteria 

 

It is well known that the rhizosphere is a complex system where microfauna and microflora 

interact with soil borne pathogens and influence the outcome of pathogen infection 

(Raaijmakers et al., 2009). Interaction between PGPR and Striga can occur at any of the 

stages of the parasite’s life cycle, from germination to seed set. During this time, crucial 

exchange of signal molecules and biochemical cross-talk occur between PGPR and 

parasites (Cardoso et al., 2011). Parasitic weeds can be controlled either by preventing seed 

germination or enhancing germination in the absence of host plants, a phenomenon 

commonly referred to as inefficient germination (Rubiales & Fernández-Aparicio, 2012). 

In the following text, current knowledge on the effect of PGPR on Striga development in 

the absence of sorghum is reviewed. Three scenarios are expected when Striga seeds and 

PGPR interact. The first one is enhanced germination compared to seeds not in contact 

with PGPR. The second scenario is no change in germination. The third scenario is 

inhibited germination. This review will focus on the first and third scenario. 

 

2.4.1 Promotion of Striga germination 

 

The identification and application of bacteria in inducing Striga germination in the absence 

of sorghum plants has gained a lot of interest by many researchers in recent times. For 

instance, (Berner et al., 1999) and Ahonsi et al. (2002b) noticed that some strains of 

Pseudomonas syringae pathovar glycinea produced ethylene that highly stimulated Striga 

germination. This bacterium can be highly applicable in inducing ineffective germination 

of Striga seeds but its use in agriculture is limited because it causes disease to some crops. 

Most bacteria stimulate Striga germination through the action of ethylene (Babiker et al., 

1993; Hassan et al., 2010a) and a procedure testing how ethylene-producing P. syringae 

pv. glycinea stimulates Striga germination has been developed (Berner et al., 1999). Other 

bacteria produce growth-regulators like auxins, cytokinins and gibberellins (GA) (Joel et 

al., 1995). GA is necessary in priming Striga seeds prior to germination thus reducing the 

preconditioning period (Joel et al., 1991) and promotes germination (Hsiao et al., 1988). 

Inhibition of GA biosynthesis, therefore, may inhibit seed preconditioning in soil (Joel, 

2000). Although little is known about the action of IAA prior to Striga seed germination, 



 

23 

the hormone is critical in establishing the orientation of xylem differentiation between host 

and parasite (Bar-Nun et al., 2008). 

 

2.4.2 Inhibition of Striga germination 

 

Just as it has seen how some PGPR promote Striga germination, there are some PGPR that 

may inhibit Striga seed germination. For instance, an in-vitro experiment involving 

Azospirillum cells in the presence of GR24 and Striga seeds demonstrated unsuppressed 

germination but shortened radicles (Miche et al., 2000). This is among the few studies that 

have focused on the effect of PGPR on Striga germination inhibition at in-vitro level.  The 

authors suggested that phytohormones especially IAA or lipophilic compounds released by 

the bacteria caused reduced germination, radical growth and cell differentiation. Keyes et 

al. (2000) reported that Striga seed germination can be inhibited by auxin-like compounds. 

Many rhizosphere inhabiting bacteria genera are known to produce IAA and auxin-related 

compounds e.g Acetobacter, Agrobacterium, Arthobacter, Azospirillum, Azotobacter, 

Bacillus, Klebsiella, Pseudomonas  and  Xanthomonas (Frankenberger & Arshad, 1995; 

Idris et al., 2007; Ghosh et al., 2008; Spaepen et al., 2008; Ali et al., 2009).  

 

2.5 Interaction between sorghum, Striga and plant growth promoting 

rhizobacteria 

 

Interaction between sorghum, Striga and PGPR is a life-long process for the three 

biological entities. It is for this reason that efforts that can stop germination and attachment 

are crucial since they will prevent the weed from progressing into the parasitic phase. 

Some strains inhibited Striga germination and promoted sorghum growth while others 

inhibited germination but no corresponding growth enhancement in the host crop 

(Bouillant et al., 1997).  

Results from a study by Hassan et al. (2009) revealed that some bacterial isolates have both 

detrimental and positive effects on Striga on sorghum. This is evident from delayed and 

reduced Striga infection that was observed after Pseudomonas putida, A. brasilense and 

other isolates were inoculated on sorghum. Suppressive effects were more pronounced on 

tolerant and resistant sorghum crop cultivars, suggesting that a combination of genetic 

resistance and PGPR could be one of the best management options for Striga. There were 

huge reductions in Striga germination, haustorium initiation and attachment (Hassan et al., 
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2011a). In another study conducted to test the effects of mycorrhiza fungi and plant growth 

promoting bacteria on Striga control in sorghum, Striga germination attachment and 

emergence were reduced considerably followed by enhanced crop performance (Hassan et 

al., 2011b). This confirmed results from previous studies by Gworgwor & Weber (1992) 

and Lendzemo (2004) which found out that AMF improves crop performance through 

increased P uptake and competition with Striga on the utilization of strigolactones. Table 

2.1 provides a quick overview of some bacteria that have been found to influence Striga 

development, either positively or negatively. 

 

2.6 Conclusion 

 

This literature review attempts to draw together information and understand the tripartite 

interactions on Striga, sorghum and a spectrum of PGPR. Significant gaps in the current 

understanding of basic aspects of sorghum, Striga and PGPR relations have been 

identified. For instance, while the structural chemistry of strigolactones is known and its 

low production is genetically controlled, no explanation is available to help understand if 

there is activation of responsible genes under enhanced crop nutrition. The depressed 

uptake of C by Striga under high N fertilization has not been elucidated too. Contradictions 

still exist on the role of Striga in the photosynthetic process of their hosts. There is 

evidence that wild grass’ (Achnatherum hymenoides) photosynthetic process is not affected 

by Striga infection while conventional sorghum cultivars are. Certainly more studies are 

required to ascertain if the difference is genetically induced.  

While low germination stimulant production and low haustorial initiation activity remain 

key defence strategies by hosts under Striga threat, there is limited information on the 

cause(s) of the inhibition. Several inhibitors have been identified in Orobanche-infected 

plants but unfortunately, none in sorghum under Striga infection. Some authors also 

suggested that abiosis occurs in Striga-infected cereals. Unidentified phytotoxic 

substances, mainly produced in in vitro experiments are increasingly being suspected to be 

responsible for low Striga germination and radical elongation too. However, no 

experimental evidence has been provided to proof this mechanism nor any toxin identified. 

Since some toxins have been characterized in crops infected by Orobanche and considering 

the phylogenetic closeness of Striga and Orobanche, more studies are required to 

characterize these “toxic” compounds and elucidate their mode of action in Striga-sorghum 

associations. For instance, the role of lipophilic, phenolic and lipopeptide compounds on 



 

25 

germination, radicle elongation and haustorial initiation needs further investigation. These 

studies might also establish compounds that cause HR on the sorghum-Striga interface. 

Other compounds which might be playing a role in the stimulation and inhibition of Striga 

germination, in addition to the possibility of breakdown or chemical modification of Striga 

germination elicitors by some rhizosphere-inhabiting organisms have been suggested, but 

not identified yet. Finally, there is limited information on Striga influence on PGPR, 

PGPR-induced disease control and growth promotion in sorghum. 
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Table 2.1 Plant growth promoting bacteria influencing Striga development exposed to synthetic stimulants or sorghum root exudates 

a. Bacteria promoting Striga seed development 
Bacterium Parasite/source of germination stimulant PGPR action on parasite  Reference 

Pseudomonas syringae 

pathovar glycinea 

(Psg) 

Striga hermonthica, 

S. aspera, 

S. gesnerioides 

Promotes germination 

 

Berner et al.,1999 

Bradyrhizobium japonicum and Pseudomonas 

syringae 

S. hermonthica Promotes germination Ahonsi et al., 2003 

Enterobacter spp. QUBC20 GR24 Promotes  germination Bargouthi et al., 2000 

Klebsiella spp  GR24 Promotes  germination Frankenberger & Arshad, 1995. 

Hassan et al.,2010 

Pseudomonas syringae pv glycinea  Striga Promotes germination Ahonsi et al. (2002a) 

Serratia marcescens QUBC6 GR24 Promotes germination Bargouthi et al., 2000 

b. Bacteria hindering Striga seed development 
Azospirillum brasilense. S. hermonthica   Inhibits germination        Bouillant et al., 1997 

P. fluorescens and P. putida S. hermonthica   Inhibits germination    Ahonsi et al., 2002 

A. brasilense  S. hermonthica Inhibits germination and  radicle 

elongation  

Miche et al., 2000 

A. brasilense, Pseudomonas putida, 

or combination of 

A. amazonas and 

P. putida 

S. hermonthica Inhibit germination, disrupt 

haustorium development and 

reduce emergence. 

Hassan et al.,2009 

A. brasilense; P. putida 

and other isolates 

S. hermonthica Reduce germination, haustorium 

initiation and attachment 

Hassan et al.,2011a 

Glomus and Paraglomus 

spp. alone or with 

Flavobacterium, 

Azotobacter or 

Bacillus sp. 

S. hermonthica  

 

Reduce germination, attachment 

and emergence, delay  

emergence 

Hassan et al., 2011b 

Fluorescent Pseudomonads and  P. pudica   Reduce emergence Ahonsi et al., 2002b 

Source: Lenard Mounde 



 

27 

Chapter 3: Materials and Methods 

 

3.1 Source of experimental materials 

 

3.1.1 Sorghum and Striga seeds 

 

Sorghum bicolor variety, Sorgho Malienne 335 (CSM 335) from Mali and Striga 

hermonthica seeds collected from a sorghum field in Nafadji, Mali in 2007 were used in 

this study. Sorgho Malienne 335 CSM 335 was selected for its known susceptibility to 

Striga infection (Haussmann et al., 2000b). 

 

3.1.2 Bacteria strains 

 

Four Plant Growth Promoting Rhizobacteria (PGPR) strains were used in this study. They 

were, three Bacilli (B. subtilis Bsn5, B. subtilis GBO3, B. amyloliquefaciens FZB42) and 

one Burkholderia (Burkholderia phytofirmans PsJN). Bacillus strains were obtained from 

the Bacillus Genetic Stock Center; Ohio State University, Ohio, USA where they are 

designated 3A35, 3A37 and 10A6 respectively, while Burkholderia phytofirmans PsJN was 

obtained from Austrian Institute of Technology, Austria.  

 

3.2 Experimental preliminaries 

 

3.2.1 Surface sterilization of Striga seeds 

 

Striga seeds were surface sterilized according to the method described by Amusan et al. 

(2011) with minor modifications. Seeds were soaked in 75% ethanol for 2 min and then 

bathed in 1% sodium hypochlorite solution containing 3–5 drops of polyoxyethylene 20 

sorbitan monolaurate (Tween
®
 20) for 5 min. This step was followed by 3 rinses in sterile 

distilled water with each rinse lasting 5 min. Seeds were then sonicated for 2 min with 25 

ml glutaraldehyde (active ingredient glutaraldehyde, 2.5%, Carl Roth GmbH, Germany) to 

remove remaining particles adhering to their surfaces. After rinsing, seeds were poured into 

a methanol-sterilized nylon cloth (Φ100 µm) and rinsed 3 times with sterile distilled water. 

The nylon mesh allowed debris (<Φ100 µm) to pass, while clean seeds were left on the 

cloth. Seeds were air-dried in a laminar flow bench before use. 
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3.2.2 Striga seed preconditioning 

 

Fiber glass filter paper (FGFP) discs (Whatman GF/A, Whatman International Ltd, 

England) measuring 9 mm in diameter were prepared using a cork borer. The discs were 

then heat-sterilized for 2 h at 150
o
C in a dry heat oven (Heraeus Instruments, Germany). 

Two layers of 12 x 12cm heat-sterilized filter papers (Whatman GF/A9) were laid in a 12 x 

12 cm sterile Petri dish moistened with 5.5 ml sterile deionized water. One hundred discs 

were placed on the filter paper in the Petri dishes (Plate 3.1). Approximately 200 surface 

sterilized Striga seeds were sprinkled on each disc in a laminar flow bench. The dishes 

were sealed with parafilm to prevent desiccation and recontamination. Aluminium foil was 

used to enclose the dishes to exclude light. The seeds were then preconditioned for 10 days 

in the dark at 30°C before use in relevant experiments.  

 

 

Plate 3.1 Striga seeds on fiber glass discs during preconditioning (Photo by Lenard 

Mounde) 

 

3.2.3 Sorghum seed surface sterilization and pre-germination 

 

Sorghum seeds were surface sterilized and pre-germinated according to the method 

described by Amusan et al. (2011) with minor modifications. Seeds were soaked in 1% 

(w/v) sodium hypochlorite solution for 30 min. After this treatment, seeds were rinsed 3 

times in sterile water before soaking overnight in 5% (w/v) Captan slurry (active 

ingredient: N-[trichloromethyl] thio-4-cyclohexene-1,1-dicarboimiide, 39%) (Sigma 

Aldrich GmbH, Germany), a non-systemic fungicide, before use. Sterilized seeds were pre-

germinated on filter paper kept wet in sterilized Petri dishes at 30°C for 48 h before use in 

Petri dish bioassays. After protrusion of both radicle and plumule, seedlings for use in root 

 

 
Striga seeds 

Filter paper 
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chamber experiments were kept for an extra day between two sheets of moist germination 

paper rolls (Rotilabo
®
-germ testing paper, Carl Roth GmbH; Germany) in a sterile glass 

beaker at 30°C to orient shoot and root growth in opposite direction. Thereafter, the 

seedlings were used in root chamber experiments. 

 

3.2.4 Striga seed germination test 

 

In order to test the germinability of Striga seeds for use in subsequent experiments, a 

germination test was conducted. Seeds preconditioned as described in 3.2.2 were used. 

