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1. General introduction 

Renewable sources of energy are increasingly used worldwide, among which bioenergy, 

defined as the energy produced from biomass, is the largest (World Bioenergy Association 

2019). In the European Union (EU), bioenergy should represent at least 20% of the energy 

demanded by the end of 2020 (European Union 2009). The biogas sector in the EU can 

contribute towards a low carbon economy and has undergone, consequently, an exponential 

growth mostly driven by the anaerobic fermentation of agricultural feedstocks (Calderón et 

al. 2019). In Germany, the largest European biogas producer, silage maize is by far the most 

important fermentation substrate (Fachagentur Nachwachsende Rohstoffe e.V. 2019). 

Improved agricultural practices (e.g. crop rotations) are required to enhance the savings of 

greenhouse gas emissions from soil carbon accumulation. Maize as the predominant crop 

should be particularly reduced in acreage and, for 2021, a maximum of 44% of maize is 

acceptable in the fermentation substrate by the German Renewable Energy Sources Act 

"Erneuerbare‐Energien‐Gesetz" (EEG 2012, 2017). Therefore, the rising needs for substitute 

sources of biomass represent an exciting opportunity for alternative dual‐purpose crops 

adapted to the European agroclimatic conditions, like rye or triticale.  

1.1. Rye – a versatile dual-purpose crop 

Winter rye (Secale cereale L.) is a prominent cereal in Europe, with about 70% of the total 

global area (4.1 million hectares) found in Russia, Poland, Germany, Belarus, Fenno‐

Scandinavia, and Ukraine (FAO 2020). Unlike many other small‐grain cereals, rye is an 

allogamous species owning an effective gametophytic self‐incompatibility system and, 

therefore, a strictly out‐crossing crop (Lundqvist 1956). This unique characteristic was 

traditionally used to release open‐pollinated and synthetic cultivars; however, the 

performance of these population varieties was surpassed already by the first developed 

hybrids in the early 1980s (Geiger and Miedaner 1999, 2009, Miedaner and Laidig 2019). 

Hybrid breeding in rye started at the University of Hohenheim (Geiger and Miedaner 2009) 

after the discovery of both, a source of cytoplasmic‐male sterility (CMS) called "Pampa" 

coming from an Argentinian landrace (Geiger and Schnell 1970) and dominant genes 
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allowing the restoration of pollen fertility (Geiger 1972). Additionally, the presence of well-

established genetically distinct heterotic groups (Petkus and Carsten pools) allows to exploit 

heterosis for relevant economic traits; thus, hybrids emerged as the cultivars of choice by 

European farmers (Geiger and Miedaner 2009). For instance, 76% of the German rye acreage 

is covered by hybrid varieties (Bundesministerium für Ernährung, Landwirtschaft und 

Verbraucherschutz 2019). 

Rye outstands for its vigorous growth, high yield potential, superior adaptation to infertile, 

light, or acid soils, and high tolerance to abiotic and biotic stress factors, resulting in an 

attractive alternative not only under good agroclimatic conditions but also in vast regions 

less suitable for the cultivation of other cereals (Geiger and Miedaner 2009). Rye was 

traditionally used for bread making, however, by 2018 in Germany, animal feeding (52%) is 

the most important rye market followed by food (23%) and bioenergy production (18%; 

Bundesanstalt für Landwirtschaft und Ernährung 2019). Thus, rye has recently attracted 

increased attention as a source of renewables with reduced food-bioenergy trade-off, 

emerging biomass yield as a new target trait in rye breeding (Miedaner et al. 2010, Roux et 

al. 2010, Hübner et al. 2011, Haffke et al. 2014, Igos et al. 2016). Nevertheless, the 

incorporation of biomass as a key trait within breeding programs is challenging. The 

traditional and costly destructive sampling techniques commonly used (Catchpole and 

Wheeler 1992) prevent grain yield (GY) from being recorded in those same plots. 

Considering the major advancement in digital tools with breeding applications, the 

integration of state-of-the-art technologies in optimized breeding programs may contribute 

to enhance biomass yields affordably (Furbank et al. 2019). 

1.2. Breeding rye for enhanced biomass yield 

The response to selection, also known as "the breeder's equation", is a useful guide to 

estimate the achievable response to selection for a given trait, and therefore, represents a 

suitable framework to evaluate the prospects of breeding programs (Cobb et al. 2019). As 

stated in Falconer and Mackay (1996, p.189), this model can be written as 

  (1) 
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where  is the response to selection,  is the intensity of selection (selection differential in 

phenotypic standard deviations),  the heritability of the target trait, and  is the standard 

deviation of the phenotypic values of individuals. The efficiency of  over a certain period 

can be estimated by dividing  by the length (in years) of the selection cycle (Eberhart 1970). 

The enhancement of dry matter yield (DMY), which is highly correlated ( 0.95, P < 0.01) to 

methane yield (Hübner et al. 2011), is the most important trait for breeding hybrid rye as 

biogas substrate (Miedaner et al. 2010). Assessed among different elite rye populations, 

DMY showed large phenotypic as well as genotypic variations (Miedaner et al. 2010, Hübner 

et al. 2011, Haffke et al. 2014) and its heritability ( =0.49) was slightly lower than that 

observed for a mid-heritable trait such as GY ( =0.52; Haffke et al. 2014). Thus, the amount 

of heritable variability for DMY shows that an essential requirement for successfully 

breeding rye as a bioenergy crop is fulfilled (eq. 1). However, the favorable prospect for 

breeding biomass rye seems not to be in line with traditional breeding programs. 

As described in Miedaner and Laidig (2019), a selection cycle in hybrid rye breeding begins 

with the crossing of parental lines followed by several selfings and the evaluation of their per 

se performance in one-row observation plots at two to three locations for highly heritable 

traits (e.g., flowering time, plant height (PH), disease and lodging resistances, and thousand-

kernel weight). The selected parental components (S2-lines) are then topcrossed with testers 

from the opposite heterotic pool under strictly isolated field plots to avoid contamination by 

foreign pollen. The obtained testcrosses are then subject to a two-stage evaluation of their 

general combining ability (GCA) on larger plots (5 6 m
2
) at several locations. Selection at the 

first stage (GCA-1) is primarily driven by GY, although some other secondary traits such as 

PH, lodging resistance, and quality traits are also scored. In the following year, a selected 

fraction of the lines is reevaluated for GY at a second stage (GCA-2) with more testers at a 

higher number of locations. At this stage, DMY is usually incorporated as a breeding target 

and is traditionally assessed by destructive methods at the late milk stage (BBCH 77, Meier 

1997), making it necessary to plant GCA-2 trials twice for the estimation of both GY and 

DMY. A new selection cycle is started each year with new parental components derived from 

multiple genetic backgrounds. 

Consequently, the genetic variation present in the population, a crucial factor determining 

the expected response to selection (eq. 1), can be entirely exploited for the enhancement of 
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GY. In contrast, the selection for improved DMY is carried out in a later stage in a strongly 

reduced population, mainly due to the high costs associated with this traditional harvest 

technique for large populations (Haffke et al. 2014). However, the exceptionally high cost 

associated with duplicating early-stage field experiments (e.g., large-scale GCA-1 trials) 

would not be feasible due to constraints of market share and budget (Miedaner et al. 2012). 

Thus, the enhancement of DMY in rye relies during the first selection stages on an adequate 

utilization of indirect selection (Falconer and Mackay 1996). PH at the heading stage, whose 

correlation with DMY is almost double that of GY (r = 0.33 and 0.64, respectively, P < 0.01; 

Haffke et al. 2014), was suggested as a superior secondary trait than GY to indirectly select 

DMY. However, selection for lodging resistance is then highly important (Roux et al. 2010, 

Haffke et al. 2014). To establish an effective and affordable dual-purpose breeding program 

in rye emerges, therefore, as crucial to introduce superior indirect criteria to take advantage 

of the full genotypic variance present at early stages for DMY in a cost-effective manner.  

 

 

Fig. 1 Biomass estimation in rye carried out by destructive means  
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1.3. Incorporation of molecular data into plant breeding programs 

1.3.1. Marker-assisted selection 

From the early 1980s until the turn of the millennium, the use of molecular data for 

accelerating the selection gain in plant breeding was fundamentally focused on identifying 

molecular markers associated with major-effect quantitative trait locus (QTL) for their 

further use in marker-assisted breeding (Xu and Crouch 2008, Ben-Ari and Lavi 2013). After 

more than 20 years of intensive research, marker-assisted selection (MAS; Beckmann and 

Soller 1986) emerged as an appropriate genetic tool for traits controlled by few, large effect 

QTLs but ineffective for polygenic traits, which are influenced by numerous small-effect QTLs 

(Bernardo 2008). The low effectiveness of MAS for complex traits is fundamentally explained 

by the potentially overestimated marker effects resulted from the required QTL 

identification and validation and the small amount of the genetic variation that may be 

explained by these preselected QTLs (Beavis 1998, Meuwissen et al. 2001, Schön et al. 2004). 

Since a complex genetic architecture determines most of the traits with agronomic relevance 

in plant breeding, the practical applicability of MAS has been greatly limited (Tsai et al. 

2020). However, the combination of significant advancements in the fields of marker 

technologies and statistics has allowed to affordably and precisely score many thousands of 

markers evenly distributed throughout the genome and the estimation of their effects 

altogether, without prior bias-prone marker selection (Whittaker et al. 2000), opening new 

avenues to reduce the cost and cycle length of breeding for quantitatively inherited traits 

(Heffner et al. 2009, Heffner et al. 2010, Jannink et al. 2010). 

1.3.2. Genomic selection 

The genomic information available for rye has been extraordinarily increased by the advent 

of medium-density marker assays with multiple potential benefits for practical breeding, 

including the direct incorporation of genomic selection (GS; Meuwissen et al. 2001) into 
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practical breeding routines (Miedaner et al. 2019). GS exploits genomewide molecular 

markers underlying a quantitative trait of interest instead of targeting large-effect QTLs. 

Several studies have shown the superiority of GS over MAS for enhancing quantitatively 

inherited traits in plant breeding  (Bernardo and Yu 2007, Wong and Bernardo 2008, 

Lorenzana and Bernardo 2009, Heffner et al. 2010, Lorenz et al. 2011). Similarly, GS 

surpassed the prediction ability of MAS for polygenic traits such as GY and GY-related traits 

also in rye when analyzed within two bi-parental populations  (Wang et al. 2014, Wang et al. 

2015).  

In GS, a group of genotyped and phenotyped individuals (training set, TRN) is used to 

calibrate a prediction model for selecting among genotyped individuals lacking phenotypic 

values (validation set, VAL) based on genomic estimated breeding values (GEBVs; Heffner et 

al. 2009, Jannink et al. 2010, Lorenz et al. 2011). The prediction ability of GS, defined as the 

correlation between GEBVs and the observed phenotypic values, is then commonly assessed 

by cross-validation (CV) procedures (Hastie et al. 2009). In this context, abundant marker 

data (p) are available for estimating the performance of by far less numerous genotypes (n), 

an impossible situation for standard multiple linear models commonly referred to as "large 

p, small n" problem (Jannink et al. 2010).  

Several statistical methods have been developed to overcome this limitation, among which 

the genomic best linear unbiased prediction (GBLUP; Habier et al. 2013) is one of the most 

commonly used (Isidro et al. 2015, Vieira et al. 2017). In GBLUP, GEBVs are directly 

estimated by using a so-called genomic relationship matrix that explains the genetic 

relationship among individuals based on dense marker data (e.g., single nucleotide 

polymorphisms) in place of the traditional pedigree-based selection models proposed in 

animal breeding (Henderson 1975). The main advantage of replacing the pedigree-based by 

a marker-estimated matrix is that the latter allows a more accurate estimation of the 

random segregation that constitute the Mendelian sampling effect (i.e., the unequal 

transmission of the parental genome) reducing the co-selection of sibs and the inbreeding 

rate per generation (Daetwyler et al. 2007, Heffner et al. 2009). The Mendelian segregation 

is a crucial factor explaining the genetic variation in additive models under the absence of 

inbreeding (Pérez et al. 2010, Burgueño et al. 2012). Consequently, for traits of economic 

interest in plant breeding, marker-based models are preferred over models based only on 
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pedigree data (de los Campos et al. 2009, de los Campos et al. 2010, Crossa et al. 2010, 

Crossa et al. 2011, Burgueño et al. 2012). As shown by Habier et al. (2007), GBLUP is 

equivalent to the ridge regression best linear unbiased prediction (RR-BLUP; Whittaker et al. 

2000, Meuwissen et al. 2001), a well-established penalized regression model that 

simultaneously and equally shrinks all marker effects towards zero as it assumes that all 

variables have a mean of zero and the same variance.  

The use of GS for predicting breeding values across selection cycles, i.e., when genotypes 

used for model training and validation derived from different cycles, is the main application 

of GS towards more efficient breeding programs (Miedaner et al. 2019).  However, the 

ability of GS for predicting complex traits is affected by multiple factors, which have received 

much interest in animal and plant breeding studies, such as the genetic relatedness of 

individuals included in TRN and VAL (Habier et al. 2007, Wientjes et al. 2013, Crossa et al. 

2014, Marulanda et al. 2015). The low genetic relatedness typically observed among 

selection cycles in rye breeding suggests that across-cycles prediction of DMY emerges as 

highly challenging based only on marker data. Moreover, field trials are usually conducted 

among several contrasting environments, a situation that needs to be properly modeled 

since GS is also influenced by genotype-by-environment (G×E) interactions (Piepho 2009, 

Heslot et al. 2014, Crossa et al. 2014). Furthermore, GS also depends on the TRN size 

(VanRaden et al. 2009, Lorenz 2013, Marulanda et al. 2015), an aspect of great influence on 

the time and capital expenditures required for biomass breeding. The heritability of the trait 

under study also determines the prospects of GS (Heffner et al. 2009, Marulanda et al. 

2015). The ability of GS for traits showing low heritability can be improved when correlated 

highly heritable traits are incorporated into multivariate models (Jia and Jannink 2012).  

1.4. High-throughput phenotyping as a valuable breeding tool  

The progress in plant phenotyping has been much slower than the fast development of 

genotyping technologies, remaining the accurate phenotyping of large-scale multi-location 

field trials as a significant challenge for the advancement of genetic research (Montes et al. 

2007, Furbank 2009, White et al. 2012, Araus and Cairns 2014). However, the latest 

improvements in image data acquisition and modeling, data mining, aeronautics, as well as 
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robotics, have increased the interest in scientific discipline aiming at the 

description of phenotypes based on the gathering of high-dimensional phenotypic data 

(Houle et al. 2010). High-throughput phenotyping platforms (HTPPs), including uncrewed 

aerial vehicles (UAVs), have emerged, therefore, as a suitable option to alleviate the 

phenotyping bottleneck in a resources-effective and time-saving manner, potentially 

leveraging the genetic gain in breeding programs  (Furbank and Tester 2011, Araus et al. 

2018). The non-invasive measurement of the radiation reflected or emitted by the plants 

constitute the basis underlying the wide range of uses of remote sensing in agriculture, 

which includes the assessment of several agronomic and physiological crop parameters 

(Atzberger 2013, Mulla 2013), including the high throughput and repeatable estimation of 

biomass (Hansen and Schjoerring 2003, Mutanga and Skidmore 2004, Jong et al. 2010, 

Busemeyer et al. 2013, Bendig et al. 2014, Prabhakara et al. 2015, Cheng et al. 2017, Yue et 

al. 2017, Zhang et al. 2017, Li et al. 2018, Han et al. 2019, Walter et al. 2019, Jin et al. 2020).  

UAVs are increasingly used in plant breeding for phenotyping large-scale trials due to their 

lower capital and time requirements, larger flexibility, higher working capacity, and superior 

spatio-temporal resolution compared not only to destructive sampling but also to other 

remote sensing approaches, such as proximal sensing conducted with ground-based devices 

and satellite-based imagery (Tattaris et al. 2016, Yang et al. 2017). Moreover, the 

replacement of conventional digital cameras by hyperspectral devices has expanded further 

the applications of UAVs in crop sciences (Araus and Cairns 2014). In contrast to digital 

cameras which collect only the information present at the red, green, and blue channels 

within the visible spectrum (400 - 700 nm; VS), hyperspectral cameras are high-resolution 

sensors (up to <1 nm) capable of exploring and recording also infrared radiation (IR) 

wavelengths (up to 2500 under special configurations) in a continuous mode (Mahlein et al. 

2012, Araus and Cairns 2014). Thus, UAVs equipped with hyperspectral sensors stand as a 

powerful technology for biomass estimation and other agricultural applications (Adão et al. 

2017). 

The processing of the data collected by HTPPs has increased its complexity in proportion to 

the higher resolution of these devices mainly due to greater data dimensionality (Fahlgren et 

al. 2015, Yang et al. 2017), potentially delaying the adoption of this technology for field 

phenotyping (Araus and Cairns 2014). The development of vegetation indices (VIs) 
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represents a common approach for a straightforward extraction of meaningful information 

from vast reflectance datasets for measuring major vegetation characteristics, including 

biomass, vegetation cover, leaf area index (LAI) as well as chlorophyll and water content 

(Xue and Su 2017). However, VIs are based on a very small fraction of the total hyperspectral 

information available, hindering their ability to characterize complex traits in detail (Pauli et 

al. 2016). Consequently, a substantial information loss may occur (Aguate et al. 2017). 

Several statistical procedures have been proposed for modeling hyperspectral data beyond 

the calculation of VIs, allowing the use of whole-spectrum data for a better estimation of key 

plant traits (Thorp et al. 2017, Araus et al. 2018). With the progress of "omics" technologies, 

massive datasets are available for crop studies, whose integration into predictive modeling 

creates a unique opportunity for advancements in plant breeding (Langridge and Fleury 

2011). Consequently, combining data obtained from high-throughput genotyping and 

phenotyping into prediction modeling opens new avenues for improving the estimation of 

the genetic merit of unphenotyped individuals with multiple benefits for affordably breed 

dual-purpose rye. 

 

Fig. 2 Hyperspectral sensor-bearing UAV for biomass estimation in large-scale rye field trials. 
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2. Objectives 

The aim of this research thesis was to investigate the prospects of combining hyperspectral, 

genomic, and phenotypic data for unlocking the potential of hybrid rye as a dual-purpose 

crop to meet the increasing demand for renewable sources of energy affordably.  

In particular, the objectives were to: 

i. Estimate relevant population parameters for vegetation indices (VIs) and agronomic 

traits (grain and biomass yields, plant height, and thousand-kernel weight) as well as 

the correlation among them (Publication I);  

ii. Assess the prediction ability for dry matter yield (DMY) within and among 

environments by including VIs and agronomic data as secondary traits in multiple 

linear regression models (Publication I); 

iii. Integrate hyperspectral and genomic information as well as plant height into multi-

kernel and bivariate models and compare their predictive power over single-kernel 

models across different training set (TRN) sizes (Publication II); 

iv. Perform variable selection to identify the most informative spectral regions to DMY 

prediction in rye (Publication II); 

v. Investigate the influence of the genetic and environmental relationships between 

TRN and validation set (VAL) as well as trait heritability on the prediction ability of 

genomic- and hyperspectral-based models (Publication III). 
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Abstract 

Winter rye (Secale cereale L.), a potential alternative substrate for biogas production, is 

generally bred for grain yield. Thus, we aimed to evaluate the prospects of dry matter yield 

prediction by integrating vegetation indices derived from visible to NIR spectral data. A total 

of 404 elite rye hybrids were evaluated for grain yield and a subset of this comprising 274 

hybrids were also assessed for dry matter yield over two years and at four locations in 

Germany (i.e., eight environments). Spectral reflectance data (410 to 993 nm) were collected 

around solar noontime on mostly clear sky by an uncrewed aerial vehicle (UAV) on two 

dates. Observed variation among tested hybrids ranged between 3.64-10.53 Mg ha
-1

 for 

grain yield and 8.44-14.66 Mg ha
-1

 for dry matter yield across different environments. The 23 

vegetation indices and the agronomic traits, such as dry matter yield, grain yield, and plant 

height, showed mostly moderate to high heritability estimates ( >0.50), and their genetic 

variances were significantly (P<0.001) different from zero. Plant height was preferred over 

grain yield for indirect selection of high dry matter yield. An index combining hyperspectral 

and agronomic data developed by a multiple regression procedure showed a cross-validated 

prediction ability of 0.75, resulting in an improvement of about 6% to a model based only on 

agronomic traits. In earlier selection stages, the proposed index could be a suitable tool for 

the cost-effective selection of improved candidates for biomass experiments based on grain 

yield trials.  
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Abstract

Key message Hyperspectral and genomic data are effective predictors of biomass yield in winter rye. Variable selec-

tion procedures can improve the informativeness of reflectance data.

Abstract Integrating cutting-edge technologies is imperative to sustainably breed crops for a growing global population. To 

predict dry matter yield (DMY) in winter rye (Secale cereale L.), we tested single-kernel models based on genomic (GBLUP) 

and hyperspectral reflectance-derived (HBLUP) relationship matrices, a multi-kernel model combining both matrices and 

a bivariate model fitted with plant height as a secondary trait. In total, 274 elite rye lines were genotyped using a 10 k-SNP 

array and phenotyped as testcrosses for DMY and plant height at four locations in Germany in two years (eight environments). 

Spectral data consisted of 400 discrete narrow bands ranging between 410 and 993 nm collected by an unmanned aerial 

vehicle (UAV) on two dates on each environment. To reduce data dimensionality, variable selection of bands was performed, 

resulting in the least absolute shrinkage and selection operator (Lasso) as the best method in terms of predictive abilities. The 

mean heritability of reflectance data was moderate ( h2 = 0.72) and highly variable across the spectrum. Correlations between 

DMY and single bands were generally significant (p < 0.05) but low (≤ 0.29). Across environments and training set (TRN) 

sizes, the bivariate model showed the highest prediction abilities (0.56–0.75), followed by the multi-kernel (0.45–0.71) and 

single-kernel (0.33–0.61) models. With reduced TRN, HBLUP performed better than GBLUP. The HBLUP model fitted 

with a set of selected bands was preferred. Within and across environments, prediction abilities increased with larger TRN. 

