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1 General introduction 

1.1 Whiteflies 

With more than 1,550 species, whiteflies constitute a large group of hemipterans that differ in 

their biology and distribution, thus highlighting their adaptability to a wide range of ecological 

conditions and host plant species (BÄHRMANN 2002; OUVRARD AND MARTIN 2019). Consequently, 

important crop plants are also found among their host plant range. Today, whiteflies are among the 

most important agricultural pests causing severe direct and indirect damage to numerous crops and 

ornamentals in fields and greenhouses worldwide (BYRNE ET AL. 1990; BRØDSGAARD AND ALBAJES 

2002; WRAIGHT ET AL. 2017). Considering only the tropics and subtropics, the estimated economic 

losses amount to hundreds of millions of dollars per year; moreover, an increase of the whitefly 

outbreaks in wide areas beyond the tropics is known for decades (DUFFUS 1987; BINK-MOENEN AND 

MOUND 1990; CAPINERA 2008).  

 

Whitefly life cycle and biology 

Overall, the life cycle of whiteflies comprises six developmental stages (Figure 1). Whiteflies 

feed, mate and oviposit almost exclusively on the leaf undersides of their host plants (BÄHRMANN 

2002). Whitefly eggs are pear-shaped or ovoid and carry an egg pedicel, by which they are anchored 

into the leaf tissue and stomata together with a glue-like substance produced by the female whitefly 

during oviposition (PAULSON AND BEARDSLEY 1985; BYRNE AND BELLOWS 1991; BUCKNER ET AL. 

2002; VOIGT ET AL. 2019). After a few days, eggs become increasingly darker until hatching of the 

first instar larva (BÄHRMANN 2002).  

All nymphal stages are characterized by an oval body shape, but only the first larval instar 

possesses well-developed legs as well as antennae (BYRNE AND BELLOWS 1991; BÄHRMANN 2002; 

WALKER ET AL. 2010). As the first instar is the only larval stage capable of moving over short 

distances, they are also called crawlers (BYRNE AND BELLOWS 1991; SUMMERS ET AL. 1996). 

Immediately after hatching crawlers search suitable feeding sites on phloem within reach, which 

must fulfil all nutritional needs for further development (WEBER 1931; WALKER ET AL. 2010). As a 

result, they usually settle very close to their hatching site on the leaf underside and start feeding (VAN 

LENTEREN AND NOLDUS 1990; PRICE AND TABORSKY 1992).  

Henceforth, length and width of the following larval instars increase with every moult and the 

body extremities show a regressive development leading to a sessile life form (BÄHRMANN 2002; 

GELMAN ET AL. 2002). Right before each moult, the larvae need to pull out their stylets from leaf 

tissues to completely shed their cuticles (LEI ET AL. 1996). 
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The preimaginal development of whiteflies is a special case of hemimetabolism, named 

allometaboly, with a strong deferral of the formation of adult morphological features, which is made 

up in the fourth nymphal instar. This fourth nymphal instar is characterized by a process of 

metamorphosis and forms a kind of a pupal stage, which is also referred to as puparium (BYRNE AND 

BELLOWS 1991; BÄHRMANN 2002). It includes several changes on the morphological and 

physiological level: The early fourth larval instar is flattened and translucent, it then soon develops 

an expanded and opaque-white appearance with species-specific patterns of dorsal and lateral spine-

like extensions (BYRNE AND BELLOWS 1991; BÄHRMANN 2002). At some point, feeding as well as 

the production of honeydew are stopped (LEI ET AL. 1996; COSTA ET AL. 1999). The first externally 

visible feature of metamorphosis is the occurrence of two red spots, which later develop into 

compartment eyes, giving rise to the term red-eyed nymph (GELMAN ET AL. 2002; WALKER ET AL. 

2010). It is hypothesized that the puparium is the result of the suppression of a nymphal stage and, 

therefore, misses one moult (WEBER 1934). After completing metamorphosis, adults hatch and the 

empty puparial case is left on the leaves (BÄHRMANN 2002). 

In adult whiteflies, males are smaller than females, and both sexes carry four membranous wings 

(BYRNE AND BELLOWS 1991). Moreover, adults are completely covered in extracuticular waxes 

which are produced by themselves and spread on their entire bodies except for the eyes (BYRNE AND 

HADLEY 1988; NELSON ET AL. 2000). Due to this wax coverage, whiteflies resemble tiny moths, 

which already led to taxonomic mismatches in the past (MARTIN ET AL. 2000). Most whiteflies show 

parthenogenesis and reproduce by arrhenotoky (BYRNE AND BELLOWS 1991). Under summer 

conditions, the first mating and oviposition take place only a few hours after adult emergence either 

on the same leaves or after migration to different plants or plant parts (BÄHRMANN 2002). 
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Figure 1: The life cycle of the greenhouse whitefly Trialeurodes vaporariorum (Westw.) 

(modified after GULLAN AND MARTIN 2009; original whitefly images after GILL 1990) 

 

The cabbage whitefly 

In temperate latitudes the cabbage whitefly Aleyrodes proletella (L.) is distributed around the 

world (MOUND AND HALSEY 1978; BÄHRMANN 2002). In earlier times, A. proletella was not 

considered an agricultural threat, whereas the insect is seen as a serious pest today (CARDEN 1972; 

DALE ET AL. 1976; NEBREDA ET AL. 2005). The cabbage whitefly is considered polyphagous but 

infests only few plant families compared to some of its family members. While its main host plants 

are Brassica species, A. proletella is also known to infest plants of the Compositae and Papaveraceae 

family (HILL 1987; BÄHRMANN 2002). In middle Europe, females can be observed laying eggs on 

their hosts throughout the year (BÄHRMANN 2002). In areas with temperatures below zero in the 

winter season, however, egg deposition of the overwintering female A. proletella starts in the spring 

with temperatures above 8–10 °C (IHEAGWAM 1978; BÄHRMANN 2002). If female cabbage 
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whiteflies are not disturbed, egg deposition is practiced in circular patterns, as the female rotates 

around the stylet insertion point while still feeding on its host (EL-HELALY ET AL. 1972; BÄHRMANN 

2002). Furthermore, A. proletella is a potential polyvoltine species with the ability to develop more 

than two but usually less than four generations per year, which is mainly dependent on ambient 

temperatures (BÄHRMANN 2002). The adult cabbage whitefly measures approximately 1.4 mm in 

body length (DESHPANDE 1933). Their outer appearance is slightly darker coloured in comparison 

to other whitefly species, especially the abdominal part, and the wings carry dark spots (BÄHRMANN 

2002) (Figure 2). 

 

The silverleaf whitefly 

The silverleaf whitefly Bemisia tabaci (Genn.) has a worldwide distribution and inhabits every 

continent except Antarctica (EPPO 2019; OUVRARD AND MARTIN 2019). It is a pest of the tropics 

and subtropics but can be found in greenhouses of temperate environments as well (EPPO 2019). 

Demonstrating its high degree of polyphagia, B. tabaci infests more than 500 plant species in 63 

plant families, including important vegetables and ornamentals (BAUFELD AND UNGER 1994; 

BÄHRMANN 2002). The damage potential of the silverleaf whitefly is further enhanced by its ability 

to transmit numerous viral diseases, particularly gemini viruses, such as the economically important 

Tomato leaf curl virus, African cassava mosaic virus or Pepper leaf curl virus (COHEN 1990). 

Another defining feature of the silverleaf whitefly is its genetic plasticity, which is expressed by the 

presence of several biotypes of this species complex (BURBAN ET AL. 1992; JIMENEZ ET AL. 1994). 

These biotypes differ not only on the molecular level but also in their preferences towards their host 

plants (BÄHRMANN 2002). Due to this genetic plasticity and its huge damage potential, B. tabaci is 

a successful invasive species that has led to several historical outbreaks in the past such as the 1920s 

in India, the 1930s and 1940s in Israel, as well as the 1970s in Brazil (NARANJO ET AL. 2010). During 

their life span, female silverleaf whiteflies can lay over 300 eggs, which are often deposited in an arc 

shape (GANGWAR AND GANGWAR 2018). Moreover, B. tabaci can form 11–14 generations per year 

in the field of suitable areas (GERLING AND MAYER 1996). The adult B. tabaci is about 0.85–

0.91 mm long with a white to yellowish body colour and white wings, which are typically resting in 

a roof-shaped manner (BÄHRMANN 2002) (Figure 2).  

 

The greenhouse whitefly 

The greenhouse whitefly Trialeurodes vaporariorum (Westw.) is present in Africa, America, 

Asia, Europe, and Oceania (BÄHRMANN 2002; EPPO 2019). It is predominantly found in the fields 

of the tropics and subtropics but has become an important key pest on vegetable crops in greenhouses 
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all around the world (LANGE AND BRONSON 1981; VAN LENTEREN AND WOETS 1988). As a distinct 

generalist species, the greenhouse whitefly shows an extremely high degree in polyphagia with a 

host plant range consisting of approximately 859 crop and ornamental species of a total of 121 plant 

families (CABI 2019). Together with other species of the Trialeurodes and Bemisia genera, T. 

vaporariorum is a vector of viral diseases (JONES 2003). Females can lay more than 500 eggs during 

their lives on suitable hosts, which are deposited in circles on hair-less leaves and without a pattern 

on pubescent leaves (WEBER 1931; CABI 2019). Depending on local conditions, the greenhouse 

whitefly can form between 7 and 11 generations per year (GAMARRA ET AL. 2016). Adults measure 

between 1 to 1.1 mm and have a pale-yellow body with white wings, which are held flat (BYRNE 

AND BELLOWS 1991; CABI 2019). In comparison to B. tabaci, T. vaporariorum has a more triangular 

shape and can additionally be well distinguished according to the outer appearance of the puparium, 

which carries several waxy setae (BÄHRMANN 2002) (Figure 2).  

 

 

Figure 2: Adults of A. proletella (1), B. tabaci (2), and T. vaporariorum (3) 

 

 

Crop damage and whitefly management strategies 

Plant damage and crop yield loss from whitefly infestations are mainly caused by three different 

reasons resulting in various consequences. As whiteflies feed on the phloem of their host plants to 

ingest assimilates and amino acids, reduced plant growth with decreased number and size of leaves 

is a typical damage symptom (GANGE AND BROWN 1989; BYRNE AND MILLER 1990; BYRNE AND 

BELLOWS 1991; BÄHRMANN 2002). Furthermore, the honeydew secreted in high quantities by 

whitefly adults and nymphs reflects light and promotes sooty mould fungi. Light reflectance by 

honeydew and coverage by sooty moulds both reduce direct radiation by increased diffuse light 

(honeydew) or light absorbance (sooty mould), leading to a decreased photosynthesis rate of the plant 

(RABBINGE AND BASTIAANS 1989; BYRNE AND MILLER 1990; HONG AND RUMEI 1993; MIBEY 
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1997). In addition, gas exchange can also be affected causing early plant ageing, which can be 

accelerated by stomatal occlusion by whitefly wax excretions and honeydew (KLINGAUF AND 

ŞENGONCA 1982). As a result, agricultural plant products have lower marketability due to substantial 

reductions in quality, which can even lead to complete yield loss (BYRNE AND BELLOWS 1991; 

SAUCKE ET AL. 2011). Thirdly, some whitefly species act as plant virus vectors with 90 % of the 

transmitted viruses belonging to the genus Begomovirus of the family Geminiviridae, which causes 

important diseases of numerous dicotyledonous crops worldwide (JONES 2003; NAVAS-CASTILLO 

ET AL. 2011). An important representative of this genus is, for instance, the Tomato yellow leaf curl 

virus (CZOSNEK ET AL. 2017). 

The most common way to control whiteflies is the use of insecticides in the field and by 

parasitoids in greenhouses. Nevertheless, several circumstances may lead to control failure and fast 

pest resurgence. Chemical measures become more and more limited, as resistances against multiple 

classes of insecticides have been reported and are widespread in global whitefly populations today 

(NAUEN AND DENHOLM 2005; BASS ET AL. 2015; DÂNGELO ET AL. 2018). Furthermore, contact 

insecticides may constitute a problem, as whiteflies mainly sit on the lower leaf sides, which are 

difficult to reach directly by spray applications (BÄHRMANN 2002). Another limiting factor in the 

field is the passive distribution of whiteflies by wind, which causes repeatedly introductions of the 

pest from outside or neighbouring fields despite a successful control in the first place (VAN 

LENTEREN AND NOLDUS 1990; BYRNE ET AL. 1996; BÄHRMANN 2002). While biological control 

alone is generally less effective in the field, it is widely performed in greenhouses using 

predominantly parasitic wasps of the genera Encarsia and Eretmocerus (VAN LENTEREN AND WOETS 

1988; VAN LENTEREN 2000; LIU ET AL. 2015). Other biological control agents used are the mirid 

Macrolophus caliginosus (Wagner), predacious mites, particularly Amblyseius swirskii (Athias-

Henriot), as well as entomopathogenic fungi (OSBORNE AND LANDA 1992; ALOMAR ET AL. 2006; 

KNAPP ET AL. 2018). Nevertheless, successful augmentation and parasitization by antagonists in 

greenhouses are accompanied by several obstacles. On the one hand, physical factors such as 

greenhouse temperature, crop spacing, and fertilization regime can affect pest control; on the other 

hand, plant factors, for instance plant species and variety, plant trichomes, morphological leaf 

characteristics, and changing canopy influences performance of whitefly antagonists (HODDLE ET 

AL. 1998). While yellow sticky traps are mainly used for whitefly monitoring, they have been 

discussed as a control method in greenhouses as well (STEINER ET AL. 1999). In contrast, yellow 

sticky traps proved to be ineffective in whitefly suppression in the field (LU ET AL. 2012). However, 

cultural control methods such as trap crops, intercropping, and mulching were recently reported to 

represent a useful supportive component in whitefly management strategies (PERRING ET AL. 2018). 
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1.2 Host plant selection by whiteflies 

The selection of hosts that offer suitable sites for feeding and oviposition is a central 

evolutionary element in herbivorous insect-plant associations. This allows insects to ensure the best 

prerequisites for themselves and their offspring’s performance (SINGER 1986; THOMPSON 1988; VAN 

LENTEREN AND NOLDUS 1990). As potential host plants grow together with non-hosts in complex 

vegetation, host recognition is crucial for species survival (SCHOONHOVEN ET AL. 2005). Hence, 

insects have developed individual strategies to identify a suitable host plant. According to the general 

conception, insects follow an individual sequence of behavioural elements in a fixed order 

(SCHOONHOVEN ET AL. 2005). At any stage of these reaction chains, plants or plant parts that are 

evaluated as potential sites for feeding and oviposition so far can be rejected when positive stimuli 

are absent or negative stimuli dominate at a certain behavioural step, and insects return to the first 

behavioural step, searching, again (SCHOONHOVEN ET AL. 2005). Decisions over acceptance or 

rejection are driven by the sensory information based on plant cues, but the physiological status and 

previous experiences may affect the host selection process of an herbivorous insect as well (BROWNE 

1993; SCHOONHOVEN ET AL. 2005). Host plant selection is particularly important in female 

whiteflies, as feeding and oviposition occur on the same leaves and are even done simultaneously. 

Moreover, larval stages are predominantly sessile, so host selection occurs only in adult whiteflies 

with profound effects on the offspring’s fitness (VAN LENTEREN AND NOLDUS 1990; BÄHRMANN 

2002). According to this “mother-knows-best-principle”, host preference in whiteflies is often 

associated with host suitability and whitefly performance (LEVINS AND MACARTHUR 1969; JAENIKE 

1978; THOMPSON 1988; VAN LENTEREN AND NOLDUS 1990; BLUA ET AL. 1995; MAYHEW 1997; 

GRIPENBERG ET AL. 2010; TARAVATI ET AL. 2018). As potential hosts can be recognized by insects 

from a distance as well as after landing, the process of host plant selection in whiteflies can be divided 

into (1) searching and (2) contact-testing (VAN LENTEREN AND NOLDUS 1990; SCHOONHOVEN ET 

AL. 2005). While the first phase describes the selection of a host plant before landing, the second part 

comprises the selection of a host plant after landing including the stylet penetration process.  

 

Host plant selection before landing 

Colour is an important first cue to which whiteflies react from a distance. For the selection of 

landing sites, specific wavelengths in the ranges of 400–600 nm play an important role, while object 

size and shape do not have an influence (DOWELL 1979; COOMBE 1982). Consequently, whiteflies 

orientate towards the blue sky and tend to land on green plants, as wavelengths around 400 nm 

correspond to the blue sky and wavelengths between 500 and 600 nm coincide with the transmission 

spectrum of green leaves (MACDOWALL 1972; VAISHAMPAYAN ET AL. 1975; COOMBE 1982). 

Additionally, short-wavelength UV radiation provokes migratory behaviour with enhanced 
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locomotory functions and longer wavelengths trigger vegetative behaviour such as feeding and 

reproduction (MOUND 1962; AFFELDT ET AL. 1983; VAN LENTEREN AND NOLDUS 1990). First 

studies on whitefly olfaction could only find limited evidence of an odour-assisted host plant 

localization (MOUND 1962; VAISHAMPAYAN ET AL. 1975; DOWELL 1979). However, A. proletella 

reacts to odours of crushed cabbage leaves and recent studies could indeed show that B. tabaci and 

T. vaporariorum use olfactory cues for selection of landing sites among different plant varieties, 

cultivars and accessions (BUTLER 1938; BLEEKER ET AL. 2009; DARSHANEE ET AL. 2017; SADEH ET 

AL. 2017; TU AND QIN 2017). Moreover, whiteflies can distinguish different qualities of potential 

host plants concerning their nitrogen supply, leaf position, and health status (TAN AND LIU 2014; 

TSUEDA ET AL. 2014; FERERES ET AL. 2016; ISLAM ET AL. 2017; SCHLAEGER ET AL. 2018). 

 

Host plant selection after landing and stylet penetration 

After choosing a landing site, whiteflies are influenced by visual stimuli to select a suitable 

feeding site as a starting point for stylet penetration. While whiteflies usually land on the upper and 

more intensively illuminated leaf side, they walk to the shaded side regardless of whether it is the 

adaxial or abaxial leaf side (COOMBE 1982; VAN LENTEREN AND NOLDUS 1990). Moreover, young 

leaves are more preferred than old leaves, which might be due to probing deterrents on leaf cuticles, 

differences in the penetrability of the leaf cuticles or strategic advantages for subsequent generations 

(OHNESORGE ET AL. 1981; WALKER 1987; WALKER 1988; WALKER AND ZAREH 1990; BÄHRMANN 

2002). Leaf characteristics such as epicuticular surface waxes or leaf hairs can be perceived by 

several contact sense organs in whiteflies, which are located on antennae, stylets, tarsi as well as 

ovipositors (BERLINGER 1986; WALKER AND GORDH 1989). While only little is known about the 

influence of epicuticular surface waxes on whiteflies, the effect of leaf hairs is ambivalent. On one 

hand, leaf hairs can represent a physical barrier for oviposition and larval development; on the other 

hand, leaf hairs may contribute to a favourable microclimate (BÄHRMANN 2002).  

In the beginning of the stylet penetration process, whiteflies penetrate the leaf tissue by inserting 

their stylets between epidermal cells or use stomata as an entry (POLLARD 1955; WALKER 1985; VAN 

LENTEREN AND NOLDUS 1990). Thenceforth, parenchyma penetration is performed mainly 

intercellular, whereby penetration between adjacent cell walls and intercellular air spaces in the leaf 

tissue are common (POLLARD 1955; COHEN ET AL. 1998). As intracellular punctures are rare in 

whiteflies, only limited damage of leaf tissues occurs through penetration (POLLARD 1955; JANSSEN 

ET AL. 1989; WALKER ET AL. 2010). The objective is the penetration of a phloem sieve element and 

the continuous feeding on phloem sap, as this represents the main food source in whiteflies (LEI ET 

AL. 2001; BÄHRMANN 2002; WALKER ET AL. 2010). Feeding on xylem sap might occur as well, 

although it contains fewer nutrients compared to the phloem sap (POMPON ET AL. 2011). Instead, 
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xylem feeding was associated with supporting water balance and regulating osmotic potential in 

phloem sap feeders (SPILLER ET AL. 1990; POMPON ET AL. 2011). Overall, leaf penetration and 

localization of phloem sieve elements are time-consuming, and several probing attempts are 

necessary before the phloem is successfully reached (LEI ET AL. 1997). In conclusion, the stylet 

penetration process is based on various internal chemical and physical properties of the different leaf 

tissue types of a leaf (VAN LENTEREN AND NOLDUS 1990). Besides properties of the leaf epidermis, 

various factors of the mesophyll tissue, vascular bundles, and even intracellular information affect 

host choice in whiteflies (LEI ET AL. 1998; LEI ET AL. 1999; LEI ET AL. 2001).  

 

1.3 Host plant resistance against whiteflies 

Host plant resistance is defined as any reduction in the growth of an insect population, as 

influenced by heritable host plant characteristics, compared to a susceptible variety or genotype 

(PAINTER 1951; DE PONTI ET AL. 1990). Integrated pest control systems, which also utilize plant 

resistance, are therefore a powerful and effective form of pest control that is also considered to be 

very economical and environmentally friendly (RUSSELL 1978; DE PONTI ET AL. 1990; 

PALANISWAMY 1996; BROEKGAARDEN ET AL. 2011; VAN DOORN AND VOS 2013). According to 

PAINTER (1951) and KOGAN AND ORTMAN (1978) host plant resistance can be grouped into three 

categories including (i) antixenosis (non-preference), (ii) antibiosis (non-performance), as well as 

(iii) tolerance. Antixenosis defines a group of plant properties that deter insects from the use of the 

plant as a source for food, oviposition and/or shelter (PAINTER 1951; KOGAN AND ORTMAN 1978; 

SCHOONHOVEN ET AL. 2005). Therefore, repellent, deterrent or antifeedant effects interfere with 

mating, oviposition, and feeding in insects (PAINTER 1951; SCHOONHOVEN ET AL. 2005). 

Furthermore, interference of insect behaviour can be already caused by the absence of a stimulus 

required for host recognition within the host selection process (PANDA AND KHUSH 1995). 

Antibiosis, on the other hand, refers to plant characteristics that have adverse effects on an insect’s 

physiology including its growth, development, reproduction, and survival (PANDA AND KHUSH 1995; 

SCHOONHOVEN ET AL. 2005). Biophysical and biochemical plant defences, as well as nutritional 

factors, are involved in antibiosis disrupting the normal metabolic processes of an insect (PANDA 

AND KHUSH 1995). Consequently, antixenosis is related to behavioural aspects, while antibiosis 

occurs from direct lethal effects (DE PONTI ET AL. 1990). In contrast to antixenosis and antibiosis, 

tolerance describes the ability of a plant to withstand pest infestation or to compensate loss or injury 

(STONER 1996). As a result, insect pests do not experience a selection pressure from tolerance, as the 

rate of pest population increase is not affected (PANDA AND KHUSH 1995; SCHOONHOVEN ET AL. 

2005). Therefore, tolerance is no longer considered as a subcategory of plant resistance today but 

rather seen as a plant defence mechanism (SCHOONHOVEN ET AL. 2005).  
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Plant resistance to herbivores is observed frequently; however, the identification of plant 

characteristics contributing to plant resistance is difficult (STONER 1992). To detect resistance in a 

large assortment of plant varieties and genotypes, two basic test methods can be used to evaluate 

insect responses to host plants: (i) dual- or multi-choice tests for detection of antixenosis, and (ii) no-

choice tests for detection of antibiosis (DAVIS 1985; SMITH ET AL. 1994). While antixenosis is 

evaluated by counting adults and/or eggs as a measure for preference on two or more choice 

alternatives, antibiosis is assessed by comparing life-history data of whitefly oviposition rates, adult 

and nymph survival as well as development times on specific hosts without a choice alternative (BAS 

ET AL. 1992; MUIGAI ET AL. 2002; MUIGAI ET AL. 2003; BALDIN AND BENEDUZZI 2010). Screening 

techniques in the greenhouse and laboratory include tests with whole plants or plant leaves in 

combination with leaf clip cages, whereas other approaches successfully established in vitro 

bioassays with detached leaves or leaf discs, which are less cost intensive and space consuming 

(ROMANOW ET AL. 1991; ERB ET AL. 1994; SHARMA ET AL. 2005; FIRDAUS ET AL. 2012; GUO ET 

AL. 2013).  

Even though host plant resistance has been observed repeatedly in the past, the origin and 

mechanisms of the resistance were less studied and, therefore, often remained unidentified. Most 

studies on host plant resistance to whiteflies have focused on cotton, tomato, sweet pepper, eggplant, 

cucumber, soybean and cassava (DE PONTI ET AL. 1990; LAMBERT ET AL. 1995; BELLOTTI ET AL. 

