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General Summary 

 

The main objective of the research project was genome-wide mapping and functional analysis 

of genes determining meat quality in pigs. 

 

In chapter one QTL were mapped and tested for pairwise epistasis for meat quality traits in 

three connected porcine F2 crosses comprising around 1000 individuals. The crosses were 

derived from Chinese Meishan, European Wild Boar and Piétrain. The animals were 

genotyped genomewide for approximately 250 genetic markers and phenotyped for seven 

meat quality traits. QTL mapping was done using a multi-QTL multi-allele model. It 

considered additive (a), dominance (d) and imprinting (i) effects. The major gene 

RYR1:G.1843C>T affecting the meat quality was included as a cofactor in the model. The 

mapped QTL were tested for possible epistatic effects between the main effects, leading to 

nine orthogonal forms of epistasis (aa, ad, da, di, id, ai, ia, dd and ii). Numerous QTL were 

found; the most interesting are located on chromosome SSC6. Epistasis was significant (FDR 

q-value<0.2) for the pairwise QTL on SSC12 and SSC14 for pH 24 h after slaughter and for 

the QTL on SSC2 and SSC5 for rigour. 

 

In chapter two around 500 progeny tested Piétrain sires were genotyped with the 

PorcineSNP60 BeadChip. After data filtering around 48k SNPs were useable in this sample. 

These SNPs were used to conduct a genome-wide association analysis for growth, 

muscularity and meat quality traits. Because it is known, that a mutation in the RYR1 gene 

located on chromosome 6 shows a major effect on meat quality, this mutation was included in 

the models. Single-marker and multi-marker association analysis were performed. The results 

revealed between one and eight significant associations per trait with P-value<0.00005. Of 

special interest are SNPs located on SSC6, 10 and 15. 

 

In chapter three a literature search was conducted to search putative candidate genes in the 

vicinity of significant SNPs found in the association analysis. MYOD1 was suggested as 

putative candidate gene. The expression of MYOD1 was measured in muscle tissue from 20 

Piétrain sires. Growth, muscularity and meat quality traits were available. DNA was isolated 

out of blood tissue to genotype the SNP ASGA0010149:g. 47980126G>A. Significant 

Correlations (FDR q-value<0.15) between the expression of MYOD1 and growth and 

muscularity traits were found. Association between the traits, respectively MYOD1, and 
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ASGA0010149:g. 47980126G>A was tested, but was only significant (FDR q-value<0.15) 

for two muscularity traits. 

 

In chapter four the LD structure in the genome of the Piétrain pigs was characterized using 

data from the PorcineSNP60 BeadChip. The Relative Extended Haplotype Homozygosity test 

was conducted genome-wide to search for selection signatures using core haplotypes above a 

frequency of 0.25. The test was also conduct in targeted regions, where significant SNPs were 

already found in association analysis. A small subdivision of the population with regard to the 

geographical origin of the individuals was observed. As a measure of the extent of linkage 

disequilibrium, r2 was calculated genome-wide for SNP pairs with a distance  5Mb and was 

on average 0.34. Six selection signatures having a P-value<0.001 were genome-wide 

detected, located on SSC1, 2, 6 and 17. In targeted regions, it was possible to successfully 

annotate nine SNPs to core regions. Strong evidence for recent selection was not found in 

those regions. Three selection signatures with P-value<0.1 were detected on SSC2, 5 and 16. 

 

To reduce the costs of genomic selection, selection candidates can be genotyped with an SNP 

panel of reduced density (384 SNPs). The aim of chapter five was to investigate two 

strategies for the selection of SNPs to be considered in the above mentioned SNP panel, using 

895 progeny tested and genotyped German Piétrain boars. In the first strategy equal spaced 

SNPs were selected, which were used to impute the high density genotypes. In the second 

strategy SNPs were selected based on results of association analysis. Direct genomic values 

were estimated with GBLUP from deregressed estimated breeding values. Accuracies of 

direct genomic values for the two strategies were obtained from cross validation. A regression 

approach to correct for the upward bias of the cross validation accuracy of the direct genomic 

values was used. The first strategy resulted in more accurate direct genomic values. This 

implies that imputation is beneficial even if only 384 SNPs are genotyped for the selection 

candidates. 

 

This thesis ends with a general discussion which addresses substantive terms once again to 

associate them with the most recent research. 
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Allgemeine Zusammenfassung 

 

Das Ziel dieses Forschungsprojektes war es Gene, welche die Fleischqualität beim Schwein 

determinieren, genomweit zu kartieren und funktionell zu analysieren.  

 

In Kapitel eins wurden QTL für Fleischqualitätsmerkmale in drei verbundenen F2 

Kreuzungen bestehend aus ca. 1000 Individuen kartiert und auf paarweise Epistasie getestet. 

Die Kreuzungen sind aus den Ausgangsrassen Chinesisches Meishanschwein, Europäisches 

Wildschwein und dem Piétrainschwein hervorgegangen. Die Tiere wurden genomweit an ca. 

250 genetischen Markern genotypisiert und für sieben Fleischqualitätsmerkmale 

phänotypisiert. Die QTL Kartierung erfolgte mit Hilfe eines multi-QTL multi-Allel Modells. 

Dabei wurden additiv- (a), dominanz- (d) und imprinting Effekte (i) berücksichtigt. Das 

Majorgen RYR1:G.1843C>T, das die Fleischqualität beeinflusst, wurde als Kofaktor ins 

Modell mit aufgenommen. Die kartierten QTL wurden auf mögliche paarweise epistatische 

Effekte zwischen den Haupteffekten untersucht, was zu neun orthogonalen Formen der 

Epistasie führte (aa, ad, da, di, id, ai, ia, dd und ii). Zahlreiche QTL konnten gefunden 

werden; die Interessantesten davon befanden sich auf SSC6. Die Epistasie war für die 

paarweisen QTL auf SSC12 und SSC14 für den pH-Wert, gemessen 24h nach der 

Schlachtung, und für die QTL auf SSC2 und SSC5 für Rigor signifikant (FDR q-Wert<0.15). 

 

In Kapitel zwei wurden ca. 500 Nachkommen geprüfte Eber mit Hilfe des PorkinenSNP60 

BeadChip genotypisiert; davon waren in dieser Stichprobe nach Datenfilterung ca. 48k SNPs 

zu gebrauchen. Mit Hilfe dieser SNPs wurden genomweite Assoziationsstudien für die 

Merkmale des Wachstums, der Bemuskelung und der Fleischqualität durchgeführt. Da 

bekannt ist, dass eine Mutation im RYR1 Gen, lokalisiert auf SSC6, einen Majoreffekt auf die 

Fleischqualität zeigt, wurde diese Mutation in die Modelle mit aufgenommen. Einzel- und 

multi-Marker Assoziationsstudien wurden durchgeführt. Mit einer Irrtumswahrscheinlichkeit 

von P-Wert<0.00005 konnten zwischen einer und acht signifikante Assoziationen pro 

Merkmal gefunden werde. Von besonderer Bedeutung sind dabei SNPs auf SSC6, 10 und 15. 

 

In Kapitel drei wurde in unmittelbarer Nachbarschaft zu signifikanten SNPs aus den 

genomweiten Assoziationsstudien, mit Hilfe der Literatur, nach putativen Kandidatengenen 

gesucht. MYOD1 wurde als putatives Kandidatengen vorgeschlagen. Die Expression von 
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MYOD1 wurde im Muskelgewebe von 20 Piétrain Ebern gemessen. Wachstums-, Muskel- 

und Fleischqualitätsmerkmale waren verfügbar. Die DNA wurde aus dem Blut isoliert und 

der SNP ASGA0010149:g. 47980126G>A genotypisiert. Signifikante Korrelationen (FDR q-

Wert<0.15) der Expression von MYOD1 mit Wachstums- und Bemuskelungsmerkmalen 

wurden gefunden. (FDR q-Wert<0.15). Die Assoziation zwischen den Merkmalen, respektive 

der Expression von MYOD1 und dem SNP ASGA0010149:g. 47980126G>A, wurde getestet. 

Dieser war jedoch nur für zwei Bemuskelungsmerkmale signifikant (FDR q-Wert<0.15). 

 

In Kapitel vier wurde die LD Struktur im Genom der Piétrain Schweine mit Hilfe der 

PorkinenSNP60 BeadChip Daten charakterisiert. Der Relative Extended Haplotype 

Homozygosity Test wurde genomweit zur Suche nach Selektionssignaturen durchgeführt. 

Dabei wurden nur Kernhaplotypen oberhalb einer relativen Häufigkeit von 0.25 betrachtet. 

Der Test wurde zusätzlich in Zielregionen angewandt in denen bereits in Assoziationsstudien 

signifikante SNPs gefunden wurden. Im Hinblick auf den geographischen Ursprung der 

Individuen konnte eine geringfügige Unterteilung der Population festgestellt werden. Als Maß 

des Kopplungsungleichgewichtes wurde r2
, genomweit für SNP Paare die  5MB auseinander 

liegen, berechnet. Dieser lag im Durchschnitt bei 0.34. Genomweit konnten sechs 

Selektionssignaturen mit einem P-Wert<0.001 detektiert werden. Diese sind auf SSC1, 2, 6 

und 17 lokalisiert. In Zielregionen konnten neun SNPs erfolgreich Kernregionen zugeordnet 

werden. Diese wiesen jedoch keine eindeutigen Anzeichen von jüngster Selektion auf. Drei 

Selektionssignaturen auf SSC2, 5 und 16 hatten einen P-Wert<0.1. 

 

Um die Kosten der genomischen Selektion zu reduzieren können Selektionskandidaten mit 

einem SNP Panel von reduzierter Dichte (384 SNPs) genotypisiert werden. Das Ziel von 

Kapitel fünf war es zwei Strategien zur Auswahl von SNPs für das oben genannte Panel 

anhand 895 nachkommengeprüfter und genotypisierter Piétrain Ebern zu untersuchen. In 

Strategie eins wurden abstandsgleiche SNPs ausgewählt um Genotypen mit hoher Dichte zu 

imputieren. In Strategie zwei wurden SNPs basierend auf den Ergebnissen der 

Assoziationsanalysen ausgewählt. Direkte Genomische Werte wurden mittels GBLUP aus 

deregressierten Zuchtwerten geschätzt. Die Genauigkeiten dieser wurden mittels 

Kreuzvalidierung ermittelt. Zur Korrektur der nach oben verzerrten kreuzvalidierten 

Genauigkeiten der Direkten Genomischen Werte kam ein Regressionsansatz zur Anwendung. 

Die erste Strategie führte zu genauer geschätzten Direkten Genomischen Werten. Dieses 
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impliziert, dass die Imputierung sogar dann von Vorteil ist, wenn nur 384 SNPs der 

Selektionskandidaten genotypisiert werden. 

 

Die Dissertationsschrift endet mit einer kapitelübergreifenden Diskussion. In dieser werden 

inhaltliche Aspekten nochmals aufgegriffen, um sie in Zusammenhang mit dem neusten Stand 

der Forschung zu bringen. 
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General Introduction 

 

Domestication of the majority of today’s livestock species took place during the Neolithic 

period in different regions around the world. A continuous selection of the livestock 

populations and their adaption for human purposes created traits which would not have been 

incurred in the natural environment. Targeted artificial selection led to anatomical and 

functional differences between productive livestock and wild types. In China, pigs were 

traditionally selected for increased subcutaneous and intramuscular fat which resulted in a 

higher fertility. In Europe, pigs were bred to grow fast and produce meat, which in turn 

affected the meat quality. Different factors influencing meat quality have been discussed 

(Huff-Lonergan and Lonergan 2007; Fischer 2007), and heritability estimates of 0.2-0.4 

indicate considerable genetic variance (e.g. De Vries et al., 1994, Borchers et al., 2007). 

In the past, quantitative trait loci (QTL) were mapped using experimental designs from 

genetically divergent and outbred founder pig breeds. The founder breeds were frequently 

chosen from the Asian and European type of breeds, because they revealed distinct lineages 

(Frantz et al., 2013). The disadvantage of linkage based approaches is that the power to map 

QTL is limited, because of the limited number of individuals in a typical F2 cross and the 

associated limited number of usable meisosis. A potential remedy would be to pool the data 

from different F2 crosses and to analyse them jointly (Rückert and Bennewitz, 2010). Some 

authors suggested the inclusion of epistasis in QTL mapping (Carlborg and Haley 2004). 

With the advent of SNP chip technology in livestock species it became possible to conduct 

genome-wide association studies (GWAS) also within populations (Goddard and Hayes 

2009). In GWAS the LD between SNPs and the causative mutation within a population is 

taken into account and also historical meiosis were utilised. To dissect the genetics of 

complex traits like meat quality, analysis of transcription profiles of genes is suggested by 

Ponsuksili et al. (2010). In contrast to association studies, likely targets of past selection, so 

called selection signatures, can also be identified without having knowledge about the traits 

they regulate. Such approaches reveal loci with outlier pattern of variation (Qanbari et al., 

2010). Genomic selection uses a large number of SNP spread across the genome for breeding 

value estimation in a reference population and for subsequent selection of candidates based on 

gnomically enhanced breeding values (Meuwissen et al., 2001; Goddard and Hayes, 2009). 

Wellmann et al. (2013) suggested to decrease genotyping costs for selection candidates by 

using an SNP panel of reduced density. Beneath others the authors proposed a method for 

marker selection based on the results of GWAS. 
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The aim of this thesis was the genome-wide mapping and functional analysis of genes 

determining the meat quality in pigs. The present thesis is divided into nine chapters, whereas 

this chapter gives a general introduction. 

 

In chapter one a two-step approach was applied to a powerful porcine experimental design 

consisting of three connected F2-crosses derived from the three genetically different founder 

breeds Piétrain, Chinese Meishan and European Wild Boar (Geldermann et al., 2003). 966 

performance tested F2-animals were analyzed. In the first step, QTL for meat quality traits 

were mapped considering additive, dominant and imprinting effects and by applying a multi-

QTL multi-allele model. The QTL mapped in the first step were tested for pairwise epistatic 

effects in the second step. Several QTL that partly showed pairwise epistatic effects were 

identified, also for imprinting which needs confirmation and further investigation. 

 

The aim of chapter two was to conduct a genome-wide association study (GWAS) using 500 

progeny tested German Piétrain boars. Individuals were genotyped with the Illumina 

PorcineSNP60 BeadChip (Ramos et al., 2009). Growth, muscularity, and meat quality traits 

were collected from progeny. Yield deviations were calculated from progeny and were used 

as trait variable for association studies. SNPs affecting growth, muscularity, and meat quality 

traits within Piétrain pigs were identified. 

 

In chapter three genes being involved in trait determining pathways or metabolisms were 

searched in the vicinity of SNPs with non-negligible effects, which were identified in GWAS. 

Only one gene called MYOD1 was found in the neighbourhood of the SNP ASGA0010149:g. 

47980126G>A. 20 German Piétrain boars were used to study the expression of the putative 

candidate gene MYOD1 in muscle tissue. The animals were also genotyped for the SNP 

ASGA0010149:g. 47980126G>A. Observations for growth, muscularity and meat quality 

traits were available for the boars. An association analysis was conducted by regressing the 

observations and expression levels on the number of A-alleles at the SNP_MYOD1. No 

association between the expression and the number of A-alleles was found. 

 

Searching for substructures among 849 German Piétrain boars and characterizing their LD 

structure, based on r2, was the aim of chapter four. Selection signatures were searched over 

the genome and in targeted regions, where SNPs with non-negligible effects were detected in 
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GWAS. Therefore the Extended Haplotype Homozygosity statistics (EHH, Sabeti et al., 

2002) was applied. Illumina PorcineSNP60 BeadChip (Ramos et al., 2009) genotypes were 

abailible from the individuals. The population structure indicates that there is no specific 

modelling of the geographic origin of the animals required in GWAS or genomic selection. 

The low r2 for all possible marker pairs estimated in this study indicates a high diversity in the 

Piétrain pig population. Strong evidence for recent selection was neither found over the 

genome nor in targeted regions. 

 

The aim of chapter five was to apply two strategies for the selection of SNPs to be 

considered in a very low density SNP panel (384 SNPs). Illumina PorcineSNP60 BeadChip 

(Ramos et al., 2009) genotypes from 895 German Piétrain boars were availible. The boars 

were progeny tested for growth, muscularity and meat quality traits and split into a training 

and validation set.  The validation set for imputation and genomic selection consisted of 100 

boars, which were the youngest animal with high-density (HD) genotyped sires. The 

remaining 795 boars were included in the training set. In the first strategy, equal spaced SNPs 

were selected, which were used to impute the high density genotypes. In the second strategy 

SNPs were selected based on results of GWAS. Accuracies of direct genomic values for the 

two strategies were obtained from cross validation. In the first strategy more accurate direct 

genomic values were obtained than with the second strategy. 

 

This thesis ends with a general discussion. 
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Summary 

The aim of the present study was to map QTL for meat quality traits in three connected 

porcine F2 crosses comprising around 1000 individuals. The three crosses were derived from 

the founder breeds Chinese Meishan, European Wild Boar and Piétrain. The animals were 

genotyped genomewide for approximately 250 genetic markers, mostly microsatellites. They 

were phenotyped for seven meat quality traits (pH at 45 minutes and 24 hours after slaughter, 

conductivity at 45 min and 24 h after slaughter, meat colour, drip loss and rigor). QTL 

mapping was conducted using a two-step procedure. In the first step the QTL were mapped 

using a multi-QTL multi-allele model that was tailored to analyse multiple connected F2 

crosses. It considered additive, dominance and imprinting effects. The major gene 

RYR1:G.1843C>T affecting the meat quality on SSC6 was included as a cofactor in the 

model. The mapped QTL were tested for pairwise epistatic effects in the second step. All 

possible epistatic effects between additive, dominant, and imprinting effects were considered, 

leading to nine orthogonal forms of epistasis. Numerous QTL were found. The most 

interesting chromosome was SSC6. Not all genetic variance of meat quality was explained by 

RYR1 C1843T. A small confidence interval was obtained, which facilitated the identification 

of candidate genes underlying the QTL. Epistasis was significant for the pairwise QTL on 

SSC12 and SSC14 for pH24 and for the QTL on SSC2 and SSC5 for rigor. Some evidence for 

additional pairwise epistatic effects was found, although not significant. Imprinting was 

involved in epistasis. 

 

Keywords: meat quality, pig, QTL, RYR, two-step procedure 
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Introduction 

The majority of today’s livestock species were domesticated during the Neolithic period 

(7,000 to 10,000 years ago) in different regions around the world. Anatomical and functional 

differences between productive livestock and wild types were accelerated by modern breeding 

technologies. In pig breeding one of the main selection criteria was the ability of pigs to grow 

fast and produce meat, which in turn affected the meat quality. In China, pig breeders 

traditionally concentrated on increasing subcutaneous and intramuscular fat. In contrast, 

selection for leanness, growth rate and feed efficiency in Europe has led to increased concern 

about meat quality. 

The definition of meat quality is generic and depends, for example, on the proposed use of the 

meat. Meat quality can be considered as a combination of sensory properties and 

technological traits. Sensory properties include smell, taste and tenderness, and are usually 

recorded subjectively by educated tasters. Objectively measurable traits are, for example, pH-

value, drip loss, meat colour and intramuscular fat content. Economically, drip loss likely 

plays the most important role as a measure of meat quality in Germany (Fischer 2007). 

