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1 General Introduction 

1.1  Introduction 

In 1669, when phosphorus (P) was first discovered by alchemist Hennig Brand, it was 

thought of nothing less than an additive for the production of gold. Nowadays, the value 

of P is even higher, as it is known to be an essential nutrient for all life on earth. In 

agricultural crop production, P nutrition of plants is a key production factor (Nesme et 

al., 2014). For centuries, crop production was based on natural reserves of soil P and 

the application of locally produced manure and human excreta. This ancient nutrient 

cycle was disrupted with the intensification of agriculture in the 20th century, when 

higher P inputs were required to secure increased crop yields for a fast growing world 

population. Phosphorus fertilizers based on Guano and Phosphate Rock (PR) were 

applied in agriculture, while untreated human excreta were no longer returned to the 

fields, but, with the introduction of flush toilets, discharged into water bodies (Cordell 

et al., 2009). Today, approximately 1.71E7 Mg P from mineral reserves are applied to 

soil globally every year (Yuan et al., 2018). On a global scale, only approximately 20% 

of P contained in human excreta are directly recycled to agriculture (Yuan et al., 2018). 

In fear of contaminating soils with potentially toxic elements (PTE) and organic 

pollutants, the application of sewage sludge to land is strictly limited by law in European 

countries. In organic farming systems of the European Union, direct sludge 

applications are completely forbidden (Council Regulation EC No. 889/2008) and P 

management represents a particular challenge. The only permitted mineral P fertilizer 

in organic farming is PR, which shows poor bioavailability on many soils (Guppy and 

McLaughlin, 2009; Nesme et al., 2012; Möller et al., 2018). Phosphate Rock is mined 
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from deposits all over the world. More than 80% of P from PR is used for fertilizer 

production (Smil, 2000). However, PR is a limited resource, decreasing in grade, 

accessibility, and purity (Schröder et al., 2011), and future availability of the world’s 

main source of P is debated as uncertain (Cordell and White, 2011). Also, due to the 

geographical concentration of PR ores, western Europe, which has very low domestic 

supply, is heavily dependent on imports. Thus, the debate on reclosing the P cycle has 

gained importance for governmental institutions, researchers and farmers. Of the P 

contained in animal manure, up to 82% (approximately 1.56E7 Mg yr-1) is already 

recycled to soil in Western European countries (Yuan et al., 2018). However, there are 

great spatial differences due to the unbalanced distribution of livestock density and 

high transportation costs of manure. Approximately one third of the P applied to soil as 

mineral fertilizer ends up in human consumption, most of which within processed food 

(Yuan et al., 2018). Of the daily ingested P, 98% is excreted (Yuan et al., 2018), thus, 

municipal waste water is the largest non-agricultural source for the recovery of P 

(Oelofse et al., 2013; Egle et al., 2015; van Dijk et al., 2015). Nowadays, the majority 

of P in sewage sludge is disposed of in landfills and becomes unavailable for further 

use. However, new technologies have been developed, with the aim to recycle P from 

urban areas back to agriculture (Egle et al., 2016) in order to close this essential gap 

of the P cycle. 

1.2  Phosphorus recycling from waste water 

In the European Union, 11 million Mg of sewage sludge dry mass (DM) is produced 

every year (Gendebien 2010; Stemann et al. 2014), providing more than 300,000 Mg 

P per year, which corresponds to around 20% of the mineral fertiliser input per year 
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(EU-27, 2005) (Stemann et al. 2014; van Dijk et al., 2016). The use and treatment of 

sewage sludge hugely differs between member states. National limit values for 

potentially toxic elements, pathogens and organic micropollutants in sewage sludge 

which is used in agriculture, widely differentiate among countries (Kelessidis and 

Stasinakis, 2012) and practically determine their way of sludge disposal. In Germany, 

direct sludge application to agriculture is strictly regulated. In 2016, 1.8 million Mg of 

sewage sludge DM were produced (containing approximately 49,000 Mg of P), of 

which only 24% were directly recycled to agriculture (Statistisches Bundesamt, 2018). 

This leaves a P recycling potential of approximately 38,000 Mg every year, which 

corresponds to 38% of the domestic P sales in Germany in 2016/2017 (Statistisches 

Bundesamt, 2018). In the coalition agreement 2013, the provision is made for phasing 

out direct sludge application until year 2025, being replaced by a P recycling from 

sewage sludge. 

There are several technologies to recover P from municipal wastewater, producing 

materials that contain varying quantities of P in different chemical forms, while often 

containing reduced amounts of potentially harmful substances. Depending on that, 

they can be used as raw material for P fertilizer production or might directly be used 

as P fertilizers in agriculture. Phosphorus recovery can take place from the liquid phase 

of sewage sludge by chemical precipitation processes, or from the sludge ash after a 

mono-incineration (Cornel and Schaum, 2009; Egle et al., 2016). In dependency of the 

production process, different P fertilizers recycled from sewage sludge hugely differ in 

their P availability for plants. For example, P in sewage sludge ash (SSA) is usually in 

the form of aluminum and calcium phosphates and its bioavailability strongly depends 
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on soil pH (Cabeza et al., 2011; Nanzer et al., 2014a; Möller et al., 2018). Thus, for 

most ashes, an additional treatment is necessary to increase its bioavailability and to 

reduce contents of potentially toxic elements (PTE) (Krüger et al., 2014). Other 

recycled fertilizers, such as e.g. Struvite (MgNH4PO4 . 6 H2O), have been shown to be 

effective P fertilizers under a wide range of soil pH (Cabeza et al., 2011). 

An overview over a broad range of different chemical and thermal P recycling 

technologies has been published by Egle et al. (2015). Fertilizer efficacy of different 

recycled fertilizers have been studied in few experiments (Römer, 2006; Cabeza et al., 

2011; Antonini et al., 2012; Vogel et al., 2015; Talboys et al., 2016), all of them focusing 

on their P fertilization effect on single crops, mostly under controlled conditions in the 

greenhouse. There is no data available, investigating the effects of recycled P 

fertilizers in a cropping system approach, addressing their consecutive effects on 

several and diverse crops of a representative cropping sequence. Also, there is very 

little data available on the efficacy of recycled P fertilizers under field conditions, which 

is needed to evaluate their usability in agricultural crop production. 

1.3  Phosphorus in soil – bioavailability and mobilization 

Although total soil P content can be very high, the bioavailability of this essential 

nutrient is low in many soils. Among all macronutrients taken up by plant roots, P has 

the lowest solubility (Gerke, 1995). The soil solution in agricultural soils, which is the 

main source of P for plant roots, contains between 0.01 and 3.0 mg P L-1 (Frossard et 

al., 2000), which corresponds to less than 1% of total soil P (Richardson et al., 2009b). 

Of all the different P forms present in soil, solely orthophosphate (HPO4
2– and H2PO4

-
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) can be taken up by plants. However, when applied to soil, (reactive) fertilizer P 

undergoes a rapid interchange with the soil matrix. Phosphate is inexorably drawn to 

sorption surfaces or precipitated, and is removed from the readily plant available P 

pool (Guppy and McLaughlin, 2009), a process referred to as “fixation”, “sorption” or 

“retention” in literature. Phosphate is then predominantly associated with calcium (Ca) 

in alkaline soils and with iron (Fe) or aluminum (Al) in acidic soils, and P anions are 

adsorbed to soil constituents, such as sesquioxides, Al-silicates, Ca-carbonates, clay 

minerals and organic matter, through charge-related associations (Sanyal and De 

Datta, 1991; Richardson, 2001; Richardson et al., 2009b). Once adsorbed or 

precipitated, P forms show varying, but poor solubility. Thus, the use efficiency of 

applied mineral fertilizer P is conceivably low, reaching 10 – 20% of applied P (from 

superphosphate) in the year of application, and a maximum of only 50% over time 

(Holford, 1997; Richardson et al., 2009b), which inevitably leads to a P accumulation 

in managed soils (George et al., 2016). 

Other P pools besides mineral P (adsorbed or in soil solution) are organic and microbial 

biomass P. In the upper layer of arable soils, organic P accounts for 20 – 80% of total 

soil P (Dalal, 1977) and mainly comprises inositol phosphates, notably 

hexakisphosphate (phytate), phospho-lipids and nucleic acids (Nesme et al., 2014). A 

mobilization of organic P for plant uptake can take place through hydrolysis by 

phosphatase-like enzymes, which are produced by plants and, more so, by many soil 

microorganisms (Nesme et al., 2014). The P contained in soil microorganisms is 

referred to as microbial biomass P and amounts to 0.4 – 2.5% of total P in arable soils 

(Bünemann et al., 2011). Although microbial P constitutes to a small amount of total P 
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only, it can play a major role in the P cycle due to its often very short turnover time 

(Achat et al., 2010; Bünemann et al., 2011). 

As orthophosphate is taken up from the soil solution, a steady interchange between 

the different P pools takes place, transferring P between the solid phase and soil 

solution by sorption-desorption processes, and between organic and inorganic P forms 

by immobilization-mineralization processes (Frossard et al., 2000). These processes 

are strongly influenced by soil pH, which governs the adsorption properties of major P 

fixing minerals and the solubility and dissolution kinetics of a variety of P containing 

minerals (e.g. apatite), as summarized by Devau et al. (2011). However, diffusion and 

mass flow of P from bulk soil to the rhizosphere is low (< 1 mm over a few days 

(Hinsinger et al., 2005)), and generally, the replenishment of the soil solution is not 

sufficient to meet plant requirements (Richardson et al., 2009b). Therefore, biological 

P mobilization mechanisms in the rhizosphere play a major role in the P supply of 

plants. 

There are several natural, physiological and morphological responses of plants to P 

deficiency, such as the ability of roots to effectively explore soil volume, the release of 

exudates from roots that influence soil P availability, and the association of roots with 

soil microorganisms such as mycorrhizal fungi (Richardson et al., 2009b). In addition, 

there are agricultural practices to optimize the P efficacy of fertilizers, including the 

design of fertilizer granules to hinder P fixation, the strategic placement and banding 

of P fertilizers within the soil (Richardson et al., 2009b), and an application of 
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rhizobacteria to improve P availability and accessibility by plants (Rodríguez and 

Fraga, 1999; Rodríguez et al., 2006). 

