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Chapter 1 

General Introduction 

Maize (Zea mays L.) is traditionally used for human and animal consumption and since 

recent decades for diverse industrial purposes, and for bioenergy. It is grown 

worldwide on 159 million ha (FAOSTAT 2009) and thus, one of the most important 

crops besides wheat (Triticum aestivum L.) and rice (Oryza sativa L.). For this reason, 

also maize breeding is highly important and the modern era of maize breeding began 

already about 100 years ago with Shull´s experiments for hybrid breeding (Shull 

1909). From this time on, stunning breeding and research progress was made by 

implementation of several methodological and technological achievements as well as 

by the application of newly developed selection strategies. Out of all, the most 

important steps are the hybrid technology, the off-season nursery and the doubled 

haploid (DH) technology (Seitz 2004). The DH technology, which reduces 

dramatically the time necessary to obtain fully homozygous inbred lines (Prigge and 

Melchinger 2012), and which enables the generation of a huge number of inbred lines 

every year, is meanwhile worldwide routinely applied in maize breeding programs 

(Schmidt 2003; Seitz 2005; Chen et al. 2009). Typically, DH lines originate from 

distinct crosses between related or unrelated parents. In practical breeding programs, a 

parent is often crossed with several other parents in a connected design, which enables 

the evaluation of the influence of one parent in combination with several others, 

related or unrelated parents. On a chromosomal level, connected designs enable the 

evaluation of the contribution of similar or different linkage phases on chromosomal 

regions, which are contributed by the parents involved. 

 

Detection of quantitative trait loci (QTL)  

In natural populations, a remarkable diversity of phenotypic variation for morphology, 

physiology, and disease susceptibility is present due to a highly complex underlying 

genetic basis with multiple interacting loci (Mackay et al. 2009). Understanding the 
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relationship between DNA sequence variation and phenotypic variation for these 

complex traits can increase the power and speed for breeding of important agronomic 

traits. 

This is difficult because only few traits of agronomic interest are controlled by a single 

gene (monogenic) or few genes (oligogenic) (Falconer and Mackay 1996; Lynch and 

Walsh 1998). In contrast, most important agronomic traits like resistance to Gibberella 

ear rot (GER) or grain yield, both of very high importance in maize breeding, are 

controlled by tens to thousand quantitative trait loci (QTL). What makes it even more 

difficult is the fact, that each QTL has only a small to medium effect on the trait of 

interest (Mackay et al. 2009). 

The linkage between these QTL which affect the natural variation of the genetically 

and physiologically complex traits and polymorphic marker loci with Mendelian 

segregation has been known since the early twentieth century (Mackay et al. 2009). 

Since these days, researchers and breeders aim to identify and localize molecular 

markers linked to QTL which can finally be used in marker-assisted selection of 

superior lines (Dekkers and Hospital 2002).  

Nowadays, QTL detection with genome-wide association mapping in diversity panels 

and with linkage mapping in biparental populations are well established in genetic 

studies in plants. Especially for rare alleles, classical linkage mapping approaches offer 

high QTL detection power due to the balanced allele frequencies in segregating 

populations (Würschum 2012). Therefore, one focus of this thesis was the 

development and application of linkage mapping approaches with high-density linkage 

maps to DH lines of biparental populations to dissect the genetic basis of the complex 

trait grain yield (Stange et al. 2013a). 

 

Factors influencing QTL mapping  

Several factors affecting important parameters of QTL detection were discussed in the 

literature on the basis of experimental data as well as on the basis of simulation studies 

(e.g., Darvasi et al. 1993; Utz et al. 2000; Doerge 2002; Li et al. 2010). Thereby, the 

QTL detection method and factors related to the experimental design like population 

type, population size, and number of markers which influence power, resolution, 
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precision of QTL localization, and bias of QTL effect estimates, were important 

factors, that were considered.  

First QTL mapping experiments were performed with single-marker analysis (e.g., t-

test or ANOVA) indicating which markers are linked with the quantitative trait of 

interest and thus, pointing to a putative QTL (Doerge 2002). Afterwards, more 

sophisticated and statistically more powerful approaches, like interval mapping (IM) 

and the more precise and effective composite interval mapping (CIM) were developed 

and applied for QTL mapping (Jansen 1993; Jansen and Stam 1994). CIM relies on the 

order of markers and uses a multiple regression approach (Haley and Knott 1992) for 

detection of QTL positions and estimation of their effects. It is extensively used in 

diverse QTL mapping studies due to implementation in QTL mapping software like 

PlabMQTL (Utz 2012).  

From a practical point of view, the number of markers under limited population size is 

of special interest due to tremendously fast developments in genotyping technologies. 

Nowadays, the markers of choice are SNPs, polymorphic insertions or deletions, 

whereof a huge number was revealed by new developments in sequencing 

technologies. High-throughput platforms enable a routinely application of this new 

tool in sequencing (Yan et al. 2009). However, hitherto, most linkage mapping studies 

for diverse traits in maize were based on low-density linkage maps calculated with 

only few simple sequence repeat (SSR) markers (e.g., Ma et al. 2007; Guo et al. 2011; 

Peng et al. 2011; Martin et al. 2012). In these studies, QTL localization was rather 

imprecise due to the low marker density. Furthermore, the power of QTL detection 

was insufficient to detect QTL with small genetic effects or to separate closely linked 

QTL. In contrast, the 50k maize chip provides thousands of markers. However, until 

now, it was used mostly for genome-wide association mapping and genomic 

prediction, although it enables the calculation of high-density linkage maps. This raises 

the question, if high-density linkage maps offer potential to improve important QTL 

mapping parameters under limited population size. The influence of population size 

clearly indicated that the statistical power, QTL effect estimates, and precision of QTL 

localization benefit from larger populations (Darvasi et al. 1993; Beavis 1998; Vales et 

al. 2005). In contrast, possible advantages of high-density compared to low-density 

maps are still controversially discussed in the literature.  
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Genetic variation within a biparental population depends on the genetic similarity 

between the two parents. Low genetic similarity between the parents might result in 

large genetic variance and thus, several QTL might segregate. However, under 

practical considerations, the parents of different populations are related in most 

breeding programs and hence, show high genetic similarity (Bink et al. 2012). As a 

consequence, population size should be enlarged to enable sufficient genetic variation. 

However, population size cannot be arbitrarily enlarged due to increasing costs, e.g., 

for phenotyping of all lines. Thus, population size is limited and the exploitation of the 

available high-density SNP arrays for linkage mapping could be a means to gain 

improvements in QTL mapping. First advantages of high-density linkage maps in QTL 

mapping were reported in the literature for experimental studies in barley (Hori et al. 

