
Multiagent resource allocation in

service networks

A dissertation

submitted to the Faculty of Business, Economics and Social Sciences of

the University of Hohenheim

in partial fulfillment of the requirements for the degree of

Doctor of Economics (Dr. oec.)

by

Paul Karänke

March 2014

Principal Adviser: Prof. Dr. Stefan Kirn

Co-Adviser: Prof. Dr. Frank Leymann

Chair of the Examination Committee: Prof. Dr. Christian Ernst

Dean: Prof. Dr. Dirk Hachmeister

Date of the Oral Examination: March 17, 2014

ABSTRACT III

Abstract

The term service network (SN) denotes a network of software services in

which complex software applications are provided to customers by aggregating

multiple elementary services. These networks are based on the service-oriented

computing (SOC) paradigm, which defines the fundamental technical concepts

for software services over electronic networks, e.g., Web services and, most re-

cently, Cloud services. For the provision of software services to customers,

software service providers (SPs) have to allocate their scarce computational re-

sources (i.e., hardware and software) of a certain quality to customer requests.

The SOC paradigm facilitates interoperability over organizational boundaries

by representing business relationships on the software system level. Composite

software services aggregate multiple software services into software applications.

This aggregation is denoted as service composition. The loose coupling of ser-

vices leads to SNs as dynamic entities with changing interdependencies between

services.

For composite software services, these dependencies exist across SN tiers;

they result from the procurement of services, which are themselves utilized

to produce additional services, and constitute a major problem for resource

allocation in SNs. If these dependencies are not considered, the fulfillment

of agreements may become unaccomplishable (overcommitment). Hence, the

consideration of service dependencies is crucial for the allocation of service

providers’ resources to fulfill customer requests in SNs.

However, existing resource allocation methods, which could consider these

dependencies – such as combinatorial auctions with a central auctioneer for the

whole SN – are not applicable, since there are no central coordinating entities

in SNs. The application of an allocation mechanism that does not consider

these dependencies might negatively affect the actual service delivery; results

are penalty payments as well as a damage to the reputation of the providers.

This research is conducted in accordance to the design science paradigm

in information system research. It is a problem-solving paradigm, which tar-

gets the construction and evaluation of IT artifacts. The objectives of this

research are to develop and evaluate an allocation protocol, which can consider

multi-tier service dependencies without the existence of central coordinating

entities. Therefore, an interaction protocol engineering (IPE) perspective is

applied to solve the problem of multi-tier dependencies in resource allocation.

This approach provides a procedure model for designing interaction protocols

ABSTRACT IV

for multiagent systems, and is closely related to the well-established area of

communication protocol engineering.

Automated resource allocation in SNs is analyzed in this research by repre-

senting the actors as autonomous software agents in the software system. The

actors delegate their objectives to their software agents, which conduct the ne-

gotiations for service provision on their behalf. Thus, these agents communicate

concerning the resource allocation; in this process, the sequence of communi-

cation interactions is crucial to the problem addressed. Interaction protocols

define a structured exchange of defined messages between agents; they facilitate

agent conversations.

When multiple agents have to reach agreements by negotiation and bar-

gaining, such as in case with allocating scarce resources, game theory provides

means to formalize and analyze the most rational choice of actions for the in-

teracting agents. Based on a formal framework for resource allocation in SNs,

this research first performs a game-theoretic problem analysis; it is concerned

with the existence, as well as the complexity of computing optimal allocations.

In addition, Nash equilibria are analyzed for optimal allocations. Second, a dis-

tributed, auction-based allocation protocol, which prevents overcommitments

and guarantees socially optimal allocations for single customer requests under

certain assumptions, is proposed. Therefore, a game-theoretic model and an

operationizable specification of the protocol are presented. Third, it is formally

verified that the protocol enables multi-tier resource allocation and avoids over-

commitments by proofs for the game-theoretic model and by model checking

for the interaction protocol specification; using the model checker Spin, safety

properties like the absence of deadlock are as well formally verified as the proto-

col enabling multi-tier resource allocation. Fourth, the efficacy and the benefits

of the proposed protocol are demonstrated by multiagent simulation for con-

current customers. The experimental evaluation provides evidence of the pro-

tocol’s efficiency compared to the socially optimal allocation as a centralized

benchmark in different settings, e.g., network topologies and different bidding

policies.

Acknowledgments

Sincere thanks to Julia for her dedicated support.

I thank my dissertation adviser Stefan Kirn for the supervision and for

making this work possible. I also thank my co-adviser Frank Leymann. Thanks

go to my colleagues in Hohenheim, especially to Jörg Leukel for his scientific

advice. Last but not least, I thank my parents and my family.

Contents overview

List of figures XI

List of tables XIII

List of abbreviations XV

List of symbols XVI

1 Introduction 1

1.1 Resource allocation in service networks 1

1.2 Research approach . 5

1.3 Epistemological position . 8

1.4 Outline . 11

2 State of the art 13

2.1 Definitions and assumptions . 13

2.2 Problem analysis . 58

2.3 Allocation approaches for multi-tier service networks 68

3 Design 83

3.1 Game-theoretic protocol model 83

3.2 Protocol specification . 85

3.3 Implementation . 94

4 Evaluation 103

4.1 Formal protocol analysis . 103

4.2 Model checking . 106

4.3 Simulation . 109

5 Conclusions 145

5.1 Contributions . 145

5.2 Future research . 146

Bibliography 147

VI

Contents

List of figures XI

List of tables XIII

List of abbreviations XV

List of symbols XVI

1 Introduction 1

1.1 Resource allocation in service networks 1

1.2 Research approach . 5

1.3 Epistemological position . 8

1.4 Outline . 11

2 State of the art 13

2.1 Definitions and assumptions . 13

2.1.1 Autonomous agents & multiagent systems 13

2.1.1.1 Autonomous agent 14

2.1.1.1.1 Encapsulated software system 15

2.1.1.1.2 Situated in environment 16

2.1.1.1.3 Autonomy and delegation 18

2.1.1.1.4 Rationality 21

2.1.1.1.5 Deliberation, reactivity, and proactive-

ness . 22

2.1.1.1.6 Social ability 25

2.1.1.1.7 Agent learning 26

2.1.1.2 Multiagent system 26

2.1.1.2.1 Multiagent communication 28

2.1.1.2.2 Multiagent coordination 29

2.1.2 Multiagent resource allocation 30

2.1.2.1 Agents, games, and strategies 31

VII

CONTENTS VIII

2.1.2.2 Types of resource 32

2.1.2.3 Utility and preference representation 33

2.1.2.3.1 Dominant strategies 34

2.1.2.3.2 Social choice 35

2.1.2.3.3 Pareto optimality 35

2.1.2.3.4 Nash equilibrium 35

2.1.2.4 Social welfare . 36

2.1.2.5 Allocation procedures 37

2.1.2.5.1 Allocation mechanism 38

2.1.2.5.2 Allocative efficiency 38

2.1.2.5.3 Incentive compatibility 38

2.1.2.5.4 Individual rationality 38

2.1.2.5.5 Budget balance 39

2.1.2.5.6 Allocation complexity 40

2.1.3 Services & service networks 40

2.1.3.1 Service . 40

2.1.3.1.1 Goods, services, and tangibility 41

2.1.3.1.2 Electronic, software, and Web services . 42

2.1.3.1.3 Service-oriented computing and service-

oriented architecture 43

2.1.3.1.4 Service properties 45

2.1.3.1.5 Service level agreement 46

2.1.3.2 Service network 47

2.1.3.2.1 Composite service 48

2.1.3.2.2 Service parameter aggregation 50

2.1.3.2.3 Service auction 54

2.1.3.2.3.1 Agent 54

2.1.3.2.3.2 Service 54

2.1.3.2.3.3 Time 55

2.1.3.2.3.4 Offer 55

2.1.3.2.3.5 Bid 55

2.1.3.2.3.6 Valuation 55

2.1.3.2.3.7 Cost 55

2.1.3.2.3.8 Capacity 55

2.1.3.2.3.9 Allocation 55

2.1.3.2.3.10 Payment 56

2.1.3.2.3.11 Service dependency 56

2.1.3.2.3.12 Penalty 56

CONTENTS IX

2.1.3.2.3.13 Customer utility function 56

2.1.3.2.3.14 Service provider utility function 57

2.1.3.2.3.15 Utilitarian social welfare 57

2.2 Problem analysis . 58

2.2.1 Utilitarian social welfare maximization problem 58

2.2.1.1 Computational problem complexity 59

2.2.1.2 Equilibria . 61

2.2.2 Requirements description 62

2.2.2.1 Distributed allocation 65

2.2.2.2 Service dependencies 65

2.2.2.3 Allocative efficiency 66

2.2.2.4 Incentive compatibility 66

2.2.2.5 Individual rationality 67

2.2.2.6 Budget balance 67

2.2.2.7 Allocation complexity 67

2.3 Allocation approaches for multi-tier service networks 68

2.3.1 Distributed allocation . 69

2.3.2 Leveled commitments . 70

2.3.3 Socially optimal allocations of resources 71

2.3.4 Interdependent Supply Negotiations 72

2.3.5 Interdependent Supply and Demand Negotiations 75

2.3.6 Supply chain formation with auctions 78

2.3.7 Service network formation with auctions 79

2.3.8 Summary and research gap 81

3 Design 83

3.1 Game-theoretic protocol model 83

3.2 Protocol specification . 85

3.2.1 UML specification . 86

3.2.2 PROMELA model . 90

3.3 Implementation . 94

3.3.1 BDI agent system . 95

3.3.1.1 Belief-desire-intention architectures 95

3.3.1.2 Jadex BDI agent system 95

3.3.2 Protocol implementation 97

3.3.2.1 Initiator . 97

3.3.2.2 Participant . 97

3.3.3 Agent implementation . 99

3.3.3.1 Customer agent 99

CONTENTS X

3.3.3.2 Service provider agent 99

3.3.4 Simulation system architecture 101

4 Evaluation 103

4.1 Formal protocol analysis . 103

4.1.1 Distributed allocation . 103

4.1.2 Service dependencies . 104

4.1.3 Allocative efficiency . 104

4.1.4 Incentive compatibility . 105

4.1.5 Individual rationality . 105

4.1.6 Budget balance . 106

4.1.7 Allocation complexity . 106

4.2 Model checking . 106

4.3 Simulation . 109

4.3.1 Experimental design . 109

4.3.2 Results . 111

4.3.2.1 Over all experiments 111

4.3.2.2 Non-substitutable resources 118

4.3.2.3 Substitutable resources 124

4.3.2.3.1 BPRO bidding policy 124

4.3.2.3.2 ERF bidding policy 130

4.3.2.3.3 IRF bidding policy 136

4.3.3 Discussion . 142

5 Conclusions 145

5.1 Contributions . 145

5.2 Future research . 146

Bibliography 147

List of Figures

1.1 Resource allocation in service networks use case diagram. 3

1.2 Service network example. 4

1.3 Feasible allocations example. 5

2.1 Agent and environment. 17

2.2 Agent, environment, and different forms of autonomy. 21

2.3 Generic service network model. 47

2.4 Example workflow. 48

3.1 Multi-tier contract net protocol sequence diagram. 87

3.2 MTCNP-collect-proposals sequence diagram. 88

3.3 MTCNP-acceptance-notification sequence diagram. 89

3.4 MTCNP-execution sequence diagram. 89

3.5 Initiator FSM. 90

3.6 Participant FSM. 91

3.7 Simulation system architecture. 102

4.1 SN creation process example for minimal edges. 110

4.2 SN creation process example for additional and multi-tier edges. 111

4.3 Utility ratio as function of number of customer agents. 113

4.4 Utility ratio as function of number of SP agent tiers. 115

4.5 Utility ratio as function of number of SP agents in tier 1. 117

4.6 Utility ratio as function of number of customer agents for non-

substitutable resources. 120

4.7 Utility ratio as function of number of SP agent tiers for non-

substitutable resources. 121

4.8 Utility ratio as function of number of SP agents in tier 1 for

non-substitutable resources. 123

4.9 Utility ratio as function of number of customer agents for sub-

stitutable resources and BPRO bidding policy. 126

XI

LIST OF FIGURES XII

4.10 Utility ratio as function of number of SP agent tiers for substi-

tutable resources and BPRO bidding policy. 127

4.11 Utility ratio as function of the number of SPs in tier 1 for sub-

stitutable resources and BPRO bidding policy. 129

4.12 Utility ratio as function of number of customer agents for sub-

stitutable resources and ERF bidding policy. 132

4.13 Utility ratio as function of number of SP agent tiers for substi-

tutable resources and ERF bidding policy. 133

4.14 Utility ratio as function of the number of SPs in tier 1 for sub-

stitutable resources and ERF bidding policy. 135

4.15 Utility ratio as function of number of customer agents for sub-

stitutable resources and IRF bidding policy. 138

4.16 Utility ratio as function of number of SP agent tiers for substi-

tutable resources and IRF bidding policy. 139

4.17 Utility ratio as function of the number of SPs in tier 1 for sub-

stitutable resources and IRF bidding policy. 141

List of Tables

1.1 Methods used. 7

1.2 Design-science research guidelines. 8

2.1 Generic aggregation functions. 53

2.2 Aggregation functions for Sequence, Loop, and XORXOR com-

position patterns. 53

2.3 Aggregation functions for ANDAND, ANDDISC, OROR, and

ORDISC composition patterns. 53

2.4 Informal protocol description. 64

2.5 Requirement fulfillment of related approaches. 81

4.1 Deterministic experiment parameters. 109

4.2 Random experiment parameters. 109

4.3 Utility ratio as function of number of customer agents. 112

4.4 Utility ratio as function of number of SP agent tiers. 114

4.5 Utility ratio as function of the number of SPs in tier 1. 116

4.6 Linear regression analysis results. 118

4.7 Utility ratio as function of number of customer agents for non-

substitutable resources. 119

4.8 Utility ratio as function of number of SP agent tiers for non-

substitutable resources. 121

4.9 Utility ratio as function of the number of SPs in tier 1 for non-

substitutable resources. 122

4.10 Linear regression analysis results for non-substitutable resources. 124

4.11 Utility ratio as function of number of customer agents for sub-

stitutable resources and BPRO bidding policy. 125

4.12 Utility ratio as function of number of SP agent tiers for substi-

tutable resources and BPRO bidding policy. 127

4.13 Utility ratio as function of the number of SPs in tier 1 for sub-

stitutable resources and BPRO bidding policy. 128

XIII

LIST OF TABLES XIV

4.14 Linear regression analysis results for for substitutable resources

and BPRO bidding policy. 130

4.15 Utility ratio as function of number of customer agents for sub-

stitutable resources and ERF bidding policy. 131

4.16 Utility ratio as function of number of SP agent tiers for substi-

tutable resources and ERF bidding policy. 133

4.17 Utility ratio as function of the number of SPs in tier 1 for sub-

stitutable resources and ERF bidding policy. 134

4.18 Linear regression analysis results for for substitutable resources

and ERF bidding policy. 136

4.19 Utility ratio as function of number of customer agents for sub-

stitutable resources and IRF bidding policy. 137

4.20 Utility ratio as function of number of SP agent tiers for substi-

tutable resources and IRF bidding policy. 139

4.21 Utility ratio as function of the number of SPs in tier 1 for sub-

stitutable resources and IRF bidding policy. 140

4.22 Linear regression analysis results for for substitutable resources

and IRF bidding policy. 142

List of abbreviations

AI artificial intelligence

BDI belief-desire-intention

BPMN business process model and notation

BPRO best price resources only

CFP call for proposals

CNP Contract net protocol

CP composition pattern

DAI distributed artificial intelligence

DPS distributed problem solving

ERF external resources first

FSM finite state machine

IaaS infrastructure as a service

IPE interaction protocol engineering

IRF internal resources first

IS information system

LTL linear temporal logic

MARA multiagent resource allocation

MAS multiagent system

MTCNP Multi-tier contract net protocol

NE Nash equilibrium

PaaS platform as a service

QoS quality of service

SaaS software as a service

SLA service level agreement

SN service network

SOA service-oriented architecture

SOC service-oriented computing

SP service provider

WS Web service

WS-BPEL Web services business process execution language

XV

List of symbols

A set of agents

AC ⊆ A set of customer agents

ASP ⊆ A set of service provider agents

Λ set of service provider agent tiers

λ ∈ Λ service provider agent tier

ASP ,λ set of service providers in tier λ

i, j, k, `,m, n ∈ N0 indices

ai ∈ A agent i

Ω world state

Ωi ⊆ Ω environment of agent ai

OF i delegated objective function of agent ai

BELi beliefs of agent ai

GOALi goals of agent ai

Σi set of possible actions of agent ai

CTi control thread of agent ai

per i : Ωi ×OF i → BELi perception function of agent ai

goal i : BELi ×OF i ×GOALi → GOALi goal function of agent ai

act i : GOALi ×OF i × Σi → Σi action function of agent ai

T = {0, . . . , T} set of time periods

T ∈ T last time period

t ∈ T time period

S set of services

P(S) powerset of the set S
St ⊆ S set of contracted services in period t

sij ∈ S service provided by aj to ai

vi : S → R valuation function of agent ai

cj : S → R cost function of agent aj

R set of resources

Rj ⊆ R set of resources of agent aj

XVI

LIST OF SYMBOLS XVII

O set of offers

Ot ⊆ O set of offers in period t

otij ∈ O offer from ai for service sij in period t

B set of bids

Bt ⊆ B set of bids in period t

btij ∈ B bid from aj for service sij in period t

wj : S ×Rj → R capacity function of agent aj

Wj total capacity of agent aj

ψ : O × B → R payment function

xt : S → {0, 1} allocation function for period t

ϕ : S →P(S) service dependency function

zt : S → {0, 1} dependency allocation function for period t

γ penalty factor

ρti : S → R penalty payment function for ai in period t

Chapter 1

Introduction

1.1 Resource allocation in service networks

The term service network (SN) denotes a network of software services in which

complex software applications are provided to customers by aggregating multi-

ple elementary services. These networks are based on the service-oriented com-

puting (SOC) paradigm, which provides the fundamental technical concepts

for software services over electronic networks, e.g., Web services and, most re-

cently, Cloud services (Blau, van Dinther, Conte, Xu & Weinhardt 2009, Arm-

brust, Fox, Griffith, Joseph, Katz, Konwinski, Lee, Patterson, Rabkin, Stoica

& Zaharia 2010). Studies suggest that Cloud-based SNs are gaining widespread

acceptance and may provide economic benefits for businesses as well as entire

economies (e.g., (Alford & Morton 2009, Hogan & Mohamed 2010, Vehlow &

Golkowsky 2011, Alcatel-Lucent 2012)).

SOC enables the loose coupling of software services to provide composite

software application services to customers. The main objective of the SOC

paradigm is to facilitate interoperability over organizational boundaries, repre-

senting real-world business relationships on the software system level. Compos-

ite software services aggregate multiple software services into software applica-

tions. This aggregation is denoted as service composition. The loose coupling

of services leads to SNs as dynamic entities with changing interdependencies

between services (Papazoglou, Traverso, Dustdar & Leymann 2008).

The provision of software services in SNs requires non-consumable resources

(hardware and software) that are limited and possessed by service providers

(SPs). The SPs’ resources contribute to the production of service applica-

tions in SNs by means of service provision and composition. For the supply

of software services to customers, software SPs have to allocate their scarce

computational resources of a certain quality to customer requests, i.e., re-

1

CHAPTER 1. INTRODUCTION 2

serve respective resources for software services on the contracted service level.

In return, SPs receive monetary compensations for providing services to cus-

tomers. Supply and demand for services are assigned by an allocation mecha-

nism (Rasmusen 1989, Binmore 1992). Thus, the allocation mechanism of SPs’

resources to fulfill customer requests is of major importance for SNs.

SNs can be regarded as a special kind of digital supply chains with a

network structure, in which nodes constitute the software systems of actors

– SPs and customers – and edges constitute formal representations of busi-

ness relationships for software services. This research analyzes automated re-

source allocation in SNs by representing the actors as autonomous software

agents (Wooldridge & Jennings 1995, Jennings 2000, Russell & Norvig 2003)

in the software system. The actors delegate their objectives to their software

agents, which conduct the negotiations for service provision on their behalf

(Huhns, Singh, Burstein, Decker, Durfee, Finin, Gasser, Goradia, Jennings,

Kiran Lakkaraju Nakashima, Van Dyke Parunak, Rosenschein, Ruvinsky, Suk-

thankar, Swarup, Sycara, Tambe, Wagner & Zavafa 2005). The representation

of real-world business relationships requires formal contractual agreements. Ex-

plicit formal statements of the obligations and guarantees regarding software

services in a business relationship are referred to as service level agreements

(SLAs) (Verma 1999). A SLA defines a software service as part of a contract be-

tween a SP and a service customer in a SN. SOC-related SLA approaches aim at

providing an abstraction of the service while facilitating measurement and mon-

itoring of service properties agreed upon (Czajkowski, Foster & Kesselman 2004,

pp. 264–265). Thus, agreements between software agents are represented by

SLA specifications. Figure 1.1 shows a use case diagram for automated resource

allocation in SNs in accordance to the actors’ delegated objectives.

CHAPTER 1. INTRODUCTION 3

delegate

service

provider

objectives

delegate

customer

objectives

negotiate

service

agreement

conclude

service

agreement

procure

services

allocate resources

Extension Points

service composition :

manage

service

requests

process

service

requests

<< actor >>

service provider

transfer

service

requests

<< actor >>

customer

ud: resource allocation

<< include >>

<< include >>

<< extend >>

<< include >>

<< include >>

<< include >><< include >>

<< include >>

<< include >>

<< include >>

Figure 1.1: Resource allocation in service networks use case diagram.

For composite software services, service dependencies exist across SN tiers;

they result from the procurement of services, which are themselves utilized to

produce additional services, and constitute a major problem for resource allo-

cation in SNs. The individual requirements of the service customer determine

the requirements of agreements that have to be established in upstream SN

tiers. This results in networks of agreements with service dependencies. If

these dependencies are not considered, the fulfillment of agreements may be-

come unaccomplishable (overcommitment). The application of an allocation

mechanism that does not respect these dependencies might negatively affect

the actual service delivery; results are penalty payments as well as a damage to

the reputation of the providers. Hence, the consideration of service dependen-

cies is crucial for the allocation of service providers’ resources to fulfill customer

requests in SNs.

However, existing resource allocation methods, which could respect these

dependencies – such as combinatorial auctions with a central auctioneer for the

whole SN – are not applicable, since there are no central coordinating entities in

SNs. In addition, finding optimal allocations is often computationally infeasible

in this setting (Bo & Lesser 2010). Thus, the objectives of this research are to

develop and evaluate an allocation protocol which is able to consider multi-tier

service dependencies without the existence of central coordinating entities.

CHAPTER 1. INTRODUCTION 4

Example As an illustrative example, a scenario with two customer agents is

shown in figure 1.2. The service requested by the customer agents are data

mining services in the same time frame, which are provided by SP agents over

the network (software as a service, SaaS). The customer agents’ requests include

definitions of the services and respective parameters (required capacities in

this example). The SP agents have to subcontract parts of the service to,

respectively procure appropriate sub-services from, their suppliers in the next

tier. In this example, both data mining SP agents require a specialized analysis

service for their data mining service software. In addition, one of the data

mining services along with the analysis service require data storage services.

storage SP agent

input

Ø

output

10GB

analysis SP agent
input

10GB

output

10MB/s

data mining SP agent2
input

7MB/s

output

2MB/s

customer agent1
input

1MB/s

output

Ø

customer agent2
input

2MB/s

output

Ø

data mining SP agent1
input1
10GB

output

1MB/sinput2
6MB/s

XOR

XOR

Figure 1.2: Service network example.

The multi-tier resource allocation has to ensure that agreements will either

be established with the customer agents and with respective supplier agents in

all tiers required or no agreements will be established at all. If a binding agree-

ment between a SP agent and a customer agent is established before binding

procurement agreements with the SP agents in the next tier are established, the

SP agents may be unable to fulfill the agreements with the customer agents.

In this example, it is assumed that the storage SP agent can either provide

its service to the analysis SP agent or data mining SP agent1, since the required

capacity of the latter two exceeds the available capacity of the storage SP agent

(10GB + 10GB > 10GB). Similarly, both data mining SP agent1 and data

mining SP agent2 require the specialized analysis service. However, the analysis

SP agent has insufficient capacity to serve both agents (6MB/s + 7MB/s >

10MB/s).

CHAPTER 1. INTRODUCTION 5

In this example scenario, just two possible allocations are feasible. Figure

1.3 shows the two feasible allocations of the example scenario in black, while

unallocated services are depicted in gray.

storage SP agent

input

Ø

output

10GB

analysis SP agent

input

10GB

output

10MB/s

data mining SP agent2
input

7MB/s

output

2MB/s

customer agent1

input

1MB/s

output

Ø

customer agent2
input

2MB/s

output

Ø

data mining SP agent1

input1
10GB

output

1MB/sinput2
6MB/s

storage SP agent

input

Ø

output

10GB

analysis SP agent

input

10GB

output

10MB/s

data mining SP agent2

input

7MB/s

output

2MB/s

customer agent1
input

1MB/s

output

Ø

customer agent2

input

2MB/s

output

Ø

data mining SP agent1
input1
10GB

output

1MB/sinput2
6MB/s

(i)

(ii)

Figure 1.3: Feasible allocations example.

The allocation mechanism has to ensure that

1. data mining SP agent2 does not establish an agreement with customers

agent2 if it cannot procure the analysis service (figure 1.3, (i)),

2. data mining SP agent1 does not establish an agreement with customers

agent1 if it cannot procure both the analysis and storage services (figure

1.3, (ii)), and

3. the data mining SP agents must not purchase services from their upstream

provider agents if the purchased services cannot be used for production

by the data mining SP agents.

1.2 Research approach

Resource allocation is a well-established field in multiagent research (Chevaleyre,

Dunne, Endriss, Lang, Lemaitre, Maudet, Padget, Phelps, Rodriguez-aguilar &

Sousa 2006). Each actor in a SN (service providers and customers) is repre-

sented by an autonomous software agent (Huhns et al. 2005). These agents

CHAPTER 1. INTRODUCTION 6

communicate concerning the resource allocation in SNs. The sequence of com-

munication interactions is crucial to the problem addressed, as stated in sec-

tion 1.1. Interaction protocols define a structured exchange of defined messages

between agents; they facilitate agent conversations (Huhns & Stephens 1999,

Wooldridge 2009).

This research studies multi-tier dependencies in resource allocation from

an interaction protocol engineering (IPE) perspective (Huget & Koning 2003).

IPE is concerned with designing interaction protocols for multiagent systems,

and is closely related to communication protocol engineering (Holzmann 1991).

Although there are conceptual differences between the assumptions for commu-

nicating processes in distributed systems and communicating agents, especially

regarding the level of abstraction (Jennings & Wooldridge 2000), prior research

in multiagent systems suggests that methods and tools from the communication

protocol area are also useful for technical aspects of developing and validating

agent interaction protocols (Walton 2007, Giordano, Martelli & Schwind 2007);

basic requirements apply for both communication and interaction protocols

(e.g., absence of deadlock and unreachable states).

The IPE approach comprises five phases. In the analysis phase (1), this

research studies resource allocation with regard to dependencies between differ-

ent SN tiers and formally analyzes these dependencies. When multiple agents

have to reach agreements by negotiation and bargaining, such as in case with

allocating scarce resources, game theory (von Neumann & Morgenstern 1944,

Rasmusen 1989, Binmore 1992) provides means to formalize and analyze the

most rational choice of actions for the interacting agents (Rosenschein 1985,

Rosenschein & Zlotkin 1994, Kraus 1997, Parsons & Wooldridge 2002). Based

on a formal framework for resource allocation in SNs, this research performs a

game-theoretic problem analysis; it is concerned with the existence, as well as

the complexity of computing optimal allocations. In addition, Nash equilibria

(Nash 1950) are investigated for optimal allocations.

In the formal description phase (2), the protocol is constructed and for-

mally specified. In this thesis, a distributed, auction-based allocation protocol,

which prevents overcommitments and guarantees socially optimal allocations

for single customer requests under certain assumptions, is proposed. A game-

theoretic specification of the protocol is provided, based on the formal frame-

work. In addition, a specification is presented in UML sequence diagrams. The

model checker (Clarke, Grumberg & Peled 1999) Spin (Holzmann 1997) accepts

protocol specifications in the verification language Promela (a Process Meta

Language) (Holzmann 1991). Towards a formal description of the protocol in

CHAPTER 1. INTRODUCTION 7

Promela, finite state machines (FSMs) are constructed for the participants.

Thus, states are assigned to the participants for every (alternative) interaction

on the basis of the UML sequence diagrams.

The fulfillment of the requirements by the formal descriptions is evidenced

in the verification phase (3). This research proves that the proposed protocol

prevents overcommitments and guarantees socially optimal allocations for single

customer requests under the assumption, that resources are non-substitutable

between SPs, based on the game-theoretic model. Further, the model checker

Spin is applied to verify certain formal properties of the protocol description in

Promela. These include safety (e.g., absence of deadlock) as well as liveness

properties of the protocol, expressed in linear temporal logic (LTL). Thus, it is

verified that the protocol allows multi-tier resource allocation.

The implementation phase (4) comprises the construction of an executable

protocol. The proposed protocol is implemented as a reusable capability for

the Jadex BDI agent system (Pokahr, Braubach & Lamersdorf 2005). The sim-

ulation experiments are executed using this implementation, along with Jadex

BDI agents representing the actors in a dedicated simulation system.

Finally, the conformance test phase (5) validates the conformance of the

implemented protocol with the properties defined in the analysis phase (Huget

& Koning 2003). The efficacy and the benefits of the proposed protocol are

demonstrated through multiagent simulation (Kluegl 2001) of different Cloud

computing scenarios. In the simulation experiments, the efficiency of the pro-

tocol is compared to the optimal allocation as a centralized benchmark in dif-

ferent settings (e.g., network topologies or number of customer and SP agents)

for three different SP bidding policies. Further, the experiments are executed

with and without substitutable resources. SP agents can decide if they use

own resources or procure sub-services from SP agents in the next tier in case

of substitutable resources. Table 1.1 summarizes the methods applied.

Table 1.1: Methods used.

IPE phase methods used

1 analysis game theory

2 formal description game theory, UML, FSMs, Promela (LTL)

3 verification proofs, model checking (Spin)

4 implementation Jadex (java)

5 conformance test multiagent simulation

CHAPTER 1. INTRODUCTION 8

1.3 Epistemological position

This research is conducted in accordance to the design science paradigm in

information systems research proposed by Hevner, March, Park & Ram (2004).

Research in the information systems discipline is mainly characterized by two

paradigms: The behavioral-science approach – based on natural science research

principles – aims at developing and justifying theories that explain or predict

organizational and human behavior, regarding the utilization of information

systems. In contrast, the design science paradigm – based on engineering and

the sciences of the artificial (Simon 1996) – is a problem-solving paradigm. It

targets the construction and evaluation of IT artifacts, enabling organizations

to address information-related tasks (Hevner et al. 2004).

Hevner et al. (2004) propose seven guidelines for effective information sys-

tem research; these are shown in table 1.2 and discussed with regard to this

work in the following.

Table 1.2: Design-science research guidelines.

(Hevner et al. 2004, p. 83)
guideline description

guideline 1:
design as an
artifact

Design-science research must produce a viable artifact
in the form of a construct, a model, a method, or an
instantiation.

guideline 2:
problem
relevance

The objective of design-science research is to develop
technology-based solutions to important and relevant
business problems.

guideline 3:
design
evaluation

The utility, quality, and efficacy of a design artifact
must be rigorously demonstrated via well-executed eval-
uation methods.

guideline 4:
research
contributions

Effective design-science research must provide clear and
verifiable contributions in the areas of the design arti-
fact, design foundations, and/or design methodologies.

guideline 5:
research rigor

Design-science research relies upon the application of
rigorous methods in both the construction and evalua-
tion of the design artifact.

guideline 6:
design as a
search process

The search for an effective artifact requires utilizing
available means to reach desired ends while satisfying
laws in the problem environment.

guideline 7:
communication
of research

Design-science research must be presented effectively
both to technology-oriented as well as management-
oriented audiences.

CHAPTER 1. INTRODUCTION 9

Guideline 1: design as an artifact Design-science research in information

systems results in purposeful IT artifacts addressing important organizational

problems. IT artifacts are defined as constructs (vocabulary and symbols),

models (abstractions and representations), methods (algorithms and practices),

and instantiations (implemented and prototype systems) (Hevner et al. 2004,

p. 77). In this thesis, a distributed resource allocation protocol is constructed

as a method artifact. Further, an implementation of this protocol is presented

as an instantiation artifact.

Guideline 2: problem relevance This thesis addresses multi-tier service

dependencies in resource allocation, i.e., distributed resource allocation without

the existence of central coordinating entities. The problem consists of contrac-

tual dependencies along the complete SN. If these dependencies are not con-

sidered, the fulfillment of agreements may be unaccomplishable, due to missing

agreements with other actors; however, these agreements are required for the

fulfillment (avoiding overcommitment). The application of an allocation mech-

anism that does not respect these dependencies might negatively affect the

actual service delivery; results are penalty payments as well as a damage to the

reputation of the providers.

Guideline 3: design evaluation The evaluation within the design science

framework has to demonstrate the utility, quality, and efficacy of the con-

structed artifact by means of appropriate methods (Hevner et al. 2004, pp.

85–87). This research verifies the formal specification of the proposed protocol

(i) by proofs and (ii) by model checking regarding safety (e.g., absence of dead-

lock), as well as liveness properties. The model checker Spin (Holzmann 1997)

is applied to verify that the protocol specification is sound and allows multi-tier

resource allocation. This work evaluates the protocol implementation experi-

mentally by multiagent-based simulation (Kluegl 2001), motivated by real-world

application scenarios from the Cloud-computing domain.

Guideline 4: research contributions The developed artifact has to be

innovative and provide a clear contribution; i.e., it has to be novel in terms of

solving a previously unsolved problem or it has to solve a known problem in

a more effective or efficient manner (Hevner et al. 2004). The contributions of

this thesis are a formal framework and the specification and implementation

of a novel interaction protocol for multi-tier resource allocation for composite

service provision over multiple SN tiers. In contrast to current work, it avoids

CHAPTER 1. INTRODUCTION 10

overcommitments by service providers and does not require central entities for

coordination.

Guideline 5: research rigor Research rigor refers to the application of

rigorous methods for the construction and evaluation of design artifacts and

addresses the way design-science research is conducted. Research rigor requires

the effective use of the knowledge base, i.e., theoretical foundations and re-

search methodologies (Hevner et al. 2004, p. 87–88). This work’s theoretical

foundations include an economic and a technical part. The economic part

comprises game theory and service auctions in SNs. The technical part cov-

ers foundations of multiagent systems, service-oriented information systems,

and SLAs. To solve the problem of multi-tier resource allocation, an interac-

tion protocol engineering perspective (Huget & Koning 2003) is applied. This

approach is closely related to the well-established area of communication pro-

tocol engineering (Holzmann 1991). For the verification of required protocol

properties, formal methods from game theory (i.e., proofs) and communication

protocol engineering (model checking) are applied. The simulation method used

is multi-agent simulation (Kluegl 2001), which constitutes a mature method for

the evaluation of interaction protocol implementations.

Guideline 6: design as a search process The design process can be re-

garded as a search process for an effective solution to a problem. Problem

solving can be defined as utilizing available means to reach desired ends while

satisfying laws existing in the environment (Simon 1996). Means qualify the set

of actions and resources available to construct a solution; ends describe goals

and constraints on the solution; and laws denote uncontrollable forces in the

environment. However, it may not be possible to formulate appropriately and

pose mathematically all relevant means, ends, or laws of an information system

design problem to apply standard operations research techniques to determine

an optimal solution. Assuming it is possible to do so, the size and complexity

of the solution space will often render the problem computationally infeasible.

For these problems, the search processes consist of determination of satisfac-

tory (i.e., satisficing (Simon 1996)) solutions, without explicitly specifying all

possible solutions (Hevner et al. 2004, p. 88–90). Regarding the formal speci-

fication of the protocol, this thesis formally verifies that the protocol is sound

and allows multi-tier resource allocation. The simulation-based evaluation of

the protocol implementation shows that the proposed solution is satisfactory

with regard to the requirements addressed.

CHAPTER 1. INTRODUCTION 11

Guideline 7: communication of research Results of design-science re-

search must be presented to technology- and management-oriented audiences

in order to extend the research community’s knowledge base and to make the

artifact’s benefits available to practitioners (Hevner et al. 2004, p. 90). A pre-

liminary version of the protocol specification and a preliminary evaluation have

been described and demonstrated to management-oriented audiences within the

scope of the EU ICT project BREIN (Laria 2009, Jones 2010). The underly-

ing software architecture of the system used for the simulation-based evalua-

tion of the protocol implementation has been presented in (Karaenke, Micsik

& Kirn 2009). The approach for quality of service (QoS) parameter aggre-

gation has been published in (Karaenke & Leukel 2010, Karaenke, Leukel &

Sugumaran 2013). A multi-tier contract net protocol specification for logistics

service chains has been proposed in (Karaenke & Kirn 2010a). The general-

ization of this preliminary protocol to SNs and a formal verification by model

checking have been partly described in (Karaenke & Kirn 2010b).

1.4 Outline

This thesis is structured in five chapters. It starts with an overview of multia-

gent systems and service networks, continues with a requirements analysis and

related work, before presenting the proposed protocol along with its verification

and validation.

Chapter 1: Introduction This chapter outlines the motivation and problem

addressed in this thesis, its research approach and contributions, and discusses

the epistemological position of this research.

Chapter 2: State of the art This chapter gives an overview of the fun-

damentals and basic concepts of multiagent systems, game theory in multia-

gent systems, service networks, and service-oriented computing. In addition, it

provides a game-theoretic problem analysis based on a formal model for SNs,

presents a specification of the requirements, and discusses related work.

Chapter 3: Design This chapter presents the protocol specification math-

ematically based on the game-theoretic model, in UML sequence diagrams,

and in a Promela model. Different bidding policies for service providers are

formally analyzed. Further, the protocol implementation and the simulation

system are presented.

CHAPTER 1. INTRODUCTION 12

Chapter 4: Evaluation This chapter evaluates the proposed protocol. First,

the protocol specification is evaluated based on the formal, game-theoretic

model. Second, safety and liveness properties of the Promela model are veri-

fied by means of the model checker Spin. Third, the results of the multiagent

simulation, which evaluates the protocol implementation, are presented and

discussed.

Chapter 5: Conclusions This chapter summarizes the results, draws major

conclusions, outlines implications and limitations of the proposed protocol, and

gives an outlook on future research.

Chapter 2

State of the art

This chapter provides the definitions of key concepts and underlying assump-

tions from multiagent systems, game theory in multiagent systems, and service

networks. Based on a formal model for SNs, it uses game theory to derive a set

of requirements that must be fulfilled to solve the problem addressed. Then it

reviews relevant allocation approaches from the extant literature and assesses

if and in how far they meet these requirements.

2.1 Definitions and assumptions

2.1.1 Autonomous agents & multiagent systems

This section introduces fundamental concepts from the distributed artificial

intelligence (DAI) area. DAI can be divided into two primary research ar-

eas: distributed problem solving (DPS) and multiagent systems (MAS). DPS

research addresses the division of problem solving processes among a set of en-

tities, which can cooperate in dividing and sharing knowledge about problems

and in developing solutions. Thus, DPS problems require a global perspective,

even for understanding and stating the problem. In contrast, MAS research

focuses on coordination of a number of intelligent agents to resolve conflicts

between actions or to take advantage of the actions of other agents (Bond &

Gasser 1988).