1999). The mechanisms causing plant resistance against whiteflies can be of physical, chemical, or 

morphological nature and determine the respective testing and breeding methods, which are required 

to introduce resistant traits into other desired plants (DE PONTI ET AL. 1990). Among the plant 

characteristics known to date that contribute to whitefly resistance are the presence, morphology and 

appearance of leaf trichomes, epicuticular lipid composition, tissue hardness and cuticle thickness, 

leaf structure, leaf shape and plant canopy closure, plant height, plant pH, secondary metabolites, as 

well as plant chemicals that may occur in all plant tissues and structures (BERLINGER ET AL. 1983; 

WALKER 1985; BERLINGER 1986; SIPPELL ET AL. 1987; WALKER 1987; BUTLER ET AL. 1988; 

WALKER 1988; DE PONTI ET AL. 1990; CHANNARAYAPPA ET AL. 1992; SNYDER ET AL. 1998; 

TOSCANO ET AL. 2002; LAMBERT ET AL. 1995; SÁNCHEZ-PEÑA ET AL. 2006; FIRDAUS ET AL. 2011; 

HASANUZZAMAN ET AL. 2016; HASANUZZAMAN ET AL. 2018; VOIGT ET AL. 2019). Nevertheless, the 

combinations and potential interactions between these plant characteristics and the final resistance 

mechanism are still not fully understood, yet.  
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1.4 Objectives  

Despite intensive studies on whiteflies with focus on its biology, behaviour, ecology, damage, 

and control, many aspects of this species-rich complex are still unknown to date. As current control 

measures do not provide adequate success, the worldwide whitefly problematic is constantly growing 

(DUFFUS 1987; BINK-MOENEN AND MOUND 1990; NAUEN AND DENHOLM 2005; CAPINERA 2008; 

BASS ET AL. 2015; DÂNGELO ET AL. 2018). However, a deep understanding of the host plant selection 

process of whiteflies is essential for the development of alternative control strategies (VAN 

LENTEREN AND NOLDUS 1990). While the mediating factors of the whitefly host choice behaviour 

before landing are well known, host plant selection after landing as well as the stylet penetration 

process still raise numerous questions.  

Based on the results of bioassays with several host plant species and cultivars on host 

preferences of three whitefly species, this work should shed light on potential antixenotic traits 

affecting whitefly host selection. Electrical penetration graph (EPG) analysis should elucidate 

potential sources of host plant resistance affecting the stylet penetration process of whiteflies. 

Subsequently, the role of epicuticular leaf waxes of cruciferous plants in the host plant selection 

process of A. proletella should be investigated. Furthermore, the contribution and association of 

single amino acids present in the phloem sap of several vegetable crops on the host choice behaviour 

of T. vaporariorum should be evaluated. Due to the heterogeneity of the issue and the methodology, 

the different topics are covered by the following separate chapters set up as manuscripts to be 

submitted for publication. 
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2 Host plant species and cultivar preferences of three whitefly 

species 

Abstract: Studies on host plant adaption and host plant selection in whiteflies require bioassays on 

host plant preference as a reference. In dual choice tests, host preferences of Aleyrodes proletella 

(L.), Bemisia tabaci (Genn.), and Trialeurodes vaporariorum (Westw.) were compared using various 

host plants. To assess and rank host attractiveness for each whitefly species, preference indices were 

determined for each host-whitefly combination. For A. proletella, host preference was found in 

decreasing order by oilseed rape > kale > savoy cabbage > blue turnip cabbage > cauliflower > white 

turnip cabbage > white cabbage. For B. tabaci and T. vaporariorum host preference was found to be 

superior for eggplant followed in decreasing order by tobacco > tomato > cucumber > bean > sweet 

pepper. This study provides insight into whitefly-host adaption of three whitefly species and may be 

used as a reference for further studies. As significant differences within host rankings not necessarily 

presupposed a significant outcome in dual choice tests of this study, it is recommended to assess host 

preferences individually following the research question and study design.  

 

Keywords: behaviour, host plant resistance, plant cultivars 

 

2.1 Introduction 

Characterization and quantification of specific behaviours associated with host plant choice are 

essential studies to describe host plant adaptation and chemical ecology of herbivorous insects 

(KNOLHOFF AND HECKEL 2014). Choice tests are commonly used to quantify the effects of a wide 

range of environmental factors, as well as hereditary and anthropogenic influences on insect 

behaviour (LOCKWOOD 1998; RAFFA ET AL. 2002). Bioassays on host plant preference are 

particularly used in crop cultivar screenings for resistant varieties, which are an effective control 

measure against insect pests in integrated pest control systems (RUSSELL 1978; DE PONTI ET AL. 

1990; PALANISWAMY 1996; RAFFA ET AL. 2002; SCHOONHOVEN ET AL. 2005; BROEKGAARDEN ET 

AL. 2011; VAN DOORN AND VOS 2013). In whiteflies, host plant selection is of paramount importance 

as females feed and oviposit simultaneously on the same host plant leaves (BÄHRMANN 2002). 

Additionally, larval stages are predominantly immobile, so that host selection is limited to adult 

whiteflies with profound effects on the offspring’s preimaginal development and physical fitness of 

adults. As a result, host preference in whiteflies is strongly associated with host suitability and the 

subsequent pest performance (LEVINS AND MACARTHUR 1969; JAENIKE 1978; THOMPSON 1988; 

VAN LENTEREN AND NOLDUS 1990; BLUA ET AL. 1995; MAYHEW 1997; GRIPENBERG ET AL. 2010; 

TARAVATI ET AL. 2018). Consequently, disruption of the host plant selection process caused by host 
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recognition failure in adult whiteflies would lead to lower infestation levels, and may even affect 

pest performance, best represented by lifetable parameters (PAINTER 1951; SCHOONHOVEN ET AL. 

2005). The standard approach of preference testing is the simultaneous offer of choice alternatives 

to assess an insect’s relative response (RAFFA ET AL. 2002). Such screening techniques can include 

tests with whole plants or plant leaves in greenhouse and laboratory, whereas other approaches 

successfully established in vitro bioassays with detached leaves or leaf discs (ERB ET AL. 1994; 

SHARMA ET AL. 2005; FIRDAUS ET AL. 2012; GUO ET AL. 2013). The objective of the present study 

was to assess host plant preferences of several host plant species and cultivars offered for adult 

Aleyrodes proletella (L.), Bemisia tabaci (Genn.) and Trialeurodes vaporariorum (Westw.). 

Therefore, dual choice bioassays under greenhouse conditions using leaf clip cages were performed, 

thus extending the knowledge of the food spectrum of these economically important whitefly species.  

 

2.2 Materials and methods 

Insects and plants 

Adults of Aleyrodes proletella (L.), Bemisia tabaci (Genn.), and Trialeurodes vaporariorum 

(Westw.) were obtained from the institute’s stock rearings (Department of Applied Entomology, 

Institute of Phytomedicine, University of Hohenheim) reared in the greenhouse on broccoli and 

poinsettia (25/23 ± 2 °C each, L18/D6 photoperiod, 50 ± 5 % RH).  

Seven Brassica cultivars and six vegetables were grown in pots (LC 14, Pöppelmann GmbH & 

Co. KG, Lohne, Germany): blue and white turnip cabbage (BTC, WTC) (Brassica oleracea L. 

convar. acephala var. gongylodes, cv. “Delikateß Blauer”, cv. “Delikateß Weißer”), cauliflower 

(CA) (Brassica oleracea L. convar. botrytis var. botrytis, cv. “Erfurter Zwerg”), kale (KA) (Brassica 

oleracea L. convar. acephala var. sabellica, cv. “Grüner Krauser”), savoy cabbage (SC) (Brassica 

oleracea L. convar. capitata var. sabauda, cv. “Vertus”), white cabbage (WC) (Brassica oleracea L. 

convar. capitata var. alba, cv. “Brunswijker”), oilseed rape (OR) (Brassica napus L. subsp. napus, 

cv. “Attila”), bean (BE) (Phaseolus vulgaris L., cv. “Rakker”), cucumber (CU) (Cucumis sativus L., 

cv. “Delikateß”), eggplant (EG) (Solanum melongena L., cv. “Falcon”), sweet pepper (SP) 

(Capsicum annuum L., cv. “California Wonder”), tobacco (TB) (Nicotiana tabacum L., cv. “Orient 

Xanthi”), and tomato (TO) (Solanum lycopersicum L., cv. “Resi”). Experimental plants were grown 

under greenhouse conditions (22/18 ± 2 °C each, L18/D6 photoperiod, 50 ± 5 % RH), irrigated daily, 

and fertilized weekly with 30 ml 0.5 % Wuxal® Super (8 % N, 8 % P, 6 % K, Aglukon GmbH, 

Düsseldorf, Germany). The soil mixture was composed of 50 % potting soil (Floradur®, Floragard 

Vertriebs-GmbH, Oldenburg, Germany), 30 % compost soil (institute’s production), and 20 % sand. 

The plants were used in experiments when they reached BBCH stage 17–18. 
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Host attractivity screening 

Attractiveness levels of host plants were assessed in a series of dual choice cage experiments 

with different combinations of whiteflies and host plant species in the greenhouse (Table 1). Overall, 

single tests were carried out as a completely randomized block design which was repeated eight times 

at different time intervals. For each choice test, whiteflies were offered a young expanded leaf of 

each test plant in opposite position. At least 20 randomly selected adult whiteflies were taken from 

the stock rearing by a suction tube and placed into one clip cage made of clear plastic Petri dishes 

(8.5 cm diam., 1.5 cm height) fitted with foam seal on edges to prevent any mechanical damage to 

the leaves and with an organdy-covered window in the lid for ventilation. The leaf area covered by 

the cage was kept as small as possible to minimize potential negative effects on photosynthetic traits 

of leaves (CRAFTS-BRANDNER AND CHU 1999). Cages were mounted on leaves using aluminium 

hair clips, which were retained by thin split bamboo sticks to not bend or even damage the plant 

leaves. After two days, the number of whitefly individuals was counted on each leaf.  

 

Table 1: Whitefly-host plant combinations tested in host attractivity screening experiments 

    
Whitefly species  Host plants 

Aleyrodes proletella  

blue turnip cabbage (BTC) vs. white turnip cabbage (WTC) vs. 

cauliflower (CA) vs. kale (KA) vs. oilseed rape (OR) vs. savoy 

cabbage (SC) vs. white cabbage (WC) 

Bemisia tabaci 
Bean (BE) vs. cucumber (CU) vs. eggplant (EG) vs. sweet pepper 

(SP) vs. tobacco (TB) vs. tomato (TO) 

Trialeurodes vaporariorum 
Bean (BE) vs. cucumber (CU) vs. eggplant (EG) vs. sweet pepper 

(SP) vs. tobacco (TB) vs. tomato (TO) 

    
 

 

 

Statistics 

All obtained data were analysed using JMP® 14.1.0 (SAS Institute Inc., Cary, NC, USA). The 

respective statistical procedures and statistical core data are provided in the legends of the tables. For 

determination of host plant attractiveness of two host plant choices, preference indices (PI) were 

calculated using the following equation based on KOGAN AND GOEDEN (1970):  

𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛𝑑𝑒𝑥 (𝑃𝐼) =  
𝑛𝐴

𝑛𝐴 + 𝑛𝐵
  

where nA is the number of whitefly adults on host plant choice A and nB is the number of whitefly 

adults on host plant choice B. In this scale, PI = 1 and PI = 0 represent an absolute preference for one 

of the two choice alternatives, whereas PI = 0.5 implies no preference between both choice 

alternatives. 
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2.3 Results  

Significant differences in host attractiveness was found for each whitefly species in dual choice 

tests of various host plant combinations (Figure 3, 4, 5). To determine the overall attractiveness of 

each host plant within one bioassay, the mean preference index was formed from all dual tests of the 

respective host (Table 2). As a result, each host could be ranked according to its mean preference 

index within one bioassay. For A. proletella, host attractiveness was ranked as OR > KA > SC > 

BTC > CA > WTC > WC. While oilseed rape, kale and savoy cabbage were preferred hosts with 

preference indices higher than 0.5, white turnip cabbage and white cabbage were less attractive 

within this scale. Host preferences of B. tabaci and T. vaporariorum could both be ranked as EG > 

TB > TO > CU > BE > SP. Eggplant, tobacco and tomato were classified as attractive, whereas 

cucumber bean and sweet pepper were overall less preferred when compared to an alternative.  

 

 

Figure 3: Preference indices (mean ± s.e.m.) of A. proletella adults in dual choice tests  

(OR = oilseed rape, SC = savoy cabbage, KA = kale, BTC = blue turnip cabbage, CA = cauliflower, 

WTC = white turnip cabbage, WC = white cabbage) 

Wilcoxon signed-rank test for each whitefly species (H0 = 0.5 two-sided, α = 0.05, n = 8 for each 

combination, *P < 0.05, **P < 0.01, ***P < 0.001)   
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Figure 4: Preference indices (mean ± s.e.m.) of B. tabaci adults in dual choice tests  

(EG = eggplant, TB = tobacco, TO = tomato, CU = cucumber, BE = bean, SP = sweet pepper)  

Wilcoxon signed-rank test for each whitefly species (H0 = 0.5 two-sided, α = 0.05, n = 8 for each 

combination, *P < 0.05, **P < 0.01, ***P < 0.001) 

 

 

 

Figure 5: Preference indices (mean ± s.e.m.) of T. vaporariorum adults in dual choice tests 

(EG = eggplant, TB = tobacco, TO = tomato, CU = cucumber, BE = bean, SP = sweet pepper)  

Wilcoxon signed-rank test for each whitefly species (H0 = 0.5 two-sided, α = 0.05, n = 8 for each 

combination, *P < 0.05, **P < 0.01, ***P < 0.001)  
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Table 2: Mean preference indices of whiteflies on different host plants  

             
  A. proletella   B. tabaci T. vaporariorum 

Host plant  mean ± s.e.m. Host plant  mean ± s.e.m. mean ± s.e.m. 

OR   0.71 ± 0.03 a EG  0.71 ± 0.02 a 0.80 ± 0.03 a 
  n = 57   n = 40 n = 40 

KA  0.58 ± 0.03 b TB  0.59 ± 0.03 b 0.65 ± 0.04 b 
  n = 55   n = 40 n = 40 

SC  0.54 ± 0.03 bc TO  0.54 ± 0.04 bc 0.54 ± 0.05 bc 
  n = 56   n = 40 n = 40 

BTC  0.50 ± 0.03 bc CU  0.47 ± 0.03 cd 0.48 ± 0.04 c 
  n = 57   n = 40 n = 40 

CA  0.50 ± 0.03 c BE  0.38 ± 0.03 d 0.43 ± 0.05 c 
  n = 62   n = 40 n = 40 

WTC  0.39 ± 0.03 d SP  0.21 ± 0.03 e 0.09 ± 0.02 d 
  n = 60   n = 40 n = 40 

WC  0.30 ± 0.03 e     

  n = 56     

 X2  99.5942  X2 96 106.0986 
 d.f. 6  d.f. 5 5 
 P < 0.0001  P < 0.0001 < 0.0001 

                 
     Kruskal-Wallis one-way test followed by Wilcoxon Each Pair at α = 0.05  

Means with s.e.m. in a column followed by the same index letter are not statistically different 

OR = oilseed rape, SC = savoy cabbage, KA = kale, BTC = blue turnip cabbage,  

CA = cauliflower, WTC = white turnip cabbage, WC = white cabbage, EG = eggplant,  

TB = tobacco, TO = tomato, CU = cucumber, BE = bean, SP = sweet pepper 

 

 

2.4 Discussion 

Host plant choice in herbivorous insects is determined by an array of factors affecting the 

immediate outcome of an encounter between insect and plant (SINGER 1986). Thus, both preferential 

and non-preferential plant factors are responsible for the overall attractiveness of a host plant towards 

the herbivore. As it was highlighted in this study, polyphagous whitefly species do not colonize their 

available host plants evenly. Instead, whiteflies prefer some hosts over others, with plant 

attractiveness determined by plant species, variety and genotype (VAN LENTEREN AND NOLDUS 

1990; CALVITTI AND REMOTTI 1998; BÄHRMANN 2002; BALDIN AND BENEDUZZI 2010; DA COSTA 

ZACHÉ ET AL. 2013; HUTAPEA ET AL. 2019). Determination of host plant attractiveness to phloem 

feeders is difficult, as host preferences vary according to numerous factors such as the number of 

choice alternatives, the presence of potential competitors and antagonists, the experimental setup and 

duration, as well as previous experiences of the insect (HEARD 2000; RAFFA ET AL. 2002; STOCKTON 

ET AL. 2016; STAM ET AL. 2017). Additionally, host plant preference can be affected by abiotic 

factors and cultural conditions such as light, temperature, humidity, nutrient and water supply, as 
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well as the overall health status of experimental plants (ZEBITZ 1988; ZEBITZ 1990; BÖHNKE AND 

ZEBITZ 1990; ZEBITZ ET AL. 1990; PRÜTER AND ZEBITZ 1991; ZEBITZ AND KEHLENBECK 1991; BALE 

ET AL. 2002; STALEY ET AL. 2010; PATHANIA ET AL. 2020). In the past, most studies on whitefly 

preference focused on comparisons of several plant species or genotypes in multi-choice tests with 

more than two host choice alternatives (COSTA ET AL. 1991a; BLUA ET AL. 1995; MEAGHER ET AL. 

1997; BALDIN AND BENEDUZZI 2010; RAKHA ET AL. 2017; DOMINGOS ET AL. 2018). Indeed, multi-

choice tests represent a powerful tool used for evaluation of insect behaviour and were found to be 

more sensitive than no-choice tests (RAFFA ET AL. 2002). Furthermore, testing several choice 

alternatives at once is less cost intensive and time-consuming. However, in multi-choice preference 

experiments few host plants with increased attractiveness might mask preference differences of less 

attractive hosts. Therefore, insect preference is seen as a relative concept, and it is concluded that 

host preference needs to be assessed for each set of plants individually that are available to the insect 

(SCHOONHOVEN ET AL. 2005). In dual choice tests of this study, significant differences in host 

attractiveness were determined between various host plants in the whitefly species tested. Moreover, 

the calculation of mean preference indices for each host plant and whitefly species was well suited 

for evaluation of attractiveness ranks and interpretation of the overall host attractiveness. Aleyrodes 

proletella preferred oilseed rape most, followed in decreasing order by kale, savoy cabbage, blue 

turnip cabbage, cauliflower, white turnip cabbage and white cabbage. For B. tabaci and T. 

vaporariorum, host preference was found in decreasing order by eggplant, tobacco, tomato, 

cucumber, bean and sweet pepper. Nevertheless, it should be noted that statistically differences in 

the overall attractiveness between hosts not necessarily presuppose a significant outcome in dual 

choice tests. The mechanisms causing plant resistance against whiteflies need to be known as they 

determine the testing and breeding methods, which are required to introduce resistant traits into the 

desired plants (DE PONTI ET AL. 1990). Among the plant characteristics possibly mediating host plant 

selection in whiteflies are numerous factors. Whitefly densities and intra-varietal preferences are 

determined by plant architecture, canopy closure, leaf shape as well as leaf morphological features 

such as leaf hairs and trichomes density (BERLINGER 1986; SIPPELL ET AL. 1987; BUTLER ET AL. 

1988; DE PONTI ET AL. 1990; CHANNARAYAPPA ET AL. 1992; SNYDER ET AL. 1998; TOSCANO ET 

AL. 2002; SÁNCHEZ-PEÑA ET AL. 2006; HASANUZZAMAN ET AL. 2016). Whiteflies are strongly 

dependent on environmental factors such as temperature and relative air humidity, which in turn are 

influenced by morphological characteristics of plants and leaves (BERLINGER 1986). A reduced 

canopy and certain leaf shapes provide a better air movement with lower relative air humidity as well 

as higher temperatures, resulting in a less favourable environment for whiteflies (SIPPELL ET AL. 

1987; BERLINGER 1986). While the presence of leaf hairs and trichome density can alter the 

microclimate on leaves as well, heavily pubescent leaves often restrict whitefly movement as leaf 

hairs can also provide a physical barrier (BERLINGER 1986; BÄHRMANN 2002). Nevertheless, B. 

tabaci was found to exert a strong preference for egg deposition at the base of leaf hairs, which 
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explains the attractiveness of pubescent leaves towards this whitefly species (OMRAN AND EL KHIDIR 

1978). Moreover, glandular leaf hairs exude chemical compounds, which can contribute to whitefly 

resistance due to adverse effects on whitefly biology or due to its sticky texture (TINGEY AND GIBSON 

1978; WILLIAMS ET AL. 1980; KISHA 1981; BERLINGER 1986). Cuticle properties such as the 

structure of the leaf epidermis and epicuticular lipids can directly affect infestation levels and 

oviposition rates of whiteflies (WALKER 1985; WALKER 1987; WALKER 1988; LAMBERT ET AL. 

1995; FIRDAUS ET AL. 2011; KHAN ET AL. 2011; VOIGT ET AL. 2019). The penetration force needed 

during stylet penetration of whitefly feeding as well as during implanting the egg pedicel into the 

leaf epidermis during whitefly oviposition might be directly correlated with the thickness and 

flexibility of the leaf epidermis (VOIGT ET AL. 2019). The epicuticular wax layer of leaves may also 

provide a hindrance to whiteflies (KHAN ET AL. 2011). Besides, specific components of epicuticular 

lipids were previously discussed to correlate with population densities of whiteflies due to deterrent 

effects (LAMBERT ET AL. 1995). Finally, internal leaf chemistry as determined by amino acids and 

sugars in the phloem, phloem pH, as well as secondary metabolites and plant chemicals such as 

phenolics, alkaloids, saponins, terpenes, lipids and carbohydrates occurring in all plant tissues and 

structures are important factors mediating host plant selection in whiteflies (BERLINGER ET AL. 1983; 

BERLINGER 1986; CHANNARAYAPPA ET AL. 1992; HASANUZZAMAN ET AL. 2016; HASANUZZAMAN 

ET AL. 2018). The nutritional value of a host plant strongly affects the host selection and performance 

of whiteflies. Therefore, a high concentration of nitrogen, glucose, amino acids, and lower moisture 

content was shown to be highly preferred and vice versa (HASANUZZAMAN ET AL. 2018). In addition, 

it has been suggested that the pH of cotton leaves serves as a cue in finding suitable host plants for 

B. tabaci since it increases with the age of the plant, can be altered by environmental changes, and 

thus could reflect the nutritional value of the plant itself (BERLINGER 1986). On the other side, host 

preference of whiteflies depends on the presence of secondary plant chemicals that are part of an 

anti-herbivore defence mechanism of plants. For example, high amounts of phenolic compounds 

were shown to impair whitefly performance (HASANUZZAMAN ET AL. 2018). However, digestive 

enzymes and protective enzymes of whiteflies might play a substantial role in their settling and 

oviposition ability resulting in sometimes high population densities on host plants with rather high 

contents of toxic secondary compounds (BERLINGER 1986; LIN ET AL. 2018). Nevertheless, still little 

is known about the host choice behaviour of whiteflies and further research is needed to elucidate 

the mediating factors in host selection process. As previously discussed, plant traits that mediate host 

plant selection in whiteflies can occur in every plant tissue layer. Accordingly, a useful next step 

would be to localize the potential sources of host plant resistance more precisely. Experiments using 

the electrical penetration graph (EPG) method are particularly suited to this task, as they allow 

detection of potential sources of host plant resistance at the level of individual plant tissue layers 

(JANSSEN ET AL. 1989; LEI ET AL. 1998; LEI ET AL. 1999; LEI ET AL. 2001). Subsequently, further 

experiments can be derived from the results of the EPG analysis.  
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3 Potential sources of host plant resistance against three whitefly 

species elucidated by electrical penetration graph analysis 

Abstract: Recording probing behaviour of phloem feeders by electrical penetration graphs (EPG) 

is a common approach to elucidate host plant quality and/or host plant antixenosis. In EPG analyses, 

which compare probing and feeding activities of Aleyrodes proletella (L.), Bemisia tabaci (Genn.) 

and Trialeurodes vaporariorum (Westw.) on two host plants each, potential sources of host plant 

resistance could be identified. It was found that whiteflies decide on host plant acceptance by multiple 

plant factors located in different plant tissues. On more attractive hosts all whiteflies had significantly 

prolonged probes, and pathway phases implying the presence of a plant factor that determines host 

choice before the actual phloem-feeding. Additional host plant variants with mechanically removed 

leaf surface wax furthermore proved that epicuticular leaf waxes play a key role in the host selection 

process of A. proletella. The removal of epicuticular leaf waxes led to early interrupted probes and 

absent phloem phases. It is therefore concluded that constituents of leaf surface waxes act as feeding 

stimulants for A. proletella promoting stylet penetration and phloem accession. Additionally, 

phloem-feeding of B. tabaci and T. vaporariorum was significantly shorter on less preferred hosts 

indicating that phloem sap quality mediates host choice in these whitefly species. Overall, this study 

identifies a new source of resistance against A. proletella and sheds light onto the underlying 

mechanisms of host plant selection in whiteflies.  

 

Keywords: electrical penetration graph, stylet penetration, host plant selection, antixenosis 

 

3.1 Introduction 

Whiteflies are serious pests of vegetables, ornamentals and agricultural crops of increasing 

economic importance worldwide (MOUND AND HALSEY 1978; DUFFUS 1987; BINK-MOENEN AND 

MOUND 1990; CAPINERA 2008). As piercing-sucking phloem feeders, whiteflies pose a serious risk 

for plant production and global food security. Plant injury and yield reduction is caused by (i) direct 

damage due to feeding activity (LLOYD 1922; BYRNE AND BELLOWS 1991), (ii) secondary damage 

resulting from the secretion of honeydew often followed by infestations with sooty mould fungi 

(BYRNE AND MILLER 1990; BÄHRMANN 2002; SAUCKE ET AL. 2011), and (iii) damage by 

transmission of plant viruses (JONES 2003; LEGG 2010). In the field, whiteflies are mainly controlled 

by insecticides, but their efficacy has been severely limited because insecticide resistance evolved in 

almost all insecticide classes (HOROWITZ ET AL. 1998; NAUEN AND DENHOLM 2005; BASS ET AL. 