2003), rice (Yu et al. 2011), and maize (Shi et al. 2011; Almeida et al. 2012), as well 

as for simulation studies (Li et al. 2010). In contrast, former simulation studies 

(Darvasi et al. 1993) and analytical approaches (Piepho 2000) indicated that QTL 

mapping does not profit from an increase in marker density beyond 10 cM. This raises 

the question if high-density linkage maps with a marker distance of 1 cM in 

polymorphic regions would be an overkill for QTL mapping, or if important QTL 

mapping parameters would benefit, and closely linked QTL could be detected 

separately with high-density maps (Stange et al. 2013b).  

 

Genetic analysis of complex traits by QTL mapping 

including epistasis   

It is well known that direct improvement of genetically complex traits by selection on 

it is difficult due to their moderate heritability, high sensitivity to environmental 

conditions, and highly polygenic nature (Holland 2007). However, these genetically 

complex and physiological multiplicative traits like grain yield (GY) can be 

decomposed into their underlying component traits. Therefore, an attractive alternative 

for the improvement of the complex trait can be the investigation of the underlying 

component traits, which have commonly higher heritabilities, are genetically less 

complex, and are correlated with the complex trait (Hallauer et al. 2010). Thus, a first 

promising step for the investigation of the genetic basis of complex traits would be the 
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application of high-density QTL mapping for the underlying component traits. QTL 

mapping for GY and its components was performed by several studies in maize 

(Stuber et al. 1992; Austin and Lee 1996; Ma et al. 2007; Guo et al. 2011). Although 

these studies mapped QTL for both, the complex and the component traits, they did not 

account for the multiplicative character of GY by adapting their QTL mapping 

approaches to the advantages which are obviously provided by the component traits. In 

contrast, Melchinger et al. (1994), elaborated theoretically the relationship between 

gene effects of a complex trait and its component traits. Obviously, this approach 

could also have the potential to improve QTL detection for complex traits.  

Epistasis refers to the interaction between a pair of loci in which the genotypic effect 

of one locus depends on the genotype of the second locus (Carlborg and Haley 2004). 

Thus, the genotype cannot be predicted by the simple sum of its single locus effects. 

Although it was reported in QTL mapping studies for maize that epistatic interactions 

are only of minor importance (Buckler et al. 2009), epistasis should not be ignored 

beforehand in QTL mapping. Owing to the high number of possible interactions 

between all detected QTL, epistasis could in sum, still be relevant. High power for 

detection of epistatic interactions could be gained if QTL mapping approaches 

consider single QTL of the component traits, which are precisely localized and 

estimated. Implication of component traits in tests for epistatic interactions could 

further give insights into the genetic architecture and interaction networks of complex 

traits and could answer, if meaningful interactions in the analyzed populations exist.   

This raises the questions, if mapping of component traits with a well saturated high-

density linkage map, could gain in power and resolution of QTL detection as well as in 

more precise localization of QTL than mapping the complex trait directly, and if the 

implementation of the component traits in the QTL mapping approach could unravel 

the genetic architecture. 

 

Genomic prediction 

The availability of high-throughput genotyping data in plants paved the way for the 

application of genomic prediction or selection (GS) in plant breeding (Lorenz et al. 

2011), which was originally developed and already successfully applied in animal 



General Introduction  6 

breeding (Meuwissen et al. 2001). In classical marker-assisted selection (MAS) (e.g., 

Dekkers and Hospital 2002), a subset of significant markers, linked to mostly large-

effect QTL, is used for selection of superior lines. In contrast, GS predicts breeding 

values of individual lines, e.g., in a biparental DH population, by incorporating 

information from all available markers simultaneously. Thus, biases by selection of 

markers are avoided and more variation caused by small-effect QTL is captured 

(Heffner et al. 2009). GS consists in the prediction of genotypic performance in a 

training population or test set (TS) on the basis of both, phenotypic and marker data, 

and in the prediction of genotypic performance in a validation set or population (VP) 

on the basis of only marker data (Meuwissen et al. 2001; Heffner et al. 2009). 

Subsequently, individual lines can be selected on the basis of their predicted 

performance without ever evaluating them in the field. Therefore, with the application 

of GS, the length of a breeding cycle can dramatically be reduced due to the shortfall 

of time and costs consumed by field tests (Lorenz et al. 2011).  

Usually, a practical breeding program consists of several related and unrelated small 

biparental populations. This raises the question for the successful implementation of 

GS in breeding programs, in particular, how the TS should be constructed from related 

and unrelated populations to predict individual lines from single populations. Several 

prediction schemes with changing compositions of the TS are possible which might 

influence the prediction accuracy ���, ��� of individual crosses. The latter is measured 

as the correlation ���, ���	between the true genotypic value (g) and its estimated value 

����	(Riedelsheimer et al. 2012b).   

For the prediction of the genotypic value of complex traits, classical linkage mapping 

approaches and newly developed approaches, based on component traits, can be 

directly compared by the calculation of the prediction accuracy (���, ���). Thus, the 

question can be answered if the component trait based approaches result in a 

meaningful gain in prediction of a complex trait. Additionally, the prediction on the 

basis of detected QTL and on the basis of GS can be compared by calculating 

prediction accuracies for both approaches. Thus, the question can be answered if GS 

outperforms the prediction based on QTL detected with classical linkage mapping. 
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Objectives  

The overall aim of my thesis was the construction of high-density linkage maps, the 

evaluation of their impact on important QTL mapping parameters, and their 

application in different QTL linkage mapping approaches with biparental populations 

of DH lines. In particular, the objectives were to 

 

(1a) investigate the effect of high-density versus low-density linkage maps in QTL       

mapping with experimental data and a simulation study on the power of QTL        

detection, the precision of QTL localization, and the bias of QTL effect estimates,  

 

(1b) analyze the resolution of closely linked QTL with varying linkage distances and 

different linkage phases,  

 

(2) map QTL for yield and yield components with high-density maps in four biparental 

populations of DH lines and elucidate networks of epistatic interactions, 

 

(3a) compare prediction accuracy of different QTL mapping approaches to predict the 

complex trait grain yield, i.e., compare direct prediction methods and prediction with 

the aim of component traits,  

 

(3b) investigate how the training set should be constructed from multiple related and 

unrelated biparental populations to predict progeny from individual crosses.  
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Abstract 

 

High-density genotyping is extensively exploited in genome-wide association mapping 

studies and genomic selection in maize. In contrast, linkage mapping studies were until 

recently mostly based on low-density genetic maps and theoretical results suggested 

this to be sufficient. This raises the question, if an increase in marker density would be 

an overkill for linkage mapping in biparental populations, or if important QTL 

mapping parameters would benefit from it. In this study, we addressed this question 

using experimental data and a simulation based on linkage maps with marker densities 

of 1, 2, and 5 cM. QTL mapping was performed for six diverse traits in a biparental 

population with 204 doubled haploid maize lines and in a simulation study with 

varying QTL effects and closely linked QTL for different population sizes. Our results 

showed that high-density maps neither improved the QTL detection power nor the 

predictive power for the proportion of explained genotypic variance. In contrast, the 

precision of QTL localization, the precision of effect estimates of detected QTL, 

especially for small and medium sized QTL, as well as the power to resolve closely 

linked QTL profited from an increase in marker density from 5 to 1 cM. In conclusion, 

the higher costs for high-density genotyping are compensated for by more precise 

estimates of parameters relevant for knowledge-based breeding, thus making an 

increase in marker density for linkage mapping attractive. 
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Abstract 