The potential beneficial effects of rhizobacteria for growth and P acquisition of plants 

have been described by e.g. Rodríguez and Fraga (1999), Richardson (2001), 

Richardson et al. (2009a), Miransari (2014) and Weinmann (2017). Few studies have 

shown the efficacies of different rhizobacteria in P solubilization (Achal et al., 2007; 

Pérez et al., 2007; Hameeda et al., 2008; Collavino et al., 2010; Yu et al., 2011; Kaur 

and Reddy, 2014; Liu et al., 2014; Pereira and Castro, 2014; Nkebiwe et al., 2017). 

Among them, Bacillus, Pseudomonas and Rhizobium strains are the most promising 

in terms of P solubilization (Rodríguez and Fraga, 1999; Nkebiwe et al., 2017). 

Different Pseudomonas strains have been shown to increase grain yield of maize by 

up to 20%, and total P in shoot (+ 22%), root (+ 42%) and grain (+ 26%) of maize 

compared to unamended soil in a pot experiment (Pereira and Castro, 2014) and in 

the field (Kaur and Reddy, 2013). In the latter, phytase activity in the rhizosphere of 

maize treated with Pseudomonas was almost doubled, compared to unamended soil 

(Kaur and Reddy, 2013). Many plant growth promoting rhizobacteria (PGPR) and fungi 

have been isolated to develop commercially available products as inoculants (Glick, 

2012; du Jardin, 2015), afterwards referred to as “bioeffectors”. However, although a 

range of studies on bioeffectors showed increased growth and P content of plants, 

variability of the results is large and has often shown poor reproducibility (Thonar et 

al., 2017). As a consequence, commercial applications of bioeffectors have been 

limited (Glick, 2012). Still, they could play a key role in enhancing P availability of less 

labile P forms, such as those obtained in different P fertilizers recycled from sewage 
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sludge. This has, apart from few studies (Lekfeldt et al., 2016; Meyer et al., 2017) rarely 

been tested so far. 

Another strategy to improve P efficiency is, to increase the pool of plant available P 

within a farming system through the use of P efficient crops in the crop rotation (Kamh 

et al., 1999; Richardson et al., 2009b). Some legume species have been shown to 

mobilize non-reactive soil P from less available soil P sources (Hauter and Steffens, 

1985; Nuruzzaman et al., 2005a). Thereby, they contribute to an increased cycling of 

reactive P (Horst et al., 2001; Guppy and McLaughlin, 2009; Güldner and Krausmann, 

2017) and an improved P supply of a following crop in the rotation (Nuruzzaman et al., 

2005b). Underlying mobilization mechanisms of legume species are root excretions of 

carboxylates or acid phosphatases (e.g. white lupin, field pea, faba bean) 

(Nuruzzaman et al., 2005b, 2006; Sugihara et al., 2016). In addition, in soils with pH 

> 7.0, P availability might be enhanced through a rhizosphere acidification, resulting 

from a proton release during biological N2-fixation of legumes (Hauter and Steffens, 

1985; Hinsinger et al., 2003). There is a lack of data investigating P fertilizers recycled 

from sewage sludge in combination with biological means of P mobilization in order to 

improve their bioavailability to plants. 

1.4  Phosphorus management in organic farming 

The challenge of securing an adequate P supply for plants in agricultural production is 

even aggravated in organically managed systems, where highly soluble P fertilizers, 

such as monocalciumphosphate (MCP), are prohibited. However, P supply of crops is 

especially important for legumes, which are the main pillar of fertility management in 
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organic systems, due to their ability to fix atmospheric N2 (Römer and Lehne, 2004). 

Except for some P containing organic amendments, such as animal manure, organic 

residues (composted or digestated) or meat and bone meal (MBM), the only external 

mineral P source permitted in the EU to balance P offtakes in organic systems is PR 

(Løes et al., 2017). Phosphate Rock has not only poor solubility in all soils with 

pH > 6.0, making them poorly efficient in neutral and alkaline soils that are common in 

European agricultural regions (Nesme et al., 2014), but may also contain relevant 

loads of potentially toxic elements (PTE) (Weissengruber et al., 2018). Thus, it has 

been reported that yields in organic systems have so far partly been attained at the 

expense of soil P reserves or residual P from earlier fertilizer applications (Oehl et al., 

2002; Nesme et al., 2012; Ohm et al., 2017), which questions their sustainability in the 

long term. Hence, to maintain current yields, there is a need for plant available P 

fertilizers for organic crop production. 

Today, 80 – 90% of societal recoverable P sources for recycling are banned in organic 

systems in order to reduce the risk of importing contaminants (Løes et al., 2017). This 

includes all P fertilizers recycled from human excreta. However, a serious soil 

contamination with PTE through the use of recycled P fertilizers in agriculture is not 

likely (Magid, 2012; López-Rayo et al., 2016; Weissengruber et al., 2018). According 

to the principles of IFOAM (International Federation of Organic Agricultural 

Movements), farm inputs should be reduced by reuse and recycling in order to 

conserve natural resources (IFOAM, 2017). Mainly in stockless organic systems 

though, off-farm inputs are required to balance P exports via sold products, to maintain 

a sustainable production in the long term (Nesme et al., 2014). That is why some 
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scientists suggest that organic production regulations should be adapted to this new 

farming type or should reassess allowable farm P inputs (Cornish and Oberson, 2008; 

Nesme et al., 2014; Cooper et al., 2018), and that nutrient cycling should be addressed 

and assessed at a larger, e.g., district, scale (Nesme et al., 2012). Today, there are 

only few studies available, assessing the suitability of mineral P fertilizers recycled from 

sewage sludge for their use in organic crop production (Løes, 2016; Möller, 2016; Løes 

et al., 2017; Weissengruber et al., 2018). 

1.5  Aims and objectives 

Within the EU project “IMproved Phosphorus Resource efficiency in Organic 

agriculture Via recycling and Enhanced biological mobilization” (IMPROVE-P), P 

fertilizers recycled from different waste streams were assessed for their suitability to 

be used in organic farming systems. Examined aspects in the project included the P 

bioavailability and the load of potentially toxic elements in recycled fertilizers, the test 

of different P mobilization techniques as well as a survey of the acceptance of recycled 

P fertilizers among organic stakeholders and farmers. The research presented here 

was carried out within the framework of IMPROVE-P, with the aim to evaluate mineral 

P fertilizers recycled from sewage sludge with regard to their fertilizer efficacy and 

suitability for organic crop production, combined with different biological P mobilization 

approaches. The objectives of this research were: 

(1) to evaluate the agronomic efficacy of P fertilizers recycled from sewage sludge 

for maize, in pot experiments and on a field scale, compared to PR and MCP 

fertilization, 
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(2) to assess the agronomic efficacy of such P fertilizers for several crops of a 

representative cropping sequence of organic agriculture, including a legume 

species, 

(3) to investigate the P mobilization potential of red clover within a crop rotation, 

(4) to investigate different bacteria strains for their ability to increase plant P 

availability of recycled P fertilizers in pot experiments and on a field scale, and  

(5) to evaluate the suitability of P fertilizers recycled from sewage sludge for 

organic crop production, from an agronomic point of view. 

1.6  Structure of the thesis 

Apart from the General Introduction and Discussion, this thesis includes four chapters 

that attend to the aims and objectives stated above. These chapters comprise three 

original research manuscripts that have been published in international peer-reviewed 

journals (chapter 2, 3, 5) as well as one original research paper that was prepared for 

submission (chapter 4). 

Chapter 2: Phosphorus bioavailability of sewage sludge-based recycled 

fertilizers. Wollmann, I., Gauro, A., Müller, T., Möller, K. (2018) Reprinted from the 

Journal of Plant Nutrition and Soil Science, 181, 158 – 166. With permission from 

Wiley. 

Chapter 3: Phosphorus bioavailability of sewage sludge-based recycled 

fertilizers in an organically managed field experiment. Wollmann, I., Möller, K. 

(2018) Reprinted from the Journal of Plant Nutrition and Soil Science, 181, 760 – 767. 

With permission from Wiley. 

Chapter 4: Red clover (Trifolium pratense L.) increases plant growth and P offtake 

from sewage sludge ashes for a subsequent maize. Wollmann, I., Möller, K. 
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(submitted to Soil Use and Management on January 18, 2019, not yet accepted for 

publication). 

Chapter 5: Improved Phosphorus Recycling in Organic Farming: Navigating 

Between Constraints. Möller, K., Oberson, A., Bünemann, E.K., Cooper, J., Friedel, 

J., Glæsner, N., Hörtenhuber, S., Løes, A.-K., Mäder, P., Meyer, G., Müller, T., 

Symanczik, S., Weissengruber, L., Wollmann, I., Magid, J. (2018) Reprinted from 

Advances in Agronomy, 147, 159 – 237. With permission from Elsevier. 
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Abstract 

A recycling of Phosphorus (P) from the human food chain is mandatory to secure the 

future P supply for food production. However, many available recycled P fertilisers from 

sewage sludge do not have an adequate P bioavailability and, thus, are not suitable 

for their application in soils with a pH > 5.5 - 6.0, unless being combined with efficient 

mobilization measures. The aim of the study was to test the P mobilization ability of 

red clover (Trifolium pratense L.) from two thermally recycled P fertilisers for a 

subsequently grown maize. Two sewage sludge ashes (SSA) were investigated in a 

pot experiment at soil pH 7.5 with red clover differing in its nitrogen (N) supply (mineral 

N fertilisation or biological N2 fixation (BNF)), followed by maize (Zea mays L.). Shoot 

dry matter of maize was almost doubled when N supply of previous grown clover was 

covered by BNF, instead of receiving mineral N fertilisation. Similarly, shoot P offtake 

of maize following clover with BNF was significantly increased for both recycled P 

fertilisers. It can be assumed that the mobilization is strongly related to the BNF, and 

a proton release of N2 fixing clover roots led to the measured decrease in soil pH and 

thereby increased P availability of the tested fertilisers. Other possible P mobilization 

mechanisms that might have contributed to an improved P supply of the following 

maize plants are discussed. 

