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General Introduction

1. General Introduction

Plant breeding is a process of creating new variability, e.g. by crossing genotypes
and evaluating these genotypes to select more preferable genotypes under limited
financial resources. During this process, large amounts of data are measured and
analysed. In the beginning of plant breeding these data were almost exclusively
phenotypic data like ratings or yield measurements. Since around 30 years, genetic
information like DNA-marker data have been used in addition. They are either
linked to a trait of interest (e.g. restorer, resistance) or are used to describe the
genetic relationships between genotypes. Genetic data are needed in quantitative
trait loci (QTL) studies, association mapping or genome-wide selection, but
despite the differences between these methods, finally all of them are based on
analysis of phenotypic data. Thus an efficient analysis of phenotypic data is an

important prerequisite for successful plant breeding programs.

In classical QTL studies (Schon et al., 1993) offspring of a biparental cross are
analysed using DNA markers and a phenotypic trait of interest to detect marker-
trait correlations. Linked markers can then be used to indirectly select for this trait
in a target population. Depending on the costs, the heritability, availability, and
genetic as well as environmental variances and covariances, direct phenotypic or
indirect marker assisted selection (MAS) is preferred (Ribaut and Hoisington,
1998; Dubcovsky, 2004). Instead of using offspring of only two parents with
limited genetic variation, multiple crosses can be used to explain more genetic
variation. In both cases the resolution of QTL detection is limited because of a
limited number of meioses and therefore a limited number of recombinations in
the offspring. Further, if the genetic variablility in the crosses used for detecting
QTLs varies from the one in the target population, transferability of results is

limited. While the resolution and transferability are limited, the analysis of
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phenotypic data from biparental crosses or multi-crosses is mostly simple, due to

the fact that these experiments are designed for this special purpose.

In contrast, association studies use phenotypic data from regular plant breeding
processes, thus the same data as normally used for phenotypic selection in plant
breeding. With these data a higher resolution is possible because of the large
number of meioses accumulated in breeding history. Additionally, the genetic
variation in test and target population are more similar, which makes
transferability more likely. Association studies use the linkage disequilibrium (LD)
between marker and a trait of interest. The main important point in association
studies is to separate LD caused by population structure or relatedness between
offspring from LD caused by marker-trait associations. Several methods, e.g. using
a kinship matrix or using estimates of the population structure, were proposed
(Yu et al., 2006; Stich et al., 2008). The analysis of phenotypic data for association
mapping requires more advanced statistical methods compared to the analysis of
designed experiments for QTL detection. The methods must account for field and
mating design and cultivar specifics in the analysis. This thesis will show how to
model breeding data for a range of cultivars in a mixed model framework. The

models can be used either for phenotypic selection or for genetic studies.

New technologies for obtaining cheap single nucleotid polymorphism (SNP)-
marker data allow the evaluation of thousands of markers, so often more markers
are analysed than genotypes are available (Meuwissen et al., 2001). Thus, a
standard multiple regression analysis for all marker data is impossible. In this
case, either markers are pre-selected or machine-learning approaches like boosting
(Bithlmann and Hothorn, 2007) and support vector machines or ridge regression
are used (Piepho, 2009). These approaches, which essentially use all markers or a
large fraction of those available, are refered to as genome-wide or genomic

selection (Jannink et al, 2010). For quantitative traits genomic selection



General Introduction

outperforms MAS (Bernardo, 2007). As in association studies, genome-wide
selection requires the efficient analysis of phenotypic data from plant breeding
processes. So the analysis of phenotypic data is the basis of phenotypic selection as

well as for association studies or genomic selection.

As costs for marker data decrease and available marker information increases, the
relative importance of cost and time-efficient analysis of phenotypic data is getting
more important. For this reason the main focus of this thesis is the development of
methods for an adequate analysis of phenotypic data, which requires
appropriately considering the experimental field and mating design and the

genetic structure of the breeding data.

Experimental design of plant breeding trials

Plant breeders conduct and analyse large series of multi-environment plant
breeding trials, either for selection in the breeding process or for linkage/
association studies. A large number of genotypes is tested in several locations and
years. Depending on the selection stage and thus depending on the available
amount of seed, unreplicated or replicated field trials are conducted (Kempton,
1984). If the amount of seed is limited, simple augmented designs with replicated
checks (Federer, 1961), augmented lattice square designs (Federer, 2002; Williams
and John, 2003), partially replicated designs (p-rep, Cullis et al., 2006; Smith et al.,
2006), or augmented p-rep designs (Williams et al., 2010) are used. Checks in
augmented designs are placed at random within blocks or replicated on a fixed
grid, e.g. each tenth plot. Within the experimental field designs, errors of
observations can be modelled as uncorrelated or spatially correlated. In the latter
case the correlation can be handled by a large number of spatial models like
autoregressive (Gilmour et al., 1997) and linear variance (Piepho and Williams,

2010). It depends on the point of view whether a spatial model is the baseline
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model (Gilmour et al.,, 1997) and additional effects for blocks, rows, columns,
tractor reeling etc. are added afterwards as needed, or the randomization-based
block model is the baseline model and spatial correlation is added in case this

improves the model fit (Piepho and Williams, 2010; Miiller et al., 2010).

In replicated experiments, for practical reasons plant breeders in Germany often
subdivide genotypes into groups of 25-100 genotypes and test them in separate
trials, connecting the trials by common checks. The trials are often designed as
randomised complete block design (RCBD) or as lattices and mostly genotypes are
filled in subgroups cross by cross. If a subdivision is not required for technical or
logistical reasons, using a single a-design is preferable (Piepho et al., 2006), mainly
because of reduced space required for check plots. Additionally, the
randomization includes all genotypes, thus less heterogeneous standard errors of

pairwise comparisions are obtained.

Multi-environment trials (METSs) are often analysed using mixed models (Smith et
al., 2001; Smith et al., 2005; Piepho et al., 2008). To represent the data structure in
METs, effects for year and location as well as effects for the randomization
structure (trial, replicate and block effects) can be taken as random. To reduce
demand on computing resources, effects not involving genotypes can be treated as
fixed. For example, when year and location main effects are taken as fixed, we are
ignoring inter-environment information, which is usually low (Piepho and

MGahring, 2006).