 

Grain yield (GY) is a genetically complex and physiologically multiplicative trait 

which can be decomposed into the components 100-kernel weight (HKW) and kernel 

number (KN). Genetic analysis of these less complex yield component traits may give 

insights into the genetic architecture and predictive ability of complex traits. Here, we 

investigated how incorporation of component traits and epistasis in QTL mapping 

approaches influences the accuracy of GY prediction. High-density genetic maps with 

7,000 to 10,000 polymorphic SNPs were constructed for four biparental populations. 

The populations comprised between 99 and 227 doubled haploid (DH) maize lines 

which were phenotyped in field trials in two environments. Heritability was highest for 

HKW (88 to 89%), intermediate for KN (72 to 80%), and lowest for GY (64 to 83%).  

Mapped QTL explained in total between 21 and 55% of the genotypic variance for 

GY, 22 to 67% for KN, and 24 to 75% for HKW. Support intervals of QTL were short, 

indicating that QTL were located with high precision. Co-located QTL with same 

parental origin of favorable alleles were detected between populations for the same 

traits and within populations for different traits. Using GY predictions based on the 

detected QTL, prediction accuracies (r) determined by cross validation ranged from 

0.18 to 0.52. Epistatic models did not outperform the corresponding additive models. 

In conclusion, models based on QTL positions of component traits support 

identification of favorable alleles for multiplicative traits and provide a basis to select 

superior inbred lines by marker-assisted breeding. 
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Abstract 

 

Intense structuring of plant breeding populations challenges the design of the training 

set (TS) in genomic selection (GS). An important open question is how the TS should 

be constructed from multiple related or unrelated small biparental families to predict 

progeny from individual crosses. Here, we used a set of five interconnected maize (Zea 

mays L.) populations of doubled-haploid (DH) lines derived from four parents to 

systematically investigate how the composition of the TS affects the prediction 

accuracy for lines from individual crosses. A total of 635 DH lines genotyped with 

16,741 polymorphic SNPs were evaluated for five traits including three kernel yield 

component traits and Gibberella ear rot severity. The populations showed a genomic 

similarity pattern, which reflects the crossing scheme with a clear separation of full 

sibs, half sibs, and unrelated groups. Prediction accuracies within full-sib families of 

DH lines followed closely theoretical expectations accounting for the influence of 

sample size and heritability of the trait. Prediction accuracies declined by 42% if full-

sib DH lines were replaced by half-sib DH lines, but statistically significantly better 

results could be achieved if half-sib DH lines were available from both instead of only 

one parent of the validation population. Once both parents of the validation population 

were represented in the TS, including more crosses with a constant TS size did not 

increase accuracies. Unrelated crosses showing opposite linkage phases with the 

validation population resulted in reduced or negative prediction accuracies, if used 

alone or in combination with related families, respectively. We suggest identifying and 

excluding such crosses from the TS. Moreover, the observed variability among 

populations and traits suggests that these uncertainties must be taken into account in 

models optimizing the allocation of resources in GS. 

 



 

 
 

Chapter 5 

General Discussion  

This thesis was based on five interconnected biparental crosses (Figure 1). Pop. 2, the 

largest population, was analyzed in combination with a simulation study by Stange et 

al. (2013b) to evaluate the potential of high-density genotyping for QTL mapping. 

Pop. 1 to Pop. 4 were investigated by Stange et al. (2013a) with the focus on QTL 

mapping of grain yield and yield components. Finally, all five populations were 

analyzed by Riedelsheimer et al. (2013) for genomic prediction. In the following, I will 

discuss the population design and genetic characteristics of the four parental lines, 

evaluate the effect of high-density genotyping on QTL mapping parameters, and show 

possible benefits of multi-population QTL mapping approaches. I will compare 

prediction accuracies calculated on the basis of genomic prediction with prediction 

accuracies calculated on the basis of QTL detected with linkage mapping. Finally I 

will discuss how variation in the recombination rate influences the QTL distribution. 

 

 

Figure 1 Crossing scheme to obtain the five populations (Pop.). Numbers (green 

boxes) between two parental lines (grey boxes) indicate the populations.   
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Population design and genetic characteristics of parental 

lines  

All parental inbred lines are from the flint heterotic pool and genetic similarities, 

measured as identity-by-state (SIBS) and genomic correlation (SGC), were higher among 

parents UH006, UH007, and UH009 compared with parent D152 (Riedelsheimer et al. 

2013). This structured pattern of relatedness between parents is similar to practical 

breeding programs, where parental lines are often related (Bink et al. 2012), and when 

unrelated, not in a population genetic sense. The former can be explained because the 

development of lines for hybrid breeding is mostly within a certain heterotic pool.  

 

In total, 699 DH lines of all five populations were genotyped with SSR markers 

(Martin et al. 2011) and SNP markers (Stange et al. 2013a). All markers were used 

after a quality check for DH lines and SNPs (Stange et al. 2013a) for calculation of 

high-density genetic linkage maps for Pop. 1 to Pop. 5, containing 8,383, 7,169, 

10,351, 8,562, and 10,372 markers, respectively. As expected by the relatively high 

genetic similarities between all parental lines, linkage maps of all populations showed 

several monomorphic regions (Figure 2). According to Stange et al. (2013b), these 

regions were arbitrarily defined as identical-by-descent (IBD) regions if they were 

larger than 20 cM. With this definition, approximately 9%, 27%, 7%, 10%, and 2% of 

the genome may be IBD from Pop. 1 to Pop. 5, respectively. The varying proportions 

of IBD regions of the populations are in agreement with the SIBS and SGC values 

between the respective population parents. Additionally, the lowest number of 

monomorphic bins was observed in Pop. 3 compared to Pop. 1, 2, and 4 (Stange et al. 

2013a), which is in agreement with a low proportion of IBD regions (7%) in Pop. 3. 