In the remainder of this section, concepts for a single computational entity,

an agent, are presented. This discussion focuses on concepts from the MAS

research area and agency in artificial intelligence (AI) in general. The literature

analysis includes a definition of the term ‘agent’ – with focus on agency in the

MAS research area – as well as discussions of different properties and types

of architecture for agents. Further, systems with multiple interacting agents,

13

CHAPTER 2. STATE OF THE ART 14

which form multiagent systems, and implications of agent properties for these

systems, are presented and analyzed. This includes agent communication and

coordination concepts in MAS.

2.1.1.1 Autonomous agent

Although the definition of the term ‘agent’ has been subject of comprehensive

scientific discussions in AI since the 1980s, there is no generally accepted defini-

tion and the debate is ongoing; not only for agency in AI in general, but also for

agency in MAS research in particular. This results from the fact that different

attributes of agency are of varying importance in distinct application domains.

For example, it may be desirable that agents learn (i.e., adopt their behavior)

in some domains, while this is undesired in others (Wooldridge 2009). Franklin

& Graesser (1997) discuss various different notions of agency, present a set of

essential characteristics, and propose a taxonomy of autonomous agents.

This work provides a definition of intelligent, autonomous software agents –

hereafter referred to as agents – from the MAS research area, based on related

literature; it also discusses and analyzes properties as well as characteristics of

agents in the remainder of this section.

Though there is a number of different definitions of the term ‘agent’ (e.g.,

(Ferber 1999)), the understanding of agency in this research is based on the

weak notion of agency by Wooldridge & Jennings (1995), which constitutes the

most commonly accepted definition. Wooldridge & Jennings (1995) also discuss

a stronger notion of agency, considering human-like concepts like mentalistic

notions (e.g., knowledge and obligations) or emotions (Wooldridge & Jennings

1995, p. 117). However, the stronger notion of agency is beyond the scope of

this work.

Definition 2.1.1 (agent). An agent ai ∈ A is an encapsulated software

system with social ability that is situated in an environment, and that is

capable of autonomous action which is expected to maximize the agent’s

delegated objective function (Wooldridge & Jennings 1995, Jennings 2000,

Russell & Norvig 2003).

This definition and the understanding of agency in this work is based on the

assumptions that (i) agents are encapsulated software systems; (ii) agents are

situated in an environment; (iii) agents are autonomous from their environment

and have delegated objective functions; (iv) agents are rational; (v) agents are

capable of deliberation, reactive, and proactive behavior; (vi) agents have social

ability; and (vii) agents can potentially improve their performance through

learning. The following sections discuss these assumptions in detail.

CHAPTER 2. STATE OF THE ART 15

Although agent mobility (i.e., mobile agents) is an important research field,

it is beyond the scope of this research. That is, agent mobility is explicitly

excluded. Moreover, this research assumes persistence of agents and the ability

to conclude binding agreements (Rosenschein 1985, p. 30) as discussed further

in section 2.1.1.2.

2.1.1.1.1 Encapsulated software system Agents are encapsulated soft-

ware systems, i.e.,

• agents are identifiable entities with well-defined boundaries (Jennings

2000, p. 280) ⇔ (∀ai, aj ∈ A : ai 6= aj ⇔ i 6= j);

• autonomous agents are a concept of computer science, namely the agent-

based computing software paradigm (Wooldridge 1997, Jennings 2000).

Encapsulation of complex data types in software modules provides an ab-

straction to hide (i) details of operations (procedural abstraction) and (ii) value

representations (data abstraction). In addition, encapsulation is a protection

mechanism to isolate changes in one software module from the remainder of

the software system (Gannon, Hamlet & Mills 1987, p. 820). Encapsulation

also plays an important role in the object-oriented software paradigm. Here, a

class is separated into interface and implementation. This facilitates a separa-

tion of concerns, where the implementation details are hidden and the interface

provides an abstract description of the class behavior (Booch 1993, pp. 46–47).

For agents, encapsulation also denotes an abstraction role that hides details

of the realization. Therefore, an agent is an identifiability software system

(e.g., module or class) with well-defined boundaries (Jennings 2000, p. 280). In

definition 2.1.1, the identifiability is provided by the index i.

The concept of agency discussed in this work is fundamentally a concept of

computer science, i.e., it considers the agent-based computing software paradigm

(Wooldridge 1997, Jennings & Wooldridge 2000). Therefore, philosophical, so-

cial, and economical discussions of agency, which are beyond the capabilities of

the Von Neumann architecture, are out of the scope of this research.

However, this work does utilize concepts from economic theory for agents,

though the underlying assumptions are analyzed with regard to the applicability

to software systems. For example, the set of possible actions of an agent is

limited by, among others, the computational model and more specifically by

the realization of an agent in software. That is, it cannot be assumed that an

agent is capable of any imaginable action as is might be assumed in philosophical

or social sciences (e.g., in principle, an agent cannot be assumed to have the

capabilities to ‘walk away’ or terminate itself).

CHAPTER 2. STATE OF THE ART 16

Further, in agent-based computing, several metaphors from other research

disciplines such as social sciences are used (e.g., the ‘social ability’ of agents

(Wooldridge & Jennings 1995, p. 116)). Hereby, it is essential to not over-

interpret the implications the migrated concepts have for software systems. For

example, ‘social ability’ is a metaphor which denotes the ability to coordinate

joint and conflicting goals and actions with other agents required for, e.g., coop-

erative problem solving or negotiation (Wooldridge 1997, Castelfranchi 1998).

However, it cannot be assumed that a ‘society’ of these communicating soft-

ware components has the same properties as a human society. The same is true

for autonomy and other properties of software agents. The interpretation of

these properties for software systems are thus analyzed in the remainder of this

section.

2.1.1.1.2 Situated in environment Agents are situated in an environ-

ment, i.e.,

• agents can perceive their environment through sensors ⇔ there is a per-

ception function per i such that the environment Ωi ⊆ Ω is part of the

domain of per i for all agents ai ∈ A ⇔ ∃per i : Dper i → CDper i∀ai ∈ A :

Ωi ⊆ Dper i ;

• agents can execute actions in their environment through effectors⇔ there

is an action function act i such that the set of possible actions Σi is part of

the co-domain of act i for all agents ai ∈ A⇔ ∃act i : Dacti → CDacti∀ai ∈
A : Σi ⊆ CDacti (Jennings 2000, Russell & Norvig 2003).

The embeddedness of the agent in its environment, i.e., being situated in

the environment, is defined by an agent’s ability to perceive the state of its

environment through sensors and act on that environment through effectors

(Russell & Norvig 2003, p. 32).

The concept of an agent’s embodiment in its environment – which is adopted

in the understanding of the term ‘agent’ in this work – is shown in figure 2.1.

Agents generate actions to influence their environment (possibly including other

agents) and receive feedback and other percepts through their sensors.

Agent environments can be further specified by general properties suggested

by Russell & Norvig (2003) as follows. They can be fully or partially observable.

Full observability denotes that an agent can perceive the complete state of

the environment at any point in time through its sensors. An environment

is effectively fully observable if an agent can perceive all relevant information

for the choice of action. Relevance depends on the agent’s delegated objective

function.

CHAPTER 2. STATE OF THE ART 17

agent

environm
ent

percepts/
feedback

?

actions

sensors

effectors/
actuators

perception

decision

action

Figure 2.1: Agent and environment.
(after (Russell & Norvig 2003, p. 33) and (Wooldridge 2009, p. 22))

The environment can be deterministic or stochastic. In deterministic envi-

ronments, agent actions have guaranteed effects, i.e., the resulting state of the

environment is solely dependent on the current state and the agent’s actions. In

stochastic environments, there is uncertainty about the state that results from

the agent’s actions. If the environment is deterministic except for other agents’

actions, it is denoted as strategic.

An agent’s environment is qualified as episodic if the next episode does not

depend on actions taken in the current episode. That is, the environment is

divided into atomic episodes, which are independent of each other. In sequential

environments, the current agents’ decisions can affect all future decisions.

If the environment does not change while an agent is deliberating, it is

denoted as static for this agent. If it can change during agent deliberation, it

is denoted as dynamic. In dynamic environments, agents continuously have to

decide what to do – in case they are still deliberating, they may also decide to

do nothing.

The distinction of discrete and continuous environments can be applied to

(i) the state of the environment, (ii) the way time is handled, and (iii) to the

perceptions and actions of agents. An environment is state-discrete if it has a

finite number of states, time-discrete if it has a finite set of points in time, and

perception-/action-discrete if it has a finite set of perceptions/actions; i.e., the

discreteness depends on the finiteness of the corresponding set of states, points

in time, perceptions, and actions.

In addition, single-agent and multiagent environments can be distinguished

– by the number of agents situated in the environment (Russell & Norvig 2003,

pp. 40–44). However, this distinction is out of scope of this section, since it

focuses on agents’ relationships with their environments, independent of the

number of agents situated in this environment. Multiagent environments are

discussed in detail in section 2.1.1.2.

CHAPTER 2. STATE OF THE ART 18

The agents’ environments considered in this work are assumed to be par-

tially observable, strategic (stochastic), sequential, dynamic, state-continuous,

time-discrete, perception-/action-continuous, and multiagent.

Definition 2.1.2 (agent environment). Let ai ∈ A be an agent and Ω be

the world state. ai’s environment Ωi ⊆ Ω consists of anything an agent can

perceive through its sensors, denoted by function per i, and act on through its

effectors, denoted by function act i (Jennings 2000, Russell & Norvig 2003).

2.1.1.1.3 Autonomy and delegation Agents are autonomous from their

environment and have delegated objective functions, i.e., agents have

• delegated objective functions OF i ⇔ ∃OF i∀ai ∈ A;

• beliefs BELi, constituting the agents’ interpretation of the perceptions

received ⇔ ∃BELi∀ai ∈ A;

• states of parameters of their environment with positive influence on the

objective functions, referred to as goals GOALi ⇔ ∃GOALi∀ai ∈ A;

• perception functions per i that interpret the perceptions received in ac-

cordance to the delegated objective function ⇔ ∃per i : Ωi × OF i →
BELi∀ai ∈ A;

• goal functions goal i that infer the goals in accordance to the beliefs, del-

egated objective function, and existing goals ⇔ ∃goal i : BELi × OF i ×
GOALi → GOALi∀ai ∈ A;

• action functions act i that infer the actions in accordance to the goals,

delegated objective function, and planned actions ⇔ ∃act i : GOALi ×
OF i × Σi → Σi∀ai ∈ A; and

• control threads CTi which manage the internal execution of inference

processes ⇔ ∃CTi∀ai ∈ A.

The mentioned sets and functions cannot be directly influenced by the envi-

ronment (including other agents) – this constitutes the autonomy (Wooldridge

& Jennings 1995, Castelfranchi 1995, Luck & d’Inverno 1995, Jennings 2000,

Russell & Norvig 2003, Wooldridge 2009).

Wooldridge (2009) identifies autonomy as a commonly accepted property of

agents in MAS; it is a key characteristic that distinguishes agents from objects

(Wooldridge 1997). Wooldridge & Jennings (1995) characterize agents’ auton-

omy as follows: agents have control over their internal state and their behavior

CHAPTER 2. STATE OF THE ART 19

(i.e., actions) without direct external interaction. However, the authors do not

provide a comprehensive discussion of the autonomy concept for agents, but

refer to Castelfranchi (1995).

Castelfranchi (1995) analyzes the fundamentals of agent autonomy and pro-

poses different autonomy dimensions. He characterizes autonomy as an intrin-

sically relational concept, i.e., the autonomy of an entity is defined in relation

to another entity. For autonomous agents, two main relations are identified:

autonomy from the environment (physical context) and autonomy from other

agents (social context). However, autonomy does not imply ‘autism’, i.e., al-

though the environment (including other agents) cannot directly influence the

behavior and internal state of agents, it does not mean that agents are to-

tally unrelated and unconcerned about the environment. The behavior can

be indirectly influenced by external stimuli, though it cannot be determined

or imposed by them, i.e., agent behavior is not determined by a set of rigid

and deterministic reflexes to external stimuli. The autonomy of an agent from

stimuli it percepts through its sensors is referred to as cognitive autonomy.

Further, Castelfranchi (1995) distinguishes executive autonomy and goal au-

tonomy. Executive autonomy is relative to the actions (‘means’) an agent per-

forms, while goal autonomy is related to the goals (‘ends’) an agent tries to

achieve. That is, executive autonomy refers to the autonomy how an agent

tries to reach its goals, and goal autonomy refers to the autonomy what it tries

to achieve.

In addition to not being directly influenceable by the environment, agent

goals can only be influenced through agent beliefs (i.e., double indirect influ-

ence). Therefore, an agent’s control over its beliefs constitutes an additional

filter for the influences of the environment on the agent’s goals (Castelfranchi

1995).

Luck & d’Inverno (1995) formally define autonomy of an agent by the ex-

istence of a ‘motivation’ of an agent. By motivation, the authors refer to

non-derivable top-level goals, guarded by internal inaccessible rules. That is,

autonomous agents evaluate their possible behavior not only regarding their

environment, but also regarding non-derived, static top-level goals (Luck &

d’Inverno 1995). Jennings (2000) and Wooldridge (2009) denote this ‘motiva-

tion’ by ‘design objectives’ (Jennings 2000, p. 280) and ‘delegated objectives’

(Wooldridge 2009, p. 21) respectively. Russell & Norvig (2003) characterize the

‘motivation’ of an agent in AI as an intended maximization of its performance

measure (Russell & Norvig 2003, pp. 35–36). In this work, the ‘motivation’

of an agent is denoted as an agent’s delegated objective function, i.e., it is a

CHAPTER 2. STATE OF THE ART 20

delegated objective which is measurable and constitutes the criterion of success

of the agent’s actions in accordance to the delegated objectives.

Jennings (2000) states that autonomy implies that agents have a dedicated,

persistent thread of control (Jennings 2000, p. 283).

Based on the literature analysis, the perception and action functions from

definition 2.1.2 can be substantiated. Let ai ∈ A be an agent, OF i ai’s del-

egated objective function, BELi ai’s beliefs, GOALi ai’s (operational) goals,

Σi ai’s set of possible actions and Ωi ai’s environment. Then, function per i :

Ωi×OF i → BELi interprets the perceptions received in accordance to the del-

egated objective function (i.e., relevance of perceptions). This interpretation

and filtering function for perceptions realizes the cognitive autonomy, as the

agent is autonomous in interpretation of the perceptions in accordance to its

delegated objective function.

goal i : BELi ×OF i ×GOALi → GOALi infers agent ai’s operational (sub-)

goals in accordance to the beliefs, delegated objective function, and existing

goals. Thus, this function implements the goal autonomy of agent ai.

act i : GOALi × OF i × Σi → Σi infers agent ai’s actions in accordance

to the goals, delegated objective function, and planned actions. Therefore, this

function realizes the executive autonomy of agent ai. However, the set of actions

Σi is necessarily limited due to (i) the computational model of ai and (ii) the

delegated objective function; i.e., it cannot be assumed that an agent is capable

of any imaginable action.

Finally, to be autonomous in the elaborated sense, an agent ai needs control

of its internal execution thread, i.e., a control thread CTi which manages the

internal execution of inference processes (e.g., execution order). In this work,

the control of this thread in combination with conceptual control of the infer-

ence processes is denoted as control autonomy. Figure 2.2 shows an agent, its

environment, and the different forms of autonomy elaborated in this section.

CHAPTER 2. STATE OF THE ART 21

cognitive autonomy

beliefs

environm
ent

effectors

sensors

goals

deligated
objective function

control subsystem

control thread

executive autonomy

control autonom
y

iBEL



i

:
i i i iper OF BEL  

go
al

 a
ut

on
om

y

:
i i i i iBEL OF GOAL GOALgoal   

iGOAL

:
i i i i iGOAL OFact    

i

iCT

iOF

Figure 2.2: Agent, environment, and different forms of autonomy.

2.1.1.1.4 Rationality Agents are rational, i.e.,

• agents choose the actions that are expected to maximize the value of their

delegated objective function (max(σi,1,...,σi,n)∈Σi
(E(OFi))), though the ra-

tionality is limited by computational resources, and therewith referred

to as bounded rationality or bounded optimality (Russell & Subramanian

1995, Russell & Norvig 2003).

Towards a definition of intelligence of agents, Russell & Norvig (2003) dis-

cuss the concept of rational agents – agents that do the right things. Moreover,

they identify rationality as a central concept for AI. With regard to agents,

rationality depends on performance measures, an agent’s knowledge about the

environment, an agent’s possible actions, and an agent’s perceptions received.

Thereby, performance measures define the criterion of success of an agent’s

actions, regarding the environment and perceptions received. Thus, rational

agents are maximizing their expected performance measures for any possible

combination of perceptions received (Russell & Norvig 2003, pp. 35–36).

The agency concept in this work adopts the rationality for autonomous

agents. An autonomous agent ai is optimizing the expected value of its dele-

gated objective function OFi by taking this function into account for inference

of beliefs from perceptions, goals from beliefs, and actions from goals.

However, perfect rationality – acting in a way to maximize the expected

utility in every instant – is a concept from theory which is in general unreal-

istic in practice; given that computational resources of agents are limited, the

CHAPTER 2. STATE OF THE ART 22

calculations for choosing appropriate actions is too time-consuming in most en-

vironments. The notion of rationality for an agent that eventually returns the

perfectly rational choice, potentially too late to be of any value, is referred to

as calculative rationality ; i.e., a calculative rational agent will eventually return

what would have been the optimal choice. The notion of calculative rational-

ity is mostly applied when designing logical or decision-theoretic agents. Here

the calculations of the optimal choice are not considered, but the optimality of

actions is focused on.

Similarly, perfect rationality is neglected for humans by Simon (1957) in his

principle of bounded rationality, as the capacity of the human mind is small

as compared to the size of real-world problems requiring objectively rational

behavior for their solution. This also applies for reasonable approximations of

this objective rationality (Simon 1957, p. 198). Simon characterizes bounded

rationality by deliberation just until an ‘acceptable’ (i.e., satisficing) solution is

found (Simon 1982). However, the acceptance criterion is not formally defined,

and satisficing is one of several alternatives to deal with bounded resources

(Russell & Norvig 2003, pp. 972–973).

In AI, the constrained rationality of agents, limited by computational re-

sources, is denoted as bounded optimality. A bounded optimal agent acts as

satisfactorily as possible with the computational resources available. Bounded

optimality specifies optimal programs, not optimal actions, since agent actions

are generated by programs (Russell & Subramanian 1995).

2.1.1.1.5 Deliberation, reactivity, and proactiveness Agents are ca-

pable of deliberation, reactive, and proactive behavior, i.e.,

• deliberation denotes the ability of agents to determine which state of the

world Ωi is desirable to be achieved, i.e., infer the goals GOALi for agent

ai;

• reactivity denotes the ability of agents to perceive the environment and

adopt their beliefs, goals, and actions to changes in it;

• proactiveness denotes the ability of agents to determine actions and sub-

goals to achieve current agent goals without external triggers (Wooldridge

& Jennings 1995, Wooldridge 1997).

The decision processes of agents which actions to perform in order to meet

its delegated objectives (i.e., maximize the expected value of their delegated

CHAPTER 2. STATE OF THE ART 23

objective functions) depend on the agents’ architectures, that is, software ar-

chitectures for decision-making systems embedded in environments (Wooldridge

2009). Thus, abstract agent architectures are briefly discussed in the following.

On an abstract architecture level, purely reactive agents and agents with

state can be distinguished. Purely reactive agents, also referred to as simple

reflex agents (Russell & Norvig 2003, pp. 46–48), decide what to do without a

consideration of the complete perception sequence, i.e., they react to the latest

perception only.

Agents with state have internal data structures in which they can track

the percepts received. This information can be utilized for decision making

(Wooldridge 2009, pp. 36–38). Russell & Norvig (2003) denote reactive agents

with state as model-based reflex agents. These agents use an internal state to

track changes in the environment which are not evident in the current percept

(Russell & Norvig 2003, pp. 44–56). However, since purely reactive agents

do not meet this work’s definition, the agents considered in this research are

explicitly not purely reactive.

In contrast to reactive agents, deliberative (i.e., deductive reasoning) agents

are built on the symbolic AI paradigm – the classical approach of building AI

systems. Thus, these agents have an explicitly represented, symbolic model of

the world (i.e., of the environment and the desired behavior). Decisions are

made, based on this model, via reasoning mechanisms. If the symbolic models

constitute logical formulae, the reasoning corresponds to logical deduction or

theorem proving (Wooldridge 2009, pp. 45–50).

Practical reasoning must be distinguished from logical reasoning and is di-

rected towards determining which actions to perform; it consists of two distinct

activities. First, it has to be determined which state of the world Ωi is desir-

able to be achieved, i.e., infer the goals GOALi for agent ai. This process is

referred to as deliberation. Second, it has to be determined how this state can

be achieved by performing appropriate actions, i.e., infer the actions σi ∈ Σi

for agent ai. This is referred to as means-end reasoning (Wooldridge 2009, pp.

65 ff.).

Reactive and deliberative agent architectures are not mutually exclusive.

Hybrid architectures exist which combine reactive and deliberative behavior in

a single architecture, integrating subsystems to deal with reactive and proac-

tive behavior (Wooldridge & Jennings 1995, pp. 134–138). There is a class of

architectures where these subsystems are organized in layers; at least one for

reactive and proactive behavior each. The interacting layers are characterized

by an either horizontal or vertical control and information flow. In a horizon-

CHAPTER 2. STATE OF THE ART 24

tal layering, each layer is able to receive perceptions and produce effects (i.e.,

suggestions of which actions to perform) independent of other layers. In con-

trast, a vertical layering results in the processing of inputs and the production

of outputs by at most one layer (Wooldridge 2009, pp. 92 ff.).

This work does not assume a specific organization of the agents’ architec-

tures subsystems in layers, though the agents considered in this thesis have a

hybrid architecture; i.e., they are capable of both reactive and proactive behav-

ior – discussed in detail in the following.

Wooldridge & Jennings (1995, p. 116) characterize reactivity of agents as

having the ability to perceive the environment and respond in a timely fashion

to changes in it. They define proactiveness of agents as being able to act without

external triggers on their own initiative (i.e., goal-driven).

Wooldridge (1997) describes proactiveness as being able to plan how to

achieve goals without external triggers, and, if necessary, to generate subsidiary

goals. In relation to the plans of achieving goals and active goals themselves,

reactivity constitutes the ability to not blindly executing plans or pursue goals.

In contrast, in the event of circumstances in the environment which conflict with

preconditions or invariants of active plans or goals, an agent should react to the

changed situation accordingly in time for the response to be useful (Wooldridge

1997, pp. 27–28).

The capability to determine actions and sub-goals to achieve current agent

goals is realized in function goali∀ai ∈ A. This goal inference is internally trig-

gered by the control thread of an agent. It is done independently of actual

changes in the environment – internal events (e.g., timers) can also initiate the

goal reasoning process. The reactivity as described by Wooldridge (1997) is

implemented by the feedback loop between actions, perceptions, beliefs, goals,

and updated actions. The timeliness of responses is out of scope of this work’s

model, since (i) it is domain dependent and (ii) timely responses to any change

in the environment for any imaginable application domain, objective function,

and set of goal is an assumption that is obviously both impossible to guaran-

tee and to be proven. This is also acknowledged in Wooldridge’s example for

reacting in sufficiently short time, and in general by stating that this is rather

a vision of agents than a hard requirement (Wooldridge 1997, p. 28). However,

rationality implies that an agent will only perform actions if they are expected

to increase the value of the delegated objective function. If actions are expected

to be performed too late to have positive effects on OFi, agent ai will not con-

sider these actions (acti will not return them); if the actions have already been

planned, the agent will not perform these actions, but react to the changed

CHAPTER 2. STATE OF THE ART 25

expected impact and dismiss the actions.

2.1.1.1.6 Social ability Agents have social ability, i.e.,

• agents have the capability of interacting with other agents via agent

communication languages (Genesereth & Ketchpel 1994, Wooldridge &

Jennings 1995);

• agent interactions are conceptualized on the knowledge level (Newell 1982),

i.e., they are conceived in semantic terms;

• agents have the ability to make run-time decisions about interactions

(Jennings 2000); and

• agents are able to coordinate joint and conflicting goals and actions with

other agents required for, e.g., cooperative problem solving or negotiation

(Wooldridge 1997, Castelfranchi 1998).

According to Wooldridge & Jennings (1995), agents have ‘social ability’: the

capability of interacting with other agents via agent communication languages

(Genesereth & Ketchpel 1994). Although the term ‘social’ is common in agent-

based computing to describe the ability of agents to communicate with others

(e.g., (Wooldridge & Jennings 1995, Wooldridge 1997, Jennings 2000)), it can

lead to misinterpretations of how ‘social’ agents are in comparison to human

societies. In addition, the term is defined differently in related literature. For

example, in the definition by Wooldridge & Jennings (1995), the capability

to interact with other agents (i.e., to communicate) is sufficient for the social

ability property. In contrast, Castelfranchi (1998) states that agents cannot be

considered ‘social’ just because they communicate. Agents are social because

they interfere with, depend on, and influence each other when they act in a

common environment (Castelfranchi 1998, p. 159). This includes coordination

of joint and conflicting goals and actions, i.e., cooperative pursuing of goals

and resolution of conflicts. Similarly, Wooldridge (1997) states further that

agents should have the ability to engage in ‘social activities’ with other agents

in order to achieve their goals. That is, to perform interactions with other

agents required for, e.g., cooperative problem solving or negotiation.

As Jennings (2000) points out, agent interactions are conceptualized on

the knowledge level (Newell 1982); they are conceived in semantic terms (e.g.,

which goals, when, by whom) in contrast to method invocations and function

calls which take place on a purely syntactic level. Further, since agents operate

in environments that they can only partly control and observe, agents need the

CHAPTER 2. STATE OF THE ART 26

ability to make run-time decisions about interactions in contrast to hard-wired

interactions in, for example, object-oriented programming.

Therefore, in this work, this capability of communicating with other agents

is denoted as the ability to interact with other agents in terms of asynchronous

communication. Contrarily, the understanding of social ability of agents goes

beyond communication. An agent is assumed to have social ability if and only

if (i) it is capable to interact (i.e., communicate) with other agents via agent

communication languages, (ii) interactions are conceptualized on the knowledge

level, (iii) decisions about interactions are made at run time, and (iv) joint and

conflicting goals and actions can be coordinated with other agents (Newell 1982,

Wooldridge & Jennings 1995, Wooldridge 1997, Castelfranchi 1998, Jennings

2000).

2.1.1.1.7 Agent learning Agents can potentially improve their perfor-

mance through learning, i.e.,

• learning agents can improve their expected performance for future actions

in accordance to the delegated objective function OF i by using percepts

received as experience in their reasoning cycle from perceptions to actions

(Mitchell 1997, Russell & Norvig 2003).

Learning of software systems, also referred to as machine learning, denotes

improving the system’s performance, indicated by a performance measure, with

experience (Mitchell 1997). For software agents, learning denotes the capability

of improving the agents’ abilities to act in the future by experience; by using

percepts received, learning agents can improve the expected performance in

accordance to the delegated objective function OF i. Thus, the reasoning cycle

from perceptions over beliefs and goals to actions is adapted to maximize the

expected performance. However, different forms of learning from the simple

memorization of experience to the creation of scientific theories exist (Russell

& Norvig 2003).

In this thesis, learning beyond memorization of perceptions by means of

their interpretation to beliefs is not considered in detail. Nevertheless, strategic

behavior of agents to gain individual performance is analyzed, based on the

game-theoretic framework.

2.1.1.2 Multiagent system

In section 2.1.1.1.2, properties of agent environments have been discussed from

a single-agent perspective. Properties only relevant for environments with mul-

tiple agents – multiagent environments – are discussed in this section. Such

CHAPTER 2. STATE OF THE ART 27

an environment is the basis for a multiagent system (MAS). The autonomous

agents situated in this environment constitute a multiagent system. Thus, a

MAS is a collection of autonomous agents, interacting through a communication

infrastructure, representing different interests of stakeholders (Wooldridge 2009,

p. 5).

According to Huhns & Stephens (1999), these environments may be open

or closed and may or may not contain more than one agent. However, the

authors identify these environments to be typically open and to contain a num-

ber of autonomous distributed agents. Similarly, it is assumed in this research

that multiagent environments are open and potentially contain multiple agents.

Further, the multiagent environment provides communication means to enable

interactions (Huhns & Stephens 1999, p. 81–82).

Openness of the multiagent environment is defined as having multiple loci of

control (Jennings 2000, p. 280). In open MAS, agents can in principle join and

leave at any time and are owned by various stakeholders with different objectives

(Huynh, Jennings & Shadbolt 2006, p. 120). That is, openness is character-

ized by the absence of a single controlling organization and no central designer

(Huhns & Stephens 1999, p. 82), by software representing interests of a diverse

range of stakeholders, and by constant change (Gasser 1991, Hewitt 1991).

Openness requires autonomy and delegated objectives for agents in MAS: To

represent the interests of their owner, agents have to receive respective ob-

jectives. To follow those different interests, agents must be autonomous from

other agents. Openness does not necessarily imply that agents cannot conclude

binding agreements on behalf of their owners. For example, in open real-world

electronic marketplaces, participants can freely join and leave the platform.

Concluded agreements are nevertheless valid and binding beyond platform par-

ticipation. This research assumes that agents can conclude binding agreements

as in cooperative game theory (Rasmusen 1989, Binmore 1992). Agent mobility,

however, is out of scope of this research.

Definition 2.1.3 (multiagent system). A multiagent system (MAS) is an

open system of multiple agents that are situated in a shared environment

that enables agent communication (Huhns & Stephens 1999, Jennings 2000,

Wooldridge 2009).

The agents in a MAS may have compatible goals (i.e., there’s a single global

goal) or individual conflicting objectives. The agents are required to interact

with one another to manage the dependencies that result from the shared en-

vironment. Thus, the key problem in MAS is the coordination of agents in a

shared environment (Bond & Gasser 1988, Jennings 1993). Multiagent coordi-

CHAPTER 2. STATE OF THE ART 28

nation is discussed in section 2.1.1.2.2.

The understanding of multiagent systems in this work is based on the fol-

lowing assumptions.

• MAS are assumed to be open, i.e., there are multiple loci of control

(Jennings 2000, p. 280). Openness is characterized by concurrent, asyn-

chronous software systems with decentralized control, representing inter-

ests of a diverse range of stakeholders (Bond & Gasser 1988, Gasser 1991,

Hewitt 1991).

• The agents in a MAS can conclude binding agreements (Rosenschein 1985,

p. 30), i.e., as in cooperative game theory (Rasmusen 1989, Binmore

1992). However, due to the agents’ autonomy, they are able to break

these agreements, though agents not fulfilling binding agreements may

have to pay a penalty fee.

• MAS and the agents in MAS are assumed to be persistent, i.e., start

and termination of MAS and agents are not considered. That is, the set

of agents of the MAS remains constant over the time relevant for the

investigations of this research. Agents joining and leaving the MAS at

run time are not considered.

• The mobility of agents is explicitly not considered, i.e., agents moving

from one execution environment (e.g., machine) to another.

2.1.1.2.1 Multiagent communication Intelligent agents often operate in

MAS to be able to work together productively in interconnected computer net-

works. Agent communication enables the agents to coordinate their actions in

order to reach goals of their own or their multiagent organization more effec-

tively or efficiently. The multiagent environment has to provide the computa-

tional infrastructure to enable multiagent interactions. Further, protocols are

required for communication and interactions of agents.

Communication protocols enable agents to communicate and to interpret

the messages exchanged. Therefore, communication protocols define the meth-

ods of interconnections as well as the syntax and semantics of the messages

transferred. Whereas the syntax refers to the actual message content, the se-

mantics also depend on the message type. In general, messages can either be

assertions or queries. However, most agent communication languages consider

more specific message types, based on the speech act theory (Singh 1993). To

understand the semantics of a message, i.e., what the symbols denote, a shared

ontology is required.

CHAPTER 2. STATE OF THE ART 29

Interaction protocols define a structured exchange of defined messages be-

tween agents, i.e., interaction protocols facilitate agent conversations (Huhns &

Stephens 1999, Wooldridge 2009).

Definition 2.1.4 (communication channel). A communication channel

CCij is a directed link between two agents – CCij = (ai, aj) ∈ CC – which allows

messages to be send from agent ai to aj (Wooldridge, Jennings & Kinny 2000).

Communication channels do not define when or what messages are sent be-

tween agents, but indicate that a message path exists, i.e., messages can be

send. The set of all communication channels of an agent defines its acquain-

tances. That is, all other agents of a MAS an agent is able to send messages to

(Wooldridge et al. 2000).

Definition 2.1.5 (agent acquaintances). An agent’s acquaintances ACQ i

consist of the set of agents to which the agent has communication channels

to, i.e., ACQ i = {aj : (ai, aj) ∈ CC} (Wooldridge et al. 2000).

2.1.1.2.2 Multiagent coordination There is a large body of research con-

cerning coordination, as the scope of coordination research is both fuzzy and

wide. Consequently, an interdisciplinary study of coordination research leads to

a generic definition of coordination: “Coordination is managing dependencies

between activities” (Malone & Crowston 1994, p. 90).

In DAI, coordination is regarded as a system property which facilitates ac-

tions of multiple agents in a shared environment, e.g., by providing means for

livelock and deadlock avoidance. Nevertheless, there is no generally accepted

definition or taxonomy of coordination in DAI. Huhns & Stephens (1999, p. 83)

state that among self-interested agents, coordination is performed by negotia-

tion, while non-antagonistic agents are coordinated by cooperation.

However, the term ‘cooperation’ is also often used in a broader sense, refer-

ring to distributed systems which have to interact to carry out their assigned

tasks, i.e., cooperation in its broader sense includes interactions of both benev-

olent and competitive agents (Wooldridge 2009, p. 151). In this research, co-

operation is regarded as coordination of non-antagonistic (benevolent) agents,

though coordination of antagonists does neither imply cooperation nor negotia-

tion, as it can also be performed by, e.g., legal proceedings (Bond & Gasser 1988,

p. 19).

Definition 2.1.6 (multiagent coordination). Multiagent coordination is

managing dependencies between agent actions in a multiagent system

(Malone & Crowston 1994, Huhns & Stephens 1999).

CHAPTER 2. STATE OF THE ART 30

2.1.2 Multiagent resource allocation

Resource allocation is a well-established field in multiagent research (Chevaleyre

et al. 2006). This section introduces basic concepts of multiagent research allo-

cation (MARA), i.e., game-theoretic concepts utilized for analyzing and design-

ing resource allocation mechanisms in MAS and the relationship of intelligent

agents as entities (i.e., players) acting in these systems along with coordination

concepts.

Decision theory (Raiffa 1968) and game theory (Rasmusen 1989, Binmore

1992) are closely related, and both have received adoption by multiagent re-

searchers for studying allocation problems. Decision theory addresses the max-

imization of the expected utility of decision makers under uncertainty. Game

theory concentrates on multiagent encounter, i.e., interactions of agents, utility

maximizing strategies in multiagent interactions, as well as the design of pro-

tocols or mechanisms to affect the behavior of rational, interacting agents to

lead to desired outcomes of agent interactions (Parsons & Wooldridge 2002).

Decision theory is also regarded as the theory of games against nature. Both

disciplines have strong relations to the work of von Neumann & Morgenstern

(1944) and share elementary concepts, e.g., individual preferences described by

utility.

Game theory is applied to multiagent systems in which multiple agents have

to reach agreements by negotiation and bargaining (Rosenschein & Zlotkin 1994,

Kraus 1997). In these systems, game theory provides means to analyze and

develop protocols (i.e., the ‘rules of encounter’ (Rosenschein & Zlotkin 1994))

for the negotiation interactions. A protocol can be regarded as a function which

defines valid actions by the participants based on the negotiation history. In

this context, mechanism design – also referred to as ‘reverse game theory’ –

denotes the design of protocols so that any negotiation outcome has desirable

properties (Parsons & Wooldridge 2002).

Definition 2.1.7 (multiagent resource allocation). Let A be a set of agents

and R be a set of resources, where Rj ⊆ R denotes the set of resources of agent

aj ∈ R. The distribution of rj ∈ Rj to ai ∈ A∀ai, aj ∈ A, i.e., the allocation of

rj to ai ⇔ x(rij) = 1, that is influenced by the agents, is denoted as multiagent

resource allocation (MARA) (Chevaleyre et al. 2006).

To apply game theory to the analysis and design of MARA, the assump-

tions of the applied concepts and methods from MAS and game theory have

to be compatible. In addition, particular assumptions are made, regarding the

application of MARA in software service networks (e.g., regarding the type of

CHAPTER 2. STATE OF THE ART 31

resources). Therefore, this work makes the following assumptions for MARA.

Agents in MAS are (i) rational and any rational agent possesses a (explicit

or implicit) utility function whose expected value the agent is trying to max-

imize (Russell & Norvig 2003, p. 51); (ii) agents in MAS can conclude bind-

ing agreements (Rosenschein 1985, p. 30), i.e., as in cooperative game theory

(Rasmusen 1989, Binmore 1992); (iii) agents’ resources required for the pro-

duction of services are regarded as being discrete, indivisible, non-shareable,

and static throughout the allocation process in single-unit and multi-unit set-

tings, depending on the substitutionality of resources for service production

(Chevaleyre et al. 2006, pp. 10–12); and (iv) the utilitarian social welfare is

utilized as a metric for allocative efficiency, since it is well suited to assess

the system performance in terms of the maximal average profit of negotiating

agents in electronic commerce transactions (Chevaleyre et al. 2006, p. 16). The

following sections discuss these assumptions in detail.

2.1.2.1 Agents, games, and strategies

In applications of game theory in multiagent research, the agents are the play-

ers in games. An agent’s (i.e., a player’s) type abstracts from goals, beliefs,

objective function, and control thread and determines the preference structure

of the agent. An agent’s strategy denotes the plan of actions of this agent for

the game (e.g., an agent’s bid in an auction). A strategy profile describes the

set of all agents’ strategies. The agents are assumed to be rational, i.e., agents

chose the strategy that maximizes their (expected) utility, using their available

information.

Definition 2.1.8 (agent type). Let ai ∈ A be an agent, θi denotes ai’s type

which determines ai’s preference structure.

Definition 2.1.9 (strategy). Let ai ∈ A be an agent, σi(θi) ∈ Σi denotes ai’s

strategy, i.e., ai’s plan of actions for the game, where Σi ⊆ Σ denotes the set

of all available strategies for agent ai.

Definition 2.1.10 (strategy profile). Let A = {a1, · · · , an} be the set of

agents. The vector of all agents’ strategies σ(θ) = (σ1(θ1), . . . , σn(θn)) is de-

noted as the strategy profile of the agents.

A game is denoted as being strategic if the strategy of at least one agent

has an impact on the strategy of at least one other agent. In contrast, strategic

independence is present if the agents’ decisions are independent of one another.

Game theory is applied to analyze strategic games (Rasmusen 1989, Binmore

1992).

CHAPTER 2. STATE OF THE ART 32

2.1.2.2 Types of resource

The nature of the resources themselves is a central property of resource alloca-

tion problems. While some resource properties directly refer to the resources,

others constitute characteristics of the allocation process. Resources can be

either continuous (e.g., liquids) or discrete (e.g., bottles). While continuous re-

sources are typically infinitely divisible as a matter of principle, the allocation

process may restrict the allocation to certain quantities, i.e., the continuous re-

source is discretized. Thus, the allocation mechanism greatly influences whether

a resource is divisible or indivisible.

