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Executive summary 

In recent decades, agricultural support of the European Common Agricultural Policy (CAP) 

has increasingly shifted from market price support measures to budgetary payments. This 

development has made support more visible and has raised public attention to the distribution 

of support, which in turn increased political awareness of the topic. Fittingly, the European 

Commission (2012, p. 8f) states in its Report on the Distribution of Direct Aids to 

Agricultural Producers for the financial year 2011 that “direct payments have lost their 

compensatory character over time and have increasingly become a support ensuring a certain 

farm income stability” and that “the proposals for the CAP after 2013 […] aim to reduce the 

discrepancies between the levels of payments obtained after full implementation of the current 

legislation, between farmers, regions and Member States”. 

This interest regarding redistributive effects of agricultural policy is also reflected in the 

scientific literature. Most of the literature in this field, however, is ex-post and static in nature. 

Despite the undoubted usefulness and importance of ex-post analyses, they are of limited use 

when it comes to the evaluation of policies that are planned to be implemented in the future. 

Since the outcomes of future policy reforms cannot be tested in a laboratory counterfactual 

situations have to be constructed artificially. 

Simulation models are tools frequently used for the ex-ante analysis of policy reforms. In 

other scientific areas, e.g. poverty analysis or tax reform analysis, it is quite common to assess 

impacts of macroeconomic shocks on income distribution on a national scale by the 

application of behavioural ex-ante models and referring to the level of individual incomes. 

The level of aggregation is particularly important in the analysis of redistributive effects since 

heterogeneity is exactly the parameter under consideration and the first best level of 

disaggregation for inequality analysis is the individual level. Hence, methods were developed 

to commonly analyse impacts of macroeconomic shocks on an aggregate and individual level 

by combining outputs of macro models with individual data; mostly large population or 

household surveys.  

Similar tools for the measurement of impacts of sectoral or macroeconomic policies on the 

individual farm income level are less frequent for the agricultural sector and, apart from few 

exceptions, ex-ante studies of redistributive effects of agricultural policy are rare. 

Yet, in general, ex-ante policy impact analysis in the agricultural sector has a long tradition. 

The combination of models to jointly assess effects at different levels of aggregation and 

taking behavioural effects into account is very common. Most of the model chains, however, 

take farm groups or average farms into account rather than accounting for effects at the 

individual farm level. Some attempts have been made to combine macro or sectoral models 

with micro models, which incorporate the behaviour of individual farms. Such research, 

however, is often restricted to the analysis of certain types of farms. In general, ex-ante 

analyses of redistributive effects among individual farms on a supra-regional level in the 

sense of evaluating a counterfactual distribution of income with regard to a reference 
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distribution of income including an assessment of progressivity or related concepts can hardly 

be found for the agricultural sector. 

Against this background, the main objective of this work is to develop a tool that is able to 

consistently assess impacts of agricultural policy on individual farm incomes, thereby 

building on existing modelling approaches and thus, taking behavioural effects into account 

for the ex-ante analysis of redistributive effects of agricultural policy. Subsequently, different 

liberalization scenarios are defined and a detailed analysis of redistributive effects is carried 

out for the western German agricultural sector by the application of methodologies borrowed 

from the field of tax progressivity analysis. Thereby, several contributions to the 

understanding of modelling inequality effects are made, methodologically as well as 

empirically. 

The modelling system consists of three layers. At the sectoral and the meso-level two 

previously developed large scale models are applied. The European Simulation Model 

(ESIM) is an agricultural sector model with a strong focus on the CAP. It depicts the world 

agricultural sector – though in different degrees of regional disaggregation – and quantifies 

effects of agricultural policy at the European and member state level. It is, however, unable to 

estimate intra-sectoral income changes at the farm level. The Farm Modelling Information 

System (FARMIS) is a more disaggregate model that depicts the German agricultural sector 

in great detail. It applies 628 homogenous farm groups and is used in the modelling chain to 

estimate impacts on the intra-sectoral distribution of income at the meso-level. The two 

models at the sectoral and meso-level are consistently linked via an iterative solution process. 

After convergence is achieved between ESIM and FARMIS, the integrated results are further 

processed in a micro model, estimating impacts at the individual farm level. The micro model 

has been developed for this study, is static in nature, and relies on the results of the meso-

model.  

After changes in individual incomes are calculated as a first step by the modelling system for 

different scenarios, model results are analysed in a second step by the application of a 

methodology for the measurement of redistributive effects that was originally developed for 

the analysis of tax reforms. Based on the comparison and decomposition of relative and 

absolute Gini coefficients, detailed redistributive impacts of changes in agricultural policy are 

presented. This methodology is applied for the first time in an ex-ante analysis of 

redistributive effects in the agricultural sector to the best knowledge of the author. For the 

analysis, scenario results for the year 2020 are evaluated relative to the income distribution of 

a reference scenario where the CAP is still in place in 2020. 

To account for different conceptual impacts of inequality analysis on results, the analysis is 

carried out at different aggregation levels, for different income classifications, and for income 

data generated in a static way in comparison to data generated by the modelling system.  

It can be stated that inequality effects are robust with regard to the conceptual differences 

tested for, at least in terms of the direction of inequality changes. All calculated liberalization 
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scenarios lead to decreasing absolute income differences among western German farms in 

2020 because high-income farms lose higher absolute amounts of money than small-income 

farms. Relative to their Baseline incomes, however, low-income farms tend to lose a higher 

share compared to high-income farms which leads to increasing relative inequality due to 

liberalization. Only one exemption from this pattern of results exists: if grouped results are 

disaggregated and total household income is considered instead of family farm income.  

With regard to the different policy instruments, it turns out that the abolishment of market 

price support is more progressive in absolute terms and less regressive in relative terms than 

the abolishment of direct payments. This is because income reductions caused by the 

abolishment of market price support is more unequally distributed (a higher share of losses in 

the upper tail of the distribution and a lower share in the lower tail) than losses caused by the 

abolishment of direct payments. 

Additionally, a decomposition of inequality effects of CAP liberalization by subgroups is 

carried out in this work. When the Gini coefficient is decomposed, three inequality 

components can be defined: inequality within subgroups, inequality between subgroup means 

and a term that arises when distributions of subgroups are overlapping. From the overlapping 

term the state of segregation of the farm population with regard to subgroups can be derived. 

Furthermore, a more detailed picture of the underlying processes of inequality changes can be 

revealed with this methodology. 

The analysis is carried out with regard to different grouping criteria. In a first analysis, 

subgroups refer to farm types while in a second analysis, subgroups refer to the region a farm 

is located in. Based on this analysis, the importance of the group of dairy farms for inequality 

effects is discovered. 

Even though the defined minimum requirement of a CAP reform (a positive redistributive 

effect in absolute terms) is fulfilled in all conducted scenarios, it is difficult to give policy 

recommendations based solely on these analyses since redistributive effects are only one 

concern of agricultural policy. The developed modelling tool mainly is suited to observe 

(unintended) distributional effects of CAP reforms, which is not intended to be the sole 

decision criterion, but rather to complement other policy analyses. 

In summary, this work provides an innovative combination and extension of different 

simulation models, which enables the ex-ante measurement of income changes for individual 

farms. This information in turn facilitates the measurement of redistributive effects in the 

agricultural sector taking behavioural effects into account. The new modelling system is able 

to answer questions which might become more relevant for coming reforms of the CAP. In 

combination with advanced methodologies for the measurement of redistributive effects and 

for the decomposition of inequality indices, the tool can provide valuable contributions to the 

development and design of agricultural policy. 
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Zusammenfassung 

Verschiedene Reformen der letzten Jahrzehnte haben die Ausgestaltung der Gemeinsamen 

Agrarpolitik (GAP) der Europäischen Union grundlegend verändert. Traditionelle Instrumente 

der Marktpreisstützung wurden in zunehmendem Maße durch Direktzahlungen an 

landwirtschaftliche Betriebe ersetzt. Diese Entwicklung führte zu einer erhöhten Transparenz 

in der politischen Stützung des Agrarsektors und rückte die Frage der Verteilung von 

Subventionen stärker in den Fokus des öffentlichen Interesses. Die Verteilungsaspekte der 

europäischen Agrarpolitik fanden daraufhin verstärkt Eingang in den politischen Diskurs und 

wurden unter anderem von der Europäischen Kommission in ihrem Bericht zur Verteilung der 

Direktzahlungen an Landwirte für das Geschäftsjahr 2011 aufgegriffen.   

Das gesteigerte Interesse an den Verteilungswirkungen der Agrarpolitik spiegelt sich auch in 

der wissenschaftlichen Fachliteratur wieder. Der Großteil der wissenschaftlichen Arbeiten zu 

diesem Thema besteht jedoch aus ex-post Analysen und wurde ohne Einbeziehung von 

möglichen Verhaltensänderungen einzelner landwirtschaftlicher Betriebe in Reaktion auf 

agrarpolitische Maßnahmen und ihre Effekte durchgeführt. Trotz des unbestrittenen Nutzens 

von ex-post Analysen sind diese jedoch nur von eingeschränktem Wert für die Evaluation der 

Folgen politischer Reformen vor ihrer Umsetzung. Da politische Reformen vorab jedoch nicht 

in einer neutralen Umgebung getestet werden können, müssen kontrafaktische Situationen 

durch die Anwendung von Modellen künstlich erzeugt werden. 

Für diese Art der Politikfolgenabschätzung wird regelmäßig auf Simulationsmodelle 

zurückgegriffen. In anderen wissenschaftlichen Bereichen – beispielsweise in der Analyse 

von Armutseffekten oder in der Analyse von Steuerreformen – ist es gängige Praxis, die 

Auswirkungen makroökonomischer Veränderungen auf die individuelle 

Einkommensverteilung eines Landes durch die Anwendung von Simulationsmodellen vorab 

zu bewerten. Für die Bewertung von Verteilungseffekten ist die Aggregationsstufe des 

verwendeten empirischen Modells essentiell. Da die Heterogenität der Einkommen bewertet 

werden soll, ist die First-Best-Aggregationsstufe für die Analyse von Verteilungseffekten der 

individuelle Einkommensbezieher. Folglich wurden Methoden für die simultane Modellierung 

von Auswirkungen makroökonomischer Änderungen auf hoch aggregiertem und 

individuellem Level entwickelt. Für diese Art von Analysen werden häufig Ergebnisse aus 

Makromodellen mit umfangreichen Haushaltsdatensätzen kombiniert. 

Ähnliche Instrumente für die Bemessung von Auswirkungen sektoraler oder 

makroökonomischer Politiken auf die Höhe individueller Einkommen gibt es weniger oft für 

die Analyse des Agrarsektors. Von seltenen Ausnahmen abgesehen, sind ex-ante Studien zu 

den Wirkungen von Agrarpolitik auf die individuelle Einkommensverteilung im Agrarsektor 

kaum zu finden. 
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Grundsätzlich gibt es jedoch eine lange Tradition in der Entwicklung von Modellen für die 

Politikfolgenabschätzung im Agrarsektor. Auch die kombinierte Nutzung von verschiedenen 

Einzelmodellen für die gemeinsame, konsistente Bewertung von Politikszenarien auf 

verschiedenen Aggregationsstufen ist üblich. Die meisten Modell-Kombinationen beziehen 

sich jedoch auf die Auswertung von Betriebsgruppen oder Durchschnittsbetrieben als 

niedrigste Aggregationsstufe. Es existieren einige Ansätze, die Makromodelle mit 

Mikromodellen verknüpfen, die ihrerseits Verhaltensanpassungen einzelner Betriebe 

abbilden. Viele dieser Studien beschränken sich jedoch auf die Abbildung von bestimmten 

Betriebstypen oder Regionen. Grundsätzlich ist festzuhalten, dass bislang nur sehr wenige 

überregionale ex-ante Analysen von betriebsindividuellen Verteilungseffekten durchgeführt 

wurden. Unter einer Analyse von Verteilungseffekten ist dabei eine vergleichende Bewertung 

verschiedener Einkommensverteilungen unter Zuhilfenahme von Konzepten zur 

Progressivitätsmessung oder verwandter Konzepte zu verstehen. 

Vor diesem Hintergrund ist es Ziel der vorliegenden Arbeit, eine Analysemethode zur 

simultanen und konsistenten Bewertung von agrarpolitisch induzierten 

Einkommensverteilungswirkungen auf aggregierter und betriebsindividueller Ebene im 

Agrarsektor zu entwickeln. Dabei wird auf bereits bestehende Einzelmodelle zur 

Politikfolgenabschätzung zurückgegriffen. Mit der entwickelten Methode werden 

verschiedene Liberalisierungsszenarien der europäischen Agrarpolitik ausgewertet. Eine 

detaillierte Analyse von Auswirkungen auf die betriebsindividuelle Einkommensverteilung 

wird für den westdeutschen Agrarsektor präsentiert. Dabei werden verschiedene methodische 

und empirische Beiträge zum Verständnis der ex-ante Modellierung von Verteilungseffekten 

geleistet. 

Das in der vorliegenden Arbeit entwickelte Modellsystem besteht aus drei verschiedenen 

Stufen. Auf der sektoralen Ebene und dem Meso-Level kommen zwei bereits existierende 

Modelle zur Politikfolgenabschätzung zum Einsatz. Das „European Simulation Model“ 

(ESIM) ist ein Agrarsektormodell mit einem starkem Fokus auf die europäische Agrarpolitik. 

Das Modell wird zur Quantifizierung von agrarpolitisch induzierten Effekten auf europäischer 

Ebene sowie auf Ebene der Mitgliedstaaten verwendet. Aufgrund seiner hohen 

Aggregationsebene kann das Modell jedoch nicht zur Bestimmung von intra-sektoralen 

Einkommensänderungen verwendet werden. Hierzu wird das „Farm Modelling Information 

System“ (FARMIS) hinzugezogen. Letzteres operiert auf einer niedrigeren Aggregationsstufe 

und bildet die Produktionsseite des deutschen Agrarsektors in größerem Detail ab. In dem 

Modell werden 628 homogene Betriebsgruppen verwendet, um intra-sektorale 

Einkommensänderungen auf dem Meso-Level abzubilden.  

Die beiden Modelle werden in einem iterativen Prozess miteinander verlinkt. Nachdem 

Konvergenz zwischen ESIM und FARMIS erreicht ist, werden die Ergebnisse für die 628 

Betriebsgruppen in einem Mikromodell weiter disaggregiert. Das Mikromodell wurde für die 

vorliegende Studie entwickelt. Es handelt sich um ein statisches Modell, das keine eigenen  
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Verhaltensänderungen einzelner Betriebe abbildet und eng auf das FARMIS Modell 

abgestimmt ist. 

Die in einem ersten Schritt unter Anwendung des Modellsystems simulierten 

betriebsindividuellen Einkommensänderungen werden in einem zweiten Schritt analysiert. Zu 

diesem Zweck wird eine Methode zur Messung von Verteilungseffekten angewendet, die 

ursprünglich für die Analyse von Steuerreformen entwickelt wurde. Basierend auf einem 

Vergleich und einer Zerlegung von relativen und absoluten Gini-Koeffizienten können 

detaillierte Aussagen über die Auswirkungen von agrarpolitischen Reformen auf die 

Einkommensverteilung im Agrarsektor getroffen werden. Diese Methode wird nach bestem 

Wissen des Autors zum ersten Mal im Zusammenhang mit einer ex-ante Analyse für den 

Agrarsektor verwendet. Auswirkungen verschiedener Reformszenarien auf die 

Einkommensverteilung im Agrarsektor werden für das Jahr 2020 mit Bezug auf die 

Einkommensverteilung eines Referenzszenarios bewertet, in welchem die GAP nach 

aktuellem Stand im Jahr 2020 implementiert ist. 

Um den Einfluss verschiedener methodischer Ansätze auf die Ergebnisse abzuschätzen, wird 

die Analyse für verschiedene Aggregationslevel, verschiedene Einkommensklassifizierungen 

und verschiedene Arten der Berechnung von Einkommensänderungen (statisch versus 

modellbasiert) durchgeführt. 

Bezüglich der Ergebnisse kann konstatiert werden, dass die getesteten konzeptionellen 

Unterschiede mit einer Ausnahme keinen Einfluss auf die Richtung der Verteilungseffekte 

haben. Die simulierten Szenarien, die einen Abbau der Agrarpolitik beinhalten, führen zu 

einer Verringerung von absoluten Einkommensunterschieden zwischen westdeutschen 

Betrieben im Jahr 2020. Betriebe, die im Referenzszenario ein hohes Einkommen erzielen, 

verlieren durch eine Liberalisierung absolut gesehen mehr Einkommen, als Betriebe mit 

geringerem Einkommen in der Referenzsituation. Relativ gesehen verlieren jedoch Betriebe 

mit geringerem Einkommen einen größeren Anteil ihres Referenzeinkommens in 2020 als 

Betriebe mit höherem Referenzeinkommen. Dieses führt zu einer Vergrößerung von relativer 

Ungleichheit, aber zu einer Verringerung von absoluter Ungleichheit. Für die Abschaffung 

der Marktpreisstützung wird eine stärkere Progressivität in absoluten Werten und eine 

weniger starke Regressivität in relativen Werten gemessen, als für die Abschaffung von 

Direktzahlungen. 

Zusätzlich werden in der vorliegenden Arbeit die Effekte auf die sektorale 

Einkommensverteilung in Effekte für einzelne Untergruppen zerlegt. Durch die Zerlegung des 

Gini-Koeffizienten können drei Ungleichheits-Komponenten unterschieden werden: 

Ungleichheit in den einzelnen Untergruppen, Ungleichheit zwischen den 

Durchschnittseinkommen der Untergruppen und eine Komponente für die Überschneidung 

der Einkommensverteilungen einzelner Untergruppen. Anhand der letzten Komponente kann 

der Grad der Segregation verschiedener Untergruppen bestimmt werden. Außerdem wird 
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durch die Zerlegung ein detaillierteres Bild der zugrundeliegenden Verteilungsprozesse 

gezeichnet. 

Die Zerlegung in Ungleichheits-Komponenten wird anhand verschiedener Kriterien getestet. 

Für eine erste Analyse werden Untergruppen nach Betriebstypen und für eine zweite Analyse 

nach Regionen gebildet. Basierend auf dieser Methode werden beispielsweise starke Einflüsse 

der Gruppe der Milchviehbetriebe auf die Gesamtverteilung aufgedeckt. 

Obwohl die definierte Mindestanforderung an eine GAP-Liberalisierung – ein ausgleichender 

absoluter Verteilungseffekt – in allen Szenarien erfüllt wird, können Politikempfehlungen auf 

der Basis der Modellergebnisse nur eingeschränkt hergeleitet werden, da die 

Verteilungswirkung von Agrarpolitik nur ein Bewertungskriterium unter Vielen ist. Die in der 

vorliegenden Arbeit entwickelte Methode ist hauptsächlich geeignet zur Quantifizierung von 

(unbeabsichtigten) Effekten auf die Einkommensverteilung. Ergebnisse sollten allerdings in 

Kombination mit Kennzahlen verwendet werden, die eine Erreichung weiterer 

agrarpolitischer Ziele wiederspiegeln. 

Zusammenfassend lässt sich sagen, dass die vorliegende Arbeit eine innovative Kombination 

und Erweiterung verschiedener bestehender Simulationsmodelle präsentiert, die eine ex-ante 

Messung betriebsindividueller Einkommensänderungen ermöglicht. Die mit dem 

Modellsystem generierten Ergebnisse wiederum ermöglichen eine Evaluierung von 

agrarpolitisch induzierten Effekten auf die Einkommensverteilung im Agrarsektor unter der 

Berücksichtigung von Anpassungseffekten auf betrieblicher Ebene. Auf Grundlage des 

Modellsystems können Umverteilungsfragen beantwortet werden, deren Bedeutung für 

zukünftige GAP-Reformen weiter zunehmen dürfte. 
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1 Introduction 1 

In its early years, the European Common Agricultural Policy (CAP) was designed to foster 

production and ensure food security, predominantly through high commodity prices, border 

protection and export subsidies. After serious problems such as overproduction, high 

administrative costs, and environmental damages were experienced in the 1970s and 80s, 

fundamental reforms were implemented. Due to a series of reforms, starting with the 

McSharry reform in 1992, the CAP became more market oriented. Classical market price 

support measures as intervention prices and export subsidies were gradually reduced and 

replaced by budgetary payments, so called “direct payments” (DPs). DPs were initially 

introduced to compensate farmers for declining market price support and were coupled to 

production. In 2003 it was decided to decouple most of the payments from production since 

decoupled payments are assumed to be less market distorting than coupled payments 

(European Commission, 2013).  

Moreddu (2011) argues that due to this shift from market price support measures to budgetary 

payments, agricultural support becomes more visible and consequently, the distribution of 

support among farmers has gained more public attention. Fittingly, the European Commission 

(2012, p. 8) states in its annual Report on the Distribution of Direct Aids to Agricultural 

Producers that “direct payments have lost their compensatory character over time and have 

increasingly become a support ensuring a certain farm income stability” and Schmid et al. 

(2006, p. 2) argue that the CAP “has evolved from an allocative towards a distributive 

policy”. Increasing public interest in the distribution of agricultural support and the question 

of ‘who gets what’ is reflected by media coverage (e.g. tagesschau.de, 2009) and in the 

specialized press (e.g. Agra-Europe, 2013, p. 3). Thus, equity issues in the agricultural sector 

also increasingly become an area of political concern. The European Commission (2012, p. 

8f) e.g. claims that “the proposals for the CAP after 2013 […] aim to reduce the discrepancies 

between the levels of payments obtained after full implementation of the current legislation, 

between farmers, regions and Member States”. Already in 1998 OECD ministers of 

agriculture agreed that, among other criteria, measures of agricultural policy should be 

equitable (OECD, 1998). 

Besides growing public and political interest, there are also good economic reasons to analyse 

the effects of agricultural policy on income distribution in the agricultural sector. Mishra et al. 

(2009) for instance refer to links between farm income inequality and technology adaption, 

productivity, sector growth, and further social issues such as family health. 

This interest is also reflected in the scientific literature (see Section 5.2). However, most of 

the literature regarding redistributive effects of agricultural policy is ex-post and static in 

nature. Several studies focus on the distribution of direct payments (e.g. Keeney, 2000; El 

                                                 

1 Parts of this section are identical with parts of chapter 1 in Deppermann et al. (2013). 
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Benni and Finger, 2012). Fewer authors also take effects of market price support into account 

and aim to assess redistributive effects of the whole system of agricultural support (e.g. 

Allanson, 2006; 2008; Moreddu, 2011). Furthermore, some attempts are made to evaluate 

impacts of possible future reforms of EU agricultural policy on individual farm incomes at the 

national level in an ex-ante way, but without taking any behavioural effects into account (e.g. 

Severini and Tantari , 2013). 

Yet, despite the undoubted usefulness and importance of ex-post analyses, they are of limited 

use when it comes to the evaluation of “distributional impacts of policies or policy designs 

that do not currently exist, but that might exist in the future” (Bourguignon and Ferreira, 2003 

p. 123). For such an exercise, counterfactual situations have to be constructed. In the best 

case, incentive effects of individuals are taken into consideration since they “respond to 

policy changes by changing their own actions” and thus, “counterfactual[s] must rely on some 

representation of […] behaviour” (ibidem, p. 124). 

Simulation models account for behavioural effects, but the measurement of inequality is 

highly sensitive to the aggregation of individual data and the traditional approach of applying 

few representative groups within a simulation model turned out to be inadequate due to 

unobservable changes in inner-group inequality (Bourguignon et al., 2005; Savard, 2005). The 

share of total inequality that is accounted for by measuring inequality between groups is 

expected to increase with the number of subgroups a population is divided into, other factors 

being equal (Shorrocks and Wan, 2005). Still, as Elbers et al. (2005) empirically find, even a 

relatively high number of subgroups may coincide with a high within-group inequality 

component.2 

In other scientific areas, e.g. poverty analysis or tax reform analysis, it is quite common to 

assess impacts of macroeconomic shocks on income distributions on a national scale by the 

application of behavioural ex-ante models and referring to the level of individual incomes. To 

this end, methods were developed to commonly analyse impacts of macroeconomic shocks on 

an aggregate and individual level by combining outputs of macro models with individual data; 

mostly large population or household surveys. Different approaches are extensively reviewed 

in section 2.3.3 of this study. 

Similar tools for the measurement of impacts of sectoral or macroeconomic policies on the 

individual farm income level are less frequent for the agricultural sector. An example is a tool 

presented in Keeney and Beckman (2009), Keeney (2009), and Hertel et al. (2007), which 

combine a computable general equilibrium (CGE) model with a large-scale farm household 

survey. However, the link to the micro level is established through identical changes for all 

farm households in labour allocation, consumption and production and thus heterogeneity 

mainly is introduced by farm specific differences in initial income sources. Other attempts are 

made to combine macro or sectoral models with micro models, which incorporate the 

                                                 

2 However, it shall be mentioned that in their work still a relatively high number of individuals is embedded in an 
average group. 
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behaviour of individual farms; however, such research is often restricted to the analysis of 

specific types of farms. Some model chains, however, do include a high number of individual 

farms (e.g. Louhichi and Valin, 2012) and might be extendable to represent the whole sector. 

Furthermore, in principle, the LEI model funnel presented by van Tongeren (2000) and 

Woltjers et al. (2011) would enable the analysis of macroeconomic impacts on individual 

farm incomes via the Financial-Economic Simulation model (FES), which is an FADN3-

based, non-behavioural accounting model on the single farm level. However, the analysis of 

redistributive effects4 among individual farms on a supra-regional level has not been 

conducted so far, to the best knowledge of the author with any of these models. Income 

effects rather are reported in more aggregated form for specific farm types or regions. 

Further tools worth mentioning are models, which depict farms at regional or farm type level, 

e.g. the CAPRI model (Britz and Witzke, 2012). These kinds of models are suitable to assess 

income changes at a certain level of disaggregation but not on the single farm level. 

Yet, even though ex-ante studies which explicitly aim at the estimation of redistributive 

effects of agricultural policy are rare, in general, ex-ante policy impact analysis in the 

agricultural sector has a long tradition. The combination of models to mutually assess effects 

at different levels of aggregation, taking behavioural effects into account, is very common 

(see section 2.3.2 for a review of different linking approaches). 

Against this background, the main objective of this work is to develop a tool that is able to 

consistently assess impacts of agricultural policy on individual farm incomes, thereby 

building up on existing modelling approaches and thus, taking behavioural effects into 

account for the ex-ante analysis of redistributive effects of agricultural policy. Subsequently, 

different liberalization scenarios are defined and a detailed analysis of redistributive effects is 

carried out for the western German agricultural sector by the application of methodologies 

borrowed from the field of tax progressivity analysis. In doing so, several contributions to the 

understanding of modelling inequality effects are made, methodologically as well as 

empirically. 

The modelling system consists of three layers. At the sectoral and the meso-level two 

previously developed large scale models are applied. The European Simulation Model (ESIM, 

Grethe, 2012) is an agricultural sector model with a strong focus on the CAP. It depicts the 

world agricultural sector – though in different degrees of disaggregation – and quantifies 

effects of agricultural policy at the European level. However, it is unable to estimate intra-

sectoral income changes at the farm level. The Farm Modelling Information System 

(FARMIS, Osterburg et al., 2001; Bertelsmeier, 2005; Offermann et al., 2005) is a more 

disaggregate model that depicts the German agricultural sector in great detail. It applies 628 

                                                 

3 Farm Accountancy Data Network 
4 The term ‘redistributive effects‘ in this case explicitly refers to the evaluation of a new income distribution with 
regard to another income distribution and the assessment of progressivity or related concepts. It does not refer to 
the pure calculation of income changes in different regions or for different farm types, as for example presented 
in Louhichi and Valin (2012). 
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homogenous farm groups and is used in the modelling chain to estimate impacts on the intra-

sectoral distribution of income at the meso-level. The two models at the sectoral and meso-

level are consistently linked via an iterative solution process. 

The ESIM model depicts the German agricultural sector through representative individuals 

(Kirman, 1992) for supply and demand, not differentiating between the different actors within 

the sector. Thus, ESIM is clearly exposed to the critics regarding the representative 

individuals approach, especially in terms of aggregation biases. Due to its more disaggregated 

structure, the FARMIS model is able to incorporate individual behaviour in more detail. 

Particularly, biophysical constraints and individual differences e.g. in terms of factor 

endowments can be accounted for. Nevertheless, due to the application of farm groups rather 

than single farms, results also are supposed to be biased by aggregation, however, to a far 

lesser extent than in ESIM. Thus, due to the consistent combination of the two models the 

aggregation bias in ESIM probably will be relaxed. The determination of the impact of the 

joint application of the models on the results is one sub-goal of this study. To this end, 

differences in the reaction of both stand-alone models to the same price changes will be 

discussed in chapter 4.2 before mutual results are presented. 

After convergence is achieved between ESIM and FARMIS, the mutual results are 

subsequently further processed in a micro model which estimates impacts at the individual 

farm level. The micro model has been developed for this study, is static in nature, and relies 

on the results of the meso-model. Comparability between corporate and family farms cannot 

be ensured when using family farm income (FFI) as an indicator for income. Thus, due to the 

dominance of corporate farms in eastern Germany, results regarding the measurement of 

inequality are presented for western Germany only. 

The methodology for the measurement of inequality in this study is traditionally developed 

and applied in the field of tax analysis. Based on the comparison and decomposition of Gini 

coefficients, detailed redistributive impacts of changes in agricultural policy are presented. 

Inter alia, different measures of agricultural policy (DPs vs. market price support) are assessed 

regarding their redistributive impacts and different concepts of inequality (relative vs. 

absolute) are applied. 

Due to an application of data at different aggregation levels (farm groups vs. individual farms) 

the magnitude of the aggregation bias regarding inequality parameters due to data grouping is 

assessed. Furthermore, to assess the relevance of links between market income and 

agricultural support, a static analysis is conducted and compared to the model based analysis. 

In addition, analyses for different concepts of income (i.e. family farm income vs. total farm 

household income) are compared regarding their redistributive outcomes. Results are 

discussed with reference to existing insights from the scientific literature. 

Furthermore, a detailed analysis of inequality effects with regard to farm types and regions is 

presented. To this end, the overall farm population is subdivided into farm type and regional 

groups, respectively. Subsequently, the Gini inequality index is decomposed with regard to 
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these groups. Thereby, effects can be distinguished with respect to within-group inequality, 

between-groups inequality, and an overlapping term. The latter is conceptually closely related 

to stratification characteristics of the overall farm population and to the best knowledge of the 

author, the methodology is applied for the first time in agricultural sector impact analysis. 

The present study consists of seven chapters. Following this introduction, in Chapter 2 the 

theoretical background for this study is provided and relevant literature for the combination of 

models depicting different levels of aggregation is reviewed. In Chapter 3 the modelling 

chain which is established and applied afterwards in this work is described in detail. Scenario 

descriptions and sectoral results are provided in Chapter 4. Chapter 5 is dedicated to 

introducing the methodology which is applied for the measurement of inequality and 

redistribution. Furthermore, literature which is concerned with the distributional effects of 

agricultural policy in the agricultural sector is reviewed and subsequently, redistributive 

effects are presented for different liberalization scenarios in western Germany. In Chapter 6 a 

subgroup decomposition of inequality effects is presented. In Chapter 7 the work is 

summarized and concluded. 
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2 Heterogeneity and Simulation Model Coupling – Theoretical 
Considerations and State of the Art 

The endeavour of the following lines is to give a meaning to the term ‘simulation model’. 

Thereafter, potential problems of utilizing aggregated data in simulation models are discussed. 

One possible way to overcome these problems and to simultaneously assess impacts at the 

macro and micro level is the combination of different stand-alone models. A subsequent 

literature review is presented on the coupling of models for the purposes of agricultural sector 

analysis and the measurement of inequality impacts. 

 

 Simulation modelling 2.1

Empirical models are suited for the evaluation of political reforms in complex environments. 

Models are able to reduce complexity by abstracting to a certain degree from reality and by 

focusing on the problem area under consideration. 

If a policy reform is already implemented, ex-post analyses can generate valuable insights on 

the outcomes of that reform. However, if information on the possible outcomes of a reform is 

desired as basis for decision-making before a reform is implemented, ex-ante analysis is 

required. Since in economics the outcome of policy reforms can hardly be tested in a 

laboratory, a simulation of the likely outcomes can serve as a substitute to provide the desired 

information. Thus, conducting ex-ante analyses means answering ‘what if’ questions by 

generating a counterfactual situation that can be compared to the status quo or to other 

simulated scenarios. Consequently, to generate a counterfactual situation as realistic as 

possible, the behaviour of actors under consideration needs to be taken into account and 

incentive effects should be incorporated (Peichl, 2009; Bourguignon and Ferreira, 2003). 

To conclude, simulation models generally are tools for the execution of ex-ante analyses and 

at best, take behavioural effects into account. However, the latter is not an inevitable 

condition since certain questions may require information on first-round effects. Furthermore, 

no model can account for all behavioural effects. From this perception, a static model may 

simply be seen as a variation of a behavioural model that assumes constant behaviour. 

The impacts of a policy reform may have various dimensions. In the absence of the ‘world 

model’ (van Tongeren et al., 2001), specific policy simulation tools exist in various fields of 

research, are concerned with different problems, and are conducted at different levels of 

aggregation. To concretize the very broad definition of simulation models given above, in the 

following, different types of models, which are frequently applied for ex-ante policy 

evaluations in the agricultural sector, are introduced. Subsequently, micro-simulation models, 

which are typically applied for the analysis of redistributive effects, are introduced. Only 

model types which are relevant for the work at hand and those that are closely related are 

discussed since manifold approaches of simulation models exist and the field is very 
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fragmented. Thus, several other modelling approaches which by definition also are simulation 

models are not explicitly mentioned in this overview. 

One model type, which is, among applications in many other research fields, regularly utilised 

for economic ex-ante analyses of agricultural policies, is the CGE model. CGE models rely on 

general equilibrium theory. They depict all sectors and agents (households, firms and 

government) of an economy and their interrelations, though mostly on a high level of 

aggregation. The reactions of agents are specified by underlying functional forms and 

exogenously implemented behavioural parameters. Furthermore, optimizing behaviour of 

agents is assumed. The objective of the models is to evaluate the impacts of changes in 

exogenous parameters on endogenous variables, for example on prices and quantities. For this 

purpose the models are calibrated to a consistent dataset which was observed at one point in 

time. This procedure ensures that observed data are replicated when the model is solved for 

the base period. For the generation of counterfactual scenarios, one or more exogenous 

parameters are changed and the system is forced to find a new equilibrium with newly 

calculated endogenous variables (Hertel et al., 2007; Peichl, 2009). 

Other frequently applied models are partial equilibrium (PE) models. Similar to CGE models, 

in PE models behaviour is determined by functional forms and behavioural parameters. Also, 

optimizing behaviour of agents is assumed and the models are calibrated to observed base 

year data. However, in contrast to general equilibrium models, partial models only depict one 

sector of the economy. For the agricultural sector of an industrialized country, the underlying 

assumption is that the sector is so small that no feedback effects exist to other sectors of the 

economy. Thus, macroeconomic indicators and other variables like the rate of technical 

progress are introduced exogenously. The advantage of partial equilibrium modes of the 

agricultural sector is that interrelations between demand and supply of agricultural products 

can be depicted in greater detail (van Tongeren et al., 2001). 

The third model type is well established at the farm level and is based on programming 

approaches. Models in this category are also partial models since only the agricultural sector 

is considered. Mostly, only the supply side is modelled or the programming model is 

combined with a demand component to endogenously account for price effects in agriculture, 

as well (see e.g. CAPRI, Britz and Witzke, 2012). The basic concept of programming models 

relies on the depiction of several farm groups which are represented by an objective function 

that is optimized under several constraints. This approach, in general, allows for a more 

disaggregated and detailed depiction of agricultural production compared to equilibrium 

models. 

For the analysis of policy induced redistributive effects, micro-simulation models frequently 

are applied. Micro-simulation models are “microanalytic partial models focusing on one side 

(usually the household side) of markets” (Peichl, 2009, p. 305) and “allow simulating the 

effects of a policy on a sample of economic agents […] at the individual level” (Bourguignon 

and Spadaro, 2006, p. 77). When applied for the analysis of redistributive effects they mostly 
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are based on large population or household surveys. Bourguignon et al. (2008b) differentiate 

between models with micro accounting and models with behavioural micro simulation. The 

first group of models are static models and do not allow for the adjustment of consumption or 

production when prices are changed and thus, only first-round effects are taken into 

consideration. The latter models take behavioural effects into account to a certain degree and 

often rely on econometric approaches. 

A subcategory of micro-simulation models which frequently is applied in the analysis of the 

agricultural sector is subsumed under the term ‘agent based models’ (ABM). ABMs aim to 

model behaviour of individual farms (agents) and their interaction with each other. The ABM 

approach usually relies on income maximizing behaviour of the agents and builds on 

mathematical programming techniques. It allows for the integration of detailed economic 

factors (like e.g. transaction costs) or of non-economic factors that have impacts on individual 

behaviour (Kremmydas, 2012). Most of the ABMs depicting the agricultural sector are 

applied on a regional scale, though exemptions are available: The SWISSland model (Mack et 

al., 2011) e.g. depicts the whole Swiss agricultural sector. However, ABMs have rarely been 

applied for the analysis of redistributive effects in the agricultural sector, so far. 

In general, models operating at a high level of aggregation typically depict the economy in a 

less detailed manner. However, variables may change their nature at different levels of 

aggregation, i.e. being exogenous at the individual level but endogenous at the macro level 

(Laborte et al, 2007). The trade-off between generality and scope on the one side and detailed-

ness on the other can be observed in many modelling exercises (e.g. Gohin and Moschini, 

2006). In the following sections, biases that trace back to the aggregation of data are discussed 

in more detail before the coupling of different stand-alone models is discussed as one 

possibility to overcome this trade-off. 

 Heterogeneity and aggregation 2.2

Depending on the type of aggregation, different types of biases may occur. Potential biases of 

empirical models due to the utilization of aggregated data will be discussed briefly in the next 

section. Subsequently, the specific problems of data aggregation with regard to the analysis of 

distributional effects will be presented. 

 

2.2.1 Aggregation biases in simulation modelling 

Depending on the type of model and the particular aggregation of the underlying data, 

different types of errors presumably occur in modelling exercises. One can distinguish 

between individual aggregation, special aggregation, product or sectoral aggregation, and 

temporal aggregation of data. 

When data over individuals are aggregated, the heterogeneity of the base population needs to 

be taken into account to draw reliable inferences on aggregate reactions on parameter changes 
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e.g. in the political environment of a sector (e.g. Stoker, 1993). Heterogeneity of farms might 

stem from various sources, such as different returns to scale, environmental constraints, or 

management abilities, which can be subsumed under the term production technology. Usually, 

equilibrium models apply behavioural parameters which are econometrically estimated or rely 

on expert knowledge to determine the intensity of reactions of their implemented agents. Even 

if these parameters take heterogeneity fully into account, they cannot account for a likely 

changing composition of individual farms which presumably leads to changing marginal 

reactions of the aggregate. Furthermore, policies designed to have different impacts on certain 

types of farms (e.g. the currently discussed capping of direct payments for the post-2013 

phase of the Common Agricultural Policy of the EU) can hardly be depicted in models which 

work with highly aggregated data. Thus, a highly aggregated model might lead to 

considerably differing results compared to a model operating at a disaggregated level. A 

similar argument counts for the depiction of bio-physical or environmental constraints which 

might be binding for some individual farms but not for others. 

Spatial aggregation errors are virtually all a special sub-type of individual aggregation errors 

as individual characteristics related to a regional component are taken into account. Different 

adjustment reactions might be caused in different regions due to region-specific constraints in 

production (e.g. environmental requirements) or regionally designed policy measures (e.g. the 

regional model of direct payments in Europe). Different regions might face different prices 

(e.g. due to transportation costs). An aggregation over regions excludes this and may therefor 

lead to biased results. 

Other biases might occur in models due to aggregation over different products or sectors. 

When combining different products or factors to a common aggregate one implicitly treats 

them as perfect substitutes, which certainly leads to stronger biases the more heterogeneous 

the products are. 

Narayanan et al. (2010) describe the disadvantages of using sectoral aggregated data for trade 

policy analysis in CGE models. They argue that product specific tariffs and policies cannot 

properly be depicted in models with highly commodity-wise aggregated data as many 

products are not explicitly identified. Further, they find aggregation biases due to “false 

competition”. This term refers to a situation where “two countries that do not compete in a 

third market at the disaggregated level (e.g. one exports engine blocks and one auto 

transmissions), may appear as competitors at an aggregate (auto parts) level” (Narayanan et 

al., 2010, p. 755). 

Data aggregation over time has not been widely discussed explicitly in relation with 

simulation modelling. Nevertheless, it is clearly of interest when dealing with seasonable 

labour or harvesting periods for example. Furthermore, time and adjustment processes are 

crucial parameters in the analysis of policy reforms (van Tongeren, 2000) since short run 

effects may be oppositional to long run effects. 
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Clearly, in more disaggregated models lower aggregation biases are expected ceteris paribus. 

Building models in a more disaggregate way, however, often comes at the cost of restricting 

the scope of the area depicted in the model. 

Findings on the importance of aggregation biases in empirical work, however, are ambiguous. 

Shumway and Davis (2001) for example review nine studies5 focusing either on individual or 

commodity-wise aggregation and find that the majority report small inferential errors due to 

aggregation. The authors also found, however, that including distributional information about 

individuals generally reduces the existing error of aggregation over individuals. Wu and 

Adams (2002) argue that the prediction accuracy of aggregate models is not necessarily 

problematic, especially if over-predictions for some individuals are compensated by under-

predictions for others. However, other studies like e.g. Charteris and Winchester (2010), 

Narayanan et al. (2010) or Bektasoglu et al. (2012) find serious problems due to sectoral 

aggregation and large impacts on simulation results. 

 

2.2.2 Data aggregation and measurement of inequality6 

In general the measurement of inequality is highly sensitive to the aggregation of data since 

heterogeneity is exactly the parameter under consideration. The impact of the information loss 

due to aggregation becomes most obvious in the extreme case when there is only one 

aggregate group used for simulation (e.g. with the representative individual approach). 

Without any information on the distribution of a certain variable – let’s assume income – an 

inequality measurement is impossible. 

Consider a population being divided into k mutually exclusive groups and I total representing an 

additively decomposable7 income inequality index of the form: 

(1)    ������ =	 ��	�
	� + �
������	 
where Iwithin is a (weighted) sum of income inequality inside the k groups and Ibetween the 

inequality between subpopulation means (Deutsch and Silber, 1999). In the extreme case of 

just one representative group, all the desired information would be hidden in Iwithin whereas 

only Ibetween would be measurable, but without any meaning in this case. Obviously, inequality 

inside of aggregated groups is not observable and thus, the loss on information generates a 

downward bias in the measurement of overall inequality by only incorporating grouped 

income data, even with a higher number of groups. 

                                                 

5 It shall be mentioned that these studies are concerned with testing for inferential errors due to aggregation, but 
not explicitly are related to any kind of simulation modelling. 
6 Parts of this section are identical with parts of chapter 1 in Deppermann et al. (2013). 
7 The term ‘additively decomposable’ refers to the property of an inequality index, to be subgroup decomposable 
into exactly two terms: the between-groups inequality component which is gained by replacing all individual 
incomes by subgroup means and the within-group component, which is a weighted average of inequality within 
subgroups. As will be seen later on, the Gini coefficient e.g. is not additively decomposable in this sense 
(Deutsch and Silber, 1999). 
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However, since for a long time many official statistics only provided classified income data, 

some methodologies were developed to deal with the occurring bias and to approximate the 

real overall inequality. Two approaches can be distinguished which are sometimes commonly 

applied. One is based on the calculation of upper and lower bounds of the distribution. The 

lower bound is derived by assuming that all members of a group have the same (average) 

income – which basically means setting Iwithin to zero – and the upper bound is derived by the 

calculation of maximum possible inequality inside the single groups. Ogwang (2006) gives a 

recent survey on existing approaches. Nevertheless, some minimum descriptive information 

about the single groups is required. In general, knowledge of the income bounds (the 

minimum and maximum income inside one group) or other adequate information is necessary 

for the computation of the maximum possible inside group inequality. 

A second way to deal with grouped income data is through the application of a functional 

form that satisfies the properties of a Lorenz curve (Ogwang, 2006). However, at least some 

observed points of the Lorenz curve are required for a meaningful utilization of this method. 

These minimum requirements are met in most classified income data, because the groups are 

non-overlapping and static, but usually not when grouped data are used in policy simulations.8 

Since mostly analysts are interested in (average) income effects of subpopulations defined by 

diverse attributes other than income (e.g. gender, area, etc.) income bounds of the subgroups 

are overlapping. Furthermore, bounds can only be observed in the moment of calibration, 

when the groups are generated on the basis of individual data. After conducting scenario 

simulations with the model, only average values are observable for groups. 

Even if the goal is not the identification of the exact effects on overall inequality but rather the 

effectiveness of a certain policy (e.g. does inequality decrease at all?), it is not a priori 

unambiguous that measurement of sole between-groups inequality detects the direction of the 

change of overall inequality. To identify the change of total inequality ∆������ =	∆��	�
	� +
∆�
������ it has to be ensured, that the change of the unobserved within-component is not 

overcompensating the change of the between-component. Savard (2005), Bourguignon et al. 

