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From greenhouse to field practice: Herbicide resistance detection using 

chlorophyll fluorescence imaging technology 

 

This thesis is structured in four chapters. First, the introduction described the 

objectives of the thesis. In the second part, the publications of the research project 

were listed. In the main chapter, the scientific manuscripts are included. In the fourth 

chapter, a general discussion was fixed. 
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Chapter 1 Introduction 

 

Weed control is one of the most important aspects in cultivation agriculture. It 

enhances the crops’ possibility for the competition of the light, water, nutrition and 

space, etc. Instead of manual hoeing or removal of weeds before 19th century, today, 

machinery and chemicals are the most common tools of farmers for the weed control. 

This thesis focuses on an important issue in weed science, the herbicide resistance, 

which was first reported after the use of herbicide since 1950s (Shaner and Beckie, 

2014). The objectives of this thesis are, 

(i) to clarify that if the sensitive and herbicide resistant weeds can be identified 

by a chlorophyll fluorescence sensor shortly after herbicide application; and if abiotic 

factors can influence the identification; 

(ii) to verify that if the chlorophyll fluorescence imaging technology on herbicide 

resistance detection is capable for field application; 

(iii) to evaluate its robustness concerning herbicide resistant weed detection; 

(iv) to investigate that if the chlorophyll fluorescence imaging technology is 

capable of evaluating herbicide stress on crops shortly after emergence. 

1.  Herbicide and herbicide resistance 

Herbicides are the chemicals used to control weeds. The application of herbicides 

is now one of the most efficient tools by the farmers for weed control. Since 1945, 

when the selective herbicide 2,4-D (2,4-Dichlorophenoxyacetic acid) was discovered, 

the market of herbicide has expanded to US$ 22.3 billion until 2014 (Transparency 

Market Research, 2015). Why there is such a high demand? It is estimated that each 

dollar invested in the USA on agrochemicals can bring the farmer five dollars income. 

And similarly, each pound in the UK can generate six pounds (Cobb and Reade, 2010). 
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Furthermore, the use of pesticide provides not only financial rewards to the farmers, 

but also improved the crop yield and food quality. Lots of safer, lower dosage and 

more environmentally protected products are replacing the old compounds (Rüegg et 

al., 2007). Farmers and consumers have all benefit from the increasing competition of 

the agrochemical industry.  

According to the site of actions, the Herbicide Resistance Action Committee 

made a classification for all herbicides. There are more than 20 groups of herbicides 

on market right now. Among them, the photosynthesis system II inhibitors, branched 

chain amino acid synthesis inhibitors (acetolactate synthase inhibitor, ALS inhibitor) 

and lipid synthesis inhibitors (Acetyl coenzyme A carboxylase inhibitor, ACCase 

inhibitor) are the mainly concerned herbicides in this thesis. 

However, with decades’ use of herbicides, some weeds generate the inherited 

ability to survive the herbicides toxicity. As the result, less or even none weeds are 

controlled after the herbicide application. This character is named resistance by weed 

scientists (WSSA, 1998). To be specified, the definition of herbicide resistant and 

herbicide tolerance should be introduced. 

Herbicide resistance: “Herbicide resistance is the inherited ability of a plant to 

survive and reproduce following exposure to a dose of herbicide normally lethal to the 

wild type. In a plant, resistance may be naturally occurring or induced by such 

techniques as genetic engineering or selection of variants produced by tissue culture or 

mutagenesis.” 

Herbicide tolerance: “Herbicide tolerance is the inherent ability of a species to 

survive and reproduce after herbicide treatment. This implies that there was no 

selection or genetic manipulation to make the plant tolerant; it is naturally tolerant.” 

(WSSA, 1998) 

The first herbicide resistance case was reported in the United States in 1950’s. 

Resistance by field bindweed to 2,4-D was found in 1964 and resistance by common 

groundsel to triazine herbicides was appeared in 1970 (Cobb and Reade, 2010). There 



Chapter 1 Introduction 

4 

are already 471 reported herbicide resistant cases with 250 species, which covers more 

than 90 percentages of all the herbicide groups (Heap, 2016). Furthermore, the recent 

survey shows that it takes shorter and shorter period for the weeds to generate the 

resistant ability after a new herbicide being introduced to the market. First resistant 

cases were reported to ALS and ACCase herbicides within 5 years after the 

introduction of these herbicide groups, while it took more than 20 years to find the 

first reported resistant species to 2,4-D (Shaner, 1992). Glyphosate Resistant (GR) 

crops were commercially introduced in 1996 for the first time. The farmers rapidly 

adopted GR crops because of the simple and effective application. However, the 

glyphosate resistant weeds were discovered in the same year within ryegrass and 

goose grass (Heap, 2016). Now, the glyphosate resistant weeds have been discovered 

in many countries and become a worldwide challenge (Powles, 2008). 

Meanwhile, many reported cases showed the fact that resistant species are 

surviving more than one single herbicide (Heap, 2013). The cross resistance and 

multiple resistance have evolved in many weed species. The cross resistant weeds can 

survive two or more herbicides with the same mode of action. Usually, the cross 

resistant weed has only one resistance mechanism. The multiple resistant plants are 

resistant to two or more herbicides with different modes of action. In this case, the 

multiple resistant weeds may have more resistance mechanisms (HRAC, 2009; 

Vencill et al., 2012). 

Many herbicide resistance problems were attributed to the inappropriate use of 

herbicides. Due to the cultivation practice by farmers and weed scientists, both 

reduced and high rates of herbicide applications may induce resistance problems 

(Norsworthy et al., 2012). Long-term high rate application of herbicides in same mode 

of action would cause target site resistance. With high rate applications, only the 

genetically unique populations will survive. In this case, cross-resistance against the 

herbicides in the same mode of action, especially in the same chemical class, may be 

generated (de Carvalho, et al. 2009). On the other hand, repeated use of reduced rates 

of herbicides by years would lead to metabolic resistance. The reduced rate 
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application cannot kill the majority weeds or even be failed to kill the weeds. It 

enables the weeds to survive after the metabolism and then reproduce the next 

generations that can fit the herbicide application. Multiple resistance happens 

frequently but not only in the metabolic resistant populations (Powles and Preston, 

1995; Foes et al. 1999). 

2.  Mechanism and detection of herbicide resistance 

2.1  Target site and non-target site resistance 

Herbicide resistance can be described as the plants’ capacity to survive, grow and 

reproduce after certain herbicide treatment(s). A plant may express “target site” and 

“non-target site” resistance (Prather et al., 2000). The target sites are usually some 

enzymes of in the plants. In these enzymes, the active ingredients of the herbicides can 

bind and interfere the plants’ physiological processes (Nandula, 2010). If a mutation 

takes place on a gene that expresses a certain herbicide target enzyme, the molecular 

structure of this enzyme will be altered. As a result, the herbicide can never bind on 

the enzyme and inhibit its activities again (Neve, 2007). Beside gene sequence 

mutations, gene overexpression and gene duplication are also known as mechanisms 

of target site resistance (Beffa et al., 2012). The target site resistance is the main 

mechanism of weeds against ALS-, ACCase- and PS II-inhibitors (Powles and Preston, 

1995, 2006; Öttmeier, 1999; Powles and Yu, 2010). 

The non-target site resistance includes different mechanisms apart from the 

mechanism of target-site resistance. Some non-target site resistant weeds, for instance, 

the barnyard grass and velvetleaf, may have enhanced metabolism capacity to detoxify 

the active ingredients of the herbicides (Anderson and Gronwald, 1991; Carey et al., 

1997). Reduced absorption and translocations can prevent herbicide ingredients 

reaching the plants’ target site (Powles and Preston, 2006). Sequestration was reported 

by Ge et al. (2010) to be another way of weed to inactive glyphosate’s physiological 

effects in vivo the weeds. It means that the herbicide may bind to other molecular such 
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as a sugar moiety. The herbicides can also be removed from active metabolic region of 

the plant cell (Yuan et al., 2007). 

2.2  Detection of herbicide resistance 

To make efficient strategy for controlling herbicide resistant weeds, reliable 

methods should be established to diagnose the herbicide resistance (Beffa et al., 2012). 

Greenhouse and laboratory tests are most commonly adopted to identify the herbicide 

resistant populations. Moreover, in order to understand the mechanism of the 

recognized resistant cases, biochemical, molecular and analytical assays are also 

invested. 

Greenhouse bioassay, or whole plant assessment, usually includes several groups 

of herbicides. The results are based on the visual evaluation, mortality rates, as well as 

measuring the dry and fresh weight of the plants under different treatments (Moss, et 

al., 1998). It can identify resistant weed populations without concerning the plant is 

target site resistant or non-target site resistant. The results can be influenced by 

environmental conditions of each greenhouse, such as temperature, humidity, light 

intensity and period. Thus, standardized monitoring protocol was claimed (Beckie et 

al., 2000). In most whole plants assessment cases, herbicides are applied with series of 

doses, so that more quantitative results like LD50 (median lethal dose), resistance 

factor (R/S ratio) or dose response curves can be calculated (Streibig, 1988; 

Northworthy et al., 1998; Beckie et al., 2000). Even laboratory-based bioassays have 

already been designed to reduce some time and space consumption (using filter paper 

or agar), both methods require high expense and seasoned evaluators (Beffa et al., 

2012).  

Biochemical assays, also known as enzyme assays, provide knowledge about the 

target site resistant biotypes. It focuses on the known mutations in the gene sequence. 

That means the target enzyme (protein) is re-expressed and recognized by the 

evaluators before assays. The test is usually performed with enough purified protein 

from high mount of harvested living plants. Nevertheless, the performance needs 
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much time and can only be operated by well-trained technicians. This method cannot 

detect non-target site resistant and multiple resistant biotypes (Powles and Yu, 2010). 

More detailed knowledge of the target site resistance mechanism can be gained 

by molecular assays (Beffa et al., 2012; Kaundun et al., 2011a). It introduces the gene 

sequence analyses technology to learn about the known mutations as well as search for 

the novel mutations (Kaundun and Windass, 2006; Kaundun et al., 2006; Petersen et 

al., 2010). The technology of pyrosequencing has been widely used in analysis for 

ALS and ACCase target site mutations (Powles and Yu, 2010). Some detailed 

protocols were described (Petersen et al., 2010; Hess et al., 2012). Furthermore, this 

technology can also be applied in the investigation of non-target site resistance (Beffa 

et al., 2012). Several approaches have been developed to evaluate gene copy number 

(Gaines et al., 2010) and gene expression capacity (Peng et al., 2010; Yuan et al., 

2010). However, the herbicides metabolism chains more mostly displayed by 

analytical assays using 14C-radiolabelled compounds. With this method, it is possible 

to quantitatively and qualitatively determine the enhanced metabolic resistance in 

most weeds (Beffa et al., 2012). 

Even though so many approaches for herbicide resistance detection exist, the 

mentioned assays can only be done after realizing the problem. Besides, they are time 

consuming, expensive and profession-dependent. 

3.  Photosynthesis system II, chlorophyll fluorescence and sensor-

based stress detection 

Photosynthesis system II (PS II) is the first light reaction center of oxygenic 

photosynthesis. Within the photosystem, electron transfer is active by the enzymes, 

known as chlorophyll dimers (P680 for PSII, P700 for PS I), from the energy of light 

photons (Rutherford and Faller, 2003). Besides photochemistry, the rest energy of 

light photons quenches as heat and fluorescence radiation. This fluorescence radiation 

is called chlorophyll fluorescence (CF) (Maxwell and Johnson, 2000). 
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In 1960, Kautsky et al. (1960) found a rapid rise in fluorescence from PS II, 

followed by a slow decline, upon illumination of a dark-adapted leaf. It is called the 

Kautsky Effect. At lower PS II reaction level, the CF will increase, as more energy 

from absorbed light needs to be emitted. This happens when the PS II reaction center 

is closed. In which state, the PS II has not passed electrons to a subsequent electron 

carrier. And as the result, the chlorophyll dimers P680 cannot accept more electrons 

(Maxwell and Johnson, 2000). 

Measurement of PS II chlorophyll fluorescence has been widely used in the 

researches for plants and algae physiologies under biotic and abiotic stresses (Quick 

and Horton, 1984; Maxwell and Johnson, 2000). Janka et al. (2015) reported a 

significant reduction of quantum yields of PS II under high irradiance and high 

temperature in chrysanthemum. The low temperature and frost also inhibit the 

efficiency of PS II activities according to many publications (Ottander and Öquist, 

1991; Örlander, 1993; Lundmark et al., 1998b). Besides, other abiotic impacts, such 

as salt and drought, can enhance the photo-inhibition as well (Neale and Melis, 1989; 

Burke, 2007; Burke et al., 2010). In weed science research, the parameter Maximum 

PS II Quantum Efficiency (Fv/Fm) is frequently used for the description of herbicide 

efficacy as PS II inhibitors (Flores et al., 2013). Recently, a chlorophyll fluorescence 

imaging method was applied to assist dose response screening and herbicide resistance 

detection in laboratory and greenhouse (Kaiser et al., 2013). The herbicide efficacy 

was determined two to four days after treatment. The results of this test correlated well 

with the conventional whole-plant assessment. 

With the technology of chlorophyll fluorescence imaging measurements, 

researchers can rapidly assess the herbicide treatments quantitatively and qualitatively. 

But the system is based in laboratory. Seeds collection is required by most greenhouse 

and laboratory bioassays. The in-season field detection of herbicide efficacy is not 

available. Thus, the farmers can only benefit from the existing detection methods for 

next growing season. But the yield loss risk cannot be avoided due to the herbicide 

resistance problems in their fields. 
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4. Identification herbicide stress on crops 

Herbicides could injure the crops when inappropriate application is taken in the 

fields, such as overrate treatment, improper application time or incorrect mixture 

application with several ingredients (Salzman and Renner, 1992; Johnson et al., 2002). 

Visual assessment is the most common method to evaluate the herbicide stress on 

crops. Many researches have demonstrated the correlation for yield loss and injury 

symptoms of the stressed crops (Weidenhamer, et al., 1989; Bailey and Kapusta, 

1993). New technologies like machine vision and spectrum measurement enable 

agronomists to evaluate the relative yield loss according to parameters such as 

percentage of ground cover, light reflectance and etc. (Adcock et al., 1990; Donald, 

1998). Nevertheless, these approaches can only be applied when the stress symptoms 

have developed. It requires relatively a long period of time so that the features can be 

distinct. As chlorophyll fluorescence imaging system is a sensitive method to identify 

physiological rather than physical features of the stress on plants (Maxwell and 

Johnson, 2000; Schreiber, 2004; Janka et al., 2015), it can be a potential faster 

approach to detect the herbicide stress on crops. This would support farmers to make 

proper cultivation strategies to overcome herbicide stress effects on soybeans in the 

same growing season. 
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Chapter 2 Publications 

 

The present thesis consists of three scientific articles as reflected in Chapter 3 by 

Section I - III. These articles have been published or under peer review. 

Section I 

Wang, P., Peteinatos, G., Li, H., Braendle, F., Pfuendel, E., Drobny, H.G., Gerhards, 
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fluorescence imaging technology. Journal of Plant Diseases and Protection. 

(under review) 

Section II 

Wang, P., Peteinatos, G., Li, H., Gerhards, R. (2016) Rapid in-season detection of 

herbicide resistant Alopecurus myosuroides using a mobile fluorescence sensor. 

Crop Protection 89, 170-177. 

Section III 

Wang, P., Weber, J., Gerhards, R. Early identification of herbicide stress on soybean 

(Glycine max (L.) Merr.) using chlorophyll fluorescence imaging technology. 

