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1 Summary 

Understanding the links between microbial communities and ecosystem processes is a major 

goal of ecosystem ecology. In terrestrial systems, above- and below-ground components are 

linked both spatially and temporally. Linkages are challenging to identify and quantify, 

however, due both to the extreme heterogeneity of soil and the fact that phylogenetically related 

microorganisms can be functionally different, while distantly or even unrelated microbes can 

perform similar functions. Because nitrogen availability is a limiting factor in many ecosystems, 

there is great interest in identifying such linkages as they influence nitrogen cycling 

microorganisms in soil. Most plants and animals cannot utilize atmospheric nitrogen directly, 

and depend on a complex community of microorganisms to transform atmospheric N2 into 

biologically available forms. The series of nitrogen transformations: nitrogen fixation, 

ammonia oxidation, nitrification, and denitrification, are performed by diverse microorganisms 

possessing genes that code for particular enzymes which carry out the transformation steps. 

This thesis aimed to fill a knowledge gap by spatially and temporally characterizing 

relationships of 1) the soil microbial community, 2) the nitrogen cycling microbial community, 

and 3) a subset of members of the nitrogen cycling community, in relation to both abiotic soil 

conditions and plant growth. We aimed to identify linkages between abundance and function 

within the soil microbial community and in particular the nitrogen cycling component of that 

community. We chose an unfertilized grassland because, in contrast to more well-studied 

fertilized sites, unfertilized grasslands depend solely on soil-available nitrogen, most of which 

is derived from fixation of atmospheric nitrogen and subsequent nitrogen release through 

mineralization, and because nitrogen cycling in unfertilized perennial grasslands is considered 

to be both highly efficient and tightly coupled to plant growth. Links among above- and below-

ground processes may therefore be identifiable in such an unfertilized grassland plot. 

We addressed these goals in three studies. All used a biogeographic (spatially and temporally 

explicit) approach, sampling one 10 m x 10 m grassland plot six times over one growing season, 

60 samples per date, total 360 samples. The first study identified above- and below-ground 

interactions among plants, soil microorganisms, and abiotic soil parameters as they changed 

over a season. The second examined interactions and potential niche differentiation between 

members of the nitrogen cycling microbial community, and the ways in which abiotic processes 

and changes in plant growth influenced their abundances and potential enzyme activities. The 

third study examined two microbial groups within the nitrogen cycling microbial community 

which perform interrelated steps in nitrogen transformation.  
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Results of the first study indicated that microbial community spatial structure was positively 

correlated with the local abiotic environment, i.e. physical and chemical soil properties, in 

spring and autumn, while the density and diversity of plants had an additional effect in the 

summer. Spatial relationships among plant and microbial communities were detected only in 

the early summer and autumn when aboveground biomass increase was most rapid and its 

influence on soil microbial communities greatest due to increased plant demand for nutrients. 

Individual properties varied in their degree of spatial structure over the season, but spatial 

structure was evident for most measured parameters in May and October, the dates associated 

with most rapid plant growth. Differential responses of Gram positive and Gram negative 

bacterial communities were detected both spatially and in response to seasonal shifts in soil 

nutrients. We concluded that spatial distribution patterns of soil microorganisms change over a 

season and that chemical soil properties are more important controlling factors than plant 

density or diversity. 

In the second study, seasonal changes in abundance patterns of the nitrogen cycling community 

were detected, and were associated with changes in substrate availability related to plant growth 

stage. Only potential enzyme activities were strongly spatially structured at the studied scale 

and were strongest at sampling dates corresponding to periods of most active plant growth. 

Temporal variability in members of the N-cycling community versus the stability of their 

respective potential enzyme activities provided evidence of short-lived temporal niche 

partitioning and a degree of microbial functional redundancy.  

The third study examined spatial and temporal interactions between ammonia-oxidizing 

archaea (AOA) and the nitrite oxidizing bacteria Nitrobacter and Nitrospira. Seasonally 

varying patterns in co-occurrence and spatial separation between the two nitrite-oxidizers 

provided evidence of niche differentiation, and these observations were linked to ammonium 

and nitrate availability. Further phylogenetic analysis indicated temporal shifts in Nitrospira 

community composition, indicating seasonal shifts in active members of this community. 

In conclusion, this thesis demonstrated that microbial communities are subjected to many 

external structuring influences and that the relative importance of these influences is both 

context and microbial group dependent. Environmental properties were the main structuring 

agents, but there also appeared to be ephemeral but important shifts in those controls. The use 

of a biogeographical approach provided clear evidence of a complex, dynamic, but stable soil 

microbial community. Studies which changed the scale and/or frequency of sampling could 

yield further insights into the links between abundance and function in grassland soils. This 
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approach could also be fruitfully applied to more intensively managed grassland and cropland 

systems to characterize the complexity, stability, and resiliency of those nitrogen cycling 

microbial communities, information which could be useful for management decisions. 
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2 Zusammenfassung 

Das Verstehen von Zusammenhängen zwischen mikrobiellen Gemeinschaften und 

Ökosystemprozessen ist eines der großen Ziele der Ökosystem-Ökologie. In terrestrischen 

Systemen sind ober- und unterirdische Komponenten räumlich und zeitlich miteinander 

verbunden. Deren Verbindungen zu identifizieren und zu quantifizieren ist jedoch eine 

Herausforderung, da der Boden einerseits sehr heterogen ist und andererseits phylogenetisch 

verwandte Mikroorganismen funktionell verschieden sein können, während entfernt oder nicht 

verwandte Mikroorganismen die gleichen Funktionen erfüllen können. Ein limitierender Faktor 

in vielen Ökosystemen ist die Stickstoffverfügbarkeit. Daher besteht großes Interesse daran 

Verbindungen, welche die am Stickstoffkreislauf beteiligten Mikroorganismen beeinflussen, zu 

identifizieren.   Die meisten Pflanzen und Tiere können atmosphärischen Stickstoff nicht direkt 

nutzen und sind auf eine komplexe Gemeinschaft von Mikroorganismen angewiesen, die 

atmosphärisches N2 in biologisch verfügbare Formen transformiert. Die Abfolge der 

Stickstofftransformationen von Stickstofffixierung über Ammoniakoxidation und Nitrifikation 

zu Denitrifikation wird von diversen Mikroorganismen durchgeführt. Diese 

Transformationsschritte werden durch genspezifische Enzymkodierung ermöglicht. Um die 

Zusammenhänge zwischen Abundanz und Funktion innerhalb der bodenmikrobiologischen 

Gemeinschaft und insbesondere den Mikroorganismen des Stickstoffkreislaufes zu 

identifizieren, sind Verbindungen 1) der gesamten bodenmikrobiologischen Gemeinschaft, 2) 

der am Stickstoffkreislauf beteiligten mikrobiellen Gemeinschaft und 3) einer Untergruppe der 

Mikroorganismengemeinschaft des Stickstoffkreislaufs räumlich und zeitlich charakterisiert 

und sowohl mit den abiotischen Bodeneigenschaften als auch mit dem Pflanzenwachstum in 

Beziehung gesetzt worden. Hierzu wählten wir eine ungedüngte Grünlandfläche aus. Diese 

Flächen sind, im Gegensatz zu den bereits gut untersuchten gedüngten Grünlandflächen, 

vollständig auf bodenverfügbaren Stickstoff angewiesen. Der Großteil des Stickstoffes stammt 

hierbei aus der Fixierung von atmosphärischem Stickstoff mit anschließender 

Stickstofffreisetzung durch Mineralisation. Zudem gelten Stickstoffkreisläufe in ungedüngtem 

Dauergrünland als hoch effizient und als eng mit dem Pflanzenwachstum verbunden. 

Verbindungen zwischen ober- und unterirdischen Prozessen könnten somit auf solch einer 

ungedüngten Grünlandfläche identifizierbar sein.  

Wir untersuchten unsere Ziele im Rahmen von drei Studien. Alle nutzten einen 

biogeographischen (räumlich und zeitlich aufgelösten) Ansatz, wobei eine 10 m x 10 m 

Grünlandfläche sechsmal im Verlauf einer Vegetationsperiode beprobt wurde; 60 Proben an 
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jedem Beprobungszeitpunkt, insgesamt 360 Proben. Die erste Studie identifizierte ober- und 

unterirdische Interaktionen von Pflanzen, Bodenmikroorganismen und abiotischen 

Bodeneigenschaften, sowie deren Veränderungen im Jahresverlauf. Die Zweite untersuchte 

Interaktionen und potentielle Nischendifferenzierungen zwischen Mitgliedern der am 

Stickstoffkreislauf beteiligten mikrobiellen Gemeinschaft. Zudem wurde die Beeinflussung 

durch abiotische Prozesse und Veränderungen im Pflanzenwachstum auf die Abundanz und 

potentiellen Enzymaktivitäten dieser mikrobiellen Gemeinschaft analysiert. Die dritte Studie 

untersuchte zwei mikrobielle Gruppen, die innerhalb der am Stickstoffkreislauf beteiligten 

mikrobiellen Gemeinschaft wechselseitige Schritte in der Stickstofftransformation 

durchführen. 

Die Ergebnisse der ersten Studie deuten darauf hin, dass die räumliche Verteilungsstruktur der 

mikrobiellen Gemeinschaft im Frühjahr und Herbst positiv mit der lokalen abiotischen Umwelt, 

das heißt den physikalischen und chemischen Bodeneigenschaften, korreliert, während die 

Pflanzendichte und -diversität einen zusätzlichen Effekt im Sommer zeigte. Räumliche 

Beziehungen zwischen Pflanzen und der bodenmikrobiologischen Gemeinschaft wurden nur 

im Frühsommer und Herbst detektiert, wenn die Zunahme an oberirdischer Pflanzenbiomasse 

am schnellsten und ihr Einfluss auf die bodenmikrobiologische Gemeinschaft durch den 

gestiegenen pflanzlichen Nährstoffbedarf am größten war. Einzelne Eigenschaften variierten in 

ihrem Ausmaß an räumlicher Struktur im Jahresverlauf.  In Mai und Oktober, den Zeitpunkten 

mit dem schnellsten Pflanzenwachstum, wurden für die meisten gemessenen Parameter 

räumliche Strukturen detektiert. Gram positive und Gram negative Bakterien zeigten 

Differenzen sowohl in ihren räumlichen Verteilungsmustern als auch in ihren Reaktionen auf 

die jahreszeitliche Veränderung von Bodennährstoffen. Wir folgerten, dass sich räumliche 

Verteilungsmuster von Bodenmikroorganismen im Jahresverlauf ändern und dass chemische 

Bodeneigenschaften einen stärkeren Einfluss auf die Bodenmikroorganismen haben als 

Pflanzendichte oder -diversität. In der zweiten Studie wurden jahreszeitliche Schwankungen in 

den Abundanzmustern der mikrobiellen Gemeinschaft des Stickstoffkreislaufs detektiert, die 

mit Veränderungen der Substratverfügbarkeit, bedingt durch die Pflanzenwachstumsphasen, 

assoziiert waren. Nur die potentiellen Enzymaktivitäten waren auf der untersuchten Skala stark 

räumlich strukturiert. Am deutlichsten war ihre räumliche Strukturierung zu den 

Probennahmezeitpunkten mit dem stärksten Pflanzenwachstum ausgeprägt. Die zeitliche 

Variabilität der am Stickstoffkreislauf beteiligten Mikroorganismen verglichen mit der 

Stabilität ihrer entsprechenden potentiellen Enzymaktivitäten belegte das Vorhandensein 

kurzlebiger temporärer Nischendifferenzierung und eines gewissen Grades an funktioneller 
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Redundanz der Mikroorganismen. Die dritte Studie untersuchte die räumlichen und zeitlichen 

Interaktionen zwischen ammoniakoxidierenden Archaeen (AOA) und den nitritoxidierenden 

Bakterien Nitrobakter und Nitrospira. Sich im Jahresverlauf ändernde Muster zwischen 

gemeinsamem Auftreten und räumlicher Separation der zwei Nitritoxidierern deuteten auf eine 

Nischendifferenzierung hin. Diese Beobachtungen standen in Zusammenhang mit der 

Ammonium- und Nitratverfügbarkeit. Weitere phylogenetische Analysen deuteten eine 

zeitliche Verlagerung der Nitrospira-Gemeinschaftsstruktur an, was einen Hinweis auf 

jahreszeitliche Schwankungen der aktiven Mitglieder dieser Gemeinschaft gibt. 

Schlussendlich demonstrierte diese Arbeit, dass mikrobielle Gemeinschaften von vielen 

externen, strukturierenden Einflüssen abhängen und dass die jeweilige Bedeutsamkeit dieser 

Einflüsse sowohl vom Kontext als auch von der mikrobiellen Gruppe abhängig ist. 

Umwelteigenschaften waren die wichtigsten strukturierenden Einflussgrößen, aber es hatte 

auch den Anschein, dass kurzzeitige, bedeutende Verschiebungen in diesen auftreten. Die 

Verwendung eines biogeographischen Ansatzes lieferte klare Beweise für eine komplexe, 

dynamische, aber stabile bodenmikrobiologische Gemeinschaft. Studien, die die Skala 

und/oder Frequenz der Beprobung verändern, könnten weitere Einblicke in die Frage der 

Zusammenhänge zwischen Abundanz und Funktion in Grünlandböden geben. Dieser Ansatz 

könnte auch erfolgreich in intensiver genutzten Grünlandflächen oder Ackerbausystem 

eingesetzt werden, um die Komplexität, Stabilität und Resilienz der dort am Stickstoffkreislauf 

beteiligten Bodenmikroorganismengemeinschaften zu charakterisieren, sowie um für 

Bewirtschaftungsentscheidungen nützliche Informationen zu gewinnen.  
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3 General Introduction 

3.1 Linking microbial abundance and function 

Understanding the links among microbial abundance, diversity and ecosystem function is a 

major goal of ecosystem ecology, but identifying linkages between microbial communities and 

ecosystem processes remains challenging (Carney & Matson 2005; Prosser et al., 2007; van der 

Heijden et al., 2008; Petersen et al., 2012; Wallenstein & Hall 2012; Graham et al., 2016). As 

a result, there continues to be much uncertainty about the relationship between microbial 

diversity and ecosystem function (Cavigelli & Robertson 2000; Hättenschwiler et al., 2005; 

Krause et al., 2014). In terrestrial systems, above- and below-ground components are linked 

both spatially and temporally (Reynolds et al., 2003; Zak et al., 2003; Wardle et al., 2004; van 

der Heijden et al., 2008). The linkages, however, are challenging to identify and quantify due 

to the extreme heterogeneity of the soil environment (Coleman & Whitman 2005) and the fact 

that phylogenetically related microorganisms can be functionally different, while distantly or 

even unrelated microbes can perform similar functions (Torsvik et al., 2002; Cadotte et al., 

2011; Flynn et al., 2011). 

3.2 Relevance of grasslands to linkages 

Grasslands are of particular importance with respect to links between microbial abundance and 

function. They are highly dynamic ecosystems covering almost 40% of global land area and 

representing 80% of agricultural land (Boval & Dixon 2012). They provide a wide range of 

ecosystem goods and services; feed and forage, soil stabilization, flood control, and potential 

sinks for carbon under a changing climate (Millenium Ecosystem Assessment 2005). Soil 

microbial communities form the basis of almost all the biogeochemical processes on which 

these ecosystem goods and services depend. 

3.3 Scales and their relevance 

 Spatial scales 

Many terrestrial studies have shown that soil microbial communities are structured at several 

spatial scales (Nunan et al., 2002, 2003; Franklin & Mills 2003; Ritz et al., 2004; Bru et al., 

2011; Keil et al., 2011), indicating effects of environmental drivers such as land use and abiotic 

conditions. These studies indicate that just as drivers act upon and structure microbial 

communities at different scales, drivers at different scales also influence components of 
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microbial communities. Thus, scale is important both as a driver and as a response to drivers. 

Cultivation regimes, landscape gradients, edaphic factors, and topography have been shown to 

drive the spatial distribution of microbes at field scales (Ettema & Wardle 2002). Because 

nitrogen is one of the nutrients most often limiting plant biomass in terrestrial ecosystems, the 

functional microbial communities involved in the nitrogen cycle have been extensively studied 

and have served as model systems in microbial ecology (Kowalchuk & Stephen 2001; Philippot 

& Hallin 2005). Most spatial studies of the nitrogen cycling microbial community in particular 

have, to date, been done at field (Hallin et al., 2009; Enwall et al., 2010), and regional scales 

(Philippot et al., 2009; Petersen et al., 2012). Nitrifying microbial communities also have been 

spatially modeled at the micrometer scale (Grundmann et al., 2001). At this scale, small 

differences in substrate hotspots, soil aggregates, and fine roots can change the environment for 

microbes. Soil is an extremely heterogeneous environment due to differences in pore size and 

volume, particle size and distribution, and aggregate sizes. This physical complexity influences 

the likelihood of microorganisms encountering substrate and oxygen, as well as other 

microorganisms (Grundmann et al., 2001; Kuzyakov & Blagodatskaya 2015). These factors 

contribute to the creation of conditions for spatial ordering of microorganisms at small scales 

in soil. 

 Temporal scales 

Microbial communities also show distinct and differing response patterns in time. As a 

consequence, the concept of hotspots (Parkin 1983; Nunan et al., 2003) has been expanded to 

include hot moments (Groffman et al., 2009; Kuzyakov & Blagodatskaya 2015). The duration 

of hot moments is highly variable, and changes among members of the microbial community 

vary depending on the choice of observed time scale. On the scale of hours to days, changes in 

patterns of microbial communities (Schmidt et al., 2007) and sometimes even community 

structure (Cruz-Martinez et al., 2012) have been detected, while over longer time periods, clear 

shifts in microbial community structure can change (Grayston et al., 2001; Bardgett et al., 2005; 

Dandie et al., 2008; Habekost et al., 2008; Lauber et al., 2013). During periods of vegetative 

plant growth, plant-derived exudates and availability of labile carbon act as drivers of microbial 

community structure and function (Houlden et al., 2008; Kuzyakov & Blagodatskaya 2015), 

while during plants’ senescent phase, plant derived litter is the most important microbial driver 

through supply of carbon; both litter amount and quality strongly influence microbial 

performance in soil (Chapin et al., 2002; Wardle et al., 2004; Houlden et al., 2008; Kuzyakov 

& Xu 2013). 
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However, attempts to clarify the influence of plants on microbial communities have had mixed 

results. Balser and Firestone (2005) observed stable soil microbial communities in grasslands 

under season-long perturbations, but Habekost et al. (2008) observed temporal variation in the 

responses of different components of the microbial community to vegetation changes in a 

grassland over a season. Habekost et al. (2008) also showed that there were time lags between 

belowground responses to aboveground manipulations of plant functional groups. In other 

studied grassland plots, temporal shifts in soil microbial communities have not been clearly 

predictable (Lauber et al., 2013). Rather, interactions between the soil environment and diverse 

plant communities typical of grasslands were not easily teased apart due to their complexity. 

Bardgett et al. (2005) proposed that above- and below-ground communities operate at a 

hierarchy of temporal scales, from days to seasons to millennia, with different consequences 

for both ecosystem structure and function. In temperate grassland ecosystems, it has been 

shown that soil microbial communities are strongly influenced by vegetation type and site 

characteristics, with microbial community structure exhibiting high temporal variability as soil 

fertility changes over time (Grayston et al., 2001). 

A rapid increase in the application of spatial methods over the last 20 years to both above- and 

below-ground communities has clarified interactions between plants and soil microorganisms 

at multiple spatial scales (Zak et al., 2003; Franklin & Mills 2007; Habekost, et al., 2008; 

Steffens et al., 2009; Kulmatiski & Beard 2011; Prosser 2012). These methods, coupled with 

traditional approaches, have expanded and improved our understanding of spatial relationships 

in the soil (Goovaerts 1998; Zak, et al., 2003), some specifically in grasslands (Ritz et al., 2004; 

Berner et al., 2011; Keil et al., 2011), making it possible to better characterize controls on soil 

microbiological processes (Bradford & Fierer 2012). But the nature and direction of these 

linkages, the role of soil microorganisms in mediating biogeochemical cycles, and plant-

microbe interactions over time still have not been fully characterized (Schimel & Schaeffer 

2012; Reynolds et al., 2003; Habekost et al., 2008; Kulmatiski & Beard 2011). Studies 

combining both spatial and temporal approaches, particularly at intermediate (cm to m2) scales, 

are still rare. It is not yet known which spatial and temporal factors most strongly influence 

microbial communities at these scales, especially in systems such as grassland plots, where 

plant species heterogeneity is high and soil edaphic factors are stable. 

3.4 Soil microbial community structure 

One well established way to describe and quantify the soil microbial community is through the 

use of phospholipid fatty acid (PLFA) analysis. Phospholipids are present in the membranes of 
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all living cells and are the primary lipids making up cell membranes. Soil microbial community 

analysis using PLFA analysis is a robust method for identifying and quantifying different 

groups of bacteria and fungi (Frostegard & Baath 1996; Zelles 1999). Specific fatty acids, 

separated in a series of chemical extraction steps, are characteristic of, for example, Gram-

positive and Gram-negative bacteria, as well as certain fungi (Ruess & Chamberlain 2010). 

More importantly, measuring changes in the signature fatty acids extracted through this method 

over a period of time can also provide insight into changes in the microbial community as a 

result of, for example, nutritional stress, changes in environmental conditions, or substrate 

availability (White et al., 1993; Zelles 1999; Flynn et al., 2011; Wixon & Balser 2013). Using 

PLFAs to characterize the living soil microbial community thus makes it possible to establish 

spatial and temporal linkages that may then be applied to understand processes which are 

mediated by subsets of that community (Ruess & Chamberlain 2010; Frostegard et al., 2011). 

3.5 Nitrogen cycling community  

The relationship between those soil microbes involved in nitrogen cycling and the larger soil 

microbial community is a question of more current interest (Schimel et al., 2005). Because 

some processes in soil, including but not limited to nitrogen cycling, are carried out by many 

organisms and often involve multiple steps, it is critical to characterize links between abundance 

and function at the level of the broader soil microbial community before examining specific 

processes such as nitrogen cycling (Schimel 1995). 

 Nitrogen fixation and ammonia oxidation – nitrification 

Nitrogen availability is a limiting factor in many ecosystems. All organisms require nitrogen in 

order to live, as nitrogen is an essential component of amino acids needed for protein synthesis. 

Although Earth’s atmosphere is 78% nitrogen gas (N2), most plants and animals cannot utilize 

this nitrogen directly. Instead, they are dependent on a complex community of microorganisms 

to transform N2 into biologically available forms they can then use. The series of nitrogen 

transformations: biological nitrogen fixation, ammonia oxidation, nitrification, and 

denitrification, are performed by a diverse community of microorganisms possessing genes that 

code for particular enzymes which carry out the different nitrogen transformation steps. 

Simply stated, the overall reaction steps of biological nitrogen fixation, ammonia oxidation and 

nitrification include first, making atmospheric nitrogen biologically available through nitrogen 

fixation, a process carried out exclusively by prokaryotic bacteria. Some are free-living, others 
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are symbiotically associated with plants, but all contain the nitrogenase enzyme complex, 

which enables the conversion of N2 gas to ammonia (NH3). Nitrogenases are produced by the 

expression of a series of nif genes. The ammonia produced by fixation is oxidized by both 

ammonia-oxidizing archaea (AOA) and bacteria (AOB) (Treusch et al., 2005) to 

hydroxylamine and nitrite. This step is catalyzed by the expression of the functional gene amoA 

which encodes for the enzyme ammonia monooxygenase. Nitrite, a product of ammonia-

oxidation, is in turn available as substrate for nitrite oxidizing bacteria, and under aerobic 

conditions is quickly further transformed to nitrate. There is generally considered to be a close 

relationship between the two processes, ammonia-oxidation and nitrite oxidation, as the first 

produces essential substrate for the second, which transforms nitrite, a potential toxin, into 

nitrate (Maixner et al., 2006). Nitrate can then be taken up by plants, further transformed by 

denitrification, or, because it is water soluble, can also be lost in runoff from soils. 

 Denitrification 

The denitrification portion of the nitrogen cycle is a series of reduction steps comprising four 

stages: nitrate (NO3
-) to nitrite (NO2

-), to nitric oxide gas (NO), to nitrous oxide gas (N2O), to 

dinitrogen gas (N2). Each step is catalyzed by metallo-enzymes produced by specific genes 

which typically are expressed under low oxygen or anaerobic conditions (Zumft 1997). The 

first step, NO3
- to NO2

-, can be catalyzed by two different enzymes, Nar (membrane-bound 

NO3
- reductase) and Nap (periplasmic NO3

- reductase), encoded for by nar and nap genes, 

respectively, which differ in their location in the cell and in their biochemical properties (Zumft 

1997). The second step transforms the reduced NO2
- to its first gaseous form, NO, by two 

distinct types of nir genes that encode enzymes which are structurally different but functionally 

equivalent (Hallin & Lindgren 1999). They differ in that nirK encodes a copper-containing 

enzyme (Cu-nir), and nirS encodes enzymes with cytochromes c and d (cd1-nir). The third step, 

from NO to N2O, is catalyzed by nor genes, and the fourth step, from N2O to N2, by the nosZ 

gene, encoding N2O-reductase (Zumft 1997). Not all microorganisms possess all the genes for 

complete denitrification, however, and many different microorganisms are capable of 

performing one or more of the denitrification steps. It has also recently been shown that 

organisms possessing the nirK gene more often do not have a corresponding nosZ gene than 

those possessing nirS (Philippot et al., 2011; Graf et al., 2014), and that some soil 

microorganisms have neither nirK nor nirS, but only nosZ (Sanford et al., 2012; Jones et al., 

2014). The application of molecular techniques such as quantitative real-time polymerase chain 

reaction (qPCR) has made it possible to quantify specific functional genes and to use them as 
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markers for the presence and abundance of microorganisms involved in specific steps in the 

nitrogen cycle. Abundance of specific marker genes does not, however, indicate which 

members of the microbial community are active. 

