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1.4 Summary 

An optimum process is required in the field of food, pharmaceutical and biotechnological 

industry with the ultimate goal of achieving high productivity and high-quality products. In 

order to achieve this goal, there are many different parameters to be realized and controlled, 

e.g., physical, chemical and biological aspects of microbial bioprocesses. Microbial cultivations 

are a very complex process, therefore, reliable and efficient tools are required to receive as 

much real-time information for an on-line monitoring as possible, so that the processes can be 

controlled in time. 

The primary objective of this research was to apply a two-dimensional (2D) 

fluorescence spectroscopy to monitor glucose, ethanol and biomass concentrations of yeast 

cultivations. The measurement of one spectrum has 120 fluorescence intensity variables of 

excitation and emission wavelength combinations (WLCs) without consideration of the 

scattered light. To investigate which WLCs carry important and relevant information regarding 

the analyte concentrations, the three wavelength selection methods were implemented: a 

method based on loadings, variable importance in projection (VIP) and ant colony optimization. 

The five selected WLCs from each method for a particular analyte were evaluated by multiple 

linear regression (MLR) models. The selected WLCs, which showed the best predictive 

performance of the MLR models, were relevant to the analyte concentrations. Regarding the 

results of the MLR models, the most significant WLCs contained seven different excitation and 

emission wavelengths. They can be combined to have 38 WLCs for one spectrum based on the 

principle of fluorescence. They were in the area of NADH, tryptophan, pyridoxine, riboflavin 

and FAD/FMN. The 38 WLCs were used to predict the glucose, ethanol and biomass 

concentrations via partial least squares (PLS) regression. The best prediction from the PLS 

models with 38 WLCs had the percentage of root mean square error of prediction (pRMSEP) 

in the range of 3.1-6.3 %, which was not significantly different from the PLS models with the 

120 variables. Therefore, the specific fluorescence sensor for yeast cultivations could be built 

with less filters, which would make it a low-cost device. 

The following plan of the research goal was to investigate the attribute of fluorophores 

inside cells in real time using a 2D fluorescence spectrometer. The considered intracellular 

fluorophores, such as NADH, tryptophan, pyridoxine, riboflavin and FAD/FMN were observed 

during the yeast cultivations under three different conditions: batch, fed-batch with the glucose 

pulse during a glucose growth phase (GP) and fed-batch with the glucose pulse during an 

ethanol growth phase (EP) after a diauxic shift. With the help of principal component analysis, 
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the different states of the yeast cultivations, particularly the glucose pulse during EP, can be 

recognized and identified from the on-line fluorescence spectra. On the other hand, the change 

of the fluorescence spectra in the fed-batch process with the glucose pulse during GP was not 

recognizable. Remarkably, the intensities of the fluorophores due to the glucose pulse during 

EP did not change in the same direction. The fluorescence intensities of NADH and riboflavin 

increased, but the intensity of tryptophan, pyridoxine and FAD/FMN decreased. The 

conversion between tryptophan and NADH intensities was quantified as a proportional factor. 

It was calculated from the ratio of the area of NADH and tryptophan fluorescence intensity after 

the glucose addition until depletion. The proportional factor was independent on various 

glucose concentrations with the coefficient of determination, R2 = 0.999. The correlative 

intensity changes of these fluorophores demonstrate a metabolic switch from ethanol to glucose 

growth phase. 

Based on the previous experiments, a closed-loop control has been implemented for 

yeast cultivations. 2D fluorescence spectroscopy was applied for an on-line monitoring and 

control of yeast cultivations to attain pure oxidative metabolism. A glucose concentration is an 

important factor in a fed-batch process of Saccharomyces cerevisiae. Therefore, it has to be 

controlled under a critical concentration to avoid overflow metabolism and to gain high 

productivity of biomass. The characteristic of the NADH intensity can effectively identify the 

metabolic switch between oxidative and oxidoreductive states. Consequently, the feed rates 

were regulated using the NADH intensity as a metabolic signal. With this closed-loop control 

of the glucose concentration, a biomass yield was obtained at 0.5 gbiomass/gglucose. Additionally, 

ethanol production could be avoided during the controlled feeding phase. The fluorescence 

sensor with the signal of the NADH intensity has potential to control a glucose concentration 

under the critical value in real time. 

The experiments carried out show that 2D fluorescence spectroscopy has great potential 

in on-line monitoring and process control of the yeast cultivations. Consequently, it is 

promising to build up a compact and economical fluorescence sensor with the specific 

wavelengths using light-emitting diodes and photodiodes. The sensor would be a cost-effective 

and miniaturized device for routine analysis, which could be advantageous to real-time 

bioprocess monitoring. 

 

        Place and Date                          Signature of supervisor 
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1.5 Zusammenfassung 

Im Bereich der Lebensmittel-, Pharma- und Biotech-Industrie ist ein optimaler Prozess mit dem 

Ziel einer hohen Produktivität und hohen Produktqualität erforderlich. Um dieses Ziel zu 

erreichen, sind viele verschiedene Parameter zu überwachen und zu regeln, z.B. physikalische, 

chemische und biologische Aspekte von mikrobiellen Bioprozessen. Kultivierung von 

Mikroorganismen ist ein komplexer Prozess, der für ein Online-Monitoring zuverlässige und 

effiziente Werkzeuge benötigt, um möglichst viele Informationen in Echtzeit zu erhalten, so 

dass eine Regelung realisiert werden kann. 

Das Hauptziel der Forschung war die Anwendung von 2D-Fluoreszenzspektroskopie 

zur Überwachung der Glukose-, Ethanol- und Biomassekonzentrationen von Hefekultivierung. 

Die Messung eines Spektrums besteht aus 120 Wellenlängenkombinationen (WLK) ohne 

Berücksichtigung des Streulichts. Um zu untersuchen, welche WLK wichtige und relevante 

Informationen über die Prozessgrößen enthalten, wurden drei Wellenlängenauswahlmethoden 

implementiert: Methode basierend auf Loadings, Variable Importance in Projection (VIP) und 

Ameisenkolonieoptimierung. Die fünf ausgewählten WLK jeder Methode für eine bestimmte 

Substanz wurden mit Hilfe der multilinearen Regression (MLR) bewertet. Die ausgewählten 

WLK, die die beste Vorhersageleistung des MLR-Modells zeigten, waren für die Prozessgrößen 

relevant. Bezüglich der Ergebnisse des MLR-Modells enthielten die wichtigsten WLK sieben 

verschiedene Anregungs- und Emissionswellenlängen. Basierend auf dem Prinzip der 

Fluoreszenz können sie zu 38 WLK für die Messung eines Teilspektrums kombiniert werden. 

Sie lagen im Bereich der Fluoreszenz von NADH, Tryptophan, Pyridoxin, Riboflavin und 

FAD/FMN. Diese 38 WLK wurden verwendet, um die Glukose-, Ethanol- und 

Biomassekonzentrationen über Partial Least Squares (PLS) Regression vorherzusagen. Die 

besten Vorhersagen der PLS-Modelle mit 38 WLK hatte relative Fehler im Bereich von 3,1-6,3 

%. Das ist nicht signifikant schlechter als die PLS-Modellen mit 120 Variablen. Ein spezifischer 

Fluoreszenzsensor für die Hefekulturen könnte daher mit weniger Filtern gebaut werden, was 

ein kostengünstiges Gerät wäre. 