2015; DÂNGELO ET AL. 2018). In contrast, biological control is successfully applied in greenhouses; 

however, its implementation and success are often dependent on several constraints such as physical 
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factors and plant factors, for instance, greenhouse climate and leaf morphology (HODDLE ET AL. 

1998). Thus, alternative methods are required that can replace chemical measures or support 

biocontrol (GERLING 1992; BÄHRMANN 2002). 

In the complex strategy of integrated pest management, plant resistance to whiteflies contributes 

in several ways due to their economic and ecological advantages (RUSSEL ET AL. 1978; DE PONTI ET 

AL. 1990; PALANISWAMY 1996; BROEKGAARDEN ET AL. 2011; VAN DOORN AND VOS 2013). 

Knowledge of the mediating factors of host plant selection by whiteflies could help develop efficient 

resistance breeding programs with pronounced antixenosis to reduce plant damage and virus 

transmission. Once whiteflies are attracted and land on a potential host plant, the further selection 

process is characterized by contact-testing and intensive probing of plant tissues. At the beginning 

of each probing process, whiteflies get into contact with morphological, physical and chemical leaf 

characteristics on the leaf surface such as leaf hairs and epicuticular surface waxes (BERLINGER 

1986). For this reason, whiteflies examine the outer leaf surface with their labium, which carries 

several contact chemoreceptors (WALKER AND GORDH 1989). To continue probing by intercellular 

stylet penetration of the successive leaf tissue layers, whiteflies must penetrate the epidermis. The 

epidermal thickness, in turn, varies according to plant species, leaf age as well as prevailing abiotic 

environmental conditions and may, therefore, interfere with reaching the mesophyll tissues 

(WALKER 1985; WALKER 1987; WALKER 1988; LEI ET AL. 2001; VOIGT ET AL. 2019). During 

mesophyll penetration, stimulants or deterrent factors in the intercellular fluids may be detected by 

additional chemosensilla of the alimentary canal of whitefly stylets (CAMPBELL ET AL. 1986; 

HUNTER ET AL. 1996; LEI ET AL. 1998). Intracellular compounds of the mesophyll, however, seem to 

play only a minor role, as whiteflies use only a few intracellular punctures during the probing process 

(JANSSEN ET AL. 1989; LEI ET AL. 1996; LEI ET AL. 2001). Subsequently, whiteflies may then access 

the phloem tissue. Before feeding, they first inject watery saliva to avoid sealing mechanisms and to 

prevent turgor loss (TJALLINGII 2006; WALKER ET AL. 2010). Evaluation of the nutritional quality of 

the phloem sap and the possible presence of phloem-mobile secondary compounds then ultimately 

determines over sustainable phloem-feeding and host acceptance. Besides that, xylem sap 

consumption might occur as well, which is assumed to support water balance and to regulate osmotic 

potential in phloem sap feeders (SPILLER ET AL. 1990; POMPON ET AL. 2011). Although the probing 

process of whiteflies is well understood, the determining factors mediating the selection of a host 

plant or a feeding site often remain unclear. Therefore, subsequent studies are required to identify 

the origin and location of such potential resistance-giving factors. 

The electrical penetration graph (EPG) method is particularly suitable to study whitefly feeding 

behaviour since it represents a powerful tool to record penetration behaviour and food uptake in 

piercing-sucking insects. The basic principle is an electrical circuit, which was introduced by 

MCLEAN AND KINSEY (1964), further developed by TJALLINGII (1978) and recently reviewed by 



Chapter 3 

22 

BACKUS ET AL. (2019). Overall, the goal of this study was to assess host preferences of three whitefly 

species on two host plants each and to record probing and feeding behaviour for each whitefly-host 

combination using the EPG method. While potential sources of host plant resistance were 

investigated, the host selection process of whiteflies is discussed in the context of host plant range 

and insect-plant adaptation. 

 

3.2 Materials and methods 

Insects and plants 

Adults of Aleyrodes proletella (L.), Bemisia tabaci (Genn.), and Trialeurodes vaporariorum 

(Westw.) were obtained from the institute’s stock cultures (Department of Applied Entomology, 

Institute of Phytomedicine, University of Hohenheim) reared on broccoli, poinsettia, and tobacco 

respectively in the greenhouse (25/23 ± 2 °C each, L18/D6 photoperiod, 50 ± 5 % RH).  

Savoy cabbage (SC) (Brassica oleracea L. convar. capitata var. sabauda, cv. “Vertus”), white 

cabbage (WC) (Brassica oleracea L. convar. capitata var. alba, cv. “Brunswijker”), cucumber (CU) 

(Cucumis sativus L., cv. “Delikateß”) and sweet pepper (SP) (Capsicum annuum L., cv. “California 

Wonder”) were sown in pots (LC 14, Pöppelmann GmbH & Co. KG, Lohne, Germany). 

Experimental plants were grown under greenhouse conditions (22/18 ± 2 °C each, 

L18/D6 photoperiod, 50 ± 5 % RH) ), irrigated daily, and fertilized weekly with 30 ml 0.5 % Wuxal® 

Super (8 % N, 8 % P, 6 % K, Aglukon GmbH, Düsseldorf, Germany). The soil mixture was composed 

of 50 % potting soil (Floradur®, Floragard Vertriebs-GmbH, Oldenburg, Germany), 30 % compost 

soil (institute’s production), and 20 % sand. The plants were used in experiments when they reached 

BBCH stage 17–18. 

 

Electrical penetration graph studies 

Probing and feeding behaviour of each whitefly species was studied on each two host plants 

with known host attractiveness (see Chapter 2) using the electrical penetration graph (EPG) technique 

(Table 3). Furthermore, additional cabbage variants with waxy (+) and dewaxed (–) leaf undersides 

were subjected to EPG experiments to examine the effect of epicuticular waxes of cabbage on host 

plant acquisition by A. proletella. Instead of using nonpolar solvents, which might have had a 

detrimental effect on the leaf tissues, wax has been removed gently using cotton wool. As wax 

removal was not possible on sweet pepper and cucumber leaves without harming subjacent leaf 

tissues, the influence of leaf surface waxes was only studied in whitefly-host combinations with A. 

proletella.  
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Table 3: Whitefly-host plant combinations tested in EPG experiments 

    
Whitefly species  Host plants 

Aleyrodes proletella  Savoy cabbage (SC+, SC−), white cabbage (WC+, WC−) 

Bemisia tabaci Cucumber (CU), sweet pepper (SP) 

Trialeurodes vaporariorum Cucumber (CU), sweet pepper (SP) 

        + denotes the presence and − denotes the absence of epicuticular waxes on abaxial leaf surfaces 

 

 

Adult female whiteflies randomly taken from a synchronized colony (max. 24 h old) were 

anaesthetized with CO2 and integrated into a DC-Giga-4 EPG system (manufactured by Wageningen 

University, Netherlands) (Figure 6). Four whiteflies were recorded simultaneously by attaching them 

separately onto EPG electrodes using a gold wire (12 µm diam., 2 cm length) and water-based silver 

conductive glue on their dorsa (both: EPG Systems, Wageningen, Netherlands). Before being glued, 

the wax layer covering the whitefly’s dorsum was removed using a fine brush and water. A copper 

rod (2 mm diam., 10 cm length) was inserted into pots of test plants as second electrodes, which 

closed the electrical circuit. The experimental set was placed in a Faraday cage situated in a room 

completely insulated from possibly disturbing electromagnetic fields of the environment. Probing 

activities were monitored in a Faraday cage for 8 h under artificial light (SON-T Agro, Philips, 

2,000 K, 16,000 lm) at room temperature (20 ± 2 °C). While whiteflies were only used once, plants 

were used twice. Eight replicates per whitefly-host combination served to calculate EPG parameters 

associated with non-phloem feeding, whereas at least 16 EPG recordings were used for the analysis 

of phloem-feeding. Signals were recorded and analysed using NextView/NT software (plug-in card: 

PCI-Base 50/300, A/D-conversion-module: MAD12; both BMC-Schetter, Germany) on a standard 

PC.  
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Figure 6: Experimental setup of the EPG system 

Whiteflies attached to gold wires: A. proletella (1), B. tabaci (2), T. vaporariorum (3); whitefly wired 

to EPG electrode (4); EPG electrode mounted to EPG system (5); plant electrode in a plant pot (6) 

 

For analysis of EPG experiments, the position of the whitefly stylets and the associated probing 

activities were interpreted according to EPG waveforms previously defined by TJALLINGII (1978) 

and LEI ET AL. (1996). Overall, six waveforms occurring during EPG recording could be identified, 

including waveform C (stylet pathway phase), np (non-probing period), F (penetration difficulties), 

G (ingestion of xylem), E(pd)1 (phloem salivation) and E(pd)2 (phloem ingestion). Potential drops 

occurred only rarely and were therefore excluded from data analysis. Thirteen sequential and non-

sequential EPG parameters associated with insect preference towards specific host plant tissue layers 

were calculated from these data according to SARRIA ET AL. (2009) (Table 4). 
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Table 4: EPG parameters associated with insect preference towards specific host plant tissue layers 

measured in the study 

    
EPG parameter Related tissue 

Total probing time All tissues 

Total number of probes All tissues 

Mean probe duration All tissues 

Mean duration of C All tissues 

Mean duration of np All tissues 

Mean duration of G Xylem 

Mean duration of F Epidermis and mesophyll 

Total duration of E(pd) Phloem 

Number of E(pd) Phloem 

Mean duration of E(pd) Phloem 

Mean duration of E(pd)1 Phloem 

Mean duration of E(pd)2 Phloem 

         

 

Statistics 

All obtained data were analysed using JMP® 14.1.0 (SAS Institute Inc., Cary, NC, USA). Before 

statistical analysis, the residuals were tested for normal distribution by Shapiro-Wilk test. All 

continuous data were found normally distributed. When reasonable, an outlier analysis by 

Mahalanobis-procedure was performed. All data were subjected to an analysis of variance, procedure 

“Generalized Linear Models”, before ensuing further statistical analyses. The respective statistical 

procedures and statistical core data are provided in the legends of the tables.  

 

3.3 Results 

Non-phloem and phloem probing activities differed with whitefly species, host plant, and leaf 

surface (Tables 5, 6 and 7). The time A. proletella and B. tabaci spent probing during one recording 

session (total probing time) differed between host plants but showed no differences in the number of 

probes (Table 5). In contrast, the number of probes during one recording session (total number of 

probes) by T. vaporariorum differed significantly between host plants within an almost similar total 

probing time on cucumber and sweet pepper leaves. Calculation of the average probing time for each 

recording session (mean probe duration = total probing time divided by the total number of probes) 

was therefore used to compare the general probing activity for all whitefly species. The mean probe 

duration of A. proletella was superior on savoy cabbage with epicuticular waxes, whereas less time 

was spent on white cabbage and cabbage cultivars without epicuticular waxes. Bemisia tabaci and 

T. vaporariorum, on the other hand, probed on average longer on cucumber.  
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Comparisons of general probing activities as well as of specific probing behaviours reflected by 

typical waveform patterns allowed detailed insights into the stylet penetration process of whiteflies 

(Figure 7). The stylet pathway activity (mean duration of waveform C) of A. proletella was longest 

on savoy cabbage with epicuticular waxes, whereas wax removal led to an earlier interruption of 

waveform C for both cabbage cultivars (Table 6). In contrast, A. proletella had significantly shorter 

periods of non-probing activity (mean duration of waveform np) on savoy cabbage with epicuticular 

waxes than on white cabbage and cabbage variants without epicuticular waxes. A similar pattern 

could be observed for B. tabaci, as the stylet pathway activity was longer and non-probing periods 

were shorter on cucumber in comparison to sweet pepper. The mean duration of waveforms C and 

np of T. vaporariorum, however, were both significantly longer on cucumber. Xylem feeding (mean 

duration of waveform G) was longer on sweet pepper for both, B. tabaci and T. vaporariorum, while 

xylem feeding activity of A. proletella did not differ between host plants. Moreover, A. proletella 

suffered most from problems during penetration (mean duration of waveform F) on savoy cabbage 

without epicuticular leaf waxes and suffered least on white cabbage with epicuticular waxes. For T. 

vaporariorum, mean duration of waveform F was significantly longer on cucumber, whereas for B. 

tabaci no significant differences could be found between the host plants.  

While phloem-associated EPG parameters of A. proletella were similar for both host plants, B. 

tabaci and T. vaporariorum showed significant differences in their phloem activity. This could be 

seen in the phloem-specific waveforms per recording session (Table 7). The total duration of the 

phloem phase (total duration = sum of all E(pd) per session) and the average discrete E(pd) of B. 

tabaci and T. vaporariorum were both significantly longer on cucumber, whereas the number of 

phloem events (number of E(pd)) did not differ between the host plant. As the phloem activity can 

further be distinguished in phloem salivation (mean duration of waveform E(pd)1) and phloem-

feeding (mean duration of waveform E(pd)2), significant differences could be observed only for the 

phloem-feeding periods of B. tabaci and T. vaporariorum.  

Comparing the probing behaviour of B. tabaci and T. vaporariorum, B. tabaci distinguished 

between hosts by different probing durations, whereas for T. vaporariorum different numbers of 

feeding attempts and a more intensive probing let the adults discriminate the host plants. However, 

the later phloem-feeding activity did not differ between both whitefly species.  
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Table 5: General probing parameters (total number of probes, total probing time, and mean duration 

of probes) of whiteflies on different host plants 
    

 
  

   Probing parameter 
   Total number 

of probes1 

 Total probing  

time2 (min)  

Mean probe 

duration2 (min)      

Whitefly species Host plant  mean ± s.e.m.  mean ± s.e.m. mean ± s.e.m. 

A. proletella SC+  32.50 ± 5.08 a 

n = 8 

51.63 ± 6.71 a 

n = 8 

44.88 ± 3.90 a 

n = 8 

42.88 ± 3.90 a 

n = 8 

5.4098 

3, 28 

0.1441 

 

 

39.00 ± 4.92 a 

n = 8 

36.29 ± 4.12 a 

n = 7* 

14.50 ± 2.39 b 

n = 8 

36.14 ± 2.02 a 

n = 7* 

16.1124 

3 

0.0008 

407.47 ± 9.27 a 

 407.46 ± 9.27 a 12.54 ± 2.13 a 
   n = 8  n = 8 n = 252 
 SC–  51.63 ± 6.71 a  323.69 ± 23.14 b 6.27 ± 1.19 bd 
   n = 8  n = 8 n = 405 
 WC+  44.88 ± 3.90 a  278.18 ± 24.28 bc 6.20 ± 0.92 c 
   n = 8  n = 8 n = 351 
 WC–  42.88 ± 3.90 a  227.60 ± 36.97 c 5.31 ± 1.00 d 
   n = 8  n = 8 n = 336 

  X2 5.4098 F 9.0454 10.0227* 
  d.f. 3 d.f. 3, 28 3, 672* 
  P 0.1441 P 0.0002 < 0.0001* 
    

 
      

 
  

B. tabaci 

CU  39.00 ± 4.92 a  360.22 ± 19.82 a 4.66 ± 0.47 b 
  n = 8  n = 8 n = 302 

SP  36.29 ± 4.12 a  201.46 ± 37.87 b 3.09 ± 0.21 c 
  n = 7  n = 8 n = 323 

T. vaporariorum 

CU  14.50 ± 2.39 b  253.61 ± 37.30 ab 9.30 ± 1.51 a 
  n = 8  n = 8 n = 107 

SP  36.14 ± 2.02 a  242.01 ± 21.97 b 3.77 ± 0.30 bc 
  n = 7  n = 8 n = 300 

  X2 16.1124 F 4.9574 8.5418* 

  d.f. 3 d.f. 3, 28 3, 356* 
  P 0.0008 P 0.0069 < 0.0001* 

             
             1 Kruskal-Wallis one-way test followed by Wilcoxon Each Pair-test, α = 0.05 
2 one-way ANOVA followed by Tukey–Kramer HSD-test, α = 0.05 

Means with s.e.m. in a column followed by the same index letter are not statistically different  

* F, d.f., and P values were corrected by Welch-ANOVA test because of variance inhomogeneity 

after Levene’s test 

+ denotes presence and – denotes absence of epicuticular surface waxes on cabbage leaves 

 

 

 



 

 

 

Table 6: Mean duration of non-phloem activity of whiteflies probing on different host plants 
        

   EPG parameter separated by waveform and specific probing event 
   Mean duration of C (min) Mean duration of np (min) Mean duration of G (min) Mean duration of F (min) 

Whitefly species Host plant  mean ± s.e.m. mean ± s.e.m. mean ± s.e.m. mean ± s.e.m. 

A. proletella SC+  4.17 ± 0.25 a 1.73 ± 0.11 c 46.29 ± 15.06 a 5.39 ± 0.89 bc 
   n = 280 n = 253 n = 10 n = 56 
 SC–  1.71 ± 0.10 c 2.48 ± 0.15 bc 25.89 ± 3.54 a 12.63 ± 3.99 a 
   n = 444 n = 412 n = 24 n = 27 
 WC+  2.81 ± 0.15 b 3.25 ± 0.23 b 48.03 ± 10.64 a 2.55 ± 0.27 c 
   n = 420 n = 352 n = 5 n = 95 
 WC–  1.58 ± 0.10 c 4.31 ± 0.33 a 62.51 ± 19.66 a 8.04 ± 1.51 ab 
   n = 368 n = 342 n = 10 n = 67 

  F 56.7510* 27.3223* 2.4381* 8.5993* 
  d.f. 3, 744* 3, 724* 3, 12* 3, 73* 
  P < 0.0001* < 0.0001* 0.1146* < 0.0001*    

 
      

 
   

B. tabaci  

CU  2.93 ± 0.11 b 2.11 ± 0.17 c 32.47 ± 4.30 b 0.77 ± 0.15 b 
  n = 428 n = 306 n = 11 n = 26 

SP  2.17 ± 0.08 c 4.44 ± 0.41 b 53.70 ± 2.21 a 0.67 ± 0.13 b 
  n = 396 n = 332 n = 4 n = 29 

T. vaporariorum  

CU  6.07 ± 0.56 a 9.82 ± 1.49 a 25.11 ± 4.90 b 11.26 ± 3.37 a 
  n = 135 n = 117 n = 8 n = 10 

SP  3.11 ± 0.19 b 4.78 ± 0.27 b 37.09 ± 1.06 ab 2.16 ± 0.67 b 
  n = 319 n = 304 n = 7 n = 12 

  F 26.4798* 34.7034* 5.6485 4.5975* 

  d.f. 3, 440* 3, 380* 3, 26 3, 22* 
  P < 0.0001* < 0.0001* 0.0041 0.0116* 

        
   

      
    

One-way ANOVA followed by Tukey-Kramer HSD-test, α = 0.05 

Means with s.e.m. in a column followed by the same index letter are not statistically different  

* F, d.f., and P values were corrected by Welch-ANOVA test because of variance inhomogeneity after Levene’s test 

+ denotes presence and – denotes absence of epicuticular surface waxes on cabbage leaves  
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Table 7: Number, total duration, and mean duration of phloem activity of whiteflies feeding on different host plants 

      
 

 
    

   EPG parameter 
   Number of  

E(pd)1  

 Total duration of 

E(pd)2 (min) 

Mean duration of 

E(pd)2 (min) 

Mean duration of 

E(pd)12 (min) 

Mean duration of 

E(pd)22 (min)     

Whitefly species Host plant  mean ± s.e.m.  mean ± s.e.m. mean ± s.e.m. mean ± s.e.m. mean ± s.e.m. 

A. proletella SC+  1.25 ± 0.25 a  127.57 ± 43.08 a 102.05 ± 37.99 a 1.08 ± 0.08 a 100.98 ± 29.21 a 
   n = 8  n = 8 n = 10 n = 10 n = 10 
 WC+  1.60 ± 0.40 a  42.36 ± 18.30 a 26.48 ± 11.00 a 0.87 ± 0.14 a 25.61 ± 10.97 a 
   n = 5  n = 5 n = 8 n = 8 n = 8 

  X2 0.9848 F 1.8203* 1.9109* 1.4008 1.9067* 
  d.f. 1 d.f. 3, 9* 1, 10* 1, 16 1, 10* 
  P 0.3120 P 0.1012* 0.0837* 0.1804 0.0844* 
   

              
           B. tabaci CU  1.10 ± 0.10 a  121.07 ± 30,17 a 110.06 ± 29.13 a 0.36 ± 0.08 a 109.70 ± 29.17 a 

   n = 10  n = 10 n = 11 n = 11 n = 11 
 SP  1.63 ± 0.32 a  24.75 ± 8.84 b 15.23 ± 4.13 b 0.81 ± 0.38 a 14.43 ± 3.82 b 
   n = 8  n = 8 n = 13 n = 13 n = 13 

T. vaporariorum CU  1.29 ± 0.18 a  79.68 ± 23.93 ab 86.28 ± 30.77 a 0.31 ± 0.04 a 85.97 ± 30.76 a 
   n = 7  n = 7 n = 10 n = 10 n = 14 
 SP  2.20 ± 0.44 a  27.54 ± 10.72 b 13.58 ± 12.16 b 0.61 ± 0.10 a 12.98 ± 3.37 b 
   n = 10  n = 10 n = 22 n = 22 n = 22 

  X2 6.4449 F 5.1278 5.0528* 2.6934* 5.0823* 
  d.f. 3 d.f. 3, 31 3, 20* 3, 25* 3, 20* 
  P 0.0919 P 0.0054 0.0090* 0.0672* 0.0087* 

    
 

    

                 1 Kruskal-Wallis one-way test followed by Wilcoxon Each Pair-test, α = 0.05 
2 one-way ANOVA followed by Tukey-Kramer HSD test for B. tabaci and T. vaporariorum, α = 0.05 

Means with s.e.m. in a column followed by the same index letter are not statistically different  

* denotes F, d.f., and P values were corrected by Welch-ANOVA test because of variance inhomogeneity after Levene’s test  

+ denotes presence and – denotes absence of epicuticular surface waxes on cabbage leaves 
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Figure 7: Typical waveform patterns recorded during the study representing specific probing 

behaviours of the whitefly stylet penetration process 

I: non-probing activity (waveform np), beginning of a probe and stylet pathway phase with typical 

sawtooth shaped waveforms (waveform C); II: stylet pathway phase (waveform C), phloem phase 

with salivation into the phloem (waveform E(pd1)) followed by phloem feeding (waveform E(pd2)); 

III xylem phase (waveform G) and stylet penetration difficulties (waveform F); vertical axis 

represents voltage level, bar represents time scale 
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3.4 Discussion 

Identification of determining factors mediating host plant selection in whiteflies 

While host plant selection of whiteflies already starts before landing by receiving visual or 

olfactory information of the potential host, host plant acceptance or host rejection mainly takes place 

after landing during initial contact with the host (VAN LENTEREN AND NOLDUS 1990; XU ET AL. 

1994; DARSHANEE ET AL. 2017). Probing behaviour on potential feeding sites consequently includes 

the evaluation of a variety of different plant factors (JANSSEN ET AL. 1989; LEI ET AL. 1998; LEI ET 

AL. 1999; LEI ET AL. 2001). General probing parameters reflect the overall preference of a host plant 

best, as whiteflies probe less but longer on attractive hosts and more often but for shorter on less 

preferred host plants (MONTLLOR AND TJALLINGII 1989; SAUGE ET AL. 1998; BOOIJ ET AL. 2013). 

Therefore, EPG results of this study confirm the observed host plant preferences, as A. proletella 

probed on average more intensively on the more preferred host savoy cabbage, whereas probing 

activities of B. tabaci and T. vaporariorum were more persistent on the more preferred host 

cucumber. However, probing activities were characterized either by a longer total probing time or by 

a smaller number of probes on preferred hosts, while the opposite was the case on unattractive host 

plants with a shorter total probing time or by a higher number of probes. As a result, the calculation 

of the mean probe duration for each whitefly-host combination was well suited for interpretation in 

this case. Overall, the general probing parameters elucidate that prolonged probe durations with later 

probe interruptions correlate with the observed host preferences and that whiteflies need a 

considerable amount of time to accept a plant as a host.  

In contrast to the general probing parameters, the attractiveness and acceptance of single plant 

tissues by whiteflies is not necessarily reflected by the overall attractiveness of a potential host (LEI 

ET AL. 1998; JIANG AND WALKER 2007). Therefore, comparisons of single EPG parameters 

associated with specific probing behaviours help to identify and localize the mediating factors of host 

plant selection. All whitefly species tested were found to have increased pathway phase periods 

(waveform C) on preferred hosts, which might be related to their characteristic probing activities 

with only a few intracellular punctures and different sub-patterns of the C waveform (JANSSEN ET 

AL. 1989; GIVOVICH AND NIEMEYER 1995; LEI ET AL. 1998). Non-probing activities (waveform np) 

of A. proletella and B. tabaci were on average shorter on preferred hosts, leading to the assumption 

that an intensive examination of the parenchyma tissue not only contributes to host acceptance but 

might, therefore, even promote phloem accession. Consequently, factors mediating host plant 

selection in whiteflies would be already present during the pathway phase, as postulated by VAN 

LENTEREN AND NOLDUS (1990) before. Although the non-probing activity of T. vaporariorum was 

higher on the more preferred host plant cucumber, this might be attributed to the distinctly lower 

total number of probes as well as to the increased occurrence of the F pattern. The F pattern waveform 
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is used as an indicator of probing difficulties during the pathway phase, which are perceived during 

EPG recordings with aphids and whiteflies (CAILLAUD ET AL. 1995). However, different scenarios 

may be related to the incidence of the F pattern. While it may be more present on preferred hosts 

with more persistent pathway phases, missing probing stimuli or the presence of deterrents may 

provoke an increased occurrence of the F waveform.  

