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Summary 

Electrogenic NADH:quinone oxidoreductases are large, membrane-embedded enzyme 

complexes found in the respiratory chain of prokaryotes and the mitochondria of eukaryotes. 

They represent the first module of the oxidative phosphorylation system which converts the 

energy from nutrients into an electrochemical gradient by coupling redox reactions to the 

translocation of cations across membranes. A long chain of events, such as the synthesis of 

ATP, ion homeostasis, reactive oxygen species production and bacterial motility depend on 

the activity of these complexes. 

Complex I consists of up to 45 subunits and can be found in the inner mitochondrial 

membrane of eukaryotes and in prokaryotes, where it is called NDH I. We investigated the 

isolated, hydrophobic ND5 subunit, which shows homologies to cation/proton antiporters, 

from human or Yarrowia lipolytica complex I. In vivo and biochemical analyses provided data 

on the cation translocation function and the alteration of function by disease-associated 

mutations. Taken together with the recently published 3D structure of bacterial complex I, 

these data allowed us to demonstrate that the ND5 subunit could possibly act as an 

antiporter module of mitochondrial complex I. 

Sodium ion translocating NADH:quinone oxidoreductase (Na+-NQR) is an enzyme found in 

many pathogenic bacteria. It consists of six subunits (NqrA - NqrF) whose 3D structures and 

enzymatic mechanisms were not known in detail at the time this project was initiated. By 

using high-resolution X-ray structures and site-directed mutagenesis, combined with 

biochemical studies, we proposed a model for catalysis and substrate selectivity on the 

atomic level of the electron input module of the complex, the NADH oxidizing domain of 

subunit NqrF. Furthermore, we analyzed the binding of silver ions to a cysteine residue in 

the NADH binding pocket and found that it leads to the inhibition of the Na+-NQR and to the 

killing of Vibrio cholerae in the nanomolar range. Subunit NqrA forms part of the quinone 

reductase module. By the use of physicochemical and biochemical methods we identified 

the herbicide 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) as a quinone 

antagonist and inhibitor of the Na+-NQR complex and discovered two adjacent quinone 

binding sites on NqrA. 
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Zusammenfassung 

Elektrogene NADH:Chinon Oxidoreduktasen sind grosse, in die Membran eingebettete 

Enzym-Komplexe der Atmungskette von Prokaryoten und Eukaryoten. Sie repräsentieren das 

erste Modul der oxidativen Phosphorylierung, welche die Energie aus Nährstoffen in einen 

elektrochemischen Gradienten wandelt, indem Redox-Reaktionen an den Transport von 

Kationen über eine Membran gekoppelt werden. Eine lange Kette an Abläufen in der Zelle 

hängt von der Aktivität dieser Komplexe ab, so z.B. die Synthese von ATP, Ionen-Homöostase, 

Produktion von reaktiven Sauerstoffspezies und Motilität von Bakterien. 

Komplex I besteht aus bis zu 45 Untereinheiten und findet sich in der inneren 

Mitochondrienmembran von Eukaryoten und in Prokaryoten, wo er als NDH I bekannt ist. 

Wir haben die isolierte, hydrophobe ND5 Untereinheit des Komplex I vom Menschen und 

der Hefe Yarrowia lipolytica untersucht, welche Homologien aufweist zu Kationen/Protonen 

Antiportern. In vivo und biochemische Analysen ermöglichten die funktionelle Untersuchung 

der Kationen-Translokation und der Veränderung der Funktion durch Krankheits-assoziierte 

Mutationen. Zusammen mit der kürzlich publizierten 3D Struktur des bakteriellen Komplex I 

haben es uns diese Daten erlaubt zu zeigen, dass die ND5 Untereinheit als Antiporter im 

mitochondriellen Komplex I fungieren könnte. 

Die Na+-translozierende NADH:Chinon Oxidoreduktase (Na+-NQR) wird häufig in pathogenen 

Bakterien vorgefunden. Sie besteht aus sechs Untereinheiten (NqrA - NqrF), deren 3D 

Struktur und Funktion zu Beginn dieses Projekts nicht im Detail bekannt waren. Durch 

hochauflösende Röntgen-Kristallstrukturen und ortsgerichtete Mutagenese sowie mittels 

biochemischen Methoden ist es uns gelungen, auf der atomaren Ebene ein Modell für die 

Katalyse und die Substratselektivität des Elektroneninput-Moduls, der NADH oxidierenden 

Domäne der Untereinheit NqrF, zu generieren. Wir haben weiterhin die Bindung von 

Silberionen an ein Cystein der NADH-Bindetasche analysiert und festgestellt, dass 

nanomolare Konzentrationen von Ag+ durch diese Bindung zur Hemmung der Na+-NQR und 

zum Abtöten von Vibrio cholerae führen. Die Untereinheit NqrA bildet einen Teil des Chinon- 

reduzierenden Moduls. Durch physikochemische und biochemische Untersuchungen 

konnten wir das Pflanzenschutzmittel 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinon 

(DBMIB) als Antagonisten zu Chinon und Inhibitor der Na+-NQR identifizieren, sowie zwei 

nebeneinanderliegende Chinon-Bindestellen auf NqrA charakterisieren. 
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1.1. The electron transport chain: the electrochemical capacitor of nature 

The advent of complex life required the evolution of a system to efficiently harness and 

store the energy of nutrients in high-energy compounds such as ATP. ATP is generated 

during fermentation, for example in yeasts or under conditions of intense muscular exertion, 

where pyruvate is converted to lactic acid. However, these processes provide only a limited 

amount of ATP. For one, they use endogenous organic molecules as electron acceptors 

which have to be regenerated, and secondly, this electron transfer releases little free energy, 

e.g. glycolysis yielding 2 molecules of ATP per molecule of glucose (Voet and Voet 2004). The 

employment of an electron transport chain to deliver electrons to an exogenous acceptor 

with a highly positive redox potential - such as molecular oxygen, O2 - is called oxidative 

phosphorylation (OXPHOS) and drastically increases the energetic yield to up to 36 

molecules of ATP per molecule of glucose (Nicholls and Ferguson 1992). In the mitochondrial 

respiratory chain, OXPHOS is accomplished by a series of redox enzyme complexes located 

within the mitochondrial inner membrane. The electrons enter at either the 

NADH:ubiquinone oxidoreductase (complex I) or the succinate dehydrogenase (complex II) 

and are transferred by the help of quinones to ubiquinone:cytochrome c oxidoreductase 

(cytochrome-bc1 or complex III), then to cytochrome c, on to cytochrome c oxidase (complex 

IV), and finally to O2, generating H2O (Alberts, Johnson et al. 2008). The electrons hereby 

follow a slope from negative to positive redox potential, formed by the various electron-

accepting cofactors. Table 1 lists a selection of respiratory chain components and their 

midpoint redox potentials. The midpoint potential Em7.2 represents the voltage that needs to 

be applied at pH 7.2 to bring half of the molecules into the oxidized state. Chemical species 

with a tendency to donate electrons have a negative Em and species that readily take up 

electrons have a positive Em. The energy released by a redox reaction between two species 

with different Em is described by the Gibbs function: 

   
         

where n is the number of electrons transferred and F is the Faraday constant. 
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Table 1: Midpoint redox potentials of components of the mitochondrial respiratory chain. 

Respiratory chain fragment Component n Em7.2 [V] 

Complex I NAD+/NADH  2 - 0.315 a 

 FMN 1 - 0.300 a 

 (Fe-S) N-1a 1 - 0.380 ± 0.010 

 (Fe-S) N-1b 1 - 0.250 ± 0.010 

 (Fe-S) N-2 1 - 0.030 ± 0.015 

 (Fe-S) N-3,4 * 1 - 0.245 ± 0.010 

 (Fe-S) N-5,6 * 1 - 0.270 ± 0.010 

Succinate dehydrogenase (complex II) FAD/FADH2 2 - 0.040 ± 0.020 

 fumarate/succinate 2   0.030 a 

 (Fe-S) S-1 1   0.030 ± 0.010 

 (Fe-S) S-2 b 1 - 0.245 ± 0.015 

 (Fe-S) S-3  1   0.060 ± 0.015 c 

Cytochrome-bc1 (complex III) ubiquinone-10 2   0.045 

 Rieske Fe-S 1   0.280 ± 0.015 

 cytochrome c1 heme 1   0.215 ± 0.010 

Cytochrome c cytochrome c 1   0.235 ± 0.005 

Cytochrome c oxidase (complex IV) cytochrome a heme 1   0.210 ± 0.010 

 copper A 1   0.245 ± 0.015 

 cytochrome a3 heme 1   0.385 ± 0.010 

Molecular oxygen O2/2 H2O 4   0.820 a 

Adapted from (Wilson, Erecinska et al. 1974), Em values of protein-bound components are 
derived from de-energized mitochondria. 
*: combined values 
a: Em7.0, from (Nicholls and Ferguson 1992). 
b: remains oxidized, function unknown (Ohnishi and Salerno 1976) 
c: Em7.4, from (Ohnishi, Lim et al. 1976) 
 
 
First observed by Peter Mitchell (Mitchell 1961; Mitchell and Moyle 1967), the energy that is 

released as the electrons travel along complexes I, III, and IV is coupled to the pumping of 

protons out of the mitochondrial matrix across the inner membrane, resulting in an 

electrochemical gradient ΔμH+. ΔμH+ amounts to approximately 180 - 220 mV and consists of 

two components: the membrane potential Δψ, accounting for 150 - 180 mV and of ΔpH, 

contributing the remaining 30 - 70 mV (Mitchell and Moyle 1969; Nicholls 1974). 

This gradient is the biological equivalent of a capacitor (Wallace 2008), an electric 

component used to store energy through the separation of charges.  
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The capacitance of a plate capacitor - the amount of energy it can store - is described as: 

           
 

 
 

where ε0 is the electric constant, εr the permittivity of the capacitors dielectric, A the 

electrode area and d the distance between electrodes. 

 

The capacitance density of the inner mitochondrial membrane was determined to be in the 

range of 1.1 - 1.3 µF cm-² (Pauly and Packer 1960), which is a value comparable to 

conventional electrolytic capacitors (Yoshida, Imoto et al. 1992). This is an amazing number 

considering that this membrane does not act solely as a dielectric - a non-conducting layer 

separating charges - but simultaneously accommodates charge conducting elements such as 

ion channels and transporters. Combined with the high surface-to-volume ratio of the inner 

mitochondrion's cristae, the mitochondrial respiratory chain constantly provides enough 

potential energy to drive a multitude of cellular processes. F1Fo type ATP synthase (complex 

V) for example directly converts the electrochemical gradient into the high-energy γ-

phosphate bond of ATP, which is a chemical currency used when- and wherever work has to 

be done in a cell. In addition, the energy is used for the regulation of intracellular ion 

homeostasis, reactive oxygen species production and initiation of controlled cell death - 

apoptosis - in eukaryotic cells (Kumar, Abbas et al. 2004). It can also be simply dissipated as 

heat by the action of uncoupling proteins (Nedergaard, Ricquier et al. 2005). 
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1.2. NADH:quinone oxidoreductases 

There are three known types of respiratory NADH:quinone oxidoreductases (Yagi 1991; 

Friedrich and Scheide 2000; Kerscher 2000; Yagi, Seo et al. 2001; Bogachev and Verkhovsky 

2005; Zickermann, Kerscher et al. 2009): the proton- or sodium ion-translocating complex I 

(NDH I in bacteria) (Friedrich 1998), the non-electrogenic NADH:quinone oxidoreductases 

(NDH II) (Kerscher, Okun et al. 1999) and the sodium ion-translocating NADH:quinone 

oxidoreductases (Na+-NQR) (Barquera, Hellwig et al. 2002). These enzymes couple the 

oxidation of NADH, a reducing agent found in all living cells which is kept in its reduced state 

with the electrons that large organic nutrient molecules release during catabolism, to the 

reduction of ubiquinone (Q). The net reaction thus yields ubiquinol (QH2), the reducing 

substrate of enzyme complexes further along the respiratory chain, and NAD+, which is used 

as oxidizing agent in numerous cellular processes. NADH:quinone oxidoreductases of the 

NDH II type limit themselves to this reaction and do not participate in the generation of a 

transmembrane voltage, i.e. are non-electrogenic. Complex I and Na+-NQR in contrast tap 

into the exergonic energy released by the redox reaction by using it to pump H+ or Na+ from 

the mitochondrial matrix or the cytosol to the perimitochondrial space or the periplasm 

respectively. The accumulation of positively charged ions on the outside of the membrane 

leads to an electrical and chemical imbalance, summarized as ΔμH+ (proton motive force, 

PMF) or ΔμNa+ (sodium motive force, SMF). 

Prokaryotes may contain all three types of NADH:quinone oxidoreductases but the 

expression of each is usually tightly regulated. The chromosome of Escherichia coli for 

example features genes for both NDH I and NDH II. Under aerobic conditions, the expression 

of NDH II is upregulated and more than 80 % of the electron flux is directed from NADH to Q 

by NDH II (Bongaerts, Zoske et al. 1995; Wackwitz, Bongaerts et al. 1999; Unden, Achenbach 

et al. 2002). During anaerobic fumarate respiration or at the onset of exponential growth, 

where high amounts of ATP are required, NDH I represents the dominant dehydrogenase, 

shuttling electrons from NADH to menaquinone, which serves as a substrate for the DMSO 

or fumarate reductases (Tran, Bongaerts et al. 1997) and translocating protons or sodium 

ions, driving H+- or Na+-ATP synthases. Many archaea and gram-positive bacteria only 

contain NDH II. Chlamydia pneumoniae only expresses the Na+-NQR. Bacteria of the genus 

Vibrio contain NDH II and Na+-NQR and a few bacteria such as Klebsiella pneumoniae and 
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Yersinia pestis harbor all three types of enzymes (Bertsova and Bogachev 2004; Melo, 

Bandeiras et al. 2004). 

In eukaryotic organisms, only enzymes of the NDH I and NDH II type have been found so far. 

The yeast Yarrowia lipolytica contains, in addition to mitochondrial complex I, a type two 

dehydrogenase, which is oriented towards the external lumen (perimitochondrial space). 

Mitochondria of plants and of the yeast S. cerevisiae exhibit expression of different subtypes 

of the NDH II. In the latter, NDH II is even the sole NADH:quinone oxidoreductase type 

(Kerscher 2000); its well-known preference of the fermentative lifestyle may explain why it 

lost the NDH I operon over the course of evolution. Mitochondria of mammals and higher 

eukaryotes almost exclusively contain an extended form of NDH I, the respiratory complex I. 

Table 2 summarizes and compares the characteristics of the three types of NADH:quinone 

oxidoreductases, taken from (Yagi 1987; Friedrich, Heek et al. 1994; Pfenninger-Li and 

Dimroth 1995; Yagi, Yano et al. 1998; Nakayama 1999; Ushakova, Grivennikova et al. 1999; 

Kerscher 2000; Steuber 2001; Steuber 2001; Yagi, Seo et al. 2001; Gemperli, Dimroth et al. 

2002; Nakamaru-Ogiso, Seo et al. 2003; Melo, Bandeiras et al. 2004; Eschemann, Galkin et al. 

2005; Brandt 2006; Casutt, Huber et al. 2010). 
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Table 2: The three different types of NADH:quinone oxidoreductases. 

 NDH I (complex I) NDH II Na+-NQR 

Subunits 13 - 15, 40*, (45) 1 6 

Molecular mass [kDa] 530, 947*, (980) 42 - 64 220 

Cofactors  

1 noncovalent FMN, 2 

[2Fe-2S], 

6 - 8 [4Fe-4S] clusters 

1 noncovalent FAD or 

FMN 

1 noncovalent FAD, 2 

covalent FMN, 1 

noncovalent 

riboflavin, 1 [2Fe-2S] 

cluster 

Substrates 

NADH, dNADH, 

ferricyanide, 

hexammine-

ruthenium, 

menaquinone, Q1, Q6, 

Q8, Q9*, (Q10) 

NADH, Q1, Q2, Q6, n-

decyl-ubiquinone and 

other quinones 

NADH, dNADH, 

ferricyanide, Q1, Q2, Q8 

Coupling ion H+ or Na+ Not a pump Na+ 

Inhibitors 

Rotenone, 

rolliniastatin-1, 

annonin VI, pyridaben, 

fenpyroximate, 

piericidin A, Triton x-

100, EIPA, DCCD, 

capsaicin 

1-hydroxy-2-dodecyl- 

4(1H)-quinolone, 

platanetin 

 

Ag+, korormicin, 

HQNO, DBMIB1 

 

* in eukaryotes only. Properties particular to mammalian complex I are in parentheses 
1 this study; see chapter 3.3.3. 
 
 

1.2.1. Complex I (NDH I) 

Electron microscopy revealed that complex I is L-shaped and consists of a hydrophilic 

peripheral domain which reaches into the mitochondrial matrix (or bacterial cytosol) and a 

membrane domain comprising numerous membrane-spanning segments (Leonard, Haiker et 

al. 1987; Hofhaus, Weiss et al. 1991; Guenebaut, Vincentelli et al. 1997; Grigorieff 1998; 

Guenebaut, Schlitt et al. 1998; Dudkina, Eubel et al. 2005; Radermacher, Ruiz et al. 2006; 

Clason, Ruiz et al.). Complex I from E. coli seems to exhibit an additional horseshoe 

conformation, where the peripheral arm folds onto the membrane domain. This 

conformation is proposed to be the active form of complex I (Böttcher, Scheide et al. 2002) 

but could so far not be reproduced in crystallographic studies (Efremov, Baradaran et al. 

2010; Hunte, Zickermann et al. 2010). In 2006, the X-ray crystallographic structure of the 

peripheral arm of Thermus thermophilus complex I was determined (Sazanov and Hinchliffe 
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2006). This elucidated the spatial arrangement of the redox cofactors and established a 

model of the electron transfer chain (figure 1). In 2010, the 3D structure of the complete 

complex from Thermus thermophilus was solved (Efremov, Baradaran et al. 2010). 

 

 

Figure 1: The structure of complex I from Thermus thermophilus. Adapted from (Sazanov 
and Hinchliffe 2006; Efremov, Baradaran et al. 2010) and edited. A: Side views from the 
membrane plane and top view from the cytoplasm into the membrane. The proposed NADH 
and quinone binding sites are indicated. Names of the analogous mitochondrial subunits are 
in parentheses. Fe-S clusters are shown as red and yellow spheres, and flavin 
mononucleotide (FMN) as magenta spheres. B: Arrangement of redox centers in the 
hydrophilic domain. The overall orientation is similar to that in A, right-hand side. Cluster 
N1a is in subunit Nqo2; N3 and FMN in Nqo1; N1b, N4, N5, and N7 in Nqo3; N6a/b in Nqo9; 
and N2 in Nqo6. The main pathway of electron transfer is indicated by blue arrows, and a 
diversion to cluster N1a by a green arrow. The distances between the centers given in 
angstroms were calculated both center-to-center and edge-to-edge (shown in parentheses). 
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The bacterial enzyme comprises 13 - 15 subunits encoded by the nuoA - N genes (or nqo1 - 

15, the nomenclature differs, depending on the organism) and has a mass of about 530 kDa. 

The enzymes of certain Enterobacteria such as Escherichia coli, Yersinia pestis, 

Aquifex aeolicus, Pseudomonas aeruginosa, Salmonella typhi, Buchnera species and 

Klebsiella pneumoniae only contain 13 subunits, due to fusion of the NuoC and NuoD genes 

(Friedrich 1998). Thermus thermophilus contains, in addition to the 14 core subunits 

encoded by the nqo operon, Nqo15, a frataxin-like subunit (Sazanov and Hinchliffe 2006). 

The eukaryotic enzyme comprises at least 40 subunits and has a mass in the range of 1 MDa. 

Bovine complex I is made of 45 (Carroll, Fearnley et al. 2006), complex I from the yeast 

Yarrowia lipolytica of 40 different polypeptides (Morgner, Zickermann et al. 2008). In 

addition to the 14 core subunits conserved from prokaryotes, which catalyze the central 

redox and electrogenic functions, eukaryotes exhibit accessory subunits which do not 

participate directly in energy conservation but play an important role in complex I assembly 

and activity (Yadava, Potluri et al. 2008). The core subunits can be divided into seven 

hydrophilic and seven hydrophobic proteins (Zickermann, Kerscher et al. 2009): The latter 

are mitochondrially encoded, and in fact their genes make up the bulk of the mitochondrial 

DNA, which only contains 13 protein-coding sequences. They are the ND1 - 6 and ND4L 

subunits, corresponding to the membrane-embedded NuoA (ND3), NuoH (ND1) and NuoJ - N 

(ND6, ND4L, ND5, ND4, ND2) of the bacterial enzyme. The hydrophilic core subunits can be 

attributed to a dehydrogenase fragment consisting of FP24K (NuoE), FP51K (NuoF) and IP75K 

(NuoG) and a connecting fragment containing IP21K (NuoB), IP30K (NuoC), IP49K (NuoD) and 

IP23K (NuoI). 

As is the case with many multisubunit enzymes, complex I likely emerged from the fusion of 

preexisting modules for electron transfer and ion transport. The connecting fragment, 

together with hydrophobic subunits ND1 and ND5, is believed to have evolved from an 

ancestral enzyme which used hydrogen as an electron donor (Friedrich and Weiss 1996). 

Furthermore, subunits IP21K, IP30K and IP49K form an electron conducting module similar 

to membrane-bound [NiFe] hydrogenases (Friedrich and Scheide 2000). The dehydrogenase 

fragment is related to the flavin-containing diaphorase domain of NAD+-reducing 

hydrogenases. Subunits ND2, 4 and 5 very likely share a common ancestor (Kikuno and 

Miyata 1985) and exhibit sequence similarity to Na+/H+ antiporters (Mathiesen and 
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Hägerhäll 2002; Mathiesen and Hägerhäll 2003). So far, no ancestors of the membrane-

bound subunits ND3, ND4L and ND6 have been found. 

 

1.2.2. NDH II 

The so-called alternative or rotenone-insensitive NADH:quinone oxidoreductases, NDH II, are 

typically found in the inner mitochondrial membrane of plants and ascomycetous fungi, but 

also in many bacteria and archaea (Bandeiras, Salgueiro et al. 2002; Fang and Beattie 2002; 

Bandeiras, Salgueiro et al. 2003; Melo, Bandeiras et al. 2004). The first evidence of this non-

electrogenic type of enzymes was found in 1961, when Bonner and Voss observed that plant 

mitochondria were capable of oxidizing externally added NAD(P)H, but mammalian 

mitochondria were not (Bonner and Voss 1961). The NDH II are monomeric enzymes with 

molecular masses between 42 (Acidianus ambivalens) and 64 kDa (Neurospora crassa) and a 

non-covalently attached flavin adenine dinucleotide (FAD) as only redox cofactor. As an 

exception for this rule, NDH II dimers, or NDH II enzymes containing non-covalently bound 

flavin mononucleotide (FMN) or, in thermophilic organisms, covalently bound FMN have 

been described (Kerscher 2000; Bandeiras, Salgueiro et al. 2002; Fang and Beattie 2002; 

Bandeiras, Salgueiro et al. 2003). The 3D structure of NDH II reveals two βαβ dinucleotide 

folds with conserved GxGxxG motifs which participate in the binding of the NAD(P)H and 

flavin cofactors. If the flavin is covalently attached, the respective dinucleotide fold does not 

contain the GxGxxG motif (Wierenga, Terpstra et al. 1986). Binding to the membrane is 

suggested to occur by amphipathic helices, and in some cases transmembrane helices are 

predicted (Bandeiras, Salgueiro et al. 2002). The binding mode of the hydrophobic substrate 

ubiquinone is unknown and no binding site has been identified yet, but evidence for a two-

step, ping-pong type mechanism has been found, in which a hydride is transferred from 

NAD(P)H to the flavin, followed by two-electron transfer from the flavin to ubiquinone 

(Eschemann, Galkin et al. 2005; Yano, Li et al. 2006).  

It is likely that the NDH II shares a common ancestor with bacterial lipoamide 

dehydrogenases which exhibits considerable sequence similarity. Moreover, the two 

enzymes catalyze similar redox reactions (Bjorklof, Zickermann et al. 2000). It has been 

proposed that the first alternative NADH:ubiquinone oxidoreductases were external 

enzymes, attached to the outside of the mitochondrial membrane and shuttling electrons 
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from NADH produced in the cytoplasm into the respiratory chain (Kerscher 2000). Support 

for this hypothesis comes from the yeast Yarrowia lipolytica, which contains only a single 

external but no internal NDH II. This prototypic enzyme may have evolved into the internal 

NDH II by gene duplication and acquisition of a mitochondrial targeting sequence (Kerscher, 

Okun et al. 1999). 

 

1.2.3. Na+-NQR 

The discovery of the Na+-NQR dates back to 1981 (Tokuda and Unemoto 1981), when cells of 

Vibrio alginolyticus were found to maintain a membrane potential (ΔΨ) at alkaline pH 

through the extrusion of positive charges, despite the presence of a protonophore. Evidence 

for a NADH dehydrogenase activated by Na+ was reported even before that (Unemoto, 

Hayashi et al. 1977). 

Meanwhile numerous bacteria, many of them halophilic or halotolerant, have been found to 

exhibit similar Na+-dependent NADH:quinone oxidoreductases (Tokuda and Unemoto 1983; 

Khanna, Devoe et al. 1984; Tsuchiya and Shinoda 1985; Ken-Dror, Lanyi et al. 1986; Takada, 

Fukunaga et al. 1988; Tokuda and Kogure 1989; Semeykina and Skulachev 1990; Oh, Kogure 

et al. 1991; Unemoto, Akagawa et al. 1992; Hayashi, Nakayama et al. 1996; Kogure 1998; 

Barquera, Hellwig et al. 2002; Bogachev, Bertsova et al. 2002; Fujiwara-Nagata, Kogure et al. 

2003). Interestingly, several of these organisms such as Vibrio cholerae and 

Vibrio parahaemolyticus, Neisseria gonorrhoeae, Haemophilus influenzae, Yersinia pestis, 

Pseudomonas aeruginosa and Chlamydia trachomatis are pathogenic (Häse 2000). 

The Na+-NQR is a 220 kDa complex consisting of 6 subunits, NqrA - F, encoded by the nqr 

operon. It harbors at least five redox active cofactors: non-covalently bound FAD and [2Fe-2S] 

cluster in the NqrF subunit, two covalently bound FMNs in subunits NqrB und NqrC and one 

non-covalently bound riboflavin in subunit NqrB (Barquera, Ramirez-Silva et al. 2006; Tao, 

Casutt et al. 2008; Bogachev, Kulik et al. 2009; Casutt, Huber et al. 2010). Due to their 

homology to Na+-channeling proteins, NqrD and NqrE are thought to form the sodium-ion 

pore of the complex (Beattie, Tan et al. 1994). NqrA was shown to harbor at least one 

binding site for the terminal electron acceptor of the Na+-NQR, ubiquinone-8 (Casutt, 

Nedielkov et al. 2011). In addition, mutagenesis experiments have revealed an interaction 

between NqrB and quinones or quinone-like inhibitors (Hayashi, Shibata et al. 2002; Juárez, 
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Neehaul et al. 2012). However, the exact mechanism of the coupling between the reduction 

of the substrate, quinone, and the sodium ion translocation is still largely unclear. The 

physicochemical properties of the subunits from V. cholerae Na+-NQR are listed in table 3. All 

subunits save NqrA have at least one predicted transmembrane helix (TMH), which later 

have been experimentally mapped (Duffy and Barquera 2006). NqrD and NqrE are very 

hydrophobic and comprise 6 TMH each, NqrB has 9 TMHs. Interestingly, the grand average 

of hydropathy (GRAVY) scores (Kyte and Doolittle 1982) are negative for NqrC and NqrF, 

despite containing 2 or 1 TMHs, respectively. In contrast, NqrA has only a slightly negative 

GRAVY score but contains no TMH. This allows the interpretation that NqrA may contain 

hydrophobic patches which allow the binding to a hydrophobic surface or cofactor. NqrC and 

NqrF on the other hand use TMHs as membrane anchor, but may otherwise consist of 

globular, very hydrophilic domains. 

 

Table 3: The physicochemical properties of the subunits from V. cholerae Na+-NQR. 

