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1.4 Summary

An optimum process is required in the field of food, pharmaceutical and biotechnological
industry with the ultimate goal of achieving high productivity and high-quality products. In
order to achieve this goal, there are many different parameters to be realized and controlled,
e.g., physical, chemical and biological aspects of microbial bioprocesses. Microbial cultivations
are a very complex process, therefore, reliable and efficient tools are required to receive as
much real-time information for an on-line monitoring as possible, so that the processes can be

controlled in time.

The primary objective of this research was to apply a two-dimensional (2D)
fluorescence spectroscopy to monitor glucose, ethanol and biomass concentrations of yeast
cultivations. The measurement of one spectrum has 120 fluorescence intensity variables of
excitation and emission wavelength combinations (WLCs) without consideration of the
scattered light. To investigate which WLCs carry important and relevant information regarding
the analyte concentrations, the three wavelength selection methods were implemented: a
method based on loadings, variable importance in projection (VIP) and ant colony optimization.
The five selected WLCs from each method for a particular analyte were evaluated by multiple
linear regression (MLR) models. The selected WLCs, which showed the best predictive
performance of the MLR models, were relevant to the analyte concentrations. Regarding the
results of the MLR models, the most significant WLCs contained seven different excitation and
emission wavelengths. They can be combined to have 38 WLCs for one spectrum based on the
principle of fluorescence. They were in the area of NADH, tryptophan, pyridoxine, riboflavin
and FAD/FMN. The 38 WLCs were used to predict the glucose, ethanol and biomass
concentrations via partial least squares (PLS) regression. The best prediction from the PLS
models with 38 WLCs had the percentage of root mean square error of prediction (DRMSEP)
in the range of 3.1-6.3 %, which was not significantly different from the PLS models with the
120 variables. Therefore, the specific fluorescence sensor for yeast cultivations could be built

with less filters, which would make it a low-cost device.

The following plan of the research goal was to investigate the attribute of fluorophores
inside cells in real time using a 2D fluorescence spectrometer. The considered intracellular
fluorophores, such as NADH, tryptophan, pyridoxine, riboflavin and FAD/FMN were observed
during the yeast cultivations under three different conditions: batch, fed-batch with the glucose
pulse during a glucose growth phase (GP) and fed-batch with the glucose pulse during an

ethanol growth phase (EP) after a diauxic shift. With the help of principal component analysis,
6
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the different states of the yeast cultivations, particularly the glucose pulse during EP, can be
recognized and identified from the on-line fluorescence spectra. On the other hand, the change
of the fluorescence spectra in the fed-batch process with the glucose pulse during GP was not
recognizable. Remarkably, the intensities of the fluorophores due to the glucose pulse during
EP did not change in the same direction. The fluorescence intensities of NADH and riboflavin
increased, but the intensity of tryptophan, pyridoxine and FAD/FMN decreased. The
conversion between tryptophan and NADH intensities was quantified as a proportional factor.
It was calculated from the ratio of the area of NADH and tryptophan fluorescence intensity after
the glucose addition until depletion. The proportional factor was independent on various
glucose concentrations with the coefficient of determination, R? = 0.999. The correlative
intensity changes of these fluorophores demonstrate a metabolic switch from ethanol to glucose
growth phase.

Based on the previous experiments, a closed-loop control has been implemented for
yeast cultivations. 2D fluorescence spectroscopy was applied for an on-line monitoring and
control of yeast cultivations to attain pure oxidative metabolism. A glucose concentration is an
important factor in a fed-batch process of Saccharomyces cerevisiae. Therefore, it has to be
controlled under a critical concentration to avoid overflow metabolism and to gain high
productivity of biomass. The characteristic of the NADH intensity can effectively identify the
metabolic switch between oxidative and oxidoreductive states. Consequently, the feed rates
were regulated using the NADH intensity as a metabolic signal. With this closed-loop control
of the glucose concentration, a biomass yield was obtained at 0.5 gbiomass/Qglucose. Additionally,
ethanol production could be avoided during the controlled feeding phase. The fluorescence
sensor with the signal of the NADH intensity has potential to control a glucose concentration

under the critical value in real time.

The experiments carried out show that 2D fluorescence spectroscopy has great potential
in on-line monitoring and process control of the yeast cultivations. Consequently, it is
promising to build up a compact and economical fluorescence sensor with the specific
wavelengths using light-emitting diodes and photodiodes. The sensor would be a cost-effective
and miniaturized device for routine analysis, which could be advantageous to real-time

bioprocess monitoring.
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CHAPTER 1.5. ZUSAMMENFASSUNG

1.5 Zusammenfassung

Im Bereich der Lebensmittel-, Pharma- und Biotech-Industrie ist ein optimaler Prozess mit dem
Ziel einer hohen Produktivitat und hohen Produktqualitat erforderlich. Um dieses Ziel zu
erreichen, sind viele verschiedene Parameter zu Gberwachen und zu regeln, z.B. physikalische,
chemische und biologische Aspekte von mikrobiellen Bioprozessen. Kultivierung von
Mikroorganismen ist ein komplexer Prozess, der fir ein Online-Monitoring zuverlassige und
effiziente Werkzeuge bendtigt, um mdglichst viele Informationen in Echtzeit zu erhalten, so
dass eine Regelung realisiert werden kann.

Das Hauptziel der Forschung war die Anwendung von 2D-Fluoreszenzspektroskopie
zur Uberwachung der Glukose-, Ethanol- und Biomassekonzentrationen von Hefekultivierung.
Die Messung eines Spektrums besteht aus 120 Wellenldangenkombinationen (WLK) ohne
Berlcksichtigung des Streulichts. Um zu untersuchen, welche WLK wichtige und relevante
Informationen tber die Prozessgrofien enthalten, wurden drei Wellenlangenauswahlmethoden
implementiert: Methode basierend auf Loadings, Variable Importance in Projection (VIP) und
Ameisenkolonieoptimierung. Die fiinf ausgewéhlten WLK jeder Methode fiir eine bestimmte
Substanz wurden mit Hilfe der multilinearen Regression (MLR) bewertet. Die ausgewéhlten
WLK, die die beste VVorhersageleistung des MLR-Modells zeigten, waren fur die ProzessgroRRen
relevant. Bezuglich der Ergebnisse des MLR-Modells enthielten die wichtigsten WLK sieben
verschiedene Anregungs- und Emissionswellenldngen. Basierend auf dem Prinzip der
Fluoreszenz kdénnen sie zu 38 WLK fir die Messung eines Teilspektrums kombiniert werden.
Sie lagen im Bereich der Fluoreszenz von NADH, Tryptophan, Pyridoxin, Riboflavin und
FAD/FMN. Diese 38 WLK wurden verwendet, um die Glukose-, Ethanol- und
Biomassekonzentrationen Uber Partial Least Squares (PLS) Regression vorherzusagen. Die
besten Vorhersagen der PLS-Modelle mit 38 WLK hatte relative Fehler im Bereich von 3,1-6,3
%. Das ist nicht signifikant schlechter als die PLS-Modellen mit 120 Variablen. Ein spezifischer
Fluoreszenzsensor fir die Hefekulturen kénnte daher mit weniger Filtern gebaut werden, was
ein kostenguinstiges Gerat waére.

Forschungsziel war es, die Eigenschaften von Fluorophoren in den Zellen in Echtzeit
mit einem 2D-Fluoreszenzspektrometer zu untersuchen. Die betrachteten intrazellularen
Fluorophore wie NADH, Tryptophan, Pyridoxin, Riboflavin und FAD/FMN wurden wéhrend
der Hefekultivierung unter drei verschiedenen Bedingungen beobachtet: Batch-Kultivierung,
Fed-Batch-Kultivierung mit einem Glukose-Puls wahrend der Glukosewachstumsphase (GP)
und Fed-Batch-Kultivierung mit einem Glukose-Puls wahrend der Ethanolwachstumsphase
(EP) nach einer Diauxie. Mit Hilfe der Hauptkomponentenanalyse kdnnen die verschiedenen

8
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Zustande der Hefekultivierung, insbesondere der Glukose-Puls wéhrend des EP, aus den
Online-Fluoreszenzspektren erkannt und identifiziert werden. Andererseits war die Anderung
in den Fluoreszenzspektren der Fed-Batch-Kultivierung mit dem Glukose-Puls wahrend der GP
nicht erkennbar. Bemerkenswert war, dass sich die Intensitaten der Fluorophore durch den
Glukose-Puls wéhrend des EP nicht alle in die gleiche Richtung veréndert haben. Die
Fluoreszenzintensitdten von NADH und Riboflavin nahmen zu, aber die Intensitaten von
Tryptophan, Pyridoxin und FAD/FMN nahmen ab. Die Umwandlung von Tryptophan zu
NADH konnte aufgezeigt und ein linearer Zusammenhang nachgewiesen werden. Der
Proportionalfaktor war unabhangig von verschiedenen Glukosekonzentrationen mit einem
BestimmtheitsmaB von R? = 0,999. Die korrelative Intensititsanderung von den Fluorophoren
zeigte die Stoffwechselveranderung von der Ethanol- zur Glukosewachstumsphase.

Basierend auf den vorherigen Experimenten wurde eine Regelung fir die
Hefekultivierung implementiert. Die 2D-Fluoreszenzspektroskopie wurde zur Online-
Uberwachung und Kontrolle der Hefekultivierung eingesetzt, um einen reinen oxidativen
Stoffwechsel zu erreichen. Die Hohe der Glukosekonzentration ist ein wichtiger Faktor in
einem Fed-Batch-Prozess von Saccharomyces cerevisiae. Daher ist es notwendig die
Glukosekonzentration unter einer Kkritischen Konzentration zu halten, um einen
Uberlaufstoffwechsel zu vermeiden und eine hohe Produktivitat der Biomasse zu erreichen. Die
Charakteristik der NADH-Intensitat kann den metabolischen Wechsel zwischen oxidativen und
oxidoreduktiven Zustanden effektiv identifizieren. Folglich wurde die Futterungsrate auf Basis
der Fluoreszenzintensitdat von NADH als Stoffwechselsignal geregelt. Mit dieser Regelung der
Glukosekonzentration wurde ein Ausbeutekoeffizient von 0,5 ggiomass/Jciucose €rzielt. Die
Ethanolproduktion wurde so effektiv vermieden. Der Fluoreszenzsensor hat das Potenzial, die
Glukosekonzentration unter dem kritischen Wert zu regeln.

Die durchgefiihrten Experimente zeigen, dass die 2D-Fluoreszenzspektroskopie ein
groRes Potenzial in der Online-Uberwachung und Prozesskontrolle hat. Daher ist es
vielversprechend mit Hilfe von Leucht- und Photodioden einen kompakten und
kostenglnstigen Fluoreszenzsensor mit den spezifischen Wellenlangen aufzubauen. Der Sensor
ware ein preiswertes und miniaturisiertes Gerat flr die Routineanalytik, was fur die Online-

Bioprozessiiberwachung von Vorteil ist.
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CHAPTER 2.1. INTRODUCTION

2.1 Introduction

Biological processes are used in various fields of industrial production, such as pharmaceutical,
food and bioenergy industries. To optimize bioprocesses, it is important to receive high
productivity and high-quality products. In microbial bioprocesses, there are many different
parameters, e.g., physical, biological and chemical aspects to be realized. Due to complex
processes of microbial cultivations, efficient and reliable sensors are required to monitor
essential substances like cell mass, substrate and product concentrations. On-line bioprocess
monitoring has been studied and developed for many years. During the last years, this process
monitoring area was brought into more focus to get more effective progress; for example, in
2002, the US Food and Drug Administration (FDA) launched the Process Analytical
Technology (PAT) initiative to be applied in this field (Junker and Wang, 2006). During the
past decade, there were many investigations on in-line/on-line monitoring of bioprocesses by
using various optical technologies, such as in-situ-microscopy, near infrared, Raman and
fluorescence spectroscopy (Marquard et al., 2016; Havlik et al., 2013; Singh et al., 2015; Schalk
etal., 2017; Haack et al., 2004).

2.1.1 Saccharomyces cerevisiae

Yeasts are extensively used in industry of foods, beverages and pharmaceuticals. Besides, they
are used as a model for eukaryotic cells, which are applied for fundamental knowledge in the
biological and biomedical sciences. For these applications, they are important for research in
several areas. Yeasts are unicellular fungi in subdivisions of Ascomycota or Basidiomycota
(Boekhout and Kurtzman, 1996). According to Barnett, 1992, yeasts were classified into the
genus Saccharomyces. Baker’s yeast is known as Saccharomyces cerevisiae (S. cerevisiae). In
laboratory and industry, yeasts basically grow best with temperature between 20-30 °C and at
pH values between 4.5-6.5 (Walker, 1998). Most of yeasts are aerobic microbes, therefore,
oxygen is required for the growth. However, some yeasts can also grow in an anaerobic
condition like S. cerevisiae. Sugar is an essential carbon source for yeast cultivations,
particularly, monosaccharides, i.e., glucose, fructose, mannose and galactose. Glucose is a
primary carbon source for S. cerevisiae (Johnston, 1999). The main characteristics of glucose
transport are that (Walker, 1998):

(1) Glucose uptake does not need metabolic energy
(2) Glucose will be not accumulated in cells when glucose uptake reaches equilibrium

(3) There are several carriers for glucose to help glucose diffusion in the cell

12
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There are two main glucose transporters in S. cerevisiae to set up an intracellular glucose signal.
The high-affinity glucose transporters are to serve a low glucose level, and another type is low-
affinity glucose transporters for a high level of glucose (Ozcan et al., 1996; Johnston, 1999).
Thus, the glucose metabolism is based on the amount of glucose and oxygen. A phenomenon
named Crabtree effect occurs when yeasts have an overload of glucose during an aerobic
condition. Then the fermentation prevails over respiration under an aerobic condition because
the glucose inactivates respiratory enzymes (Walker, 1998). In addition to the excess of glucose
leading to the Crabtree effect, there is another factor to be realized, which is the limited
respiratory capacity in cells (Kappeli et al., 2008). The glucose repression of S. cerevisiae solely
degrades glucose to ethanol and CO, on condition that S. cerevisiae is cultivated in an overload
of a glucose concentration with the limited respiratory capacity (Walker, 1998). It can be
explained with the concept of the respiratory bottleneck, which points out the overflow of
glucose to ethanol when the respiration of pyruvate is restricted as illustrated in Fig. 1. The
produced ethanol is accumulated as a second carbon source for yeasts. When glucose is
completely consumed from a medium, yeasts turn to an oxidative consumption of the
accumulated ethanol. The fermentative metabolism under an aerobic condition is named as a
respirofermentative or oxidoreductive growth (Kéappeli et al., 2008). In the yeast growth, a
diauxic shift can be recognized when yeasts switch their metabolism to grow on ethanol after
the depletion of glucose (Walker, 1998). In industries, the oxidoreductive growth of yeasts is
necessarily avoided to reach a high biomass yield. Consequently, substrate feed rates are
controlled under the critical glucose concentration to maintain oxidative metabolism.
Fundamentally, the yield coefficient (Yy ;) of an oxidative growth of yeasts attains in the range
of 0.47-0.50 Qniomass/Qglucose (Pham et al., 1998; Hantelmann et al., 2006; Sonnleitner and
Képpeli, 1986).

Glucose

2Pyruvate 2Ethanol + 2CO,

!

Respiratory
bottleneck

!

Biomass

Figure 1. The respiratory bottleneck in S. cerevisiae (Walker, 1998).
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2.1.2 Cellular metabolism in yeasts

As mentioned above, glucose is a primary carbon source for yeasts. Glucose is catabolized via
the glycolysis pathway. Glycolysis is carried out in the cytoplasm of yeast cells and can function
in either an aerobic or anaerobic condition. A glucose molecule is broken down by many
enzymes into two molecules of pyruvate. Additionally, in the glycolysis pathway, a glucose
molecule provides yeasts energy in the form of two molecules of adenosine triphosphate (ATP)
and two molecules of nicotinamide adenine dinucleotide (NADH) as an electron carrier
(Walker, 1998).

Glucose - 2Pyruvate + 2ATP + 2NADH + H*

The molecules of pyruvate in a respiratory metabolism can be mainly proceeded into two ways,
which depends on a glucose concentration and respiratory capacity of cells. At low glycolytic
fluxes, the pyruvate is mostly oxidized to acetyl-CoA (Lei et al., 2001), but when the glycolytic
fluxes reach to a certain value, some molecules of pyruvate are also oxidized to acetaldehyde.
Then it is converted further to ethanol as demonstrated in Fig. 2 (Pham et al., 1998). The
overflow metabolite like ethanol is produced to balance the NADH/NAD™ ratio. NADH/NAD™
as redox carriers are prerequisite for catabolic and anabolic reactions, particularly, for providing
cells with energy in the form of ATP. Due to the overflow metabolism, NADH is accumulated
and yeast cells need to maintain their cellular redox balance or metabolic homeostasis of
NADH/NAD? ratio. Therefore, the accumulation of NADH due to high glycolytic fluxes leads
to the formation of byproducts, such as ethanol and glycerol (Chen et al., 2014; Vemuri et al.,
2007). Then these fermentation products, e.g., ethanol and glycerol, are further oxidized
through the tricarboxylic acid cycle (TCA cycle) and oxidative phosphorylation for generating
ATP to reach the requirement of growth (Brauer et al., 2005). The TCA cycle will take place
only in an aerobic condition. The acetyl-CoA is completely oxidized in the TCA cycle into
molecules of CO, and energy, which is in the form of ATP and also held in the electron carriers
like NADH and FADHo>. The terminal step of cellular respiration is the electron transport chain.
This step will convert the energy in electrons from the electron carriers to generate ATP. In the
electron transport chain, oxygen plays an important role as an electron acceptor to receive
electrons from NADH and FADH,. Then NAD" and FAD can take electrons further from the
glycolysis and TCA cycle to keep the metabolic process going.

