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Abstract 

Next generation sequencing is a driving force behind the identification of genes and 

alleles that are suspected to cause human genetic diseases. In silico tools are routinely 

used in the clinical everyday life to characterize unknown genotypes. However, these 

tools have a limited predictive accuracy and can only provide a first-line assessment. 

Especially un- or less studied genes require in every case predictive in vivo model 

systems that allow conclusions about disease associations. Classically, mice and 

zebrafish are utilized for such research, which concomitantly deepens the 

understanding of the involved developmental processes. In this collection of studies, 

the African clawed frog Xenopus laevis was used to explore and promote its suitability 

for the analysis of potential human disease genes, variants and their associated 

developmental processes. 

The first chapters covers potential candidate genes for primary ciliary dyskinesia 

(PCD), a condition that result in respiratory symptoms, misoriented visceral organs, 

also known as laterality defects, and other symptoms. Therefore, the orthologues of 

flagella associated protein 34 (CFAP43), cilia and flagella associated protein 157 

(CFAP157), cilia and flagella associated protein 206 (CFAP206) and family with 

sequence similarity 183 member B (FAM183B) were studied, which all most likely 

encode scaffolding proteins. These genes presented with distinct ciliary loss of function 

phenotypes despite all being broadly expressed in motile ciliated tissues. This 

strengthens a potential PCD link for the candidate genes and indicates that they are 

trapped in a synexpression group. 

The second chapter addresses if an actin based motor protein and a novel metzincin 

peptidase, encoded by myosin ID (MYO1D) and leishmanolysin like peptidase 2 
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(LMLN2)/tout-de-travers (TDT), respectively, are potentially causative for PCD 

independent laterality defects. Loss of function studies confirmed an involvement in 

the process of laterality determination for both genes. Myo1d interacts with the planar 

cell polarity pathway to polarize cilia of the left-right organizer (LRO), which generate 

the leftward fluid flow, the initial cue for asymmetric development. Tdt, in contrast, 

works downstream of flow and is required for its interpretation by sensor cells. It will 

be discussed that these results point to ancestral actomyosin dependent mode for 

symmetry breakage and to a proteolytic cleavage event that is only necessary for 

species with a fluid flow producing LRO. 

The third chapter deals with two candidates for neurodevelopmental disorders, namely 

hyaluronan mediated motility receptor (HMMR) and progesterone immunomodulatory 

binding factor 1 (PIBF1). Initial findings were verified that the loss of function 

phenotype of the microtubule binding protein Hmmr resembles a subtype of human 

holoprosencephaly. Further, variants of the centrosomal protein PIBF1 from a patient 

with Joubert syndrome were confirmed to be deleterious. 

These studies reflect the versatile use of Xenopus laevis as a model organism for the 

analysis of human disease genes, variants and the underlying developmental 

processes. 
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Zusammenfassung 

Next generation sequencing ist eine treibende Kraft hinter der Identifizierung von 

Genen und Allelen, die mutmaßlich humane Erbkrankheiten verursachen. Im 

klinischen Alltag werden routinemäßig in silico Methoden eingesetzt, um unbekannte 

Genotypen zu charakterisieren. Diese Methoden haben jedoch eine limitierte 

Vorhersagegenauigkeit und ermöglichen nur eine erste Beurteilung. Besonders 

spärlich oder nicht analysierte Gene erfordern in jedem Fall aussagekräftige in vivo 

Modellsysteme, die Schlüsse über etwaige Krankheitsassoziationen zulassen. 

Klassischer Weise werden für solche Forschungsbemühungen, die beiläufig auch das 

Verständnis der daran beteiligten Entwicklungsprozesse vertieft, Mäuse oder 

Zebrabärblinge verwendet. In dieser hier vorliegenden Studienkollektion wurde der 

Afrikanische Krallenfrosch Xenopus laevis verwendet, um dessen Eignung für die 

Analyse potentieller humaner Krankheitsgene, -genvarianten und deren assoziierten 

Entwicklungsprozesse zu ergründen und dies herauszustellen. 

Im ersten Kapitel werden Kandidatengene der primären ciliären Dyskinesie (PCD), 

eine Krankheit die sich in respiratorischen Symptomen, fehlorientierten viszeralen 

Organen, sogenannten Lateralitätsdefekte, und in weiteren Symptomen äußern kann, 

besprochen. Dafür wurden die Orthologe des flagella associated protein 34 (CFAP43), 

cilia and flagella associated protein 157 (CFAP157), cilia and flagella associated 

protein 206 (CFAP206) und family with sequence similarity 183 member B (FAM183B) 

untersucht, die vermutlich alle für Gerüstproteine codieren. Diese Gene wiesen 

verschiedenartige ciliäre Funktionsverlust-Phänotypen auf, obwohl sie alle in breitem 

Maße in motil-cilierten Geweben exprimiert waren. Dies untermauerte eine potentielle 

PCD Assoziation der Kandidatengene und impliziert, dass sie in einer 

Synexpressionsgruppe gefangen sind. 
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Das zweite Kapitel behandelt die Frage ob ein Aktin basierendes Motorprotein und 

eine neue Metzinkin Peptidase, jeweils von myosin ID (MYO1D) und leishmanolysin 

like peptidase 2 (LMLN2)/tout-de-travers (TDT) codiert, potentiell für PCD 

unabhängige Lateralitätsdefekte verantwortlich sein könnten. Funktionsverlust-

Experimente bestätigten eine Rolle im Prozess der Lateralitätsdeterminierung für 

beide Gene. Myo1d interagiert mit dem planaren Zellpolaritätsweg um die Cilien des 

Links-Rechts-Organisators (LRO) zu polarisieren, die wiederum einen linksgerichteten 

Flüssigkeitsstrom kreieren, der den initialen Reiz für die asymmetrische Entwicklung 

darstellt. Im Gegensatz dazu agiert Tdt stromabwärts des Flüssigkeitsstroms und wird 

für dessen Wahrnehmung durch Sensorzellen benötigt. Es wird diskutiert werden, 

dass diese Ergebnisse auf eine anzestralen Aktomyosin-abhängigen Mechanismus 

des Symmetriebruchs hindeuten und auf ein proteolytisches Spaltungsereignis, 

welches nur in Spezies mit einem Flüssigkeitsstrom-produzierenden LRO benötigt 

wird. 

Das dritte Kapitel befasst sich mit zwei Kandidaten für neurologische 

Entwicklungsstörungen, namentlich hyaluronan mediated motility receptor (HMMR) 

und progesterone immunomodulatory binding factor 1 (PIBF1). Hierbei konnten initiale 

Beobachtungen verifiziert werden, dass der Phänotyp nach Verlust des Mikrotubuli-

assoziierten Proteins Hmmr einem Subtyp der Holoprosenzephalie gleicht. Des 

Weiteren konnten Varianten des zentrosomalen Proteins PIBF1, von einem Patienten 

mit Joubert Syndrom, als schadhaft bestätigt werden.  

Diese Studien veranschaulichen den vielseitigen Nutzen von Xenopus laevis als 

Modellorganismus für die Analyse humaner Krankheitsgene, -genvarianten und deren 

zugrundeliegenden Entwicklungsprozessen. 
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Introduction 

Challenges for human genetic disease studies 

Human diseases are considered rare in the US if they affect less than 200 000 citizens, 

which currently corresponds to a prevalence of 6.1 / 10 000 or less, matching closely 

the EU definition with a cut-off at a prevalence of 5 / 10 000. Orphanet, the European 

reference database of rare diseases lists more than 6 000 disorders with unique 

identifiers, affecting between 3.5–5.9 % of the world’s population at any given time 

point, which equals 263–433 million individuals in total (Nguengang Wakap et al., 

2019). Approximately 70 % of these rare diseases have been linked to specific gene 

variants in the past decades. All of these cases are part of the fast-expanding group of 

so-called genetic diseases, which in addition include more frequently occurring 

conditions. 

Generally, genetic diseases can be referred to as being monogenic, with only one gene 

affected, or polygenic when they involve multiple genes. The underlying alterations of 

the genome arise spontaneously, like in the context of DNA replication, or can be 

induced by any number of DNA damaging agents, such as for example ionizing 

radiation. Single nucleotide variants, small insertions and deletions, commonly referred 

to as indels, affecting less than 50 nucleotides, or structural variants of 50 bases and 

beyond are continuously being identified. 

Next generation sequencing (NGS) is the driving force of this identification process, 

which is widely adopted in clinical diagnosis laboratories and displaced Sanger 

sequencing of single loci as the gold standard (Di Resta et al., 2018). Although the role 

of falling costs of NGS might be overestimated (Schwarze et al., 2018), transition from 
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whole exome sequencing to whole genome sequencing for diagnostic reasons will be 

applied on a broader scale in the near future. 