Forschungsziel war es, die Eigenschaften von Fluorophoren in den Zellen in Echtzeit 

mit einem 2D-Fluoreszenzspektrometer zu untersuchen. Die betrachteten intrazellulären 

Fluorophore wie NADH, Tryptophan, Pyridoxin, Riboflavin und FAD/FMN wurden während 

der Hefekultivierung unter drei verschiedenen Bedingungen beobachtet: Batch-Kultivierung, 

Fed-Batch-Kultivierung mit einem Glukose-Puls während der Glukosewachstumsphase (GP) 

und Fed-Batch-Kultivierung mit einem Glukose-Puls während der Ethanolwachstumsphase 

(EP) nach einer Diauxie. Mit Hilfe der Hauptkomponentenanalyse können die verschiedenen 
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Zustände der Hefekultivierung, insbesondere der Glukose-Puls während des EP, aus den 

Online-Fluoreszenzspektren erkannt und identifiziert werden. Andererseits war die Änderung 

in den Fluoreszenzspektren der Fed-Batch-Kultivierung mit dem Glukose-Puls während der GP 

nicht erkennbar. Bemerkenswert war, dass sich die Intensitäten der Fluorophore durch den 

Glukose-Puls während des EP nicht alle in die gleiche Richtung verändert haben. Die 

Fluoreszenzintensitäten von NADH und Riboflavin nahmen zu, aber die Intensitäten von 

Tryptophan, Pyridoxin und FAD/FMN nahmen ab. Die Umwandlung von Tryptophan zu 

NADH konnte aufgezeigt und ein linearer Zusammenhang nachgewiesen werden. Der 

Proportionalfaktor war unabhängig von verschiedenen Glukosekonzentrationen mit einem 

Bestimmtheitsmaß von R2 = 0,999. Die korrelative Intensitätsänderung von den Fluorophoren 

zeigte die Stoffwechselveränderung von der Ethanol- zur Glukosewachstumsphase. 

Basierend auf den vorherigen Experimenten wurde eine Regelung für die 

Hefekultivierung implementiert. Die 2D-Fluoreszenzspektroskopie wurde zur Online-

Überwachung und Kontrolle der Hefekultivierung eingesetzt, um einen reinen oxidativen 

Stoffwechsel zu erreichen. Die Höhe der Glukosekonzentration ist ein wichtiger Faktor in 

einem Fed-Batch-Prozess von Saccharomyces cerevisiae. Daher ist es notwendig die 

Glukosekonzentration unter einer kritischen Konzentration zu halten, um einen 

Überlaufstoffwechsel zu vermeiden und eine hohe Produktivität der Biomasse zu erreichen. Die 

Charakteristik der NADH-Intensität kann den metabolischen Wechsel zwischen oxidativen und 

oxidoreduktiven Zuständen effektiv identifizieren. Folglich wurde die Fütterungsrate auf Basis 

der Fluoreszenzintensität von NADH als Stoffwechselsignal geregelt. Mit dieser Regelung der 

Glukosekonzentration wurde ein Ausbeutekoeffizient von 0,5 gBiomass/gGlucose erzielt. Die 

Ethanolproduktion wurde so effektiv vermieden. Der Fluoreszenzsensor hat das Potenzial, die 

Glukosekonzentration unter dem kritischen Wert zu regeln. 

Die durchgeführten Experimente zeigen, dass die 2D-Fluoreszenzspektroskopie ein 

großes Potenzial in der Online-Überwachung und Prozesskontrolle hat. Daher ist es 

vielversprechend mit Hilfe von Leucht- und Photodioden einen kompakten und 

kostengünstigen Fluoreszenzsensor mit den spezifischen Wellenlängen aufzubauen. Der Sensor 

wäre ein preiswertes und miniaturisiertes Gerät für die Routineanalytik, was für die Online-

Bioprozessüberwachung von Vorteil ist.  

 

       

    Ort und Datum                                         Unterschrift des Betreuers 
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2.1 Introduction 

Biological processes are used in various fields of industrial production, such as pharmaceutical, 

food and bioenergy industries. To optimize bioprocesses, it is important to receive high 

productivity and high-quality products. In microbial bioprocesses, there are many different 

parameters, e.g., physical, biological and chemical aspects to be realized. Due to complex 

processes of microbial cultivations, efficient and reliable sensors are required to monitor 

essential substances like cell mass, substrate and product concentrations. On-line bioprocess 

monitoring has been studied and developed for many years. During the last years, this process 

monitoring area was brought into more focus to get more effective progress; for example, in 

2002, the US Food and Drug Administration (FDA) launched the Process Analytical 

Technology (PAT) initiative to be applied in this field (Junker and Wang, 2006). During the 

past decade, there were many investigations on in-line/on-line monitoring of bioprocesses by 

using various optical technologies, such as in-situ-microscopy, near infrared, Raman and 

fluorescence spectroscopy (Marquard et al., 2016; Havlik et al., 2013; Singh et al., 2015; Schalk 

et al., 2017; Haack et al., 2004). 

2.1.1 Saccharomyces cerevisiae 

Yeasts are extensively used in industry of foods, beverages and pharmaceuticals. Besides, they 

are used as a model for eukaryotic cells, which are applied for fundamental knowledge in the 

biological and biomedical sciences. For these applications, they are important for research in 

several areas. Yeasts are unicellular fungi in subdivisions of Ascomycota or Basidiomycota 

(Boekhout and Kurtzman, 1996). According to Barnett, 1992, yeasts were classified into the 

genus Saccharomyces. Baker’s yeast is known as Saccharomyces cerevisiae (S. cerevisiae). In 

laboratory and industry, yeasts basically grow best with temperature between 20-30 ˚C and at 

pH values between 4.5-6.5 (Walker, 1998). Most of yeasts are aerobic microbes, therefore, 

oxygen is required for the growth. However, some yeasts can also grow in an anaerobic 

condition like S. cerevisiae. Sugar is an essential carbon source for yeast cultivations, 

particularly, monosaccharides, i.e., glucose, fructose, mannose and galactose. Glucose is a 

primary carbon source for S. cerevisiae (Johnston, 1999). The main characteristics of glucose 

transport are that (Walker, 1998): 

(1) Glucose uptake does not need metabolic energy 

(2) Glucose will be not accumulated in cells when glucose uptake reaches equilibrium 

(3) There are several carriers for glucose to help glucose diffusion in the cell 
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There are two main glucose transporters in S. cerevisiae to set up an intracellular glucose signal. 

The high-affinity glucose transporters are to serve a low glucose level, and another type is low-

affinity glucose transporters for a high level of glucose (Ozcan et al., 1996; Johnston, 1999). 