A sustained phloem sap uptake shows the acceptance of a potential host plant with a higher 

acceptance rank and vice versa (LEI ET AL. 1998; LEI ET AL. 2001). Nevertheless, plant factors within 

all leaf tissues can affect the phloem uptake continuity by whiteflies and therefore influence host 

choice behaviour. Furthermore, xylem phases are negatively associated with phloem consumption, 

as unsuitable host plants are characterized by few and short phases of phloem ingestion and long 

phases of xylem ingestions (LEI ET AL. 2001). As A. proletella did not show any significant 

differences, neither regarding their phloem-feeding continuity nor regarding their xylem phase 

activity, it is suggested that the preference behaviour of A. proletella is mainly based on non-phloem 

factors in this study. However, once B. tabaci and T. vaporariorum reached the phloem phase 

(waveform E), both fed longer and more continuously on cucumber. Additionally, xylem 

consumption is negatively associated with phloem consumption for B. tabaci. As a result, this study 

presents evidence that phloem factors such as sugars, amino acids, and possibly also proteins, 

vitamins, secondary compounds, and phloem pH contribute to host acceptance of B. tabaci and T. 

vaporariorum. In order to feed continuously from a potential host plant, phloem feeders including 

whiteflies must deal with chemical and mechanical plant defence mechanisms first. While chemical 

defence includes the presence of deterrent compounds in the phloem, mechanical defence strategies 

occur by blockage of the whitefly stylet or the phloem sieve element during attempted feeding (WILL 

ET AL. 2013). Although the effect of mechanical defence mechanisms by callose or protein blockage 

could not be completely excluded in our study, we suppose that chemical factors are responsible for 

differences in phloem acceptance between host plants. This assumption is supported by the fact that 

salivation prior to phloem feeding is related to inhibition of plant defence mechanisms in piercing-

sucking herbivores and no differences of feeding attempts as well as phloem salivation periods could 

be measured for all whitefly-host comparisons in this study (TJALLINGII 2006; WALLING 2008). 

Consequently, only chemical phloem factors are assumed to be the cause of the observed differences 

in phloem feeding continuity. However, it remains unclear whether feeding deterrents are present in 

the phloem sap and to what extent phloem acceptance in whiteflies is determined by the phloem 

quality only.  
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Role of epicuticular factors affecting host selection strategy in A. proletella 

Various cues on the plant surface such as the wax structure and chemical composition of 

epicuticular waxes are known to affect host plant selection and feeding behaviour of aphids (POWELL 

ET AL. 1999; POWELL ET AL. 2006; WÓJCICKA 2015). So far only limited indications concerning 

epicuticular waxes influencing the feeding behaviour of whiteflies exist without a direct proof 

(LAMBERT ET AL. 1995; KHAN ET AL. 2011). In this study, strong evidence for epicuticular leaf waxes 

having a key function in the host selection process of A. proletella was found, as wax removal had 

drastic impacts on the whole probing process of A. proletella. In summary, whitefly individuals 

feeding on the cabbage leaves without epicuticular wax showed an earlier probe interruption, a less 

intensive examination of epidermal and mesophyll tissues, increased phases without probing 

activities, and more stylet penetration difficulties during probing activity. It is further important to 

mention that no phloem events could be detected on dewaxed cabbage cultivars during 8 h of EPG 

recording. Within such a time frame, it seems extremely unrealistic that whiteflies consistently probe 

on one potential feeding site without rejection. Nonetheless, it should be noted that A. proletella 

individuals could be observed to settle down and oviposit on dewaxed cabbage cultivars for multiple 

days under greenhouse conditions, which would normally not happen without continuous feeding on 

the host plant. Also, stress caused by insect wiring can never be fully excluded, which generally leads 

to less phloem events to be detected during EPG experiments (LEI ET AL. 1997). As a result, it is 

concluded that the number of phloem events performed by A. proletella on leaves without 

epicuticular waxes was reduced to some extent but would normally not be completely impeded. This 

could be explained by constituents of the leaf surface waxes of cabbage cultivars acting as feeding 

stimulants for A. proletella, which promote stylet penetration and, therefore, host acceptance. 

However, further research is required to evaluate this hypothesis. The primary wax components of 

cabbage plants are alkanes, alcohols, fatty acids, ketones, and aldehydes, with their proportions 

influenced by the cultivation method of the plants (SUTTER 1984; JUN ET AL. 2015). Triterpenoids 

such as lupeol as well as α- and β-amyrins are present in cabbage plants in smaller quantities but 

have been recognized to influence insect-plant interactions including whiteflies (EIGENBRODE ET AL. 

1991; LAMBERT ET AL. 1995; EIGENBRODE AND PILLAI 1998; MARTELANC ET AL. 2007). Moreover, 

it should be stated that the host selection process of B. tabaci and T. vaporariorum might be affected 

by epicuticular stimulants as well. Even though it was not possible to test this in our experiments due 

to a missing methodological realization of removing leaf surface waxes from cucumber and sweet 

pepper without harming subjacent leaf tissues. Furthermore, the composition of epicuticular waxes 

of cucumber and sweet pepper was studied intensively of fruits, but not from leaf surfaces of plants 

(LOWNDS ET AL. 1993; SMITH ET AL. 2006; WANG ET AL. 2015).  
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4 Epicuticular leaf waxes acting as phagostimulants towards 

Aleyrodes proletella (L.) 

Abstract: Since epicuticular waxes are located at the interface between plants and their aerial 

environment, they are often involved in the primary steps of host plant selection by herbivorous 

insects. In this study, the role of leaf epicuticular waxes of several Brassica cultivars in the host 

selection process of the cabbage whitefly Aleyrodes proletella (L.) was investigated. Dual choice 

experiments were carried out on waxy and dewaxed plant leaves as well as on Parafilm® treated with 

leaf wax extracts. Life-history traits on waxy and dewaxed leaves were monitored. The feeding 

behaviour was recorded on Parafilm® treated with and without leaf wax extracts. Furthermore, 

scanning electron microscopy (SEM) imaging was used to visualize epicuticular leaf wax crystals on 

the plant surface. It could be shown that epicuticular waxes served as an arrestant stimuli triggering 

whitefly settlement. On the other side, life-history traits were impaired on leaves without epicuticular 

wax. Moreover, whitefly feeding was enhanced on Parafilm® treated with leaf wax extracts of 

preferred hosts. As the shapes of individual leaf wax crystals varied on natural leaf surfaces, it was 

assumed that leaf waxes of host plant cultivars differ in their chemical composition. Therefore, it was 

hypothesized that A. proletella evaluates host plant quality especially by properties of leaf 

epicuticular waxes. Consequently, it could be proved that epicuticular waxes promote feeding of A. 

proletella and act as phagostimulants. Overall, these findings offer breeding potential for the 

development of whitefly resistant crop cultivars. 

 

Keywords: host plant selection, host plant preference, life-history traits, electrical penetration 

graph, epicuticular wax, arrestant, phagostimulant 

 

4.1 Introduction 

The aerial surface of leaf epidermal cells in most plants is impregnated with a lipid polymer 

layer covered by a waxy deposit, both constituting the plant cuticle (DOMÍNGUEZ ET AL. 2011). The 

lipid polymer layer forms a translucent film containing cutin, whereas epicuticular wax is deposited 

on top (JEFFREE 2006). According to KERSTIENS (1996) and RIEDERER (2006), the plant cuticle is 

responsible for numerous functions of crucial importance for plant life, including its primary role of 

transpiration control, control over uptake and loss of solved polar substances, control over the 

exchange of gases and vapours, transport of lipophilic substances, repel of water and particles, 

attenuation of UV and photosynthetic active radiation, protection from mechanical influences, and is 

an important component for plant development. However, the high diversity in structure and 

chemical composition of epicuticular waxes suggest a range of ecological functions of the plant 
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cuticle, as waxes vary among plant species, genotypes and plant parts (EGLINTON AND HAMILTON 

1967; EIGENBRODE AND ESPELIE 1995; BARTHLOTT ET AL. 1998; DHANYALAKSHMI ET AL. 2019). 

Epicuticular waxes are located at the interface between a plant and its aerial environment. Therefore, 

they often represent the first physical contact between insect and plant, mediating interactions 

between both (KERSTIENS 1996; RIEDERER 2006). Until today, numerous relationships between 

insects and plants are known to be mediated by epicuticular waxes (EIGENBRODE AND ESPELIE 

1995). The chemical composition, the physical structure and optical properties of plant surface waxes 

provide information about the suitability of the host plant and might even influence the ability of an 

insect to move (EIGENBRODE AND ESPELIE 1995; JENKS AND ASHWORTH 1999; EIGENBRODE 2004; 

MÜLLER AND RIEDERER 2005). The absence or a reduced quantity of epicuticular waxes was 

observed to correlate with increased susceptibility of the host plant or led to a reduced infestation 

density of aphids, Plutella xylostella (L.), Eurydema spp., Phyllotreta spp., Artogeia rapae (L.), 

Mamestra brassicae (L.) and Tetranychus ludeni (Zacher) (WAY AND MURDIE 1965; TSUMUKI ET 

AL. 1989; STONER 1990; EIGENBRODE ET AL. 1991; BODNARYK 1992b; EIGENBRODE AND PILLAI 

1998; BOHINC ET AL. 2014; CASTRO ET AL. 2019). In other cases, epicuticular waxes affect 

oviposition rates of Delia radicum (L.) and several lepidopteran species such as Plutella xylostella 

(L.), Artogeia rapae (L.), Eupoecilia ambiguella (Hübner) and Lobesia botrana (Denis and 

Schiffermüller) (PROKOPY ET AL. 1983; UEMATSU AND SAKANOSHITA 1989; STONER 1990; SILVA 

ET AL. 2017; RID ET AL. 2018). While the movement of fall armyworm larvae Spodoptera frugiperda 

(J.E. Smith) was triggered on corn leaves with leaf surface waxes, Coleoptera and larva of the 

lacewing Chrysoperla carnea (Steph.) were shown to have impaired mobility on plant surfaces with 

epicuticular wax crystals (STORK 1980; BODNARYK 1992a; BODNARYK 1992b; EIGENBRODE ET AL. 

1996; GORB AND GORB 2002; GORB AND GORB 2006; GORB ET AL. 2008; GORB ET AL. 2017; VOIGT 

ET AL. 2018). The epicuticular wax layer can take a wide variety of forms and appear as films, layers 

and crusts, granules, platelets, rods, threads, tubes, and crystalloid transitional forms (BARTHLOTT 

ET AL. 1998). The individual chemical composition of epicuticular lipids determines the appearance 

and determines visual properties of the epicuticular wax (PROKOPY ET AL. 1983; HOLMES AND 

KEILLER 2002; OLASCOAGA ET AL. 2014). As a result, the heavy wax blooms from Brassica cultivars 

increase reflectivity in other wavelengths and let the plants appear whiter (PROKOPY ET AL. 1983). 

While optical properties are already perceived by insects from a distance, chemical composition and 

fine structure are recognized during physical contact only. Therefore, plant epicuticular waxes affect 

herbivorous insects at different behavioural steps within their host selection process. Consequently, 

plant surface waxes provide much potential for breeding insect-resistant cultivars (EIGENBRODE AND 

ESPELIE 1995). Especially Brassica species may have a great breeding potential due to their heavy 

epicuticular wax bloom. Indeed, epicuticular waxes of cruciferous plants have been reported to affect 

host plant acquisition of aphids, flea beatles, Lepidoptera, stink bugs and thrips (STONER 1990; 

EIGENBRODE ET AL. 1991; EIGENBRODE ET AL. 2000; TRDAN ET AL. 2004; ŽNIDARČIČ ET AL. 2008; 
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BOHINC ET AL. 2014). The goal of the present study was to investigate the role of leaf epicuticular 

waxes of various Brassica cultivars in the host selection process of Aleyrodes proletella (L.). For this 

purpose, whitefly settlement was compared on waxy and dewaxed leaves as well as on Parafilm® 

that was treated with leaf wax extracts to clarify whether A. proletella can identify qualitative 

differences between leaf wax of different host cultivars. Additionally, scanning electron microscopy 

(SEM) imaging was used to characterize epicuticular wax crystal types and to visualize leaf surfaces. 

Determination of life-history traits and electrical recording of the feeding activity of A. proletella 

identified the underlying mechanism in host selection provided by epicuticular leaf waxes of 

cruciferous plants.  

 

4.2 Materials and methods 

Insects and plants 

Aleyrodes proletella (L.) adults obtained from the institute’s stock rearings (Department of 

Applied Entomology, Institute of Phytomedicine, University of Hohenheim) have been maintained 

on broccoli under controlled conditions in the greenhouse (25/23 ± 2 °C, L18/D6 photoperiod, 

50 ± 5 % RH).  

Seven Brassica cultivars were used in the study with known attractiveness (see Chapter 2): blue 

and white turnip cabbage (BTC, WTC) (Brassica oleracea L. convar. acephala var. gongylodes, cv. 

“Delikateß Blauer”, cv. “Delikateß Weißer”), cauliflower (CA) (Brassica oleracea L. convar. 

botrytis var. botrytis, cv. “Erfurter Zwerg”), kale (KA) (Brassica oleracea L. convar. acephala var. 

sabellica, cv. “Grüner Krauser”), savoy cabbage (SC) (Brassica oleracea L. convar. capitata var. 

sabauda, cv. “Vertus”), white cabbage (WC) (Brassica oleracea L. convar. capitata var. alba, cv. 

“Brunswijker”), and oilseed rape (OR) (Brassica napus L. subsp. Napus, cv. “Atilla”). Experimental 

plants were grown under greenhouse conditions (22/18 ± 2 °C each, L18/D6 photoperiod, 

50 ± 5 % RH), irrigated daily, and fertilized weekly with 30 ml 0.5 % Wuxal® Super (8 % N, 8 % P, 

6 % K, Aglukon GmbH, Düsseldorf, Germany). The soil mixture was composed of 50 % potting soil 

(Floradur®, Floragard Vertriebs-GmbH, Oldenburg, Germany), 30 % compost soil (institute’s 

production), and 20 % sand. The plants were used in experiments when they reached BBCH stage 

17–18. 
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Host plant preference with and without leaf epicuticular waxes 

Attractiveness of host plants with waxy (+) and dewaxed (−) leaf undersides was assessed in a 

series of dual choice cage experiments. Overall, eight repetitions were carried out for each single test 

in the greenhouse. Therefore, epicuticular wax has been removed gently using cotton wool as 

nonpolar solvents might have had a detrimental effect on the leaf tissues. For each choice test, 

whiteflies were offered the youngest expanded leaf of each test plant in opposite position. At least 

20 randomly selected adult whiteflies were taken from the stock rearing by a suction tube and placed 

into one clip cage made of a clear plastic Petri dish (8.5 cm diam., 1.5 cm height) fitted with foam 

seal on edges to prevent any mechanical damage to the leaves and with an organdy-covered window 

in the lid for ventilation. The leaf area covered by the cage was kept as small as possible to minimize 

potential negative effects on photosynthetic traits of leaves (CRAFTS-BRANDNER AND CHU 1999). 

Cages were mounted on leaves using aluminium hair clips, which were retained by thin split bamboo 

sticks to not bend or even damage the plant leaves. After two days, the number of whitefly individuals 

was counted on each leaf.  

 

Wax extraction and application onto Parafilm® 

Epicuticular leaf wax of a total 50 leaves of each Brassica cultivar was collected by gently 

stroking the leaf surface using pre-washed cotton wool to mechanically remove the leaf wax. 

Subsequently, cotton wool with wax was washed three successive times in glass beakers containing 

pure chloroform. Wax extracts were then combined, stored and dried in a desiccator at room 

temperature to constant weight. Wax yields were then determined gravimetrically on an analytical 

balance (MC1 Research RC 210P, Sartorius AG, Göttingen, Germany). To utilize similar amounts 

of wax in the experiment as in nature, leaf area measurements using the software package ImageJ® 

served to calculate the naturally occurring amount of epicuticular waxes per cm2 leaf surface. Finally, 

epicuticular waxes were resolved again in chloroform, and comparable wax volumes were transferred 

onto pieces of Parafilm® with a surface area of 16 cm2. Parafilm® treated with chloroform only served 

as control variant. Treated Parafilm® was stored two days in a desiccator to assure complete 

evaporation of chloroform residues. 

 

Epicuticular wax preference 

Attractiveness levels of epicuticular leaf wax extracts were assessed in a series of dual choice 

experiments. For each single test, eight repetitions were carried out in the laboratory. Parafilm® with 

or without epicuticular waxes was stretched to cover glass Petri dishes (3.5 cm diam., 1 cm height) 

filled with a 20 % sucrose solution. The so prepared Petri dishes were placed upside down onto self-
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built plastic covers with holes that allowed whiteflies to access and choose between two Parafilm® 

variants. The plastic covers fitted onto glass containers (15 cm diam., 10 cm height), which contained 

at least 20 randomly selected adult whiteflies for one day to choose feed. Subsequently, the number 

of A. proletella individuals on each variant was counted. As light was found to affect whitefly 

settlement, direct light sources were excluded from the experimental setup during the whole test 

period and glass containers were covered with an opaque foil. Nevertheless, diffuse light could still 

pass through the glass Petri dishes, thus making both choice alternatives easily accessible to the 

whiteflies.  

 

SEM imaging 

Samples subjected to SEM-imaging were prepared from fresh leaves of oilseed rape, blue turnip 

cabbage and white cabbage. After each leaf was cut into small pieces with a clean razor blade, leaf 

samples were fixed with their adaxial side onto aluminium stubs using silver glue. Between cuttings 

razor blades were washed first with pure methanol and then with distilled water. Subsequently, 

aluminium stubs were stored in a desiccator until the leaf samples were completely dry. For SEM 

analyses, samples were coated with gold-palladium (80:20) using a sputter coater (SCD 040, Balzers 

Union AG, Balzers, Liechtenstein) and investigated with an SEM DSM 940 (Carl Zeiss AG, 

Oberkochen, Germany) at 5 kV. The micrographs were digitized with Orion (software version 6.38, 

Orion Microscopy, Eli, Belgium).  

 

Life-history traits 

Mortality, duration of preimaginal development, longevity and fecundity of A. proletella were 

assessed on oilseed rape, blue turnip cabbage and white cabbage in a climate chamber to ensure 

controlled conditions (24 ± 1 °C, L18/D6 photoperiod, 50 ± 5 % RH). At least 20 randomly selected 

adult whiteflies were collected from the colony and confined together in one clip cage on the abaxial 

side of a waxy leaf, whereas another 20 whiteflies were confined in a second clip cage on the abaxial 

side of a dewaxed leaf of the same plant. Again, wax removal was attained by using cotton wool. 

After 24 h of oviposition, clip cages and adult whiteflies were removed to record the number of eggs 

deposited on each leaf and cultivar. Every day and until all living immatures had completed 

development, developmental times and mortality were recorded. Emerging adults were immediately 

sexed visually using a magnifying glass, and single pairs were confined separately in clip cages on 

the same plant. For each female, the total number of laid eggs and the adult longevity was counted. 

As males usually died earlier than females, males from the same treatment were replaced if necessary. 

Overall, eight replicates of each variant were used.  
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Feeding behaviour  

Whitefly feeding activities were studied using the electrical penetration graph (EPG) technique 

(Tjallingii 1978). Adult female whiteflies (max. one day old) were anaesthetized with CO2 and 

integrated into the electrical circuit of a DC-Giga-4 EPG system (manufactured by Wageningen 

University, Netherlands). Four whiteflies were recorded simultaneously by attaching them onto EPG 

electrodes using a gold wire (12 µm diam., 2 cm length) and water-based silver glue on their dorsa 

(both: EPG Systems, Wageningen, Netherlands). Before being glued, the wax layer covering the 

whitefly’s dorsum was removed using a fine brush and water. Instead of plants, Petri dishes were 

used that contained a 20 % sucrose solution and were covered with Parafilm® pieces with or without 

epicuticular leaf waxes. For each Petri dish, a copper rod (2 mm diam., 10 cm length) was inserted 

into the sucrose solution as the second electrode. Probing activities were monitored in a Faraday cage 

for 6 h during the day at room temperature (20 ± 2 °C). Both Petri dishes and whiteflies were only 

used once. Whitefly feeding behaviour was recorded on eight Petri dishes per variant. Signals were 

recorded and analysed using NextView/NT software (plug-in card: PCI-Base 50/300, A/D-

conversion-module: MAD12, both BMC-Schetter, Germany) on a standard PC. The position of the 

whitefly stylets, as well as their feeding activities, were interpreted according to EPG waveforms 

previously defined by TJALLINGII (1978) and LEI ET AL. (1996) on plants. Waveforms occurring 

during EPG recording associated with non-probing activity, probing-activity and whitefly feeding 

could be identified.  

 

Statistics 

All obtained data were analysed using JMP® 14.1.0 (SAS Institute Inc., Cary, NC, USA). Before 

statistical analysis, the residuals were tested for normal distribution by Shapiro-Wilk test. All 

continuous data were found normally distributed. All data were subjected to an analysis of variance, 

procedure “Generalized Linear Models”, before ensuing statistical analyses. The respective statistical 

procedures and statistical core data are provided in the legends of the tables.  

For determination of host plant attractiveness of two host plant choices, preference indices (PI) 

were calculated using the following formula based on KOGAN AND GOEDEN (1970):  

𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛𝑑𝑒𝑥 (𝑃𝐼) =  
𝑛𝐴

𝑛𝐴 + 𝑛𝐵
  

where nA is the number of whitefly adults on host plant choice A and nB is the number of whitefly 

adults on host plant choice B. In this scale, PI = 1 and PI = 0 represent an absolute preference for one 

of the two choice alternatives, whereas PI = 0.5 implies no preference between both choice 

alternatives. 
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4.3 Results 

Host choice behaviour of A. proletella depended not only on the presence or absence of 

epicuticular waxes but also on leaf wax quality (Figure 8, 9, 10). In dual choice experiments with 

Brassica leaves, epicuticular waxes significantly attracted more whiteflies compared to leaves 

without wax (Figure 8). While significant differences were found for each variety, a mean preference 

index of 0.86 ± 0.02 (n = 56) was determined for Brassica leaves with leaf waxes regardless of the 

cultivar. In dual choice tests with extracted leaf wax, which was then applied onto Parafilm® and 

offered for selection together with a clean Parafilm® control, epicuticular waxes again considerably 

contributed to host attractiveness (Figure 9). Except for wax extracts from white turnip cabbage, 

significant differences could be measured for each wax variant. Accordingly, for Parafilm® that had 

been treated with leaf wax, an average preference index of 0.71 ± 0.02 (n = 56) could be determined 

to demonstrate the promoting effect of Brassica leaf waxes on whitefly settlement. When two leaf 

wax extracts of two different host cultivars were offered, whiteflies preferred leaf wax extracts to 

varying degrees (Figure 10). For example, it was found that epicuticular leaf wax of oilseed rape was 

significantly more attractive than leaf wax of blue turnip cabbage and white cabbage, whereas leaf 

wax of blue turnip cabbage was more preferred over waxes of white cabbage.  

SEM-images of leaf undersides of oilseed rape, blue turnip cabbage and white cabbage before 

and after treatment with cotton wool displayed considerable optical differences (Figure 11). Images 

of leaf undersides after treatment with cotton wool proved a successful removal of the epicuticular 

wax with only few residues. Furthermore, epicuticular wax crystals of all three cabbage varieties 

differed in shape. Wax crystals on abaxial leaf sides of oilseed rape were characterized by many 

irregular plates and few rod-like projections, whereas waxes of blue turnip cabbage displayed many 

thread- and rod-like structures, as well as few irregular plates. In contrast, epicuticular waxes of white 

cabbage appeared as polygonal rodlets.  

Life-history traits of A. proletella differed between host cultivar and between leaf surfaces with 

and without epicuticular waxes (Table 8). While total preimaginal mortality was significantly higher 

on dewaxed leaves compared to waxy leaf surfaces of oilseed rape, mortality did not differ between 

cultivars and leaf surfaces of other cultivars. The time needed from egg deposition until adult 

emergence was fastest on oilseed rape, slowest on white cabbage, and preimaginal developmental 

times were significantly reduced on leaves without surface waxes on all host cultivars. Additionally, 

female adult whiteflies survived longest on oilseed rape; however, longevity did not statistically 

differ between blue turnip cabbage and white cabbage. Moreover, female A. proletella survived 

significantly longer on leaves with surface waxes of oilseed rape and blue turnip cabbage. Most eggs 

were laid by female whiteflies on oilseed rape, whereas fecundity was lowest on white cabbage. On 

leaves without surface waxes fecundity was significantly reduced.  
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Feeding behaviour of whiteflies on different Parafilm® surfaces depended on the treatment 

(Table 9). Although the number of feeding attempts did not differ between Parafilm® surface 

qualities, statistical differences could be detected for the total and the mean feeding duration. While 

the total feeding time was highest on surfaces treated with epicuticular waxes of oilseed rape, food 

consumption of A. proletella was significantly reduced on Parafilm® surfaces with leaf wax of white 

cabbage. The mean feeding duration was significantly prolonged on surfaces with epicuticular waxes 

of oilseed rape and blue turnip cabbage, whereas feeding was interrupted earlier on white cabbage. 