Two pieces of sterile Whatman filter paper were placed in a sterile petri dish and 

moistened with 2 ml of sterile deionized water. FGFP (9 mm diameter) were placed on the 

moistened filter papers. Small amounts (50–100) of Striga seeds were aseptically dabbed 

on to the discs. Five discs representing different replications were put in one Petri dish 

(Plate 3.2).  

 

 

Plate 3.2 Preconditioned Striga seeds on fiber glass discs used for germination test 

(Photo by Lenard Mounde) 

 

100 µm of the germination stimulant (GR24) (Chiralix B.V, Nijmegen, The Netherlands) 

were added to the seeds. The Petri dish was sealed with parafilm and incubated in the dark 

at 30°C.  

After 24–48 h, seeds on each disc were observed for germination using a binocular 

microscope (Axioplan, Carl Zeiss GmbH, Germany) fitted with a digital camera (Power 

Shot A640, Canon Inc., China). A Striga seed was considered to have germinated if it 

showed a protruded radicle through the seed coat (Prandi et al., 2011). A picture of the 

entire disc was taken. Total number of seeds (TS) and germinated seeds (GS) were counted 
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using the “Paint” counting tool for Windows Photo Viewer (Windows 7 Professional, 

Microsoft Corporation). Germination percentage (GP) was calculated using the following 

formula: 

 

Mean germination percentage was obtained by calculating the average germination 

percentage from the five discs.  

 

3.3 Experimental details 

 

3.3.1 Determination of suitable concentration of bacteria media for sorghum 

germination and vigor enhancement 

 

The objective of this experiment was to determine the most suitable Luria-Bertani (LB) 

liquid media concentration for suspending bacteria inocula to be used in subsequent 

sorghum germination experiments. The media evaluated was Luria Bertani (LB) media 

which was prepared to concentrations of 100%, 50% and 10% and used as experimental 

treatments. The ingredients of each concentration were as follows: 100% LB (g/liter): 

Trypton, 10.0; Yeast extract, 5; NaCl, 10.0, pH 6.9), 50 LB% (g/liter): Trypton, 5.0; Yeast 

extract, 2.5; NaCl, 5.0, pH 6.5), 10% LB (g/liter): Trypton, 1.0; Yeast extract, 0.5; NaCl, 

1.0, pH 6.3). 1g/lt of NaCl was equivalent to 17.1 mM. The experiment was set up in an in-

vitro germination bioassay in Petri dishes lined with sterile FGFP. Using sterile forceps, 

surface sterilized sorghum seeds were immersed for 30 min. in individual media. Control 

treatment seeds were immersed in sterile distilled water (SDW, pH 6.2), for 30 min. Fifteen 

seeds from each treatment were placed in Petri dish and moistened with 2 ml of individual 

media or SDW. Each treatment was replicated three times and experiment laid out in 

randomized complete design (RCD) in growth chamber (Percival Scientific Inc. USA) at 

30°C. The experiment was repeated once.  

Seven days after sowing, the number of seeds germinated per Petri dish was recorded and 

GP calculated using the formular described in experiment 3.2.4. To soften seedlings’ 

tissues and allow them to be stretched to their full length without breaking, Petri dishes 

were then frozen at -4
o
C before measuring seedling root and shoot length (≥1 mm) of all 

germinated seedlings per replicate using Fitomed (Castellano et al., 2001). Seed vigor 
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index (VI) was calculated by multiplying germination (%) and seedling length (mm) using 

the formular: 

Vigor Index = Seedling length (Mean root length+ Mean shoot length) X % germination 

(Abdul- Baki & Anderson, 1973). 

 

3.3.2 Determination of suitable bacteria media concentration for Striga germination 

and radicle growth  

 

The objective of the experiment was to test if same concentration of LB media described in 

experiment 3.3.1 could have an effect on Striga germination and radicle elongation. About 

200 preconditioned surface sterilized Striga seeds were dabbed gently onto moist sterile 

FGFP discs prepared as described above and laid on two layers of filter paper, moistened 

with 2 ml of deionized sterile water inside Petri dishes. 100 µm of 100% LB, 50% LB; and 

10% LB were added to the seeds. Control seeds received 100 µm sterile distilled water 

(SDW). The seeds were left for 5 min before pipetting 100 µm of 1ppm synthetic 

germination stimulant (GR24) on to them. The treatments were replicated three times and 

sealed with parafilm. The experiment was laid in RCD in a growth chamber at 30°C in 

darkness. The experiment was repeated once. 

After five days, seeds on each disc were counted and germination percentage calculated as 

described in experiment 3.2.4. Radicles were observed by a binocular microscope (Zeiss 

Binokular Stemi 2000 C, Carl Zeiss GmbH, Germany). Five radicles which appeared 

longer than the other radicles were randomly selected and measured using a Zeiss 

AxioVision Rel. 4.8, SP1 imaging software (Carl Zeiss Microimaging GmbH, Germany).  

The best performing LB media concentration in terms of sorghum germination and vigor as 

well as Striga germination and radicle elongation was selected for PGPR inocula and cell 

culture supernatant preparation.  

 

3.3.3 Plant growth promoting rhizobacteria inocula and cell culture supernatant 

preparation 

 

Three Bacillus strains (B. subtilis Bsn5, B. subtilis GBO3, and B. amyloliquefaciens 

FZB42) and Burkholderia phytofirmans PsJN were assessed for sorghum germination 

promotion and Striga germination inhibition activity. Stock cultures were stored at -80°C 
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in 30% glycerol. The cultures were activated by culturing them in LB agar media (g/liter): 

Trypton, 10.0; Yeast extract, 5; NaCl, 10.0; Agar, 15.0) for 48 h at 30
o
C.  

To prepare each PGPR liquid inocula and cell culture supernatants, two loops of individual 

bacteria were incubated in 100 ml of 10% LB liquid medium in a 250-ml Erlenmeyer flask 

at 30°C (considered favourable for the PGPR growth) for 48 h in a rotary shaker (150 rpm) 

as described by Ait Barka et al. (2000) and Compant et al. (2005) with minor 

modifications. The liquid culture was then centrifuged at 7,500 g for 10 min at 4
o
C 

(Sorvall
®
 RC-5B Refrigerated Superspeed Centriguge, Du Pont Instruments GmbH, 

Germany). The supernatant fraction was poured into sterile flasks and was either used 

directly or stored at -15°C in subsequent experiments.  

The biomass fraction (bacteria cells) of each bacterium was suspended in 10% LB liquid 

media before adjusting the bacterial concentration through serial dilutions and spread agar 

plate counting following a method described by Micklos and Freyer (2003). A standard 

curve was developed by corresponding colony forming units (CFU) values in each dilution 

against the spectrophotometer (UV-1600PC-Spectrophotometer, VWR International bvba, 

Leuven, Belgium) value at 600 nm. This curve was used to estimate bacterial 

concentrations in subsequent experiments. Each bacterial inoculum concentration was 

adjusted to over 10
8
 CFU ml

-1
 with 10% LB liquid medium. To maintain the efficacy of 

bacteria, innocula were used immediately in relevant experiments.  

 

3.3.4 Effect of plant growth promoting rhizobacteria inocula on sorghum seed 

germination and vigor index  

 

The experiment was set up in an in-vitro germination bioassay as described in experiment 

3.3.1. The treatments in the experiment were bacteria inocula prepared as described in 

3.3.3. They were: B. subtilis Bsn5, B. amyloliquefaciens FZB42, B. subtilis GBO3 and 

Burkholderia phytofirmans PsJN. Control treatment seeds were treated with SDW, and 

blank 10% LB liquid media. Each treatment was replicated three times and experiment laid 

out in RCD in growth chamber at 30°C. The experiment was repeated once. 
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3.3.5 Effect of plant growth promoting rhizobacteria supernatant on sorghum seed 

germination and vigor index 

 

The experiment was set up as described in 3.3.4 but inocula were replaced with cell culture 

supernatants prepared as described in 3.3.3. These supernatant treatments were: Bacillus 

subtilis Bsn5, B. subtilis GBO3, B. amyloliquefaciens FZB42 and Burkholderia 

phytofirmans PsJN. Seeds for the control treatments were immersed in SDW and 10% LB 

liquid medium. All the supernatants, LB and SDW were filtered through a 0.22 μm sterile 

filter (GE Infrastructure, UK) to exclude any bacterial contamination. Fifteen seeds were 

placed in each Petri dish lined with sterile FGFP and moistened with 1 ml of each PGPR 

cell culture supernatant, SDW or 10% LB liquid medium according to treatments. Each 

treatment was replicated three times and experiment laid in RCD in growth chamber at 

30°C. The experiment was repeated once. 

Seven days after sowing, germination percentage and vigor index data from experiment 

3.3.4. and 3.3.5. were collected and calculated using procedures described in 3.3.1. 

 

3.3.6 Effect of plant growth promoting rhizobacteria inocula on Striga seed 

germination and radicle elongation 

 

About 200 preconditioned surface sterilized Striga seeds were dabbed gently onto moist 

sterile FGFP discs prepared as described above and laid on two layers of filter paper, 

moistened with 2 ml of deionized sterile water inside petri dishes. 100 µm of Bacillus 

subtilis Bsn5, B. amyloliquefaciens FZB42, B. subtilis GBO3 and Burkholderia 

phytofirmans PsJN inocula prepared as described in experiment 3.3.3 were added to the 

seeds. Control seeds received blank 10% LB and SDW. 100 µm of 1 ppm synthetic 

germination stimulant (GR24) were then pipetted on to the Striga seeds on each disc. 20 

µm of Rifampicin antibiotic (Carl Roth GmbH, Germany) were added to control treatments 

to prevent bacterial infection. The treatments were replicated three times, sealed with 

parafilm and laid in RCD in a growth chamber at 30°C for 7 days in darkness. The 

experiment was repeated once. 
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3.3.7 Effect of plant growth promoting rhizobacteria supernatants on Striga seed 

germination and radicle elongation 

 

The experiment was set up as described in 3.3.6 but inocula were replaced with cell culture 

supernatants prepared as described in 3.3.3. 100 µm of filter sterilized Bacillus subtilis 

Bsn5, B. subtilis GBO3, B. amyloliquefaciens FZB42 and Burkholderia phytofirmans PsJN 

cell culture supernatants were added to the seeds. 10% LB liquid medium and SDW were 

the control treatments. The treatments were replicated three times and sealed with parafilm. 

The experiment was laid in RCD in a growth chamber at 30°C in darkness. The experiment 

was repeated once. 

After five days, germination percentage and radicle length data from experiments 3.3.6.  

and 3.3.7.were collected using methods described in 3.2.4 and 3.3.2. An extended agar gel 

assay (EAGA) was conducted using similar PGPR inocula and cell culture supernatants but 

replacing GR24 with sorghum seedlings to test if a similar trend of results could be 

obtained. 

 

3.3.8 Effect of plant growth promoting rhizobacteria inocula on Striga seed 

germination and radicle elongation in presence of sorghum seedlings 

 

An extended agar gel assay (EAGA) described by Mohammed et al. (2010a) with minor 

modifications was used. Approximately 4,500 surface-sterilized preconditioned Striga 

seeds were pipetted aseptically into empty sterile Petri dishes (12 x 12 cm). This was an 

approximate equivalent of 3 drops of settled seed in a Striga-water mixture after vortexing. 

1 ml of 1 ppm GR24 was added. Three ml of individual Bacillus subtilis Bsn5, B. subtilis 

GBO3, B. amyloliquefaciens FZB42 and Burkholderia phytofirmans PsJN prepared as 

described in experiment 3.2.6 were added to the seeds and kept for 30 min in dishes. 

Control treatments were; 10% LB liquid medium and SDW. After cooling to about 50
o
C, 

30 ml of 0.7% agar solution (7 g in 1000 ml water) were poured into dishes and the 

solution shaken gently to allow even distribution of the seeds. The gel was then left to 

solidify before pre-germinated sorghum seeds were sown into each dish. A two-day old 

seedling of sorghum variety CSM 335, prepared as described in 3.2.3 was sown at the edge 

of the center of any of the four sides of each Petri dish (Plate 3.3). Treatments were 

replicated 3 times and arranged in RCD in a growth chamber at 30°C. The experiment was 

repeated once. 
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Plate 3.3 Sorghum seedling growing on agar gel (Photo by Lenard Mounde) 

 

3.3.9 Effect of plant growth promoting rhizobacteria supernatants on Striga seed 

germination and radicle elongation in presence of sorghum seedlings 

 

The experimental set up was similar to the one described in experiment 3.3.8. The only 

difference was that Bacillus subtilis Bsn5, B. subtilis GBO3, B. amyloliquefaciens FZB42 

and Burkholderia phytofirmans PsJN supernatants prepared as described in 3.3.3 were used 

instead of bacteria inocula. Treatments were replicated 3 times and arranged in RCD in a 

growth chamber at 30°C. The experiment was repeated once. 

After five days, sixteen (16) grids measuring 3 x 3 cm were made at the back side of the 

agar plate using a thick water-resistant marker pen (Plate 3.4) in both experiment 3.3.8 and 

3.3.9.Three grids were selected, provided the sorghum root could be seen passing through 

the grid, to form a representative sample for the entire plate. A grid where a root was 

present increased the chances of Striga seeds having come into contact with sorghum root 

exudates. Total and germinated Striga seeds in each grid were counted with the aid of a 

binocular microscope and recorded.  

After 7 days, seeds on selected grids were counted under a binocular microscope (Zeiss 

Binokular Stemi 2000 C, Carl Zeiss GmbH, Germany). Germination percentage and radicle 

length data from experiments 3.3.8 and 3.3.9 were collected using methods described in 

3.2.4 and 3.3.2. 