This indicates that in Pop. 3, a slightly higher level of genetic variation might be 

exploited for selection of superior lines compared to the other populations. The 

analysis of co-located QTL within Pop. 3 for different traits, as well as between 

populations for the same trait, showed different co-located QTL in Pop. 3 compared to 

the other populations (Stange et al. 2013a). This indicates that in Pop. 3, besides the 

expected higher level of genetic variation, variation for the analyzed traits exists also 

in deviating genomic regions. One of the parents of Pop. 3, namely D152, showed 

lower genetic similarity with the other parents. Including such a parent in a cross might 
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explain, why in Pop. 3 QTL were detected in different genomic regions compared to 

the other populations, where parent D152 was not included. Parent D152 was also 

included in Pop. 5, where deviating results compared to the other populations were 

observed (Riedelsheimer et al. 2013). Especially in Pop. 5, important QTL were 

present which was shown by the analysis of the genome partitioning of genetic 

variance (Riedelsheimer et al. 2013). This was explained by opposite linkage phases in 

Pop. 5 resulting also in negative prediction signals.   

In summary, genetic variance was observed in different genomic regions for the 

analyzed traits in populations where one parent shares slightly lower genetic similarity 

with the other parents, although all parents were from the same heterotic pool 

(Riedelsheimer et al. 2013; Stange et al. 2013a). Thus, knowing genetic patterns of 

population parents prior to the experiments, might be used to select and cross those 

parents in which a high level of new genetic variance can be exploited for detection of 

important genomic regions followed by selection of superior lines. 

 

QTL mapping with high-density maps  

High-density genotyping is nowadays routinely applied in maize breeding due to 

tremendously decreasing costs of high-throughput genotyping platforms. This results 

in a huge number of available markers which were used for construction of high-

density linkage maps as a basis for high-density QTL mapping (Stange et al. 2013a). 

To evaluate possible advantages of high-density maps compared to low-density maps 

in QTL mapping, Stange et al. (2013b) constructed linkage maps with three marker 

densities of 1, 2, and 5 cM. These were used for QTL mapping in the largest 

experimental population (Pop. 2) with 204 DH lines for diverse phenotypic traits as 

well as in a simulation study. The simulation study was generated on the basis of QTL 

mapping results obtained in the experimental population.  
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Figure 2 Mapped polymorphic markers with their genetic map positions in cM for 

chromosomes (Chr.) 1 to 10 based on doubled haploid lines of population 1 (Pop. 1) to 

Pop. 5. Regions, which are identical-by-descent (IBD; arbitrarily defined as 

monomorphic regions >20 cM) are indicated in light green. 
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Support interval (SI) length of detected QTL decreased with increasing marker density, 

indicating increasing precision of QTL localization (Stange et al. 2013b). Also Stange 

et al. (2013a) performed QTL mapping with a high-density map for grain yield and 

yield components. Across all detected QTL, the SI length was as narrow as observed 

by Stange et al. (2013b) with a marker density of 1 cM. Thus, both studies indicate that 

the precision of QTL localization is improved with high-density maps. However, 

across all detected QTL, two QTL detected for grain yield showed very wide SIs with 

a length of 40 and 58 cM, respectively (Stange et al. 2013a). Both intervals stretched 

over IBD regions, which explains the large difference compared to the average SI 

length across all detected QTL of only 12 cM (Figure 3) (Stange et al. 2013a).  

 

Figure 3 Mapped polymorphic markers with their genetic map positions in cM based 

on doubled haploid lines of population (Pop.) 1 and chromosome (Chr.) 2, and of 

population 2 and chromosome 3. Regions, which are identical-by-descent (IBD; 

arbitrarily defined as monomorphic regions >20 cM) are indicated in light green. QTL 

detected for grain yield are indicated as dark green triangles and their respective 

support intervals in cM are indicated as black horizontal bars.   

 

To evaluate the precision of QTL effect estimates, a simulation study was designed in 

a way to answer why only medium to large effect QTL were detected in the 

experimental population (Stange et al. 2013b). Thus, independent QTL with reference 

additive effects from 0.10 to 0.75 were simulated and the precision of their estimated 

genetic effects was measured as deviation between the reference genetic effect and the 

estimated genetic effect (Stange et al. 2013b). In addition to high precision of QTL 

localization as observed in both studies, also the relative distribution of effect sizes of 

detected QTL for each trait indicated that only QTL with medium to large effects were 

identified, but no QTL with small effects (Stange et al. 2013a, b). Thus, the design and 

the question of the simulation study were confirmed by the distribution of QTL effects 

observed in all experimental populations. Moreover, conclusions drawn by Stange et 
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al. (2013b) from the simulation study onto the experimental population regarding the 

increasing precision of QTL effect estimates with increasing marker density, might be 

also valuable for the other populations analyzed by Stange et al. (2013a).  

 

Simulation results showed that the resolution of closely linked QTL in coupling phase 

with linkage distances of 5 and 10 cM, respectively, was by far higher with the highest 

marker density as compared to the lower marker densities (Stange et al. 2013b). The 

high resolution of linked QTL only with the highest marker density might explain why 

Stange et al. (2013a) found besides individual QTL several pairs of co-located QTL 

within individual populations. This indicates that the separate detection of co-located 

QTL, i.e., separate detection of two QTL of different traits located closely together in 

narrow chromosomal regions, profited most from the high marker density. In contrast 

to the separate detection, low-density maps with lower resolution might detect only 

one of both QTL. This is probably the larger effect QTL although besides this QTL, a 

second smaller effect QTL is located nearby. Nevertheless, lower resolution might be 

sufficient if the main interest is the detection of chromosomal sections where only one 

large QTL is detected, which might be a QTL of a complex trait. However, if the main 

interest is the detection of interaction networks as well as to unravel the genetic 

architecture of complex and component traits (Stange et al. 2013a), high-density maps 

with high resolution and precise localization of co-located QTL are obligatory. 

In conclusion, advantages of high-density maps for important QTL mapping 

parameters, relevant for knowledge-based breeding and analysis of genetic networks, 

were observed in the experimental populations and in the simulation study (Stange et 

al. 2013a, b). This broad basis of meaningful results allows a generalization of the 

advantages of high-density maps for QTL mapping. Thus, higher costs for high-

density genotyping are compensated for by these gains. 
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Single population and multi-population QTL mapping 

The analysis of large individual biparental populations is a general practice in QTL 

detection in order to guarantee a high power for QTL detection (Blanc et al. 2006). It is 

advisable to have mapping populations of around 100 individuals where a QTL that 

explains 10% of phenotypic variance, can be detected with a power of 85% 

(Charcosset and Gallais 1996). Therefore, this population size maybe considered 

roughly as lowest limit for QTL mapping experiments. The smallest population of this 

thesis, Pop. 5, was with only 45 DH lines by far below this size. The small population 

size explains why QTL mapping for Gibberella ear rot (GER) resistance was not 

informative (Martin 2012). Thus, Pop. 5 was not included in this thesis for QTL 

mapping, whereas the other populations were close (Pop. 4; N=99), or clearly above 

this size (Pop. 1, 2, and 3). Consequently, Pop. 1 to Pop. 4 were used for mapping of 

QTL for grain yield (GY), 100-kernel weight (HKW), and kernel number (KN) 

(Stange et al. 2013a).  