However, the mean feeding times of A. proletella on the Parafilm® control did not differ from 

surfaces treated with leaf waxes in this case.  

 

 

Figure 8: Host plant preference indices (mean ± s.e.m.) of A. proletella adults in dual choice tests 

on different cabbage cultivars 

(OR = oilseed rape, SC = savoy cabbage, KA = kale, BTC = blue turnip cabbage, CA = cauliflower, 

WTC = white turnip cabbage, WC = white cabbage, + denotes presence and – denotes absence of 

epicuticular surface waxes on cabbage leaves) 

Wilcoxon signed-rank test (H0 = 0.5 two-sided, α = 0.05, n = 8 for each combination, *P < 0.05, 

**P < 0.01, ***P < 0.001) 
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Figure 9: Leaf wax preference indices (mean ± s.e.m.) of A. proletella adults in dual choice tests on 

Parafilm® treated with epicuticular leaf waxes of various cabbage cultivars  

(OR = oilseed rape, SC = savoy cabbage, KA = kale, BTC = blue turnip cabbage, CA = cauliflower, 

WTC = white turnip cabbage, WC = white cabbage, C = Parafilm® control) 

Wilcoxon signed-rank test (H0 = 0.5 two-sided, α = 0.05, n = 8 for each combination, *P < 0.05, 

**P < 0.01, ***P < 0.001) 
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Figure 10: Leaf wax preference indices (mean ± s.e.m.) of A. proletella adults on Parafilm® treated 

with epicuticular leaf waxes of various cabbage cultivars 

(OR = oilseed rape, SC = savoy cabbage, KA = kale, BTC = blue turnip cabbage, CA = cauliflower, 

WTC = white turnip cabbage, WC = white cabbage) 

Wilcoxon signed-rank test (H0 = 0.5 two-sided, α = 0.05, n = 10 for each combination, *P < 0.05, 

**P < 0.01, ***P < 0.001) 
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Figure 11: SEM images of abaxial leaf sides of various Brassica cultivars with waxy (+) and 

dewaxed (–) leaf surfaces 

(1): oilseed rape +, (2): oilseed rape –, (3): blue turnip cabbage +, (4): blue turnip cabbage –,  

(5): white cabbage +, (6): white cabbage –; pictures were taken at 5 000 V, focal length 5 mm, 2 000x 

magnification 



 

 

 

Table 8: Life-history traits of A. proletella on different cabbage cultivars with and without epicuticular waxes  

              
    

Total preimaginal  

mortality1 (%) 
 Duration of preimaginal 

development2 (days) 
Female longevity2 (days) Total fecundity2 (eggs/female) 

Host plant  mean ± s.e.m.  mean ± s.e.m. mean ± s.e.m. mean ± s.e.m. 

OR+   12.37 ± 3.57 b   24.99 ± 0.08 f 57.50 ± 2.31 a 540.60 ± 25.21 a 
  n = 10  n = 699 n = 10 n = 10 

OR–  53.17 ± 7.19 a  26.04 ± 0.10 e 40.00 ± 1.78 b 254.60 ± 22.84 b 
  n = 10  n = 553 n = 10 n = 10 

BTW+  35.18 ± 6.05 ab  27.01 ± 0.15 d 31.10 ± 1.32 c 191.30 ± 15.45 b 
  n = 10  n = 539 n = 10 n = 10 

BTW–  43.54 ± 9.50 a  29.59 ± 0.26 c 24.60 ± 1.47 d 94.20 ± 9.48 cd 
  n = 10  n = 305 n = 10 n = 10 

WC+  26.61 ± 3.80 ab  30.93 ± 0.27 b 25.10 ± 1.93 cd 97.60 ± 10.74 c 
  n = 10  n = 160 n = 10 n = 10 

WC–  27.97 ± 7.92 ab  34.10 ± 0.50 a 21.10 ± 1.51 d 66.20 ± 9.44 d 
  n = 10  n = 126 n = 10 n = 10 
 F 4.4535 X2 780.8296 42.2832 49.0737 
 d.f. 5, 54 d.f. 5 5 5 
 P 0.0016 P < 0.0001 < 0.0001 < 0.0001 

                  
      1 one-way ANOVA followed by Tukey-Kramer HSD test at α = 0.05, 2 Kruskal-Wallis one-way test followed by Wilcoxon Each Pair at α = 0.05  

Means with s.e.m. in a column followed by the same index letter are not statistically different  

OR = oilseed rape, BTC = blue turnip cabbage, WC = white cabbage 

+ denotes presence and – denotes absence of epicuticular surface waxes on cabbage leaves 
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Table 9: Number of feeding attempts, total feeding duration, and mean feeding duration of 

A. proletella on Parafilm® surfaces with epicuticular waxes of different host plants  

            
    

Number of feeding 

attempts1 
  

Total feeding duration2 

(min) 

Mean feeding 

duration2 (min) 

Surface  mean ± s.e.m.  mean ± s.e.m. mean ± s.e.m. 

OR+   22.88 ± 5.06 a   101.65 ± 13.18 a 4.46 ± 0.50 a 
  n = 8  n = 8 n = 183 

BTW+  13.50 ± 2.58 a  76.80 ± 16.20 ab 5.69 ± 0.83 a 
  n = 8  n = 8 n = 108 

WC+  17.50 ± 2.91 a  39.06 ± 9.26 b 2.23 ± 0.31 b 
  n = 8  n = 8 n = 140 

C  12.13 ± 2.58 a  37.66 ± 9.61 b 3.11 ± 0.53 ab 
  n = 8  n = 8 n = 97 
 X2 4.2236 F 6.2869 9.3211* 
 d.f. 3 d.f. 3, 28 3, 260* 
 P 0.2383 P 0.0021 < 0.0001* 

                
    1 Kruskal-Wallis one-way test followed by Wilcoxon Each Pair at α = 0.05  

2 one-way ANOVA followed by Tukey-Kramer HSD test at α = 0.05 

Means with s.e.m. in a column followed by the same index letter are not statistically different  

* F, d.f., and P values were corrected by Welch-ANOVA test because of variance inhomogeneity 

after Levene’s test 

OR = oilseed rape, BTC = blue turnip cabbage, WC = white cabbage, C = Parafilm® control 

+ denotes presence of epicuticular surface waxes on cabbage leaves 
 

 

4.4 Discussion 

Cuticular waxes in plants are a diverse composition of aliphatic components belonging to nine 

major classes, which are n-alkanes, wax esters, aldehydes, ketones, secondary alcohols, β-diketones, 

fatty alcohols, and triterpenoids (EIGENBRODE AND ESPELIE 1995). Furthermore, each class 

comprises a homologous series of isomers, with usually one compound dominating the total 

composition of the plant cuticular wax (MÜLLER AND RIEDERER 2005). This study demonstrates that 

epicuticular leaf waxes of cruciferous plants are of great importance for the recognition of a potential 

host plant by A. proletella. While the removal of leaf epicuticular waxes led to considerable 

reductions in host plant attractiveness of various host cultivars, leaf surface waxes applied onto 

Parafilm® served as arrestant stimuli. Although the true food, phloem sap, should have the same 

quality when offered from waxy and dewaxed leaves of the same cultivar, the epicuticular waxes 

must be taken as a key factor in the host selection process by A. proletella. Moreover, epicuticular 

leaf waxes revealed qualitative differences, as leaf wax attractiveness could be ranked as follows: 

oilseed rape wax > blue turnip cabbage wax > white cabbage wax. Consequently, it is hypothesized 

that A. proletella evaluates host plant suitability especially by physical contact with epicuticular leaf 
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waxes. Sensing of epicuticular waxes might occur by chemo- and mechanosensory sensillae located 

at the apex of the labium in whiteflies (WALKER AND GORDH 1989). This assumption could be 

additionally supported by visual characteristics of leaf surfaces. Due to the varying morphology of 

epicuticular wax crystals visualized by SEM, it is furthermore assumed that chemical compositions 

differ between leaf waxes of host cultivars used in the study. However, the interpretation of intact 

surface crystals is difficult, as the density of wax crystals on Brassica leaves is relatively high and is 

dependent from various environmental conditions such as light intensity, humidity, or temperature 

(BAKER 1974; JEFFREE 2006; KOCH ET AL. 2006). In general, Brassica waxes are considered to 

consist of (i) a continuous film, (ii) flat crystals and (iii) upright columns, with flat crystals and 

upright columns being the predominant forms varying strongly in their shape (GÓMEZ-CAMPO ET 

AL. 1999; JEFFREE 2006). While alkanes, ketones, and secondary alcohols were previously ascribed 

to form column or plate-shaped wax crystals in Brassica plants, ketones are attributable to form 

dendritic structures as well (MEUSEL ET AL. 1999; MEUSEL ET AL. 2000; JEFFREE 2006). In several 

studies, wax amounts and chemical profiles of epicuticular surface lipids of different cultivated plants 

affected host plant selection in herbivorous insects. Accordingly, high levels of n-alkanes, fatty 

alcohols and triterpenoids were associated with insect resistance towards Lepidoptera, aphids, as well 

as the azalea lace bug Stephanitis pyrioides (Scott) (JOHNSON AND SEVERSON 1984; BERGMAN ET 

AL. 1991; ROBERTSON ET AL. 1991; YANG ET AL. 1993b; YANG ET AL. 1993c; BALSDON ET AL. 

1995; EIGENBRODE AND ESPELIE 1995). However, n-alkanes, fatty acids and triterpenoids were also 

correlated with insect susceptibility of host plants to Lepidoptera and thrips (YANG ET AL. 1993a; 

UDAYAGIRI AND MASON 1997; LI AND ISHIKAWA 2006; KARMAKAR ET AL. 2016; RID ET AL. 2018). 

The epicuticular wax blend of leaf surfaces may also contain a range of other polar components 

including amino acids, nonprotein amino acids, sugars, sucrose and glucose esters, sesquiterpenes, 

diterpenes, phenolics, phenolic glycosides, glucosinolates and other plant metabolites acting as major 

cues in the host selection process of herbivorous insects (EIGENBRODE AND ESPELIE 1995; 

KERSTIENS 1996; MÜLLER AND RIEDERER 2005). Both primary and secondary metabolites can be 

associated with leaf waxes, as they can be deposited by leakage or diffusion to plant surfaces, whereas 

some components are exuded by glandular trichomes (DERRIDJ ET AL. 1996; MALUF ET AL. 2001; 

MÜLLER AND RIEDERER 2005). However, this is not assumed in the case of glucosinolates, as it is 

controversially discussed whether glucosinolates may or may not be present on the leaf surface. By 

mechanical removal of the epicuticular wax layer of Brassica leaves using gum arabic, glucosinolates 

could not be detected at the leaf surface. In contrast, leaf surface wax extraction by rinses with 

organic solvents revealed a correlation between glucosinolate concentrations and stomatal conditions 

(GRIFFITHS ET AL. 2001; MÜLLER AND RIEDERER 2005; REIFENRATH ET AL. 2005; STÄDLER AND 

REIFENRATH 2009). As a result, it was postulated that polar glucosinolates are washed from the inner 

leaf tissue to the outside through open stomata during solvent extraction but are not naturally present 

on the leaf surface (REIFENRATH ET AL. 2005; STÄDLER AND REIFENRATH 2009). In addition to the 
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reduction in host plant attractiveness, the absence of epicuticular waxes also had a significant effect 

on life-history traits and feeding behaviour of A. proletella. Life-history traits generally vary greatly 

between whitefly species, host plants species and health, as well as environmental impacts (COSTA 

ET AL. 1991b; SHISHEHBOR AND BRENNAN 1996; BLACKMER AND BYRNE 1999; BÄHRMANN 2002; 

ALONSO ET AL. 2009; ASKOUL ET AL. 2019). In this study, it was additionally found that the absence 

of epicuticular waxes led to increased mortality, delayed development times, decreased adult 

longevity, and lower fecundity in A. proletella. According to COLE AND RIGGALL (1992) the water 

stress susceptibility could be increased in Brassica plants due to the removal of epicuticular leaf wax, 

leading to elevated concentrations of deterrent compounds on the leaf surfaces. However, the 

dewaxed leaf areas made up only a few cm2 of the whole plant surface, suggesting water stress was 

not present. It is more likely that the absence of the host-finding stimulus provided by the leaf waxes 

led to a change in the feeding behaviour of the whiteflies. Although no statistical differences between 

the phloem uptake per unit of time (mean feeding durations) on Parafilm® with and without leaf wax 

extracts could be measured, the total phloem uptake (total feeding time) within 6 h was significantly 

higher on surfaces treated with leaf wax extracts of oilseed rape as well as blue turnip cabbage. In 

summary, cruciferous leaf waxes might function as feeding stimulants towards A. proletella. 

Therefore, the absence of epicuticular leaf waxes could lead to a decreased food intake, which may 

result in a poor supply with important nutrients such as essential amino acids. In the long-term 

consequence, the life cycle of A. proletella was prolonged and life-history traits were impaired. 

Similar conclusions could be drawn for aphids, orthopterans, lepidopterans and coleopterans. 

Feeding of Aphis fabae (Scopoli), Chaitophorus leucomelas (Koch), Microtylopteryx hebardi 

(Rehn), Locusta migratoria (L.), Anthonomus grandis (Boheman), Bombyx mori (L.) and Plutella 

xylostella (L.) was promoted by the presence of epicuticular waxes of susceptible host plants and 

feeding was delayed or reduced when leaf surface waxes were not present (BERNAYS ET AL. 1976; 

MORI 1982; MCKIBBEN ET AL. 1985; EIGENBRODE ET AL. 1991; BRAKER AND CHAZDON 1993; 

POWELL ET AL. 1999; ALFARO-TAPIA ET AL. 2007). In addition, Choristoneura fumiferana 

(Clemens) showed varying feeding preferences for various epicuticular wax fractions of its host plant 

indicating that wax components may act as feeding stimulants (MALONEY ET AL. 1988). Overall, 

these findings offer the breeding potential for the development of resistant crop cultivars. Further 

investigations are needed to determine the chemical composition of leaf epicuticular waxes on 

Brassica leaves and to identify which wax components are mediating host choice in A. proletella. 

Once the mediating wax components are known, breeding of Brassica cultivars with certain leaf wax 

characteristics could result in A. proletella no longer being able to recognize its host plants. 
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5 Phloem amino acid composition affect host plant preferences of 

Trialeurodes vaporariorum (Westw.)  

Abstract: Amino acids ingested with the phloem sap of plants strongly affect whitefly performance. 

The goal of this study was to investigate the influence of phloem amino acids on the host choice 

behaviour of whiteflies. Therefore, the phloem amino acid profiles of six vegetable crops varying in 

their host plant attractiveness towards the greenhouse whitefly Trialeurodes vaporariorum (Westw.) 

were analysed by liquid chromatography-mass spectrometry (LC-MS). In a second step, multiple 

regressions of the amino acid compositions and the host plant preferences of T. vaporariorum were 

performed. To verify the contribution and association of single amino acids on host choice, feeding 

preferences were assessed in dual choice experiments using sucrose media with and without single 

added amino acids. Glutamic acid, threonine, phenylalanine and serine were the most relevant amino 

acids to explain host plant attractiveness. Furthermore, essential, aromatic, and hydroxylated amino 

acid groups affected most host plant selection of T. vaporariorum. On the other hand, dual choice 

experiments proved that lysine, asparagine, threonine, valine, glutamine, leucine, tryptophan, 

glutamic acid, tyrosine, aspartic acid, cysteine, and alanine exert gustatory stimuli determining 

feeding preferences. Overall, the effects of single amino acids in natural hosts only partially agreed 

with the effects of individual amino acids in vitro. While the presence and concentration of other 

plant compounds in the phloem sap of host plants might have additionally affected the influence of 

single amino acids, other plant factors not associated with the phloem sap might have determined 

host plant selection of T. vaporariorum as well.  

 

Keywords: host plant susceptibility, phloem sap, amino acids, multiple regressions 

 

5.1 Introduction 

Nitrogen is a vital nutrient for herbivorous insects, and it takes a central role in the growth of all 

organisms (MATTSON 1980). Together with a wide range of other compounds such as sugars, 

proteins, sugar alcohols, and hormones, nitrogen is present in the form of free amino acids in the 

phloem sap of plants (ANSTEAD ET AL. 2013). Furthermore, phloem sap is usually characterized by 

the absence or at least low concentrations of secondary compounds compared to other plant parts 

(DOUGLAS 2006). Consequently, herbivorous insects utilize the phloem sap as their nutrient source 

and nitrogen supply. However, phloem sap represents an unbalanced source of nutrition. On the one 

hand, phloem sap consists mainly of carbohydrates and only low concentration of nitrogen; on the 

other hand, the ratio between essential and non-essential amino acids is in favour of the non-essential 

amino acids (DOUGLAS 1993; DIXON 1998; SANDSTROM AND MORAN 1999; DOUGLAS 2006). 
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Nevertheless, some of the most significant pests in agriculture and horticulture, such as whiteflies 

almost exclusively use phloem sap as their food source (BLACKMER AND BYRNE 1999). Whiteflies 

penetrate the phloem sieve elements of a plant by their piercing-sucking mouthparts, and as a result 

of the high hydrostatic pressure, phloem sap exudes out into their stylets and is consumed (WALKER 

ET AL. 2010). They successfully exploit this niche because: (i) whiteflies have endosymbionts 

providing their hosts with certain essential amino acids, which may occur in too low concentrations 

or even are lacking in the phloem sap (HOUK AND GRIFFITHS 1980; CAMPBELL 1989; THAO AND 

BAUMANN 2004; SKIDMORE AND HANSEN 2017), (ii) whiteflies excrete excess dietary sugars, which 

are otherwise lethal to them due to the ability of sugars to lower the osmotic pressure (BYRNE AND 

BELLOWS 1991; DOUGLAS 2006; WALKER ET AL. 2010), and (iii) whiteflies are assumed to 

compensate lower levels of amino acids by increasing their feeding rates as proved for aphids 

(PROSSER ET AL. 1992).  

Insect performance is strongly affected by the different nutritional value of individual amino 

acids ingested and, therefore, amino acid compositions affect host plant suitability (AUCLAIR 1963; 

ROCK AND KING 1967; DADD AND KRIEGER 1968; BRODBECK AND STRONG 1987; WILKINSON AND 

DOUGLAS 2003; CHIOZZA ET AL. 2010; DHILLON AND KUMAR 2017). To study the influence of 

phloem sap nitrogen in host plant suitability of herbivorous insects amongst different host plant 

species or cultivars, measurements of free amino acid compositions are often utilized (ROCK AND 

KING 1967; WEIBULL 1988; COLE 1997; CHIOZZA ET AL. 2010; DHILLON AND KUMAR 2017). 

Amino acid compositions are often statistically correlated with life-history parameters as a measure 

for host suitability, however, most of these studies focused exclusively on aphids as model organisms 

(DOUGLAS 1993; WILKINSON AND DOUGLAS 2003; DOUGLAS 2006). The goal of this study was the 

profiling and relative quantification of 20 free amino acids in the phloem sap of six vegetable species 

with varying levels of host plant attractiveness vis-à-vis the greenhouse whitefly Trialeurodes 

vaporariorum (Westw.). Multiple regressions of the relative amino acid proportions in the phloem 

of host plants, with the preference of T. vaporariorum towards these hosts, should identify the most 

relevant amino acids and amino acid groups explaining host plant selection. In addition, dual choice 

experiments using sucrose solutions with and without added single amino acids should verify the 

contribution and association of individual amino acids in host selection of the whitefly.  
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5.2 Materials and methods 

Insects and plants 

Trialeurodes vaporariorum (Westw.) adults were obtained from the institute’s stock cultures 

(Department of Applied Entomology, Institute of Phytomedicine, University of Hohenheim) reared 

on poinsettia under controlled conditions in the greenhouse (25/23 ± 2 °C each, L18/D6 photoperiod, 

50 ± 5 % RH).  

Seven vegetable plant species were used in the study with known attractiveness (see Chapter 2): 

bean (BE) (Phaseolus vulgaris L., cv. “Mombacher Speck”), cucumber (CU) (Cucumis sativus L., 

cv. “Delikateß”), eggplant (EG) (Solanum melongena L., cv. “Falcon”), sweet pepper (SP) 

(Capsicum annuum L., cv. “California Wonder”), tobacco (TB) (Nicotiana tabacum L., cv. “Orient 

Xanthi”), and tomato (TO) (Solanum lycopersicum L., cv. “Resi”). Experimental plants were grown 

under greenhouse conditions (22/18 ± 2 °C each, L18/D6 photoperiod, 50 ± 5 % RH), irrigated daily, 

and fertilized weekly with 30 ml 0.5 % Wuxal® Super (8 % N, 8 % P, 6 % K, Aglukon GmbH, 

Düsseldorf, Germany). The soil mixture was composed of 50 % potting soil (Floradur®, Floragard 

Vertriebs-GmbH, Oldenburg, Germany), 30 % compost soil (institute’s production), and 20 % sand. 

The plants were used in experiments when they reached BBCH stage 17–18. 

 

Phloem sap sampling 

The leaf exudation technique was used for phloem sap collection according to KING AND 

ZEEVAART (1974) as well as URQUHART AND JOY (1981). For this purpose, the upper fully expanded 

leaves of eight plants of each vegetable plant species were cut at their petioles under distilled water 

with a razor blade, directly transferred into individual test tubes containing a solution of 20 mM 

ethylenediaminetetraacetic acid (EDTA, adjusted to pH 7.0 with NaOH) and incubated in a dark 

chamber kept at 100 % RH. After 6 h, plants were removed from the test tubes and separate phloem 

sap fractions from each leaf were frozen at -20 °C until chemical analyses.  

 

Amino acid analysis 

In order to determine the composition of amino acids, phloem exudates were analysed by 

controlled liquid chromatography-mass spectrometry (LC-MS) (MS-detector: LTQ Velos Dual 

Pressure Linear Ion Trap, Thermo Scientific Inc., Waltham, MA, USA). The phloem exudates were 

lyophilised (Christ® ALPHA 1-4, vacuum level: 0.375 mbar, temperature: -30 °C, Martin Christ 

GmbH, Osterode am Harz, Germany), dissolved in 0.5 ml water and transferred into microtubes to 

centrifuge for 5 min at 12,000 rpm. The supernatant was diluted with 25 % methanol and samples 



Chapter 5 

52 

were incubated at 55 °C. After 10 min samples were then diluted with 25 % acetonitrile. Pre-column 

derivatization took place in an UHP Accela autosampler (Thermo Scientific Inc., Waltham, MA, 

USA) using the AccQ-Fluor Reagent Kit (WAT052880, Waters Corporation, Milford, MA, USA) 

and AccQ-Fluor reagent (15 µl AccQ-Fluor reagent, 75 µl borate buffer, 10 µl phloem sample). 

LC-MS analysis was performed at 33 °C using a UHPLC Accela 1250 pump (Thermo Scientific 

Inc., Waltham, MA, USA) and an AccQ-TagTM column (3.9 x 150 mm, 4 µ, WAT052885, Waters 

Corporation, Milford, MA, USA). Elution buffers were ammonium formate buffer (10 mM, pH 6.3) 

+ 2 % methanol, and acetonitrile. The flow rate was constant at 0.5 ml min-1 and the injection volume 

was 3 µL. Peak identification of amino acids was confirmed by standard addition and quantified by 

an eternal standard with 20 amino acids each at a concentration of 250 mmol ml-1. With this method 

all proteinogenic amino acids can be analysed in their free forms.  

 

Feeding preference for single amino acids 

Gustatory properties of single amino acids were assessed in a series of dual choice experiments. 

Overall, eight repetitions were carried out for each single test in the laboratory. For each choice test, 

whiteflies were offered two Petri dishes covered by Parafilm® in the opposite position. While both 

Petri dishes contained a 20 % sucrose solution, only one additionally contained 3 mg/ml of a single 

amino acid. At least 20 randomly selected adult whiteflies were taken from the stock rearing by a 

suction tube and placed into glass containers (10 cm diam., 8 cm height). Containers were then closed 

with lids that were fitted with organdy windows for ventilation and with holes that allowed the 

whiteflies access to the Petri dishes placed upside-down on the glass containers. After seven days, 

the number of whitefly individuals was counted once on each Petri dish variant, as it was found that 

whiteflies made their final choice within this time.  

 

Statistics 

All obtained data were analysed using JMP® 14.1.0 (SAS Institute Inc., Cary, NC, USA). Before 

data were subjected to one-way analysis of variance (ANOVA), the residuals were tested for 

normality by Shapiro-Wilk test as well as for homogeneity of variance following the Levene-test. 

When data did not meet the assumptions of homogeneity of variance, Welch-ANOVA was used for 

interpretation. The respective statistical procedures and statistical core data are provided in the 

legends of the tables.  
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For determination of amino acid preference in the dual choice tests, preference indices (PI) were 

calculated using the following formula based on KOGAN AND GOEDEN (1970):  

𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛𝑑𝑒𝑥 (𝑃𝐼) =  
𝑛𝐴

𝑛𝐴 + 𝑛𝐵
  

where nA is the number of whitefly adults on host plant choice A and nB is the number of whitefly 

adults on host plant choice B. In this scale, PI = 1 and PI = 0 represent an absolute preference for one 

of the two choice alternatives, whereas PI = 0.5 implies no preference between both choice 

alternatives.  