14
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¥ Glucose
NAD* C ADP
NADH D ATP
NAD* NADH co,
Ethanol & Acetaldehyde A Pyruvate
NAD* NAD*
NADH D CNADH
ATP €0,

Acetate —|———» Acetyl-CoA

ATP  ADP

3
NAD' + FAD = 3NADH + FADH 2c0,

H,0 30,

ATP

Figure 2. Main components of the energy metabolic pathways of S. cerevisiae (Pham et al.,
1998)

Apart from the glycolysis, TCA cycle and oxidative phosphorylation, other metabolic
pathways of intrinsic fluorophores are also considered to understand the process of yeast
cultivations. The intrinsic fluorophores, which are relevant to yeast metabolism, are NADH,
tryptophan, riboflavin (vitamin B2), FAD and pyridoxine (vitamin Bs). NADH is an essential
coenzyme synthesized by many pathways in eukaryotic cells. NADH plays an important role
as an electron carrier in metabolic pathways. Another form of NADH is NAD", which is an
oxidized form. NAD™ is synthesized through two main pathways, such as the de novo and
salvage biosynthesis pathways (Knepper et al., 2008; Sporty et al., 2009). According to Knepper
et al., 2008, Sporty et al., 2009, Ahmed and Moat, 1966, tryptophan is used as a precursor for
synthesizing NAD" in the de novo pathway as illustrated in Fig. 3. For another pathway, NAD”*
is synthesized from either extracellular nicotinic acid or the recycled intermediates, which are
shown in the dashed-line frame (Fig. 3). The biosynthesized NAD" is converted to the reduced
form, NADH, therefore, it is an indirect relationship between NADH and tryptophan. Bacher
et al., 2000 referred that riboflavin can be synthesized by yeasts. The biosynthesis of a molecule
of riboflavin needs two molecules of ribulose 5-phosphate and guanosine 5-triphosphate (GTP)
as substrates. Riboflavin is used to synthesize flavin adenine dinucleotide (FAD) (Bafunno et
al., 2004; Pallotta et al., 1998). Besides, pyridoxine can be also synthesized by S. cerevisiae
(Shane and Snell Esmond E., 1976; Ishida and Yamada, 2002).
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L-Tryptophan

_________________ ]

. Nicotinic acid , Quinolinic acid

S oo

T . Nicotinic acid
Nicotinic acid —» .
mononucleotide

| I

Nicotinic acid adenine;
dinucleotide '

NADH —— NADPH

Figure 3. Scheme of NAD(P)* and NAD(P)H biosynthetic reactions in S. cerevisiae (Knepper
et al., 2008)

2.1.3 Cultivation processes

2.1.3.1 Batch process
The main definition of a batch process is no addition of new carbon sources after the cultivation
runs with the initial substrate. It means the batch will run until all initial carbon sources are
depleted. The main concern in industry of the batch cultivations is a low product yield.
However, it is necessary to perform batch cultivations to understand the process of unknown

microorganisms or organisms in order to find their optimum growth conditions.

The mathematical models, which are illustrated in Eq. 1-3, were applied to simulate the
growth of the yeast batch cultivation (Solle et al., 2003; Grote et al., 2011). The conditions of
the specific growth rate (u) in different phases are presented in Eq. 4-5. The specific growth
rate on glucose (ug) will function on the condition of the presence of glucose. On the contrary,
the specific growth rate on ethanol (uz) will be on duty if the glucose is depleted. The simulation
is based on the Euler method and the simulation process is performed by using the particle

swarm optimization algorithm.
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where X, G and E are cell mass, glucose and ethanol concentrations, respectively. ug
and ug are the specific growth rates on glucose and ethanol, respectively. Yy ¢, Yg/,c and Yy g

are the yield coefficients for glucose with respect to biomass and ethanol, and for ethanol with
respect to biomass.

2.1.3.2 Fed-batch process

To improve a product yield, a fed-batch process is widely operated in various areas, such as
chemical, biochemical, biotechnological and pharmaceutical industries (Kristensen, 2002). For
the operation of a fed-batch process, a substrate feed rate plays a significant role to attain a high
productivity of cultivation processes. Hence, it is important to understand the processes and
find efficient strategies to control substrate feed rates. The below equations (Eq. 6-9) are a

theoretical model of a fed-batch process (Kristensen, 2002).

ax FX

- = MsX — (6)

as _ _ usX | FGr=S)
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- F (8)
usXv . E _

=0 9)

P o LA ——
YX/S(SF_Sconst.Y dt

where X, S and IV are cell mass, substrate concentrations and working volume. F is a

substrate feed rate. u is the specific growth rate on the substrate. Yy s is the yield coefficient

for the substrate with respect to biomass. Sy is the substrate concentration of the feed solution.

Sconst. 1S the substrate concentration in the bioreactor at the start of a fed-batch process.
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2.1.4 Fluorescence spectroscopy

Molecules absorb photons at some wavelengths and are excited by irradiation of the light to go
to the excited electronic states (S1 or S2). Then the molecules emit photons as fluorescence to
return from the excited electronic states to the ground electronic state (So) at different
wavelengths as illustrated in Fig. 4 (Bass, 2000; Faassen and Hitzmann, 2015). The energy
levels of molecules in absorption and emission can exist in different vibrational energy states
(V). The electronic transitions are described as vertical lines because they occur in too short a
period of time for significant displacement of nuclei (Lakowicz, 2006; Albani, 2007).
Calculation of absorption (hv,) and emission energy (hvg) is based on the Planck-Einstein

relation as shown in Eq. 10.
E=hv=hs (10)

where E represents the energy (J), h is the Planck’s constant (6.626x103* J.s), v is the
frequency (s?), c is the speed of the light (2.998x10% m/s) and A is the wavelength (nm).

While the molecules are returning from the excited electronic states to the ground electronic
state, some energy is changed to other forms. The emission energy is typically lower than the
absorption one (Albani, 2007). Substances containing aromatic compounds are fluorescent and
they are called fluorophores (Lakowicz, 2006). Each fluorophore has its own attribute of the
peak intensity in different excitation and fluorescence emission wavelengths. In Table 1, the
excitation and emission wavelengths of the peak intensity of significant biogenic fluorophores

are presented.

oRNW &

<

orMwW

hv, hv, hv,

or MW &

Ground state

Figure 4. Jablonski diagram demonstrating transitions of absorption and fluorescence

emission spectra (Faassen and Hitzmann, 2015).
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The fluorescence intensity of the fluorophores can be influenced by different surroundings, such
as pH, turbidity, aeration and viscosity of the culture (Li and Humphrey, 1991). The
environment around them can affect energy transfer and absorption in molecules, which is
called inner filter effects. For example, non-fluorescent components in cultivation media absorb
excitation or emission radiation from fluorophores, therefore, the fluorescence intensity of these

fluorophores is reduced from the original fluorescence yield (Srinivas and Mutharasan, 1987).

Table 1. Optimal excitation and emission wavelengths for the peak intensity of biogenic
fluorophores (Faassen and Hitzmann, 2015; Stérk, 2000)

Biogenic fluorophore Excitation wavelength Emission wavelength
[nm] [nm]
NAD(P)H 330, 370 450, 460
Riboflavin 365, 370 520, 530
FAD, FMN 450 530
Pyridoxine 330, 340 390, 400
Tryptophan 280, 290 350, 370

Fluorescence spectroscopy has been used in several applications for many years.
According to the problem of overlapping and quenching of excitation or emission wavelengths
from different fluorophores, it was developed to measure the wider range of excitation and
emission wavelengths, which is called 2-dimensional (2D) fluorescence spectroscopy
(Lindemann et al., 1998; Marose et al., 1998; Li et al., 1991). The scheme of the connection
between the BioView® sensor (DELTA Lights & Optics, Harsholm, Denmark) and a bioreactor
is demonstrated in Fig. 5. The sensor contains two filter wheels as shown in Fig. 5. Each wheel
has 16 slots, but containing only 15 filters for the different excitation and emission wavelengths,
respectively. It is equipped with a xenon (Xe) flash lamp as a light source. Excitation light from
the Xe lamp goes through the excitation filters to the bioreactor via fiber optic bundles as a light
conductor. The fluorescence emitted in 180° angle is guided through the light conductor to the
photomultiplier as a detector. One spectrum is completely measured in 90 s and the data is
interpreted in matrix data or graphs. The 2D fluorescence spectroscopy is possible to perform

a non-invasive measurement without interfering an inner system of cultivation processes.
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Figure 5. The schematic overview of the BioView® sensor connecting to a bioreactor (Faassen
and Hitzmann, 2015).

2.1.5 Signal processing

Analytical signals, which are obtained from spectroscopies, are basically recorded as spectra.
These signals are monitored in wavelength, wavenumber or frequency. The signals from
analytical processes contain not only significant data, but also noise data, therefore, signal
processing is required to enhance informative signals versus noises. There are several methods
of the signal processing to serve different purposes, such as smoothing, derivation and
integration of signals (Otto, 1999). Median filter is an effective and simple technique for
smoothing signals. It is often used to remove noise from an image or signal, but all smoothing
techniques can adversely affect the edge of data (Tukey, 1974). Apart from the smoothing filter,
the derivation of signals is usually used for subtraction of background and for improvement of
visual resolution. Savitzky-Golay filter is another signal processing method, which can be
applied for the purpose of smoothing and derivation of signals (Gorry, 2002; Otto, 1999). This
method calculates smoothing and differentiation of data by a least-squares technique. The
coefficient (c;) of a selected data point (yy) is calculated as a weighted combination of itself as
a center-point and m points on either side of it as in Eqg. 11. The convolution weights correspond
to performing a moving least squares fit across the data, 2m+1 points. The 2m+1 of the data
points presents a size of the window called filter width. The size of the filter width should not

be too large because it can affect the informative original data.
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. 1 =
Vi = o X GV (11)

where NORM is a normalization factor obtained from the sum of the coefficients, Gj.

The values of NORM and coefficients in different cases of Savitzky-Golay filter can be found
in the literatures (Gorry, 2002; Otto, 1999).

2.1.6 Chemometrics
2.1.6.1 Multiple linear regression

Multiple linear regression (MLR) is fundamentally based on the concept of simple linear
regression, but it is a regression of a single dependent variable, y, on two or more independent
variables, x. MLR analyzes the correlation between y and x (Otto, 1999; Martens and Naes,
1989). Principally, the least squares functions by calculating parameters called regression
coefficients, b, which are calculated as in Eq. 12. X is the matrix containing ones and
independent variables (see Eqg. 13). As shown in Eq. 12, the equation is solved by the inversion
of the matrix, XTX. It is necessary that there is no collinearity between data in the independent

variables.
b=XTX)"1xTy (12)

where b represents the vector of the regression coefficients and y is the vector of

dependent variables.

These regression coefficients are used for predicting values of the dependent variable from the
independent variables, which is demonstrated in Eq. 13 and 14 (Otto, 1999):

1 x4 X2 o Xk
y b e
A e S R L | I P (13)
n 1 Xy Xpy o Xnk/ \bk en
y=Xb+e (14)

where y is the dependent variable, x is the independent variable in X, b is the regression
coefficient, k and n are subscription indexes of the number of variables and measurements,

respectively, and e represents the error between measured and predicted data.

2.1.6.2 Principal component analysis

Principal component analysis (PCA) is a method to handle the collinearity in the data of the X-

matrix in order to carry the most relevant information and cut out noise and redundancy from
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the data (Otto, 1999; Martens and Naes, 1989). Therefore, PCA helps to reduce non-useful data
in order to visualize the structure of the significant information. PCA model, which consists of
two main parts, such as scores and loadings is illustrated in Fig. 6. Besides, it also contains

residuals (E) as in Eq. 15.

PT

n n n

Figure 6. PCA model containing the data, scores, loadings and residuals, X, T, P and E-

matrices, respectively. n, k and d represent the size of X, T, P and E-matrices.

The objective of PCA is to lower the number of variables of the original data. The PCA process
finds a direction that carries the most information of the original data. The direction is called
principal component (PC) or score, which is represented as t. The PC or score containing the
maximum variance of the data is called the first PC (t;). The second PC (t,) carries the
maximum of the rest variance in the data and so on. These PCs are orthogonal to each other as
shown in Fig. 7 (Otto, 1999; Martens and Naes, 1989). The mathematical equation of the PCA
model is thoroughly written in Eqg. 15-16, which show each score and loading. The data as
shown in Fig. 7b is preprocessed by the mean centering, which is shown in Eq. 17-18. PCA can
be computed with the non-linear iterative partial least squares (NIPALS) algorithm to find

principal components (Otto, 1999; Martens and Naes, 1989).
X=TP"+E (15)
X = tp] + taps + -+ tape + E (16)

where X represents the mean-centered data matrix, T is the score matrix which contains

t, PT is the transpose of the loading matrix containing pT, and E represents residuals or errors.
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Figure 7. (a) The original data and (b) The mean-centered data of two variables (x; and x,)

with the first and second PCs, t; and t,, respectively.
_ 1
X = — Xt Xik 17
Xik = Xik — X (18)

where x is the data in X, i is the row index, k is the column index, X, is the mean value

from the k™ column and x;, is the mean-centered value.

2.1.6.3 Partial least squares regression

Partial least squares regression (PLSR) is a method to regress the response variables (Y), i.e.,
measured data as the off-line data, on the predictors (X), i.e., spectra as the on-line data. PLSR
is based on a bilinear model with the maximal covariance between the latent variables (principal
components) in the X and Y-matrices (CAMO Process AS, 2006; Martens and Naes, 1989; Otto,
1999; Wold et al., 2001b). The parameters, which are in the X-matrix, are represented as in Eq.
15. For the Y-matrix, it also consists of a score matrix (U), loadings (Q) and residuals (F) as
shown in Eq. 19. The correlation between the score T and U-matrices with B-coefficients is
presented in Eq. 20. The B-coefficients are calculated from the correlation of the transpose of
the loading matrices (PT and QT) with the parameter named loading weights, W in Eq. 21.
The loading weights are obtained by maximizing the covariance between the linear combination
of the score vector t and u under the condition that the loading weight are normalized as 1
(Martens and Naes, 1989; CAMO Process AS, 2006; Otto, 1999; Wold et al., 2001b). The
NIPALS algorithm is also applied in PLSR to calculate the parameters.
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Y=UQT+F (19)
U =BT (20)
B =W(/PTw) 19T (21)

where Y is the measured data, U is the score matrix with respect to Y-matrix, Q is the
loading matrix with respect to Y-matrix, F is the errors, B is the regression coefficients, T and

P are the score and loading matrices with respect to the X-matrix and W is the loading weights.

The process of PLSR model is demonstrated in Fig. 8. Firstly, a calibration model is created by
using spectra and measured data. Subsequently, the model is used to predict the new off-line

data set (Y”) from a new set of spectra (X") as shown in the diagram.

Spectra Measured data
(On-line data) (Oft-line data)
X Y

New spectra

v

Calibration ) X
Model

Predicted data
Figure 8. The process of PLSR model.

2.1.7 Quality criteria

The calibration and prediction models created by MLR or PLSR should be evaluated to examine
the quality of the models. The root mean square error of calibration and prediction (RMSEC/P)
as shown in Eq. 22 are used for calculating the errors between measured and predicted data. In
addition, the percentage of RMSEP (pRMSEP) in Eq. 23 is computed for comparing the error

of one process with other different processes.
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n 1A
Yie1Vimoder=Yi)?
n

RMSEC/P = \/ (22)

RMSEP X100

pRMSECP [%] = (23)

maxX. Ymeasured

where y; .4 1S the predicted value of the target analyte for the object i, y; is the

measured value for the object i, n is the number of sample data, and max. Y,easurea 1S the

maximum value of the measured off-line data.

2.1.8 Variable selection methods

According to analytical measurements, there are a number of variables, but the question is
which ones are significantly related to the experimental response. For this reason, variable
selection methods are required to find the most relevant variables, which helps to neglect non-
significant variables and reduce noise to obtain the most informative data from the

measurements.
2.1.8.1 A method based on loadings

This method chooses relevant variables based on loadings in PCA. The positive and negative
signs of loadings do not determine the value of them, but the signs represent the direction of
the vectors. High absolute value of the elements in loadings shows the corresponding variables,
which have more influence on the considered PC than the variables with low values. Basically,
the first few PCs are regarded as significant, therefore, a few variables with the magnitude of
the loadings in the first few PCs are selected (Otto, 1999; Guo et al., 2002). These selected

variables have an influence on the data.
2.1.8.2 Variable importance in projection

VIP is known as “variable influence on projection” or “variable importance in projection”
(Wold et al., 2001). This variable selection method is based on PLSR. The variable selection
methods based on PLSR can be divided into three main categories: (1) filter, (2) wrapper and
(3) embedded methods (Mehmood et al., 2012). VIP is categorized into the filter method. The
filter method works principally in two steps: (1) creating a PLSR model and (2) selecting
variables based on an optimum threshold. The method calculates a VIP score for each variable

(K). The score of each variable basically depends on the explained variance of each a" PLS

Wak
lwall?

component, which is as shown in Eq. 24. For the VIP method, the selection criterion is
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that the variables with a VIP score over than 1.0 are chosen because the average threshold

values equal to 1.0 (Gosselin et al., 2010).

VIP, = JK T4 [(q2 £t (] / DA (g2 tTt,) (24)

Iwall?

where a is a subscription index, A is the number of latent variables in PLS, K is the
number of variables, w,, is the loading weight of the k™ variable in the a” component and |Jw,|
is the norm of matrix w,. t,, w, and g, are the a® column vectors of T (scores of the X-matrix),
W (weight matrix) and Q (loadings of the Y-matrix), respectively (Gosselin et al., 2010;
Mehmood et al., 2012).

2.1.8.3 Ant colony optimization

Ant colony optimization (ACQO) algorithm was firstly introduced in the early 1990s to find
optimal solutions for problems (Mullen et al., 2009; Blum, 2005). The ACO algorithm is
inspired from the real ants in wild (Dorigo et al., 1996). The ants find the shortest path between
their nest and the food source by the strongest pheromone concentration on trails. As shown in
Fig. 9, there are two paths from the nest to the food source and two groups of ants going to the
different ways. The ants that go to the upper path being shorter arrive earlier, therefore, they
return to the same path to their nest. While they are going to the food source and back to the
nest, they leave the pheromone on the track. Thus, this higher pheromone concentration of the
upper path guides other ants to follow the way to reach the food. The upper path that other ants
follow collects more and more pheromone, on the contrary, the pheromone concentration of the
lower (long) path decreases due to the evaporation and no visiting from other ants. Then it ends
up with no ant using the lower path and the shortest path is found (Blum, 2005; Mullen et al.,

2009). The indirect communication between ants by pheromone is called stigmergy.
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Nest Food (a) All ants are in the nest. There is no pheromone in the environment.