MET from plant breeding programs usually include a large number of genotypes.
The data are unbalanced because of selection or limitations of financial resources
or seed availablility. Using a mixed model framework with large numbers of
genotypes and an unbalanced data structure requires complex models and large

computational ressources. To reduce the demand on computing time or for other
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practical reasons the analysis is usually subdivided in two stages (Frensham et al.,
1997). In the first stage adjusted means of genotypes for each trial or location are
estimated. Often, several trials are conducted at the same location and each trial is
analysed separately. This implies the assumption of heterogeneous residual
variances between trials in the same location, which may not generally be
plausible or efficient. Therefore in this thesis, data are analysed across trials for
each location. In the second stage, the adjusted means are then submitted to a
mixed model. The same procedure of stage-wise analysis is used in cultivar testing
in official registration trials with one trial per location (Hiihn, 1997; Piepho and
Michel, 2000; Smith et al., 2001; Laidig et al., 2008). In the case of official field trials,
stage-wise analysis resulted in mean estimates comparable to one-stage analysis
(Hihn, 1997). In plant breeding the structure of unbalanceness and selection is
more complex and it is not known, whether a stage-wise analyses has an influence
on the results in the case of unbalanced plant breeding MET under German
conditions. This thesis will analyse four large series of plant breeding METs to
answer the question, whether the widely used stage-wise analysis can be
recommended for plant breeding data or a single-stage analysis is required. In the
two-stage analysis each trial is analysed separatly and genotypes are often not
randomized within trials. Potential problems of this incomplete randomization

will be discussed in this thesis.

Mating designs in plant breeding

Depending on the crop species, different breeding strategies are used. Schnell
(1982) distinguished four types of varieties: pure-line varieties, synthetic varieties,
hybrids and clone varieties. In self-pollinating crops like wheat and barley, crosses
are performed within one genepool. Classically, progenies of crosses become
homozygous by using doubled haploids or repeated selfing in single seed descent

or pedigree selection during the breeding process. Depending on the selection
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stage and the breeding scheme the genetic variances vary. For cross-fertilizated
crops like maize, hybrid breeding is used. Depending on the number of genepools
used for crossing, the mating design is called factorial or diallel. In a factorial,
parents belong to two genepools, e.g. Flint and Dent in European maize (Schrag et
al.,, 2009) or Lochow and Petkus in rye (Fischer et al., 2010). In wheat hybrid
breeding, parents belong to one genepool. If both parents are from the same
genepool, the mating design is called a diallel. Thus a diallel can be understood as
a factorial with the additional restriction, that the male and female genepool are
identical. Diallels can be divided in four methods, depending on whether parents
or reciprocal crosses or both are included (Griffing, 1956). In hybrid breeding, the
interest lies in estimating general combining ability (GCA) effects and specific

combining ability (SCA) effects.

For diallel analysis Hayman (1954), Griffing (1956) and Gardner and Eberhart
(1966) proposed models with analysis based on ANOVA tables. All of these
analyses are based on a quantitative-genetic model and some allow the separation
of additive and non-additive effects. Mixed model-based methods of analysis for
diallel methods without parents have been proposed by Zhu and Weir (1994a, b,
1996a, b) and Xiang and Li (2001), but no extension for diallel methods with
parents is available. In the case of the diallel method without parents, the
ANOVA-based methods and REML-based methods result in identical estimates
for all models when data are completely balanced and all ANOVA estimates are
non-negative. If parents (i.e. selfed crosses for fully inbreds) are used within the
diallel, the models vary because of different restrictions within the model, as
shown in this thesis. A general framework to handle all kinds of diallels within a
mixed model package using REML is lacking. This thesis will therefore propose a
general framework for analysing diallels. It will be shown that the other
mentioned models can be seen as special cases within this general framework and

that they can be imlemented by adding restrictions to this general model.
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Objectives

This thesis will demonstrate the use of BLUP for analysing plant breeding data, i.e.
the use of correlated information to enhance estimation of breeding values. Plant
breeding data often exhibit special experimental designs and structures resulting
in some problems using mixed models in a time- and cost-efficient analysis. Some

of these problems will be addressed here.

In Chapter 2 the handling of unbalanced maize (Zea mays) data in multi-
environmental trials (METs) with missing data and a factorial mating design in
each environment are described. Trends of variance component ratios and means

are calculated over 30 years.

In Chapter 3 the impact of using two stages for analysing METs, thus estimating
adjusted means per location and then averaging these estimates over locations in a
second stage, instead of estimating genotype effects in one stage is investigated for
four series of breeding trials. The structures of these series are described and

recognized in the analysis. Arising missing data problems are discussed.

In Chapter 4 several models for diallel analysis are compared and a general
REML-based model for analysing data arising from all diallel methods is

proposed.

An extension of the diallel model developed in Chapter 4 as well as the model for
factorials in Chapter 2 are used in Chapter 5 for triticale data to compare analysis

assuming one or two genepools within a group of 21 parental lines in triticale.
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Trends in genetic variance components during 30 years of hybrid
maize breeding at the University of Hohenheim

Fischer, S., J. Mohring, C.C. Schon, H.-P. Piepho, D. Klein, W. Schipprack, H.F.
Utz, A.E. Melchinger, and ].C. Reif.

Plant Breeding 127:446-451

The original publication is available at

http://onlinelibrary.wiley.com/doi/10.1111/j.1439-0523.2007.01475.x/full

Abstract

The efficiency of hybrid performance prediction based on GCA effects depends on
the ratio of variances due to specific (SCA) vs. general (GCA) combining ability

(0ica:0%cn)- Therefore, we analyse the changes in estimates of oZ.,, oo and

their ratio during 30 years of hybrid maize breeding. The observed trends in
genetic variances will be compared to theoretical results expected under a simple
genetic model. The analysed multi-location trials were conducted at the University
of Hohenheim from 1975 to 2004 and were designed as North Carolina Design II.
Grain yield (GY) and dry matter content (DMC) were measured. GY showed a
significant (P < 0.05) annual increase of 0.17 Mg/ha, but no linear trend was found
for DMC, the variances of GCA or SCA and their ratio. The predominance of the

sum of estimates of o, of the flint and dent heterotic groups compared to their
o retained with ongoing inter-population improvement. Consequently, hybrid

performance can be predicted on the basis of their parental GCA effects.
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Comparison of Weighting in Two-Stage Analysis of Plant Breeding

Trials

J. Mohring and H.-P. Piepho

Crop Science 49:1977-1988.