Keywords: sewage sludge ash, phosphorus mobilization, red clover, organic farming 

1 Introduction 

Phosphorus (P) is an essential component of all living organisms. Thus, a sufficient P 

supply for plants is a key factor in agricultural production. Unlike nitrogen (N), P cannot 

be synthesized chemically, and P fertiliser production is based on mined phosphate 

rock (PR). Approximately 80% of P from mined PR is used for fertiliser production 

(Scholz et al. 2014). Future availability of the world’s main source of phosphorus is 

uncertain (Cordell 2010). New technologies have been developed to recycle P from 

urban areas back to agriculture. An overview of different technologies for recovering P 

from municipal wastewater has been published by Egle et al. 2015. Various recycled 
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P fertilisers from urban waste water have been tested in pot and field experiments, 

showing huge differences in P bioavailability, depending on their production process 

and soil pH (Cabeza et al. 2011; Möller et al. 2018; Wollmann and Möller 2018; 

Wollmann et al. 2018). For example, struvite (MgNH4PO4 . 6 H2O) seems to be an 

effective P fertiliser when applied to range of soil pH while the efficacy of untreated 

sewage sludge ashes (SSA) strongly depends on the soil pH (Nanzer et al. 2014; 

Möller et al. 2018). There are indications that P availability of recycled fertilisers 

depends on the degree of P-crystallization which is altered during thermal treatment of 

waste water, determining the P availability of thermally recycled fertilisers like chars, 

slags and SSA (Nanzer et al. 2014; Möller et al. 2018). In general, P availability of 

incinerated recycled fertilisers is low compared to readily bioavailable water soluble 

phosphate fertilisers (Cabeza et al. 2011; Möller et al. 2018; Wollmann et al. 2018). 

 

There are different approaches to increase P bioavailability of fertilisers, such as a soil 

or seed inoculation of bioeffectors (e.g. bacteria, fungi, algae extracts) to increase 

mineralization and solubilization of orthophosphates (Nkebiwe et al. 2016; Meyer et al. 

2017; Wollmann et al. 2018), strategic placement and banding of fertilisers in soil, and 

the use of P-efficient crops within the crop rotation (Richardson et al. 2009). 

 

In organic farming systems, the use of water soluble, mineral P fertilisers is prohibited, 

and PR is allowed, but barely plant available on soils with pH > 6.0 (Nachimuthu et al. 

2009; Nesme et al. 2012; Möller et al. 2018). Negative P budgets and a depletion of 

soil P stocks have been reported for many organically managed farms (Oehl et al. 

2002; Nesme et al. 2012; Cooper et al. 2018). Nutrient management in organic farming 

systems relies on the cultivation of legumes that allow symbiotic nitrogen-fixing 

bacteria to convert atmospheric N2 into reactive N forms (biological nitrogen fixation, 

BNF). It has been suggested that legumes are able to take up P from sparingly soluble 

soil P fractions (Hassan et al. 2012) and increase internal P cycling (Horst et al. 2001). 

Different legume species have been shown to be efficient in P mobilization through the 

root excretion of carboxylates (e.g. white lupin, field pea, faba bean) or acid 

phosphatases (Nuruzzaman et al. 2005; Sugihara et al. 2016). In soils with pH > 7.0, 

P availability might be enhanced through a rhizosphere acidification, resulting from a 



Chapter 4: Phosphorus recycling potential of red clover 

35 

 

proton release during BNF of legumes (Hauter and Steffens 1985; Yan et al. 1996; 

Hinsinger et al. 2003). Several studies have shown an increased P availability of PR 

when combined with a cultivation of leguminous crops. For example, Hauter and 

Steffens (1985) reported an increased P offtake of red clover under BNF, compared to 

clover supplied with mineral N fertilisation in shoots (+ 2.08%) and roots (+ 14.2%) in 

combination with a PR fertiliser. Vanlauwe et al. (2000) and Pypers et al. (2007) 

reported a P uptake from PR applied to maize that followed velvet bean twice as high 

compared to maize following a first maize crop in the rotation. There are indications 

that also P availability of fertilisers recycled from waste water can be enhanced through 

a cultivation of red clover in the crop rotation (Wollmann et al. 2018). 

 

In the present study, the P mobilization potential of red clover was investigated for 

fertilisers recycled from sewage sludge in a greenhouse pot experiment. Two sewage 

sludge ashes (Mg-SSA and Na-SSA) and PR (Naturphosphat P26, Timac AGRO, 

Austria) were tested for their P availability on maize with and without previous 

cultivation of red clover. We hypothesized that (1) Red clover which covers its N supply 

by biological N2 fixation (BNF) is able to mobilize soil P and P from the tested fertilisers 

PR and SSA, therefore (2) P availability of PR and SSA to maize can be enhanced 

through a previous cultivation of red clover with BNF in the crop rotation, and (3) the P 

mobilization potential of red clover can be attributed to a soil acidification by clover 

roots under BNF. 

 

2 Material and methods 

2.1 Recycled P fertilisers 

Two thermally recycled P fertilisers from sewage sludge and PR were used as 

fertilisers in the experiment. The Mg-containing SSA (Mg-SSA) was produced at 

950 °C based on the ASH DEC® process (Outotec) and has a low plant P availability 

(Cabeza et al. 2011; Wollmann et al. 2018). Na-SSA was produced by calcination of 

sewage sludge ash with sodium under reducing conditions in a modified ASH DEC® 

process. P-bearing minerals in Na-SSA have a higher reactivity than untreated ashes 
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(Herzel et al. 2016), resulting in a high P bioavailability (Möller et al. 2018). Despite its 

chemical analogy to Rhenania-P after calcination of the SSA, the fertiliser is called 

“Na-SSA”, following the term that is used for this fertiliser in recent literature (“Na-SSA”, 

(Wollmann and Möller 2018); “SSA-Na”, (Vogel et al. 2018)). Further information on 

specific production conditions of the tested fertilisers has been published by Wollmann 

et al. (2018) and Wollmann and Möller (2018). The total P concentration (mg P g-1 DM) 

of ashes was 76.3 (Na-SSA) and 57.2 (Mg-SSA). Control treatments were 

monocalciumphosphate (Ca(H2PO4)2, MCP), PR and unfertilised. 

 

2.2 Experimental setup 

A pot experiment was conducted in the greenhouse to test the P mobilization potential 

of red clover for subsequently grown maize. The used substrate was a 1:1 mixture of 

a silty sandy loam soil and silica sand. Soil chemical and physical properties included: 

pH: 7.5 (CaCl2; VDLUFA, 1991), total P: 554 mg P kg–1 DM, PCAL (P extractable in 

calcium acetate lactate): 22.0 mg P kg–1 DM, carbonates: 47 mg g-1 DM, organic 

carbon: 18 mg g-1 DM, clay: 192 mg g-1 DM, silt: 488 mg g-1 DM, sand: 320 mg g-1 DM. 

The experiment was performed in 1.8 L pots, containing 0.95 kg (105° C) dry soil and 

dry sand, respectively. 

 

Pot substrate and fertilisers were mixed in April 2015, according to a target application 

of 30.4 mg fertiliser P pot-1 or 32 mg fertiliser P kg-1 soil (without sand), comprising 12 

replicates of each P fertiliser treatment. Four pots of each fertiliser treatment were kept 

without clover, and used later as a control treatment during maize cultivation. Five 

plants of red clover (Trifolium pratense, cv. Astur, Delley Samen und Pflanzen AG, 

Switzerland) were sown per pot in the remaining eight replicates of each P-fertiliser 

treatment, respectively. Potassium (K) and Magnesium (Mg) were provided with (per 

kg soil DM) 100 mg K as K2SO4 and 100 mg as MgSO4. Magnesium amounts 

contained in Mg-SSA were compensated for in the mineral Mg fertilisation. A minor 

initial fertilisation of N (35 mg N per kg soil DM as Ca(NO3)2) was applied in order to 

promote early growth. During clover cultivation, 4 replicates of each P fertiliser 

treatment received mineral N fertilisation (Ca(NO3)2) each time after harvest, according 

to the calculated N removal with the aboveground biomass. The N offtakes with 
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aboveground biomass of clover was assumed to be 40 mg N g-1 DM (Bergmann and 

Neubert 1976). However, the actual N content of the harvested plant material was not 

analyzed. A sufficient N supply and, thus, prevention of BNF was assumed in these 

pots. The N supply of the remaining 4 replicates with clover cultivation was assumed 

to be covered by BNF. All pots, both vacant and cultivated, were kept at 50% WHC 

through regular watering with deionized water. Aboveground biomass of clover was 

harvested three times at flowering; nine, 14 and 21 weeks after sowing, respectively. 

After third harvest date of clover, pot soil of each vacant and cultivated pot was 

wrapped and mixed thoroughly. When dissected, clover root nodules showing a 

reddish inside coloration indicated a functioning BNF. From pots with clover cultivation, 

bulk soil and rhizosphere soil was collected separately for the measurement of pH. 

Rhizosphere soil was obtained by collecting soil adhering to clover roots after shaking 

off looser particles. Soil was returned to pots with clover roots remaining inside. Then, 

one maize plant (Zea mays, cv. Colisee, KWS Saat SE, Germany) was sown in each 

pot. During maize cultivation, soil was fertilised with total (per kg soil DM) 230 mg N as 

Ca(NO3)2, 50 mg Mg (MgSO4) and 235 mg K (K2SO4). Maize was cultivated for 12 

weeks (Oct - Dec 2015). During maize cultivation, additional light was used in the 

greenhouse for 10 h d-1 with an average light intensity of 430 µmol m-2 s-1, measured 

at the height of maize shoot tips. Plants were harvested at flowering stage. 

Aboveground plant biomass of clover and maize was dried at 60°C until constant 

weight and DM content was determined.  

 

2.3 Laboratory analysis and calculations 

 

2.3.1 Phosphorus concentration in plant tissue 

Dried aboveground plant material of clover and maize was ground using a laboratory 

disk mill (TS 250, Siebtechnik GmbH, Mülheim an der Ruhr, Germany) and 0.5 g of 

plant material was extracted in concentrated HNO3 using the chemical digestion 

method according to VDLUFA (2011). The P extract was measured colorimetrically 

(Gericke and Kurmies 1952). Phosphorus offtake was calculated from shoot DM and 

P concentration.  
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2.3.2 Soil pH 

Soil pH of bulk soil and rhizosphere soil from experiment 2 after clover cultivation was 

measured in a 1:2.5 mixture with CaCl2 using a digital pH-meter (Metrohm E 532, 

Herisau, Switzerland). Soil pH in soil from unplanted pots was not measured.  

 

2.3.3 Calculation of P mobilized by symbiotic clover cultivation  

The amount of additional fertiliser P offtake of clover through BNF was calculated as 

the difference of shoot P offtake of BNF clover and clover with mineral N supply.  