Nest = = == = = = — - o 0 O Food (b) The foraging starts. In probability, 50 % of the ants take the short
path (symbolized by circles), and 50 % take the long path to the
food source (symbolized by squares).

(c) The ants that have taken the short path have arrived earlier at
the food source. Therefore, when returning, the probability to take
again the short path is higher.

(d) The pheromone trail on the short path received, in probability, a
stronger reinforcement, and the probability to take this path grows.
Finally, due to the evaporation of the pheromone on the long path,
the whole colony will, in probability, use the short path.

Figure 9. The scheme of the experiment demonstrating how ants find the shortest path from
their nest to the food source (Blum, 2005).

The ACO algorithm was firstly applied for the well-known traveling salesman problem (TSP)
(Dorigo et al., 1996). The purpose of using the ACO algorithm in TSP is to minimize the total
distance of the traveling to visit each town only once. The fundamental ACO system is that an
ant goes to a town by following a transition rule, which has a distance function and a function
of left pheromone on the path. The visited towns are not allowed to visit again, so they are on
a tabu list (tabux). When the mission to visit all towns as one tour is completed, the total
pheromone concentration of each tour is considered (Mullen et al., 2009). The concentration of

pheromone on trails is calculated following Eq. 25-26. The probability, p{‘j (t) of the k™ ant in

Eq. 27 makes the transformation between town i and j (Mullen et al., 2009).
Tt +n) = (1 —p)1;(8) + TRy AT{‘J- (25)

where 7;; is the amount of pheromone on the path between given towns i and j, p is the

k

evaporation rate (p € (0,1]), N represents the number of ants, Az;; is the quantity of the

pheromone deposited on a path by k™ ant between time ¢ and t + n, and n is the number of

iterations, with the condition below:

Ly
0 otherwise

Q : N
AT{‘]- _ { if ant k used edge (i, j) in its tour (26)

where Q is a constant and L, is the tour length of the k" ant.

27



CHAPTER 2.1. INTRODUCTION

. [r1;0] “[nsf)”
pij(t) = 3 Zk e attowed [Tir (D1 [Mi 1P

0 otherwise

lf] € ClllOWQdk (27)

where n;; is the visibility of edge i and j as quantity 1/d;;, (d;; is the path length between
town i and j), allowedx represents the unvisited towns, (all towns — tabuk), « is a parameter to

control the influence of 7;; and 8 is a parameter to control the influence of 7;;.

The ACO algorithm has been applied for variable or wavelength selection (Shamsipur et al.,
2006; Ranzan et al., 2014; Allegrini and Olivieri, 2011). The purpose of using the ACO
algorithm in wavelength selection is to find relevant wavelengths correlating to the target
responses. The relevant wavelengths are selected based on the high accumulation of pheromone
depositing on a variable. Theoretically, these selected wavelengths carry significant
information of the data.
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2.2 Outline

An optimum processing is required in biotechnological industries with the ultimate goal of
achieving high productivity and high quality products. In order to achieve this goal, there are
many different parameters to be realized and controlled, e.g., physical, chemical and biological
aspects of microbial bioprocesses. Microbial cultivations are such a complex process, therefore,
reliable and efficient tools are needed for an on-line monitoring to receive as much real-time
information as possible, so that the processes can be controlled in time. The main objective for
the overall study was to apply a 2D fluorescence spectrometer for the on-line monitoring of a
yeast cultivation process in order to follow yeast growth and metabolism in real time. Besides,
the process can be controlled as required in time. This study was principally divided into three

main research goals.

The primary research plan has been performed to find relevant wavelength combinations
corresponding to process variables of the yeast cultivations. They have been selected by three
different selection methods: a method based on loadings (Otto, 1999), variable importance in
projection (Mehmood et al., 2012) and ant colony optimization (Shamsipur et al., 2006). The
selected wavelength combinations from each method were used to predict glucose, ethanol and
biomass concentrations of the yeast cultivations via chemometric methods. The selected
wavelength combinations, which performed well on the prediction of the target substances,
were in the area of NADH, tryptophan, pyridoxine, riboflavin and FAD/FMN. Regarding the
results, an on-line monitoring on the relevant biogenic fluorophores under different cultivation

conditions has been conducted in the following phase to observe metabolic changes in yeasts.

The different cultivation conditions have been conducted to observe the significant
fluorophores due to metabolic changes during yeast cultivations. The metabolic changes due to
a glucose spiking in different phases of yeast growth were investigated using a 2D fluorescence
spectrometer. According to the results from the previous study, the intracellular fluorophores
like NADH, tryptophan, pyridoxine, riboflavin and FAD/FMN were well observed during the
yeast cultivations. They are significantly related to several yeast metabolic pathways (Knepper
et al., 2008; Pallotta et al., 1998; Bacher et al., 2000; Bafunno et al., 2004; Ishida and Yamada,
2002). Due to the glucose spiking in an ethanol growth phase, the intensity changes of these
biogenic fluorophores were obviously recognized by the 2D fluorescence spectrometer, but not
in a glucose growth phase. The yeasts instantly switched to grow on glucose instead of ethanol
after spiking glucose during the ethanol growth phase. From the results, the 2D fluorescence

spectrometer shows potential to detect the metabolic change from growing on ethanol to
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glucose. Therefore, it is promising to apply the 2D fluorescence spectroscopy for a process

control of yeast cultivations in the next phase of the research project.

This following study has focused on the investigation of a signal, which can determine
a metabolic switch between oxidative and oxidoreductive states. The biogenic fluorophores,
such as NADH, tryptophan, flavins and pyridoxine, were taken into the examination. The
characteristic of the NADH intensity showed the best performance to identify the metabolic
switch. Therefore, the NADH fluorescence intensity has been used to control glucose feed rates
during the fed-batch cultivations. The objective of a fed-batch cultivation of baker’s yeasts is
to obtain a high yield of biomass. Thus, overflow metabolism must be avoided by controlling
the glucose concentration under a critical value, 0.04-0.07 g/L (Pham et al., 1998; Hantelmann
et al.,, 2006). There is currently no commercial device, which can measure a glucose
concentration at the low level of the critical point in real time. Intracellular NADH can be
detected as an indirect signal to indicate the critical point of the overflow metabolism.
Consequently, the glucose feed rates were controlled with the NADH signal in real time to
maintain oxidative metabolism. From this study, it is possible to see if it is promising to build
up a specific wavelength fluorescence sensor equipped with light-emitting diodes and
photodiodes for yeast cultivations. The sensor would be a cost-effective and miniaturized
device for routine analysis (O'Toole and Diamond, 2008).
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Abstract The on-line monitoring with two-dimensional (2D)
fluorescence spectroscopy of Saccharomyces cerevisiae batch
cultivations was applied to monitor glucose, ethanol, and bio-
mass concentrations. The measurement of one spectrum by
the 2D fluorescence spectrometer has 120 fluorescence inten-
sity values of excitation and emission wavelength combina-
tions (WLCs); scattered light is not considered here. To iden-
tify which WLCs of the multi-wavelength fluorescence spec-
tra carry important and relevant information regarding the
analyte concentrations, three different methods were com-
pared: a method based on loadings, variable importance in
projection, and ant colony optimization. The five selected
WLCs for a particular analyte from each method were evalu-
ated by multiple linear regression models to find the most
significant variable subsets for predicting the sample concen-
trations. The most significant WLCs relevant to the three sam-
ple properties contained seven different excitation and emis-
sion wavelengths, which can combine with each other to have
38 possible wavelength combinations in the fluorescence
measurement. Partial least squares (PLS) models were cali-
brated with the 38 possible variables and the off-line data for
the prediction of glucose, ethanol, and biomass concentra-
tions. The best prediction from the PL.S models had the per-
centage of root mean square error of prediction (pRMSEP) in
the range of 3.1-6.3 %, which was similar to pRMSEPs of the
PLS models with the full variables. Based on these results, it is
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promising to build up a specific inexpensive fluorescence sen-
sor for the yeast cultivation process using light-emitting di-
odes and photodiodes.

Keywords Bioprocess monitoring - Saccharomyces
cerevisiae - 2D fluorescence spectroscopy - Chemometrics -
Ant colony optimization - Variable importance in projection

Introduction

Biological processes are used in various fields of industrial
production, such as pharmaceutical, food, and bioenergy in-
dustries. To optimize bioprocesses, it is important to re-
ceive high productivity and product quality. In microbial
bioprocesses, there are many different parameters, e.g.,
physical, biological, and chemical to be controlled. Due
to complex processes of microbial cultivations, efficient
and reliable sensors are required to monitor essential sub-
stances like cell mass, substrate, and product concentra-
tions. On-line bioprocess monitoring has been studied
and developed for many years. In the last years, this pro-
cess monitoring area was brought into more focus to get
more effective progress; for example, in 2004, the US Food
and Drug Administration (FDA) launched the Process
Analytical Technology (PAT) initiative to be applied in this
field [1]. During the past decade, there were many investi-
gations on in-line/on-line monitoring of bioprocesses by
using several optical sensors, such as near-infrared (NIR),
Raman, and fluorescence spectroscopy [2-5].
Two-dimensional (2D) fluorescence spectroscopy is an
effective tool for on-line monitoring of cultivation pro-
cesses. A non-invasive measurement is an ideal technique
for bioprocesses because it will not interfere with mi-
crobes or any cells inside a bioreactor. Fluorescence
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sensors have been used almost 30 years for various appli-
cations to measure biogenic fluorophores. They are useful
and effective, especially, for microorganisms having auto-
fluorescence like yeast. For example, Bhatta et al. 2006
used a fluorescence spectroscopy to detect autofluores-
cence for differentiating yeast and bacterial cells [6].
The growth and stress responses of the yeast cells were
monitored by observing autoflourescence using a fluores-
cence sensor [7]. However, there was a problem about an
overlapping of fluorescence signals which are not able to
be identified [8]. For this reason, 2D fluorescence spec-
troscopy or multi-wavelength fluorescence (MWF) spec-
troscopy was developed to solve the problem. It can si-
multaneously measure biogenic fluorophores in a wide
range of excitation and emission wavelengths [9, 10]. It
was applied in many fields with different microorganisms
like Saccharomyces cerevisiae, Claviceps purpurea,
Streptomyces coelicolor, and Escherichia coli [5, 11-14].

The advantage of using filters in a fluorescence spectros-
copy is the lower cost than monochromators. According to
Lakowicz 2006, filters are used often rather than mono-
chromators when a known fluorophore’s spectral properties
has maximum sensitivity. However, using monochromators
in a fluorescence sensor can give better spectral resolution
than filters [15]. Another important equipment used with a
fluorescence spectrometer is a light guide such as optical
fibers, which are usually applied for transmitting light from
the spectrometer to the object under investigation. The ben-
efit for using optical fibers is that they can simultaneously
transmit light of various wavelengths and also in different
directions, which is a truly advantage for a 2D fluorescence
spectroscopy. Additionally, optical fibers cannot be dis-
turbed by electric and magnetic field; thus, they can give
good spectral resolution in harsh locations. Moreover, they
can be downsized at low cost. Nevertheless, there are some
disadvantages of using optical fibers. For example, they can
be interfered with ambient light, but it can be solved by
using in the dark environment. Besides, there is feasible
photobleaching if indicator phases are applied [16].
Basically, fluorescence sensors built with filters and optical
fibers for remote monitoring are effective to detect
fluorophores in many processes, such as biotechnological,
chemical, food, and environmental processes. In our study,
the 2D fluorescence spectroscopy equipped with filters and
optical fibers were used for the experiments.

With on-line measuring by a 2D fluorescence sensor,
multivariate data are obtained during the whole cultivation
process; therefore, chemometric analysis is needed to get
significant information out of the data. Chemometric
models use statistical or mathematical methods for data
analysis and prediction of a process. The chemometric
methods can be described into three main parts, such as
data preprocessing, qualitative spectral analysis, and
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quantitative spectral analysis [17]. The pretreatment of
spectral data is applied for reducing unnecessary data or
noise in measurements. For example, one method required
for fluorescence spectral data of cultivation processes is the
technique of spectra subtraction. Due to complex media
and metabolic changes, it is better to exclude the media
background in order to see clearer changes of fluorescence
intensities of processes [9, 17, 18]. Besides, it can reduce
variability of batch-to-batch. Principal component analysis
(PCA) is a qualitative method for data reduction and eval-
uation. Not all spectral data from measurements are impor-
tant; thus, the only significant information is extracted by
PCA. It will be described in an easier way like two or more
dimensional space called score plots [17, 18]. Methods of
quantitative spectral analysis are multiple linear regression
(MLR), principal component regression (PCR), and partial
least squares (PLS) regression. These methods create the
relationship between properties of states variables (e.g.,
cell mass, substrates, and products) and on-line MWF data.
PLS models are most widely used for multivariate data
analysis. The purpose of this method is to determine a
small number of latent variables or principal components,
which can predict target concentrations by using the fluo-
rescence spectra [17]. Presently, there are many publica-
tions about research on monitoring of bioprocesses with
2D fluorescence spectroscopy and chemometrics. For ex-
ample, Haack et al. has done MWF spectroscopy for on-
line cell mass monitoring of S. cerevisiae cultivations [5].
The 2D fluorescence spectroscopy was also applied for
controlling §. cerevisiae fed-batch cultivations [14].
Recently, Odman et al. has done the on-line estimation of
biomass, glucose, and ethanol in S. cerevisiae cultivations
by using 2D fluorescence sensors. The C. purpurea
bioprocess was the first cultivation of fungi, which has
been characterized by chemometric modeling with 2D
fluorescence spectroscopy [11]. In addition, there are still
others like Pichia pastoris, E. coli, and S. coelicolor which
were also on-line monitored with 2D fluorescence sensors
and analyzed by chemometric methods [4, 12, 19].

In this study, wavelength combinations (WLCs) or
variables of MWF data have been selected which have
significant and relevant information on the target sub-
stances, such as glucose, ethanol, and biomass of
S. cerevisiae cultivations. Three methods are examined
to choose important WLCs: a method based on load-
ings, variable importance in projection (VIP) [20], and
ant colony optimization (ACO) [21]. Then the results of
each approach were compared to have the most signif-
icant WLCs related to the important bioprocess wvari-
ables (glucose, ethanol, and biomass). To have only im-
portant WLCs for building up a specific fluorescence
sensor for the yeast cultivation would be a promising
low-priced device.
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Material and methods
Strain and cultivation conditions

S. cerevisiae (fresh baker’s yeast, Oma’s Ur-Hefe) was
used for precultures. Ten grams of fresh baker’s yeast
was inoculated into 100 mL Schatzmann medium contain-
ing 0.34 g L' MgS0,7H,0, 0.42 g L™' CaCl,'2H,0,
4.5 g ™' (NH,),80,, 1.9 g L™ (NH,),HPO,, 0.9 g L™’
KCl, and 10 g L™! glucose [22]. The preculture was shak-
en for 10 min and then was added into a 3-L stainless
steel tank bioreactor (Minifors, Inifors HT, Bottmingen,
Switzerland) with a working volume of 1.35 L. The me-
dium used for batch cultivations was the same as the
preculture one, but with 1 ml L™ trace elements solution
(0.015 g L' FeCls-6H,0, 9 mg L™' ZnS0,4-7H,0,
10.5 mg L™' MnSO,-2H,0, and 2.4 mg L™' CuSO,-
5H,0) and 1 ml L™ vitamin solution (0.06 g Lt myo-
inositol, 0.03 g L™' Ca-pantothenate, 6 mg L™"' thiamine
HCI, 1.5 mg L' pyridoxine HCI, and 0.03 mg L™ bio-
tin). Five batches were operated at a constant temperature
at 30 °C and the pH was maintained at 5. The aeration
rate and stirrer speed were kept constant at 0.63 vvm
(2.5 L min~!) and 350 rpm, respectively. Iris software
(Inifors HT, Bottmingen, Switzerland) was applied as a
process control system for the bioreactor.

Off-line analysis

Samples were regularly taken from the bioreactor and put into
preweighed and predried microcentrifuge tubes. Cell dry
weight (CDW) was determined by centrifugation (Universal
16 R, Hettich Zentrifugen GmbH & Co. KG, Tuttlingen,
Germany) of a sample with 1.5 mL (2 times) at 12,000 rpm
for 10 min. The samples without the supernatant were letin a
drying oven at 103 °C for 24 h. Then they were cooled down
for 30 min before weighing.

The supernatant of the samples after the centrifugation
were examined by HPLC (ProStar, Variant, Walnut Creek,
CA, USA) to determine the concentration of glucose and
ethanol. The supernatant was firstly filtrated with pore
size filter, 0.45 um, polypropylene membrane (VWR,
Darmstadt, Germany). Subsequently, it was injected
20 uL into a Rezex ROA-organic acid H+ (8 %) column
(Phenomenex, Aschaffenburg, Germany) and operated at
70 °C with 5 mM H,SO, as an eluent at 0.6 mL. min~’
flow rate. The concentrations of glucose and ethanol were
calculated by Software GalaxieTM Chromatography
(Varian, Walnut Creek, CA, USA). As the number of sam-
pling of the off-line data was lower than the number of
measuring of the fluorescence spectra during the cultiva-
tion, the theoretical models (Egs. 1-5) were used to fit to
the off-line data, e.g., glucose, ethanol, and cell dry mass,
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by using the particle swarm optimization algorithm for
estimation [23, 24].

o = HeX +peX (1)
dG,,/lGX
FTaRN )
X/G
O _ X X )
de Y Y
E/G X/E
0 G=0
He = {:uGG G>0 (4)
0 G>0
= 5
e {#Eo G=0 ©)

where X, G, and E are cell mass, glucose, and ethanol concen-
trations, respectively. i and pg are the specific growth rates
on glucose and ethanol, respectively. Yyq, Y, and Yyg are
the yield coefficients for glucose with respect to biomass and
ethanol and ethanol phase with respect to biomass.

