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Chapter 1 

General introduction 

 

1.1 Multi-environment field trials 

 

The main objective of plant breeding and variety testing is the development of high quality 

genotypes in terms of yield, and other important characteristics such as disease resistance and 

drought tolerance. The performance of a given genotype is determined by the genetic make-

up of the plant, the environment and genotype-by-environment interaction, where an 

environment represents a site or site-year combination. In order to control environmental 

factors and make reliable selections of well performing genotypes, trials are usually replicated 

at several sites, and over several years and/or seasons (Cochran, 1937; Yates and Cochran, 

1938; Comstock and Moll, 1963; Gauch, 1992; Talbot, 1997). Such trials are known as multi-

environment trials (MET). Data from MET are used to investigate the average performance of 

genotypes in a range of environments, representing a target population of environments (TPE) 

(Atlin et al., 2000), and are also used to measure stability of traits accurately (Crossa, 1990).    

 

MET data give rises to different sources of within-trial and between-trial variation, and there 

is usually heterogeneity of variance at both of these levels. If these sources of variation and 

the variance heterogeneity are not accounted for, inefficient estimates of genotype effects may 

result, which adversely affects selection gain (Edwards et al., 2015). In order to account for all 

sources of variation and obtain reliable results, choice of good experimental design and 

appropriate analysis, accounting for any heterogeneity of variance, are crucial (Fisher, 1935; 

Cullis et al., 1998; Smith et al., 2001; Piepho et al., 2012a).     

 

1.2 Accounting for within-trial variation and heterogeneous error variance 

 

Data from field trials shows substantial variation that arises from multiple sources. Some 

examples of such sources of variability are soil moisture gradients, variation in experimental 

procedure, and other factors like disease and drought. These sources of variability should be 
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separated from genotype mean estimates. Usually, field variability is controlled using proper 

experimental designs along with the corresponding design-based analysis (Fisher, 1935). In 

addition, a number of studies showed that analyses of field trials with models which account 

for spatial correlation are superior to traditional purely randomization-based analyses 

(Gilmour et al., 1997; Schabenberger and Pierce, 2002; Piepho et al., 2008; Piepho and 

Williams, 2010; Müller et al., 2010; Sripathi et al., 2017). Spatial modeling approaches are 

therefore gaining popularity in plant breeding. Spatial models can be categorized into two 

kinds, i.e., isotropic and anisotropic. Isotropy means the spatial variation depends only on the 

distance between observations whereas anisotropy means the spatial correlation depends both 

on the distance and direction. In this study, we fitted isotropic one-dimensional models 

assuming auto-regressive (AR), exponential, spherical, and Gaussian covariance structures 

and assuming that correlation exists only along rows, but different rows were independent. 

For anisotropic modelling we considered the geometric exponential, spherical, and Gaussian 

and the two-dimensional AR(1)×AR(1) covariance structures. 

 

Data from agricultural field trials are often analysed based on classical linear model 

assumptions for the error term. For example, the baseline (randomization-based) model 

assumes independent error terms with homogeneous variance. By contrast, most spatial 

models assume dependent error effects, but still assuming constant variance. This study is 

concerned with the analysis of agricultural field trials when the asumption of homogeneous 

variance is violated. In variety performance trials, it is often observed that within-trial error 

variance differs between enviroments. If data analysis is done without considering the 

variance heterogeneity, then the analysis results may be misleading and may change the 

conclusion of the study compared to an approprate one.  

 

To account for the variance heterogeneity problem, there are various techniques available. 

Variance modelling and data transformation are two of the common methods (Box and Cox, 

1964; Carroll and Ruppert, 1988; Piepho, 2009). Variance modelling allows the analysis of 

data with unequal variance per experimental unit. One popular variance model assumes that 

the variance is proportional to the power of the mean (Carroll and Ruppert, 1988). Data 

transformation techniques also help to handle the variance heterogeneity problem (Box and 

Cox, 1964; Lee et al., 2008; Piepho, 2009). However, even if a data transformation resolves 

the variance heterogeneity problem for a single trial, it is unsatisfactory when it comes to 
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analysis of series of field trials, especially when the optimal transformation differs between 

trials. The reason is that back-transformation to original scale is not easy (Freeman and 

Modarres, 2006).  

 

This thesis proposes and demonstrates methods for analyzing MET data when the classical 

assumption of within-trial homogeneous variance is violated based on variance modeling 

approaches. Furthermore, an extension of the approach to simultaneously handle spatial 

variation along with heterogeneity of variance is considered.  

 

1.3 Analysis methods for MET  

 

There exist several statistical methods for analyzing MET data (Finlay and Wilkinson, 1963; 

Kempton, 1984; Piepho, 1997; Piepho et al., 1998; Smith et al., 2001). Linear mixed models 

(LMM) provide a convenient approach for analysis of MET, because they can handle the 

complexities of MET such as unbalancedness, unequal variances and spatial correlation. 

LMM for MET data can be fitted in two different ways: either as a single-stage analysis or as 

a stage-wise analysis. In single-stage analysis a combined analysis of raw plot data is 

considered and all source of variation are estimated simultaneously. This approach is 

considered to be the gold standard of MET analyses (Smith et al., 2001, 2005; Piepho et al., 

2012). However, single-stage analysis may require large computation time, due to the fact that 

MET often produce large datasets and require complex variance-covariance structures to be 

fitted. As a result, MET data are often analyzed using a stage-wise approach, in which 

genotype means are first computed from individual trial analyses and then in the next stage 

these means are combined for a joint analysis using a mixed model.  

 

In MET analysis, error and genotype-by-environment interaction (GEI) variance are usually 

heterogeneous between trials (Frensham et al., 1997; Cullis et al., 1998). In stage-wise 

analysis the error variance in the second stage is considered known but is replaced by its 

residual maximum likelihood (REML) estimate from the first-stage (individual trial) analysis. 

To account for heterogeneous error variances, a weighting approach is used for the joint 
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analysis (Smith et al., 2001; Piepho et al., 2012a). The weights are derived from the variance-

covariance matrix of the adjusted genotype means computed in the first stage.  

To fit heterogeneous GEI variances, different approaches have been proposed. Examples are 

multiplicative models and factor-analytic (FA) variance structures for the interaction variance 

(Gogel et al., 1995; Piepho, 1997; Smith et al., 2015; Smith et al., 2018). In this study we are 

concerned only with approaches to account for error variance heterogeneity between trials, 

whereas for random GEI effects we used the simplest model.  

 

Stage-wise analysis is an approximation for single-stage analysis. Stage-wise analysis will 

very closely resemble single-stage analysis if the full information is forwarded from the first 

stage to the second stage using an appropriate weighting method. This thesis explores 

methods that deal with variance heterogeneity between MET data in the most efficient way, 

which involves weighting based on mixed model approaches using the full information from 

previous stages.   

 

1.4 Weighted genomic selection and genome-wide association studies  

 

In modern plant breeding different types of marker-based procedures are applied to increase 

genetic gain and improve the quality of genotypes. Marker-assisted selection (MAS) and 

genomic selection (GS) have become important tools for breeders to select superior 

genotypes. MAS is an indirect type of selection that uses molecular markers in linkage 

disequilibrium (LD) with quantitative trait loci (QTL). Linkage mapping (LM) and genome-

wide association studies (GWAS) are the two commonly used methods to identify markers for 

MAS (Yu et al., 2006; Oraguzie et al., 2007). GS is another type of selection for improving 

plant breeding using whole genome molecular markers to predict genomic estimated breeding 

values (GEBV) of both phenotyped and unphenotyped genotypes (Meuwissen et al., 2001; 

Hayes and Goddard, 2010; Gowda et al., 2015). In plant breeding, MET data are central to 

select genotypes using observed data (phenotype), and also for marker-based selection (MAS 

and GS). Therefore an appropriate analysis of phenotype data is indispensible to obtain 

accurate and reliable results for both GWAS and GS. In phenotypic MET analysis some 

researchers use weights and some do not. However, when the researcher‟s objective is to do 

GS or GWAS analyses, adjusted means obtained from MET are almost invariably forwarded 

to the actual GS or GWAS analyses without any weighting method being applied (Shikha et 
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al., 2017; Edriss et al., 2017). In this thesis weighted and unweighted methods are compared 

for GS and GWAS analyses. 

 

1.5 Objectives  

 

The main objective of this thesis is to use existing statistical methods and determine a best 

approach for handling within-trial and between-trial variance heterogeneity in phenotypic 

MET and genomic data analyses using weighting methods. The specific objectives are: 

 

1. Propose a method to account for within-trial variance heterogeneity  in the case of 

MET 

2. Compare spatial versus baseline models  

3. Determine the best approach for account for variance heterogeneity and within-trial 

spatial correlation at the same time 

4. Evaluate if accounting of spatial variation and heterogeneous error improves the 

analysis or not 

5. Demonstrate the application of a new weighting method called the fully efficient 

method in stage-wise analysis of MET 

6. Compare the performance of fully efficient weighting with diagonal weighting and 

unweighted analysis of MET  

7. Evaluate weighted versus unweighted methods when analysis of MET is extended to 

GS and GWAS analysis 

 

1.6 Outline of the thesis   

 

In Chapter 2, statistical approaches for the simultaneous handling of dependent and 

heteroscedastic errors for the case of MET are demonstrated. In Chapter 3, the use of the fully 

efficient weighting method for stage-wise analysis of three different types of MET is 

illustrated and its performance evaluated and compared to other weighting methods. In 

Chapter 4 the use of weighting methods in stage-wise analysis of GS and GWAS and its 

comparison with the unweighted stage-wise analysis is discussed. Chapter 5 provides a 

general discussion of the thesis.
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Chapter 2 

Modelling spatially correlated and heteroscedastic errors in Ethiopian maize trials 
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2
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1
* 

1
Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Fruwirthstrasse 23, 

70599 Stuttgart, Germany. 

2
Department of Crop Production Ecology, Swedish University of Agricultural Sciences, 

Uppsala, Sweden.  

 

Published in Crop Sci. 58:1575–1586 (2018) 

The original publication is available at 

doi: 10.2135/cropsci2017.11.0693 

 

2.1 Abstract 

 

The precision of estimates of genotype means and genotype comparisons in agricultural field 

trials can be increased by using an appropriate experimental design and spatial modelling 

techniques. Both randomization-based and spatial analysis usually make the assumption of 

homogeneous variance. But in reality this assumption may not generally hold true. If this is 

ignored, erroneous estimates of the precision of fixed effect estimates can result, therefore 

some remedy should be sought in case heterogeneity of variance is detected. The objective of 

this study is to investigate methods of analysis accounting for possible variance heterogeneity 

along with the spatial trend if any. The methods are explored using three maize trials from 

Ethiopia. We consider the Box-Cox transformation to stabilize variance and variance models 

allowing for heterogeneity. For variance modelling we use the power-of-the-mean (POM) and 

exponential models. The Box-Cox transformation was found to be successful in stabilizing the 

variance but estimating genotype means and their standard error on the original scale is 

challenging. The POM and exponential variance models, which avoid this problem, were 
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found to effectively deal simultaneously with both spatial correlation and heterogeneity of 

variance.  

 In plant breeding field experiments, there are many biotic and abiotic sources of variability 

that can adversely affect mean estimates of the genotypes. There are cases for which the vari-

ability might have a spatial trend, and if not controlled, this will result in poor estimation and 

ranking of genotypic performance. Appropriate statistical design and modeling approaches 

help to address these challenges.  

 

Blocking techniques, replication, and randomization have traditionally been used for 

controlling field variability (Fisher, 1935; Edmondson, 2005). However, the associated 

randomization-based analyses do not fully exploit the presence of spatial correlation among 

field plots. Different spatial analysis methods, such as nearest-neighbor analysis and various 

autoregressive models [AR(1), linear variance, etc.] (Gleeson and Cullis, 1987; Cullis and 

Gleeson, 1991; Gilmour et al., 1997; Piepho et al., 2008; Piepho and Williams, 2010; Müller 

et al., 2010; Sripathi et al., 2017) are available that are based on the assumption that near plots 

are more highly correlated than more spatially separated plots (Schabenberger and Pierce, 

2002).  

 

In linear models, estimation of the unknown fixed effect parameters usually makes the 

assumption of homogeneous variance, meaning that if this assumption is not attained, there 

will be a loss of efficiency. The existence of variance heterogeneity in experimental field 

trials is not unusual. Overlooking this problem will result in inaccurate inferences on the fixed 

effects (Carroll and Ruppert, 1988; Littell et al., 2006). The heterogeneity of variance may 

exist between treatments, or it may be due to a variance–mean relationship; depending on the 

type of heterogeneity, there are different remedial measures. Here, we will focus on the most 

common case, where the variance is a function of the mean. 

 

A nonlinear variance-stabilizing transformation can be tried as a remedy (Box and Cox, 1964; 

Carroll and Ruppert, 1988; Sakia, 1992; Piepho, 2009). Although this approach may be 

successful in stabilizing the variance, thus allowing a valid analysis on the transformed scale, 

interpretation of the estimate on the transformed scale may be difficult. Moreover, back-

transformation to the original scale is not straightforward. Usually the inverse of the Box–Cox 

transformation is calculated, which leads to an estimate of the median on the original scale 

(Piepho, 2009). This naive back-transformation is an adequate approach for a single trial, but 
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more thought is needed when aiming to integrate results from a series of trials, a common task 

in stage-wise analysis of multienvironment trials (MET). The reason is that different 

transformations may be needed in different trials, which complicates the integration of results 

across trials on the original scale. In MET, the combined analysis is often done using a two-

stage analysis, in which each trial is analyzed independently in the first stage and adjusted 

genotype mean estimates are saved. In the second stage, a joint analysis may be done using 

mixed models (Möhring and Piepho, 2009; Piepho et al., 2012; Piepho and Eckl, 2014; 

Damesa et al., 2017). For integrating trial results across environments, all estimated genotype 

means should be in the original units of measurement. For a single trial, use of a median 

estimate is unproblematic; however, for combined analysis of MET where a linear model is 

assumed for the estimates computed per trial, an estimate of the expected value is more 

suitable than an estimate of the median. In addition, an estimate of the variance-covariance 

matrix of the adjusted means on the original scale is needed, and this is difficult to obtain 

when a transformation is involved. Freeman and Modarres (2006) studied the moments of the 

power normal distribution and derived an expression for the expected value and variance on 

the original scale when the parameter of the Box–Cox transformation is between zero and 

one. For other values of the transformation parameter, however, no simple equations are 

available both for the expected value and variance-covariance matrix on the original scale. 

If the variance increases or decreases in relation to the mean and approximate normality can 

be assumed on the observed scale, modeling of the variance as a function of the mean is an 

alternative and more flexible approach that avoids the complications of data transformation. 

Essentially, this approach assigns relative weights to the observation depending on their 

predicted mean. The power-of-the-mean (POM) and exponential models are two examples for 

variance modeling (Carroll and Ruppert, 1988). An advantage of this approach is that mean 

estimates are obtained directly on the observed scale, thus facilitating two-stage analysis to 

integrate results from MET. 

 

The variance modeling approach is applied only to resolve problems related to 

heteroscedasticity, assuming that approximate normality and additivity hold on the original 

scale, whereas a nonlinear transformation is applied in the hopes to not only stabilize a 

heterogeneous variance, but also to help fix other linear model assumption failures such as 

non-additivity and non-normality in the original scale. For example, multiplicative effects and 

lognormal distributions on the original scale imply additive effects and normal distribution on 

the log scale. The transform-both-sides method (Carroll and Ruppert, 1988), which applies the 
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same transformation to both sides of the model equation, is another option when the data 

shows both skewness and nonconstant variance on the original scale. However, this option is 

not considered here because it is fraught with the same difficulties as the Box–Cox 

transformation in getting back to the original scale. 

 

In this study, we consider three maize trials from Ethiopia. Inspection of the residuals from 

the randomization-based analysis indicates that there is variance heterogeneity in all these 

three trials, with the variance decreasing as the mean increases. The main objectives of this 

study are (i) to propose a method to fit spatial models in case of heterogeneity of variance, (ii) 

to fit spatial models both along with heterogeneous variance and after stabilizing the variance 

with Box–Cox transformation for the maize trial data, and (iii) to evaluate if the spatial 

modeling with heterogeneous variance improves the analysis when no data transformation is 

used. 

 

2.2 Material and methods 

 

2.2.1 Data 

 

For illustration, we use three different drought tolerance maize trials, which were obtained 

from the Melkassa Center of the Ethiopian Institute of Agricultural Research. In the beginning 

of our study, we considered a 4-yr multisite dataset and first analyzed all individual trials 

using the randomization-based model and checked the assumption of variance homogeneity. 

Out of all those trials, we selected these three, which showed severe heterogeneity of variance 

as compared with the other trials. All three trials were laid out according an a-lattice design. 

The trials are from the low-moisture-stress mega-environment in Ethiopia, were performed to 

introduce and test adaptation of drought-tolerant maize, and were conducted in 2011 

(EVDC11A, evaluation of drought-tolerant varieties in the 2011 trial season), 2012 

(EITCHYB12, evaluation of intermediate top-cross hybrids in 2012), and 2014 

(ENHNVT14B, evaluation of normal maize hybrids under national variety trials). Trial 

EVDC11A had 46 early-maturing maize crosses, laid out in 92 plots of size 6.375 m2. There 

were two complete replicates, each laid out in two rows and 23 columns. Each row 

corresponds to an incomplete block. Trial EITCHYB12 was performed in the main rainy 

season of the year 2012. This experiment had 56 genotypes planted in 112 plots of 7.875 m2. 
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It had two complete replicates each laid out in four rows and 14 columns per each row. Each 

replicate had eight incomplete blocks of size seven. The third trial, ENHNVT14B, comprised 

32 early normal hybrid maize lines, planted in 64 plots of 6.3 m2. This trial also had two 

complete replicates, where each replicate had one row (rows correspond to replicates), 32 

columns, and two incomplete blocks of size 16. In all three datasets, columns ran parallel to 

the direction of maize rows. In all cases, the shape of incomplete blocks was rectangular with 

several columns and one row. 

 

2.2.2 Statistical methods 

 

Baseline model 

 

The randomization-based model for an α-lattice design is used as the baseline model. The 

randomization-based model is a design-based model defined by the group of permutations 

underlying the randomization (Bailey and Brien, 2016). The model can be written as 

 

ijhjhjiijh eby   ,                                                                                                      (1) 

 

where ijhy  is the observed yield of the i-th genotype in the j-th replicate and h-th block,   is 

an overall intercept, i  is the fixed main effect of the i-th genotype, j  is the fixed effect of 

the j-th complete replicate, jhb  is the random effect of the h-th block nested within the j-th 

complete replicate, and ijhe  a residual effect corresponding to ijhy .  

 

To assess the assumption of constant variance, plots of studentized residuals versus predicted 

values were scrutinized. If the constant error variance assumption holds true, this plot should 

show a horizontal band with constant variability along the vertical axis across predicted 

values (Atkinson, 1985; Carroll and Ruppert, 1988; Montgomery et al., 1992). Any departure 

from this expected pattern, e.g., an increase of the variance with the mean (out-ward opening 

funnel) or a variance increase as the mean decreases (in-ward opening funnel), indicates 
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violation of the constant-variance assumption and suggests the need for remedies such as 

transformation and variance modelling. Therefore all checking of assumptions is based on a 

visual assessment of residual plots. We prefer this approach to significance testing of 

assumptions (Kozak and Piepho, 2018). 

 

Remedial measures for variance heterogeneity  

Box-Cox transformation 

 

Box and Cox (1964) consider a parametric family of nonlinear transformations given by  
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y ,                                                                                              (2) 

 

where  is a transformation parameter to be determined from the data. For example, the 

square root and cube root transformation correspond to   values of 1/2 and 1/3, respectively. 

If the transformation parameter takes the value 1 , this indicates that no transformation is 

needed. The best value of   is estimated by maximum likelihood (ML), assuming normality 

and a model with constant variance on the transformed scale, through a grid search over a 

range of values for  . The need of the transformation for the data is tested by a likelihood 

ratio test comparing the deviance for the optimally transformed and the untransformed data 

(Piepho and Ogutu, 2003; Piepho, 2009). A SAS macro based on the MIXED procedure was 

used to determine   by the ML method (Piepho, 2009). Since the method assumes 

homogeneity of variance on the transformed scale, the Box-Cox transformation usually also 

stabilizes the variance, in addition to achieving approximate normality. 

 

Variance modelling 
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Another approach to account for variance heterogeneity is to model the variance as a function 

of the mean, leaving the data untransformed. Our preliminary study of residuals suggested 

that the POM and exponential models could be used. In the POM model, the variance is 

assumed to be proportional to the power of the mean, whereas in the exponential model the 

variance is assumed to be an exponential function of the mean. The general variance model as 

a function of the mean can be written as 

 

     ijhijhijh yEVyEyVar 2|  ,                                                                                              (3) 

 

where 2  is unknown scale/variance parameter,   jhjiijh byE    is the conditional 

expected value of ijhy , given the effects for treatments, replicates, and incomplete blocks and 

  
ijhyEV  is the variance function, which is equal to   1

_



ijhijhP yEV   in the case of the 

POM model, and   ijhijhE yEV 2_ exp   for the exponential function. Note that ijhVP _  and 

ijhVE _  represent the POM and exponential variance functions, respectively. The parameters 

1  and 
2  are the variance function parameters to be estimated, and  ijhyE  is the mean 

corresponding to ijhy . The POM variance function is also a characteristic of the Tweedie 

family of distributions. Tweedie distributions are families of exponential dispersions used to 

model responses with non-negative values using generalized linear models (Tweedie, 1947, 

1984; Jørgensen, 1987; Peel et al., 2012; Wood and Fasiolo, 2017). For the POM model, 

01   corresponds to a Normal distribution with constant variance, 11   corresponds to a 

Poisson distribution, and 21   corresponds to a Gamma or lognormal distribution. For the 

exponential model, 02   also corresponds to the homogeneous-variance model. Usually, 

the values of the variance parameters 
1  and 

2  are not known and are estimated from the 

data, e.g., by ML or by restricted maximum likelihood (REML) (Carroll and Ruppert, 1988). 