Biosystems Engineering (under review) 

 

Beyond the three articles included in the main Chapter of this thesis, five 
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one more paper as co-author published in a peer reviewed journal.  
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Chapter 3 Scientific Contributions 

Section I 

This article focuses on testing whether PS II activities of herbicide sensitive and 

resistant A. myosuroides can be stressed after application of ingredients in different 

action modes. Meanwhile, abiotic factors influence on PS II activities of A. 

myosuroides, including drought and nitrogen shortage stress, were clarified to 

determine its impact on herbicide resistance level classification. 
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Abstract 

Sensor based stress recognition is an effective tool for improving herbicide 

efficacy and selectivity. In this study, a chlorophyll fluorescence imaging sensor was 

used for measuring Maximal Photosystem II Quantum Yield (Fv/Fm). Six herbicides 

were tested on herbicide sensitive and resistant Alopecurus myosuroides populations. 

Furthermore, it was investigated, how abiotic stress due to water shortage and nitrogen 

deficiency influenced the Fv/Fm of the sensitive populations. Results showed that 

ALS- and ACCase-inhibiting herbicides significantly reduced Fv/Fm of sensitive 

populations compared to the untreated plants three days after treatment. ALS- and 

ACCase-inhibiting herbicides did not affect resistant populations. Fv/Fm values were 

equal to the untreated control plants. The PSII-inhibiting herbicides isoproturon 

reduced Fv/Fm of sensitive and resistant populations. A differentiation of sensitive 

and resistant weeds based on Fv/Fm values was possible only after 4 DAT. Water 

shortage stress was detected seven days after treatment, when the visual symptoms 

from water shortage were quite severe on the plants. Nitrogen deficiency could not be 

identified using chlorophyll fluorescence imaging. We conclude that the chlorophyll-
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fluorescence-imaging sensor has a great potential for identifying herbicide resistant 

weed populations in the field shortly after herbicide application. 

Keywords: chlorophyll fluorescence, Maximal PS II Quantum Yield, herbicide 

resistance, abiotic stress, Alopecurus myosuroides 

1. Introduction 

Alopecurus myosuroides (black-grass) is one of the most problematic weeds in 

Western Europe. It can severely infest winter cereal fields and cause yield losses of 20% 

at infestations of 100 plants/m2 (Blair et al., 1999). With higher proportions of winter 

cereals in the rotation, earlier sowing dates and the application of non-inversion tillage 

systems, the infestation levels of A. myosuroides have increased during the last 30 

years (Melander, 1995). The high infestations of plants enabled some populations to 

survive the herbicide applications with standard doses. Many A. myosuroides 

populations in Europe were recorded being resistant to herbicides inhibiting 

acetolactate synthase (ALS), acetyl CoA carboxylase (ACCase) and photosynthesis 

system II (PS II) (Drobny et al., 2006; Neve, 2007).  

In order to manage herbicide resistant weed populations, a reliable detection 

procedure is needed. A common approach for herbicide resistance screening is the 

whole-plant bioassay in the greenhouse (HRAC, 1999). The tests require collecting 

seeds of suspicious weed populations in the field. Emerged plants are sprayed with 

different herbicides and rate of herbicides. Efficacy is measured and estimated 

approximately 3-4 weeks after application in relation to an untreated control. In 

general, the test is simple and gives reliable results of herbicide sensitivity. However, 

it is relatively expensive and time consuming. Moreover, results are available only for 

the next growing season. Detailed knowledge of the target site resistance mechanism 

can be gained by molecular assays (Beffa et al., 2012). Target genes are sequenced 

and analyzed for mutations causing herbicide resistance. Kaundun et al. (2011b) 

introduced an in-season method to create herbicide resistance profiles of weed species. 

Seedlings of Lolium rigidum L. and Lolium multiflorum Lam. were transplanted into 

agar containing herbicide solutions. A visual assessment of root and shoot 
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development was made 10 days after transplanting. The results of this agar-based 

method correlated well with the conventional whole-plant assessment. Kaiser et al. 

(2013) presented a similar method for A. myosuroides in the greenhouse. However, 

herbicide efficacy in weed seedlings was quantified using chlorophyll fluorescence 

imaging technology. The herbicide efficacy was determined two to four days after 

treatment. The results of this test correlated well with the conventional whole-plant 

assessment.  

Chlorophyll fluorescence is a sensitive indicator of the physiological status of 

plants. It can be used to detect abiotic and biotic stress in crops and weeds (Roháček 

and Barták, 1999; Maxwell and Johnson, 2000; Roháček, 2002; Baker, 2008). The 

parameter Maximal PS II Quantum Yield (Fv/Fm) correlated well with herbicide 

stress in plants shortly after treatment (Ahrens et al., 1981; Ali and Machado, 1981; 

Hensley, 1981; Vencill and Foy, 1988; van Oorschot and van Leeuwen, 1992). 

However only in the latest studies, chlorophyll fluorescence imaging was applied to 

differentiate between sensitive and resistant weed populations (Kaiser et al., 2013; 

Wang et al., 2016). 

The first objective of this study was to investigate the temporal response of 

sensitive and resistant populations of A. myosuroides to herbicide treatments with 

different modes of action using a new chlorophyll fluorescence imaging sensor. It was 

tested when herbicide sensitive and resistant A. myosuroides populations could be 

differentiated. The second objective was to test how a sensitive population of A. 

myosuroides responded to abiotic stress induced by water shortage and nitrogen 

deficiency. 

2. Materials and Methods 

2.1 Chlorophyll fluorescence imaging sensor (Weed PAM®) 

The sensor Weed PAM® is a mobile version of Imaging-PAM® fluorescence 

meter by Heinz Walz GmbH, Effeltrich, Germany. The sensor uses LEDs that excite 

blue light with 460 nm wavelength. These LEDs alternate actinic illumination light 
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with strong pulses to saturate photosystem II. Chlorophyll fluorescence is detected 

with an imaging camera containing a cut-off filter at 620 nm wavelength in front of 

the lens. The camera was centrally mounted on the head containing the LEDs. The 

measured signal corresponds to the fluorescence excited by the saturated pulses and, 

thus, variation in the measuring signal can be attributed to changes in chlorophyll 

levels. The background noise was removed by software as described in Kaiser et al. 

(2013). The Weed PAM® fluorescence meter was operated using the software 

"ImagingWin for Weed PAM®" (Heinz Walz GmbH, Effeltrich, Germany). The 

software controls LED function and generates pictures of various fluorescence levels. 

This work uses images of F0 (minimal fluorescence in the dark-acclimated state) and 

Fm (maximal fluorescence in the dark-acclimated state in the presence of a saturation 

pulse). From these two fluorescence levels, the parameter Fv/Fm was calculated for 

each pixel according to the equation. 

𝐹𝑉/𝐹𝑚 =
𝐹𝑚 − 𝐹0

𝐹𝑚

 

2.2 Experimental setup 

Two independent experiments were conducted in the greenhouse to investigate 

the herbicide effects on chlorophyll fluorescence of sensitive and resistant A. 

myosuroides at the University of Hohenheim, Germany in 2015. Another two 

independent experiments were conducted in the greenhouse to study the impact of 

water shortage and nitrogen deficiency on A. myosuroides in 2015. Experiment 2 was 

a repetition of experiment 1 and experiment 4 was carried out in the same way as 

experiment 3. Data were pooled over both repeated experiments. For all experiments, 

the plants were cultivated in plastic pots with a diameter of 10 cm filled with a 

mixture of 50% clay, 25% silt, and 25% sand. One A. myosuroides was transplanted in 

each pot, when it was in the 1-leaf-stage. Plants were grown in a light cycle of 16 h 

day and 8 h night. The temperature was kept at 25 °C during the day and 15 °C at 

night. All pots were placed in a complete randomized block design with three blocks. 

Each treatment contained three pots. 
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The first experiment was done to identify the effect of herbicides on Fv/Fm of A. 

myosuroides. Two populations of A. myosuroides were used, one herbicide sensitive 

population (Herbiseed, UK) and one multi-resistant population collected from a field 

near Heilbronn, Germany. The latter population was proved to be multi-resistant to 

ALS-, ACCase- and PS II-inhibitors in a standard greenhouse bioassay at the 

University of Hohenheim (Gerhards, 2013). The population did not have any mutation 

on alleles Pro-197, Trp-574, Ile-1781, Trp-2027, Ile-2041, Asp-2078 and Gly-2096. 

DNA sequencing was conducted at Identxx GmbH, Stuttgart, Germany. 

Treatments of the first and second experiment are listed in Table 2. A laboratory 

track sprayer chamber mounted with a single flat fan nozzle was used for the herbicide 

application (8002 EVS, TeeJet Spraying Systems Co., Wheaton, IL, USA). The 

sprayer was calibrated for an applying volume of 200 L/ha, at a speed of 800 mm/s 

and a spraying pressure of 300 kPa. Foliar applications were performed 50 cm above 

the soil surface.  

In the third and fourth experiment, the effect of water shortage and nitrogen 

deficiency on a herbicide sensitive A. myosuroides population was investigated using 

chlorophyll fluorescence imaging. For each factor, 2 levels were used: stressed and 

non-stressed. Drought was induced by keeping the plants constantly at 40% of the soil 

Water Holding Capacity (WHC). Non-stressed plants were kept at 70% of the WHC. 

Irrigation of all plants was performed twice per day. The amount of water was 

determined according to the weight of the pots. Calibration was done before the setup 

of the study. Plants with nitrogen deficiency did not receive any nitrogen fertilizer. 

Non-stressed plants were fertilized with 70 mg N per pot, when the plants were in the 

2-leaf stage. Experiments started when the plants of the control group were in the 2-

leaf stage. Plants were cut for measuring biomass 2-3 weeks later, when they had 

produced 3 tillers. A summary of the four treatment combinations is presented in 

Table 3. 

Prior to the Fv/Fm measurements, plants were dark-adapted underneath 

measuring boxes (Figure 1) for 20 minutes. In first and second experiment, plants 
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were measured daily from 1 DAT until 7 DAT and then again 10 DAT and 14 DAT. 

In the third and fourth experiment, plants were measured every two days for two 

weeks after stress induction. 

Visual assessments in the first and second experiment were performed 21 DAT. 

The plants were classified as “dead” (sensitive) and “alive” (resistant). The herbicide 

resistance level was classified according to Moss et al. (2000). Mortality of 100-81% 

was classified as "S", sensitive, 80-73% as "R?", slightly resistant, 72-37% as "RR", 

partly resistant, 36-0% as "RRR", resistant. Plants of the third and fourth experiment 

were cut 0.5 cm above ground at DAT 21 and then dried at 80° C. After 48 h, dry 

biomass was determined. Plants were classified as “stressed”, when dry biomass was 

significantly lower than the unstressed control plants. 

2.3 Statistical analysis.  

Data analysis was done with RStudio 0.98.490 (R Development Core Team, 

2013). Analysis of variance (ANOVA) was carried out for Fv/Fm, data and biomass 

measurements. Means were compared by Tukey's HSD test. Data were tested for 

normal distribution using the Shapiro-Wilk test (p > 0.05). Equality for heterogeneity 

of variances for resistant and sensitive and stressed/unstressed groups was tested using 

Levene's test for each date and treatment (p > 0.05). Data of equal DAT per 

experiment were pooled together. 
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Figure 1. The Weed PAM® chlorophyll fluorescence imaging sensor, ① A picture of the sensor. It consists 

of the camera control unit and the computer including software. ② The software graphical interface. ③ A 

resistant A. myosuroides  to pinoxaden (ACCase inhibitor) measured 3 DAT. The blue shift responds to 

higher Fv/Fm and higher vitality. ④ A sensitive plant to pinoxaden (ACCase inhibitor) measured 3 DAT. 

The red shift responds to lower Fv/Fm and stress. 
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Table 1. Profile of the standard greenhouse bioassay for the A. myosuroides population near Heilbronn, 

Germany. The herbicide efficacy was evaluated according to Moss et al.(2000). a.i.g/ha = active ingredients 

gram per hectare; M = mesosulfuron; I = iodosulfuron. 

Herbicide Dose (a.i.g/ha) Effect 

meso-/iodosulfuron 15 (M) + 3 (I) RR 

pinoxaden 60 RR 

isoproturon 600 RRR 

 

Table 2. Details of the herbicide treatments. The rates used for the treatment were prepared according to the 

manufacturer recommendation, which was calculated for a spray volume of 200 l ha-1 with the active 

ingredient rate showed in the table. MoA = Mode of Action by HRAC groups; A = acetolactate synthase 

(ALS) inhibitors; B = acetyl coenzyme-A carboxylase (ACCase) inhibitors; C = PSII inhibitors; M = 

mesosulfuron; I = iodosulfuron; a.i.g/ha = active ingredients gram per hectare 

No. Trade Name Active Ingredient  Formulation MoA Rate (a.i.g ha-1 ) Provider 

1 Control -  - - - 

2 Atlantis® WG 
29.2 g/kg mesosulfuron, 5.6 

g/kg iodosulfuron+ adjuvant 
WG B 15 (M) + 3 (I) Bayer CropScience 

3 Attribut® 700 g/kg propoxycarbazone SG B 70 Bayer CropScience 

4 Lexus® SX® 500 g/kg flupyrsulfuron WG B 20 DuPont de Nemours 

5 Topik® 100 89.1 g/L clodinafop EC A 107 Syngenta Agro 

6 Axial® 50 50 g/L pinoxaden EC A 60 Syngenta Agro 

7 Arelon® Top 500 g/L isoproturon SC C 600 Cheminova Deutschland 
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Table 3. Treatments of nitrogen deficiency and water shortage stress; plants of A. myosuroides were 

exposed to different irrigation and fertilizing levels. Water shortage stress was achieved by reducing the 

water content of soil close to the wilting point, and the nitrogen deficiency stress was obtained by omitting 

fertilization. Abbreviations: W= drought stress; N = nitrogen deficiency stress. 

Treatment Water Content KNO3(mg) 

Control  70% 505.55 

N 70% 0 

W 40% 505.55 

W + N 40% 0 
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3. Results and Discussions 

3.1 Herbicide effect on chlorophyll fluorescence experiments 

The visual assessment 21 DAT and the standard greenhouse biotest showed that 

the sensitive A. myosuroides population obtained from HerbiSeed was susceptible to 

all tested herbicides. The population from Heilbronn (Germany) was resistant against 

all tested herbicides. This agrees with the findings of Gerhards (2013), where this 

resistant population was firstly reported. In the unsprayed control treatments, no 

significant differences of Fv/Fm were found between the sensitive and resistant 

populations (Figure 2). Yet, the values for both treatments varied over the period of 

measurements. In herbicide treatments, Fv/Fm of the resistant populations were higher 

than the sensitive plants. This corresponds to Kaiser et al. (2013), who found that a 

meso-/iodosulfuron treatment reduced Fv/Fm of a susceptible A. myosuroides 

population but not in the three resistant populations. In a field survey of 50 A. 

myosuroides populations, Wang et al. (2016) could also differentiate between resistant 

and sensitive populations 5 DAT with different ACCase- and ALS-inhibitors using 

chlorophyll fluorescence imaging.  

In all three treatments with ALS inhibitors, the Fv/Fm of the sensitive population 

rapidly decreased within 3 DAT. Greatest Fv/Fm difference between the sensitive and 

resistant populations were recorded 3 DAT. Then, at 4 DAT a reduction of Fv/Fm was 

also observed for the resistant population. Despite this decrease, the Fv/Fm of the 

resistant population was still significantly higher than of the sensitive population. 

Afterwards, the resistant population recovered gradually to the level around the 

beginning of measurement. ALS-inhibitors interfere with the production of the amino 

acids valine, leucine and isoleucine (Whitcomb, 1999; Oettmeier, 1999). These are 

essential amino acids for the turnover of the D protein in the PSII-electron transport 

chain. That results in higher degradation rate of the protein than the synthesis rate. 