Our results suggest that in the era of digital breeding, the integration of high-throughput phenotyping and genomic selection 

is a promising strategy to achieve superior selection gains in hybrid rye.

Introduction

The European biogas sector has attracted increasing atten-

tion as a renewable source of heat, electricity, and trans-

port suitable for climate change mitigation with additional 

socioeconomic advantages (Scarlat et al. 2018). Political 

directives (European Renewable Energy Directive 2009/28/

EC) supporting the production of bioenergy have already 

been implemented in Europe (European Union 2009). This 

legislation stated that, by 2020, the energy demanded in the 

European Union (EU) should be supplied in at least 20% 

by renewable sources. Among the EU members, therefore, 

the role of energy crops as bioenergy feedstocks has under-

gone a considerable increase, represented mainly by silage 

maize (European Commission 2018). Maize monocropping 

is, however, discouraged by regulations toward enhanced 

sustainability of the biomass production (European Union 

2010).
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Additionally, in Germany, the principal biogas producer 

in Europe, a limit was placed on the amount of maize accept-

able in the fermentation substrate. In 2012, this limit was 

set to 60%, while in 2021, it will be reduced further to 44% 

(Renewable Energy Sources Act “EEG”; EEG 2012, 2017). 

Consequently, the growing demand for bioenergy combined 

with the search for alternative sources of biomass opens a 

very attractive opportunity for diversifying crop rotations.

Winter rye (Secale cereale L.) is a small-grain cereal with 

vigorous growth and enhanced tolerance to abiotic (e.g., low 

temperatures, light or acid soils with low fertility) and biotic 

stress factors. It can, therefore, be cultivated in vast areas less 

suited for other cereal crops (Geiger and Miedaner 2009), 

representing a sustainable biomass source with reduced 

competition with food or feed (Miedaner et al. 2012; Geiger 

and Miedaner 2009). Although it is present worldwide, rye 

is mostly grown in Northeastern Europe, where Germany, 

Poland, Russia, and Fennoscandia concentrate about 60% of 

the total area of rye cultivation (FAO 2019). Considering its 

potential as a dual-purpose crop, enhanced dry matter yield 

(DMY) has emerged as a new target in rye breeding, which 

has been primarily driven by grain yield GY (Haffke et al. 

2014). In contrast to GY, which in our breeding program is 

already tested at the first year of general combining ability 

testing (GCA-1), DMY is traditionally evaluated through 

destructive methods at later selection stages on a strongly 

reduced set of genotypes. Thus, lower selection gains can 

be expected due to the loss of important genetic variation 

during the breeding process.

Efficient indirect selection for dry matter yield (DMY) 

would, therefore, be needed to exploit the full genetic vari-

ation present at early selection stages. Plant height (PH) has 

been identified as an indirect selection target for enhanced 

DMY, but biomass-specific trials with a particular focus 

on lodging resistance were still recommended (Roux et al. 

2010; Haffke et al. 2014). Genomic selection (GS) (Meuwis-

sen et al. 2001) aims to indirectly select unphenotyped candi-

dates based on a model trained in a reduced set of genotyped 

and phenotyped entries (training set, TRN). Genomic tools 

have been proposed to increase the efficiency of selection 

in hybrid rye breeding (Miedaner et al. 2019). For instance, 

GS has been recommended for enhanced prediction of grain 

yield in rye across breeding cycles (Auinger et al. 2016; 

Bernal-Vasquez et al. 2017). Another study in rye showed 

that, in terms of prediction accuracy, GS was preferred to 

marker-assisted selection (MAS) in intra-pool crosses not 

only for GY but also for PH and quality traits (i.e., starch 

and pentosan content, Wang et al. 2014).

The development of molecular techniques has increased 

the needs of reliable and cost-effective phenotypic infor-

mation, representing a great challenge for the progress of 

plant-genetic studies (Araus and Cairns 2014; Montes et al. 

2007). High-throughput phenotyping (HTP) has emerged 

as a suitable strategy for phenotyping thousands of new 

genotypes effectively and affordably based on reflectance 

information (Furbank and Tester 2011; White et al. 2012). 

Unmanned aerial vehicles (UAVs) such as polycopters 

outperform ground-based HTP platforms regarding work-

ing capacity while deriving high-resolution image data 

(Araus and Cairns 2014). So, they may represent a suitable 

approach for screening multi-environment field trials, expo-

nentially increasing the amount of data available. In this 

context, a positive impact on practical plant breeding may 

be expected if reflectance data are associated with the target 

trait (Rutkoski et al. 2016). This would be of great interest, 

for instance, to enhance indirect estimation of DMY within 

a breeding population at first stage of GY trials, when a 

direct assessment of the trait by destructive measures would 

not be feasible, but aiming for a dual-purpose program with 

genotypes being superior for both DMY and GY.

Hyperspectral sensors deliver information of hundreds of 

wavelengths (hereafter referred as “bands”) at a nanometer-

level resolution covering a broad spectral range (from 350 

up to 2500 nm) that includes the visible spectrum (VS) and 

the infrared (IR) regions (Mahlein et al. 2012). This imag-

ing technique is a promising tool for field phenotyping but 

presents additional computation efforts due to the increased 

data dimensionality (Fahlgren et al. 2015). To address this 

issue, several strategies have been proposed for integrating 

reflectance data into practical plant breeding. One approach 

is to summarize a few individual bands into vegetation indi-

ces (VIs; Xue and Su 2017; Galán et al. 2020). However, 

prediction accuracy of VIs was found to be lower than equa-

tions incorporating whole-spectrum data by ordinary least 

squares (OLS), partial least squares (PLS), and Bayesian 

shrinkage for GY prediction in maize (Aguate et al. 2017) 

and by Bayesian functional models in wheat (Montesinos-

López et al. 2017).

In both studies, models were tested under p < n scenarios, 

where the number of predictors (p) was smaller than the 

population size (n). On the contrary, when p >  > n as in GS, 

regularization (penalized) models have shown to be suitable 

for incorporating thousands of predictors, including several 

unrelated to the trait of interest, or highly intercorrelated 

(Ogutu et al. 2012). A similar situation may be expected 

when analyzing hyperspectral data collected in several envi-

ronments and on several dates. To reduce multicollinearity, 

increase prediction accuracy, minimize calculation time, and 

extract the most informative features, regularization methods 

such as the elastic net (Zou and Hastie 2005) or the least 

absolute shrinkage and selection operator (Lasso; Tibshirani 

1996) are also preferred for facing high-dimensional spectral 

data (Liu and Li 2017).

Alternatively, Krause et al. (2019) found that deriving 

relationship matrices from hyperspectral data was a suit-

able approach to integrate whole-spectrum reflectance 

15



3003Theoretical and Applied Genetics (2020) 133:3001–3015 

1 3

information into multi-kernel GS for predicting GY in 

wheat within multi-environment field trials. Multivariate 

models integrating correlated traits have demonstrated to 

be more precise than univariate models in GS (Jia and Jan-

nink 2012). In wheat, for instance, GS prediction ability of 

GY was significantly enhanced by fitting traits derived from 

hyperspectral data (Sun et al. 2019; Rutkoski et al. 2016; 

Crain et al. 2018).

Similar to GS, models seeking the estimation of breeding 

values utilizing hyperspectral information also need phe-

notypic data (e.g., DMY) for model training. In our study 

case, the TRN size is economically highly relevant, since 

the acquisition of the phenotypic data requires to evaluate 

the candidates in GY-plots and DMY-plots separately under 

the conditions of a dual-purpose breeding program. The 

positive relationship between GS accuracy and TRN size is 

widely known (VanRaden et al. 2009). However, a broader 

TRN represents an increase in breeding costs. Thus, efficient 

breeding programs would benefit from reduced TRN while 

maintaining, or at least minimizing the loss of prediction 

accuracy. Approaches to enable the highest accuracy for a 

reduced TRN by integrating phenotypic and hyperspectral 

information to GS are, therefore, highly relevant for deliver-

ing high-yielding DMY varieties.

The aim of the present study was to test these approaches 

within the same breeding population by evaluating a set of 

274 elite rye lines as a testcross series in multi-environment 

field trials on a phenotypic, genotypic, and hyperspectral 

level. In particular, the objectives were (1) to identify the 

most relevant spectral regions to DMY prediction in rye, (2) 

to integrate the different sources of information into multi-

kernel and bivariate models for leveraging selection gain of 

DMY in rye, and (3) to compare prediction ability of models 

across different TRN sizes.

Materials and methods

Plant materials and field experiments

The plant materials and field experiments analyzed in the 

present study are described in detail in Galán et al. (2020). 

In short, a total of 264 recombinant inbred lines (RILs) of 

generation  S4 (i.e., lines after continued self-fertilization of 

single plants for four consecutive years) were derived from 

ten diverse parental lines of the Petkus (seed parent) gene 

pool following a single round-robin design (Verhoeven et al. 

2006). In practical plant breeding, these parental lines rep-

resent elite breeding material, since in contrast to a diverse 

panel of genetic resources, they were obtained after several 

selection cycles for line per se performance and general com-

bining ability (GCA). Testcross seed was produced from the 

cross of these 264 RILs and their ten parental components 

with a single-cross tester from the opposite (pollinator) 

gene pool. The obtained 274 genotypes, thus, correspond 

to three-way hybrids, (A· B) × C. They were analyzed for 

their dry matter yield (DMY) and plant height (PH) in two 

trials with a size of 130 and 134 entries, respectively, laid 

out as resolvable incomplete block designs (α-lattice design) 

with two replicates. These field trials were grown adjacent to 

each other and conducted in 2017 and 2018 at each of four 

environmentally contrasting locations in Northern Germany 

(Suppl. Table 1), thus comprising eight environments (loca-

tion–year combinations). Plots were harvested by a com-

mercial plot chopper at late milk stage (BBCH 77; Meier 

1997) to get the respective yield per plot as fresh matter 

yield (FMY, dt ha −1). For DMY (dt ha −1) determination, 

representative samples of about 1000 g were weighted from 

each plot and oven-dried at 110 °C till a constant weight 

was reached. Dry matter content (DMC) in percentage was 

determined from weight differences of the samples. DMY 

per plot was estimated as DMY = FMY × DMC/100. Also, 

PH (cm) was recorded at each plot.

Hyperspectral data

Hyperspectral data consisting of 400 bands ranging from 

410 to 993 nm were obtained in all environments and for all 

genotypes by an unmanned aerial vehicle (UAV; Camflight 

FX8HL, Sandnes, Norway) that was fitted with a hyperspec-

tral camera (HySpex Mjolnir V-1240, Skedsmokorset, Nor-

way) as described previously in detail Galán et al. (2020). 

Reflectance data were recorded after flowering (i.e., during 

the grain filling stage) at two flight dates in each environ-

ment, except for location Bernburg in 2017 (BBG 2017) 

where only one flight was conducted (Suppl. Table 1). On 

each flight date, the UAV quadcopter flew at about 25 m 

above plots, around solar noontime. Each plot was demar-

cated on the obtained images by a polygon, provided by digi-

tal geographic information system (GIS) field plans. Raw 

data were radiometrically calibrated (HySpex PostProces-

sor Version 1.2). This is a hyperspectral standard procedure 

(Adão et al. 2017) to convert the arbitrary digital numbers 

to values, which are proportional to the International System 

of Units (SI) unit W/sr nm  m2 (HySpex Mjolnir 1024 User’s 

Manual). Coefficients of incident sunlight were captured by 

placing a 70-by-150 cm wooden board painted gray in the 

center of the field and using it as a reference to account for 

different irradiance conditions at each data collection time. 

The chosen gray panel reflects 60% of incident sun light, 

minimizing the risk of oversaturation of the hyperspectral 

sensor under varying sunlight conditions. The spectrum 

from the gray reflection target was assumed to represent the 

maximal reflection for each wavelength derived from sun-

light. Normalized hyperspectral data (NormHyp) were then 

estimated based on this spectrum according to the formula 
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Normhyp = Hyperspectral reflectance/Gray panel spectrum. 

Further, hyperspectral imaging data were orthorectified and 

georeferenced via the PARGE Software (ReSe Applications 

LLC, Wil, Switzerland).

Finally, all data points per each wavelength within each 

polygon were spatially averaged, resulting in one spectrum 

per plot. Consequently, each plot contains a single value 

for each wavelength in the studied spectrum. A tabular data 

frame was constructed, including the computed reflectance 

values of all bands.

Genotypic data

All 274 genotypes (264 RILs and their ten parental compo-

nents) were genotyped with an Illumina INFINIUM chip 

with 9,963 single-nucleotide polymorphisms (SNPs) assays 

(KWS SAAT SE & Co. KG, Einbeck, Germany). The SNPs 

of this assay are partially overlapping with the 5 k-SNP assay 

of Martis et al. (2013) and the 600 k-SNP assay of Bauer 

et al. (2017), whereof 3017 markers have been previously 

mapped by Bauer et al. (2017). SNPs showing more than 

10% of missing values or a minor allele frequency < 0.05 

were excluded. Imputation of the missing values in the 

remaining set of SNPs was performed with Linkimpute 

(Money et al. 2015). After imputation, data were filtered 

again for low minor allele frequency (< 0.05). Thus, 6420 

markers were retained for subsequent analyses.

Phenotypic data analysis

Within and across environments, phenotypic data (i.e., DMY 

and PH) were analyzed by different mixed models to obtain 

variance components and BLUEs (best linear unbiased esti-

mators) of genotypes for later use in prediction modeling.

A combined analysis across locations and years was con-

ducted by applying the following mixed model:

where � denotes the observed genotype performance, G the 

genotypes,L the locations, Y  the years, T  the trials within 

environments ENV (equivalent to year–location combina-

tions), R the replicates within trials, B the blocks within 

replicates, and e the error associated with the observation 

� . Error, trial, block, and replicate variances were assumed 

heterogeneous among environments. In model (1), the dot 

operator (·) specifies crossed effects (A·B) and fixed and 

random terms are separated by a colon (:), with fixed terms 

appearing first (Piepho et al. 2003). Variance components 

and pairwise variances of genotype mean (BLUEs) differ-

ences (needed for heritability estimation) were estimated 

(1)

� = G ∶ L + Y

+ L ⋅ G + Y ⋅ G + Y ⋅ L + L ⋅ Y ⋅ G

+ ENV ⋅ T + ENV ⋅ T ⋅ R + ENV ⋅ T ⋅ R ⋅ B + e

by restricted maximum likelihood (REML) for all random 

effects in model (1). This also holds for estimation of the 

genotypic variance ( �2

g
 ), which required an additional analy-

sis fitting the above model with random genotypic effects. 

Significance of variance component estimates was tested by 

model comparisons using likelihood ratio tests (Stram and 

Lee 1994).

BLUEs of genotypes were also analyzed within environ-

ments by the following mixed model:

This model (2) differs from the first model (1) only in 

dropping the year and location main effects and correspond-

ing interactions with genotypes. Variance components for sin-

gle environments were estimated as described previously for 

model (1). Phenotypic outliers were tested for DMY and PH 

based on the Bonferroni–Holm test (method “M4r”; Bernal-

Vasquez et al. 2016). Plots flagged as outliers were excluded 

from the analysis. Hyperspectral information was excluded 

from plots flagged as an outlier for DMY.

Three-stage analysis for DMY prediction

To reduce computing cost, prediction ability of DMY based on 

different information sources was conducted by a three-stage 

procedure (Piepho et al. 2012), where in the first two stages, 

hyperspectral data were analyzed across dates and environ-

ments to obtain BLUEs per genotype, which were then incor-

porated into DMY prediction models in the last stage.

First-stage models

In the first stage, hyperspectral bands were adjusted across 

dates per environment according to the model

where � is the observed band value, G the genotypes, D the 

measurement dates, T  the trials, R the replicates within tri-

als, B the blocks within replicates, and e the error associ-

ated with the observation � . Errors of different measurement 

dates on the same plot are correlated; therefore, a correla-

tion structure (“Compound Symmetry”) was assumed for e 

as described in Piepho et al. (2004). This model was used 

here because there were only two measurement dates per 

environment. The random effects for trials, replicates, and 

blocks also imply a compound symmetry variance–covari-

ance structure for repeated observations on these units. 

For BLUEs estimation, all factors included in model (1) 

except G were considered as random. For single bands in 

each flight date (“first” and “second”), the random effects 

(2)� = G ∶ T + T ⋅ R + T ⋅ R ⋅ B + e

(3)

� = G ∶ D + D ⋅ G

+ T + T ⋅ R + T ⋅ R ⋅ B

+ D ⋅ T + D ⋅ T ⋅ R + D ⋅ T ⋅ R ⋅ B + e
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of the date, including the corresponding interaction terms, 

were excluded from model (3). To allow a fair compari-

son between across and within flight dates, data collected 

in BBG (2017), where only one flight was conducted, were 

included in both single-date and across-dates analyses.

Second-stage models

In the second stage, variance components and BLUEs per 

genotypes were estimated across environments following 

the model

where � is the adjusted genotype mean (BLUEs) from the 

first stage for the band value, G and ENV denote genotypes 

and environments, respectively, and e is the error associated 

with the observation � . When adjusted means from the first 

stage are forwarded to second-stage models, the incorpora-

tion of a weighting method is preferable (Möhring and Pie-

pho 2009). Means were therefore weighted by the diagonal 

elements of the inverse of their variance–covariance matrix 

calculated in the first stage as proposed by Smith et al. 

(2001). For hyperspectral data, estimates of variance com-

ponents, pairwise variances of genotype mean differences 

(BLUEs) as well as significance tests of variance compo-

nents were computed as for the phenotypic data. The syntax 

of models (1), (2), (3), and (4) is also compatible.

At this stage, heritability ( h2 ) was estimated for DMY, 

PH, and each band for single and for combined flight dates 

across environments as (Piepho and Möhring 2007)

where v is the mean variance of a difference between two 

adjusted genotype means (BLUEs) derived from model (1) 

or from model (4) for phenotypic and hyperspectral data, 

respectively. All statistical analyses were performed within 

the R-environment v. 3.4.4 (R Core Team 2018). BLUEs 

of genotypes were calculated with the software package 

ASReml-R v. 3.0 (Gilmour et al. 2009).

Third-stage models

In the third stage, the obtained phenotypic and hyperspec-

tral BLUEs from model (1 or 2) and (3 or 4), respectively, 

were used for fitting several models (described in Table 1) 

for predicting DMY, including genetic, hyperspectral, and 

phenotypic data. A weighting method was applied also on 

this stage as described before, with weights derived from 

models (1) or (2).

(4)� = G ∶ ENV + G ⋅ ENV + e

(5)h2
=

�
2

g

�
2

g
+

v

2

The predictive power of these models was assessed 

in two different scenarios: (S1) across the series of eight 

environments by cross-validation (CV) and (S2) by fit-

ting prediction models with data collected on a variable 

number of environments (E = 1,2,…,7), while one envi-

ronment not included in E was used for model validation. 

Coefficients of phenotypic correlation r (Pearson’s coef-

ficients of correlation) between DMY and all other traits 

were calculated from the BLUEs of genotypes from model 

(1) or (2) for prediction scenarios S1 or S2, respectively.

Third-stage models were single-kernel and multi-kernel 

prediction models, providing best linear unbiased predic-

tions (BLUP) of genotypic effects of DMY, which differ 

in the information used to model the random genotypic 

effect. Single-kernel prediction models were fitted with 

genetic (genomic BLUP, GBLUP) or hyperspectral (hyper-

spectral BLUP, HBLUP) information with n = 274 indi-

viduals, based on m SNP markers or b bands, respectively. 

Thus, genomic estimated breeding values (GEBVs) were 

derived from the GBLUP model, whereas hyperspectral 

estimated breeding values (HEBVs) were obtained from 

the HBLUP model.

The two models were defined as

where y is the n-dimensional vector of BLUEs of DMY 

obtained from model (1) or model (2) for prediction sce-

narios S1 or S2, respectively, � is the overall mean, 1
n
 an 

n-dimensional vector of ones, gK and gH are n-dimensional 

vectors of random genotypic effects, and e is the n-dimen-

sional vector of residuals. The vector of residuals e asso-

ciated with y was assumed as normally distributed with 

zero mean and variance R [ e ~ N (0, R)]. R is defined as a 

diagonal matrix with diagonal elements equivalent to the 

inverses of the diagonal elements of inverse of the origi-

nal variance–covariance matrix of the means adjusted on 

(6)GBLUP ∶ y = �1n + gK + e,

(7)HBLUP ∶ y = �1n + gH + e,

Table 1  Overview over the models used

Model Integrated variables

Single-kernel models

 GBLUP Genotypic data

 HBLUP Hyperspectral data

Multi-kernel model

 G + H Genotypic + hyperspectral data

Bivariate models

 Bivariate_G Genotypic data + plant height

 Bivariate_H Hyperspectral data + plant height

 Bivariate_G + H Genotypic + hyperspectral data + plant height
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the second stage of this analysis (Smith et al. 2001). When 

means adjusted in the second stage are forwarded to third-

stage models, the incorporation of a weighting method was 

performed as described before.

For GBLUP, the random genetic values were estimated as 

gK ~ N (0, G �2

g
 ) where �2

g
 is the genetic variance and G the 

genomic additive relationship matrix (Habier et al. 2013). 

For estimating genotypic values based on hyperspectral data, 

the random genetic values in model 7 were calculated as 

gH ~ N (0, H �2

b
 ) where �2

b
 is the hyperspectral band variance 

and H a hyperspectral reflectance-based relationship matrix.

G was estimated with the synbreed package (Wimmer 

et al. 2012) in R following the first method of VanRaden 

(VanRaden 2008) as G =
ZZ

′

2
∑

pi(1−pi)
 , where Z = M-P, M is the 

n × m marker matrix of alleles coded as 0  (A1A1), 1  (A1A2), 

or 2  (A2A2) for the nth individual at the mth SNP position, 

P contains a n × m matrix of allele frequencies multiplied by 

2, pi is the allele frequency of the ith allele.