 

Modelling spatial variability in mixed linear models 
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Gilmour et al. (1997) identify three major components of spatial variation in a field 

experiment that they denote as natural or local, extraneous and global. The extraneous and 

global components are accounted for through the block, row and column effects. For the local 

trend, the residual ijhe  in equation (1) can be decomposed as ijhijhijhe   , where ijh  

represents the local trend and ijh  is the remaining error. Collecting the plot errors ijhe  into a 

vector e , and the random block effects into a vector u , we may represent the residual variance 

by ReVar )( , which will be needed later when introducing heterogeneity. The random 

block effects u  and residuals ijhe  ( ijh  and ijh ) are assumed to be mutually independent and 

each have mean zero and constant variance.  

Finding the best spatial model requires fitting different models for each individual trial and 

selecting the one that best fits the data, the reason being that it is impossible to find one model 

that is efficient and appropriate for all trials (Gilmour et al., 1997; Piepho and Williams, 

2010). Over-fitting is a main problematic issue when various models are to be tried, therefore 

models should be selected strategically (Burnham and Anderson, 1998). One suggestion to 

avoid over-fitting is first to model the data with the randomization-based model (baseline-

model), and then to extend this by adding spatial model components only when this improves 

the fit (Williams, 1986; Williams et al., 2006; Piepho and Williams, 2010; Piepho et al., 

2011). 

 

One-dimensional isotropic model for local trend 

 

In a time series context, a first-order autoregressive (AR) model is a representation of the 

dependent variable as a linear combination of its previous values. Its spatial version is a 

representation of data at location l as a linear function of nearest neighbor values. The AR 

model can be fitted in one dimension, i.e., by assuming the correlation exists either along 

rows or along columns. Models for the local trend can also be fitted using the exponential, 

spherical, and Gaussian models which in their basic form are isotropic, i.e., the spatial 

variation among observations depends only on the distance between them (Schabenberger and 

Pierce, 2002; Schabenberger and Gotway, 2005). Each isotropic spatial model has three 

variance parameters called sill, range, and nugget. We fitted isotropic one-dimensional 
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models for an AR, exponential, spherical, and Gaussian model assuming correlation exists 

only along rows, but different rows were independent. 

 

Two-dimensional anisotropic model for local trend 

  

When fitting spatial models across two dimensions, one must cater for situations where the 

variation among observations depends both on the distance as well as directions; this 

phenomenon is called anisotropy (Schabenberger and Gotway, 2005). Geometric anisotropy is 

a simple form of anisotropy which occurs when the semivariogram range differs between 

directions, and this can be defined, e.g., for the exponential, spherical and Gaussian models 

(Gleeson and Cullis, 1987; Cressie, 1991; Zimmerman and Harville, 1991). In addition to the 

three parameters sill, range and nugget for isotropy model, geometric anisotropy models 

require two additional parameters which are anisotropy angle and anisotropy ratio. Geometric 

anisotropy can be reduced to an isotropic model by a linear transformation of the coordinate 

system (Schabenberger and Gotway, 2005). The two-dimensional autoregressive model 

AR(1)×AR(1) is another type of anisotropic model (Gilmour et al., 1997). In this study we 

consider the geometric exponential, spherical, and Gaussian and the two-dimensional 

AR(1)×AR(1) anisotropic models which can be fitted using the MIXED procedure of SAS. 

We fitted all these anisotropic models assuming correlation exist across the whole field and 

across replicates. 

 

Joint modelling of spatially correlated and heteroscedastic errors 

 

To model the spatial correlation along with the heterogeneity of variance the variance-

covariance structure R  of plot errors can be formulated as follows (Carroll and Ruppert, 

1988): 

 

2/12/1

MM ARRR  ,                                                                                                                      (4)  
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where A  represents the spatial correlation matrix and 
MR  is a diagonal matrix whose 

diagonal elements are   ijhyEV2 , which is the variance function for the ijh-th observation, 

where  ijhyE  is the expected value of ijhy . 

There are several methods of variance function estimation, i.e., methods to estimate 

parameters 2  and 
1  or 

2 . Pseudo-likelihood estimation is one of the standard methods 

(Carroll and Ruppert, 1988) and it is based on the idea that the conditional expected value of 

ijhy  can be replaced by the current estimate, possibly obtained from unweighted generalized 

least squares methods. Using the current estimate of the linear predictor, the variance 

parameters are then estimated using likelihood methods. The pseudo-likelihood estimation 

technique depends on the mean-variance relationship; it does not make other parametric 

assumptions (Carroll and Ruppert, 1988). In this study we apply the pseudo-likelihood 

method assuming additionally that our data follow a normal distribution. For scalar variance 

parameters 
1  and 

2  of the POM and exponential variance models respectively, the pseudo-

likelihood estimate can be computed using a grid search approach in a reasonable range of 

values, where the optimal value of θ (
1  or 

2 ) is chosen to be the value of the parameters 

which maximizes the likelihood over the grid. To obtain an efficient estimate an iteration 

process has been suggested, requiring at least two iterations (Carroll and Ruppert, 1988). The 

usual pseudo-likelihood method is based on ML estimation but this method does not account 

for the loss of degrees of freedom due to estimating the fixed effects. However, REML can be 

used to account for the bias, leading to a residual pseudo-likelihood approach. For given 

values of the variance parameters 
1  and 

2  for the variance functions ijhPV _  and ijhEV _ , 

weights ijhpPijhV Vw __ /1  and ijhEEijhV Vw __ /1  can be used to fit the POM and exponential 

models along with a spatial correlation model. Since the variance of an observation is defined 

as the product of the inverse of the weights and the scale parameter 
2 , the weights need to be 

standardized so that the scale parameter is identifiable. One possible standardization method 

is to divide each weight by mean of all weights (
PVw  and 

EVw , for POM and exponential 

models, respectively), so that the mean of standardized weight variable equals one. Thus, the 

standardized weights for the ijh-th observations are    ijhPVijhzV Vww
PP _/1  and 

   ijhEVijhzV Vww
EE _/1  for the POM and exponential models, respectively. With these 
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standardized weights, the variance functions become   
 ijhzVijh P

wyEV /1  and 

    ijhzVijh E
wyEV /1 , respectively. 

 

In our experience, if the random inter-block variance does not converge to zero and we do not 

make it proportional to the residual variance, this will likely result in convergence problems. 

Thus, we assume that block and error variances are proportional to one another. This 

assumption also seems quite natural and plausible, because if the error variance is a function 

of the mean then so should be the block variance. In order to let the variance of a random 

effect u  (i.e. the block in our example) be proportional to the residual variance, we extended 

the random-effect model by multiplying the random effect u  by the square root of the ijh-th 

value of the variance function, denoted here as    ijhzVijhVP P
ws /1_   and 

   ijhzVijhVE E
ws /1_  , for the POM and the exponential model, respectively. For the random 

effect u  with a constant variance 
2

u , we then have  

       
22

_

2

_var uijhVPuijhijhVP syEVus    and  

       
22

_

2

_var uijhVEuijhijhVE syEVus    for the POM and the exponential model, 

respectively. We developed a SAS macro called %fit_variance_function to estimate all the 

parameters needed to fit the POM and exponential variance models along with the spatial 

models, using a grid search procedure as detailed in the Appendix. For all three datasets the 

restricted pseudo-likelihood estimate for 
1  and 

2  was computed on the grid of values with 

bounds chosen so that the optimal value was found within these bounds. We used a step size 

of 0.1 for both the POM and exponential models. With all models we use two iterations, 

which is the minimum suggested by Carroll and Ruppert (1988). 

 

To choose the best fitting model we use the Akaike information criterion (AIC), with smaller 

value indicating better fit (Akaike, 1974). However, to choose the optimal value of   from the 

range of   values for a given model we use the deviance (-2 times residual log-likelihood). 

The reason for using the deviance rather than the AIC is that for a given model (spatial or 

randomization-based) the number of parameters does not change as we screen different values 

of  . The preferred best model with the optimal   is the one with the smallest deviance. 
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Moreover, if the estimate of a spatial covariance parameter of a model is close to zero, and the 

model has convergence problems, we do not report that model. Our modeling approach is 

based on the algorithm presented in Figure 1. 

 

 

 

Fig. 1: General algorithm for fitting variance model either with the baseline or spatial models 

 

2.3 Results 

2.3.1 Preliminary checking of assumptions  

 

Inspection of the studentized residuals from fitting of the baseline model for the three data 

sets indicates that all three datasets violate the constant variance assumption, i.e., the variance 

decreases as the mean increases (e.g., Fig. 2, left side). 

Algorithm:  

1. Choose grid bounds 
min , and max , step-size  , and number of iterations n  

2. Analyse the data assuming there is no relation between means and variances 

3. For 
min  , to max   by   do 

        For j=1 to n do 

3.1 Calculate weight iw  for i , using current mean estimates (from Step 2 when j=1 

and from Step 3.2 of previous iteration for j>1) 

3.2  Fit model using weight from Step 3.1 to obtain new estimates of means 

 End 

       End 

4. Choose the optimal value of the variance parameter θ with lowest deviance from grid of values i  

tried in Step 3  
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2.3.2 Box-Cox transformation 

 

For all datasets application of the Box-Cox transformation fixes the problem of variance 

heterogeneity as can be seen in the residual plots (Fig. 2). Note that inspection and 

comparison of residual plots is always somewhat subjective. In our examples, transformation 

reduced heteroscedasticity, especially in dataset EVDC11A. The difference in the residual 

plots before and after transformations are not very pronounced for Figs. 2b and 2c, but we still 

believe that there is improvement after transformation. The Box-Cox transformation 

parameters based on the baseline models estimated by ML are 3.0, 1.6, and 3.5 for trials 

EVCD11A, EITCHYB12 and ENHNVT14B, respectively. In all three datasets the drop in 

deviance is significant as compared to the model with untransformed data (Table 1). Even 

though the Box-Cox transformation is moderately successful in stabilizing the variance, in all 

three cases the transformation parameter   is not in the interval between 0 and 1 (Table 1), 

in which case back-transformation to the expected value on the original scale is impractical 

(Freeman and Modarres, 2006). Because of this limitation, the alternative option of modeling 

variance heterogeneity on the observed original scale is considered (Carroll and Ruppert, 

1988). 
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                     Original Scale                                                  Transformed Scale 

 

(a) 

                                      Original Scale                                                  Transformed Scale 

 

(b) 

                                  Original Scale                                                  Transformed Scale 

   

                                                                                          (c) 

Fig.2. Plots of the studentized residual versus predicted mean for grain yield in the original 

scale (GY, tonnes per hectare) (left side) and transformed grain yield (TGY) in the Box-Cox 
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transformed scale (right side). (a) EVDC2011A maize trial data, (b) EITCHYB2012 maize 

trial data and (c) ENHNVT2014B maize trial data. 

 

Table 1. Values of transformation parameter λ and deviance of the Box-Cox transformation 

for baseline model.  

Trial Name Lambda 

λ 

Deviance for  

untransformed 

data 

Deviance for  

transformed 

data 

Drop in     

deviance 

 

2011/EVDC11A 

 

3.0 

 

235.5 

 

213.675 

 

21.825* 

2012/EI-TCHYB 1.6 227.1 223.118 3.982* 

2014/ENHNVT14B 3.5   82.3   72.755 9.545* 

  is an optimal value of the Box-Cox transformation parameter determined from the data 

using ML. 

* Significant based on 84.32

1;05.0  df . 
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2.3.3 Modelling the variance heterogeneity along with spatial structure 

 

Example 1- Trial EVDC11A 

 

The baseline model (independent and constant errors model) with random block effects was 

extended to allow for spatially correlated errors with and without the variance model. The 

geometrically anisotropic spherical model with correlation across the replicates and without 

nugget for the POM variance model was found to be the best. Comparing a spatial model with 

homogeneous variance and the same spatial models with heterogeneous variance, the spatial 

model with heterogeneous variance had the best AIC among all of the fitted models (100%) 

for both the POM as well as the exponential model. Comparing the variance models, the POM 

model had smaller AIC for 81.8% of the fitted models and the exponential model fits better 

than POM only for about 18.2% of the fitted models (Table 2).  

 

Table 2: Deviance values and optimal θ‟s of EVDC11A maize trial dataset for the baseline 

and spatial models assuming homogeneous variance and using POM and exponential variance 

modeling.  

 

Models 

Range of 

correlation 

Nugget Homogeneous 

variance 

Variance model 

POM†† Exponential 

Deviance RLL 1  Deviance 2  

Baseline    182.3 171.1 -4.7 170.2 -0.8 

AR1  block No 172.5 164.2 -3.4 165.1 -0.6 

AR1  block Yes 172.2 164.6 -3.4 165.3 -0.5 

Exp block No 172.5 164.2 -3.4 165.1 -0.6 

Exp block
 

Yes 172.2 164.6 -3.4 165.3 -0.5 

Gau block
 

No 174.6 166.0 -3.1 167.3 -0.5 

Gau block
 

Yes 172.4 165.2 -3.1 166.0 -0.5 
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Sph block
 

No 172.2 159.5 -3.6 165.7 -0.6 

Sph block
 

Yes 172.3 163.7 -3.3 164.4 -0.6 

AR1  column No 182.0 168.8 -4.5 168.3 -0.8 

AR1 column yes 182.0 168.8 -4.6 168.2 -0.8 

AR1×AR1  whole field No 172.5 163.4 -3.3 164.5 -0.5 

AR1×AR1 whole field yes 172.0 163.6 -2.9 164.4 -0.5 

Expga whole field No 172.2 154.3 -5.1 155.2 -0.7 

Expga whole field yes - - - - - 

Gauga whole field No 171.4 163.5 -3.1 165.0 -0.5 

Gauga whole field yes 169.6 - - - - 

Sphga whole field No 180.2 162.9 -3.3 156.3 -0.7 

Sphga whole field yes - - - - - 

AR1×AR1 replicates No 171.7 164.6 -3.5 165.3 -0.6 

AR1×AR1 replicates yes 171.6 164.5 -3.4 165.2 -0.6 

Expga replicates
 

No 169.1 162.7 -2.8 163.2 -0.4 

Expga replicates yes - - - - - 

Gauga replicates
 

No 168.8 159.7 -2.8 160.3 -0.5 

Gauga replicates yes - 155.2 -3.4 155.5 -0.5 

Sphga replicates
 

No 170.7 153.7 -5.0 159.0 -0.3 

Sphga replicates yes NC NC
 

NC
 

NC
 

NC
 

†† POM, power of the mean variance model; NC, not converged; AR1, one-dimensional 

autoregressive model; dashed line (-), are models with no valid fit for one or more of the 

variance component(s) because they are estimated to be either zero or in the border and 

Hessian matrix is not positive definite; AR1×AR1, two-dimensional anisotropic 

autoregressive model; Exp, one-dimensional isotropic exponential model; Gau, one-

dimensional isotropic Gaussian model; Sph, one-dimensional isotropic spherical model, 
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Expga, two-dimensional geometric anisotropic exponential model; Gauga, two-dimensional 

geometric anisotropic Gaussian model; Sphga, two-dimensional geometric anisotropic 

spherical model.  

 

Example 2 - EITCHYB12 

 

The AIC (Table 3) reveals that the baseline model with the exponential variance performed 

better than the other models. Among the fitted spatial models, for both the POM and the 

exponential variance model, 100% of the spatial models had a smaller AIC than the same 

spatial model with homogeneous variance. When comparing the two variance models, the 

exponential model was better than the POM for 87.5% of the fitted models, while the POM 

model performed better than the exponential model for only 12.5% of the models.  

 

Table 3: Deviance values and optimal θ‟s of EITCHYB12 maize trial data for the baseline and 

spatial models assuming homogeneous variance and using POM and exponential variance 

modeling.  

Model 

Range of 

 correlation nugget 

Homogeneous  

variance 

Variance model 

POM†† Exponential 

Deviance Deviance 1  Deviance 2  

Baseline    193.1 190.6 -1.8 189.8 -0.4 

AR1 block no 192.8 189.1 -2.3 188.6 -0.5 

AR1 block yes - - - - - 

Exp block no - - - - - 

Exp block yes - - - - - 

Gau block no 193.1 190.6 -1.8 189.8 -0.4 

Gau block yes 193.1 - - - - 

Sph block no - - - - - 
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Sph block yes 199.1 - - - - 

AR1 column no 191.9 190.2 -1.7 189.5 -0.4 

AR1  column yes 190.0 188.4 -1.5 187.8 -0.4 

AR1  row no 193.1 190.1 -2.2 189.4 -0.5 

AR1 row yes - - - - - 

Exp row no - - - - - 

Exp row  yes 192.6 - - - - 

Gau row no - 190.6 -1.8 - - 

Gau row  yes - - - - - 

Sph row no - - - - - 

Sph row  yes 192.8 189.9 -1.4 189.3 -0.3 

AR1×AR1  whole field no 191.7 - - - - 

AR1×AR1 whole field yes 190.0 - - - - 

Expga whole field no 191.7 187.4 -1.1 189.8 -0.3 

Expga whole field yes 188.3 - - 184.7 -0.5 

Gauga whole field no 201.1 - - - - 

Gauga whole field yes 198.7 - - - - 

Sphga whole field no - - - - - 

Sphga whole field yes - - - 188.4 -0.2 

AR1×AR1 replicates no 191.9 - - - - 

AR1×AR1 replicates yes 188.6 NC
 

NC
 

NC
 

NC
 

Expga replicates
 

no 191.8 190.4 -1.4 - - 

Expga replicates
 

yes 188.3 - - - - 

Gauga replicates
 

no - - - - - 
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Gauga replicates
 

yes 187.4 186.5 -0.7 185.7 -0.4 

Sphga replicates
 

no - - - - - 

Sphga replicates
 

yes 189.3 
188.0 -1.5 188.2 -0.2 

†† POM, power of the mean variance model; NC, not converged; AR1, one-dimensional 

autoregressive model; dashed line (-), are models with no valid fit for one or more of the 

variance component(s) because they are estimated to be either zero or in the border and 

Hessian matrix is not positive definite; AR1×AR1, two-dimensional anisotropic 

autoregressive model; Exp, one-dimensional isotropic exponential model; Gau, one-

dimensional isotropic Gaussian model; Sph, one-dimensional isotropic spherical model, 

Expga, two-dimensional geometric anisotropic exponential model; Gauga, two-dimensional 

geometric anisotropic Gaussian model; Sphga, two-dimensional geometric anisotropic 

spherical model.  

 

Example 3 - ENHNVT14B 

 

For this dataset, the one-dimensional autoregressive model with correlation across column, 

without nugget and exponential variance, was found to be the best model. All the spatial 

models with the heterogeneous variance outperformed the same spatial model with 

homogeneous variance for both POM and exponential models (Table 4). As regards the 

variance model comparisons, 100% of the exponential models had the smaller AIC compared 

to the corresponding POM models.  

  Table 4: Deviance values and optimal θ‟s of ENHNVT14B maize trial dataset for the baseline 

and spatial models assuming homogeneous variance and using POM and exponential variance 

modelling.  

Model Range of 

correlation 

Nugget Homogene

ous 

variance 

Variance model 

POM†† Exponential 

Deviance Deviance 1  Deviance 2  

Baseline    87.3 80.4 -7.4 78.9 -1.4 
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AR1 Block No 86.8 81.0 -6.0 79.6 -1.2 

AR1 Block Yes - 80.8 -6.7 79.5 -1.3 

Exp Block No 87.3 - - 79.7 -1.2 

Exp Block Yes - 80.8 -6.8 79.5 -1.3 

Gau Block No 87.3 80.9 -6.1 79.5 -1.2 

Gau Block Yes - 80.3 -7.8 78.5 -1.2 

Sph Block No - - - - - 

Sph Block Yes - - - - - 

AR1 Column No 84.8 74.6 -6.6 72.3 -1.4 

AR1 Column Yes 84.8 - - - - 

AR1 Row No 86.8 80.7 -6.7 79.4 -1.3 

AR1 Row Yes - 80.4 -7.5 79.3 -1.3 

Exp Row No - 80.7 -6.6 79.4 -1.3 

Exp Row Yes - 80.4 -7.4 79.3 -1.3 

Gau Row No - 80.7 -6.7 79.3 -1.3 

Gau Row Yes - 80.6  -8.0 79.1 -1.3 

Sph Row No - - - - - 

Sph Row Yes - - - - - 

AR1×AR1 whole field No - 74.4 -7.3 72.6 -1.4  

AR1×AR1 whole field Yes - - - 70.6 -1.8 

Expga whole field No - 73.7 -6.3 72.5 -1.1  

Expga whole field Yes - - - - - 

Gauga whole field No 83.9 NC
 

NC
 

73.5
 

-1.3
 

Gauga whole field Yes - - - - - 
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Sphga whole field No - - - - - 

Sphga whole field Yes - - - - - 

AR1×AR1 replicates No - - - - - 

AR1×AR1 replicates Yes -  NC NC NC 

Expga replicates No - - - - - 

Expga replicates Yes - - - - - 

Gauga replicates No - - - - - 

Gauga replicates Yes - - - - - 

Sphga replicates No - - - - - 

Sphga replicates Yes - - - - - 

†† POM, power of the mean variance model; NC, not converged; AR1, one-dimensional 

autoregressive model; dashed line (-), are models with no valid fit for one or more of the 

variance component(s) because they are estimated to be either zero or in the border and 

Hessian matrix is not positive definite; AR1×AR1, two-dimensional anisotropic 

autoregressive model; Exp, one-dimensional isotropic exponential model; Gau, one-

dimensional isotropic Gaussian model; Sph, one-dimensional isotropic spherical model, 

Expga, two-dimensional geometric anisotropic exponential model; Gauga, two-dimensional 

geometric anisotropic Gaussian model; Sphga, two-dimensional geometric anisotropic 

spherical model. 