Thus, the glucose metabolism is based on the amount of glucose and oxygen. A phenomenon 

named Crabtree effect occurs when yeasts have an overload of glucose during an aerobic 

condition. Then the fermentation prevails over respiration under an aerobic condition because 

the glucose inactivates respiratory enzymes (Walker, 1998). In addition to the excess of glucose 

leading to the Crabtree effect, there is another factor to be realized, which is the limited 

respiratory capacity in cells (Käppeli et al., 2008). The glucose repression of S. cerevisiae solely 

degrades glucose to ethanol and CO2 on condition that S. cerevisiae is cultivated in an overload 

of a glucose concentration with the limited respiratory capacity (Walker, 1998). It can be 

explained with the concept of the respiratory bottleneck, which points out the overflow of 

glucose to ethanol when the respiration of pyruvate is restricted as illustrated in Fig. 1. The 

produced ethanol is accumulated as a second carbon source for yeasts. When glucose is 

completely consumed from a medium, yeasts turn to an oxidative consumption of the 

accumulated ethanol. The fermentative metabolism under an aerobic condition is named as a 

respirofermentative or oxidoreductive growth (Käppeli et al., 2008). In the yeast growth, a 

diauxic shift can be recognized when yeasts switch their metabolism to grow on ethanol after 

the depletion of glucose (Walker, 1998). In industries, the oxidoreductive growth of yeasts is 

necessarily avoided to reach a high biomass yield. Consequently, substrate feed rates are 

controlled under the critical glucose concentration to maintain oxidative metabolism. 

Fundamentally, the yield coefficient (𝑌𝑋/𝐺) of an oxidative growth of yeasts attains in the range 

of 0.47-0.50 gbiomass/gglucose (Pham et al., 1998; Hantelmann et al., 2006; Sonnleitner and 

Käppeli, 1986). 

 

Figure 1. The respiratory bottleneck in S. cerevisiae (Walker, 1998). 
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2.1.2 Cellular metabolism in yeasts 

As mentioned above, glucose is a primary carbon source for yeasts. Glucose is catabolized via 

the glycolysis pathway. Glycolysis is carried out in the cytoplasm of yeast cells and can function 

in either an aerobic or anaerobic condition. A glucose molecule is broken down by many 

enzymes into two molecules of pyruvate. Additionally, in the glycolysis pathway, a glucose 

molecule provides yeasts energy in the form of two molecules of adenosine triphosphate (ATP) 

and two molecules of nicotinamide adenine dinucleotide (NADH) as an electron carrier 

(Walker, 1998). 

 

Glucose  →  2Pyruvate + 2ATP + 2NADH + H+ 

 

The molecules of pyruvate in a respiratory metabolism can be mainly proceeded into two ways, 

which depends on a glucose concentration and respiratory capacity of cells. At low glycolytic 

fluxes, the pyruvate is mostly oxidized to acetyl-CoA (Lei et al., 2001), but when the glycolytic 

fluxes reach to a certain value, some molecules of pyruvate are also oxidized to acetaldehyde. 

Then it is converted further to ethanol as demonstrated in Fig. 2 (Pham et al., 1998). The 

overflow metabolite like ethanol is produced to balance the NADH/NAD+ ratio. NADH/NAD+ 

as redox carriers are prerequisite for catabolic and anabolic reactions, particularly, for providing 

cells with energy in the form of ATP. Due to the overflow metabolism, NADH is accumulated 

and yeast cells need to maintain their cellular redox balance or metabolic homeostasis of 

NADH/NAD+ ratio. Therefore, the accumulation of NADH due to high glycolytic fluxes leads 

to the formation of byproducts, such as ethanol and glycerol (Chen et al., 2014; Vemuri et al., 

2007). Then these fermentation products, e.g., ethanol and glycerol, are further oxidized 

through the tricarboxylic acid cycle (TCA cycle) and oxidative phosphorylation for generating 

ATP to reach the requirement of growth (Brauer et al., 2005). The TCA cycle will take place 

only in an aerobic condition. The acetyl-CoA is completely oxidized in the TCA cycle into 

molecules of CO2 and energy, which is in the form of ATP and also held in the electron carriers 

like NADH and FADH2. The terminal step of cellular respiration is the electron transport chain. 

This step will convert the energy in electrons from the electron carriers to generate ATP. In the 

electron transport chain, oxygen plays an important role as an electron acceptor to receive 

electrons from NADH and FADH2. Then NAD+ and FAD can take electrons further from the 

glycolysis and TCA cycle to keep the metabolic process going. 
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Figure 2. Main components of the energy metabolic pathways of S. cerevisiae  (Pham et al., 

1998) 

 Apart from the glycolysis, TCA cycle and oxidative phosphorylation, other metabolic 

pathways of intrinsic fluorophores are also considered to understand the process of yeast 

cultivations. The intrinsic fluorophores, which are relevant to yeast metabolism, are NADH, 

tryptophan, riboflavin (vitamin B2), FAD and pyridoxine (vitamin B6). NADH is an essential 

coenzyme synthesized by many pathways in eukaryotic cells. NADH plays an important role 

as an electron carrier in metabolic pathways. Another form of NADH is NAD+, which is an 

oxidized form. NAD+ is synthesized through two main pathways, such as the de novo and 

salvage biosynthesis pathways (Knepper et al., 2008; Sporty et al., 2009). According to Knepper 

et al., 2008, Sporty et al., 2009, Ahmed and Moat, 1966, tryptophan is used as a precursor for 

synthesizing NAD+ in the de novo pathway as illustrated in Fig. 3. For another pathway, NAD+ 

is synthesized from either extracellular nicotinic acid or the recycled intermediates, which are 

shown in the dashed-line frame (Fig. 3). The biosynthesized NAD+ is converted to the reduced 

form, NADH, therefore, it is an indirect relationship between NADH and tryptophan. Bacher 

et al., 2000 referred that riboflavin can be synthesized by yeasts. The biosynthesis of a molecule 

of riboflavin needs two molecules of ribulose 5-phosphate and guanosine 5-triphosphate (GTP) 

as substrates. Riboflavin is used to synthesize flavin adenine dinucleotide (FAD) (Bafunno et 

al., 2004; Pallotta et al., 1998). Besides, pyridoxine can be also synthesized by S. cerevisiae 

(Shane and Snell Esmond E., 1976; Ishida and Yamada, 2002). 
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Figure 3. Scheme of NAD(P)+ and NAD(P)H biosynthetic reactions in S. cerevisiae (Knepper 

et al., 2008) 

2.1.3 Cultivation processes 

 2.1.3.1 Batch process 

The main definition of a batch process is no addition of new carbon sources after the cultivation 

runs with the initial substrate. It means the batch will run until all initial carbon sources are 

depleted. The main concern in industry of the batch cultivations is a low product yield. 

However, it is necessary to perform batch cultivations to understand the process of unknown 

microorganisms or organisms in order to find their optimum growth conditions.   