On-line analysis/2D fluorescence spectroscopy

The exhaust gas like carbon dioxide (CO;) and oxygen (O-)
was monitored continuously with BlueInOne Cell Sensor
(BlueSense gas sensor GmbH, Herten, Germany). During
the batch cultivation, it was on-line observed by BlueVis soft-
ware (BlueSense gas sensor GmbH, Herten, Germany).

A BioView fluorescence spectrometer (DELTA Lights &
Optics, Harsholm, Denmark) was used for measuring multi-
wavelength culture fluorescence of the yeast cultivations in
range of 270-550 nm excitation (ex) and 310-590 nm emis-
sion (em). With increment of 20 nm of these excitation and
emission ranges, altogether, there are 120 fluorescence inten-
sity values of WLCs; scattered light is not considered here.
The typical bandwidth of a filter is 20 nm. The BioView fluo-
rescence sensor has a xenon flash lamp as a light source for
excitation and is equipped with 16 different filters for excita-
tion and emission wavelengths. The excitation light goes via
the fiber optic as a guide light into the bioreactor and the
fluorescent light, which is emitted in a 180° angle, is moni-
tored after passing the emission filters. Then the emission light
is detected by a photomultiplier. The procedure runs contin-
uously until a complete rotation of excitation and emission
filters. For the non-invasive monitoring, the fluorescence
sensor measured the culture through a quartz window in
25 mm standard port. The measurement for a single scan
of the spectrum was performed with in 90 s. The spectrum
of one time scanning contains the combinations of excita-
tion and emission wavelengths, which are 120 intensity
values of WLCs, and is presented below.

A Springer



CHAPTER 3.1. COMPARISON OF METHODS FOR WAVELENGTH COMBINATION
SELECTION FROM MULTI-WAVELENGTH FLUORESCENCE SPECTRA FOR ON-LINE

MONITORING OF YEAST CULTIVATIONS

710

S. Assawajaruwan et al.

Selection methods of wavelength combinations
A method based on loadings

The first fluorescence spectrum of each batch after inoculation
was subtracted from the following spectra [11, 13]. The
resulting spectral data of the five batches were separately op-
erated by PCA with the Unscrambler X® software (Camo,
Norway). The loading in PCA represents the projection of
the data matrix in the intensity of WLCs on the principal
components (PCs). The magnitude of the loading vectors re-
lated to the considered PC is an important measure of a WLC
for the PC model. Loadings near the center of the coordinate
system represent insignificant feature variables. The positive
and negative signs of loadings do not indicate high or low, but
they indicate directions of the loading vectors. In the method
based on loadings, the WLCs with the largest size of loadings
on the first three PCs were chosen from each cultivation
[25-27].

viP

Variable importance in projection (VIP) technique was
used for variable selection [20, 28, 29]. The VIP score
on each variable depends on the explained variance of

each PLS component which is (Wa/[|Wal|* ). The WLC
should be taken when threshold of VIP score is more than
1 because the variable is highly influential on the target

samples.
I

where a is a subscription index, A is the number of latent
variables in PLS, p is the number of different intensity
values of the WLCs, w,y is the loading weight of the k™
variable in the ™ component, [lw,ll is the norm of matrix
w, and t,, w,, and q, are the ath column vectors of T
(scores of the independent variable matrix), W (weight
matrix), and Q (loading of the dependent variable matrix),
respectively [28, 29].

The subtraction spectra with 120 WLCs and the off-line
data, e.g., glucose, ethanol, and biomass, from the five
batches were firstly operated together with MATLAB
PLS Toolbox (MATLAB R2014a) [28]. According to
PLS regression, T, Q, and W were received to be calculat-
ed for the VIP score using Eq. 6 to find the important
WLCs on each sample. The VIP calculation in Eq. 6 was
implemented in MATLAB VIP Toolbox [20].

Wak
||Wa||2

VIR = [ pS [(qit;fa ﬂ / > Y

(6)
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ACO

ACO is a meta-heuristic algorithm, which is characterized
from the real ants’ behavior. Ants always find a short path
between the nest and a food source with the help of phero-
mone. A typical ACO is based on the accumulation of infor-
mation in the form of the deposition of pheromone trails. This
algorithm was applied for wavelength selection to find the
important variables relevant to the estimation of sample con-
centrations [21, 30]. According to Ranzan et al. 2014, the
ACO implementation for the selection of spectrum compo-
nents used a random factor related to a pheromone density
function. Pheromone was deposited on spectrum components
by ants as a function of residual error between prediction and
measurement [30]. The integration of ACO with multivariate
models works in the way that a colony was firstly constructed
and then each ant in the colony was evaluated by one method
of the multivariate models, such as PLS, PCR, and inverse
least squares [21, 31].

The subtraction spectra (120 WLCs) of the five batches
with their off-line data were operated by the ACO-based al-
gorithm with PLS regression model (ACO-PLS) in MATLAB
with the source code from Ranzan et al. [30]. With this math
tool, the spectral data were firstly preprocessed with mean
normalization and subsequently run the ACO-PLS (condi-
tions: 120 input variables, 50 iterations, 100 ants, 107° initial
concentration of the pheromone trail, (.5 evaporation rate of
pheromone per trail, and 15 PCs).

Chemometric analysis and modeling
PCA

According to large data set of on-line MWF data, PCA was
used to visualize the best possible data structure. It helps to
find out how relationships between objects and features are.
The important purpose to use PCA is to quantify the amount
of useful information and take out noise which is contained in
the data. The process of PCA is to find a direction that carries
the most information of the whole data. The direction contain-
ing the most of the variance of the data is called the first PC.
The second PC carries the maximum variance of the rest data
and so on. These PCs are statistically unrelated from each other
[25, 26]. The subtraction fluorescence spectra of the five cul-
tivations were used to calculate PCA separately (conditions:
mean centering and NIPALS algorithm) by Unscrambler X®
software.

The PCs were computed with the fluorescence intensity in
each spectrum and the values of the loading vector. To clarify
which combinations of excitation and emission wavelengths
are significantly related to the considered PC, the percentage
sensitivity was calculated using Eq. 7. Firstly, the calculation
of'the original PC was done by using the data of one measured
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spectrum and the loading. Afterwards, one value in this mea-
sured spectrum (carrying 120 values in the WLCs) was mul-
tiplied by a constant number, i.e., 1.1 and the new PC (=PC’)
was calculated by the changed spectrum using the original
loading. With the new and original PC, the sensitivity can be
determined using Eq. 7. From the sensitivity calculation, one
can see how the changed intensity value at the WLC effects
the considered PC. Therefore, each value of 120 WLCs was
changed one by one for computing the new PC to see how
every fluorescence intensity value influence the PC.

__ d
Sensitivity[%] = w (7)

MLR

MLR is a regression model to analyze the correlation be-
tween dependent and independent variables. The method
is based on ordinary least squares regression and the op-
eration of the regression coefficients involves a matrix
inversion. Thus, it will bring to the collinearity problems
if the predictor variables are linearly dependent [25, 26].
According to the small number of selected WLCs from
each selection method, MLR was used to run the models
to predict glucose, ethanol, and biomass concentrations by
Unscrambler X® software. The leave-one-out cross vali-
dation was proceeded for a total of five batches. It means
the four batches were run by MLR as a calibration model
and the one left was run for a validation set to test the
model. To evaluate the calibration and prediction errors of
the models, the root mean square error of calibration and
prediction (RMSEC/P) was calculated using predicted and
measured values (Eq. 8). Additionally, the percentage of
the root mean square error of prediction (pRMSEP) was
calculated using Eq. 9. The pRMSEPs of the MLR models
were compared to get the most significant WLCs relevant
to the sample properties.

n , 2
Z i=1 (yr‘.model_yr')

RMSEC / p— - (8)
PRMSECP[%] — RMSEP x 100 ()
MAaXY measured

where y/ is the predicted value of the target analyte for the
object i, y; is the measured value for the object i, » is the
number of sample data, and max ycasureq 18 the maximum
value of the measured off-line data.

PLS

The subtraction spectra with all 120 WLCs and the off-line
data of the five cultivations were modeled by PLS-1

(Unscrambler X® software, conditions: mean centering,
NIPALS algorithm, random segmented cross validation, and
7 PCs). All of the five batches were run in the same procedure
as MLR modeling (as mentioned above). For the evaluation of
models, RMSEC/P and pRMSEP were calculated as in Egs. 8
and 9.

For the most significant selected WLCs evaluated by the
MLR model, their excitation and emission wavelengths were
considered to combine each other for the other possible com-
binations of wavelengths. For example, if there are two select-
ed WLCs, e.g., ex270/em450 and ex330/em390, the other
possible combinations can be ex270/em390 and ex330/
em450 for a fluorescence measurement. Thus, there are basi-
cally four possible WLCs, which can be used for measuring in
the fluorescence sensor. PLS (Unscrambler X® software) was
used to create models with the all possible combinations from
the most significant selected WLCs and the offline-data. The
procedure of the modeling and evaluation was the same as
mentioned in the MLR part.

Results and discussion
Characteristics of the cultivations

The time for running each batch was 9 h as shown in Fig. 1. In
the yeast batch cultivation, it contained glucose and ethanol
growth phases which have been previously observed by
Locher et al. [32]. In Fig. 1, while the glucose was decreasing
during the exponential growth, the products, e.g., ethanol and
biomass were increasing. At around 2.5 h, the glucose run out
and the phase shifted to the ethanol phase. During the decrease
of ethanol concentration, the biomass was exponentially
increasing.

12 5.5
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8 4 o
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0 . i — ° . » - 2
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Fig. 1 The characteristics of the yeast batch cultivation with 10 g L™!
starting glucose and the theoretical models of the yeast cultivation for
glucose, ethanol, and biomass concentrations
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Fig. 2 The fluorescence spectra
during the yeast cultivation which
clearly show the peak regions

of tryptophan (ex290/em350),
pyridoxine (ex330/em390),
NAD(P)H (ex330, 350/em450),
and riboflavin, FMN, FAD
(ex450/em530). a The spectrum
during a glucose phase. b The
spectrum during an ethanol phase.
¢ The difference spectrum of

(a) and (b). RFI relative
fluorescence intensity
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The growth parameters were obtained from the theoretical
models fitted to the experimental data. Between each batch,
the values of parameters had no significant difference (data
not shown). The results of the five batches were reproducible.
The specific growth rate during the glucose phase was 0.30+
0.02 h™" which is higher compared to the ethanol phase (0.04
£0.01 b™h. During the glucose phase, Ygg (0.57
0.03 Zethanol gglucose_l) is hlgher than, YX/G (0 18+
0.01 gpiomass gglumse_l) as shown in Fig. 1. During the ethanol
phase, Yyzis 0.32£0.09 gpiomass geﬂmol_l. The values of the
parameters of the yeast batch cultivations were similar to other
studies like Odman et al. [13] and Solle et al. [23].

On-line fluorescence spectra

The range of the measured fluorescence spectra, as mentioned
in the materials and methods part, covers the area of the auto-
fluorescence of the yeast cells. In Fig. 2a, b, the fluorescence
spectra of the yeast cultivation during the glucose and ethanol
phases are presented. The peak of the protein, cofactor, and
vitamin regions were evidently seen, such as tryptophan
(ex290/em350), pyridoxine (ex330/em390), NAD(P)H
(ex330, 350/em450), and riboflavin, FMN, FAD (ex450/
em530) (Fig. 2). In Fig. 2c, it can be observed that the fluo-
rescence intensity in the area of tryptophan, pyridoxine,
NAD(P)H, and riboflavin increased from the glucose phase
to the ethanol phase. It means that these biogenic fluorophores
are related to the yeast growth. Podrazky et al. demonstrated
that the autofluorescence of yeast cells can be used to monitor
the growth and stress responses of yeast cells [7].

PCA of the on-line fluorescence data

The fluorescence spectral data from all five batch runs were
explored by using PCA to understand the state of the cultiva-
tion. For 9 h of running one batch, the sample points were
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Fig. 3 The explained variance from the batch cultivation by PCA

around 400430 with 120 variables, a spectral data matrix
[430 % 120]. The results from PCA modeling consisted of im-
portant first three PCs which carried the relevant data of fer-
mentations as shown in Fig. 3. The first PC (PC1) contained
the variances which was 97.2 % (Fig. 3). For PC2 and PC3,
there were 2.3 and 0.3 %, respectively. According to the ob-
servation from the score plots (PC1 vs. PC3) of the five
batches, the trajectory of each batch was nearly the same (data
not shown). Additionally, the trajectory of the score plot (PC1
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Fig. 4 a A score plot from the yeast batch cultivation by running PCA. b

A reversed score plot from (a). ¢ A CO; off-gas graph from the yeast
cultivation
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Fig. 5 The sensitivity plot of the fluorescence region in the first PC

vs. PC3) is recognized like the CO, off-gas graph, particularly
the reversed score plot as shown in Fig. 4a—.

According to the sensitivity calculation (Fig. 5), it can be
obviously seen that in the first PC, the fluorescence area of
tryptophan, pyridoxine, NAD(P)H, and riboflavin has the
strong sensitivity. From the result, the areas in the spectrum
corresponding to these biogenic fluorophores play a signifi-
cant role to the first PC.

The selected WLCs by the three selection methods

Although we know the important area of the fluorescence
spectra which effects significantly on the yeast growth, there
are still many variables (WLCs) in these areas and all of them
might be not specific on every state variable. Therefore, the
methods of selection variables are needed. To receive the more
information from the fluorescence data, the variables with the
magnitude of the elements of the loading vectors are consid-
ered [12, 27]. Guo et al. 2002 [27] showed the high consensus
by the PC loading for a feature selection method. With the
method based on loadings, there were simply five different

WLCs selected for the three analytes as shown in Table 1.
These five WLCs are in the important spectral regions which
are correlated to the metabolism of the yeast growth like
NAD(P)H (ex330/em450 and ex350/em450), tryptophan
(ex290/em350), riboflavin, FMN, FAD (ex450/em530), and
pyridoxine (ex330/em390) [9]. Each biogenic fluorophore
plays the different role in the yeast growth, so it means that
they are correlated to the different sample properties. Horvath
et al. showed that tryptophan had a better correlation to cell
mass than NAD(P)H [33]. The changes of the NAD(P)H and
flavins (FAD and FMN) concentrations have a correlation to
the metabolism changes from the oxidative to oxidoreductive
[14]. Therefore, these selected WLCs seem to carry the rele-
vant information to predict the glucose, ethanol, and biomass
concentrations. Although it is promising that they have corre-
lations to the yeast metabolism, they had to be validated by
MLR modeling.

The VIP and ACO methods chose WLCs relevant to a
particular sample from all 120 WLCs, which is not like
the method based on loadings that can select only the
same set of WLCs for all three process variables.
Therefore, these two methods might be more advanta-
geous because multivariate prediction models should be
built from variables containing high-quality analyte-spe-
cific information [34]. For the VIP method, the first five
WLCs with the highest VIP scores were selected
(Table 1). Some of the chosen WLCs by VIP are also
in the area of NAD(P)H, riboflavin, FMN, FAD, and
pyridoxine. However, the selected WLCs were not exact-
ly the same as the selected ones by the method based on
loadings. The ACO method selected the first five highest
pheromone concentrations on WLCs (Table 1). Some of
the five selected WLCs by ACO are also in the impor-
tant yeast metabolism area like NAD(P)H, pyridoxine,
and riboflavin. Even though there are some selected
WLCs of the three methods identical, it is not easy to
decide which set of the five selected WLCs from which
method is the most relevant to the sample properties. For
this reason, each set of the five selected WLCs of the
analytes was further modeled by MLR.