The original publication is available at https://www.crop.scijournals.org

Abstract

Series of plant breeding trials are often unbalanced with a complex genetic
structure. It is common practice to employ a two-stage approach, where adjusted
means per location are estimated and then a mixed model analysis of these
adjusted means is performed. This reduces computing costs. An important
question is how means from the first step should be weighted in the second step.
We therefore compare different weighting methods in the analysis of four typical
series of plant breeding trials using mixed models with fixed or random genetic
effects. We used four published weighting methods and proposed three new
methods. For comparing methods we used the one-stage analysis as benchmark
and computed four evaluation criteria. With the assumption of fixed genetic
effects we found that the two-stage analysis gave acceptable results. The same is
found in three of four datasets when genetic effects were taken as random in stage
two. In both cases differences between weighting methods were small and the best
weighting method depended on the dataset but not on the evaluation criteria. A
two-stage analysis without weighting also produced acceptable results, but
weighting mostly performed better. In the fourth dataset the missing data pattern
was informative, resulting in violation of the missing-at-random (MAR)
assumption in one- and two-stage analysis. In this case both analyses were not

strictly valid.
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REML-based diallel analysis

J. Mohring, A. E. Melchinger, and H.-P. Piepho
Crop Science 51:470-478.

The original publication is available at http://crop.scijournals.org

Abstract

Depending on the model and the experimental design diallel analyses can give
different results. A unified framework to fit and compare different models by
mixed-model packages is lacking. We, therefore, present a general diallel model
and the required additional restrictions for the genetic variance—covariance
structure to become equivalent to other commonly used diallel models. We
discuss the definitions and requirements of the commonly used models compared
with the general model. To exemplify your comparison we provide analysis of
three real datasets. We observed biased variance-component estimates for general
and specific combining ability if the assumptions regarding the genetic variance—
covariance structure are not fulfilled and random genetic effects are assumed. We
give detailed program codes in statistical software packages SAS and ASReml for
the implementation of the general diallel model. If no a priori information about
the genetic model for genotypes is available, the general model can be used to

analyze all diallel designs easily with standard statistical software.
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Impact of Genetic Divergence on the Ratio of Variance Due to Specific

vs. General Combining Ability in Winter Triticale

S. Fischer, J. Mohring, H.P. Maurer, H.-P. Piepho, E.-M. Thiemt, C.C. Schon, A.E.
Melchinger, and J.C. Reif

Crop Science 49:2119-2122.

The original publication is available at http://crop.scijournals.org

Abstract

This paper examine the influence of genetic divergence on the ratio of the
components of variance for specific (o5.,) and general (oZ.,) combining ability
using experimental data in triticale (xTriticosecale Wittm.). In total, 21 lines and
their 210 crosses were evaluated for grain yield in field trials. The re-analysis of
published molecular data indicate an optimum of two genetically distinct
subgroups. Estimates of o, and o4, were determined either for the total diallel
or between and within the two subgroups. The ratio of o, vs. o, tended to be
lower for crosses between than within the subgroups. This can be interpreted as an
indicator of a more favourable ratio of o, Vs. 0., in situations with two
genetically distinct subgroups than in situations without genetically distinct

subgroups.
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6. General Discussion

A time- and cost-efficient breeding strategy often requires the analysis of large
series of field experiments that generate phenotypic data. Knowledge of the
experimental design, the mating design, the aim of the analysis and requirements
of statistical analysis are important for finding an adequate model for analysis.
This thesis demonstrates the use of a mixed model framework for solving several

problems in analysing phenotypic data collected during plant breeding programs.

Fixed or random genetic effects

If genotypes are taken as fixed, best linear unbiased estimators (BLUEs) based on
generalized least squares are used to estimate genotype means. Best linear
unbiased predictors (BLUPs; Henderson, 1984; Searle et al., 1992) are used if
genetic effects are taken as random. Whether effects for genotypes are taken as
random or as fixed depends on the aim of the analysis (Smith et al., 2001a, 2005)
and on the way the genotypes have been generated. If interest is in estimating
genotype means, genotypes are taken as fixed. If the focus is on predicting the
potential breeding value of genotypes in future experiments and genotypes can be
regarded as randomly drawn from a base population, genotype effects are taken
as random (Henderson, 1984). In plant breeding the prediction of breeding values
is of interest, but due to selection, a base population in which idealized conditions
hold, such as random mating, linkage equilibrium and lack of inbreeding, does not
exist (Piepho et al., 2008). Up to now, plant breeders have often treated genotypes
as a fixed factor, ignoring all covariances between genotypes coming from
ancestry or evaluation process. Taking genotypic effects as random has the
potential advantage that additional correlated information from relatives can be
exploited, e.g. by using the numerator relationship matrix (Henderson, 1984;

Bernardo, 1994) or by modelling nested and crossed genetic effects representing
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the pedigree (Gallais, 1980; Piepho and Williams, 2006; Piepho et al., 2008).
Alternatively, the relationship of genotypes can be estimated through marker
information (Bernardo, 1993). Furthermore, a separation of genetic effects into
additive and non-additive effects is possible (Bernardo, 2002; Piepho and
Mohring, 2010). The disadvantage of taking the genetic effect as random is the
requirement of estimating a variance component. If there is little information for
estimation the variance component, both the variance component estimate and the
BLUPs are uncertain. Thus, Searle et al. (1992) proposed to consider effects as
random, if the number of genotypes is large. Van Eeuwijk (1995) suggested to
have at least ten degrees of freedom for estimating variance components. In this
thesis the genotype effect is taken as random. In addition, in Chapter 3 the
genotype effect is taken as fixed for comparison. Taking genotypes as random is in
accordance with Robinson (1991) and Piepho and Williams (2006), as well as
empirical results showing that BLUP is preferable to BLUE (Hill and Rosenberger,
1985; Kleinknecht et al., 2010).

Missing data

During selection, newly created genotypes are added while culled genotypes are
discarded, thus plant breeding data are almost always selected and unbalanced.
This results in missing data, which complicates analysis, for example in the

estimation of heritability (Piepho and Mohring, 2007).

Little and Rubin (2002) distinguish three kinds of missing data patterns:
informative missing or missing not at random (MNAR), missing at random (MAR)
and missing completely at random (MCAR). Their definition is based on
considering all observations from one subject, where a subject refers to a group of
correlated data points in repeated measures designs. In medical applications with

these types of design, a subject corresponds to a patient/person. Data points of
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different subjects are uncorrelated by definition. Another frequent application of
repeated measures designs is in animal sciences, where subjects are animals with
repeated measures (Littell et al.,, 1998). In these cases all observations from one
patient or animal are correlated, so they belong to the same subject. In plant
breeding all genotypes and thus all data belong to the same subject because of
correlations between genotypes (coancestry) and correlation because of testing

them in the same year, location or block.

The data from one subject can be subdivided into observed and missing data. If a
missing data pattern depends on observed data, but not on missing data, the
missing data pattern is MAR. If it depends on both observed and missing data, it
is informative. If it is independent of both observed and unobserved data, it is
MCAR. MCAR and, with the additional assumption of seperability, the MAR
pattern is ignorable if REML is used (Verbeke and Molenberghs, 2000). In plant
breeding, the missing data pattern is often informative, due to missing
information for selection decisions or missing pedigree information. Breeders
often use pedigree information during designing their experiments. It is common
that genotypes from the same cross are tested within the same trial, often side by
side. If trials for a set of genotypes were not performed in every location, pedigree
information influences the missing data pattern. Piepho and Mohring (2006)
showed that missing data due to selection can be ignored, if all data used for

selection are available and are included in the analysis.

