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Chapter 1

General Introduction – Multienvironment trials: An
epistemological framework for dissecting genotype ×
environment interaction

1.1 Introduction

The ultimate goal in a plant breeding programme is selecting cultivars that guar-
antee high yield and quality in varying environmental conditions because different
cultivars perform differently in diverse environments, a phenomenon known as
genotype×environment interaction (GEI) (Kang and Gorman, 1989). Therefore,
multienvironment trials (MET) are carried out to assess cultivars’ performance
across diverse environmental conditions and thus provide cultivars’ performance
information via statistical analyses. In the MET, a large number of varieties are
tested in several geographical regions. A reliable and robust statistical method is
required to provide accurate predictions of the yield of tested cultivars. The MET
results can help breeders select the best cultivars and recommend growers to select
well-adapted cultivar to their regional conditions.

1.2 Plant breeding: a long history yet still has a long wish list

Plant breeding is the art and science of the genetic improvement of plants for
the benefit of humankind, and it has been an integral part of agriculture since
humans first selected one type of plant or seed in preference to another, instead of
randomly taking what nature provided (Fehr, 1987; Sleper and Poehlman, 2006).
Plant breeding is an art because it needs the breeder’s skill in observing plants
with favourable characteristics, i.e., economic value, environmental adaptation,
nutritional, or aesthetic. Breeders depended solely on their eyes and intuition as their
skills to judge or select novel plants at that time because the scientific knowledge,
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e.g., genetics and statistics, was not as advanced as today. Thus, selection became
the earliest form of plant breeding (Sleper and Poehlman, 2006).

Plant breeding then developed into science as knowledge progressed in genetics,
statistics, and molecular biology (Sleper and Poehlman, 2006). Recently, the vast
and rapid development of molecular genetics and computing power allows for
more advanced breeding methods and accelerates cultivar developments and more
accurate predictions of cultivar performance.

Increased yield has been the ultimate aim in many plant breeding programmes.
Furthermore, one of the most important contributions of plant breeding has been
developing better varieties for new agricultural areas (Allard, 1960). High crop
productivity in a particular location year-in, year-out (Gepts and Pfeiffer, 2018),
is still a high priority in breeding programmes and as a basis for cultivar recom-
mendation. However, due to unpredictable climate change, breeders face a greater
challenge to developing stable and high-yielding cultivars. Cultivars, which are
drought-resistant, pathogens-pest-resistant, have higher biomass, are just a few to
name from a long wish list of plant breeders.

1.3 Genotype × environment interaction (GEI)

Genotype × environment interaction (GEI) is differential genotypic expression
across environments (Romagosa and Fox, 1993). In the GEI concept, the “genotype”
term is interchangeably with “variety”, “crop”, and “cultivar” (Buntaran, 2019). The
existence of GEI inhibits genetic analysis of performance reduces the efficiency of
crop improvement in a plant breeding programme, mainly due to the confounding
between tested genotypes comparison with the environment and complicate the
breeding objectives (Cooper and Byth, 1996). The GEI issue has been discussed
more than a half-century ago by Allard (1960) describing the biological complexity
underlying GEI: “virtually all phenotypic effects are not related to the gene in any
simple way. Rather they result from a chain of physico-chemical reactions and inter-
actions initiated by genes but leading through complex chains of events, controlled
or modified by other genes and the external environment, to the final phenotype”.
Furthermore, Allard and Bradshaw (1964) also enunciated the complexity of GEI
for plant breeders: "There is rather general agreement amongst plant breeders that
interactions between genotype and environment have an important bearing on the
breeding of better varieties. However, it is much more difficult to find agreement
as to what we ought to know about genotype-environment interactions and what
we should do about them". Thus, GEI complicates the selection of the best variety
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because a cultivar can outperform in a one or some environments but underperform
in others.

The issue of GEI received considerable attention in 1990 as the international
symposium on ‘Genotype-by-Environment Interaction and Plant Breeding’ was held
on 12 and 13 February at the Louisiana State University campus in Baton Rouge
(Kang, 1990). Since that time, various GEI issues have come to the forefront in many
breeding programmes throughout the world (Kang, 2020). The Crop Science Society
of America even organised a symposium on the GEI issue and published papers
in Crop Science volume 56. In this special issue from Crop Science, de Leon et al.
(2016) defined GEI as the differential sensitivity of certain genotypes to different
environments. Furthermore, van Eeuwijk et al. (2016) referred the GEI problem as
the building of predictive models for genotype-specific reaction norms. The GEI
concept can be illustrated as the slope of the line when genotype performance is
plotted against an environmental gradient, which is also known as the reaction norm:
the genotype-specific functional relationship between phenotype and environmental
gradients (DeWitt and Scheiner, 2004; van Eeuwijk et al., 2016) as shown in Figure 1.1.

In Figure 1.1, five scenarios of reaction norm are shown. Figure 1.1a shows no
GEI and no plasticity since there is no different mean of genotype performance across
the environments, and the ranking of genotypes are the same across environments.
Figure 1.1b also shows no GEI but plasticity because of the phenotype expression,
in this case, yield, changes across the different environments. In Figure 1.1b, there
is no GEI because the genotype and the environment behave additively, and the
reaction norms are parallel (no difference ranking and changing mean differences
among genotypes). The remaining plots show various situations in which GEI
occurs: divergence (Figure 1.1c), convergence (Figure 1.1d), and the most crucial
one, crossover interaction (Figure 1.1e). In divergence and convergence situation,
the genotype ranking does not change across environments, but the mean difference
between the three genotypes does. In the case of crossover interaction, the mean
difference and the ranking between genotypes are shifted. In crop breeding, the
crossover interaction is more important and problematic than the non-crossover
interaction (Baker, 1990). McKeand et al. (1990) emphasized that in the crossover
situation, breeders are faced with developing separate populations for each site type
where genotypic rankings drastically change. Singh et al. (1999) pointed out that it
is important to assess the frequency of crossover interactions because this pattern
has substantial implications for specific-adaptation breeding.
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Figure 1.1 Illustration of GEI for three genotypes in five different environment
conditions. No GEI in (a) and (b) versus GEI in (b) until (c). No plasticity in (a)
versus plasticity in (b) until (e). The environment index shows the unfavourable
environment conditions (1) to favourable environment conditions (5).

1.4 Multienvironment trials (MET)

The concepts of the target population of genotypes (TPG) and the target pop-
ulation of environments (TPE) are salient to understand the breeding concepts
associated with GEI. The TPG and TPE help breeders define the set of genotypes and
environments to obtain valid and precise inference and predictions (van Eeuwijk
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et al., 2016). The TPG comprises all candidate genotypes to grow in the coming years
(van Eeuwijk et al., 2016). The TPE contains a group of environments concerning the
genotypic performance where new cultivars will be adopted. In other words, TPE
describes the future growing conditions of the cultivars in the TPG (Comstock, 1977;
Cooper and Byth, 1996; Cooper et al., 2014). The TPE is also indispensable to predict
GEI since the identification of repeatable GEI is a challenge due to the unpredictable
weather (de Leon et al., 2016).

In a breeding programme, developed or improved varieties are assessed in multi-
ple environments, which constitute the potential representatives of the TPE (Cooper
and DeLacy, 1994; DeLacy et al., 1996). The term “environment” may refer to a year-
location combination. A multienvironment trial’s (MET) objective is to determine
which varieties are matched to a TPE, based on the reaction norm/expression of
the varieties per se to the environments. Thus, METs aid breeders to determine the
similarity of environments and grouping similar environments in MET. The infor-
mation derived from MET is crucial not only for selection purposes in a breeding
programme but also to provide advice or recommendation to growers in deciding
which cultivar is the most suitable and performs the best in their growing condi-
tions. Thus, robust statistical methods are necessary to obtain accurate predictions
of genotype performance such as yield and obtain a reliable stability measure of
each cultivar across environments.

1.5 Statistical modelling for GEI analysis

Statistical modelling is a pivotal basis for dissecting GEI. Medina (1992) stated,
“Genotype-environment interaction is of major importance to the plant breeder in
developing improved varieties because the relative rankings of varieties grown over
a series of environments may differ statistically, causing problems in plant selection.”
Meredith Jr. (1984) mentioned: “Genotype × environment interactions are important
to geneticists and breeders because the magnitude of the interaction component
provides information concerning the likely area of adaption of a given cultivar. The
relative magnitudes of the interaction, error, and genotypic components are useful in
determining efficient methods of using time and resources in a breeding program.”
The following subsections introduce the statistical modelling in the context of GEI
covered in this thesis.
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1.5.1 The aspects and goal of statistical modelling

Box et al. (2005, p. 208) stated that "all models are wrong and some are useful, it is
equally true that no model is universally useful". How useful? The most that can be
expected from any model is that it can provide a useful approximation to reality
(Box et al., 2005, p. 440). There are three essential aspects of modelling that can be
taken from Box (1976) article titled "Science and Statistics," i.e., flexibility, parsimony,
and worrying selectively. Flexibility means one should not fall in love with his/her
model because there will always be discrepancies between theory and practice.