(2005) and Ahuja et al. (1997) empirically show the importance of within group inequality. It 

also becomes clear that the occasionally used approach to exogenously define inequality 

within groups and apply the distribution with a new average income after the simulation is not 

sufficient to capture unambiguously the effects of overall inequality changes, because there is 

no reason why income distribution should be unaffected by different scenario assumptions. 

Nevertheless, for an approximation of the effects on the absolute level of poverty this 

approach may be judicious (e.g. Pereira da Silva et al., 2003).  

Clearly, with an increasing level of disaggregation (i.e. an increasing number of groups) and 

an increasing homogeneity of the individuals grouped together, an increasing part of the 

necessary information is expected to shift from the unobservable into the observable part of 

inequality (Shorrocks and Wan, 2005). A sufficient level of disaggregation, however, is a 

                                                 

8 Unless subgroups consist of only one individual, of course. 
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priori not ascertainable. Elbers et al. (2005), for instance, empirically find that even a 

relatively high number of subgroups may coincide with a high within-group inequality 

component. Thus, the first, best level of disaggregation for inequality analysis is the 

individual level. 

To avoid the occurrence of all kinds of aggregation biases, more disaggregated and detailed 

models are required. These kinds of models, on the other hand, often fail to adequately take 

into account interactions at the macro level. To overcome the trade-off between detailedness 

and generality, different stand-alone models can be coupled. In the following section, the 

current state of research on coupling different simulation models is introduced.  

 

 State of the art of model coupling for agricultural sectoral policy 2.3
impact analysis and the assessment of income redistribution 

This chapter starts with a look at the motivation to couple stand-alone models, which is 

mentioned in the literature. Subsequently, an overview of different attempts of model linkages 

is given. Due to the manifold usage of simulation models in policy analysis the focus is laid 

on two specific strands of literature, which are related to the present work and may be 

understood as a pragmatic way of summarizing relevant literature. 

One strand of literature refers to the combination of stand-alone simulation models that focus 

on the agricultural sector (including side effects for example on the environment or land use 

effects) and is presented in section 2.3.2. There are only a few attempts which aim at an ex-

ante analysis of redistributive effects of agricultural policy and even fewer which apply a 

modelling chain for that purpose. Nevertheless, some model chains estimate reactions of 

individual farms on sectoral policy changes. Generally, simulation model based analysis of 

macroeconomic impacts on income distribution has been done in numerous ways, however, 

mostly with regard to household income or poverty issues on the consumption side. These 

studies are surveyed in section 2.3.3.  

For the sake of completeness it shall be mentioned that redistributive effects of agricultural 

policy have been analysed in manifold ways, but the bulk of the studies are ex-post studies. A 

few ex-ante analyses have been carried out, yet, by the application of static models. The 

respective literature will be reviewed extensively in section 5.2. 

 

2.3.1 Motivation 

Looking into the literature, authors give several reasons why they combine different models. 

Helming and Banse (2008, p. 371) state that a “chain of models gives results that are more 

realistic and consistent with the economic behaviour at the different levels of aggregation” 

and that “linking models also allows to conduct economic analysis which covers various 
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degrees of regional and commodity coverage”. For Offermann (2008, p. 361) the “increased 

coverage” and the “improved consistency of scenarios” are also major advantages of linking 

models. Britz (2008, p. 363) mentions the “combined analysis of economic and environmental 

consequences of policy”. Helming et al. (2006) and Kuhlman et al. (2006) argue that different 

models possibly create diverging results for the same variable and that linking different 

models can counteract this issue, while creating more consistent results with economic 

behaviour at different aggregation levels. Böhringer and Rutherford (2006, p. 1) recognise 

that with an increasing level of aggregation “models may also violate fundamental physical 

restrictions”. 

Summing up, two main arguments are at the centre of linking models: besides the increased 

consistency and plausibility of the analyses due to better depiction of behavioural effects at 

different aggregation levels, the increased number of observable variables to evaluate a policy 

simultaneously from several different perspectives (e.g. market effects and environmental 

effects) is mentioned.9   

Both of these objectives are also central to the present work. Models are coupled to broaden 

the scope of the analysis and observe effects of policy changes on income distribution, which 

requires the combined measurement of price effects at an aggregate level and income effects 

on the individual farm level. Second, the accuracy of supply reactions to policy changes under 

consideration shall be increased by the combination of different models. 

 

2.3.2 Linking simulation models for policy impact assessment purposes in the 
agricultural sector 

Different simulation models are coupled in different ways by using data from other models or 

providing data for other models (Britz, 2008). In the literature, coupling attempts are 

commonly distinguished by their degree of model integration (e.g. Banse and Grethe, 2008b). 

Britz (2008, p. 363f) divides linking approaches into three classes: ‘model chain without 

calibration’, ‘one-way calibration’ and ‘sequential calibration’. In this chapter, his 

classification is used to give an overview about current attempts of coupling models. The last 

category, however, is referred to as ‘iterative linking’ instead of ‘sequential calibration’. 

Not considered are cases where exogenous variables like population or GDP growth estimates 

are simply implemented in stand-alone models. This approach is very common and virtually 

no simulation model would be able to run without such exogenous information. The focus of 

this review relies on approaches using different models to conjointly answer a specific 

research question by conjointly calculating a policy scenario and comparing it to a common 

                                                 

9 This distinction might seem artificial, as in many cases a more detailed depiction increases the number of 
variables as well as the consistency of the analysis. Nevertheless, the distinction adds valuable theoretical 
insights to understand, why models are coupled and what kind of advantages and challenges coupling leads to. 
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reference scenario. This clearly distinguishes relevant model linkages from implicit linkages 

that utilize results of other models to create a reference scenario itself. 

The first category (‘model chain without calibration’) is the oldest way of linking models. For 

this approach one model is used to generate data, which subsequently is used to shock another 

model. This approach results in an informal coupling since inconsistencies commonly arise in 

the conjoint outputs due to differences in underlying data, functional forms and assumptions 

of the stand-alone models. Nevertheless, so called soft linkages are less vulnerable in terms of 

model evolution compared to more integrated forms of model coupling since different models 

usually are run by different persons or institutions (Britz, 2008). Soft linkages often are 

applied to combine more than two models with each other. 

One such modelling system is presented by van Tongeren (2000). In his article he presents the 

“LEI Modelling Funnel” which consists of models representing five different levels of 

aggregation, starting with a global CGE model and ending up at the farm process level 

represented by technical models. In between, models are applied representing the EU, the 

Netherlands and the farm level. These models are coupled in a top-down manner where 

results from a higher aggregation level are used as exogenous information in the models at the 

next aggregation level. The main focus of the model funnel is CAP analysis. Since the 

informal way of model coupling (without any calibration or iteration) is applied, the funnel is 

characterized as “loosely coupled”. Van Tongeren (2000) opposes the disadvantage of 

possible inconsistencies in results to the advantage of preciseness, which can be achieved 

through personal communication and as a consequence of making underlying assumptions 

explicit due to the discussion of specific results. An update of the model funnel is presented 

by Woltjer et al. (2011). However, the main coupling methodology still relies on soft linkages 

between the models. 

In principle, the model funnel would enable the analysis of macroeconomic impacts on 

individual farm incomes via the Financial-Economic Simulation model (FES; see Woltjers et 

al., 2011), which is an FADN data based, non-behavioural accounting model on the single 

farm level. Price and policy changes are exogenously implemented and mapped to the single 

farms while taking replacement investments into consideration. However, the analysis of 

redistributive effects among individual farms on a supra-regional level has not been 

conducted so far, to the best knowledge of the author. 

A similar coupling approach is applied by Manegold et al. (1998), Bertelsmeier et al. (2003) 

and Offermann et al. (2012) which present the “vTI Modeling Funnel” and its precursors. 

They use different models at different aggregation levels to analyse agricultural policy 

impacts from the global to the farm group level in Germany. Like van Tongeren (2000) they 

couple different stand-alone models in an informal way, so that the single models still are 

independent from each other. Bertelsmeier et al. (2003) state that due to the exchange of 

information and the coordination of important model assumptions, a mutual monitoring of 

results is achieved. This approach is also applied in Nowicki et al. (2009) for the common 
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analysis of agricultural policy with a general and a partial equilibrium model. A comparative 

overview about model funnels is given by Brockmeier and Urban (2008). 

Breen et al. (2005) take commodity and input price information from the partial model 

FAPRI-Ireland and feed them into optimization models of single farms to measure the effect 

of decoupling of direct payments at the farm level for cattle, tillage and dairy farms in the 

Irish agricultural sector. Production decisions at the farm level are modelled by linear 

programming models for each relevant FADN farm relying on the assumption of net margin 

maximization. 

In the second category (one-way calibration) models are coupled in such a way that one 

model generates results, which in turn are used for the calibration of a second model. This 

procedure usually is applied in a bottom-up manner and shall ensure that a certain part of the 

higher aggregated model behaves in the same way like the disaggregated model does. 

An example for this category is the work of Britz and Hertel (2011) who combine a partial 

equilibrium programming supply model of the agricultural sector with a global general 

equilibrium model to analyse environmental impacts of biofuel policies. Based on sensitivity 

experiments the highly disaggregated supply model is used to generate a set of compensated 

own- and cross-price supply elasticities for crop groups to represent aggregate EU supply 

reactions. The standard production functions in the CGE model are replaced by more flexible 

functions which then are calibrated so that the generated elasticities are replicated. In this 

way, supply behaviour of the two different models is ensured to be consistent. 

A similar approach is described in Pérez Domínguez et al. (2009). They develop the 

EXPAMOD meta-model to econometrically parameterize a market model using simulated 

price reactions of bio-economic farm level models. Supply response of the farm level models 

is extrapolated depending on prices, farm- and environmental characteristics. Regional supply 

modules of a market model are then calibrated to these estimates. 

Louhichi and Valin (2012) combine a CGE model and a programming model of agricultural 

supply of the French arable sector to estimate impacts of biofuel policies at the farm level. In 

the programming model behaviour of all individual arable farms of the French FADN sample 

is modelled. In a first step, elasticities generated by the farm level model are implemented in 

the CGE model. Subsequently, price changes are calculated by the CGE model for different 

scenarios and the farm level model is shocked with the new prices. Income effects are 

presented on a regional basis. Since only arable farms are modelled, redistributive effects of 

the whole agricultural sector cannot be estimated. 

A less formalized approach is applied by Banse and Grethe (2008b) combining a CGE model 

with a partial agricultural sector model for the analysis of different CAP liberalization 

scenarios. In principle their approach is a simple mapping down of results that are 

endogenously calculated in the CGE model and exogenously implemented in the partial 

model (very much similar to the “without calibration” approach). However, additionally a 

detailed comparison of supply response of the two different models for the same scenario is 
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carried out and in case of major deviations the CGE model is recalibrated to reproduce the 

generally more plausible results of the partial model. 

The third category of model coupling (‘iterative linking’) aims at full consistency of the 

combined models. This is mostly achieved by an iterative procedure where results of one 

model are mutually used as input in another model. Jansson et al. (2009) use this approach to 

couple a CGE model with a PE model of the agricultural sector. The purpose of their exercise 

is to exploit the models specific strengths – a detailed depiction of the agricultural sector in 

the partial and the representation of the whole economy in the general model – and at the 

same time avoid conflicting results. The full link of the models is achieved by iteratively 

running the models. Thereby price changes are calculated by the CGE model and 

implemented in the PE model and the sectoral response of the PE model is mimicked via 

shifting the functions in the CGE model until convergence is reached. 

Helming et al. (2006) couple a CGE and partial model, where the latter is a mathematical 

programming model for the Dutch agricultural sector. In an iterative procedure real product 

price changes and changes of sectoral productivity are generated by the CGE model and used 

as exogenous inputs in the programming model. Furthermore, the non-linear cost terms of the 

programming model are calibrated to CGE results. The programming model in turn generates 

changes of agricultural production which are exogenously implemented in the CGE model. 

This procedure is continued until convergence among the models is achieved. Kuhlman et al. 

(2006) apply the same model chain and identify that the strongest differences between model 

results (in the first iteration) can be observed for products where quantitative policy 

restrictions are in place. This is due to the fact that the CGE model does not take such bounds 

into account and tends to overestimate changes in production. A similar procedure for the 

combination of a CGE with a programming supply model is presented in Böhringer and 

Rutherford (2005) for the energy sector. 

A global aggregate agricultural market model is consistently combined with non-linear 

regional programming models representing the core of the CAPRI model (Britz and Witzke, 

2012). CAPRI itself is a PE model for the agricultural sector aiming at the analysis of 

agricultural policy changes. The linkage of the market and the supply modules is carried out 

via a sequential calibration procedure, whereby the market models supply functions are 

iteratively calibrated to the results of the programming models which in turn are driven by the 

prices provided by the market models (Britz, 2008). Gocht et al. (2013) use the CAPRI model 

to calculate effects of different scenarios of direct payment harmonization for regional farm 

types in Europe. They report income changes on member state and farm type level. 

Grant et al. (2007) present another iterative coupling example. However, their partial model is 

not represented as a quadratic programming problem, but is a mixed-complementary 

formulation subsector model representing the dairy sector for trade analysis at the tariff line. 

With price changes generated by the higher aggregated CGE model and aggregate price 

response in the dairy sector generated by the partial model convergence is achieved “after just 
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a few iterations” according to the authors (Grant et al., 2007, p. 274). Comparing model chain 

results with stand-alone results of the CGE model, they conclude that aggregate welfare 

changes are quite robust, but that output response and trade flow reactions to dairy market 

liberalization tend to be underestimated by their CGE model. 

An iterative linkage between a CGE and an integrated assessment model measuring policy 

impacts on bio-physical processes is presented in papers of van Meijl et al. (2006) and Prins et 

al. (2011). Here, sectoral production growth rates, land use and productivity changes are 

provided by the CGE model and implemented in the bio-physical model which in turn 

delivers yields, land supply and feed efficiency rates to the CGE model. Due to this procedure 

a harmonization of land use in both models is achieved. 

Deppermann et al. (2012) link an energy system model and an agricultural sector model to 

assess the outcomes of EU greenhouse gas emission mitigation policies. In their stand-alone 

versions, biomass supply is exogenous to the energy system model and biomass demand for 

energy production purposes is exogenous to the agricultural sector model. Through an 

iterative combination of the models, demand and supply of energy crops are endogenized. 

An attempt at measuring impacts on the single farm taking market price effects into account is 

presented in Valdivia et al. (2012). Their approach doesn’t exactly fit into one of the 

categories used before as they basically extend a farm level supply model (the Tradeoff 

Analysis Model, TOA) by a single demand module, which they refer to as model coupling. 

The TOA model consists of bio-physical process models and economic decision models 

representing a statistically representative sample of farms in a specific region. Based on the 

individual farm results an aggregate regional crop supply curve is estimated. This regional 

crop supply curve is augmented by a demand module, which enables the model system to also 

endogenously take price changes at the regional level into account. In a final step the new 

equilibrium price is implemented in the disaggregated module again. Valdivia et al. 

demonstrate their approach with a case study for the Kenyan region Machakos. The modelling 

system enables an ex-ante analysis of outcomes of policy reforms in terms of poverty or 

inequality based on single farms in the agricultural sector. However, the analysis is restricted 

to a regional scale, where the occurrence of price changes is assumed because of poorly 

integrated markets, and to the depiction of a few crops only. 

Another approach for the consistent assessment of impacts at the sectoral and individual farm 

level is presented by Helming and Schrijver (2008). In their work they combine a partial 

equilibrium model for the European agricultural sector with a programming model for the 

Dutch agricultural sector and a bio-economic model for individual dairy farms. The two 

aggregate models are treated as a one-model system and are iteratively linked to the bio-

economic dairy farm model. Prices of agricultural commodities and factors are calculated at 

the more aggregate level and passed to the bio-economic model, which in turn delivers area 

specific results on yield changes, animal density and unit costs per type of dairy cow to the 

more aggregate models. 
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2.3.3 Linking simulation models for policy impact assessment purposes on poverty and 
income distribution 

Tools for the ex-ante analysis of redistributive impacts of macroeconomic or sectoral policies 

in the agricultural sector taking effects at the single farm level into account are rarely 

presented in the literature. Even though some approaches exist which account for impacts at 

the individual farm level, most of them only depict a share of farms like e.g. dairy farms 

(Helming and Schrijver, 2008) or arable farms (Louhichi and Valin, 2012). Only a few tools 

with a sector-wide coverage of individual farms are presented and seldom applied for the 

analysis of redistributive effects in the agricultural sector. Noticeable exemptions can be 

found in Keeney and Beckman (2009), Keeney (2009), and Hertel et al. (2007) which all 

apply the same model chain in their studies (see below). Many more studies are concerned 

with impacts of macroeconomic shocks on poverty and income distribution among the overall 

population. 

The measurement of inequality effects based on the traditional approach by the application of 

a few representative household groups (RHG) within a macro model turned out to be 

inadequate due to the unobservable changes in inner-group inequality (Savard, 2005; 

Bourguignon et al., 2005, see also section 2.2.2). Thus, methods were developed to commonly 

assess impacts of macroeconomic shocks on an aggregate and individual level by combining 

outputs of macro models with individual data, mostly large population or household surveys. 

In general, any kind of macro model can be applied for this kind of analyses. However, in 

most of the cases macro models are of the CGE type (Bourguignon et al., 2010). 

Apart from the traditional RHG approach, one can distinguish three different approaches of 

macro-micro-economic modelling for the analysis of distributional effects (based on Mussard 

and Savard, 2010)10: the top-down approach, the iterative approach and the integrated 

approach. Similar to the approaches of model coupling for policy impact analysis in the 

agricultural sector, approaches are distinguished by their degree of model integration. 

Nevertheless, categories are differently defined since other, more integrated approaches exist 

in the literature of ex-ante modelling of distributional effects. 

Following the top-down approach macroeconomic shocks are implemented in the macro 

model and solution variables are used as external inputs at the individual micro-level. This 

procedure implies that no feedback effects are accounted for in this kind of analysis. 

Bourguignon et al. (2008b) further differentiate the top-down approach into two sub-

branches: the top-down approach with micro accounting and the top-down approach with 

behavioural micro simulations. In the former individuals do not adjust their consumption or 

production (quantities) to changing prices, which means that only first-round effects are taken 

                                                 

10 For other possible classifications see e.g. Bourguignon et al. (2008a) or Agénor et al. (2004). 
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into account. The latter approach involves a microeconomic model that additionally accounts 

for behavioural responses. 

Depending on the richness of information available in the applied survey data, the micro 

accounting procedure might vary in specificity. For the simplest alternative, individual data 

on total consumption or total income are required and the relative consumption or income 

changes provided by the macro model for the respective representative household group are 

used to scale all incomes of corresponding individuals (or households). This simple 

procedure, however, still does not account for any heterogeneity inside the groups. If the 

survey contains more disaggregated data on income composition (factor types or transfer 

sources) or even commodity specific information on individual consumption, this information 

can be used to account for more heterogeneity. The respective macro model results can be 

matched to different types of factors or transfers and individual real incomes can be adjusted 

by the calculation of an cost-of-living index for each individual (Lofgren et al., 2003). 

According to Bourguignon et al. (2008b) the advantage of the micro accounting method is the 

straightforward implementation giving consideration to the largest impacts of the 

macroeconomic shock on individuals. They conclude that first round effects approximate total 

welfare effects accurately in the short to medium run and if price changes are small and 

markets competitive. 

Such a micro accounting approach is chosen by Keeney and Beckman (2009), Keeney (2009), 

and Hertel et al. (2007) to assess distributional impacts of WTO reforms or changes in 

agricultural policy in the U.S. agricultural sector. To this end, in their papers they apply a 

CGE model (GTAP) which is refined to distinguish between market clearing wages and 

capital rents for agriculture and non-agriculture. The model implies one representative 

household for each region. After the CGE model is shocked results are combined with a large-

scale farm household survey to estimate welfare changes of individual farm households. 

Keeney and Beckman (2009) assume that individual households in the U.S. behave in 

accordance with the representative household that depicts the U.S. in the CGE model. Labour 

allocation (on- versus off-farm), production and consumption response as well as price 

changes are identical for all households. Thus, heterogeneity is introduced by farm specific 

differences in initial income sources. Income changes are deflated by a consumer price index 

and first-round approximations of welfare changes are calculated for each household. 

Distributional effects are identified on the basis of decile groups. 

Keeney (2009) and Hertel et al. (2007) apply the same CGE model and farm household 

survey, however, only superficially explain how they link CGE results to disaggregated farm 

households. Keeney (2009, p. 1290) draws on ”factor markets linking the macro- and micro-

components of a policy simulation” and Hertel et al. (2007, p. 300) refer to “the general 

equilibrium changes in product and factor prices are combined with disaggregated household 

data to evaluate the welfare impact on different groups of farm households”. To the best 

knowledge of the author, these three studies are the only ones which are explicitly aimed at an 
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ex-ante measurement of distributional effects in the agricultural sector. The following studies 

refer to impact assessments of macroeconomic shocks on poverty and income distribution 

among the overall population. 

Ravallion and Lokshin (2008) also apply the top down approach with micro accounting to 

assess welfare impacts of different trade policy reforms for cereals in Morocco. For their 

analysis they commonly use a CGE model and a household sample consisting of 5,117 single 

households. The CGE model is applied in a first step to simulate price changes for different 

trade policy scenarios. In a second step, these price changes are used to calculate welfare 

gains for individual households in monetary terms. As prices and wages are not included in 

the household survey data, price changes are weighted by their corresponding expenditure and 

revenue shares (including earnings and household production activities) and the first order 

approximations of welfare changes per household are gained by the difference between 

revenue and expenditure changes. Subsequently, indices of vertical and horizontal inequality 

are calculated for the baseline and the counterfactual scenarios, respectively, to assess 

inequality impacts. 

Another application of the top down approach with micro accounting is provided by Bussolo 

et al. (2008). They estimate impacts of different trade reform scenarios on poverty in Brazil, 

Chile, Colombia and Mexico. Again, macroeconomic effects on commodity and factor prices 

are calculated by a CGE model and then mapped down to the different household surveys to 

adjust real household incomes and to generate new counterfactual situations without allowing 

individual households to adjust their quantities. CGE-simulated changes in average real 

wages, in average real capital/land rents (differentiated by agriculture and non-agricultural) 

and in prices of food and non-food commodities are mapped to the endowments and 

consumption patterns of the individual households. Household income from pensions, public 

transfers, remittances and auto-consumption is assumed to be constant. Changes in household 

incomes are deflated with a newly calculated cost-of-living index. Finally, poverty measures 

are calculated based on the counterfactual individual household incomes. 

Ferreira et al. (2008) provide an example for the top-down approach with behavioural micro-

simulations. They assess distributional impacts of a currency crisis for Brazil. To analyse the 

effects of such a macroeconomic shock they econometrically estimate a model “based on a set 

of investment savings and liquidity preference money supply (IS-LM) equations […] using 

time-series national accounts and aggregated household survey data from Brazil for 1981-

2000” (Ferreira et al., 2008, p. 120). Levels of employment and unemployment, wage levels 

and consumer price levels are generated by the macro model (distinct for different household 

groups and sectors) and used to recalibrate parameters in the micro-simulation model. The 

latter is a reduced-form model of household income determination and able to simulate 

individual responses to the mean changes calculated by the macro model, however, without 

giving any feedback to the macro level. 
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The iterative approach is applied by Bourguignon and Savard (2008) for the purpose of 

assessing trade reforms for the Philippines in terms of distributional effects. They combine a 

CGE model with a micro-simulation household model that accounts for household income 

structure, expenditure behaviour and labour supply decisions. In an iterative resolution 

process, they feed price changes calculated at the macro level into the micro-simulation model 

and pass back total consumption and labour supply figures from the micro to the macro level. 

They compare the modelling system with and without the implementation of feedback effects 

and find important differences in case of the existence of rigidities in the labour market. 

Further applications of the iterative approach are presented in e.g. Essama-Nssah et al. (2007) 

and Mussard and Savard (2010). 

Cockburn et al. (2010) present two applications of the integrated approach for Nepal and the 

Philippines. In contrast to the iterative approach where two different models are connected via 

the exchange of solution variables, in the integrated approach each household from a 

representative household survey is depicted individually in a CGE framework. In principle, 

this approach can be seen as a continuation of the representative household approach. The 

number of household groups is expanded until it equals the number of households in the 

survey, i.e. each household group contains only one individual household. This approach 

usually requires a considerable effort to reconcile the data used by the CGE model with the 

household survey (Cockburn et al., 2010). For their analyses Cockburn et al. (2010) integrate 

3,388 individual households for Nepal and 24,797 households for the Philippines in a CGE 

model. Mussard and Savard (2010) state that modelling of complex behaviour (like regime 

switching decisions) is difficult within the integrated approach and is therefore, often avoided. 

 

2.3.4 Synthesis 

In the preceding sections, literature regarding simulation model based policy impact analysis 

for the agricultural sector and regarding the simulation model based impact assessment on 

income distribution has been reviewed. These two branches of literature are hardly 

overlapping. Nevertheless, first attempts are made to ex-ante estimate policy induced 

distributional impacts for the agricultural sector. An example is the macro-micro framework 

presented by Keeney and Beckman (2009), Keeney (2009), and Hertel et al. (2007). These 

authors combine a highly aggregated CGE model with a large farm household data survey by 

mapping quantity and price changes, but without the possibility for farms to adapt production 

patterns. Further approaches exist, in principle applicable for the consistent measurement of 

sectoral impacts and at the same time income changes at the individual farm level. An 

example is the LEI modelling funnel, among others consisting of macro and sectoral level 

models on the one side and farm level models on the other. A few other model chains in 

principle also are able to estimate income changes at the individual farm level, however, they 

often only depict specific farm types. Furthermore, static ex-ante approaches of measuring 

income effects at the individual farm level do exist (refer to section 5.2), though, to the best 



22 
 

knowledge of the author, none of them have been linked to a sectoral or macroeconomic 

model to assess redistributive effects of agricultural policy at the national level. Moreover, 

several agricultural sector models correspond to the farm level, but they apply rather to 

regional farms or farm types (like the CAPRI model for example) instead of individual farms. 

In contrast, manifold approaches of consistently assessing impacts of macroeconomic policies 

at the macro and micro level exist in the field of tax incidence or poverty analysis. Due to the 

high number of publications not all studies could be considered here, however, selected 

publications are reviewed, covering all relevant methodological branches. Virtually all studies 

measuring impacts on income distribution refer to household income or consumption rather 

than to enterprise profits. Keeney and Beckman (2009), Keeney (2009), and Hertel et al. 

(2007) account for changes in farm production, however, under the assumption that all 

individual farms behave in the same way according to macro results. 

For an analysis of policy induced redistributive effects in the agricultural sector, impacts have 

to be assessed consistently at the sectoral and at the farm level since some variables (e.g. 

prices) are exogenous at the farm level and others (e.g. individual income) are not observable 

at the sectoral level. Furthermore, due to the combination of differently aggregated models the 

trade-off between generality and detailedness is likely to be relaxed. 
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3 Modelling Chain11 

In this chapter, a modelling system for the agricultural sector is presented, consistently taking 

effects of the sectoral and individual farm level into account. For this purpose, different 

components observed in the field of agricultural policy analysis and the field of impact 

assessment on income distribution are combined. Two behavioural large-scale agricultural 

sector models are combined in an iterative procedure (cf. section 2.3.2). As a third model, a 

micro accounting model is connected to the others in a top-down manner (cf. section 2.3.3). 

Farm groups can adjust their production relying on information from the sectoral model 

before results are further disaggregated by a static model, which introduces more 

heterogeneity in the analysis.  

After a broad overview about the whole modelling chain, the single models and linking 

approaches are explained in more detail. 

 

 Description of the overall modelling chain 3.1

The modelling system consists of three different single models depicting three different levels 

of aggregation to consistently measure changes in individual incomes among western German 

farms resulting from agricultural policy reforms. A schematic overview of the modelling 

chain is presented in Figure 3.1. The model with the highest level of aggregation is an 

agricultural sector model depicting European agricultural markets in detail and the 

agricultural sector of the rest of the world in a more aggregate manner. It is a partial model in 

the sense that it explicitly models the agricultural sector and takes all other sectors as 

exogenously given. Thus, the core macroeconomic variables such as inflation rates and GDP 

growth rates are exogenous to the model. At the meso-level, a model which depicts the supply 

side of the German agricultural sector in great detail is applied to measure impacts of 

agricultural policy changes on 628 heterogeneous farm groups. Both simulation models are 

two already pre-existing large scale models, ESIM (Grethe, 2012) at the sectoral level and 

FARMIS (Osterburg et al., 2001; Bertelsmeier, 2005; Offermann et al., 2005) at the farm 

group level. They both have been used in numerous studies, alternatively as stand-alone 

versions (e.g. Banse and Grethe, 2008a; Bertelsmeier, 2003) or in combination with other 

models (e.g. Banse and Grethe, 2008b; Offermann et al., 2012). Yet, both models so far 

haven’t been coupled in a consistent (iterative) way with other models. This iterative 

approach is undertaken for the study at hand to link the two models at the first stage of the 

overall modelling system.12 Effects of agricultural policy at the European level are quantified 

by ESIM and a resulting vector of price and yield changes is exogenously implemented into 

FARMIS. Based on the new set of parameters, FARMIS calculates new supply quantities for 
                                                 

11 This chapter served as a basis for the paper Deppermann et al. (2013) and in parts is equivalent to it. 
12 Deppermann et al. 2010 present a common interface of the two models. However, the paper is part of this 
dissertation project. 
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the German agricultural sector and a respective vector of supply changes is exogenously 

implemented in ESIM. This procedure is continued until both models converge in the analysis 

of a joint scenario. The models and the linking procedure are described in more detail in 

Section 3.2 below. 

After convergence between ESIM and FARMIS is achieved, farm group results are passed in 

a top-down manner to the newly developed micro model to assess individual farm incomes 

for the year 2020, the final year of the simulation period. The micro model is an accounting 

model in the sense of Bourguignon et al. (2008b) (see section 2.3.3), which further 

disaggregates the results of the farm groups commonly calculated by ESIM and FARMIS. 

The micro model serves as an add-on for the FARMIS model, since it relies on its structure. It 

is based on the German farm accountancy data network (FADN). More information on the 

micro-accounting model is provided in section 3.3 below. 

With this modelling system, different ex-ante evaluations of policy scenarios are conducted. 

Based on simulation results for the year 2020, income distribution indices are calculated. 

Results for the year 2020 are utilized in an ex-post manner for the calculation of different 

inequality indices to evaluate the state of income inequality in the agricultural sector and the 

degree of progressivity of different reform packages. To this end, inequality indices of 

different policy scenarios are compared to a reference scenario, the so-called baseline. Since 

the methodology of measuring inequality effects is independent from the modelling system, it 

is discussed in chapter 5, before the empirical discussion of the redistributive effects. 

All models are coded in the The General Algebraic Modeling System (GAMS) programming 

language, which facilitates an automatized coupling of the models. Furthermore, the 

calculation of inequality indices is also done in GAMS. The ESIM-FARMIS link (the box in 

the upper part of Figure 3.1) is managed by a steering file (see Annex A), which was 

developed to run the system without manually exchanging results between the single 

elements. Further technical information on the coding is provided in section 3.4 below. 
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Figure 3.1: Methodological framework for an ex-ante measurement of redistributive effects 

of agricultural policies on farm incomes 

Source: Adapted from Mussard and Savard (2010). 

 

 From the sectoral to the meso-level: an iterative approach 3.2

Before a more formal explanation of the ESIM-FARMIS coupling procedure is presented, the 

single models themselves are introduced in the following sections. 

 

Loop until
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∆ Q (livestock)

(Germany)

LEGEND:
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3.2.1 The single models 

Both models are ex-ante models, however, with different theoretical foundations. The ESIM 

model represents agricultural demand and supply of the agricultural sector based on isoelastic 

functions. FARMIS is a programming model that depicts German agricultural production and 

is based on the income maximization assumption for several farm groups. 

 The agricultural sector model ESIM 3.2.1.1

ESIM is a partial equilibrium model of the agricultural sector (Grethe, 2012). It is a 

comparative static net trade model, which depicts the agricultural sector of the EU-27 on 

member state level. Furthermore, Croatia, Turkey, the Western Balkans and the USA are 

modelled as single areas and all other countries are subsumed in an aggregate named “rest of 

the world” (RoW). The first pillar of the CAP of the European Union is depicted in great 

detail, implying ad valorem and specific tariffs, tariff rate quotas, production quotas, export 

subsidies, coupled and decoupled direct payments, and set-aside regulations. Outside the   

EU-27 agricultural policies are not taken into consideration since the focus of the model is on 

the analysis of CAP reforms. All behavioural functions are isoelastic except for sugar supply 

and altogether 15 crops, 6 animal products, 21 processed products, pasture and voluntary set-

aside are covered by the model. ESIM abstracts from regional price differences inside the  

EU-27 and assumes a point market mechanism for all tradable products. Prices for non-

tradable products (raw milk, fresh milk, potatoes, fodder, silage maize and pasture) are 

determined by a market clearing mechanism at the member state level (Grethe, 2012). 

Human demand functions are given for all farm and processed products except for raw milk, 

pasture, fodder, silage maize, set-aside, and rapeseed. Raw milk is split up into its components 

– fat and protein – which are further processed into several dairy products for human 

consumption or for direct use as animal feed. Further processing demand is defined for 

oilseeds, and inputs for biofuel production. The biofuel module depicts the production of 

bioethanol and biodiesel. Inputs for ethanol are wheat, corn, and sugar. Biodiesel is produced 

from rape oil, sunflower oil, soy oil and palm oil. Input ratios are endogenously determined 

by a CES function. Byproducts of biofuel production are accounted for and are used as 

additional feeding stuff in the livestock sector (Grethe, 2012; Banse and Grethe, 2008a). In 

the following a more detailed description of standard13 crop and livestock production is given 

because these are the two components which are approximated to FARMIS results for 

Germany in the final model chain and thus, have to be modified in ESIM. The following 

explanations are based on Grethe (2012). 

For EU-27 member states supply of crops is determined by a yield function and an area 

allocation function which are multiplicatively combined: 

                                                 

13 In ESIM some products are depicted by different supply equations. These products, however, mainly belong to 
the group of processed products which are not modified in the course of model coupling and thus, are not 
presented in this short overview of the basic model characteristics. A very detailed description can be found in 
Grethe (2012). 
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(2) ��������,�� = �������,�� ∗ ������,��	. 
Yield per hectare (3) is a function of the endogenous own (producer) price of the respective 

crop, changes in factor costs, which are represented by exogenously implemented cost indices 

and an exogenous trend parameter. Five categories of factor costs (intermediates, capital, 

labour, energy, and fertilizer) are taken into account for the yield function. The trend 

parameter reflects an exogenous trend in yield changes, caused for example by technical 

progress in plant breeding. Furthermore, an intercept parameter is calculated for the 

calibration of the model, i.e. to meet a certain combination of price and yield per hectare 

observed in reality for the base year of the simulation period. 

The yield function is specified as: 

(3) �������,�� =	�� !". �$%��,�� ∗ ����,�����&�'()),)* ∗ ∏ ,. -./%/��,0��
���&�.'.0�)),1)),)*

0�� ∗ %2. 34��,�� 
where 

cc   = Index of countries 

cr  = Index of crops 

fcc  = Index of factor cost components 

YIELD  = Yield per hectare 

yield.int  = Intercept of the yield function 

PP   = Producer price in country 

f.costs  = Factor cost index 

elastyd  = Own price elasticity of yield 

elast.y.fc  = Elasticity of yield with respect to factor costs 

tp.gr  = Trend parameter. 

 

Area allocation is a function of own- and cross- (incentive) prices, the land price and other 

factor costs (4). Incentive prices in ESIM consist of the producer price for the specific product 

and the price-equivalent of direct payments that is assumed to have an impact on production 

decisions (i.e. 100% for coupled and 20% for decoupled payments). This approach takes into 

account that in reality farmers are only able to receive decoupled payments in combination 

with eligible land.14 Product and land prices are endogenously calculated in ESIM, while all 

                                                 

14 The reader may find it more logical to introduce the DPs on top of the land price instead of the producer price 
as payments are linked to land in reality. However, elasticities of area demand with respect to incentive prices 
are set proportionally to elasticities of area demand with respect to land prices, taking the share of land costs in 
total costs into account. Thus, impacts on area demand are similar, no matter where the subsidy is introduced. 
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other factor costs are exogenously determined. The obligatory intercept again is used for 

model calibration purposes for the base year of the model. 

(4) ������,�� = 

54 5. �$%��,�� ∗6����,�����&�&7)),)*,)*

��
∗ ��8����9���

���&�.�7)),)* ∗ 	6,. -./%/
0�� ��,0��

���&�.�.0�)),1)),)*
 

where 

cc   = Index of countries 

cr  = Index of crops 

fcc  = Index of factor cost components 

AREA = Area used for production 

area.int = Intercept of the area allocation function 

PI   = Incentive price 

LANDPRICE  = Hectare price for land 

f.costs = Factor cost index 

elastsp = Elasticity of area allocation with respect to own- and cross-prices 

elast.lp  = Elasticity of area allocation with respect to the land price 

elast.a.fc  = Elasticity of area allocation with respect to factor costs. 

 

Supply of animal products in ESIM is a function of endogenous own- and cross- (incentive) 

prices of animal products, an endogenous index representing feed costs for respective animal 

products, exogenously determined factor costs, and an exogenous technical progress shifter 

representing for example progress in breeding. 

(5) ��������,�; = 

/<2. �$%��,�; ∗ 	6����,�;���&�&7)),=>,=>

�;
∗ ?9���,�;���&�.�;.0)),=> ∗6	,. -./%/��,0��

���&�.�;.0�)),1)),=>

0��
∗ %2. 34��,�; 

where 

cc  = Index of countries 

lv  = Index of animal products 

fcc  = Index of factor cost components 

sup.int = Intercept of the supply function 

PI = Incentive price 
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FCI  = Feed cost index representing changes in average feed costs 

f.costs = Factor cost index 

tp.gr  = Trend parameter 

elastsp  = Elasticity of animal product supply with respect to own- and cross-prices 

elast.lv.f = Elasticity of animal product supply with respect to the feed cost index 

elast.lv.fc  = Elasticity of animal product supply with respect to factor costs. 

 

 The programming model FARMIS 3.2.1.2

FARMIS is a comparative-static process-analytical programming model for the German 

agricultural sector (Osterburg et al., 2001; Bertelsmeier, 2005; Offermann et al., 2005). The 

model version applied for the study at hand incorporates 628 homogenous farm groups, 

generated by the aggregation of individual farms and stratified by region, type and size. 

Sectoral production covers 27 crop and 15 livestock activities. The German farm accountancy 

data network (FADN)15 is used as the main data source for model specification, covering 

about 11,000 individual farms. Farm group specific technical coefficients are either directly 

taken from the data network or calculated under additional consideration of management 

manuals. The application of farm-specific weighting factors ensures a consistent 

representation of the sectors’ overall production and income indicators (for a detailed 

description of the calculation of aggregation factors see Osterburg et al., 2001). 

The core model is based on the assumption of income maximization and each farm group is 

represented by an objective function subject to several constraints, which determines 

production patterns and factor allocation. In mathematical terms the objective function of the 

model is represented by (6) (Bertelsmeier, 2005; Sanders, 2007)16. 

                                                 

15 It shall be noted that in the FADN, very small farms with less than 16 European Size Units are excluded for 
the years of our model base period. Thus, the share of rented land in the farms covered by the model is slightly 
higher than that for all farms since very small farms usually operate with a higher share of own land. 
16 For a more consolidated representation of the general functionality of the model, the original equation 
(Bertelsmeier, 2005, p. 79) is presented here in a modified version, abstracting from different levels of intensity 
of agricultural production and also leaving out a more detailed depiction of different subsidy and premium 
payments. 
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where 

n = Index of farm groups 

i = Index of production activities 

j = Index of output products 

l = Index of land type 

u = Index of labour 

v = Index of fertilisers 

Z = Objective function 

Y = Sales of agricultural products in tons 

X = Level of activities in ha or livestock housing units (LHU) 

PX = Level of activities eligible for direct payments in ha or LHU 

U = Level of labour input/requirements in 1,000 hours 

V = Level of fertiliser input/requirements in tons 

LAND = Level of rented utilised agricultural area in ha 

QUOT = Rented milk quota in tons 

p  = Prices for agricultural products in € 

c  = Net of activity-specific costs and subsidies €/ha or LHU 

dp  = Activity-specific direct payments in €/ha or LHU 

rnu  = Labour costs in €/agricultural working unit 

rnv  = Expenditures for fertilisers in €/ton 

rnl  = Rental costs for UAA in €/ha 

κ  = Parameter associated with the linear PMP term 

ω = Parameter associated with the non-linear PMP term. 
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The first term of the objective function depicts the revenues from selling agricultural 

production. The second term covers the specifically referable per unit costs and subsidies of 

production times the activity level. The third term reflects the amount of direct payments 

accessible by the farm group. The fourth, fifth, sixth and seventh term comprise labour costs, 

expenditure for fertilisers, rental costs for milk quota, and rental costs for agricultural land, 

respectively. Terms number eight and nine are the “so-called hidden costs”, which are “used 

to reproduce the activity levels of the base year” (Sanders, 2007, p. 77). These two terms 

correspond to the application of a positive mathematical programming (PMP) procedure for 

model calibration and are constructed to meet externally given point elasticities in the 

calibration point. For this analysis an average of three subsequent years (2006-2008) is used 

as a model base in order to reduce the impact of the typical yearly fluctuations in the 

agricultural sector on model results. A more detailed description of the objective function and 

the model calibration procedure of FARMIS can be found in Bertelsmeier (2003) and Sanders 

(2007). 

Model constraints refer to “the areas of feeding (energy and nutrient requirements, calibrated 

feed rations), intermediate use of young stock, fertiliser use (organic and mineral), labour 

(seasonally differentiated), crop rotations, and political instruments (e.g., set-aside, quotas)” 

(Offermann et al., 2005, p. 2). 

For the conduction of an (ex-ante) scenario, assumptions on the continuation of agricultural 

policy, changes in general farm structure, and rates of technical progress have to be 

implemented exogenously. Furthermore, all prices except for specific agricultural production 

factors (milk quota, land, and young livestock) are exogenous to the model (Offermann et al., 

2005). 

 

3.2.2 A formal approach of model linking 

In this section a formal approach of model linking is presented to sketch the basic ideas of the 

exercise before the development of the interface between ESIM and FARMIS is discussed in 

more detail in section 3.2.4. The approach relies on the formal explanation of coupling a CGE 

with a PE model, presented in Jansson et al. (2009, p. 17ff), however, adapted for purposes of 

this study. 

In this study an iterative coupling between two partial models is achieved at the first stage of 

the model chain (cf. Figure 3.1). The model at the top (ESIM) is a PE model for the world 

agricultural sector and shall be represented by yt indicating the vector of variables for each 

year of the simulation period t and by αt indicating the respective vector of parameters of the 

model. With f connoting a vector of functions of the same length as yt, an optimal solution of 

ESIM as a stand-alone version is represented by f(yt;αt) = 0. The more disaggregated model 

FARMIS covers the German agricultural sector and is represented by vt indicating the vector 

of variables and βt the vector of parameters for the year t. An optimal solution is characterised 



32 
 

by C�`,�ab�,�, c�d = max;h`,i C�`,�ab�,�, c�d		∀$	 denoting that all individual farm groups n 

are maximizing their objective function Z in the year t. 

For their base year (t = base) both models are calibrated to observed data. This is done by 

endogenizing sub-vectors of αbase and βbase and in turn fixing variables ybase and vbase to the 

observed values.17 This procedure ensures that observed base year values are met by the 

model. For all t ≠ base α and β are completely exogenous parameters and variables are 

endogenous. Since all results presented later on in this study refer to the year 2020, time 

indices are omitted henceforth, and all parameters and variables are defined to correspond to 

2020 unless differently stated. 

The two models shall be linked by the mutual exchange of solution vectors until convergence 

on the exchanged variables is achieved. For that purpose, ESIM provides results for yields 

and prices and FARMIS provides results on area allocation and animal product supply for the 

German agricultural sector. The transmission of prices and yields from the higher to the lower 

aggregated model is straightforward, since they are endogenous to the former and exogenous 

to the latter. The mapping procedure can be described by the vector valued function j: Y → 

B, with Y denoting a set of all possible solutions of ESIM and B the set of all possible 

parameters of FARMIS. 

The aggregation function that transmits disaggregated FARMIS results into more aggregate 

ESIM categories is named h. Since FARMIS covers the supply side of the German 

agricultural sector and ESIM depicts supply and demand worldwide, the vector of all 

variables y shall be split up into two sub-vectors yEXC (EXC referring to results that shall be 

exchanged) and yREST where the former includes all ESIM variables which correspond to 

aggregated FARMIS results and the latter to all other variables y = (yEXC,yREST). Then we can 

write h: V → YEXC, with V indicating the set of all possible solutions of the FARMIS model. 

The final goal of the modelling chain is to get the same optimal solution for both models yEXC 

= h(v) with regard to the same vector of prices and yields β = j(y). 

Since area allocation and supply for animal products in Germany are variables in both models, 

respective functions in ESIM have to be approximated to FARMIS results while all others 

shall behave like before. Let fEXC be a sub-vector of f for all functions that have to be shifted to 

mimic FARMIS results and fREST a sub-vector of all other functions with f = (fEXC,fREST). 