 

The main focus of QTL mapping experiments in the four largest populations (Pop. 1 to 

Pop. 4) (Stange et al. 2013a) was the dissection of the complex trait GY into its 

underlying component traits HKW and KN. In contrast to the reported inconsistency of 

QTL localization when analyzing several populations for the same trait (Mihaljevic et 

al. 2004), Stange et al. (2013a) found in total four pairs of co-located QTL. These pairs 

were co-located for the same trait in two of the four analyzed populations, 

respectively, and each pair showed the same parental contribution of favorable or 

unfavorable alleles. This indicates that consistent genomic regions between the 

connected populations were found for individual traits, having similar effects on 

phenotypic trait expression. However, Pop. 3 was not involved in any co-location. 

Thus, to finally detect common QTL segregating in several populations, multi-

population QTL mapping approaches might be a solution. These approaches provide 

also high QTL detection power and precision. If a common QTL is detected across 

several populations and estimated with similar genetic effects, this might indicate high 

reliability for this QTL. Using this QTL for marker-assisted selection (MAS) should 

result in high power for selection of superior lines.  
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For multi-population QTL detection, different approaches are available. One approach 

consists in the combination of logarithm of odd (LOD) curves from single population 

QTL mapping to fit meta-QTL positions and effects (Sosnowski et al. 2012; Utz 

2012). Another approach is linking families by assuming that the QTL locations are 

the same in all analyzed populations (Jourjon et al. 2005; Bink et al. 2012). Both 

approaches were integrated in different software packages and were already 

successfully applied (e.g., MCQTL: Jourjon et al. 2005; BioMercator: Sosnowski et al. 

2012; PlabMQTL: Utz 2012).  

 

Besides main-effect QTL, several additive by additive epistatic interactions of QTL 

detected for individual traits, were found in all populations (Stange et al. 2013a). 

However, the total contribution of epistasis to the explained genotypic variance was 

rather small in all populations. This might be explained by the low power to detect 

epistatic interactions due to limited population size, which indicates that even 204 DH 

lines as in Pop. 2, are not sufficient. Therefore, to profit from large populations, Stange 

et al. (2013a) concluded that the application of multi-population approaches could 

increase the power for detection of epistatic interactions. Another benefit of multi-

population approaches, especially when applied in connected populations, might be the 

test for QTL by genetic background interactions (Blanc et al. 2006). With connected 

populations, epistasis can be tested by comparison between a model assuming identical 

QTL effects in different populations and a model assuming nested QTL effects within 

populations. Thereby, the latter model accounts for possible interactions with the 

genetic background (Blanc et al. 2006).      

Another multi-population approach was suggested by Bink et al. (2012). This Bayesian 

approach considers that parents of multiple connected populations are not unrelated. 

Bink et al. (2012) found that inclusion of parental IBD data in the Bayesian QTL 

mapping approach resulted in an increase of power and precision of mapped QTL. 

Owing to different levels of IBD (Figure 2) and genetic similarities between the five 

populations (Riedelsheimer et al. 2013), this approach seems promising for multi-

population QTL detection for the five populations analyzed in this thesis.  

 

Stange et al. (2013b) reported that important QTL mapping parameters, like increased 

precision of QTL localization, reflected by narrow support intervals, profited from 
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high-density linkage maps. These benefits might be observed also when analyzing 

several populations with multi-population approaches on the basis of high-density 

consensus maps. Both, Blanc et al. (2006) and Bink et al. (2012) concluded that their 

approaches would gain from the application of haplotype maps instead of marker maps 

and that the assignment of haplotypes to the parental inbreds would profit from dense 

marker data. High-density consensus maps, calculated on the basis of single population 

high-density maps as calculated in this thesis, would be the perfect basis for 

unambiguously assigning haplotypes to all parents of the mapping populations.  

 

Prediction accuracies calculated with GS and with QTL 

detected by linkage mapping 

The main difference between marker-assisted selection (MAS) and genomic prediction 

or selection (GS) is, that the latter predicts breeding values of lines by incorporating 

information of all available markers (Heffner et al. 2009). In contrast, MAS is based 

only on medium to large selected effect QTL that were detected with linkage mapping. 

If in a population mainly medium to large effect QTL segregate, which are also 

precisely estimated with high-density maps (Stange et al. 2013b), prediction accuracies 

on the basis of detected QTL by linkage mapping and prediction accuracies obtained 

with GS might be (i) similar and (ii) prediction accuracies calculated for different 

validation populations (VP) and the same training set (TS), respectively, might show 

similar trends. To evaluate both hypotheses, we calculated prediction accuracies 

exemplarily on the basis of QTL detected in Pop. 3 for Gibberella ear rot (GER) 

severity under different scenarios depending on the VP, with Pop. 3 as TS, 

respectively.  

 

Prediction accuracies obtained for full-sibs (FS) from the same cross (Pop. 3; scenario 

1A-CV) were highest, in between for the two half-sib (HS) families (Pop. 1 and Pop. 

2; scenarios 1B-1 and 1B-2), and lowest if the TS comprised an unrelated (UR) 

population (Pop. 4; scenario 1C), independent of the number of QTL or cofactors used 

for calculation of prediction accuracies (Table 1). This decline from FS over HS to UR 

families is in agreement with prediction accuracies for GER severity reported by 
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Riedelsheimer et al. (2013) using whole genome prediction. It indicates that both 

methods, i.e., GS and prediction on the basis of QTL, depend on the level of 

relatedness between the genotypes in the TS and VP, which is in agreement with 

empirical studies (Clark et al. 2012; Habier et al. 2010). 

 

Table 1 Prediction accuracies for Gibberella ear rot (GER) severity with population 3 

(Pop. 3) as training set (TS), respectively, under four scenarios depending on different 

individual validation populations (VP) with different relatedness to the TS. Prediction 

accuracies were calculated on the basis of 21 cofactors, 14 QTL, and 3 QTL, 

respectively.  

Scenario VP Relatedness 21 cofactors† 14 QTL† 3 QTL‡ 

1A-CV¶ Pop. 3 full sib - 0.464 0.144 

1B-1 Pop. 1 half sib 0.331 0.317 0.029 

1B-2 Pop. 2 half sib 0.184 0.133 0.013 

1C Pop. 4 unrelated 0.131 0.085 0.005 
† Cofactor selection and QTL selection with the Akaike´s Information Criterion (AIC) (Akaike 1974). 

‡ Cofactor selection with the modified Bayes Information Citerion (mBIC; Baierl et al. 2006) and QTL 

selection with the Bayes Information Criterion (BIC; Schwarz 1978). 
¶ Prediction accuracies for Pop. 3 as VP were calculated on the basis of five-fold cross validation (CV).  