To analyse the general patterns of trait covariation, relationships between relative amino acid 

proportions in the phloem sap of host plants and preference indices of T. vaporariorum towards these 

hosts were analysed using principal components analysis. Correlations between relative amino acid 

compositions of the phloem sap and the host plant preference of T. vaporariorum towards these hosts 

was performed using stepwise multiple regression analyses that bidirectionally select for minimum 

BIC. As a measure for the host plant preference of T. vaporariorum, the mean preference indices 

(PI) were used (see Chapter 2). Additionally, amino acids were grouped according to their 

physiological and chemical properties (Table 10). Therefore, correlations were performed for relative 

proportions of individual amino acids as well as for amino acid groups separately.  

 

Table 10: Classification of amino acids groups according to physiological and chemical properties 

    
Group Amino acids 

Essential Arg, His, Ile, Leu, Lys, Met, Phe, Thr, Trp, Val 

Aromatic Phe, Trp, Tyr 

Heterocyclic Pro 

Aliphatic Ala, Gly, Ile, Leu, Pro, Val 

Amidated Asn, Gln 

Hydroxylated Ser, Thr, 

Basic Arg, His, Lys 

Acidic Asp, Glu 

    
     

 

5.3 Results 

The following amino acids were detected: alanine (Ala), arginine (Arg), asparagine (Asn), 

glutamine (Gln), glutamic acid (Glu), glycine (Gly), histidine (His), isoleucine (Ile), leucine (Leu), 

phenylalanine (Phe), proline (Pro), serine (Ser), threonine (Thr), tryptophan (Trp), tyrosine (Tyr), 

and valine (Val), whereas aspartic acid (Asp), cysteine (Cys), lysine (Lys), and methionine (Met) 
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levels were below the detection limit. Relative proportions of free amino acids in the phloem sap 

differed significantly within each host plant species (Table 11). Glutamine was the predominant 

amino acid in the phloem of cucumber, eggplant, sweet pepper, tobacco, and tomato. In contrast, 

asparagine and glutamic acid were present in the highest proportions in the phloem sap of bean. The 

relative amino acid levels also varied significantly between host plant species. However, proportions 

of histidine and tryptophan did not differ depending on the host plant.  

When the relative proportions of free amino acids in the phloem sap of plants were grouped 

according to their physiological and chemical properties, relative amino acid proportions varied 

significantly within host plant species (Table 12). Amidated amino acids were the predominant group 

in the phloem sap of all host plant species. Additionally, phloem sap of bean was dominated by acidic 

amino acids as well. Furthermore, relative proportions of each amino acid group differed 

significantly between host plant species.  

The patterns of covariation among the percentage composition of individual amino acids in the 

phloem sap of host plants and the mean preference indices of T. vaporariorum towards these hosts 

show that two axes explained 52.9 % of the variance (Figure 12). Considering the number of variables 

accounted for in the model, this represents an acceptable value that is open to interpretation. On the 

other hand, patterns of covariation among the relative proportions of amino acid groups in the phloem 

sap of host plants as well as the mean preference indices of T. vaporariorum show that two axes 

explained 59.8 % of the variance (Figure 13). This represents a more robust value that explains 

variance even better than the first analysis of trait covariation by including amino acid classification. 

While the first axis was associated with the amino acid proportions in the phloem of host plants, the 

second axis was associated with the preference indices of T. vaporariorum in both analyses. Within 

the two axis dimensions, the different host plant species were often aggregated. 

Stepwise multiple regressions between the relative proportions of individual amino acids in the 

phloem sap of host plants and the preference indices of T. vaporariorum revealed that glutamine, 

phenylalanine, serine, and threonine were the most relevant amino acids to explain host plant 

preference of T. vaporariorum (Table 13). According to this model, glutamine and threonine 

decreased host plant attractiveness, whereas phenylalanine and serine had a positive effect. 

Furthermore, stepwise multiple regressions between relative proportions of amino acid groups in the 

phloem sap of host plants and the preference indices of T. vaporariorum determined that essential, 

aromatic, as well as hydroxylated amino acids, explained the host plant preference the most 

(Table 14). While aromatic and hydroxylated amino acids were positively affecting host plant 

preference, essential amino acids had negative effects.  
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In dual choice preference experiments, feeding preferences of adult T. vaporariorum differed 

significantly between single amino acids (Figure 14). While lysine had the highest preference index 

(0.70 ± 0.06), alanine was at the least preferred amino acid (0.03 ± 0.02). Within this spectrum, 

proline, methionine, glycine, serine, phenylalanine, histidine, and isoleucine were more preferred, 

whereas asparagine, threonine, valine, glutamine, leucine, tryptophan, glutamic acid, tyrosine, 

aspartic acid, cysteine, as well as alanine were less preferred. In contrast, feeding preference of T. 

vaporariorum towards arginine did not statistically differ from that of other amino acids. However, 

measured preferences for one of the two choice alternatives within each single test were only 

significant for lysine, asparagine, threonine, valine, glutamine, leucine, tryptophan, glutamic acid, 

tyrosine, aspartic acid, cysteine, and alanine.  



 

 

Table 11: Relative contents of free amino acids in phloem exudates of different host plants 

           
   Amino acid 

  

  

  

  

  

  

  

  % Ala % Arg % Asn % Gln 

Host plant  mean ± s.e.m. mean ± s.e.m. mean ± s.e.m. mean ± s.e.m. 

BE  6.52 ± 1.10 a BCDE 1.77 ± 0.24 a EFG 19.69 ± 1.49 a A 10.68 ± 0.79 d B 

CU  5.43 ± 0.42 ab BCD 1.60 ± 0.50 ab CDE 2.29 ± 0.47 c CDE 66.34 ± 2.96 a A 

EG  1.89 ± 0.18 c EFG 1.32 ± 0.36 abc FG 7.61 ± 2.18 b BC 35.07 ± 2.72 c A 

SP  1.48 ± 0.57 c C 0.06 ± 0.06 c C 3.24 ± 0.54 bc C 53.27 ± 5.64 ab A 

TB  1.46 ± 0.31 c E 0.34 ± 0.34 bc E 5.92 ± 0.92 bc CDE 48.37 ± 3.47 bc A 

TO  3.54 ± 0.43 bc D 0.11 ± 0.11 c D 5.11 ± 0.54 bc CD 45.89 ± 2.73 bc A 
 F 16.1072* 11.3566* 23.7954* 105.5034* 
 d.f. 5, 18* 5, 18* 5, 19* 5, 17* 
 P < 0.0001* < 0.0001* < 0.0001* < 0.0001* 
 

 
    

  % Glu % Gly % His % Ile 
  mean ± s.e.m. mean ± s.e.m. mean ± s.e.m. mean ± s.e.m. 

BE  24.47 ± 2.15 a A 1.46 ± 0.16 ab EFG 0.42 ± 0.18 a FG 1.81 ± 0.41 b EFG 

CU  7.94 ± 1.64 b B 2.32 ± 0.49 a CDE 2.09 ± 0.71 a CDE 0.74 ± 0.37 b DE 

EG  9.64 ± 1.01 b B 1.04 ± 0.19 bc FG 0.29 ± 0.11 a G 5.92 ± 0.79 a BCDEF 

SP  14.48 ± 2.79 b B 0.22 ± 0.14 c C 0.16 ± 0.11 a C 0.14 ± 0.09 b C 

TB  9.29 ± 1.55 b CD 0.05 ± 0.05 c E 0.05 ± 0.05 a E 0.17 ± 0.17 b E 

TO  14.88 ± 2.37 b B 0.12 ± 0.12 c D 0.09 ± 0.09 a D 0.13 ± 0.13 b D 
 F 9.2902 18.4430* 2.5498* 12.4411* 
 d.f. 5, 42 5, 18*  5, 18* 5, 18* 
 P < 0.0001 < 0.0001* 0.0633* < 0.0001* 

            
 

    

 

 

 

 

C
h
ap

ter 5
 

5
6

  



 

 

Table 11: Continued 

           
   Amino acid 

  

  

  

  

  

  

  

  % Leu % Phe % Pro % Ser 

Host plant  mean ± s.e.m. mean ± s.e.m. mean ± s.e.m. mean ± s.e.m. 

BE  3.38 ± 0.77 b DEFG 1.80 ± 0.88 b EFG 7.58 ± 2.47 bc BCD 9.47 ± 1.06 a BC 

CU  0.67 ± 0.44 c E 0.04 ± 0.04 b E 1.56 ± 0.21 c CDE 5.69 ± 0.98 ab BC 

EG  6.65 ± 0.93 a BCDE 10.09 ± 0.67 a B 2.79 ± 0.57 c CDEFG 7.62 ± 0.38 ab BC 

SP  0.33 ± 0.22 c C 0.51 ± 0.35 b C 15.87 ± 2.58 ab B 3.52 ± 1.75 b C 

TB  0.61 ± 0.61 c E 0.13 ± 0.13 b E 19.38 ± 3.54 a B 10.23 ± 0.90 a C 

TO  0.12 ± 0.12 c D 0.42 ± 0.42 b D 12.74 ± 0.70 ab B 10.58 ± 1.75 a BC 
 F 11.4207* 39.4768* 50.2937* 4.0268* 
 d.f. 5, 18* 5, 16* 5, 17* 5, 18* 
 P 0.0001* < 0.0001* < 0.0001* 0.0122* 
 

 
    

  % Thr % Trp % Tyr % Val 
  mean ± s.e.m. mean ± s.e.m. mean ± s.e.m. mean ± s.e.m. 

BE  4.49 ± 0.19 a CDEFG 0.04 ± 0.03 a G 0.73 ± 0.14 b FG 5.68 ± 0.90 ab BCDEF 

CU  1.88 ± 0.49 ab CDE 0.05 ± 0.05 a E 0.89 ± 0.27 b DE 0.49 ± 0.49 c E 

EG  0.14 ± 0.11 b G 0.44 ± 0.14 a G 2.48 ± 0.37 a DEFG 7.00 ± 0.67 a BCD 

SP  4.72 ± 1.70 a C 0.06 ± 0.05 a C 0.25 ± 0.16 b C 1.70 ± 1.12 bc C 

TB  2.81 ± 0.67 ab DE 0.05 ± 0.05 a E 0.36 ± 0.23 b E 0.77 ± 0.77 c E 

TO  4.53 ± 1.01 a D 0.12 ± 0.12 a D 0.18 ± 0.18 b D 1.44 ± 1.44 c D 
 F 71.9166* 1.3833* 7.0214* 8.4873 
 d.f. 5, 17* 5, 18* 5, 19* 5, 42 
 P < 0.0001* 0.2747* 0.0007* < 0.0001 

            
 

    

One-way ANOVA followed by Tukey-Kramer HSD test at α = 0.05; for comparisons within amino acids F, d.f., and P values are given in the columns, for 

comparisons within host plants: BE = bean, F = 70.9346*, P = < 0.0001*, d.f. = 15, 40*; CU = cucumber, F = 46.3037*, P = < 0.0001*, d.f. = 15, 41*; 

EG = eggplant, F = 57.1051*, P = < 0.0001*, d.f. = 15, 41*; SP = sweet pepper, F = 11.4761*, P = < 0.0001*, d.f. = 15, 41*; TB = tobacco, F = 25.4387*,  

P = < 0.0001*, d.f. = 15, 41*; TO = tomato, F = 45.7755*, P = < 0.0001*, d.f. = 15, 42*, n = 8 for each variant 

Means with s.e.m. in columns (minuscule letters) and lines (capital letters) followed by the same index letter are not statistically different 

* F, d.f., and P values were corrected by Welch-ANOVA test because of variance inhomogeneity after Levene’s test 
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Table 12: Free amino acid contents grouped according to their physiological and chemical properties in phloem exudates of different host plants 
 

  
 

      
  Amino acid group 

  % essential % aromatic % heterocyclic % aliphatic 

Host plant  mean ± s.e.m. mean ± s.e.m. mean ± s.e.m. mean ± s.e.m. 

BE  19.39 ± 2.46 b BC 2.57 ± 0.92 b E 7.58 ± 2.47 bc DE 20.77 ± 2.85 a BC 

CU  7.54 ± 1.71 c BCD 0.98 ± 0.30 b E 1.56 ± 0.21 c DE 10.71 ± 0.81 b B 

EG  31.86 ± 3.11 a B 13.02 ± 0.89 a CD 2.79 ± 0.57 c E 18.29 ± 1.90 ab C 

SP  7.68 ± 2.61 c BC 0.81 ± 0.45 b C 15.87 ± 2.58 ab B 18.04 ± 2.58 ab B 

TB  4.94 ± 1.49 c DE 0.54 ± 0.26 b E 19.38 ± 3.54 a BC 21.67 ± 3.27 a B 

TO  6.96 ± 2.50 c CD 0.71 ± 0.71 b D 12.74 ± 0.70 ab BC 16.65 ± 0.80 ab B 
 F 19.6609 32.3896* 50.2937* 2.9863 
 d.f. 5, 42 5, 18* 5, 17* 5, 45 
 P < 0.0001 < 0.0001* < 0.0001* 0.0215 
      

  % amidated % hydroxylated % basic % acidic 

  mean ± s.e.m. mean ± s.e.m. mean ± s.e.m. mean ± s.e.m. 

BE  30.37 ± 2.00 c A 13.96 ± 1.16 ab CD 2.18 ± 2.0.22 ab E 24.47 ± 2.15 a AB 

CU  68.63 ± 2.60 a A 7.57 ± 0.96 b BCD 3.69 ± 0.89 a CDE 7.94 ± 1.64 b BC 

EG  42.68 ± 3.98 bc A 7.76 ± 0.41 b DE 1.61 ± 0.40 bc E 9.64 ± 1.01 b CDE 

SP  56.51 ± 5.53 ab A 8.24 ± 2.70 ab BC 0.22 ± 0.19 c C 14.48 ± 2.79 b B 

TB  54.29 ± 3.59 ab A 13.04 ± 1.00 ab BCD 0.40 ± 0.34 bc E 9.29 ± 1.55 b CDE 

TO  51.00 ± 43.84 b A 15.11 ± 2.61 a BC 0.20 ± 0.20 c D 14.88 ± 2.37 b BC 
 F 26.1278* 8.9703* 13.7773* 9.2902 

 d.f. 5, 19* 5, 18* 5, 19* 5, 42 

 P < 0.0001* 0.0002* < 0.0001* < 0.0001 

        
    One-way ANOVA followed by Tukey-Kramer HSD test at α = 0.05; for comparisons within amino acid groups F, d.f., and P values are given in the columns; 

for comparisons within host plants: BE = bean, F = 57.3424*, P = < 0.0001*, d.f. = 7, 21*; CU = cucumber, F = 102.8988*, P = < 0.0001*, d.f. = 7, 22*;  

EG = eggplant, F = 53.5138*, P = < 0.0001*, d.f. = 7, 23*; SP = sweet pepper, F = 27.5766*, P = < 0.0001*, d.f. = 7, 21*; TB = tobacco, F = 56.8026*,  

P = < 0.0001*, d.f. = 7, 22*; TO = tomato, F = 117.8637*, P = < 0.0001*, d.f. = 7, 22*, n = 8 for each variant 

Means with s.e.m. in columns (minuscule letters) and lines (capital letters) followed by the same index letter are not statistically different 

* F, d.f., and P values were corrected by Welch-ANOVA test because of variance inhomogeneity after Levene’s test 
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Figure 12: Biplot of relationships between relative proportions of amino acids in the phloem sap of 

host plants with varying attractiveness towards T. vaporariorum 

(EG = eggplant, TB = tobacco, TO = tomato, CU = cucumber, BE = bean, SP = sweet pepper) 

Principal components analysis of general patterns of trait covariation 

 

 

Table 13: Results of stepwise multiple regressions correlating relative proportions of single amino 

acids in the phloem sap of different host plant species with the mean preference index of these host 

plants towards T. vaporariorum  

      

Dependent variable Estimator t d.f. F P 

% Glu -0.006136291 -2.14 1, 43 4.5670 0.0383 

% Phe 0.0233520225 3.88 1, 43 15.0640 0.0004 

% Ser 0.0239485327 4.69 1, 43 22.0010 < 0.0001 

% Thr -0.023027387 -2.72 1, 43 7.4040 0.0094 
      
      

Stepwise multiple regression model, r2 = 0.61, F = 16.5773, P = < 0.0001, d.f. = 4, 43 

PI = 0.4163962814 + (-0.006136291Glu) + (0.0233520225Phe) + (0.0239485327Ser) + (-0.023027387Thr) 

AICc = -40.357, RMSE = 0.1451  
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Figure 13: Biplot of relationships between relative proportions of amino acid groups in the phloem 

sap of host plants with varying attractiveness towards T. vaporariorum 

(EG = eggplant, TB = tobacco, TO = tomato, CU = cucumber, BE = bean, SP = sweet pepper) 

Principal components analysis of general patterns of trait covariation 

 

 

Table 14: Results of stepwise multiple regressions correlating relative proportions of single amino 

acid groups in the phloem sap of different host plant species with the mean preference index of these 

host plants towards T. vaporariorum  

            
Dependent variable Estimator t d.f. F P 

a = % Essential -0.011058134 -2.20 1, 44 4.5670 0.0334 

b = % Aromatic 0.0502404368 4.27 1, 44 15.0640 0.0001 

c = % Hydroxylated 
c 

0.012423429 2.53 1, 44 22.0010 0.0149 

            
            Stepwise multiple regression model, r2 = 0.44, F = 11.7333, P = < 0.0001, d.f. = 3, 44  

PI = 0.3195285654 + (-0.011058134a) + 0.0502404368b + 0.012423429c  

AICc = -26.4079, RMSE = 0.1704 
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Figure 14: Preference indices (mean ± s.e.m.) of T. vaporariorum adults choosing between sucrose 

solutions with added single amino acids against a control sucrose solution  

One-way ANOVA followed by Tukey-Kramer HSD test at α = 0.05, means with s.e.m. in a column 

followed by the same index letter are not statistically different (n = 8 for each amino acid; 

F = 17.4465*; d.f.* = 19, 50; P* = < 0.0001; F, d.f., and P values were corrected by Welch-ANOVA 

test because of variance inhomogeneity after Levene’s test) 

Wilcoxon signed-rank test for each amino acid (H0 = 0.5 two-sided, α = 0.05, n = 8 for each 

combination, *P < 0.05, **P < 0.01, ***P < 0.001) 

 

 

5.4 Discussion 

Overall, amino acid composition could explain the observed host preferences to a large extend 

and, therefore, proved to be an important factor in the host selection of T. vaporariorum. According 

to the principal component analysis of the general patterns of trait covariation, scatter plots indicate 

clustering of individual host plant variables, suggesting the presence of effects that determine the 

host plant attractiveness of T. vaporariorum.  
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Especially glutamine but also asparagine and glutamic acid dominated the amino acid spectra 

of the phloem sap samples collected from various vegetable crops in this study, which has already 

been demonstrated for Avena sativa (L.), Cucumis melo (L.), Hordeum vulgare (L.), Lycopersicon 

esculentum (L.) and Solanum tuberosum (L.) (WEIBULL ET AL. 1990; MITCHELL ET AL. 1992; VALLE 

ET AL. 1998; KARLEY ET AL. 2002; DINANT ET AL. 2010). Since these amino acids are involved in 

central functions in the plant metabolism, they are constantly synthesized in high concentrations 

(NOVAK 2008). Within the plant, aspartic acid and glutamic acid are converted by the uptake of a 

second amino group into glutamine and asparagine (HELDT ET AL. 2011). The resulting amidated 

amino acids act as storage and transport molecules of nitrogen and can be translocated by both the 

xylem as well as the phloem of the plant (MOHR AND SCHOPFER 1992; NOVAK 2008). Although 

amidated amino acids had the highest proportion among all amino acid groups in the phloem sap of 

vegetable crops in this study, they did not explain host plant preferences of T. vaporariorum neither 

by principal component analysis of general patterns of trait covariation nor by stepwise multiple 

regressions. However, the multiple regressions of individual amino acids revealed that high levels of 

glutamic acid in the phloem sap of plants negatively affected host plant attractiveness. Glutamic acid 

was also found to reduce whitefly performance, as survival and oviposition of B. tabaci, feeding on 

artificial diets containing high concentrations of glutamic acid, were reduced (THOMPSON 2006; 

THOMPSON 2011). Furthermore, glutamic acid concentrations in the phloem sap of resistant barley 

cultivars were higher compared to susceptible varieties towards the bird cherry-oat aphid 

Rhopalosiphum padi (L.) (WEIBULL 1988).  

According to the principal component analysis of general patterns of trait covariation and the 

multiple regressions of single amino acids, host plant preference of T. vaporariorum was clearly 

determined by arginine, histidine, isoleucine, leucine, phenylalanine, threonine, tryptophan, and 

valine proportions in the phloem sap of host plants. These are essential amino acids in insect nutrition 

(DADD 1973; BRODBECK AND STRONG 1987). While phenylalanine had a positive effect, threonine 

was found to negatively affect host plant preference in multiple regressions of single amino acids. 

On sucrose solution with added phenylalanine, B. tabaci had a better survival (THOMPSON 2006; 

THOMPSON 2011). However, no negative effects of threonine associated with whitefly performance 

could be determined. Additionally, essential amino acids were found to negatively affect the host 

preference of T. vaporariorum in multiple regressions. The importance of essential and non-essential 

amino acids for insect feeding and growth has been reported by several researchers for decades 

(DADD AND KRIEGER 1968; VAN EMDEN AND BASHFORD 1971; BRODBECK AND STRONG 1987; 

DOUGLAS 1993; DOUGLAS 2003; DOUGLAS 2006). On diets containing predominantly non-essential 

amino acids, B. tabaci and several aphid species were found to perform well (DOUGLAS 2003; 

THOMPSON 2011). While it was shown for the aphid-bacteria symbiosis that only a few amino acids 

are essential, for aphids deprived of their symbionts, the ten essential amino acids are indeed required 
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for aphid growth (MITTLER 1971). When the black bean aphid Aphis fabae (Scop.) fed on artificial 

diets with deleted amino acids histidine, methionine, threonine, and valine, aphid performance was 

depressed (WILKINSON AND DOUGLAS 2003). Deletion of one of the other essential amino acids had 

no negative effect, and interclonal variation in the dietary requirements of aphids occurred. 

Endosymbionts are thus able to compensate for nutritional imbalances by synthesizing essential 

amino acids and making them available to their host (BAUMANN ET AL. 2006). However, the 

prevalence and diversity of endosymbionts differ in whiteflies depending on the whitefly species and 

its host association (MARUBAYASHI ET AL. 2014; GÓMEZ-DÍAZ ET AL. 2019). Besides the primary 

endosymbiont Candidatus Portiera aleyrodidarum, which is present in all whitefly species, whiteflies 

also harbour a variable number of secondary endosymbionts of several genera including 

Arsenophonus, Cardinium, Fritchea, Hamiltonella, Hemipteriphilus, Rickettsia and Wolbachia 

(ANDREASON ET AL. 2020). Furthermore, in endosymbioses with multiple partners, the synthesis of 

essential amino acids is often divided between the different endosymbionts, meaning that each 

endosymbiont mediates the biosynthesis of a subset of essential amino acids or a subset of the 

reactions in the biosynthetic pathway of a single essential amino acid (DOUGLAS 2016). 

Consequently, the effect of individual essential amino acids on host plant selection of whiteflies 

might strongly depend on their association with endosymbionts.  

Aromatic amino acids in the phloem sap of plants strongly correlated with the host preference 

of adult T. vaporariorum according to the principal component analysis of general patterns of trait 

covariation. In the stepwise multiple regressions, aromatic amino acids were shown to have a positive 

effect on host plant attractiveness. Phenylalanine, tryptophan and tyrosine have already been related 

to the nutritional requirements of insects associated with cuticle synthesis (DENNEL 1958a; DENNELL 

1958b; BRUNET 1980; BERNAYS AND WOODHEAD 1984). Damage by larvae of the western flower 

thrips Frankliniella occidentalis (Perg.) towards four vegetable crops was also shown to positively 

correlate with high aromatic amino acid concentrations in plant leaves (MOLLEMA AND COLE 1996). 

In this study, aromatic amino acids could be preferred by adult T. vaporariorum to meet nutritional 

requirements necessary for whitefly development. However, the requirements of aromatic amino 

acids due to cuticle formation should be obsolete in adult whiteflies. Accordingly, diets with high 

contents of phenylalanine were preferred by nymphs of the large-headed grasshopper Phoetaliotes 

nebrascensis (Thomas) but not by adults (BEHMER AND JOERN 1993). Nevertheless, high levels of 

aromatic amino acids in the phloem sap of a potential host plant might still represent a positive cue 

in the host selection of whiteflies for the provision of the best nutritional prerequisites for the 

offspring development.  

In addition, serine was positively correlated with host plant preference of T. vaporariorum 

according to multiple regression analysis of single amino acids found in the phloem of host plants. 