H was also calculated for the n = 274 genotypes by incor-

porating the BLUEs for each band derived from model (4) 

or (3) for prediction scenarios S1 and S2, respectively. 

These matrices were of the form H = DD
′ , where D is a 

n × b hyperspectral matrix of the standardized BLUEs of the 

bands. Standardization was done by subtracting the arith-

metic mean and dividing by the standard deviation of all 

BLUEs. For H estimation, different numbers of bands were 

considered: Hall is derived from the total number of bands 

available (b = 400), whereas Hvsel (b = 32) and Hh2 (b = 216) 

are based on a reduced set of bands. Bands included in Hvsel 

were selected as described in the next sections, while Hh2 

is based only on bands with  h2 larger than the mean value 

observed for all bands ( h2 > 0.72).

Finally, a multi-kernel prediction model combining 

genetic and hyperspectral information was fitted:

where all factors listed are defined as above in models (6) 

and (7). The random vectors gK and gH in (8) are considered 

as independent of each other and normally distributed. Here, 

the H matrix assumes the form of Hvsel. For exploring the 

benefits of incorporating PH as a predictor, model (9) was 

extended to a bivariate model (Bivariate_G + H) as

where y
1
 is a vector of BLUEs for DMY, y

2
 is a vector of 

BLUEs for PH, with y
1
 and y

2
 incorporating BLUEs derived 

from model (1) for prediction scenario S1, �
1
 is the overall 

mean for DMY, �
2
 is the overall mean for PH,  gk1

 and gH1
 

are n-dimensional vectors of random effects for DMY, gK2
 

and gH2
 are n-dimensional vectors of random effects for PH, 

e
1
 is the n-dimensional vector of residuals for DMY, and e

2
 

(8)y = �1n + gK + gH + e,

(9)

[

y
1

y
2

]

=

[

1n0n

0n1n

][

�
1

�
2

]

+

[

gK1

gK2

]

+

[

gH1

gH2

]

+

[

e
1

e
2

]

is the n-dimensional vector of residuals for PH. The random 

vectors are considered as independent of each other and nor-

mal ly  d i s t r ibu ted  accord ing  to  

[

gK1

gK2

]

 ~  N(0 , 

CK ⊗ G),

[

gH1

gH2

]

 ~ N(0, CH ⊗ H), and 

[

e
1

e
2

]

 ~ N(0, R ⊗ I), 

where G is defined as in model (4), ⊗ is the Kronecker prod-

uct (direct product) operator, CK and CH are the 2 × 2 vari-

ance–covariance matrices for the breeding values of the two 

traits, H is defined as in model (7) and adopts the form of 

Hvsel, I is an identity matrix, and R is the residual vari-

ance–covariance matrix for DMY and PH. The covariance 

matrices CK, CH, and R were considered unstructured. At 

this stage, model (9) was fitted without a weighting method 

to reduce computing costs. Bivariate_G + H aims to predict 

DMY based on PH as well as hyperspectral and genetic data. 

For addressing the impact of PH on the predictive power of 

bivariate models based only on hyperspectral (Bivariate_H) 

or genetic (Bivariate_G) data, two additional bivariate mod-

els were analyzed. These two models are a reduced version 

of model (9). For models Bivariate_H and Bivariate_G, the 

terms.
[

gK1

gK2

]

 or 

[

gH1

gH2

]

 were dropped, respectively. All three-

stage prediction models were fit using the R package "som-

mer" (Covarrubias-Pazaran 2016).

Feature selection for the hyperspectral data

Multicollinearity in regression equations is expected when 

numerous highly intercorrelated hyperspectral variables 

are incorporated (Dunagan et  al. 2007). To overcome 

this, two variable selection methods were used and imple-

mented in the GlmNet R package (Friedman et al. 2010). 

Since weighted and unweighted variable selection proce-

dures yielded similar results, we performed the following 

methods without the incorporation of a weighting factor.

The least absolute shrinkage and selection operator 

(Lasso; Tibshirani 1996) is a well-known and powerful 

regression method for regularization and variable selec-

tion for minimizing the prediction error. Applying the l1 

penalty sets some of the regression coefficients to zero, 

while others are shrunk toward zero yielding a sparse solu-

tion. The Lasso should, however, be used with care in the 

case of sets of highly correlated variables since it tends to 

arbitrarily select one variable and overlook the rest (Fried-

man et al. 2010).

The elastic net (EN; Zou and Hastie 2005) was developed 

to overcome the restrictions of Lasso. It combines both l1 

(Lasso) and l2 (Ridge Regression, Hoerl and Kennard 1970) 

penalization terms to obtain a more stable solution to highly 

correlated predictors.
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The estimators ( �̂  ) for Lasso and EN can be calculated 

from the following penalized equation (Wimmer et al. 2013):

where � is defined as in model (4), X is a n × b matrix of 

bands; � is the vector of the regression coefficients of the 

bands; Pen(�) is the penalization term, which is defined by 

the quadratic l2 norm for RR as Pen(�) = � ‖� ‖2

2
= �

∑p

j=1
�2

j
  

,  b y  t h e  l1  n o r m  f o r  L a s s o  w i t h 

Pen(�) = � ‖� ‖
1
= �

∑p

j=1

|||� j

||| , and for EN by combining 

both as Pen(�) = �
1
�

1
+ �

2
�2

2
 . For EN, the procedure can 

be described as a penalized least square method with 

� =
�

2

�
1
+�

2

 ; thus, Eq. (10) is equivalent to the optimization 

p r o b l e m  �̂ =

arg min

�
‖� − X� ‖2

2
 ,  s u b j e c t  t o 

P
�
(�) = (1 − �)�

1
+ ��2

2
≤ s for some s.

For fitting and comparing the Lasso and EN models, the 

optimal values for the tuning parameter ( � ≥ 0 ), which con-

trol the degree of shrinkage of the estimator, were obtained 

by tenfold cross-validation with the function cv.glmnet of 

the GlmNet R package (Friedman et al. 2010) with default 

settings. In addition, for the defined optimal � , the best value 

for � for the EN was estimated outside the GlmNet package 

by a tenfold cross-validation.

Validation of variable selection procedures 
and proposed prediction models

In the present study, two prediction scenarios were consid-

ered, namely S1 and S2. A fivefold cross-validation (CV) 

was used to assess the predictive ability of models in S1, 

where models were fitted to fourfold (~ 219 genotypes), and 

model error was estimated when predicting the remaining 

validation fold (~ 55 genotypes). This was conducted for all 

five possible validation folds, and the obtained estimates 

of prediction error were combined. This procedure was 

repeated 100 times (i.e., 500 cross-validations), each repeti-

tion with a random composition of folds to assess CV error.

To investigate the effect of the TRN size on the predic-

tion ability of all models in scenario S1, TRN was sampled 

according to a defined size (i.e., 55, 110, 165, or 220 individ-

uals) and the validation set (VAL) consisted on the remain-

ing genotypes. As described before, models were fitted to the 

TRN and model error was determined when predicting the 

VAL. This process, including the random sampling of the 

TRN, was repeated 500 times. For the larger TRN size, the 

prediction models were further evaluated. This procedure 

consisted of extracting, at each CV iteration, the predicted 

best yielding genotypes ranked above certain thresholds (10, 

20, 30, and 40%). Then, the performance of the selected 

(10)�̂ =
arg min

�
‖� − X� ‖2

2
+ Pen(�)

fraction was assessed in terms of its observed DMY and PH 

according to the BLUEs derived from model (1). Finally, 

the prediction ability of each model for each selected frac-

tion was estimated as described below (see suppl. Table S4).

In scenario S2, HBLUP fitted with Hall was tested across 

all possible combinations between E and validation environ-

ments. Also, the environmental distinctiveness was assessed 

by the discriminant analysis of principal components DAPC 

(Jombart et al. 2010) using the R package adegenet (Jombart 

2008) based on hyperspectral BLUEs derived from model 

(3).

For all validation approaches, prediction ability for DMY 

was assessed as the correlation r between estimated breed-

ing values and the observed BLUEs derived from model 

(1) for S1 and from model (2) for S2. Predictive abilities of 

bivariate models were estimated based on PH, hyperspec-

tral, and genetic data (for Bivariate_H and Bivariate_G, only 

the corresponding data were included), whereas DMY was 

additionally used only for model training. Mean prediction 

abilities were compared according to Tukey’s honestly sig-

nificant difference (HSD) test (p < 0.01) with the R package 

multcomp (Hothorn et al. 2016). For Lasso and EN, each 

predictor (band), whose regression coefficient was not set 

to zero ( �̂ ≠ 0 ), was extracted and saved in a tabular form. 

Across variable selection runs, bands retaining > 40% of 

the time were considered as selected (recovery rate). The 

regularization method with the highest prediction ability 

based on the smallest number of selected bands was consid-

ered as the best procedure for reducing multicollinearity in 

the hyperspectral data. For Hvsel estimation, selected bands 

derived from the best regularization scheme were used.

Results

In the present study, hyperspectral data were collected by 

two different flights performed after the heading stage, 

which were analyzed both individually and jointly. For all 

the issues under analysis, similar trends with no major con-

tradictions could be observed, regardless of the number of 

flights considered. Therefore, the following sections are 

based on the joint analysis of both flight dates. The main 

results of the adjustment of individual flights can be found 

in the supplementary files (Suppl. Fig. S2, Suppl. Fig. S5, 

Suppl. Table S3).

Heritability and correlation estimates

Across eight environments and two flight dates, the mean 

heritability of the reflectance data was moderate ( h2 = 0.72, 

Fig. 1). VS bands had mostly higher estimates than those 

from the IR. Generally, h2 decreased in the VS with higher 
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wavelength, while the opposite was observed for the IR. 

Estimates were highly variable among the whole spec-

trum (from 0.31 to 0.92), especially in the red edge region 

(~ 720–750 nm), wherein about 30 nm, h2 dropped from 0.73 

(720 nm) to 0.32 (761 nm). Also, DMY and PH were ana-

lyzed in the present study and showed moderate ( h2 = 0.50 

for DMY) to high ( h2 = 0.82 for PH) estimates (Fig. 2).

The magnitudes of the correlations involving DMY were 

higher for PH ( r = 0.57, p < 0.001, Fig. 2) than for each of 

the 400 bands. Between DMY and the hyperspectral data, 

r ranged from −0.19 for bands around 930 to 0.29 nm for 

bands around 750 nm. Estimates ≥ |0.12| were significant 

at the 5% probability level. The mean correlation among 

bands in the VS was slightly higher than the observed for the 

IR (0.17 and 0.11, respectively). On the other hand, bands 

were highly intercorrelated. Bands within the VS as well as 

within the IR were highly positively intercorrelated (Suppl. 

Fig. S1). In contrast, correlations between both regions 

were highly negative. Interestingly, r was very low between 

a small group of bands from the red edge region and the rest 

of the spectrum.

Feature selection for the hyperspectral reflectance 
data

The two regularization methods (Lasso and EN) applied to 

the hyperspectral data performed similarly when predicting 

DMY (r = 0.54, Suppl. Fig. S3). However, they were based 

on a different number of selected variables (Suppl. Fig. S4). 

From the total 400 available bands, only 32 (~ 8%, Suppl. 

Table S2) and 54 (~ 13%) bands were selected by Lasso and 

EN, respectively. EN selected more bands than Lasso; how-

ever, all chosen bands by Lasso were also included in the EN 

selection (Suppl. Fig. S4).Thus, Lasso emerges as the pro-

cedure of choice for the present study because it yielded the 

same predictive power as EN but is based on a simpler pre-

diction model. From the 32 selected bands by Lasso, 26 cor-

responded to the IR and only six to the VS (Fig. 1). These 26 

bands were mostly located at both ends of IR (700–780 nm 

and 925–993 nm). Selected bands for the individual flight 

dates can be also found in Suppl. Fig. S4.

Fig. 1  Heritability estimates (black line) for the hyperspectral bands, 

phenotypic correlations (r, green line) between hyperspectral bands 

and dry matter yield, and recovery rate (%) of hyperspectral bands 

after the least absolute shrinkage and selection operator (Lasso, 

gray-red heatmap) for 274 winter rye hybrids assessed in eight 

environments and two flight dates. The mean heritability across all 

wavelengths is denoted by the dashed black line. Correlation values 

≥ |0.12| are significant (p < 0.05) as shown by the gray dotted lines. 

Selected hyperspectral bands (recovery rate > 40%) are indicated by 

the gray triangles (Lasso variable selection)
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Prediction abilities of models

Two key factors largely affecting the accuracy of prediction 

models based on reflectance data were investigated, namely 

the composition of the H relationship matrix and the TRN 

size. For addressing the first factor affecting HBLUP pre-

dictive power, three HBLUP models based on dissimilar 

H relationship matrices (Hall, Hh2, and Hvsel) were evalu-

ated across the series of environments (Fig. 3, Suppl. Fig. 

S5). Thus, models differed in their number and composi-

tion of incorporated bands. In terms of prediction ability, 

the composition of H was highly relevant. Across environ-

ments, models incorporating all available bands ( r = 0.54) or 

only bands selected by Lasso ( r = 0.59) were considerably 

more accurate than models based only on bands with herit-

abilities > 0.72 ( r = 0.48). For scenario S1, HBLUP models 

based on Hall and Hh2 were therefore discarded and hereafter 

HBLUP models are all based on Hvsel.

For addressing the second factor (i.e., the TRN size), 

the performance of genotypes in scenarios S1 and S2 was 

predicted based on TRN of increased size. In S1, the pre-

diction ability of proposed single-kernel, multi-kernel, and 

bivariate models (Table 1) was assessed with variable TRN 

sizes across environments (Table 2). The TRN sizes evalu-

ated ranged from 55 (~ 20%) to 220 individuals (~ 80%). 

In general, the larger the TRN size, the higher the predic-

tion ability of all models, and the lower their variance. The 

Bivariate_G + H model showed the highest prediction abil-

ity across TRN sizes, followed by the Bivariate_G model, 

the multi-kernel prediction model, the Bivariate_H model, 

and the single-kernel models (HBLUP and GBLUP). On 

the other hand, Bivariate_G + H was associated with the 

highest variability in reduced TRN sizes. This is in par-

ticular observable in Suppl. Fig. S6, where this model was 

compared with single-kernel and multi-kernel models. The 

model Bivariate_G + H estimates breeding values of geno-

types based on PH, genotypic, and hyperspectral data, while 

the multi-kernel model does not include PH. For the smaller 

TRN size, the former showed a predictive ability of 0.56, 

while the latter yielded a predictive ability of 0.46. For the 

largest TRN size, their prediction ability was 0.75 and 0.71, 

respectively. Interestingly, across different selection inten-

sities, the three bivariate models consistently selected the 

taller genotypes, which were not always associated with the 

highest DMY. In contrast, the multi-kernel model selected 

relatively shorter genotypes with an acceptable yield (Supp. 

Table S4). Both single-kernel models performed similarly 

with larger TRN sizes. For example, for TRN size of 80%, 

r was close to 0.60. On the other hand, HBLUP was more 

Fig. 2  Histograms of dry matter yield (DMY) and plant height (PH) 

as well as the phenotypic correlation between both traits, determined 

for 274 winter rye hybrids assessed in eight environments. h2 shows 

the heritability estimates of both traits. ***Significant at the 0.001 

probability level

Fig. 3  Prediction ability for dry matter yield of hyperspectral best 

linear unbiased predictor model (HBLUP) based on different H rela-

tionship matrices, including all available 400 bands (Hall), bands with 

heritability > 0.72, (Hh2), and only selected bands by Lasso (Hvsel) 

for 274 winter rye hybrids. Mean values are shown above each box 

plot and by gray triangles and are significantly different when headed 

by no letter in common (Tukey’s honestly significant difference test; 

α = 0.01%). The dashed line shows the mean value across models
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predictively accurate than GBLUP based on smaller TRN 

sizes. For a TRN size of 55, HBLUP ( r = 0.42) surpassed 

GBLUP ( r = 0.32) by about 25%. A comparison among 

prediction models based on single flight data under valida-

tion scenario S1 is shown in Suppl. Table S3.

Table 2  Mean prediction 

abilities and standard errors for 

dry matter yield of six models 

across different training set 

sizes for 274 winter rye hybrids 

assessed in eight environments 

across two flight dates

a See Table 1 for more information about the listed models
b Within a column, means with no letter in common are significantly different (Tukey’s honestly significant 

difference test; α = 0.01%)

Modela Training set  sizeb

20 (%) 40 (%) 60 (%) 80 (%)

GBLUP 0.32a ± 0.002 0.44a ± 0.002 0.54a ± 0.002 0.60a ± 0.003

HBLUP 0.42b ± 0.004 0.51b ± 0.002 0.56b ± 0.002 0.59a ± 0.003

G + H 0.46c ± 0.003 0.59d ± 0.002 0.66d ± 0.002 0.71d ± 0.003

Bivariate_G 0.54e ± 0.004 0.61e ± 0.002 0.66d ± 0.002 0.69c ± 0.003

Bivariate_H 0.50d ± 0.005 0.55c ± 0.004 0.60c ± 0.002 0.62b ± 0.003

Bivariate_G + H 0.56f ± 0.007 0.65f ± 0.004 0.71e ± 0.003 0.75e ± 0.002

Fig. 4  Prediction ability for dry 

matter yield of the hyperspectral 

best linear unbiased predictor 

model (HBLUP) on each envi-

ronment with increased number 

of environments included in 

the training set (TRN). Models 

were tested under validation 

scenario S2
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In S2, predictions were based on HBLUP models fitted 

with all bands (Hall) collected in a variable number of envi-

ronments. These environments were highly diverse accord-

ing to a discriminant analysis (DAPC) based on reflectance 

data (Suppl. Fig. S7). Locations from the same year were 

mostly clustered together. The PET (2018) environment, on 

the other hand, was distinct to both clusters. Overall, the pre-

diction of DMY in individual environments was improved 

by increased TRN size (Fig. 4). Thus, the higher the number 

of environments included in the TRN, the more accurate the 

prediction. However, the prediction ability was highly vari-

able across environments. For TRN including only one envi-

ronment, WOH (2018) showed the highest prediction ability 

( r = 0.29), while BBG (2017) showed the lowest ( r = 0.13). 

When seven environments were considered as TRN, DMY 

had the highest prediction ability in PRI (2018) ( r = 0.36), 

while it had the smallest in PET (2018) ( r = 0.06).

Discussion

The high versatility of rye as a dual-use crop (Miedaner 

and Laidig 2019) contrasts with traditional breeding 

programs, which are mainly driven by GY (Geiger and 

Miedaner 2009). Thus, the improvement of DMY is often 

pushed into later selection stages. To overcome this situ-

ation, an effective indirect estimation of DMY based on 

data collected on GY plots would be needed. Thus, in the 

present study, single-kernel, multi-kernel, and bivariate 

models based on different information sources collected 

within the same breeding population were compared 

regarding their DMY prediction ability across different 

validation approaches.

Impact of heritability estimates of bands on HBLUP 
models

Across the spectrum, the magnitude and variability of h2 

estimates were higher than those of the correlation ( r ) 

between bands and DMY for combined (Fig. 1) and sin-

gle flight dates (Suppl. Fig. S2). Highly variable h2 for 

bands were also reported in wheat (Krause et al. 2019; 

Montesinos-López et al. 2017). We observed that h2 and 

r showed the greatest variability and the lower values 

within the IR. HBLUP models exploiting all available 

bands were substantially more precise than those fitted 

only with highly heritable bands ( h2 > 0.72). This seems 

counterintuitive from a breeding perspective since, accord-

ing to quantitative-genetic theory (Falconer and Mackay 

1996), highly heritable secondary traits correlated with the 

feature of interest are preferred for indirect selection of the 

target trait. A possible explanation of the low performance 

observed by models based on bands with h2 > 0.72 is that 

the proposed threshold excluded almost all the bands 

belonging to IR. Despite their relatively lower mean r 

with DMY, based on our results, this spectral region still 

captures information closely related to DMY, since bands 

around 750 nm had the highest correlation with DMY 

(Fig. 1). The magnitudes of these correlations were rather 

low but significant (< 0.29; p < 0.05) and are compara-

ble to those stated for biomass in wheat by Hansen and 

Schjoerring (2003).Thus, the exclusion of bands from the 

IR because of their relatively lower h2 deteriorated the 

predictive power of HBLUP models. This is in agreement 

with Montesinos-López et al. (2017), who found that GY 

prediction in wheat was not improved by removing bands 

with lower h2.

Reduction in the dimensionality of hyperspectral 
data

High-throughput phenotyping is a promising tool for 

overcoming the phenotyping bottleneck in modern plant 

breeding (Araus and Cairns 2014). On the one hand, the 

use of hyperspectral sensors can substantially increase the 

amount of data available for dissecting the genetics behind 

the trait of interest. On the other hand, the application of 

this technology on multi-environmental trials is computa-

tionally and economically challenging.

The exploitation of a vast amount of hyperspectral data 

should be performed with caution, since the combination 

of a large number of predictors, each with small effects, 

can negatively influence the accuracy of regression models 

(Ogutu et al. 2012). The high multicollinearity found among 

contiguous bands (Suppl. Fig S1) suggests that performing 

variable selection could be beneficial. In this context, Lasso 

was a valuable tool for reducing the number of predictors 

incorporated into the HBLUP model. Also, with the constant 

development of high-resolution HTP sensors, the utility of 

feature selection procedures may be increased in proportion 

to the incorporation of broader spectral regions.

Informativeness of the VS and IR spectral regions

Use of HTP based on hyperspectral sensors can be time-con-

suming and resource-intensive although recent substantial 

improvements have occurred. Considerable overlaps were 

observed among specific bands highlighted by Lasso and 

EN in single and combined flight dates (Suppl. Fig. S4). 