Moreover, there is no universal model for all kind of data, and data per se is
very dynamic. Thus, in modelling, we need to have flexibility and courage to
seek out, recognise, and exploit such discrepancies (Box, 1976). The next aspect is
parsimony, which in the same spirit as William of Occam means that one should
seek an economical description of natural phenomena. A model should not result
in an overestimation or underestimation. Thus, in modelling, one should not aim
for the most complex model to obtain the estimate values but the parsimony to
obtain sufficient estimate values. The last aspect is worrying selectively. This aspect
refers to the assertion that since all models are wrong, one should be alert to what is
importantly wrong (Box, 1976).

The ultimate goal of statistical modelling is to obtain accurate and precise esti-
mates. Accuracy measures how close an estimate θ̂ of a parameter θ is to the "true
value" (Kotz et al., 2006) By contrast, the precision of an estimator θ̂, measures how
narrow the distribution of θ̂ clusters about its expected value (Kotz et al., 2006). The
precision of θ̂ is the reciprocal of the variance of θ̂. The model selection can be done
by evaluating the accuracy of the produced estimates. Accuracy can be evaluated
via a cross-validation (CV) study by estimating prediction error (Hastie et al., 2009).
From a CV study, accuracy can be measured in terms of mean squared error (MSE),
which consists of variance and squared bias of θ̂.

1.5.2 Linear mixed models (LMM): BLUE and BLUP in one model

A model is defined as a mathematical notation of the processes that give rise to
the observations in a set of data (Stroup, 2012). A purely mathematical model is
a deterministic device in that for a given set of inputs, it predicts the output with
absolute certainty, and it leaves nothing to stochastic part (Schabenberger and Pierce,
2001). A model is considered as a statistical model when it includes a determin-
istic/systematic part and a stochastic/random part. Therefore, a statistical model
describes the presumed impact of explanatory variables and the probability distri-
butions associated with aspects of the process that are assumed to be characterised
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by random variation (Stroup, 2012). In short, a statistical model comprises three
components, i.e., systematic part, which consists of quantitative and/or qualitative
explanatory variables, a random part (refers to residual error term), and an assumed
distribution.

A linear model (LM) usually refers to a classical linear model with Gaussian error.
In matrix notation, this LM is written as:

y =Xβ + e (1.1)

where Y is an n × 1 vector of observations, X is an n × k incidence matrix for fixed
effects factors, β is a k × 1 vector of unknown fixed effect parameters to estimate,
and e is a vector of residual errors and is assumed homoscedastic, uncorrelated,
and following N(0,σ2I). In this case, the parameter estimates of β are solved using
ordinary least squares (OLS), and the solutions are called best linear unbiased
estimators (BLUE). Thus, in the classical LM, there is only one type of effect in the
systematic part that is considered, i.e., fixed effect. The matrix structure of variance
for the classical LM is V = σ2I.

Linear mixed models (LMM) extend the classical LM to allow both fixed and
random effects factors in one model (Eisenhart, 1947; Harville, 1976; Laird and Ware,
1982). A matrix formulation of LMM is as follows:

y =Xβ + Zu + e (1.2)

where Y is a vector n × 1 of observations, X is the incidence matrix for fixed effects
with n × k matrix, β is a vector of unknown fixed effect parameters to estimate with
k × 1 matrix, Z is the incidence matrix for random effects with n × p matrix, u is a
vector of unknown random effect parameters to estimate with p × 1. Since u consists
of random effect parameters, u is assumed to be N(0,G) where G is the variance-
covariance matrix of all random effects. The vector e consists of residual errors. The
assumption of residual errors are more relaxed in the linear mixed models than
in the classical linear models since it allows non-independence and heterogeneity,
N(0,R), where R is the variance-covariance matrix for the residuals.

Henderson (1950, 1963, 1975, 1984) developed mixed model equations (MME) to
obtain the solutions of fixed effects and random effects for animal breeding purposes.
The Henderson’s MME is as follows:(

X′R−1X X′R−1Z
Z′R−1X Z′R−1Z + G−1

)(
β̂

û

)
=

(
X′R−1y
Z′R−1y

)
. (1.3)
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The solutions to MME are the BLUE for β and the best linear unbiased predic-
tors (BLUP) for u. Unlike the classical LM, LMM has variances for random effects
and the residual terms. Thus, the covariance matrix of y in the LMM is writ-
ten as V = ZGZ′ + R. In practice, the actual variance components of G and R in
Equation 1.3 are not known and therefore are estimated from the data. Thus, the
appropriate acronyms become EBLUE and EBLUP, where the E refers to empirical.

A fixed effect is estimated with BLUE. The term “Best” means that the sampling
variance is minimised. “Linear” indicates that the estimates are linear functions of
the observed values. “Unbiased” implies that the expected values of the estimates
are equal to their true values E[BLUE(β)] = β of a factor is considered as “fixed”
if we are just interested in its particular value or, in general, if a factor only has
a few levels and not coming from or representing from a probability distribution
(McCulloch et al., 2008), and the conclusions apply only to the particular factor
levels (Lynch and Walsh, 1998). For example, the effects of different soil types or
effects of different fertilizers. The estimation of fixed effects in the LMM is slightly
different from the estimation in the classical linear model. In the LMM, the fixed
effects estimates are solved using generalised least squares estimation (GLSE), not
OLS.

A random effect is predicted with BLUP. The expansion of “B” is the same as “B”
in BLUE. “L” indicates the predictions are linear functions of the observed values.
“Unbiased” implies that the expected values of the predictions are equal to their true
values E[BLUP(u)] = E(u) = 0. The term “prediction” is chosen by (Henderson,
1984) since in animal breeding, the interest is to evaluate the potential of breeding
value of a mating between two potential parents and to predict the future records.
The term “estimation” is more appropriate to estimate the value if an animal already
born. Thus, it has become a common term in practice to “estimate” fixed effects and
to “predict” random effects (Robinson, 1991).

In the opposite of the fixed effect, one of the assumptions underlying random
effects is that when the experiment is repeated, the true value will change/not be
constant. This is also the reason that the term “prediction” is used for a random
effect. The other assumptions are: the levels of a factor are of no particular interest
and represent or come from a probability distribution. Thus, in general, the random
effect factor levels will have many levels to represent the whole population. While
in the fixed effect, the parameter to estimate is the mean of individual levels, in
the random effect, a variance (dispersion parameter) is the parameter to estimate.
Therefore, the inference applies to a population (Searle et al., 1992, p. 17).
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1.5.3 LMM in the context of MET

In plant breeding, an individual location or a trial is considered random, but
the set of locations/trials is considered as a fixed effect (Bernardo, 1996). In other
words, if a zone or region consists of several locations, then the effect of a zone is
considered as fixed, and the effect of locations are considered as random because
the condition of locations may change from year to year. Furthermore, the mean
differences among different sets of environments are considered as nuisance factors
that should be taken into account for genotypes comparisons (Bernardo, 2020). In the
fixed effect, when the experiment is repeated, the effect of a factor will be the same,
which means the true value of the fixed effect does not change in each repetition of
the experiment (Blasco, 2017).

The model for an MET laid out as a generalized lattice design, e.g., an alpha-
lattice design can be expressed as:

yijkl = µ + rjk + bjkl + gi + ej + (ge)ij + ϵijkl (1.4)

where µ is the intercept, rjk is the effect of the k-th replicate in the j-th environment,
bjkl is the effect of the l-th incomplete block nested in the j-th replicate in the j-th
environment, gi and ej are the main effects of genotype and environment, (ge)ij is
the interaction effect of the i-th genotype and j-th environment, ϵijkl is the residual
term.

In connection to Equation 1.2, the intercept is classified in the fixed-effects part,
Xβ, while rjk and bjkl are classified in the random-effects part, Zu. The ϵijkl is
classified in the residual part, e, of Equation 1.2. The effect of (ge)ij can be assumed
as fixed or random depends on the objective of the analysis. When predictions of
genotypes for broad environment is preferred, then the predictions can be obtained
using genotype means µ + gi, where the effect gi is assumed to be random, N(0,Gg).
Consequently, in this case, the effect of (ge)ij is also random, N(0,Gge). When
predictions of genotype for environment-specific is preferred, then the predictions
can be obtained using genotype-environment specific means µ + gi + ej + (ge)ij.
Thus, for this scenario, the gi and (ge)ij are classified in the random-effects part, Zu,
and the ej is classified in the fixed-effects part, Xβ, of Equation 1.2.

1.5.4 Variance-covariance structures in LMM

In the MET analysis, the assumption of homogeneity variance is hardly ever
fulfilled because genotypic variances tend to change across environments. Further-
more, genotypic correlations for pairs of these environments are not homogeneous
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(Bustos-Korts et al., 2016). In the LMM framework, applying variance-covariance
structures can be applied to the random effect of GEI and the residual terms to take
into account this heterogeneity and achieve higher prediction accuracy. The variance-
covariance for GEI effect is modelled in the Gge matrix, and the variance-covariance
of the residual term is modelled in the R matrix.