 

Interestingly, prediction accuracies on the basis of QTL increased strongly with 

increasing number of used QTL, which depends on the applied criteria for cofactor 

selection and QTL detection (Table 1). Applying the modified Bayes Information 

Criterion (mBIC, Baierl et al. 2006), which is described as a more stringent criterion 

for cofactor selection (Bogdan et al. 2008) and the Bayes Information Criterion (BIC; 

Schwarz 1978) for QTL selection, only one cofactor and three reliable QTL were 

detected in Pop. 3, and thus, used for prediction. This resulted in lowest prediction 

accuracies for all scenarios. In contrast, 21 cofactors were chosen and 14 QTL were 

detected with the Akaike´s Information Criterion (AIC; Akaike 1974). Prediction 

accuracies calculated with these cofactors and QTL, respectively, were by far higher 

for all scenarios compared to those on the basis of the low number of QTL. This 

indicates that the criterion for cofactor selection should be chosen according to the 

focus of the study. If the focus is the detection of reliable QTL, more stringent criteria 

like mBIC should be applied. In contrast, if the focus is to obtain high prediction 

accuracy, it is advisable to use less stringent criteria like AIC for QTL detection. 

Although the gap between highest prediction accuracies with GS (Riedelsheimer et al. 
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2013) and lowest values with prediction on the basis of only three QTL was 

substantially reduced when prediction was performed with the high number of QTL or 

cofactors, there was still a considerable gap to GS. This might be explained by possible 

small-effect QTL segregating in Pop. 3. These might remain undetected with linkage 

mapping, even on the basis of high-density maps probably due to the low power 

caused by limited population size (Stange et al. 2013b). Taken together, we could 

show that GS should be applied due to its superiority over MAS if the focus is the 

selection of superior lines. However, if the focus is the dissection of complex traits and 

to unravel the genetic architecture, linkage mapping with high-density maps offer high 

power and precision for detection of QTL (Stange et al. 2013a, b).  

 

Influence of recombination rate on QTL distribution along 

the chromosome  

Several studies detected QTL for yield and yield components (Guo et al. 2011; Li et al. 

2007; Li et al. 2009; Lu et al. 2010; Ma et al. 2007; Peng et al. 2011; Yang et al. 2011). 

They found that chromosome 1, which is the largest chromosome, harbors the highest 

number of QTL in agreement with results reported by Stange et al. (2013a). However, 

Stange et al. (2013a) observed an accumulation of QTL in centromeric regions. 

Interestingly, recombination rate measured in cM/Mbp was lowest in centromeric 

regions and by far higher in teleomeric regions (Figure 4).  

 

This shape of recombination cold and hot spots is in agreement with results reported 

by Nachman (2002) for several species, and by Schnable et al. (2009) and Farkhari et 

al. (2011) for maize. The latter authors observed that the recombination rate was 

around 100 fold lower in centromeric regions compared to teleomeric regions, a 

feature that might be explained by retrotransposon clusters. These are one of the 

factors, that account for most of the repetitive DNA in maize and that can enhance or 

suppress the recombination rate (Dooner and He 2008). Retrotransposon clusters vary 

in composition and location relative to genes (Wang and Dooner 2006), which might 

explain the existence of recombination cold and hot spots. 
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Figure 4 Relationship between physical (Mbp) and genetic (cM) map positions (black 

dots) and the corresponding recombination rates (cM/Mbp) (red dots) exemplarily for 

chromosome 1 of populations (Pop.) 1 and 2, respectively. The arrow indicates the 

approximated position of the centromere. 

 

The effect of variation in recombination rates along the chromosome on QTL 

distribution was analyzed by Noor et al. (2001) in a simulation study based on the 

Drosophila melanogaster genome. These authors observed a clustering of QTL in 

regions of low recombination rates, which were primarily centromeric regions. In 

contrast, in regions of high recombination rates, only single QTL were detected. They 

concluded that this trend does not result from the QTL mapping algorithms and that 

large effect QTL, detected in regions with high recombination rates are more likely 

single genes of large effect. In contrast, QTL detected in regions of low recombination, 

are more likely QTL of several genes with small effects. To analyze these conclusions 

in the populations of this thesis, where the phenomenon of QTL clustering in regions 

of low recombination was observed (Stange et al. 2013a), a detailed analysis of the 

genome sequence could be a starting point.  
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Conclusions  

This thesis was to the author´s best knowledge the first work calculating high-density 

linkage maps with the Illumina 50k maize chip resulting in marker densities of 1 cM in 

polymorphic regions. These linkage maps were used to investigate limitations and 

benefits of high-density QTL mapping. On the basis of the high-density maps, 

different QTL mapping models were applied for the dissection of the complex trait GY 

into its components HKW and KN in connected maize populations of DH lines. 

We used a connected design of five populations which enabled evaluating the 

influence of single parents in crosses with up to three different parents. Genetic 

similarities, measured as identity-by-state (SIBS) and genomic correlation (SGC) 

between the parents indicated a structured pattern: three of the four parents showed 

slightly higher similarities among each other than each to the fourth parent. 

Consequently, this small difference yielded deviating results in Pop. 3, where this 

parent was crossed with another parent, compared to the crosses where it was not 

involved. Thus, knowing the structure of genetic similarities between the parents in 

advance, might give first hints for possible common or different QTL. This 

information should be considered when comparing several populations analyzed 

individually, and more importantly, when combining these populations in a multi-

population QTL mapping approach.   

 

Relevant QTL mapping parameters such as the precision of QTL localization and 

effect estimates, as well as the resolution of closely linked QTL are improved with 

high-density maps, as demonstrated in a large experimental population and a 

simulation study. Results of the experimental population, especially the high precision 

of QTL localization, were confirmed by QTL mapping in further DH populations. This 

allows a generalization of these findings and shows that the higher costs for high-

density genotyping are by far outweighed.    

 

QTL mapping with high-density maps for yield and yield components revealed several 

pairs of co-located QTL between the analyzed populations. Nevertheless, multi-

population QTL mapping approaches could confirm these common QTL and, due to 

the higher QTL detection power, could detect more common QTL. Additionally, 
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multi-population QTL mapping facilitates the test for QTL by genetic background 

interactions. Thus, the genotypic variance explained by the detected QTL can be 

separated into its three components: main-effect QTL, QTL by QTL epistatic 

interactions, and QTL by genetic background interactions.  

 

Prediction of genotypic values for GER severity on the basis of QTL detected with 

linkage mapping did not reach accuracies obtained with GS. This indicates a 

superiority of GS over MAS. However, the decline of prediction accuracies with GS 

from FS over HS to UR families was confirmed by the prediction on the basis of QTL 

detected with linkage mapping. Consequently, predicting genotypic values of 

additional new DH lines, developed from the same cross as used for the development 

of the TS, would result in highest prediction accuracies. In contrast, predicting 

genotypic values of additional new DH lines, developed from a cross where only one 

parent is common with the TS, would result in a strong decrease in prediction 

accuracies. Thus, both parents of the VP should be represented in an optimal TS. 