Besides resource characteristics, the allocation mechanism may also influ-

ence if a resource is shareable or non-shareable; shareable resources can be al-

located to multiple agents at the same time. Further, resources can be consum-

able (e.g., fuel) and perishable (e.g., food). Non-consumable, non-perishable re-

sources, which do not change during the allocation process, are denoted as static

resources. Finally, single-unit or multi-unit resources can be distinguished. In

a multi-unit setting, a set of resources exists for which a common identifier

exists, i.e., single items of this set cannot be distinguished (e.g., multiple bot-

tles with the same content). In a single-unit setting, each of the resources to

be allocated can be identified using a unique identifier. Thus, any multi-unit

allocation problem can be transformed into a single-unit allocation problem

(Chevaleyre et al. 2006).

In this research, resources required for the production of services (i.e., hard-

ware and software) are regarded as being discrete and indivisible, since it is

assumed that computational resources are not practically infinitely divisible,

but are discretized for their allocation in SNs. Resources are non-shareable in

this setting, since the services produced using the allocated resources require

these resources as a whole. That is, while a CPU or memory can be shared

by multiple services in principle, the computing units allocated already consti-

tute arbitrary small portions of the physical resources and are thus assumed

not to be used simultaneously for the production of multiple services. The re-

sources in this research are assumed to be static, since their characteristics do

not change during the allocation process. Finally, this work considers multi-

unit resources if the resources are subsitutable between service providers, since

the single discretized computational units are non-distinguishable. In contrast,

if the resources are non-substitutable between service providers, the allocation

procedure is to be considered single-unit.

CHAPTER 2. STATE OF THE ART 33

2.1.2.3 Utility and preference representation

Agents in MAS are rational and any rational agent possesses a (explicit or

implicit) utility function whose expected value the agent is trying to maximize

(Russell & Norvig 2003, p. 51).

The individual satisfaction of different alternatives is expressed by agents’

preferences. In the context of resource allocation, these preferences refer to

the satisfaction of alternative allocations, i.e., the sets of possible allocations

of resources to an agent. An agent’s preferences over a set of alternatives is

denoted as the agent’s preference structure.

Preference structures can be represented by means of different mathematical

models; four types of preference structures can be distinguished: (i) cardinal,

(ii) ordinal, (iii) binary, and (iv) fuzzy preference structures. Cardinal prefer-

ence structures can be quantitative (i.e., numerical values are assigned to each

alternative) or qualitative (i.e., elements from an ordered scale are assigned to

each alternative). The assignment of values or elements to an alternative is

done by means of an agent’s utility function (Wooldridge 2009, pp. 223–226).

According to Russell & Norvig (2003), any rational agent possesses a (ex-

plicit or implicit) utility function whose expected value the agent is trying to

maximize (Russell & Norvig 2003, p. 51), i.e., utility functions are a prerequisite

for rationality of agents.

Since quantitative cardinal preference structure is most relevant for mul-

tiagent resource allocation, this work focuses on this structure. Quantitative

preferences allow for both an inter-agent comparison of utility as well as for an

expression of preference intensity. Thus, differences between two utility degrees

can be calculated, e.g., for monetary compensations. Formally, utility can be

defined as follows. Let

• A = {a1, · · · , an} be the set of agents,

• Ω = {ω1, · · · , ωm} be the set of world states, and

• U = {u1, · · · , un} be the set of utility functions of the agents.

The world state denote any ‘outcome’ that the agents have preferences over.

Then, agent ai ∈ A’s utility function can be defined as

ui : Ω→ CDui ∀ui ∈ U .

The co-domain CDui is typically a set of quantitative (numerical) values

(e.g., [0, 1], N, Q, R, etc.), though it can also be a set of totally ordered

CHAPTER 2. STATE OF THE ART 34

qualitative values (e.g., literals such as “good” and “very good”) (Chevaleyre

et al. 2006, Wooldridge 2009).

Let ω, ω′ ∈ Ω. A utility function defines a preference ordering �i with

ω �i ω′ ⇔ ui(ω) ≥ ui(ω′).

That is, agent ai prefers state ω at least as much as state ω′. For strict

preference this yields

ω �i ω′ ⇔ ui(ω) > ui(ω
′),

i.e., agent ai strictly prefers state ω over ω′ (Wooldridge 2009).

Definition 2.1.11 (utility function). Let A be the set of agents, Ω be the

set of world states, and U be the set of utility functions of the agents. ui :

Ω → CDui ∀ui ∈ U denotes the utility function of the agents that defines the

preference ordering of world states for every agent.

In MARA, the set of world states Ω typically denotes the allocation of

resources to agents. Let

R = {r1, · · · , rm}

be the set of resources. A resource allocation setting is represented by the triple

〈A,R,U〉. An agent’s utility function associates a value to every resource subset

(or bundle of resources), i.e.,

ui : P(R)→ CDui ∀ui ∈ U ,

where P(R) denotes the powerset of R and thus Ω = P(R). Then, an

allocation of resources is a mapping from A to P(R). This simple definition

over resource bundles assumes that the values that agents assign to resources are

independent of the allocation of other resources to agents. This is also denoted

as being free of allocation externalities (Chevaleyre et al. 2006, p. 13). In this

research, however, this assumption is too strict for the allocation of resources

for service production, respectively services provided to agents in SNs. Thus,

these assumptions will be relaxed in the remainder of the work.

2.1.2.3.1 Dominant strategies A dominant strategy is the best response

of an agent to all available strategies of the other agents.

Definition 2.1.12 (dominant strategy). Let ai ∈ A be an agent and σi(θi)

CHAPTER 2. STATE OF THE ART 35

ai’s strategy. σi(θi) is a dominant strategy if and only if

ui(σ1(θ1), . . . , σi(θi), . . . , σn(θn)) ≥ ui(σ1(θ1), . . . , σi(θ
′
i), . . . , σn(θn))

∀θ = (θ1, · · · , θn) ∈ Θ.

That is, independent of the other agents’ strategies, a dominant strategy will

maximize the utility of the agent playing this strategy. In most games, however,

there is no dominant strategy (Nisan, Roughgarden, Tardos & Vazirani 2007,

Wooldridge 2009).

2.1.2.3.2 Social choice A social choice function aggregates the preferences

of all agents into a social choice, i.e., a world state (or outcome).

Definition 2.1.13 (social choice). A social choice function f : Σ→ Ω selects

an outcome ω ∈ Ω from the strategy profile σ(θ) = (σ1(θ1), . . . , σn(θn)) with

(θ1, . . . , θn) ∈ Θ.

That is, the social choice function (also denoted as social choice rule) selects

a feasible world state for each possible combination of preferences and other

characteristics (Dasgupta, Hammond & Maskin 1979).

2.1.2.3.3 Pareto optimality A game’s outcome, selected by the social

choice function f , is pareto optimal (also referred to as pareto efficient) if there

is no other outcome that would improve one agent’s utility without decreasing

the utility of at least one other agent.

Definition 2.1.14 (pareto optimality). An outcome of the social choice

function f(σ(θ)) = ω is pareto optimal if and only if

∀ω′ /∈ f(σ(θ)), θ ∈ Θ, ui(ω
′) > ui(ω)⇒ ∃aj ∈ A : uj(ω

′) < uj(ω).

That is, no agent can gain utility without another agent losing utility.

2.1.2.3.4 Nash equilibrium A strategy profile is a Nash equilibrium (NE)

if no agent has an incentive to deviate from its strategy, given that the other

participating agents do not deviate (Nash 1950, Rasmusen 1989, Binmore 1992).

Definition 2.1.15 (Nash equilibrium). A strategy profile σ(θ) = (σ1(θ1, . . . ,

σn(θn)) with (θ1, . . . , θn) ∈ Θ is a NE if and only if

ui(σ1(θ1), . . . , σi(θi), . . . , σn(θn)) ≥ ui(σ1(θ1), . . . , σi(θ
′
i), . . . , σn(θn))

CHAPTER 2. STATE OF THE ART 36

∀ui ∈ U , ∀θ′i 6= θi.

That is, a set of strategies is a NE if and only if they are the best response

to each other. This type of NE is a pure strategy Nash equilibrium. However,

not every game has a pure strategy NE, and some games have more than one

pure strategy NE (Wooldridge 2009, pp. 230–233).

2.1.2.4 Social welfare

The social welfare denotes a preference aggregation over all participating agents,

i.e., a social welfare function produces the social preferences of the agent society,

taking the individual agents’ preferences (Wooldridge 2009, p. 254). It allows

for comparison of different mechanisms by comparing their respective outcomes

(Sandholm 1999, p. 202). Different notions of social welfare have been studied

in social choice theory and welfare economics (Sen 1970, Moulin 1988, Arrow,

Sen & Suzumura 2002).

For quantitative preference structures, the term utilitarian social welfare

denotes the sum of all agents’ utility for a given alternative, i.e., the utilitarian

social welfare for world state ω ∈ Ω, swu(ω), is defined as

swu(ω) =
∑
ai∈A

ui(ω).

To give another example, the egalitarian social welfare sweg is given by the

least utility, i.e., sweg(ω) = minai∈A ui(ω). Thus, sweg is defined by the utility

of the agent that is ‘worst off’. It is appropriate when a minimum amount of a

large number of agents has to be satisfied. In other words, it provides a certain

level of fairness.

Further notions of social welfare exist in literature which are suitable for

different objective functions. The Nash product is given by the product of

the individual utilities (swnp(ω) =
∏
ai∈A ui(ω)). It constitutes a compromise

between utilitarian and egalitarian social welfare as it favors both increases

in the sum of all agents’ utility and inequality-reducing redistributions. The

elitist social welfare is given by the largest utility – swel(ω) = maxai∈A ui(ω).

It can be useful in applications where a single agent is required to achieve its

goals (Chevaleyre et al. 2006, pp. 17–19). Further details along with further

notions of social welfare can be found in the research area of welfare economics

(Sen 1970, Moulin 1988, Arrow et al. 2002). In this research, the utilitarian

social welfare is utilized as it is well suited to assess the system performance in

terms of the maximal average profit of negotiating agents in electronic commerce

transactions. This definition of social welfare is most commonly used in the

CHAPTER 2. STATE OF THE ART 37

multiagent systems research area (Chevaleyre et al. 2006, p. 16). Thus, this

research sets sw := swu.

Definition 2.1.16 (social welfare). Let A be the set of agents, Ω be the

set of world states, and U be the set of utility functions of the agents. The

social welfare swu(ω) =
∑

ai∈A ui(ω) denotes a preference aggregation over all

participating agents.

2.1.2.5 Allocation procedures

Allocation procedures can either be distributed or centralized. In centralized

allocation mechanisms such as combinatorial auctions (Cramton, Shoham &

Steinberg 2006), the allocation is determined by a central entity. In contrast,

the allocation result of distributed mechanisms emerges from multiple, local

allocation steps. In multiagent resource allocation, the following three issues

are of major importance (Chevaleyre et al. 2006, p. 19):

• Protocols address ontological as well as communication issues. That is,

protocols define which deals are possible and which messages agents have

to exchange in order to establish an agreement.

• Strategies have to be designed to allow agents to maximize their (ex-

pected) utility for a given protocol. Strategies are also closely related to

protocols; protocols should incentivize agents to adopt a certain behavior

(mechanism design).

• Algorithms comprise both the computational problem of winner determi-

nation (e.g., in auctions) as well as computing the best response to certain

messages in a protocol (i.e., proposal messages). These algorithms are also

closely related to the respective protocols and strategies, as finding op-

timal allocations in service networks is often computationally infeasible

(Bo & Lesser 2010).

For the design of an allocation mechanism, the protocol constitutes the first

building block. For the protocol to be developed, the most fundamental design

decision comprises the distribution of the allocation mechanism, i.e., whether

a centralized or distributed design is adopted. The corresponding agent strate-

gies are most commonly analyzed based on game theory. The convergence

property of an allocation framework corresponds to the question if for mutually

beneficially deals, the allocation converges to an optimal allocation; this opti-

mality can constitute the maximal utilitarian social welfare or pareto optimality

(Endriss, Maudet, Sadri & Toni 2003, Chevaleyre et al. 2006).

CHAPTER 2. STATE OF THE ART 38

2.1.2.5.1 Allocation mechanism An allocation mechanism defines the

strategies available to each agent (i.e., the strategy space) and the function

to determine the outcome of the game, based on the strategy profile (Parkes

2001, Nisan et al. 2007).

Definition 2.1.17 (allocation mechanism). A mechanism M = (Σ1, . . . ,

Σn,m(·)) defines the sets of possible strategies Σi ⊆ Σ∀ ai ∈ A and an outcome

function m : Σ→ Ω that maps strategy profiles to outcomes (Parkes 2001, Nisan

et al. 2007).

It is impossible to design a mechanism that is allocatively efficient, budget

balanced, and incentive compatible, at least in settings with quasi-linear prefer-

ences (Green & Laffont 1977, Walker 1980, Myerson & Satterthwaite 1983, Hur-

wicz & Walker 1990).

2.1.2.5.2 Allocative efficiency An allocation mechanism is denoted as

being allocatively efficient if it maximizes the social welfare for all strategy

profiles.

Definition 2.1.18 (allocative efficiency). The allocation of mechanismM =

(Σ1, . . . ,Σn,m(·)) with m(σ(θ)) = ω is allocatively efficient if and only if

sw(m(σ(θ̂))) = sw(ω) ≥ sw(ω′)∀σ(θ̂) ∈ (Σ1, . . . ,Σn), ω′ ∈ Ω,

where θ̂ denotes the types reported by the agents to the mechanism. These

types do not necessarily represent the true types (Parkes 2001, Nisan et al.

2007).

2.1.2.5.3 Incentive compatibility In an incentive compatible, also de-

noted as strategy-proof or truthful, mechanism it is rational for the agents to

report their true types (preferences), i.e., it is not rational for the agents to ‘lie’

about their preferences.

Definition 2.1.19 (incentive compatibility). Let θ = (θ1, . . . , θn) be the

true agent types and let θ̂i be the type reported by agent ai ∈ A. A mechanism

M is incentive compatible if and only if

ui(m(θi, θ−i)) ≥ ui(m(θ̂i, θ−i))∀ θ̂i ∈ Θi, ai ∈ A.

2.1.2.5.4 Individual rationality A mechanism is (ex-post) individually

rational if participating agents always receive non-negative utility, i.e., no agent

is worse-off by participating.

CHAPTER 2. STATE OF THE ART 39

Definition 2.1.20 (individual rationality). Let ui(m(θ̂i, θ̂−i)) denote ai’s

utility if agent ai ∈ A participates, ūi(m(θ̂i, θ̂−i)) the utility if ai does not

participate. A mechanism M is individually rational if and only if

ui(m(θ̂i, θ̂−i)) ≥ ūi(m(θ̂i, θ̂−i))∀ ai ∈ A.

However, ex-post individual rationality always requires that concrete out-

comes of participating agents produce non-negative utility. Therefore, the con-

cept of ex-ante individual rationality is introduced that refers to expected util-

ities.

Definition 2.1.21 (ex-ante individual rationality). Let E(ui(m(θ̂i, θ̂−i)))

denote ai’s expected utility if agent ai ∈ A participates, E(ūi(m(θ̂i, θ̂−i)))

denote the expected utility if ai does not participate. A mechanism M is ex-

ante individually rational if and only if

E(ui(m(θ̂i, θ̂−i))) ≥ E(ūi(m(θ̂i, θ̂−i)))∀ ai ∈ A.

It is important to note that for ex-ante individual rationality, distributional

information about the other agents’ preferences θ−i has to be known (Parkes

2001, Nisan et al. 2007).

2.1.2.5.5 Budget balance For quasi-linear preferences of the agents, the

outcome function m(·) of mechanism M can be decomposed into an allocation

function x(θ̂) ∈ Ω and a payment function pi(θ̂) that determines the payments

made or received by the agents.

Definition 2.1.22 (budget balance). Let M be a mechanism and m(θ̂) =

(x(θ̂), p1(θ̂), . . . , pn(θ̂)). M is budget balanced if and only if

∑
ai∈A

pi(θ̂) = 0.

That is, there are no net money transfers into or out of the allocation system

(Parkes 2001, Nisan et al. 2007).

Definition 2.1.23 (weak budget balance). LetM be a mechanism and m(θ̂)

= (x(θ̂), p1(θ̂), . . . , pn(θ̂)). M is weakly budget balanced if and only if

∑
ai∈A

pi(θ̂) ≥ 0.

CHAPTER 2. STATE OF THE ART 40

Thus, for weak budget balance, there can be net payments by the agents to

the mechanism, but not vice versa (Parkes 2001, Nisan et al. 2007).

2.1.2.5.6 Allocation complexity The complexity of an allocation frame-

work comprises (i) the computational complexity as well as (ii) the commu-

nication complexity. Computational complexity theory is concerned with the

question how many computational resources are required to solve a given prob-

lem. Therefore, it provides a classification of problems of different complexity

(Garey & Johnson 1979, Papadimitriou 1994).

Communication complexity is concerned with (i) the number of required

agreements (or deals) to arrive at an optimal allocation outcome, (ii) the num-

ber of dialogue moves required to establish an agreement, (iii) the expressiveness

of the communication language required, and (iv) the complexity of individual

agent’s reasoning tasks deciding on dialogue moves (Endriss & Maudet 2005,

p. 96). The complexity of agents’ reasoning for a given allocation mecha-

nism strongly influences the computational complexity, since this reasoning is

required to arrive at an allocation outcome.

2.1.3 Services & service networks

This section introduces fundamental concepts of services, especially electronic

and software services, and respective service parameters. In addition, networks

of electronic services in service-oriented architectures are described. Finally,

service level agreements – formal statements of the obligations and guarantees

in a business relationship regarding services – are discussed.

2.1.3.1 Service

The concepts of business services has been studied in research literature over

the last decades, however, no commonly accepted definition exists (Hill 1977,

Hill 1999, Gadrey 2000). This work is concerned with electronic services –

services provided over electronic networks (Rust & Kannan 2002). Moreover,

the ‘service’ concept of this research is limited to software services (Booth,

Haas, McCabe, Newcomer, Champion, Ferris & Orchard 2004, Papazoglou et al.

2008).

Definition 2.1.24 (service). A service sij ∈ S is a software activity performed

by a service provider aj ∈ ASP over electronic networks for a customer ai ∈ A,

based on an agreement x(sij), with well-defined service properties (Hill 1977,

Hill 1999, Gadrey 2000, Rust & Kannan 2002, Booth et al. 2004, Papazoglou

et al. 2008).

CHAPTER 2. STATE OF THE ART 41

The definition of services is based on the assumptions that (i) services

are software activities by service providers for customers over electronic net-

works (Hill 1977, Hill 1999, Gadrey 2000, Christensen, Curbera, Meredith &

Weerawarana 2001, Rust & Kannan 2002); (ii) services have well-defined in-

puts, outputs, preconditions, and effects (Booth et al. 2004, Martin, Burstein,

Hobbs, Lassila, McDermott, McIlraith, Narayanan, Paolucci, Parsia, Payne,

Sirin, Srinivasan & Sycara 2004); (iii) services provide reuse and interoperabil-

ity of software, potentially under distributed ownership and control (Papazoglou

2003); and (iv) services are provided based on explicit formal statements of obli-

gations and guarantees, regarding certain service properties (Verma 1999). The

following sections discuss these assumptions in detail.

2.1.3.1.1 Goods, services, and tangibility Tangibility has traditionally

defined the distinction between goods and services: goods are tangible (mate-

rial) and services are intangible (immaterial). However, intangible goods such

as information goods exist in practice and differ from services. Thus, a distinc-

tion of tangibles, intangibles, and services is evident. The differences of goods

and services are especially notable in the production output. Good production

outputs are entities of economic value and ownership of goods can be estab-

lished as well as traded. Further, goods can be consumed independently of the

time and location of their production. These characteristics of goods are also

inherent in intangible goods (e.g., information and software) (Hill 1999). In

contrast, services cannot be produced without the agreement and participation

of the service customer and service production outputs do not constitute en-

tities that exist independently of service provider and customer, i.e., services

are not separable from the service customer (Hill 1977). A detailed analysis of

the roles of customers in service production can be found in (Bitner, Faranda,

Hubbert & Zeithaml 1997). However, the integration of the customer in value

creation cannot be applied as a criterion to differentiate goods and services.

Recent production strategies for goods consider an integration of the customer

early in the production process to facilitate advanced flexibility in addressing

individual customer requirements, i.e., mass customization (Piller, Moeslein &

Stotko 2004).

There is also criticism regarding this characterization of service production

outputs. Gadrey (2000) states that outputs of activities are material if the

activities transform the state of reality and if this transformation is observable.

Consequently, all service activities have observable material outputs (Gadrey

2000, p. 372). In addition, the identity of entities, which is inherent in Hill’s

analysis, is firmly rooted in social conventions. In other conventions it could

CHAPTER 2. STATE OF THE ART 42

be considered that trading and altering (e.g., repairing) activities on an entity

change its identity (Gadrey 2000, pp. 379–380).

Since no generally accepted definition of the service concept exists, especially

across different research and application areas, this section characterizes the

service concept based on commonly accepted attributes. Despite the differences,

Hill (1977, 1999) and Gadrey (2000) determine common characteristics of the

service concept:

A service is an activity that is performed by a service provider for a service

consumer (customer) based on an agreement, results in a change of condition

of an entity, and has an output that is not separable from the altered entity

(Hill 1977, Hill 1999, Gadrey 2000).

The discussion shows that the service concept differs from the concepts of

tangible and intangible goods in several attributes. For example, services are

no entities and thus cannot be stocked (Hill 1999, p. 441). Consequently, the

production of services significantly differs from the production of goods. In

addition, electronic and software services can be further characterized, which is

presented in the following sections.

2.1.3.1.2 Electronic, software, and Web services This research as-

sumes services to be software activities by service providers for customers via

electronic networks (Hill 1977, Hill 1999, Gadrey 2000, Christensen et al. 2001,

Rust & Kannan 2002). These services have well-defined inputs, outputs, pre-

conditions, and effects (Booth et al. 2004, Martin et al. 2004).

Information and communication technologies and the internet have signif-

icant impact on the service economy. There is an emerging paradigm shift

from the electronic commerce with physical goods to electronic services (Rust

& Kannan 2003). This paradigm defines electronic services as services provided

over electronic networks (Rust & Kannan 2002). In contrast to the general

service concept, electronic services show specific characteristics. Since these

services are provided over networks, the consumption of the services is virtu-

ally independent of the location of their production and their activities cannot

directly change conditions of physical entities. Although most findings apply to

the general service concept, this work focuses on a subset of electronic services,

namely software services, in the following. That is, the services provided by

SPs over networks constitute remote execution of software, with well-defined

inputs, outputs, preconditions, and effects (Martin et al. 2004) – Web services.

The concept of a Web service (WS) generally refers to functionality pro-

vided as a software service which is accessible over the Web in a standardized

manner. The concept is independent of concrete realizations and provides a con-

CHAPTER 2. STATE OF THE ART 43

cretization of objectives such as reuse and interoperability in distributed appli-

cations. It reduces heterogeneity by standardization, i.e., it provides platform-

independent means for distributed interoperability.

There is a significant number of commonly accepted standards around WSs

provided by the World Wide Web Consortium (W3C), commonly referred to

as WS-*. The W3C defines WSs as software systems which support machine-

to-machine interactions over networks. A W3C WS’s interface is described in

machine-readable form, specifically WSDL (Christensen et al. 2001). Interac-

tions with WSs are performed using SOAP messages (Gudgin, Hadley, Mendel-

sohn, Moreau, Nielsen, Karmarkar & Lafon 2007), HTTP, XML serialization,

and other WS-* standards (Booth et al. 2004).

2.1.3.1.3 Service-oriented computing and service-oriented architec-

ture Services are assumed to provide reuse and interoperability of software,

potentially under distributed ownership and control (Papazoglou 2003).

Service-oriented computing (SOC) is a paradigm that utilizes software ser-

vices as building blocks for applications. It is regarded as a derivative of object

and component orientation for distributed computing. The service-oriented

architecture (SOA), which aims at reuse and interoperability of software ser-

vices, is itself a building block of SOC. However, in existing literature, the term

SOA is often used synonymously with SOC. This research regards SOA as the

architectural basis of SOC (Papazoglou 2003).

SOA facilitates the utilization and organization of capabilities, potentially

under distributed ownership and control; it has gained significant relevance for

software development in the last decade. SOA-based technology provides means

for SOC developments. The OASIS Reference Model for Service-Oriented Ar-

chitecture (MacKenzie, Laskey, McCabe, Brown & Metz 2006) defines basic

SOA principles and vocabulary for a common understanding of SOA. Key con-

cepts of the SOA reference model include visability, realized by means of service

descriptions, interaction, mediated by message exchange, and effects, denoting

real-world changes as a result of capability utilizations. Further, SOA provides

an abstraction for service utilization, i.e., realization details (e.g., implementa-

tion, deployment, etc.) are hidden from the service customer. The abstracted

concepts are independent of concrete specifications and technologies used for

their realization. Although SOA is most commonly implemented using Web

services, it is technology-independent and can be implemented by other means

and technologies (MacKenzie et al. 2006).

Grid computing has emerged in the mid 1990s from conventional distributed

computing with a focus on large-scale resource sharing. Grid computing and re-

CHAPTER 2. STATE OF THE ART 44

lated technologies have since then changed from distributed high performance

computing (HPC) to a standards-base, flexible coordinated resource sharing

over organizational boundaries (Foster, Kesselman & Tuecke 2001). The Open

Grid Services Architecture (OGSA) (Foster, Kishimoto, Savva, Berry, Djaoui,

Grimshaw, Horn, Maciel, Siebenlist, Subramaniam, Treadwell & Reich 2006)

provides a high-level framework for service-oriented grid architecture, mostly

based on Web service standards. The building blocks are means for homoge-

neous access to heterogeneous distributed resources in the grid fabric, as well as

a SOA providing higher-level functionality. This functionality of the OGSA is

outlined in the specification’s capability descriptions. Execution Management

Services (EMS) constitute the most relevant OGSA capability for resource allo-

cation and scheduling. They include: (i) service containers which encapsulate

running entities; (ii) Job Managers (JMs) which are high-level services, encap-

sulating execution of sets of jobs; and selection services which consist of (iii)

execution planning services (EPS), (iv) candidate set generators (CSGs), and

(v) reservation services. Information services make metadata of resources avail-

able. Data services provide management, access to and update capabilities for

data resources. In addition, they are concerned with transfers of data between

resources.

During the last years, Cloud computing has emerged, operationalizing many

of Grid computing’s promises while differing in detail. For example, access

to existing Cloud computing services is mostly based on WS standards (i.e.,

WS-*), though the actual functionality commonly does not adhere to any stan-

dard. There is a large variety of definitions for the term Cloud computing

and the current hype is turning it to a widely used term referring to almost

any service related to outsourced hosting and computing resources (Vaquero,

Rodero-Merino, Caceres & Lindner 2009, p. 50). Vaquero et al. (2009) analyze

more than 20 definitions for Cloud computing to arrive at a comprehensive but

general definition:

“Clouds are a large pool of easily usable and accessible virtual-

ized resources (such as hardware, development platforms and/or

services). These resources can be dynamically reconfigured to ad-

just to a variable load (scale), allowing also for an optimum resource

utilization. This pool of resources is typically exploited by a pay-

per-use model in which guarantees are offered by the Infrastructure

Provider by means of customized SLAs.” (Vaquero et al. 2009, p.

51)

Thus, scalability, pay-per-use utility model and virtualization constitute the

CHAPTER 2. STATE OF THE ART 45

essential features to arrive at a minimal definition.

Besides the basic definition, there exist different levels of abstractions to

group certain services in Cloud computing. The infrastructure as a service

(IaaS) paradigm describes the resource-near provision of virtualized comput-

ing resources over a network, i.e., IaaS provides remote access to virtualized

computing infrastructure. This infrastructure can be utilized by other SPs to

provide their services in the Cloud ecosystem.

In contrast, platform as a service (PaaS) refers to a higher abstraction layer

in which software platforms are provided to customers instead of virtualized

hardware resources. The software as a service (SaaS) paradigm constitutes an

approach where applications directly run on remote servers instead of being

executed locally on the client computer (Vaquero et al. 2009).

2.1.3.1.4 Service properties Service properties are commonly categorized

in functional and non-functional properties. Functional properties describe

what a service does and non-functional properties describe how a services does

it (O’Sullivan, Edmond & ter Hofstede 2002). However, the distinction of

functional and non-functional service properties is often ambiguous and dif-

fers across application domains. This section provides an overview of relevant

concepts and references with a focus on non-functional properties of electronic

services.

Functional properties describe what a service does, i.e., capabilities of a

service (Oaks, ter Hofstede & Edmond 2003). This includes (i) actions that

a service performs, (ii) valid inputs of a service, (iii) conditions of a service’s

operations in term of preconditions and postconditions, as well as (iv) outputs

that a service produces (also referred to as effects of a service). Functional

service properties are defined in syntactic or semantic service specifications

and are fundamental to discover and select appropriate services. However, a

service description is only complete if non-functional properties are considered

(O’Sullivan et al. 2002, p. 118). For example, a service may provide the required

functionality while it cannot fulfill timely constraints of service provision, i.e.,

insufficient availability or execution time.

Non-functional service properties can be regarded as descriptions of limi-

tations of the functionality of a service in terms of how a service provides a

capability (O’Sullivan et al. 2002). Non-functional properties describe qual-

itative and financial characteristics of a service (Menasce 2004). Qualitative

service characteristics, referred to as quality of service (QoS) properties, orig-

inate from the telecommunication and network domains, though extensive re-

search work has been conducted in the service domain in the last decade (e.g.,

CHAPTER 2. STATE OF THE ART 46

(O’Sullivan et al. 2002, Cardoso, Sheth, Miller, Arnold & Kochut 2004, Jaeger,

Rojec-Goldmann & Mühl 2004, Jaeger & Ladner 2006)). The QoS profile of a

service is described as a set of quantifiable, measurable service parameters that

refer to qualitative characteristics. These parameters are commonly denoted as

QoS parameters. In this context, the term service level refers to QoS parameter

values. Financial characteristics include cost of usage as well as rewards and

penalties if defined service levels are met or missed. Further details on service

level, reward, and penalty definitions as part of an agreement between service

provider and customer are given in the following.

2.1.3.1.5 Service level agreement Services are assumed to be provided

based on explicit formal statements of obligations and guarantees, regarding

certain service properties (Verma 1999).

An explicit formal statement of the obligations and guarantees regarding

services in a business relationship is referred to as a service level agreement

(SLA) (Verma 1999). Thus, a SLA provides the operational definition of a

service as part of a contract between a service provider and a service customer

in a SN. In real-world SNs, contractual agreements exist along the flows of

services. For individual service requests, agreements have to be established.

These agreements depend either directly or indirectly on other agreements along

the SN (e.g., for procurement or outsourcing). SOA-related SLA approaches

aim at providing an abstraction of the service while facilitating measurement

and monitoring of service properties agreed upon (Czajkowski et al. 2004, pp.

264–265).

Current technical SLA approaches (e.g., WS-Agreement (Andrieux, Cza-

jkowski, Dan, Keahey, Ludwig, Nakata, Pruyne, Rofrano, Tuecke & Xu 2007))

are limited to independent bipartite (1:1) relationships. Thus, current SLA

management is not capable to represent the full complexity of SLAs existing in

real-world service industries. The reason is that it originates from high perfor-

mance computing (HPC), which concerns purely technical attributes of limited

expressiveness which can be directly forwarded and broken-down to the lower

level stages in a 1:1 manner. Multi-tier real-world business relationships can be

mapped to sets of technical SLAs. The problem is, however, that current SLA

approaches do not consider the dependencies between subsets of SLAs in SNs

which are essential for individualization; i.e., there is a mismatch between the

technical representation of SLAs in SOA and the required coverage of real-world

business agreements, for which dependencies exist (e.g., hierarchical).

CHAPTER 2. STATE OF THE ART 47

2.1.3.2 Service network

In this research, networks of software services in which composite services are

offered by service providers (SPs), are denoted as service networks (SNs). The

provision of these software services in SNs requires non-consumable resources

(i.e., hardware and software) that are limited and possessed by SPs. The SPs’

resources contribute to the production of service applications in SNs by means

of service provision and composition. SNs are characterized by requiring mul-

tiple SPs’ resources for the provision of composite services to customers. For

the supply of software services to customers, software SPs have to allocate

their scarce computational resources of a certain quality to customer requests,

i.e., reserve respective resources for software services on the contracted service

level. In return, SPs receive monetary compensations for providing services to

customers.

The SPs’ resources’ contribution is carried out by production; i.e., the com-

bination of production (input) factors and their transformation to services (out-

put factors). Service flows are directed and primarily carried out from upstream

agents down to the customer agent, which does itself not show primary value

flows to other agents (Kirn 2008). The number of service providers can be

different on each tier. Figure 2.3 shows a generic SN model: nodes represent

agents, edges represent potential provision of services.

customersservice providers

a0a2a4an-1

an a3 a1a5

Figure 2.3: Generic service network model.

Definition 2.1.25 (service network). A service network (SN) is a network

of software services in which composite services sij ∈ S are offered by service

providers aj ∈ ASP to customers ai ∈ AC based on agreements x(sij), where

composite services sij aggregate multiple software services {sjk : sjk ∈ S, ak ∈
ASP} into software application services (Papazoglou et al. 2008, Blau et al.

2009).

CHAPTER 2. STATE OF THE ART 48

The definition of SNs is based on the assumptions that (i) in SNs, com-

posite software services aggregate multiple software services into software ap-

plication services (service composition) based on workflows (McIlraith, Son &

Zeng 2001, Papazoglou et al. 2008); (ii) service parameter aggregations for com-

posite services depend on parameter types, as well as workflow patterns (van

der Aalst, ter Hofstede, Kiepuszewski & Barros 2003, Jaeger et al. 2004, Jaeger

& Ladner 2006, Karaenke et al. 2013); and (iii) supply and demand in SNs are

allocated by service auctions (Smith 1989). The following sections discuss these

assumptions in detail.

2.1.3.2.1 Composite service In SNs, composite software services aggre-

gate multiple software services into software application services (service com-

position) based on workflows (McIlraith et al. 2001, Papazoglou et al. 2008).

Services are categorized in constituent (elementary, simple, atomic, prim-

itive) and composite (complex) services (McIlraith et al. 2001, Papazoglou

et al. 2008). Elementary services provide their functionality without requir-

ing other services as input factors (e.g., database or sensor services). In con-

trast, composite services rely on multiple (elementary or composite) further

services for their execution. Complex services often include functionality for

interactions or conversions between composed services and the customer, en-

abling customers to make decisions (McIlraith et al. 2001). For example, a

composite service can be a composition of elementary services for storage and

computational resources.

The composition of multiple services to provide a composite service to a

customer considers SNs as a solution space to fulfill the customer’s demand.

Composite services constitute collections of services that are governed under a

shared workflow (directed acyclic graph, DAG). Figure 2.4 shows an example

workflow, which contains six tasks (tk1 − tk6) and four gateways (represented

by diamond shapes).

tk1

tk2

tk4

tk3

tk5

tk6

ANDsplit ANDjoin

ORsplit ORjoin

Figure 2.4: Example workflow.

CHAPTER 2. STATE OF THE ART 49

To instantiate the workflow for different services, the tasks are separated

from actual services by means of a binding, which is part of the succeeding

definition. Let

• TK be a finite, non-empty set of tasks tk ∈ TK ;

• GW be a finite, non-empty set of gateways gw ∈ GW ;

• ARC be a set of arcs connecting tasks with tasks, tasks with gateways,

and gateways with gateways, thus ARC ⊆ (TK × TK) ∪ (TK ×GW) ∪
(GW ×GW);

• cwg ∈ CWG be a function which assigns a type to each gateway;

cwg : GW → {XORsplit, XORjoin, ANDsplit, ANDjoin, ORsplit,

ORjoin, DISCjoin, Loop};

• bng ∈ BNG be a binding function, which assigns a service s ∈ S to each

task, i.e., bng : TK → S.

Then a workflow can be defined as follows.

Definition 2.1.26 (workflow). A workflow wf ∈ WF is a directed acyclic

graph with WF = (TK ,GW ,ARC ,CWG).

Further, a composite service – the result of a service composition – can be

defined as follows.

Definition 2.1.27 (composite service). A composite service cs ∈ CW

is a tuple, cs = (wf , bng) ∈ CW = (WF ,BNG), of workflow wf ∈ WF and

binding function bng ∈ BNG.

The model is restricted to well-formed (structured) workflows, where W has

exactly one start and end node and is weakly connected. The correct usage of

the different gateway types, thus how to connect nodes by arcs, is given as

follows.

• Each task tk ∈ TK has exactly one input arc and one output arc, i.e.,

| • tk | = |tk • | = 1 ∀tk ∈ TK .

• Each gateway gw ∈ GW with cwg(gw) ∈ {XORsplit, ANDsplit, ORsplit}
has exactly one input arc and at least two output arcs, i.e., | • gw | = 1

and |gw • | ≥ 2.

• Each gateway gw ∈ GW with cwg(gw) ∈ {XORjoin,ANDjoin,ORjoin}
has at least two input arcs and exactly one output arc, i.e., | • gw | ≥ 2

and |gw • | = 1.

CHAPTER 2. STATE OF THE ART 50

• Each gateway gw ∈ GW with cwg(gw) = Loop has one input arc and

two output arcs, i.e., | • gw | = 1 and |gw • | = 2. Let arc1 = (n1, gw) be

the input arc, then one output arc arc2 connects back to node n1 with

arc2 = (gw , n1), and one output arc arc3 connects to another node with

arc3 = (gw , n2) and n1 6= n2.

This model is not bound to a particular workflow language such as the Busi-

ness Process Model and Notation (BPMN) (OMG 2011a) or the Web Services

Business Process Execution Language (WS-BPEL) (OASIS 2007), but conveys

common constructs of workflow languages (van der Aalst et al. 2003, Jaeger

et al. 2004, Jaeger & Ladner 2006, Karaenke et al. 2013).

2.1.3.2.2 Service parameter aggregation The service parameter aggre-

gations for composite services depend on parameter types, as well as workflow

patterns (van der Aalst et al. 2003, Jaeger et al. 2004, Jaeger & Ladner 2006,

Karaenke et al. 2013).

Composite WSs play an important role in SOC. They allow meeting in-

dividual service customer demand that cannot be fulfilled by a single service.

Business processes are realized by means of composing constituent services un-

der a shared workflow (Dustdar 2004). Therefore, composite services must be

configured so that they both meet the customer demand and preserve efficiency

on the service provider side. In the past years, a significant number of com-

position approaches has emerged. An essential subtask of service composition

is determining the QoS of composite services. This task is also called QoS

aggregation (Jaeger et al. 2004) – aggregation of non-functional properties.

The QoS of a composite WS provided in a SN depends on two determinants:

the QoS parameters and execution order of constituent services, defined in a

workflow. QoS parameters commonly do not adhere to any standards regarding

their number, naming, data types, and conceptualization. QoS aggregation has

been subject of much research in SOC (O’Sullivan et al. 2002).

The basic approach for QoS aggregation is standardization on the syntac-

tical level, i.e., providing standardized formats for representing parameters in

service descriptions and SLAs. Harmonization on the semantic level addresses

the problem of QoS parameter heterogeneity by defining a set of QoS param-

eters. In the Semantic Web services research field, QoS ontologies have been

proposed to specify the conceptualization of QoS parameters formally (e.g.,

(Dobson, Lock & Sommerville 2005, Muñoz Frutos, Kotsiopoulos, Vaquero &

Merino 2009)). These ontologies contain taxonomies of QoS parameters and

define attributes such as application domains and units of measurement. How-

CHAPTER 2. STATE OF THE ART 51

ever, beyond identifying similar parameters, these ontologies do not provide

information that could guide the QoS aggregation.