Some variance-covariance structures used to exploit the heterogeneity of the GEI
term are compound symmetry (CS), unstructured (UN), and factor-analytic (FA).
The CS structure implies that both variance and covariance are homogeneous. Thus,
each environment has the same variance, and the genetic correlation is the same
between all pairs of environments. The UN structure allows both heterogeneous
covariance and variance. Thus, each environment has a unique genotype variance,
and each pair of environments has a unique covariance. The number of parameters
needed for this structure is p(p + 1)/2, where p is the number of environments. The
FA structures are often more useful than the UN structure for taking into account
heterogeneity in complex genotype × environment models. These structures have
fewer parameters than the UN structure (Isik et al., 2017). We here describe the FA
structure with a single multiplicative term (FA1). In this structure, the Gge is defined
as ΛΛ′+Ψ, where Λ is a vector of dimension 1× p that consists of loading factors λ1

to λp and Ψ is a p× p diagonal matrix that consists of environment-specific genotype
variances (ψ2

j ), j = 1,2, ..., p. The residual variance structure can be modelled as a
diagonal heterogeneous-environment specific, σ2

j .

1.5.5 BLUP or BLUE for the cultivar effect

Bernardo (2020) mentioned several benefits of BLUP in the plant breeding frame-
work. First, in the MET, the better genotypes will be tested in several years while
the less superior genotypes will be discarded, which results in unbalanced data.
BLUP allows analysing such unbalanced data while accounting for differences in the
amount of data available for each genotype. Second, BLUP uses the information for
all relatives measured to improve the prediction of breeding values. For example,
when a breeder wants to compare two individuals, A and B, the comparison can be
made solely on the basis performance of A and B alone. Using BLUP, the comparison
will be more precise by including the information of relatives of A and relatives of B.
In the MET, this feature is beneficial that using BLUP, we can borrow or recovery
information of the same genotype in other environments, and so exploit the genetic
correlation between environments (Atlin et al., 2000; Kleinknecht et al., 2013; Piepho
et al., 2016), which improves the prediction accuracy of genotype performance com-
pared to BLUE. In fact, DeLacy et al. (1996) asseverated that the advantage of using
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BLUPs for prediction is that the predicted range is close to the ’actual’ range, i.e., the
range of cultivar performance in the target environments.

The motivation to use BLUP has been formulated by Smith et al. (2001) who
asserted a “deficiency in the traditional fixed cultivar-effects approach in terms of
obtaining reliable predictions of future yield performance.” This deficiency has been
discussed by Patterson and Silvey (1980), who stated that “differences between trials
means for newly recommended cultivars are, on the average, about 27% too large.”
Thus, in practice, the estimation of cultivar’s yield may be too optimistic, and the
ranking of cultivars may be not accurate since the cultivar effect is fixed. In Chapter
2, the performance of EBLUE and EBLUP for zone-based prediction, including the
complex variance-covariance structures, was assessed.

1.5.6 Stagewise analysis

The MET data can be analysed by a single-stage analysis or stage-wise analysis
(two stages or more). A single-stage analysis is considered as the gold standard
(Gogel et al., 2018). A single-stage analysis has an advantage from theoretical
consideration since the estimation of fixed and random effects are done in a single
model from plot-level data (Piepho et al., 2012a). Nevertheless, the most common
disadvantage is the computational burden, especially when the numbers of cultivars
and environments are large and a complex variance-covariance structure for the
cultivar×environment interaction effects is assumed (Möhring and Piepho, 2009;
Welham et al., 2010).

The computational burden in the single-stage analysis motivates a stage-wise
analysis that splits the analysis into two (or more) stages. Damesa et al. (2017)
and Piepho et al. (2012a) reported that the stage-wise analysis was able to reduce
the computational burden substantially. In the stagewise analysis, each trial is
analysed separately using BLUE, in the first stage, to obtain adjusted cultivar means
per trial. Thus, the cultivar effects are modelled as fixed. In the second stage, the
adjusted cultivar means from the first stage are analysed jointly, using an appropriate
mixed model to compute marginal means for cultivars across environments. In this
stage, the cultivar effects may be modelled as fixed or random. Piepho and Eckl
(2014) mentioned another advantage of stage-wise analyses for practical analyses: it
facilitates a combined analysis of different trials with different experimental designs
in the first stage and subsequently allows modelling structures for heterogeneity of
variance between trials easily.

The two-stage analysis had similar results to the single-stage analysis when the
fully efficient (FE) method was used, where the full variance-covariance matrix
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of the estimated cultivar means from the first stage is forwarded to the second
stage reported by Damesa et al. (2017). The results are not equivalent because
the variance parameter values used between the single-stage and FE are different
due to the fact that residual maximum likelihood estimates (REML) will differ
slightly between the two analyses (Damesa et al., 2017). They are mathematically
equivalent only if identical variance parameter values are used. The primary issue of
stagewise analysis is that storing full variance-covariance is hard to do, so a diagonal
approximation is often used. Moreover, the most critical part is choosing the method
to forward the information on precision (standard errors, variance-covariance matrix
of the adjusted means) between stages to account for heteroscedasticity as well as for
covariances among the adjusted means (Damesa et al., 2017; Möhring and Piepho,
2009).

Möhring and Piepho (2009) showed, via simulation, that weighting can improve
efficiency, but the unweighted method was acceptable if the assumptions of the
model were correct, i.e., when error variances are independent of the genotype ×
environment interaction structure. They also mentioned that the weighting method’s
performance did not depend on the evaluation criterion but the dataset. Welham et al.
(2010) conducted a simulation study and showed that the two-stage unweighted
method performed poorly due to the loss of information in estimating the estimates
of cultivar performance, both overall and within environments. Similar to Gogel
et al. (2018), Welham et al. (2010) focused on prediction for individual sites.

Moreover, Gogel et al. (2018) advocated a move away from two-stage analysis
asserting that the computing power needed to analyze large and complex MET
datasets is already available. Their study of wheat MET data confirmed the equiva-
lence of a two-stage factor-analytic (FA) analysis with a known variance-covariance
matrix from Stage 1 to a single-stage analysis. An essential distinction between the
studies of Damesa et al. (2017) and Gogel et al. (2018) is that Damesa et al. (2017)
focus on predicting means across zones, whereas the study of Gogel et al. (2018)
focused on predictions for individual locations. Chapter 3 determines the best sta-
tistical analysis strategy for zone-based prediction cultivar testing combined with
the complex variance-covariance structure to exploit the heterogeneity of cultivar ×
zone interaction.

1.5.7 Random coefficient models for predictions of the untested site

While MET are usually designed to cover the whole TPE, none of the trials in an
MET coincides exactly with a grower’s field or location. Thus, grower’s fields, the
real target of breeding, must be seen as new locations in the TPE. In the same vein, it
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may be said that the MET analysis is usually used to produce predictions of tested
genotypes for a new location, making use of the information from tested locations.
Predicting genotype performance in a new location is akin to predicting values that
have no records at all, as reported by Henderson (1977), who showed that BLUP
could be used to predict breeding values for the animals that had no records. This
approach is in the same spirit to obtain genotype predictions in a new location with
no records.

Reporting the precision or precision measures quantified by standard errors and
prediction intervals is highly desirable due to growers’ fields hardly ever coinciding
with the trials’ location. Furthermore, in practice, cultivar yield will never reach
the same value as the predicted mean values from the MET. When there are no
precision measures reported, growers are left with having no information regarding
the precision in the predictions that are reported. The critical challenge is that the
standard errors of predictions of cultivar means obtained from the routine analysis
of MET are only valid for the locations where the trials were carried out, but not for
the untested locations or growers’ fields. However, the precision of the predictions
for the untested locations is crucial to assist growers in selecting a cultivar for their
farm or field.

Incorporating environmental covariates can be worthwhile to improve the pre-
cision measures of the predicted mean values of the cultivars. Heslot et al. (2014)
reported that the environmental covariates that are responsible for GEI are useful to
enhance the predictive capability of MET analyses and evaluate the adaptability of
the genotypes to the new target environment. The most commonly used types of
environmental covariates are soil and meteorological covariates (van Eeuwijk et al.,
2016). The regression on environmental covariates is usually modelled by fixed
effects. This type of modelling is appropriate when only studying the pattern of
GEI at the tested locations. Such models are also appropriate for making predictions
in an unstructured TPE. However, when the TPE is sub-divided into zones, it is
necessary to model genotypic effects as random to borrow strength between zones
(Kleinknecht et al., 2013; Piepho et al., 2016). If such modelling is coupled with
factorial regression approaches, genotype-specific regression coefficients must be
modelled as random effects and give rise to what are known as random coefficient
(RC) models (Longford, 1993; Milliken and Johnson, 2002). In Chapter 4, the utili-
sation of RC models to improve the precision and accuracy of yield predictions in
some new locations is explored.
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1.6 Cross-validation

Cross-validation (CV) is a method to evaluate statistical methods’ performance
by estimating the test error rate (James et al., 2013). A CV is conducted to evaluate a
model’s performance, which is known as model assessment, and select a model with
a proper level of flexibility, which is known as model selection (James et al., 2013).
In the CV, a dataset is split into a training set and a validation set. The training set
is used to train the model, while the validation set is used to validate the model’s
prediction from the training set.