The limiting factor for profound diagnostics lays at the end of the high-throughput 

bioinformatics pipeline, were newly identified gene variants need to be assessed for 

their pathogenicity. Missense variants constitute the largest group of variants that are 

associated with monogenetic diseases (Ma et al., 2015). However, the interpretation 

of missense variants is an extremely challenging task. In silico prediction tools such as 

Sorting Intolerant From Tolerant (SIFT) (Vaser et al., 2016) or Polymorphism 

Phenotyping v2 (PolyPhen-2) (Adzhubei et al., 2010) are typically utilized to uncover 

deleterious missense variants and to discriminate them from benign ones, in 

accordance with the recommendations made by the American College of Medical 

Genetics and Genomics (ACMG) (Richards et al., 2015). These programs test amino 

acid substitutions based on single or multiple features such as sequence conservation, 

physico-chemical properties or structural elements (Niroula and Vihinen, 2016). As all 

available tools are limited in their predictive capacity, several programs or ensemble 

methods like Combined Annotation-Dependent Depletion (CADD) (Rentzsch et al., 

2019) or Rare Exome Variant Ensemble Learner (REVEL) (Ioannidis et al., 2016), 

which combine multiple algorithms, are commonly used. Although undeniably useful, 

a high variability in the recognition performance and high rates of false-positive hits 

have raised concerns about the reliability of such programs (Niroula and Vihinen, 

2019). Hence, clinical consequences should never exclusively rely on results gained 

from in silico methods. Rather, animal model systems are needed to assess genetic 

variants in an in vivo context. 
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The chronicle of Xenopus in research 

The African clawed frog Xenopus laevis has a long and well documented history in 

biological and biomedical research, as comprehensively reviewed in depth by John 

Gurdon and Nick Hopwood (Gurdon and Hopwood, 2000). In brief, Xenopus made its 

first appearance on the scientific landscape, at the time as Bufo laevis, with its 

description by François Daudin at the beginning of the 19th century (Daudin, 1802/03). 

In the following decades, Xenopus was occasionally used in comparative anatomical 

studies and in physiological research by the 1920s. The foundation for its widespread 

use as a laboratory animal was set by Lancelot Hogbens endocrinological studies 

around 1930, in which he demonstrated that injections of pituitary extracts induced 

ovulation in Xenopus females (Hogben et al., 1931). Harry Zwarenstein and Hillel 

Shapiro first reported its capacity as a biological pregnancy test, in which urine from 

pregnant women containing chorionic gonadotropin induced spawning only hours after 

injection into the dorsal lymph sac (Shapiro and Zwarenstein, 1934). The ease and 

reliability of this pregnancy test was superior to other assays at that time and led to the 

rapid establishment of laboratory colonies of Xenopus around the world. Hormone 

preparations of chorionic gonadotropin were already commercially available in the 

early 1930s, principally enabling developmental biologists to induce egg laying at will, 

granting access to large amounts of biological material and to overcome the seasonal 

character of amphibian embryological studies. However, it took until the 1950s that 

Xenopus was used to examine embryological problems and only in the 1960s it out-

competed other amphibian model systems based on the number of published studies 

per year. 

A vast number of scientific studies that made use of Xenopus contributed extensively 

to our current knowledge. Plenty of these studies discovered fundamental principles of 



Introduction 

11 
 

cellular and developmental processes in humans and non-human animals, which are 

also key for the understanding of distinct disease states. 

In 1962, John Gurdon reported his pioneer work on nuclear reprogramming for which 

he utilized Xenopus (Gurdon, 1962). By transferring nuclei from differentiated intestinal 

epithelial cells into enucleated oocytes, he created embryos, which developed into 

normal tadpoles, thereby demonstrating the totipotency of the nucleus and the 

reprogramming capacity of the egg. The first isolation of a eukaryotic gene was 

achieved by Max Birnstiel and colleagues, who published their results of the Xenopus 

DNA that includes the tracts for the ribosomal 18S and 28S RNA in 1966 (Birnstiel et 

al., 1966). The first eukaryotic transcription factor, namely general transcription factor 

IIIA (Gtf3a), was also isolated from Xenopus, as reported by David Engelke and 

colleagues in 1980 (Engelke et al., 1980). Andrew Murray and Marc Kirschner 

established in 1991, that the cell cycle progression is ultimately regulated via the level 

of cyclin B1 (Ccnb1), using an elegant in vitro system from Xenopus egg extracts 

(Murray and Kirschner, 1989). 

The above-mentioned historical studies are representative for many scientific ‘firsts’ 

that have been achieved with Xenopus. The potential of this model system, however, 

is far bigger, and it is especially well-suited for the assessment of human genetic 

disease alleles. 

 

The versatile use of Xenopus 

Xenopus as a model system historically meant Xenopus laevis for a long time, an 

allotetraploid species that emerged from a hybridization event between two diploid 

progenitors approximately 17–18 million years ago (Session et al., 2016). Since the 
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1990s, scientists also utilize the closely related diploid Xenopus tropicalis (Grainger, 

2012), which split from the progenitors of Xenopus laevis about 49 million years ago 

(Session et al., 2016). Marc Kirschner introduced this new species of the genus 

Xenopus for more convenient genetic work. Outbred Xenopus animals can be 

commercially obtained from multiple suppliers. Sequenced inbreed lines, the Xenopus 

laevis J strain and the Xenopus tropicalis Nigerian strain, are available to the 

community through the National Xenopus Resource, the European Xenopus Resource 

Centre and the National Bioresource Project of Japan. Both species vary only slightly 

with respect to husbandry conditions, with Xenopus tropicalis generally preferring 

warmer temperatures of 24–26 °C, in contrast to Xenopus laevis with its preference at 

18–20 °C. Their different temperature optima are also reflected by the shorter 

generation time of 5–8 month for Xenopus tropicalis versus 6–12 month for Xenopus 

laevis. However, free swimming pre-metamorphic tadpoles of both species are already 

convenient for most assays, as they develop their various organ systems, depending 

on temperature, in less than a week. As previously mentioned, large clutches of eggs 

are available at any time, which - when fertilized in vitro - give rise to hundreds of tightly 

synchronized embryos. Their large egg size with a diameter of approximately 1 mm for 

Xenopus laevis and 0.5 mm for Xenopus tropicalis make them ideally suited for all 

kinds of manipulations. 

Various well-established methods for altering gene expression, for example of disease 

candidate genes, exist and can be applied to both species via microinjections. Gene 

loss-of-function studies can be rapidly achieved via synthetic morpholino antisense 

oligomers (MOs) (Heasman et al., 2000) or via clustered regularly short palindromic 

repeats (CRISPR)/CRISPR-associated (Cas) systems for genome editing (Blitz et al., 

2013; Moreno-Mateos et al., 2017; Nakayama et al., 2013). 
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MOs are short-chained nucleic acid analogs usually consisting of about 18–30 subunits 

that exert their function through binding with high affinity to complementary RNA 

molecules. A steric blocking mechanism inhibits translation or splicing of the targeted 

mRNA, if directed to the start codon or to splice sites, respectively. The same principle 

also allows inhibition of other RNA species like miRNAs or lncRNAs (Moulton, 2016). 

Suboptimal MO doses can be used to mimic situations in which haploinsufficiency is 

presented or can reveal interactions, if more than one MO is applied. This knock-down 

method turned out to be highly useful, especially as RNA interference was never widely 

adopted by the Xenopus community, due to the lack of the RNA-induced silencing 

complex (RISC) associated nuclease argonaute RISC catalytic component 2 (Ago2) 

(Lund et al., 2011). 

Different CRISPR/Cas systems have dramatically simplified the way how gene knock-

outs can be achieved in Xenopus (Blitz et al., 2013; Moreno-Mateos et al., 2017; 

Nakayama et al., 2013), thereby replacing zinc finger nucleases and transcription 

activator-like effector nucleases (TALENs). The most commonly used and best-

implemented CRISPR/Cas system is CRISPR/Cas9 (Cong et al., 2013; Mali et al., 

2013). This dichotomous system consists of an engineered chimeric so-called single 

guide RNA (sgRNA) that mediates sequence specificity and directs the endonuclease 

Cas9 via complexing to the targeted genomic region. If a target sequence is identified, 

Cas9 cuts precisely within the recognition motif of the sgRNA leaving a DNA double-

strand break for repair. In early Xenopus embryos, the error-prone but fast responsive 

non-homologous end joining machinery for DNA double-strand break repair is favored 

over other repair pathways, which results in mutagenesis of the target locus via indels. 

The resulting F0 specimens are mosaic but can be directly analyzed due to the high 
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penetrance of the method, or can be raised and subsequently crossed to establish a 

defined knock-out. 

Besides its use for knock-out studies, the CRISPR/Cas9 system offers a novel way of 

generating precise knock-in lines (Aslan et al., 2017; Shi et al., 2015; Suzuki et al., 

2018), as an alternative to more random insertions via restriction enzyme mediated 

integration (Kroll and Amaya, 1996), phiC31 integrase (Allen and Weeks, 2005), I-SceI 

meganuclease (Fong et al., 2006) or transposons (Sinzelle et al., 2006). DNA base 

editing (Shi et al., 2019) suited for the introduction of all four transition mutations and 

the recently developed prime editing method (Anzalone et al., 2019), allowing the 

additional eight transversion mutations as well as defined small insertions or deletions, 

are also based on CRISPR/Cas9, but the latter has not yet been applied to Xenopus. 

Misexpression of genes of interest is also straightforward in Xenopus, as in vitro 

synthesized mRNAs are rapidly translated (Krieg and Melton, 1984). As an alternative 

to mRNA injections, the introduction and expression from plasmids (Bendig, 1981) or 

artificial chromosomes (Fish et al., 2012) is also feasible. These DNA constructs can 

additionally harbor cis-regulatory elements to achieve a defined spatiotemporal 

expression pattern. 

A precise cell lineage map of the 32-cell stage (Moody, 1987) makes it possible to 

apply all of the above-mentioned tools in a virtually tissue-specific manner, limiting the 

need for expensive and time consuming conditional methods. Unilateral manipulations, 

leaving one side of the embryo as an internal control, is an additional merit of the 

Xenopus system, since the position of the left-right body axis can be deduced from the 

pigment distribution and the cell size at the 4-cell stage already. 