For QoS aggregation, one class of existing work proposes to state aggre-

gation functions explicitly (e.g. (ul Haq, Huqqani & Schikuta 2009)). The

drawback of this approach is that service providers need to determine the func-

tion for all potential parameters. Another class of approaches abstracts from

single parameters and identifies sets of several parameters for which aggregation

functions are provided, assuming that the parameter sets are extensible with-

out fundamentally altering the overall approach (e.g., (Zeng, Benatallah, Ngu,

Dumas, Kalagnanam & Chang 2004, Cardoso et al. 2004)). It is an important

insight to abstract from diverse and domain-specific QoS parameters and arrive

at parameter types with regard to their aggregation. QoS aggregation based on

graphs is proposed in (Cardoso et al. 2004) - the graph reduction works inversely

to operations that designers use when crafting a workflow. Jaeger et al. (2004)

ground QoS aggregation on workflow patterns (van der Aalst et al. 2003, Jaeger

et al. 2004, Jaeger & Ladner 2006), deriving so-called composition patterns and

respective aggregation functions. This research utilizes QoS parameter aggre-

gation based on composition patterns (Karaenke et al. 2013).

The composite QoS depends on two determinants: QoS parameters and

workflow. QoS parameters are diverse with regard to number, name, data

type, and conceptualization and they rarely adhere to any standard. Instead

of contributing to their harmonization, a classification with regard to their ag-

gregation exclusively is proposed. This classification is built upon the following

principle: If two parameters share the same aggregation function, then they be-

long to the same parameter type, regardless of other characteristics. Applying

this principle results in five parameter types:

• Type 1: Parameters that are always summed up along all determinis-

tic paths of the workflow (e.g., cost of service execution). For non-

deterministic paths, the aggregation depends on whether the lower or

upper bound is calculated.

• Type 2: Parameters for which the critical path is determined by the

maximal values in parallel executions (e.g., duration of execution time).

• Type 3: Parameters that denote a capacity (e.g., throughput).

• Type 4: Parameters that denote a probability (e.g., uptime probability).

• Type 5: Parameters for which the critical path is determined by the

CHAPTER 2. STATE OF THE ART 52

minimal values in parallel executions (e.g., key length of the services en-

cryption algorithm).

The second determinant workflow is analyzed by means of workflow patterns

(Jaeger et al. 2004); this analysis arrives at a set of composition patterns CP =

{Sequence, Loop, XORXOR, ANDAND, ANDDISC, OROR, ORDISC}.
For instance, the OROR pattern describes an ORsplit followed by ORjoin.

ANDDISC and ORDISC describe ANDsplit and ORsplit followed by a m-

out-of-n join (discriminator). The latter is used when an activity is triggered

after m out of n branches have been completed (e.g., to improve response time,

two databases are queried and the first result is processed, the second is ignored)

(van der Aalst et al. 2003). Both determinants span a matrix of cases, with

each cell giving the respective aggregation function. This research defines the

set of all aggregation functions as:

AF = {af cp,pt : cp ∈ CP ∧ pt ∈ PT s, af cp,pt : Rn → R}

PT s is the set of parameter types of service s ∈ S. n denotes the number

of parameters to be aggregated; the domain of af cp,pt consists of n-tuples with

QoS parameters of the constituent services. Since the aggregation function

depends on (cp, pt), there exist 5 · 7 = 35 aggregation functions.

Several pairs (cp, pt) share the same aggregation function. Thus, the num-

ber of functions can be reduced to only seven. This research defines generic

aggregation functions af ∈ AF as shown in table 2.1, with pv1, . . . , pvn de-

noting the parameter values of the services to be aggregated, and k for the

number of iterations in a Loop pattern. To each pair (cp, pt), this work as-

signs the respective aggregation function. Following (Jaeger et al. 2004), upper

and lower bound are distinguished (as shown in tables 2.2 and 2.3). This dis-

tinction is necessary to assess whether a particular parameter value meets the

guarantee defined in the SLA. Calculating expected or average parameter values

is only possible if the distribution of the non-deterministic control flows (i.e.,

XORXOR, ANDDISC, OROR, and ORDISC) is known (Jaeger et al. 2004);

however, this information is not available (Karaenke et al. 2013).

CHAPTER 2. STATE OF THE ART 53

Table 2.1: Generic aggregation functions.

aggregation function definition

af sum af sum(pv1, . . . , pvn) =
∑n

i=1 pvi
af product af product(pv1, . . . , pvn) =

∏n
i=1 pvi

af max af max (pv1, . . . , pvn) = max(pv1, . . . , pvn)

af min af min(pv1, . . . , pvn) = min(pv1, . . . , pvn)

af power af power (pv1, . . . , pvn) = (pv1, . . . , pvn)k

af linear af linear (pv1, . . . , pvn) = k · (pv1, . . . , pvn)

af identity af identity(pv1, . . . , pvn) = (pv1, . . . , pvn)

Table 2.2: Aggregation functions for Sequence, Loop, and XORXOR compo-
sition patterns.

type bound Sequence Loop XORXOR

1
upper af sum af linear af max

lower af sum af linear af min

2
upper af sum af linear af max

lower af sum af linear af min

3
upper af min af identity af max

lower af min af identity af min

4
upper af product af power af max

lower af product af power af min

5
upper af min af identity af max

lower af min af identity af min

Table 2.3: Aggregation functions for ANDAND, ANDDISC, OROR, and
ORDISC composition patterns.

type bound ANDAND ANDDISC OROR ORDISC

1
upper af sum af sum af sum af sum
lower af sum af sum af min af min

2
upper af max af max af max af max

lower af max af min af min af min

3
upper af min af max af max af max

lower af min af min af min af min

4
upper af product af max af max af max

lower af product af product af product af product

5
upper af min af max af max af max

lower af min af min af min af min

CHAPTER 2. STATE OF THE ART 54

2.1.3.2.3 Service auction Different forms of auctions constitute specific

allocation mechanisms (e.g., English and Dutch auctions). Auctions are well-

suited when the costs of the traded products are private information to the

producing agents, i.e., the SP agents’ valuation for the services. In this thesis,

the SP agents’ valuations for services corresponds to the true cost of service pro-

ductions. Auction mechanisms can be designed, such that SP agents have an

incentive to reveal their true costs for services (Vickrey 1961). This is referred

to as incentive compatibility of a mechanism (section 2.1.2.5.3). In addition,

auction mechanisms are suitable for allocation and pricing if the traded prod-

uct has special or unusual characteristics (Smith 1989). The characteristics

of composite services in SNs are highly individual, depending on the specific

preferences of the requesting customer agent. Therefore, this research assumes

that supply and demand in SNs are allocated by service auctions, where cus-

tomer agents initiate the allocation by submitting service requests. This section

presents a formal, game-theoretic framework for service auctions in multi-tier

SNs, based on the definitions in this chapter. It is utilized for an analysis of the

problem addressed, as well as for the construction of the proposed protocol.

In this framework, SPs and customers are represented by autonomous soft-

ware agents (section 2.1.1.1). The actors delegate their objectives to their

software agents, which conduct the negotiations for service provision on their

behalf (Huhns et al. 2005). Thus, the edges in SNs represent the allocations of

services (i.e., provision of services) among SP and customer agents. SP agents

on different tiers contribute to the supply of service applications by means of

service provision and service composition. This contribution is carried out by

production; i.e., the combination of production (input) factors and their trans-

formation to services (output factors). The number of SPs can be different on

each tier. Since this research represents each actor in a SN by a software agent,

a SN is defined by service agreements between agents.

2.1.3.2.3.1 Agent From definition 2.1.1, the set of agents is defined as

A. This research further differentiates the agents in this set as follows. Let AC
denote the set of all customer agents, ASP the set of all service provider agents,

and A = AC ∪ ASP .

2.1.3.2.3.2 Service Let S be the set of all available services. sij ∈ S
denotes the service potentially provided from SP agent aj to agent ai (definition

2.1.24).

CHAPTER 2. STATE OF THE ART 55

2.1.3.2.3.3 Time This work considers an allocation process in discrete

time periods t ∈ T = {0, . . . , T}.

2.1.3.2.3.4 Offer Since customer agents initiate the interactions, Ot ⊆
O denotes the set of ‘offers’ to SP agents in t to provide a certain service (i.e.,

offers represent requests for quote/proposal), stating the maximal payment the

customer agents are willing to accept for service provision; otij ∈ O denotes the

offer from agent ai ∈ A to agent aj ∈ ASP for service sij in time period t ∈ T .

These offers are revealed to SP agents and do not necessarily represent the true

reserve prices of service customers.

2.1.3.2.3.5 Bid Bt ⊆ B is the set of bids the SP agents submit to cus-

tomer agents in t in response to offers they have received; btij ∈ B denotes the

bid from agent aj ∈ ASP to agent ai ∈ A for the provision of service sij in time

period t ∈ T .

2.1.3.2.3.6 Valuation Let vi : S → R denote the valuation function of

customer agent ai ∈ AC for the provision of services, i.e., vij := vi(sij) denotes

the valuation of customer agent ai ∈ AC for the provision of services sij ∈ S
by service provider agent aj ∈ ASP .

2.1.3.2.3.7 Cost Let cj : S → R denote the cost function of service

provider agent aj ∈ ASP for the provision of services, i.e., cij := cj(sij) denotes

the cost of SP agent aj ∈ ASP when using its own resources for providing sij

to agent ai ∈ A with cij > 0.

2.1.3.2.3.8 Capacity Let wj : S × Rj → R denote the capacity func-

tion of service provider agent aj ∈ ASP for the provision of services, i.e.,

wij := wj(sij) denotes the capacity requirements (i.e., resources from Rj) for

the provision of services sij ∈ S by service provider agent aj ∈ ASP . Further,

let Wj denote the total capacity of SP agent aj .

2.1.3.2.3.9 Allocation The binary functions xt ∈ X with xt : S →
{0, 1} denote whether the service sij ∈ S is allocated to the SP agent aj in

period t (xt(sij) = 1) or not (xt(sij) = 0), i.e., whether a contract for service

sij has been established between customer and SP agent or not. St ⊆ S with

St = {sij : xt(sij) = 1} denotes the set of services contracted in period t ∈ T .

CHAPTER 2. STATE OF THE ART 56

2.1.3.2.3.10 Payment The function ψ : O × B → R determines the

payment from a customer agent ai ∈ A to a SP agent aj ∈ ASP with xt(sij) =

0⇔ ψtij := ψ(otij , b
t
ij) = 0 and xt(sij) = 1⇔ ψtij := ψ(otij , b

t
ij) > 0.

2.1.3.2.3.11 Service dependency ϕ : S → P(S) is a function that

returns the set of services that are required to provide a service sij along the

service network paths (including sij itself), where P(S) denotes the powerset

of the set S. That is, ϕ defines multi-tier service production dependencies.

Furthermore, this work defines the binary function zt : S → {0, 1}, which

returns 1 if and only if contracts have been established for all services which

are required to provide the service sij in period t, and 0 otherwise. Thus, zt

defines if multi-tier dependencies along the SN paths have been considered in

the allocation in period t:

zt(sij) =

1 if ∀sk` ∈ ϕ(sij) : xt(sk`) = 1,

0 otherwise.
(2.1)

Obviously, zt(sij) ≤ xt(sij) ∀sij ∈ S, as sij ∈ ϕ(sij). In order to simplify

the following notion, this research sets ztij := zt(sij), and xtij := xt(sij).

2.1.3.2.3.12 Penalty The function ρti : S → R denotes the penalty

payments received and paid by agent ai in period t if a SP agent fails to provide a

contracted service to ai or ai fails to provide a contracted service to a customer,

respectively.

With penalty factor γ ∈ R+, ρtj(sij) = (1 − ztij) γ ψij denotes the outgoing

penalty payment and ρtj(sjk) = (1 − ztjk) γ ψjk the incoming penalty payment

in case of overcommitment for the allocation in period t ∈ T for agent aj ∈ A.

Since customer agents only receive but never pay penalties themselves, it yields

ρtj(sij) = 0 ∀aj ∈ AC , t ∈ T .

2.1.3.2.3.13 Customer utility function The utility function of cus-

tomer agent ai ∈ AC is determined by ai’s valuation (vij) for services sij ∈ S
that are provided in t ∈ T (i.e., ztij = 1), less the payments ψtij for service

provision, plus penalty payments ρti(sij) for allocated services (i.e., xtij = 1).

Thus, the utility function of customer ai ∈ AC is given by:

U ti (St) =
∑

aj∈ASP

ztij(vij − ψtij) + xtijρ
t
i(sij). (2.2)

Customer agents do not receive any penalty payments from their SP agents

CHAPTER 2. STATE OF THE ART 57

if these provide the service in accordance to the established contracts (i.e.,

ztij = 1⇔ ρti(sij) = 0). Contrarily, if a SP agent fails to provide its contracted

service (i.e., xtij = 1 and ztij = 0), the SP agent has to pay a penalty fee to the

customer agent (i.e., ρti(sij) > 0). This state is denoted as overcommitment by

agent aj . Formally, xtij = 1 ∧ ztij = 0⇔ ρti(sij) > 0.

2.1.3.2.3.14 Service provider utility function The utility function

of SP agent aj ∈ ASP is determined by the payments it receives for the provision

of services sij ∈ S (ψtij with ztij = 1), less the cost for allocated resources for

the provision of sij (cij with xtij = 1) and penalties to be payed (ρtj(sij)).

In addition, agent aj can act as a customer in the next tier. Consequently,

the utility function has to take into account payments (ψtjk) to SP agents ak ∈
ASP in the next tier for provided services sjk ∈ S and penalty payments received

(ρtj(sjk)).

Then the utility function of SP agents aj ∈ ASP is given by:

U tj (St) =
∑
ai∈A

ztijψ
t
ij − xtij(cij + ρtj(sij))

−
∑

ak∈ASP

(
ztjkψ

t
jk − xtjkρtj(sjk)

)
.

(2.3)

2.1.3.2.3.15 Utilitarian social welfare The social welfare is given by

the sum of (2.2) and (2.3) over all participating agents in A. Thus,

sw(St) =
∑
ai∈AC

U ti (St) +
∑

aj∈ASP

U tj (St)

=
∑
ai∈AC

∑
aj∈ASP

ztij(vij − ψtij) + xtij(1− ztij) γ ψtij

+
∑

aj∈ASP

∑
a`∈A

zt`jψ
t
`j − xt`j

(
c`j + (1− zt`j) γ ψt`j

)
−

∑
aj∈ASP

∑
ak∈ASP

ztjk ψ
t
jk − xtjk(1− ztjk) γ ψtjk.

(2.4)

Since A = AC ∪ ASP , the second inner sum in (2.4) can be split up into

two sums running over AC and ASP . Then indices can be set such that ` = i

in the resulting sum over AC , as it iterates over the same set of agents. In the

same way, let j = k and ` = j in the resulting sum over ASP . Finally, the cost

for providing services to agents are combined from AC and ASP respectively.

Thus,

CHAPTER 2. STATE OF THE ART 58

sw(St) =
∑
ai∈AC

∑
aj∈ASP

ztijvij − xtijcij

−
∑

aj∈ASP

∑
ak∈ASP

xtjkcjk

=
∑

aj∈ASP

(∑
ai∈AC

ztijvij −
∑
a`∈A

xt`jc`j

)
.

(2.5)

In social welfare, payments and penalties sum up to zero. This result is

intuitive, since payments constitute redistribution of wealth between the agents,

but do not generate a surplus from a welfare perspective.

2.2 Problem analysis

In this section, the addressed problem is formally described and certain prop-

erties of solutions to the problem are analyzed. It is proven that overcommit-

ments cannot exist in optimal solutions and that finding optimal solutions is

NP-complete. Further, it is shown that the utilitarian social welfare optimal

allocation in multi-tier service networks is supported by a strategy profile of a

Nash equilibrium and that equilibria always exist in multi-tier service network

allocation games. The requirements for the allocation protocol to solve the

problem addressed are described by means of a structured informal document

with all features of the protocol (Huget & Koning 2003, pp. 180–182). Finally,

a definition of the requirements is provided.

2.2.1 Utilitarian social welfare maximization problem

Utilitarian social welfare (section 2.1.2.4) is most commonly used in the mul-

tiagent systems research area to assess the system performance in terms of

the maximal average profit of negotiating agents in electronic commerce trans-

actions (Chevaleyre et al. 2006, p. 16). Therefore, the allocation problem

addressed in this thesis can be formulated as a maximization problem of this

metric.

Let S∗ =
⋃
t∈T St. Then the utilitarian social welfare maximization problem

consists of determining the optimal set of services:

CHAPTER 2. STATE OF THE ART 59

sw(S∗) = max
S∗∈S

∑
t∈T

∑
aj∈ASP

(∑
ai∈AC

ztijvij −
∑
a`∈A

xt`jc`j

)
s.t. ∀aj ∈ ASP :

∑
ai∈AC

wijx
t
ij ≤Wj .

(2.6)

The set of services S∗ =
⋃
t∈T St maximizes the utilitarian social welfare,

i.e., the sum of customer agents’ valuations (vij) for services sij ∈ S that are

provided in t ∈ T (ztij = 1), less the SP agents’ costs for allocated resources

for the provision of sij (cij with xtij = 1). The side condition ensures, that

resources from SP agents are not allocated beyond their resource capacities.

That is, the resources allocated for service provision (wij with xtij = 1) must

not exceed the total resource capacities Wj ∀aj ∈ ASP .

Next, it is proven that optimal solutions to the social welfare maximization

problem do not contain overcommitments (section 2.1.3.2.3) in theorem 1 as

follows. If there is overcommitment in an utilitarian social welfare optimal al-

location, there would be a service sij ∈ S for which zt(sij) = 0 and xt(sij) = 1.

It yields cj(sij) > 0 for all SP agents and services. Therefore, the overcommit-

ment would cause negative welfare, due to the cost of the allocated resources; it

would not lead to positive welfare by the valuation for sij , since sij is not pro-

vided (zt(sij) = 0). Hence, overcommitments cannot exist in utilitarian social

welfare optimal solutions.

Theorem 1. If S∗ =
⋃
t∈T St is the set of contracted services of an utilitarian

social welfare optimal allocation, then zt(sij) = xt(sij) ∀sij ∈ St, ∀t ∈ T .

Proof. By contradiction. Let S∗ be the set of contracted services of an util-

itarian social welfare optimal allocation such that ∃t ∈ T , sij ∈ St ⊆ S∗ :

zt(sij) 6= xt(sij). As zt(sij) ≤ xt(sij) ∀sij ∈ St, it yields zt(sij) = 0 and

xt(sij) = 1. Let S∗′ := S∗\{sij}. As S∗ is an optimal allocation, sw(S∗) ≥
sw(S∗′) ⇔ sw(S∗′) − xt(sij)cj(sij) ≥ sw(S∗′). As xt(sij) = 1 and cj(sij) > 0,

the contradiction follows.

2.2.1.1 Computational problem complexity

The computational complexity (section 2.1.2.5.6) of the utilitarian social wel-

fare optimization problem is analyzed in this section. To prove that the problem

addressed is NP-complete, it has to be shown that (i) the problem is in NP
and (ii) any instance of a problem that is known to be NP-complete can be

transformed to the problem addressed in polynomial time. For NP member-

ship, a given solution has to be verifiable in polynomial time (verifiability); i.e.,

CHAPTER 2. STATE OF THE ART 60

a non-deterministic algorithm which ‘guesses’ solutions can ‘solve’ the problem

in polynomial time (Garey & Johnson 1979).

A transformation (reduction) from the 0-1 knapsack problem to the problem

addressed in this thesis is provided. The 0-1 knapsack problem consists of the

determination of a subset of a given set of items, with defined valuation and

weight each, to be put in a knapsack with limited weight capacity, such that the

valuation of the items in the knapsack is maximized. The specificity of the 0-1

knapsack problem is that there is only one of each item. The transformation is

defined as follows:

(i) Overcommitments are excluded, (ii) only one time period is considered,

(iii) only one SP agent is considered, (iv) the function that determines which

items are put in the knapsack is transformed to the allocation function x1
ij , (v)

the valuations of the items are transformed to cost less valuation of services,

(vi) the weights of the items are transformed to the capacity requirements of

the services, and (vii) the knapsack capacity is transformed to the resource

capacity of the single SP agent.

Since this reduction can be done in polynomial time, the problem is shown

to be NP-hard. Together with NP membership, this proves that the problem

addressed is NP-complete.

Theorem 2. The computation problem for the socially optimal allocation is

NP-complete.

Proof. NP membership is trivial, since for any given solution to the allocation

problem, the calculation of the resulting social welfare (2.5) and the verifica-

tion of the constraints that the sum of the capacity requirements wijxij does

not exceed the given capacity Wj for each SP (2.6) can obviously be done in

polynomial time. For hardness, this research defines a reduction from the 0-1

knapsack problem which is known to be NP-complete (Karp 1972). The 0-1

knapsack problem is defined as follows. Let U be a finite set and let u ∈ U .

Further, g(u) denotes the weight and b(u) the valuation of element u, and K

is a positive integer. Now maximize
∑

u∈U a(u)b(u) s.t.
∑

u∈U a(u)g(u) ≤ K,

where a(u) denotes a 0-1 assignment to each u ∈ U (Garey & Johnson 1979).

Any instance of the 0-1 knapsack problem can be reduced to our optimization

problem as follows. By theorem 1, ztij = xtij can be assumed. In addition, let

|T | = 1, |ASP | = 1, AC = U , x1
ij = a(u), vij − cij = b(u), wij = g(u)∀u ∈ U ,

and Wj = K with aj ∈ ASP . Obviously, this reduction can be done in poly-

nomial time. Hence, each SP agent’s optimization problem and therewith the

utilitarian social welfare maximization problem is NP-hard.

CHAPTER 2. STATE OF THE ART 61

2.2.1.2 Equilibria

This section applies the concept of Nash equilibrium (NE) to analyze the net-

work allocation game (section 2.1.2.3.4). Informally, a strategy profile is a Nash

equilibrium if no player has incentive to deviate from his strategy given that

the other participating players do not deviate (Nash 1950, Rasmusen 1989).

It is shown that the empty allocation constitutes a NE if all bids exceed all

customer valuations and the costomers’ offers are 0 in proposition 1. If a SP

agent deviates, it cannot gain positive utility, since the willingness to pay for

all customers is 0. Thus, there is no incentive for SP agents to deviate from

their strategy. For customer agents, deviating is not beneficial, since the bids

of all SP agents exceed the valuations of all customer agents. Therefore, a NE

always exists in multi-tier service network allocation games.

Proposition 1. A Nash equilibrium always exists in multi-tier service network

allocation games.

Proof. Let otij = 0 and btij = N ∀ai, aj ∈ A, ∀t ∈ T where N > vij is a

large number. As N exceeds the customer agents’ valuation for all services

without loss of generality, this results in an empty allocation, i.e., no service

is contracted. Further, SP agents have cost (cij > 0) for the provision of

contracted services. Thus, no agent can gain a positive utility by deviating from

the characterized strategy profile. That is, the empty allocation constitutes a

NE.

In proposition 2, it is proven that utilitarian social welfare optimal alloca-

tions are supported by a strategy profile of a NE in multi-tier service networks

as follows. If a service is not in the optimal set of services, customers’ offers

are 0 and all bids exceed all customer valuations for these services. If a service

is part of the optimal set of services, bids are equal to offers and the valua-

tions exceed the payments for these services, and SP agents bid their marginal

cost. If a SP agent deviates, it cannot gain positive utility, since the willing-

ness to pay for all customers equals the marginal cost for service production.

Therefore, there is no incentive for SP agents to deviate from their strategy.

For customer agents, deviating is not beneficial, since the bids of all SP agents

exceed the valuations of all customer agents for services that are not in the set

of optimal services. For services that are part of the optimal set of services, it

is not beneficial for the customer agent to deviate, since for lower offers, it will

not receive the allocation and cannot gain utility, due to the valuation for these

services. Higher offers are useless, since customer agents would pay more than

CHAPTER 2. STATE OF THE ART 62

necessary for the services requested. Therefore, the utilitarian social welfare

optimal allocation in multi-tier service networks is a Nash equilibrium.

Proposition 2. The utilitarian social welfare optimal allocation in multi-tier

service networks is supported by a strategy profile of a Nash equilibrium.

Proof. Let S∗ be an utilitarian social welfare optimal allocation. The agents’

strategy profiles are constructed as follow. If sij /∈ S∗ ⇒ otij = 0 and btij = N ,

where N is a large number; sij ∈ S∗ ⇒ ∃t ∈ T : otij = btij , vij ≥ ψtij , and

ψtij = cij +
∑

sjk∈ϕ(sij) ψ
t
jk ∀ai, aj ∈ A. Thus, each SP agent has 0 utility

and cannot gain a positive utility by deviating from this strategy, as their bids

correspond to the marginal cost for service provision. The customer agents

cannot increase their utility by choosing a different strategy, as N exceeds the

customer agents’ valuation for sij /∈ S∗ or vij ≥ ψtij otherwise. This strategy

profile can always be constructed and constitutes a NE.

2.2.2 Requirements description

For the production of the requested services in SNs it is possible for SPs to (i)

utilize resources from the own inventory or (ii) buy services from a third party

(subcontracting). The latter is done if (i) the own capacity is not sufficient,

(ii) the own resources do not have the required functionality, or (iii) if the

utilization of the own capacity is economically not favorable because of the cost

function (e.g., step cost). The subcontracting can also comprise parts of the

service. This means, that a service provided to the customer can be an arbitrary

composition of own and procured services.

SPs have to consider economically relevant values to determine the concrete

resources for service provision. For services in SNs, this implies that the indi-

vidual requirements of the customer determine the requirements of SLAs that

have to be established in upstream SN tiers. Therefore, the protocol must allow

for subcontracting activities by SPs and for establishing all (sub-)agreements

for a concrete customer request in a coordinated manner: the protocol has to

avoid overcommitments. That is, it must prevent agreements with customers

without establishing necessary sub-agreements with other agents.

For example, the service requested by the customer can be a data mining

service which is provided in tier λ = 0. The customer request includes a defini-

tion of the service along with respective parameters (e.g., throughput). The SPs

can subcontract parts of the service to, respectively procure appropriate sub-

services from, their suppliers (e.g., storage and analysis services) in tier λ = 1.

The protocol has to ensure that agreements will either be established with the

CHAPTER 2. STATE OF THE ART 63

customers and with respective suppliers or no agreements will be established

at all.

As a next step towards a protocol specification, this research performs the

analysis stage in accordance to the interaction protocol engineering approach.

On the basis of the discussion and SN model, a structured informal document

with all features of the protocol can be provided (Huget & Koning 2003, pp.

180–182). This informal description is shown in table 2.4 for the proposed

protocol.

The formal problem analysis and informal description of the protocol are

utilized to derive requirements for the protocol to be specified. Next, these

requirements are discussed in detail. They comprise (i) distributed allocation,

(ii) service dependencies, and allocation mechanism properties: (iii) allocative

efficiency, (iv) incentive compatibility, (v) individual rationality, (vi) budget

balance, and (vii) allocation complexity.

Distributed allocation refers to centralized vs. distributed allocation. There

are, however, existing approaches which distribute parts of the allocation prob-

lem, but still require a central coordinating entity. Service dependencies are

twofold – they can be allowed by an approach without guaranteeing their con-

sideration in every allocation outcome. In contrast, the stronger interpretation

of this criterion requires every valid allocation outcome to guarantee the con-

sideration of service dependencies.

The mechanism properties of an allocation procedure are analyzed with

regard to the properties defined in section 2.1.2.5.

CHAPTER 2. STATE OF THE ART 64

Table 2.4: Informal protocol description.

Name Multi-tier contract net protocol

Keywords multi-tier resource allocation, service networks, swaps

Agents’
role

customer, service provider (SP)

Initiator customer

Prerequisite The agents must know how to send messages to other agents.

Function A customer requests to buy a service which has to be provided at
a certain service level (quality of service). A SP offers a bid on
the request. The SP may procure (sub-)services from other SPs
(subcontracting, outsourcing) in multi-tier request processing if
(i) the SP’s capacity is insufficient, (ii) the SP’s resources do not
provide the required functionality, or (iii) if the utilization of the
SP’s capacities is not economically favorable. This can also com-
prise parts of the service; i.e., a composition of own and procured
services. The protocol enables to establish all agreements along
the SN in a coordinated manner.

Behavior The protocol can be decomposed into three phases:
(i) In the collect proposal phase, the customer’s request is trans-
ferred to potential SPs in service network tier λ. The SPs process
the request and may decide to establish sub-agreements for parts
of the request in tier λ+ 1 of the service network; i.e., they trans-
fer own requests to other SPs in tier λ + 1. SPs’ subcontracting
activities can be recursively extended to an arbitrary number of
tiers. Before a SP in tier λ answers the final customer’s request
with a binding bid, it evaluates the bids received from SPs in tier
λ+ 1. Thus, the SP can make a bid to the customer based on the
results of multi-tier bids.
(ii) In the acceptance notification phase, the SPs are informed
about the acceptance of the bids they have provided. The SPs
in tier λ subsequently inform the SPs in tier λ + 1 about the
acceptance of dependent bids. The recursion is executed to the
number of tiers on which bids were submitted.
(iii) The execution phase comprises the actual service delivery.
The result of the execution (e.g., service level) is reported to the
customer. SPs in tier λ report the state of the provision of the
services to their customers which may constitute SPs in tier λ −
1. The recursion is executed to the number of tiers on which
agreements have been established.

Constraints All agents must be authenticated.

Termination (i) All SPs have provided the services as contracted, (ii) the actual
delivery of one or more services has failed, (iii) no agreement has
been established, or (iv) a timeout has occurred during resource
allocation or execution.

CHAPTER 2. STATE OF THE ART 65

2.2.2.1 Distributed allocation

It is required that the distributed nature of SNs is considered. Therefore, the

protocol must not assume that central coordinating entities (such as central

auctioneers) exist to select and enforce allocation outcomes.

Requirement 1 (distributed allocation). The protocol must allow for dis-

tributed resource allocation, i.e., it must not require central coordinating en-

tities.

The distribution of the allocation comprises the existence of a central agent

that selects and enforces allocation outcomes. In a completely centralized

auction-based setting, there is a single auctioneer that computes the alloca-

tion outcomes. This requires the existence of an appropriate agent that can

assume this role. In addition, this agent has to be able to communicate with

every agent relevant for the allocation.

In distributed winner determination scenarios, the central agent does not

calculate the allocation outcomes itself, but distributes the computational task

to other agents. This type of distribution is concerned with distribution of the

allocation computational load only. Thus, it neither reduces the complexity

of winner determination, nor does it make a central auctioneer agent obsolete.

In this thesis, an allocation procedure is denoted as distributed if and only if

there is no single agent that selects and enforces allocation outcomes along the

complete SN, since the assumption of a central entity contradicts the distributed

nature of SNs.

2.2.2.2 Service dependencies

As a central focus of this research, the protocol must consider service depen-

dencies over multiple tiers of SNs. It has been shown that overcommitments

cannot occur in socially optimal allocations. Therefore, this research formulates

a respective requirement for the protocol proposed.

Requirement 2 (service dependencies). The protocol must avoid overcommit-

ments.

An allocation procedure can guarantee consideration of service dependencies

in SNs if and only if it addresses supply and demand side of service producing

agents. This means that it is required to respect both input and output ser-

vices of every SP agent before any binding allocation is made. That is, during

the execution of the allocation procedure. If the service dependencies are not

considered, the provision of services (i.e., fulfillment of agreements) may be

CHAPTER 2. STATE OF THE ART 66

unaccomplishable due to missing services which are required for the provision

(overcommitment).

Respecting service dependencies in the allocation procedure is not a binary

criterion. For example, an approach can minimize the expected probability

of overcommitments (i.e., existence of unconsidered service dependencies in

the allocation outcome) by SP agents while it does not guarantee to avoid

overcommitments. Thus, the service dependency requirement is divided into

two sub-criteria to assess how pertinent allocation approaches deal with service

dependencies.

The weaker form of this requirement is denoted as consideration of service

dependencies. The stronger form, which guarantees to respect all service depen-

dencies in the allocation outcome, is denoted as avoidance of overcommitments.

2.2.2.3 Allocative efficiency

Next, properties of the allocation mechanism are considered: allocative ef-

ficiency, incentive compatibility, individual rationality, budget balance, and

allocation complexity. Since the allocation complexity in SNs is generally

NP-complete, the utilitarian social welfare optimization problem cannot be

solved in polynomial time for any problem instance. In addition, it is im-

possible to design a mechanism that is allocatively efficient, budget balanced,

and incentive compatible, at least in settings with quasi-linear preferences

(Green & Laffont 1977, Walker 1980, Myerson & Satterthwaite 1983, Hurwicz

& Walker 1990). Therefore, the proposed solution must approximate the utili-

tarian socially optimal allocation.

Requirement 3 (allocative efficiency). The allocation protocol must constitute

a heuristic for the utilitarian social welfare maximization problem.

The allocative efficiency of a mechanism refers to the mechanism’s property

of maximizing a preference aggregation (e.g. social welfare) of the agents. In

this thesis, the notion of utilitarian social welfare is utilized. Thus, a mechanism

is allocatively efficient if and only if it maximizes the utilitarian social welfare,

i.e., the sum of utilities of the agents (sections 2.1.2.4 and 2.1.2.5.2).

2.2.2.4 Incentive compatibility

A mechanism is incentive compatible if it is rational for the agents to report

their true preferences (types); the agents cannot gain utility by reporting untrue

preferences (e.g., manipulating bids) (section 2.1.2.5.3).

CHAPTER 2. STATE OF THE ART 67

Requirement 4 (incentive compatibility). The allocation protocol must be in-

centive compatible.

2.2.2.5 Individual rationality

If no agent is worse-off by participating in the allocation, a mechanism is indi-

vidually rational. That is, no agent can gain utility by not participating in the

allocation game (section 2.1.2.5.4).

Requirement 5 (individual rationality). The allocation protocol must be indi-

vidually rational.

2.2.2.6 Budget balance

An allocation mechanism is budget balanced if there are no net payments by the

mechanism to the participating agents, i.e., the single payments of the agents

sum up to zero (section 2.1.2.5.5).

Requirement 6 (budget balance). The allocation protocol must be budget bal-

anced.

2.2.2.7 Allocation complexity

The complexity of an allocation procedure comprises computational and com-

munication complexity (section 2.1.2.5.6). The allocation complexity in SNs

is generally NP-complete. The utilitarian social welfare optimization problem

cannot be solved in polynomial time for any problem instance. Therefore, the

proposed solution must approximate the utilitarian socially optimal allocation

and must guarantee to terminate in polynomial time.

Computational complexity theory is concerned with the question of how

many computational resources are required to solve a given problem. It provides

a classification of problems of different complexity (Garey & Johnson 1979,

Papadimitriou 1994). This thesis assigns a complexity class (e.g., NP) of the

problem to be solved, following the allocation procedures proposed in related

research.

Requirement 7 (allocation complexity). The allocation protocol must guar-

antee to terminate in polynomial time for any problem instance.

Communication complexity has four elements: (i) the number of required

agreements (or deals) to arrive at an optimal allocation outcome, (ii) the number

of dialogue moves required to establish an agreement, (iii) the expressiveness

of the communication language required, and (iv) the complexity of individual

CHAPTER 2. STATE OF THE ART 68

agents’ reasoning tasks, deciding on dialogue moves (Endriss & Maudet 2005,

p. 122).

In the following review of current solutions to the allocation problem, the

latter two elements of communication complexity are neglected, due to the fol-

lowing reasons. First, the required communication language is widely applica-

tion domain-dependent. This aspect of communication complexity is concerned

with requirements of concrete solution instances, rather than with the com-

munication complexity of conceptual solutions. Second, the individual agents’

reasoning complexity is essentially a question of computational complexity.

2.3 Allocation approaches for multi-tier service net-

works

Resource allocation has been subject of comprehensive research in multiagent

systems (see (Chevaleyre et al. 2006) for a survey); relevant approaches can be

divided into two different groups.

The first group, which mostly does not deal with concrete negotiation mech-

anisms, focuses on principles of specific sub-topics. This includes approaches

for distributed allocation, leveled commitments, and socially optimal allocation

outcomes.

The second group consists of more concrete approaches which are found

in the areas of interdependent negotiations, supply chain formation, and ser-

vice network formation. Interdependencies of multiple negotiations for supply

and demand constitute a class of relevant research. These approaches con-

sider dependencies between inputs and outputs. In contrast, another class of

related work is concerned with multiple supply (procurement) negotiations. It

addresses the problem of procuring a desired product in the right amount and

at the right price. That is, decision problems are addressed to avoid agreements

for more products than intended (e.g., winning two auctions for one unit of a

product each if just one unit is required). Among the approaches for supply

chain formation, most consider coordination via a central entity, though there

are also approaches which consider decentralized coordination. The most rele-

vant class of service network formation research considers auctions as allocation

mechanisms.

The requirements defined in section 2.2.2 must be fulfilled by any allocation

approach to solve the research problem. Therefore, the following literature

review assesses if and how pertinent allocation approaches meet one or more of

these requirements.

CHAPTER 2. STATE OF THE ART 69

2.3.1 Distributed allocation

Parkes & Shneidman (2004) present guidelines for the development of dis-

tributed allocation mechanism implementations based on the Vickrey-Clarke-

Groves (Vickrey 1961) mechanism. The aim of the approach is to distribute

as much computational load as possible onto network nodes and thus help to

determine a suitable allocation result. However, the proposed allocation proce-

dure requires a ‘center’ entity which communicates with network nodes through

a trusted channel and hence selects and enforces allocation outcomes. Thus,

this approach cannot be applied to SNs without the existence of central coor-

dinating entities, i.e., it does not allow for distributed allocation in terms of

the requirement. Since Parkes & Shneidman (2004) do not propose a concrete

algorithm or negotiation framework, neither the service dependency nor the

allocation mechanism properties requirements are applicable.

In the field of multiagent resource allocation, Bo and Lesser (Bo & Lesser

2010) investigate contract-based resource allocation across computational net-

works – a set of selfish agents route traffic for individual users. Before user

agents can route traffic through node entities, contracts between user agents

and the participating nodes need to be established. The negotiation approach

proposed by Bo and Lesser is of distributed nature, i.e., agents act on behalf of

themselves, and the corresponding resource allocation emerges from sequences

of distributed negotiations.

In addition to mutual contracting, nodes are allowed to decommit from

existing contracts at a penalty cost. The authors investigate the relationship

between stability and optimality of the network resource allocation game and

consider system dynamics during agent contracting. However, user agents are

required to establish a separate contract with each node on the path. Thus,

service dependencies, in which each node only negotiates contracts with nodes

in adjacent tiers, are not considered. That is, the approach does not consider

service dependencies.

The allocation problem addressed by Bo & Lesser (2010) is NP-complete.

However, the proposed distributed approach constitutes a polynomial time

heuristic of the social welfare maximization problem. The agents exchange

a finite set of messages, and network node agents decide if they are willing

to accept user agents’ bids. As network node agents act rational, they accept

user agents’ bids if and only if they do not exceed the network node agents’

costs for routing the user agents’ traffic. Thus, the network node agents’ de-

cision problem can be solved in polynomial time. Further, routing paths and

node agents’ marginal cost for routing traffic are known to the user agents, as

CHAPTER 2. STATE OF THE ART 70

complete information is assumed. The user agents’ decision processes consist

of price comparisons for alternative paths and potential decommitments from

obsolete node contracts. This reasoning can be done in polynomial time.