The two most-used methods to conduct CV are leave-one-out (LOO) and k-fold
CV. The LOO CV leaves one data point as the validation set. Thus, if there is a set of
n data points, there will be n iterations of fitting. For example, with 10 data points,
ten iterations are done because of each time, one data is left out as a validation set.
A k-fold CV divides randomly a set of data points into k groups, or folds, in equal
size. The first fold is kept for validation, and the model is trained on k-1 folds. The
process is iterated k times, and each time a different fold or a different group of data
points are used for validation. Thus, a k-fold CV may require fewer iterations than
LOO CV. Thus, the assessment was measured based on the discrepancies between
observed and predicted pairwise differences.

The difference between the predictions from the training set and the validation
set will be measured using mean squared error (MSE). The smallest MSE of a model
will be regarded as the best-performed model, and so may be selected because
the best-performed model provides the highest prediction accuracy among the
compared models.

In the MET setting, the model evaluation can be carried out using a criterion
based on the pairwise differences of tested cultivars. The rationale of using pairwise
differences is that the main interest in cultivar trials is to predict differences among
cultivars rather than individual cultivars’ performance (Piepho, 1998). Piepho
(1998) proposed the mean squared error of prediction (MSEP) to assess the accuracy
of estimates of differences between cultivars in various environments. Chapter
2, Chapter 3, and Chapter 4 used a measure similar to Piepho’s MSEP based on
differences for measuring the prediction accuracy of the models.

1.7 Objective of this study

The main objective of this work is to determine the most appropriate approach for
zone-based cultivar prediction. Chapter 2 focuses on the performance of EBLUE and
EBLUP for zone-based prediction. Chapter 3 deals with the stagewise analysis and
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weighting methods for zone-based prediction, and Chapter 4 focuses on the random
coefficient (RC) models for projecting genotype performance in some untested
locations.

In Chapter 2, the CV study assesses the performance of EBLUE and EBLUP for
zone-based prediction in cultivar testing, including complex variance-covariance
structures in Swedish cultivar trials on two fungicide levels. This chapter deals with
model selection for single-year and multi-year models. Additionally, the necessity
of the division of agricultural zones/zonation is evaluated. For single-year models
evaluation, a 2-fold CV was used for model evaluation. The reason for conducting
this type of CV was the decreasing number of trials in recent years. Thus, the aim was
to train the model with a small number of trials. For multi-year models assessment,
a modified leave-one-out (LOO) CV was carried out to mimic the current Swedish
practice of predicting cultivar performance based on results from five years. A set
of data from five consecutive years was used as a training set. Then, the following
sixth year was used as validation. Besides mimicking the current-practice, the set
of cultivars in the early years and recent years differ a lot. For example, when the
training set consists of recent years, and the validation set consists of early years,
only very few cultivars are shared between both sets. Consequently, most of the
cultivars that are predicted in the training set would not be available in the validation
set because the validation set comprises early years.

The best statistical analysis strategy for zone-based prediction cultivar testing,
i.e., single-stage or two-stage analyses combined with complex variance-covariance
structure focused on the fungicide-treated subsets of datasets were assessed in
Chapter 3. Most other studies comparing single-stage and stage-wise analyses used
Pearson’s moment-product correlation or Spearman’s rank correlation between the
cultivar estimates between those two analyses (Damesa et al., 2017; Gogel et al.,
2018; Möhring and Piepho, 2009; Piepho et al., 2012a). The consequence of using
these correlations was the correlation coefficient estimates often are around 0.90,
implying that the single-stage and stage-wise analyses provide similar results. In
comparison to the Pearson correlation, a CV study can measure the prediction errors
of the model using MSEP, which is more desirable for choosing the model to predict
cultivar performance in MET analysis. In this study, a LOO CV was performed for
comparison and selection. One location was left out as a validation set, and used the
remaining locations as a training set.

The accuracy and precision of yield predictions in some new locations using
the RC models were assessed in Chapter 4. The locations represent growers’ fields.
The prediction accuracy was evaluated via a CV study. Again, a LOO CV was
performed for comparison and selection. For the models with covariates such as
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the RC models, the covariates in the validation set were used for predictions. The
precision of predictions is assessed with standard errors of predictions of genotypic
values (SEPV) and standard errors of the predictions of pairwise differences of
genotypic values (SEPD).
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The aim of multi-environment trials (METs) is to evaluate 
and test the performance of cultivars in various environ-

mental conditions. The MET results not only provide cultivar 
information to breeders for selection purposes but also are the 
basis for advice to farmers in deciding which cultivar is the best 
or the most suitable concerning their local field conditions. Thus, 
reliable statistical methods are necessary to give both breeders and 
farmers accurate information.

In Swedish cultivar trials, the statistical method used for 
analyzing MET data has not been changed for many years. 
Moreover, the number of trials has been decreasing in recent years. 
Hence, there is a demand for improvement in statistical analysis 
to provide better accuracy for zoned-based cultivar performance 
assessment and ranking in different environments based on a 
reduced number of trials. Currently, the analyses are done with an 
unweighted two-stage analysis (Möhring and Piepho, 2009). At 
the first stage, each experiment is analyzed using a linear mixed 
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The principal goals of a plant breeding program 
are to provide breeders with cultivar informa-
tion for selection purposes and to provide 
farmers with high-yielding and stable culti-
vars. For that reason, multi-environment trials 
need to be done to predict future cultivar yield, 
and a robust statistical procedure is needed 
to provide reliable information on the tested 
cultivars. In Sweden, the statistical procedure 
follows the tradition of modeling cultivar effects 
as fixed. Moreover, the analysis is performed 
separately by zone and level of fungicide treat-
ment, and so the factorial information regarding 
cultivar ´ zone ´ fungicide combinations is not 
explored. Thus, the question arose whether 
the statistical method could be improved to 
increase accuracy in zone-based cultivar 
prediction, since the cultivar recommendation 
is zone based. In this paper, the performance 
of empirical best linear unbiased estimation 
(E-BLUE) and empirical best linear unbiased 
prediction (E-BLUP) are compared using cross-
validation for winter wheat (Triticum aestivum 
L.) and spring barley (Hordeum vulgare L.), in 
single-year and multiyear series of trials. Data 
were obtained from three agricultural zones 
of Sweden. Several linear mixed models were 
compared, and model performance was evalu-
ated using the mean squared error of prediction 
criterion. The E-BLUP method outperformed 
the E-BLUE method in both crops and series. 
The prediction accuracy for zone-based yield 
was improved by using E-BLUP because the 
random-effects assumption for cultivar ´ zone 
interaction allows information to be borrowed 
across zones. We conclude that E-BLUP should 
replace the currently used E-BLUE approach to 
predict zone-based cultivar yield.
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Abstract
In cultivar testing, linearmixedmodels have been used routinely to analyzemul-
tienvironment trials. A single-stage analysis is considered as the gold standard,
whereas two-stage analysis produces similar resultswhen a fully efficientweight-
ingmethod is used, namely when the full variance–covariancematrix of the esti-
mated means from Stage 1 is forwarded to Stage 2. However, in practice, this
may be hard to do and a diagonal approximation is often used. We conducted a
cross-validationwith data from Swedish cultivar trials onwinter wheat (Triticum
aestivum L.) and spring barley (Hordeum vulgare L.) to assess the performance
of single-stage and two-stage analyses. The fully efficient method and two diag-
onal approximation methods were used for weighting in the two-stage analy-
ses. In Sweden, cultivar recommendation is delineated by zones (regions), not
individual locations. We demonstrate the use of best linear unbiased prediction
(BLUP) for cultivar effects per zone, which exploits correlations between zones
and thus allows information to be borrowed across zones. Complex variance–
covariance structures were applied to allow for heterogeneity of cultivar × zone
variance. The single-stage analysis and the three weighted two-stage analyses
all performed similarly. Loss of information caused by a diagonal approximation
of the variance–covariance matrix of adjusted means from Stage 1 was negligi-
ble. As expected, BLUP outperformed best linear unbiased estimation. Complex
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Abstract
Key message  We propose the utilisation of environmental covariates in random coefficient models to predict the 
genotype performances in new locations.
Abstract  Multi-environment trials (MET) are conducted to assess the performance of a set of genotypes in a target popula-
tion of environments. From a grower’s perspective, MET results must provide high accuracy and precision for predictions of 
genotype performance in new locations, i.e. the grower’s locations, which hardly ever coincide with the locations at which 
the trials were conducted. Linear mixed modelling can provide predictions for new locations. Moreover, the precision of the 
predictions is of primary concern and should be assessed. Besides, the precision can be improved when auxiliary informa-
tion is available to characterize the targeted locations. Thus, in this study, we demonstrate the benefit of using environmental 
information (covariates) for predicting genotype performance in some new locations for Swedish winter wheat official tri-
als. Swedish MET locations can be stratified into zones, allowing borrowing information between zones when best linear 
unbiased prediction (BLUP) is used. To account for correlations between zones, as well as for intercepts and slopes for the 
regression on covariates, we fitted random coefficient (RC) models. The results showed that the RC model with appropriate 
covariate scaling and model for covariate terms improved the precision of predictions of genotypic performance for new 
locations. The prediction accuracy of the RC model was competitive compared to the model without covariates. The RC 
model reduced the standard errors of predictions for individual genotypes and standard errors of predictions of genotype 
differences in new locations by 30–38% and 12–40%, respectively.