The combination of the above-mentioned tools with the fast extra-corporeal 

development of Xenopus, which is an ancestral trait of amphibians, allows to dissect 
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and to tightly trace all processes from fertilization, via gastrulation and neurulation to 

organogenesis. This is of utmost importance, as genetic diseases usually affect these 

early developmental processes by which the later phenotype manifests itself. 

 

Xenopus genetic diseases models  

The above-mentioned tools have been applied to study a great variety of human 

genetic diseases in Xenopus. To reflect the possible impact of such work, recently 

published studies will be highlighted. 

Bruno Reversade and his team described a series of recessive variants of the Wnt 

signaling enhancer R-spondin 2 (RSPO2) in fetuses with tetra-amelia syndrome 

(Szenker-Ravi et al., 2018). Hallmark of this disease is the absence of all four limbs. 

By mutating rspo2 unilaterally via CRISPR/Cas9 in Xenopus tropicalis, the authors 

recapitulated the loss of both fore- and hindlimbs seen in tetra-amelia syndrome. An 

additional TALEN-mediated double loss of the direct interacting ubiquitin ligases ring 

finger protein 43 (rnf3) and zinc and ring finger 3 (znrf3) surprisingly resulted in 

supernumerary limbs. Hence, the authors proposed an antagonistic interaction of 

RSPO2 with RNF3 and ZNRF3, which helped to clarify the etiology of tetra-amelia 

syndrome. 

In a remarkable recent study, Yonglong Chen and colleagues impressively modeled 

Holt-Oram syndrome (HOS) as well as oculocutaneous albinism type 1A (OCA1A) in 

Xenopus tropicalis using base editing of T-box transcription factor 5 (tbx5) and 

tyrosinase (tyr), respectively (Shi et al., 2019). HOS is an autosomal dominant disease 

usually leading to cardiac and forelimb defects. Patients with OCA1A, which is 

inherited in an autosomal recessive manner, lack any pigmentation, experience 
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nystagmus and visual impairment. Introduction of so far uncharacterized missense 

variants from both TBX5 or TYR via base editor 3 in the Xenopus orthologues 

mimicked in each case the clinical presentation, with defective forelimbs and albinism. 

In the last and most recent case presented here, Mustafa Khokha and colleagues 

revisited variants of the endoplasmic reticulum (ER) membrane protein complex (EMC) 

component ER membrane protein complex subunit 1 (EMC1) from patients with a 

broad spectrum of birth defects, including congenital heart disease, craniofacial 

abnormalities and neurodevelopmental defects (Marquez et al., 2020). Functionally, 

the EMC acts as a transmembrane domain insertase for a subset of transmembrane 

proteins. MO or CRISPR/Cas9 based depletion of Ecm1 in Xenopus tropicalis 

recapitulated many aspects of the patients’ phenotypes, indicative of compromised 

neural crest cells (NCCs). Intriguingly, embryos displayed defective NCC development 

upon loss of ecm1. An unbiased proteomic approach identified several EMC-

dependent pathways, most prominently Wnt signaling, which turned out to be 

causative for the previously observed NCC phenotype. Hence, the authors used NCCs 

to test the potential disease causing EMC1 variants in rescue experiments, which 

revealed that most of them were indeed loss-of-function alleles. 

 

Aim of this work 

The functional studies presented hereafter were designed to address a complex 

consisting of uncharacterized or less studied potential human disease genes or 

variants and to deepen the understanding of the developmental processes in which 

they are involved. Three different parts cover primary ciliary dyskinesia (PCD), PCD 

independent laterality defects as well as neurodevelopmental disorders. 
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PCD is clinical condition caused by immotile or dyskinetic cilia, which can result in 

respiratory symptoms and misoriented visceral organs, commonly referred to as 

laterality defect, among other symptoms. The group of Achim Gossler identified 

potential PCD candidate genes in a murine target gene screen for the master regulator 

of motile cilia forkhead box J1 (Foxj1). A positive hit collection consisting of cilia and 

flagella associated protein 34 (Cfap43), cilia and flagella associated protein 157 

(Cfap157), cilia and flagella associated protein 206 (Cfap206) and family with 

sequence similarity 183 member B (Fam183b) were selected to be studied in a 

collaborative effort with the Gossler group. 

Two genes, myosin ID (MYO1D) and leishmanolysin like peptidase 2 (LMLN2)/tout-

de-travers (TDT) are potentially involved in PCD independent laterality defects and 

possess a remarkable evolutionary relevance. Ancestral deuterostomes establish 

laterality via a ciliary driven leftward fluid flow during neurulation. In contrast, the 

protostome Drosophila melanogaster uses a yet not fully understood mechanism that 

involves interaction of the MYO1D orthologue Myosin 31DF (Myo31DF) with the planar 

cell polarity (PCP) pathway on protein level. With respect to the instructive capacity of 

PCP signaling for the cilia orientation that directs the deuterostome leftward fluid flow, 

an evolutionary conserved laterality module could exist among bilaterians. However, 

within deuterostomes the leftward fluid flow was independently lost in two taxa along 

with a functional TDT orthologue, a gene that was recently identified by the group of 

Bruno Reversade to be mutated in patients with laterality defects. Therefore, analysis 

of myo1d and tdt together with the groups of Stéphane Noselli and Bruno Reversade, 

respectively, could not only reveal so far undiscovered pathomechanisms but also 

shield light on the evolution of laterality in bilaterians. 
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Candidates for neurodevelopmental disorders were studied with the Xenopus 

hyaluronan mediated motility receptor (hmmr) and the human progesterone 

immunomodulatory binding factor 1 (PIBF1). Findings by the group of Kerstin Feistel 

implicated that loss of hmmr resulted in embryonic forebrain defects, which may 

resemble human holoprosencephaly (HPE). Christina Evers group found potential 

deleterious variants of PIBF1 in a patient with Joubert syndrome (JS), which manifests 

as a typical set of mid- and hindbrain malformations. Further work with the groups of 

Kerstin Feistel and Christina Evers could deepen our understanding of the HPE 

etiology and will allow us to assess the pathogenicity of the novel PIBF1 variants, 

respectively. 
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CFAP157 is a murine downstream effector of FOXJ1 

that is specifically required for flagellum 

morphogenesis and sperm motility 
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The evolutionary conserved FOXJ1 target gene 

Fam183b is essential for motile cilia in Xenopus but 

dispensable for ciliary function 
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CFAP43 modulates ciliary beating in mouse and 

Xenopus 
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The FOXJ1 target Cfap206 is required for sperm 

motility, mucociliary clearance of the airways and 

brain development 
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Abstract 

Abnormal organ chirality and/or placement occurs with an incidence of roughly 2 per 

10 000 live births in humans. These so-called laterality defects are associated with 

severe health conditions that can already lead to intrauterine death. The group of Bruno 

Reversade identified loss-of-function mutations in a previously unannotated gene, 

which they termed tout-de-travers (TDT), in a cohort of patients with laterality defects. 

TDT encodes a conserved metzincin peptidase that is lost in deuterostomes without a 

fluid flow generating left-right organizer (LRO). This study confirms the laterality 

determining nature of TDT as Xenopus embryos phenocopied the human patients if 

the orthologues gene was depleted. Subsequent analysis revealed that Tdt acts 

downstream of the symmetry breaking leftward fluid flow and is required for the 

induction of the unilateral Nodal signaling cascade, which is instructive for the 

asymmetric organogenesis. 

 

 

 

 

 

 

 

 

 



Original research chapter II: PCD independent laterality defects 

121 
 

Introduction 

Human laterality defects are rare occurring conditions in which the normal arrangement 

of the thoracoabdominal organs along the left-right axis, called situs solitus (SS), is 

disturbed. The International Working Group for Mapping and Coding of Nomenclatures 

for Paediatric and Congenital Heart Disease proposed a clinical definition that 

distinguishes two subcategories, namely situs inversus (SI) and heterotaxy (Jacobs et 

al., 2007). SI describes a complete mirror-imaged organ orientation relative to SS, 

which by itself is often but not necessarily associated with health constraints. Other 

situs variations are collectively referred to as heterotaxy and present severe disease 

states. However, there is disagreement in the field over the plausibility to separate SI 

from the category heterotaxy as the Greek-derived word heterotaxy translates literally 

as ‘other arrangement’ (Peeters and Devriendt, 2006). Differences in the definition and 

methodology make it difficult to compare epidemiological studies of laterality defects 

directly. A retrospective 12 years spanning, from 2002 to 2014, population-based study 

of live-born infants diagnosed with syndromic and non-syndromic laterality defects 

from Southern Nevada calculated a combined prevalence of 1.9 per 10 000 live births 

(Evans et al., 2015). The prevalence for heterotaxy was 1.3 per 10 000 live births 

versus 0.6 per 10 000 for SI (Evans et al., 2015). Severe forms of congenital heart 

disease, which require surgical intervention, are frequent comorbidities of situs 

anomalies and had a penetrance of more than 50 % (Evans et al., 2015). 

The diverse group of syndromic laterality defects include various ciliopathies like 

polycystic kidney disease, Bardet-Biedl syndrome and most prominently primary ciliary 

dyskinesia (PCD) (Deng et al., 2014). An involvement of cilia in the process of laterality 

determination was first proposed by Björn Afzelius, who described ‘a human syndrome 

caused by immotile cilia’ that can lead to a complete Kartagener’s triad of chronic 
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sinusitis, bronchiectasis and SI (Afzelius, 1977; Kartagener, 1933). This syndrome was 

later termed PCD (Sleigh, 1981) for which a large scale European survey concluded a 

prevalence of diagnosed cases in 5 to 14 year olds ranging from 1 to 2 per 10 000 

(Kuehni et al., 2010). Laterality defects occur in affected individuals as predicted by 

Björn Afzelius in an almost random manner with a prevalence of 6.3 % for heterotaxy, 

47.7 % for SI and 46.0 % for SS (Kennedy et al., 2007). Since then, a central and 

ancestral role of cilia during deuterostome symmetry breakage was proposed and 

systematically unraveled in vertebrate model systems. 