Therefore, the reflectance data from these specific wave-

lengths may be of great interest to practical plant breed-

ers. Redirecting computational costs toward these selected 

regions could reduce the efforts in data management. By 
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this, the superiority of hyperspectral sensors in terms of data 

collection and calibration compared to cheaper devices cov-

ering fewer reflectance regions (e.g., RGB cameras, Araus 

and Cairns 2014) may be fully exploited in a less resource-

demanding manner.

In the present study, bands across the whole spectrum 

showed a significant correlation with DMY, with the IR 

displaying the highest correlation estimates (Fig. 1). Also, 

when the IR was excluded, the prediction ability of HBLUP 

substantially dropped as discussed above. The variable 

selection procedures applied have highlighted single bands 

located in the VS and the IR as highly informative for DMY 

prediction (Fig. 1, Suppl. Table S2, Suppl. Fig. S4). Nev-

ertheless, the majority of the selected bands were located 

within the IR. These findings suggest that all spectral regions 

contain information potentially useful for DMY prediction; 

however, IR may be more informative than of VS.

These findings also indicate that a reduction in predic-

tive power is expected if spectral fingerprints of genotypes 

are based on a reduced number of spectral regions. This 

is consistent with literature highlighting the importance of 

the VS and the IR in assessing essential plant parameters. 

The behavior of plants exposed to visible light has been 

widely investigated since a large proportion of this radia-

tion is absorbed by the pigments present in green tissues 

(Lichtenthaler 1996). For instance, bands within the blue 

(450–520 nm) and green (520–600 nm) channels were found 

to be sensitive to aboveground biomass in wheat (Wang et al. 

2017). In the transition from VS to IR, the so-called red 

edge, not only the highest correlation between bands and 

DMY was detected but also a relatively increased density 

of selected bands. The singularity of this region was also 

observed in the fact that it was correlated neither with VS 

nor with IR (Suppl. Fig. S1). Between 680–750 nm, the 

reflectivity of chlorophyll is sharply increased, a phenom-

enon that can be used to remotely assess plant health and 

growth (Seager et al. 2005) as well as chlorophyll concen-

trations (Filella and Penuelas 1994) and biomass at high 

canopy densities (Mutanga and Skidmore 2004). Similarly, 

the IR contains important information about physiological 

processes affecting biomass including chlorophylls and pho-

tosynthesis activity, as well as plant water status (Tucker 

1979). The present work included IR data up to ~ 1000 nm, 

which have been revealed as highly relevant for DMY pre-

diction. Considering that currently there are configurations 

that allow sensors to collect a broader IR spectrum, further 

research should focus on the benefits of deploying hyper-

spectral sensors capable of collecting additional reflectance 

data up to 2500 nm.

Improved prediction abilities by combining 
different sources of information

Under both validation procedures (S1 and S2), models were 

calibrated in a TRN of increased size. Overall, a positive 

correlation between the prediction abilities of models and 

TRN size was observed (Table 2, Fig. 4, Suppl. Fig. S6). 

The positive influence of TRN size in GS accuracy is well 

acknowledged in animal (VanRaden et al. 2009) and plant 

(Marulanda et al. 2015) breeding. Based on our results 

from the validation scenario S1, this trend also applies to 

HBLUP, multi-kernel, and bivariate models. Interestingly, 

the negative impact of reduced TRN was dissimilar across 

single-kernel models. While in larger TRN, GBLUP was 

more accurate than HBLUP, the opposite was observed in 

smaller TRN (Table 2, Suppl. Fig. S6). The reduction in the 

TRN size to a quarter (from 80 to 20%) represented a decay 

of about one-half and one-third in the prediction abilities of 

GBLUP and HBLUP, respectively. The predictive power of 

HBLUP was substantially higher than linear models fitted 

with VIs reported in a previous study (Galán et al. 2020). 

This is in complete agreement with Aguate et al. (2017) and 

Montesinos-López et al. (2017), who also found the supe-

riority of models based on whole-spectrum data instead of 

on VIs.

In the validation scenario S2, prediction abilities were 

lower than in S1, indicating that predicting the yield of 

genotypes in a new environment is challenging (Fig. 4). In 

the DAPC (Suppl. Fig. S7), environments within the same 

year were grouped, reflecting the strong influence of the year 

effect, not only on agronomic traits (Galán et al. 2020) but 

also in the hyperspectral data collected at each site. The envi-

ronmental conditions were very contrasting between 2017 

and 2018. In Germany, 2018 was a very dry year, especially 

on the light sandy soils where rye is usually grown, and our 

experiments were conducted, e.g., Petkus, which has a very 

light soil (Suppl. Table S1). In this context, the inclusion of 

the maximum number of environments in the TRN, leaving 

only one as a validation environment was beneficial. Under 

CV accounting for environmental sampling, Utz et al. (2000) 

also observed that the proportion of the genotypic variance 

explained by models was enhanced by the inclusion of more 

environments in the TRN, especially for moderate inherited 

traits such as GY and GY components. In our study, HBLUP 

performance was even smaller if the VAL was composed of 

an environment poorly correlated with the sites within the 

TRN. Since models in S2 borrow information from closely 

related environments, prediction of these low correlated 

environments following this scheme is not recommended.

These findings suggest that the incorporation of hyper-

spectral data to enhance DMY prediction in rye could 

improve breeding efficiency. First, if due to budget con-

straints, a larger TRN size is not affordable, HBLUP could 
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be a valid strategy to precisely predict DMY. Second, the 

higher prediction ability of multi-kernel and bivariate mod-

els indicates that the incorporation of reflectance data and 

agronomic traits like PH into GS routines has a synergetic 

effect, when these data are correlated with the target trait. 

These findings are consistent with Krause et al. (2019), who 

found that for predicting GY in wheat, single-kernel models 

fitted with genomic- or hyperspectral-derived relationship 

matrices yielded similar results but multi-kernel models 

integrating both matrices surpassed both.

However, our results suggested that the use of bivari-

ate models should be used with caution. On the one hand, 

they had the highest variability in small TRN. Under these 

circumstances, the sampling variability is substantially 

increased. Therefore, the advantage of bivariate over uni-

variate models is reduced. Thus, multivariate regression 

analysis is not recommended for small sample sizes. On the 

other hand, the positive correlation between PH and DMY 

(Fig. 2) suggests that these prediction models should be used 

with care because taller genotypes would tend to be favored 

in the selection as indeed observed in Suppl. Table S4. So, 

breeding for increased lodging resistance would be highly 

advisable since even small differences in PH of the selected 

genotypes will multiply when subsequent breeding cycles 

are contemplated.

It has to be considered that we estimated our prediction 

abilities within one larger population by fivefold cross-vali-

dation. Validation scenario S1 was fitted with environmen-

tally and genetically related data, representing a possible 

source of bias on the estimation of the predictive power 

of the models. Further research is needed to predict DMY 

across genetically different plant materials and/or different 

selection cycles, i.e., after recombination of selected entries. 

This would also include results from untested environments 

that might have a high impact on prediction ability, as shown 

in Fig. 4.

Conclusions

While the needs of sustainable renewable energy sources 

increase, the interest for high-yielding varieties to diversify 

maize-based cropping systems is boosted in proportion. To 

meet this demand, novel breeding strategies are needed to 

fully exploit the potential of rye as a biomass substrate. This 

study provided strong evidence that hyperspectral data can 

substantially improve the indirect selection of DMY within 

the same breeding population, thus enabling a cost-effective 

dual-purpose program using both DMY and GY as target 

traits. The reduction in data dimensionality could further 

enhance the prediction ability of models based on reflec-

tance data. Relationship matrices derived from HTP data 

could be utilized as an alternative to GS when molecular 

data are not available, especially under reduced TRN sizes. 

Additionally, they are a suitable complementary source of 

information to leverage the accuracy of genomic tools. The 

superiority of the bivariate model over the multi-kernel 

model indicates that agronomic traits correlated with DMY 

can further enhance the efficiency of selection. Similar to 

the comparison of model performances across different TRN 

sizes, it would be relevant for practical breeding to investi-

gate prediction ability across a varying degree of relatedness 

between the TRN and the VAL. Such analysis could assist 

breeders facing challenging prediction scenarios, including 

predicting new environments or novel lines that are unre-

lated to the training population.
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Supplementary Table S1 Characterization of the four locations in Germany. 

Location Coordinates 
Altitude 
(m a.s.l.) 

Soil 
type 

pH 

P2O5 
[mg/100g 

soil] a 

K2O 
[mg/100g 

soil] a 

Mg 
[mg/100g 

soil] a 

OM 

[%]a 

Nmin 
[kg/ha] 

a 

Growing-
Season 

Precipitation 

(mm) b 

Growing-
Season 
Average 

temperature 

(°C) b 

Sowing 
dates 

Harvest 
dates 

Flight 
dates 

Bernburg 
51°49'37.66N  
11°43'37.15''E 

85 
Black 
soil 

--------------------- 2017 --------------------- 

7.4 26 26 8 2 60 203  8.6  
Sept. 30 

2016 
June 15 

2017 
May 23 
2017 

--------------------- 2018 --------------------- 

7.4 25 33 8 2 44 300 7.2 
Sept. 29 

2017 
June 6  
2018 

May 28 & 
June 06 

2018 

Petkus 
51°59'2.61"N 
13°21'29.38"E 

137 
Sandy 
loam 

--------------------- 2017 --------------------- 

6.48 13.2 5.22 7.21 - 36 319 6.2 
Oct. 10 
2016 

June 20 
2017 

June 08 & 
June 18 

2017 
--------------------- 2018 --------------------- 

6.48 1.2 5.71 4.43 1.51 33 258 8.2 
Oct 17 
2017 

June 8 
2018 

May 31 & 
June 07 

2018 

Wohlde 
52°48'36.01"N 
10°0'46.73"E 

77 
Loamy 
sand 

--------------------- 2017 --------------------- 

5.7 7 10.8 8 - 45 440 7.1 
Sept. 29 

2016 
June 21  

2017 

May 19 & 
June 19 

2017 
--------------------- 2018 --------------------- 

5.8 7 14.8 4.7 - 25 410 8.05 
Oct. 17 
2017 

June 13  
2018 

May 25 
and June 
05 2018 

Prislich 
53°15'58.73"N 
11°39'36.11"E 

38 
sandy 
loam 

--------------------- 2017 --------------------- 

5.8 4.2 16 6 - 32 180 13.8 
Oct. 10 
2016 

June 21  
2017 

June 09 
and June 
20 2017 

--------------------- 2018 --------------------- 

5.9 4.5 19 3 - 4 137 7.8 
Sept. 20 

2017 
June 14 

2018 

May 29 & 
June 12 

2018 
a Soil condition: Phosphorus Pentoxide P2O5 [mg/100g soil]; Potassium oxide K2O [mg/100g soil]; Magnesium Mg [mg/100g soil]; Organic matter 
OM [%]; Nitrogen concentration in the 0-60 cm soil layer Nmin [kg/ha]. 

b Weather data is incomplete due to technical problems in the weather stations in Bernburg (Oct.-Dec. 2016) and Prislich (Oct 2016-March 2017).  
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Supplementary Table S2 Hyperspectral bands (WL) selected (recovery rate > 40%) 

by the least absolute shrinkage and selection operator (Lasso) for 274 winter rye 

hybrids assessed in eight environments and two flight dates. 

Visible Spectrum a Infrared radiation a 

WL410, WL414, 

WL565, WL588, 

WL673, WL680 

WL702, WL721, WL723, WL733, WL739, WL742, 

WL758, WL759, WL761, WL764, WL825, WL854, 

WL908, WL917, WL932, WL935, WL939, WL942, 

WL945, WL959, WL968, WL970, WL978, WL980, 

WL987, WL993 

a  
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Supplementary Table S3 Mean prediction abilities and standard errors for dry matter 

yield of six models across different training set sizes determined for 274 winter rye 

hybrid assessed in eight environments. Hyperspectral data was collected on two flight 

dates (“first” and “second”), which were separately analyzed.  

Model a  Flight 
date 

Training set size b 
 20% 40% 60% 80% 

HBLUP First 0.41g  ± 0.004  0.49e ± 0.002 0.53f   ± 0.002 0.54de ± 0.004 
 Second 0.44ef ± 0.003  0.49e ± 0.002 0.51g  ± 0.003 0.52ef  ± 0.004 
G+H First 0.42fg ± 0.003 0.56d ± 0.002 0.64d  ± 0.002 0.68c   ± 0.003 
 Second 0.48d  ± 0.003 0.59c ± 0.002 0.65c  ± 0.002 0.70b  ± 0.003 
Bivariate_G First 0.53bc± 0.004 0.61b ± 0.002 0.67bc ± 0.003 0.68c  ± 0.003 
 Second 0.54ab± 0.003 0.65a ± 0.003 0.67bc ± 0.003 0.68c  ± 0.003 
Bivariate_H First 0.45e  ± 0.005 0.50e ± 0.004 0.55e  ± 0.003 0.55d  ± 0.004 
 Second 0.44ef ± 0.006 0.48e ± 0.006 0.49g  ± 0.005 0.50f   ± 0.005 
Bivariate_G+H First 0.52c  ± 0.007 0.61b  ± 0.005 0.68b  ± 0.003 0.72b  ± 0.003 
 Second 0.56a  ± 0.007 0.65a ± 0.004 0.70a  ± 0.004 0.75a  ± 0.002 
a See Table 1 for more information about the listed models. 
b Within a column, mean values followed by no letter in common are significantly 
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Supplementary Table S4 Prediction ability ( ), dry matter yield (DMY, dt ha-1), and plant height (PH, cm) obtained at different 

selected fractions by prediction models (TRN=80%) fitted with 274 winter rye hybrids assessed in eight environments and two flight 

dates.  

Model a Criterium Selected fraction  b 

10% 20% 30% 40% 
 SE  SE  SE  SE  

GBLUP   0.33 0.02 0.35 0.01 0.43 0.01 0.46 0.01 0.39 b 
HBLUP   0.25 0.02 0.31 0.01 0.38 0.01 0.42 0.01 0.34 c 
G+H   0.30 0.02 0.39 0.01 0.43 0.01 0.47 0.01 0.40 b 
Bivariate_G   0.42 0.01 0.44 0.01 0.49 0.01 0.51 0.01 0.47 a 
Bivariate_H   0.25 0.02 0.36 0.01 0.41 0.01 0.40 0.01 0.36 c 
Bivariate_G+H   0.33 0.02 0.45 0.01 0.48 0.01 0.50 0.01 0.44 a 
           
GBLUP DMY 122.30 0.04 121.76 0.03 121.21 0.02 120.88 0.02 121.54 (+1,7%) d 
HBLUP DMY 122.23 0.04 121.77 0.03 121.31 0.02 120.98 0.02 121.57 (+1,8%) d 
G+H DMY 122.64 0.04 122.04 0.03 121.59 0.02 121.26 0.02 121.89 (+2,0%) b 
Bivariate_G DMY 122.67 0.04 121.99 0.03 121.41 0.02 121.07 0.02 121.79 (+1,9%) c 
Bivariate_H DMY 122.31 0.04 121.73 0.03 121.30 0.02 121.05 0.02 121.60 (+1,8%) d 
Bivariate_G+H DMY 122.84 0.03 122.13 0.03 121.65 0.02 121.33 0.02 121.99 (+2,1%) a 
           
GBLUP PH 119.24 0.06 118.57 0.04 117.95 0.04 117.64 0.03 118.35 (+1,7%) e 
HBLUP PH 119.10 0.05 118.74 0.04 118.36 0.03 118.06 0.03 118.57 (+1,9%) d 
G+H PH 119.63 0.05 119.00 0.04 118.56 0.03 118.26 0.03 118.86 (+2,2%) c 
Bivariate_G PH 120.34 0.06 119.33 0.05 118.72 0.03 118.36 0.03 119.19 (+2,5%) b 
Bivariate_H PH 119.92 0.06 119.37 0.04 118.83 0.03 118.41 0.03 119.13 (+2,4%) b 
Bivariate_G+H PH 120.42 0.06 119.63 0.04 119.08 0.03 118.74 0.03 119.47 (+2,7%) a 

a See Table 1 for more information about the listed models. 

, mean; SE, standard error of the mean;  , mean across all selected fractions. 
b The percent difference between the mean across all selected fractions and the population mean (DMY=119.48 dt ha-1; 

PH=116.34 cm) is listed in brackets. Mean values followed by no letter in common are significantly different (Tukey’s honestly 

significant difference test;  =0.01%). 
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Supplementary Fig. S1 Pearson’s coefficients of correlation (r) across hyperspectral 

bands based on 274 rye hybrids across eight environments. 

34



 

Supplementary Fig. S2 Heritability estimates (black line) for the hyperspectral bands, 

phenotypic correlations (r, green line) between hyperspectral bands and dry matter 

yield, and recovery rate (%) of hyperspectral bands after the least absolute shrinkage 

and selection operator (Lasso, gray-red heatmap) for 274 winter rye hybrids assessed 

in eight environments shown by flight date. The mean heritability across all 

wavelengths is denoted by the dashed black line. Correlation values |0.12| are 

significant (p<0.05) as showed by the gray dotted lines. Selected hyperspectral bands 

(recovery rate > 40%) are indicated by the gray triangles. 
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Supplementary Fig. S3 Prediction ability for dry matter yield based the least absolute 

shrinkage and selection operator (Lasso) and elastic net (EN) fitted with hyperspectral 

data collected in eight environments and two flight dates for 274 winter rye hybrids. 

Mean values are shown above each box plot and by gray triangles and are significantly 

different when headed by no letter in common (Tukey’s honestly significant difference 

test;  =0.01%). 
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Supplementary Fig. S4 Hyperspectral bands selected (recovery rate > 40%) by the least absolute shrinkage and selection operator 

(Lasso) and  elastic net (EN) fitted with hyperspectral data collected for 274 winter rye hybrids assessed in eight environments and 

two flight dates (1; First, 2; Second), which were individually and combined (C) analyzed. 3
7



 

 

Supplementary Fig. S5 Prediction ability for dry matter yield of hyperspectral best 

linear unbiased predictor model (HBLUP) collected on single flight dates based on 

different H relationship matrices, including all available 400 bands (Hall), bands with 

heritability > mean heritability across wavelengths (Hh2), and only selected bands 

(Hvsel) for 274 winter rye hybrids. Mean values are shown above each box plot and are 

significantly different when headed by no letter in common (Tukey’s honestly 

significant difference test;  =0.01%). The mean prediction ability across all models 

and flight dates is denoted by the dashed black line. 
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Supplementary Fig. S6 Prediction ability for dry matter yield of single-kernel 

(Genomic best linear unbiased predictor, GBLUP and Hyperspectral best linear 

unbiased predictor, HBLUP), multi-kernel (G+H), and bivariate (Bivariate_G+H) 

models trained in four different training set (TRN) sizes for 274 winter rye hybrids. 

Models were tested under validation scenario S1. TRN sizes in percentage are 

shown at the top of each subplot. Mean values are shown above each box plot and by 

black triangles. Means headed within the same TRN size by no letter in common are 

significantly different (Tukey’s honestly significant difference test;  =0.01%). 
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Supplementary Fig. S7 Discriminant analysis of principal components (DAPC) 

showing the clustering pattern of 274 winter rye hybrids across eight environments 

based on hyperspectral reflectance data. Scatter plot (A) for the first two discriminant 

functions (DA) including at the top left the PCA eigenvalues retained (in black) and at 

the bottom left the variation explained by each DA eigenvalues. Densities of individuals 

on the first (B) and the second (C) DA are also displayed.  
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Abstract

Key message Hyperspectral data is a promising complement to genomic data to predict biomass under scenarios of 

low genetic relatedness. Sufficient environmental connectivity between data used for model training and validation 

is required.

Abstract The demand for sustainable sources of biomass is increasing worldwide. The early prediction of biomass via indi-
rect selection of dry matter yield (DMY) based on hyperspectral and/or genomic prediction is crucial to affordably untap 
the potential of winter rye (Secale cereale L.) as a dual-purpose crop. However, this estimation involves multiple genetic 
backgrounds and genetic relatedness is a crucial factor in genomic selection (GS). To assess the prospect of prediction using 
reflectance data as a suitable complement to GS for biomass breeding, the influence of trait heritability ( H2 ) and genetic 
relatedness were compared. Models were based on genomic (GBLUP) and hyperspectral reflectance-derived (HBLUP) 
relationship matrices to predict DMY and other biomass-related traits such as dry matter content (DMC) and fresh matter 
yield (FMY). For this, 270 elite rye lines from nine interconnected bi-parental families were genotyped using a 10 k-SNP 
array and phenotyped as testcrosses at four locations in two years (eight environments). From 400 discrete narrow bands 
(410 nm–993 nm) collected by an uncrewed aerial vehicle (UAV) on two dates in each environment, 32 hyperspectral 
bands previously selected by Lasso were incorporated into a prediction model. HBLUP showed higher prediction abilities 
(0.41 – 0.61) than GBLUP (0.14 – 0.28) under a decreased genetic relationship, especially for mid-heritable traits (FMY 
and DMY), suggesting that HBLUP is much less affected by relatedness and H2 . However, the predictive power of both 
models was largely affected by environmental variances. Prediction abilities for DMY were further enhanced (up to 20%) 
by integrating both matrices and plant height into a bivariate model. Thus, data derived from high-throughput phenotyping 
emerges as a suitable strategy to efficiently leverage selection gains in biomass rye breeding; however, sufficient environ-
mental connectivity is needed.

Keywords Biomass · Genetic relatedness · High-throughput phenotyping · Genomic prediction · Prediction ability · Rye

Introduction

Worldwide, the consumption of energy obtained from 
renewable origins, especially bio-based sources, is rising 
(World Bioenergy Association 2019). In the European 
Union (EU), for instance, the share of renewable energy 
is expected to be between 55 and 75% of the total energy 
consumption in 2050, increasing in proportion the needs 
for biomass (European Commission 2011). New policy 
directives have established sustainability guidelines for 
bioenergy production (European Union 2010). For exam-
ple, in Germany, the principal European biogas producer, 
the permitted share of maize (Zea mays L.) as the most 
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common fermentation substrate has been limited to 44% 
by 2021 (Renewable Energy Sources Act “EEG”, EEG 
2017). Thus, suitable alternatives are welcome to diversify 
maize-based biomass production.