The analyses in this thesis demonstrated several ways for including available
additional information, e.g. the per se performance of hybrid parents for selecting
rape seed cultivars (Chapter 3). It was further shown, that if pedigree information
for analysis is missing, but was used for the decision of testing or non-testing

genotypes in environments, the commonly used model is invalid (Chapter 3).
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Alternative genotype-environment variance-covariance structures

The multi-environmental trial (MET) data from plant breeding programmes in this
thesis were analysed by a linear mixed model with additive main effects for
genotype and environment and additive genotype-environment interaction
effects. If genotypes are assumed as random, as it is the case in this thesis, the
genotype-environment interaction is random, too. Assuming that genotypes i are
sorted within environments j, the variance-covariance matrix of the genotype-
environment mean v is

var(y) =1, ®1,62 +J, ®1,02 = (1,0 + J,6%)®I

e ge g’

where |, is a identity matrix of size n, J, is an nxn matrix with all elements equal
to unity, y is the vector of all yj n, ¢ and e are the numbers of observations,

environments and genotypes, respectively, and o and o, are the genotype and

genotype-environment interaction variances, respectively. This model corresponds
to a compound symmetry structure for the environment-within-genotype effects

and is the simplest structure.

Finlay and Wilkinson (1963) suggested using a product of a sensity parameter for
each genotype and the environment main effect as interaction effect in addition to
additive main effects. The sensity parameters are slopes for a regression on
environmental means. The general form of this linear-bilinear or multiplicative
model with two general factors was proposed by Mandel (1961). Thus the factors
can be interchanged resulting in a regression on genotypic means (Piepho, 1999).
An extension of the environmental effect (Cornelius, 1978) in the Finlay-Wilkinson
model resulted in the very popular additive main effect and multiplicative

interaction (AMMI) model (Gollob, 1968; Gabriel, 1978; Zobel et al., 1988; Gauch,
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1988) with one principal component. Models based on principal components were
first introduced by Mandel (1971). Variants of this model can be formulated by
dropping the additive environmental main effect (GGE or GREG) (Cornelius et al.,
1996), dropping the genotype main effect (site regression, SREG) or dropping both
plus the intercept and adding a so-called shift parameter (shifted multiplicative
model, SHMM; Cornelius et al.,, 1992; Piepho 1998). Gogel (1995) proposed a
mixed-model analogue for the Finlay-Wilkinson model, while Piepho (1997)
proposed the same for AMMI using a factor-analytic variance-covariance structure
for random environments and random genotype-environment interaction effects.
In Piepho (1998) and Smith et al. (2001b), mixed model analogues to SREG, GREG
and AMMI with random genotype effect are given. For the latter case the

variance-covariance for y can be described by

var(y) = (A A, +W,)®1 0,
where A, is, in the simplest case of one factor, a vector of ¢ environmental
sensitivities, W, is a diagonal matrix of size e and |, is a identity matrix of size g.
For factor-analytic models with more than one factor, A, is a matrix with one
column for each factor. Factor-analytic structures give more flexibility for
estimating heterogeneity in the variance-covariance matrix, especially if the

number of factors is increased. In case the number of genotypes exceeds that of

environments, the maximum number of factors is equal the number of

2

. . . . . ec+e .
environments, in this case the number of required parameters is , where e is

the number of environments, which is identical to an unstructured variance-
covariance matrix and just a different parametrization, otherwise the number of
factors is limited by the number of genotypes. The advantage of more flexible
variance-covariance structures for genotype-environment interaction in analysing

METs was demonstrated with independent genotypes (Piepho, 1997, 1998; Smith
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et al., 2001b) and related genotypes (Crossa et al., 2006; Kelly et al., 2007). Piepho
(1998) and So and Edwards (2009) proposed to use a model selection approach for
evaluating which variance-covariance structure is best. The disadvantage of more
complex genotype-environment structures is the requirement of more variance
component estimates. For a larger number of environments the increasing number
of required variance component estimates can result in convergence problems
(Welham et al., 2010), loss of efficiency and increased computational demands. In
the analysis of the four large series in Chapter 3, it was not possible to fit factor-
analytic structures or other more flexible structures for the genotype-environment
interaction effects, even with a reduced genetic model. So essentially, for each
genetic effect a random main effect and a random genotype-environment
interaction effect were fitted, which corresponds to a compound symmetry
structure. Further simplifications of this commonly used compound symmetry
structure are required, if the model otherwise leads to convergence problems. This
can happen, e.g. if a numerator relationship matrix for a large number of
genotypes is used within the genotype-environment structure. To avoid
convergence problems, the genetic effect is then simplified by ignoring the
covariances within the numerator relationship matrix. Crossa et al. (2006) showed
that using a factor-analytic genotype-environment structure with nine or two
factors just slightly influenced the BLUPs of genotype main effects, even if the
model fit improves significantly and the standard errors decrease. This suggests
that even where factor-analytic models can be fitted, the change in BLUPs of main

effects compared to the CS model would also be minor.

An alternative to changing the variance-covariance structure of genotype-
environment interaction is the attempt to explain the genotype-environment
interaction effects by a regression on covariables for each location (Denis, 1988;
Baril et al., 1995; van Eeuwijk, 1996; Crossa, 1999). Using covariables has the

advantage of easy biological interpretation of genotype-environment effects. In
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analysing variety trials it was shown, however, that the environmental covariables
often explain only small parts of genotype-environment interaction variance in
large series (Piepho et al., 1998). For MET data, Vargas et al. (1999) show that the
bilinear part of the genotype-environment interaction can be related to
environmental covariables. Van Eeuwijk et al. (2005) proposed to combine
statistical models for the genotype-environment interaction and models with
covariables. For the datasets analysed in this thesis, no environmental covariables

were available.

Alternative error structures

For all analysis in this thesis a heterogeneous residual variance with an
environment-specific residual variance was found by the likelihood-ratio test
(Wolfinger, 1993) to be superior to a homogeneous residual variance. We therefore
used the approximation of Stram and Lee (1994) due to its simplicity, even if the
requirement of a large number of independent subjects is often not given in plant
breeding data and more complex methods are preferable (Crainiceanu and
Ruppert, 2004). No correlation between residual errors within an environment is
assumed. This result is in accordance with So and Edwards (2009). Piepho and
Michel (2000) proposed to use the reciprocal values of the variance of adjusted
means per environment as weights in calculating genotype means in a MET
analysis. These weights imply different residual variances for each environment,

which agrees with the models used in this thesis.