Different factors influencing the meat quality have been discussed (Huff-Lonergan and 

Lonergan, 2007; Fischer 2007), and heritability estimates of 0.2-0.4 indicate considerable 

genetic variance (e.g. De Vries et al. 1994, Borchers et al. 2007). 

Meat quality traits are firmly embedded within the breeding goal of many pig breeding 

programs. It is not easy to determine the genetic foundation of these traits because of complex 

interactions between muscle fibres, peri- and postmortem energy metabolism and different 

environmental factors that affect postmortem transformation from muscle to meat (Karlsson 

et al. 1999). One major gene affecting meat quality is RYR1 (Fujii et al. 1991). There are 

multiple isoforms of ryanodine receptors, whereby RYR1 is primarily expressed in skeletal 

muscle where it codes for the ryanodine receptor. It is localized to the sarcoplasmatic 

reticulum and regulates Ca2+ release into the cytoplasm. A transition of C to T on position 

1843 in the RYR1 gene leads to a substitution of Arginine with Cysteine at amino acid 615. 

This is one of the reasons for the disturbed regulation of intracellular Ca2+ in pig skeletal 

muscles, resulting in malignant hyperthermia and reduced meat quality. Several research 

groups have mapped further QTL for meat quality traits in pigs, and numerous QTL have 

been identified (see Hu et al. 2005). Several authors suggested the inclusion of epistasis in 

QTL mapping (Carlborg and Haley, 2004) and Große-Brinkhaus et al. (2010) and Duthie et 

al. (2011) found epistatic effects between QTL affecting the meat quality. Additionally, 

imprinting seems to be important for some QTL affecting the meat quality (de Koning et al. 
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2001). Recently, Wolf and Cheverud (2009) developed a framework for QTL mapping 

combining both epistatic and imprinting effects. 

Geldermann et al. (2003) established a large and powerful porcine experimental design 

consisting of three connected F2 crosses derived from the three genetically different founder 

breeds: Chinese Meishan, European Wild Boar and Piétrain. Bennewitz and Meuwissen 

(2010) showed that numerous QTL for a variety of traits segregate in this design. Rückert et 

al. (2011) used the design to map QTL for metabolic and cytological fatness traits. The aim of 

this study was to use this design to map QTL for meat quality traits using a two-step 

procedure. In the first step, QTL were mapped based on their additive, dominant and 

imprinting effects with a multi-allele multi-QTL approach tailored to analyse connected F2 

crosses, which was previously introduced from plant breeding by Rückert and Bennewitz 

(2010). The mapped QTL were tested for pairwise epistatic effects in the second step. All 

possible epistatic effects between additive, dominant, and imprinting effects were considered, 

leading to nine orthogonal forms of epistasis for each cross.  

 

Materials and Methods  

Animals and traits 

Three porcine F2 crosses were generated from the three founder breeds Meishan, Piétrain  and 

Wild Boar, resulting in Wild Boar x Piétrain (WxP), Wild Boar x Meishan (WxM) and 

Meishan x Piétrain (MxP) crosses. For details of the experimental design see Geldermann et 

al. (2003). All 966 F2 individuals were phenotyped for 46 traits including growth, fattening, 

fat deposition, muscling, meat quality, stress resistance and body conformation.  

 

Seven meat quality traits were investigated in this study: con45, con24 (conductivity in 

mS/cm 45 min and 24h post-mortem respectively), meat colour (meat colour, measured 24h 

post-mortem), pH45 and pH24 (pH-values measured 45min and 24h post-mortem, 

respectively), rigor (stiffness in units, measured 45min post-mortem) and drip loss [cooling 

loss in %, describes the difference between warm carcass weight (1 h after slaughter) and cold 

carcass weight (24 h after slaughter) as percentage of warm carcass weight]. For all meat 

quality traits except meat colour two repeated measurements per trait were made in the 

carcass. For meat colour, five repeated measurements at different points were made. All traits 

except rigor were measured in the muscle longissimus dorsi. Rigor was measured in the M. 

semimembranosus. The traits con45, con24, meat colour, pH45 and pH24 were measured 

between the 13th and 14th rib. 
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The phenotypes were pre-corrected for the effects of sex, litter, season and age at slaughter. 

Descriptive statistics are given in Table 1. The animals were genotyped for around 250 

genetic markers (mostly microsatellites) located across the whole genome. 

 

Statistical analysis 

Pedigree and marker data were used to calculate a linkage map across the three crosses (see 

Rückert and Bennewitz 2010 for details and the genetic map). Genotype probabilities 
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       (1) 

where the terms crossij and RYRij denote the fixed effects of the F2-cross and the fixed effect 

of the genotypes at RYR1:g.1843C>T. The RYR1 gene was only included in model (1) if 

significant (P<0.05). Significance was tested using the following model: 

 ijkijijijk eRYRcrossy      (2) 

Model (1) produced estimates of the dominance effects ( MPd̂ , W Pd̂ , W Md̂ ) as well as the 

additive breed effects of breeds Meishan and Piétrain considering the parental origin of the 
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alleles ( )ˆ,ˆ,ˆ,ˆ m
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M aaaa . The additive effects of the Wild Boar breeds were estimated as 
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heterogeneous in both models, ),0(~ 2

ijijk Ne  ; for details, see Rückert and Bennewitz (2010). 

Combined additive Mendelian effects (i.e. ignoring parental origin of the alleles) were 

calculated as 
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MW aaaaa  . Model (1) was 

fitted every cM on the autosomes by adapting the z terms accordingly. The test statistic was 

an F-test. The F-values were converted into LOD-scores as ))10log(*2/()*( FnpLOD  , 

with np being the number of estimated QTL effects, i.e. np = 7 (four additive and three 

dominance effects). The global null hypothesis was that every estimated parameter is equal to 

zero at the chromosomal position with the highest test statistic. The alternative hypothesis was 

that at least one of the seven parameters is unequal to zero. The 1% and 5% threshold of the 

test statistic corrected for multiple testing on the chromosome was obtained using the quick 

method of Piepho (2001). Once the global null hypothesis was rejected, the sub-hypotheses 

for additive, dominance and imprinting effects were tested at significant chromosomal 

positions by building linear contrasts. The test of the three sub-hypotheses resulted in the 

three error probabilities padd, pdom, and pimp for additive, dominance and imprinting QTL, 

respectively. Additionally, the number of QTL alleles which could be distinguished based on 

their additive mendelian effects was assessed. This was done by testing QTL segregation in 

each of the three crosses, considering only additive mendelian effects and ignoring dominance 

and imprinting. For each significant QTL, a confidence interval was calculated using the one 

LOD drop method. Multiple QTL were included as cofactors in the model using a forward 

selection approach. For further details of this model see Rückert and Bennewitz (2010). 

 

Two-locus model for pairwise epistatic interactions 

Model (1) cannot be easily expanded to test for epistatis (Bennewitz and Rückert, unpublished 

results), so the model of Wolf and Cheverud (2009) was used to test for comparison-wise 

epistatic effects. Therefore, we followed the general F2 model, in which it is assumed that 

gene frequencies in a single F2 population are one half. Further assumptions are Hardy–

Weinberg equilibrium and linkage equilibrium between multiple QTL. The starting point is 

the orthogonal F2 model derived from two founder breeds i and j for a locus A,  
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The g terms denote the genetic value; the upper subscript denotes parental origin and the 

lower subscript denotes the breed origin. The terms a, d and i denote  the additive, dominant 

and imprinting effects, respectively, and μ denotes  the mean of the F2 cross. The model can 

be written as AAAA μESG  , where the lower subscript denotes the locus A. SA is the 

genetic effect design matrix, which is coded so that elements of each column sum to zero. See 

also Wolf and Cheverud (2009). 

This model can be expanded to include all three F2 crosses. GA is a 12x1 vector and SA is a 

12x9 block diagonal matrix with elements in the blocks equal to (3) and zero otherwise. EA is 

a 9x1 vector of and contains the a, d and i effects for each cross. μA is a 12x3 block matrix 

with the cross mean in the blocks and zero otherwise. This model differs from model (1), 

because it treats the F2 crosses separately and thus produces 9 QTL effects instead of 7 as in 

model (1). Therefore, when mapping QTL without epistasis, this model would be of reduced 

power compared to model (1), see also Rückert and Bennewitz (2010). Model (3) can be 

formulated for a second locus B as BBBB μESG  . If locus A and B interact, the model 

can be expanded to include both loci and the interaction between them. The two-locus 

genotypic effect vector, GA,B, is of dimension 3x42=48. The square is due to the possible 

combinations of the four genotypes at locus A and the four at locus B. The combinations are 

present in all three crosses. The two locus effect vector can be written as 

  BABABA EEEEE , , with the dimensions 45x1. Eighteen elements denote the a, d 

and i effects for two loci and three crosses (3x2x3=18) and the remaining 27 elements denote  

interaction effects. The Kronecker product is used here to indicate the interaction effects 

between the additive effects of A with those of B (aaA,B effects), the additive effects of A with 

dominance effects of B (adA,B), the additive effects of A with imprinting effects of B (aiA,B), 

the dominance effects of A with additive effects of B (daA,B), the dominance effects of A with 

those of B (ddA,B), the dominance effects of A with imprinting effects of B (diA,B), the 

imprinting effects of A with additive effects of B (iaA,B), the imprinting effects of A with 

dominance effects of B (idA,B) and the imprinting effects of A with those of B (iiA,B). The 

genetic effect design matrix SA,B (dimensions 48 x 45) is structured as 

 BABA SSS ,
.  
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Hence, the two-locus genetic model accounting for epistasis and imprinting becomes 

 μESG A,A,A,  BBB .  

This model was used to build the following regression model (in matrix notation) 

 

eiiQQidWQiaZQ

diQWddWWdaZW

aiQZadWZaaZZ

iQiQdWdWaZaZXby

BABABABABABA

BABABABABABA

BABABABABABA

BBAABBAABBAA









,,,

,,,

,,,
 (4) 

with y being a vector with pre-corrected phenotypic observations in the F2-populations, b is a 

vector with fixed cross effects and RYR1:g.1843C>T effects (if significant in model (2)). 

Vector e contains random residuals with cross-specific variances. Vector aA (aB) contains 

additive effects of locus A (B), dA (dB) is a vector with dominant effects of locus A (B), iA (iB) 

is a vector with imprinting effects of locus A (B), aaA,B is a vector with additive by additive 

interaction effects, adA,B (daA,B) is a vector with additive by dominant (dominant by additive) 

interaction effects, aiA,B (iaA,B) is a vector with additive by imprinting (imprinting by 

additive), ddA,B is a vector with dominant by dominant interaction effects, diA,B (idA,B) is a 

vector with dominant by imprinting (imprinting by dominant) and iiA,B is a vector with 

imprinting by imprinting interaction effects. The dimension of vectors containing QTL effects 

is always 3x1 (one effect for each cross). XA, ZA, WA, QA, XB, ZB, WB and QB are known design 

matrices linking the observations to the fixed effects and to the additive, dominance and 

imprinting QTL effects of locus A and B, respectively. The elements in Z, W and Q were 

calculated using the four genotype probabilities of each F2-individual and using 

parameterisation as shown in (3).  
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The z, w and q coefficients are regression variables calculated for each individual and each 

chromosomal position using the QTL genotype probabilities as 
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For locus B they were calculated analog to locus A (not shown). 

 

Hypothesis testing 

The null hypothesis was that all regression coefficients in the 3x1 vectors displaying epistatic 

effects (aaA,B, adA,B, daA,B, diA,B, idA,B, aiA,B, iaA,B, ddA,B, iiA,B) were equal to zero. The 

alternative hypothesis was that at least one of these 3*9=27 interaction effects was unequal to 

zero. The test statistic was an F-test. In total, 18 tests for pairwise interactions between QTL 

were conducted, resulting in comparison-wise error probabilities p. An experiment-wise error 

(pe) was calculated as 18)1(1 ppe   using the Bonferroni corrections. To avoid a too 

stringent significance criterion the false discovery rate (FDR) was additionally applied using 

the QVALUE software (Storey 2002). 

 

Results  

Single QTL analysis 

The summary statistics in Table 1 reveal a substantial variation for all traits within and across 

the three crosses. For conductivity traits the mean of the WxM cross is generally substantially 

lower than that of the other two crosses. In contrast, mean pH-values and mean of meat colour 

are highest in the WxM cross compared to the other two crosses. The drip loss mean of the 

WxP cross is substantially higher than those of the other crosses. For rigor the mean of the 

WxM cross is lower than in the other crosses. This is in agreement with the breeding history 

of the Piétrain and the Meishan breeds. The Piétrain breed is a typical sire line and was 

selected for leanness and growth during the last decades, resulting in reduced meat quality in 

general. The Meishan breed is known to be a fatty breed. The Wild Boar breed was not 

subject to artificial selection and hence there was little or no selection pressure on meat 

quality traits. 
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As shown in Table S1, all F2 individuals in the cross WxM are homogeneous for the 

RYR1:G.1843C>T genotypes; individuals in the crosses WxP and MxP show all three 

genotypes. The RYR1 gene polymorphism C1843T was highly significant for all traits except 

drip loss (Table S2). QTL results from model (1) for all meat quality traits are shown in Table 

2. The chromosomal position and the upper and lower bounds of the confidence intervals 

together with the markers are presented for each QTL. For all meat quality traits with a 

chromosome-wise error probability below 1% (below 5%), 7 (19) QTL were found. Based on 

the combined additive mendelian effect (i.e. ignoring dominance and impriting), 6 QTL 

revealed three alleles, 10 QTL revealed 2 alleles and 3 QTL revealed 1 allele. All in all 15 

additive (padd<0.05), 12 significant dominant (pdom<0.05) and 5 significant imprinting effects 

(pimp<0.05) were found for QTL with a 5% chromosome-wise significance level. On SSC6 

QTL for meat colour, con24, con45 and ph45 were mapped in the region of the 

RYR1:G.1843C>T gene, although the RYR1:G.1843C>T mutation was included in model (1) 

for all traits except drip loss. For con45 two QTL were mapped on SSC6 (at 100cM and 

105cM), see Table 2. Figure 1 shows LOD-score profiles with test statistics plotted against 

chromosomal position on SSC6 for all traits. On the top, QTL significant for a chromosome-

wise error probability above the 1% threshold are depicted, whereas the lower LOD-score 

profiles depict traits with no significant QTL on SSC6. The plot for the significant QTL was 

remarkably sharp, leading to small confidence intervals for the QTL. Additionally, two 

distinct peaks around 100cM and 105cM can be distinguished for the trait con45, supporting 

the presence of two QTL in this chromosomal region. 

 

Results from the two-locus analysis 

The results from the two-locus model using pairwise epistatic effects are shown in Table 3.  

The interaction between SSC14 and SSC12 for pH24 showed the highest test statistic, 

followed by the interaction between SSC2 and SSC5 for rigor. Five pairwise epistatic 

interactions had a false discovery rate below 25% (Table 3); these interactions showed the 

highest test statistics (F-values) and the lowest error probabilities (comparison-wise p values). 

Model (4) was used to calculate additive, dominant and imprinting QTL effects (Table 4) and 

pairwise epistatic effects (Table 5) for these interactions. Additionally, the heterogeneity in 

error variance estimates between the crosses is demonstrated in Table 4.  A total of 15 single 

interaction effect estimates were found to be significant (p<0.05), but none of the aaA,B were 

significant.  
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Discussion 

Two step procedure  

In the present study a two-step procedure was used to map and characterize QTL for meat 

quality traits in a large F2 experiment. In the first step, QTL were mapped considering 

additive, dominant and imprinting effects and by applying the multi-QTL multi-allele model. 

Rückert and Bennewitz (2010) showed the high statistical power of this approach compared 

to separate analysis of the crosses. The QTL mapped in the first step were tested for pairwise 

epistatic effects in the second step. Because the model applied in the first step cannot be 

easily expanded to include multiple interacting loci, the orthogonal model of Wolf and 

Cheverud (2009) was applied. In principle, this model could have been used to conduct a full 

two-locus epistatic genome scan, however this would result in a massive multiple testing 

problem. Even if appropriate correction for multiple testing would have been conducted, the 

result would be of low experimental power for detection of epistatic effects. Additionally, it is 

assumed that QTL with real epistatic effects should also show some real single QTL effects 

(see also Wolf and Cheverud, 2009). Both genes could, for example, be involved in one or 

two compensatory pathways or metabolisms which determine muscle phenotype. The test for 

epistasis was done by treating the crosses separately, but applying one linear regression model 

which included all three crosses (model (4)). This offered the possibility to test for epistasis in 

all three crosses simultaneously. Alternatively, the model could have been applied separately 

for each cross, but this would increase the number of tests by the factor three. 

 

General QTL effects 

In contrast to Meishans, Piétrain pigs have a dominance of white muscle fibres, connected 

with a high rate of post-mortem glycogenolysis and an especially high disposition for pale, 

soft and exudative meat. Therefore a lower pH and a higher conductivity value in the cutlet 

muscle of Piétrains was expected. This is also supported by the low variation of con45 in the 

WxM cross (Table 1) and by the low error variance of model (4) shown in Table 4 for this 

cross. For both pH45 QTL, the Meishan breed allelic effect was higher than the Piétrain breed 

allelic effect (Table 2). Unexpectedly, for the three pH24 QTL which revealed additive QTL 

effects on SSC9, 12 and 14, the Meishan breed allelic effect was the same or even lower than 

the Piétrain breed allelic effect. Due to a negative correlation between pH and conductivity, it 

was expected that the allelic effect of the QTL in Piétrain is higher compared to the Meishan 

breed allelic effect. This order of estimated effects ( Pâ > Mâ ) holds true for two con24 QTL 

located on SSC4 and 6 and for one con45 QTL located on SSC6. Meat color is especially 
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dependent on the amount of myoglobin, which is mainly located in type I (slow-twitch) fibers. 

These represent the main type of fibers in Wild Boar. Hence, the Wild Boar breed allelic 

effect for one meat colour QTL located on SSC6 is higher than the other allelic effects. No 

clear pattern of breed allelic effects was observable for pH24 or the remaining QTL not 

discussed above. 

 

QTL results 

A comparison of the QTL results and other literature results can be done using the pig QTL 

data base (Hu et al., 2005). In the following, only the most interesting QTL results will be 

discussed. The RYR1:G.1843C>T is a well known major gene affecting meat quality traits 

(Fujii et al. 1991). The T allele was mainly observed in Piétrain breeds, whereas other breeds 

are usually homozygous CC. In our study, the genotypes CT and TT were only observed in 

the WxP and MxP, but not in the WxM cross (Table S1), which indicates that the T allele 

originates from the Piétrain breed. Interestingly, when RYR1:G.1843C>T was included as a 

fixed effect in model (1), the QTL for pH45, meat colour, con24 and con45 next to the 

position of the RYR1 gene at around 100cM remained significant (see Figure 1). This 

indicates the presence of a further polymorphism with an effect on meat quality within the 

gene, a second QTL in the same chromosomal region, or both. In the same region, Malek et 

al. (2001), Markljung et al. (2008) and Cherel et al. (2011) found evidence for meat quality 

QTL which was not attributable to the RYR1:G.1843C>T mutation. This is in agreement with 

our results. In contrast, Mohrmann et al. (2006) found no evidence for additional QTL closely 

linked to the RYR1 polymorphism for stress syndrome traits such as conductivity and pH. Due 

to the moderate to strong correlations between meat quality traits (De Vries et al., 1994; 

Borchers et al., 2007), an overlap of confidence intervals across the traits was expected and 

observed, e.g. for drip loss and rigor on SSC2, for pH45 and con24 on SSC4, for rigor and 

con24 on SSC5 and for pH45, meat colour, con24 and con45 on SSC6 (Table 4 and Figure 1). 