The amount of additional fertiliser P offtake of maize following clover with BNF, 

compared to maize following clover with mineral N supply, was calculated according 

to the following formula, using various references: 

 

 𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟 𝑃 𝑜𝑓𝑓𝑡𝑎𝑘𝑒 =  
(𝑃 𝑜𝑓𝑓𝑡𝑎𝑘𝑒 𝑠𝑦𝑚𝑏.  𝑁 (𝑆𝑆𝐴)−𝑃 𝑜𝑓𝑓𝑡𝑎𝑘𝑒 𝑚𝑖𝑛.  𝑁 (𝑆𝑆𝐴))

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
 ∗ 100 

 

Where:  

P offtake refers to the shoot P content of maize following clover with different N supply 

(symb. N = symbiotic N supply of clover; min. N = mineral N supply of clover), and 

“reference” refers to  

- the amount of applied fertiliser P per pot (30.4 mg P pot-1) (% of applied P), or 

- the amount of remaining fertiliser P after clover cultivation per pot (% of remaining 

fertiliser P after clover).  

 

2.4 Data analysis 

The experiment was arranged in a completely randomized design including 15 

treatments with four replicates, respectively. Two-way analysis of variance (ANOVA) 

was performed to study the effect of different P fertilisation and N supply of clover, and 

their interaction on DM, P concentration and P offtake of clover (SigmaPlot 11.0). Two-

way ANOVA was performed to study the effect of different P fertilisation and clover 

pre-cultivation, and their interaction on DM, P concentration and P offtake of maize, 

and pH of soil solution (SigmaPlot 11.0). After finding significant differences, all 

pairwise multiple comparison of the means was conducted using a Tukey test at the 
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0.05 level of significance. One-way ANOVA was performed to study the additional 

fertiliser P offtake of clover and maize, induced through clover cultivation with BNF.  

 

3 Results 

3.1 Biomass production of clover and maize 

Both fertilisation with different P fertilisers and the N supply of clover significantly 

influenced shoot DM of clover and maize plants (Table 1), however, there were no 

interactions between both factors. Shoot DM of clover decreased from first to third 

harvest independently from P fertilisation and N supply. The fertilisation with Na-SSA 

resulted in high shoot DM of clover and maize at a similar level like the MCP 

fertilisation. Shoot DM of clover and maize fertilized with Mg-SSA did not differ from 

the unfertilised control. Shoot DM of clover was significantly decreased without mineral 

N supply. However, there was a significant increase in shoot DM of maize when N 

supply of the previously grown clover was covered by BNF (11.8 g pot-1) instead of 

receiving mineral N fertilisation (5.94 g pot-1). Highest shoot DM of maize (18.9 g pot-

1) was measured without any clover pre crop (Table 1). 

 

3.2 Shoot P offtake and P concentration of clover  

Shoot P offtake of clover was influenced by different P fertilisation and mineral N supply 

(Table 3), however, there were no interactions. At first harvest date of clover, there 

were huge differences in shoot P offtake which ranged between (mg P pot-1) 5.61 

(Unfertilised) and 11.0 (MCP). This increase was equivalent to 17.7% of total fertiliser 

P applied. These differences were levelled out towards the third harvest date of clover, 

where differences between P fertilisers were not anymore significant (Table 3). The 

total P offtakes of all three clover harvests ranged between 17.4 mg pot-1 (Unfertilised) 

and 26.0 mg P pot-1 (MCP). The statistically higher P offtakes in the Na-SSA and the 

MCP treatments corresponded to 19.7% and 28.3% of the total applied fertiliser P, 

respectively. For the fertilisers MCP and Na-SSA, shoot P-offtake decreased from first 

to third harvest date, while for PR, Mg-SSA and the unfertilised control, an initial 

increase of shoot P offtake was measured towards second harvest date.  
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At first and second harvest, mineral N supply of clover led to increased shoot P offtake 

compared to clover with BNF. At third harvest, this proportion was reversed (Table 3). 

Considering the sum of all clover harvests, different N supply paths did not affect shoot 

P offtake of clover. Shoot P concentration was influenced by P fertilisation only at first 

clover harvest and not thereafter. From second clover harvest on, and concerning the 

sum of all clover harvests, symbiotic N supply significantly increased shoot P 

concentration compared to clover with mineral N supply (Table 2).  

 

 



Chapter 4: Phosphorus recycling potential of red clover 

41 

 



Chapter 4: Phosphorus recycling potential of red clover 

42 

 

3.3 Shoot P offtake and P concentration of maize  

When clover was cultivated previously, significantly higher shoot P offtake of maize 

was achieved when N supply of clover was covered by BNF (overall mean: 6.67 mg P 

pot-1) instead of receiving mineral N fertilisation (overall mean: 4.73 mg P pot-1) (Table 

3). Furthermore, the highest overall mean P offtakes were found with the fertiliser 

treatments MCP (overall mean: 7.30 mg pot-1) and Na-SSA (overall mean: 7.43 mg 

pot-1), while the mean offtakes of the treatments PR and Mg-SSA (4.71 mg pot-1) did 

not differ from the unfertilised control (Table 3).  

 

When statistical evaluation included maize without previous clover cultivation, shoot P 

offtake of maize was determined by significant interactions between applied P 

fertilisers and previous N supply of clover (Figure 1). Shoot P offtake of maize was 

significantly higher in pots without previous clover cultivation in all P fertiliser 

treatments (a mean of 10.4 mg P pot-1) and ranged between (mg P pot-1) 8.32 

(Unfertilised) and 13.1 (MCP) (Figure 1). The increase in the treatments MCP and Na-

SSA in comparison to the unfertilised control was equivalent to 15.7% and 14.4% of 

the applied fertiliser P, respectively.  
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With mineral N fertilisation of clover, no P fertiliser effects in the subsequent maize 

crop were measured for the treatments PR and Mg-SSA, compared to the unfertilised 

control, and only a slight increase in P offtake in the treatments MCP (7.27% of applied 

P) and Na-SSA (5.72% of applied P) were achieved. Shoot P offtake of maize was 

higher when grown after clover with BNF, compared to clover with mineral N 

fertilisation. These differences were significant in the treatments MCP, Mg-SSA and 

Na-SSA (Figure 1). The additional fertiliser P offtake of maize following clover with 

BNF, compared to clover with mineral N supply, ranged between 1.69 (Mg-SSA) and 

3.54 mg P pot-1 (Na-SSA) (Table 4), corresponding to 5.57% and 11.6% of applied P, 

respectively. High variation within P fertiliser treatments are indicated by high standard 

errors, and differences were not significant. In relation to the remaining fertiliser P after 

the clover cycle, the lowest additional P offtakes due to clover with BNF were achieved 

with fertilisers with an overall low plant P availability, Mg-SSA (14.7%) and PR (16.9%), 

while much higher effects were achieved with MCP (43.9%) and Na-SSA (50.3%). 

However, these differences were not significant. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 pH (measured in CaCl2) of soil solution measured after clover cultivation in bulk soil and 
rhizosphere soil, in dependency of different N supply of clover and fertilisation with different P 
fertilisers (SSA = sewage sludge ash, treated with Mg or Na, MCP = monocalciumphosphate) and 
their interaction. Different letters indicate differences between different N supply of clover. F-values 
of two-way ANOVA indicate source of variation as *** (significant at P ≤ 0.001) and ns = not significant 
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3.4 pH value of bulk soil and rhizosphere soil 

Soil pH of bulk soil and rhizosphere soil after clover cultivation was significantly 

influenced by the different N supply during clover cultivation, independently from the P 

fertilisation (Table 5). On average, pH decreased from 7.47 (mineral N fertilisation) to 

7.34 (BNF) in bulk soil, and from 7.37 (mineral N fertilisation) to 7.19 (BNF) in 

rhizosphere soil. 

 

4 Discussion 

4.1 Phosphorus mobilization by symbiotically grown red clover 

The differences in biomass growth, P concentration and P offtakes indicate that the 

growth of clover and maize was limited by the plant P availability in soil (Tables 1, 2 

and 3, Figure1). Furthermore, although the P offtakes by clover accounted for at 

maximum 28.3% (MCP) of the applied fertiliser P, leaving at least theoretically enough 

P for a subsequent crop, growth of subsequent maize was strongly limited by the P 

availability in all treatments following a clover pre-crop. This indicates that soil and 

fertiliser P were not able to compensate for the P offtakes from clover aboveground 

biomass, even in the treatments with efficient P fertilisers (MCP, Na-SAA). The higher 

shoot DM and P offtake of maize without clover pre-crop (Table 1, Figure 1) 

presumably resulted from a higher net P supply for maize because no pre-crop had 

extracted P for its own use (Mat Hassan et al. 2012).  

 

In the present experiment, the assumed P mobilization potential of symbiotically grown 

red clover to enhance the offtakes of soil and fertiliser P for its own use (hypothesis 1) 

has to be rejected, contradicting results of Hauter and Steffens (1985). Clover grown 

based on N provided via BNF was not able to increase its shoot P offtake compared 

to clover supplied with mineral N fertilisation (Table 3). However, hypothesis 2, 

assuming that a clover growth with BNF is able to enhance the crop growth to a 

subsequently grown maize, could be confirmed partially for the fertilisers MCP, Mg-

SSA and Na-SSA (Figure 1). In the unfertilised control, clover with BNF was not able 

to enhance its own P supply (data not shown) as well as the P supply of a following 
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maize (Figure 1), indicating that there was no mobilization of soil P through clover 

cultivation with BNF, compared to mineral N fertilization.  

Differences in shoot P offtake of clover due to different P fertilisers were pronounced 

at first harvest, and levelled out towards the third harvest of clover (Table 3). At the 

end of the second harvest, the fertilised treatments had taken up only a minor ratio of 

fertiliser P (for example, in the MCP treatment, the additional P offtake in comparison 

to the unfertilised control after the second harvest accounted for 23.1% of the applied 

fertiliser P). Nevertheless, no further P fertiliser effect was found at third clover harvest 

(Table 3). This indicates primarily an immobilization of fertiliser P during the clover 

growth cycle. The higher shoot P offtake of clover with mineral N supply compared to 

clover with BNF at second harvest was reversed until third harvest (Table 3), indicating 

an increasing P mobilization after second clover harvest by clover with BNF. This 

assumption seems reasonable, taken into account a certain period of time between 

bacterial infection of clover roots and the onset of the BNF (Marschner, 1988).  

 

The decreased pH values in bulk soil and rhizosphere soil after clover cultivation with 

BNF (Table 5) support the assumption that a proton release from roots of symbiotically 

grown clover might have led to a dissolution of sparingly soluble P, e.g. calcium-

phosphates (Hauter and Steffens 1985; Gerke 2015). Therefore, hypothesis 3 can be 

partially confirmed. Changes in soil pH might have influenced the plant P availability at 

later stages of clover and to the subsequent maize crop. Apparently, within the pH 

range of 7.5, a decreased pH by only 0.2 units is sufficient for this process. Other 

possible mechanisms that might have contributed to the P mobilization by red clover, 

yet were not investigated in the experiment, include a growth promotion of plant growth 

promoting rhizobacteria (Horst et al. 2001; Pypers et al. 2007), a release of organic 

acid anions and an increased phosphatase activity within the rhizosphere of BNF 

clover (Kamh et al. 1999, 2002; Gerke 2015). 