A cell culture supernatant producing the highest germination and radicle length inhibition 

was selected for isolation and identification of Striga germination and radicle length-

inhibiting compounds. 
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Plate 3.4 Square grids at the back of extended agar gel assay Petri dishes (Photo by 

Lenard Mounde) 

 

3.3.10 Determination of polarity of radicle elongation inhibition in Bacillus subtilis 

Bsn5 supernatant 

 

The experiment was conducted with the aim of identifying the polarity of the inhibitors as 

a step towards isolating and identifying the compounds. Ethyl acetate (acetic acid ethyl 

ester; Carl Roth GmbH, Germany) was used to extract all compounds in Bacillus subtilis 

Bsn5 cell culture supernatant based on their solubility in the solvent.10 ml of Bacillus 

subtilis Bsn5 cell culture supernatant were mixed with equal volume of ethyl acetate in 

sterile 50 ml Falcon
®
 tubes. The mixture was vortexed and let to settle for 10 min to allow 

separation into hydrophilic and hydrophilic fractions. The lipophilic fraction (ethyl acetate 

phase) settled on top and the hydrophilic fraction (water phase) at the bottom. Both 

fractions were then pipetted separately into sterile 50 ml Falcon
®
 tubes before use. 

A germination experiment was set up as described in 3.3.2 with the following treatments: 

Bacillus subtilis Bsn5 supernatant, ethyl acetate phase (1% and 100%), water phase (1% 

and 100%). The ethyl acetate phase was diluted with ethyl acetate while the water phase 

was diluted with SDW. The control treatments were SDW, 10% LB liquid media and 

100% ethyl acetate. Three sterile FGFP discs (9 mm), which served as replicates, were laid 

on 90 mm sterile FGFP in Petri dishes. 100 µl of individual treatment solutions were 

pipetted on the discs in a laminar flow bench. The Petri dishes were left open for 1 h to let 

acetyl acetate evaporate from the discs since it is known to be toxic to the seeds. 

Thereafter, other discs containing preconditioned Striga seeds were placed on the treated 

discs before moistening with 2 ml of SDW. 65 µl of GR24 was added to each disc (Figure 
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3.1). The dishes were sealed with parafilm before incubation at 30°C for 5 days in the dark. 

The experiment was repeated once.  

After five days, germination percentage and radicle length data were collected using 

methods described in experiments 3.2.4 and 3.3.2. 

 

 
Figure 3.1 Schematic diagrams showing the application of hydrophilic and 

hydrophobic fractions of Bacillus subtilis Bsn5 cell culture supernatant on 

Striga seeds 

 

3.3.11 Determination of protein composition in Bacillus subtilis Bsn5 supernatant 

 

The experiment was conducted by the Life Science Center, University of Hohenheim with 

the aim of identifying proteins which are produced by Bacillus subtilis Bsn5. Proteins 

(peptides) have been proposed as some of Striga germination and radicle elongation 

inhibitors (Dadon et al., 2004). 

 

3.3.11.1 Sample preparation 

Bacillus subtilis Bsn5 cell culture supernatant was filtered through a 0.22 µm sterile filter 

(Suppelco, Germany) and proteins were subsequently precipitated with acetone. Briefly, 20 

ml cold acetone (-20°C) were added to 5 ml of cell culture supernatant and proteins were 

precipitated over night at -20°C. Samples were centrifuged at 14,000 rpm and supernatants 
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discarded thereafter. Protein pellets were dissolved in sodium dodecyl sulphate (SDS) 

sample buffer and applied to a 10 % Sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE). Gel electrophoresis was stopped after proteins had migrated 

2 cm into the separation gel. Proteins were visualized by colloidal Coomassie blue staining 

(Carl Roth GmbH, Germany).  

 

3.3.11.2 Mass spectrometry analysis 

Proteins were in-gel-digested using trypsin (Roche, Germany) according to Shevchenko et 

al. (1996). Tryptic peptides were purified using stage tips as described in Rappsilber et al. 

(2003). Nano-LC-ESI-MS/MS experiments were performed on an ACQUITY
™

 nano-

UPLC system (Waters, USA) coupled to a LTQ-Orbitrap XL
™

 hybrid mass spectrometer 

(Thermo Fisher Scientific, Germany). Tryptic digests were concentrated on a precolumn (2 

cm x 180 µm, Symmetry C18, 5 µm particle size, Waters, USA) and separated on a 25 cm 

x 75 µm BEH 130 C18 reversed phase column (1.7 µm particle size, Waters, USA). 

Gradient elution was performed from 1% ACN to 50% ACN in 0.1% formic acid (FA) 

within 90 min. The LTQ-Orbitrap was operated under the control of XCalibur 2.0.7 

software. Survey spectra (m/z = 250-2000) were detected in the Orbitrap at a resolution of 

60,000 at m/z = 400. Data dependent tandem mass spectra were generated for the seven 

most abundant peptide precursors in the linear ion trap. For all measurements using the 

Orbitrap detector, internal calibration was performed using lock-mass ions from ambient 

air as described in Olsen et al. (2005).  

 

3.3.11.3 MS data analysis 

Mascot 2.3 (Matrix Science, UK) was used as search engine for protein identification. 

Spectra were searched against the bacteria subset of the American National Center for 

Biotechnology Information (NCBI) protein sequence database downloaded as FASTA-

formatted sequences fromftp://ftp.ncbi.nih.gov/blast/db/FASTA/nr.gz. Search parameters 

specified trypsin as cleaving enzyme allowing three missed cleavages, a 5 ppm mass 

tolerance for peptide precursors and 0.6 Da tolerance for fragment ions. Carbamido 

methylation of cysteine residues was set as fixed modification. Methionine oxidation was 

allowed as variable modification.  
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3.3.12 Effect of plant growth promoting rhizobacteria on sorghum growth  

 

The experiment was carried out in root chambers under controlled conditions in a growth 

chamber. Root chambers are compartments (20 x 6 x 2 cm length, width and depth, 

respectively) having backs and sides made of PVC while the front is closed with 

transparent plexiglass allowing the observation of the host plant roots and the Striga 

underground stages. A strip (20 x 6 cm) of FGFP moistened with the benomyl solution was 

used to cover the plexiglass and placed in each chamber. The chambers were then filled 

with sterilized sand and moistened with SDW. One sorghum seedling (1-1.5 cm root 

length) was placed between the lid and the FGFP strip. Plate 3.5 shows the experimental 

set up in a growth chamber.  

The seedlings were subjected to 8 bacterial treaments; four with Striga and an equal 

number without Striga. These treatments were: sorghum + Striga + B. subtilis Bsn5; 

sorghum + Striga + B. subtilis GBO3; sorghum + Striga + B. amyloliquefaciens FZB42; 

sorghum + Striga + Burkholderia phytofirmans PsJN; sorghum + B. subtilis Bsn5; 

sorghum + B. subtilis GBO3; sorghum + B. amyloliquefaciens FZB42 and sorghum + 

Burkholderia phytofirmans PsJN. Sorghum + 10% and sorghum + Striga were the control 

treatments. Each plant received 5ml of the prepared bacterial inoculum prepared as 

described in 3.2.6, blank 10% LB or SDW according to treatments.  

A similar dose was given 2 weeks later. Each plant was fertilized with 20 ml of a 

multinutrient solution, prepared according to Pedas et al. (2005) (Table 3.1) at 5-day 

intervals until end of the experiment. Plants were regularly watered with SDW. Each 

treatment for plant height determination and leaf chlorophyll SPAD values were replicated 

twelve times while treatments for dry matter determination were replicated six times. The 

experiment was set in a RCD in a growth chamber at 25°C (12 h night) and 30°C (12 h 

day). Plant height and leaf chlorophyll SPAD determination experiment was repeated twice 

while dry matter measurement experiment was repeated once. 

Sorghum plant height and leaf chlorophyll SPAD values were measured with the aid of a 

ruler and SPAD meter respectively at 7 day intervals for 28 days. Plant height was 

determined by measuring the length of each plant from the base of the stem to the ligule of 

the youngest fully expanded leaf according to methods described by Press and Stewart 

(1987). For each plant, SPAD measurements were taken at four locations on the youngest 

fully expanded leaf, two on each side of the midrib and then averaged using a SPAD-502 
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Chlorophyll Meter (Konica Minolta Sensing, Inc. Japan). Chlorophyll SPAD values are an 

accurate and non-destructive measurement of leaf chlorophyll concentrations (Ling et al., 

2011). The values are proportional to the amount of chlorophyll present in the leaf through 

derived calibration curves.  

 

 

Plate 3.5 Sorghum growing in root chambers in a growth chamber (Photo by Lenard 

Mounde) 

 

After 28 days, plants were destructively harvested and dry weight calculated. Roots and 

shoots were separated, oven dried (Modell 700, Memmert GmbH, Germany) at 70
o
C for 48 

hrs before measuring the dry matter content. Shoot and root dry matter was summed up to 

give total dry matter content.  

 

3.3.13 Effect of plant growth promoting rhizobacteria in Striga growth suppression 

 

The experiment was done in root chambers under controlled conditions in a growth 

chamber as described in 3.3.12. Square grids measuring 3 x 3 cm were made on the 

transparent plexiglass with a water-insoluble marker pen. Three grids were then randomly 

selected along the host root for data collection. Total seeds (TS) in the selected grids were 

counted. Developmental stages of attached Striga on host roots were recorded at 7 day 

interval until the 28
th

 day after sowing (DAS) using a binocular microscope. The stages of 

development were defined as GS, germinated seed; AS, attached seed; LT, live tubercles 

and DT, dead tubercles.  GS and AS were expressed as percentages of the TS while LT and 

DT were expressed as a percentage of the AS.  
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Table 3.1 Protocol for multi-nutrient solution used to fertilize plants in root chamber 

experiments 

Solution 
Compounds per 

solution 

Concentration 

(mol L
-1

) 

Mol-weight 

(g mol
-1

) 

Amount 

(g L
-1

) 

Amount 

(g ½L) 

A KH2PO4 0.20  136.09 - 13.61 

K2SO4 0.20  174.27 - 17.43 

B MgSO4·7H2O 0.30  246.48 - 36.97 

NaCl 0.10  58.44 - 2.92 

N Mg(NO3)2·6H2O 0.30  256.41 - 38.46 

Ca(NO3)2·4H2O 0.90  236.15 - 106.27 

KNO3 0.60  101.11 - 30.34 

Iron Fe(III)-EDTA-Na 0.05  367.05 - 9.18 

Micro MnCl2·4H2O 0.0070 197.91 1.39 - 

ZnCl2 0.0007 136.28 0.10 - 

CuSO4·5H2O 0.0008 249.68 0.20 - 

H3BO3 0.0020 61.83 0.12 - 

Na2MoO4·2H2O 0.0008 241.95 0.19 - 

Note: 1 ml from each solution were pooled together and dissolved in 1000 ml water 

Source: Pedas et al. (2005) 

 

3.3.14 Determination of phytohormone composition in bacterial cell culture 

supernatants 

 

PGPR supernatants prepared as described in experiment 3.3.3 were used to investigate for 

the presence of phytohormones. This experiment was conducted by the Institute of Crop 

Physiology of Speciality Crops, University of Hohenheim. 25 ml of individual B. subtilis 

Bsn5, B. subtilis GBO3, and B. amyloliquefaciens FZB42 and Burkholderia phytofirmans 

PsJN supernatant were added to 0.1 M ammonium acetate. The concentration was adjusted 

to 0.01 M ammonium actetate (p
H
 7). The solutions were then purified using a combination 

of columns; Polyvinylpolypyrrolidone (PVP), DEAE Sephadex 
TM

 A-25 (Sigma Aldrich 

GmbH, Germany) and SepPark C18 (Waters GmbH, Germany) as described by Jimenez et 

al. (2001). 10 ml of each supernatant dissolved in 0.01 M ammonium acetate were passed 

though PVP column to remove disturbing phenolics. 4 ml of the resultant solution were 

passed through a Sephadex anion exchanger column to bind acid hormones (ABA, IAA, 

GAs). Cytokinins were let to flow through to the next column, a conditioned SepPak C18, 

where the hormone was bound. Quantitative hormone analysis was performed on 1 ml of 

each sample in duplicates by Radio-Immuno-Assay (RIA) following a method described 

by Weiler (1980) and Bohner and Bangerth (1988) using polyclonal antibodies for Z/ZR 

(cytokinins), indoleacetic acid (IAA) and gibberellic acid (GA3). Given that GA3 antibody 

showed cross reactivity for GA1 and GA20, the results were presented as GAs. 
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3.4 Data analysis 

 

Germination percentage, vigor index, radical length, attached seed, live and dead tubercle, 

hormone concentration data were analysed using generalized linear (GLM) models of SAS 

9.3 for Windows statistical software (SAS Institute, Cary, USA) taking treatments as fixed 

effects while replications as random effects. Data from repeat trials in each experiment 

were combined after confirming homogeneity of variance before analysis. Non-normally 

distributed data were square root transformed before being subjected to ANOVA. Multiple 

comparisons among treatment means were calculated and mean separation executed 

through the Tukey’s test at p≤0.05. A correlation analysis between individual hormones 

and germination percentage, vigor index, radicle length, attached seed, live and dead 

tubercle, was performed using correlation procedure (PROC CORR.) of SAS. 
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Chapter 4: Results 

 

4.1 Effect of Luria-Bertani media on sorghum germination and vigor 

 

No significant differences (p<0.05) were detected on sorghum germination among different 

LB media concentrations (Table 4.1). Germination percentage in all treatments including 

SDW control ranged between 83% and 87%. Significant (p<0.05) differences were, 

however, detected on seedling vigor where an inverse relationship between media 

concentration and vigor was observed. The highest VI (>11000) was recorded in SDW and 

10% LB treated seeds while the lowest (<4,000) in 50% and 100% LB treated seeds. There 

was a 71%  and 80% vigor index reduction of seedlings exposed to 50% LB and 100% LB, 

respectively, compared to the seeds treated with 10% LB. 