Introduction

The main goal of a plant breeding programme is to develop 
well-adapted genotypes in a target population of environ-
ments (TPE). Multi-environment trials (MET) are con-
ducted to evaluate candidate genotypes in the TPE, and to 

understand and exploit the pattern of genotype × environ-
ment interactions (GEI) in the TPE. GEI is the differential 
response of genotypes across different environments (Kang 
and Gorman 1989). GEI in a TPE can be exploited to make 
more targeted predictions and recommendations on culti-
vars. This is of particular interest when there is crossover 
interaction, which poses a challenge when selecting geno-
types for broad adaptation.

Identification of environmental covariates that are respon-
sible for GEI is useful to enhance the predictive capability 
of MET analyses (Heslot et al. 2014) and evaluate the adapt-
ability of the genotypes to the new target environment. The 
most commonly used types of environmental covariates are 
soil and meteorological covariates (van Eeuwijk et al. 2016). 
Incorporating environmental covariates in the GEI analysis 
has been done by factorial regression (Denis 1988; Piepho 
et al. 1998; van Eeuwijk and Elgersma 1993). Furthermore, 
environmental covariates have been used in a linear mixed 
model framework, such as in quantitative trait loci (QTL) 
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Chapter 5

General Discussion

MET is crucial to evaluate cultivars’ performance and provide a report for breed-
ers and a recommendation for growers. Due to the heterogeneity of environmental
conditions, it is important to use a statistical model that captures this heterogeneity,
and so accurate and precise estimates for the future performance of the tested culti-
vars can be obtained. This thesis demonstrates the use of EBLUP as a projection of
cultivars’ performance and the eminence of weighting methods to account for trials’
heterogeneity in MET. Furthermore, the utilisation of environmental covariates to
project cultivars’ performance in new locations and to improve the precision of the
predictions per se is also presented.

5.1 Evaluation of EBLUE and EBLUP performances for zone-based
predictions

In Chapter 2, it was shown that random-cultivar-effects (EBLUP) model is prefer-
able for routine zone-based yield prediction compared to fixed-cultivar-effects
(EBLUE) models. The EBLUP models achieved lower MSEPs than the EBLUE
models for all datasets, i.e., for single-year and multi-year in the winter wheat and
spring barley datasets. The EBLUE model performed poorly and was the least
performing since it had the largest MSEP. In Chapter 3, where the EBLUE and
EBLUP were compared in the stagewise analysis with various weighting methods,
the EBLUP also outperformed the EBLUE. Thus, the CV study in the Chapter 2 and
Chapter 3 confirmed that EBLUP had better accuracy for zone-based predictions.

Regarding the necessity of zonation, Chapter 2 showed the results were consid-
erably different between the two crops. The model without zonation performed
modestly for winter wheat datasets than for spring barley datasets. A plausible
biological reason is that winter wheat is grown in winter weather conditions with
large local variation, as compared to spring barley, which is sown in the springtime.
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Thus, spring barley is grown under less diverse local conditions. In the winter, envi-
ronmental conditions vary locally, from mild and humid to cold and dry, causing
different stress factors to predominate (Bergjord Olsen et al., 2018). Since the model
with zonation generally performed better than the model without zonation, it was
essential to incorporate the zone in the analysis.

5.1.1 Go for EBLUP?

Since it becomes a routine procedure to use LMM for analysing MET data, the
frequent question is whether to model cultivar effects as fixed or random. Modelling
cultivar effects as random is advised when the primary goal is to select the best culti-
vars from the population under study and when the effects and residuals presumably
follow a normal distribution. From a statistical perspective, using EBLUP to predict
cultivars’ performance is better than EBLUE because the rankings of the estimated
cultivars are expected to be close to the rankings of the cultivar effects and provide
more accurate predictions (McCulloch et al., 2008; Searle et al., 1992; Smith et al.,
2005). From a biological perspective, the cultivars can be considered as a random
sample of the current genetic variability (Curti et al., 2014). Furthermore, EBLUP is
necessary to account for heterogeneity since modelling variance-covariance structure
is not applicable in EBLUE.

The shrinkage feature in EBLUP can mitigate the over-optimistic predictions of
the top-performing cultivars and over-pessimistic predictions of poorly performing
cultivars. The magnitude of the shrinkage depends on the “shrinkage factor”, and,
in a simple model, the shrinkage factor is a function of heritability as described
in Galwey (2014, p. 169). Shrinkage thus reduces the spread of the predictions
compared to fixed effects estimation (Robinson, 1991). Means higher than the overall
mean are shrunk downwards to the overall mean, while the means that are lower
than the overall mean are slightly increased (shrunken upwards towards the overall
mean). This shrinkage is shown by the different ranking of the cultivars between the
EBLUE and EBLUP methods, as shown in Chapter 2 and Chapter 3. The best cultivar,
according to the EBLUE method, was different. The ranking of the other cultivars
was also different between the two models. For cultivar recommendation, where a
correct ranking of cultivars is essential, the EBLUP method should be preferred due
to its smaller MSEP.

Furthermore, with random cultivar×zone effects, the accuracy of predictions
within zones is improved due to the information is borrowed across zones by
exploiting the cultivar correlations between zones (Atlin et al., 2000; Kleinknecht
et al., 2013; Piepho et al., 2016). Lee et al. (2017, p. 144) pointed out the benefits of
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using BLUP as follows: “With a random effect specification, we gain significant
parsimony. In such situations, even if the true model is the fixed effect model, i.e.,
there is no random sampling involved, the use of random effect estimation has
been advocated as shrinkage estimation (James and Stein, 1992).” However, it is
essential to note that when the cultivar correlations between or among zones are
small, then the information that can be borrowed across zone will be very little. In
this case, EBLUP will not be more beneficial than BLUE. However, when the cultivar
correlations between or among zones are high, then EBLUP will be favorable to
EBLUE.

The empirical datasets were not perfectly normally distributed as shown in
the Supplemental Figures of Chapter 2. However, BLUP per se does not require
normality (Searle et al., 1992, p. 270 and 273). In fact, Henderson (1963) showed
the derivation of BLUP in the MME without assuming a normal distribution. In
practice, the variance components are unknown and must be estimated. REML
estimates may be imprecise in small datasets, which makes the benefits of using
EBLUP is uncertain. The simulation study from Forkman and Piepho (2013) reported,
however, that imprecise variance component estimates were not a severe problem
for the application of EBLUP in small randomised complete block experiments.

5.1.2 Dealing missing data with EBLUP

The merit of EBLUP will only be valid when data are missing at random (MAR).
However, it has often been a common practice to decide which cultivars should
be tested in particular zones, depending on their expected performance in those
zones. Specifically, cultivars might not be tested in a zone if they are expected to
perform less well in that zone. In this case, the cultivars are not MAR. Forkman
(2013) showed that analyses of incomplete datasets using GLSE based on mixed
models with random environmental effects can give unexpected estimates. If there is
a doubt that cultivars are missing at random, it might be better to use a model with
EBLUE of trials because comparisons among cultivars are then based exclusively
on within-trial information, and between-trial information is not recovered (Piepho
et al., 2012b). Thus, it is advised to strive for complete datasets for the single-year
analysis.

In the multi-year series, it is often to exclude from the analysis all cultivars that
have not been tested in the latest year and at least two years. To gain benefit of
using EBLUP, it is recommended that all cultivars should be retained in the analysis
(Piepho and Möhring, 2006). The reason is that all cultivars involved in selection
decisions should be included in the analysis to avoid selection bias, as pointed out
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by (Piepho and Möhring, 2006). Piepho and Möhring (2006) also mentioned that
the removal of data leads to a missing-not-at-random (MNAR) pattern that causes
invalid variance component estimates. Besides, if the missing data pattern is MNAR,
then EBLUP will systematically be associated with varying degrees of shrinkage,
which leads to bias. For example, if a cultivar is very little tested, then the shrinkage
of all its predicted effects will be large, and so the prediction will be less accurate. A
good cultivar candidate still needs to be tested across many trials to obtain reliable
information on its performance.

5.2 Stagewise analysis strategy

5.2.1 Weighting is crucial in stagewise analysis

Three weighting methods for the stagewise analysis were assessed in Chapter 3,
i.e., fully efficient, the average variance of a difference (AVVAR) weights (Möhring
and Piepho, 2009), and Smith’s diagonal weights (Smith et al., 2001). Based on the
MSEP from the CV study, the stagewise analysis using these three weighting meth-
ods was very similar to the single-stage analysis for both crop datasets. Furthermore,
the results confirmed that the loss of information resulting from a two-stage analysis
with diagonal weights instead of the single-stage analysis is acceptable (Möhring
and Piepho, 2009).

Similar results of the single-stage and two-stage analysis were attained due to
the weighting application in the two-stage analysis. The diagonal approximate
weighting such as Smith’s weighting (Smith et al., 2001) uses the diagonal part of the
inverse of the variance-covariance matrix. This inverse of the variance-covariance
matrix had small, and hence negligible, off-diagonal elements, whereas the diagonal
elements used for weighting in Stage 2 were large by comparison. Thus, the use of
two-stage weighting is reasonable. The fully efficient method was the closest one to
the single-stage analysis because all information from Stage 1 was carried forward
to Stage 2.