The mathematical models, which are illustrated in Eq. 1-3, were applied to simulate the 

growth of the yeast batch cultivation (Solle et al., 2003; Grote et al., 2011). The conditions of 

the specific growth rate (𝜇) in different phases are presented in Eq. 4-5. The specific growth 

rate on glucose (𝜇𝐺) will function on the condition of the presence of glucose. On the contrary, 

the specific growth rate on ethanol (𝜇𝐸) will be on duty if the glucose is depleted. The simulation 

is based on the Euler method and the simulation process is performed by using the particle 

swarm optimization algorithm. 
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d𝑋

d𝑡
=  𝜇𝐺𝑋 +  𝜇𝐸𝑋    (1) 

d𝐺

d𝑡
=  −

𝜇𝐺𝑋

𝑌𝑋/𝐺
     (2) 

d𝐸

d𝑡
=  

𝜇𝐺𝑋

𝑌𝐸/𝐺
−  

𝜇𝐸𝑋

𝑌𝑋/𝐸
    (3) 

𝜇𝐺 =  {
0      𝐺 = 0
𝜇𝐺  𝐺 > 0

   (4) 

𝜇𝐸 =  {
0    𝐺 > 0 𝑜𝑟 𝐸 = 0

𝜇𝐸     𝐺 = 0 𝑎𝑛𝑑 𝐸 > 0
 (5) 

where 𝑋, 𝐺 and 𝐸 are cell mass, glucose and ethanol concentrations, respectively. 𝜇𝐺 

and 𝜇𝐸 are the specific growth rates on glucose and ethanol, respectively. 𝑌𝑋/𝐺 , 𝑌𝐸/𝐺 and 𝑌𝑋/𝐸 

are the yield coefficients for glucose with respect to biomass and ethanol, and for ethanol with 

respect to biomass.  

2.1.3.2 Fed-batch process 

To improve a product yield, a fed-batch process is widely operated in various areas, such as 

chemical, biochemical, biotechnological and pharmaceutical industries (Kristensen, 2002). For 

the operation of a fed-batch process, a substrate feed rate plays a significant role to attain a high 

productivity of cultivation processes. Hence, it is important to understand the processes and 

find efficient strategies to control substrate feed rates. The below equations (Eq. 6-9) are a 

theoretical model of a fed-batch process (Kristensen, 2002). 

𝑑𝑋

𝑑𝑡
=  𝜇𝑆𝑋 − 

𝐹𝑋

𝑉
              (6) 

𝑑𝑆

𝑑𝑡
= − 

𝜇𝑠𝑋

𝑌𝑋 𝑆⁄
+  

𝐹(𝑆𝐹− 𝑆)

𝑉
  (7) 

𝑑𝑉

𝑑𝑡
= 𝐹                          (8) 

𝐹 =
𝜇𝑆𝑋𝑉

𝑌𝑋 𝑆⁄ (𝑆𝐹−𝑆𝑐𝑜𝑛𝑠𝑡.)
,  if 

𝑑𝑆

𝑑𝑡
= 0 (9) 

where 𝑋, 𝑆 and 𝑉 are cell mass, substrate concentrations and working volume. 𝐹 is a 

substrate feed rate. 𝜇𝑠 is the specific growth rate on the substrate. 𝑌𝑋/𝑆 is the yield coefficient 

for the substrate with respect to biomass. 𝑆𝐹 is the substrate concentration of the feed solution. 

𝑆𝑐𝑜𝑛𝑠𝑡. is the substrate concentration in the bioreactor at the start of a fed-batch process.  
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2.1.4 Fluorescence spectroscopy 

Molecules absorb photons at some wavelengths and are excited by irradiation of the light to go 

to the excited electronic states (S1 or S2). Then the molecules emit photons as fluorescence to 

return from the excited electronic states to the ground electronic state (S0) at different 

wavelengths as illustrated in Fig. 4 (Bass, 2000; Faassen and Hitzmann, 2015). The energy 

levels of molecules in absorption and emission can exist in different vibrational energy states 

(V). The electronic transitions are described as vertical lines because they occur in too short a 

period of time for significant displacement of nuclei (Lakowicz, 2006; Albani, 2007). 

Calculation of absorption (ℎ𝜈𝐴) and emission energy (ℎ𝜈𝐹) is based on the Planck-Einstein 

relation as shown in Eq. 10. 

𝐸 = ℎ𝜈 = ℎ
𝑐

𝜆
  (10) 

where 𝐸 represents the energy (J), ℎ is the Planck’s constant (6.626x10-34 J.s), 𝜈 is the 

frequency (s-1), 𝑐 is the speed of the light (2.998×108 m/s) and 𝜆 is the wavelength (nm). 

While the molecules are returning from the excited electronic states to the ground electronic 

state, some energy is changed to other forms. The emission energy is typically lower than the 

absorption one (Albani, 2007). Substances containing aromatic compounds are fluorescent and 

they are called fluorophores (Lakowicz, 2006). Each fluorophore has its own attribute of the 

peak intensity in different excitation and fluorescence emission wavelengths. In Table 1, the 

excitation and emission wavelengths of the peak intensity of significant biogenic fluorophores 

are presented. 

 

 

 

 

 

 

 

 

 

Figure 4. Jablonski diagram demonstrating transitions of absorption and fluorescence  

emission spectra (Faassen and Hitzmann, 2015). 
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The fluorescence intensity of the fluorophores can be influenced by different surroundings, such 

as pH, turbidity, aeration and viscosity of the culture (Li and Humphrey, 1991). The 

environment around them can affect energy transfer and absorption in molecules, which is 

called inner filter effects. For example, non-fluorescent components in cultivation media absorb 

excitation or emission radiation from fluorophores, therefore, the fluorescence intensity of these 

fluorophores is reduced from the original fluorescence yield (Srinivas and Mutharasan, 1987).  

Table 1. Optimal excitation and emission wavelengths for the peak intensity of biogenic 

fluorophores (Faassen and Hitzmann, 2015; Stärk, 2000) 

Biogenic fluorophore Excitation wavelength  

[nm] 

Emission wavelength  

[nm] 

NAD(P)H 330, 370 450, 460 

Riboflavin 365, 370 520, 530 

FAD, FMN 450 530 

Pyridoxine 330, 340 390, 400 

Tryptophan 280, 290 350, 370 

 

 Fluorescence spectroscopy has been used in several applications for many years. 

According to the problem of overlapping and quenching of excitation or emission wavelengths 

from different fluorophores, it was developed to measure the wider range of excitation and 

emission wavelengths, which is called 2-dimensional (2D) fluorescence spectroscopy 

(Lindemann et al., 1998; Marose et al., 1998; Li et al., 1991). The scheme of the connection 

between the BioView® sensor (DELTA Lights & Optics, Hørsholm, Denmark) and a bioreactor 

is demonstrated in Fig. 5. The sensor contains two filter wheels as shown in Fig. 5. Each wheel 

has 16 slots, but containing only 15 filters for the different excitation and emission wavelengths, 

respectively. It is equipped with a xenon (Xe) flash lamp as a light source. Excitation light from 

the Xe lamp goes through the excitation filters to the bioreactor via fiber optic bundles as a light 

conductor. The fluorescence emitted in 180° angle is guided through the light conductor to the 

photomultiplier as a detector. One spectrum is completely measured in 90 s and the data is 

interpreted in matrix data or graphs. The 2D fluorescence spectroscopy is possible to perform 

a non-invasive measurement without interfering an inner system of cultivation processes. 
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Figure 5. The schematic overview of the BioView® sensor connecting to a bioreactor (Faassen 

and Hitzmann, 2015).  