The specification of the vertebrate left-right axis, in its most reduced form, relies on the 

action of a ciliated epithelium, called left-right organizer (LRO), which arises in the early 

embryo at the posterior notochord and varies species-dependent in shape. LRO 

precursor cells are collectively specified by the transcription factor and master 

regulator of motile cilia Forkhead box J1 (Foxj1) (Stubbs et al., 2008). However, the 

mature LRO is composed of two distinct types of monociliated cells (McGrath et al., 

2003). Lateral LRO cells project non-polarized (Schweickert et al., 2007), immotile 

sensory cilia (Yoshiba et al., 2012) and express a defined set of morphogenes namely 

an orthologue of the transforming growth factor beta (TGF-β) superfamily member 

nodal homolog 1 (nodal1) (Collignon et al., 1996; Lowe et al., 1996) as well as its 

inhibitor DAN domain BMP antagonist family member 5 (dand5) (Pearce et al., 1999). 

Cilia of the central LRO cells are motile, posteriorly polarized (Okada et al., 2005) by 

the planar cell polarity pathway (Hashimoto et al., 2010) and rotate in a 

counterclockwise fashion, thereby generating a transient leftward fluid flow over the 

LRO epithelium (Nonaka et al., 1998). This fluid flow represents the symmetry-

breaking stimulus (Schweickert et al., 2007), which is believed to be sensed by the 

sensory cilia of the lateral LRO cells (Yoshiba et al., 2012). Flow sensing most likely 



Original research chapter II: PCD independent laterality defects 

123 
 

involves a heteromeric ciliary sensor complex consisting of the multi-pass 

transmembrane proteins Polycystin 1 like 1, transient receptor potential channel 

interacting (Pkd1l1) (Field et al., 2011; Kamura et al., 2011) and Polycystin 2, transient 

receptor potential cation channel (Pkd2) (Yoshiba et al., 2012), that form a cation-

permeable channel. Although the precise nature of the Pkd1l1-Pkd2 sensor complex 

activation and action remains enigmatic, dand5 gets posttranscriptionally 

downregulated (Nakamura et al., 2012) in the left-sided sensor cells, as a response 

(Yoshiba et al., 2012). dand5 downregulation was recently shown to be BicC family 

RNA binding protein 1 (Bicc1) dependent (Minegishi et al., 2020) and leads ultimately 

to the release of Nodal1 on the left side of the LRO. This release of repression mode 

for unilateral Nodal1 activation consecutively allows its long-range transfer through the 

extracellular matrix to the left lateral plate mesoderm (LPM) (Oki et al., 2007). There, 

Nodal1 initiates the so-called Nodal signaling cascade, which involves its self-induction 

(Levin et al., 1995; Saijoh et al., 2000), activation of its feedback-inhibitor and TGF-β 

superfamily member left-right determination factor (lefty) (Meno et al., 1996; Saijoh et 

al., 2000) as well as a specific isoform of the transcription factor paired like 

homeodomain 2 (pitx2) (Ryan et al., 1998; Schweickert et al., 2000). Lefty limits Nodal 

signaling spatio-temporally, whereas Pitx2 mediates and orchestrates the asymmetric 

organogenesis. 

Epidemiological data for cilia independent genetic laterality defects are missing but 

analysis of the underlying genes holds great potential to deepen our current 

understanding of vertebrate laterality determination and to reveal previously unknown 

processes. 

Bruno Reversade’s group identified one such factor, a formerly unannotated gene 

encoding a highly conserved peptidase, which was found to be mutated in 14 
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consanguineous families with non-syndromic laterality defects. They termed this 

overlooked human gene tout-de-travers (TDT), French for ‘everything inverted’. 

According to the MEROPS classification system for peptidases, TDT belongs in the 

subclan of metzincins MA(M) to the M8 family that encompasses GP63, also known 

as leishmanolysin, and its homologues (Rawlings et al., 2018). MA(M) subclan 

members are unified by the presence of the non-exclusive MA clan feature, a HEXXH 

motif, in combination with a methionine-turn (Met-turn) (Bode et al., 1993; Rawlings et 

al., 2018). The Glutamic acid of the HEXXH motif exerts catalytic function whereas the 

two histidins together with a more C-terminal histidine, glutamic or aspartic acid serve 

as Zn2+ ligands (Matthews et al., 1972; Rawlings et al., 2018). The Met-turn is a 

structural element in direct C-terminal proximity to the HEXXH motif (Bode et al., 1993). 

GP63, the prototype M8 family peptidase, was identified as the major surface protein 

of Leishmania promastigotes (Lepay et al., 1983), the infective stage of this dimorphic 

protozoan parasite that causes leishmaniasis (Sunter and Gull, 2017). Flagellate 

promastigotes can be transmitted by sandflies to humans, where they invade 

phagocytic cells, typically macrophages, develop into aflagellate amastigotes, multiply 

by binary fission, break down their host cell and get phagocytosed again (Sunter and 

Gull, 2017). The Leishmania life cycle is closed with ingestion of infected cells by 

sandflies, allowing the amastigotes to develop into promastigotes in the digestive tract 

followed by two additional replication events, separated by the migration to the 

proboscis (Sunter and Gull, 2017). Virulence of Leishmania centrally depends on 

GP63, since it facilitates tissue invasion by degrading extra cellular matrix proteins 

(Mcgwire et al., 2003), protects from complement mediated lysis (Brittingham et al., 

1995), enhances phagocytic uptake (Mosser and Edelson, 1985) and modulates 

massively the host cell physiology (Isnard et al., 2012). GP63 is synthesized as 
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preproprotein and appears to be membrane-bound, via either a 

glycosylphosphatidylinositol (GPI) anchor (Etges et al., 1986) or a potential 

transmembrane domain (Ramamoorthy et al., 1992). Additionally, GP63 can be 

directly secreted into the extracellular environment of the parasite (McGwire et al., 

2002) or is released on exosomes (Marshall et al., 2018). 

Homologues of GP63 exist in all three domains of life and a duplication event at the 

base of Deuterostomia generated leishmanolysin like peptidase (LMLN) and TDT, 

meanwhile annotated as leishmanolysin like peptidase 2 (LMLN2) in the human 

genome. 

Vertebrate LMLN and the Drosophila homologue Invadolysin were studied in some 

detail. Localization-wise, metazoan LMLN, which generally seems not to be GPI-

anchored, was found at the leading edge of migrating cells, at the surface of lipid 

droplets, to be directly secreted or released on vesicles. Functionally, LMLN was 

described to be involved in cell migration, mitotic progression (McHugh et al., 2004), 

normal mitochondria physiology and lipid storage (Cara et al., 2013). 

Contrary to that, LMLN2/TDT function has never been assessed before. Therefore, 

this collaborative study was destined to dissect the role of TDT during laterality 

determination in the African clawed frog Xenopus laevis in parallel with the Reversade 

group who utilize the zebrafish Danio rerio for the same purpose.  
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Results 

In silico identification and analysis of Xenopus tdt on DNA and 

protein level 

In search of Xenopus tdt, a Translated Basic Local Alignment Search Tool Nucleotide 

(TBLASTN) query, with the 733 long amino acid sequence of human TDT, identified 

two cDNAs. By sequence similarity, the records with the accession numbers 

XM_018235608 and XM_018259585 were attributed to encode for the 667 amino 

acids long Lmln and for the 720 amino acids long Tdt, respectively. Both cDNA entries 

based on gene models, which were predicted by Gnomon, the National Center for 

Biotechnology Information (NCBI) eukaryotic gene prediction tool. The identity of 

Xenopus tdt was further confirmed, as the gene arrangement between the 

corresponding loci on the human chromosome 14 and chromosome 1L of Xenopus, 

was found to be largely conserved. 

Further, the MEROPS database entry MER0180031 for human TDT allowed the 

annotation of the catalytic site (CS) residues and of the conserved Met-turn 

methionine, for the provisional Xenopus Tdt (Figure 1A). Analysis of the Tdt amino acid 

sequence via SignalP-5.0, PredGPI and TMHMM predicted a N-terminal signal peptide 

(SP), absence of an GPI-anchor and a C-terminal transmembrane domain (TM), 

respectively. 

 

tdt is alternatively spliced and expressed in LRO precursor cells 

In order to gain an entry point for in vivo experiments that could shed light on the 

physiological function of TDT in the context of laterality determination, a spatiotemporal 
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expression analysis of Xenopus tdt mRNA was required. Primers were designed to 

amplify full-length (FL) tdt, for cloning and subsequent synthetization of an antisense 

RNA in situ hybridization (ISH) probe. RT-PCR was performed on cDNAs from 

representative stages, covering the first week of Xenopus development. 

The cloning process disclosed alternative splicing of the 15 tdt exons (Figure 1A). In 

total, 12 distinct transcript variants (v1–12) were identified, including the FL isoform 

(v1), from 39 positive samples. Interestingly, exons 3–8 and exon 11 used alternative 

splice donor or acceptor sites, varying only between plus or minus one or two bases. 

Usage of these alternative splice sites either destroyed the normal reading frame (v2–

4 & v8–11) or preserved it (v6 & v7). Single or multiple exon skipping events occurred 

in nine variants (v4–12), whereas intron retention was only seen in one transcript (v7). 