Numerous QTL have been found for meat quality traits on SSC2 (Li et al., 2010 ; Qiu et al., 

2010; Thomsen et al., 2004; van Wijk et al., 2006) as well as on SSC5 by Srikanchai et al. 

(2009) and Wimmers et al. (2007). Additionally Wimmers et al. (2007) found QTL on SSC4 

for pH45. 
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Imprinting and pairwise epistatic effects 

Few QTL showed significant imprinting effects (Table 2). The imprinted QTL for rigor 

located in the marker interval [SWR453; SW2] (Table 2) on SSC5 was also found by 

Thomsen et al. (2004). Duthie et al. (2011) found an imprinting effect for pH45 positioned 

close to the imprinting QTL on SSC7 for meat colour (Table 2). SSC7 probably contains the 

orthologue ovine chromosomal region encompassing the callipyge locus (Boysen et al., 

2010), which is known to show imprinting effects in sheep. This region is located in the 

telomere on the q-arm of SSC7 and therefore far away from the imprinting QTL confidence 

interval for meat colour on SSC7 in this study (Table 2). De Koning et al. (2001) detected one 

imprinted QTL for drip loss on SSC6, whereas in this study imprinted QTL for con45 were 

found (Table 2). 

The application of model (4) enabled us to study epistatic effects involving imprinting, which 

was proposed by Wolf and Cheverud (2009). The interpretation of the corresponding pairwise 

epistatic effects shown in Table 5 is complex. However, the results underline the importance 

of considering imprinting in epistatic analysis. For the two pH24 QTL located on SSC14 and 

SSC12, the interaction between the imprinting (SSC12) and additive effect (SSC14) was 

significant in one cross whereas the interaction between both imprinting effects was 

significant in two crosses. Interestingly, imprinting was not found in the QTL analysis using 

model (1) for these QTL (Table 2). The importance of imprinting interactions was also 

observed for the second, pairwise significant epistasis between the two QTL for rigor on 

SSC2 and SSC5. Imprinting at these QTL is controlled by the second QTL and vice versa. 

This kind of control of imprinting of a QTL by a second QTL was also found in mice by Wolf 

and Cheverud (2009), who provided some arguments from an evolution perspective. 

Some studies considering epistasis were conducted for muscle-, fat- and meat quality traits. 

Duthie et al. (2011) found one interaction between QTL located on SSC4 and SSC6 for meat 

colour, which is in agreement with the interaction found for pH45 (Table 3). Interactions 

between SSC6 and SSC14 for con45 (Table 3) were also found for microstructural muscle 

properties (Estelle et al., 2008) and for pH decline (Große-Brinkhaus et al., 2010). Because 

the power to detect epistatic effects is substantially lower than that of detecting additive 

effects (Mao and Da, 2005) and the significance of the pairwise epistatic effects is weak for 

most traits with an FDR q-value below 0.25, these results have to be confirmed. Putative 

interaction effects between the RYR1:G.1843C>T genotype and other QTL remain to be 

investigated. 
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Conclusions 

In the present study three connected F2 crosses with almost 1000 individuals were analyzed to 

map QTL for meat quality traits. Several QTL that partly showed pairwise epistatic effects 

were identified. Epistasic effects were also found for imprinting which need confirmation and 

further investigation. 
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Figure 1 LOD-score profiles on chromosome 6 for con24, con45, pH45 and meat colour (top) 

and for rigor, drip loss and pH24 (bottom) calculated using model (1) where 

RYR1:G.1843C>T was included for all traits except drip loss. The arrow on the x-coordinate 

indicates the position of the RYR1-locus.  
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Table 1 Number of observation (N), mean, standard deviation (Sd), minimum (Min) and 

maximum (Max) of the phenotypic observations and coefficient of variation (CV) 

Trait Cross N Mean Sd Min  Max CV 

con45       MxP 316 7.50 5.36 2.52 22.78 71.42 

      WxP 315 9.57 7.41 2.59 24.90 77.43 

     WxM 335 3.59 0.53 2.34 6.30 14.66 

      Joint 966 6.82 5.79 2.34 24.90 84.94 

con24       MxP 316 7.36 2.78 2.26 13.42 37.81 

      WxP 315 8.66 3.03 1.99 14.04 35.00 

     WxM 335 3.53 0.94 1.89 8.10 26.69 

      Joint 966 6.45 3.26 1.89 14.04 50.54 

meat colour       MxP 316 63.87 8.10 45.6 83.30 12.68 

      WxP 315 68.48 10.57 44.9 88.00 15.44 

     WxM 335 69.59 5.87 48.1 82.50 8.43 

      Joint 966 67.36 8.71 44.9 88.00 12.93 

pH45       MxP 316 5.68 0.40 5.10 6.56 7.01 

      WxP 315 5.59 0.39 5.14 6.54 6.92 

     WxM 335 6.01 0.21 5.27 6.38 3.51 

      Joint 966 5.77 0.39 5.10 6.56 6.71 

pH24       MxP 316 5.48 0.09 5.34 6.22 1.65 

      WxP 315 5.47 0.06 5.32 5.69 1.06 

     WxM 335 5.54 0.09 5.35 6.00 1.66 

     Joint 966 5.5 0.09 5.32 6.22 1.59 

rigor      MxP 316 8.94 1.92 3.50 13.00 21.45 

     WxP 315 8.80 1.9 5.00 14.00 21.59 

     WxM 335 7.5 1.43 4.50 12.00 19.03 

     Joint 966 8.39 1.87 3.50 14.00 22.32 

drip loss      MxP 316 1.31 0.54 0.27 4.48 40.92 

     WxP 315 2.09 1.03 0.58 7.32 49.31 

     WxM 335 1.79 0.79 0.59 7.41 44.02 

     Joint 966 1.73 0.87 0.27 7.41 50.18 
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Table 2 QTL results from the joint design using model (1) 

Trait SSC Pos CI1 
F- 

value 
padd

2 pdom
3 pimp

4 
Order of 

effects5 

drip 

loss 

  2  58 [S0141;MLP] 

[39.9;68.0] 

3.57* 0.002 0.042 0.062 
Wâ > Pâ = Mâ  

16  16 [S0111;SW419] 

[0.0;33.3] 

3.08* 0.375 0.005 0.020 
Wâ = Mâ = Pâ  

pH45   4  86 [MEF2D;EAL] 

[82.5;93.7] 

3.35* 0.005 0.022 0.168 
Mâ > Wâ = Pâ  

  6  99 [LIPE;TGFB1] 

[98.3;99.5] 

6.08** <0.001 <0.001 0.935 
Mâ > Wâ > Pâ  

rigor   2  64 [SW240;MYOD1] 

[52.9;70.6] 

3.32* 0.070 0.001 0.944 
Wâ = Mâ = Pâ  

  5  53 [SWR453;SW2] 

[39.0;64.4] 

3.38* 0.023 0.048 0.009 
Mâ > Pâ = Wâ

 

meat 

colour 

  6 100 [LIPE;  A1BG] 

[98.3;101.2] 

5.30** <0.001 0.074 0.732 
Wâ > Mâ > Pâ  

  7  47 [S0025;CYPA] 

[0.0;73.3] 

3.25* 0.008 0.237 0.013 
Mâ = Pâ > Wâ  

15  94 [SW2053;SW1983] 

[71.9;99.4] 

3.32* <0.001 0.523 0.276 
Pâ > Mâ > Wâ  

con24   4  86 [ATP1A2;EAL] 

[81.8;93.7] 

3.94** 0.008 0.002 0.165 
Pâ > Mâ = Wâ  

  5  50 [SWR453;SW2] 

[39.0;64.4] 

3.33* 0.028 0.010 0.057 
Mâ = Wâ > Pâ  

  6  99 [LIPE;TGFB1] 

[98.3;99.5] 

6.78** <0.001 0.012 0.491 
Pâ > Mâ > Wâ  

pH24   9 148 [SW2093;SW174] 

[135.6;158.1] 

3.19* 0.031 0.003 0.816 
Mâ = Pâ > Wâ  

12    2 [S0143;SW957] 

[0.0;32.0] 

3.86* 0.009 <0.001 0.780 
Wâ = Pâ > Mâ  

14 116 [SW210;SW2515] 

[84.3;151.2] 

3.19* 0.021 0.024 0.065 
Wâ > Pâ > Mâ  
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17  79 [SJ063;GNAS] 

[69.9;86.4] 

4.17* 0.429 <0.001 0.995 
Mâ = Pâ = Wâ  

con45   6 100 [LIPE;A1BG] 

[98.3;101.2] 

5.80** 0.007 0.216 <0.001 
Pâ > Mâ > Wâ  

  6 105 [EAH;BNP1] 

[102.4;112.0] 

5.35** 0.054 0.661 <0.001 
Pâ = Mâ > Wâ  

 14  60 [SW2083;ACTN2] 

[43.8;70.6] 

4.07** <0.001 0.059 0.489 
Wâ > Mâ = Pâ  

The model includes the effect of RYR1 for all traits except drip loss. 

1 confidence interval (CI); 2 error probability for additive effects; 3 error probability for 

dominant effects; 4 error probability for imprinting effects; 5 Pâ  estimated effect of Piétrain 

breed, Mâ  estimated effect of Meishan breed, Wâ  estimated effect of Wild Boar breed; * 

above 5% chromosome-wise threshold values; ** above 1% chromosome-wise threshold 

values. 
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Table 3 Pairwise epistatic interaction results from the two-locus model (4) with test statistic 

(F-value), comparison-wise (p) and experiment-wise (pe) error probability and FDR q-value. 

Trait 
QTL A QTL B 

F-value   p pe q 
  SSC  Pos  SSC  Pos 

pH24 14 116 12   2 1.90 0.004 0.071 0.041 

rigor   2  64   5  53 1.62 0.025 0.370 0.127 

pH45   4  86   6  99 1.43 0.072 0.741 0.233 

con45 14  60   6 100 1.38 0.094 0.829 0.233 

pH24   9 148 14 116 1.34 0.116 0.892 0.233 

pH24 17  79 12    2 1.22 0.208 0.985 0.316 

meat colour   7  47   6 100 1.20 0.222 0.989 0.316 

con24   5  50   4  86 1.15 0.275 0.997 0.316 

con45 14  60   6 105 1.12 0.311 0.999 0.316 

meat colour   7  47 15  94 1.11 0.316 0.999 0.316 

pH24   9 148 17  79 1.09 0.349 1.000 0.316 

meat colour 15  94   6 100 1.06 0.379 1.000 0.316 

con24   5  50   6  99 1.02 0.432 1.000 0.318 

pH24 14 116 17  79 1.01 0.445 1.000 0.318 

con24   4  86   6  99 0.95 0.544 1.000 0.363 

drip loss 16  16   2  58 0.69 0.877 1.000 0.530 

pH24   9 148 12   2 0.67 0.901 1.000 0.530 

Pairwise epistatic interations with low FDR values (q<0.25) are written in bold face 
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Table 4 Main effect estimates of QTL involved in pairwise epistasis, results from model (4). 

Trait Cross 
QTL A QTL B 

Aâ  Ad̂  Aî  Bâ  Bd̂  Bî  
2

e  
SSC Pos SSC Pos 

pH24 MxP  14 116 12    2 
-0.006 

(0.008) 

0.034 

(0.013) 

0.01 

(0.009) 

-0.023 

(0.008) 

-0.054 

(0.011) 

0.004 

(0.009) 
0.007 

 WxP   
0,008 

(0,006) 

0,012 

(0,011) 

-0.014 

(0.006) 

0.002 

(0.007) 

-0.002 

(0.009) 

-0.005 

(0.007) 
0.003 

 WxM   
0,023 

(0,007) 

0,003 

(0,011) 

-0.003 

(0.007) 

0.011 

(0.007) 

0.016 

(0.01) 

0.007 

(0.008) 
0.007 

rigor MxP  2  64  5  53 
0.145 

(0.148) 

-1.017 

(0.260) 

-0.091 

(0.192) 

0.423 

(0.173) 

0.173 

(0.253) 

-0.540 

(0.157) 
3.206 

 WxP   
0,188 

(0,170) 

0,368 

(0,380) 

-0.142 

(0.261) 

0.101 

(0.160) 

0.387 

(0.232) 

0.097 

(0.166) 
3.039 

 WxM   
0,063 

(0,137) 

0,247 

(0,229) 

0.062 

(0.154) 

-0.189 

(0.120) 

-0.278 

(0.160) 

0.057 

(0.110) 
1.822 

pH45 MxP  4 86  6  99 
0.055 

(0.026) 

-0.014 

(0.038) 

0.021 

(0.027) 

0.355 

(0.026) 

0.067 

(0.038) 

0.053 

(0.028) 
0.092 

 WxP   
0,020 

(0,021) 

0,101 

(0,032) 

-0.033 

(0.024) 

0.375 

(0.021) 

-0.087 

(0.031) 

-0.030 

(0.024) 
0.067 

 WxM   
-0,035 

(0,016) 

0,000 

(0,024) 

-0.008 

(0.018) 

-0.017 

(0.017) 

-0.029 

(0.024) 

0.004 

(0.017) 
0.041 
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con45 MxP 14  60  6 100 
-0.038 

(0.337) 

-1.025 

(0.475) 

0.104 

(0.331) 

-4.525 

(0.361) 

-2.980 

(0.505) 

-0.412 

(0.358) 
15.820 

 WxP   
0.778 

(0.401) 

0.625 

(0.588) 

0.305 

(0.438) 

-6.882 

(0.404) 

-3.470 

(0.597) 

-0.221 

(0.465) 
24.926 

 WxM   
0.169 

(0.039) 

-0.049 

(0.058) 

0.041 

(0.046) 

0.011 

(0.044) 

0.078 

(0.061) 

0.004 

(0.040) 
0.240 

pH24 MxP  9 148 14 116 
0.003 

(0.008) 

0.004 

(0.011) 

0.004 

(0.008) 

-0.006 

(0.008) 

0,030 

(0,013) 

0,004 

(0,009) 
0.008 

 WxP   
-0.008 

(0.006) 

-0.017 

(0.010) 

0.002 

(0.005) 

0.005 

(0.006) 

0.019 

(0.011) 

-0.015 

(0.006) 
0.003 

 WxM   
-0.006 

(0.011) 

-0.043 

(0.020) 

-0.001 

(0.010) 

0.021 

(0.007) 

0.005 

(0.012) 

-0.006 

(0.008) 
0.007 

Comparison-wise significant main effects (p<0.05) are written in bold face; standard errors are given in parenthesis. 
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Table 5 Epistatic effect estimates, results from model (4). 

Trait Cross 
QTL A QTL B 

aa


A,B
  ad



A,B ai


A,B da


A,B dd


A,B di


A,B ia


A,B id


A,B ii


A,B 
SSC Pos SSC Pos 

pH24 MxP 14 116 12     2 
.002  

(.013) 

0.009  

(0.020) 

-0.019  

(0.013) 

-0.026  

(0.021) 

-0.068  

(0.033) 

-0.012  

(0.022) 

-0.028 

 (0.014) 

-0.037  

(0.022) 

-0.003  

(0.015) 

 WxP   
.026  

(.014) 

-0.033  

(0.016) 

-0.021  

(0.011) 

-0.035  

(0.027) 

0.025  

(0.030) 

-0.006  

(0.023) 

-0.005 

 (0.015) 

0.008  

(0.017) 

0.036  

(0.014) 

 WxM   
-.015 

 (.011) 

0.012  

(0.016) 

-0.017 

 (0.012) 

-0.016  

(0.017) 

0.042  

(0.025) 

-0.010 

 (0.019) 

0.01  

(0.011) 

0.020  

(0.017) 

-0.027 

 (0.012) 

rigor MxP  2  64  5  53 
-.471  

(.248) 

0.054  

(0.349) 

-0.025  

(0.209) 

-0.209  

(0.431) 

-0.846  

(0.621) 

0.071  

(0.378) 

0.585  

(0.314) 

-0.586  

(0.466) 

0.004  

(0.289) 

 WxP   
-.220  

(.245) 

-0.058  

(0.351) 

-0.299  

(0.247) 

-0.161  

(0.551) 

1.372  

(0.774) 

-0.775  

(0.539) 

-1.238  

(0.378) 

-0.539  

(0.527) 

0.513  

(0.365) 

 WxM   
-.028  

(.201) 

-0.410  

(0.273) 

-0.028  

(0.196) 

<.001  

(0.354) 

-0.365  

(0.459) 

-0.036  

(0.308) 

0.574  

(0.245) 

0.096  

(0.309) 

0.279  

(0.196) 

pH45 MxP  4 86  6  99 
.070  

(.039) 

0.057  

(0.055) 

-0.077  

(0.040) 

-0.024  

(0.056) 

0.139  

(0.081) 

0.054  

(0.061) 

0.003  

(0.040) 

0.071  

(0.059) 

-0.043  

(0.045) 

 WxP   
-.024  

(.030) 

0.092  

(0.045) 

0.022  

(0.035) 

0.008  

(0.045) 

0.175  

(0.068) 

0.038  

(0.054) 

-0.034  

(0.032) 

0.033  

(0.049) 

-0.021  

(0.039) 

 WxM   
.008 

(.023) 

-0.054  

(0.034) 

0.015  

(0.024) 

-0.020 

(0.036) 

0.048  

(0.051) 

0.069  

(0.035) 

0.011  

(0.028) 

-0.021  

(0.039) 

-0.005  

(0.025) 
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con45 MxP 14  60  6 100 
-.112  

(.528) 

-1.551  

(0.747) 

1.229  

(0.536) 

0.466  

(0.746) 

0.379  

(1.043) 

0.680  

(0.740) 

0.438 

(0.515) 

-0.357  

(0.717) 

-1.458  

(0.508) 

 WxP   
-.141  

(.559) 

1.312  

(0.836) 

-0.086 

(0.674) 

-0.333  

(0.836) 

-0.125  

(1.232) 

0.156  

(0.959) 

0.083  

(0.638) 

-0.017  

(0.923) 

-0.226  

(0.692) 

 WxM   
-.016 

(.059) 

0.073 

(0.085) 

-0.045  

(0.058) 

0.077  

(0.090) 

-0.264  

(0.125) 

-0.130  

(0.082) 

-0.110 

 (0.074) 

-0.120  

(0.099) 

0.004  

(0.064) 

pH24 MxP  9 148 14 116 
-.017 

(.012) 

0.002 

(0.020) 

0.020 

(0.013) 

-0.006 

(0.018) 

0.014 

(0.030) 

-0.010 

(0.019) 

-0.007 

(0.013) 

-0.005 

(0.021) 

-0.027 

(0.015) 

 WxP   
.014 

(.010) 

0.014 

(0.020) 

0.002 

(0.011) 

-0.002 

(0.019) 

-0.031 

(0.035) 

0.056 

(0.019) 

-0.014 

(0.010) 

-0.018 

(0.019) 

0.014 

(0.010) 

 WxM   
.022 

(.017) 

0.001 

(0.028) 

0.017 

(0.019) 

-0.011 

(0.031) 

-0.064 

(0.047) 

-0.031 

(0.031) 

0.016 

(0.016) 

-0.037 

(0.024) 

-0.004 

(0.015) 

Comparison-wise significant epistatic effects (p<0.05) are written in bold face; standard errors are given in parenthesis. 
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Appendix 

Table S1 Observed number of RYR1:G.1843C>T genotypes within the three F2-crosses 

Genotype WxP WxM MxP 

CC 78 335 67 

CT                154 -                174 

TT 83 - 75 

 

Table S2 RYR1:G.1843C>T genotype estimates using model (2) for all meat quality traits 

Trait      F-value         p 
RYR1 

genotype 
Estimate Standard error 

drip loss 0.40 0.671 - - - 

- - - 

- - - 

pH45 237.71 <0.001 CC     0.264 0.017 

CT          -0.146 0.019 

TT          -0.466 0.025 

rigor 100.59 <0.001 CC          -0.731 0.093 

CT    0.155 0.103 

TT    1.808 0.138 

meat colour 157.60 <0.001 CC    4.945 0.426 

CT          -2.039 0.471 

TT         10.179 0.635 

con24 291.58 <0.001 CC          -2.186 0.117 

CT     1.362 0.131 

TT     3.545 0.177 

pH24 7.90 <0.001 CC          -0.009 0.004 

CT          -0.014 0.004 

TT     0.004 0.006 

con45 223.08 <0.001 CC          -2.680 0.267 

CT          -0.135 0.297 

TT           8.092 0.405 
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Summary 

Improvement of growth and meat quality is one of the main objectives in sire line pig 

breeding programs. Mapping quantitative trait loci for these traits using experimental crosses 

and a linkage-based approach has been frequently performed in the past. The Piétrain breed 

was often involved as a founder breed to establish the experimental crosses. This breed was 

selected for muscularity and leanness, but shows a relatively poor meat quality. It is 

frequently used as a sire line breed. With the advent of genome-wide and dense SNP chips in 

pig genomic research it is possible to conduct genome-wide association studies also within 

the Piétrain breed. In this study around 500 progeny tested sires were genotyped with 60k 

SNPs. Data filtering showed, that around 48k SNPs were useable in this sample. These SNPs 

were used to conduct a genome-wide association study for growth, muscularity and meat 

quality traits. Because it is known, that a mutation in the RYR1 gene located on chromosome 

6 shows a major effect on meat quality, this mutation was included in the models. Single-

marker and multi-marker association analysis were performed. The results revealed between 

zero and 8 significant associations per trait with 5105 p . Of special interest are SNPs 

located on SSC6, 10 and 15. 