Table 1 Five selected WLCs by

the method based on loadings, Selection method

Analyte

Selected WLCs (excitation/emission)

VIP, and ACO
Glucose

Ethanol

Biomass
vip Glucose

Ethanol

Biomass

PC loadings

ACO Glucose
Ethanol

Biomass

290/350 330/390 330/450 350/450 450/530
270/310 270/350 330/350 330/450 390/450
270/350 330/450 350/450 450/530 450/550
330/430 330/450 350/450 370/450 450/530
270/350 270/370 2701390 290/330 310/350
270/350 270/370 310/350 330/490 370/530
270/430 270/450 310/350 310/370 310/390
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Table 2 MLR models with
different sets of five selected Selection method Analyte RMSEP (gL™) R preanoa PRMSEP (%)
‘WLCs from the three selection
methods PC loadings Glucose 0.32+0.05 0.99+0.00 3.2
Ethanol (GP) 0.22+0.03 0.97+0.01 6.3
Ethanol (EP) 0.20+£0.05 0.96+0.02 6.2
Biomass (GP) 0.25+0.10 0.93+0.05 6.9
Biomass (EP) 0.29+0.07 0.79+0.12 6.3
VIP Glucose 0.40+0.14 0.98+0.01 3.9
Ethanol (GP) 0.25+0.06 0.96+0.02 7.3
Ethanol (EP) 0.28+0.10 0.90+0.11 8.7
Biomass (GP) 0.22+0.07 0.95+0.03 6.0
Biomass (EP) 0.18+0.04 0.92+0.02 3.9
ACO Glucose 0.44+0.11 0.98+0.01 3.6
Ethanol (GP) 0.22+0.03 0.97+0.01 5.2
Ethanol (EP) 0.25+0.11 0.94+0.04 6.2
Biomass (GP) 0.20+0.08 0.96 +0.03 4.4
Biomass (EP) 0.19+0.09 0.90+0.08 34

The values in the table are mean value + standard deviation
GP glucose phase, EP ethanol phase, CalModel calibration model, PredModel prediction model

Modeling using 120 WLCs of the fluorescence spectra

The 120 variables of subtraction fluorescence spectra and
simulated data by the theoretical models fitted to the off-
line data were modeled by PLS. The results of the models,
i.e., PCs, RMSEC/Ps, and R?> were calculated for the
mean values, as shown in Table 3. These PLS models
for glucose, ethanol, and biomass concentrations were
separately modeled with the optimum number of PCs in
the glucose and ethanol phases. The number of PCs influ-
ences on the effectiveness of modeling. When the num-
bers of them are too small, there is not adequate informa-
tion to make a good model. On the contrary, if there are

many PCs, the model will be overfitting and less robust
[12]. For the PLS models of glucose and ethanol in the
glucose phase, the optimum number of PCs was only one
used for creating the models. However, the results of the
calibration models had the low RMSEC and high coeffi-
cient of determination (R2c.jpoqq) values. It showed that
the first PC contained sufficient significant information to
glucose and ethanol concentrations (in GP). Basically,
RMSEC shows how good a calibration model fits to the
measured data. For the low RMSEC and high R Cavodel
values of other models (Table 3), it also showed that the
models using all 120 WLCs of fluorescence spectra pro-
vided a good fit to the measured data. The coefficient of

Table 3 PLS models for

glucose, ethanol, and biomass Model  Analyte Mean PCs  RMSEC Rcamosr  RMSEP Rpreavodss  PRMSEP
concentrations using all 120 L™ L™ (%)
WLCs and the possible 38
WLCs from the selected WLC's PLS Glucose 1.0+£00 0.34+£0.02 099+£0.00 032014 099+001 32
Ethanol (GP) 1.0+0.0 0.14x0.02 098+£001 022004 097+001 64
Ethanol (EP) 2.6+0.8 0.14+£0.02 098+£0.01 022007 095+003 6.7
Biomass (GP) 26+1.0 0.08+0.01 098+£0.00 019007 096+002 52
Biomass (EP) 4.0+ 0.0 0.07+£0.00 0.97+0.00 024+007 085+009 5.0
PLS*  Glucose 20+£00 0.31+£0.00 099+£0.02 032+0.16 099+0.01 3.1
Ethanol (GP) 1.8+04 0.13£0.01 098+0.00 022+£003 097+0.01 63
Ethanol (EP) 28+04 0.14=x0.00 098+0.02 0.18£0.05 097+001 54
Biomass (GP) 3.0+0.9 0.08£0.00 098+0.01 020008 095+003 54
Biomass (EP) 4.4 +0.38 0.07+000 097+001 022+007 087+008 47
PLS* the PLS models using 38 WLCs
@ Springer
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determination in the prediction models (R%p canoder) OF
glucose concentration was indeed high. For the prediction
of ethanol and biomass concentrations, the RZpreamodel
were also relatively high, but the prediction model of bio-
mass in EP had R%p e qnsoqer lower than others. The models
to predict glucose, ethanol, and biomass concentrations in
GP had pRMSEPs of 3.2, 6.4, and 5.2 %, respectively.
For ethanol and biomass concentrations in EP, pRMSEPs
were 6.7 and 5.0 %, respectively (as shown in Table 3).
With the low pRMSEP and high R predmoder Values, the
models had good statistical power to predict the glucose,
ethanol, and biomass concentrations.

Modeling using the significant selected WLCs

According to the small number of selected WLCs of each
selection method, MLR was applied for creating models
to predict the process variables. The prediction models of
analytes were also separately modeled during the glucose
and ethanol phases. The results can be seen in Table 2.
The RMSEPs of the MLR models for the three analytes
were analyzed of significant differences using ¢ test.
However, no significant difference could be detected.
Thus, it means that the selected WLCs from the three
selection methods do not show significant difference.
According to the low RMSEP and high R%preamodel 35
shown in Table 2, the three selection methods can effec-
tively choose the important variables in the yeast cultiva-
tion process. In each method, some WLCs are contained,
which are in the same area (or almost in the same area),
such as NAD(P)H, tryptophan, and riboflavin region as
presented in Table 1. Therefore, the selected WLCs carry
the information relevant to three analyte concentrations.

From the all significant selected WLCs, there were 7
different excitation wavelengths (e.g., 270, 290, 310, 330,
350, 370, and 450 nm) and 7 emission wavelengths (e.g.,
350, 370, 390, 430, 450, 490, and 530 nm). These differ-
ent excitation and emission wavelengths are able to be
combined each other for having 38 WLCs. To use these
38 WLCs, PLS models were calculated to predict the pro-
cess variables.

The RMSEC values and R*capnoder of the PLS models
with all 120 variables and the PLS models with 38 WLCs
(Table 3) were similar to each other. For the prediction
models, the pRMSEPs and R%predModel Showed no signif-
icant difference (based on t test). The pRMSEPs of the
PLS models with the 38 WLCs for the glucose, ethanol,
and biomass prediction (in GP and EP) were in the range
of 3.1-6.3 %, as shown in Table 3. In Fig. 6, the PLS
predicted concentrations as well as the measured ones are
presented. With 120 WLCs, 32 filters are used. For the
measure of the 38 WLCs, only 14 filters are applied.
Thus, the specific fluorescence sensor for the yeast

@ Springer
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Fig. 6 Correlation between PLS predicted data from the 38 WLCs and
the measured off-line data

cultivation could be built with only a small amount of
filters, which would be an inexpensive device.

Conclusions

In this study, a comparison of three methods for selecting
relevant and important wavelength combinations is presented,
such as a method based on loadings, VIP, and ACO. The
selected WLCs from these three methods were modeled by
MLR and evaluated with the RMSEP and R”. From the re-
sults, the five selected WLCs from the three selection methods
had a good predictive performance on glucose, ethanol, and
biomass concentrations. All three selection methods per-
formed in a good way. It could be because these three methods
have chosen the WLCs, mostly in the same regions of the
biogenic fluorophores, which are related to the yeast metabo-
lism, such as NAD(P)H, tryptophan, pyridoxine, and ribofla-
vins. When the computing time of each process is considered,
the calculating process of the method based on loadings and
VIP spend less time than ACO. As the computing process in
ACO, it has to be done with many iterations. With 7 filters for
excitation and emission wavelengths, there were 38 possible
WLCs. The PLS models with 120 as well as 38 WLCs were
calculated. The results of their pPRMSEPs had no significant
difference. Thus, it is promising to build a specific economical
fluorescence sensor using light-emitting diodes and photodi-
odes for the yeast cultivation process.
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The relevant flucrophores in cells can be a key component to understanding cellular activities, which in turn
explains states of cultivation processes. The autofluorescence inside microorganisms can be measured by 2D
fluorescence spectroscopy which is an effective and non-invasive device for an on-line monitoring of
bioprocesses. We detected the following intrinsic fluorophores which are part of metabolic pathways for yeast
growth during fermentation in real-time: tryptophan, pyridoxine, NADH, riboflavin, FAD, and FMN. The changes
of these intrinsic fluorophores were observed from the yeast cultivations under three conditions: (i) normal
batch, (ii) glucose addition during glucose growth phase, and (iii) glucose addition during ethanol growth phase
after a diauxic shift. The glucose addition during ethanol growth phase demonstrated the correlative changes of
the fluorophores, which was a key component in the metabolic switch from ethanol to glucose growth phase.
Additionally, the quantification of conversion between tryptophan and NADH was shown as a proportional
factor, It was caleulated from the ratio of the area of NADH and tryptophan fluorescence intensity after the
glucose addition until depletion. The proportional factor was independent on various glucose concentrations

with the coefficient of determination, R = 0.999.

1. Introduction

An optimum processing is needed in the field of food, pharmaceu-
tical, and biotechnological industry with the ultimate goal of achieving
high productivity and high quality products. In order to achieve this
goal, there are many different parameters to be realized and controlled,
e.g., physical, chemical, and biological aspects of microbial biopro-
cesses. Microbial cultivations are such a complex process, therefore,
reliable and efficient tools are required for an on-line monitoring to
receive as much real-time information as possible, so that the processes
can be controlled in time. On-line bioprocess monitoring has been
studied and developed for many years. In 2002, the US Food and Drug
Administration (FDA) launched the Process Analytical Technology
(PAT) initiative to be applied in the process monitoring and effectively
drove progresses in this field [1-5]. During the past decade, there were
many investigations on in-line/on-line monitoring of bioprocesses by
using various optical technologies, such as in situ microscopy, near-
infrared (NIR), Raman, and fluorescence spectroscopy [6-15].

Fluorescence spectroscopy is one of the potential techniques for an
on-line monitoring without any interfering processes, which reduces
the risk of contamination in a bioreactor. Besides, it provides real-time
information and bypasses the need to sampling data [15-20]. The
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fluorescence sensor is particularly effective for monitoring the auto-
flucrescence inside cells. Two-dimensional (2D) or multi-wavelength
flucrescence spectroscopy was developed to be able to measure
biogenic fluorophores in a wider range of excitation and emission
wavelengths [17,21,22]. Thus, the non-identified overlapping peaks
and the quenching of different fluorophores can be detected by the 2D
fluorescence spectroscopy. The sensor is not only applied in monitoring
cultivation processes of Saccharomyces cerevisiae, but also in many
different microorganisms, such as Claviceps purpurea, Streptomyces
coelicolor, and Escherichia coli [14,23-26]. The on-line monitoring using
2D fluorescence spectroscopy can enhance the understanding of the
diversity in biological systems. For example, Bhatta et al., 2006 applied
fluorescence spectroscopy to differentiate species between yeast and
bacteria and also between different strains of yeasts [27]. Another study
used a fluorescence sensor to monitor growth and stress responses of
yeast cells by observing changes of autofluorescence [28]. The fluores-
cence sensor cannot directly measure glucose and ethanol concentra-
tions because they are not fluorescent. However, it can monitor the
fluorescent molecules relating to cellular activities, such as nicotina-
mide-adenine dinucleotide (NADH), tryptophan, pyridoxine (vitamin
Bg), riboflavin (vitamin Bs), flavin-adenine dinucleotide (FAD), and
flavin mononucleotide (FMN) [15,16]. Many studies investigated the
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relation between intrinsic fluorophores and products or substrates.
Then they used the fluorophores to estimate concentrations of cell
mass, glucose, ethanol, and other produets [14-25,29,30].

Cellular metabolism occurring in living microorganisms contains
several metabolic pathways, such as glycolysis, the citric acid cycle
(TCA cycle), and the electron transport chain. The intracellular
fluorophores are key metabolic components for the metabolic pathways
[22]. In different fermentation systems or conditions, the behavior of
each biogenic fluorophore is different. Therefore, it is necessary to
understand and recognize the change of intrinsic fluorophores during
each phase of cultivations in order to find a relevant indicator of the
metabolie switches, These significant indicators could be used to
predict state variables and improve the cultivation process.

The objective of this study was to investigate relevant fluorophores
under the three different cultivation conditions. The biogenic fluor-
ophores, such as NADH, tryptophan, pyridoxine, riboflavin, FAD, and
FMN, were monitored to observe their behaviors in different operations
during the cultivations.

2. Materials and methods
2.1, Yeast strain, culture and fermentation conditions

S. cerevisiae (fresh baker’s yeast, Oma's Ur-Hefe) was pre-cultivated
before fermentation, 10 g fresh baker's yeast was inoculated into 100 mL
Schatzmann mediurm, which consists of 0.34 g/L MgS0,7H;0, 0.42 g/L
CaCly2H,0, 4.5 g/L (NH4);804, 1.9 g/L (NH,),HPO,, and 0.9 g/L KCl
[31]. The preculture was shaken for 10 min (180 rpm) and then was
pumped into a 3-L stainless steel tank bioreactor (Minifors, Inifors HT,
Bottmingen, Switzerland) with a working volume of 1.35 L. The medium
used for the cultivations was the same as the one for the preculture, but
with 10g/L glucose, 1mL/L trace elements solution (0.015g/L
FeCly6H20, 9 mg/L ZnS047Hz0, 10.5 mg/L MnS042H:0, and 2.4 mg/
L CuS045H20), 1 mL/L vitamin solution (0.06 g/L myocinositol, 0.03 g/L
Ca-pantothenate, 6 mg/L thiamine HCl, 1.5 mg/L pyridoxine HCl, and
0.03 mg/L biotin), and 200 pL/L antifoam. The yeast cultivations under
three different conditions were run in triplicate. The first cultivation
condition was a normal batch (Fig. 1A). The second condition was a
cultivation with the glucose addition during the glucose growth phase at
ca. 1.5 h. For the last condition, the glucose solution was also added, but
during the ethanol growth phase at ca. 6 h. A 10 mL sample was regularly
taken. Before the glucose addition at ca. 1.5 h, 4 samplings were taken as
shown in Fig. 1B. Then 30 mL glucose feed solution was pumped into the
bioreactor with the concentration of 1.35 x 102 g/L. Hence, the glucose
concentration in the cultivation after feeding increased around 3.0 g/L. In
the case of the glucose addition at ca. 6 h, 12 samplings were taken before
adding as demonstrated in Fig. 1C. 30 mL of the glucose feed solution was
pumped in as well, but with the different required glucose concentrations,
ie, 15,30, 4.5, and 6.0 g/L, in the total medium. Thus, the glucose feed
solution was provided with the various concentrations of 63, 1.26 X 107,
1.89 x 107 and 2.52 x 10% g/1, respectively. To realize the biomass and
ethanol concentrations, 30 mL increasing from the remaining volume is
less than 3%, therefore, the dilution factor was not considered in the
theoretical models (in chapter 2.4). All cultivations were operated at a
constant temperature, 30 °C and a maintained pH 5. The aeration and
agitation rates were kept constant at 3.5 L/min and 430 rpm, respectively.
Iris software (Inifors HT, Bottmingen, Switzerland) was applied as a
process control system for the bioreactor,

2.2. Off-line analysis

Samples for analyzing concentrations of biomass, glucose, and
ethanol were regularly taken from the bioreactor and put into pre-
weighed and predried microcentrifuge tubes. Cell dry weight was
determined by centrifugation (Universal 16 R, Hettich Zentrifugen
GmbH & Co. KG, Tuttlingen, Germany) of a sample with 1.5 mL (2 times)
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Fig. 1. The characteristics of the yeast cultivation with 10 g/L starting glucose and the
thearetical models of the yeast cultivation in different conditions. (A) Normal batch. (B)
Cultivation with glucose addition during GP and (C) during EP.

at 14,000 rpm for 10 min at 4 °C. The wet cells were let in a drying oven
at 103 °C for 24 h. Subsequently, they were cooled down for 30 min
before weighing. The supernatant of the samples after the centrifugation
was examined by HPLC (ProStar, Variant, Walnut Creek, CA, USA) to
determine the glucose and ethanol concentrations. Firstly, the super-
natant was filtrated with pore size filter, 0.45pm, polypropylene
membrane (VWR, Darmstadt, Germany), then 20 uL was injected into a
Rezex ROA-organic acid H+ (8%) eolumn (Phenomenex, Aschaffenburg,
Germany) and operated at 70°C with 5mM H,S0, as an eluent at
0.6 mL/min flow rate. The concentrations of glucose and ethanol were
calculated by Galaxie software(Varian, Walnut Creek, CA, USA).
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2.3. On-line monitoring/analysis

Carbon dioxide (CO,) and oxygen (Q,) as an off-gas from the yeast
fermentation were monitored continucusly with BlueInOne Cell sensor
(BlueSense gas sensor GmbH, Herten, Germany). During the cultiva-
tion, they were on-line evaluated by BlueVis software (BlueSense gas
sensor GmbH, Herten, Germany).

Relative fluorescence intensity of the relevant fluorophores during
the cultivations was monitored by BioView fluorescence spectrometer
(DELTA Lights & Optics, Hersholm, Denmark). It can measure multi-
wavelength fluorescence in range of 270-550 nm excitation (Ex) and
310-590 nm emission (Em) with increment of 20 nm of these excitation
and emission ranges. The scattered light is not considered in this work.
BioView fluorescence sensor has a xenon flash lamp as a light source for
excitation and is equipped with 15 different filters for excitation and
emission wavelengths. The excitation light is guided via the fiber optic
into the bioreactor and the fluorescent light, which is emitted in a 180°
angle, is monitored after passing the emission filters. Then the
fluorescent light is detected by a photomultiplier. A full spectrum is
acquired if a complete rotation of excitation and emission filters is
performed. The fluorescence sensor measured the culture through a
quartz window in 25 mm standard port as a non-invasive monitoring.
The measurement for a single scan of the spectrum was achieved within
90s. The spectrum contains the combinations of excitation and
emission wavelengths.

2.4, Mathematical models for yeast growth

The theoretical model (Eqs. (1)-(5)) was applied to fit to the
measured data of glucose, ethanol, and cell dry mass concentrations
by the particle swarm optimization algorithm [15,32]. Particle swarm
optimization algorithm works by improving a population of candidate
solutions called particles, which are the parameters in the following
mathematical models. The particles are flying through the search space
and the velocity of each particle is determined by the position of its
best-known performance as well as the position of the overall swarm’s
best known performance. The swarm iteratively moves to the best
solution. A more detailed description can be found in the literature
[33]. The growth parameters of the yeast cultivations were estimated
by using the following model.

dX

L oK+ X

dr Ho HE (1)

4G _ _#eX

dr Yyic (2)

9 _ X X

dt Yee o Ya (3

. = 0 G=0

#e = fgy G0 [C)]
[0 G>o0

He = i G=0 )

where X, G, and E are cell mass, glucose, and ethanol concentrations,
respectively. p; and pg are the specific growth rates on glucose and
ethanol, respectively. Yy,q, YE/G, and Yy, are the yield coefficients for
glucose with respect to biomass and ethanol, and for ethanol with
respect to biomass.

According to the Chapter 2.1, the concentration of the glucose feed
solution has been considered for the increased glucose concentration in
the theoretical models. For the concentration of biomass and ethanol,
the changing volume is less than 3%, therefore, it has not been
considered in the model.
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2.5, Calibration of NADH and tryptophan concentrations and their
Sfluorescence intensities

In order to calibrate the fluorescence intensity with the concentra-
tions of biogenic flucrophores, powdery NADH (GERBU Biotechnik
GmbH, Gaiberg, Germany) and 1-tryptophan (Sigma-Aldrich, St. Louis,
USA) were prepared for various concentrations, such as 1.25, 2.5, 5.0,
10, 30, and 50 mg/L. They were dissolved in distilled water and then
measured by BioView sensor to observe the linear correlation between
their fluorescence intensities and concentrations. One solution was
measured three times by the sensor.