 

4.2 Phosphorus mobilization by symbiotically grown red clover for subsequent 

maize 

The higher P offtakes of maize in all P-fertilised treatments indicated that clover grown 

with BNF was able to enhance the availability of the applied fertiliser P to the 
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subsequent crop, even for the non-reactive P fertiliser Mg-SSA (Table 4). Substantial 

increase has been measured also in the treatment PR, however, differences were not 

significant due to variation. Data indicate, that the P fertiliser effects of PR and Mg-

SSA were stronger to the following maize (accounting for 7.09 and 5.57% of the applied 

P fertiliser amounts (Table 4)) than to the clover itself (Table 3, Figure 1), at least 

considering the plant shoots that were investigated in the experiment. Hauter and 

Steffens (1985) reported a strongly increased DM, density and surface of red clover 

roots when grown under BNF, compared to red clover grown with mineral N 

fertilisation, while aboveground biomass yield was the same in both treatments. Thus, 

an increased exploitation of soil volume through an increased root biomass of clover 

with BNF might have contributed to a better utilization of available P in soil solution, 

which is an important factor determining P uptake by a crop (Mat Hassan et al. 2013).  

 

Mat Hassan et al. (2012) reported a depletion of labile and less labile P pools in the 

rhizosphere of Lupinus albus. However, this P was apparently not taken up by lupin 

itself, but instead was transformed into labile organic P and microbial P, and led to an 

increased growth and P offtake of a following wheat (compared to other legume 

species). Similarly, huge increases in P offtake of maize have been reported when 

cultivated after a velvet bean (applied with PR or without P fertilisation), compared to 

a sole maize crop rotation (Pypers et al. 2007). Vanlauwe et al. (2000) reported that 

the legumes Mucuna pruriens and Lablab purpureus may have improved the 

availability of P from RP in excess of their own need and by this contributed to an 

improved P nutrition of a following maize. 

 

A mobilization effect of P from clover to the subsequently grown maize can be 

concluded from significant differences in shoot P offtake of maize in the Mg-SSA 

treatment due to N supply of clover (Figure 1) following non-significant differences in 

shoot P offtake for the sum of all clover plants (Table 3). Therefore, clover grown with 

BNF were able to mobilize sparingly soluble fertiliser P and MCP in all fertilised 

treatments apart from PR. It can be assumed that the reported proton release through 

BNF of clover (Aguilar S. and van Diest 1981; Hauter and Steffens 1985; Liu et al. 

1989) led to a mobilization of sparingly soluble P from recycled fertilisers. This 
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assumption is supported by the decreased soil pH after clover cultivation (Table 4), 

which was pronounced the most in treatments with BNF. Apparently, in the present 

test conditions, a minor decrease of the pH compared to the initial soil pH was sufficient 

to mobilize significant amounts of P even from Mg-SSA, which is characterized by poor 

bioavailability on soils with pH > 6.0 (Cabeza et al. 2011; Nanzer et al. 2014; Wollmann 

et al. 2018). This effective decrease in pH could be achieved by just 21 weeks of clover 

cultivation in potted soil. 

 

Besides the mobilization of sparingly soluble P, a recycling of P from decomposed 

clover roots might in addition have contributed to an increased P supply of maize (Horst 

et al. 2001; Nuruzzaman et al. 2005; Damon et al. 2014). Hauter and Steffens (1985) 

found a higher biomass, density, length and surface of roots from red clover with BNF, 

compared to those receiving mineral N fertilisation. Thus, another factor that might 

have promoted P nutrition of maize after clover with BNF might be an increased 

amount of recycled P from a higher root biomass in these treatments. However, root 

biomass was not measured in our experiment, and the contribution of crop residues to 

P availability is likely to be significant only under conditions where large amounts of 

crop residues of relatively high P concentration are applied to soil (Damon et al. 2014). 

 

Apparently, the response to the P mobilization mechanisms by clover with BNF is 

higher for fertiliser P compared to soil P (Figure 1). However, clover cultivation with 

BNF increased P offtake of the following maize by tendency, also in the treatments 

Unfertilised and PR. Possible suggestions are a reduced N2 fixation caused by a 

deficiency of (bioavailable) P (Morton and Yarger 1990; Hellsten and Huss-Danell 

2000) in the treatments PR and Unfertilised. However, 7.09% of the applied PR 

fertiliser could be mobilized by symbiotically grown clover (Table 4) and results are not 

significant due to high variation of the data. Thus, more replicates might be valuable 

for further experiments. Overall, the additional P removal of up to 11.6% of applied P 

(Na-SSA) through symbiotic clover cultivation (Table 4) is a promising result, 

underlining the potential of biological P mobilization which should be investigated in 

further experiments.  
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Highest shoot P offtake of maize was measured in treatments without any clover pre 

crop (Figure 1). This indicates that P was a growth limiting nutrient in the experiment 

after clover cultivation. It becomes clear, that, dependant in the P buffer capacity of the 

soil, red clover is not capable of providing sufficient P for optimum growth of a 

subsequent maize plant. These findings have been shown also for a range of other 

legume crops in a rotation with maize and MCP fertilisation (Kamh et al. 2002) or PR 

fertilisation (Pypers et al. 2007). We conclude, that red clover with BNF in the crop 

rotation can contribute to an enhanced P supply of a following maize plant, but external 

P inputs are still necessary during maize cultivation to secure optimum plant growth. 

 

4.3 Phosphorus availability of different sewage sludge ashes 

The overall high P availability of Na-SSA, compared to Mg-SSA has been described 

by Stemann et al. (2015) and Möller et al. (2018). During thermochemical treatment of 

SSA, a sequence of chemical reactions takes place, forming new mineral phases 

(Adam et al. 2009), thus determining the P bioavailability of the final product. The main 

P-bearing component of Na-SSA is buchwaldite (CaNaPO4) which is characterized by 

a high plant P bioavailability (Stemann et al. 2015; Möller et al. 2018), as has been 

demonstrated also in the described experiment. On the contrary, a high fertiliser 

efficacy of Mg-SSA has been shown only under acidic (pH < 6.5) soil conditions 

(Nanzer et al. 2014). The dominant P-bearing phase in Mg-SSA are Ca- and Mg-

phosphates, including chlorapatite, stanfieldite and farringtonite (Adam et al. 2009), 

whose dissolution in soil might be controlled by protons (Nanzer et al. 2014). Thus, 

unlike Na-SSA, Mg-SSA has been recommended to be used under acidic soil 

conditions only (Möller et al. 2018). It can be concluded that the mineral phases 

contained in SSA are crucial for their fertilizer efficacy in soil. This should be considered 

in the further development of the respective thermal recovery and treatment processes 

of sewage sludge. Similar to both tested ashes, also the fertilizer efficacy of MCP was 

enhanced after clover with BNF compared to clover with mineral nitrogen supply. This  

indicates that the well-known processes of phosphorus aging might be counteracted 

by the clover cultivation with BNF. The precise underlying mechanisms need to be 

addressed in further experiments.  
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5 Conclusions 

The effect of red clover on the soil P turnover is dependent on the BNF activity, 

however clover did not take up increased amounts of mobilized P itself. The described 

P mobilization potential of red clover from PR for subsequently grown crops has been 

shown to be effective also for P fertilisers recycled from sewage sludge. Approximately 

5.57% of P from the sparingly soluble Mg-SSA were mobilized by symbiotically grown 

clover for a subsequently grown maize. But additionally, clover grown based on BNF 

seems to delay the soil immobilization of readily available P fertilisers. Both effects 

might be dedicated to a decreased soil pH, induced by the proton release during BNF 

of clover. It has been shown that a marginal decrease of pH is sufficient for the 

mobilization of significant amounts of fertiliser P, but not soil P. Possible mechanisms 

to mobilize P by a decreased soil pH include a dissolution of sparingly soluble P from 

fertilisers and a promotion of phosphatase activity in the rhizosphere. Overall, an 

additional P removal by maize of up to 11.6% of applied SSA after clover cultivation 

with BNF emphasizes the efficacy of red clover to mobilize P also from sparingly 

soluble P sources including those recycled from waste water. Internal P cycling via 

clover roots might in addition have contributed to an improved P supply of the following 

maize. Thus, a P fertilisation to red clover might contribute to an increased P availability 

for a following maize in the rotation, however, external P inputs to maize are still 

necessary to secure optimum plant growth. It seems viable to introduce P fertilisers 

recycled from sewage sludge into organic farming systems, which often have a high 

share of clover in their crop rotation. 
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6 General Discussion 

6.1  Agronomic efficacy of P fertilizers recycled from sewage sludge 

In organic farming systems, a sufficient P supply of plants becomes increasingly 

challenging, since the variety of allowed P fertilizers is limited and fertilizer efficacy of 

PR or bone meal is low on many soils. The research presented here shows that most 

of the investigated recycled fertilizers from sewage sludge have a higher P 

bioavailability than PR (Möller et al., 2018; Wollmann et al., 2018). Among the tested 

fertilizers, struvite had the highest P efficacy, increasing the P offtake of maize by 

27.5% in the field experiment, and more than sixfold in the pot experiment, compared 

to the unfertilized control (Wollmann and Möller, 2018; Wollmann et al., 2018). These 

results confirm findings in literature (Cabeza et al., 2011; Robles-Aguilar et al., 2018) 

and the analysis of compiled data (Möller et al., 2018). However, the range of different 

P fertilizers recycled from sewage sludge can be characterized by large differences 

regarding the reactivity of their P forms, as a consequence of e.g. the quality 

characteristics of their original feedstock and their specific production conditions, which 

mainly determine the chemical composition of the final product and, thus, the fertilizer 

efficacy under given conditions. For example, the composition and purity of precipitates 

seems to be much dependent from production conditions like pH and the presence of 

Ca, Al and ferric ions in the precipitation tank (Acelas et al., 2015; Darwish et al., 2016) 

as well as the Ca/Mg molar ratio in the initial solution (Yan and Shih, 2016). Therefore, 

any approach for the production of effective P fertilizers from sewage sludge starts at 

the sewer plant and the used techniques for P recovery. Different treatment techniques 

are available for the removal of dissolved P from waste water. A chemical, precipitative 
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removal of P is usually achieved through the addition of di- or trivalent metal salts of 

Fe, Al or Ca, which are coagulated to form metal phosphates that can be removed after 

flocculation and settlement (Melia et al., 2017). This treatment generates sludge that 

is often unsuitable for direct reuse due to not only the formation of insoluble precipitates 

with P, resulting in a reduced bioavailability (Möller et al., 2018), but also through a 

possible incorporation of contaminants in the precipitate, such as arsenic, pathogens 

and viruses (Mehta et al., 2015; Melia et al., 2017). In contrast to this, the widespread 

technology of enhanced biological P removal (EBPR, or “bio-P”), based on 

polyphosphate accumulating organisms, seems to be more suitable. Little or no 

chemical additions are required (Melia et al., 2017), the P bioavailability of the sludge 

itself is higher compared to that from chemical P removal (Möller et al., 2018) and a 

process stream of suitable concentration for a direct and efficient P recovery as struvite 

is provided (Pastor et al., 2008; Melia et al., 2017). In addition, the fertilizer efficacy of 

P fertilizers recycled from sewage sludge or sewage sludge ash might be influenced 

by the different types of P removal during sewage treatment. Thus, further research is 

needed in this field. 