Subunit NqrA NqrB NqrC NqrD NqrE NqrF 

Amino acid 

residues 
446 415 256 209 198 408 

Mw [Da] 1 48'623.9 45'357.1 27'488.1 22'706.1 21'497.8 45'094.6 

App. Mw [kDa] 2 52 27 32 14 13 47 

pI 6.05 7.16 6.40 8.56 6.55 4.98 

GRAVY score -0.087 0.556 -0.257 0.800 1.072 -0.141 

TMHs 0 9 2 6 6 1 

Cofactors  
FMN, 

riboflavin 
FMN   

FAD,  

[2Fe-2S] 

Adapted from (Casutt 2010) and edited. 
GRAVY: grand average of hydropathy 
1 Covalently bound FMN of NqrB and NqrC increases their molecular weight (Mw) by an 
additional 493.1 Da. 
2 Apparent molecular weight of subunits determined by their migration behavior on SDS-
PAGE 
 
 
Even though the overall reaction catalyzed by the Na+-NQR resembles that of complex I, its 

primary sequence shares almost no common motif with the H+- or Na+-translocating NDH I 

complexes, thus making a common ancestry unlikely (Beattie, Tan et al. 1994). One 

exception is the C-terminus of NqrA, which exhibits 21 amino acids that are conserved in the 

9.8 kDa protein of Neurospora crassa complex I, corresponding to the MWFE subunit of 

mammalian complex I (Marques, Duarte et al. 2003). MWFE is an accessory subunit 
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important for the assembly of the holo-complex (Yagi and Matsuno-Yagi 2003). NqrB - NqrE 

have no homologs with known structure, but their genes show sequence similarity to the 

Rhodobacter nitrogen fixation genes rnfD, rnfG, rnfE, and rnfA, respectively (Müller, Imkamp 

et al. 2008). The sequences of subunits NqrD and NqrE are very similar. Furthermore, several 

transmembrane stretches of NqrB, NqrD and NqrE have counterparts in Na+-channel forming 

proteins and bear a slight resemblance to parts of the ND1, ND2, ND4 and ND5 subunits of 

complex I from different species (Beattie, Tan et al. 1994). NqrF can be divided into a C-

terminal and an N-terminal domain (Türk, Puhar et al. 2004). The C-terminal domain 

contains the NADH and FAD binding site and is related to the family of ferredoxin:NADP+ 

oxidoreductases (FNR) (Steuber 2001). This class of enzymes has been well-characterized 

and over 30 crystal structures have been solved (Karplus and Faber 2004). The N-terminal 

domain contains two iron atoms bound by two cysteine residues and is homologous to 

ferredoxins of the vertebrate type bearing a [2Fe-2S] cluster (Bogachev, Bertsova et al. 2001; 

Türk, Puhar et al. 2004). 
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1.3. Electron carriers of the NADH:quinone oxidoreductases 

1.3.1. NADH 

Nicotinamide adenine dinucleotide consists of a nicotinamide-ribose and an adenosine 

diphosphate (ADP) moiety which are linked via a phosphate bond at the ribose-C5 of the 

nicotinamide-ribose. It exists in two redox states, the oxidized nicotinamide adenine 

dinucleotide (NAD+) and the reduced nicotinamide adenine dinucleotide hydride (NADH), as 

shown in figure 2. The nicotinamide can bind the C1 of the ribose in two different ways, 

forming two diastereomers, α and β. Organisms only use the β-nicotinamide form of the 

compound, which they either synthesize de novo from tryptophan or aspartic acid or from 

niacin, known as vitamin B3 (Tarr and Arditti 1982). 

 

 

Figure 2: The two redox states of nicotinamide adenine dinucleotide. 
 
 
Many vital redox reactions in a cell use or produce NADH: Glycolysis, β-oxidation and the 

citric acid cycle serve as pathways for the breakdown of nutrients. The energy released 

thereby is stored as NADH and further metabolized in the electron transport chain under 

generation of Δψ. NADH also acts as an reducing agent and is used in anabolic reactions such 

as gluconeogenesis (Sistare and Haynes 1985). The total physiological concentration of NAD+ 

is estimated to be approximately 0.3 mM in animal cells (Yamada, Hara et al. 2006) and 1.0 

to 2.0 mM in yeast (Belenky, Bogan et al. 2007). Mitochondrial and cytosolic NAD+ 

concentrations are balanced by the action of mitochondrial shuttles such as the malate-

aspartate shuttle (Bakker, Overkamp et al. 2001). The total cellular amounts of NAD+ and of 

NADH are also comparable (Lin and Guarente 2003), but the ratio between free NAD+ and 
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NADH differs greatly (about 700:1, (Williamson, Lund et al. 1967)), due to the amount of 

protein-bound NADH.  

In addition to its role as redox cofactor, NAD+ is used as substrate for ADP-ribosylation 

(Ziegler 2000), RNA modification (Chen, Kowtoniuk et al. 2009), second messenger synthesis 

(Guse 2004) and bacterial DNA ligases (Wilkinson, Day et al. 2001). Furthermore, it has been 

proposed that NAD+ acts as extracellular signaling molecule (Ziegler and Niere 2004) and as 

neurotransmitter in smooth muscle synapses (Mutafova-Yambolieva, Hwang et al. 2007). 

NAD+ which is phosphorylated at the ribose-C2 of the adenosine-ribose moiety is known as 

nicotinamide adenine dinucleotide phosphate NADP+. Like NAD+/H, NADP+/H is used as a 

redox pair in many cellular reactions, but is distinctly preferred in biosynthetic reactions such 

as lipid synthesis and is prominently featured in photosynthetic organisms. It is important to 

note that usually, NAD+ and NADP+ converting enzymes have a high specificity for their 

respective substrate: Ferredoxin-NADP+ reductase (FNR), the terminal enzyme of the light 

reaction of photosynthesis, is highly specific for NADP+ over NAD+ (a 32'000-fold preference 

(Piubelli, Aliverti et al. 2000)), whereas the specificity of NADH:quinone oxidoreductases is 

vice-versa. 

 

1.3.2. Flavins 

Another class of nucleotide-based redox cofactors are the flavins. The name flavin is derived 

from the Latin word flavus, meaning yellow. The yellow color of flavins arises from the 

absorption of visible light in the range of 360 - 500 nm by the oxidized lumichrome moiety, 

which is a tricyclic isoalloxazine ring methylated at the C7 and C8 positions (figure 3). 

Lumichrome which has a linearized D-ribose bound to the N10 position is known as 

riboflavin, or vitamin B2. It is the most abundant flavin in nature and also serves as substrate 

for the biosynthesis of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). 

Riboflavin was first extracted from milk and natural sources are milk products, vegetables, 

egg, fish, meat and whole-grain bread. In FMN, riboflavin is phosphorylated at the 5'-

hydroxyl of the ribose moiety. In FAD, a second nucleotide, ADP, is attached by a phosphate 

bond to the riboflavin (figure 3). 
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Figure 3: The structure of flavin and flavin cofactors. From: (Casutt 2010). 
 
 

Flavins have three distinct redox states: the fully-oxidized flavoquinone, the one-electron 

reduced flavosemiquinone radical and the two-electron reduced flavohydroquinone. As the 

pH of the surrounding environment changes, each of these states could exist in a neutral, an 

anionic or a cationic form (Müller 1987). Depending on the redox and protonation state, 

flavins exhibit different optical properties: Oxidized flavoquinone appears yellow with 

characteristic maxima at 377 and 450 nm in the UV-visible spectrum. The neutral 

flavosemiquinone absorbs in the 550 - 650 nm range with a blue color. When deprotonated, 

the absorbance spectrum shifts to 370 - 490 nm, which appears red. Fully reduced 

flavohydroquinone shows a small but broad absorption maximum in the range of 350 nm 

and appears colorless (Massey and Palmer 1966). 

Flavoproteins are extremely abundant: genome searches indicate that around 4 % of all 

microbial polypeptides are associated with FMN or FAD or both cofactors. This only 

represents confirmed flavoproteins and proteins with sequence similarity to known flavin-

binding motifs. The actual number is likely to be even higher (Reid 2002). 

Most flavoenzymes contain a FMN or FAD cofactor which is tightly, but non-covalently 

bound. Still, a large number of covalently bound flavin coenzymes exist (Kearney and Kenny 

1974). Only a small subset of enzymes use riboflavin as a prosthetic group, most of which are 

involved in flavin synthesis, transport and storage (White and Merrill 1988). Examples of 

FAD-containing redox enzymes are monoamine-oxidase, ferredoxin-NADP+ reductase, 
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nitrate reductase and glucose oxidase (Zhou, Lewis et al. 1995; Deng, Aliverti et al. 1999). 

FMN flavoenzymes include flavodoxin, flavoredoxin, NADH-rubredoxin oxidoreductase, 

adenosine 5'-phosphosulfate reductase and FMN-binding protein (Kitamura, Kojima et al. 

1994; Zhou and Swenson 1995). 

 

1.3.3. Iron-sulfur clusters 

Iron-sulfur (Fe-S) clusters are inorganic redox cofactors consisting of two or more iron atoms 

bridged by sulfide ions and tetrahedrally coordinated to cysteine or histidine residues of a 

protein (Beinert 2000). The most common forms are the [2Fe-2S], [4Fe-4S] and [3Fe-4S] 

clusters. Electrons are usually transferred by one or more irons switching between the Fe2+ 

and Fe3+ oxidation states. 

Besides NADH:quinone oxidoreductases, there are many metalloproteins exhibiting iron-

sulfur clusters, such as the ferredoxins, hydrogenases and nitrogenases (Lippard and Berg 

1994). Since iron atoms have unpaired electrons, electron paramagnetic resonance (EPR) is 

known as the method of choice for the specific detection of iron-sulfur clusters and for the 

analysis of their properties. 

 

1.3.4. Quinones 

Quinones are a class of organic molecules containing a fully conjugated cyclic dione structure. 

The most abundant quinones in nature are aptly named ubiquinones, consisting of a 1,4-

benzoquinone redox-active head group and a polyprenyl side chain of variable length. As 

depicted in figure 4, the quinone head groups may contain different substituents R1, R1' and 

R2, which determine their structural and optical properties, but do not affect the redox 

behavior. Ubiquinones (Q) have methoxy groups in the R1 and R1' positions and a methyl 

group at the R2 position. Menaquinones (known as vitamin K2) have their R1 and R1' 

positions joined by an aromatic ring, forming a naphtoquinone system. In E. coli, 

biosynthesis of menaquinone or ubiquinone involves methylation at the R2 position of the 

demethylmenaquinone or demethylubiquinone by a C-methyltransferase encoded by the 

ubiE gene. Mutation of this gene led to deficiencies in bacterial growth and respiration 

(Wissenbach, Ternes et al. 1992). Other common quinones are phylloquinone (vitamin K1) 

http://en.wikipedia.org/wiki/Ferredoxin
http://en.wikipedia.org/wiki/Hydrogenase
http://en.wikipedia.org/wiki/Nitrogenase
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and plastoquinone. The former is a menoquinone variant used in posttranslational 

modification reactions. It has a tail consisting of one isoprenoid and 3 isopentyl units. 

Plastoquinone comprises a 1,4-benzoquinone with methyl groups at the R1 and R1' positions 

and no substituent at the R2 position (Crane 1959; Collins and Jones 1981; Nishida, Nishijima 

et al. 2006). It is used by the photosystem II to shuttle electrons to the cytochrome b6f 

complex and simultaneously drive proton uptake into the thylakoid lumen. Ubiquinone 

exhibits an analogous function in the Q cycle between the mitochondrial complex I and 

cytochrome-bc1 complex, where at least 1 mol ubiquinone/mol complex I is thought to act as 

an integral redox cofactor of the membrane, participating in the generation of ΔμH+ (Yano, 

Magnitsky et al. 2000). 

 

 

Figure 4: The redox states and general structure of quinones. 
 
 
Quinone reductases either catalyze two one-electron transfer steps or a single two-electron 

transfer reaction. The one-step reaction has a midpoint redox potential at pH 7 (Em,7) of 

+60 mV (determined in aqueous solution), whereas the two-step reaction involves the 

formation of a semiquinone radical anion with a potential of -160 mV and the subsequent 

reduction to the quinol (QH2) with an Em,7 of +280 mV (determined in the bc1 complex) and 

thus is the energetically favorable pathway (Nicholls and Ferguson 1992). 

Quinones can be differentiated by optical spectroscopy: Ubiquinone exhibits a characteristic 

absorption maximum at 275 nm (Fato, Estornell et al. 1996), whereas plastoquinone absorbs 

at 254 nm (Crane 1959). Theoretically, it is also possible to distinguish the semiquinone 
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anion from quinone and quinol species optically, but this is often hindered by absorption of 

other molecules in this wavelength range, such as the NADH used in kinetic studies of 

NADH:quinone oxidoreductases or the absorption of aromatic amino acid residues. The 

semiquinone radical can be detected by EPR (Land and Swallow 1970). In the study 

presented here, the formation of QH2 species by the Na+-NQR was followed using the 

difference in absorbance between 248 and 268 nm, as described by Tokuda and Unemoto 

(Tokuda and Unemoto 1984). 
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1.4. Inhibitors 

Many of the specific NADH:quinone oxidoreductase inhibitors listed in table 2 exhibit a 

structural similarity to Q and are thought to compete with the substrate quinone or at least 

associate with the quinone binding site. They consist of a cyclic 'head' moiety with one or 

more conjugated ketone/enol groups and a long hydrophobic 'tail', facilitating interaction 

with the membrane (figure 5). Korormicin and 2-n-heptyl-4-hydroxyquinoline N-oxide 

(HQNO) are specific inhibitors of the Na+-NQR in the nanomolar range, which show non-

competitive inhibition in the presence of Q1 (Nakayama 1999). It is proposed that their tail 

groups interact with a hydrophobic pocket of NqrB (Hayashi, Shibata et al. 2002; Casutt, 

Nedielkov et al. 2011).  

 

 

Figure 5: Selected structures of NADH:quinone oxidoreductase inhibitors. Inhibitors specific 
for complex I (NDH I), alternative NADH dehydrogenase (NDH II) or Na+-NQR, as listed in 
table 2.  
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There are several known inhibitors which do not act as quinone analogs: rotenone and 

platanetin are flavonoids and are believed to interact with the flavoprotein regions of 

oxidoreductases. It is noteworthy that rotenone is a specific complex I inhibitor, whereas 

platanetin is specific for NDH II, hence why the NDH II is also called rotenone-insensitive 

NADH dehydrogenase. In addition, platanetin acts as uncoupler of the electron transport 

chain (Ravanel, Tissut et al. 1986). 5'-(N-ethyl-N-isopropyl)amiloride (EIPA) is a known 

inhibitor of cation/proton antiporters and has been shown to inhibit the Na+ translocation of 

the isolated NuoL subunit of E. coli NDH I (Gemperli, Schaffitzel et al. 2007; Pedersen, King et 

al. 2007). Silver ions (Ag+) act as specific inhibitor on NADH dehydrogenase activity of the 

Na+-NQR (Nakayama 1999), and 2,5-Dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) 

is a quinone analog and herbicide known to inhibit the mitochondrial cytochrome-bc1 

complex as well as b6f complex of photosynthetic organisms (Rich, Madgwick et al. 1991). 

The mechanisms of Na+-NQR inhibition by Ag+ and DBMIB are investigated in chapters 3.3.1. 

and 3.3.3. of this thesis. 
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1.5. Scope of the study 

The aim of this work is to expand the current understanding of NADH:quinone 

oxidoreductases by investigating structural and functional properties of key catalytic 

subunits. The recently published X-ray structures of the membrane-embedded arm of 

bacterial complex I (Efremov, Baradaran et al. 2010; Efremov and Sazanov 2011) allow us to 

take a closer look at the sub-microscopic machinery that drives the generation of the 

electrochemical gradient which respiratory organisms depend on. Our experiments with the 

isolated ND5 subunit from human or Yarrowia lipolytica complex I, described in chapter 2, 

provide biochemical data on the ion translocation function and the alteration of function by 

disease-associated mutations. 

The composition of Na+-NQR is completely different from that of complex I, although both 

enzymes catalyze the same redox reaction. We strive for the elucidation of this prime 

example of diversity in nature by focusing our investigations on the hinge points that both 

complexes have in common: the oxidation of NADH and the reduction of ubiquinone. Two 

electrons from NADH are transferred to a FAD cofactor by the NqrF subunit. Using site-

directed mutagenesis and high-resolution X-ray structures combined with biochemical 

studies, it was possible to create a model for catalysis and substrate selectivity on the atomic 

level of this electron input module. In addition, Ag+ was found to irreversibly bind to a 

cysteine residue in the NADH binding pocket, which leads to inhibition of the Na+-NQR and 

killing of V. cholerae in the nanomolar range. Looking at the electron acceptor part of the 

complex, we identified DBMIB as an inhibitor of the quinone reductase module supposedly 

formed by NqrA and NqrB. By the use of physicochemical and biochemical methods, we 

learn about the mode of substrate binding and inhibition and propose a redox mechanism of 

the Na+-NQR involving at least two quinones. The investigations relevant to the Na+-NQR are 

described in chapter 3 of this thesis. 
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Chapter 2   
 
Production and functional characterization of the 
antiporter-like ND5 subunit of complex I from 
Homo sapiens and Yarrowia lipolytica 
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2.1. Introduction 

2.1.1. The structure of respiratory complex I 

Complex I is one of four energy-converting enzyme complexes of the respiratory chain in 

mitochondria, chloroplasts or bacteria. It represents the main site of entry for electrons into 

the respiratory chain and couples the transfer of two electrons from NADH to ubiquinone 

with the transport of four protons across the membrane, although the exact stoichiometry is 

still debated (Walker 1992; Yagi and Matsuno-Yagi 2003; Brandt 2006; Zickermann, Kerscher 

et al. 2009). The mitochondrial complex I consists of 45 subunits (Carroll, Fearnley et al. 

2006). The comparison with the smaller, bacterial complex I (Friedrich, Abelmann et al. 

1998; Gabaldon, Rainey et al. 2005) indicates that the core enzyme can be divided into two 

subcomplexes: seven hydrophilic subunits of the peripheral arm form the essential 

oxidoreductase module (FP51K, FP24K, IP75K, IP49K, IP30K, IP21K and IP23K), catalyzing all 

redox reactions between NADH and ubiquinone (Hirst 2005), whereas the seven ND subunits 

(ND1 - 6, ND4L), which are encoded by the mitochondrial genome (Fearnley and Walker 

1992), represent the hydrophobic, membrane-spanning arm of the enzyme and catalyze its 

electrogenic activity. 

In 2006, the X-ray crystallographic structure of the peripheral arm of Thermus thermophilus 

complex I was determined (Sazanov and Hinchliffe 2006). This structure elucidated the 

spatial arrangement of the redox cofactors, leading to a model of the electron transfer chain 

shown in figure 1. The peripheral domain contains a noncovalently bound FMN and 8 - 10 

Fe-S clusters, of which 7 are thought to participate in the electron transfer reaction (figure 

1B). In 2010, the structure of the complete complex from Thermus thermophilus was solved 

(Efremov, Baradaran et al. 2010) at a resolution of 4.5 Å, followed in 2011 by the structure of 

the membrane arm of E. coli NDH I at 3 Å (Efremov and Sazanov 2011). The knowledge of 

the complete structure gave insight into the coupling of the redox reaction to the 

electrogenic reaction: an indirect mechanism was proposed in which ubiquinone reduction 

leads to a change in the conformation of helices at the interface between the membrane 

arm and the peripheral arm. This conformational signal is relayed to the ion transporting 

modules ND2, ND4 and ND5 (and probably a fourth module at the interface between ND2, 

ND3, ND4L and ND6) by a 60 - 110 Å-long, amphipathic alpha-helix of subunit ND5, 

supposedly driving ion pumping in a manner reminiscent of a steam engine (Efremov and 
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Sazanov 2011). A similar mechanism was proposed in view of the 3D structure at 6.3 Å 

resolution of the complex I from Y. lipolytica (Hunte, Zickermann et al. 2010). Efremov and 

Sazanov propose that each ion transport module consists of two 5-helix repeats forming two 

half-channels which are connected by polar residues und thus constitute a continuous 

proton-translocation pore (Efremov and Sazanov 2011). 

 

2.1.2. Homology to cation/proton antiporters 

It has been first observed by Walker and colleagues (Fearnley and Walker 1992) that subunit 

ND5 from complex I exhibits significant sequence similarity to a subunit of multicomponent 

cation/proton antiporters belonging to the MrpA-type family of transporters. Members of 

this family are subunit MnhA of the cation/H+ antiporter from Staphylococcus aureus and 

subunit EchA of the energy-converting hydrogenase from Methanosarcina barkeri 

(Hamamoto, Hashimoto et al. 1994; Mathiesen and Hägerhäll 2002; Mathiesen and 

Hägerhäll 2003). These antiporters couple the transport of cations like sodium, potassium or 

lithium with the antiport of H+ and therefore play a role in the bacterial cation homeostasis 

(Hiramatsu, Kodama et al. 1998; Kosono, Morotomi et al. 1999; Blanco-Rivero, Leganes et al. 

2005; Swartz, Ikewada et al. 2005). The central fragment of NuoL/ND5 constitutes the most 

conserved region, exhibiting the highest sequence similarity to cation/H+ antiporters 

(Zhadanov, Grechanina et al. 2007). Experiments revealed that the ND5 homolog NuoL is 

even able to complement a Na+/H+ antiporter deficient mutant from Bacillus subtilis 

(Moparthi, Kumar et al. 2011). The combined evidence of homology to cation/proton 

antiporters strongly suggests that ND5, as well as its relatives ND2 and ND4, are likely to 

provide cation transport channels through the hydrophobic part of complex I (Gemperli, 

Schaffitzel et al. 2007). 

 

2.1.3. Mitochondrially encoded complex I subunits are hotspots for mutations 

causing muscular and neurodegenerative diseases 

The absence of suitable genetic tools for manipulation of mitochondrial DNA has made it 

difficult to study mutations in genes encoding for respiratory chain components which are 

associated with neurodegenerative diseases. In particular, a functional analysis of the ND5 

subunit of complex I is needed since it represents a hot spot for mutations (Liolitsa, Rahman 
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et al. 2003; Zhadanov, Grechanina et al. 2007). These mutations are frequently observed in 

mitochondrial and neurodegenerative diseases like Leber's hereditary optic neuropathy 

(LHON), MELAS syndrome (Mitochondrial encephalomyopathy, lactic acidosis, and stroke-

like episodes), Leigh disease, Myoclonic epilepsy with ragged red fiber (MERRF) or 

Parkinson's disease (PD). Five of the most prevalent mutations are listed in table 4. All those 

diseases have in common that cells with a high energy demand are affected, which suggests 

a major disorder in the respiratory chain of these cells. A study aimed to elucidate the 

correlation between a dysfunction of complex I and neurodegenerative diseases. It showed 

that 1-methyl-4-phenylpyridinium and rotenone, inhibitors of complex I, cause drug-induced 

Parkinsonism in rodents (Caboni, Sherer et al. 2004). 

 

Table 4: Frequently observed mutations of human ND5 in neurodegenerative diseases and 

the corresponding amino acid exchanges introduced into ND5 from Yarrowia lipolytica. 

Human Y. lipolytica Disease Reference 

F124L F123L 
MELAS, PD, 

Leigh 

(Taylor, Morris et al. 2002; Parker and Parks 2005; 

Zhadanov, Grechanina et al. 2007) 

E145G E144G MELAS, PD (Liolitsa, Rahman et al. 2003; Parker and Parks 2005) 

A171V A170V LHON (Mayorov, Biousse et al. 2005) 

A236T  A239T  MELAS, MERFF (Naini, Lu et al. 2005) 

M237L M240L MELAS (Liolitsa, Rahman et al. 2003) 

MELAS: Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes, LHON: 
Leber's hereditary optic neuropathy, MERFF: Myoclonic Epilepsy with Ragged Red Fibers, PD: 
Parkinson's disease. 
 
 

2.1.4. Cation transport of the ND5 subunit of mitochondrial complex I 

The knowledge about complex I and its subunits was increased substantially in the last years. 

The crystallographic analysis of Y. lipolytica complex I (Hunte, Zickermann et al. 2010) and 

especially the recently published X-ray structure of the membrane bound subunits of NDH I 

from E. coli at 3.0 Å resolution (Efremov and Sazanov 2011) answers many open questions. 

However, a large number of unsolved questions remains. One of these questions is whether 

membrane bound subunits of complex I transport cations instead of, or in addition to, 

protons. Indications that the transport mechanism also includes a Na+ translocation event 

become more frequent. Thus far it could be shown that NDH I from E. coli transports Na+ in 

preference to H+ in native inverted vesicles from the Na+/H+ antiporter deficient E. coli 
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mutant EP432 (Steuber, Schmid et al. 2000). Sodium ion uptake could also be demonstrated 

with vesicles, containing a truncated version of the NDH I subunit NuoL (Steuber 2003). With 

other vesicles from S. cerevisiae cells expressing a protein A/NuoL fusion protein, Na+ and 

also K+ uptake was measurable (Gemperli, Schaffitzel et al. 2007). The ability to translocate 

sodium ions could also be shown for NDH I from other bacteria like Klebsiella pneumoniae 

(Gemperli, Dimroth et al. 2002; Gemperli, Dimroth et al. 2003; Vgenopoulou, Gemperli et al. 

2006) and Rhodothermus marinus (Batista, Fernandes et al. 2010). 

Recently, Roberts and Hirst presented evidence that the deactive form of mitochondrial 

complex I of Bos taurus (Roberts and Hirst 2012) catalyzes Na+/H+ antiport. Prior to that Lin, 

Puhar and Steuber could already show that complex I from the yeast Yarrowia lipolytica has 

the capacity to catalyze NADH-driven Na+ extrusion (Lin, Puhar et al. 2008) and that this 

function is thus not restricted to bacterial enzymes. This prompted us to investigate if the 

individual ND5 subunit of the Y. lipolytica complex also catalyzes Na+ transport. In the 

present study, five of the most frequent mutations in human ND5 were transposed to 

Y. lipolytica ND5, with the aim to study their effect on the cation transport activity of ND5 

(table 4). In addition, we hypothesized that cation transport by ND5 would interfere with 

alkali metal cation homeostasis in S. cerevisiae (Sychrova 2004). S. cerevisiae is an excellent 

model organism for the study of mitochondrial proteins (Schmidt, Hennig et al. 1983; Yaffe 

and Schatz 1984; Glick and Von Heijne 1996; Meisinger, Pfanner et al. 2006). The organism 

lacks complex I and relies on alternative NADH dehydrogenases for respiration (Foury, 

Roganti et al. 1998) which enabled us to study the function of a heterologously expressed 

ND5 subunit from human complex I.  
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2.2. Materials & Methods 

2.2.1. Chemicals and enzymes 

All chemicals were obtained from Sigma-Aldrich/Fluka, unless otherwise stated. Restriction 

enzymes and T4 DNA ligase were purchased from New England Biolabs. DNA polymerase 

and PCR buffers were obtained from Finnzymes. 

 

2.2.2. Construction of plasmids 

Escherichia coli K-12 strains DH5α or BL21 (DE3) (Hanahan 1983) (MBI Fermentas) served as 

host for the amplification of plasmids which conferred ampicillin resistance. The synthetic 

Homo sapiens ND5 gene (Eurofins Medigenomix) was cloned into plasmid pNLt1 (Gemperli, 

Schaffitzel et al. 2007) at Sal I restriction sites. The sfgfp gene encoding for an engineered 

superfolding green fluorescent protein (GFP) (Pedelacq, Cabantous et al. 2006) was 

amplified using PCR primers 5'-AAAATAGCGGCCGCACTAGTATGAGCAAAGGAG-3' (forward) 

and 5'-TCAGCCGAATTCTTGTAGAGTTCATCCATGCCATG-3' (reverse) and inserted at NotI and 

EcoRI restriction sites of pNLt1 containing the ND5 insert to generate plasmid pG5N (table 5). 

Restriction sites are underlined, bases annealing to the sfgfp gene are shown in bold. 

Plasmid pG was generated by cloning the sfgfp gene into pNLt1 using NotI and XhoI 

restriction sites. Oligonucleotide primers were synthesized by Sigma Genosys. Sequences 

coding for the mitochondrial targeting sequence of ATPase delta subunit (UniProt accession 

No. Q12165, (Giraud and Velours 1994)) and the Flag peptide (Einhauer and Jungbauer 2001) 

were joined to the Homo sapiens ND5 gene using PCR primers 5'-

TAGAGCGGCCGCACTAGTATGTTACGTTCAATTATTGGAAAGAGTGCATCAAGATCATTGAATTTCGT

CGCTAAGCGTTCATATATGACAATGCACACCACG-3' (forward) and 5'-GCAAACTCGAGTTATTTA 

TCGTCATCATCTTTATAATCGGTTATCAGTAAAAGAG-3' (reverse). Religation into template 

plasmid at restriction sites NotI and Xho I yielded plasmid pM5NF (table 5). Restriction sites 

are underlined, bases annealing to the Homo sapiens ND5 sequence are shown in bold. 