Of note, the CS, encoded by exons 6–8, is only present in four isoforms (v1, v3, v6 & 

v7). 

The whole mount RNA ISH with a tdt antisense probe (Figure 1B) detected weak 

expression in the animal hemisphere during cleavage stages. Strong zygotic tdt 

expression started during gastrulation between stage 10.5 and 11 in cells of the 

involuting marginal zone (IMZ), along a dorsoventral gradient with strongest 

expression on the dorsal side. Dorsal IMZ cells include the LRO precursors, which are 

internalized during gastrulation with the endo- and mesodermal cell mass. tdt 

expression remained during gastrulation in the blastoporal field. Early neurulae of 

stage 14 showed strong tdt expression in cells of the circumblastoporal collar (CBC), 

a structure that all cells pass as they enter the LRO. Cellular transition from the CBC 

into the LRO is accompanied by a damped tdt signal. Another strong tdt expression 

domain was temporarily established in the ventral blood islands (VBI) of early tailbud 

stages, which peaked around stage 27. Additionally, these embryos showed weak tdt 
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staining throughout the anterior region, limited to non-endodermal tissues in more 

posterior regions. 

Taken together, transcripts in the LRO and in its precursor cells point to a conserved 

function of tdt during laterality determination. 

 

Tdt localizes to vesicular structures 

Presence of an N-terminal signal peptide as well as a C-terminal transmembrane 

domain, indicated that Tdt may localizes to the plasma membrane, a finding also 

predicted by DeepLoc-1.0. Evaluation of the subcellular Tdt localization failed with two 

custom made antibodies, which were provided by the Reversade group (not shown). 

Hence, FL tdt was subcloned in an expression vector, with both an N-terminal HA tag 

inserted behind the cleavage site of the SP and an Myc tag at the C-terminus. This 

bivalent tagging approach allowed visualization of the subcellular localization of Tdt 

and identification of potential protein cleavage events. The DNA construct was 

introduced into the Xenopus LRO lineage and the tagged Tdt was detected via 

immunofluorescence with antibodies directed against the HA and Myc epitopes (Figure 

1C). In relation to the cell borders, marked by phalloidin based F-actin fluorescence 

staining, Tdt appeared not to be membrane bound, but to localize to vesicular 

structures with an apical enrichment in LRO cells. Tdt foci just above the apical F-actin 

may indicated vesicular release. Unequivocal cleavage of Tdt was not observed, 

although an offset between the N- and C-terminal signals was constantly seen. 
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Figure 1: Tdt transcripts of the Metzinkin Tdt are LRO associated  

(A) The predicted Tdt domain structure is altered due to alternative splicing and indicates localization of 

the FL protein to the plasma membrane. (B) Pronounced tdt expression started during gastrulation and 

was associated with LRO precursor cells in the IMZ. These cells translocate over the dorsal lip (DL) into 

the archenteron roof. Early neurulae limit most tdt expression to the CBC, which fades into the definitive 

LRO. (C) Misexpression of a double-tagged FL Tdt in LRO cells showed apically enriched vesicular 

localization of the protein. 

 

 

 



Original research chapter II: PCD independent laterality defects 

130 
 

Depletion of Tdt leads to laterality defects 

To test if Tdt function is causally linked to laterality determination in Xenopus, Tdt was 

depleted using a splice blocking Morpholino oligomere (SBMO), targeting the splice 

donor site of tdt exon 1. The tdt SBMO was bilaterally injected against the standard 

control Morpolino oligomere (SCMO) into the LRO lineage of 4-cell embryos. Splice 

blocking of tdt, resulting in mRNA decay, was confirmed in pooled stage 14 embryos 

via RT-PCR, with intron 1 spanning primers (Figure 2A). 

The tdt loss-of-function (LOF) phenotype was evaluated in tadpole embryos of 

stage 45, based on heart, gallbladder and intestine orientation (Figure 2B). tdt 

morphant embryos phenocopied, with high penetrance, the situs defects seen in 

humans harboring deleterious TDT variants, thereby confirming an involvement of TDT 

during laterality development. 

However, heterologous rescue experiments failed with human or zebrafish wild type 

(WT) TDT. Likewise, bilateral misexpression of either the WT or catalytic dead (CD) 

mutant constructs did not induce laterality defects in a significant manner (not shown). 

Therefore, the Clustered Regularly Interspaced Short Palindromic Repeats 

(CRISPR)/CRISPR-associated protein 9 (Cas9) system was utilized to verify the LOF 

phenotype by disrupting tdt on genome level. A Cas9 RNP (CRNP), made with a single 

guide RNA (sgRNA) targeting the splice acceptor site of tdt exon 4, was injected at the 

1-cell stage. Mutagenesis of the tdt locus was confirmed via direct sequencing of PCR 

products, from genomic DNA of pooled stage 45 embryos, and subsequent Inference 

of CRISPR Edits (ICE) v2 analysis (Figure 2C). DNA species with deletions of the 

splice site along with the proximal part of tdt exon 4, dominated in tdt crispants. 
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Like tdt morphants, the crispants showed highly penetrant laterality defects at stage 

45, which validated the previous results (Figure 2D). Moreover, unilateral injections of 

the tdt CRNP into dorsal blastomeres at the 4-cell stage, revealed a strict left sided 

requirement for Tdt during symmetry breakage (Figure 2E). 

 

Tdt acts upstream of the Nodal signaling cascade 

Tracing down the cause for the tdt LOF phenotype started with an expression analysis 

via RNA ISH of the most upstream asymmetrically expressed gene pitx2 (Figure 2F). 

In most cases, tdt crispants failed to induce left-sided pitx2 expression in the LPM. 

Absence of pitx2 is usually accompanied and a result of impaired Nodal signaling. 

Consistent with this assumption, as judged by a nodal1 RNA ISH, left-sided activation 

of nodal1 in the LPM was perturbed in tdt crispants (Figure 2G). Compromised 

induction of the unilateral Nodal signaling cascade can be the result of a disturbed 

LRO, which may fails to generate or interpret the leftward fluid flow. A Tdt function, 

situated in such a way, would be in line with its early LRO associated expression 

pattern. 
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Figure 2: Tdt is required for laterality development in Xenopus upstream of the Nodal signaling 

cascade 

(A) Introduction of tdt SBMO depleted tdt transcripts. (B) tdt morphants show SI and heterotaxia, thereby 

recapitulating the human laterality phenotype. (C) tdt genome editing was effectively deleted the splice 

acceptor site and the proximal part of exon 4. (D) tdt crispants phenocopy the tdt morphants and (E) 

unilateral tdt depletion revealed that Tdt is only required on the left side. (F) pitx2 and (G) nodal1 

expression analysis of tdt crispants showed absence of the Nodal signaling cascade. 
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Normal LRO development is Tdt dependent 

A potential tdt LOF effect on LRO morphology was assessed via negative labeling of 

stage 17 LRO cells with a RNA ISH for the pan-endodermal marker SRY-box 17 alpha 

(sox17a) in combination with a Hoechst fluorescence staining of DNA to visualize cell 

nuclei. Overall, tdt crispants displayed smaller LROs, using the most peripheral sox17a 

negative nuclei as reference points for size measurements (Figure 3A). Additionally, 

counting of all sox17a negative LRO nuclei, from the most anterior sensor cell to the 

most posterior CBC cell, showed that Tdt depleted embryos possess less LRO nuclei, 

hence less LRO cells (Figure 3B). 

Cell size, cilia length as well as posterior cilia polarization are cellular parameters, 

which are critical for the central LRO cells to produce a robust and directed leftward 

fluid flow. These parameters were analyzed in a quadratic 100k µm² area of stage 17 

LROs by an immunofluorescence for acetylated Tubulin alpha 4b (Tuba4b) along with 

a fluorescent phalloidin F-actin staining to label cilia and cell borders, respectively 

(Figure 3C). However, non of the three parameters were significantly altered in tdt 

crispants. 

Accordingly, a semi-automated in silico analysis of the leftward fluid flow, monitored 

between stage 16 and 18 via fluorescent microspheres, showed no alterations of flow 

directionality and only a mild reduction of the median flow speed in tdt crispants (Figure 

3D). As flow speed was still in WT range, leftward fluid flow was interpreted to be 

mechanistically sufficient for symmetry breakage in these embryos. 

Lateral LRO cells perceive, process and implement the information from the leftward 

fluid flow. Therefore, these LRO cells were analyzed, post-flow at stage 19, by a RNA 

ISH for altered expression of their morphogenetic effectors nodal1 (Figure 3E) and 
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dand5 (Figure 3F) after tdt LOF. Both genes were detectably expressed in tdt crispants, 

but an in silico quantification of the domain sizes via brightness thresholding revealed 

a marked reduction in each case. Remarkably, this reduction is also reflected by an 

overall less space-consuming LRO sensor cell population (Figure 3C). 

 

Figure 3: LRO sensor cell are disturbed in tdt depleted embryos 

(A) LRO size as well as (B) LRO nuclei count was reduced in tdt genome edited embryos but (C) the 

flow determining cellular parameters, namely, cilia length, cell size and cilia polarization, were not 

affected. (D) Leftward fluid flow speed but not directionality was mildly affected but still occurred in WT 

range. (E) nodal1 and (F) dand5 mRNA expression was damped in the LRO sensor cells of tdt crispants. 
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Tdt is required for flow sensing upstream of Pkd2 

Since dand5 downregulation on mRNA level is a direct readout of the leftward fluid 

flow and a crucial event for the left-sided release of Nodal1, flow response was 

evaluated by size comparison of the left versus right dand5 domain in the same 

embryos as analyzed before (Figure 4A). Interestingly, tdt crispants failed to attenuate 

dand5 in the left lateral LRO cells, thus failed to respond to the leftward fluid flow. 