3.6 Potential enzyme activities 

Potential nitrifying (PNA) and denitrifying enzyme activities (DEA) are measured to provide 

information on the maximum enzymatic capacity for nitrification or denitrification in a soil at 

optimal substrate concentrations (Stark & Firestone 1996; Koper et al., 2010). These potential 

activity measurements reflect the total capacity of the entire nitrifying or denitrifying microbial 

community in a soil by providing an estimate of the amount of functionally active enzymes 

present in that soil. Coupling potential activity measurements with abundance data indicates the 

functional potential of a microbial community (Patra et al., 2006; LeRoux et al., 2013). An 

accurate method of determining nitrifier enzyme biomass present in soil at the time of sampling 

is chlorate inhibition (Groffman 1987). Replicate incubations are carried out in the dark with 

and without addition of an AMO inhibitor, preventing the oxidation of nitrite to nitrate in the 

inhibited samples. Changes in inorganic N concentrations between the replicates are then used 

to infer nitrification rates (Belser & Mays 1980). DEA is similarly determined, with replicate 

incubations using acetylene to inhibit microbial reduction of N2O to N2. This is also followed 

by a rate calculation between inhibited and uninhibited samples (Smith & Tiedje 1979). These 

methods reflect the nitrifying or denitrifying enzymatic potential of the soil being sampled. 

Watson et al. (1994) demonstrated that DEA could be correlated with seasonal changes in soil 

conditions but their studies indicated that the strength of such correlations varied with sampling 

scale. 

3.7 Phylogenetic analysis 

Phylogenetic analysis is the study of evolutionary relationships. Identifying evolutionary 

connections at the genetic level has enabled researchers to identify divergences in those 

relationships as well as connections (Brinkman & Leipe 2001; Philippot et al., 2009; Jones et 

al., 2008). Thus, although many microorganisms are impossible to characterize at a species 

level taxonomically (Cohan 2002; Staley 2006; Cohan & Perry 2007), phylogenetic analysis 

makes it possible to detect evolutionary distinctions within a given microbial group of interest 

and to distinguish them metabolically or functionally, for example, with respect to nitrification 

(Bouskill et al., 2012) or environmental gradients (Flynn et al., 2011). This approach can be 

applied at different spatial and temporal scales to gain insight into who is active and when, as 
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well as to better understand preferential life strategies among prokaryotes in soils. The principle 

by which one type of phylogenetic analysis – Sanger sequencing (Sanger et al., 1977) - operates 

is by incorporating fluorescently labeled deoxyribonucleotide triphosphates (dNTPs) onto 

specially prepared DNA template strands which are then sequenced repeatedly. Illumina 

sequencing, which is currently used by many, has built on, improved, and elaborated the 

principles of the Sanger method, but uses modified dNTPs which contain terminators that block 

polymerization at a chosen point in order to add a single base at a time with a specific 

fluorescence to the DNA strand. Coupled with instrumentation advances, this makes it possible 

to generate high-throughput sequencing which can then be related to reference genomes and 

applied in a number of ways depending on the genomic question of interest (Bartram et al., 

2011).  
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4 Outline of the Thesis 

In terrestrial systems, above- and below-ground components are linked both spatially and 

temporally, but the dynamics of these linkages vary depending on the study scale (Reynolds et 

al., 2003; Zak et al., 2003; Wardle et al., 2004; van der Heijden et al., 2008). Factors shaping 

microbial communities at one scale may be neither important nor predictive at another. 

Linkages are also challenging to identify and quantify due both to the extreme heterogeneity of 

the soil environment (Coleman & Whitman 2005), and to the fact that phylogenetically related 

microorganisms can be functionally different, while distantly or even unrelated microbes can 

perform similar functions (Torsvik et al., 2002; Krause et al., 2014). In particular, studies of 

small-scale, seasonal variations in grassland microbial communities are lacking, especially 

those which comprehensively address changes in the abundances and function of 

microorganisms over time. 

We chose a physically homogeneous grassland plot in an unfertilized temperate grassland soil 

to investigate controls on 1) the soil microbial community, 2) the nitrogen cycling members of 

that community, and 3) a subset of the nitrogen cycling microorganisms involved in a closely 

coupled set of nitrification steps. Unfertilized perennial grasslands with high plant diversity 

have been shown to have higher soil organic carbon, total nitrogen, and microbial carbon; 

greater food web complexity, more complex biological communities (Grayston et al.. 2001; 

Culman et al., 2010), and to use nitrogen more efficiently than those with less plant diversity 

or more intensive management such as croplands, especially in nutrient-limited soils (Zak et 

al., 2003; Kleinebecker et al., 2014). A physically homogeneous, unfertilized grassland plot 

therefore provided an opportunity to identify controls on abundance and function at the 

centimeter to meter scale in an environment where those processes are tightly linked. One 10 

m x 10 m plot was established within a larger grassland site that is managed at low intensity – 

no fertilizer added, mown once per year and grazed briefly by sheep for 1 - 2 weeks in late 

summer or early autumn. It was divided into 30 subplots (each 2 m x 1.67 m). Within each 

subplot six pairs of sampling locations were randomly assigned, with one pair sampled at each 

of six dates over one growing season for a total of 360 samples. Sample pairs were separated 

by 50 cm to provide appropriate lag distances for later geostatistical analyses. 

The first study investigated the relation of both spatial and temporal variation in soil microbial 

community structure to changes in plant growth stage and soil abiotic properties over one 

growing season. We hypothesized that by a temporally and spatially intensive examination of 
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an unimproved grassland plot 1) we could distinguish spatial changes in microbial distributions 

over time, and 2) that we could correlate these observed changes with stages of plant growth 

and soil abiotic properties. Results of the first study indicated that microbial community spatial 

structure was positively correlated with physical and chemical soil properties in spring and 

autumn, with additional influence of plant density and diversity in the summer. Spatial structure 

was evident for most measured properties at the dates associated with most rapid plant growth. 

The second study built on what was learned in the first, using a similar biogeographical 

approach to characterize the microbial groups driving the inorganic nitrogen cycle in soil. The 

goal was to provide an explicit picture of both spatial and temporal dynamics of the microbial 

nitrogen cycling community at the plot scale. We addressed the following questions: 1) to what 

degree are different functional groups of microbes involved in N-cycling spatially correlated at 

the plot scale and how do these correlations change over a season? 2) Can the observed patterns 

be related to changes in abiotic characteristics or to changes in plant growth with associated 

changes in substrate availability? 3) What can the observed patterns tell us about grassland 

ecosystem N-cycling processes at the studied scale? The second study detected seasonal 

changes in abundance patterns of the nitrogen cycling microorganisms associated with changes 

in substrate availability due to plant growth stage, and strong spatial structure of potential 

enzyme activities at the dates of most rapid plant growth.  

The goal of the third study was to determine the relationships among the microbial groups that 

oxidize ammonia (AOA and AOB) and the nitrite oxidizing bacteria Nitrobacter (NB) and 

Nitrospira (NS). Because these successive nitrification transformations steps are temporally 

and spatially interdependent, with the first step providing substrate for the second, they must be 

near enough one another in both space and time to complete these nitrification steps. Further, 

because there are two dominant groups that perform each of the steps, we hoped to identify 

spatial and/or temporal conditions on the plot that would favor one group or another, and if so, 

determine what factors influenced them. We hypothesized that the AOB-NB nitrifying network 

would dominate under high substrate concentrations in spring and summer, and the AOA-NS 

network under lower substrate conditions in autumn. Furthermore, we wanted to gain deeper 

and more detailed insight into the spatial dynamics of the metabolically active nitrite oxidizing 

bacteria NS and potential variability within the NS community, through its phylogenetic 

characterization – whether it is uniform in time and space and how it is linked to AOA on the 

plot. 
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5.1 Abstract 

Temporal dynamics create unique and often ephemeral conditions that can influence soil 

microbial biogeography at different spatial scales. This study investigated the relation between 

decimeter to meter spatial variability of soil microbial community structure, plant diversity, and 

soil properties at six dates from April through November. We also explored the robustness of 

these interactions over time. A historically unfertilized, unplowed grassland in southwest 

Germany was selected to characterize how seasonal variability in the composition of plant 

communities and substrate quality changed the biogeography of soil microorganisms at the plot 

scale (10 m × 10 m). Microbial community spatial structure was positively correlated with the 

local environment, i.e. physical and chemical soil properties, in spring and autumn, while the 

density and diversity of plants had an additional effect in the summer period. Spatial 

relationships among plant and microbial communities were detected only in the early summer 

and autumn periods when aboveground biomass increase was most rapid and its influence on 

soil microbial communities was greatest due to increased demand by plants for nutrients. 

Individual properties exhibited varying degrees of spatial structure over the season. Differential 

responses of Gram positive and Gram negative bacterial communities to seasonal shifts in soil 

nutrients were detected. We concluded that spatial distribution patterns of soil microorganisms 

change over a season and that chemical soil properties are more important controlling factors 

than plant density and diversity. Finer spatial resolution, such as the mm to cm scale, as well as 

taxonomic resolution of microbial groups, could help determine the importance of plant species 

density, composition, and growth stage in shaping microbial community composition and 

spatial patterns.  

5.2 Introduction 

All natural systems are temporally and spatially bounded and the defined spatial organization 

observed in many ecosystems suggests that spatial organization is of functional importance 

(Legendre et al., 2005). In terrestrial systems many studies have shown that soil microbial 

communities are structured at several spatial scales (Franklin & Mills, 2003; Ritz et al., 2004; 

Bru et al., 2011; Keil et al., 2011), indicating effects of  environmental drivers such as land use 

and abiotic conditions. For example, Franklin and Mills (2003) found multi-scale variations in 

microbial community spatial structure (from 30 cm to >6 m) with high spatial heterogeneity 

due to soil properties, in a wheat field study using DNA fingerprinting. Ritz et al. (2004), in an 

unimproved grassland study, observed a high degree of spatial variation in community-level 

microbiological properties, but were not able to characterize overarching controlling factors.  
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Keil et al. (2011), in contrast, found that ammonia-oxidizing and denitrifying microorganisms 

were spatially structured in soils from 10 m x 10 m grassland plots. This was confirmed in a 

study by Berner et al. (2011), who found that spatial heterogeneity in grasslands at scales of 1-

14  m was related to land use intensity; i.e., fertilization, mowing frequency, and grazing 

practices. Indeed, many studies indicate a close link between above and belowground 

components in terrestrial ecosystems (Reynolds et al., 2003; Zak et al., 2003; Wardle et al., 

2004; van der Heijden et al., 2008). Plants may affect the soil microbial community directly via 

nutrient and water uptake, litter input, and root exudates, or indirectly, by changing composition 

or abundance of the decomposer community. Microbes may also have direct or indirect effects 

on plants; thus, understanding the patterns of interaction between plant and soil microbial 

communities is critical. However, the degree of coupling between plants and microbial 

communities has been hard to quantify in grasslands, probably due to the very high plant density 

(Ritz et al., 2004) and/or high plant species richness (Zak et al., 2003; Nunan et al., 2005). It is 

also possible that these interactions occur at scales that have not yet been identified. 

The picture that emerges from the existing literature is that microbial communities are subjected 

to many external structuring influences and that the relative importance of these influences is 

both context and microbial group dependent (Martiny et al., 2006). Furthermore, many of the 

relationships are not particularly strong and it is therefore legitimate to ask whether they persist 

over time and through seasons. The vast majority of microbial spatial or biogeographic studies 

have been carried out at a single time point and those studies which have combined spatial and 

temporal approaches have yielded conflicting results. Zak et al. (2003), in a long term study, 

found that microbial composition and function were influenced by plant diversity, while 

Grayston et al. (2001) found plant productivity, temperature, and moisture to have the strongest 

effects on soil microbial community structure. However, Habekost et al. (2008) observed that 

distribution patterns of microbial communities in grassland soils changed with time, mainly in 

response to plant performance. Only a few studies have been carried out at the plot scale in 

grasslands or agricultural fields over multiple time points (Grayston et al., 2001; Habekost et 

al., 2008; Kulmatiski & Beard, 2011, Lauber et al., 2013). Coupled spatial characterization with 

temporal variability of soil microbial communities has been less often explored.  

The goal of this study was to resolve some of this uncertainty by a detailed investigation of 

spatial patterns in microbial community structure to learn how the relationships between 

microbial communities and their local environment persist over time. Edaphic factors have been 

shown to exert the strongest influences on microbial community composition at regional and 
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continental scales (Fierer & Jackson, 2006; Lauber et al., 2008; Dequiedt et al., 2011; Griffiths 

et al., 2011; Sayer et al., 2013). A physically homogeneous grassland plot was used for this 

study, however.  This provided an opportunity to assess what other factors could be identified 

at specific dates as drivers of spatial relationships of the microbial community to both the local 

soil environment and to changes in the plant community. One 10 m x 10 m plot in a grassland 

characterized by low land use was intensively sampled over a complete growing season, from 

early April, before plants had begun to actively grow, until November of that year when plant 

growth had ceased after a hard frost. Sampling times were selected to coincide with stages of 

plant growth in the permanent grassland; replicate samples were separated by 50 cm. Using a 

combination of conventional and spatial statistical approaches, we characterized above- and 

below-ground communities both temporally and spatially for each date. Our aim was to learn 

whether or not changes in microbial abundance, in microbial community structure, or in 

distributions of plants and microorganisms could be temporally and spatially distinguished.  

We hypothesized that (i) by a temporally and spatially intensive examination of an unimproved 

grassland at the plot scale (10 m x 10 m) we could distinguish spatial changes in microbial 

biogeography, and (ii) this sampling approach would clarify the degree to which the microbial 

spatial structures we observed could be correlated with stages of plant growth and soil abiotic 

properties. We expected also to gain insight into the persistence of microbial spatial structure 

and the relationships of microbial communities with their environment.  

5.3 Materials & Methods 

 Site description 

The present study is part of a larger, interdisciplinary project of the German Biodiversity 

Exploratories (Fischer et al., 2010). Our study site is located near the village of Wittlingen, 

Baden-Württemberg, 48°25´0.01´´ N, 9°30´0.00´´ E, in the Swabian Alb, a limestone middle 

mountain range in southwest Germany. The study site is AEG31, within which a 10 m x 10 m 

grassland plot was established. Annual precipitation in 2011, the year in which this study was 

done, was 810 mm and average temperature was 8.1°C (Fig. S 5.1). The study site is managed 

at low intensity: no fertilizer is applied, it is mown once per year, and is briefly grazed by sheep 

for 1-2 weeks typically in late summer or early autumn. The soil type at the site is characterized 

as a Rendzic Leptosol (FAO classification), a calcareous, shallow AC-soil (typically 10 cm 

depth), with an average pH of 6.7, containing total 0.66 mg g-1 carbon (C) and 0.07 mg g-1 

nitrogen (N). C/N ratios, pH, and soil texture were uniform over the sampling period. 
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 Sample design 

A 10 m x 10 m plot was established within this grassland and divided into 30 subplots (each 

2m x 1.67m). Within each subplot six pairs of sample locations were randomly assigned, with 

one pair sampled at each of six dates over the growing season (Fig. S 5.2). Each sample pair 

per subplot for a given date was separated by 50 cm to provide appropriate lag distances for 

later geostatistical analyses (Fig. S 5.2). Sixty samples were collected at each date (two 

individual sample locations per subplot x 30 subplots). A total of 360 soil samples were 

collected over the season. Each sample location was assigned unique x and y coordinates with 

respect to the boundaries of the plot. Samples were collected in 2011: on April 5th at the 

beginning of the vegetation period, May 17th during the main growth phase, June 27th at around 

peak plant biomass, August 16th two weeks after the grassland was mown, October 5th, nine 

weeks after mowing and two weeks after it was lightly grazed, and November 21st after the first 

frost. 

 Sampling – aboveground 

On each sampling date, before soil core samples were collected, 20 cm x 20 cm grids were 

centered over each of the sixty individual sampling points. Vegetation data and above ground 

biomass were collected from all grids. Above-ground biomass was harvested by cutting all 

plants at ground level. Biomass samples were sorted into litter (dead leaves and plant matter on 

the soil surface), grasses (Poaceae), legumes, forbs, bryophytes and Rhinanthus minor. The 

latter was separated because this species parasitizes other plants, and thus may affect the 

productivity of grasslands (Stein et al., 2009). Plants that remained rooted but had senesced 

were included in living plant biomass. The biomass samples were dried for 48 hours at 80°C 

and weighed to the nearest 10 mg. From these data total above ground biomass as a measure of 

grassland productivity was calculated. Furthermore, in May, June, and October all vascular 

plant species were recorded and their percentage of total ground cover was estimated, following 

the nomenclature of Wißkirchen and Häupler (1998). 

 Sampling – belowground 

Belowground samples were collected with core augers (diameter 58 mm) to a depth of 10 cm. 

Two cores, one for bulk density and one for biogeochemical analyses, were collected adjacent 

to each other at each sampling point (Fig. S 5.2). The top one cm, consisting entirely of thatch, 

was removed from each soil core to avoid introducing surface plant residues into the soil. 
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Stones, roots, and soil macrofauna were removed in the field. Soil samples were stored at 4°C 

and sieved (< 5 mm) within 24 hours of collection, then subdivided for further analyses, with 

aliquots stored at 4°C or frozen at -20°C. 

 Physical, chemical, biological soil properties 

Soil texture was determined by laser diffraction analysis (Beckman Coulter LS200 laser 

diffraction particle size analyzer, Beckman Coulter GmbH, Krefeld, Germany). To first 

determine the presence of carbonates in the samples they were tested using the Scheibler 

method (DIN ISO 10693:1997.05) for percent carbonate (CO3
-2) determination in soil. Less 

than 0.1% CO3
-2 was detected; (for details see Appendix A: Methods Supplement 5.1). Soil pH 

was determined in 0.01 M CaCl2 (soil to solution ratio w/v 1:2.5). Soil water content, reported 

as % soil dry weight, was determined gravimetrically after drying at 105°C overnight. Bulk 

density cores were weighed, lengths were measured, cores were dried for 3 days at 105°C, and 

re-weighed. Root biomass was determined in the bulk density cores; after flushing away the 

soil, roots were retrieved, dried at 60°C for 3 days and weighed. 

Ammonium (NH4
+) and nitrate (NO3

-) were extracted with 1 M KCl from soil samples (soil to 

extractant ratio of 1:4 w/v). Soil suspensions were placed on a horizontal shaker for 30 min at 

250 rpm, then centrifuged (30 min at 4400 xg). Concentrations of NH4
+ and NO3

- in extracts 

were measured colorimetrically with a Bran & Luebbe autoanalyzer (Bran & Luebbe, 

Norderstedt, Germany). To determine the bioavailable phosphorus (P) fractions in soil, the 

second step of the sequential P fractionation was used (Hedley et al., 1982). Five hundred mg 

of each soil sample were extracted with 0.5 M NaHCO3 (adjusted to pH 8.5) and shaken for 

30 min before decantation and filtration (13 P Munktell & Filtrak GmbH, Bärenstein, 

Germany). Inorganic P concentrations in the extracts were determined colorimetrically with a 

continuous flow analyzer (Murphy & Riley, 1962).  Elemental C and N were analyzed with a 

MACRO CNS Elemental Analyzer (Elementar-Analysensysteme, GmbH, Hanau, Germany). 

Because < 0.1% carbonate was detected, total C was assumed to be organic C.  

Microbial biomass carbon and nitrogen (Cmic and Nmic) were determined by chloroform 

fumigation extraction (Vance et al., 1987) with modifications (Keil et al., 2011). Extractable 

organic carbon and extractable organic nitrogen (EOC and EON) were calculated from the 

supernatants of the non-fumigated samples (Keil et al., 2011).  
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Two g of field moist soil were taken for lipid extraction and fractionation following the alkaline 

methylation method described in Frostegård et al. (1993 a). Samples were measured by gas 

chromatography (AutoSystem XL. PerkinElmer Inc., Massachusetts, USA) using a flame 

ionization detector, an HP-5 capillary column and helium as the carrier gas. Fatty acid 

nomenclature used was described by Frostegård et al. (1993 a, b). The following PLFA derived 

fatty acid methyl ethers (FAMEs) were used as indicators for Gram-positive bacteria (Gram+): 

a15:0, i15:0, i16:0 and i17:0; Gram-negative bacteria (Gram-): cy17:0 and cy19:0 (Ruess & 

Chamberlain, 2010). Total bacterial PLFAs were calculated as the sum of Gram+ and Gram- 

plus the FAME 16:1ω7 which is widespread in bacteria in general. Fungal biomass was 

represented by the PLFA 18:2ω6. 

Bacterial cell numbers were determined using a protocol modified after Lunau et al. (2005) and 

counted by epifluorescence microscopy under blue excitation (Zeiss Axio Imager M2, filter set 

38 HE eGFP; Göttingen, Germany) at a magnification of 1,000x. A minimum of 20 microscopic 

fields were counted for each sample (for details see Appendix A: Methods Supplement 5.1). 

 Statistical analyses 

All statistical analyses were carried out in the R environment, (R Development Core Team 

2012). Cell count data were log-transformed for all analyses to achieve homogeneity of 

variance. To test whether plant, microbial and abiotic variables exhibited seasonal changes, 

univariate, one-way ANOVAs with sampling date as a factor were calculated, followed by 

Tukey’s HSD as post hoc test (P < 0.05).  

To test whether variables exhibited spatial structure at a given date, semivariogram analyses 

were assessed using the gstat 2.4.0 Package (Pebesma 2004). Where non-random spatial 

patterns prevail, spatial structure can be measured by plotting empirical geostatistical functions 

(i.e. semivariogram functions). Semivariances tend to increase with distance of the sampling 

points until a plateau (sill) is reached, after which values fluctuate randomly about the sill. In 

stationary data, the sill equals the total sample variance. The distance at which the sill is reached 

is called the range and represents the maximum distance of spatial autocorrelation. 

Semivariograms usually exhibit a discontinuity at the origin, called the nugget effect, which is 

due either to non-measurable variation below the minimum sampling distance or to 

measurement error. Structural variance is that part of the total sample variance which is spatially 

auto-correlated. Empirical semivariograms were calculated for each variable to a maximum 

distance of 8 m, and a spherical, exponential or linear model was fitted based on RMSE and 
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visual control. Spherical and exponential models indicate that spatial structure occurs at the 

measured scale, whereas a linear model indicates spatial structure beyond that scale, i.e. a 

gradient through the plot. If only the nugget is apparent, no spatial structure can be detected at 

the sampled scale. The percent structural variance was calculated for spherical and exponential 

models by subtracting the nugget effect from the sill, and dividing the remaining, or partial, 

variance by the total sill. When a model could be fitted, a kriged map of the distribution of that 

property on the plot could be constructed. Maps were constructed using ArcGIS (ESRI 2010, 

Environmental Systems Research Institute, Redlands, CA, USA).  

In order to determine how microbial communities were affected by spatial proximity and by 

environmental drivers, including root and litter mass, two approaches were used.  In the first, 

principal components analysis (PCA) was used to reduce the dimensionality of the PLFA 

profiles, allowing the original samples to be scored on a small number of axes (principal 

components). Each of the principal components represents a distinct pattern of variation and 

can be considered to describe different aspects of the microbial community structure. Individual 

PLFAs were first normalized for every sampling date separately, then analysed for each date 

with PCA. The PLFA loadings for the first three axes for each date were then examined to 

determine which PLFAs were most strongly associated with which axes, and whether these 

varied by date. Sample scores along each axis were then extracted and used as ordinary 

variables in semivariogram analysis to determine the extent to which each axis of variation was 

spatially structured on the plot, and, by extension, the extent to which the PLFAs associated 

with that axis were spatially structured. The spatial patterns and the relationships of the 

principal components with the abiotic or biotic environment were then examined as described 

above for the univariate data.  

The second approach consisted in examining how the whole community data varied as a 

function of spatial separation and how the community data was related to multivariate 

descriptors of the local environment. This was achieved using Mantel tests (Franklin & Mills, 

2009) with the package ‘vegan’ (Oksanen et al., 2013).  The Mantel test tests for the association 

between distance matrices. Distance or similarity matrices were calculated between all pair-

wise combinations of samples for PLFA profiles, environmental conditions, plant biomass, 

plant species and geographic location. The distance matrices were constructed using the 

Euclidean distance. Euclidean distance was used because it is the metric that is usually used for 

PLFA and environmental data, as PLFA profiles generally have a linear response to 

environmental gradients. Four distance matrices were constructed for each sampling date: (i) 
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spatial distances among pairs of sampling points using the x-y coordinates; (ii) distances in 

abiotic measures of the environment (soil moisture, bulk density, texture, pH, soil organic C, 

soil total N, EOC, EON, NH4
+, NO3

-, and mineral P); (iii) distances in biomass of different plant 

functional groups (grasses, forbs and legumes); and (iv) distances in the PLFA profiles of soil 

microorganisms. The environmental variables were scaled to unit variance and zero mean to 

account for the different units of measurement. Mantel statistics were then calculated for all 

pairs of distance matrices using the default setting of 999 permutations in the R package ‘vegan’ 

(Oksanen et al., 2013).   