 

2.4 Discussion   

 

The analysis of data with linear mixed models is usually based on the assumption of 

homogeneity of error variance and this assumption may be violated. Techniques used when 

such problems are encountered fall into two broad categories: weighting and data 

transformation. Weighting can be performed after determining the weights using an 

appropriate variance model. The aim of this study was to explore the application of the Box-

Cox transformation and variance modeling as means of possible remedy when the constant 

variance assumption does not hold true in field trials. It has been shown for three examples 
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that both Box-Cox transformation and modeling heterogeneous variance resulted in a better 

model fit than the homogeneous variance model. For instance, after applying the variance 

model, the variance of studentized residuals became constant for all three trials (Fig. 3).  

 

If variance heterogeneity is observed, fitting a model which assumes homogeneous variance 

can be expected to be inefficient. In a two-stage analysis of MET, the variances are assumed 

to be heterogeneous between trials. This variance heterogeneity can be handled in the second 

stage by using proper weighting techniques of the variance estimate from the first stage. The 

REML estimates of the variance and co-variances of adjusted genotypes from the first stage 

are used to compute the weights in the second stage (Damesa et al., 2017), meaning that 

taking the remedial action for within-trial variance heterogeneity will improve the estimates 

of the weights for the second-stage analysis. If the variance heterogeneity is ignored, then the 

error will be twofold in case of two-stage analysis. This is because, firstly, estimation of 

adjusted genotype means in the first stage will not be efficient and, secondly, the variance-

covariance matrix which is supposed to be used for determining the weights in the second 

stage analysis, will be wrongly specified, thus producing inefficient mean estimates and 

biased standard errors in the second stage. The same problems would come into play in a 

single-stage analysis.   

 

There are several reasons which make the Box-Cox transformation attractive for practical 

analysis, some of which are its efficiency and its flexibility, its being a generalization of the 

most common transformations such as logarithmic, square root, cubic root, quadratic, and also 

its applicability in mixed models (Piepho, 2009). Besides all of these advantages, the 

difficulty in reporting on the original scale, or interpreting the meaning of the estimated fixed 

effect parameters in the transformed scale is its major drawback, particularly in MET analysis.  

 

In variance modelling, it is possible to assume a distribution family has a constant coefficient 

of variation. The gamma and the lognormal are the two most commonly used distributions for 

this strategy, and both have variance function corresponding to 21   in the POM model. 

However, such a prior distributional assumption may not be appropriate, and it is 
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recommended to estimate the mean variance relating parameter from the data (Carroll and 

Ruppert, 1988).  

In many cases, when non-constant variance occurs, usually the variance increases as the mean 

increases. However, in all three datasets in this study variance and mean are inversely related. 

This could be the result of different degrees of response of varieties to moisture stress that is 

prevalent in the low-land mega-environments studied here. Since this study is a drought 

tolerance evaluation, low yield can be an indicator for susceptible varieties whereas high yield 

is an indicator for drought tolerance varieties. Therefore the inverse variance-mean 

relationship could also be interpreted as implying that the variances are larger for varieties 

that are sensitive to drought and smaller for varieties that are resistant to drought (Fig. 2, left 

side). However, as we only have the yield data at our disposal for these trials, it is not possible 

to provide a more detailed biological explanation for the observed negative relationship. Other 

causes could be unstudied environmental factors (abiotic and biotic) like variation in soil 

(moisture content, fertility) or attack by insects or animals (Gomez and Gomez, 1984). If the 

heterogeneous variance between entries is the cause, one solution to handle this problem is to 

use a model with heterogeneous variance between entries. However, in all three datasets each 

entry is replicated only twice, and therefore the estimate of variance for each entry would be a 

poor estimate of variance. Generally with only two or three replications, the estimate of 

variance will be very inaccurate (Carroll and Ruppert, 1988). For example, in our attempts to 

fit a model with entry-specific variance, there were computational problems for all of the 

three example datasets (result not shown), indicated by an infinite likelihood at the initial 

iteration or a non-positive definite Hessian matrix. Edwards and Jannink (2006) proposed 

Bayesian hierarchical models to address the problems of estimation of variance from a small 

number of observations per treatment. They found that Bayesian methods can improve 

estimation through borrowing of information from neighboring observations and allow 

accounting for heterogeneity of error variances when variance is estimated from few 

observations per treatment. This is an interesting alternative to the variance modelling 

proposed in our paper. In fact, one could combine both approaches and do the variance-mean 

modelling in a Bayesian framework. 

 

Usually, when the variance and mean are inversely related, for the Box-Cox method a 

transformation parameter value λ > 1 stabilizes the variance, whereas for the exponential and 

POM models variance parameters θ < 0 help to appropriately down-weight portions of the 
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data which are highly variable and extract more information from portions of the data that are 

more precise. However, the optimal value of the variance parameter should be determined by 

an appropriate estimation method.  

Accounting for variance heterogeneity and correlation of neighboring plots simultaneously 

can be necessary in analysis of agricultural field trials. Both issues can be resolved jointly 

using a suitable modelling approach, as we have demonstrated in this study. According to 

randomization theory, ignoring the correlation of neighboring plots is not a mistake, because 

randomization breaks any spatial dependencies (Piepho et al., 2013); however, modelling 

spatial correlation can be an opportunity to improve the precision of the analysis. 

 

For this particular study the variance modeling remedy works well for the variance 

heterogeneity problem, but this may not generally be the best solution for other studies. 

Therefore, considering both a Box-Cox transformation and variance modelling, and possibly 

other options on a case-by-case basis is generally advisable. 

 

Care should be taken in applying variance models for small sample sizes. We do not 

recommend this approach when the number of varieties is too small. As far as we know there 

is no clear threshold value for the minimum number of observations for variance model. 

Bootstrapping and simulation have been suggested for identifying the smallest sample size 

required for variance modelling (Carroll and Ruppert, 1988), but we have not pursued this. 

 

One of the challenges in fitting spatial and variance models in SAS PROC MIXED is the lack 

of an option to specify them together in the residual variance-covariance matrix R . A 

possibility that we considered was using the GLIMMIX procedure with a user-defined 

variance function and estimating the variance parameters using a pseudo-likelihood 

estimation method, searching over a grid of values, to optimize the whole model, but this 

approach was not functional due to persistent convergence problems. We therefore 

implemented our proposed procedure from scratch in the macro %fit_variance_function.  
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As we have seen from the three datasets, the spatial models were best when combined with 

the heterogeneous variance model. In two of the dataset the best model was from the POM 

variance model, whereas for the third dataset the exponential model was the best variance 

model. Which variance model needs to be chosen obviously depends on the type of data, so 

fitting a number of promising candidate models and then selecting the best among them will 

usually be necessary.   

 

2.5 Appendix 

 

The macro %fit_variance_function  

This macro estimates the variance function parameters 
1  and 

2  for the POM and 

exponential model, respectively, from the data set using a grid search approach over a range 

of given values. The macro involves two calls of the PROC MIXED procedure. In the first 

step, the baseline or spatial model is fitted and the conditional predicted values for each 

observation are saved. Next, using the predicted values and a range of different values for  , a 

range of different weights are computed for each theta. Weights are standardized before they 

are submitted to the second PROC MIXED call, in which the variance is modeled as a weight 

for the baseline or spatial model. Conditional predicted values for each   are saved to replace 

predicted values from the former PROC MIXED call. The second step is repeated over the 

grid of values for 
1  and 

2  for n iterations. Separate analyses are performed for each value 

of 
1  and 

2  over the grid. The optimal value of 
1  or 

2  is the one which results in the 

minimum deviance. The number of steps for the grid search as well as the limits of the grid 

can be chosen by the user. 

 

2.6 Supplementary material 

 

Supplementary materials comprising the SAS macro %fit_variance_function.sas and SAS 

example files (Examples power of the mean variance model.sas, Examples exponential 

variance model.sas and Examples homogeneous variance model) are available online.   



 

33 
 

 

 

 

 

 

 

 

 

 

 

 



 

34 
 

Chapter 3 

One Step at a Time: Stage-Wise analysis of series of experiments 

 

Tigist Mideksa Damesa
1
, Jens Möhring

1
, Mosisa Worku

2
, Hans-Peter Piepho

1*
 

1
Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Fruwirthstrasse 23, 

70599 Stuttgart, Germany.
 

2
International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya. 

Published in Agron. J. 109:845–857 (2017) 

The original publication is available at 

doi:10.2134/agronj2016.07.0395 

 

 3.1 Abstract 

  

Multi-environment trials (MET) can be analyzed using single-stage or stage-wise analysis. 

Single-stage analysis is fully efficient, meaning that the estimators can be expected to be as 

close as possible to the corresponding true genotypic values, and so is often deemed 

preferable to two-stage analysis. However, two-stage analysis is often favored in practice over 

single-stage analysis in case of large datasets because of the larger computational burden of 

the latter and because the former allows separate analyses of individual trials in the first stage 

accounting for any specifics of each trial. In this study we demonstrate the similarities of 

results of single-stage and two-stage analysis when information on mean estimates and the 

associated variance-covariance matrix is forwarded from the first stage to the second stage 

using four examples with maize (Zea mays L.) trial data from Ethiopia. A new fully efficient 

and an approximate two-stage method with diagonal weighting matrix are used for weighting 

in the second stage. We extend the method to three-stage analysis for MET when sites are 

stratified by agro-ecological zones and demonstrate how to obtain best linear unbiased 

predictions (BLUP) of genotype effects per zone using the information from neighboring 

zones. Two macros which compute weights for use in the fully efficient and diagonal 

weighting approaches are provided. 
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Many trials are replicated in multiple environments in order to broaden the inference space. 

For example, plant breeding and variety trials are typically performed at multiple sites and in 

several years (Yates and Cochran, 1938; Cochran, 1937; Comstock and Moll, 1963; Gauch, 

1992; Talbot, 1997). A joint analysis of such multi-environment trials (MET) can be done in a 

single stage by a linear mixed model (LMM) for the plot data (Smith et al., 2001, 2005). Such 

an analysis is commonly considered to be fully efficient because all sources of variation can 

be accounted for simultaneously in a single model and the analysis provides best linear 

unbiased estimates (BLUE) of all fixed effects, as well as best linear unbiased predictions 

(BLUP) of all random effects under that assumed single-stage model (Searle et al., 1992). An 

alternative method of analysis is to proceed in two stages, where in the first stage genotype 

means are computed per trial and in the second stage genotype means from all trials are 

subjected to a joint analysis. In principle, the stage-wise approach can also be extended to 

more than two stages (Piepho et al., 2012a). 

 

In both cases, individual trials are first analyzed separately, paying due attention to all 

specifics of a trial, including outlier detection, the particular experimental design and 

randomization scheme used, and selection of a preferred analysis model among contending 

candidate models (purely randomization-based, spatial, with covariate adjustments, etc.). In 

two-stage analysis, only the means and some measure of precision (standard errors, variance-

covariance matrix of the means or diagonal elements of the inverse of this matrix) are saved 

from the first stage and carried forward to the second stage. By contrast, in a single-stage 

analysis, the preferred analysis models identified for each individual trial are integrated into 

an overall model for analysis of the MET plot data, which is fitted in a single stage. The 

computational burden for single-stage analysis is typically larger than for stage-wise analysis 

because both the size of the dataset submitted to an analysis across environments and the 

complexity of the model are larger in single-stage analysis. How much of an advantage the 

alleviated computational burden by using stage-wise analysis affords depends on several 

factors, including the size of the dataset, the designs and models used for the individual trials 

and the complexity of the single-stage model. Moreover, stage-wise analysis is convenient for 

practical analysis, because it facilitates a combined analysis of different trials with different 

design and modelling structures and also allows for heterogeneity of variance between trials 

(Piepho and Eckl, 2014).  
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Researchers wanting to analyse MET are frequently faced with the question whether to use a 

single-stage or stage-wise analysis. In this paper it will be argued that, while single-stage 

analysis can justly be regarded as the gold standard, a stage-wise analysis, if done properly, is 

perfectly valid and typically very close to a single-stage analysis.  

 

Several papers have been written comparing single-stage and two-stage analysis (Möhring 

and Piepho, 2009; Welham et al., 2010; Piepho et al., 2012a; Schulz-Streeck et al., 2013a). 

This in-depth treatment will not be repeated here. Instead of giving very detailed theoretical 

background, the key results, facts and arguments justifying a stage-wise analysis will be 

briefly reviewed and the important practical implications discussed. The main purpose of this 

study is to illustrate stage-wise analysis with typical examples using a new weighting method. 

This weighting method differs from previous weighting methods in that it carries the full 

variance-covariance matrix from the first stage to the next stage instead of using a diagonal 

weighting matrix. Also, it is simpler than an alternative approach, based on rotation (Piepho et 

al., 2012a), which is slightly more complicated than what we propose here, though results are 

identical. To the best of our knowledge, a weighting method using the full variance-

covariance matrix from the previous stage without rotation has not been used before in the 

context of series of trials. We provide two macros that can be used to get weights for stage-

wise analysis by the new method and by a diagonal method that was suggested previously 

(Smith et al., 2001). Four worked examples serve to illustrate the similarity between single-

stage and stage-wise analysis.  

 

3.2 Statistical methods for trials at multiple sites in a single year 

 

3.2.1 Single-stage analysis  

 

The randomization-based model for analysis of the series of experiments laid out as 

generalized lattice designs is (Calinski et al., 2005) 

 



Chapter 3 
 

37 
 

  ijkmjkmjkijjiijkm ebrgssgy   ,             (1) 

 

where   is a general intercept, ig  is the fixed main effect of the i-th genotype,  2,0~ sj Ns   

is the random main effect of the j-th site,    2,0~ gsij Ngs   is the random interaction effect of 

the i-th genotype and the j-th site,   2,0~ jrjk Nr   is the random effect of the k-th replicate 

within the j-th site,   2,0~ jbjkm Nb   is the random effect of the m-th block nested within the 

k-th replicate at the j-th site, and   2,0~ jeijkm Ne   is the residual plot error associated with 

the observation ijkmy . Note that the variances for replicates, blocks and error are site-specific 

here, which is usually a realistic assumption (So and Edwards, 2011) and also allows a two-

stage analysis to be fully equivalent to single-stage analysis (Piepho et al., 2012a).  

 

3.2.2 Fully efficient two-stage analysis 

 

The term fully efficient two-stage analysis refers to a two-stage analysis that forwards the full 

variance-covariance matrix of adjusted means obtained in the first stage to the next stage. For 

analysis of individual sites (first stage), it is convenient to re-write model (1) as  

 

ijkmjkmjkijijkm ebry   ,                                                                                                   (2) 

 

where  
ijjiij gssg    is the conditional expected value of the i-th genotype  qi ,...,1  

at the j-th site  pj ,...,1 . We here regard ij  as a fixed effect for site-wise analysis, i.e. the 

analysis is conditional on the site-specific effects js  and  
ijgs . Collecting expected values 

ij  at the j-th site into a vector  T
qjjjj  ,...,, 21  and plot observations into the vector jy

, we have     11ˆvar
 jj

T

jjj XX , where j̂  is the generalized least squares estimator 

of j , given by   j

T

jjj

T

jj yXXX 111ˆ   , jX  is a full-rank treatment design matrix for j  
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at the j-th site and  
jj yvar  is a non-singular variance-covariance matrix of the plot data 

at the j-th site, which depends on the experimental design and the variances  
2

jr ,  
2

jb  and 

 
2

je . 

In the second stage, we can fit the model 

 

  ijijjiijijij fgssgf  ̂ ,                                                                                (3) 

 

where ijf  is the residual of the i-th genotype in the j-th site and   jjf var  with 

 T
qjjjj ffff ,...,, 21 . In practice, j  is replaced by its residual maximum likelihood 

(REML) estimate from the first stage. To fit the model in the second stage, we need the 

variance-covariance matrix of  TT

p

TT ffff ,...,, 21  given by  

 

  


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00

00

00

var







.                                                                           (4) 

 

Plugging in the estimate of j  from the first stage, we can then estimate the fixed genotype 

means across environments, ii g , and the variances 
2

s  and 
2

gs  at the second stage 

based on (3), thus providing estimates of all parameters of the single-stage model (1), if 

analyses of both stages are taken together. It is shown in Piepho et al. (2012a) that both 

analyses are fully equivalent provided the same variance component values are used for all 

random effects. This is also why we denote this two-stage approach as fully efficient. For 

theoretical details the reader is referred to that paper. The fully efficient method described 

here is essentially the same as that in Piepho et al. (2012a), except that we omitted the 

rotation; all other results in that paper apply equally, especially those on the equivalence of 

single-stage and stage-wise analysis as derived from the mixed model equations. 
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Any numerical differences between resulting estimates of genotype means i  only result 

from numerical differences in the variance component estimates under single-stage and two-

stage analysis. We also note that we have used a simple model for the random genotype-

environment effects, but the approach also works with more complex models such as factor-

analytic variance-covariance structures for genotype-environment effects (Piepho, 1997). 

 

For illustration we here use the PROC MIXED procedure of the SAS system to perform all 

analyses. To fit the model (3) in the second stage we can use the code in Box 1 (Piepho and 

Eckl, 2014; Electronic Appendix).   

ods output lsmeans=mean_twostage_stagetwo_full_1 

covparms=cp_twostage_stagetwo_full_1 ; 

proc mixed data= mean_twostage_stageone_full_1w; 

class genotype site row; 

model estimate=genotype; 

random int genotype/sub=site; 

repeated row/sub=site type=lin(1) 

ldata=mean_twostage_stageone_full_1w; 

lsmeans genotype/diffs ; 

parms (1)(1)(1)/hold=3; 

run; 

Box 1: SAS code for stage-two analysis of a fully efficient two-stage analysis. 

 

In this code, mean_twostage_stageone_full_1w specified with the data option in PROC 

MIXED and the LDATA option to the REPEATED statement is a dataset containing the 

adjusted genotype-site means ij̂  and the corresponding estimate of   from the first stage in 

a suitable format as detailed in the Appendix, GENOTYPE and SITE are variables 

representing the genotypes and sites, ROW is a sequential number indexing genotype-site 

means in the dataset mean_twostage_stageone_full_1w, and ESTIMATE is the response 

variable carrying the adjusted genotype-site means. Note that the REPEATED statement (as 
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well as the RANDOM statement) specifies SITE as a subject effect with the SUBJECT 

option, so the blocks of   are processed by sites, which entails savings in memory and 

computing time compared to a coding not making use of the SUBJECT option. Generally, 

where possible, it is important that the REPEATED statement and all RANDOM statements 

share the same subject effect, so that levels of that effect are recognized as independent 

subjects. The smaller the size of the subjects and the more subjects there are, the better. In this 

example, the shared subject effect is SITE because correlations among observed data occur 

only within sites. We here exploit the fact that under the assumed LMM, observations from 

different sites are independent. Thus, inversions of variance-covariance matrices needed 

during REML iterations can be performed by sites, which saves computing time. In the 

Supplemental Material we provide a macro %get_one_big_omega, which assembles the 

estimate of   in a form suitable for use with the code in Box 1 based on site-wise first-stage 

analyses in which estimates of j  are obtained using the COV option to the LSMEANS 

statement for estimating genotype means at each site. 

 

3.2.3 Two-stage analysis with diagonal weight matrix 

 

An alternative approach to the fully efficient two-stage analysis described above was 

proposed by Smith et al. (2001), who suggested to fit the second-stage model assuming that 

    1
var


 ij

ijf  , where ij  is the i-th diagonal element of 
1 j . The rationale for this 

suggestion is that the mixed model equations for (3) depend linearly on 1

1

1 



  j

p

j
, which 

can be approximated by a diagonal matrix with diagonal elements equal to ij . The SAS code 

in Box 2 can be used to perform this approximate analysis at the second stage. 

ods output lsmeans=mean_twostage_stagetwosmith_1 

covparms=cp_twostage_stagetwosmith_1 ; 

proc mixed data= mean_twostage_stageonesmith_1w; 

class genotype site; 

model estimate=genotype;  

random int genotype/sub=site; 
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lsmeans genotype / cov; 

weight weight_smith; 

parms (1)(1)(1)/hold=3; 

run; 

 

Box 2: SAS code for second stage of an approximate two-stage analysis, using the weights 

proposed by Smith et al. (2001). 

 

In this code, all variables are as defined for Box 1 and weight_smith is the variable in the 

dataset mean_twostage_stageonesmith_1w holding the weights. In the Supplemental Material 

we provide a SAS macro %get_Smith_weights that can compute these weights based on the 

same site-wise first-stage analyses as under the fully efficient two-stage analysis. A brief 

description of this macro is available in the Appendix. Using the diagonal approximation in 

the second stage leads to savings in computing time compared to the fully efficient two-stage 

analysis. 