Disturbed dand5 repression could explain the absence of the Nodal signaling cascade, 

if all downstream events regarding Nodal1, namely expression, secretion, transfer to 

the LPM and perception, would be independent of Tdt. In this case, artificial removal 

of the remaining Dand5 should be competent to rescue the Tdt LOF phenotype. 

Indeed, pitx2 expression was restored in the left LPM by targeting a translation blocking 

Morpholino oligomere (TBMO) directed against dand5 to the left side of the LRO in 4-

cell tdt crispants (Figure 4B). 

The information mediated by the leftward fluid flow is still of unknown nature. In 

contrast, requirement of a sensor complex consisting of Pkd1l1 and Pkd2 that form a 

cation-permeable channel, which may selectively allows Ca2+ to enter the cilium of a 

sensor cells, is well proven. To test if Tdt acts up- or downstream of the sensor 

complex, a pharmacological bypassing or activation approach of Pkd2 was pursued. 

A2318, a ionophore for bivalent cations, and triptolide, a Pkd2 agonist, were injected 

in a wide range of doses into the archenteron of stage 16 embryos. Curiously, only 

triptolide was able to induce situs defects, as expected for a scenario of bilateral sensor 

bypassing or activation (not shown). In a preliminary experiment (Figure 4C) triptolide 

moderately activated pitx2 in a bilateral fashion. However, if injected into the 

archenteron of tdt crispants, triptolide induced in the majority of embryos bilateral pitx2. 

This indicates that Tdt acts upstream of Pkd2. 
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Figure 4: tdt is required for interpretation of the leftward fluid flow 

(A) Evaluation of the left versus right dand5 domain showed absence of flow dependent downregulation 

on the left side. (B) dand5 TBMO injected to the left side of tdt crispants rescued the Nodal signaling 

cascade. (C) Pharmacological activation of the sensor complex component Pkd2 with triptolide, injected 

into the archenteron cavity, was able to induce the Nodal signaling cascade in absence of Tdt. 

 

 

 

 

 

 



Original research chapter II: PCD independent laterality defects 

137 
 

Discussion 

The inner, left-right asymmetric body plan of an otherwise symmetric organism is an 

ancestral trait that is not exclusive to vertebrates. Asymmetric gene expression is key 

for the development of structural and/or functional chiral organs. Further, it allows a 

defined asymmetric organ arrangement, which perfectly compartmentalizes the space 

of the body cavity. Consequently, organisms with a higher level of complexity evolved. 

However, if laterality development is disturbed in humans, life threatening health 

conditions or even intrauterine death occur, especially if the heart function is 

compromised (Fesslova et al., 2019). Forward genetic studies already identified a 

variety of human laterality disease genes and variants. 

TDT, the novel peptidase of the metzincin subclan, is one such factor that was found 

to be mutated in a cohort of patients with SI and heterotaxia. The Reversade group not 

only identified this gene but also noticed that functional orthologues are specifically 

missing in the genomes of sauropsids and cetartiodactyls. Organisms of these two 

taxons have in common that they apparently overcame the deuterostome fluid flow 

related mode of symmetry breakage (Chang et al., 2014; Kajikawa et al., 2020). This 

is in line with the results of this study, showing Tdt function in context of Xenopus 

leftward fluid flow. Like Dynein, axonemal, heavy chain 9 (Dnah9), which drives LRO 

cilia movement and thereby produces the leftward fluid flow (Vick et al., 2009), Tdt is 

only required on the left side of the LRO. More specifically, as the fluid flow was 

unaffected in the Tdt LOF, normal Tdt function is considered to be relevant in a hub 

situated downstream of flow at the level of normal LRO sensor cell physiology. This 

rather unsharp hierarchical placement of Tdt is due to the findings that it impacts on 

both LRO sensor cell development and action. Identification of in vivo Tdt substrates 

as well as a functional analysis of the tdt splice variants will be insightful. Currently, 
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three distinct but not mutual exclusive scenarios for Tdt action in the process of 

laterality determination are plausible and discussed below. 

In the first scenario, Tdt is needed to establish and/or retain a population of LRO sensor 

cells with apical contact to the archenteron cavity, a prerequisite to perceive the 

information of the leftward fluid flow. This scenario is based on the marked reduction 

of the sensor cell domain and absence of the flow-dependent dand5 regulation in tdt 

crispants. It is unclear but very likely that thresholds for the cell number and/or the 

special expansion of this cell population exist to grant robust flow responsiveness. 

Fibroblast Growth Factor (FGF) signaling is the major positive regulator of the LRO 

sensor cells (Schneider et al., 2019) and interactions with peptidases, serving as 

competence factors, are described (Hou et al., 2007; Sohr et al., 2019). Additionally, 

the sensor cell precursors are sensitive to pharmacological inhibition of FGF signaling 

(Schneider et al., 2019) in a timeframe that closes as tdt expression starts during 

gastrulation. As inhibition of FGF signaling is capable to fully eliminate the LRO sensor 

cells, independently of apoptosis or attenuated proliferation (Schneider et al., 2019), it 

remains to be tested if Tdt acts as a downstream effector. 

Alternatively, Tdt may regulates LRO sensor cell ingression, a process that has never 

been functionally analyzed but is known to be completed at the end of neurulation 

(Shook et al., 2004). Sensor cells ingress as bottle cells into the presumptive somites 

and draw as postulated by Shook and colleagues the lateral endodermal cells 

passively towards the midline (Shook et al., 2004). As dand5 downregulation is only 

detectable in the anterior LRO sensor cells, premature ingression could spatio-

temporally prevent sensing of the leftward fluid flow. 

In the second scenario, Tdt regulates flow-dependently the sensor complex component 

Pkd1l1 to elevate or eliminate its inhibitory function on Pkd2. This setting is 
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hypothesized with respect to the loss of flow responsiveness in tdt crispants and the 

preliminary finding that the Nodal signaling cascade of these embryos can be rescued 

by the Pkd2 agonist triptolide. However, as the right side of these embryos respond to 

triptolide as well, one has to accept the bilateral induction as a causality of the 

omnilateral triptolide administration. Moreover, the relative low efficiency of triptolide to 

induce bilateral Nodal signaling in WT versus tdt crispant embryos indicates the 

presence of a Pkd2 inhibitor in the normal state. Consistently, an epistasis analysis in 

the mouse model revealed that PKD1L1 acts as an upstream genetic repressor of 

PKD2 in the context of laterality determination (Grimes et al., 2016). PKD2 mutant mice 

fail to activate the Nodal signaling cascade, whereas PKD1L1 mutants activate it 

bilaterally and the double mutants resemble the PKD2 phenotype (Grimes et al., 2016). 

PKD1L1 co-localizes with PKD2 on sensory cilia and physical interaction is described 

(Grimes et al., 2016; Kamura et al., 2011), where Pkd1l1 may analogously to 

Polycystin 1, transient receptor potential channel interacting (PKD1) participates as 

pore-forming channel subunit in a heterotetramere with a PKD1L1/PKD2 stoichiometry 

of 1 to 3 (Su et al., 2018). Further, PKD1L1 responds to artificial flow-induced shear 

stress (Grimes et al., 2016) and proteolytic cleavage upon mechanical stimulus occurs 

in the related PKD1 (Chauvet et al., 2004). Therefore, Tdt may binds to the sensor 

complex via Pkd1l1, amplifies Pkd1l1 repressive capacity for Pkd2 and finally 

inactivates Pkd1l1 in response to flow via proteolytic cleavage. 

In the third and last scenario, Tdt directly degrades Dand5 downstream of the leftward 

fluid flow to facilitate the unilateral Nodal signaling cascade. Considering the fatal 

outcome on organism level if correct symmetry breakage is disturbed (Fesslova et al., 

2019), systemic robustness is needed. Therefore, it would be plausible if Dand5 is 

produced and released in excess to render abnormal Nodal signaling out, as recently 
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proposed by Martin Blum (personal communication). Within this conceptual framework, 

flow mediated Dand5 repression on mRNA level could be insufficient to subsequently 

allow an imminent release of Nodal1. Tdt dependent proteolysis of Dand5 in response 

to the leftward fluid flow could elegantly resolve this issue. 

 

Figure 5: Proposed models for Tdt dependent laterality determination 

(A) Tdt allows peptidase dependent FGF signaling to positively regulate the LRO sensor cell fate. (B) 

Premature ingression of the LRO sensor cells, which would ablate their sensory function, is prevented 

by Tdt. (C) In absence of flow, Tdt increases the potency of Pkd1l1 to repress Pkd2. Flow activated Tdt 

cleaves Pkd1l1, leading to a release of Pkd2 repression. Active Pkd2 inhibits Dand5 on mRNA level, 

which in turn leads to a release of Nodal1 repression and starts the Nodal signaling cascade. (D) Flow 

dependent activation of Tdt leads to direct degradation of Dand5 on protein level. 

 

Especially the last two scenarios require a tightly controlled flow mediated activation 

of Tdt. The absence of any prominent phenotype upon heterologous misexpression of 

either human or zebrafish TDT in Xenopus embryos is fully in line with this assumption. 