Oligonucleotide primers were synthesized by Microsynth. The sequence of the synthetic 

Homo sapiens ND5 gene was codon-optimized for E. coli and S. cerevisiae expression under 

retention of the amino acid sequence of human ND5 (ND5Hs) as deposited on Swiss-Prot 

(UniProt accession No. P03915). Single nucleotide substitutions in plasmids pM5N1F, 
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pM5N2F, pG5N1 and pG5N2 (table 5) were introduced by the Quickchange mutagenesis kit 

(Stratagene) using primers 5'-ATAGGGTGGGTGGGAGTAGGC-3' (forward) and 5'-

TAATCGAATTGGGGCTATCGGCTTTATAC-3' (forward) and their reverse complement 

counterparts. The calculated molecular masses of the fusion proteins are 94876.6 Da 

(GFPND5Hs) and 70488.2 Da (MTS-ND5Hs-Flag) respectively. Vector pETHP for production of 

protein A fused to six histidines at its N-terminus in E. coli was generated by cloning the 

protA gene from plasmid YEp (ProtA-TEV-002c) (Schenk, Rush et al. 2001) into pET2C 

(Stratagene). 

The sequence of the Yarrowia lipolytica ND5 gene was codon-optimized for E. coli and 

S. cerevisiae expression under the retention of the amino acid sequence of 

Yarrowia lipolytica ND5 (ND5Yl) as deposited on Swiss-Prot (UniProt accession no. Q9B6D3). 

The optimized gene was synthesized (DNA 2.0) and cloned into plasmid pG5N (Steffen, 

Gemperli et al. 2010) at EcoRI and XhoI restriction sites to generate plasmid pGYl5N which 

encodes for a GFP N-terminally fused to the ND5Yl polypeptide. Using pGYL5N as template 

for site-directed mutagenesis (table 5), plasmid pGYL5N1 was created using primers 5'-

ATGGAAACGGATCCGCACCAAGTTCGCTTCTTTAGCCTGTTATCAATGCTCACCTTTTGG-3' and 5'-

ATGTGGGGGGAGGGCGTGAATG-3'; pGYL5N2, pGYL5N3, pGYL5N4 and pGYL5N5 were 

created using primer pairs 5'-CGTCTTATTTGTGGGTTGGGGGTTCATT-3' and 5'-CGCCAATGAAC 

CCCCAACCCACAAATAAGACG-3', 5'-CCGCACTGTCCGTTGTTCTGATGAATCGC-3' and 5'-CATCAG 

AACAACGGACAGTGCGGATTTCATGGC-3', 5'-GGTTAACGTTAACAATGGAAGGCCCG-3' and 5'-

GGAGTCGGGCCTTCCATTGTTAACGTTAACC-3', 5'-GTTAACGTTAGCACTGGAAGGCCCGAC-3' and 

5'-GGAGTCGGGCCTTCCAGTGCTAACGTTAACC-3' as well as flanking primers 5'-ATGGAAACGG 

ATCCGCACCAAGTTCGC-3' and 5'-ATGTGGGGGGAGGGCGTGAATG-3'. Mutated bases are 

shown in bold. BamHI and XhoI restriction sites were used for ligation into pGYL5N. 

Oligonucleotides were synthesized by Eurofins MWG Operon. PCR was performed on 

pGYl5N using primers 5'-AGAGGCGGCCGCACTAGTATGCATCATCATCACCATCACCATCACG-3' 

(forward primer, Microsynth) and 5'-TCAGCCGAATTCTTGTAGAGTTCATCCATGCCATG-3' 

(reverse primer, Sigma Genosys) and inserted at NotI and EcoRI restriction sites of pGYl5N to 

generate plasmid pHGYl5N, which adds an N-terminal 8xHis tag to the fusion protein. 

Restriction sites are underlined; bases annealing to the sfgfp template are shown in bold. 

The calculated molecular mass of the fusion protein is 100'669.5 Da (GFPND5Yl), the mass of 
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the histidine-tagged construct (His-GFPND5Yl) is 102'402 Da. All constructs were confirmed 

by DNA Sequencing (Microsynth AG, Balgach, Switzerland). 

 

Table 5: Plasmids used in this study.  

Plasmid Description and relevant characteristics Origin or reference 

pRS316 
Yeast shuttle vector; pBluescript derivative;  

URA3; CEN6 ARS4; Apr 

(Sikorski and Hieter 

1989) 

pNLt1 
E. coli nuoLN inserted into pGREG5006, a derivative of the 

pRS vector 

(Gemperli, Schaffitzel 

et al. 2007) 

pG Codes for SFGFP; URA3; Apr; KanMX 
(Steffen, Gemperli et 

al. 2010) 

pG5N 
Codes for ND5Hs with N-terminal SFGFP tag;  

URA3; Apr; KanMX 

(Steffen, Gemperli et 

al. 2010) 

pG5N1 pG5N containing a mutation coding for E145V in ND5Hs 
(Steffen, Gemperli et 

al. 2010) 

pG5N2 pG5N containing a mutation coding for D179A in ND5Hs 
(Steffen, Gemperli et 

al. 2010) 

pM5NF 
Codes for ND5Hs with N-terminal MTS and C-terminal Flag 

tag; URA3; Apr; KanMX 

(Steffen, Gemperli et 

al. 2010) 

pM5N1F pM5NF containing a mutation coding for E145V in ND5Hs 
(Steffen, Gemperli et 

al. 2010) 

pM5N2F pM5NF containing a mutation coding for D179A in ND5Hs 
(Steffen, Gemperli et 

al. 2010) 

pETHP Codes for His-tagged protein A; Apr 
(Steffen, Gemperli et 

al. 2010) 

pGYL5N Derivative of pG5N, containing the Y. lipolytica ND5 gene This work 

pHGYL5N Codes for GFPND5Yl with N-terminal 8xHis-tag  This work 

pGYL5N1 pGYL5N containing a mutation coding for F123L in ND5Yl This work 

pGYL5N2 pGYL5N containing a mutation coding for E144G in ND5Yl This work 

pGYL5N3 pGYL5N containing a mutation coding for A170V in ND5Yl This work 

pGYL5N4 pGYL5N containing a mutation coding for A239T in ND5Yl This work 

pGYL5N5 pGYL5N containing a mutation coding for M240T in ND5Yl This work 

Apr: ampicillin resistance, KanMX: kanamycin resistance, URA3: uracil selection marker 
 
 

2.2.3. Bioinformatic tools 

The amino acid sequences of human ND5 (UniProt accession no. P03915) and the homolog 

from Y. lipolytica (Q9B6D3) were aligned to Escherichia coli NuoL (P33607), the H+/Na+ 

antiporter MnhA from Staphylococcus aureus (Q9ZNG6) and to antiporter EchA from 

Methanosarcina barkeri (Q46G55) or complex I subunit Nqo12 from Rhodothermus marinus 

(Q4QSB1) respectively using the Clustal W (Thompson, Higgins et al. 1994) or the CLUSTAL Ω 
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(1.0.3) (Sievers, Wilm et al. 2011) multiple sequence alignment software on the EBI server 

(http://www.ebi.ac.uk/Tools/msa/clustalo/). The 3D structure of E. coli NuoL (PDB 3RKO) 

was analyzed for possible ion pathways and cavities using CAVER 2.1.2 (Petrek, Otyepka et al. 

2006) and visualized with PyMOL (Schrödinger 2010). 

A hydrophobicity-based model of the transmembrane arrangement of human ND5 was 

generated using ten different topology prediction methods: TMHMM 

(http://www.cbs.dtu.dk/services/TMHMM-2.0/) (Sonnhammer, von Heijne et al. 1998), 

TMpred (http://www.ch.embnet.org/software/TMPRED_form.html) (Hofmann and Stoffel 

1993), SOSUI (http://bp.nuap.nagoya-u.ac.jp/sosui/sosui_submit.html) (Hirokawa, Boon-

Chieng et al. 1998), DAS (http://www.sbc.su.se/~miklos/DAS/) (Cserzo, Wallin et al. 1997), 

HMMTOP (http://www.enzim.hu/hmmtop/) (Tusnady and Simon 2001), TopPred 

(http://mobyle.pasteur.fr/cgi-bin/portal.py?form=toppred) (Claros and von Heijne 1994), 

MEMSAT (http://bioinf.cs.ucl.ac.uk/psipred/) (Jones, Taylor et al. 1994), Split 4.0 

(http://split.pmfst.hr/split/4/) (Juretic, Zoranic et al. 2002), PHDhtm (http://npsa-

pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_htm.html) (Rost, Casadio et al. 

1995), PolyPhobius (http://phobius.sbc.su.se/poly.html) (Kall, Krogh et al. 2005). All methods 

were used with default settings and an eukaryotic dataset where available. In the consensus 

topology model, all residues predicted as certain transmembrane were assigned a value of 

1.0. Residues predicted as 'putative transmembrane' or 'helical cap' were assigned a value of 

0.5. The sum of the values from ten different prediction methods was calculated. Residues 

achieving a sum of 6.5 or higher were defined as 'transmembrane', residues achieving a sum 

of 5, 5.5 or 6 were defined as 'putative transmembrane'. In the consensus model, the N-

terminus of ND5Hs was predicted to be located in the intermembrane space ( ='out'). 

 

2.2.4. Cell growth, protein expression and purification 

Standard protocols were followed for yeast manipulation (Abelson, Guthrie et al. 2004) and 

transformation using lithium acetate (Gietz, St Jean et al. 1992). All ND5Hs and ND5Yl 

constructs were expressed in S. cerevisiae strain BJ3505 ((Jones 1991), genotype MATα his3-

Δ200 pep4::HIS3 prbl-Δl.6R (gal3) ura3-52 lys2-801 trp1-Δ101(gal2) canl) which is URA3 

deficient and allows selecting for plasmids harboring the URA3 gene required for uracil 

synthesis. This strain is furthermore deficient in endoproteinases A and B, which diminishes 
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proteolytic degradation (Jones 1991). Cells were grown as described previously (Gemperli, 

Schaffitzel et al. 2007). To grow cells expressing ND5 variants of Y. lipolytica, baffled flasks 

were used. GAL1 controlled expression of the ND5 fusion proteins was induced by transfer 

to minimal YNB medium (0.67 % yeast nitrogen base with supplementary amino acids and 

adenine) containing 2 % galactose for 27 h (mid-log phase) prior to harvesting. Cells were 

counted using a hemocytometer (Fisher Scientific). Cells were harvested and disrupted by 

one passage through an Emulsiflex C3 (Avestin) cell disruptor at approx. 25 kPsi in 10 mM 

Tris-HCl, 10 mM KCl, pH 8.0 in the presence of protease inhibitor mix (complete EDTA-free, 

Roche). Cell debris and unbroken cells were removed by centrifugation for 5 min at 4'000 x g. 

Membranes from the endoplasmatic reticulum and the nuclear envelope were obtained as 

described in (Gemperli, Schaffitzel et al. 2007). Mitochondria were isolated as described in 

(Meisinger, Pfanner et al. 2006). Mitochondrial membranes were separated into outer 

membrane and inner membrane according to the protocol described in (Daum, Bohni et al. 

1982). To obtain purified GFP as standard for the quantification of GFPND5Hs fusion proteins, 

crude extracts from S. cerevisiae transformed with pG were centrifuged for 60 min at 

35'000 rpm in a Beckman Type 70 Ti rotor. The supernatant containing the cytosolic fraction 

and GFP was concentrated by ultrafiltration and passed through a 0.2 µm filter. Proteins in 

1.3 M NH4SO4, 10 mM Tris/HCl, 1 mM EDTA (pH 8.0) were applied to a HiTrap Phenyl HP 

column (GE Healthcare) and eluted with a linear gradient from 2 M to 0 M NH4SO4 (Peckham, 

Bugos et al. 2006). Peak fractions were combined and loaded on a size exclusion 

chromatography column (Superdex 200 10/300, GE Healthcare), equilibrated with 200 mM 

NaCl in 10 mM Tris/HCl, 1 mM EDTA, pH 7.9. To purify His-GFPND5Yl encoded by plasmid 

pHGYL5N, membranes were collected as described above and solubilized for 2 h at 4 °C in 

20 mM Tris/HCl, 0.5 M NaCl, pH 8.0 containing 1 % Zwittergent 3-14. After centrifugation for 

30 minutes at 126'000 x g, the supernatant was passed through a 0.2 µm filter and loaded 

onto a Ni Sepharose HP column (5 ml bed volume, GE Healthcare) equilibrated with 20 mM 

Tris/HCl, 0.5 M NaCl, pH 8.0 containing 0.02 % Zwittergent 3-14. A washing step was 

performed with 5 column volumes of buffer containing 30 mM imidazole. His-GFPND5Yl was 

eluted with 400 mM imidazole. All steps were performed at 4 °C. His-tagged protein A used 

as standard for quantification of the protein A-NuoL fusion protein was produced in E. coli 

BL21 (DE3) transformed with pETHP (table 5). Following enrichment by Ni-NTA Agarose 
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(Qiagen), His-protein A was applied to a MonoQ anionic exchange column (GE Healthcare) 

and eluted with a linear gradient from 25 mM to 1 M NaCl in 20 mM Tris/HCl, pH 8.0. 

 

2.2.5. Membrane solubilization and protease protection assay 

Solubilization screening was performed in a volume of 200 µl with a protein content of 1 mg 

and 0.8 % - 2 % detergent in TBS (Ausubel, Brent et al. 1995). Samples were gently shaken at 

4 °C for 2 h and then centrifuged at 100'000 x g for 30 min. Pellets were resuspended in 

200 µl TBS and 20 µl of each fraction analyzed by SDS-PAGE. For the protease protection 

assay, ER vesicles and 10 % Zwittergent 3-14 solution were mixed in TBS to a final 

concentration of 10 mg total protein/ml and 1 % or 0.8 % detergent. The membranes were 

gently agitated for 1 h at 4 °C. Centrifugation for 30 min at 100'000 x g yielded solubilized 

membranes in the supernatant. Solubilized and native membranes (400 µg total protein) 

were incubated for 5 minutes at 37 °C with 20 U of Trypsin (1 x crystallized, Carl Roth GmbH). 

Aliquots were withdrawn after the indicated times and analyzed by SDS-PAGE. 

 

2.2.6. Analytical methods 

Protein was determined by the bicinchoninic acid method (Smith, Krohn et al. 1985) using 

the reagent from Pierce. ER membranes were analyzed by SDS-PAGE (Schägger and von 

Jagow 1987). Ten standard proteins in the range from 250 to 10 kDa were used (Precision 

Plus Protein Standards, Bio Rad). In some experiments the 25, 50, 75 kDa markers were 

fluorescently labeled (Western C Protein Standard, Bio Rad). The concentration of purified 

GFP and His-GFPND5Yl was determined from the absorbance of GFP at 485 nm using an 

extinction coefficient of 8.33 x 104 M-1 x cm-1 (Pedelacq, Cabantous et al. 2006). 

Rates of NADH oxidation by mitochondrial membranes with O2 as electron acceptor were 

determined spectrophotometrically in quadruplicates as described in (Tao, Casutt et al. 

2008). Antimycin was added at a concentration of 10 nM. 

The localization of ND5Hs and ND5Yl variants was determined by immunostaining with 

antibodies against the Flag peptide (Sigma-Aldrich), subunit 2 of Saccharomyces cerevisiae 

cytochrome c oxidase (Cox2p, Invitrogen), porin (Invitrogen) and dolichol phosphate 

mannose synthase (Dpms, Invitrogen) followed by incubation with horseradish peroxidase 



Chapter 2 - The antiporter-like ND5 subunit of complex I  Powerful Proteins 

 

 
36 
 

conjugated secondary antibody (Sigma-Aldrich). Aliquots of mitochondrial fractions in 10 µl 

10 mM Tris/HCl, pH 7.4, were spotted onto nitrocellulose membrane (Hybond-C Extra, 

Amersham Bioscience) and washed with 25 mM Tris, 192 mM glycine, 0.05 % SDS in 25 % 

(v/v) methanol. Detection was performed by chemiluminescence using the ECL kit 

(Amersham Bioscience) and a Bio-Rad ChemiDoc XRS+ CCD system with 5 min exposure time. 

The fluorescence of GFP-tagged ND5 variants (Homo sapiens and Yarrowia lipolytica) was 

detected on 10 % to 14 % acrylamide gels after size separation by SDS-PAGE according to 

protocols for GFP-tagged membrane protein expression (Drew, Lerch et al. 2006). 

Fluorescence imaging was performed using a Typhoon Trio system (GE Healthcare) with 

excitation at 488 nm and a 526 nm emission filter. GFP and protein A standards, and their 

respective fusion proteins, were separated by SDS-PAGE and quantified by in-gel 

fluorescence (GFP) or chemiluminescence after Western blotting (protein A) using the 

ImageQuant TL software (GE Healthcare). 

LC-ESI-MS of purified His-GFPND5YL was performed with fragments obtained by tryptic in-gel 

digestion of the fluorescent band. The mass spectrometric analysis was performed by the 

Life Science Center service unit at the University of Hohenheim: The gel slices were first 

washed in 200 µl ddH2O and subsequently in 150 µl acetonitrile (ACN). The samples were 

incubated for 30 min at 56 °C in 150 µl DTT solution (10 mM DTT in 100 mM ammonium 

bicarbonate). DTT was removed and the samples were washed with 150 µl ACN, the liquid 

was discarded. 85 µl iodacetamide solution (55 mM iodacetamide in 100 mM ammonium 

bicarbonate) was added and the reaction was incubated for 20 minutes. Afterwards the gel 

slices were washed with 150 µl 100 mM ammonium bicarbonate and subsequently with 

150 µl ACN. Tryptic digest was done by addition of a trypsin solution (10 ng/µl in 40 mM 

ammonium bicarbonate) and performed at 37 °C over night. Samples were cooled to room 

temperature and 2 µl 10 % trifluoroacetic acid were added. The supernatant was transferred 

to a fresh reaction vessel and extraction of proteins was achieved by addition of 100 µl 

extraction buffer (5 % formic acid/ACN in a 1:2 concentration) at 37 °C. The tryptic peptides 

were dissolved in a volume of 10 µl 0.1 % formic acid before they were applied on a nano-

UPLC system (ultra performance liquid chromatography, Waters) connected to an FT-ESI-

massspectrometer (Thermo Fischer Scientific). For detection both linear iontrap (LTQ) and an 

orbitrap analyzer were used in parallel. 
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2.2.7. Preparation and immunostaining of cells for microscopic analysis 

A modified immunofluorescence protocol for yeast was used (Pringle 1991). Frozen 

S. cerevisiae BJ3505 cells were thawed and resuspended in PBS (Ausubel, Brent et al. 1995) 

containing 4 % paraformaldehyde, incubated for 1 h at room temperature and washed in 

PBS. Aliquots of 2 x 108 cells were pelleted (4'000 x g, 5 min) and resuspended in 1 ml PBS to 

which 150 U of lyticase and 2 µl β-mercaptoethanol were added. Formation of spheroblasts 

was stopped after 2 min by centrifugation (1'000 x g, 5 min) and washing twice in PBS. 

Coverslips (0.17 mm thickness) were coated with 100 µl 0.01 % poly-L-lysine for 10 min at 

room temperature. The coverslips were rinsed in double distilled H2O and subsequently 

dried under air for 1 h. The coverslips were placed coating-side up into a 24 well microplate 

(Greiner) and covered with cell suspension which was allowed to dry for 1 h at room 

temperature. After rinsing with PBS, the coverslips were incubated in blocking buffer (1 % 

BSA in PBS) for 1 h. For the localization of cellular compartments, coverslips were applied 

cell side down onto 20 µl drops of 5 µg/ml of primary antibodies (mouse anti-Dpms, 

Invitrogen; rabbit anti-neurospora porin, gift from R. Lill, University of Marburg; mouse and 

rabbit anti-Flag, Sigma-Aldrich) and, if indicated, 10 µg/ml of 4', 6-diamidino-2-phenylindol 

(DAPI) in blocking buffer. The coverslips were incubated in a humidified chamber at room 

temperature for 1 h. Excess antibody solution was removed with a fiber-free paper and the 

coverslips were washed five times with PBS. Incubation with secondary antibodies anti-

rabbit IgG Alexa Fluor 488 (Invitrogen), anti-rabbit IgG Cy3 (Sigma-Aldrich) and anti-mouse 

IgG Alexa Fluor 555 (Invitrogen) was performed using the same procedure as described for 

the reaction with primary antibodies. To perform labeling of the entire cell (i.e. cytoplasm 

and nucleus) and provide a background for visualization of GFPND5Hs, fixed and 

permeabilized S. cerevisiae BJ3505 cells were incubated in HCS CellMask Deep Red staining 

solution (Invitrogen) for 30 minutes at room temperature. Cells were washed three times in 

PBS. Coverslips were dried and subsequently inverted onto a clean microscopy slide 

containing a drop of fluorescent mounting medium (Dako). 
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2.2.8. Microscopic imaging 

Confocal laser-scanning microscopy was performed on a CLSM SP5 system (Leica) in single 

image and z-stack sequential scan modes. Excitation wavelengths were 405 nm for DAPI, 

488 nm for Alexa Fluor 488 and GFP, and 543 nm for Alexa Fluor 555 and Cy3.  

Widefield microscopy was performed on a Zeiss AxioImager.M1 and AxioCam MRm, using a 

Plan-Apochromat 100x oil objective, HXP 120 lamp. For detection of GFPND5Hs/Yl variants, a 

HE eGFP filter was used. For detection of the cellular background stained with HCS CellMask 

Deep Red, a CY5 filter was used. For computational image restoration, z-stacks were 

deconvoluted with the Huygens (SVI) or Axiovision (Zeiss) software and visualized as 

maximum intensity projection with the imaging software Imaris (Bitplane). 

 

2.2.9. Influence of salt on growth of S. cerevisiae 

S. cerevisiae BJ3505 cells transformed with plasmids encoding for ND5Hs variants (table 5) 

were grown for 24 h to saturation in liquid YNB-glucose, washed with water, and 

resuspended in YNB-galactose to induce ND5Hs expression. Ten-fold serial dilutions of cell 

suspension from OD600 10 to 0.001 were prepared and spotted in 5 µl aliquots onto YNB-

galactose agar plates. YNB medium contains 28 mM Na+, 7 mM K+ and no Li+ (Wickerham, 

Flickinger et al. 1946; Wickerham and Burton 1948; Nolan and Nolan 1972). In some 

experiments 600 mM NaCl, 800 mM KCl or 100 mM LiCl were added as indicated. Growth 

was monitored for 10 days at 30 °C under air. For growth experiments in liquid media, cells 

grown in YNB-glucose were washed with 10 ml H2O and adjusted to an absorbance at 

600 nm of 5. Aliquots of 1 ml were mixed with 4 ml YNB-galactose, and cells were grown 

aerobically under vigorous shaking (220 rpm) at 30 °C in the absence or presence of 100 mM 

LiCl. 

 

2.2.10. Sodium ion transport into ER vesicles 

Experiments were based on the protocol described in (Gemperli, Schaffitzel et al. 2007), with 

following modifications: Disposable 1 ml plastic syringes were equipped with a HDPE support 

screen (pore size 35 µm) and subsequently filled with 0.3 ml of a potassium ion loaded 

cation exchanger resin (DOWEX 50WX4-200). The resin was rinsed with ddH2O before use. 
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Vesicles were prepared in 50 mM MES, 50 mM KCl pH 6.0 and shock frozen in liquid nitrogen. 

150 µl of vesicle solution were thawed on ice, centrifuged for 30 minutes at 30'000 x g and 

resuspended in 312 µl of 50 mM Tris/MES, 50 mM KCl, pH 8.0. Eight µl of a NaCl solution 

(400 mM) were added to establish a sodium ion gradient across the membrane of the 

vesicles. The final, external Na+ concentration in the assay was 5 mM. To remove external 

Na+ after 10, 30, 60 and 90 seconds, 70 µl aliquots of the reaction mixture were withdrawn, 

immediately loaded on the Dowex column and eluted with 800 µl of ddH2O instantaneously. 

As control, the reaction was performed with vesicles lacking GFPND5Yl. Internal Na+ 

concentration of vesicles was determined by atomic absorption spectroscopy. The size and 

morphology of the ER vesicles containing GFPND5Yl variants used for transport 

measurements was studied by cryo electron microscopy as described previously (Gemperli, 

Schaffitzel et al. 2007). 
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2.3. Results 

2.3.1. Organelle-specific expression of subunit ND5 of human complex I alters 

cation homeostasis in Saccharomyces cerevisiae 

2.3.1.1. Multiple sequence alignment of ND5 and related proteins 

The amino acid sequences of the ND5 subunits from mitochondrial complex I, the ND5 

homolog NuoL from bacterial complex I, the related subunit from multicomponent cation/H+ 

antiporters, and the corresponding subunit from energy-conserving hydrogenases related to 

complex I were compared (figure 6). The regions from amino acid residues 83 to 179, and 

from 222 to 422 (human ND5 numbering) are highly conserved, but there is practically no 

conservation on the level of primary sequence in the C-terminal parts of the proteins 

(residues 432 to 603). 

By summing the results of ten different methods and assigning an upper and lower 

probability threshold, topology prediction of the full length ND5Hs polypeptide (figure 7) 

resulted in a model consisting of 16 transmembrane segments with both N- and C-terminus 

pointing to the outside (intermembrane space), which is in accord with the experimentally 

determined topology model of NuoL of complex I from the bacterium 

Rhodobacter capsulatus (Mathiesen and Hägerhäll 2002). The topology is also in accordance 

with the 3D structure of the ND5 homolog (NuoL) from E. coli complex I, which was 

published during the course of this work (Efremov and Sazanov 2011). Several highly 

conserved residues cluster in the predicted transmembrane helices IV to VI, which may 

represent a functionally important region involved in cation translocation. The frequent 

occurrence of mutations in these residues in LHON, Leigh syndrome, MELAS and PD patients 

is noteworthy (Taylor, Morris et al. 2002; Liolitsa, Rahman et al. 2003; Mayorov, Biousse et al. 

2005; Parker and Parks 2005; Zhadanov, Grechanina et al. 2007), for example at position 

E145 in the predicted transmembrane helix V studied here. We also investigated the 

possible effect on ND5Hs function of the D179A mutation in the predicted transmembrane 

helix VI, since negatively charged, conserved amino acid residues in transmembrane 

segments were frequently reported to directly participate in cation translocation (Dimroth 

1997). 
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Figure 6: Alignment of human ND5 with related proteins from yeast and bacteria. 
Human ND5 (UniProt accession No. P03915), Yarrowia lipolytica ND5 (Yl ND5; accession no. 
Q9B6D3), Escherichia coli NuoL (Ec NuoL; accession no. P33607), Staphylococcus aureus 
MnhA (Sa MnhA; accession no. Q9ZNG6), Methanosarcina barkeri EchA (Mb EchA; accession 
no. Q46G55). Predicted transmembrane segments are underlined. Conserved residues are 
marked with stars (*), similar residues with colons (:). E145 represents a hot spot for 
mutations that were found in patients suffering from PD or MELAS. D179 is an amino acid 
residue strictly conserved in ND5 homologs but not in cation/H+ antiporters. 
  



Chapter 2 - The antiporter-like ND5 subunit of complex I  Powerful Proteins 

 

 
42 
 

 

  



Powerful Proteins   Chapter 2 - The antiporter-like ND5 subunit of complex I 

 

 
43 

 

  

Figu
re 7: P

red
icte

d
 m

em
b

ran
e to

p
o

lo
gy o

f h
u

m
an

 N
D

5. A
m

in
o

 acid
 resid

u
es are co

lo
red

 as fo
llo

w
s: G

ree
n

: tran
sm

em
b

ran
e resid

u
e, 

yello
w

: p
u

tative tran
sm

em
b

ran
e resid

u
e, b

lu
e: n

egatively ch
arged

 resid
u

e, red
: p

o
sitively ch

arged
 resid

u
e. Th

e n
et ch

arge o
f th

e 
d

o
m

ain
s exp

o
sed

 to
 th

e m
ito

ch
o

n
d

rial m
atrix ('IN

') o
r th

e
 in

term
e

m
b

ran
e sp

ace ('O
U

T') w
as calcu

lated
 b

y assign
in

g acid
ic resid

u
es 

(D
, E) a valu

e o
f -1 an

d
 b

asic resid
u

es (K
, R

) a valu
e o

f 1
. 