2.6. Principle component analysis (PCA)

Before running PCA, the first fluorescence spectrum (after inocula-
tion) of each batch was subtracted from the following spectra of itself
[15,16,23,25]. In PCA, the score data was computed from the subtrac-
tion fluorescence spectra. According to the large on-line data set, PCA
transforms the raw data into a new coordinate system for visualizing
the best possible data structure. It provides relevant and useful
information to represent states of fermentation processes. The impor-
tant purpose to use PCA is to quantify the amount of useful information
and take out noise which is contained in the data [34,35]. The
subtraction spectra of each cultivation were used to caleulate PCA
(conditions: mean centering and NIPALS algorithm) by Unscrambler X~
software (Camo, Norway).

2.7, Calculation of the proportional area of NADH and tryptophan
fltorescence intensity

The area of the NADH and tryptophan flucrescence intensity after
the glucose addition during ethanol growth phase until the added
glucose depletion was calculated as a proportional factor (Eq. (6)). The
noticed point of the glucose depletion is the fluorescence intensity of
NADH and tryptophan coming back to the normal state of ethanol
growth phase.

Area of NADH fluorescence intensity [unitsyapy*h)

Proportional factor = - " -
Area of tryptophan fluorescence intensity [unitsiypophan®hl

(6)

The area under or above a linear trend function was integrated,
which will be demonstrated in Chapter 3.6.

3. Results and discussion
3.1, Cultivation and growth characteristics of baker’s yeast

In the first condition of the cultivations, the fermentation process
took 10 h as shown in Fig. 1A, The products, e.g., ethanol and biomass
were increasing, while the glucose was decreasing during the exponen-
tial growth. The diauxic shift was noticed at around 2 h. The glucose
concentration was exhausted and then the phase shifted to grow on
ethanol, which have been formerly observed by Locher et al. [36].
During the ethanol consumption, the biomass was exponentially
increasing (Fig. 1A). The growth characteristics of yeasts in the second
condition are demonstrated in Fig. 1B. After the glucose addition at
around 1.5h, the glucose concentration was rising directly. In this
process, the trend of the diagram of ethanol and biomass concentrations
is similar to the first condition, but the concentrations of them are
higher and the diauxic shift was postponed to approximately 2.5 h, As
shown in Fig. 1B, the glucose addition does not disturb the steady state
of the glucose growth phase. The yeast cells have two major glucose
receptors for a low and high glucose level to generate an intracellular
glucose signal and their mechanisms can contrel the different glucose
levels [37-39]. Consequently, the glucose addition during glucose
growth phase (GP) is not detected as an adulterated situation for the
cells and the cellular activity is able to keep functioning as usual. In
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Table 1
Growth parameters of the yeast cultivations in different conditions.
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Cultivation condition ~ Starting glucose [g/L] ~ Glucose addition [g/L] pg [h™"] pg [h71] Y6 [Ebiomass/Batucose]  YerG [Sethanot/Bgiucose] Y& [Ebiomass/ Zethanol]
Normal® 10 - 0.28 £ 0.01 005 = 001 015 = 0.0 0.49 + 0.02 0.45 = 0.02
Gp" 10 3 0.26 £ 0.02 004 = 0.01 014 = 0.0 0.47 * 003 0.51 = 0.01
EP° 10 3 0.27 £ 0.02 005 = 001 015 = 0.01 0.48 * 0.03 047 + 005

* Normal condition is the normal batch.

" GP condition means the cultivation with glucose addition during glucose growth phase.

© EP condition means the cultivation with glucose addition during ethanol growth phase. The values in the table are mean value = standard deviation.

Fig. 1C, 3 g/L glucose increasing during ethanol growth phase (EP) can
be observed. The glucose, ethanol and biomass concentrations look
nearly the same as the first condition prior to the glucose addition at
around 6h (Fig. 1A and C). After adding the glucose solution, the
ethanol and biomass concentrations were obviously increasing when
comparing with the first condition at 7 h. Due to a glucose signal, yeasts
growing on ethanol promptly switch to grow on glucose. As known,
glucose is a primary carbon source for yeast cells and other eukaryotic
cells as well [37-39].

The growth parameters of each cultivation condition are shown in
Table 1. These parameters were obtained from fitting theoretical model
to the experimental data. Between three repeated batches at the same
condition, the value of parameters has no significant difference due to
the low standard deviation. It indicates that these cultivations provide
reproducible results. Between different conditions, the growth para-
meters like g, P, Yy/6, Ye/G, and Yy, p show no significant difference as
well (Table 1). It shows that the yeast cells have regulatory mechanisms
to be able to balance the cellular activity, although there are dis-
turbances. For all cultivation cenditions, yg is higher than pg as
presented in Table 1. During the glucose growth phase of all conditions,
Yg,c is higher than Yy, which can be seen in Fig. 1A-C. When yeasts
grow on ethanol, the biomass yield is higher than growing on glucose
owing to the ethanol production as shown in Table 1, which is
corresponding to the results by Locher et al. [36].

3.2. Monitoring of exhaust gas

The trend of CO, off-gas evolution under the first and second
cultivation conditions is similar, but the amount of CO, produced in the
second condition is higher by reason of more glucose in total as
demonstrated in Fig. 2A. Furthermore, the diauxic shift of the second
condition came circa 30 min after the one of the first condition. Fig. 2B
illustrates the CO, evolution by varying the concentrations of the
glucose addition during EP (ie., 1.5, 3.0, 4.5, and 6.0 g/L). The
maximum CO, evolution rate (CER) has a correlation to the concentra-
tions of the glucose addition with the coefficient of determination,
R? = 0.979 (Fig. 2C). From the results, the trajectories of CO, exhaust
gas evolution can interpret the characteristics of the yeast growth [36].

3.3. Standard curves of NADH and tryptophan

The provided concentrations of NADH and tryptophan in mg/L were
converted to mol/L to be compared at the same molar concentration as
shown on the abscissa in Fig. 3A and B. The standard curve of NADH
(Ex370/Em450) shows the linear correlation between the fluorescence
intensity and the concentrations until 4.5 x 10~° mol/L. NADH as
illustrated in Fig. 3A (with the blue dotted line). It means that when
the concentration of NADH is higher than 4.5 x 10~ ®mal/L, it cannot
be propoertionally measured to the fluorescence intensity by BioView
sensor. For the tryptophan (Ex290/Em370) standard curve, the linear
correlation between the fluorescence intensity and the concentrations is
until 4.9 x 10~° mol/L as shown in Fig. 3B. The maximal intensity of
NADH and tryptophan, which correlates linearly with their concentra-
tions, is around 1400 and 800 units, respectively. At an equal molar
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concentration, the NADH fluorescence intensity is higher than the
tryptophan intensity (Fig. 3A and B). From the calibration curves, the
increased fluorescence intensity corresponds to the increased concen-
tration of the biogenic fluorophores. However, the behavior of the
fluorescence intensity of each molecule is different, The range of the
original fluorescence intensity (not subtraction spectra) of NADH and
uyptophan during the cultivations were around 300-1200 and
200-550 units, respectively. It means that their fluorescence intensities
during the cultivations are not over the maximum range of the linearity.

3.4. Monitoring of yeast cultivations using PCA

The score plot (PC1 vs. PC3) of the first cultivation condition has
similarity to the one of the second condition as demonstrated in Fig. 4A
and B, respectively. These two score plots have the trajectory similar to
their reversed graphs of CO. off-gas evolution (Fig. 2A) [15]. In Fig. 4A
and B at t = 2.2h and t = 2.6 h, respectively, the tight coil in each
score plot is recognized that they occur at the same time as the diauxic
shifts in their CO, exhaust gas evolutions and growth characteristics.
According to the trajectory of PC3 scores, it reflects the characteristics
of the CO; exhaust gas evolution. As also shown in Fig. 4C, the
trajectory of PC3 scores of the cultivation in the third condition looks
similar to its reversed graph of CO, exhaust gas evolution. It can be
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particularly seen in Fig. 4C that the direction of the score plot changes
directly after the glucose addition (ca. t = 6.0 h) like the diagram of the
CO, off-gas evolution. Another observation is that the score plot and its
CO; off-gas evolution (3 g/L glucose) demonstrate the same time point
of glucose depletion (Figs. 4 C and 2 B). All score plots in Fig. 4A-C
show the same characteristics of the increase in the PC1 scores from the
beginning until the end, which indicates like the cell growth. Fig. 4D
(i-iii) represents the correlation between the simulated values of
biomass by the theoretical models and the PC1 scores of the three
different cultivation conditions with R% 0.962, 0.970, and 0.979,
respectively, According to the score plots, PCA provides relevant
information of the yeast cultivations and can represent shifted states
of the fermentation processes.

3.5. Monitoring of the relevant fluorophores’ changes using 2D fluorescence
spectroscopy

The significant fluorophores, which were monitored during the
fermentation processes, are tryptophan (Ex290/Em370), pyridoxine
(Ex330/Em390), NADH (Ex370/Em450), riboflavin (Ex370/Em530)
and FAD, FMN (Ex450/Em530). The fluorescence spectra of these
fluorephores, shown in Fig. 5, are the subtraction spectra obtained from
subtracting the first fluorescence spectrum. In Fig. 5A and B, the
tendency of the relevant fluorophores under the first and second
cultivation conditions looks similar as well as the diagrams of their
growth characteristics (Fig. 1A and B), CO, exhaust gas evolutions
(Fig. 2A), and score plots (Fig. 4A and B). The glucose addition during
GP did not disrupt the steady state of the constant increase of the
fluorophare intensities (Fig. 5B). As mentioned in chapter 3.1, the yeast
cells can regulate different levels of glucose concentrations [37-39].
The glucose addition might be detected as a normal glucose signal.
Hence, the cellular metabolism, such as glycolysis and TCA cycle, keeps
performing normally. The small differences between the first and
second conditions are the different time point of the diauxic shift and
the period of the cultivations, which match with other aforementioned
diagrams. Besides, the intensity of these five biogenic fluorophores of
the second condition is higher than the ones of the first condition due to
the more given total amount of glucose. In the third condition before
adding glucose, all of the fluorophores show the same time point of the
diauxic shift as the ones of the first condition (Fig. 5C). The interesting
point of the third condition is the explicit changing of the five
fluorophores after the glucose addition at ca. 6 h. The fluorescence
intensity of NADH and riboflavin was instantly increasing, but the
intensity of tryptophan, pyridoxine and FAD, FMN was decreasing.
Around 30 min after adding glucose (3 g/L), the fluorescence intensity
of all fluorophores came back to the normal state of EP and kept
inereasing normally until the end of the cultivation like the first two
conditions. Thus, it shows that the metabolization of 3 g/L glucose
takes around 30 min. After the glucose depletion, the intrinsic fluor-
ophores of the cellular activities were regulated to the normal EP state
again.

As mentioned in the introduction part, NADH, tryptophan, pyridox-
ine (vitamin Byg), riboflavin (vitamin By), FAD, and FMN are related to
cellular activities inside cells. In Fig. 5A-C, at the end of the yeast
cultivations, the instant changes of the fluorescence intensity of NADH,
FAD, FMN, and riboflavin can be explicitly seen. The fluorescence
intensity of NADH was immediately and dramatically decreasing after
the last carbon source depletion. The result is corresponding to the
cellular activity inside the yeast cells. Owing to the running out of
carbon sources, the catabolism stops functioning and then the dissolved
oXygen increases as illustrated in Fig. 2B. With the existence of oxygen,
the oxidative phosphorylation functions and then NADH (reduced
form) is oxidized to NAD™ (oxidized form). Therefore, the signal of
the NADH intensity immediately drops as shown in all three diagrams
(Fig. 5A-C). Conversely, the FAD fluorescence intensity was increasing
after the last carbon source depletion as shown in Fig. 5A-C. In TCA
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cyele, the electrons are transferred to FAD (oxidized form) and then
FAD becomes FADH, (reduced form) as the electron carriers like NADH
[40,41]. When the TCA cycle does not occur, FAD will not be converted
to FADH,. For this reason, FAD is accumulating after the last carbon
source running out. Another interesting point, the fluorescence inten-
sity of riboflavin was slightly decreasing at the end of yeast cultivations
(Fiz. 5A-C). During the yeast cultivations, the riboflavin fluorescence
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intensity kept slightly rising, It demonstrates that riboflavin can be
synthesized by yeasts, which is also mentioned by Bacher et al. [42].
The biosynthesis of one molecule of riboflavin requires one molecule of
guanosine 5-triphosphate (GTP) and two molecules of ribulose 5-
phosphate [42]. The ribulose 5-phosphate is an intermediate product
of the pentose phosphate pathway [40]. Apart from biosynthesizing
riboflavin, yeasts can use riboflavin for synthesizing FAD [43,44]. The
slight increase of riboflavin during the cultivations might be because
some riboflavin is used for FAD synthesis. Besides, it is assumed that the
decrease of riboflavin at the end of the cultivation might be because of
the riboflavin turning to be FAD and no more produced after the
depletion of the last carbon source. For the fluorescence intensity of
tryptophan and pyridoxine, they were not recognized any obvious
change at the end of the yeast cultivations. According to the results,
NADH, FAD, and riboflavin are sensitive to the changes of the cellular
metabolism after the last carbon source running out.

Fig. 5C illustrates the sudden increase of the NADH fluorescence
intensity due to the glucose addition during EP. It shows that the yeast
metabolism switches from the ethanol growth phase to metabolize
glucose when the primary carbon source exists. The NADH primarily
produced from glycolysis and TCA cycle is oxidized to NAD™ in the
electron transport chain because yeast cells need the energy from the
electrons to produce adenosine triphosphate (ATP) [40,41]. Then
NAD™" is further used for accepting more electrons from glycolysis
and TCA cycle to keep cellular process going [40,41]. In this case, there
was low oxygen supplied during EP as shown in Fig. 2B. The oxidative
phosphorylation in the electron transport chain needs oxygen as an
electron acceptor [40,41]. With insufficient oxygen, the oxidative
phosphorylation might not be able to take place or function. Although
NADH is still produced by catabolic pathways, it is not able to be
oxidized to NAD™ due to inadequate oxygen for the oxidative phos-
phorylation [40,41,45]. As yeast cells require NAD" to keep process
going, tryptophan might be used as a main precursor for synthesizing
NAD* by the de novo pathway [46-50]. Tryptophan is converted to
quinolinic acid and then the quinolinic acid as an intermediate is
converted to NAD"' under either aerobic or anaerobic condition
[47,48]. Apart from the de novo biosynthetic pathway, NAD* alsa
can be synthesized from the recycled metabolites, such as nicotinamide
and nicotinic acid, by the salvage pathway [46-48]. According to
Sporty et al., the de novo pathway plays less role when the salvage
pathway functions [50]. It means tryptophan is taken only in the
beginning for the NAD™ synthesis. Afterwards, the intermediates from
the conversion of tryptophan to NAD ™ are recycled to synthesize NAD "
by the salvage pathway. According to the mentioned studies, the slight
decrease of the tryptophan fluorescence intensity might be just used for
the NAD" synthesis at the start.

The fluorescence intensity of FAD was moderately declining by
cause of the glucose addition during EP (Fig. 5C). As discussed above,
FAD as an electron accepter is reduced to FADH, to carry electrons in
cellular metabolism [40,41]. The glucose addition re-initiates the
cellular activity, such as glycolysis and TCA cycle, therefore, FAD is
required as an electron acceptor. The pentose phosphate pathway,
caused by the glucose addition, could explain the small increase of the
riboflavin fluorescence intensity. For the reason that ribulose 5-
phosphate is produced, which is an important substrate for the
biosynthesis of riboflavin as discussed above [42]. Additionally, it is
assumed that the FAD fluorescence intensity decreased only a little and
then slowly upturned with the help of compensation from produced
riboflavin, which is used for FAD biosynthesis. For this reason, it also
supports that the fluorescence intensity of riboflavin just fairly in-
creased and diminished.

Pyridoxine is a vital co-factor in several enzymatic reactions, which
are necessarily related to amino acid metabolism, and therefore is
essential to all living organisms [40,51-53]. If they cannot synthesize
by themselves, they have to intake from nutrients [51]. The Schatzman
medium contains pyridoxine for growing yeasts. From the observation
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of the prompt decrease of the pyridoxine fluorescence intensity at the
beginning, after inoculation (in Fig. 5A-C), it represents that the yeast
cells require pyridoxine for their cellular activities. Pyridoxine might be
applied by the yeast cells as a co-factor for enzyme reactions because
there are several enzymes required in cellular metabolism, such as
glycolysis and TCA cycle. Afterwards, the fluorescence intensity of
pyridoxine was slowly increasing as shown in Fig. 5A-C. It demon-
strates that veasts can biosynthesize pyridoxine [53,54]. In Fig. 5C, the
pyridoxine fluorescence intensity was immediately declining after the
glucose addition, which has the same trend at the start of the yeast
cultivations. As a result, pyridoxine might be used in the same reason.

3.6. Proportional and correlative changes of the area of NADH and
tryptophan fluorescence intensity

As mentioned in chapter 3.5, NADH and tryptophan have a
correlative conversion which has NAD™ as an intermediate product.
Fig. 6A illustrates that the curves of the NADH and tryptophan
fluorescence intensity, due to the glucose addition during EP, are
getting more pronounced with the higher concentration of glucose. The
area under and above curves, between the glucose addition and
depletion, was found by integration. The depletion point is the point
at which the fluorescence intensity of these fluorophores returns to the
normal EP state. Fig. 6B presents the area of the NADH and tryptophan
fluorescence intensity under and above the curves to the linear trend
functions. According to the integrated area of these two fluorophores,
the proportional factor was calculated using Eq. (6). Fig. 6C demon-
strates the proportional factor of the conversion between tryptophan
and NADH, which is 18.5 (unitsyapn+h/unitsyyprophan+h). The factor is
independent on different concentrations of the glucose addition. The
proportional change between the area of the NADH and tryptophan
fluorescence intensity, due to the different concentrations of the added
glucose, are correlated with the coefficient of determination,
R* = 0.999 (Fig. 6C). From the result, it shows the potentiality of the
2D fluorescence spectroscopy, which can be used to monitor the
quantitative change of the fluorescence intensity.