(Xiong et al., 1996; Rutherford and Faller, 2003). Hence, electrons are transferred 

much slower in the electron transport chain. This results in a suboptimal function of 
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PS II, which can be observed as a lower Fv/Fm (Allen and Williams, 1998; Ventrella 

et al., 2010).  
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Table 4. Mortality rate (%) of A. myosuroides 21 days after herbicide treatment and resistance classification according to Moss et al. (2000): 100-81% = "S", sensitive, 80-

73% = "R?", slightly resistant, 72-37% = "RR", partly resistant, 36-0% = "RRR", resistant  

Population 

Treatment 

Control Meso-/iodosulfuron Propoxycarbazone Flupyrsulfuron Clodinafop Pinoxaden Isoproturon 

Sensitive 

0 100 94 83 83 100 94 

- S S S S S S 

Resistant 

0 38 11 0 6 0 28 

- RR RRR RRR RRR RRR RRR 
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Figure 2. Daily presentation of the Fv/Fm of the control treatment. Mean Fv/Fm and the standard error are 

shown for the sensitive and the resistant populations of A. myosuroides. 
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(a) 

 

(b) 
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(c) 

Figure 3. Daily presentation of the Fv/Fm of the ALS inhibitor treatments. (a), Treatment No. 2 (meso-

/iodosulfuron); (b), Treatment No 3 (propoxycarbazone); (c), Treatment No 4 (flupyrsulfuron). Mean Fv/Fm 

and the standard error are shown for the sensitive and the resistant populations of A. myosuroides.  
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(a) 

 

(b) 

Figure 4. Daily presentation of the Fv/Fm of the ACCase inhibitor treatments. (a), Treatment No. 5 

(clodinafop); (b), Treatment No 6 (pinoxaden). Mean Fv/Fm and the standard error are shown for the 

sensitive and the resistant population of A. myosuroides.  
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The Fv/Fm of sensitive plants continuously reduced over the period of 

measurement after the application of ACCase inhibitors (Figure 4). Fv/Fm was 

significantly lower in the sensitive population compared to the resistant plants 3 DAT 

Resistant plants recovered from a slight decrease 5 DAT while Fv/Fm of the sensitive 

population continuously decreased. Acetyl-CoA carboxylase is an important enzyme 

in the chloroplasts of many plants (Harwood, 1988). It is essential for the de-novo 

lipid acid synthesis (Kukorelli et al., 2013). Sensitive grasses treated with ACCase 

inhibitors stop producing new leaves due to the fewer lipids for membrane production 

(Sasaki and Nagano, 2004). Therefore, the photosynthetic activity will slow down 

(Harwood, 1988), and the Fv/Fm decreases rapidly after the ACCase inhibitor 

treatment.  

The PS II inhibitor isoproturon reduced Fv/Fm of both populations within a few 

hours. Compared to the untreated plants, Fv/Fm of the treated resistant plants were 

significantly lower. Fv/Fm of the treated sensitive population were significantly lower 

than the resistant and untreated population. Figure 5 shows that, from DAT 1 to 4, 

Fv/Fm differed between the sensitive and resistant population by 0.1. After 5 DAT, 

the resistant population slightly recovered, whereas the sensitive population died and 

Fv/Fm values remained low at about 0.2. Isoproturon inhibits PS II rapidly by 

interrupting the electron transfer chain of photosynthesis reaction (Ventrella et al., 

2010). As Pietsch et al. (2006) presented, photosynthetic oxygen release of 

Ceratophyllum demersum L. had reduced to half of the original level 6 hours after 

treatment with 20 µg/L isoproturon. After absorption, isoproturon inhibits QB in PS II 

activity center due to higher competitive binding kinetics to the binding niche in the 

D1 Protein (Hess, 2000). Thus, the electron transfer chain of PS II is stopped. 

However, isoproturon cannot bind in the target-site resistant population (Pfister et al., 

1981). The PS II activity of target site resistant plants will not be affected after 

treatment (Pfister and Arntzen, 1979). Therefore, we assume that the population in our 

study had a non-target-site resistance to isoproturon. The applied rate of isoproturon 

in this experiment might have been higher than the A. myosuroides population could 

metabolize. Several researches have presented that the urea (a sub-group of PS II 
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inhibitors) can be detoxified by enhanced and modified metabolism. Burnet et al. 

(1991) and Moss (1990a) have reported high rates of enhanced N-demethylation and 

ring alkyl-oxidation in L. rigidum and A. myosuroides. Some ingredients can still bind 

to D1 protein of the resistant plants even in lower rate than in the sensitive plants. 

Therefore, the PS II activity of the non-target site resistant plants was then stressed.  

Over all treatments, the Fv/Fm of both populations did not remain stable over 

time. There is a daily differentiation after the treatment. Despite these differentiations, 

Fv/Fm of sensitive and resistant populations were significantly different. It is apparent 

from Figure 3 that treatments with ALS inhibitors induced much greater fluctuations 

than those observed in the control treatment. The ACCase inhibitors led to continuous 

reduction for Fv/Fm of the sensitive population. Due to the high fluctuation of the 

Fv/Fm that both populations have for almost all herbicides, there was a need to 

identify the origins of this fluctuation. Therefore, the second experiment was designed, 

where plants were exposed to water shortage and nitrogen deficiency.  
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Figure 5. Daily presentation of the Fv/Fm in the isoproturon treatment. Mean Fv/Fm and the standard error 

are shown for the sensitive and the resistant population of A. myosuroides. 
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3.2 Water shortage and Nitrogen deficiency effect on chlorophyll fluorescence 

Visual and biomass assessments of A. myosuroides plants exposed to water 

shortage and nitrogen deficiency were taken at DAT 21. All the plants under drought 

stress were wilting and had significantly lower biomass than the unstressed plants. 

Nitrogen shortage significantly reduced leaf length, number of tillers and biomass 

compared to the control group. No stress symptoms were visualized in the plants of 

the control group. These plants had the highest biomass and Fv/Fm values. 

Water shortage significantly reduced Fv/Fm, while nitrogen deficiency did not 

affect Fv/Fm compared to the unstressed control plants. This corresponds to Baker and 

Rosenqvist (2004), who also could not find any reduction of Fv/Fm in plants deficient 

to nitrogen. Drougt significantly reduced Fv/Fm in A. myosuroides 7 days after 

exposure to water shortage. Then Fv/Fm values in the plants under water shortage had 

extremely Fv/Fm values with 0.1 compared to plants without stress (0.7). This agrees 

to Carmo-Silva et al. (2008), who reported that the Fv/Fm could be used for severe 

water stress after about seven days without water. The drought stress can decrease the 

CO2 availability and alternate the photochemistry and carbon metabolism (Ashraf and 

Harris, 2013). The stomata usually close during the initial stages of drought stress 

resulting in increased water using efficiency (Chaves et al., 2009). However, under 

severe drought stress, dehydration of mesophyll cells takes place causing a marked 

inhibition of basic metabolic processes of photosynthesis as well as a reduction of 

plant water using efficiency (Damayanthi et al., 2010). 
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(a) 

 

(b) 

Figure 6. Results for drought and nitrogen stress experiment. (a) represents the Fv/Fm of A. myosuroides 

plants under different stresses . (b) shows the biomass of A. myosuroides plants at DAT 21. The letters “a,b, 

and c” represent significant difference according to Tukey’s HSD-Test (P < 0.05). 
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4 Conclusions 

The new chlorophyll fluorescence imaging sensor identified herbicide sensitive 

and resistant populations of A. myosuroides three days after treatment. At that time, no 

visual symptoms appeared on the leaves of A. myosuroides. Therefore, we conclude 

that the sensor can be used for in-season herbicide resistance screening. However, 

Fv/Fm values of herbicide damage was similar to water deficiency. Therefore, abiotic 

stress needs to be excluded for herbicide resistance detection. This can be achieved by 

measuring untreated control plots or by recording soil water content when the 

measurements take place. More input is needed in order to create a classfier to 

automaticially classify sensitive and resistant A. myosuroides. This can be achieved by 

training Fv/Fm values of large amounts of sensitive and resistant plants under 

different environments (Rumpff et al., 2012) Further researches is needed to apply this 

herbicide resistance detection sensor for other weed species. 
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Section II 

The second article focuses on the field application capability of Weed PAM® 

sensor and the optimized measurement date on resistant population detection. 50 

populations were tested for their resistance to ALS/ACCase herbicides in several field 

locations and application time. 
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Abstract 

WeedPAM has been introduced as a new chlorophyll fluorescence imaging 

sensor to detect herbicide stress in weeds a few days after treatment (DAT). In this 

study, it was investigated if the sensor could differentiate between 50 sensitive and 

herbicide resistant populations of Alopecurus myosuroides 5 DAT. Resistance profile 

of all populations had been analyzed in standard greenhouse bioassays. Populations 

were sown in winter wheat at several locations in Germany over two years. At 3-7 

leaves growth stage, they were treated with four ALS- and three ACCase-inhibitors at 

recommended dosages. Five DAT, maximum quantum efficiency of PS II was 

measured with the WeedPAM sensor on 40 A. myosuroides plants per treatment. 

Based on the sensor data, populations were classified into sensitive and resistant 

populations. Classification was verified by a visual assessment of all treatments and 

populations 21 DAT. In total, 95% of the WeedPAM classifications 5 DAT were 

correct. We could demonstrate that WeedPAM is capable to detect herbicide resistant 

A. myosuroides populations shortly after treatment. This allows selecting alternative 

weed control methods against resistant weed populations in the same growing season.  

Keywords: herbicide resistance; sensor detection; chlorophyll fluorescence; 

greenhouse biotest 
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1. Introduction 

Alopecurus myosuroides Huds. often occurs in Western European winter cereals. 

It is highly competitive in winter wheat production causing relative yield losses of 

20% at 100 plants m-2 (Blair et al., 1999). Seeds mostly germinate in autumn (Moss, 

1990b). They persist more than 5 years in the soil (Moss, 1985). Densities increased 

due to higher proportions of winter cereals in the rotation, earlier sowing dates and 

conservation tillage systems (Melander, 1995; Lutman et al., 2013). With the 

capability of many populations to survive standard herbicide applications, A. 

myosuroides developed to the most problematic weed species in winter wheat in 

Western Europe (Neve, 2007). Populations with evolved resistance to herbicides 

inhibiting acetolactate synthase (ALS), acetyl CoA carboxylase (ACCase) and 

photosynthesis system II (PS II) have been documented mainly in England, France, 

Germany, parts of Belgium and the Netherlands (Drobny et al., 2006; Neve, 2007; 

Délye et al., 2007; Heap, 2014). Herbicide resistance tests play an important role for 

resistance management. Conventional whole-plant bioassay in the greenhouse is most 

often used to screen for herbicide resistance (HRAC, 1999). It provides a resistance 

profile usually for several herbicides with different modes of action. However, this 

test requires mature weed seeds and therefore, provides results only for the next 

season. Furthermore, it is relatively expensive and requires a lot of space in the 

greenhouse. In many whole-plant bioassays, dose-response data are also included 

(Kaiser et al., 2013). Molecular assays are most commonly used to verify target-site 

single nucleotide mutations (Beffa et al., 2012). Several in-season tests have been 

developed to rapidly provide results of herbicide resistance in weed species (Burgos et 

al., 2013). Kaundun et al. (2011b) transplanted Lolium rigidum Gaudin and Lolium 

multiflorum L. and other grass-weeds into petri-dishes filled with agar and herbicide 

solutions. After 10 days, a visual assessment of the grasses was made to classify into 

sensitive and resistant plants. The results of this qualitative agar-based method 

correlated well with classical whole-plant bioassays. Kaiser et al. (2013) presented a 

similar approach for A. myosuroides. However, classification was based on 

quantitative measurements of chlorophyll fluorescence imaging approximately two 
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days after treatment. The results of this quantitative quick-test again correlated well 

with classical whole-plant greenhouse tests. Chlorophyll fluorescence imaging is a 

non-destructive sensor system that can be used as a very sensitive indicator of abiotic 

and biotic plant stress (Quick and Horton, 1984; Maxwell and Johnson, 2000; 

Schreiber, 2004; Janka et al., 2015). Riethmüller-Haage et al. (2006a,b), Kempenaar 

et al. (2011) and Kaiser et al. (2013) showed that herbicides with different modes of 

action including PS II-inhibitors, inhibition of amino acid and fatty acid synthesis and 

auxin-like herbicides caused a rapid decrease of relative quantum efficiency of 

photosystem II and photosystem I electron transport in different sensitive weed 

species shortly after herbicide application. A few studies showed that chlorophyll 

fluorescence after herbicide application was significantly higher in sensitive weed 

populations than in resistant biotypes (Ahrens et al., 1981; Ali & Machado, 1981; 

Hensley, 1981; Vencill and Foy, 1988; Van Oorschot and Van Leeuwen, 1992; Kaiser 

et al. 2013). However, studies and measurements were carried out under laboratory 

and greenhouse conditions. The objective of this study was to test if herbicide resistant 

and sensitive A. myosuroides populations can be identified few days after herbicide 

application in the field using a new mobile chlorophyll fluorescence imaging sensor.  

2.  Materials and methods 

2.1 Experimental design  

Three field experiments were conducted with A. myosuroides in winter wheat in 

2014 and 2015. The first field trial was located at the University of Hohenheim 

research station. Seeds of sensitive A. myosuroides population (HerbiSeed, Twyford, 

UK) were sown at the same date as winter wheat on October 5th 2014 at a density of 

1000 seeds m-2. Germination rate was determined to be 15% resulting in 

approximately 150 emerged seedlings m-2. The field had been free of A. myosuroides 

in the previous two years. Inversion tillage was done 10 days before sowing followed 

by seedbed preparation. The experiment was set up as randomized complete block 

design with four blocks and six treatments. Treatments are listed in Table 5. 

Herbicides were sprayed with an electric motorized plot sprayer equipped with 
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Lechler IDK 120-02 nozzles at a volume of 200 L ha-1 when A. myosuroides had 

approximately 3-7 leaves. The size of each plot was 2×5 m.  

The second set of experiments was conducted in spring 2015 at 8 winter wheat 

sites in Germany in the states of Baden-Württemberg, Rheinland-Pfalz, Nordrhein-

Westfalen and Niedersachsen. All fields were heavily infested with A. myosuroides at 

densities of 100-500 plants m-2. Farmers had reported that either ALS- or ACCase-

inhibiting herbicides did not provide sufficient efficacy in the previous years. All 

experiments were set up as completely randomized design with four replicates. The 

size of each plot was 2×5 m. A. myosuroides was treated with herbicides listed in 

Table 6 when plants had 3-7 leaves. An untreated control was included at each site.  

The third experiment was conducted in autumn 2015. Winter wheat and 42 A. 

myosuroides populations originating from Baden-Württemberg were sown at the 

research station Ihinger Hof of the University of Hohenheim on October 5th 2015 

(Table 7). Resistance to either ALS-, ACCase- or PS II- inhibiting herbicides had been 

proofed in 39 populations in a standard greenhouse biotest. One sensitive biotype from 

the company HerbiSeed in the UK was included in the experiment. A. myosuroides 

was sown at a density of 1000 seeds m-2 by hand and then seeds were incorporated 

into the soil with a harrow. Approximately 150 seedlings m-2 emerged in all plots. The 

field had been planted to maize for two years before this experiment was set up. It was 

free of A. myosuroides. One week before sowing, inversion tillage was conducted, 

followed by seedbed preparation. The experiment was set up as a randomized split-

plot design with four replicates, A. myosuroides population was the main factor and 

herbicide treatments was the subplot factor. Each subplot had a size of 2×10 m. At 3-

7 leave stage, A. myosuroides was treated with 1.2 L ha-1 Axial® 50 (50 g a.i. L-1 

pinoxaden, EC, Syngenta Agro) and 500 g ha-1 Atlantis® WG (29.2 g a.i. kg-1 

mesosulfuron, 5.6 g a.i. kg-1 iodosulfuron, WG, Bayer CropScience) with its 

recommended adjuvant (27% fatty alcohol ether sulphate). An untreated control was 

included for all populations.  
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Table 5. Herbicides applied in experiment 1 in autumn 2014 and spring 2015; WG = Water Dispersible Granules, SG = Water Soluble Granules, EC = Emulsifiable 

Concentrate, A = Lipid synthesis inhibition (inhibition of ACCase), B = Inhibition of ALS (branched chain amino acid synthesis). 