An alternative error structure assumes a spatial correlation between residuals
within an environment. Observations on plots with short distance between them
are more similar than observations with large distance between them. So the
residual variance of the difference of two observations is a function of the distance

between them. If the coordinates for each observation are available, a range of
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spatial models can be fitted, e.g. autoregressive (Gilmour, 1997) or linear (Piepho
et al., 2008) variance structures. In general, a spatial error structure can replace the
independent error structure after (Piepho et al., 2008) or before (Gilmour et al.,
1997) fitting randomisation-based effects like row, column or block effects.
Additionally, both structures can be used simultaneously. In analysing plant
breeding data, Miiller et al. (2010a) found that on the one hand often some spatial
models slightly outperformed a model with independent errors (baseline model)
in terms of model fit, but on the other hand the baseline model with no spatial
terms was most often the best model. Hu and Spilke (2009) concluded that the
spatial model has to be defined separately for each environment. In their analysis
only one trial per environment was present, so they defined spatial error
structures separately for each trial. The optimal use of spatial residual variance
structures in routine MET analysis is not straightforward and a model selection
approach to find the best spatial model is required. For the analysed data in this
thesis most often spatial information was lacking. Additionally, the number of
trials within the analysis was generally large (up to several hundred trials),
requiring a large number of variance component estimates and a large number of

analyses to find the optimal model for each trial.

Besides these problems, the commonly practiced incomplete randomization of
genotypes causes some additional problems. Plant breeders often randomize
genotypes in two stages. First they randomize the crosses (if at all) and later they
randomize genotypes within crosses. The reason for this procedure is the interest
of breeders to select crosses as well as genotypes within crosses for highly
heritable traits, e.g. resistances directly in the field. Additionally this arrangement
helps breeders to get visual information about the variability of a trait within a
cross. Therefore testing genotypes from the same cross in spatial neighbourhood
simplifies field selection, but at the same time results in restricted randomization.

As a result, correlation due to genetic similarity tends to decrease with spatial
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distance, because the larger the spatial distance the more likely it is that the
concerned genotypes belong to different crosses. The main problem is that spatial
models for the residual also assume that correlation decays with spatial distance.
Thus, if spatial error models are used for data that are randomized with the
restrictions discussed above, the spatial error potentially explains both, the genetic
correlation and the spatial correlation. In other words, the spatial and genetic
correlation structures are confounded. A separation is not strictly possible. If
genetic variance is captured in the residual error term, as a result of confounding,
then genotype effect estimates (BLUPs) may be over-shrunken towards the general
mean. The amount of confounding and the effect of analysing incompletely
randomized data with spatial models are up to now not known. The effect can
either be evaluated by overlaying simulated genotype effects onto uniformity trial
data using incomplete and complete randomization and analysing the whole data
structure or by full Monte Carlo simulation. The former type of analysis is

currently underway (Bettina Miiller, personal communication).

Relative merits of two-stage analysis depend on aim of analysis

Chapter 3 and Welham et al. (2010) both compare two-stage analysis with
different weighting methods with the single-stage analysis. In Chapter 3 just small
differences in estimated genotype main effects are found even by an analysis with
incorrect weighting, e.g. by using no weights explicitly. The reason for this
observation was the generally large number of environments per genotype
resulting in an averaging out of the effect of incorrect weights. In contrast,
Welham et al. (2010) found a preference of weighting and larger differences
between single-stage and two-stage analysis. Besides the assumed spatial
correlation of errors, which resulted in more heterogeneous weights within a
location, the main reason for these, at first sight, contrasting results is the focus on

estimating genotype effects in specific environments in Welham et al. (2010) as
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compared to the focus on main genotype main effects in Chapter 3. Depending on
the aim of the analysis the influence of different weighting varies. Crossa et al.
(2006) observed the same for the variance-covariance structure of the genotype-
environment interaction. Comparable to Chapter 3 they calculated the correlation
between BLUPs for genotype main effects with different models. Through they
observed differences in the standard error and differences in the model fit, they
observed high correlations, indicating close similarities between these models in
terms of the BLUPs. Again, if there are a large number of environments, the
influence of genotype-environment interaction effects on the genotype main effect
is averaged out. Therefore the choice of the best genotype-environment interaction
variance-covariance structure and the correct residual variance model is less
important for analysis aiming at estimation of genotype main effects than for
analysis aiming at estimating genotype effects in a specific environment, or for
calculating the stability of genotypes (Eberhart and Russell, 1966; Shukla, 1972;
Piepho, 1992). In this thesis we always concentrated on genotype main effects,
thus the influence of the genotype-environment variance-covariance structure or
the residual variance-covariance structure was less critical. Also, it turned out to
be difficult to fit more complex models. We therefore chose the simplest genotype-

environment variance-covariance structure.

Alternative estimation methods

Historically, ANOVA-based methods for analysing MET (Fisher, 1921) or data
from diallel mating designs were used (Griffing, 1956a; Eberhart and Gardner,
1966). REML (Patterson and Thompson, 1971) and ANOVA methods yield
identical results for balanced, if simple variance component models are used and
all ANOVA estimates are non-negative (Searle et al., 1992). REML is the state-of-
the-art method in analysing animal breeding data (Hudson and van Vleck, 1982;
Dong and van Vleck, 1989; Meyer and Smith, 1996) and plant breeding data
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(Piepho, 2008). Another estimation method is MINQUE (Rao, 1970, 1971), which is
equivalent to just the first iteration of REML (Searle et al., 1992). MINQUE has
been proposed for analysing complex diallels (Zhu and Weir, 1994a, b, 19964, b).
All these methods are based on a frequentistic view of statistical probability. In
this thesis REML was used for all analyses. For diallel analysis including parents,
thus for models with more complex variance-covariance structure, REML and
ANOVA methods result in different variance component estimates as shown in

Chapter 4.

In contrast to the frequentistic view taken in this thesis, the Bayesian approach
uses a prior distribution for estimable parameters. This prior distribution is
updated with the distribution of actual data to obtain the posterior distribution
(Gelman et al., 2000). If good prior information is available, the Bayesian approach
can give better variance component estimates and therefore reduced the
uncertainty of empirical BLUP. Edwards and Jannink (2006) proposed to use the
Bayesian approach for modelling heterogeneous error and genotype-environment
interactions. The Bayesian approach was used for modelling animal data (Gianola
and Fernando, 1986) and MET data from variety testing (Theobald et al., 2002).
The Bayesian approach has also been used for plant breeding data in order to

exploit marker information (Bauer et al., 2009).

The Bayesian approach will be preferable, if the amount of information for a
variance component, which can be extracted directly from the data, is limited. In
plant breeding one possible application is the estimation of cross-specific genetic
variances, when the number of genotypes per cross is limited and smaller than
required for assuming a random effect when frequentist methods are used for
analysis. The Bayesian view also relaxes the division between random or fixed
effects, so what is regarded as fixed effect in a frequentist setting can be seen from

a Bayesian perspective as a random variable on which prior knowledge is diffuse
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or vague (Gianola and Fernando, 1986). The disadvantage of the Bayesian
approach is the influence of the prior distribution on the results of the analysis
(Koehler, 1993), when the amount of experimental data is limited, which makes a
priori expected results more likely and unexpected results less likely. The expected
benefit of the Bayesian approach for large series of trials with a large amount of
information for estimating variance component estimates can be assumed to be

limited.