2.1.5 Signal processing 

Analytical signals, which are obtained from spectroscopies, are basically recorded as spectra. 

These signals are monitored in wavelength, wavenumber or frequency. The signals from 

analytical processes contain not only significant data, but also noise data, therefore, signal 

processing is required to enhance informative signals versus noises. There are several methods 

of the signal processing to serve different purposes, such as smoothing, derivation and 

integration of signals (Otto, 1999). Median filter is an effective and simple technique for 

smoothing signals. It is often used to remove noise from an image or signal, but all smoothing 

techniques can adversely affect the edge of data (Tukey, 1974). Apart from the smoothing filter, 

the derivation of signals is usually used for subtraction of background and for improvement of 

visual resolution. Savitzky-Golay filter is another signal processing method, which can be 

applied for the purpose of smoothing and derivation of signals (Gorry, 2002; Otto, 1999). This 

method calculates smoothing and differentiation of data by a least-squares technique. The 

coefficient (𝑐𝑗) of a selected data point (𝑦𝑘) is calculated as a weighted combination of itself as 

a center-point and m points on either side of it as in Eq. 11. The convolution weights correspond 

to performing a moving least squares fit across the data, 2m+1 points. The 2m+1 of the data 

points presents a size of the window called filter width. The size of the filter width should not 

be too large because it can affect the informative original data.  
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𝑦𝑘
∗ =

1

𝑁𝑂𝑅𝑀
∑ 𝑐𝑗𝑦𝑘+𝑗

𝑗=𝑚
𝑗=−𝑚  (11) 

where NORM is a normalization factor obtained from the sum of the coefficients, 𝑐𝑗. 

The values of NORM and coefficients in different cases of Savitzky-Golay filter can be found 

in the literatures (Gorry, 2002; Otto, 1999). 

2.1.6 Chemometrics 

2.1.6.1 Multiple linear regression 

Multiple linear regression (MLR) is fundamentally based on the concept of simple linear 

regression, but it is a regression of a single dependent variable, 𝑦, on two or more independent 

variables, 𝑥. MLR analyzes the correlation between 𝑦 and 𝑥 (Otto, 1999; Martens and Naes, 

1989). Principally, the least squares functions by calculating parameters called regression 

coefficients, 𝑏, which are calculated as in Eq. 12. 𝑋 is the matrix containing ones and 

independent variables (see Eq. 13). As shown in Eq. 12, the equation is solved by the inversion 

of the matrix, 𝑋T𝑋. It is necessary that there is no collinearity between data in the independent 

variables. 

𝑏 = (𝑋T𝑋)−1𝑋T𝑦  (12) 

where 𝑏 represents the vector of the regression coefficients and 𝑦 is the vector of 

dependent variables. 

These regression coefficients are used for predicting values of the dependent variable from the 

independent variables, which is demonstrated in Eq. 13 and 14 (Otto, 1999):  

(
𝑦1
𝑦2
⋮

𝑦𝑛

) = (

1 𝑥11  𝑥12   
1 𝑥21 𝑥22

⋮ ⋮ ⋮
  

… 𝑥1𝑘

⋯ 𝑥2𝑘

⋱ ⋮
1 𝑥𝑛1  𝑥𝑛2    … 𝑥𝑛𝑘

) (
𝑏0
𝑏1
⋮

𝑏𝑘

) + (
𝑒1
𝑒2
⋮

𝑒𝑛

)   (13) 

𝑦 = 𝑋𝑏 + 𝑒      (14) 

where 𝑦 is the dependent variable, 𝑥 is the independent variable in 𝑋, 𝑏 is the regression 

coefficient, 𝑘 and 𝑛 are subscription indexes of the number of variables and measurements, 

respectively, and 𝑒 represents the error between measured and predicted data. 

 2.1.6.2 Principal component analysis 

Principal component analysis (PCA) is a method to handle the collinearity in the data of the 𝑋- 

matrix in order to carry the most relevant information and cut out noise and redundancy from 
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the data (Otto, 1999; Martens and Naes, 1989). Therefore, PCA helps to reduce non-useful data 

in order to visualize the structure of the significant information. PCA model, which consists of 

two main parts, such as scores and loadings is illustrated in Fig. 6. Besides, it also contains 

residuals (𝐸) as in Eq. 15.  

 

 

 

 

Figure 6. PCA model containing the data, scores, loadings and residuals, 𝑋, 𝑇, 𝑃 and 𝐸- 

matrices, respectively. 𝑛, 𝑘 and 𝑑 represent the size of 𝑋, 𝑇, 𝑃 and 𝐸-matrices. 

The objective of PCA is to lower the number of variables of the original data. The PCA process 

finds a direction that carries the most information of the original data. The direction is called 

principal component (PC) or score, which is represented as 𝑡. The PC or score containing the 

maximum variance of the data is called the first PC (𝑡1). The second PC (𝑡2) carries the 

maximum of the rest variance in the data and so on. These PCs are orthogonal to each other as 

shown in Fig. 7 (Otto, 1999; Martens and Naes, 1989). The mathematical equation of the PCA 

model is thoroughly written in Eq. 15-16, which show each score and loading. The data as 

shown in Fig. 7b is preprocessed by the mean centering, which is shown in Eq. 17-18. PCA can 

be computed with the non-linear iterative partial least squares (NIPALS) algorithm to find 

principal components (Otto, 1999; Martens and Naes, 1989).  

𝑋 = 𝑇𝑃T + 𝐸      (15) 

𝑋 =  𝑡1𝑝1
T +  𝑡2𝑝2

T + ⋯ +  𝑡𝑎𝑝𝑎
T + 𝐸   (16) 

where 𝑋 represents the mean-centered data matrix, 𝑇 is the score matrix which contains 

𝑡, 𝑃T is the transpose of the loading matrix containing 𝑝T, and 𝐸 represents residuals or errors. 
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Figure 7. (a) The original data and (b) The mean-centered data of two variables (𝑥1 and 𝑥2) 

with the first and second PCs, 𝑡1 and 𝑡2, respectively. 

𝑥̅𝑘  =  
1

𝑛
∑ 𝑥𝑖𝑘

𝑛
𝑖=1   (17) 

𝑥𝑖𝑘
∗ =  𝑥𝑖𝑘 −  𝑥̅𝑘  (18) 

 where 𝑥 is the data in 𝑋, 𝑖 is the row index, 𝑘 is the column index, 𝑥̅𝑘 is the mean value 

from the kth column and 𝑥𝑖𝑘
∗  is the mean-centered value. 

 2.1.6.3 Partial least squares regression 

Partial least squares regression (PLSR) is a method to regress the response variables (𝑌), i.e., 

measured data as the off-line data, on the predictors (𝑋), i.e., spectra as the on-line data. PLSR 

is based on a bilinear model with the maximal covariance between the latent variables (principal 

components) in the 𝑋 and 𝑌-matrices (CAMO Process AS, 2006; Martens and Naes, 1989; Otto, 

1999; Wold et al., 2001b). The parameters, which are in the 𝑋-matrix, are represented as in Eq. 