 

Keywords: single-marker analysis, BayesC, meat performance 
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Introduction 

Improvement of growth and meat quality is one of the main objectives in sire line pig 

breeding programs. Meat quality can be considered as a combination of sensory properties 

and technological traits. Sensory properties include smell, taste and tenderness, whereas 

technological traits, objectively measured, include pH value, drip loss and intramuscular fat. 

Economically, drip loss likely plays the most important role as a measure of meat quality in 

Germany Factors affecting meat quality are discussed in Fischer (2007) and Huff-Lonergan 

and Lonergan (2007). Quantitative genetic analysis revealed a moderate heritability of traits 

affecting meat quality, with estimates typically in the range of 0.2-0.4 (e.g. de Vries et al. 

1994). In order to identify chromosomal regions affecting genetic variance of meat quality 

traits, linkage analysis has been widely performed and many QTL were identified (Hu et al., 

2005). Highly significant QTL were frequently reported on chromosome six. The gene RYR1 

(Fujii et al., 1991) is located in a QTL region on chromosome 6. A transition of C to T at 

position 1843 in the RYR1 gene (RYR1:g.1843C>T) leads to a substitution of Arginine to 

Cysteine at the amino acid 615. The T allele is associated with an increase in meat content, 

but also with a reduced meat quality.  

 

So far, most QTL were mapped in experimental crosses. These crosses were usually 

established using divergent selected breeds (Rothschild et al., 2007). However, mapping 

precision was in general limited, leading to large confidence intervals. This is because within 

the final generation of experimental crosses the linkage disequilibrium (LD) covers a long 

range. To overcome this limit, in some studies several crosses were pooled and analysed 

jointly, leading to a higher statistical power (e.g. Walling et al., 2000; Rückert and Bennewitz, 

2010). Another drawback of linkage mapping in experimental crosses is that it relies on a 

divergent fixation of QTL in the founder breeds. Although it was frequently shown, that 

mapped QTL do also segregate within founder breeds, this can not a priory be assumed. 

Hence, if mapped QTL are to be considered in marker assisted selection schemes, it has to be 

tested, if they are segregating within the population where selection is to be performed.  

 

With the advent of genome-wide and dense SNP chips in livestock species it is possible to 

conduct genome-wide association studies also within populations (Goddard and Hayes, 2009). 

This approach uses LD between SNPs and the causative mutation within a population. The 

LD structure spans in general a much smaller genomic region compared to the structure 

observed in experimental crosses. Provided that the marker density is high, it is possible to 
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identify short chromosomal regions or even single SNPs associated with the causative 

mutation, leading to a higher mapping precision compared to linkage analysis. In addition, 

significant and validated markers can be included straightforwardly in marker assisted or 

genomic selection experiments. In pigs, the Illumina PorcineSNP60 BeadChip (Ramos et al., 

2009) was successful used in association studies (e.g. Fan et al., 2011, Uimari et al., 2011). 

 

The Piétrain breed is frequently used as a terminal sire breed in crossbred pig breeding 

schemes. This breed was selected for muscularity and leanness, but Piétrain animals have 

relatively poor meat quality. The T allele of the RYR1 mutation described above is observed 

mainly in this breed. In Germany, Piétrain herdbook associations apply sire progeny testing 

on stations for various growth, carcass and meat quality traits. Some of them started to 

implement genomic selection by genotyping these progeny tested sires with the Illumina 

PorcineSNP60 BeadChip and to use them as the initial reference population (Wellmann et al., 

2013). The aim of the present study was to conduct a genome-wide association analysis 

within Piétrain to identify SNPs that show a significant association with growth, muscularity, 

and meat quality traits. 

 

Materials and Methods 

Genotypes and Phenotypes 

Totally 794 German Piétrain boars were genotyped with the PorcineSNP60 BeadChip (Ramos 

et al., 2009). Genotypes from individuals were filtered with respect to call rate (removal of 

SNPs with a call rate less than 95%), parent progeny conflicts (removal of SNP with parent 

progeny conflict greater than 2%), MAF (exclusion of SNP with a minor allele frequency less 

than 3%) and significant deviation from the Hardy-Weinberg-equillibrium (p<0.0001). 

Animals with more than 10% missing genotypes were excluded. Filtering was done using 

PLINK software (Purcell et al., 2007). Sporadic missing genotypes were imputed using 

fastPHASE (Scheet and Stephens, 2006). This filtering resulted in 771 animals and 48062 

SNPs. A number of 351 markers had an unknown physical position in the porcine genome 

sequence (Sus scrofa Build 10.2 assembly). Genotypes of the RYR1:g.1843C>T mutation 

(subsequently denoted as RYR1) were available.  

 

The boars did not have own performance records, but were progeny tested. The following 

traits were considered: daily gain (DG) recorded on station during the fattening period, 

carcass lean content, estimated with Bonner formula (CLC), pH1 (measured 45 min post-
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mortem in cutlet), intramuscular fat content (IMF) measured between the 13th/14th rib in 

cutlet, and drip loss (Drip) measured between the 12th/13th rib in cutlet. All traits were 

recorded according to guidelines of the Zentralverband der Deutschen Schweineproduktion 

e.V. (ZDS, 2004). A varying number of boars with progeny records were available for the 

traits. For a summary statistic see Table 1. The number of full-sibs for the boars was in 

between 1 and 3 with an average of 2 for each trait. 

 

It was shown that yield deviations (YD) are the preferred trait variable in QTL mapping with 

progeny data (Seidenspinner et al., 2009). We reconstructed them from the results of the 

routine animal evaluation scheme, which uses an animal model. We started with the 

calculation of the yield deviation of each progeny k in litter l of boar i for each trait ( ilkYD ).  

The YD is the yield corrected for all random and fixed effects that are included in routine 

animal evaluation, except the breeding value. The YD were summarised for each boar and 

litter as 



iln

k

ilk

il

il YD
n

YD
1

1
, where ilYD  is the average yield deviation in  litter l of boar i and 

i ln  is the number of littermates (number of full-sibs). The ilYD  were subsequently 

summarised for each boar across litters as 



iL

l

il

i

i YD
L

YD
1

1
2 , where iL  is the number of 

litters of boar i. Due to the fact that only one half of the genes were transmitted from boar i to 

his progenies, the average was multiplied by the factor 2.  

 

Statistical analyses 

Single marker association analysis 

In order to test for the significance of the RYR1 gene, the following model was applied to the 

traits. 

 
iii eaRYRYD  1 , (1) 

where iYD  is the yield deviation of boar i, and   is the overall mean. RYR1 denotes the fixed 

effect of the genotypes at RYR1, ia  is a random polygenic effect of boar i, with a covariance 

structure as )A,0(~ 2

sNa  , where A is the numerator relationship matrix derived from the 

pedigree and 2

s  is the sire variance. The pedigree was augmented with ancestor information 

from previous generations. Variance components for the traits were estimated using model 

(1) as well, either with or without RYR1 included. 
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For genome-wide association analysis the second model was applied to each SNP in turn. 

 
iiimmi eaxbRYRYD  1 , (2) 

where imx  denotes the number of copies of the allele with the higher frequency of SNP m 

( imx  = 0, 1, or 2) and mb  is the regression coefficient for SNP m. The other terms are as 

defined above. For the trait without significant RYR1 effect (i.e. DG, see results section), this 

term was omitted. Because of the varying number of offspring observations used to estimate 

the YD, the residual variance was modelled heterogeneous. The derivation of the 

heterogeneous residual variance is described in the Supplemental information, see File S1. 

All models were solved using ASReml (Gilmour et al., 2006). For each SNP m, the null 

hypothesis was that the regression coefficient bm was equal to zero. The alternative 

hypothesis was that the coefficient was significant different from zero. In total, 48062 tests 

were conducted, resulting in point-wise error probabilities p. Following the suggestion of 

Teyssedre et al. (2012), different thresholds were applied. The stringent threshold was 

6105  . It corresponds to an approximation of 10000 independent and Bonferroni-corrected 

tests in their study. The less stringent threshold 5105   was applied to find associations 

across traits. In order to judge how many false positives were among the significant 

associations we applied the false discovery rate (FDR) technique. Therefore we calculated 

for each association test an FDR q-value using the software QVALUE (Storey 2002, Storey 

and Tibshirani, 2003). The FDR q-value of the significant SNP with the highest p-value 

( ,105,105 65   pp  respectively) provided an estimate of the proportion of false 

positives among the significant associations. 

 

Multi marker association analysis 

In single marker association analysis putative LD structure among the SNPs is ignored. Due 

to extensive LD pattern in livestock (Goddard and Hayes 2009), it might be that even distant 

SNPs show a significant association with the causative mutation. This reduces mapping 

precision. If all SNP are fitted simultaneously, the SNP in highest LD with the causative 

mutation should have the largest effect on the trait. In order to model all SNPs 

simultaneously, we applied the BayesC approach of Verbyla et al. (2009, 2010).  
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The following model was applied using all M = 48062 SNPs simultaneously. 

 i

M

m
immi exbYD  

1

 , (3) 

The terms are as described above.  For traits with a significant RYR1 effect, the YDs were pre-

corrected for this effect. A mixture of two t-distributions was assumed for the SNP effects, 

where few SNP effects come from the t-distribution with large scale parameter, and a second 

larger set of SNPs comes from the t-distribution with small scale parameter. Both t-

distributions had v=4 degrees of freedoms. The scale parameter of marker m is proportional to 

mmm   *)1( , where 01.0 . Whether a SNP effect m is from the distribution with 

large scale parameter is determined by the indicator variable )(~ pLDbernoullim ,  which 

can take either 0 or 1, respectively, with pLD being the probability that m  is one. For the 

portion of SNP that are associated with a QTL we assumed 
48062

1000
02.0 pLD  (Wellmann 

and Bennewitz, 2011). The variance of the marker effects was calculated from the data as 










2

)(

)1(ˆ
2

2

2 


m

s

b
EhM

c
, where 2ˆ

s  is the estimated sire variance of the trait (results from 

model 1), h  is the mean heterozygosity ( 35.0h , not shown elsewhere), estimated as 

 



M

m

mm pp
M

h
1

12
1

, with mp  being the allele frequency of SNP m. See Wellmann and 

Bennewitz (2012) for a detailed derivation of this expression. The parameter c denotes for the 

fraction of additive genetic variance not explained by markers and was fixed at 0.25, as 

suggested by Wellmann et al. (2013). The residual variance was assumed to be 

heterogeneous. See File S1 for the calculation of the heterogeneous residual variance. SNP 

effects and expected probabilities of an SNP belonging to the distribution with the large scale 

parameter ( ))|( yE m ) were estimated as the means of the respective posterior distribution. 

We performed 50000 Gibbs sampling iterations. The first 25000 were discarded as burn-in. 

The software was taken from Wellmann and Bennewitz (2012). 

 

Results and Discussion 

Results from association analysis 

The Piétrain breed was frequently involved as a founder breed to generate experimental 

crosses for QTL analysis (e.g. Liu et al., 2007; Mohrmann et al., 2006; Boysen et al., 2011). 

In recent studies we conducted joint QTL analysis for growth and meat quality traits in pigs 

using three connected F2 crosses, where Piétrain was used as a founder breed (Rückert and 
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Bennewitz, 2010, Rückert et al., 2012, Stratz et al., 2013). We were able to map numerous 

QTL affecting muscularity, growth and meat quality. However, it was not obvious, if the QTL 

segregate also within the Piétrain breed. Hence, the mapped QTL could not be used for 

breeding purposes to improve this breed. The current study is, to our knowledge, the first that 

reports the results from genome-wide association analysis within the Piétrain breed.  

 

The results of model (1) are shown in Table 2. The effect of RYR1 was highly significant for 

all traits except DG. The estimated sire variance decreased when RYR1 was included in the 

model. This is most obvious for pH1 and Drip. For IMF the decrease was only small. 

Summary statistics of the results of model (2) are shown in Table 3. For the threshold 

5105 p  no significant associations could be found for IMF. For the other traits the 

number of significant SNPs was between 1 (CLC) and 8 (DG). The FDR among the SNPs 

was between 0.070 for Drip and 0.451 for pH1. For 
6105 p  the number of significant 

SNPs was reduced and no significant associations could be found for CLC and pH1. All the 

SNPs from model (2) with ,105,105 65   pp  can be found in Table S1. 

 

The intersection between SNPs with 
5105 p  (results from model (2)) and BayesC 

posterior probability )|( yE m   0.0625 (results from model (3)) are listed in Table 4. 

Additional SNPs with )|( yE m   0.0625 are shown in Table S2. The histogram of )|( yE m  

is shown in Figure 1. The correlation between the F-values and )|( yE m  was calculated and 

was 0.147, 0.275, 0.226, 0.237 and 0.254 for IMF, DG, pH1, CLC and Drip, respectively. The 

most significant SNPs were not the ones having the highest )|( yE m  (Table S1-S2) and vice 

versa. However, many SNP with 
5105 p  in model (2) also showed an elevated BayesC 

posterior probability (Table 4). In the following section the results listed in Table 4 are 

discussed. 

 

For DG one significant SNP was found on SSC15 (Table 4). BayesC marker effects for SNPs 

located on SSC15 are shown in Figure 2. For Drip significant SNPs were found on SSC6 and 

10 (Table 4). The SNPs on SSC6 and SSC10 are shown in Figure 3. For pH1 SNPs were 

found on SSC6. Hence, it seems that also within the Piétrain, multiple genes segregating on 

SSC6 affecting meat quality, in addition to RYR1. In the BayesC-results, two markers showed 

a substantial effect although the phenotypes were adjusted for the RYR1 effect (Figure 4). 
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Genomic selection using low-density SNP arrays is currently implemented in this Piétrain 

population (Wellmann et al. 2013). The most interesting SNPs found in this study are 

candidate SNPs that could be considered to be included in the low density array. The results 

showed that a selection of SNPs for a low density array based solely on single marker 

association analysis might be suboptimal, because these SNPs did not show always largest 

effects in the BayesC-analysis. The results of both models differ in some cases, because in 

BayesC the LD structure between the markers is taken into account, whereas in single marker 

association analysis only the LD between the marker and the causative mutation is used. In 

general, some significant SNPs showed also substantial BayesC-marker effects, which 

supported the presence of a causative mutation close to these SNPs. 

 

Apart from the size of the gene effect of the particular traits, important factors determining the 

power to detect true associations is the number of genotyped individuals and the reliability of 

the observations used. In our study around 500 individuals with reliable progeny yield 

deviations were used. The results showed that the power of this study is limited. This can be 

seen by the relative low number of significant SNPs and the high FDR among the significant 

SNPs. Hence, confirmation of significant SNPs in an independent sample is highly needed in 

order to pinpoint true associations. 

 

Conclusion 

SNPs affecting growth, muscularity, and meat quality traits within Piétrain pigs were 

identified. Of special interest are regions harbouring SNPs on SSC6, 10 and 15. The RYR1 

gene did not explain all the genetic variance for meat quality attributable to the chromosomal 

region on SSC6.  
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Table 1 Descriptive statistics for the traits, number of sires (N), minimum, mean, and 

maximum number of progeny. 

Trait 
Trait 

abbreviation 
N 

Min-Mean-

Max 

number of 

progeny 

Daily gain, recorded on station during fattening 

period 
DG 571 5-10-113 

Carcass lean content, estimated with Bonner 

formula 
CLC 571 5-10-114 

pH measured 45min post- mortem pH1 584 5-10-113 

Intramuscular fat content measured between the 

13th/14th rib in cutlet 
IMF 353 4-7-41 

Drip loss measured between the 12th/13th rib in 

cutlet 
Drip 497 4-8-64 

 

Table 2 Test statistic of the RYR1:g.1843C>T genotype, estimated sire variance ( 2ˆ
s ) without 

and with RYR1 included in the model, results from model (1). 

Trait F-value p-value 
2ˆ
s without RYR1 2ˆ

s with RYR1 

DG 1.31 0.255 1649.450(287.000) - 

CLC 40.62 <0.001 0.505(0.091) 0.497(0.090) 

pH1 180.17 <0.001 0.058(0.007) 0.013(0.004) 

IMF 15.43 <0.001 0.010(0.003) 0.009(0.003) 

Drip 111.22 <0.001 2.511(0.349) 1.375(0.287) 

Standard errors are given in parentheses. 
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Table 3 Number of significant SNPs (n SNPs) for the traits and the different threshold levels 

and FDR q-values (FDR) of the significant SNP with the highest error probabilities 

( ,105,105 65   pp  respectively) are shown. Results from model (2). 