4. Conclusion

According to the results, 2D fluorescence spectroscopy can effec-
tively monitor the real-time changes of the relevant fluorophores, such
as tryptophan, pyridoxine, NADH, riboflavin, FAD, and FMN. The
glucose pulse during EP can be clearly seen in the fluorescence spectra.
However, there is a limitation to detect the glucose pulse during GP. In
this case, the longer glucose growth phase and the increased fluores-
cence intensity of the fluorophores demonstrate the glucose addition
during GP. The different states of fermentation processes, particularly
the glucose pulse during EP, can be recognized and identified from the
on-line fluorescence spectra by using PCA. Furthermore, the related
change between the tryptophan and NADH intensity can be quantified
as a proportional factor. Anyhow, the on-line monitoring of the glucose
addition during GP by using only PCA seems not possible. In case of a
pure batch fermentation, an on-line monitering of glucose, ethanol, and
biomass concentrations seems achievable.
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Abstract

Background: A glucose concentration is an important factor for a fed-batch process of Saccharomyces cerevisiae.
Therefore, it is necessary to be controlled under a critical concentration to avoid overflow metabolism and to gain
high productivity of biomass. In the study, 2D fluarescence spectroscopy was applied for an online monitoring and
controlling of the yeast cultivations to attain the pure oxidative metabolism.

Results: The characteristic of the NADH intensity can effectively identify the metabolic switch between oxidative and
oxidoreductive states. Consequently, the feed rate was regulated using the single signal based on the fluorescence
intensity of NADH. With this closed-loop control of the glucose concentration, a biomass yield was obtained at 0.5
Griomass/ Jalucose IN @ddition, ethanol production could be avoided during the controlled feeding phase.

Conclusions: The fluorescence sensor with a single signal of the NADH fluorescence intensity has potential to
control a glucose concentration under the critical value in real time. Therefore, this achievement of the feedback
control is promising to build up a compact and economical fluorescence sensor with the specific wavelength using
light-emitting diodes and photodiodes. The sensor could be advantageous to the bioprocess monitoring because of
a cost-effective and miniaturized device for routine analysis.

Keywords: Bioprocess monitoring, Fluorescence spectroscopy, Closed-loop control, Saccharomyces cerevisiae, NADH

Background

The fundamental purpose of a fed-batch process is to
achieve a high production yield at the low cost. The
objective of the fed-batch cultivation of baker’s yeast is to
obtain a high yield of biomass. The main factor, which is
considered in the fed-batch cultivation, is a glucose con-
centration, because it plays a pivotal role in regulating
yeast metabolism. When the glucose concentration in a
yeast cultivation is above a critical value, it leads to oxi-
doreductive metabolism and ethanol is produced as an
overflow metabolite under an aerobic condition (Walker
1998). Due to the ethanol production, the yeast cultiva-
tion gains a lower biomass yield (Pham et al. 1998). This
phenomenon has been known as the Crabtree effect
caused by a limited respiratory capacity (Sonnleitner
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of Hohenheim, Garbenstralle 23, 70599 Stuttgart, Germany
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and Kippeli 1986). A critical glucose concentration is
in the range between 0.04 and 0.07 g/L depending on
yeast strains, media components, and operation systems
(Pham et al. 1998; van Hoek et al. 1998; Hantelmann
et al. 2006). In industries, the oxidoreductive growth
of yeasts is necessarily avoided to reach a high biomass
yield. Consequently, the substrate feed rate is controlled
under the critical glucose concentration to maintain oxi-
dative metabolism. Literally, the yield coefficient (Yy,)
of an oxidative growth of yeasts attains in the range of
0.47-0.50 ghiomass/€glucose (Sonnleitner and Kippeli 1986;
Pham et al. 1998; Hantelmann et al. 2006). Many studies
have investigated effective approaches, such as the feed
rate control with models or online measurements during
a fed-batch process (Hantelmann et al. 2006; Henes and
Sonnleitner 2007; Klockow et al. 2008; Craven et al. 2014;
Mears et al. 2017; Vann and Sheppard 2017).

©The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(https//creativecommens.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit ta the original author(s) and the source, provide a link to the Creative Commans license,
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To manipulate the glucose concentration under the
critical value, an online measurement device is required
to detect overflow metabolism. Two-dimensional (2D)
fluorescence spectroscopy is an effective tool for online
monitoring of cultivation processes (Biechele et al. 2015;
Faassen and Hitzmann 2015). It was developed for meas-
uring fluorescent meolecules in a wide range of excitation
and emission wavelengths to detect non-identified over-
lapping peaks and quenching of different fluorophores
(Marose et al. 1998). Besides, it is possible to perform a
non-invasive measurement without interfering an inner
system of cultivation processes. The fluorescence sensor
has been applied in many studies for online bioprocess
monitoring and the fluorescence data can be used for
quantification of fluorescence substances, particularly
proteins, and for estimation of cell mass, glucose and eth-
anol concentrations (Haack et al. 2004; Rhee and Kang
2007; Srivastava et al. 2008; Odman et al. 2009; Rossi
et al. 2012; Almqvist et al. 2016; Assawajaruwan et al.
2017a). Furthermore, 2D fluorescence spectroscopy can
recognize metabolic changes during yeast cultivations
(Hantelmann et al. 2006; Assawajaruwan et al. 2017b).

There is currently no commercial device, which can
measure a glucose concentration at the low level of the
critical point in real time. For this reason, a 2D fluores-
cence spectroscopy was applied in the study to inves-
tigate a signal, which can determine a metabolic switch
between oxidative and oxidoreductive states. The bio-
genic fluorophores, such as NADH, tryptophan, flavins,
and pyridoxine, were taken into consideration of the
investigation because they are significantly related to
the growth characteristics of yeasts (Marose et al. 1998;
Hantelmann et al. 2006; Assawajaruwan et al. 2017b).
The fluorescence intensity, which can greatly indicate the
metabolic switch, was chosen and applied as a metabolic
signal to control the glucose feed rate. In addition, it is
possible to see from the study if it is promising to build
up a specific-wavelength fluorescence sensor equipped
with light-emitting diodes and photodiodes for yeast
cultivations. The sensor will be a cost-effective and min-
iaturized device for routine analysis (O'Toole and Dia-
mond 2008).

Methods

Yeast strain and cultivation conditions

The fed-batch cultivations were operated in a 2.5-L stain-
less steel tank bioreactor (Minifors, Inifors HT, Bott-
mingen, Switzerland) with an initial volume of 1.35 L.
The amount of 2.5-g dry baker’s yeast or S. cerevisiae
(SAF Instant Red, S.1Lesaffre, Marcq, France) was pre-
cultivated in 100 mL Schatzmann medium, which con-
sists of 0.34 g/L. MgSO,-7H,0, 0.42 g/ CaCl,-2H,0,
45 g/l (NH,)250,, 19 g/L. (NH,)2HPO,, and 0.9 g/L.

Page 2 of 9

KCl (Schatzmann 1975). The pre-culture was shaken for
30 min at 180 rpm and was then pumped into the bio-
reactor. The medium for the yeast cultivations was the
same as for the pre-culture, but with glucose, 1 mL/L
trace elements solution (0.015 g/L FeCl;-6H,0, 9 mg/L
ZnS0,7H,0, 10.5 mg/L MnSO,-2H;O, and 2.4 mg/L
CuS04:5H,0), 1 mL/L vitamin solution (0.06 g/L myo-
inositol, 0.03 g/L Ca-pantothenate, 6 mg/L thiamine HCI,
1.5 mg/L pyridoxine HCl, and 0.03 mg/L biotin), and
200 pL/L antifoam agent. The fed-batch cultivations to
test relevant fluorescence signals of the metabolic switch
were performed with 1.5 g/L initial glucose concentra-
tion. For the fed-batch cultivations with the feedback
control, the initial glucose concentration was reduced
to 1.0 g/L for minimizing time of the batch phase in the
beginning. The yeast cultivations were conducted in trip-
licate. The glucose concentration of the feed solution was
15 g/L in Schatzmann medium with trace elements and
vitamin solutions. All fed-batch cultivations were per-
formed with a maintained temperature and pH at 30 °C
and 5, respectively. The aeration and agitation rates were
kept constant at 4 L/min and 450 rpm, respectively. Iris
software (Inifors HT, Bottmingen, Switzerland) was
applied as a process control system for the bioreactor.

Bioprocess setup and control

Manual control

A peristaltic pump (Ismatec MCP Process, Cole-Parmer
GmbH, Wertheim, Germany) was connected to the bio-
reactor and computer. For the investigation of significant
fluorescence signals, the feed rate was calculated based
on Eq. 1, which is referred from a mathematical model
of a fed-batch cultivation process (Rode Kristensen 2003;
Henes and Sonnleitner 2007):

"

Fo= ——— VyXpetto
*= YulSi—50) " (1)

1 1
p=—< ——— (2)

Hp  Hmax on glucose

Fit) = Foeﬁ, (3

where F; and F(t) are the feed rate at the beginning and
at time ¢, respectively. u is the maximum specific growth
rate of yeasts on glucose. V is the volume of the culture
broth at the start of feeding. X, is the biomass concen-
tration at the start of feeding. ¥, is the yield coefficient
for biomass with respect to glucose. 5;and S, are the glu-
cose concentration of the feed solution and the cultiva-
tion at the start of feeding, respectively. t; is the time at
the start of feeding. ¢, is a time constant converted from
the specific growth rate (h™Y), which is considered to be
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higher than the maximum specific growth rate on glu-
cose {fp > fmax on glucose) to drive the metabolism from
a state of pure oxidative glucose consumption to an oxi-
doreductive mode.

After the initial glucose in the batch phase was
depleted, the glucose feed solution was pumped with
the starting feed rate (F,) at 0.87 mL/min to maintain an
oxidative consumption of glucose. When the steady state
of an oxidative phase was reached, the feed solution was
exponentially pumped into the bioreactor based on Eq. 3.
The feed rate was manually controlled via MATLAB
(R2015b).

Closed-loop control

For the fed-batch cultivations with the feedback control,
the feed rate was also calculated based on Eqs. 1-3, but
it was regulated with the online measured fluorescence
spectral data from the fluorescence spectrometer (Bio-
View, DELTA Lights & Optics, Hersholm, Denmark). The
computer connecting to BioView collected the measured
spectra and sent the spectra to another computer, which
was connected to the pump, as illustrated in Fig. 1a.

The feed rate was manipulated based on the NADH
intensity (ex330/em450) according to its intensity change
referred to the metabolic switch from oxidative to oxi-
doreductive states. The signal of the metabolic change
to an oxidoreductive state is detected as a noise signal in
the oxidative metabolism. For this reason, the Savitzky—
Golay filter for derivative of signal curves was applied to
pronounce the peak of the metabolic change. The NADH
spectra were first smoothed with the three-point median
filter to reduce regular noises occurring from the turbid-
ity of the culture and the device itself, not from the meta-
bolic change. Then the median-smoothed NADH spectra
were processed with the Savitzky—Golay filter for first
derivative (quadratic, five-point size) as in Eq. 4 (Gorry
2002). These derivative values were named as a meta-
bolic signal. The metabolic signal was used to indicate the
metabolic switch between oxidative and oxidoreductive
states:

N =(-2x N2 —1xNi. +0x N
1 4)
+ 1% Njpp +2 x Njjo) x TOAT

where N, and N; are the median-smoothed NADH inten-

sities and its derivative at the central point of each sub-

set, respectively. j is an index presenting the data point

of the NADH measurement and At is the time interval

between each measurement of the NADH intensity,
which is 1.5 min.

The glucose feed solution was being pumped with the

starting feed rate (F;) into the fermenter when the initial
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Fig. 1 a Schematic overview of the bioprocess setup of the fed-
batch cultivations with the feedback control. b Overview flowchart of
the feed rate control

glucose in the batch phase ran out. Then, the feed solu-
tion was exponentially pumped into the bioreactor as the
function shown in Eq. 3 after reaching the steady state of
an oxidative phase. The feed rate was manipulated under
the program control by MATLAB (R2015b) as shown in
Fig. 1b. As illustrated in the scheme, the current feed rate
at that time point will be 10% reduced when the deriva-
tive value is more than or equal to the upper threshold
signal (N'>1.3 rel. unit/min). Then, the 10%—reduced



CHAPTER 3.3. FEEDBACK-CONTROL BASED ON NADH FLUORESCENCE INTENSITY FOR
SACCHAROMYCES CEREVISIAE CULTIVATIONS

Assawajaruwan et al. Bioresour. Bioprocess. (2018) 5:24

feed rate (F() = 0.9F(£)) will be kept pumping for 30 min
or till the lower threshold signal is achieved, which is
— 0.8 rel. unit/min. In the latter case, the 10%—reduced
feed rate will be constantly pumped further for 15 min.
After 15 min, it will start pumping the feed solution with
the exponential rate from the 10%—reduced feed rate as
demonstrated in Fig. 1b.

Online monitoring/analysis

Relative flucrescence intensity of relevant fluorophores,
such as NADH, tryptophan, pyridoxine, and flavins, was
online monitored during the yeast cultivations by the
BioView fluorescence spectrometer (Marose et al. 1998;
Haack et al. 2004; Hantelmann et al. 2006; Faassen and
Hitzmann 2015). The device is equipped with 15 differ-
ent filters for excitation and emission wavelengths. The
multi-wavelength fluorescence in range of 270-550 nm
excitation (ex) and 310-590 nm emission (em) with
increment of 20 nm were measured during the cultiva-
tions. The BioView fluorescence sensor has a xenon flash
lamp as a light source for exciting molecules. The exci-
tation light goes via the fiber optic as a guide light into
the bioreactor, and the fluorescent light, which is emit-
ted in a 180° angle, is monitored after passing the emis-
sion filters. Then, the fluorescent light is detected by a
photomultiplier. The process runs continuously until a
complete rotation of excitation and emission filters. The
fluorescence sensor measured the yeast culture through a
quartz window in 25-mm standard port as a non-invasive
monitoring. The measurement for a single scan of the
spectrum was achieved within 1.5 min. The spectrum of
a scanning contains the combinations of excitation and
emission wavelengths.

Dissolved oxygen was monitored continuously with
OxyFerm DO sensor (Hamilton Bonaduz AG, Bonaduz,
Switzerland). The online measurements of the dissolved
oxygen were observed during the cultivations with the
Iris Software (Inifors HT, Bottmingen, Switzerland).

Offline analysis

Offline samples were regularly taken from the bioreactor
and put into preweighed and predried microcentrifuge
tubes for analyzing biomass, glucose, and ethanol con-
centrations in triplicate. Dry cell mass was determined
by centrifugation (Mega Star 600R, VWR International
BVBA, Haasrode, Belgium) of a sample with 1.5 mL (two
times) at 14,000 rpm for 10 min at 4 °C. The wet cells were
put in a drying oven at 100 °C for 24 h. Subsequently,
they were cooled down for 30 min before weighing. The
supernatant of the samples after the centrifugation was
examined by HPLC (ProStar, Variant, Walnut Creek, CA,
USA) to determine glucose and ethanol concentrations.
The supernatant was firstly filtrated with pore size filter,
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0.2 pm, polypropylene membrane (VWR, Darmstadt,
Germany). Then, the filtrate was injected 20 pL into a
Rezex ROA-organic acid H+ (8%) column (Phenomenex,
Aschaffenburg, Germany) and operated at 70 °C with
5 mM H,50, as an eluent at 0.6 mL/min flow rate. The
concentrations of glucose and ethanol were calculated by
Software GalaxieTM Chromatography (Varian, Walnut
Creek, CA, USA).

Results and discussion

Investigation of fluorescence signals corresponding to the
metabolic change

The biogenic fluorophores, which were examined dur-
ing the fed-batch process, are the peak intensity in
NADH (ex330/em450), tryptophan (ex290/em350),
flavins (ex450/em530), and pyridoxine (ex330/em390)
regions. These fluorophores were regularly mentioned
in several studies that they are related to some impor-
tant metabolic pathways of yeast cells, e.g., glycolysis and
TCA cycle (Marose et al. 1998; Hantelmann et al. 2006;
Assawajaruwan et al. 2017b). According to an increase
of the dissolved oxygen at approximately 3 h, the glu-
cose feed solution was being pumped into the bioreac-
tor as illustrated in Fig. 2a, b. The slight increase of the
dissolved oxygen at around 3 h was assumed that glucose
and ethanol substrates in the batch phase were depleted,
which can be seen in Fig. 2a. After pumping the glucose
feed solution, the dissolved oxygen was immediately
decreasing. The feed solution was constantly pumped at
the minimum rate for around 2.5 h. The dissolved oxygen
dramatically increased at about 5 h and then kept slightly
increasing as demonstrated in Fig. 2b. From this evelu-
tion of the dissolved oxygen between roughly 3 and 5 h,
it was presumed that the cells were starving and tried
to adapt themselves with the feed condition. Due to the
slight increase of the dissolved oxygen after 5 h, it was
assumed that the yeasts slowly maintained the steady
state of oxidative metabolism. In addition, it was also
assumed that there was no produced ethanol after the
increment of the dissolved oxygen. If there is ethanol in
the system, the dissolved oxygen would be lower, because
yeasts consume more oxygen during the metabolization
of ethanol (Henes and Sonnleitner 2007). It means that
the metabolism after about 5 h was in a complete oxida-
tive mode due to no production of ethanol, which can
be seen in Fig. 2a. Subsequently, the feed solution was
exponentially pumped until the dissolved oxygen was
decreasing almost to zero, as shown in Fig. 2b. Then, the
feed rate was manually set back to the minimum rate
and kept constant till the dissolved oxygen increased and
reached the steady state again (Fig. 2a, b). Afterwards,
the feed rate was exponentially pumped again until the
depletion of the dissolved oxygen. In Fig. 2a, the ethanol
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Fig. 2 a Growth characteristic of yeasts and the feed rate profile
during the fed-batch operation without a closed-loop control. The
arrows point out the produced ethanol due to overflow metabolism.
b Evolution of the dissolved oxygen and the intensity of NADH,
tryptophan, flavins, and pyridoxine during the fed-batch operation
without a closed-loop control. € Characteristics of the fluorophores in
different metabolic states of oxidative and oxidoreductive metabo-
lism. The dotted lines are plotted from the polynomial function based
on the state of oxidative metabolism to see the intensity change
between these two metabolic states. The small arrow shows the dif-
ferent intensity between the oxidative and oxidoreductive states

was slightly produced after the feed rate was exponen-
tially increasing (see arrows), which is corresponding to
the decrease of the dissolved oxygen. Besides, the ethanol
was rapidly produced, since about 9 h, because there was
the lack of oxygen in the cultivation (Fig. 2a, b).