The proposed mechanism is not individually rational, since costs can occur

without valuation for user agents. In addition, the approach does not incentivize

truthful bidding, but is budget balanced. Regarding the communication cost,

three messages are required to conclude a contract between a user and a node

agent.

2.3.2 Leveled commitments

Sandholm & Lesser (2001) propose leveled commitment contracts which are

not binding, but can be canceled by an agent by paying a pre-defined penalty

to the other party (Sandholm & Lesser 1995, Sandholm & Lesser 2001). In

(Sandholm & Lesser 1995), leveled commitments and an extension of the Con-

tract net protocol (Smith 1980) are discussed. In (Sandholm & Lesser 2001),

further details of leveled commitments are given. The approach addresses the

traditional assumption of binding contracts between agents. In contrast, in lev-

eled commitment contracts, the level of commitment is defined by breach (i.e.,

decommitment) penalties. An agent can dissolve an agreement (or contract) by

paying a pre-defined penalty to the other agents involved in the agreement.

Sandholm & Lesser (2001) compare the proposed leveled commitment con-

tracts to full commitment contracts in a setting where agents have probabilistic

information about a contract’s value. Thus, the expected utilities are analyzed

for outside offers for contractor (the agent that pays the contract price) and

contractee (the agent that performs the contracted action). The agents decide

on decommitments when they know their outside offer, but the other agent

involved in the agreement does not know any outside offer of other agents.

Four distinct decommitment mechanisms are analytically compared; they

differ in the order of revealing the decommitment decision (sequentially or in

parallel) and whether the penalties have to be paid if both agents decommit. In

addition, games with future uncertainty for one and both agents are analyzed.

Leveled commitments can be applied to both centralized and distributed

winner determination. The approach cannot consider service dependencies,

but can mitigate the consequences of overcommitments, as the decommitment

penalty would normally be smaller than the penalty for not being able to fulfill a

binding agreement. However, leveled commitment contracts do not avoid over-

commitments. They may even increase the probability of overcommitments,

as upstream SPs can decommit from agreements which are required for the

CHAPTER 2. STATE OF THE ART 71

fulfillment of interdependent agreements to customers.

Since the approach performs a game-theoretic analysis of decommitment

games, but does not propose a concrete allocation protocol or mechanism,

mechanism properties cannot be assessed. For example, the communication

complexity greatly depends on concrete applications and cannot be assessed in

general.

2.3.3 Socially optimal allocations of resources

Endriss, Maudet, Sadri & Toni (2006) analyze multilateral deals (i.e., agree-

ments) to exchange bundles of indivisible resources between agents. Changes

in resource distribution are analyzed for different collective utility functions (i.e.,

social welfare orderings). The proposed negotiation framework is analyzed for

allocations with and without side payments with regard to guaranteed optimal

social welfare and pareto optimality. Subsequently, both settings are applied to

agent societies with different concepts of social welfare, i.e., interpretations of

the concept of social welfare which are different from utilitarian social welfare

– the concepts most commonly used in the multiagent systems research area.

This work constitutes a distributed allocation approach and focuses on the

convergence to optimal allocations for different notions of social welfare. Since

the negotiation framework considers multilateral agreements, a single agreement

can comprise any number of agents and resources. The particular notion of

dependency of agreements is introduced, though this notion of ‘independently

decomposable deals’ refers to the agents involved, rather than to dependencies

between allocations. That is, while it would be generally possible to consider

service dependencies in multilateral deals, the proposed negotiation framework

does not consider service dependencies in multi-tier SN.

The reason is that the framework would consider these dependencies in mul-

tilateral deals of all agents along the SN, since overcommitments would result in

irrational agreements, though the framework assumes that any agent involved

in the production of a service would participate in a single agreement. This

assumption contradicts the multi-tier characteristic of the SN. The approach is

individually rational and budget balanced by definition and guarantees alloca-

tive efficiency when side payments are possible, though it is not strategy-proof.

The communication complexity of the multilateral negotiation framework

is analyzed for one of its four aspects in (Endriss & Maudet 2005), namely the

required number of deals to arrive at an optimal allocation outcome. However,

the presented upper and lower bounds for the needed number of deals refer to

the abstract negotiation framework, rather than to a concrete negotiation pro-

CHAPTER 2. STATE OF THE ART 72

tocol, i.e., these results are valid for any negotiation protocol enabling allocation

under the provided assumptions.

2.3.4 Interdependent Supply Negotiations

In the area of interdependent procurements across multiple negotiations, An-

thony & Jennings (2003) investigate the problem of bidding across multiple

auctions to procure the best deal for the desired good. The approach addresses

the decision process of agents bidding across auctions with different start and

end times and with different auction protocols (English, Dutch, and Vickrey),

i.e., agents’ bidding decisions among concurrent heterogeneous auctions.

A genetic algorithm is applied to search for strategies in different environ-

mental settings. These are experimentally evaluated in an electronic market-

place scenario with a group of random bidders; they simulate other bidders

and bid on one single auction only. These random bidders’ private valuations,

starting bids, and bid increments are generated from a normal probability dis-

tribution.

Different bidding policies for the agent bidding on multiple auctions are

analyzed. Here, the bidding agent does not submit further bids if it holds the

highest bid in an English auction or has submitted a bid to a Dutch or Vickrey

auction, to avoid purchasing of more than one product. The policy is defined

by an aggregation function over different bidding functions for the remaining

time left, the remaining number of auctions left, the desire to get a bargain,

and the level of desperateness of a bidding agent. These four attributes are

taken into consideration in distinct parametrized bidding functions, referred to

as tactics. The functions’ values are combined by the aggregation function with

varying weights. In the experimental evaluation, different parameters for the

tactics and different weights for the aggregation function are simulated.

Next, as the solution space for parameter values and weights is infinite,

a genetic algorithm is applied to determine most successful bidding policies in

predefined environments (e.g., short time, many auctions). The most successful

bidding policies in terms of concrete parameter values and weights are then

selected for different environments. Finally, these policies are experimentally

evaluated against control bidding policies.

The approach does not propose an allocation protocol, but bidding policies

in multiple procurement negotiations; it is addressing a single agent’s decision

problem when participating in multiple auctions. Thus, the requirements de-

fined cannot be assessed. However, similar decision problems also exist in SNs

and the approach can in principle be applied to service procurement in SNs.

CHAPTER 2. STATE OF THE ART 73

The agents utilizing this bidding policy need to determine the environment type

quickly and accurately. Further, probability distributions of the auctions are

assumed to be static and known to the agents. With different strategies for the

other auctions’ participants, the bidding policy has to be evolved again, and

more accurate probability predictions are necessary to select suitable target

auctions.

Nguyen & Jennings (2005) analyze procurement activities for services in

multiple bilateral negotiations, i.e., a customer agent is looking for a single SP

agent from a number of multiple SP agents in its environment. Therefore, the

customer agent concurrently negotiates bilaterally with the SP agents. The

proposed negotiation framework is based on the concept of leveled commitment

contracts (Sandholm & Lesser 2001).

The customer agents are assumed to know the probability distributions of

successful negotiations for a set of strategies and the expected utility of suc-

cessful negotiations. With this information, the customer agent calculates the

probability that a SP agent is of a specific type. Then, it calculates the expected

utility of applying different strategies to its proposal for this specific SP agent

and selects the strategy which maximizes the expected utility. This is done

until the customer agent has allocated strategies to all concurrent negotiations.

The negotiation framework considers ‘intermediate deals’ which can be de-

commited from at a dynamic penalty, starting at a percentage of the contract

value and increasing towards the end of the negotiation. In an earlier version

of the negotiation framework, customer agents were allowed to decommit at no

penalty (Nguyen & Jennings 2004). Therefore, this version is heavily biased in

favor of the customer agents. In (Nguyen & Jennings 2005), a customer agent

decommits from a contract (and pays the penalty fee) if the expected utility of

a new offer exceeds the utility of an established contract along with the penalty

to be paid for the decommitment by a given threshold. The customer agent

keeps bargaining this way until its private negotiation deadline is reached.

The authors also consider that a customer agent accepts more than one inter-

mediate agreement to decommit from all, but the utility maximizing agreement

at the private negotiation deadline. This avoids the risk of a single agreement

that is revoked by the SP agent close to the negotiation deadline. However, if

the SP agent does not decommit, the customer agent has to pay penalties for

any additional intermediate agreement. The negotiation framework is empiri-

cally evaluated for three different types of SP agents.

Since the approach proposes bargaining between customer and SP agents,

it constitutes a distributed allocation approach. It does not consider services

CHAPTER 2. STATE OF THE ART 74

to be re-sold or to be utilized as input factors for value added services. Thus,

the approach cannot consider service dependencies. However, the framework

and findings can in principle be applied to negotiations on distinct tiers of SNs.

The approach is budget balanced, but not individually rational or incentive

compatible, and does not guarantee allocative efficiency. The computational

complexity of the allocation is in P, since the customer agent has to simply

compare different offers by SPs. The communication complexity (in terms of

messages to be sent) is potentially high, as multiple offers and counter-offers

are sent and received by customer agents to every potential SP agent. In addi-

tion, decommitment messages are required to resolve unnecessary intermediate

agreements.

Schillo, Kray & Fischer (2002) analyze resource allocation with the Contract

net protocol (Smith 1980) and propose three strategies for the eager bidder

problem. This problem results from a SP agent which submits bids to multiple

reverse auctions for the utilization of its resources. On the one hand, the SP

agents can submit single bids, potentially losing the auction without agreements

for its resources. On the other hand, if SP agents submit bids for more than one

auction, they may conclude more agreements than their resources can fulfill.

SP agents need to decide in which auctions they participate and how their

commitments should be handled, with regard to limited resources. The authors

compare three methods to address the eager bidder problem and compare them

to the utilization of the conservative ad hoc solution, in which SP agents allo-

cate resources just before sending a bid. The latter solution ensures resource

availability. However, if the service provision requires only one SP agent and

multiple customer and SP agents exist, this solution will lead to underutiliza-

tion of SP agents’ resources and not every customer agent will be provided with

the service requested.

The first proposed solution to the problem addressed is based on the concept

of leveled commitment contracts (Sandholm & Lesser 2001). This solution

is only applicable for a limited number of concurrent customer agents, since

penalty payments for decommitments must be taken into account. That is,

no rational SP agent would establish contracts for which the decommitment

penalties would exceed the expected utility of an outside offer.

The second solution approach is based on a protocol redesign. The authors

propose the Contract net with confirmation protocol (CNCP) to postpone the

commitment time as far as possible. Using the CNCP, the original bids of SP

agents are non-binding. After selecting a potential SP agent from the bidders,

the customer agents have to send an additional request to the bidder to con-

CHAPTER 2. STATE OF THE ART 75

clude an agreement in accordance to the initial bid. SP agents make binding

commitments only after the customer agents have explicitly requested them to

do so. Since customer agents are expected to send these requests to the utility

maximizing bidders only, this can significantly reduce the number of commit-

ments made by SP agents.

As a third alternative to the conservative ad hoc solution, the authors pro-

pose a statistical risk analysis approach. Here, SP agents risk to enter commit-

ments which they cannot fulfill as long as the estimated number of overcommit-

ments is below a certain threshold. Therefore, the bidding agent needs to be

able to determine the probability of getting a single bid accepted by a customer

agent.

Schillo et al. (2002) characterize suitable environments for the different ap-

proaches proposed, since there is no generally superior solution to the eager

bidder problem. The approach considers distributed auctioneers in terms of

customer agents; it constitutes a distributed allocation approach. Although the

addressed problem is relevant for the decision making of SP agents in SNs, the

proposed solution does not include linking supply and demand side in inter-

leaved interactions. Thus, it cannot consider service dependencies.

The approach does not propose a concrete mechanism. Therefore, the re-

quirements for mechanism properties cannot be applied, e.g., the allocation

complexity depends on the chosen solution alternative. While the computa-

tional complexity for winner determination is not altered using the proposed

solution, the risk analysis requires additional computational resources. In con-

trast, leveled commitment contracts and the CNCP can increase the number of

messages required to arrive at a final allocation.

2.3.5 Interdependent Supply and Demand Negotiations

Zhang, Lesser & Abdallah (2005) propose an approach using temporal order-

ing of negotiations, addressing supply chain formation problems. The authors

investigate the problem of multi-linked negotiations, i.e., interconnected nego-

tiations which influence each other. The relationships of related negotiations

are classified into two categories. Two negotiations are directly linked if the

characteristics of the subject of one negotiation (e.g., properties of resources,

subtasks to be performed) directly affect the subject of the other negotiation.

In directly linked negotiations, the failure of one negotiation implies the

infeasibility or unnecessity of the second. Indirectly linked negotiations compete

for the utilization of common resources. That is, multi-linked negotiations

denote multiple negotiations in which the negotiation over one issue influences

CHAPTER 2. STATE OF THE ART 76

the negotiations over other issues.

The approach proposes a temporal ordering of multi-linked negotiations to

be carried out either sequentially or in parallel. Thus, the first issue addressed

is if these negotiations should be performed in parallel or in a sequence. If

they are to be performed in sequence, the concrete order is to be determined

to minimize conflicts.

Zhang et al. (2005) present a formal model for the problem of multi-linked

negotiations along with a heuristic search algorithm to determine near-optimal

solutions for the ordering and interdependencies. The relationships of directly-

linked negotiations are described as a forest of rooted trees. A function defines

for every non-leaf negotiation if the children are alternatives (OR) or comple-

mentary (AND).

The authors present a set of negotiation attributes which are domain depen-

dent for the supply chain formation problem, such as start time and deadline.

In addition, they identify a set of four attributes which are domain independent

(duration, start time, deadline, and success probability). Zhang et al. (2005)

argue that the problem cannot be reduced to project management or schedul-

ing, as not only the negotiations are interdependent, but also the subjects and

therewith attributes. Thus, two levels of interdependent entities exist in the

problem of multi-linked negotiations.

The approach represent orderings in a directed acyclic graph that defines

which negotiations can only start after others have been completed. Given a

start time of the first negotiation, this graph constitutes the negotiation sched-

ule. Finally, the authors evaluate the algorithm that constitute a heuristic for

the ordering and attribute mapping problems in a set of multiagent simulation

experiments.

The approach proposed by Zhang et al. (2005) is of distributed nature. It

has a strong focus on the problem of directly-linked negotiations, which is essen-

tial for service dependencies. However, it does not avoid the establishment of

unaccomplishable agreements and therewith penalty payments, as negotiations

are considered as atomic blocks, and thus the interleaving of directly linked

negotiations is not considered. That is, interdependencies in parallel negotia-

tions are not considered – if they exist, the negotiations are to be performed in

sequence; overcommitments cannot be avoided.

Since the approach does not present a concrete mechanism for allocation,

but an ordering of interdependent allocations, the mechanism properties of an

allocation utilizing this approach cannot be assessed.

Si, Edmond, ter Hofstede, Dumas & Chong (2005) propose a probabilis-

CHAPTER 2. STATE OF THE ART 77

tic approach for composing interrelated negotiations, allowing compositions of

alternative (one-or-the-other) and complementary (all-or-nothing) trading ac-

tivities. The authors analyze a supply chain setting, where alternative trad-

ing activities denote alternatives for input procurements, while complementary

trading activities can also comprise negotiations for inputs and respective out-

puts, i.e., dependencies over supply chain tiers.

However, the approach does not consider to interweave the complementary

trading activities. The producer agents either acquire inputs first and produce

outputs independently of customer agents’ orders (buy-to-build), or they first

negotiate with customers and subsequently acquire the inputs required to ful-

fill agreements with customer agents (build-to-order). The authors describe

an agent using the buy-to-build high-level strategy. Before sending a bid to

customer agents, the agent considers the global bidding history and calculate

probabilities for closing prices. In addition, the average probability of an offer

accepted by a customer agent is calculated. These probability distributions

are then utilized to determine a producing agent’s prices offered to customers.

Thus, the approach allows the producing agents to maximize the expected util-

ity based on the global negotiation history.

In (Si, Edmond, Dumas & Hofstede 2007), the research is generalized to

any set of composite trading activities. The proposed model is capable of sup-

porting the decision process of a single agent that (i) buys products in different

auctions (i.e., English, Dutch, first-price sealed bid, and Vickrey auctions), (ii)

sells products in reverse auctions, or (iii) buys and sells products by means of

an alternating offers bargaining protocol. A special focus of this research are

interdependencies, heterogeneous protocols, and temporal constraints of nego-

tiations. Similar to their previous work, the authors calculate the expected

utility of a set of trading activities based on the history of past negotiations.

Since the approach is applicable to various protocols, it can neither be con-

sidered centralized nor distributed. Similarly, the allocation mechanism cannot

be assessed. Regarding service dependencies, the authors avoid invalid out-

comes by assuming that the negotiations for the minimum number of required

agreements minus one constitute ‘secure’ trading activities, i.e., that have re-

ceived a binding offer by another agent, and are guaranteed to result in deals

if executed. Any combination of successful and failed negotiations prior to the

secure trading activity results in a set of agreements honoring the given con-

straints. However, it remains unclear how complementary trading activities can

be combined such that the required number of ‘secure’ deals exists.

The nodes in the presented execution model represent composite or elemen-

CHAPTER 2. STATE OF THE ART 78

tary negotiations. The authors present an analysis of trading activity states for

different protocols, though the model is not capable of describing these single

states, but a negotiation as a whole. As can be seen from the examples pre-

sented, the authors rely on information which is not represented in the model

explicitly (i.e., the processing is done on negotiation state level while the model

captures them as a whole only). This approach considers service dependencies

with certain constraints on the dependencies, but cannot avoid overcommit-

ments with the details provided.

2.3.6 Supply chain formation with auctions

Research on supply chain formation with combinatorial auctions assumes cen-

tralized winner determination along all tiers of the supply chain. A central

entity, collecting all bids on input and output products in all tiers of the supply

chain at a single point, is required.

Walsh, Wellman & Ygge (2000) propose a one-shot combinatorial auction

protocol, and analyze bidding strategies for self-interested agents, i.e., the ef-

ficiency and producers’ surplus are experimentally evaluated in five different

networks of producer and consumer agents. The protocol’s performance in

terms of allocative efficiency is compared to a distributed, progressive auction

protocol with non-strategic bidding.

The assumption of a central entity contradicts the distributed nature of

supply chains and in particular SNs. Walsh et al. (2000) argue that, while

acknowledging that it is infeasible to coordinate complete supply chains using a

centralized approach in a single market, centralized coordination can be applied

to sub-markets with strong dependencies between producer agents, since these

sub-markets are only weakly dependent on the broader market of the complete

network of producer and consumer agents (Walsh et al. 2000, p. 262).

The approach clearly utilizes centralized allocation. It explicitly considers

interdependencies among inputs and outputs, i.e., it is suitable to avoid over-

commitments. The allocation complexity of combinatorial auctions is generally

NP-complete, though there is a number of computationally manageable cases

(i.e., solvable in polynomial time) (Rothkopf, Pekeč & Harstad 1998). The au-

thors state, while not computationally manageable in general, many allocation

problems can be solved using commercial mixed-integer-linear programming op-

timizers (Andersson, Tenhunen & Ygge 2000). The proposed protocol is budget

balanced, though it is neither individually rational (producers can obtain inputs

without the possibility to use it), nor incentive compatible.

Regarding communication complexity, one-shot combinatorial auctions es-

CHAPTER 2. STATE OF THE ART 79

tablish optimal allocations with the minimal set of agreements. One dialogue

move (message) is required by each agent to submit its combinatorial bid. The

central auctioneer then sends a message to each agent, to inform it about the

allocation outcome.

Walsh & Wellman (2003) present a decentralized protocol for supply chain

formation based on auctions – SAMP-SB. Although this approach suggests dif-

ferent, decentralized auctions for every traded product, it requires mediators

(auctioneers) that determine allocation outcomes. That is, a coordinating en-

tity is required for each traded product, though the authors do not give details

about this entity. Interdependencies between different auctions are not coordi-

nated – producer agents place bids on output goods before they have received

commitments on input goods (Walsh & Wellman 2003, p. 527). Thus, the

SAMP-SB protocol cannot consider service dependencies.

To address this issue, and therewith individual rationality of the mecha-

nism, the authors propose an extension to the SAMP-SB with decommitments –

SAMP-SB-D. This protocol allows producer agents to decommit (at no penalty

or fee) from agreements, for which production dependencies are not met. These

decommitments are applied recursively to producer agents affected by other

producer agents along the supply chain. Therefore, the SAMP-SB-D protocol

makes auction bids non-binding; it avoids negative surplus for agents where

production dependencies are not met, and is individually rational. There is the

possibility for agents to manipulate bids and thus SAMP-SB-D is not incentive

compatible. The protocol cannot enforce that only producer agents with unmet

dependencies decommit from agreements (Walsh & Wellman 2003, p. 531).

The allocation complexity of the SAMP-SB(-D) protocols’ auctions is in

P, since bids comprise non-combined (i.e., ‘additive-OR’) quantity-value pairs.

These can be processed as if they where separate bids from different agents. Re-

garding communication complexity, the SAMP-SB protocol may need a number

of bids that is exponential in network size (i.e., number of agents plus number of

products) before it terminates. In addition to that, the SAMP-SB-D protocol

requires additional messages for decommitments.

2.3.7 Service network formation with auctions

Vulkan & Jennings (2000) consider an allocation approach for the supply of

services, i.e., service network formation. They present an English auction pro-

tocol, modified for the provision of services. A protocol for auctions arranged

by the service providing agents, if the service seeking agents fail to do so, is

proposed. Similar to this thesis, Vulkan & Jennings (2000) focus on two types

CHAPTER 2. STATE OF THE ART 80

of agents, representing different organizations: Service-seeking agents (i.e., cus-

tomer agents) and service-providing agents (i.e., SP agents). However, the au-

thors neither assume that services can be re-sold, nor that services are utilized

to produce value-added services to customers along service network tiers.

The proposed protocol constitutes an extension of the standard English

auction to a multi-attribute auction (Bichler 2000). That is, besides the price,

multiple additional service parameters are considered. The service-seeking cus-

tomer agents weight valuations for service parameters (including the service

price) differently. The service customer acts as an auctioneer and announces

auction details to SP agents.

If the customer agent fails to initiate an auction, or if further details need to

be negotiated after the auction, another protocol is initiated by the SP agents.

Here, the SP agent that is approached by the customer agent and is not satisfied

with a one-to-one negotiation (e.g., if communication is costly), initiates a ‘pre-

auction’ protocol, in which SP agents compete for negotiation with the customer

agents. The winning SP agent sends a take-it-or-leave-it offer for the service

to the customer agent. The other SP agents do not interact with the customer

agent, and receive payments from the winning agent for their cooperation.

The approach suggested by Vulkan & Jennings (2000) constitutes distributed

allocation. Service dependencies are not considered, as a re-sale of services is

not taken into account. The computational complexity of winner determina-

tion is in P, since the auctioneer agent just has to calculate the utility of every

offer received. The mechanism is budget balanced and individually rational,

but not incentive compatible. The communication complexity depends on the

increments of the English auctions, but is expected to be significantly lower as

compared to multiple one-to-one negotiations.

Preist, Bartolini & Byde (2003) present an algorithm for decision making

service composition agents. These agents buy component services in a set of

English auctions, and sell composite services in reverse English auctions. The

agents maintain a probabilistic model of the closing prices, based on past auc-

tions. The authors present an algorithm to calculate the expected utility of

bundled bids for any subset of auctions. To reduce the computational com-

plexity, a simplified algorithm that does not assess any subset of auctions, is

proposed.

Since they assume English auctions, the algorithms can be applied to agents

participating in centralized, as well as distributed allocations. Service depen-

dencies are considered and the probability of overcommitments can be mini-

mized, though probabilistic approaches cannot guarantee the avoidance of over-

CHAPTER 2. STATE OF THE ART 81

commitments. The approach does not include any alterations to a negotiation

protocol; the allocation mechanism properties are those of standard English

auctions.

2.3.8 Summary and research gap

Table 2.5: Requirement fulfillment of related approaches.

(= fulfilled, G# = partly fulfilled, # = not fulfilled)

d
is

tr
ib

u
te

d
a
ll

o
ca

ti
o
n

se
rv

ic
e

d
ep

en
d

en
ci

es

al
lo

ca
ti

ve
effi

ci
en

cy

in
ce

n
ti

ve
co

m
p

at
ib

il
it

y

in
d

iv
id

u
al

ra
ti

o
n

a
li

ty

b
u

d
ge

t
b

al
an

ce

al
lo

ca
ti

on
co

m
p

le
x
it

y

Bo & Lesser (2010) # # # P
Endriss et al. (2006) G# G# # NP
Nguyen & Jennings (2005) # # # # P
Walsh et al. (2000) # # # NP
Walsh & Wellman (2003), SAMP-SB G# # # # P
Walsh & Wellman (2003), SAMP-SB-D G# # # P
Vulkan & Jennings (2000) # # # P
Preist et al. (2003) G# # # P
This work # P

Existing approaches for distributed allocation exist, but do not fulfill the

identified requirements. The generic allocation approaches do not provide con-

crete mechanism details, and thus cannot be assessed regarding the require-

ments (e.g., (Sandholm & Lesser 2001, Parkes & Shneidman 2004)).

Table 2.5 shows the requirement fulfillment of related research that propose

concrete mechanisms for resource allocation. All approaches are budget bal-

anced, but only Walsh et al. (2000) and Walsh & Wellman (2003) can avoid

overcommitments. However, the former approach is not distributed, and the

latter is not individually rational. SAMP-SB-D (Walsh & Wellman 2003) can

be applied to avoid the consequences of overcommitments, though the proto-

col makes auction bids non-binding, is not incentive compatible, and requires

intermediaries for the allocation for each product.

The distributed approaches Bo & Lesser (2010), Nguyen & Jennings (2005),

and Vulkan & Jennings (2000) cannot consider service dependencies. Endriss

et al. (2006) assume that any agent involved in the production of a service would

CHAPTER 2. STATE OF THE ART 82

participate in a single agreement, which contradicts the multi-tier characteristic

of the SN. The approach of Preist et al. (2003) can minimize the probability

of overcommitments, but cannot avoid them. In addition, these approaches are

not incentive compatible.

The review shows that a research gap exists in the area of multiagent re-

source allocation which considers the distributed nature of SNs and avoids over-

commitments. There is no approach that provides an appropriate allocation

mechanism which constitutes an individually rational, budget balanced, incen-

tive compatible polynomial time heuristic. This thesis proposes a multi-tier

resource allocation protocol that avoids overcommitments by SPs, does not re-

quire central entities for coordination, is individually rational, budget balanced,

incentive compatible for SPs, and has polynomial complexity.

Chapter 3

Design

This chapter provides the proposed protocol. First, the protocol is described,

based on the game-theoretic model that was introduced in chapter 2. Second,

the protocol is formally specified by using two techniques for protocol specifica-

tion, UML sequence diagram (OMG 2011b) and Promela (Holzmann 1991).

Third, an implementation of the protocol in a MAS is presented, which will be

used for the simulation study in the succeeding chapter.

3.1 Game-theoretic protocol model

The protocol model is based on the formal framework presented in section

2.1.3.2.3. Supply and demand in SNs are allocated in sealed-bid second-price

reverse service auctions in each tier: The bidding agents privately transfer their

bids to the auctioneer, the lowest bidder wins and receives the payment of

the second lowest bid (Vickrey 1961). This research analyzes three different

bidding policies for SPs. Further, it assumes that the number of bidding agents

is unknown to the bidders, and there is no collusion among bidding agents

(Robinson 1985, Smith 1989).

The proposed protocol is defined as follows:

• Customer agents’ offers otij are announced to SP agents which can recur-

sively transfer own offers ot`m to SP agents in the next tier.

• SP agents submit binding bids bt`m to their customers, considering bids

btmn received from SP agents in the next tier.

• SP agents are informed about the acceptance of the bids they have pro-

83

CHAPTER 3. DESIGN 84

vided and receive second-price payments (cf. Vickrey 1961), i.e.,

ψt`m =

minm 6=n b
t
`n if bt`m < minm 6=n b

t
`n,

0 otherwise.

where minm6=n b
t
`n denotes the second highest bid.

For the composition of the SP agents’ bids – which can be based on the

utilization of either internal (own) or external (from other SPs) resources – this

research investigates three different bidding policies: internal resources first

(IRF), external resources first (ERF), and best price resources only (BPRO).

Customer agents accept bids if and only if the provided service is produced

to the full extend requested; i.e., customer agents do not accept the partial

fulfillment of their requests.

Using the IRF bidding policy, SP agents try to establish contracts for their

own resources first. Consequently, they request sub-services from providers in

the next tiers only if the unallocated own resource capacity is insufficient to ful-

fill a customer agent’s request. Thus, SP agents request sub-services exceeding

the own resource capacity. If both own and external capacity are insufficient to

fulfill a customer agent’s request, SP agents submit bids on a partial fulfillment

of the request, utilizing as many resources as possible. Therefore, downstream

SP agents are able to combine partial bids to fulfill a customer agent’s request

even if none of the SP agents is able to fulfill the request using the own resources

only. Formally, the SP agents’ bidding function for the IRF bidding policy is

defined as

bIRF (sij)
t =

cj(sij) if wij +
∑t

t′=0

∑
ah∈AC

whjx
t′
hj ≤Wj ,

cj(s
′
ij) + btjk otherwise,

with s′ij such that w′ij = Wj −
∑t

t′=0

∑
ah∈AC

whjx
t′
hj and wjk = wij −w′ij .

In contrast, using the ERF bidding policy, SP agents try to outsource as

much of a customer agent’s request as possible. Similarly to the IRF bidding

policy, these SP agents combine partial bids and supplement received bids with

utilization of own resources to arrive at the capacity required to fulfill the

customer agent’s request if possible. If both received bids and the SP agent’s

own capacity are insufficient to fulfill the customer agent’s request, the SP

agents submit partial proposals as for the IRF bidding policy. Formally, the

SP agents’ bidding function for the ERF bidding policy is defined as

CHAPTER 3. DESIGN 85

bERF (sij)
t =

btjk if wjk = wij ,

cj(s
′
ij) + btjk otherwise,

with s′ij such that w′ij = min(Wj −
∑t

t′=0

∑
ah∈AC

whjx
t′
hj , wij − wjk).

The BPRO bidding policy avoids the utilization of non-best price (lowest

marginal cost) resources. Thus, the SP agents compare the marginal cost which

they have to pay to SP agents in the next tier (i.e., second prices) with the

internal marginal cost of utilizing their own resources. Consequently, the SP

agents using the BPRO bidding policy combine first-price bids to submit bids

themselves if and only if the second price is below their internal cost. Obviously,

the SP agents are more likely to submit partial bids using the BPRO bidding

policy, as compared to the IRF and ERF bidding policies. However, the BPRO

bidding policy allows to submit bids with the lowest possible prices. Formally,

the SP agents’ bidding function for the BPRO bidding policy is defined as

bBPRO(sij)
t =

btjk if
bjk
wjk

<
cij
wij
,

cj(s
′
ij) otherwise,

with s′ij such that w′ij = min(Wj −
∑t

t′=0

∑
ah∈AC

whjx
t′
hj , wij).

3.2 Protocol specification

The game-theoretic protocol model defines the behavior of agents and their

bidding policies. Implementing the protocol in a MAS requires a formal spec-

ification that defines message types and message sequences. For this purpose,

interaction protocol specification techniques are available. The FIPA Contract

net interaction protocol (CNP) (FIPA 2002b) – the FIPA interpretation of the

original Contract net protocol proposed by Smith (1980) – provides a baseline

protocol for resource allocation that can be enriched by recursion, distributed

winner determination, and a specific allocation mechanism.

The proposed protocol allows subcontracting activities by the participants;

i.e., a participant can evaluate if subcontracting is possible and feasible in ad-

vance to making binding proposals. The proposed interaction protocol is de-

noted as Multi-tier contract net protocol (MTCNP), since the protocol enables

coordinated interactions over multiple service network tiers. This means that

the protocol allows consideration of agreement dependencies over multiple tiers

for subcontracting.

CHAPTER 3. DESIGN 86

Adopting the existing CNP requires to extend its communicative acts (per-

formatives) (FIPA 2002a). The cfp (call for proposals) can include customer

requests which (i) explicitly require multiple services (e.g., storage and analy-

sis services) or (ii) can be realized with a composite service (e.g., data mining

service), potentially composed at run time. To calculate the service level of a

composite service, service parameter aggregation definitions have to be defined

for each pair of service parameter and composition pattern (section 2.1.3.2.2).

The inform-result message type in the CNP does not relate to separate FIPA

communicative acts but to the general inform act. Once an agent has com-

pleted one or more tasks, it sends a message to the initiator in the form of

an inform-done; more information about the execution can be provided by an

inform-result. In case of an inform-result message, the agent has to aggregate

the results of the single services according to the parameter aggregation def-

initions. For example, the price of the data mining service can be calculated

by summing up the prices of the single services (e.g., storage and analysis ser-

vices) and the service provider’s profit margin. In contrast, the throughput

of the data mining service is calculated by the maximum throughput of the

constituent services, since these are executed in sequence.

3.2.1 UML specification

Figure 3.1 shows the sequence diagram of the protocol’s interactions. It consists

of three encapsulated interaction sequences:

1. The MTCNP-collect-proposals interaction sequence includes collecting the

proposals (bids) by the initiator (customer) from the participants (SPs).

Collecting the proposals can also include subcontracting.

2. If and only if the participant has made a proposal, it is notified in the

MTCNP-acceptance-notification interaction sequence about the allocation

result.

3. If and only if the participant’s proposal is accepted, the MTCNP-execution

interaction sequence is performed. It includes the provision of information

by the participants about the outcome of the execution of all allocated

actions, which can also involve multiple tiers as for the allocation.

Details on the referenced interactions are given in the following.

CHAPTER 3. DESIGN 87

participant :initiator :

sd: Multi−tier contract net protocol

ref

MTCNP−collect−proposals

opt

opt

ref

MTCNP−execution

[proposal accepted]

ref

MTCNP−acceptance−notification

[proposal made]

Figure 3.1: Multi-tier contract net protocol sequence diagram.

The MTCNP-collect-proposals interaction sequence is shown in figure 3.2.

The initiator in tier λ sends a cfp message to the participants on the same

tier. Optionally, if (i) participants exist in tier λ + 1 which are potentially

capable of executing actions or sub-actions described in the cfp in tier λ and

(ii) (one or more of) the tier λ participants prefer to subcontract actions or

sub-actions in tier λ + 1 (acting as tier λ + 1 initiators), the MTCNP-collect-

proposals interactions are recursively executed in tier λ+1. The recursion can be

extended to an arbitrary number of tiers. Similarly to the CNP (FIPA 2002b),

participants receiving the cfp generate n responses. The tier λ participants may

decide that they refuse to propose, resulting in i = n− j refuse act responses.

Alternatively, j participants propose to perform the task, specified as propose

acts.

@t is a time observation which defines t as the point in time when the cfp

message is sent. d refers to the deadline duration which is also communicated

in the cfp message. Thus, the constraints {t . . . t+ d} specify that the refuse or

propose messages should be received by the initiator in that interval (Haugen

& Runde 2009).

CHAPTER 3. DESIGN 88

tier λ+1 participant :tier λ participant / tier λ+1 initiator :tier λ initiator :

sd: MTCNP−collect−proposals

 .cfp

opt

[|Λ| > λ]

ref

MTCNP−collect−proposals

m

i

j

alt

 .refuse

 .propose

@t

{t..t+d}

{t..t+d}

Figure 3.2: MTCNP-collect-proposals sequence diagram.

The initiator evaluates the j proposals received and selects participants to

perform the tasks within the notification deadline duration nd; i.e., in the time

interval {t . . . t+nd}. nd is communicated to the participants in the cfp message.

The MTCNP-acceptance-notification interaction sequence, shown in figure 3.3,

covers informing the participants of the allocation result. The l participants of

the selected proposals are notified with an accept-proposal message, defining the

notification time nt in observation @nt. The remaining k participants receive

a reject-proposal message. The recursion is executed to the number of tiers in

which proposals were made (propose messages were sent).

The MTCNP-execution interaction sequence is shown in figure 3.4. Once

the subcontracted participants in tier λ + 1 have completed the tasks, they

send completion messages to the tier λ + 1 initiator in the form of an inform-

done message or a more explanatory version in the form of an inform-result

message. If a participant fails to complete one or more tasks, a failure message

is sent. Similarly, the tier λ participants (λ + 1 initiators) report the state of

the execution of tasks to the tier λ initiator. The result messages should be

received by the initiators within the execution deadline duration ed; i.e., in

the time interval {nt . . . nt+ ed}. The definition of ed is part of the agreement

between the initiator and the participant. This definition can either be included

in the cfp message or in the participants’ proposals.

CHAPTER 3. DESIGN 89

tier λ+1 participant :tier λ participant / tier λ+1 initiator :tier λ initiator :

sd: MTCNP−acceptance−notification

 .reject−proposal

 .accept−proposal

k

l

alt

opt

[|Λ| > λ]

ref

MTCNP−acceptance−notification

{t..t+nd}

{t..t+nd} @nt

Figure 3.3: MTCNP-acceptance-notification sequence diagram.

tier λ+1 participant :tier λ participant / tier λ+1 initiator :tier λ initiator :

sd: MTCNP−execution

loop (1,|actions|)

opt

[|Λ| > λ]

ref

MTCNP−execution

alt

[task execution results reported]

 .failure

 .inform−done

 .inform−result

{nt..nt+ed}

{nt..nt+ed}

{nt..nt+ed}

Figure 3.4: MTCNP-execution sequence diagram.

CHAPTER 3. DESIGN 90

3.2.2 PROMELA model

Promela is a language for the specification and verification of protocol valida-

tion models – the complete and consistent sets of rules to govern interactions in

distributed systems (Holzmann 1991). A protocol validation model can then be

verified by a model checker (Clarke et al. 1999) such as Spin (Holzmann 1997);

Spin accepts protocol specifications in Promela and correctness claims in lin-

ear temporal logic (LTL). Promela and Spin have been successfully used in

prior research on specifying and verifying interaction protocols (e.g., (Giordano

et al. 2007)). To use these techniques, the behavior of the participants must be

described in states for every (alternative) interaction. Therefore, this research

constructs finite state machines (FSMs) for the participants, based on the UML

sequence diagrams. This section first presents these FSMs, and then formulates

the Promela model.

Figure 3.5 shows the FSM for the initiator, starting in state s1. On the

initiator’s side, state s2 is reached after the cfp message has been sent. If the

participant refuses to propose before the corresponding deadline, the end state

is reached by the initiator. If a proposal is received by the initiator before

the deadline, the initiator reaches state s3. If neither a refuse nor a propose

message is received by the initiator during the deadline duration d, the protocol

terminates with a timeout.

 cfp

 propose

 refuse

 proposal-timeout

 accept-proposal

 reject-proposal

 notification-timeout

 failure

 inform-done

 inform-result

 execution-timeout

Start s1

s2 s3 s4

end

timeout

Figure 3.5: Initiator FSM.

If the proposal is accepted by the initiator within the notification deadline,

state s4 is reached. Similarly, the end state is reached if the proposal is rejected

by the initiator within the notification deadline. Otherwise, a timeout occurs if

neither a accept-proposal nor a refuse-proposal message is sent by the initiator

CHAPTER 3. DESIGN 91

during the notification deadline duration nd.