Trait 

5105 p  
6105 p  

n SNPs FDR n SNPs FDR 

DG 8 0.255 1 0.164 

CLC 1 0.385 0 - 

pH1 2 0.451 0 - 

IMF 0 - 0 - 

Drip 2 0.070 2 0.070 

For all traits except DG the effect of RYR1 was included in the model. 

 

Table 4 Chromosomal regions harbouring SNPs with 
5105 p  (model (2)) and with 

BayesC posterior probabilities )|( yE m   0.0625 (model (3)), their positions in the genome 

(chromosome, position), )|( yE m , and F-value. 

Trait Marker SSC Position (Mb) )|( yE m  F-value 

DG ASGA0069460 15 97.1009 0.114 17.38 

Drip ALGA0035551 6 29.478 0.083 23.85 

Drip ALGA0059133 10 58.503 0.339 22.65 

pH1 ALGA0116528 6 83.970 0.099 19.07 

pH1 MARC0098796 6 83.970 0.070 19.07 
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Figure 1 Distribution of the BayesC posterior probabilities for an SNP belonging to the 

distribution with the larger scale parameter ( )|( yE m ). The x-axis denotes the )|( yE m , the 

y-axis the absolute frequency of the markers. The absolute frequency of markers with 

)|( yE m < 0.0625 is shown in the main window, whereas in the upper right corner only 

markers above that limit are shown, which are of most interest. Their absolute frequency is 

written above the bars. 
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Figure 2 BayesC marker effects for DG on SSC15. The x-axis denotes chromosomal position 

in Mb and the y-axis the marker effect in units of sire standard deviation. The significant SNP 

with 
5105 p  (results from model 2) is marked with two asterisks. 
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Figure 3 BayesC marker effects for Drip on SSC6 and SSC10. The x-axis denotes 

chromosomal position in Mb and the y-axis the marker effect in units of sire standard 
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deviation. Significant SNPs with 
6105 p  (results from model 2) are marked with three 

asterisks. 
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Figure 4 BayesC marker effects for pH1 on SSC6. The x-axis denotes chromosomal position 

in Mb and the y-axis the marker effect in units of sire standard deviation. Significant SNPs 

with 
5105 p  (results from model 2) (results from model 2) are marked with two asterisks. 
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Appendix 

In the first part of the appendix, the calculation of the residual variances for model (1) and (2) 

is described. We can write 

 ilkililkilk euBVYD  , (1) 

whereby ilkYD  is the yield of an offspring of boar i, corrected for all random and fixed effects 

that are included in routine animal evaluation, except the breeding value, i lu  is the 

environmental effect of the l-th litter, ilke  is the residual, and ilkBV  is the breeding value of the 

offspring of boar i. The breeding value can be written as  

 ilk
ili

ilk m
ds

BV 



2

, (2) 

where is  is the breeding value of the sire, i ld  is the breeding value of the sow that produced 

the l-th litter of boar i, and ilkm  is the mendelian sampling effect. Mating partners of boar i are 

assumed to be randomly chosen. Inserting (2) in (1) results after some algebra  

i

EA

i

UA
ii

NeO

VV

L

VV
sYDVar

424
)(





 , 

where iL  is the number of litters of boar i, and the term 





iL

l ili

i
i

nL

L
NeO

1

11
 

is called the effective number of offspring of boar i, i ln  is the number of offspring in litter l, 

AV  is the additive variance, )var( ilU uV   is the variance of the environment effect of the 

litter, and )var( ilkE eV   is the variance of the residual effect. The effective number of 

offspring differs from the actual number of offspring if the litters contain unequal numbers of 

offspring with records. Since iii ssYDE )( , from the law of total variance it follows that 

i

EA

i

UA
ii

NeO

VV

L

VV
sVarYDVar

424
)()(





  

The first term is the variance of the breeding value of the boar, and the sum of the other terms 

is the variance of the error by using the representation 

iii esYD   .  

An approximation of this model was done, because the proposed heterogeneous variance 

model was not available in ASReml (Gilmour et al., 2006). Therefore, for simplicity, we 
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assumed that the same number of full sibs was tested from each litter. Hence, 
i

i

L

NeO
  is a 

constant. It follows that the variance of the error is 

i

i
NeO

eVar


)( , 

where EAUA VVVV 424    is an unknown parameter of the model. This 

heterogeneous residual variance was used in the single marker association analysis (model 1 

and 2). For the multi marker association analysis (BayesC, model 3 in main text), we used the 

following representation of the breeding value of sire i: 

i

M

m

immi pxbs 
1

, 

where the left summand is the sum of the m random marker effects, and ip  is a polygenic 

term. From the representation  

iii esYD    

we have 

A

M

m

imbii cVxxYDEVar  
1

22))((  , 

where the left summand is the variance explained by the markers and the right summand is 

the part of the additive variance not explained by the markers and ix  is the genotype vector of 

boar i. Since only the genotypes of the sires are fixed (and not the genotypes of the 

ungenotyped randomly chosen mating partners) we have 

)()( iiii sYDVarxYDVar   

which was calculated above. From the law of total variance it follows that 

i

A

M

m

imbi
NeO

cVxYDVar


  
1

22)( , 

where  

i

Ae
NeO

cV


 2
 

is the variance of the residual. In order to allow for the use of existing software for BayesC, 

the parameter   was estimated with ASReml (model 1 in main text) and BayesC was applied 

by assuming that  

i

Ae
NeO

cV



ˆ2  . 
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Table S1 Chromosomal regions harbouring SNPs with 5105 p  (model (2)), their 

position in the genome (chromosome, position), )|( yE m , F-value, and FDR q-value (FDR). 

Trait Marker SSC Position (Mb) )|( yE m  F-value FDR 

DG ASGA0095267 6 57.3788 0.050 22.04 0.164 

DG ALGA0123547 6 58.4457 0.050 19.57 0.255 

DG ASGA0010149 2 47.9801 0.038 17.86 0.255 

DG ALGA0032754 5 67.6703 0.049 17.43 0.255 

DG ASGA0069460 15 97.1009 0.114 17.38 0.255 

DG ALGA0032748 5 67.6138 0.056 17.14 0.255 

DG ASGA0010155 2 47.9806 0.022 17.11 0.255 

DG MARC0026068 6 57.3788 0.039 17.01 0.255 

CLC ALGA0005165 1 106.7391 0.041 18.76 0.385 

pH1 ALGA0116528 6 83.9701 0.099 19.07 0.451 

pH1 MARC0098796 6 83.9701 0.070 19.07 0.451 

Drip ALGA0035551 6 29.4777 0.083 23.85 0.070 

Drip ALGA0059133 10 58.5032 0.339 22.65 0.070 

Significant SNP with the highest error probabilities (
6105 p ) are written in boldface. 

 

Table S2 Chromosomal regions harbouring SNPs with BayesC posterior probabilities 

)|( yE m   0.0625 (model (3)), their position in the genome (chromosome, position), 

)|( yE m , and F-value. 

Trait Marker SSC Position (Mb) )|( yE m  F-value 

CLC INRA0002055 1 58.070 0.070 10.55 

CLC H3GA0002760 1 135.380 0.064 11.5 

CLC ASGA0007824 1 260.374 0.073 12.22 

CLC MARC0038518 5 0.277 0.079 7.57 

CLC ALGA0121463 5 12.416 0.096 16.54 
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CLC ASGA0084324 5 12.416 0.117 16.54 

CLC MARC0073291 9 64.732 0.069 11.26 

CLC MARC0080678 9 160.464 0.064 10.47 

CLC MARC0089734 10 82.220 0.065 10.99 

CLC MARC0084792 13 31.901 0.064 12.89 

CLC ALGA0121217 13 56.086 0.072 15.09 

CLC MARC0084251 13 123.197 0.070 13.25 

CLC ALGA0074803 14 0.001 0.087 8.73 

DG CASI0009218 1 16.692 0.077 8.1 

DG ASGA0094502 1 42.770 0.065 11.1 

DG ALGA0002190 1 44.095 0.072 3.35 

DG H3GA0005056 1 259.425 0.068 8.63 

DG ALGA0010815 1 263.439 0.090 10.96 

DG ALGA0121048 2 23.082 0.073 7.04 

DG ASGA0010202 2 47.988 0.065 11.49 

DG ASGA0089130 3 20.951 0.080 10.18 

DG ASGA0022952 4 121.829 0.064 9.83 

DG ALGA0029567 4 124.784 0.067 9.73 

DG ALGA0032718 5 67.410 0.088 15.56 

DG ASGA0026268 5 68.816 0.095 13.38 

DG MARC0070754 5 72.799 0.064 6.43 

DG MARC0035525 6 5.678 0.078 4.47 

DG DIAS0000949 6 146.154 0.088 9.76 

DG MARC0029221 6 171.866 0.073 11.37 

DG ALGA0038836 7 28.496 0.067 6.16 

DG MARC0111713 9 66.473 0.069 6.5 

DG MARC0056124 10 10.715 0.066 8.74 

DG ASGA0050290 11 28.024 0.089 8.99 

DG MARC0026806 13 0.001 0.070 6.22 

DG ALGA0072425 13 82.495 0.066 6.63 

DG H3GA0037486 13 83.007 0.126 15.21 

DG H3GA0037490 13 83.092 0.070 8.83 

DG MARC0023388 13 94.195 0.080 9.76 
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DG H3GA0037662 13 103.003 0.090 9.69 

DG DIAS0001351 14 130.609 0.120 10.26 

DG MARC0050687 14 130.612 0.121 10.26 

DG ALGA0085130 15 22.468 0.063 8.25 

DG ASGA0069460 15 24.630 0.075 11.65 

DG ALGA0087665 15 97.072 0.069 15.19 

DG ALGA0087667 15 97.101 0.114 17.38 

DG DIAS0000678 15 249.573 0.082 12.57 

DG ALGA0089402 16 24.542 0.063 5 

Drip ASGA0001096 1 16.753 0.080 8.35 

Drip ALGA0000100 1 16.781 0.070 9.99 

Drip ALGA0001915 1 40.790 0.120 1.08 

Drip MARC0055037 1 228.698 0.077 12.74 

Drip ASGA0008250 1 270.499 0.087 14.6 

Drip M1GA0004871 3 84.261 0.079 12.03 

Drip ALGA0030881 5 30.618 0.066 6.02 

Drip ALGA0034199 5 85.544 0.073 11.17 

Drip ALGA0034219 5 86.139 0.068 12.94 

Drip ALGA0035551 6 29.478 0.083 23.85 

Drip ALGA0104759 6 30.856 0.071 13.41 

Drip ALGA0108400 6 65.737 0.066 6.47 

Drip CASI0008871 7 129.202 0.068 10.23 

Drip ASGA0042087 9 25.421 0.063 3.5 

Drip H3GA0029101 10 18.115 0.074 5.66 

Drip ALGA0059133 10 58.503 0.339 22.65 

Drip ALGA0101388 10 74.999 0.064 8.02 

Drip ASGA0050169 11 25.350 0.086 9.34 

Drip MARC0064755 12 44.403 0.091 12.76 

Drip ASGA0103690 16 17.875 0.095 11.93 

IM ALGA0056816 10 19.097 0.068 8.96 

IM ASGA0103107 10 52.039 0.070 14.82 

pH1 ALGA0002190 1 44.095 0.068 7.33 

pH1 H3GA0006315 2 33.624 0.094 13.01 
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pH1 ALGA0016913 2 101.888 0.067 6.5 

pH1 ALGA0123033 2 161.039 0.090 8.21 

pH1 MARC0077006 2 161.039 0.067 6.91 

pH1 ASGA0100278 3 2.457 0.069 7.07 

pH1 ASGA0025477 5 54.232 0.065 16.28 

pH1 ASGA0025481 5 55.778 0.063 8.12 

pH1 ALGA0116528 6 83.970 0.099 19.07 

pH1 MARC0098796 6 83.970 0.070 19.07 

pH1 MARC0049988 7 124.216 0.063 7.3 

pH1 ALGA0059205 10 59.932 0.075 14.15 

pH1 ALGA0059207 10 59.940 0.075 13.1 

pH1 ASGA0048247 10 59.970 0.072 9.23 

pH1 ASGA0049437 11 4.868 0.063 3.43 

pH1 ASGA0055015 12 47.544 0.063 3.75 

pH1 ALGA0089171 16 17.410 0.068 8.62 

pH1 ASGA0077407 17 74.326 0.064 11.89 
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Summary 

The aim of the study was the functional investigation of genes located in the vicinity of 

significant SNPs found in genome-wide association studies (GWAS; Stratz et al., 2014). A 

literature search was conducted to suggest one putative candidate gene, called MYOD1. Traits 

for growth, muscularity and meat quality were recorded from 20 boars out of a segregating 

Piétrain population at the LSZ in Boxberg. Muscle and blood tissue were collected from those 

animals after slaughtering. Muscle tissue was homogenized and RNA was isolated to record 

the gene expression of MYOD1. DNA was isolated from blood and the SNP 

ASGA0010149:g. 47980126G>A was genotyped. Significant Correlations (FDR q-

value<0.15) between the expression of MYOD1 and back fat length and daily gain were 

found. Associations between the traits recorded in Boxberg, respectively the expression of 

MYOD1 and the SNP ASGA0010149:g. 47980126G>A were tested. The gene substitution 

effect was significant (FDR q-value<0.15) for the traits back fat thickness measured with the 

FOM-instrument and back fat thickness at the middle of the back (thinnest part), but not for 

the expression of MYOD1. Due to the low statistical power the results have to be considered 

critical. Increasing the number of animals might increase the power to detect true 

associations. 

 

Keywords: functional analysis, MYOD1, meat quality, segregating Piétrain population 
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Introduction 

Heritability estimates of 0.2-0.4 indicate considerable genetic variance for meat quality traits 

(e.g.: De Vries et al., 1994; Borchers et al., 2007). The availability of whole genomic 

sequence data in pigs was leading to a progress in genetics and genomics. A high density in 

marker data enables a genome-wide search for mutations influencing complex traits. A first 

step toward this goal is made by GWAS (Goddard and Hayes, 2009), which enable the search 

for candidate genes in the vicinity of significant SNPs. A further step toward the 

determination of putative candidate genes is to perform tissue and development specific 

expressions studies (Rockman and Kruglyak, 2006). Expressions are moderate to high 

heritable traits (Schliekelman 2008). Considering the expression as phenotype, SNPs can be 

detected influencing the transcription of a gene and hence the trait they determine. The aim of 

the study was to search for candidate genes located next to significant SNPs (Stratz et al., 

2014) and to investigate them functionally. 

 

Materials and Methods 

Based on GWAS (Stratz et al., 2014) candidate genes were searched in the vicinity of 

significant SNPs (P-value<0.0001) using the NCBI map viewer (Dombrowski and Maglott, 

2002). The SNP ASGA0010149:g. 47980126G>A is located on Sus Scrofa Chromosom 

(SSC) 2 at position 47980126 and characterized through a nucleotide exchange of guanin to 

adenine. It is located in the intron of the gene SERGEF (secretion regulating guanine 

nucleotide exchange factor). In the study of Stratz et al. (2014) ASGA0010149:g. 

47980126G>A was significant for the trait DG. Several genes located close to the SNP are 

listed in Table 1 but only one putative candidate gene called MYOD1, which was already 

investigated in two other studies, was suggested for functional studies. Lee et al. (2012) and 

Urbański and Kurył (2004) found that polymorphisms in the gene MYOD1 are influencing 

muscularity and meat quality traits. STRING 9.1 (Franceschini et al., 2013) was used to 

construct networks for MYOD1. 20 Piétrain boars, kept at the Landesanstalt für 

Schweinezüchtung (LSZ) in Boxberg, were slaughtered with a final weight between 102kg 

and 110.3 kg and aged between 166 and 218 days. Traits for growth, muscularity and meat 

quality were recorded according to guidelines of the Zentralverband der Deutschen 

Schweineproduktion e.V. (ZDS, 2004). The traits are listed in Table S1. For a summary 

statistic see Table S2. Tissue samples including muscle (M. semimembranosus) and blood 

tissue were taken from the boars in the slaughterhouse at four different days. High-quality 

RNA was isolated out of muscle tissue using the RNeasy Fibrous Tissue Midi Kit (QIAgen). 
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The RNA was transcribed to cDNA using Affinity Script QPCR cDNA Synthesis Kit (Agilent 

Technologies). For gene expression analysis, primers for the gene MYOD1 were designed 

with the program Primer3Plus (Untergasser et al., 2012). Information on the primers used for 

real-time qPCR for MYOD1 and the housekeeping gene RPL32 is listed in Table S1. Real-

time qPCR amplification was carried out using the BrilliantII SYBR Green QRT-PCR Kit 

(Agilent Technologies) and the CFX96 Real-Time PCR Detection System (Bio-Rad). For 

each sample, two technical replicates were measured. RPL32 was used as reference gene for 

the normalization calculation of relative quantification of expression (Muráni et al., 2007). 

For a summary statistic of the normalized expression of MYOD1 see Table 2. The normalized 

expressions of MYOD1 were log2-transformed due to their distribution (Ponsuksili et al., 

2010; Steibel et al., 2011).The normalized and log2-transformed expressions as well as the 

traits recorded at the LSZ in Boxberg were pre-corrected for the fixed effect of slaughter day. 

The Pearson correlation coefficient was computed for the relation between the normalized 

log2-transformed and pre-corrected expressions of MYOD1 and the pre-corrected traits 

recorded in Boxberg. 

High-quality DNA was isolated out of blood using the Maxwell® 16 instrument (Promega). A 

PCR-based restriction fragment length polymorphism (RFLP) analysis was applied. Primers 

were designed with the program Primer3Plus (Untergasser et al., 2012). MspI was used as 

restriction endonuclease to genotype the SNP ASGA0010149:g. 47980126G>A. Information 

on the primers used for PCR based RFLP is given in Table S2. Additional information on the 

restriction fragment length is given in Table S3. Afterwards the polymorphism was tested for 

Hardy-Weinberg. 

An association analysis was conducted by the regression of pre-corrected traits, respectively 

the normalized log2-transformed and pre-corrected expressions of MYOD1, on the number of 

A-alleles at the SNP_MYOD1. 

 

Results and Discussion 

In Figure 1 the results from the network analysis are shown. MYOD1 is coding for the 

myogenic differentiation factor 1. As myogenic factor it has an effect in muscle 

differentiation, activates muscle specific promotors and induces the differentiation of 

fibroblasts to myoblasts (Parker et al., 2003). The gene product has an effect on the myocyte 

enhancer factor 2A (MEF2A). The myocyte enhancer factor 2A is a transcription activator. It 

is involved in the activation of numerous growth factors and stress induced genes (Black and 

Olson, 1998). Similarly the myogenic differentiation factor 1 activates the myocyte enhancer 
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factor 2C. This is a transcription factor, controlling the cardiale morphogenesis und 

myogenesis (Juszczuk-Kubiak et al., 2012). The myogenic differentiation factor 1 binds to 

and activates MYF6. The gene product of MYF6, the myogenic factor 6, induces a 

differentiation of the fibroblasts to myoblasts (Parker et al., 2003). Furthermore it has an 

effect on the expression of MYH3 and MYH4, coding for myosin heavy chain 3 and 4, 

whereby myosin heavy chain 3 is expressed in the embryonic stadium (Tajsharghi et al., 

2008). Myosin is a motor protein and an essential component of thick filaments of the striated 

musculature (Tajsharghi et al., 2008). 

