
 

 

 
 
  

Institute of Animal Science 

University of Hohenheim 

Prof. Dr. M. Rodehutscord 

 

 

 

 

PHYTATE HYDROLYSIS AND FORMATION OF 

INOSITOL PHOSPHATES IN THE DIGESTIVE TRACT 

OF BROILERS 

 
 

 

DISSERTATION 

submitted in fulfilment of the requirements for the degree 

”Doktor der Agrarwissenschaften” 

(Dr. sc. agr. / PhD in Agricultural Science) 

 

 

to the 

Faculty of Agricultural Science 

 

 

presented by 

Ellen Zeller 

born in Aalen, Germany 

 

 

2015 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Die vorliegende Arbeit wurde am 31. März 2015 von der Fakultät Agrarwissenschaften der 

Universität Hohenheim als „Dissertation zur Erlangung des Grades eines Doktors der 

Agrarwissenschaften“ angenommen. 

 

 

 

Tag der mündlichen Prüfung:     09. April 2015 

Leitung des Kolloquiums:     Prof. Dr. H. Grethe 

Berichterstatter, 1. Prüfer:     Prof. Dr. M. Rodehutscord 

Berichterstatter, 2. Prüfer:     Prof. Dr. W. Windisch 

3. Prüfer:       Prof. Dr. L. E. Hoelzle



 

 

  

 

 

 

 

 

 

 

 

 

This work was funded through a doctoral fellowship by the Ministry of Science, Research and 

Arts (MWK) Baden-Württemberg which is gratefully acknowledged. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 



I 

 

TABLE OF CONTENTS 

1 INTRODUCTION AND LITERATURE OVERVIEW ..................................................................... 1 

1.1 Introduction ............................................................................................................... 3 

1.2 Inositol phosphates – terminology, structure and nomenclature ............................... 4 

1.3 Phytate ....................................................................................................................... 7 

1.4 Phytase ....................................................................................................................... 9 

2 OVERVIEW AND RESEARCH QUESTIONS OF THE INCLUDED MANUSCRIPTS......................... 19 

3 GENERAL DISCUSSION ...................................................................................................... 25 

3.1 Methodical considerations ....................................................................................... 27 

3.2 InsP6 hydrolysis in different segments of the digestive tract of broilers ................. 30 

3.2.1 Crop ............................................................................................................... 30 

3.2.2 Proventriculus and gizzard ............................................................................ 31 

3.2.3 Small intestine ............................................................................................... 33 

3.2.4 Hindgut .......................................................................................................... 39 

3.3 Factors affecting InsP6 hydrolysis ........................................................................... 40 

3.3.1 Effect of microwave treatment ...................................................................... 40 

3.3.2 Contribution of intrinsic plant phytase .......................................................... 42 

3.3.3 Effect of supplemented microbial phytase .................................................... 47 

3.3.4 Effect of mineral P and Ca ............................................................................ 50 

3.3.5 Other factors .................................................................................................. 54 

3.4 Relevance of lower inositol phosphates .................................................................. 59 

3.5 Consequences for P evaluation in poultry ............................................................... 62 

3.6 Perspectives for future research ............................................................................... 64 

3.7 Conclusions ............................................................................................................. 66 

References ....................................................................................................................... 68 

4 INCLUDED MANUSCRIPTS .................................................................................................. 93 

5 SUMMARY ...................................................................................................................... 139 

6 ZUSAMMENFASSUNG ...................................................................................................... 145 

 



 

 

 

  



III 

 

LIST OF TABLES 

with the exception of tables presented in Manuscript 1-5 

TABLE 1.  Microbial phytases authorised for the use as broiler feed additives in the EU 

according to the European Food Safety Authority (EFSA)1 ............................. 11 

 

LIST OF FIGURES 

with the exception of figures presented in Manuscript 1-5 

FIGURE 1. Adapted and modified from Irvine and Schell (2001). Myo-inositol as Haworth 

projection (a) and chair structure (b). Agranoff’s turtle (c) shows the  

D-numbering and L-numbering (in brackets) of myo-inositol ........................... 6 

FIGURE 2. Major (a) and minor (b) pathway of InsP6 degradation by phytases from  

wheat bran of T. aestivum, without separation of enantiomers 

(Nakano et al.,   2000) ...................................................................................... 13 

FIGURE 3. Major pathway of InsP6 degradation by a phytase from E. coli  

(Greiner et al., 2000a) ....................................................................................... 13 

FIGURE 4. Major pathway of InsP6 degradation by a phytase from A. niger  

(Greiner et al., 2009) ........................................................................................ 13 

 

LIST OF ANNEXES 

ANNEX 1.  Analysed concentrations of acid detergent fibre (ADF) (g/kg DM) in            

feed, litter, wood shavings and content of the crop and gizzard and      

calculated percentage of wood shavings, litter and excreta in crop and gizzard 

content1 ........................................................................................................... 151 

ANNEX 2.  Concentrations of different InsPs in the digesta of the gizzard1 .................... 154 

ANNEX 3.  Concentrations of different InsPs in the digesta of the gizzard1 .................... 155 



 

 



V 

 

LIST OF ABBREVIATIONS 

with the exception of abbreviations only used in Manuscript 1-5 

ADF   Acid detergent fibre 

BBV   Brush border membrane vesicles 

BDTW   Basal diet containing microwave treated wheat 

BDUTW   Basal diet containing untreated wheat 

BD-   Basal diet without monocalcium phosphate 

BD+   Basal diet with monocalcium phosphate 

Ca   Calcium 

DM   Dry matter 

Enz   Enzyme supplementation 

GfE   Gesellschaft für Ernährungsphysiologie 

HPIC   High-Performance Ion Chromatography 

InsPs   Inositol phosphate isomers 

InsP6   Myo-inositol 1,2,3,4,5,6-hexakis (dihydrogen phosphate) 

IUPAC-IUB International Union of Pure and Applied Chemistry and the 

International Union and the International Union of Biochemistry 

LOQ Limit of quantification 

MCP Monocalcium phosphate 

MCPh Monocalcium phosphate monohydrate 

MSPa Anhydrous monosodium phosphate 

Mwt   Microwave treatment 

n.d.   Not detectable 

NRC   National Research Council 

NSP   Non-starch-polysaccharide 

P   Phosphorus 

Phy   E. coli-derived phytase Quantum Blue® or QuantumTM Blue 



VI 

 

Pi Inorganic phosphate 

SEM   Standard error of the means 

Ti   Titanium 

TM   Trockenmasse 

tP   Total phosphorus 

WPSA   World’s Poultry Sciene Association 

Xyl   Econase® XT 25 



 

 

 

 

 

 

 

 

 

CHAPTER 1 

INTRODUCTION AND LITERATURE OVERVIEW 



 

 



1 Introduction and literature overview  3 

 

1 INTRODUCTION AND LITERATURE OVERVIEW 

1.1 INTRODUCTION 

One of the greatest challenges for the society presently is to increase the volume of biomass 

produced while minimizing the ecological footprint. In this regard, “bioeconomy” is a “new 

paradigm for bioscience and policy” (Hirsch, 2009) and will represent the key tool to face this 

challenge. Bio-based economy includes the shift to a sustainable livestock production and 

responsible handling of natural resources. This change may only be achieved by the 

interactive use of knowledge and innovation from different sectors, such as agricultural, 

biological, life and technological sciences. Hence, bioeconomy is also addressed by research 

in the field of animal nutrition. In terms of animal nutrition research, an important 

bioeconomical aspect is the development of strategies which result in decreased dependence 

on limited resources in addition to an efficient use of nutrients contained in plant feed 

components.  

Phosphorus (P) represents a finite resource with major impact in animal nutrition worldwide. 

P is an essential nutrient for skeletal growth and integrity, serves as a component of 

phospholipids, nucleic acids and adenosine triphosphate and plays a role in biochemical 

pathways, fat, carbohydrate, mineral and energy metabolism. Dietary P concentration needs to 

cover the animals’ P requirement, which varies widely and depends on animal factors, such as 

species, age, physiological state and targeted level of performance (WPSA, 2013). To be 

utilized, P needs to occur as orthophosphate in the lumen of the small intestine because this is 

the binding form of P mainly absorbed. Hence, the required dietary P concentration also 

depends on the contribution of different binding forms and their potential to be 

dephosphorylated in the digestive tract. 

Phytate, the major binding form of P in plant seeds and feedstuffs obtained thereof, can be 

readily hydrolysed in the rumen due to the presence of microbiota-associated phytases (Yanke 

et al., 1998). For non-ruminants, the capability to use phytate-bound P has been 

controversially discussed. Avian species and pigs have long been assumed to be inefficient in 

utilization of phytate-bound P, due to insufficient endogenous mucosal phytase activity in the 

intestine (Nelson, 1976). However, more recent studies showed that broilers have a high 

potential to hydrolyse phytate (Tamim and Angel, 2003; Leytem et al., 2008). But different 

nutritional factors can affect phytate hydrolysis in broilers, such as intrinsic plant or added 

microbial phytase, mineral P and Ca and other factors that can affect accessibility or solubility 
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of phytate. However, the separate and interactive effects of different nutritional factors on the 

degradation of phytate in the digestive tract are largely not understood.  

Theoretically, the total P (tP) concentration of plant-sourced feed ingredients could be 

adequate to cover the P requirement of poultry. Nevertheless, as a consequence of the variable 

availability of phytate-bound P, P from mineral sources is often added to poultry diets to meet 

the birds’ requirement. Implementation of a safety margin leads to diets with a much higher tP 

content than that needed by the bird (Angel et al., 2002b). Consequently, in areas of intensive 

animal production manure P concentrations can exceed the requirement of the crops grown on 

the fields (Sharpley, 1999). This can contribute to P accumulation in soil, leaching and surface 

runoffs of P and its entry into surface and ground water, and can cause eutrophication and 

thus increased growth of algae and aquatic weeds (Singh, 2008). Hence, a limited resource 

disappears from the nutrient cycle and can become an environmental pollutant. Policy reacted 

in several regions by implementing legislation that limits the use of litter application to soil 

(based partly on soil and litter P content) (Angel et al., 2002a). In Germany, farmers have to 

keep records and calculate annual P balances, which must not exceed a surplus of 20 kg P2O5 

per ha (Düngeverordnung, 2007). To reduce the use of mineral P in poultry feed and P in 

excreta without compromising the bird’s health a maximal utilization of phytate-bound P is 

necessary. 

Therefore, improved understanding of phytate degradation in the digestive tract of broilers 

and the influence of nutritional factors is needed to find, in a second step, solutions to 

maximize availability of phytate-bound P. 

The following sections of this chapter are intended to explain the theoretical framework 

required to understand the action of different phytases in the digestive tract and the 

breakdown processes of phytate. 

1.2 INOSITOL PHOSPHATES – TERMINOLOGY, STRUCTURE AND NOMENCLATURE 

Terminology in regard to inositol phosphate isomers (InsPs) is not uniform in the literature. 

To avoid confusion in data interpretation, the next subchapters will clarify terms, structures 

and nomenclature. Isomeric assignments will be explained in detail because positional InsPs 

so far were not considered in poultry nutrition studies.  
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Terminology 

By definition phytate is any salt of phytic acid. Phytic acid is strictly designed as myo-inositol 

1,2,3,4,5,6-hexakis (dihydrogen phosphate) (InsP6). In plants and under physiological 

conditions, phytic acid occurs in its anionic or salt form, not in the free acid form. In 

literature, “phytin” is often synonymously used with phytate or phytic acid. Shears and Turner 

(2007) reviewed that this term was originally introduced to describe insoluble Ca/Mg phytate 

deposits in the globoids of plant seeds. As phytate in the seeds of many species is now known 

to consist predominantly of Mg/K salts, the term is largely obsolete (Shears and Turner, 

2007).  

In feed tables, the reported “phytate-P” contents were often determined according to Haug 

and Lantzsch (1983) or Harland and Oberleas (1986) (De Boever et al., 1994; Eeckhout and 

De Paepe. 1994; Viveros et al., 2000; Steiner et al., 2007). These non-specific methods do not 

separate InsP6 and less phosphorylated InsPs (lower InsPs). For samples which contain 

substantial amounts of lower InsPs, such as processed feed or digesta samples, these methods 

are inadequate because of an overestimation of the InsP6 content (Konietzny et al., 2006). 

More recently, high performance liquid chromatography methods were introduced which 

allow the more precise determination of InsP6 and lower InsPs. To compare results on a 

common basis in future, it was recommended to represent the InsP6 contents in feed tables 

based on specific standardized methods for determination of InsP6 and lower InsPs 

(Schlemmer et al., 2009). 

Structure and nomenclature 

InsP6 carries six phosphate groups, each esterified with one hydroxyl group of the 

cyclohexanehexol myo-inositol. The abbreviation “Ins” is the IUPAC-IUB-approved 

(International Union of Pure and Applied Chemistry and the International Union of 

Biochemistry) abbreviation for myo-inositol (IUPAC-IUB Commission on Biochemical 

Nomenclature (CBN), 1973). Myo-inositol is one out of nine possible configurations of 

inositol (other stereoisomers are e.g. scyllo- or chiro-inositol) and the most frequently and 

ubiquitously occurring isomer in animals, plants and microorganisms. The prefix “myo” refers 

to the conformation of the hydroxyl groups on the inositol ring (Bohn et al., 2008). The most 

energetically stable conformation of myo-inositol is the chair conformation. In this 

conformation it has one axial (set as position number 2) and five equatorial hydroxyl groups. 

Thus, there is a plane of symmetry through its 2- and 5-carbons. There are two possible 

counting methods for numbering the inositol-ring, D- and L-numbering. To avoid confusion, 
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IUPAC suggested to use Bernie Agranoff’s turtle (IUPAC-IUB Commission on Biochemical 

Nomenclature (CBN), 1973) (Figure 1).  

 

 

FIGURE 1. Adapted and modified from Irvine and Schell (2001). Myo-inositol as Haworth 

projection (a) and chair structure (b). Agranoff’s turtle (c) shows the D-numbering and  

L-numbering (in brackets) of myo-inositol 

Agranoff (1978) suggested myo-inositol to resemble a turtle. The raised head represents the 

axial 2-hydroxyl group, limbs and tail represent the five equatorial hydroxyl-groups. Using 

the D-numbering system means the turtle is right-flippered, so its number 1 flipper is the front 

right flipper (Figure 1) (Irvine and Schell, 2001). As the head is the 2-hydroxyl group the 

numbering of the remaining carbons proceeds in the anticlockwise direction (from the plan 

view of the turtle). L-numbering means the turtle is left-flippered (left front flipper is number 

1) and numbering continues clockwise (from the plan view of the turtle). Some confusion may 

occur in respect to enantiomeric forms of InsPs. Regarding e.g. D-Ins(2,3,4,5,6)P5 and  

L-Ins(1,2,4,5,6)P5, both are dephosphorylated at the right front flipper and thus equivalent. In 

contrast, D-Ins(2,3,4,5,6)P5 (equivalent to L-Ins(1,2,4,5,6)P5) and D-Ins(1,2,4,5,6)P5 

(equivalent to L-Ins(2,3,4,5,6)P5) are enantiomers, the first being dephosphorylated at the 

right and the latter at the left front flipper. Enantiomers can be converted to one another by 

reflection in the mirror plane, but differ in characteristics and physiological functions. To 

prevent any misconception, IUPAC suggested the term “Ins” to be taken to mean myo-inositol 

with the numbering of the D-configuration unless the prefix L- is explicitly added (IUPAC-

IUB Commission on Biochemical Nomenclature (CBN), 1973). Using high-performance ion 
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chromatography (HPIC), as done in the present work, InsP enantiomers co-elute. Therefore, 

in the present thesis “Ins” refers to the myo-inositol ring with unknown (D-/L-) configuration. 

1.3 PHYTATE 

Occurrence in plant seeds 

Phytate is the major storage form of P and myo-inositol in mature plant seeds, where it 

accumulates during the ripening process. Detailed information on the content, distribution and 

occurrence of InsP6 in different feed ingredients were reviewed by Oberleas and Harland, 

(1981), Reddy et al. (1982), Eeckhout and De Paepe (1994), Ravindran et al. (1994), Angel et 

al. (2002b) and Bohn et al. (2008). In brief, phytate-P represents between 60% (soybean meal) 

and 80% (rice bran) of mature seed tP (Ravindran et al., 1994). Less than 10% of tP in 

dormant seeds is P from InsPs of lower degree of phosphorylation. Thus, phytate is the 

primary organic P source in pigs and poultry feed, because their diets are mainly based on 

cereal grains, oilseed crops and their by-products after oil-extraction. Practical poultry diets 

contain approximately 1% InsP6 by weight which corresponds to 0.28% InsP6-P. This amount 

varies depending on InsP6 concentration of the respective feed ingredients, which can depend 

on the prevailing growing conditions, stage of maturity, genetic factors and processing 

conditions. Eeckhout and De Paepe (1994) reported the following ranges for InsP6-P 

concentrations: maize, 0.16-0.26% (mean: 0.19%); wheat, 0.19-0.27% (mean: 0.22%); barley, 

0.20-0.24% (mean: 0.22%); soybean (extracted), 0.28-0.40%.  

The localization of phytate within the kernel also varies between plant species. Generally, 

InsP6 and the co-precipitated cations are stored in protein storage vacuoles within a 

membrane-bound compartment, the so called globoid, in the seed (Jiang et al., 2001). It was 

shown that low-phytate mutants of different cereals had smaller globoids than the 

corresponding wild type (Liu et al., 2004; Ockenden et al., 2004; Lin et al., 2005). This was 

seen as the size of phytate globoids to depend on the phytate amount in the grain (Bohn et al., 

2008). In maize, approximately 90% of phytate is localized in the germ (embryo and 

scutellum), whereas the major proportion of phytate (>80%) in wheat, rice or barley is present 

in the aleurone layer and outer brans (O'Dell et al., 1972). In most oilseeds and grain legumes, 

phytate is associated with protein and distributed throughout the kernel (Sebastian et al., 

1998). Phytate in soybean seeds is unique, because it appears to have no specific localization 

(Sebastian et al., 1998). In rapeseed, phytate is detected in globoid crystals and remains 

associated with the denaturated protein in processed rapeseed meal (Yiu et al., 1983). 
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Localization, surrounding structures and binding form of phytate may be relevant for 

accessibility, susceptibility and thus degradation in the digestive tract and may contribute to 

its antinutritive character and environmental impact.  

Antinutritive effects 

The antinutritive character of InsP6 is primarily caused by the potential to complex positively 

charged molecules and nutrients, and formation of insoluble salts. It was reviewed that the 

chelating potential of InsP6 is determined by its negatively charged character (Angel et al., 

2002a,b). In brief, the twelve replaceable protons in the InsP6 molecule differ in pK in the 

range of 1.5-11.0 (Angel et al., 2002b). At the physiological pH values in the broilers’ 

digestive tract phytate carries at least 6 negative charges. The number of negative charges, 

and thus the potential to bind cations, increases with increasing pH, when digesta moves 

distally along the broilers’ digestive tract (Angel et al., 2002a,b). At higher pH values InsP6 

strongly binds and complexes with Ca or other cations (Angel et al., 2002a,b), which can 

happen in the small intestine. It is commonly presumed that a pH of 5 or higher is pivotal to 

Ca-phytate precipitation (Selle et al., 2009). Most phytates, especially chelates with divalent 

mineral cations, are insoluble at high pH values and precipitate. Chelates with monovalent 

mineral cations such as Na and K are soluble over the full pH spectrum (Selle et al., 2000). 

Complexes basically cannot be absorbed and hydrolysis of phytate by phytases occurs when 

phytate is in solution Precipitation causes reduced availability of InsP6-P and chelated 

nutrients. Degradation of InsP6 down to less phosphorylated derivatives is conducive for 

solubility (Xu et al., 1992; Sandberg et al., 1999). Solubility of phytate also depends on the 

complex stability and the mineral to InsP6 molar ratio (Angel et al., 2002a,b). Ca2+ shows, 

among different cations, the lowest affinity for chelating with InsP6, followed by Fe3+, Mn2+, 

Co2+, Ni2+, Zn2+, Cu2+ (Vohra et al., 1965). However, Ca has the highest practical impact on 

InsP6 availability as it is present in highest concentration compared to other metal ions in the 

diet (Angel et al., 2002a,b). The wider the ratio of Ca to InsP6 the higher is the risk of 

formation of insoluble complexes (Selle and Ravindran, 2007).  

Phytate may also form complexes with proteins, amino acids and starch in the digestive tract. 

Binary protein-phytate complexes are formed below protein isoelectric points by electrostatic 

attractions between negatively charged InsP6 or phytate and proteins carrying a net positive 

charge (Selle et al., 2012). The isoelectric point of proteins in cereal grains may be 

sufficiently high to permit these complexes to persist in the small intestine (Selle et al., 2012). 

Above their isoelectric point, proteins carrying a net negative charge are connected with InsP6 
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or phytate by divalent cationic bridges to form ternary protein-phytate complexes (Selle et al., 

2012). This may occur in the small intestine of broilers. Starch may interact directly with 

phytate or via binding proteins that are closely associated with starch granules (Selle et al., 

2012). In addition, phytate may inhibit the efficacy of digestive enzymes such as α-amylase, 

trypsin and pepsin by interactions with the enzyme or the substrate (Selle et al., 2000). Hence, 

phytate may also impair energy and protein utilization in broilers. For further details on these 

aspects the reader is referred to the reviews of Selle et al. (2000, 2012).  

Phytate has two faces: it is a mild antinutrient and at the same time a valuable nutrient. In 

order to release its nutritive effect in the gut of poultry, phytate has to be degraded rendering 

P and other bound nutrients available. Phytate degradation depends on accessibility and 

solubility, which may vary between feed ingredients and under different assay conditions in 

vitro. As those can only incompletely simulate the varying physiological conditions prevailing 

in the digestive tract the degradation of feed phytate within different segments of the broilers’ 

digestive tract needs to be investigated. 

1.4 PHYTASE 

To address the environmental relevance of poultry production several strategies have been 

developed to reduce P excretion. As a first step, phase feeding was implemented to adapt the 

non-phytate bound dietary P content accurately to birds’ age-dependent P requirement 

(O’Rourke et al., 1952, Waldroup et al., 1963; Sauveur, 1978). However, phase feeding may 

not minimize phytate output and InsPs may be important for the germination process and 

performance of the plant. Different pretreatment processes have been used to eliminate 

phytate from pig feed, such as soaking, germination, mechanical removal, extraction, cooking, 

fermentation or heat treatment, which was already reviewed elsewhere (Sandberg and Andlid, 

2002). However, most of these approaches depend on intrinsic feed phytase activity and thus 

on plant species, cannot ensure a satisfactory level of efficacy, are related with a removal or 

destruction of other nutrients or are simply impracticable in poultry feeding. A strategy which 

does not imply these aspects is to promote the enzymatic degradation of phytate by phytases 

throughout the passage of the digestive tract. The most effective, practical and common tool 

for this purpose in the poultry industry today is the supplementation of microbially derived 

phytases to the feed. 
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Definition, classification and nomenclature 

Phytases (InsP6 phosphohydrolases) are by definition enzymes which are able to catalyze the 

hydrolytic cleavage of InsP6 to InsP5 and inorganic phosphate (Pi) (Sandberg and Andlid, 

2002). As phytases are not specific for InsP6, phytases can further catalyze the stepwise 

hydrolysis of InsP5 via InsP4, InsP3 and InsP2 to InsP1 or, in some cases, down to myo-inositol. 

Lower InsPs may also be dephosphorylated by other phosphatases, which do not hydrolyse 

InsP6. The generic term “phytase” refers to a diverse group of enzymes which differ in 

catalytic properties and mechanisms, requirements, structures, sizes and origins (Mullaney 

and Ullah, 2003). Hence, nature evolved different strategies to cleave phosphate groups from 

InsP6 by diverse organisms and under different conditions (Mullaney and Ullah, 2007). Four 

classes of phosphatases able to hydrolyse InsP6 have been reported to date, grouped on the 

basis of catalytic mechanisms: Histidine acid phosphatase, β-propeller phytase, cysteine 

phosphatase and purple acid phosphatase (Mullaney and Ullah, 2007). Within these subgroups 

enzymes show common characteristics but there is further diversity and characteristics of one 

phytase cannot be assumed for another. In poultry nutrition, the majority of supplemented 

phytases refer to histidine acid phosphatases of bacterial or fungal origin, since these are 

supposed to be highly effective in the anterior segments of the digestive tract. At present, ten 

phytase products are authorized for the use as feed additives for broilers in the EU (Table 1). 
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TABLE 1. Microbial phytases authorised for the use as broiler feed additives in the EU 

according to the European Food Safety Authority (EFSA)1 

Identification 
number 

Name of the 
holder of 

authorisation 

Product 

(Trade name) 

Production organism Minimum 
content 

(U/kg feed)2 

4a1 Adisseo 

3-phytase 

EC 3.1.3.8 

(RovabioTM Phy) 

Penicillium 

funiculosum 

(CBS 111433) 
350 

4a5 AB Enzymes 

6-phytase 

EC 3.1.3.26 

(Quantum®) 

Pichia pastoris 

(DSM 15927) 
500 

4a6 
DSM Nutritional 

Products 

6-phytase 

EC 3.1.3.26 

(Ronozyme® NP) 

Aspergillus oryzae 

(DSM 17594) 
1,500 

4a12 Roal Oy 

6-phytase 

EC 3.1.3.26 

(Finase® EC) 

Trichoderma reesei 

(CBS 122001) 
250 

4a16 Huvepharma AD 

6-phytase 

EC 3.1.3.26 

(Optiphos®) 

Pichia pastoris 

(DSM 23036) 
125 

4a18 
DSM Nutritional 

Products 

6-phytase 

EC 3.1.3.26 

(Ronozyme® 
Hiphos) 

Aspergillus oryzae 

(DSM 22594) 
500 

4a19 Roal Oy 

6-phytase 

EC 3.1.3.26 

(Quantum® Blue) 

Trichoderma reesei 

(CBS 126897) 
250 

4a1600 BASF SE 

3-phytase 

EC 3.1.3.8 

(Natuphos®) 

Aspergillus niger 

(CBS 101.672) 275 

4a1640 
Danisco Animal 

Nutrition 

6-phytase 

EC 3.1.3.26 

(Phyzyme® XP) 

Schizosaccharomyces 

pombe (ATCC 5233) 
250 

4a1641(i) 
DSM Nutritional 

Products 

6-phytase 

EC 3.1.3.26 

(Ronozyme® P) 

Aspergillus oryzae 

(DSM 14223) 
250 

1Adapted and modified from the European Union Register of Feed Additives pursuant to Regulation (EC) No 

1831/2003, which is published on the European Commission’s website. Additional information was from 

publications on the EFSA’s website (EFSA, 2005, 2007, 2008a,b, 2009a,b, 2010, 2011, 2012, 2013) 
2Activities of different products are in part determined under different conditions 
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Based on stereospecificity of InsP6 hydrolysis, three types of phytases have been recognized 

by IUPAC-IUB: 3-phytases (1-phytases based on L-numbering) (E.C.3.1.3.8), 4-phytases  

(6-phytases based on L-numbering) (E.C.3.1.3.26) and 5-phytases (E.C.3.1.3.72) (IUPAC-

IUB Commission on Biochemical Nomenclature (CBN), 1973). The occurrence of 1-phytases 

based on D-numbering or 2-phytases has not been described to date, but cannot be ruled out 

considering the high diversity of phytases. InsPs which are dephosphorylated at the C-2 

position of the myo-inositol ring are present within animal cells (Irvine and Schell, 2001), 

which suggests existence of a 2-phytase (Greiner, 2010). This classification refers to the 

major position of the initial dephosphorylation of InsP6 in vitro. 3-phytases initially 

dephosphorylate InsP6 on position D-3 (L-1), whereas 4-/6- and 5-phytases prefer the position 

D-4 (L-6) and D-5 (L-5) respectively (for nomenclature see Figure 1) (IUPAC-IUB 

Commission on Biochemical Nomenclature (CBN), 1973). 5-phytase activity was reported for 

S. ruminantium, B. pseudocatenulatum and the alkaline phosphatase of Lily pollen (Barrientos 

et al., 1994; Puhl et al., 2008; Haros et al., 2009). As reviewed by Konietzny and Greiner 

(2002) phytases from microorganisms are considered to be 3-phytases, whereas seeds of 

higher plants are considered to contain 4-/6-phytases. As the major InsP5 generated by 

phytases from S. cerevisiae, Pseudomonas, K. terrigena and A. niger has been identified as  

D-Ins(1,2,4,5,6)P5 these phytases are 3-phytases and fit into this general consideration 

(Konietzny and Greiner, 2002). The major InsP5 generated by phytases from rye, barley, 

Triticum spelta, oat, wheat bran, rice and mung bean was identified as D-Ins(1,2,3,5,6)P5; 

Thus, they represent 4-/6-phytases and also fit into the general consideration (Konietzny and 

Greiner, 2002). However, this rule does not apply generally, as 3-phytase activity was also 

found for soybean (Phillippy and Bland, 1988) and the major InsP5 formed by phytases from 

E. coli, P. lycii and B. pseudocatenulatum was identified as D-Ins(1,2,3,4,5)P5 (Van der Kaay 

and Van Haastert, 1995; Greiner et al., 2000a; Haros et al., 2009). Moreover, especially in 

plant seeds multiple forms of phytases have been found which may show different 

stereospecific degradation pathways of InsP6, as reported for phytases from lupin or wheat 

(Lim and Tate, 1973; Konietzny and Greiner, 2002). Thus, major and minor degradation 

pathways of InsP6 were reported for various types of phytases (Figure 2-4). The order of 

activity of different isoenzymes may vary depending on the used in vitro conditions, and on 

the different conditions in the digestive tract. Hence, a generalization relative to the initial 

attack to the susceptible phosphor-ester bounds is hasty (Greiner et al., 2000a) and has to be 

reconsidered.  
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Clarification still is needed regarding nomenclature of 4-/6-phytases. Confusion occurs in 

literature as bacterial phytases, such as E. coli phytase, which preferably generate  

D-Ins(1,2,3,4,5)P5 (Greiner et al., 2000a), are classified as 6-phytases. But according to 

IUPAC’s protocol, phytases that generate D-Ins(1,2,3,5,6)P5, such as the majority of plant 

phytases, are 4-/6-phytases. IUPAC-IUB suggested to use the numbering of the  

D-configuration for myo-inositol (IUPAC-IUB Commission on Biochemical Nomenclature 

(CBN), 1973). Therefore, to avoid misconceptions the aforementioned plant 4-/6-phytases 

should be termed 4-phytases and the term 6-phytases should be avoided for this type of 

phytase. Enzymes which predominantly generate D-Ins(1,2,3,4,5)P5, such as the investigated 

phytase from E. coli, should instead be called 6-phytases. 