 

3.2.4 Statistical methods for trials at multiple sites and in multiple years  

 

Again assuming a generalized lattice design, the first-stage model for the trial in the j-th site 

and h-th year is given by  

 

ijhkmjhkmjhkijhijhkm ebry   ,      where                                                                                  (5) 

 

       
ijhjhihijhjiijh gsasagagsasg  ,                                                                       (6) 

in which   is a general intercept, ig  is the fixed main effect of the i-th genotype, 

 2,0~ sj Ns   is the random main effect of the j-th site,  2,0~ ah Na   is the random main 

effect of the h-th year,    2,0~ gsij Ngs   is the random two-way interaction of the i-th 
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genotype and the j-th site,    2,0~ gaih Nga   is the random two-way interaction effect of the i-

th genotype and the h-th year,    2,0~ sajh Nsa   is the random two-way interaction effect of 

the j-th site and the h-th year,    2,0~ gsaijh Ngsa   is the random three-way interaction effect 

of the i-th genotype, the j-th site and the h-th year,   2,0~ jhrjhk Nr   is the random effect of 

the k-th replicate within the j-th site and h-th year,   2,0~ jhbjhkm Nb   is the random effect of 

the m-th block nested within the k-th replicate at the j-th site and h-th year, and 

  2,0~ jheijhkm Ne   is the error associated with the observation ijhkmy . Note that, as before, the 

variances for replicate, block and error depend on the site-year combination and hence are 

trial-specific. When the experiment is laid out in randomized complete blocks, we drop the 

incomplete block effect. Complete blocks are then represented by the complete replicate 

effect. A stage-wise analysis computes genotype means per trial (year-site combination) in the 

first stage and then fits model (6) to these means across years and sites in stage two. 

 

3.2.5 Extending the model when sites are stratified into zones 

 

If sites are stratified by zone, model (5) for the observed data remains the same, however, the 

conditional expected value in equation (6) needs modification. Specifically, each effect 

involving site in (6) needs to be replaced by two effects, the one involving zone and the other 

one involving site nested within zone. Thus, equation (6) can be extended as 

 

               

         hqijqihqjh

qhihqijiqhqjqihqij

gzsazgazsa

zagazgsgzazszg





)(


,                                  (7) 

 

where all effects involving sites (s) in (6) have been replaced by two effects, i.e. one involving 

zone (z) instead of site and the other involving site nested within zone (zs). Moreover, ig  is 

the main effect of the i-th genotype, and  
iqgz  is the interaction of the i-th genotype and q-th 

zone. To borrow strength across zones when estimating mean genotype yields for a specific 

zone (Piepho and Möhring, 2005; Kleinknecht et al., 2013; Piepho et al., 2016a), we modeled 
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ig  and  
iqgz  as random, e.g., assuming that both ig  and 

iqgz  have a normal distribution 

with mean zero and a constant or heterogeneous variance. Thus, we may obtain estimates of 

genotype mean in zone q  

 

 
iqqiiq gzzg                                                                                                               (8) 

 

using BLUP. BLUP is an estimation method for random effects in LMMs, which minimizes 

the mean squared error under the assumed model and it entails shrinkage, meaning that the 

estimate of genotype effects will tend to fall back towards the mean of all genotypes. So 

BLUPs of good performers tend to be smaller than the corresponding BLUEs, while BLUPs 

of bad performers tend to be elevated compared to the corresponding BLUEs (Robinson, 

1991; Searle et al., 1992). Moreover, in case of correlated genetic effects, BLUP allows 

exploiting information from correlated observations. In our case, we consider the effect iqh  of 

the i-th genotype in the q-th zone 

 

 
iqiiq gzgh  .                                                                                                                                               (9) 

 

For a given genotype i, these effects are correlated between zones q, due to the genotype main 

effect ig  shared between different zones. Thus, when estimating the effect of the i-th 

genotype in the q-th zone by BLUP, we are also making use of information on the same 

genotype from the other zones. 

 

We can estimate effects in (7) in a single stage, in two stages or in three stages. Two-stage 

analysis proceeds in the same way as previously, with (7) fitted in the second-stage. Three-

stage analysis considers effects ig  and  
iqgz  as fixed in the second stage to compute 

estimates of means in (8) and the associated variance-covariance matrix. In the third stage, 

equation (8) is fitted to these means taking  
iqiiq gzgh   as random and using the 

variance-covariance matrix of adjusted means from the second stage for weighting. In our 
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example, we have two zones, so we need to consider 2×2 variance-covariance structures of 

the form 

 



















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


2

212

12

2

1

2

1
var

gg

gg

i

i

h

h




,                                                                                                                  (10) 

 

where 
2

1g  is the variance of the i-th genotype in zone 1, 
2

2g  is the variance of the i-th 

genotype in zone 2 and 
2

12g  is the covariance between effects of the i-th genotype in zones 1 

and 2. Equation (10) may be denoted as an unstructured variance-covariance model. 

Alternatively, we may impose a specific structure. Modeling ig  and  
iqgz  as random with 

the assumptions  2,0~ gi Ng   and    2,0~ gziq Ngz   results in a compound symmetry (CS) 

variance structure. The CS model has two parameters, i.e., a constant variance and a constant 

covariance. The CS variance-covariance structure of (9) can be written as 

 




















222

222

gzgg

ggzg




.                                                                                                    (11) 

 

An extension of this model is the heterogeneous compound symmetry (CSH) model, which 

has a different variance parameter for each diagonal element (zone). For two zones, it has the 

representation 

 














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2

221

21

2

1

ggg

ggg




.                                                                                                    (12) 

 

Because there are only two zones in our example, the CSH model is just a re-parameterization 

of the unstructured model, and it also has the same specification here as the unstructured 
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model parameterized in terms of variances and correlations (UNR). All of these structures 

(CS, CSH, UN and UNR) are available in SAS. 

 

A stage-wise analysis fits equation (7) across years and sites in stage two in order to compute 

genotype means per zone by BLUE. The BLUE of genotype means at the second stage will be 

used for comparison with BLUP from two-stage and three-stage analysis. In stage three of 

three-stage analysis, the linear predictor (8) is fitted to genotype-zone means using the 

random-effects specification in (9) and (10). 

 

3.3 Example 1: Trials conducted at multiple sites in a single year 

3.3.1 The dataset 

 

Twenty-two different genotypes of non-quality protein maize (Zea mays L.) (non-QPM) were 

evaluated in the Ethiopian preliminary national variety trials of maize (EVCDTH12; 

Evaluation of CIMMYT drought tolerant hybrids in 2012 main rainy season). The trials aim 

to identify high yielding, adapted hybrids for low-moisture stress areas. The experiment was 

conducted during the period from July 1, 2012 to December 25, 2012 in the low moisture 

stress area at four sites (Dhera, Melkassa, Mieso and Ziway). The experimental designs used 

at all sites were -designs with 11 incomplete blocks of size two in each replicate. Each trial 

had three replicates. The plot size was 7.5 m
2
 with six planted rows. This data is made 

available as dataset Example1 in the Supplemental Material. 

 

3.3.2 Results 

 

Single-stage analysis and two-stage analysis were performed. Variance component estimates 

for single-stage and two-stage analyses agree reasonably well (Table 1). The estimated means 

in Table 2 (columns 1 and 3) show that the fully efficient two-stage analysis carrying the full 

variance-covariance matrix of adjusted means forward from stage one yields identical results 

to single-stage analysis provided the same variance component values are used as expected 

from theory (Piepho et al., 2012a). When variances are estimated separately in each type of 
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analysis, adjusted genotype means from single-stage analysis show correlations larger than 

0.99 with those of two-stage analyses (Table 3).  

 

Table 1: Variance component estimates for single-stage analysis, fully efficient two-stage 

analysis, and two-stage analysis with diagonal weights (Smith et al., 2001) (Example 1: 

EVCDTH12 maize trial dataset). 

Variance 

parameter 

Fully efficient 

two-stage 

Smith et al. approximation 

two-stage 

Single-stage 

2

s  10.4537 10.4227 10.4543 

2

gs  0.1272 0.1279 0.1053 

2

)1(r  0.1004 0.1004 0.08817 

2

)2(r  1.4012 1.4012 1.3829 

2

)3(r  0 0 0 

2

)4(r  0.01413 0.01413 0.01442 

2

)1(b  0.2504 0.2504 0.3312 

2

)2(b  0.4645 0.4645 0.4747 

2

)3(b  0 0 0 

2

)4(b  0.07197 0.07197 0.06953 

2

)1(e  1.2363 1.2363 1.3467 

2

)2(e  0.2020 0.2020 0.1936 

2

)3(e  1.0549 1.0549 1.1531 
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2

)4(e  0.1126 0.1126 0.1112 

 

Table 2: Adjusted genotype estimates when (1) the full information of estimates and their 

corresponding measure of precisions and (2) estimates and diagonal weights (Smith et al., 

2001), are carried forward from the first stage to the second stage of the analysis. Analyses 

(3), (4), and (5) are single-stage analyses, where (3) and (4) use the variance-covariance 

matrix of mean estimates from (1) and (2), respectively; and (5) is single-stage analysis when 

the variances components are estimated directly from the plot data (Example 1: EVCDTH12 

maize trial dataset).  

 

Genotype 

(1)  

Fully 

efficient two-

stage 

(2)  

Smith et al. 

approximation  

two-stage 

(3)  

Single-stage 

variance 

estimate from 

(1) 

(4)  

Single-stage 

variance 

estimate 

from (2) 

(5)  

Single-stage 

variances re-

estimated 

1 5.135 5.113 5.135 5.135 5.148 

2 5.510 5.431 5.510 5.509 5.544 

3 5.147 5.152 5.147 5.147 5.187 

4 4.593 4.584 4.593 4.593 4.589 

5 4.845 4.812 4.845 4.845 4.817 

6 4.692 4.705 4.692 4.692 4.659 

7 4.663 4.678 4.663 4.663 4.636 

8 4.405 4.388 4.405 4.405 4.358 

9 5.055 5.027 5.055 5.056 5.033 

10 4.839 4.803 4.839 4.839 4.841 

11 4.542 4.503 4.542 4.542 4.539 

12 4.890 4.910 4.890 4.890 4.870 

13 4.850 4.859 4.850 4.850 4.841 
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14 4.325 4.280 4.325 4.326 4.293 

15 4.448 4.415 4.448 4.448 4.472 

16 4.343 4.328 4.343 4.342 4.371 

17 4.072 4.086 4.072 4.072 4.068 

18 4.978 4.916 4.978 4.978 4.945 

19 4.711 4.724 4.711 4.711 4.715 

20 4.808 4.819 4.808 4.807 4.861 

21 4.128 4.135 4.128 4.128 4.133 

22 4.577 4.581 4.577 4.576 4.628 

 

Table 3: Correlation among adjusted genotype means (above diagonal: Pearson‟s product-

moment correlation; below diagonal: Spearman‟s rank correlation). When (1) the full 

information of estimates and their corresponding measure of precisions and (2) estimates and 

diagonal weights (Smith et al., 2001), are carried forward from the first stage to the second 

stage of the analysis. Analyses (3), (4), and (5) are single-stage analyses, where (3) and (4) 

use the variance-covariance matrix of mean estimates from (1) and (2), respectively; and (5) is 

single-stage analysis when the variances components are estimated directly from the plot data 

(Example 1: EVCDTH12 maize trial dataset).  

 

(1) 

Fully efficient 

two-stage 

(2) 

Smith et al. 

approximation 

two-stage 

(3) 

Single-stage 

variance 

estimates from 

(1) 

(4) 

Single –stage 

variance estimate 

from 

(2) 

(5) 

Single-stage 

variances 

re-estimated 

(1) 1 0.99707 1.00000 1.00000 0.99674 

(2) 0.99661 1 0.99707 0.99706 0.99477 

(3) 1.00000 0.99661 1 1.00000 0.99674 

(4) 1.00000 0.99661 1.00000 1 0.99665 
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(5) 0.98984 0.99548 0.98984 0.98984 1.00000 

 

3.4 Example 2: Extending Example 1 to allow for trials-specific analysis models for post-

blocking and residual error 

 

This example is presented to illustrate the performance when different analysis models 

(randomization-based baseline model, spatial models and models with post-blocking for row, 

column and column nested within replicate effects) are used for individual trials, using the 

dataset of Example 1. First, the baseline model is extended by effects for row, column or 

column nested within replicate. Taking the optimal model from these candidate models for 

each site, local spatial trends are modelled by one-dimensional and two-dimensional auto-

regressive models. For the one-dimensional case we assume that a correlation exists either 

within rows, within columns or within columns nested within replicates. The two-dimensional 

AR(1)×AR(1) model is fitted assuming that correlation extends across the whole field. For all 

autoregressive models, the autocorrelation parameter was constrained to be non-negative 

(Piepho et al., 2015). The best model for each individual trial was selected using the Akaike 

information criterion (AIC) (Table 4).  

 

3.4.1 Results 

 

The estimates of the variance components using the fully efficient and diagonal weighting are 

quite similar with this method as well, however, compared to Example 1 the variance 

component estimate using single-stage analysis were somewhat more different from the stage-

wise analyses (Table S1). The correlations of adjusted genotype means using the different 

approaches (Table S2) are slightly smaller than in Example 1, but are all greater than 0.98 

(Table 5), indicating close similarity of single-stage and two-stage analysis.  

 

 

 

 



Chapter 3 

50 
 

 

Table 4. AIC values for the baseline and different extended models for each site (Example 2).                

AIC values for the model with the best fit are given in bold.  

Model AIC from analysis of site 

1 2 3 4 

Baseline 173.7 134.3 153.4 79.9 

Baseline model plus post-blocking: 

Row 162.4 135.9 153.4 79.9 

Col 175.7 134.3 153.4 79.9 

Col(rep) 173.7 136.3 153.4 74.6 

Row+col 164.4 135.9 153.4 79.9 

Row+col(rep) 163.0 137.9 153.4 76.5 

Best post-blocking model with spatial add-on component
§
: 

AR(1) along row 162.4 130.1 152.7 74.6 

AR(1) along col 162.4 134.3 153.4 74.6 

AR(1) along col(rep)  163.0 136.3 153.4 76.6 

AR(1) along row + nugget 164.4 131.7 153.7 76.6 

AR(1) along col  + nugget 164.4 136.3 155.4 76.6 

AR(1) along col(rep) + 

nugget 

164.4 138.3 155.4 78.6 

AR(1) ×AR(1)  162.4 130.1 154.7 74.6 

AR(1) ×AR(1) + nugget 164.4 131.7 155.7 78.6 

Baseline: Baseline model with all randomization based effects 

including independent error effects; row, col, col(rep), 

row+col and row+col(rep) are models extending the baseline 

model by post-blocking terms for row, column or column 
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nested within replicate; AR(1): first order auto-regressive 

correlations between plots along the mentioned experimental 

unit; + nugget models include an additional independent error 

effect; AR(1)×AR(1): two-dimensional autoregressive 

variance-covariance structure, so correlations extended along 

both rows and columns.  

§ All spatial models include effects of the best post-blocking 

model. If post-blocking was not effective, the baseline model 

is used for augmentation with a spatial error component. 

 

Table 5: Correlation among adjusted genotype means (above diagonal: Pearson‟s product-

moment correlation; below diagonal: Spearman‟s rank correlation) when (1) the full 

information of estimates and their corresponding variance-covariance matrix and (2) estimates 

and diagonal weights (Smith et al., 2001), are carried forward from the first stage to the 

second stage of the analysis. Analyses (3), (4), and (5) are single-stage analyses, where (3) 

and (4) use the variance-covariance matrix of mean estimates from (1) and (2), respectively, 

and (5) is single-stage analysis when the variances components are estimated directly from the 

plot data (Example 2).  

Approach (1) 

Fully efficient 

two-stage 

(2) 

Smith et al. 

approximation 

two-stage 

(3) 

Single-stage 

variance 

estimates from 

(1) 

(4) 

Single –stage 

variance estimate 

from 

(2) 

(5) 

Single-stage  

 

(1) 1.0000 0.9894 1.0000 0.9996 0.9819 

(2) 0.9955 1.0000 0.9894 0.9917 0.9905 

(3) 1.0000 0.9955 1.0000 0.9996 0.9819 

(4) 0.9977 0.9921 0.9977 1.0000 0.9862 

(5) 0.9842 0.9887 0.9842 0.9864 1.0000 
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3.5 Example 3: Trials at multiple sites and in multiple years 

3.5.1 The Dataset 

 

During the 1997 and 1998 main cropping seasons, twenty different maize varieties of East 

African and CIMMYT origin were tested at nine sites. These sites represent two of the maize-

producing mega-environments (zones) in Ethiopia; viz. the low (low-mid) altitude sub-humid 

zone and the high altitude sub-humid zone (Fig. 1). Randomized complete block designs with 

three replicates and two-row plots were used at all sites and in both years. Each row was 5.1 

meter in length, the space between rows was 0.75 m and the distance between plants was 0.3 

m. The recommended management was applied in each site. This data is made available as 

dataset Example3 in the Supplemental Material.  

 

3.5.2 Results 

 

Results demonstrate the similarity of single-stage and two-stage analysis for the multi-site and 

multi-year dataset using the fully efficient two-stage analysis and the approximate two-stage 

method of Smith et al. (2001). The variance parameter estimates are approximately equal for 

the three methods (Table S3). Likewise, the estimated adjusted genotype means are quite 

similar for single-stage versus two-stage analysis (Table S4), as also indicated by the 

correlations presented in (Table 6).  
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Table 6: Correlation among adjusted genotype means (above diagonal: Pearson‟s product-

moment correlation; below diagonal: Spearman‟s rank correlation) when (1) the full 

information of estimates and their corresponding variance-covariance matrix and (2) estimates 

and diagonal weights (Smith et al., 2001) are carried forward from the first stage to the second 

stage of the analysis. Analyses (3), (4), and (5) are single-stage analyses, where (3) and (4) 

use the variance-covariance matrix of mean estimates from (1) and (2), respectively; and (5) is 

single-stage analysis when the variances components are estimated directly from the plot data 

for the multi-site and multi-year maize trial dataset (Example 3). 

 

(1) 

Fully efficient 

two-stage 

(2) 

Smith et al. 

approx. 

two-stage 

(3) 

Single-stage 

variance estimates 

from 

(1) 

(4) 

Single-stage 

variance estimates 

from 

(2) 

(5) 

Single-stage 

 

(1) 1 1.0000 1.0000 1.0000 0.9999 

(2) 1.0000 1 1.0000 1.0000 0.9999 

(3) 1.0000 1.0000 1 1.0000 0.9999 

(4) 1.0000 1.0000 1.0000 1 0.9999 

(5) 1.0000 1.0000 1.0000 1.0000 1 

 

3.6 Example 4: Extending the model for Example with sites stratified into zones 

 

Here we perform single-stage, two-stage and three-stage analysis using the data of Example 3. 

The CS, CSH, UN, and UNR variance structures were imposed for the correlation between 

zones. Among the fitted variance-covariance structures the CS model performed better (had a 

smaller AIC value) than the other models, therefore we summarize the result to show the 

similarity of single-stage and stage-wise analysis using the CS variance structure. For CSH 

and UN, the single-stage analysis did not converge, so only results of CS and UNR are 

presented (Table 7). 
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Table 7: Akaike Information Criterion (AIC) and -2 residual log-likelihood (-2LL) values 

with different variance structures for fully efficient two-stage, three-stage and single-stage 

analysis for the multi-site and multi-year maize trial dataset (Example 4).   

Covariance 

structure † 

Two-stage 

analysis ‡ 

 Three-stage 

analysis ‡ 

 Single-stage 

analysis ‡ 

AIC -2LL  AIC -2LL  AIC -2LL 

CS 984.1 972.1  73.8 69.8  2965.8 2901.8 

CSH 985.4 971.4  75.1 69.1  --ᶲ --ᶲ 

UN 985.4 971.4  75.1 69.1  --ᶲ --ᶲ 

UNR 985.4 971.4  75.1 69.1  2967.2 2901.2 

† CS, compound symmetry; CSH, heterogeneous compound symmetry;  

   UN, unstructured; UNR, unstructured correlations. 

‡ AIC, Akaike Information Criterion; -2LL, -2 residual log likelihood 

ᶲ Did not converge from CSH and UN 

 

3.6.1 Results 

 

Since we only have two zones, the CSH, UN, and UNR models have exactly equal variance-

covariance and correlation values for the stage-wise analysis. The estimated genetic 

correlations between zones are large, which indicates a close relation of the two zones in 

terms of the adjusted genotype means (Table 8, 9 and 10). 
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Table 8: Values of genotypic variance (on the diagonal), correlation (above diagonal) and 

covariance (below diagonal) for the fully efficient three-stage analysis, for compound 

symmetry (CS), heterogeneous compound symmetry (CSH), unstructured (UN) and 

unstructured correlation (UNR) variance structure for the multi-site and multi-year maize trial 

dataset (Example 4). 

 Covariance structure † 

  CS CSH UN UNR 

Zone 1 2 1 2 1 2 1 2 

1 0.3325 0.7994 0.2615 0.8185 0.2615 0.8185 0.2615 0.8185 

2 0.2658 0.3325 0.2577 0.3791 0.2577 0.3791 0.2577 0.3791 

† CS, compound symmetry; CSH, heterogeneous compound symmetry;  

      UN, unstructured; UNR, unstructured correlations. 