Further, it was clearly shown that prediction accuracies on the basis of detected QTL 

profited from an increased number of QTL or cofactors used for calculation of 

prediction accuracies. This indicates that also small-effect QTL segregate in the 

analyzed plant material and that these should be included in the prediction. In contrast 

to linkage mapping, GS incorporates information from all available markers 

simultaneously and thus, uses also variation from small-effect QTL which might 

remain undetected with linkage mapping. Consequently, selection of superior lines 

should be conducted with the aid of GS.  

 



 

 
 

Chapter 6 

Summary 

Most important agronomic traits like disease resistance or grain yield (GY) in maize 

show a quantitative trait variation and, therefore, are controlled by dozens to thousands 

of quantitative trait loci (QTL). Mapping of these QTL is well established in plant 

genetics to elucidate the genetic architecture of quantitative traits and to detect QTL 

for knowledge-based breeding. Nowadays, high-density genotyping is routinely 

applied in maize breeding and offers a huge number of SNP markers used in 

association mapping and genomic selection (GS). This enables also the construction of 

high-density linkage maps with marker densities of 1 cM or even higher. Nevertheless, 

QTL mapping studies were until recently mostly based on low-density maps. This 

raises the question if high-density maps are an overkill for QTL mapping, or in 

contrast, if important QTL mapping parameters would profit from them. High-density 

maps could also be beneficial for dissection of the complex trait GY into its 

components 100-kernel weight (HKW) and kernel number (KN). Analysis of these less 

complex traits may help to unravel the genetic architecture and improve the predictive 

ability for complex traits. However, an open question is whether consideration of 

component traits and epistatic interactions in QTL mapping models are beneficial for 

predicting the performance of untested genotypes for the complex trait GY.  

 

In this thesis, high-density linkage maps were constructed for biparental maize 

populations of doubled haploid (DH) lines and applied in different QTL linkage 

mapping approaches. In detail, the objectives of this study were to (1) investigate the 

effect of high-density versus low-density linkage maps in QTL mapping of important 

QTL mapping parameters and to analyze the resolution of closely linked QTL with 

experimental data and computer simulations, (2) map QTL for HKW, KN, and GY 

with high-density maps and to analyze epistatic interactions, (3) compare the 

prediction accuracy for GY with different QTL mapping models, and (4) answer the 

question how the composition of the test set (TS) influences the accuracy in genomic 

prediction of progenies from individual crosses.  
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This thesis was based on five interconnected biparental populations with a total of 699 

DH lines evaluated in field experiments for GER resistance related traits as well as for 

HKW, KN, and GY. All DH lines were genotyped with the Illumina MaizeSNP50 

Bead Chip and high-density linkage maps were constructed separately for each 

population.  

 

For evaluation of high-density versus low-density maps on QTL mapping parameters, 

three linkage maps with marker densities of 1, 2, and 5 cM were constructed, starting 

from the full linkage map with 7,169 markers mapped in the largest population 

(N=204). QTL mapping was performed with all three marker densities in the 

experimental population for GER resistance related traits and for yield related traits, as 

well as in a simulation study with different population sizes. In the simulation study, 

independent QTL with additive effects explaining 0.14 to 7.70% of the expected 

phenotypic variance, as well as linked QTL with map distances of 5 and 10 cM, were 

simulated. Results showed that high-density maps had only minor effects on the QTL 

detection power and the proportion of genotypic variance explained. In contrast, 

support interval length decreased with increasing marker density, indicating an 

increasing precision of QTL localization. The precision of QTL effect estimates was 

measured as deviation between the reference additive effects and the estimated QTL 

effects. It gained from an increase in marker density, especially for small and medium 

effect QTL. Increasing the marker density from 5 to 1 cM was advantageous for 

separately detecting linked QTL in coupling phase with both linkage distances. In 

conclusion, this study showed that QTL mapping parameters relevant for knowledge-

based breeding profited from an increase in marker density.  

 

For QTL mapping of the complex trait GY and the components HKW and KN, three 

QTL mapping models were applied to the four largest populations, of which two 

models were based on the component traits HKW and KN. All models included tests 

for epistatic interactions. The results showed that heritability was slightly higher for 

the component traits compared to the complex trait. The average length of support 

intervals of detected QTL was short with 12 cM, indicating high precision of QTL 

localization. Co-located QTL with same parental origin of favorable alleles were 

detected within populations for different traits and between populations for same traits, 
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reflecting common QTL across populations. However, to finally confirm these 

common QTL, multi-population QTL mapping should be conducted. Based on the 

detected QTL, predictions for GY showed that epistatic models did not outperform the 

respective additive models. Nevertheless, component trait based models can be 

advantageous for identification of favorable allele combinations for multiplicative 

traits.  

 

For all five populations, the comparison of genetic similarities reflected the crossing 

scheme with full-sib families, half-sib families and unrelated families. The evaluation 

of prediction accuracies for different scenarios depended on the composition of the TS. 

Highest prediction accuracies were observed for DH lines within full-sib families, 

medium values if full-sib DH lines were replaced by half-sib DH lines, and lowest 

values if the TS comprised of DH lines from unrelated crosses.  

 

In conclusion, I found high-density linkage maps to be advantageous for linkage 

mapping in biparental DH populations by improving important QTL mapping 

parameters. Higher costs for high-density genotyping are by far compensated by these 

advantages. Dissecting the complex trait GY into its component traits HKW and KN 

by component trait based QTL mapping models revealed a complex genetic network of 

GY. Future research should focus on high-density consensus maps applied in multi-

population QTL mapping to take advantage of the improved QTL detection power and 

to confirm common QTL across populations. 