From state s4, either the end state is reached by receiving the execution

result or failure from the participant within the execution deadline duration ed

or an execution timeout occurs.

Figure 3.6 shows the FSM for the participant. On the participant’s side,

receiving a cfp message leads to state s2, in which subcontracting with partici-

pants in the next tier is possible. Therefore, a participant in tier λ can act as

initiator in tier λ+ 1 and send a cfp message to tier λ+ 1 participants, leading

to state s3 for the participant in tier λ. In state s3, the participant processes

the response of the tier λ + 1 participants to the cfp message and proceeds to

state s4 if the response to the cfp is received before the deadline duration d.

Otherwise, a proposal timeout occurs. If the participant in tier λ does not send

a cfp message in tier λ+ 1, state s4 is reached.

 cfp subcfp

 !subcfp

 subpropose, subrefuse

 proposal-timeout

 propose refuse proposal-timeout

 reject-proposal

 accept-subproposal accept-proposal

 notification-timeout

 subfailure, subinform-done, subinform-result

 execution-timeout failure, inform-done, inform-result execution-timeout

Start s1

s2

s3

s4

s5

s6s7

end timeout

Figure 3.6: Participant FSM.

If the participant in tier λ refuses to propose – potentially after processing

the result of subcontracting activities – to the initiator, the end state is reached.

If the participants sends a proposal, state s5 is entered. If the participant

neither sends a refuse nor a propose message during the deadline duration d,

the protocol terminates with a timeout.

Rejection of the proposal by the initiator leads to the end state for the

participant. If the participant in tier λ did not collect proposals from tier λ+ 1

participants, the acceptance of the proposal by the initiator leads to state s7.

Otherwise, the acceptance of the subproposal from tier λ+1 by the participant

in tier λ leads to state s6. If the allocation notification is not communicated

during the notification deadline duration nd, the protocol terminates with a

timeout.

CHAPTER 3. DESIGN 92

In state s6, the result of the execution in tier λ + 1 is processed. Either

state s7 is reached by receiving the execution result or failure by the initiator

in tier λ + 1 (participant in tier λ) within the execution deadline duration ed,

or an execution timeout occurs.

The result of the execution in tier λ is processed in state s7. In state s7,

an execution timeout can also occur, leading to a protocol termination with a

timeout. If the execution result or failure is reported on both tiers λ and λ+ 1,

the end state is reached.

The interaction states of the protocol’s participants – defined in the FSMs

– are translated to Promela to be verified by model checking. In contrast to

FSMs, Promela allows concurrency and recursion. In addition, incoming and

outgoing messages can be differentiated. The Promela model of the MTCNP

is shown in listing 3.1. An arbitrary recursion depth cannot be checked by

Spin. Thus, the model has been limited to seven tiers (listing 3.1, line 1) due

to memory requirements for checking the proposed model.

Listing 3.1: MTCNP Promela model.

1 #define MAXDEPTH 7

2 mtype = { cfp , r e fu s e , propose , r e j e c t p r o p o s a l ,

a ccept proposa l , f a i l u r e , inform done , i n f o r m r e s u l t }
3 int currentDepth = 0 ;

4 int nes tedProposa l s = 0 ;

5 int s l a s [MAXDEPTH] = 0 ;

6 bool terminated =0;

7 in i t {
8 atomic{
9 chan t o P i n i t = [1] of {mtype} ;

10 chan t o I i n i t = [1] of {mtype} ;

11 chan toSubPinit = [1] of {mtype} ;

12 chan t o S u b I i n i t = [1] of {mtype} ;

13 run i n i t i a t o r (toPin i t , t o I i n i t) ; run p a r t i c i p a n t (toPin i t ,

t o I i n i t , toSubPinit , t oSubI in i t , 0) ;

14 }
15 }
16 proctype i n i t i a t o r (chan toP , t o I) {
17 mtype ca ;

18 s1 : toP ! c fp ; goto s2 ;

19 s2 : t o I ? ca ;

20 i f

21 : : (ca == r e f u s e) −> goto end ;

22 : : (ca == propose) −> goto s3 ;

23 f i ;

CHAPTER 3. DESIGN 93

24 s3 :

25 i f

26 : : 1 −> toP ! r e j e c t p r o p o s a l ; goto end ;

27 : : 2 −> toP ! a c c ep t p ropo sa l ; goto s4 ;

28 f i ;

29 s4 : t o I ? ca ;

30 i f

31 : : (ca == f a i l u r e) −> goto end ;

32 : : (ca == inform done) −> goto end ;

33 : : (ca == i n f o r m r e s u l t) −> goto end ;

34 f i ;

35 end : terminated =1; skip ;

36 }
37 proctype p a r t i c i p a n t (chan toP , toI , toSubP , toSubI ; int t i e r) {
38 mtype ca ;

39 bool nestedProp =0;

40 s1 : toP? ca ;

41 i f

42 : : (ca == cfp) −> goto s2 ;

43 : : else goto end ;

44 f i ;

45 s2 : assert (nestedProp==0) ;

46 i f

47 : : 1 −> goto s4 ;

48 : : (2 && currentDepth < MAXDEPTH−1) −>
49 prog r e s s : atomic { chan toSubI i = [1] of {mtype} ;

50 chan toSubPi = [1] of {mtype} ;

51 run p a r t i c i p a n t (toSubP , toSubI , toSubPi , toSubI i , t i e r +1) ;

52 toSubP ! c fp ; currentDepth++;

53 assert (currentDepth < MAXDEPTH) ;

54 } goto s3 ;

55 f i ;

56 s3 : toSubI ? ca ;

57 i f

58 : : (ca == r e f u s e) −> goto s4 ;

59 : : (ca == propose) −> nestedProp =1; nes tedProposa l s++; goto

s4 ;

60 f i ;

61 s4 :

62 i f

63 : : 1 −> t o I ! r e f u s e ;

64 i f

65 : : (nestedProp == 1) −> toSubP ! r e j e c t p r o p o s a l ; goto end ;

CHAPTER 3. DESIGN 94

66 : : else goto end ;

67 f i ;

68 : : 2 −> i f

69 : : ((nestedProp == 1) | | (t i e r==MAXDEPTH−1)) −> t o I ! propose ;

goto s5 ;

70 : : else t o I ! r e f u s e ; goto end ;

71 f i ;

72 f i ;

73 s5 : toP? ca ;

74 i f

75 : : (ca == r e j e c t p r o p o s a l) −>
76 i f

77 : : (nestedProp == 1) −> toSubP ! r e j e c t p r o p o s a l ; goto end ;

78 : : else goto end ;

79 f i ;

80 : : (ca == accep t p ropo sa l) −> s l a s [t i e r]++;

81 i f

82 : : (nestedProp == 1) −> toSubP ! ac c ep t p ropo sa l ; goto s6 ;

83 : : else goto s7 ;

84 f i ;

85 f i ;

86 s6 : assert (nestedProp==1) ; toSubI ? ca ;

87 i f

88 : : (ca == f a i l u r e) −> goto s7 ;

89 : : (ca == inform done) −> goto s7 ;

90 : : (ca == i n f o r m r e s u l t) −> goto s7 ;

91 f i ;

92 s7 :

93 i f

94 : : 1 −> t o I ! f a i l u r e ; goto end ;

95 : : 2 −> t o I ! inform done ; goto end ;

96 : : 3 −> t o I ! i n f o r m r e s u l t ; goto end ;

97 f i ;

98 end : skip ;

99 }

3.3 Implementation

This section presents the implementation of the proposed protocol and the

simulation system. It elaborates on the used agent framework Jadex and the

implementation of the protocol as a reusable library. Implementation details

are given about the abstract types of the participating agents and the different

CHAPTER 3. DESIGN 95

concrete agent types, i.e., customer agents and SP agents. Finally, the agent-

based simulation system that will be used for the experimental evaluation, is

described.

3.3.1 BDI agent system

This research adopts the belief-desire-intention (BDI) approach (Bratman, Is-

rael & Pollack 1988) for implementing the agents using the protocol. First, the

architectural foundations of BDI are described. Second, the Jadex BDI agent

system is selected as the underlying framework of the implementation.

3.3.1.1 Belief-desire-intention architectures

The BDI model is the most common approach for deliberative (or hybrid)

agents. These agents can deliberate over symbolic knowledge to reach given

goals (Wooldridge 2000). The BDI architecture facilitates goal-driven system

behavior. The model consists of the following concepts: beliefs capture infor-

mational attitudes realized as a data structure containing current facts about

the world. Desires capture the motivational attitudes that form concrete goals

if an agent has potentially the chance to fulfill the desire. Intentions capture

the deliberative attitudes realized by reasoning to select appropriate actions to

achieve given goals or to react to particular situations.

A BDI agent is equipped with sensors to assist it on its environmental

awareness, and effectors to impact the environment by actions. A reasoning

mechanism between the sensor input and the effector output deduces the nec-

essary actions for achieving the agent’s goals. The agent acquires new beliefs

in response to changes in the environment and through the actions that it per-

forms as it carries out its intentions (Bratman et al. 1988). Thus, the BDI

agents allow reasoning regarding decisions to determine which – possibly con-

flicting – goals can be achieved and how the agent is going to achieve these

goals.

Concrete architectures which follow the BDI approach include hybrid (e.g.,

procedural reasoning system, PRS (Ingrand, Georgeff & Rao 1992)) and delib-

erative agent architectures (e.g., intelligent resource-bounded machine architec-

ture, IRMA (Bratman et al. 1988)) (Wooldridge & Jennings 1995).

3.3.1.2 Jadex BDI agent system

The Jadex BDI agent system (Pokahr et al. 2005) is based on the BDI ap-

proach. The computational reasoning model of Jadex follows the PRS archi-

CHAPTER 3. DESIGN 96

tecture (Ingrand et al. 1992), a specific architecture for BDI systems. Jadex is

implemented in the Java programming language.

All incoming messages and goal events constitute input to the reaction and

deliberation mechanism in Jadex, which is common for PRS systems. This

mechanism dispatches the events received to plans selected from the plan li-

brary. For the representation of beliefs, Jadex employs an object-oriented rep-

resentation; arbitrary Java objects and sets of objects can be stored in named

beliefs or belief sets. Jadex provides a set-oriented query language for operations

on the beliefbase. Further, beliefs can be actively and conditionally monitored

to trigger events or create and terminate goals.

As Jadex implements the BDI model, goals play a central role. In contrast

to other BDI systems, goals in Jadex are explicitly represented in a goalbase.

Thus, goals are accessible by the reasoning engine, as well as by plans which

can actively monitor and alter goals. Goals are either adopted as top-level goals

or sub-goals. If a goal is created from a plan, it is adopted as a sub-goal of the

plan’s root goal. The validity of goals can be expressed in terms of conditions

on beliefs, i.e., goals can be specified to be valid only when certain conditions

hold.

Jadex provides four different types of goals. Perform goals are directly

associated with the execution of actions. These goals are considered to be

reached if the specified actions are performed, independent of their outcomes.

Achieve goals specify desired external effects to be reached; alternative plans

can be provided how these goals can be reached. Query goals are similar to

achieve goals, though the desired effects to be reached refer to internal effects

in terms of availability of information. Maintain goals are utilized to sustain

a desired state. That is, corresponding plans are executed to reestablish the

desired state whenever the state has been changed to an undesired condition.

Jadex separates plans into a head and a body part. A plan’s head specifies

the conditions when a plan may be selected for execution. This includes events

and goals handled by the plan, preconditions of its execution, as well as context

conditions which must hold during plan execution. A plan’s body provides a

pre-defined sequence of actions, written in the Java programming language,

which is executed when the plan is selected for execution.

Capabilities define a grouping of beliefs, goals, plans, and events which

are required for a certain functionality (e.g., for interactions in accordance to

a specific protocol): Jadex capabilities encapsulate functionalities in reusable

modules which can be linked by import and export mechanisms (Pokahr et al.

2005).

CHAPTER 3. DESIGN 97

3.3.2 Protocol implementation

The MTCNP has been implemented as a reusable capability for the Jadex BDI

agent system version 0.96 on basis of the protocol capability included in the

Jadex release. The MTCNP capability contains beliefs for the message and

execution timeouts, a message filter to decide which messages are handled by

the capability, as well as a data structure to store the relationships of proposals

received and sent, i.e., the proposal compositions belief is used to determine the

proposals which have been used to create a proposal sent to a customer in a

downstream tier.

3.3.2.1 Initiator

On the initiator’s side without downstream customers, the mtcnp initiate a-

chieve goal constitutes the top-level goal of a MTCNP interaction. This goal is

dispatched primary by the customer agents to initiate the interaction with SPs.

Goal parameters include the cfp object as an input parameter, specifying the

service requested, and a result object as an output parameter, giving details

about the result of the service provision (e.g., service level). The mtcnp initiate

goal can be dispatched from an arbitrary plan providing the cfp object, as well

as receiving SPs.

Once the customer has received proposals, the mtcnp evaluate proposals

query goal – which determines the acceptable proposals – is instantiated. Thus,

it takes proposals as an input parameter and provides the acceptables as an out-

put parameter. This is realized by an evaluator plan implementation which is

mapped to the mtcnp evaluate proposals query goal. The result of the service

provision is not handled by a separate goal but by the mtcnp initiate achieve

goal as an output parameter.

3.3.2.2 Participant

On the participant’s side, the mtcnp make proposal query goal constitutes the

top-level goal of a MTCNP interaction. It is adopted as soon as a participating

agent receives a cfp message. Hence, it includes the cfp as an input parameter

and the proposal as an output parameter. Since proposals can be constructed

utilizing received proposals from the next tier, the mtcnp make proposal query

goal also includes a parameter to store the nested proposals received (i.e., the

parameter nested proposal messages). For creating the actual proposal object,

a concrete, domain-dependent implementation of at least one corresponding

plan is required which is mapped to the mtcnp make proposal query goal. This

CHAPTER 3. DESIGN 98

plan is also responsible for initiating the MTCNP interactions to the next tier.

The MTCNP capability provides the mtcnp collect proposals achieve goal

for this purpose. This goal is similar to the mtcnp initiate achieve goal, though

it (i) constitutes a sub-goal of the mtcnp make proposal query goal and (ii) does

not automatically result in the adoption of a mtcnp evaluate proposals query

goal, as the final decision of acceptance is performed by the customer of the

agent adopting the mtcnp collect proposals achieve goal. The plan implemen-

tations corresponding to this goal are thus not only responsible to initiate the

collection of proposals from the next tier, but also to construct concrete propos-

als sent to customers from the proposals received. The proposal compositions

belief is used to store the relationship of proposals sent and received.

Once the customer has evaluated the (composed) proposals, the partici-

pating agents are informed about the allocation’s result. This leads to adop-

tion of the mtcnp execute task achieve goal on proposal acceptance or the

mtcnp handle rejected proposal achieve goal on proposal rejection. For both

goals, the corresponding plan implementations have to handle the nested pro-

posals received if existent. Handling nested proposals is trivial in case of pro-

posal rejection: The implementation of the MTCNP capability includes func-

tionality to reject all nested proposals.

In case of proposal acceptance, the nested proposals that have been utilized

to construct the accepted proposal, have to be determined. The capability

defines the proposal compositions belief and the nested proposal messages goal

parameter for this task. The latter is mapped from the mtcnp make proposal

query goal to the mtcnp execute task achieve goal internally by the MTCNP

capability without requiring any additional, domain-dependent implementa-

tion for specific use cases. First, the nested proposals corresponding to the

accepted composed proposal are looked up, using the proposal compositions

belief data structure. Then, these proposals are used to determine the corre-

sponding proposal messages from the nested proposal messages goal parameter.

When the participating agent has determined the nested acceptables, it can

dispatch the mtcnp acceptance notification achieve goal as a sub-goal of the

mtcnp execute task achieve goal. The mtcnp acceptance notification achieve

goal uses the nested proposal messages, as well as the nested proposals as input

parameters.

The mtcnp acceptance notification achieve goal includes the results of the

provision of the sub-services as output parameters. Finally, the (composed)

result of all (nested) service provisions is forwarded to the mtcnp execute task

achieve goal via the mapped plan implementation and sent to the initiating

CHAPTER 3. DESIGN 99

agent by the capability.

3.3.3 Agent implementation

The agents have been implemented as Jadex agents that are independent of

domain-specific particularities. Thus, this implementation can be specialized

for domain-specific resource allocation in multi-tier SNs. A generic agent is

provided for both customer and SP agents.

3.3.3.1 Customer agent

The customer agent in Jadex has beliefs about its demand for services, the

valuation for these services, and the potential SPs. In addition, the customer

agent has beliefsets of established agreements with SPs. Since the customer

agent only interacts with SPs and does not offer services itself, this agent is not

aware of the multi-tier nature of the SN.

Once a customer agent is started, it tries to establish contracts with SPs

until its demand for services is fulfilled. Therefore, it adopts the mtcnp initiate

achieve goal, giving the service specifications in the cfp message.

The mtcnp evaluate proposals query goal evaluates the proposal messages

received and determines the acceptable proposals received via one of its associ-

ated plan implementations, i.e., via evaluation plan instances. As the proposals

received are binding for SP agents, the customer agent adds corresponding

agreements to its beliefset upon determination of acceptables.

Since the costs for the service provisions are also determined via the estab-

lished agreements, the customer agent is directly able to compute the resulting

utility of established agreements. The capability then informs the SPs about

the outcome of the allocation and includes the results of the service provisions

in an output parameter of the mtcnp initiate achieve goal.

3.3.3.2 Service provider agent

The SP Jadex agent has beliefs regarding its available capacity, the cost of

capacity utilization, and the potential SPs in the next tier. The SP agent

has a beliefset of established agreements with customers and other SP agents.

Further, the SP agent’s current bidding policy is represented in a belief. The

allocation interaction on SP side is initiated by cfp messages received from

customer agents.

The receipt of a cfp message – which includes the requested services’ spec-

ifications – leads to an adoption of the mtcnp make proposal query goal by

CHAPTER 3. DESIGN 100

the SP agent. Depending on a SP agent’s bidding policy, it requests different

sub-services from SP agents in the next tier.

Using the IRF bidding policy, the SP agent tries to provide the requested

services, using as many of its own resources as possible. If it is able to fulfill the

customer requests without external resources, the SP agent does not request

additional sub-services from SPs in the next tier. In contrast, if the SP agent’s

own resources are either insufficient or incapable to provide the requested ser-

vices, the SP agent submits cfp messages to the SPs in the next tier by adopting

the mtcnp collect proposals achieve goal, requesting the sub-services which are

essentially required to fulfill the customer’s demand.

The ERF bidding policy differs from the IRF bidding policy in the priority

of external and internal resources. Thus, a SP agent using the ERF bidding

policy tries to fulfill the customer requests, using as many procured sub-services

as possible by adopting the mtcnp collect proposals achieve goal. If it is able

to provide the requested services using external resources from SPs in the next

tier, the SP agent does not utilize its own resources. However, if the sub-

services offered by SP agents in the next tier are insufficient or incapable to

fulfill a customer agent’s request to the full extend, the SP agent using the

ERF bidding policy uses its own resources to create a proposal which fulfills

the customer agent’s request to the largest extend possible.

The BPRO bidding policy is different from the IRF and ERF bidding poli-

cies in terms of a combination of internal and external resources, as it avoids

this combination. A SP agent using this bidding policy submits cfp messages

to the SPs in the next tier, using the same service specification it receives from

customers by adopting the mtcnp collect proposals achieve goal. It first requests

the whole service as a sub-service, though this service can also be provided by

multiple SPs in the next tier by a combination of sub-services. Second, the

procurement costs are compared to the cost of utilizing the SP agent’s own re-

sources. Finally, the SP agent using the BPRO bidding policy submits proposal

messages to its customer agents, which include the alternative with the lowest

cost. On the one hand, this bidding policy ensures that only the cost-optimal

resources are utilized. On the other hand, this can lead to partial proposals in

terms of sub-services, which do not fulfill the customer agent’s request to the

full extend.

Independent of the bidding policy, once a proposal has been created, the

SP agent provides this proposal to the mtcnp make proposal query goal as an

output parameter. The proposal compositions belief is used to store the rela-

tionship of proposals sent and received. The MTCNP capability then handles

CHAPTER 3. DESIGN 101

the submission of the proposal to the customer agents.

The receipt of the acceptance notification by a SP agent leads to adop-

tion of the mtcnp execute task achieve goal on proposal acceptance or the

mtcnp handle rejected proposal achieve goal on proposal rejection. If the pro-

posal is rejected, all nested proposals are rejected by the MTCNP capability.

The proposal compositions belief and the nested proposal messages goal pa-

rameter are utilized to determine the nested proposals that have been used to

construct the accepted proposal. The SP agent determines nested acceptables

and dispatches the mtcnp acceptance notification achieve goal to inform the SPs

in the next tier about the allocation outcome.

The composed result of all direct and nested service provisions is forwarded

to the mtcnp execute task achieve goal via the mapped plan implementation

and send to the SP’s customer agents by the capability.

3.3.4 Simulation system architecture

The simulation system consists of a simulation manager agent, customer agents,

and SP agents based on the Jadex agent framework. The overall architecture of

the simulation system is shown in figure 3.7. The simulation manager is capable

of instantiating experiments with different parameters, reading the configura-

tion from simulation setup files.

Customer and SP agents are created and destroyed by the simulation man-

ager agent with help of the Jadex agent management system (AMS) agent,

which is responsible for creating and destroying agents in the Jadex agent sys-

tem. The simulation manager agent sends corresponding messages to the AMS

agent. These messages include details of the agent creation in terms of, e.g.,

the number of customer and SP agents, valuation functions, and cost functions.

The details can be passed to agents on creation as arguments to the agent

configuration.

Once all agents have been started, the resource allocation is conducted in

accordance to the MTCNP. The agents subsequently report the allocation out-

come, as well as their utility to the simulation manager agent. Finally, the sim-

ulation manager produces output files which include details about the agents’

utility, the utilitarian social welfare, established contracts, and allocation de-

tails for debugging purposes. To calculate the utility ratio of the distributed

allocation in comparison to the socially optimal allocations’ welfare, reference

values are computed using the CPLEX optimization engine (IBM 2011). The

socially optimal allocations’ welfare values are output in the simulation result

files.

CHAPTER 3. DESIGN 102

Figure 3.7: Simulation system architecture.

Chapter 4

Evaluation

This chapter states the evaluation of the proposed protocol. First, it validates

the protocol specification based on the formal, game-theoretic model. Second,

it verifies safety and liveness properties of the Promela model by means of

the model checker Spin. Third, it presents and discusses the results of the

simulation study that evaluates the protocol implementation.

4.1 Formal protocol analysis

This section evaluates the formal protocol specification, based on the game-

theoretic model, by means of proofs for (i) distributed allocation, (ii) service

dependencies (avoidance of overcommitments), and the proposed mechanism’s

properties: (iii) allocative efficiency, (iv) incentive compatibility, (v) individual

rationality, (vi) budget balance, and (vii) allocation complexity, in accordance

to the requirements (section 2.2.2).

4.1.1 Distributed allocation

Theorem 3. The proposed protocol allows for distributed resource allocation.

Proof. Customer agents ai ∈ AC send their offers to |ASP ,1| SP agents, which

respond with corresponding bids; i.e., in tier 1, there are at least |AC | auctions,

guided by the customer agents. In tier λ, |ASP ,λ| SP agents send their offers to

|ASP ,λ+1| SP agents in the next tier, which respond with corresponding bids;

i.e., in tier λ, there are at least |ASP ,λ| auctions, guided by the SP agents aj ∈
ASP ,λ. Therefore, the protocol allows for distributed resource allocation.

103

CHAPTER 4. EVALUATION 104

4.1.2 Service dependencies

In theorem 4, it is shown that the protocol avoids overcommitments (i.e., no

service is procured which cannot be used to produce another service for a cus-

tomer) as follows. Assume that service sij is included in the allocation (xtij = 1).

Then there has been a binding bid for this service by agent aj and the costs for

providing sij – including lower tier bids for services utilized to produce sij – are

less or equal to aj ’s bid. However, according to the protocol, aj submits a bid

if it has received bids for all required services on lower SN tiers. By recursion,

it can be concluded that there cannot be overcommitments in this case.

In the opposite case, sij is not included in the allocation (xtij = 0), there

is either no bid from agent aj to ai, or the bid is rejected. In the latter case,

aj can reject any corresponding bid on lower tiers, and thus no corresponding

service is allocated.

Theorem 4. The proposed protocol avoids overcommitments.

Proof. Let ai ∈ A, aj ∈ ASP . A necessary condition for xtij = 1 is that a

binding bid btij has been submitted. In addition, aj expects a positive utility

by submitting a binding bid btij if and only if it has received btjk∀sjk ∈ ϕ(sij),

such that btij ≥ cij +
∑

sjk∈ϕ(sij) b
t
jk with btjk < mink 6=` b

t
j`. That is, aj has

received binding bids for all services required for the provision of sij and the

total costs do not exceed the minimal payment from ai. If btij is accepted by

ai (xtij = 1), aj accepts btjk (xtjk = 1) with btjk < mink 6=` b
t
j`. By recursion, it

yields xt`m = 1∀s`m ∈ ϕ(sij) and by (2.1) it follows that zt(sij) = xt(sij) = 1.

If aj has either (i) not received btjk∀sjk ∈ ϕ(sij) such that btij ≥ cij +∑
sjk∈ϕ(sij) b

t
jk with btjk < mink 6=` b

t
j`, or (ii) btij is rejected by ai (xtij = 0), aj

rejects all btjk (xtjk = 0). By (2.1) it follows that zt(sij) = xt(sij) = 0.

4.1.3 Allocative efficiency

In theorem 5, it is proven that for a single customer the proposed protocol re-

sults in a utilitarian socially optimal allocation for non-substitutable resources.

Theorem 4 is used to eliminate overcommitments in this proof. Due to the

second-price payments, it is individually rational for SP agents to bid their true

marginal cost. Therefore, in each tier, the SP agent with the lowest bid, and

therewith the lowest marginal cost, is allocated. Since the valuation is given

and the costs for service provision are minimized, allocations are utilitarian

socially optimal for single user agents and non-substitutable resources.

Theorem 5. For a single customer request, the proposed protocol results in a

utilitarian socially optimal allocation for non-substitutable resources.

CHAPTER 4. EVALUATION 105

Proof. By theorem 4 it yields ztij = xtij . By assumption, collusion between SP

agents is excluded (section 2.1.3.2). As SPs receive the second-price payment, it

is individually rational for SPs to submit bids such that btij = cij+
∑

sjk∈ϕ(sij) b
t
jk

with btjk < mink 6=` b
t
j`. It follows btij =

∑
s`m∈ϕ(sij) c`m with c`m < minm 6=n c`n.

That is, the SPs with minimal costs are contracted along all service network

paths. As vij is given and costs are minimized, the allocation is utilitarian

socially optimal.

4.1.4 Incentive compatibility

It is shown in theorem 6 that the proposed protocol is incentive compatible for

SP agents; it is always rational for SP agents to bid their true marginal cost.

Theorem 6. The proposed protocol is incentive compatible for SP agents.

Proof. Let aj ∈ ASP be a service provider bidding on an offer from agent ai ∈ A
for service sij ∈ S and let cij be the total marginal cost for agent aj for the

provision of service sij . If ∃btik ∈ Bt : btik < cij , agent aj cannot gain positive

utility by submitting a bid btij , such that btij < btik∀ak ∈ ASP , since it would

win the reverse auction, but cost would exceed monetary compensation. If

@btik ∈ Bt : btik < cij , there is also no incentive for agent aj to submit a bid

btij < cij , since it would win the auction and receive the second-price payment

mink 6=j b
t
ik.

4.1.5 Individual rationality

In theorem 7, it is shown that participation in the protocol is individually

rational, i.e., no agent can obtain negative utility by participating. This results

from the avoidance of overcommitments, proven in theorem 4, which results in

zero penalty payments. Since SP agents bid their true marginal cost (theorem

6), and payments for service provision are never below the submitted bids, the

protocol is individually rational for SP agents. Customer agents never accept

bids higher than their valuation for the requested service and thus cannot receive

negative utility from participating.

Theorem 7. The proposed protocol is individually rational.

Proof. No SP agent can receive negative utility, since by theorem 4, it yields

ztij = xtij ∀ai, aj ∈ A, t ∈ T and therewith no penalty payments, since xtijρ
t
j(sij) =

0∀ai, aj ∈ A, t ∈ T . No SP agent aj ∈ ASP overbids its marginal cost, as shown

in theorem 6. Therefore, SP agents’ bids are equal to the marginal cost for

utilization of own resources and the procurement of lower tier services. Since

CHAPTER 4. EVALUATION 106

ψtij ≥ btij∀ai, aj ∈ A, t ∈ T , SP agents cannot receive negative utility from

participating. Customer agents do not have costs besides payments and do not

accept bids which exceed their valuation for a service. Thus, customer agents

also cannot receive negative utility from participating.

4.1.6 Budget balance

Theorem 8. The proposed protocol is budget balanced.

Proof. Since both ordinary payments ψtij , as well as penalty payments ρtj(sij),

distribute wealth between the participating agents only, the proposed protocol

is budget balanced.

4.1.7 Allocation complexity

Theorem 9. The proposed protocol complexity is in P.

Proof. For winner and price determination in the single auctions, customer

agents have to determine the lowest and second-lowest bids, i.e., sort the bids

received. This can be done in polynomial time for each customer agent, and

scales linearly with the number of customer agents. SP agents calculate their

bids, respectively marginal cost for service provision, based on the bids received

in higher tiers of the SN. They have to sort the bids received, and perform a

simple comparison and/or addition to calculate the concrete bids. Hence, the

proposed protocol is in P.

4.2 Model checking

Model checking is used to verify the logical consistency of a formal protocol

specification, independent of the implementation, by an automated validation

system. In addition to consistency, further correctness properties can be vali-

dated (Holzmann 1991).

To facilitate the verification of the protocol, this research assumes a de-

terministic disaggregation of customer requests to upstream SN tiers; i.e., the

number of SLAs required in upstream SN tiers is known a priori. Thus, the

required number of agreements in tier λ can be determined by multiplying the

corresponding number of agreements in tier λ+1 with the disaggregation factor.

If the number of required SLAs on each tier would be determined at run time,

depending on the offers made on lower tiers (i.e., randomly), different experi-

ments would not be comparable. Further, this work assumes that agreements

are required in all tiers of the SN, since the decision whether subcontracting is

CHAPTER 4. EVALUATION 107

required or feasible is beyond the scope of the protocol specification. These as-

sumptions do not mitigate the applicability of the protocol in non-deterministic

environments with varying numbers of tiers – any resulting parameter setting

can be verified ex post, though the set of possible parameter values has to

be defined. As a result, the protocol enables multi-tier resource allocation if

and only if the number of agreements – adjusted by the disaggregation factor

from tier λ = 0 along the whole SN – is equal in all tiers after the protocol

interactions for a single given customer requests have terminated; i.e.,

z(sij) = x(sij) ∀sij ∈ S ⇒ |S0| = |Sn|∀Sn ⊂ S, n > 0, (4.1)

where Sλ denotes the set of contracted services in tier λ. For a single

customer request, establishing a SLA can either fail or a SLA is established in

tier λ = 0 once the execution of the protocol terminates; i.e.,

z(sij) = x(sij) ∀sij ∈ S ⇒ |S0| = 0 ∨ |S0| = 1. (4.2)

The model checker Spin can verify basic safety properties such as absence

of deadlock, unreachable code, unspecified receptions, and invalid end states

on the basis of basic Promela models (Holzmann 1997, pp. 287–288). In

addition, Spin checks the validity of user defined assertions. Therefore, Spin

can generate C-code for a model checking system specific for the given protocol

model (spin -a MTCNP.pmla). The code is compiled for pure safety properties

only (gcc -o pan -DSAFETY pan.c). The execution of the generated program

shows that the model satisfies the safety properties mentioned above, consider-

ing about 1500 states/transitions, which underlines the need for an automated

verification. Since zero unreachable states are reported and no assertion errors

are raised, safety properties are proven for the Promela model.

The liveness properties formulae have been limited to seven tiers due to

memory requirements for checking the proposed model (section 3.2.2). There

is no evidence that a verification would not be possible for a larger number of

tiers. However, due to the recursive model, the memory requirements for model

checking increase exponentially with the number of tiers.

To assess the fulfillment of the requirements, this research needs to verify

that the protocol enables multi-tier resource allocation (4.1) and proper termi-

nation of the protocol for a customer request (4.2). As the maximum number of

tiers has been limited to seven tiers, (4.1) can be proven for n ≤ 6 only. These

properties have to be provided in LTL to be proven by Spin:

CHAPTER 4. EVALUATION 108

♦(

6∧
n=1

|S0| = |Sn| (4.3)

∧(|S0| = 0 ∨ |S0| = 1)).

Therefore, the LTL formula has to be translated to Promela. First, symbol

definitions have to be defined as shown in listing 4.1.

Listing 4.1: Symbol definitions.

1 #define t terminated

2 #define c01 s l a s [0] == s l a s [1]

3 #define c12 s l a s [0] == s l a s [2]

4 #define c23 s l a s [0] == s l a s [3]

5 #define c34 s l a s [0] == s l a s [4]

6 #define c45 s l a s [0] == s l a s [5]

7 #define c56 s l a s [0] == s l a s [6]

8 #define c0 0 s l a s [0] == 0

9 #define c0 1 s l a s [0] == 1

Second, a LTL formula equivalent to (4.3) can be passed in command-line

arguments to Spin for translation into never claims. Never claims formalize

behavior that should never happen – potential violations of correctness require-

ments. Thus, they are corresponding to the negated formulae, formalizing vio-

lations of the original:

spin -f ’!(<> (t && s01 && s12 && s23 && s34

&& s45 && s56 && (s0_0 || s0_1)))’

The resulting never claims can then be passed to Spin in a separate file

(MTCNP.pmla.ltl) in order to include them in the generated program (spin -N

MTCNP.pmla.ltl -a MTCNP.pmla). Here, the code has to be compiled without

the optimizations possible for pure safety properties, i.e., state compression,

partial order reduction, and a transition coarsening strategy (Holzmann 1997,

p. 288). The verifier shows that the resulting state space is three to four times

larger than with safety properties optimizations; it reports unreachable states

for the model for the generated never claims, which proves the absence of the

negated formulae; i.e., (4.3) is proven for the Promela model.

CHAPTER 4. EVALUATION 109

4.3 Simulation

In the simulation study, the resource allocative efficiency of the protocol is

compared to the centralized socially optimal allocation. This study considers

different settings with regard to, e.g., network topology, number of customer

and SP agents. Further, the experiments are executed with and without substi-

tutable resources, i.e., SP agents can decide if they use own resources or procure

sub-services from SP agents in the next tier in case of substitutable resources.

4.3.1 Experimental design

In the experiments, different scenarios from Cloud computing are considered.

In Cloud computing, the assumption of substitutable resources holds in case

of generic service requests (e.g., physical resource near IaaS services such as

CPU or storage resources), while non-substitutable resources exist for specific

services (e.g., SaaS services like specific format conversions or optimizations)

(Armbrust et al. 2010). The experiments are conducted for different network

topologies, as well as different agent parameters (e.g., cost). Details about the

experimental design are given in the following.

Table 4.1 and 4.2 show the deterministic and random simulation experiment

parameters. A set of experiment instances is generated for every deterministic

parameter permutation; i.e., each of the deterministic parameter value vectors

is supplemented by a set of vectors of the random parameters. The required ca-

pacity, SP cost, SP capacities, and SP agent progression intervals, are randomly

determined, based on equal distributions for each experiment instance. The val-

uation function for customer agents is defined as vij = 10wij to guarantee that

at least one non-trivial solution exists for each allocation problem.

Table 4.1: Deterministic experiment parameters.

parameter range

number of customer agents (|AC |) {5, 10, 15, . . . , 100}
number of SP agents in tier 1 (|ASP ,1|) {2, 4, 6, 8, 10}
number of SP agent tiers (|Λ|) {1, 2, 3, 4, 5}

Table 4.2: Random experiment parameters.

parameter range (⊂ N)

required capacity (wij) [1, 5]

SP agents’ cost (cij) [5, 10]

SP agents’ capacities (Wj) [5, 10]

SP agent progression interval (δSP) [2, 10]

CHAPTER 4. EVALUATION 110

Let ASP ,λ denote the SP agents in tier λ ∈ Λ. The SN topologies are created

as follows. For concurrent customer agents, SP agents in tier 1, aj ∈ ASP ,1 are

generated randomly from an equal distribution in the progression interval δSP .

Then, each SP agent is connected with at least one customer agent ai ∈ AC .

Further, additional connections are created relative to all possible additional

connections (|ASP ,1| − 1) · |AC |. They are generated randomly from a normal

distribution with a mean of 0.1 · (|ASP ,1| − 1) · |AC | and a standard deviation

of 0.1 · (|ASP ,1| − 1) · |AC |.
The number of SP agents in the next tier is again generated randomly from

an equal distribution in the progression interval δSP . Next, each SP agent in

tier λ+ 1 is randomly connected to a SP agent in tier λ. Figure 4.1 illustrates

an example of the SN creation process for this minimal set of edges.

Figure 4.1: SN creation process example for minimal edges.

Additional direct connections are established, relative to all possible addi-

tional direct connections (|ASP ,λ| − 1) · |ASP ,λ−1|. They are randomly taken

from a normal distribution with a mean of 0.1 · (|ASP ,λ| − 1) · |ASP ,λ−1| and a

standard deviation of 0.1 · (|ASP ,λ| − 1) · |ASP ,λ−1|.
Next, multi-tier connections (in this example, from tier λ = 2 to the cus-

tomer agents) are generated, relative to all possible additional multi-tier con-

nections (|ASP ,2| − 1) · |AC |. They are created randomly from a normal distri-

bution with a mean of 0.01 · (|ASP ,2| − 1) · |AC | and a standard deviation of

0.05 · (|ASP ,2|−1) · |AC |. In general, mean and standard deviation for multi-tier

connection probabilities decrease with distance of the tiers involved as follows.

Let λ, λ′ ∈ Λ be the tiers for which multi-tier connections are to be generated

with λ > λ′ ⇒ λ ≥ λ′ + 2, since these are concerning multi-tier connections.

Then, the probability of multi-tier connections from λ to λ′ is a normal distri-

bution with a mean of 0.01 · (|ASP ,λ| − 1) · |ASP ,λ′ |/2(λ−λ′−2) and a standard

deviation of 0.05 · (|ASP ,λ| − 1) · |ASP ,λ′ |/(λ− λ′− 1). Figure 4.2 illustrates the

example of the SN creation process for additional direct and multi-tier edges. If

a SN is instantiated in which one or more customer agents are not connected to

CHAPTER 4. EVALUATION 111

any SP agent, an additional edge is randomly generated to connect the customer

agent to the SN.

Figure 4.2: SN creation process example for additional and multi-tier edges.

This study includes fifty experiment setups with different random param-

eter values for each permutation of the deterministic parameter values, along

with a corresponding SN topology. That is, fifty experiment setups are gener-

ated with these parameter values and SN topology with distinct random values

for wij , cij , and Wj∀i, j for each experiment instance. The resulting 100 000

experiment instances are executed with fifty time periods (rounds) each, i.e.,

T = {0, . . . , 49}. Thus, customer agents are able to re-request the provision

of services from SP agents if the demand is not fulfilled. SP agents can con-

clude contracts with the largest expected utility first, while they can propose

to provide services to other customer agents in a subsequent time period of the

experiment instance if sufficient capacity remains unallocated. The SP agents

do not bid concurrently to several customer agents in one time period of an

experiment instance to avoid unaccomplishable contracts. Instead, SP agents

propose to provide the requested services with the highest required resource

utilization, i.e., the highest expected SP utility. This research has conducted

all experiments with the three different SP agent bidding policies described.