5.4 Results 

 Temporal patterns 

5.4.1.1 Plants and litter 

Total plant, grass and forb biomass was lowest in April and peaked in June, before it was 

harvested by mowing in early August. Legume biomass was too low to be measured in April 

and May, but showed a marked increase after mowing and a peak in October (Fig. 5.1a). By 

November, after the first hard frost, biomass of all plant functional groups declined as a result 

of senescence (Fig 5.1a). In contrast, litter biomass decreased from April to June, and then 

steadily increased until November. Similarly, root biomass declined from April until August 

and increased to its highest level in November (Fig. 5.1b). 

5.4.1.2 Abiotic soil properties 

Bulk density changed slightly but significantly throughout the sampling period with highest 

bulk density in August (Table 5.1). Soil pH was relatively stable throughout the vegetation 

period, varying between 6.6 and 6.8 (Table 5.1).  

Soil C and N content showed almost no differences over the sampling period (Table 5.1). Soil 

C/N ratios ranged from 10.0 to 10.3; with the lowest C/N ratios for the season recorded in June 

and the highest in August (Table 5.1). EOC differed significantly on most sampling dates with 

steadily decreasing values from April until October and a slight increase in November (Table 

5.1, Fig. 5.1d). In contrast, EON was low in August, increased in October, and was lowest in 

November (Table 5.1, Fig. 5.1d).  

Both mineral forms of nitrogen, NH4
+ and NO3

-,  were highest in April and declined through 

May and June (Fig. 5.1c). Both increased after mowing in August, decreased in October, and 
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increased again in November. Bioavailable P was also highest in April, lowest in June and 

increased slightly from August through November (Table 5.1, Fig. 5.1c). 

 

Fig. 5.1a-f Temporal changes in selected above- and below-ground properties for each sampling date; 

a) above ground plant biomass functional groups, b) litter mass and root mass, c) soil 

mineral nitrogen and phosphorus, d) extractable organic carbon and nitrogen, e) microbial 

fatty acids, and f) bacterial cell counts. Dotted lines indicate that the variable is scaled on 

the right Y axis. Error bars denote standard error. Cell count data were log-transformed for 

homogeneity of variance.   

This is the corrected version from corrigendum Regan et al. (2015). 
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Table 5.1 Environmental, plant and microbial data measured at the six sampling dates in 2011. Means per sampling (n = 60) with standard deviation (SD). Letters 

indicate significant differences at P-values ≤ 0.05 obtained from Tukey’s HSD test.   

This is the corrected version from corrigendum Regan et al. (2015).  

 
 

5 Apr SD 
 

17 May SD 
 

27 Jun SD 
 

16 Aug SD 
 

5 Oct SD 
 

21 Nov SD 
 

                   
Soil moist. (gravim. % H2O) 57.56 (2.95) a 27.97 (1.71) e 36.81 (3.27) d 46.38 (2.36) b 26.79 (2.34) e 40.03 (2.35) c 

Bulk density (g cm-3) 0.93 (0.12) b 0.83 (0.08) d 0.87 (0.07) cd 1.02 (0.07) a 0.91 (0.09) bc 0.86 (0.06) d 

pH 6.65 (0.15) b 6.68 (0.15) b 6.78 (0.20) a 6.69 (0.24) ab 6.79 (0.19) a 6.78 (0.21) a 

Soil organic C (mg g-1 dry soil) 65.4 (4.1) a 65.8 (5.0) a 65.2 (3.8) a 65.4 (4.3) a 65.1 (4.5) a 66.7 (3.2) a 

Soil total N (mg g-1 dry soil) 6.5 (0.4) ab 6.5 (0.4) ab 6.5 (0.3) ab 6.4 (0.4) ab 6.4 (0.4) b 6.5 (0.3) a 

C/N ratio 10.12 (0.20) bc 10.11 (0.25) c 9.97 (0.22) d 10.25 (0.26) a 10.24 (0.26) ab 10.20 (0.21) abc 

EOC (µg g-1 dry soil) 208.25 (33.60) a 154.57 (25.37) b 165.78 (28.52) b 127.83 (28.13) c 100.19 (24.38) d 107.19 (21.64) d 

EON (µg g-1 dry soil) 11.04 (6.63) a 10.17 (5.09) a 9.28 (3.75) a 2.91 (4.87) bc 4.66 (3.08) b 1.69 (3.39) c 

NH4
+-N (µg g-1 dry soil) 15.70 (3.66) a 6.52 (1.79) d 8.67 (1.83) c 11.41 (2.71) b 5.43 (2.03) d 7.91 (2.06) c 

NO3
--N (µg g-1 dry soil) 17.99 (10.43) a 10.93 (4.31) b 8.04 (3.38) c 10.96 (4.86) b 7.40 (2.90) c 11.11 (3.21) b 

PO4
3--P (µg g-1 dry soil) 83.41 (19.50) a 68.39 (12.40) bc 64.88 (15.50) c 67.62 (15.20) bc 69.02 (15.30) bc 75.36 (11.40) ab 

                   

Plant biomass (g 20 x 20 cm) 2.81 (1.28) e 9.73 (2.99) b 13.54 (3.94) a 5.73 (1.58) d 8.27 (1.87) c 5.11 (1.24) d 

Litter mass (g 20 x 20 cm) 116.71 (40.31) c 80.89 (42.96) d 61.46 (35.81) d 129.02 (44.43) bc 146.45 (52.47) b 207.33 (61.18) a 

Root mass (g core-1) 1.80 (0.98) ab 1.29 (0.46) bc 1.29 (0.84) bc 1.12 (1.19) c 1.83 (1.62) ab 2.01 (1.37) a 

                   

Cmic (µg g-1 dry soil) 1714.7 (156.4) b 1545.4 (234.6) c 1633.6 (189.9) bc 1702.0 (191.1) b 1570.4 (163.3) c 2036.5 (181.2) a 

Nmic (µg g-1 dry soil) 269.2 (34.4) ab 215.9 (36.7) d 251.6 (40.0) bc 244.9 (35.6) c 213.4 (31.5) d 273.2 (34.6) a 

Bacterial Cell Count (cells g-1 dry 

soil, data log transformed) 

10.27 (0.20) a 9.50 (0.17) c 9.65 (0.19) b 9.53 (0.14) c 9.52 (0.16) c 9.52 (0.15) c 

Bacterial PLFAs (µg g-1 dry soil) 24.43 (2.34) c 22.93 (3.37) cd 27.42 (4.13) ab 26.49 (3.12) b 22.22 (3.17) d 28.38 (3.41) a 

Gram+ PLFAs (µg g-1 dry soil) 14.84 (1.46) bc 13.69 (2.10) d 16.36 (2.75) ab 15.83 (1.96) ab 13.88 (1.88) cd 16.76 (2.16) a 

Gram- PLFAs (µg g-1 dry soil) 3.40 (0.32) bc 3.67 (0.55) b 4.56 (0.56) a 4.38 (0.55) a 3.28 (1.05) c 4.61 (0.50) a 

Fungal PLFA (µg g-1 dry soil) 1.81 (0.42) d 2.58 (0.71) c 3.25 (0.65) b 3.52 (0.63) ab 2.76 (0.62) c 3.84 (0.85) a 

Fungal/Bacterial ratio 0.07 (0.02) c 0.11 (0.03) b 0.12 (0.02) b 0.13 (0.02) a 0.12 (0.02) ab 0.14 (0.03) a 
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5.4.1.3 Soil-microbial community variables 

Temporal patterns of both Cmic and Nmic were similar: mean values declined from April to May, 

increased slightly in June and August, declined again in October and were highest for both in 

November (Table 5.1). Bacterial PLFAs were highest in June, August, and November and 

lowest in October (Fig. 5.1e). Both Gram+ and Gram- bacteria exhibited a fluctuating pattern 

throughout the season, but Gram- bacteria did not decrease in May as did Gram+ (Fig. 5.1e). 

The fungal PLFA biomarker exhibited a different pattern from the bacterial markers. It was 

lowest in April, increased steadily to almost double its April value by August, declined in 

October and increased to its highest value of the season in November (Fig. 5.1e). This resulted 

in an increase in the fungal to bacterial ratio from August through November (Table 5.1). Total 

bacterial cell counts were significantly higher in April than at any other sampling date; from 

May through November there were no significant changes except in June, when cell counts 

increased slightly but significantly from all later sampling dates (log-transformed data) (Table 

5.1, Fig. 5.1f). 

 Univariate spatial patterns over time 

All measured variables showed spatial structuring on some of the sampling dates (Table S 5.1). 

However, the spatial structure changed over the sampling period, with little or no spatial 

structure in April, and more frequently detected spatial structure in both May and October. In 

addition, the ranges over which spatial structure was detected and the amount of variation 

explained varied considerably among properties, with spatial structures over distances of 2 to 

8.6 m and explained variances between 11.4% and 94.1%. (Table S 5.1). Ranges for abiotic soil 

properties with fitted spherical models varied from 2.0 to 8.6 m. (Table S 5.1). Spatial structure 

in root biomass was evident only in November; with a range of 2.2 m. Plant functional groups 

exhibited no spatial structure until after the post-mowing sample collection. Forbs were first, in 

August, followed by grasses and legumes in October (Table S 5.1). Cmic and Nmic were spatially 

structured from June to October and May to October, respectively, but their ranges and percent 

structural variance differed (Table S 5.1). Total bacterial PLFAs exhibited spherical spatial 

structure in May, October, and November. Empirical variograms were also modeled for the 

individual PLFAs associated with either Gram+ or Gram- bacteria, as well as the single PLFA 

associated with fungi (Table S 5.1). Although PLFA 18:2ω6 can also be associated with fresh 

litter, its value did not vary with litter so we think it accurately represented fungi in this plot. 

The Gram+ and Gram- PLFAs consistently exhibited spatial structure in May and October. 

Other dates were more variable among both groups and this variability displayed no pattern 
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within or between groups (Table S 5.1). Although measured values did not vary significantly 

among these dates, kriged maps of the distributions of exemplary PLFAs that were spatially 

structured indicated that their distribution on the plot shifted from spring to autumn (Fig. 5.2 a-

i).  

 

Fig. 5.2 a-i Kriged maps of exemplary Gram+, Gram- bacterial PLFAs and fungal PLFA. a) Gram+ 

i15:0 PLFA in May, b) Gram+ i15:0 PLFA in October, c) semivariograms used to create 

maps a & b; d); Gram- cy17:0 PLFA in May, e) Gram- cy17:0 PLFA in October, f) 

semivariograms used to create maps d & e; f) fungal PLFA 18:2ω6 in June, g) fungal PLFA 

18:2ω6 in October, i) semivariograms used to create maps g & h. Dimensions of all maps 

are 10 m x 10 m.  

The distances over which bacterial PLFAs exhibited spatial autocorrelation also became shorter 

as the season progressed (Fig. 5.2 c & f). Unlike the bacterial PLFAs, spherical spatial structure 

of the fungal PLFA was discernable only in June and August and its spatial autocorrelation 

increased; the model in October was linear and the variogram indicated that spatial 

autocorrelation extended past the limits of the plot (Table S 5.1, Fig. 5.2 h,i). The ranges in 

percent structural variance for the bacterial PLFAs were 23% in May and 42% in October, while 

for the fungal PLFA they were 47% in June. Percent structural variance for the fungal PLFA 

could not be calculated for October because the model was linear for that date (Table S 5.1). 
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Cell counts were spatially structured at our sampling scale at every date except April, at which 

date no model could be fitted. Their spatial structure began to emerge in May, and by June 

exhibited a spherical spatial structure which persisted through November (Table S 5.1). 

 Changes in spatial patterns of microbial and plant community structure and 

environmental profiles over time 

5.4.3.1 Mantel statistic – relationships among communities 

Mantel statistics were calculated to characterize spatial relationships among soil abiotic 

properties, plant functional groups and the microbial community (Table 5.2). Overall, abiotic 

soil properties exhibited strong spatial correlation throughout the year, except in November. In 

contrast, plant functional groups showed significant spatial structure only in April and 

November, whereas microbial community structure (PLFA profiles) exhibited weak spatial 

structure in April, August, and November (Table 5.2).  

Table 5.2 Results of the Mantel tests including data spatial structure (spatial), abiotic properties 

(abiotic), plant functional groups (plant) and microbial community data (microbial) from the 

six sampling dates in 2011. Pearson correlations (r-values) with significance assessed by 

permutation test; * P < 0.05, ** P < 0.01, *** P < 0.001, ns = not significant. 

Sampling 

time 

spatial/ 

abiotic 

spatial/ 

plant 

spatial/ 

microbial 

abiotic/ 

plant 

abiotic/ 

microbial 

plant/ 

microbial 

Apr 0.18 *** 0.13 ** 0.10 * 0.18 * 0.38 *** 0.06 ns  

May 0.16 ** -0.02 ns 0.05 ns 0.03 ns 0.38 *** 0.05 ns  

Jun 0.20 *** 0.04 ns -0.03 ns 0.04 ns 0.12 * -0.08 ns  

Aug 0.25 *** 0.02 ns 0.09 * -0.07 ns 0.27 ** -0.14 ns  

Oct 0.12 * -0.02 ns 0.01 ns 0.00 ns 0.35 *** -0.06 ns  

Nov 0.06 ns 0.12 ** 0.10 * 0.00 ns 0.27 *** -0.03 ns  

 

A weak relationship between plant functional groups and abiotic soil properties was observed 

only in April (Table 5.2). In contrast, microbial community spatial structure was significantly 

correlated with abiotic soil properties throughout the year, especially in spring and autumn but, 

though still significant, the correlation was weakest in June and August. At no sampling date 

was microbial community spatial structure significantly correlated to plant functional groups. 

Plant species composition, which was available for three of the six sampling dates, was not 

significantly related to microbial community spatial structure (results not shown).  
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5.4.3.2 PCA – distinctions within the microbial community 

To take a closer look at the different groups of the microbial community, principal components 

analysis (PCA) was used to analyze individual PLFAs associated with the microbial community 

for each sampling date (Table 5.3). The first three principal components (PC) together 

accounted for 57-67% of total PLFA variance over the six sampling dates for all PLFAs. The 

PC scores of the first three PCs were also spatially modeled (Table S 5.1).  

Table 5.3 Correlations of scores of principal component analyses for microbial communities (using the 

microbial PLFA data) with abiotic properties, root and litter mass and plant functional groups 

at each of the six sampling dates in 2011. Only significant (P < 0.01) correlations of 

properties with each of the three PC-axes are shown. Properties in italics indicate negative 

correlations. 

Sampling date PLFAs  Abiotic parameters 

 PC1 PC2 PC3  PC1 PC2 PC3 

April a15.0  i17.0   PO4
3--P  

May i15.0  cy17.0  NO3
--N  pH 

 18.2ω6      NO3
--N 

June a15.0 i16.0    pH pH 

 i15.0 i17.0    C  

 18.2ω6 cy19.0    Total N  

   18.2ω6   PO4
3--P  

      EOC  

  cy17.0 i16.0   EON  

Aug 
i15.0 

 
    

Soil 

moisture 

Forb mass 

 

 18.2ω6     Nmin  

 a15.0 i16.0 cy17.0   PO4
3--P  

Oct i15.0 i17.0   Root mass Total N NH4
+-N 

 18.2ω6 cy19.0    Nmin EOC 

 a15.0  i16.0   EON EON 

Nov i15.0  cy17.0  PO4
3--P NO3

--N NH4
+-N 

   cy19.0   PO4
3--P EOC 

       EON 

 

In April and May, there was little or no spatial structure to the variance in principal components. 

In June and August, there was more evidence of spatial structure in the second PC, but that 

structure was no longer evident in autumn (Table S 5.1). Scores of the first three PCs were then 

correlated with soil environmental and abiotic properties to determine which were significantly 

correlated with each PC at each date (Table 5.3). In April and May there were few significant 

relationships (Table 5.3). Visual inspection of the PC loadings over the entire season indicated 

that PC1 was mainly associated with PLFAs indicative of Gram+ bacteria and fungi, while PC2 
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and PC3 were mainly associated with those of Gram- bacteria and this discrimination held 

throughout the season (Table 5.3). In June, of the seven PLFAs associated with particular 

subsets of the microbial community, two were more strongly related to measured soil 

properties. Gram- bacterial PLFAs were always associated with PCs that were strongly 

correlated to soil abiotic properties (Table 5.3). Furthermore, the correlations in PC2 were 

mainly negative, while those in PC3 were more often positive (Table 5.3). PLFA i16:0 was 

associated with PC2, and fungal PLFA 18:2ω6 with PC3 (Table 5.3). However, PC2 and PC3 

together accounted for only 31% of the observed variance at this date. There were no apparent 

trends in the relationships between the microbial community and plants, although forbs were 

positively correlated with PC3 in August, and root biomass with PC1 in October. 

5.5 Discussion 

The overall structure of the microbial community was strongly related to the local abiotic 

environment throughout the sampling period, as indicated by the Mantel statistics (Table 5.2). 

Our results confirm the findings of others who have looked at soil microbial biogeography in 

croplands and grasslands at broader scales (Ettema & Wardle, 2002; Fierer & Jackson, 2006; 

Martiny et al., 2006; Lauber et al., 2008; Fierer et al., 2009; Ranjard et al., 2010; Dequiedt et 

al., 2011; Griffiths et al., 2011; Martiny et al., 2011). However, although the relationship 

between soil abiotic properties and the microbial community persisted throughout the year, the 

strength of that relationship varied, suggesting that it was not constant over time, and that other 

factors also influenced microbial community composition. The fact that subsets of the microbial 

community, as differentiated by PCA that discriminated PLFAs associated with Gram+ and 

Gram- bacteria and with saprotrophic fungi, were related to different environmental variables 

at specific times, tends to confirm this (Table 5.3). Gram+ bacteria exhibited little relationship 

to measured soil properties, and the sole correlation we could identify for Gram+ bacteria was 

only negatively related to root mass and only at one date. This suggests that Gram- bacterial 

PLFAs may have been more influenced by belowground processes than were Gram+ PLFAs 

(Table 5.3). This discrimination between Gram+ and Gram- bacterial responses to belowground 

processes, furthermore, persisted over time (Table 5.3). 

Kriged maps of the changes in distributions of exemplary Gram+ and Gram- bacterial PLFAs 

showed that Gram+ bacteria varied more across the site than did Gram- bacteria at the two dates 

shown (Fig. 5.2 a-d). One must use caution in interpreting changes in PLFAs; shifts can indicate 

changes in populations of microbes, in species composition, or in physiological adaptations of 

existing populations as a response to environmental stress (Wixon & Balser, 2013). However, 
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the decline in Gram+ and the increase in Gram- bacterial numbers in May suggest differential 

responses to increased competition with plants for soil nutrients (Fig. 5.1e). In addition, Gram- 

bacteria may have been able to take advantage of root exudates more rapidly than Gram+ 

bacteria at this date. Increases in the PLFAs associated with Gram- bacteria under conditions 

of increasing environmental stress have been measured by Moore-Kucera and Dick (2008). 

Conversely, a slight increase in June in soil moisture and in EOC would have reduced the 

environmental stress on bacteria, resulting in our observed increases in all PLFAs at this date 

(Fig. 5.1d- f), as well as in the bacterial cell counts, which measure only the active portion of 

the bacterial community (Table 5.1, Fig. 5.1f). These observations support the findings of 

Lennon et al. (2012), who, using a taxonomic approach, linked functional traits of microbial 

groups to their responses to a moisture gradient. In their study, different members of the 

microbial community, characterized by the coarse taxonomic classifications of Gram+ or 

Gram-, demonstrated varying degrees of tolerance and resilience to small changes in 

environmental stresses over the season. 

Spatial structure at this scale and at specific times suggests that extremely local processes were 

influencing the properties we modeled (Table S 5.1). Exemplary Gram+ and Gram- PLFA maps 

in May and October indicated that, although the range of values did not differ much from one 

time point to the other, distributions of the bacteria shifted somewhat on the plot (Fig. 5.2a, b 

& d, e). The shift of Gram+ PLFA i15:0 from a cosmopolitan to a patchy distribution from May 

to October (Fig. 5.2a, b) was possibly due to competition with plants for soil nutrients. When 

nutrients are rate limiting, as may have been the case for Gram+ bacteria by late in the season, 

their growth could have been confined to “hotspots” in which nutrients were accessible (Nunan 

et al., 2003). In contrast, the overall pattern of distribution was more uniform for Gram- PLFA 

cy17:0 (Fig. 5.3 d, e). Both Gram+ and Gram- PLFAs were low in the same regions in October, 

perhaps reflecting a process we were not able to capture at our sampling scale. The distribution 

of the fungal PLFA in October was almost uniformly low on the plot as compared to the more 

variable bacterial PLFAs, suggesting bacteria may have been able to take advantage either of 

different resources or of the same resources to a greater degree than fungi were at this time (Fig. 

5.2 b, e, h). The correspondence between our observed low fungal and higher bacterial 

distributions on the plot in October could have been due to competitive strategies for resources 

between bacteria and fungi described by de Boer et al. (2005). The ranges of spatial structuring 

in plant, abiotic, and microbial properties which we were able to characterize on the plot late in 

the season suggests that the local belowground environment had changed in tandem with 

seasonal aboveground processes, resulting in a much more structured microbial community at 
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the scale of this study. This can be seen in the development of more spherical spatial models of 

most parameters toward the end of the vegetation period (October). The fact that much of the 

spatial structure at our sampling scale was no longer detectable by November also supports this 

claim (Table S 5.1).  

Our study in a low land use intensity grassland could not detect any effect of the biomass of 

plant functional groups on the structure of the microbial community (Table 5.2), even though 

plants have been shown to exert a strong effect on soil microbial communities when different 

plant communities such as deciduous or coniferous forests are being compared (Wardle et al., 

2004). This could have been because plant functional groups exhibited no spatial structure 

themselves and were not correlated with abiotic soil conditions over most of the growing season 

(Table 5.2, Table S 5.1). Our results are consistent with Fierer and Jackson (2006) and Sayer et 

al. (2013) who were not able to identify direct links between microbial and plant community 

composition or stage of plant growth. But they are in contrast to Reynolds et al. (2003) and 

Kulmatiski and Beard (2011), perhaps because many studies on plant-soil feedbacks 

concentrate on particular dominant species. Our studied grassland was a species-rich 

community with between 12 and 20 plant species per 20 cm x 20 cm, without a single dominant 

plant species. In grasslands roots are also very dense and enmeshed; microbial communities 

may therefore be affected by many plants at once, reinforcing the lack of dominance of 

individual species. 

Despite the absence of spatial variability, plant biomass varied strongly over the season. Our 

plot was mowed in early August, two weeks before August sample collection. Biomass removal 

by cutting or mowing is known to increase root exudation (Kuzyakov et al., 2002) and several 

studies have shown positive effects of plant defoliation on microbial biomass and/or activity 

(Mawdsley & Bardgett, 1997; Macdonald et al., 2006). Therefore, we had expected to see an 

effect of mowing on bacterial PLFAs due to increased exudation of simple carbon compounds 

(Paterson & Sim, 2000). However, we saw a negative response; both groups of bacterial PLFAs 

declined in August. Exudates may have been depleted by the time of our sample collection; 

their turnover rate in soil can occur in hours to days (Bais et al., 2006; Drake et al., 2013). 

Therefore, two weeks after mowing may have been too late to see a positive response in the 

bacteria. EOC was also low in August, suggesting that available carbon might have been 

limiting at this date. EON was low as well, and there is evidence that nitrogen availability can 

be a rate-limiting step in microbial uptake of root exudates (Zhou et al., 2012; Drake et al., 

2013). The fungal PLFA associated with saprotrophic fungi often increases after mowing in 
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response to increased C input to the soil from exudation, and fungi can also take advantage of 

the recalcitrant carbon in litter (Bardgett et al., 1996; Denef et al., 2009). The fungal PLFA in 

our study did increase in August and so did litter (Fig. 5.1 b,e). Increased litter could have 

contributed to the fungal PLFA increase we observed in August. Therefore changes we 

observed in both bacterial and fungal PLFAs at this date could not be clearly related to mowing. 

Although evidence of direct linkages between above- and below-ground processes could not be 

established in our study, indirect links were indicated by the relationship of changing substrate 

availability to changes in microbial PLFA abundances and distributions (Fig. 5.1c-e). The 

differential responses of Gram+ and Gram- bacteria suggest a need for a deeper look (for 

example, using pyrosequencing) into the members of these communities, to learn whether our 

observations hold at a finer scale of taxonomic resolution.  

5.6 Conclusions 

Over the season, the physical soil structure of this unplowed, unfertilized grassland was 

homogeneous. Dense root penetration throughout the soil meant that we could not identify 

individual plant effects at this site. This is in agreement with other studies of unfertilized 

grasslands, in which direct links between above- and belowground properties have proven 

elusive (Ritz et al., 2004). Nevertheless, it is clear that a complex combination of interactions 

was operative at the scale of our study. We identified variability in microbial community 

composition through a close analysis of PLFA data, and showed that the controls on that 

variability differed over the season. Environmental properties were the main structuring agents 

of the microbial community, as they are at larger scales. However, although this relationship 

persisted over time, individual components of environmental properties varied with season, and 

those differences may be hypothetically related, albeit indirectly, to changes in plant growth. 