 

(a) InsP6      Ins(1,2,3,4,5)P5      Ins(1,2,5,6)P4      Ins(1,2,6)P3      Ins(1,2)P5                          myo-inositol                                        

  

(b) InsP6      Ins(1,2,3,4,5)P5      Ins(1,2,3,6)P4      Ins(1,2,3)P3      Ins(1,2)P5                             myo-inositol

FIGURE 2. Major (a) and minor (b) pathway of InsP6 degradation by phytases from wheat 

bran of T. aestivum, without separation of enantiomers (Nakano et al., 2000)1 

 

InsP6         D-Ins(1,2,3,4,5)P5         D-Ins(2,3,4,5)P5         D-Ins(2,4,5)P3         D-Ins(2,5)P2         Ins(2)P 

FIGURE 3. Major pathway of InsP6 degradation by a phytase from E. coli (Greiner et al., 

2000a)2 

 

InsP6         D-Ins(1,2,4,5,6)P5         D-Ins(1,2,5,6)P5         D-Ins(1,2,6)P3         D-Ins(1,2)P2         Ins(2)P 

FIGURE 4. Major pathway of InsP6 degradation by a phytase from A. niger (Greiner et al., 

2009) 

 

                                                 
1 Lim and Tate (1973) showed that a wheat phytase predominantly produces the D-Ins(1,2,3,5,6)P5,  
D-(1,2,3,6)P4 and D-(1,2,3)P3 isomers. Tomlinson and Ballou (1962) suspected the L-Ins(1,2,3,5,6)P5 and  
L-(1,2,5,6)P4 isomers to be formed by wheat phytase. Later on, Ins(1,2,4,5,6)P5 was identified as a secondary 
InsP5 isomer formed by purified Sigma wheat phytase (Bohn et al., 2007). 
2 Ins(1,2,4,5,6)P5 and Ins(1,2,3,4)P4 were shown as minor degradation products of the investigated E. coli 
phytase (Greiner et al., 1993). 

Ins(1)P 

Ins(2)P 

Ins(1)P 

Ins(2)P 
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Intrinsic plant phytases 

Phytases are known to be widely present in plants, animals and microorganisms. In plants, 

phytase has been detected in roots, pollen and especially in seeds. A high phytase activity was 

reported for rye (4132-6127 U/kg), triticale (1475-2039 U/kg), wheat (915-1581 U/kg), barley 

(408-882 U/kg) and wheat by-products (up to 5345 U/kg), whereas no or only little phytase 

activity was detected in corn (0-46 U/kg), oats (0-108 U/kg), sorghum (0-76 U/kg) and 

oilseeds (e.g. extracted soybean 0-120 U/kg) (Eeckhout and De Paepe, 1994). The phytase in 

dormant, dry seeds is inactive, but activity rapidly increases during imbibition and 

germination. In ungerminated grains, intrinsic phytase is predominantly localized in the 

aleurone layer (Peers, 1953; Fretzdorff and Weipert, 1986), which explains the often reported 

high phytase activity in several wheat milling by-products such as wheat bran or wheat 

middlings. High variation in phytase activity within plant species is related to differences in 

genetics, age, harvest year, growing, drying, processing and storage conditions (Barrier-

Guillot et al., 1996; Cossa et al., 2000; Steiner et al., 2007; Singh, 2008, Blaabjerg et al. 

2010a).  

Details on molecular and catalytic properties of different plant phytases were reviewed 

elsewhere (Konietzny and Greiner, 2002). In brief, the pH optimum of most plant phytases 

ranges between 4.3 and 7.5 with dramatically decreasing stability at pH values below 4 and 

above 7.5 (Konietzny and Greiner, 2002). As plant phytase is susceptible to proteolytic 

digestion, it may be inactivated during the passage through the acid proventriculus and 

gizzard. Thus, activity within the broilers’ digestive tract probably is limited to the short 

retention in the crop. Practical relevance of plant phytase in pelletized diets may be restricted 

by heat lability. In purified form, plant phytases are partially or completely irreversible 

denaturated at temperatures occurring during pelleting or processing (Konietzny and Greiner, 

2002). Although heat stability for intrinsic phytase in wholemeal wheat and seeds was 

reported to be higher than for extracted wheat phytase (Peers, 1953; Ma and Shan, 2002), 

different studies reported an inactivation of wheat phytase during pelletizing with application 

of steam (Jonglbloed and Kemme, 1990; Larsen et al., 1999; Blaabjerg et al., 2010a; Carlson 

and Poulsen, 2003). However, the use of plant phytase is not generally limited in practice 

since many broiler producers use unpelletized diets or whole grains.  

Endogenous and microbiota-associated phytases 

Besides dietary phytases, endogenous and microbiota-associated phytases may be active in 

broilers. Endogenous phytase was reported intracellularly, in the intestinal brush border 
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membrane and in the erythrocytes of chicken (Martin and Luque, 1985; Maenz and Classen, 

1998; Cho et al., 2006). It is known that broilers are able to hydrolyse a varying proportion of 

phytate in their digestive tract even when diets without detectable phytase activity are fed. 

The detected endogenous mucosal phytase may contribute to this hydrolysis in addition to 

microbiota-associated phytases. However, endogenous phytase (and other phosphatase) 

activity associated with the mucosa is often dismissed as having little importance in  

InsP6 degradation in the digestive tract of poultry (Selle and Ravindran, 2007). In regard to 

microorganisms, especially rumen-, soil- and mycorrhizal microorganisms have been studied 

regarding their phytase activity. Studies which investigated phytase activity from 

microorganisms of poultry’s digestive tract are rare. However, hindgut microbiota has been 

suggested as a potentially important player in phytate hydrolysis in poultry (Kerr et al., 2000). 

The efficacy of endogenous mucosal and microbiota-associated phytases in the digestive tract 

of broilers will be discussed in more detail in Chapter 3. 

Commercial microbial phytases 

In terms of microorganisms, phytase is known to be naturally secreted by a range of fungi, 

bacteria and yeasts. Most microorganisms only produce intracellular phytases (Konietzny and 

Greiner, 2002). Extracellular phytase is predominantly produced by species of Filamentous 

fungi (Shieh and Ware, 1968; Gargova et al., 1997). To date, the only bacteria showing 

extracellular phytase activity are those of the genera Bacillus and Enterobacter; phytases 

derived from E. coli have been reported to be periplasmatic enzymes (Konietzny and Greiner, 

2002). Hence, the majority of commercially available feed phytases are derived from fungi or, 

more recently, bacteria, such as A. niger or E. coli (Selle et al., 2010). Classically, microbial 

enzymes were produced by wild type or classical modified hosts (Paloheimo et al., 2010). 

Wild type organisms usually produce too low levels of phytase which are not suitable for 

industrial application (Greiner, 2010). Classical modified strains are derived from natural 

isolates with desired characteristics and have been subjected to several rounds of mutagenesis 

and screening for high enzyme productivity over decades (Paloheimo et al., 2010). At present, 

the fermentative production processes mainly depend on genetically modified organisms 

(Selle et al., 2010). With gene technology genes expressing phytases with desired 

characteristics for the application are inserted into production organisms. Maximal expression 

level of the gene is achieved by insertion of multiple gene copies and/or by placing the 

desired gene under the control of a strong promoter (Paloheimo et al., 2010). After 

fermentation, purification steps ensure that no genetically modified recombinant DNA is 
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detected in the final product (Adeola and Cowieson, 2011). Ronozyme® P e.g. is a preparation 

of a 6-phytase produced by Aspergillus oryzae (DSM 14223) carrying a gene coding for 

phytase from Peniophora lycii (EFSA, 2010).  

Properties of microbial phytase primarily determine its efficacy throughout the passage of the 

digestive tract and thus suitability as feed supplement. Generally, the majority of microbial 

phytases have a higher temperature optimum (50-77°C) than most plant phytases (35-58°C) 

and are more heat stable (Konietzny and Greiner, 2002). Specific types, such as an  

A. fumigatus derived phytase, are able to refold properly after denaturation by heat treatment 

(Wyss et al., 1998). Furthermore, in vitro, most microbial phytases are stable at pH above 8.0 

or below 3.0 (pH optimum ranges between 2.2 and 8.0) and show higher stability in the 

presence of pepsin and pancreatin compared to their plant counterpart (Konietzny and 

Greiner, 2002). Thus, microbial phytases not only withstand better inactivation during the 

pelleting process, but also may retain higher activity in the proventriculus and gizzard and 

following segments. The crop, proventriculus and gizzard were reported as the favourable site 

of action of microbial phytases, due to their pH environment (Yu et al., 2004). Low activity 

was found in the small intestine, probably due to less favourable pH and proteolysis (Yu et al., 

2004). However, properties of microbial phytases of different origin vary. Phytase from  

A. niger has two pH optima (2.2; 5.0-5.5), whereas phytase from E. coli or B. subtilis has a 

single pH optimum at 4.5 and 6.0-7.5, respectively (Konietzny and Greiner, 2002). The 

Aspergillus enzyme is more resistant to trypsin but less resistant to pepsin and pancreatin than 

phytase from E. coli (Konietzny and Greiner, 2002). When diets containing microbial 

phytases were pelletized at 70°C, an E. coli derived phytase retained higher activity than 

different Aspergillus phytases (Simon and Igbasan, 2002). E. coli derived phytase had a 

higher Km, but a higher kcat value and kinetic efficiency (kcat/Km) compared to Aspergillus 

derived phytase (Konietzny and Greiner, 2002).  

Differences in properties between microbial phytases may result in differences in efficacy 

under the varying conditions of the digestive tract. In this context, residual phytase activity 

from E. coli was 97%, 93%, 97%, 87% and 80% after incubation in digesta supernatants from 

the crop, stomach, duodenum, jejunum and ileum (Simon and Igbasan, 2002). Residual 

phytase activity from Aspergillus was in a range between 93-99%, 57-68%, 90-96%, 43-90% 

and 55-81%, respectively, depending on the production organisms and originating strain of 

the phytase gene (Simon and Igbasan, 2002). Activities and efficacy may further differ when 

enzymes pass the different segments consecutively. 
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Determinants of phytase efficacy 

Apart from the conditions in the digestive tract such as pH, temperature, activity of 

proteolytic enzymes and source and characteristics of the specific phytases various other 

factors have been identified to influence efficacy and activity of phytases: genetics, age of 

birds, substrate variability or other dietary factors (Selle and Ravindran, 2007; Singh, 2008). 

Different factors will be discussed later in more detail. In the following, the dietary factors 

that received the major attention are briefly mentioned.  

The most consistent, and probably the strongest, dietary factor is the aforementioned Ca 

concentration and Ca:InsP6 ratio (Lei and Porres, 2007). This primarily influences phytate 

solubility. Likewise, the level of dietary Pi may reduce phytate degradation by phosphatases 

due to end-product inhibition (Shieh et al., 1969). These two dietary factors will be discussed 

in more detail in Chapter 3. Use of organic acids, such as citric, formic or lactic acid, may 

increase phytate degradation in the digestive tract. The mechanism behind is still unclear 

(Liem et al., 2008). In part, the effects of organic acids on phytate P utilization might result 

from a change of pH in the gastrointestinal tract to a value more favourable for phytase (Liem 

et al., 2008). Boling et al. (2000) suggested that citric acid chelated Ca which reduced the 

formation of insoluble Ca-phytate complexes, and thus, susceptibility of phytate for phytases. 

Further, dietary vitamin D or its metabolites may improve phytate degradation in the digestive 

tract. This was attributed to increased synthesis or activity of endogenous mucosal phytase 

(Davies et al., 1970). Vitamin D also stimulates Ca and P absorption. Enhanced Ca absorption 

may diminish the formation of insoluble Ca-phytates, and thus, indirectly increase phytate 

degradation (Ravindran et al., 1995). In addition, Mitchell and Edwards (1996) suggested that 

vitamin D increases the uptake of the liberated Pi once phytate is degraded by phytase.  

The combination of supplemented carbohydrases or proteases with phytase may show an 

additive effect on InsP6 hydrolysis (Lei and Porres, 2010; Woyengo and Nyachoti, 2011). The 

main function of supplemented carbohydrases is to hydrolyse complex non-starch 

polysaccharides (NSP) of plant feedstuffs (Castillo and Gatlin, 2015). In plant seeds, phytate 

is located intracellularly (Prattley and Stanley, 1982). Insoluble NSPs are present in the cell 

wall (Simon, 2000). Consequently, when these insoluble NSPs are hydrolysed, phytate and 

other minerals may be exposed to phytase and other digestive enzymes and liberated for 

absorption. Furthermore, soluble NSPs are known to produce high viscosity and it is assumed 

that elevated digesta viscosity cause impaired nutrient availability (Simon, 2000). Therefore, 

their partial hydrolysis may reduce digesta viscosity and increase absorption of nutrients 
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liberated by phytase. More than 80% of the global carbohydrase market is accounted for by 

xylanase and glucanase (Adeola and Cowieson, 2011). The substrates, arabinoxylans and  

β-glucans are particularly located in the cell walls of the starchy endosperm and aleurone 

layer of cereal grains (Paloheimo et al., 2010). Phytate was previously described to be in part 

present in these fractions. Supplemented xylanase may be most efficient in diets based on 

wheat, rye, triticale or maize, because the major NSPs in these feedstuffs are arabinoxylans 

(Woyengo and Nyachoti, 2011), whereas β-glucans dominate in barley and oats (Paloheimo et 

al., 2010). The most effective combination is achieved when different carbohydrase product 

are used together because e.g. some xylanases target soluble and other insoluble 

arabinoxylans (Castillo and Gatlin, 2015). In addition, supplementation of phytase plus a 

preparation containing carbohydrases that target all the major NSPs in the diet (in cereal 

grains and oilseed meals), may result in improved nutrient utilization than supplementation of 

phytase plus carbohydrases that only target the major NSP in the dominating cereal (Woyengo 

and Nyachoti, 2011). However, the response to supplementation of a combination of these 

enzymes is variable and depends on several factors (Woyengo and Nyachoti, 2011). Overall, 

the influence of different factors on InsP degradation in the digestive tract of broilers, the 

mechanisms behind and their interactions are not well understood and quantified. 

Beyond hydrolysis of InsP6, the supply of available P depends on further degradation of lower 

InsPs. Phytases of different origin vary in InsP6 degradation pathways and other in vitro 

properties. Those properties may vary under the conditions along the digestive tract. As in 

vivo properties affect the enzyme efficacy, InsP6 hydrolysis and appearance of lower InsPs in 

the presence of different types of dietary phytases should be investigated in different segments 

of the digestive tract. Better knowledge about dietary key factors, affecting InsP degradation 

along the digestive tract, and their interactions, is needed. These information may provide a 

helpful tool to maximize degradation of feed phytate and efficacy of dietary phytases in the 

digestive tract of broilers. 
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2 OVERVIEW AND RESEARCH QUESTIONS OF THE INCLUDED MANUSCRIPTS 

Against the background outlined in Chapter 1 the overall aim of this doctoral project was to 

contribute to filling the knowledge gap in respect to InsP degradation in the digestive tract of 

broilers. In line with this, a compilation of five manuscripts is included investigating  

InsP6 hydrolysis and appearance of lower InsPs in different segments of the digestive tract of 

broilers as influenced by different dietary factors. Chapter 4 contains the five manuscripts 

which objectives can be briefly characterized as follows. 

 

MANUSCRIPT 1: Hydrolysis of phytate and formation of inositol phosphate isomers 

without or with supplemented phytases in different segments of the digestive tract of 

broilers 

It is still unknown which positional InsPs are formed by different phytases and other 

phosphatases in the digestive tract of broilers. Therefore, the objective of this first study was 

to characterize and understand better InsP6 hydrolysis and formation of lower InsPs in 

different segments of the digestive tract. Phytases of different origin show different properties 

and InsP degradation pattern in vitro. Under the complex and variable physiological 

conditions those properties and the appearing InsP pattern may be different. Thus, the second 

objective was to investigate the InsP6 degradation pattern of different phytase additives and 

their effectiveness in releasing phosphate in different segments of the digestive tract of 

broilers and to compare the findings with known in vitro properties. 

The manuscript was published in the Journal of Nutritional Science. 

 

MANUSCRIPT 2: Effects of the composition of the basal diet on the evaluation of mineral 

phosphorus sources and interactions with phytate hydrolysis in broilers 

Determined P availability from a mineral P source may depend on the type of basal diet used. 

Results obtained by using semi-synthetic diets may be different when compared with those 

from phytate-containing diets. Different results may also be found by using maize- or wheat-

based diets which may show different InsP6 hydrolysis due to different intrinsic phytase 

activity. Mineral P, usually present in broiler diets, may interact with phytases and other 

phosphatases present in the digestive tract by product inhibition. Therefore, supplemented 

mineral P could influence InsP hydrolysis from the basal diet in P supplementation studies. 

One major objective of this study was to determine the availability of P from mineral 
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phosphates by using semi-synthetic and practical-type basal diets. The second objective was 

to investigate whether supplemental mineral P influences InsP hydrolysis with consequences 

for calculation of P availability of a mineral supplement.  

The manuscript was published in Poultry Science. 

 

MANUSCRIPT 3: Interactions between supplemented mineral phosphorus and phytase on 

phytate hydrolysis and inositol phosphates in the small intestine of broilers 

The previous studies (Manuscript 1 and 2) described the separate influence of phytase or 

mineral P supplements on InsP6 hydrolysis and the InsP pattern in the gut. But, mineral P in 

the diet may also affect the efficacy of supplemented phytase. High doses of phytase beyond 

the current industry standard levels may let a lower part of dietary InsP appear undegraded in 

the ileum of broilers than standard levels of phytase. The decrease in phytase efficacy by 

mineral P was supposed to be lower for such high compared to the standard levels of phytase. 

Therefore, the aim of the third study was to gain a better understanding of these interactions. 

The objectives were to investigate the effects of supplemented phytase (a standard and a very 

high level), a mineral P supplement, and their interactions on InsP6 hydrolysis and the 

appearance of lower InsPs in the duodenum/jejunum and lower ileum of broilers. 

The manuscript was published in Poultry Science. 

 

MANUSCRIPT 4: Effect of enzyme supplementation in diets containing microwave treated 

or untreated wheat on inositol phosphates in the small intestine of broilers 

Results on the relevance of intrinsic plant phytase for P digestibility in poultry are 

inconsistent. This may in part be related to the use of different grain species or varieties to 

achieve differences in intrinsic phytase activities. This confounds intrinsic phytase activity 

with other factors such nutrient contents or structures which may also affect InsP degradation. 

Therefore, in this study, differences in intrinsic phytase activities were achieved by 

microwave treatment of wheat. Microwave treatment may also cause structural changes, 

affecting InsP6 accessibility and thereby the response to supplemented phytase and xylanase 

in InsP degradation. Therefore, the objectives of this study were to evaluate the separate and 

interactive effects of microwave treatment in wheat and phytase supplemented alone or 

together with xylanase on InsP6 hydrolysis and InsPs in the small intestine of broilers. 

The manuscript was published in Animal Feed Science and Technology. 
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MANUSCRIPT 5 (draft): Effect of enzyme or mineral P supplementation in diets differing 

in intrinsic phytase activity on inositol phosphates in the crop of broilers 

Manuscript 5 describes the influence of different dietary factors on InsP degradation in the 

crop of broilers. In theory, the crop is the major site of action of most dietary phytases. Better 

knowledge about InsP degradation by dietary phytases and different influencing factors in this 

segment may deliver information to increase their efficacy in broilers. It is still unknown 

whether microbial and intrinsic plant phytase show synergistic or additive effects on  

InsP degradation in the crop. Xylanase may further increase the efficacy of supplemented 

phytase in wheat-based diets. In contrast, mineral P supplements may reduce the efficacy of 

microbial phytase in the crop. In experiment 1 of this manuscript, the effects of supplemented 

phytase  

(a standard and a very high level), a mineral P supplement, and their interactions on  

InsP6 hydrolysis and the appearance of InsPs in the crop were studied. Experiment 2 was 

conducted to study the separate and interactive effects of microwave treatment in wheat and 

phytase supplemented alone or together with xylanase on InsP6 hydrolysis and lower InsPs in 

the crop. 

This is a draft version of a manuscript still to be submitted. 

 

Results shown in Manuscript 3 and Manuscript 5 (experiment 2) and in Manuscript 4 and 

Manuscript 5 (experiment 1) are based on the same animal study, respectively. 
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3 GENERAL DISCUSSION 

In the digestive tract of avian species, dietary, endogenous mucosal or microbiota-associated 

phytases and other phosphatases can contribute to InsP degradation. The high efficacy of 

supplemental microbial phytases in broilers has been frequently reported in literature. 

However, apart from the environmental perspective, high efficacy of intrinsic plant, 

endogenous mucosal and microbiota-associated phytases and phosphatases is of economical 

interest. High InsP hydrolysis by those enzymes may reduce the need to supplement 

expensive mineral P and microbially derived enzymes. But literature on the activity and 

efficacy of those different types of phytases in consecutive segments of the digestive tract of 

broilers is rather scarce. Based on the findings from the studies of the present thesis the 

contribution and efficacy of endogenous mucosal and microbiota-associated enzymes to 

phytate hydrolysis in different segments of the digestive tract of broilers is debated in this 

general discussion. Factors which influence phytate hydrolysis will also be discussed. Since 

the included manuscripts described the effect of dietary factors on lower InsPs, the relevance 

of lower InsPs in the digestive tract is also considered in this general discussion. The last part 

will deal with the consequences of the reported findings for P evaluation in poultry. 

3.1 METHODICAL CONSIDERATIONS 

Some methodological aspects can be of relevance and constraints for the results of the present 

work and will be discussed herein.  

Ad libitum-fed birds may adapt a habit of letting feed bypass the crop (Svihus, 2014). They 

eat small amounts approximately every half an hour and discourage the use of the crop as a 

storage organ (Svihus et al., 2013; Svihus, 2014). It is not known which proportion of total 

digesta from oesophagus entered and bypassed the crop in the present work. Therefore, it 

cannot be ruled out that the measured InsP6 hydrolysis in the crop overestimated the 

contribution of the crop to InsP6 hydrolysis measured in the more posterior segments. The 

only situation the crop holds substantial amount are after periods of fastening, when birds are 

hungry and eat more (Savory, 1985) because the storage capacity of the gizzard is usually 

limited to a maximum of 5 to 10 g of feed (Svihus, 2014). In quails fasted for two hours, then 

allowed access to feed for 20 min and then killed in intervals during the subsequent two 

hours, maximum amount of undiluted and diluted food in crop and gizzard are generally 

greater than in ad libitum-fed quails (Savory, 1985). Correspondingly, Svihus (2014) reported 

a transient storage of large quantities of feed in the crop, when birds are trained to intermittent 
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feeding. In the present work, birds had access to feed for one hour after a fasten period of one 

hour. Perhaps, they consumed large amounts of feed after the fasten period and stored 

substantial amounts in the crop. A retention time in the proventriculus/gizzard between 20 

min and 60 min (Dänicke et al., 1999) indicates that the majority of digesta in the small 

intestine originated from the feed intake before fastening in the present work. This suggests 

that the measured InsP6 hydrolysis in the crop may not comply with the InsP6 hydrolysis 

which really occurred in the crop before the digesta passed the more posterior segments. 

However, it can demonstrate the potential for InsP6 hydrolysis in the crop. The crop fill and 

retention time effects may also explain that InsP6 hydrolysis calculated in the crop 

(Manuscript 5) was higher compared to the duodenum/jejunum (Manuscript 3) of birds fed 

diets with monocalcium phosphate (MCP) and 500 FTU/kg phytase. Moreover, the retention 

time of digesta in the crop in the present work did not exceed one hour when birds were 

killed. It cannot be ruled out that InsP6 hydrolysis in the crop is higher with longer retention 

time. In regard to the samples from the crop and proventriculus/gizzard it is also possible that 

further hydrolysis occurred between sampling of digesta of body temperature and cooling 

down to temperatures at which phytases are inactive in the freezer. In the present work, crop 

and gizzard samples were put into the freezer as fast as possible subsequent to sampling. 

Shock-freezing of the samples in liquid nitrogen could prevent further hydrolysis after 

sampling. 

InsP6 hydrolysis was not calculated for the proventriculus/gizzard because this segment 

clearly contained particles of different sizes. Particles of different sizes are presumed to have 

variable retention time in the gizzard (Svihus et al., 2002). This indicates that they were not 

accurately represented by the marker. Moreover, soluble and insoluble fractions may differ in 

retention time as shown by a faster passage rate of a soluble compared to an insoluble marker 

through the gizzard (Vergara et al., 1989). Svihus et al. (2002) further suggested that high-

density particles could fall to the bottom, because opening of the gizzard is on the dorsal side. 

This could impair the passage rate of high dense particles. The presence of the marker and 

InsP6 in different fractions linked with different flow rates precludes an interpretation in 

regard to changes in InsP6 hydrolysis between the crop and proventriculus/gizzard or the 

proventriculus/gizzard and posterior segments. Results of Sooncharenying and Edwards 

(1993) already indicated a dilution of phytate and disappearance of the marker chromic oxide 

in the crop and gizzard of chicken. Kerr et al. (2000) also supposed differential passage rates 

for InsP6 and acid insoluble ash in the gizzard. In contrast, particles that enter the duodenum 

are relatively homogenous, the majority being smaller than 0.1 mm and 90% being smaller 
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than 0.3 mm (Hetland et al., 2002). This homogeneity points to a more homogeneous flow of 

the small feed particles and the marker TiO2, which has a relatively low specific gravidity, in 

the small intestine. Selective retention is unlikely to occur in the crop due to a lower 

peristalsis and moisture content. However, in Manuscript 5 the calculated negative  

InsP6 hydrolysis in the crop of birds fed the basal diet without MCP indicates a slightly 

deviating flow of marker and InsP6. 

In addition, it has to be taken into consideration that concentrations of InsPs, P and Ti might 

be influenced by retrograde movement of digesta and microorganisms, as has been described 

for all segments of the digestive tract in broilers (Sacranie et al., 2012b).  

It became apparent that birds consumed litter material in experiments described in Manuscript 

1, 2, 4 and 5 (experiment 1). This probably includes the intake of associated excreta 

containing higher concentrations of Ti and different concentrations of InsP6 and P compared 

to the diet. It cannot be ruled out that calculated InsP6 hydrolysis overestimated  

InsP6 hydrolysis occurring in the digestive tract. Calculations from analysed acid detergent 

fibre concentrations of feed, crop and gizzard contents, litter material (wood shavings and 

excreta) and wood shavings (Annex 1) indicated an average litter concentration of 6% and 

75% and excreta concentration 3% and 32% in the crop and gizzard, respectively. In the 

gizzard, wood shavings seem to be retained and accumulate. Whether bound excreta is 

retained to the same extent, is uncertain, but it can be speculated that high amounts of litter 

material in the gizzard also influence calculated InsP6 hydrolysis in this segment. Whether the 

low intake estimated in the crop remarkably influenced calculated InsP6 hydrolysis in the crop 

and intestinal segments, where particle and marker flow seems to be more similar, needs to be 

clarified. However, in the present work, the birds may have consumed high amounts of litter 

material in the fastening period. It cannot be ruled out that wood shavings were retained in the 

gizzard and faster flowing excreta influenced the Ti and nutrient concentrations in the small 

intestine at sampling time. 

The detected concentration of any InsP isomer represents a net value. It contains the amount 

originating from feed and not degraded until the investigated segment, the amount originating 

from activity of phosphatases and perhaps the amount which was absorbed or secreted or 

both. Therefore, a calculation of hydrolysis compared to the feed based on the marker as done 

for InsP6 is not possible for specific lower InsPs.  

During the passage of the digestive tract intense secretion and absorption processes occur. 

Calculated dry matter (DM) digestibility reflected intense secretion processes in the 
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proventriculus/gizzard and duodenum due to stomach, bile, and pancreatic secretions and 

continuous nutrient absorption in the jejunum and ileum (Dänicke et al., 1999). These 

processes are also reflected by de- and increased InsP concentrations per g of DM between the 

segments. This stands against an interpretation of changes of InsP concentrations between the 

segments. However, calculations of InsP concentrations in relation to Ti concentrations (data 

not shown) proved that differences in InsP concentrations between treatment groups were not 

affected by DM digestion. This allows an interpretation in regard to differences in  

InsP concentrations between the treatment groups. 

3.2 INSP6 HYDROLYSIS IN DIFFERENT SEGMENTS OF THE DIGESTIVE TRACT OF BROILERS 

Digestion includes mechanical and chemical breakdown of ingested feed constituents. Large 

feed particles are physically and enzymatically broken down to smaller ones and molecules 

which can be absorbed. Enzymes of endogenous, feed and microbial origin are involved in 

these processes. In regard to phytate very different conditions in different compartments of 

the digestive tract of broilers determine the digestion process. To better understand these 

processes the following subchapters will discuss the extent of InsP6 hydrolysis and enzymes 

involved in different segments of the digestive tract. 

3.2.1 CROP 

The crop, a unique organ of avian species, primary acts as a storage organ. It is assumed that 

the crop does not have any direct nutritional role, as it does not secrete enzymes and 

considerable absorption does not occur (Svihus, 2014). However, some degradation of feed 

constituents by salivary or microbial enzymes in this segment was reported (Denbow, 2000). 

The microbiota in the crop may also play a role in phytate degradation in broilers as indicated 

by one study of Kerr et al. (2000). These authors found InsP6 hydrolysis in the crop of broilers 

fed a maize-soybean meal-based diet irrespective of phytase supplemented or not. However, 

they did not report the level of InsP6 hydrolysis. In the present work a negligible  

InsP6 hydrolysis was measured in the crop of broilers fed maize-based diets without 

detectable phytase activity (up to 9%; Manuscript 1 and 5). This is in accordance with the 

marginal InsP6 hydrolysis of a maize-soybean meal-diet without supplemental phytase found 

during incubation in water at 38°C (Ton Nu et al., 2014). These results indicate that phytate 

hydrolysis by feed- and microbiota-associated phytases in the crop plays a minor role in the 

overall phytate hydrolysis in broilers when the diet contains no detectable phytase activity. As 
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discussed later in more detail solubility and accessibility of phytate in the maize and soybean 

meal did not limit hydrolysis of the major part of feed InsP6 in the crop in the present studies 

(Manuscript 5). Thus, it can be concluded, that the activity of feed- and microbiota-associated 

phytases or the abundance of phytase-producing microorganisms, or both, is low in the crop 

of birds fed maize-soybean meal-based diets. This is supported by the relatively low phytase 

activity detected in the crop digesta of 20-day old laying hens fed a maize-soybean meal 

based-diet (Marounek et al., 2008). These authors incubated phytate with digesta from the 

crop and small intestine. Per g of digesta, an InsP6 disappearance of 7 and 14 µmol InsP6/h 

was found in the crop and small intestine, respectively. Expressed per g DM of digesta this 

means a much lower phytase activity in the crop compared to the small intestine. 

The crop has important functions in regard to phytate degradation in the more posterior 

digestive tract. Mucus which is secreted by the epithelia of the crop moistures the digesta 

(Denbow, 2000). Hydration and warming up may be favourable for bacterial or dietary 

enzyme activities (Svihus et al., 2002). Enzymatic breakdown of plant tissues surrounding 

phytate may increase the accessibility of phytate for phytases further down the digestive tract. 

These “preparation” processes of feed for mechanical and enzymatic digestion are obviously 

more decisive than direct InsP6 hydrolysis in the crop when diets without detectable phytase 

activity are fed. Cropectomy could give information about the role of the crop in phytate 

degradation in broilers. An early study in laying hens reported no significant effect of the 

removal of the crop on bone breaking strength or tibia ash (Bayer et al., 1975; Stonerock et 

al., 1975), but results pointed to a faster passage rate in the cropectomized birds. 

Unfortunately, there was no information on dietary ingredients. Reduced phytate degradation 

as a consequence of lacking retention in the crop could have been confounded by dietary 

mineral P in regard to P retention. High Ca concentrations in the feed of laying hens could 

also have limited phytate hydrolysis in the intestine (the effect of Ca is discussed in detail in 

Chapter 3.3.4), and thus, the effect of cropectomy. 