Chapter 2 - The antiporter-like ND5 subunit of complex I  Powerful Proteins 

 

 
44 
 

2.3.1.2. Expression strategy 

We previously cloned the 3'-truncated nuoL gene encoding for the N-terminal part of the 

ND5 homolog from E. coli complex I and heterologously expressed the protein in 

S. cerevisiae (Gemperli, Schaffitzel et al. 2007). No signal sequences were fused to this 

hydrophobic protein which was localized to membranes of the endoplasmatic reticulum in 

the default sorting pathway. The same strategy was applied for the ND5 gene encoding for 

the ND5 subunit from human complex I (ND5Hs) attached to a GFP at its N-terminus. To 

target ND5Hs to mitochondria, a fusion protein comprising a mitochondrial targeting 

sequence at the N-terminus and a Flag tag at the C-terminus was expressed (figure 8). The 

mutations E145V and D179A were introduced into the GFP- and Flag-tagged ND5Hs fusion 

proteins, respectively (figure 8). An N-terminal GFP tag was chosen for reasons of convenient 

detection and presumed beneficial effect on folding and stability of the very large, 

hydrophobic ND5Hs subunit. Fusion of a Flag peptide to the C-terminus of ND5Hs in case of 

ND5Hs directed to the mitochondrion by the N-terminal targeting sequence allowed for 

immunological detection of the full-length protein after insertion into the mitochondrial 

membrane. 

 

 

Figure 8: Fusion proteins and mutated variants of ND5Hs for insertion in the endoplasmatic 
reticulum or inner mitochondrial membrane. Wild type ND5Hs (vector pG5N), ND5Hs-E145V 
(vector pG5N1) and ND5Hs-D179A (vector pG5N2) were produced as N-terminal GFP (gray) 
fusion proteins. Adding the 22 residue signal sequence of S. cerevisiae ATP-synthase delta 
subunit at the N-terminus (black), and the Flag peptide to the C-terminus (hatched) yielded 
wild type ND5Hs (vector pM5NF), ND5Hs-E145V (vector pM5N1F) and ND5Hs-D179A (vector 
pM5N2F) targeted to mitochondria. AA: amino acid residue (ND5Hs numbering). 
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2.3.1.3. ND5Hs devoid of a targeting signal is inserted in membranes from the 

endoplasmatic reticulum 

ND5Hs variants were visualized in fixed and permeabilized cells, allowing the in-situ co-

localization of organelle-resident proteins by immunofluorescence. To detect ER membranes, 

S. cerevisiae BJ3505 cells were immunostained with anti-Dpms. Dolichol phosphate mannose 

synthase is required for glycosyl phosphatidyl-inositol anchoring, N-glycosylation and O-

mannosylation of protein in the rough endoplasmic reticulum (Orlean 1990). Mitochondria 

were visualized with antibody against porin which is localized in the outer mitochondrial 

membrane (Freitag, Benz et al. 1983). GFPND5Hs almost completely co-localized with Dpms 

whereas no overlap was detected with porin (figure 9A). SDS-PAGE, followed by in-gel 

fluorescence of GFP and immunostaining against Dpms confirmed that in the absence of a 

signal sequence, GFPND5Hs was predominantly localized in intracellular membranes of the 

ER obtained by fractionated centrifugation (figure 9B). Identical results were obtained with 

the E145V and D179A variants of GFPND5Hs (data not shown). We did not detect GFPND5Hs 

in the plasma membrane of S. cerevisiae, suggesting that this large, hydrophobic protein was 

retained in the ER (figure 10). 

The amount of ND5Hs and its variants in ER membranes was quantified (figure 11). GFPND5Hs 

wild type and its E145V variant were present in similar amounts (95 ± 3 ng versus 42 ± 6 ng 

per mg total protein, n = 3). Quantification of the D197A variant of ND5Hs was not possible, 

since the intensity of its fluorescence signal was less than 10 % of the intensity observed 

with the lowest GFP standard. Much higher yields were observed with the C-terminally 

truncated NuoL homolog of ND5 fused to the Protein A epitope expressed in S. cerevisiae. ER 

vesicles contained 1 - 1.6 µg ProtA-NuoL per mg total ER protein, which allowed studying its 

cation transport activities. Our attempts to measure cation transport by GFPND5Hs in ER 

vesicles were not successful, the likely reason being its low content. 
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Figure 9: GFPND5Hs chimerical protein is targeted exclusively to ER in S. cerevisiae. A: In 
vivo localization of recombinant GFPND5Hs. Fixed and permeabilized S. cerevisiae cells 
stained with DAPI and anti-Dpms or anti-porin antibodies followed by staining with Alexa 
555 or Cy3 coupled secondary antibodies. The cells were visualized by confocal laser 
scanning microscopy (excitation wavelengths: 405 nm for DAPI, 488 nm for GFP and 543 nm 
for Alexa 555) and are shown as top-down view of z-stacks. Upper panels: green; GFP, red; 
Dpms (ER-anchored protein), blue; DAPI (nucleus, only shown in merge). Lower panels: 
green; GFP, red; porin (mitochondrial outer membrane), blue; DAPI. The images were 
merged (Merge) and the overlap between GFP and Dpms was analyzed (Coloc). Scale bar 
represents 1 µm. B, Left: in-gel fluorescence of S. cerevisiae ER membranes containing 
GFPND5Hs (0.2 mg protein) separated on 10 % SDS-PAGE. Right: Western blot of the SDS-
PAGE shown left and immunodetection of the ER enzyme dolichol phosphate mannose 
synthase (Dpms). M: molecular weight marker proteins (from top to bottom: 250 kDa, 
150 kDa, 100 kDa, 75 kDa, 50 kDa, 37 kDa, 25 kDa). Due to its hydrophobic nature, GFPND5Hs 
exhibited an apparent molecular mass on SDS-PAGE which was approximately 30 - 35 % 
lower than its calculated mass of 95 kDa. 
 
 

 

 

Figure 10: Cortical and perinuclear ER localization of GFPND5Hs chimerical protein in 
S. cerevisiae. HCS CellMask stain (red) labels the entire cell (i.e. cytoplasm and nucleus) and 
provides a background for visualization of GFPND5Hs (green).  
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Figure 11: Expression levels of GFPND5Hs and its E145V and D179A variants in membranes 
from the ER. A: Purified GFP was separated on SDS-PAGE, and its fluorescence signal 
intensity was determined (0 - 1 pmol GFP). Within the applied GFP concentration range, the 
signal intensity increased linearly with the amount of protein loaded. B: ER vesicles 
containing GFPND5Hs or its E145V or D179A variants were separated on SDS-PAGE. Left lane, 
0.2 mg total ER protein; right lane, 0.4 mg total ER protein. In A, the fluorescence signal 
intensities of GFPND5Hs (circles) and GFPND5Hs-E145V (triangles) of the ER membranes (0.2 
or 0.4 mg protein) shown in B are indicated. The intensities observed with the GFPND5Hs-
D179A variant (panel B) were less than 10 % of the intensity observed with the lowest GFP 
standard (panel A) and were therefore excluded from the quantitative analysis. 
 
 

2.3.1.4. ND5Hs comprising a matrix signal sequence is integrated in the mitochondrial inner 

membrane 

We tried to change the sorting mode of GFPND5Hs to mitochondria by adding N-terminally 

the signal sequence of ATPase delta subunit (MTS). This resulted in aggregation of the fusion 

protein outside the mitochondria (data not shown), from which we concluded that the bulky, 

superfolding GFP might hinder membrane translocation or correct processing of the signal 

sequence. To circumvent this problem, the short Flag peptide was fused to the C-terminus of 

ND5Hs. Using this fusion protein (MTS-ND5Hs-Flag), ND5Hs wild type and mutant proteins 

were successfully targeted into mitochondria as shown by co-localization with mitochondrial 

porin (figure 12A). The same results were obtained with the E145V and D179A variants of 

MTS-ND5Hs-Flag. Cells incubated with anti-Dpms displayed only residual amounts of MTS-

ND5Hs-Flag in the ER (figure 12B). 
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Figure 12: Targeting of ND5Hs to the inner mitochondrial membrane. C-terminally Flag-
tagged human ND5 protein variants containing the signal sequence of S. cerevisiae ATP-
synthase delta subunit were expressed in S. cerevisiae. A: Cells were immunostained with 
anti-Flag followed by incubation with Alexa 488 coupled secondary antibodies (Flag), or anti-
mitochondrial porin followed by incubation with Cy3 coupled secondary antibodies (Porin). B: 
Cells were immunostained with anti-Flag followed by incubation with Alexa 488 coupled 
secondary antibodies (Flag), or Dpms antibodies followed by incubation with Alexa 555 
coupled secondary antibodies (Dpms). The images were merged (Merge) and the overlap 
analyzed (Coloc). The scale bar is 1 µm. 
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Fractionation of mitochondria into inner and outer membrane resulted in co-purification of 

ND5Hs with cytochrome c oxidase, a respiratory complex of the inner mitochondrial 

membrane (figure 13). This demonstrated that ND5Hs was inserted into the inner membrane 

of mitochondria. Note that the hydrophobicity of the MTS-ND5Hs-Flag fusion protein 

impeded its mobilization from SDS gels, which prompted us to use native MTS-ND5Hs-Flag for 

immunostaining of mitochondrial fractions (figure 13). The presence of ND5Hs in the inner 

mitochondrial membrane had no significant influence on the respiratory activity of 

S. cerevisiae. Rates of antimycin-sensitive NADH oxidation of mitochondrial membranes 

were 0.16 ± 0.02 µmol min-1 mg-1 in the absence of ND5Hs (control vector), 

0.16 ± 0.01 µmol min-1 mg-1 in the presence of wild type ND5Hs (vector pM5NF), and 

0.19 ± 0.01 µmol min-1 mg-1 with the ND5Hs-D179A variant (vector pM5NF2). In the presence 

of ND5Hs-E145V, NADH was oxidized at a rate of 0.27 ± 0.02 µmol min-1 mg-1. 

 

 

Figure 13: Submitochondrial localization of MTS-ND5Hs-Flag. Detection was performed by 
immunostaining using anti-Flag antibodies. Outer membrane, OM; inner membrane, IM. 
Marker for inner mitochondrial membranes was the cytochrome c oxidase detected with 
anti-Cox2p antibodies. Marker for outer mitochondrial membranes was porin detected with 
anti-porin antibodies. Dilutions of each fraction were analyzed, containing, from top to 
bottom: 2.5 µg, 1 µg, 0.5 µg, 0.25 µg, 0.1 µg protein. 
 
 

2.3.1.5. Salt-dependent growth phenotypes of S. cerevisiae producing ND5Hs 

Without salt added, S. cerevisiae cells producing ND5Hs fusion proteins inserted in the ER or 

inner mitochondrial membrane exhibited the same growth behavior as cells transformed 

with the control vector pRS316 devoid of the ND5 gene. It is concluded that the large, 

hydrophobic ND5Hs protein was not toxic for S. cerevisiae (figure 14). 
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Figure 14: Salt-dependent growth phenotypes of S. cerevisiae producing ND5Hs and ND5Hs 
mutant variants. S. cerevisiae cell cultures, grown to saturation for 24 h in YNB-glucose and 
washed in water and YNB-galactose, were pipetted as 1:10 dilution series onto YNB-
galactose agar plates containing either no added salt, 100 mM LiCl, 600 mM NaCl or 800 mM 
KCl. Growth was recorded after 10 days. ND5Hs, ND5 E145VHs: Cells expressing the wild type 
or E145V variant of ND5Hs respectively; ER: ND5 protein localized in the ER, IMM: ND5 
protein localized in the inner mitochondrial membrane. Control: Cells transformed with 
vector pRS316 devoid of the ND5 gene. 
 
 
We next studied the influence of alkali cations on growth. In the absence of ND5Hs fusion 

proteins, growth of cells transformed with the control vector was prevented at high external 

concentrations of Na+ or K+. Expression of the ND5Hs fusion proteins rescued the cells, 

suggesting that ND5Hs located in the ER or the inner mitochondrial membrane participated in 

detoxification under conditions of elevated [Na+] and [K+]. The observation that ND5Hs and 

its E145V variant were expressed at similar levels (figure 11) allowed us to compare their 

impact on growth of S. cerevisiae. No significant difference in growth behavior was observed 

at high K+ for the wild type and E145V variant of ND5Hs inserted into the ER. In contrast, 

growth in the presence of wild type ND5Hs was impaired compared to the E145V variant 

when present in the inner mitochondrial membrane under these conditions (figure 14). At 

elevated Na+ concentrations, highest salt resistance was observed with ND5Hs present in the 

ER. Introducing a mutation at position 145 in ND5Hs had no effect compared to wild type 

ND5Hs under these conditions. Next, the effect of Li+ on growth of S. cerevisiae in the 

presence or absence of ND5Hs was investigated. Li+ is toxic at elevated concentrations but is 

exported from the cells by the Na+-dependent ATPase or Na+ exchangers which transport Li+ 

in addition to Na+ (Kinclova-Zimmermannova, Flegelova et al. 2004; Kinclova-

Zimmermannova and Sychrova 2006). Growth of S. cerevisiae transformed with the control 

vector was not impaired at an external Li+ concentration of 100 mM (figure 14). Under these 

conditions, a very similar phenotype was observed with cells containing ND5Hs wild type and 
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the E145V variant in the inner mitochondrial membrane or with the E145V variant located in 

the ER. In contrast, the presence of wild type ND5Hs in the ER membrane strongly inhibited 

growth at 100 mM Li+, indicating that the protein interfered with the systems for 

detoxification of Li+ in S. cerevisiae. The qualitative findings shown in figure 14 were 

confirmed in a quantitative analysis (table 6). 

 

Table 6: Survival of S. cerevisiae producing ND5Hs variants at elevated salt concentrations. 

ND5Hs variant No salt added 100 mM LiCl 800 mM KCl 

Located in the ER 

     ND5 wild type 

     ND5 E145V 

 

> 4 % 

> 4 % 

 

0.009 % 

3 % 

 

0.1 % 

0.4 % 

Located in mitochondria 

     ND5 wild type 

     ND5 E145V 

 

> 4 % 

> 4 % 

 

0.4 % 

2 % 

 

0.01 % 

0.08 % 

No ND5 present > 4 % 0.4 % < 0.001 % 

Number of cells which formed colonies is given as percentage of total number of cells in the 
inoculum. Growth was monitored after 10 days. A representative set of data from three 
independent growth experiments is shown. 
 
 
The number of colony-forming units of S. cerevisiae with or without ND5Hs fusion proteins 

observed in the presence of 100 mM LiCl or 800 mM KCl was monitored after 10 days and 

compared with the number of cells initially present in the inoculum. Again, growth without 

added salt was not affected in control cells, or in cells expressing the ND5Hs wild type or 

E145V variant. In the presence of Li+, growth of S. cerevisiae was heavily impaired when wild 

type ND5Hs was present in the ER, while the E145V variant of ND5Hs was less toxic for the 

cells. When ND5Hs was targeted to mitochondria, the viability of cells producing the ND5Hs 

E145V variant in the presence of Li+ was slightly improved compared to cells containing 

ND5Hs wild type (table 6). In the presence of K+, the viability of S. cerevisiae producing ND5Hs 

fusion proteins was generally higher than in the absence of ND5Hs. Again, better growth was 

observed when cells produced the E145V variant. We also followed the growth of 

S. cerevisiae containing GFPND5Hs fusion proteins in the ER in liquid culture under aerated 

conditions. Without added salt, the doubling time of S. cerevisiae was not significantly 

influenced by the presence of GFPND5Hs (6 ± 1 hours in the absence or presence of ND5Hs 

fusion proteins; data not shown). Adding LiCl (100 mM) to the growth medium drastically 

inhibited growth of S. cerevisiae producing wild type ND5Hs, whereas cells containing the 
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E145V variant reached final cell densities comparable to S. cerevisiae cells transformed with 

the control vector lacking the ND5Hs fusion proteins (figure 15). These results further support 

the notion that ND5Hs affects cation homeostasis in S. cerevisiae in a sequence-dependent 

and organelle-specific manner. 

 

 

Figure 15: Increased Li+ sensitivity of S. cerevisiae containing ND5Hs in ER membranes. 
Growth was followed in the presence of 100 mM LiCl. Squares, no ND5Hs present; triangles, 
with ND5Hs-E145V; circles, with wild type ND5Hs. Mean values from duplicates are presented.  
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2.3.2. Expression, purification and functional characterization of subunit ND5 of 

complex I from the yeast Yarrowia lipolytica 

In chapter 2.3.1., we found strong indications for cation transport activity of the isolated 

ND5 subunit of human complex I in growing cells. However, the expression yield of 

GFPND5Hs variants in S. cerevisiae was too low to successfully perform in vitro cation 

transport experiments in native membrane vesicles or proteoliposomes (50 - 100 ng/mg 

membrane protein). Sufficiently strong expression is an absolute requirement for the 

solubilization, purification and reconstitution of the enzyme into liposomes. Preliminary 

tests showed that the expression level of GFP-tagged ND5 from complex I of the yeast 

Yarrowia lipolytica (GFPND5Yl) was one to two orders of magnitude higher than the 

expression level of the human analog (1 - 5 µg GFPND5Yl variant/mg membrane protein). The 

following chapter now describes the characterization of ND5Yl after expression in 

S. cerevisiae. 

 

2.3.2.1. Sequence alignment of ND5Yl and related proteins 

It is proposed that at least two energy coupling sites exist in the NADH:ubiquinone 

oxidoreductase of E. coli (Steuber 2003; Stolpe and Friedrich 2004); a primary electrogenic 

proton pump and a secondary Na+/H+ antiporter-like site. The same is proposed for 

R. marinus complex I (Batista, Fernandes et al. 2010). The sequence alignment of E. coli NuoL, 

ND5 from human and Y. lipolytica, Nqo12 from R. marinus with the Na+/H+ antiporter MnhA 

from S. aureus indicates a high degree of identity, especially within the areas which form the 

two ion half-channels proposed by (Efremov and Sazanov 2011) (figure 16). 
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Figure 16: Partial sequence alignment of human ND5 and its homologues from 
Escherichia coli, Yarrowia lipolytica, Rhodothermus marinus and related prokaryotic 
Na+/H+ antiporter subunit MnhA of Staphylococcus aureus. The areas which may build the 
first ion half-channel are accentuated in light gray, the areas forming the second potential 
half-channel are highlighted in dark gray. The investigated mutations are marked in bold. 
UniProt accession numbers: human ND5 (P03915), E. coli NuoL (P33607), Y. lipolytica ND5 
(Q9B6D3), R. marinus Nqo12 (Q4QSB1), S. aureus MnhA (Q9ZNG6). 
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2.3.2.2. The position of disease-associated mutations in ND5 

Five of the most frequently observed mutations of ND5 associated with diseases (table 4) 

were investigated concerning their impact on the transport properties of ND5. It is apparent 

that they are all clustered inside the membranous layer, and moreover, they are all found in 

the area of the first of two ion half-channels which were proposed by Efremov and Sazanov 

(Efremov and Sazanov 2011) and elaborated in this work (figures 17 and 26). Mutations 

F123L (TM 4), A170V (TM 6), A239T and M240T (TM7) point into the inner lumen of the 

putative channel, while mutation E144G (TM 5) is situated on the outside of the channel but 

in immediate vicinity to the neighboring ND4 subunit. 

 

 

Figure 17: Position of ND5Yl in the inner mitochondrial membrane. A: Side view of NuoL 
from E. coli complex I (PDB ID: 3RKO). B: Top view from the cytoplasm onto NuoL (PDB ID: 
3RKO), the putative ion half-channels are highlighted in blue and lavender. C: Structure-
based topology model of GFPND5Yl. The positions of the investigated mutations in ND5Yl 

within the membrane layer are shown in red (F123L, E144G, A170V, A239T, M240T, 
Y. lipolytica numbering). 
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2.3.2.3. Localization of GFPND5Yl in the ER of S. cerevisiae 

In accordance with previous results obtained with human ND5 (chapter 2.3.1.3.), Y. lipolytica 

ND5 was found to insert into membranes of the endoplasmatic reticulum of S. cerevisiae. 

The GFP fluorescence displayed almost complete co-localization with the ER membrane 

protein dpms. A co-localization of immunostained mitochondria and GFPND5Yl could not be 

observed (figure 18). Also, expression of the F123L, A170V, A239T, M240T and E144G 

variants of GFPND5Yl did not lead to a change in the expression or co-localization pattern 

(Data not shown). 

 

 

Figure 18: Localization of GFPND5Yl in S. cerevisiae. ND5Yl is detected by the fluorescence of 
GFP. ER or mitochondria were immunostained (ER: anti-dpms, mitochondria: anti-porin, 
both in red). The co-localization of both signals (yellow) shows the expression of ND5 in the 
ER. No visible co-localization of GFPND5Yl and mitochondria is observed. 
 
 

2.3.2.4. Orientation of GFPND5Yl within the membrane of native vesicles 

The preparation of membrane vesicles with uniformly oriented ND5 was a prerequisite for 

ion transport measurements. The intactness and sphericality of the vesicles containing 

GFPND5Yl was confirmed by cryo-electron microscopy (figure 19). We next investigated the 

orientation of GFPND5Yl using a protease protection assay. This method is based on the 

assumption that lumen-oriented protease cleavage sites in the protein are protected against 

proteases added to the external medium. In our particular case, cleavage by trypsin after 
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R24 (numbering ND5 Y. lipolytica), an amino acid in the loop after the first transmembrane 

helix, would yield a fragment of a calculated mass of 29.79 kDa if the loop was exposed to 

the outside, but no fragment if R24 was oriented towards the inside of the membrane 

vesicles. By disrupting the membranes with detergent, previously protected sites become 

accessible and a statement about the uniformity of the orientation of GFPND5Yl is possible. 

After 5 minutes of incubation with trypsin, a fragment with an apparent mass of about 

26 kDa was found when solubilized vesicles were digested (figure 20A, labeled as GFPND5t). 

The fragment was not detected in non-solubilized vesicles. Since the fragment did not 

migrate as far as GFP alone on a 14 % acrylamide gel, we assume it represents GFPND5Yl 

cleaved after R24 These results indicate that GFPND5Yl is uniformly orientated in the 

membrane, with the N-terminally linked GFP being exposed to the external lumen of the 

vesicles (figure 20B). In our previous study we used the C-terminally truncated NuoL 

homolog of ND5 fused to Protein A at its N-terminus, and also observed the 'N-terminus out' 

orientation of ProtA-NuoLtruncated in native ER vesicles from S. cerevisiae (Gemperli, 

Schaffitzel et al. 2007). 

 

 

Figure 19: Cryo electron microscopy of vesicles from S. cerevisiae containing GFPND5Yl. 
Micrographs were recorded at a magnification of x 53'000.  
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Figure 20: Fluorescent SDS-PAGE of fragments from a protease protection assay, using 
trypsin on native and solubilized vesicles from S. cerevisiae, containing GFPND5Yl. A: To 
analyze the orientation of GFPND5Yl within the membrane the accessibility of predicted 
trypsin sites in native (Lane 1 + 2) and solubilized (Lane 3 + 4) membrane vesicles was 
examined. 150 µg total protein were loaded per lane. B: Schematic view of the GFPND5Yl 
orientation in the vesicles. Scissors mark the likely cleavage site R24 in the loop after TM1 of 
ND5Yl. Asterisks mark other potential trypsin cleavage sites.  
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2.3.2.5. Na+ transport by GFPND5Yl 

The sodium ion transport properties of the ND5 subunit were investigated using native ER 

vesicles from GFPND5Yl expressing S. cerevisiae cells. Note that we prepared vesicles at 

slightly acidic conditions (pH 6.0), while applying a basic pH 8.0 during the assays, since this 

gave the most stable results of the conditions tested. If ND5Yl possesses Na+/H+ antiporter 

activity as proposed for bacterial complex I from E. coli (Stolpe and Friedrich 2004), 

R. marinus (Batista, Fernandes et al. 2010) and bovine complex I (Roberts and Hirst 2012), an 

increased inside [H+] may induce Na+ uptake. The assay was started by adding 5 mM sodium 

chloride to the external lumen, applying a ΔμNa+. As a control, vesicles from S. cerevisiae 

which did not express GFPND5Yl were used. Measuring the internal Na+ content of vesicles 

by atomic absorption spectroscopy revealed a measurable sodium ion uptake into vesicles 

containing GFPND5Yl and into vesicles lacking GFPND5Yl, but a significantly higher uptake rate 

was observed with the GFPND5Yl vesicles between 30 and 90 seconds after the addition of 

Na+ (figure 21). During the first 30 seconds, there was an expulsion of Na+ from the vesicles, 

with no significant difference between vesicles containing GFPND5Yl and control vesicles. We 

do not have an explanation for this observed flux of Na+ yet. The transport properties of the 

pathologically relevant ND5Yl E144G, F123L, A170V, A239T and M240T variants were also 

investigated. The E144G variant of ND5Yl showed a significantly lowered uptake of Na+ 

compared to wild type ND5Yl between 60 and 90 seconds (figure 21). The F123L, A170V, 

A239T and M240T variants of ND5Yl exhibited Na+ uptake which was not significantly 

different from the Na+ uptake of wild type ND5Yl (data not shown).  
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Figure 21: Na+ uptake by vesicles containing ND5Yl, its E144G variant or no ND5. Net Na+ 
uptake by native vesicles containing wild type ND5Yl (squares), the E144G variant (circles) or 
control vesicles (triangles) in the presence of a pH gradient (inside acidic). To start the 
reaction at t = 0 s, 5 mM Na+ were added to the reaction mixture, and aliquots were 
withdrawn after 10, 30, 60 and 90 seconds. The internal Na+ content of the vesicles was 
determined by atomic absorption spectroscopy. Na+ content at t = 0 s corresponds to the 
Na+ content of the buffer. In the control reactions, vesicles from S. cerevisiae transformed 
with plasmid pRS316 were used. Each uptake experiment was done in triplicate, shown are 
representative single experiments. 
 
 

2.3.2.6. Solubilization trials 

Solubilization screens encompassing 13 different detergents revealed the preference of 

GFPND5Yl for zwitterionic detergents. The highest yield of solubilized GFPND5Yl was achieved 

with 1 % lauryl dimethylamine oxide (LDAO) (figure 22). LDAO is a detergent with favorable 

properties for crystallization studies but will denature many membrane proteins (Prive 2007). 

We thus performed subsequent solubilizations with n-Hexadecyl-N,N-dimethyl-3-ammonio-

1-propanesulfonate (Zwittergent 3-16) or Tetradecyl-N,N-dimethyl-3-ammonio-1-

propanesulfonate (Zwittergent 3-14), which also yielded satisfactory results. The unusually 

long alkyl chain of these Zwittergents may stabilize the transmembrane domains of the 

protein by mimicking the lipid bilayer which promotes co-purification of proteins with lipids 

(Infed, Hanekop et al. 2011). 
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Figure 22: Solubilization of GFPND5Yl with different ionic, non-ionic and zwitterionic 
detergents. Membranes containing 1 mg protein and indicated amounts of detergent in 
200 µl TBS were gently agitated at 4 °C for 2 h and then centrifuged at 100'000 x g for 30 min. 
The pellet was resuspended in the same volume. The supernatants S and pellets P containing 
non-solubilized membrane proteins were analyzed with SDS-PAGE. GFPND5Yl was detected 
by its fluorescence. 
 

2.3.2.7. Purification 

The enrichment of functional GFPND5Yl in detergent micelles is a prerequisite for its 

reconstitution into proteoliposomes. We chose Zwittergent 3-14 to purify His-tagged 

GFPND5Yl from S. cerevisiae membranes by Ni affinity chromatography (figure 23). The yield 

of enriched GFPND5Yl from 60 g of cells (wet weight) was approximately 0.5 mg. The 

concentration of GFPND5Yl was determined by absorption spectroscopy of GFP and 

compared with the total protein concentration determined by the bicinchoninic acid method. 

A ratio of 0.052 mg ND5Yl/mg total protein was achieved. When the imidazole concentration 

in the eluate from the Ni affinity column was decreased by dilution with buffer, GFPND5Yl 

precipitated from the solution. Possible reasons are instability of the protein in diluted 
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solutions, or drop of detergent concentration below the critical micelle concentration. 

Nevertheless, we used denatured GFPND5Yl which was solubilized with sodium dodecyl 

sulfate as standard for the detection and quantification of GFPND5Yl variants in ER vesicles 

(see below). 