It will be insightful to study if the cis-acting autocatalytic cysteine switch mechanism of 

GP63 activation (Macdonald et al., 1995) applies for Tdt as well and if it is triggered by 

the leftward fluid flow. 
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Material and Methods 

Experimental animals  

Adult Xenopus laevis frogs were purchased from Nasco and treated in accordance 

with the German Animal Welfare Act. Xenopus females were primed for spawning by 

injecting 50 units human chorionic gonadotropin (CG, Merck), approximately 3–6 days 

before embryos were needed. Ovulation was induced 12 hours after injecting further 

300–600 units human CG. Xenopus males were sacrificed and testis were isolated to 

obtain sperms for subsequent in vitro fertilization of the oocytes. 

 

Microinjections 

Intracytoplasmic injections of 4 or 8 nl were performed at the 1- or 4-cell stage using 

the following reagents and doses: 2 pmol SCMO (Gene Tools, 5'-

CCTCTTACCTCAGTTACAATTTATA-3'), 2 pmol tdt SBMO (Gene Tools, 5'-

GAATGAAATGCTCACCTGAAAGTGT-3'), 0.75 pmol dand5 TBMO (Gene Tools, 5'-

TGGTGGCCTGGAACAGCAGCATGTC-3'), 200 pg tdt sgRNA (5'-

GGGGAAGTCAGGGATCTAGG-3') plus 1 ng Streptococcus pyogenes Cas9 with NLS 

(PNA Bio), 200-800 pg mRNA encoding C-terminal PC tagged human WT or catalytic 

dead TDT, 200-800 pg mRNA encoding untagged zebrafish WT or catalytic dead Tdt 

as well as 16 pg pCS2+ harboring the coding sequence for Xenopus Tdt with both an 

N-terminal HA tag located behind the SP and a C-terminal Myc tag. Archenteron 

injections of stage 16 neurulae introduced buffer, x µmol A2318 (Merck) or x µmol 

triptolide (Selleck Chemicals) in volumes of 10 nl. tdt sgRNA design utilized 

CRISPRscan and the corresponding DNA templates were created in an oligo 

extension reaction with Pfu DNA polymerase (Promega). DNA templates were cleaned 
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with the GeneJET Gel Extraction and DNA Cleanup Micro Kit (Thermo Fisher 

Scientific). The T7 MEGAshortscript Kit (Thermo Fisher Scientific) in combination with 

the MEGAclear Transcription Clean-Up Kit (Thermo Fisher Scientific) were used for tdt 

sgRNA synthesis and purification. All mRNAs were transcribed with the SP6 

mMESSAGE mMACHINE Kit (Thermo Fisher Scientific) and cleaned-up with the 

GeneJET RNA Purification Kit (Thermo Fisher Scientific). 

 

LOF verification 

Splice blocking of tdt was checked with the following primers: tdt exon 1 forward primer 

(5'-ATGACTGTTTCTTTCAGCA-3'), tdt exon 2 reverse primer (5'-

GGTGCTCTCCAGACTGAGCGGC-3', odc1 exon 5 forward primer (5'-

GCCATTGTGAAGACTCTCTCCATTC-3') and odc1 exon 6 reverse primer (5'-

TTCGGGTGATTCCTTGCCAC-3'). tdt genome editing was verified with the primers: 

tdt exon 3/intron 3 5'-AAAGTGTTTGGACGTCACAGT-3' and tdt exon 4/intron 4 5'-

TCACCTGAGCTGCACATTTCT-3'. 

 

RNA ISH and fluorescence staining 

Embryos were fixed over night in MEMFA (100 mM MOPS, 2 mM EGTA, 1 mM 

MgSO4, 3.7 % formaldehyde) and processed following standard procedures. All 

antisense RNA ISH probes were synthesized using SP6 or T7 RNA polymerases 

(Promega) in combination with DIG RNA Labeling Mix (Roche). Probes were detected 

by alkaline phosphatase (AP) conjugated anti-DIG Fab fragments (Roche). BM-Purple 

(Roche) was used as AP substrate. For immunofluorescence stainings the following 

primary antibodies were used: anti-acetylated Tuba4b (Merck, clone 6-11B-1, 1 : 800), 
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anti-HA tag (Roche, clone 3F10, 1 : 500), anti-Myc tag (Merck, clone 9E10, 1 : 500), 

anti-TDT (Reversade group, polyclonal antibody raised in rabbits against 

CWKKENGFPAGVDNPHGEI, various dilutions) and anti-Tdt (Reversade group, 

polyclonal antibody raised in rabbits against CWIEDNARSGMNEGGGEI, various 

dilutions). Alexa Fluor coupled secondary antibodies (Thermo Fisher Scientific, 

1 : 500) were applied for primary antibodies detection. F-actin and DNA were directly 

visualized via Alexa Fluor phalloidin conjugates (Thermo Fisher Scientific, 1 : 100) and 

Hoechst 33342 (Thermo Fisher Scientific, 1 : 1 000), respectively. 

 

LRO Analysis 

LRO size, LRO nuclei number as well as the cellular parameters of the central LRO 

were all assessed in ImageJ. The leftward fluid flow was monitored on dorsal explants 

in a 30 seconds time window using 0.5 µm yellow-green FluoSpheres (Thermo Fisher 

Scientific, 1 : 2 500). Quantification of flow speed and directionality utilized the ImageJ 

plugin Particle Tracker and a custom made script written in R, as previously described. 

Size measurement of the nodal1 and dand5 expression domains was accomplished 

via the Color Threshold tool of ImageJ, which allowed to select the area of the domains 

based on a brightness threshold. 

 

Statistics 

Probability values were calculated for ordinal data with the two-tailed Fisher's exact 

test and for metric data with the two-tailed Wilcoxon signed-rank test. Significance 

levels were defined as follows: p ≥ 0.05 is not significant, p < 0.05 is *, p < 0.01 is ** 

and p < 0.001 is ***. 
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Discussion 

Biological and biomedical research ground on predictive in vivo model systems. In this 

collection of studies, the African clawed frog Xenopus laevis was utilized to analyze 

potential human disease genes and variants along with the associated developmental 

processes. 

 

Principles of genetic disease modeling in Xenopus 

Xenopus allows to model human genetic diseases and to assess candidate genes or 

variants in multiple ways. An idealized example is depicted below to generally discuss 

our and others’ strategies, even if basic conditions vary. For this hypothetical case, an 

orthologue of the potential disease-causing candidate gene is present in the Xenopus 

genome. As Xenopus and humans share a high degree of sequence homology, nearly 

80 % (Hellsten et al., 2010) of the currently known disease associated genes possess 

a Xenopus orthologue. This in principle enables the assessment of all related gene 

variants in Xenopus. For our case, we assume that the orthologue of the candidate 

gene is expressed during development and that expression occurs in a tissue that is 

linked with the presentation of the human disease. Furthermore, we assume that 

depletion of the Xenopus orthologue either phenocopies aspects of the human disease 

if caused by anti-, hypo- or amorphic variants, or results in a context-related phenotype 

in the case of hyper- and neomorphs (Figure 1A). 

All these assumptions are based on a key concept of evolutionary developmental 

biology that an archetypal genetic tool-kit existed and was modified to evolve the 

various morphologies (De Robertis, 2008). 
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This scenario now allows to perform heterologous rescue experiments, in which the 

human wildtype as well as the potential disease-causing variant are separately co-

injected along with the loss-of-function reagent. Whereas the wildtype variant should 

be competent to rescue the phenotype in Xenopus, a deleterious variant should not, 

display attenuated or increased rescue potential, thereby confirming or negotiating the 

in silico made predictions (Figure 1B). 

In case the loss-of-function phenotype does not relate to the human phenotype at the 

level of the whole organism, one can refine the assessment by analyzing gene variants 

at the tissue, cellular or subcellular level. Alternatively, an unexpected phenotype can 

also be exploited to perform insightful rescue experiments. The same logic applies if a 

candidate gene in Xenopus is not or not exclusively expressed in the target tissue of 

the human disease, so that the non-target tissue can be utilized instead. 

As an alternative to a fully executed rescue approach, can a plain loss-of-function study 

of a candidate gene already be telling, especially if the knowledge about the gene’s 

function is limited (Figure 1A). Misexpression studies comparing wildtype with 

candidate variants can also be sufficient to reveal altered protein activities, if a 

phenotype manifests itself in one or the other variant (Figure 1C). This may also 

present a perspective to compare human gene variants without an orthologue in 

Xenopus. 

Recreation of the precise genomic change via genome editing techniques, including 

DNA base editors or the novel prime editing method, is also feasible in Xenopus, but 

these emerging strategies can only be applied to highly conserved genes (Figure 1D). 
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Figure 1: Strategies to investigate human disease genes and alleles in the frog Xenopus 

(A) Gene loss-of-function phenotypes can be readily assessed following genome editing or MO-

mediated knockdown in Xenopus. Phenotypes may resemble the human disease condition or occur in 

related embryonic contexts, verifying a given gene as disease-causing. (B) Introduction of the human 

wildtype allele should rescue the phenotype, while disease variants should reveal lack, attenuated or 

increased rescue capacities, which can be used to unravel disease mechanisms at the molecular level. 

(C) Misexpression of candidate human disease alleles in wildtype Xenopus embryos may reveal 

phenotypes, depending on the allele investigated. (C) Editing the homologous Xenopus gene to 

generate an allele corresponding to the human disease allows for disease modeling in a direct manner. 

 

PCD: Foxj1 targets are trapped in synexpression 

Our rational approach to identify and characterize potential PCD candidate genes in 

collaboration with the group of Achim Gossler based on a murine Foxj1 target screen 

that they conducted (Stauber et al., 2017). FOXJ1 is a pioneer transcription factor and 

the master regulator of motile cilia (Chen et al., 1998; Stubbs et al., 2008; Yu et al., 
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2008) that generally prefers binding to enhancer regions (Quigley and Kintner, 2017). 