3.2.2 PROVENTRICULUS AND GIZZARD 

In the proventriculus/gizzard, further “preparation” of the digesta for enzymatic digestion 

occurs. This is especially important for coarse dietary particles and digesta which bypasses 

the crop. Hydrochloric acid and pepsinogen are secreted by the proventriculus and mixed with 

digesta by muscular contraction in the gizzard; during contractions material is refluxed into 

the proventriculus (Svihus, 2014). The proventriculus and gizzard in this thesis were therefore 

considered as one compartment. Particles are ground and remain in the gizzard until broken 
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down to a critical size which can pass the pylorus (Svihus et al., 2002). Crushing can break 

down surrounding structures, and thus, increase accessibility of phytate from different feed 

fractions. Acid secretion may further extract phytate from the feed matrix. In this context, 

21% of phytate from wheat bran was water-extractable and ball-milling of the bran to a mean 

particle size of 0.8 mm increased the proportion of water-extractable phytate up to 34% 

(Antoine et al., 2004). A further increase up to 49% was observed when the particle size was 

reduced below the mean aleurone cell dimensions (0.06 mm) (Antoine et al., 2004), which 

corresponds to the size of the majority of particles that enter the duodenum (<0.1 mm) 

(Hetland et al., 2002). Moreover, it was shown that exposure to pH 3 reduced the thickness of 

the aleurone cell wall from wheat and further caused the release of carbohydrates and Ca ions 

from the pericarp, and a small amount of carbohydrates, mainly polysaccharides, from 

aleurone layers (Morales et al., 2001). Such release can also be suggested to occur from the 

aleurone layer and other surrounding tissues of phytate in the acidic environment of the 

proventriculus/gizzard. Blaabjerg et al. (2010a) incubated feedstuffs with and without added 

phytase (size of the majority of particles: 1-3 mm) in water. The authors suggested that one 

part of the InsP6 in different feedstuffs is readily degraded whereas another part is difficult to 

degrade. It was concluded that this is in part due to the presence of mineral-InsP6 and/or 

protein-InsP6 complexes that are rather resistant to hydrolysis, and/or because the InsP6 is 

encapsulated in the cell wall matrix (Blaabjerg et al., 2010a). In the digestive tract of broilers, 

degradability of phytate is probably higher compared to degradability during the used 

incubation conditions in vitro due to the passage through the proventriculus/gizzard. It can be 

concluded from the discussed literature that very intense grinding (<0.1 mm) and acidification 

in the proventriculus/gizzard increase susceptibility and accessibility of dietary phytate in 

broilers. Proteolytic digestion in this segment may further increase phytate accessibility and 

solubility and effects can be even higher when digesta was soaked and enzymatically prepared 

in the crop.  

InsP6 hydrolysis in the proventriculus/gizzard was not calculated in the present work for the 

reasons described in Chapter 3.1. Most of the average pH values reported in the 

proventriculus/gizzard of broilers fed pelleted diets are between pH 3 and 4 (Svihus, 2011). 

This low pH favours protonation of the weak-acid groups of the InsP6 molecule, which 

displaces minerals (Maenz, 2001). This means high solubility and thus degradability of most 

phytates in the proventriculus/gizzard. Microorganisms and fermentation have been reported 

in the gizzard (Józefiak et al., 2006; Rehman et al., 2007) so that low InsP6 hydrolysis by 

acid-tolerant bacteria cannot be ruled out. It is also possible that phytases produced by 
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microorganisms in the crop are getting active during prolonged retention or under the 

prevailing conditions in the proventriculus/gizzard. In addition, intrinsic plant phytases (even 

if no phytase activity is detected in the diet), which are not extracted from the matrix of the 

diet using the protocols employed, may be extracted under the conditions of the 

proventriculus/gizzard. Subsequently, they may contribute to InsP6 hydrolysis in the 

proventriculus/gizzard and intestinal segments. In the present work, concentrations of InsP6 

were significantly different in the crop but not in the proventriculus/gizzard between birds fed 

diets containing microwave treated and untreated wheat without supplemental phytase (Annex 

2). This suggests that InsP6 hydrolysis occurred in the proventriculus/gizzard of birds fed diets 

with low intrinsic phytase activity. Further InsP6 hydrolysis in the proventriculus/gizzard by 

microbial and perhaps by intrinsic plant phytases could, in part, explain the high  

InsP6 hydrolysis (55-67%) measured in the duodenum/jejunum of birds fed diets containing 

only low or no detectable phytase activity (Manuscript 1, 3 and 4). In contrast, Marounek et 

al. (2008) detected very low phytase activity in the digesta of the stomach of laying hens fed a 

maize-soybean meal based diet. Correspondingly, Bifidobacteria and Lactobacilli isolated 

from the crop and gizzard of broilers showed only a low phosphatase and phytase activity 

(Palacios et al., 2008). Hence, further studies are needed on phytase activity of different 

sources and InsP6 hydrolysis to clarify the role of the proventriculus/gizzard in  

InsP6 hydrolysis. However, the discussed findings demonstrate that an important role of the 

anterior segments is the enhancement of phytate accessibility for enzymes in the following 

segments when diets without detectable phytase activity are fed. 

3.2.3 SMALL INTESTINE 

Maximization of nutrient accessibility before digesta enters the duodenum is beneficial 

because retention time in the small intestine of poultry is short. Mean retention time of digesta 

recorded in the jejunum and ileum of broilers ranged between 136 min and 182 min 

(Weurding et al., 2001). Dänicke et al. (1999) reported a retention time of 8-18 min,  

84-110 min, 104-140 min in the duodenum, jejunum and ileum of broilers respectively. In the 

present work, the majority of InsP6 hydrolysis measured in the caeca occurred between the 

crop and duodenum/jejunum (55%; Manuscript 1) and continued in the ileum (16%, 

Manuscript 1) and caeca (19%; Manuscript 1) of broilers fed a maize-soybean meal-based diet 

without supplemental phytase or MCP. An InsP6 hydrolysis of 62-74% (Manuscript 1-3) and 

91% (Manuscript 1) was found in the lower ileum and caeca of broilers fed maize-soybean 

meal-based diets without detectable phytase activity. Correspondingly, P net absorption in the 
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lower ileum ranged between 52% and 60% (Manuscript 1-3). An InsP6 hydrolysis of 70% and 

P retention of 48% was found based on excreta measurements (Manuscript 2). Other studies 

similarly found such high InsP6 hydrolysis in broilers. Leytem et al. (2008) and Tamim and 

Angel (2003) reported an InsP6 hydrolysis of 89% and 67% in the ileum of broilers fed low-

Ca and low-P maize-based diets. An InsP6 hydrolysis between 68% and 77% was detected in 

excreta of broilers fed maize-soybean meal based diets without supplemented phytase 

(Mohammed et al., 1991; Edwards Jr., 1993; Mitchell and Edwards Jr., 1996). These high 

levels of InsP6 hydrolysis and P net absorption demonstrate that a great part of InsP6-P can be 

available in broilers irrespective of dietary phytase activity. This contradicts the conventional 

view that InsP6-P is poorly used by avian species because of insufficient endogenous  

InsP6 hydrolysing enzymes (Adeola and Cowieson, 2011). Therefore, this long assumed 

conception of phytate hydrolysis being low in broilers needs revision.  

The origin of phytases in broilers’ digestive tract responsible for such high InsP6 hydrolysis 

has been controversially discussed in the literature. Phytases originating from the mucosa and 

microbiota were suggested to be involved and will be discussed in the following subchapters. 

Possible relevance of endogenous mucosal phytases 

Chicken and rats appear to have higher endogenous mucosal phytase activity compared with 

humans and pigs (Lopez et al., 2002). In preparations of mucosa from the small intestine of 

broilers InsP6-degrading activity has been detected in vitro (Biehl and Baker, 1997; Maenz 

and Classen, 1998; Abudabos et al., 2000; Applegate et al., 2003; Onyango and Adeola, 

2009). Maenz and Classen (1998) reported that the phytase activity in vitro was highest for 

mucosa preparations of the duodenum and decreased progressively for preparations down the 

small intestine of broilers. This suggests that endogenous mucosal phytases play a major role 

in the anterior part of the small intestine. They could have contributed to the high  

InsP6 hydrolysis measured in the duodenum/jejunum but also to further hydrolysis in the 

ileum when diets without detectable phytase activity were fed in the present work (Manuscript 

1- 3). However, contribution of endogenous mucosal phytase activity to phytate hydrolysis in 

broilers is considered to be negligible in the prevailing literature. Only few studies led to the 

conclusion that endogenous mucosal phytase activity has a high capability to hydrolyse InsP6 

in the small intestine (Tamim and Angel, 2003; Tamim et al., 2004; Abudabos, 2012a,b).  

Marounek et al. (2010) calculated a theoretical potential of mucosal phytase in laying hens to 

hydrolyse InsP6. They sampled the total small intestine and detected a mucosal phytase 

activity (expressed as InsP6 disappearance per g mucosa) of 11.5 µmol InsP6/h. With a given 
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mucosal weight of 19.7 g the authors calculated a theoretical total mucosal activity of  

3.8 µmol InsP6/min in the small intestine (Marounek et al., 2010). A similar calculation using 

results of the present work and the detected activity of Marounek et al. (2010) can give an 

approximation for the magnitude of InsP6 hydrolysis in the digesta by mucosal phytase: 

 For the calculation it was assumed that no InsP6 hydrolysis occurred anterior to the 

duodenum. 

 The generally accepted equation was used to calculate the maximal InsP6 concentration 

which could enter the duodenum/jejunum (with the used maize-based diet from the 

present work) when no InsP6 hydrolysis occurred anterior to this segment.  

 InsP6 hydrolysis was equated to zero and the Ti and InsP6 concentrations which were 

detected in the diet and digesta from the duodenum/jejunum (Manuscript 1) were inserted 

in the equation: 

0% InsP6 hydrolysis = 100 – 100 x   Ti in the diet ( .2 g/kg D )   Ti in the digesta (6.5 g/kg D )    x                                      InsP6 in the diet (1 .8  mol/g D )    

 The InsP6 concentration in the digesta which entered the duodenum/jejunum when no 

InsP6 hydrolysis occurred anterior to this segment was 30 µmol/g DM. Expressed per g of 

digesta (assuming a digesta DM concentration of 19% which was detected in the digesta 

from the duodenum/jejunum of broilers fed a pelletized wheat based diet (Engberg et al., 

2004)): 5.7 µmol InsP6/g digesta. 

 Assuming a digesta weight from the small intestine of 25 g, which was found by 

Marounek et al. (2010), 143 µmol InsP6 were theoretically present in the digesta of the 

small intestine if no hydrolysis of feed InsP6 occurred. 

Thus, 3% of InsP6 in the digesta of the small intestine could be hydrolysed by mucosal 

phytases per min (3.8 µmol InsP6/min / 143 µmol InsP6 × 100). In theory, taking into 

consideration a retention time of 150 min, mucosal phytase could hydrolyse the total amount 

of InsP6 in the digesta, even if no hydrolysis occurs anterior to the duodenum/jejunum. 

However, these results have to be interpreted with great caution because these tissue 

preparations can contain other phosphatases, such as intracellular, intrinsic plant or 

microbiota-associated phytases. Results may further differ between laying hens and broilers 

as shown by Maenz and Classen (1998).  

Studies using purified brush border membrane vesicles (BBV) from the jejunal mucosa of 

broilers also detected high phytase activity. The detected activity pointed to a higher potential 

phytase activity (expressed as Pi release from phytate per mg BBV per min) 

(up to 200 nmol Pi/mg BBV protein/min) (Huber et al., 2015) compared to previous studies 
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using BBV (30 nmol Pi/mg BBV protein/min (Maenz and Classen, 1998)). Using these results 

from purified BBV the following theoretical magnitude of InsP6 hydrolysis in the digesta by 

mucosal phosphatases was calculated: 

 The average enrichment of apical membranes in BBV preparations compared to initial 

homogenates was about 2.04 (Huber et al., 2015). Taking this and the atomic weight of P 

(30.974 g/mol) into account a phytase activity (expressed as Pi release from phytate per 

mg BBV per min) of 3.0 µg Pi/mg mucosal homogenate protein/min can be calculated.  

 Under the assumption of an average concentration of 38 mg protein/g mucosa homogenate 

(Yang et al., 2008) and a mucosa weight of the small intestine of 19.7 g (Marounek et al., 

2010) a total mucosal phytase activity of 2.25 mg Pi/min can be calculated.  

 It was previously calculated that 143 µmol InsP6 were theoretically present in the total 

digesta of the small intestine when no hydrolysis of feed InsP6 occurred. The  

InsP6 molecule contains 186 g P/mol. Hence, 26.6 mg of InsP6-P were present in the total 

digesta of the small intestine.  

From these calculations can be concluded that, in theory, 8% of InsP6-P entering the small 

intestine can be liberated by enzymes from the mucosa of the small intestine per min  

(2.25 mg Pi/min / 26.6 mg InsP6-P × 100). A retention time of 13 min would be sufficient to 

hydrolyse the feed InsP6-P completely. 

These calculations demonstrate the theoretical capability of mucosal phytases to hydrolyse a 

high proportion of InsP6 from the digesta. However, calculated values cannot be extrapolated 

to in vivo processes. The calculations are based on several assumptions. It ignores prevailing 

conditions such as decreasing substrate and enzyme concentrations throughout the passage of 

the small intestine. In general, the activity and action of endogenous mucosal phytases on 

phytates in the digestive tract may differ from the activity and action on chemically 

synthesised phytate under in vitro conditions. Chemical conditions in the assay are optimised 

for endogenous mucosal phytase and ensure its maximal activity. Moreover, the localisation 

of endogenous mucosal phytases may restrict their contribution to luminal InsP6 hydrolysis. 

Endogenous mucosal phytases are brush border membrane-associated enzymes (anchored in 

the apical plasma membrane of the microvilli as integral membrane proteins). It is unlikely 

that enzymes associated with desquamated cells are still active. The contribution of mucosal 

phytases to intraluminal InsP6 hydrolysis therefore depends on the contact between InsP6 from 

the digesta and phytases bound to the microclima of the unstirred water layer. This contact 
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may further be limited by digesta viscosity and retention time. But in contrast, reflux and 

muscular contractions may increase the exposure and contact of InsP6 to endogenous mucosal 

phytases. Overall, it can be concluded that mucosal phytases are theoretically capable to 

hydrolyse high proportions of InsP6 from the digesta. However, the magnitude of the 

contribution of phytases anchored in the apical membrane to luminal InsP6 hydrolysis still 

needs clarification in further experimental works. 

Using the data from the study of Huber et al. (2015) and own results, no significant 

correlation was found between endogenous mucosal phytase activity in the jejunum and  

InsP6 hydrolysis in the duodenum/jejunum of broilers fed diets with or without MCP without 

added phytase. Similarly, Applegate et al. (2003) found no significant correlation between 

ileal InsP6 hydrolysis and phytase activity (Vmax) within BBV prepared from small intestinal 

mucosa of broilers from different strains fed diets with varying Ca concentrations. Correlation 

between ileal InsP6 hydrolysis and phytase activity also was not significant when diets with or 

without 25-hydroxycholecalciferol and varying dietary Ca concentrations were fed (Applegate 

et al., 2003). However, ileal InsP6 hydrolysis and endogenous mucosal phytase activity 

correlated significantly (r=0.31; P≤0.0 ) when different Ca sources and different  

25-hydroxycholecalciferol and Ca concentrations were used (Applegate et al., 2003). These 

results taken together indicate that endogenous mucosal phytase is not the only phytase source 

responsible for InsP6 hydrolysis in the small intestine. 

Contribution of microbiota-associated phytases 

It was suggested that phytate is partly hydrolysed by phytases produced by microorganisms 

present in the intestine of broilers (Kerr et al., 2000; Leytem et al., 2007; Leytem et al., 2008). 

In rats, it was already demonstrated that InsP6 hydrolysis almost fails to occur when animals 

are germfree (Savage et al., 1981; Wise and Gilburt, 1982). InsP6-degrading activity has been 

described for various bacteria in vitro (Konietzny and Greiner, 2002; Vats and Banerjee, 

2004). Raghavendra and Halami (2009) reported a potential of different lactic acid bacteria 

isolated from chicken intestine to hydrolyse commercially available InsP6 under specific 

conditions. In line with this observation, Angel et al. (2005) found an increased P retention in 

broilers when various Lactobacillus species were added to the diet. This indicates that 

bacteria such as Lactobacilli are capable to break down phytate within the digestive tract. 

Lactobacilli represent a high proportion of bacteria in the small intestine of broilers (Rehman 

et al., 2007). So bacterial phytase activity in the small intestine can also explain the recently 
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more often reported high InsP6 hydrolysis in the small intestine or excreta of broilers fed diets 

without detectable phytase activity.  

Marounek et al. (2008) incubated sodium phytate with digesta from the small intestine of 

laying hens fed a maize-soybean meal-based diet and detected considerable InsP6-hydrolysing 

activity (14 µmol InsP6/g digesta/h). Digesta weight from the small intestine was 16 g 

(Marounek et al., 2008), which results in a total phytase activity in the digesta of the small 

intestine of 3.7 µmol InsP6/min. Using the previously calculated InsP6 concentration  

(5.7 µmol/g digesta) which may enter the duodenum/jejunum, phytase in the total digesta was 

theoretically able to hydrolyse 4.0% of total InsP6 in the small intestine per min. In theory, 

taking into consideration a retention time of 150 min, phytase in the digesta could hydrolyse 

the total amount of InsP6 in the digesta of the small intestine. As discussed previously, it is 

unlikely that mucosal-linked phytase activity contributed considerably to the phytase activity 

measured in the digesta. This suggests that the reported phytase activity in the digesta was 

primarily of microbial origin. Thus, apart from endogenous mucosal phytases microbiota-

associated phytases can be active and responsible for InsP6 hydrolysis in the small intestine. 

However, the potential to hydrolyse feed phytate under the conditions of the digestive tract 

may differ and still needs to be clarified. 

The much higher phytase activity and InsP6 hydrolysis in the digesta from the small intestine 

compared to the crop reported in the present work and by Marounek et al. (2008) may be 

related to differences in the composition of the microbial population and in the quantity of 

specific bacteria in these segments. An accompanying study to the present work (Manuscript 

3) identified Lactobacilli as the dominating microorganisms in the crop, jejunum and ileum of 

broilers fed a maize-soybean meal-based diet irrespective of MCP or phytase addition 

(Camarinha-Silva et al., 2015). However, the authors reported differences in the microbial 

clusters and the phylotypes of Lactobacilli between digesta from the crop and jejunum/ileum 

(Camarinha-Silva et al., 2015). In accordance, Bifidobacteria and Lactobacilli isolated from 

the small and large intestine showed higher phosphatase and phytase activities than those 

isolated from the crop and gizzard (Palacios et al., 2008). Further, genes coding phytase have 

been found in the genomes of Bif. longum subsp. infantis and Bif. pseudocatenulatum, 

whereas they were absent in most of the remaining investigated Bifidobacteria species 

(Tamayo-Ramos et al., 2012). This indicates that differences in composition of the microbial 

population and in species composition within a bacterial genus in part were crucial for the 

reported differences in phytase activity and phytate hydrolysis between the crop and small 
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intestine. Further studies are needed which differentiate between phytase and non-phytase 

producing bacteria in the digesta of different segments and quantify these bacteria. 

3.2.4 HINDGUT 

Rehman et al. (2007) investigated the bacterial population in different segments of the broiler 

digestive tract and found highest bacterial density and diversity in the caeca. Marounek et al. 

(2008) detected the highest phytase activity in digesta from the caeca compared to digesta 

from the other segments of the digestive tract of laying hens fed a maize-soybean meal-based 

diet. Correspondingly, concentrations of InsP6 were higher in the caeca of gnotobiotic broilers 

compared to conventional broilers (Kerr et al., 2000). This points to an important impact of 

hindgut microorganisms on InsP6 hydrolysis which was confirmed by the very high  

InsP6 hydrolysis determined in the caeca (>90%) (Manuscript 1). An accompanying study to 

the present work showed that the caeca were predominantly colonised with Bacteroidaceae, 

Ruminococaceae and uncultured Clostridiales (Camarinha-Silva et al., 2015). Since specific 

Bacteroidaceae, Ruminococaceae and Clostridiales strains were shown to grow on phytate 

(Yanke et al., 1998; Steer et al., 2004), species from all three genera were probably involved 

in InsP6 hydrolysis in the caeca in the present work.  

Only a small proportion of the ileal digesta enters the caeca (Son et al., 2002). Thus, at a high 

level of InsP6 hydrolysis in the ileum (74%, Manuscript 1), hydrolysis in the caeca is 

quantitatively less important. The subsequent passage through the rectum is unlikely to 

increase InsP6 hydrolysis substantially due to the short retention time (23-36 min according to 

Dänicke et al., 1999). This is supported by the findings of Leytem et al. (2008), who showed 

no differences between InsP6 hydrolysis measured in the ileum (89%) and excreta (90%) of 

broilers fed a maize-based diet. In contrast, Kerr et al. (2000) manifested their hypothesis of a 

high importance of hindgut microorganisms in InsP6 hydrolysis by the comparison of ileal and 

fecal InsP6 hydrolysis. But there was no information about the measured levels of  

InsP6 hydrolysis. However, P absorption posterior to the upper ileum is not meaningful 

(Hurwitz and Bar, 1970; Shastak et al., 2012). Hence, the contribution of InsP-P liberated in 

the hindgut to the P supply of poultry is negligibly low. This was confirmed by similar tibia 

ash concentration and total tibia ash of cecectomized and sham-operated broilers fed diets 

without added phytase (assuming that bacteria in sham-operated birds were able to hydrolyse 

InsP6) (Biehl and Baker, 1997).  

It can be concluded that the frequently reported high InsP6 hydrolysis and related P net 

absorption in broilers fed diets without detectable phytase activity is predominantly caused by 
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the activity of endogenous mucosal and microbiota-associated phytases in the small intestine. 

A contribution of phytases which are active in the proventriculus/gizzard cannot be ruled out. 

3.3 FACTORS AFFECTING INSP6 HYDROLYSIS 

3.3.1 EFFECT OF MICROWAVE TREATMENT 

Heat treatment of grains such as wheat or barley can reduce intrinsic phytase activity (Carlson 

and Poulsen, 2003; Blaabjerg et al., 2010a), which agrees with results in Manuscript 4. 

Reduction of intrinsic plant phytase activity by heat treatment of cereals was reported to 

reduce InsP6 hydrolysis in the stomach and ileum of pigs (Schlemmer et al., 2001; Blaabjerg 

et al., 2010b). Lower InsP6 hydrolysis was also shown in heat-treated compared to non-heat-

treated wheat during incubation for 2 h at 20°C in vitro (Blaabjerg et al., 2010a). 

Correspondingly, Carlson and Poulsen (2003) found lower InsP6 hydrolysis when heat-treated 

compared to non-heat-treated wheat- or barley-based diets were incubated in water for 

different times up to 24 h at 38°C. In agreement with these findings, the present work showed 

a significantly lower InsP6 hydrolysis in the crop of birds fed the basal diet containing 

microwave treated wheat (26%) instead of untreated wheat (59%) without added phytase 

(Manuscript 5). This was most likely the consequence of reduced activities of wheat phytases 

and enzymes which are responsible for the breakdown of structures surrounding phytate due 

to microwave treatment. 

Microwave treatment may also cause other changes. Grain processing provides increased 

exposure of substrates to enzymes in the digestive tract by disrupting the seed coat and cell 

walls, and reducing particle size (Amerah et al., 2011). Heat treatment may induce the 

breakdown of chemical bonds and denaturation of proteins (Björck and Asp, 1983). 

Correspondingly, microwave treatment and associated heat exposure may induce changes in 

binding forms of phytate and in structures of surrounding tissues, which may change 

accessibility and degradation of phytate by phytases. In agreement with this, Blaabjerg et al. 

(2010a) revealed a higher InsP6 hydrolysis in heat-treated compared to non-heat-treated wheat 

after 24 h of soaking in vitro. Similarly, heat-treatment of wheat increased the relative 

instantaneously degradable fraction of phytate during incubation of wheat (Blaabjerg et al., 

2012). However, the present work indicated that in the crop of broilers, reduction in intrinsic 

phytase activity probably overweighted such other effects of microwave treatment in respect 

to InsP6 hydrolysis (Manuscript 5). But this seems to change in the intestine of broilers. InsP6 

hydrolysis was similar in the duodenum/jejunum and even higher in the ileum of birds fed the 
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basal diet containing microwave treated wheat (78%) instead of untreated wheat (69%) 

without supplemental phytase (Manuscript 4). Different reasons for these results were 

discussed in Manuscript 4: A higher activity of microbiota-associated and endogenous 

mucosal phytases in the small intestine of birds fed the basal diet containing microwave 

treated wheat instead of untreated wheat was assumed; higher phytase activity may be related:  

1. with the aforementioned presence of the more accessible substrate in the basal diet 

containing microwave treated wheat; 2. with increased enzyme expression induced by higher 

amounts of available substrate in birds fed the basal diet containing microwave treated wheat 

instead of untreated wheat; and 3. increased accessibility of other nutrients, transformation of 

chemical structures, composition and configuration of nutrients, increased fibre solubility or 

digesta viscosity by microwave treatment might have affected microbial composition shifting 

towards more phytase-producing organisms.  

The aspect of digesta viscosity is now discussed in more detail. Processing of feed at high 

temperatures is known to increase intestinal digesta viscosity (Amerah et al., 2011), in part by 

increasing starch gelatinisation and fibre solubility (Østergård et al., 1989; Gracia et al., 2003; 

Svihus, 2006). A conditioning temperature above 80°C (Cowieson et al., 2005) or heat 

treatment in an autoclave at 100°C for 5 min (Svihus et al., 2000) increased viscosity of the 

diet. In the present work, the maximum temperature measured in wheat meal after 6 min of 

microwave treatment was 106°C, which suggests that microwave and the related heat 

treatment also increased viscosity of diet and digesta here. Increased digesta viscosity was 

shown to increase microbial activity in the digestive tract of broilers (Carré et al., 1995; Choct 

et al., 1996). In addition, there is an association between higher ileal viscosities and slower 

rate of passage of Fe2O3 (Sacranie et al., 2012a). It can thus be concluded that higher retention 

time of digesta in the intestine and perhaps higher amounts of phytase-producing 

microorganisms caused by increased digesta viscosity contributed to high InsP6 hydrolysis in 

the small intestine of birds fed the basal diet containing microwave treated wheat  

(Manuscript 4). In general, increased digesta viscosity is described to reduce the contact 

between enzyme and substrate. However, heat processing of barley increased digesta viscosity 

and villus height in the jejunum of broilers (Gracia et al., 2003). Perhaps villus height further 

facilitated the access of endogenous mucosal phytases to phytate in the digesta of birds fed the 

basal diet containing microwave treated wheat (Manuscript 4).  

Although microwave treatment of wheat increased InsP6 hydrolysis in the ileum of broilers, 

the benefit of application of microwaves is questionable. This processing implies negative 
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nutritional aspects such as the loss of endogenous enzymes, vitamins and available nutrients, 

such as proteins, free amino acids or starch, e.g. through Maillard complexing (Björck and 

Asp, 1983). Further, the missing increase in P net absorption by microwave treatment despite 

of the increase in InsP6 hydrolysis in the ileum (Manuscript 4) points to a lacking benefit in  

P excretion. Hence, microwave treatment of wheat will not help regarding P net absorption 

and reduction of P excretion of broilers. 

3.3.2 CONTRIBUTION OF INTRINSIC PLANT PHYTASE 

Substantial intrinsic phytase activity has been detected in different plant feedstuffs (Eeckhout 

and De Paepe, 1994; Viveros et al., 2000; Steiner et al., 2007) and conditions in the crop may 

promote intrinsic phytase activity. Nevertheless, until recently, the significance and potential 

of intrinsic plant phytase to hydrolyse phytate in the digestive tract of broilers attracted little 

attention. Therefore, this subchapter discusses the contribution and efficacy of intrinsic plant 

phytase in the digestive tract of broilers. 

Crop 

The high InsP6 hydrolysis (59%) in the crop of broilers fed the basal diet containing untreated 

wheat without supplemental phytase demonstrates that wheat phytase is able to act on phytate 

and incubation conditions in the crop are appropriate for wheat phytase to be active 

(Manuscript 5). This supports in vitro properties of phytase from wheat: The pH measured in 

the crop of broilers fed this diet (5.3+/-0.4, data not shown) was close to the in vitro 

determined pH optimum of phytases from wheat (phytase 1: 6.0 and phytase 2: 5.5) (Nakano 

et al., 1999); at approximate body temperature of broilers, purified wheat phytase is generally 

stable and still shows an activity of 80-90% of the in vitro analysed temperature optimum 

(Nakano et al., 1999); this was confirmed for in-feed plant phytase by a faster hydrolysis of 

comparable amounts of InsP6 when wheat-based diets were soaked in water at 38°C compared 

to 20°C (Carlson and Poulsen, 2003). Hydration and the initiating enzymatic degradation of 

the feed matrix in the crop probably extract water-extractable phytate and promote the contact 

between phytase and phytate. High InsP6 hydrolysis in a wheat-based diet found in the crop 

(Manuscript 5) agrees with hydrolysis of InsP6 during soaking of cereal meal-based diets in 

water at temperatures between 10°C and 38°C (Skoglund et al., 1997; Carlson and Poulsen, 

2003; Lyberg et al., 2005; Lyberg et al., 2006; Blaabjerg et al., 2010a). It further shows that  

a great proportion of phytate from wheat and soybean meal can be soluble and accessible for 

wheat phytase under the prevailing conditions in the crop. In the present work, retention time 

allowed for more than half of feed InsP6 to be hydrolysed, which corresponds to values found 
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for InsP6 hydrolysis in the crop of broilers fed maize-based diets supplemented with  

500 FTU/kg of microbial phytase (Manuscript 5). This clearly illustrates the high potential of 

intrinsic wheat phytase to hydrolyse InsP6 in the crop. Thus, intrinsic plant phytase can make 

a high contribution to the total InsP6 hydrolysis in the digestive tract of broilers. 

It can be speculated that an increase in the efficacy of intrinsic plant phytase in the crop still is 

possible. Strategies that manipulate retention time in the crop and the use of the crop may 

affect the action of intrinsic phytases. Feeding coarsely ground or whole cereal grains instead 

of ground cereal grains can increase the volume of digesta in the gizzard which could increase 

retention time in the gizzard (Svihus et al., 2002), and thus, in the crop. However, coarse 

particles may impair the contact between phytate and phytases in the crop where wheat 

phytase is predominantly active. It is unlikely that longer retention in the crop and the reflux 

of ground particles from proventriculus/gizzard are sufficient to compensate for this. A more 

promising approach could be intermittent feeding, which can stimulate birds to use the crop as 

a storage organ and thus can increase retention time (Svihus et al., 2010; Svihus, 2014). As 

discussed later in more detail, ground feed could promote accessibility and thus hydrolysis of 

phytate by wheat phytase in the crop, but addition of structural components is necessary for 

development of a functioning gizzard. Alternatively, addition of enzymes hydrolyzing 

surrounding structures of phytate and phytase could increase the action of wheat phytase. In 

the present work, it was shown that addition of xylanase alone did not increase  

InsP6 hydrolysis in the crop of birds fed the basal diet containing untreated wheat (Manuscript 

5). But the addition of enzyme cocktails which hydrolyse different structures may be more 

effective and could increase InsP6 hydrolysis by intrinsic wheat phytase.  