No. Trade name Active ingredients rates Formulation HRAC MoA Application rates Provider 

1 control - - - - - 

2 

Atlantis® WG + 29.2 g kg-1 mesosulfuron, 5.6 g kg-1 iodosulfuron WG B 500 g ha-1 Bayer CropScience 

adjuvant 27% fatty alcohol ether sulphate   1 L ha-1 Bayer CropScience 

3 Attribut® 700 g kg-1 propoxycarbazone-Na SG B 100 g ha-1 Bayer CropScience 

4 

Broadway® + 68.3 g kg-1 pyroxsulam, 22.8 g kg-1 florasulam WG B 220 g ha-1 Dow AgroSciences 

adjuvant  99.9% methyl esters in rapeseed oil   1 L ha-1 Dow AgroSciences 

5 Axial® 50 50 g L-1 pinoxaden EC A 1.2 L ha-1 Syngenta Agro 

6 Topik® 100 89.1 g L-1 clodinafop EC A 0.6 L ha-1 Syngenta Agro 
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Table 6. Locations and treatment details of experiment 2 in spring 2015; EC = Emulsifiable Concentrate, SC = Suspension Concentrate, WG = Water Dispersible Granules, 

SG = Water Soluble Granules. 

State Location Trade name  Active ingredients rates Formulation Application rates Provider 

Baden-

Wuerttemberg 

Ihinger 

Hof, 

Renningen 

control     

Axial® 50 50 g L-1 pinoxaden EC 0.9 L ha-1 Syngenta Agro 

Bacara® Forte 120 g L-1 diflufenican, 120 g L-1 flurtamone, 120 g L-1 flufenacet SC 0.9  L ha-1 Bayer CropScience 

Axial® 50 50 g L-1 pinoxaden EC 0.9 L ha-1 Syngenta Agro 

Herold® SC 200 g L-1 diflufenican, 400 g L-1 flufenacet SC 0.5 L ha-1 Bayer CropScience 

Axial® 50 50 g L-1 pinoxaden EC 0.9 L ha-1 Syngenta Agro 

Malibu® 300 g L-1 pendimethalin, 60 g L-1 flufenacet EC 4.0 L ha-1 BASF 

Axial® Komplett 5 g L-1 florasulam, 45 g L-1 pinoxaden EC 1.0 L ha-1 Syngenta Agro 

Wurmberg1 

control     

Broadway® 68.3 g kg-1 pyroxsulam, 22.8 g kg-1 florasulam + adjuvant WG 220 g ha-1 Dow AgroSciences 

Wurmberg2 

control     

Atlantis® WG 29.2 g kg-1 mesosulfuron, 5.6 g kg-1 iodosulfuron + adjuvant WG 500 g ha-1 Bayer CropScience 

 

 control     

Anderten Atlantis® WG 29.2 g kg-1 mesosulfuron, 5.6 g kg-1 iodosulfuron + adjuvant WG 500 g ha-1 Bayer CropScience 
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 Atlas® 264 g L-1 clethodim EC 0.438 L ha-1 Altitude Crop Innovations 

 control     

Niedersachsen 

 Caliban® Duo 
9.3 g kg-1 iodosulfuron, 159.2 g kg-1 propoxycarbazone + 

adjuvant 
WG 250 g ha-1 

Cheminova Deutschland 

GmbH 

Jeinsen Broadway® 68.3 g kg-1 pyroxsulam, 22.8 g kg-1 florasulam + adjuvant WG 220 g ha-1 Dow AgroSciences 

 

 Atlantis® WG 29.2 g kg-1 mesosulfuron, 5.6 g kg-1 iodosulfuron + adjuvant WG 500 g ha-1 Bayer CropScience 

 Traxos® 22.3 g L-1 clodinafop, 25 g L-1 pinoxaden EC 1.2 L ha-1 Syngenta Agro 

 

 control     

Appel 

Axial® 50 50 g L-1 pinoxaden EC 1.2 L ha-1 Syngenta Agro 

 

Attribut® 700 g kg-1 propoxycarbazone-Na + adjuvant SG 100 g ha-1 Bayer CropScience 

Atlantis® WG 29.2 g kg-1 mesosulfuron, 5.6 g kg-1 iodosulfuron + adjuvant WG 500 g ha-1 Bayer CropScience 

Rheinland-

Pfalz 
Schleich 

control     

Axial® 50 50 g L-1 pinoxaden EC 1.2 L ha-1 Syngenta Agro 

Attribut® 700 g kg-1 propoxycarbazone-Na + adjuvant SG 100 g ha-1 Bayer CropScience 

Atlantis® WG 29.2 g kg-1 mesosulfuron, 5.6 g kg-1 iodosulfuron + adjuvant WG 500 g ha-1 Bayer CropScience 

Nordrhein-

Westfalen 
Muenster 

control     

Broadway® 68.3 g kg-1 pyroxsulam, 22.8 g kg-1 florasulam + adjuvant WG 220 g ha-1 Dow AgroSciences 
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Table 7. Origins of resistant A. myosuroides seeds for the field experiment in winter wheat at Ihinger Hof in 

2015; resistance status of the populations was determined in a standard greenhouse biotest; A1: resistance to 

clodinafop,  A2: resistance to fenoxaprop, A3: resistance to pinoxaden,  A4: resistance to other FOPs, A5: 

resistance to DIMs, B1: resitance to flupyrsulfuron-methly, B2: resistance to meso-/iodosulfuron, B3: 

resistance to propxycarbazone, B4: resistance to pyroxsulam, C: resistance to isoproturon. 

No. Origin Resistance history Collection year 

1 Hohenheim(HerbiSeed) Sensitive 2015 

2 Niedersachsen A5, B2 2015 

3 Niedersachsen A5, B2 2015 

4 Blaufelden-Herrentierbach A1, A2, A3, A4, A5, B1, B2, B4 2012 

5 Lehrden A1, A2, A3, B1, B2 2012 

6 Nenenstetten A1, A2, A3, A4, B1, B2, B4 2012 

7 Tübingen A1, A2, A3, A4, B1, B2, B4 2013 

8 Tübingen A1, A2, A3, A4, B1, B2, B4 2013 

9 Tübingen A1, A2, A3, A4, B1, B2, B4 2013 

10 Öhringen A1, A2, A3, A4, B1 2014 

11 Douaueschingen A4, B1 2014 

12 Douaueschingen A2, A3, B1 2014 

13 Wurmberg B2, B4, C 2014 

14 Wurmberg B2, B4, C 2014 

15 Heilbronn A2, A3, A4, A5, B2, B4 2014 

16 Heilbronn A1, A2, A3, A5 2014 

17 Heilbronn B2, B4 2014 

18 Heilbronn A2, A3, A4, A5, B2, B4 2014 

19 Tübingen A1, A2, A3 2014 

20 Waldshut A3 2014 

21 Ahorn-Bach B2, B3 2014 
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22 Rhein-Neckar-Kreis B1, B2, B3, B4 2014 

23 Rhein-Neckar-Kreis Sensitive 2014 

24 Schwäbisch Hall A3, A4, B4 2014 

25 Schwäbisch Hall A1, A2, A3, B1, B2, B3, B4 2014 

26 Schwäbisch Hall A4, A5, B2, B4 2014 

27 Alb-Donau-Kreis A1, A2, A3, B1, B2, B3, B4 2014 

28 Main-Taber-Kreis A3, A4, B4 2014 

29 Main-Taber-Kreis A3, A4, B4 2014 

30 Rottweil A1, A2, A3, B1, B2, B3, B4 2014 

31 Rottweil A1, A2, A3, B1, B2, B3, B4 2014 

32 Karlsruhe Sensitive 2014 

33 Reutlingen A3, A4 2014 

34 Reutlingen A2, A3, A4 2014 

35 Reutlingen A1, A2, A3, A4, B1 2014 

36 Calw A2, A3, A4 2014 

37 Calw A2, A3, A4 2014 

38 Calw A1, A2, A3, A4, B4 2014 

39 Nekar-Odenwald B1, B2, B3, B4 2014 

40 Nekar-Odenwald B1, B2, B3, B4 2014 

41 Nekar-Odenwald A2, B1, B2, B3, B4 2014 

42 Nekar-Odenwald A2, B1, B2, B3, B4 2014 
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In all experiments, herbicides were sprayed at temperatures above 10 °C. No 

rainfall was recorded within 24 hours after treatment. 

2.2 WeedPAM-sensor 

WeedPAM is a mobile version of IMAGING-PAM® fluorescence sensor (MINI 

version, Heinz Walz GmbH, Germany). It contains 40 dark adaption and measuring 

boxes for plants, a measuring head with a CCD camera, a water proof tablet computer 

and a control unit (Figure 7). The efficacy of photosynthesis system II (PS II) of the 

plants was determined by measuring the maximum quantum efficiency of PS II 

(Fv/Fm) using the following equation: 

𝐹𝑣/𝐹𝑚  =  
𝐹𝑚 − 𝐹0

𝐹𝑚

 

where F0 is the basic fluorescence emission when only 2634 µM m-2 s-1 

photosynthetic photon flux density is given to the plants in dark acclimated state. Fm is 

the maximum fluorescence yield of dark acclimated plants after a saturation pulse. 

Chlorophyll fluorescence was induced by blue LED lights of 460 nm wavelength. An 

optical red long pass filter of > 680nm wavelength was mounted in front of the camera 

lens. The WeedPAM system (Figure 7) was controlled by the software “ImagingWin 

for WeedPAM” (Heinz Walz GmbH, Germany). The software removed all pixels 

from the image that did not contain green plants (Kaiser et al., 2013). Alopecurus 

myosuroides plants were automatically classified into sensitive and resistant based on 

the Fv/Fm values measured.  
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Figure 7. The WeedPAM sensor; left: operation in the field, right: a screenshot of one measurement of A. 

myosuroides, blue und violet represent high maximum quantum efficiency of PS II, red color indicates 

stress. 
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2.3 Measurements and data analysis 

In all three experiments, maximum quantum efficiency of PS II of 40 A. 

myosuroides plants per plot was measured. In the first experiment, measurements were 

done every day during seven days after herbicide treatment (DAT) and again 10 DAT 

and 14 DAT. In the second and third experiments, images were taken 5 DAT. Plants 

were dark adapted for 25-30 minutes underneath the measuring boxes. Values of all 

40 plants were averaged. During sensor measurements each plant was marked with a 

stick and label. A visual classification of “dead” (sensitive) and “alive” (resistant) 

plants was made 21 DAT. The ratio of dead plants was computed. Then, herbicide 

resistance level was determined similar to Moss et al. (2000): “S” = sensitive, 100-81% 

dead; “R?” = slightly resistant, 80-73% dead; “RR” = resistant, 72-37% dead; “RRR” 

strongly resistant, 36-0% dead. 

Data were analyzed with R (Version 3.0.2) and the packages agricolae and 

lawstat (R Development Core Team, 2013). First, ANOVA was conducted to 

determine if herbicide treatments significantly affect Fv/Fm followed by a Tukey’s 

HSD test. All the datasets were proved to be normally distributed by the Shapiro-Wilk 

test (p > 0.05). Homogeneity of variances was analyzed using Levene’s test (p > 0.05).  

3. Results and Discussion 

3.1 Field tests with WeedPAM  

At the time of herbicide application on November 2nd 2014, in average 150 A. 

myosuroides plants m-2 had emerged and produced 3-7 leaves. Less than 1 plant m-2 

emerged in the band area around the experiment indicating that A. myosuroides plants 

in the experiments mostly arose from the seeds incorporated in the soil at time of 

winter wheat sowing. In all herbicide treatments, Fv/Fm of A. myosuroides was 

significantly lower than in the untreated control plots from 5 DAT until the end of 

measurements 14 DAT (Figure 8). Alopecurus myosuroides plants did not recover 

from herbicide applications. Differences of Fv/Fm values between treated and 

untreated plants were slightly higher for ALS-inhibitors than for ACCase-inhibitors. 
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The differences of Fv/Fm values in A. myosuroides plants treated with ACCase 

inhibitors compared to untreated plants increased until 5 DAT and then kept stable 

until the end of measurements. Acetyl-CoA carboxylase is an important enzyme 

catalyzing lipid acid synthesis using ATP from photosynthesis. Lipids are essential for 

membrane production in young leaves (Sasaki and Nagano, 2004). Synthesis of 

ACCase is inhibited in sensitive grasses after application of ACCase inhibitors and 

thus, less ATP is used. Therefore, photochemistry reaction is lowered (Kukorelli et al., 

2013). ALS-inhibiting herbicides showed a stronger and faster response in sensitive A. 

myosuroides plants 4-5 DAT.  Inhibition of acetolactate synthase in susceptible plants 

decreases PS II activity and photosynthesis rate, because less branched-chain amino 

acids such as valine, leucine and isoleucine are produced for regeneration of proteins 

(e.g. D-protein) involved in electron transport chains (LaRossa and Schloss, 1984; 

Öttmeier, 1999; Whitcomb, 1999; Rutherford and Falle, 2003; Matham, 2009).  
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(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

Figure 8. Variation of maximum quantum efficiency of PSII (Fv/Fm values) in a sensitive population of A. 

myosuroides plants after application of (a) meso-/iodosulfuron; (b) propoxycarbazone-Na; (c) pyrox-

/florasulam; (d) pinoxaden; and (e) clodinafop. The values are means  standards error (n = 40). Stars “*” 

indicate significant differences of Fv/Fm values between treated and untreated plots (ANOVA, P < 0.05). 
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Table 8. Maximum quantum efficiency of PSII (Fv/Fm values) in 8 field populations of A. myosuroides five 

days after treatment with ALS- and ACCase inhibitors compared to untreated control plots; significant 

differences between mean values are indicated by different letters (Tukey’s Test, P < 0.05). 

Location Treatment Fv/Fm significance 

Resistance 

level Visual 

Assessment 

Classification 

True/False 

Baden-

Württemberg 1 

control 0.6763 a   

pinoxaden  0.6611 a RRR true 

florasulam, pinoxaden 0.6583 a RRR true 

Baden-

Württemberg 2 

control 0.6463 a   

pyrox-/florasulam 0.6304 b R? false 

Baden-

Württemberg 3 

control 0.6298 a   

meso-/iodosulfuron 0.6346 a RR true 

Niedersachsen 1 

control 0.6505 a   

meso-/iodosulfuron 0.6461 a RRR true 

meso-/iodosulfuron + 

clethodim 
0.6331 a RRR true 

Niedersachsen 2 

control 0.6625 a   

iodosulfuron, 

propoxycarbazone 
0.5564 b S true 

pyrox-/florasulam, 

cloquintocet-methyl 
0.5751 b S true 

meso-/iodosulfuron 0.539 b S true 

clodinafop, pinoxaden 0.6099 b S true 

Niedersachsen 3 

control 0.6831 a   

pinoxaden 0.6149 b S true 

propoxycarbazone-Na 0.5925 b S true 

meso-/iodosulfuron 0.6081 b S true 
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Rheinland-Pfalz 

control 0.65875 a   

pinoxaden 0.6473 a RRR true 

propoxycarbazone-Na 0.6382 a RRR true 

meso-/iodosulfuron 0.6168 a R? true 

Nordrhein-

Westfalen 

control 0.66265 a   

pyrox-/florasulam 0.61025 a RR true 
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Table 9. Maximum quantum efficiency of PSII (Fv/Fm values) in 42 populations of A. myosuroides five days after treatment with meso-/iodosulfuron and pinoxaden 

compared to untreated control plots; significant differences between mean values are indicated by different letters (Tukey’s Test, P < 0.05). 

Population 

No. 