Among the small-grain cereals, winter rye (Secale cere-

ale L.) stands out for its vigorous growth and enhanced 
tolerance to abiotic and biotic stress factors. Europe is 
the largest rye grower worldwide covering about 81% of 
the global area with Russia, Poland, and Germany being 
the main producers (FAO 2019). In a previous study, rye 
demonstrated its high dry matter yield (DMY) potential 
even on sandy soils and under drought stress (Galán et al. 
2020a). Under these conditions, rye yielded 8.4 t dry 
matter  ha−1, and under better environmental conditions, 
yields were up to 14.7 t dry matter  ha−1. Rye can, there-
fore, represent a suitable alternative for biomass produc-
tion in a variety of agroecological conditions, including 
areas where the cultivation of other cereal crops would not 
be competitive (Geiger and Miedaner 2009). Considering 
that three quarters of the rye harvest is used for non-food 
purposes, rye appears as a sustainable alternative source 
of biomass (Geiger and Miedaner 2009; Miedaner et al. 
2012).

In Germany, only 4 rye varieties are currently registered 
for whole plant silage (Bundessortenamt 2019). Rye is, how-
ever, mainly bred for grain yield (GY; Haffke et al. 2014) 
which is, in the breeding scheme proposed here, already 
assessed in the first year of general combining ability testing 
(GCA-1), generally sharing only less-related genotypes over 
the years (Suppl. Fig. 1). Then, within each selection cycle, 
a selected fraction of GCA-1 is re-evaluated for GY and 
additionally for DMY by destructive methods in duplicated 
GCA-2 experiments the following year, mainly due to the 
high costs of assessing DMY in a large GCA-1 population. 
At these first selection stages, the enhancement of DMY is, 
therefore, heavily dependent on the adequate exploitation of 
indirect selection (Falconer and Mackay 1996).

Higher selection gains have been reported when plant 
height (PH) was used as a secondary trait instead of GY to 
indirectly estimate DMY in hybrid rye (Haffke et al. 2014; 
Galán et al. 2020a). Recently, multi-kernel models jointly 
using reflectance and genomic data as alternative sources 
of information and bivariate models including also the rou-
tinely assessed PH were suggested as superior strategies to 
leverage rye as a dual-purpose crop in an affordable manner 
for the breeder (Galán et al. 2020b). By this, the available 
genetic variation present in the GCA-1 population may be 
better exploited without the need to duplicate these large-
scale trials and, therefore, the selection gain for DMY could 
be further enhanced. In consequence, fewer and superior 
DMY-genotypes being tested in GCA-1 trials could be iden-
tified, reducing the amount of capital, time, and labor needed 
to conduct the destructive sampling of DMY in GCA-2 

trials. In this context, the non-destructive assessment of 
DMY at earlier stages arises as a crucial prerequisite.

Imaging-based phenotyping quantitatively measures the 
interaction (e.g., absorbance, reflectance, or transmittance of 
photons) between the incident light and plant tissues, which 
at specific regions of the electromagnetic spectrum is linked 
to a wide range of morphological and physio-chemical can-
opy properties (Li et al. 2014). As observed by Rincent et al. 
(2018), this interaction is mainly mediated by the chemical 
composition of the tissues, which is itself determined by 
endophenotypes, intermediate molecular phenotypes asso-
ciated with a quantitative trait (Mackay et al. 2009), and 
genetics. Thus, based on reflectance data, high-throughput 
phenotyping (HTP) can acquire a considerable amount of 
detailed phenotypic information of key traits from a large 
number of genotypes, emerging as a valuable breeding tool 
(Montes et al. 2007; Cabrera-Bosquet et al. 2012; Würschum 
2019).

Examples of the application of HTP in plant breeding 
are among others, the estimation of above-ground biomass 
(Babar et al. 2006; Montes et al. 2011; Busemeyer et al. 
2013; Fu et al. 2014; Barmeier and Schmidhalter 2017; Yue 
et al. 2017, 2018) as well as GY, plant responses to biotic 
and abiotic stress, nitrogen use efficiency, nutrient status, 
early plant vigor, seeds quality traits, leaf physiology and 
biochesmistry, vegetation cover fraction, and leaf area index 
(reviewed by Fahlgren et al. 2015; Yang et al. 2017; Wür-
schum 2019). Therefore, it has been proposed to remotely 
phenotype large breeding populations in a reliable and cost-
effective manner (Furbank and Tester 2011; White et al. 
2012). HTP platforms, including uncrewed aerial vehicles 
(UAVs) such as drones mounted with hyperspectral cam-
eras, can simultaneously collect hundreds of high-resolution 
images, screening the electromagnetic spectrum (from 400 
up to 2500 nm) in a continuous mode (Araus and Cairns 
2014). Consequently, this noninvasive technology represents 
a valuable tool for the improvement of complex traits (Finkel 
2009; Fiorani and Schurr 2013).

Genome-wide molecular markers integrated into genomic 
selection (Meuwissen et al. 2001) have been successfully 
applied in several study cases in hybrid rye breeding for rel-
evant traits, e.g., GY and GY components (Auinger et al. 2016; 
Bernal-Vasquez et al. 2017; Miedaner et al. 2019). Moreover, 
in previous studies, reflectance fingerprints recorded by HTP 
platforms represented a valuable tool to improve the prediction 
ability of DMY in hybrid rye of models based on agronomic 
(Galán et al. 2020a) and genomic information (Galán et al. 
2020b). These studies have shown the benefits of integrating 
hyperspectral and molecular information for predicting DMY 
of unphenotyped candidates within single or closely related 
populations. The proposed models were cross-validated, where 
rye lines derived from the same cross were randomly allocated 
to the training (TRN) or validation (VAL) sets. Considering 
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the breeding scheme at hand, where DMY is tested at later 
stages, predictions of candidates of subsequent selection 
cycles, where TRN and VAL correspond to different, largely 
independent genetic backgrounds, would be of utmost inter-
est. This “across-cycles” prediction would allow, for instance, 
estimating the DMY performance of GCA-1 candidates (being 
tested only for GY at this stage) by training the model with 
GCA-2 phenotypic data from one or several previous selection 
cycles (Suppl. Fig. 1). It is under these scenarios where the 
largest contribution of predictive breeding towards an afforda-
ble dual-purpose rye breeding program is expected. If the data 
available consist of multiple connected cycles, breeders could 
consider to combine them to improve the predictive power of 
models (Auinger et al. 2016).

However, the predictive power of GS critically depends 
on a close relationship between TRN and VAL (Habier et al. 
2007; Miedaner et al. 2019). Reduced or even negative pre-
diction accuracies were reported for GS among less related 
bi- and multiparental families in several crops, including 
wheat (Herter et al. 2019), maize (Riedelsheimer et al. 2013; 
Lehermeier et al. 2014), sugar beet (Würschum et al. 2013), 
and barley (Thorwarth et al. 2017). Similarly, genomic pre-
diction models showed modest prediction ability for complex 
traits in rye (e.g., GY) when applied between bi-parental fami-
lies even though they were connected by a common parental 
line (Wang et al. 2014). Here, the question of whether alterna-
tive or complementary approaches to GS for leveraging pre-
diction accuracies across less connected datasets emerges as 
highly relevant for biomass breeding in rye.

The aim of our study was, therefore, to answer this ques-
tion by evaluating and comparing genomic- and hyperspectral-
enabled predictions for three biomass-related traits (DMY, 
FMY, and DMC) in rye under a varying degree of related-
ness between TRN and VAL. Additionally, the advantages of 
combining different sources of information in multi-kernel 
and bivariate models to leverage the prediction of DMY were 
evaluated. We employed 270 winter rye lines from nine inter-
connected bi-parental families, including their parental com-
ponents tested as testcrosses in 8 environments (= location-
year combination). While keeping the TRN size constant, our 
specific objectives were to perform (1) prediction of progenies 
from half-sib and unrelated parents, (2) prediction using only 
progenies from unrelated parents, and (3) prediction of new 
progenies in a new environment.

Materials and methods

Plant materials, field experiments, hyperspectral 
and molecular data

The plant materials, field experiments, molecular and 
hyperspectral data analyzed in the present study have been 

described before in detail by Galán et al. (2020b). In short, 
ten diverse parental lines of the Petkus (seed parent) gene 
pool were crossed following a single-round robin design 
(Verhoeven et al. 2006). F1 progenies were derived from 
each of the chain crosses, i.e., line 1 × line 2, line 2 × line 3, 
…, line 10 × line 1. After self-fertilization of single F1 plants 
for four consecutive years  (S4 generation), 264 recombinant 
inbred lines (RILs) were obtained. The ten bi-parental fami-
lies ranged from 4 up to 32 RILs (Supp. Fig. S2) and were 
clearly distinct in a principal component analysis (PCA) 
based on molecular data with little overlap between unre-
lated crosses in the first two dimensions (Supp. Fig. S3). A 
total of 274 three-way hybrids [(A • B) × C] were produced 
from the cross of these 264 RILs and their ten parental com-
ponents with a single-cross tester from the opposite (pollina-
tor) gene pool. They were evaluated in two adjacent trials 
laid out as a resolvable incomplete block design (α-lattice 
design) with two replicates in 2017 and 2018 at each of four 
ecologically different locations (Bernburg, Petkus, Wohlde 
and Prislich) in Northern Germany (i.e., eight location-year 
combinations hereafter referred as “environments”). All 274 
testcrosses were used for estimating means, variance compo-
nents, and heritabilities (Table 2), whereas 4 genotypes were 
not considered for prediction modeling as described in later 
sections. Plots were harvested at the late milk stage (Meier 
1997) to get the respective fresh biomass yield (FMY, dt 
 ha−1) per plot. During harvest, representative samples of 
about 1000 g were weighed from each plot and oven-dried 
to a constant weight at 110 °C. Dry matter content (DMC, 
%) was determined by weight differences. Then, DMY (dt 
 ha−1) per plot was estimated as DMY = FMY × DMC/100. 
Also, PH (cm) was recorded at each plot.

During the grain-filling stage, an UAV (Camflight 
FX8HL, Sandnes, Norway) fitted with a hyperspectral cam-
era (HySpex Mjolnir V-1240, Skedsmokorset, Norway) 
collected reflectance fingerprints consisting of 400 bands 
(410 nm – 993 nm) for all genotypes in all environments. 
The UAV flew at about 25 m above plots, around solar noon-
time two times per environment (except in Bernburg 2017 
where only one flight took place). Then each plot was iden-
tified on the obtained images by a polygon. Raw data were 
radiometrically calibrated (HySpex PostProcessor Version 
1.2) and normalized based on the incident sunlight as well 
as orthorectified and georeferenced via the PARGE Software 
(ReSe Applications LLC, Wil, Switzerland). Lastly, all data 
points within each wavelength and polygon were averaged, 
resulting in one spectrum per plot. Then, these data were 
transferred to a tabular data frame, including the computed 
reflectance values of all bands for all genotypes for further 
analysis.

The 264 RILs and their ten parental components were also 
genotyped with an Illumina INFINIUM chip with 9,963 sin-
gle nucleotide polymorphisms (SNPs) assays (KWS SAAT 
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SE & Co. KG, Einbeck, Germany). Data quality analysis 
consisted of the exclusion of SNPs showing more than 10% 
missing values or a minor allele frequency (MAF) < 0.05. 
Missing values in the remaining data were then imputed by 
the software Linkimpute (Money et al. 2015). Then, data 
were again screened for MAF < 0.05. After this procedure, 
6,420 markers remained for further analyses.

Phenotypic data analysis

The analyses were based on adjusted entry means (best lin-
ear unbiased estimators, BLUEs) for all agronomic traits 
estimated within and across environments for subsequent 
incorporation into prediction models. The combined analysis 
across environments as well as the data adjustment within 
single environments were conducted following model (1) 
and model (2) from Galán et al. (2020b), respectively. The 
full model can also be found in the Supplementary File 1. 
For the analysis across environments within the same year, 
the year main effect and corresponding interactions with 
genotypes were dropped from the mixed model. Phenotypic 
data were filtered for outliers at the trial level using the Bon-
ferroni-Holm test (Bernal-Vasquez et al. 2016). Bands were 
deleted from plots identified as an outlier for DMY.

Stage-wise procedure for biomass traits prediction

The incorporation of genomic and hyperspectral data for 
predicting DMY, FMY, and DMC was conducted by a three-
stage procedure (Piepho et al. 2012). This analysis, together 
with the corresponding linear mixed and prediction models 
employed at each stage, was previously described in detail in 
Galán et al. (2020b). All statistical analyses were performed 
within the R-environment v. 3.4.4 (R Core Team 2018).

In the first stage of this analysis, bands were adjusted 
across flight dates per environment. Then, the obtained 
adjusted entry means (BLUEs) were used in the second stage 
for the estimation of BLUEs per genotypes across environ-
ments. At this second stage, heritability ( H2 ) was estimated 
for all agronomic traits and each band across environments 
as

where v is the mean variance of a difference of two adjusted 
genotype means (BLUEs) estimated for phenotypic and 
hyperspectral data (Piepho and Möhring 2007). BLUEs 
of genotypes were calculated with the software package 
ASReml-R v. 3.0 (Gilmour et al. 2009).

In the third stage, the phenotypic and hyperspectral 
BLUEs were used for fitting prediction models to estimate 

H
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σ
2
g

σ2
g
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v
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best linear unbiased predictions (BLUP) of genotypic effects 
for each agronomic trait based on genetic and hyperspectral 
data. Two single-kernel prediction models were fitted with 
genetic (genomic BLUP, GBLUP) or hyperspectral (hyper-
spectral BLUP, HBLUP) data with n = 270 individuals, 
based on the m = 6,420 conserved SNP markers or b = 32 
bands, respectively.

For GBLUP, the random genetic values (effects) were 
estimated based on genetic data incorporated into G, a 
genomic additive relationship matrix (Habier et al. 2013). G 
was calculated with the synbreed package (Wimmer et al. 
2012) in R according to the “method I” of VanRaden (Van-
Raden 2008) as G =

ZZ′

2
∑

pi(1−pi)
 , where Z = M - P , M is the 

n × m marker matrix reflecting the SNP genotype of nth indi-
vidual at the mth SNP position the of alleles coded as 0, 1, 
and 2 for  A1A1,  A1A2, and  A2A2, respectively, P contains a 
n × m matrix of allele frequencies multiplied by 2, pi is the 
allele frequency of the ith allele. For the prediction scenario 
S2 (described below), the GBLUP model was adapted from 
the model (7) in Bernal-Vasquez et al. (2017) as

where y is the vector of BLUEs of genotype trait values 
obtained from within-environments, X is the design matrix 
of the environments,� is the vector of environments effects, 
Zg is the marker matrix for genotypes, and u

g
 the vector of 

marker effects. The genotype-by-environment effects is mod-
elled by w = Zgeuge , with Zge standing for the marker matrix 
for genotypes-by-environment effects and u
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 . The variance of w stands for 

the linear structure of the genotype-by-environment vari-
ance–covariance matrix with the covariance of two geno-
types within the same environment depending on the simi-
larity in their marker profiles (Piepho 2009). Since the 
covariance among different environments is zero, any covar-
iance between environments is captured by Zg.

As a measure of the genetic similarity among all n can-
didates, the Pearson’s coefficients of correlation among 
rows of M were calculated. Based on their SNP alleles, this 
genomic correlation ( r

GC
 ) reflects the correlation pattern 

among individuals (Riedelsheimer et al. 2013). In contrast, 
for HBLUP the estimation of the random genetic values was 
based on reflectance data integrated into the hyperspectral 
reflectance-based relationship matrix H defined as H = DD

′ , 
where D is a n × b hyperspectral matrix of the standardized 

(1)y = Xb + Zgug + Zgeuge + e

45



1413Theoretical and Applied Genetics (2021) 134:1409–1422 

1 3

BLUEs of the bands, with b = 32. These 32 bands belong to 
the visible spectrum (VS) and the infrared radiation (IR), 
and they were selected in a previous study (Galán et al. 
2020b) using the least absolute shrinkage and selection 
operator (Lasso; Tibshirani 1996) for reducing the multicol-
linearity observed among continuos bands and increasing, 
therefore, the predictive power of reflectance-based mod-
els. Following the same procedure as described before for 
r

GC
 , a second correlation ( r

HC
 ) among tested genotypes was 

developed based on hyperspectral data incorporated into H´, 
which was derived from b = 400 available bands. By this, the 
correlation pattern among lines was estimated based on their 
unique reflectance fingerprints along the whole spectrum.

For the prediction scenario S1B (described below), the 
advantages of integrating different information sources to 
improve the predictive ability of DMY were assessed fol-
lowing the procedures described in Galán et al. (2020b). 
For this, genetic and hyperspectral data were combined in 
a multi-kernel prediction model (G + H), which was further 
extended to a bivariate model (Bivariate_G + H) by incor-
porating PH a as predictor.

All third-stage prediction models were fitted using the 
sommer package in R (Covarrubias-Pazaran 2016), except 
model (1), which was fitted within the R package ASReml-R 
v. 3.0 (Gilmour et al. 2009).

Prediction schemes

To address the objectives of the present study, nine bi-paren-
tal families with a size of 24 to 32 individuals (Suppl. Fig. 
S2) and their parental components were divided into TRN 
and VAL following different schemes. The family 4 × 5 was 
not considered due to its reduced size (n = 4). The TRN com-
position varied in a controlled manner for testing the effect 
of the relatedness between this set and VAL on a genotypic 
level (S1) and both genotypic and environmental levels 
simultaneously (S2). An overview of the different predic-
tion schemes is given in Table 1.

In S1, three different scenarios were analyzed, namely 
S1CV, S1A, and S1B, which have a decreasing genotypic 
relationship between TRN and VAL. Scenario S1CV 

consisted in ninefold cross-validation (CV) of the whole 
data set (the nine bi-parental families and their parental 
components), with eight folds were used for model train-
ing and the remaining fold for validation purposes. In con-
trast, in S1A and S1B, a leave-one-out (LOO) family vali-
dation scheme was followed. Here, TRN ranged from six 
to eight bi-parental families, and VAL consisted of single 
families with variable size. Whereas in S1A half-sibs (HS) 
and unrelated lines (UR) were sampled in TRN, in S1B, it 
included only UR. Parental lines of VAL were available for 
model training only in S1CV. In contrast, under S1A and 
S1B, the parents of the validation family were excluded 
from TRN. The remaining eight parents were considered 
as UR and could be incorporated accordingly. Genotypes 
were classified as “unrelated” to distinguish this cross type 
from FS and HS and, therefore, this term does not have the 
same meaning as in a population genetics.

To avoid the influence of the TRN size on the prediction 
ability, for all three scenarios, the TRN size was fixed to 
174, which was the largest possible common size among 
scenarios. If TRN was initially larger than 174, a random 
sampling without replacement was conducted among 
possible candidates in order to achieve the targeted size 
of 174. This procedure was repeated 9,000 times, each 
repetition consisting of a random composition of TRN to 
assess model error. The phenotypic and hyperspectral data 
included in S1 validation scenarios were adjusted across 
the same four (within-year analysis) or eight (combined 
years analysis) environments.

In S2, the predictive power of models was assessed by 
a LOO family validation scheme, as described above for 
S1. An important difference between S1 and S2 scenarios, 
is that for S2, data not connected to TRN, either by envi-
ronments nor by genotypes, was used as VAL. For this, 
data for model training was collected on UR from six to 
seven bi-parental families at three or seven environments, 
while validation data came from single families of variable 
size evaluated at a fourth or eighth disconnected environ-
ment, for the within-year or combined years predictions, 
respectively.

Table 1  Overview over the 
validation scenarios (TRN, 
training set; VAL, validation 
set; UR, Unrelated; HS, Half 
sibs; FS, Full sibs; P: Parental 
lines)

a The TRN size remained constant across all S1-scenarios (n = 174)
b Corresponds to combined years predictions

Name TRNa VAL Relationship No. environments 
 sampledb

TRN VAL

S1CV 8 random folds 1 Random fold UR + HS + FS + P 8 8

S1A 8 families 1 Family UR + HS 8 8

S1B 6 or 7 families 1 Family UR 8 8

S2 6 or 7 families 1 Family UR 7 1
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For all prediction schemes, prediction ability was 
assessed as the Pearson’s coefficients of correlation r 
between predicted breeding values and observed BLUEs 
derived from the combined analysis across environments 

for S1 and data adjustment within single environments 
for S2.

Results

Population structure, phenotypic and hyperspectral 
data analysis

The population showed a genomic correlation pattern 
(Fig. 1), which clearly reproduces the SRR mating design 
used in the present study (Suppl. Fig. S2). Thus, the mean 
genomic relationship among full sibs (FS), half sibs (HS), 
and unrelated lines (UR) followed the expected decay based 
on prior pedigree information (Fig. 2a). Nevertheless, a 
substantial overlap between the r

GC
 values from HS with 

FS and UR was observed. The mean r
GC

 among the nine 
FS families was 0.55, with a range from 0.61 to 0.46. For 
HS, the average r

GC
 was 0.27, almost the mean between FS 

and UR (0.01). The highest r
GC

 among HS was 0.38, while 
the smallest correlation coefficient was 0.06. Among UR, 
r

GC
 ranged from 0.04 to − 0.04. Interestingly, no clear dis-

tinction among lines could be drawn based on reflectance 
data (Fig. 2b). The r

HC
 for FS, HS, and UR was close to 

zero, with mean estimates equal to 0.07, zero, and − 0.09, 
respectively.