Use of correlated information

If available, the analyses in this thesis included pedigree information, and thus
used the information of correlated genotypes to achieve better estimates for
genotype effects. The pedigree information can be used via the numerator
relationship matrix (Bernardo, 1993) or by modelling nested and crossed genetic
effects representing the pedigree (Gallais, 1980; Piepho and Williams, 2006; Piepho
et al., 2008). For simple structures of coancestry, a model with nested and crossed
genetic effects has the advantage that the covariance between ancestors is
estimated directly within the model. By contrast, if the numerator relationship
matrix is used, e.g. the covariance between fullsibs is fixed to half of the genetic
variance. Thus, using nested and crossed genetic effects allows a more flexible
variance-covariance structure to be fitted. For complex structures, however, the
number of required variance component estimates increases, which makes the
analysis complex and potentially inefficient. In both cases genotype effects are

assumed to be random.

For constructing the numerator relationship matrix we used the coancestry
determined by the pedigree. Alternatively marker information can be used to
estimate the “realized” coancestry between genotypes (Bernardo, 1994). Marker

information can potentially better reflect sampling effects and effects from
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selection and drift (Piepho et al., 2008). Bernardo (1994) shows that the marker-
based numerator relationship matrix can perform better in plant breeding data
under selection. For the datasets analysis in this thesis, the use of the pedigree-
based or marker based numerator relationship matrix or both resulted in better
model fits than for models without using the numerator relationship matrix. This
is in agreement with results in Bernardo (1994), Xu and Virmani (2000), Davik and
Honne (2005), Bauer (2006), and Bauer et al. (2006) for additive genotype-
environment interaction and Crossa et al. (2006) and Kelly et al. (2009) for
multiplicative models. In addition to the numerator relationship matrix, Bernardo
(1993) proposed to fit a dominance relationship matrix (D-matrix), which is also

used in Flachenecker et al. (2006).

By either the use of correlated information via the numerator relationship matrix
or by nested and crossed genetic effects, it is possible to exploit the correlation
between genotypes and their parents or ancestors for enhancing the estimation of
genotype effects. This information is often used implicitly in practical breeding
work, e.g., by looking at the whole cross to evaluate a single genotype. Plant
breeders often design field trials such that related genotypes are tested close to
each other, so that a selecting between crosses and within crosses directly on the
field is possible. But this information is rarely included directly in a mixed model
framework even though normally the parents are carefully selected and
information about the per se performance is available prior to the analysis. Also,
information about correlated relatives in previous generations is often available
but rarely used. Piepho and Mohring (2010) used different selfing generations to
separately estimate additive and dominance variance. For diallel crosses, Zhu and
Weir (1994a, b, 1996a, b) proposed models for using additional backcross
generations or the groups of male and female offspring. The reason for not using
this information lies in technical difficulties to include the often selected and

unbalanced data from previous years or in genetical difficulties to include a
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different base population or genotypes with different degrees of inbreeding. For
the special case of a diallel analysis, Griffing (1956b), Wricke and Weber (1986) and
Zhang and Kang (1997) stated that estimating variance components including
parents is not useful. Wright (1985) proposed the use of parents, if the reference
population is descendant, while if the reference population is ancestral, parents
should not be used. In contrast, Curnow (1980) stated that using two types of
information, i.e., the performance as parent and the performance as parent in a
cross has the potential of increasing selection gain. He also discussed the
possibility of weighting both sources of information in a selection index. Using a
selection index is essentially identical to using BLUP (Piepho et al., 2008), when
assuming a joint variance-covariance structure for genetic effects of parents and
genotypes. Chapter 4 proposed a method for using correlated information like per
se performance within a diallel and showed the potential advantages of this
method. But this method is not restricted to parents in diallels. Schrag et al. (2009)
used a comparable model with genotypes and the per se performance of their
parents in a series of partial factorials in maize. Chapter 5 combines the analysis of
diallels and factorials using the joint variance-covariance structure. The analysis of
the diallel mating design with 21 parents in triticale was either performed by a
diallel assuming one population or by two diallels (within each population) and a
factorial (between populations) assuming two populations. Further examples
using correlated information were given in Piepho and Moéhring (2006, 2010) and
Falke et al. (2010). The variance-covariance structure can be used to estimate the
genetic correlation between successive breeding stages, e.g. to evaluate an early

selection.

For the special case of analysing diallels this thesis presents a unified framework
for analysing data with a joint variance-covariance structure for effects of parents
and crosses. It is shown that estimating the correlation between genotypes and

their parents can be superior to assuming a fixed ratio of variance components and
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hence a fixed correlation, which can be derived from theoretical genetic models.
For using correlated information the important point is a careful separation of
different genetic effects and a careful modelling of correlated and non-correlated
effects. The same methods for describing the pedigree or for using correlated
information that were used in this thesis for the mere purpose of estimating
genetic effects, can also be used in mixed modelling for QTL detection by linkage
mapping (Schrag et al., 2010) or association mapping (Yu et al., 2006; Crossa et al.,
2007; Stich et al., 2008; Miiller et al., 2010b).

Alternative field trial designs

In plant breeding trials of many German breeders, the genotypes are typically
separated in subgroups of 25 up to 100 genotypes. This is done, e.g., for ease of
handling large numbers of genotypes or for faster analyses per subgroup. The
genotypes of each subgroup are tested together in one design, mostly a block
design or a lattice design. Normally, in these trials genotypes are tested cross by
cross, so related genotypes from the same cross are more likely to be in the same
subgroup and more likely to be neighbours than genotypes from different crosses.
This type of subgrouping of genotypes into trials results in problems with models
assuming spatially correlated errors and problems with the missing data pattern,
if the information for grouping the genotypes is missing. Furthermore, breeders
are interested in selecting the best genotypes overall, not just the best genotypes
within a subgroup. Thus, a comparison of all pairs of genotypes is needed. To
compare genotypes coming from different subgroups, and hence coming from
different trials, additional checks are required. Piepho et al. (2006) showed that
using a single o-design that includes all or several crosses outperforms a
subgrouping of crosses into several designs, mainly through a reduced number of
required replicated check plots and more homogeneous standard errors of

pairwise differences. Alternatively, replicated checks can be replaced by
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genotypes of interest, thus a part of the genotypes is replicated more often than
the rest. This idea is called partially replicated (p-rep) design (Cullis et al., 2006;
Smith et al., 2006; Williams et al., 2010). The p-rep design is preferable especially in

trials with no particular interest in check results themselves.