In addition to intermittent feeding, the use of diets with high intrinsic enzyme activity may 

compensate for the short retention time in the crop. In this context, it was shown that phytase 

activities of 121 U/kg and 632 U/kg of diet (phytase activity originated from wheat) resulted 

in an InsP6 hydrolysis of 26% and 59% in the crop (Manuscript 5). The use of diets with 

intrinsic phytase activity even higher than those in the diets used in the present work could 

further increase InsP6 hydrolysis in the crop. Classical plant breeding towards high phytase 

crops may be one strategy to realize high intrinsic plant phytase activity. However, selection 

of cultivars with varying intrinsic phytase activity is related to differences in other dietary 

factors, such as concentrations of Ca, P or NSP (Kluge and Dusel, 2004; Steiner et al., 2007), 

which may affect the action of intrinsic phytase. Other differences in structures and binding 

forms may affect accessibility and solubility of phytate and thus its hydrolysis in the gut.  
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In vitro, Pi was already shown to be an inhibitor of purified plant phytase activity (Greiner et 

al., 2000b). Addition of calcium carbonate reduced InsP6 hydrolysis during soaking of a 

barley-based diet (Larsen et al., 1999). Better knowledge is needed about these interactions to 

find a cultivar realizing high InsP6 hydrolysis by intrinsic phytase in the digestive tract. The 

modification of gene activity/expression by genetic engineering may be a tool to increase 

intrinsic plant phytase activity. Moreover, the introduction of genes encoding specific 

phytases in cereals may increase InsP6 hydrolysis by “phytases from plant feedstuffs” in 

broilers (Brinch-Pederson et al., 2002). It was shown that growth rates of broilers were higher 

when diets containing transgenic seeds with constructs compromising a phytase gene from  

A. niger were fed compared to diets with non-transgenic seeds (Pen et al., 1993). Further, the 

efficacy of microbial phytase expressed in canola and in Aspergillus was similar for 

enhancing the utilization of phytate P in broilers fed corn-soybean meal-based diets (Zhang et 

al., 2000). 

Proventriculus/gizzard 

As already introduced, conditions in the gizzard are generally reported to be detrimental to 

intrinsic plant phytases. However, following incubation at pH 3.5 in the presence of 5 mg/ml 

pepsin 70% of the original purified wheat phytase activity was still recovered; Activity 

slightly decreased at pH 3 and was lost at pH 2.5 (Phillippy, 1999). Average pH values in the 

proventriculus/gizzard of poultry range between 3.0 and 4.0 (Svihus, 2010). Phytase protected 

by the surrounding feed matrix is probably even more stable than the purified assayed form. 

Hence, activity of wheat phytases in the proventriculus/gizzard cannot be ruled out. The 

previously discussed effect of grinding and acid secretion in the proventriculus/gizzard 

promoting solubility and accessibility of phytate may further have increased the action of 

intrinsic phytase in the stomach and the intestine.  

In regard to the pattern of lower InsPs, the InsP4 and InsP5 isomer which were predominantly 

formed by wheat phytase in the crop dominated in the proventriculus/gizzard of birds fed the 

basal diets containing untreated wheat without added phytase (Annex 2). This is an indication 

for the activity of intrinsic wheat phytase in the proventriculus/gizzard to proceed. Multiple 

forms of phytases exist in cereals as described for wheat and lupin (Lim and Tate, 1973; 

Konietzny and Greiner, 2002). In in vitro stability studies, determined properties only apply to 

the specific purified enzymes. Other isoenzymes in wheat may show different properties and 

activity under the conditions of the proventriculus/gizzard.  
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Small intestine 

Passing the proventriculus/gizzard without irreversible inactivation, isoenzymes of intrinsic 

plant phytase may be active in the small intestine. In the small intestine of poultry the average 

pH values range between 6.5 and 7.5 (Svihus, 2010). Activity of purified wheat phytases was 

stable at pH 7 (Nakano et al., 2000) and most plant phytase activities dramatically decrease at 

pH values just above 7.5 (Konietzny and Greiner, 2002). The existence of an alkaline plant 

phytase was already described in Lily pollen (Barrientos et al., 1994). In addition, following 

incubation with 2.5 mg/ml pancreatin 60% of purified wheat phytase activity still remained 

(Phillippy, 1999). Therefore, further activity of phytases from wheat meal and contribution to 

InsP6 hydrolysis even in the small intestine is possible. However, further experimental work is 

required to differentiate between the contribution of phytases from wheat and of other origin 

in different segments of the digestive tract. 

In literature, results on the benefit of intrinsic plant phytase to intestinal P digestibility in 

poultry are inconsistent. Few studies using different grain varieties found a linear relationship 

(Barrier-Guillot et al., 1996) or significant positive correlation between the level of intrinsic 

grain phytase activity and P retention in broilers (Oloffs et al., 2000). In these studies,  

P retention of broilers fed wheat-based diets ranged between 45% and 70% (64-775 U/kg 

phytase) (Barrier-Guillot et al., 1996) and between 36% and 57% (510-1,249 U/kg phytase) 

(Oloffs et al., 2000). In another study, P retention in broilers was low when a maize-soybean 

meal-based diet was fed (35%) and significantly higher when wheat bran and wheat were 

added (50%), probably due to intrinsic wheat phytase activity (Paik, 2003). Oloffs et al. 

(1998) used different proportions of extruded and unextruded wheat and found significantly 

higher P retention in broilers fed diets containing 75% unextruded wheat (44%) (830 U/kg of 

phytase) than for those containing 100% extruded wheat (25%) (without detectable phytase 

activity). In contrast, other studies did not find any dependence between the level of intrinsic 

phytase and phytate hydrolysis in broilers (Nelson, 1976, Juanpere et al., 2004, Leytem et al., 

2008). In consistence with the latter results InsP6 hydrolysis in the duodenum/jejunum and 

ileum in the present work was not significantly higher with high compared to low dietary 

intrinsic phytase activity (Manuscript 2 and 4). In the present work and the studies of Leytem 

et al. (2008) and Juanpere et al. (2004), endogenous mucosal and microbiota-associated 

phytases probably had a higher influence than intrinsic phytases. InsP6 hydrolysis and  

P digestibility in those studies was at a high level even for the diets with low or non-

detectable phytase activity (InsP6 hydrolysis: 62-89%; P digestibility: 54-86%). Accessibility 

and solubility of phytate and endogenous mucosal and microbiota-associated phytase activity 
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were obviously high enough and other conditions promoted phytase action so that those 

phytases could compensate for the low intrinsic phytase activity. In contrast, in studies which 

showed an effect of intrinsic phytase activity, P retention values found for diets with low 

intrinsic phytase activity were at a low level (Barrier-Guillot et al., 1996, Oloffs et al., 2000; 

Paik, 2003). In these studies hydrolysis by plant phytases which predominantly occurs in the 

crop was probably higher than hydrolysis that was possible in the small intestine by 

endogenous mucosal and microbiota-associated phytases. Hence, intrinsic phytase activity 

may have a beneficial effect on overall InsP6 hydrolysis in broilers e.g. when diets contain 

mineral P or high levels of Ca which may reduce, as discussed later in more detail,  

InsP6 hydrolysis in the intestine. Correspondingly, a high dietary Ca:InsP6 ratio caused by 

high Ca concentrations (8.1 g/kg of diet, 7.4 g/kg of DM and 45-54 g/kg of DM) could have 

caused low P retention for diets without or with low phytase activity (Barrier-Guillot et al., 

1996; Oloffs et al., 1998; Oloffs et al., 2000). Diets in the study of Barrier-Guillot (1996) 

additionally contained mineral P. It can be concluded from the present work and related 

literature that intrinsic plant phytase cannot increase the overall phytate hydrolysis in broilers 

which have a high capacity to hydrolyse phytate in the gut. However, it can be speculated that 

the previously discussed strategies to increase the action and activity of intrinsic plant phytase 

in the crop may result in InsP6 hydrolysis exceeding those which occurred in the crop of birds 

from the present work and discussed literature. Then the achieved level of InsP6 hydrolysis in 

the crop could exceed the potential of mucosal or microbiota-associated phytases in the small 

intestine even if those are highly capable to hydrolyse InsP6. However, this speculation needs 

to be proven by experimental works.  

In the aforementioned studies and in the present work differences in intrinsic phytase 

activities were achieved by feed processing or the use of different grain species or cultivars. 

Related other variation than differences in intrinsic phytase activity e.g. in nutrients or 

structures may further have affected InsP6 hydrolysis as previously discussed for microwave 

treatment (Chapter 3.3.1). Thus, these approaches are not suitable to evaluate the relevance of 

dietary intrinsic phytase activity for total InsP6 hydrolysis in the digestive tract of broilers. To 

avoid confounding factors different doses of purified wheat phytase could be added to a basal 

diet. However, purified phytase most likely differs in properties and performance in the 

digestive tract compared to phytase enclosed in the feed matrix. To study the sole influence of 

intrinsic phytase in plant feedstuffs under approximate ceteris paribus conditions the use of 

genetically engineered cereals for increased phytase activity seems to be necessary. 
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3.3.3 EFFECT OF SUPPLEMENTED MICROBIAL PHYTASE 

The previous chapters showed the high potential of microbiota-associated, endogenous 

mucosal and intrinsic plant phytases to hydrolyse InsP6 and that further improvement in  

InsP6 hydrolysis in the digestive tract of broilers is possible. Therefore, the capability of 

microbial phytase supplements to hydrolyse InsP6 in different segments of the digestive tract 

of broilers is addressed in this subchapter. 

Results of the present work agree with the general assumption from literature that the anterior 

parts of the digestive tract are the primary sites of action of added phytase in broilers (Elkhalil 

et al., 2007; Greiner, 2010). High InsP6 hydrolysis in the presence of E. coli or Aspergillus 

derived phytases in the crop (up to 70% with 500 FTU/kg and 80% with 12,500 FTU/kg 

phytase) (Manuscript 1 and 5) demonstrates that phytate from maize and soybean meal was 

highly soluble and accessible for supplemented phytase in this segment. Additional  

InsP6 hydrolysis measured in the duodenum/jejunum (Manuscript 1, 3, 4 and 5) was assumed 

to be primarily caused by the action of added phytase in the proventriculus/gizzard due to a 

more favourable pH range than in the small intestine (Manuscript 1). In addition, high 

solubility of phytate promotes the activity of added phytase in the stomach. The InsP pattern 

found in the proventriculus/gizzard indicated activity of added phytase in this segment 

(Manuscript 1; Annex 2 and 3). In accordance, a higher activity of supplemented phytase was 

detected in the crop and proventriculus/gizzard compared to the small intestine (Yu et al., 

2004). Leslie et al. (2006) investigated the effect of supplemented phytase on InsPs in 

different segments of the digestive tract of broilers and reported that the effect of 

supplemented phytase on the amounts of InsP6 was primarily seen in the crop and 

proventriculus/gizzard. When in the present work diets supplemented with 500 FTU/kg 

phytase were fed, additional InsP6 hydrolysis occurred between the duodenum/jejunum and 

ileum (up to 14 percentage points) (Manuscript 1, 3 and 4). This was assumed to be in part 

related to residual activity of supplemented phytase in these segments. The InsP pattern found 

in the duodenum/jejunum and ileum indicated activity of added phytase in these segments 

(Manuscript 1, 3 and 4). Correspondingly, residual phytase activity was detected in the 

duodenum, jejunum (Yu et al., 2004; Onyango et al., 2005) and ileum of broilers fed diets 

supplemented with an E. coli or P. lycii derived phytase (Onyango et al., 2005) and after 

incubation of Aspergillus, Peniophora, E. coli, Klebsiella or Bacillus derived phytase in 

digesta supernatants from those segments (Igbasan et al., 2000; Elkhalil et al., 2007). In 

contrast, Liebert et al. (1993) detected no phytase activity in the digesta of the small intestine 

of broilers fed diets supplemented with an A. niger derived phytase. Yu et al. (2004) found no 
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phytase protein in the ileal digesta of broilers fed diets supplemented with a P. lycii derived 

phytase. In accordance with this, higher phytase activity was shown with an E. coli compared 

to an P. lycii derived phytase in all sections of the digestive tract of broilers (in FTU per kg 

DM intake) (Onyango et al., 2005). Further, two out of three Aspergillus derived phytases 

showed lower residual activity compared to Peniophora, E. coli, and Bacillus derived 

phytases after incubation in digesta from the jejunum and ileum (Igbasan et al., 2000). 

Varying activity in the small intestine may be related to differences in the methods for 

determination of phytase activity. But it is also well-known that different phytase sources 

differ in their performance in the digestive tract due to the already introduced differences in 

properties such as resistance against proteolytic degradation or activity at prevailing pH. 

Higher stability against pancreatin was found for phytase from E. coli and Bacillus compared 

to Peniophora and Aspergillus derived phytase (Igbasan et al., 2000) and for phytase from  

E. coli, Klebsiella and Bacillus compared to Aspergillus derived phytase (Elkhalil et al., 

2007). From those enzymes E. coli and Klebsiella derived phytase showed the highest 

resistance against pepsin (Igbasan et al., 2000; Elkhalil et al., 2007). These findings can, in 

part, explain the described differences in activity of different phytases in the small intestine. 

Overall, results from the present work and related literature demonstrate that added phytase is 

primarily active in the crop and proventriculus/gizzard. Residual activity in the small intestine 

depends on the properties of the used phytase. However, results from the present work and 

literature cannot separate the contribution of microbiota-associated, endogenous mucosal and 

supplemental phosphatases to InsP6 hydrolysis in the digestive tract. Further experimental 

work is needed that investigates the microbial population, endogenous mucosal phosphatases 

and activity of supplemental phytase (probably by specific Enzyme Linked Immunosorbent 

Assay). 

The differences in InsP6 hydrolysis between the experiments conducted within this thesis in 

the crop of birds fed maize-soybean meal-based diets supplemented with the same E. coli 

derived phytase (Manuscript 1: 44%; Manuscript 5: 60%) may in part be related to the 

analyzed dietary phytase activity (Manuscript 1: 442 FTU/kg; Manuscript 3: 620 FTU/kg; 

intended activity was 500 FTU/kg in both experiments). The differences found in  

InsP6 hydrolysis between the different supplemented phytases in the crop and 

proventriculus/gizzard in the present work can be related to differences in properties such as 

enzyme kinetics, pH, susceptibility to the electrostatic environment in the stomach or 

resistance against gastrointestinal proteases as discussed in Manuscript 1. Another explanation 

can be the assay conditions for determination of phytase activity for the included dose of 
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phytase in the diets. The analyzed activity in the diets containing different phytases was at the 

same level. However, activity was determined under the more favourable conditions of the 

respective phytase product (Aspergillus phytase: assay at pH 5.5 and 37°C; E. coli phytase: 

assay at pH 4.5 and 60°C). At an approximate body temperature of 42°C in chicken those 

phytases can show different activities which was already discussed in Manuscript 1. This can 

also explain the differences in InsP6 hydrolysis between diets supplemented with different 

phytases in the crop (Manuscript 1). Thus, in studies comparing the efficacy of different 

phytases in broilers the included activity should be similar at 42°C. In addition, it was 

reported that the differences in activity (relative to the maximal activity at 37°C and optimal 

pH) of microbial phytases vary in dependence on pH, even in the range of pH 4-6 (Elkhalil et 

al., 2007; Brüning, 2009). Since pH in the crop and proventriculus/gizzard varies and cannot 

be predicted, pH in the assay should reflect the pH optimum of the respective phytase. 

Moreover, sodium phytate or other commercially available phytates are generally used as 

substrate for determination of phytase activity. Activity of different phytases on naturally 

occurring phytate within the feed matrix and diet can differ from the pure standards. Tran et 

al. (2011) compared the relative activity (pH 3, 37°C) of four commercial phytases using 

InsP6 from InsP6-soy protein, InsP6-lysozyme complex or sodium phytate. Activity differed 

between the phytases and depended on the used substrate. Differences in activity between the 

phytases were higher when InsP6-soy protein or InsP6-lysozyme was used as substrate 

compared to sodium phytate. Bohn et al. (2007) demonstrated that the use of the naturally 

occurring phytate globoids as substrate for wheat phytase slowed the action of the enzyme 

compared to using commercially available phytate as substrate. As suggested by Selle and 

Ravindran (2007) the assay could be based on a substrate other than commercially available 

phytate. In experiments, diets which are supplemented with phytases contain ingredients 

which may influence phytate hydrolysis by different phytases to a varying extent. Hence, the 

use of the respective mixed diet in the assay could also be beneficial. Overall, it can be 

concluded that differences in efficacy of different phytases found within an experiment or 

between different experiments in literature are in part related to varying properties in different 

segments of the digestive tract. Furthermore, they may be related to the assay conditions for 

determination of phytase activity, when specific conditions differ for different phytase 

supplements. Differences in these conditions between different experiments using the same 

phytase may also contribute to differences in efficacy of the same phytase reported in the 

literature. In efficacy comparisons of different phytases, these conditions should be 

reconsidered to assure that differences in efficacy are primarily related to different enzyme 
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performance under the conditions of the digestive tract. At least, a temperature of 42°C and a 

pH reflecting the optimum of the included phytase should be adjusted.  

In the present work, a very high dose of supplemented phytase (12,500 FTU/kg) increased 

InsP6 hydrolysis in the small intestine up to more than 90%; 80% of hydrolysis already 

occurred in the crop (Manuscript 3 and 5). This confirms that a high activity of phytase in the 

anterior segments is favourable for high InsP6 hydrolysis in the digestive tract due to 

precipitation and less favourable conditions in the small intestine. Since no further InsP6 

hydrolysis occurred between the duodenum/jejunum and ileum, a complete hydrolysis of feed 

InsP6 seems not to be possible and limited by accessibility or solubility of phytate or retention 

time. In the present work and literature high doses of phytase caused enhancements in 

degradation of InsP6 and lower InsPs, pc P net absorption, P retention and performance 

(Manuscript 3 and 5). However, more recent reviews, especially in human sector, emphasize 

the beneficial metabolic effects of dietary InsP6 (Konietzny et al., 2006; Harland and Morris, 

1995; Schlemmer et al., 2009; Ali et al., 2010; Kumar et al., 2010). In brief, InsP6 functions as 

a natural antioxidant due to its potential to complex iron. This prevents the formation of 

highly reactive hydroxyl radicals (Schlemmer et al., 2009). As diseases such as 

neurodegenerative diseases or cirrhosis have been linked with radicals, InsP6 was suggested to 

have a preventive role (Schlemmer et al., 2009). InsP6 and InsP5 are involved in 

neurotransmission and can modulate the regulation of exo- and endocytosis processes 

(Sasakawa et al., 1995; Efanov et al., 1997). Dietary phytate has shown to reduce serum lipid 

and cholesterol levels (Jariwalla, 1999; Onomi et al., 2004) and was reported as 

anticarcinogen, as preventive tool against diabetes mellitus, coronary heart disease, renal 

stone incidence (Konietzny et al., 2006) and fatty liver (Katayama, 1999). Since lower InsPs 

and myo-inositol are also involved in metabolic processes (as discussed later in more detail), 

in part, the effects of dietary phytate may be related to its degradation products. Thus, very 

high disappearance of InsP6 and lower InsPs in the intestinal digesta due to high doses of 

supplemented phytase may not only have beneficial effects. However, the relevance of 

positive metabolic effects of InsP6 and lower InsPs in poultry and for poultry production is 

still unclear.  

3.3.4 EFFECT OF MINERAL P AND CA 

In the present work and literature phytate-P utilization in broilers fed diets without added 

phytase was reported to range between 0% and 90% (Waldroup et al., 1965; Nelson, 1967; 

Nelson, 1976; Mohammed et al., 1991; Edwards Jr., 1993; Mitchell and Edwards Jr., 1996; 
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Tamim and Angel, 2003; Leytem et al., 2008). It was previously discussed (Chapter 3.2) that 

the frequently reported low phytate hydrolysis is not related to insufficient compatible 

enzymes in broilers. In the literature, differences in efficacy of phytase between studies were 

frequently reported. These inconsistencies may be related to different factors which have been 

discussed to affect the activity and efficacy of phytases in the gut. Dietary constituents which 

can reduce phytate hydrolysis are mineral P and Ca. In the common practice poultry feeds 

contain mineral P and Ca to cover the birds’ requirement.  ineral P is included regardless of 

the utilization of phytate-P to achieve and exceed the recommended levels of non-phytate P. 

Knowledge about the interactions between mineral P and Ca and supplemental phytase in 

regard to total InsP hydrolysis is needed in order to find the optimum levels of added mineral 

P and Ca and phytase in a diet closer formulated to the requirement of available P.  

Crop and proventriculus/gizzard 

It is commonly accepted that formation of insoluble Ca-phytate complexes primarily occurs in 

the intestine. However, few studies indicated that Ca and phytate interactions also occur at 

acidic pH with the formation of soluble and insoluble Ca-phytate species (Selle et al., 2009). 

In vitro, increasing Ca concentrations reduced the liberation of Pi from sodium phytate by a 

microbial phytase at pH 2.5 and 6.5 (Tamim and Angel, 2003). In addition to the fact that a 

pH of 5 is pivotal to Ca-phytate precipitation (Selle et al., 2009) this indicates that Ca-phytate 

precipitation cannot be ruled out in the crop and proventriculus/gizzard. Ca can further elevate 

digesta pH because of limestone's very high acid binding capacity, which will favour  

Ca-phytate interactions and may further influence the activity of supplemented phytases 

depending on their pH activity spectrum (Selle et al., 2009). The pH in the crop increased 

from 4.89 to 5.32 when the Ca content in the diet was increased from 1.07% to 2.53% (Shafey 

et al., 1991). However, as already mentioned, in the present work the majority of phytate must 

have been highly soluble in the crop as shown by high InsP6 hydrolysis (up to 80%) in the 

presence of added phytase (Manuscript 5). An increase in the molar ratio of Ca and InsP6-P 

(by addition MCP and limestone) from 2.3:1 (Ca: 6.3 g/kg DM; InsP6-P: 2.8 g/kg DM) to 

2.7:1 (Ca: 7.6 g/kg DM; InsP6-P: 2.8 g/kg DM) had no effect on InsP6 hydrolysis in the crop 

irrespective of the presence or absence of supplemental phytase (Manuscript 5). 

Correspondingly, the accompanying inclusion of 0.8 g MCP-P per kg of diet did not affect 

InsP6 hydrolysis in the crop of birds fed a maize-soybean meal based diet without or with 

added phytase (Manuscript 5). Similarly, supplementation of mineral P and Ca had no effect 

on concentrations of InsP6 in the proventriculus/gizzard irrespective of phytase 



52   3 General discussion 

 

supplementation (Annex 3). This confirms high solubility of phytate complexes in this acidic 

segment. Whether higher levels of mineral Ca and P than the included levels in the present 

work influence phytate hydrolysis in the crop or proventriculus/gizzard still needs to be 

investigated. 

Small intestine 

The pH in the small intestine of poultry was reported to range from 5.5 to 7.9 (Svihus, 2010). 

This is a favourable range for the formation of phytate complexes with Ca and other nutrients 

and precipitation. Precipitation is promoted by an increase in the dietary molar Ca:InsP6 ratio 

which was further reported to increase the pH of ileal digesta (Shafey et al., 1991). In 

accordance, only negligible concentrations of water soluble InsP6 were found in the small 

intestine of broilers (Leslie et al., 2006). A Ca solubility of only 11% was observed in the 

duodenum and jejunum (pH in digesta: 6.26) of broilers fed diets containing 9.0 g/kg Ca and 

9.22 g/kg phytate (Pang and Applegate, 2007), likely because of Ca-phytate precipitation. 

Dietary Ca was also shown to reduce the mucosal phytase activity of chickens (McCuaig et 

al., 1972; Applegate et al., 2003). Moreover, Ca may influence the activity of specific types of 

phytases in the intestine because Ca was observed to affect the phytase activity of specific 

bacteria in vitro and Ca availability was reported to affect ileal bacterial populations in pigs 

(Shimizu, 1992; Metzler-Zebeli et al., 2010). In broilers it has been frequently demonstrated 

that increased dietary Ca concentrations (at constant tP levels) can reduce the InsP6 hydrolysis 

with or without added phytase in the ileum or on the basis of excreta measurements 

(Mohammed et al., 1991; Tamim and Angel, 2003; Applegate et al., 2003; Tamim et al., 

2004; Plumstead et al., 2008; Amerah et al., 2014). In accordance with this, the present work 

describes a reduction in InsP6 hydrolysis and P net absorption measured in the 

duodenum/jejunum, lower ileum and excreta of broilers offered diets without or with  

500 FTU/kg phytase when limestone and MCP/monosodium phosphate were added 

(Manuscript 2 and 3). Whether this depression in InsP6 hydrolysis was due to the added 

mineral Ca or P, or both in combination, cannot be separated for this work and requires 

further studies. Studies should also investigate the effect of mineral Ca and P on the different 

sources of phytase in the digestive tract. The effect by mineral Ca could be counteracted by 

the addition of mineral chelators, such as citrate which was shown to increase the efficacy of 

phytase in increasing InsP6 hydrolysis under simulated intestinal conditions of poultry (Zyla 

et al., 1995).  
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It is possible that mineral P reduced the activity of microbiota-associated, endogenous 

mucosal and supplemented phytase due to inhibition by the endproduct Pi. It may further have 

caused a down-regulation of the expression of phytase from microbiota-associated or 

endogenous mucosal phytase or a shift in the microbial population to fewer phytase-

producing organisms. Such a shift may be related to the differences in P requirement and 

capability of different bacteria to produce phytase. Dietary mineral P was shown to reduce 

mucosal phytase activity (Abudabos, 2012a) and Vmax of mucosal phytase (Onyango et al., 

2006) in broilers and to change the intestinal microbial population in pigs (Metzler-Zebeli et 

al., 2010). Own results found reduced mucosal phytase activity close to the level of 

significance when MCP was supplemented in combination with 12,500 FTU/kg phytase 

(Huber et al., 2015). This pointed to reduced mucosal phytase activity due to high amounts of 

luminal Pi. In vitro studies showed a depression of phytase activity or synthesis by Pi in 

several bacteria (Shieh et al., 1969; Greiner et al., 1997). In broilers, mineral P combined with 

an increase in concentrations of dietary Ca has been frequently reported to reduce  

InsP6 hydrolysis (Mohammed et al., 1991; Manangi and Coon, 2008). Manangi and Coon 

(2008) offered in another part of their study diets with a fixed Ca concentration to broilers and 

found a reduced InsP6 hydrolysis based on excreta measurements with increasing levels of 

dietary non-phytate-P when diets contained no or 1,000 FTU/kg microbial phytase. Similarly, 

Leske and Coon (2002) reported decreased non-phytate-P retention in broilers fed diets 

without added phytase when the dietary tP concentration was increased from 0.4 to 1.1% at 

constant Ca level. These findings affirm that depressed InsP6 hydrolysis in diets with or 

without 500 FTU/kg phytase in the present work besides Ca can also be related to a sole effect 

of Pi from the mineral P´source (Manuscript 2 and 3). Overall, the present findings and related 

literature emphasize that the frequently reported low phytate hydrolysis in broilers and 

differences in phytase efficacy between studies can to a large extent be related to the dietary 

mineral P and Ca concentrations used.  

Manuscript 3 reported the effect of mineral P and Ca on InsP6 hydrolysis and P net absorption 

to disappear at a level of 12,500 FTU/kg phytase. It was argued that the concentrations of 

liberated InsP-Pi and Pi from MCP were too low to trigger relevant product inhibition at such 

high concentrations of phytase. In addition, the level of InsP6 hydrolysis was very high 

already in the crop (Manuscript 5) and proventriculus/gizzard where Ca was less likely to 

form precipitates and Pi had no influence on phytase efficacy. The inclusion of such high 

levels of phytase reduces the need for dietary mineral P. However, at present, a 25 fold 

increase of the current industry standard phytase level does not seem to be feasible. Since an 
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earlier study already indicated that lower levels of phytase (7,500 FTU/kg of an Aspergillus 

derived phytase) than 12,500 FTU/kg can cause an apparent InsP6 hydrolysis beyond 90% 

(Nelson et al., 1971), further studies are needed to identify the level of phytase which 

maximizes InsP6 hydrolysis and P accretion. Increasing the phytase dose from 500 to  

12,500 FTU/kg resulted in enhanced P net absorption and performance (Manuscript 3). 

Additional supplementation of MCP to 12,500 FTU/kg phytase increased the amounts of net 

absorbed P and BW gain. These findings suggest additive effects of mineral P and phytase at 

such high doses of phytase. However, the present work did not involve urinary P excretion. 

The findings about these additive effects of mineral P and high doses of phytase are an 

important step in phytase research. This combination can ensure maximal InsP-P utilization, 

which reduces the need of dietary mineral P. At the same time, adequate amounts of mineral P 

and Ca can be added to cover the birds’ P and Ca requirement without any negative effect on 

InsP-P utilization. However, this is just a first step towards optimization of phytase and 

mineral P input and P output from the economical and ecological perspective. Further studies 

are needed to find out the combined levels of phytase and specific mineral P and Ca sources 

which can maximize InsP degradation and increase the amount of absorbed and retained P 

and cover the bird’s exact P requirement.  

3.3.5 OTHER FACTORS 

Various intrinsic and other extrinsic factors than mineral P and Ca can influence the activity 

or action of microbiota-associated, endogenous mucosal, intrinsic plant and supplemental 

phytases.  

Factors affecting the activity of endogenous mucosal and microbiota-associated phytases 

Intrinsic factors such as age, species and gender of poultry were shown to affect endogenous 

mucosal phytase activity (Maenz and Classen, 1998; Applegate et al., 2003; Abudabos, 

2012a,b). Genetics and breed may also influence phytase activity, as higher endogenous 

mucosal phytase activity was found in fast- compared to slow-growing broilers (Abudabos et 

al., 2012a). Zhang et al. (2003) reported a heritability of 0.1 for phytate-P availability in 

broilers. Correspondingly, Beck et al. (2014) found a heritability of 0.09 for P utilization in 

quails. This could be in part related to genetic differences affecting the activity of endogenous 

mucosal and microbiota-associated phytases. Such differences were also indicated by large 

individual variation in phytate-P utilization within a broiler strain under similar environmental 

conditions (Punna and Roland Sr., 1999). Differences in P-utilization between different 

broiler strains were also described (Edwards Jr., 1983). Breeding and selection for high 
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phytate-P utilization may increase phytase activity in the intestine. The regulation 

mechanisms for activity of endogenous mucosal and microbiota-associated phytases by 

different influencing factors are still largely unknown, but quite different mechanisms can be 

assumed. Factors which affect phytase activity could influence gene transcription or protein 

translation and thereby the amount of enzyme present. The activity of different isoenzymes 

could be influenced which results in changes of kinetic parameters. Factors could further have 

an effect on protein folding or trigger covalent modifications of phytases. Phytase gene 

activity could in part be regulated epigenetically. Identification of factors, especially nutrient 

factors, which alter epigenetic regulation of phytases in the digestive tract, could be a valuable 

tool to increase phytase activity in the intestine. Respective nutrient constraints in early 

development or further breeding of animals with epigenetically modified intestinal phytase 

activity could ensure high activities of endogenous mucosal and/or microbiota-associated 

phytases. In this context, apart from dietary Ca and Pi, an influence of dietary Mg, Fe, and 

vitamin D on mucosal phytase activity was reported in broilers (Davies et al., 1970; McCuaig 

et al., 1972; Maenz and Classen, 1998; Abudabos et al., 2000; Applegate et al., 2003). 