59

Page 50of 9

The characteristics of NADH, tryptophan, flavins,
and pyridoxine intensities during the fed-batch opera-
tion were presented in Fig. 2b, c. During the exponential
feeding of glucose, the NADH intensity instantly and dis-
tinctly increased comparing to other fluorophores. When
the feed rate was reduced to the minimum rate and kept
constant, the NADH intensity was later dropping to the
oxidative state as demonstrated in Fig. 2b, c. The oxida-
tive state can be proved from the completely consumed
ethanol at about 7 h in Fig. 2a. The phenomenon of the
NADH intensity has a reverse correlation with the evo-
lution of the dissolved oxygen. The change of their
fluorescence intensities between the oxidative and oxi-
doreductive metabolism is quantified using the polyno-
mial function based on the oxidative state as presented in
Fig. 2c. It is clear to see the increased intensity of NADH
from the oxidative state, which is around 40 rel. fluo-
rescenice units in average. For other three fluorophores,
the difference of their intensities from their polynomial
functions is less than the half of the increased intensity
of NADH, as illustrated in Fig. 2c. Regarding the results,
the metabolic switch between oxidative and oxidore-
ductive states is recognizable from the NADH intensity,
but it is not obvious to see from tryptophan, flavins, and
pyridoxine. Although the intensity of flavins was slowly
increasing after 6 h, it responded to the overflow metabo-
lism slower than NADH did. Furthermore, it cannot be
recognized when the oxidative mode returns.

NADH/NAD™" as redox carriers are prerequisite for
catabolic and anabolic reactions, particularly, for pro-
viding cells with energy in the form of ATP. Due to the
overflow metabolism, NADH is accumulated as shown
in Fig. 2c and yeast cells need to maintain their cellu-
lar redox balance or metabolic homeostasis of NADH/
NAD™? ratio. Therefore, the accumulation of NADH due
to high glycolytic fluxes leads to the formation of byprod-
ucts, such as ethanol and glycerol (Vemuri et al. 2007;
Chen et al. 2014). Then, these fermentation products,
e.g., ethanol and glycerol, are further oxidized through
the TCA cycle and the oxidative phosphorylation for gen-
erating ATP to reach the requirement of growth (Brauer
et al. 2005).

Online controlling of the feed rate using the metabolic
signal

The NADH intensity was applied as a single signal for
the feed control in real time. The evolution of the NADH
intensity during the fed-batch process is illustrated in
Fig. 3a. The feedback control started functioning at the
same time as starting exponential feed rates (see an arrow
in Fig. 3a). After approximately 5 h, the NADH intensity
significantly increased, whereas the dissolved oxygen
declined. As mentioned above that the NADH intensity
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Fig. 3 a Evolution of the dissolved oxygen and the NADH intensity during the fed-batch operation with the closed-loop control. b Evolution of the
NADH intensity and its derivative as a metabolic signal during the fed-batch operation with the closed-loop control. The arrows show the points that
the upper threshold was reached, but it might be because of the noise of the NADH intensity. ¢ Metabolic signals and the feed rate profile during the
controlled feeding phase. The arrows refer to the time that the lower threshold signal was not reached. d Glucose, ethanol, and biomass concentra-

tions during the fed-batch operation with the closed-loop control

drops back to the same gradient of the linear rate, which
indicates a state of oxidative metabolism, when the feed
rate was reduced and kept constant. Besides, no matter
how high the incline of the NADH peak is, the inten-
sity will decrease to the same state of an oxidative phase
(Fig. 3a). This phenomenon is observed empirically dur-
ing the fed-batch cultivations. Due to the reduction of
the dissolved oxygen, it can be presumed that more sub-
strate was applied as shown in Figs. 2b and 3a. However,
it is not clear to see which level of the dissolved oxygen
indicates the overflow metabolism.

The NADH intensity obtained in real time during the
fed-batch operation was computationally converted to
the metabolic signal. The metabolic signals or deriva-
tive values during the controlled feeding phase are dem-
onstrated in Fig. 3b, c. The upper and lower threshold
signals were illustrated with the solid and dashed lines,
respectively (Fig. 3b, c). The level of the threshold sig-
nals was determined from experiments by trial and error.
However, they were realized based on outside noise
area, which was between these two lines. For the upper
threshold (N” > 1.3 rel. unit/min), the level was not set
too high from the noise area to deter reaching overflow
metabolism in time. The lower threshold (N’ < — 0.8
rel. unit/min) was also not set too low from the noises,
because, if the lower threshold is not reached, it will take
too long to maintain the constant reduced feed rate.
Then, the glucose substrate might be too low for the yeast
cells to reach an optimum growth. Although the lower
threshold is achieved, the reduced feed rate is still main-
tained constant for a short while to make sure that the
metabolism turns back to an oxidative state (Fig. 3b, c).
There were a few times that the lower threshold was not
reached after the upper threshold arrived (see arrows in
Fig. 3c). In this case, the reduced feed rate will be main-
tained constant for 30 min before exponential feed-
ing (Fig. 1b). The pause time to maintain the constant
reduced feed rate was determined based on experiments.
In some cases of reaching the upper threshold, it might
be due to the noise intensity of NADH, as shown in
Fig. 3b, with the small arrows. It could be also the reason
why the lower threshold was sometimes not reached. In
Fig. 3c, the feed rate at about 10 h was more reduced after
the pause time, because the upper threshold was reached
right away after 30 min. However, as shown in Fig. 3b, it
might be because of the noise of the NADH intensity (see

the arrow between 9 and 10 h). According to the results,
the feed rate was decently regulated with the metabolic
signals based on the NADH intensity.

Growth characteristics of yeasts under the feedback
control

The growth characteristics of yeasts during the fed-batch
process with the feedback control are demonstrated in
Table 1 and Fig. 3d. The batch phase took almost 2 h until
the concentration of glucose and ethanol was depleted.
The yield coefficient (Yy,g) during the batch phase is
0.31 ghiomass/Eglucoser Which shows a characteristic of an
oxidoreductive growth (Woehrer and Roehr 1981; Han-
telmann et al. 2006). After all substrates in the batch
phase ran out, the glucose feed solution was pumped into
the cultivations, as can be seen at around 2 h in Fig. 3d.
During 3-4 h, the fed-batch process became steady and
the glucose concentrations were approximately 0.04—
0.05 g/L, which are in the range of the critical value
(Pham et al. 1998; van Hoek et al. 1998; Hantelmann et al.
2006). Thus, the feed solution was pumped with the expo-
nential rate and the feedback control also started func-
tioning. During the controlled feeding phase, the feed
rate was continuously regulated in real time to keep the
glucose concentrations in the range or under the range of
the critical value, as shown in Fig. 3d. Furthermore, there
was no production of ethanol during the controlled feed-
ing phase, which indicates the state of oxidative metabo-
lism. The yield coefficient during the controlled feeding
phase reached 049 g y,,./Zy1ucoser Which shows the sign
of a pure oxidative growth of yeasts (Sonnleitner and
Kippeli 1986; Pham et al. 1998; Hantelmann et al. 2006).
For the entire cultivation, the yield coefficient is reduced
due to the oxidoreductive growth during the batch phase,
as presented in Table 1.

Table 1 Yield coefficients during the fed-batch process
of the yeast cultivations in triplicate

Cultivation phase Yx/6 (Gbiomass/Fglucose)
Batch phase 031+001
Controlled feeding phase 049+001
Entire cultivation 0464002

The values in the table are mean value +-standard deviation

The starting time of the controlled feeding phase is shown in Fig. 3d
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According to the achievement of the typical high yield
coefficient during the controlled phase, the 2D fluores-
cence spectrometer using the single signal of the NADH
intensity has great potential to detect the metabolic
change within 1.5 min and delivers instantaneous results
to control the feed rate in real time. Although a con-
ventional approach for the fed-batch control by off-gas
analysis as respiratory quotient (RQ) is robust and widely
used in industries, there is still the problem regarding a
certain time delay comparing with the control by the
NADH signal (Claes and van Impe 2000; Jobé et al. 2003).
Besides, the cost of the fluorescence sensor with the spe-
cific wavelength equipped with light-emitting diodes and
photodiodes will be more effective in comparison with
off-gas analyzers (O'Toole and Diamond 2008; Yang et al.
2009). Another concern is the comparison between the
potential of a direct and indirect measurement of the
critical glucose concentration. Although it seems more
reliable to measure directly the glucose concentration
from the broth, there is a concern in a time delay and
certain errors at the low critical concentration of glucose
(Shimizu et al. 1988; Arndt and Hitzmann 2004).

Conclusions

In this contribution, we proposed a control of the feed
rate based on the fluorescence intensity of NADH, which
was selected over tryptophan, flavins, and pyridoxine.
The signal of the NADH intensity showed the best per-
formance to determine the metabolic switch between
oxidative and oxidoreductive states. Under the feedback
control, the glucose concentration was capably main-
tained under the range of the critical value. Accordingly,
the glucose was oxidatively metabolized by the cells dur-
ing the controlled feeding phase. From the results, the
fluorescence sensor shows great potential not only for
the applications in process monitoring, but also in the
process control. However, there is still a challenging task
for the scale-up fermentation process using the fluores-
cence sensor based on the NADH signal. There are many
technical issues to be considered concerning transferring
the bench scale to the larger scale cultivations, ie., pilot
and production scales (Formenti et al. 2014). The critical
issues of the scale-up process can be basically categorized
into bioclogical, chemical, and physical impacts. The pro-
duction strains should be fundamentally robust enough
to withstand changing environmental conditions in the
large scale, such as new media components, substrate,
pH, temperature, and oxygen inhomogeneities (Takors
2012). These changing conditions make microorgan-
isms stressed during the cultivations and affect metabolic
activities in cells, particularly, the product yield and pro-
ductivity. A scale-down tool, which is principally used as
a lab test simulation of large-scale conditions, is based
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on the monitoring of metabolic responses (Takors 2012).
Without doubt, the fluorescence sensor is the one of the
powerful tools to detect the metabolic change in real
time. Particularly, the NADH-based measurement can
provide significant information about metabolic states of
the yeast cells.
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4.1 Conclusion

On-line bioprocess monitoring has been studied and developed for many years (Biechele et al.,
2015; Clalken et al., 2017). For the time being, it still plays an important role in bioprocesses
and it is being continuously developed. Bioprocesses are complex systems, therefore, potential
and effective devices are needed to monitor, control and optimize the processes. 2D
fluorescence spectroscopy is one of the potential techniques for an on-line monitoring without
any interfering processes, which reduces the risk of contamination in a bioreactor. Besides, it
provides real-time information and bypasses the need to sampling data (Faassen and Hitzmann,
2015; Clalken et al., 2017). Biogenic fluorophores inside cells can be monitored in real time via
2D fluorescence spectroscopy (Lindemann et al., 1998; Marose et al., 1998; Rhee and Kang,

2007). For this reason, a 2D fluorescence spectroscopy was chosen for the research.

A 2D fluorescence spectrometer, which was applied in the study, is the BioView
fluorescence spectrometer. The device is equipped with 15 different filters for excitation and
emission wavelengths. The measurement of one spectrum using the BioView spectrometer has
120 fluorescence intensity variables of excitation and emission wavelength combinations
(WLCs); scattered light is not considered here. The three selection methods, such as (1) method
based on loadings, (2) variable importance in projection (VIP) and (3) ant colony optimization
(ACO), have been performed to choose relevant and significant WLCs on target substances of
yeast cultivations. The five selected WLCs from each selection method were used to predict the
analytes by MLR and the MLR models were evaluated with the RMSEP and R?. Regarding the
results of the MLR models, all selected WLCs had a good predictive performance on glucose,
ethanol and biomass concentrations, so the three selection methods apparently performed in a
good way. It could be because these three methods have chosen WLCs, mostly in the same
regions of biogenic fluorophores, such as NADH, tryptophan, pyridoxine and flavins. However,
the calculating process of the method based on loadings and VIP spent less time than ACO.
From all selected WLCs, there were seven different excitation and emission wavelengths. These
different excitation and emission wavelengths were combined each other to have 38 WLCs.
The PLS models with 120 as well as 38 WLCs were implemented to compare their predictive
performance. Their pPRMSEPs had no significant difference, regarding the results. Thus, it is

promising to build a fluorescence sensor with only 14 filters for monitoring yeast cultivations.

The 2D fluorescence spectrometer cannot directly measure glucose and ethanol
concentrations because they are not fluorescent. However, it can monitor the fluorescent

molecules relating to cellular activities, such as NADH, tryptophan, pyridoxine, riboflavin and
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FAD/FMN. Biogenic fluorophores inside cells are key metabolic components to understanding
cellular activities, which in turn explains states of cultivation processes (Li et al., 1991). The
three different conditions of yeast cultivations, i.e., batch, fed-batch with the glucose pulse
during the glucose growth phase (GP) and fed-batch with the glucose pulse during the ethanol
growth phase (EP), have been conducted to observe the behavior of intracellular fluorophores
in real time. A change of fluorescence intensities in the spectra of the fed-batch cultivations
with the glucose pulse during GP was not recognized. Their fluorescence spectra looked similar
to the ones of the batch cultivations, but their intensities were higher and their glucose growth
phase took longer. The glucose addition might be detected as a normal glucose signal during
GP. On the contrary, the glucose pulse during EP can be clearly seen in the fluorescence spectra.
The different states of yeast fermentation processes, particularly the glucose pulse during EP,
can be recognized and identified from the on-line fluorescence spectra by PCA. Due to the
glucose pulse during EP, the change of NADH, tryptophan, pyridoxine, riboflavin and
FAD/FMN intensities was not in the same direction. The fluorescence intensity of NADH and
riboflavin increased, but the intensity of tryptophan, pyridoxine and FAD/FMN decreased. The
relation between tryptophan and NADH in the yeast metabolism has been studied by Knepper
et al., 2008. The change of their intensities can be quantified as a proportional factor,
corresponding to various glucose concentrations with the coefficient of determination, R? =
0.999.

According to the previous results, 2D fluorescence spectroscopy can effectively monitor
the real-time changes of the relevant fluorophores, such as tryptophan, pyridoxine, NADH,
riboflavin and FAD/FMN. The signal of the NADH intensity showed the best performance to
determine the metabolic switch between oxidative and oxidoreductive states. Therefore, a
control of glucose feed rates was based on the fluorescence intensity of NADH, which was
selected over tryptophan, flavins and pyridoxine. Under the feedback control, the glucose
concentration was capably maintained under the range of the critical value. Accordingly,
ethanol production could be avoided and glucose was purely metabolized by yeasts during the
controlled feeding phase. With this closed-loop control of the glucose concentration, a biomass
yield was obtained at 0.5 gbiomass/Qglucose. According to the achievement of the typical high yield
coefficient during the controlled feeding phase, the 2D fluorescence spectrometer using the
NADH intensity has great potential to detect the metabolic change within 1.5 min and delivers
instantaneous results to control the feed rates in real time. Although a conventional approach
for the fed-batch control by off-gas analysis as respiratory quotient (RQ) is robust and widely

used in industries, there is still the problem regarding a certain time delay comparing with the
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control by the NADH signal (Claes and van Impe, 2000; Jobé et al., 2003). Besides, the cost of
a fluorescence sensor with specific wavelengths equipped with light-emitting diodes and
photodiodes will be more effective in comparison with off-gas analyzers (O'Toole and
Diamond, 2008; Yang et al., 2009). Another concern is the comparison between the potential
of a direct and indirect measurement of the critical glucose concentration. Although it seems
more reliable to measure directly a glucose concentration from the broth, there is a concern in
a time delay and certain errors at the low critical concentration of glucose (Shimizu et al., 1988;
Arndt and Hitzmann, 2004). Without doubt, the fluorescence sensor is one of the powerful tools
to detect the metabolic change in real time. Regarding the results of the overall study, the 2D
fluorescence spectrometer shows great potential not only for the application in a process

monitoring, but also in a process control.
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4.2 Final remarks

In the study, 2D fluorescence spectroscopy has been applied not only for an on-line monitoring,
but also for a process control of the yeast cultivations. It showed great potential to provide
informative data of the yeast cultivations in real time. Even though the target substances like
glucose and ethanol are not fluorescent, the performance of their predictions based on the
fluorescence spectral data, particularly, from NADH, tryptophan, pyridoxine, riboflavin and
FAD/FMN, showed a high correlation. Through the on-line monitoring of these relevant
intracellular fluorophores, metabolic states during the yeast cultivations can be recognized at
the proper time.

Using fresh and dry baker’s yeasts for the cultivations was conveniently prepared, but
there was an issue from time to time about the unreproducible results of the cultivations. As a
result of the commercial yeast products, it was not easy to have the same lot number for the
experiments. When the identical input is not well controlled, it will be troublesome to achieve
reproducible results. Therefore, utilization of a pure strain of S. cerevisiae would be a good

solution for future experiments.

The application of the single pair of NADH (ex330/em450) for the feedback control
effectively performed to maintain the glucose concentration under the critical point. However,
there was occasionally misinterpretation of the metabolic signal due to the noise in the NADH
intensity. Thus, it could be more effective to apply the entire region of NADH as a metabolic
signal. Then all wavelength pairs in NADH area will be processed using PCA to reduce their

non-informative data and noise.

Lastly, the increased glucose feed rate during the cultivations can be recognized through
the dissolved oxygen. Consequently, a working combination of a fluorescence sensor and a

dissolved oxygen probe could be a promising technique for controlling a substrate feed rate.
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