 

Table 9: Values of genotypic variance (on the diagonal), correlation (above diagonal) and 

covariance (below diagonal) for the fully efficient two-stage analysis, with compound 

symmetry (CS), heterogeneous compound symmetry (CSH), unstructured (UN), and 

unstructured correlations (UNR) variance structure for the multi-site and multi-year maize 

trial dataset (Example 4). 

 Covariance structure † 

  CS CSH UN UNR 

Zone 1 2 1 2 1 2 1 2 

1 0.3318 0.7999 0.2611 0.8194 0.2611 0.8194 0.2611 0.8194 

2 0.2654 0.3318 0.2575 0.3782 0.2575 0.3782 0.2575 0.3782 

† CS, compound symmetry; CSH, heterogeneous compound symmetry;  

      UN, unstructured; UNR, unstructured correlations. 
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Table 10: Values of genotypic variance (on the diagonal), correlation (above diagonal) and 

covariance (below diagonal) for the single-stage analysis, with compound symmetry (CS) and 

unstructured correlations (UNR) variance structures for the multi-site and multi-year maize 

trial dataset (Example 4). 

 Covariance structure † 

 CS UNR 

Zone 1 2 1 2 

1 0.3332 0.8008 0.2625 0.8197 

2 0.2668 0.3332 0.2585 0.3789 

† CS, compound symmetry;  

 UNR, unstructured correlations. 

 

Overall, the variance-covariance parameter estimates are very similar for the single-stage, 

two-stage and three-stage analysis (Table S5). There are also close similarities between the 

BLUPs of single-stage, two-stage and three-stage analysis (Tables S6) as quantified by the 

correlations larger than 0.96 in Table 11. The correlations of BLUEs and BLUPs are smaller 

with values between 0.92 and 0.98 (Table 11). 

 

Table 11: Correlation among adjusted genotype means using best linear unbiased prediction 

(BLUP) and best linear unbiased estimation (BLUE) (above diagonal: Pearson‟s product-

moment correlation; below diagonal: Spearman‟s rank correlation). BLUEs are computed 

using (1) single-stage analysis (BLUE_1), (2) fully efficient two-stage analysis (BLUE_FE2), 

and (3) diagonal weights two-stage analysis (BLUE_Smith2), whereas BLUPs are computed 

based on (4) single-stage analysis (BLUP_1), (5) fully efficient two-stage analysis 

(BLUP_FE2), (6) fully-efficient three-stage analysis (BLUP_FE3), (7) diagonal weights two-

stage analysis (BLUP_Smith2), and diagonal weights three-stage analysis (BLUP_Smith3). 

Results are for the zoned multi-site and multi-year maize trial dataset (Example 4). 
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 (1) 

BLUE_1 

(2) 

BLUE_

FE2 

(3) 

BLUE_

Smith2 

(4) 

BLUP_1 

(5) 

BLUP_

FE2 

(6) 

BLUP_

FE3 

(7) 

BLUP_

Smith2 

(8) 

BLUP_S

mith3 

(1) 

 

1 0.9999 0.9999 0.9821 0.9821 0.9819 0.9826 0.9678 

(2) 

 

0.9981 1 1.0000 0.9816 0.9817 0.9815 0.9822 0.9672 

(3) 

 

0.9979 0.9998 1 0.9811 0.9812 0.9810 0.9818 0.9667 

(4) 

 

0.9503 0.9462 0.9452 1 0.9999 0.9999 0.9999 0.9971 

(5) 

 

0.9448 0.9407 0.9398 0.9994 1 1.0000 1.0000 0.9972 

(6) 

 

0.9448 0.9407 0.9398 0.9994 1.0000 1 0.9889 0.9972 

(7) 

 

0.9477 0.9435 0.9428 0.9996 0.9994 0.9994 1 0.9972 

(8) 

 

0.9180 0.9133 0.9124 0.9901 0.9916 0.9916 0.9914 1 

 

The differences and comparatively low correlations between BLUP and BLUE of genotype 

effects in Figs. 2, 3, and 4 imply that there is a considerable environmental variation and 

BLUP borrows a substantial amount of information across zones. However, by contrast 

BLUE can not borrow information across zones. Note that BLUPs of genotype-zone means in 

three-stage analysis are compared to BLUEs of genotype-zone means computed at the second 

stage (i.e., a third stage is not needed with BLUE). In this example as well as in the above 

three examples, we found the estimated variance-covariance matrix for the random effects to 
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be non-positive definite in some stages of the analysis, which was due to some variance 

estimates being zero. While a message to this effect is printed in the log window, this is no 

reason for concern; zero variance component estimates are not uncommon. Effects with zero 

variance are effectively removed from the model and the resulting analysis is fine. 

 

3.7 Discussion 

 

It is shown in Piepho et al. (2012a) that two-stage and single-stage analysis yield fully 

equivalent results provided that (i) the same values are used for all relevant variance 

parameters and the full information on all effect estimates and their associated estimated 

variances and covariances are carried forward from the first to the second stage, (ii) the same 

model assumptions are used for all effects, and (iii) all effects for which estimates are carried 

forward are formally regarded as fixed in the first stage. These results naturally carry over to 

more than two stages, the requirement being that all effects for which estimates are carried 

forward in any stage are formally modeled as fixed up to that stage. This was illustrated in the 

present paper using MET data for maize in Ethiopia. Thus, providing the full equivalence of 

models, any discrepancies in genotype mean or effect estimates only arise from differences in 

the variance-covariance parameter estimates. A further cause of differences between both 

analyses arises when the variance-covariance matrix of estimated effects from the first stage is 

approximated by a diagonal matrix (Smith et al., 2001) rather than carried forward in full as 

was also illustrated in this paper. 

 

In our study the numerical differences are very small regarding the resulting genotype mean 

estimates, and this has also been found in other work by our group (Piepho and Möhring, 

2005; Piepho et al., 2012a; Schulz-Streeck et al., 2013a; Piepho and Eckl, 2014). Therefore, 

we believe that for the types of data we typically see, a stage-wise analysis is perfectly valid 

and acceptable for most practical purposes. The main advantage of stage-wise analysis is that 

analysis of individual trials with different designs can be done for all trials at the same time 

with their corresponding appropriate models, whence the adjusted means and the associated 

variance-covariance matrix of adjusted means can be stored away once and for all for later 

processing in a stage-two analysis. We found that even with our relatively simple examples 

there were convergence problems in single-stage analysis, particularly when different 
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variance-covariance structures were imposed (Table 5). In addition, the time taken by stage-

wise analysis was smaller than the time taken by single-stage analysis. For instance, with the 

CS variance structure single-stage analysis for Example 4 took thirty-three hours, two-stage 

analysis took approximately two minutes and three-stage analysis took less than one minute 

on a standard desktop computer (Windows 7, 64 bit operating system, 4GB RAM) .  

 

In general two-stage analysis can always be used provided the individual trials allow a 

separate analysis, as will be the case when designs with proper randomization and (partial) 

replication are used. So whenever single-stage analysis is inconvenient or computationally too 

demanding, stage-wise analysis can be recommended. The fully-efficient weighting method is 

the preferred one because it carries all information forward to the next stage, but it is 

computationally more demanding than use of diagonal weights. When computational 

resources are limiting, diagonal weights can be used, and in our experience the loss of 

information compared to a fully efficient analysis is usually negligible (Möhring and Piepho, 

2009). 

 

A key question with the models we consider here is whether the genotype factor is fixed or 

random. This decision depends on the objectives of the experiment. For example, if the 

objective is selection of the best genotypes from a population of genotypes under study and it 

is reasonable to assume that genotype effects at least approximately follow a normal 

distribution, then genotype effects can be considered as random and BLUP will be the best 

method of estimation to obtain ranks of the genotypes which are very close to the true 

rankings of the genotype effects (Searle et al. 1992, p.264). On the other hand if the objective 

of the analysis is to obtain significance tests for the difference between pairs of genotypes, 

then BLUE is an appropriate method (Smith et al., 2005). In variety testing in Ethiopia, it is 

customary to take genotypes as fixed and compute adjusted means across environments. But 

we have given an example where genotypes were taken as random in order to exploit 

correlations between zones for making zone-specific predictions. Such predictions (BLUPs) 

have been shown to be more accurate than zone-specific mean estimates (BLUEs) assuming 

fixed effects, which can not borrow strength across zones (Kleinknecht et al., 2013). The 

approach does require that there is a sufficient number of genotypes to estimate genotypic 

variances and covariances and the distribution of effects can reasonably be assumed to be 

approximately normal. Genotypes are also modeled as random in genomic prediction in order 



Chapter 3 

60 
 

to permit estimation of effects of markers that may be much larger in number than the 

genotypes tested (Meuwissen et al., 2001). The assumption of genotypes as either fixed or 

random can be considered as an intrinsic part of the single-stage model for plot data. A salient 

feature of the stage-wise approach advocated here, however, is that regardless of the status of 

genotypes as either fixed or random in the single-stage model, genotypes need to be formally 

taken as fixed through all stages of the analysis except the last, where genotypes are fixed or 

random depending on the status of genotypes in the single-stage model. It is shown in Piepho 

et al. (2012a) that this approach of stage-wise analysis leads to valid results that are identical 

to those of single-stage analysis when the same variance parameter values are used in single-

stage and stage-wise analysis. 

 

We frequently find in publications that a stage-wise analysis is conducted in which BLUP of 

genotype means or effects are used in the first stage. This practice is problematic and should 

be discouraged. For example, when BLUP is also used in the second stage, this entails a 

double-shrinkage of effects, the one occurring in the first stage and the other occurring in the 

second stage (Smith et al., 2001). To correct for this problem, BLUPs obtained in the first 

stage would need to be unshrunk, and it is not clear how. Also, the resulting analysis is not 

equivalent to single-stage analysis when the same variance values are used in both. For these 

reasons, we recommend not using BLUP in the first stage of two-stage analysis. 

 

As a note of caution, we would like to point out that our view on the fixed versus random 

issue presented here is restricted entirely to the modeling of genotypic effects. We admit that 

the view is somewhat pragmatic. In particular, we do not think the random assumption 

requires that the tested genotypes literally have been randomly sampled from a larger 

population. In support of our view, we would like to cite from the (decidedly non-Bayesian) 

textbook of Lee et al. (2006, p147): “… even if the true model is the fixed-effects model, i.e., 

there is no random sampling involved, the use of random-effect estimation has been 

advocated as shrinkage estimation. […] Only when the number of random effects is small, for 

example three or four, will there be little gain from using the random-effect model (James and 

Stein, 1960).” 
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There are close ties between the analysis of series of trials and (network) meta-analysis 

(Vargas et al., 2012; Piepho et al., 2012c; Madden et al., 2016). The two-stage approach 

corresponds to what is standard practice in meta-analysis of clinical trials (Whitehead, 2002). 

The result of clinical trials is usually stored in the form of effect size estimates and associated 

standard errors. This information may be summarized across trials using a mixed model with 

random effects for heterogeneity, i.e. treatment-trial interaction, using the standard errors of 

effect estimates to compute suitable weights for the combination of effect estimates. The 

resulting mean treatment effect estimates are either equivalent or very similar to estimates 

obtained by a single-stage analysis of individual-patient data (Piepho et al., 2012c).  

 

Instead of analyzing treatment differences as is common practice in meta-analysis, one may 

proceed as in two-stage analysis of MET data and summarize treatment means by a suitable 

model in the second stage. This analysis, which is particularly helpful in meta-analyses 

comprising more than two treatments and trials with different treatment designs, is fully 

equivalent to analysis based on treatment differences if the site (study) main effect is taken as 

fixed rather than random so that all information on treatment comparison comes from 

comparisons within sites (studies) only, i.e. no inter-site (study) information is recovered 

(Piepho et al., 2012c). This equivalence re-enforces our assertion that a two-stage analysis, if 

done properly, is appropriate with little difference from the corresponding single-stage 

analysis. 

 

A key question in the analysis of series of trials is whether genotype effect estimates are to be 

obtained for the mean of a target population of environments (TPE) or for the individual 

environments where the trials were conducted. We would argue that in practical breeding 

programs the performance of genotypes in a specific test environment is hardly ever of any 

particular interest. This is because varieties are needed that perform well on average across all 

environments in a given TPE. If this is what is required, then it is useful to assess the 

performance of contending genotypes in a random sample of environments from the TPE 

(Yates and Cochran, 1938; Comstock and Moll, 1963). The main error term for inferences 

about the means in the TPE is the genotype-environment interaction variance (Talbot, 1997), 

meaning that the difference between different approximations for the variance-covariance 

matrices of adjusted genotype means in stage two is typically small (Möhring and Piepho, 

2009). By contrast, when estimates for individual environments are of interest, which may be 
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the case in research projects exploring the pattern and causes of genotype-environment 

interaction (corresponding to what is known as heterogeneity in meta-analysis), the only error 

term is that pertaining to the variance-covariance matrix of adjusted means. The genotype-

environment interaction in this case is an effect to be predicted, not an error term. As a result, 

the difference between single-stage and two-stage results may be somewhat more relevant and 

the edge in efficiency in favor of a single-stage analysis may be more pronounced (Welham et 

al., 2010).  

 

In most applications, however, it is not an individual site and year that is of interest, but either 

a new year and a new site at which no trial has been conducted, such as a specific farmer‟s 

field, or a larger TPE to which a new variety is to be released. If predictions for an individual 

farmer‟s field are to be made, one may be tempted to use predictions of the closest trial site. 

Valid standard errors for these predictions can not be obtained, however, because the 

interaction pattern between target site (farmer‟s field) and the nearest trial site, as well as the 

corresponding interactions with years, are unknown. If predictions are required for a whole 

TPE, however, valid inferences can be obtained, provided a random sample of sites and years 

from that TPE is available. From a breeder‟s perspective, prediction of the expected 

performance in a given TPE may be the most useful approach to analysis of MET because this 

helps identifying genotypes performing well on average (in the long run) in the TPE. By 

contrast, accurate predictions for an individual trial site and year are not usually of any 

intrinsic interest in themselves because the trial environment does not usually represent 

conditions identical to any other environment in the TPE (Piepho et al., 2012a).  

 

What is often more informative than predictions for individual environments is to sub-divide a 

TPE into several agro-ecological zones, each represented by several environments and then 

obtain predictions per zone. Modelling genotype-zone effects as random allows borrowing 

strength across zones (Atlin et al., 2000; Kleinknecht et al., 2013; Piepho et al., 2016a). 

Realistic inferences are obtained at the zone level because several sites are used to assess the 

between-site sampling variation within zones. It needs to be borne in mind, however, that 

predictions are for zone means and not for individual sites within a zone. The random 

genotype-site interaction acts as the main error term for these zone-wise predictions, and as a 

result these predictions have a broader inference space than predictions for individual sites 

(McLean et al., 1991). Note that in this study the sites are assumed to be random samples, 
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therefore all effects nested within sites, i.e.,  replicates and blocks (regardless of whether they 

are complete or incomplete), were considered as random (Piepho et al., 2012a). 

 

The high correlation of random effects of the genotypes between the zones found in Example 

4 indicates that based on this study the two zones are not very different agro-ecologically in 

terms of genotype means (Piepho and Möhring, 2005; Kleinknecht et al., 2013). At first sight, 

this result seems to contradict the Ethiopian maize breeder‟s perception, which is based on 

adjusted genotype means per zone rather than on estimates of the genotypic correlation 

between zones. It is a common finding in such studies, however, that the phenotypic 

correlations between zones are smaller than the corresponding genotypic correlations. Even if 

the current agro-ecology subdivision helps breeders in developing agro-ecologically adapted 

varieties, there still exists variability within zones which causes difficulties in selecting stable 

varieties. A further detailed examination of the agro-ecology within zones has been suggested 

by breeders (Worku et al., 2012). For a better delineation of zones, important agro-ecological 

factors should be taken into account (Gauch, 1992; Atlin et al., 2000).   

 

An important example where appropriate weighing in the second stage can be crucial is in 

genomic prediction (Meuwissen et al., 2001) and genome-wide association mapping (George 

et al., 2015). For example, in genomic prediction it is common practice to compute genotype 

means across environments in one or several stages and then to submit these means to some 

standard routine for regularized regression on the markers such as GBLUP. The residual 

variance of such analyses comprises both true errors associated with the genotype mean 

estimates and residual genotypic effects. Typically, the residual variance component may 

occasionally take on extreme values, e.g. it may move to a very small value in iterations. Such 

numerical problems may be tackled by explicitly modeling the unexplained polygenic effect 

and the error-of-a-mean effect by separate variance components, fixing the residual variance 

at the variance of a mean from the first stage of the analysis (Piepho et al., 2012b).  

 

Our LMM approach for MET analysis can be readily extended to generalized linear mixed 

models (GLMM) (Stroup, 2015). In a GLMM framework with other distributions and link 

functions, one can still obtain adjusted genotype means on the link scale, along with the 

variance-covariance matrix, in the first-stage analysis. With these results from the first stage, 
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one can proceed exactly as described for LMM. So the only difference lies in the analysis of 

the first stage, where a different link and distribution function are used and for this purpose 

PROC GLIMMIX is used instead of PROC MIXED (Madden et al., 2016). 

3.8 Appendix 

 

We here briefly describe the two macros %get_one_big_omega and %get_Smith_weights, 

which are available in the Supplementary Material as get_one_big_omega.sas and 

get_Smith_weights.sas, respectively, at the journal‟s website along with the full SAS code for 

performing all analyses reported in this paper for the Ethiopian maize datasets. 

 

3.8.1 The macro %get_one_big_omega 

 

This macro processes a dataset containing the variance-covariance matrices of adjusted 

genotype means from several trials and generates a SAS dataset containing the block-diagonal 

variance-covariance matrix   in a form ready for use with the LDATA= option in a 

REPEATED statement specifying a LIN(1) variance-covariance structure using the TYPE= 

option (see sample code in Box 1). The input dataset for this macro must be ordered by trials 

(sites, site-year or zone-site-year combinations) and in a format as is generated when 

outputting adjusted means and associated variance-covariance matrices, computed with the 

MIXED procedure using the COV option on the LSMEANS statement and variables to 

identify trials (e.g. relevant combination of “site”, “year” and “zone”) as by-processing 

variables in a BY statement, via the output delivery system ODS. The macro generates a SAS 

dataset containing the following variables: PARM, a serial number for variance components 

of a specified linear variance-covariance structure (here PARM=1 for all rows in the dataset), 

ROW, a sequential number for rows in the dataset, and COL1-COLn, where n is the number 

of genotype-trial means in the dataset. These latter variables carry the block-diagonal 

variance-covariance matrix  .  

 

3.8.2 The macro %get_Smith_weights 

 

This macro processes the same kind of input dataset as the %get_one_big_omega 
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macro. It uses a call of the MIXED procedure in order to compute the inverses 
1 j  from 

which the weights are then extracted and added as a column with variable name weight_smith 

in the output dataset. This weight variable can then be used in a stage-two analysis (see 

sample code in Box 2).  

 

3.9 Supplemental information 

 

Additional supporting information will be found in the online version of this article: 

get_one_big_omega.sas contains the SAS macro %get_one_big_omega.  

get_Smith_weights.sas contains the SAS macro %get_Smith_weights.  

Examples get_one_big_omega.sas contains all the SAS codes used for performing fully-

efficient two-stage and three-stage analysis for the four examples considered in this study.  

Examples get_Smith_weights.sas contains all the SAS codes used for performing two-stage 

and three-stage analysis with diagonal weight matrix for the four examples considered in this 

study.  

 

Supplemental tables: these include Table S1, Table S2, Table S3, Table S4, Table S5, and 

Table S6 which are cited in the paper; they are tables of genotype means and their variance-

covariance matrix and serve to show the similarity of the results for single-stage and stage-

wise analysis (fully efficient and diagonal weights of Smith et al. (2001)) for Examples 2, 3 

and 4. 
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4.1 Abstract 

 

Both genome-wide association studies (GWAS) and genomic selection (GS) are done using 

phenotypic and genomic data. The phenotypic data are usually based on multi-environment 

trials (MET). For both GWAS and GS the analysis can be conducted using a single-stage or a 

stage-wise approach. Single-stage analysis is most efficient but it can also be computationally 

demanding. The computational demand increases compared to purely phenotypic analysis 

when marker information is added for doing the GWAS or the GS. Application of stage-wise 

analysis is a common alternative procedure to alleviate the computational burden in MET 

analysis, and it can also be used for GWAS and /or GS. If done properly, it can closely mimic 

single-stage analysis. The aim of this study is to compare weighted stage-wise analysis versus 

unweighted stage-wise analysis for GWAS and GS using phenotypic and genotypic maize 

data. For weighting we use a fully-efficient and a diagonal method. Our result show that 

weighting is to be preferred over unweighted analysis and that there is a modest advantage in 

using the fully-efficient weighting method over other weighting methods for GS. For GWAS 

the diagonal weighting method performs better, however, its difference from the fully 

efficient weighting is very small.  

 

Abbreviations: BLUE, best linear unbiased estimators; CIMMYT, International Maize and 

Wheat Improvement Center; CV, cross validation; GBS, genotyping-by-sequencing; GS, 

genomic selection; GEBV, genomic estimated breeding values; GWAS, genome-wide 

association study; LD linkage disequilibrium; MET, multi-environment trials; MSD, mean 

squared difference; PCA, principal component analysis; PC, principal components 

 

In conventional plant breeding programs, selection of the best genotypes is done based only 

on the phenotypic records of the traits of interest. However, the observed phenotypic effects 

of quantitative traits are determined by genetic effects. Identifying and mapping genes that 

confer resistance to constraints such as drought, disease, etc. is key to crop improvement. 