  



Summary  32 

 

 

 

 

 

 

  



 

 
 

Chapter 7 

Zusammenfassung 

Viele agronomisch bedeutende Eigenschaften von Kulturpflanzen zeigen eine 

quantitative Merkmalsvariation. Die der Ausprägung solcher Merkmale zugrunde 

liegenden Genomregionen (sog. quantitative trait loci (QTL)) können mittels 

molekularer Marker und statistischer Verfahren kartiert werden. Die Kartierung dieser 

QTL ist in der Pflanzengenetik weit verbreitet, um die genetische Architektur von 

wichtigen Merkmalen wie Kornertrag oder Krankheitsresistenzen zu erforschen und 

um gezielter und effizienter züchten zu können. Mittlerweile sind bei Mais mehrere 

tausend sog. single nucleotide polymorpishm (SNP)-Marker bekannt, die auf 

Unterschieden in der Basenabfolge in der Mais-DNA beruhen. Diese SNP-Marker 

lassen sich routinemäßig durch Hoch-Durchsatz-Genotypisierungsverfahren ermitteln 

und bieten daher ein enormes Potential für die Maiszüchtung. Bisher wird dieses 

Potential an SNP-Markern jedoch lediglich in der Assoziationskartierung und in der 

Genomischen Selektion (GS) ausgeschöpft, obwohl auch die Möglichkeit besteht 

hochdichte genetische Karten zu erstellen, die in der QTL-Kartierung eingesetzt 

werden können. Allerdings wurde die QTL-Kartierung bisher meistens mit genetischen 

Karten mit geringer Markerdichte durchgeführt. Somit stellt sich die Frage, ob 

hochdichte genetische Karten eine genauere QTL-Kartierung ermöglichen. Hochdichte 

genetische Karten könnten ferner die Möglichkeit bieten, das Komplexmerkmal 

Kornertrag (GY) in seine Komponentenmerkmale 100-Korngewicht (HKW) und 

Kornanzahl (KN) zu zerlegen. Die Analyse von einfach vererbten 

Komponentenmerkmalen verspricht tiefere Einblicke in die genetische Architektur des 

Komplexmerkmals. Allerdings stellt sich die Frage, ob durch das Einbeziehen von 

Komponentenmerkmalen und epistatischen Interaktionen zwischen QTL auch die 

Vorhersage des Komplexmerkmals GY genauer wird.  

 

Ziele der vorliegenden Arbeit waren, (1) potentielle Vorteile von hochdichten Karten 

im Vergleich zu Karten mit geringer Markerdichte auf wichtige QTL-

Kartierungsparameter und die Auflösung eng gekoppelter QTL zu untersuchen, (2) 
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QTL für HKW, KN und GY mit hochdichten Karten zu kartieren und epistatische 

Interaktionen zu analysieren, (3) die Vorhersagegenauigkeit für GY mit verschiedenen 

QTL-Kartierungsmodellen zu vergleichen und (4) die Genauigkeit der genomischen 

Vorhersage von Nachkommen aus Kreuzungen in Abhängigkeit von der 

Zusammensetzung des Trainingsets (TS) zu untersuchen.   

 

Die hier vorgestellte Arbeit basierte auf fünf verbundenen biparentalen 

Maispopulationen mit insgesamt 699 doppelt-haploider (DH) Linien, für die Merkmale 

der Fusarium graminearum-Resistenz und HKW, KN sowie GY erfasst wurden. Alle 

DH-Linien wurden mit mehr als 50.000 SNP-Markern genotypisiert und hochdichte 

genetische Karten für jede Population erstellt.  

 

Ausgehend von der genetischen Karte der größten experimentellen Population 

(N=204) mit 7.169 Markern wurden genetische Karten mit Markerdichten von 1, 2 und 

5 cM erzeugt. Die QTL-Kartierung wurde in dieser experimentellen Population für 

verschiedene Merkmale der Fusarium graminearum-Resistenz und des Kornertrags 

sowie in einer Computersimulation durchgeführt. In der Simulationsstudie wurden 

unabhängige QTL mit additiven Effekten angenommen, welche 0.14 bis 7.70% der 

phänotypischen Varianz erklärten und gekoppelte QTL mit 5 und 10 cM Abstand 

simuliert. Die Ergebnisse zeigten, dass hochdichte Karten nur einen geringen Effekt 

auf die Anzahl der detektierten QTL und den Anteil der erklärten genotypischen 

Varianz haben. Im Gegensatz dazu stieg die Präzision der QTL-Lokalisation mit 

steigender Markerdichte beträchtlich an. Die Genauigkeit der Schätzung der QTL-

Effekte, insbesondere für QTL mit kleinen und mittleren Effektgrößen profitierte von 

ansteigender Markerdichte. Auch für die Auflösung eng gekoppelter QTL war ein 

Anstieg der Markerdichte vorteilhaft, da es nur mit der höchsten Markerdichte möglich 

war, die eng gekoppelten QTL separat zu detektieren. Das aus dieser Studie gezogene 

Fazit ist, dass QTL-Kartierungsparameter mit hoher Relevanz für die wissensbasierte 

Züchtung von einem Anstieg der Markerdichte profitieren.  

 

Die QTL-Kartierung des multiplikativen Komplexmerkmals GY und der 

Komponentenmerkmale HKW und KN wurde mit drei QTL Kartierungsmodellen in 

den vier größten Populationen durchgeführt. Zwei Modelle basierten auf den 
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Komponentenmerkmalen und alle Modelle wurden ferner um epistatische 

Interaktionen erweitert. Die hochdichte Karte führte auch in dieser Studie zu einer 

exakteren Lokalisierung der detektierten QTL. Ko-lokalisierte QTL wurden innerhalb 

von Populationen für verschiedene Merkmale und zwischen Populationen für die 

gleichen Merkmale detektiert, so dass gemeinsame QTL über die Populationen hinweg 

vorliegen dürften. Die Vorhersage des GY von DH-Linien, die auf den detektierten 

QTL basierte, zeigte, dass die epistatischen QTL Modelle den entsprechenden rein 

additiven Modellen nicht überlegen waren. Dagegen trugen die beiden 

komponentenbasierten Modelle zur Aufdeckung von vorteilhaften Allelkombinationen 

für multiplikative Merkmale bei.  

 

Die genetischen Ähnlichkeiten der fünf Populationen reflektierten das 

Kreuzungsschemata mit Vollgeschwister-, Halbgeschwister- und nicht-verwandten 

Familien. Die Zusammensetzung des TS beeinflusste die Genauigkeit der genomischen 

Vorhersage von Nachkommen erheblich. Höchste Vorhersagegenauigkeit wurde für 

DH-Linien innerhalb von Vollgeschwisterfamilien beobachtet, mittlere Werte, wenn 

Vollgeschwister-DH-Linien durch Halbgeschwister-DH-Linien ersetzt wurden, und 

geringste Werte wurden gefunden, wenn das TS aus DH-Linien von nicht-verwandten 

Kreuzungen bestand. 

 

Die experimentellen Ergebnisse dieser Arbeit zeigten eindrucksvoll, dass hochdichte 

genetische Karten ein enormes Potential bieten wichtige QTL-Kartierungsparameter 

genauer zu schätzen. Somit werden die höheren Kosten der hochdichten 

Genotypisierung bei weitem durch die aufgezeigten Vorteile kompensiert. Die 

Zerlegung des Komplexmerkmals GY in die Komponentenmerkmale HKW und KN 

deckte ein komplexes genetisches Netzwerk für GY auf. Zukünftige 

Forschungsarbeiten sollten sich auf hochdichte Consensuskarten und auf QTL-

Kartierung in multiplen Populationen fokussieren, um gemeinsame QTL über 

Populationen hinweg aufzufinden und damit die Züchtung effizienter zu gestalten.  
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