Furthermore, let αEXC be a sub-vector of all parameters that have to be changed in order to 

shift the functions fEXC and αREST a sub-vector of all other parameters with α = (αEXC, αREST). To 

approximate yEXC according to FARMIS results h(v), αEXC is modified to klEXC such that fEXC 

(yEXC = h(v), klEXC, αREST) = 0. A formal expression for the shifting operation that transmits 

yEXC = h(v), yREST and αREST into klEXC shall be denoted klEXC = Ф(yEXC = h(v), yREST; αREST). 

Setting klEXC = αEXC would create the original ESIM model. A simple method to approximate 

                                                 

17 For the moment, it is abstracted from additional precalculations which are required for the PMP calibration 
procedure in FARMIS. The philosophy of model calibration in principle is the same: parameters are calculated 
based on observed data which from the next period on will be variables. 
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FARMIS results could be to replace fEXC by a vector of constants reflecting FARMIS results. 

This would entail klEXC = Ф(h(v), yREST; αREST) = h(v) and setting fEXC to klEXC - yEXC = 0. 

However, this solution not necessarily leads to convergence. Different options to approximate 

yEXC to h(v) are discussed in section 3.2.3. 

Based on the former definitions, the iterative linking of the two models includes the following 

steps:  

Step 1: Set i := 0; Solve f(yi;α) = 0 

Step 2: Compute β = (yi) 

Step 3: Solve C�`ab�	 , cd = max;h`m C�`ab�	 , cd		∀$ 

Step 4: Compute klEXC
i = Ф(h(vi), yREST

i
; αREST) 

Step 5: Set i := i + 1; Solve f(yi;	klEXC
i-1,αREST) = 0 

Step 6: IF (yi - yi-1) < tolerance, THEN terminate, ELSE go to step 2. 

After a first stand-alone run of the ESIM model (step 1), prices and yields are implemented 

into FARMIS (step 2), which is solved subsequently (step 3). In step 4 shifters for ESIM are 

calculated. Taking the shifters into account ESIM is solved (step 5). If ESIM results between 

the last two iterations differ less than a predetermined tolerance value, the procedure stops, 

otherwise it starts again with step 2. 

After the iteration process is terminated (i.e. convergence is achieved), the parameter vectors 

δ and β are endogenised in the modelling system. An optimal solution to the modelling system 

is denoted by: 

f(y=(yEXC,yREST); klEXC, αREST) = 0 

Ф(yEXC,yREST; αREST) = klEXC 

yEXC = h(v) 

C�`nb�, co = max;h` C�`nb�, co		∀$	and 

β = j(y). 

The single models rely on different conceptual frameworks and also use different data bases 

for their base year calibration. Thus, variations among the models’ base year data are likely to 

occur for their common solution space, which comprises the equilibrium quantities and prices 

of the German agricultural sector. One way to take these differences into account is to avoid 

the exchange of absolute results and rather apply change rates of solution variables between 

the calibrated base year and the year 2020. In other words, the relative difference of quantities 

and prices which exists in the base year between the two models is kept constant for the 

simulation period. Thus, h(v2020) aggregates FARMIS results in 2020 expressed as a share in 

FARMIS base year values which are then multiplied by ESIM base year values to gain 
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absolute ESIM values for 2020. The same applies for j, which maps price and yield changes 

instead of absolute values. 

3.2.3 Sequential calibration 

After discussing the general approach of coupling ESIM and FARMIS, the next step is a 

detailed presentation of the way results are exchanged among the models. Regarding the top-

down part of the linkage, ESIM results are implemented into FARMIS as parameters. This 

requires a simple mapping procedure of prices and yields (still, there are some possible 

variations of this approach which will be discussed at the end of this section). The bottom-up 

part of the linkage (i.e. Ф(h(v),yREST;αREST) ) is less straightforward and offers several 

different approaches. Jansson et al. (2009, p. 20f) discuss advantages and problems of 

different methods of a sequential calibration procedure. Their preferred general approach 

described for an iterative coupling of a CGE and a PE model is applied in this study, as well. 

In the following lines their work is outlined and adapted to the study at hand. 

As already shown in the preceding section, one simple possibility for implementing FARMIS 

results into ESIM would be dropping fEXC and fixing yEXC to h(v). But, this approach is not 

free from shortcomings. 

Figure 3.2 sketches a partial one-commodity market for Germany with S representing the 

sectoral supply curve provided by the FARMIS model and D depicting the demand curve of 

the ESIM model. Assuming for the moment that both models only depict this single 

commodity, convergence would be reached in the crossing point of supply and demand. The 

initial endogenous supply curve of ESIM is not explicitly presented in the graph, but it is very 

likely that the first stand-alone run of ESIM (see step 1, Section 3.2.2) creates a price which is 

different from the convergence-price. Thus, let the iteration procedure start with the arbitrary 

initial ESIM-price p0 (point A in the graph). With p0 FARMIS would calculate a respective 

quantity of supply q1. Now, the original ESIM supply curve is replaced by a constant supply 

curve in accordance with FARMIS results, which is depicted by the dotted vertical line at q1. 

Solving ESIM with the new (constant) supply would generate price p1. In the next step 

FARMIS would respond with a supply at q2. Following this procedure further on, it is 

noticeable from the graph that the point of convergence will never be reached, even though it 

uniquely exists. Convergence will only occur “if the slope of the supply schedule is greater 

than the (negative of the) slope of the demand schedule” (Jansson et al., 2009, p. 20). This, 

however, cannot easily be ensured for all single commodity markets in the modelling system. 
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Figure 3.2: Iteration process with diversion. 

 Source: Adapted from Jansson et al. (2009). 

 

Instead of fixing supply quantities in ESIM, a recalibration of the original ESIM supply 

curves is a better option to provide convergence. This approach is sketched in Figure 3.3 by 

means of linear demand and supply functions; however, the general idea also works with the 

non-linear functions applied in ESIM (cf. Section 3.2.1.1). 

The sectoral supply curve provided by FARMIS is denoted by SF and the ESIM demand curve 

by D. The original ESIM supply curve is named SESIM
0 and the stand-alone equilibrium of 

ESIM is indicated by point A. Like in the first approach the price is implemented into the 

FARMIS model, which subsequently calculates the respective supply quantity. In the next 

step the ESIM quantity is not fixed, but the original18 supply curve of ESIM is recalibrated to 

the new price-quantity combination (p0,q1), indicated by SESIM
1. The resulting ESIM-

endogenous equilibrium accrues at point C. The procedure restarts until the ESIM-

endogenous equilibrium equals the equilibrium of the model chain. In comparison to the first 

approach of fixing ESIM supply, this approach is more robust and leads more likely to 

conversion. Furthermore, even if the first approach was leading to convergence, the second 

approach would be more efficient in terms of solution time since fewer steps are needed to 

find the equilibrium of the modelling system.19 

 
                                                 

18 However, in the full ESIM model with several commodities and several cross relations among these products, 
the original supply function is modified (the cross relations to other commodities are cut) to facilitate a better 
approximation of the FAMRIS supply reactions. 
19 The recalibration approach was used for most commodities in ESIM. However, for a few commodities 
(especially for livestock products) supply was simply fixed to FARMIS results for the sake of convenience. This 
is efficient since prices for these products are determined by the world market/European market and thus, only a 
few iterations are necessary to reach convergence anyhow. 
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Figure 3.3: Iteration process with linear approximation. 

 Source: Adapted from Jansson et al. (2009). 

 

Referring to specific ESIM equations for area allocation (4) and animal product supply (5) 

presented in section 3.2.1.1, area.int and sup.int respectively are the parameters to be 

recalibrated. With additionally cutting the cross relations to other commodities and also factor 

costs, equations for recalibration are: 

(7) 54 5. �$%"qrs",��	 	= ℎnL��o		/	n��"qrs",�����&�&7"vwx",)*o	yJ 

where X indicates the level of activities in hectare calculated by FARMIS (cf. equation (6)), 

h(·) denotes the aggregation function from FARMIS results to ESIM categories (cf. section 

3.2.2), the index “GER” denotes that only German supply is affected and index i represents 

the iteration step. The function for recalibration of the animal product supply curves in ESIM 

appears similarly: 

(8) /<2. �$%"qrs",�;	 = ℎnL�;o		/	n��"qrs",�;���&�&7"vwx",=>o	yJ 

with X indicating levels of livestock housing units instead of hectare. 

However, since even the recalibration method does not guarantee convergence in any case, an 

additional mechanism is applied to further increase the robustness of the iteration procedure. 

This mechanism corresponds to the top-down part of the linkage and Jansson et al. (2009, p. 

21) refer to it as “partial adjustment”. Prices which are transmitted to FARMIS are not simply 

replaced by the latest ESIM prices as suggested in the graphs above, but by an average of the 

last and second to last iteration. This further increases probability of convergence, however, it 

cannot be guaranteed in any case. 
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3.2.4 Development of an ESIM-FARMIS interface20 

After the basic idea of coupling was presented in the chapters above, it is described more 

specifically which steps were undertaken to link ESIM and FARMIS in the following. 

At first, consistent product interfaces were defined. In some cases the product aggregation 

level is different in ESIM and FARMIS and decisions were made about adequately mapping 

solution variables between both models. The detailed mapping is presented in Table B.1 in 

Annex B. Unlike for other commodities of agricultural production, prices for animal feed in 

FARMIS are not delivered by ESIM since they are endogenously determined in FARMIS, 

which is necessary in order to define the ratio between feed that is produced on farm and feed 

that is additionally purchased. Feed production in FARMIS, however, is related to animal 

production and required area for fodder production as determined by FARMIS is 

implemented into ESIM to consistently depict the price effects on other commodities in the 

next iteration step. Some by-products of the biofuel industry can be used as feeding stuff. For 

these products prices are handed over from ESIM to FARMIS since biofuel production is not 

depicted in FARMIS. 

For a first scenario, policy assumptions as well as a wide range of parameters exogenous to 

both models were harmonized, including technological progress, GDP growth, inflation rates 

and changes of exogenous factor costs. Furthermore, FARMIS depicts the production of 

energy maize which is not explicitly covered in ESIM. Since demand for energy maize is 

assumed to increase significantly until 2020, the respective area is exogenously removed in 

ESIM to account for price effects on cross products. This is already done in the first stand-

alone version of ESIM to facilitate a comparison of model reactions to the same vector of 

price and yield changes. This comparison is presented in section 4.2 and emerging differences 

among the models are discussed there. 

 From the meso to the micro-level: a top-down approach with micro 3.3
accounting21 

After ESIM and FARMIS converged in the first step of the modelling chain, detailed results 

regarding production patterns, factor demand and income sources for 628 farm groups are 

obtained representing the whole German agricultural sector. This information is necessary to 

further be disaggregated for an analysis of inequality effects. For this reason a micro-

simulation model is developed and integrated into the modelling system (see Figure 3.1). In 

the following chapters the choice of the methodology will be discussed first and the income 

variables under consideration are explained before the model is introduced in detail. 

                                                 

20 In this section, some parts are identical with Deppermann et al. (2010). 
21 This chapter served as a basis for the paper Deppermann et al. (2013) and in parts is equivalent to it. 
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3.3.1 Pre-information 

FARMIS applies farm groups instead of individual farms due to better manageability and an 

increased robustness of the model. Potential data errors in individual cases in particular could 

result in higher solution instability. Furthermore, the application of individual data would lead 

to high variations among the calculated input-output coefficients between farms (Osterburg et 

al. 2001). Thus, the aggregation bias which occurs from aggregation over individuals is 

accepted in favour of stability and manageability of the model. This certainly is a justifiable 

choice, especially when taking into account that over- and under predictions of individual 

production patterns tend to cancel each other out in the aggregate level (Wu and Adams, 

2002). Furthermore, the time needed to set up the model with an updated database (which 

would likely be longer with the implementation of individual farms) has to be taken into 

account. Yet, for the measurement of inequality, which so far has not been a traditional field 

of analysis for the FARMIS model, this choice is rather unfortunate because a certain part of 

inequality will be hidden inside the groups and thus, will not be observable (cf. section 2.2.2). 

For this study it was decided that the two large scale models at the top of the modelling chain 

shall be kept exercisable as stand-alone models. This has the advantage that updated versions 

of the single models can easily be implemented in the modelling chain. This rather practical 

choice relates to the “institutional challenge” of “sustainable maintenance of linked model 

systems”, which is a matter of “sufficient financial and/or human resources” (Offermann, 

2008, p. 361). Hence, to make use of synergy effects in model development it was decided to 

run the FARMIS model based on farm groups and develop an add-on model that allows a 

further disaggregation of the grouped results instead of directly accounting for reactions of 

individual farms (like it was done e.g. in Louhichi and Valin (2012) for arable farms). The 

micro-simulation model itself can easily be switched to an updated model database. 

The indicator applied for the measurement of income inequality among farms in the German 

agricultural sector is family farm income (FFI). FFI provides information on the return to 

land, labour, and capital resources owned by the farm family, as well as the remuneration of 

entrepreneurial risk.22 Henceforth the terms income and FFI will be used synonymously. Later 

on, results are presented for FFI both without and with taking additional non-farm income 

(which is not incorporated in the modelling system) into account. Whenever the latter is the 

case it is clearly stated. 

In the base period of the analysis, data for 628 homogenous farm groups are generated based 

on information from the German FADN set covering about 11,000 farms. Due to the 

dominance of corporate farms in eastern Germany all successional analyses related to the 

measurement of inequality in this study are restricted to 467 western German farm groups 

                                                 

22 FFI is not equal to the objective function value Z of equation (6) since for instance hidden costs of the PMP-
terms do not appear in FFI and in the objective function family workers are paid by their assumed opportunity 
costs of time. 
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representing 8034 individual farms, because no comparability between different farm 

structures could be ensured when using FFI as an indicator. 

For the base period, both individual and grouped data can be observed and thus, the 

information on inequality which is lost due to data grouping and working with average values 

instead of micro data can be calculated. For the current base data of the modelling system, a 

comparison of the relative Gini coefficient reveals some differences in inequality for the base 

period: the relative Gini coefficient of single farm income data is 0.55 and the relative Gini 

coefficient of farm group income data is 0.40. 

 

3.3.2 The micro-simulation model 

The objective of the micro-simulation model is the disaggregation of farm group results of the 

last year of the simulation period. Individual FFI data are generated by tracing back farm 

group results to the individual farms which were used for the generation of farm groups in the 

base year. The basic idea of the model is to calculate base year values of the shares each 

single production activity contributes to individual farm gross margin and resource 

requirements, and then adapt these proportionally according to the changes of respective farm 

group activity levels, gross margins and factor prices between the base year and 2020. 

Figure 3.4 sketches the mode of operation of the micro-simulation model. The first step (steps 

are indicated by Roman numerals in dashed circles) refers to the generation of farm groups 

based on individual FADN data in the base period for utilization in the FARMIS model. For 

the study at hand, the micro-model takes 467 farm groups into account, which are generated 

by aggregation of 8034 western German farms that are included in the FADN data for the 

base year. Grouping implies the calculation of average production quantities, factor costs, 

gross margins and income values as well as the generation of aggregation factors to represent 

the respective proportion of the basic population for each farm group. These values are 

subsequently applied in the FARMIS model to run simulations. 

Gross margins for single production activities refer to market revenues less attributable 

production costs for a specific activity and are not directly apparent in FADN data23. Since 

this information is crucial for running simulations with FARMIS, several assumptions and 

additional calculations are made to generate activity specific gross margins, when defining the 

farm group programming model (for details see Offermann at al., 2005 and Osterburg et al., 

2001). 

In step two, base year income of individual farms is broken down into several components 

which reflect the shares that single production activities contribute to the individual farm 

income. For that purpose activity levels from FADN data are combined with respective 

average gross margins which were calculated for FARMIS groups in step one. Furthermore, 

                                                 

23 For example, variable input costs are not directly attributed to production activities in the German FADN. 
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individual costs for hired labour, capital, and rented land are as well separately calculated by 

utilizing average group prices and individual input quantities. 

Since not all commodities, income sources, and costs indicated in the German FADN are also 

allocated to activities and included in FARMIS (e.g., forestry and agri-tourism are not 

explicitly covered in the model), a part of the original FFI is not changed by the model and is 

assumed to be fixed. In step two the ‘variable part’ of the income (the part depicted in the 

FARMIS model, i.e. the core agricultural production activities) is calculated for all individual 

farms by summing up all income components of the single production activities and all 

(negative) factor costs. 

Step three indicates a simulation run of the ESIM-FARMIS modelling chain. In this process, 

farm group results for the year 2020 are generated. The generated changes of activity levels 

between the base year and the year 2020 are applied to individual base year levels in step 

four. That is, all individual farms covered by a specific farm group have the same percentage 

changes in production for all commodities. The same approach is used for capital costs. The 

quantity of rented land is calculated according to new farm specific crop activity levels less 

the farm owned share of land. 

Labour requirements are calculated regarding new production quantities. With new 

production patterns in 2020 an individual farm may have excess capacity of family workers. 

In such a case it is assumed that the farm sells work to other farms at market conditions. 

However, work can only be ‘traded’ within one farm group to ensure consistency between 

group income and aggregated income of individual farms. Thus, in the case that the whole 

group as an aggregate has excess capacity of family workers, these workers are assumed to 

work off-farm.24 

Then, adjusted activity levels and resource requirements are multiplied by respective gross 

margins and factor prices calculated by the modelling system for the year 2020. Adding up 

the single gross margins and cost components generates the variable part of each individual 

farm income for 2020. 

In step five, the difference of the variable part of the income in the base year and the variable 

part of the income in 2020 (which can be positive or negative) is added to the original base 

year FADN values of farm income. That way, also the fixed part of the income is considered. 

In a last step the generated individual data are aggregated and compared to original group 

results. In most cases group results are perfectly met. In case of small divergences, individual 

incomes are scaled to meet group results. 

                                                 

24 Off-farm work is not included in FFI. However, the amount of income earned off the farm makes a difference 
when total household income is analysed instead of FFI (section 5.3.2). Thus, sensitivity of income levels of 
additional off-farm workers on distributional parameters was tested. To this end, a version where additional off-
farm workers earn 80% of employed on-farm workers was compared to a version where additional off-farm 
workers are unemployed and have no income. However, the impact of this assumption on the final results is only 
marginal. 
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NB: N – Number of income units; GM – Gross Margin; FP – Factor Price; FFI – Family Farm Income. 

 Figure 3.4: Micro-simulation model in connection with FARMIS. 

 Source: own compilation. 

 

The micro-model is of the micro accounting type in the sense of Bourguignon et al. (2008b) 

since the model is static which means there is no behaviour depicted in the model itself (see 

section 2.3.3). A similar approach for the generation of farm incomes at the micro level is 

used in the FES model (Woltjer et al., 2011) which applies exogenous price changes to static 

single farms. 

The model takes adaptions of production patterns into consideration, though, only as 

exogenous information. In principle, it would be possible to account for behaviour of single 

farms (compare, for example the approach of Louhichi and Valin (2012) for arable farms). 

Nevertheless, due to the reasons presented in section 3.3.1 behaviour of single farms was not 

taken into consideration. 

The same proportional reaction of all farms in one group to new price incentives is certainly a 

strong assumption. Still, heterogeneity among production patterns of farms in the same group 

is taken into consideration because different commodities might face different price changes. 

Furthermore, taking into account that an average group represents 17.2 FADN farms and that 

stratification was undertaken according to type, region, and size, an assumed similar 
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behaviour of individual farms belonging to the same group seems acceptable. It can be argued 

that behavioural adaption processes are to a great extent already covered by the FARMIS 

model, which also makes the missing feedback effect less relevant. The application of 467 

behavioural farm groups also distinguishes the modelling chain from a similar methodology 

presented in Keeney and Beckman (2009), Keeney (2009), and Hertel et al. (2007), which, in 

a nutshell, map quantities and prices resulting from only one regional household of a CGE 

model to a disaggregated farm household survey. 

One caveat, however, which appears in almost all analyses of distributional effects on the 

national or comparable level remains. The overall farm population of western Germany 

consist of more than 160,000 farms. This in turn means that 8,024 FADN farms still account 

for only a fraction of all farms and have to be weighted by an aggregation factor to represent 

their respective proportion of the overall population. Thus, an implicit assumption is that one 

single farm depicted in the modelling system (or in the FADN data) on average represents 

more than 20 farms of the overall population. This assumption is common to virtually all 

analyses of distributional effects since only observed units can be modelled and complete 

population surveys on the national level practically do not exist. 

Summing up, the model is applied to account for heterogeneity of farms inside a group to 

allow for measuring changes in inside-group inequality. Results are disaggregated in a static, 

top-down manner, after the ESIM-FARMIS model chain is solved. In principle, the approach 

is comparable to other standard micro accounting approaches utilizing representative groups, 

however, this analysis refers to 467 representative farm groups from a behavioural model, 

which in comparison is an outstanding high number. As Lofgren et al. (2003, p. 334) argue, 

the distinction between the micro-simulation approach of modelling a single unit and the 

representative agent approach of applying only grouped data is not always sharp. This 

especially becomes evident, when it is taken into account that single units from large data 

surveys are assumed to be representative for a share of the overall population. 

 Technical implementation of model communication 3.4

All parts of the overall modelling system are coded in the GAMS programming language. 

This facilitates an automated coupling of the two large scale models ESIM and FARMIS and 

a successional run of the disaggregation and inequality components. 

The ESIM-FARMIS coupling is managed by a steering file, presented in Appendix A. In 

principle, it implements the steps defined in Section 3.2.2 until convergence among the model 

results is ensured. To keep the structure of the models autonomous, so that they readily can be 

removed by an updated model version, it is necessary to run them independently from each 

other. Furthermore, the models have to be run several times with redefining parameters after 

each solve of a single model. Thus, models have to be started at execution time of the GAMS 

system since they are not readily available at compilation time, yet. 
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The basic idea to do so is to run GAMS from within the main GAMS program. This is 

achieved by the ‘execute’ command which in general allows the implementation of external 

programs during execution time of GAMS (McCarl et al., 2012). This command is 

complemented by the use of ‘execute_unload’ and ‘execute_load’ to store results in a gdx-file 

and load them at execution time, respectively. The latter two commands are used to hand over 

results after each single-model run to the main GAMS program, convert them into commodity 

categories of the second model, and subsequently hand them over to a subservient GAMS 

program for running the adapted second model. 

To save computation time, the ESIM model is split up into a component which runs the model 

until the year 2019 and a second component which runs the model only for 2020. This is 

possible due to the comparative static nature of the model. The first component is only run 

once at the beginning of the iteration process and intermediate results are saved for a 

subsequent utilization in the (adapted) 2020 component.25 

4 Scenario description and sectoral results 

In the empirical part of this study, different scenarios are analysed with the above described 

modelling system. These scenarios are introduced in this section. Subsequently, sectoral 

results of the first part of the modelling system (only ESIM-FARMIS) are presented. 

Inequality effects are presented afterwards in chapter 5 and 6. 

 Scenario description26 4.1

Scenarios are conducted for the year 2020 with the model base period being an average of the 

years 2006-200827. Three different liberalization scenarios are compared with a reference 

scenario (the baseline) regarding their market outputs and later on regarding their income 

distribution. In the baseline, the 2003 Reform and the Health Check of the CAP are fully 

implemented except for the abolishment of milk quotas. Milk quotas are assumed to increase 

until 2015 according to the Agenda 2000 decision, including the additional 2% quota increase 

in 2008 and the fat adjustment in 2009/10. It is assumed that a (first generation) biofuel share 

of 8% in total EU transport fuel consumption will be reached by 2020. Furthermore, the sugar 

market reform decided upon in 2005 is implemented and set-aside obligations are removed in 

2008. The baseline adopts constant levels of tariffs, export subsidies, tariff rate quotas (except 

for sugar), and the current system of intervention prices. For the international environment, 

ESIM is calibrated to FAPRI world market price projections (FAPRI, 2011) and no changes 

in external trade policies of the EU are assumed until 2020. 

                                                 

25 Actually, it is only necessary to solve the model for the base year and 2020. However, for technical reasons it 
is easier to run the model until 2019 and store intermediate results for subsequent utilization. 
26 This section is almost identical to Deppermann et al. (2013) and Deppermann et al. (2014). 
27 The FARMIS model applies 2006-2008 data for its base period and the baseline calibration of the modelling 
system for 2020 refers also to prices of 2006-2008. However, the ESIM base period refers to 2006-2007 data, 
which may lead to slight inconsistencies. 
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To account for the effects of liberalizing agricultural policy on production and income in the 

agricultural sector, the baseline results in 2020 are compared with results of other scenarios in 

2020. The single scenario results reflect impacts of different, exogenously defined policy 

changes to the baseline scenario.  

The strongest liberalization scenario assumes a liberalization of all first pillar agricultural 

policies (i.e., the abolishment of all intervention prices, tariffs, quotas, subsidies, and direct 

payments). Therefore, in 2020 the EU price level equals the world market price for tradable 

products. In another scenario isolated effects of a separate abolishment of first pillar direct 

payments (DP) are analysed (henceforth, No_DP scenario) and in another scenario all price 

policies are abolished (henceforth, No_Pricepol scenario), but direct payments are still paid to 

farmers to single out the effects of different policy instruments. Furthermore, a scenario with 

a cut of 50% of DPs is carried out (50_DP scenario) to analyse whether results are in 

accordance with the full abolishment of DPs, since for a 100% cut the FARMIS model clearly 

generates results which would be dampened in reality by structural change which is not 

depicted in the model. 

 Sectoral results28 4.2

In the following sections sectoral results of the described scenarios are discussed in detail. 

Thus, only results of the ESIM-FARMIS modelling chain are presented without application of 

the micro model. At first the baseline scenario, which serves as a reference later on, is 

described. Subsequently market impacts of the policy scenarios are presented. 

To evaluate the importance of the iterative coupling procedure differences in the reaction of 

both stand-alone models to the same price changes will be discussed. This gives also an 

indication for the occurrence of aggregation biases. 

 

4.2.1 Integrated Baseline 

The overall trend of world market prices in US-dollar in the baseline is based on projections 

published by FAPRI for 2020 (FAPRI, 2011). The development of world market prices 

between the base year (2006-2008) and 2020 is characterized by a slight increase of real crop 

prices and a stronger increase of the real price index of animal products (see Figure 4.1). 

While the crop price index increases by roughly 3.5% until 2020, animal product prices rise 

on average by 7% in the same time period. Consequently, the real price index of all farms 

shows an intermediate increase of about 5%. 

                                                 

28 Some parts of this chapter are identical to the paper Deppermann et al. (2010). 
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Figure 4.1: Real world market price indices for agricultural products. 

 Source: Own calculations. 

The development of the European agricultural sector is determined by developments of the 

world agricultural market; however, it is additionally affected by European agricultural policy 

and other macroeconomic variables. In the baseline, a continuous appreciation of one percent 

per year of the Euro against the US-Dollar is assumed (FAPRI, 2011)29. This is the main 

reason for the decrease of agricultural prices in Europe, as presented in Figure 4.2. In 

accordance with the world market prices (US-Dollar based), the European price index for 

crops (Euro based) shows the greatest decrease. The price index of animal products declines 

slightly and the overall farm price index is intermediate. Additional to the exchange rate 

effect, the crop price index is affected by the sugar market reform which is implemented 

between the base year and 2010 and which substantially reduces the European price for sugar. 

In spite of declining Euro-prices in the agricultural sector, supply of crops and livestock 

products increases until 2020. This is caused by exogenously implemented supply shifters 

which reflect yield increases in the agricultural sector and which are linear extrapolations of 

yield data of the FAO database from 1992 until 2007 (FAO, n.d.). 

 

                                                 

29 In the original data (FAPRI, 2011) the development of the exchange rates is more volatile. For the sake of 
convenience the yearly development is averaged out, since the model runs more stable and our interest is only in 
comparative static results of the baseline and its counterfactuals in the year 2020, which are not affected by the 
time path a parameter follows. 
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Figure 4.2: Development of EU-27 Indices of Agricultural Prices and 

Production (Base year – 2020). 

Source: Own calculations. 

In Table 4.1 price changes and responding quantity/supply changes for single products of the 

German agricultural sector are displayed. Columns 1-3 refer to the baseline development of 

ESIM and FARMIS as stand-alone models (before the iteration process), whereby ESIM 

prices are used to generate FARMIS results. Thus, it can be assessed how the two different 

models react on the same vector of price changes. 

Crop prices develop in line with the overall European price index with only the wheat price 

slightly increasing. This is caused by the fact that the EU switches from a net export position 

in the base year to a net import position in 2020 and a threshold price is applied in the EU, 

which lies slightly above the world market price. The only commodity shown among the 

animal products with a decreasing price is pork. Yet, pork has a high value share among the 

animal products and poultry prices30 also decline, which explains the decreasing price index 

of animal products in Figure 4.2 despite rising beef and milk prices. 

Price drops and an increasing amount of energy maize production which is exogenously 

implemented in the models lead to a substantial decline in utilized agricultural area for all 

other crops in 2020 compared to the base year in both models. In the stand-alone version of 

FARMIS this effect is slightly stronger for most products than in ESIM. In general reactions 

of the models go into the same direction and are of similar scope. Yet, there are two main 

exemptions from that: beef and set-aside.  

                                                 

30 Poultry is not presented in the table because only a part of the poultry production is considered in FARMIS. 
Namely, only poultry farming on farms with area is depicted and in western Germany production on corporate 
farms is excluded. In the base year, poultry production in FARMIS accounts for 42% of the production depicted 
in ESIM. 
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Differences in model reactions regarding beef production have to be discussed in combination 

with the milk market. Milk supply increases by 4% in both models, which is the effect of a 

slight expansion of the EU milk quota until 2020. The limited production of milk together 

with an output increase per dairy cow cause a decline in beef production in FARMIS, since 

with higher milk output per animal less milk cows are needed to fulfil the milk quota and calf 

production is reduced. In ESIM, this link is missing. Milk and beef are modelled as 

complementary goods, i.e. connected by a positive cross-price elasticity. Given this and a 

binding milk production quota, ESIM results tend to be erroneous. In the case at hand, the 

stable milk price doesn’t affect beef production and the latter increases due to the projected 

price increase. 

Set-aside land reported in Table 4.1 refers solely to voluntary set-aside, in the base year as 

well as in 2020. Obligatory set-aside is abolished already in 2008. The different reactions 

among the models regarding set-aside mainly go back to different modelling concepts. In 

ESIM the quantity of set-aside land depends on its “own-price”, which in fact is the amount of 

direct payments linked to one hectare of eligible land, and to prices of arable crops. However, 

cross-price elasticities to arable crops are very small and with decreasing real values of direct 

payments (since nominal direct payments are assumed to be constant until 2020) the quantity 

decreases slightly, as well. In FARMIS the quantity of production depends on gross margins. 

With only slightly falling values of direct payments per hectare and at the same time heavily 

decreasing prices of other crops, set-aside becomes more favourable and thus, its quantity 

increases. 

These two major differences and the minor deviations are dealt with by the iterative 

procedure, resulting in a convergence of model results after four iterations. Results are 

presented in columns four and six of Table 4.1. For the majority of products, Germany is a 

small country inside the European Union. This means that (EU determined) prices do not 

react much to relatively small changes in German supply. For these products, FARMIS 

determined quantity changes do not generate any relevant price feedback and after one 

iteration step convergence is already reached. 

The model linkage is rather relevant for non-tradable goods or such goods where in Germany 

a big part of total EU supply is produced. An example for the latter is rye: an 8% area 

reduction in 2020 due to FARMIS results goes together with a decrease in prices of two 

percentage points. Furthermore, German beef production accounts for roughly 15% of total 

European production in the base year and thus, a decrease of eleven percentage points causes 

a two percentage point increase in beef prices compared to the ESIM stand-alone baseline. 

Potatoes and raw milk are the only two goods that are modelled as non-tradable in ESIM and 

at the same time are more relevant for the model linkage. While in the case of potatoes a 

strong price effect occurs due to the less pronounced area reduction in FARMIS, there are no 

effects in milk supply. This is due to EU milk quota restrictions. Here, the iteration process 

becomes relevant in case of a non-binding quota. 
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In the final baseline, overall utilized agricultural area declines for most crops with the 

exception of wheat. Also voluntary set-aside is extended; however, the absolute area is rather 

small (roughly 2% of total arable land in the base year). Not depicted in the table is the 

exogenously driven increase of energy maize which accounts for about 7.5% of German 

agricultural area. Effects are clearly stronger in FARMIS, which is more price sensitive than 

ESIM. In case of beef supply, biophysical restrictions are crucial for the decline in quantity. 

Milk and sugar supply is determined by the quota. 

Table 4.1: Price and area/quantity changes (in %) in the baseline (2020 compared to base 

year) for Germany before and after Iteration. 

 
 
Products 

Before iteration After iteration 

 Change 
in price 

Change in 
area/supply 
in ESIM 

Change in 
area/supply 
in FARMIS 

Change in price Change in 
area/supply 

 (1) (2) (3) (4) (5) (6) (7) 
 % 

comp. to 

base 

year 

% comp. to 

base year 

% comp. to 

base year 

% 
comp. 
to base 
year 

% points 
differ-
ence 

with (1) 

% 
comp. 
to base 
year 

% 
points 
differ-
ence 

with (2) 

Area changes (crops)               

Wheat 2 -1 3 2 0 2 3 
Barley -6 -6 -7 -5 1 -7 1 
Corn -3 -1 -3 -2 1 -3 2 
Rapeseed -22 -21 -35 -21 1 -35 14 
Rye -9 -6 -15 -7 2 -14 8 
Sugar  -22 -19 -17 -22 0 -16 -3 
Other Grains a -10 -7 -18 -9 1 -17 -10 
Potatoes -20 -16 -7 -30 10 -14 -2 
Fodder b - 0 3 - - 3 3 
Silage Maize - - 8 - 4 - - -4 4 
Grass - 0 0 - - 0 0 
Volunt. Set-aside - - 1 29 - - 27 30 

Supply changes 
(animal products)               

Pork -2 1 8 -2 0 8 7 
Beef 7 4 -7 9 2 -7 11 
Milk 1 4 4 2 1 4 0 

a Other grains: triticale and oats. b Fodder: other fodder except silage maize and grass. 

Source: Own calculations. 

4.2.2 Liberalization Scenarios 

In this chapter the four different liberalization scenarios (see section 4.1) are presented and 

compared to the reference scenario. At first results are presented at the European level.  
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Figure 4.3 shows that the scenarios with a 50% and a 100% cut of DPs have similar results, 

whereby the effects of the full cut are clearly stronger. Results at the European level are 

largely determined by ESIM since FARMIS solely provides results for Germany, which in the 

European context have only a minor impact as seen already in the discussion of baseline 

results. 

When DPs are cut, farm supply is decreasing because production incentives are reduced. This 

effect is stronger for crops since the bulk of DPs is coupled to land. Yet, for animal products 

some coupled DPs are still left (e.g. Article 68 payments) and additionally higher feedstock 

prices reduce the supply quantity in the scenario results, but to a lesser extent. Lower supply 

quantities subsequently result in higher prices. 

It is visible from Figure 4.3 that the abolishment of price policies has much stronger effects on 

market development than the abolishment of DPs. This, however, is only true for the ESIM 

model. Diverging results regarding cuts in DPs among the models can be observed in the 

following tables and will be discussed in the remainder of this section in more detail. 

 

 

Figure 4.3: Scenario Results Relative to Baseline – EU-27 Indices of Agricultural Prices and 

Supply Quantities (2020). 

Source: Own calculations. 

The abolishment of price policies causes a different type of shock than a cut in direct 

payments does. The latter reduces the incentive to produce, which leads to increased market 

prices. The abolishment of price policies like tariffs or intervention prices directly causes 

lower domestic market prices, which reduce the incentive to produce (Figure 4.3).31 

                                                 

31 Since quota restrictions are implemented together with border protection measures, the quantity effects are not 
a priori assessable. 
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In the Full_Lib scenario supply indices decrease more than in the No_Pricepol scenario 

reflecting lower production incentives due to additional cuts in DPs, which results in a higher 

average price level compared to the No_Pricepol scenario. 

Results for the German level are presented in Table 4.2 to Table 4.5. Again, the first three 

columns refer to the model results when they are used as stand-alone versions without 

iteration procedure and the remaining columns show results of the two models commonly 

applied and differences to the stand-alone version results. Scenario results are presented in 

relation to baseline results to provide ceteris paribus conditions and single out the effects of 

policy reforms. 

Table 4.2 presents results for the German agricultural sector under the scenario No_DP, which 

entails a full abolition of DPs. Results of the stand-alone version of ESIM show only a slight 

decline in utilized area for most of the crops, whereas area changes in FARMIS are 

significant. FARMIS reacts much more sensibly to cuts in decoupled DPs than ESIM does. 

The explanation is inherent to the models. In ESIM it is assumed that decoupled payments 

have an effect on production which is equivalent to an increase in prices by 20% of their 

value. Thus, only 20% of the DPs are incorporated in the model and an abolishment of DPs 

causes a comparatively low shock. Furthermore, structural change – in terms of an increase in 

average farm size as well as in terms of adoption of new production technologies – is 

incorporated in the supply elasticities that are utilized in ESIM. Hence, effects of strong 

income shocks in the agricultural sector are more moderate since it is assumed that the sector 

adapts not solely within given production structures but also by changing structures.  

In FARMIS the land market is modelled on a regional level. DPs are assumed to fully 

capitalize in the land market. Hence, a reduction of DPs only affects production when gross 

margins without DPs become negative and subsequently production is reduced in respective 

regions. In many regions land rental prices are too low to absorb abolished DPs, which then 

leads to a strong decline in utilized area as shown in Table 4.2. In reality effects probably 

would be dampened by structural changes in the farming sector; however, in the current 

version the programming approach applied in FARMIS takes structural changes into account 

only exogenously between the base year and the final year of the simulation period. This 

means that the same rate of structural change occurs in each scenario, independently from 

sectoral market developments. Thus, in contrast to ESIM no structural changes occur between 

baseline results and scenario results. According to that, FARMIS results should be interpreted 

against the background that with strong reductions in average income, significant structural 

change such as an increase in farm size and farmers leaving the sector can be expected which 

is not depicted in current model specifications. 
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Table 4.2: Price and Area/Quantity Changes (in %) in the No_DP Scenario (2020 compared 

to Baseline in 2020) for Germany before and after Iteration. 

 
 
Products 

Before iteration After iteration 

 Change 
in price 

Change in 
area/supply 
in ESIM 

Change in 
area/supply 
in FARMIS 

Change in price Change in 
area/supply 

 (1) (2) (3) (4) (5) (6) (7) 
 % % % % % points 

differ-
ence 

with (1) 

% % 
points 
differ-
ence 

with (2) 
Area changes (crops)        

Wheat -0.6 -0.3 -14.6 2 2.6 -12 11.7 
Barley 0 -0.6 -19 1.7 1.7 -17.7 17.1 
Corn 0 -0.1 -9.7 0 0 -10.1 10 
Rapeseed 0.2 -1.5 -38 1.1 0.9 -35.4 33.9 
Rye 1.3 -1.6 -23 8.7 7.4 -16.3 14.7 
Sugar  0 0 0 0.1 0.1 0 0 
Other Grainsa 0.6 -1 -24.1 3.1 3.7 -22 21 
Potatoes -1.5 0.1 -1.6 2.7 4.2 -0.4 0.5 
Volunt. Set-aside - -40 -60 - - -60.7 20.7 
Fodderb - -1.3 -11 - - -11.1 9.8 
Silage Maize - -1.6 -1.8 - - -1.9 0.3 
Gras - -0.2 -14.2 - - -14 13.8 

Supply changes 
(animal products) 

       

Pork 0 0.1 -0.2 0.5 0.5 -0.5 0.6 
Beef 1 0.2 -3 0.7 0.3 -3.1 3.3 
Milk 0 0 0 0.2 0.2 0 0 

a Other grains: triticale and oats. b Fodder: other fodder except silage maize and grass. 

Source: Own calculations. 

ESIM results in the livestock sector might seem implausible at first glance. In Germany, beef 

quantities and price rise simultaneously after DPs are abolished. This, however, is a specific 

result for Germany since DPs are fully decoupled unlike in many other countries (e.g. France, 

Spain, and Austria) which kept a small share of DPs coupled, especially in the beef sector. 

The abolishment of coupled payments in these countries leads to a reduction of the incentive 

price for beef production, which in turn reduces supply and increases the market price for beef 

in Europe.32 Since no coupled DPs are left in the baseline in Germany in 2020, German 

farmers do not suffer from abolished DPs for beef but are profiting from an increase in market 

prices. In ESIM this own price effect even overcompensates the increasing feedstock costs 

                                                 

32 In ESIM a European point market is assumed. It is abstracted from the possibility of different regional prices 
that might occur due to transportation or other transaction costs. 
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which result from higher crop prices. Thus, at the aggregate European level beef supply is 

reduced but in the German sector it is slightly extended. In FARMIS the slightly increasing 

beef price is not sufficient to overcompensate for higher feedstock prices, hence, beef supply 

decreases. 

After the iteration process, a significant reduction in utilized area compared to the stand-alone 

ESIM results (see Table 4.2, column 7) leads to rather small price changes (column 5). This 

again reflects that Germany is a small country within Europe (and the world) in terms of 

agricultural production for most commodities. For non-tradable goods (potatoes) and for 

crops where a substantial share of world supply is produced in Germany (rye) stronger price 

effects occur and the FARMIS results are dampened. 

In Table 4.3 results of a 50% DP cut scenario are presented. Effects are less pronounced for 

this scenario compared to the full abolishment. The FARMIS stand-alone version still 

generates significantly stronger effects than the ESIM stand-alone version. However, area 

declines less than half the amount of the scenario with full abolishment of the DPs. The 

relation between the share of DPs that are cut and the decline of area under production is non-

linear because the production decision is only affected when gross margins become negative. 

The still strong area effects in FARMIS are mainly caused by low rental prices which are 

observed in southern German regions in the baseline in 2020. Here, even a 50% cut of DPs 

cannot be absorbed by the land market, whereas in the north most regions still have positive 

land rents after the cut. In a more aggregate version of the model these effects would have 

been weaker since an average land price would provide more scope for an absorption of DP 

cuts, since the threshold of zero rental prices would hardly be passed. This is a good example 

to highlight the strengths and weaknesses of the two single models: while ESIM tends to 

underestimate effects of DP cuts due to an aggregation error FARMIS tends to overestimate 

the effects in the scenario at hand due to a limited depiction of structural changes that likely 

would occur. 

When the models are commonly used in the iterative modelling chain, these weaknesses are 

not fundamentally solved. Since the FARMIS model replaces only the German supply in 

ESIM, price effects are still determined to a great extent by the other European countries 

which are not disaggregated. Furthermore, the effects for Germany are likely overrated since 

quantity effects generated by FARMIS hardly are dampened by the small price effects at the 

European level. 
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Table 4.3: Price and Area/Quantity Changes (in %) in the 50_DP Scenario (2020 compared to 

Baseline in 2020) for Germany before and after Iteration. 

 
 
Products 

Before iteration After iteration 

 Change 
in price 

Change in 
area/supply 
in ESIM 

Change in 
area/supply 
in FARMIS 

Change in price Change in 
area/supply 

 (1) (2) (3) (4) (5) (6) (7) 
 % % % % % points 

differ-
ence 

with (1) 

% % 
points 
differ-
ence 

with (2) 
Area changes (crops)        

Wheat -0.1 -0.1 -5.3 0.7 0.8 -3.8 3.7 
Barley 0.1 -0.5 -6.6 0.6 0.5 -5.9 5.4 
Corn 0 -0.1 -2.9 0 0 -3.2 3.1 
Rapeseed 0.1 -1.2 -11.4 0.4 0.3 -10.3 9.1 
Rye 0.7 -1 -7.2 2.3 1.6 -5 4 
Sugar  0 0 0 0 0 0 0 
Other Grainsa 0.5 -0.7 -7.5 1.1 0.6 -6.7 6 
Potatoes -0.5 0 -0.8 0.6 1.1 0 0 
Volunt. Set-aside - -7 -18.4 - - -18.4 11.4 
Fodderb - -0.8 -7.6 - - -7.5 6.7 
Silage Maize - -0.9 -1 - - -0.9 0 
Gras - 0 -3.3 - - -3.1 3.1 

Supply changes 
(animal products) 

       

Pork 0 0 0 0.1 0.1 -0.1 0.1 
Beef 0.6 0.1 -0.9 0.4 0.2 -0.9 1 
Milk 0 0 0 0 0 0 0 

a Other grains: triticale and oats. b Fodder: other fodder except silage maize and grass. 

Source: Own calculations. 

Comparatively strong price changes occur in the No_Pricepol scenario (Table 4.4). For wheat 

and corn strong price cuts arise because of the abolishment of intervention prices which were 

relevant in the baseline in 2020. An even stronger reduction occurs for sugar due to the 

abolishment of the quota restrictions, the specific tariff, and the intervention price. In the case 

of beef and pork meat, high tariffs are reduced. Yet, a quality mark-up of roughly 25% of 

world market prices is assumed for these products in the No_Pricepol scenario to reflect the 

assumption that consumers care about the origin of livestock products and on average have a 

higher willingness to pay for domestically produced meat. Despite the mark-up, beef prices 

drop by 34.8% compared to the baseline in 2020. The pork meat price drops to a much lesser 

extent because under baseline assumptions the EU has an almost balanced net-trade (net-

exports account for about 1% of EU consumption) and prices are almost at world market level 

in the baseline (plus the mark-up). The abolishment of the European milk quota and the 
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simultaneous liberalization of dairy product markets (export subsidies and tariffs) lead to an 

18.8% lower milk price compared to the baseline. 