Changes in soil nutrient status, for example, were directly related to plant growth, and could 

have served to integrate a number of related processes, similar to the integrating effect of pH at 

the landscape scale. This in turn masked more ephemeral – but important - shifts in controls on 

microbial spatial distribution and community composition. We demonstrated not only evidence 

of the complexity of microbial communities in grassland soils but also the importance of a 

temporal component to the characterization of soil microbial biogeography. 
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5.8 Supplementary material 

 

 

Fig. S 5.1 Daily precipitation, volumetric soil moisture and daily air temperatures provided by 

the German Weather Service from station located at Münsingen, the station nearest 

the plot. Soil moisture measurements for the six sampling dates are indicated by 

asterisks. Discrepancies between the weather station and our data are likely due to 

the slightly different locations of the weather station and the sampled plot. 
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Fig. S 5.2 Sample design of the study site. 
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Methods Supplement 

 

Details of soil sample preparation for texture analysis 

Integrated samples from half the area of each subplot yielded 60 total samples for soil texture 

analysis.Samples were then air-dried and sieved (< 2 mm). All organic material present in the 

samples was destroyed by adding reagent grade 30% hydrogen peroxide (H2O2) in a 1:1 v/v 

ratio with deionized water (total 100 mL) to 5 g soil. After addition of H2O2, samples were held 

at room temperature overnight, then heated slowly in a water bath to 90°C (about 10°C h-1) at 

which temperature they were held up to 24 hours, until all foaming had stopped. Samples were 

then cooled to room temperature, centrifuged at 1500 xg for 20 minutes, and the supernatant 

decanted. Two hundred mL deionized water was added to each sample and conductivity of the 

solution checked to confirm that it was below 40 µS. 

Details of cell count method 

Samples for the enumeration of bacterial cells were fixed immediately after sampling in the 

field (flash frozen in liquid N2). From each soil sample, 0.1 g was transferred to a sterile screw 

cap Eppendorf tube and 1 mL of 10 mM 2-(N-morpholino) ethanesulfonic acid (MES) buffer 

(pH 5.5) containing 1% (v/v) glutaraldehyde was added. Samples were stored at 4°C in the 

dark. For counting, subsamples were diluted between 30 and 150 times, depending on initial 

cell concentrations, using MES buffer containing 30% (v/v) methanol. Dilutions were dispersed 

by two rounds of sonication for 10 min at 35°C (model RK 100H, 35 kHz, 4 x 80 W per period; 

Bandelin Electronic, Berlin, Germany). One hundred µL of the cell suspension were transferred 

to a 15 mL Falcon tube, then 9.9 mL 3-(N-morpholino) propanesulfonic acid (MOPS) buffer 

(2 mM, pH 7.0) were added and the samples stained with 2 µL SYBR green I (10.000x 

concentrate in DMSO; Molecular Probes, Eugene, OR) and held in the dark for 15 minutes on 

a rotary shaker. Stained samples were filtered on black 0.2-µm-pore-size IsoporeTM membrane 

filters (25 mm diameter, Millipore, Billerica, MA, USA). After drying, filters were embedded 

in DABCO solution (25 mg of 1,4-diazabicyclo [2.2.2] octane in 1 mL of PBS buffer 

[130 mM NaCl, and 30 mM Na-phosphate, pH 7.4] plus 9 mL of glycerol) 
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Abiotic  Date       

Parameter Details Apr  May Jun Aug Oct Nov 

Soil moisture Model Lin  NA NA Lin Sph Sph 

 Nugget 3.02  ― ― 3.69 2.64 3.70 

 Sill ―  ― ― ― 5.70 5.60 
 p-Sill ―  ― ― ― 3.06 1.90 
 Range ―  ― ― ― 5.14 2.98 
 % SV ―  ― ― ― 53.7 33.9 

pH Model NA  Sph Lin Lin Lin Sph 

 Nugget ―  0.011 0.026 0.02 0.031 0.033 
 Sill ―  0.023 ― ― ― 0.044 
 p-Sill ―  0.01 ― ― ― 0.01 
 Range ―  7.54 ― ― ― 2.713 
 % SV ―  52.2 ― ― ― 25.0 

NH4
+-N Model Nug  Lin NA NA Sph Lin 

 Nugget 14.69  2.75 ― ― 1.939 2.836 
 Sill ―  ― ― ― 4.428 ― 
 p-Sill ―  ― ― ― 2.49 ― 
 Range ―  ― ― ― 2.038 ― 
 % SV ―  ― ― ― 56.2 ― 

NO3
--N Model Nug  Sph Nug Lin Sph Lin 

 Nugget 120.69  15.855 12.35 24.02 7.118 12.324 
 Sill ―  18.962 ― ― 8.033 ― 
 p-Sill ―  3.11 ― ― 0.91 ― 
 Range ―  4.537 ― ― 3.275 ― 
 % SV ―  16.4 ― ― 11.4 ― 

   

 

 

 

 

 

   

 

Abiotic  Date      

Parameter Details Apr May Jun Aug Oct Nov 

PO4
3--P Model Exp Sph Lin NA Sph Nug 

 Nugget 306.879 55.179 25.42 ― 117.076 124.234 
 Sill 402.84 162.613 ― ― 229.826 ― 
 p-Sill 95.96 107.43 ― ― 112.75 ― 
 Range 8.64 3.853 ― ― 5.253 ― 
 % SV 23.8 66.1 ― ― 49.1 ― 

% C Model NA Sph Lin NA Sph NA 

 Nugget ― 0.118 0.103 ― 0.049 ― 
 Sill ― 0.273 ― ― 0.189 ― 
 p-Sill ― 0.16 ― ― 0.14 ― 
 Range ― 6.59 ― ― 2.02 ― 
 % SV ― 56.8 ― ― 74.1 ― 

% N Model Lin Sph Lin Lin Nug Nug 
 Nugget 0.001 0.001 0.001 <0.001 0.001 <0.001 
 Sill ― 0.002 ― ― ― ― 
 p-Sill ― 0.00 ― ― ― ― 
 Range ― 5.4 ― ― ― ― 
 % SV ― 50.0 ― ― ― ― 

EOC Model Nug Nug Nug Nug Sph NA 
 Nugget 1200 657.88 800 800 401.42 ― 
 Sill ― ― ― ― 547.44 ― 
 p-Sill ― ― ― ― 146.02 ― 
 Range ― ― ― ― 3.324 ― 
 % SV ― ― ― ― 26.7 ― 

 

 

Table S 5.1 Fitted semi-variogram model details for selected abiotic and biotic variables measured in the study.  

NA = no model could be fit, % SV = percentage of structural variance, model abbreviations: Lin = linear, Sph = spherical, Nug = nugget,  

Exp = exponential. 
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Biotic  Date      

Parameter Details Apr May Jun Aug Oct Nov 

Roots Model Nug Nug NA NA Nug Sph 
 Nugget 0.847 0.246 ― ― 4.51 0.609 
 Sill ― ― ― ― ― 1.95 
 p-Sill ― ― ― ― ― 1.34 
 Range ― ― ― ― ― 2.235 
 % SV ― ― ― ― ― 68.8 

Cmic Model NA NA Sph Sph Sph NA 
 Nugget ― ― 19279 31447 12730 ― 
 Sill ― ― 37247 36758 26332 ― 
 p-Sill ― ― 17968 5311 13602 ― 
 Range ― ― 3.664 2.996 2.939 ― 
 % SV ― ― 48.2 14.4 51.7 ― 

Nmic Model NA Sph Sph Sph Sph Lin 
 Nugget ― 938.25 976.44 989.86 592.67 812.15 
 Sill ― 1421.07 1710.38 1292.14 1032 ― 
 p-Sill ― 482.82 733.94 302.28 439.33 ― 
 Range ― 4.961 3.999 7.05 3.734 ― 
 % SV ― 34.0 42.9 23.4 42.6 ― 

Cell count Model NA Exp Sph Sph Sph Sph 

log transformed Nugget ― 0.023 0.017 0.010 0.013 0.016 
 Sill ― 0.03 0.021 0.02 0.026 0.269 
 p-Sill ― .007 0.004 0.010 0.013 0.253 
 Range ― 6.89 5.344 2.352 3.820 5.910 
 % SV ― 23.33 19.05 50.00 50.00 94.05 

Litter Model Nug NA Exp Sph Sph Sph 

 Nugget 3.58 ― 1.21 1.54 1.44 0.16 
 Sill ― ― 2.23 3.15 4.82 0.43 
 p-Sill ― ― 1.02 1.61 3.38 0.27 
 Range ― ― 7.32 2.41 2.98 5.91 
 % SV ― ― 45.74 51.11 70.12 62.36 

 

Biotic  Date      

Parameter Details Apr May Jun Aug Oct Nov 

Grasses Model Lin Nug Lin Nug Sph Sph 
 Nugget 0.58 14.05 9.55 10.10 1.82 0.16 
 Sill ― ― ― ― 2.37 0.43 
 p-Sill ― ― ― ― 0.55 0.27 
 Range ― ― ― ― 5.27 5.91 
 % SV ― ― ― ― 23.17 62.36 

Forbs Model Lin Nug Lin Sph Sph Sph 
 Nugget 12.28 4.15 11.10 0.90 1.95 0.16 
 Sill ― ― ― 1.39 4.08 0.43 
 p-Sill ― ― ― 0.49 2.13 0.27 
 Range ― ― ― 4.65 3.07 5.91 
 % SV ― ― ― 35.35 52.21 62.79 

Legumes Model NA NA NA Lin Sph NA 
 Nugget ― ― ― 1.30 0.16 ― 
 Sill ― ― ― ― 0.43 ― 
 p-Sill ― ― ― ― 0.27 ― 
 Range ― ― ― ― 5.91 ― 
 % SV ― ― ― ― 62.79 ― 

        

        

        

        

Lipid  Date      

Parameter Details Apr May Jun Aug Oct Nov 

Total bacterial  Model Nug Sph Nug NA Sph Sph 

PLFAs Nugget 5.343 9.056 15.984 ― 6.067 9.064 
 Sill ― 11.79 ― ― 10.453 11.934 
 p-Sill ― 2.73 ― ― 4.39 2.87 
 Range ― 5.398 ― ― 3.351 5.911 
 % SV ― 23.2 ― ― 42.0 24.0 
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Lipid  Date      

Parameter Details Apr May Jun Aug Oct Nov 

Gram(+) Model Nug Sph Nug Lin Sph Nug 

i15:0 Nugget 0.4115 0.485 0.477 0.517 0.37 0.831 
 Sill ― 4.451 ― ― 0.61 ― 
 p-Sill ― 3.97 ― ― 0.24 ― 
 Range ― 5.26 ― ― 3.6 ― 
 % SV ― 89.1 ― ― 39.3 ― 

Gram(+) Model Lin Nug Nug Lin Sph Nug 

a15:0 Nugget 0.208 0.48 1.885 0.331 0.253 0.538 
 Sill ― ― ― ― 0.477 ― 
 p-Sill ― ― ― ― 0.22 ― 
 Range ― ― ― ― 3.647 ― 
 % SV ― ― ― ― 47.0 ― 

Gram(+) Model Nug Sph Nug Exp Sph Lin 

i16:0 Nugget 0.087 0.097 0.486 0.101 0.062 0.119 
 Sill ― 0.176 ― 0.153 0.121 ― 
 p-Sill ― 0.08 ― 0.05 0.06 ― 
 Range ― 4.45 ― 8.31 4.442 ― 
 % SV ― 44.9 ― 34.0 48.8 ― 

Gram(+) Model Lin Sph Sph Exp Sph Exp 

i17:0 Nugget 0.018 0.055 0.154 0.027 0.028 0.044 
 Sill ― 0.072 0.168 0.047 0.044 0.057 
 p-Sill ― 0.02 0.01 0.02 0.02 0.01 
 Range ― 4.607 3.937 7.53 4.232 8.376 
 % SV ― 23.6 8.3 42.6 36.4 22.8 

Gram(-) Model Lin Sph Sph Sph Sph Sph 

cy17:0 Nugget 0.047 0.123 0.271 0.077 0.066 0.13 
 Sill ― 0.175 0.38 0.157 0.132 0.192 
 p-Sill ― 0.05 0.11 0.08 0.07 0.06 
 Range ― 5.215 3.901 7.386 1.866 5.648 
 % SV ― 29.7 28.7 51.0 50.0 32.3 

 

Lipid  Date      

Parameter Details Apr May Jun Aug Oct Nov 

Gram(-) Model Nug Sph Nug Sph Sph Lin 

cy19:0 Nugget 0.011 0.027 0.066 0.006 0.012 0.016 
 Sill ― 0.005 ― 0.014 0.019 ― 
 p-Sill ― -0.02 ― 0.01 0.01 ― 
 Range ― 1.526 ― 6.757 5.083 ― 
 % SV ― 0.0 ― 57.1 36.8 ― 

Fungal Model Nug NA Sph Sph Lin NA 

18:2ω6 Nugget 0.201 ― 0.271 0.285 0.218 ― 
 Sill ― ― 0.517 0.405 ― ― 
 p-Sill ― ― 0.25 0.12 ― ― 
 Range ― ― 4.256 2.878 ― ― 
 % SV ― ― 47.6 29.6 ― ― 

PC1 Model NA NA Nug NA Sph NA 

 Nugget ― ― 0.592 ― 0.363 ― 
 Sill ― ― ― ― 0.59 ― 
 p-Sill ― ― ― ― 0.227 ― 
 Range ― ― ― ― 3.93 ― 
 % SV ― ― ― ― 38.5 ― 

PC2 Model NA Sph Sph Sph NA NA 
 Nugget ― 0.246 0.348 0.342 ― ― 
 Sill ― 0.61 0.58 0.57 ― ― 
 p-Sill ― 0.364 0.235 0.23 ― ― 
 Range ― 1.48 4.97 4.21 ― ― 
 % SV ― 59.7 40.3 40.2 ― ― 

PC3 Model NA Sph NA NA Sph NA 
 Nugget ― 0.49 ― ― 0.382 ― 
 Sill ― 0.58 ― ― 0.55 ― 
 p-Sill ― 0.093 ― ― 0.17 ― 
 Range ― 5.47 ― ― 6.88 ― 
 % SV ― 16.0   30.8 ― 
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6.1 Abstract 

The microbial groups of nitrogen fixers, ammonia oxidizers, and denitrifiers largely drive the 

inorganic nitrogen cycle in temperate terrestrial ecosystems. Their spatial and temporal dynamics, 

however, vary depending on the studied scale. The present study aimed to fill a knowledge gap by 

providing an explicit picture of spatial and temporal dynamics of a subset of these soil 

microorganisms at the plot scale. We selected an unfertilized perennial grassland, where nitrogen 

cycling is considered to be efficient and tightly coupled to plant growth. At six times over one 

growing season 60 soil samples were taken from a 10 m x 10 m area and abundances of marker 

genes for total archaea and bacteria (16S rRNA), nitrogen fixing bacteria (nifH), ammonia oxidizing 

archaea (amoA AOA) and bacteria (amoA AOB), and denitrifying bacteria (nirS, nirK and nosZ) 

were determined by qPCR. Potential nitrification activity (PNA) and denitrifying enzyme activity 

(DEA) were determined. Seasonal changes in abundance patterns of marker genes were detected, 

and were associated with changes in substrate availability associated with plant growth stages. 

Potential nitrification and denitrification enzyme activities were strongly spatially structured at the 

studied scale, corresponding to periods of rapid plant growth, June and October, and their spatial 

distributions were similar, providing visual evidence of highly localized spatial and temporal 

conditions at this scale. Temporal variability in the N-cycling communities versus the stability of 

their respective potential activities provided evidence of both short-lived temporal niche partitioning 

and a degree of microbial functional redundancy. Our results indicate that in an unfertilized 

grassland, at the meter scale, abundances of microbial N-cycling organisms can exhibit transient 

changes, while nitrogen cycling processes remain stable. 

6.2 Introduction 

Soils are challenging environments to study because of their extreme structural and microbial 

heterogeneity, and yet soil microorganisms are important drivers of soil quality and ecosystem 

function, depending both on local microbial adaptation and on interactions with plants and other 

soil biota (Bardgett 2005). Recent estimates indicate that in addition to a large number of fungi, 

protists, and other micro-eukaryotes, one gram of soil may harbor more than one million bacterial 

and archaeal species (Paul 2014). This enormous biodiversity is a result of multiple interfaces with 

differing biogeochemical properties that are formed in soil as a result of interactions between 

microbes and their abiotic environment (Totsche et al., 2011). Not surprisingly, the issue of scale 

has become a critical topic in microbial soil ecology. Different influences on the soil microbiome 

and its functions have been identified depending on the scale under investigation (Franklin and 

Mills, 2009). Spatial studies of influences on the composition of the microbial community have to 
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date been done mainly at the scale of fields (Hallin et al., 2009; Enwall et al., 2010) and regions 

(Philippot et al., 2009; Drenovsky et al., 2010). At field scales, typically in the range of hectares, 

cultivation regimes such as fertilizer application, tillage practices, landscape gradients, land use 

history, edaphic factors such as soil texture and pH, and vegetation composition affect community 

composition and spatial distribution of microbes by, for example, influencing their access to 

nutrients and moisture (Ettema and Wardle, 2002; Ritz et al., 2004; Martiny et al., 2006). At regional 

and landscape scales, typically in the range of km, factors such as soil type, climate, and 

precipitation regimes influence the composition of microbial communities and their functional traits 

through differences in soil physicochemical properties (Lauber et al., 2008; Bru et al., 2011; 

Dequiedt et al., 2011). Both field and regional scales are characterized by heterogeneity of 

vegetation, soil, microclimate, land-use history, and in the case of regional scales, of underlying 

geology. As scale increases, the interactions of factors such as soil type, climate, land management, 

or pollution, rather than of individual compounds, contribute to the composition of the soil 

microbiome (Grayston et al., 2001; Bardgett et al., 2005; Fierer and Jackson, 2006). In contrast, the 

plot scale, ranging typically from centimeter to meter, is characterized by homogeneity of these 

factors. For example, Grundmann et al. (2001), using a modeling approach, demonstrated 

significant differences in microbial communities which catalyze processes of nitrification in 

different soil compartments at the sub-millimeter scale. At this scale, individual substrates or 

physicochemical properties have been identified as drivers of microbial community development. 

In a multi-scale study, Franklin and Mills (2003) demonstrated that small variations in soil 

properties at scales from 30 cm to greater than 6 m contributed to shaping subsets of microbial 

communities in soil. Thus, studies at these small spatial scales make it possible to detect influences 

that may be obscured under more heterogeneous conditions, but which must be identified in order 

to understand interactions among microorganisms. 

Microbial communities also show distinct and differing response patterns in time. As a consequence, 

the concept of highly localized and concentrated areas of microbial activity, known as hotspots 

(Parkin 1987; Nunan et al., 2003) has been expanded to include hot moments (Groffman et al., 

2009; Kuzyakov and Blagodatskaya, 2015). The duration of hot moments is highly variable, and 

changes among members of the microbial community vary depending on the choice of observed 

time scale. On the scale of hours to days, activity patterns of microbial communities (Schmidt et al., 

2007) and sometimes even community structure (Cruz-Martinez et al., 2012) have been detected, 

while over longer time periods, clear shifts in microbial community structure can occur (Grayston 

et al., 2001; Bardgett et al., 2005; Dandie et al., 2008; Habekost et al., 2008; Lauber et al., 2013). 
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Plants can be considered as both architects of spatial heterogeneity and as drivers of temporal 

heterogeneity in soils. For example, growing roots change the physico-chemical environment of 

soils, thereby introducing small scale heterogeneity. In grassland soils, as a result of intensive plant 

growth, plants can change the physico- chemical conditions of the entire upper 10 cm of a soil 

(Mueller et al., 2013). During periods of vegetative growth, plant-derived exudates and availability 

of labile carbon act as drivers of microbial community structure and function (Houlden et al., 2008; 

Kuzyakov and Blagodatskaya, 2015), while during plants’ senescent phase, plant litter and decaying 

root material become the most important supply of carbon for microbial communities. Therefore, 

both the amount and quality of carbon from exudates and litter vary substantially over the season, 

and this variation strongly influences microbial performance in soil (Chapin et al., 2002; Wardle et 

al., 2004; Houlden et al., 2008; Kuzyakov and Xu, 2013). 

Previous studies in which both temporal and spatial dynamics have been investigated have often 

focused on either phylogenetic aspects of microbial communities (De Boer and Kowalchuk, 2001; 

Gubry-Rangin et al., 2011; Pasternak et al., 2013; Graf et al., 2014) or on a single functional group 

of microorganisms involved in soil N cycling, such as denitrifiers (Dandie et al., 2008; Groffman 

2012). In particular, studies of small-scale, seasonal variations in grassland microbial communities 

are lacking, especially those which comprehensively address changes in the abundances of 

microorganisms involved in different soil N-cycling processes together with their potential 

activities. Our goal was to fill a knowledge gap in the relationships between abundance and function 

in the soil nitrogen cycling microbial community at this scale. We selected an unfertilized perennial 

grassland with high plant diversity, where nitrogen cycling is considered to be highly efficient and 

tightly coupled to plant growth (Culman et al., 2010). In an initial study on this plot, we provided a 

biogeographical overview of microbial communities by documenting their small-scale spatial and 

temporal variability in relation to abiotic soil characteristics and plant biomass using PLFA analysis 

(Regan et al., 2014). This was followed by a characterization of spatial interactions between 

archaeal ammonia-oxidizers and nitrite-oxidizing bacteria, a specific group of organisms involved 

in two tightly coupled steps in N-cycling (Stempfhuber et al., 2016).  

In this study we provide an explicit picture of spatial and temporal changes in abundances of 

nitrogen fixing bacteria, ammonia oxidizers (archaeal and bacterial) and bacterial denitrifiers as well 

as the potential enzyme activities of the latter two in order to address the following questions: 1) To 

what degree are different functional groups of microbes involved in the N-cycle spatially correlated 

with each other at the plot scale and how do these correlations change over a season? 2) Can the 

observed patterns be related to changes in abiotic characteristics such as soil moisture and N 
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availability or to changes in plant growth associated with land management and the resulting 

changes in substrate availability? 3) What can the observed patterns tell us about grassland 

ecosystem N-cycling processes at the studied scale? 

Spatial and temporal changes in microbial populations involved in N-fixation (nifH), ammonia-

oxidation (AOA and AOB), and denitrification (nirK, nirS, and nosZ), and total bacterial and 

archaeal abundances as well as potential nitrification and denitrification activities were investigated 

at the plot scale of 10 m x 10 m at six dates over one growing season. Sampling times were selected 

to coincide with plant growth stages and management activities, from before active plant growth 

had started in the spring until after plant senescence following frost in autumn. Data were analyzed 

for geostatistical relationships with previously published soil biogeochemical data on nutrient 

distributions and changes in biomass of plant functional groups (Regan et al., 2014). While it is 

known that archaeal nifH (Francis et al., 2005; Dos Santos et al., 2012) archaeal nirK (Bartossek et 

al., 2010; Long et al., 2015), and archaeal nosZ (Rusch 2013) have also been identified, they have 

to date most often been studied in manipulated or extreme environments, and less often in temperate, 

unfertilized grasslands. Their exact mechanisms and routes of archaeal denitrification are also still 

being investigated (Wallenstein et al., 2006; Lund et al., 2012; Pajares and Bohannan 2016). They 

were therefore not included in this study. 

6.3 Materials and Methods 

 Site description 

The present study is part of a larger, interdisciplinary project of the German Biodiversity 

Exploratories (Fischer et al., 2010). The study site is located in the Schwäbische Alb, a limestone 

middle mountain range in southwest Germany, near the village of Wittlingen, Baden-Württemberg 

(48°25´0.01´´ N, 9°30´0.00´´ E). One 10 m x 10 m plot was established within a larger grassland 

site that is managed at low intensity – no fertilizer added, mown once per year and grazed briefly 

by sheep for 1 - 2 weeks in late summer or early autumn. Annual precipitation in 2011, the year in 

which samples for this study were collected, was 810 mm and average temperature was 8.1°C. FAO 

classification of the soil type is Rendzic Leptosol, a calcareous, shallow A-C soil (typically 10 cm 

deep), with average pH of 6.7, organic carbon (C) of 66.0 mg g-1, and total nitrogen (N) of 7.0 mg 

g-1. Soil texture is silt of mean 84%, clay of mean 15%, and sand less than 2%. C, N, and pH values 

were uniform over the sampling period. The site has been managed without added fertilizers since 

at least 1994. 
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 Sample design 

A 10 m x 10 m plot was established within the grassland site and divided into 30 subplots (each 2 

m x 1.67 m). Within each subplot six pairs of sampling locations were randomly assigned, with one 

pair sampled at each of six dates over one growing season. Sample pairs were separated by 50 cm 

to provide appropriate lag distances for later geostatistical analyses. A detailed description of the 

sample design can be found in Regan et al. (2014). Over the season, 360 total samples were collected 

(60 per date x 6 dates). Sampling dates were chosen to correspond to stages of plant growth on the 

plot: April 5th, the beginning of the vegetation period; May 17th, during the main growth phase; June 

27th, at peak plant biomass; August 16th, two weeks after mowing; October 5th, nine weeks after 

mowing during a second period of plant growth; and November 21st, after the first frost, when plants 

had senesced. 

 Sample collection 

Soil samples were collected with core augers (58 mm diameter) to 10 cm depth. The top one cm, 

consisting entirely of undecomposed plant residues, was removed from each core to avoid 

introduction of plant material into the soil samples. Cryovials for DNA extraction were filled with 

homogenized soil (sieved at 5 mm), frozen in liquid nitrogen in the field, and stored afterwards at -

20°C. Physical (soil texture, pH, soil moisture, and bulk density), chemical (ammonium, nitrate, 

phosphate, C, N, extractable organic carbon – EOC, and extractable organic nitrogen – EON), 

biological soil properties (Cmic, Nmic, bacterial and fungal phospholipid fatty acids – PFLAs), and 

roots, litter, as well as aboveground biomass of grasses, legumes, and forbs were analyzed in another 

aliquot of the same soil sample as described in Regan et al. (2014). 