When there was no weighting applied, the two-stage unweighted strategy per-
formed better than the single-stage method that assumed no heterogeneity variance
structure in its model. Thus, it was shown that the simple two-stage unweighted
strategy produced better predictions than the far too simple single-stage strategy.
Therefore, the use of adjusted means from Stage 1 was more accurate than a single-
stage approach that neglects the heterogeneity of variance in replicates and incom-
plete blocks across locations.
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The idea of two-stage analysis can be viewed as being similar to Bayesian Up-
dating, which utilise the prior distribution from the previous posterior distribution
(Sorensen and Gianola, 2002). Thus, the Bayes theorem has “memory,” and the
inferences can be updated sequentially. Compared to the two-stage analysis, the
result of Stage 1 can be regarded as a posterior distribution that will be used as
the prior distribution for Stage 2. In fact, BLUP is empirical Bayesian when the
distribution of random effects is Gaussian as mentioned by Robinson (1991). Hence,
Bayesian Updating might be comparable with the “frequentist” BLUP of two-stage
analysis. Therefore, a further study comparing the “frequentist” two-stage analysis
with the Bayesian Updating framework would be worthwhile.

5.2.2 MSEP vs. correlation coefficients

It is more difficult to detect that EBLUP performed better than EBLUE when
Pearson’s and Spearman’s correlation coefficients were used exclusively as shown
in Chapter 3 than when using MSEP. Besides, it is also difficult to see any difference
in performance between the single-stage and two-stage approaches. The MSEP
provides a more apparent distinction between the EBLUP methods and the EBLUE
method and clearer discrimination between the single-stage and the two-stage
approach. According to Kobayashi and Salam (2000), correlation is not the best
measure for model evaluation since the mean squared deviation is easier to interpret
and more useful for direct comparisons between model output and measurement.
Thus the MSEP from the CV study in Chapter 3 was used as additional evidence.

5.2.3 Single-stage or stagewise analyses?

This question is inevitable since the results between the single-stage analysis and
stagewise analysis with weighting were similar. The choice depends on the two
aspects, the computational resources and the practicality of data handling. When
the computational resources allow, the single-stage can be preferred. When the
computation resources are limited, then the two-stage weighting strategy is not
worse than the single-stage analysis since the results will not differ much from the
single-stage analysis. Furthermore, different software packages affected the required
time and memory allocation for the analysis. The software used in Chapter 3 was
optimised for the single-stage strategy. Thus, when the fully efficient analysis was
carried out, the memory allocation had to be increased and more time consuming
than the single-stage analysis. Therefore, the diagonal approximation weighting
is a reasonable option due to a more practical procedure to store the weighting,
less-intensive computation, and the loss of information is negligible.
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The practicality of data handling can determine the choice of strategy when, in
some cases, the data from all the trials may not be available at once. In this case, the
two-stage weighting analysis will be more practical in two aspects. First, since the
readily available trial data can be analysed instantly and provide individual trial
information. Second, time-saving by storing the adjusted means of each trial and
the accompanying precision measures, which later can be used for the next stage
analyses while data from other trials are still being collected. Another reason to
prefer the two-stage weighting strategy is especially when each trial has a different
experimental design. In this case, fitting a model for single-stage analysis may not be
straightforward and easy. The two-stage weighting method is also preferable if one
wants to assess each trial thoroughly because, with a vast number of trials, it will be
cumbersome to check each trial thoroughly with a single-stage analysis because of
the vast variance component estimates produced by the single-stage analysis.

5.2.4 In which stage should EBLUP be used?

The merit of using EBLUP for obtaining the prediction accuracy and ranking
has been discussed in the Subsections 5.1.1 and 5.1.2. The use of BLUP in Stage 1
or other stages before the final stage is discouraged. The use of BLUP in any stage
before the final stage will cause double shrinkage since BLUP is also used in the
final stage. If BLUP were to be used in Stage 1 or other stages before the final stage,
predictions would need to be unshrunk before proceeding to the next stage or the
final stage (Smith et al., 2001), but it is not obvious how this should be done or how
to perform the weighting in other stages and the final stage. Some progress could
potentially be made by taking recourse to the so-called “deregressed proofs” as used
in animal breeding (Calus et al., 2016).

5.3 Complex variance-covariance structures may not be necessary

The results of Chapter 2 and Chapter 3 indicated that the models with FA
variance-covariance structure did not improve the accuracy compared to the simpler
variance-covariance structures. The investigated FA covariance structure allows
heterogeneous variances and unique pairwise correlations between zones. The FA
structure is useful because it allows heterogeneous variance and covariance using
fewer parameters than the unstructured covariance structure. However, in Chapter 2,
the REML estimation for the FA structure and the model with many interaction terms
combined with the heterogeneous residual structure were computationally very
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demanding. Thus, in Chapter 2, the combinations of FA structures for interaction
effects and heterogeneous structures for residual effects were not explored.

In Chapter 3, the FA and the UN structures were far less performant than the CS
structure for single-stage analyses as well as two-stage analyses. In fact, no model
with FA structure was among the top-five performing models. In fact, with merely
three zones, using the FA structure has the same number of parameters as the UN
structure (i.e., six parameters). The FA structure may be more useful when the
number of zones is larger than three. Chapter 3 results also showed that the variance
component estimates for the cultivar×zone effects were relatively small compared
with the other components. Hence, there may be no need for complex variance-
covariance structures for this dataset. Nevertheless, when the variance component
estimates are large, then more parameters with complex variance-covariance might
be needed to account for the heterogeneity of variance for cultivar×zone effects.
Recently, Prus and Piepho (2021) investigated the optimal designs for trials allocation
to sub-regions MET. With CS structure, the optimal designs were less sensitive to the
number of locations and its variance compared to the FA structure (Prus and Piepho,
2021). Thus, it may well occur that using the FA structure was not worthwhile due
to the variance estimates of cultivar×zone being relatively small. Another reason
may be the relatively small number of trials in each zones.

5.4 Zone-based prediction is preferable to individual locations

Obtaining predictions per agro-ecological zone (larger TPE) is more informative
than predictions for individual locations (Damesa et al., 2017). The reason is that
growers are interested in the cultivar that performs well on average across broad
environmental conditions and the next growing season (the next growing season
can be considered as a new environment that no trial has previously been conducted
in). Another reason is that when a prediction is made for an individual location, the
predictions of closest trial location can be applied for the grower’s field. However,
in this case, the valid standard errors for the predictions cannot be achieved since
the pattern of interaction between a grower’s field, which is the target site, and the
nearest trial location and the corresponding with years are unknown. Nonetheless,
if predictions made for zones or a whole TPE, the valid inferences can be obtained
due to the availability of random sample of trial locations and years for that TPE per
se (Damesa et al., 2017).

Furthermore, from a breeder’s perspective, prediction of cultivar performance
in a specific location is rarely of interest. In fact, Swedish official cultivar trials has
the same objective, i.e., to recommend well-performing cultivars for each zone, not
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for individual trial locations. Thus, accurate information regarding which cultivars
perform well within zones or perform above average across TPE is essential for
growers and breeders.

5.5 Accuracy and precision in new locations

As stated before, the trials’ location hardly ever coincide with the growers’ field.
Thus, the cultivar yield will never be equivalent to the predicted mean values from
the MET analysis. The growers’ field can be viewed as a new location or an untested
location. While the zone-based predictions are valid for the new locations within
a particular zone, the precision measures, i.e., standard errors of the predictions
obtained from the MET analysis, are only valid for the trials’ locations and not valid
for the growers’ field. Hence, the valid standard errors of the predictions need to
be computed and reported to provide how precise or reliable the prediction of the
cultivar that is selected by the growers. So, the location effect has to be random
since the variance component estimate of location as the uncertainty is needed to
compute the standard errors of the predictions for the new locations. When the
location effect is fixed, the variance component estimate cannot be obtained, and the
standard errors of the predictions in the new location cannot be computed.

Poorter et al. (2010) demonstrated that the quantitative environmental factors in
the response curve framework could be used to form a reference for results of future
experiments. In the same vein, the environmental factors or covariates that represent
the growers’ field can improve the accuracy and precision of the cultivar predictions.
The environmental covariates can be integrated into the random cultivar effect in
the random coefficient (RC) models (Longford, 1993; Milliken and Johnson, 2002).

5.5.1 Precision improvement in the RC models

In Chapter 4, a total of 14 models, including the RC models and fixed effects of
cultivar was assessed via a CV study, and their standard errors of prediction values
(SEPV) and standard errors of the predictions of pairwise differences of genotypic
values (SEPD) for the cultivars in the new locations. The selected covariate was
clay and used in the quadratic term. The RC models reduced the SEPV averages
for all new locations by 30–38%, and the SEPD averages by 12–40%. Thus, Chap-
ter 4 demonstrated the RC models could improve the precision of predictions of
genotypes performance and the precision of genotypes comparisons. Using the
covariates in the random coefficients term, the SEPV is evaluated at specific values
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of the covariates (Milliken and Johnson, 2002), which can substantially decrease the
SEPV of the RC models compared to the models without any random coefficients.