Genome-wide association studies (GWAS) are commonly used in breeding to scan the entire 

genome in order to identify genes that affect traits of interest. Population structure and 

familial relatedness can create a linkage disequilibrium (LD) between unlinked loci, which 

can result in false-positive marker-phenotype associations when ignored. For this reason, 
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statistical methods have been developed for GWAS, which account for both the population 

structure and familial relatedness (Yu et al., 2006; Oraguzie et al., 2007; Stich et al., 2008). 

 

Genomic selection (GS) is another technique for efficient selection of favourable genomic 

estimated breeding values (GEBV) in animal and plant breeding systems using all dense 

genome-wide markers, and phenotyped and non-phenotyped individuals (Meuwissen et al., 

2001; Hayes and Goddard, 2010; Gowda et al., 2015). The main advantage of GS is an 

increase in genetic gain through prediction of genotypes that have not been phenotyped. A 

key challenge in GS is the identification of a suitably large training population to estimate the 

marker effects, requiring the combination of trial data across multiple environments and sets 

of genotypes (Auinger et al., 2016; Bernal-Vasquez et al., 2017). 

 

Both GWAS and GS are done using phenotypic and genomic data. The phenotypic data is 

usually obtained from multi-environment trials (MET). For both GWAS and GS the analysis 

can be conducted using a single-stage or a stage-wise approach (Stich et al., 2008; Piepho et 

al., 2012a; Schulz-Streeck et al., 2013a; Damesa et al., 2017). The combined analysis of 

phenotype MET data using single-stage analysis is usually computationally demanding and 

computational demand increases further when marker information is added for doing the 

GWAS or the GS. Computation time is a crucial factor particularly for GWAS, where a large 

number of markers have to be screened, requiring a separate analysis for each marker. In 

addition, computation time is a determinant factor for both GWAS and GS when performing 

cross validation. Application of stage-wise analysis is a common procedure to alleviate the 

computation burden in MET analysis and for GWAS and /or GS. The first stage of stage-wise 

analysis is the calculation of adjusted genotype means across all environments, followed by 

GWAS or GS in the second stage using the adjusted means as a dependent variable and 

marker effects as an independent variable (Stich et al., 2008; Möhring and Piepho, 2009; 

Piepho et al., 2012a; Schulz-Streeck et al., 2013a). In order to further reduce the computation 

time, the phenotypic data can also be analysed in two stages (Stich et al., 2008; Möhring and 

Piepho, 2009; Piepho et al., 2012a; Schulz-Streeck et al., 2013a; Damesa et al., 2017). Data 

from MET typically display heterogeneity of variance between trials. If the data is analysed in 

stages, a weighting approach has been used as a remedy by different authors (Smith et al., 

2001; Möhring and Piepho, 2009; Welham et al., 2010; Piepho et al., 2012a; Gogel et al., 
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2018) to account for heterogeneity. The optimal choice of weighting method for the second 

stage is an important question. Generally, the weights are derived from the variances and 

covariances of adjusted means from the previous stage‟s analysis. There are different 

weighting methods, e.g. fully-efficient weighting, where the full variance-covariance matrix is 

carried forward (Piepho et al., 2012a; Damesa et al., 2017), and diagonal weighting, where the 

inverse of the diagonal element of the inverse variance-covariance matrix is used as a weight 

(Smith et al., 2001; Möhring and Piepho, 2009). The most efficient method is to use the full 

variance-covariance matrix of the adjusted means from the previous stage (fully-efficient 

weighting), because it usually produces quite similar results to single-stage analysis (Damesa 

et al., 2017). In most studies researchers compute genotype means from MET data in single-

stage analysis or in stage-wise analysis (with or without weighting) and then feed these means 

into GWAS or GS analysis, often without any weighting. When using stage-wise analysis, the 

weighting method to be used for weighting of means from the first step is important for 

minimizing loss of information when forwarding results to the following step. Moreover, the 

weighting methods also help to obtain results which are close to the gold standard of single-

stage analysis (Piepho et al., 2012a; Damesa et al., 2017). The objective of this study, 

therefore, is to compare weighted stage-wise analysis versus unweighted stage-wise analysis 

for GWAS and GS using phenotypic and genotypic maize data.  

 

4.2 Materials and statistical methods 

 

4.2.1 The Phenotypic and Genotypic Data 

 

The data for this study consists of 418 improved maize genotypes from the African soils 

association mapping (IMS-AM) panel, obtained from the International Maize and Wheat 

Improvement Centre (CIMMYT) Global Maize Program. These genotypes are inbred lines, 

which represent tropical/subtropical maize germplasm, derived from breeding programs 

targeting tolerance to soil acidity, low N, resistance to insects and pathogens. Out of the 418 

genotypes only 381 genotypes were genotyped using genotyping-by-sequencing (GBS), and 

all genotypes were phenotyped for various traits under water-stress and well-watered 

environments plus for Maize Lethal Necrosis disease (MLND) (Gowda et al., 2015). In this 

study we focus on the analysis of yield. Six field trials were conducted in five locations in 
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2011 and three field trials in three locations in 2012. In total six Kenyan sites were used. In all 

trials, an α-lattice design was used (see Table 1 for details). The original marker data for this 

study contains 955695 SNPs, however only 21966 SNPs were considered for our analysis 

after quality control. For quality control we excluded SNPs which were monomorphic, had 

missing values >1% (Sverrisdóttir et al., 2018) and a minor allele frequency (MAF) < 0.05. 

Missing values were imputed using a random imputation method. After missing value 

imputation, again SNP with MAF < 0.05 were removed and finally 21966 markers remained. 

The quality check and recoding of alleles were done using the „Synbreed‟ R package 

(Wimmer et al., 2012). 

Table 1. Description of the field experiments. Year of experiments, trial name, replicates, 

number of blocks, block size, number of genotypes, trial number, site name and site code.    

Year Trial name Number of 

replicates 

Number 

of blocks 

Block 

size 

Number of 

genotypes 

Trial 

number 

Site name Site 

code 

2011 KITOPT11A 2 64 6 384 5 Kitale 1 

2011 KBKOPT11A 2 50 7 350 6 Kiboko 2 

2011 KTLOPT11B 2 64 6 384 8 Kitale 1 

2011 KKMOPT11A 2 64 6 384 9 Kakamega 3 

2011 AGFOPT11A 2 50 7 350 11 AguaFria 4 

2011 CDROPT11B 2 66 5 330 13 Cedara 5 

2012 KBKOPT12A 2 44 7 308 17 Kiboko 2 

2012 KBSOPT12A 2 44 7 308 19 Kibos 6 

2012 KKGOPT12B 2 48 7 336 21 Kakamega 3 

 

4.2.2 Statistical methods 

 

Mixed model for genome-wide association studies and genomic selection 

 

Both GS and GWAS analyses are usually conducted in two stages, where the first stage is the 

analysis of the phenotypic data and in the second stage GS or GWAS is performed using 

genetic marker data. The phenotypic analysis can also be done in two stages where in the first 

stage genotype means are computed per individual trial and in the second stage adjusted 

genotype means are computed across trials. If the phenotypic analysis is done in two stages, 
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the whole analysis for GS or GWAS will take three stages. In this study we consider two-

stage and three-stage analyses for GS and GWAS. 

 

Two-stage analysis for GWAS or GS 

 

First stage: Phenotypic analysis 

 

The following single-stage linear mixed model was assumed for the plot data to perform the 

phenotypic analysis: 

 

ijhvkmjhijhihijhjjhvkmjhvkjhviijhvkm esagsagagsasbrty  
                                 

(1) 

 

where ijhvkmy  is the phenotypic observation (yield) for the i-th genotype in the j-th site, h-th 

year, v-th trial, k-th replicates, and m-th block, i  is the expected value of the i-th genotype 

and it is regarded as fixed effect, jhvt
 
is the random effect of the v-th trial nested within j-th 

site and h-th year with    
2var jhvtjhvt  , jhvkr  is the random effect of the k-th replicate nested 

within the j-th site, h-th year and v-th trial with    
2var jhvrjhvkr  , jhvkmb

 
is the random effect of 

the m-th block nested within the j-th site h-th year v-th trial and k-th replicate with 

   
2var jhvbjhvkmb  , js  is the random main effect of the j-th site with   2var sjs  , ha  is the 

random main effect of the h-th year with   2var aha  , ijgs  is the random interaction effect of 

the i-th genotype and the j-th site, ihga  is the random interaction effect of the i-th genotype and 

h-th year with   2var gaihga  , jhsa  is the random interaction effect of the j-th site and h-th year, 

jhisag
 
is the random interaction effect of the j-th site, h-th year and i-th genotype with 

  2var sagjhisag  , and ijhvkme  is the residual plot error associated with ijhvkmy  with 

   
2var jhveijhvkme  . In model (1) the variances for replicate, block and error are assumed to be 

trial-specific. This assumption allows a stage-wise analysis to be fully equivalent to single-

stage analysis (Piepho et al., 2012a), and it is also usually a more realistic assumption than 
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homogeneity of variance across trials (So and Edwards, 2011). Fitting this model produces 

adjusted genotype means, representing estimates of i . Since we have marker information for 

only 381 genotypes, after obtaining the adjusted mean of the 418 genotypes from the joint 

analysis we dropped out those 37 genotypes without marker information before continuing to 

the actual GWAS and GS analysis stage.   

 

Second Stage: GWAS and GS Analysis 

 

At the second stage, the adjusted means from the phenotypic analysis are used as the response 

variable in a model of the form 

 

iii e ̂                                                                                                                  (2) 

 

where i̂  is the adjusted genotype mean of the i-th genotype from the first stage and ie  the 

residual error associated with i̂ . We consider eq (2) as a representation of a general model 

for the trait-marker association analysis. Plugging in the following regression models (3a) and 

(3b) for the mean i  
into eq (2) will give us the full model for GWAS and GS, respectively: 

 





z

u
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and                                                                      (3a) 

 

ii g ,                                                                                                              (3b) 
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where iwx  is the w-th SNP marker covariate for the i-th genotype and 
w  is the fixed effect 

of the w-th marker,   is a general intercept, ig  is the random genetic effect of i-th genotype. 

In eq. (3a),     is an element of the i-th row and u-th column of the population structure 

matrix       , which is an n by z matrix, where n is the number of genotypes and z is the 

number of sub-populations, uv  is the fixed effect of the u-th column of the population 

structure matrix  . Note that   can be calculated, e.g., from the marker data using either the 

STRUCTURE software (Pritchard 2000) or it can be derived from principal component 

analysis (PCA). After the PCA, the first z PCA axes are selected as the   matrix (Zhao et al., 

2007). Some studies confirm that GWAS based on the   matrix calculated from 

STRUCTURE and using PCA are almost the same, however using STRUCTURE is 

computationally intensive particularly if the data is large. Therefore it can easily be 

substituted by the PCA method (Zhao et al., 2007; Stich et al., 2008). For this study, we use 

the PCA approach implemented in the TASSEL software (Bradbury et al., 2007). Based on 

the eigenvalues calculated by the PCA for the maize data, we used the first three principal 

components (PC) as a covariate to correct for the population structure. To choose the optimal 

number of PC, a scree plot can be used, which displays the eigenvalues or proportion of the 

sum of eigenvalues versus its order number or rank (Jollife, 2002, p.117). Approximately the 

point at which the plot levels off or the changes between consecutive eigenvalues becomes 

small is usually suggested as a cut-off to determine the number of PC to be included in the Q 

matrix (Fig. 1). It should also be mentioned that Gowda et al. (2015), who used this data for 

GWAS and GS analysis, also concluded three PC should be included. 
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Fig. 1 Proportion of sum of all eigenvalues versus principal component (PC) number. 

 

The random genotypic effect ig  can be collected into a vector  Tngggg ,....,, 21 , where n is 

the number of genotypes. The variance of g is given by 

 

  22var gKg  ,                                                                                                                        (4) 

 

where K  is a kinship matrix which contains coefficients which provide information about the 

covariance between individuals. K  can be determined from pedigree records or from marker-

based information of the genotypes (Henderson, 1985; Yu et al., 2006). We estimate the 

realized marker based kinship matrix K  using the following formula (Piepho, 2009; Piepho 

et al., 2012b) 

 

TZZK                                                                                                                                 (5) 
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where Z  is the marker matrix coded by 0 and 2 for homozygous markers and 1 for 

heterozygous markers. Collecting the errors ie  of eq. (2) into vector  Tneee ,....,1 , then 

)(eVar  where   is a n×n matrix which contains the error variances and covariances of 

the 381 genotypes which have both phenotypic and marker information. For the fully efficient 

weighting method, the variance-covariance matrix of the errors is set equal to 1
, 

whereas for the diagonal weighting the variance-covariance matrix is approximated by 

   11

2

 diag , where  1diag  is a square matrix which contains the diagonal element 

of 1  (Smith et al., 2001; Damesa et al., 2017). In both fully efficient and diagonal 

weighting 
1  and 

2  are derived from the previous stage of the analysis. For the unweighted 

analysis the variance-covariance matrix has the form 2I , where I is an identity matrix and 

2  is the variance.  

 

Three-stage analysis for GWAS or GS 

 

In three-stage analysis, the phenotypic analysis is done in two stages and at the third stage the 

trait-marker association is done by GWAS or GS (Piepho et al., 2012a).  

 

First-stage analysis: In the first stage genotype means are computed per trial, site and year 

based on the model  

 

ijhvkmjhvkmjhvkijhvijhvkm ebry                                                                                              (6) 

 

where jhijhihijhjjhviijhv sagsagagsast    is the conditional expected value 

of the i-th genotype  ni ,...,1  at the j-th site, v-th trial and h-th year, with effects as defined 

previously.  

 

Second-stage analysis: In the second stage the adjusted means are computed across site-year-

trial combination using the model      
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ijhvjhijhihijhjjhviijhv esagsagagsast  ̂                                                        (7) 

 

where ijhve  is the residual of the i-th genotype in the j-th site, h-th year and v-th trial and 

  jhvjhve var , with  Tnjhvjhvjhvjhv eeee ,...,, 21 , where jhv  is replaced by its residual 

maximum likelihood (REML) estimate from the first stage, fully efficient 
1  or a diagonal 

approximation thereof 
2 . To fit the model in the third stage, we need the variance-

covariance matrix of the adjusted genotype means from the joint analysis, i.e., 

 T

M

TT eee ,......,1 , where M represents the total number of environments (trial-site-year). 

Then the fully efficient and diagonal weights are computed from the variance-covariance 

matrix  eVar . After estimating the adjusted means from the joint analysis using (7) at the 

third stage, the GWAS or GS analysis are done using the means from stage two.  

 

Third-stage analysis: At the third stage the GWAS or GS are computed using the model (3a) 

or (3b). 

In all stage-wise analyses we used the SAS macro %get_one_big_omega and 

%get_Smith_weights for fully-efficient and diagonal weight method, respectively. These 

macros assemble the adjusted means and the fully-efficient or diagonal weights from previous 

stage in a way suitable for use in the next-stage analysis (Damesa et al., 2017). 

For ease of reference, we subsequently use the abbreviations in Table 2 to refer to the various 

single-stage and stage-wise approaches in the text. 

 

Table 2. Abbreviations for the different stage-wise approaches to be used in the writing of the 

result and discussion sections. 

Abbreviation Meaning 

1S Single-stage analysis 

2S Two-stage analysis 
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3S Three-stage analysis 

2SUNW Two-stage analysis unweighted 

2SDIAGW Two-stage analysis with diagonal weights 

2SFEW Two-stage analysis with fully efficient weighting 

3SUNW Three-stage analysis unweighted 

3SDIAGW Three-stage analysis with diagonal weights 

3SFEW Three-stage analysis with fully efficient  weighting 

 

We use superscripts P, GS, and GWAS in the abbreviations to represent specific types of 

analysis, i.e. P for purely phenotypic analysis, GS for genomic selection and GWAS for 

genome-wide association studies, respectively. For example to represent two-stage analysis 

with fully efficient weighting we used the abbreviation      
  for the phenotypic analysis, 

     
    for genomic selection and etc.  

 

Comparison of methods for the different stage-wise analysis methods for GWAS 

 

The vast majority of markers under study are expected to be unlinked to the influential QTL, 

and thus under the null hypothesis of the test. For these markers, the P-values observed from 

the association study are expected to follow a uniform distribution. Even though not all 

markers will be under the null hypothesis, the empirical distribution of P-values across all 

markers is expected to be approximately uniform if the tests perform properly. For comparing 

the different weighting methods, we consider the empirical type I error rate. A method is 

considered best if it has empirical type I error rate in close agreement with the nominal type I 

error rate. To measure the type I error rate, we therefore use the mean squared difference 

(MSD) between observed and expected ordered P-values of all markers, assuming that 

expected P-values follow a uniform distribution. A high MSD implies a deviation of observed 

P-values from the expected uniform distribution. Therefore we consider a given method best 

for GWAS if it has the smallest MSD value (Stich et al., 2008). Originally, this type 

comparison was used to assess the degree of control of population structure by a GWAS 

method, noting that failure to properly control for such structure typically leads to spurious 
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tests and hence to a departure from the expected uniform distribution of P-values. Here, we 

use the same rationale to assess the effect of not properly accounting for heterogeneity of 

variance and correlation among adjusted genotype means. For each observed P-values from 

the GWAS the expected P-values were calculated as        , where       is the rank of 

the p-value    observed for the w-th marker and W represents the total number of markers 

(Stich et al., 2008). We compare the correlation of the P-values from the GWAS for the 

different approaches in order to quantify their degree of similarities. In addition we use 

pairwise plots of SNP effect estimate, P-value, standard error, and observed 

 valueP  10log  to assess the similarity of the different approaches. If two methods are 

similar in the GWAS analysis, these plot should show most of the points near to the diagonal 

line; if they are different the points are expected to deviate from the diagonal line.       

    

 

Comparison of methods for GS analysis  

 

To compare the similarity of GS methods with weighting and without weighting we use the 

Spearman and Pearson correlation between the predicted GEBVs. We use cross validation 

(CV) to compare the predictive ability of the different methods. In k-fold CV, k=5 or k=10 is 

the commonly used approach with large sample sizes. The sizes of the training and validation 

sets have direct impacts on the accuracy of the estimated variance components and 

correlations. Moreover, high correlations can be obtained with a large reference set and a 

small validation set. However, if the objective is to compare different models for GS then a 

relatively large validation set is desirable (Erbe et al., 2010). Therefore, because of small 

sample size and our objective of model comparison, in this study we used a three-fold CV for 

all of the approaches considered (Estaghvirou et al., 2013). The procedure randomly divides 

the n genotypes, i.e., the n adjusted means obtained from the phenotypic analysis stage using 

weighted or unweighted methods, into three subsets. Two of the subsets serve as a training set 

and the remaining subset is used as a validation set. Each subset is used as a validation set 

once. The three-fold CV yielded a validation set with 127 and a training set with 254 

observations. The process is repeated five times (Schulz-Streeck et al., 2013a; Estaghvirou et 

al., 2013; Song et al., 2017; Rice and Lipka, 2019; Palaiokostas et al., 2019). The prediction 

ability is calculated as the Pearson and Spearman correlation between observed and predicted 

values in the validation set for each replicate. The three-fold CV and five repetitions yield 15 
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sets of GS predictions. The correlations are averaged over the 15 sets. The method with the 

highest prediction ability is considered as the best method.  

 

4.3 Results 

 

4.3.1 Comparison of two-stage analysis with weighting and with-out weighting and 

single-stage phenotypic analysis 

 

First, we analyzed the phenotype in two stages with fully-efficient weighting (
P

FEWS2 ), with 

diagonal weighting (
P

DIAGWS2 ) and without weighting (
P

UNWS2 ). For comparison we also 

analyzed the phenotypic data using single-stage analysis (1S
P
). As in many other studies, the 

estimated adjusted genotype means show the similarity of 1S and 2S analysis in general. The 

adjusted genotype means based on the      
  were more highly correlated with 1S as 

compared to        
  and      

  (Table 3, Fig. S1).  

 

 

In order to assess the distribution of the weights, we used histograms. Since the fully-efficient 

weighting is derived from the full variance-covariance matrices, we investigate the 

heterogeneity using separate plots for the variances as well for the covariances of the adjusted 

means. The histogram of the covariances (Fig. S2a) is right skewed. The distribution of the 

variances is also skewed to the right (Fig. S2b). To inspect the distribution of the diagonal 

weights we plotted the diagonal elements of the inverse variance-covariance matrix of 

      
         

       
  1S

P
 

     
  1.0000 0.9917 0.9894 0.9863 

       
  0.9881 1.0000 0.9978 0.9972 

     
  0.9848 0.9968 1.0000 0.9994 

1S
P
 0.9803 0.9959 0.9988 1.0000 
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adjusted means (Fig. S3). This histogram is skewed to the left. All histograms display 

considerable heterogeneity.  

 

4.3.2 Comparison among three-stage and two-stage genomic prediction analysis with 

weighting and without weighting 

 

Correlation of GEBVs  

 

The correlations of GEBVs obtained using        
   and      

   are relatively larger than the 

corresponding correlations with the GEBVs obtained from      
   and      

  . The 

     
   method is highly correlated with      

  .        
   is almost perfectly correlated with 

     
  , followed by        

  .      
   is also highly correlated with      

   and        
  . The 

comparison of 2S methods among themselves has a similar trend as the 3S methods, i.e., 

     
   is extremely highly correlated with        

   and it is also highly correlated with 

     
   (Table 4 and Fig. S4).     