Serine is formed as an intermediate product of the photorespiration in plants and represents a 
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considerable proportion of the amino acids supplied by the mesophyll cells (HELDT ET AL. 2011; 

ROS ET AL. 2014). Therefore, serine is usually present in relatively high proportions in the phloem 

sap of plants, which could be confirmed for the vegetable crops of this study. Serine also positively 

affected survival and oviposition of B. tabaci feeding on sucrose solutions with added amino acids 

(THOMPSON 2006; THOMPSON 2011). Additionally, the importance of serine in the growth of the 

green peach aphid Myzus persicae (Sulzer) was reported by DADD AND KRIEGER (1968). Serine and 

threonine together represent the group of hydroxylated amino acids that positively affected host plant 

preference of T. vaporariorum in stepwise multiple regressions. Hydroxylated amino acids were 

found to consistently evoke strong arrestant responses in larvae of the southwestern corn borer 

Diatraea grandiosella (Dyar) (HEDIN ET AL. 1993).  

Results of the feeding preference experiments proved that T. vaporariorum could differentiate 

between individual amino acids by their gustatory properties. Along with other nutrient compounds, 

some amino acids serve as phagostimulants for different insect species including orthopterans, 

hemipterans, coleopterans and lepidopterans (MITTLER 1967; SRIVASTAVA ET AL. 1983; BERNAYS 

AND CHAPMAN 1994). In this study, lysine was the only amino acid enhancing the acceptance of 

sucrose media. In contrast, alanine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, 

leucine, threonine, tryptophan, tyrosine and valine deterred adult T. vaporariorum. Asparagine, 

aspartic acid, cysteine, glutamic acid and tyrosine deterred the pea aphid Acyrthosiphon pisum 

(Harris) feeding on artificial diets (SRIVASTAVA ET AL. 1983). Glutamic acid also decreased the 

acceptability of sucrose towards M. persicae (MITTLER 1967). Overall, the effects of single amino 

acids only partially agreed between the results of the stepwise multiple regressions and the feeding 

preference experiments. This could be explained as phloem sap contains numerous compounds, 

including sugars and proteins, which additionally determine its gustatory properties (KEHR 2006; 

ANSTEAD ET AL. 2013). Nonprotein amino acids such as γ-aminobutyric acid (GABA) are present in 

the phloem as well and may act as feeding stimulants or deterrents in aphids (Srivastava et al. 1983; 

Montllor 1991; DIXON 1998). Although studies indicate similar effects of GABA in whiteflies, 

relative proportions of GABA in the phloem sap were not determined in this study (BLACKMER AND 

BYRNE 1999).   On the other hand, consideration should be given to the concentration of amino acids, 

as different concentrations of amino acids have varying effects on whitefly performance (THOMPSON 

2006; THOMPSON 2011). A typical example is the ratio of carbohydrates to amino acids, which was 

discussed to be a factor influencing the feeding behaviour of whiteflies (BLACKMER AND BYRNE 

1999). Therefore, the resultant effects of individual amino acids in natural hosts might be, as opposed 

to those in vitro, rather associated with the presence and the concentration of other plant compounds. 

Moreover, the results indicate that a dominant presence of amino acids with strong gustatory effects 

might influence phloem sap uptake, thus contributing to host plant resistance towards T. 

vaporariorum. 
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6 General discussion 

6.1 Host plant adaption affects host plant selection strategies in whiteflies 

As whiteflies are a group of insects with a distinct inherent ecological potency, numerous crops 

and ornamental plants are part of their host plant range (DOWELL AND STEINBERG 1979; BYRNE AND 

BELLOWS 1991; BÄHRMANN 2002). Two whitefly species, T. vaporariorum and B. tabaci, are also 

characterized by an extreme degree of polyphagy and have caused severe damage to important crops 

by significant pest outbreaks in the past (MOHAN ET AL. 1988; LOURENÇÃO ET AL. 2008; NARANJO 

ET AL. 2010; NASRUDDIN AND MOUND 2016). In contrast, A. proletella has mainly adapted to 

cruciferous crops as their main host plants (BÄHRMANN 2002). Both, climate change and global 

trade, contribute to the spread of whiteflies and the phytopathogenic viruses they transmit, 

aggravating the global crop health status (WARD AND MASTERS 2007; CANTO ET AL. 2009). 

Furthermore, rising ambient temperatures and carbon dioxide concentrations in the atmosphere may 

lead to an alteration of life cycles, reproductive patterns, as well as trophic interactions between 

plants, whiteflies and their antagonists (BEZEMER AND JONES 1998; CURNUTTE ET AL. 2014; 

AREGBESOLA ET AL. 2019).  

To understand the host plant range of herbivorous species, the degree of specialization—which 

is usually classified in monophagous, oligophagous and polyphagous according to the number of 

plant families that are infested—is of considerable importance (SCHOONHOVEN ET AL. 2005). Host 

plant specialization in insects represents the rule. With only less than 10 % of all herbivorous insect 

species feeding within a host plant range consisting of three plant families by maximum, specialists 

(monophagous and oligophagous species) and generalists (polyphagous species) are both awarded 

several advantages (BERNAYS AND GRAHAM 1988; BERNAYS AND CHAPMAN 1994; SCHOONHOVEN 

ET AL. 2005; OVČARENKO ET AL. 2016). It has been suggested that each host feeding strategy 

involves specific adaptions and that specialisation in particular is a “trade-off” (DETHIER 1954). For 

example, specialization allows an herbivorous pest insect to adapt in extreme to one plant species, 

while it is not or less adapted to others (BERNAYS AND GRAHAM 1988). Although the high percentage 

of specialist herbivores indicates that specialists have been more successful in the past, climate and 

habitat change are predicted to endanger especially specialist insect species with narrow diet widths 

(BERNAYS AND GRAHAM 1988; WARREN ET AL. 2001; KOTIAHO ET AL. 2005; MATTILA ET AL. 

2011).  

Generalists are characterized by a large food spectrum and have a higher probability to become 

pests, as they can adapt to different habitat types and cropping systems. Therefore, polyphagous 

herbivores which can choose from various plant species are more likely to find a suitable host. In 

contrast, oligo- or even monophagous herbivores are restricted to a few plant species (WARD AND 
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MASTERS 2007). Often, generalists are also euryoecious and can easily adapt to global change 

(BYRNE AND BELLOWS 1991; KENNEDY AND STORER 2000; VÁZQUEZ 2006; CLAVEL ET AL. 2011). 

Considering climate and habitat changes, generalists are more likely to persist by expanding their 

geographic range and crowding out specialists (MCKINNEY AND LOCKWOOD 1999; ANDREW AND 

HUGHES 2004; WARD AND MASTERS 2007).  

As generalist species have greater availability of resources and can use food mixtures from 

different plant species, they can benefit from the option to improve their food quality by increasing 

their nutrient balance or by avoidance of allelochemicals (BERNAYS ET AL. 1994; BERNAYS AND 

MINKENBERG 1997). However, generalists must have the flexibility to react to changing 

environmental influences such as increasing temperatures to ensure resource acquisition (BERNAYS 

AND WCISLO 1994). Since generalists are affected by the chemistry and morphology of their host 

plants, they reveal different performance on different host species (VIA 1990). In addition, generalist 

insects may be less capable in dealing with reduced nitrogen conditions and increased concentrations 

of phenolic compounds, as it is predicted to occur under CO2 enrichment (BEZEMER AND JONES 

1998; WARD AND MASTERS 2007). Specialists, on the other hand, can cope better with variations in 

nutrient balance within their host plant and make faster decisions in the host plant selection process 

(WARD AND MASTERS 2007; OVČARENKO ET AL. 2016). As a result, specialists are more effective 

in host finding, recognition and discrimination (BERNAYS AND WCISLO 1994; BERNAYS 2001). 

Moreover, it was often hypothesized that specialists can tolerate or even resist host plant defence by 

specific circumvention mechanisms (ALI AND AGRAWAL 2012). The general assumption is, 

therefore, that the strong evolutionary adaptation of a specialist allows better exploitation of its host, 

whereas a generalist can find access to a broader host spectrum to take advantage of diversity. 

Another aspect affecting the host selection strategy in herbivorous insects is their previous host 

experience. Preconditioning by long-term experience on one host plant species can lead to changes 

in host preference as well as pest performance, as was previously shown for the extreme generalist 

species B. tabaci and T. vaporariorum (PAPAJ AND PROKOPY 1989; BYRNE AND BELLOWS 1991; 

BERNAYS AND MINKENBERG 1997; LEI ET AL. 1998; LEE ET AL. 2010; HU ET AL. 2011; OVČARENKO 

ET AL. 2016). While conducting experiments on host selection and performance in this study, 

different host plants were used in the experiments than the ones used for maintenance breeding. In 

this way, preconditioning effects could be excluded.  

Herbivorous insects generally differ greatly in their adaption to host plants amongst insect 

orders, families and species, which is expressed, inter alia, in a species-specific process of host plant 

selection (BERNAYS AND CHAPMAN 1994; SCHOONHOVEN ET AL. 2005). Ultimately, this applies to 

whiteflies as well, but only limited research was carried out to compare the host selection behaviour 

of several whitefly species to understand the underlying mechanisms in whitefly-host adaptions. To 



Chapter 6 

67 

this date, studies mainly concentrated on comparisons between different biotypes of B. tabaci (JIANG 

ET AL. 1999; JIAO ET AL. 2014; MILENOVIC ET AL. 2019). In this study, the host selection strategy of 

whiteflies was found to differ between species and host plant preference was based on multiple plant 

characteristics. It is assumed that these differences in strategy are the result of an evolutionary 

adaptation between whiteflies and their host ranges, which have formed individually according to 

the ecological niche they have occupied. The more specialized species, A. proletella, has mainly 

adapted to cruciferous plants and makes efficient decisions within the host selection process by 

evaluating epicuticular leaf waxes on the leaf surface of potential host plants. In contrast, the extreme 

generalists B. tabaci and T. vaporariorum can use a broad host plant spectrum. A key factor 

mediating decisions on host choice preferences in these species is the nutritive quality of the phloem 

sap. Therefore, the generalist approach is more laborious and time-consuming since numerous 

probing attempts are necessary before the phloem is successfully reached (LEI ET AL. 1998). The 

“neural hypothesis of diet width” suggests that decision making is more efficient when based on 

simple or exaggerated cues instead of making choices among numerous complex sensory inputs 

(BERNAYS 1998). Therefore, a specialist can recognize its hosts by more specific plant factors, 

whereas a generalist species would need to be capable of processing much more information to 

recognize its host plant species in a similar way (BERNAYS AND FUNK 1999; BERNAYS 2001). 

Additionally, long decision times may involve an ecological risk, which is significantly reduced in 

specialists (BERNAYS 1998). Since the nervous system of insects is simple, generalists need to focus 

on more general characteristics—such as nutritional cues—to be able to select between potential 

hosts. According to this “neural-constraints hypothesis”, the observed differences in the host 

selection behaviour between three whitefly species in the study can be explained (DETHIER 1954; 

KENNEDY AND BOOTH 1954; BERNAYS AND FUNK 1999; BERNAYS 2001).  

Another general approach, the “mother-knows-best-principle” also known as the “preference-

performance hypothesis”, proposes that female herbivorous insects prefer to oviposit on host plants 

that provide the best prerequisites for their offspring (LEVINS AND MACARTHUR 1969; JAENIKE 

1978; THOMPSON 1988; MAYHEW 1997). In whiteflies, feeding and oviposition are performed by 

females on the same leaves and are even done simultaneously (VAN LENTEREN AND NOLDUS 1990; 

BÄHRMANN 2002). Therefore, host plant selection is particularly important, and the “mother-knows-

best-principle” can be applied to whiteflies as well. According to a study of GRIPENBERG ET AL. 

(2010), host choice was affected by diet width and, therefore, the preference for “high-quality hosts” 

was stronger in oligophagous insects than in polyphagous insects. In other studies, distinct host plant 

preferences were found for whiteflies and demonstrated that host attractiveness is often linked with 

host suitability (VERSCHOOR-VAN DER POEL AND VAN LENTEREN 1978; VAN LENTEREN AND 

NOLDUS 1990; ASKOUL ET AL. 2019). As a result, host preference of A. proletella might correlate 

stronger with its performance compared to B. tabaci and T. vaporariorum. 
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6.2 Epicuticular leaf waxes affecting host plant preference in whiteflies 

The external surface of leaf epidermal cells is coated by the multi-layered plant cuticle, which 

fulfils numerous functions crucial for plant life (KERSTIENS 1996; DOMÍNGUEZ ET AL. 2011). In 

chemical ecology, it is important to examine the interface between plants and their environment to 

gain a better understanding of the co-evolution between plants and herbivorous insects (MÜLLER 

AND RIEDERER 2005). At the aerial surface of the plant cuticle are the epicuticular surface waxes, 

which vary significantly in composition between plant species, genotype and plant parts (EGLINTON 

AND HAMILTON 1967; EIGENBRODE AND ESPELIE 1995; BARTHLOTT ET AL. 1998; DHANYALAKSHMI 

ET AL. 2019). Additionally, the composition of epicuticular waxes differs between leaf age and leaf 

side, and is influenced by environmental conditions as well as agricultural chemicals (BAKER 1974; 

HOLLOWAY ET AL. 1977; EIGENBRODE AND SHELTON 1992; BERNAYS AND CHAPMAN 1994; 

KANNO AND HARRIS 2000a; KANNO AND HARRIS 2000b; MÜLLER AND HILKER 2001; KOCH ET AL. 

2006). As epicuticular surface waxes often represent the first physical contact between an 

herbivorous insect and its host plant, numerous interactions between plants and insects are known to 

be mediated by epicuticular waxes (EIGENBRODE AND ESPELIE 1995; KERSTIENS 1996).  

Certain properties of epicuticular surface waxes can affect the behaviour of herbivorous insects 

positively or negatively. In many cases, the absence or a reduced quantity of epicuticular waxes led 

either to an increased susceptibility of the host plant or to a reduced infestation density of aphids, 

Eurydema spp., Phyllotreta spp., Artogeia rapae (L.), Mamestra brassicae (L.) and Tetranychus 

ludeni (Zacher) (WAY AND MURDIE 1965; TSUMUKI ET AL. 1989; STONER 1990; BODNARYK 1992b; 

BOHINC ET AL. 2014; CASTRO ET AL. 2019). In addition, epicuticular waxes may affect oviposition. 

While most insect herbivores lay more eggs on plants without epicuticular waxes, others show 

decreased oviposition rates (PROKOPY ET AL. 1983; UEMATSU AND SAKANOSHITA 1989; STONER 

1990; SILVA ET AL. 2017; RID ET AL. 2018).  

As has already been shown in scanning electron microscopy, the epicuticular wax layer often 

consists of epicuticular wax crystals exhibiting great micromorphological diversity such as films, 

layers and crusts, granules, platelets, plates, rodlets, threads, tubules and transitional crystalloid 

forms (BARTHLOTT ET AL. 1998). The varying chemical composition of epicuticular lipids affects 

the appearance and, consequently, determine the visual properties of these wax crystals (PROKOPY 

ET AL. 1983; HOLMES AND KEILLER 2002; OLASCOAGA ET AL. 2014). In addition to the yellow and 

green portions of the reflected light spectrum, heavy wax blooms such as those from Brassica 

cultivars increase reflectivity in other wavelengths, and let the plants appear whiter (PROKOPY ET AL. 

1983). A changed epicuticular microstructure or variations in epicuticular wax chemical composition 

may, therefore, lead to a changed spectral reflectance and can affect insect behaviour on different 

behavioural steps of host plant acquisition (EIGENBRODE AND ESPELIE 1995).  
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Once an herbivorous insect has direct contact with a potential host, epicuticular surface waxes 

might determine host susceptibility as they interfere with insect attachment (EIGENBRODE AND 

ESPELIE 1995). Coleoptera and larva of the lacewing Chrysoperla carnea (Steph.) showed mobility 

on plant surfaces with epicuticular wax crystals due to reduction of the contact area, epicuticular wax 

dissolving, and/or fluid absorption caused by these epicuticular waxes (STORK 1980; BODNARYK 

1992a; BODNARYK 1992b; EIGENBRODE ET AL. 1996; GORB AND GORB 2002; GORB AND GORB 

2006; GORB ET AL. 2008; GORB AND GORB 2017; GORB ET AL. 2017; VOIGT ET AL. 2018).  

Besides the physical structure of epicuticular surface waxes, the chemical composition mediates 

host selection of herbivorous insects as well (EIGENBRODE AND ESPELIE 1995). Plant cuticular waxes 

are often characteristic blends of aliphatic components including n-alkanes, wax esters, aldehydes, 

ketones, secondary alcohols, β-diketones, fatty alcohols, and triterpenoids (BERNAYS AND CHAPMAN 

1994; YEATS AND ROSE 2013). Usually, each compound class consisting of a homologous series of 

isomers is dominated by a main component (MÜLLER AND RIEDERER 2005). In experiments with 

neonate diamondback moth Plutella xylostella (L.) individuals, cabbage leaves with a reduced 

amount of epicuticular waxes were less attractive than leaves with high amounts of leaf waxes 

(EIGENBRODE ET AL. 1991; EIGENBRODE AND PILLAI 1998). The same non-preference behaviour 

occurred using only leaf wax extracts on glass surfaces. This led to the assumption that epicuticular 

wax composition was responsible for the observed resistance, as epicuticular lipids were assumed to 

have a different crystalline microstructure after evaporation of the organic solvent used for 

extraction. However, recent studies could prove that epicuticular waxes can recrystallise from 

chloroform extracts on artificial surfaces under in vitro conditions with a similar micromorphology 

as waxes on the intact leaves (MEUSEL ET AL. 1999; MEUSEL ET AL. 2000; KOCH AND ENSIKAT 2008; 

GANEVA ET AL. 2015). In other studies, high levels of n-alkanes, fatty alcohols and triterpenoids 

were correlated with insect resistance in several cultivated plants (EIGENBRODE AND ESPELIE 1995). 

Accordingly, movement of fall armyworm larvae Spodoptera frugiperda (J.E. Smith) was triggered 

on corn leaves with leaf surface waxes containing high proportions of n-alkanes (YANG ET AL. 1993b; 

YANG ET AL. 1993c). The fatty alcohol docosanol (C22) in surface waxes of tobacco leaves was 

associated with resistance against the tobacco budworm Heliothis virescens (Fab.), whereas 

triacontanol (C30) in epicuticular waxes of alfalfa could be correlated with resistance against the 

spotted alfalfa aphid Therioaphis maculata (Buck.) (JOHNSON AND SEVERSON 1984; BERGMAN ET 

AL. 1991). High levels of α- and β-amyrin triterpenols were attributed to confer resistance of azalea 

against the azalea lace bug Stephanitis pyrioides (Scott) as well as of raspberry against the raspberry 

aphid Amphorophora idaei (Börner) (ROBERTSON ET AL. 1991; BALSDON ET AL. 1995). However, 

n-alkanes, fatty acids and triterpenols were also found to be present in higher levels in epicuticular 

waxes of susceptible hosts to the several Lepidoptera species and thrips (YANG ET AL. 1993a; 

UDAYAGIRI AND MASON 1997; LI AND ISHIKAWA 2006; KARMAKAR ET AL. 2016; RID ET AL. 2018).  
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The effects of epicuticular surface lipids on insect behaviour are quite diverse. Some 

components of surface waxes developed as stimulants or deterrents during co-evolution and are, 

therefore, used by insects as cues for host plant recognition (BENNETT AND WALLSGROVE 1994; 

EIGENBRODE AND ESPELIE 1995; KERSTIENS 1996). Insect feeding was stimulated or deterred by n-

alkanes, fatty alcohols, fatty acids, and triterpenoids of Orthoptera, Lepidoptera, Coleoptera, as well 

as the green peach aphid Myzus persicae (Sulzer) (BERNAYS ET AL. 1976; MORI 1982; MCKIBBEN 

ET AL. 1985; MALONEY ET AL. 1988; BRAKER AND CHAZDON 1993; EIGENBRODE AND ESPELIE 

1995). Furthermore, n-alkanes, fatty acids, and the triterpenoid oleanolic acid were found to stimulate 

oviposition in Lepidoptera (UDAYAGIRI AND MASON 1997; LI AND ISHIKAWA 2006; RID ET AL. 

2018). Moreover, epicuticular lipid compositions may have toxic effects on herbivorous insects, as 

growth of Lepidoptera was better on diets lacking epicuticular waxes and mortality of the grain aphid 

Sitobion avenae (Fab.) was higher on diets with epicuticular surface waxes (YANG ET AL. 1991; 

YANG ET AL. 1992; WÓJCICKA 2016). Additionally, life parameters of Lepidoptera as well as the 

greenbug aphid Schizaphis graminum (Rond.) were found to be negatively affected by triterpenoids 

(SHANKARANARAYANA ET AL. 1980; VARANDA ET AL. 1992). Nevertheless, evidence on toxic 

effects is inconclusive, as postingestive activities were not clearly distinguished from actual 

deterrence (EIGENBRODE AND ESPELIE 1995).  

Aside from the various components of epicuticular surface waxes, a range of other polar 

components including amino acids, nonprotein amino acids, sugars, sucrose and glucose esters, 

sesquiterpenes, diterpenes, phenolics, phenolic glycosides and glucosinolates located at the plant 

surface can be involved in host recognition or herbivore deterrence (EIGENBRODE AND ESPELIE 1995; 

KERSTIENS 1996). Some of these components are exuded by glandular trichomes or are internal 

components that reach the leaf surface by diffusion across the cuticle (DERRIDJ ET AL. 1996; MALUF 

ET AL. 2001; MÜLLER AND RIEDERER 2005). On one side, epicuticular surface lipids may influence 

the perception of polar components by herbivorous insects and, on the other side, epicuticular waxes 

and polar components may together compose a chemical signature used by herbivores for host plant 

recognition (EIGENBRODE AND ESPELIE 1995). Therefore, n-propyl disulfide was more effective as 

an oviposition stimulant towards the onion fly Delia antiqua (Meigen) on model plants in 

combination with paraffin than without (HARRIS ET AL. 1987). In another example, sinigrin in 

combination with paraffin or an n-alkane mixture increased oviposition by P. xylostella even more, 

than sinigrin alone (SPENCER 1996).  
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Additionally, indirect effects of epicuticular surface waxes can affect herbivory performance, 

as the accessibility of certain components beneath or within surface lipids may vary depending on 

the amount of wax (EIGENBRODE AND ESPELIE 1995). For example, plants with reduced epicuticular 

surface waxes are more susceptible to water stress, which leads to increased concentrations of 

deterrent compounds that in turn reduce feeding by the cabbage aphid Brevicoryne brassicae (L.) 

(COLE AND RIGGALL 1992).  

In this study, epicuticular leaf waxes proved to play a central role in the host selection process 

of A. proletella by several experiments. Epicuticular leaf waxes of cruciferous plants acted as 

arrestant stimulant during searching phase and feeding stimulant during contact-testing phase that 

promote stylet penetration and phloem accession. As feeding and oviposition are simultaneously 

performed in whiteflies (VAN LENTEREN AND NOLDUS 1990; BÄHRMANN 2002), it is assumed that 

epicuticular waxes must also function as oviposition stimulant. Furthermore, KHAN ET AL. (2011) 

showed that viruliferous whiteflies could successfully transfer the Cotton leaf curl virus to 

Gossypium hirsutum (L.) as well as to a wax mutant, while resistant G. arboreum (L.) with 50 % 

more wax compared to test plants could not be infected. It was concluded that the epicuticular leaf 

wax of cotton may act as a physical barrier towards whiteflies and provide hindrance in the transfer 

of the virus. Although it was not tested, epicuticular leaf waxes must have affected whitefly 

infestation and feeding patterns as well. Moreover, the chemical composition of epicuticular leaf 

waxes seems to determine qualitative differences between surface lipids of different host plants 

which result in varying leaf wax attractiveness towards A. proletella. Consequently, it is 

hypothesized that A. proletella pre-evaluates host plant quality only by physical contact with 

epicuticular leaf waxes alone by sensing of epicuticular waxes with their chemo- and 

mechanosensory sensillae located at the apex of the whitefly labium (WALKER AND GORDH 1989). 

LAMBERT ET AL. (1995) analysed epicuticular lipid compositions of several soybean genotypes and 

found that low levels of the triterpenoid lupeol tended to have higher populations of Bemisia 

argentifolii (Genn.) and Trialeurodes abutilonea (Hald.). The different shapes of epicuticular wax 

crystals visualized by SEM in this study imply that chemical compositions differ between the leaf 

surface waxes of host cultivars used in the study. Besides various components of epicuticular surface 

waxes, a range of other primary and secondary plant metabolites present at the leaf surface could be 

responsible for mediating host selection behaviour of A. proletella.  

Especially glucosinolates are a prominent group of secondary plant compounds in Brassicaceae 

and are known to stimulate feeding and oviposition in cabbage pests (STÄDLER 1992; BENNETT AND 

WALLSGROVE 1994; HOPKINS ET AL. 1997; MARAZZI ET AL. 2004). As already mentioned, SPENCER 

(1996) found that sinigrin increased oviposition by the diamondback moth P. xylostella even more 

in combination with paraffin or an n-alkane mixture than sinigrin alone. Nevertheless, it is 

controversially discussed whether glucosinolates may or may not be present on the leaf surface due 
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to unfavourable physicochemical properties (GRIFFITHS ET AL. 2001; MÜLLER AND RIEDERER 2005; 

REIFENRATH ET AL. 2005). Several investigators used chemical solvents to prepare leaf wax extracts 

from Brassicaceae in which glucosinolates could be detected (HOPKINS ET AL. 1997; GRIFFITHS ET 

AL. 2001). However, methods involving leaf surface washings with solvents may lead to extraction 

of compounds from epidermal or mesophyll as well, whereas, on the contrary, no traces of 

glucosinolates could be found when mechanical wax removal was applied (REIFENRATH ET AL. 2005; 

STÄDLER AND REIFENRATH 2009). Nevertheless, physical properties of epicuticular wax crystals 

might also affect whiteflies not only by their structure during contact with the plant but also by their 

visual characteristics on a distance during the host plant searching phase.  