 

Table 4.1 Effect of Luria-Bertani (LB) medium on sorghum germination and vigor in 

filter paper bioassays 

Treatment Germination (%) Vigor index (VI) 

10% Luria-Bertani  + sorghum 85.0 (9.2) a 11,731.7 (103.0) a 

50% Luria-Bertani + sorghum 86.7 (9.3) a 3,356.7 (57.8) b 

100% Luria-Bertani + sorghum 83.3 (9.1) a 2,307.8 (47.4) b 

Sterile distilled water + sorghum 83.3 (9.1) a 14,561.7 (119.5) a 

Sample size (n) 24 24 

Sample Mean. 84.5 7989.4 

Std. Dev 11.8 6724.8 

Pr>F 0.9643 ≤0.0001 

Values are means of combined data of two trials with three replicates each. Means within each column 

followed by same letter are not statistically different at p≤0.05 according to the Tukey-test. Values in 

parenthesis are square root transformed means. 

 

4.2 Striga germination test 

 

The average germination percentage was 71%. 

 

4.3 Effect of Luria-Bertani media on Striga germination and radicle 

elongation 

 

Striga germination and radicle lengths were significantly (p<0.05) greater in seeds treated 

with distilled water and 10% LB compared to 50% and 100% LB concentrations (Table 

4.2). The greatest percentage of germination (over 60%) occurred in SDW and 10% LB 
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while the lowest (0%) in 50% and 100% LB concentrations. A similar trend was observed 

in radicle lengths where media concentrations of 10% LB and SDW produced higher 

radicle lengths compared to LB concentrations above 50%. Significant differences in 

radicle lengths were also observed among 10% media and SDW treatments where SDW 

induced higher lengths (3.5 mm) compared to 10% LB (1.1 mm).  

10% LB, which showed the high sorghum vigor, sorghum germination and radicle 

elongation was selected for use in preparing liquid inocula and cell culture supernatants as 

described in 3.3.3 for subsequent experiments. 

 

Table 4.2 Effect of Luria-Bertani (LB) medium on Striga germination and radicle 

length in filter paper bioassays 

Treatment Germination (%) Radicle length (mm) 

10% Luria-Bertani + Striga + GR24 60.6 (7.8) a 1.10 (1.0) c 

50% Luria-Bertani + Striga + GR24 0 (0) b 0 (0) b 

100% Luria-Bertani + Striga + GR24 0 (0) b 0 (0) b 

Sterile distilled water + Striga + GR24 63.1 (7.9) a 3.5 (1.9) a 

Sample size (n) 24 24 

Sample Mean. 30.9 1.4 

Std. Dev 31.9 1.4 

Pr>F <0.0001 <0.0001 

Values are means of combined data of two trials with three replicates each. Means within each column 

followed by same letter are not statistically different at p≤0.05 according to the Tukey-test. Values in 

parenthesis are square root transformed means. 

 

4.4 Effect of plant growth promoting rhizobacteria inocula on sorghum 

seed germination and vigor 

 

The PGPR did not differ significantly in their effect on sorghum seed germination. 

Germination percentage in all PGPR inocula treatments and controls ranged between 86% 

and 96%. However, sorghum seedling vigor differed upon exposure to different PGPR 

inoculants. The highest VI (>18,000) was achieved in seeds inoculated with Burkholderia 

phytofirmans PsJN while the lowest (<11,000) was recorded in seeds inoculated with 

Bacillus amyloliquefaciens FZB42; Bacillus subtilis Bsn5 in 10% LB and 10% LB control 

medium. Results on sorghum seed germination and vigor index are summarized in (Table 

4.3). 
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Table 4.3 Effect of plant growth promoting rhizobacteria inocula on sorghum seed 

germination and vigor in filter paper bioassays 

Treatment Germination (%) Vigor Index (VI) 

Sorghum + Bacillus subtilis Bsn5  86.7 (9.3) a 10,101.3 (100.4) d 

Sorghum + Bacillus amyloliquefaciens FZB42 92.2 (9.6) a 10,424 (101.4) d 

Sorghum + Bacillus subtilis GBO3 95.6 (9.8) a 13,048 (113.8) c 

Sorghum + Burkholderia phytofirmans  PsJN 93.3 (9.7) a 18,215.7 (134.8) a 

Sorghum + 10% Luria-Bertani 88.9 (9.4) a 10,528.2 (101.9) d 

Sorghum + Sterile distilled water 87.8 (9.4) a 15,743.1 (125.1) b 

Sample size (n) 36 36 

Sample Mean. 90.3 13,400.5 

Std. Dev 7.8 3,671.8 

Pr>F 0.2482 <0.0001 

Values are means of combined data of two trials with three replicates each. Means within each column 

followed by same letter are not statistically different at p≤0.05 according to the Tukey-test. Values in 

parenthesis are square root transformed means. 

 

4.5 Effect of plant growth promoting rhizobacteria cell culture 

supernatants on sorghum seed germination and vigor 

 

Different PGPR supernatants did not cause any variation on sorghum germination 

percentages but on seedling vigor (Table 4.4), Burkholderia phytofirmans PsJN showed the 

highest VI (>12,000) while and B. subtilis Bsn5 and Bacillus amyloliquefaciens FZB42 the 

lowest VI (<10,500). The effect of Burkholderia phytofirmans PsJN supernatant on vigor 

was, however, not different with B. subtilis GBO3 and control treatments. 

 

4.6 Effect of plant growth promoting rhizobacteria inocula on Striga 

seed germination and radicle elongation 

 

The germination percentage and radicle length of Striga as a function of PGPR treatments 

are presented in Table 4.5. There were significant differences (p<0.05) in the effect of 

PGPR inoculum on Striga germination compared with uninoculated controls. The highest 

germination percentage (>60%) were recorded in the SDW, followed by 10% LB (40%). 

Total germination inhibition (0% germination) occurred in all seeds exposed to bacteria 

suspended in 10% LB. Radicle elongation followed an almost similar pattern of inhibition 

like the one observed on germination. Highest radicle length inhibition (100% inhibition) 

occurred in seeds exposed to all PGPR treatments. The longest radicle lengths (3.5 mm) 

were recorded in SDW + GR24-treated controls.   
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Table 4.4 Effect of plant growth promoting rhizobacteria cell culture supernatants on 

sorghum seed germination and vigor in filter paper bioassays 

Treatment Germination (%) Vigor Index (VI)  

Sorghum + Bacillus subtilis Bsn5  90.0 (9.5) a 10,241 (100.2) b 

Sorghum + Bacillus amyloliquefaciens FZB42 88.9 (9.4) a 10,125 (100.6) b 

Sorghum + Bacillus subtilis GBO3  90.3 (9.5) a 10,806 (103.9) ab 

Sorghum + Burkholderia phytofirmans PsJN  87.8 (9.4) a 12,167.3 (110.1) a 

Sorghum + 10% Luria-Bertani media 96.7 (9.8) a 11,381.9 (106.6) ab 

Sorghm + Sterile distilled water 92.2 (9.6)a 11,488.4 (107.2) ab 

Sample size (n) 36 36 

Sample Mean 91.0 11,035.0 

Std Dev 7.9 1645.3 

Pr>F 0.5566 0.0005 

Values are means of combined data of two trials with three replicates each. Means within each column 

followed by same letter are not statistically different at p≤0.05 according to the Tukey-test. Values in 

parenthesis are square root transformed means. 

 

Table 4.5 Effect of plant growth promoting rhizobacteria inocula on Striga 

germination and radicle elongation in filter paper bioassays 

Treatment Germination (%) Radicle length (mm) 

Striga + GR24 + Bacillus subtilis Bsn5 0 (0) c 0 (0) c 

Striga + GR24 + Bacillus amyloliquefaciens FZB42 0 (0) c 0 (0) c 

Striga + GR24 + Bacillus subtilis GBO3 0 (0 )c 0 (0) c 

Striga + GR24 + Burkholderia phytofirmans PsJN 0 (0) c 0  (0) c 

Striga + GR24 + 10% Luria-Bertani 40.0 ( 6.3) b 1.1 (1.0) b 

Striga + GR24 + Sterile distilled water 63.1 (7.9) a 3.5 (1.9) a 

Sample size (n) 36 36 

Sample Mean. 17.0 0.8 

Std. Dev. 25.4 1.31 

Pr>F 0.0001 0.0001 

Values are means of combined data of two trials with three replicates each. Means within each column 

followed by same letter are not statistically different at p≤0.05 according to the Tukey-test. Values in 

parenthesis are square root transformed means. 

 

4.7 Effect of plant growth promoting rhizobacteria cell culture 

supernatants on Striga seed germination and radicle elongation 

 

The effect of bacterial supernatants on the germination percentage and radicle length of 

seeds was significant (Table 4.6). The highest germination percentage were recorded in the 

positive controls exposed to GR24 only (66%) and 10% LB+ GR24 only (63%). These two 

percentages were not significantly different at p<0.001. The lowest germination (7.4 %) 

was observed in Bacillus subtilis Bsn5. In comparison with control treatment, germination 

was inhibited by 89% in Bacillus subtilis Bsn5, 67% in B. subtilis GBO3, 63% in B. 
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amyloliquefaciens FZB42 and 62% in Burkholderia phytofirmans PsJN. Significant 

differences were also observed on Striga seed radicle lengths under different bacterial 

supernatant treatments. Bacillus subtilis Bsn5 supernatant produced the lowest mean 

radicle lengths (0.12 mm). Radicle length were inhibited by 95% in Bacillus subtilis Bsn5, 

91% in B. amyloliquefaciens FZB42 and 71% in both Bacillus subtilis GBO3 and 

Burkholderia phytofirmans PsJN compared to control.  

 

Table 4.6 Effect of plant growth promoting rhizobacteria cell culture supernatants on 

Striga germination and radicle length in filter paper bioassays 

Treatment              Germination (%) Radicle length (mm) 

Striga + GR24 + Bacillus subtilis Bsn5 7.4 (2.6) c 0.1 (0.3) e 

Striga + GR24 + Bacillus amyloliquefaciens FZB42 24.0 (4.8) b 0.2 (0.4) d 

Striga + GR24 + Bacillus subtilis GBO3 21.6 (4.6) b 0.6 (0.8) c 

Striga + GR24 + Burkholderia phytofirmans PsJN 25.4 (5.0) b 0.6 (0.8) c 

Striga + GR24 + 10% Luria-Bertani 63.1 (7.9) a 1.2 (1.1) b 

Striga + GR24 + Sterile distilled water 66.4 (8.1) a 2.2 (1.5) a 

Sample size (n) 36 36 

Mean 34.7 0.8 

Std. Dev. 23.1 0.7 

Pr>F 0.0001 0.0001  

Values are means of combined data of two trials with three replicates each. Means within each column 

followed by same letter are not statistically different at p≤0.05 according to the Tukey-test. Values in 

parenthesis are square root transformed means.  

 

 

Generally, all supernatant-treated seeds germinated, but the radicles that emerged were 

shorter and thicker when compared to controls (Plate 4.1). Light microscopy of Bacillus 

subtilis Bsn5 supernatant-treated Striga radicles revealed a reduction in cell sizes at the 

radicle elongation zone compared to control treatments (Plate 4.2).  

 

4.8 Effect of plant growth promoting rhizobacteria inocula on Striga 

seed germination and radicle elongation in presence of sorghum seedlings 

in extended agar gel assays 

 

The germination percentage and radicle length of Striga as a function of PGPR inocula 

treatments are presented in Table 4.7. There was a significantly lower germination 

percentage (24%) accompanied by shorter radicle lengths (1.6 mm) of Striga seeds 

exposed to Bacillus subtilis Bsn5 compared to other PGPR and control treatments. The 



 

48 

highest germination percentage (60%) and radicle length (3.5 mm) was recorded in control 

seeds which were exposed to SDW + sorghum only.  

 

   

   
Plate 4.1 Striga radicle length as influenced by plant growth promoting rhizobacterial 

supernatants in filter bioassays. Letters a, b, c, d, e and f represent 

treatments with 10% LB liquid medium, Sterile distilled water, 

Burkholderia phytofirmans PsJN, Bacillus subtilis GBO3 Bacillus 

amyloliquefaciens FZB42 and Bacillus subtilis Bsn5, respectively. The red 

arrows point to Striga radicles. Black bar = 500µm. (Photos by Lenard 

Mounde) 
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Plate 4.2 Striga radicle morphology as influenced by plant growth promoting 

rhizobacterial supernatants in filter paper bioassays. Letters a, b and c 

represent treatments with Sterile distilled water, 10% LB liquid medium and 

Bacillus subtilis Bsn5, respectively. The red outlines show the zone of 

radicle elongation. Notice the elongated cells in a and b compared to the 

short ones in c. Black bar = 50µm. (Photos by Lenard Mounde) 
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Table 4.7 Effect of plant growth promoting rhizobacteria inocula on Striga 

germination and radicle lengths in extended agar gel assays 

Treatment Germination (%) Radicle length (mm) 

Sorghum + Bacillus subtilis Bsn5 + Striga 23.9 (4.4) bc 1.6 (1.3) b 

Sorghum + Bacillus amyloliquefaciens FZB42 + Striga 40.3 (6.2) ab 2.7 (1.6) a 

Sorghum + Bacillus subtilis GBO3 + Striga 29.6 (5.2) b 2.8 (1.7) a 

Sorghum + Burkholderia phytofirmans PsJN + Striga 34.8 (5.8) ab 3.1 (1.8) a 

Sorghum + 10% Luria–Bertani media + Striga 39.0 (6.2) ab 2.6 (1.6) a 

Sorghum + Sterile distilled water + Striga  59.9 (7.6) a 3.5 (1.9) a 

Sample size (n) 36 36 

Sample Mean 37.9 2.7 

Std. Dev. 18.3 0.8 

Pr>F 0.0345 0.0025 

Values are means of combined data of two trials with three replicates each. Means within each column 

followed by same letter are not statistically different at p≤0.05 according to the Tukey-test. Values in 

parenthesis are square root transformed means. 