15. For the 𝑌-matrix, it also consists of a score matrix (𝑈), loadings (𝑄) and residuals (𝐹) as 

shown in Eq. 19. The correlation between the score 𝑇 and 𝑈-matrices with 𝐵-coefficients is 

presented in Eq. 20. The 𝐵-coefficients are calculated from the correlation of the transpose of 

the loading matrices (𝑃T and 𝑄T) with the parameter named loading weights, 𝑊 in Eq. 21.  

The loading weights are obtained by maximizing the covariance between the linear combination 

of the score vector 𝑡 and 𝑢 under the condition that the loading weight are normalized as 1 

(Martens and Naes, 1989; CAMO Process AS, 2006; Otto, 1999; Wold et al., 2001b). The 

NIPALS algorithm is also applied in PLSR to calculate the parameters. 
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𝑌 = 𝑈𝑄T + 𝐹  (19) 

𝑈 = 𝐵𝑇  (20) 

𝐵 = 𝑊(𝑃T𝑊)−1𝑄T (21) 

where 𝑌 is the measured data, 𝑈 is the score matrix with respect to 𝑌-matrix, 𝑄 is the 

loading matrix with respect to 𝑌-matrix, 𝐹 is the errors, 𝐵 is the regression coefficients, 𝑇 and 

𝑃 are the score and loading matrices with respect to the 𝑋-matrix and 𝑊 is the loading weights. 

The process of PLSR model is demonstrated in Fig. 8. Firstly, a calibration model is created by 

using spectra and measured data. Subsequently, the model is used to predict the new off-line 

data set (Y´) from a new set of spectra (X´) as shown in the diagram.     

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. The process of PLSR model. 

2.1.7 Quality criteria 

The calibration and prediction models created by MLR or PLSR should be evaluated to examine 

the quality of the models. The root mean square error of calibration and prediction (RMSEC/P) 

as shown in Eq. 22 are used for calculating the errors between measured and predicted data. In 

addition, the percentage of RMSEP (pRMSEP) in Eq. 23 is computed for comparing the error 

of one process with other different processes.  
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RMSEC/P =  √
∑ (𝑦𝑖,𝑚𝑜𝑑𝑒𝑙

′𝑛
𝑖=1 −𝑦𝑖)2

𝑛
   (22) 

pRMSECP [%] =
𝑅𝑀𝑆𝐸𝑃×100

max. 𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 
  (23) 

where 𝑦𝑖,𝑚𝑜𝑑𝑒𝑙
′  is the predicted value of the target analyte for the object 𝑖, 𝑦𝑖 is the 

measured value for the object 𝑖, 𝑛 is the number of sample data, and max. 𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 is the 

maximum value of the measured off-line data. 

2.1.8 Variable selection methods  

According to analytical measurements, there are a number of variables, but the question is 

which ones are significantly related to the experimental response. For this reason, variable 

selection methods are required to find the most relevant variables, which helps to neglect non-

significant variables and reduce noise to obtain the most informative data from the 

measurements. 

 2.1.8.1 A method based on loadings 

This method chooses relevant variables based on loadings in PCA. The positive and negative 

signs of loadings do not determine the value of them, but the signs represent the direction of 

the vectors. High absolute value of the elements in loadings shows the corresponding variables, 

which have more influence on the considered PC than the variables with low values. Basically, 

the first few PCs are regarded as significant, therefore, a few variables with the magnitude of 

the loadings in the first few PCs are selected (Otto, 1999; Guo et al., 2002). These selected 

variables have an influence on the data. 

 2.1.8.2 Variable importance in projection 

VIP is known as “variable influence on projection” or “variable importance in projection” 

(Wold et al., 2001). This variable selection method is based on PLSR. The variable selection 

methods based on PLSR can be divided into three main categories: (1) filter, (2) wrapper and 

(3) embedded methods (Mehmood et al., 2012). VIP is categorized into the filter method. The 

filter method works principally in two steps: (1) creating a PLSR model and (2) selecting 

variables based on an optimum threshold. The method calculates a VIP score for each variable 

(𝐾). The score of each variable basically depends on the explained variance of each ath PLS 

component, which is 
𝑤𝑎𝑘

‖𝑤𝑎‖2 as shown in Eq. 24. For the VIP method, the selection criterion is 
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that the variables with a VIP score over than 1.0 are chosen because the average threshold 

values equal to 1.0 (Gosselin et al., 2010). 

VIP𝑘 =  √𝐾 ∑ [(𝑞𝑎
2𝐴

𝑎=1 𝑡𝑎
T𝑡𝑎)(

𝑤𝑎𝑘

‖𝑤𝑎‖2)]/ ∑ (𝑞𝑎
2𝐴

𝑎=1 𝑡𝑎
T𝑡𝑎)  (24) 

where 𝑎 is a subscription index, 𝐴 is the number of latent variables in PLS, 𝐾 is the 

number of variables, 𝑤𝑎𝑘 is the loading weight of the kth variable in the ath component and ‖𝑤𝑎‖ 

is the norm of matrix 𝑤𝑎. 𝑡𝑎, 𝑤𝑎 and 𝑞𝑎 are the ath column vectors of 𝑇 (scores of the 𝑋-matrix), 

𝑊 (weight matrix) and 𝑄 (loadings of the 𝑌-matrix), respectively (Gosselin et al., 2010; 

Mehmood et al., 2012). 

 2.1.8.3 Ant colony optimization 

Ant colony optimization (ACO) algorithm was firstly introduced in the early 1990s to find 

optimal solutions for problems (Mullen et al., 2009; Blum, 2005). The ACO algorithm is 

inspired from the real ants in wild (Dorigo et al., 1996). The ants find the shortest path between 

their nest and the food source by the strongest pheromone concentration on trails. As shown in 

Fig. 9, there are two paths from the nest to the food source and two groups of ants going to the 

different ways. The ants that go to the upper path being shorter arrive earlier, therefore, they 

return to the same path to their nest. While they are going to the food source and back to the 

nest, they leave the pheromone on the track. Thus, this higher pheromone concentration of the 

upper path guides other ants to follow the way to reach the food. The upper path that other ants 

follow collects more and more pheromone, on the contrary, the pheromone concentration of the 

lower (long) path decreases due to the evaporation and no visiting from other ants. Then it ends 

up with no ant using the lower path and the shortest path is found (Blum, 2005; Mullen et al., 

2009). The indirect communication between ants by pheromone is called stigmergy.  



CHAPTER 2.1. INTRODUCTION 

27 
 

 

Figure 9. The scheme of the experiment demonstrating how ants find the shortest path from 

their nest to the food source (Blum, 2005). 

The ACO algorithm was firstly applied for the well-known traveling salesman problem (TSP) 

(Dorigo et al., 1996). The purpose of using the ACO algorithm in TSP is to minimize the total 

distance of the traveling to visit each town only once. The fundamental ACO system is that an 

ant goes to a town by following a transition rule, which has a distance function and a function 

of left pheromone on the path. The visited towns are not allowed to visit again, so they are on 

a tabu list (tabuk). When the mission to visit all towns as one tour is completed, the total 

pheromone concentration of each tour is considered (Mullen et al., 2009). The concentration of 

pheromone on trails is calculated following Eq. 25-26. The probability, 𝑝𝑖𝑗
𝑘 (𝑡) of the kth ant in 

Eq. 27 makes the transformation between town 𝑖 and 𝑗 (Mullen et al., 2009). 