Genetic model, additive and non-additive effects

The diallel analysis proposed by Griffing (1956a), Hayman (1954) or Gardner and
Eberhart (1966) are based on a Mendelian model introduced in Fisher (1918),
which assumes the inheritance of several independent genes, so-called Mendelian
factors. The sum of these factors is defined as additive effect, while interactions
between genes are modelled by non-additive effects like dominance and epistasis.
Thus, a distinction of additive and non-additive effects is possible, which is very
attractive for interpretation. But these genetic models are based on strong
assumptions (Hayman, 1954) like diploid segregation, which results in the
restriction of a fixed ratio of variance component estimates. Often, the strong
restrictions are not realistic (Gilbert, 1958). The same holds for using the
numerator relationship matrix. Again, fixed ratio between variance component
estimates and covariance estimates within the pedigree are assumed and a
distinction between additive and non-additive effects is possible. Alternatively,
the variance components and covariances are directly estimated, either by using
nested and crossed genetic effects or by multivariate analyses. For diallels it was
shown in Chapter 4, that if no information about the true model is available, a
general model with a more flexible variance-covariance structure, where variances
and covariances are directly estimated from the data, can be preferable. This
flexible model can be converted to the genetic models by adding appropriate
restrictions to the general model and thus still allows the interpretation of genetic

effects as additive and non-additive effects.
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Conclusion

The mixed model framework is a powerful tool for analysing phenotypic plant
breeding data, either for selection or as essential part in genetic studies like QTL
detection, linkage studies, association studies or genomic selection. This thesis
demonstrated the use of mixed models for analysing large series of plant breeding
trials with factorial or diallel mating designs. The often-used stage-wise analysis of
large series of plant breeding trials is found to give acceptable results. To avoid
informative missing data and to get more precise genotype main effect estimates,
correlated information is included via the numerator relationship matrix, nested
and crossed genetic effects or a joint variance-covariance structure. The estimated
variance component estimates can be used to evaluate changes in the population
of cultivars through recurrent selection or to evaluate the optimal grouping of
genotypes into heterotic pools for hybrid breeding. For diallels it is shown that the
proposed mixed model including crosses and their parents generalized, and can
outperform, other diallel models proposed in the literature. Thus, the thesis
demonstrates that a valid and efficient analysis of all available phenotypic data is

an essential part of many plant breeding processes.
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7. Summary

Phenotypic selection and genetic studies for QTL detection, linkage and
association mapping or genomic selection require an efficient and valid analysis of
phenotypic plant breeding data. Therefore, the analysis must take the mating
design, the field design and the genetic structure of tested genotypes into account.
The analysis is often performed in stage-wise fashion by analysing each trial or
location separately and estimating adjusted genotype means per trial or location.
These means are then submitted to a mixed model to calculate genotype main

effects across trials or locations.

In Chapter 2 an analysis of unbalanced multi-environment trials (METs) in maize
using a factorial design are performed. The dataset from 30 years is subdivided in
periods of up to three years. Variance component estimates for general and
specific combining ability are calculated for each period. While mean grain yield
increased with ongoing inter-pool selection, no changes for the mean of dry matter
yield or for variance component estimate ratios were found. The continous
preponderance of general combining ability variance allows a hybrid selection

based on general combining effects.

Chapter 3 studies the influence of stage-wise analysis on genotype main effect
estimates for models which take account of the typical genetic structure of
genotype effects within plant breeding data. For comparison, the genetic effects
were assumed both fixed and random. The performance of several weighting
methods for the stage-wise analysis are analysed by correlating the two-stage
estimates with results of one-stage analysis and by calculating the mean square
error (MSE) between both types of estimate. In case of random genetic effects, the
genetic structure is modelled in one of three ways, either by using the numerator

relationship matrix, a marker-based kinship matrix or by using crossed and nested
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genetic effects. It was found that stage-wise analysis results in comparable
genotype main effect estimates for all weighting methods and for the assumption
of random or fixed genetic effect if the model for analysis is valid. In case of
choosing invalid models, e.g., if the missing data pattern is informative, both
analyses are invalid and the results can differ. Informative missing data pattern
can result from ignoring information either used for selecting the analysed
genotypes or for selecting the test environments of genotypes, if not all genotypes

are tested in all environments.

While correlated information from relatives is rarely directly used for analysis of
plant breeding data, it is often used implicitly by the breeder for selection
decisions, e.g. by looking at the performance of a genotye and the avarage
performance of the underlying cross. Chapter 4 proposed a model with a joint
variance-covariance structure for related genotypes in analysis of diallels. This
model is compared to other diallel models based on assumptions regarding the
inheritance of several independent genes, i.e. on genetic models with more
restrictive assumptions on the relationship between relatives. The proposed diallel
model using a joint variance-covariance structure for parents and parental effects
in crosses is shown to be a general model subsuming other more specialized
diallel models, as these latter models can be obtained from the general model by
adding restrictions on the variance-covariance structure. If no a priori information
about the genetic model is available, and thus no need for using a genetic model is
given, the proposed general model can outperform the more restrictive models.
Using restrictive models can result in biased variance component estimates, if

restrictions are not fulfilled by the data analysed.

Chapter 5 evaluates, whether a subdivision of 21 triticale genotypes into heterotic
pools is preferable. Subdividing genotypes into heterotic pools implies a factorial

mating design between heterotic pools and a diallel mating design within each
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heterotic pool. Without subdivision the mating design is a diallel, therefore the
proposed model in Chapter 4 is used for analysis. For two (or more) heterotic
pools the model is extended by assuming a joint variance-covariance structure for
parental effects and general combing ability effects within the diallel and within
the factorial. It is shown that a model with two heterotic pools shows the best
model fit. The variance component estimates for the general combing ability

decrease within the heterotic pools and increase between heterotic pools.

The results in Chapter 2 to 5 show, that an efficient and valid analysis of
phenotypic plant breeding data is an essential part of the plant breeding process.
The analysis can be performed in one or two stages. The used mixed models
recognizing the field and mating design and the genetic structure can be used for
answering questions about the genetic variance in cultivar populations under
selection and of the number of heterotic pools. The proposed general diallel model
using a joint variance-covariance structure between related effects can further be

modified for factorials and other mating designs with related genotypes.
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8. Zusammenfassung

Eine effiziente und valide Auswertung von pflanzenziichterischen Daten wird fiir
phénotypische Selektion einerseits und genetischen Studien wie QTL-Kartierung,
Kopplungs- und Assoziationsstudien sowie genomweiter Selektion anderseits
benotigt. Hierfiir muss in der Auswertung das Versuchsdesign, das
Kreuzungsdesign und die genetische Struktur der zu testenden Genotypen
berticksichtigt werden. Die Auswertung erfolgt oft in zwei Stufen. Zunachst
werden Mittelwerte pro Versuch oder pro Ort geschatzt. Diese Mittelwerte
werden anschlieffend in einer Serienauswertung verwendet, um genotypische

Schatzwerte tiber die Versuchsserie hinweg zu erhalten.