 DNA extraction and quantification of marker genes 

DNA was extracted from duplicate homogenized soil subsamples (300 mg each) using the 

FastDNA® SPIN Kit for Soil (MP Biomedicals, Solon, OH, USA) following the manufacturer’s 

protocol. Concentrations of DNA extracted from both sample replicates were measured 

independently on a NanoDrop® ND-1000 spectrophotometer (Thermo Scientific, Wilmington, DE, 

USA), then pooled and re-measured to confirm the final DNA concentration of each sample. 

Samples for quantitative real time PCR (qPCR) measurement were diluted with ultra-pure water to 

a target concentration of 5 ng DNA µl-1. The following microbial groups were measured by qPCR: 

abundance of bacterial16S rRNA as proxy for the total bacterial community; abundance of archaeal 

16S rRNA to assess the total archaeal community; nifH gene to assess the nitrogen fixing 
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community; genes encoding the catalytic subunits ammonia monooxygenase enzymes of archaea 

(amoA AOA) and bacteria (amoA AOB) to evaluate the ammonia-oxidizing community 

(Stempfhuber et al., 2016); and nirS-, nirK- and nosZ-type denitrifier genes, which encode 

cytochrome cd1 heme nitrite reductase, copper-nitrite-reductase, and nitrous oxide reductase, 

respectively, for the denitrifying community. Amplification of the qPCR products for nitrogen fixers 

and ammonia-oxidizers was conducted on a 7300 Real-Time PCR System, (Applied Biosystems, 

Foster City, CA, USA). The 25 µl reaction mixture was composed of Power SYBR Green master 

mix (12.5 µl), BSA (3%, 0.5 µl), respective primers (10 pmol, 0.5 µl), DEPC and template DNA (2 

µl). Bacterial 16S rRNA, nirS and nirK were analyzed on a Fast Real-Time 7500 PCR (Applied 

Biosystems, Foster City, CA, USA). The 15 µl reaction mixture was composed of 4.125 µl ultra-

pure water, 0.75 µl each of forward and reverse primers, 7.5 µl SYBR Green master mix, 0.375 µl 

T4, and 1.5 µl template DNA. Amplification of nosZ was done on a StepOnePlus™ Real-Time PCR 

System (Applied Biosystems, Foster City, CA, USA) with a 25 µl reaction mixture consisting of 

8.25 µl ultra-pure water, 12.5 µl SYBR Green master mix, 1.0 µl each of forward and reverse 

primers, 0.25 µl T4, and 2.0 µl template DNA. To control the specificity of qPCR products and their 

correct fragment size, a melt curve analysis (dissociation stage) and/or a gel electrophoresis on a 

2% agarose gel were performed after each run. Standard curves were obtained with serial plasmid 

dilutions of the respective genes. For details on thermal profiles and on the standards used, we refer 

to Table S 6.1. 

 Potential enzyme activities 

The potential nitrification assay (PNA) was performed according to the procedures described in 

Hoffmann et al. (2007). For determination of potential nitrification rates, 10 ml of ammonium 

sulfate solution (10 mM) were added as substrate to 2.5 g fresh weight of soil. The transformation 

of nitrite to nitrate was inhibited by addition of 50 µl of sodium chlorate (1.5 M). After an incubation 

of 5 h with shaking at 25°C, the reaction was stopped by applying 2.5 ml potassium chloride (2 M), 

followed by an additional incubation period of 20 min. Samples were centrifuged for 2 min at 2000 

x g and 150 µl of supernatant was transferred to each of 96 well plates. After the addition of 90 µl 

of ammonium chloride buffer and 60 µl of nitrite determination reagent (napthylenediamine 

dihydrochloride (2 mM), sulphanilamide (0.06 M), phosphoric acid (2.5 M) to each sample, the 

subsequent color reaction was measured at a wavelength of 540 nm on a spectrometer (SpectraMax 

340, MWG BIOTECH, Germany) and used for subsequent calculations of nitrite produced and 

expressed as µg NO2
--N g-1 dry soil h-1. For controls, the potassium chloride solution was added 

prior to incubation. Additionally, reagents without soil samples served as negative controls. 
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Denitrifying enzyme activity (DEA) was determined using a modified assay of Smith and Tiedje 

(1979), without the addition of chloramphenicol, as preliminary assays showed that no de novo 

synthesis of denitrifying enzyme occurred within a 2-h incubation period. In brief, 2 g field-moist 

soil was incubated in air-tight bottles (inner volume 118 ml) with 5 ml solution containing 1.1 mM 

KNO3 and 1 mM glucose. Anaerobic conditions were established by evacuating and flushing the 

headspace with N2 gas three times. From each bottle 10 ml N2 was removed and replaced by 10 ml 

acetylene (C2H2) to inhibit nitrous oxide reductase activity. Bottles were incubated at 25°C on a 

horizontal shaker (150 rpm). Headspace samples (1 ml) were taken after 30, 60, 90 and 120 min 

from each bottle and transferred into evacuated 5.9 ml septum-capped exetainers (Labco Ltd., UK). 

These samples were diluted with 10 ml N2 before gas chromatographic analysis (Agilent 7890 gas 

chromatograph equipped with an ECD detector, Agilent, Santa Clara, CA, USA). Potential N2O 

release (µg N2O-N g-1 dry soil h-1) from soil was calculated from the linear regression of N2O 

concentration against time. 

 Statistical analyses 

All statistical analyses were carried out in the R environment (R Development Core Team 2012). 

To test whether marker gene abundances and potential enzyme activities exhibited significant 

changes by sampling date, one-way ANOVAs with sampling date as a factor were performed, 

followed by Tukey’s HSD post-hoc test at the significance level of P< 0.05. Correlations were 

calculated for each date and for the entire season for all measured variables. Correlations of 

measured marker genes with mean air temperature for every sampling date were also calculated. Air 

temperature was used instead of soil temperature because it has been shown to have a high statistical 

correlation to net nitrogen mineralization (Lee et al., 2013). 

To test whether spatial autocorrelation could be determined in marker gene abundances or in 

potential enzyme activities at any given date, empirical semivariograms were assessed using the 

gstat 2.4.0 Package (Pebesma 2004). Empirical semivariograms were calculated for all functional 

genes and for potential enzyme activities to a maximum distance of 8 m for each date. Data were 

log-transformed when necessary to achieve normality of distribution. Where spatial structure was 

evident, a spherical, exponential, or linear model was then fitted based on RSME and visual control. 

When a model could be fitted, an interpolated (kriged) map of the distribution of that property on 

the plot could be constructed. Maps were constructed using ArcGIS (ESRI 2010, Environmental 

Research Institute, Redlands, CA, USA). 
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To test whether the measured marker genes and potential enzyme activities representing the nitrogen 

cycling microbial community were correlated to other aspects of the community and to multivariate 

descriptors of the environment as a function of spatial separation, Mantel tests were employed. A 

Mantel test calculates pair-wise correlations between similarity or distance matrices among samples 

(Franklin and Mills 2007). Distance matrices, using Euclidean distance, were calculated between 

all pair-wise combinations of samples for marker genes, potential enzyme activities, plant functional 

groups, soil environmental conditions, and geographic location, using the R package ‘vegan’ 

(Oksanen et al., 2013). Matrices were constructed as follows: 1) spatial distances among pairs of 

sampling points using their unique x and y coordinates, 2) distances in abiotic and soil chemical 

properties as measures of the environment (soil moisture, bulk density, texture, pH, soil organic C, 

soil total N, EOC, EON, NH4
+, NO3

-, and PO4
-3); 3) distances in biomass of different plant functional 

groups (grasses, forbs, and legumes); 4) distances in marker gene abundances; and 5) distances in 

both PNA and DEA. Environmental variables were scaled to unit variance and zero mean to account 

for different units of measurement. Environmental matrices were then tested against measured 

marker genes, plant functional groups and potential enzyme activity measurements with soil abiotic 

properties and soil chemical properties analyzed both separately and together. Functional genes 

were standardized with respect to one another for each sample. Mantel statistics for all pairs of 

distance matrices were tested for significance using the default settings of 999 permutations in the 

R package ‘vegan’ (Oksanen et al., 2013). 

6.4 Results 

 Temporal dynamics 

Abundances of both archaeal and bacterial 16S rRNA genes were significantly different (P < 0.05) 

between sampling dates (Table 6.1). Archaeal 16S rRNA gene abundance increased from April to 

May, decreased from May to October, and increased again at the last sampling time point in 

November. Changes in abundance of the bacterial 16S rRNA gene contrasted with that of the 

archaeal 16S rRNA gene, decreasing at the first three sampling dates, and increasing in August, 

after which its abundance remained high for the duration of the season. The high values of bacterial 

16S rRNA and denitrifying genes measured on this plot are consistent with other grassland studies 

in the same and nearby regions (Regan et al., 2011; Keil 2015). Over the entire season, abundance 

of the archaeal 16S rRNA gene was two orders of magnitude lower than that of its bacterial 

counterpart. 
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Table 6.1 Abundances of archaeal 16S rRNA and bacterial 16S rRNA genes (copies g-1 soil dry weight 

(DW)). Values are expressed as mean with standard error (SE). Letters indicate significant 

differences by date based on one-way ANOVA followed by Tukey HSD with P<0.05. 

Date Archaeal 16S 

rRNA (copies g-1 

DW) 

 

SE 

 
Bacterial 16S 

rRNA (copies g-1 

DW)  

 

SE 

 

Apr 2.1x109 1.4x108 cd 3.4x1011 2.0x1010 b 

May 2.8x109 1.4x108 ab 1.9x1011 7.3x109 c 

Jun 2.4x109 1.5x108 bc 1.8x1011 9.5x109 c 

Aug 1.6x109 1.3x108 de 3.9x1011 2.2x1010 ab 

Oct 1.5x109 1.1x108 e 3.6x1011 2.7x1010 ab 

Nov 3.2x109 1.7x108 a 4.4x1011 2.4x1010 a 

 

Abundance of the nifH gene, used as a marker for nitrogen fixing bacteria, was highest in May and 

lowest in August and October; at the other sampling times values did not differ significantly from 

one another (Fig. 6.1a). Abundance data of ammonia-oxidizing archaeal (AOA) and bacterial 

(AOB) genes have previously been described by Stempfhuber et al. (2016). In brief, the archaeal 

amoA gene was three to four orders of magnitude more abundant than that of its bacterial counterpart 

AOB, and did not vary significantly at the first three sampling dates (April-June) (Fig. 6.1a). AOA 

abundance was lowest in August and highest in November, while the abundance of AOB varied 

inversely from that of AOA over most of the sampling period. 

Denitrifiers harboring the nirK gene declined from April to June sampling dates with lowest 

abundance in June, significantly different from all other sampling dates, and was significantly 

highest in November (Fig. 6.2a). Abundance of nirS harboring denitrifiers, in contrast, was highest 

in April and lowest in May and October, different from those harboring nirK (Fig. 6.2a). Abundance 

of nosZ harboring denitrifiers was also significantly highest in April (Fig. 6.2a). In October, nosZ 

gene copy numbers had dropped by an order of magnitude from earlier measured values. In 

November nosZ gene copy numbers increased, but never reached the high values of April and 

August (Fig. 6.2a). All gene abundances are reported on the basis of g-1 DW.  

Potential activity measurements of PNA varied over the sampling period, with significantly highest 

activities in April and November, while from May through October differences were lower and not 

significantly different from one another (Fig. 6.1b). In contrast to PNA, DEA was more variable 

across dates, but did not exhibit a clear seasonal pattern. Furthermore, because it was also spatially 

more variable than PNA, as indicated by the larger standard errors, only the lowest activity in August 

differed significantly from the highest activities in June and October (Fig. 6.2b). 
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Fig. 6.1 a & b a) Nitrogen fixing marker gene nifH and ammonia-oxidizing marker genes amoA of archaea 

(AOA) and bacteria (AOB), expressed as copies g-1 dry soil (DW). Solid line indicates that 

values are plotted on the left hand Y axis (AOA only). Broken lines indicate values are plotted 

on the right hand Y axis (both AOB and nifH); and b) Potential nitrification enzyme activity 

(PNA). Units are µg NO2
--N g-1 dry soil (DW) h-1. Different letters close to the points indicate 

significant differences between sampling dates for each measured gene. Differences were 

determined by one-way ANOVA followed by Tukey’s HSD test (P< 0.05). Data of AOA and 

AOB were taken from Stempfhuber et al. (2016). 
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Fig. 6.2 a & b a) Denitrifying marker genes nirK, nirS and nosZ expressed as copies g-1 dry soil (DW); and 

b) Potential denitrifying enzyme activity (DEA). Units are µg N2O-N g-1 dry soil (DW) h-1. 

Different letters close to the points indicate significant differences between sampling dates for 

each measured gene. Differences were determined by one-way ANOVA followed by Tukey’s 

HSD test (P< 0.05). 

 

 Correlations between biotic and abiotic soil properties over time 

Soil abiotic properties at this studied plot have previously been described in detail (Regan, et al., 

2014, 2015). Briefly, bulk density, pH, soil C and N, and C/N ratios were stable over the sampling 

period. Soil moisture, however, varied over the same period; lowest in May and October (Fig. S 

6.1). Only nirS and nosZ exhibited correlations with soil moisture (Fig. 6.3 a, b). Neither 16S rRNA 

genes (archaeal and bacterial) nor archaeal or bacterial amoA genes, nifH, or nirK showed a 
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relationship to soil moisture. Potential enzyme activity measurements were also not correlated with 

soil moisture (data not shown). The strength of the correlations of soil chemical properties NH4
+, 

NO3
-, and EOC to changes in soil moisture varied. NH4

+ exhibited a strong positive relationship to 

soil moisture, while NO3
- and EOC exhibited weaker positive correlations with soil moisture (Fig. 

6.3 c-e). No significant correlations between marker gene abundances and mean air temperature for 

any sampling date could be determined (data not shown). 
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Fig. 6.3 a – e Scatterplots of Pearson correlations between denitrifying marker genes a) nirS, b) nosZ; c) 

NH4
+; d) NO3

-; e) EOC with soil moisture over the entire season. Sample dates are indicated by 

symbol color. 

Correlations of the different marker genes and potential enzyme activities with their putative 

substrates were also examined. Correlations between AOA and NH4
+ were negative and between 

AOA and NO3
- were positive in October (see also Stempfhuber et al., 2016, Fig. 7.5), but both 

correlations were weaker when calculated over the entire sampling period (data not shown). Among 
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the denitrifier marker genes, only nirS and nosZ exhibited weak positive relationships to NO3
-, and 

nosZ was also positively correlated with EOC (Fig. 6.4 a-c). Neither PNA nor DEA were influenced 

by their putative substrates, NH4
+ and NO3

- respectively (data not shown), but both were positively, 

albeit weakly, related to total N (Fig. 6.4 d,e). 

 

Fig. 6.4 a – e Scatterplots of Pearson correlations between denitrifying marker genes a) nirS and b) nosZ 

with NO3
-, c) of nosZ with EOC, and correlations of potential activity measurements d) PNA 

and e) DEA with total soil nitrogen. Sample dates are indicated by symbol color. 
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No significant associations could be determined between PNA and abundance patterns of AOA or 

AOB, calculated for each date or for the entire season. There were also no correlations between nirK 

and DEA, nirS and DEA, or the sum of nirK and nirS with DEA (data not shown). 

 Spatial structure 

Geostatistical analyses of abundances of all marker genes, whereby empirical variograms were 

determined from measured data, also indicated weak spatial structure at our sampling scale for most 

of the measured marker genes. High nugget values suggested that some measured genes were 

spatially structured at a smaller scale than that of our measurements (data not shown). Log-

transformed values of AOA and AOB, however, exhibited weakly spherical structure at some dates 

although they were not spatially structured at the same dates (see Stempfhuber et al., 2016, Fig. 

7.2). 

Potential enzyme activity measurements could be modeled at this scale at several sampling dates. 

Empirical variograms made it possible to fit model variograms to PNA in June, August and October; 

and to DEA in June, October, and November. For the two dates at which both PNA and DEA 

distributions could be fitted with spatial models, June and October, kriged maps were generated in 

order to visualize and compare their spatial distributions on the plot (Fig. 6.5 a-d). Patterns of PNA 

and DEA were similar to one another in June and again in October, but differed between the dates. 

 Multivariate spatial relationships 

Mantel tests were used to identify spatial correlations at the community level; between soil abiotic 

and chemical properties, plant functional groups, the measured marker genes and their potential 

enzyme activities. Soil abiotic and chemical properties were strongly spatially correlated from April 

through August, but not in October or November, as reported in Regan et al. (2014). The marker 

genes measured in this study were not spatially correlated at our sampling scale at any date. Potential 

enzyme activities were correlated with space only in November (Table 6.2). 

Mantel tests of the measured marker genes with plant functional groups were not significant at any 

date. Plants and potential enzyme activities were spatially correlated only in May, and genes and 

potential enzyme activities were spatially correlated only in October. No spatial correlations 

between soil abiotic properties and plant functional groups or soil abiotic properties and the analyzed 

marker genes could be determined. Soil abiotic properties and potential enzyme activities, however, 

were spatially correlated at all dates (Table 6.2).  
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Fig. 6.5 a – d Kriged maps of potential nitrification enzyme activity (PNA) in a) June and b) October, and 

of denitrifying enzyme activity (DEA) also in c) June and d) October.  
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Table 6.2 Results of the Mantel tests including spatial structure (Space), soil abiotic properties (Abiotic), plant functional groups (Plants), enzyme-encoding 

genes (Genes), potential enzyme activities (Enzymes) for the six sampling dates of this study in 2011. Pearson correlations (r-values) with 

significance assessed by permutation test. Only values shown in bold are significant.        *P < 0.05, **P < 0.01, ***P < 0.001 

 

Date Space/ 

Abiotic 

Space/ 

Plants 

Space/ 

Genes 

Space/ 

Enzymes 

Abiotic/ 

Plants 

Abiotic/ 

Genes 

Abiotic/ 

Enzymes 

Plants/ 

Genes 

Plants/ 

Enzyme

s 

Genes/ 

Enzymes 

APR 0.193*** 0.014 0.003 0.071 0.101 0.025 0.229** 0.029 -0.022 0.003 

MAY 0.146** -0.023 0.002 -0.056 0.050 -0.115 0.266*** 0.053 0.115* -0.082 

JUN 0.198** 0.037 -0.022 0.052 0.106 -0.073 0.287** -0.127 -0.090 -0.122 

AUG 0.213*** 0.016 -0.036 0.012 -0.098 0.019 0.206** 0.081 -0.000 0.092 

OCT 0.059 -0.018 -0.030 -0.040 0.030 -0.117 0.375*** -0.088 0.045 0.171* 

NOV 0.042 0.125** 0.094 0.089* -0.018 0.061 0.152* 0.073 -0.035 -0.093 
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6.5 Discussion 

We investigated the spatio-temporal response patterns of nitrogen fixing bacteria (nifH), archaeal 

(AOA) and bacterial (AOB) ammonia oxidizers (amoA), and bacterial denitrifiers (nirK, nirS and 

nosZ), in soil of a temperate grassland managed at low land use intensity. Examined in conjunction 

with the potential enzyme activities of nitrifiers and denitrifiers, these functional groups and their 

potential activities provided an opportunity to fill a knowledge gap in understanding differences in 

nitrogen cycling microbes’ habitat preferences, potential enzyme activities, and responses to 

changes in plant growth stages at the m2 scale. 

 Spatio-temporal dynamics 

6.5.1.1 Nitrogen fixation 

Highest abundance of N2-fixing bacteria harboring the nifH gene was observed in May, decreasing 

by almost 50% between May and October and increasing slightly in November. This is in agreement 

with Pereira e Silva et al. (2011), who demonstrated that up to 60% of the community composition 

of diazotrophs can shift seasonally. High nifH abundance in May could be explained by measured 

low NH4
+ values at that date, creating favorable conditions for nifH-gene harboring bacteria in May, 

since biological N-fixation is known to be inhibited when NH4
+ levels in soil are high (Pereira e 

Silva et al., 2013). Their study also demonstrated that both abundance and composition of N-fixing 

communities varies seasonally. However, in contrast to their findings, on our plot in October nifH 

abundance was lowest when NH4
+ concentration in soil was lowest. N-fixation is an energetically 

expensive process, requiring adequate available carbon. The availability of C was presumably low 

on the plot in October, as EOC values were lowest (Regan et al., 2014, 2015), and this may have 

limited nifH abundance at that date. Overall, none of the other measured abiotic properties showed 

similar temporal patterns or correlations with nifH abundances, nor was spatial structure on the plot 

detectable for nifH. 

6.5.1.2 Ammonia oxidizing archaea and bacteria 

AOA exhibited a temporal pattern similar to that of nifH, resulting in positive associations between 

nifH and AOA in April, August, and October. This close interaction was also observed by Tsiknia 

et al. (2015) who described a linear response of AOA abundance to nifH abundance in natural, non-

agricultural ecosystems at the watershed scale. They suggest that this is evidence of the important 

role of diazotrophs in providing N to natural (unfertilized) ecosystems. However, this relationship 

was not detected in another study of grassland sites in the same region of Germany as ours (Meyer 



 Spatio-temporal variability of nitrogen cycling microorganisms 61 

et al., 2013). 

In accordance with previous studies (Leininger et al., 2006; Prosser and Nicol, 2012; Daebeler et 

al., 2015), AOA microorganisms on our plot were more abundant than their bacterial counterpart. 

The concentration of NH4
+ in soil has been identified as an important factor driving the relative 

distributions of AOA and AOB. Pure cultures have shown that AOA have a high affinity for NH4
+ 

and are able to grow under oligotrophic conditions. In the investigated grassland, abundance of 

AOA varied almost inversely with measured NH4
+ concentrations at all sampling dates, while that 

of AOB varied positively with NH4
+ (Fig.6.1.a, Fig. S 6.2), suggesting NH4

+-driven niche separation 

between AOA and AOB, a finding supported by other studies (Prosser and Nicol, 2012; Marusenko 

2013). This was also seen in their divergent spatial patterns, identified by Stempfhuber et al. (2016). 

It is well accepted that plants can strongly influence microbial communities and their functional 

traits in the rhizosphere by the excretion of exudates, providing carbon to soil microorganisms 

(Philippot et al., 2013; Berg et al., 2014). However, both amount and quality of root exudates vary 

at different stages of plant growth (Harrison et al., 2007; Ziegler et al., 2013; Huang et al., 2014). 

Also, as NO3
- or NH4

+ uptake by plants can result in nitrogen depletion in soil, competition with 

plants for NO3
- or NH4

+ can also influence nitrogen cycling microbial communities (Boudsocq et 

al., 2012; Kuzyakov and Xu, 2013; Cantarel et al., 2015; Moreau et al., 2015). Plants also have 

varying nitrogen preferences and uptake strategies (Harrison et al., 2007), which can impact the 

abundances of some ammonia-oxidizers (Hatzenpichler 2012). This is most pronounced at the plant-

soil interface during periods of most rapid plant growth, typically in May, when competition for the 

same nitrogen sources are most intense (Kuzyakov and Xu 2013). Our data suggest that AOA were 

able to out-compete AOB when NH4
+ availability was low in May, in accord with previous studies 

(Di et al., 2010), but that soil the environment had changed by October, making it possible for AOB 

to compete more effectively for the limited NH4
+ at this date. For example, in a detailed 

characterization of spatial interactions of ammonia-oxidizers and nitrite-oxidizing bacteria in the 

same grassland plot, Stempfhuber et al. (2016) found that AOA abundance varied in concert with 

the bacterial nitrite oxidizer Nitrospira, which was also low in October.  

Abundance of AOB was high in April, August and October. In April NH4
+ was highest, likely due 

to N mineralization over the winter. There was no competition with plants for available NH4
+ at this 

date since plant growth had not yet begun. NH4
+ also rose following mowing in August, with 

correspondingly high AOB. In October NH4
+ was low, which should have been unfavorable to 

AOB, but it has also been shown that AOB abundance increases in the presence of legumes 

(Malchair et al., 2010; Le Roux et al., 2013) and legumes had reappeared on the plot by October. 
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The effect of legumes is thought to be related to changing ammonium levels in soil, even if only in 

microsites, leading to small and locally higher NH4
+ levels (Temperton et al., 2007), and which can 

be enough to induce a shift in AOB community composition (Avrahami et al., 2003). 

The spatial structures of AOA and AOB were weakly detectable at some dates (For details see 

Stempfhuber et al., 2016, Fig. 2), but were not the dates with highest measured marker gene values, 

suggesting that factors influencing spatial structure are not necessarily the same as those that 

determine abundance of microbial groups. This is consistent with the findings of Regan et al. (2014) 

which identified the most robust spatial structures of both NH4
+ and NO3

- on this plot at dates of 

high plant growth but low inorganic nitrogen concentrations. Others have also reported stronger 

spatial connections between microbial communities with life history and dispersal strategies (Bissett 

et al., 2010), or soil physico-chemical properties, land use, and management (Franklin and Mills, 

2009; Enwall et al., 2010; Bru et al., 2011; Dequiedt et al., 2011) than with abundances. 

6.5.1.3 Linking nitrifiers with denitrifiers  

In unfertilized soils, denitrifiers depend on nitrifiers, as the latter produce nitrate required by 

denitrifiers through microbial oxidation of NH4
+ (Prosser 1989). Close spatial and temporal 

interaction with nitrifiers can therefore be advantageous for denitrifiers to avoid competition with 

plants for available, but limited, nitrate. Some AOA harbor nirK genes (Inatomi and Hochstein, 

1996; Ichiki et al., 2001; Lund et al., 2012), and some nitrifying bacteria can also denitrify (Bothe 

et al., 2007). This underscores the close coupling between microbes involved in the two processes 

(Boudsocq et al., 2012; Kuzyakov and Xu, 2013). Similar to ammonia-oxidizers, the abundances of 

denitrifiers, in particular those harboring nirS and nosZ genes, also appeared to be influenced, albeit 

weakly, by substrate availability of nitrate and EOC respectively (Fig.6.4a-c). All measured 

denitrifying marker genes exhibited similar directions in abundance patterns over the entire 

sampling period except in June, when nirS and nosZ increased while nirK decreased (Fig.6.2a). 