After each experiment, the social welfare of the simulation’s final allocation is

calculated.

4.3.2 Results

4.3.2.1 Over all experiments

Table 4.3 shows mean, median, and standard deviation (sd) as a function of

the number of customer agents over all experiments. In addition, it shows

the difference (∆) from the previous experiment (line) for median, mean, and

standard deviation.

In general, the utility ratio decreases with an increasing number of customer

agents. However, the decrease flattens for an increased number of customer

CHAPTER 4. EVALUATION 112

agents and the median is still above 0.82 for the experiments with 100 cus-

tomers. This means that more than 50% of the experiments arrive at or above

an efficiency of 0.82. The standard deviation lies between 0.117 and 0.148 over

all experiments.

Table 4.3: Utility ratio as function of number of customer agents.

|AC | median mean sd ∆median ∆mean ∆sd

5 0.8947 0.8550 0.1471 - - -

10 0.8505 0.8261 0.1349 0.0443 0.0289 0.0122

15 0.8377 0.8183 0.1256 0.0128 0.0078 0.0093

20 0.8308 0.8130 0.1207 0.0069 0.0054 0.0049

25 0.8235 0.8035 0.1202 0.0073 0.0094 0.0005

30 0.8271 0.8064 0.1201 0.0036 0.0029 0.0001

35 0.8276 0.8071 0.1176 0.0005 0.0007 0.0026

40 0.8225 0.8015 0.1199 0.0051 0.0056 0.0023

45 0.8242 0.8021 0.1244 0.0017 0.0007 0.0045

50 0.8307 0.8052 0.1232 0.0065 0.0031 0.0012

55 0.8232 0.8025 0.1234 0.0076 0.0027 0.0002

60 0.8271 0.8007 0.1314 0.0039 0.0018 0.0080

65 0.8291 0.8038 0.1280 0.0021 0.0031 0.0034

70 0.8276 0.8065 0.1249 0.0015 0.0027 0.0031

75 0.8361 0.8095 0.1280 0.0085 0.0030 0.0031

80 0.8333 0.8109 0.1270 0.0028 0.0014 0.0010

85 0.8323 0.8115 0.1242 0.0010 0.0006 0.0028

90 0.8313 0.8088 0.1289 0.0010 0.0027 0.0047

95 0.8333 0.8121 0.1234 0.0020 0.0033 0.0055

100 0.8274 0.8087 0.1231 0.0059 0.0034 0.0003

[5, 100] 0.8326 0.8107 0.1265 - - -

Figure 4.3 shows the utility ratio as a function of the number of customer

agents over all experiments. In the box plots, the box includes 50% of the data

points, i.e., it limits the upper and lower quartiles. This means that 25% of the

data points lie above the box, and 25% lie below it, where the line inside the

box represents the median. For figure 4.3, this means that over all experiments

and all number of customers, more than 75% of the experiments arrive at an

efficiency above 0.7. In all experiments with more than five customers, more

than 75% of the experiments arrive at an efficiency below 0.95.

The ‘whiskers’ (vertical lines) above and below the box are at most 1.5

times the inter-quartile range (distance between the first and third quartiles).

Outliers are marked as single dots below the whiskers. Although the extreme

outliers arrive at an efficiency below 0.2, their number is too small to have a

distinct impact on the mean values.

CHAPTER 4. EVALUATION 113

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●
●
●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●
●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
number of customer agents

ut
ili

ty
 r

at
io

Figure 4.3: Utility ratio as function of number of customer agents.

For SNs with more than ten customers, the protocol implementation’s ef-

ficiency is quasi-constant. Therefore, it can be concluded that the protocol

implementation is scalable regarding the number of customers.

Table 4.4 shows mean, median, and standard deviation as a function of the

number of SP agent tiers over all experiments. Additionally, it shows the differ-

ence (∆) from the previous experiment (line) for median, mean, and standard

deviation. The median efficiency of the protocol is decreasing for an increased

number of tiers. The median utility ratio values lie in the interval [0.8, 0.851]

over all experiments. In contrast to the number of customers, the number of

SP agent tiers has a quasi-linear effect on the protocol implementation’s effi-

ciency, i.e., efficiency is decreasing with an increasing number of SP agent tiers.

However, the median of the protocol implementation’s efficiency is still 0.8 for

the experiments with five SP agent tiers. That is, more than 50% of the experi-

ments with five SP agent tiers yield an efficiency at or above 0.8. The standard

deviation lies between 0.108 and 0.138 over all experiments.

CHAPTER 4. EVALUATION 114

Table 4.4: Utility ratio as function of number of SP agent tiers.

|Λ| median mean sd ∆median ∆mean ∆sd

1 0.8471 0.8379 0.1088 - - -

2 0.8506 0.8298 0.1150 0.0036 0.0081 0.0062

3 0.8351 0.8119 0.1259 0.0155 0.0179 0.0109

4 0.8186 0.7950 0.1335 0.0165 0.0169 0.0076

5 0.8012 0.7787 0.1374 0.0174 0.0163 0.0039

[1, 5] 0.8326 0.8107 0.1265 - - -

Figure 4.4 shows the utility ratio as a function of the number of SP agent

tiers over all experiments. Over all experiments and one to four SP agent tiers,

more than 75% of the experiments arrive at an efficiency above 0.7, while for

five SP agent tiers, the third quartile ends slightly below 0.7. In all experiments,

more than 75% of the experiments arrive at an efficiency below 0.95.

In the experiments with one SP agent tier, there are very few outliers beyond

the whisker, but the worst efficiency lies around 0.5 for these experiments. Since

in this case there is only competition between SPs on one single tier, inefficient

allocations cannot get worse by additional inefficient allocation in the next tier.

The median is decreasing with the number of SP agent tiers and also, the third

quartile (lower part of the box) is wider for an increased number of tiers, i.e., the

standard deviation, especially with regard to lower efficiency values, increases

with the number of SP agent tiers.

CHAPTER 4. EVALUATION 115

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5
number of SP agent tiers

ut
ili

ty
 r

at
io

Figure 4.4: Utility ratio as function of number of SP agent tiers.

Table 4.5 shows mean, median, and standard deviation as a function of

the number of SPs in tier 1. In addition, it shows the difference (∆) from

the previous experiment (line) for median, mean, and standard deviation. The

median efficiency of the protocol is increasing for an increased number of SP

agents in tier 1. The median utility ratio values lie in the interval [0.795, 0.849]

over all experiments. Inverse to the number of SP agent tiers, the number of SP

agent in tier 1 has a quasi-linear positive effect on the protocol implementation’s

efficiency, i.e., efficiency is monotonically increasing with an increasing number

of SP agents in tier 1. The median of the protocol implementation’s efficiency

is above 0.82 for the experiments with more than two SP agents in the first tier.

That is, more than 50% of the experiments with more than two SP agents on

the first tier yield an efficiency above 0.82.

The standard deviation lies between 0.097 and 0.164 over all experiments,

and is considerably higher for two SP agents in the first tier. This results from

a low SP-customer-ratio for these experiments and therefore a worse utilization

CHAPTER 4. EVALUATION 116

of the resources, due to the myoptic allocation strategy of the SP agents to

allocate resources for agents with higher demand first.

Table 4.5: Utility ratio as function of the number of SPs in tier 1.

|ASP ,1| median mean sd ∆median ∆mean ∆sd

2 0.7959 0.7724 0.1636 - - -

4 0.8217 0.8007 0.1309 0.0258 0.0283 0.0327

6 0.8333 0.8169 0.1144 0.0117 0.0162 0.0165

8 0.8426 0.8278 0.1048 0.0093 0.0108 0.0096

10 0.8483 0.8354 0.0976 0.0057 0.0077 0.0072

[2, 10] 0.8326 0.8107 0.1265 - - -

Figure 4.5 shows the utility ratio as a function of the number of SPs in tier

1. Over all experiments and four to ten SP agents in tier 1, more than 75%

of the experiments arrive at an efficiency above 0.7, while for two SP agents in

the first tier, the third quartile ends above 0.65. In all experiments, 25% of the

experiments arrive at an efficiency above 0.9.

CHAPTER 4. EVALUATION 117

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●
●●●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●
●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●●

●

●
●●

●

●

●

●
●

●

●
●
●

●

●

●●●
●●

●

●

●

●
●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

2 4 6 8 10
number of SP agents in tier 1

ut
ili

ty
 r

at
io

Figure 4.5: Utility ratio as function of number of SP agents in tier 1.

Table 4.6 shows the results on a linear regression analysis over all experi-

ments. It contains the utility ratio as the dependent variable, and shows the

influence of the number of customer agents (|AC |), the number of SP agent

tiers (|Λ|), the number of SP agents in tier 1 (|ASP ,1|), the number of SP agents

(|ASP |), the number of total edges of the SN, and the demand-supply-ratio of

the SN on the utility ratio.

All mentioned variables have a significant influence on the utility ratio. The

number of customers has a negative effect on the utility ratio, and therewith

the protocol implementation’s efficiency; since the search space is increased, the

probability of allocating resources suboptimally is also increased. Similarly, the

number of SP agent tiers and the total number of SP agents have negative effects

on the efficiency. In contrast, the number of SP agents in the first tier positively

influences the utility ratio. The number of total edges also has a positive effect

on the utility ratio, while the demand-supply-ratio has a negative effect.

CHAPTER 4. EVALUATION 118

Table 4.6: Linear regression analysis results.

Dependent variable:

UTILITY RATIO

|AC | −0.001∗∗∗

(0.00003)

|Λ| −0.011∗∗∗

(0.001)

|ASP,1| 0.006∗∗∗

(0.0002)

|ASP | −0.003∗∗∗

(0.0001)

TOTAL EDGES 0.001∗∗∗

(0.00002)

DEMAND SUPPLY RATIO −0.003∗∗∗

(0.0002)

Constant 0.852∗∗∗

(0.002)

Observations 100, 000
R2 0.079
Adjusted R2 0.079
Residual Std. Error 0.121(df = 99993)
F statistic 1, 432.620∗∗∗(df = 6; 99993)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

4.3.2.2 Non-substitutable resources

Table 4.7 shows the mean, median, and standard deviation values for the ex-

periments with non-substitutable resources (NSR) as a function of the number

of customer agents. It also shows the differences between the single experi-

mental settings for these values. More than 50% of the experiments achieve an

efficiency of above 0.81; the median is still above 0.81 for 100 customers. The

standard deviation is 0.094 to 0.145. For an increasing number of customer

agents, the utility ratio decreases for NSR until approximately 50 customer

agents. With more customer agents, the utility ratio is quasi-constant.

CHAPTER 4. EVALUATION 119

Table 4.7: Utility ratio as function of number of customer agents for non-
substitutable resources.

|AC | median mean sd ∆median ∆mean ∆sd

5 0.9347 0.9096 0.0944 - - -

10 0.9039 0.8843 0.0974 0.0308 0.0253 0.0029

15 0.8916 0.8705 0.1066 0.0123 0.0138 0.0093

20 0.8778 0.8554 0.1112 0.0138 0.0152 0.0046

25 0.8644 0.8388 0.1243 0.0134 0.0166 0.0131

30 0.8671 0.8294 0.1299 0.0027 0.0093 0.0056

35 0.8571 0.8287 0.1215 0.0100 0.0007 0.0084

40 0.8492 0.8193 0.1229 0.0079 0.0094 0.0014

45 0.8419 0.8082 0.1373 0.0073 0.0111 0.0144

50 0.8290 0.7986 0.1380 0.0129 0.0096 0.0007

55 0.8276 0.7984 0.1316 0.0014 0.0002 0.0064

60 0.8218 0.7900 0.1448 0.0057 0.0084 0.0132

65 0.8215 0.7891 0.1416 0.0004 0.0009 0.0033

70 0.8128 0.7880 0.1350 0.0087 0.0011 0.0066

75 0.8187 0.7889 0.1418 0.0060 0.0009 0.0068

80 0.8158 0.7881 0.1367 0.0029 0.0008 0.0051

85 0.8114 0.7872 0.1356 0.0044 0.0009 0.0011

90 0.8141 0.7883 0.1397 0.0027 0.0011 0.0041

95 0.8143 0.7859 0.1360 0.0002 0.0024 0.0037

100 0.8120 0.7911 0.1309 0.0023 0.0051 0.0051

[5, 100] 0.8464 0.8169 0.1336 - - -

Figure 4.6 shows the utility ratio as a function of the number of customer

agents over all experiments with NSR. In all experiments with more than ten

customers, more than 75% of the experiments yield an efficiency below 0.95.

For five and ten customer agents, the efficiency is considerably higher: For five

customers, almost 25% of the experiments yield the optimal result, while for

ten customers, more than 25% still arrive at an efficiency above 0.95.

CHAPTER 4. EVALUATION 120

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●
●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
number of customer agents

ut
ili

ty
 r

at
io

Figure 4.6: Utility ratio as function of number of customer agents for non-
substitutable resources.

Table 4.8 shows the numerical results over all experiments with NSR as a

function of the number of SP agent tiers. It shows mean, median, and standard

deviation, as well as the differences from the previous experiment for these

values. The median efficiency of the protocol is quasi-constant for an increased

number of tiers and NSR; it lies in the interval [0.838, 0.858], the standard

deviation values are between 0.108 and 0.151. Since the resources are non-

substitutable across tiers, the number of tiers does not have a considerable

influence on the utility ratio.

The results for the number of SP agent tiers over all experiments with NSR

are shown in figure 4.7. The protocol’s efficiency in these experiments is quasi-

constant, independent of the number of SP agent tiers. The experiments yield

a median utility ratio between 0.83 and 0.86. The standard deviation increases

with the number of SP agent tiers.

CHAPTER 4. EVALUATION 121

Table 4.8: Utility ratio as function of number of SP agent tiers for non-
substitutable resources.

|Λ| median mean sd ∆median ∆mean ∆sd

1 0.8482 0.8380 0.1088 - - -

2 0.8574 0.8312 0.1224 0.0092 0.0068 0.0136

3 0.8440 0.8132 0.1346 0.0134 0.0180 0.0122

4 0.8426 0.8056 0.1426 0.0014 0.0076 0.0080

5 0.8381 0.7964 0.1510 0.0045 0.0092 0.0084

[1, 5] 0.8464 0.8169 0.1336 - - -

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5
number of SP agent tiers

ut
ili

ty
 r

at
io

Figure 4.7: Utility ratio as function of number of SP agent tiers for non-
substitutable resources.

CHAPTER 4. EVALUATION 122

Table 4.9 shows mean, median, and standard deviation as a function of

the number of SPs in tier 1 for NSR. It also shows the differences from the

previous experiment for these values. The median utility ratio values lie in the

interval [0.761, 0.873] for the experiments with NSR; they are increasing with

the number of SP agents in tier 1. The protocol implementation’s efficiency is

monotonically increasing with an increasing number of SP agents in tier 1: The

number of SP agents in tier 1 has a quasi-linear effect. More than 50% of the

experiments with more than two SP agent tiers yield an efficiency above 0.82,

i.e., the median of the protocol implementation’s efficiency is above 0.82 for the

experiments with more than two SP agents in the first tier.

The standard deviation is considerably higher for two SP agents in the first

tier; it lies between 0.094 and 0.173 over all experiments with NSR. Due to the

myoptic allocation strategy of the SP agents to allocate resources for agents

with higher demand first and, in addition, a low SP-customer-ratio for two SP

agents in the first tier, this results in a worse utilization of the resources.

Table 4.9: Utility ratio as function of the number of SPs in tier 1 for non-
substitutable resources.

|ASP ,1| median mean sd ∆median ∆mean ∆sd

2 0.7610 0.7468 0.1724 - - -

4 0.8289 0.8037 0.1370 0.0679 0.0569 0.0354

6 0.8519 0.8295 0.1176 0.0230 0.0258 0.0194

8 0.8667 0.8482 0.1015 0.0148 0.0187 0.0161

10 0.8726 0.8563 0.0943 0.0059 0.0081 0.0072

[2, 10] 0.8464 0.8169 0.1336 - - -

The utility ratio is shown as a function of the number of SPs in tier 1 for NSR

in figure 4.8. Over all experiments with NSR and four to ten SP agents in tier

1, more than 75% of the experiments arrive at an efficiency above 0.7, while for

two SP agents in the first tier, the third quartile ends in the interval [0.6, 0.65].

In all experiments, almost 25% of the experiments arrive at an efficiency above

0.9.

CHAPTER 4. EVALUATION 123

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●●●

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

2 4 6 8 10
number of SP agents in tier 1

ut
ili

ty
 r

at
io

Figure 4.8: Utility ratio as function of number of SP agents in tier 1 for non-
substitutable resources.

Table 4.10 shows the results on a linear regression analysis over all ex-

periments for non-substitutable resources. In contains the utility ratio as the

dependent variable, and shows the influence of the number of customer agents

(|AC |), the number of SP agent tiers (|Λ|), the number of SP agents in tier 1

(|ASP ,1|), the number of SP agents (|ASP |), the number of total edges of the

SN, and the demand-supply-ratio of the SN on the utility ratio.

The number of SP agent tiers does not have a significant influence on the

utility ratio, since resources are non-substitutable between SN tiers. All other

variables have a significant influence on the utility ratio. The number of cus-

tomers has a negative effect on the utility ratio, and therewith the protocol

implementation’s efficiency, since the search space is increased and the proba-

bility of allocating resources suboptimally is also increased. Similarly, the total

number of SP agents has a negative effect on the efficiency. In contrast, the

number of SP agents in the first tier positively influences the utility ratio. The

CHAPTER 4. EVALUATION 124

number of total edges and the demand-supply-ratio also have a positive effect

on the utility ratio.

Table 4.10: Linear regression analysis results for non-substitutable resources.

Dependent variable:

UTILITY RATIO

|AC | −0.002∗∗∗

(0.0001)

|Λ| −0.002
(0.001)

|ASP,1| 0.013∗∗∗

(0.0004)

|ASP | −0.002∗∗∗

(0.0002)

TOTAL EDGES 0.001∗∗∗

(0.00003)

DEMAND SUPPLY RATIO 0.004∗∗∗

(0.0004)

Constant 0.829∗∗∗

(0.004)

Observations 25, 000
R2 0.164
Adjusted R2 0.164
Residual Std. Error 0.122(df = 24993)
F statistic 818.715∗∗∗(df = 6; 24993)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

4.3.2.3 Substitutable resources

In Cloud computing, equivalent generic services (e.g., IaaS) can be produced by

different SPs. That is, the resources to provide these services to customers are

substitutable between SPs. For the composition of the SP agents’ bids for these

services, this research investigates three different bidding policies: best price

resources only (BPRO), external resources first (ERF), and internal resources

first (IRF). The results of the simulation study for substitutable resources are

presented in this section.

4.3.2.3.1 BPRO bidding policy Table 4.11 shows mean, median, and

standard deviation as a function of the number of customer agents over all ex-

CHAPTER 4. EVALUATION 125

periments for substitutable resources for the BPRO bidding policy. Addition-

ally, it shows the differences from the previous experiment for median, mean,

and standard deviation.

In general, the utility ratio decreases with an increasing number of customer

agents. However, the decrease flattens for an increased number of customer

agents and the median is still above 0.75 for the experiments with 100 customers.

That is, more than 50% of the experiments arrive at or above an efficiency of

0.75. The standard deviation lies between 0.105 and 0.138 over all experiments

for substitutable resources and the BPRO bidding policy.

Table 4.11: Utility ratio as function of number of customer agents for substi-
tutable resources and BPRO bidding policy.

|AC | median mean sd ∆median ∆mean ∆sd

5 0.9254 0.9013 0.1055 - - -

10 0.8710 0.8508 0.1173 0.0544 0.0505 0.0118

15 0.8452 0.8275 0.1203 0.0258 0.0233 0.0031

20 0.8324 0.8155 0.1187 0.0128 0.0120 0.0017

25 0.8065 0.7865 0.1243 0.0259 0.0289 0.0056

30 0.8060 0.7857 0.1244 0.0005 0.0008 0.0001

35 0.7975 0.7778 0.1241 0.0084 0.0079 0.0003

40 0.7823 0.7632 0.1319 0.0152 0.0146 0.0078

45 0.7767 0.7578 0.1354 0.0056 0.0054 0.0035

50 0.7861 0.7624 0.1320 0.0094 0.0047 0.0034

55 0.7691 0.7517 0.1323 0.0170 0.0107 0.0004

60 0.7659 0.7476 0.1378 0.0032 0.0041 0.0054

65 0.7735 0.7558 0.1300 0.0076 0.0083 0.0078

70 0.7696 0.7557 0.1281 0.0039 0.0001 0.0019

75 0.7738 0.7566 0.1340 0.0042 0.0008 0.0059

80 0.7818 0.7645 0.1323 0.0080 0.0079 0.0018

85 0.7792 0.7646 0.1267 0.0026 0.0001 0.0056

90 0.7694 0.7566 0.1321 0.0098 0.0080 0.0055

95 0.7783 0.7675 0.1244 0.0089 0.0109 0.0077

100 0.7815 0.7667 0.1250 0.0033 0.0008 0.0005

[5, 100] 0.7983 0.7808 0.1326 - - -

The utility ratio is shown as a function of the number of customer agents

over all experiments for substitutable resources for the BPRO bidding policy

in figure 4.9. More than 75% of the experiments arrive at an efficiency above

0.65. In all experiments with more than five customers, more than 75% of the

experiments arrive at an efficiency below 0.95. For five customers, 25% of the

experiments yield the optimal utility.

CHAPTER 4. EVALUATION 126

●

●●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●
●●

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
number of customer agents

ut
ili

ty
 r

at
io

Figure 4.9: Utility ratio as function of number of customer agents for substi-
tutable resources and BPRO bidding policy.

Table 4.12 shows mean, median, and standard deviation as a function of the

number of SP agent tiers over all experiments for substitutable resources and the

BPRO bidding policy, as well as the differences from the previous experiment

for the mentioned values. The standard deviation is in the interval [0.109, 0.137].

The median efficiency of the protocol lies in the interval [0.766, 0.847] and is

decreasing for an increased number of tiers.

The utility ratio as a function of the number of SP agent tiers over all

experiments for substitutable resources and the BPRO bidding policy is shown

in figure 4.10. For one and two SP agent tiers, more than 75% of the experiments

arrive at an efficiency above 0.7, while for four and five SP agent tiers, the third

quartile ends slightly above 0.65. In all experiments, more than 75% of the

experiments arrive at an efficiency below 0.95.

CHAPTER 4. EVALUATION 127

Table 4.12: Utility ratio as function of number of SP agent tiers for substitutable
resources and BPRO bidding policy.

|Λ| median mean sd ∆median ∆mean ∆sd

1 0.8466 0.8378 0.1090 - - -

2 0.8108 0.7946 0.1266 0.0358 0.0432 0.0176

3 0.7876 0.7702 0.1323 0.0232 0.0245 0.0058

4 0.7716 0.7541 0.1358 0.0160 0.0161 0.0035

5 0.7661 0.7473 0.1369 0.0055 0.0069 0.0010

[1, 5] 0.7983 0.7808 0.1326 - - -

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5
number of SP agent tiers

ut
ili

ty
 r

at
io

Figure 4.10: Utility ratio as function of number of SP agent tiers for substi-
tutable resources and BPRO bidding policy.

CHAPTER 4. EVALUATION 128

Table 4.13 shows the results of the experiments for substitutable resources

and the BPRO bidding policy. It shows mean, median, and standard deviation

as a function of the number of SPs in tier 1, along with the differences from

the previous experiment. The median efficiency of the protocol is increasing

with the number of SP agents in tier 1 and lies in the interval [0.743, 0.826].

The median of the protocol implementation’s efficiency is above 0.779 for the

experiments with more than two SP agents in the first tier. That is, more than

half of the experiments with more than two SP agent tiers yield an efficiency

above 0.779. The number of SP agents in tier 1 has a quasi-linear positive effect

on the protocol implementation’s efficiency; it is monotonically increasing with

an increasing number of SP agents in tier 1, inverse to the number of SP agent

tiers.

The standard deviation is considerably higher for two SP agents in the first

tier. It lies between 0.096 and 0.172 for these experiments. This results from a

low ratio of SP to customer agents for these experiments, and therefore a worse

utilization of the resources, due to the allocation strategy of the SP agents to

allocate resources to agents with higher demand first.

Table 4.13: Utility ratio as function of the number of SPs in tier 1 for substi-
tutable resources and BPRO bidding policy.

|ASP ,1| median mean sd ∆median ∆mean ∆sd

2 0.7437 0.7347 0.1715 - - -

4 0.7790 0.7636 0.1385 0.0353 0.0289 0.0330

6 0.7985 0.7882 0.1195 0.0195 0.0246 0.0189

8 0.8119 0.8015 0.1078 0.0134 0.0133 0.0117

10 0.8256 0.8160 0.0968 0.0137 0.0145 0.0110

[2, 10] 0.7983 0.7808 0.1326 - - -

Figure 4.11 shows the utility ratio as a function of the number of SPs in tier

1 for substitutable resources for the BPRO bidding policy. Over all experiments

and six to ten SP agents in tier 1, more than 75% of the experiments arrive at

an efficiency above 0.7, while for two to four SP agents in the first tier, the third

quartile ends below 0.7. In all experiments, more than 25% of the experiments

arrive at an efficiency above 0.85.

CHAPTER 4. EVALUATION 129

●

●

●

●

●

●

●

●

●●●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●
●
●

●●

●
●

●
●

●

●

●

●

●

●

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

2 4 6 8 10
number of SP agents in tier 1

ut
ili

ty
 r

at
io

Figure 4.11: Utility ratio as function of the number of SPs in tier 1 for substi-
tutable resources and BPRO bidding policy.

The results of a linear regression analysis for substitutable resources and the

BPRO bidding policy are shown in table 4.14. In contains the utility ratio as

the dependent variable. The influence of the number of customer agents (|AC |),
the number of SP agent tiers (|Λ|), the number of SP agents in tier 1 (|ASP ,1|),
the number of SP agents (|ASP |), the number of total edges of the SN, and the

demand-supply-ratio of the SN on the utility ratio is analyzed.

All mentioned variables significantly influence the efficiency. The number

of customers has a negative effect on the utility ratio. This results from the

increased search space and the increased probability of suboptimal allocation

of resources. The number of SP agent tiers and the total number of SP agents

also have negative effects on the efficiency. Contrarily, the number of SP agents

in the first tier positively influences the utility ratio. The number of total edges

and the demand-supply-ratio also have a positive effect on the utility ratio.

CHAPTER 4. EVALUATION 130

Table 4.14: Linear regression analysis results for for substitutable resources and
BPRO bidding policy.

Dependent variable:

UTILITY RATIO

|AC | −0.002∗∗∗

(0.0001)

|Λ| −0.019∗∗∗

(0.001)

|ASP,1| 0.009∗∗∗

(0.0004)

|ASP | −0.002∗∗∗

(0.0002)

TOTAL EDGES 0.001∗∗∗

(0.00003)

DEMAND SUPPLY RATIO 0.004∗∗∗

(0.0004)

Constant 0.847∗∗∗

(0.004)

Observations 25, 000
R2 0.164
Adjusted R2 0.164
Residual Std. Error 0.121(df = 24993)
F statistic 818.559∗∗∗(df = 6; 24993)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

4.3.2.3.2 ERF bidding policy Table 4.15 shows the experiment results

as a function of the number of customer agents for substitutable resources and

the ERF bidding policy. These numerical results include mean, median, and

standard deviation, along with the differences from the previous experiment.

For more than five customer agents, the utility ratio increases with the

number of customer agents. The median is still above 0.83 for the experiments

with 10 customers; i.e., more than 50% of the results are at or above an efficiency

of 0.83 for these experiments. The increase flattens for more than 50 customer

agents and is quasi-constant for more than 75 customer agents. The standard

deviation is in the interval [0.083, 0.132].

Figure 4.12 shows the utility ratio as a function of the number of customer

agents over all experiments for substitutable resources and the ERF bidding

policy. More than 75% of the experiments achieve an efficiency above 0.7.

CHAPTER 4. EVALUATION 131

Table 4.15: Utility ratio as function of number of customer agents for substi-
tutable resources and ERF bidding policy.

|AC | median mean sd ∆median ∆mean ∆sd

5 0.8704 0.8441 0.1316 - - -

10 0.8309 0.8233 0.1152 0.0394 0.0208 0.0163

15 0.8316 0.8248 0.1004 0.0007 0.0015 0.0148

20 0.8305 0.8244 0.0953 0.0011 0.0003 0.0051

25 0.8348 0.8304 0.0878 0.0043 0.0060 0.0075

30 0.8445 0.8408 0.0850 0.0097 0.0104 0.0028

35 0.8502 0.8425 0.0876 0.0057 0.0017 0.0026

40 0.8546 0.8446 0.0856 0.0044 0.0021 0.0020

45 0.8614 0.8553 0.0831 0.0068 0.0107 0.0026

50 0.8738 0.8623 0.0832 0.0124 0.0070 0.0001

55 0.8705 0.8592 0.0903 0.0033 0.0031 0.0072

60 0.8780 0.8635 0.0944 0.0075 0.0044 0.0040

65 0.8858 0.8685 0.0944 0.0078 0.0050 0.0000

70 0.8915 0.8722 0.0929 0.0058 0.0037 0.0015

75 0.8931 0.8760 0.0928 0.0015 0.0038 0.0002

80 0.8971 0.8753 0.1001 0.0040 0.0007 0.0073

85 0.8992 0.8784 0.0959 0.0022 0.0032 0.0041

90 0.8983 0.8769 0.0997 0.0010 0.0016 0.0037

95 0.8989 0.8759 0.0994 0.0007 0.0010 0.0003

100 0.8969 0.8694 0.1029 0.0020 0.0065 0.0036

[5, 100] 0.8697 0.8554 0.0983 - - -

Except for the experiments with ten customer agents, which show the worst

efficiency for the ERF bidding policy, the third quartile ends above 0.75. The

median increases up to 75 customers and is quasi-constant for more costumer

agents. For these experiments, almost 25% yield an efficiency at or above 0.95.

In contrast, for 15–30 customers, more than 75% of the experiments arrive at

a utility ratio below 0.9.

CHAPTER 4. EVALUATION 132

●

●

●●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●
●

●
●
●●

●

●●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
number of customer agents

ut
ili

ty
 r

at
io

Figure 4.12: Utility ratio as function of number of customer agents for substi-
tutable resources and ERF bidding policy.

The numerical results of the experiments for substitutable resources and the

ERF bidding policy are shown in table 4.16 as a function of the number of SP

agent tiers. The table shows mean, median, and standard deviation, as well as

the differences between the experiment settings. The standard deviation lies

between 0.091 and 0.109. The median efficiency of the protocol is decreasing for

an increased number of tiers and the values arrive in the interval [0.846, 0.886]

over all experiments.

Figure 4.13 shows the utility ratio as a function of the number of SP agent

tiers. In these experiments, more than 75% of the experiments arrive at an

efficiency above 0.75, but below 0.95. It is notably higher for two and three SP

agent tiers. There is a trade-off between more SP agents in total, due to more

tiers, and forwarded requests along the complete SN to the last tier, due to the

ERF bidding policy.

CHAPTER 4. EVALUATION 133

Table 4.16: Utility ratio as function of number of SP agent tiers for substitutable
resources and ERF bidding policy.

|Λ| median mean sd ∆median ∆mean ∆sd

1 0.8462 0.8375 0.1085 - - -

2 0.8857 0.8690 0.0912 0.0396 0.0315 0.0173

3 0.8851 0.8681 0.0933 0.0006 0.0009 0.0021

4 0.8707 0.8579 0.0969 0.0143 0.0102 0.0036

5 0.8556 0.8446 0.0968 0.0152 0.0133 0.0001

[1, 5] 0.8697 0.8554 0.0983 - - -

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5
number of SP agent tiers

ut
ili

ty
 r

at
io

Figure 4.13: Utility ratio as function of number of SP agent tiers for substi-
tutable resources and ERF bidding policy.

CHAPTER 4. EVALUATION 134

Table 4.17 shows mean, median, and standard deviation as a function of the

number of SPs in tier 1 for substitutable resources for the ERF bidding policy.

In addition, it shows the difference (∆) from the previous experiment (line) for

median, mean, and standard deviation. The median efficiency of the protocol

is quasi-constant for six to ten SP agents in tier 1; the values lie in the interval

[0.861, 0.892] over all experiments and in [0.861, 0.866] for six to ten SP agents

in the first tier. The standard deviation lies between 0.085 and 0.124 and is

considerably higher for two SP agents in the first tier. This results from a worse

utilization of the resources, due to SP agents allocating resources for customer

agents with higher demand first. In addition, the SP-customer-ratio is higher

for an increased number of SP agents in tier 1.

Table 4.17: Utility ratio as function of the number of SPs in tier 1 for substi-
tutable resources and ERF bidding policy.

|ASP ,1| median mean sd ∆median ∆mean ∆sd

2 0.8916 0.8590 0.1239 - - -

4 0.8720 0.8548 0.1003 0.0197 0.0042 0.0236

6 0.8652 0.8552 0.0895 0.0068 0.0005 0.0108

8 0.8649 0.8541 0.0877 0.0003 0.0012 0.0018

10 0.8615 0.8539 0.0850 0.0034 0.0002 0.0027

[2, 10] 0.8697 0.8554 0.0983 - - -

The utility ratio is shown as a function of the number of SPs in tier 1 for

substitutable resources and the ERF bidding policy in figure 4.14. Almost 75%

of the experiments arrive at an efficiency above 0.8, and more than 25% of the

experiments even arrive at an efficiency above 0.9. The standard deviation is

considerably smaller for an increased number of SP agents in tier 1.

CHAPTER 4. EVALUATION 135

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●●●

●

●

●

●●●

●

●
●●●●●●●●

●

●●

●
●

●

●

●●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●
●●●

●

●

●

●
●

●

●●●

●

●

●

●

●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●●

●
●

●●

●

●

●
●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

2 4 6 8 10
number of SP agents in tier 1

ut
ili

ty
 r

at
io

Figure 4.14: Utility ratio as function of the number of SPs in tier 1 for substi-
tutable resources and ERF bidding policy.

Table 4.18 shows the results on a linear regression analysis over all exper-

iments for substitutable resources for the ERF bidding policy. It shows the

results of the analysis of the influence of the number of customer agents (|AC |),
the number of SP agent tiers (|Λ|), the number of SP agents in tier 1 (|ASP ,1|),
the number of SP agents (|ASP |), the number of total edges of the SN, and the

demand-supply-ratio of the SN on the utility ratio as the dependent variable.

All variables have a significant influence on the utility ratio. The number

of customer agents has a positive effect on the efficiency. This results from

the ERF bidding policy, since all intermediate SPs forward their requests to

the next tier and thus all customer demand is cumulated at the last SP tier.

Therefore, the search space for allocations is reduced to a single tier.

The number of total edges has a positive, the demand-supply-ratio a nega-

tive effect on the utility ratio. The number of SP agent tiers and the number

of SP agents in the first tier also negatively influence the utility ratio, since

CHAPTER 4. EVALUATION 136

concurrency of forwarded requests occurs.

Table 4.18: Linear regression analysis results for for substitutable resources and
ERF bidding policy.

Dependent variable:

UTILITY RATIO

|AC | 0.0001∗∗∗

(0.00004)

|Λ| −0.005∗∗∗

(0.001)

|ASP,1| −0.005∗∗∗

(0.0003)

|ASP | −0.002∗∗∗

(0.0002)

TOTAL EDGES 0.001∗∗∗

(0.00002)

DEMAND SUPPLY RATIO −0.012∗∗∗

(0.0003)

Constant 0.898∗∗∗

(0.003)

Observations 25, 000
R2 0.112
Adjusted R2 0.112
Residual Std. Error 0.093(df = 24993)
F statistic 526.290∗∗∗(df = 6; 24993)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

4.3.2.3.3 IRF bidding policy Table 4.19 shows the experiment results

for substitutable resources and the IRF bidding policy: mean, median, and

standard deviation as a function of the number of customer agents, as well as

the differences from the previous experiment for the mentioned values.

The standard deviation is in the interval [0.101, 0.19]. For more than five

up to approximately 75, the utility ratio increases with the number of customer

agents. For more customer agents, it is quasi-constant.

CHAPTER 4. EVALUATION 137

Table 4.19: Utility ratio as function of number of customer agents for substi-
tutable resources and IRF bidding policy.

|AC | median mean sd ∆median ∆mean ∆sd

5 0.7936 0.7651 0.1894 - - -

10 0.7500 0.7460 0.1608 0.0436 0.0191 0.0286

15 0.7555 0.7505 0.1405 0.0055 0.0046 0.0203

20 0.7613 0.7566 0.1329 0.0058 0.0061 0.0076

25 0.7578 0.7585 0.1223 0.0035 0.0019 0.0106

30 0.7765 0.7697 0.1212 0.0187 0.0112 0.0011

35 0.7897 0.7794 0.1189 0.0132 0.0097 0.0024

40 0.7902 0.7787 0.1164 0.0005 0.0007 0.0025

45 0.7983 0.7872 0.1132 0.0081 0.0084 0.0032

50 0.8152 0.7975 0.1102 0.0169 0.0103 0.0030

55 0.8161 0.8008 0.1101 0.0008 0.0033 0.0001

60 0.8175 0.8017 0.1153 0.0015 0.0009 0.0052

65 0.8233 0.8016 0.1140 0.0058 0.0000 0.0013

70 0.8258 0.8100 0.1090 0.0025 0.0084 0.0050

75 0.8333 0.8164 0.1059 0.0075 0.0065 0.0031

80 0.8310 0.8157 0.1071 0.0023 0.0008 0.0012

85 0.8295 0.8157 0.1037 0.0015 0.0000 0.0034

90 0.8289 0.8133 0.1085 0.0006 0.0024 0.0048

95 0.8338 0.8190 0.1016 0.0049 0.0057 0.0070

100 0.8219 0.8077 0.1075 0.0119 0.0113 0.0059

[5, 100] 0.8072 0.7895 0.1245 - - -

Figure 4.15 shows the results as a function of the number of customer agents.

More than 75% of the experiments arrive at an efficiency above 0.65, except for

five and ten customer agents. For these experiments, the third quartile ends in

the interval [0.6, 0.65].

CHAPTER 4. EVALUATION 138

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●●●●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●●●

●

●

●● ●

●

●
●

●

●●

●

●●●●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
number of customer agents

ut
ili

ty
 r

at
io

Figure 4.15: Utility ratio as function of number of customer agents for substi-
tutable resources and IRF bidding policy.

In table 4.20, mean, median, and standard deviation are shown as a function

of the number of SP agent tiers over all experiments for substitutable resources

and the IRF bidding policy. It also includes the differences from the previous

experiment. The median efficiency of the protocol is decreasing for an increased

number of tiers. The median utility ratio values lie in the interval [0.736, 0.848]

over all experiments. The standard deviation lies between 0.103 and 0.128.

In figure 4.16, the utility ratio is shown as a function of the number of SP

agent tiers for substitutable resources and the IRF bidding policy. More than

75% of the experiments arrive at an efficiency at or above 0.65.