 

6.3 Phloem amino acids affecting host plant preference in whiteflies 

The principal function of the phloem sieve elements in plants is the transport of nutrients and 

organic metabolites over long distances from the regions of acquisition or production to the 

physiological sinks, i.e. the sites of usage or storage (SJOLUND 1997). Therefore, phloem sap is 

loaded with compounds like sugars, hormones, amino acids, proteins, sugar alcohols, and other 

organic compounds in varying proportions to fulfil the physiological needs of dependent cells in the 

different plant tissues (ANSTEAD ET AL. 2013). Phloem sap contains no or very low concentrations 

of secondary compounds and is generally considered free from toxins and deterrents (DOUGLAS 

2006). Consequently, the phloem sieve elements of a plant are targeted by herbivorous insects that 

utilize the phloem sap as their nutrient source. Hemipterans, especially members of the 

Sternorrhyncha such as whiteflies and aphids, even exclusively rely on phloem sap as their food 

source (DOLLING 1991). For ingestion, whiteflies penetrate the sieve elements with their stylets, and 

as a result of the high hydrostatic pressure, phloem sap exudes out into their stylets to be consumed 

(WALKER ET AL. 2010).  

A plant that is successfully used as a host by an herbivorous insect, should provide a holistic 

diet to support insect growth, reproduction and development (BECK 1972; DHILLON AND KUMAR 

2017). The utilized carbon and nitrogen sources present in the phloem sap are sugars and free amino 

acids, respectively. As nitrogen takes a central role in the metabolic processes, cellular structure and 

genetic coding, the nitrogen content of plants is vitally important to herbivorous insects (MATTSON 

1980). Therefore, amino acids are of special importance within the ecological context (SCRIBER 

1984; DOUGLAS 2003). However, nitrogen is a limiting factor and phloem sap composition is 

unbalanced (MATTSON 1980; DOUGLAS 2006). Phloem feeders must face two nutritional barriers: 

the nitrogen barrier and the sugar barrier. The nitrogen barrier results from the ratio of essential and 

nonessential amino acids, which is 1:4–1:20 favouring nonessential amino acids, whereas the sugar 

barrier is due to the low nitrogen concentration in the phloem sap in contrast to the high ratio of 
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sugars (DIXON 1998; SANDSTROM AND MORAN 1999; DOUGLAS 2003; DOUGLAS 2006; WALKER 

ET AL. 2010). Nevertheless, whiteflies have overcome these obstacles by several adaptions to their 

ecological niche. First, all whiteflies harbour obligatory nutritional symbionts, primarily 

“Candidatus Portiera aleyrodidarum”, which are endosymbiotic and transmitted vertically from 

mother to offspring (SZKLARZEWICZ AND MOSKAL 2001; THAO AND BAUMANN 2004; SKIDMORE 

AND HANSEN 2017). These microorganisms synthesize and provide their hosts with certain essential 

amino acids allowing them to survive on poor diets (HOUK AND GRIFFITHS 1980; CAMPBELL 1989; 

DOUGLAS AND PROSSER 1992; THAO AND BAUMANN 2004; SKIDMORE AND HANSEN 2017). The 

high concentration of the sugar in the phloem sap often exceeds 1 M sugar and thus leads to an 

osmotic pressure that is 2–5 times higher than the osmotic pressure of the insect body (DOUGLAS 

2006). As a result, whiteflies excrete excess dietary sugars through a filter chamber, which would be 

otherwise lethal to them (BYRNE AND BELLOWS 1991; DOUGLAS 2006; WALKER ET AL. 2010). The 

filter chamber is a modified part of their gut that directs excess water and/or sugar directly to the 

hindgut, where it is quickly excreted (WALKER ET AL. 2010). Additionally, aphids can compensate 

for lower levels of amino acids by increasing their feeding rates, which may also be a feature in 

whiteflies (PROSSER ET AL. 1992).  

Another nitrogen limiting factor and difficulty posed to phloem feeders is that phloem sap 

composition varies depending on the seasonal and diurnal cycle, the developmental stage and the 

nutritional status of the plant, as well as abiotic factors (GEIGER AND SERVAITES 1994; PEUKE ET 

AL. 1994; BOGGIO ET AL. 2000; CORBESIER ET AL. 2001; KARLEY ET AL. 2002; DOUGLAS 2006). 

Apart from low average quality, potential host plants can also represent a challenge for insect 

herbivores due to their variable nutrient content (WETZEL ET AL. 2016). Whiteflies likely respond to 

long-term changes in phloem composition by altered behaviours such as varying the feeding rate 

according to nutrient content and the resulting osmotic pressure as well as withdrawing their stylets 

to find a different sieve element. Furthermore, post-ingestive responses including changes of the gut 

sucrase activity and transporter functions in sugar and amino acid assimilation are plausible but have 

not been considered yet (DOUGLAS 2006).  

Dietary nitrogen concentration is a major determinant of population increase in phloem feeding 

insects (SCRIBER 1984; FEBVAY ET AL. 1988; DOUGLAS 2003). Insect performance is strongly 

influenced by the different effects caused by individual amino acids ingested and, therefore, amino 

acid compositions affect host plant suitability (AUCLAIR 1963; ROCK AND KING 1967; DADD AND 

KRIEGER 1968; BRODBECK AND STRONG 1987; WILKINSON AND DOUGLAS 2003; CHIOZZA ET AL. 

2010; DHILLON AND KUMAR 2017). In general, the ten amino acids considered essential are arginine, 

histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan and valine, as 

they are not synthesized by insects (DADD 1973). Nutrients are considered essential when their 

deletion from the diet would prevent further insect growth, development and/or reproduction 
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(THOMPSON AND SIMPSON 2009). Consequently, essential amino acids must either be taken up 

through the diet or provided by symbionts. Beyond the need for protein synthesis, essential amino 

acids fulfil additional physiological functions. For instance, arginine is a precursor for the muscle 

phosphagen phosphoarginine (THOMPSON AND SIMPSON 2009). Although tyrosine and cysteine are 

not essential, they have special significance, as they are synthesized from the essential amino acids 

phenylalanine and methionine respectively (DADD 1973; SANDSTROM AND MORAN 1999). 

Phenylalanine and tyrosine are both important to produce phenolic and quinone metabolites, which 

are key components for the cross-linking of proteins during sclerotization (BEHMER 2008; 

THOMPSON AND SIMPSON 2009; ANDERSEN 2010). Other amino acids are generally considered non-

essential. Nevertheless, non-essential amino acids are still required to a certain extent for normal 

growth and development (THOMPSON AND SIMPSON 2009). The reason for this is that the synthesis 

of non-essential amino acids as well as the subsequent elimination of remnant compounds are 

metabolically expensive (BEHMER 2008).  

Furthermore, insects can taste amino acids, which was shown for orthopterans, hemipterans, 

coleopterans and lepidopterans (MITTLER 1967; SRIVASTAVA ET AL. 1983; BERNAYS AND 

CHAPMAN 1994). In choice tests with aphids feeding on sucrose media, alanine, asparagine, 

isoleucine, leucine, methionine, phenylalanine, tryptophan, and y-amino butyric acid (GABA) were 

found to have phagostimulatory effects. On the other hand, arginine, asparagine, aspartic acid, 

cysteine, cystine, histidine, glutamic acid, glycine, proline, serine, and tyrosine were found to be 

deterrent (MITTLER 1967; SRIVASTAVA ET AL. 1983). Thus, phagostimulatory and antifeedant effects 

derived from amino acids and other dietary components determine the attractiveness and 

susceptibility of a host plant. This could also be highlighted in this study with T. vaporariorum. On 

the one hand, this study could correlate the amino acid composition in the phloem sap with host 

susceptibility of several host plants towards T. vaporariorum. On the other hand, it was proven that 

gustatory properties of single amino acids determine the acceptance of sucrose media. However, the 

actual concentration of amino acids in the phloem sap of host plants remains unknown due to the 

phloem sampling methodology and gustatory properties of single amino acids were measured for one 

concentration level only. The amino acid concentration is highly relevant for the attractiveness of the 

host plant, as exceptionally high concentrations of single amino acids were found to be unusable and 

even result in toxicity (BRODBECK ET AL. 1990). Moreover, the gustatory properties of the phloem 

are not only defined by amino acids, as phloem sap contains numerous compounds, including sugars 

and proteins (KEHR 2006; ANSTEAD ET AL. 2013). Consequently, the resultant effects of individual 

amino acids in vitro were different to those observed in natural hosts in this study. 
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6.4 Outlook 

This thesis may provide the basis for new approaches used in breeding whitefly resistant crops. 

Based on the finding of this thesis, whitefly resistant cultivars with a dual mode of resistance that 

combine an epidermal/mesophyll factor as well as a phloem factor would be particularly effective in 

integrated pest management strategies to control whiteflies. In this context, crop varieties with altered 

leaf epicuticular wax compositions could contribute to host plant resistance. Targeted breeding of 

such crop cultivars with modified epicuticular surface waxes is becoming increasingly realistic, since 

there has been significant progress in the last 25 years in the identification and characterization of 

the genes involved in epicuticular wax synthesis (AARTS ET AL. 1995; LEMIEUX 1996; SUH ET AL. 

2005; LEE AND SUH 2013; FICH ET AL. 2016). Another conceivable approach could be the application 

of artificial wax components on the leaf surfaces of host plants to deter whiteflies. Furthermore, the 

dominant presence of phloem compounds exerting strong inhibitory effects on whitefly feeding, such 

as amino acids, could additionally determine host susceptibility towards whiteflies. However, further 

research is necessary, and the following questions derived from this thesis should be answered in 

future: 

(i) which compounds of the epicuticular surface wax blend of cruciferous leaves are 

responsible for the observed antixenotic effects on A. proletella;  

(ii) are leaf epicuticular waxes also mediating host plant selection in other whitefly species;  

(iii) which amino acids determine the feeding preference of whiteflies in the phloem sap of 

host plants; 

(iv) which compounds of the phloem sap additionally affect host plant choice in whiteflies 

and to what extend; 

(v) what are further mediating factors of host plant resistance in whiteflies. 
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Summary 

Whiteflies are a species-rich insect family that is characterized by high adaptability to a variety 

of ecological conditions. Consequently, they are among the most important pests causing severe 

damage to numerous cultivated and ornamental plants worldwide. With their piercing-sucking 

mouthparts, whiteflies penetrate the leaf tissue of their hosts and feed on the phloem sap of the plants. 

The present dissertation comprises four studies and contributes to the knowledge of the host plant 

selection process by whiteflies. 

In the first study, host preferences were determined in dual choice tests for Aleyrodes proletella 

(L.), Bemisia tabaci (Genn.), and Trialeurodes vaporariorum (Westw.) on several host plants. 

Subsequent calculation of preference indices was used to obtain host rankings serving as references 

in the following chapters. Host attractiveness towards A. proletella could be ranked in decreasing 

order by oilseed rape, kale, savoy cabbage, blue turnip cabbage, cauliflower, white turnip cabbage 

and white cabbage. Host preferences to both B. tabaci and T. vaporariorum were found in decreasing 

order by eggplant, tobacco, tomato, cucumber, bean and sweet pepper. On the one hand, this study 

extends the knowledge on the food spectrum of these economically important pests; on the other 

hand, the results highlight the host adaptation of whiteflies.  

The second study elucidated potential sources of host plant resistance against A. proletella, B. 

tabaci, and T. vaporariorum by recording their probing and feeding behaviour on two host plants 

each using the electrical penetration graph (EPG) method. All whitefly species used prolonged 

probes and pathway phases on more attractive hosts. Additionally, probes of A. proletella were 

interrupted earlier and lacked phloem phases on host plant leaves with mechanically removed surface 

wax. The phloem phases of B. tabaci and T. vaporariorum were shorter on less preferred host plants. 

It is concluded that whiteflies decide upon host plant acceptance by evaluation of multiple plant 

factors located in epidermal and/or mesophyll tissues of leaves as well as in the phloem sap of plants. 

Moreover, epicuticular leaf waxes are a key factor in the host selection process of A. proletella. It is 

hypothesized that constituents of the leaf surface wax act as stimulants promoting leaf penetration 

and phloem accession. The findings of this study shed light on the whitefly-host adaptation.  

The goal of the third study was to identify the role of epicuticular leaf waxes of several Brassica 

cultivars in the host selection process of A. proletella. For this purpose, dual choice tests were carried 

out on both waxy and dewaxed plant leaves as well as on Parafilm® treated with different leaf wax 

extracts. Also, life-history traits were monitored on waxy and dewaxed leaves, and the feeding 

activity of A. proletella was recorded on Parafilm® with and without leaf wax extracts. Scanning 

electron microscopy (SEM) imaging was used to visualize epicuticular leaf waxes on the plant 

surface. While waxy leaves were preferred, leaf wax extracts triggered whitefly settlement. In 
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contrast, life-history parameters were impaired on dewaxed leaves. On Parafilm® treated with leaf 

wax extracts of preferred hosts, feeding was furthermore enhanced. As the wax crystal morphology 

varied on natural leaf surfaces, it is suggested that epicuticular leaf waxes of several host plant 

cultivars differ in their chemical composition. Consequently, A. proletella evaluates the suitability 

of host plants, especially by characteristics of the epicuticular leaf waxes. Finally, it was proved that 

leaf surface waxes of host plants promote feeding and act as phagostimulants. Although the wax 

compounds mediating host plant selection remain unknown, these findings offer breeding potential 

for resistant crop cultivars.  

In the fourth study, the influence of free phloem amino acids on the host plant selection of T. 

vaporariorum was investigated. Via liquid chromatography-mass spectrometry (LC-MS), the amino 

acid profiles in the phloem sap of six vegetable crops varying in their host plant attractiveness were 

analysed. Subsequently, stepwise multiple regressions of the relative amino acid compositions and 

the pre-determined host plant preferences were performed. To verify the contribution of single amino 

acids on host choice, dual choice tests on sucrose media with and without added single amino acids 

were carried out. According to multiple regressions, glutamic acid, threonine, phenylalanine and 

serine were the most relevant amino acids to explain host plant attractiveness. Furthermore, essential, 

aromatic, and hydroxylated amino acid groups affected host plant selection most. On the other hand, 

dual choice tests proved that lysine, asparagine, threonine, valine, glutamine, leucine, tryptophan, 

glutamic acid, tyrosine, aspartic acid, cysteine, and alanine exerted gustatory stimuli determining 

feeding preferences on sucrose media. However, the effects of individual amino acids in the phloem 

sap only partially agreed with the effects measured in vitro. Besides non-phloem plant factors 

mediating host choice behaviour of T. vaporariorum on natural hosts, the presence and concentration 

of other phloem compounds might have additionally influenced host attractiveness. Nevertheless, 

single amino acids play an active role in phagostimulation, whereas some amino acids exert strong 

inhibitory effects. This indicates that the dominant presence of such amino acids might reduce 

phloem sap uptake, thus contributing to host plant resistance towards T. vaporariorum. 

Overall, this research compared the host selection process of three whitefly species to identify 

their underlying mechanisms. It is hypothesized that the observed host selection strategies are the 

result of evolutionary adaptations between whiteflies and their host plants. Depending on the 

occupied ecological niche, species-specific host plant ranges of varying complexity were formed. 

Accordingly, the host selection process of the more specialised species A. proletella is particularly 

efficient by consideration of characteristic leaf surface wax stimuli. In contrast, host selection of the 

extreme generalists B. tabaci and T. vaporariorum is regulated by simple gustatory stimuli in order 

to take advantage of the host diversity they are offered. The findings of this research provide the 

basis for new approaches to optimizing breeding programs for whitefly resistant crops. 
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Zusammenfassung 

Weiße Fliegen sind eine artenreiche Insektenfamilie, die sich durch eine hohe 

Anpassungsfähigkeit an eine Vielzahl von ökologischen Bedingungen auszeichnet. Infolgedessen 

zählen sie zu den bedeutendsten Schädlingen, die weltweit erhebliche Schäden an zahlreichen 

Kultur- und Zierpflanzen verursachen. Mit ihren stechend-saugenden Mundwerkzeugen dringen 

Weiße Fliegen in das Blattgewebe ihrer Wirte ein und ernähren sich vom Phloemsaft der Pflanzen. 

Die vorliegende Dissertation umfasst vier Studien und gibt Aufschluss über den Auswahlprozess von 

Wirtspflanzen durch Weiße Fliegen. 

In der ersten Studie wurden in Dual-Choice-Tests die Wirtspräferenzen von Aleyrodes proletella 

(L.), Bemisia tabaci (Genn.) und Trialeurodes vaporariorum (Westw.) für mehrere Wirtspflanzen 

bestimmt. Im Anschluss wurden über die Berechnung von Präferenzindizes Wirts-Rangfolgen 

erstellt, die dann in den folgenden Kapiteln als Referenz herangezogen wurden. Die Wirtsattraktivität 

gegenüber A. proletella nahm über Raps, Grünkohl, Wirsing, blauer Kohlrabi, Blumenkohl, weißer 

Kohlrabi hin zu Weißkohl ab. Die Wirtspräferenzen von B. tabaci und T. vaporariorum nahmen in 

der Reihenfolge Aubergine, Tabak, Tomate, Gurke, Bohne und Paprika ab. Einerseits erweitert diese 

Studie den Kenntnisstand hinsichtlich des Nahrungsspektrums dieser wirtschaftlich bedeutenden 

Schädlinge, andererseits unterstreichen die Ergebnisse die Wirtsanpassung der Weißen Fliege.  

Die zweite Studie beleuchtete anhand der Aufzeichnung des Probe- und 

Nahrungsaufnahmeverhaltens von A. proletella, B. tabaci und T. vaporariorum an je zwei 

Wirtspflanzen potenzielle Quellen der Wirtspflanzenresistenz mittels der electrical penetration 

graph (EPG)-Methode. Alle Arten nutzten längere Probestiche und Wegphasen innerhalb des 

Blattgewebes auf attraktiveren Wirten. Des Weiteren waren die Probestiche von A. proletella 

vorzeitig unterbrochen und wiesen fehlende Phloem-Phasen auf Wirtspflanzenblättern mit 

mechanisch entferntem Oberflächenwachs auf. Die Phloem-Phasen von B. tabaci und T. 

vaporariorum waren auf weniger bevorzugten Wirtspflanzen verkürzt. Dies lässt darauf schließen, 

dass Weiße Fliegen anhand der Bewertung mehrerer Pflanzenfaktoren, die sich sowohl in den 

epidermalen und/oder mesophyllischen Gewebsschichten der Blätter als auch im Phloemsaft der 

Pflanzen befinden, über die Akzeptanz einer Wirtspflanze entscheiden. Darüber hinaus stellen 

epikutikuläre Blattwachse einen Schlüsselfaktor im Wirtsselektionsprozess von A. proletella dar. 

Daraus lässt sich die Hypothese ableiten, dass Bestandteile des Blattoberflächenwachses als 

Stimulanzien wirken, die die Blattpenetration und das Erreichen des Phloems fördern. Die 

Ergebnisse dieser Studie beleuchten die Anpassung von Weißen Fliegen an ihre jeweiligen 

Wirtspflanzen. 
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Das Ziel der dritten Studie war es, die Rolle epikutikulärer Blattwachse mehrerer Brassica-

Sorten im Wirtsselektionsprozess von A. proletella zu identifizieren. Zu diesem Zweck wurden Dual-

Choice-Tests an bewachsten und entwachsten Pflanzenblättern sowie mit Parafilm®, der mit 

verschiedenen Blattwachsextrakten behandelt wurde, durchgeführt. Außerdem wurden 

lebensgeschichtliche Parameter auf bewachsten und entwachsten Blättern ermittelt und die 

Nahrungsaufnahmeaktivität von A. proletella auf Parafilm® mit und ohne Blattwachsextrakten 

erfasst. Die Rasterelektronenmikroskopie (REM) wurde zur Visualisierung epikutikulärer 

Blattwachse auf der Pflanzenoberfläche eingesetzt. Während bewachste Blätter bevorzugt wurden, 

lösten Blattwachsextrakte das Siedlungsverhalten aus. Im Gegensatz dazu waren die 

lebensgeschichtlichen Parameter auf entwachsten Blättern beeinträchtigt. Auf Parafilm®, der mit 

Blattwachsextrakten bevorzugter Wirte behandelt wurde, war zudem die Nahrungsaufnahme erhöht. 

Da sich die Morphologie der Wachskristalle auf natürlichen Blattoberflächen unterschied, ist zu 

vermuten, dass sich epikutikuläre Blattwachse verschiedener Wirtspflanzensorten in ihrer 

chemischen Zusammensetzung unterscheiden. Folglich bewertet A. proletella die Eignung von 

Wirtspflanzen insbesondere anhand der Beschaffenheit der epikutikulären Blattwachse. Schließlich 

wurde nachgewiesen, dass Blattoberflächenwachse der Wirtspflanzen die Nahrungsaufnahme 

fördern und als Phagostimulans wirken. Obwohl die Wachsverbindungen, die die Selektion von 

Wirtspflanzen bestimmen, unbekannt bleiben, bieten diese Erkenntnisse Potenzial für die Züchtung 

resistenter Kultursorten. 

In der vierten Studie wurde der Einfluss von den im Phloemsaft befindlichen freien 

Aminosäuren auf die Wirtspflanzenselektion von T. vaporariorum untersucht. Mittels 

Flüssigchromatographie mit Massenspektrometrie-Kopplung (LC-MS) wurden die 

Aminosäureprofile im Phloemsaft von sechs Gemüsekulturen analysiert, die sich hinsichtlich ihrer 

Wirtspflanzenattraktivität unterschieden. Anschließend wurden schrittweise multiple Regressionen 

unter Einbezug der relativen Aminosäure-Zusammensetzungen und den zuvor bestimmten 

Wirtspräferenzen durchgeführt. Um den Beitrag einzelner Aminosäuren in Bezug auf die Wirtswahl 

zu verifizieren wurden Dual-Choice-Tests auf Saccharosemedien mit und ohne Zusatz einzelner 

Aminosäuren durchgeführt. Gemäß den multiplen Regressionen waren Glutaminsäure, Threonin, 

Phenylalanin und Serin die wesentlichsten Aminosäuren, welche die Attraktivität der Wirtspflanzen 

erklärten. Darüber hinaus beeinflussten essenzielle, aromatische und hydroxylierte 

Aminosäuregruppen die Wirtspflanzenselektion am meisten. Dem gegenüber konnten Dual-Choice-

Tests nachweisen, dass Lysin, Asparagin, Threonin, Valin, Glutamin, Leucin, Tryptophan, 

Glutaminsäure, Tyrosin, Asparaginsäure, Cystein und Alanin gustatorische Reize ausübten, die die 

Nahrungspräferenzen auf Saccharosemedien bestimmten. Die Wirkungen einzelner Aminosäuren im 

Phloemsaft stimmten jedoch nur teilweise mit den in vitro gemessenen Wirkungen überein. Neben 

nicht im Phloem befindlichen Pflanzenfaktoren, die das Wirtswahlverhalten von T. vaporariorum 
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auf natürlichen Wirten bestimmen, könnte die Anwesenheit und Konzentration anderer 

Verbindungen im Phloem die Wirtsattraktivität zusätzlich beeinflusst haben. Dennoch spielen 

einzelne Aminosäuren eine aktive Rolle bei der Phagostimulation, während einige Aminosäuren 

starke hemmende Effekte ausübten. Dies deutet darauf hin, dass die dominante Anwesenheit solcher 

Aminosäuren die Aufnahme des Phloemsaft reduziert und damit zur Resistenz von Wirtspflanzen 

gegenüber T. vaporariorum beiträgt. 

Insgesamt wurde im Rahmen dieser Forschungsarbeit der Auswahlprozess dreier Arten Weißer 

Fliegen miteinander verglichen, um die ihnen zugrunde liegenden Mechanismen zu identifizieren. 

Es wird postuliert, dass die beobachteten Wirtsselektionsstrategien das Ergebnis von evolutionären 

Anpassungen zwischen Weißen Fliegen und ihren Wirtspflanzen sind. Entsprechend der jeweiligen 

besetzten ökologischen Nische bildeten sich artspezifische Wirtspflanzenspektren von 

unterschiedlicher Komplexität. Demzufolge gestaltet sich der Wirtsselektionsprozess der 

spezialisierteren Art A. proletella durch die Berücksichtigung charakteristischer Reize, welche von 

Blattoberflächenwachsen ausgehen, als besonders effizient. Im Gegensatz dazu wird das 

Wirtswahlverhalten der extremen Generalisten B. tabaci und T. vaporariorum von einfachen 

gustatorischen Reizen gesteuert, um die sich ihnen bietende Wirtsvielfalt auszunutzen. Die 

Ergebnisse dieser Forschung bilden die Grundlage neuer Ansatzpunkte für die Optimierung von 

Züchtungsprogrammen für Nutzpflanzen, die gegen Weiße Fliegen resistent sind. 
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