Studies have indicated that when the community structures of nirK or nirS type denitrifiers were 

examined along environmental gradients, they changed along those gradients (Santoro et al., 2006; 

Smith and Ogram, 2008; Mosier and Francis, 2010). Cain et al. (1999) demonstrated that soil 

nitrogen is highly spatially variable at the cm to m scale, with short-duration areas of high resource 

availability. Due to the limited mobility of soil microbes, competition as a major structuring force 

is restricted to the small scales where competitors co-occur (Ettema and Wardle, 2002). It is 

therefore possible that between May and June, during a phase when plant growth was strongest and 

competition for substrate between plants and microorganisms as well as between denitrifiers was 

greatest, a microsite-scale temporal environmental gradient existed that contributed to observed 



 Spatio-temporal variability of nitrogen cycling microorganisms 63 

differences in nirK and nirS abundances in June. Other studies have indicated that spatial variation 

in environmental parameters may result in niche partitioning, and that this may be a factor in 

determining community composition of different nir-type denitrifiers (Philippot et al., 2009; Enwall 

et al., 2010, Keil et al., 2011). 

An increase in soil moisture triggers both microbial activity and reduced transport of oxygen (Cook 

and Orchard 2008), resulting in decreased oxygen availability, promoting the growth of microbes 

capable of using alternative electron acceptors such as NO3
-. AOA varied inversely with soil 

moisture, while changes in AOB abundance did not follow a pattern related to soil moisture. AOB 

appeared to vary more in concert with the denitrifiers (Fig. 6.1a, Fig. S6.1). All quantified marker 

genes for denitrification changed corresponding to soil moisture and soil NO3
- content with the 

exception of one date, for nirK only (Fig. 6.2a, Fig. S6.1). This suggests that nirS and nosZ harboring 

denitrifiers were more sensitive to soil moisture than nirK and that nirK was more responsive to 

some environmental factor we could not identify. The similarity in responses of nirS and nosZ 

harboring denitrifiers to soil moisture also supports recent findings that nosZ is more closely 

associated with microbes harboring nirS than nirK (Graf et al., 2014; Jones et al., 2014). No spatial 

structure could be detected for any of the denitrifiers at the studied scale at any date. 

 Linking temporal dynamics of functional microbial communities and potential enzyme 

activities 

PNA changed in concert with AOB abundance early in the season, but changed in direction similar 

to AOA (and nifH) later in the year, further supporting the concept of seasonal niche partitioning 

and at least some degree of functional redundancy between the two microbial groups of ammonia 

oxidizers. In general, correlations between gene abundances and potential activities have proven 

difficult to determine, with conflicting results depending on the environment studied (Prosser and 

Nicol, 2012; Le Roux et al., 2013), and determinations of those relationships have been weakest in 

grasslands (Meyer et al., 2013; Rocca et al., 2015). However, Stempfhuber et al. (2014) identified 

correlations of PNA with both AOA and AOB in mineral grassland soils of the same region as this 

study plot. 

We could not identify any temporal relationship between PNA and plant growth stages. DEA, 

however, was highest at the dates corresponding to the appearance of legumes on the plot, June and 

October. Measured values were not significantly different from those at most other sampling dates, 

but similar associations of DEA with legumes have been shown as well by Le Roux et al. (2013) in 

an experimental grassland. After accounting for increased plant species richness and other factors, 



 Spatio-temporal variability of nitrogen cycling microorganisms 64 

legume presence remained a significant influence on DEA, and their observations held at different 

levels of legume abundance.  

In contrast to the marker genes, both PNA and DEA were spatially structured at the scale of our plot 

at some dates. The dates with the strongest spatial structure in potential enzyme activities 

corresponded to periods of rapid plant growth and high plant biomass, but not with correspondingly 

highest gene abundances or substrate concentrations (Rocca et al., 2015). Potential enzyme 

activities represent the integrated activity of living microbes over time, e.g., on the order of days; 

direct relationships between substrate availability, which can be highly variable over short time 

periods, and potential activities have proven more difficult to determine (Le Roux et al., 2013).  

Kriged maps of the spatial distributions of both PNA and DEA showed areas of similar minima and 

maxima (Fig. 6.5 a-d) and congruent changes in both from one date to the other. The finding of 

Stempfhuber et al. (2014), correlating PNA to NO3
- rather than to NH4

+, may explain the similarity 

in spatial distributions of PNA and DEA in June and again in October and indicate that DEA relies 

on the availability of NO3
- produced by ammonia oxidizers and nitrifiers in close proximity to 

denitrifiers. 

Spatial structure at the May and October sampling dates was also observed in PLFA patterns and 

soil abiotic properties from previous analyses at this plot (Regan et al., 2014), suggesting that while 

it is difficult to directly connect above- and below-ground processes in grasslands, those links exist, 

but may be very short-lived. This is consistent with Kuzyakov and Blagodatskaya (2015), who 

specifically defined hotspots and hot moments as highly ephemeral. 

6.6 Conclusions 

Unfertilized perennial grasslands with high plant diversity have been shown to have higher soil 

organic carbon, total nitrogen, and microbial carbon; greater food web complexity; and more 

complex biological communities than more intensively managed croplands (Grayston et al., 2001; 

Culman et al., 2010). Grasslands such as these have also been shown to use nitrogen more efficiently 

than those with less plant diversity, especially in nutrient-limited soils (Zak et al., 2003; 

Kleinebecker et al., 2014). Understanding nitrogen cycling processes in detail and at multiple scales 

is therefore especially critical in grassland ecosystems managed at low intensity. Conclusions about 

controls on nitrogen cycling have also differed with changes in scale and with different subsets of 

the microbial community. Factors shaping microbial communities at one scale may be neither 

important nor predictive at another; it is necessary, therefore, to investigate the distribution of 
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microorganisms and of their activities at various spatial scales (Turner 1989; Nunan et al., 2002; 

Franklin and Mills 2009). Our study provides evidence for habitat preferences of nitrogen cycling 

microbes and of their responses to different stages of plant growth. We found clear seasonal changes 

in patterns of abundance of the measured marker genes and could associate these with changes in 

substrate availability related to plant growth stages. The most striking result was that small and 

ephemeral changes in soil environmental conditions can result in changes in these microbial 

communities, but the changes may not reflect potential process rates, suggesting short-term niche 

partitioning and functional redundancy. This was indicated by the relatively stable potential enzyme 

activity measurements over the sampling period as compared to microbial abundances. In addition, 

we provided evidence of a dynamic relationship between microorganisms and plants, an important 

mechanism controlling ecosystem N-cycling. 
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6.8 Supplementary Materials 

 

Fig. S 6.1 Mean values of NH4
+ and NO3

- for all sample dates. Values are expressed as µg g-1 dry soil. 

Error bars indicate standard error. Lower case letters close to the points indicate significant 

differences between sampling dates for each measured gene. Differences were determined by 

one-way ANOVA followed by Tukey’s HSD test (P< 0.05). Data were taken from Regan et al. 

(2014). 
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Table S 6.1 Thermal details of measured gene abundances. 

Target/Primers Sequence(5'-3') Thermal Conditions Reference 

16S rRNA1 Pseudomonas aeruginosa  Lopez-Gutierrez et al., 2004 

341f CCT ACG GGA GGC AGC AG 95°C / 15 s, 60°C / 30 s, 72°C / 30 s, 75°C / 15 s, 35 cycles  

534r ATT ACC GCG GCT GCT GGC A    

    

Arch 16S rRNA  
Nicol et al., 2005 f 

rSAf(i)2 Methanobacterium sp. 94°C / 20 s, 55°C / 60 s, 72°C /  30 s, 5 cycles Bano et al., 2004 r 

958r3          94°C / 20 s, 50°C / 60 s, 72°C / 30 s, 35 cycles  

 

amoA(AOA) 

 

Fosmid clone 54D9 
  

19f4 ATG GTC TGG CTW AGA CG 94°C / 45 s, 55°C / 45 s, 72°C / 45 s, 40 cycles Leininger et al., 2006 

CrenamoA616r48x5 GCC ATC CAB CKR TAN GTC CA  Schauss et al., 2009 

 

amoA(AOB)6: 

 

Nitrosomonas sp. 
 

 

 

amoA-1f GGG GTT TCT ACT GGT GGT 94°C / 60 s, 58°C / 60 s, 72°C / 60 s, 40 cycles Rotthauwe et al., 1997 

amoA-2r CCC CTC KGS AAA GCC TTC TTC   

 

nifH7 

 

Sinorhizobium meliloti 95°C / 45 s, 55°C / 45 s, 72°C / 45 s, 40 cycles 

 

Rösch et al., 2002 

nifHf   
 

nifHr   
 

 

nirK8 Sinorhizobium meliloti 
  

Henry et al., 2004 

nirK876f ATY GGC GGV CAY GGC GA 95°C / 15 s, 63° C / 30 s, 72°C / 30 s, 80°C / 30s, 35 cycles  

nirK1040r GCC TCG ATC AGR TTR TGG TT   

    

nirS9 Pseudomonas fluorescens C7R12  Throbäck et al., 2004 

nirS4Qf AAC GYS AAG GAR ACS GG 95°C / 15 s, 63°C / 30 s, 72°C / 30 s, 80°C / 15 s, 35 cycles  

nirS6Qr GAS TTC GGR TGS GTC TTS AYG AA   

    

nosZ10 Bradyrhizobium japonicum USDA 110  Henry et al., 2006 

nosZ2f CGC RAC GGC AAS AAG GTS MSS GT 95°C /15 s, 65°C / 30 s, 72°C / 30 s, 6 cycles; 95°C / 15 s, 60°C / 30 s,   

nosZ2r CAK RTG CAK SGC RTG GCA GAA        72°C / 30 s, 40 cycles  
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7.1 Abstract 

Interrelated successive transformation steps of nitrification are performed by distinct microbial 

groups – the ammonia-oxidizers, comprising ammonia-oxidizing archaea (AOA) and bacteria 

(AOB), and nitrite-oxidizers such as Nitrobacter and Nitrospira, which are the dominant genera 

in the investigated soils.  Hence, not only their presence and activity in the investigated habitat 

is required for nitrification, but also their temporal and spatial interactions. To demonstrate the 

interdependence of both groups and to address factors promoting putative niche differentiation 

within each group, temporal and spatial changes in nitrifying organisms were monitored in an 

unfertilized grassland site over an entire vegetation period at the plot scale of 10 m². Nitrifying 

organisms were assessed by measuring the abundance of marker genes (amoA for AOA and 

AOB, nxrA for Nitrobacter, 16S rRNA gene for Nitrospira) selected for the respective sub-

processes.  A positive correlation between numerically dominant AOA and Nitrospira, and their 

co-occurrence at the same spatial scale in August and October, suggests that the nitrification 

process is predominantly performed by these groups and is restricted to a limited timeframe. 

Amongst nitrite-oxidizers, niche differentiation was evident in observed seasonally varying 

patterns of co-occurrence and spatial separation. While their distributions were most likely 

driven by substrate concentrations, oxygen availability may also have played a role under 

substrate-limited conditions. Phylogenetic analysis revealed temporal shifts in Nitrospira 

community composition with an increasing relative abundance of OTU03 assigned to 

sublineage V from August onwards, indicating its important role in nitrite oxidation. 

 



 Spatial ammonia and nitrite oxidizers  71 

7.2 Introduction 

Nitrification has been the focus of many studies over decades due to the ecological importance 

of this process, especially for agricultural ecosystems. Nitrification determines, to a great 

extent, whether applied fertilizers will function either as plant growth supporting components 

or as environmental pollutants. Nitrate leaching into water causes eutrophication, and the 

emission of N2O, a highly potent greenhouse gas, contributes to climate change (Ollivier et al., 

2011). However, results of the relative contributions of key players have been contradictory – 

supportive either of archaeal (Leininger et al., 2006; Adair & Schwartz 2008; Zhang et al., 

2010) or bacterial ammonia-oxidizer (Di et al., 2009; Jia & Conrad 2009) dominance - or have 

suffered from missing links between abundances of nitrifiers and nitrification activities (Di et 

al., 2009). These discrepancies can be explained in part by the designs of those studies, which 

have focused mainly on detailed analyses of key players involved in one or another sub-process, 

thereby neglecting to account for the fact that nitrification requires a strong interaction among 

phylogenetically differing microbes with different ecophysiologies.  

The first steps, the oxidation of ammonia to hydroxylamine and nitrite can be catalyzed by 

ammonia oxidizers. The last step of the transformation process, the oxidation of nitrite to 

nitrate, is performed by a distinct group of organisms, the nitrite-oxidizers (Konneke et al., 

2005). 

Ammonia-oxidizers comprise both ammonia-oxidizing bacteria (AOB) and archaea (AOA) 

(Kowalchuk & Stephen 2001; Treusch et al., 2005). Their abundances have been monitored in 

a wide range of ecosystems (Ochsenreiter et al., 2003; Francis et al., 2005; Treusch et al., 2005; 

Stahl & de la Torre 2012). The discovery of archaeal involvement in ammonia-oxidation (AO), 

the frequent numerical dominance of AOA over AOB, and their active participation in AO 

(Leininger et al., 2006; De La Torre et al., 2008; Hatzenpichler et al., 2008; Offre et al., 

2009;Schauss et al., 2009), have thrust the relative contributions of AOA and AOB into the 

research spotlight. Several studies have indicated that AOA and AOB colonize different niches 

in soil (Keil et al., 2011; Ollivier et al., 2013; Regan et al., 2014; Stempfhuber et al., 2014) and 

differ in their ecophysiologies (Hatzenpichler 2012); however, their putative interaction 

partners have remained largely unaddressed (Prosser & Nicol 2008). 

The ability to oxidize nitrite is found in only six bacterial genera: Nitrobacter, Nitrotoga, 

Nitrococcus, Nitrospina, Nitrospira, and Nitrolancetus; affiliated to the alpha-, beta-, gamma-, 

and delta-classes of Proteobacteria and the phyla Nitrospirae and Chloroflexi, respectively 
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(Daims et al., 2001; Bock & Wagner 2006; Alawi et al., 2009; Attard et al., 2010; Sorokin et 

al., 2012). Nitrite-oxidizing bacteria (NOB) can be found in a variety of habitats (Abeliovich 

2006), from marine and freshwater aquatic systems (Watson et al., 1986; Stein et al., 2001), to 

wastewater treatment plants (WWTP) (Juretschko et al., 1998; Daims et al., 2001; Gieseke et 

al., 2003; Spieck et al., 2006) and terrestrial ecosystems (Bartosch et al., 2002; Wertz et al., 

2012). In terrestrial environments Nitrobacter (NB) and Nitrospira (NS) have been identified 

as the dominant genera (Bartosch et al., 2002; Cébron & Garnier 2005; Kim & Kim 2006; Ke 

et al., 2013). Niche differentiation amongst NOB has been proposed in several studies in both 

aquatic and terrestrial habitats (Schramm et al., 1999; Cébron & Garnier 2005; Ke et al., 2013; 

Ollivier et al., 2013; Placella & Firestone 2013). Shifts between NB and NS have been shown 

to be a consequence of different strategies related to substrate affinity (Attard et al., 2010). It 

has been suggested that NB are r-strategists, favored under high substrate concentrations owing 

to lower substrate affinity of their respective catalyzing enzyme. NS however, as K-strategists, 

are capable of tolerating lower nitrite and oxygen concentrations (Schramm et al., 1999; Daims 

et al., 2001; Kim & Kim, 2006).  

It is commonly assumed that the two transformation steps for complete nitrification are 

dependent on the interaction of two distinct microbial guilds in terrestrial ecosystems 

(Kowalchuk & Stephen 2001). As autotrophic ammonia-oxidizers gain their energy from the 

conversion of ammonia to nitrite, AOB and NOB are thought to be dependent on each other in 

a mutualistic relationship. Nitrite, the product of ammonia-oxidation (AO) is available for 

nitrite-oxidizers as substrate, which, under aerobic conditions, in turn assures the consumption 

and the removal of the toxic nitrite in the environment by nitrite oxidation (Juretschko et al., 

1998; Maixner et al., 2006). Thus, the processes of ammonia- and nitrite-oxidation are 

considered to be spatially dependent (Grundmann et al., 2001). Studies on the interactions and 

spatial structure of AOB and NOB have been performed mainly in aquatic systems or biofilm- 

and activated sludge-based WWTPs (Gieseke et al., 2003; Ke et al., 2013). In soils, the number 

of studies on interactions between ammonia- and nitrite-oxidizers is limited, suggesting an 

interaction of AOB with both NS- and NB-like NOB, and co-occurrence of AOA with NS (Xia 

et al., 2011; Wertz et al., 2012; Ke et al., 2013; Ollivier et al., 2013; Daebeler et al., 2014). 

Studies, which take spatial and temporal dynamics of these nitrification networks into account, 

are, however, missing. 

Hence, the focus of this study was to investigate the formation of networks of ammonia- and 

nitrite-oxidizers as influenced by season in a grassland soil. We postulated that the dominant 
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forms of nitrifying networks are AOB – NB under high substrate concentrations in spring and 

summer and AOA – NS under lower substrate concentrations in autumn. As AOA (Jia & 

Conrad, 2009; Tourna et al., 2011; Daebeler et al., 2014) and NS (Daims et al., 2001; Lücker 

et al., 2010; Lebedeva et al., 2013) are considered to be mixotrophs, both groups may also act 

independently, mainly at locations with high carbon availability. To test our hypotheses, we 

followed the seasonal dynamics and spatial distribution patterns of AOA, AOB, NB and NS 

using qPCR-based approaches to assess the abundance of marker genes for each group. We 

then linked these data to ammonia and nitrate availability. The dynamics of metabolically active 

NOB were further analyzed by screening the 16S rRNA inventory (obtained by barcoded 

Ilumina sequencing) both to gain a deeper insight into the active community structure of nitrite 

oxidizing bacteria as affected by time and space, and to link these to the presence of AOA and 

AOB.  

7.3 Experimental Procedures 

 Study site description and sampling design 

The experiment was performed in the frame of the ‘German Biodiversity Exploratories’ 

(www.biodiversity-exploratories.de; (Fischer et al., 2010)), a large interdisciplinary study 

aimed at improving our understanding of the effects of land use intensity on diversity at 

different scales. A low land-use intensity grassland site (48°25’0.01’’ N, 9°30’0.00’’ E), which 

did not receive additional fertilizer input and was subjected only to short-term grazing in the 

Biosphere Reserve Schwäbische Alb in the South-west of Germany was selected for this study 

(Regan et al., 2014). Mean annual temperature in the year of sampling was 8.1 °C; mean annual 

precipitation was 810mm. The experimental site (plot ID: AEG31) was classified as rendzic 

leptosol (according to the FAO classification system). Abiotic soil parameters such as pH, 

carbon and nitrogen content, bulk density and soil texture were stable during the season.  

In an unfertilized grassland site, a 10 m x 10 m plot was divided into 30 subplots (each 2 m x 

1.67 m). Six pairs of sampling locations were randomly assigned within each subplot, each pair 

separated by 50 cm to provide appropriate lag distances for later geostatistical analyses. One 

pair from each subplot was sampled at each of six dates over one growing season. In total, 360 

samples were collected in April, May, June, August, October and November 2011 (60 per date 

x 6 dates). Dates were chosen to correspond to stages of plant growth on the plot. Per date, 2 

samples were collected from the upper 10 cm soil horizon from each of the 30 subplots within 

the 10 x 10 m plot (i.e. 60 samples per date in total). Soil samples were collected with a soil 

http://www.biodiversity-exploratories.de/
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auger (58 mm diameter) to 10 cm depth. Soil was sieved (5mm) and homogenized in the field. 

Samples for DNA extraction were frozen in liquid nitrogen in the field, and stored at -20°C.  

Detailed information on soil properties and sampling details can be found in the supplemental 

material or obtained from Regan et al. (2014). 

 Extraction of nucleic acids 

A total of 360 samples were collected at six sampling dates, 60 samples per date, over one 

growing season, from April to November 2011. All samples were extracted in duplicate from 

homogenized soil subsamples (0.3 g) using the FastDNA® SPIN Kit for Soil (MP Biomedicals, 

Solon, OH, USA). Concentrations of the extracts from both sample replicates were measured 

independently on a NanoDrop® ND-1000 spectrophotometer (Thermo Scientific, Wilmington, 

DE, USA), then pooled and re-measured to confirm the final DNA concentration. For qPCR 

measurements, samples were diluted to a target concentration of 5 ng DNA µl-1 with ultra-pure 

water. This concentration has been determined as not inhibiting PCR in pre-experiments (data 

not shown). Extractions of rRNA from homogenized soil samples were conducted following a 

protocol modified after Lueders et al. (2004), in which the centrifugation step after addition of 

PEG was extended to 90 minutes. The nucleic acids were resuspended in 30 µl EB buffer, and 

the precipitation of the RNA after DNA digestion was carried out with isopropanol in the 

presence of sodium acetate. 

 Quantification of marker genes  

Real-time quantitative PCR was performed on a 7300 Real-Time PCR System (Applied 

Biosystems, Germany) using SyBr Green as fluorescent dye. To quantify abundances of AOA 

and AOB the respective amoA genes were used as target. NS-like and NB-like NOBs were 

targeted by primer sets for 16S rRNA genes for NS and nxrA genes specific for NB. As primers 

for NS-like nxrA genes have been tested and shown to be non-specific (Ke et al., 2013), we 

chose specific 16S rRNA gene primers to target NS-like NOB. PCRs were performed according 

to Ollivier et al. (2013); major PCR parameters are listed in Table S 7.1. Serial dilutions of the 

plasmids containing fragments of the marker genes (Table S 7.1) were used for standard curve 

calculations. To determine the specificity and correct fragment size of the amplified qPCR 

products, a melting curve analysis was conducted after qPCR for each sample, followed by gel 

electrophoresis on a 2% agarose gel for randomly selected samples. Efficiencies obtained were 

above 80% and R2 was determined to be above 0.99 for each qPCR assay.  
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 Sequencing of 16S rRNA and phylogenetic analysis 

We used universal primers targeting the 16S rRNA gene, and conducted paired end Illumina 

sequencing on a HiSeq 2500 (Illumina, San Diego, USA). Besides the specific binding sites 

341f (Muyzer et al., 1993) and 515R (Lane 1991), the primers contained the Illumina adapter 

sequence as well as the the binding site for sequencing primers. Additionally, the reverse primer 

included a barcode region of six nucleotides. Briefly, RNA extracts from soils were reversely 

transcribed with GoScript (Promega, Madison, USA), and PCR amplification was carried out 

targeting the V3 region, using primers containing Illumina adapters and a barcode (reverse 

primer only) (Bartram et al., 2011). Amplicons were purified from agarose gels, and cleaned 

with NucleoSpin Extract II columns (Macherey & Nagel, Düren, Germany) prior to the 

sequencing at the Helmholtz Center for Infectious Diseases, Braunschweig, Germany. Two 

samples (one in April, one in June, respectively) were lost during the process. Sequence raw 

data were analyzed using a bioinformatic pipeline: Downstream processing included the 

trimming to 100 base pairs for each direction, the removal of contaminating primer dimers, and 

the joining of the remaining reads. Joined reads were checked for chimeric sequences with 

UCHIME (Edgar et al., 2011), and then clustered with CD-HIT-OTU for Illumina (Li & Godzik 

2006; Fu et al., 2012). Obtained representative sequences were finally annotated with the RDP-

Classifier (Wang et al., 2007), with a similarity threshold of 97% for OTU clustering and a 

confidence cutoff of 0.5. After the removal of single- and doubletons, the final dataset was 

created.  

For the identification of NOB in the dataset, suitable genera covered by the respective qPCR 

primer pairs for NS and NB were identified with the Genomatix software suite using the FastM 

and ModelInspector tool (Klingenhoff et al., 1999). Exclusively OTUs affiliated with those 

genera were then extracted from the 16S rRNA dataset. For reference sequences, the RDP-

Classifier (with 16S rRNA training set 10), BLAST (Altschul et al., 1990) (versus the 

Nucleotide collection (nr/nt)), and ARB (with the SILVA 119 SSU REF NR database (Ludwig 

et al., 2004; Quast et al., 2013)) were used to extract type strain sequences and close relatives 

for phylogenetic analysis. Nitrospina gracilis, a marine nitrite-oxidizing bacterium, was chosen 

as an outgroup (Luecker et al., 2013). The obtained set of sequences was aligned with JalView 

(Waterhouse et al., 2009) and the implemented MAFFT algorithm (preset G-INS-i, for 

maximum accuracy; (Katoh et al., 2005)). We first checked the alignment for the best fitting 

evolutionary model with MEGA 6 (Tamura et al., 2013). The model with the least Bayesian 

Information Criterion was considered to best describe the substitution pattern, and was 
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subsequently used for tree construction, in this case the Kimura-2 parameter model with gamma 

distribution (K2+G). Tree topologies were then calculated with the Maximum Likelihood and 

Neighbor Joining algorithms as implemented in MEGA 6.  

The sequence reads analyzed for this manuscript have been uploaded to the Short Read Archive 

under the project ID "PRJEB10957". The full study can be accessed under the following 

link:http://www.ebi.ac.uk/ena/data/view/PRJEB10957. 

 Statistics 

Statistical analyses were performed using R (R Core Team, 2014; http://www.R-project.org). 