 

Table 4. Correlation between GEBVs (above the diagonal: Pearson‟s product-moment 

correlation; below the diagonal: Spearman‟s rank correlation) using      
  ,        

  ,      
  , 

     
  ,        

   and      
  .  

Analysis 

Method 

     
          

        
        

          
        

   

     
   1.0000 0.9705 0.9681 0.9885 0.9668 0.9661 

       
   0.9796 1.0000 0.9984 0.9745 0.9980 0.9979 

     
   0.9781 0.9980 1.0000 0.9757 0.9994 0.9995 

     
   0.9859 0.9852 0.9872 1.0000 0.9768 0.9764 

       
   0.9762 0.9976 0.9992  0.9882 1.0000 0.9999 

     
   0.9753  0.9974  0.9993 0.9877  0.9998 1.0000 
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Correlation of the GEBVs and the observed values in the validation set 

 

The mean Pearson and Spearman correlations indicate that all methods have similar results. 

However, even if the differences are minor, the mean Pearson correlations show that the 

     
   method has the best predictive ability, followed by      

  , and        
   is the third. 

On the other hand the mean Spearman correlation suggests that 3SFEW is the best method, 

followed by      
  .        

   and      
  

 have the same rank, both in terms of the Pearson 

and Spearman rank correlation (Table 5).  

Table 5. Mean Pearson‟s product-moment and Spearman‟s rank correlation coefficient 

between the GEBVs and the observed values in the validation set. Using      
  ,        

  , 

     
  ,      

  ,        
   and      

  .   

Analysis method 
Mean Pearson  

correlation 

Rank of mean 

Pearson correlation 

Mean Spearman   

correlation 

Rank of mean 

Spearman 

correlation 

     
   0.3249 6 0.3361 6 

       
   0.3352 4 0.3366 5 

     
   0.3442 2 0.3478 1 

     
    0.3300 5 0.3404 4 

  

       
    

0.3414 3 0.3437 3 

     
    0.3453 1 0.3468 2 

 

4.3.3 GWAS 

 

The MSD between observed and expected P-values are in general very small for all methods 

used in this study. However, there are some numerical differences among the MSD of the six 

methods. Among all methods the MSD of        
     is the smallest, followed by the      
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method.      
     is the least performant as it has the largest MSD value, the second least 

performant is      
    . The      

    ,      
    , and        

     methods had quite similar MSD 

values, meaning that these methods had approximately equal performance (Table 6). The P-

values of      
     are highly correlated with those of      

    .        
     has almost perfect 

correlation with      
    , however,      

     is less correlated with      
    , and      

     has 

very high correlation with the      
     and        

     methods. Comparison of the results for 

2S and 3S shows that in both categories the diagonal and fully efficient weighting methods 

perform similarly as indicated by their high correlation of 0.9913 and 0.9996, respectively. 

These trends hold true for both the Pearson and Spearman correlations (Table 7). 

 

Table 6.  Mean square difference of P-values for GWAS: using      
    ,        

    ,      
    , 

     
    ,        

     and      
    .  

Analysis method MSD value 

      
     13.3010000E-6 

        
       3.3508581E-6 

      
       4.1124605E-6 

      
     14.9080000E-6 

        
       4.6586410E-6 

       
       4.7140910E-6 

 

The P-values of      
     are highly correlated with those of      

    .        
     has almost 

perfect correlation with the      
    , however, it is less correlated with the       

     and . 

     
     has very high correlation with the      

     and        
     methods. Comparison of the 

results among 2S and 3S shows that in both categories the diagonal and fully efficient weight 

perform similarly as indicated by their high correlation of 0.9913 and 0.9996, respectively. 

These trends hold true for both the Pearson and Spearman correlations (Table 7). 
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Table 7. Correlation between observed P values of GWAS (above the diagonal: Pearson‟s 

product-moment correlation; below the diagonal: Spearman‟s rank correlation) using      
    , 

       
    ,      

    ,      
    ,        

     and      
    .  

Analysis 

method  

 

     
     

 

       
     

 

     
     

 

     
    ‡ 

 

       
     

 

     
     

     
     1.00000 0.88833 0.87908 0.94724 0.87168 0.86989 

       
     0.88871 1.00000 0.99127 0.89753 0.98910 0.98857 

     
     0.87966 0.99132 1.00000 0.90191 0.99672 0.99721 

     
        0.94765 0.89785 0.90235 1.00000 0.90581 0.90416 

       
      0.87236 0.98918 0.99674 0.90632 1.00000 0.99957 

     
    

  0.87059 0.98865 0.99723 0.90469 0.99957 1.00000 

 

All of the pairwise plots, i.e. the P-value plots, the minus log10 P-value plots, the pairwise 

plots of SNP effects, and the pairwise plots of standard errors have similar interpretation for 

the comparison of the methods for this study. These plots also show similar results to the 

correlation of P-values. The P-value plots of      
     versus      

     (Fig. 2a) have a rather 

diagonal shape, which suggests similarity of the two sets of P-values. The P-value plots show 

that the        
     method has close similarities with the      

    ,        
     and      

     

methods (Fig. 2b), because points of these plots are close to the diagonal axis. Likewise 

     
     has similar performance with        

    ,        
     and      

     (Fig. 2.c). The 

supplemental figures also suggest similar interpretation to the P-value plots (Figs. S5, S6, and 

S7). 
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                               (I)                                                                                  (II) 

   

                                    (III)                                                                              (IV) 

 

                                  (V) 

Fig.2.a. Plots of P-value of      
     versus (I)        

    , (II)      
     (III)      

     (IV) 

       
     and (V)      
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(I)                                                                                  (II) 

 

 

 

                       (III)                                                                                   (IV) 

 

 

                                           (v) 

Fig.2.b Plots of P-value of        
     versus (I)      

    , (II)       
     (III)      

     (IV) 

       
     and (V)      
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(a)                                                                 (b) 

 

                           (c)                                                                  (d)                                              

 

 

                                    (e)     

  

Fig.2.c Plots of P-value of      
     versus (a)      

    , (b)        
     (c)      

     (d)        
      

and (e)      
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4.4. Discussion 

 

4.4.1 Phenotypic data analysis 

 

The comparison of the 1S
 
and 2S methods for the phenotypic data shows that 2SFEW is most 

closely correlated with 1S. Similar results were reported in other studies (Piepho et al., 2012a; 

Damesa et al., 2017). In MET, each trial may require a different design, possibly with high 

levels of spatial variability, calling for different modelling approaches for each individual 

trial. The use of spatial modeling techniques helps to account the existing spatial variability 

and increases the efficiency of analysis (Bernal et al., 2014; Damesa et al., 2018). However, 

using different modeling for different trials induces complex variance-covariance structures 

and thereby increases computational demand for analysis. In such cases, stage-wise analysis is 

a convenient option for practical data analysis. There are several stage-wise analysis methods 

based on the weighting methods used, from simplest weighting using, e.g., inverse squared 

standard errors, to the more efficient ones, e.g., fully-efficient weighting (Möhring and 

Piepho, 2009; Piepho et al., 2012a; and Damesa et al., 2017). Some studies revealed, 

however, that stage-wise analysis can produce similar results with different weighting 

methods, including unweighted analysis. This is usually true if the MET are balanced and or 

the covariance between the genotypes means are small or negligible (Möhring and Piepho, 

2009; Piepho et al., 2012a; Damesa et al., 2017). However, in so far as convergence is 

attained and computation time is feasible, the use of the fully efficient weighting method is 

always recommended to avoid any loss of information (Welham et al., 2010; Damesa et al., 

2017).  

 

4.4.2 GWAS 

  

The MSD between observed and expected P-values for all 3S methods considered in this 

study are small and have similar values, however the unweighted method is approximately 

four times larger in MSD than the        
     and      

     methods. The MSD of the        
     

method is smaller than that of the      
    ,        

     and      
     methods. These results 

imply that for this study using the        
     method is advantageous for GWAS. The pairwise 

correlation and pairwise plots have the same interpretation; these statistics indicate that the 

       
    ,      

    ,        
     and      

     methods have high pairwise correlation (> 0.98) and 



Chapter 4 

 
 

89 
 

also more diagonal shaped pairwise plots, confirming the similar performance of the methods 

(Fig. 2, and supplement Figs. S5, S6, and S7; Table 7). The      
     method has a moderate 

correlation (>0.90) with      
    ,        

     and      
    , suggesting that      

     is the second 

best alternative method next to the diagonal and fully efficient weighting methods. However, 

the      
     method has relatively smaller correlation (between 0.87 and 0.89) with        

    , 

     
    ,        

    , and      
    . This suggests that weighting is worthwhile for an efficient 

GWAS analysis.  

 

4.4.3 GS  

 

In our study the accuracies obtained for the different methods are nearly the same and is also 

comparatively small. In this particular study,      
   and      

   were the best approaches 

based on the predictive ability according to Pearson and Spearman correlations, respectively 

(Table 5 and Fig. S4). This suggests that using all available information of the variance-

covariance (i.e., fully-efficient weighting) is the best method to increase precision. On the 

other hand due to the loss of information for the unweighted method the genomic reliability 

decreases to some extent.  

 

4.4.4 Statistical software limitations for using weighting in genomic selection and 

genome-wide association studies  

 

Most currently available open source statistical packages for GS or GWAS do not have 

options for weighting techniques. All of our stage-wise analyses for the GS and GWAS were 

conducted using the commercial SAS software and the weights are assembled using a SAS 

macro called %get_one_big_omega and %get_smith_weight for the fully-efficient and 

diagonally weighted approximation, respectively (Damesa et al., 2017). ASREML-R is 

another commercial package that has an option for weighted analysis (Gogel et al., 2018). 

One exceptional case for GWAS that enables weighted mixed linear model (MLM) analysis is 

the open source software TASSEL. This package has an option for weighting, but the 

weighting works only if the weights can be given in one column, e.g. for the diagonal 

weighting method, however it is not possible to use the fully efficient weighting. For the 
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future it would be desirable to enable all types of weighting in open source software such as 

TASSEL or R-packages for GWAS and GS analysis. 

 

4.4.5 Possible extensions of the model used in this study 

 

Spatial analysis is one approach to increase precision of phenotypic MET analysis and thereby 

to increase accuracy of GS and GWAS (Gilmour et al., 1997; Stefanova et al., 2009; Bernal-

Vasquez et al., 2014; Damesa et al., 2018). However, in this study spatial modelling was not 

applied because the field trial data did not have spatial information on the plots (row and 

column numbers). 

 

In mixed modeling of field trials, the partitioning of the total genetic effect into additive and 

non-additive effects using pedigree and/or molecular markers is possible and can be superior 

to analyses ignoring this partitioning. Oakey et al. (2006; 2007) showed that in a single trial 

and METs, modeling of epistasis and dominance effects can be better than modelling of 

additive effects only in terms of estimated prediction error and accuracy of selection of the 

best performing genotypes. In the same vein, value may be added in both GWAS and GS 

when exploiting of dominance and epistasis effects, e.g. in improving prediction accuracy and 

obtaining more precise estimates of marker effects (Jiang et al., 2015; Oakey et al., 2016; 

Bonnafous et al., 2018). However, in this study we did not consider non-additive modeling 

because our main focus was to demonstrate the benefit of weighting and because analyses 

based on additive genetic effects only are still the standard approach in both GWAS and GS. 

 

In MET data analysis researchers are often interested in quantifying the genotype by 

environment interaction (GEI). The GEI variance is often considered to be heterogeneous 

(Patterson and Nabugoomu, 1992; Frensham et al., 1997; Cullis et al., 1998). To fit 

heterogeneous GEI variances, different approaches were proposed (Gogel et al., 1995; Piepho, 

1997; Smith et al., 2015; Smith et al., 2018). Among others, the factor-analytic (FA) variance 

structure is considered to be convenient and appropriate for modelling the GEI because this 

structure accommodates heterogeneity of both variance and covariance. For this study the 

simple variance components model structure was considered for the GEI. We tried to fit FA 

structures for the GEI, considering the genotype main effect and the three-way interaction of 
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trial, year and site as fixed effects. The first scenario fits a one-dimensional FA variance 

structure (FA1) for all of the GEI effects (genotype by site, genotype by year, and genotype 

by site by year) with independent genotypes and correlated environments at the second stage 

of a two-stage analyses with the diagonal weight. This first scenario was fitted in SAS, the 

Akaike information criterion (AIC) indicates that the FA1 was better than the simple variance 

structure with the same model effects, however, the Hessian matrix was not positive definite 

for the FA1 model. The second scenario FA1 was fitted only for the three-way interaction 

(genotype by site by year) with independent genotypes and correlated environments. A single-

stage analysis of scenario two was performed in ASReml-R (Butler et al., 2009) and Asreml 

standalone. But with both there were convergence problems for our dataset, i.e. the average 

information matrix was found to be singular. Conducting the same single-stage analysis for a 

simple variance components model using the same model effects as with FA1 above, the 

model did not have convergence problems. Even though FA1 had a better performance than 

the simple variance component model in terms of AIC, the fit was not reliable because of the 

singularity in the likelihood. Also, the correlation between the genotype mean estimates based 

on FA1 versus the simple variance components model was only 0.71. To study the cause of 

the singularity we fitted scenario two without the fixed genotype main effect, obtaining proper 

convergence (in both ASReml-R and ASReml standalone). This suggests that the fixed 

genotype main effect is interfering with the covariance across environments as it is fitted in 

the FA structure. Also, the singularity problem did not occur when we fitted scenario two with 

genotype main effect as random (Gogel et al. 2018). We note, however, that dropping the 

fixed main effect or fitting it as random is not an option here because BLUE of genotype 

means are needed for the final GS and GWAS analysis. Therefore we decided not to use the 

FA1 model for GS and GWAS analysis. 

 

Different markers might have different effects in different environments. Therefore including 

of a marker-by-environment interaction (MEI) effect in QTL mapping can enhance the 

accuracy of the QTL mapping (van Eeuwijk et al., 2002; Piepho, 2005). Likewise the 

modelling of the marker-by-environment effect for GS can possibly increase the predictive 

accuracy (Piepho, 2009; Crossa et al., 2010). We did not proceed further with this idea, 

however, because it is computationally more demanding and not crucial for our main 

objective, which is to compare different methods of weighting using standard procedures. 
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Moreover, Schulz-Streeck et al. (2013b) showed that there is no gain in prediction accuracy 

when using the marker information to model the genotype-environment interaction. 

 

A recent study which compares single-stage versus two-stage analysis of crop trials has 

shown that due to the improvement of computing power in ASREML-R (Butler et al. 2017), 

single-stage analysis of large-sized MET data is possible (Gogel et al., 2018). The authors 

suggested that a single-stage analysis of large-sized MET data is plausible, particularly when 

the number of trials is not too many. However, for many users, computation time and effort 

are still a concern when trials are large. In such cases the use of stage-wise analysis is a viable 

alternative (Möhring and Piepho, 2009; Piepho et al., 2012a; Morris et al., 2018). 

 

In GWAS, optimizing power and minimizing type II error rate are useful objectives. 

However, a full power analysis would be beyond the scope of our paper, as this would require 

a comprehensive simulation study. It is clear, however, that single-stage analysis is expected 

to have the best power, provided the model is correctly specified, because it uses empirical 

best linear unbiased estimators (BLUE) of the marker effects. The two-stage approximations 

are expected to be slightly lower in power, as they only approximate the single-stage analysis. 

 

4.5 Conclusion  

 

Our result indicates that fully-efficient and diagonal weights have quit similar performance in 

the phenotypic analysis (> 0.99), on the other hand, the correlation of      
  with the 

weighted 2S analyses is moderately smaller. Likewise the weighted and unweighted 2S and 

3S analyses of GS and GWAS have a similar trend as the phenotypic analysis. The GEBVs 

obtained using the weighted methods namely        
  ,      

  ,        
   and      

  , have 

high correlations (>0.99). However, correlations of the GEBVs obtained using      
   and 

     
   are comparatively smaller with the weighted GS. The correlations of the P-values 

obtained from GWAS using the different approaches have a similar implication as the GS 

analyses. 

 

To sum up, this study concerned the evaluation of weighted and unweighted stage-wise 

analysis for GS and GWAS. There are several different statistical methods for GS and GWAS 
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analyses, and each of the different methods are usually applied in two stages, i.e., phenotypic 

analysis stage and, GWAS and/or GS analysis stage (Stich et al., 2008; Ogutu et al., 2011; 

Ogutu et al., 2012). In both stages of analyses, researchers can use either weighted or 

unweighted analysis. Different researchers have different experiences regarding the use of 

weighting methods. Some researchers use weighting methods for the analysis of phenotypic 

data, but the unweighted method in the GWAS and GS stage and other researchers use 

unweighted analysis for both phenotypic and actual GWAS and GS analyses. The correlation 

plot of the adjusted genotype means from phenotypic analysis (Fig. S1) indicates that all the 

different methods have similar performance. From these results one may expect to obtain 

similar performance in GWAS and GS with the different weighted and unweighted 

approaches like the phenotypic results. However, this assumption needs to be checked with 

empirical examples in order to quantify the degree of similarity of the different methods. Even 

though the differences are relatively small, in this particular study the weighting approaches 

performed better than the unweighted analysis for both GS and GWAS in terms of predictive 

ability for GS and in terms of MSD of observed and expected P-values for GWAS. The best 

weighting method found for GS and GWAS are not the same. For our dataset the fully-

efficient weighting method performed better than the diagonal weights for GS. By contrast, 

for GWAS the diagonal weighting method performed better but with very small difference 

compared to the fully-efficient method. In general this result suggests that there are minor 

differences between the different approaches and the unweighted method is acceptable for 

most practical purposes, but there is a slight edge in favor of weighted methods. The fully-

efficient weighting method can be recommended provided convergence criteria are met and 

computation time is feasible. Otherwise, diagonal weights are adequate and by comparison 

they are advantageous computationally. 

 

4.6 Supplementary material 

 

Supplementary Figures these includes: Fig. S1.a, Fig. S1.b, Fig. S2, Fig. S3, Fig. S4, Fig. 

S5.a, Fig. S5.b, Fig.S5.c, Fig. S6.a, Fig. S6.b, Fig.S6.c, Fig.S7.a, Fig. S7.b, and Fig.S7.c are 

made available online.   
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Chapter 5 

General discussion 

 

Crop breeding and improvement involves the evaluation of trials at multiple sites and years 

(MET). MET have been contributing to the identification of superior and stable genotypes 

using observed phenotype data. In MET there are many different sources of variations. 

Important are within-trial error and within-trial spatial variation, and there typically is both 

within-trial and between-trial error variance heterogeneity. Reliable estimates of genotype 

effects require proper accommodating of these sources of variation. This thesis demonstrates 

the handling of spatial variation and the use of weighting methods to account for within-trial 

and between-trial error variance heterogeneity in MET. Beside this the impact of weighting 

methods when applied to GS and GWAS is also evaluated. 

 

5.1 Spatial modeling is an add-on 

 

Classically, data from field experiments have been analyzed based on the randomization 

design of the experiments. In addition, different spatial methods have been proposed for 

adjusting means for any spatial trend that may exist (Gilmour et al., 1997; Piepho et al., 2008; 

Piepho and Williams 2010). All of these spatial methods are based on the assumption of 

correlated neighboring plots. While spatial models might be useful to increase precision and 

efficiency compared to the baseline model, there are cases for which the baseline model 

outperforms the spatial models fitted for a given trial. This shows that spatial modelling is not 

necessarily a substitute for a randomization-based model. But rather it is an add-on to the 

randomization-based or baseline model. This idea coincides with results in Chapter 2, where 

in one out of the three empirical examples the baseline model without the spatial covariance 

structure outperformed the spatial model. Appropriate experimental design is always 

mandatory for obtaining reliable results. The best approach of spatial modeling is to begin 

with the randomization-based baseline model and then add spatial components and compare 

these extended models with the baseline model to check if the fit is improved or not 

(Williams, 1986; Williams et al., 2006; Piepho and Williams, 2010; Müller et al., 2010). 

Borges et al. (2018) have evaluated the performance of design based and spatial modeling to 

answer the question whether spatial modeling can substitute design-based models or not. They 
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make the comparison with different sizes and types of experimental when performed with 

different degree of variability between experiment sites. Their result show that for small-sized 

experiments the design based and spatial models have similar performance even when the 

degree of variability differs. When the number of experiments and variability among sites was 

high, using spatial models with completely randomized design (CRD) and randomized 

complete block design (CRBD) did not outperform the more efficient design they considered, 

i.e., alpha-lattice design. However, spatial models performed best when combined with the 

best experimental design (alpha-lattice design). Therefore in general spatial modeling is no 

substitute for experimental design but should be added at the analysis stage to control any 

spatial correlation that may exist in the field. 

 

The use of spatial information in the design phase is another interesting application of spatial 

techniques in agriculture. Several studies have been conducted on this topic (Williams et al., 

2006; Piepho and Williams, 2010; Williams and Piepho, 2013; Piepho et al., 2016b). Spatial 

design has a limitation, however, due to the presence of error variance bias (Williams and 

Piepho, 2018).  