Phytate-induced phytase production was reported for several bacteria and increased mucosal 

phytase activity was shown with dietary phytate in rats (Yang et al., 1991; Greiner et al., 

1997; Kerovuo et al., 1998; Lopez et al., 2000; Lan et al., 2002). Intestinal mucosal phytase in 

broilers was reduced with phytase supplementation (Abudabos, 2012a) which suggests an 

impact of less accessible phytate in relation with higher P availability on the activity of 

endogenous mucosal phytases. As aforementioned, own results pointed to reduced mucosal 

phytase activity with supplementation of MCP in combination with 12,500 FTU/kg phytase 

(Huber et al., 2015). It was supposed that protein expression was down-regulated in presence 

of more Pi. The composition of microbiota in the ileum of broilers also changed with phytase 

supplementation (Camarinha-Silva et al., 2015; Witzig et al., 2015). In addition, it was shown 

that the microbiota from the environment of high-phytate content (vegetarians’ intestine) was 

the most effective in hydrolyzing phytate in human (Markiewicz et al., 2013). Thus, high 

dietary phytate concentrations seem to increase the potential of intestinal microbiota to 

hydrolyse phytate. This suggests that microbiota adapt to dietary phytate and available  

P concentrations by a changing proportion of phytase- and non-phytase producing bacteria 

and probably adapting phytase production.  
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Factors affecting the efficacy of phytases of different origin  

Apart from endogenous mucosal phytase and microbiota-associated phytases added microbial 

and intrinsic plant phytases can be affected in their activity by different factors. The activity 

of purified microbial phytase, intrinsic plant phytases and endogenous mucosal phytase from 

BBV of broilers were reported to be affected by different cations in vitro (Gibson and Ullah, 

1988; Greiner et al., 1997, 1998; Maenz and Classen, 1998; Nakano et al., 1999; Konietzny 

and Greiner, 2002; Abudabos, 2012a). Besides such cations in the diet, other dietary factors 

may restrict the action and activity of phytases of different origin in the digestive tract. 

Several dietary factors influencing viscosity and retention time of digesta can affect the 

contact between phytase and phytate in the gut. In this context, increased InsP6 hydrolysis by 

slower passage rate due to shorter day length was shown in the ileum and excreta of broilers 

fed diets with added phytase (Leslie et al., 2006). Especially in the crop, retention time and 

the linked moistening of the digesta, which is essential for enzyme mobility, solubility of 

phytate and enzyme, or both (Svihus, 2010), determine the efficacy of dietary phytases. In 

vitro studies have shown that the level of InsP6 hydrolysis by intrinsic plant phytase in part 

depends on incubation time (Carlson and Poulsen, 2003; Blaabjerg et al., 2010a).  

InsP6 hydrolysis was low at 25% and 35%, but dramatically increased at 45% moisture up to 

86% during incubation of a wheat-based diet with supplemental phytase (Denstadli et al., 

2006). Within a retention time of 60 min in the crop of broilers fed wheat-based diets 

supplemented with an E. coli derived phytase an InsP6 hydrolysis of approximately 45% and a 

moisture content of approximately 50% were observed; InsP6 hydrolysis further increased 

with prolonged retention time and linked increasing moistening of digesta (Svihus et al., 

2010).  

Factors such as particle size or feed processing may influence phytase activity and phytate 

accessibility or solubility. Especially in the crop, feed particle size may be a decisive factor 

for the accessibility of phytate for phytase. Grinding of wheat-based feed samples without 

added phytase was shown to increase the amount of dialyzable phosphate under simulated 

conditions of broilers’ intestine (Zyla et al., 1999). Authors concluded that the mechanical 

breakdown of plant tissue increased the access of enzymes to wheat phytate. Phytase activity 

in wheat is located in the aleurone layer (40%), endosperm (34%), scutellum (15%), germ 

(3%), epidermal layers (2%) and testa and cross layers (5%) (Peers, 1953). Phytate in wheat is 

predominantly located in the aleurone layer (87%); the majority of the remaining phytate is 

present in the germ (O'Dell et al., 1972). In the aleurone layer phytate and phytases are 

enclosed by the thick cell walls and other surrounding structures. Hence, when those and 
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other structures in the grain are intact, hydrolysis of phytate is probably limited to the 

proportion of phytase localised in the same grain fraction. Blaabjerg et al. (2010a) 

demonstrated that phytases from ground wheat degraded InsP6 from ground soybean meal 

(both set to 3 mm between the rolls in the mill) and enzymes and substrate are able to get in 

contact. This suggests that either one of them or both were released from the storage site 

(Blaabjerg et al., 2010a). It can be concluded that grinding of wheat can promote the contact 

between phytases and phytate from different wheat fractions and between wheat phytase and 

phytate from soybean meal. Similarly, grinding of wheat in the present work (ground through 

a 2-mm sieve) (Manuscript 5) probably facilitated the contact of phytate and phytase which 

promoted high hydrolysis of dietary InsP6 by intrinsic wheat phytase in the crop. 

Correspondingly, changing the screen size from 3 to 1 mm increased the relative phytate 

hydrolysis rate with microbial phytase in maize by 22%/h during incubation in water at 38°C 

(Ton Nu et al., 2014). In accordance, phytase supplementation increased ileal P digestibility 

and toe ash content in broilers fed a medium particle size maize-based diet, but had no effect 

in those fed a coarse particle size maize-based diet (Amerah and Ravindran, 2009). In 

contrast, Kasim and Edwards Jr. (2000) observed that increased particle size and 

supplemented phytase improved P and Ca retention in broilers without any interaction and 

concluded that this was due to prolonged retention time in the gut. However, in the present 

experiments, particle size of the diet, especially of the included maize meal, was relatively 

small. This might have contributed to a high accessibility and hydrolysis of phytate in the 

crop due to enhanced contact between phytate and supplemental phytase and exposure of the 

possibly inaccessible fractions (Manuscript 1 and 5). Particle size was probably further 

reduced during the pelleting process as described by Svihus et al. (2004) and Amerah et al. 

(2007). Accessibility of phytate from soybean meal might have been further increased as a 

consequence of dehulling, oil removal and processing during solvent extraction. In this 

context, solvent extraction of rapeseed was reported to cause fracture of cell walls leaving 

behind an amorphous protein matrix still embedded with phytin globoids (Yiu et al., 1983). 

Correspondingly, microbial phytase had a great effect on phytate degradation in solvent-

extracted soybean meal but no effect in wheat (Blaabjerg et al., 2010a). The authors suggested 

that this was in part related to structural changes caused by solvent extraction which 

influenced the possibility for contact between phytate and the added phytase.  

Various in vitro studies already indicated that the efficacy of phytase is also dependent on the 

feedstuffs used. Microbial phytase had no influence on InsP6 hydrolysis in wheat, but 

increased InsP6 hydrolysis in rapeseed cake and to a higher extent in soybean meal 
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(incubation in water at 20°C) (Blaabjerg et al., 2010a). The Pi release in the presence of 

microbial phytase was greatest for soybean meal, intermediate for a maize-soybean meal-

based diet and least for maize during incubation at pH 4.5 and 40°C (Adeola et al., 2004). In 

contrast, a recent study reported that the effect of microbial phytase on the relative phytate 

degradation was higher in maize than in soybean meal during incubation in water at 38°C 

(Ton Nu et al., 2014). Since the initial phytate content was higher in soybean meal than in 

maize the amount of phytate degraded per hour was lower in maize than in soybean meal 

(Ton Nu et al., 2014) which corresponds to the results of Adeola et al. (2004). Variations in 

phytase efficacy between different feedstuffs may be related to the concentration, structure 

and storage site of phytate in a particular ingredient (Selle and Ravindran, 2007). These 

factors may determine accessibility of phytate and interactions with other nutrients, and thus, 

phytate solubility. Differences in the content and localization of phytate between different 

feedstuffs were already described in detail in Chapter 1. De Boland et al. (1975) detected 

differences in solubility of phytate between different feedstuffs. In accordance with the 

described in vitro studies, differences in InsP6 hydrolysis were demonstrated in the excreta of 

broilers fed diets containing soybean meal, corn, wheat, wheat middlings, barley, defatted rice 

bran or canola meal with or without added phytase (Leske and Coon, 1999). In the present 

work, a higher increase in InsP6 hydrolysis by supplemented phytase was found in the crop of 

birds fed a maize- compared to those fed a wheat-based diet (Manuscript 5). These differences 

in efficacy of supplemented phytase in the crop were suggested to be primarily related with 

higher accessibility of phytate for added phytase in maize compared to wheat due to different 

storage sites (germ vs. aleurone layer) (Manuscript 5). This affirms the results of Blaabjerg et 

al. (2010a, 2012) which showed no effect of phytase addition on phytate degradation in 

soaked wheat or barley (heat-treated or not). In accordance to this, added phytase had a high 

effect on InsP6 hydrolysis in soybean meal, an intermediate effect in a wheat-soybean meal 

diet and no detectable effect in wheat (Blaabjerg et al., 2007). From these results it can be 

concluded that added phytase in the crop of birds fed a wheat-based diet primarily acts on 

phytate from soybean meal since the contact to phytate from wheat seems to be restricted. 

However, in the present work differences in efficacy of supplemented phytase between the 

diets seem to disappear in the ileum (Manuscript 3 and 4).  

Overall, it was shown that many factors other than dietary mineral P and Ca can influence the 

efficacy of phytases of different origin in the digestive tract. Differences in these factors can 

also explain the variations in InsP6 hydrolysis in broilers and differences in the efficacy of 

dietary phytases observed in different experiments. Identification of those factors, their 
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interactions and their relevance requires further experimental work. Better knowledge about 

the substrate for phytase is needed. Binding forms, solubility and localization of phytate and 

its accessibility for phytases of different origin in different raw materials and mixed diets 

should be investigated. First information about the efficacy of different phytases in different 

diets could be obtained from in vitro studies.   

3.4 RELEVANCE OF LOWER INOSITOL PHOSPHATES 

Up to now, only few studies investigated the appearance of lower InsPs with different degree 

of phosphorylation in the digesta or excreta of poultry. To the best of the author’s knowledge, 

the present work is the first which determined positional InsPs in the digesta of poultry. The 

relevance of lower InsPs and myo-inositol in the digesta of poultry has been rarely discussed 

in the literature. Therefore, the present chapter discusses the relevance of lower InsPs and 

myo-inositol in the digestive tract of poultry.  

Provision of available P 

Alongside hydrolysis of InsP6 the degradation of lower InsPs is relevant for the supply of 

available P. In the present work, the maximal proportion of InsP3-5-P in tP was found in lower 

ileum (12% InsP3-5-P in tP) in the presence of MCP and 500 FTU/kg of an E. coli derived 

phytase (Manuscript 3). P net absorption was 50% for this diet. In this example, a complete 

liberation of InsP3-5-P could result in an increase in P net absorption of 6% if all released Pi is 

absorbed. In the absence of MCP and supplemented phytase, an average proportion of 5% 

InsP3-5-P in tP and P net absorption of 52% was found in the lower ileum (Manuscript 3). For 

these values, complete liberation of InsP3-5-P could result in an increase in P net absorption of 

only 2%. This difference demonstrates that a reduction in the degradation of lower InsPs can 

reduce the provision of available P. In the present study, it was suggested that phosphatases 

further degraded lower InsPs formed by supplemented phytase despite of the presence of 

MCP. The activity of different phosphatases in the intestine depends on different dietary and 

animal factors and may be much lower resulting in even much higher concentrations and 

proportions of lower InsPs in tP in other studies compared to the present work. It can be 

concluded that the degradation of lower InsPs which is affected by different factors can 

significantly contribute to the supply of available P.  
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Other roles of lower InsPs 

The relevance of the degradation and presence of lower InsPs in the digestive tract may 

extend beyond the supply of available P. The occurrence of specific lower InsPs and  

myo-inositol is relevant for cellular processes, nutrient absorption and physiological or 

immunological functions. In addition to increased utilization of InsP-bound nutrients this can 

explain the so called “extraphosphoric effect” of supplemented phytase. The presence of 

specific InsPs or myo-inositol in the intestinal lumen may be directly relevant for Pi and  

Ca transport processes or for receptor-mediated intracellular processes affecting nutrient 

absorption. Huber et al. (2015) were the first who detected significant correlations between 

concentrations of specific InsPs in the intestinal digesta and the protein expression of 

intestinal phosphate transporters in broilers. This study was an accompanying study to the one 

described in Manuscript 3 where MCP and phytase supplementation generated different  

InsP pattern in the small intestine. Hence, besides regulation by available P, these results 

indicate a potential modulation of transporter expression by lower InsPs. In this context, 

endogenous mucosal phosphatases may be important. Despite of their unknown contribution 

to luminal hydrolysis of InsPs, endogenous mucosal phosphatases may be of local relevance 

increasing the amount of absorbable P, myo-inositol and specific InsPs near the surface of the 

mucosa. 

InsP6 and its derivatives are ubiquitous in eucaryontic cells. It has already been shown that the 

number and position of phosphate groups of InsPs are relevant for physiological functions 

such as transmembrane signalling, intracellular Ca mobilization (De Lisle et al., 1995), and 

extracellular Ca influx (Neher, 1992). In particular, Ca release from intracellular stores is 

triggered by the second messenger InsP3, and regulation of this process is critically important 

for cellular homeostasis and major cellular functions. InsPs are also known to contribute to 

immune functions in the intestinal epithelium via the regulation of pro-inflammatory cytokine 

secretion and the enhancement of natural killer cell activity (Urbano et al., 2000; Wawszczyk 

et al., 2012). Specific InsPs were shown to be involved in haemoglobin modulation in 

erythrocytes (Irvine and Schell, 2001). Intracellularly, InsPs are involved in gene regulation, 

mRNA export and DNA repair (York et al., 1999; York, 2006). In addition, a supporting 

function in the process of cell division and differentiation was described for InsPs (Berridge 

and Irvine, 1989). Correspondingly, InsPs formed by different dietary phytases in the 

digestive tract of broilers were assumed to possess physiological relevance since 

supplementation of those phytases resulted in different physiological responses (Zyła et al., 

2004). However, whether InsPs in the digesta influence intracellular InsPs or trigger other 
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intracellular processes which provoke a physiological response is still unknown. Since  

de novo synthesis of InsPs was described within mammalian cells (Irvine and Schell, 2001; 

Letcher et al., 2008) InsPs may be formed intracellularly on demand. 

Myo-inositol is an essential factor for growth and homeostasis of some microorganisms and 

human cells (Liu et al., 1998). It is known as an osmolyte in the central nervous system and a 

lipotropic factor. It represents the precursor of a second messenger in the cell signalling 

system (Majerus, 1992) and may be relevant for various metabolic processes. Myo-inositol 

was reported to show an insulin mimic effect, since it stimulates the translocation of the most 

important insulin-sensitive glucose transporter to the plasma membrane and therefore 

represents a potential therapeutic in the prevention and treatment of diabetics (Dang et al., 

2010; Yamashita et al., 2013). The potential of dietary myo-inositol to improve the 

performance of broilers was already shown (Zyla et al., 2013; Cowieson et al., 2013). 

Supplementation of high doses of a phytase (1000-3000 U/kg) can substantially increase 

plasma inositol concentrations in broilers (Cowieson et al., 2014). Authors suggested that 

increased plasma inositol concentrations may be beneficial in nutrient transport and protein 

deposition. Similarly, myo-inositol concentrations in the gizzard were increased by high doses 

of supplemental phytase and correlated positively with body weight gain and negatively with 

feed conversion ratio (Walk et al., 2014). Authors concluded that the benefits of high doses of 

phytase in body weight gain and feed efficiency were in part related to provision of  

myo-inositol.   

Whether specific lower InsPs in the digesta can be absorbed or internalised by the epithelium 

of the digestive tract and further by the epithelium of other organs or by other tissues and 

directly provide P and contribute to cellular and metabolic processes is still unclear. They may 

also activate receptors or may be metabolized by phosphatases and rephosphorylated by 

kinases intracellularly in the mucosa, blood and other tissues. In few studies radiolabelled 

phytate (labelled at the inositol ring) was administered to rats and radioactivity was recovered 

in blood, organs, urine, bones and gut (Nahapetian and Young, 1980; Sakamoto et al., 1993). 

This suggests that InsP6, lower InsPs or myo-inositol was absorbed, eventually metabolised 

and distributed to various tissues. More recent studies showed an uptake of InsP6 in HeLa and 

MCF-7 breast cancer cells and its partially intracellular degradation to lower InsPs (Ferry et 

al., 2002; Vucenik and Shamsuddin, 2006). Further, a dependence between the orally 

administered phytate and phytate concentrations in the urine and plasma was reported in 

humans and rats (Grases et al., 2000a,b, 2001a,b,c, 2002). In contrast, Letcher et al. (2008) 
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detected no InsP6 in platelet-free plasma, serum and urine. To conclude, the majority of 

published data indicate that phytate may be internalized in cell culture systems and absorbed 

by the intestinal epithelia in rats and humans. However, whether absorption occurs in the 

intestine of avian species still needs to be clarified. The question about cellular uptake of 

lower InsPs requires further experimental work. The effect of different InsPs and myo-inositol 

on cellular and transport processes, on metabolic processes in blood, different tissues and 

organs also should be further investigated. This, in addition to the influence of dietary factors 

on the occurrence of these derivatives in the digesta can open a fruitful research area for the 

future. In this context, it was already suggested for humans that a controlled degradation of 

InsP6 forming desired specific InsPs with respective benefits is a future challenge (Sandberg 

and Andlid, 2002). Perhaps, in poultry production high InsP6 hydrolysis in combination with 

controlled production of specific beneficial lower InsPs will be a compromise. 

3.5 CONSEQUENCES FOR P EVALUATION IN POULTRY 

The findings of this thesis support the need for current P evaluation systems to be revised. The 

affirmation that InsP6-P can be highly available for broilers even without detectable dietary 

phytase activity (Manuscript 1-3) demonstrates that the simple differentiation in non-phytate 

P and phytate P together with the assumption that only non-phytate P is available for poultry 

(NRC, 1994, GfE, 1999) is outdated. The supply of available P, as defined by WPSA (2013), 

linked with phytate degradation until the end of the small intestine should be taken into 

account in diet formulation to cover P requirements and simultaneously avoid excessive use 

of mineral P and P excretion.  

However, the magnitude of phytate degradation in broilers was shown to depend on different 

dietary factors. Technological treatment or processing of feed and feed ingredients may affect 

P availability. In this context, microwave treatment of wheat meal increased phytate 

hydrolysis but had no effect on P net absorption in the lower ileum of broilers (Manuscript 4). 

Different structures between raw materials may similarly affect phytate accessibility and thus 

degradation. Diets differing in intrinsic phytase activity showed no differences in  

InsP6 hydrolysis in the lower ileum (Manuscript 2 and 4), but much higher intrinsic phytase 

activities than in the present work are supposed to increase InsP6 hydrolysis. Varying Pi and 

InsP6-P concentrations between raw materials could also alter phytate degradation. As 

recommended by the standard protocol of the WPSA (2013), the precise supply of dietary P to 

meet the specific needs of an animal requires knowledge about the availability of P from 
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different feed raw materials. Feed tables describing available P based on prececal digestible P 

from different raw materials and different cereal varieties would be a first improvement 

compared to the current practice. Differences in P availability from different raw materials 

due to processing or particle sizes should also be investigated.  

Because dietary ingredients, such as mineral P and Ca (Manuscript 2 and 3) can alter  

InsP6 hydrolysis, the amount of available P provided from different ingredients cannot simply 

be summed up in a mix of these ingredients. There are various interactions between different 

ingredients in regard to InsP6 hydrolysis and the amount of released P which are currently not 

yet understood. Thus, better knowledge about the separate effects of different factors and their 

interactions is needed to predict P availability from different mixed diets in future. In regard 

to phytase supplements, the World’s Poultry Science Association already reported that they 

need to be evaluated as to what extent they are able to increase the availability of P from 

certain raw materials and mixed diets (WPSA, 2013). Results of the present thesis confirm 

that supplemental phytases of different origin may differ in efficacy as shown by differences 

in P net absorption measured in the lower ileum (Manuscript 1). Dependence of phytase 

efficacy on raw materials was indicated by a different increase in InsP6 hydrolysis by 

supplemental phytase in the crop in a maize- compared to a wheat-based diet (Manuscript 5), 

but this difference disappeared in the lower ileum (Manuscript 3 and 4). Since phytases of 

different origin may show synergistic effects on InsP degradation (Manuscript 5) or compete 

for the substrate, combination of different phytases will not result in linear additive responses 

in regard to P release. It was further demonstrated that the efficacy of supplemented phytase 

in phytate degradation and P net absorption measured in the small intestine can be reduced by 

dietary mineral P and Ca (Manuscript 2 and 3). The effect of added mineral P and Ca on 

phytase efficacy depends on the dose of supplemented phytase (Manuscript 3). In contrast to 

standard phytase levels, a very high dose of phytase and mineral P may in part exert additive 

effects on the amount of available P in the intestine (Manuscript 3). However, these 

interactions not only show the dependence of phytase efficacy on mineral P and Ca. Vice 

versa, these interactions demonstrate that values for the use of mineral P must be adjusted for 

the decline in total InsP hydrolysis they cause in the respective basal diet (Manuscript 2). But 

this decline and the use of mineral P may differ in the presence of different levels of 

supplemented phytase (Manuscript 3). This indicates that availability of non-phytate P 

depends on dietary ingredients, which contradicts the conception of the current German  

P evaluation systems that availability of non-phytate is constant by 70% (GfE, 1999).  



64   3 General discussion 

 

Overall, it can be clearly deduced for P evaluation systems that additivity of different  

P providing ingredients in mixed diets is not given. Interactions between different dietary 

influencing factors must be considered in future predictions of available P from specific diets. 

Especially the separately determined amount of prececal digestible P provided by specific raw 

materials, a mineral P source and by specific phytases cannot simply be added for a diet 

containing these ingredients. However, further experimental work is needed evaluating such 

interactions between different types and levels of phytases and levels of different mineral  

P sources supplemented to specific basal diets. 

3.6 PERSPECTIVES FOR FUTURE RESEARCH 

In the animal studies of the present work, the InsP6 hydrolysis and appearance of lower InsPs 

resulted from combined effects of dietary, microbiota-associated and endogenous mucosal 

phosphatases. The contribution of each of these players is still unknown to date and has been 

controversially discussed. Therefore, better knowledge of the InsP degradation by each of 

them separately from the other is needed. This would also be a next step to understand better 

the interactions between the different phytase sources in regard to InsP degradation. This 

knowledge can represent a valuable tool to find in a later step solutions to maximize  

InsP degradation in broilers. 

The use of an in vitro system which mimics conditions in different segments of the digestive 

tract, such as pH, temperature, presence of proteases and retention time of digesta and the 

consecutive passage of the different segments could help to differentiate between  

InsP degradation by different sources of phytase. The major advantage of such an approach is 

to characterize the degradation of phytate within the feed matrix by supplemented microbial 

and intrinsic plant phosphatases under simulated conditions of the digestive tract independent 

of microbiota-associated and endogenous mucosal phosphatases. Better understanding of the 

influence of other dietary factors and their interactions can also be gained using such an in 

vitro system. For example it could help to clarify whether MCP affected the activity of 

supplemented phytase besides microbiota-associated and mucosal phosphatases. In addition, it 

can be an approach to screen and predict the action and characteristics of different types of 

phytases in different segments of the digestive tract. This knowledge can be helpful for further 

development of microbial phytase preparations. The efficacy of phytases can be primarily 

predicted for the anterior segments of the digestive tract under simulated conditions, where 
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InsP degradation is mainly related to dietary phytases. This prediction may help to find the 

optimal dosage of specific phytases within different diets with varying ingredients. 

The contribution of microbiota-associated and endogenous mucosal phosphatases to  

InsP degradation in the digestive tract may be separated in animal trials using germfree and 

non-germfree chickens (Kerr et al., 2000; Sandberg and Andlid, 2002). Such trials can give 

information about the InsP degradation by endogenous mucosal phosphatases alone in the 

germfree animals compared with InsP degradation by the combination of endogenous 

mucosal and microbiota-associated phosphatases in the non-germfree animals. In addition, the 

effect of different factors on InsP degradation by mucosal phosphatases alone or by the 

combination of endogenous mucosal and microbiota-associated phosphatases can be tested. 

To study the InsP degradation by microbiota-associated phosphatases alone in non-germfree 

animals, knockout animals may be developed in which genes encoding for mucosal 

phosphatases (or in a first step encoding for mucosal phytases) were inactivated could be 

used. However, a prerequisite is the identification of the respective gene sequences. Further, 

the use of factors (perhaps of dietary origin) suppressing expression of the genes encoding for 

mucosal phosphatases or suppressing protein translocation of mucosal phosphatases in non-

germfree animals is conceivable. However, this requires the identification of factors or the 

dose of such factors which results in complete suppression of the gene expression or protein 

translocation. 

Another tool to maximize InsP degradation may be animal breeding and genetics (Diarra et 

al., 2010). Selection for birds with the trait of high phytate hydrolysis and P utilization and 

further breeding of these animals can be one direction to increase phytate hydrolysis and  

P utilization in broilers (Zhang et al., 2003). From trials with individual animals in which as 

many data as possible are collected could be deduced which parameters are linked with high 

phytate hydrolysis and P utilization (Beck et al., 2014) (e.g. mucosal phytase activity, the 

microbial composition/microbiome or P transporters). An accompanying genotyping can help 

to identify the gene loci which are relevant to the respective trait and parameters. Later, 

respective modification of gene activity/expression by genetic engineering or epigenetic 

alterations could be envisaged. In this context, nutrigenetical changes in the early stage 

development (prenatal or postnatal) could be of interest. 

Plant breeding and genetics similarly represent an important area in future research towards 

maximization of InsP degradation in broilers (Diarra et al., 2010). One direction can be 

selection and breeding for high intrinsic plant phytase activity (Diarra et al., 2010). 
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Modification of the activity/expression of genes encoding intrinsic plant phytase by genetic 

engineering which may realize high intrinsic plant phytase activity is also conceivable 

(Brinch-Pederson et al., 2002). The introduction of genes encoding specific phytases in 

cereals may be another strategy to maximize InsP degradation without supplemental phytase 

in the digestive tract (Pen et al., 1993; Zhang et al., 2000).  

Furthermore, future research should clarify more precisely whether specific InsPs can be 

absorbed or internalised by the epithelium of different organs and by other tissues. First 

information could be gained from studies using cell lines, Ussing chamber systems or 

preparations of apical membrane vesicles. Moreover, it is not known, which and to what 

extent InsPs in the digesta may be absorbed and potentially exert a physiological response 

(Sandberg and Andlid, 2012). Hence, the effect of different InsPs and myo-inositol in the 

digesta on cellular and transport processes, on InsPs and myo-inositol in the blood, and on 

metabolic processes in blood, different tissues and organs of broilers should be investigated. 

To get the linkage between the influence of dietary factors on the occurrence of these InsPs in 

the digesta and those processes the cooperation between animal nutritionists, cell biologists 

and physiologists is needed. 

3.7 CONCLUSIONS 

 Broilers and their gut microbiota have a strong potential to hydrolyse InsP6 in the small 

intestine in low-P and low-Ca diets. Since endogenous mucosal and microbiota-

associated phytases have a high capacity to hydrolyse InsP6 they are supposed to be the 

major contributors to phytate hydrolysis in the small intestine of broilers. But the 

differentiation between these two origins of phytases, and between phytases from 

different microorganisms and their contribution to phytate hydrolysis needs further 

investigation.  

 High InsP6 hydrolysis by intrinsic plant phytase in the crop can significantly contribute to 

the total InsP6 hydrolysis. But in broilers which have a high capacity to hydrolyse phytate 

in the gut, intrinsic plant phytase cannot increase total phytate hydrolysis. The use of 

cereal cultivars with high intrinsic phytase activity or genetically engineered cereals for 

increased phytase activity could result in high ileal values, exceeding InsP6 hydrolysis by 

mucosal or microbiota-associated phytases.  
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 Applying doses of supplemental phytase that are several fold higher than the industry 

standard can increase InsP6 hydrolysis in the small intestine up to more than 90%. The 

majority of hydrolysis occurs in the anterior segments. Such high hydrolysis in the crop 

and proventriculus/gizzard promotes high InsP6 hydrolysis in the digestive tract of birds 

fed mineral Ca and P because mineral Ca and P seem to reduce InsP6 hydrolysis primarily 

in the small intestine. However, the presence of InsP6 and lower InsPs may be relevant 

for varying metabolic processes. Further studies should investigate the relationship 

between different InsPs in the digesta and such processes. 

 Different factors can influence phytate hydrolysis, the appearance of lower InsPs and the 

efficacy of dietary phytases in the digestive tract. Better knowledge about the influence of 

these factors and their interactions in regard to the activity and action of phytases of 

different origin in the lumen of the digestive tract is needed. Coordination and adjustment 

of these influencing factors in order to optimize efficacy of phytases will be a major 

challenge in future research. Future research must address the “big picture”. In 

accordance with the interdisciplinary emphasis of bioeconomy the cooperation of animal 

nutritionists, microbiologists, physiologists, animal and plant breeders, and 

biotechnologists is needed to find solutions. 

 P evaluation systems have to be reconsidered. The supply of available P linked with 

phytate degradation until the end of the small intestine has to be taken into account in diet 

formulation. Since additivity of different P providing ingredients in mixed diets is not 

given, interactions between different dietary influencing factors must be considered in 

future predictions of available P from specific diets. 
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Abstract

The objective was to characterise degradation of myo-inositol 1,2,3,4,5,6-hexakis (dihydrogen phosphate) (InsP6) and formation of inositol phosphate (InsP)

isomers in different segments of the broiler digestive tract. Influence of an Aspergillus niger (PhyA) and two Escherichia coli-derived (PhyE1 and PhyE2) phy-

tases was also investigated. A total of 600 16-d-old broilers were allocated to forty floor pens (ten pens per treatment). Low-P (5·2 g/kg DM) maize–

soyabean meal-based diets were fed without (basal diet; BD) or with a phytase added. On day 25, digesta from different digestive tract segments were

pooled per segment on a pen-basis, freeze-dried and analysed for P, InsP isomers and the marker TiO2. InsP6 degradation until the lower ileum (74

%) in BD-fed birds showed a high potential of broilers and their gut microbiota to hydrolyse InsP6 in low-P diets. Different InsP patterns in different

gut segments suggested the involvement of phosphatases of different origin. Supplemented phytases increased InsP6 hydrolysis in the crop (P< 0·01)

but not in the lower ileum. Measurements in the crop and proventriculus/gizzard confirmed published in vitro degradation pathways of 3- and 6-phytases

for the first time. In the intestinal segments, specifically formed InsP4–5 isomers of supplemented phytases were still present, indicating further activity of

these enzymes. Myo-inositol tetrakisphosphate (InsP4) accumulation differed between PhyE1 and PhyE2 compared with PhyA in the anterior segments of

the gut (P < 0·01). Thus, the hydrolytic cleavage of the first phosphate group is not the only limiting step in phytate degradation in broilers.