To prepare data for statistical analyses, qPCR abundance data were log (x+1) transformed. We 

conducted pairwise Pearson and Spearman rank correlation analyses between all variables and 

observations for initial data screening. Selected highly correlated pairs were corrected for 

autocorrelation by using functions available in the nlme package. First we formulated a null 

model between two variables with function lme( ), then updated this model by using one of five 

correction procedures for spatial autocorrelation (exponential, spherical, linear, Gaussian, 

rational quadratic). The best fitting correction according to the Akaike Information Criterion 

(AIC) was chosen for the final regression model. For pairwise comparisons of group means 

between the six sampling dates, we used the function glht() of the package multcomp with 

method “Tukey”  on generalized linear models with the appropriate distribution families for 

each group of variables (Hothorn et al., 2008; Herberich et al., 2010). Non-random spatial 

dependence, i.e. the relation of data points in dependency of their distance, was analyzed using 

the geostatistical approach published by Steffens et al. (2009). A semi-variogram describes the 

degree of variability as a function of spatial separation of samples (Grundmann & Debouzie, 

2000). Spherical models were fitted to each experimental semivariogram using the gstat fitting 

routine of R. Furthermore, exponential models were tested if no spherical model could be fitted. 

For underlying equations, see e.g. (Steffens et al., 2009). In case no model could be fitted, either 

the parameter under investigation is homogeneously distributed or the spatial distribution is 

independent of the scale chosen (see Table S 7.3) and thus could not be visualized by kriged 

maps. More detailed information on our geostatistical approach is provided in the supplemental 

material. The variogram model was used in order to interpolate the measured data to non-

sampled sites within the investigated plot (Steffens et al., 2011) and kriged maps were 

constructed to visualize the spatial structure of gene abundances at the plot scale. Maps were 

constructed by ordinary kriging taking advantage of the ArcGIS Software (ArcMap 10.0, 

ESRI® 2010, Germany) wherever a model could be fitted to the dataset. 
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7.4 Results 

 Temporal dynamics of ammonia- and nitrite-oxidizers  

To assess putative temporal changes in the abundances of ammonia- and nitrite-oxidizers, we 

determined the gene copy numbers of the 16S rRNA gene (NS), nxrA (NB) and amoA (AOA 

and AOB) (Table S 7.2, Figure 7.1). Numbers of 16S rRNA genes for NS  were in the range of 

107 to 108 gene copies per g soil dry weight, whereas NB were lower in abundance with 105 to 

106 nxrA gene copy numbers. Exceptions were a few sampling sites with very high gene copy 

numbers exceeding 107. Gene copy numbers indicative for NS increased from April to May, 

and declined slightly in June and August / October when lowest values were detected. In 

November, the abundance of NS-like NOB increased to its maximum. Interestingly, the 

seasonal dynamics of AOA abundance closely resembled the trend of the NS gene abundance 

pattern with a decline in August and October and highest values in May and November. AOB 

abundance, in contrast, exhibited highest gene copy numbers in August and October, coinciding 

with the lowest gene abundances for AOA and NS; lowest gene copy numbers were detected 

in May / June and November. Throughout the entire season, AOB copy numbers (in the range 

of 106) were generally lower than AOA (in the range of 108). In terms of statistical significance, 

changes in abundance for NS, were not significant after the tested model was corrected for 

spatial autocorrelation. For AOA, AOB, and NB however, significant changes were found for 

the June-August transition (p<0.01), as well as for the decrease of AOA (p<0.001) and NB 

(p<0.05) between October and November, and for NB in early spring (p>0.01). 

 

Fig. 7.1 Boxplots for seasonal dynamics of ammonia- and nitrite-oxidizers. Depicted are gene copy 

numbers. AOA = ammonia-oxidizing archaea, AOB = ammonia-oxidizing bacteria, NB = 

Nitrobacter-like, NS = Nitrospira-like  
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 Spatial analysis of gene abundances of ammonia- and nitrite-oxidizers  

In order to detect spatial structures of the investigated groups at the plot scale of 10 m², 

geostatistical semivariogram analyses were conducted. Table S 7.3 shows semivariogram 

parameters of gene abundance data for the respective sampling dates. Spherical models could 

be fitted for all sampling dates for NS-like NOB, whereas spatial dependence was found at only 

few dates for the other genes.  

Range, nugget and sill were determined to assess the spatial behavior of variables (Table S 7.3). 

For most gene abundance data, spatial dependence was captured within the sampling area with 

seasonally varying ranges of autocorrelations (4.9-12.8 m for AOA, 2.3-9.1 m for AOB, 1.2-

21.2 m for NS, 4.5-12.3 m for NB). For some parameters, a far-reaching spatial autocorrelation 

would be expected when the determined range exceeds the boundaries of the plot as e.g. for 

NS-like NOB with a range of 21 m in October, which did not represent a reliable range, because 

it exceeded the maximum distance between sampling points. Gene abundances of NB in 

November and NS in April and October exhibited an extremely high spatial dependency (above 

87 %). For NB, the degree of spatial dependence increased during the year. However, the 

seasonal dynamics of NS-like NOB first revealed a decline in spatial dependence visible until 

June, followed by an increase in August and again in November. In October, the highest spatial 

dependency of about 93% was reached for NS-like NOB. The degree of spatial dependence was 

rather low for AOA and AOB (between 2.4 and 36.5%) and the data sometimes exhibited a 

large nugget effect, implying high non-measured small-scale variability. 

Kriged maps, used to visualize the spatial distribution of the investigated variables, revealed 

highly variable spatial distributions over the sampling period for both NB and NS-like NOB 

(Figure 7.2). In case no map could be constructed, the spatial distribution of the parameter of 

interest was too homogeneously distributed to be visualized by a spherical model or could not 

be resolved at our sampling scale. On the sampling dates for which kriged maps could be 

generated for NB, varying distribution patterns were detected, ranging from medium-sized 

patches in November (Figure 7.2 A6), to large patches with hotspots in April (Figure 7.2 A1), 

and finally more homogeneous structures in August (Figure 7.2 A4) with higher abundances in 

the upper part of the plot interspersed by a few smaller nested patches. Spatial autocorrelation 

patterns of NS, observed at each sampling date, varied extensively with the season (Figure 7.2 

B1-6). NS abundance was spatially structured in larger patches with rather smooth transitions 

from areas of low to high abundance in April and May, the latter even harboring a pronounced 

hot spot of high abundance. This rather homogeneous distribution changed to more small-scale 
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patchiness with a heterogeneous structure in June. In August, a continuous decline in 

abundances located at the upper border of the plot was evident, again becoming more 

homogeneous, with larger patches in October and lowest values in the right half of the plot. 

Pronounced small-scale heterogeneity with a relatively high number of small sharply zoned 

patches could be demonstrated for NS-like NOB in November; AOA distributions could be 

displayed in August and October (Figure 7.2 C4-5) revealing larger homogeneous patchiness 

with gradient-like structures of gene abundances. AOB gene abundance was more 

heterogeneously distributed in May than in the other months with smaller patches and a more 

pronounced gradient-like structure in the upper right corner of the plot (Figure 7.2 D2-3).  

 

Fig. 7.2 Spatial distribution of selected variables. Kriged maps were constructed for gene 

abundances of (A) nxrA gene (NB), (B) 16S rRNA genes (NS), (C) amoA gene 

(AOA), (D) amoA gene (AOB) and for soil ammonium content (E) at different 

sampling dates (1 - 6). Gene abundances are given in gene copy numbers per g soil 

(dry weight), ammonium concentration is given in µg N per g soil (dry weight). 

AOA = ammonia-oxidizing archaea, AOB = ammonia-oxidizing bacteria, NB = 

Nitrobacter-like nitrite-oxidizing bacteria, NS = Nitrospira-like nitrite-oxidizing 

bacteria. 
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Spatial variability was more homogeneous in November. Figure 7.2 E5 shows the spatial 

distribution of NH4
+ with a pronounced large patch of high concentration on the right side of 

the plot, corresponding to the lowest abundances for AOA and NS gene copy numbers 

measured at this sampling date. 

 Phylogenetic analysis of active nitrite-oxidizing bacterial community composition  

To further differentiate the various groups of active NOB, a 16S rRNA based barcoding 

approach was performed and OTUs affiliated with selected NOB groups (NS and NB) were 

further analyzed. In the 16S rRNA dataset, we detected 40 OTUs assigned to genus Nitrobacter 

based on 97% sequence similarity of the variable region 3, but a single OTU accounted for 

more than 99% of reads associated with this genus. This particular OTU also was the second 

most abundant signal in the entire dataset and was represented by 5.4 million reads (~1.1% of 

the entire bacterial dataset). For the phylum Nitrospira, 285,000 reads (0.063% of all bacterial 

reads) could be assigned to 36 OTUs. However, 33 of these OTUs were found to be spurious, 

hence, we focused on the remaining three generalist OTUs in this phylum, which accounted 

99.3% of all NS assigned reads and appeared in all samples. The three representative sequences 

for these OTUs exhibited sequence similarities between 92% (01 vs 03), 93% (02 vs 03) and 

97% (01 vs. 02), respectively. 

The relative abundance of the NB OTU strongly increased from April to May (p < 0.001) and 

from August to October (p < 0.01), when this OTU reached its annual maximum, decreasing 

significantly again between October and November (p < 0.05), maintaining relatively constant 

levels between May and August (Figure S 7.1). This NB-OTU at some dates exhibited very 

high correlation to the NS-OTUs (especially in April and August). Relative abundances of the 

three NS-OTUs were stable during the first three sampling dates of the year. For all three OTUs, 

the abundances increased from June to August (p < 0.05, except OTU 01, which was not 

significant (p = 0.06). Interestingly, the activities of OTUs 01 and 02 both declined during the 

late season sampling dates, whereas OTU 03 remained stable, thus increasing its abundance 

compared to the other Nitrospira OTUs (Figure S7.1).   

NS OTUs showed overall positive correlations with each other (OTU01-02: r = 0.683, OTU01-

03: r = 0.530, OTU02-03: r = 0.512), with varying strengths of correlations if the sampling 

dates were analyzed separately (Figure S 7.2). According to their sequence-based similarity of 

97%, OTU01 and 02 were highly correlated at most of the sampling dates (r > 0.650). 

Correlations with NS OTU03 were generally weaker, but still significant. NS OTUs did not 
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show any correlation to ammonium (Figure S 7.2). At the beginning and towards the end of the 

year, significant correlations of NS OTUs with nitrate content were found, especially for OTU 

02 (up to r = 0.42 in November). A mild correlation between nitrate and the Nitrobacter_OTU 

was also found in October. 

A phylogenetic tree was constructed based on the Neighbor Joining algorithm (Figure 7.3) and 

detailed examinations were performed on the affiliation of the NS OTU-sequences to 

sublineages of NS-like NOB, as designated in Daims et al. (2001) (Table S 7.4). The topology 

of the neighbor joining tree was further confirmed by the maximum likelihood method (data 

not shown). NS OTU01 and OTU02 were located in proximity to sublineages I, II and VI. It is 

of note that for some taxa, the variable region 3 of the 16S rRNA cannot clearly resolve the 

sequence affiliation beyond the genus level, which seemed to happen in the case of some of the 

sublineages. Both conducted methods however, place NS OTU03 with a similarity level of 94 

% in the sublineage V of Nitrospira with Candidatus Nitrospira bockiana as cultured 

representative. To determine whether only gene abundances or also the composition of the 

contributing NS sublineages exhibited seasonal dynamics, we followed the changes in one 

selected subplot over time. We chose one of the 30 available subplots (see sampling scheme 

Fig.S 5.2 in Regan et al., 2014) that exhibited the most pronounced dynamics in 16S rRNA 

gene abundances for NS-like NOB (Figure 7.4C). We compared shifts in the relative activity 

of OTUs by plotting their relative abundances against each other, setting the total abundance to 

1 (Figure 7.4A). The proportions of the NS OTU abundances did not change during the first 

half of the year. From August on, the relative abundance of OTU03 in particular increased at 

each subsequent sampling date until the end of the year. While this effect was observed for the 

whole dataset (Figure 7.4B), it was especially pronounced in this location, suggesting spatial 

heterogeneity of species distribution.  
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Fig. 7.3 Phylogenetic tree. The evolutionary history was inferred using the Neighbor-

Joining method. The optimal tree with the sum of branch length = 0,39985022 is 

shown. The percentage of replicate trees in which the associated taxa clustered 

together in the bootstrap test (100 replicates) and are shown next to the branches. 

The evolutionary distances were computed using the Kimura 2-parameter method 

with gamma distribution (K2+G) and are in the units of the number of base 

substitutions per site. The analysis involved 10 nucleotide sequences. All positions 

with less than 10% site coverage were eliminated. That is, fewer than 90% 

alignment gaps, missing data, and ambiguous bases were allowed at any position. 

There were a total of 182 positions in the final dataset. Evolutionary analyses were 

conducted in MEGA6. Sequences contain sublineage designations as given in 

Daims et al. 2001. 
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Fig. 7.4 Relative abundances of NS-assigned OTUs. Columns display the relative 

abundances of Nitrospira-like NOB OTUs 01-03 over the season. The total 

abundance of NS-assigned OTUs was set to 100%. NS = Nitrospira-like nitrite-

oxidizing bacteria. Barcharts depict either relative abundances within one selected 

subplot (A) or represent the complete dataset (B). The location of the selected 

subplot is indicated by the red square (C).  

 

7.5 Discussion 

 Temporal dynamics and metabolic activity of NOB  

To provide insight into the temporal dynamics of active organisms and to help identify different 

sublineages of dominant NS-like NOB, the abundance of 16S rRNA as a proxy for metabolic 

activity was assessed by an Illumina sequencing approach. Discrepancies in the direct 

comparison of gene abundances on a DNA level to metabolic activity at an rRNA level are 

attributable to the fact that gene abundances do not necessarily indicate growth or reflect 

activity at the RNA level (Chen et al., 2008; Offre et al., 2009; Blazewicz et al., 2013; Placella 

& Firestone 2013; Daebeler et al., 2014). Marginally higher abundances of NS-assigned 16S 

rRNA sequences on the RNA level (Figure S 7.1), compared with lower Nitrospira rRNA 16S 

gene abundances on the DNA level during autumn (Table S 7.2) may be explained by high 

activity of a few organisms in cell-maintenance or in the investigated processes (Blazewicz et 

al., 2013). In the first half of the year, the reverse was observed. This may indicate that large 
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numbers of NS-like NOB were inactive under suboptimal growth conditions, in a state of 

starvation and dormancy (Ettema & Wardle 2002). Enzyme stability (Chen et al., 2007; Ke et 

al., 2013) or the constitutive expression of multiple gene copies (Poly et al., 2008; Lücker et 

al., 2010) could be important prerequisites for an immediate reaction to changing environmental 

conditions such as the sporadic availability of substrate (Blazewicz et al., 2013).  

Temporal analysis demonstrated pronounced seasonal dynamics of AO and NO both with 

respect to their abundances and to the numerical dominance of AOA within the AOs and NS 

within the NOs at all measured dates (Table S 7.2), corresponding to previous studies (Leininger 

et al., 2006; Adair & Schwartz 2008; Meyer et al., 2013; Ollivier et al., 2013; Stempfhuber et 

al., 2014). The higher abundance of genes involved in particular transformation processes may 

result not only from ammonia- or nitrite-oxidation, but also from potential mixotrophic growth, 

as proposed for NS and AOA (Prosser & Nicol 2008; Jia & Conrad 2009). The high standard 

deviations in gene copy numbers at one sampling date therefore highlight the importance of 

supplementing temporal analysis with spatial structure analysis in the field by the identification 

of local hotspots.  

 Temporal dynamics of spatial niche differentiation amongst NOB 

Functionally complementary microbial groups often differ in their responses to environmental 

changes, shaping functional niches (Maixner et al., 2006). Studies have addressed spatial niche 

differentiation patterns of functionally redundant organisms often co-existing at the same 

spatial scale (Schauss et al., 2009; Schleper 2010; Wertz et al., 2012; Ollivier et al., 2013) or 

differing in their spatial distribution (Krause et al., 2009; Krause et al., 2013). Our data showed 

seasonally varying patterns of niche differentiation: spatial niche separation between NS and 

NB was most evident at our study site in April, as large patches of high gene abundance were 

clearly spatially discriminated (Figure 7.2 A1, B1), whereas homogeneous and congruent 

abundance patterns for both NS and NB were found in August, indicating co-occurrence at the 

same spatial scale (Figure 7.2 A4, B4). We attribute these co-occurrence patterns to different 

adaptations to substrate concentrations, making possible the co-existence of NB and NS by 

reduced “interspecific” competition (Hibbing et al., 2010): It has been suggested that NB as r-

strategists exhibit high growth rates and activity and may therefore out-compete NS under high 

nitrite levels (Schramm et al., 1999; Maixner et al., 2006), while NS may have a competitive 

advantage over NB under nitrite-limitation (Lücker et al., 2010). In November, rather 

undifferentiated and very patchy patterns were detected for NS and NB, without areas of clear 

spatial separation or congruence (Figure 7.2 A6, B6). 
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Nitrite concentration is usually below the detection limit in natural terrestrial systems, 

transformed rapidly to prevent its toxic accumulation (Burns et al., 1995; Attard et al., 2010; 

Xia et al., 2011; Ke et al., 2013). One can infer, however, from the absence or presence of AO 

spatial distribution patterns at the same investigated scale, information about the nitrite content 

in soil, assuming that substrate availability shapes the niche differentiation patterns of NOB. 

Unfortunately, we could not visualize environmental variables for April and November that 

could explain the spatial distribution of NOB phyla. Nevertheless, we may speculate that the 

absence of ammonia-oxidizers at the observed spatial scale in April (Figure 7.2) suggests that 

nitrite formation derived from AO was low. Under such nitrite substrate-limited conditions, 

other niche determining factors operating at the investigated scale may have been more 

important. For example, the measured high soil moisture content in April (Regan et al., 2014) 

suggests that oxygen status could have influenced spatial niche separation. NB are presumed to 

prefer high oxygen conditions and thus compete with heterotrophic organisms or AO for 

oxygen (Kim & Kim 2006), while NS could occupy spatial niches with extremely low oxygen 

content (Gieseke et al., 2003; Lücker et al., 2010). However, especially under low nitrite / 

nitrate conditions, NOB can switch to nitrite reduction, i.e. the reduction of nitrate to nitrite, 

which can be catalyzed by NXR (Sundermeyer-Klinger et al., 1984; Bock et al., 1988; Bock & 

Wagner 2006). Under anoxic conditions, some NB may also perform the complete 

denitrification process (Freitag et al., 1987). The ability of NB to also exhibit heterotrophic 

growth could then provide a competitive advantage over NS (Freitag et al., 1987; Lücker et al., 

2010).  

 Temporal dynamics of spatial niche differentiation amongst sublineages of NOB 

Niche differentiation has been demonstrated within genera and species of NOB. Putative shifts 

within NB-like NOBs however, would not have been captured by our approach, since the V3 

region of the 16S rRNA gene might not be sufficient to distinguish between the 

phylogenetically highly similar NB species (Freitag et al., 2005; Alawi et al., 2009), closely 

related to Bradyrhizobia (Orso et al., 1994). Thus we restricted our subsequent phylogenetic 

analyses to Nitrospira community composition for which the co-existence of up to three distinct 

sublineages has been reported (Freitag et al., 2005; Maixner et al., 2006; Lebedeva et al., 2008), 

in line with our results. NS OTU01 and OTU02 were phylogenetically placed in close proximity 

to cultured or enriched representatives of different sublineages (Figure 7.3, see Table S 7.4 for 

details): sublineage VI (Lebedeva et al., 2011), sublineage II, (Ehrich et al., 1995; Daims et al., 

2001) and sublineage I (Lücker et al., 2010). Sublineages I (Spieck et al., 2006) and II correlated 
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to the presence of AOA in volcanic grassland soils (Daebeler et al., 2014), are adapted to low 

substrate and oxygen concentrations (Maixner et al., 2006; Wertz et al., 2012; Ke et al., 2013). 

OTU03 of NS was affiliated to Candidatus N. bockiana with 94% similarity (Figure 7.3), and 

similar substrate preferences that hold true for Candidatus N. bockiana as cultured 

representative may also apply to other members of sublineage V (Lebedeva et al., 2008), such 

as the incapability to be stimulated by organic substrates or to take up pyruvate. NS OTU03 

may exhibit similar characteristics. However, transferring knowledge on habitat preferences 

attained from cultivated species or enrichment studies to pathways and metabolism of 

microorganisms in their natural habitats has to be handled with care (Regan et al., 2003; Prosser 

& Nicol 2012). 

We therefore addressed the question of whether or not the microbial structure at sampling sites 

with high gene abundances is fundamentally different from that at sites of low abundance with 

regard to their NS OTU composition (Figure 7.4). We selected the subplot with the most 

pronounced changes in NS abundance. Despite varying gene abundances, the community 

composition and its relative metabolic activity did not change during the first half of the year, 

implying the co-existence of sublineages under substrate-limitation. In the second half of the 

year, the relative proportion of OTU03 in particular, affiliated with sublineage V (Lebedeva et 

al., 2008), increased. We speculate that nitrite operates as a niche determining factor in 

“intraspecific” competition and may have caused shifts in the relative abundances of OTUs and 

affiliated sublineages from August on (Maixner et al., 2006), as even sublineages of the genus 

NS have been proposed to exhibit different preferences for nitrite concentrations (Grundmann 

& Debouzie 2000; Maixner et al., 2006).  

 Spatial interactions of nitrifying organisms  

Studies on nitrifiers at spatial ranges from µm (Maixner et al., 2006) to the landscape scale 

(Grundmann & Debouzie 2000;Bru et al., 2011) have demonstrated that the factors influencing 

spatial dependency operate at different scales: soil texture or land management practices operate 

at larger spatial scales while, for example, vegetation can operate at smaller scales (Ettema & 

Wardle 2002; Ritz et al., 2004). Nitrification at some sampling dates may have occurred at 

nested scales which were not characterized. High nugget effects for AOA and AOB abundances 

at some dates imply the presence of unmeasured variance at smaller scales (Table S 7.3) 

(Steffens et al., 2009). The ranges of spatial dependence of the abundance data in this study 

(Table S 7.3) were, however, similar to spatial autocorrelations ranging from 1.4 – 7.6 m for 

AOA and AOB in a previous study in the same region (Keil et al., 2011), and corresponded 
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also to those found in studies at mm to m scales (Nunan et al., 2003; Franklin & Mills 2009).  

Surprisingly, our spatial analysis at the plot scale did not confirm the hypothesis that 

nitrification could be attributed mainly to a close functional interaction reflected by the spatial 

dependence of AOB and NOB, although many studies have reported their functional interaction 

(Mobarry et al., 1996; Schramm et al., 1999; Abeliovich 2006; Xia et al., 2011; Wertz et al., 

2012). AOB and NB have been shown to dominate nitrification under high substrate-conditions 

(Shen et al., 2008; Jia & Conrad, 2009; Di et al., 2010; Wertz et al., 2012; Ke et al., 2013). In 

contrast, the congruent spatial distributions of AOA and NS and their positively correlated 

abundances in autumn (r = 0.574 for Oct.) (Figure 7.2, Table S 7.5), strongly suggest an 

interaction of AOA and NS in performing the sequential transformation steps of nitrification. 

This is further supported by reports on the co-occurrence of AOA and NS in the same soil 

compartments (Lebedeva et al., 2011; Ke et al., 2013; Daebeler et al., 2014). Since a sensitivity 

of AOA to nitrite accumulation was demonstrated recently for Nitrosotalea isolates, a close 

mutualistic relationship between AOA and NOB seems reasonable (Lehtovirta-Morley et al., 

2014). Although the exact mechanisms are still under investigation, it has been demonstrated 

that both AOB and AOA are able to catalyse the transformation of ammonia to nitrite (e.g. 

Tourna et al., 2011). Efficiency and kinetics of ammonia-oxidation and consequently the 

release of nitrite might however vary between distinct phyla and environmental conditions 

(Ward et al., 2011). Thus it can be speculated that NOB respond to different levels of nitrite 

that are either determined by kinetics of ammonia-oxidation or by the relative distance of NOB 

to the source of their substrate (Maixner et al., 2006), according to their distinct preferences for 

nitrite concentrations. The temporal and spatial interaction of AOA and NS and their linkage to 

ammonium- and nitrate-pools were further supported by a Pearson-coefficient-based network 

analysis for October (Figure 7.5), when congruent spatial patterns of AOA and NS were most 

pronounced (Figure 7.2, Figure 6, Table S 7.5) and all investigated molecular markers were 

highly correlated, with each other, which was observed only in October (Figure S 7.3). Several 

significant, positive pairwise correlations were detected in October. Correlations between 

nitrate and NS OTU03, AOA and NS, and NS and NS OTUs 01 and 02, respectively, were all 

found to be significant at padjusted<0.05, and remained significant after correction for spatial 

autocorrelation. Furthermore, strongly positive correlations of AOA and NB were observed as 

well (April: r = 0.576, October: r = 0.561), but their interaction at the spatial scale could not be 

identified by our geostatistical analyses (Table S 7.5).  
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Fig. 7.5 Network analysis of interactions between NS-assigned OTUs, gene abundances and 

nitrification-associated nitrogen-pools in October. Depicted are pearson correlations 

between three parameter groups for sampling date October: gene abundances (light 

blue circles), Nitrospira OTUs 01-03 (dark blue circles) and nitrate and ammonium 

concentrations (yellow circles), respectively. Edges between the nodes are weighted 

according to the correlation strength. Positive coefficients are colored in green, 

negatives are displayed in red. AOA = Ammonia-oxidizing archaea, NS = 

Nitrospira-like nitrite-oxidizing bacteria (NOB).  