The RC model that utilised the linear and quadratic term in the cultivar×zone
interaction effects, but not in the cultivar main effects, performed better than the
most complex RC model. The justification that the complex model was not better
than the reduced one was due to the quadratic regression per cultivar showing
that the variation between cultivars was not that large, as the regression curves of
cultivars were close to each other. Hence, the inclusion of random coefficients in the
cultivar term may not be worthwhile. The random coefficients in the cultivar×zone
term were more beneficial than in the cultivar main-effect term since the SEPD for
the RC model that only had the random coefficients in the cultivar main-effect was
higher that for the RC model with random coefficients in the cultivar×zone term.
Moreover, the quadratic regression cultivar×zone term showed that the variation
between cultivar×zone effects is large, as the curves of cultivar×zone are more
widely spread out than the quadratic regression per cultivar.

5.5.2 Accuracy of the RC models

Although the precision was certainly improved via the RC model, its MSEP was
not the smallest. The models with the smallest MSEP were the models without
random coefficient terms but utilise EBLUP for the cultivar effect. Nevertheless, the
difference in the MSEP between the best RC model and the models that had the
smallest MSEP was negligible. Compared to the accuracy, the models that had the
smallest MSEP had huge prediction intervals and uncertainty. In this case, although
the models provided more accurate predictions, it will be very uncertain that the
yield of the cultivar will be close to the predictions. The model can be selected by
jointly considering SEPV, SEPD, and the MSEP. In this case, the RC model is preferred
since the uncertainty was far lower, although its MSEP was not the smallest.

It should be noted that the model with fixed effects for cultivar×zone and inter-
actions with the covariate was not preferable, although the SEPV and the SEPD were
comparable to the RC models. The reason is because the MSEP of this model was
the larger. Thus, this model was the least performant. The predictions of this model
were indeed far less accurate or more biased with narrow prediction intervals.

The utilisation of the RC models for improving prediction accuracy was also
demonstrated by Baba et al. (2020) and Jarquín et al. (2014).Baba et al. (2020) showed
that using RC models for multitrait analysis, and modelling the covariates with
fixed Legendre regression coefficients, improved the prediction accuracy for a trait
with a limited number of records or low heritability. Compared to Baba et al. (2020),
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Chapter 4 did not use Legendre but only quadratic terms of covariate. The study
of Jarquín et al. (2014) also used RC models to improve the prediction accuracy of
prediction of the performance of newly released lines and predictions in incomplete
field Trials. The major difference between Chapter 4 and Jarquín et al. (2014) was
that Jarquín et al. (2014) used an extensive number of environmental covariates with
marker data and utilised this information by computing an environmental kinship
matrix, for which a single variance component was fitted. Thus, implicitly, the model
used by Jarquín et al. (2014) assumes that the slopes for the different covariates have
the same variance and no correlation between them. On the other hand, in Chapter
4, a vast number of covariates and marker data were not available but allowed for
heterogeneity in variance between slopes, and for covariance between slopes and
intercepts to maintain the invariance feature of RC models (Longford, 1993; Piepho
and Ogutu, 2002; Wolfinger, 1996).

5.6 Variance-covariance structure for RC models

As stated before, the utilisation of unstructured covariance or allowing for hetero-
geneity in variance between slopes, and for covariance between slopes and intercepts
is crucial to maintain the invariance feature of RC models. However, when the num-
ber of covariates increases, fitting such RC models becomes more challenging, and
it is not apparent how this can best be done. One option to circumvent numerical
problems is to fit a low-rank approximation to the unstructured variance-covariance
matrix for intercepts and slopes, i.e. an FA model (Jennrich and Schluchter, 1986). Fit-
ting an FA model guarantees that the variance-covariance matrix is positive definite.
If the order of the FA model equals the number of slope terms plus the intercept, the
model is equivalent to the unstructured model, whereas lower-rank approximations
are obtained by reducing the order.

5.7 Handling the covariates

5.7.1 Covariate selection

The benefit of using a covariate in the RC models depends on choosing the
appropriate covariate. Covariates can initially be selected based on the biological
considerations. Still, it is necessary to check whether these covariate candidates
improve the model fit. In fact, with a large number of covariates, covariate selection
will be beneficial. R-square (R2) for mixed models (Piepho, 2019) is an option for
covariate selection, as demonstrated in Hadasch et al. (2020). Further research to
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explore the best approach to accommodate a larger number of covariates is certainly
worthwhile.

5.7.2 Covariate scale

The covariate scale is crucial when implementing RC models. In Chapter 4 the
covariate scale issue occurred when the most complex RC model was fitted. This
scaling issue occurred when the random coefficients were fitted to both cultivar
and cultivar×zone effects, where the variance component of the linear term of the
random coefficients of the cultivar was 0. This problem occurred due to the culti-
var’s main effect having a lower variance than the cultivar×zone interaction effect,
and there was likely competition between cultivar main effect and cultivar×zone
interaction effect absorbing the variance. Some scalings such as subtraction-of-the-
minimum and covariate-centering were also attempted. When these scalings were
used, the RC models did not converge. Thus, the covariate scaling is essential for
model convergence and to obtain the appropriate variance parameter estimates. The
clay covariate was scaled for all fitted models by (clay − 40)/10 because it yielded a
positive definite variance-covariance matrix.

5.8 Prospect and outlook

The EBLUP model was the preferable method for zone-based cultivar prediction
as demonstrated in Chapter 2 and Chapter 3. Moreover, the stagewise weighting
strategy was comparable to the single-stage strategy. Thus, the EBLUP method with
stagewise weighting strategy was recommended for the routine analysis. However,
implementing this strategy comes with price that the datasets should be in the MAR
condition, which required to retain all cultivars in the analysis.

When the environmental covariates are available, the EBLUP method can be
extended to RC models as presented in Chapter 4. The benefit of utilising RC mod-
els is that the precision of predictions for new locations is improved by using the
environmental covariates with respect to the new locations. Recently, a study by
Neyhart et al. (2021) followed the same vein of predicting genotype performance
in unobserved environments. The authors assessed genome-wide predictions in
the unobserved environments for both between and within breeding generations.
A recent paper by Resende et al. (2020) proposed the geospatial (geographic infor-
mation system/GIS) genotype-environment interaction (GIS–GEI) method within
an enviromics framework. The GIS-GEI involves the joint analysis of MET data,
accounting for phenotypic, genotypic, and envirotypic sources of information. It
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is anchored into a geoprocessing environment (a land area with nine pixels) that
employs enviromic markers, e.g., time-trend climate data, landscape or management
treatment information, obtained through modern envirotyping techniques. The
proposed RC modelling in Chapter 4 approach is ideally suited for integration in
an enviromics-driven GIS–GEI framework. Additionally, the RC modelling can be
implemented in the Bayesian framework as proposed by Theobald et al. (2002), who
utilised a Bayesian method for making predictions with incorporating environmental
covariates.
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Summary

Multienvironment trials (MET) are carried out every year in different environ-
mental conditions to evaluate a vast number of cultivars, i.e., yield, because differ-
ent cultivars perform differently in various environmental conditions, known as
genotype×environment interactions (GEI). MET aim to provide accurate informa-
tion on cultivar performance so that a recommendation of which cultivar performs
the best in a growers’ field condition can be available. MET data is often analysed
via mixed models, which allow the cultivar effect to be random. The random effect
of cultivar enables genetic correlation to be exploited across zones and taking into
account the trials’ heterogeneity. A zone can be viewed as a larger target of popu-
lation environments (TPE). The accuracy and precision of the cultivar predictions
are crucial to be evaluated. The prediction accuracy can be evaluated via a cross-
validation (CV) study, and the model selection can be done based on the lowest mean
squared error prediction (MSEP). Also, since the trials’ locations hardly coincide
with growers’ field, the precision of predictions needs to be evaluated via standard
errors of predictions of cultivar values (SEPV) and standard errors of the predictions
of pairwise differences of cultivar values (SEPD). Thus, in this thesis, the central
objective is to assess the model performance and conduct model selection via a CV
study for zone-based cultivar predictions.

In the second chapter, the performance between empirical best linear unbiased
estimations (EBLUE) and empirical best linear unbiased predictions (EBLUP) for
zone-based prediction was assessed. Different CV schemes were implemented be-
tween the single-year and multi-year datasets to mimic the practice. A complex
variance-covariance such as factor-analytic (FA) was imposed to account for the
heterogeneity of cultivar×zone effect. The MSEP showed that the EBLUP models
outperformed the EBLUE models. The agroecological zone division was necessary
since it improved the accuracy and was preferable to make cultivar recommenda-
tions. The FA variance-covariance structure did not improve the accuracy compared
to the more straightforward covariance structure. Hence, the EBLUP model with a
simple covariance structure may be selected for the single and multi-year datasets.

A more comprehensive assessment was done in the third chapter, which assessed
single-stage analysis and stagewise analysis. The unweighted and three weighting
methods were compared in the stagewise analysis, i.e. two diagonal approximation
methods and the fully efficient method. The assessment was based on the MSEP
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instead of Pearson’s and Spearman’s correlation coefficients since the correlation
coefficients are often very close between the compared models. The MSEP showed
that single-stage EBLUP analysis and the stagewise weighting EBLUP strategy were
very similar. Thus, the loss of information due to diagonal approximation is minor.
In fact, the MSEP showed a more apparent distinction between the single-stage
and the stagewise weighting analyses with the unweighted EBLUE compared to
the correlation coefficients. The simple compound symmetry variance-covariance
structure was sufficient for the cultivar×zone effect than the complex unstructured
or the FA. With only three zones, the complex structure may not be necessary.
The choice between the single-stage and stagewise weighting analysis, therefore,
depends on the computational resources and the practicality of data handling.