𝜏𝑖𝑗(𝑡 + 𝑛) = (1 − 𝜌)𝜏𝑖𝑗(𝑡) +  ∑ ∆𝜏𝑖𝑗
𝑘𝑁

𝑘=1   (25) 

 where 𝜏𝑖𝑗 is the amount of pheromone on the path between given towns 𝑖 and 𝑗, 𝜌 is the 

evaporation rate (𝜌 ϵ (0,1]), 𝑁 represents the number of ants, ∆𝜏𝑖𝑗
𝑘  is the quantity of the 

pheromone deposited on a path by kth ant between time 𝑡 and 𝑡 + 𝑛, and 𝑛 is the number of 

iterations, with the condition below: 

∆𝜏𝑖𝑗
𝑘 =  {

𝑄

𝐿𝑘
        if ant 𝑘 used edge (𝑖, 𝑗) in its tour

0          otherwise                                          
          (26) 

 where 𝑄 is a constant and 𝐿𝑘 is the tour length of the kth ant.  
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𝑝𝑖𝑗
𝑘 (𝑡) =  {

[𝜏𝑖𝑗(𝑡)]
𝛼

[𝜂𝑖𝑗]
𝛽

∑ [𝜏𝑖𝑘(𝑡)]𝛼[𝜂𝑖𝑘]𝛽
𝑘 ∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘

       if 𝑗 ∈  𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘

0                                                 otherwise

  (27) 

 where 𝜂𝑖𝑗 is the visibility of edge 𝑖 and 𝑗 as quantity 1/𝑑𝑖𝑗, (𝑑𝑖𝑗 is the path length between 

town 𝑖 and 𝑗), allowedk represents the unvisited towns, (all towns – tabuk), 𝛼 is a parameter to 

control the influence of 𝜏𝑖𝑗 and 𝛽 is a parameter to control the influence of 𝜂𝑖𝑗. 

The ACO algorithm has been applied for variable or wavelength selection (Shamsipur et al., 

2006; Ranzan et al., 2014; Allegrini and Olivieri, 2011). The purpose of using the ACO 

algorithm in wavelength selection is to find relevant wavelengths correlating to the target 

responses. The relevant wavelengths are selected based on the high accumulation of pheromone 

depositing on a variable. Theoretically, these selected wavelengths carry significant 

information of the data.
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2.2 Outline 

An optimum processing is required in biotechnological industries with the ultimate goal of 

achieving high productivity and high quality products. In order to achieve this goal, there are 

many different parameters to be realized and controlled, e.g., physical, chemical and biological 

aspects of microbial bioprocesses. Microbial cultivations are such a complex process, therefore, 

reliable and efficient tools are needed for an on-line monitoring to receive as much real-time 

information as possible, so that the processes can be controlled in time. The main objective for 

the overall study was to apply a 2D fluorescence spectrometer for the on-line monitoring of a 

yeast cultivation process in order to follow yeast growth and metabolism in real time. Besides, 

the process can be controlled as required in time. This study was principally divided into three 

main research goals. 

 The primary research plan has been performed to find relevant wavelength combinations 

corresponding to process variables of the yeast cultivations. They have been selected by three 

different selection methods: a method based on loadings (Otto, 1999), variable importance in 

projection (Mehmood et al., 2012) and ant colony optimization (Shamsipur et al., 2006). The 

selected wavelength combinations from each method were used to predict glucose, ethanol and 

biomass concentrations of the yeast cultivations via chemometric methods. The selected 

wavelength combinations, which performed well on the prediction of the target substances, 

were in the area of NADH, tryptophan, pyridoxine, riboflavin and FAD/FMN. Regarding the 

results, an on-line monitoring on the relevant biogenic fluorophores under different cultivation 

conditions has been conducted in the following phase to observe metabolic changes in yeasts. 

 The different cultivation conditions have been conducted to observe the significant 

fluorophores due to metabolic changes during yeast cultivations. The metabolic changes due to 

a glucose spiking in different phases of yeast growth were investigated using a 2D fluorescence 

spectrometer. According to the results from the previous study, the intracellular fluorophores 

like NADH, tryptophan, pyridoxine, riboflavin and FAD/FMN were well observed during the 

yeast cultivations. They are significantly related to several yeast metabolic pathways (Knepper 

et al., 2008; Pallotta et al., 1998; Bacher et al., 2000; Bafunno et al., 2004; Ishida and Yamada, 

2002). Due to the glucose spiking in an ethanol growth phase, the intensity changes of these 

biogenic fluorophores were obviously recognized by the 2D fluorescence spectrometer, but not 

in a glucose growth phase. The yeasts instantly switched to grow on glucose instead of ethanol 

after spiking glucose during the ethanol growth phase. From the results, the 2D fluorescence 

spectrometer shows potential to detect the metabolic change from growing on ethanol to 
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glucose. Therefore, it is promising to apply the 2D fluorescence spectroscopy for a process 

control of yeast cultivations in the next phase of the research project. 

  This following study has focused on the investigation of a signal, which can determine 

a metabolic switch between oxidative and oxidoreductive states. The biogenic fluorophores, 

such as NADH, tryptophan, flavins and pyridoxine, were taken into the examination. The 

characteristic of the NADH intensity showed the best performance to identify the metabolic 

switch. Therefore, the NADH fluorescence intensity has been used to control glucose feed rates 

during the fed-batch cultivations. The objective of a fed-batch cultivation of baker’s yeasts is 

to obtain a high yield of biomass. Thus, overflow metabolism must be avoided by controlling 

the glucose concentration under a critical value, 0.04-0.07 g/L (Pham et al., 1998; Hantelmann 

et al., 2006). There is currently no commercial device, which can measure a glucose 

concentration at the low level of the critical point in real time. Intracellular NADH can be 

detected as an indirect signal to indicate the critical point of the overflow metabolism. 

Consequently, the glucose feed rates were controlled with the NADH signal in real time to 

maintain oxidative metabolism. From this study, it is possible to see if it is promising to build 

up a specific wavelength fluorescence sensor equipped with light-emitting diodes and 

photodiodes for yeast cultivations. The sensor would be a cost-effective and miniaturized 

device for routine analysis (O'Toole and Diamond, 2008). 
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4.1 Conclusion 

On-line bioprocess monitoring has been studied and developed for many years (Biechele et al., 

2015; Claßen et al., 2017). For the time being, it still plays an important role in bioprocesses 

and it is being continuously developed. Bioprocesses are complex systems, therefore, potential 

and effective devices are needed to monitor, control and optimize the processes. 2D 

fluorescence spectroscopy is one of the potential techniques for an on-line monitoring without 

any interfering processes, which reduces the risk of contamination in a bioreactor. Besides, it 

provides real-time information and bypasses the need to sampling data (Faassen and Hitzmann, 

2015; Claßen et al., 2017). Biogenic fluorophores inside cells can be monitored in real time via 

2D fluorescence spectroscopy (Lindemann et al., 1998; Marose et al., 1998; Rhee and Kang, 

2007). For this reason, a 2D fluorescence spectroscopy was chosen for the research. 