Fertilizer efficacy of thermally recycled P fertilizers is usually rather low. The 

bioavailability of P in chars, pyrolysis coals and slags is also dependent on their 

particular production conditions and the used feedstock (Nanzer et al., 2014a). 

Phosphorus solubility decreases with increasing production temperature (Christel et 

al., 2014; Bruun et al., 2017) due to the formation of water-insoluble compounds such 

as hydroxyapatite or stable aromatic structures (Thygesen et al., 2011). 
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Apparently, the fertilizer efficacy of P recycled from sewage sludge is mostly 

determined by two main factors; the chemical form of P contained in the fertilizer, and 

the soil pH. Based on this assumption, a rough classification of recycled fertilizers can 

be made into two groups; first, fertilizers with high P bioavailability independently from 

soil pH, due to reactive P forms (e.g. Struvite or treated (calcined) ashes, such as Na-

SSA) (Möller et al., 2018; Robles-Aguilar et al., 2018) and, second, fertilizers 

comprising highly crystalline P molecules of low bioavailability at soils with pH > 6.0, 

such as untreated incineration ashes (Möller et al., 2018). In dependency of their 

composition, there are various recycled fertilizers somewhere in between those two 

groups. For example, some precipitates like struvite AirPrex® or P-RoC® can contain 

different amounts of less soluble Ca-, Al- or Fe-phosphates as co-precipitates which 

reduce their plant availability in soil. The Mg-SSA showed a similar P efficacy like PR 

at soil pH 7.2 in pot experiments (Wollmann et al., 2018) and pH 6.5 in the field 

experiment (Wollmann and Möller, 2018) and generally a decreasing fertilizer efficacy 

with increasing soil pH (Möller et al., 2018). Both Mg-SSA and PR even decreased 

shoot P offtake in some experiments (Wollmann and Möller, 2018; Wollmann et al., 

2018). 

In light of these findings, the use of pure struvite and calcined Na-SSA can be 

recommended for their application in agriculture to improve P supply of plants, 

independently from the soil pH. Moderate to high fertilizer efficacy has been shown 

also for Mephrec slags, even at soil pH 6.6 (Cabeza et al., 2011), due to a certain 

proportion of reactive silico-phosphates (Scheidig et al., 2011). Concerning Mg-SSA, 

P-RoC® and pyrolysis coal, P efficacy increases with decreasing soil pH (Cabeza et 
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al., 2011; Nanzer et al., 2014a). However, common in European agricultural regions 

are neutral and alkaline soils (Nesme et al., 2014) on which the use of SSA, P-RoC® 

or pyrolysis coal is rather ineffective. Appropriate treatment is thus needed for those 

fertilizers before they might be applied to increase plant P supply on neutral or alkaline 

soils. Otherwise, they can be used as source material for fertilizer production. 

In the field experiment, the response to fertilizer application was poor (Wollmann and 

Möller, 2018). This is a common outcome from many field experiments (e.g. Gallet et 

al., 2003), caused by high soil P levels and the complex P turnover processes in soil. 

On the specific trial, a high amount of organic soil P can be assumed due to a high 

share of legumes in the crop rotation. Thus, a certain amount of mineralized organic 

soil P might have contributed to the P supply of maize plants, which supports findings 

of other authors (Mäder et al., 2002; Dodd and Sharpley, 2015). A weak point of the 

field experiment possibly occurred by not including MCP as reference fertilizer, which 

is essential in further experiments, in order to evaluate the overall response of crops 

to fertilizer applications. The general fertilizer efficacy of recycled P fertilizers under 

field conditions cannot reliably be evaluated from the presented data. This leaves a 

gap for future research that should be closed by investigating recycled P fertilizers in 

field experiments on highly P deficient soils that stronger respond to P fertilization in 

general. 

 

For the first time, the agronomic efficacy of recycled fertilizers was evaluated for 

several fields of a crop rotation, under controlled conditions including different crops, 

and on a field scale with maize (Wollmann and Möller, 2018; Wollmann et al., 2018). 
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An immobilization of fertilizer P over time could be shown in all experiments. Thus, in 

the field, effects of P fertilization were measured only in the year of fertilizer application 

and not in the year thereafter (Wollmann and Möller, 2018). In further experiments, the 

sorption capacity of the test soils should be determined, in order to assess their P 

immobilization potential. In both pot experiments, differences among tested fertilizers 

were vanished during clover cultivation (from first to third clover harvest) and appeared 

again for the following maize (Wollmann et al., 2018). This indicates either a 

mobilization of fertilizer P by clover roots in excess of their own need for the 

subsequent maize, or an improved P supply of maize plants through internal P cycling 

via decomposed clover roots (Nuruzzaman et al., 2005b). To clarify the underlying 

processes, the root biomass of clover should be determined in following experiments, 

as well as forms of residual P in soil after fertilizer applications. Beyond that, it can be 

concluded that also P from recycled fertilizers is immobilized in soil, and normally little 

effects through residual fertilizer P can be expected for subsequent crops in the rotation 

(Wollmann and Möller, 2018). Thus, recycled fertilizers should be applied to responsive 

crops in the crop rotation. 

 

6.2  Biological means of P mobilization to improve plant P acquisition from 

recycled fertilizers 

There are different biological approaches to optimize P efficacy of fertilizers. A soil 

application of rhizobacteria could play a key role in enhancing P availability of less 

labile P forms, such as those obtained in different P fertilizers recycled from sewage 

sludge. In some soils, P availability might also be enhanced through a rhizosphere 
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acidification, resulting from a proton release during biological N2-fixation of legumes. 

In the research presented here, it could be shown that the bioavailability of P fertilizers 

recycled from sewage sludge can be enhanced by the cultivation of red clover in a crop 

rotation with maize. This effect has been shown to be dedicated to the biological 

nitrogen fixation (BNF) ability of red clover and the related decrease in soil pH 

(Wollmann and Möller, submitted). Of the applied ashes, 5.57% (Mg-SSA) and 11.6% 

(Na-SSA) of P was additionally taken up by maize when grown after clover with BNF, 

compared to clover receiving mineral N fertilization (Wollmann and Möller, submitted). 

This corresponds to 15.7% (Mg-SSA) and 50.3% (Na-SSA) of the remaining fertilizer 

P after clover cultivation. One direct effect of a decreased soil pH to P mobilization is 

assumed through solubilization of sparingly soluble P forms contained in recycled 

fertilizers, such as Mg-SSA (Wollmann and Möller, submitted). Furthermore, it is 

possible that indirect effects following the decrease in pH contributed to an improved 

P supply of maize after clover cultivation. For example, an increasing activity of acid 

phosphatase in the rhizosphere of maize has been observed with decreasing soil pH, 

leading to an improved P uptake of maize from phytin mineralization (Ding et al., 2011). 

It is also conceivable that an internal P cycling through decomposed clover roots led 

to an improved P supply of maize. This residual P after clover cultivation might have 

also been visible in the field experiment (Wollmann and Möller, 2018), explaining the 

overall low response to fertilizer applications. For a clear identification of the P 

mobilization mechanisms by clover with BNF, more experimental data is required from 

future research on red clover with and without BNF, including the investigation on the 

implications of these different growing systems on rhizosphere processes. In addition, 

the Ca-demand of a N-fixing clover plant compared to a clover plant with mineral N 
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supply should be determined, which might influence the P mobilization in soil. Apart 

from that, it appears that P fertilizers recycled from sewage sludge might be better 

suitable for agricultural systems including legumes in the crop rotation than systems 

without legumes. 

It has to be noted, that a mobilization of P from soil through clover with BNF did not 

take place to the same extend as the mobilization of fertilizer P. In fact, the mobilization 

decreased from Na-SSA > MCP > PR > Mg-SSA > Unfertilized (soil P), more or less 

in the same order that also describes plant P availability of the respective fertilizers. 

Thus, it might be, that the P mobilization potential of red clover is very dependent on 

the specific P source. This assumption has to be clarified in further research. In this 

light, also the conclusion that fertilizer P should be applied to responsive crops in the 

rotation (e.g. red clover) can be confirmed, but has to be expanded: as not the entire 

P demand of the subsequent maize could be covered by the P mobilized by red clover, 

a fertilizer P application to maize is still necessary to secure an optimum plant growth. 

Hence, further research should address the question whether or not the overall amount 

of fertilizer P in a crop rotation can be reduced by splitting the application between red 

clover and maize, without diminishing crop yields. It also remains to be clarified 

whether a (splitted) P supply with recycled fertilizers in a crop rotation is sufficient to 

maintain crop yields, or if a combination of recycled P fertilizers with highly bioavailable 

P fertilizers (like struvite or water soluble P fertilizers) is necessary. This approach 

might be most interesting for recycled fertilizers of low bioavailability, such as Mg-SSA, 

which could be combined with MCP or even Struvite or Na-SSA. When P supply is 
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covered by recycled fertilizers with high bioavailability (such as Na-SSA or Struvite), 

most likely, additional applications of reactive P fertilizers are not necessary. 