 

4.9 Effect of plant growth promoting rhizobacteria supernatants on 

Striga seed germination and radicle elongation in presence of sorghum 

seedlings in extended agar gel assays 

 

Effects of bacterial supernatants on the germination percentage and radicle length of Striga 

seeds were significant at p<0.05 (Table 4.8). The highest germination percentage (60%) 

was recorded in the controls exposed to sorghum only. The lowest germination (23%) was 

observed in Bacillus subtilis Bsn5 (24%) and B. amyloliquefaciens FZB42. Significant 

differences on radicle lengths under exposure to different bacterial supernatant treatments 

were observed too with LB treatment (5.2 mm) and Bacillus subtilis Bsn5 (2.5 mm) 

recording the highest and lowest lengths, respectively.  
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Table 4.8 Effect of plant growth promoting rhizobacteria supernatants on Striga 

germination and radicle lengths in extended agar gel assays 

Treatment Germination (%) Radicle length (mm) 

Sorghum + Bacillus subtilis Bsn5 + Striga 23.9 (4.8) c 2.8 (1.6) c 

Sorghum + Bacillus amyloliquefaciens FZB42 + Striga 23.5 (4.7) c 2.5 (1.6) c 

Sorghum + Bacillus subtilis GBO3 + Striga 36.1 (5.7) bc 4.2 (2.0) b 

Sorghum + Burkholderia phytofirmans PsJN + Striga 30.3 (5.5) bc 4.1 (2.0) b 

Sorghum + 10% Luria–Bertani media + Striga 39.0 (6.2) b 5.2 (2.3) a 

Sorghum + Sterile distilled water + Striga  59.9 (7.6) a 4.8 (2.2) ab 

Sample size (n) 36 36 

Sample Mean 35.4 3.9 

Std. Dev. 17.3 1.3 

Pr>F 0.0018 <0.0001  

Values are means of combined data of two trials with three replicates each. Means within each column 

followed by same letter are not statistically different at p≤0.05 according to the Tukey-test. Values in 

parenthesis are square root transformed means.  

 

4.10 Effect of hydrophilic and hydrophobic fractions of Bacillus subtilis 

Bsn5 supernatant on Striga germination and radicle elongation 

 

Significant differences (<0.05) were observed on the effect of different fractions of 

supernatant on Striga germination and radical elongation (Table 4.9). The highest 

germination percentage (63%) and radical length (2.9 mm) was observed in SDW control 

treatment. There was complete inhibition of seed germination after exposure to either 

unseparated Bsn5 supernatant or 100% water phase (hydrophilic fraction) of the 

supernatant. However, at 1% hydrophilic concentration, the inhibitory effect was reduced 

by almost 50%. The hydrophobic (ethyl acetate) fraction at both 100% and 1% 

concentration produced a germination percentage of >40 percent which was statistically 

similar to 10% LB and ethyl acetate controls.  
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Table 4.9 Effect of different hydrophilic and hydrophobic fraction concentrations of 

Bacillus subtilis Bsn5 supernatant on Striga germination and radicle lengths 

in filter paper bioassays 

Treatment Germination (%) Radicle length (mm) 

Bacillus subtilis Bsn5 supernatant + Striga + GR24 0 (0) e 0 (0) e 

100% hydrophilic phase + Striga + GR24 0 (0) e 0 (0) e 

1% hydrophilic phase + Striga + GR24 49.4 (7.0) b 2.0 (1.4) d 

100% hydrophobic phase + Striga + GR24 41.0 (6.4) d 2.5 (1.6) bc 

1% hydrophobic phase + Striga + GR24 45.6 (6.7) bc 2.3 (1.5) cd 

10% Luria–Bertani media + Striga + GR24 42.5 (6.5) cd  2.2(1.5) d 

100% Ethyl acetate + Striga + GR24 46.0 (6.8) bc 2.6(1.6) ab 

Sterile distilled water + Striga + GR24 63.0 (7.9) a 2.9 (1.7) a 

Sample size (n) 36 36 

Sample Mean 35.4 3.9 

Std. Dev. 17.3 1.3 

Pr>F 0.0018 <0.0001  

Values are means of combined data of two trials with three replicates each. Means within each column 

followed by same letter are not statistically different at p≤0.05 according to the Tukey-test. Values in 

parenthesis are square root transformed means. 

 

4.11 Effect of hydrophilic fraction concentrations of Bacillus subtilis 

Bsn5 supernatant on Striga germination and radicle elongation 

 

There were significant differences (p<0.05) in Striga germination and radicle length 

subjected to different concentrations of the hydrophilic phase of Bacillus subtilis Bsn5 

(Table 4.10). No germination occurred on seeds treated with hydrophilic phases of ≥50% 

concentration. Among the treatments where germination occurred, 25% hydrophobic 

phase-treated seeds produced the lowest germination percentage (34%) while SDW yielded 

the highest (63%). Radicle lengths were also influenced by concentration of the 

hydrophilic phase. In hydrophilic treatments where Striga germination occurred, there was 

an inverse correlation between concentration and radicle lengths. There was 85% reduction 

of radicle length upon Striga seeds exposure to 25% hydrophilic phase (0.3 mm) in 

comparison to 1% hydrophilic phase (2.0 mm). SDW produced the longest radicles (2.9 

mm). 
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Table 4.10 Effect of Bacillus subtilis Bsn5 supernatant hydrophilic fraction 

concentration on Striga germination and radicle length in filter paper 

bioassays 

Treatment Germination (%) Radicle length (mm) 

Bacillus subtilis Bsn5 supernatant  + Striga + GR24 0 (0) e 0 (0) d 

100% hydrophilic phase  + Striga  + GR24 0 (0) e 0 (0) d 

75% hydrophilic phase  + Striga  + GR24 0 (0) e 0 (0) d 

50% hydrophilic phase  + Striga  + GR24 0 (0 ) e 0 (0) d 

25% hydrophilic phase  + Striga  + GR24 34.1 (5.8) d 0.3 (0.6) c 

1% hydrophilic phase  + Striga  + GR24 49.4 (7.0) b 2.0 (1.4) b 

10% Luria–Bertani media + Striga  + GR24 42.5 (6.5) c 2.2 (1.5) b 

Sterile distilled water  + Striga  + GR24 63.0 (7.9) a 2.9 (1.7) a 

Sample size (n) 48 48 

Sample Mean 35.9 1.8 

Std. Dev. 22.2 1.1 

Pr>F <.0001 <.0001 

Values are means of combined data of two trials with three replicates each. Means within each column 

followed by same letter are not statistically different at p≤0.05 according to the Tukey-test. Values in 

parenthesis are square root transformed means. 

 

4.12 Determination of protein composition in Bacillus subtilis Bsn5 cell 

culture supernatant 

 

Twenty eight proteins were identified in Bacillus subtilis Bsn5 cell culture supernatant. 

Some of these proteins were also detected in other PGPR and the control 10% LB media. 

However, nine proteins, with their respective molecular weights, were identified to be 

produced by Bacillus subtilis only. They were; beta-1,3-1,4-glucanase (24 kDa), peptidase 

S8 (86 kDa ), N-acetylmuramoyl-L-alanine amidase (17 kDa); ChbA (22 kDa), peptidase 

G2 (87 kDa), serine protease (48 kDa); hypothetical protein(15 kDa); bacillopeptidase (155 

kDa) spore germination protein Q (11 kDa).  

 

4.13 Effect of plant growth promoting rhizobacteria inocula on sorghum 

growth in presence of Striga infection in root chamber trials 

 

In the absence of PGPR inoculation, significant (p<0.05) differences in biomass content 

were realized between Striga-free and Striga-infected plants (Table 4.11). Total biomass in 

Striga- infected sorghum plants was 40% lower than non-infected plants. No significant 
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variation in sorghum chlorophyll content and plant height were measured between the two 

treatments. 

Similarly, inoculated Striga-free plants showed significantly (p<0.05) higher plant heights, 

leaf chlorophyll SPAD values and total biomass (roots + shoots) compared to uninoculated 

Striga-free treatments. Roots of inoculated Striga-free plants were more branched, sturdier 

and developed more biomass than those of uninoculated Striga-infected treatments. 

Bacillus amyloliquefaciens FZB42, B. subtilis GBO3 and Burkholderia phytofirmans PsJN 

inoculated Striga-free sorghum showed a 75%; 142% and 158% increase in total biomass, 

respectively, compared to uninoculated Striga-free sorghum. However, there were no 

significant differences in total biomass observed between inoculated and uninoculated 

Striga-infected sorghum plants. Roots of inoculated Striga-free plants were more branched 

and sturdier than those of uninoculated Striga-infected treatments (Plate 4.3). 

 

4.14 Effect of plant growth promoting rhizobacteria inocula on Striga 

development 

 

Seed germination under different bacterial treatments were significantly different (p<0.05) 

(Table 4.12). The highest germination percentage (68%) was observed in control plants 

while the lowest was observed in plants inoculated with B. amyloliquefaciens FZB42 

(54%) and B. subtilis GBO3 (50%). Percentage attachment was also significantly (p<0.05) 

different among treatments. B. subtilis GBO3 treated sorghum gave the lowest percentage 

(23%) compared to all other treatments. Bacillus subtilis Bsn5, B. amyloliquefaciens 

FZB42 and Burkholderia phytofirmans PsJN and control plants produced significantly 

higher parasite attachments. The number of successful attachments that developed into 

healthy tubercles was significant (p<0.001) among treatments. All the bacteria treatments 

recorded fewer healthy tubercle numbers with corresponding high tubercle death rates. At 

the end of the experiment, control plants recorded the highest tubercle survival rate (97%) 

of attached Striga compared with the average survival rate of 40–64% in PGPR treatments. 

Total number of Striga tubercle death in PGPR-treatments was in the range of 35 and 59% 

compared to <3% in control plants. Plate 4.4 show live and dead Striga tubercles on a 

sorghum root. 
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Table 4.11 Effect of plant growth promoting rhizobacteria on sorghum shoot height, 

leaf chlorophyll SPAD values and total biomass dry weight after 30 days 

under controlled conditions in root chambers 

Treatment Height (cm) SPAD RDW (g)  SDW(g)  TB (g) 

Sorghum + LB 24.6 bc 23.1 d 0.8 cd 0.5 cd 1.2 cd 

Sorghum + Striga 24.5 c 22.9 d 0.4 e 0.3 e 0.7 e 

Sorghum + Striga + Bsn5 26.3 abc 24.9 cd 0.5 de 0.3 e 0.8 de 

Sorghum + Striga + FZB42 28.9 a 24.4 cd 0.3 e 0.3 e 0.6 e 

Sorghum + Striga +PsJN 28.5 ab 25.4 bcd 0.5 de 0.4 de 0.9 de 

Sorghum + Striga + GBO3 27.7 ab 25.4 bcd 0.4 e 0.3 e 0.7 e 

Sorghum + Bsn5 28.8 ab 27.9 ab 0.9 bc 0.6 c 1.5 bc 

Sorghum + GBO3 30.4 a 26.5 abc 1.7 a 1.2 a 2.9 a 

Sorghum + PsJN 29.8 a 28.0 ab 1.8 a 1.3 a 3.1 a 

Sorghum + FZB42 28.9 a 28.5 a 1.3 ab 0.8 b 2.1 b 

Values are means of combined data of four trials with three replicates each for sorghum height and SPAD 

determination and two trials with three replicates each for root, shoot and total dry biomass determination. 

Means within each column followed by same letter are not statistically different at p≤0.05 according to the 

Tukey-test. LB = Luria-Bertani media; Bsn5 = B. subtilis Bsn5; FZB42 = Bacillus amyloliquefaciens FZB42; 

PsJN = Burkholderia phytofirmans PsJN; GBO3 = Bacillus subtilis GBO3; RDW = Root dry weight; SDW = 

Shoot dry weight; TB = Total biomass dry weight. 

 

Table 4.12 Effect of plant growth promoting rhizobacterial inocula on Striga 

germination and underground stages after 30 days under controlled 

conditions in root chambers 

Treatment Germination 

(%) 

Attachment 

(%) 

Live tubercles 

(%) 

Dead tubercles 

(%) 

Sorghum + Striga 67.9 a 29.4 a 97.0 a 3.0 b 

Sorghum + Striga + Bsn5 62.6 a 34.8 a 64.4 ab 35.6 a 

Sorghum + Striga + PsJN 60.6 ab 32.5 a 55.3 b 44.7 a 

Sorghum + Striga + FZB42 54.4 b 39.1 a 40.9 b 59.1 a 

Sorghum + Striga + GBO3 49.7 b 23.0 b 54.9 b 45.1 a 

Sample number(n) 45 45 45 45 

Sample Mean 57.1 31.8 62.5 37.5 

Std. Deviation. 13.9 11.5 40.9 40.9 

Pr>F ≤0.05 ≤0.05 ≤0.001 ≤0.005 

Values are means of combined data of three trials with three replicates each. Means within each column 

followed by same letter are not statistically different at p≤0.05 according to the Tukey-test. Bsn5 = B. subtilis 

Bsn5; FZB42 = Bacillus amyloliquefaciens FZB42; PsJN = Burkholderia phytofirmans PsJN; GBO3 = 

Bacillus subtilis GBO3 
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Plate 4.3 Sorghum root development as influenced by plant growth promoting 

rhizobacterial inocula and Striga in root chamber trials. Letters a, b, c, d, e 

represent Striga-free treatments with Burkholderia phytofirmans PsJN, 

Bacillus subtilis GBO3, B. amyloliquafaciens FZB42, Bacillus subtilis Bsn5 

and 10% LB liquid medium, respectively. Letter f represents uninoculated 

Striga- infested control (Photo by Lenard Mounde) 
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Plate 4.4 Striga tubercles on sorghum roots under root chamber experimental set-up. 