In Kapitel 2 wird die Auswertung eines 30-jahrigen, mehrortigen und
unbalancierten Maisdatensatzes mit faktoriellem Kreuzungsdesign durchgefiihrt.
Der Datensatz wird zundchst in bis zu dreijahrige Versuchsserien unterteilt. Fiir
diese werden dann Gesamtmittelwerte sowie Varianzkomponenten fiir generelle
und spezifische Kombinationseignung ermittelt und zwischen den Versuchsserien
verglichen. Wahrend der Kornertrag mit der Zeit zunimmt, kann fiir die
Trockensubstanzmenge und das Verhdltnis der Varianzkomponenten keine
Veranderung nachgewiesen werden. Der stets hohe Anteil der allgemeinen
Kombinationseignungsvarianz an der gesamten genetischen Varianz erlaubt eine

Hybridselektion aufgrund der allgemeinen Kombinationseignung.

Kapitel 3 untersucht den Einfluss einer zweistufigen Auswertung auf
genotypische = Gesamtmittelwerte  fiir den  Fall, dass die fir
Pflanzenziichtungsdaten typischen Verwandtschaftsverhdltnisse = zwischen
Genotypen berticksichtigt werden. Hierbei werden Zweischrittauswertungen mit
unterschiedlichen ~Gewichtungsmethoden im zweiten Schritt mit einer

Einschrittauswertung verglichen. Die genetischen Effekte werden als zufallig
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angenommen, wobei zur Integration der Verwandtschaftsinformation der
Genotypen drei Verfahren verwendet werden: Eine abstammungsbasierte
Ahnlichkeitsmatrix, eine markerbasierte Ahnlichkeitsmatrix oder ein Modell mit
geschachtelten und gekreuzten genetischen Effekten. Zum Vergleich werden die
selben Datensdtze auch mit festen genetischen Effekten ausgewertet. Als
Giitekriterium werden die Korrelation der Gesamtmittelwertschatzungen zu den
Schatzwerten der Einschrittauswertung sowie der mittlere quadratische Fehler
(MSE) zwischen den Schatzwerten aus Ein- und Zweischrittauswertung bestimmt.
Dabei ergeben sich sowohl fiir die Annahme fester, als auch fiir die Annahme
zufdlliger genetischer Effekte vergleichbare Mittelwertschatzwerte fiir alle
Gewichtungsmethoden. Im Fall von nicht zuldssigen Modellen, zum Beispiel
wenn das Fehlmuster der Daten nicht zuféllig ist, ergeben sich Unterschiede
zwischen Ein- und Zweischrittauswertung. In dem Fall sind beide Auswertungen
nicht  zuldssig.  Informative  Fehlmuster = konnen  durch  fehlende
Verwandtschaftsinformationen verursacht werden, wenn diese Information zur
Selektion der gepriiften Genotypen oder der gepriiften Genotyp-Umwelt-

Kombinationen genutzt wird.

Waéhrend korrelierte Information von Verwandten im Modell fiir die Auswertung
pflanzenziichterischer Daten selten direkt verwendet wird, nutzen Ziichter diese
Information oft implizit. So wird zur Bewertung der Leistung eines Genotypen oft
auch die Eignung der gesamten Kreuzung betrachtet. In Kapitel 4 wird fiir die
Auswertung eines Diallels ein Modell vorgeschlagen, das eine gemeinsame
Varianz-Kovarianzmatrix fiir alle korrelierten genetischen Effekte verwendet. Im
Diallel wird also eine Korrelation zwischen dem Elterneffekt eines Elters und dem
generellen Kombinationseignungseffekts des selben Elters modelliert. Dieses
Model wird verglichen mit anderen Diallelmodellen, die auf der Vererbung vieler
unabhangiger Gene und somit auf restriktiveren Annahmen beziiglich der

Varianz-Kovarianzmatrix basieren. Es kann gezeigt werden, dass das
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vorgeschlagene Modell eine Verallgemeinerung fiir die anderen verwendeten
Diallelmodelle darstellt und dass sich diese spezielleren Diallelmodelle durch
Hinzuftigen von Restriktionen in der Varianz-Kovarianzmatrix aus dem
vorgeschlagenen Modell ableiten lassen. Fehlen Vorabinformationen, dass das
wahre genetische Vererbungsmodell durch die anderen Diallelmodelle besser
abbilden wird, so kann das vorgeschlagene Modell Dialleldaten potentiell besser
beschreiben. Aufierdem konnen Abweichungen von restriktiveren Varianz-

Kovarianzstrukturen zu verzerrten Varianzkomponentenschatzungen fiihren.

Kapite] 5 untersucht, ob eine Unterteilung von 21 Triticalegenotypen in
heterotische Gruppen sinnvoll ist. Eine Unterteilung der Genotypen in
heterotische Gruppen impliziert faktorielle Kreuzungsdesigns zwischen den
heterotischen ~Gruppen wund diallele Kreuzungsdesigns innerhalb der
heterotischen Gruppe. Ohne Unterteilung ist das Kreuzungsdesign ein Diallel und
das in Kapitel 4 vorgeschlagene Modell kann genutzt werden. Fiir zwei oder mehr
heterotische Gruppen wird das Modell erweitert, in dem eine gemeinsame
Varianz-Kovarianzmatrix ~ fiir ~ den  Eltereffekt —und die  generelle
Kombinationseignung des Elters im Diallel und im faktoriellen Design
angenommen wird. Ein Modell mit zwei heterotischen Gruppen zeigt die beste
Modellanpassung. Die Varianz der generellen Kombinationseignung schrumpft
innerhalb der heterotischen Gruppe und erhoht sich zwischen den heterotischen

Gruppen.

Die Ergebnisse in den Kapiteln 2 bis 5 zeigen, dass eine effiziente und valide
Auswertung phéanotypischer Pflanzenziichtungsdaten ein essentieller Teil der
Pflanzenziichtung ist. Die Auswertung selbst kann ein oder zweistufig erfolgen.
Die gemischten Modelle berticksichtigen das Versuchs- und Kreuzungsdesign und
konnen verwendet werden, um Fragen tiiber die Entwicklung genetischer

Varianzen in Ziichtungspopulationen oder zur optimalen Anzahl heterotischer
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Gruppen zu beantworten. Das vorgeschlagene Diallelmodell mit einer
gemeinsamen Varianz-Kovarianzstruktur fiir alle korrelierten genetischen Effekte
lasst sich fiir faktorielle Designs und andere Kreuzungsdesigns mit korrelierten

Genotypen erweitern.
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