The correlations between the log2-transformed pre-corrected normalized expressions and the 

pre-corrected traits recorded at the LSZ in Boxberg are listed in Table 3. To correct for 

multiple testing the false discovery rate (FDR) was conducted using the QVALUE software 

(Storey, 2002). For two correlations an FDR q-value<0.15 was calculated. The correlations 

between the expressions of MYOD1 and the traits BFTL and DG were significant (P-

value<0.05). 

The SNP_MYOD1 is in Hardy-Weinberg equilibrium (P-value<0.05) and was therefore 

suitable for association studies. Regressing the pre-corrected traits recorded in Boxberg on the 

number of A-allels at the SNP_MYOD1 resulted into significant gene substitution effects (P-

value<0.05, FDR q-value<0.15) for the traits backFOM and BFTB (Table 4). Regressing the 

log2-transformed pre-corrected normalized expression on the number of A-alleles at the 

SNP_MYOD1 resulted into a non significant gene substitution effect (P-value<0.815). Hence 

no association between the genotype at the SNP_MYOD1 and the expression of the gene 

MYOD1 exists. 

 

The results of this study have to be examined critically. As if already mentioned in the study 

of Schliekelman (2008) the sample size is a factor which determines the power to detect 

eQTL. The low sample size may be responsible for the discrepancy between the results of the 

GWAS conducted by Stratz et al. (2014) and the results of this association study. For the 

future the number of samples should be higher. Traits or expressions could also be 

summarized to units to reduce the number of tests without any significant loss of information 

(Ponsuksili et al., 2010; Schliekelman 2008). 

The stage of development is also playing an essential role in expression studies. Zhao et al. 

(2011) used two different pig breeds (Landrace and Lantang) to investigate the expression of 

genes being involved in the muscle development during different stages from embryo to the 
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adult animal. The authors found an up - and down regulation in the expression of the gene 

MYOD1 in prenatal stages. 

 

Conclusion 

The highest correlation was found for the expressions of MYOD1 and the traits BFTL and 

DG. Slightly significant gene substitution effects were found for the traits backFOM and 

BFTB. However no association between the expression of the gene MYOD1 and the genotype 

at the SNP_MYOD1 exists. For further expression studies considering growth, muscularity or 

meat quality traits it is suggested to increase the sample size and to take muscle tissues from 

different developmental stages. 
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Table 1 Overview of the SNP_MYOD1 (GWAS, Stratz et al., 2014), its position and 

nucleotide exchange in the genome, positional genes in the vicinity and literature. 

 
polymorphism-ID SSC positional 

genes 

literature 

SNP_MYOD1 ASGA0010149:g. 

47980126G>A 

2 MYOD1 

SERGEF 

KCNC1 

TPH1 

Lee et al. (2012), Urbański 

and Kurył (2004) 

Putative candidate genes are written in bold face. 

 

Table 2 Summary statistic of the normalized expression of MYOD1 (n=20) 

trait min max mean median std CV (%) 

Expression 

of MYOD1 

0.22 2.74 0.90 0.55 0.69 1.26 

 

Table 3 Pearson correlation coefficients (r2) calculated between the gene expression of 

MYOD1 and the traits, with comparison wise error probability and FDR q-value (P-value ‘and 

q-value) 

Merkmal r2 P-value q-value 

RSPL -0.53 0.02 0.14 

DG -0.53 0.02 0.14 

Bacon FOM -0.29 0.23 0.95 

LM FOM  0.23 0.35 0.95 

pH2S -0.22 0.37 0.95 

pH1K  0.15 0.53 0.98 

pH1S  0.08 0.73 0,98 

BFTB -0.06 0.80 0,98 

con2S  0.03 0.89 0,98 

BFTW  0.03 0.89 0,98 

con2K -0.03 0.90 0,98 

Muscle FOM -0.01 0.98 0,98 

pH2K  0.01 0.98 0,98 

Significant correlations (q-value<0.15) are written in bold face. 
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Table 4 Association analysis results for the traits recorded in Boxberg. The gene substitution 

effect (̂ ), standard deviation (STD), t-value, P-value and FDR q-value 

trait ̂  STD t-value P-value q-value 

Bacon FOM -1.49 0.50 -2.98 0.01 0.13 

BFTB -0.20 0.08 -2.57 0.02 0.14 

pH2S 0.05 0.05  1.13 0.28 0.82 

LM FOM -0.20 0.19 -1.10 0.29 0.82 

DG -24.77 25.17 -0.98 0.34 0.82 

con2K 0.04 0.04  0.96 0.35 0.82 

BFTW -0.11 0.13 -0.80 0.43 0.87 

Muscle FOM 0.80 1.81  0.44 0.67 0.98 

BFTL -0.03 0.07 -0.37 0.72 0.98 

con2S 0.04 0.48  0.09 0.93 0.98 

pH2K -0,00 0,12 -0.03 0.97 0.98 

pH1K -0,00 0,10 -0.03 0.98 0.98 

pH1S -0,00 0,10 -0.03 0.98 0.98 

Significant gene substitution effects (q-value<0.15) are written in bold face. 

 

 

Figure 1 Protein-protein interaction networks for the gene products of MYOD1, blue lines 

represent bindings, yellow lines represent influences on the expression and black lines 

represent reactions. Green arrows symbolize an activating effect. 
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Appendix 

Table S1 Traits recorded at the LSZ in Boxberg  

trait recording of the data 

final weight weght in kg at the day before slaughter 

slaugher 

age 

age upon completion of the part of examination. 

pH1K pH1-cutlet: measured35-45min post mortem in the cutlet by 4cm deep insertion 

of the electrode between the 13th and 14th rip 

pH1S pH1-ham: measured35-45min post mortem in the ham, 4-6cm above and 2-3 

cm laterally to the pelvic bone 

pH2K pH2-cutlet: measured 24h post mortem in the cutlet section 

pH2S pH2-ham: measured 24h post mortem in ham, 4-6cm above and 2-3 cm 

laterally to the pelvic bone 

con2K conductivity 24h post mortem measured in the cutlet 

con2S conductivity 24h post mortem measured in the ham 

LM FOM Lean meat content estimated with the FOM-instrument 

BFTW Back fat thickness at the withers (thickest part) 

BFTB Back fat thickness at the middle of the back (thinest part) 

BFTL Back fat thickness at the loin (thinest part) 

Muscle 

FOM 

Muscle thickness measured with the FOM-instrument; tip of the FOM-probe 

has to penetrate between the 2nd and 3d last rip of the half-carcass 7cm 

laterally to the center line 

Bacon FOM Back fat thickness measured with the FOM-instrument; tip of the FOM-probe 

has to penetrate between the 2nd and 3d last rip of the half-carcass 7cm 

laterally to the center line 

DG average daily gain (in g) in the part of examination: 

gain in the part of examination (kg)/days in the part of examination x 1000 
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Table S2 Summary statistic of the dependent variables (n=20)  

trait min max mean median std CV (%) 

final weight 102 110.3 105.86 106 2.52 2.38 

slaugher age 166 218 188.96 189.5 12.56 6.65 

pH1K 5.78 6.9 6.31 6.36 0.28 4.44 

pH1S 5.78 6.98 6.25 6.31 0.34 5.44 

pH2K 5.28 5.86 5.61 5.61 0.13 2.32 

pH2S 5.39 5.86 5.64 5.62 0.11 1.95 

con2K 1.8 6.7 3 2.5 1.21 40.33 

con2S 1.2 3.8 1.74 1.55 0.61 35.06 

LM FOM 60.7 66.9 63.62 63.5 1.58 2.48 

BFTW 1.58 2.91 2.29 2.34 0.37 16.16 

BFTB 0.67 1.5 1.17 1.2 0.24 20.51 

BFTL 0.22 1.01 0.5 0.49 0.21 42.00 

Muscle FOM 54.1 71.5 62.01 61.45 5.05 8.14 

Bacon FOM 6,7 12.6 8.8 8.45 1.6 18.18 

DG 617 853 739.04 763.5 68.69 9.29 

 

Table S3 Primer used for real-time qPCR with primer length, annealing temperature, GC-

content (%), amplicon lengh and sequence 

primer primer-

length 

annealing 

temperature 

GC-

content 

amplicon 

 length 

sequence 

MYOD1_F 20 60,1°C 55 

248 

TTCGAGACTCTCAAGCGC

TG 

MYOD1_R 20 60,0°C 50 
ATCATGCCGTCGGAACAG

TT 

RPL32_F 20 

55°C 

- 

165 

AGCCCAAGATCGTCAAAA

AG 

RPL32_R 20 - 
TGTTGCTCCCATAACCAA

TG 
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Table S4 Primer for PCR based RFLP with primer length, annealing temperature, GC-content (%), amplicon 

length and sequence 

primer primer-

length 

annealing 

temperature 

GC-content amplicon 

 length 

sequence 

SNP_MYOD1_F 20 58.3°C 50.00  
TAACCCTCTGA

GCCACAACT 

SNP_MYOD1_R* 22 58.2°C 45.45 210 
GCTAGTCAGAT

TCGTTTCCACT 

*fluorescence marked primer 

 

Table S5 Restriction enzyme with recognition site, temperature optimum for enzyme 

digestion and the resulting fragment length in bp after digestion 

 amplicon-length RFLP-length enzyme recognition site temperature 

optimum  

SNP_MYOD1 210 109 MspI CCGG 37°C 
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Summary 

The aim of the present study was to study the population structure, to characterise the LD 

structure and to define core regions based on low recombination rates among SNP-pairs in the 

genome of Piétrain pigs using data from the PorcineSNP60 BeadChip. This breed is a 

European sire line and was strongly selected for lean meat content during the last decades. 

The data were used to map signatures of selection using the REHH test. In the first step, 

selection signatures were searched genome-wide using only core haplotypes having a 

frequency above 0.25. In the second step the results from the selection signature analysis were 

matched with the results from the recently conducted genome-wide association study for 

economical relevant traits in order to investigate putative overlaps of chromosomal regions. A 

small subdivision of the population with regard to the geographical origin of the individuals 

was observed. The extent of LD was determined genome-wide using r2-values for SNP pairs 

with a distance 5Mb and was on average 0.34. This comparable low r2 value indicates a high 

genetic diversity in the Piétrain population. Six REHH values having a P-value<0.001 were 

genome-wide detected. These were located on SSC1, 2, 6 and 17. Three positional candidate 

genes with potential biological roles were suggested, called LOC100626459, LOC100626014 

and MIR1. The results imply that for genome-wide analysis especially in this population a 

higher marker density and higher sample sizes are required. For a number of 9 SNPs, which 

were successfully annotated to core regions, the REHH test was applied. However no 

selection signatures were found for those regions (P-value<0.1). 

 

Keywords: sire line; selective sweeps; single nucleotide polymorphism 
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Introduction 

Improvement of growth, muscularity and meat quality was one of the main objectives in sire 

line pig breeding programs in Germany during the last three decades. Roughly since 1970, the 

breed Piétrain is frequently used as a sire line breed. The origin of the breed, which dates back 

to around 1920 in the village Piétrain in the province Brabant in Belgium, is not completely 

known. It is assumed that Piétrain descends from the French breed Bayeux, the English breeds 

Berkshire and eventually Yorkshire. The herd book was established in the 1950s. In the end 

of 1960, after the export of Piétrain to Germany, the Belgium Landrace and later sporadic 

Hampshires and Large White breeds were used in the breeding program. 

 

Mapping genes or quantitative trait loci (QTL) has received considerable attention in pig 

breeding during the last decades. With regard to this, predominantly two genetically divergent 

founder breeds were crossed and developed to F2 outbred crosses (Rothschild et al., 2007). 

Due to its extreme muscularity and leanness the Piétrain breed was used in many studies to 

establish an F2-cross (Mohrmann et al., 2006; Liu et al., 2007; Rückert & Bennewitz, 2010). 

In these studies, the individuals were mainly genotyped with microsatellite markers and the 

F2-individuals were performance tested for the traits of interest. QTL mapping relied on 

linkage between marker and QTL, and variation within the founder breeds was not utilised. 

An alternative mapping approach is association mapping. It relies on linkage disequilibrium 

(LD) between marker and QTL and, in contrast to linkage analysis, utilises also historical 

meiosis (e.g. Goddard & Hayes, 2009). If association mapping is to be performed across the 

whole genome, genome-wide and dense marker maps have to be used. In pig breeding, the 

availability of the Illumina PorcineSNP60 BeadChip (Ramos et al., 2009) with around 62K 

SNPs offered new possibilities in genome-wide evaluations of the genome. In the German 

Piétrain breed it was used recently by Wellmann et al. (2013) for genomic selection and by 

Stratz et al. (2014) for association analysis.  In the study of Stratz et al. (2014), around 500 

progeny-tested sires from three different breeding organizations were genotyped with the 

PorcineSNP60 BeadChip. After data filtering around 48k SNPs were used to conduct 

genome-wide association studies for growth, muscularity and meat quality traits. However a 

thorough characterisation of the LD pattern using this SNP chip in the German Piétrains has 

not been done yet. Having knowledge about this pattern would help to design mapping and 

genomic selection experiments more efficiently. 
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The PorcineSNP60 BeadChip can also be used to find chromosomal regions with signatures 

of recent positive selection. Several methods are available to detect selective sweeps (e.g. 

Qanbari et al., 2010a; Akey, 2009; Nielsen, 2005). In livestock genetics the Extended 

Haplotype Homozygosity statistics (EHH, Sabeti et al., 2002) was applied by Qanbari et al. 

(2010a). It relies on the assumption that a mutation which is subject to positive selection will 

accumulate faster in frequency which results in longer LD blocks around the mutation. 

However this statistic is highly sensitive to relatedness between the individuals of the 

population. Unequally related individuals may cause a similar departure from the neutral 

model than selective sweeps and may introduce a bias if it is not corrected for (Schmid et al., 

2005). Giving attention to the population structure may prevent potentially flawed results. 

 

The aim of the present study was to study the population structure, to characterise the LD 

structure and to define core regions based on low recombination rates among SNP-pairs in the 

German Piétrain population using data from the PorcineSNP60 BeadChip. It can be 

speculated that sites in the genome at which we know selection has occurred (Stratz et 

al.2014) coincide with selective sweeps (Qanbari et al., 2010a). SNPs that were associated 

with economical relevant traits in recently conducted genome-wide association analysis were 

tried to get annotated to core regions to conduct a targeted search for selection signatures. The 

EHH test statistic was applied genome-wide and in targeted regions. 

 

Materials and methods 

Data preparation and haplotype reconstruction 

A total of 849 German Piétrain boars were genotyped with the PorcineSNP60 BeadChip 

(Ramos et al., 2009). A proportion of 68%, 23% and 9% of the boars were originated from 

breeding organizations located in the states Baden-Württemberg, Nordrhein-Westfalen and 

Schleswig-Holstein, respectively. The same filtering criteria as in Stratz et al. (2014) were 

used to compare the results of both studies. Genotypes from individuals were filtered with 

respect to call rate (removal of SNPs with a call rate less than 95%), parent - progeny 

conflicts (removal of SNPs with parent - progeny conflict greater than 2%), MAF (exclusion 

of SNP with a minor allele frequency less than 3%) and significant deviation from the Hardy-

Weinberg-equillibrium (P-value<0.0001). Animals with more than 10% missing genotypes 

were excluded. Filtering was done using PLINK (Purcell et al., 2007). Sporadic missing 

genotypes were imputed using fastPHASE (Scheet & Stephens, 2006). Markers which had an 

unknown physical position in the porcine genome sequence (Sus scrofa Build 10.2 assembly) 
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were excluded. Haplotypes were reconstructed using default parameters in fastPHASE 

(Scheet & Stephens, 2006). 

 

Population structure 

The structure of the population was visualized using two different methods, i.e. unscaled 

principle component (PC) analysis and multidimensional scaling analysis (MDS). For both 

purposes, the design matrix of the dimension (number of animals x number of SNPs), 

representing the number of animals and SNPs, was used. PCA was applied by inserting the 

design matrix in the function prcomp() of the R-package graphics. The identity-by-state 

matrix (IBS) was calculated form the design matrix (see Patterson et al., 2006). IBS-

relationships were converted into genetic dissimilarities by subtracting them from one. For 

MDS the resulting IBS dissimilarity matrix was inserted in the function smacofsym() of the 

R-package smacof. This method visualizes genetic dissimilarities between objects. The boars 

were arranged in a 2-dimensional Euclidean space such that the distances between the boars 

correspond to their IBS dissimilarity as good as possible. This approximation is done by the 

objective function called stress (de Leeuw & Mair, 2009). 

 

Extent of LD and core region partitioning 

The most frequently used coefficients r2 and D’ which measure the extent of LD have 

different properties (Mueller, 2004). The LD coefficient r2 is useful in the context of 

association studies. Calculating the confidence bounds on D’ is of interest to assess the 

probability for historical recombination and to define regions as cores. Reconstructed 

haplotypes were inserted into Haploview v.4.1 (Barrett et al., 2005) to estimate r2 and D’ (Hill 

& Robertson, 1986) values. This was done for marker pairs being <5MB apart over the 

autosomes. Additionally r2 was estimated for adjacent markers. 

 

The core region consists of a core haplotype set and is characterized by a low historical 

recombination rate among SNPs. Core regions were identified using the block identification 

algorithm of Gabriel et al. (2002) which is implemented in Sweep v.1.1 (Sabeti et al., 2002). 

The algorithm relies on confidence bounds on D’, rather than point estimates, because point 

estimates on D’ tend to be upwards fluctuated when using a small number of samples or rare 

alleles (Gabriel et al., 2002). SNP-pairs were defined to be in strong LD if the upper 95% 

confidence bound on D’ is between 0.7 and 0.98. This leads to different sized regions of 

markers being in strong LD. Regions were defined as core regions, if a very small proportion 



Chapter four 

- 86 - 

(5%) of comparisons among SNP pairs had an upper confidence bound on D’ smaller than 

0.9. Gabriel et al. (2002) found that information from as few as three markers is sufficient to 

identify regions as cores. 

 

It was assumed, that regions harbouring significant SNPs in GWAS for economically 

important traits may point to selection signatures. Therefore we tried to annotate significant 

SNPs which were found in the study of Stratz et al. (2014) to core regions. 

 

Application of the EHH test 

To determine regions under recent selection, the Extended Haplotype Homozygosity (EHH; 

Sabeti et al., 2002) test was performed. EHH is defined as the probability that two randomly 

chosen gametes carrying a particular core haplotype t are identical by descend for the entire 

interval from the core region to a distance x  (Sabeti et al., 2002). It detects the transmission 

of an extended haplotype i without recombination. EHH of a tested core haplotype t is 

mathematically defined as: 
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where ct is the number of samples which carry a particular core haplotype t within a core 

region, eti is the number of samples having core haplotype t and carrying a particular 

extension i, and s  is the number of particular extended haplotypes. Local recombination rates 

were not considered in the EHH test statistic. Therefore the Relative Extended Haplotype 

Homozygosity (REHH; Sabeti et al., 2002) test was applied. It is computed by 

EHHt/ EHH where EHH is calculated as:  
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where n is the total number of core haplotypes in a particular core region, and cj is the number 

of samples having a core haplotype j (with j≠t). In contrast to equation (1), where the EHH 

decay for a particular core haplotype t was considered, equation (2) gives a measure for the 

EHH decay on all core haplotypes in the same core region combined except the core 
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haplotype t. Therefore the terms in the denominator and in the numerator were summed up 

over the number of particular core haplotypes in one core region. 