Humans with deleterious heterozygous FOXJ1 mutations display PCD with 

accompanying hydrocephalus, laterality defects, respiratory symptoms and infertility 

(Wallmeier et al., 2019). Conversely, the loss of FOXJ1 in vertebrate model systems 

phenocopied the human PCD condition (Chen et al., 1998; Stubbs et al., 2008; Yu et 

al., 2008) and expression of known PCD genes was shown to be under Foxj1 control 

(Stubbs et al., 2008; Yu et al., 2008). All candidate genes, which encode most likely 

scaffolding proteins, were Foxj1 responsive, showed a strict foxj1 related expression 

pattern and were found to localize to ciliary structures. However, major differences, 

within our collection, occurred in the loss of function scenarios. Male infertility, 

mucociliary clearance defects in combination with postnatal or early onset 

hydrocephalus were observed in Cfap206 and Cfap43 null mice, respectively. Genome 

edited Xenopus embryos recapitulated the mucociliary phenotype in each case. 

Cfap157 knock out mice showed only isolated male infertility and Xenopus cfap157 

morphant embryos also lacked any externally visible phenotype. Fam183b mutant 

mice were not discernible different from their WT littermates, whereas Xenopus 

fam183b morphants displayed a defective mucociliary epithelium and renal cysts. Of 

note, cysts are a common phenotype of disturbed motile cilia in Xenopus as the 

ultrafiltrate transport is a cilia-driven process in the pronephros.  

These phenotypic differences are also reflected by the variability that exists in the 

spectrum of PCD. Lucas and colleagues distinguished PCD genes, whether they affect 

laterality development or not (Lucas et al., 2020). Compromised inner or outer dynein 

arms cause PCD with laterality defects, whereas defects of the central apparatus, 

radial spokes, nexin links or the program for the generation of multiple cilia do not 

(Lucas et al., 2020). This phenomenon can be attributed to the specific biological task 
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that each protein or complex exerts, which is not necessarily relevant for all types of 

motile cilia, as they project from highly differentiated mono-, bi-, oligo- or multiciliated 

cells (Choksi et al., 2014). Interestingly, the last eukaryotic common ancestor most 

likely had two cilia in form of a gliding and a motile flagellum (Mitchell, 2017). This, in 

combination with our observation that the sperm flagellum was affected most severely 

and often, indicates that the sperm flagellum represents the ancestral cilium type. 

However, it is still puzzling that expression domains like in our collection the left-right 

organizer (LRO) exist in absence of an associated loss of function phenotype. 

Therefore, one can propose that such genes are trapped in a synexpression group 

(Niehrs and Pollet, 1999) and that there is no evolutionary pressure to uncouple 

relevant from bona fide irrelevant expression domains. Hence, this state was 

maintained although transcription factors like Forkhead box N4 (Foxn4) with Foxj1 

overlapping target genes exist (Campell et al., 2016), which would theoretically allow 

for subfunctionalization. 

In summary, we found and described novel PCD candidate genes with a broad motile 

cilia related expression pattern but with a limited functional scope. Importantly, the 

suitability of our approach was recently highlighted by two publications that described 

deleterious CFAP43 variants in humans, which fall into the PCD spectrum (Morimoto 

et al., 2019; Tang et al., 2017). 

 

PCD independent laterality defects: new evolutionary insights 

We independently analyzed the Xenopus homologues of the potential human laterality 

disorder genes MYO1D and TDT, which encode an actin-based motor protein and a 

novel peptidase, respectively. myo1d was studied in collaboration with the group of 
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Stéphane Noselli, who discovered that the orthologues Myo31DF drives organ chirality 

in Drosophila. tdt was dissected in parallel with the group of Bruno Reversade, who 

utilized Danio rerio for the same purpose and initially identified TDT in patients with 

unassigned laterality defects. Depletion of either Myo1d or Tdt disturbed the normal 

organ orientation in Xenopus embryos, which confirmed their involvement in the 

context of laterality determination. Myo1d was attributed a central role in the PCP 

pathway, as the leftward fluid flow was disturbed in absence of Myo1d, due to 

mispolarized cilia, and because of its epistatic relation with the PCP core component 

VANGL planar cell polarity protein 2 (Vangl2). In contrast, Tdt was hierarchically placed 

upstream or at the level of the flow sensor, as Xenopus embryos without functional Tdt 

lost flow response but could be triggered with an agonist for the sensor complex 

component Polycystin 2, transient receptor potential cation channel (Pkd2). 

Collectively, these results not only complement the etiology of human laterality disease 

but also open a new perspective on how animal left-right asymmetry evolved. 

As already touched, Drosophila employs actomyosin locally to establish a defined cell 

chirality in the primordia, which later translates to organ asymmetry (Lebreton et al., 

2018; Spéder et al., 2006). Interestingly, the mollusc Lymnaea stagnalis and the 

nematode Caenorhabditis elegans also rely on actin to acquire laterality but already at 

the 4-cell stage (Naganathan et al., 2014; Shibazaki et al., 2004). This involves spindle 

twisting in the mollusc (Shibazaki et al., 2004) and spindle skewing (Wood, 1991) in 

the nematode, which were shown to depend on the actin nucleator Diaphanous related 

formin 2 (Dia2) (Davison et al., 2016) and cortical actomyosin flows (Naganathan et 

al., 2014; Pimpale et al., 2019), respectively. In the light of our Myo1d results, one can 

now propose that actin is the unifying root of laterality determination for protostomes 

and deuterostomes. In an ancestral setting, actin and Myo1d oriented spindles in a 
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way that imminently led to an asymmetric cell arrangement as seen in molluscs and 

nematodes. Drosophila lost this early and global type of left-right axis determination in 

adaption to its syncytial development, but retained an actomyosin driven mechanism 

that works later and locally. Deuterostomes also relocated symmetry breakage to later 

stages. Additionally, the interplay of actomyosin with spindles was modified to direct 

the ciliary-flow by orienting basal bodies, which share the centrosomal nature with 

spindles. 

However, this switch in deuterostome development was accompanied by acquiring a 

fluid flow sensor module that includes Tdt. Along this line, sauropsids and 

cetartiodactyls, who independently overcame the ciliary-driven mode of laterality 

determination, consequently lost functional Tdt, as noticed by the Reversade group. 

Interestingly, chicken embryos display a chiral cell rearrangement in the region of the 

posterior notochord (Gros et al., 2009), where chordates usually generate the leftward 

fluid flow. As it was shown that this cell rearrangement is the crucial step during chicken 

symmetry breakage and depends on actomyosin (Gros et al., 2009), it appears that 

deuterostomes without a motile ciliated LRO may fall back to a more ancestral mode 

of laterality determination as seen in protostomes. 

 

Neurodevelopmental disorders: HPE revisited and JS variants tested 

In a collaborative study with the group of Kerstin Feistel, we dissected the potential 

HPE related phenotype of the microtubule binding protein Hmmr (Assmann et al., 

1999). Indeed, close examination of Hmmr depleted Xenopus tadpoles revealed that 

they presented without telencephalic hemisphere separation. This phenotype resulted 

from a compromised roof plate, reminiscent of what is seen in the middle 
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interhemispheric variant of HPE (MIH) (Barkovich and Quint, 1993). By cooperatively 

regulating polarization of neural plate cells with Vangl2, Hmmr consecutively influences 

radial intercalation, neural fold apposition, roof plate formation and ultimately septum 

morphogenesis. 

The discovery that primary morphological alterations, in contrast to specification 

defects, could cause MIH, challenges the current understanding of the MIH etiology 

(Fernandes and Hébert, 2008). These findings substantiate that human HMMR is a 

MIH candidate gene and should be screened for in unassigned MIH cases. 

With respect to PIBF1, we worked together with the group of Christina Evers to test a 

novel missense as well as a nonsense variant of the centrosomal protein PIBF1, from 

a patient with JS, in a heterologous rescue assay. Generally, the cellular origin of JS 

was attributed to impaired ciliary biogenesis and/or function, defining it as a ciliopathy. 

As expected, pibf1 was expressed in the target neural tissue during Xenopus 

development. However, we found a striking knock-down phenotype in the ciliated 

epidermis only 2 days after fertilization. We decided to use this non-target tissue, 

because the ciliated skin cells were readily accessible on the outside of the larva, as 

compared to the relative small cerebellum, which arises later in development (Butts et 

al., 2014). Pibf1 depleted Xenopus embryos disturbed epidermal ciliation, which could 

be restored by the human wildtype PIBF1 but not by the patient-derived nonsense 

variant, while the missense variant yielded an attenuated rescue capacity. These 

results confirmed the classification of the nonsense variant as pathogenic and allowed 

the reclassification of the missense variant from unknown significant to likely 

pathogenic. 

The ease and rapidity of our testing approach shows how well the Xenopus system is 

suited to not only study candidate disease genes and associated developmental 
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processes but also to characterize specific alleles from patients. Therefore Xenopus 

fulfills the current needs of the postgenomic era, in which more and more gene variants 

are identified by clinicians and wait to be functionally assessed in an predictive in vivo 

context.  

 

Conclusion 

The purpose of this work was to comprehensively study potential human disease 

genes and variants in Xenopus and to promote its capacity for disease modeling. 

Examples presented highlight the great potential of this cost-efficient aquatic model 

organism. Evaluation of potential disease-causing variants but also functional analysis 

of the underlying etiologies can be rapidly achieved in this system. Xenopus thus 

should be considered a complementing model organism to the more frequently used 

zebrafish and mouse. 
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