In 2017, FMY and DMY had higher mean estimates than 
in 2018 (Table 2). In the first year, these values were 355.96 
dt  ha−1 and 124.18 dt  ha−1, respectively, whereas in the 
second year, they dropped correspondingly to 304.82 dt 
 ha−1 and 114.68 dt  ha−1. The contrary was observed for 
DMC, which showed a higher mean in 2018 (38.84%) than 
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Fig. 1  Heatmap showing the relatedness based on prior pedigree 
information (below diagonal) and the genomic correlation (above 
diagonal) among 264 rye lines distributed among ten bi-parental 
families. The numbers in the blocks refer to average genomic correla-
tions between all pairs of individuals. FS, full sibs; HS, half sibs; UR, 
unrelated (color figure online)

Fig. 2  Histograms of (A) 
genetic similarity and (B) 
hyperspectral similarity for full 
sibs (FS), half sibs (HS), and 
unrelated (color figure online)
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in 2017 (35.24%). The estimated genotypic variance ( �2

g
 ) 

was significantly greater than zero (p < 0.001) for all traits. 
With one minor exception, the same holds for the genotype-
by-location interaction ( �2

gl
 ) and genotype-by-location-by-

year interaction ( �2

gly
 ) variances. The estimates of H2 were 

in general higher in 2017 than in 2018. DMC displayed the 
higher H

2 estimates, which ranged from 0.70 to 0.81, 
whereas H2 for FMY and DMY varied from 0.46 to 0.56. 
Across the analyzed hyperspectral spectrum, H2 was highly 
heterogeneous. The mean value across the 32 selected 
hyperspectral bands (Suppl. F4) was higher when both years 
were analyzed together ( H2

= 0.63 ), followed by 2018 
( H2

= 0.54 ) and 2017 ( H2
= 0.43 ). Mean correlations with 

agronomic traits (considering absolute values) were rather 
low for all traits ( r ≤ |0.16|) with relatively broad ranges (up 
to r ≤ |0.41|, Suppl. Fig. S4). FMY mostly displayed the 
highest correlation estimates, followed by DMY and DMC.

Prediction abilities under declining genotypic 
relationships (S1)

Overall, HBLUP was significantly more accurate than 
GBLUP for FMY and DMY, while the opposite was 
observed for DMC (Fig. 3). Combining the data across 
years was beneficial for HBLUP for all traits, and in the 
case of GBLUP only for DMC, while for FMY and DMY, 
GBLUP was mostly more accurate within single-year analy-
sis. The highest prediction abilities for all models and traits 
were observed under validation scenario S1CV, which has 
the closest relationship between genotypes used for model 
training and validation, followed by scenarios S1A and S1B 
(Fig. 3). However, the impact of a reduced degree of genetic 

relatedness between TRN and VAL on the prediction abil-
ity was unequal between models. Interestingly, the reduc-
tion of the predictive power of GBLUP was considerably 
higher than for HBLUP when validated on less related sets. 
For instance, under S1CV for DMY adjusted across years 
(Fig. 3), GBLUP showed a prediction ability of 0.56, while 
it dropped to 0.37 and 0.20 under scenarios S1A and S1B, 
respectively. This represents a decay of about one third and 
two thirds, respectively. In contrast, the prediction abilities 
of HBLUP were more stable since they ranged between 0.58 
(S1CV) and 0.51 (S1B). Thus, HBLUP retained about 90% 
of the predicted power shown under S1CV when predicting 
UR genotypes (S1B). A similar trend was observed for all 
other traits within as well as across years. The prediction of 
DMY in validation scenario S1B could be further enhanced 
by a bivariate model combining hyperspectral and genomic 
data as well as PH (up to 0.58, Fig. 4). In contrast, the pre-
dictive power of the multi-kernel model was very similar 
to the achieved by HBLUP, although a slight reduction in 
the variability of the predictions was observed in 2017 and 
combined-years analysis.

Predicting environmentally and genetically 
unconnected candidates (S2)

In the present study, the prediction models were additionally 
trained on unrelated data, either at a genotypic or environ-
mental level, with the data used for model validation (sce-
nario S2). Under S2, the prediction abilities of all models 
for all traits was significantly lower and displayed broader 
ranges when compared to their performance under S1 
(Fig. 3). Under S2, HBLUP was also mostly more accurate 
than GBLUP for FMY and DMY, while the opposite was 

Table 2  Means, ranges, 
estimates of variance 
components (genotypic, 
�

2
g
 ; genotype-by-location 

interaction, �2

gl
 ; genotype-by-

year-by-location interaction, 
�

2

gyl
 ; and residual error �2

�
 ), 

heritabilities H2 determined 
from 274 winter rye hybrids 
assessed in two years, which 
were individually or combined 
analyzed

a Traits are fresh matter yield (FMY), dry matter yield (DMY), and dry matter content (DMC)
*** Significant at the 0.001 probability level

Traita Means and ranges Variance components H
2

Mean Min Max �
2

g
�

2

gl
�

2

gly
�

2

�

2017

 FMY (dt  ha−−1) 355.96 332.85 386.17 41.61*** 43.76*** – 190.02 0.56

 DMY (dt  ha−1) 124.18 116.63 131.74 4.97*** 6.04*** – 16.62 0.53

 DMC (%) 35.24 34.02 37.06 0.23*** 0,04*** – 0.36 0.80

2018

 FMY (dt  ha−1) 304.82 284.92 323.87 25.80*** 27.15*** – 213.14 0.46

 DMY (dt  ha−1) 114.68 105.85 122.31 5.85*** 6.79*** – 26.22 0.54

 DMC (%) 38.84 37.21 40.62 0.27*** 0.13*** – 1.51 0.70

Combined

 FMY (dt  ha−1) 330.68 312.29 351.91 21.31*** 15.15*** 19.04*** 203.13 0.47

 DMY (dt  ha−1) 119.48 113.31 126.33 3.41*** 2.54*** 3.64*** 21.49 0.50

 DMC (%) 37.02 35.74 38.45 0.23*** 0.02 0.07*** 0.94 0.81
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observed for DMC. Ranges of mean prediction ability of 
HBLUP for FMY, DMY, and DMC were from 0.11 to 0.36, 
from 0.14 to 0.25, and from -0.06 to 0.18, respectively, while 
for GBLUP ranges lay between − 0.02 to 0.15, 0.02 to 0.10, 
and 0.15 to 0.16, respectively. In contrast to S1, no clear 
benefits of combining the data collected across years were 
observed under the S2 validation scheme.

Discussion

The accurate prediction of biomass at early stages via indi-
rect selection for DMY based on GY trials is a fundamen-
tal requirement for the implementation of a resource-effi-
cient dual-purpose breeding program in rye. In this way, 
the entire genetic variance could be exploited, leveraging 

Fig. 3  Prediction abilities for 
fresh matter yield (FMY), 
dry matter yield (DMY), and 
dry matter content (DMC) 
of genomic (GBLUP) and 
hyperspectral (HBLUP) best 
linear unbiased predictions 
under four different validation 
schemes assessed across two 
years (2017 and 2018), which 
were individually and com-
bined analyzed. Mean values 
are shown above each box plot 
and by black triangles and are 
significantly different, within 
each subplot, when no letter 
in common is shared (Tukey’s 
honestly significant difference 
test; α = 0.01) (color figure 
online)
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Fig. 4  Prediction abilities for dry matter yield of single-kernel 
(Genomic best linear unbiased predictor, GBLUP and Hyperspectral 
best linear unbiased predictor, HBLUP), multi-kernel (G+H), and 
bivariate (Bivariate_G+H) models assessed across two years (2017 
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were tested under validation scenario S1B. Mean values are shown 
above each box plot and by black triangles and are significantly dif-
ferent, within each subplot, when no letter in common is shared 
(Tukey’s honestly significant difference test; α = 0.01) (color figure 
online)
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the expected selection gain. In our breeding program, each 
year represents a new selection cycle, where genotypes 
with different genetic backgrounds are evaluated in new 
GCA trials. The prediction of subsequent selection cycles 
implies an additional challenge since the data used for 
model training and validation are highly unconnected. 
Nevertheless, it is mainly under this scenario that breed-
ing programs can benefit the most because the biomass 
improvement can be conducted at the first stage of test-
cross evaluation without an increase of the number of field 
plots. The objective of this study was, therefore, to assess 
and compare the prediction ability of genetic and hyper-
spectral data under varying genetic relationships between 
the training and validation sets.

Influence of the genetic composition 
of the TRN and traits characteristics

The degree of relatedness between individuals used for 
model training (TRN) and validation (VAL) directly influ-
enced the prediction ability of all models; however, this 
impact was remarkably lower for HBLUP than for GBLUP 
(Fig. 3). The prediction abilities observed under scenario 
S1CV can be considered as an upper limit, where model 
training is performed across FS, HS, UR, and parental 
lines of genotypes used for model validation. Then, a 
systematic reduction in the predictive performance of all 
models accompanied the exclusion of genotypes geneti-
cally closest to VAL. The exclusion of FS and parental 
lines from TRN (S1A) represented, averaged across sin-
gle and combined years analyzes and traits, a reduction 
of about 40% on the performance of GBLUP, while the 
further removal of HS signified an additional penalization 
of around 20%. The larger drop in the prediction abili-
ties observed for S1A compared to those of S1B can be 
explained by the asymmetrical relevance of using closest 
relatives for genomic model training (Albrecht et al. 2011; 
Technow et al. 2014; Juliana et al. 2019). In contrast to 
GBLUP, the penalization observed for HBLUP in S1A 
was, on average, only nearly 15% and an additional 6% in 
S1B, allowing this model to show the highest prediction 
abilities between the single-kernel models in these scenar-
ios. Model performance was also dissimilar across traits. 
GBLUP showed mostly the higher abilities for DMC, 
whereas HBLUP performed better for FMY and DMY. 
The differences in predictive abilities are most likely a 
consequence of both trait H2 and the different information 
sources used by GS and reflectance-based models.

To adequately predict the performance of untested can-
didates, genomic models exploit the genetic relationships 
between them and individuals whose genotypic and phe-
notypic information is available, as previously shown in 

many empirical and simulation-based studies in animal 
and plant breeding (Habier et al. 2007 2010; Roos et al. 
2009; Pszczola et al. 2012; Riedelsheimer et al. 2013; 
Würschum et al. 2013; Crossa et al. 2014; Lehermeier 
et al. 2014; Technow et al. 2014; Wang et al. 2014; Thor-
warth et al. 2017; Herter et al. 2019). In line with these 
observations, our results also showed that the predictive 
power of GS dropped substantially when predictions are 
made among lowly related populations. For predictions 
across subsequent cycles in rye, GS could represent a 
suitable strategy when TRN is represented by aggregated 
multi-year data from several cycles (Auinger et al. 2016; 
Bernal-Vasquez et al. 2017). Nevertheless, the authors of 
these papers concluded that GS still relies heavily on a 
sufficient relationship between predicted candidates and 
those used for model training. Selection cycles need, for 
instance, to be connected by a sufficient number of com-
mon ancestors. This prerequisite may not be easily ful-
filled in practical rye breeding since subsequent breeding 
cycles usually are largely unconnected. In addition, the 
success of GS depends, among others, on trait related fac-
tors, such as heritability (Jia and Jannink 2012; Marulanda 
et al. 2015). Thus, the better and less variable GBLUP 
performance observed for DMC (Fig. 3) is likely explained 
by the larger H2 estimated for this trait in comparison to 
FMY and DMY (Table 2).

The reflectance fingerprints of the genotypes were more 
similar than their allelic status across relationship groups 
(Fig. 2), suggesting that the information imprinted among 
the spectrum is less sensitive to genetic distinctiveness 
among individuals than molecular data. These observations 
can explain why reflectance data allowed higher prediction 
abilities than marker data under decreased genetic relation-
ships between TRN and VAL. In contrast to GBLUP, more 
highly heritable traits were not better predicted by HBLUP. 
In turn, for HBLUP to perform well, plant canopies should 
display specific absorption patterns related to some extent 
to the trait of interest as shown, for instance, by the cor-
relations between the analyzed traits and bands. The most 
effectively predicted traits (FMY and DMY) showed higher 
correlations than the lowest predicted trait (DMC, Suppl. 
Fig. S4). Thus, the higher performance of HBLUP for FMY 
and DMY might be explained by the higher informative-
ness of the collected reflectance data for those traits than 
for DMC. Since the absorption of water and DMC is almost 
constant across the visible spectrum and the absorbance of 
these two features starts around 950 nm (Jacquemoud et al. 
2000), where our spectrum was from 410 nm to 993 nm, 
further research could investigate the prospects of HBLUP 
based on reflectance data beyond 1000 nm to better predict 
DMC.

Several strategies have been investigated for tak-
ing advantage of reflectance data in predictive breeding. 
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Summarizing the reflectance characteristics of plants into 
simple vegetation indices (VIs) has been proposed to assess 
vegetation characteristics of interest like grain and biomass 
yields under different environmental conditions (Xue and 
Su 2017). However, prediction models benefited the most by 
the exploitation of whole-spectrum data (Aguate et al. 2017; 
Montesinos-López et al. 2017b; Krause et al. 2019; Galán 
et al. 2020b). Recently, highly heritable VIs genetically cor-
related with the trait of interest such as the Normalized Dif-
ference Vegetation Index (NDVI; Rouse et al. 1974; Tucker 
1979) and the green NDVI (GNDVI; Gitelson et al. 1996), 
have been incorporated as secondary traits into multivariate 
pedigree and genomic prediction models to increase accu-
racy within the same wheat population and selection cycle 
(Rutkoski et al. 2016; Sun et al. 2017) as well as across 
selection cycles composed by closely related populations 
(Sun et al. 2019). Juliana et al. (2019) found that similar 
multivariate equations were superior to univariate genomic 
prediction models when predicting across populations and 
years. Still, the relationship between TRN and VAL was 
found crucial also for multivariate models, although the pop-
ulations used for model training and validation were geneti-
cally related to some extent, and predictions were made 
within the same stressed environments. The results of the 
present study also showed that combining hyperspectral and 
genomic data in a multi-kernel model yielded only limited 
advantages over HBLUP for DMY prediction of less related 
progenies (Fig. 4). In this context, the prediction ability for 
DMY could be further increased up to 20% by a bivariate 
model including also PH. Nevertheless, the performance of 
G + H and the bivariate model in the present study were 
lower than when used for DMY prediction of highly related 
rye progenies, as reported in a previous research (Galán et al. 
2020b). These findings reveal, on the one hand, the advan-
tages of incorporating HTP data into prediction routines, 
and, on the other hand, the limits of GS in the context of 
across cycle predictions.

Prediction of new genotypes in untested 
environments

In validation scenario S1B, UR genotypes were assessed 
across the same environments (Table 1). In contrast, in S2, 
unrelated individuals were tested under new environmental 
conditions, allowing the simultaneous assessment of the gen-
otypic and environmental sampling on the predictive power 
of marker- and hyperspectral-based models. Predictive abili-
ties in S2 were significantly lower than in S1B, suggesting 
that predicting the performance of genetically and environ-
mentally highly unconnected individuals is challenging. This 
is consistent with studies showing that the prediction of new 

candidates is less accurate when model training is performed 
without borrowing information of environments correlated 
to the one used for validation (Crossa et al. 2014; Krause 
et al. 2019). These poor predictions obtained in S2 might be 
explained by the substantial genotype-by-environment inter-
actions (G × E) estimated for the predicted traits (Table 2) 
as well as by the high variability observed for hyperspec-
tral bands among environments, resulting mainly from the 
extremely different conditions observed between growing 
seasons as reported in a previous study (Galán et al. 2020b). 
It seems, therefore, plausible that heterogeneous marker-to-
trait and band-to-trait (Montesinos-López et al. 2017a) sig-
nals among environments adversely affected the prediction 
abilities from GBLUP and HBLUP. Therefore, to adequately 
predict untested genotypes under new environmental condi-
tions, prediction equations need to be extended by environ-
mental and genetic covariates for proper G × E modeling 
(Piepho 2009; Burgueño et al. 2012; Resende et al. 2020).

A forward-validation approach aims to predict the per-
formance of new genotypes by exploiting the data from 
previous years (Bernal-Vasquez et al. 2017). Considering 
our breeding scheme (Suppl. Fig.1), data for model training 
could be obtained from split GCA-2 trials with biomass and 
grain yield plots, whereas model validation could be per-
formed on GCA-1 data from a subsequent selection cycle. 
It should be kept in mind that we need large-drilled plots for 
biomass model training because this trait cannot be reliably 
measured on smaller observation plots. As different selec-
tion cycles involve new individuals from multiple genetic 
backgrounds, and usually hardly any common progeny is 
shared across cycles, the genetic relationship between the 
data used for model training and validation across cycles 
is expected to be substantially lower than in within-cycle 
predictions.

However, data used in across-cycles predictions is envi-
ronmentally connected because GCA-2 genotypes are tested 
more intensively in a larger number of locations, within 
which the same environments as in GCA-1 are typically 
found. In practical plant breeding, large testing locations 
within the targeted environment are common, since they 
are more efficient in terms of logistics, trained personnel 
requirements, as well as field evaluation and management. 
In these testing sites, yield trials from different stages are 
planted next to each other, being reliable, large- scaled train-
ing data readily available for model calibration. Thus, sce-
nario S1B mimics this practical situation much better than 
S2. Our results showed that, in this context, models incorpo-
rating hyperspectral data emerge as a promising strategy to 
achieve superior improvements in DMY in hybrid rye. Still, 
the relevance of S2 outcomes lies in a consistently unbi-
ased estimation of the prediction abilities of the models (Utz 
et al. 2000), revealing the high impact of G × E not only on 
GBLUP but also on HBLUP.
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Conclusions for biomass breeding in hybrid 
rye

Traditionally, biomass is estimated destructively at an earlier 
growth stage, preventing grain yield from being evaluated 
in those same plots. The effective indirect assessment of 
biomass at the early stages of the breeding program is cru-
cial to entirely untap the potential of rye as a dual-purpose 
crop affordably. In this sense, prediction models accurately 
estimating the biomass yield of genotypes of diverse genetic 
backgrounds across selection cycles represent a valuable 
tool. In the present study, GBLUP achieved acceptable pre-
diction abilities only for highly heritable traits across closely 
related individuals. In contrast, HBLUP was substantially 
less affected by genetic relatedness and trait heritability 
emerging as a suitable approach for predicting complex traits 
across highly distinct populations.

Considering that in modern plant breeding genomic 
information is usually already available before the can-
didate lines are evaluated as testcrosses in the expensive 
GCA trials, breeders usually perceive marker and HTP 
data as a complement, rather than an alternative. Here, 
HTP offers the possibility of screening large-scale field tri-
als with reduced capital and time expenditures, than con-
ventional methods (e.g. destructive sampling and visual 
scores). Moreover, combining hyperspectral, genomic, 
and PH in bivariate models allows more effective DMY 
predictions of genotypes showing low genetic connectivity 
to ones used for model training. The bivariate model here 
presented is flexible and allows the incorporation of GY 
and other correlated traits to DMY aimig superior predic-
tive power. Nonetheless, by including several predictors, 
the complexity of the models increases in proportion.

Our results also show that not only GBLUP but also 
HBLUP was largely affected by G × E interactions, result-
ing in poor to negligible predictive power when the environ-
ments used for model training and validation were differ-
ent. To fully exploit the advantages of hyperspectral-based 
models, it is, therefore, highly recommended to incorporate 
reflectance fingerprints of genotypes collected in the respec-
tive environment. Our study demonstrates the capability 
of hyperspectral-enabled predictions to leverage selection 
gains to meet the increasing demand for sustainable bio-
mass sources worldwide. Lastly, the prospects of HTP as an 
economical alternative to traditional biomass sampling are 
expected to increase in proportion to future improvements in 
terms of image data acquisition and management.
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Phenotypic data analysis  

The combined analysis across environments was conducted following model (1) from 

Galán et al. (2020). For the combined analysis across locations, this mixed model is as 

follows:  

 =  : +  

          + · + · + · +  · ·   

          + · + · · + · · ·  +    (1) 

where  is the observed genotype performance,  denotes the genotypes,  the 

locations,  the years,  the trials within environments  (equivalent to year-location 

combinations),  the replicates within trials,  the blocks within replicates, and  the 

error associated with the observation . Error, trial, block, and replicate variances were 

assumed heterogeneous among environments. In model (1), the dot operator (·) 

specifies crossed effects (A·B) and fixed and random terms are separated by a colon (:), 

with fixed terms appearing first (Piepho et al. 2003). Variance components and pairwise 

variances of genotype mean (BLUEs) differences (needed for heritability estimation) 

were estimated by restricted maximum likelihood (REML) for all random effects in model 

(1). This also holds for estimation of the genotypic variance (  ), which required an 

additional analysis fitting the above model with random genotypic effects. Significance of 

variance component estimates was tested by model comparisons using likelihood ratio 

tests (Stram and Lee 1994). 

Within environments, BLUEs of genotypes were analyzed following model (2) also from 

Galán et al. (2020). This mixed model is described as follows: 

 =  :  + ·  +  · ·  +    (2) 

This model (2) differs from the first model (1) only in dropping the year and location main 

effects and corresponding interactions with genotypes. Variance components for single 

environments were estimated as described previously for model (1).  
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Supplementary Fig. S1 Schematic representation of the selection cycles in hybrid rye 
breeding program (adapted from Bernal-Vasquez et al. 2017). For across-cycles 
prediction, phenotypic, molecular, and hyperspectral data for model training could be 
collected in the second general combining ability trials (GCA-2), whereas prediction and 
validation are performed among the first GCA trial (GCA-1) and GCA-2 of a subsequent 
selection cycle, respectively. Brown boxes stand for grain yield trials, while green boxes 
for biomass trials. 