A 2D fluorescence spectrometer, which was applied in the study, is the BioView 

fluorescence spectrometer. The device is equipped with 15 different filters for excitation and 

emission wavelengths. The measurement of one spectrum using the BioView spectrometer has 

120 fluorescence intensity variables of excitation and emission wavelength combinations 

(WLCs); scattered light is not considered here. The three selection methods, such as (1) method 

based on loadings, (2) variable importance in projection (VIP) and (3) ant colony optimization 

(ACO), have been performed to choose relevant and significant WLCs on target substances of 

yeast cultivations. The five selected WLCs from each selection method were used to predict the 

analytes by MLR and the MLR models were evaluated with the RMSEP and R2. Regarding the 

results of the MLR models, all selected WLCs had a good predictive performance on glucose, 

ethanol and biomass concentrations, so the three selection methods apparently performed in a 

good way. It could be because these three methods have chosen WLCs, mostly in the same 

regions of biogenic fluorophores, such as NADH, tryptophan, pyridoxine and flavins. However, 

the calculating process of the method based on loadings and VIP spent less time than ACO. 

From all selected WLCs, there were seven different excitation and emission wavelengths. These 

different excitation and emission wavelengths were combined each other to have 38 WLCs. 

The PLS models with 120 as well as 38 WLCs were implemented to compare their predictive 

performance. Their pRMSEPs had no significant difference, regarding the results. Thus, it is 

promising to build a fluorescence sensor with only 14 filters for monitoring yeast cultivations. 

The 2D fluorescence spectrometer cannot directly measure glucose and ethanol 

concentrations because they are not fluorescent. However, it can monitor the fluorescent 

molecules relating to cellular activities, such as NADH, tryptophan, pyridoxine, riboflavin and 
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FAD/FMN. Biogenic fluorophores inside cells are key metabolic components to understanding 

cellular activities, which in turn explains states of cultivation processes (Li et al., 1991). The 

three different conditions of yeast cultivations, i.e., batch, fed-batch with the glucose pulse 

during the glucose growth phase (GP) and fed-batch with the glucose pulse during the ethanol 

growth phase (EP), have been conducted to observe the behavior of intracellular fluorophores 

in real time. A change of fluorescence intensities in the spectra of the fed-batch cultivations 

with the glucose pulse during GP was not recognized. Their fluorescence spectra looked similar 

to the ones of the batch cultivations, but their intensities were higher and their glucose growth 

phase took longer. The glucose addition might be detected as a normal glucose signal during 

GP. On the contrary, the glucose pulse during EP can be clearly seen in the fluorescence spectra. 

The different states of yeast fermentation processes, particularly the glucose pulse during EP, 

can be recognized and identified from the on-line fluorescence spectra by PCA. Due to the 

glucose pulse during EP, the change of NADH, tryptophan, pyridoxine, riboflavin and 

FAD/FMN intensities was not in the same direction. The fluorescence intensity of NADH and 

riboflavin increased, but the intensity of tryptophan, pyridoxine and FAD/FMN decreased. The 

relation between tryptophan and NADH in the yeast metabolism has been studied by Knepper 

et al., 2008. The change of their intensities can be quantified as a proportional factor, 

corresponding to various glucose concentrations with the coefficient of determination, R2 = 

0.999. 

According to the previous results, 2D fluorescence spectroscopy can effectively monitor 

the real-time changes of the relevant fluorophores, such as tryptophan, pyridoxine, NADH, 

riboflavin and FAD/FMN. The signal of the NADH intensity showed the best performance to 

determine the metabolic switch between oxidative and oxidoreductive states. Therefore, a 

control of glucose feed rates was based on the fluorescence intensity of NADH, which was 

selected over tryptophan, flavins and pyridoxine. Under the feedback control, the glucose 

concentration was capably maintained under the range of the critical value. Accordingly, 

ethanol production could be avoided and glucose was purely metabolized by yeasts during the 

controlled feeding phase. With this closed-loop control of the glucose concentration, a biomass 

yield was obtained at 0.5 gbiomass/gglucose. According to the achievement of the typical high yield 

coefficient during the controlled feeding phase, the 2D fluorescence spectrometer using the 

NADH intensity has great potential to detect the metabolic change within 1.5 min and delivers 

instantaneous results to control the feed rates in real time. Although a conventional approach 

for the fed-batch control by off-gas analysis as respiratory quotient (RQ) is robust and widely 

used in industries, there is still the problem regarding a certain time delay comparing with the 
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control by the NADH signal (Claes and van Impe, 2000; Jobé et al., 2003). Besides, the cost of 

a fluorescence sensor with specific wavelengths equipped with light-emitting diodes and 

photodiodes will be more effective in comparison with off-gas analyzers (O'Toole and 

Diamond, 2008; Yang et al., 2009). Another concern is the comparison between the potential 

of a direct and indirect measurement of the critical glucose concentration. Although it seems 

more reliable to measure directly a glucose concentration from the broth, there is a concern in 

a time delay and certain errors at the low critical concentration of glucose (Shimizu et al., 1988; 

Arndt and Hitzmann, 2004). Without doubt, the fluorescence sensor is one of the powerful tools 

to detect the metabolic change in real time. Regarding the results of the overall study, the 2D 

fluorescence spectrometer shows great potential not only for the application in a process 

monitoring, but also in a process control. 
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4.2 Final remarks 

In the study, 2D fluorescence spectroscopy has been applied not only for an on-line monitoring, 

but also for a process control of the yeast cultivations. It showed great potential to provide 

informative data of the yeast cultivations in real time. Even though the target substances like 

glucose and ethanol are not fluorescent, the performance of their predictions based on the 

fluorescence spectral data, particularly, from NADH, tryptophan, pyridoxine, riboflavin and 

FAD/FMN, showed a high correlation. Through the on-line monitoring of these relevant 

intracellular fluorophores, metabolic states during the yeast cultivations can be recognized at 

the proper time. 

Using fresh and dry baker’s yeasts for the cultivations was conveniently prepared, but 

there was an issue from time to time about the unreproducible results of the cultivations. As a 

result of the commercial yeast products, it was not easy to have the same lot number for the 

experiments. When the identical input is not well controlled, it will be troublesome to achieve 

reproducible results. Therefore, utilization of a pure strain of S. cerevisiae would be a good 

solution for future experiments. 

The application of the single pair of NADH (ex330/em450) for the feedback control 

effectively performed to maintain the glucose concentration under the critical point. However, 

there was occasionally misinterpretation of the metabolic signal due to the noise in the NADH 

intensity. Thus, it could be more effective to apply the entire region of NADH as a metabolic 

signal. Then all wavelength pairs in NADH area will be processed using PCA to reduce their 

non-informative data and noise.   

Lastly, the increased glucose feed rate during the cultivations can be recognized through 

the dissolved oxygen. Consequently, a working combination of a fluorescence sensor and a 

dissolved oxygen probe could be a promising technique for controlling a substrate feed rate.  
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