As has already been observed in baseline results, a biophysical link in FARMIS restricts beef 

production when a binding milk quota is in place. The reverse effect is now observable when 

the milk quota is abolished. While in ESIM beef supply is reduced by 29% due to strong price 

effects, FARMIS results only show a reduction of 1.8%. Due to a strong increase in milk 

supply additional beef meat is produced as a complementary product which compensates the 

price induced decline in beef production to a great extent. Pork production in ESIM is 

extended despite a reduced price. This effect occurs because the price drop is relatively small 

compared to other livestock products and the own-price effect is overcompensated by cross-

price effects. 

A similar case occurs for barley, rye, other grains, and rapeseed. Area in both models is 

extended despite reduced own-prices because of cross-price effects which are triggered by a 

strong decline in wheat, corn and sugar prices. The relatively small reduction of wheat and 

corn area in ESIM is also explained by cross-price effects.  

The area utilized for feeding-stuff production is reduced in ESIM due to decreasing livestock 

production. The less pronounced decline in livestock production in FARMIS and the increase 

in milk supply lead to an increasing demand for feeding-stuff and accordingly area is 

expanded. 
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 Table 4.4: Price and Area/Quantity Changes (in %) in the No_Pricepol Scenario (2020 

compared to Baseline in 2020) for Germany before and after Iteration 

 
 
Products 

Before iteration After iteration 

 Change 
in price 

Change in 
area/supply 
in ESIM 

Change in 
area/supply 
in FARMIS 

Change in price Change in 
area/supply 

 (1) (2) (3) (4) (5) (6) (7) 
 % % % % % points 

differ-
ence 

with (1) 

% % 
points 
differ-
ence 

with (2) 
Area changes (crops)        

Wheat -19 -5.3 -16.1 -18.6 0.4 -15.4 10.1 
Barley -3.8 4.3 2.9 -3.4 0.4 3.5 0.8 
Corn -19 -3 -18.2 -19 0 -18.2 15.2 
Rapeseed 0.9 9.3 15.1 0.9 0 15.1 5.8 
Rye -3.8 4.4 4 -3.4 0.4 4.3 0.1 
Sugar  -33.6 -19.8 -24.1 -33.3 0.3 -23.6 3.8 
Other Grainsa -2.8 4.7 5.5 -3 0.2 5.3 0.6 
Potatoes -5 0.1 -1 -3.7 1.3 -0.2 0.3 
Volunt. Set-aside - 1.7 21.2 - - 21.5 19.8 
Fodderb - -9.4 4.9 - - 3 12.4 
Silage Maize - -12 4.7 - - 3.6 15.6 
Gras - -1.6 0 - - 0 1.6 

Supply changes 
(animal products) 

       

Pork -4.3 0.5 -2 -3.9 0.4 -2.2 2.7 
Beef -34.8 -29 -1.8 -35.4 0.6 -2.6 26.4 
Milk -18.8 3.3 11.3 -21.1 2.3 9.8 6.5 

a Other grains: triticale and oats. b Fodder: other fodder except silage maize and grass. 

Source: Own calculations. 

In the Full_Lib scenario a full market liberalization of EU agricultural policies is simulated, 

i.e. the abolishment of all price policies and all direct payments at once. ESIM results only 

marginally change compared to the No_Pricepol scenario33. FARMIS results conversely 

indicate that area for almost all crops declines heavily due to an additional abolishment of 

DPs. After the abolishment of price policies, average gross margins in FARMIS already are 

reduced so that an additional cut in DPs causes negative gross margins in many regions. Even 

with these enormous declines in production, world market prices are hardly affected by 

implementing FARMIS results into ESIM. 

                                                 

33 The only exception is voluntary setaside which doesn’t generate any income anymore when DPs are abolished. 
However, due to isoelastic functional forms production values cannot become zero. 
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Table 4.5: Price and Area/Quantity Changes (in %) in the Full_Lib Scenario (2020 compared 

to Baseline in 2020) for Germany before and after Iteration. 

 
 
Products 

Before iteration After iteration 

 Change 
in price 

Change in 
area/supply 
in ESIM 

Change in 
area/supply 
in FARMIS 

Change in price Change in 
area/supply 

 (1) (2) (3) (4) (5) (6) (7) 
 % % % % % points 

differ-
ence 

with (1) 

% % 
points 
differ-
ence 

with (2) 
Area changes (crops)        

Wheat -19.6 -5.3 -35 -17.8 1.8 -33.2 27.9 
Barley -3.9 3.5 -21.4 -1.7 2.2 -19.1 22.6 
Corn -19.2 -2.9 -30.5 -18.7 0.5 -30.4 27.5 
Rapeseed 1 7.7 -34.4 2.3 1.3 -30.8 38.5 
Rye -2.8 2.6 -25.2 2.2 5 -20.3 22.9 
Sugar  -33.7 -23 -38 -33 0.7 -36.9 13.9 
Other Grainsa -2.7 3.5 -25 -1.9 0.8 -23.9 27.4 
Potatoes -6.6 0.4 -3.2 -0.6 6 -0.6 1 
Volunt. Set-aside - -39.6 -55.5 - - -55.2 15.6 
Fodderb - -12 -13 - - -13.4 1.4 
Silage Maize - -14.7 0.4 - - -0.5 14.2 
Gras - -2.1 -15.7 - - -16.3 14.2 

Supply changes 
(animal products) 

       

Pork -4.3 0.6 -2.2 -3.5 0.8 -2.8 3.4 
Beef -34.5 -29 -6.8 -35 0.5 -7.6 21.4 
Milk -18.6 2.8 8.1 -20 1.4 7.1 4.3 

a Other grains: triticale and oats. b Fodder: other fodder except silage maize and grass. 

Source: Own calculations. 

 

4.2.3 Discussion 

In the baseline, for most commodities reactions of the models go in the same direction and are 

of similar scope. Under scenario conditions, however, quite a few differences can be observed 

between the stand-alone versions of the two models. 

In the No_Pricepol scenario reactions for field crops are broadly in line among the models. 

However, FARMIS seems to be more sensitive regarding price changes than ESIM. Larger 

disparities occur in the livestock sector, mainly caused by different impacts of the milk quota 

abolishment. 

Differences in scenarios with DP cuts are much more pronounced. This goes back to different 

theoretical concepts with regard to the modelling of direct payments and the implementation 
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of structural change. ESIM to a certain degree considers (historically observed) structural 

change since it implicitly is included in its behavioural parameters. Furthermore, only 20% of 

the value of decoupled DPs is assumed to have an effect which is equivalent to a change in 

market prices. Contrarily, structural change in FARMIS is implemented exogenously. With 

strong reductions in average income, an increase in average farm size would be expected in 

reality; however, this dampening effect on supply reactions does not arise in the current model 

specification. Additionally, DPs are fully accounted for. When land markets are not able to 

absorb DP cuts via a reduction in rental prices, production becomes unprofitable in certain 

regions. The regional differentiation of land markets gives a more detailed picture compared 

to a model with a single region. In the 50_DP scenario, production declines in some regions 

even though the average land price of all regions would be high enough to absorb the cut in 

DPs almost entirely. ESIM only implicitly takes regional differences into account at the 

aggregate level via its elasticity approach. However, this approach implies that all farms have 

constant marginal reactions on a cut in DPs, no matter of the depth of the cut. Considering all 

these points, it can be concluded that impacts of DP cuts tend to be underestimated in ESIM 

and overestimated in FARMIS. 

The different model reactions are dealt with in an iterative procedure. However, even 

significant declines in supply in FARMIS do not cause strong price feedback in ESIM. Prices 

are similar for many products before and after the iteration. This is due to the fact that prices 

in ESIM are determined at the world or European level rather than at the German level. 

Germany is a small country for most of the agricultural products. Only in cases where a 

considerable share of world production is produced in Germany or where commodities are 

non-tradable, are price reactions more pronounced. Thus, the iteration procedure is relevant 

only for few commodities depicted in the models. Another picture would emerge, when more 

countries depicted in ESIM would simultaneously be substituted by programming models of 

the FARMIS type. In such a case supply changes would be more pronounced at the aggregate 

level and prices would react accordingly. 

From the discussion above it becomes clear that even though considerable differences among 

the models occur, they only partially can be traced back to the different levels of model 

aggregation. Nevertheless, due to the disaggregated structure, FARMIS clearly accounts for 

more heterogeneity of the sector, which also is reflected in aggregate results. For example, 

effects in the 50_DP scenario would be much lower if FARMIS was run on a higher level of 

aggregation. Another example is the bio-physical link between milk and beef production in 

FARMIS. Farmers that already fulfil their milk deliveries under quota restrictions need less 

dairy cows, which has an effect on calf and consequently beef production at the aggregate 

level.  
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5 Redistributive effects of agricultural policy 

After the modelling system has been introduced above and it has been explained how ex-ante 

data are generated, in a second step these data are further analysed to draw conclusions 

regarding distributional effects of the different reforms of agricultural policy in the 

agricultural sector of western Germany. 

 Measuring inequality and redistributive effects – methodological 5.1
aspects 

In this chapter, methodological aspects of the measurement of inequality and the measurement 

of redistributive effects are discussed. First, it shall be clarified how inequality is measured 

and what in general is meant by an index of inequality. There is a broad consensus in the 

literature what kind of basic properties such an index is desired to satisfy. These properties are 

presented in the next section. Thereafter, it is explained how impacts on inequality can be 

assessed. 

Since in the empirical analysis (presented below in section 5.3) several farms have negative 

incomes, the reaction of indices on the appearance of negative values in the income 

distribution is discussed. Negative incomes surely would be an inconceivable concept in the 

case of wage earners; however, for farmers negative incomes reflect losses, which at least 

temporarily are not unusual in the agricultural sector. 

5.1.1 Definition and properties of inequality indices 

Foster (1985, p. 12) gives a general definition of measures of inequality: 

“In the most general sense, a measure of inequality is a functional relationship I 

between a set D of social states and a set R of comparison points ordered by a binary 

relation ≥ . The measure extracts from a given social state d in D aspects that are 

relevant to inequality and assigns an element I(d) in R to reflect these aspects. The 

relation ≥ then indicates the inequality level of the state relative to other social states.” 

This very broad definition of an inequality measure I is commonly refined by several basic 

properties for the measurement of income inequality (see among others Foster, 1985; 

Chakravarty, 1999 and 2001; Bosmans and Cowell, 2010)34. Following these authors, the 

income of an individual i is a real number xi. The income distribution for n individuals 

arranged in ascending order is denoted by x = (x1,…,xn) in the Euclidean n-space Rn. The set 

of all possible income distributions is ∪�| �� = L. The dimension of an income distribution x 

is denoted by n(x) and µ(x) is the mean income. The expression 1n characterizes a vector of 

dimension n with all components being equal to 1. An inequality measure is a real valued 

continuous function I:X�R. I(x) is increasing with higher income inequality and shall be 

                                                 

34 There exists a broad consensus about these general properties of inequality measures in the literature. For 
further sources refer to the references given in Chakravarty (1999). 
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defined for n ≥ 2 only. I(x) = 0 in case of an equal distribution. The following properties are 

defined (Bosmans and Cowell, 2010; Chakravarty, 2001)35: 

Pigout-Dalton Transfer Principle (PD): 

For all x ∈ X and any positive real number δ, it counts that I(x1,…,xi,…,xj,…,xn) > 

I(x1,…,xi + δ,…,xj – δ,…,xn) if xi < xi+ δ < xj – δ < xj. 

PD ensures that a rank preserving progressive (regressive) transfer has a decreasing 

(increasing) effect on the inequality index. 

Symmetry: For all x ∈ X, I(x) = I(x’)  if x’ is obtained from x by rearrangement of 

components. 

Symmetry ensures that the degree of inequality does not change when individuals switch their 

rankings. 

 Population Principle: For every x ∈ X, I(x,x) = I(x). 

The population principle ensures that an inequality index is the same for a given distribution 

and any of its replications. 

A fourth criterion is differentiated for absolute and relative measures of inequality.36 A 

relative index of inequality should satisfy: 

 Homogeneity: For every x ∈ X and δ being any scalar > 0, I(x) = I(δx). 

Absolute measures of inequality should satisfy: 

Translation invariance: For every x ∈ X and any real number δ, I(x) = I(x + δ1n). 

Homogeneity ensures that proportional changes in all incomes do not change inequality. 

Translation Invariance implies that equal absolute changes in all incomes do not cause 

changes in the index of inequality. A more detailed discussion of relative and absolute 

concepts of inequality is presented in the next section. 

The presented basic properties are in general satisfied by most of the well-known and 

frequently used indices of inequality. Examples of relative indices are the family of 

generalized entropy measures (including Theils’ indices), the Atkinson index, and the Gini 

index. Examples for absolute indices are the variance, the Kolm index, and the absolute Gini 

index (all these measures are discussed in more detail in Chakravarty, 1999). It is worth 

noting, however, that not all statistical measures of inequality satisfy all the mentioned 

principles; e.g. the interquartile ratio does not satisfy the PD property (Deaton, 1997). 

Each of the different indices of inequality measurement has its own specific features and the 

“choice of a particular index will be guided by the specific objective one has in mind” 

                                                 

35 The names of the properties differ among different authors. The formal expressions are taken from Bosmans 
and Cowell (2010) and Chakravarty (2001) in case of Homogeneity. 
36 For sake of completeness it shall be mentioned that also “intermediate” measures exist. For a detailed 
introduction refer to the relevant literature, e.g. Bossert and Pfingsten (1985) and Pfingsten (1986). 
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(Chakravarty, 2001, p. 87). For the study at hand the relative and the absolute Gini coefficient 

have been chosen to measure the distributional impacts of policy reforms in the agricultural 

sector. The rank-based formulation of the Gini coefficients is a particularly important feature 

since it allows the measurement of re-ranking effects. Furthermore, at least the relative Gini 

coefficient is a well-known and widely used measure with a straightforward geometric 

interpretation. However, Gini indices cannot be decomposed into only two components – the 

sum of inequality among subgroup means and a weighted sum of within group inequality – if 

subgroup income ranges overlap (Mookherjee and Shorrocks, 1982). This may make the 

interpretation of a decomposed Gini coefficient less straightforward, but will also in turn 

facilitate further insights in the composition of inequality. A detailed discussion of subgroup 

decomposability is presented in chapter 6. A further characteristic that is worth mentioning is 

that both the absolute and the relative Gini indices are most sensitive to transfers around the 

middle of a distribution (Chakravarty, 2001). 

The relative Gini index G can (in discrete form) be specified as:37 
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where xi is the income of individual i (i = 1,2,3,…,n) and µ represents the average income. 

The relative Gini coefficient is conceptually closely related to the relative Lorenz curve. The 

latter relates the share in overall income of the p% poorest people to the share they represent 

in the overall population. An arbitrary relative Lorenz curve is presented in Figure 5.1, where 

population is ordered from the poorest to the richest at the abscissa. The area between the 45°-

line (i.e. the line of equality) and the Lorenz curve divided by the triangle under the 45°-line 

represents the relative Gini coefficient. 

 

 

                                                 

37 See Pyatt (1976) and Stuart and Ord (1994). 
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 Figure 5.1: Relative Lorenz curve. 

  Source: Adapted from Jenkins (1991). 

 

The absolute Gini index AG is equal to the relative one multiplied by mean income of the 

sample (Chakravarty, 1999) and thus, can be specified as: 
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An arbitrary absolute Lorenz curve is presented in Figure 5.2, again with the ordering of the 

population from the poorest to the richest. Since the concept of absolute Lorenz curves is 

hardly applied in the economic literature, it shall be briefly introduced in the following lines, 

which are taken from Jenkins, 1991, p. 4: 

 “An Absolute Lorenz curve […] graphs p[%] times average income among the 

poorest p[%] minus [p% times] the population average income, against cumulative 

population share, p[%]. If there is complete equality, the curve coincides with the 

horizontal axis […], and with inequality the curve hangs below the axis like a tear-

drop […]. In the extreme case where one person has all the income, the Absolute 

Lorenz curve is straight-edged and  -shaped, with the length of the vertical section 

equal to mean income. […] The closer the Absolute Lorenz curve is to the horizontal, 

the more equal the distribution.” 
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 Figure 5.2: Absolute Lorenz curve. 

  Source: Adapted from Jenkins (1991). 

 

Furthermore, the concept of concentration indices (e.g. Kakwani, 1980; Jenkins, 1988) shall 

be introduced in the following since it is extensively used in the next chapters. Starting point 

shall be the relative concentration curve because a relative concentration index can be derived 

from a concentration curve in a similar way as the Gini index can be derived from a Lorenz 

curve. 

Figure 5.3 presents an artificial concentration curve. The concept is closely related to the 

concept of Lorenz curves; however, instead of ranking income units in ascending order with 

respect to the variable under consideration, income units are kept in the ordering of another 

distribution. For example, a concentration curve of taxes with respect to the ordering of 

before-tax income graphs the share in overall taxes which have to be paid by the p% poorest 

income receivers (according to before-tax income) against the share they represent in the 

overall population. If a tax function takes other attributes except before-tax income into 

account it may happen that some people with a lower rank in the before-tax ordering have to 

pay more taxes than people with a higher before-tax income and a higher rank. This would 

lead to a kinked curve as presented in Figure 5.3. In general, relative concentration curves are 

not restricted to lie below the 45°-line. They also can be flipped to the other side above the 

45°-line. In this case the respective concentration index would take a negative value which 

would indicate that income units in the lower tail of the distribution (e.g. with lower before-

tax incomes) have a larger share of the variable under consideration (e.g. bear a higher tax 

burden). The Lorenz curve is a special case of a concentration curve when the orderings of the 

two variables are identical. 

Following Vernizzi et al. (2010), the relative concentration index can be specified as: 
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(11) 
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where µy is the mean of a variable y (e.g. taxes), rx(yi) represents the rank of individual i in the 

X-ordering and ψ{ z} is an indicator function such that ψ{ z}=1 if z>0, ψ{ z}=0 if z=0 and 

ψ{ z}=-1 if z<0. Absolute concentration indices are equal to relative ones multiplied by mean 

incomes of the variable under consideration, i.e. µy. 

 

 

Figure 5.3: Relative concentration curve of variable y ranked with respect to variable x. 

 Source: Own compilation on the basis of Pyatt et al. (1980). 

 

5.1.2 Measuring redistributive effects 

After having explained how inequality is measured, in this section the measurement of 

redistributive effects is presented. As Lambert (2001, p. 39) points out, “redistribution is a 

term in the English language commonly understood to refer to the new distribution of a given 

total.” Yet, how can we talk about redistributive effects in a case where mean income is not 

comparable? According to Lambert (2001), this is possible because we implicitly compare the 

new situation with another one in which income would have been changed in a distribution 

neutral way. The latter is used as a natural benchmark to evaluate distributional effects. 

In the following paragraphs, two different but related methodologies for the measurement of 

redistributive effects are introduced. The first one originally stems from the field of tax 

analysis. It has been applied for the analysis of redistributive effects of agricultural policy (see 

e.g. Allanson, 2006) and is also used in the work at hand. It distinguishes between vertical and 

re-ranking effects. The second methodology is also commonly utilized for the analysis of 

policy induced impacts on income distributions and is based on the decomposition of the Gini 

coefficient by income sources. 
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 Vertical redistribution, re-ranking and progressivity 38 5.1.2.1

In section 5.1.1 it was discussed how income distributions can be expressed by single indices. 

As already mentioned by Foster (1985) in the introductory quotation, to evaluate the degree of 

inequality of a specific distribution, it has to be compared to a reference distribution. In the 

study at hand different liberalization scenarios are compared with the income distribution of a 

reference scenario to evaluate reforms of agricultural policy in terms of (re-)distributional 

effects among farm incomes. Since the modeling system does not account for farm exits 

triggered by liberalization, negative impacts on mean farm income can be expected for the 

scenarios introduced in chapter 4.1. 

Kakwani (1986) develops the following measure of redistribution that is based on a 

comparison of relative Gini coefficients and decomposes the total effect into a vertical and a 

re-ranking component, which Allanson (2006) applies to agricultural policy:  

(12) ( ) ( )x y x y y yR G G G C C G V H= − = − + − = +  

where R represents the overall effect of redistribution as the difference of the Gini index in the 

base situation (Gx) and the Gini index in the new situation (Gy), Cy is the concentration index 

of income in the new situation with respect to base rankings, and V and H are indices of 

vertical redistribution and re-ranking, respectively. Generally, the concept of vertical equity 

represents the idea that a monetary burden on individuals should increase with their capacity 

to bear that burden. A positive (negative) sign for V indicates that in case of income losses, in 

this work due to a reduction of government support, the burden is progressively (regressively) 

allocated among the total farm population. Nevertheless, V does not measure the “pure” 

degree of deviation from a proportional burden share but it also depends on the share of the 

average burden in average base income. The “pure” degree of deviation rather is indicated by 

the comparison of the concentration index of the burden CB and the initial Gini coefficient Gx, 

which is presented by the Kakwani (1977) measure of progressivity: 

(13)     P = CB - Gx. 

P measures the extent to which the burden is distributed more unequally or equally than 

income in the base situation (Aronson et al., 1994). 

The connection between V and P is given as follows (Kakwani, 1986): 

(14)     
(1 )

P s
V

s

⋅=
−

 

where s represents the share of the average burden in average base income of the whole farm 

population.39 

                                                 

38 Parts of this section are identical with Deppermann et al. (2011, 2013) and Deppermann et al. (2014). 
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Yet, the degree of deviation from a proportional share of the burden does not entirely explain 

the new state of distribution (Atkinson, 1980; Plotnick, 1981). The index of vertical 

redistribution equals the overall effect of redistribution only if no re-ranking of farms occurs. 

In our analysis this would be the case if farms were arranged in ascending order of income in 

the baseline situation and still held the same rank after liberalizing the agricultural sector. 

Otherwise the index of vertical equity overestimates the redistribution effect by not including 

rank reversal effects. To illustrate the impacts of re-ranking on inequality, let us assume an 

extreme case in which, due to an imaginary policy, all individuals of a population have to 

switch their income: The highest income is replaced with the lowest, the second highest 

income with the second lowest, and so on. This policy would be highly progressive since the 

highest income-earners would have to bear the greatest burden and the lowest income-earners 

would obtain the most, but there would be no change in the overall distribution of income 

(refer to the symmetry property of the Gini index, presented in section 5.1.1). To account for 

re-ranking, the index H (which is also known as the Atkinson-Plotnik-index of re-ranking) is 

applied in equation (12). It can be interpreted as an indicator of arbitrariness or discrimination 

of the examined income redistribution system. Atkinson (1980) refers to the effect as 

“mobility” induced by an income policy, which might be of interest in its own right. If re-

ranking occurs, it always has a negative impact on the overall redistribution index (Lambert, 

2001). A graphical presentation of the decomposition of the overall redistributive effect in a 

vertical and a re-ranking component is provided in Figure 5.4. The redistributive effect R is 

represented by the area between the continuous Lorenz curve which represents the initial 

income distribution and the dotted Lorenz curve, which present the final state of income 

distribution. In this artificial case, a burden (e.g. a tax) would be inequality reducing. The 

vertical effect V refers to the area between the initial (continuous) Lorenz curve and the 

kinked concentration curve. Since some re-ranking occurs in this fictive situation, the vertical 

effect would overstate the reduction of inequality. Thus, after (re-)ranking income units in 

ascending order of the new distribution the dotted Loren curve would appear and the 

(negative) re-ranking index H refers to the area between the kinked concentration curve and 

the dotted Lorenz curve.  

 

                                                                                                                                                         

39 The reduction of income caused by liberalization is treated like a tax. In case one wants to measure the effects 
of cash benefits, the formula should be V = (Gx-CB)*(s/(1+s)). 
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Figure 5.4: Overall redistribution, vertical effects and re-ranking. 

 Source: Own compilation. 

 

The described approach has so far been based on the relative Gini coefficient. One property of 

relative measures of inequality is that proportional changes in all incomes do not change 

inequality (refer to the homogeneity property of relative inequality indices in section 5.1.1). 

However, it depends on subjective evaluation what kind of changes keep inequality 

unaffected (Chakravarty, 1990). According to different normative views on inequality 

equivalence, different concepts of inequality measures exist. In addition to the relative 

measure the absolute Gini index is applied in this work to broaden the view on inequality 

effects. The two concepts are closely related since the absolute Gini index is obtained by 

multiplying the relative one by the mean income of the sample, yet they react differently to 

income changes. Absolute measures of inequality are invariant to equal absolute changes in 

all incomes (refer to the translation invariance property of absolute inequality measures 

introduced in section 5.1.1).  

In his seminal paper, Kolm (1976, p. 417) labels relative measures “rightist” and absolute 

ones “leftist” in a context of wage and salary negotiations. His view is based on the 

observation that social forces that traditionally could - in a political sense - be classified as 

leftists (e.g. trade unions) rather favor absolute equal increases of salaries than proportional 

ones. He explicitly states that the term “must not be taken too literally” and that it is based on 

a situation with “an equal increase in all incomes rather than an equal decrease” (ibid., p. 

419). In our analysis we deal with decreasing income (on average) and thus, the terms might 

be misleading, since “leftists” probably prefer a proportional burden for everybody to an 

equal absolute cut in income. 
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Following Kolm (1976) and Pfingsten (1986), relative and absolute measures represent two 

extreme cases of inequality concepts because many people value an absolute equal levy as 

inequality extending and a proportional one as inequality reducing.40 

Generally, the described method of decomposing the overall redistribution effect can be 

applied to the absolute Gini index as well (Allanson, 2008): 

(15)  ( ) ( )x y x x y y x x y y y y y yAR AG AG G G G C C G AV AHµ µ µ µ µ µ= − = − = − + − = +         

where A indicates the absolute versions of the respective measures and µx and µy represent the 

average income of the base and new situation, respectively. In the absolute version, the 

(relative) concentration index of burden (CB) indicates whether a burden is progressively or 

regressively distributed. It shows how the shares of the total burden are distributed, keeping 

the ranks in sequence of the base situation. Thus, a negative (positive) CB indicates that small 

initial incomes have to bear a greater (smaller) part of the burden than higher incomes.41 

Comparing CB with the relative index of progressivity (P) makes it clear that in absolute 

terms, a burden might be indicated as progressive (positive CB) while in relative terms it is 

denoted as regressive in the case that CB < Gx, since P = CB – Gx. These potential 

discrepancies might also be found with regard to the overall effect of distribution. In the 

following it is clarified how the relative and absolute indices in the analysis at hand can be 

interpreted against this background. 

Starting from an arbitrary distribution with positive average income and not all incomes being 

equal, five possible cases can occur with the implementation of a tax or levy (see Figure 5.5). 

The horizontal line indicates a constant total amount of levies that all individuals have to bear 

together. When moving along the line, only the distribution of the burden among individuals 

is changed, i.e., inequality in the new situation continuously is reduced by moving from the 

left to the right, keeping average levies constant. Section a in Figure 5.5 represents a situation 

in which both the relative and the absolute index of overall redistribution have a negative 

sign. Thus, the new situation is less equal compared to the initial one. In section c, both 

indices assess the new situation as more equal (with both showing positive values). However, 

in section b we find contradicting results with the relative index indicating increasing 

inequality and the absolute index indicating decreasing inequality. Here, there is decreasing 

absolute income spreads in the after-burden situation (absolute Gini coefficient), which are 

not large enough to not be overcompensated by the reduced mean in case of the relative Gini 

coefficient (as G = AG/µ). Furthermore, with an equiproportionate reduction of all incomes, 

the effect of redistribution in relative terms is zero, but the redistribution effect in absolute 

terms is positive because absolute income spreads are reduced. With the implementation of a 

                                                 

40 Therefore they suggest some “centrist” (Kolm, 1976, p. 434) or “intermediate” (Pfingsten, 1986, p. 386) 
concepts of inequality, which, however, are also based on normative views on inequality. 
41 However, CB does not measure the degree of progressivity in absolute terms. It simply indicates the relative 
distribution of the respective burden. An equal absolute change of the burden for all individuals would cause a 
change in CB which, in absolute terms, should be a neutral modification. 
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uniform levy, the absolute index of redistribution indicates no change to the prior situation 

and the relative index shows less equal distribution as average income is reduced. 

 

Figure 5.5: Relation of the reactions of relative and absolute redistributive indices in the 

context of an average income reduction. 

Source: Own compilation. 

 

To evaluate a liberalization of agricultural policy as positive in terms of redistributive effects, 

it is obvious that the new situation should be more equal than the previous situation. Based on 

the above discussion, the argumentation is that the overall redistributive effect of any reform 

package must be at least positive in absolute terms and preferably be positive in relative terms 

as well. 

 Distributional effects of income components 5.1.2.2

Other studies measuring inequality effects in the agricultural sector have decomposed the Gini 

coefficient by income sources (e.g. El Benni and Finger, 2012; Keeney, 2000). This 

methodology allows for the identification of impacts on overall inequality caused by marginal 

changes in average incomes from one specific source (e.g. direct payments). In opposition to 

the methodology presented in section 5.1.2.1, the source decomposition of the Gini coefficient 

“does not serve to provide an explicit characterisation of the redistributive properties of farm 

income support measures” (Allanson, 2006, p. 118). Nevertheless, the methodology shall 

shortly be introduced in the following to provide a better understanding of results of other 

studies presented in chapter 5.2. Additionally, some similarities and relations of the two 

methodologies shall be revealed. Typically, the relative version of the Gini coefficient is 

decomposed by income sources in the current literature and thus, the presentation of the 

methodology is limited to this case in the following. 

The income source decomposition usually starts from a covariance-based formulation of the 

relative Gini coefficient as presented in Lerman and Yitzhaki (1984), which is numerically 

equivalent to the already introduced formulation in (9): 
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(16)   
2 [ ]cov X, F(X)

G
µ

=  

where F(X) is the cumulative distribution function of the random variable X representing total 

income. With decomposing total income into different income sources such that X = x1 + x2 + 

… + xk and F(Xk) representing the cumulative distribution function of income source k 

equation (16) can be extended to (Lerman and Yitzhaki, 1985): 
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Following Lerman and Yitzhaki (1985), the term Rk is named Gini correlation between 

income source k and total income, Gk depicts the relative Gini coefficient of income source k 

and Sk represents the share of income from source k in total income. 

Multiplying Rk and Gk yields the concentration index Ck which measures the distribution of 

income source k when income units are ranked according to their total income: 

(19)   
1 1
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The concentration index Ck sometimes also is referred to as ‘Pseudo-Gini coefficient’. It is 0 

if all income units get an absolute equal amount of income from source k, negative if income 

units in the lower tail of a distribution have a larger share of income from source k, and 

positive if income units in the upper tail of a distribution get the larger share of source k (El 

Benni and Finger, 2012). 

Following Lerman and Yitzhaki (1985), El Benni and Finger (2012) and Keeney (2000) 

calculate the impact a marginal change in the mean income of source k would have on the 

overall Gini coefficient under the assumption that the internal concentration index remains 

undisturbed: 

(20)   ( )1
k k kS C G

G
η  = −  . 

From equation (20) it can be observed that the effect of a marginal increase of income from 

one specific source k depends on the share of income from source k in total income Sk, the 

concentration index Ck, and the relative Gini coefficient of total income G. As already 

specified in section 5.1.1, the concentration index Ck measures the distribution of income 

source k when income units are ranked according to their total income. Thus, Ck for example 

measures the distribution of direct payments across the farm population when farms are 

ranked with respect to total income. This, however, measures exactly the same as the 

concentration index of burden CB (introduced in section 5.1.2.1) measures in a scenario where 

direct payments are abolished. 
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Thus, the results gained from a source decomposition of the Gini coefficient can also be 

calculated based on the indices introduced in section 5.1.2.1, but vice versa re-ranking and 

vertical effects are not attainable from the indices introduced in this chapter. 

 

5.1.3 Measuring inequality and negative income  

Many authors have recognized difficulties in interpretation of relative indices of inequality 

when negative values are allowed for in the distribution under consideration. This is observed 

especially in case of the relative Gini coefficient (among many others Chen et al., 1982; 

Ahearn et al.,1985; Boisvert and Ranney, 1990; Stich, 1996). 

When negative incomes42 appear in the distribution the relative Gini is no longer bound by the 

maximum value of one. Chen et al. (1982, p. 475) conclude from this “… that the [relative] 

Gini coefficient may overestimate the inequality of income distribution when negative 

incomes are included”. Ahearn et al. (1985) e.g. take this into account and try to circumvent 

the problem by recoding all negative incomes to zero while recognizing that this will 

underestimate the level of inequality.  

Chen et al. (1982) suggest an adjusted relative Gini coefficient which accounts for negative 

incomes as long as average income of the distribution is positive. They also present a 

graphical interpretation of their approach (Figure 5.6). Using their terms, the conventional 

relative Gini can be expressed as (A+B) / (B+C), whereas without negative values A = 0. To 

account for negative values, they suggest rewriting the Gini in the adjusted form: (A+B) / 

(A+B+C), since the “…conventional Gini goes wrong because it treats the indefinite size of 

(A + B + C) as a definite size of ½” (Chen et al., 1982, p. 477). Thus, the adjusted Gini is 

bound by the maximum value of one, even with the appearance of negative incomes. In other 

words, Chen et al. implicitly scale the maximum degree of inequality, which for the 

conventional relative Gini is equal to the denominator B+C and which implies that one 

member of the population owns all available income and all others have zero.43. 

 

                                                 

42 This discussion of course applies for any other variable as well. However, since income is the variable under 
consideration in this work it is used as the term of choice here.  
43 Precisely speaking, the area between the line of total equality (the 45° line) and the Lorenz curve of the 
distribution “one owing all and all others nothing” approximates B+C with a large number of income units.  
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Figure 5.6: The relative Lorenz curve and negative incomes. 

 Source: Chen et al. (1982, p. 476). 

 

This approach is criticised by van der Ven (2001, p. 11): “Chen et al. (1982) explicitly avoid 

the conceptual issues associated with the definition of perfect inequality … which complicates 

any interpretation of the coefficient that they advocate”. Due to this shortcoming “comparison 

between two distributions are complicated … by the use of different scaling factors” (p. 11). 

Another explicit criticism of the application of the relative Gini with negative values is, that 

transformations of the distribution under consideration might cause counterintuitive reactions. 

In a seldom recognized paper, Stich (1996, p. 299) defines the “Greatest Gets More axiom” 

(GGM), which, as he demonstrates, doesn’t hold generally for the relative Gini coefficient. 

GGM : I(x) < I(x1,…,xn-1,xn + k) for every k > 0. 

The GGM axiom states that an inequality index I rises in the case that the richest individual 

gets more income and all others keep their incomes. The underlying mechanism for the 

inability of the relative Gini coefficient to fulfil the GMM axiom when negative values arise 

in the distribution can be explained by splitting up the simple transformation process (i.e. the 

richest individual gets more income) into two steps. First, assume a mean increasing but 

inequality preserving change. For the relative Gini i.e. all incomes are proportionally scaled 

by the same factor (refer to the homogeneity property). This in turn implies that negative 

incomes become more negative. In the second step, assume that the additional income now is 

collected (also the additional negative income) and given to the richest person. This step 

implies that all persons with positive incomes except the richest lose money and all persons 

with negative incomes gain by reducing their debts. With a high share of negative incomes, 
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their gains and the losses of the positive incomes expect for the richest are weighted more 

than the gain of the richest person and overall inequality is announced to decrease. Stich 

(1996) explains the mechanism with the reaction of the Lorenz curve. Referring to Figure 5.6, 

an increase of the highest income would increase area B but at the same time downsize area 

A. 

Stich (1996) concludes that relative measures of inequality should be avoided when negative 

incomes appear in the income distribution. He proposes the utilization of absolute or in certain 

cases intermediate measures of inequality. 

However, absolute measures have a different normative basis than relative measures and thus, 

they cannot be considered as good substitutes in all cases. Also, the above proposed solutions 

(replacing negative values by zero; adjusting the reference base of inequality) have their 

shortcomings and hamper interpretation. Due to these difficulties the relative Gini and 

underlying data are not adjusted in the analysis at hand, even though a considerable amount of 

negative incomes appear in the distributions under consideration, as will be seen later on. The 

need to further utilize the relative Gini coefficient for the calculation of other indices would 

especially complicate their interpretation. The absolute Gini coefficient however, is used 

additionally. 

Furthermore, many authors apply the conventional relative Gini coefficient even with 

negative values. Amiel et al. (1996, p. 65) argue that the relative Gini is a “pratical 

alternative” when negative values appear in the distribution since many other scale invariant 

measures are undefined in such a case. Allanson (2006) even develops a methodology to 

compare relative Gini coefficients of distributions with negative and positive average 

incomes. 

To become more familiar with the implications of negative values on the calculation of 

relative Gini coefficients, a small artificial empirical experiment is provided in the following 

lines. This proceeding of course cannot generate any general conclusions nor is it meant to do 

so. However, it might help the reader to better reflect the shortcomings of the relative Gini as 

discussed above. 

In an artificial situation, consider an income vector of three persons {15,10,5}. This initial 

situation is constantly changed by reducing the income of each person by one Euro (Table 

5.1). 
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Table 5.1: Constant absolute differences with 
reduced mean incomes.  

 
 Source: own calculations. Figure 5.7: Impact of mean income 

reductions on the relative Gini coefficient. 
 Source: own calculations. 

 

From Table 5.1 and Figure 5.7 it can be seen that the relative Gini, assumed that absolute 

distances between income units do not change, increases exponentially with decreasing mean 

income. In a more general sense this becomes clear by recalling that average distances among 

individuals appear in the numerator of the relative Gini and mean income in the denominator:  

(9) 1 1

2

1
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n n

i j
i j

x x
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n µ

= =
−

=
∑∑
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This reaction takes place also when negative incomes are excluded (until distribution F). 

However, the appearance of negative incomes tends to make this effect more pronounced 

because the spread between numerator and denominator in this case may increase without 

having a ‘natural bound’. Absolute average distances can be kept constant and at the same 

time mean income can become close to zero44 and vice versa, with the allowance for negative 

incomes absolute average distances can increase without a ‘natural bound’ while keeping 

mean income constant. If this happens with an already comparatively low mean income, 

changes in absolute distances may seem disproportionally strong in relative terms.  

Furthermore, it should be kept in mind that the relative Gini does not necessarily violate the 

GGM axiom as soon as one negative value in the income distribution appears: The term 2n(n-

1)µ is equal to the maximum possible sum of absolute distances that can occur between 

individual incomes when only non-negative incomes are allowed, i.e. in a situation when one 

                                                 

44 Of course mean income can become negative as well, which would result in a negative value for the relative 
Gini. However, it is abstracted from this possibility here since the discussion of negative Ginis is beyond the 
scope of this work and not relevant in the empirical analysis. 
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person owns everything and all others own nothing. Observing that an increase of the highest 

income by an additional unit increases the distances among all units  
1 1

n n

i ji j
x x

= =
−∑ ∑  (i.e. 

the numerator of the relative Gini) by the same absolute amount as it increases the term 2n(n-

1)µ (i.e. the denominator of the relative Gini for a large n)45, it can be concluded that for large 

populations only relative Ginis close to one or greater than one will not fulfill the GGM 

axiom. Thus, counterintuitive reactions not automatically appear when negative incomes 

exist; rather the ratio 
1 1

n n

i ji j
x x

= =
−∑ ∑  to (2n2

µ) is crucial. 

It can be stated that even though the relative Gini is technically correctly specified when 

negative incomes are considered, it can react in a way that might not be in line with normative 

expectations and thus, may lead to misinterpretations. This should be kept in mind when 

relative inequality is discussed later in the empirical part of this work. Additionally, Lorenz 

curves are presented to illustrate the impact of negative values. If Lorenz curves do not 

intersect, no counterintuitive reactions can be expected. Yet, disproportionally strong 

reactions are of course still possible. 

 Literature review 5.2

After the discussion of methodological aspects for the measurement of inequality and 

redistribution, empirical results shall be presented. Before redistributive effects of the 

calculated scenarios are discussed in detail for the western German agricultural sector, a 

literature review of studies concerned with the measurement of income distribution and the 

redistributive effects of agricultural policy is provided below. 

As already stated in the introduction, most of the studies assessing redistributive effects of 

agricultural policy on farm incomes are ex-post studies and static in nature.46 Many studies 

only refer to separate measures of agricultural policy which are directly observable from the 

data without side calculations. However, other authors apply sophisticated methodologies for 

the quantification of support, which is not directly observable, like border protection e.g. 

Within the literature regarding the measurement of redistributive effects of agricultural policy, 

one methodology is dominating. Several authors apply the source decomposition of the 

relative Gini coefficient, which was introduced in section 5.1.2.2. This method enables the 

assessment of impacts on overall inequality caused by marginal changes in income sources. 

Besides the application of a similar methodology, most of these studies have in common that 

they focus on agricultural support that is directly observable from official statistics, e.g. DPs 

of the CAP. More subtle support such as transfers from consumers to farmers often is 

neglected. Furthermore, most studies abstract from capitalization of support in production 

factors and assume that farmers are the ultimate beneficiaries of such payments. Furthermore, 

                                                 

45 For a large population n it holds that 1/2n2
µ ≈ 1/2n(n-1)µ. 

46 The few exemptions are already discussed in section 2.3. 
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incentive effects in general are not taken into account. Some studies additionally analyse 

inequality effects of off-farm incomes. 

Keeney (2000) presents such a study for Ireland. She disaggregates family farm income into 

DPs and market income, where the latter includes all on-farm income sources but DPs. Based 

on the decomposition of the relative Gini coefficient she finds that DPs reduced relative 

income inequality in Ireland between 1992 and 1996 and states that an increased share of DPs 

has equalizing effects on farm income distribution. 

In a study for Switzerland, El Benni and Finger (2012) differentiate inequality effects by 

region, i.e. by valley, hill and mountain area. They observe changes in farm household income 

inequality in relative terms between 1990 and 2009 and decompose overall income into off-

farm income, DPs and a remainder market income. They find that off-farm income and DPs 

have equalizing effects on the distribution of household income and the opposite for market 

incomes. Furthermore, their results show that DPs have stronger marginal effects on 

inequality than off-farm incomes. 

Based on the same static methodology, Severini and Tantari (2013) analyse likely 

redistributive impacts of different possible reforms of first pillar DPs for Italy. In their study, 

farm net value added is the income indicator under consideration which is decomposed into 

income from DPs and market based income. For the status quo they find a high concentration 

of income which is reduced by DPs in relative terms. Their simulation of a shift from the 

historical to the regional DPs model reveals only a slight reduction of inequality compared to 

the baseline. 

Von Witzke and Noleppa (2007) decompose a relative Gini coefficient as well as a measure 

of absolute inequality of total farm profit into components for direct payments and market 

profit. The authors conclude that direct payments account for about one-third of overall 

inequality for family farms and for two-thirds of overall inequality for incorporated farms in 

Germany. However, from their numerical results it can be concluded that in relative terms 

DPs have an inequality reducing effect on family farms since the reported “pseudo factor 

Gini” is lower than the relative Gini coefficient for total income. The fact that the “pseudo 

factor Gini” has a positive value itself demonstrates that DPs have an inequality increasing 

effect in absolute terms. 

Several similar studies have been carried out for U.S farm households. Ahearn et al. (1985) 

analyse the effects of direct government payments on income of farm operator households in 

1984. They find equalizing effects of direct government payments and off-farm income at the 

margin in relative terms. Findeis and Reddy (1987) differentiate by regions and conclude that 

off-farm income has inequality reducing effects at the margin in relative terms in regions 

where full-time farming predominates. 
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Boisvert and Ranney (1990) apply the methodology to New York dairy farms. They consider 

net farm income, off-farm income and direct government payments and conclude that the last 

two have inequality reducing effects. El-Osta et al. (1995) include non-monetary47 and 

monetary income in their analysis. They find equalizing effects of government payments and 

off-farm incomes at the margin in relative terms. 

Mishra et al. (2009) investigate relative inequality effects of government payments on farm 

household incomes, differentiated for nine farming regions in the U.S. They conclude that a 

marginal increase in the off-farm and government payments components would reduce overall 

inequality; this is also true at the regional level for government payments and for most regions 

in the case of off-farm income. 

As an interim conclusion it can be stated that all considered studies which apply the Gini 

coefficient decomposition methodology find equalizing effects of DPs or other direct 

government support in relative terms, no matter for which country or period the study is 

carried out. If off-farm incomes are included in the analyses, this component is also found to 

be inequality reducing in most of the cases. However, regional differences appear in some 

analyses. The only study explicitly taking absolute inequality into account (von Witzke and 

Noleppa, 2007) suggests inequality increasing effects of direct payments. 

To account for different dimensions of inequality impacts, Allanson (2006, 2007, 2008) and 

Allanson and Rocchi (2008), through a series of papers, use the approach which was 

introduced in section 5.1.2.1 and which is based on a comparison of Gini indices of pre- and 

post-support income. They take overall agricultural (CAP) support into account. Support from 

market price measures is calculated on the basis of OECD producer support estimate data. 