Key words: Inositol phosphate isomers: Phytate hydrolysis: Phytases: Broilers

Phytate represents the primary storage form of P in plant

seeds. It is defined as any salt of phytic acid (myo-inositol
1,2,3,4,5,6-hexakis (dihydrogen phosphate) or InsP6). The util-

isation of InsP6-P depends on InsP6 hydrolysis because P
absorption occurs mainly as orthophosphate(1). InsP6-

hydrolysing enzymes such as phytases (myo-inositol hexaki-

sphosphate phosphohydrolases) catalyse the hydrolytic cleav-
age of InsP6 and its salts via several phosphorylated

intermediary products (myo-inositol pentakis-, tetrakis-, tris-,

bis- and monophosphate) down to myo-inositol. The
International Union of Pure and Applied Chemistry/

International Union of Biochemistry differentiates among

three types of phytases: 3-phytases (EC 3.1.3.8), 4-/6-phytases
(EC 3.1.3.26) and 5-phytases (EC 3.1.3.72), a classification

that refers to the initiating position on the inositol ring during
in vitro InsP6 dephosphorylation. The 6-phytases usually origin-

ate from plants and initiate hydrolysis at the D-4 (L-6) position

of InsP6
( 2); 3-phytases are usually of microbial origin (starting

hydrolysis at the D-3 (L-1) position), such as the fungal

Aspergillus niger phytase(3–5) or the bacterial Pseudomonas phy-

tase(2). However, Escherichia coli phytase as an exception was
characterised as a 6-phytase (starting hydrolysis at the D-6

Abbreviations: BD, basal diet; InsP, inositol phosphate; InsP3, myo-inositol trisphosphate; InsP4, myo-inositol tetrakisphosphate; InsP5, myo-inositol pentakisphosphate; InsP6,
myo-inositol 1,2,3,4,5,6-hexakis (dihydrogen phosphate); PhyA, Aspergillus-derived phytase Finase® P; PhyE1, Escherichia coli-derived phytase Quantum®; PhyE2, E. coli-derived
phytase Quantum® Blue; tP, total P.
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(L-4) position)(6,7). We are not aware of any study that has

investigated whether this in vitro-based classification is reflected

also in the pathways of InsP6 degradation in the more complex
and variable environment of the digestive tract of broilers.

InsP6-P has long been assumed to be poorly used by avian

species because of the lack of sufficient endogenous
InsP6-hydrolysing enzymes and the denaturation of intrinsic

plant phytases in the stomach and during feed manufacture.

In broilers, although the activity of endogenous mucosal phy-
tase in the small intestine has been described(8–10), its contribu-

tion to InsP6 hydrolysis has been considered almost negligible.

Although some more recent studies have indicated that
InsP6-P is highly available for broilers(11), the origin of phytase

activity in the digestive tract is controversial. Some authors

have suggested that endogenous mucosal phytase of the
small intestine is very capable of high InsP6 hydrolysis(12,13).

Others hypothesise that InsP6 is hydrolysed by phytases pro-

duced by micro-organisms present in the small intestine and
particularly in the caeca(14,15).

It is not known which positional inositol phosphate (InsP)

isomers are formed by different phytases in the digestive tract
of avian species. Some studies have described different pos-

itional isomers of InsP6 degradation products in several seg-

ments of the digestive tract in pigs(16–18), but the variations in
digestive tract physiology and anatomy between pigs and

birds (for example, passage rate, digesta viscosity, presence

of a crop, variable pH values) caution against assuming
that findings in pigs will be similar to that in broilers. One

consequence of the uncertainties regarding the availability

of InsP6-P is that commercial poultry diets are supplemented
with mineral P sources. This costly supplementation

increases the P concentration in excreta, which may contrib-

ute to environmental problems such as eutrophication of sur-
face waters and exhaustion of global raw phosphate

resources(19). An understanding of the rate of degradation

of InsP6 to the different positional InsP isomers along the
digestive tract would enable a more precise alignment of

the feed composition to the birds’ P requirements and thus

increase the likelihood of averting a ‘potential planet phos-
phate crisis’(20). Phytases of different origin, varying in their

properties, such as pH optimum, proteolytic stability and

kinetic efficiency, may differ in effectiveness with transit as
the conditions along the digestive tract change. The in vitro-

determined pH optimum of most phytase supplements is

particularly aligned to the conditions of the anterior segments
of the digestive tract(21).

The first objective of the present study therefore was to

characterise InsP6 hydrolysis and formation of InsP isomers
in different segments of the digestive tract of broilers. The sec-

ond objective was to investigate the InsP6 degradation pattern

of different phytase additives and their effectiveness in releas-
ing phosphate in broilers and to compare the findings with

known in vitro properties. In the absence of supplementary

phytase, InsP6 was hypothesised to be mainly hydrolysed in
the posterior intestinal segments of the digestive tract. In con-

trast, the different phytase supplements were expected to result

in greater overall rates of InsP6 hydrolysis and to elicit different
InsP patterns in the anterior segments.

Materials and methods

Experimental diets

The basal diet (BD) was calculated to contain adequate levels of

all nutrients according to the recommendations of the

Gesellschaft für Ernährungsphysiologie (Society for Nutrition
Physiology)(22) with the exception of Ca and P. It was mainly

based on maize and solvent-extracted soyabean meal

(Table 1). Ingredients were chosen to obtain low concentrations
of total P (tP), high proportions of InsP6-P in tP and low intrin-

sic phytase activity. Concentrations of Ca and tP were calculated

to be 7·9 and 5·0 g/kg of DM, respectively, and these levels
were confirmed by analyses (Table 1). Titanium dioxide

(TiO2) was included at a rate of 5 g/kg as the indigestible mark-

er, and the intended Ti concentration was confirmed by analysis.
Diets were prepared in the certified feed mill facilities of

Hohenheim University’s Agricultural Experiment Station. The

BD was mixed in one lot and divided into four equal parts. One
part remained without phytase supplementation (BD). The other

parts were supplemented with three different phytase-containing

products at an intended activity of 500 U/kg of diet. The supple-
mented phytase products were a commercial A. niger-derived

3-phytase (PhyA; Finase® P,EC 3.1.3.8; ABVista) and twoE. coli-
derived thermotolerant 6-phytases (PhyE1 (Quantum®) and

PhyE2 (Quantum® Blue); EC 3.1.3.26; AB Vista). To ensure

adequate mixing of each phytase, premixes of each product were
prepared bymixingwith a small amount of the BDbefore addition

to the treatment diet. Diets were pelleted through a 3-mmdiewith-

out using steam. The temperature of pellets measured immediately
after release from the press ranged between 57°C and 69°C.

Representative samples of the diets were taken for analyses of phy-

tase activity, proximate nutrients, DM, Ca, tP, Ti and InsP isomers.
The samples were pulverised using a vibrating cup mill (type

6-TOPF; Siebtechnik GmbH) and stored at 4°C until further

handling. The experimental diets contained similar concentrations
ofmyo-inositol pentakisphosphate (InsP5) and InsP6 (Table 1). The

InsP6-P was 57% of tP in the diets on average and that of InsP5-P

was 3 % of tP. Lower InsP isomers were not detected in the diets.
The phytase activity of the BD was below the limit of detection,

but phytase activities of the supplemented diets ranged between

399 and 467 U/kg of diet.

Animals and management

The study was conducted in the Agricultural Experiment
Station of Hohenheim University, location Lindenhöfe in

Eningen (Germany). It was approved by the Animal Welfare

Commissioner of the University in accordance with the
German Welfare Legislation. Birds underwent routine vaccin-

ation against coccidiosis, Newcastle disease and infectious bur-

sal disease on 3, 10 and 14 d of age, respectively.
A total of 600 unsexed Ross 308 broilers aged 1 d were

obtained from a commercial hatchery (Brüterei Süd GmbH &

Co.) and randomly allocated to forty floor pens (approximately
1·5 m × 1·5 m) bedded with wood shavings. Each pen had fif-

teen birds. The room temperature was 34 and 32°C on days 1

and 2, respectively. Thereafter, the temperature was reduced in
steps of 0·5°C per d, reaching 20°C on day 25. Artificial lighting

2

journals.cambridge.org/jns



was provided with an intensity of 10 lux. During the first 2 d,

the animal house was illuminated continuously. A lighting regi-
men of 18 h light and 6 h dark was applied from day 3 onwards.

Feed and tap water were available for ad libitum consumption.

Until day 15, the animals were fed a commercial starter diet con-
taining 1·10 % Ca, 0·55 % tP, 22·0 % crude protein, 6·6 %

diethyl ether extract and 12·5 MJ metabolisable energy/kg.

On day 16, the birds were weighed, and ten pens of fifteen
birds were assigned to each of the four dietary treatments and

distributed in a completely randomised block design.

Sampling and analytical methods

At 25 d of age, the animals were asphyxiated by CO2 exposure

and weighed. To standardise feed intake before sampling and
thus retention time of feed in the crop, birds were deprived of

feed for 1 h. The feed troughs were then moved back into the

pens 1 h before the birds were killed, on an individual-pen

basis to ensure the same time schedule for all replicates. The
first samples were taken 1 h after the beginning of the light

period. Samples from five parts of the digestive tract (crop,

proventriculus and gizzard (pooled), duodenum and jejunum
(pooled), the terminal part of the ileum (defined as the poster-

ior two-thirds of the section between Meckel’s diverticulum

and 2 cm anterior to the ileo-caeco-colonic junction(23)) and
the caeca) were taken. After opening of the abdominal cavity,

the total digestive tract was removed except the crop. Digesta

of the intestinal segments were gently flushed out with double-
distilled water whereas the segments of the anterior digestive

tract (crop, proventriculus and gizzard) were cut open and

purged. The samples were pooled for all birds from one pen sep-
arately for each segment, immediately frozen at –18°C, freeze-

dried (type Delta 1-24; Martin Christ Gefriertrocknungsanlagen

GmbH) and pulverised as explained for the diets. The ground
samples were stored at 4°C until analysis.

Concentrations of proximate nutrients were determined

according to the official methods in Germany (Verband
Deutscher Landwirtschaftlicher Untersuchungs- und

Forschungsanstalten; VDLUFA)(24). Feed samples were ana-

lysed for DM and crude ash (method 3.1), crude protein
(method 4.1.1), diethyl ether extract (method 5.1.1) and crude

fibre (method 6.1.1). The concentrations of Ca, tP and Ti in

diet and digesta samples were determined by a modification
of the method of Boguhn et al.(25). In brief, 20 ml of sulfuric

acid (18 mol/l) and 2·5 ml of nitric acid (14 mol/l) were

added to 0·4 g of sample. Solutions were heated from 100 to
200°C for 30 min in a block digestion system equipped with a

system to trap nitrous gases (Behr K 20 L; Behr

Labor-Technik GmbH). After cooling to 100°C, 2·5 ml of the
nitric acid were added. Following heating from 225 up to

300°C for 75 min and subsequent cooling to room temperature,

the solutions were filled with double-distilled water to a volume
of 500 ml and filtered. The Ca, P and Ti concentrations of the

solutions were measured using an inductively coupled plasma

optical emission spectrometer (VISTA PRO; Varian Inc.) at spe-
cific wavelengths for each element according to Shastak et al.(26).

For the analysis of InsP isomers in diet and digesta samples,

1·0 g of the sample was extracted for 30 min with 10 ml of a
solution containing 0·2 M-EDTA and 0·1 M-sodium fluoride

(pH= 10) as phytase inhibitor using a rotary shaker. The sam-

ples were centrifuged at 12 000 g for 15 min and the supernatant
fraction was removed and preserved on ice. The residue was

re-suspended in 5 ml of the EDTA–sodium fluoride solution

and extracted again for 30 min. The supernatant fractions of
the two extraction steps were then combined. A quantity of

1 ml of the pooled supernatant fraction was centrifuged at

14 000 g for 15 min and 0·5 ml of the resulting supernatant
fraction were filtered through a 0·2 µm cellulose acetate filter

(VWR) into a Microcon filter (cut-off 30 kDa) device

(Millipore) and centrifuged again at 14 000 g for 30 min.
Throughout the whole extraction procedure, the samples were

kept below 6°C. The procedure for caecal samples was slightly

different: glass beads (diameter 0·6 mm) were added before
extraction. To obtain a clear supernatant fraction for the caecal

Table 1. Ingredient composition and analysed characteristics of the

experimental diets

BD PhyA PhyE1 PhyE2

Ingredients (g/kg as fed)

Maize 553

Solvent-extracted

soyabean meal (48 %

crude protein)

400

Soyabean oil 20

Limestone 13

Sodium chloride 1

Choline chloride 2

Sodium bicarbonate 3

Mineral mix* 1

Vitamin mix† 2

Titanium dioxide 5

Analysed characteristics of

the diets

DM (g/kg) 895 896 896 895

Crude ash (g/kg) 53 52 53 51

Crude protein (g/kg) 230 231 232 226

Diethyl ether extract (g/kg) 54 53 52 53

Crude fibre (g/kg) 23 21 24 22

Metabolisable energy

(calculated) (MJ/kg)

12·5 12·5 12·5 12·5

Phytase activity (U/kg)‡ <50 399§ 467 442

Ca (g/kg DM) 7·5 7·6 7·4 7·3

Total P (g/kg DM) 5·2 5·3 5·2 5·2

InsP6-P (g/kg DM) 3·0 3·0 3·0 3·0

Ins(1,2,3,4,6)P5 (nmol/g

DM)

ND <LOQ <LOQ <LOQ

Ins(1,2,3,4,5)P5 (nmol/g

DM)

200 200 300 300

Ins(1,2,4,5,6)P5 (nmol/g

DM)

600 600 600 600

Ins(1,3,4,5,6)P5 (nmol/g

DM)

ND ND ND ND

InsP6 (nmol/g DM) 15 900 16 000 16 200 16 100

BD, basal diet; PhyA, BD supplemented with Aspergillus niger 3-phytase, Finase® P;
PhyE1, BD supplemented with Escherichia coli 6-phytase, Quantum®; PhyE2, BD
supplemented with E. coli 6-phytase, Quantum® Blue; InsP6, myo-inositol
1,2,3,4,5,6-hexakis (dihydrogen phosphate); InsP5, myo-inositol pentakisphosphate;
ND, not detected; LOQ, limit of quantification.
* P-free: Mineral mix (Gelamin SG 1 Geflügel, GFT MBH), provided per kg of com-
plete diet: 15 mg Cu; 1·6 mg I; 90 mg Fe; 120 mg Mn; 80 mg Zn; 0·5 mg Se; 0·6
mg Co.
† Vitamin mix (Raiffeisen Kraftfutterwerke Süd GmbH), provided per kg of complete
diet: 3·6 mg retinol; 75 µg cholecalciferol; 30 mg α-tocopherol; 2·4 mg menadione; 3
mg thiamin; 6 mg riboflavin; 6 mg pyridoxine; 0·03 mg cyanocobalamin; 50 mg nico-
tinic acid; 14 mg pantothenic acid; 0·1 mg biotin; 1 mg pteroyl(mono)glutamic acid.
‡ Determined at pH 4·5 and 60°C.
§ Determined at pH 5·0 and 37°C.
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matrix, the extracts were centrifuged for 30 min at 12 000 g and

6°C. Filtrates were analysed by high-performance ion chroma-

tography and UV detection at 290 nm after post-column deriva-
tisation using an ICS-3000 system (Dionex). InsP with different

degrees of phosphorylation (InsP3–6) and their positional iso-

mers were separated, without enantiomer differentiation, on a
Carbo Pac PA 200 column and corresponding guard column.

Fe(NO3)3 solution (1 g/l, Fe(NO3)3.9H2O, product no.

103883; Merck KGaA) in HClO4 (20 g/l, product no.
100518; Merck KGaA) was used as reagent for derivatisation

according to Philippy & Bland(27). The elution order of InsP iso-

mers was established using commercial standards if available.
InsP5 isomer standards were purchased from Sirius Fine

Chemicals. Seven out of nine myo-inositol tetrakisphosphate

(InsP4) and nine out of twelve myo-inositol trisphosphate
(InsP3) isomer standards were available from Santa Cruz

Biotechnology. One detected peak out of the group of InsP4 iso-

mers could not be attributed but was presumed to be Ins
(1,2,4,6)P4 by comparison with the elution order of Chen &

Li(28), who used similar chromatographical conditions. A clear

identification of the InsP3 isomers present was not possible.
However, a peak was detected, corresponding in its retention

time to the retention time of Ins(1,3,4)P3, Ins(1,4,6)P3, Ins

(1,2,6)P3, Ins(1,4,5)P3 and Ins(2,4,5)P3 (out of the available stan-
dards), which all coeluted under the conditions used. InsP2 and

InsP1 could not be analysed with this method. InsP6 was used

for quantification, and correction factors for differences in
detector response for InsP3–5 were used according to

Skoglund et al.(29). The limit of detection was defined for a sig-

nal:noise ratio of 3:1 and was 0·1 µmol/g of DM for InsP3–4
isomers and 0·05 µmol/g of DM for InsP5 isomers and

InsP6. The limit of quantification was defined for a signal:

noise ratio of 6:1. A mean for an InsP isomer was calculated
only if the isomer was detected in at least five out of the ten sam-

ples of one treatment. If the detected value was below the limit

of quantification in five or more samples, this was noted as less
than the limit of quantification in the tables, and means were not

calculated. All samples were analysed in duplicate. The InsP con-

centration is reported on a DM basis.
Because of differences in the extractability of the phytases

used, the phytase activity in the diets was determined under

product-specific conditions and expressed as U/kg for all
diets. Determination of phytase activity was assayed according

to the internal, validated methods of the supplier (BD + PhyA:

assay at pH 5·5 and 37°C; BD, BD + PhyE1 and BD +
PhyE2: assay at pH 4·5 and 60°C). Both assays were run by

Enzyme Services & Consultancy.

Calculations and statistical analysis

Body-weight gain, feed consumption and feed:gain ratio were

determined on a pen basis for the period between days 16 and
25. InsP6 hydrolysis and P net absorption in the digestive tract

( y) were calculated for each pen based on the ratio of InsP6 or

P and Ti according to the generally accepted equation:

y(%) = 100− 100×
Ti in the diet (g/kg DM)

Ti in the digesta (g/kg DM)

( )

×

InsP6 or P in the digesta (g/kg DM)

InsP6or P in the diet (g/kg DM)

( )

InsP6 hydrolysis was calculated for the crop, duodenum/

jejunum, lower ileum and caeca. It was not calculated for
the proventriculus/gizzard since this segment clearly contained

particles of different sizes, which presumably were of variable

retention times and thus were not accurately represented by
the marker(30). P net absorption was calculated in the duode-

num/jejunum and lower ileum.

Thepercentage of InsP3,∑InsP4or∑InsP5 in∑InsP3–5was cal-
culated for each treatment and segment to investigate the rapidityof

InsP6 hydrolysis and the extent to which intermediary products

with different degrees of phosphorylation were formed. Because
InsP1–2 isomers were not determined, ∑InsP3–5 was calculated,

representing the sum of identified InsP6 hydrolysis products.

Untransformed data are expressed asmeans with their standard
error or the pooled standard error of the mean. Statistical analysis

was performed using theMIXEDprocedure of the software pack-

age SAS for Windows (version 9.1.3; SAS Institute Inc.). Before
statistical analysis, data that showed non-normal residuals or het-

erogeneity of variance were log- or square root-transformed. For

data expressed as percentages the arc-sine transformation was
used. The following statistical model was chosen: yij= μ+ ri+ τj
+ eij, where yij is the ith measurement in the jth treatment, μ is

the overall mean, ri is the ith block (random), τj is the effect of
the jth treatment (fixed) and eij is the error term. Statistical signifi-

cance was evaluated by a one-way ANOVA.Mean separation was

computed using Fisher’s protected least significant difference test
(P≤ 0·05) only if the overall F test was significant (P≤ 0·05).

Results

The initial body weight was on average 531 g and was similar

between treatments (P> 0·05).During the 9-d assay period, aver-
age body-weight gain, feed consumption and feed:gain ratio were

not significantly different between treatments (Table 2).

Table 2. Body-weight (BW) gain, feed consumption (FC) and feed:gain (F:G) ratio of broiler chickens between the ages of 16 and 25 d

(Mean values and pooled standard errors; ten pens per treatment with fifteen birds per pen)

BD PhyA PhyE1 PhyE2 Pooled SEM

BW gain (g/d)* 59 58 60 56 1·4

FC (g/d)* 95 94 97 92 1·9

F:G ratio (g/g)* 1·61 1·61 1·62 1·63 0·023

BD, basal diet; PhyA, BD supplemented with Aspergillus niger 3-phytase, Finase® P; PhyE1, BD supplemented with Escherichia coli 6-phytase, Quantum®; PhyE2, BD supple-
mented with E. coli 6-phytase, Quantum® Blue.
* The overall F test was not significant.
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Myo-inositol 1,2,3,4,5,6-hexakis (dihydrogen phosphate)

hydrolysis

In birds fed the BD, low InsP6 hydrolysis was measured in the

crop (9 %; Table 3). Average InsP6 hydrolysis in this treatment

was 59, 74 and 91 % until the duodenum/jejunum, the lower
ileum and the caeca, respectively.

Supplementation of phytase had a significant effect on InsP6
hydrolysis in the crop (P < 0·01) but not in the duodenum/
jejunum and lower ileum. In the crop, supplemented phytases

significantly increased InsP6 hydrolysis, and the effect by PhyA

(64 %) was significantly higher than by the other phytase treat-
ments (PhyE1: 31 %; PhyE2: 44 %). Until the duodenum/

jejunum and the lower ileum, the difference in InsP6 hydrolysis

between treatments became lower and statistical difference
between treatments disappeared. The average InsP6 hydrolysis

was 64 % (duodenum/jejunum) and 77 % (lower ileum). InsP6
hydrolysis up to the caeca was significantly higher with PhyE1
(95 %) and PhyE2 (96 %) compared with the BD (91 %) and

PhyA (93 %) (P < 0·01).

Net absorption of phosphorus

In birds fed the BD, a P net absorption of 34 and 57 % was
measured until the duodenum/jejunum and lower ileum

(Table 4). Supplementation of phytases caused a significant

increase in P net absorption until the duodenum/jejunum
(PhyA: 38 %; PhyE1: 38 %; PhyE2: 39 %) (P = 0·04). P net

absorption until the lower ileum tended to be higher with

PhyE1 (60 %) and was significantly higher with PhyE2 (64 %)
compared with PhyA (56 %) and BD (57 %) (P= 0·03).

Appearance of inositol phosphate isomers

In the crop digesta of birds fed the BD, an average concentra-

tion of 638 and 388 nmol/g DM was detected for Ins

(1,2,4,5,6)P5 and Ins(1,2,3,4,5)P5 and lower concentrations
were measured for Ins(1,2,3,4,6)P5 and Ins(1,3,4,5,6)P5
(Table 5 and Fig. 1(A)). The only detectable inositol tetrakispho-

sphate Ins(1,2,5,6)P4 was found in low concentration (141
nmol/g DM), and inositol trisphosphates were not found in

the crop in this treatment. About 90 % of ΣInsP3–5 in the

crop was present as InsP5 when the BD was fed. In the proven-
triculus/gizzard, Ins(1,2,4,5,6)P5 and Ins(1,2,3,4,5)P5 were the

only detectable lower InsP (Table 6), and their concentrations

were lower than in the crop. In the duodenum/jejunum, the
InsP pattern again was more diverse than in the proventricu-

lus/gizzard and different from the crop (Table 7).

The predominant InsP5 isomer changed in the intestinal
segments (Fig. 1 (B) and (C)). Ins(1,2,3,4,5)P5 was the pre-

dominant InsP5 isomer in the duodenum/jejunum and the

subsequent intestinal segments, accompanied by Ins
(1,2,3,4,6)P5 and Ins(1,2,4,5,6)P5 (Tables 7–9). In the duode-

num/jejunum, high concentrations of Ins(1,2,3,4)P4 (355

nmol/g DM) were noted and it remained the predominant
InsP4 isomer in subsequent segments in the BD treatment.

In the lower ileum, the same pattern of InsP5 isomers as in

the duodenum/jejunum was found whereas within the InsP4
isomers, Ins(1,2,4,6)P4 also appeared (Table 8). The pattern

of the InsP5 isomers in the caeca of birds fed the BD was

similar to that of the lower ileum, except that Ins(1,3,4,5,6)
P5 appeared in relatively low concentrations (75 nmol/g

DM) (Table 9). High concentrations of Ins(1,2,3,4)P4 (750

nmol/g DM) were detected in the caeca whereas Ins(1,2,4,6)
P4 was not found and InsP3 and traces of Ins(1,2,5,6)P4
appeared.

In the crop digesta of all phytase-containing treatments, the
InsP5 pattern was less broad compared with the BD. For the

PhyA treatment, the percentage of Ins(1,2,4,5,6)P5 in ∑InsP5
was significantly higher (P< 0·01) whereas the percentage of
Ins(1,2,3,4,5)P5 in ∑InsP5 was significantly lower (P < 0·01)

compared with the three other treatments (Fig. 1 (A)). In

Table 3. Myo-inositol 1,2,3,4,5,6-hexakis (dihydrogen phosphate) hydrolysis (%) in different segments of the digestive tract of broiler chickens

(Mean values and pooled standard errors; ten pens per treatment with fifteen birds per pen)

BD PhyA PhyE1 PhyE2 Pooled SEM

Crop 9d 64a 31c 44b 4·5

Duodenum/jejunum 59 63 65 68 2·8

Lower ileum 74 74 79 82 3·8

Caeca 91b 93b 95a 96a 0·7

BD, basal diet; PhyA, BD supplemented with Aspergillus niger 3-phytase, Finase® P; PhyE1, BD supplemented with Escherichia coli 6-phytase, Quantum®; PhyE2, BD supple-
mented with E. coli 6-phytase, Quantum® Blue.
a–d Mean values in a row with unlike superscript letters were significantly different (P ≤ 0·05; Fisher’s protected least significant difference test). Mean separation was only com-
puted if the overall F test was significant.

Table 4. Net absorption of phosphorus (%) in segments of the small intestine of broiler chickens

(Mean values and pooled standard errors; ten pens per treatment with fifteen birds per pen)

BD PhyA PhyE1 PhyE2 Pooled SEM

Duodenum/jejunum 34b 38a 38a 39a 1·2

Lower ileum 57b 56b 60a,b 64a 2·1

BD, basal diet; PhyA, BD supplemented with Aspergillus niger 3-phytase, Finase® P; PhyE1, BD supplemented with Escherichia coli 6-phytase, Quantum®; PhyE2, BD supple-
mented with E. coli 6-phytase, Quantum® Blue.
a,b Mean values in a row with unlike superscript letters were significantly different (P≤0·05; Fisher’s protected least significant difference test). Mean separation was only computed
if the overall F test was significant.
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contrast, for PhyE1 and PhyE2, the percentage of Ins

(1,2,3,4,5)P5 in ∑InsP5 was significantly higher, but the per-
centage of Ins(1,2,4,5,6)P5 in ∑InsP5 was significantly lower

compared with the two other treatments. Ins(1,2,5,6)P4 and

InsP3 also occurred in the crop in high concentrations for
the phytase-containing treatments (Table 5). Ins(1,2,5,6)P4
appeared for the PhyE1 and PhyE2 treatment in significantly

higher concentrations compared with the BD and PhyA (P <
0·01) and as the only inositol tetrakisphosphate formed by

PhyA. InsP3 appeared in significantly higher concentrations

for PhyA than PhyE1 and PhyE2 (P < 0·01). The proportion
of ΣInsP4 in ΣInsP3–5 was significantly higher for PhyE2

(74 %) than PhyE1 (57 %) and PhyA (14 %) (P < 0·01),

and that of InsP3 in ΣInsP3–5 was significantly higher for
PhyA (69 %) compared with PhyE1 (15 %) and PhyE2

(13 %) (P< 0·01) in the crop. In the proventriculus/gizzard,

the InsP5 pattern of the phytase-containing treatments was
similar to that of the crop except Ins(1,2,3,4,6)P5 was not

seen in the proventriculus/gizzard (Table 6). Ins(1,2,5,6)P4
and InsP3 were detected in significantly lower concentrations

for PhyA compared with PhyE1 and PhyE2 (P < 0·01 for

both). A higher proportion of ΣInsP5 in ΣInsP3–5 and a
lower proportion of ΣInsP4 in ΣInsP3–5 were identified for

PhyA compared with PhyE1 and PhyE2 (P < 0·01).

In the segments of the small intestine, almost the same
InsP isomers were detected in all treatments, except Ins

(1,2,5,6)P4, which occurred only in the phytase treatments

(Tables 7 and 8). In the duodenum/jejunum, Ins(1,2,3,4,6)
P5 appeared for the first time for PhyA and PhyE2 and

again appeared for PhyE1. Ins(1,2,3,4)P4 was the predomin-

ating InsP4 isomer for all treatments. The concentrations of
Ins(1,2,3,4,5)P5 in the duodenum/jejunum were similar for

the BD and the PhyA, but significantly higher for the

PhyE1 and PhyE2 treatments (P < 0·01) (Table 7). Ins
(1,2,4,5,6)P5 was detected in significantly higher concentra-

tions for the PhyA compared with the other treatments

(P < 0·01). For all phytase treatments, a significantly lower
proportion of Ins(1,2,3,4,6)P5 in ΣInsP5 was determined

Table 5. Concentrations of different inositol phosphate (InsP) isomers (nmol/g DM) in the crop digesta

(Mean values and pooled standard errors; ten pens per treatment with fifteen birds per pen)

BD PhyA PhyE1 PhyE2 Pooled SEM

InsP3* ND 4268a 783b 845b 214

Proportion of InsP3 in ΣInsP3–5 0·69a 0·15b 0·13b 0·018

Ins(1,2,4,6)P4 ND ND ND ND

Ins(1,2,3,4)P4 ND ND 170 ND 20·8

Ins(1,2,5,6)P4 141c 922c 2708b 4505a 421

Proportion of ΣInsP4 in ΣInsP3–5 0·10c 0·14c 0·57b 0·74a 0·032

Ins(1,2,3,4,6)P5 116a ND 65b ND 5·1

Ins(1,2,3,4,5)P5 388a,b 101c 475a 355b 23·0

Ins(1,2,4,5,6)P5 638b 886a 371c 241d 46·2

Ins(1,3,4,5,6)P5 51 ND ND ND 8·6

Proportion of ΣInsP5 in ΣInsP3–5 0·90a 0·16c 0·28b 0·13c 0·037

InsP6 14 491a 5790d 10 922b 8670c 720

BD, basal diet; PhyA, BD supplemented with Aspergillus niger 3-phytase, Finase® P; PhyE1, BD supplemented with Escherichia coli 6-phytase, Quantum®; PhyE2, BD supple-
mented with E. coli 6-phytase, Quantum® Blue; InsP3, myo-inositol trisphosphate; ND, not detected (the InsP isomer was not detectable in the majority of samples); InsP4, myo-
inositol tetrakisphosphate; InsP5, myo-inositol pentakisphosphate; InsP6, myo-inositol 1,2,3,4,5,6-hexakis (dihydrogen phosphate).
a–d Mean values in a row with unlike superscript letters were significantly different (P ≤ 0·05; Fisher’s protected least significant difference test). Mean separation was only com-
puted if the overall F test was significant.
* At least one out of the following InsP3 isomers: Ins(1,4,5)P3, Ins(1,2,6)P3, Ins(2,4,5)P3, Ins(1,3,4)P3, Ins(1,4,6)P3.