 

To determine the empirical significance of REHH values, core haplotypes were placed in bins 

based on their frequency. To achieve normality, REHH values were log-transformed and their 

mean and standard deviation was calculated. Afterwards they were compared to all other 

equally frequent extended haplotypes within one bin and P-values were calculated. Core 

haplotypes with extreme REHH in the distribution were considered significant, as suggested 

by Sabeti et al. (2002). The REHH test was conducted genome-wide, taking core regions 

harbouring haplotypes above a certain frequency into account. Furthermore the REHH test 

was conducted for haplotypes, where significant SNPs, found in the study of Stratz et al. 

(2014), were successfully annotated to core regions. To judge how many false positives were 

among the significant associations, the false discovery rate (FDR) technique was applied. For 

each association test an FDR q-value was calculated, using the software QVALUE (Storey 

2002; Storey & Tibshirani 2003). 

 

Mapping of selective sweeps to genome annotations 

The position of SNPs within each core region was aligned to the porcine genome sequence 

(Sus scrofa Build 10.2 assembly). The NCBI map viewer (Dombrowski & Maglott 2002) was 

used to identify positional genes in a 1MB region upstream and downstream of the cores. To 

confirm their role as candidates, only genes being involved in metabolisms which determine 

traits included in the breeding goal were searched. 

 

Results 

Data description 

A descriptive summary of the genome-wide marker distribution is presented (Table S1). 

Totally 47549 markers passed the filtering criteria and were included in the final analysis. 

This subset covers 2983 Mb of the genome with 84.6 228.9 mean distance (kb) between 

adjacent markers, whereof the largest gap between SNPs (4.989 Mb) was located on SSC8. 

The average observed heterozygosity and mean MAF were estimated as 13.036.0  and 

14.027.0  , respectively. 
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Population structure 

The first two PCs (Figure1, left side) accounted for 2.2%, respectively 1.7% of the variance in 

the data. On the right side (Figure 1), boars were arranged such that the distance between 

them corresponds to their genetic dissimilarity as much as possible. In MDS the stress value 

was 0.16. It can be shown, that independent of the method which was used for studying the 

structure of the population, a small substructure with regard to the origin of the boars is 

observed. Boars from breeding organizations located in the states Nordrhein-Westfalen and 

Schleswig-Holstein are genetically more similar than boars from Baden-Württemberg. 

 

LD and core region structure 

All possible SNP pairs with a distance 5Mb produced 3284064 pairwise LD values on the 18 

porcine autosomes. The average D’ (r2) between SNP pairs was 0.43 (0.34). Average D’ (r2) 

at various distances were computed by grouping all SNP combinations by their pairwise 

distance in classes of 50kb of length starting at 0 to 5MB. In Figure S1 the decline is shown 

for D’ over distance. Figure 2 displays an overview of the decline of r2 over distance. For all 

inter-marker distances the average D’ was higher than the average r2. Additionally the r2 

decay for all adjacent marker pairs is shown in Figure S2 over the autosomes and in Figure S3 

for every autosome, respectively. The average r2 for adjacent SNPs estimated over the 

autosomes was 0.55. On a chromosome level, the mean distance between adjacent markers is 

in between 51,7 kb on SSC4 and 165.1 kb on SSC15. The estimated mean r2 between adjacent 

markers was in between 0.19 on SSC12 and 0.94 on SSC14 (Table S1). 

 

A descriptive summary of the core region distribution in this dataset is presented in Table 1. 

A total of 5700 core regions spanning 954.010 Mb (32%) of the entire genome and containing 

22854 core haplotypes were detected; most of them on SSC1. Mean core region length was 

estimated as 167.4 275.9 kb respectively with a maximum of 5052 kb on SSC6. The 

proportion of total core region lengths relative to autosome length was lowest for SSC10, 

carrying 230 core regions spanning 19.438 Mb of the chromosome, and highest for SSC1, 

carrying 820 core regions, spanning 196.484 Mb of the chromosome. 23092 SNPs (49%) 

participated in forming the core regions. Mean number of core region building SNPs was 

estimated as 4.46 3.03 with a maximum of 19 SNPs on chromosomes 1, 4-9, 11, 13-15. 
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Autosomal screen to identify targets of strong recent selection 

8966 core haplotypes having a frequency above 0.25 were arranged in 15 core haplotype 

frequency bins (0.25-0.30, 0.30-0.35, …, 0.95-1.00) and P-values of the normalized REHH 

values were calculated. The distribution of –log10(P-value) is shown as box plots within each 

bin (Figure 3). The test statistic of 8966 core haplotypes, with a frequency above 0.25, over 

the chromosomes is shown (Figure S4). The threshold for outliners displayed in both Figures 

was set to 0.01 and 0.001. A number of 918 normalized REHH values were detected having a 

P-value<0.1 whereof 69 are showing a P-value<0.01 and 6 are showing a P-value<0.001 

(Table 2). Normalized REHH values having a P-value<0.001 were found on SSC1, 2, 6 and 

17 (Table 2). It is evident, that the outliers appear in medium frequency bins (0.30-0.45). 

 

It was possible to identify positional genes which meets the requirements of candidates, 

because they are involved in metabolisms which determine traits included in the breeding 

goal. The positional candidate genes are listed in Table 2. The genes LOC100626459 and 

LOC100626014 (calcium/calmodulin-dependent protein kinase type II subunit alpha-like) 

located on SSC2 are involved in Ca2+ signalling. The Ca2+-metabolism is important for meat 

quality, growth and muscling traits (Fujii et al., 1991). CaMK2 is an enzyme which is 

composed of four different chains: alpha, beta, gamma and delta and belongs to the 

serine/threonine protein kinase family and the Ca2+/calmodulin-dependent protein kinase 

subfamily. CaMk2A is coding for the alpha chain of this enzyme. MacDonnell et al. (2009) 

showed that in cardiac myocytes of neonatal rats the activation of cytoplasmic CaMKII 

inhibits antiapoptotic and hypertrophic target genes. Another gene which was found on 

SSC17 is MIR1 (microRNA mir-1). MicroRNAs represent a group of small noncoding RNAs 

with regulatory functions. Hong et al. (2012) investigated polymorphisms in the porcine 

microRNA mir-1 in three pig breeds, called Berkshire, Landrace and Yorkshire. The authors 

found an association for polymorphisms on muscle fiber type composition and mir-1 

expression. 

 

REHH test in candidate regions 

It was not always possible to annotate significant SNPs, which were found in Stratz et al. 

(2014), to core regions. The list of SNPs and their associated trait names, which could be 

arranged in core regions, is summarized (Table S2). For daily gain, carcass lean content, pH1, 

and drip loss, it was possible to locate SNPs in core regions. The second most frequent 

haplotypes and their test statistic downstream and upstream of the core are listed in Table S2. 
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For the SNP ASGA0094502, which was found to be significant for daily gain on SSC1 in 

Stratz et al. (2014), the test statistic was only available for the downstream region. This is 

attributable to the lower LD upstream of the core (not shown). For three core haplotypes, 

being extended in one direction from the core, a P-value<0.1 for REHH was obtained (marked 

in bold, Table S2). The FDR among the significant REHH tests was 0.8. 

 

Discussion 

Population structure 

The results of both methods (Figure 1) showed that there is only a small tendency for 

population structure of individuals with respect to geographical origin. Hence, no specific 

modelling of population structure beyond taking the relationship of the individuals into 

account is needed in applying GWAS (Stratz et al., 2014) and genomic selection (Wellmann 

et al., 2013). In general the genetic distance between individuals was large. This indicates that 

the individuals are less related. Therefore correction for population structure is not required 

before searching for selective sweeps. 

 

Extent of LD 

Care needs to be taken when comparing levels of LD over studies, because of different 

sample sizes, LD measures, marker densities and sets of markers (Pritchard & Przeworski, 

2001). Therefore only studies reporting LD for the PorcineSNP60 BeadChip data were used 

for comparison with the results in our study. The LD coefficient r2 is the most relevant 

measurement for association mapping, because of the simple relationship with the sample size 

required to detect an association between a trait and the marker loci. Therefore the emphasis 

of this section was on the comparison of the LD coefficient r2 estimated in this studies with 

the r2 coefficients estimated in other studies. For Finish Landrace and Yorkshire average r2-

values for marker pairs being <5MB apart of 0.43 and 0.46, respectively, were reported by 

Uimari and Tapio (2011). Veroneze et al. (2013) found an average r2 of 0.39 for a purebred 

Piétrain sire line, which was lowest, compared to the other lines representing synthetics and 

pure lines from Netherlands. 

Compared to those studies the value of r2 found in this study (0.34) is low. This points to a 

high genetic diversity within this breed. This is also in agreement with the estimated genetic 

distances between the individuals in our study and with the large effective population size of 

this breed (Ne>200, BLE 2010). The past effective population size from SNP data was not 

estimated, because of the introgression of several breeds in the Piétrain breed since its origin. 
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The high effective population size, as a result of the introgression of several breeds, may lead 

to new alleles with low-frequency which could not be separated from the ones that already 

exists as low-frequency alleles in the population. To avoid the confounding effect of 

population demographic history only alleles having a certain minor allele-frequency 

(MAF>3%) were used to define core regions. 

 

Badke et al. (2012) used four US pig breeds and estimated adjacent r2-values between 0.36 

and 0.46. Compared to the study of Badke et al. (2012) the value of r2 found in this study 

(0.55) is high. Although having a relative high r2 between adjacent marker pairs, Stratz et al. 

(2014) observed a low number of significant SNPs for growth, muscularity and meat quality 

traits. There are two possible explanations for this. Either, only alleles having a low impact in 

trait determination are segregating in the population or that on chromosome with low r2 the 

experimental power is not high enough to detect true associations. Reducing the distance 

between adjacent markers for chromosomes with low r2 would then be helpful to increase r2, 

and hence, increasing the experimental power in GWAS. 

 

Pattern of LD 

The average estimated core length was 167.4kb. The size of the core regions is comparable to 

the length in the study of Qanbari et al. (2010b), who used 40854 SNP covering the whole 

bovine genome. For the pig genome, Amaral et al. (2008) detected larger core regions. 

Veroneze et al. (2013) detected larger core regions in a purebred Piétrain sire line from the 

Netherlands. Both authors showed that LD is mostly organized in cores up to 400kb. The 

number of core regions, the small core region size as well as the low number of core-building 

SNPs in this study are in agreement with the low level of r2 for all possible marker pairs. 

Considering the whole genome, the proportion of total number of SNPs forming core regions 

on number of SNPs used is higher compared to the proportion of total core region length on 

chromosome length. 

 

Only few significant selection signatures were found (REHH P-value<0.001). There are 

several possible explanations for this. The power of the study design might not be high 

enough to detect existing signatures. Alternatively, selection has acted on the whole genome 

rather than on single chromosomal regions which might be attributable to the complexity of 

the genetic architecture of the traits under selection. A large number of loci with very small 

effects on the traits were slowly accumulated in frequency. This is a possible explanation why 
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selection signatures were found in core haplotypes of medium frequency, although it seems to 

be more likely that a higher core haplotype frequency is an indicator of positive selection. A 

third possibility is that intensive selection was carried out only for the last few generations in 

the population and the time to generate extensive haplotype homozygosity around the target 

genes was too short. 

 

Significant SNPs found by Stratz et al. (2014) were matched to core regions. This was only 

partially possible and strong evidence for recent selection was not found in those regions. 

Maybe selective sweeps found in our study might belong to other traits which were not 

considered in the study of Stratz et al. (2014), or are under natural selection. This in-

accordance was also found by Qanbari et al. (2010a) in a dairy cattle population and by 

Kemper et al. (2014) in eight domestic Bos taurus cattle belonging to dairy and beef breeds. 

Kemper et al. (2014) studied sites in the genome at which they know selection has occurred to 

see if a signature of selection has been left behind. The authors studied three types of loci with 

different effects on the traits. Two statistics that indicate selection signatures within a breed 

were applied. For qualitative traits they were able to show clear signatures of selection within 

breeds because selection pressure has applied to one single locus. However weak evidence for 

selection signatures was found at regions in the genome associated with complex traits under 

selection. 

 

Conclusions 

The population structure indicates that there is no specific modelling of the geographic origin 

of the animals in GWAS or genomic selection necessary. The low r2 for all possible marker 

pairs estimated in this study is in accordance with the breeding history of the population and 

indicates a high diversity in the German Piétrain pig population. Only few significant 

selection signatures could be found genome-wide. Results from recently conducted GWAS 

for economical relevant traits did not match with regions of increased extended haplotype 

homozygosity. 
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Table 1: Summary of core region (CR) distribution across the autosomes in the Piétrain pig 

genome. 

Chr No. 

CR 

(n) 

Mean CR 

length (kb) 

 SD 

Coverage 

CR 

lengtha 

(Mb) 

Max 

CR 

length 

(kb) 

CR 

length/Chr 

lengthb 

CR 

SNPc(n) 

Mean CR 

SNP (n) 

 SD 

Max 

CR 

SNPs 

(n) 

CR 

SNPs/SNPd 

1 820 239.6 329.9 196.484 2103.0 0.52 4009 5.2 3.8 19 0.71 

2 424 123.8 170.7 52.486 1960.0 0.32 1559 4.1 2.4 17 0.51 

3 363 119.1 186.7 43.244 1446.9 0.28 1246 3.9 2.1 16 0.47 

4 434 146.9 187.5 63.767 1285.1 0.46 1793 4.6 3.4 19 0.57 

5 330 114.3 199.0 37.722 1929.1 0.34 1244 4.2 2.3 19 0.54 

6 253 147.0 380.8 37.181 5052.0 0.19 985 4.3 2.7 19 0.29 

7 420 188.8 283.4 79.305 2532.8 0.57 1845 4.8 3.2 19 0.62 

8 296 166.1 317.7 49.158 3023.0 0.29 1210 4.5 3.1 19 0.59 

9 306 89.4 146.8 27.360 1269.6 0.16 1071 3.9 2.1 19 0.36 

10 230 84.5 129.6 19.438 1081.7 0.20 733 3.7 1.7 13 0.42 

11 182 170.5 268.1 31.039 1954.5 0.35 644 4.0 2.6 19 0.37 

12 218 113.6 226.0 24.757 2023.0 0.29 681 3.6 1.6 13 0.43 

13 284 233.4 287.2 66.290 1604.0 0.25 1412 5.3 3.9 19 0.38 

14 237 361.3 515.9 85.635 2796.7 0.52 1467 6.5 5.0 19 0.42 

15 218 201.4 249.7 43.911 1508.5 0.15 913 4.6 3.4 19 0.36 

16 251 101.6 240.4 25.507 1938.8 0.20 789 3.6 1.4 11 0.45 

17 257 173.1 237.4 44.480 1351.9 0.49 901 3.9 1.8 13 0.57 

18 177 148.3 176.2 26.244 786.2 0.30 590 3.8 1.8 13 0.54 

Total 5700 167.4 275.9 954.010 5052.0 0.32 23092 4.46 3.03 19 0.49 

a Total length covered by core regions; b The proportion of total core region lengths on 

autosome length; c Number of SNPs forming core regions; d The proportion of total number of 

SNPs forming core regions on number of SNPs used. 
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Table 2 Summary statistics for core haplotypes with frequency above 0.25 and showing the 

lowest P-values in the REHH test. 

SSC Core Position (Mb) Hap freq (%) EHH REHH REHH P-value positional 

candidate genesa 

2 158.375-158.375 25 0.21 19.43 0.000009 LOC100626459, 

LOC100626014 

2 101.578-101.611 32 0.06 8.73 0.000459 - 

1 104.906-104.942 34 0.82 8.58 0.000505 - 

1 104.983-105.005 37 0.68 7.59 0.000731 - 

6 55.378-55.397 47 0.39 7.34 0.000786 - 

17 78.982-78.995 42 0.87 7.06 0.00082 MIR1 

a Positional candidate genes with potential biological roles that could be found in a distance of 

1Mb upstream and downstream of the core regions. 
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Figure 1 Clustering the Piétrain population based on SNP genotype data. Boars belonging to the 

3 breeding organisations (Baden-Württemberg, Nordrhein-Westfalen, and Schleswig Holstein) 

are shown with different symbols. On the left side the first two principle components are shown, 

whereas on the right side the results of multidimensional scaling are shown in a 2-dimensional 

Euclidean space.
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Figure 2 Decay of average LD over distance. The x-axis denotes marker distance in kb and the y-

axis the LD for all possible marker pairs separated by less than 5 MB using r2.
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Figure 3: Box plots of the distribution of logarithmic REHH P-values in core haplotype 

frequency bins of 5% difference. The x-axis denotes core haplotype frequency bin and the y-axis 

–log10(P-value). Only core haplotypes with a frequency above 0.25 are shown. Two significance 

levels are indicated, P-value=0.01 (dashed line) and P-value=0.001 (continuous line). 
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Appendix 

Table S1 Summary of marker distribution across the autosomes in the Piétrain pig genome. 

Chr SNP 

(n) 

Chr length 

(Mb) 

Mean dist. (kb) 

adjacent SNPs 

Max gap (Mb) 

adjacent SNPs 

Mean r2 adjacent 

SNPs 

1 5658 376.1 69.0 4.302 0.87 

2 3071 162.6 83.7 3.319 0.55 

3 2661 152.1 89.0 3.530 0.43 

4 3157 140.1 51.7 3.099 0.76 

5 2323 112.4 66.3 3.220 0.56 

6 3437 190.9 127.6 4.697 0.32 

7 2980 138.8 54.7 1.834 0.71 

8 2062 169.5 128.2 4.989 0.55 

9 2935 172.7 80.7 4.949 0.49 

10 1726 95.6 97.4 4.683 0.26 

11 1764 89.2 75.7 3.145 0.59 

12 1586 84.6 99.8 2.505 0.19 

13 3727 264.3 123.0 3.192 0.64 

14 3509 166.2 62.7 3.192 0.94 

15 2546 292.4 165.1 4.430 0.58 

16 1742 129.0 82.1 3.785 0.33 

17 1582 91.3 72.3 1.390 0.54 

18 1083 87.7 117.9 4.510 0.51 

Total 47549 2983 84.6 4.989 0.55 
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Table S2 Summary statistics for the REHH test for selection signatures in candidate regions.  