Besides, DPs and other grants and subsidies are considered in the analyses. Furthermore, in 

contrast to the majority of the studies, they account for the fact that support only partly 

benefits the farmers and that a part of the payments will capitalize into prices of production 

factors not owned by the farm. The four studies are presented in the following in more detail. 

Allanson (2006) estimates changes of relative Gini coefficients for family farm incomes in the 

Scottish agricultural sector. In this paper, the overall redistribution effect of agricultural 

policy support is split up into a vertical dimension of inequality and a re-ranking effect. The 

analysis suggests that support is progressive in absolute terms, which has to be interpreted 

against the background of a negative average income of Scottish farms in the pre-support 

situation. However, an unequalizing overall effect of agricultural policy is found in relative 

terms, which is caused by re-ranking effects overtaking the equalizing vertical effects.  

In a paper explicitly taking classical horizontal inequity48 into account, Allanson (2007) finds 

the same result based on three different relative inequality measures. In absolute terms his 

                                                 

47 Non-monetary income refers to the value of home produced and consumed goods and the rental value of 
dwelling (El- Osta et al., 1995). 
48 The concept of classical horizontal inequity refers to the unequal treatment of equals. It is distinguished from 
other concepts of horizontal inequity like re-ranking. 
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results suggest a slight decrease in inequality due to agricultural support. However, negative 

horizontal inequity effects more or less outweigh equalizing vertical effects. Again, these 

rather confusing results (a more equal absolute index with a less equal relative index caused 

by income increasing support) appear with a negative average pre-support income which 

makes interpretation more difficult. 

Allanson (2008) presents an analysis in absolute terms for another time period than in his 

afore mentioned papers. Results show for five consecutive years an unequalizing effect of 

agricultural policy on the distribution of farm incomes in the Scottish agricultural sector. The 

unequal treatment of pre-transfer equals is identified to be the main reason for the increase in 

overall inequality, which otherwise would have been reduced. 

Allanson and Rocchi (2008) find similar results for overall inequality effects through a 

comparative analysis for Tuscany and Scotland. However, for Tuscany transfers are 

regressive in absolute terms rather than progressive as in the Scottish case. In their paper, an 

analysis for farm income is compared to an analysis for total household income which 

additionally takes off-farm income into account. In both areas – Tuscany and Scotland – 

inequality would decrease by additionally taking off-farm income into account when keeping 

ranks of the farm income distribution constant; however, since the ranks of the farms also 

change, pre-support income inequality effectively increases. When total household income is 

the indicator of choice vertical effects are less regressive/more progressive when agricultural 

support is introduced. 

OECD (2003) measures the degree of concentration of gross farm receipts, agricultural 

support and net operating income by estimating relative Gini coefficients and Lorenz curves 

based on farm quartiles. Support consists of DPs and market price support, which is 

calculated based on the OECD PSE database. Based on a comparison of these measures, the 

authors conclude that for most OECD countries under consideration, agricultural support has 

relatively small effects on distribution by farm size because the distribution of agricultural 

support is only marginally less unequal than the distribution of gross receipts. Thus, they 

conclude that the distribution of support is unequal because larger farms receive a greater 

share. Furthermore, it is found that on average market price support is more unequally 

distributed than DPs. 

Findings in a similar analysis by Moreddu (2011), who additionally focuses on differences 

among farm types and regions, are in line with these results. Using the assumption that 

farmers are final beneficiaries of support, it is found that market price support generally is 

distributed more unequally than direct payments. Yet, these differences are found to be small 

for Germany. It is concluded that overall support is unequally distributed but less than gross 

output which indicates inequality reducing effects in relative terms. Specifically for Germany, 

it is found that total support is as unequally distributed as gross agricultural output. 

Schmid et al. (2006) compare relative Gini coefficients of direct payments per farm holding 

for single EU-15 member states. They show that the degree of distribution of direct payments 
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is fundamentally different and closely related to the concentration of land inside the respective 

member states. In a more detailed analysis for Austria, they find that larger holdings receive 

the bulk of direct payments and that less favoured area payments have little equalizing effects. 

Von Witzke (1979) analyses the effects of prices and price policies on income distribution in 

the agricultural sector. Based on a theoretical model short- and long-run effects of price 

changes are empirically analysed for a sample of farms located in a specific German region. 

He finds that increasing prices lead to a lower concentration of agricultural income in the 

short-run (in relative terms). In the long-run, results depend on the assumption regarding the 

elasticity of scale. If the elasticity of scale is assumed to be positively correlated to farm 

income increasing prices lead to a higher concentration of agricultural income in the long-run. 

Brown (1990) applies a comparative static partial equilibrium model to identify long-run 

effects on producer welfare in the EU-10. In a first step, changes in producer welfare are 

calculated on a commodity basis for a full liberalization of the CAP. Subsequently, changes 

are disaggregated among representative farms. He finds that benefits of the CAP are 

regressively distributed.  

Another methodological approach with which to analyse policy induced income effects in the 

agricultural sector is the spatial micro-simulation approach applied by Hynes et al. (2009a, 

2009b). They statistically match different large scale datasets to generate a “synthetic 

population of Irish farms representing the Irish rural space” (Hynes et al., 2009a, p. 284). 

Hynes et al. (2009a) analyse with their spatial farm level micro-simulation model potential 

effects of a possible shift from the historical DP scheme to flat rate payments on the spatial 

distribution of family farm income in Ireland and provide their results in a GIS-based 

graphical form. Hynes et al. (2009b) use a similar approach to examine effects of carbon taxes 

in Ireland. Both analyses are static in nature even though ex-ante policy analysis is carried 

out. 

A related branch of literature aims at the estimation of EU agricultural policy effects on 

regional convergence. Hansen and Teuber (2011) take direct payments as well as market price 

support into account by applying OECD producer support estimate figures. They calculate 

regional agricultural support per labour force and per hectare. Based on the coefficient of 

variation they calculate changes in regional inequality of farmers revenues with and without 

CAP support over time for an area that consist of 26 NUTS-3 regions in Hesse, Germany. 

They find that inequality between farmers’ revenues increases across regions over time and 

that the CAP has only attenuating impacts on this trend. With a similar approach Anders et al. 

(2004) analyse the distribution of support in the same area and find increasing variations of 

total support, support per farm and support per hectare among individual regions over time. 

However, they state that per hectare support is negatively correlated with regional per capita 

income. For further relevant studies in this field refer to the introduction of Hansen and 

Teuber (2011). 
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In a completely different approach, Rocchi (2009) uses a SAM-based model to analyse 

income distribution changes from the single payment scheme of the CAP for Italy. This 

approach is able to distinguish between direct and indirect impacts of agricultural policy on 

income distribution among agricultural as well as non-agricultural households. However, the 

analysis is carried out at a highly aggregated level and does not take price effects into account. 

To conclude this section, it can be stated that the majority of the studies find explicitly or 

implicitly (e.g. “the distribution of support is unequal”) that agricultural support increases 

inequality in absolute terms. On the other hand, agricultural support is found to be inequality 

reducing in relative terms. Most of the studies do not take re-ranking or classical horizontal 

equity effects into account, however, their importance is shown by Allanson (2006, 2008). 

Virtually all of the studies which are assessing income effects at the farm level are static in 

nature49. Among them, only Allanson (2006, 2007, 2008) and Allanson and Rocchi (2008) 

account for the fact that farmers probably are not the final beneficiaries of the whole amount 

of support. 

  

                                                 

49 It is not unambiguously clear to the author if the partial equilibrium model in Brown (1990) is a behavioural 
model. However, in his study production patterns at the farm level are static. 
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 Redistributive effects of CAP reforms on western German farm 5.3
incomes 

In the following section, redistributive effects of policy changes assumed in the different 

scenarios (as introduced in section 4.1) are presented. Thereby, results of different 

methodological approaches are compared to each other. To ease the understanding of the 

methodological differences behind the analyses compared, Figure 5.8 gives an overview about 

the different aggregation levels, types of income, and the different styles of data generation. 

The left part of the figure refers to data generated by the modeling system as described above 

and the right part refers to a static analysis which does not take incentive effects into account. 

The latter serves as a reference for comparison and will be described in detail later on. 

At first, aggregation biases are accounted for in inequality analysis due to the application of 

grouped data instead of individual data. To this end, inequality impacts calculated on the basis 

of 467 FARMIS groups are compared to results calculated on the basis of 8,024 individual 

FADN-farms. This comparison is undertaken for the income indicator FFI (second column of 

the left part of Figure 5.8) and for the income indicator ‘total household income’ which, in 

addition to family farm income, accounts for off-farm income sources (column 2 + column 3 

from the left part of Figure 5.8). Off-farm income sources are not covered by the modeling 

system and the observed data in the base year of the analysis is assumed to be constant in real 

terms over time for all scenarios. 

Second, an analysis for the indicator ‘FFI’ is compared to an analysis for the indicator ‘total 

household income’. Comparison is presented at the individual farm level. Relating to Figure 

5.8, results referring to the second column in the last row of the left part are compared to 

results calculated on basis of the sum of the second and third column (FFI + off-farm income) 

in the last row of the left part of the figure. 

Third, since virtually all analyses which try to assess redistributive effects of agricultural 

policy instruments are conducted in a static way, the importance of taking incentive effects 

into account is assessed. To do so, an analysis is carried out which compares statically derived 

income distributions with distributions generated by the modeling system. To ease the 

analyses of the underlying processes, this comparison is carried out on the basis of FFI values 

for 467 FARMIS groups (column 2, row 3, left hand side vs. column 2, row 3, right hand 

side).  
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Figure 5.8: Overview of methodological approaches of inequality measurement. 

 Source: own compilation. 

 

For all scenarios, baseline results with the assumed status quo of agricultural policy serve as a 

base situation where redistributive effects are referred to in all cases. This implies the 

weighting of all (marginal) income changes by baseline-rankings (Lerman and Yitzhaki, 

1995). 

5.3.1 Redistributive effects and aggregation error50 

In this chapter redistributive effects of different reform scenarios are presented. Thereby, 

results are based on generated single farm data on the one hand and on grouped data on the 

other hand to evaluate the aggregation error which appears when redistributive effects are 

measured by the application of grouped data.  

Liberalizing the agricultural sector has clear negative impacts on average farm income. In the 

Full_Lib scenario, the scenario with the lowest average income, 31% of all individual farms 

have negative incomes, whereas in the baseline there are only 10%. The impact on relative 

measures in this context is extensively discussed above in section 5.1.3 and will be referred to 

again when distributional results are discussed in detail. Furthermore, as already examined in 

chapter 4.2, the results should be interpreted against the background that with this strong 

reduction in average income, significant structural change such as an increase in farm size and 

farmers leaving the sector can be expected which is not depicted in the current model 

specification. 

 

                                                 

50 This chapter was basis for the paper Deppermann et al. (2013) and some numerical results and paragraphs are 
taken unaltered. 
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 Decile groups 5.3.1.1

Table 5.2 provides an overview of the distribution of FFI in western Germany for all scenarios 

based on data for individual farms. Total farm population is segmented into decile groups 

which are ten groups of equal size with the bottom group containing 10% of farms with the 

lowest incomes and the top group containing 10% of farms with the highest incomes. In the 

column on the left (I), the baseline income of each decile group is reported. The next columns 

refer to the different liberalization scenarios under the situation in which the composition of 

the decile groups does not change: Farms that had the lowest income under the baseline 

scenario are still located in the bottom decile. 

Columns III, VI, IX, and XII present for each decile group its share in total income reduction 

for the respective scenarios. The bottom decile group under the Full_Lib scenario bears only 

3% of total income reduction and the top decile bears 23%; however, for the top decile 

income is reduced by 48% of baseline income, which is lower than the average reduction 

among all farms, 69%. 

On average, the effects of the 50_DP scenario are comparatively moderate. This is partly due 

to the high share of rented land – 68%, on average, in the baseline scenario – as well as the 

high rate of capitalisation of DPs in land prices which is assumed in FARMIS. As a result, 

land rental prices decrease significantly with a reduction of DPs, which cushions negative 

income effects especially for farms with a high share of rented land. The income effects more 

than double in the No_DP scenario compared to the 50_DP scenario because in many regions 

the full reduction of DPs is too high to completely be absorbed by the land market. Still, the 

average income reduction of a full abolishment of DPs is significantly lower (8,954 €) than 

the average loss of direct payments (18,331 €). 

Furthermore, it becomes clear that the Full_Lib scenario is not simply a sum-up of the No_DP 

and the No_Pricepol scenarios. For example, on average, the top decile loses 56,670 € in the 

No_Pricepol scenario and loses 15,105 € in the No_DP scenario, whereas under the Full 

Liberalization scenario, the top decile income decreases by 73,723 €. 
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Table 5.2: Family farm income decile groups for western Germany based on individual farm 
data. 

 50_DP scenario No_DP scenario 
Baseline 
income 

 
 
 

(I) 

Income after 50% 
DP Cut 

 
 
 

(II) 

Income 
reduction 

 
 
 

(III) 

Income 
differ-
ence 
/base 

income 
(IV) 

Income after 100% 
DP Cut 

 
 
 

(V) 

Income 
reduction 

 
 
 

(VI) 

Income 
differ-
ence 
/base 

income 
(VII) 

 

€/farm 
(av.) 

 
(Ia) 

% 
of 
all 
(Ib) 

 €/farm 
(av.) 

 
(IIa) 

% 
of all 

 
(IIb) 

% of  
total 

reduction 
 

€/farm 
(av.) 

 
(Va) 

% of 
all 
 

(Vb) 

% of 
total 

reduction 
 

1 -13,197 -3 -15,633 -4 7 -0.18 -18,043 -5 5 -0.37 

2 1,701 0 -486 0 6 1.29 -3,294 -1 6 2.94 

3 10,267 2 8,028 2 6 0.22 5,071 1 6 0.51 

4 20,607 5 16,759 4 11 0.19 11,609 3 10 0.44 

5 31,570 7 28,210 7 9 0.11 23,536 6 9 0.25 

6 41,791 9 38,133 9 10 0.09 32,600 9 10 0.22 

7 52,623 12 48,530 12 11 0.08 42,243 12 12 0.20 

8 67,286 15 63,167 15 11 0.06 56,637 16 12 0.16 

9 88,967 20 84,457 20 13 0.05 76,827 21 14 0.14 

10 152,622 34 147,241 35 15 0.04 137,517 38 17 0.10 

All 45,424 100 41,841 100 100 0.08 36,470 100 100 0.20 

 Source: Own calculations. 

Table 5.2 (continued): FFI decile groups for western Germany based on individual farm data. 

 No_Pricepol scenario Full Liberalization scenario 
Baseline 
income 

 
 
 

(I) 

Income after 
abolition of price 

policies 
 
 

(VIII) 

Income 
reduction 

 
 
 

(IX) 

Income 
difference 

/base 
income 

 
(X) 

Income after full 
liberalization 

 
 
 

(XI) 

Income 
reduc-
tion 

 
 

(XII) 

Income 
difference 

/base 
income 

 
(XIII) 

 

€/farm 
(av.) 

 
(Ia) 

% 
of 
all 
(Ib) 

€/farm 
(av.) 

 
(VIIIa) 

% of 
all 
 

(VIIIb) 

% of total 
reduction 

 

€/farm 
(av.) 

 
(XIa) 

% of 
all 
 

(XIb) 

% of 
total 

reduct. 
 

1 -13,197 -3 -16,976 -7 2 -0.29 -21,835 -16 3 -0.65 

2 1,701 0 -3,245 -1 2 2.91 -8,340 -6 3 5.90 

3 10,267 2 4,127 2 3 0.60 -1,209 -1 4 1.12 

4 20,607 5 9,703 4 5 0.53 710 1 6 0.97 

5 31,570 7 16,396 7 7 0.48 7,136 5 8 0.77 

6 41,791 9 20,920 9 10 0.50 10,821 8 10 0.74 

7 52,623 12 26,888 11 12 0.49 15,672 11 12 0.70 

8 67,286 15 37,223 16 14 0.45 24,986 18 13 0.63 

9 88,967 20 47,241 20 19 0.47 33,615 24 18 0.62 

10 152,622 34 95,952 40 26 0.37 78,899 56 23 0.48 

All 45,424 100 23,823 100 100 0.48 14,046 100 100 0.69 

Source: Own calculations. 
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When decile group values are calculated on the basis of already grouped (FARMIS) data 

rather than on the basis of individual data, top decile groups have a lower average income and 

bottom decile groups a higher one (Table 5.3). This effect is intuitive since groups are 

generated by criterions other than income (region, type and size). When FARMIS groups are 

disaggregated, higher individual incomes of middle and low-income groups move towards 

higher decile groups and vice versa. 

Difference in the distribution of respective income reductions, however, can hardly be 

observed. While the top decile group has a lower income share by 25 percentage points in 

total income in the Full_Lib scenario, the share in total income reduction differs only by one 

percentage point. From this it can be concluded that though low individual incomes in high-

income (FARMIS) groups tend to be smaller than high incomes in low-income (FARMIS) 

groups, they have similar income losses, on average, under the different scenarios. 

Table 5.3: Differences in FFI decile groups when data are calculated based on grouped data 

compared to individual farm data (Table 5.2). 

 50_DP scenario No_DP scenario 
Baseline 
income 

 
 
 

(I) 

Income after 50% 
DP Cut 

 
 
 

(II) 

Income 
reduction 

 
 
 

(III) 

Income after 
100% DP Cut 

 
 
 

(V) 

Income 
reduction 

 
 
 

(VI) 
Differences to Table 5.2 in € or %-points respectively 

 

€/farm 
(av.) 

 
(Ia) 

% 
of 
all 
(Ib) 

 €/farm 
(av.) 

 
(IIa) 

% 
of all 

 
(IIb) 

% of  
total 

reduction 

€/farm 
(av.) 

 
(Va) 

% of 
all 
 

(Vb) 

% of total 
reduction 

1 11,890 3 11,997 3 0 12,209 3 0 

2 7,301 2 7,057 2 1 6,856 2 0 

3 8,058 2 7,235 2 2 5,803 2 3 

4 8,596 2 9,170 2 -2 10,135 3 -2 

5 7,256 2 6,864 2 1 6,096 2 1 

6 2,140 0 3,267 1 -3 4,638 1 -3 

7 -415 0 -754 0 1 -716 0 0 

8 -3,184 -1 -3,909 -1 2 -4,455 -1 1 

9 -8,681 -2 -7,990 -2 -2 -7,410 -2 -1 

10 -32,973 -7 -32,950 -8 0 -33,169 -9 0 

All 0 0 0 0 0 0 0 0 

 Source: Own calculations. 
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Table 5.3 (continued): Differences in FFI decile groups when data are calculated based on grouped 

data compared to individual farm data (Table 5.2). 

 No_Pricepol scenario Full Liberalization scenario 
Baseline 
income 

 
 
 

(I) 

Income after 
abolition of price 

policies 
 
 

(VIII) 

Income 
reduction 

 
 
 

(IX) 

Income after full 
liberalization 

 
 
 

(XI) 

Income 
reduc-
tion 

 
 

(XII) 
Differences to Table 5.2 in € or %-points respectively 

 

€/farm 
(av.) 

 
(Ia) 

% 
of 
all 
(Ib) 

€/farm 
(av.) 

 
(VIIIa) 

% of 
all 
 

(VIIIb) 

% of total 
reduction 

€/farm 
(av.) 

 
(XIa) 

% of 
all 
 

(XIb) 

% of 
total 

reduct. 

1 11,890 3 11,657 5 0 12,609 9 0 

2 7,301 2 7,174 3 0 6,735 5 0 

3 8,058 2 6,364 3 1 4,208 3 1 

4 8,596 2 6,946 3 1 8,409 6 0 

5 7,256 2 3,277 1 2 2,450 2 2 

6 2,140 0 6,215 3 -2 8,984 6 -2 

7 -415 0 3,480 1 -2 2,938 2 -1 

8 -3,184 -1 -3,953 -2 0 -5,223 -4 1 

9 -8,681 -2 -5,805 -2 -1 -5,506 -4 -1 

10 -32,973 -7 -35,364 -15 1 -35,615 -25 1 

All 0 0 0 0 0 0 0 0 

 Source: Own calculations. 

 Lorenz curves 5.3.1.2

Before the methodology of measuring redistributive effects as described in section 5.1.2 is 

applied, Lorenz curves of the respective scenarios are presented. Following Jenkins (1991, p. 

6) it can be stated that if two relative (absolute) Lorenz curves do not cross, the distribution 

with the relative (absolute) Lorenz curve closer to the diagonal (horizontal) unambiguously is 

more equal than the other, according to all “standard” relative (absolute) inequality measures. 

By “standard” Jenkins refers to all inequality measures that fulfil the properties introduced 

within section 5.1.1: Pigout-Dalton Transfer Principle, Symmetry, and Population Principle. 

The concept of absolute Lorenz domination originally was introduced into the literature by 

Moyes (1987). 

In Figure 5.9 relative Lorenz curves of the income distributions in 2020 based on individual 

farm data for all scenarios are presented (Lorenz curves based on grouped data are presented 

in Appendix C). Since the curves do not intersect, it can be concluded that the same ranking 

of scenarios with regard to their degree of inequality as identified by the Gini index later on 

(Table 5.4) also would have been identified by all other standard inequality measures. 

Furthermore, it becomes apparent that the lower the average income of a scenario is, the more 

unequal it is ranked in relative terms. From Figure 5.10 it becomes clear that for the absolute 

measure exactly the opposite is true. The baseline with the highest average income 

unambiguously has the most unequal distribution in absolute terms while the Full_Lib 
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scenario with the lowest average income has the lowest degree of inequality among the 

scenarios. 

 
Figure 5.9: Relative Lorenz curves for baseline and all scenarios based on individual FFI 
data. 

Source: Own calculations. 

 
Figure 5.10: Absolute Lorenz curves for baseline and all scenarios based on individual FFI 

data. 

Source: Own calculations. 
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 Gini based analysis 5.3.1.3

In the following section, inequality effects of the different liberalization scenarios are 

analysed by decomposing the inequality changes into vertical and re-ranking effects and by 

measuring indices of progressivity (as described in 5.1.2). First, the results of the analysis, 

which is conducted on the basis of individual data, are analysed. This analysis reveals more 

information on inequality than the analysis based on FARMIS groups. Despite varying 

magnitudes of the single indicators, the direction of inequality effects is not substantially 

different in general. Emerging differences are discussed in more detail subsequently. 

In the 50_DP scenario (Table 5.4, section II) income is reduced by 3,583€ on average, which 

accounts for 7.8% of income in the baseline scenario. In absolute terms the DP cut leads to a 

slightly more equal situation. Very small re-ranking effects occur and the overall 

redistributive effect is also quite small. This is due to the low value of average support 

reduction rather than a low level of progressivity of the reduction. The CB measure indicates 

that support reduction is progressively distributed which means that higher incomes bear a 

higher burden of a DP cut than smaller incomes do. The results are in accordance with a priori 

expectations: farms with higher income have a greater acreage and get higher DPs. In relative 

terms we observe an opposite inequality effect. The DP cut is regressively distributed and 

leads to a more unequal distribution of income. The negative P value indicates that income 

losses are more equally distributed than initial income in the baseline scenario. Compared to 

other scenarios, P is even more negative if DPs are reduced by 50% representing a higher 

degree of regressivity of income reduction. Income losses account for a larger share in lower 

incomes compared to higher incomes. 

Similar effects can be observed in the analysis of a full abolishment of the DPs (the No_DP 

scenario, Table 5.4, section III): a more equal situation in the absolute analysis and a more 

unequal situation in the relative analysis. A doubling of the cut in DPs (from 50% to 100%) 

leads to disproportionately higher effects in the inequality analysis. A 100% cut has a less 

negative index of progressivity which indicates that a full abolishment in relative terms is less 

regressive than a 50% cut. Farms with lower income tend to be less productive and tend to be 

located in regions with relatively low land rents. Thus, low-income farms already reduce their 

production area with a 50% cut while high-income farms tend to not reduce production since 

rental prices can absorb a great share of the DP cut and gross margins are still positive. An 

additional cut of the remaining DPs hits high-income farms harder because they now also 

reduce their production area whereas low-income farms already reduced their production area. 

In the No_Pricepol scenario (Table 5.4, section IV) support cuts are pronounced in the 

livestock sector since tariffs and export subsidies are in place for several products in the 

baseline scenario and milk production is restricted due to the quota scheme. Furthermore, the 

sugar market is also heavily affected by relatively high border protection and the production 

quota that is still in place in our baseline scenario (compare sector results in section 4.2). 
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Compared to the No_DP scenario, much stronger income effects occur when price policies 

are abolished, i.e. average income is reduced by 48%.51 The overall absolute effect of 

redistribution (AR) is positive, which also indicates a positive absolute index of vertical equity 

since the absolute index of re-ranking is always non-positive. Thus, farms with higher 

incomes tend to bear a higher absolute burden from liberalization compared to farms with 

lower incomes. The re-ranking effect reduces the vertical effect by about 25%. 

In relative terms, income inequality increases compared to Baseline values. The redistributive 

effect is -0.222, which is more than double the effects in the No_DP scenario. Almost half of 

the overall effect, however, originates from re-ranking effects. Furthermore, due to a higher 

share of negative incomes compared to the No_DP scenario, comparability might be distorted 

in this case. The index of progressivity P is clearly negative, which indicates that low-income 

farms bear a larger share of the overall burden than their share of baseline income. For this 

indicator, comparability is given since it relies on the indicators CB, which incorporates 

(positive) income losses that rarely are negative, and Gx, which is the relative Gini coefficient 

of the Baseline. A comparison reveals that the abolishment of market price policies clearly is 

less regressive than the abolishment of DPs. Despite a lower regressivity, overall effects are 

more negative in the No_Pricepol scenario because average income reduction is much higher 

and the negative vertical effect is amplified by additional re-ranking effects. 

In the Full_Lib scenario (Table 5.4, section V), the liberalization policies of the No_DP and 

No_Pricepol scenarios are combined. Effects of both single scenarios go into the same 

direction, which is reflected in the results of the Full_Lib scenario. Redistributive effects of 

the combined scenario are stronger – i.e., they are more equalizing in absolute terms and more 

unequalizing in relative terms – compared to the single scenarios. Progressivity, however, is 

intermediate in the Full_Lib scenario. The observed increase in overall redistributive effects 

(more negative in relative and more positive in absolute terms) is caused by a larger scale 

factor s. However, the more than proportionally strong reaction of R partly goes back to a 

high share of negative incomes in the income distribution (see discussion in section 5.1.3).  

 Aggregation error 5.3.1.4

From Table 5.4 it can be observed that the analysis that is based on individual data and the 

one that is based on grouped FARMIS data clearly differ in terms of magnitude of the single 

indicators. Yet, the direction of inequality effects and the evaluation of policy reforms are 

similar.  

It is intuitive that both absolute and relative Gini indices are larger when calculated on the 

basis of individual data since within-group inequality is additionally included in the analysis. 

For baseline results, between-groups inequality accounts for 75% of total inequality measured 

                                                 

51 Income effects of this size should be interpreted in light of the modelling system not allowing for changes in 
farm structure. 
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on individual basis52 while for the Full_Lib scenario between-groups inequality only covers 

59% of total inequality. 

Already, the decile group analysis revealed that some farms with comparatively low (high) 

incomes which were part of middle-class income groups before the disaggregation move to 

the lower (upper) fringe of the overall distribution after disaggregation. In return, farms with 

comparatively high (low) income which formerly were part of groups with low (high) average 

incomes ascend (descend) in the income parade. This makes clear that the ranking of incomes 

in the individual approach is different from the ranking which appears when individuals are 

ranked due to the average incomes of their groups, which is implicitly the ranking in the 

grouped data approach. For Baseline results average income is 3% lower in the lowest decile 

group and 7% higher in the top group when individual rankings are considered. 

In each scenario the overall redistributive effect is more negative in case of the relative Gini 

and less positive in absolute terms when calculated on the basis of individual data. The 

vertical effect in absolute terms is higher for all scenarios, but then more than compensated by 

an also higher re-ranking effect. In relative terms both, V and H are more negative in all 

scenarios. 

Redistributive effects, however, differ only slightly in the absolute analysis. The CB indices, 

which also determine the absolute vertical effects, in particular are close between the 

approaches. For the relative analysis, differences are higher between the two approaches. This 

is comprehensible because after disaggregation a similar degree of distribution of losses is 

combined with a higher degree of inequality in Baseline incomes since P = CB – Gx.. Thus, 

similar absolute income losses are borne by higher incomes in the upper tail of the distribution 

and by lower incomes in the lower tail of the distribution. To conclude, it seems that after the 

disaggregation of groups, individual farms change their ranks to a certain extent. However, 

farms that change ranks, on average, lose similar absolute amounts of their incomes. This in 

turn, leads to more regressive income changes in relative terms. 

The most remarkable difference occurs among the relative index of progressivity in the 

No_Pricepol scenario. It is remarkable not because of the scope of the difference but because 

of the qualitative interpretation. The analysis of between-groups inequality suggests an almost 

neutral distribution of income reductions in relative terms. Contrarily, the analysis of 

individual data shows a clear negative index which implies regressively distributed income 

losses. 

However, large differences in the relative analysis, especially between the Gy values, should 

be interpreted with caution due to a higher share of negative incomes in the individual 

analysis because several individual farms with negative incomes were ‘hidden’ in groups with 

positive average income (26% of groups in Full_Lib have negative income and 36% of 

individuals in the same scenario; for the Baseline the ratio is 5% to 13%). Thus, with a 

                                                 

52 The ratio is the same for relative and absolute indices. 
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constant mean income (denominator) the numerator of the relative Gini can increase heavily 

due to the fact that negative incomes are allowed for. 

So far, analyses of redistributive effects were compared between individual and grouped data 

for the income indicator FFI. When instead total household income is applied as indicator 

(Table C.1 in Annex C) a slightly different picture appears. Conclusions are widely the same; 

however, due to additional off-farm income all relative Gini indices become smaller. For the 

analysis of grouped data in the No_Pricepol and the Full_Lib scenarios this leads to slightly 

positive indices of progressivity. The opposite is true for the individual data-based analysis. 

Here, the indices announce regressivity of liberalization burdens in relative terms. Thus, the 

additional disaggregation of the grouped data has a sign reversing effect on the progressivity 

index in these two scenarios. Yet, again, the higher share of negative incomes in the 

disaggregated version has to be taken into account and might relativize the differences 

between the approaches. 

In comparison, two other studies using a similar approach to account for the impacts of 

grouping denote much stronger impacts on the qualitative results. Bourguignon et al. (2005) 

combine a standard multisector CGE model with a behavioural micro-simulation model to 

account for changes in real income under different real devaluation scenarios for Indonesia. 

They contrast results based on ten groups with constant within-group inequality with results 

based on disaggregated incomes of 9,800 individual households. Their results indicate 

substantial differences between the two methodologies. They found sign reversing effects due 

to the disaggregation. In a similar study Savard (2005) compared results based on seven 

representative household groups of a CGE model with results based on additionally 

disaggregated incomes for 39,520 households. For a trade liberalization scenario for the 

Philippines he found that the two approaches “systematically produce inverse results” 

(Savard, 2005, p. 326). However, the two cited studies differ from the work at hand as they 

apply behavioural micro-models instead of accounting models for further disaggregation of 

the results and also much fewer and larger representative household groups in the aggregated 

model. Thus, the aggregation bias in the aggregated analysis is likely much larger than in the 

analysis based on 467 farm groups representing 17.2 individual farms on average. 
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Table 5.4: Decomposition of changes in FFI inequality (individual data vs. grouped data). 

  Relative analysis Absolute analysis 

  Individual data  Grouped Data Individual data  Grouped Data 
I)  Baseline Results      
Average income (in €)  45,424 
Gini index of income (A) Gx 0.560 0.422 25,443 19,164 

      

II)  50_DP scenario   

Average income (in €)  41,841 
Average support reduction (in €)  3,583 
Average rate of reduced support 
(support reduction/base income) 

s 0.078 

Gini index  (A) Gy 0.598 0.448 25,028 18,743 
Concentration index  (A) Cy 0.595 0.446 24,903 18,675 

Total redistributive effect (A) R -0.038 -0.026 414 422 
Index of re-ranking (A) H -0.003 -0.002 -125 -67 

Index of vertical equity (A) V -0.035 -0.024 539 489 
Index of progressivity of support 
reduction 

P ; CB -0.410 -0.285 0.151 0.136 

      

III)  No_DP scenario   

Average income (in €)  36,470 
Average support reduction (in €)  8,953 
Average rate of reduced support 
(support reduction/base income) 

s 0.197 

Gini index  (A) Gy 0.662 0.487 24,155 17,775 
Concentration index  (A) Cy 0.649 0.480 23,662 17,496 

Total redistributive effect (A) R -0.102 -0.065 1,288 1,389 
Index of re-ranking (A) H -0.014 -0.008 -493 -279 

Index of vertical equity (A) V -0.089 -0.058 1,781 1,668 
Index of progressivity of support 
reduction 

P ; CB -0.361 -0.236 0.199 0.186 

      

IV)  No_Pricepol scenario   

Average income (in €)  23,823 

Average support reduction (in €)  21,601 

Average rate of reduced support 
(support reduction/base income) 

s 0.476 

Gini index  (A) Gy 0.782 0.498 18,632 11,857 

Concentration index  (A) Cy 0.683 0.434 16,265 10,349 
Total redistributive effect (A) R -0.222 -0.076 6,811 7,308 
Index of re-ranking (A) H -0.099 -0.063 -2,367 -1,508 
Index of vertical equity (A) V -0.123 -0.013 9,178 8,815 
Index of progressivity of support 
reduction 

P ; CB -0.135 -0.014 0.425 0.408 

      
Source: Own calculations. 
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Table 5.4 (continued): Decomposition of changes in income inequality (individual data vs. 

grouped data). 

  Relative analysis Absolute analysis 

  Individual data  Grouped Data Individual data  Grouped Data 
Baseline Results      
Average income (in €)  45,424 
Gini index of income (A) Gx 0.560 0.422 25,443 19,164 

      

V) Full Liberalization scenario   

Average income (in €)  14,046 

Average support reduction (in €)  31,378 

Average rate of reduced support 
(support reduction/base income) 

s 0.691 

Gini index  (A) Gy 1.256 0.739 17,642 10,377 

Concentration index  (A) Cy 1.005 0.582 14,111 8,179 
Total redistributive effect (A) R -0.696 -0.317 7,801 8,787 
Index of re-ranking (A) H -0.251 -0.156 -3,531 -2,198 

Index of vertical equity (A) V -0.445 -0.160 11,331 10,985 
Index of progressivity of support 
reduction 

P ; CB -0.199 -0.072 0.361 0.350 

Source: Own calculations. 

 

5.3.2 Indicator effects – family farm income versus total household income 

In this section redistributive effects are analysed based on two different concepts of income – 

family farm income and total household income. As already stated above, family farm income 

provides information on return to land, labour, and capital resources owned by the farm 

family, as well as the remuneration of entrepreneurial risk. In contrast, total household income 

additionally takes all off-farm sources into account. Since off-farm income is not depicted in 

the modelling system, observed base year values are assumed to be constant in real terms until 

2020 and for all scenarios. This assumption likely leads to an underestimation of inequality 

compensation effects of off-farm income sources because it can be expected that the 

development of off-farm income and agricultural support are negatively correlated (e.g. 

Vergara et al., 2004; Kwon et al., 2006). 

Before going into details, it is worth emphasizing that for both income concepts only the 

income base is changing while losses are remaining the same for each farm. In other words, 

the same liberalization losses calculated in the scenarios are referred to an (on average) higher 

income, since off-farm income is added as an additional constant income source. Baseline 

rankings according to the indicator FFI differ from rankings according to total household 

income because off-farm income and on-farm income are negatively correlated and some 

farms with a lower FFI overcome other farms when total household income is considered. 

Nevertheless, in Baseline results inequality is lower for total household income than for FFI. 

Thus, inequality reducing effects of additionally taking off-farm income into account are not 

overcompensated by re-ranking effects when switching from FFI to total household income as 

it is in the case of Allanson and Rocchi (2008) for example. 
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The Lorenz curves for total household income as presented in Figure 5.11 and Figure 5.12 

indicate that scenarios are ranked in the same way with regard to the degree of inequality as in 

the analysis of only FFI. A closer look at the absolute Lorenz curves, however, uncovers that 

the curve of the Full_Lib scenario lies outside all other curves for the first 3% of the 

population and inside for the remaining 97%. This denotes that absolute distances of 

cumulative household income to the mean income are larger for the smallest 3% of the 

population in the Full_Lib scenario than in all other scenarios. It also denotes that for the rest 

of the population, absolute distances of cumulative household income to the mean are smaller 

than in all other scenarios. Thus, some indices of inequality might exist which explicitly focus 

on the lower tail of the distribution and accordingly may rank distributions in a different way. 

The relative Lorenz curves reveal that the number of negative values in the distribution of 

total household income is considerably lower compared to the distribution of FFI (cf. Figure 

5.9) for all scenarios. For total household income 7% of the farms have negative incomes in 

the Baseline and 23% in the Full_Lib scenario, compared to respectively 13% and 36% of 

negative values for FFI.  

 

 

Figure 5.11: Relative Lorenz curves for baseline and all scenarios based on individual total 
household income data. 

Source: Own calculations. 
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Figure 5.12: Absolute Lorenz curves for baseline and all scenarios based on individual total 
household income data. 

Source: Own calculations. 

 

In Table 5.5 it can be observed that absolute vertical and overall effects are smaller when total 

income is applied as the indicator for all scenarios. This can be explained by the fact that 

farms with a low FFI tend to have higher income from off-farm sources and in some cases rise 

in the ranking due to the additional consideration of off-farm income. Thus, since the losses 

are distributed progressively with regard to FFI, more farms with higher absolute losses 

descend in the ranking of total income and farms with lower losses ascend in the ranking. This 

trend is also reflected in the CB indices which indicate that losses (which have the same 

average size in both analyses) are less concentrated among the high-income farms when total 

farm income is considered instead of FFI. 

Absolute differences in vertical and overall effects are stronger for scenarios in which an 

abolishment of market price support measures is involved (i.e. No_Pricepol and Full_Lib) 

compared to the scenarios with DP cuts. Here, the level of average income losses is higher 

and at the same time losses are more concentrated among high-FFI farms, which leads to 

stronger effects when switching to total income as indicator. 

In relative terms all indicators are closer to zero for the analysis of total household inequality. 

This can partly be explained by a higher average income (also leading to less negative values 

in the distribution). Thus, relative Gini coefficients are less sensitive with respect to changes 

in average income. Nevertheless, taking off-farm income sources also into account has an 

equalizing effect in relative terms due to the negative correlation of off-farm income and on-

farm income. 
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Table 5.5: Decomposition of changes in income inequality based on individual data (total household 
income vs. FFI). 

  Relative analysis Absolute analysis 

  Total Income FFI  Total Income FFI  
I)  Baseline Results  

52,798 45,424 52,798 45,424 
Average income (in €)  

Gini index of income (A) Gx 0.468 0.560 24,714 25,443 

II)  50_DP scenario   

Average income (in €)  49,215 41,841 49,215 41,841 
Average support reduction (in €)  3,583 3,583 3,583 3,583 
Average rate of reduced support 
(support reduction/base income) 

s 0.068 0.078 0.068 0.078 

Gini index  (A) Gy 0.495 0.598 24,386 25,028 
Concentration index  (A) Cy 0.493 0.595 24,256 24,903 

Total redistributive effect (A) R -0.027 -0.038 329 414 

Index of re-ranking (A) H -0.003 -0.003 -130 -125 
Index of vertical equity (A) V -0.025 -0.035 459 539 
Index of progressivity of support 
reduction 

P ; CB -0.340 -0.410 0.128 0.151 

      

III)  No_DP scenario   

Average income (in €)  43,844 36,470 43,844 36,470 
Average support reduction (in €)  8,953 8,953 8,953 8,953 
Average rate of reduced support 
(support reduction/base income) 

s 0.170 0.197 0.170 0.197 

Gini index  (A) Gy 0.54 0.662 23,688 24,155 

Concentration index  (A) Cy 0.529 0.649 23,173 23,662 

Total redistributive effect (A) R -0.072 -0.102 1,026 1,288 

Index of re-ranking (A) H -0.012 -0.014 -515 -493 
Index of vertical equity (A) V -0.06 -0.089 1,541 1,781 
Index of progressivity of support 
reduction 

P ; CB -0.296 -0.361 0.172 0.199 

      

IV)  No_Pricepol scenario   

Average income (in €)  31,197 23,823 31,197 23,823 

Average support reduction (in €)  21,601 21,601 21,601 21,601 
Average rate of reduced support 
(support reduction/base income) 

s 0.409 0.476 0.409 0.476 

Gini index  (A) Gy 0.608 0.782 18,957 18,632 
Concentration index  (A) Cy 0.518 0.683 16,158 16,265 
Total redistributive effect (A) R -0.14 -0.222 5,757 6,811 

Index of re-ranking (A) H -0.09 -0.099 -2,799 -2,367 

Index of vertical equity (A) V -0.05 -0.123 8,556 9,178 
Index of progressivity of support 
reduction 

P ; CB -0.072 -0.135 0.396 0.425 

      
Source: Own calculations. 
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Table 5.5 (continued): Decomposition of changes in income inequality based on individual 

data (total household income vs. FFI). 

  Relative analysis Absolute analysis 

  Total Income FFI  Total Income FFI  
Baseline Results  

52,798 45,424 52,798 45,424 
Average income (in €)  

Gini index of income (A) Gx 0.468 0.560 24,714 25,443 

V) Full Liberalization scenario   

Average income (in €)  21,420 14,046 21,420 14,046 

Average support reduction (in €)  31,378 31,378 31,378 31,378 
Average rate of reduced support 
(support reduction/base income) 

s 0.594 0.691 0.594 0.691 

Gini index  (A) Gy 0.861 1.256 18,446 17,642 
Concentration index  (A) Cy 0.667 1.005 14,278 14,111 

Total redistributive effect (A) R -0.393 -0.696 6,268 7,801 
Index of re-ranking (A) H -0.195 -0.251 -4,168 -3,531 
Index of vertical equity (A) V -0.198 -0.445 10,436 11,331 
Index of progressivity of support 
reduction 

P ; CB -0.136 -0.199 0.333 0.361 

Source: Own calculations. 

 

5.3.3 The relevance of taking into account policy-induced production and market 
responses in ex-ante inequality analysis53 

To illustrate the impact of taking into account incentive effects of agricultural policy, model-

based results are compared to those of an analysis which does not allow for any adjustments 

to take place. To estimate income changes resulting from a liberalization of the CAP without 

allowing for production and market responses, it is assumed that European domestic prices 

equal world market prices (in principle, following the procedure adopted by Allanson (2006) 

and OECD (2003)) and production patterns in the FARMIS model are fixed to those of the 

baseline scenario. In this approach, the full amount of reduction in support is still not 

translated one to one into lower farm incomes since the land price is kept variable in the 

FARMIS model and tends to decrease with declining commodity prices and DPs. Further 

reductions in input prices, such as feed and seed costs, are also still taken into account. For the 

calculation of the No_DP scenario without adjustment effects, we rely on the assumption that 

DPs are essentially decoupled from production, and thus that domestic baseline prices will not 

change. Consequently, the No_DP scenario without adjustment effects is calculated by solely 

abolishing all DPs while keeping production patterns fixed.54 

                                                 

53 This section in parts is identical with parts of the paper Deppermann et al. (2014). 
54 In the farm group model the link between payment entitlements and land is taken into account. In addition, the 

requirement to keep land which receives payments in good agricultural and environmental condition can have 
an impact on production in regions where agriculture would not be profitable without payments (Kilian et al., 
2012). This causes varying results compared to the version without adjustment effects. Decoupled direct 
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Since this section focuses primarily on a comparison of methodologies, the analysis is 

conducted on the basis of grouped (FARMIS) data. By omitting the additional disaggregation 

step for the calculation of individual farm data, the complexity of the analysis is reduced and 

results are easier to compare and interpret. 

In the No_DP scenario, inequality effects are generally in the same direction in both versions, 

i.e., with adjustment and without adjustment (Table 5.6, section II). Compared to the version 

without adjustment, average income losses are lower when adjustment is accounted for. This 

is because farms adjust their production patterns to the new support structure and specifically 

abstain from unprofitable activities. Compared to the version without adjustment, inequality 

decreases in both relative and absolute terms when adjustment is allowed. In absolute terms, 

however, this only occurs because of a decrease in re-ranking which offsets the lower vertical 

effect in the version with adjustment. If ranks of the baseline are held constant, higher-income 

farms tend to reduce losses marginally more by adjustment in absolute terms (ACy increases 

when adjustment is allowed for), while lower-income farms gain more in relative terms (Cy 

decreases). Higher CB values in the version with adjustment indicate that lower-income farms 

can reduce their share in the overall income losses accruing from the abolishment of DPs 

because of adjustment. 

Many individual farm characteristics explain adjustment reactions of a farm and thus the 

ability to reduce income losses from a DP cut. Factors that determine the reaction of a farm 

are: regional land prices, shares of farm owned land, individual production patterns, and gross 

margins per hectare. In the analysis at hand, there is one key factor among these attributes 

which explains why low-income farms tend to reduce their share in the overall income losses 

of all farms when adjustment is accounted for compared to the version without adjustment: in 

the sample, lower-income farms have a lower gross margin, on average, for most of the 

important products. As a consequence, due to the DP cut, lower-income farms have a higher 

share of production activities with negative gross margins, on average, compared to farms 

with a higher income. Thus, when adjustments are allowed, lower-income farms are able to 

reduce their income losses by reducing or stopping the respective production activities. 