In the fourth chapter, the accuracy and precision of the predictions were assessed
for the new locations. The environmental covariates were combined with the EBLUP
in the random coefficient (RC) models since the covariates provide more information
for the new locations. The MSEP showed that the RC models were not the model
with the smallest MSEP, but the RC models had the lowest SEPV and SEPD. Thus, the
model selection can be done by joint consideration of the MSEP, SEPV, and SEPD. The
models with EBLUE and covariate interaction effects performed poorly regarding
the MSEP. The EBLUP models without random coefficient performed best, but the
SEPV and SEPD were large, considered unreliable. The covariate scale and selection
are essential to obtain a positive definite covariance matrix. Allowing covariance
between slopes and between slopes and intercepts is crucial to maintaining the
RC models’ invariance feature. The RC framework is suitable to be implemented
with GIS data and, therefore, provide an accurate and precise projection of cultivar
performance for the new locations or environments.

To conclude, the EBLUP model for zoned-based predictions should be preferred
to obtain the predictions and rankings closer to the true values and rankings, which
are also confirmed by the MSEP. The stagewise weighting analysis can be rec-
ommended due to its practicality and its computational efficiency. Furthermore,
projecting cultivar performances to the new locations should be done to provide
more targeted information for growers. The available environmental covariates can
be utilised to improve the predictions’ accuracy and precision in the new locations
in the RC model framework. Such information is certainly more valuable for grow-
ers and breeders than just providing means across a whole target population of
environments.



Zusammenfassung

Multi-Umwelt-Versuche (MET) werden jedes Jahr unter verschiedenen Umweltbe-
dingungen durchgeführt, um eine große Anzahl von Sorten im Hinblick auf den
Ertrag zu bewerten, da verschiedene Sorten unter verschiedenen Umweltbedin-
gungen unterschiedlich abschneiden, was als Genotyp-Umwelt-Interaktionen (GEI)
bekannt ist. MET zielen darauf ab, genaue Informationen über die Leistung von
Sorten zu liefern, so dass eine Empfehlung ausgesprochen werden kann, welche
Sorte unter den Bedingungen des Anbaubetriebes am besten abschneidet. MET-
Daten werden häufig über gemischte Modelle analysiert, die einen Zufallseffekt
der Sorte zulassen. Der zufällige Effekt der Sorte ermöglicht es, die genetische
Korrelation über Zonen hinweg und unter Berücksichtigung der Heterogenität der
Versuche zu nutzen. Eine Zone kann als eine größere Zielpopulation von Umwelten
(TPE) betrachtet werden. Die Genauigkeit und Präzision der Sortenvorhersagen
sind entscheidend für die Bewertung der Sorten. Die Vorhersagegenauigkeit kann
über eine Kreuzvalidierungsstudie (CV) bewertet werden, und die Modellauswahl
kann auf der Grundlage der Vorhersage mit dem niedrigsten mittleren quadratis-
chen Fehler (MSEP) erfolgen. Da die Versuchsstandorte außerdem kaum mit den
Feldern der Landwirte übereinstimmen, muss die Genauigkeit der Vorhersagen
über Standardfehler der Vorhersagen der Sortenwerte (SEPV) und Standardfehler
der Vorhersagen der paarweisen Unterschiede der Sortenwerte (SEPD) bewertet
werden. Daher ist das zentrale Ziel dieser Arbeit, die Modellleistung zu bewerten
und eine Modellauswahl über eine CV-Studie für zonenbasierte Sortenvorhersagen
durchzuführen.

Im zweiten Kapitel wurde die Leistung zwischen empirischen besten linearen
unverzerrten Schätzungen (EBLUE) und empirischen besten linearen unverzer-
rten Vorhersagen (EBLUP) für zonenbasierte Vorhersagen bewertet. Es wurden
verschiedene CV-Schemata zwischen den Einjahres- und Mehrjahresdatensätzen
implementiert, um die Praxis nachzuahmen. Eine komplexe Varianz-Kovarianz,
wie z. B. die faktoranalytische (FA), wurde eingeführt, um die Heterogenität des
Sorten-Zonen-Effekts zu berücksichtigen. Die CV zeigte, dass die EBLUP-Modelle
besser abschnitten als die EBLUE-Modelle. Die agrarökologische Zoneneinteilung
war notwendig, da sie die Genauigkeit verbesserte und für die Abgabe von Sorten-
empfehlungen vorzuziehen war. Die FA-Varianz-Kovarianz-Struktur verbesserte
die Genauigkeit nicht im Vergleich zu der einfacheren Kovarianz-Struktur. Daher
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kann das EBLUP-Modell mit einer einfachen Kovarianzstruktur für die ein- und
mehrjährigen Datensätze gewählt werden.

Eine umfassendere Bewertung wurde im dritten Kapitel durchgeführt, in dem
die einstufige Analyse und die stufenweise Analyse bewertet wurden. Bei der stufen-
weisen Analyse wurden die ungewichtete Analyse und drei Gewichtungsmetho-
den verglichen, d. h. zwei diagonale Näherungsmethoden und die vollständig
effiziente Methode. Die Bewertung erfolgte anhand des MSEP anstelle der Korre-
lationskoeffizienten von Pearson und Spearman, da die Korrelationskoeffizienten
zwischen den verglichenen Modellen oft sehr nahe beieinander lagen. Der MSEP
zeigte, dass die einstufige EBLUP-Analyse und die stufenweise gewichtete EBLUP-
Strategie sehr ähnlich waren. Somit ist der Informationsverlust durch die diagonale
Approximation sehr gering. Tatsächlich zeigte das MSEP eine deutlichere Unter-
scheidung zwischen der einstufigen und der stufenweise gewichteten Analyse mit
dem ungewichteten EBLUE in Bezug auf die Korrelationskoeffizienten. Die einfache
Compound Symmetry-Varianz-Kovarianz-Struktur war für den Sorten-Zonen-Effekt
ausreichend im Vergleich zu den komplexeren unstrukturierten oder FA Modellen.
Mit nur drei Zonen ist eine komplexe Struktur möglicherweise nicht notwendig. Die
Wahl zwischen der einstufigen und der stufenweisen Gewichtungsanalyse hängt
daher von den Rechenressourcen und der Praktikabilität der Datenverarbeitung ab.

Im vierten Kapitel wurden die Genauigkeit und Präzision der Vorhersagen für
die neuen Standorte bewertet. Die Umweltkovariaten wurden mit dem EBLUP in
den Zufalls-Koeffizienten (RC)-Modellen kombiniert, da die Kovariablen mehr In-
formationen für die neuen Standorte liefern. Der MSEP zeigte, dass die RC-Modelle
nicht das Modell mit dem kleinsten MSEP waren, aber die RC-Modelle hatten die
niedrigsten SEPV und SEPD. Somit kann die Modellauswahl durch die gemeinsame
Betrachtung des MSEP, SEPV und SEPD erfolgen. Die Modelle mit EBLUE und
Kovariaten-Interaktionseffekten schnitten in Bezug auf den MSEP schlecht ab. Die
EBLUP-Modelle ohne Zufallskoeffizient schnitten am besten ab, aber der SEPV und
SEPD waren groß und wurden als unzuverlässig angesehen. Die Kovariatenskala
und -auswahl sind wesentlich, um eine positiv definite Kovarianzmatrix zu erhal-
ten. Das Zulassen der Kovarianz zwischen Steigungen und zwischen Steigungen
und Achsenabschnitten ist entscheidend für die Beibehaltung der Invarianz der
RC-Modelle. Der RC-Rahmen ist geeignet, um mit GIS-Daten implementiert zu
werden und somit eine genaue und präzise Projektion der Kultivierungsleistung für
neue Standorte oder Umgebungen zu liefern.

Zusammenfassend lässt sich sagen, dass das EBLUP-Modell für zonenbasierte
Vorhersagen zu bevorzugen ist, um Vorhersagen und Rangfolgen zu erhalten, die
näher an den wahren Werten und Rangfolgen liegen, was auch durch das MSEP
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bestätigt wird. Die stufenweise Gewichtungsanalyse kann aufgrund ihrer Praktik-
abilität und ihrer Berechnungseffizienz empfohlen werden. Darüber hinaus sollte
eine Projektion der Sortenleistungen auf die neuen Standorte durchgeführt werden,
um Landwirten und Landwirtinnen gezieltere Informationen zu liefern. Die ver-
fügbaren Umweltkovariablen können genutzt werden, um die Genauigkeit und
Präzision der Vorhersagen an den neuen Standorten im Rahmen des RC-Modells
zu verbessern. Solche Informationen sind für Landwirte und Züchter sicherlich
wertvoller als die Bereitstellung von Mittelwerten über eine ganze Zielpopulation
von Umwelten.
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