Letters a and b represent live and dead tubercles in Bacillus 

amyloquafaciens FZB42-inoculated and noninoculated sorghum, 

respectively. The red outlines show the sorghum root-Striga interface 

(Photo by Lenard Mounde) 

 

4.15 Determination of phytohormone composition in PGPR cell culture 

supernatants 

 

All supernatants and the control (10% LB media) showed production of phytohormone 

cytokinins, IAA, GAs and ABA (Table 4.13). Individual hormonal quantities, however, 

differed with supernatants producing more cytokinins but less IAA in comparison with 

control media. GA and ABA quantities were not significantly different (p<0.05) among all 

treatments. There was a significant correlation (r= -0.96) between IAA and cytokinins. 

ABA and GA3 did not show significant correlation to either IAA or cytokinins. Sorghum 

plant height, SPAD values and biomass production did not show any significant correlation 

with all the phytohormones neither did Striga germination, attachment and tubercle death. 

a 

b 
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Table 4.13 Phytohormone production by plant growth promoting rhizobacteria in cell 

culture supernatants after 48 h in 10% Luria-Bertani liquid media 

Treatment Cyt. (ng/ml) IAA (ng/ml) GA (ng/ml) ABA (ng/1ml) 

Bsn5 0.2 ( 0.5) a 1.4 (1.2) b 0.3 (0.5) a 0.03 (0.2) a 

FZB42 0.2 (0.5) a 1.5 (1.2) b 0.1 (0.4) a 0.04 (0.2) a 

GBO3 0.2 (0.5) a 1.7 (1.3) b 0.2 (0.4) a 0.07 (0.3) a 

PsJN 0.15 (0.4) b 1.9 (1.4) ab 0.2 (0.4) a 0.03 (0.2) a 

10% LB 0.1 (0.3) c 2.6 (1.6) a 0.2 (0.4) a 0.03 (0.2) a 

Sample number (n) 10 10 10 10 

Sample Mean 1.8 1.8 0.2 0.04 

Std. Deviation. 0.05 0.5 0.1 0.02 

Pr>F 0.0087 0.0381  0.3927 0.4266 

Values are means of data from 1 trial with 2 replicates each. Values in parentheses are square root 

transformed means. Means within each column followed by same letter are not statistically different at 

p≤0.05 according to the Tukey-test. Bsn5 = B. subtilis Bsn5; FZB42 = Bacillus amyloliquefaciens FZB42; 

PsJN = Burkholderia phytofirmans PsJN; GBO3 = Bacillus subtilis GBO3; Cyt. =Cytokinins; IAA=Indole 

acetic acid; GA=Gibberellins; ABA= Abscisic acid; ng /ml= nanograms per milliter. 
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Chapter 5: General discussion and conclusion 

 

The growth stimulating effect on sorghum and suppressive effect on Striga by a wide range 

of plant growth promoting rhizobacteria (PGPR) has been elaborately described in Chapter 

2. The review presents a state-of-the-art knowledge on two- and three-way interactions 

involving sorghum roots, Striga and PGPR. However, the understanding of these 

interactions is still incomplete due to the difficulty of studying underground processes 

under controlled conditions. This was evident from the research gaps identified. Thus, 

developing novel methodologies to study rhizosphere interactions under both in-vitro and 

natural conditions was needed. It was proposed that Extended Agar Gel Assay (EAGA) 

and root chamber experiments as described by Mohamed et al. (2010a) and Linke et al. 

(2001), respectively, incorporating Striga, sorghum and PGPR would provide some 

understanding on the three-way interaction. The main focus was to investigate if successful 

colonization of sorghum roots by the selected PGPR takes place and if there are any effects 

on Striga infections. Finally, synthesis of the knowledge of these inter-relationships would 

potentially lead to the screening of PGPR colonizers of sorghum roots and device ways of 

delivering them to sorghum rhizosphere in soils where they are lacking. 

The objective of this study was to evaluate the role of Burkholderia phytofirmans PsJN; 

Bacillus subtilis Bsn5; B. subtilis GBO3 and B. amyloliquefaciens FZB42 on sorghum and 

Striga growth under controlled conditions. To meet this objective, preliminary experiments 

to identify a suitable media for delivering bacteria to sorghum rhizosphere and to assess 

their effect on sorghum growth and Striga suppression were conducted. The selected media 

needed to meet two conditions; i) able to support the growth of bacterial strains and ii) 

have insignificant effect on germination of both S. hermonthica and sorghum seed. In this 

regard, Luria Bertani (LB) liquid media, commonly used in culturing Bacillus spp. and 

Burkholderia spp. in different concentrations was evaluated for their effect on sorghum 

germination and seedling vigor as well as Striga germination and radicle elongation. The 

ingredients of undiluted commercial media were; trypton (10 g l
-1

), yeast extract (5 g l
-1

) 

and NaCl (170 mM) (Carl Roth GmbH, Germany).  

The study revealed that LB liquid media containing ≥85 mM NaCl, 5 g l
-1

 trypton and 2.5 g 

l
-1 

yeast extract had no significant effect on sorghum seed germination but decreased 

seedling vigor compared to 17 mM NaCl and sterile distilled water treatments. The 

observed differences in sorghum seedling vigor are attributed to seedling length; seedling 
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elongation as being more sensitive to salt stress than germination (Abdul-Baki & 

Anderson, 1973). There was no evidence from any published literature stating that trypton 

and yeast extract have any influence on sorghum seedling vigor hence NaCl concentration 

remained the only factor causing variation in sorghum seedling length. Ionic and osmotic 

stresses on plants growing in saline conditions are known to cause reduction in water 

uptake followed by root growth inhibition (Munns, 1993). In this study, there is a clear 

indication that water imbibed by sorghum seeds exposed to ≥ 85 mM NaCl concentration 

was enough to induce germination but hardly enough to sustain further seedling growth. 

These results showed that sorghum seeds can tolerate higher salt concentrations to 

germinate than to sustain root growth. Previous studies have shown that germination can 

occur under saline stress conditions provided the moisture content can allow seeds to 

achieve germination but root elongation is inhibited under the same stress (Meyer and 

Boyer, 1981). Resultsfrom this study are consistent with those of Patanè et al. (2009) who 

reported that sorghum seeds treated with >50 mM NaCl exhibited germination percentages 

that were not significantly different from those seeds treated with distilled water, but root 

length reduced by 30%. Additional studies have cited loss of cell turgidity attributed to 

salinity stress as one of the causes of reduced root elongation in sorghum (Gill et al., 

2003). Lin and Kao (2000) also observed that increasing concentrations of NaCl from 50 to 

150 mM decreased root growth in rice (Oryza sativa) following the elevation of hydrogen 

peroxide (H2O2) levels in roots (Lin & Kao, 2001). H2O2 is known to damage DNA, 

protein, and membrane functions in plant cells (Patanè et al., 2009) thus leading to reduced 

seedling growth.  

This study further demonstrated that exposure of Striga seeds to ≥85 mM NaCl, 5g l
-1

 

trypton and 2.5 g l
-1 

yeast inhibited germination by 100%. Similar to the sorghum bioassay 

results discussed already, the inverse relationship between Striga germination and same LB 

media concentrations can be explained by the composition of media. Ahonsi et al. (2002b) 

reported that Striga seeds preconditioned in 0.1% yeast extract produced the same level of 

germination as distilled water when both treatments were exposed to GR24. On the other 

hand, there is no published work that has linked trypton with Striga germination inhibition. 

Therefore, NaCl was the remaining factor that we associated with the observed variation in 

Striga seed germination. It is known that germination of parasitic weeds is affected by 

temperature and salinity (Kebreab & Murdoch, 1999; Hassan et al., 2010b). However, 

temperature cannot be considered as a limiting factor in our study because it was uniform 
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in all treatments. After revealing the adverse effect of elevated (≥85 mM) NaCl 

concentration on sorghum, it was expected that the same inhibitory effect will apply to 

Striga seeds as well. Salinity stress has also impacted negatively on Orobanche seed 

germination in previous studies and given that Striga and Orobanche are phylogenetically 

related, it would be expected that the same inhibition takes place in Striga. Therefore, it 

was concluded that water imbibitions at ≥85 mM NaCl levels were responsible for the 

observed lack of germination in Striga. Abu-Irmaileh (1998) had reported that salinity 

effect caused by 77 mM NaCl was responsible for lack of germination in Orobanche 

ramosa seeds. Al-Khateeb et al. (2005) also observed complete lack of Orobanche ramosa 

attachment and emergence in tomato irrigated with water containing 75 mM NaCl. At 10% 

LB concentration, germination percentage similar to that induced by SDW indicated that 

salinity levels in 10% LB medium had insignificant detrimental effects on sorghum and 

Striga seeds. Although 10% LB reduced Striga germination by almost 20% in some 

experiments, this effect was insignificant to the reduction that was observed in >50% LB 

concentration. Based on these results, 10% LB liquid medium was found to be the most 

suitable media for use in PGPR inocula and cell culture supernatant preparation in 

subsequent experiments.  

Furthermore, this study found that Burkholderia phytofirmans PsJN-treated sorghum seeds 

grew more vigorously compared to other Bacillus strains and controls. These findings were 

consistent with the expectations and are in agreement with a previous report by Kloepper et 

al. (1988). Seedling length was identified as the main indicator of differences in sorghum 

seedling vigor especially as germination percentages did not differ among treatments. It is 

known that during seed germination, ethylene is produced by many plant species but high 

concentrations of ethylene after germination can inhibit root elongation as reported for 

canola (Brassica napus L.) (Glick et al., 1995; Hall et al., 1996) and mung bean (Vigna 

radiata) (Mayak et al., 1999). Results from the present study could be explained by the 

ability of Burkholderia phytofirmans PsJN to produce ACC deaminase which can 

neutralize the inhibitory effect of ethylene on sorghum root elongation (Compant et al., 

2005; Ait Barka et al., 2002). The Bacillus strains evaluated here did not enhance vigor and 

this could be explained by their inability to produce the ACC enzyme. This concur with 

previous studies which have reported that ACC deaminase promotes root elongation in 

canola (Sun et al., 2009), tomato (Mayak et al., 2004) and maize (Shaharoona et al., 2006).  
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This study further revealed that after 30 days in a growth chamber, sorghum plants that 

were not infected with Striga had improved total biomass yield compared to uninoculated 

sorghum plants. These results were attributed to enhanced plant growth promoting 

hormone levels triggered by PGPR inoculation. Cytokinins, IAA and GA detected in cell 

culture supernatants concur with the findings of Idris et al. (2009) who observed improved 

sorghum growth occasioned by IAA in growth media. Moreover, a synergistic effect 

between cytokinins and IAA contributing to plant growth promotion has also been 

observed. For instance, Hussain and Hasnain (2011) reported an increase in wheat 

(Triticum aestivum) growth following improvement of the plant’s IAA and cytokinins pool 

by PGPR. Additionally, application of exogenous cytokinins has been found to increase 

plant height, NPK uptake and total biomass in rice (Zahir et al., 2001). Cytokinins are 

known to boost chlorophyll production which is an indication of sorghum plants’ improved 

capacity to fix carbon hence the increase in biomass observed in Striga-free sorghum 

plants. Ling et al. (2011) showed that healthy and actively metabolizing plants produced 

more chlorophyll to meet carbon demands for the plant. The results obtained in this study 

were expected because Burkholderia phytofirmans PsJN has been associated with 

improved chlorophyll content of plants such as potatoes (Nowak et al., 1997) and 

Arabidopsis (Zhang et al., 2007). Furthermore, in a previous study by Kim et al. (2012), 

Burkholderia phytofirmans PsJN-inoculated switchgrass (Panicum virgatum L.) cv. Alamo 

plants had significantly higher chlorophyll content coupled with increased biomass 

compared to controls after 30 days in a growth chamber. The authors concluded that 

Burkholderia phytofirmans PsJN’s capacity to produce ACC deaminase activity which 

degraded ACC was the cause of the observed growth promotion in inoculated switchgrass 

plants. Moreover, the strain produces a 15-fold ACC deaminase activity that is required to 

promote sorghum growth (Sessitsch et al., 2005). 

Striga has remained a major constraint to cereal production in regions where the parasite is 

prevalent. The parasite is known to be a strong sink for water and assimilates, besides 

interfering with photosynthetic activities of the host crop (Graves 1995; Press et al. 1987b; 

Graves et al., 1989). Details of detrimental impact of Striga on sorghum are found in 

Chapter 2. This underscores the need for a lasting solution to the Striga menace. One of the 

hypotheses of this study was that inoculating Striga infected sorghum can alleviate the 

damaging effects of Striga and improve sorghum growth. However, contrary to this 

hypothesis, there was no difference between inoculated Striga-infected and uninoculated 
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Striga-infected sorghum plants with regard to total biomass production. This implies that 

the PGPR-generated growth promoting phytohormones did not offer any significant benefit 

to Striga infected plants. It is known that Striga reduces the levels of IAA (Press et al., 

1999) and reduces cytokinin production and its export from the roots to the leaves due to 

the withdrawal of resources, especially N, from host plants (Van der Werf & Nagel, 1996). 

This could explain the observed poor growth of inoculated Striga-infected compared to 

inoculated Striga free sorghum. 