Measurement date 
Temperature at 5cm 

over ground 

Treatments 

Fv/Fm 

Control 

meso-/iodosulfuron (ALS) pinoxaden (ACCase) 

Fv/Fm 

Resistance level 

- Visual 

Assessment 

Accuracy 

false/true 
Fv/Fm 

Resistance level 

- Visual 

Assessment 

Accuracy 

false/true 

1 

Nov. 17 7 °C 

0.7288a 0.6971b S true 0.6708b S true 

2 0.7199a 0.7329a RRR true 0.7067a RRR true 

3 0.7396a 0.7471a RRR true 0.6830b S true 

4 0.7310a 0.7236a RRR true 0.7333a RRR true 

5 0.7302a 0.7212a RRR true 0.7330a RRR true 

6 0.7282a 0.7299a R? true 0.7279a RRR true 

7 

Nov. 18 12 °C 

0.7128a 0.6961a RRR true 0.6936a RRR true 

8 0.7245a 0.7121a RRR true 0.7174a RR true 

9 0.7221a 0.7134a RRR true 0.7063a RRR true 

10 0.7244a 0.7179a RRR true 0.7138a RR true 
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11 0.7291a 0.7171a RR true 0.6946b S true 

12 0.7283a 0.7261a RRR true 0.7177a RRR true 

13 

Nov. 19 10 °C 

0.7364a 0.7183a RR true 0.6681b S true 

14 0.7402a 0.7472a RRR true 0.7254a RR true 

15 0.7492a 0.7326a RRR true 0.7028b S true 

16 0.7451a 0.7363a RR true 0.7293a RR true 

17 0.7366a 0.7273a RRR true 0.6845b S true 

18 

Nov. 20 14 °C 

0.7377a 0.7483a RRR true 0.7082a RRR true 

19 0.7300a 0.7453a RR true 0.7073a RR true 

20 0.7276a 0.7468a RR true 0.7015a RR true 

21 0.7420a 0.7447a RR true 0.7110b S true 

22 0.7363a 0.7407a RRR true 0.6625b S true 

23 

Nov. 27 -3 °C 

0.6528a 0.6323b S true 0.5923b S true 

24 0.6675a 0.6514a RRR true 0.6557a RRR true 

25 0.6683a 0.6678a RRR true 0.6001b R? false 

26 0.6856a 0.6768a RRR true 0.6651a RRR true 
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27 0.6751a 0.6697a RRR true 0.6082b S true 

28 0.6851a 0.6386b S true 0.6205b RR false 

29 

Nov. 28 -3 °C 

0.6558a 0.6289a RRR true 0.5766b S true 

30 0.6675a 0.5891b RRR false 0.5440b S true 

31 0.6683a 0.6274b RRR false 0.5422b RRR false 

32 0.6856a 0.5949b S true 0.5168b S true 

33 0.6751a 0.6070b RR false 0.5830b RRR false 

34 0.6871a 0.5858b S true 0.5300b S true 

35 

Dec. 10 -2 °C 

0.5809a 0.6103a R? true 0.6013a RR true 

36 0.5960a 0.5908a RR true 0.5523b S true 

37 0.6065a 0.5802a RR true 0.5786b S true 

38 0.6438a 0.5842b S true 0.5601b S true 

39 0.6342a 0.6396a RRR true 0.5613b S true 

40 0.6584a 0.6052b RRR false 0.6232b S true 

41 0.6163a 0.6047a RRR true 0.5863b R? false 

42 0.6170a 0.6053a RRR true 0.5491b R? false 
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Analysis of maximum quantum efficiency of PS II (Fv/Fm) 5 DAT in winter 

wheat fields at eight locations infested with A. myosuroides in spring 2015 resulted in 

94% correct classifications of sensitive and resistant populations (Table 8). Resistant 

populations showed equal Fv/Fm values to untreated populations and sensitive 

populations had significantly lower Fv/Fm values than untreated and resistant plants. 

Only one population from Baden-Württemberg was misclassified as slightly resistance 

after treatment with pyroxsulam and florasulam.   

In the third experiment, 95% of the field classifications were equal to the results 

of the standard greenhouse biotests with 42 A. myosuroides populations (Table 7). 

Therefore, we conclude that the methodology to measure and sample 40 plants plot-1 

resulted in correct classifications into sensitive and resistant populations. WeedPAM-

measurements of maximum quantum efficiency of PS II (Fv/Fm) 5 DAT in the winter 

wheat field resulted in 88% correct classifications of sensitive and resistant A. 

myosuroides populations (Table 9). Resistant populations showed equal Fv/Fm values 

to untreated populations and sensitive populations had significantly lower Fv/Fm 

values.  

In several earlier studies (Ahrens et al., 1991; Ali and Machado, 1981; Hensley, 

1981; Van Oorschot and Van Leeuwen, 1992) chlorophyll fluorescence increased after 

application of PS II-inhibitors. We proved in this study that chlorophyll fluorescence 

in sensitive A. myosuroides was also higher shortly after treatment with ACCase- and 

ALS-inbibitors. Those modes of action play a highly important role in controlling 

grass-weeds in arable crops.  

3.2 Effects on the WeedPAM measurement 

Fv/Fm values of treated and untreated A. myosuroides plants varied over different 

locations and the period of measurements (Figure 8) indicating that environmental 

conditions such as temperature and sunlight intensity affect chlorophyll fluorescence. 

This has also been proved for Musa sp., Allium ursinum and Dendranthema 

grandiflora (Dongsansuk et al., 2013; Janka et al., 2015). In the second experiment at 

eight different locations, Fv/Fm values of untreated plants were different at each 
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location. This proves that Fv/Fm values of plants are affected by abiotic factors 

(Adams and Demmig-Adams, 2004). In the third experiment at Ihinger Hof Research 

Station, we found no significant difference of Fv/Fm values among the untreated 

plants measured at the same date. This indicates that the A. myosuroides population 

did not influence Fv/Fm values. So, in this experiment variation of Fv/Fm values was 

only due to herbicide treatments and resistance status of A. myosuroides populations. 

In experiment 3, only four populations treated with meso-/iodosulfuron and 6 

populations sprayed with pinoxaden were misclassified (Table 9). All false 

classifications occurred, when WeedPAM-measurements were taken at temperatures 

below freezing point. Low temperatures reduced Fv/Fm values. Measurements of 

populations 1-22 were carried out at temperatures between 7°C - 14.0°C with average 

Fv/Fm values of untreated A. myosuroides plants of 0.72. Fv/Fm values of untreated A. 

myosuroides plants dropped to 0.65, when temperature decreased to -3°C. Similar 

results were reported by Krause (1994), Lundmark et al. (1998a) and Janka et al. 

(2015). Frost may damage chloroplast and therefore Fv/Fm values are lower (Örlander, 

1993). Therefore, we conclude that WeedPAM measurements need to be taken at 

temperatures above 0°C. As herbicides are usually applied at temperatures above 0°C 

during the vegetation period, the effect of cold temperature does not limit the 

application of WeedPAM for detecting herbicide resistance in weeds.  

4. Conclusion 

ACCase- and ALS-inhibitors caused a significant reduction of maximum 

quantum efficiency of PS II in sensitive field populations of A. myosuroides already 5 

DAT before typical visual symptoms of herbicide efficacy appear on the plants. In 

herbicide resistant populations treated with standard herbicide rates, maximum 

quantum efficiency of PS II was equal to untreated control plants. Therefore, we 

conclude that the new mobile chlorophyll fluorescence imaging sensor WeedPAM is 

capable to identify herbicide resistant A. myosuroides field populations early enough 

to apply alternative control methods in the same growing season.  
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Section III 

In the third article, greenhouse and field experiments were conducted to 

investigate the application potential of the chlorophyll fluorescence imaging 

technology in the early identification of herbicide stress on soybeans. 
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Abstract 

Herbicides may damage soybean in conventional production systems. 

Chlorophyll fluorescence imaging technology has been applied to identify herbicide 

stress in weed species few days after application. In this study, greenhouse 

experiments followed by field experiments at five sites were conducted to investigate 

if the chlorophyll fluorescence imaging is capable for identifying herbicide stress in 

soybean shortly after application. Measurements were carried out from emergence 

until three-four-leaf stage of soybean. Results showed that maximal photosynthesis 

system II (PS II) quantum yield and shoot dry biomass was significantly reduced in 

soybean by herbicides compared to the untreated control plants. The stress of PS II 

inhibiting herbicides occurred on the cotyledons of soybean and plants recovered after 

one week. The stress induced by DOXP synthase-, microtubule assembly- or cell 

division-inhibitors was measured from the two-leaf stage until four-leaf stage. We 

could demonstrate that the chlorophyll fluorescence imaging technology is capable for 

detecting herbicide stress in soybean. The system can be applied under both 

greenhouse and field conditions. This helps farmers to select weed control strategies 

with less phytotoxicity in soybean and avoid yield losses due to herbicide stress. 

Keywords: Herbicide stress, phytotoxicity, soybean, chlorophyll fluorescence 

imaging 
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1.  Introduction 

Soybean (Glycine max (L.) Merr.) is a worldwide cultivated crop. More than 80% 

of the soybeans overall production were supplied by the USA, Brazil, Argentina 

(FAOSTAT, 2016). Since 1996, the Roundup-Ready (RR) Soybean system has been 

introduced in the USA, Brazil and Argentina. Farmers can apply glyphosate as a 

simple, selective and effective method for weed control without concerning of crop 

injury. In the European Union, weed control in soybean is only performed with 

conventional herbicides and non-chemical methods. Soybean production in Germany 

has rapidly increased during the last seven years. The production has increased more 

than ten times in Germany since 2009 (FAOSTAT, 2016). Pre- and post-emergent 

herbicide application is a conventional and effective approach for weed control in 

soybean cultivations. Occasionally, the herbicides can also damage the crops, delay 

crop growth and reduce crop yield when applied under unfavourable soil conditions or 

at incorrect timing or mixture (Salzman and Renner, 1992; Johnson et al., 2002). Thus, 

early identification of herbicide stress can help farmers to make proper crop 

management decisions. 

Conventional estimation of herbicide damage on crops was conducted by visual 

assessment (Donald, 1998). For instance, the soybean yield loss could be correlated to 

the injury symptoms of the stressed plants (Weidenhamer et al., 1989; Bailey and 

Kapusta, 1993). Advances in computer and photography technology enabled a 

quantitative assessment method by measuring crop ground cover (Donald, 1998). 

Linear relationship was presented between the relative soybean yield and percentage 

of ground cover. The light reflectance was also used to evaluate the herbicide injury to 

herbicide (Adcock et al., 1990). However, these methods evaluate the crop healthiness 

according to the visible features. It usually requires a relatively long period of time so 

that the phytotoxic symptoms can be identified on the plants or the plants can grow 

large enough for the ground cover rates distinction. Chlorophyll fluorescence imaging 

technology is a non-destructive method to investigate the physiological reaction of 

photosynthesis system II (PS II) of plants. This sensor is very sensitive for abiotic and 
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biotic stress detection on plants (Maxwell and Johnson, 2000; Schreiber, 2004; Janka 

et al., 2015). Some laboratory and greenhouse research demonstrated that, after 

herbicide application, the chlorophyll fluorescence quantum of sensitive weeds was 

markedly higher than the resistant populations (Ahrens et al., 1981; Ali and Machado, 

1981; Hensley, 1981; Vencill and Foy, 1988; van Oorschot and van Leeuwen, 1992; 

Kaiser et al., 2013; Zhang et al., 2016). Wang et al. (2016) successfully practiced this 

technology in fields for a survey for resistance profiles of 40 Alopecurus myosuroides 

populations. By applying the chlorophyll fluorescence imaging technology, herbicide 

efficacy on weeds was observed within five days in above researches. However, the 

studies and measurements were carried out to distinct herbicide injured sensitive 

weeds from unstressed resistant population. The recovery of herbicide stress in crops 

has not been investigated.  

The objective of this study is to test if herbicide stress in soybean and recovery 

can be identified shortly after herbicide application under greenhouse and field 

conditions using the chlorophyll fluorescence imaging technology. 

2.  Materials and methods 

2.1. Experimental design 

2.1.1. Greenhouse experiment 

A greenhouse experiment was conducted in the Univeristy Hohenheim from 

November 2013 until April 2014. Soybeans (Sultana, R.A.G.T. Saaten,Germany) 

were sown in pots filled with 6.5 kg soil mixture of 50% clay, 25% silt, and 25% sand. 

The depth of soil mixture was about 80 mm. The soybeans were sown in depth of 45 

mm with three seeds per pot (equivalent to 96 seeds m-2). Plants were grown in a light 

cycle of 16 h day and 8 h night. The temperature was kept at 25 °C during the day and 

15 °C at night. All pots were placed in a randomized complete block design with four 

blocks. Three herbicide combinations with recommended dosages were selected for 

the treatments, respectively, including, 1) 0.3 kg ha-1 Sencor® WG (700 g a.i. L-1 

metribuzin, WG, Bayer CropScience) plus 0.25 L ha-1 Centium® 36 CS (360 g a.i. L-1 
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clomazone, CS, Cheminova Deutschland GmbH) plus 0.8 L ha-1 Spectrum® (720 g a.i. 

L-1 dimethenamid-P, EC, BASF); 2) 2.0 kg ha-1 Artist® (175 g a.i. kg-1 metribuzin, 

240 g a.i. kg-1 flufenacet, WG, Bayer CropScience), plus Harmony® SX® (500 g a.i. 

kg-1 thifensulfuron, SG, Du Pont); 3) Harmony® SX® (500 g a.i. kg-1 thifensulfuron, 

SG, Du Pont), Basagran® (480 g a.i. L-1 bentazon, SL, BASF), plus Fusilade® MAX 

(125 g a.i. L-1 fluazifop-P-butyl, EC, Syngenta). Additionally, herbicide combinations 

in half recommended dosages were also applied as separate treatments. Untreated 

control pots with and without hand weeding were included respectively in each block. 

Herbicide treatments were performed pre- and post-emergence depending on the 

registrations of the products. The application time is given in Table 10. A laboratory 

track sprayer chamber mounted with a single flat fan nozzle was used for the herbicide 

application (8002 EVS, TeeJet Spraying System Co., Wheaton, IL USA). The sprayer 

was calibrated for an applying volume of 200 L ha-1. The applications were performed 

500 mm above soil surface.  
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Table 10. The herbicide application time in greenhouse experiment (in days after sowing of soybeans). H1, herbicide combination 1; H2, herbicide combination 2; H3, 

herbicide combination 3; E, early application; L, late application; D1, recommended dosage; D0.5, half recommended dosage.  

Treatments 

Days after sowing 

Before emergence After emergence 

4 11 24 31 33 38 45 

H1ED1 
metribuzin, clomazone, 

dimethenamid-P 
      

H1ED0.5 

H1LD1  
metribuzin, clomazone, 

dimethenamid-P 

     

H1LD0.5       

H2ED1 

metribuzin, flufenacet 

  

thifensulfuron 

   

H2ED0.5      

H2LD1  

metribuzin, flufenacet 

   

thifensulfuron 

 

H2LD0.5      

H3ED1   
thifensulfuron, 

bentazon 

 
thifensulfuron, 

fluazifop-P-butyl 

  

H3ED0.5      

H3LD1     
thifensulfuron, 

bentazon 

 
thifensulfuron, 

fluazifop-P-butyl H3LD0.5      
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2.1.2. Field experiment 

Five field experiments were conducted in 2015. The field trials were located in 

Southwest Germany at Böblingen, Calw, Nürtingen, Renningen and Tübingen. All the 

herbicide combinations were selected according to the local practice of the farmers 

during the last three years. Seeds of soybeans (Sultana, R.A.G.T. Saaten，Germany) 

were sown at a depth of 45 mm between 14th April and 15th May. Approximately 70 

seeds m-2 were sown with row distance of 170 mm in the fields. The experiments were 

set up as randomized complete block design with four blocks and five treatments. The 

size of each plot was 2×5 m. Herbicide application was carried out three days after 

sowing with i) 2.0 kg ha-1 Artist® (175 g a.i. kg-1 metribuzin, 240 g a.i. kg-1 flufenacet, 

WG, Bayer CropScience), ii) 1.5 kg ha-1 Stomp® Aqua (455 g a.i. L-1 pendimethalin, 

CS, BASF) plus 2.0 L ha-1 Quantum® (600 g a.i. L-1 pethoxamid, EC, Cheminova 

Deutschland GmbH), iii) 0.4 L ha-1 Sencor® Liquid (600 g a.i. L-1 metribuzin, SC, 

Bayer CropScience) plus 0.25 L ha-1 Centium® 36 CS (360 g a.i. L-1 clomazone, CS, 

Cheminova Deutschland GmbH) and iv) 0.4 L ha-1 Sencor® Liquid (600 g a.i. L-1 

metribuzin, SC, Bayer CropScience) plus 0.25 L ha-1 Centium® 36 CS (360 g a.i. L-1 

clomazone, CS, Cheminova Deutschland GmbH) plus 0.8 L ha-1 Spectrum® (720 g a.i. 