Nitrate concentration was positively connected most clearly with OTU03 in October (r = 0.42) 

(Figure S 7.2), which hints at the active participation of sublineage V (Figure 7.3) in the 

production of nitrate and for subsequent nitrite oxidation from August on (Figure 7.4). The 

ability of most NOB to simultaneously convert nitrate to nitrite implies that their performance 

can influence the nitrate pool in different directions, impeding determination of clear positive 

or negative correlations (Figure S 7.2). The positive correlation of AOA and nitrate (Figure 7.5) 

was likely due to the direct connection of AO and NO processes, the former delivering the 

product for the latter transformation step. AOA abundance was strongly negatively correlated 

to ammonium content, which corresponds to their spatial distribution patterns, which varied 

inversely (Figure 7.2 C5, E5), indicating consumption of ammonia as substrate by AOA 

(Schleper & Nicol 2010; Ke et al., 2013). The negative correlation of nitrate and ammonium (r 

= 0.233) (Figure 7.5, Figure S 7.2) could be due to a decline in the ammonia pool by AO, 

resulting in an increase in nitrate content due to NO. This confirms that the complete 

nitrification process based on interactions between ammonia and nitrite-oxidizers can be 

followed at the investigated scale only at very limited periods during the year. It must be 

considered however, that nitrification at other dates may be performed by organisms that 

catalyse complete nitrification (commamox)  that have not been assessed by our study of spatial 

interaction patterns (Daims et al., 2015; van Kessel et al., 2015).  
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Fig. 7.6 Univariate linear models between pairs of variables in October. Pairs of variables were 

selected from the network analysis (figure 4) to show additional support for our conclusions 

after accounting for spatial autocorrelation. Red lines indicate the uncorrected, gaussian 

regression models, whereas yellow, dashed lines represent the same models after correction 

for spatial autocorrelation. Blue lines are derived from Loess fits. All models are significant 

at p<0.05, except for AOA/Ammonium (p>0.1) and NS_OTU02/NS (p=0.0565), which 

however show significant spearman rank correlations, possibly pointing at significant, non-

parametric models. Although the model improvements for all variables were very small 

according to AIC shifts, NS and the NS OTUs 01 and 02 were best described with 

exponential variograms and NS OTU03 with the spherical variogram. For nitrate and AOA, 

no spatial model led to model improvements. 

Different growth strategies, such as potential mixotrophy or heterotrophy may obscure the 

interactions between AOA and NS. Consequently, the utilization of alternative substrates 

(Prosser & Nicol 2008; Tourna et al., 2011; Prosser & Nicol 2012) for energy production and 

assimilation of different carbon sources (Lehtovirta-Morley et al., 2013) must also be taken into 

account. The potential for mixotrophic growth could increase the competitiveness (Rogers & 

Casciotti 2010; Lehtovirta-Morley et al., 2014) of AOA and NS over their counterparts by 

providing a growth advantage and assuring their greater flexibility in reacting to suboptimal 

substrate-limited conditions. An increase of organic material, as observed in autumn, due to 

plant litter, may further support the growth of mixotrophic organisms (Brown et al., 2013). 

Differences in preferences for, e.g., organic compounds or other characteristics have been 

reported even within particular AOA species in soils (Offre et al., 2009; Hatzenpichler 2012; 
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Lehtovirta-Morley et al., 2014) and for ecotypes of Nitrospira (Maixner et al., 2006). This 

heterogeneity could affect patterns of spatial distribution and inhibit correlation of abundances 

to environmental parameters. Given this, it becomes necessary to identify drivers which may 

influence nitrifiers directly or indirectly via changing substrate availability or ammonia sources 

(Prosser & Nicol 2012). AOA, for example, prefer mineralized nitrogen, derived from decaying 

plant material, which is the main source of inorganic nitrogen at the end and before start of the 

vegetation period, rather than  ammonium directly applied by fertilization (Offre et al., 2009; 

Levičnik-Höfferle et al., 2012).  

Even occasional mowing or grazing may influence nitrogen availability and consequently the 

microbes performing nitrification (Patra et al., 2005; Patra et al., 2006). We assumed, therefore, 

that the a mowing event in August (2 weeks before sampling) affected the observed nitrification 

activity in autumn (Both et al., 1992), uncoupling the plants’ competition for substrate, thereby 

enabling AO to better access the ammonium pools in soil (Wolters et al., 2000; Hamilton et al., 

2001; Patra et al., 2006; Le Roux et al., 2008; Kuzyakov & Xu 2013). The heterogeneous 

ammonium distribution may also be linked to plant diversity, as strong spatial distribution 

patterns of legumes were observed mainly in October at the site (Regan et al., 2014). 

This study presents evidence for both temporal and spatial correlation of ammonia-oxidizing 

archaea and Nitrospira in an unfertilized grassland site, indicating their interrelationship in 

performing the nitrification process over one growing season. The obtained results, however, 

are based on a one-year study. Thus, it might be interesting to assess spatial interaction patterns 

at larger temporal scales to confirm stability of the observed patterns. However, Nitrobacter 

and ammonia-oxidizers might interact at scales not covered by our study, below the m² range, 

and may require subsequent studies using microscopic techniques. 

We demonstrated an interaction of AOA and NS under unfertilized conditions, and it would be 

interesting to extend this approach to sites under high land-use intensity with different 

fertilization practices to compare both the major actors and their interactions (Keil et al., 2011). 

Recently, alternative possibilities have been described for nitrifiers to gain ammonia using 

cyanate as substrate (Stein 2015). It has been demonstrated that ammonium derived from 

cyanate transformation by NS can be used by ammonia-oxidizing microbes (Palatinszky et al., 

2015); such alternative feedback processes might exist between functional guilds of nitrification 

and play an important role for the stabilization of nitrifier networks mainly in fertilized soils.  
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7.7 Supplementary Experimental Procedures 

 Study site description and sampling design 

In the frame of the Scalemic project, the following abiotic soil parameters were determined 

and did not change over the season: pH (6.7), carbon (66.0 mg g
-1

) and nitrogen (7.0 mg g
-

1
) content, bulk density and soil texture. Extractable organic carbon was in the range 

between 208.25 µg g
-1 

and 100.19 µg g
-1

, decreasing over the year. Extractable organic 

nitrogen ranged from 1.69 µg g
-1 

to 11.04 µg g
-1 

with lowest values in August and November. 

Highest values for NH4
+ 

and NO3
- 

have been detected in April (15.70 µg g
-1 

and 17.99 µg g
-

1
, respectively), lowest values in October (5.43 µg g

-1 
and 7.40 µg g

-1
, respectively). Soil 

moisture was dynamic over the year, exhibiting highest water content in April (57.56%) and 

lowest soil moisture contents in May and October (27.97% and 26.79%). For further 

information see Regan et al. (2014) and the corrigendum Regan et al. (2015).  

At each sampling date, before soil cores were collected, 20 cm x 20 cm grids were centered 

over each of the 60 sampling points. Aboveground biomass was removed from each grid by 

cutting all visible plants at ground level. Samples were then sorted into the following categories: 

litter (dead leaves and other dead plant matter on soil surface), grasses (Poaceae), legumes, 
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forbs, bryophytes, and Rhinanthus minor. Vegetation coverage for all sampling dates for 

the three most abundant plant categories (grasses, forbs, legumes) and litter mass was 

calculated as g per 400 cm
2 

grid. Grasses dominated at the first three sampling dates, but were 

rather low in abundance from August to November. Forbs followed the pattern of grasses, but 

with lower abundance than grasses in May and June. Legumes were the only plant group to 

increase after mowing, appeared from June on and were highest in October. Litter mass 

exhibited a different pattern; it declined from April to June, increased after mowing and 

continued to increase at each of the last three sampling dates. Details can be found in Regan et 

al. (2014). 

 Geostatistical analysis 

Geostatistical semivariogram analyses were carried out using the g-stat package (Pebesma, 

2004) for the R environment (R 3.0.2, R Development CoreTeam, 2008). Nugget (intercept 

at the origin), sill (the plateau at which the distance based variance values levels off, 

representing the maximum semivariance) and range (maximal distance of spatial 

autocorrelation) have been determined by semivariogram analyses and used for calculation of 

measures of spatial dependence and variance. P-sill is defined as the part of total variance that 

is spatially explained. The degree of spatial dependence is calculated by dividing nugget by 

the sum of nugget and sill (Fortin and Dale, 2005; Steffens et al., 2011). Values below 

25% resulting from low nugget values related to maximal semivariance, indicate the 

presence of spatial dependency, whereas high values above 75% would point to the absence 

of spatial dependency (Cambardella et al., 1994; Steffens et al., 2009; Steffens et al., 2011). 

Our results (values below 49%) indicated a spatial dependence for all measured variables at 

sampling dates when a model could be fitted (Steffens et al., 2009). An appropriate model 

was fitted to each experimental semivariogram using the gstat fitting routine. Spherical 

models were tested first, as they would best explain spatial dependencies (Berner et al., 2011). 

Furthermore, exponential models were tested if no spherical model could be fitted. The fitting 

of a geostatistical model indicated that the selected spatial scale of the study might be 

appropriate to describe the spatial distribution of the observed parameters (Steffens et al., 

2009). Step widths between 0.6 and 0.8 m were applied. 

The display of spatial distribution of AOA and AOB variables reflects the rather weak spatial 

dependence after fitting of different settings to construct kriged maps. Nevertheless, the maps 

display a rough distribution of variables, for visual comparison of e.g. co-localization and hence 

are essential for gaining deeper insights in the interaction of functional groups under 
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observation. 
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7.8 Supplementary Figures and Tables 

 Supplementary Figures 

 

Fig. S 7.1 Boxplots for seasonal dynamics of nitrite-oxidizing bacteria associated OTUs, showing 

relative read abundances. 
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Fig. S 7.2 The diagram shows pairwise comparisons of NS-like-nitrite oxidizing bacteria-associated 

OTU-abundances as well as nitrate and ammonium concentrations in the soil . Each 

row/column represents one of the 5 parameters, with the diagonal showing density plots. 

The lower triangle of the plot matrix consists of scatterplots, with the corresponding 

Pearson correlation coefficients appearing in the upper triangle. Data is always colored 

according to the sample dates. The scale for the OTU is representing percentage 

abundances; for ammonium and nitrate, concentrations (given in µg N per g soil dry 

weight) are used. 
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Fig. S 7.3 Network analysis of interactions between NS-assigned OTUs, gene abundances and 

nitrification-associated nitrogen- pools. Depicted are Pearson correlations between three 

parameter groups for all sampling dates: gene abundances (light blue circles), Nitrospira 

OTUs 01-03 (dark blue circles) and nitrate and ammonium concentrations (yellow 

circles), respectively. Edges between the nodes are weighted according to the correlation 

strength. Positive coefficients are colored in green, negatives are displayed in red. AOA = 

Ammonia- oxidizing archaea, NS = Nitrospira-like nitrite-oxidizing bacteria (NOB). 
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 Supplementary Tables 

Table S 7.1 Thermal profiles, primer and standards used for real-time PCR quantification of the following genes: amoA (AOA), amoA (AOB), 

nxrA (NB) and 16S rRNA genes (NS). AOA = ammonia-oxidizing archaea, AOB = ammonia-oxidizing bacteria, NB = Nitrobacter-like, NS = 

Nitrospira-like. 

Target gene Standard source Primer Primer reference Thermal profile No. of cycles 

amoA (AOA) Fosmid clone 54d9 amo19F Leininger et al., 2006 94°C/45 s, 55°C/45 s, 72°C/45 s 40 

  CrenamoA16r48x Schauss et al., 2009   

 

amoA (AOB) 

 

Nitrosomonas sp. 

 

amoA1F 

 

Rotthauwe et al., 1997 

 

94°C/60 s, 58°C/60 s, 72°C/60 s 

 

40 

  amoA2R Rotthauwe et al., 1997   

 

nxrA (NB) 

 

Nitrobacter hamburgensis 

 

F1norA 

 

Poly et al., 2008 

 

94°C/30 s, 55°C/30 s, 72°C/30 s 

 

40 

 X14 (DSMZ 10229) R2norA Wertz et al., 2008   

 

16S rRNA gene (NS) 

 

Nitrospira 16S rRNA gene 

 

Nspra 675f 

 

Graham et al., 2007 

 

94°C/30 s, 64°C/30 s, 72°C/60 s 

 

40 

 Accession No. FJ529918 Nspra 746r Graham et al., 2007   
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Table S 7.2 Gene abundances for amoA (AOA), amoA (AOB), nxrA (NB) and 16S rRNA genes (NS) in copy numbers per g of soil (dry weight) at different 

sampling dates. Values represent mean values for the complete plot at the respective date including corresponding standard deviations. AOA 

= ammonia-oxidizing archaea, AOB = ammonia-oxidizing bacteria, NB = Nitrobacter-like, NS = Nitrospira-like. Asterisks indicate transitions 

between months which are statistically significant based on two models (i) linear Gaussian mixed models with time as random effect and corrected 

for spatial autocorrelation, but not for heteroscedasticity; and (ii) generalized linear models under the negative binomial distribution with correction 

for heteroscedasticity, but not for temporal and spatial random effects. Significance levels: * < 0.05, ** <  0.01, *** < 0.001, corrected for multiple 

testing. 

 

Gene abundances 

(copies g-1 soil dw) 

 

Date 
 

April 

 

May 

 

June 

 

August 

 

October 

 

November 

nxrA 

(NOB-NB) 

 

8.07 105  ± 2.10 106 

1.97 107  ± 8.90 107 

**/* 

 

6.04 106  ± 3.19 107 

5.25 105  ± 4.80 105 

**/*** 

 

4.53 105  ± 7.38 105 

9.12 105  ± 8.40 105 

*/*** 

16S rRNA gene  

(NOB-NS) 

 

5.19 107  ± 3.38 107 

1.01 108  ± 9.71 107 

-/** 

 

9.46 107  ± 5.88 107 

 

6.79 107  ± 4.99 107 

 

6.37 107  ± 4.57 107 

1.05 108  ± 5.99 107 

-/** 

amoA 

(AOA) 

 

3.08 108  ± 1.69 108 

 

3.78 108  ± 3.18 108 

 

3.24 108  ± 3.08 108 

1.15 108  ± 1.11 108 

***/** 

 

1.81 108  ± 1.08 108 

5.34 108  ± 4.26 108 

***/*** 

 

amoA 

(AOB) 

 

2.58 106  ± 3.54 106 

 

1.68 106  ± 2.84 106 

 

1.02 106  ± 8.19 105 

3.46 106  ± 3.25 106 

***/*** 

 

3.30 106  ± 4.33 106 

 

1.27 106  ± 6.41 105 
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Table S 7.3 Variogram parameters of gene abundances for amoA (AOA), amoA (AOB), nxrA (NB) and 16S rRNA genes (NS) at different sampling dates. 

Nugget, sill and range values are derived from fitted spherical models; step widths between 0.6 and 0.8 m were applied. Data sets to which no 

model could be fit ted, are indicated with “-“. AOA = ammonia-oxidizing archaea, AOB = ammonia- oxidizing bacteria, NB = Nitrobacter-like, 

NS = Nitrospira-like 

 

Gene 

 

Variogram details 

Date 

April May June August October November 

 

 

nxrA 

(NOB-NB) 

Nugget 1.60 - - 100.36 - 0.12 

p-Sill 2.96 -  261.59  0.95 

Sill 4.56 -  361.95  1.07 

Range [m] 4.5 -  7.7  12.3 

Nugget / (Nugget + Sill)a 26.0 -  21.7  10.1 

p-Sill / Sillb 64.9 -  72.3  88.8 

 

 

16S rRNA 

gene (NOB-

NS) 

Nugget 171.19 3700.50 2966.92 217.77 351.60 208.79 

p-Sill 1233.20 7522.09 433.67 88.89 4930.48 103.14 

Sill 1404.39 11222.59 3400.59 306.66 5282.08 311.93 

Range [m] 4.6 8.1 7.7 2.9 21.2 1.2 

Nugget / (Nugget + Sill) a 10.9 24.8 46.6 41.5 6.2 40.1 

p-Sill / Sillb 87.8 67.0 12.8 29.0 93.3 33.1 

 

 

amoA 

(AOA) 

Nugget - - - 8997.87 8439.89 - 

p-Sill - - - 5171.11 3292.38 - 

Sill - - - 14168.98 11732.27 - 

Range [m] - - - 12.9 4.9 - 

Nugget / (Nugget + Sill) a - - - 38.8 41.8 - 

p-Sill / Sillb - - - 36.5 28.1 - 

 

 

amoA 

(AOB) 

Nugget - 280.39 0.39 - - 0.40 

p-Sill - 36.93 0.22 - - 0.01 

Sill - 317.32 0.61 - - 0.41 

Range [m] - 9.1 7.2 - - 2.3 

Nugget / (Nugget + Sill) a - 46.9 39.0 - - 49.4 

p-Sill / Sillb - 11.6 36.1 - - 2.4 

a 
Nugget / (Nugget + Sill) [%] = indicator for spatial distribution 

b 
p-Sill / Sill [%] = degree of spatial dependence 
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Table S 7.4 Nitrospira-like NOB sublineages. All known Nitrospira-like sublineages are listed with 

cultured / enriched representatives and the respective publication citation. OTUs 

detected in this study that could be affiliated to different sublineages according to their 

phylogeny are listed in the last row 

 

Sublineage 

 

Representative species 

 

Publication 

 

affiliated OTU (this study) 

Sublineage I 
Ca. Nitrospira defluvii 

Spieck et al., 2006 OTU01 / OTU02 

 

Sublineage II 

 

Nitrospira 

moscoviensis 

 

Ehrich et al., 1995 

 

OTU01 / OTU02 
 

Sublineage III 

 

16S rRNA clones 

 

Holmes et al., 2001 

 

 

Sublineage IV 

 

Nitrospira marina 

 

Watson et al., 1986 

 

 

Sublineage V 

 

Ca. Nitrospira 

bockiana 

 

Lebedeva et al., 2008 

 

OTU03 
 

Sublineage VI 

 

Nitrospira calida 

 

Lebedeva et al., 2011 

 

OTU01 / OTU02 
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Table S 7.5 Correlation matrix for gene abundance data. Pearson correlation coefficients are given 

for each sampling date and across the complete season to display putative linear 

correlations of nitrifier abundances. AOA = ammonia-oxidizing archaea, AOB = 

ammonia- oxidizing bacteria, NB = Nitrobacter-like, NS = Nitrospira-like. 

Date  AOA AOB NB NS 

April 

AOA  0.255 0.576 0.055 

AOB 0.255  0.506 0.104 

NB 0.576 0.506  0.116 

NS 0.055 0.104 0.116  

May 

AOA  -0.432 -0.008 -0.009 

AOB -0.432  0.233 -0.147 

NB -0.008 0.233  -0.089 

NS -0.009 -0.147 -0.089  

June 

AOA  0.433 0.159 -0.010 

AOB 0.433  0.265 -0.037 

NB 0.159 0.265  -0.158 

NS -0.010 -0.037 -0.158  

August 

AOA  0.523 0.473 -0.021 

AOB 0.523  0.176 -0.111 

NB 0.473 0.176  0.278 

NS -0.021 -0.111 0.278  

October 

AOA  0.239 0.561 0.574 

AOB 0.239  0.203 0.160 

NB 0.561 0.203  0.579 

NS 0.574 0.160 0.579  

November 

AOA  -0.309 0.136 0.398 

AOB -0.309  0.301 -0.112 

NB 0.136 0.301  0.123 

NS 0.398 -0.112 0.123  

all 

AOA  0.092 0.290 0.196 

AOB 0.092  0.134 -0.084 

NB 0.290 0.134  0.153 

NS 0.196 -0.084 0.153  
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8 Final Conclusions 

This thesis characterized spatial and temporal relationships of the soil microbial community, 

the nitrogen cycling microbial community, and a subset of the nitrogen cycling community with 

soil abiotic properties and plant growth stages in an unfertilized temperate grassland. 

Unfertilized perennial grasslands depend solely on soil-available nitrogen and in these 

environments nitrogen cycling is considered to be both highly efficient and tightly coupled to 

plant growth. Unfertilized perennial grasslands with high plant diversity, such as ours, have 

also been shown to have higher soil organic carbon, total nitrogen, and microbial carbon; greater 

food web complexity; and more complex biological communities than more intensively 

managed grasslands or croplands. This made the choice of study plot especially well-suited for 

characterizing the relationships we sought to identify, and made it possible to detect spatial and 

temporal patterns at a scale that has heretofore been under-examined. 

The first study used a combination of abiotic, plant functional group, and PLFA measurements 

together with spatial statistics to interpret spatial and temporal changes in the microbial 

community over a season. We found that its overall structure was strongly related to the abiotic 

environment throughout the sampling period (Table 5.2). The strength of that relationship 

varied, however, indicating that it was not constant over time and that other factors also 

influenced microbial community composition. PLFA analysis combined with principal 

components analysis made it possible to discern changes in abundances and spatial distributions 

among Gram-positive and Gram-negative bacteria as well as saprotrophic fungi. Modeled 

variograms and kriged maps of the changes in distributions of exemplary lipids of both bacterial 

groups also showed distinct differences in their distributions on the plot, especially at stages of 

most rapid plant growth (Fig. 5.2a-d). Although environmental properties were identified as the 

main structuring agents of the microbial community, components of those environmental 

properties varied over the season, suggesting that plant growth stage had an indirect influence, 

providing evidence of the complexity and dynamic nature of the microbial community in a 

grassland soil. 

The second study took the same analytical approach, this time applying it to abundances of key 

members of the soil nitrogen cycling community. Marker genes for total archaea and bacteria 

(16S rRNA), nitrogen fixing bacteria (nifH), ammonia oxidizing archaea (amoA AOA) and 

bacteria (amoA AOB), and denitrifying bacteria (nirS, nirK and nosZ) were quantified by qPCR. 

Potential nitrification activity (PNA) and denitrifying enzyme activity (DEA) were also 
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determined. We found clear seasonal changes in the patterns of abundance of the measured 

genes and could associate these with changes in substrate availability related to plant growth 

stages. Most strikingly, we saw that small and ephemeral changes in soil environmental 

conditions resulted in changes in these microbial communities, while at the same time, process 

rates of their respective potential enzyme activities remained relatively stable (Figs. 6.1 a&b, 

6.2 a&b). This suggests both short term niche-partitioning and functional redundancy within 

the nitrogen cycling microbial community. The seasonal changes in abundances we observed 

also provided additional evidence of a dynamic relationship between microorganisms and 

plants, an important mechanism controlling ecosystem nitrogen cycling. 

To determine the relationships among the microbial groups that oxidize ammonia (AOA and 

AOB) and the nitrite oxidizing bacteria Nitrospira and Nitrobacter (NOB), and to  characterize 

the interdependence of AOA and NOB in this grassland plot, the third study determined spatial 

and temporal interactions between AOA, AOB and NOB. These steps are related in both space 

and time, as the ammonia-oxidizers provide the necessary substrate for nitrite-oxidizers. Using 

a combination of spatial statistics and phylogenetic analysis, our data indicated seasonally 

varying patterns of niche differentiation between the two bacterial groups, Nitrospira (NS) and 

Nitrobacter (NB) in April (Figs.7.2 A1& B1), but more homogeneous patterns by August (Figs. 

7.2 A4 & B4), which may have been due to different strategies for adapting to changes in 

substrate concentrations resulting from competition with plants. We then asked a further 

question: was the microbial structure at sampling sites with high NS gene abundances 

fundamentally different from those with low NS gene abundances? Using a phylogenetic 

approach, the operational taxonomic unit (OTU) composition of NS was analyzed (Fig. 7.4). 

Community composition did not change over the first half of the season, but by the second half, 

the relative proportion of a particular OTU (OTU 03) had increased significantly. This 

suggested an intraspecific competition within the NS and the possible importance of OTU 03 

in nitrite oxidation at a specific period of time. Observed positive correlations between AOA 

and Nitrospira further suggested that in this unfertilized grassland plot, the nitrification process 

may be predominantly performed by these groups, but is restricted to a limited timeframe (Fig. 

7.5). 

In conclusion, the results of this suite of studies provided a detailed spatial and temporal 

characterization of soil microbial communities, including members of the nitrogen cycling 

community, at the cm to m scale in an unfertilized temperate grassland soil. It is clear that 

temporal dynamics create unique and often ephemeral conditions that influence soil 
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biogeography at the studied scale, and that by combining spatial and temporal approaches it 

was possible to identify influences that thus far have proven elusive. Soil microbial 

communities are clearly structured by a combination of factors and the relative importance of 

those factors can change over very short time periods. Clear seasonal changes with concomitant 

spatial structure at the sampling times most strongly associated with rapid plant growth on the 

plot provided indirect evidence of linkages between above- and belowground processes. This 

was seen in all three of the studies. 

Because factors shaping microbial communities at one scale may be neither important nor 

predictive at another, it is important to apply this approach to different scales as well. Finer 

spatial resolution, such as the mm to cm scale, could provide insight into spatial patterns that 

may exist at a scale smaller than that of our sampling scheme. A smaller sampling scale would 

also make it possible to characterize microbial hotspots and hot moments in more detail. The 

phylogenetic approach could also be profitably applied at smaller scales to learn whether the 

factors we identified were also operative at those scales. However, by investigating an 

unfertilized perennial grassland plot, we were able to identify influences that are obscured at 

larger scales and in more highly managed grassland systems. At this scale, the soil microbial 

community as a whole, while dynamic, also appeared to be robust and resilient to seasonal 

changes. 
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