Fig. 1. Myo-inositol pentakisphosphate (InsP5) isomers in the crop (A), duode-

num/jejunum (B) and ileum (C), expressed as a percentage of ∑InsP5. Values

are means, with their standard errors represented by vertical bars. a–d Values

with unlike letters within an InsP5 isomer were significantly different (P ≤ 0·05;

Fisher’s protected least significant difference test). Mean separation was only

computed if the overall F test was significant. □, Basal diet (BD); ░, BD sup-

plemented with Aspergillus niger 3-phytase, Finase® P (PhyA); , BD supple-

mented with Escherichia coli 6-phytase, Quantum® (PhyE1); , BD

supplemented with E. coli 6-phytase, Quantum® Blue (PhyE2).
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compared with the BD in the duodenum/jejunum (Fig. 1
(B)) and lower ileum (Fig. 1 (C)) (P< 0·01). In the lower

ileum, the significant difference in Ins(1,2,4,5,6)P5 concentra-

tions persisted (P < 0·01) whereas the difference in Ins
(1,2,3,4,5)P5 concentrations lost significance (Table 8).

InsP3 was not detectable in any of the treatments in the

small intestine.
In the caeca, the differences in InsP patterns between the

phytase-containing diets and the BD were less distinct than

in other sections. Concentrations of Ins(1,2,3,4,6)P5 and Ins
(1,2,3,4)P4 were lower (P< 0·01) and concentrations of

InsP3 (P = 0·03) and Ins(1,2,5,6)P4 (P = 0·04) partially higher

when phytases were supplemented, especially for PhyE2
(Table 9). The specific InsP isomers of the supplemented phy-

tases were still present in the caeca. The predominating InsP5
isomer was Ins(1,2,3,4,5)P5 for all phytase treatments. For the
PhyA treatment, significantly higher concentrations of Ins

(1,2,4,5,6)P5 were measured compared with the other treat-
ments (P < 0·01).

Discussion

Myo-inositol 1,2,3,4,5,6-hexakis (dihydrogen phosphate)

hydrolysis and net absorption of phosphorus

In agreement with previous studies that used low-Ca and

low-P diets(11–13) we found a high rate of InsP6 hydrolysis

(76 %) and P net absorption (57 %) in the lower ileum.
This raises the question of the origin of phytase responsible

for this hydrolysis. We found that without supplemented phy-

tase, the majority of InsP6 hydrolysis occurred by the end of
the duodenum/jejunum, but hydrolysis still continued in the

ileum and caeca. In the small intestine of broilers, the greatest

endogenous mucosa phytase activity was found in the

Table 6. Concentrations of different inositol phosphate (InsP) isomers (nmol/g DM) in the proventriculus/gizzard digesta

(Mean values and pooled standard errors; ten pens per treatment with fifteen birds per pen)

BD PhyA PhyE1 PhyE2 Pooled SEM

InsP3* ND 105c 348b 517a 54·2

Proportion of InsP3 in ΣInsP3–5 0·10 0·09 0·11 0·012

Ins(1,2,4,6)P4 ND ND ND ND

Ins(1,2,3,4)P4 ND ND <LOQ ND

Ins(1,2,5,6)P4 ND 254c 2457b 3537a 211

Proportion of ΣInsP4 in ΣInsP3–5 0·22c 0·67b 0·79a 0·017

Ins(1,2,3,4,6)P5 ND ND ND ND

Ins(1,2,3,4,5)P5 92c 107c 659a 295b 30·6

Ins(1,2,4,5,6)P5 188b 618a 155b 80c 28·0

Ins(1,3,4,5,6)P5 ND ND ND ND

Proportion of ΣInsP5 in ΣInsP3–5 1·00a 0·68b 0·24c 0·09d 0·020

InsP6 6877a 4968b 2219c 739d 196

BD, basal diet; PhyA, BD supplemented with Aspergillus niger 3-phytase, Finase® P; PhyE1, BD supplemented with Escherichia coli 6-phytase, Quantum®; PhyE2, BD supple-
mented with E. coli 6-phytase, Quantum® Blue; InsP3, myo-inositol trisphosphate; ND, not detected (the InsP isomer was not detectable in the majority of samples); InsP4, myo-
inositol tetrakisphosphate; LOQ, limit of quantification (the InsP isomer was not quantifiable in the majority of samples); InsP5, myo-inositol pentakisphosphate; InsP6, myo-inositol
1,2,3,4,5,6-hexakis (dihydrogen phosphate).
a–d Mean values in a row with unlike superscript letters were significantly different (P ≤ 0·05; Fisher’s protected least significant difference test). Mean separation was only com-
puted if the overall F test was significant.
* At least one out of the following InsP3 isomers: Ins(1,4,5)P3, Ins(1,2,6)P3, Ins(2,4,5)P3, Ins(1,3,4)P3, Ins(1,4,6)P3.

Table 7. Concentrations of different inositol phosphate (InsP) isomers (nmol/g DM) in the duodenal/jejunal digesta

(Mean values and pooled standard errors; ten pens per treatment with fifteen birds per pen)

BD PhyA PhyE1 PhyE2 Pooled SEM

InsP3* ND ND ND ND

Ins(1,2,4,6)P4 ND ND ND ND

Ins(1,2,3,4)P4 355 <LOQ 303 265 75·1

Ins(1,2,5,6)P4 ND <LOQ 123b 234a 44·9

Proportion of ΣInsP4 in ΣInsP3–5 0·28 0·26 0·27 0·025

Ins(1,2,3,4,6)P5 207a 184a 110b 99b 16·7

Ins(1,2,3,4,5)P5 399b 376b 864a 957a 111

Ins(1,2,4,5,6)P5 148c 379a 214b,c 232b 31·7

Ins(1,3,4,5,6)P5 ND ND ND ND

Proportion of ΣInsP5 in ΣInsP3–5 0·72b 1·00a 0·74b 0·73b 0·022

InsP6 13 392 12 664 11 812 10 701 1076

BD, basal diet; PhyA, BD supplemented with Aspergillus niger 3-phytase, Finase® P; PhyE1, BD supplemented with Escherichia coli 6-phytase, Quantum®; PhyE2, BD supple-
mented with E. coli 6-phytase, Quantum® Blue; InsP3, myo-inositol trisphosphate; ND, not detected (the InsP isomer was not detectable in the majority of samples); InsP4, myo-
inositol tetrakisphosphate; LOQ, limit of quantification (the InsP isomer was not quantifiable in the majority of samples); InsP5, myo-inositol pentakisphosphate; InsP6, myo-inositol
1,2,3,4,5,6-hexakis (dihydrogen phosphate).
a,b,c Mean values in a row with unlike superscript letters were significantly different (P ≤ 0·05; Fisher’s protected least significant difference test). Mean separation was only com-
puted if the overall F test was significant.
* At least one out of the following InsP3 isomers: Ins(1,4,5)P3, Ins(1,2,6)P3, Ins(2,4,5)P3, Ins(1,3,4)P3, Ins(1,4,6)P3.
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duodenum(8,10). Phytate-degrading activity has also been
reported for different lactic acid bacteria isolated from chicken

intestine(31). Thus, intestinal InsP6 hydrolysis was the result of

a combination of endogenous and microbiota phytase, with
as-yet-unknown contributions from each source. When phy-

tase activity in different segments of the digestive tract was

compared, the highest activity was found in the caeca(32) and
Kerr et al.(14) detected higher concentrations of InsP6 in the

caeca of gnotobiotic compared with conventional broilers. In

line with this observation, caecal InsP6 hydrolysis determined
in the present study was greater than 90 %. It should be noted

that retrograde movement of digesta and micro-organisms has

been described for all segments of the digestive tract in broi-
lers(33) and it cannot be ruled out that this affected concentra-

tions of InsP isomers, P and Ti anterior to the caeca.

With supplemented phytase, the crop and the proventriculus/
gizzard were the main sites of InsP6 hydrolysis in the present

study. The differences found between the supplemented phy-
tases in these segments might be related to differences in

enzyme kinetics, pH or resistance against gastrointestinal pro-

teases. A higher temperature optimum was reported for E.

coli compared with Aspergillus phytases(34,35). At approximate

body temperature (42°C), Aspergillus phytases show an activity

of 85 % of the maximum whereas the activity of some E. coli
phytases is reduced to 60 % of the in vitro analysed max-

imum(34). Furthermore, E. coli phytases are more resistant

than Aspergillus phytases against pepsin and pancreatin and
show a higher activity at pH 3, which is close to the pH in

the proventriculus/gizzard(35–37). This might explain why the

differences between phytases noted in the crop disappeared in
the duodenum/jejunum. Moreover, a residual activity of 93

and 60 % has been found for an E. coli and an Aspergillus phy-

tase, respectively, after incubation in digesta of the
proventriculus(35).

Table 8. Concentrations of different inositol phosphate (InsP) isomers (nmol/g DM) in the digesta of the lower ileum

(Mean values and pooled standard errors; ten pens per treatment with fifteen birds per pen)

BD PhyA PhyE1 PhyE2 Pooled SEM

InsP3* ND ND ND ND

Ins(1,2,4,6)P4 121 ND <LOQ <LOQ 30·5

Ins(1,2,3,4)P4 309 248 282 216 69·3

Ins(1,2,5,6)P4 ND 275 177 192 61·4

Proportion of ΣInsP4 in ΣInsP3–5 0·34 0·31 0·31 0·31 0·036

Ins(1,2,3,4,6)P5 231a 209a 149a,b 106b 36·0

Ins(1,2,3,4,5)P5 422 410 776 735 156

Ins(1,2,4,5,6)P5 110b 463a 163b 195b 51·5

Ins(1,3,4,5,6)P5 ND ND ND ND

Proportion of ΣInsP5 in ΣInsP3–5 0·66 0·69 0·69 0·69 0·036

InsP6 11 575 12 348 9965 8913 2089

BD, basal diet; PhyA, BD supplemented with Aspergillus niger 3-phytase, Finase® P; PhyE1, BD supplemented with Escherichia coli 6-phytase, Quantum®; PhyE2, BD supple-
mented with E. coli 6-phytase, Quantum® Blue; InsP3, myo-inositol trisphosphate; ND, not detected (the InsP isomer was not detectable in the majority of samples); InsP4, myo-
inositol tetrakisphosphate; LOQ, limit of quantification (the InsP isomer was not quantifiable in the majority of samples); InsP5, myo-inositol pentakisphosphate; InsP6, myo-inositol
1,2,3,4,5,6-hexakis (dihydrogen phosphate).
a,b Mean values in a row with unlike superscript letters were significantly different (P ≤ 0·05; Fisher’s protected least significant difference test). Mean separation was only com-
puted if the overall F test was significant.
* At least one out of the following InsP3 isomers: Ins(1,4,5)P3, Ins(1,2,6)P3, Ins(2,4,5)P3, Ins(1,3,4)P3, Ins(1,4,6)P3.

Table 9. Concentrations of different inositol phosphate (InsP) isomers (nmol/g DM) in the caecal digesta

(Mean values and pooled standard errors; ten pens per treatment with fifteen birds per pen)

BD PhyA PhyE1 PhyE2 Pooled SEM

InsP3* 217b 275b 355a,b 470a 59·4

Proportion of InsP3 in ΣInsP3–5 0·09b 0·13b 0·19b 0·30a 0·020

Ins(1,2,4,6)P4 ND ND ND ND

Ins(1,2,3,4)P4 750a 484b 422b 284b 86·1

Ins(1,2,5,6)P4 <LOQ 309a 190b 318a 38·9

Proportion of ΣInsP4 in ΣInsP3–5 0·34b 0·41a 0·36b 0·39a,b 0·015

Ins(1,2,3,4,6)P5 365a 186b 88b ND 43·8

Ins(1,2,3,4,5)P5 578a 324b 436a,b 308b 63·7

Ins(1,2,4,5,6)P5 119b 302a 96b 82b 18·8

Ins(1,3,4,5,6)P5 75 85 86 85 7·5

Proportion of ΣInsP5 in ΣInsP3–5 0·57a 0·47b 0·45b 0·31c 0·023

InsP6 6751a 4494b 3648b,c 2255c 544

BD, basal diet; PhyA, BD supplemented with Aspergillus niger 3-phytase, Finase® P; PhyE1, BD supplemented with Escherichia coli 6-phytase, Quantum®; PhyE2, BD supple-
mented with E. coli 6-phytase, Quantum® Blue; InsP3, myo-inositol trisphosphate; InsP4, myo-inositol tetrakisphosphate; ND, not detected (the InsP isomer was not detectable in
the majority of samples); LOQ, limit of quantification (the InsP isomer was not quantifiable in the majority of samples); InsP5, myo-inositol pentakisphosphate; InsP6, myo-inositol
1,2,3,4,5,6-hexakis (dihydrogen phosphate).
a,b,c Mean values in a row with unlike superscript letters were significantly different (P ≤ 0·05; Fisher’s protected least significant difference test). Mean separation was only com-
puted if the overall F test was significant.
* At least one out of the following InsP3 isomers: Ins(1,4,5)P3, Ins(1,2,6)P3, Ins(2,4,5)P3, Ins(1,3,4)P3, Ins(1,4,6)P3.
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Appearance of inositol phosphate isomers: basal diet

Past experiments in poultry have focused on the analysis of

InsP6 and rarely considered clarification of the location of
InsP6 hydrolysis(14,32,38). A few studies have investigated the

sum of InsP5, InsP4 and InsP3 isomers in digesta samples

of poultry, without differentiation among positional iso-
mers(39–41). The authors are not aware of any published

study investigating positional InsP isomers in the digestive

tract of broilers, which led us to making this one of our
objectives.

When the BD was fed, the dominating InsP5 isomers found

in the crop were Ins(1,2,4,5,6)P5 and Ins(1,2,3,4,5)P5. Ins
(1,2,3,4,6)P5 and Ins(1,3,4,5,6)P5 that occurred in concentra-

tions close to the limit of detection may have originated

from the diet (Table 1). The changing pattern of InsP5 isomers
(Fig. 1 (A)) in the crop compared with the diet affirm InsP6
hydrolysis in the crop, as does the additional occurrence of

InsP4. The appearance of Ins(1,2,4,5,6)P5 might have been
caused by residual intrinsic soyabean phytase, which is a

3-phytase, that withstood exposure to heat in the desolventi-

ser–toaster and was below the limit of detection in the feed.
However, this could also have been caused by microbial phy-

tases because 3-phytases are primarily found in fungi (A. niger,

A. terreus, A. fumigatus, Neurospora crassa), yeasts (Saccharomyces
castellii, Saccharomyces cerevisiae) and bacteria (Selenomonas ruminan-

tium, Selenomonas lacticifex, Megasphaera elsdenii, Klebsiella terrigena,

Pantoea agglomerans, Pseudomonas syringae, Bacillus subtilis, Bacillus
amyloliquefaciens). Phytases of plant origin are primarily classi-

fied as 4-/6-phytases but 6-phytases were also found for spe-

cific bacteria such as E. coli, Peniophora lycii and Bifidobacterium

pseudocatenulatum(7,42,43). Therefore, it remains open whether

in the present study Ins(1,2,3,4,5)P5 was formed by plant or

microbiota phytase. Ins(1,2,5,6)P4 (perhaps co-eluted with
Ins(2,3,4,5)P4) measured in the crop could have been formed

by 3- or 6-phytases(5,7). A formation by other phosphatases

which further degraded Ins(1,2,4,5,6)P5 or Ins(1,2,3,4,5)P5 to
Ins(1,2,5,6)P4 also is possible.

The fact that there was so little InsP5 in the proventriculus/

gizzard suggests that when no phytase is added there is very
little InsP6 hydrolysis in that acid environment. Some remain-

ing intrinsic plant phytase may rapidly be inactivated at low pH

values and in the presence of pepsin and pancreatin(44–47). The
lack of InsP3–4 isomers and the dominance of InsP5 isomers in

the proventriculus/gizzard further indicate that InsP5 hydroly-

sis is less rapidly advanced. However, InsP and their com-
plexes are soluble under acidic conditions and mineral

chelates of lower InsPs are more soluble. Hence fast break-

down of InsP3–4 also could have happened in the proventricu-
lus/gizzard.

Following passage through the acid phase of the proven-

triculus/gizzard, a higher accessibility of phytate in the poster-
ior segments can be assumed. In the duodenum/jejunum, a

greater range of InsP isomers compared with those found in

the stomach was found for the BD treatment, showing intense
hydrolysis of InsP6 in this segment. This increase probably was

the result of substrate-induced InsP6 hydrolysis by microbiota

or endogenous mucosa phytase. Phytate-induced phytase

production was reported for several bacteria(48–50). The results

of Schlemmer et al.(16) showed substrate dependence of micro-

biota phytase activity in the colon of pigs. For mucosal phy-
tase, increased activity with dietary phytic acid was also

reported in rats(51). In addition to an alteration of InsP6
hydrolysis and diversity of InsP isomers, the InsP pattern
changed between the anterior and intestinal segments of the

digestive tract (Fig. 1). This change in InsP pattern suggests

the involvement of phosphatases of different origin in differ-
ent segments, with 3- and 6-phytases dominating in the crop

and 6- and 5-phytases dominating in the intestinal segments.

Ins(1,2,3,4,5)P5 can be formed by bacterial 6-phytase of the
intestinal microbiota, for example, an E. coli 6-phytase. Ins

(1,2,3,4)P4 first appeared in the duodenum/jejunum and was

the dominating InsP4 isomer in all intestinal segments when
the BD was fed. It might have been a hydrolysis product of

a 5-phytase because the majority of phytases continue depho-

sphorylation adjacent to a free hydroxyl group. Ins(1,2,3,4)P4
(perhaps co-eluted with Ins(1,2,3,6)P4) was also characterised

as a hydrolysis product of a 5-phytase in lily pollen and

Selenomonas ruminantium subsp. lactilytica(52,53). However, as
Ins(1,2,3,4)P4 was also detected as a minor hydrolysis product

of specific 6-phytases, it principally could have been formed by

both 5- and 6-phytases. In addition, the involvement of other
phosphatases which further degraded InsP5 cannot be ruled

out. Because 5-phytase is described only for Selenomonas rumi-

nantium subsp. lactilytica(53), lily pollen and Bifidobacterium pseudo-

catenulatum(43), its origin in the intestine of broilers was

unexpected. Human gut-isolated Bifidobacterium pseudocatenula-

tum initiates InsP6 hydrolysis at the C-6 and C-5 position of
the myo-inositol ring and proceeds via Ins(1,2,3,4)P4

( 43), but

the authors are not aware of any study that found this species

of Bifidobacterium in broilers.
For the caeca, the broad pattern of InsP isomers is an indi-

cation of a highly diverse microbial population likewise produ-

cing several phytate-degrading enzymes. From bacteria
occurring in the chicken digestive tract, phytate-degrading

activity has been described for Lactobacillus spp.(31),

Enterobacter spp.(54), E. coli(7), Klebsiella pneumoniae(55), Bacillus
spp.(56), Bifidobacterium spp.(57) and Pseudomonas aeruginosa(58).

Differences between the InsP pattern of the intestinal seg-

ments might be caused by the differing microbial community
composition as described by Lu et al.(59) and coupled with the

variations in activity of the endogenous phytase. Ins(1,3,4,5,6)

P5, which appeared in the caeca, indicates the activity of a
phosphatase in the caeca that initiates hydrolysis at the C-2

position of the inositol ring. If this was not undegraded Ins

(1,3,4,5,6)P5 from the feed then this finding contradicts the
general assumption that phytate-degrading enzymes are unable

to cleave the axial phosphate group of the myo-inositol ring.

Appearance of inositol phosphate isomers: phytase

treatments

The second objective of the present study was to investigate
the InsP6 degradation pattern of different phytase supplements

and their effectiveness in releasing phosphate in different
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segments of the digestive tract. For the PhyA treatment, Ins

(1,2,4,5,6)P5 was the predominant InsP5 isomer whereas Ins

(1,2,3,4,5)P5 was predominant for the PhyE1 and PhyE2 treat-
ments. This shows, for the first time, that in the crop of broi-

lers the patterns are very similar to the in vitro pattern of

hydrolysis of these 3- and 6-phytases, initiating InsP6 hydroly-
sis at the D-3 (L-1) and D-6 (L-4) positions of the inositol

ring(5,7). Ins(1,2,5,6)P4 (perhaps co-eluted with Ins(2,3,4,5)

P4) and InsP3, both of which were present in high concentra-
tions for the phytase treatments, are the two other main

hydrolysis products of the three phytases. This pattern con-

forms with in vitro results that showed D-Ins(2,3,4,5)P4 as a
hydrolysis product of E. coli and D-Ins(1,2,5,6)P4 of

Aspergillus phytase(5,7). The proportion of ΣInsP4 in ΣInsP3–5
was higher for PhyE1 and PhyE2 compared with PhyA where-
as the proportion of InsP3 in ΣInsP3–5 was higher for PhyA in

the crop. Accumulation of myo-inositol tris- and bisphosphates

following hydrolysis by A. niger phytase has already been
shown in vitro(60). In contrast, a fast progression from InsP5
to InsP4 is expected for E. coli, but InsP4 accumulated. This

result corresponds to in vitro findings in which InsP4 accumu-
lated during InsP6 hydrolysis by E. coli phytase and was later

slowly hydrolysed to InsP3
( 6). Because the lower-molecular-

weight esters of InsPs have a lower mineral-binding strength
than InsP6 or InsP5

(61), the solubility of these esters in the

small intestine will be improved, allowing access to them by

the endogenous phytase/phosphatases(62).
In the duodenum/jejunum and to some extent also in the

ileum, the InsP5 and InsP4 isomers specifically formed by

the respective supplemented phytases were present in higher
concentrations compared with both the BD and the other phy-

tase treatments. Thus, further activity of the enzymes can be

assumed in these intestinal segments. However, the proportion
of Ins(1,2,3,4,6)P5 in ΣInsP5 was significantly lower, and con-

centrations of Ins(1,2,3,4)P4 tended to be lower for the phy-

tase treatments compared with the BD treatment in the
duodenum/jejunum and lower ileum. Supplementation of

phytase tends to reduce lactic acid bacterial count and signifi-

cantly reduce E. coli count in the ileal digesta of broilers(63),
and, as mentioned earlier, both bacterial groups were sus-

pected to be involved in phytate degradation. Aydin et al.(63)

speculated that the decrease is related to a possible reduction
in the quantity of substrate available to the intestinal micro-

biota. If there was a reduction of lactic acid bacteria (for

example, Bifidobacteria) this might explain the decrease in
5-phytase activity for all phytase-containing treatments where-

as a reduction of E. coli bacteria might explain the decrease in

6-phytase activity for PhyA. Furthermore, a reduction in intes-
tinal mucosal phytase activity has been reported when chickens

were supplemented with phytase(10). Thus, a decrease in activ-

ity of endogenous mucosal phytase might also have contribu-
ted to different InsP pattern between the phytase and the BD

treatments in the small intestine. In the lower ileum, the signifi-

cant differences between treatments in Ins(1,2,4,5,6)P5 con-
centration persisted, but the differences in Ins(1,2,3,4,5)P5
concentration did not. An explanation could be that the activ-

ity of supplemented phytases was significantly reduced at this
point due to increasing pH and/or proteolytic degradation.

Igbasan et al.(35) detected a residual activity of 60 and 55 %

for an Aspergillus and 87 and 80 % for an E. coli phytase in

the jejunal and ileal digesta, respectively. Intestinal phospha-
tases might continue to hydrolyse InsP3–5 isomers formed

by the supplemented PhyE1 and PhyE2, but InsP5 isomers

formed by PhyA seemed to be less degradable by intestinal
phosphatases. In this regard, Yu et al.(64) showed that Ins

(1,2,4,5,6)P5 was a more potent aggregator of protein at low

pH compared with Ins(1,2,3,4,5)P5 which probably would
reduce susceptibility of this isomer to phosphatase activity in

the intestine.

Conclusions

We conclude that broilers and their microbiota have a high

capacity to hydrolyse InsP6 in the intestine. The differentiation
between InsP6 hydrolysis products of endogenous or micro-

biota phytases and their contribution to InsP6 hydrolysis in dif-

ferent segments still requires experimental work. Phytase
supplements are more effective in the anterior than in the

intestinal segments of the digestive tract, supporting in vitro

properties. The main InsP6 degradation products of
Aspergillus and E. coli phytases as determined from in vitro stud-

ies are also formed in the crop and proventriculus/gizzard of

broilers. Differences in InsP6 hydrolysis between PhyE1 and
PhyE2 compared with PhyA existing in the crop disappeared

until the ileum. InsP4 accumulated in the crop when PhyE1

and PhyE2 were used. However, InsP3 accumulated when
PhyA was used. It became apparent that the hydrolytic cleav-

age of the first phosphate group is not the only limiting step in

phytate degradation in broilers.
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Abstract 

The objective was to determine the availability of P from mineral phosphate sources by using 

different basal diets in broilers. The investigated criteria were P retention, prececal (pc) P 

digestibility and pc myo-inositol phosphate (InsP) degradation. In experiment 1, semi-

synthetic and corn-soybean meal-based basal diets were used. Corn-based and wheat-based 

basal diets were used in experiment 2. Anhydrous monosodium phosphate (MSPa) or 

monocalcium phosphate monohydrate (MCPh) was supplemented to increment the P 

concentration by 0.05, 0.10, and 0.15% or by 0.075 and 0.150% in experiments 1 and 2, 

respectively. Titanium dioxide was used as an indigestible marker. In experiment 1, retention 

was measured based on total excreta collection from 20 to 24 d of age using 7 replicated birds 

per diet. In experiment 2, digesta from the terminal ileum was collected from 22-d-old 

broilers penned in groups of 19 with 5 replicated pens per diet. In experiment 1, the P 

retention response to supplemented MSPa did not differ between the 2 basal diets. The 

response in pc P digestibility to MCPh supplements also did not differ between the 2 basal 

diets in experiment 2, as calculated by linear regression analysis. In birds fed the basal diets 

without a mineral P supplement InsP6 hydrolysis measured on both the excreta and pc levels 

was high. In both experiments mineral P supplementation significantly reduced (P < 0.05) 

InsP6 hydrolysis from the InsP-containing diets. Thus, the evaluation of the supplemented 

mineral P source was not affected by the choice of the basal diet. However, calculated values 

for the use of mineral P sources must be adjusted for the decline in InsP hydrolysis they cause 

in the respective basal diet. 
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Abstract 

The objectives of this study were to investigate the effects of supplements of mineral 

phosphorus (P) and phytase as well as their interactions on phytate hydrolysis and the 

presence of inositol phosphate isomers (InsPs) in the small intestine of broilers. Fifteen-day 

old broilers were assigned to 48 pens of 20 broilers each (n = 8 pens/treatment). Two low-P 

corn-soybean meal-based diets without (BD−; 4.4 g P/kg dry matter) or with monocalcium 

phosphate (MCP; BD+; 5.2 g P/kg dry matter) were supplied without or with added phytase at 

500 or 12,500 FTU/kg. On d 24, digesta from the duodenum/jejunum and lower ileum was 

pooled per segment on a by-pen basis, freeze-dried, and analyzed for P, InsPs, and the marker 

TiO2. Another 180 broilers (n = 6 pens/treatment, 10 birds each) were fed the 3 BD+ diets 

from d 1 to 21 to assess the influence of supplemented phytase on tibia mineralization and 

strength. Significant interactions between MCP and phytase supplements on myo-inositol 

1,2,3,4,5,6-hexakis (dihydrogen phosphate) (InsP6) hydrolysis and level of specific lower 

InsPs were detected. Supplementation with 12,500 FTU/kg phytase resulted in 92% InsP6 

hydrolysis and strong degradation of InsP5. Supplementation with 12,500 FTU/kg phytase 

further resulted in higher P net absorption, affirmed by higher BW gain, tibia strength, and 

mineralization compared to treatments without or with 500 FTU/kg phytase (P ≤ 0.05). MCP 

supplementation reduced the degradation of InsP6 and specific lower InsPs in birds fed diets 

without or with 500 FTU/kg of phytase (P ≤ 0.05), but did not reduce InsP6 hydrolysis or 

degradation of InsP5 at the high phytase dose. It can be concluded that effects of added MCP 

on phytase efficacy depend on the dose of supplemented phytase. The detected differences in 

the concentrations of lower InsPs indicated that the initial step of InsP6 hydrolysis is not the 

only catabolic step that is influenced by MCP or phytase levels. 
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Abstract 

The objective of this study was to investigate the effect of diets containing microwave-treated 

wheat and supplemental enzymes on the hydrolysis of myo-inositol 1,2,3,4,5,6-hexakis 

(dihydrogen phosphate) (InsP6) and the presence of inositol phosphate isomers (InsPs) in the 

small intestine of broilers. Sixteen-day-old broilers were assigned to 48 pens of 15 broilers 

each (n = 8 pens per treatment) in a 2 × 3 factorial arrangement of treatments. We fed a 

wheat-soybean meal diet that was low in phosphorus (4.8 g/kg dry matter) and that contained 

either microwave-treated (BDTW) or untreated (BDUTW) ground wheat. Diets were used 

without an enzyme supplement or after supplementation with an E. coli-derived phytase, 

alone or in combination with a xylanase. On d 23, samples of digesta from the 

duodenum/jejunum and lower ileum were pooled per segment on a by-pen basis, freeze-dried, 

and analyzed for P, InsPs, and the marker TiO2. Microwave treatment affected dietary 

intrinsic phytase activity (BDUTW: 623 U/kg; BDTW: 121 U/kg). In the ileum, significant 

interactions between microwave treatment and enzyme supplementation were found for InsP6 

hydrolysis and P net absorption. In both segments, InsP6 hydrolysis and P net absorption were 

significantly increased by supplementation of phytase. Supplemental xylanase caused no 

further increments. The significant interaction on InsP6 hydrolysis in the ileum was due to a 

higher InsP6 hydrolysis for BDTW (78%) than for BDUTW (69%) in the absence of 

supplemental phytase. Microwave treatment of wheat had no effect on InsP6 hydrolysis in 

birds that were fed diets containing phytase. The significant interaction on P net absorption in 

the ileum was due to reduced P net absorption by microwave treatment in the presence but not 

absence of supplemental phytase. We conclude that broilers and their gut microbiota have a 

high potential to hydrolyze InsP6 in the intestine. Microwaving may have disrupted wheat 

aleurone structures in ways that increased accessibility of InsP6 and may have encouraged 

higher levels of activity among specific phytases of microbial or endogenous mucosal origin 

in the lower small intestine. It can further be suggested from the accumulation of InsP3 in the 

duodenum/jejunum for microwave-treated diets that such treatment reduces the effectiveness 

of the phosphatases that further degrade InsP3. 
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Introduction 

Phytate (any salt of phytic acid (myo-inositol 1,2,3,4,5,6-hexakis (dihydrogen phosphate) or 

InsP6) represents the major binding form of organic phosphorus (P) in poultry diets. In the 

digestive tract P is primarily absorbed as orthophosphate. To contribute to the animal’s P 

supply, dietary InsP6-P needs to be cleaved by phytases prior to absorption. Different 

nutritional factors are known to affect InsP6 hydrolysis in broilers. Besides added microbial 

phytase, mineral P and factors affecting accessibility or solubility of phytate have been 

described as influencing factors (Tamin and Angel, 2003; Woyengo et al., 2010; Shastak et 

al., 2014; Zeller et al., 2015c). Only few studies reported a correlation between the level of 

intrinsic grain phytase activity and P retention, and thus, indicated an effect of intrinsic plant 

phytase activity on InsP6 hydrolysis (Barrier-Guillot et al., 1996; Oloffs et al., 2000). When 

broilers are fed diets that contain recommended industrial standard doses of phytase additives 

(500-750 FTU/kg of feed), a considerable proportion of dietary InsP6 is not hydrolyzed during 

passage through the digestive tract. More recent studies found that inclusion of a multiple of 

the current industry standard dose may achieve InsP6 hydrolysis of more than 90% in broilers 

(Shirley and Edwards Jr., 2003; Zeller et al., 2015c). Inorganic phosphate (Pi) can reduce 

activity of phytases and other phosphatases by end product inhibition (Shieh et al., 1969). 