L-1 dimethenamid-P, EC, BASF). An untreated control was included in each block at 

all sites. Herbicides were sprayed with an electric motorized plot sprayer with Lechler 

IDK 120-02 nozzles (Metzingen, Germany). The spraying volume was calibrated to 

200 L ha-1. No rainfall was recorded within 24 hours after treatments. 
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Figure 9. The mobile fluorescence sensor, Weed PAM® system. ○1  The designed setup of the sensor. It 

consists of the camera control unit and the computer including software. ○2  The software interface when 

measuring a herbicide treated leaf of soybean. The purple pixels represent leaf area with higher Fv/Fm 

values, while the red pixels donate leaf area with lower Fv/Fm values. ○3  The distribution of dark adaption 

cover boxes when conducting first measurement at one-leaf stage of soybeans at site Böblingen. ○4  The 

measurement at two-leaf stage of the soybeans at site Nürtingen. 
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2.2. Chlorophyll fluorescence sensor 

The mobile fluorescence sensor, Weed PAM® system (Heinz Walz GmbH, 

Germany), was used to measure the chlorophyll fluorescence in this research. It 

contains 40 dark adaption cover boxes, a camera head, a tablet computer and a central 

control unit. LED lights with 460 nm wavelengths were mount on the camera head to 

induce chlorophyll fluorescence. The camera detects fluorescence signals above 680 

nm after an optical red long pass filter. The efficiency of photosynthesis system II (PS 

II) of soybeans was determined by measuring the maximal PS II quantum yield 

(Fv/Fm). It is calculated as  

𝐹𝑣/𝐹𝑚 =
𝐹𝑚 − 𝐹𝑜

𝐹𝑚
 

where Fo is the dark fluorescence yield, Fm is the maximal fluorescence yield 

(Maxwell and Johnson, 2000). The Weed PAM® system was operated by the software 

“ImagingWin” (Heinz Walz GmbH, Germany). With this software, the background 

noise can be removed as described by Kaiser et al. (2013). 

2.3. Measurements and data analysis 

For the greenhouse experiment, all the measurements with the Weed PAM® 

system were conducted 19, 21, 26, 31, 38 and 47 days after sowing (at least one plant 

had emerged in each pot). One plant per pot was selected for the measurement. All the 

plants were dark adapted with the dark adaption cover boxes for 30 min before 

measuring. Whole plants of soybeans were collected and washed 67 days after sowing. 

The root and above ground biomass were cut and dried separately. After 48 h drying 

in a drying chamber under 80 °C, the dry biomass was measured. 

For the field trials, three measurements were taken at each site, respectively, 

when the soybeans were at one-leaf stage (BBCH 10), two-leaf stage (BBCH 11) and 

three-leaf stage (BBCH 12). Ten soybean plants were measured in each plot. All the 

plants were dark adapted with the dark adaption cover boxes for 25-30 min before 

measuring. Values of all 40 plants were averaged. During the measurement, each plant 
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was marked with an orange stick and label. Above ground biomass was cut on 15th 

July 2015 (ten to twelve weeks after sowing) at all five sites. Plants were cut in each 

plot from an area of 0.5 m2. The dry aboveground biomass of soybean was weighted 

after 48 h drying in a drying chamber under 80 °C.  

Data were analysed with R (Version 3.0.2) and the package agricolae and lawstat 

(R Development Core Team, 2008). The significance of herbicide effect on soybean 

plants was determined by ANOVA. Then the Tukey’s HSD test of the ANOVA model 

was taken. All the datasets were proved to be normally distributed using Shapiro-Wilk 

test (p>0.05). Homogeneity of variances was analysed by Levene’s test (p>0.05). 

3.  Results 

3.1. Greenhouse experiment 

In the greenhouse test, at least one plant emerged in each pot since 19 days after 

sowing. Due to Table 11, all three herbicide combinations reduced Fv/Fm of the 

soybeans (several results were ignored because of overexposure during the 

measurement). High emissions of chlorophyll fluorescence in treatments 1 and 2 

occurred already after soybean emergence. The Fv/Fm of soybeans with pre-emergent 

herbicide treatments were significantly lower than the control plants during the first 

three weeks after application. However, the Fv/Fm of plants with post-emergent 

herbicide application dropped to lower level only for one week after treatment. 

Meanwhile, soybeans in treatments with half of the recommended dosage mostly 

presented no significantly different PS II reaction level than the untreated control 

plants. Both early and late application of herbicide could lead to Fv/Fm reduction of 

the soybean plants. Dry biomass measurement demonstrated that soybean plants in 

untreated group without hand-weeding had lowest weight. The soybean plants in 

untreated group with hand-weeding had relatively high biomass. However, the 

difference to the herbicide treated groups was not significant. 
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Table 11. The results of chlorophyll fluorescence measurements of the greenhouse experiment. H1, herbicide combination 1; H2, herbicide combination 2; H3, herbicide 

combination 3; E, early application; L, late application; D1, recommended dosage; D0.5, half recommended dosage; ConH, control with hand weeding; Con, control without 

hand weeding; significant differences between mean values are indicated by different letters (Tukey’s HSD Test, p<0.05). 

Treatments 
Days after sowing 

19 21 26 31 38 47 

H1ED1 0.264 b 0.241 cd 0.271 cd 0.484 bc 0.717 a 0.724 a 

H1ED0.5 0.425 ab 0.520 abc 0.483 abc 0.608 abc 0.739 a 0.731 a 

H1LD1 0.330 b 0.386 bcd 0.361 bcd 0.605 abc 0.740 a 0.725 a 

H1LD0.5 0.463 ab 0.466 abcd 0.405 abcd 0.577 abc 0.708 a 0.716 a 

H2ED1 0.296 b 0.285 cd 0.295 cd 0.476 bc 0.723 a -  

H2ED0.5 0.420 ab 0.419 abcd 0.336 cd 0.515 abc 0.720 a 0.697 a 

H2LD1 0.235 b 0.201 d 0.152 d 0.432 c 0.720 a 0.705 a 

H2LD0.5 0.306 b 0.267 cd 0.345 cd 0.567 abc 0.727 a 0.714 a 

H3ED1 0.655 a 0.695 a 0.425 abcd 0.644 abc 0.737 a 0.724 a 

H3ED0.5 0.652 a 0.690 a 0.537 abc 0.679 ab 0.746 a 0.729 a 

H3LD1 0.641 a 0.691 a 0.667 a 0.668 ab 0.666 a 0.705 a 

H3LD0.5 0.616 a 0.671 ab 0.650 ab 0.673 ab 0.707 a 0.722 a 

ConH 0.641 a 0.674 a 0.694 a 0.720 a -  0.751 a 

Con 0.636 a 0.636 ab 0.643 ab 0.672 ab -  0.733 a 
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Figure 10. Root and shoot dry biomass per soybean plant on 67 days after sowing. ConH, control with hand 

weeding; Con, control without hand weeding; H1, herbicide combination 1; H2, herbicide combination 2; 

H3, herbicide combination 3; E, early application; L, late application; D1, recommended dosage; D0.5, half 

recommended dosage; significant differences between mean values are indicated by different letters 

(Tukey’s HSD Test, p<0.05). 
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Table 12. The results of chlorophyll fluorescence and dry biomass measurements of the field experiment. MoA, Mode of Action; C1, Inhibition of PS II; F4, Inhibition of 

DOXP synthase; K1, Inhibition of microtubule assembly; K3, Inhibition of cell division (VLCFA); *, significant stress efficacy in both measurement; significant 

differences between mean values are indicated by different letters (Tukey’s HSD Test, p<0.05). 

Sites Treatment MoA 
Fv/Fm Biomass 

(g m-2) 

Significant 

stress Date 1 Date 2 Date 3 

Böblingen 

Control - 0.575a 0.587a 0.666a 310b  

i C1 K3 0.423b 0.503a 0.681a 394b * 

ii K1 K3 0.543a 0.607a 0.639a 476a  

iii C1 F4 0.490ab 0.567a 0.674a 450a  

iv C1 F4 K3 0.428b 0.524a 0.639a 356b * 

Calw 

Control - 0.584a 0.558ab 0.672a 40b  

i C1 K3 0.575a 0.524bc 0.645ab 296a  

ii K1 K3 0.585a 0.571ab 0.647ab 226ab  

iii C1 F4 0.596a 0.464c 0.563c 130b * 

iv C1 F4 K3 0.585a 0.593a 0.627b 248ab  

Nürtingen 

Control - 0.586a 0.602a 0.722a 580a  

i C1 K3 0.629a 0.531ab 0.706a 548a  

ii K1 K3 0.586a 0.516b 0.644b 490b * 

iii C1 F4 0.583a 0.592a 0.714a 558a  

iv C1 F4 K3 0.601a 0.577ab 0.709a 526a  

Renningen 

Control - 0.411a 0.472a 0.645ab 102b  

i C1 K3 0.440a 0.513a 0.613b 206a  

ii K1 K3 - 0.474a 0.666a 242a  

iii C1 F4 0.498a 0.490a 0.426c 136b * 

iv C1 F4 K3 - 0.514a 0.632ab 216a  

Tübingen 

Control - 0.545a 0.545a 0.662a 85b  

i C1 K3 0.529a 0.478a 0.659a 147a  

ii K1 K3 0.555a 0.472a 0.663a 125a  

iii C1 F4 0.517a 0.518a 0.658a 150a  

iv C1 F4 K3 0.545a 0.520a 0.667a 110a  
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3.2. Field experiment 

At Böblingen, the Fv/Fm of soybean seedlings in the treatment i and iv was 

significantly lower than in the untreated control plants already at the first 

measurement. But the plants recovered until the second measurement. The biomass 

weight of soybean plants with treatment i and iv was significantly lower than the 

soybean plants of all other treatments. The biomass of soybean in the plots without 

herbicide treatment was lowest probably due to weed competition.  

At Calw, the soybean plants presented lower photosystem efficiency in treatment 

iii. Unlike at Böblingen, the herbicide stress on PS II appeared, when plants produced 

the second leaf. Moreover, the stress lasted until the end of measurement. Biomass 

measurement showed significantly lower weight of soybean in the control and 

treatment iii than in the other treatments. 

A significant response of PS II was observed in treatment ii at Nürtingen. Fv/Fm 

in soybean of treatment ii was reduced from second measuring date until the end of 

measurement similar to the trial at Calw. Weed infestation at this site was very low. 

Therefore, biomass of soybeans was not reduced in the untreated plots.  

First measurement results of treatment ii and iv at Renningen were lost due to 

unexpected power failure when exporting the data from sensor. At this site, Fv/Fm 

reduction occurred in treatment iii. But the difference could only be distinct until the 

third leaf of soybeans was produced. The biomass measurement also showed lower 

weight of soybeans in control group and under treatment iii. 

At Tübingen, except the biomass of soybeans in untreated plots, no markedly 

different PS II quantum yield and biomass were observed between the treatments. 

4.  Discussion 

The chlorophyll fluorescence measurement showed that herbicide induced stress 

on PS II of young soybeans plants in all treatments in the greenhouse, as well as at 

four sites out of the five field trials. Herbicides with six modes of action were included 
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in the study, which were PS II inhibition, DOXP synthase inhibition, microtubule 

assembly inhibition, cell division inhibition, ALS- and ACCase inhibitors. Several 

authors support our findings, that most herbicides reduce light reactions of 

photosystems shortly after application, especially when the herbicide dose absorbed 

by the plants exceeded their metabolism capability (Dayan and Watson, 2011; Dayan 

and Zaccaro, 2012; Wang et al., 2016).  

Metribuzin rapidly inhibits the PS II after treatment by binding at the QB site of 

plastoquinone and interrupting the electron transfer flow (Ventrella et al., 2010). Most 

cultivars of soybean are tolerant to metribuzin. Therfore, metribuzin provides selective 

weed control in soybean (Hardcastle, 1974; Barrentine et al., 1976). Sultana which 

was selected for this research is a metribuzin tolerant cultivar. According to Falb and 

Smith (1984), tolerant soybean cultivators can detoxify metribuzin within 106 hours 

after treatment. These finding corresponded to our chlorophyll fluorescence imaging 

measurements revealing a rapid recovery from metribuzin treatments mainly in the 

field trial at Böblingen. In treatment 3 of the greenhouse test, the stress could also be 

induced by the PS II inhibitor bentazon, as the separated application of thifensulfuron 

and fluazifop-P-butyl caused no effect on the Fv/Fm of the soybean plants. Post-

emergent ALS- and ACCase-inhibiting herbicides did not cause any stress to soybeans. 

However, their activity against weed species is limited as well. That is why pre-

emergent herbicides in soybean production play a major role in weed management. 

In the greenhouse study, early occurrence and long duration of stress effect took 

place after treatment of herbicide combination 1 and 2. Apart from the PS II inhibitor, 

DOXP synthase- and cell division- inhibitors were also included in the herbicide 

mixtures. Thus, other stress mechanism might take place as well in these groups.  

In field experiments, inhibition on PS II of soybeans at site Calw and Renningen 

also occurred later and lasted longer than the photosystem regulation at site Böblingen. 

Besides metribuzin, clomazone (inhibitor of DOXP synthase) was also involved in the 

stressed treatments. Non-mevalonate 1-deoxy-D-xylulose-5-phosphate (DOXP) 

pathway is a main biosynthesis approach for plastidic isoprenoids, such as carotenoids, 
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phytol (a side-chain of chlorophylls), plastoquinone-9, isoprene, mono-, and 

diterpenes (Lichtenthaler, 1999). Most of the biosynthesis proceeded inside the 

chloroplast (Lichtenthaler et al., 1997). Chlorophyll production could be reduced as 

less phytol was provided due to the DOXP synthase inhibition. Therefore, the 

photosystem efficiency of DOXP synthase stressed soybeans was lower than the 

unstressed ones when the plants grew larger. The Fv/Fm reduction of soybean plants 

in treatment iii at site Calw and Renningen could be attribute to the application of 

clomazone. 

The combination application of pendimethalin (microtubule assembly inhibitor) 

and pethoxamid (cell division inhibitor) induced stress on PS II at site Nürtingen. 

Dinitroanilines herbicides like pendimethalin bind to α-tubulin (Morrissette et al., 

2004). Thus, the free tubulin could not group into ploymetrization as microtubule. 

Early research noted that dinitronanilines could interfere with the photosynthesis 

system dramatically by oxygen evolution (Morland et al., 1972a, b). 