Higher-income farms, in contrast, tend to have a higher share of production with positive 

gross margins even after the abolishment of DPs. Hence, even though adjustment is accounted 

for, higher-income farms cannot reduce their losses by simply abandoning these activities. 

Resources may be shifted to other farming activities, yet other activities are in most cases 

affected by reduced support payments as well. Thus, it can be observed that low-income 

farms tend to reduce their production to a larger extent when adjustment is allowed, compared 

to farms with higher income. 

 

                                                                                                                                                         

payments may also affect production via wealth and insurance effects (Bhaskar and Beghin, 2009), however, 
these effects are not taken into account in the analysis. 
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Table 5.6: Decomposition of changes in income inequality based on (FARMIS) groups 
results (dynamically vs. statically derived FFI). 

  Relative analysis Absolute analysis 

  with adjustment no adjustment with adjustment no adjustment 
I)  Baseline Results      
Average income (in €)  45,369 
Gini index of income (A) Gx 0.422 19,149 

      

II)  No_DP scenario      

Average income (in €)  36,376 33,864 36,376 33,864 
Average support reduction (in €)  8,993 11,505 8,993 11,505 
Average rate of reduced support 
(support reduction/base income) 

s 0.20 0.25 0.20 0.25 

Gini index  (A) Gy 0.49 0.53 17,748 17,815 

Concentration index  (A) Cy 0.48  0.51 17,467 17,427 
Total redistributive effect (A) R -0.07  -0.1  1,401 1,335 

Index of re-ranking (A) H -0.01 -0.01 -281 -388 
Index of vertical equity (A) V -0.06 -0.09 1,682 1,722 
Index of progressivity of support 
reduction 

P ; CB -0.23 -0.27 0.19 0.15 

      

III)  No_Pricepol scenario      

Average income (in €)  23,899 22,918 23,899 22,918 

Average support reduction (in €)  21,470 22,450 21,470 22,450 
Average rate of reduced support 
(support reduction/base income) 

s 0.47 0.49 0.47 0.49 

Gini index  (A) Gy 0.5 0.53 11,893 12,118 
Concentration index  (A) Cy 0.44 0.47 10,396 10,695 

Total redistributive effect (A) R -0.08 -0.11 7,256 7,032 
Index of re-ranking (A) H -0.06 -0.06 -1,497 -1,423 
Index of vertical equity (A) V -0.02 -0.04 8,753 8,454 
Index of progressivity of support 
reduction 

P ; CB -0.01 -0.05 0.41 0.38 

      

IV)  Full Liberalization scenario      

Average income (in €)  14,191 10,510 14,191 10,510 

Average support reduction (in €)  31,178 34,859 31,178 34,859 

Average rate of reduced support 
(support reduction/base income) 

s 0.69 0.77 0.69 0.77 

Gini index  (A) Gy 0.74 1.09 10,455 11,498 

Concentration index  (A) Cy 0.58 0.84 8,273 8,878 
Total redistributive effect (A) R -0.31 -0.67 8,695 7,652 
Index of re-ranking (A) H -0.15 -0.25 -2,181 -2,620 

Index of vertical equity (A) V -0.16 -0.42 10,876 10,271 
Index of progressivity of support 
reduction 

P ; CB -0.07 -0.13 0.35 0.29 

Source: Own calculations. 
Note: Numerical results of the analysis with adjustment minimally differ from the figures presented above for 
the comparison between different levels of aggregation. These differences occur due to slight changes in the 
model code. However, results and conclusions are not affected. 
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A comparison of the No_Pricepol scenarios (Table 5.6, section III) with and without 

adjustment reveals similar differences found in the comparison between the No_DP scenarios. 

In the No_Pricepol scenarios, inequality decreases in comparison to the static version when 

adjustments are allowed. Lower-income farms are able to reduce income losses to a larger 

extent, on average, than higher-income farms – not only in relative terms, but also in absolute 

terms. This is indicated by a lower absolute concentration index (ACy) and a higher absolute 

vertical effect of liberalization (AV) in the version with adjustment compared to the version 

without adjustment. 

Again, adjustment reactions of farms depend on individual characteristics such as production 

patterns and factor endowments. In the No_Pricepol scenario, production patterns are even 

more relevant because product price reactions vary with commodity specific adjustment 

effects (world market prices increase, on average, when adjustment is allowed, dampening 

price cuts that accrue in the static scenario). Furthermore, due to the abolition of production 

quotas, the farm specific magnitudes of quota rents also impact adaption abilities. 

One reason for the higher reduction of losses in absolute terms in lower-income farms in the 

No_Pricepol scenario with adjustment compared to the scenario without adjustment, is an 

effect triggered by the abolishment of the milk quota. Without being restricted by the quota 

scheme, dairy production, on average, increases when adjustment is allowed.55 As a by-

product of increased dairy production, the supply of calves increases. At the same time, the 

abolishment of price policies leads to a decrease in beef prices and thus a decrease in the 

profitability of beef fattening activities. When production patterns are adjusted, this leads to a 

decrease in the demand for calves. The resulting negative price effect for calves negatively 

affect dairy farms, on average, in the scenario with adjustment compared to the scenario 

without adjustment. In our baseline scenario, prices for dairy products are high and most dairy 

farms are in the upper two income terciles. Thus, the negative income effect resulting from 

these specific market price adjustments counteracts the reduction of income losses from 

adjustments in farm production, mainly for higher-income farms. The negative income effect 

of falling calf prices also explains the lower reduction of average losses of all farms due to 

adjustment in the No_Pricepol scenario compared to the No_DP scenario. 

Nevertheless, dairy farms do not show homogenous adjustment behaviour. Some farms 

decrease dairy production because of low baseline quota rents, while others expand milk 

production because of initially high quota rents. As a consequence, some dairy farms have 

even greater losses from liberalization when production and market adjustments are allowed, 

compared to when adjustments are not allowed, given the combination of lower calf prices 

and decreased milk production due to low quota rents. Other dairy farms, however, can partly 

compensate their losses by increasing milk production. 

                                                 

55 In the version without adjustment quantities are fixed to baseline values. 
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Another reason for the comparatively high reduction of income losses of lower-income farms 

due to adjustments in the No_Pricepol scenario is the fact that many of the farms which 

specialized in beef production are in the lowest income tercile in the baseline scenario. Since 

beef is a highly protected product in the Baseline scenario, liberalization entails a higher 

demand and a lower supply in Europe. These market adjustment effects have considerable 

positive impacts on the world market price of beef. Thus, taking market adjustment effects 

into account, price cuts for beef are lower compared to the version without adjustment effects. 

Due to these additional adjustment processes in the No_Pricepol scenario, the general pattern 

of adaption observed in the No_DP scenario – i.e., it being easier for lower-income farms to 

avoid income losses from liberalization by abandoning production activities which have 

negative margins under scenario conditions – is less important in the No_Pricepol scenario. 

In the Full_Lib scenario (Table 5.6, Section IV), differences between the version with and 

without adjustment are more distinct, both in relative and absolute terms. Similar to the 

No_Pricepol scenario, lower-income farms can reduce their losses to a greater extent due to 

adjustment processes, even in absolute terms. This is indicated by a higher index of vertical 

equity (AV) in the version with adjustment, compared to the version without adjustment. 

The more profound differences between the analysis with and without adjustment can be 

explained mainly by two effects. First, with higher average support cuts, a larger share of 

production activities obtain negative marginal incomes, which is mainly the case for less 

profitable farms with lower incomes. These losses are more readily avoided by abandoning 

unprofitable farming activities than losses caused by support cuts for products that still have 

positive marginal income effects. Second, profitable farms with a high share of quota 

products, particularly dairy farms, tend to have opposing adjustment strategies in the No_DP 

and No_Pricepol scenarios: In the former, production activities tend to be reduced because 

unprofitable land is taken out of production. In the latter, production, on average, is extended 

due to the abolishment of quota restrictions. The combination of these two opposing strategies 

leads to a lower ability of farms to reduce losses due to adjustment in the Full_Lib scenario, 

mainly for farms with a higher income. 

When adjustment effects are allowed, in all three scenarios, lower-income farms tend to 

reduce their share in overall income losses compared to the version without adjustment. In 

general, the adjustment mechanisms of factor markets might counteract this effect. This is 

particularly with an abolition of production quotas since more profitable farms tend to extend 

their production, resulting in additional costs for less profitable farms due to a demand-driven 

increase in factor prices. In our analysis, however, this effect is less distinct and other effects 

dominate the results. 

In the No_Pricepol and the Full_Lib scenarios, lower-income farms, on average, are able to 

avoid liberalization losses to a greater extent due to adjustment processes compared to higher-

income farms – even in absolute terms. This effect is a rather specific feature of the empirical 

analysis for western Germany and is mainly caused by the dampening market price effect, 
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particularly for farms that specialize in beef production and that tend to have low Baseline 

incomes, and the negative effect of lower calf prices for dairy farms which tend to have 

middle or high incomes in the Baseline scenario. 

Furthermore, farm specific production patterns, regional factor markets, and individual factor 

endowments determine the ability of farms to adapt to new market structures and to avoid 

income losses. For these factors, however, no general distinction between low and high 

income farms can be made based on our model results. 

From the empirical analysis, it can be concluded that taking adjustment effects into account 

clearly has an impact on the dimension of inequality indicators. When comparing analyses 

that ignore adjustment effects to ones that do not, the largest differences are found in the 

Full_Lib scenario. Nevertheless, in all of the scenarios, distributional effects have the same 

directional impact both in the static analysis and in the analysis with adjustment effects. In 

general, the evaluation and ranking of the different reform scenarios with respect to their 

impact on income equality is similar regardless of adjustment effects. 

 

5.3.4 Discussion 

To conclude, it can be said that the results of the calculated scenarios are robust with regard to 

the tested aggregation levels, income indicators and the inclusion of behavioural effects, at 

least with regard to the direction of redistributive effects. Only when total household income 

is applied does a further disaggregation of grouped results lead to sign reversing effects for 

vertical effects of two scenarios. Still, results differ substantially in magnitude, mostly when 

different levels of aggregation are compared with each other. 

Results are in line with most of the existing literature. An abolishment of market price support 

and/or direct payments would decrease absolute income differences in the agricultural sector 

because high-income farms lose higher amounts of money. On the other hand, low-income 

farms would have to bear a higher share of the burden in relative terms. With regard to the 

different policy instruments, it turns out that the abolishment of market price support is more 

progressive in absolute terms and less regressive in relative terms than the abolishment of 

DPs. 

A caveat of the analysis is clearly the static way in which the micro-model disaggregates the 

grouped results. Due to this approach, individual income changes are to a certain extent 

determined by changes in production patterns of the respective farm groups at the meso-level. 

Furthermore, no structural change is implemented in the modelling system. This likely has an 

effect on the analysis of income distribution since farms with large negative incomes would 

probably leave the sector and average farm size would increase. Moreover, the adaption of 

new production technologies is not considered in the analysis.  

In addition, several assumptions regarding the development of agricultural markets until the 

final year of the analysis have to be made for the generation of the Baseline scenario. It is 



102 
 

well-known that redistributive effects are influenced by the distribution of income in the base 

situation (Lerman and Yitzhaki, 1995). Thus, it should be kept in mind that any ex-ante 

analysis implies a certain extent of uncertainty. 

 

 

6 Subgroup decomposition of inequality effects in the western 
German agricultural sector 

In section 2.2.2 the terms between-groups inequality and within-group inequality were 

introduced to substantiate the claim that inequality is systematically underestimated when it is 

measured on the basis of grouped data. After the detailed explanation of how individual farm 

income data are generated in this work and after an extensive analysis of redistributive effects 

of CAP liberalization, now a subgroup decomposition of inequality indices is undertaken. To 

give a more detailed picture of the underlying processes of inequality changes, individual 

farms are grouped according to different farm characteristics to reveal the contribution of 

inequality within the groups and between the groups to overall inequality. Total farm 

population is decomposed into subgroups according to farm types and in a second analysis, 

according to regional criteria. 

 Methodology 6.1

The literature generally distinguishes between inequality measures which are additively 

decomposable into only two components and measures which yield three components. 

Generalized Entropy indices, among others, belong to the first group. They can be 

decomposed into one component containing inequality within groups and another one 

containing inequality between groups. Inequality between groups in this context is accounted 

for by substituting all individual incomes within a given group by the groups mean income. In 

summary, both components yield the overall inequality level (for an overview and axiomatic 

derivations see Deutsch and Silber, 1999). Such a measure can be represented by equation (1) 

in section 2.2.2: �
�����

� 	 ��	�
	� + �
������. 

The Gini coefficient, both in absolute and in relative terms, is decomposable into a measure of 

inequality within groups and a measure of inequality between group means only if subgroup 

populations do not overlap. Two subgroups do not overlap if all members of the group with 

the lower mean income are poorer than the poorest member of the richer group. Such a 

situation is depicted in Figure 6.1b. 
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Figure 6.1: Overlapping of Distributions. 

 NB: Vertical lines depict mean incomes of subgroups. 
 Source: Milanovic (2002). 

 

In the case of overlapping group distributions (represented in Figure 6.1a) a third term appears 

when the Gini coefficient is decomposed. With G depicting the Gini coefficient, GW the 

within-group inequality component, GB the between-group inequality component, and OV the 

overlapping term it counts: 

(21)    W BG G G OV= + + . 

Bhattacharya and Mahalanobis (1967) were among the first authors using the Gini 

decomposition by subgroups in their analysis of household consumption in India. Other 

authors followed suit, with each proposing a new technical decomposition methodology or 

interpretation (see Deutsch and Silber (1998), Monti (2007), and Radaelli (2010) for historical 

outlines of the development of decomposing the Gini coefficient by subgroups). For a long 

time the methodology was discussed controversially, especially because of the overlapping 

term which was seen as a rather disturbing term not containing any valuable information. 

Often, two-term decomposable indices were considered as superior. Mookherjee and 

Shorrocks (1982, p. 889) for instance write about the overlapping term: “However, there still 

remains […] the ‘interaction effect’ […], which is impossible to interpret with any precision, 

except to say that it is the residual necessary to maintain the identity. Furthermore, the way in 

Income

Income

A B C

A B C

a) Large Overlap Component in Gini Decomposition

b) Small Overlap Component in Gini Decomposition
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which it reacts […] is so obscure that it can cause the overall Gini value to respond 

perversely”. Lambert and Aronson (1993) provide a geometrical analysis of the overlapping 

term within the Lorenz diagram. They interpret OV as a term which accounts for the re-

ranking which is “necessary to form the true income parade, from the poorest to the overall 

richest” (p. 1222) when in the initial situation individuals are ranked in ascending order within 

subgroups and subgroups in ascending order with regard to their mean income. However, they 

did not see the Gini coefficient “rehabilitated” and suggest Generalized Entropy measures for 

the analysis of inequality sources (p. 1225). 

In other papers, however, the overlapping term is appreciated as a source of additional 

information (e.g. Dagum, 1997; Lambert and Decoster, 2005). Dagum (1997, p. 519) suggests 

that between groups inequality is more accurately depicted when overlapping is explicitly 

taken into consideration. To “take the income means of the subpopulation as their 

representative values to estimate inequality between subpopulations […] is inappropriate for 

the income distributions of the subpopulations often differ in variance and asymmetry”. 

Yitzhaki and Lerman (1991) and Yitzhaki (1994) explore the link between income 

distribution and income stratification. Yitzhaki (1994) develops an index of stratification 

based on the overlapping of subgroup distributions. However, the stratification index and the 

between-groups component in this literature differ from the ‘traditional’ approach in the sense 

of Bhattacharya and Mahalanobis (1967) and others. Gradín (1999, 2000) develops an 

indicator which is very similar to Yitzhaki’s (1994) indicator, but which is rooted in the 

‘traditional’ approach. 

Monti (2007) shows that results of the decomposition approaches proposed by Mookherjee 

and Shorrocks (1982), Lambert and Aronson (1993), and Dagum (1997) are numerically 

equivalent. Radaelli (2010, p. 82) refers to this (specifically, to Dagum’s) approach as the 

“most widespread Gini index decomposition currently applied in a subgroups framework”. 

This approach is also applied in the work at hand and is presented in detail below. Equations 

are taken from Monti (2007)56 who shows that the overlapping term can be further 

decomposed as a weighted sum of overlapping between each pair of groups. Equations are 

adopted where it seemed appropriate to the style of Radaelli (2010) to increase intelligibility. 

Using the same notations as before with xi representing the income of individual i (i = 

1,2,3,…,n) and µ the average income, the relative Gini coefficient can be expressed as: 

(22)   
2

1 1

1

2 2

n n

i j
i j

G x x
n µ µ= =

∆= − =∑∑   

with ∆ indicating Gini’s mean difference, which represents the average distance between all 

possible pairs of income in the distribution. Now, let us consider a segmentation of the total 

population n into k mutually exclusive subgroups with nk members, an average income of µk, 

                                                 

56 Monti (2007) in turn builds on the equations presented in Dagum (1997). 
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and the total number of groups K. The mean difference among all members of group k is 

denoted ∆kk. Then, the relative Gini index for each group k is represented by: 

(23) 
2

1 1

1

2 2

k kn n
kk

kk ki kj
i jk k k

G x x
n µ µ= =

∆= − =∑∑   

and total within-group inequality is subsumed in GW, which is defined as 

(24)   W kk k k
k

G G p s=∑  

with pk representing the population share of group k in overall population and sk its share in 

overall income. Accounting for the fact that all individuals within one group build pairs (and 

thus cause inequality) not only with members of the same group but also with all other 

members of the total population, a Gini ratio is presented which accounts for inequality 

between members of group k and group h, but not within the subgroups: 

(25)   
1 1

1 k hn n
kh

kh ki hj hk
i jk h k h k h

G x x G
n n ( )µ µ µ µ= =

∆= − = =
+ +∑∑ . 

Based on equation (25) the gross Gini component GGB is defined, subsuming inequality that 

occurs between groups and excluding the inequality within the groups: 

(26)   GB kh k h
k h k

G G p s
≠

=∑∑  

Gross inequality between groups GGB is further decomposable. The component GB represents 

net inequality between groups and is obtained by substituting all individual incomes within a 

given group by the respective groups’ mean income. The second term OV is a component that 

reflects the degree of overlapping of distributions. Thus: 

(27)   GB BG G OV= +  

with 

(28)   
1

2B k h k h
k h

G p pµ µ
µ

= −∑∑  

and 

(29)   
1

( )kh k h k h
k h k k h

OV p sµ µ
µ µ≠

= ∆ − −
+∑∑ . 

Above, the decomposition methodology was introduced for the relative Gini coefficient. In 

the work at hand the absolute Gini coefficient is additionally used. Thus, absolute versions of 

the inequality components are derived in the following. We know that the relative Gini 

coefficient is equal to the absolute Gini divided by mean income. Thus, we easily can see that: 

(30) W B W BAG G G G OV AG AG AOVµ µ µ µ= = + + = + +  

and thus, from equations (23) and (24) 
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(31) 2
W kk k k kk k

k k

AG G p s AG ( p )µ= =∑ ∑ ,with 
2
kk

kkAG
∆=  and k k

k

n
s

n

µ
µ

= . 

Furthermore, multiplying (28) and (29) by mean income yields: 

(32) 
1

2B k h k h
k h

AG p pµ µ= −∑∑  

and 

(33) 
1

( )kh k h k h
k h k k h

AOV p sµ µ µ
µ µ≠

= ∆ − −
+∑∑  

1

2 1

( ) ( )K k
kh k h hk h k

k h h k
k h k h h k

p s p s
µ µ µ µ

µ
µ µ µ µ

−

= =

∆ − − ∆ − −
= +

+ +∑∑  

1

2 1

( )K k
kh k h

k h h k
k h k h

( p s p s )
µ µ

µ
µ µ

−

= =

∆ − −
= +

+∑∑  

1

2
2 1

K k
k h

kh k h
k h

n n
( )

n
µ µ

−

= =

= ∆ − −∑∑ .57 

The three presented Gini components so far, (A)GW, (A)GB and (A)OV sum up to the total 

(absolute) Gini coefficient and thus, represent the shares of inequality which are caused by the 

respective types when divided by the overall coefficient. (A)GW itself is a weighted sum of 

Gini ratios representing inequality within the single groups. (A)GB and (A)OV are, 

respectively, weighted sums of Gini ratios representing inequality between each single pair of 

groups when individual incomes are replaced by group means, and overlapping that occurs 

between each pair of groups (as was shown by Monti, 2007). These (unweighted) single ratios 

henceforth shall be denoted as ‘fractional Ginis’ to highlight the fact that a Gini coefficient is 

calculated by only taking a fraction of the overall population into consideration. 

Relative ‘fractional Ginis’ are defined as [Gkk] for within group inequality, as [│µk- µh│/ (µk+ 

µh)] for the between group inequality and as [(∆kh -│µk- µh│)/(µk+ µh)] for the overlapping 

term. The absolute versions are defined as [AGkk], [│µk- µh│/2], and [(∆kh -│µk- µh│)/2] in 

respective order. By weighting a Gini equivalent with its respective weight and dividing it by 

the overall Gini coefficient one calculates the share in overall inequality that is respectively 

caused by inequality within a group, inequality between the means of two specific groups or 

overlapping of two specific groups with each other (Monti, 2007; Mussard, 2004). As an 

example, I show for the share of overall inequality which is caused by overlapping between 

group k and group h, that it depends only on the distances between the considered incomes 

and has the same numerical value in the relative (term 1) and the absolute version (term 2): 

                                                 

57 By observing that: ( ) 2
k h h k k h k hp s p s n n / nµ µ µ + = +  (Monti, 2007, p. 7). 
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By observing that 1 1
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ki hj k h
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kh k h
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− − −
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(34) 
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. 

Regarding the interpretation of the overlapping term, Lambert and Aronson (1993) recognize 

that it would be higher the closer the means of the subpopulations. They state that the term 

OV is “at once a between groups and a within groups effect [which] measures a between 

groups phenomenon, overlapping, that is generated by inequality within groups” and which is 

“a phenomenon with intrinsic economic interest”. (p. 1224). Shorroks and Wan (2005) 

conclude that a reduced overlapping component is likely to translate into increasing between 

group inequality, but that this relation is not an unambiguous one since distances between 

subgroup means do not necessarily have to increase when overlapping is reduced. 

A link between the overlapping term and the concepts of stratification and segmentation is 

established by Yitzhaki and Lerman (1991) and Yitzhaki (1994). In their works, overlapping 

is interpreted as non-stratification. Based on this insight, Yitzhaki (1994) develops a clearly 

defined index of overlapping that is consistently integrated in the framework of a Gini 

decomposition. Thereby, the Gini is decomposed into three terms. However, only the within-

groups inequality component is numerically equal to the one presented by Dagum (1997) and 

others. Yitzhaki (1994) emphasises the importance of the measurement of stratification in 

connection with income inequality by linking it to the inequality tolerance of a society. He 

points out with reference to Runciman (1966) that inequality tolerance is higher in stratified 

societies. Furthermore, he suggests the application of his index in the field of market 

segmentation or to measure the “segmentation of the students’ population by school … 

[which] is an important factor which determines the ability to predict students’ performance 

from knowing their school” (p. 149). 

The between-groups and the overlapping components are differently defined. Still, the two 

different ways of Gini decomposition are closely related, which is demonstrated by Milanovic 

and Yitzhaki (2002) and by Monti and Santoro (2009, 2011). 

Gradin (1999, 2000) develops an overlapping index which is close to the index of Yitzhaki 

(1994) but is rooted in the ‘traditional’ approach of Gini decomposition proposed by 

Bhattacharya and Mahalanobis (1967), Dagum (1997), and others. In his work he utilizes 

overlapping within his framework to estimate polarization by subgroup characteristics in 

Spain. His index is based on the decomposition approach presented above. It is presented in 

the following section and is later on applied in the empirical analysis of the work at hand. 
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Milanovic (2002) utilizes the Gini decomposition methodology to analyse composition of 

world income. He connects the overlapping component to the stratification literature of 

Yitzhaki and Lerman (1991) and Yitzhaki (1994) and interprets it as ‘homogeneity’ of 

population. He concludes that “…[t]he more important the ‘overlapping’ component  

compared to the other two, the more homogeneous the population – or differently put, the less 

one’s income depends on where she lives” (p. 70).  

Pyatt (1976) and Mussard and Savard (2012) go one step further and recognize a link between 

overlapping and incentives. Pyatt connects overlapping to the decision of an individual to 

migrate from one group to another group. Mussard and Savard refer to overlapping as ‘good 

inequality’. They argue that “For instance, in the case of wage inequalities, we have some 

close interrelations with incentives. Hence, if some individuals of the poorest groups feel 

deprived compared to other groups, they may increase their effort to earn more than the 

members of the richest groups” (p. 1239). Even though their argument may not be 

straightforward because considering the exact opposite effect (e.g. resignation in the poorest 

group) is also possible, it stresses the impact that overlapping might have on incentives. 

In the work at hand, different scenarios of agricultural policy reforms are analysed regarding 

their impacts on individual farm incomes. One interesting analysis regarding subgroup 

decomposition is now to decompose farms by type of their specialization and analyse the 

impacts on inequality within subgroups. Furthermore, it is of interest, how the subgroups 

relate to each other.  

A certain degree of overlapping between the different farm type groups can be expected a 

priori; however, the extent of overlapping between the subgroups and especially the impact of 

different reforms cannot be anticipated. The relation between the groups might on its own be 

of interest to a policy maker to anticipate unintended policy effects. Moreover, based on the 

links between incentives and overlapping as presented before, an interesting interpretation 

might be with regard to structural change in the agricultural sector. As stated earlier, structural 

change is not implemented in the modelling system, but due to an inequality decomposition 

analysis of model results some developments might be anticipated. In general, two types of 

structural changes can be identified: structural change in terms of farm exits and increasing 

average farms size and structural change in terms of farm specialization (as described for 

instance in Gocht et al., 2012). When a subgroup characterised by a specific farm type has a 

comparatively low average income and is also segmented at the lower part of the income scale 

with no or little overlapping to other subgroups, disproportionally many farm exits (or 

downgrades to part time farms) might accrue among farmers of this specific farm type. 

Moreover, the incentives to change the specialization of the farm might be higher if the 

farmer observes that most of the farms with the same specialization have lower incomes then 

farms with other specializations (i.e. the overlapping component is small). Of course, the 

individual decision of a farm exit or change in farm specialization depends on many factors 

and clearly more research is needed to test the link between overlapping and structural 

change. 
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Another possibility to group farms is by region. Below, both a farm type and a regional 

decomposition analysis for scenario results are carried out. Before the presentation of 

empirical results, the overlapping index of Gradin (1999, 2000) is presented in more detail in 

the following lines. 

Gradin (2000, p. 464) introduces an overlapping index Okh for the k-th group with respect to 

the h-th group as: 

(35)   0 0

0 0

h k k h

kh

k k

x y dF ( y )dF ( x )
O

x y dF ( y )dF ( x )

µ µ
∞ ∞

∞ ∞

− − −
=

−

∫ ∫

∫ ∫
 

with Fk denoting the cumulative distribution of group k. Gradìn (2000) notes that the 

denominator is equal to the absolute Gini coefficient of the k-th group and that the index is 

group-symmetric only if both subgroups share the same absolute Gini. The term in the 

numerator is numerically equal to the absolute version of the overlapping index as expressed 

(in discrete form) in equation (33). Gradín’s formulation of the index is only defined for non-

negative values. Since in the work at hand incomes can be negative, the index is calculated as 

AOVkh / AGkk, where the numerator refers to the absolute overlapping between the groups k 

and h and the denominator is the absolute Gini coefficient of group k. 

Thus, the overlapping between two subpopulations is expressed in relation to the absolute 

Gini of one of the subpopulations. Properties of the index are described by Gradìn (2000, p. 

464), given that µh ≥ µk: “(1) Okh and  Ohk are non-negative and unbounded. They are equal to 

0 if, and only if, there is no overlap between both groups, and by definition Okk = 1. (2) The 

larger the share of people in h with incomes below the richest person in k, the higher the Okh. 

The larger the share of people in group k with incomes above the poorest person in h, the 

higher the Ohk. […] (4) Given the distribution of k, Okh reaches its maximum if all income in 

the group h is concentrated on one individual”.58 

The overlapping index of group k with all the other groups is defined as: 

(36)    
1

K

k kh h
h

O O p
=

=∑ . 

This index indicates the overlapping of group k with the overall distribution, including group 

k itself. Thus, its minimum value is the population share of group k, since Okk = 1 per 

definition. 

The aggregated overlapping index for all subpopulations is a weighted average of Ok: 

(37)    
1

K

k k
k

O O p
=

=∑ . 

                                                 

58 In the original version, Gradín (2000) uses I ij instead of Okh. 
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As shown by Gradìn (1999), the index of overlapping can consistently be integrated in the 

Gini decomposition: 

(38) B k kk k
k

G G s G O= +∑ . 

With equations (30) and (31) we can verify that the absolute Gini can be decomposed 

equivalently, without changing the formulation of the overlapping index O: 

(39)    B k kk k
k

AG AG p AG O= +∑ . 

The fact that the minimum value of Ok is the population share of the group k, as described 

above, hampers comparability between the different groups regarding their degree of 

stratification. Thus, for comparison of the overlapping between group k and the rest of the 

population simply an index Ok,rest in the sense of equation (33) is computed where group k is 

compared with one other group in which the rest of the population is subsumed. 

 Empirical analysis 6.2

In the following, an empirical analysis of scenario results using the Gini decomposition is 

presented. Total farm population is decomposed into subgroups according to farm types 

which are defined by the predominant commodity specialization of a farm. Farms are 

classified according to standard gross margins in the base year of the modelling exercise and 

cannot switch their status during the simulation period. Farms are mutually exclusively 

assigned to one of the following groups (acronyms in parenthesis): 

• Dairy farms (DF) 

• Pig and poultry farms (PP) 

• Arable farms (AF) 

• Other grazing livestock farms (GL) 

• Permanent crops farms (PC) 

• Mixed farms (MF). 

In Table 6.1 aggregated results of an analysis of decomposed inequality effects by farm types 

are presented. Since the same scenarios are considered as presented in the chapters before, we 

already know that relative inequality increases and absolute inequality decreases with 

increasing average income losses. 

Within groups, inequality strongly correlates with overall inequality: increasing relative and 

decreasing absolute inequality can on average be found within the subgroups. The within-

groups inequality component constantly amounts to circa one fifth of overall inequality for all 

scenarios. Cuts in DPs slightly increase the relative and absolute between-groups Ginis and 

also the share of between-groups inequality in overall inequality. The share and the value of 

the absolute overlapping component decrease slightly while in relative terms the value of the 

overlapping component is increased. In absolute terms, this indicates that average distances 
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within subgroups are reduced but distances between group means are increased. This 

combination leads to a reduction of overlapping. Since the relative Gini is equal to the 

absolute Gini divided by mean income, we can conclude that absolute changes are 

overcompensated by a reduced mean income in relative terms for the within-groups inequality 

and the overlapping components while the increase of the between-groups Gini is amplified. 

Unlike for within-groups inequality, the shares of between-groups inequality and overlapping 

are not constant for all scenarios. Strongest differences to baseline shares can be observed in 

the No_Pricepol scenario. Here, the share of between-groups inequality decreases to 23% and 

overlapping rises to 57% starting from 39% and 41% in the baseline, respectively. Disparities 

between group means are significantly reduced, especially in absolute terms. Together with an 

almost constant share of inequality within the groups this drives the share of overlapping in 

overall inequality. Following the argumentation of Milanovic (2002), the farm population is 

more homogenous after the abolishment of market price policies and farm income depends 

less on the specialization of the farm. Regarding the share of inequality components, the 

Full_Lib scenario shows intermediate result between the No_DP and the No_Pricepol 

scenarios. 
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Table 6.1: Aggregate results of farm type decomposition (based on FFI). 

BL 50_DP No_DP No_PP Full_Lib 

 

Average income (€) 45,424 41,841 36,470 23,823 14,046 

 
    

RELATIV 

Gini 
0.56 0.598 0.662 0.782 1.256 

100% 100% 100% 100% 100% 

Gini-Within 
0.109 0.115 0.126 0.156 0.244 

19% 19% 19% 20% 19% 

Gini-Between 
0.22 0.248 0.283 0.178 0.375 

39% 41% 43% 23% 30% 

Overlapping 
0.231 0.235 0.254 0.449 0.636 

41% 39% 38% 57% 51% 

 
 

    
ABSOLUT 

Abs. Gini 
25,443 25,028 24,155 18,632 17,642 

100% 100% 100% 100% 100% 

Abs. Gini-Within 
4,934 4,808 4,595 3,711 3,433 

19% 19% 19% 20% 19% 

Abs. Gini-Between 
10,003 10,376 10,314 4,232 5,269 

39% 41% 43% 23% 30% 

Abs. Overlapping 
10,505 9,845 9,246 10,687 8,940 

41% 39% 38% 57% 51% 

 
 

    
O_Gradin  

0.678 0.662 0.653 0.812 0.753 
       

Source: own calculations. 

 

Due to the high deviations of results of the No_Pricepol scenario in comparison to the 

Baseline, this scenario is discussed in greater detail in the following paragraphs. Detailed 

results for all other scenarios are presented in Table D.1 to Table D.7 in Annex D. 

Disaggregated results are only presented for absolute inequality because of the prevalence of 

negative incomes in some subgroups. In the Full_Lib scenario, for example, average income 

for other grazing livestock farms is negative in 2020. These effects are difficult to interpret. 

Furthermore, the share of inequality that is caused by different inequality components is 

independent from the concept of inequality measurement (cf. equation (34)) and basic 

conclusions can be drawn either way. 

At first, detailed results for the Baseline are presented in Table 6.2. Subsequently, Table 6.3 

shows results for the No_Pricepol scenario and in Table 6.4 changes between Baseline and 

No_Pricepol results are presented. The reason for the significant decrease in between-groups 

inequality can be easily discerned by looking at changes in average group income in Table 
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6.4. The group with the former highest income – dairy farms – lose 60% of their income when 

market price policies are abolished, which is due in great part to the removal of the milk 

production quota. The group with the former second highest income – pig and poultry farms – 

lose only 25% on average, however, this group only accounts for 6% of the farm population 

while dairy farms account for 32%. On the other side of the income spectrum, the group with 

the lowest income (grazing livestock farms) loses 68% of income on average but accounts 

only for 11% of overall population while the second lowest income group (arable farms) have 

to bear only losses of 39% on average and represent 20% of the population. Thus, on average 

income disparities between group means are reduced. Furthermore, permanent crop farms 

hardly lose income because the bulk of their produced commodities is not affected by 

agricultural policy or not depicted as variable in the modelling system, e.g. wine or fruit 

production. 
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Table 6.2: Detailed results of farm type decomposition in 2020 for the Baseline scenario. 

BASELINE AF DF GL MF PP PC 

Average Income (€) 28,787 68,825 19,514 42,982 54,175 31,421 

Income share 0.12 0.48 0.05 0.21 0.07 0.07 

Farm population 31,762 51,376 17,135 36,376 9,445 15,979 

Population share 0.20 0.32 0.11 0.22 0.06 0.10 

% Contribution to Gini and Absolute Gini 
  

AF DF GL MF PP PC SUM 

Within k,k 3.4% 9.2% 0.8% 4.9% 0.4% 0.8% 19.5% 

Between k,h AF      7.2% 

DF 4.9%      14.5% 

GL 0.4% 3.2%    5.3% 

MF 1.2% 3.6% 1.1%    6.7% 

PP 0.6% 0.5% 0.4% 0.3%   2.1% 

PC 0.1% 2.3% 0.2% 0.5% 0.3% 3.4% 

Overlapping k,h AF      8.8% 

DF 2.4%      9.5% 

GL 1.3% 0.7%    3.8% 

MF 3.0% 3.9% 1.1%    10.6% 

PP 0.6% 1.4% 0.2% 1.1% 3.6% 

PC 1.5% 1.1% 0.5% 1.5% 0.3% 4.9% 

         100% 

Absolute fractional Ginis 
  

AF DF GL MF PP PC Average 

Within k,k 22,753 23,241 17,293 24,699 26,800 20,204 

Between k,h AF      11,565 

DF 20,019     17,131 

GL 4,636 24,656    14,486 

MF 7,098 12,922 11,734   9,830 

PP 12,694 7,325 17,331 5,597 9,578 

PC 1,317 18,702 5,954 5,780 11,377 9,736 

Overlapping k,h AF      14,293 

DF 9,652     11,080 

GL 15,717 5,425    10,302 

MF 17,486 13,831 11,427   15,382 

PP 14,469 18,872 9,086 20,557 16,765 

PC 20,314 9,118 13,378 17,370 14,155 14,432 
          

NB: Values of between-groups inequality and overlapping for the same groups are symmetric. For reasons of clearness only 
half of the table is filled.  
DF – Dairy farms; MF – Mixed farms; PP – Pig and poultry farms; AF – Arable farms; GL – Grazing livestock farms; PC – 
Permanent crop farms 
Source: own calculations. 



115 
 

Table 6.3: Detailed results of farm type decomposition in 2020 for the No_Pricepol scenario. 

No_Pricepol AF DF GL MF PP PC 

Average Income (€) 17,542 27,339 6,309 25,047 40,832 30,943 

Income share 0.14 0.36 0.03 0.24 0.10 0.13 

Farm population 31,762 51,376 17,135 36,376 9,445 15,979 

Population share 0.20 0.32 0.11 0.22 0.06 0.10 

% Contribution to Gini and Absolute Gini 
  

AF DF GL MF PP PC SUM 

Within k,k 4.0% 8.2% 0.8% 5.5% 0.4% 1.0%  19.9% 
        

Between k,h AF        4.5% 

DF 1.6%       4.9% 

GL 0.6% 1.9%      5.0% 

MF 0.9% 0.4% 1.2%     3.5% 

PP 0.7% 0.7% 0.6% 0.6%    2.8% 

PC 0.7% 0.3% 0.7% 0.4% 0.2%   2.3% 
        

Overlapping k,h AF        11.7% 

DF 4.4%       16.0% 

GL 1.2% 1.1%      4.0% 

MF 3.9% 6.4% 1.1%     14.6% 

PP 0.8% 1.4% 0.2% 1.1%    4.0% 

PC 1.4% 2.7% 0.4% 2.1% 0.5%   7.1% 

         100% 

Absolute fractional Ginis 

AF DF GL MF PP PC Average 

Within k,k 19,339 15,151 12,736 20,394 23,864 20,029   
        

Between k,h AF        5,383 

DF 4,898       4,246 

GL 5,617 10,515      9,792 

MF 3,752 1,146 9,369     3,662 

PP 11,645 6,746 17,262 7,893    9,031 

PC 6,701 1,802 12,317 2,948 4,944   4,589 
        

Overlapping k,h AF        13,892 

DF 13,326       13,765 

GL 10,890 5,985      7,856 

MF 16,517 16,879 8,887     15,639 

PP 12,448 13,751 6,099 15,201    13,383 

PC 13,812 15,895 6,528 17,402 17,727   14,837 
          

NB: Values of between-groups inequality and overlapping for the same groups are symmetric. For reasons of clearness only 
half of the table is filled.  
DF – Dairy farms; MF – Mixed farms; PP – Pig and poultry farms; AF – Arable farms; GL – Grazing livestock farms; PC – 
Permanent crop farms 
Source: own calculations. 
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Table 6.4: Results of farm type decomposition in 2020 for the No_Pricepol scenario in 
comparison to Baseline results in 2020. 

No_Pricepol / 
BASELINE AF DF GL MF PP PC 

Average Income (€) 0.61 0.40 0.32 0.58 0.75 0.98 
          

Relative to Baseline (% Contribution to Gini and Absolute Gini) 
  

AF DF GL MF PP PC SUM 

Within k,k 1.18 0.89 1.00 1.12 1.00 1.25  1.02 
        

Between k,h AF        0.63 

DF 0.33       0.34 

GL 1.50 0.59      0.94 

MF 0.75 0.11 1.09     0.52 

PP 1.17 1.40 1.50 2.00    1.33 

PC 7.00 0.13 3.50 0.80 0.67   0.68 
        

Overlapping k,h AF        1.33 

DF 1.83       1.68 

GL 0.92 1.57      1.05 

MF 1.30 1.64 1.00     1.38 

PP 1.33 1.00 1.00 1.00    1.11 

PC 0.93 2.45 0.80 1.40 1.67   1.45 
          

Relative to Baseline (Absolute fractional Ginis) 
  

AF DF GL MF PP PC Average 

Within k,k 0.85 0.65 0.74 0.83 0.89 0.99   
        

Between k,h AF        0.47 

DF 0.24       0.25 

GL 1.21 0.43      0.68 

MF 0.53 0.09 0.80     0.37 

PP 0.92 0.92 1.00 1.41    0.94 

PC 5.09 0.10 2.07 0.51 0.43   0.47 
        

Overlapping k,h AF        0.97 

DF 1.38       1.24 

GL 0.69 1.10      0.76 

MF 0.94 1.22 0.78     1.02 

PP 0.86 0.73 0.67 0.74    0.80 

PC 0.68 1.74 0.49 1.00 1.25   1.03 
          

NB: Values of between-groups inequality and overlapping for the same groups are symmetric. For reasons of clearness only 
half of the table is filled.  
DF – Dairy farms; MF – Mixed farms; PP – Pig and poultry farms; AF – Arable farms; GL – Grazing livestock farms; PC – 
Permanent crop farms 
Source: own calculations. 

 



117 
 

In the aggregate results it was observed that changes in within-group inequality are 

proportional to the overall development of inequality. By looking at disaggregated results we 

can observe that the average numbers conceal some information. Table 6.4 shows that within-

group inequality prominently decreases for the group of dairy farms when price policies are 

abolished while for some other groups like permanent crop farms, a changed inequality within 

the group can hardly be detected. In the Baseline the group of dairy farms accounts for 9.2% 

of overall inequality due to within-group inequality (Table 6.2). By replacing individual 

incomes of dairy farmers by the mean income of all dairy farmers, overall inequality would be 

reduced by at least 9.2% (further reductions in overlapping are expected but cannot be exactly 

quantified). This conclusion can be drawn since “overlap cannot rise as the result of a within-

group rich-to-poor money transfer” (Lambert and Decoster, 2005, p. 8), between-groups 

inequality would be constant, and within-group inequality would vanish. 

The group of dairy farms has the largest share of within-group and between-group inequality 

and the second largest share of inequality caused by overlapping with other groups. However, 

when looking at absolute fractional Ginis, we can observe that within-group and overlapping 

values are not among the highest and thus, high shares in overall inequality are mainly caused 

by the high population share of the group. The fractional Gini for between-groups inequality 

in contrast is the highest among the groups which reflects the comparatively high average 

income of dairy farms. After the abolishment of price policies we can see from Table 6.3 and 

Table 6.4 that for inequality caused by dairy farms, a reduction in within-group inequality and 

between-groups inequality is partly compensated by an increased overlapping term. 

Table 6.5 reveals that dairy farms have the smallest overlap with the group of grazing 

livestock farms, which have the smallest average subgroup income. The last column of Table 

6.5 shows the overlapping index Ok,rest when a group is compared with an aggregate of all 

other groups but the group itself. The group of dairy farms has the smallest value among all 

farms in the Baseline. Thus, we can conclude that in the Baseline this is the most clearly 

stratified group in the agricultural sector. The index of overlapping relates the overlapping 

component between two groups to the within-group inequality of one of the groups; thus, 

ceteris paribus, the smaller the amount of inequality within the group, the higher the index. 

This may reflect the perception of overlapping of the group members. The same amount of 

overlapping may be more strongly perceived by all members of a group with small within-

group inequality than by members of a group with high inequality. The former group is more 

homogenous and thus relations to other members may be perceived to be stronger than in the 

latter group where members may recognize links to other members more loosely since 

distances within the group are large. 
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Table 6.5: Disaggregate results of the overlapping index of farm type decomposition for the 
Baseline and the No_Pricepol scenario. 

O_Gradin k,h  
O_Gradin,k= 

∑j O_Gradin,k ,h * ph 
O_Gradín k,rest 

          

Baseline  

 

AF DF GL MF PP PC  

AF 0.424 0.691 0.769 0.636 0.893 0.70 0.63 

DF 0.415 0.233 0.595 0.812 0.392 0.64 0.48 

GL 0.909 0.314 0.661 0.525 0.774 0.64 0.60 

MF 0.708 0.560 0.463 0.832 0.703 0.71 0.62 

PP 0.540 0.704 0.339 0.767 0.528 0.65 0.63 

PC 1.005 0.451 0.662 0.860 0.701 0.74 0.71 
 

No_Pricepol  

 

AF 0.689 0.563 0.854 0.644 0.714 0.77 0.72 

DF 0.880 0.395 1.114 0.908 1.049 0.94 0.91 

GL 0.855 0.470 0.698 0.479 0.513 0.66 0.62 

MF 0.810 0.828 0.436 0.745 0.853 0.82 0.77 

PP 0.522 0.576 0.256 0.637 0.743 0.59 0.56 

PC 0.690 0.794 0.326 0.869 0.885 0.77 0.74 
          

NB: DF – Dairy farms; MF – Mixed farms; PP – Pig and poultry farms; AF – Arable farms; GL – Grazing livestock farms; 
PC – Permanent crop farms. 
Source: own calculations. 