A key stage in Striga development that has been a target for controlling the parasite is 

germination (Watson, 2013). In this study, filter paper germination bioassays demonstrated 

that PGPR can cause total inhibition (0% germination) of Striga germination. Bacillus 

subtilis Bsn5 induced a higher inhibition of Striga germination and radicle elongation 

compared to other PGPR and controls in both EAGA and filter paper germination 

bioassays. Although the exact inhibitor(s) were not identified in this study, hydrophilic 

compounds present in the Bacillus subtilis Bsn5 cell culture supernatant were associated 

with this inhibition. An inverse relationship between the concentration of the hydrophilic 

fraction and Striga radicle elongation can be explained by a decline in efficacy of the 

inhibitors due to dilution. A previous study by Dadon et al. (2004) on Orobanche 

aegyptica germination and radicle inhibition reported that peptides produced by 

Azospirillum brasilence and that could not be extracted by ethyl acetate were the cause of 

Orobanche germination inhibition. Thereafter, Nun et al. (2005) suggested that peptides 

could be competing with strigolactones over binding sites leading to low germination of 

Orobanche, but their theory is yet to be proved. Since Orobanche and Striga share many 

similarities in their response to germination stimulants (Bouwmeester et al., 2003), and 

inhibitors (Matusova et al., 2005), it is suggested that either one or a combination of the  

peptides identified in Bacillus subtilis Bsn5 cell culture supernatant could be responsible 

for Striga seed germination and radicle length inhibition in our study. This argument is 

strengthened by the findings of Leclère et al. (2005) who showed that Bacillus subtilis 

produces peptides and Kakinuma et al. (1969) who stated that some peptides produced by 

the bacterium are hydrophilic.  

In a review of the three-way interaction between sorghum, Striga and PGPR in Chapter 2, 

the beneficial effects of PGPR on sorghum growth and their harmful effects to Striga were 

shown. Results from controlled experiments conducted in this study in roots chambers 

depict the ability of B. subtilis GBO3 and B. amyloliquefaciens FZB42 to suppress Striga 
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through reduced germination compared to other PGPR and control treatments. Improved 

sorghum growth has been attributed to the action of phytohormones. Therefore, results 

from this study were expected because B. subtilis GBO3 and B. amyloliquefaciens FZB42 

are known to produce IAA (Idris et al., 2007) which would have resulted in the inhibited 

germination. It is also reported that Bacillus subtilis-induced inhibition of Striga seeds in 

in-vitro bioassays. However, the inhibitory effect of Bacillus subtilis appeared not to be 

effective in root chamber experiments. The fact that there was Striga germination 

inhibition in all PGPR treatments in our bioassays supports the argument that involvement 

of IAA in this inhibition was possible. It is also possible that the inhibitors were not as 

effective in root chambers as in bioassays because of change in experimental conditions. 

This has been a common challenge in biological control systems where a control agent can 

be effective under in-vitro conditions but fail to produce the same effect in a different set 

up e.g root chamber, green house or field experiments. 

For Striga to transit from its independent to parasite phase in host roots, attachment, 

haustorial development and formation of tubercles are critical. In Chapter 2, we reviewed a 

wide range of resistance mechanisms that host plants employ when faced with the Striga 

challenge. Some of these mechanisms arise as a result of host plants being manipulated by 

external factors. One of such factors would be the action of PGPR. The high tubercle 

deaths observed in all PGPR-treated plants is a manifestation that inoculated sorghum 

plants were resisting Striga infection. Previously, it has been reported that inhibition of 

haustorial development can take place following antagonism between plant hormones. For 

instance, Keyes et al. (2000) found out that IAA antagonized cytokinins and benzoquinone, 

both of which favour attachment and haustorium development. Therefore, results obtained 

in the present study were expected because all the PGPR used are known IAA producers. 

Furthermore, all PGPR inoculated plants caused a high number of tubercle deaths when 

compared with non-inoculated controls. These findings could be attributed to incompatible 

resistance and abiosis that may have occurred after Striga made vascular connection with 

sorghum. Studies done in the past have identified the endodermis of host roots as a major 

barrier to parasitic infection in a number of host-parasite associations including sorghum to 

S. asiatica and S. hermonthica (Amusan et al., 2008) and rice (Oryza sativa). Additionally, 

vascular resistance to Striga infection has been reported previously by Maiti et al. (1984) 

and Haussmann et al. (2004) while Neumann et al. (1999) and Arnaud et al., (1999) have 

reported abiosis and incompatibility on resistant sorghum varieties. It is known that 
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rhizosphere bacteria are capable of producing compounds, which if taken up by plants, can 

stimulate defence responses against deleterious pathogens (Lazarovits & Nowak, 1997). 

Moreover, the fact that most plants use similar defence responses to parasitic plant 

infection as those used in response to fungal and bacteria pathogens (Westwood et al., 

1998; Joel & Portnoy., 1998; Goldwasser et al., 1999), strengthens the argument that 

defence mechanisms against Striga were activated in sorghum by PGPR. 

In conclusion, this study presents a partial picture of the interactions among sorghum, 

Striga and PGPR through filter paper, EAGA and root chamber experiments. It has been 

shown that Bacillus subtilis Bsn5 has the potential to inhibiting Striga germination and 

radicle elongation through the action of hydrophilic inhibitor(s). Comparatively, sorghum 

seedling vigor is better enhanced by Burkholderia phytofirmans PsJN than Bacillus strains. 

Burkholderia phytofirmans PsJN; Bacillus subtilis GBO3 and B. amyloquafaciens FZB42 

have shown potential in improving sorghum growth in the absence of Striga infection 

during the first one month. All the PGPR used in this study improved sorghum growth in 

the absence of Striga infection but did not cause the same benefits to Striga-infected 

sorghum plants. However, the PGPR did suppress tubercle formation in Striga. 

 

Limitations of study and recommendations for further research 

 

In this study, some methodology limitations were identified. Firstly, the SDS-PAGE 

method used to purify samples for protein analysis has a lot of chances of small peptides 

getting lost during the process. So the proteins identified in the samples may not be a true 

reflection of the proteins present in cell culture supernatants. Secondly, the concentration  

of plant hormones were not determined after PGPR inoculation which makes it is difficult 

to conclude whether or not plant hormone concentration depended on the amount of 

hormones in external growth media. Thirdly, the control culture media (blank 10% LB) 

which was expected to have the least hormonal concentration, expressed same GA and 

ABA concentration but with a higher IAA content compared to the PGPR cell culture 

supernatants. This scenario could be explained by the chemical composition of the samples 

used for hormonal analysis. While cell culture supernatants were obtained after the bacteria 

had utilized the food and other chemical resources in the media, 10% LB had all the 

ingredients intact. That might explain the high binding ability of the control media. 
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Future research endeavors should focus on conducting more laboratory tests, pot trials 

under greenhouse conditions and field trials to confirm the efficacy of these strains in 

addition to investigating mechanisms of growth promotion and Striga suppression by the 

PGPR at different growth stages may be helpful in gaining more understanding on the role 

of PGPR on sorghum and Striga growth. Secondly, since inhibitor(s) has/have been 

detected in Bacillus subtilis Bsn5 bacterial growth medium, it is recommended that future 

studies should focus on isolating and identifying individual inhibitor(s). There is need to 

isolate, purify and characterize the inhibitors with special attention on their biological 

activity on Striga radicles. In addition, further screening of the PGPR for phytohormone 

and ACC deaminase activity among other mechanisms in inoculated plants at different 

stages of plant growth is necessary. This will help improve our understanding of 

mechanism(s) responsible for improved sorghum growth. Finally, because of limited 

understanding on the  causes of reduced Striga attachment on host roots following PGPR 

inoculation, further investigations on the role of haustorium initiation inhibitors, 

interruption of haustorium inducing signals, disorientation of the radical from the host root, 

structural and chemical barriers at the Striga infection points is recommended. Such 

increased knowledge will be highly useful for the development of PGPR-based, cost-

effective bio-herbicides used by smallholder farmers in Striga-prone areas of Sub-Saharan 

Africa  
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Summary 

 

Witchweeds (Striga sp.) are parasitic weeds of great agricultural significance, parasitizing 

the roots of their hosts. Striga, like all other root parasitic weeds, drain essential organic 

and inorganic resources from their hosts leading to poor crop development and low yield. 

In Africa, about 50 million ha in over 30 countries are infested by Striga spp. causing grain 

loss of cereals. Estimated yield losses of maize, sorghum, millets and upland rice are 

between 30 and 90%. The parasite, therefore, is ranked as the leading biotic constraint to 

cereal production in the continent.  

Plant growth promoting rhizobacteria (PGPR) are promising components for integrated 

solutions to agro-environmental problems because inoculants possess the capacity to 

promote crop growth and reduce the population of deleterious microbes in the rhizosphere. 

Although there are numerous studies on crop growth promotion and biological control of 

diseases, weeds, nematodes and parasitic weeds using PGPR, little is known about the 

potential of some Bacillus subtilis, B. amyloliquefaciens and Burkholderia phytofirmans 

strains in sorghum growth promotion and resistance against Striga infection. The main 

objective of the study was to assess the effect of B. subtilis Bsn5, B. subtilis GBO3, B. 

amyloliquefaciens FZB42 and Burkholderia phytofirmans PsJN on growth promotion of 

sorghum crop and suppression of Striga development, thus providing a basic understanding 

on the sorghum-PGPR-Striga interaction.  

This study opens with an elaborate review of the state-of-the-art knowledge on the 

tripartite interactions between Striga, sorghum and different species of PGPR. Prior to this, 

bipartite relationship between sorghum and Striga, PGPR-sorghum and PGPR-Striga are 

reviewed with a focus on understanding  Striga impact on sorghum, sorghum defence 

responses to infection, plant growth and disease suppression benefits by PGPR on 

sorghum, and the effect of PGPR on Striga development. Knowledge gaps in both bipartite 

and tripartite relationships are described, and future research recommendations given. A 

key recommendation from the review is to conduct experiments under controlled 

environmental conditions using Bacillus subtilis, B. amyloliquefaciens and Burkhoderia 

phytofirmans strains in order to understand their relationship with sorghum and Striga at 

bipartite and tripartite levels.  

Petri dish bioassays and root chamber experiments under controlled conditions were 

conducted at the Institute of Plant Production and Agroecology in the Tropics and 
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Subtropics, University of Hohenheim between 2012 and 2014. B. subtilis Bsn5, B. subtilis 

GBO3, B. amyloliquefaciens FZB42 and Burkholderia phytofirmans strain PsJN inocula 

and their corresponding cell culture supernatants were evaluated for their growth 

promotion potential on sorghum and suppressiveness on Striga development. Sorghum root 

exudates and synthetic stimulant GR24 were used to induce Striga seed germination. 

Bacillus subtilis Bsn5 supernatant, which showed the greatest inhibitory activity on Striga 

germination and radicle elongation, was separated by ethyl acetate into lipophilic and 

hydrophilic phases. The purpose of this extraction was to try and identify the polarity of the 

inhibitor. Protein composition by mass spectrometry (MS) was also done on the 

supernatant with a view of establishing the presence of peptides because peptides have 

been associated with Orobancheceae germination and radicle inhibition in previous 

studies. In addition, determination of plant growth hormones in bacteria supernatants was 

also conducted using Radio-Immuno-Assay (RIA) in order to relate PGPR hormone 

production and sorghum growth enhancement. 

Burkholderia phytofirmans PsJN significantly (<0.05) induced a higher vigor index (VI) on 

sorghum seedlings (>18,000) compared to other PGPR and control treatments. The lowest 

VI (7626) was recorded in seeds inoculated with Bacillus amyloliquefaciens FZB42. 

Complete Striga germination inhibition (0% germination) occurred in seeds exposed to all 

PGPR inocula suspended while the highest germination (>60%) occurred in control 

treatments (10% Luria Bertani (LB) + GR24 and sterile distilled water (SDW) + GR24). 

The effect of bacterial supernatants on the germination percentage and radicle length of 

Striga seeds was also significantly (<0.05) different among treatments. The least 

germination (7.4 %) was observed in Bacillus subtilis Bsn5 + GR24 while the highest (66 

%) was observed in SDW + GR24 control. Bacillus subtilis Bsn5 supernatant produced the 

lowest mean radicle lengths (0.1 mm) while the highest radicle lengths were observed in 

SDW + GR24 (2.2 mm). Therefore, Bacillus subtilis Bsn5 supernatant was selected for 

further investigation of compounds causing inhibition of Striga germination and preventing 

radicle elongation. The supernatant was separated into hydrophilic and hydrophobic 

fractions using ethyl acetate. Each fraction was then prepared in 1%, 25%, 50%, 75% and 

100% concentrations before being evaluated for their inhibitory activity in Striga 

germination and radicle elongation. The highest germination percentage (63%) and radical 

length (2.9 mm) was observed in SDW + GR24 control treatment. The ethyl acetate 

(lipophilic) fraction at both 100% and 1% concentration + GR24 produced a germination 
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percentage of >40% which was similar to 10% LB + GR24 and ethyl acetate + GR24 

controls. There was complete inhibition of Striga seed germination after exposure to either 

Bacillus subtilis Bsn5 supernatant + GR24 or 100% hydrophilic fraction of the supernatant 

+ GR24. However, at 25% and 1% concentration + GR24, Striga germination percentage 

increased to 34% and 49%, respectively. Light microscopy examination of Striga radicles 

exposed to Bacillus subtilis Bsn5 supernatant + GR24 revealed that stunting of the radicles 

was due to reduction in cell sizes at the radicle elongation zone. Extended agar gel assays 

(EAGA) experiments showed a similar trend of results with B. subtilis Bsn5 showing the 

highest inhibitory activity on Striga germination and radicle elongation compared to other 

PGPR and control treatments. 