Chloroacetamides inhibits very-long-chain fatty acids (VLCFA) synthase. The 

herbicide markedly reduces VLCFA content in plasma membrane and results in cell 

death (Böger, 2003). Some chloroacetamides (e.g. carbetamide) could inhibit electron 

transport up to 50% as a secondary effect of membrane destabilization (Weisshaar and 

Böger, 1987; Dayan and Zaccaro, 2012). Therefore, the chlorophyll fluorescence of 

plants could be altered. It correlated well to the Fv/Fm regulation of soybean under 

combination treatment 2 of metribuzin and flufenacet in the greenhouse test. However, 

metribuzin was not to be the only compound causing stress in soybean. As the 

herbicides inhibiting either cell division or VLCFA synthase might induce the 

regulation on photosystem, the stress mechanism in the treatment ii at site Nürtingen 

still could not be clearly explained. Furthermore, considering the long period stress on 

soybeans under combination treatment 1 in the greenhouse experiment, it could also 

be induced by the combined effect of DOXP synthase- and cell division-inhibitors 

after the effect of PS II inhibitor metribuzin. 
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The biomass assessment on herbicide treated soybean significantly distinct the 

stressed or non-stressed groups in the field. Apparently, the biomass assessment 

results correlated well with the sensor measurements. This correlation was also 

observed in the greenhouse study. 

Weed PAM® technology allows quantifying soybean response to herbicide 

treatments. The variation of plants’ chlorophyll fluorescence emission could be 

detected shortly after treatment. Thus, herbicide damage to soybean can be avoided by 

proper selection of products. Since soybean cultivars respond differently to herbicides, 

Weed PAM® technology can help to select the most tolerant cultivars.  

5.  Conclusion 

Herbicides interfere directly or indirectly with the photosystem of plants and can 

reduce quantum use efficiency of PSII in soybean plants and result in lower biomass. 

With the chlorophyll fluorescence imaging technology, it is capable to identify the 

stress rapidly in young growth stages. This achievement will support farmers to avoid 

herbicide combination that reduce crop growth. 
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Chapter 4 General discussion 

In the previous chapter, the new instruments Weed PAM® was introduced for the 

detection of herbicide resistance in field trials and farms. With this technology, the 

researchers and farmers will be available to conduct herbicide resistance test trials in 

field with less time, financial and labor expense. Due to the results, more proper 

herbicide applications can be selected. Additionally, fewer chemicals will be sprayed 

into fields and environment as inefficient input. 

1.  Herbicide resistance detection with Weed PAM® 

1.1  Greenhouse and field tests with Weed PAM® measurement 

The experiments, which were presented in Chapter 3 Section I and II, used the 

sensor Weed PAM® to identifying the herbicide and abiotic stresses on the weed 

Alopecurus myosuroides. The system capability was firstly proved in greenhouse and 

then practiced in the field trials. 

Due to the greenhouse test, significant difference of photosynthesis system II (PS 

II) activities of resistant and sensitive populations was clarified after herbicide 

treatment. The A. myosuroides displayed different PS II activity level according to the 

each mode of action, which presented the consistency to many former researches 

(Ahrens et al., 1981; Ali and Machado, 1981; Kaiser et al., 2013). Therefore, the 

Weed PAM® system can be applied with various principles for herbicide resistance 

detection. 

The acetolactate synthesis (ALS) inhibitors rapid up the D protein turnover and 

resulted in slower electron transfer rate in PS II system in sensitive plants (Öttmeier, 

1999; Whitcomb, 1999). The greenhouse experiment results showed rapid reduction 

of Fv/Fm values of sensitive A. myosuroides during the first three days after the 

treatment of ALS inhibitors. Little expand was observed afterwards. Meanwhile, even 

there were still fluctuations of the Fv/Fm values of resistant plants during the 

measuring period. The difference to the value of control plants was not significant. 
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Thus, ALS resistant populations could be identified as soon as three days after 

treatment (DAT) in the greenhouse test. 

Acetyl coenzyme-A carboxylase (ACCase) inhibitors slow down the synthesis 

activities of lipid acids which consuming a lot of ATPs (Kukorelli et al., 2013). The 

PS II activities were then inhibited according to the lower demand of ATP 

consumption (Harwood, 1988). According to the results in Chapter 3 Section I, long 

stress duration of ACCase inhibitors on the sensitive A. myosuroides plants was 

observed. The significant differences of Fv/Fm values between the sensitive and 

resistant plants could also be identified from 3 DAT onwards.  

The PS II inhibitor isoproturon affected the photosystem reaction of both 

sensitive and resistant A. myosuroides populations that were tested in this research. 

The Fv/Fm values of sensitive plants were much lower than the resistant plants after 

treatment. Meanwhile, the Fv/Fm values of resistant plants were significantly lower 

than the control groups. This phenomenon presented different effect of PS II inhibitors 

on photosynthesis activities of target site resistant grass. The PS II inhibitors cannot 

influence the PS II activities of target site resistant plants significantly (Pfister and 

Arntzen, 1979). However, the non-target site resistant plants can be partly impacted. 

The herbicide ingredients would be gradually detoxified by the non-target site 

resistant plants due to N-demethylation and ring alkyl-oxidation (Burnet et al., 1991; 

Moss 1990b). Thus, there will be lower rates of herbicide ingredients binding to the 

target site of D1 protein (Hess, 2000). Therefore, it was assumed that the resistant A. 

myosuroides population in this study has non-target site resistance to isoproturon. 

Rather than just identifying resistant populations, this result presented a potential for 

the Weed PAM® sensor to recognize the resistance mechanism against PS II 

inhibitors, as either target site or non-target site types. However, further investigation 

on both resistant biotypes should be conducted to clarify that. 

While the greenhouse test has shown high capability of the Weed PAM® to 

detect herbicide resistant populations, many field trials were then conducted. The first 

field trial was conducted very similar to the greenhouse herbicide treatments but with 
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only sensitive A. myosuroides sown in a winter wheat field. Due to the results, the 

sensitive population could also be identified after the herbicide treatment due to their 

Fv/Fm reduction, however on DAT 5. Based on the outcome of this experiment, larger 

scales of field experiments were conducted to test this detection system’s application 

capability in ten locations including 50 populations. Both sensitive and resistant 

populations were involved in these biotypes. Measurements were carried out on DAT 

5. In addition, visual assessments were conducted on DAT 21 to verify the detection 

results. The results showed that in total 95% of these populations were correctly 

classified. It means that the Weed PAM® sensor is capable to detect herbicide 

resistant A. myosuroides populations in the same growing season as winter cereals. 

This method would contribute to adopting alternative weed control strategies promptly 

for the farmers. 

1.2  Effects on the Weed PAM® measurement 

Fluctuations of the Fv/Fm values of untreated plants were observed in both 

greenhouse and field trials. Concerning that, many abiotic stresses were considered to 

be the origin for this influence (Rohacek, 2002; Baker, 2008; Burke et al., 2010). In 

the greenhouse test, two common abiotic factors were investigated for their influence 

on PS II of A. myosuroides. Water shortage stress was clearly visible with the sensor 

data, while the Fv/Fm measurement could not differentiate between nitrogen 

deficiency stressed and control plants. It corresponded to Baker and Rosenqvist 

(2004)'s publication, where the authors could not find any reduction of Fv/Fm values 

with nitrogen deficiency stress until the plants were severely stressed and this stress 

was visibly assessable. According the results, the Fv/Fm values reduced slightly at the 

beginning of measurement when the plants were treated with lower water supply. The 

reduction only got significant since five days after the water shortage treatment when 

the plants were severely stressed. The water shortage stress can reduce the CO2 

availability resulting in change of the photochemistry and carbon metabolism (Ashraf 

and Harris, 2013). During the initial period of water shortage stress, the stomata on 

plant leaves will close. This would lead to the increase of water using efficiency 
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(Chaves et al., 2009). However, if the drought stress existing in long term, 

dehydration of mesophyll cells will take place, resulting in a significant inhibition of 

metabolic processes of photosynthesis and a reduction of plant water using efficiency 

(Damayanthi et al., 2010). 

Moreover, due to the field trials, temperature was recognized to be one of the 

main factors that could affect the PS II reaction of A. myosuroides. Even up to 95% of 

the weed resistance classification of the field tests were correct, 5% of the populations 

were false classified. All the false classification occurred, when the measurements 

were conducted at temperatures below freezing point. The low temperatures, 

especially the frost, would damage the chloroplast and reduce the photosystem activity 

levels (Krause, 1994; Lundmark et al., 1998b). Therefore, the Fv/Fm values are 

reduced. Due to the frost impact, it is suggested that the in field detection for herbicide 

resistance with Weed PAM® system should be applied above 0 °C.  

2.  The herbicide stress detection in soybeans at early growth stage 

The field experiment in Chapter 3 Section III demonstrated the extended 

application of Weed PAM® system in the detection of herbicide stress on the crop 

soybean. Several herbicide combinations were involved in this study, including ALS-, 

ACCase-, PS II-, DOXP synthase-, microtubule assembly- and cell division-inhibitors. 

The greenhouse experiment demonstrated that post-emergence application of ALS- 

and ACCase-inhibitors could not induce stress on the soybeans’ PS II. Both 

greenhouse and field experiments showed that, significant reduction of Fv/Fm 

occurred under the stress of pre-emergence herbicides. Lower Fv/Fm of soybeans with 

PS II inhibitors treatment displayed usually since emergence. The PS II inhibition 

could attribute to the ingredients’ binding at QB shortly after the absorption of 

herbicide (Ventrella et al., 2010). While Sultana is a metribuzin tolerant soybean 

cultivator, the stress would be overcome within 106 hours due to the fast metabolism 

(Falb and Smith, 1984, 1987). Apart from PS II inhibitor, another photosystem-based 

herbicide, DOXP synthase inhibitor, could also induce stress on the PS II of soybeans. 

It occurred in both greenhouse experiment and some sites of the field experiments. 
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Non-mevalonate 1-deoxy-D-xylulose-5-phosphate (DOXP) pathway is a main 

biosynthesis approach for plastidic isoprenoids, such as carotenoids, phytol (a side-

chain of chlorophylls), plastoquinone-9, isoprene, mono-, and diterpenes 

(Lichtenthaler, 1999). Mechanism of PS II inhibition by DOXP synthase inhibitor was 

described in Chapter 3 Section III. Less chlorophyll was produced in soybeans when 

the plants were treated with DOXP synthase inhibitor. Thus, the photosystem 

efficiency would reduce. That correlated with the later and longer stress period of 

DOXP synthase inhibition than PS II inhibition. The microtubule assembly inhibitor 

dinitronanilines could interfere the photosynthesis system dramatically by oxygen 

evolution (Moreland et al., 1972a, b). In the greenhouse test, it took place as a stress 

extension on photosystem after PS II inhibition from metribuzin. Cell division 

inhibitor chloroacetamides inhibit very-long-chain fatty acids (VLCFA) synthase. 

Former studies showed that it could regulate half of the electron transport in plant 

(Weisshaar and Böger, 1987). The photosystem efficiency could decrease as a 

secondary effect and demonstrated lower Fv/Fm values (Dayan and Zaccaro, 2012). 

Due to the investigation with greenhouse and field studies, it could be concluded that 

the herbicide stress on soybeans could be identified shortly after emergence. The 

chlorophyll fluorescence imaging technology could be used for the detection of 

herbicide stress on soybeans at early growth stage. Farmers can benefit from this 

knowledge to take integrated cultivation strategies in the same growth season. 

3.  Further work to improve the Weed PAM® system 

As protocol type of a new method, even the Weed PAM® system had been 

proved on the detection A. myosuroides resistance against ALS-, ACCase- and PS II-

inhibitors, some problems were found during the greenhouse and field application. 

Besides, there were some more factors should be included in the analysis modeling 

and several suggestions maybe helpful to improve the application. 

According to the analysis of the results of the greenhouse experiments and 

existing literatures, it indicated that the resistance mechanisms of target site resistance 
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and non-target site resistance against PS II inhibitors might be identified using the 

method of chlorophyll fluorescence measurement (Chapter 3 Section I). However, 

further researches including both resistant biotypes should be done to clarify this 

hypothesis. Furthermore, only the PS II inhibitors in the group of Ureas (C2 in HRAC 

code) were reported to have different effect on chlorophyll fluorescence emission of 

target site and non-target site resistant populations (Moss, 1990b; Burnet, 1991). For 

wider spectrum of application, the photosynthesis activities under stress of PS II 

inhibitors in other subgroups should be observed in further experiments. 

The system was successfully practiced in detecting ALS- and ACCase- inhibitors 

in the field experiments. But the resistance to PS II inhibitors could not be identified 

due to the lack of sensitive standard samples in the fields. For the detection of non-

target site resistance to PS II inhibitors, a wider field investigation on the herbicide 

effect on the photosystem of the biotypes is required. So that a reduction range of the 

Fv/Fm values can be standardized. With this improvement, the non-target site PS II 

inhibitor resistant populations will be recognized just by comparing with the control 

plants, but without the sensitive standard samples anymore.  

Many abiotic factors have been proved to have influence on the photosystem 

activities of plants (Maxwell and Johnson, 2000). The greenhouse experiment 

indicated that the nitrogen deficiency could not affect the PS II activity, as the Fv/Fm 

values did not decreased under the lack of nitrogen fertilizer application during the 

tillering stage. Even the water shortage effect reduced the Fv/Fm values of plants five 

days after application, observation during the experiment showed that the soil water 

content had reached the wilting point. Not only the chlorophyll fluorescence 

differentiation could be measured, but also the drought stress symptoms were already 

visible. As the herbicide application and on field detection of resistant population are 

conducted in autumn and early spring when the soil moisture is usually suitable for 

plant germination and growth, the water shortage effect might be exclude from the 

negative impacts for the Weed PAM® sensor. Due to the results of field experiments, 

the fluctuation of Fv/Fm values were displayed for the average values of control plants 
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which were measured on different days. In addition, false detections were taken place 

in some cold days. In these incorrect detections, low Fv/Fm values were measured of 

the weeds. That proved the frost damage to photosystem II as many researches have 

reported (Örlander, 1993; Lundmark et al., 1998b). Therefore, an experiment should 

be established on the temperature effects on photosystem II. Beside normal 

temperatures, the factor should include both frost and heat stress levels (Janka et al., 

2015).  

Resistance against ALS-, ACCase- and PS II-inhibitors are the most common 

cases of resistant A. myosuroides biotypes in Germany and even in Western Europe. 

However, many other different herbicide resistance cases are reported overall the 

world. Detection cases should be conducted with other common resistant species 

including monocots like ryegrass (Lolium multiforum), blue grass (Poa annua), 

barnyard grass (Echinochloa crus-galli), etc. and dicots like common lambsquarters 

(Chenopodium album), corn poppy (Papaver rhoeas), redroot pigweed (Amaranthus 

retroflexus), etc. Furthermore, herbicides in other groups of mode of action should be 

tested, especially for many dicot species which are resistant to Synthetic Auxins (O in 

HRAC code), EPSP synthase inhibitors (G in HRAC code), PPO inhibitors (E in 

HRAC code), etc. The Weed PAM® system will be more capable for commercial 

practice when these optimizations are finished. 

4.  Integrated herbicide resistance management 

Herbicide resistance should be managed in integrated strategies including 

chemical, biological and mechanical contributions. The proper herbicide application 

can slow the development of herbicide resistance while the non-chemical methods can 

control the weeds without concerning the resistant problems. 

The proper use of herbicide plays a significant aspect. Firstly, the application 

time is an important factor for herbicide effect on the weeds. Researches on post 

emergence herbicides have shown that early application of herbicides could enhance 

the herbicide efficacy on weed control and crop yield than the later applications when 
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plants grew larger (Carey and Kells, 1995). In addition, herbicides in proper mode of 

action (MoA) should be selected for the treatment. A rotation of herbicides in different 

MoAs will help to reduce the risk of resistance development (Norsworthy et al., 2012). 

Furthermore, it is suggested by many research and modeling results that the herbicides 

should be applied at recommended dosage (Neve, 2007). Long term high rate 

applications of herbicide in same mode of action would cause target site resistance, 

while the repeated use of reduced rates of herbicides would lead to metabolic 

resistance (Powles and Preston, 1995; de Carvalho et al., 2009). 