 

 

Figure 23: Purification of GFPND5Yl. The fluorescent SDS-PAGE is depicting the enrichment 
of GFPND5Yl from ER membranes, after solubilization and immobilized metal ion affinity 
chromatography. Lane 1: cellular debris, lane 2: supernatant after 50'000 x g centrifugation 
step, lane 3: ER membrane fraction, lane 4: supernatant after solubilization, lane 5: eluate 
from Ni-Sepharose HP. In lane 1 - 4, 100 µg total protein were loaded per lane, in lane 5, 
25 µg were loaded. 
 
 

2.3.2.8. Quantification and mass spectrometric analysis 

GFPND5Yl and mutant variants from S. cerevisiae membranes were quantified by SDS-PAGE 

as described in chapters 2.2.6. and 2.3.1.3. The membranes contained between 1 - 5 µg 

GFPND5Yl variant/mg membrane protein. The expression of all the analyzed ND5Yl variants 

was thus comparable. This is shown in figure 24, which depicts the fluorescent SDS-PAGE of 

the wild type and E144G variant of GFPND5Yl. Purified His-GFPND5Yl was used as a standard 

for quantification. The purified protein as well as the protein from membrane fractions 

display a lower apparent mass on the gel than expected. This effect can be attributed to the 

hydrophobicity of the protein, since LC-ESI-MS analysis of tryptic digests confirmed full 

length expression (figure 25). Since transmembrane stretches contain only few or no cutting 

sites for trypsin, the fragments that were found mainly originate from GFP and from 
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hydrophilic loops of the membrane protein, thus a complete sequence coverage could not 

be obtained. Nevertheless, the simultaneous finding of fragments from the N-terminus and 

the C-terminus in a single specimen indicate that no proteolytic degradation has taken place 

(figure 25). 

 

 

Figure 24: GFPND5Yl and its E144G variant are expressed in comparable amounts. Wt: Lane 
loaded with membranes containing wild type GFPND5Yl, 124 µg total protein, E144G: 
membranes containing the E144G variant of GFP-tagged ND5Yl, 191 µg total protein. Shown 
is the in-gel fluorescence of each lane. 
 
 

 

 

Figure 25: LC-ESI-MS analysis of purified His-GFPND5Yl. The fragments of ND5Yl which were 
found in the mass spectrometric analysis are highlighted in bold. The sequence of SFGFP has 
an italic font. 
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2.4. Discussion 

2.4.1. Sequence alignment of ND5 and related proteins 

The structure of NuoL reported by Efremov and Sazanov strengthens the notion that this 

subunit - and its eukaryotic homolog ND5 - are involved in ion channeling and the generation 

of a proton motive force (PMF) and also provide a structural means to couple the energy 

from the electron transport chain to the opening and closing of ion channels (Efremov and 

Sazanov 2011; Efremov and Sazanov 2011). The mechanism of channeling and the nature 

and stoichiometry of the charged moieties involved is still unclear. Studies investigating the 

holo-complex from E. coli and from the related enterobacterium K. pneumoniae, supplied 

indications that the complex works as a primary Na+ pump which is not driven by the PMF 

(Steuber, Schmid et al. 2000; Steuber 2003). For the ND5 homolog from E. coli, a Na+ 

transport function without any evidence for stimulation by the PMF was proposed (Gemperli, 

Schaffitzel et al. 2007). Other studies revealed a secondary Na+ transport function, 

stimulated by the PMF, but with differing evidence concerning the direction of Na+ and H+ 

translocation (Stolpe and Friedrich 2004; Roberts and Hirst 2012). Investigations of different 

E. coli complex I subunits (NuoL, M, and N) showed that the ND5 homolog NuoL was able to 

complement a Na+/H+ antiporter deficient mutant of B. subtilis (Mathiesen and Hägerhäll 

2002; Mathiesen and Hägerhäll 2003). This suggests that the mitochondrial homolog of NuoL, 

the ND5 subunit of complex I, also exhibits antiporter activity. A PMF-dependent antiporter 

function is also proposed for complex I from R. marinus (Batista, Fernandes et al. 2010). 

These hypotheses prompted us to include the corresponding ND5 homologs from E. coli and 

R. marinus complex I, as well as the sequence of a Na+/proton antiporter, the MnhA subunit 

from S. aureus in the alignment. It is noteworthy that the areas which show the highest 

sequence conservation are the ones proposed to build the ion channels (Efremov and 

Sazanov 2011). Particularly, these regions comprise TM4 - TM8, forming the predicted 

channel 1, and TM9 - TM13, forming the predicted channel 2 (figures 17 and 26). The 

identity of ND5 homologs and bacterial Na+/proton antiporters in key areas strongly suggests 

that ND5 and its homologs are also able to transport sodium ions, which we went on to 

demonstrate in this study.  
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2.4.2. Expression and localization of ND5 

Allotopic expression and mitochondrial targeting of the mitochondrially encoded, 

hydrophobic ND4 subunit of complex I has been demonstrated in mammalian cells (Guy, Qi 

et al. 2002) but could not be reproduced in a later study (Oca-Cossio, Kenyon et al. 2003). 

Here we describe the targeted production of the mitochondrially encoded ND5 subunit from 

man and from the yeast Y. lipolytica in Saccharomyces cerevisiae, paving the way for the 

functional and structural analysis of a whole family of these very hydrophobic, mitochondrial 

proteins which are frequently altered in neurodegenerative diseases (Wallace 1999; Leonard 

and Schapira 2000). In the absence of a signal sequence, ND5Hs and ND5Yl were localized to 

the ER membrane. The sorting mode of ND5Hs was altered by adding a mitochondrial 

targeting sequence, with the majority of ND5Hs co-localizing with mitochondrial marker 

protein. We chose a signal sequence of a matrix-resident ATPase subunit, previously used to 

engineer a matrix-targeted GFP (Arimura and Tsutsumi 2002), and could confirm the 

integration of the 67 kDa, hydrophobic ND5Hs polypeptide in the inner mitochondrial 

membrane. The insertion of ND5Hs probably required the TOM and TIM complexes (Pfanner 

and Meijer 1997). Transfer of ND5Hs into the matrix space and subsequent reinsertion into 

the inner mitochondrial membrane could depend on the action of TIM23, mtHsp70 and 

OXA1, or could be catalyzed via the TIM22 complex (Stuart and Neupert 1996; Stojanovski, 

Johnston et al. 2003). 

 

2.4.3. Orientation of GFPND5Yl in native ER vesicles 

Knowledge of the orientation of the GFPND5Yl fusion protein within the vesicle or liposome 

membrane was a requirement for the subsequent transport studies aimed at elucidating the 

function of the ND5Yl subunit from complex I. More important than to know the effective 

orientation was to assure that the protein is uniformly orientated. The analysis with a 

protease protection assay using trypsin indicates that a uniform orientation is given. The lack 

of a similar cleavage pattern in non-solubilized vesicles indicates that a majority of the 

vesicles adopt the same orientation and that most trypsin sites are oriented to the internal 

side of the vesicles and thus only become accessible after solubilization. In addition, we can 

say with high confidence from these and previous (Gemperli, Schaffitzel et al. 2007) 

experiments that the vesicles are formed in the 'right side out' orientation, with the N-
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terminally fused GFP on the outside (figure 20B). This is best seen with the fragment 

appearing at about 25 kDa when using solubilized vesicles; it lies above the band of GFP 

alone, but is too small to be the fragment cleaved after TM 8 at R265, which is the closest 

potential trypsin site that lies on the 'outside'. Instead it is most likely a fragment cleaved on 

the 'inside', directly after TM 1 at R24 of Y. lipolytica ND5. There is the possibility that the 

appearance of additional fragments after solubilization does not stem from the 'opening' of 

uniformly oriented vesicles but is an effect of denaturation of the protein by the detergent, 

as a denatured and partially unfolded protein would also result in more accessible trypsin 

sites. Although zwitterionic detergents, such as Zwittergent 3-16 used in this work, are 

usually reported as being less denaturing than ionic detergents and able to stabilize 

membrane proteins (Infed, Hanekop et al. 2011), this possibility has to be taken into account. 

By mass spectrometric analysis, we could show that ND5Yl was isolated in its full length. 

However, after proteolysis with trypsin we were not able to detect fragments from the more 

hydrophobic stretches of ND5Yl. Better results may be achieved by proteolysis with 

chymotrypsin or other endopeptidases that preferably cleave at hydrophobic residues. Once 

the Na+ transport activity of solubilized and reconstituted ND5 (in proteoliposomes) has 

been confirmed, this would unequivocally demonstrate that no denaturation and unfolding 

have occurred during solubilization. 

 

2.4.4. ND5 imbalances the cation homeostasis of intracellular organelles 

We previously showed that the ND5 homolog from a bacterial complex I, the NuoL subunit, 

functions as transporter for Na+ and K+ when inserted in ER membranes from S. cerevisiae 

(Gemperli, Schaffitzel et al. 2007). The ND5/NuoL proteins are evolutionary related to 

subunits of multicomponent cation/H+ antiporters (Mathiesen and Hägerhäll 2003). 

Understanding the catalytic function of mitochondrially encoded complex I subunits like ND5 

which are frequently altered in neurodegenerative disorders is of utmost importance when 

it comes to understanding the causative link between mutations in mitochondrial DNA and 

diminished complex I activity in patients (Thorburn, Sugiana et al. 2004). We found that the 

isolated ND5 subunit of human complex I increased the resistance to elevated Na+ and K+ 

concentrations if present in mitochondria and ER from S. cerevisiae. This is in marked 

contrast to the situation observed in the presence of Li+, where ND5Hs in the ER increased 
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the sensitivity of cells towards this alkali cation. Interestingly, the toxic effect of Li+ was 

diminished when the E145V variant of ND5Hs was present in the ER, supporting the notion of 

Li+ flux catalyzed by ND5Hs which is diminished in case of the E145V variant of the protein. 

S. cerevisiae possesses several transport systems for the detoxification of alkali metal cations. 

Surplus Li+ and Na+ are sequestered by Na+-ATPase Ena1/Pmr2 and Na+/H+ antiporter Nha1 

or internalized by endosomal Na+/H+ exchanger Nhx1p (Kinclova-Zimmermannova, Flegelova 

et al. 2004; Kinclova-Zimmermannova and Sychrova 2006) Intracellular K+ levels are held at 

an optimal steady state of 200 - 300 mM by active import (Trk1p and Trk2p) and K+ channels 

(Tok1p and Nsc1p) (Rodriguez-Navarro 2000; Sychrova 2004). Yeast mitochondria are lacking 

the specific Na+/H+ antiporter, but contain a homolog of the mammalian K+/H+ antiporter 

which is unspecific as it will extrude all alkali cations out of the mitochondrial matrix 

(Welihinda, Trumbly et al. 1993). It is proposed that the altered salt tolerance of S. cerevisiae 

expressing ND5Hs reflects a change of intracellular cation gradients caused by ND5Hs. The 

effect of ND5Hs could be due to a general stress response of S. cerevisiae, induced by 

expression of this hydrophobic membrane protein. However, we favor a direct role for ND5Hs 

linked to its putative cation transport activity: Introducing a single point mutation (E145V) 

altered Li+- and K+-dependent growth behavior, yet the expression levels of wild type ND5Hs 

and its E145V variant did not differ significantly. The E145V mutation of ND5Hs is observed in 

PD patients (Parker and Parks 2005), but an impact of this mutation on the function of ND5Hs 

has not yet been reported. Our study illustrates how S. cerevisiae is suited to study the effect 

of mutations on the function of mitochondrially encoded complex I subunits by an in vivo 

test based on the cation-dependent growth behavior of the cells, and paves the way for the 

in vitro analysis of the catalytic properties of ND5. 

 

2.4.5. A putative role of E144 of the ND5Yl subunit of complex I in cation transport 

The results of the transport studies clearly show that the presence of wild type GFPND5Yl in 

native vesicles raises the Na+ uptake rate in comparison to the control vesicles without ND5Yl. 

The quantification of the uptake rate is difficult: The observation of the effective sodium ion 

content within the vesicles is always discontinuous, and GFPND5Yl only represents a 

percentage of the total protein content within the membranes (1 - 5 µg/mg total protein). 

Still, it is possible to differentiate the Na+ content of vesicles containing wild type, mutant, or 
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no GFPND5Yl. The most drastic effect on Na+ uptake was observed with the E144G variant of 

ND5Yl. The detected Na+ uptake was significantly lower than with wild type GFPND5Yl, which 

strongly suggests that the glutamic acid residue on position 144 in the Y. lipolytica ND5 

participates in cation translocation. We have shown here that a mutation of E144 reverts the 

negative impact of human ND5 on cation homeostasis in S. cerevisiae, and an involvement of 

E144 in proton translocation was also already demonstrated for the ND5 homolog from 

E. coli (Nakamaru-Ogiso, Kao et al. 2010). 

 

2.4.6. Correlation between structure and function of ND5 

The results described herein allow speculating about the structure-function relationship of 

ND5 with respect to the structure of the related NuoL subunit of complex I from E. coli 

(Efremov and Sazanov 2011). Efremov and Sazanov propose two opposing half-channels 

connected by a series of polar or charged residues in the middle of the membrane. They 

argue that the first putative channel is closed to the periplasm and the second channel is 

closed to the cytoplasm by hydrophobic residues and thus a single, proton translocating 

pathway is most likely. Indeed residues such as Leu 130, Trp 143, Ala 261 and Leu 265 on 

one side and Leu 308, Phe 341, Leu 345 and Phe 346 on the other side create hydrophobic 

'choking points' that seem to block off further progress of the respective pathways. 

Interestingly, these residues are strongly conserved in complex I and H+/Na+ antiporter 

subunits, which raises the question what role they might play in an antiporter environment. 

Further analysis of the structure of NuoL concerning cavities and additional pathways 

revealed that the areas behind the choking points contain cavities linking to the surface that 

can accommodate protons or sodium ions. These cavities are lined with hydrophilic residues, 

most of which are conserved (figure 26). One can thus propose that instead of two half-

channels, two continuous channels exist, the passage through which is controlled by 

essential hydrophobic residues, acting as gates opened and closed by conformational change. 

The first such channel is accessible on the cytoplasmic side as described in (Efremov and 

Sazanov 2011), but with Phe 123 has to pass a first choking point on this side already. 

Phe 123 is highly conserved and mutations in its human homolog F124 are linked to MELAS, 

PD and Leigh disease (Taylor, Morris et al. 2002; Parker and Parks 2005; Zhadanov, 

Grechanina et al. 2007). The channel continues on past Trp 143 to the periplasm, supported 
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by the sulphurs of Met 127 and Met 139 and the side chains of Tyr 264, Arg 268, Ser 85, 

Asp 134 and Asp 82. Mutations in Asp 134 and Asp 82 were shown to decrease proton 

pumping activity (Nakamaru-Ogiso, Kao et al. 2010). The second channel comprises the 

periplasmic half-channel as described in (Efremov and Sazanov 2011), continues on by 

Lys 342, His 338, Thr 312 and His 254 and further to the cytoplasm by Met 234, Ser 250, 

Lys 305, Thr 247, Asp 303, Gln 360, Ser 349, Tyr 106 and Glu 359. Mutation of Asp 303 has 

been shown to decrease proton pumping activity (Nakamaru-Ogiso, Kao et al. 2010) and the 

human Met 234 homolog was mutated in patients suffering from MELAS syndrome (Liolitsa, 

Rahman et al. 2003). 
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Figure 26: Cavity search suggests the existence of two membrane-spanning ion transport 
pathways in ND5 homolog NuoL. Subunit NuoL of the membrane arm of E. coli complex I 
(PDB 3RKO) was analyzed for cavities with a 1.4 Å radius probe using the program CAVER. 
Tunnels that could support ion translocation and supporting polar side chains were 
visualized with PyMOL. Two putative ion transport pathways to the cytosolic or periplasmic 
surface respectively are shown for each channel. Hydrophobic side chains forming choking 
points in the channels are drawn in red. 
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2.4.7. Model of H+/Na+ Antiport in NuoL (ND5) 

The homology of NuoL/M/N to antiporter subunits prompted us to ask if antiporter function 

is retained in complex I. Secondary Na+ transport coupled to proton translocation would be 

in accord with findings that the ND5 homolog from E. coli translocates protons in the 

opposite direction as Na+ (Mathiesen and Hägerhäll 2003) and that Na+ was not necessary 

for the proton transport but only stimulated proton transport by the holo-complex I from 

R. marinus (Batista, Fernandes et al. 2010). The Na+ uptake experiments presented in this 

study indicate an important role of the E144 in the transport process (figure 21). With the 

elucidation of the crystal structure of the membrane domain of complex I, the functional 

understanding of this complex machine has increased. A continuously rising number of 

mutation and transport studies will eventually narrow down the pathways and precise 

transport mechanism. Using the data available, we present three different models of H+/Na+ 

antiport: 

 

 

Figure 27: Two half-channels. 
 
 
Assuming there is only a single continuous channel through the membrane, antiport function 

is still thinkable: A proton entering from the cytoplasmic side and a sodium ion coming from 

the periplasm coordinate to polar residues Thr 257 and His 254 respectively on central TM8. 

A conformational signal, transmitted by the long, amphipathic helix of NuoL on to 

discontinuous transmembrane helix 7, allows the two ions to exchange simultaneously 

(figure 27). The cavities on either side of TM8 are large enough to accommodate two ions at 

once. This model requires a gating mechanism that keeps the half-channels closed from the 

outside until an antiport cycle is fully completed. Phe 123 and Phe 341 seem ideally placed 
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to assume a conformation which interrupts incoming ion flow from the cytoplasm or the 

periplasm respectively (figure 26). 

 

 

Figure 28: Two discrete channels. 
 
 
As ionizable residues in the proposed connection between ion half-channels 1 and 2 are 

quite far apart, it can be argued that no ion transport occurs across this cavity, but rather 

that the space is necessary for the conformational flexibility of TM8 (figure 28). As central 

helix of NuoL, TM8 'communicates' between the two channels, coordinating the gating 

system which is invariably necessary in any directed ion transport. One such gating 

mechanism may be formed by the electrostatic interactions of Lys 229, Glu 144 and or 

Asp 178; a salt bridge between the glutamate and lysine residues may induce a rotation in 

TM5, closing off channel 1 from the periplasm with the bulky Trp 143. 

 

 

Figure 29: Two crossing channels. 
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Figure 29 depicts a combination of the first two models. Ions enter from the cytoplasmic and 

the periplasmic half-channel and are exchanged by a simultaneous or alternating-access 

mechanism at TM8, which therefore controls most of the gating. In the light that most 

mutation studies in NuoL/ND5 up to date have focused on charged conserved residues of 

the first putative ion channel, it would be promising to investigate mutations which are 

localized in putative channel two and in conserved hydrophobic residues to further 

investigate the sodium ion transport and gating properties of the ND5 subunit. 
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3.1. Introduction 

3.1.1. Silver, a potent bactericide and inhibitor of the Na+-NQR 

Safe drinking water is the sine qua non of public health (Aldhous 2003). Since antiquity, silver 

is used for disease control without reports on toxic side effects, and nowadays, many 

effective water purification systems for public and individual applications rely on the 

bacteriotoxic effect of silver (Davies and Etris 1997; Silver 2003). The mode of action of Ag+ 

against bacteria is not understood, but the microcidal activity of silver was proposed to 

result from the inhibition of bacterial respiration (Silver 2003). However, the target molecule, 

and the mechanism of its modification by Ag+, remained unknown. Pathogenic strains of the 

water-borne bacterium Vibrio cholerae cause the diarrheal disease cholera (Sack, Sack et al. 

2004) and are efficiently killed by Ag+ (Aguilar, Jimenez et al. 2006). By the help of a 

respiratory Na+ pump, V. cholerae maintains an electrochemical Na+ gradient across the 

inner membrane to drive central processes like flagellar rotation, nutrient uptake, and 

detoxification (Häse and Barquera 2001). The respiratory Na+ pump, also called Na+-

translocating NADH:quinone oxidoreductase (Na+-NQR), is a membrane-bound enzyme 

complex composed of six subunits (NqrABCDEF) which contains four flavins, one [2Fe-2S] 

cluster and ubiquinone-8 as cofactors (Barquera, Ramirez-Silva et al. 2006; Tao, Casutt et al. 

2008; Casutt, Nedielkov et al. 2011) (table 2). Ag+ inhibited O2-dependent NADH oxidation by 

subcellular membrane fractions from V. cholerae (Lin, Türk et al. 2007), and the Na+-NQR 

from the related Vibrio alginolyticus was inhibited by Ag+ in vitro (Unemoto, Ogura et al. 

1993; Steuber, Krebs et al. 1997). We speculated that the reported sensitivity of V. cholerae 

cells towards Ag+ (Aguilar, Jimenez et al. 2006) resulted from the inactivation of the Na+-NQR, 

leading to diminished respiratory activity and energy production, and eventually, to the 

killing of this human pathogen. Here, the characterization of an Ag+-insensitive C378A 

variant of the NADH-oxidizing FAD domain of the Na+-NQR is presented, and the 3D 

structure of the FAD domain in complex with Ag+ is shown. Furthermore, we demonstrate 

that the insertion of this cysteine mutation into V. cholerae expressing the Na+-NQR causes 

the bacteria to exhibit an increased tolerance against Ag+. The results are the basis for the 

development of silver-based drugs targeting the Na+-translocating NADH dehydrogenase, a 

central enzyme of bacterial catabolism which is not found in higher eukaryotes. 
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3.1.2. Structure and function of the NADH oxidizing domain of the Na+-NQR, 

a flavoprotein 

Flavoproteins belong to the most-studied and versatile classes of enzymes, catalyzing redox 

reactions ranging from apoptotic signaling to DNA repair, photosynthesis, bioluminescence 

and cellular respiration (Massey 2000). The Na+-translocating NADH:quinone oxidoreductase 

(Na+-NQR) from the pathogenic bacterium Vibrio cholerae is a membrane-spanning 

respiratory complex consisting of six subunits NqrA - F. It contains three distinct flavin 

species: two covalently bound flavin mononucleotides (FMN), a non-covalently bound flavin 

adenine dinucleotide (FAD) and a riboflavin (Casutt, Huber et al. 2010). The NqrF subunit 

comprises a ferredoxin-like N-terminal domain that harbors a [2Fe-2S] cluster and a C-

terminal part with binding motifs for NADH and FAD. Its role in the catalysis of the initial 

electron transfer from NADH to FAD, and from there to the [2Fe-2S] cluster has been 

discussed (Türk, Puhar et al. 2004) but not yet structurally elucidated. Local regions of strong 

homology place NqrF into the family of ferredoxin-NADP+ reductases (FNR) (Rich, Meunier et 

al. 1995). Several crystal structures of different FNRs have been reported (Karplus and Faber 

2004). Among these, the structure showing a productive NADP+/H binding mode of pea FNR 

has been particularly helpful in understanding the mechanism of hydride transfer in this 

widespread enzyme family (Deng, Aliverti et al. 1999). It revealed that the nicotinamide 

moiety lies at an angle of 30 ° against the plane of the flavin isoalloxazine ring and that four 

active site residues fulfill important roles in the catalysis: Ser 90, Cys 266, Glu 306 and 

Tyr 308 (pea FNR numbering). Ser 90 and Glu 306 and their conserved equivalents seem to 

be primarily involved in nicotinamide binding (Aliverti, Bruns et al. 1995; Aliverti, Deng et al. 

1998; Deng, Aliverti et al. 1999). The sulfhydryl group of Cys 266 has been found in close 

proximity to the C4 atom of the nicotinamide ring and is substantially involved in catalytic 

turnover, but less so in nicotinamide binding (Aliverti, Piubelli et al. 1993; Deng, Aliverti et al. 

1999). These findings were confirmed with the Na+-NQR in chapter 3.3.1. of this thesis. It 

was proposed that the cysteine forces the nicotinamide to adopt boat conformations that 

pucker towards the flavin and thus facilitate hydride transfer. Productive puckering 

conformations, induced by the binding of the nicotinamide to the protein, are suggested for 

lactate dehydrogenase and other enzymes (Young and Post 1996). The stacking of the 

aromatic ring of Tyr 308 with the isoalloxazine ring of the flavin in the nicotinamide binding 

pocket appears to be a thermodynamically favored conformation. Tyr 308 does not seem to 
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be directly involved in the catalysis of hydride transfer, but rather in product release and 

stabilization of the flavin (Orellano, Calcaterra et al. 1993; Deng, Aliverti et al. 1999; Piubelli, 

Aliverti et al. 2000; Nogues, Tejero et al. 2004). 

Here, a structure-function study of the C-terminal domain of the NqrF subunit of the 

respiratory Na+-NQR is presented. By site-directed mutagenesis of the Phe 406 residue, a 3D 

crystal structure of NAD+/H in complex with the enzyme was obtained. We observed a 

productive binding mode in which the nicotinamide is angled towards the flavin. In addition, 

kinetic data of F406A and F406S variants are presented which show that the phenyl ring acts 

as intrinsic competitor to the nicotinamide and that it also exercises a stabilizing effect on 

the flavin.  

In contrast to FNRs, which mainly catalyze the two-electron transfer from flavohydroquinone 

to oxidized nicotinamide, the Na+-NQR catalyzes the transfer of a hydride from the reduced 

nicotinamide of NADH to the fully oxidized flavoquinone. It can thus be postulated that 

despite the high structural identity to FNRs, a unique selectivity mechanism must exist in the 

NADH-binding domain of Na+-NQR, which allows the enzyme to discriminate between the 

oxidized and the reduced form of the cofactor. We present structural evidence of such a 

mechanism which involves a conformational change in the nicotinamide and the formation 

or loss of hydrogen bonds with serine 213 and aspartate 404 of NqrF. 

 

3.1.3. The catalytic quinone binding site of Na+-NQR 

Vibrio cholerae is a marine-born pathogen causing in 3 - 5 million disease cases estimated 

100'000 - 130'000 deaths per year (World Health Organization, 2010). This pathogen, like 

many other bacteria, harbors a unique respiratory enzyme complex, the Na+-translocating 

NADH:quinone oxidoreductase (Na+-NQR), that is unrelated to the eukaryotic complex I on 

the level of primary structure, but serves a similar purpose in that it generates an 

electrochemical gradient across the cytoplasmic membrane which in turn drives many other 

cellular processes like H+/Na+-antiporters, solutes uptake and rotation of the flagellum (Häse 

and Barquera 2001). 

Na+-NQR is composed of six subunits NqrA - F and harbors at least five redox active cofactors: 

non-covalently bound FAD and [2Fe-2S] cluster in the NqrF subunit, two covalently bound 

FMNs in subunits NqrB und NqrC and one non-covalently bound riboflavin in subunit NqrB 



Chapter 3 - Structure and function of catalytic Na+-NQR subunits Powerful Proteins 
 

 

 
78 
 

(Barquera, Ramirez-Silva et al. 2006; Tao, Casutt et al. 2008; Bogachev, Bloch et al. 2009; 

Bogachev, Kulik et al. 2009; Casutt, Huber et al. 2010). Upon oxidation of NADH, electrons 

are transferred from NADH via FAD and [2Fe-2S] cluster on NqrF to FMN on NqrC, FMN on 

NqrB, and finally, to riboflavin on NqrB (Juárez, Morgan et al. 2009). However, the final step 

of the reaction cycle - the reduction of the quinone substrate - as well as the coupling of 

redox chemistry to sodium ion translocation are still largely unclear. 

Already in 1992 it was recognized that the resistance of V. alginolyticus towards korormicin, 

a putative quinone analogue, is brought about by two mutations in the NqrB subunit of its 

Na+-NQR (Hayashi, Shibata et al. 2002). It was therefore expected that the NqrB subunit 

would carry the active site for quinone binding and reduction. Instead, we have recently 

identified the NqrA subunit to bind ubiquinone-8 and to interact with short chain quinones - 

in the context of the membrane-embedded/detergent-solubilized holo-Na+-NQR enzyme 

complex as well as with the isolated, soluble NqrA subunit (Casutt, Nedielkov et al. 2011). On 

the other hand, Juárez et al. have shown that the point mutations at glycine 140 and glycine 

141 of the NqrB subunit affect Na+-NQR reduction activity (Juárez, Neehaul et al. 2012), 

which led them to conclude that NqrB would harbor the binding site for Q1. 