Reference: Bernal-Vasquez A-M, Gordillo A, Schmidt M, Piepho H-P (2017) Genomic 

prediction in early selection stages using multi-year data in a hybrid rye breeding program. BMC 

Genet 18(1):51. doi: 10.1186/s12863-017-0512-8  
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Supplementary Fig. S2 Schematic representation of the single-round robin design used 

in the present study. The F1 plants (n=264) were derived from each of the chain crosses 

(shaded cells showing the size of each bi-parental family). Adapted from Verhoeven et 

al. (2006) 

Reference: Verhoeven KJF, Jannink JL, McIntyre LM (2006) Using mating designs to uncover 

QTL and the genetic architecture of complex traits. Heredity 96(2):139–149 
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Supplementary Fig. S3 Principal component analysis (PCA) of the ten bi-parental 

families based on SNP data showing the outcome for the first two principal components.
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Supplementary Fig. S4 Heritability estimates (black line) for the hyperspectral bands, 

phenotypic correlations (r) between hyperspectral bands and dry matter yield (yellow line), 

fresh matter yield (green line), and dry matter content (brown line), and selected 

hyperspectral bands after the least absolute shrinkage and selection operator (Lasso, light 

blue vertical lines) for 274 winter rye hybrids assessed in two years, which were 

individually and combined analyzed. The mean heritability across selected wavelengths 

is denoted by the dot-dashed black line. Correlation estimates (in absolute values)  to 

the respective dotted lines are significant (p<0.05).  

63



 

 

6. General Discussion 

Typically, hybrid rye breeding is driven by grain yield (GY), whereas biomass is destructively 

assessed in strongly reduced populations at later selection stages due to the prohibitive 

capital and time expenses that would arise from screening large field trials. Accurate and 

affordable indirect selection of biomass at early stages of the breeding program emerges, 

therefore, as crucial for leveraging the potential of rye as an alternative dual-purpose crop to 

meet the increasing bioenergy demands in the context of climate change mitigation.  

The three main outcomes of this thesis are related to high-throughput phenotyping as a 

suitable tool for biomass breeding in hybrid rye, factors influencing the prediction ability of 

models based on reflectance and genomic data, and the incorporation of different data 

sources into predictive breeding.  

6.1. Hyperspectral imaging for indirect biomass estimation 

6.1.1. Data acquisition and management 

For practical breeding programs to benefit from the breakthroughs in imaging and sensor 

technologies, challenges particularly related to data acquisition, management, and modeling 

must be addressed (Tardieu et al. 2017, Araus et al. 2018). Considering the repeatable 

nature of the phenomic approach for assessing plant phenotypes throughout the crop life 

cycle, the choice of the appropriate time point(s) to collect the reflectance data is crucial 

(Araus and Cairns 2014). Reflectance data measured at the heading and grain filling growth 

stages are preferred over earlier stages to maximize its correlation with GY (Monteiro et al. 

2012, Rischbeck et al. 2016, Aguate et al. 2017, Krause et al. 2019, Prey et al. 2020) and DMY 

(Babar et al. 2006, Prasad et al. 2009, Prey et al. 2020). Thus, for practical purposes, yield 

prediction can be satisfactorily done with measurements after heading (Prasad et al. 2007b). 

In the present study, reflectance data was collected only after heading (i.e., during the grain 

filling stage) with small differences in terms of prediction abilities among both flight dates 

and no clear preference for one time-point across all analyzed models (Table 1). From a 

64



 

 

breeding point of view, however, measurements conducted closely to harvest would be 

preferred assuming that they can carry information that more accurately reflects the yield 

potential of the plot (Rischbeck et al. 2016). For instance, the delayed foliar senescence, a 

-gr  (Thomas and Ougham 2014), 

can be more precisely scored at advanced phenological stages, when the loss of plant 

photosynthetic pigments begins (Babar et al. 2006). Therefore, gathering reflectance data 

throughout the crop life cycle may allow a better characterization of the tested genotypes 

improving the stability and accuracy of predictions (Aguate et al. 2017). However, combining 

multiple time-points data yielded only slight improvements in the predictive power of some 

of the evaluated equations in the present study (Table 1) as well as in reflectance-based 

models in maize (Aguate et al. 2017) and wheat (Prasad et al. 2007b, Montesinos-López et 

al. 2017b). These results suggest that, a single evaluation at late grain filling carries almost 

the same information as multiple flights during this growth stage (Publication I, Publication 

II, Table 1), potentially reducing the capital, time, and computational resources demanded 

for phenotyping large breeding populations in a non-destructive manner. 

Table 1 Prediction ability for DMY assessed by hyperspectral information collected on two 
flights conducted after flowering by an UAV as well as by plant height and genomic data for 
274 rye hybrids across 4 locations and 2 years. 

Parameter Flight 1 Flight 2 Both flights 

------------------------------------ Incorporating only hyperspectral data ------------------------------------ 

All vegetation indices (VIall, N=13) 0.35 0.42 0.42 

Hyperspectral bands (HBLUP, N=32 selected wavelengths) 0.54 0.52 0.59 

------------------------------Incorporating hyperspectral data and plant height ----------------------------- 

VIall + Plant height (PH) 0.55 0.62 0.58 

HBLUP + PH (Bivariate_H) 0.55 0.50 0.62 

------------------ Incorporating hyperspectral data, plant height, and genomic data -------------------- 

HBLUP + PH + genomic data (Bivariate_G_H) 0.72 0.75 0.75 

 

In contrast to multispectral devices, hyperspectral sensors allow a more exhaustive 

characterization of phenotypes by collecting numerous narrow wavelengths, however, a 

high degree of redundancy and intercorrelation among them is typically observed, 

representing a major issue for hyperspectral data analysis (Thorp et al. 2017, Publication II). 

Thus, multicollinearity may affect prediction equations based on hyperspectral data 
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(Dunagan et al. 2007). In statistical modeling, especially in regression analysis, 

multicollinearity (also called collinearity) refers to the linear relation (i.e., non-

independence) between two or more predictors, a situation that can potentially lead to 

wrong parameter estimation with severe consequences in the performance of models, 

including incompetence to deal with slight changes in data (instability), inadequate 

assessment of the relative importance of each variable, imprecise significance testing of 

predictors, incorrect selection of the most relevant variables, and erroneous extrapolation of 

results beyond the considered data due to different collinearity patterns  (Dormann et al. 

2013).  

Several strategies have been reported throughout the literature to deal with 

multicollinearity in hyperspectral datasets. The conventional approach is represented by 

reducing the reflectance data to VIs (Tattaris et al. 2016). VIs are usually based on individual 

wavelengths within the red and near-infrared spectral regions, for instance, the widely used 

Normalized Difference Vegetation Index (NDVI; Rouse Jr et al. 1974, Tucker 1979), however, 

alternative configurations such as the modified Simple Ratio (mSR; Sims and Gamon 2002) of 

conventional VIs have been proposed for exploring also the red-edge region (Xie et al. 2018). 

The rationale behind the use of these specific spectral channels is the unique reflectance 

fingerprint of vegetation, which is determined by external and internal leaf properties and 

photosynthetic pigments, therefore, reflecting the plant physiological status (Peñuelas and 

Filella 1998). The reflectance pattern of healthy plants (Pauli et al. 2016) is characterized by 

strong radiation absorbance in the visible spectrum (400  700 nm; VS) and high reflectance 

in the infrared radiation (700 to ~1000 nm in our study; IR), with the highest slope in 

reflectance located in the red-edge region (680 - 750 nm; Filella and Peñuelas 1994) as 

shown in Fig. 3. Reflectance changes are strong indications of physiological stress, such as 

lower reflectance in the IR is linked to drought (Filella and Peñuelas 1994, Peñuelas and 

Filella 1998) as observable for the data collected in 2018 for this study (Fig. 3).  

66



 

 

Fig. 3 Canopy spectral reflectance (based on adjusted entry means) collected on two flight 
dates averaged across 274 winter rye hybrids at each environment. The 32 selected 
hyperspectral bands after the least absolute shrinkage and selection operator (Lasso) are 
shown by gray vertical lines. For more information about the adjustment of the 
hyperspectral data as well as the variable selection procedure applied, please see 
Publication II. 

 

The hyperspectral data collected for this study consisted of 400 nearly continuous narrow 

wavelengths ranged from 400 to 993 nm. Of this broad set of spectral data, only a reduced 

number was used to derive VIs (Publication I), remaining large spectral regions without being 

exploited. To incorporate full-spectrum data, while effectively reducing data 

multicollinearity, regularization and variable selection procedures are powerful statistical 

procedures (Liu and Li 2017). The elastic net (EN; Zou and Hastie 2005), the least absolute 

shrinkage and selection operator (Lasso; Tibshirani 1996), and ridge regression (RR, Hoerl 

and Kennard 1970) shrink together the coefficients of correlated variables towards zero, but 

unlike RR, EN and Lasso set some coefficients to exactly zero, hence, performing also 

variable selection (Hastie et al. 2009). Therefore, EN and Lasso can assist in handling highly 

dimensional reflectance datasets while selecting the most relevant spectral features and are 

preferred over RR and variable projection techniques like principal component analysis and 

partial least squares (PLS) due to their superior prediction performance and easier model 

interpretation (Liu and Li 2017).  
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While in the present study Lasso and EN yielded similar prediction abilities, the first 

delivered a more parsimonious model and was, therefore, preferred (Publication II). 

However, this outcome should be interpreted with caution given the advantages of EN over 

Lasso listed in the literature. The higher number of predictors selected by EN was expected 

since, unlike Lasso, it performs grouped  entire group 

of highly correlated variables is incorporated into the model if one of them is selected (Zou 

and Hastie 2005). Moreover, Lasso cannot pick more predictors p than the sample size n 

while EN does not show this saturation problem. When selecting among highly correlated 

variables, Lasso randomly chooses one and ignores the remaining ones whereas EN shows a 

more stable regularization term (Zou and Hastie 2005). Thus, for other validation scenarios 

or data rather than considered in this research, the data analysis might profit from the 

benefits of EN. Likewise, considering the numerous available feature selection procedures 

with potential applications on spectroscopic data for biomass estimation (Ali et al. 2015), it 

would be advisable to evaluate the advantages and drawbacks of each of them and choose 

the one that better fits the data available and the pursued objectives.  

Recently, high-dimensional phenomic data has been also used to estimate relationship 

matrices as routinely done with markers in GS (Rincent et al. 2018, Krause et al. 2019). In 

both publications, the entire data available was used, remaining the selection of the most 

relevant wavelengths unexplored, an issue often observed in studies applying traditional 

methods such as PLS (Thorp et al. 2017). The outcomes of the present study demonstrated 

that, before kinship matrix estimation, filtering the vast hyperspectral data is worthwhile to 

effectively address data dimensionality, improve the precision of reflectance-based models, 

and streamline the analysis of spectral data (Publication II). Also, by hyperspectral data 

classification, the usefulness of each spectral region for DMY estimation in rye can be 

assessed. Among the selected wavelengths by Lasso and EN (Publication II), the majority 

belong to the IR suggesting that this spectral region is the most informative for DMY. Still, 

some wavelengths from VS were consistently selected, indicating that this region contains 

some meaningful information.  

sophisticated data analysis tool leading to superior decision making with multiple 

applications within the agricultural sciences (Liakos et al. 2018). In line with previous 
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research (Mutanga et al. 2012, Ali et al. 2016, Han et al. 2019), the outcomes of the present 

study demonstrate that combining machine learning algorithms with remote sensing data of 

increasing resolution stands for a promising strategy to extract meaningful information to 

achieve superior biomass prediction abilities. Considering the advent of deep learning in 

plant science (Singh et al. 2018), future work could explore the advantages of nonlinear 

models for improving reflectance data analysis. 

6.1.2.  On the predictability of models based on vegetation indices and full-

spectrum data 

In this study, the suitability of agronomic traits and VIs as secondary criteria to effectively 

predict DMY in rye was evaluated. Let  be the genotypic correlation between DMY and the 

secondary trait Y,  the square-root of the heritability of DMY,  the square-root of 

the heritability of Y, indirect selection for DMY will be preferred over direct selection only if 

 assuming equal selection intensity for both traits (Falconer and Mackay 1996 

p.319). This condition was only fulfilled by plant height (PH) and not by other agronomic 

traits like GY in the present research (Publication I) as well as in a previous study for rye 

testcrosses (Haffke et al. 2014). However, selecting indirectly for high DMY by focusing only 

on PH would require complementary breeding efforts for lodging resistance of the selected 

tall genotypes (Roux et al. 2010, Haffke et al. 2014).  

In the present study, 23 previously published VIs (including NDVI and mSR) were evaluated 

as secondary traits for indirectly estimating DMY of rye hybrids (Publication I). Genetic 

correlations between VIs and DMY  were by far lower than the observed between 

DMY and other agronomic traits such as GY (0.64) and PH (0.86). Also, highly variable 

heritability estimates were shown by all VIs (from almost zero to 0.84). Consequently, 

prerequisites (i.e., ) for a successful application of indirect selection of DMY 

based solely on VIs were not met. This study on rye has, therefore, not confirmed previous 

research on the suitability of VIs for evaluating major plant parameters (e.g., GY, DMY, LAI, 

nitrogen use efficiency, biotic and abiotic stress condition) of other crop species under field 

growing conditions (Aparicio et al. 2000, Broge and Mortensen 2002, Hansen and 
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Schjoerring 2003, Gutiérrez-Rodríguez et al. 2004, Babar et al. 2006, Huang et al. 2007, 

Prasad et al. 2007a, Prasad et al. 2007b, Tilling et al. 2007, Prasad et al. 2009, Erdle et al. 

2011, Monteiro et al. 2012, Zhang et al. 2012, Thorp et al. 2015, Gizaw et al. 2016, Rischbeck 

et al. 2016, Barmeier and Schmidhalter 2017, Cheng et al. 2017, Frels et al. 2018, Li et al. 

2018, Zhang et al. 2019, Zheng et al. 2019, Prey et al. 2020).  

A likely explanation for this lack of agreement lies in substantial differences in the 

experimental data considered, including the characteristics and number of the plant 

materials, the plot size, the number of environments (equivalent to year location 

combinations), and the agronomic management. In this study, 404 elite winter rye hybrids, 

including a subset of 274 hybrids, were analyzed for GY and DMY, respectively, planted in 

small-size plots (5-6 m2) under optimal agronomic conditions (e.g., adequate fertilization, 

planting density, weed and disease control, as well as supplementary irrigation when 

necessary). The parents have already been subjected to rigid selection for enhanced 

agronomic performance, which reduced the diversity of their offspring. Although significant 

genotypic variation was observed for all agronomic traits and VIs, the variability of this elite 

breeding material is expected to be substantially lower than the highly diverse panels tested 

in the abovementioned publications. Most of these studies included genotypes with 

contrasting phenotypic characteristics, for instance, historical and modern high-yielding 

cultivars, lines from different breeding programs, different canopy architectures as well as 

susceptible and resistant varieties against certain abiotic or biotic stresses, guaranteeing, 

therefore, a superior genetic variability. These studies were also based on by far fewer 

genotypes (from one up to 75) tested on larger field plots planted in a reduced number of 

environments (generally from one to four) than in this research thesis. Only Frels et al. 

(2018) and Gizaw et al. (2016) evaluated a broader panel of genotypes (299 and 402, 

respectively) in small-size field plots. However, these two publications share with most of 

those abovementioned not only that distinct subpopulations were included but also that 

field trials were conducted under contrasting field management (e.g., different irrigation, 

fertilization treatments, or a combination of both), further increasing the variability 

observed for the target trait. Hence, to effectively differentiate the performance among 

tested individuals by using VIs, a wide range of genotypic (Babar et al. 2006) together with 

environmental (Aparicio et al. 2002) variability should be considered. The negative effect of 

high uniformity between modern varieties on the prediction ability of VIs-based models has 
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been observed in this study as well as for GY prediction in barley (Rischbeck et al. 2016). The 

difficult transfer of results obtained under conditions not fully compatible with practical 

plant breeding to real phenotyping scenarios, represents, therefore, a major issue slowing 

down the utilization of remote sensing as a breeding tool (Araus et al. 2018). 

Alternatively, several VIs can be pooled with the ultimate aim of reach superior predictive 

power than the one achievable by using each VI individually as suggested by the findings of 

this research (Publication I) as well by a previous study in wheat (Montesinos-López et al. 

2017b). However, recent publications have shown that VIs cannot capture all the 

information contained in the extensive data collected by hyperspectral sensors, since the 

prediction ability of VIs was surpassed by regression and shrinkage methods such as PLS and 

Bayesian shrinkage using whole-spectrum information for GY in maize (Aguate et al. 2017) 

and, together with RR, also in wheat (Montesinos-López et al. 2017b, Hernandez et al. 2015). 

Therefore, statistical procedures mining information across the entire spectrum maximize 

the benefits of advanced phenotyping in plant breeding (Thorp et al. 2017, Araus et al. 

2018). In line with these results, in the present study, HBLUP, a single-kernel model based on 

a hyperspectral-derived kinship matrix incorporating reflectance data throughout the 

spectrum, represented a superior alternative to single or combined VIs for DMY prediction 

(Publication II, Table 1). Moreover, HBLUP surpassed the prediction ability of GBLUP, which 

is based on a markers-derived kinship matrix, under reduced TRN (Publication II) or for 

predicting across distinct populations (Publication III). In complete agreement with these 

outcomes, studies on wheat and poplar have recently observed that the performance of 

prediction models based on spectroscopic-derived relationship matrix was closer to the 

conventional marker-based approach (Rincent et al. 2018, Krause et al. 2019).  

6.2. Factors influencing the prediction ability of GBLUP and HBLUP 

Several factors affect the performance of GS in plant breeding, including the size of the 

training data, the relatedness between genotypes used for model training and validation, 

and the trait heritability (Lin et al. 2014). The prospects of HBLUP as a suitable model for 

dealing with these challenging issues were evaluated and compared to the prediction 

performance obtained by GBLUP. 
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6.2.1. The training set size 

The phenotypic information in breeding has mutated from being the basis on which the best 

genotypes are selected (phenotypic selection) to be used to calibrate genomic models 

aiming the selection of unphenotyped individuals based on their GEBVs (Heffner et al. 2009). 

This radical paradigm change in plant breeding, however, does not imply that GS can 

perform well when trained on few genotypes since the negative impact of a reduced TRN on 

the performance of GS is widely known (VanRaden et al. 2009). Some studies have shown 

that hyperspectral-based models also yielded higher accuracies when calibrated on larger 

TRN sizes. For forest biomass estimation, different models based on hyperspectral data 

profited from larger sample sizes, however, the importance of the TRN size on the prediction 

accuracies was surpassed by other factors as the choice of the appropriate model and the 

spectroscopic data type used (Fassnacht et al. 2014). Similarly, a larger TRN was beneficial 

for regression models based on VS and IR wavelengths used for predicting soil carbon 

content (Lucà et al. 2017) and near-infrared data for estimating grain nutrients in barley 

(Wiegmann et al. 2019). The positive correlation between larger TRN and higher predictive 

power of GBLUP and HBLUP within the same breeding population was also observed in this 

research (Publication II). Nevertheless, HBLUP was significantly less affected by reduced TRN 

size, showing, hence, superior performance than GBLUP on small TRN sizes. Thus, HBLUP 

emerges as a suitable model if larger phenotypic data cannot be afforded.  

6.2.2.  The genetic and environmental connectivity between training and validation 

data 

In rye breeding, each year numerous genotypes from different genetic backgrounds are 

tested across several environments, potentially enabling the integration of this data to 

enlarge TRN (Bernal-Vasquez et al. 2017). The suitability of this strategy, however, depends 

on the degree of influence of the genotypic and environmental connectivity between TRN 

and VAL on the performance of genomic and hyperspectral models. 
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DMY in rye is strongly influenced by genotypic and environmental conditions (Miedaner et 

al. 2012, Haffke et al. 2014, Publication I). The same holds for spectral fingerprints collected 

on rye canopies (Publication I, Publication II, Fig.3). Nevertheless, the ten bi-parental families 

analyzed in the present study could be much more clearly differentiated based on their 

allelic composition than on their reflectance fingerprints (Publication III). This dissimilar 

influence of genetic relationships on both data sources resulted in substantial differences in 

the performance of GBLUP and HBLUP when predicting genotypes poorly correlated to the 

ones used for model calibration. 

The high dependency of genomic predictions on a sufficient genetic correlation between 

TRN and VAL was observed in this study (Publication III), confirming previous findings in 

animal (Roos et al. 2009, Pszczola et al. 2012) as well as maize and wheat breeding (Crossa et 

al. 2014, Heslot et al. 2014). GBLUP performed satisfactorily when used to predict the DMY 

of progenies closely related to those used for model training (prediction ability = 0.49 - 0.64). 

Then, a strong decay of about 60% was observed when closely related individuals were 

excluded from TRN. Similarly, Wang et al. (2014) reported modest prediction ability for GY 

when GS was applied between two bi-parental rye families, even though they were 

connected by a common parent. Thus, a sufficiently high degree of genetic relationship is 

needed for a successful implementation of GS across selection cycles in rye (Auinger et al. 

2016, Bernal-Vasquez et al. 2017). Conversely, this prerequisite does not seem to be crucial 

for hyperspectral-based models to achieve acceptable predictions since HBLUP performed 

significantly more stable than GBLUP across different degrees of genetic relatedness 

(Publication III). For instance, the penalization observed for HBLUP when predicting DMY 

among weakly connected progenies was, on average, only ca. 13% compared to the 

prediction abilities achieved for highly related genotypes. Thus, when low related 

populations are to be predicted, spectral data emerges as a competitive information source 

given the relatively lower influence of genetic backgrounds on the information imprinted on 

canopy reflectance.  

In contrast, predicting DMY in a new environment was highly challenging for hyperspectral- 

and genomic-based models, mainly due to significant G×E interactions observed for 

agronomic and reflectance data (Publication I, Publication II, Publication III). The observed 

low performance of GBLUP in predicting the genotypic performance in an unknown 
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environment is in line with previous studies showing that the accuracy of genomic models is 

enhanced by incorporating more environments into the TRN (Utz et al. 2000) as well as by 

borrowing information from correlated environments (Burgueño et al. 2012, Crossa et al. 

2014). 