Results from GWASa Core 

position 

(Mb) 

Hap freq 

(%) 

EHH REHH REHH 

P-value 

Traitb Marker SSC 

CLC ASGA0084324 

ALGA0121463 

5 12.416 

-12.416 

H1:62 

H2:37 

0.09/0.13 

0.10/0.18 

0.89/0.72 

1.11/1.39 

0.30/0.43 

0.38/0.58 

CLC MARC0084792 13 31.615- 

32.038 

H1:30 

H2:19 

0.30/0.35 

0.54/0.79 

0.69/0.45 

1.60/1.41 

0.71/0.89 

0.32/0.40 

DG ASGA0094502 1 42.770- 

42.770 

H1:25 

H2:24 

-/0.51 

-/0.46 

-/0.85 

-/0.72 

-/0.65 

-/0.75 

DG ASGA0010202 2 47.986- 

48.383 

H1:41 

H2:31 

0.01/0.17 

0.02/0.58 

0.27/0.28 

0.90/2.55 

0.96/0.95 

0.56/0.08 

DG ALGA0032718 5 67.410- 

67.410 

H1:64 

H2:28 

0.00/0.17 

0.01/0.40 

0.20/0.42 

3.44/2.37 

0.96/0.73 

0.04/0.13 

DG ALGA0087665 15 97.072-

97.101 

H1:63 

H2:21 

0.31/0.40 

0.31/0.43 

0.60/0.71 

0.89/1.03 

0.53/0.43 

0.64/0.55 

Drip ASGA0103690 16 17.875- 

17.892 

H1:32 

H2:30 

0.50/0.77 

0.27/0.21 

0.84/2.65 

0.40/0.35 

0.60/0.07 

0.92/0.94 

pH1 ASGA0025473 5 53.889- 

53.889 

H1:29 

H2:27 

0.80/1.00 

0.50/0.54 

0.96/137 

0.57/0.65 

0.58/0.37 

0.89/0.90 

a significant SNPs (Stratz el al., in press) annotated to core haplotypes; b carcass lean content 

(CLC), daily gain (DG), drip loss (Drip), and pH1 (measured 45 min post-mortem in cutlet); 

EHH, REHH and REHH P-value presented for upstream, downstream regions of the second most 

frequent haplotypes in the cores, respectively. 
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Figure S1 Decay of average LD over distance. The x-axis denotes marker distance in kb and the 

y-axis the LD for all possible marker pairs separated by less than 5 MB using D’. 
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Figure S2 Pairwise LD values for adjacent markers for all autosome. The x-axis denotes marker 

distance in kb and the y-axis the r2 for adjacent marker pairs. 
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Figure S3 Pairwise LD values for adjacent markers for every autosome. The x-axis denotes 

marker distance in kb and the y-axis the r2 for adjacent marker pairs. 



Chapter four 

- 107 - 

0 100 200

0
1

2
3

4
5

SSC1

0 100 200

SSC2

0 100 200

SSC3

0 40 100

SSC4

0 40 100

SSC5

0 100 200

SSC6

0 40 100

0
1

2
3

4
5

SSC7

0 40 100

SSC8

0 40 80

SSC9

0 40 80

SSC10

0 40 80

SSC11

0 40 80

SSC12

0 40 100

0
1

2
3

4
5

SSC13

0 40 100

SSC14

0 40 100

SSC15

0 40 80

SSC16

0 40 80

SSC17

0 40 80

SSC18

Chromosome position (Mbp)

-l
o

g
1

0
(P

-v
a

lu
e

)

 

Figure S4 Autosomal maps of REHH P-values for core haplotypes with a frequency above 0.25. 

The x-axis denotes chromosome position (Mbp) and the y-axis –log10(P-value). For each 

autosome, two significance levels are indicated, P-value=0.01 (dashed line) and P-value=0.001 

(continuous line). 
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Abstract 

To reduce the costs of genomic selection, selection candidates can be genotyped with an SNP 

panel of reduced density. Two strategies for the selection of SNPs to be considered in a very low 

density SNP panel (384 SNPs) are investigated using 895 progeny tested and genotyped German 

Piétrain boars. In the first strategy equal spaced SNPs were selected, which were used to impute 

the high density genotypes. In the second strategy SNPs were selected based on results of 

association analysis. Accuracies of DGV for the two strategies were obtained from cross 

validation. A regression approach to correct for the upward bias of the cross validation accuracy 

of the DGV was used. The first strategy resulted in more accurate DGV. This implies that 

imputation is beneficial even if only 384 SNPs are genotyped for the selection candidates. 

 

Keywords: Piétrain sire line, Unbiased DGV accuracies, Very low-density SNP panel 
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Introduction 

In genomic selection a large number of single nucleotide polymorphisms (SNPs) spread across 

the genome are used for breeding value estimation in a reference population and for subsequent 

selection of candidates based on genomically enhanced breeding values (Meuwissen et al., 2001; 

Goddard and Hayes, 2009). Because of already small generation intervals in pigs there is not so 

much scope for further reduction of the generation interval, as it is in dairy cattle. Nevertheless 

genomic selection is relevant also in pig breeding schemes (Lillehammer et al., 2011). Some 

breeding organisations have started to implement genomic selection by genotyping progeny 

tested sires with the Illumina PorcineSNP60 BeadChip (Ramos et al., 2009) and to use them as 

the initial reference population (Wellmann et al., 2013). From an economical point of view, most 

critical are the high cost of genotyping. 

One way to reduce routine costs is to genotype selection candidates with an SNP panel of 

reduced density. A very low-density panel (VLD panel, 384 SNPs) was suggested to be sufficient 

for imputation. The strategy is to select SNPs based on equidistant location, high MAF and low 

correlation of genotypes (equal-spaced, ES). This is described in Wellmann et al. (2013). Missing 

genotypes can then be imputed using genotyping information from the individuals in the 

reference population. Genomic breeding values can then be estimated for the selection candidates 

in the same way as if they were genotyped for the full set of SNPs. To avoid an error 

accumulation, selection candidates which are selected for breeding the next generation have to be 

subsequently genotyped for the full set of markers. 

Another strategy to select SNP for the VLD panel is to choose SNP being significant in GWAS 

or having high average BayesA effects (largest-effect, LE). An imputation step and a subsequent 

typing of the selected individuals afterwards are not needed. 

The aim of the present study was to apply different strategies to implement genomic selection in 

the sire line Piétrain population using VLD panels. The SNPs were selected to be included in the 

VLD panel using index-similar procedures. Methods for genotype imputation and for the 

estimation of the accuracy of genomic breeding values were applied. The methods were validated 

using correlation between direct genomic values (DGV) and estimated breeding values (EBV), 

and approximate accuracies of DGV. A special emphasis was laid on obtaining bias reduced 

cross validation accuracies of DGV. 
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Materials and Methods 

Genotypes and conventional EBV for 14 traits, (growth (2), carcass (9) and meat quality (3)) of 

895 German Piétrain boars were available from breeding organizations. Boars were genotyped 

with the PorcineSNP60 Bead Chip (Ramos et al., 2009). A total of 48062 markers remained in 

the data set after quality control and were used for the analysis. Haplotypes were reconstructed 

using default parameters in fastPHASE (Scheet and Stephens, 2006). These were inserted into 

Haploview v4.1 (Barrett et al., 2005) to estimate 2r  (Hill and Robertson, 1986) values for SNP 

pairs with a distance  5Mb. Genotyped boars were split into a training and a validation set. The 

validation set for imputation and genomic selection consisted of 100 boars, which were the 

youngest animal with high-density (HD) genotyped sires. The remaining 795 boars were included 

in the training set. 

From the set of markers in the validation set two VLD panels were built. SNPs were selected 

based on scores. For the first panel the score was calculated as the product of a function of P-

values and the estimated contribution to the additive genetic variance (largest-effect, LE). The 

significance of the SNP was determined by GWAS (Stratz et al., 2014). Within the function, 

markers with small P-values were scored higher than markers with larger P-values. BayesA was 

used to estimate the contribution to the additive genetic variance. Herein the effect of the marker 

was defined as its average contribution to the additive variance of traits. The traits were 

standardized to have the same additive variance. 

For the second subset, SNPs were selected based on equidistant location, high MAF, and low 

correlation of genotypes (equal-spaced, ES). Thereby even maker being at similar genomic 

positions but being not in LD were included in the VLD panel. These VLD SNPs were used to 

impute the 48062 SNPs using LD and linkage information. SNP selection and imputation was 

done as described in Wellmann et al. (2013). The imputation error rate and accuracies were 

calculated for the VLD-ES strategy. SNPs not included in the VLD panel were masked in the 

validation set and imputed using the training set. The imputation error rate was computed as the 

proportion of masked SNP genotypes that were not correctly imputed. The imputation accuracy 

for an individual was computed as the squared correlation between its true and imputed 

genotypes. 

DGV were estimated with GBLUP (Meuwissen et al., 2001) using deregressed EBVs and 

different marker subsets. Boars were progeny tested with varying number of offspring. Therefore 
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GBLUP was extended to account for heterogeneous error variances as described in Garrick et al. 

(2009). 

The BLUP EBV of individuals of the training and a validation sets were estimated in a single 

evaluation, which results in a correlation of the EBV and the prediction errors. The error 

correlation leads to an overestimation of the DGV accuracies if it is not accounted for (Amer and 

Banos, 2010). This is especially a problem for EBV with low accuracies due to a limited number 

of offspring. To obtain bias reduced accuracies of DGV, the multiple regression approach of 

Wellmann et al. (2013) was applied for the EBV as follows. 

 teTrain
traVal

traa
tEBVDGV

r 
210,

 (1) 

This equation predicts the expected correlation between DGV and EBV. The intercept
0

a and the 

regression coefficients 
1

a  and 
2

a  are fixed effects, and the errors 
te  are normally distributed. 

Val
tr

and Train
tr

are the accuracies of the EBV in the validation set, respectively the accuracy in the 

training set. Note that for 1Val
tr

, the EBV approximates the TBV, so the contribution of the 

prediction error to the correlation approaches zero. Thus, for 1Val
tr

, the expected correlation 

between EBV and DGV equals the expected accuracy of DGV for a randomly chosen trait with 

Train
tr

 specified. This can be estimated as 

 Train
traaa

rand
TBVDGV

r
2

ˆ1
1

ˆ
0

ˆ
,

ˆ 
  

For simplicity we assumed that possible dependency of the error
te  on Val

tr
 is negligible. 

Therefore, the accuracy of DGV for trait t was estimated as 

 teTrain
traaa

tTBVDGV
r ˆ

2
ˆ1

1
ˆ

0
ˆ

,
ˆ   (2) 

Genomic predictions, EBVDGVr ,  and TBVDGVr ,  were estimated for three SNP sets, i.e. the full set 

(HD), the VLD-ES set, and VLD-LE set. 

 

Results and Discussion 

All possible SNP pairs with a distance  5Mb produced 3284064 pairwise LD values on the 18 

porcine autosomes. The average 2r  between the SNP was 0.34 and points to a high genetic 

diversity within this breed. The mean imputation error rate (accuracy) for masked markers was 

0.133 (0.79). 
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In Figure 1 the results of eq. (1) are visualized. The solid line shows the regression function as 

estimated in eq. (1). The dotted line shows the function when the pedigree information between 

sires were omitted, i.e. the EBV was determined solely by progeny records (see Wellmann et al., 

2013 for details). This figure shows that the lower the accuracy of the EBV in the validation set 

the greater the correlation between DGV and EBV if the full pedigree information is used. This is 

very likely due to the error correlation. The regression approach (eq. 1+2) accounts for this 

upward bias and produces bias corrected DGV accuracies. In Table 1, the correlations and 

accuracies for the HD strategy, the VLD-ES and the VLD-LE strategy are shown. The 

mean EBVDGVr , (0.62) and TBVDGVr , (0.42) were highest for the HD strategy. EBVDGVr ,  and TBVDGVr ,  

was 0.59 and 0.37 for the VLD-ES strategy. For VLD-LE strategy EBVDGVr ,  and TBVDGVr ,  was 

0.49 and 0.19, respectively. Averaged over all traits the results of the scenarios with regard to the 

EBVDGVr ,  is HD>VLD-ES>>VLD-LE. 

Although the accuracies of DGV in the HD strategy were highest, this method was not 

implemented in the routine genomic selection application, because of the high genotyping costs. 

The VLD-LE strategy seemed to be promising, because an imputation step and a subsequent 

typing of selection candidates afterwards are not needed. Therefore the VLD-LE strategy seems 

to be easier to organize and to implement. However this strategy is less flexible and also the 

accuracies of the DGVs were substantially lower compared to the VLD-ES strategy. 

 

Conclusion 

We showed that with the VLD-ES strategy more accurate DGV were obtained than with the 

VLD-LE strategy, even if only 384 SNPs are to be genotyped. The regression method for 

obtaining unbiased estimates of the accuracy of DGV is a promising approach which has to be 

evaluated in detail using stochastic simulations. Based on the results of this study and of 

Wellmann et al. (2013) the VLD-ES strategy was implemented in the routine genomic selection 

application. 
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Table 1 Correlations between DGV and EBV and accuracies of DGV. Results from the HD-

strategy (48062 marker), VLD-ES strategy and VLD-LE strategy (384 marker) 

Trait group 
                

EBVDGVr ,
            TBVDGVr , (eq. 1+2) 

HD VLD-ES VLD-LE HD VLD-ES VLD-LE 

Growth 0.51 0.52 0.35 0.41 0.41 0.21 

Muscularity 0.60 0.56 0.43 0.42 0.36 0.17 

Meat quality 0.76 0.70 0.68 0.43 0.34 0.20 

mean 0.62 0.59 0.49 0.42 0.37 0.19 

 

Figure 1 Correlations between DGV and validation set EBV 

 

The regression lines show how the correlation between DGV and EBV depends on the 

accuracies of the EBV in the validation set. The solid line corresponds to the situation 

in which the standard complete pedigree was used to estimate the EBV. The dotted 

line shows the function when the pedigree information between sires were omitted, i.e. 

the EBV was determined solely by progeny records.  

EBV 
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General Discussion 

 

In chapter one and two, QTL mapping for economical relevant traits was performed between 

populations, using three connected porcine F2-crosses, and within a segregating German 

Piétrain population. In chapter three first attempts were made to study the association 

between the expression of the candidate gene MYOD1 and economical relevant traits. In 

chapter four the genome of the Piétrain population was investigated in respect of the pattern 

of linkage disequilibrium and of selection signatures. In chapter five, different strategies to 

implement genomic selection in the sire line Piétrain population using very low density panels 

were investigated. 

 

Methods for QTL mapping 

 

In linkage studies (Mohrmann et al., 2006; Liu et al., 2007; Rückert and Bennewitz, 2010), 

the F2 individuals were mainly genotyped with microsatellite markers and performance tested 

for the traits of interest. In chapter one, QTL mapping relied on linkage between marker and 

QTL, and variation within the founder breeds was not utilised. In a simulation study of 

Bennewitz and Wellmann (submitted) it was shown that the identification of causal genes 

using pooled F2 families with maximum marker density is only suitable if the alleles are also 

segregating in the founder breeds. This enables to use meiosis which occurred in the pooled 

crosses in combination with historical meiosis. It is being considered to use sequence data 

from the F2 individuals from the design of Geldermann et al. (2003) to conduct genome-wide 

association studies in the F2 individuals. If the alleles are also segregating in the founder 

breeds it should be possible to increase the mapping precision and possibly find the causal 

mutation. Putative interaction effects between the mapped causal mutation as well as between 

the mutation and the RYR1:g.1843C>T genotype remain to be investigated. 

 

Apart from the already discussed factors determining the experimental power to detect true 

associations, the choice of the relationship matrix is essential to prevent population 

stratification effects. In chapter two the numerator relationship matrix (NRM) was used in 

the single-marker association analysis. It might be of interest to use the genetic relationship 

matrix (GRM) instead of the NRM for modelling the sample structure. GRM models the 

genome-wide sample structure based on marker data. There are two possibilities for 
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modelling. In MLMi (mixed-linear-model included), the SNP is fitted in the model, as a fixed 

effect for which association is tested for and as a random effect as part of the GRM (Sawcer et 

al., 2011). However it was shown, that double fitting of the markers can lead to a loss in 

power (Lippert et al., 2011; Listgarten et al., 2013). Therefore in MLMe (MLM excluded) the 

SNPs for which association is tested for are excluded from the GRM (Yang et al., 2013). 

BayesC (Verbyla et al., 2009; 2010) was used for the multi-marker association analysis in 

chapter two. In BayesC modeling of population stratification effects represents no problem 

because this is done by markers belonging to the small distribution. However until now there 

is no formal testing statistic for markers belonging to the large distribution available, but two 

ways were suggested. The easiest way is to show the BayesC effects or posterior probabilites. 

This was done in this study. An alternative is presented by Peters et al (2012), who 

simultaneously tested for associations of windows with phenotype using BayesC analyses. 

 

Methods for candidate gene search for association studies 

 

In chapter three the gene MYOD1 was suggested as a candidate gene because it is 

influencing muscularity and meat quality traits (Lee et al., 2012; Urbański and Kurył, 2004), 

which was in agreement with trait correlated expressions found in the segregating German 

Piétrain population. However no association was found between the expression of MYOD1 

and the genotypes at the SNP ASGA0010149:g. 47980126G>A. 

Different strategies are available to find genes which are involved in the determination of the 

traits. Ponuksilli et al. (2008; 2010) used microarray data of F2 animals to search for genes 

having trait correlated expressions. The authors took the trait correlated expression of genes 

as phenotype to determine genomic loci that control variation in gene expression, so called 

eQTL. Wysocki et al. (2013) used microarray data from White Leghorn lines, being divergent 

selected for the propensity to feather pecking, to identify differential expressed genes. To 

study the role of functional candidate genes, gene ontology (GO) terms can be assigned to the 

transcripts using e.g. Blast2GO (Conesa et al., 2005). To allow for the differentiation of splice 

variants and the identification of new transcripts next generation sequencing is suggested to 

be used in future. 
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Methods to detect Selection Signatures 

 

For the detection of selection signatures two types of methods are available. The first one is 

based on haplotypes and the second one on frequency. One haplotype-based method is the 

Extended Haplotype Homozygosity test (EHH, Sabeti et al., 2002). An extension of the EHH-

test is the integrated haplotype score (iHS, Voight et al., 2006). Therefore the EHH is summed 

over all sites away from a core SNP, and compared between haplotypes carrying the ancestral 

and derived allele at the SNP locus. Applying the EHH test statistic in chapter four was not 

successful to find selective sweeps. It is suggested to conduct haplotype-based methods using 

higher marker density to find regions under recent selection. 

More recent studies concentrated on detecting pattern of positive selection between breeds or 

lines based on allele frequency differences. To determine a genome-wide pattern of positive 

selection between breeds or lines, the Fst at each locus can be calculated according to Wright 

(1931). A sliding window approach was used by Mancini et al. (2013) to determine regions 

with high (low) Fst, where divergent (balanced) selection has taken place between breeds or 

lines. 

 

Strategies for genomic selection in pig breeding 

 

Two methods for the selection of SNPs to be included on a very low-density panel (VLD 

panel, 384 SNPs) were discussed in chapter five. Thereby the equal spaced (ES) strategy 

with imputation of missing genotypes outperformed the largest effect (LE) strategy because of 

the more accurately estimated DGV. In this study SNPs for the VLD-ES method were chosen 

based on equidistant location, high MAF and low correlation of genotypes. For the VLD-LE 

method SNP were chosen based on the results from chapter two. Having information on the 

whole genomic sequence from the animals in combination with the presented methods 

(chapter one, two, three and four) might be helpful to dissect down to the causal mutation. 

Maybe including the causal mutations on the low density SNP chip might lead to more 

accurate DGV in the VLD-LE strategy. 
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