In the second-to-last column of Table 6.5, the weighted average of all single comparisons is 
presented. Here, the value for the index of dairy farms is very close to the groups of other 
grazing livestock farms, and pig and poultry producers. This is the case because in the 
weighted average the overlapping of each group with itself is included. The overlapping of 
one group with itself by definition is one and thus, the group contributes its full weight (the 
population share) to the index. Thus, the high share of dairy farms in the sample cushions the 
degree of segregation of their group. 

It should be noted that even though the group of dairy farms seems to be the most separated, a 
considerable amount of overlapping still appears between this group and the other groups. For 
a better understanding of this concept, histograms of two distributions are presented in Figure 
6.2. One histogram refers to the frequency of dairy farms in different income intervals in the 
Baseline and the other refers to all other farms in the Baseline. 
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Figure 6.2: Histogram of incomes of milk farmers in the Baseline in 2020 in comparison to 
all other farms. 

Source: own calculations. 

 

Compared to the distribution of all other farms, the distribution of dairy farms is shifted to the 
right. The area of overlapping, however, is high and it can be seen that the between-groups 
inequality, which is measured by replacing all incomes by their respective group income 
means, would clearly understate the inequality between all members of the two groups. 

After price policies are abolished, the distribution of dairy farms lies almost in the center of 
the distribution of all other farms, which is depicted in Figure 6.3. This is also reflected by the 
overlapping term in Table 6.5, which increases from the lowest value in the Baseline to the 
highest in the No_Pricepol scenario. 
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Figure 6.3: Histogram of incomes of milk farmers in the No_Pricepol scenario in 2020 in 
comparison to all other farms. 

Source: own calculations. 

 

The only group whose overlapping term decreases when market price policies are abolished is 
the class of pig and poultry farms. In the Baseline, pig and poultry farmers are the group with 
the second highest average income. Due to relatively moderate losses (Table 6.4) they become 
the group with the highest average income after price policies are abolished. Thus, 
comparatively high values of between-group inequality and comparatively low overlapping 
values occur. The relatively moderate losses emerge because pig production in this group is 
predominant and pig meat prices only decrease slightly compared to other products when 
price policies are abolished. From Table 6.4 and Table 6.5 we can observe that overlapping 
with all other groups except for the group of permanent crops farms is reduced in the 
No_Pricepol scenario. Particularly with dairy farmers, overlapping is reduced since the two 
groups had a high overlapping component in the Baseline but develop differently with regard 
to average income under scenario conditions. 

The only exceptional group for which increasing overlapping with the group of pig and 
poultry producers is reported, is the group of permanent crops farms. Permanent crops farms 
are able to almost keep their average Baseline incomes under scenario conditions. Since mean 
incomes of the two groups are closer to each other after the abolishment of price policies and 
at the same time within-group inequality is only slightly reduced, between-groups inequality 
is reduced and overlapping is increased. 
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Nevertheless, in general, the group of pig and poultry farms tends to be more separated from 
the majority of the other groups in the No_Pricepol scenario. However, given its population 
share of 6% this effect is overcompensated by the narrowing effects of the other groups in the 
aggregate results. 

A decomposition analysis for regional subgroups is also carried out. Groups are constructed 

according to eight59 western German Federal Laender, namely Nordrhein-Westfalen (NR), 

Niedersachsen (NS), Schleswig-Holstein (SH), Bayern (BA), Baden-Württemberg (BW), 

Hessen (HE), Saarland (SL) and Rheinland-Pfalz (RP). 

Compared to the farm type decomposition, the regional decomposition clearly reveals higher 

overlapping components already in the Baseline. Thus, farm specialization matters more for 

the expected income of a farm than the region where a farm is located. Nevertheless, regions 

with a higher frequency of large dairy farms (Niedersachsen and Schleswig-Holstein) tend to 

have a higher average income and slightly lower overlapping with other regions in the 

Baseline. Effects of liberalization scenarios on the composition of overall inequality are less 

pronounced in the regional analysis. Detailed results for the regional subgroup decomposition 

are presented in Annex D (Table D.8 until Table D.18). 

Furthermore, aggregated results of farm type and regional decomposition analyses are 

presented for total household income rather than FFI in Annex D in Table D.19 and Table 

D.20, respectively. Farm type groups with lower average FFI tend to have a higher additional 

non-farm income. It follows that the share of the between-groups income component 

decreases and the share of overlapping increases when total household income is taken into 

account, especially in the No_Pricepol and the Full_Lib scenarios. 

The regional decomposition of total household income inequality reveals very similar 

aggregate patterns like the analysis based on the indicator FFI. Overlapping, however, is 

slightly more important for total household income in the No_Pricepol and the Full_Lib 

scenarios. 

  

                                                 

59 The cities of Hamburg and Bremen have the status of a Federal Land. However, due to their small size, 
Hamburg is added to the larger Federal Land of Schleswig-Holstein and Bremen is added to Niedersachsen.  
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7 Summary and conclusions 

In this last chapter, the presented work shall be summarized and conclusions shall be drawn. 

Furthermore, some weaknesses and caveats are addressed and future research areas are 

proposed. 

 Background and achievement 7.1

In recent decades agricultural support in Europe has increasingly shifted from market price 

support measures to budgetary payments. This development has made support more visible 

and it has raised public attention to the distribution of support, which in turn increased 

political awareness of the topic. Thus, the redistributive effects of agricultural policy and 

further reforms of agricultural policy have become more important in political terms. 

Furthermore, the analysis of effects of agricultural policy on the income distribution among 

farmers is also of intrinsic economic interest. 

While in many other policy fields it is a common practice to analyse redistributive effects 

before a reform is implemented, the bulk of the literature regarding policy induced 

redistributive effects in the agricultural sector is carried out ex post. 

Since the aggregation of data may create a significant bias when redistributive effects are 

analysed (Bourguignon et al., 2005; Savard, 2005), many standard tools that are developed for 

policy analysis in the agricultural sector are not suitable for distribution analyses. 

Furthermore, the CAP is a sector wide policy which may influence (world market) prices of 

agricultural products. A pure microanalysis would thus not be able to take these effects into 

account properly. 

In agricultural economics, however, some approaches do exist to model redistributive effects 

in an ex-ante way. For example, Keeney and Beckman (2009), Keeney (2009), and Hertel et 

al. (2007) combine CGE model results with a large farm household data survey for the U.S.; 

however, they map results from one representative regional household to disaggregated farm 

households, resulting in equal behavioural adjustments of all individual farms. Furthermore, 

in principle, it is possible to model income changes at the single farm level which are induced 

by sectoral policies with the LEI model funnel presented by van Tongeren (2000) and 

Woltjers et al. (2011). Moreover, several model chains have been developed which account 

for behaviour at the single farm level (e.g. Louhichi and Valin, 2012, Helming and Schrijver, 

2008). These attempts, however, are mostly restricted to certain farm types and to the best 
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knowledge of the author no analysis of redistributive effects60 has been undertaken by the 

application of these tools so far. 

Against this background, in the work at hand a tool is developed which enables the consistent 

assessment of CAP reform induced impacts on individual farm incomes while simultaneously 

taking sectoral adjustments into account and thus, facilitates an ex-ante analysis of 

redistributive effects in the western German agricultural sector. To this end, two pre-existing 

large-scale simulation models are linked and extended by a newly developed micro model. 

The model chain is then applied to different CAP liberalization scenarios. 

The additional implementation of a meso-model which allows for individual adjustment of 

production patterns of different farm groups, introduces a high degree of heterogeneity in the 

analysis and distinguishes the work from previous research on ex-ante measurement of 

redistributive impacts of agricultural policy (Keeney and Beckman, 2009; Keeney, 2009; 

Hertel et al., 2007). Moreover, the application of agricultural sector models allows for a more 

detailed depiction of farm production processes. Nevertheless, the approach applied in 

previous research allows for the adjustment of non-farm incomes which are assumed to be 

constant in the work at hand. 

After changes in individual incomes are calculated in a first step by the modelling system for 

different scenarios, model results are analysed in a second step by the application of a 

methodology for the measurement of redistributive effects which was originally developed for 

the analysis of tax reforms and has also been used to assess redistributive effects of 

agricultural policy (e.g. Allanson, 2006, 2008). This methodology is applied for the first time 

in an ex-ante analysis of redistributive effects in the agricultural sector. For the analysis of 

redistributive effects, scenario results are evaluated relative to the income distribution of the 

Baseline scenario where the CAP is still in place. 

To account for different conceptual impacts of inequality analysis on results, the analysis is 

carried out at different aggregation levels, for different income classifications, and for income 

data generated in a static way in comparison to data generated by the modelling system.  

Additionally, the Gini inequality index is decomposed by subgroups to conduct a more 

detailed inequality analysis and to detect underlying developments which are not visible 

through the analysis of overall inequality effects. The methodology facilitates the analysis of 

the degree of separation between subgroups and the importance of the grouping attribute for 

the expected income of a farm. 

                                                 

60 As already specified above, the term ‘redistributive effects‘ in this case explicitly refers to the evaluation of a 
new income distribution with regard to another income distribution and the assessment of progressivity or related 
concepts. It does not refer to the pure calculation of income changes in different regions or for different farm 
types, as for example presented in Louhichi and Valin (2012). 
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 Major results 7.2

It can be stated that inequality effects are robust with regard to the conceptual differences 

tested for, at least in terms of the direction of inequality changes. All calculated liberalization 

scenarios lead to decreasing absolute income differences among western German farms in 

2020 because high-income farms lose higher absolute amounts of money than small-income 

farms. However, relative to their Baseline incomes low-income farms tend to lose a higher 

share compared to high-income farms which leads to increasing relative inequality due to 

liberalization. Only one exemption from this pattern of results exists, namely, if grouped 

results are disaggregated and total household income is considered instead of FFI.  

In general, when inequality is considered with regard to FFI, inequality indices are 

significantly higher after the disaggregation of the grouped data, already in the Baseline. This 

is intuitive since within-group inequality is additionally included in the analysis. 

Redistributive indicators show less equalizing effects of the same reform in absolute terms 

and stronger unequalizing effects in relative terms when data are disaggregated. However, 

differences in absolute redistributive effects are small. For the relative analysis, differences 

are more pronounced because after disaggregation a similar degree of distribution of absolute 

losses is compared to a higher degree of inequality in Baseline incomes. Thus, similar 

absolute income losses have to be borne by higher incomes in the upper tail of the distribution 

and by lower incomes in the lower tail of the distribution. Large differences in relative terms, 

however, should be interpreted with caution due to a higher share of negative incomes in the 

disaggregated distribution. 

Despite these differences, total effects head in the same direction in both the analyses, based 

on grouped and disaggregated data, when FFI is the variable under consideration. When 

instead total household income is applied, conclusions are widely the same, but for two 

exceptions. For the analysis of grouped data in the No_Pricepol and the Full_Lib scenarios, 

slightly positive indices of progressivity are presented while for the individual data-based 

analysis the opposite is true, i.e. indices of progressivity are negative. This is because the 

adding of off-farm incomes to FFI as a constant positive income variable has an inequality 

decreasing effect on all relative Gini coefficients, for grouped as well as disaggregated data. 

For the analysis based on grouped data, initial total household income is more equally 

distributed than absolute income losses. In comparison, the analysis of disaggregated data 

reveals that absolute income losses are similarly distributed but initial income inequality 

increases after disaggregation so that losses are regressively distributed in relative terms. 

Thus, different directions of relative redistributive effects between the group-based and the 

disaggregated data-based analyses are triggered by the increase of initial inequality of 

household incomes rather than by a change of the distribution of income losses. 

A comparison explicitly undertaken to examine the differences between an inequality analysis 

of the variable FFI and an analysis of the variable total household income reveals 

comparatively small differences between inequality indices in absolute terms and stronger 
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differences in relative terms. In absolute terms, losses are slightly less concentrated among the 

high-income farms when total farm income is considered instead of FFI. This can be 

explained by the fact that farms with a low FFI tend to have higher income from off-farm 

sources and tend to rise in the ranking due to the additional consideration of off-farm income. 

Thus, since losses are distributed progressively with regard to FFI, more farms with higher 

absolute losses descend in the ranking of total income and vice versa, i.e. farms with lower 

absolute losses ascend in the ranking. 

In relative terms all inequality indicators are less pronounced for the analysis of the variable 

total household income. This can partly be explained by less negative values in the 

distribution. Consequently, relative Gini coefficients are less sensitive with respect to changes 

in average income. Nevertheless, taking off-farm income sources additionally into account 

has an equalizing effect in relative terms due to the negative correlation of off-farm income 

and on-farm income. 

Moreover, the relevance of taking into account policy-induced production and market 

responses in ex-ante inequality analysis was assessed in this work. Since most of the existing 

literature regarding distributional effects of agricultural policy is static in nature, it has been 

attempted to quantify the bias that occurs when behavioural effects are neglected. From the 

empirical analysis, it can be concluded that taking adjustment effects into account clearly has 

an impact on the magnitude of the inequality indices. Overall inequality is lower in absolute 

as well as relative terms and losses are distributed more progressively/less regressively in the 

different scenarios when adjustment is taken into consideration. When comparing the static 

analysis to the model based analysis, the largest differences can be observed for the Full_Lib 

scenario which also causes the strongest reductions in average incomes. Nevertheless, in all of 

the scenarios, distributional effects have the same directional impact both in the static analysis 

and in the analysis with adjustment effects. In general, the evaluation and ranking of the 

different reform scenarios with respect to their impact on income equality is similar regardless 

of adjustment effects. In all scenarios with adjustment effects, some evidence is found that 

lower-income farms have a lower share in total income losses compared to the static analysis. 

Among other scenario-specific reasons, this is because it is easier for lower-income farms to 

reduce income losses from liberalization by abandoning production activities that have 

negative margins under scenario conditions compared to higher-income farms that often have 

still positive marginal incomes for great parts of their production activities. 

Again, the comparison of relative inequality analyses has to be undertaken with caution since 

negative incomes appear in all of the distributions under consideration and the relative Gini 

coefficient reacts more sensitively in this case, which might relativize the differences between 

the approaches in relative terms. 

With regard to the different policy instruments, it turns out that the abolishment of market 

price support is more progressive in absolute terms and less regressive in relative terms than 

the abolishment of DPs. This is because income reductions caused by the abolishment of 
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market price support is more unequally distributed (a higher share of losses in the upper tail of 

the distribution and a lower share in the lower tail) than losses caused by the abolishment of 

DPs. 

Even though the defined minimum requirement of a CAP reform, i.e. a positive redistributive 

effect in absolute terms, is fulfilled in all conducted scenarios, it is difficult to give policy 

recommendations based solely on this analyses since redistributive effects are only one 

concern of agricultural policy. The developed modelling tool is mainly suited to observe 

(unintended) distributional effects of CAP reforms, which are intended rather, to complement 

other policy analyses than being the sole decision criterion. In general, it can be stated that 

DPs are better suited to shape redistributive policy effects than market price support 

instruments since eligibility can more easily be coupled to specific farm features. 

Nevertheless, each reform proposal needs to be evaluated individually. 

From a methodological point of view further contributions could be made to the existing 

literature. The iterative coupling procedure applied in this work can be found in several other 

publications, as well. Nevertheless, only few examples exist (e.g. Britz and Witzke, 2012) 

where a partial equilibrium model of the agricultural sector (ESIM) is linked to a more 

disaggregated programming model (FARMIS). The specificity of this work is that agricultural 

production of only one out of several countries depicted in the partial equilibrium model is 

substituted by another, more detailed model. Due to this approach, even significant changes in 

production in FARMIS cause only minor price reactions in ESIM since prices are determined 

by worldwide or European-wide supply quantities. Germany is a small country in economic 

terms for most of the depicted commodities. For only a few products where a considerable 

share of world supply is produced in Germany, price effects can be observed. Additionally, 

the iteration procedure matters for non-tradable products. Another picture probably would 

emerge if more or all countries were substituted by more disaggregated programming models. 

Additionally, a decomposition of inequality effects of CAP liberalization by subgroups is 

carried out in this work, which to the best knowledge of the author is done for the first time 

with regard to the agricultural sector. When the Gini coefficient is decomposed, three 

inequality components can be defined: inequality within subgroups, inequality between 

subgroup means and a term that arises when distributions of subgroups are overlapping. From 

the overlapping term the state of segregation of the farm population with regard to subgroups 

can be derived. Furthermore, a more detailed picture of the underlying processes of inequality 

changes can be revealed with this methodology. 

In a first analysis subgroups refer to farm types and in a second analysis subgroups refer to the 

region a farm is located in. Based on this analysis, for example, the importance of the group 

of dairy farmers for inequality effects is discovered. Furthermore, there is some evidence that 

farm specialization matters more for the expected income of a farm than the region where a 

farm is located. 
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 Limitations and outlook 7.3

Finally, some limitations of the work at hand and resulting future research options shall be 

addressed. In the modelling system only one small country of the worldwide agricultural 

sector, which is depicted in the partial equilibrium model, is substituted by a more 

disaggregated programming model. Thus, quantity changes of the programming model cause 

only small price changes for most tradable commodities in the partial equilibrium model and 

for these commodities the iterative coupling mostly is of limited value. The substitution of 

additional countries by more disaggregated models would increase feedback effects emerging 

at the micro level and thus increase the detailedness of the analysis. 

Generally, incentive effects are accounted for in the analysis due to the application of the 

introduced modelling chain. In reality, however, additional adjustment processes are likely to 

occur which are not depicted in the current version of the models. Structural change, for 

example, is implemented only exogenously in the programming model. This has an effect on 

the analysis of income distribution since farms with large negative incomes would likely leave 

the sector in reality and average farm size would increase. In addition, the adaption of new 

production technologies is not considered in the analysis. This drawback of the current 

modelling tool could be addressed by the endogenizing of structural changes in the 

programming model. 

Another limitation of the analysis is clearly the static nature of the micro-model. Due to this 

approach individual income changes are affected by changes in production patterns of the 

respective farm groups at the meso-level. 

A related caveat is almost inevitable and common in all similar analyses because only 

observed units can be modelled and complete population surveys hardly exist on the national 

level. Even though the analysis is conducted for an already high number of farms, one 

simulated farm still represents more than 20 farms of the overall farm population. To account 

for this fact, simulated farms are weighted by an aggregation factor and it is implicitly 

assumed that one simulated farm reacts representatively for many others. Thus, representative 

agent and micro-simulation approaches cannot always be sharply distinguished (Lofgren et 

al., 2003). 

In addition, several assumptions regarding the development of agricultural markets until the 

final year of the analysis have to be made for the generation of the Baseline scenario. It is 

well-known that redistributive effects are influenced by the distribution of income in the base 

situation (Lerman and Yitzhaki, 1995). Thus, it should be kept in mind that any ex-ante 

analysis implies a certain extent of uncertainty and that results are affected by the choice of 

behavioural parameters and by base year conditions. 

Moreover, interactions with other sectors of the economy are neglected by the applied 

modelling system which consists solely of agricultural sector models. This limitation could be 

overcome by the additional integration of a CGE model into the modelling system. However, 
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given the relatively small share of agriculture in overall GDP and workforce in Europe and 

especially Germany, impacts on factor prices (except for land, which is taken into 

consideration by the presented modelling chain) should be limited. 

Furthermore, off-farm income is not adapted, but assumed to be constant in the analysis. This 

assumption has rather strong impacts at the micro level and likely leads to an underestimation 

of inequality compensation effects of off-farm income sources because it can be expected that 

the development of off-farm income and agricultural support are negatively correlated (e.g. 

Vergara et al., 2004; Kwon et al., 2006). To overcome this weakness, a micro-simulation 

model depicting the labour allocation decision of farm households could additionally be 

applied in the analysis of redistributive effects of CAP liberalization. 

Summing up, this work provides an innovative combination and extension of different 

simulation models which enables the ex-ante measurement of income changes for individual 

farms. This information in turn facilitates the measurement of redistributive effects in the 

agricultural sector taking behavioural effects into account. The new modelling system is able 

to answer questions which might become more relevant for coming reforms of the CAP. In 

combination with advanced methodologies for the measurement of redistributive effects and 

for the decomposition of inequality indices, the tool can provide valuable contributions to the 

development and design of agricultural policy. 
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Appendix A – Steering file 

*Baselinename 
$setglobal BASELINENAME "fap_new" 
*scenario name 
*$setglobal scenario "baseline" 
*$setglobal scenari "baseline" 
$setglobal scenario "full_lib" 
 
*full scenario name in Farmis result files 
$setglobal scenarioname "%Baselinename%_%scenario%" 
 
*$setglobal Lice "D:\Lizenz\gamslice.txt" 
$setglobal Inequality_path "E:\Agrarpolitik\KOPPLUNG\GESAMTMODELL\INEQUALITY" 
 
**********************for FARMIS******************* *********************************** 
$setglobal Farmis_Path "E:\Agrarpolitik\KOPPLUNG\GESAMTMODELL\FARMIS" 
$setglobal scenario_file "scenario_DE_test.xls" 
*DE_test auf BL Ebene 
 
$setglobal report_file "Project_files\DE_test\_report_data\report_DE_DE" 
$setglobal report_file_groups "Project_files\DE_DFG_0608\_report_data\report_DE_DE" 
* DE_DFG_0608 - Gruppenebene 
*************************************************** *********************************** 
 
***********************for ESIM******************** *********************************** 
$setglobal ESIM          "E:\Agrarpolitik\KOPPLUNG\GESAMTMODELL\ESIM" 
$setglobal ESIM_path     "E:\Agrarpolitik\KOPPLUNG\GESAMTMODELL" 
$setglobal save_file     "E:\Agrarpolitik\KOPPLUNG\GESAMTMODELL\ESIM_2019" 
$setglobal ESIM_FOLDER   "./ESIM/" 
 
*$setglobal version       "esim_fix" 
$setglobal version       "esim_calib" 
*************************************************** *********************************** 
 
$set gamsparm "ide=%gams.ide% lo=%gams.lo% errorlog=%gams.errorlog% errmsg=1" 
 
$include map_price_yield.inc 
$include map_quantities.inc 
 
set time /base, 2020 /; 
set results /r_pd, r_area, r_supp /; 
set results_comm /r_hdem, r_sdem, r_fdem, r_tuse, r_pd, r_pdem, r_supp, r_area, r_yiel /; 
set results_cc / landpr1 /; 
 
Parameter 
farmis_quant(IND) 
esim_quant(esim_pr) 
esim_prices(esim_pr) 
esim_inc(esim_pr) 
FARMIS_Price(FARMIS_pr) 
esim_yield(esim_pr) 
farmis_yield(farmis_pr) 
chk_diff(*,*,*) 
sum_chk_diff 
counter 
intercept_ge(esim_pr) 
first_quant(esim_pr) 
farmis_first_quant 
esim_vgl(time,esim_pr,results) 
vgl_ohne_iter 
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; 
 
farmis_quant(IND)       = 0; 
esim_quant(esim_pr)     = 0; 
esim_prices(esim_pr)    = 0; 
FARMIS_Price(FARMIS_pr) = 0; 
esim_yield(esim_pr)     = 0; 
farmis_yield(farmis_pr) = 0; 
 
Parameter 
r_comm(*,*,*,*) 
r_cc(*,*,*) 
; 
 
set cc /GE /; 
 
Set iter 
/0*100/ 
; 
 
Scalar turn; 
turn = 0; 
Scalar el; 
Scalar infl_rate; 
 
Parameter 
iter_results(iter,*,*); 
 
chk_diff(iter,"esim_quant",esim_pr) = 0; 
 
PARAMETER REPORT_SECTOR(*,*); 
REPORT_SECTOR("BAS","dummy")=0; 
REPORT_SECTOR("%scenarioname%","dummy")=0; 
PARAMETER REPORT_SECTOR_FARM(*,*); 
 
Parameter 
CH_PRICE(*,*,*,*,*) 
CH_YIELD(*,*,*,FARMIS_pr); 
 
Parameter 
exog_area; 
 
* Introduction of area used for growing Energy Maize in FARMIS in 2020 
execute_load '%Farmis_Path%\%report_file%', REPORT_SECTOR; 
exog_area = REPORT_SECTOR("%scenarioname%","L_EMAIZE") -  
REPORT_SECTOR("BAS","L_EMAIZE"); 
 
execute_unload '.\ESIM\Exog_area.gdx' exog_area; 
 
*1) First stand-alone run of ESIM to generate a price/yield vector 
execute 'gams.exe esim.gms Wdir=%ESIM% %gamsparm% user1="%scenario%" 
user2="%BASELINENAME%" user3="%ESIM_FOLDER%" s=%save_file%'; 
*license=%Lice% 
el = errorlevel; 
display "errorlevel", el; 
if (el<>0, abort "ERROR" ); 
 
*1a) execute only for 2020: 
execute 'gams.exe simulation_2020.gms Wdir=%ESIM% %gamsparm%  r=%save_file% '  ; 
*license=%Lice% 
el = errorlevel; 
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display "errorlevel", el; 
if (el<>0, abort "ERROR" ); 
 
* Price and Yield changes as well as conversion into nominal terms already done in ESIM!!! 
execute_LOAD '.\esim\esim_p_y.gdx', esim_prices, esim_yield, esim_vgl, infl_rate, esim_inc; 
 
execute_load '.\esim\results.gdx', r_comm, r_cc; 
 
iter_results("0","r_hdem",esim_pr)  =  r_comm("GE","2020",esim_pr,"r_hdem") ; 
iter_results("0","r_supp",esim_pr)  =  r_comm("GE","2020",esim_pr,"r_supp") ; 
iter_results("0","r_sdem",esim_pr)  =  r_comm("GE","2020",esim_pr,"r_sdem") ; 
iter_results("0","r_fdem",esim_pr)  =  r_comm("GE","2020",esim_pr,"r_fdem") ; 
iter_results("0","r_pdem",esim_pr)  =  r_comm("GE","2020",esim_pr,"r_pdem") ; 
iter_results("0","r_pd",esim_pr)  =  r_comm("GE","2020",esim_pr,"r_pd") ; 
iter_results("0","r_tuse",esim_pr)  =  r_comm("GE","2020",esim_pr,"r_tuse") ; 
iter_results("0","r_area",esim_pr)  =  r_comm("GE","2020",esim_pr,"r_area") ; 
iter_results("0","r_yiel",esim_pr)  =  r_comm("GE","2020",esim_pr,"r_yiel") ; 
iter_results("0","r_landpr1",esim_pr) =  r_cc("GE","2020","r_landpr1"); 
 
iter_results("0","esim_prices",esim_pr) =  esim_prices(esim_pr); 
iter_results("0","av_esim_pr",esim_pr)  =  esim_prices(esim_pr); 
iter_results("0","esim_inc",esim_pr)    =  esim_inc(esim_pr); 
iter_results("0","av_esim_inc",esim_pr) =  esim_inc(esim_pr); 
 
iter_results("0","real_esim_prices",esim_pr) =  esim_prices(esim_pr) / infl_rate ; 
iter_results("0","real_av_esim_pr",esim_pr)  =  esim_prices(esim_pr) / infl_rate ; 
iter_results("0","real_esim_inc",esim_pr)    =  esim_inc(esim_pr)    / infl_rate ; 
iter_results("0","real_av_esim_inc",esim_pr) =  esim_inc(esim_pr)    / infl_rate ; 
 
display iter_results; 
 
*Prices for Calibration in the first run 
execute_unload '.\%version%\av_price.gdx' esim_prices, infl_rate, esim_inc; 
 
*************************************************** ** 
****        START ITERATION LOOP       ***** 
*************************************************** ** 
 
Repeat( 
 
turn = turn+1; 
 
* Mapping of prices and yield from ESIM results to FARMIS categories 
FARMIS_Price(FARMIS_pr) $ SUM(map_farmis_esim(farmis_pr,esim_pr),1) 
   = 
100*SUM(map_farmis_esim(farmis_pr,esim_pr),esim_prices(esim_pr))/SUM(map_farmis_esim(farmis_pr,esim
_pr),1)-100; 
display   FARMIS_Price; 
 
FARMIS_YIELD(FARMIS_y) $ SUM(map_farmis_esim(farmis_y,ESIM_Y),1) 
    = 
100*SUM(map_farmis_esim(farmis_y,ESIM_Y),ESIM_Yield(ESIM_Y))/SUM(map_farmis_esim(farmis_y,ESI
M_Y),1)-100; 
display   FARMIS_YIELD; 
 
CH_PRICE("DE","GROWTHRATE","CON","%scenarioname%",FARMIS_pr) = 
FARMIS_Price(FARMIS_pr); 
execute_unload 'temp_price.gdx',CH_PRICE; 
EXECUTE 'GDXXRW temp_price.gdx o=%Farmis_Path%\_scenario_data\%scenario_file% par=CH_PRICE 
rng=price_sce!a4 merge' 
; 
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CH_YIELD("DE","GROWTHRATE","%scenarioname%",FARMIS_pr) = FARMIS_YIELD(FARMIS_pr); 
execute_unload 'temp_yield.gdx',CH_YIELD; 
EXECUTE 'GDXXRW temp_yield.gdx o=%Farmis_Path%\_scenario_data\%scenario_file% par=CH_YIELD 
rng=yield_sce!b3 merge' 
; 
 
*3a) Run FARMIS on laender level with ESIM prices and yields to determin young livestock prices 
execute 'copy %Farmis_Path%\4_project_DE_test.gms %Farmis_Path%\4_project.gms' 
execute 'copy %Farmis_Path%\Project_files\DE_test\4_Farmis_steering_KopplungESIM.gms 
%Farmis_Path%\Project_files\DE_test\4_Farmis_steering.gms' 
execute 'gams.exe 3_farmis_main.gms Wdir=%Farmis_Path% Cdir=%Farmis_Path% %gamsparm% --
Xscenario %Scenario% --XBaselinename %Baselinename%'; 
el = errorlevel; 
display "errorlevel", el; 
if (el<>0, abort "ERROR" ); 
 
*get young livestock prices 
execute_load '%Farmis_Path%\%report_file%', REPORT_SECTOR_FARM,REPORT_SECTOR; 
 
*************************************************** ************************************** 
*---from here comment out in case of not using the group specific version of FARMIS ----* 
*************************************************** ************************************** 
*$ontext 
CH_PRICE("DE","GROWTHRATE","CON","%scenarioname%",youngani2) $ 
sum(map_yani_prices(youngani2,yaniprices),REPORT_SECTOR_FARM("BAS",yaniprices)) 
                                 = sum(map_yani_prices(youngani2,yaniprices), 
                                      (REPORT_SECTOR_FARM("%scenarioname%",yaniprices)-
REPORT_SECTOR_FARM("BAS",yaniprices))/REPORT_SECTOR_FARM("BAS",yaniprices)*100); 
execute_unload 'temp_price.gdx',CH_PRICE; 
EXECUTE 'GDXXRW temp_price.gdx o=%Farmis_Path%\_scenario_data\%scenario_file% par=CH_PRICE 
rng=price_sce!a4 merge' 
 
*3b) Run FARMIS owith ESIM prices and yields and equilibrium young livestock prices 
execute 'copy %Farmis_Path%\4_project_DE_DFG0608.gms %Farmis_Path%\4_project.gms' 
execute 'copy %Farmis_Path%\Project_files\DE_DFG_0608\4_Farmis_steering_KopplungESIM.gms 
%Farmis_Path%\Project_files\DE_DFG_0608\4_Farmis_steering.gms' 
execute 'gams.exe 3_farmis_main.gms Wdir=%Farmis_Path% Cdir=%Farmis_Path% --Xscenario %Scenario% -
-XBaselinename %Baselinename%' 
 
* Mapping of FARMIS results to ESIM products 
execute_load '%Farmis_Path%\%report_file_groups%', REPORT_SECTOR; 
 
*$offtext 
************************************* 
* ----- comment out until here -----* 
************************************* 
 
farmis_quant(IND) $ REPORT_SECTOR("BAS",IND) = 
REPORT_SECTOR("%scenarioname%",IND)/REPORT_SECTOR("BAS",IND); 
display farmis_quant; 
 
exog_area = REPORT_SECTOR("%scenarioname%","L_EMAIZE") - 
REPORT_SECTOR("BAS","L_EMAIZE"); 
execute_unload '.\%version%\Exog_area.gdx' exog_area; 
 
esim_quant(esim_pr)$ SUM(map_quantities(esim_pr,IND),1) = 
SUM(map_quantities(esim_pr,IND),farmis_quant(IND)); 
display esim_quant; 
 
execute_unload '.\%version%\esim_change.gdx' esim_quant; 
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*4) Run ESIM with fixed supply side 
execute 'gams.exe simulation_2020_%version%.gms Wdir=%ESIM_path%\%version%  %gamsparm%  
r=%save_file%  '; 
*license=%Lice% 
el = errorlevel; 
display "errorlevel", el; 
if (el<>0, abort "ERROR" ); 
 
execute_LOAD '.\%version%\esim_p_y.gdx', esim_prices, esim_yield, intercept_ge, infl_rate, esim_inc; 
 
execute_load '.\%version%\results.gdx', r_comm, r_cc; 
 
* Storage of intermediate iteration results 
loop(iter$((ord(iter)-1) = turn), 
iter_results(iter,"farmis_quant",IND)$farmis_quant(IND)             =  farmis_quant(IND)       ; 
iter_results(iter,"esim_quant",esim_pr)$esim_quant(esim_pr)         =  esim_quant(esim_pr)     ; 
iter_results(iter,"esim_prices",esim_pr)$esim_prices(esim_pr)       =  esim_prices(esim_pr)    ; 
iter_results(iter,"FARMIS_Price",farmis_pr)$FARMIS_Price(FARMIS_pr) =  FARMIS_Price(FARMIS_pr) ; 
iter_results(iter,"esim_yield",esim_pr)$esim_yield(esim_pr)         =  esim_yield(esim_pr)     ; 
iter_results(iter,"farmis_yield",farmis_pr)$farmis_yield(farmis_pr) =  farmis_yield(farmis_pr) ; 
iter_results(iter,"intercept_ge",esim_pr)$intercept_ge(esim_pr)     =  intercept_ge(esim_pr)   ; 
 
iter_results(iter,"esim_inc",esim_pr)$esim_inc(esim_pr)     =  esim_inc(esim_pr)   ; 
 
iter_results(iter,"r_hdem",esim_pr)  =  r_comm("GE","2020",esim_pr,"r_hdem") ; 
iter_results(iter,"r_supp",esim_pr)  =  r_comm("GE","2020",esim_pr,"r_supp") ; 
iter_results(iter,"r_sdem",esim_pr)  =  r_comm("GE","2020",esim_pr,"r_sdem") ; 
iter_results(iter,"r_fdem",esim_pr)  =  r_comm("GE","2020",esim_pr,"r_fdem") ; 
iter_results(iter,"r_pdem",esim_pr)  =  r_comm("GE","2020",esim_pr,"r_pdem") ; 
iter_results(iter,"r_pd",esim_pr)    =  r_comm("GE","2020",esim_pr,"r_pd") ; 
iter_results(iter,"r_tuse",esim_pr)  =  r_comm("GE","2020",esim_pr,"r_tuse") ; 
iter_results(iter,"r_area",esim_pr)  =  r_comm("GE","2020",esim_pr,"r_area") ; 
iter_results(iter,"r_yiel",esim_pr)  =  r_comm("GE","2020",esim_pr,"r_yiel") ; 
iter_results(iter,"r_landpr1",esim_pr) =  r_cc("GE","2020","r_landpr1"); 
 
iter_results(iter,"real_esim_prices",esim_pr) =  esim_prices(esim_pr) / infl_rate ; 
iter_results(iter,"real_av_esim_pr",esim_pr)  =  esim_prices(esim_pr) / infl_rate ; 
iter_results(iter,"real_esim_inc",esim_pr)    =  esim_inc(esim_pr)    / infl_rate ; 
iter_results(iter,"real_av_esim_inc",esim_pr) =  esim_inc(esim_pr)    / infl_rate ; 
 
chk_diff(iter,"esim_prices",esim_pr) = 0; 
chk_diff(iter,"esim_prices",esim_pr)$(iter_results(iter-1,"esim_prices",esim_pr) gt 0) 
         = round( (iter_results(iter,"esim_prices",esim_pr) -  iter_results(iter-1,"esim_prices",esim_pr)) ,3); 
 
counter(esim_pr) = 0; 
counter(esim_pr)$(abs(chk_diff(iter,"esim_prices",esim_pr)) le 0.01) = 1; 
display chk_diff; 
 
*for the use in FARMIS to anticipate convergence 
 
esim_prices(esim_pr) =  0.5 * esim_prices(esim_pr) + 0.5 * iter_results(iter-1,"av_esim_pr",esim_pr); 
 
esim_inc(esim_pr) =  0.5 * esim_inc(esim_pr) + 0.5 * iter_results(iter-1,"av_esim_inc",esim_pr); 
 
iter_results(iter,"av_esim_pr",esim_pr)$esim_prices(esim_pr)       =  esim_prices(esim_pr)    ; 
iter_results(iter,"av_esim_inc",esim_pr)$esim_inc(esim_pr)       =  esim_inc(esim_pr)    ; 
 
*loop iter end 
); 
 
execute_unload '.\%version%\av_price.gdx' esim_prices, infl_rate, esim_inc; 
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display counter; 
until(  ((sum(esim_pr,counter(esim_pr)) eq card(esim_pr)) or (turn = 15)) 
*Until end 
) 
 
*Repeat end 
); 
******** 
execute_unload "res_%version%_%BASELINENAME%_%scenario%.gdx", iter_results; 
execute_unload '.\INEQUALITY\inflation.gdx' infl_rate; 
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Appendix B – Mapping of commodities between FARMIS and 
ESIM 

Table B.1: Mapping of commodities between ESIM and FARMIS. 

ESIM FARMIS 

Poultry Broiler meat; Other poultry meat; Poultry meat from laying hens 

  Pork Pork meat; Sows meat 

  Potatoes Potatoes 

  Beef Beef from a bull; Beef from a heifer 

 

Meat from slaughtered cows (dairy cull suckler) 

 

Veal from fattening calves 

  Corn Grain maize 

  Milk Milk 

  Wheat Soft wheat; Summer wheat; Winter wheat 

  Rye Rye 

  Durum Durum wheat 

  Eggs Eggs from laying hens 

  Rapeseed Rapeseed; Oilseeds for energy; Non Food (Oilseeds) 

  Barley Summer barley; Winter barley; Feeding cereals 

  Rap meal Feeding stuffs (by-products) energy-rich 

  Sun meal; Gluten feed Feeding stuffs (by-products) other 

  SMP Milk replacer 

  Soymeal Feeding stuffs (by-products) protein-rich 

  Other Grains Oats; Other cereals; Triticale 

  Sunseed Sunseed; Other oils 

  Sheep Meat from sheep and goat for fattening 

 

Wool from sheep 

  Sugar Sugar beet 
Source: Own Compilation. 
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Appendix C – Additional results of analysing redistributive effects 

 

 

Figure C. 1: Relative Lorenz curves for baseline and all scenarios based on grouped data. 

Source: Own compilation. 

 

 

Figure C.2: Absolute Lorenz curves for baseline and all scenarios based on grouped data. 

Source: Own compilation.  
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Table C.1: Decomposition of changes in total household income inequality (individual data 
vs. grouped data). 

  Relative analysis Absolute analysis 

  Individual data  Grouped Data Individual data  Grouped Data 
VI)  Baseline Results      
Average income (in €)  52,798 
Gini index of income (A) Gx 0.468 0.32 24,714 17,128 

      

VII)  50_DP scenario   

Average income (in €)  49,215 
Average support reduction (in €)  3,583 
Average rate of reduced support 
(support reduction/base income) 

s 0.068 

Gini index  (A) Gy 0.495 0.34 24,386 16,758 
Concentration index  (A) Cy 0.493 0.34 24,256 16,670 

Total redistributive effect (A) R -0.027 -0.02 329 370 
Index of re-ranking (A) H -0.003 0.00 -130 -88 

Index of vertical equity (A) V -0.025 -0.01 459 458 
Index of progressivity of support 
reduction 

P ; CB -0.34 -0.20 0.128 0.13 

      

VIII)  No_DP scenario   

Average income (in €)  43,844 
Average support reduction (in €)  8,953 
Average rate of reduced support 
(support reduction/base income) 

s 0.17 

Gini index  (A) Gy 0.54 0.36 23,688 15,894 
Concentration index  (A) Cy 0.529 0.35 23,173 15,551 

Total redistributive effect (A) R -0.072 -0.04 1,026 1,234 
Index of re-ranking (A) H -0.012 -0.01 -515 -343 

Index of vertical equity (A) V -0.06 -0.03 1,541 1,577 
Index of progressivity of support 
reduction 

P ; CB -0.296 -0.148 0.172 0.176 

      

IX)  No_Pricepol scenario   

Average income (in €)  31,197 

Average support reduction (in €)  21,601 

Average rate of reduced support 
(support reduction/base income) 

s 0.409 

Gini index  (A) Gy 0.608 0.33 18,957 10,165 

Concentration index  (A) Cy 0.518 0.27 16,158 8,367 
Total redistributive effect (A) R -0.14 0.00 5,757 6,964 
Index of re-ranking (A) H -0.09 -0.06 -2,799 -1,798 
Index of vertical equity (A) V -0.05 0.06 8,556 8,761 
Index of progressivity of support 
reduction 

P ; CB -0.072 0.081 0.396 0.406 

      
Source: own calculations. 
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Table C.1 continued: Decomposition of changes in total household income inequality 
(individual data vs. grouped data). 

  Relative analysis Absolute analysis 

  Individual data  Grouped Data Individual data  Grouped Data 
Baseline Results      
Average income (in €)  52,798 
Gini index of income (A) Gx 0.468 0.32 24,714 17,128 

      

X) Full Liberalization scenario   

Average income (in €)  21,420 

Average support reduction (in €)  31,378 
Average rate of reduced support 
(support reduction/base income) 

s 0.594 

Gini index  (A) Gy 0.861 0.43 18,446 9,145 
Concentration index  (A) Cy 0.667 0.29 14,278 6,303 

Total redistributive effect (A) R -0.393 -0.10 6,268 7,983 
Index of re-ranking (A) H -0.195 -0.13 -4,168 -2,841 
Index of vertical equity (A) V -0.198 0.03 10,436 10,825 
Index of progressivity of support 
reduction 

P ; CB -0.136 0.021 0.333 0.34 

Source: own calculations. 
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Appendix D – Subgroup decomposition results 

Table D.1: Disaggregate results of the overlapping index of farm type decomposition for the 
Baseline and the scenarios 50_DP, No_DP and Full_Lib. 

O_Gradin k,h  

O_Gradin,k= 
∑j O_Gradin,k,h * 

ph 
O_Gradín k,rest 

          

Baseline  

 

AF DF GL MF PP PC  

AF 0.424 0.691 0.769 0.636 0.893 0.70 0.63 

DF 0.415 0.233 0.595 0.812 0.392 0.64 0.48 

GL 0.909 0.314 0.661 0.525 0.774 0.64 0.60 

MF 0.708 0.560 0.463 0.832 0.703 0.71 0.62 

PP 0.540 0.704 0.339 0.767 0.528 0.65 0.63 

PC 1.005 0.451 0.662 0.860 0.701 0.74 0.71 
 

50_DP  

AF DF GL MF PP PC  

AF  0.392 0.733 0.750 0.602 0.821  0.68 0.60 

DF 0.363  0.224 0.555 0.796 0.398  0.62 0.45 

GL 0.919 0.304  0.657 0.509 0.714  0.63 0.59 

MF 0.670 0.535 0.468  0.81 0.761  0.70 0.61 

PP 0.488 0.696 0.329 0.735  0.548  0.63 0.61 

PC 0.880 0.461 0.611 0.914 0.725   0.73 0.70 
          

No_DP  

AF DF GL MF PP PC  

AF  0.374 0.738 0.741 0.577 0.738  0.67 0.58 

DF 0.334  0.225 0.531 0.809 0.441  0.62 0.44 

GL 0.870 0.296  0.624 0.476 0.609  0.60 0.55 

MF 0.649 0.520 0.464  0.787 0.865  0.70 0.61 

PP 0.448 0.703 0.314 0.699  0.595  0.62 0.59 

PC 0.747 0.499 0.523 1.001 0.775   0.73 0.70 
          

Full_Lib          

AF DF GL MF PP PC    

AF  0.627 0.621 0.813 0.575 0.529  0.73 0.66 

DF 0.762  0.384 1.053 0.864 0.817  0.87 0.82 

GL 0.866 0.441  0.670 0.438 0.355  0.63 0.58 

MF 0.753 0.802 0.445  0.696 0.671  0.78 0.72 

PP 0.427 0.528 0.233 0.559  0.845  0.54 0.51 

PC 0.470 0.596 0.226 0.643 1.009   0.61 0.56 
          

NB: Values of between-groups inequality and overlapping for the same groups are symmetric. For reasons of clearness only 
half of the table is filled.  
DF – Dairy farms; MF – Mixed farms; PP – Pig and poultry farms; AF – Arable farms; GL – Grazing livestock farms; PC – 
Permanent crop farms. 
Source: own calculations. 
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Table D. 2: Detailed results of farm type decomposition in 2020 for the 50_DP scenario. 