Some authors have described a P mobilization ability of Pseudomonas and Bacillus 

strains. In growth media, a P mobilization effect of different bacteria strains has been 

reported (Nkebiwe, 2016; Meyer et al., 2017). In the present research, it could be 

shown that a transfer of this beneficial effect to soil under controlled conditions or field 

conditions is very limited (Wollmann and Möller, 2018; Wollmann et al., 2018). In the 

pot experiments, the overall increase in shoot P uptake ranged between < 1% 

(considering the sum of clover, maize and ryegrass plants with both Pseudomonas or 

Bacillus applications) and 10.1% (with maize and Bacillus application) (Wollmann et 

al., 2018). The results on the P mobilization potential of bioeffectors are ambiguous, 

which supports findings of other authors (Lekfeldt et al., 2016; Thonar et al., 2017). 

The only significant P mobilization effect was shown for the Pseudomonas strain 

Proradix® in the field experiment when combined with PR fertilization, resulting in an 

increased shoot P offtake of maize by 49.4% compared to PR without Pseudomonas 

application. This corresponds to an increase of 10.9% compared to the unfertilized 

treatment, with or without Pseudomonas application (Wollmann and Möller, 2018). A 

similar effect has been reported by Kaur and Reddy (2014). However, the underlying 

mechanisms of this stimulatory effect remain unclear. It has been suggested that PR 

constitutes a proliferation substrate for the applied inoculants (Kaur and Reddy, 2014). 

In this light, one might assume also promoting effects of the Pseudomonas strain when 

combined with ashes, which contain apatite-like compounds (Nanzer, 2012), 

comparable to PR. This could not be confirmed in the present experiments (Wollmann 
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and Möller, 2018) and other studies from literature (Lekfeldt et al., 2016; Meyer et al., 

2017). It is also not clear why there were no results obtained in the pot experiments 

using the exact same inoculant, PR fertilizer and test plant, especially since plant 

growth in the pot experiments has clearly been limited by P supply (Wollmann et al., 

2018). It could be shown in both pot experiments and in the two-year field experiment, 

that there were no medium- or long-term effects of bioeffector application on plant 

growth and P uptake of different test plants either (Wollmann and Möller, 2018; 

Wollmann et al., 2018). An increased P mobilization has recently been reported for 

maize, when inoculated with either Pseudomonas or Bacillus strains, and combined 

with different organic P fertilizers in various pot experiments (Thonar et al., 2017; Li et 

al., 2018). The presented results contradict those findings on a field scale for the 

Pseudomonas strain Proradix® in combination with compost fertilization (Wollmann 

and Möller, 2018). It is suggested for further experiments and interpretation of results, 

to prove a rhizosphere colonization of applied bacteria in soil, before their mode of 

action might be investigated in a second step. 

The low reproducibility of plant growth promoting effects due to bacterial soil 

inoculation demonstrates their strong dependency on biotic and abiotic conditions 

(Thonar et al., 2017) and their overall weak and unreliable effect on growth promotion. 

To overcome the consequent fragility of promotional effects following bacteria 

inoculation, an application of consortia of different bacteria has been suggested by 

Nkebiwe (2016). Natural selection might take place, where only bacteria survive and 

colonize the rhizosphere that are best adapted to the environmental conditions 

(Nkebiwe, 2016). Yet, considering the presented results (Wollmann and Möller, 2018; 
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Wollmann et al., 2018) and those from other studies (Richardson, 2001; Halpern et al., 

2015; Lekfeldt et al., 2016; Meyer et al., 2017), it can be concluded that, to date, the 

ability of inoculated bacteria strains to increase P mobilization in soil is rather poor. 

Clearly more research is needed in this field to identify conditions for an effective 

promotion of P supply by bacterial inoculants in agricultural crop production. It should 

also be considered that the microbial community in soil is adapted to the given 

environmental conditions and able to outcompete applied bacteria. Thus, an 

application of bioeffectors cannot be recommended, especially under organic crop 

production, given the fact that those farming systems usually are characterized by a 

high intrinsic microbial activity (Mäder et al., 2002). Reduced microbial biomass and 

microbial activity has been reported for cropping systems that rely on intensive soil 

tillage (Wang et al., 2011). Future research on applied bioeffectors should thus focus 

on soils with somehow disturbed or decreased microbial activity, such as e.g. those of 

intensive agriculture systems rather than those following typical organic farming 

practices. 

6.3  Recycled P fertilizers in organic crop production 

From an agronomic point of view, the presented data clearly demonstrate a certain 

benefit of using P fertilizers recycled from sewage sludge in organic agriculture, since 

the fertilizer efficacy of most recycled fertilizers is higher than that of PR (Möller et al., 

2018; Wollmann and Möller, 2018; Wollmann et al., 2018). Our data not only show 

poor solubility of PR, but even an adverse effect of PR application on P bioavailability 

in both pot and field experiments (Wollmann and Möller, 2018; Wollmann et al., 2018), 

which might be caused by an increase of soil pH after PR application (Sinclair et al., 
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1993). This once more emphasizes the need of bioavailable P fertilizers for organic 

crop production. The use of the non-renewable PR is often not effective, and certainly 

not sustainable, a characteristic claimed for by the principles of organic farming. 

Concerns have been raised that a restriction of nutrient recycling from society to the 

organic farming sector might impose substantial limitations on yields in many 

contemporary organic farming systems (Løes et al., 2017). The growing yield 

differences between organic and conventional systems (Seufert et al., 2012; Niggli et 

al., 2015), and the incapacity of supplying the growing demand of organically produced 

products has been identified as one of the major problems of organic systems (IFOAM, 

2016). This might be attributed to the slow innovation in the organic sector (Niggli et 

al., 2015). 

The concept of nutrient recovery and recycling is basically in line with fundamental 

organic ideas, such as the principle of ecology “Organic Agriculture should be based 

on living ecological systems and cycles, work with them, emulate them and help 

sustain them” (IFOAM, 2017). The aim of the precautionary principle of care in organic 

agriculture is a production of high quality products with a minimum level of 

contaminants such as pharmaceuticals, pathogens, and potentially toxic elements 

(Løes et al., 2017). The concentration of PTE in recycled P fertilizers from chemical 

approaches of P recovery (e.g. chemical precipitation) is rather low (Ronteltap et al., 

2007; Antonini et al., 2012) while thermal approaches for P recovery from wastewaters 

(e.g. incineration) are less efficient in PTE removal (Ronteltap et al., 2007; Antonini et 

al., 2012; Egle et al., 2016). Thus, a reduction of PTE already during waste water 

treatment might be an important approach in future to overall reduce PTE in recycled 
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fertilizers such as chars and ashes. This might possibly be influenced by the type of P 

removal and added chemicals during wastewater treatment, an assumption that has to 

be clarified in further research. Thermally recycled P fertilizers, such as ashes and 

chars, are generally free from most organic pollutants and pharmaceuticals that are 

eliminated during the thermal production process (Egle et al., 2016). By 

thermochemical treatment of SSA, PTE are removed by evaporation of metal 

chlorines, fulfilling the quality parameters for a P fertilizer in Germany (Adam et al., 

2009; Nanzer et al., 2014b; Stemann et al., 2015; Herzel et al., 2016). All recycled P 

fertilizers investigated in the present study contained by far lower PTE compared to 

the commercially available, and in organic farming permitted fertilizers PR and urban 

organic household waste compost (Möller et al., 2018). For compost application, there 

is an even higher PTE pollution risk compared to struvites, ashes and sewage sludge, 

due to its high heavy metal-phosphorus ratio (Weissengruber et al., 2018). Based on 

these findings, a serious soil contamination with PTE through the use of these recycled 

P fertilizers in agriculture is not likely (Magid, 2012; López-Rayo et al., 2016; 

Weissengruber et al., 2018). Similar results have been reported for organic 

micropollutants contained in precipitated products, such as struvite. More than 98% of 

organic pollutants and pharmaceuticals remain in the precipitation solution and are not 

transferred to the struvite, and up to 20% of remaining pollutants can subsequently be 

removed though washing (Ronteltap et al., 2007; Antakyal et al., 2011). In this light, in 

general, a prohibition of recycled P fertilizers from sewage sludge in organic farming, 

while permitting e.g. the use of compost as fertilizer, seems to be not justified. 

Furthermore, the acceptance of recycled P fertilizers among stakeholders of the 

organic sector seems generally high, as long as means are taken to ensure their 
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sufficient purity, safety and environmental efficiency (Løes, 2016; Seidl et al., 2016). 

Obviously, a specific evaluation of potential risks has to be conducted for an application 

of each recycled fertilizer product, and constant quality standards of the fertilizers need 

to be assured before they could be permitted in organic farming regulations. 

According to EU regulations, mineral fertilizers must be of low solubility (EC 889/2008), 

which matches the presented results on the solubility characteristics of P fertilizers 

recycled from sewage sludge (Wollmann et al., 2018). Generally, the efficacy of P 

fertilizers in Germany is described by their amount of water soluble P, assuming an 

increased fertilizer efficacy with increasing amounts of water soluble P. This 

assumption might apply for water soluble fertilizers such as MCP when used on 

calcareous soils, but not universally for recycled fertilizers from sewage sludge, as has 

been shown in the data presented here (Wollmann et al., 2018) and in literature 

(Cabeza et al., 2011; Brod et al., 2015; Meyer et al., 2018). Of the total P contained in 

struvite, for example, only 1-2% is soluble in water (Kern and Heinzmann, 2008; 

Wollmann et al., 2018), while bioavailability of struvites is very high (Johnston and 

Richards, 2004; Cabeza et al., 2011; Gell et al., 2011; Vogel et al., 2015; Løes et al., 

2017; Wollmann et al., 2018). Thus, for an implementation of novel P fertilizers into 

agricultural production, in general, it might be necessary to turn away from traditional 

description methods of P fertilizers, such as their solubility in water. Instead, an 

implementation of other, more differentiated description methods should be launched 

to describe and examine their solubility and bioavailability. A new, more mechanistic 

soil P test has even been suggested for organic systems to identify the crop response 

to supplied P fertilizers, assuming enhanced microbial and other biological processes 
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in organic farming systems (Nesme et al., 2014). Hence, for an implementation of 

recycled fertilizers into organic farming regulation bodies, there are still major obstacles 

to overcome. Nevertheless, P fertilizers recycled from sewage sludge have been 

shown to be a suitable alternative for organic crop production in many ways. By an 

implementation of those fertilizers, organic agriculture would, once more, be pioneering 

the way towards a farming system of the future, which inevitably will comprise a closed 

P cycle between urban and rural areas. 
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7 Conclusion 

The different P fertilizers recycled from sewage sludge hugely differ in their production 

processes. This results in different forms of chemical P bonding which determines their 

P availability to plants. Nevertheless, all tested recycled fertilizers but Mg-SSA had a 

higher P bioavailability than PR and, thus, can be considered as alternative fertilizers 

for organic crop production. Concerning the agronomic efficacy, only few of the 

recycled fertilizers (struvite and Na-SSA) can be recommended independently from 

soil pH. Other fertilizers, such as Mg-SSA, P-RoC® and pyrolysis coal are more 

efficient with decreasing soil pH. Those fertilizers can be applied to soils with pH < 6.0, 

or might be used as source material for fertilizer production. During recycling of P from 

sewage sludge, special attention should be paid to specific production conditions, in 

order to obtain fertilizer P that might directly be used in crop production to improve 

plant P supply. There is still a need of investigating recycled P fertilizers in field 

experiments on appropriate sites that generally respond to fertilizer P applications, 

including a responsive P fertilizer. Within several crops of a crop rotation, an 

immobilization of fertilizer P could be seen. Thus, recycled fertilizers should be applied 

to responsive crops in the crop rotation. 