Similarly, VIs and HBLUP performed the highest when data across the series of environments 

was incorporated into TRN, while the lowest abilities corresponded to TRN without 

information of the aimed site. Thus, the incorporation of data collected in different 

environments increases the variation present in TRN, boosting in proportion the prediction 

ability of hyperspectral-based models (Wiegmann et al. 2019). Nevertheless, this lack of 

representation of the targeted environment could only be partially compensated by 

including a higher number of environmental samples into TRN. Moreover, if the 

environment to be predicted was highly contrasting to the sampled ones, this strategy was 

indeed counterproductive. These outcomes confirm that enlarging TRN by including highly 

diverse environments can lead to heterogeneous band-to-trait signals (Montesinos-López et 

al. 2017a) since reflectance data is strongly influenced by environmental aspects (Gates et al. 

1965, Fig. 3). Therefore, the accuracy of predictions can be affected (Rischbeck et al. 2016). 

Hence, the applicability of hyperspectral models is highly restricted to the environment 

under which canopies were assessed and predictions beyond these conditions may not be 

sufficiently reliable (Hernandez et al. 2015, Weber et al. 2012, Rischbeck et al. 2016, 

Wiegmann et al. 2019). Thus, adequate environmental sampling is crucial for boosting the 

performance of genomic equations (Utz et al. 2000) and hyperspectral-based models (Lucà 

et al. 2017, Wiegmann et al. 2019).  

6.2.3. Characteristics of the trait under study 

While GBLUP performed better than HBLUP for dry matter content (DMC, =0.70 to 0.81), 

the opposite was observed for mid-heritability traits like DMY ( =0.50 to 0.54, Publication 

III). Thus, the crucial role of the trait heritability in determining the performance of 

prediction models was confirmed for GBLUP as observed by Jia and Jannink (2012) but not 
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for HBLUP. Other factors rather than the heritability of the trait under scrutiny might have, 

therefore, a greater influence on HBLUP. 

Across the spectrum, estimates of the heritability of the bands and of the correlation 

between single bands and different agronomic traits were highly variable (Publication II, 

Publication III). The exclusion of broad spectral regions due to their relatively lower 

heritability resulted in significant reductions in the ability of HBLUP to predict DMY 

(Publication II). Similar observations were made for reflectance-enabled predictions for GY in 

wheat (Montesinos-López et al. 2017b). Thus, instead of selecting the bands based on their 

heritability, the spectral regions most relevant to the trait of interest should be considered, 

which in turn, are determined by their sensitivity to capture changes in the targeted trait 

based on canopy reflectance. Different biophysical and biochemical plant properties are 

linked to specific wavelengths across the electromagnetic spectrum (Pauli et al. 2016). 

While, for instance, the red-edge is the most informative region for assessing biomass-

related traits such as chlorophyll concentration and LAI, it lacks sensitivity to assess the 

water status of non-stressed plants (Filella and Peñuelas 1994). In contrast, the spectral 

sensitiveness to water status and DMC starts at 950 nm (Jacquemoud et al. 2000). The 

wavelengths closely linked to DMY were covered by the data of this study (410 - 993 nm), 

whereas most of the regions sensitive to DMC were not collected, likely explaining the 

different predictive performance for each trait.  

6.3. Conclusions for rye biomass breeding in the "omics" era 

In the present breeding scheme in rye, DMY is assessed for the first time in strongly reduced 

populations in GCA-2 experiments. Given the positive but reduced phenotypic correlation 

between DMY and GY (r = 0.33 to 0.35; Haffke et al. 2014, Publication I), it is expected, 

therefore, that there might be individuals with high DMY potential that are discarded before 

GCA-2 due to their relatively lower GY. Thus, additional breeding efforts, in terms of more 

effective secondary traits, improved modeling, and optimized breeding pipelines, are 

imperative for efficient breeding for high-biomass rye hybrids in the context of increasing 

bioenergy demand in the EU (European Commission 2011a, 2011b). Major advancements in 

the field of genomics and phenomics open new possibilities to increase selection gain in rye 
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biomass comparing to classical GY-driven breeding programs. The outcomes of the present 

study underline that integrating hyperspectral, genomic, and phenotypic data resulted 

consistently in higher prediction abilities for DMY than when each was individually 

considered.  

Previous studies have shown that PH is a key estimator for DMY prediction in cereal crops 

(Fernandez et al. 2009, Haffke et al. 2014) and VIs represent a complementary source of 

information to increase its predictive power to a certain degree (Bendig et al. 2015, Tilly et 

al. 2015, Yue et al. 2017, Zhang et al. 2017, Li et al. 2018). These findings were corroborated 

in the study at hand (Publication I) since combined VIs showed lower prediction abilities 

(0.42) than PH as an individual predictor (0.57) and adding VIs to PH represented only a 

minor improvement (0.58, Table 1). Interestingly, predictions were improved by a multiple 

linear regression model integrating PH, GY, and a subset of VIs (0.75). In the context of 

biomass breeding, the incorporation of the routinely assessed GY into regression equations 

represents a further opportunity to indirectly assess DMY more effectively as also observed 

for early prediction of DMY in triticale (Gowda et al. 2011). Recently, instead of incorporating 

agronomic traits as PH, some authors have incorporated traits derived from remote sensing 

data (e.g. canopy temperature and VIs) into univariate and multivariate genomic models to 

achieve superior prediction abilities for GY in wheat breeding (Rutkoski et al. 2016, Sun et al. 

2017, Crain et al. 2018, Juliana et al. 2019, Sun et al. 2019). These results are consistent with 

the objectives of indirect selection since the prediction ability for traits being expensive to 

assess and showing relatively low heritability can be enhanced by incorporating correlated 

traits easier accessible and displaying higher heritabilities as demonstrated for genomic 

models in simulation and empirical studies in plant and animal sciences (Calus and Veerkamp 

2011, Jia and Jannink 2012, Guo et al. 2014, Okeke et al. 2017, Schulthess et al. 2018, 

Velazco et al. 2019). Likewise, Fernandes et al. (2018) observed that the predictive power of 

single-trait GS for biomass in sorghum was substantially surpassed by a multi-trait GS 

approach using PH as a secondary trait. 

Instead of extending GS models by adding VIs, Krause et al. (2019) combined two 

relationship matrices, one based on markers and the other on whole-spectrum data (380-

850 nm), into multi-kernel GBLUP for leveraging the ability of GS for GY in wheat. In total 

agreement with this publication, a multi-
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reflectance- and marker-derived kinship matrices outperformed the predictive power of the 

corresponding single-kernel models within the same breeding population in the present 

study (Publication II). The extension of G+H to a bivariate model Bivariate_G+H  by 

incorporating PH was beneficial in terms of the superior prediction ability of this model 

(Publication II). The equations here presented are flexible and allow the incorporation of GY 

and other correlated traits to achieve superior DMY predictions. The reader must be, 

however, aware that by including several predictors, the complexity of the models and the 

computational burden substantially increases. 

PH, a key biomass component, allows higher selection gains for DMY and represents, 

therefore, a change in the architecture of crops, which has been strongly oriented to high-

yielding dwarf varieties that maximize the harvest index (Fernandez et al. 2009). 

Nevertheless, the use of PH to predict DMY should be carefully analyzed. Models including 

PH tended to select taller genotypes, which were not always the highest yielding ones 

(Publication II). Thus, in the long term, small PH differences of the selected genotypes will 

accumulate, and additional resources would be needed for breeding against lodging. It is 

also worth mentioning that the correlations observed in this study for DMY and different 

agronomic traits (e.g., GY and PH) might vary according to the germplasm under analysis.  

In within-cycle predictions, where the genotypes used to calibrate and validate the genomic 

model are derived in the same selection cycle, higher genotypic connectivity is expected 

between TRN and VAL than when genotypes correspond to different selection cycles. In the 

analyzed breeding scheme, this scenario could be, for instance, applied starting at the GCA-1 

stage aiming for superior selection decisions for biomass than the traditional GY-based 

approach. Combining different sources of information resulted here in the best approach for 

indirectly selecting for superior DMY. However, all analyzed models profited from larger 

training populations in terms of both higher and more stable predictions. Consequently, 

while in this scenario, prediction models profit from closer genetic connectivity, TRN size 

emerges as a crucial factor limiting their performance (Publication II). Thus, to successfully 

predict unphenotyped individuals, duplicating a substantial proportion of large-sized GCA-1 

trials would be needed to calibrate the predictive equations accurately (Publication II). If 

only a reduced TRN is affordable, HBLUP emerged as a promising approach given its higher 

prediction power on reduced calibration populations compared to GBLUP (Publication II). 
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Conversely, large TRNs can be obtained by integrating different selection cycles to predict 

DMY of genotypes from a subsequent cycle. Here, a reduced genetic similarity between TRN 

and VAL is expected. The outcomes of this study showed that hyperspectral imaging is an 

important breeding tool given its relative independence from genetic backgrounds, in 

opposition to the high impact of this factor on the predictive power of GBLUP (Publication 

III). In this scenario, the addition of molecular data to HBLUP showed only limited 

advantages while the superiority of the bivariate model was again confirmed. Thus, the high 

complementarity observed among molecular, hyperspectral, and phenotypic data allows 

their integration into multivariate analysis for successfully predict DMY of genotypes not 

only derived from the same crossings (Publication I, Publication II) but also across distinct 

populations (Publication III).  To successfully predict DMY within and across populations, 

however, special attention should be given to maintain sufficient environmental connectivity 

between the data used for model training and validation (Publication I, Publication II, 

Publication III). 

In the breeding scheme at hand, the indirect DMY estimation of the candidates being only 

tested for GY in GCA-1 trials could be performed by fitting prediction models with data 

collected on GCA-2 trials from previous selection cycles (Fig. 4). Here, the prediction error 

can be estimated by forward validation (FV), an alternative procedure to CV for the 

prediction of breeding values of genotypes tested in later years based on data collected in 

previous years (Bernal-Vasquez et al. 2017). So, the superfluous duplication of GCA-1 plots is 

entirely avoided, saving capital and time, and therefore, boosting the benefits of predictive 

breeding. Moreover, the data collected in the cycles routinely started each year allow the 

updating of the prediction model, increasing its reliability to estimate the trait of interest 

(Auinger et al. 2016). Thus, across-cycles prediction based on models combining meaningful 

hyperspectral, genomic, and agronomic data emerges as a very promising strategy to 

establish an affordable dual-purpose rye breeding program. 

In conclusion, hyperspectral imaging is a valuable breeding tool capable to record 

phenotypic information that otherwise would be very difficult or expensive to assess by 

destructive means, as biomass. However, the widespread adoption of this technology in 

practical plant breeding is still missing. While challenges regarding data acquisition and 

management as well as the difficulty of extrapolating results obtained in controlled 
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conditions to real breeding scenarios were confirmed by the outputs of this research, 

suitable approaches to optimize data collection, reduce data multicollinearity, and improve 

modeling for incorporating hyperspectral information into predictive equations were 

presented. The synergetic effect observed among hyperspectral, genomic, and agronomic 

data can be exploited to achieve better predictions of the target trait. Given the increasing 

availability of other omics datasets such as transcriptomics, proteomics, and metabolomics 

future research should focus on assessing the prospects also of these novel data sources as 

relevant complements to genomics to achieve higher predictive abilities.  

   

79



 

 

Fig. 4 Selection cycles in a hybrid rye breeding program. Across-cycles prediction could be done by collecting molecular (Markers), hyperspectral 

(Bands), and agronomic (Agro) data for model training in the second general combining ability trials (GCA-2), whereas prediction and validation 

are performed among the first GCA trial (GCA-1) and GCA-2 of a subsequent selection cycle, respectively. Brown boxes stand for grain yield trials 

and green boxes for biomass trials. 
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7. Summary 

Currently, the combination of a growing bioenergy demand and the need to diversify the 

dominant cultivation of energy maize opens a highly attractive scenario for alternative 

biomass crops. Rye (Secale cereale L.) stands out among other small-grain cereals for its 

vigorous growth, increased tolerance to abiotic and biotic stressors, as well as high 

adaptation to acid or sandy soils, being primarily cultivated in Central and Northeastern 

Europe. In Germany, less than a quarter of the total harvest is used for food production. 

Consequently, rye arises as a source of renewables with a reduced bioenergy-food tradeoff, 

emerging biomass as a new breeding objective. 

However, rye breeding is mainly driven by grain yield while biomass is destructively 

evaluated in later selection stages by expensive and time-consuming methods. The overall 

motivation of this research was to investigate the prospects of combining hyperspectral, 

genomic, and agronomic data for unlocking the potential of hybrid rye as a dual-purpose 

crop to meet the increasing demand for renewable sources of energy affordably. A specific 

aim was to predict the biomass yield as precisely as possible at an early selection stage. For 

this, a panel of 404 elite rye lines was genotyped and evaluated as testcrosses for grain yield 

and a subset of 274 genotypes additionally for biomass. Field trials were conducted at four 

locations in Germany in two years (eight environments). Hyperspectral fingerprints consisted 

of 400 discrete narrow bands (from 410 to 993 nm) and were collected in two points of time 

after heading for all hybrids in each site by an uncrewed aerial vehicle. 

In a first study, population parameters were estimated for different agronomic traits and a 

total of 23 vegetation indices. Dry matter yield showed significant genetic variation and was 

stronger correlated with plant height ( =0.86) than with grain yield ( =0.64) and individual 

vegetation indices ( = 35|). A multiple linear regression model based on plant height, 

grain yield, and a subset of vegetation indices surpassed the prediction ability for dry matter 

yield of models based only on agronomic traits by about 6 %.  

In a second study, instead of vegetation indices, whole-spectrum data was used to indirectly 

estimate dry matter yield. For this, single-kernel models based on hyperspectral reflectance-

derived (HBLUP) and genomic (GBLUP) relationship matrices, a multi-kernel model 
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combining both matrices, and a bivariate model fitted also with plant height as a secondary 

trait, were considered. HBLUP yielded superior predictive power than the models based on 

vegetation indices previously tested. The phenotypic correlations between individual 

wavelengths and dry matter yield were generally significant (p < 0.05) but low (

Across environments and training set sizes, the bivariate model yielded the highest 

prediction abilities (0.56  0.75). All models profited from larger training populations. 

However, if larger training sets cannot be afforded, HBLUP emerged as a promising approach 

given its higher prediction power on reduced calibration populations compared to the well-

established GBLUP.  

Regarding reflectance data acquisition and management, combining multiple points in time 

had limited advantages in the predictive power of reflectance-based models. Thus, for 

practical purposes, hyperspectral imaging can be satisfactorily performed by a single flight 

after heading. Before its incorporation into prediction models, filtering the hyperspectral 

data available by the least absolute shrinkage and selection operator (Lasso) was worthwhile 

to deal with data dimensionally.  

In a third study, the effects of trait heritability, as well as genetic and environmental 

relatedness on the prediction ability of GBLUP and HBLUP for biomass-related traits were 

compared. While the prediction ability of GBLUP (0.14 - 0.28) was largely affected by genetic 

relatedness and trait heritability, HBLUP was significantly more accurate (0.41 - 0.61) across 

weakly connected datasets, particularly for mid-heritable traits as fresh and dry matter 

yields. In this context, dry matter yield could be better predicted (up to 20 %) by a bivariate 

model. Nevertheless, due to environmental variances, genomic and reflectance-enabled 

predictions were strongly dependant on a sufficient environmental relationship between 

data used for model training and validation.  

In summary, to affordably breed rye as a double-purpose crop to meet the increasing 

bioenergy demands, the early prediction of biomass across selection cycles is crucial. 

Hyperspectral imaging has proven to be a suitable tool to select high-yielding biomass 

genotypes across weakly linked populations. Due to the synergetic effect of combining 

hyperspectral, genomic, and agronomic traits, higher prediction abilities can be obtained by 

integrating these data sources into bivariate models.   
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8. Zusammenfassung 

Die Kombination eines wachsenden Bioenergiebedarfs und die Notwendigkeit, den 

vorherrschenden Anbau von Energiemais zu diversifizieren, eröffnen ein äußerst attraktives 

Szenario für alternative Biomassekulturen. Roggen (Secale cereale L.) zeichnet sich, 

verglichen mit anderen kleinkörnigen Getreidearten, durch ein kräftiges vegetatives 

Wachstum, eine erhöhte Toleranz gegenüber abiotischen und biotischen Stressfaktoren, 

sowie eine hohe Anpassung an saure oder sandige Böden aus. Roggen wird hauptsächlich in 

Mittel- und Nordosteuropa angebaut. In Deutschland wird weniger als ein Viertel der 

gesamten Ernte für die Lebensmittelproduktion verwendet. Daher gewinnt Roggen durch 

einen geringeren Zielkonflikt zwischen Bioenergie- und Lebensmittelnutzung an Bedeutung 

als Quelle für erneuerbare Energien, wobei Biomasse als neues Züchtungsziel auftaucht. 

Die Roggenzüchtung konzentriert sich derzeit jedoch hauptsächlich auf den Kornertrag, 

während die Biomasse in späteren Selektionsstadien durch teure und zeitaufwändige 

Methoden destruktiv erfasst wird. Die übergeordnete Motivation dieser Arbeit war es, die 

Aussichten der Kombination von hyperspektralen, genomischen und agronomischen Daten 

für die Erschließung des Potenzials von Hybridroggen als Zweinutzungspflanze zu 

untersuchen, um den steigenden Bedarf an erneuerbaren Energiequellen kostengünstig zu 

decken. Das spezifische Ziel war es, den Biomasseertrag in einem frühen Selektionsstadium 

so genau wie möglich vorherzusagen. Dazu wurde ein Panel von 404 Elitelinien genotypisiert 

und als Testkreuzungen für Kornertrag - eine Teilmenge von 274 Genotypen auch für 

Biomasse-Ertrag  ausgewertet. Feldversuche wurden an vier Standorten in zwei Jahren in 

Deutschland (entspricht acht Umwelten) durchgeführt. Die hyperspektralen Daten 

bestanden aus 400 diskreten Banden von 410 bis 993 nm und wurden zu zwei Zeitpunkten 

nach dem Ährenschieben für alle Testkreuzungen an jedem Ort von einer Drohne 

gesammelt. 

In einer ersten Studie wurden Populationsparameter für verschiedene agronomische 

Merkmale und insgesamt 23 Vegetationsindizes geschätzt. Der Trockenmasseertrag zeigte 

eine signifikante genetische Variation und korrelierte stärker mit der Wuchshöhe ( =0.86) 

als mit dem Kornertrag ( =0.64) und den einzelnen Vegetationsindizes ( = 35|). Ein 

multiples lineares Regressionsmodell, welches auf Wuchshöhe, Kornertrag und den besten 
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Vegetationsindizes basierte, übertraf die Vorhersagefähigkeit für den Trockenmasseertrag 

von Modellen, die nur auf agronomischen Merkmalen basierten, um etwa 6 %. 

In einer zweiten Studie wurde anstelle von Vegetationsindizes das ganze 

Wellenlängenspektrum verwendet, um den Trockenmasseertrag indirekt abzuschätzen. 

Hierzu wurden Einzelkernmodelle (single-kernel models) basierend auf genomischen 

(GBLUP) oder hyperspektralen (HBLUP) Beziehungsmatrizen, ein Mehrkernmodell (multi-

kernel model), das beide Matrizen kombiniert, sowie ein bivariates Modell, welches auch 

Wuchshöhe als ein sekundäres Merkmal enthielt, analysiert. HBLUP lieferte eine bessere 

Vorhersagekraft als die Modelle, die auf Vegetationsindizes basierten. Die phänotypische 

Korrelationen zwischen einzelnen Wellenlängen und dem Trockenmasseertrag waren im 

Allgemeinen signifikant (p < 0,05), jedoch geringfügig (  

Trainingssatzgrößen hinweg ergab das bivariate Modell die höchsten Vorhersagefähigkeiten 

(0,56  0,75). Alle Modelle profitierten von größeren Trainingspopulationen. Wenn jedoch 

keine größeren Trainingssätze bereitgestellt werden können, zeigte HBLUP eine höhere 

Vorhersagefähigkeit als das etablierte GBLUP. 

In Bezug auf die hyperspektrale Datenerfassung hatte die Kombination mehrerer Zeitpunkte 

nur begrenzte Vorteile. Aus praktischen Gründen kann sie daher durch einen einzelnen Flug 

nach dem Ährenschieben ausreichend gut erfasst werden. Vor der Einbeziehung in 

Vorhersagemodelle hat sich das Filtern der verfügbaren Hyperspektraldaten durch den least 

absolute shrinkage and selection operator (Lasso) als notwendig erwiesen, um die 

Dimensionalität der Daten zu verringern. 

In einer dritten Studie wurden die Auswirkungen der Heritabilität sowie der Ähnlichkeit 

innerhalb von Genotypen und Umwelten auf die Vorhersagefähigkeit von GBLUP und HBLUP 

für biomassebezogene Merkmale verglichen. Während die Vorhersagefähigkeit von GBLUP 

(0,14 - 0,28) weitgehend durch genetische Verwandtschaft und die Merkmalsheritabilitäten 

beeinflusst wurde, war HBLUP in wenig verwandten Datensätzen signifikant genauer (0,41 -

 0,61), insbesondere für Merkmale mit mittlerer Heritabilität wie Frisch- und 

Trockenmasseertrag. In diesem Zusammenhang konnte der Trockenmasseertrag durch ein 

bivariates Modell bis zu 20 % besser vorhergesagt werden. Aufgrund hoher Genotyp-

Umwelt-Interaktionen waren genomische und reflexionsbasierte Vorhersagen nur schlecht 

geeignet, um die Leistung fehlender Umwelten vorherzusagen. 
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Zusammenfassend ist es für eine kostengünstige Züchtung von Roggen als 

Zweinutzungspflanze zur Deckung des steigenden Bioenergiebedarfs entscheidend, die 

Biomasse über Selektionszyklen hinweg frühzeitig vorherzusagen. Die hyperspektrale 

Bildgebung hat sich als geeignetes Instrument zur Auswahl ertragreicher Biomasse-

Genotypen auch in wenig verwandten Populationen erwiesen. Dank des synergetischen 

Effekts der Kombination von hyperspektralen, genomischen und agronomischen Merkmalen 

können durch die Integration dieser Datenquellen in bivariaten Modelle höhere 

Vorhersagefähigkeiten erzielt werden. 
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