CHAPTER 4. EVALUATION 139

Table 4.20: Utility ratio as function of number of SP agent tiers for substitutable
resources and IRF bidding policy.

|Λ| median mean sd ∆median ∆mean ∆sd

1 0.8475 0.8385 0.1087 - - -

2 0.8393 0.8244 0.1039 0.0082 0.0141 0.0049

3 0.8169 0.7960 0.1180 0.0223 0.0284 0.0141

4 0.7792 0.7624 0.1278 0.0377 0.0336 0.0098

5 0.7365 0.7265 0.1276 0.0427 0.0359 0.0002

[1, 5] 0.8072 0.7895 0.1245 - - -

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●●●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5
number of SP agent tiers

ut
ili

ty
 r

at
io

Figure 4.16: Utility ratio as function of number of SP agent tiers for substi-
tutable resources and IRF bidding policy.

CHAPTER 4. EVALUATION 140

Table 4.21 shows mean, median, and standard deviation as a function of the

number of SPs in tier 1 for substitutable resources and the IRF bidding policy.

In addition, it shows the differences (∆) from the previous experiment (line) for

median, mean, and standard deviation. The median efficiency of the protocol

is increasing for an increased number of SP agents in tier 1. The median utility

ratio values lie in the interval [0.761, 0.829] over all experiments.

The standard deviation lies between 0.105 and 0.150 over all experiments,

and is considerably higher for two SP agents in the first tier. This results from

a low SP-customer-ratio for these experiments and therefore a worse utilization

of the resources, due to the myoptic allocation strategy of the SP agents to

allocate resources for agents with higher demand first.

Table 4.21: Utility ratio as function of the number of SPs in tier 1 for substi-
tutable resources and IRF bidding policy.

|ASP ,1| median mean sd ∆median ∆mean ∆sd

2 0.7619 0.7492 0.1500 - - -

4 0.7966 0.7809 0.1258 0.0347 0.0317 0.0242

6 0.8099 0.7948 0.1153 0.0133 0.0139 0.0105

8 0.8215 0.8073 0.1100 0.0116 0.0125 0.0053

10 0.8284 0.8156 0.1052 0.0069 0.0083 0.0048

[2, 10] 0.8072 0.7895 0.1245 - - -

Figure 4.17 shows the utility ratio as a function of the number of SPs in tier

1 for substitutable resources and the IRF bidding policy. Over all experiments

and more than two SP agents in tier 1, 75% of the experiments arrive at an

efficiency above 0.7. In all experiments, more than 25% of the experiments

arrive at an efficiency above 0.85.

CHAPTER 4. EVALUATION 141

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●●

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

2 4 6 8 10
number of SP agents in tier 1

ut
ili

ty
 r

at
io

Figure 4.17: Utility ratio as function of the number of SPs in tier 1 for substi-
tutable resources and IRF bidding policy.

The results of a linear regression analysis over all experiments for substi-

tutable resources and the IRF bidding policy are shown in table 4.22. It con-

tains the utility ratio as the dependent variable, and shows the influence of

the number of customer agents (|AC |), the number of SP agent tiers (|Λ|), the

number of SP agents in tier 1 (|ASP ,1|), the number of SP agents (|ASP |), the

number of total edges of the SN, and the demand-supply-ratio of the SN on the

utility ratio.

All mentioned variables have a significant influence on the utility ratio. The

number of customers has a negative effect on the utility ratio, and therewith

the protocol implementation’s efficiency; since the search space is increased, the

probability of allocating resources suboptimally is also increased. The number

of SP agent tiers has a negative effect on the utility ratio, and therewith the

protocol implementation’s efficiency. This results from an increased probability

of allocating resources suboptimally in tiers closer to the customer agents first.

CHAPTER 4. EVALUATION 142

In contrast, the number of SP agents in the first tier positively influences the

utility ratio. The number of total edges has a positive, the demand-supply-ratio

a negative effect on the utility ratio.

Table 4.22: Linear regression analysis results for for substitutable resources and
IRF bidding policy.

Dependent variable:

UTILITY RATIO

|AC | −0.0001∗∗

(0.0001)

|Λ| −0.019∗∗∗

(0.001)

|ASP,1| 0.006∗∗∗

(0.0003)

|ASP | −0.005∗∗∗

(0.0002)

TOTAL EDGES 0.001∗∗∗

(0.00003)

DEMAND SUPPLY RATIO −0.007∗∗∗

(0.0004)

Constant 0.835∗∗∗

(0.003)

Observations 25, 000
R2 0.211
Adjusted R2 0.210
Residual Std. Error 0.111(df = 24993)
F statistic 1, 111.687∗∗∗(df = 6; 24993)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

4.3.3 Discussion

The results of the simulation study provide evidence for the efficacy of the

proposed protocol in different settings and network topologies, for substitutable

and non-substitutable resources, and for the different SP agent bidding policies

(for substitutable resources).

The utility ratio decreases with an increasing number of customer agents

for non-substitutable resources. This result is intuitive, as the competition for

SP agents’ resources increases with the number of concurrent customer agents.

In addition, the difficulty to find a socially optimal allocation increases with

CHAPTER 4. EVALUATION 143

the number of concurrent customer agents. The same applies for substitutable

resources for the BPRO bidding policy. For substitutable resources and the

IRF and ERF bidding policies, the utility ratio is increasing with an increasing

number of customer agents. Although the competition for SP agents’ resources

increases with the number of concurrent customer agents in these cases, the

negative effects of preferring lower tier (IRF) or higher tier (ERF) SP agents’

resources is counteracted by the higher number of requested resources over all

SP agents. That is, with an increasing number of customer agents, less effi-

cient single allocations are antagonized by the higher total number of resources

allocated to customer agents.

For substitutable resources, the IRF and BPRO bidding policies are domi-

nated by the ERF bidding policy for an increasing number of customer agents.

This results from the fact that SP agents using the BPRO bidding policy never

combine procured services from upstream SP agents with services they produce

using their own resources. Thus, SP agents are more likely to submit partial

bids to customer agents; those bids are refused, as they do not fulfill the cus-

tomer agents’ requirements. For the IRF bidding policy, SP agents do combine

procured services from upstream SP agents with services they produce using

their own resources. However, the IRF bidding policy limits the choice of re-

sources to the extend of which the required capacity for fulfilling a customer

agent’s request exceeds the available capacity of the SP agent. Since the effects

of choosing suboptimal allocations are counteracted by the effects of the larger

solution space, the ERF bidding policy converges to an efficiency of about 0.9.

Further, the SP agents using the ERF bidding policy can still choose from com-

peting SP in upstream SN tiers, potentially allocating the resources from the

most cost-efficient SP in the lowest tier.

For non-substitutable resources, the efficiency of the protocol is slightly

decreasing for an increased number of SP agent tiers, though it is not monoton-

ically decreasing. The allocation complexity increases with additional tiers, as

the solution space increases. This leads to decreased efficiency of the distributed

allocation.

For an increasing number of SP agent tiers and substitutable resources the

efficiency of the BPRO bidding policy decreases monotonically, since, in average

over all experiments, the number of SP agents – and therewith the solution

space – also increases with the number of tiers. Hence, it is more difficult to

approximate optimal allocations. The ERF bidding policy’s efficiency is quasi-

constant, regarding the number of tiers. Here, the converse effects of suboptimal

allocations and increased solution space lead to quasi-constant efficiency of the

CHAPTER 4. EVALUATION 144

protocol, independent of the number of tiers. For the IRF bidding policy, the

efficiency of the allocations decreases with the number of tiers. The reason is

that with this bidding policy it is more likely that resources of a suboptimal SP

agent are allocated to the provision of a service, as the customer agents (i) do

not have access to upstream SP agents and (ii) the SP agents in tier 1 try to

sell their own resources, for which the cost can be higher than in upstream SN

tiers, first.

All bidding policies obviously show approximately the same efficiency for

one SP tier. For |Λ| > 1, i.e., more than one SP tier, the difference in bidding

policy efficiency is obvious. For the BPRO bidding policy, the efficiency of

the allocations monotonically decreases with the number of tiers in quasi-linear

form. The same applies for the IRF bidding policy. The ERF bidding policy’s

efficiency leads to quasi-constant efficiency of the protocol, independent of the

number of tiers.

For non-substitutable resources, the utility ratio increases for additional SP

agents in tier 1. Since the competition cannot be increased as the resources are

non-substitutable, the larger number of SP agents in tier 1 does not significantly

increase the probability that customer requests can be fulfilled to their full

extend after reaching a threshold.

The utility ratio increases for the BPRO and IRF bidding policies with

an increasing number of SP agents in tier 1. It is quasi-constant for the ERF

bidding policy. An increased utility ratio for additional SP agents in tier 1 for

substitutable resources for the IRF and BPRO bidding policies results from a

larger number of SP agents in this tier and therewith an increased competition

and probability, respectively, that a customer request can be fulfilled to its full

extend. The increased competition in tier 1 increases the probability of more

cost-efficient SP agents to be located on this tier. However, for the ERF bidding

policy, the increased competition is counteracted by prioritization of higher tier

SP agents’ resources. Thus the utility ratio for additional SP agents in tier 1

for substitutable resources is quasi-constant for the ERF bidding policy.

Chapter 5

Conclusions

Concluding the research, this chapter recapitulates the key contributions and

summarizes the utilized procedure and methods to develop them. It discusses

limitations of the proposed protocol for resource allocation and gives an outlook

on future research to complement the results of this thesis.

5.1 Contributions

The contributions of this thesis are a multi-tier resource allocation protocol for

composite service provision over multiple SN tiers, along with a formal frame-

work which considers contractual dependencies. To solve the problem of multi-

tier dependencies in resource allocation in SNs, this research has applied an

interaction protocol engineering perspective. A game-theoretic problem anal-

ysis, based on the framework, has been performed. It has been shown that

computing socially optimal allocations in SNs is NP-complete and that Nash

equilibria exist for these allocations.

A game-theoretic model of the protocol has been presented. It has been

proven that the proposed protocol prevents overcommitments. In addition,

the protocol is incentive compatible for SP agents, individually rational, and

budget balanced; it also constitutes a polynomial time heuristic for the social

welfare maximization problem. Under the assumption that resources are non-

substitutable between SPs, it guarantees socially optimal allocations for single

customer requests.

The protocol specification has been provided in UML sequence diagrams,

finite state machines, and a Promela model. To formally verify safety as well

as liveness properties, the model checker Spin has been applied.

The proposed protocol has been implemented as a reusable capability for

the Jadex BDI agent system. Simulation experiments have been executed, using

145

CHAPTER 5. CONCLUSIONS 146

this implementation along with Jadex BDI agents for different Cloud comput-

ing scenarios. In these experiments, the allocative efficiency of the protocol

has been compared to the optimal allocation as a centralized benchmark in dif-

ferent settings (e.g., number of customer and SP agents) for three SP bidding

policies. Further, the simulation study has been conducted with and without

substitutable resources, i.e., SP agents can decide if they use own resources or

procure sub-services from SP agents in the next tier in case of substitutable re-

sources. The simulation-based evaluation has demonstrated the efficacy, utility,

and quality of the protocol. This thesis has shown that the protocol provides

means for multi-tier resource allocation without centralized control; therefore,

the required ad hoc contracting of the needed services is facilitated, honoring

the dependencies of agreements over multiple SN tiers.

5.2 Future research

Future research might be conducted in four directions. First, probabilistic the-

ory can be used to decrease response time and communication complexity if

the requesting customer requires an immediate response. If the response time

is non-critical, SPs can apply the proposed protocol and can store responses

from other SP agents. If it is critical, SP agents can use this stored knowl-

edge to respond to customers quickly. As a matter of principle, SP agents

cannot avoid overcommitments if they rely on historical data and respond to

their customers based on probabilistic data. Second, more work needs to be

done on developing (probabilistic) decision models for SPs. Service produc-

tion functions with different types and combinations of substitutable as well as

non-substitutable resources have to be considered.

Third, below-penalty decommitments, respectively leveled commitments,

can be combined with the proposed protocol. Together with advanced schedul-

ing for SP agents’ resource utilization, these approaches have shown to have

merits for the allocative efficiency in settings with uncertainty. Fourth, the

protocol can be used with different pricing schemata. In this research, resource

utilization is assumed to be certain once an agreement with a customer agent is

established. However, resource utilization may be fuzzy to a certain degree, and

the application of revenue management methods like overbooking can provide

benefits for SP agents. In contrast, an aggressive application of these methods

can have a negative effect on the providers’ reputation.

Bibliography

Alcatel-Lucent (2012), Alcatel-lucent 2011 global cloud ITDM study, Technical

report, Alcatel-Lucent.

Alford, T. & Morton, G. (2009), The economics of cloud computing, Technical

report, Booz Allen Hamilton.

Andersson, A., Tenhunen, M. & Ygge, F. (2000), Integer programming for

combinatorial auction winner determination, in ‘Proceedings of the Fourth

International Conference on MultiAgent Systems (ICMAS-2000)’, IEEE

Computer Society, pp. 39–46.

Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T.,

Pruyne, J., Rofrano, J., Tuecke, S. & Xu, M. (2007), ‘Web services agree-

ment specification (WS-Agreement)’, Open Grid Forum (OGF) Proposed

Recommendation GFD.107.

Anthony, P. & Jennings, N. R. (2003), ‘Developing a bidding agent for mul-

tiple heterogeneous auctions.’, ACM Transactions on Internet Technology

2(3), 185–217.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A.,

Lee, G., Patterson, D., Rabkin, A., Stoica, I. & Zaharia, M. (2010), ‘A

view of cloud computing’, Commun. ACM 53(4), 50–58.

Arrow, K. J., Sen, A. K. & Suzumura, K., eds (2002), Handbook of Social Choice

and Welfare, Vol. 1, Elsevier.

Bichler, M. (2000), ‘An experimental analysis of multi-attribute auctions’, De-

cision Support Systems 29(3), 249–268.

Binmore, K. (1992), Fun and Games: A Text on Game Theory, D. C. Heath

and Company.

147

BIBLIOGRAPHY 148

Bitner, M. J., Faranda, W. T., Hubbert, A. R. & Zeithaml, V. A. (1997), ‘Cus-

tomer contributions and roles in service delivery’, International Journal of

Service Industry Management 8(3), 193–205.

Blau, B., van Dinther, C., Conte, T., Xu, Y. & Weinhardt, C. (2009), ‘How to

coordinate value generation in service networks–a mechanism design ap-

proach’, Business and Information Systems Engineering (BISE) 1(5), 343–

356.

Bo, A. & Lesser, V. (2010), ‘Characterizing contract-based multi-agent resource

allocation in networks’, IEEE Trans. on Systems, Man and Cybernetics,

Part B: Cybernetics 40 3, 575–586.

Bond, A. H. & Gasser, L. G. (1988), An analysis of problems and research in

DAI, in A. H. Bond & L. G. Gasser, eds, ‘Readings in Distributed Artificial

Intelligence’, M. Kaufmann, San Mateo, CA, USA, chapter 1, pp. 3–35.

Booch, G. (1993), Object-Oriented Analysis and Design with Applications,

Addison-Wesley Longman, Amsterdam.

Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C. &

Orchard, D. (2004), ‘Web services architecture’, World Wide Web Consor-

tium (W3C) Working Group Note 11 February 2004.

Bratman, M. E., Israel, J. & Pollack, M. E. (1988), ‘Plans and resource-bounded

practical reasoning’, Computional Intelligence 4, 349–355.

Cardoso, J., Sheth, A., Miller, J., Arnold, J. & Kochut, K. (2004), ‘Quality of

service for workflows and web service processes’, Web Semantics: Science,

Services and Agents on the World Wide Web 1(3), 281–308.

Castelfranchi, C. (1995), Guarantees for autonomy in cognitive agent architec-

ture, in M. Wooldridge & N. R. Jennings, eds, ‘Proceedings of the Intel-

ligent Agents, ECAI-94 Workshop on Agent Theories, Architectures, and

Languages, Amsterdam, The Netherlands, August 8-9, 1994’, Vol. 890 of

Lecture Notes in Computer Science, Springer, pp. 56–70.

Castelfranchi, C. (1998), ‘Modelling social action for AI agents’, Artificial In-

telligence 103(1–2), 157–182.

Chevaleyre, Y., Dunne, P. E., Endriss, U., Lang, J., Lemaitre, M., Maudet, N.,

Padget, J., Phelps, S., Rodriguez-aguilar, J. A. & Sousa, P. (2006), ‘Issues

in multiagent resource allocation’, Informatica 30, 3–31.

BIBLIOGRAPHY 149

Christensen, E., Curbera, F., Meredith, G. & Weerawarana, S. (2001), ‘Web

services description language (WSDL) 1.1’, World Wide Web Consortium

(W3C) Note 15 March 2001.

Clarke, E. M., Grumberg, O. & Peled, D. (1999), Model Checking, MIT Press.

Cramton, P., Shoham, Y. & Steinberg, R., eds (2006), Combinatorial Auctions,

MIT Press.

Czajkowski, K., Foster, I. & Kesselman, C. (2004), Grids in context, in I. Fos-

ter & C. Kesselman, eds, ‘The Grid 2: Blueprint for a New Computing

Infrastructure’, Morgan Kaufmann Publishers Inc., chapter 1, pp. 259–283.

Dasgupta, P., Hammond, P. & Maskin, E. (1979), ‘The implementation of social

choice rules: Some general results on incentive compatibility’, The Review

of Economic Studies 46(2), 185–216.

Dobson, G., Lock, R. & Sommerville, I. (2005), QoSOnt: a QoS ontology for

service-centric systems, in ‘Proceedings of the 31st EUROMICRO Confer-

ence on Software Engineering and Advanced Applications (EUROMICRO

’05),’, IEEE Press, pp. 80–87.

Dustdar, S. (2004), ‘Web services workflows—composition, co-ordination,

and transactions in service-oriented computing’, Concurrent Engineering

12(3), 237–245.

Endriss, U. & Maudet, N. (2005), ‘On the communication complexity of mul-

tilateral trading: Extended report’, Journal of Autonomous Agents and

Multi-Agent Systems 11(1), 91–107.

Endriss, U., Maudet, N., Sadri, F. & Toni, F. (2003), On optimal outcomes

of negotiations over resources, in ‘Proceedings of the second international

joint conference on Autonomous agents and multiagent systems’, AAMAS

’03, ACM, New York, NY, USA, pp. 177–184.

Endriss, U., Maudet, N., Sadri, F. & Toni, F. (2006), ‘Negotiating socially

optimal allocations of resources’, Journal of Artificial Intelligence Research

25(1), 315–348.

Ferber, J. (1999), Multi-Agent Systems: An Introduction to Distributed Artifcial

Intelligence, Addison-Wesley.

FIPA (2002a), ‘FIPA communicative act library specification’,

http://www.fipa.org/specs/fipa00037/.

BIBLIOGRAPHY 150

FIPA (2002b), ‘FIPA contract net interaction protocol specification’,

http://www.fipa.org/specs/fipa00029/.

Foster, I., Kesselman, C. & Tuecke, S. (2001), ‘The anatomy of the grid: En-

abling scalable virtual organizations’, Int. J. High Perform. Comput. Appl.

15(3), 200–222.

Foster, I., Kishimoto, H., Savva, A., Berry, D., Djaoui, A., Grimshaw, A., Horn,

B., Maciel, F., Siebenlist, F., Subramaniam, R., Treadwell, J. & Reich,

J. V. (2006), ‘The open grid services architecture, version 1.5’. Open Grid

Services Architecture WG, Global Grid Forum.

Franklin, S. & Graesser, A. (1997), Is it an agent, or just a program?: A taxon-

omy for autonomous agents, in J. Müller, M. Wooldridge & N. Jennings,

eds, ‘Intelligent Agents III Agent Theories, Architectures, and Languages’,

Vol. 1193 of Lecture Notes in Computer Science, Springer, pp. 21–35.

Gadrey, J. (2000), ‘The characterization of goods and services: An alternative

approach’, Review of Income and Wealth 46(3), 369–387.

Gannon, J. D., Hamlet, R. G. & Mills, H. D. (1987), ‘Theory of modules’, IEEE

Transactions on Software Engineering 13(7), 820–829.

Garey, M. R. & Johnson, D. S. (1979), Computers and Intractability: A Guide

to the Theory of NP-Completeness, W. H. Freeman, New York.

Gasser, L. (1991), ‘Social conceptions of knowledge and action: Dai foundations

and open systems semantics’, Artificial Intelligence 47(1–3), 107–138.

Genesereth, M. R. & Ketchpel, S. P. (1994), ‘Software agents’, Communications

of the ACM 37(7), 48–53.

Giordano, L., Martelli, A. & Schwind, C. (2007), ‘Specifying and verifying

interaction protocols in a temporal action logic’, Journal of Applied Logic

5(2), 214—-234.

Green, J. & Laffont, J.-J. (1977), ‘Characterization of satisfactory mecha-

nisms for the revelation of preferences for public goods’, Econometrica

45(2), 427–438.

Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., Nielsen, H. F., Kar-

markar, A. & Lafon, Y. (2007), ‘SOAP version 1.2’, World Wide Web

Consortium (W3C) Recommendation 27 April 2007.

BIBLIOGRAPHY 151

Haugen, O. & Runde, R. K. (2009), Enhancing uml to formalize the fipa agent

interaction protocol, in K. Fischer, J. P. Mueller, J. Odell & A. J. Berre,

eds, ‘Agent-Based Technologies and Applications for Enterprise Interop-

erability’, Vol. 25 of Lecture Notes in Business Information Processing,

Springer, pp. 154–173.

Hevner, A. R., March, S. T., Park, J. & Ram, S. (2004), ‘Design science in

information systems research’, MIS Quarterly 28(1), 75–105.

Hewitt, C. (1991), ‘Open information systems semantics for distributed artificial

intelligence’, Artificial Intelligence 47(1–3), 79–106.

Hill, T. (1999), ‘Tangibles, intangibles and services: A new taxonomy for the

classification of output’, The Canadian Journal of Economics 32(2), 426–

446.

Hill, T. P. (1977), ‘On goods and services’, Review of Income and Wealth

23(4), 537–556.

Hogan, O. & Mohamed, S. (2010), The cloud dividend: Part one, Technical

report, Centre for Economics and Business Research (Cebr).

Holzmann, G. J. (1991), Design and Validation of Computer Protocols, Prentice

Hall, New Jersey.

Holzmann, G. J. (1997), ‘The model checker spin’, IEEE Transactions on Soft-

ware Engineering 23(5), 279–295.

Huget, M.-P. & Koning, J.-L. (2003), Interaction protocol engineering, in M.-P.

Huget, ed., ‘Communication in Multiagent Systems, Agent Communica-

tion Languages and Conversation Polocies’, Vol. 2650 of Lecture Notes in

Computer Science, Springer, pp. 179–193.

Huhns, M. N. & Stephens, L. M. (1999), Multiagent systems and societies of

agents, in G. Weiss, ed., ‘Multiagent Systems: A Modern Approach to

Distributed Artificial Intelligence’, MIT Press, pp. 79–120.

Huhns, M., Singh, M., Burstein, M., Decker, K., Durfee, K., Finin, T., Gasser,

T., Goradia, H., Jennings, P., Kiran Lakkaraju Nakashima, H., Van

Dyke Parunak, H., Rosenschein, J., Ruvinsky, A., Sukthankar, G., Swarup,

S., Sycara, K., Tambe, M., Wagner, T. & Zavafa, L. (2005), ‘Research di-

rections for service-oriented multiagent systems’, IEEE Internet Comput-

ing 9(6), 65–70.

BIBLIOGRAPHY 152

Hurwicz, L. & Walker, M. (1990), ‘On the generic nonoptimality of dominant-

strategy allocation mechanisms: A general theorem that includes pure

exchange economies’, Econometrica 58(3), 683—-704.

Huynh, T. D., Jennings, N. R. & Shadbolt, N. R. (2006), ‘An integrated trust

and reputation model for open multi-agent systems’, Autonomous Agents

and Multi-Agent Systems 13, 119—-154.

IBM (2011), ‘User’s manual for CPLEX’. Version 12.3, IBM Corp.

Ingrand, F., Georgeff, M. & Rao, A. (1992), ‘An architecture for real-time

reasoning and system control’, IEEE Expert 7(6), 34–44.

Jaeger, M. C. & Ladner, H. (2006), ‘A model for the aggregation of qos in ws

compositions involving redundant services’, Journal of Digital Information

Management 4(4), 44–49.

Jaeger, M., Rojec-Goldmann, G. & Mühl, G. (2004), Qos aggregation for web

service composition using workflow patterns, in ‘Proceedings of the 8th

IEEE International Enterprise Distributed Object Computing Conference

(EDOC 2004), Monterey’, pp. 149–159.

Jennings, N. R. (1993), ‘Commitments and conventions: The foundation of

coordination in multi-agent systems’, The Knowledge Engineering Review

8(3), 223–250.

Jennings, N. R. (2000), ‘On agent-based software engineering’, Artificial Intel-

ligence 117(2), 277–296.

Jennings, N. R. & Wooldridge, M. (2000), Agent-oriented software engineering,

in J. Bradshaw, ed., ‘Handbook in Agent Technology’, MIT Press.

Jones, I., ed. (2010), BREIN Final Demonstrator. BREIN Deliverable D8.1.1.

URL: http://www.eu-brein.com

Karaenke, P. & Kirn, S. (2010a), A multi-tier negotiation protocol for logis-

tics service chains, in ‘Proceedings of the 18th European Conference on

Information Systems (ECIS 2010), June, 6–9, Pretoria, South Africa’.

Karaenke, P. & Kirn, S. (2010b), Towards model checking & simulation of a

multi-tier negotiation protocol for service chains (extended abstract), in

van der Hoek, Kaminka, Lesperance, Luck & Sen, eds, ‘Proceedings of 9th

International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2010), May, 10–14, Toronto, Canada’, pp. 1559–1560.

BIBLIOGRAPHY 153

Karaenke, P. & Leukel, J. (2010), Towards ontology-based QoS aggregation for

composite web services, in K.-P. Fähnrich & B. Franczyk, eds, ‘Proceed-

ings of Informatik 2010, 40. Jahrestagung der Gesellschaft für Informatik

e.V. (INFORMATIK 2010), November, 27–October, 1, Leipzig, Germany’,

pp. 120–125.

Karaenke, P., Leukel, J. & Sugumaran, V. (2013), Ontology-based QoS aggrega-

tion for composite web services, in ‘Proceedings of Wirtschaftsinformatik

2013 (WI 2013), February, 27–March, 01, Leipzig, Germany’.

Karaenke, P., Micsik, A. & Kirn, S. (2009), Adaptive SLA management along

value chains for service individualization, in R. Alt, K.-P. Faehnrich &

B. Franczyk, eds, ‘Proceedings of the First International Symposium on

Services Science (ISSS2009)’, Logos, Berlin.

Karp, R. (1972), Reducibility among combinatorial problems, in R. Miller &

J. Thatcher, eds, ‘Complexity of Computer Computations’, Plenum Press,

New York.

Kirn, S., ed. (2008), Individualization Engineering, Cuvillier.

Kluegl, F. (2001), Multiagentensimulation - Konzepte, Werkzeuge, Anwendung

(German), Addison-Wesley.

Kraus, S. (1997), ‘Negotiation and cooperation in multi-agent environments’,

Artificial Intelligence 94(1–2), 79–98.

Laria, G., ed. (2009), Final BREIN Architecture. BREIN Deliverable D4.1.3v2.

URL: http://www.eu-brein.com

Luck, M. & d’Inverno, M. (1995), A formal framework for agency and autonomy,

in V. R. Lesser & L. Gasser, eds, ‘Proceedings of the First International

Conference on Multiagent Systems, June 12-14, 1995, San Francisco, Cal-

ifornia, USA’, The MIT Press.

MacKenzie, C. M., Laskey, K., McCabe, F., Brown, P. F. & Metz, R. (2006),

Reference model for service oriented architecture 1.0, OASIS Standard,

OASIS.

Malone, T. W. & Crowston, K. (1994), ‘The interdisciplinary study of coordi-

nation’, ACM Computing Surveys 26(1), 87–119.

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,

Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N.

BIBLIOGRAPHY 154

& Sycara, K. (2004), ‘OWL-S: Semantic markup for web services’, World

Wide Web Consortium (W3C) Member Submission 22 November 2004.

McIlraith, S., Son, T. C. & Zeng, H. (2001), ‘Semantic web services’, IEEE

Intelligent Systems 16(2), 46–53.

Menasce, D. (2004), ‘Composing web services: A qos view’, IEEE Internet

Computing 8(6), 88–90.

Mitchell, T. M. (1997), Machine Learning, McGraw-Hill, Inc., New York, NY,

USA.

Moulin, H. (1988), Axioms of Cooperative Decision Making, Cambridge Uni-

versity Press.

Muñoz Frutos, H., Kotsiopoulos, I., Vaquero, L. M. & Merino, L. R. (2009),

Enhancing service selection by semantic qos, in ‘Proceedings of the 6th

European Semantic Web Conference (ESWC 2009)’, Springer, pp. 565–

577.

Myerson, R. B. & Satterthwaite, M. A. (1983), ‘Efficient mechanisms for bilat-

eral trading’, Journal of Economic Theory 29(2), 265–281.

Nash, J. F. J. (1950), Non-cooperative games, PhD thesis, Princeton University.

Newell, A. (1982), ‘The knowledge level’, Artificial Intelligence 18, 87–127.

Nguyen, T. D. & Jennings, N. R. (2004), Coordinating multiple concurrent

negotiations, in ‘Proceedings of the 3rd International Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS’04)’, pp. 1064–1071.

Nguyen, T. D. & Jennings, N. R. (2005), ‘Managing commitments in multiple

concurrent negotiations’, Electronic Commerce Research and Applications

4(4), 362–376.

Nisan, N., Roughgarden, T., Tardos, E. & Vazirani, V. V., eds (2007), Algo-

rithmic Game Theory, Cambridge University Press.

Oaks, P., ter Hofstede, A. H. M. & Edmond, D. (2003), Capabilities: Describing

what services can do, in M. E. Orlowska, S. Weerawarana, M. P. Papa-

zoglou & J. Yang, eds, ‘Proceedings of the First International Conference

on Service-Oriented Computing (ICSOC)’, Vol. 2910 of Lecture Notes in

Computer Science, Springer, pp. 1–16.

BIBLIOGRAPHY 155

OASIS (2007), ‘Web services business process execution language version 2.0’.

OASIS Standard, Organization for the Advancement of Structured Infor-

mation Standards.

OMG (2011a), ‘Business process model and notation (BPMN), version 2.0’.

OMG Document Number: formal/2011-01-03, Object Management Group.

OMG (2011b), ‘Unified modeling language (UML) superstructure, version

2.4.1’. OMG Document Number: formal/2011-08-05, Object Management

Group.

O’Sullivan, J., Edmond, D. & ter Hofstede, A. (2002), ‘What’s in a service?’,

Distributed and Parallel Databases 12(2-3), 117–133.

Papadimitriou, C. H. (1994), Computational Complexity, Addison Wesley.

Papazoglou, M. P. (2003), Service-oriented computing: Concepts, characteris-

tics and directions, in ‘Proceedings of the Fourth International Conference

on Web Information Systems Engineering (WISE 2003)’, pp. 3–12.

Papazoglou, M. P., Traverso, P., Dustdar, S. & Leymann, F. (2008), ‘Service-

oriented computing: A research roadmap’, International Journal of Coop-

erative Information Systems 17(2), 223–255.

Parkes, D. (2001), Iterative Combinatorial Auctions: Achieving Economic and

Computational Efficiency, PhD thesis, University of Pennsylvania.

Parkes, D. & Shneidman, J. (2004), Distributed implementations of Vickrey-

Clarke-Groves mechanisms, in ‘Proceedings of the 3rd International Con-

ference on Autonomous Agents and Multiagent Systems (AAMAS’04)’,

ACM, New York, NY, pp. 261–268.

Parsons, S. & Wooldridge, M. (2002), ‘Game theory and decision theory

in multi-agent systems’, Autonomous Agents and Multi-Agent Systems

5, 243–254.

Piller, F. T., Moeslein, K. & Stotko, C. M. (2004), ‘Does mass customization

pay? an economic approach to evaluate customer integration’, Production

Planning & Control 15(4), 435–444.

Pokahr, A., Braubach, L. & Lamersdorf, W. (2005), Jadex: A BDI reasoning

engine, in R. H. Bordini, M. Dastani, J. Dix & A. E. Fallah-Seghrouchni,

eds, ‘Multi-Agent Programming’, Vol. 15 of Multiagent Systems, Artificial

Societies, and Simulated Organizations, Springer, pp. 149–174.

BIBLIOGRAPHY 156

Preist, C., Bartolini, C. & Byde, A. (2003), Agent-based service composition

through simultaneous negotiation in forward and reverse auctions, in ‘Pro-

ceedings of the 4th ACM Conference on Electronic Commerce (EC ’03)’,

ACM, New York, NY, pp. 55–63.

Raiffa, H. (1968), Decision Analysis: Introductory Lectures on Choices under

Uncertainty, Addison Wesley.

Rasmusen, E. (1989), Games and Information, Basil Blackwell, Oxford.

Robinson, M. S. (1985), ‘Collusion and the choice of auction’, The RAND Jour-

nal of Economics 16(1), 141–145.

Rosenschein, J. S. (1985), Rational Interaction: Cooperation Amoung Intelli-

gent Agents, PhD thesis, Stanford University.

Rosenschein, J. S. & Zlotkin, G. (1994), Rules of Encounter: Designing Con-

ventions for Automated Negotiation among Computers, MIT Press.

Rothkopf, M. H., Pekeč, A. & Harstad, R. M. (1998), ‘Computationally man-

ageable combinational auctions’, Management Science 44(8), 1131–1147.

Russell, S. J. & Norvig, P. (2003), Artificial Intelligence: A Modern Approach,

2nd edn, Prentice Hall.

Russell, S. J. & Subramanian, D. (1995), ‘Provably bounded-optimal agents’,

Journal of Artificial Intelligence Research 2, 575–606.

Rust, R. T. & Kannan, P. (2002), E-Service: New Directions in Theory and

Practice, ME Sharpe.

Rust, R. T. & Kannan, P. (2003), ‘E-service: a new paradigm for business in

the electronic environment’, Communications of the ACM 46(6), 36–42.

Sandholm, T. W. (1999), Distributed rational decision making, in G. Weiss,

ed., ‘Multiagent Systems: A Modern Approach to Distributed Artificial

Intelligence’, MIT Press, pp. 201–258.

Sandholm, T. W. & Lesser, V. R. (1995), Issues in automated negotiation and

electronic commerce: Extending the contract net framework, in ‘Proceed-

ings of the International Conference on Multi-Agent Systems’, MIT Press,

pp. 328–335.

Sandholm, T. W. & Lesser, V. R. (2001), ‘Leveled commitment contracts and

strategic breach’, Games and Economic Behavior 35(1–2), 212–270.

BIBLIOGRAPHY 157

Schillo, M., Kray, C. & Fischer, K. (2002), The eager bidder problem: a fun-

damental problem of dai and selected solutions, in ‘Proceedings of the

First international Joint Conference on Autonomous Agents and Multia-

gent Systems (AAMAS’02)’, ACM, New York, NY, pp. 599–606.

Sen, A. K. (1970), Collective Choice and Social Welfare, Holden-Day.

Si, Y.-W., Edmond, D., Dumas, M. & Hofstede, A. H. M. (2007), ‘Specifica-

tion and execution of composite trading activities’, Electronic Commerce

Research 7(3-4), 221–263.

Si, Y.-W., Edmond, D., ter Hofstede, A. H., Dumas, M. & Chong, C. U. (2005),

Specification of composite trading activities in supply chain management,

in ‘Proceedings of the IEEE International Conference on e-Technology, e-

Commerce and e-Service (EEE05), March 29 - April 01, 2005, Hong Kong,

China’.

Simon, H. A. (1957), Models of Man: Social and Rational, John Wiley, New

York.

Simon, H. A. (1982), Models of Bounded Rationality, Vol. 1, The MIT Press,

Cambridge, Massachusetts.

Simon, H. A. (1996), The Sciences of the Artificial, 3rd edn, MIT Press, Cam-

bridge, MA.

Singh, M. (1993), ‘A semantics for speech acts’, Annals of Mathematics and

Artificial Intelligence 8(1-2), 47–71.

Smith, C. W. (1989), Auctions: The Social Construction of Value, Free Press,

New York, NY, USA.

Smith, R. G. (1980), ‘The contract net protocol: High-level communication and

control in a distributed problem solver’, IEEE Transactions on Computers

C-29(12), 1104–1113.

ul Haq, I., Huqqani, A. & Schikuta, E. (2009), Aggregating hierarchical ser-

vice level agreements in business value networks, in U. Dayal, J. Eder,

J. Koehler & H. Reijers, eds, ‘Proceedings of the 7th International Con-

ference on Business Process Management (BPM 2009)’, Springer.

van der Aalst, W., ter Hofstede, A., Kiepuszewski, B. & Barros, A. (2003),

‘Workflow patterns’, Distributed and Parallel Databases 14(3), 5–51.

BIBLIOGRAPHY 158

Vaquero, L. M., Rodero-Merino, L., Caceres, J. & Lindner, M. (2009), ‘A break

in the clouds: Towards a cloud definition’, ACM SIGCOMM Computer

Communication Review 39(1), 50–55.

Vehlow, M. & Golkowsky, C. (2011), Cloud computing - navigating the cloud,

Technical report, PricewaterhouseCoopers (PwC).

Verma, D. (1999), Supporting Service Level Agreements on IP Networks,

Macmillan Technical Publishing.

Vickrey, W. (1961), ‘Counterspeculation, auctions, and competitive sealed ten-

ders’, Journal of Finance 16, 8–37.

von Neumann, J. & Morgenstern, O. (1944), Theory of Games and Economic

Behavior, Princeton University Press.

Vulkan, N. & Jennings, N. R. (2000), ‘Efficient mechanisms for the supply

of services in multi-agent environments’, Decision Support Systems 28(1–

2), 5–19.

Walker, M. (1980), ‘On the nonexistence of a dominant strategy mechanism for

making optimal public decisions’, Econometrica 48(6), 1521—-1540.

Walsh, W. E., Wellman, M. P. & Ygge, F. (2000), Combinatorial auctions for

supply chain formation, in ‘Proceedings of the 2nd ACM Conference on

Electronic Commerce (EC00)’, ACM, New York, NY, pp. 260–269.

Walsh, W. & Wellman, M. (2003), ‘Decentralized supply chain formation: A

market protocol and competitive equilibrium analysis’, Journal of Artificial

Intelligence Research 19, 513–567.

Walton, C. D. (2007), ‘Verifiable agent dialogues’, Journal of Applied Logic

5(2), 197–213.

Wooldridge, M. (1997), ‘Agent-based software engineering’, IEE Proceedings on

Software Engineering 144(1), 26–37.

Wooldridge, M. (2000), Reasoning about rational agents, MIT Press.

Wooldridge, M. (2009), An Introduction to Multi Agent Systems, 2nd edn, John

Wiley & Sons.

Wooldridge, M. & Jennings, N. R. (1995), ‘Intelligent agents: Theory and prac-

tice’, Knowledge Engineering Review 10(2), 115–152.

BIBLIOGRAPHY 159

Wooldridge, M., Jennings, N. R. & Kinny, D. (2000), ‘The gaia methodology for

agent-oriented analysis and design’, Autonomous Agents and Multi-Agent

Systems 3(3), 285–312.

Zeng, L., Benatallah, B., Ngu, A. H., Dumas, M., Kalagnanam, J. & Chang,

H. (2004), ‘Qos-aware middleware for web services composition’, IEEE

Transactions on Software Engineering 30(5), 311–327.

Zhang, X., Lesser, V. & Abdallah, S. (2005), ‘Efficient management of multi-

linked negotiation based on a formalized model’, Autonomous Agents and

Multi-Agent Systems 10(2), 165–205.