 

5.2 Spatial and variance modeling 

 

In the analysis of individual trials from MET, there may exist within-trial variance 

heterogeneity. Accounting this heterogeneity is a plus to increase efficiency of estimation and 

it can also improve selection response (Edwards and Orellana, 2015). Appropriate variance 

modelling and data transformation are two possible choices when the assumption of within-

trial homogeneneity of variance is violated. In Chapter 2, it was shown that Box-Cox 

transformation is suitable to stabilize variance but has the main disadvantage that results are 

difficult to report on the original scale. This is a major issue when joint analysis of MET is 

required, since means and variance-covariance estimates are required on the original scale. 

For a single trial often the inverse of the Box-Cox transformation is computed and reported as 

an estimate of the median on the original scale (Piepho, 2009a). An alternative way to report 

results based on the Box-Cox transformation on the original scale is using an expression 

derived by Freeman and Modarres (2006), provided that the transformation parameter is in 

between the interval 0 and 1. However, this expression is not applicable for this study because 
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the transformtion parameter estimates are not in this interval. In contrast, variance modeling is 

a good alternative option for correcting the variance heterogeneity and to proceed with a joint 

analysis of MET, because it does not require a data transformation. 

 

In Chapter 2, an application of variance modelling is illustrated. POM and exponential 

variance model are the particular variance models we considered (Carroll and Ruppert, 1988). 

The three examples illustrated that the variance modeling remedy was successful for dealing 

with the variance heterogeneity problem, meaning that the use of POM or exponential 

variance model resulted in better model fits than models without using the variance model.  

 

Spatial variation and error variance heterogeneity are common in field trials. In Chapter 2, the 

performance of spatial models is compared with design-based models when ignoring the 

variance heterogeneity. The result shows spatial model performance to be better for the 

design-based model for all example dataset in this study. Moreover, spatial models along with 

POM and exponential variance models are compared with the same spatial model assuming 

homogeneous variance. The result indicates that a spatial model with both POM and 

exponential variance model performs better than the spatial homogeneous variance model. 

This study shows that both spatial model and variance heterogeneity can be accounted for 

simultaneously. Which variance model needs to be chosen depends on the specific data.  

Therefore evaluating different spatial and different variance models and then choosing the 

best fited model using model selection criteria will be the proper approach.  

 

While variance modeling is advantageous applying proper weighting, it has limitations if the 

number of observations is small. This is because variance estimation based on a small number 

of degrees of freedom is typically unstable. In such cases estimation of variance induces extra 

variability (Carroll and Ruppert, 1988). Edwards and Jannink (2006) proposed to use the 

Bayesian approach as a solution for modeling heterogeneous error and genotype‐environment 

interactions (GEI) when the number of observations is small. This type of approach to 

modelling heterogeneity is worth exploring in future work. 

 

5.3 Stage-wise analysis for MET, GS and GWAS 
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Stage-wise analysis is often the approach for practical analysis of large scale MET data, GS 

and GWAS. Most stage-wise analyses do not fully reproduce results of single-stage analysis. 

The reason is that the variance-covariance matrix of adjusted means estimated in the previous 

stage is not fully forwarded to the next stage and as a result information is lost. In MET 

analysis the error variance between trials are usually heterogeneous, which requires remedial 

measures. Moreover, each trial may require different randomization and modeling 

approaches. Failure to properly accommodate all these sources of variability may induce 

unequal results of single-stage and stage-wise analysis.  

 

Different types of weighting strategies are recommended by different authors to account for 

heterogeneity and thereby to increase efficiency (Smith et al., 2001; Möhring and Piepho, 

2009; Piepho et al., 2012a). Among them the most efficient one is the fully efficient 

weighting method, which forwards the full variance-covariance matrix from the first stage to 

the second stage. The diagonal weighting approach which proposed by Smith et al. (2001) is 

the most popular one. In this study diagonal and fully-efficient weights have been used. 

Results from the pure phenotypic analysis (Chapter 3) showed that the difference between 

results from the two different weighting methods are very small. The choice of weighting 

method depends on the extent and on the complexity of the within-trial and between-trial 

variability. Likewise, the results of GS and GWAS analyses indicates that the choice of 

proper weighting method depends on the dataset and on the objective of the study. For 

example, in Chapter 4, the fully efficient method performed best for GS, while for GWAS 

diagonal weighting was the best approach. Kaio et al. (2019) concluded that weighted 

genomic prediction outperformed unweighted analysis. Generally, stage-wise analysis 

reproduces the same results of single-stage analysis if fully efficient weighting is used and the 

non-genetic variances are replaced by their REML estimates from the first stage.   

 

In the analysis of field experiment data, genotype effects can be fitted as a random effect or as 

a fixed effect. The choice of fixed or random genotype effect usually depends on the objective 

of the study. Genotype should be fitted as random when the objective of the research is 

selection; however, genotype can be fitted as fixed when the objective is comparison (Smith 

et al., 2005). Genotype is fitted as random in GS and GWAS (Chapter 4). While the 

researcher should decide which type of effect to fit for genotype, in stage-wise analysis 

genotypes should be fitted as fixed effect in all stages except the last where genotype can be 

fitted as random or fixed depending on the objective (Piepho et al., 2012a).  
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Stage-wise analysis is suitable for practical analysis of MET because it is relatively simple to 

analyse individual trials accounting for all sources of variation, e.g., spatial correlation and 

error variance heterogeneity (Chapter 3, Example 4). Computational efficiency is another 

main reason for using stage-wise analysis. For example in this study it has been shown using 

an example that the time taken for single-stage analysis was about 23 hours and for two-stage 

and three-stage analysis it was only 2 and 3 minutes, respectively (Chapter 3). In so far as 

convergence is attained, in stage-wise analysis the use of fully efficient weighting is always 

suggested to minimize the loss of information which may occur when forwarding results from 

a previous to the next stage analysis (Piepho et al., 2012; Schulz-Streek et al., 2013). 

However, if the number of genotypes is large and a correlated covariance structure is used for 

the genetic effects, this may require large computation time. In such cases it is often 

advantageous to use a weighting method which is feasible with regard computation time. A 

study by Gogel et al. (2018), however, proves the possibility of single-stage analysis of MET, 

where there example dataset consists of more than 100 trials using ASREML-R (Butler et al. 

2017). From our exprience for users of other statistical packages stage-wise analysis is a 

viable alternative (Möhring and Piepho, 2009; Piepho et al., 2012a; Morris et al., 2018).   

 

Except for the single-stage analysis of the phenotypic data of Chapter 3, where we used 

ASREML-R package, all of the stage-wise analyses which involve weighting were computed 

in SAS (Chapter 2 and 4). SAS macros that can help to get the fully-efficient and diagonal 

weights were provided in this study (Chapter 2). In addition to these two weighting methods, 

the macro can be extended for other types of weights that can be used in stage-wise analysis 

of MET data, e.g. for the weights proposed for Möhring and Piepho (2009). Most statistical 

software packages for GS and GWAS analysis, e.g. TASSEL and R, do not have an option for 

applying of weights. Based on the results presented in this thesis, it is suggested that 

weighting methods also be implemented for GS and GWAS approaches. 

   

5.4 Modeling of additive and non-additive effects and genotype by environment 

interaction   

 

Partitioning of total genetic effects into additive and non-additive effects is often considered 

to be superior in performance to only fitting additive effects (Oakey et al., 2006, 2007). This 

partitioning can minimize prediction error and maximize accuracy of selection of genotypes 
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in MET, enables accurate identification of significant marker in GWAS and increase 

prediction accuracy in GS (Jiang et al., 2015; Oakey et al., 2016; Bonnafous et al., 2018). In 

this thesis, however, this partitioning was not considered, assuming that it is not crucial for 

judging the relative merit of alternative weighting methods. 

 

Proper accounting of the GEI variance and covariance heterogeneity is often of interest to 

researchers. The factor analytic (FA) variance structure is known for its ability to account for 

possible heterogeneity (Gogel et al., 1995; Piepho, 1997; Smith et al., 2015; Smith et al., 

2018). In Chapter 4, we were tried the FA1 structure, but we couldn‟t proceed because first of 

all there were convergence problems and secondly estimated genotype means were not 

reliable when compared to the genotype mean estimates obtained with the simple variance 

components model.    

 

5.5 MET analysis versus meta-analysis 

 

In clinical trials in order to precisely estimate treatment effects, similar trials are conducted in 

two or more sites. Such studies are analyzed using a statistical technique known as meta-

analysis. Two-stage meta-analysis of clinical trials and MET data from field trials are similar 

in sprit (Whitehead, 2002, Piepho et al., 2012a; Piepho et al., 2012c; Vargas et al., 2013; 

Madden et al., 2016). Mathew and Nordström (2010) explore an approach under which 

single-stage and two-stage meta-analysis gives identical results when optimal weighting is 

used at the second stage. Their scheme is similar to the two-stage analysis of MET with fully 

efficient weighting. However, the main difference between these methods is that in two-stage 

meta-analysis the first-stage analysis computes treatment differences and their corresponding 

standard errors separately for each trial. By contrast, MET analysis computes treatment means 

and associated standard errors in the first stage. In the second stage, joint analysis is done 

using inverse squared standard errors as weights. In addition in meta-analysis two-stage 

analysis is fully equivalent to single-stage analysis if the site (study) main effect is taken as 

fixed rather than random so no inter-site (study) information is recovered (Piepho et al., 

2012b). Morris et al. (2018) compared one-stage versus two-stage meta-analysis. According 

to their results meta-analysis should use the same model effects assumption for both single-

stage and two-stage analysis, otherwise meta-analysists are free to use whichever procedure. 
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Chapter 6 

Conclusion 

 

The objective of this thesis has been to develop methods accounting for within trial error 

variance heterogeneity and also to evaluate the performance of fully efficient weighting to 

control between-trial error variance heterogeneity. As the three examples presented in Chapter 

2 showed, the Box-Cox transformation is a potential approach to stabilize variance, but it has 

a drawback because of the difficulty to report genotype means and their standard error in the 

original scale particularly for joint analysis of MET. Another appealing alternative to the Box-

Cox transformation is to include variance heterogeneity in the model. Moreover, in field trials 

it is common to find correlated error between neighboring plots; this is a contradiction to the 

independent error assumption. To correct for this assumption failure, spatial modeling can be 

performed. As illustrated in this thesis, variance and spatial modeling can be implemented 

simultaneously for data from field trials.  

 

Due to complex data structure MET data is usually analyzed using stage-wise analysis. To 

accommodate the variance heterogeneity between trials, weighting methods are usually 

applied in the joint analysis. For the datasets used in this study, it is shown that results from 

stage-wise analysis (with weight and without weight) agrees reasonably well with single-stage 

analysis. However, gain in efficiency of stage-wise analysis can be increased by using a fully-

efficient weighting approach. 

 

The evaluation of weighting methods in GS and GWAS analysis stage indicates no significant 

difference. For our dataset the difference between weighted and unweighted analysis of GS 

and GWAS were relatively small. However, we recommened the use of fully efficient 

weighting to maximize efficiency.  

 

 

 



 

103 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

104 
 

Chapter 7 

Summary 

 

In plant breeding programmes MET form the backbone for phenotypic selection, GS and 

GWAS. Efficient analysis of MET is fundamental to get accurate results from phenotypic 

selection, GS and GWAS. On the other hand inefficient analysis of MET data may have 

consequences such as biased ranking of genotype means in phenotypic data analysis, small 

accuracy of GS and wrong identification of QTL in GWAS analysis. A combined analysis of 

MET is performed using either single-stage or stage-wise (two-stage) approaches based on the 

linear mixed model framework. While single-stage analysis is a fully efficient approach, MET 

data is suitably analyzed using stage-wise methods. MET data often show within-trial and 

between-trial variance heterogeneities, which is in contradiction with the homogeneity of 

variance assumption of linear models, and these heterogeneities require corrections. In 

addition it is well documented that spatial correlations are inherent to most field trials. 

Appropriate remedial techniques for variance heterogeneities and proper accounting of spatial 

correlation are useful to improve accuracy and efficiency of MET analysis. 

  

Chapter 2 studies methods for simultaneous handling of within-trial variance heterogeneity 

and within-trial spatial correlation. This study is conducted based on three maize trials from 

Ethiopia. To stabilize variance Box-Cox transformation was considered. The result shows 

that, while the Box-Cox transformation was suitable for stabilizing the variance, it is difficult 

to report results on the original scale. As alternative variance models, i.e. power-of-the-mean 

(POM) and exponential models, were used to fix the variance heterogeneity problem. Unlike 

the Box-Cox method, the variance models considered in this study were successful to deal 

simultaneously with both spatial correlation and heterogeneity of variance. 

   

For analysis of MET data, two-stage analysis is often favored in practice over single-stage 

analysis because of its suitability in terms of computation time, and its ability to easily 

account for any specifics of each trial (variance heterogeneity, spatial correlation, etc). Stage-

wise analyses are approximate in that they cannot fully reproduce a single-stage analysis 
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because the variance–covariance matrix of adjusted means from the first-stage analysis is 

sometimes ignored or sometimes approximated and the approximation may not be efficient. 

Discrepancy of results between single-stage and two-stage analysis increases when the 

variance between trials is heterogeneous. In stage-wise analysis one of the major challenges is 

how to account for heterogeneous variance between trials at the second stage. To account for 

heterogeneous variance between trials, a weighted mixed model approach is used for the 

second-stage analysis. The weights are derived from the variances and covariances of adjusted 

means from the first-stage analysis. In Chapter 3 we compared single-stage analysis and two-

stage analysis. A new fully efficient and a diagonal weighting matrix are used for weighting 

in the second stage. The methods are explored using two different types of maize datasets. 

The result indicates that single-stage analysis and two-stage analysis give nearly identical 

results provided that the full information on all effect estimates and their associated estimated 

variances and covariances is carried forward from the first to the second stage.  

 

GWAS and GS analysis can be conducted using a single-stage or a stage-wise approach. The 

computational demand for GWAS and GS increases compared to purely phenotypic analysis 

because of the addition of marker data. Usually researchers compute genotype means from 

phenotypic MET data in stage-wise analysis (with or without weighting) and then forward 

these means to GWAS or GS analysis, often without any weighting. In Chapter 4 weighted 

stage-wise analysis versus unweighted stage-wise analysis are compared for GWAS and GS 

using phenotypic and genotypic maize data. Fully-efficient and a diagonal weighting are used. 

Results show that weighting is preferred over unweighted analysis for both GS and GWAS.  

 

In conclusion, stage-wise analysis is a suitable approach for practical analysis of MET, GS 

and GWAS analysis. Single-stage and two-stage analysis of MET yield very similar results. 

Stage-wise analysis can be nearly as efficient as single-stage analysis when using optimal 

weighting, i.e., fully-efficient weighting. Spatial variation and within-trial variance 

heterogeneity are common in MET data. This study illustrated that both can be resolved 

simultaneously using a weighting approach for the variance heterogeneity and spatial 

modeling for the spatial variation. Finally beside application of weighting in the analysis of 

phenotypic MET data, it is recommended to use weighting in the actual GS and GWAS 

analysis stage.  
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Chapter 8 

Zusammenfassung 

 

In Pflanzenzüchtungsprogrammen bilden Versuchsserien die Grundlage für die phänotypische 

Selektion, genomische Selektion (GS) und genomweite Assoziationsstudien (GWAS). Eine 

effiziente Analyse der Versuchsserien ist grundlegend, um genaue Ergebnisse der 

phänotypischen Auswahl von GS und GWAS zu erhalten. Andererseits kann eine ineffiziente 

Analyse von Versuchsserien-Daten zu einer verzerrten Bewertung von Genotyp-Mitteln bei 

der Analyse phänotypischer Daten, einer geringen Genauigkeit der GS und einer falschen 

Identifizierung von QTL in der GWAS-Analyse führen. Eine kombinierte Analyse der 

Versuchsserien wird auf der Grundlage von linearen gemischten Modellen entweder einstufig 

oder stufenweise (zweistufig) durchgeführt. Während die einstufige Analyse ein vollständig 

effizienter Ansatz ist, werden die Versuchsserien-Daten in geeigneter Weise mit stufenweisen 

Methoden analysiert. Versuchsserien-Daten zeigen häufig Varianzheterogenitäten innerhalb 

von und zwischen Versuchen, die der Annahme der Varianzhomogenität für linearer Modelle 

widersprechen und Korrekturen erfordern. Darüber hinaus ist gut dokumentiert, dass 

räumliche Korrelationen in den meisten Feldversuchen vorhanden sind. Geeignete 

Abhilfemethoden für Varianzheterogenitäten und eine korrekte Berücksichtigung der 

räumlichen Korrelation sind hilfreich, um die Genauigkeit und Effizienz der versuchsserien-

Analyse zu verbessern. 

 

In Kapitel 2 werden Methoden zum gleichzeitigen Umgang mit Varianzheterogenitat 

zwischen und räumlicher Korrelation innerhalb der Versuche untersucht. Diese Studie basiert 

auf drei Maisversuchen aus Äthiopien. Um die Varianz zu stabilisieren, wurde die Box-Cox-

Transformation in Betracht gezogen. Das Ergebnis zeigt, dass, obwohl die Box-Cox-

Transformation zur Stabilisierung der Varianz geeignet war, es schwierig ist, Ergebnisse auf 

der ursprünglichen Skala darzustellen. Als alternative Varianzmodelle wurden Power-of-the-

mean (POM) und Exponentialmodelle verwendet, um das Varianzheterogenitätsproblem zu 

beheben. Im Gegensatz zur Box-Cox-Methode gelang es den in dieser Studie betrachteten 

Varianzmodellen, sowohl räumliche Korrelation als auch Heterogenität der Varianz 

gleichzeitig zu berücksichtigen. 
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Bei der Analyse von MET-Daten wird die zweistufige Analyse in der Praxis häufig gegenüber 

der einstufigen Analyse bevorzugt, da sie die Berechnungszeit kürzer ist und die 

Besonderheiten der einzelnen Versuche (Varianzheterogenität, räumliche Korrelation usw.) 

leicht berücksichtigt werden können. Stufenweise Analysen sind insofern approximierend, als 

sie eine einstufige Analyse nicht vollständig reproduzieren können, da die Varianz-

Kovarianz-Matrix der angepassten Mittelwerte aus der ersten Analyse-Phase manchmal 

ignoriert oder manchmal approximiert wird und die Approximation möglicherweise nicht 

effizient ist. Die Diskrepanz der Ergebnisse zwischen einstufiger und zweistufiger Analyse 

nimmt zu, wenn die Varianzen zwischen den Studien heterogen sind. Bei der stufenweisen 

Analyse besteht eine der größten Herausforderungen darin, die heterogene Varianz zwischen 

den Versuchen auf der zweiten Stufe zu berücksichtigen. Um die heterogene Varianz 

zwischen den Studien zu berücksichtigen, wird für die Analyse der zweiten Stufe ein 

gewichteter gemischter Modellansatz verwendet. Die Gewichtungen werden aus den 

Varianzen und den Kovarianzen der angepassten Mittel aus der Analyse der ersten Stufe 

abgeleitet. In Kapitel 3 haben wir die einstufige Analyse und die zweistufige Analyse 

verglichen. In der zweiten Stufe wird eine neue voll effiziente und eine diagonale 

Gewichtungsmatrix für die Gewichtung verwendet. Die Studien werden anhand zweier 

verschiedener Arten von Mais-Datasätze untersucht. Das Ergebnisse zeigen, dass die 

einstufige Analyse und die zweistufige Analyse nahezu identische Ergebnisse liefern, 

vorausgesetzt, die vollständigen Informationen zu allen Effektschätzungen und den damit 

verbundenen geschätzten Varianzen und Kovarianzen werden von der ersten zur zweiten 

Stufe übertragen. 

 

Die GWAS- und GS-Analyse kann nach einem einstufigen oder einem stufenweisen Ansatz 

durchgeführt werden. Der rechnerische Bedarf an GWAS und GS steigt im Vergleich zur rein 

phänotypischen Analyse aufgrund der Hinzufügung von Markerdaten. In der Regel berechnen 

Forscher Genotyp-Mittel aus phänotypischen Versuchsserien-Daten in stufenweisen Analysen 

(mit oder ohne Gewichtung) und leiten diese dann in die GWAS- oder GS-Analyse weiter, oft 

ohne Gewichtung. In Kapitel 4 wird die gewichtete stufenweise Analyse gegen die 

ungewichtete stufenweise Analyse für GWAS und GS anhand von phänotypischen und 

genotypischen Maisdaten verglichen. Es werden volleffiziente und diagonale Gewichtungen 

verwendet. Die Ergebnisse zeigen, dass die gewichtete gegenüber der nicht gewichteten 

Analyse sowohl für GS als auch für GWAS besser ist. 
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Zusammenfassend ist die stufenweise Analyse ein geeigneter Ansatz für die praktische 

Versuchsserien-, GS- und GWAS-Analyse. Einstufige und zweistufige Versuchsserien-

Analysen führen zu sehr ähnlichen Ergebnissen. Eine stufenweise Analyse kann wie eine 

einstufige Analyse effizient sein, indem eine optimale Gewichtung verwendet wird, d. h. eine 

vollständig effiziente Gewichtung. In Versuchsserien-Daten sind räumliche Variation und 

Varianzheterogenität innerhalb der Versuche üblich. Diese Studie zeigte, dass beide 

gleichzeitig unter Verwendung eines Gewichtungsansatzes die Varianzheterogenität und 

räumliche Korrelation berücksichtigen können. Neben der Anwendung der Gewichtung bei 

der Analyse phänotypischer MET-Daten wird empfohlen, die Gewichtung in der eigentlichen 

GS- und GWAS-Analysestufe zu verwenden. 
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