The quinone analogue 2,5-dibromo-3-methyl-6-isopropylbenzoquinone (DBMIB, figure 30) is 

a potent inhibitor of the mitochondrial bc1 complex and the cytochrome b6f complex of 

chloroplasts (Draber, Trebst et al. 1970; Loschen and Azzi 1974; Chain and Malkin 1979; 

Degli Esposti, Rugolo et al. 1983; Rich 1984), but can also serve as an electron acceptor with 

a favorable potential of E0 = +180 mV (Simkovic and Frerman 2004). The binding of two 

equivalents of DBMIB into the quinol oxidase (Qo) pocket of the b6f complex has been 

proposed. One equivalent binds with high affinity to a proximal niche, whereas the binding 

of a second equivalent with low affinity to a distal niche induces a rotation of the Rieske 

iron-sulfur protein domain of the complex (Roberts, Bowman et al. 2004). By EPR it was 

shown that DBMIB attaches to and modifies the iron-sulfur center in the bc1 complex with 

inhibition in the nanomolar range and also interacts with cytochrome b. A mechanism was 

proposed where DBMIB does not just act as a simple competitor or redox mediator at the 

quinol oxidase site, but as antagonist to ubiquinone, inducing a redox bypass of the 

respiratory chain (Degli Esposti, Rotilio et al. 1984). 
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Figure 30: Structures of 2,5-Dibromo-3-methyl-6 isopropyl-p-benzoquinone (DBMIB) and 
ubiquinone-1 (Q1). 
 
 
Here, we show that DBMIB both acts as an inhibitor and as alternative substrate of the Na+-

NQR of V. cholerae by a specific interaction with the NqrA subunit of the complex. 

Furthermore, NMR experiments indicate that the NqrA subunit possesses an extended 

binding site for quinone-type ligands that can simultaneously accommodate two quinones 

involving a high-affinity and a low-affinity binding mode. Similar dual occupancy models have 

been proposed for other quinone-converting enzymes based on indirect experimental 

evidence (Ding, Moser et al. 1995; Bartoschek, Johansson et al. 2001; Efremov, Baradaran et 

al. 2010). Our findings provide important insight into mechanistic aspects of the final redox 

step catalyzed by the Na+-NQR. 
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3.2. Materials and Methods 

3.2.1. Chemicals and enzymes 

Unless otherwise noted, all chemicals and reagents were purchased from Sigma-Aldrich. 

Restriction enzymes and T4 DNA ligase were purchased from New England Biolabs. DNA 

polymerase and PCR buffers were obtained from Finnzymes. 

3.2.2. Construction of plasmids 

The gene coding for the N-terminally hexa-histidine-tagged polypeptide consisting of amino 

acids 129 - 408 of NqrF, in the following termed FAD domain, from the Na+-translocating 

NQR of Vibrio cholerae (Tao, Fritz et al. 2008) was synthesized taking into account optimal 

codon usage of E. coli (Mr. Gene, Regensburg). The synthetic gene was cloned into pET15b 

to generate plasmid pFNF53. Likewise, plasmids pFNF378A, pFNF406A and pFNF406S 

encoding for Cys 378 Ala, Phe 406 Ala and Phe 406 Ser substituted variants of the FAD 

domain were constructed (Trenzyme, Konstanz). The plasmids include a rhinovirus 3C 

protease cleavage site which allows removal of the histidine-tag from the FAD domain and 

its variants. To introduce the mutations C378A, F406A and F406S into the subunit NqrF of 

the NQR complex, PCR on plasmid pNQR1 (Tao, Casutt et al. 2008) was performed using 

primers 5'-GACAGGCTACACCGGTTTCATCCATAACG-3' (forward), 5'-CATCGGAGGTCCCGC 

CATGTAGTATTCAC-3' (reverse) and 5'-GTGAATACTACATGGCGGGACCTCCGATG-3' (forward), 

5'-CGTCTTCAAGAATTCTTAACCACCGAAGTC-3' (reverse), 5'-GACAGGCTACACCGGTTTCATCCAT 

AACG-3' (forward), 5'-TCAAGAATTCTTAACCACCCGCGTCATCCAG-3' (reverse) and 5'-

GACAGGCTACACCGGTTTCAT CCATAACG-3' (forward), 5'-TCAAGAATTCTTAACCACCAGAGTCA 

TCCAG-3' (reverse). Mutation sites are marked in bold font. PCR products were inserted in 

pNQR1 using restriction sites EcoRI and AgeI to obtain plasmids pNQR378A, pNQR406A and 

pNQR406S respectively. All constructs were confirmed by DNA sequencing (GATC Biotech AG, 

Konstanz). 

 

3.2.3. Preparation of FAD domain and its variants 

E. coli TunerTM (DE3) strain was transformed with plasmid pFNF53, pFNF378A, pFNF406A or 

pFNF406S. Cells were grown in DYT medium containing 100 µg ml-1 ampicillin at 37 °C. 
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Expression of the FAD domain was induced with 1 mM isopropylthio-β-D-galactoside (IPTG) 

at an OD600 of 0.9. Cells were harvested after 5 h at 30 °C and washed in 10 mM Tris-HCl, 

0.3 M NaCl, 5 mM MgCl2 , pH 7.4. Cells were broken by one passage through an Emulsiflex C3 

cell disruptor (Avestin) at approx. 20 kPsi in the presence of 1 mM DTT and protease 

inhibitors (complete EDTA-free, Roche Diagnostics). Cell debris was removed by 

centrifugation at 20'000 x g for 20 minutes. After ultracentrifugation of the cellular extract at 

150'000 x g (Beckman Type 70Ti), the supernatant was filtrated and loaded onto a Ni 

Sepharose HP column (5 ml bed volume, GE Healthcare) equilibrated with buffer A (20 mM 

Tris-HCl. 0.5 M NaCl, pH 8.0). The column was washed with 5 volumes of buffer A containing 

30 mM imidazole and histidine-tagged protein was eluted with 400 mM imidazole in buffer A. 

Peak fractions were combined and diluted at least 1:10 in 50 mM HEPES-NaOH, pH 7.0. The 

histidine tag was cleaved off by incubation for 15 h at 4 °C with PreScission protease (GE 

Healthcare). Per 1 mg of protein, 6.7 µg of protease was added. By loading the digest onto 

the Ni+ column and washing with 50 mM HEPES-NaOH, pH 7.0, FAD domain devoid of the 

histidine tag was obtained. The target protein was further enriched by loading it onto a 

SourceQ column (10 ml bed volume, GE Healthcare) equilibrated with 50 mM HEPES-NaOH, 

pH 7.0 and eluting with a linear gradient from 0 to 0.4 M NaCl. Protein for crystallization and 

enzymatic assays was frozen in liquid nitrogen in the presence of 5 % glycerol. The yield from 

15 g of cells (wet weight) was 45 mg, 23 mg, 36 mg and 30 mg of the wild type FAD domain, 

the C378A variant, its F406A and F406S variants, respectively. All chromatographic steps 

were performed at 4 °C using an Äkta Prime chromatography system (GE Healthcare). 

 

3.2.4. Preparation of Na+-NQR complex and its NqrF C378A, F406A and F406S 

variants 

The Na+-NQR complex linked to an N-terminal hexa-histidine tag on subunit NqrA and its 

variants with single amino-acid substitutions C378A, F406A or F406S in subunit F were 

purified from Vibrio cholerae strain O395 N1 Δnqr transformed with the corresponding 

plasmids, using methods described previously (Casutt, Wendelspiess et al. 2010). The yield 

from 12 g of cells (wet weight) was 15, 14, 15 and 16 mg of the Na+-NQR, Na+-NQR C378A, 

Na+-NQR F406A and the Na+-NQR F406S variant respectively. 
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3.2.5. Preparation of NqrA 

Subunit NqrA encoded on plasmid pBR322 (Casutt, Nedielkov et al. 2011) was produced in 

E. coli BL21 (DE3). Perdeuterated NqrA was produced in labeled M9 media according to 

(Marley, Lu et al. 2001). The cells were grown in unlabelled lysogeny broth (LB) medium at 

37 °C, shaken at 150 rpm. At an optical cell density at 600 nm (OD600) of approximately 0.7, 

the cells were pelleted by centrifugation for 15 minutes at 5'000 x g at room temperature. 

The cells were then washed once with M9 medium in D2O and pelleted again. Cells were 

resuspended in deuterated M9 medium supplemented with perdeuterated glucose and 

incubated for one hour at 37 °C and 150 rpm. Subsequently, protein expression was started 

by addition of IPTG to a concentration of 1 mM. After 4 hours of incubation the cells were 

harvested. To purify His6-NqrA, washed cells (25 g) were suspended in 50 mM sodium 

phosphate, pH 8.0, 300 mM NaCl, 5 % (v/v) glycerol. One spatula tip of MgCl2, DNase I 

(Roche) and one tablet of protease inhibitor cocktail (Roche) were added to the cell 

suspension which was passed twice through a French pressure cell at 7.58 MPa. Cell lysate 

was centrifuged at 100'000 x g for 60 min. The supernatant was filtrated through a syringe 

filter with 0.2 µm SFCA membrane (Corning) and loaded onto a His-Trap 2 ml (GE Healthcare) 

column equilibrated with running buffer (50 mM sodium phosphate, pH 8.0, 300 mM NaCl, 

5 % (v/v) glycerol, 4 mM NaN3) containing 20 mM imidazole. NqrA was eluted with running 

buffer containing 130 mM imidazole. All experiments were performed with monomeric NqrA 

which was separated from NqrA aggregates on a Superdex 200 16/60 (GE Healthcare) 

column in 50 mM phosphate buffer, pH 8.0, 300 mM NaCl, 5 % (v/v) glycerol, and 4 mM 

NaN3 (Casutt, Nedielkov et al. 2011). 

 

3.2.6. Analytical Methods 

The concentration of catalytically active FAD domain variants was calculated from the 

concentration of FAD in the supernatant of the trichloroacetic acid precipitated purified 

protein. FAD, NADH and ubiquinone-1 (in ethanol) were determined photometrically using 

extinction coefficients ε450 (11.3 mM-1 cm-1), ε340 (6.22 mM-1 cm-1) and ε275 (13.7 mM-1 cm-1), 

respectively (Türk, Puhar et al. 2004). Photometric measurements were performed on a Cary 

50 spectrophotometer (Agilent) at 25 °C if not stated otherwise. Purity of protein-associated 

FAD was verified with a C18 column (Grom) on a Sykam HPLC system using a gradient from 1 
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to 50 % methanol in 50 mM sodium acetate pH 5.0 and comparing the elution profile 

measured at 450 nm to the profile of a 1 to 1 mix of commercial flavin adenine dinucleotide 

and flavin mononucleotide standards. Protein was determined by the bicinchoninic acid 

method (Smith, Krohn et al. 1985) using the reagent from Pierce. Molecular weight and 

purity of protein was estimated by SDS-PAGE (Schägger and von Jagow 1987) by comparison 

with a prestained molecular weight marker (Carl Roth GmbH). 20 µg of protein was loaded 

per lane. Gels were stained with Coomassie Blue Silver (Candiano, Bruschi et al. 2004). 

 

3.2.7. Protein crystallization and X-ray analysis 

FAD domain crystals for X-ray analysis were grown using the hanging-drop vapor-diffusion 

method by mixing 2 µl FAD domain (7 mg ml-1, in 5 mM Tris/HCl, pH 7.5) with 2 µl of 

crystallization solution (0.1 M citric acid, pH 5.0, 35 % (by weight) monomethyl polyethylene 

glycol 5'000 (PEG 5'000 MME), 0.2 M MgOAc) equilibrated against 500 µl crystallization 

solution at 293 K. The yellow crystals with a size of 40 x 80 x 80 m were flash-frozen in the 

cryo-nitrogen stream. 

Crystals of the C378A variant of the FAD domain were grown by mixing 2 µl of 5 mg ml-1 FAD 

domain C378A in 5 mM Tris-HCl, pH 7.5 with 2 µl reservoir solution containing 28 % PEG 

5'000 MME, 0.1 M sodium acetate, pH 5.0, 0.2 M magnesium acetate, and equilibrating the 

drops against 500 µl reservoir solution at 19 °C. 

Crystals of the F406A and the F406S variants of the FAD domain were grown using the 

hanging-drop vapor diffusion method by mixing 2 µl 6 mg ml-1 protein solution in 5 mM Tris-

HCl, pH 7.5 with 2 μl reservoir solution (22 - 27 % PEG 5'000 MME, 0.2 M magnesium acetate, 

0.1 M sodium citrate, pH 5.0 or 5.2). This was followed by streak-seeding of the drops (using 

a cat whisker) with seeding crystals from the FAD domain C378A variant (see below). The 

seeded drops were equilibrated against 0.5 ml reservoir solution at 292 K. To obtain seeds, 

crystals of the FAD domain C378A variant were transferred to 50 μl stabilization solution (24 % 

PEG 5'000 MME, 0.1 M sodium acetate, pH 5.2, 0.2 M magnesium citrate) and grinded using 

the Seed Bead kit (Hampton Research). The concentrated seed stock was diluted 1:10 with 

stabilizing solution to obtain the final seed solution. Crystals of all FAD domain variants were 

soaked for 15 to 20 min in the crystallization solution containing 0.1 M NAD+, 0.2 M NADH 

(disodium salt, Carl Roth GmbH) or 0.2 M NADH with some grains of dithionite, respectively. 
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Crystals were passed through crystallization solution containing 35 % PEG 5'000 MME as 

cryo-protectant and were immediately flash-frozen in liquid nitrogen. X-ray data were 

collected at 100 K using monochromatic synchrotron radiation (λ = 0.9 Å) at the beamlines 

X06SA and X10SA, Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland. The 

diffraction data were processed with the program package XDS (Kabsch 2010). 

 

3.2.8. Structure determination and refinement 

Optimization of the initial crystallization conditions of the FAD domain (Tao, Türk et al. 2006) 

yielded yellow crystals with a size of 40 x 80 x 80 µm. Crystals diffracted to 1.8 Å and 

belonged to space group P212121. Phases were determined by MAD of a crystal soaked with 

K2 Pt(NO2)4 for 3 days. Selected crystals were soaked with mother liquor containing 40 mM 

NADH for 10 - 60 min, or 0.1 mM AgNO3 for 2 - 48 h, prior to flash-freezing. Phases of FAD 

domain C378A, F406A and F406S variants were determined by molecular replacement, 

carried out with the molrep program (Vagin and Teplyakov 2010) from the CCP4 suite (Winn, 

Ballard et al. 2011) and using the structure of the NqrF FAD domain wild type (unpublished 

data, provided by Günter Fritz) as a search model. Refinement was performed with the 

refmac5 program (http://www2.mrc-lmb.cam.ac.uk/groups/murshudov/, access date 

28.9.2011) from the CCP4 suite. Structural alignment and images were generated with Coot 

(Emsley, Lohkamp et al. 2010), PyMOL (Schrödinger 2010) and Discovery Studio (Accelrys). 

 

3.2.9. Enzymatic activities 

NADH dehydrogenase activities of Na+-NQR and FAD domain variants were determined with 

NADH (0.002 - 0.1 mM) and 0.1 mM ubiquinone-1 (Q1; MCAT GmbH) at pH 7.5 in the 

absence of chloride (Tao, Fritz et al. 2008). Quinone reductase activities were determined 

with Q1 (0.005 - 0.05 mM) as electron acceptor at a fixed NADH concentration of 50 µM. 

Rates of NADH oxidation were followed at 340 nm and quinol formation was determined 

from the difference in absorption at 248 nm - 268 nm. Kinetic measurements were 

performed under aerobic or anaerobic conditions under magnetic stirring on a Cary 50 

spectrophotometer (Agilent) or a HP 8452A diode array spectrophotometer (Agilent) in a 

temperature-controlled quartz cuvette at 25 °C and 37 °C. Specific enzyme activities were 
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determined in the presence of 50 µM NADH in buffer temperated to 25 °C if not indicated 

otherwise. For the calculation of KM , apparent KM and Vmax, the Michaelis-Menten or the Hill 

equations were used. The turnover number kcat was calculated using a molecular weight of 

32 kDa for the FAD domain and a molecular weight of 220 kDa for the Na+-NQR complex. Ag+ 

inhibition was assayed by incubating the enzymes for 24 h at 4 °C in the absence or presence 

of AgNO3 and starting the reaction by the addition of NADH. For demonstrative purposes, 

kinetic data are depicted in the double-reciprocal Lineweaver-Burk projection. The inhibition 

constant for Ag+ was calculated assuming an irreversible inactivation (resembling mixed 

inhibition) of the enzyme by silver binding. DBMIB inhibition of the Na+-NQR was assayed by 

incubating the enzyme for 17 h at 4 °C in reaction buffer containing DBMIB and Q1 in 0.1 % 

or 0.25 % ethanol and starting the reaction by addition of NADH. KI for inhibition of NADH 

dehydrogenase activity by DBMIB was calculated assuming an uncompetitive mode of 

inhibition (Voet and Voet 2004). The inhibition of specific quinone reductase activity was 

analyzed assuming a mixed mode of inhibition (Voet and Voet 2004). The correlation 

coefficients and kinetic constants are listed in table 11. The rates were background-

corrected by the changes in absorbance arising from DBMIB reduction by the Na+-NQR to 

enable kinetic analysis of ubiquinol-1 formation only. The reductase activity of Na+-NQR 

using only DBMIB as electron acceptor (Simkovic and Frerman 2004) was assayed under 

identical conditions as Q1 reductase activity with DBMIB concentrations between 0 - 100 µM 

and using the same extinction coefficient as for Q1. Kinetic constants are given in table 12. 

 

3.2.10. Inhibition of growth of Vibrio cholerae by Ag+ 

The effect of Ag+ on the viability of Vibrio cholerae O395 N1 Δnqr expressing Na+-NQR wild 

type and the NqrF C378A Na+-NQR variant was investigated by growth assays: 

Vibrio cholerae cells were grown in Erlenmeyer flasks under agitation in chloride free 

minimal medium with succinate as energy and carbon source. Single colonies of both strains 

were used to inoculate 2 ml minimal medium and were grown at 37 °C overnight. These 

cultures were used to inoculate 20 ml expression cultures. At an OD600 nm = 0.4, expression of 

Na+-NQR wild type and C378A variant was induced by the addition of 5 mM arabinose. 

Cultures were grown for another 16 h to allow expression of Na+-NQR. Cells were harvested 

by centrifugation at 4'000 x g and resuspended in phosphate-free minimal medium. The cell 
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density was adjusted to OD600 nm = 0.1. Different concentrations (0 - 20 µM) of AgCl were 

added and cells were incubated for 26 h at 37 °C under agitation. To address final cell mass 

and growth, the OD600 nm of the cultures with AgCl was determined. 

 

3.2.11. Fluorescence spectroscopy 

To measure the thermal stability during heat denaturation, FAD domain variants were 

diluted in 20 mM Tris-H2SO4, pH 7.5, 50 mM NaSO4 to a concentration of 0.02 mg ml-1. 

Starting at 10 °C, temperature was increased in steps of 5 °C to a final temperature of 60 °C. 

The intensity of tryptophan fluorescence emission was determined at indicated 

temperatures at 348 nm (λexcitation 295 nm). Alternatively, the fluorescence emission of 

dissociated FAD was measured at 522 nm (λexcitation 450 nm) in steps of 2.5 or 5 °C. Melting 

points were defined as the midpoint temperature of a sigmoidal fit of fluorescence intensity 

plotted against temperature. The correlation coefficient R2 was > 0.995. The dissociation of 

FAD by Ag+ was measured over time at 527 nm. The experiment was started by the addition 

of 5 µM AgCl to 0.63 µM of FAD domain variant in a fluorescence cuvette at 25 °C. Binding of 

DBMIB to NqrA was determined as follows: NqrA was diluted in 50 mM Tris-HCl, 300 mM 

NaCl, pH 8.0 and 5 % (v/v) glycerol to a concentration of 0.25 µM. DBMIB was added from an 

ethanol stock solution to final concentrations between 0 and 200 µM (final ethanol 

concentration ≤ 2 %). Measurements were performed in triplicate at 25 °C. The intensity of 

tryptophan fluorescence emission was determined at 338 nm (λexcitation = 295 nm). The 

increase in quenching (ΔF) of the tryptophan emission was normalized to values between 0 

and 1 and plotted against the concentration of DBMIB. Non-linear regression analyses using 

the Hill equation and the Michaelis-Menten equation were performed. In addition, the data 

were transformed into a linear form using the methods of Rosenthal and Scatchard 

(Scatchard 1949; Rosenthal 1967) and fitted with a second degree polynomial. All 

fluorescence measurements were performed with a Fluorolog 3 spectrofluorometer (Horiba 

Scientific) using a temperature-controlled fluorescence cuvette. 
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3.2.12. NMR spectroscopy 

NqrA was transferred to D2O containing 10 mM potassium phosphate, pH 8.0, 150 mM NaCl, 

4 mM NaN3 by repeated ultrafiltration with Ultrafree 4 membranes (Millipore; molecular 

weight cut-off, 10 kDa). To 10 µM NqrA, Q1 was added from 20 mM stock solutions in DMSO-

d6 to a final concentration of 100 µM. DBMIB was added from stock solutions in DMSO-d6 to 

obtain NqrA samples containing 0 - 150 µM DBMIB as indicated. Additional DMSO-d6 was 

added to keep its concentration constant within the series (1.5 % v/v). The STD NMR 

experiment with DBMIB alone was performed with 2.5 µM NqrA in PBS buffer. DBMIB was 

added to a concentration of 100 µM. Controls were prepared in the same way without NqrA. 

All NMR experiments were acquired at 300 K on a Bruker AVANCE III 600 MHz spectrometer 

equipped with a cryogenic 5 mm TCI-H/C/N triple resonance probe with actively shielded z-

gradient. The samples were transferred to 5 mm NMR tubes and STD NMR experiments 

(Mayer and Meyer 1999) were performed as described (Casutt, Nedielkov et al. 2011). The 

resonances of Q1 were assigned as described in (Casutt, Nedielkov et al. 2011). Water 

suppression was achieved by excitation sculpting (Hwang and Shaka 1995). Resonances of 

NqrA were saturated by applying a train of low-power Gaussian-shaped pulses at 0.2 ppm 

with a total saturation time of 2 s. Off-resonance irradiation was set to 33 ppm. On- and off-

resonance spectra were acquired in an interleaved manner and subtracted after processing. 

Up to 4096 transients were collected at a spectral width of 12 ppm. STD effects were 

determined within the multiple display mode by scaling the off-resonance spectrum down to 

superimpose with the signal of interest in the difference (off - on) spectrum. The influence of 

DBMIB on Q1 STD effects was plotted in Origin 8.1G and fitted to a one-site binding model. 

One value for k was obtained from globally fitting all Q1 signals. Experiments for interligand 

Overhauser effects (ILOEs) were performed in the same buffer as STD NMR experiments. To 

25 µM NqrA or perdeuterated NqrA, 200 µM Q1 or 400 µM DBMIB from 20 mM stock 

solutions in DMSO-d6 were added. DMSO-d6 was added as required to achieve a constant 

concentration of 5 % in the sample. Two samples for the control experiments were prepared 

in the same manner excluding NqrA or quinones respectively. Water suppression was 

achieved by low-power presaturation of water signal during relaxation delay and mixing time 

(Hoult 1976; Hore 1989). The mixing time was set to 600 ms. Up to 960 increments with 48 

scans in each increment were collected at a spectral width of 10 ppm. Spectra were 

processed and analyzed with the software TopSpin (Bruker; v3.1).  
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3.3. Results 

3.3.1. Ag+-mediated killing of Vibrio cholerae originates in silver ion binding to 

cysteine 378 of subunit F of the Na+-NQR 

The Na+-NQR is a six-subunit membrane-bound complex with a molecular mass of 220 kDa 

(Tao, Casutt et al. 2008). In the Na+-NQR, NADH is oxidized by the subunit NqrF which is 

composed of the FAD domain accepting the hydride from NADH, and the ferredoxin domain 

catalyzing electron transfer to other redox centers present in the complex (Türk, Puhar et al. 

2004; Tao, Casutt et al. 2008). The FAD domain of NqrF was previously overproduced in 

V. cholerae, crystallized and biochemically characterized (Türk, Puhar et al. 2004; Tao, Türk 

et al. 2006). It comprises amino acids 129 - 408 and represents the C-terminal part of the 

NqrF subunit. The following chapters describe the production of the FAD domain of the Na+-

NQR from V. cholerae in E. coli. The protein was purified and the 3D crystal structure was 

determined. By introducing mutations in conserved residues of the active site of NADH 

oxidation, we were able to identify Cys 378 of the NqrF subunit as a strong binder of silver 

ions and as a key player in conferring Ag+ sensitivity to Vibrio cholerae. Furthermore, the 

mutagenesis of the Phe 406 residue of NqrF served to analyze the mechanism of NADH 

oxidation in-depth, as described in chapter 3.3.2. 

 

3.3.1.1. Production and purification of the FAD domain of Na+-NQR 

The FAD domain and its variants were purified based on established protocols (Türk, Puhar 

et al. 2004). Figure 31 depicts the enrichment of the wild type FAD domain by immobilized 

metal affinity and anion exchange chromatography. The purified protein exhibited migration 

behavior on SDS-PAGE corresponding to the calculated molecular masses of 34'272 Da (with 

His-tag) and 31'981 Da (His-tag cleaved) respectively. The non-covalently bound FAD adds 

another 786 Da to the molecular mass. 
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Figure 31: Purification of the FAD Domain of the Na+-NQR from Vibrio cholerae. Au: 
Absorption units. A: Enrichment by nickel affinity chromatography. The broad peak 
represents the flow-through fraction. Protein eluting at 110 ml represents the fraction 
collected after washing with 30 mM imidazole. The final maximum at 130 ml contains His-
tagged FAD domain. B: Polishing step by ion exchange chromatography. Dotted line 
represents conductivity of the elution buffer (linear gradient from 0 to 0.4 M NaCl). C: SDS-
PAGE depicting the enrichment of the FAD domain. Lane 1: cellular extract of E. coli 
expressing FAD domain, the amount of cells contained in 200 µl of a culture with OD600 nm = 1 
was loaded. Lane 2: Elution fraction from A. Lane 3: Elution fraction from B, representing 
purified FAD domain without His-tag. The gel was stained with Coomassie blue. 
 
 
It was unknown if the E. coli cells used as expression host for the V. cholerae enzyme would 

be able to supply enough FAD to complement the polypeptide or if the E. coli host would 

resort to incorporate other flavin species. HPLC analysis confirmed that only the flavin 

adenine dinucleotide was inserted into the holo-enzyme (figure 32). Only residual amounts 

of FMN and riboflavin were detected. The FAD domain wild type contained 0.81 mol 

FAD/mol, the C378A variant contained 0.93 mol FAD/mol. 
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Figure 32: FAD domain produced in E. coli contains flavin adenine dinucleotide as sole 
cofactor. HPLC elution profile of a mixture of flavin standards (grey) is superimposed with 
the profile of the supernatant from trichloroacetic acid precipitation of the purified FAD 
domain (black). 
 
 

3.3.1.2. Binding of Ag+ to the FAD Domain of Na+-NQR 

The FAD domain catalyzed NADH oxidation with Q1 as electron acceptor. A Vmax of 

225.2 ± 6.5 µmol min-1 mg-1 and a KM of 7.4 ± 0.8 µM was observed (figure 33). This is in 

accord with the activity of the Na+-NQR complex which was overproduced in V. cholerae. The 

kinetic constants are summarized in table 7. The activities of the isolated FAD domain and 

the Na+-NQR were further assayed in the presence of Ag+ (figure 33; dashed lines). In both 

cases, a significant decrease in Vmax and almost no change in KM was observed, which is best 

interpreted as the inhibition mode of an irreversible inactivator (Voet and Voet 2004), 

effectively lowering the total concentration of catalytically active enzyme. The derived 

inhibition constants KI = KI' were 36 nM for the Na+-NQR and 20 nM for the FAD domain 

(table 7). This inactivation by low nanomolar concentrations of Ag+ most likely resulted from 

the binding of the heavy metal cation to a cysteine residue close to the NAD(H) binding 

pocket, which in turn prevented hydride transfer from the nicotine amide moiety of NADH to 

the isoalloxazine moiety of the FAD cofactor. To confirm this notion, and to describe the 

interaction of the substrate with the electron input domain of the Na+-NQR at atomic 

resolution, we determined the 3D structure of the FAD domain in complex with Ag+ or NADH. 
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Indeed, the binding of silver ions to a cysteine residue corresponding to position 378 of NqrF, 

in close vicinity to the NADH binding site could be observed (figure 34). Hereupon, a 

mutation of the Cys 378 residue of the FAD domain was introduced which was expected to 

cause a significant loss in the ability of Ag+ to bind to and inhibit the NADH oxidation activity. 