The output of this thesis contributed to all the points of the chemical strategy 

mentioned above, application time, herbicide’s MoA and dosage selection. With the 

Weed PAM® system, the resistant populations may be recognized shortly after the 

herbicide application. Therefore, farmers will get the possibility to make further 

strategies and ensure the weed control efficacy before the weeds growing up to much 

larger size. In addition, the sensor will be helpful to evaluate the herbicide efficacy in 

dose response test shortly prior to the herbicide application on the whole field. The 

proper ingredient and suitable dose can be selected soon after the efficacy 

determination using the Weed PAM® system. This will optimize the herbicide 

application strategy. 

Cultivation practices like crop competition are also commonly adopted to control 

the herbicide resistant weeds (Norsworthy et al., 2012). Crop competitiveness can be 

employed to reduce the weed emergence and growth (Mhlanga et al., 2016; Peerzada 

et al., 2016). Effective approaches include cultivator selection, increasing seed rate, 

using narrow row space, optimizing sowing dates, improving irrigation and fertilizing 

management, and involving crop rotation (Schreiber, 1992; Jordan, 1993; Webster et 

al. 2009). Each method does not guarantee the commercial benefit of the weed control. 

Growers should concern the integrated effect for the equipment modification, 

increasing production costs, availability of labor and farming size, and cropping 

season length individually. 



Chapter 4 General discussion 

 85 

Other common biological management of weed resistance is practiced using 

cover crops and mulching. During growing season, the cover crops or mulch can 

establish barriers among crop rows. Thus, less light and growth space are available for 

the weeds (Banarwa et al., 2011). Allelopathy, plants’ ability to affect other plants 

growth by releasing allelochemicals, is another aspect of using cover crops as 

biological weed management. It has been proved in many crop cultivations, including 

cereal rye, wheat, oat, sunflower, maize and sorghum (Norsworthy et al., 2012). 

However, growers should carefully choose the cover crop species. Because, some 

cover crop would also have negative influence on main crop’s growth. In addition, the 

growers should also take care of the factors that may affect the allelopathic ability 

when using cover crops for weed control, for instance, the environment conditions of 

field, the management practice and the cover crop’s biomass. 

Last but not least, mechanical weed control is one of the most traditional and 

effective weed management practices. Using tillage, the small weeds can be buried, 

the roots can be damaged and the broadleaf weeds can be cut. The conventional 

hoeing or harrowing can only control the weeds inter rows. But with the finger weeder, 

it is now available to control weeds inner rows (Kunz et al., 2015). Tillage contributes 

also to reduce the seedbank in soil. It stimulates the weed seed germination at 

beginning of crop season but prevents the seed input with further weed control 

(Gallandt, 2006). Intensive tillage such as plow, can invert soil layers and bury weed 

seeds deep enough to prevent them from germination (Bennett, 2011).  

According to the discussion above, we can conclude that applying herbicide 

seems to be the most simple and fast method to control weeds. However, herbicide 

resistance can develop by improper or repeated application of herbicides in same 

mode of action. The early detection of herbicide resistant species can help growers to 

make right decisions on integrated weed control strategies for crop cultivation. 
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Summary 

All over the world, herbicide resistance has developed to one of the most 

important barriers in weed control, making the implementation of the weed control 

strategy more complicated. One of the first steps to deal with this challenge is to 

identify the herbicide resistant species. Many approaches have been designed for that 

purpose. However, most of the currently available methods are adopted for laboratory 

or greenhouse use. Until now there is no feasible measuring method in the field. 

Furthermore, these methods are cost and labor intensive. 

There is an intense need for a rapid, cheap and reliable method to conduct in 

field detection of herbicide resistant weed populations. In the current thesis with the 

use of chlorophyll fluorescence imaging technology, such a method is implemented 

and tested in field conditions. Therefore, the objectives of this study were (i) to clarify 

if a chlorophyll fluorescence sensor can be used to identify the sensitive and herbicide 

resistant weeds, (ii) to verify the applicability of the chlorophyll fluorescence imaging 

technology in the field, (iii) to evaluate its robustness concerning herbicide resistant 

weed detection, and (iv) to investigate if the chlorophyll fluorescence imaging 

technology is capable of identifying herbicide stress on the crop plants shortly after a 

herbicide application. In order to realize these objectives a series of experiments were 

designed and carried out. The data gathered from these experiments were compiled 

under three paper articles. 

Paper 1. In this study, a greenhouse experiment was conducted to verify if the 

parameter, Maximal Photosystem II Quantum Yield (Fv/Fm), could possibly indicate 

the herbicide efficacy. The chlorophyll-fluorescence-imaging sensor, Weed PAM®, 

was selected for the measurements. The experiment was separated into two parts. In 

the first part it was investigated if the Fv/Fm value could differentiate between 

herbicide sensitive and resistant plants. In the second part two important abiotic stress 

factors were tested if they affected the Fv/Fm value. I) Six herbicides were tested on 

herbicide sensitive and resistant Alopecurus myosuroides populations; II) Water 

shortage and nitrogen deficiency were applied on a herbicide sensitive population to 
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observe their influence on the plants. The sensitive plants presented significantly 

lower Fv/Fm values than the resistant plants three days after the treatment for the ALS 

and ACCase inhibitors. On the same day, and for the same treatments the Fv/Fm 

values of the resistant plants were not affected and similar to the control. Appling a PS 

II inhibitor, as a herbicide, reduced the Fv/Fm values of both sensitive and resistant 

plants rapidly. Yet, sensitive and resistant plants could clearly be separated, four days 

after treatment, based on the different Fv/Fm values. On the other hand, nitrogen 

deficiency did not influence the photosystem II measurements. Water shortage 

reduced rapidly the Fv/Fm value of the plants seven days after the application, yet at 

this point plant symptoms included the death of the plants. According to this 

experiment, the Weed PAM® sensor has proved its capability to identify the sensitive 

and resistant A. myosuroides populations shortly after the herbicide application. 

Paper 2. In this study, a verification of the above results was made under field 

conditions for different A. myosuroides populations and different locations. On the 

first part 50 populations in total including both sensitive and herbicide resistant 

populations were tested in this experiment. On the second part field experiments were 

conducted in ten locations around Germany over two years with the local field 

population mix. It was investigated if the Weed PAM® sensor could separate between 

herbicide sensitive and resistant A. myosuroides populations five days after treatment 

(DAT). The 50 different populations were sown in a winter wheat field. Two ACCase- 

and three ALS- inhibitors were applied. In all herbicide treatments, Fv/Fm values of A. 

myosuroides were significantly lower than the untreated plants at the 5th DAT. At the 

different locations three ACCase- and four ALS- inhibitors were applied when the 

weeds were at the 3-7 leaves growth stage. For each location, 40 sample plants per 

treatment were selected, and measured with the sensor at 5 DAT. A visual 

measurement, to verify the result, was carried out at 21 DAT. In both cases, 95% of 

the plants were correctly identified as sensitive or resistant. This demonstrated the 

ability of the Weed PAM® sensor to conduct in field real time detection of herbicide 

resistant A. myosuroides populations shortly after treatment. 
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Paper 3. In this study, greenhouse and field experiments were carried out to 

investigate if the chlorophyll fluorescence of soybean plants was altered, under 

herbicide stress. Herbicide combinations including inhibitors of PS II, DOXP synthase, 

cell division and microtubule assembly were selected for different pre-emergence 

treatments. Herbicide combinations including inhibitors of PS II, ALS and ACCase 

were applied in post-emergence treatments. Chlorophyll fluorescence was measured 

from the emergence of soybeans until the three/four-leaf stage. Furthermore the stress 

effect of the different treatments on the soybean plants was determined by measuring 

their dry biomass. In the greenhouse, post-emergence treatments with ALS and 

ACCase inhibitors did not seem to induce stress on the soybean plants. As expected, it 

originally demonstrated low Fv/Fm values when stressed by PS II inhibitors. But the 

PS II system recovered soon, one week after emergence. Stress induced by other pre-

emergence herbicides occurred one week after emergence and lasted longer than the 

stress induced by the PS II inhibitors. Dry biomass collaborated with the sensor result. 

Based on the current thesis, the Weed PAM® system can be an important tool in 

the identification of herbicide resistant weed populations, in a timely manner. It has 

proven its capabilities both in A. myosuroides as a weed and in soybean plants. Yet its 

applicability needs to be proven in more grass and broad-leaved weeds or crop plants. 

This technology will help farmers to take more suitable weed control strategies, as 

well as less economic and environmental risks. 
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Zusammenfassung 

Die weltweite Zunahme an Herbizidresistenzen stellt eine der größten 

Herausforderungen der heutigen Unkrautbekämpfung dar. Die Früherkennung einer 

Resistenz könnte einer zunehmenden Ausbreitung entgegenwirken. Bislang gibt es nur 

wenige Ansätze zur Erkennung von Herbizidresistenzen. Häufig findet die 

Identifikation einer Resistenz über aufwendige Labor- oder Gewächshausversuche 

statt , welche sehr zeit-, kosten und arbeitsintensiv sind. 

Die heutige Landwirtschaft verlangt eine effiziente, kostengünstige und 

zuverlässige Methode um Herbizidresistenzen an Unkräutern direkt im Feld zu 

erkennen. Darauf aufbauend wurden folgende Ziele entlang dieser Arbeit formuliert: 

Die Untersuchung, (i) ob ein Chlorophyllfluoreszenz-Sensor in der Lage ist zwischen 

sensitiven und resistenten Unkräutern zu unterscheiden, (ii) ob eine bildgebende 

Chlorophyllfluoreszenz-Technologie im Stande ist Herbizidresistenzen unter 

Feldbedingungen zu erfassen. Weiter sollte erforscht werden, (iii) ob das System 

konstante Ergebnisse in Bezug auf herbizidresistente Unkrautdetektion zeigt, und (iv) 

ob die bildgebende Chlorophyllfluoreszenz-Technologie Herbizidstress an 

Kulturpflanzen kurz nach deren Feldaufgang erfassen kann. Im Hinblick auf diese 

Ziele wurden mehrere Experimente durchgeführt, welche dazu verwendet wurden, um 

drei wissenschaftliche Artikel zu verfassen. 

Experiment 1. In diesem Teil der Arbeit wurde ein Gewächshausexperiment mit 

dem bildgebenden Chlorophyllfluoreszenz-Sensor Weed PAM® durchgeführt. Um die 

Effektivität von Herbiziden festzustellen wurde der vielversprechende Parameter 

„Maximaler Photosystem II Quantenertrag (Fv/Fm)“ mit dem Sensor gemessen. Das 

Experiment wurde in zwei Versuche unterteilt. Im ersten Versuch wurden sechs 

verschiedene Herbizide an sensitiven sowie resistenten Alopecurus myosuroides 

Populationen getestet. Im zweiten Versuch wurden sensitive Populationen 

Wasserknappheit und Stickstoffmangel ausgesetzt, um deren Stressreaktionen zu 

beobachten. Dieser Versuch trug dazu bei die Einflüsse von abiotischen Faktoren auf 

die Fv/Fm-Werte zu erkennen. 
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Die Ergebnisse zeigten, dass drei Tage nach einer Behandlung mit ALS- und 

ACCase-Hemmern die sensitiven Pflanzen signifikant geringere Fv/Fm-Werte 

aufwiesen, als die resistenten Populationen. Es zeigte sich nur ein geringer Einfluss 

des Herbizidstresses auf das Photosystem II der resistenten Pflanzen nach der 

Behandlung mit ALS- und ACCase-Hemmern. Die Fv/Fm-Werte sensitiver und 

resistenter Pflanzen fielen unter dem Einfluss von PS II Hemmern jedoch rapide ab. 

Vier Tage nach der Behandlung zeigte sich, dass die Fv/Fm-Werte der beiden 

Populationen sich signifikant unterschieden. 

Stickstoffmangel hatte während der Messungen keinen signifikanten Einfluss auf 

das Photosystem II, wohingegen sieben Tage nach Initiierung der Wasserknappheit 

eine schnelle Reduktion der Fv/Fm-Werte aufgetreten ist. Nach den Ergebnissen 

dieses Experimentes ist der Weed PAM® Sensor dazu in der Lage kurz nach einer 

Herbizidbehandlung sensitive und resistente Populationen von A. myosuroides zu 

erkennen. 

Experiment 2. Dieses Experiment untersuchte die Erkennung von 

Herbizideffektivität auf sensitive Pflanzen unter Feldbedingungen mithilfe des Weed 

PAM® Sensors. Zudem wurde getestet, ob der Sensor in der Lage ist unter diesen 

Bedingungen auch herbizidresistente A.myosuroides Populationen fünf Tage nach 

Applikation (TNA) festzustellen. Auf einem Winterweizenschlag wurde eine 

herbizidsensitive Population von A. myosuroides ausgesät und mit zwei ACCase- und 

drei ALS-Hemmern behandelt. Die Fv/Fm-Werte der A.myosuroides Pflanzen waren 

fünf TNA in allen Herbizidbehandlungen signifikant geringer im Vergleich zu den 

unbehandelten Pflanzen. Innerhalb von 2 Jahren wurden in einem weiteren 

Experiment insgesamt 50 sensitive und resistente Populationen an zehn Standorten 

getestet. Im 3-7 Blatt Stadium der Ungräser wurden als Behandlungen drei ACCase- 

und vier ALS-Hemmer appliziert. In jeder Population wurden 5 TNA 40 Pflanzen pro 

Behandlung für die Sensormessungen ausgewählt. Eine visuelle Bonitur erfolgte 21 

TNA. Die Ergebnisse zeigten, dass 95% der Erkennungen korrekt durchgeführt 

wurden. Dies zeigt die hohe Genauigkeit des Weed PAM® Sensors für eine direkte 
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Herbizidresistenz-Erkennung von A.myosuroides Populationen kurz nach der 

Applikation unter Feldbedingungen.  

Experiment 3. In diesem Teil der Arbeit wurden in Gewächshaus- und 

Feldversuchen Sojabohnen einem Herbizidstress ausgesetzt, um zu untersuchen, ob 

sich die Chlorophyllfluoreszenz-Emissionen nach einer Herbizidapplikation ändern. 

Herbizid-Kombinationen mit Hemmern des PS II-Systems, der DOXP Synthase und 

der Zellteilung, sowie des Mikrotubuliaufbaus stellten die Vorauflauf-Varianten dar. 

Die Nachauflauf-Varianten bestanden aus Herbizidmischungen mit PS II, ALS- und 

ACCase hemmern. Die Chlorophyllfluoreszenz wurde direkt nach dem Auflaufen der 

Sojabohnen bis zum 3-4 Blatt Stadium gemessen. Durch die Messung der 

Trockenmasse der Sojabohnen wurde das Stressniveau bestimmt. Im 

Gewächshausexperiment wurde beobachtet, dass kein Stress durch die Nachauflauf-

Varianten in den Sojabohnen induziert wurde. Pflanzen, die durch PS II-Hemmer 

gestresst wurden, zeigten nach dem Auflaufen geringe Fv/Fm-Werte. Das 

Photosystem II der Pflanzen erholte sich jedoch innerhalb einer Woche auf das Niveau 

der unbehandelten Kontrolle. Der Stress durch andere Nachauflauf-Varianten trat eine 

Woche nach dem Auflauf auf und dauerte länger an als die Variante mit PS II-

Hemmern. Die Aufnahmen der Trockenmasse bestätigten die Erkenntnisse der auf 

Chlorophyllfluoreszenz basierten Stresserkennung. 

Unter Zuhilfenahme des Weed PAM® Systems ist es Landwirten möglich die 

richtigen Unkrautbekämpfungsmaßnahmen noch in derselben Vegetationsperiode zu 

ergreifen in der das Resistenzproblem in ihrem Feld erkannt wurde. Zusammenfassend 

hilft diese neue Technologie den Landwirten geeignetere 

Unkrautbekämpfungsstrategien zu entwickeln und geringere ökonomische und 

ökologische Risiken einzugehen.  
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