Results from root chamber experiments demonstrated significant (p<0.05) differences in 

biomass production between Striga-free and Striga-infected sorghum. Total biomass yield 

in uninoculated Striga-free plants was 40% higher than uninoculated Striga-infected 

sorghum plants. Bacillus amyloliquefaciens FZB42, B. subtilis GBO3 and Burkholderia 

phytofirmans PsJN inoculated Striga-free sorghum showed a 75%; 142% and 158% 

increase in biomass yield, respectively, compared to uninoculated Striga-free sorghum. 

There were no significant differences in biomass yield observed between inoculated and 

uninoculated Striga-infected plants. All PGPR supernatants and 10% LB media showed 

production of phytohormones cytokinin, IAA, GAs and ABA. Cytokinin content in PGPR 

supernatants was significantly (>0.05) higher than blank 10% LB control media. There was 

a significant negative correlation (r= -0.96) between IAA and cytokinins. However, there 

was no significant positive correlation between any phytohormone and sorghum plant 

height, SPAD values, biomass production, Striga germination, attachment and tubercle 

death. 

Finally, this study shows that Bacillus subtilis Bsn5, B. subtilis GBO3, B. 

amyloliquefaciens FZB42 and Burkholderia phytofirmans PsJN might accelerate sorghum 

growth and suppress key stages of Striga development under laboratory conditions. 

Greenhouse and field experiments are recommended to better understand these interactions 

under natural conditions where other biotic and abiotic factors come into play. These 

findings could contribute to a better understanding of sorghum and beneficial bacteria 

interactions and provide novel information of the long-term effects of a PGPR on sorghum 

development, opening new avenues for Striga control and sustainable, ecofriendly sorghum 

production. 
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Zusammenfassung 

 

Pflanzen der Gattung Striga sind parasitäre, die Wurzeln ihres Wirtes befallende Unkräuter 

mit einer großen landwirtschaftlichen Bedeutung. Striga entzieht ihrem Wirt essentielle 

organische und anorganische Ressourcen. Dies führt zu einem verschlechterten Wachstum 

und zu geringeren Erträgen bei der Wirtspflanze. Über 50 Millionen Hektar 

landwirtschaftlicher Nutzfläche in über 30 Ländern Afrikas sind von Striga befallen. Dies 

führt zu Ertragsverlusten bei Mais, Sorghum, Hirse und Reis von geschätzten 30 bis 90 

Prozent, je nach Ackerfrucht und Befallsstärke. Deswegen wird Striga auch als 

maßgebliches biotisches Hemmnis bei der Getreideproduktion des Kontinents gewertet. 

Ein vielversprechender Bestandteil für eine integrative Lösung zur Kontrolle von Striga 

könnten pflanzenwachstumsfördernde Bakterien (plant growth promoting rhizobacteria, 

PGPR) sein, die im Allgemeinen im Wurzelraum verschiedenster Pflanzen zu finden sind. 

Bodenimpfungen mit diesen Bakterien zeigten Wirksamkeit bei der Unterstützung des 

Wachstums von Feldfrüchten sowie eine Reduktion der Populationen von schädlichen 

Mikroorganismen in der Rhizosphäre. Obwohl sich schon eine Vielzahl von Studien mit 

der Unterstützung des Pflanzenwachstums und der biologischen Kontrolle von 

Krankheiten, Unkräutern, Nematoden und Parasiten durch PGPR befasst haben ist relativ 

wenig über das Potential einiger Bakterienstämme (Bacillus subtilis, B. amyloliquefaciens 

und Burkholderia phytofirmans) bei der Unterstützung des Wachstums von Sorghum und 

der Resistenz gegen Striga- Infektionen bekannt. Das vorranginge Ziel der hier 

vorgestellten Studie war es die Auswirkungen von B. subtilis Bsn5, B. subtilis GBO3, B. 

amyloliquefaciens FZB42 und dem Burkholderia phytofirmans Stamm PsJN auf das 

Wachstum von Sorghum und die Entwicklung von Striga zu erfassen, um damit ein 

grundlegendes Verständnis für die Interaktionen zwischen Sorghum-Striga-PGPR zu 

erhalten. 

Zu Beginn dieser Arbeit steht eine ausführliche Literaturübersicht zum aktuellen Stand des 

Wissens auf dem Gebiet der dreiteiligen Interaktionen zwischen Striga, Sorghum und 

verschiedenen Arten von PGPR. Zuerst werden dafür die zweiteiligen Interaktionen 

zwischen Sorghum und Striga, PGPR und Sorghum sowie zwischen PGPR und Striga 

erörtert. Dies soll einen Einblick darüber verschaffen wie Striga Sorghum beeinflusst und 

wie die Verteidigungsmechanismen von Sorghum gegen eine solche Interaktion aussehen. 

Gleichzeitig wird die Unterstützung diskutiert, die PGPR bei Pflanzenwachstum und bei 
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der Unterdrückung von Krankheiten in Sorghum leisten kann. Abschließend wird 

beleuchtet wie sich PGPR auf die Entwicklung von Striga auswirken. Sowohl für die 

zweiteiligen als auch für die dreiteiligen Interaktionen werden Wissenslücken aufgezeigt 

und Vorschläge für zukünftige Forschungsansätze gegeben. Eine der grundlegenden 

Empfehlungen dieser Übersicht ist es Experimente unter kontrollierten 

Umweltbedingungen durchzuführen, die es erlauben Rückschlüsse auf die 

Wechelwirkungen zwischen den oben genannten PGPR Stämmen und Sorghum sowie 

Striga bei zweiteiliger und dreiteiliger Interaktion zu schließen.  

Zwischen 2012 und 2014 wurden am Institut für Pflanzenproduktion und Agrarökologie 

der Tropen und Subtropen an der Universität Hohenheim sowohl Labore Experimente als 

auch versuche in Wurzelgefäßen unter kontrollierten Bedingungen durchgeführt. Inokulate 

(und die zugehörigen Überstände der Zellkulturen) von B. subtilis Bsn5, B. subtilis GBO3, 

B. amyloliquefaciens FZB42 und Burkholderia phytofirmans Stamm PsJN wurden auf ihr 

Potential als Wachsstumspromotoren in Sorghum und ihrer Wirkung auf die Entwicklung 

von Striga hin bewertet. Sowohl Wurzelsekrete von Sorghum als auch das synthetische 

Keimstimulanz GR24 wurden benutzt, um eine Keimung von Striga Samen zu induzieren. 

Während der Versuche zeigten die Überstände der Bacillus subtilis Bsn5 Kulturen den 

größten inhibitorischen Effekt sowohl auf die Keimung von Striga als auch auf die 

Verlängerung der Keimwurzel. Deswegen wurde der Überstand durch Hinzugabe von 

Essigsäureethylester in eine hydrophobe und eine hydrophile Phase gespalten, um die 

Polarität dieser Inhibierung aufzeigen zu können. Die Proteinzusammensetzung des 

Überstandes wurde mit Hilfe eines Massenspektrometers (MS) untersucht um das 

Vorhandensein von Peptiden abschätzen zu können. Peptide wurden in früheren Studien 

mit der Keimung von verschiedenen Orobanchearten, insbesondere im Hinblick auf die 

Verkürzung der Keimwurzel, in Verbindung gebracht. Mit Hilfe eines Radioimmunassays 

(RIA) wurden Pflanzenwachstumshormone im Überstand bestimmt, um die Produktion 

dieser Hormone durch PGPR mit den Auswirkungen auf die Verbesserung des Wachstums 

von Sorghum in Verbindung setzen zu können.  

Durch die Behandlung mit Burkholderia phytofirmans PsJN konnte ein signifikant (<0.05) 

höherer Vitalitäts Index (VI > 18000) an Sorghumkeimlingen erreicht werden als in den 

Kontrollbehandlungen oder in Behandlungen mit anderen PGPR. Den niedrigsten VI 

erreichten Keimlinge in der Behandlung mit Bacillus amyloliquefaciens FZB42 (VI 7626). 

Komplette Keimungsunterdrückung von Striga wurde bei allen PGPR Inokulaten erreicht, 
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wenn die Samen in 10 prozentiger Luria Bertani Lösung suspendiert wurden. Die höchsten 

Keimprozente (>60%) wurden in den zwei Kontrollversuchen (10% Luria Bertani (LB) + 

GR 24, sowie in sterilem destillierten Wasser (SDW) + GR24) beobachtet. 

Ebenso konnte ein signifikanter Effekt (<0.05) des bakteriellen Überstandes auf die Länge 

der Keimwurzel von Striga bei den verschiedenen Behandlungen festgestellt werden. Die 

niedrigsten Keimprozente (7.4%) wurden bei der Behandlung mit Bacillus subtilis Bsn5 + 

GR 24 beobachtet, die höchsten (66%) bei der Kontrollbehandlung mit SDW + GR24. Die 

Überstände aus den Bacillus subtilis Kulturen ergaben die niedrigste Durchschnittslänge 

bei Keimwurzeln (0.1 mm), während die höchste durchschnittliche Länge (2.2 mm) bei 

SDW + GR24 beobachtet wurde. Aus diesem Grund wurde der Überstand von Bacillus 

subtilis Bsn5 für die weiterführenden Untersuchungen herangezogen, die Einblicke zu den 

ursächlichen Bestandteilen der Unterdrückung der Keimung von Striga sowie der 

Verhinderung der Elongation der Keimwurzel liefern sollten. 

Der Überstand wurde mit Hilfe von Essigsäureethylester in eine hydrophile und eine 

hydrophobe Fraktion aufgetrennt. Jede Fraktion wurde dann zu Konzentrationen von 1%, 

25%, 50%, 75% und 100% aufbereitet und auf ihre inhibitorische Aktivität auf die 

Keimung von Striga und die Elongation der Keimwurzel getestet. Die höchsten 

Keimprozente (63%) und Keimwurzellänge (2.9 mm) wurde bei den Kontrollbehandlungen 

mit SDW + GR24 beobachtet. Beide Essigsäureethylester Fraktionen von 100% und 1%, 

jeweils + GR24, zeigten Keimprozente von >40%, vergleichbar zu den Kontrollen mit 10% 

LB und Essigsäureethylester, auch jeweils + GR24. Eine komplette Inhibierung der 

Keimung von Striga Samen zeigte sich bei der Exposition sowohl zum gesamten 

Überstand von Bacillus subtilis Bsn5 + GR24 oder zur 100 % hydrophilen Fraktion des 

Überstandes (+ GR24). Allerdings zeigte sich auch eine Erhöhung der Keimprozente von 

Striga bei den Konzentrationen von 25% und 1% + GR24 (jeweils auf 34% und 49%). 

Lichtmikroskopische Untersuchungen der Keimwurzel zeigten das bei der Behandlung mit 

dem Überstand der Bacillus subtilis Kulturen + GR24 eine Reduktion der Zellgröße im 

Bereich der Elongationszone ausschlaggebend für die kürzere Keimwurzel ist. Ähnliche 

Ergebnisse zeigten sich auch während Extended Agar Gel Assays (EAGA), wo Bacillus 

subtilis Bsn5 die höchste inhibitorische Aktivität auf die Keimung und 

Keimwurzelelongation von Striga, verglichen zu anderen PGPR und den 

Kontrollversuchen, hatte. 
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Signifikante Unterschiede (p<0.05) bei der Biomasseproduktion konnten bei den 

Versuchen in Wurzelgefäßen zwischen Striga freien und Striga infizierten 

Sorghumpflanzen. Die Gesamtbiomasse nicht beimpfter Striga freier sorghumpflanzen war 

40% höher als bei gleich behandelten mit Striga befallenen Pflanzen. Unter Abwesenheit 

von Striga zeigten Behandlungen mit Bacillus amyloliquefaciens FZB42, B. subtilis GBO3 

und Burkholderia phytofirmans PsJN eine Zunahme der Biomasse um jeweils 75, 142 und 

158%, verglichen mit den nicht beimpften Pflanzen. Bei Striga befallenen Pflanzen konnte 

kein signifikanter Unterschied in der Biomasseproduktion zwischen den Behandlungen mit 

PGPR oder gänzlich ohne festgestellt werden.  

Es konnte die in-vitro Produktion von Phytohormonen (Cytokinin, Auxin, Abscisinsäure 

und Gibberellinsäure) sowohl in den Überständen der PGPR als auch im 10% LB Medium 

festgestellt werden. Der Gehalt an Cytokinin war in den PGPR Überständen signifikant 

(>0.05) höher als in den Kontrollen mit 10% LB Medium. Es konnte eine signifikante 

negative Korrelation (r= -0.96) zwischen Auxin und Cytokinin festgestellt werden. 

Allerdings gab es keine signifikante positive Korrelation zwischen einem der 

Phytohormone und Faktoren wie Sorghum Wuchshöhe, SPAD Werten und Biomasse 

Produktion oder der Keimung, Anheftung oder Absterben der Keimwurzel von Striga. 

Abschließend zeigt diese Studie auf, das unter Laborbedingungen, Behandlungen mit 

Bacillus subtilis Bsn5, B. subtilis GBO3, B. amyloliquefaciens FZB42 und Burkholderia 

phytofirmans PsJN die Entwicklung von Sorghum beschleunigen und Schlüsselstadien bei 

der Striga Entwicklung unterdrücken können. Um diese Erkenntnisse weiter unter 

natürlichen Bedingungen verstehen zu können werden Gewächshaus- und 

Freilandversuche empfohlen, da hier weitere biotische und abiotische Faktoren ins Spiel 

kommen. Die hier vorgestellten Ergebnisse tragen zu einem besseren Verständnis der 

komplexen Interaktionen zwischen Sorghum und nutzbringenden Mikroorganismen bei. 

Gleichzeitig konnten neue Erkenntnisse zu den mittelfristigen Auswirkungen von PGPR 

auf die Entwicklung von Sorghum gefunden werden, die neue Möglichkeiten für die 

Bekämpfung von Striga in einer nachhaltigen, umweltfreundlichen Sorghumproduktion 

aufzeigen. 
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