 

 

Figure 33: Inhibition of the Na+-NQR and its NADH-oxidizing FAD domain by Ag+. Rates of 
NADH oxidation with ubiquinone-1 as electron acceptor were determined in the presence or 
absence of AgCl. Mean values from three experiments are presented. Data are shown as a 
Lineweaver-Burk plot and were fitted by linear regression to illustrate the mode of 
irreversible inhibition. A: Na+-NQR complex in the presence (dashed line) or absence (solid 
line) of 100 nM Ag+. B: isolated FAD domain from subunit NqrF in the presence (dashed line) 
or absence (solid line) of 10 nM Ag+.  
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Figure 34: Structure of the NADH-oxidizing FAD domain in complex with Ag+ and/or NADH. 
A: Cartoon view of the FAD domain in complex with NADH. B: Binding of silver atoms to 
Cys 378 in the active site of the FAD domain of subunit NqrF from the Na+-NQR. The FAD 
cofactor (orange) as well as NADH (green) and the conserved amino acids Cys 378 and 
Phe 406 (grey) are shown. The pink orbs represent two silver ions close to Cys 378, which 
spatially overlap with the nicotinamide in its binding pocket. The position of NADH was 
determined from a different crystal of the FAD domain, soaked with NADH. 
 
 

3.3.1.3. Ag+ inhibition is lost in the C378A variant 

Substitution of cysteine 378 by an alanine resulted in the lowering of Vmax to 

60.1 ± 1.0 µmol min-1 mg-1 and the lowering of the KM to 1.2 ± 0.2 µM in the isolated FAD 

domain and a lowering of Vmax to 58.3 ± 3.4 µmol min-1 mg-1 and of KM to 12.0 ± 2.8 µM in 

the Na+-NQR complex (table 7). These results indicate that the mutation induced a 

conformational change in the active site, to a point where NADH is bound more efficiently by 

the enzyme, but is processed more slowly. It was found that the NADH oxidation activity of 

the C378A variant was completely unaffected at Ag+ concentrations at which the wild type 

was inhibited (figure 35), confirming our notion that cysteine 378 of the NqrF is responsible 

for the irreversible binding and inhibition by Ag+. The inhibition constants were increased by 

one order of magnitude in the C378A variant of the Na+-NQR complex and even by three 

orders of magnitude in the C378A variant of the isolated FAD domain (table 7). 
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Figure 36: Ag+ Inhibition of the Na+-NQR and its NADH-oxidizing FAD domain is reverted in 
the C378A variant. Absorbance of reduced NADH, plotted against time. Reactions were 
started by the addition of 0.1 mM NADH to enzyme pre-incubated in chloride-free buffer 
containing 0.1 mM ubiquinone-1 and either no Ag+ (solid lines), 150 nM (A + B, dotted lines) 
or 1 µM Ag+ (C + D, dotted lines). A: Na+-NQR wild type, B: Na+-NQR C378A, C: FAD domain 
wild type, D: FAD domain C378A. Experiments were done in triplicates, of which one trace 
each is shown. 
 
 
Table 7: Kinetic constants and Ag+ inhibition of the NADH dehydrogenase activity in the 

wild type and C378A variants of the Na+-NQR complex and its FAD domain. 

 Vmax [μmol mg-1 min-1] kcat [s-1] Km [µM] KI [nM] 

NQR wt 108.5 ± 5.6 397.8 36.3 ± 5.2 3.6 x 101 

NQR C378A 58.3 ± 3.4 213.8 12.0 ± 2.8 2.8 x 102 

FAD Domain wt 225.0 ± 7.0 119.9 7.4 ± 0.8 2.0 x 101 

FAD Domain C378A 60.0 ± 1.0 31.9 1.2 ± 0.2 3.0 x 104 

 
 
The mode of Ag+ inhibition was further analyzed by assessing the increase in fluorescence of 

FAD after addition of 5 µM Ag+ to the FAD domain variants. Enhanced flavin fluorescence 

indicates the dissociation of the cofactor from the enzyme. It was found that the C378A 

variant of the FAD domain exhibits a strongly decelerated release of FAD compared to the 
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wild type (figure 36). Additionally, the FAD dissociation over time was best fitted with a 

sigmoidal curve for the wild type FAD domain (Hill coefficient n = 1.3), whereas the 

dissociation of FAD from the C378A variant resembled a hyperbolic curve (sigmoidal and 

hyperbolic fitting data not shown). This indicates that FAD is released from the wild type FAD 

domain in a cooperative manner, involving the specific Ag+ binding site at C378 and one or 

more unspecific binding sites. In the C378A variant only the unspecific Ag+ binding site(s) 

remain, resulting in an uncooperative FAD dissociation mechanism. 

 

 

Figure 36: Dissociation of FAD from the FAD domain and its C378A variant in the presence 
of 5 µM AgCl2. Ag+ was added at t = 0 s. Black: FAD domain wild type. Grey: FAD domain 
C378A variant. 
 
 

The sensitivity of Vibrio cholerae to Ag+ was analyzed by growth experiments in which the 

expression medium was supplemented with Ag+ concentrations in the nanomolar to 

micromolar range. After 26 h of exposure to silver ions, V. cholerae cells expressing the wild 

type Na+-NQR were either killed or did not replicate at Ag+ concentrations higher than 1 µM 

(figure 37). Concentrations up to 0.5 µM had no effect on cell density or growth. At 

concentrations between 0.5 µM and 1 µM Ag+ the cells grew to significantly higher densities. 

In contrast, cells expressing the C378A variant of the Na+-NQR could sustain Ag+ 

concentrations up to 1.5 µM and showed only a slight increase in final cell mass at 

concentrations between 0.5 µM and 1.1 µM Ag+. 
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Figure 37: Ag+ mediated killing of Vibrio cholerae and rescue in the mutant expressing the 
C378A variant of the Na+-NQR. Effect of Ag+ on cell density, recorded after 26 h of 
incubation in chloride free minimal medium containing indicated amounts of Ag+. White: 
cells expressing the wild type Na+-NQR. Hatched: cells expressing the C378A variant of the 
Na+-NQR.  



Chapter 3 - Structure and function of catalytic Na+-NQR subunits Powerful Proteins 
 

 

 
96 
 

3.3.2. Structure-function analysis of the NADH oxidizing domain of the Na+-NQR 

from Vibrio cholerae 

3.3.2.1. Crystal structure of the FAD domain in complex with NADH 

Elucidation of the X-ray structure of the FAD domain in complex with NADH revealed an 

unproductive binding mode as reported before for plant-like FNR and related flavoproteins 

(Deng, Aliverti et al. 1999) (figure 38). Phenylalanine 406 is stacked with the isoalloxazine 

ring of FAD and hinders hydride transfer from nicotinamide. 

 

 

Figure 38: Crystal Structure of the FAD Domain in complex with NADH. The structure of the 
holo-enzyme is represented as a space-filling model. The FAD and NADH cofactors (white) 
and the magnified C-terminus (cyan) are shown in a stick representation. 
 
 

3.3.2.2. Phe 406 variants display enhanced nicotinamide binding and catalytic efficiency 

but loss of stability and FAD binding  

The visible spectra of the F406A and F406S variants of the FAD domain displayed a 

significant blue-shift and increased extinction of the 400 nm flavin peak compared to the 

wild type, indicating the loss of stacking interaction from the phenyl ring with the 

isoalloxazine ring (figure 39). A further difference was observed in the absorbance shoulder 

of the second flavin peak at about 480 nm, corresponding to the adenine part of FAD, which 

was reduced in the F406A and F406S variants. The F406S and F406A variants of the FAD 

domain notably exhibit almost identical spectra. 
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Figure 39: UV-visible spectra of free FAD and the wild type, F406A and F406S variants of 
the FAD domain of the Na+-NQR. Spectra were scaled to the measured absorbance of free 
FAD at 451 nm. Solid gray line; FAD, dashed line; FAD domain wild type, solid black line; FAD 
domain F406A, dotted line; FAD domain F406S. 
 
 
The mutagenesis of the phenylalanine 406 residue led to an increase in catalytic efficiency of 

the NADH oxidase reaction at 25 °C (figure 40). The Michaelis constant KM was significantly 

decreased compared to the wild type (wt 7.4 ± 0.8, F406A 2.1 ± 0.2, F406S 3.5 ± 0.4 μM) and 

the maximal reaction rates were determined to be about twice as high (wt 225 ± 7, F406A 

410 ± 7, F406S 509 ± 11 μmol mg-1 min-1). By increasing the reaction temperature to 37 °C, 

reaction rates of the F406 variants decreased to 3 and 5 % of their respective activity at 

25 °C, whereas wild type activity almost doubled (table 8). 
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Figure 40: Kinetics of NADH oxidation of FAD Domain variants at 25 °C. Initial NADH 
oxidation rates were determined in triplicate for each substrate concentration and Vmax/KM 
pairs were calculated by non-linear curve fit. Squares; FAD domain wild type, circles; F406A 
variant, triangles; F406S variant. 
 
 
Thermal stability of the FAD domain variants was analyzed by plotting fluorescence emission 

of tryptophan or free FAD cofactor against temperature (figure 41). The mean fluorescence 

intensity of these molecules in general increases when a protein unfolds and can be 

described by a sigmoidal curve. Melting points were defined as slope maxima temperatures 

of the curve fits. The melting point of the wild type enzyme was observed at 49 - 50 °C, 

whereas the F406A and F406S variants exhibited lower melting points (39 - 43 °C, table 8). 
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Figure 41: Thermal stability of FAD domain variants. Increase in Fluorescence emission 
intensities of intrinsic A: tryptophan or B: FAD. Melting points were determined by sigmoidal 
curve fit. Squares; FAD domain wild type, circles; F406A variant, triangles; F406S variant. 
Experiments were done in triplicate, of which one each is presented. 
 
 

 

Table 8: Kinetic constants and thermal stability of FAD domain and Na+-NQR variants, n = 3. 

 

FAD d.  

wild type 

FAD d. 

F406A 

FAD d. 

 F406S 

Na+-NQR  

wild type 

Na+-NQR 

F406A 

Na+-NQR 

F406S 

Vmax  

[µmol mg-1 min-1] 
225.0 ± 7.0  410.2 ± 7.2  509.2 ± 11.3  108.5 ± 5.6  n.d. n.d. 

KM [µM] 7.4 ± 0.8  2.1 ± 0.2  3.5 ± 0.4  36.3 ± 5.2  n.d. n.d. 

kcat [s-1] 119.9  218.0  270.8  397.8  n.d. n.d. 

Tryptophan 

melting point [°C] 
50.4 ± 0.1  41.6  39.2 ± 0.4  n.d. n.d. n.d. 

Flavin melting 

point [°C] 
48.7 ± 0.2  42.7 ± 0.2  43.4 ± 0.2  n.d. n.d. n.d. 

Sp. activity 25 °C  

[µmol mg-1 min-1] 
199 ± 5 391 ± 7 478 ± 23 37.8 ± 2.1 14.9 ± 0.8 10.5 ± 0.7 

Sp. activity 37 °C 

[µmol mg-1 min-1] 
389 ± 21 20 ± 3 15 ± 2 20.8 ± 2.9 2.1 ± 0.5 2.5 ± 0.3 

                 

                 
  

Ratio in [%] 

195  5  3  54  14  24  

Sp. activity: Specific enzymatic activity. Melting points are defined as midpoints of the 
sigmoidal fit of the fluorescence  of flavin dissociation or tryptophan unfolding.  
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Additionally, analysis of NADH oxidase activity of the F406 variants displayed their increased 

product inhibition. The presence of 1 mM NAD+ had only minor impact on the specific 

activity of the wild type, but reaction velocities of F406A and F406S decreased by 55 % and 

73 %, respectively (table 9). 

 

Table 9: Product inhibition data of FAD domain variants. 

Specific NADH oxidation rates 

[µmol mg-1 min-1] 

FAD Domain  

wild type 

FAD Domain  

F406A 

FAD Domain  

F406S 

No NAD+ added 190 ± 15 457 ± 22 489 ± 10 

1 mM NAD+ added 184 ± 8 206 ± 19 130 ± 15 

% inhibition in the presence of 

1 mM NAD+ 
3 55 73 

 
 

3.3.2.3. Productive binding with NAD+ and NADH 

Soaking of crystals obtained from the purified F406A and F406S variants of the FAD domain 

with 0.1 M NAD+ or 0.2 M NADH yielded electron density maps with the nicotinamide ring in 

a productive binding mode for hydride transfer. A superposition of F406S structures with 

either form of the cofactor is shown in figure 42. Both NAD+ and NADH nicotinamide are 

tilted relative to the plane of the isoalloxazine ring. C4 of nicotinamide is about equidistant 

from Cys 378 Sγ and isoalloxazine N5 (3 - 3.6 Å) in both the oxidized and reduced forms. 

NAD+ nicotinamide is slightly shifted, increasing the distance from carboxamide to Ser 213 

Oγ by 2 - 2.5 Å. The C-terminal residues are flexible (high B-factors) and could not completely 

be modeled in all cases. Positions of the FAD cofactors are comparable, but the isoalloxazine 

is tilted by 16 ° counterclockwise in the NAD+ structure. 
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Figure 42: Nicotinamide binding mode in the F406S variant of the FAD domain bound to 
NAD+ or NADH. A: Superposition of the active site. Yellow: FAD domain F406S-NADH 
complex. White: FAD domain F406S-NAD+ complex. Dotted lines show stabilizing interactions 
between the nicotinamide and the surrounding isoalloxazine, serine, cysteine and aspartate 
moieties. B + C: Side views of the NADH and NAD+ complexes, respectively with 2Fo-Fc 
electron density maps contoured at 1 σ (left panels). Hydrogen atoms are highlighted in the 
middle panels. For clarity, the right panels show the formulas of the ribosyl-nicotinamide of 
NADH and NAD+. 
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3.3.2.4. Structural superposition of ferredoxin:NADP+ reductase Y308S and FAD Domain 

F406S variants in complex with NAD+ 

The F406S-NAD+ complex was also compared with the structure of the FNR Y308S-NADP+ 

complex (PDB 1QFY). The Rossmann fold forming the nicotinamide dinucleotide binding 

pocket and the anti-parallel beta-sheet structure which forms part of the flavin adenine 

dinucleotide pocket are highly conserved (figure 43). Residues Cys 378, Ser 213 and Asp 404 

are closely positioned to their respective counterparts. Similar to the situation in F406S-

NAD+/NADH superposition, the carboxamide group of the F406S NAD+ is slightly shifted and 

rotated around the C7 - C3 bond. The isoalloxazine moiety in the FNR structure is shifted by 

about 1 Å and also rotated clockwise by 22 °, leading to a shorter distance between 

nicotinamide C4 and isoalloxazine N5. The adenine groups of FAD are arranged differently by 

rotation of about 180 ° around the 4'C - 5'C bond of the ribose. 

 

 

Figure 43: Structural alignment of the Na+-NQR FAD domain F406S-NAD+ complex (white) 
and the FNR Y308S-NADP+ complex (green). Right panel: Magnification of the nicotinamide 
binding site. Dotted lines show stabilizing interactions between the nicotinamide and the 
surrounding isoalloxazine, serine, cysteine and aspartate/glutamate moieties. 
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3.3.3. The catalytic quinone binding site of the Na+-translocating NADH:quinone 

oxidoreductase from Vibrio cholerae accommodates two quinones 

3.3.3.1. Interaction of Na+-NQR with Q1 and DBMIB monitored by the  

electron transfer activities 

As DBMIB is an analogue and antagonist of ubiquinone, it was used in this work to obtain 

information on quinone binding by the Na+-NQR. First, we asked whether DBMIB has an 

influence on NADH oxidation by the Na+-NQR. The effect of DBMIB on NADH oxidase activity 

was assayed by maintaining a constant concentration of the artificial electron acceptor Q1 

while varying the concentration of the substrate NADH. Both NADH oxidation and quinol 

formation were recorded. Determined Vmax and Km values were 147.5 ± 1.7 µmol min-1 mg-1 

and 29.6 ± 0.6 µM, respectively, for NADH oxidation and 38.9 ± 1.2 µmol min-1 mg-1 and 

24.5 ± 1.5 µM, respectively, for quinol formation (table 10). Pre-incubation of the enzyme 

with 10 µM DBMIB led to a decrease in the NADH oxidation rate Vmax as well as in the 

Michaelis constant KM with similar manifestations on the NADH oxidation and the quinol 

formation rates (figure 44, table 10). 
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Figure 44: Inhibition of Na+-NQR by DBMIB determined at varying concentrations of NADH. 
Assays were performed in the presence of 0.1 mM Q1. Specific activities (V) are expressed as 
µmol NADH used or µmol QH2 formed per mg of enzyme per minute in the absence (squares) 
or presence of 10 µM DBMIB (triangles). Kinetic constants are summarized in table 10. 
Upper panel: NADH oxidation. Lower panel: Quinol formation.  
 
 

 

Table 10: Inhibition of Na+-NQR by DBMIB at varying NADH concentrations described by 

the Michaelis-Menten formalism. 

Activity recorded as Kinetic constants 0 µM DBMIB 10 µM DBMIB  

NADH oxidation R2 0.9998 0.9956 

 Vmax [µmol min-1 mg-1] 147.5 ± 1.7 63.1 ± 2.5 

 KM [µM] 29.6 ± 0.6 15.1 ± 1.4 

 KM/Vmax  0.2 0.24 

 KI' [µM]  - 7.5 

Quinol formation R2 0.9985 0.9904 

 Vmax [µmol min-1 mg-1] 38.9 ± 1.2 19.4 ± 1.0 

 KM [µM] 24.5 ± 1.5 12.4 ± 1.7 

 KM/Vmax  0.63 0.64 

 KI' [µM] - 9.9 
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The concentration of Q1 in the assays was 0.1 mM. Corresponding rates are presented in 
figure 44. For calculation of KI', the equation for uncompetitive inhibition was applied: 

     
        

        
 

where α' = 1 + [I] / KI' (Voet and Voet 2004). 
 
 
Varying the ubiquinone-1 concentration of the buffer while starting the assay always by the 

addition of 50 µM NADH allowed the kinetic description of the quinone reductase activity of 

the Na+-NQR. Assays in the absence of DBMIB displayed a clearly defined Michaelis- 

Menten-like behavior of the enzyme (figure 45, upper panel) with a Vmax value of 

25.8 ± 0.6 µmol min-1 mg-1 and a KM value of 14.0 ± 0.9 µM for quinol formation (table 11). 

No cooperativity in substrate binding was detectable (Hill coefficient n = 1.1 ± 0.1, table 11), 

indicative of only one catalytically active quinone site. If quinone reductase activity was 

measured in the presence of 10 µM or 25 µM DBMIB (figure 45, middle and lower panel 

respectively), decrease of Vmax and increase of Km values was observed, however, when 

assuming pure Michaelis-Menten behavior the quality of the fit was significantly decreased 

compared to the situation without DBMIB, manifested in lower correlation coefficients 

(table 11). Fits using the Hill equation yielded better results with respect to the squared 

correlation coefficient R2, with cooperativites of n = 1.3 ± 0.2 in the presence of 25 µM 

DBMIB and n = 1.5 ± 0.2 in the presence of 10 µM DBMIB (table 11). 
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Figure 45: Quinone reductase activities of Na+-NQR in presence or absence of DBMIB. 
Specific activity (V) is expressed as µmol Q1 reduced per mg of enzyme per minute. Rates 
were measured without addition of DBMIB (squares) and in the presence of 10 µM (triangles) 
or 25 µM (circles) DBMIB. The upper panel depicts Michaelis-Menten fits, the middle panel 
shows the same data with sigmoidal Hill fits. The lower panel shows a close-up of the data 
from the inhibition with 10 µM DBMIB where the difference between fitting models is the 
most distinctive. 
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Table 11: Analysis of the rates of quinol formation by Na+-NQR at varying Q1 

concentrations in the absence or presence of DBMIB by the Michaelis-Menten or the Hill 

formalism. 

Michaelis-Menten 

ν0 = (Vmax * [S]) / (KM + [S]) 
No DBMIB 10 µM DBMIB 25 µM DBMIB 

R2 0.9963 0.9811 0.9874 

Vmax [µmol min-1 mg-1] 25.8 ± 0.6 22.6 ± 1.4 15.2 ± 1.1 

KM [µM] 14.0 ± 0.9 19.4 ± 3.1 39.5 ± 6.0 

KI [µM] - 35.9 38.7 

KI' [µM] - 70.6 35.8 

    
Hill 

ν0 = (Vmax * [S]n) / (Kn + [S]n) 
No DBMIB  10 µM DBMIB 25 µM DBMIB 

R2 0.993 0.9878 0.9896 

Vmax [µmol min-1 mg-1] 25.1 ± 1.2 19.1 ± 0.9 12.5 ± 1.1 

K [µM] 13.3 ± 1.5 13.9 ± 1.2 25.7 ± 4.7 

n  1.1 ± 0.1 1.5 ± 0.2 1.3 ± 0.2 

The NADH concentration in the assays was 50 µM. Corresponding rates are presented in 
figure 45. For calculation of KI and KI', the equation for mixed inhibition was applied:  

     
        

         
 

where α = 1 + [I] / KI and α' = 1 + [I] / KI' (Voet and Voet 2004). 
 
 

 

As DBMIB can also serve as electron acceptor in quinone reducing enzymes (Simkovic and 

Frerman 2004), reductase activity of the Na+-NQR using DBMIB as substrate was determined 

separately (table 12). DBMIB inhibition data were corrected for this effect. 

 

Table 12: Kinetic constants of the Na+-NQR quinone reductase activity using DBMIB as 

substrate. 

Michaelis-Menten 

ν0 = (Vmax * [S]) / (KM + [S]) 

 

 

NADH oxidation R2 0.9956 

 Vmax NADHox [µmol min-1 mg-1] 14.39 ± 0.65 

 KM NADHox [µM] 39.97 ± 3.77 

DBMIB reduction R2 0.9944 

 Vmax [µmol min-1 mg-1] 5.62 ± 0.34 

 KM [µM] 53.67 ± 6.29 
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3.3.3.2. Binding of DBMIB to the NqrA subunit 

It was recently shown that subunit NqrA of the Na+-NQR harbors a Q binding site (Casutt, 

Nedielkov et al. 2011). We now asked if NqrA also interacts with DBMIB. NqrA contains three 

tryptophan residues. Measurement of tryptophan fluorescence during DBMIB titration 

enabled us to detect changes in the microenvironment of the binding site. Incubation of 

NqrA with DBMIB lead to quenching of the fluorescence. Saturation of the quenching was 

observed at concentrations > 100 µM DBMIB, with 15 % of the original fluorescence 

remaining, indicating that at least two of the three tryptophan residues of the protein are 

closely affected by DBMIB binding. The data were fitted to a one-site binding and a Hill 

model (figure 46). The goodness of fit was significantly higher with the sigmoidal Hill model 

yielding an apparent KD of 5.05 ± 0.25 µM and Hill coefficient of n = 1.95 ± 0.20 (table 13). 

The Scatchard plot of the data revealed a parabola which is open at the bottom, confirming 

the findings of a positive cooperativity (figure 46, lower panel). 
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Figure 46: Binding of DBMIB to NqrA monitored by quenching of tryptophan fluorescence. 
Upper panel: Fluorescence emission spectra, from top to bottom (using 338 nm as 
reference): 0.25 μM NqrA titrated with 0, 1, 5, 10, 20, 30, 50, 75, 100 and 200 μM DBMIB. 
Bottom-most spectrum is buffer only (50 mM Tris-HCl, 300 mM NaCl, pH 8, 5 % glycerol). 
Excitation wavelength was 295 nm. Samples were measured in triplicates, one spectrum is 
shown of each condition. DBMIB exhibits no fluorescence in the analyzed wavelength range. 
Lower panel: The increase in quenching (ΔF) of the tryptophan emission at 338 nm depicted 
in the upper panel was normalized to values between 0 and 1 and plotted against the 
concentration of DBMIB. Non-linear regression analysis using the Hill equation (dashed line) 
and a one-site binding model (solid line) was performed. Inset: Scatchard plot with 
polynomial fit, visualizing the cooperative binding of two equivalents of DBMIB to NqrA. 
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Table 13: Binding of DBMIB to the NqrA subunit according to tryptophan fluorescence 

quenching. 

One-site binding model:   y = (P1 * x ) / (P2 + x)  

R2   0.97495 

P1   1.06 ± 0.04 

P2   5.14 ± 1.05 µM 

  

Hill equation:   y = (P1 * xn) / (P2
n + xn)  

R2   0.99464 

P1   0.98 ± 0.01 

P2   5.05 ± 0.25 µM 

n   1.95 ± 0.20 

  

Polynomial, 2nd degree:   y = A + B * x + C * x2  

R2   0.93672 

A   0.03 ± 0.01 

B   0.30 ± 0.05 

C - 0.33 ± 0.04 

Fluorescence data were fitted to a one site binding model and to the Hill equation 
(cooperative binding of more than one ligand). In addition, the data, plotted according to 
Scatchard, were fitted to a 2nd degree polynomial. 
 
 
STD NMR confirmed DBMIB binding to NqrA with, at a given ligand-to-protein-ratio, STD 

effects that were even stronger (max. 25 %) than with Q1 (max. 8.5 %) (figure 47). 

Furthermore, signals in the proton NMR spectrum of DBMIB became broad and shifted upon 

binding to NqrA which is indicative for a binding kinetic at the intermediate NMR time scale. 

In order to circumvent problems caused by exchange broadening, STD effects were 

quantified at a higher excess of DBMIB (40:1) as compared to experiments with Q1. The 

strongest STD signals originated from the isopropyl group of DBMIB (methyl groups: 25.0 %, 

CH group: 24 - 25 %). The methyl group bound directly to the quinone ring showed an STD 

effect of 16.1 %. This suggests that the isopropyl group of DBMIB is in closest contact to 

NqrA. 
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Figure 47: Saturation transfer difference NMR of DBMIB interacting with NqrA. Reference 
(upper panel) and STD NMR (lower panel) spectra of DBMIB in the presence of NqrA (molar 
ratio = 40:1). The reference spectrum was scaled to 14 % of its original intensity. Signals of 
the same intensity in the STD spectrum correspond to an STD effect of 14 %. 
 
 

3.3.3.3. DBMIB and ubiquinone Q1 bind simultaneously to the NqrA subunit 

In order to investigate how DBMIB affects the binding of Q1 to the NqrA subunit we studied 

the influence of DBMIB on the STD effects of Q1 at a constant concentration of Q1 (figure 

48A). The changes of STD effects of all Q1 signals were quantified and are presented in figure 

48B. To this end, STD effects in the absence of DBMIB were set as a reference and 

subtracted from all other effects measured in the presence of the inhibitor. Importantly, STD 

effects increased with increasing concentrations of DBMIB. STD effects of Q1 were affected 

by DBMIB in a concentration dependent fashion. This effect leveled off at DBMIB 

concentrations above 80 - 100 µM. STD changes of all five signals of Q1 were fitted globally 

to a one-site binding model, leading to an EC50 value of k = 26.1 ± 2.5 µM. 
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Figure 48: Saturation transfer difference NMR spectroscopy of Q1 and DBMIB in the 
presence of NqrA. A: Reference (upper panel) and three STD NMR (three lower panels) 
spectra of Q1 with increasing DBMIB concentration in the presence of NqrA. The reference 
spectrum was scaled to 37 % of its original intensity. Signals of the same intensity in the STD 
spectrum correspond to an STD effect of 37 %. The picture shows growing STD effects of Q1 
signals with increasing DBMIB concentration. B: Changes of saturation transfer difference 
NMR effects of Q1 depending on the concentration of DBMIB. Experimental data points are 
fitted to a one-site binding model (y = Bmax * x / (k + x), solid lines), the constant k was fitted 
globally for all curves. 
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The influence of DBMIB on STD effects of Q1 was also analyzed with regard to the binding 

mode of Q1 (table 14). For this purpose a ratio between STD effect of Q1 at maximal 

concentration of DBMIB and in the absence of DBMIB was calculated. These ratios were then 

normalized to the minimal ratio (for H10) that was set to 1. Rather than increasing or 

decreasing all STD effects of Q1 homogeneously, the quinone analogue DBMIB affected the 

STD intensities of H-5’ and H-7 more strongly than the remaining signals of Q1. Our analysis 

shows that STD effects of H-5’ and H-7 increase disproportionately upon addition of DBMIB. 

 

Table 14: Relative changes of the STD effects of Q1 induced by the presence of DBMIB. 