50_DP AF DF GL MF PP PC 

Average Income (€) 23,346 66,219 15,810 38,527 51,089 30,212 

Income share 0.11 0.5 0.04 0.21 0.07 0.07 

Farm population 31,762 51,376 17,135 36,376 9,445 15,979 

Population share 0.20 0.32 0.11 0.22 0.06 0.10 

% Contribution to Gini and Absolute Gini 

AF DF GL MF PP PC SUM 

Within k,k 3.3% 9.2% 0.8% 4.8% 0.4% 0.8%  19.3% 
        

Between k,h AF        7.8% 

DF 5.3%       15.4% 

GL 0.3% 3.4%      5.5% 

MF 1.3% 3.9% 1.1%     7.0% 

PP 0.6% 0.6% 0.4% 0.3%    2.1% 

PC 0.3% 2.2% 0.3% 0.4% 0.2%   3.4% 

        

Overlapping k,h AF        8.2% 

DF 2.1%       8.9% 

GL 1.3% 0.7%      3.8% 

MF 2.8% 3.6% 1.1%     10.1% 

PP 0.6% 1.4% 0.2% 1.0%    3.5% 

PC 1.4% 1.1% 0.5% 1.6% 0.3%   4.9% 
         100% 

Absolute fractional Ginis 

AF DF GL MF PP PC Average 

Within k,k 21,325 23,009 17,015 23,893 26,325 19,887   
        

Between k,h AF        12,492 

DF 21,436       17,846 

GL 3,768 25,204      14,554 

MF 7,591 13,846 11,359     10,126 

PP 13,872 7,565 17,639 6,281    10,003 

PC 3,433 18,003 7,201 4,158 10,439   9,632 
        

Overlapping k,h AF        12,893 

DF 8,352       10,281 

GL 15,635 5,165      9,969 

MF 15,999 12,776 11,183     14,555 

PP 12,845 18,325 8,661 19,355    15,938 

PC 17,508 9,164 12,156 18,184 14,428   13,915 
          

NB: Values of between-groups inequality and overlapping for the same groups are symmetric. For reasons of clearness only 
half of the table is filled.  
DF – Dairy farms; MF – Mixed farms; PP – Pig and poultry farms; AF – Arable farms; GL – Grazing livestock farms; PC – 
Permanent crop farms. 
Source: own calculations. 
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Table D.3: Results of farm type decomposition in 2020 for the 50_DP scenario in comparison 
to Baseline results in 2020. 

50_DP / BASELINE AF DF GL MF PP PC 

Average Income (€) 0.81 0.96 0.81 0.90 0.94 0.96   
          

Relative to Baseline (% Contribution to Gini and Absolute Gini) 
  

AF DF GL MF PP PC SUM 

Within k,k 0.97 1.00 1.00 0.98 1.00 1.00  0.99 
        

Between k,h AF        1.08 

DF 1.08       1.06 

GL 0.75 1.06      1.04 

MF 1.08 1.08 1.00     1.04 

PP 1.00 1.20 1.00 1.00    1.00 

PC 3.00 0.96 1.50 0.80 0.67   1.00 
        

Overlapping k,h AF        0.93 

DF 0.88       0.94 

GL 1.00 1.00      1.00 

MF 0.93 0.92 1.00     0.95 

PP 1.00 1.00 1.00 0.91    0.97 

PC 0.93 1.00 1.00 1.07 1.00   1.00 
          

Relative to Baseline (Absolute fractional Ginis) 
  

AF DF GL MF PP PC Average 

Within k,k 0.94 0.99 0.98 0.97 0.98 0.98   
        

Between k,h AF        1.08 

DF 1.07       1.04 

GL 0.81 1.02      1.00 

MF 1.07 1.07 0.97     1.03 

PP 1.09 1.03 1.02 1.12    1.04 

PC 2.61 0.96 1.21 0.72 0.92   0.99 
        

Overlapping k,h AF        0.90 

DF 0.87       0.93 

GL 0.99 0.95      0.97 

MF 0.91 0.92 0.98     0.95 

PP 0.89 0.97 0.95 0.94    0.95 

PC 0.86 1.01 0.91 1.05 1.02   0.96 
          

NB: Values of between-groups inequality and overlapping for the same groups are symmetric. For reasons of clearness only 
half of the table is filled.  
DF – Dairy farms; MF – Mixed farms; PP – Pig and poultry farms; AF – Arable farms; GL – Grazing livestock farms; PC – 
Permanent crop farms. 
Source: own calculations. 
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Table D.4: Detailed results of farm type decomposition in 2020 for the No_DP scenario. 

No_DP AF DF GL MF PP PC 

Average Income (€) 17,469 60,447 9,578 32,544 46,406 29,054 

Income share 0.09 0.53 0.03 0.2 0.07 0.08 

Farm population 31,762 51,376 17,135 36,376 9,445 15,979 

Population share 0.20 0.32 0.11 0.22 0.06 0.10 

% Contribution to Gini and Absolute Gini 

AF DF GL MF PP PC SUM 

Within k,k 3.2% 9.2% 0.8% 4.7% 0.4% 0.8%  19.1% 
        

Between k,h AF        8.4% 

DF 5.5%       15.6% 

GL 0.3% 3.5%      5.8% 

MF 1.4% 4.1% 1.1%     7.2% 

PP 0.7% 0.5% 0.5% 0.4%    2.3% 

PC 0.5% 2.0% 0.4% 0.2% 0.2%   3.3% 
        

Overlapping k,h AF        7.6% 

DF 1.9%       8.8% 

GL 1.3% 0.7%      3.6% 

MF 2.7% 3.5% 1.0%     10.0% 

PP 0.5% 1.4% 0.2% 1.0%    3.5% 

PC 1.2% 1.3% 0.4% 1.8% 0.4%   5.1% 
         100% 

Absolute fractional Ginis 

AF DF GL MF PP PC Average 

Within k,k 19,813 22,176 16,810 22,640 25,502 19,576   
        

Between k,h AF        12,854 

DF 21,489       17,552 

GL 3,946 25,435      15,036 

MF 7,538 13,951 11,483     9,915 

PP 14,469 7,021 18,414 6,931    10,002 

PC 5,793 15,697 9,738 1,745 8,676   8,917 
        

Overlapping k,h AF        11,567 

DF 7,407       9,707 

GL 14,631 4,981      9,256 

MF 14,689 11,773 10,496     13,783 

PP 11,431 17,939 8,000 17,814    15,150 

PC 14,631 9,777 10,241 19,589 15,176   13,679 
          

NB: Values of between-groups inequality and overlapping for the same groups are symmetric. For reasons of clearness only 
half of the table is filled.  
DF – Dairy farms; MF – Mixed farms; PP – Pig and poultry farms; AF – Arable farms; GL – Grazing livestock farms; PC – 
Permanent crop farms. 
Source: own calculations. 
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Table D.5: Results of farm type decomposition in 2020 for the No_DP scenario in 
comparison to Baseline results in 2020. 

No_DP / BASELINE AF DF GL MF PP PC 

Average Income (€) 0.61 0.88 0.49 0.76 0.86 0.92   
          

Relative to Baseline (% Contribution to Gini and Absolute Gini) 

AF DF GL MF PP PC SUM 

Within k,k 0.94 1.00 1.00 0.96 1.00 1.00  0.98 
        

Between k,h AF        1.17 

DF 1.12       1.08 

GL 0.75 1.09      1.09 

MF 1.17 1.14 1.00     1.07 

PP 1.17 1.00 1.25 1.33    1.10 

PC 5.00 0.87 2.00 0.40 0.67   0.97 
        

Overlapping k,h AF        0.86 

DF 0.79       0.93 

GL 1.00 1.00      0.95 

MF 0.90 0.90 0.91     0.94 

PP 0.83 1.00 1.00 0.91    0.97 

PC 0.80 1.18 0.80 1.20 1.33   1.04 
          

Relative to Baseline (Absolute fractional Ginis) 

AF DF GL MF PP PC Average 

Within k,k 0.87 0.95 0.97 0.92 0.95 0.97   
        

Between k,h AF        1.11 

DF 1.07       1.02 

GL 0.85 1.03      1.04 

MF 1.06 1.08 0.98     1.01 

PP 1.14 0.96 1.06 1.24    1.04 

PC 4.40 0.84 1.64 0.30 0.76   0.92 
        

Overlapping k,h AF        0.81 

DF 0.77       0.88 

GL 0.93 0.92      0.90 

MF 0.84 0.85 0.92     0.90 

PP 0.79 0.95 0.88 0.87    0.90 

PC 0.72 1.07 0.77 1.13 1.07   0.95 
          

NB: Values of between-groups inequality and overlapping for the same groups are symmetric. For reasons of clearness only 
half of the table is filled.  
DF – Dairy farms; MF – Mixed farms; PP – Pig and poultry farms; AF – Arable farms; GL – Grazing livestock farms; PC – 
Permanent crop farms. 
Source: own calculations. 
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Table D.6: Detailed results of farm type decomposition in 2020 for the Full_Lib scenario. 

Full_Lib AF DF GL MF PP PC 

Average Income (€) 5,167 17,430 -3,696 14,058 32,840 28,700 

Income share 0.07 0.39 -0.03 0.22 0.14 0.20 

Farm population 31,762 51,376 17,135 36,376 9,445 15,979 

Population share 0.20 0.32 0.11 0.22 0.06 0.10 

% Contribution to Gini and Absolut Gini 

AF DF GL MF PP PC SUM 

Within k,k 3.8% 8.1% 0.8% 5.3% 0.4% 1.1%  19.5% 
        

Between k,h AF        6.0% 

DF 2.2%       6.7% 

GL 0.5% 2.0%      5.3% 

MF 1.1% 0.7% 1.2%     4.6% 

PP 0.9% 0.8% 0.6% 0.7%    3.1% 

PC 1.3% 1.0% 1.0% 0.9% 0.1%   4.3% 
        

Overlapping k,h AF        10.2% 

DF 3.8%       14.2% 

GL 1.3% 1.0%      3.9% 

MF 3.5% 6.0% 1.1%     13.2% 

PP 0.6% 1.3% 0.2% 1.0%    3.7% 

PC 1.0% 2.1% 0.3% 1.6% 0.6%   5.6% 
         100% 

Absolute fractional Ginis 

AF DF GL MF PP PC Average 

Within k,k 17,248 14,194 12,362 18,628 23,204 19,442   
        

Between k,h AF        6,687 

DF 6,131       5,419 

GL 4,431 10,563      9,919 

MF 4,446 1,686 8,877     4,659 

PP 13,836 7,705 18,268 9,391    9,979 

PC 11,766 5,635 16,198 7,321 2,070   8,396 
        

Overlapping k,h AF        11,426 

DF 10,818       11,579 

GL 10,705 5,450      7,194 

MF 14,025 14,948 8,287     13,346 

PP 9,913 12,260 5,415 12,967    11,941 

PC 9,129 11,591 4,386 12,497 19,611   10,955 
          

NB: Values of between-groups inequality and overlapping for the same groups are symmetric. For reasons of clearness only 
half of the table is filled.  
DF – Dairy farms; MF – Mixed farms; PP – Pig and poultry farms; AF – Arable farms; GL – Grazing livestock farms; PC – 
Permanent crop farms. 
Source: own calculations. 

 



153 
 

Table D.7: Results of farm type decomposition in 2020 for the Full_Lib scenario in 
comparison to Baseline results in 2020. 

Full_Lib / BASELINE AF DF GL MF PP PC 

Average Income (€) 0.18 0.25 -0.19 0.33 0.61 0.91   
          

Relative to Baseline (% Contribution to Gini and Absolute Gini) 
  

AF DF GL MF PP PC SUM 

Within k,k 1.12 0.88 1.00 1.08 1.00 1.38  1.00 
        

Between k,h AF        0.83 

DF 0.45       0.46 

GL 1.25 0.63      1.00 

MF 0.92 0.19 1.09     0.69 

PP 1.50 1.60 1.50 2.33    1.48 

PC 13.00 0.43 5.00 1.80 0.33   1.26 
        

Overlapping k,h AF        1.16 

DF 1.58       1.49 

GL 1.00 1.43      1.03 

MF 1.17 1.54 1.00     1.25 

PP 1.00 0.93 1.00 0.91    1.03 

PC 0.67 1.91 0.60 1.07 2.00   1.14 
          

Relative to Baseline (Absolute fractional Ginis) 
  

AF DF GL MF PP PC Average 

Within k,k 0.76 0.61 0.71 0.75 0.87 0.96   
        

Between k,h AF        0.58 

DF 0.31       0.32 

GL 0.96 0.43      0.68 

MF 0.63 0.13 0.76     0.47 

PP 1.09 1.05 1.05 1.68    1.04 

PC 8.93 0.30 2.72 1.27 0.18   0.86 
        

Overlapping k,h AF        0.80 

DF 1.12       1.05 

GL 0.68 1.00      0.70 

MF 0.80 1.08 0.73     0.87 

PP 0.69 0.65 0.60 0.63    0.71 

PC 0.45 1.27 0.33 0.72 1.39   0.76 
          

NB: Values of between-groups inequality and overlapping for the same groups are symmetric. For reasons of clearness only 
half of the table is filled.  
DF – Dairy farms; MF – Mixed farms; PP – Pig and poultry farms; AF – Arable farms; GL – Grazing livestock farms; PC – 
Permanent crop farms. 
Source: own calculations. 
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Table D.8: Aggregate results of regional subgroup decomposition (based on FFI). 

BL 50_DP No_DP No_PP Full_Lib 

 

Average income (€) 45,424 41,841 36,470 23,823 14,046 

 
    

RELATIV 

Gini 
0.56 0.598 0.662 0.782 1.256 

100% 100% 100% 100% 100% 

Gini-Within 
0.105 0.112 0.124 0.146 0.232 
19% 19% 19% 19% 18% 

Gini-Between 

0.116 0.128 0.141 0.121 0.197 

21% 21% 21% 15% 16% 

Overlapping 
0.339 0.358 0.397 0.514 0.827 

61% 60% 60% 66% 66% 

ABSOLUT 

Abs. Gini 25,443 25,028 24,155 18,632 17,642 
100% 100% 100% 100% 100% 

Abs. Gini-Within 4,767 4,690 4,529 3,488 3,259 

19% 19% 19% 19% 18% 

Abs. Gini-Between 5,288 5,373 5,137 2,893 2,768 

21% 21% 21% 16% 16% 

Abs. Overlapping 15,388 14,965 14,489 12,251 11,614 

60% 60% 60% 66% 66% 

 
     

O_Gradin  
0.839 0.833 0.836 0.884 0.887 

       
 Source: own calculations. 
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Table D.9: Disaggregate results of the overlapping index of regional subgroup 
decomposition. 

O_Gradin k,h O_Gradin,k=  
∑j O_Gradin,k,h * 

ph 

O_Gradín 

k,rest 

Baseline            

 NR NS SH BA BW HE SL RP  

NR  0.88 0.81 0.72 0.7 0.73 0.66 0.66  0.78 0.75 

NS 0.79  0.92 0.55 0.54 0.57 0.51 0.51  0.67 0.61 

SH 0.64 0.81  0.45 0.45 0.47 0.42 0.42  0.56 0.54 

BA 0.99 0.84 0.78  0.97 1.02 0.91 0.92  0.95 0.92 

BW 0.82 0.72 0.67 0.84  0.95 0.9 0.89  0.84 0.82 

HE 0.86 0.75 0.7 0.88 0.96  0.92 0.93  0.87 0.86 

SL 0.92 0.79 0.74 0.93 1.06 1.08  0.99  0.93 0.93 

RP 0.93 0.80 0.75 0.94 1.05 1.09 1.00   0.94 0.93 

50_DP            
 NR NS SH BA BW HE SL RP    

NR  0.89 0.83 0.71 0.67 0.67 0.58 0.65  0.77 0.74 

NS 0.8  0.93 0.55 0.53 0.53 0.46 0.51  0.67 0.61 

SH 0.66 0.82  0.46 0.44 0.44 0.38 0.43  0.57 0.54 

BA 0.97 0.85 0.8  0.94 0.95 0.82 0.92  0.94 0.91 

BW 0.81 0.72 0.68 0.83  0.98 0.89 0.88  0.84 0.81 

HE 0.83 0.73 0.7 0.86 0.99  0.89 0.91  0.86 0.85 

SL 0.83 0.73 0.7 0.86 1.05 1.02  0.91  0.87 0.87 

RP 0.92 0.81 0.76 0.94 1.02 1.02 0.89   0.93 0.92 
No_DP            
 NR NS SH BA BW HE SL RP    

NR  0.91 0.84 0.7 0.65 0.63 0.51 0.68  0.77 0.73 

NS 0.81  0.92 0.55 0.53 0.51 0.41 0.54  0.67 0.61 

SH 0.67 0.83  0.46 0.44 0.43 0.35 0.45  0.57 0.55 

BA 0.96 0.87 0.8  0.94 0.91 0.73 0.97  0.95 0.92 

BW 0.81 0.74 0.69 0.84  0.97 0.79 0.87  0.85 0.82 

HE 0.81 0.74 0.69 0.85 1.01  0.82 0.88  0.85 0.84 

SL 0.77 0.71 0.66 0.8 0.97 0.96  0.82  0.81 0.81 

RP 0.93 0.84 0.78 0.96 0.97 0.94 0.75   0.93 0.92 

No_Pricepol            

 NR NS SH BA BW HE SL RP    

NR  1.02 0.92 0.68 0.73 0.64 0.55 0.91  0.82 0.79 

NS 0.85  0.92 0.6 0.64 0.57 0.5 0.8  0.74 0.68 

SH 0.83 0.98  0.56 0.61 0.53 0.46 0.77  0.71 0.70 

BA 0.99 1.04 0.9  1.09 0.95 0.8 0.84  0.99 0.99 

BW 0.88 0.93 0.82 0.91  0.88 0.77 0.78  0.90 0.89 

HE 0.89 0.94 0.82 0.9 1.01  0.86 0.77  0.91 0.91 

SL 0.91 0.98 0.84 0.91 1.04 1.03  0.76  0.93 0.93 

RP 1.09 1.15 1.03 0.69 0.77 0.66 0.55   0.87 0.86 
Full_Lib            

 NR NS SH BA BW HE SL RP    

NR  1.08 0.99 0.65 0.74 0.58 0.43 0.88  0.81 0.78 

NS 0.87  0.93 0.6 0.67 0.54 0.43 0.84  0.75 0.70 

SH 0.92 1.07  0.59 0.68 0.53 0.4 0.9  0.77 0.76 

BA 0.98 1.13 0.97  1.09 0.89 0.63 0.8  1.01 1.01 

BW 0.91 1.02 0.9 0.88  0.78 0.58 0.77  0.91 0.89 

HE 0.88 1.03 0.88 0.89 0.97  0.73 0.72  0.92 0.91 

SL 0.77 0.95 0.77 0.75 0.84 0.86  0.6  0.80 0.79 

RP 0.97 1.15 1.07 0.58 0.69 0.52 0.37   0.80 0.78 
            

Source: own calculations. 
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Table D.10: Detailed results of regional subgroup decomposition in 2020 for the Baseline. 

Baseline NR NS SH BA BW HE SL RP 

Average Income (€) 49,524 60,307 70,290 40,643 35,400 37,651 36,902 37,340 

Income share 0.15 0.22 0.08 0.32 0.12 0.05 0.004 0.07 

Farm population 22,029 26,723 8,572 57,355 23,957 9,255 713 13,469 

Population share 0.14 0.16 0.05 0.35 0.15 0.06 0.004 0.08 
% Contribution to Gini and Absolute Gini  

NR NS SH BA BW HE SL RP SUM 

Within k,k 2.0% 3.3% 0.4% 10.1% 2.0% 0.3% 0.0% 0.5%  18.6% 
          

Between k,h NR          2.7% 

NS 0.5%         5.2% 

SH 0.3% 0.2%        2.6% 

BA 0.8% 2.3% 1.1%       5.0% 

BW 0.6% 1.2% 0.5% 0.5%      2.8% 

 HE 0.2% 0.4% 0.2% 0.1% 0.0%     0.9% 

 SL 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%    0.0% 

RP 0.3% 0.6% 0.3% 0.2% 0.0% 0.0% 0.0%   1.4% 
          

Overlapping k,h NR          9.5% 

NS 2.2%         10.4% 

SH 0.6% 1.0%        3.8% 

BA 3.8% 4.0% 1.2%       17.1% 

 BW 1.5% 1.6% 0.5% 4.1%      9.5% 

 HE 0.6% 0.7% 0.2% 1.7% 0.7%     4.3% 

SL 0.0% 0.0% 0.0% 0.1% 0.1% 0.0%    0.2% 

RP 0.8% 0.9% 0.3% 2.2% 1.0% 0.4% 0.0%   5.6% 
           100% 

Absolute fractional Ginis 
NR NS SH BA BW HE SL RP Average 

  
Within k,k 27,982 31,284 35,312 20,499 23,689 23,638 20,062 20,027 

          
Between k,h NR          5,701 

NS 5,392         9,543 

SH 10,383 4,991        13,128 

BA 4,440 9,832 14,824       5,614 

BW 7,062 12,454 17,445 2,621      5,881 

 HE 5,936 11,328 16,319 1,496 1,126     4,505 

 SL 6,311 11,703 16,694 1,871 751 375    4,503 

RP 6,092 11,483 16,475 1,651 970 156 219   4,723 
          

Overlapping k,h NR          20,905 

NS 24,584         19,052 

SH 22,613 28,700        19,056 

BA 20,196 17,300 15,937       18,907 

 BW 19,493 17,022 15,925 19,889      19,334 

 HE 20,357 17,720 16,455 20,871 22,580     20,359 

SL 18,400 15,870 14,768 18,714 21,361 21,666    18,656 

RP 18,562 16,014 14,972 18,793 21,124 21,890 19,955    18,613 
Source: own calculations. 
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Table D.11: Detailed results of regional subgroup decomposition in 2020 for the 50_DP scen. 

50_DP NR NS SH BA BW HE SL RP 

Average Income (€) 46,750 56,611 65,890 37,289 31,507 32,207 29,820 34,221 

Income share 0.15 0.22 0.08 0.32 0.11 0.04 0.003 0.07 

Farm population 22,029 26,723 8,572 57,355 23,957 9,255 713 13,469 

Population share 0.14 0.16 0.05 0.35 0.15 0.06 0.004 0.08 
% Contribution to Gini and Absolute Gini  

NR NS SH BA BW HE SL RP SUM 

Within k,k 2.0% 3.4% 0.4% 10.1% 2.0% 0.3% 0.0% 0.5%  18.7% 
          

Between k,h NR          0.0% 

NS 0.4%         5.2% 

SH 0.3% 0.2%        2.6% 

BA 0.9% 2.3% 1.1%       5.3% 

BW 0.6% 1.2% 0.5% 0.6%      3.0% 

 HE 0.2% 0.5% 0.2% 0.2% 0.0%     1.1% 

 SL 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%    0.0% 

RP 0.3% 0.6% 0.3% 0.2% 0.1% 0.0% 0.0%   1.5% 
          

Overlapping k,h NR        0.8%  9.6% 

NS 2.2%       0.9%  10.3% 

SH 0.7% 1.0%      0.3%  3.9% 

BA 3.8% 4.0% 1.2%     2.2%  16.8% 

 BW 1.5% 1.6% 0.5% 4.0%    1.0%  9.5% 

 HE 0.6% 0.6% 0.2% 1.5% 0.8%   0.4%  4.1% 

SL 0.0% 0.0% 0.0% 0.1% 0.1% 0.0%  0.0%  0.2% 

RP 0.8% 0.9% 0.3% 2.2% 1.0% 0.4% 0.0%   5.6% 
           100% 

Absolute fractional Ginis 
NR NS SH BA BW HE SL RP Average 

  
Within k,k 27,728 31,073 35,207 20,170 22,800 22,376 19,373 19,821 

          
Between k,h NR          5,894 

NS 4,931         9,431 

SH 9,570 4,639        12,696 

BA 4,731 9,661 14,301       5,740 

BW 7,622 12,552 17,191 2,891      6,072 

 HE 7,272 12,202 16,841 2,541 350     5,230 

 SL 8,465 13,396 18,035 3,734 843 1,193    6,037 

RP 6,264 11,195 15,834 1,534 1,357 1,007 2,201   4,739 
          

Overlapping k,h NR          20,386 

NS 24,763         18,826 

SH 23,073 28,846        19,090 

BA 19,634 17,176 16,052       18,380 

 BW 18,446 16,390 15,566 19,024      18,543 

 HE 18,523 16,430 15,554 19,142 22,255     18,972 

SL 16,142 14,223 13,520 16,569 20,381 19,815    16,801 

RP 18,153 15,986 15,151 18,622 20,167 20,315 17,625    18,228 
Source: own calculations. 
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Table D.12: Results of regional subgroup decomposition in 2020 for the 50_DP scenario in 
comparison to Baseline results in 2020. 

50_DP / Baseline NR NS SH BA BW HE SL RP 

Average Income (€) 
0.94 0.94 0.94 0.92 0.89 0.86 0.81 0.92 

Relative to Baseline (% Contribution to Gini and Absolute Gini) 
NR NS SH BA BW HE SL RP SUM 

  

Within k,k 1.00 1.03 1.00 1.00 1.00 1.00 - 1.00  1.01 

          

Between k,h NR          - 

NS 0.80         1.00 

SH 1.00 1.00        1.00 

BA 1.13 1.00 1.00       1.06 

BW 1.00 1.00 1.00 1.20      1.07 

 HE 1.00 1.25 1.00 2.00 -     1.22 

 SL - - - - - -    - 

RP 1.00 1.00 1.00 1.00 - - -   1.07 

          

Overlapping k,h NR          1.01 

NS 1.00         0.99 

SH 1.17 1.00        1.03 

BA 1.00 1.00 1.00       0.98 

 BW 1.00 1.00 1.00 0.98      1.00 

 HE 1.00 0.86 1.00 0.88 1.14     0.95 

SL - - - 1.00 1.00 -    1.00 

RP 1.00 1.00 1.00 1.00 1.00 1.00 -   1.00 

            
Relative to Baseline (Absolute fractional Ginis) 

NR NS SH BA BW HE SL RP Average 
  

Within k,k 0.99 0.99 1.00 0.98 0.96 0.95 0.97 0.99 
          

Between k,h NR          1.03 

NS 0.91         0.99 

SH 0.92 0.93        0.97 

BA 1.07 0.98 0.96       1.02 

BW 1.08 1.01 0.99 1.10      1.03 

 HE 1.23 1.08 1.03 1.70 0.31     1.16 

 SL 1.34 1.14 1.08 2.00 1.12 3.18    1.34 

RP 1.03 0.97 0.96 0.93 1.40 6.46 10.05   1.00 

          
Overlapping k,h NR          0.98 

NS 1.01         0.99 

SH 1.02 1.01        1.00 

BA 0.97 0.99 1.01       0.97 

 BW 0.95 0.96 0.98 0.96      0.96 

 HE 0.91 0.93 0.95 0.92 0.99     0.93 

SL 0.88 0.90 0.92 0.89 0.95 0.91    0.90 

RP 0.98 1.00 1.01 0.99 0.95 0.93 0.88    0.98 

Source: own calculations. 
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Table D.13: Detailed results of regional subgroup decomposition for the No_DP scenario. 

No_DP NR NS SH BA BW HE SL RP 

Average Income (€) 41,733 50,433 59,015 31,932 26,679 26,075 21,263 30,501 

Income share 0.16 0.23 0.09 0.31 0.11 0.04 0.003 0.07 

Farm population 22,029 26,723 8,572 57,355 23,957 9,255 713 13,469 

Population share 0.14 0.16 0.05 0.35 0.15 0.06 0.004 0.08 
% Contribution to Gini and Absolute Gini  

NR NS SH BA BW HE SL RP SUM 

Within k,k 2.1% 3.4% 0.4% 10.1% 2.0% 0.3% 0.0% 0.6%  18.9% 
          

Between k,h NR          2.9% 

NS 0.4%         5.1% 

SH 0.3% 0.2%        2.5% 

BA 1.0% 2.2% 1.0%       5.1% 

BW 0.6% 1.2% 0.5% 0.6%      3.0% 

 HE 0.3% 0.5% 0.2% 0.2% 0.0%  0.0% 0.0%  1.2% 

 SL 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%  0.0%  0.0% 

RP 0.3% 0.6% 0.3% 0.1% 0.1% 0.0% 0.0%   1.4% 
          

Overlapping k,h NR          9.5% 

NS 2.3%         10.5% 

SH 0.7% 1.0%        3.9% 

BA 3.7% 4.1% 1.2%       16.9% 

 BW 1.5% 1.6% 0.5% 4.0%      9.3% 

 HE 0.5% 0.6% 0.2% 1.5% 0.7%     3.9% 

SL 0.0% 0.0% 0.0% 0.1% 0.0% 0.0%    0.1% 

RP 0.8% 0.9% 0.3% 2.3% 1.0% 0.4% 0.0%   5.7% 
           100% 

Absolute fractional Ginis 
NR NS SH BA BW HE SL RP Average 

  
Within k,k 26,827 30,426 33,825 19,430 21,733 20,886 17,742 19,586 

          
Between k,h NR          5,763 

NS 4,350         8,903 

SH 8,641 4,291        11,902 

BA 4,901 9,250 13,541       5,488 

BW 7,527 11,877 16,168 2,627      5,813 

 HE 7,829 12,179 16,470 2,929 302     5,535 

 SL 10,235 14,585 18,876 5,335 2,708 2,406    7,637 

RP 5,616 9,966 14,257 716 1,911 2,213 4,619   4,191 
          

Overlapping k,h NR          19,643 

NS 24,527         18,533 

SH 22,666 28,113        18,552 

BA 18,648 16,851 15,485       17,779 

 BW 17,555 16,092 15,026 18,349      17,816 

 HE 16,957 15,547 14,505 17,717 21,029     17,621 

SL 13,642 12,519 11,772 14,129 17,223 17,089    14,341 

RP 18,139 16,502 15,327 18,882 18,989 18,363 14,625   18,103 
Source: own calculations. 
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Table D.14: Results of regional subgroup decomposition in 2020 for the No_DP scenario in 
comparison to Baseline results in 2020. 

No_DP / Baseline NR NS SH BA BW HE SL RP 

Average Income (€) 
0.84 0.84 0.84 0.79 0.75 0.69 0.58 0.82 

Relative to Baseline (% Contribution to Gini and Absolute Gini) 
NR NS SH BA BW HE SL RP SUM 

  

Within k,k 1.05 1.03 1.00 1.00 1.00 1.00 - 1.20  1.02 

          

Between k,h NR          1.07 

NS 0.80         0.98 

SH 1.00 1.00        0.96 

BA 1.25 0.96 0.91       1.02 

BW 1.00 1.00 1.00 1.20      1.07 

 HE 1.50 1.25 1.00 2.00 -     1.33 

 SL - - - - - -    - 

RP 1.00 1.00 1.00 0.50 - - -   1.00 

          

Overlapping k,h NR          1.00 

NS 1.05         1.01 

SH 1.17 1.00        1.03 

BA 0.97 1.03 1.00       0.99 

 BW 1.00 1.00 1.00 0.98      0.98 

 HE 0.83 0.86 1.00 0.88 1.00     0.91 

SL - - - 1.00 0.00 -    0.50 

RP 1.00 1.00 1.00 1.05 1.00 1.00 -   1.02 

            
Relative to Baseline (Absolute fractional Ginis) 

NR NS SH BA BW HE SL RP Average 
  

Within k,k 0.96 0.97 0.96 0.95 0.92 0.88 0.88 0.98 
          

Between k,h NR          1.01 

NS 0.81         0.93 

SH 0.83 0.86        0.91 

BA 1.10 0.94 0.91       0.98 

BW 1.07 0.95 0.93 1.00      0.99 

 HE 1.32 1.08 1.01 1.96 0.27     1.23 

 SL 1.62 1.25 1.13 2.85 3.61 6.42    1.70 

RP 0.92 0.87 0.87 0.43 1.97 14.19 21.09   0.89 

          
Overlapping k,h NR          0.94 

NS 1.00         0.97 

SH 1.00 0.98        0.97 

BA 0.92 0.97 0.97       0.94 

 BW 0.90 0.95 0.94 0.92      0.92 

 HE 0.83 0.88 0.88 0.85 0.93     0.87 

SL 0.74 0.79 0.80 0.75 0.81 0.79    0.77 

RP 0.98 1.03 1.02 1.00 0.90 0.84 0.73    0.97 

Source: own calculations. 
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Table D.15: Detailed results of regional subgroup decomposition for the No_Pricepol 
scenario in 2020. 

No_Pricepol NR NS SH BA BW HE SL RP 

Average Income (€) 27,549 31,049 33,592 19,715 19,084 17,216 15,306 28,086 

Income share 0.16 0.22 0.08 0.29 0.12 0.04 0.003 0.10 

Farm population 22,029 26,723 8,572 57,355 23,957 9,255 713 13,469 

Population share 0.14 0.16 0.05 0.35 0.15 0.06 0.004 0.08 
% Contribution to Gini and Absolute Gini  

NR NS SH BA BW HE SL RP SUM 

Within k,k 2.1% 3.7% 0.4% 9.7% 2.0% 0.3% 0.0% 0.6%  18.8% 

          

Between k,h NR          2.0% 

NS 0.2%         3.3% 

SH 0.1% 0.1%        1.4% 

BA 1.0% 1.8% 0.7%       4.4% 

BW 0.5% 0.8% 0.3% 0.1%      2.0% 

 HE 0.2% 0.3% 0.1% 0.1% 0.0%     0.8% 

 SL 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%    0.0% 

RP 0.0% 0.1% 0.1% 0.7% 0.3% 0.1% 0.0%   1.3% 

          

Overlapping k,h NR          10.4% 

NS 2.6%         12.7% 

SH 0.7% 1.1%        4.3% 

BA 3.7% 4.7% 1.3%       17.6% 

 BW 1.6% 2.1% 0.6% 4.4%      10.3% 

 HE 0.6% 0.7% 0.2% 1.5% 0.7%     4.0% 

SL 0.0% 0.0% 0.0% 0.1% 0.0% 0.0%    0.1% 

RP 1.2% 1.5% 0.4% 1.9% 0.9% 0.3% 0.0%   6.2% 

           100% 
Absolute fractional Ginis 

NR NS SH BA BW HE SL RP Average 
Within k,k 20,891 25,051 23,341 14,438 17,276 15,084 12,686 17,521 

          
Between k,h NR          3,245 

NS 1,750         4,487 

SH 3,022 1,272        5,157 

BA 3,917 5,667 6,938       3,574 

BW 4,232 5,982 7,254 316      2,925 

 HE 5,166 6,916 8,188 1,249 934     3,512 

 SL 6,121 7,871 9,143 2,205 1,889 955    4,277 

RP 269 1,481 2,753 4,185 4,501 5,435 6,390   3,175 
          

Overlapping k,h NR          16,475 

NS 21,303         17,134 

SH 19,276 22,985        16,226 

BA 14,245 14,976 13,053       14,318 

 BW 15,285 15,988 14,145 15,670      15,319 

 HE 13,407 14,186 12,367 13,645 15,277     13,701 

SL 11,590 12,450 10,634 11,529 13,256 13,047    11,825 

RP 19,096 20,089 17,992 12,144 13,441 11,540 9,600   15,100 
Source: own calculations. 
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Table D.16: Results of regional subgroup decomposition in 2020 for the No_Pricepol 
scenario in comparison to Baseline results in 2020. 

No_Pricepol / Baseline NR NS SH BA BW HE SL RP 

Average Income (€) 
0.56 0.51 0.48 0.49 0.54 0.46 0.41 0.75 

Relative to Baseline (% Contribution to Gini and Absolute Gini) 
NR NS SH BA BW HE SL RP SUM 

  

Within k,k 1.05 1.12 1.00 0.96 1.00 1.00 - 1.20  1.01 

          

Between k,h NR          0.74 

NS 0.40         0.63 

SH 0.33 0.50        0.54 

BA 1.25 0.78 0.64       0.88 

BW 0.83 0.67 0.60 0.20      0.71 

 HE 1.00 0.75 0.50 1.00 -     0.89 

 SL - - - - - -    - 

RP 0.00 0.17 0.33 3.50 - - -   0.93 

          

Overlapping k,h NR          1.09 

NS 1.18         1.22 

SH 1.17 1.10        1.13 

BA 0.97 1.18 1.08       1.03 

 BW 1.07 1.31 1.20 1.07      1.08 

 HE 1.00 1.00 1.00 0.88 1.00     0.93 

SL - - - 1.00 0.00 -    0.50 

RP 1.50 1.67 1.33 0.86 0.90 0.75 -   1.11 

            
Relative to Baseline (Absolute fractional Ginis) 

NR NS SH BA BW HE SL RP Average 
  

Within k,k 0.75 0.80 0.66 0.70 0.73 0.64 0.63 0.87 
          

Between k,h NR          0.57 

NS 0.32         0.47 

SH 0.29 0.25        0.39 

BA 0.88 0.58 0.47       0.64 

BW 0.60 0.48 0.42 0.12      0.50 

 HE 0.87 0.61 0.50 0.83 0.83     0.78 

 SL 0.97 0.67 0.55 1.18 2.52 2.55    0.95 

RP 0.04 0.13 0.17 2.53 4.64 34.84 29.18   0.67 

          
Overlapping k,h NR          0.79 

NS 0.87         0.90 

SH 0.85 0.80        0.85 

BA 0.71 0.87 0.82       0.76 

 BW 0.78 0.94 0.89 0.79      0.79 

 HE 0.66 0.80 0.75 0.65 0.68     0.67 

SL 0.63 0.78 0.72 0.62 0.62 0.60    0.63 

RP 1.03 1.25 1.20 0.65 0.64 0.53 0.48    0.81 

Source: own calculations. 
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Table D.17: Detailed results of regional subgroup decomposition for the Full_Lib scenario. 

Full_Lib NR NS SH BA BW HE SL RP 

Average Income (€) 18,245 19,888 20,340 9,808 10,683 6,537 1,119 21,448 

Income share 0.18 0.23 0.08 0.25 0.11 0.03 0.0004 0.13 

Farm population 22,029 26,723 8,572 57,355 23,957 9,255 713 13,469 

Population share 0.14 0.16 0.05 0.35 0.15 0.06 0.004 0.08 
% Contribution to Gini and Absolute Gini  

NR NS SH BA BW HE SL RP SUM 

Within k,k 2.1% 3.8% 0.3% 9.3% 2.0% 0.2% 0.0% 0.7%  18.4% 

          

Between k,h NR          2.1% 

NS 0.1%         2.9% 

SH 0.0% 0.0%        0.9% 

BA 1.2% 1.7% 0.6%       4.8% 

BW 0.4% 0.6% 0.2% 0.1%      1.8% 

 HE 0.3% 0.4% 0.1% 0.2% 0.1%     1.3% 

 SL 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%    0.0% 

RP 0.1% 0.1% 0.0% 1.0% 0.4% 0.2% 0.0%   1.8% 

          

Overlapping k,h NR          10.3% 

NS 2.7%         13.3% 

SH 0.8% 1.1%        4.6% 

BA 3.5% 4.9% 1.4%       17.2% 

 BW 1.7% 2.3% 0.6% 4.2%      10.3% 

 HE 0.5% 0.7% 0.2% 1.3% 0.6%     3.6% 

SL 0.0% 0.0% 0.0% 0.1% 0.0% 0.0%    0.1% 

RP 1.1% 1.6% 0.5% 1.8% 0.9% 0.3% 0.0%   6.2% 

           100% 
Absolute fractional Ginis 

NR NS SH BA BW HE SL RP Average 
  

Within k,k 19,924 24,688 21,436 13,081 16,223 13,002 11,103 18,070 
          

Between k,h NR          3,180 

NS 822         3,682 

SH 1,048 226        3,420 

BA 4,218 5,040 5,266       3,627 

BW 3,781 4,603 4,828 437      2,663 

 HE 5,854 6,675 6,901 1,636 2,073     4,007 

 SL 8,563 9,385 9,611 4,345 4,782 2,709    6,492 

RP 1,602 780 554 5,820 5,383 7,456 10,165   4,037 
          

Overlapping k,h NR          15,586 

NS 21,551         17,175 

SH 19,675 22,879        16,267 

BA 12,859 14,758 12,743       13,221 

 BW 14,697 16,499 14,565 14,313      14,500 

 HE 11,480 13,398 11,419 11,587 12,651     11,844 

SL 8,583 10,561 8,577 8,306 9,355 9,520    8,822 

RP 17,537 20,826 19,344 10,508 12,505 9,402 6,693   14,150 
Source: own calculations. 
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Table D.18: Results of regional subgroup decomposition in 2020 for the Full_Lib scenario in 
comparison to Baseline results in 2020. 

Full_Lib / Baseline NR NS SH BA BW HE SL RP 

Average Income (€) 
0.37 0.33 0.29 0.24 0.30 0.17 0.03 0.57 

Relative to Baseline (% Contribution to Gini and Absolute Gini) 
NR NS SH BA BW HE SL RP SUM 

Within k,k 1.05 1.15 0.75 0.92 1.00 0.67 - 1.40  0.99 

          

Between k,h NR          0.78 

NS 0.20         0.56 

SH 0.00 0.00        0.35 

BA 1.50 0.74 0.55       0.96 

BW 0.67 0.50 0.40 0.20      0.64 

 HE 1.50 1.00 0.50 2.00 -     1.44 

 SL - - - - - -    - 

RP 0.33 0.17 0.00 5.00 - - -   1.29 

          

Overlapping k,h NR          1.08 

NS 1.23         1.28 

SH 1.33 1.10        1.21 

BA 0.92 1.23 1.17       1.01 

 BW 1.13 1.44 1.20 1.02      1.08 

 HE 0.83 1.00 1.00 0.76 0.86     0.84 

SL - - - 1.00 0.00 -    0.50 

RP 1.38 1.78 1.67 0.82 0.90 0.75 -   1.11 

            
Relative to Baseline (Absolute fractional Ginis) 

NR NS SH BA BW HE SL RP Average 
  

Within k,k 0.71 0.79 0.61 0.64 0.68 0.55 0.55 0.90 
          

Between k,h NR          0.56 

NS 0.15         0.39 

SH 0.10 0.05        0.26 

BA 0.95 0.51 0.36       0.65 

BW 0.54 0.37 0.28 0.17      0.45 

 HE 0.99 0.59 0.42 1.09 1.84     0.89 

 SL 1.36 0.80 0.58 2.32 6.37 7.22    1.44 

RP 0.26 0.07 0.03 3.53 5.55 47.79 46.42   0.85 

          
Overlapping k,h NR          0.75 

NS 0.88         0.90 

SH 0.87 0.80        0.85 

BA 0.64 0.85 0.80       0.70 

 BW 0.75 0.97 0.91 0.72      0.75 

 HE 0.56 0.76 0.69 0.56 0.56     0.58 

SL 0.47 0.67 0.58 0.44 0.44 0.44    0.47 

RP 0.94 1.30 1.29 0.56 0.59 0.43 0.34    0.76 

Source: own calculations. 
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Table D.19: Aggregate results of farm type decomposition (based on total household 
income). 

BL 50_DP No_DP No_PP Full_Lib 

 

Average income (€) 52,798 49,215 43,844 31,197 21,420 

 
    

RELATIV 

Gini 
0.47 0.496 0.54 0.608 0.861 

100% 100% 100% 100% 100% 

Gini-Within 
0.093 0.097 0.106 0.123 0.172 

20% 20% 20% 20% 20% 

Gini-Between 
0.16 0.18 0.196 0.077 0.16 

34% 36% 36% 13% 19% 

Overlapping 
0.21 0.22 0.239 0.408 0.529 

45% 45% 44% 67% 61% 

ABSOLUT 

Abs. Gini 
24,714 24,368 23,688 18,957 18,446 

100% 100% 100% 100% 100% 

Abs. Gini-Within 
4,890 4,795 4,632 3,832 3,677 

20% 20% 20% 20% 20% 

Abs. Gini-Between 
8,520 8,730 8,574 2,396 3,429 

34% 36% 36% 13% 19% 

Abs. Overlapping 
11,304 10,861 10,482 12,729 11,341 

45% 45% 44% 67% 61% 

 
     

O_Gradin  
0.711 0.702 0.699 0.901 0.849 

       
 Source: own calculations. 
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Table D.20: Aggregate results of regional subgroup decomposition (based on total 
household income). 

BL 50_DP No_DP No_PP Full_Lib 

 

Average income (€) 52,798 49,215 43,844 31,197 21,420 

 
    

RELATIV 

Gini 
0.468 0.495 0.54 0.608 0.861 

100% 100% 100% 100% 100% 

Gini-Within 
0.087 0.092 0.101 0.115 0.163 

19% 19% 19% 19% 19% 

Gini-Between 
0.102 0.109 0.116 0.08 0.098 

22% 22% 21% 13% 11% 

Overlapping 
0.279 0.294 0.323 0.413 0.601 

60% 59% 60% 68% 70% 

ABSOLUT 

Abs. Gini 
24,714 24,386 23,688 18,957 18,446 

100% 100% 100% 100% 100% 

Abs. Gini-Within 4,607 4,549 4,431 3,594 3,488 

19% 19% 19% 19% 19% 

Abs. Gini-Between 5,369 5,371 5,074 2,488 2,090 

22% 22% 21% 13% 11% 

Abs. Overlapping 14,738 14,465 14,183 12,875 12,868 

60% 59% 60% 68% 70% 

 
     

O_Gradin  
0.83 0.827 0.832 0.903 0.918 

       
 Source: own calculations. 
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