One promising approach to increase overall bioavailability of recycled P fertilizers to 

maize is a previous cultivation of red clover in the crop rotation. By a combination of 

different effects, red clover might contribute to a mobilization of sparingly soluble 

fertilizer P species and delay the soil immobilization of readily available P through BNF. 

However, external P inputs to maize might still be necessary to secure optimum plant 

growth. One consequence of this approach might though be an overall reduction of 
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fertilizer P input to the crop rotation through an overall increased P use efficiency. This 

has to be investigated in future experiments. In contrast, beneficial effects of applying 

bioeffectors to soil are very limited. An application of bioeffectors might be unprofitable, 

especially in organic farming, due to their high intrinsic abundance of rhizosphere 

microbes that effectively mobilize P in the rhizosphere. 

Once more, the poor solubility of PR at pH > 6.0 was shown in our experiments, 

highlighting the importance of finding suitable alternative P fertilizers for organic crop 

production, to maintain current yields. Most recycled fertilizers have a higher fertilizer 

efficacy than PR, and contain by far lower PTE compared to some fertilizers that are 

allowed in organic farming (e.g. compost, PR). Furthermore, the concept of nutrient 

recovery and recycling is basically in line with fundamental organic ideas, and the 

acceptance of recycled P fertilizers among stakeholders of the organic sector seems 

generally high. These are good prerequisites on the way towards a permission of 

recycled P fertilizers in organic farming regulations. With the implementation of novel 

P fertilizers into agricultural production, in general, it is necessary to turn away from 

traditional description methods of P fertilizers, such as their solubility in water. Instead, 

an implementation of novel, more differentiated description methods has to be 

considered to describe and examine the solubility and bioavailability of recycled 

fertilizers. Phosphors fertilizers recycled from sewage sludge have been shown to be 

a suitable alternative for organic crop production in many ways. By an implementation 

of those fertilizers, organic agriculture would, once more, be pioneering the way 

towards a farming system of the future, which inevitably will comprise a closed P cycle 

between urban and rural areas. 
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Summary 

Phosphorus (P) nutrition of plants is a key production factor in agriculture. In an 

approach to recycle P from urban areas back to agriculture, technologies have been 

developed to produce mineral P fertilizers out of municipal sewage sludge. In this 

study, different P fertilizers recycled from sewage sludge have been investigated in pot 

and field experiments for their bioavailability to maize and several plant species of a 

crop rotation. It was also investigated, if bioavailability of recycled P fertilizers can be 

enhanced either by a soil inoculation with different bacteria strains that are efficient in 

P solubilizing, or by a cultivation of red clover in the crop rotation. As there is a lack of 

bioavailable P fertilizers in organic cropping systems, P fertilizers recycled from 

sewage sludge were evaluated for their suitability to be used in organic crop 

production. 

It has been shown that most of the investigated fertilizers recycled from sewage sludge 

have a higher P bioavailability than Phosphate Rock (PR). Fertilizer efficacy seems 

very dependent from specific production conditions which are decisive for the final 

product. Among the tested fertilizers, struvite (MgNH4PO4 . 6 H2O) was most efficient 

in increasing plant P offtake of maize (+ 27.5% in the field, and more than sixfold in a 

pot experiment, compared to the unfertilized control). Struvite and calcined sewage 

sludge ash (SSA) are efficient fertilizers at both acidic and neutral soil pH. Other 

fertilizers (e.g. untreated incineration ashes) have low solubility at soil with pH > 6, and 

thus, might be used on acidic soil only, or as raw material for fertilizer production. In 

the field experiment, the overall response to P fertilizer input was low, which probably 
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can be attributed to a sufficient inherent P supply on the used site. An immobilization 

of fertilizer P over time could be shown in all experiments. Thus, recycled P fertilizers 

should be applied to responsive crops in the rotation. An improved P supply of maize 

could be shown when grown after red clover in the crop rotation. This might be 

attributed to a combination of different factors, such as a solubilization of sparingly 

soluble P forms in recycled fertilizers, following a drop in soil pH due to biological N2 

fixation of clover. A recycling of P to maize via decomposed clover roots might in 

addition have contributed to an increased P supply of the subsequent maize. Despite 

this promising effect, P mobilization by clover cultivation was not sufficient to cover the 

entire P demand of maize. Thus, additional fertilizer P inputs to maize might still be 

necessary to ensure optimal plant growth on P deficient soils. With one exception, an 

application of different bacteria strains generally did not affect P supply of the plants. 

Applied bacteria seem very dependent on the environmental conditions. It is 

conceivable, that especially in organic systems, a soil application with external bacteria 

does not enhance the beneficial effects of a high microbial abundance and activity 

which often is already present in organic cropping systems. 

From an agronomic point of view, P fertilizers recycled from sewage sludge are better 

alternatives for organic crop production than PR. A recycling of nutrients generally fits 

well with basic organic principles. By introducing those fertilizers, the organic system 

could make a decisive contribution to the ongoing effort of closing the P cycle, and, 

once more, develop towards a farming system of the future.  
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Zusammenfassung 

So wie alle anderen Lebewesen, sind auch Pflanzen auf das Element Phosphor (P) 

angewiesen. Es ist umstritten, wie lange die natürlichen Rohphosphat (PR) Reserven 

noch ausreichen, um den P-Bedarf der Landwirtschaft zu decken. Vor diesem 

Hintergrund haben sich verschiedene Technologien entwickelt um P-Düngemittel aus 

kommunalem Klärschlamm zu gewinnen. Angesichts des Mangels an 

pflanzenverfügbaren P-Düngemitteln im Ökologischen Landbau wurde evaluiert, ob 

diese Recycling-P Düngemittel aus agronomischer Sicht für die Ökologische 

Pflanzenproduktion infrage kommen. Dafür wurden in dieser Studie verschiedene 

Recycling-P Düngemittel in Gefäß- und Feldversuchen mit mehreren Pflanzen einer 

Fruchtfolge auf ihre Pflanzenverfügbarkeit hin untersucht. Darüber hinaus wurde 

untersucht, ob durch eine Beimpfung des Bodens mit verschiedenen 

Bakterienstämmen, oder den Anbau von Rotklee in der Fruchtfolge, die 

Pflanzenverfügbarkeit der Recycling-P Düngemittel erhöht werden kann. 

Es konnte gezeigt werden, dass die meisten Recycling-P Düngemittel eine höhere 

Pflanzenverfügbarkeit aufweisen als PR. Offenbar wird die P-Düngewirkung dabei 

insbesondere von den jeweiligen Produktionsbedingungen bestimmt. Von allen 

untersuchten Recycling-P Düngemitteln hatte Struvit (MgNH4PO4 . 6 H2O) die höchste 

P-Düngewirkung. Im Vergleich zur ungedüngten Kontrolle erhöhte eine Düngung mit 

Struvit die P Aufnahme von Mais um 27.5% im Feldversuch und um mehr als das 

sechsfache im Gefäßversuch. Struvit und kalzinierte Klärschlammasche (KSA) sind 

effektive P Düngemittel, unabhängig von den jeweiligen Bodenbedingungen. Andere 
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Düngemittel, wie etwa unbehandelte KSA, weisen bei einem pH der Bodenlösung von 

> 6.0 hingegen eine niedrige Pflanzenverfügbarkeit auf. Diese kommen daher nur für 

eine Nutzung auf sauren Böden, oder aber als Rohmaterial für die 

Düngemittelproduktion infrage. Die allgemein geringe Wirkung der P-Düngung im 

Feldversuch ist wahrscheinlich auf eine ausreichende P-Versorgung des 

Versuchsstandorts zurückzuführen. In allen Versuchen konnte mit der Zeit eine 

Immobilisierung von Dünger-P im Boden gezeigt werden. Recycling-P Düngemittel 

sollten daher innerhalb einer Fruchtfolge zu Kulturen mit hohem P-Bedarf gedüngt 

werden. Eine gesteigerte P-Versorgung von Mais konnte durch einen vorherigen 

Anbau von Rotklee in der Fruchtfolge erzielt werden. Die Absenkung des pH in der 

Bodenlösung infolge biologischer Stickstofffixierung hat vermutlich zu einer erhöhten 

Pflanzenverfügbarkeit schwerlöslicher P-Verbindungen aus Recycling-P Düngemitteln 

geführt. Darüber hinaus hat möglicherweise auch eine Freisetzung von P aus 

zersetzten Kleewurzeln zu einer verbesserten P-Versorgung des darauffolgenden 

Maises beigetragen. Die durch den Anbau von Klee mobilisierte P-Menge war jedoch 

nicht hoch genug um den gesamten P-Bedarf von Mais zu decken. Zu Mais sind daher 

vermutlich zusätzliche P-Düngegaben erforderlich. Eine P-Mobilisierung durch die 

Applikation verschiedener Bakterienstämme konnte in nur einem Fall erzielt werden. 

Möglicherweise bleibt der gewünschte Effekt einer P-Mobilisierung durch zusätzlich 

applizierte Bakterien gerade im Ökologischen Landbau aus, für den eine hohe 

mikrobielle Aktivität im Boden charakteristisch ist. Aus agronomischer Sicht sind 

Recycling-P Düngemittel aus Klärschlamm geeignetere Alternativen als PR für die 

ökologische Pflanzenproduktion. Ein Nährstoffrecycling wird von ökologischen 

Leitlinien grundsätzlich befürwortet. Mit der Aufnahme dieser neuartigen Düngemittel 
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kann der Ökologische Landbau einen entscheidenden Beitrag zur Schließung des P 

Kreislaufes leisten und sich - einmal mehr - zu einem Bewirtschaftungssystem der 

Zukunft weiterentwickeln.  
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