 STD effects of Q1, % Ratio 150 µM / 

0 µM DBMIB 

Relative ratio, 

ratio(H10) = 1 Signal no DBMIB DBMIB 150 µM 

H11 6.0 26.3 4.38 1.07 

H10 7.5 30.7 4.09 1.00 

H5' 5.1 25.8 5.06 1.24 

H7 3.4 20.0 5.88 1.44 

OCH3 8.5 34.9 4.11 1.00 

 
 

3.3.3.4. DBMIB and ubiquinone Q1 occupy an extended quinone binding site 

The fact that, according to STD NMR, DBMIB does not displace Q1 from the binding site but 

alters the binding mode of the native substrate led us to ask whether both quinones interact 

with NqrA in direct vicinity to each other. To test this we recorded NOESY spectra of both 

ligands in the presence of NqrA (figure 49). Indeed, we observed interligand NOE 

correlations (ILOEs) between Q1 and DBMIB (London 1999). These correlations are only 

observed in the presence of NqrA. A mixture of both ligands in the absence of NqrA does not 

show ILOEs (figure 49) nor does NqrA show crosspeaks at these positions in the absence of 

Q1 and DBMIB. It is important to note that the observation of ILOEs critically depends on the 

presence of NqrA but proved independent on whether protonated or perdeuterated NqrA 

was used during NOESY experiments. That means that the correlations observed originate 

from direct transfers between the ligands and not from protein-mediated effects.  
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Figure 49: Interligand Overhauser 
effects between Q1 and DBMIB in the 
presence of NqrA. A: Scheme illustrating 
the build-up of an intermolecular NOE 
due to simultaneous binding of both 
ligands in direct vicinity to each other. B: 
Expansion of the NOESY spectrum of 
200 µM Q1 and 400 µM DBMIB in the 
presence of 25 µM NqrA in deuterated 
PBS buffer (150 mM NaCl, 10 mM NaPi, 
4 mM NaN3 in D2O). The mixing time was 
600 ms. Chemical shifts at which traces 
were extracted for panel C are indicated 
by dashed lines. C: Three panels C1, C2, 
and C3, showing traces extracted from 
the NOESY spectrum of Q1 and DBMIB. 
In each panel, the blue trace originates 
from the NOESY spectrum measured in 
the presence of protonated NqrA; the 
green trace was measured in the 
presence of perdeuterated NqrA; the 
red trace was measured in the absence 
of NqrA. ILOEs are indicated by 
arrowheads. The position of the 
diagonal signal is marked with an 
asterisk. 
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3.4. Discussion 

3.4.1. Ag+-mediated killing of Vibrio cholerae originates in silver binding to 

Cys 378 of subunit F of the Na+-NQR 

We determined the high-resolution 3D structures of the FAD domain in complex with NADH 

or Ag+. An overlay of the two structures (figure 34) revealed the presence of the heavy metal 

cation in a site occupied by the nicotine amide moiety of the enzyme during catalysis. Ag+ 

was ligated to the thiolate sulfur of C378 protruding into the active site. In parallel, kinetic 

studies determined that the Na+-NQR and the isolated FAD domain are irreversibly 

inactivated by nanomolar concentrations of Ag+ (figure 33). The C378A variants of these 

enzymes did not exhibit this inactivation, or only in a very diminished form (figure 35, 

table 7). 

A study on the Na+-translocating NADH-quinone reductase from Vibrio alginolyticus found 

Ag+ to act as a competitive inhibitor in respect to quinones (Unemoto, Ogura et al. 1993). 

However, effects on NADH oxidation were not investigated. Furthermore, the inhibition 

experiments were performed in the presence of 200 mM Cl-. Due to the low solubility of 

AgCl (solubility product constant [AgCl] = 1.7x10-10 mol-2 l-2;(Weast 1981)), it can be assumed 

that the free Ag+ concentration in these experiments was much lower than specified. A 

subsequent study concluded that the mode of inhibition by nanomolar concentrations of Ag+ 

on Na+-NQR must be one of irreversible inactivation, most likely involving the displacement 

of FAD from the NADH dehydrogenase site by Ag+ (Steuber, Krebs et al. 1997). Our findings 

confirm this mode of inhibition and reinforce the conclusion that the cysteine 378 of subunit 

NqrF is the primary attack point for silver ions in the Na+-NQR. 

Our in vivo experiments show that V. cholerae exhibits increased viability if expressing the 

Na+-NQR C378A variant versus the Na+-NQR wild type when 1 - 1.5 µM Ag+ are present in the 

medium. This implies that the Na+-NQR represents one of the most sensitive and essential 

components in the cell. Ag+ concentrations lower than 1 µM did not have a measurable 

effect in spite of the Na+-NQR having a KI in the low nanomolar range (table 7). There might 

be several reasons accounting for this fact: Ag+ most likely cannot easily pass the cell 

membrane. Since Cys 378 of NqrF is located on the cytoplasmic side of the membrane, there 

might be limited access of the free Ag+ to this residue. Also, succinate present in the medium 

may chelate Ag+ and lower the free Ag+ concentration. Other components of the cell may 
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bind Ag+ as well, diminishing the drastic toxic effect on the bacterial cell. Such a component 

is e.g. glutathione. At Ag+ concentrations above 1.5 µM, there is no visible protective effect 

of the C378A mutation. Since we a look at whole cell viability, there may be many factors 

which influence the survival of the bacterial cell. Energy metabolism is just one aspect. 

Higher concentrations of Ag+ very likely target other essential systems, as well leading to 

bacterial death. 

Central processes like synthesis of proteins and respiration are essential for the survival of 

microorganisms. Respiratory enzymes like the Na+-NQR are putative targets for antibacterial 

drugs, as shown for the complex V (ATP synthase) from Mycobacterium tuberculosis (Andries, 

Verhasselt et al. 2005). The Na+-NQR does not exhibit sequence homology to the 

mitochondrial complex I from eukaryotes, an enzyme which is not inhibited by Ag+ (Lin, 

Puhar et al. 2008) and whose NADH binding site does not contain a cysteine residue which 

could act as a ligand for Ag+ (Sazanov and Hinchliffe 2006). In accord with that finding, the 

toxicity of Ag+ in humans is very low (Silver 2003), and it seems as if the full potential of 

silver, especially as constituent of different chemical entities, is not yet tapped. Our study 

represents the basis for the development of novel, silver-based strategies to combat 

bacterial infections in the future. 

 

3.4.2. Structure-function analysis of the NADH oxidizing domain of the Na+-NQR 

from Vibrio cholerae 

Cysteine residues in active sites of enzymes are often stabilized in their thiolate state as they 

are readily deprotonated by the microenvironment of the surrounding protein (Klomsiri, 

Karplus et al. 2011). It is observed in numerous NADH dehydrogenases that cysteines are 

involved in critical catalytic steps. In liver alcohol dehydrogenase, two deprotonated 

cysteines help coordinate the catalytic Zn2+ ion. In addition, one of these cysteines, Cys 174, 

was found in close distance to the C4 of the NAD+ nicotinamide, so that sulfhydryl-

nicotinamide adducts have been proposed (Hackett, Novoa et al. 1986). Such adducts were 

also implicated with the first catalytic step of glyceraldehyde-3-phosphate dehydrogenase 

(Moras, Olsen et al. 1975) and in cytochrome b5 reductase (Hackett, Novoa et al. 1986). In 

the flavoprotein family of ferredoxin:NADP+ reductases, to which the FAD domain of NQR 

belongs, a cysteine is structurally conserved directly in the binding pocket of the nicotine 
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amide moiety, as shown in figure 34. It has been proposed that this cysteine helps forcing 

the nicotinamide against the flavin and restricting its conformational freedom to facilitate 

hydride transfer (Deng, Aliverti et al. 1999). Based on our functional and structural findings, 

we suggest a more active role of this residue and propose that the thiolate group of cysteine 

378 catalyses hydride transfer by directly stabilizing the δ+ on C4 of the nicotine amide ring 

during the transition state of the reaction, either as a charge-transfer complex or in a SN2-

like substitution. Supporting this hypothesis are data presented in chapter 3.3.1., in which 

the C378A variant of the FAD domain showed improved NADH binding but significantly 

decreased catalytic turnover (27 % of wild type). 

The role of the phenylalanine 406 residue in the NADH-oxidizing FAD domain seems in many 

ways comparable to the role of the C-terminal tyrosine in ferredoxin:NADP+ reductase which 

has been described, among others, in (Orellano, Calcaterra et al. 1993; Piubelli, Aliverti et al. 

2000) and (Nogues, Tejero et al. 2004). The authors of latter publication described the 

function of the C-terminal tyrosine as "[...] lowering the affinity for NADP+/H to levels 

compatible with steady-state turnover [...]". In this work, phenylalanine mutants F406A and 

F406S were analyzed, resulting in enhanced nicotinamide binding of the respective FAD 

domain variant. In addition, both FAD domain variants were not impaired in their catalytic 

activity, but surprisingly displayed even higher turnover rates than the wild type at 25 °C. 

This effect, not observed in the respective FNR analogs, comes at the cost of losing enzyme 

stability, the FAD cofactor, and is accompanied with a loss of function at increasing 

temperatures. It cannot completely be ruled out that the presence of the ferredoxin-like N-

terminal domain, which harbors the [2Fe-2S] cluster of NqrF and which was not part of this 

study, would diminish this effect and lead to tighter FAD binding, but kinetic data of the 

phenylalanine variants of the holo-NQR complex (table 8) also suggest a destabilizing effect 

of the mutation. We thus conclude that phenylalanine acts as an internal competitor for the 

nicotinamide and that it enhances stability by keeping the FAD in place. Stabilization by 

stacking interaction with the isoalloxazine ring seems plausible and has been proposed 

before (Orellano, Calcaterra et al. 1993). When phenylalanine lowers the affinity for NAD+/H, 

it does so without much discrimination. The KM for NADH of the Na+-NQR was determined at 

36 µM in this work. The KI for competitive inhibition of Na+-NQR by NAD+ is reported as 

11 mM (Bogachev, Belevich et al. 2009). The reason for the at least 100-fold higher affinity of 
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the enzyme for the reduced over the oxidized nicotinamide is still unclear, but possibly best 

explained by conformational differences between the oxidized/reduced nicotinamide moiety.  

In the structure of pea FNR where productive NADP+/H binding was observed, Ser 90 and 

Glu 306 have been identified as active site residues forming hydrogen bonds with the amide 

group and thus are pivotal in the binding of nicotinamide (Deng, Aliverti et al. 1999). In the 

FAD domain of Na+-NQR, Ser 213 and Asp 404 take analogous roles, positioned very similarly 

in the nicotinamide binding pocket. With the structural elucidation of the productive binding 

mode, a direct involvement of the serine residue in hydride transfer could be excluded. That 

this residue is nevertheless critical for catalysis has been shown in (Aliverti, Bruns et al. 1995), 

where a serine 96 to valine mutation of the spinach FNR led to an almost complete loss of 

activity. Similar conclusions were made regarding the function of the Glu 312 residue of FNR 

from the same species (Aliverti, Deng et al. 1998). 

While the alignment between the FNR-Y308S-NADP+ and NADPH structures revealed no 

significant differences in the coordinates of the nicotinamide group (Deng, Aliverti et al. 

1999), we found that the nicotinamide ring was shifted by about 2 Å between the NADH and 

NAD+ soaked structures (figure 42) of FAD domain F406S as well as F406A. This shift causes 

the distances between the amide nitrogen to Ser 213 Oγ to increase from 2.5 Å to 5.2 Å and 

the distance from the amide nitrogen to the Asp 404 Oε2 to increase from 3.2 Å to 3.6 Å in 

the oxidized form, effectively losing its hydrogen bonding. This difference, especially the 

serine/amide shift, was found consistently in both monomers of the asymmetric unit and in 

all measured crystals with small variations in the overall position of the nicotinamide-ribose 

and the C-terminus (n NAD+-soaks = 14, n NADH soaks = 20). Model bias can be excluded, 

since the coordinates of a crystal soaked with NADH were used for molecular replacement to 

solve the structure of the FAD domain soaked with NAD+. 

In addition, we found that the carboxamide group of NAD+ is best fitted into the 2Fo-Fc 

density map with a torsion angle of 20 ° to 25 ° relative to the plane of the nicotinamide ring, 

whereas the carbonyl amide group of NADH stays mostly planar with the ring (figure 42B + 

42C). This turn of the carboxamide group has been observed in various protein structures 

with NAD+ cofactors (Eklund, Samama et al. 1984) and in the X-ray structure of the NAD+ 

molecule (Wright and King 1954) and represents an energetic minimum with respect to the 

relative orientation of the C7 - C3 bond (Coubeils, Pullman et al. 1971). In this orientation, 
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the amide hydrogens are arranged in a synclinal manner with respect to the hydrogen on the 

sp2-hybridized C4 atom. 

It may well be that this internal change in nicotinamide conformation can tip the scales 

towards formation or loss of hydrogen bonding, the productive binding of nicotinamide and 

thus represents the determinant of the selectivity mechanism of the Na+-NQR. 

 

3.4.3. The catalytic quinone binding site of the Na+-translocating NADH:quinone 

oxidoreductase from Vibrio cholerae accommodates two quinones 

The kinetic characterization of the Na+-NQR complex suggests that quinone reduction is best 

described by pure Michaelis-Menten formalism, indicating a single quinone binding site. 

However, our recent surface plasmon resonance study of ubiquinone-1 (Q1) binding to the 

isolated NqrA subunit provided hints for the presence of a second quinone binding site with 

lower affinity (Casutt, Nedielkov et al. 2011). Furthermore, numerous studies report 

uncompetitive inhibition of the Na+-NQR by inhibitor molecules that are supposed to 

interact with the quinone binding site (Nakayama 1999; Yoshikawa, Nakayama et al. 1999; 

Hayashi, Shibata et al. 2002). It is also noteworthy that enzyme complexes catalyzing related 

chemical reactions (bc1 complex, b6f complex, complex I) were indirectly shown to have 

quinone binding sites that can accommodate more than one quinone equivalent at a time - 

at least according inhibitor studies by HR-MAS NMR spectroscopy (Bartoschek, Johansson et 

al. 2001), according to EPR experiments (Ding, Moser et al. 1995) and when taking into 

account the locations of different inhibitors in various crystal structures (Efremov, Baradaran 

et al. 2010). 

Here we show that the NqrA subunit of the Na+-NQR binds two quinone-type ligands 

adjacent to each other in an extended binding site. 

We employed the quinone analogue and antagonist DBMIB, a well-known inhibitor of 

electron transfer complexes, to serve as a second quinone-type ligand that can easily be 

distinguished from Q1 by NMR spectroscopy. 

In the current study we provide - to our knowledge for the first time in the case of quinone 

binding enzymes - direct experimental evidence that two quinone-type molecules are 

situated in immediate vicinity to each other in the binding pocket of NqrA. This result was 

obtained by measuring interligand NOEs (ILOEs) between ubiquinone-1 and DBMIB. NOEs 
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between both molecules could, in principle, derive from several situations. If Q1 and DBMIB 

formed stable complexes in solution one would expect intermolecular NOEs, however, in the 

absence of NqrA we do not detect intermolecular NOEs. Alternatively, NOEs between Q1 and 

DBMIB could have been mediated by protons of the binding site of NqrA. Such 

intermolecular NOEs called INPHARMA effects could build-up even in a purely competitive 

binding situation (Sanchez-Pedregal, Reese et al. 2005). However, for INPHARMA effects to 

develop, the magnetization has to be 'stored' on the receptor during the ligand exchange 

process. This transfer is not possible if the experiment is carried out with a perdeuterated 

receptor and, thus, INPHARMA effect should be absent or at least strongly reduced under 

these conditions. We have performed the same experiment with protonated as well as 

perdeuterated NqrA and see no significant reduction in the intensity of the ILOE crosspeaks 

(figure 49). The only plausible interpretation is simultaneous binding of both ligands directly 

adjacent to each other within an extended quinone binding site of NqrA. 

The precise relative arrangement of both ligands in the binding site cannot be determined to 

great accuracy from the ILOEs because of the in general low signal intensity and because 

essentially all protons of Q1 show ILOEs to all protons of DBMIB with slightly varying intensity. 

According to this the most likely arrangement is a stacking interaction of both quinone 

moieties in the binding site. 

That DBMIB does not displace Q1 from the binding site in a competitive manner is 

furthermore supported by an STD NMR titration. In a competitive binding situation the STD 

effects of Q1 should decrease upon titrating in DBMIB because DBMIB would displace Q1 

from the binding site lowering the fraction bound of Q1 and, thus, lowering the amount of 

saturation transferred from NqrA to Q1. However, we observe exactly the opposite. 

Increasing the concentration of DBMIB leads to markedly increasing STD effect of Q1. In 

addition, in presence of DBMIB the ratio of STD effects of individual protons differs from the 

situation without inhibitor. This suggests that DBMIB alters the binding mode of Q1 which in 

turn leads to a more efficient saturation transfer and therefore stronger STD effects. The 

EC50 of this interaction is 26 M. 

The presence of two binding sites for quinone-type ligands is furthermore supported by 

tryptophan fluorescence quenching experiments. The fluorescence of NqrA depending on 

the concentration of added DBMIB can be fitted by a Hill-model consistent with positively 

cooperative binding of two equivalents of this inhibitor. 
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Can these results obtained with the isolated NqrA subunit be transferred to the holo-NQR 

complex? To gain insight into the physiological relevance we have performed enzyme 

inhibition experiments with the entire enzyme complex. In presence of DBMIB the rate of 

NADH oxidation (Vmax) is decreased and KM is lowered. This is characteristic of an 

uncompetitive mode of inhibition typical for multi-substrate enzymes (Voet and Voet 2004). 

That the catalytic site of NADH oxidation is not perturbed by DBMIB is indicated by the fact 

that the ratios of Vmax to KM in presence or absence of DBMIB remain constant (table 10). 

First, this confirms the notion that DBMIB disrupts the electron pathway further 

downstream, most likely at the quinone reductase site due to the structural resemblance 

with ubiquinone (figure 30). Second, this ascertains that NADH oxidase and quinone 

reductase sites of the Na+-NQR are coupled in our experimental setup and no electrons 

short-circuit to quinone at the level of the NADH oxidase. This needs to be considered since 

Q1 can serve as an artificial electron acceptor when assaying the isolated NADH 

dehydrogenase domain (Türk, Puhar et al. 2004). 

For quinone reduction we observe a mixed mode of inhibition in the presence of DBMIB as 

documented by the rates of quinol formation. 

Evaluating our experiments according to a Michaelis-Menten model yields an average 

inhibition constant of KI’ = 53.2 M, and also in a Hill model Vmax drops to 50 % at a DBMIB 

concentration of 25 M. These IC50 values are strikingly similar to the EC50 (26.1 ± 2.5 µM) 

determined in the STD NMR experiment with the NqrA subunit. Taken together, this strongly 

indicates that the interaction of the inhibitor DBMIB with the extended binding site of the 

NqrA subunit is causing the inhibition of enzymatic turnover measured with the holo-

enzyme complex. 

Recently, Juarez et al. investigated two mutations in the Na+-NQR of V. cholerae (Juárez, 

Neehaul et al. 2012) that had been discovered earlier in the Na+-NQR of V. alginolyticus. 

These mutations in subunit NqrB conferred resistance towards the antibiotic korormicin to 

V. alginolyticus (Hayashi, Shibata et al. 2002). Mutation of glycine residues G140 and G141 

located in the NqrB subunit to alanines were found to have a profound effect on enzymatic 

activity of Na+-NQR leading the authors to propose that the NqrB subunit would carry the 

site of quinone reduction (Juárez, Neehaul et al. 2012). Our current study supports our 

earlier results indicating that the NqrA subunit carries the catalytically relevant quinone 

binding site of the Na+-NQR. One should consider that long range structural perturbations 
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induced by mutations on subunit NqrB might affect the quinone binding properties of 

subunit NqrA. 

Our results suggest that holo-Na+-NQR binds two equivalents of the natural substrate 

ubiquinone Q8 with their hydrophilic head groups. We propose that these two quinones are 

central to the last electron transfer steps. In this model, two subsequent one-electron 

transfers - probably from a flavosemiquinone located on the NqrB subunit - would reduce 

ubiquinone to the ubisemiquinone and subsequently to ubiquinol which is then released by 

the enzyme. 

The presence of two quinones in the binding site could enhance the efficiency of catalysis in 

at least two ways: One quinone ligand could serve essentially as a cofactor that remains 

tightly bound to the enzyme and switches between the quinone and the semiquinone state 

while the other quinone ligand is much less tightly bound, reduced in two steps to the quinol, 

and then released from the enzyme. Alternatively, the second, low-affinity binding site could 

constitute a waiting position for the next ubiquinone substrate to enter the site of reduction 

leading to faster supply of fresh substrate and, thus, accelerated enzymatic turnover. Which 

of these mechanisms is finally operational in the Na+-NQR will be addressed in future studies. 
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The results presented in this work characterize structural and functional properties of key 

catalytic subunits of NADH:quinone oxidoreductases. Due to the elaborate nature of these 

enzyme complexes, we seek to reduce complexity to its necessary minimum, as someone 

who seeks to deduce the function of a sophisticated machine would disassemble it to its 

basic components and analyze each one of them separately and in detail. We were able to 

draw conclusions about the ion transport capabilities of subunit ND5 of complex I, about the 

structure, mechanism and silver ion inhibition of the NADH-oxidizing electron input 

component of the Na+-NQR and about its quinone-reducing electron output module, the 

subunit NqrA. Together with many excellent previous studies by various investigators, these 

findings enhance the understanding of large electrogenic, redox-type enzymes. However, 

the 'holy grail' of this type of membrane-embedded complexes, the molecular mechanism 

underlying the energetic coupling between electron transfer and ion transport, remains 

enigmatic. 

Concerning complex I, earlier theories assumed direct redox coupling where proton shuttling 

is accomplished by 2 or even 3 quinone sites (Brandt 1997; Ohnishi and Salerno 2005) or 

where the two-electron reduction of quinone is connected to the simultaneous 

unidirectional translocation of two protons and two sodium ions (Steuber 2001). In contrast, 

some studies proposed an indirect mechanism of conformational coupling involving a 

hydrophobic ramp or other means of long-range transmission elements (Brandt, Kerscher et 

al. 2003; Zickermann, Bostina et al. 2003; Hunte, Zickermann et al. 2010). The elucidation of 

the high-resolution structure (Efremov, Baradaran et al. 2010; Efremov and Sazanov 2011) 

has led to a plethora of new suggestions on how the coupling mechanism might work: In the 

current opinion, a mixed model is preferred, where at least two protons per two electrons 

are pumped through indirect coupling by the antiporter-like subunits and one or two 

protons are directly transferred by ubiquinone at the ND1/ND3/ND6/ND4L interface 

(Ohnishi, Salerno et al. 2010; Ohnishi, Nakamaru-Ogiso et al. 2010; Efremov and Sazanov 

2011; Treberg and Brand 2011). Based on mechanical coupling by the long, rod-like 

amphipathic helix of ND5, the operating mode of complex I has been compared to a steam 

engine (Efremov and Sazanov 2011) or even to a semi-automatic shotgun (Gonzalez-Halphen, 

Ghelli et al. 2011). The stoichiometry of the proton/electron ratio and the vectors of ion 

translocation remain controversial (Wikstrom 1984; Bogachev, Murtazina et al. 1996; Brandt 

1997; Mathiesen and Hägerhäll 2003; Efremov and Sazanov 2011; Roberts and Hirst 2012). 
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In particular, different models for cation/H+ transport need to be established and empirically 

scrutinized. Our study with the isolated ND5 subunit of complex I paves the way for such 

experiments, e.g. the in vitro analysis of antiporter-like subunits reconstituted into 

liposomes. 

As of now, the Na+-NQR holo-complex has been successfully crystallized (Casutt, 

Wendelspiess et al. 2010), but no high-resolution structures are yet available. Nevertheless, 

advances in recent years have determined the subunit and cofactor composition of the 

enzyme and have drawn a rough roadmap of the electron transfer pathway (Hayashi, 

Nakayama et al. 2001; Barquera, Zhou et al. 2002; Türk, Puhar et al. 2004; Juárez, Morgan et 

al. 2009; Casutt, Huber et al. 2010; Casutt, Nedielkov et al. 2011; Casutt, Schlosser et al. 

2012). Also, residues from subunits NqrB, D and E which are potentially involved in Na+ 

translocation have been identified (Juárez, Athearn et al. 2009). Figure 50 depicts a current 

working model of the complex, which integrates the findings of two adjacent quinone 

binding sites on NqrA, as investigated in the present thesis. 

 

 

Figure 50: Current working model of the Na+-NQR from Vibrio cholerae. The likely flow of 
electrons between cofactors is indicated by arrows. Flavin cofactors are colored yellow.  
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The energetic coupling between redox reaction and Na+ translocation in the Na+-NQR is still 

a black box. In analogy to complex I, direct (Rich, Meunier et al. 1995) and indirect (Bogachev 

and Verkhovsky 2005) coupling mechanisms are proposed. However, direct redox coupling 

would require an additional one-electron cofactor, since none of the known cofactors 

exhibits a midpoint potential Em,7.5 corresponding to the redox dependency of Na+ binding 

(Bogachev, Bertsova et al. 2007). Such a cofactor could not be found to date (Bogachev, Kulik 

et al. 2009) but cannot be excluded. Evidence exists for long-range indirect coupling effects, 

such as correlation of Na+ translocation with the [2Fe-2S] cluster (Bogachev, Bloch et al. 

2009), with the FMNs on NqrB and NqrC and with riboflavin (Juárez, Morgan et al. 2009). A 

mechanism operating by conformational changes at multiple sites in the complex is 

proposed (Juárez and Barquera 2012). These results are derived from de-energized and 

detergent-solubilized Na+-NQR, which may be misleading. A more native and promising 

approach might be to analyze energetic coupling in phospholipid bilayers such as nanodiscs 

(Ritchie, Grinkova et al. 2009), which allow the direct application of a ΔμNa+. In addition, 

structure-function analysis of the hydrophobic subunits NqrB, C, D and E as well as high-

resolution structures of the holo-complex could provide evidence for solving the coupling 

mechanism or could at the very least shed some light on this black box of energy conversion 

machinery. 



Powerful Proteins Appendix 

 

 
127 

 

Appendix 

  



Appendix Powerful Proteins 
 

 

 
128 
 

Contributions by collaborating authors 

Chapter 1: 

Figure 3 and the data depicted in table 3 were generated by Marco Casutt. 

 

Chapter 2:  

Figures 16 - 18 were generated in collaboration with Hanna Grönheim. 

Analyses with electron microscopy as depicted in figure 19 were performed by 

Manikandan Karuppasamy and Christiane Schaffitzel.  

The data depicted in figure 21 was generated by Hanna Grönheim. 

 

Chapter 3: 

The construction of plasmids pNQR378A, pNQR406A and pNQR406S used throughout 

chapter 3 was performed in collaboration with Valentin Muras. 

The protein crystals used to generate the results in chapter 3.3.2. were produced by and X-

ray data collected by Marco Casutt and Günter Fritz. 

The data depicted in figures 34, 37 and 38 were provided by Günter Fritz. 

Data depicted in figure 36 and table 7 were generated in collaboration with Valentin Muras. 

Analyses by NMR spectroscopy as depicted in figures 47 - 49 and table 14 were performed 

by Ruslan Nedielkov and Heiko Möller. 
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Abbreviations 

ACN  Acetonitrile 

DAPI   4', 6-Diamidino-2-phenylindol 

DBMIB  2,5-Dibromo-3-methyl-6-isopropyl-p-benzoquinone 

Dpms  Dolichol phosphate mannose synthase 

EIPA  5'-(N-ethyl-N-isopropyl)amiloride 

ER  Endoplasmatic reticulum 

GFP  Green fluorescent protein 

FAD  Flavin adenine dinucleotide 

Fe-S  Iron-sulfur 

FMN  Flavin mononucleotide 

FNR  Ferredoxin:NADP+ oxidoreductase 

HQNO  2-n-heptyl-4-hydroxyquinoline N-oxide 

ILOE  Interligand Overhauser effects 

IPTG  Isopropylthio-β-D-galactoside 

LDAO  Lauryl dimethylamine oxide 

LHON  Leber's hereditary optic neuropathy 

MELAS  Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke 

MERRF  Myoclonic epilepsy with ragged red fiber 

MTS  Mitochondrial targeting sequence 

Na+-NQR Sodium ion translocating NADH:quinone oxidoreductase 

OXPHOS Oxidative phosphorylation 

PD  Parkinson's disease 

PEG MME Polyethylene glycol monomethyl ether 

PMF  Proton motive force 

Q  Ubiquinone 

QH2  Ubiquinol 

STD  Saturation transfer difference 

TMH   Transmembrane helix 

YNB  Yeast nitrogen base 
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