Thus, degradation of inositol phosphate isomers (InsPs) by phosphatases occurring in the 

digestive tract and efficacy of added phytases may be diminished by dietary mineral P. In the 

small intestine of broilers, inclusion of mineral P and Ca reduced phytase efficacy less when 

phytase was supplemented far above the current standard dose than at the standard dose 

(Zeller et al., 2015c). In wheat-based diets, xylanase may synergize with phytase since the 

aleurone layer, whose cell walls predominantly consist of arabinoxylans, saves the major part 

of phytate in wheat (O'Dell et al., 1972). Thus, xylanase may increase accessibility of phytate 

for phytases by the hydrolysis of arabinoxylans. 

Avian species possess a unique organ, the crop. In theory, pH, which ranges between 3.8 and 

6.9 (Svihus, 2010), and other conditions in the crop support the action of intrinsic plant and 

most microbial phytases. With exception of some bacterial and plant phytases, the pH 

optimum of currently relevant phytases ranges between 4.0 and 6.0 (Greiner, 2010). Before 

entering the acid proventriculus/gizzard, dietary phytases can develop catalytic activity at 

higher pH in the crop, where no secretion of proteolytic enzymes occurs and phytate solubility 

is higher than in the intestine. Thus, information about the effect of different dietary phytases 

and other dietary factors on InsP degradation in the crop may play a key role in identification 

of possibilities to increase InsP6 hydrolysis and degradation of lower InsPs in broilers.  
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Phytases of different origin produce different positional InsPs and may show different kinetics 

for the various InsPs. It is still unknown whether microbial and intrinsic plant phytase show 

synergistic or additive effects on InsP degradation in the crop. Moreover, authors are not 

aware of any study that investigated the effect of very high levels of added phytase and 

mineral P and their interactions on InsP degradation in the crop. 

Therefore, the first objective was to study the separate and interactive effects of microwave 

treatment in wheat (applied to inactivate intrinsic plant phytase) and phytase supplemented 

alone or together with xylanase on InsP6 hydrolysis and lower InsPs in the crop of broilers 

(experiment 1). The second objective was to investigate the effects of supplemented phytase 

(a standard and a high level that largely exceeded the current standard level), a mineral P 

supplement, and their interactions on InsP6 hydrolysis and the appearance of InsPs in the crop 

(experiment 2). 

Material and Methods 

Two experiments were conducted. Materials and methods of experiment 1 and 2 were 

described in detail by Zeller et al. (2015a and 2015c, part 1), respectively.  

Experimental diets, animals and management 

Both experiments employed a 2x3 factorial arrangement of treatments. In experiment 1, 

dietary treatments were based on two low-P wheat-soybean meal-based diets, one containing 

microwave treated wheat (BDTW) the other containing untreated wheat (BDUTW). 

Concentrations of total P (tP) and Ca were calculated to be 4.7 and 7.8 g/kg of dry matter 

(DM). Diets were fed without or with supplementation of an E. coli derived, thermotolerant 

phytase (Phy, Quantum Blue
®
, intended activity 500 FTU/kg), alone or in combination with a 

commercial T. reesei derived thermostable endo-1,4-beta-xylanase (Xyl, Econase
®
 XT 25, 

intended activity 16,000 BXU/kg, both AB Vista, Marlborough, UK). High phytase activity 

was measured in BDUTW (623 U/kg), whereas BDTW was very low in phytase activity (121 

U/kg). Phytase activity of the enzyme supplemented diets ranged between 341 and 389 

FTU/kg of diet. Xylanase activity was below the limit of detection in BDUTW, except in BDTW 

(1,820 FAXU/kg). Xylanase activity in the xylanase supplemented diets ranged between 

11,700 and 14,000 FTU/kg of diet.  

In experiment 2, two low-P maize-soybean meal-based diets without (BD-) or with 

monocalcium phosphate (MCP, BD+) were used. Diets were fed without or with 

supplementation of an E. coli derived phytase (Quantum Blue
®
, EC 3.1.3.26, supplied by AB 

Vista, Marlborough, UK) at a level of 500 or 12,500 FTU/kg. The tP and Ca concentrations 
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were calculated to be 4.5 g/kg and 6.5 g/kg of DM in BD- and 5.4 g/kg and 7.9 g/kg of DM, 

respectively, in BD+. Phytase activity in BD- and BD+ was below the limit of detection and 

intended phytase activities in the supplemented diets were confirmed by analyses. In both 

experiments titanium (Ti) dioxide was included as an indigestible marker and diets were 

pelletized. 

In experiment 1, seven hundred and twenty broiler hatchlings were randomly allocated, 15 

birds per pen, to 48 pens. In experiment 2, nine hundred and sixty broiler hatchlings were 

randomly allocated, 20 birds per pen, to 48 pens. Dietary treatments were assigned to the pens 

(eight pens per treatment) in accordance with a completely randomized block design in the 

animal house on day 16 and 15 in experiment 1 and 2, respectively. Diets were fed until 

slaughter at day 23 and 24 in experiment 1 and 2, respectively. In both experiments, diets and 

tap water were provided for ad libitum consumption.  

Sampling and analytical methods 

To standardise feed intake prior to sampling and thus retention time of feed in the crop, in 

both experiments, birds were stimulated to eat in the last hour before slaughter by removing 

feed two hours prior to killing. Feed was provided again one hour before killing. This was 

done on a pen-by-pen basis to ensure the same time schedule for all pens. In experiment 1, on 

day 23, all birds were asphyxiated by CO2 exposure. In experiment 2, on day 24, 15 out of the 

20 birds from each pen were randomly selected and stunned with a gas mixture of 35% CO2, 

35% N2, and 30% O2, and euthanized via CO2 asphyxiation. In both experiments, immediately 

after the slaughter the crop was cut open and purged. Samples from the crop content were 

pooled for all birds from one pen, immediately frozen at -18°C, freeze-dried, and pulverized 

using a vibrating cup mill (Type 6-TOPF, Siebtechnik GmbH, Mülheim-Ruhr, Germany). 

Pulverized samples were stored at 4 °C until analysis. Samples were analyzed for 

concentrations of InsPs and Ti. 

Calculations and statistical analysis 

InsP6 hydrolysis was calculated on a by-pen basis according to the following equation: 

InsP6 hydrolysis (%) = 100 – 100 x    i in      i               i in      i  s a             x    nsP  in      i  s a             nsP  in      i                

Non-transformed data were expressed as means of treatments and their pooled SEM. Data 

were analyzed using the MIXED procedure of the software package SAS for Windows 

(version 9.1.3, SAS Institute Inc., Cary, NC, USA). Data that showed non-normally 

distributed residuals or heterogeneity of variance were log or square-root transformed prior to 
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statistical analysis. For details on the statistical models the reader is referred to the 

aforementioned manuscripts of Zeller et al. (2015a and 2015c, part 1). Statistical significance 

was evaluated by a two-way (2×3) analysis of varianc   P≤0.05  (two microwave treatment 

and three enzyme levels (experiment 1) and two MCP and three phytase levels (experiment 

2)).  f an  ff c  of in  rac ion was     c     P≤0.05 ,  iff r nc s between treatments were 

tested using multiple t-  s s a  a l v l of si nificanc  of P≤0.05. 

Results 

Experiment 1 

In experiment 1, microwave treatment of wheat significantly reduced and enzyme 

supplementation significantly increased InsP6 hydrolysis in the crop (Table 1). InsP6 

hydrolysis was significantly increased by supplementation of phytase, but it was not further 

increased by the additional supplementation of xylanase.  

Microwave treatment significantly increased concentrations of Ins(1,2,3,4,5)P5 and 

Ins(1,2,4,5,6)P5 in the crop. Concentrations of Ins(1,2,3,4,6)P5, Ins(1,2,3,4,5)P5 and 

Ins(1,2,4,5,6)P5 were significantly reduced by supplementation of phytase but not further 

reduced by the additional supplementation of xylanase. A significant interaction between 

microwave treatment and enzyme supplementation was found for concentration of 

Ins(1,2,5,6)P4. Concentrations of Ins(1,2,5,6)P4 were significantly reduced when wheat was 

microwave treated in the diets without enzyme supplements. When the diets were 

supplemented with phytase concentration of Ins(1,2,5,6)P4 was significantly increased by 

microwave treatment. Supplementation of phytase had no effect on Ins(1,2,5,6)P4 

concentration when wheat was untreated, but significantly increased Ins(1,2,5,6)P4 

concentration when wheat was microwave treated; an effect that was not altered with 

additional supplementation of xylanase. Concentrations of Ins(1,2,3,4)P4 were significantly 

decreased by microwave treatment and supplementation with phytase, but not further 

decreased with additional supplementation of xylanase. Concentrations of InsP3 were 

significantly reduced by microwave treatment.  

Experiment 2 

In experiment 2, supplementation of 500 FTU/kg phytase significantly increased InsP6 

hydrolysis in the crop, an effect that was further and significantly increased after 

supplementation of 12,500 FTU/kg phytase (up to 77% (BD-) and 80% (BD+)) (Table 2). 

Inclusion of MCP did not affect InsP6 hydrolysis.  



128  4 Included manuscripts – Manuscript 5 

 

A significant interaction between MCP and phytase supplements was found for concentrations 

of Ins(1,2,3,4,5)P5 and Ins(1,2,4,5,6)P5. This interaction was due to increased concentrations 

of both InsPs when MCP was supplemented to the diets without phytase. Supplementation 

with 500 FTU/kg phytase resulted in a significant decrease in concentrations of both InsPs; 

12,500 FTU/kg phytase caused further significant reduction in concentrations of 

Ins(1,2,3,4,5)P5 but not Ins(1,2,4,5,6)P5. In broilers fed diets with phytase, Ins(1,2,3,4,6)P5 

was only detected in low concentrations when 500 FTU/kg phytase were supplemented to 

BD-. Concentrations of Ins(1,2,5,6)P4 were significantly increased by supplementation with 

phytase; concentrations of Ins(1,2,5,6)P4 were significantly higher after treatment with 500 

FTU/kg phytase compared to 12,500 FTU/kg phytase. InsP3 was detected in high 

concentrations in the crop content upon supplementation of 500 FTU/kg phytase. 

Discussion 

Variability of InsP6 hydrolysis in the crop 

In experiment 2, InsP6 hydrolysis was negligible when the maize-based diet without 

detectable phytase activity was fed. Zeller et al. (2015b) similarly reported low InsP6 

hydrolysis in the crop of broilers fed a maize-soybean meal-based diet without enzyme 

supplements. In contrast, InsP6 hydrolysis in the present study was high (59%) when the diet 

with high intrinsic phytase activity (623 U/kg) was fed in experiment 1. The pH measured in 

digesta from the crop averaged 5.33 (SD 0.42) (treatment means did not differ significantly, 

data not shown) (experiment 1). This pH probably supports the activity of wheat phytases, 

which under in vitro conditions showed maximal activity at pH 6.0 (phytase 1) and pH 5.5 

(phytase 2) (Nakano et al., 1999). Lower InsP6 hydrolysis in birds fed BDTW (26%) compared 

to birds fed BDUTW was most likely the consequence of lower activities of intrinsic wheat 

phytase and other enzymes due to microwave treatment. In line with this observation, 35% 

and 72% of phytate were hydrolyzed when heat-treated (190 U/kg) and non-heat-treated (720 

U/kg) wheat-based diets were soaked for 2 h at 38°C (Carlson and Poulsen, 2002).  

In literature, the benefit of intrinsic plant phytase activity for P digestibility in broilers is 

controversially discussed. More recent studies found no relationship between dietary intrinsic 

phytase activity and InsP6 hydrolysis in the ileum of broilers (Leytem et al., 2008b; Shastak et 

al., 2014). Authors concluded that microbiota- and mucosa- associated phytases have a higher 

influence than intrinsic plant phytases. The results from the present study showed that the 

action of intrinsic wheat phytase can cause a high InsP6 hydrolysis in the crop. Hence, 

intrinsic plant phytases can make a high contribution to the overall InsP6 hydrolysis in 
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broil r’s  i  s iv   rac . But, InsP6 hydrolysis by microbiota- and mucosa- associated phytases 

in the small intestine of broilers may compensate for the effects of intrinsic plant phytases 

measured in the crop if these plant phytases are not present.  

Applying 500 or 12,500 FTU/kg of phytase in maize-based diets increased InsP6 hydrolysis 

up to an average value of 61% or 79% (experiment 2). This is close to the values measured for 

the same enzyme levels in the ileum of broilers (Zeller et al., 2015c) and shows that the major 

proportion of InsP6 hydrolysis measured in the ileum of birds fed the maize-based diets 

supplemented with phytase already occurred in the crop.  

Overall, these findings emphasize the high activity of intrinsic plant and added microbial 

phytases in the crop of broilers. The data further suggest that InsP6 hydrolysis in the crop is 

predominantly related to phytases contained in the diet rather than phytases of microbial or 

mucosal origin. 

When 500 FTU/kg phytase were supplemented to the wheat-based diets in experiment 1, the 

increase in InsP6 hydrolysis was similar in birds fed BDUTW (8%) and BDTW (12%). Thus, 

supplemented phytase acted rather additive and not competitive to wheat phytases. The major 

part of wheat phytases and phytate is localized in the same grain fraction, the aleurone layer 

(Peers, 1953; Fretzdorff and Weipert, 1986), which probably promotes the efficacy of wheat 

phytase in the crop. Perhaps, this fraction was less accessible for the supplemented phytase 

within the retention time in the crop. The effect of the supplemented phytase on InsP6 

hydrolysis was much higher in broilers fed the maize- (experiment 2) compared to the wheat-

based diets (experiment 1). This again suggests that accessibility of phytate for the 

supplemented phytase is relatively low in wheat, whereas it seems to be higher in maize. In 

part, this may be related to different phytate localization in the kernel and binding forms of 

phytate. In maize, 90% of phytate is localized in the germ. In wheat, more than 80% of 

phytate is present in the aleurone layer and outer brans (O'Dell et al., 1972). Thick aleurone 

cell walls and other surrounding structures may hinder the access of supplemented phytase to 

phytate in the aleurone layer. Phytate of the germ, other grain fractions and soybean meal may 

be more accessible and probably was predominantly hydrolyzed by supplemented phytase in 

the present study. In agreement with this, Blaabjerg et al. (2007) reported that the effect of 

phytase addition on phytate degradation during in vitro incubation was greatest in soybean 

meal, almost intermediate for wheat/soybean meal diets and not detectable in wheat. The 

authors suggested a better accessibility of phytate in soybean meal compared to wheat for 

added phytase (Blaabjerg et al., 2007). It can be concluded that the efficacy of supplemented 
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phytase in the crop depends on accessibility of phytate which different between grain species 

and variety. 

Additional supplementation of xylanase caused no significant increase in hydrolysis of the 

probably less accessible InsP6 in wheat. However, it seems to be interesting to note that a 

trend was detected in broilers fed BDTW that shows an add-on effect of xylanase on InsP6 

hydrolysis (10%) to the supplemented phytase (experiment 1). Probably, changes in structures 

imposed by microwave treatment of wheat increased accessibility of arabinoxylans for 

xylanase. Following, hydrolysis of arabinoxylans by xylanase could have increased 

accessibility of phytate. In agreement with this hypothesis, Cowieson et al. (2005) suggested 

an increased release of previously encapsulated non-starch-polysaccharides from the diet 

when conditioning temperature was increased above 80°C. 

In experiment 2, supplementation of MCP had no effect on InsP6 hydrolysis in the crop 

irrespective of the level of added phytase. This suggests that the concentrations of liberated 

InsP-Pi and Pi from MCP were too low to trigger relevant product inhibition and to reduce 

InsP6 hydrolysis by added phytase. In part, this may be related to a high activity and reaction 

rate of added phytase under the advantageous conditions in the crop. It also shows that the 

higher Ca concentrations and Ca:InsP6 ratio in BD+ compared to BD- diets had no effect on 

InsP6 hydrolysis, and thus, did not reduce phytate solubility in the crop.  

InsPs in the presence of low and high intrinsic phytase activities 

The supply of P from InsPs depends on further degradation of InsP1-5. Formation of specific 

lower InsPs in the anterior segments of the digestive tract may be relevant for later solubility 

and degradation by specific phosphatases in the small intestine. Therefore, another objective 

was to study the effect of different dietary factors on the appearance of lower InsPs in the 

crop. 

When the maize-based diets without detectable phytase activity were fed (experiment 2), 

InsP5 isomers found in the crop mainly originated from the diet. However, comparison of the 

proportions of InsP5 isom rs in ∑ nsP5 in feed and crop and the appearance of Ins(1,2,5,6)P4 

in low concentrations in the crop point to some degradation of InsP6 probably caused by 

activity of 6-phytases. InsP(1,2,3,4,5)P5 and Ins(1,2,5,6)P4 could have been formed by maize 

phytases (personal information of Ralf Greiner) although phytase activity in the diets was 

below the limit of detection and bacterial phytases (Van der Kaay and Van Haastert, 1995; 

Greiner et al., 2000; Haros et al., 2009) associated with feed or crop microbiota. Ins(1,2,5,6)P4 
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may also be formed by feed-associated fungal 3-phytases (Greiner and Carlsson, 2006; 

Greiner et al., 2009) or other types of phosphatases, which do not dephosphorylate InsP6. 

When the wheat-based diets without supplemental phytase were fed (experiment 1), the 

dominating InsPs found in the crop were Ins(1,2,3,4,5)P5 accompanied by Ins(1,2,4,5,6)P5, 

Ins(1,2,5,6)P4 accompanied by Ins(1,2,3,4)P4 and InsP3. In vitro, Ins(1,2,3,4,5)P5, 

Ins(1,2,5,6)P4 and Ins(1,2,6)P3 were the InsPs mainly formed by phytases purified from wheat 

(Nakano et al., 2000). Ins(1,2,4,5,6)P5, Ins(1,2,3,4)P4 and Ins(1,2,3)P3 were formed to a minor 

extent (Nakano et al., 2000; Bohn et al., 2007). This showed for the first time that the InsP 

pattern in the crop of broilers fed wheat-based diets was very similar to the pattern formed by 

wheat phytases in vitro. Microwave treatment of wheat resulted in higher concentrations of 

Ins(1,2,3,4,5)P5 and Ins(1,2,4,5,6)P5 and lower concentrations of Ins(1,2,5,6)P4, Ins(1,2,3,4)P4 

and InsP3 in birds fed diets without supplemental phytase. Obviously, degradation of InsP5 to 

InsP4 and InsP3 was slower when wheat was microwave treated, probably due to reduced 

activity of phytases and other wheat phosphatases. 

InsPs as affected by supplemented phytase 

For the maize-based diets supplemented with phytase (experiment 2) the major InsPs found in 

the crop were Ins(1,2,3,4,5)P5, Ins(1,2,4,5,6)P5, Ins(1,2,5,6)P4 and InsP3. These results 

confirm findings of a previous study where Ins(1,2,3,4,5)P5 and Ins(1,2,5,6)P4 were specified 

as the main InsP4-5 isomers formed in the crop of broilers by the same phytase product (Zeller 

et al., 2015b). It also was suggested that InsP3 (Ins(2,4,5)P3 may elute with the InsP3 peak and 

was described as a further degradation product of an E. coli phytase (Greiner et al., 2000)) 

was formed by the supplemented phytase in the crop. In respect of Ins(1,2,4,5,6)P5, it remains 

open whether it was formed by the supplemental phytase or originated from feed.  

When 500 FTU/kg phytase were supplemented to the maize-based diet, concentrations of 

InsP5 isomers were reduced but InsP4 accumulated in high concentrations. This suggests a fast 

progression of InsP5 to InsP4, but further degradation of InsP4 and InsP3 proceeded less 

rapidly (experiment 2). Significantly lower concentrations of Ins(1,2,3,4,5)P5, Ins(1,2,5,6)P4 

and InsP3 followed supplementation with 12,500 FTU/kg phytase, suggesting more complete 

degradation of InsPs at the higher phytase dosage, but InsP4 remained the predominant InsP. 

It can be concluded, that hydrolysis of InsP4 is a limiting step in InsP6 degradation when this 

phytase is used irrespective of the phytase level used.  

For the wheat-based diets supplemented with phytase, it is not clear which proportions of 

InsPs were formed by wheat and supplemented phytase (experiment 1). However, 
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supplementation with 500 FTU/kg phytase reduced concentrations of InsP5 isomers regardless 

of wheat treatment. This affirms a fast progression of InsP5 to InsP4 in the crop when diets are 

supplemented with the phytase. Degradation of Ins(1,2,3,4,5)P5 and Ins(1,2,4,5,6)P5 

proceeded even more rapidly when phytase was supplemented to diets containing the 

untreated wheat compared with the microwave treated wheat. This points to a possible 

synergy of the supplemental phytase with wheat phosphatases on degradation of 

Ins(1,2,3,4,5)P5 and Ins(1,2,4,5,6)P5. Correspondingly, a significant interaction between 

microwave treatment and enzyme supplements was found for concentrations of Ins(1,2,5,6)P4. 

Supplementation with phytase did not significantly increase concentrations of Ins(1,2,5,6)P4 

in broilers fed BDUTW but did in BDTW. Further, in the presence of supplemented phytase 

concentrations of InsP3 were significantly higher in the crop of birds fed BDUTW compared to 

BDTW. Hence, upon phytase supplementation Ins(1,2,5,6)P4 accumulated in birds fed the diet 

with low intrinsic phytase activity whereas Ins(1,2,5,6)P4 was more rapidly degraded to InsP3 

when the diet with high intrinsic phytase activity was fed. These results provide the first 

indication of a synergistic effect of intrinsic wheat phosphatases and the supplemented E. coli 

phytase on degradation of Ins(1,2,5,6)P4 in the crop of broilers. A joint degradation is also 

reflected by the fact that the accumulation of Ins(1,2,5,6)P4 was lower when phytase was 

supplemented to BDTW (with low phytase activity) (experiment 1) than to the maize-based 

diet (without detectable phytase activity) (experiment 2). In line with these observations, a 

possible synergism of the supplemental phytase with wheat phytases in InsP degradation was 

suggested from in vitro results, which showed higher release of myo-inositol when phytase 

was added to wheat- compared to maize-based diets (Zyla et al., 2013).  

In contrast, Ins(1,2,3,4)P4, which was suggested to be formed by wheat phosphatases, 

occurred in lower concentrations in the presence of supplemented phytase. This may be 

explained by the lack of the respective precursor InsP of Ins(1,2,3,4)P4 when supplemented 

phytase was active. When phytase was supplemented to BDTW, Ins(1,2,3,4)P4 was not 

detected which can be attributed to additional inactivation of the respective wheat 

phosphatases. 

Conclusions 

A high activity of wheat phytases can cause high InsP6 hydrolysis in the crop. InsP6 

hydrolysis by microbiota- and mucosa- associated phytases in the small intestine may 

compensate for the effects of intrinsic plant phytases in the crop if they are lacking. For 

supplemented phytase the accessibility of phytate in wheat seems to be lower than in maize, 
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perhaps due to different storage sites in the grain. We also conclude that the hydrolysis of the 

first phosphate group on the InsP6 molecule is not the only step in the degradation process that 

is influenced by dietary factors. Microwave treatment of wheat weakened degradation of 

InsP6 and InsP5, due to reduction in intrinsic enzyme activity. In addition to a high InsP6 

hydrolysis, supplementation of phytase at levels several fold higher than the current industry 

standard caused stronger degradation of InsP3-5 than at the standard level. Degradation of 

Ins(1,2,5,6)P4 was a limiting step in the breakdown process of InsP6 by the supplemented 

phytase. However, Ins(1,2,5,6)P4 seemed to be degraded synergistically by intrinsic wheat 

phosphatases and the supplemented phytase. 
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Table 1. InsP6 hydrolysis (%) and concentrations of different InsPs in the digesta of the crop (nmol/g DM) (experiment 1)
1
  

  BDUTW  BDTW Pooled 

SEM 

P-value 

Supplements 0 Phy PhyXyl  0 Phy PhyXyl Mwt Enz Mwt x Enz 

InsP3
2 

1,857 2,060 2,015 
 

435 673 849 224 <0.001 0.154 0.324 

Ins(1,2,3,4)P4
3 

1,015 182 202 
 

290 n.d. n.d. 77 <0.001 <0.001 . 

Ins(1,2,5,6)P4 1,394
bc 

1,003
cd 

1,068
cd  

827
d 

2,354
ab 

2,945
a 

332 0.126 0.009 <0.001 

Ins(1,2,3,4,6)P5
3 

183 82 87 
 

321 101 84 36 0.421 <0.001 0.257 

Ins(1,2,3,4,5)P5
3 

479 205 202  690 353 299 52 0.004 <0.001 0.711 

Ins(1,2,4,5,6)P5
3 

223 190 159 
 

578 369 296 53 0.003 0.006 0.223 

Ins(1,3,4,5,6)P5 n.d. n.d. n.d. 
 

<LOQ n.d. n.d.     

InsP6
4 

5,056 4,528 3,964 
 

9,054 7,198 6,092 780 0.005 0.032 0.164 

InsP6 hydrolysis (%)
3 

59 67 70 
 

26 38 48 6.3 0.002 0.031 0.388 

1
Data are given as means and pooled SEM (untransformed data), n= 8 pens per treatment with 15 birds per pen. 

2
At least one out of the following 

InsP3 isomers: Ins(1,4,5)P3, Ins(1,2,6)P3, Ins(2,4,5)P3, Ins(1,3,4)P3, Ins(1,4,6)P3.
3
Means were significantly different between 0 and Phy and between 

0 and PhyXyl  calcula    across basal  i  s  u   o missin  in  rac ions , P≤0.05. 4
Means were significantly different between 0 and PhyXyl 

 calcula    across basal  i  s  u   o missin  in  rac ions , P≤0.05. a–d 
Means in the same row without a common superscript are significantly 

different according to the t-test (P≤0.05). BDUTW, basal diet containing untreated wheat; BDTW, basal diet containing microwave treated wheat; n.d., 

not detectable (the InsP isomer was not detectable in the majority of samples); LOQ, limit of quantification (the InsP isomer was not quantifiable in 

the majority of samples); 

 

 



4 Included manuscripts – Manuscript 5                    138 

 

Table 2. InsP6 hydrolysis (%) and concentrations of different InsPs in the digesta of the crop (nmol/g DM) (experiment 2)
1
  

  BD-  BD+ Pooled 

SEM 

P-value 

Phy 0 500 12,500  0 500 12,500 Phy MCP Phy x MCP 

InsP3
2 

n.d. 1,362 230  n.d. 1,626 n.d. 115 . <0.001 0.120 

Ins(1,2,5,6)P4
3 

169 4,766 1274  251 5,230 1001 293 <0.001 0.768 0.472 

Ins(1,2,3,4,6)P5
 

213 90 n.d.  240 n.d. n.d. 21 0.002 0.379 . 

Ins(1,2,3,4,5)P5
 

569
b
 282

c
 102

d
  668

a
 250

c
 95

d
 37 <0.001 0.574 0.034 

Ins(1,2,4,5,6)P5
 

1,035
b
 241

c
 172

c
  1,186

a
 209

c
 147

c
 46 <0.001 0.502 0.032 

Ins(1,3,4,5,6)P5 93 n.d. n.d.  81 n.d. n.d. 20 . 0.651 . 

InsP6
3 

14,242 5,755 3,242  13,779 5,123 2,942 850 <0.001 0.630 0.958 

InsP6 hydrolysis (%)
3 

-7 60
 

77
 

 6
 

62
 

80
 

6.0 <0.001 0.379 0.288 

1
Data are given as means per treatment and SEM (untransformed data), n= 8 pens per treatment with 15 birds per pen; 

2
At least one out of the 

following InsP3 isomers: Ins(1,2,6)P3, Ins(1,4,5)P3, Ins(2,4,5)P3; 
3
Means were significantly different between all three Phy levels (calculated across 

basal  i  s  u   o missin  in  rac ions , P≤0.05. a-e
Different superscripts in a row indicate differences between treatment means (multiple t-tests in 

case of interaction), P≤0.05;  BD-, basal diet without monocalcium phosphate; BD+, basal diet containing monocalcium phosphate; n.d., not 

detectable (the InsP isomer was not detectable in the majority of samples);  
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5 SUMMARY 

Phytate (any salt of myo-inositol 1,2,3,4,5,6-hexakis (dihydrogen phosphate) or InsP6) 

represents the major binding form of phosphorus (P) in plant seeds. In the digestive tract, 

availability of P from plant seeds and feedstuffs obtained thereof largely depends on the 

enzymatic hydrolysis of InsP6 and less phosphorylated inositol phosphate isomers (InsPs). 

High prices of mineral P supplements and environmental burden linked with excessive  

P excretion of animals as well as exhaustion of the global rock phosphate stores demand for 

maximization of phytate-P utilization in animal feeding. The major objective of this thesis 

was to understand better InsP6 hydrolysis and formation of lower InsPs in different segments 

of the digestive tract of broilers and how they can be influenced by different dietary factors.  

In the first study (Manuscript 1), broilers (n=10 pens per dietary treatment) were fed low-P 

(5.2 g/kg DM) corn-soybean meal-based diets without (basal diet) or with one of three 

different phytase supplements (an Aspergillus and two E. coli derived phytases) from days 16 

to 25 of age. InsP6 hydrolysis until the lower ileum (74%) of birds fed the basal diet indicated 

a high potential of broilers and their gut microbiota to hydrolyse InsP6 in low-P diets. 

Different InsP pattern in different gut segments suggested the involvement of phosphatases of 

mucosal or microbial origin. Supplemented phytases significantly increased InsP6 hydrolysis 

in the crop but not in the lower ileum. Measurements in the crop and proventriculus/gizzard 

confirmed published in vitro degradation pathways of 3- and 6-phytases for the first time in 

broilers. Presence of InsP4 and InsP5 isomers specifically formed by different supplemented 

phytases indicated activity of these enzymes still in the small intestine. InsP4 accumulation 

differed between the 6- and 3-phytases in the anterior segments of the gut.  

In the second study (Manuscript 2), effects of supplemental mineral P were studied using 

different basal diets. Semi-synthetic and corn-soybean meal-based basal diets (experiment 1), 

or corn-based and wheat-based basal diets were used (experiment 2). Anhydrous monosodium 

phosphate (MSPa) or monocalcium phosphate monohydrate (MCPh) was supplemented to 

increment the P concentration by 0.05, 0.10, and 0.15% or by 0.075 and 0.150% in 

experiment 1 and 2, respectively. In experiment 1, total excreta were collected from day 20 to 

24 of age (7 replicated birds per diet). In experiment 2, digesta from the terminal ileum was 

collected when broilers were 22 days old (5 replicated pens per diet, 19 birds per pen). No 

differences were found in InsP6 hydrolysis between the maize- and wheat-based diets 

(experiment 2). Mineral P supplements significantly decreased InsP6 hydrolysis from the 

InsP-containing diets in both experiments. The choice of the basal diet did not affect the 
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evaluation of the supplemented mineral P sources. This lead to the conclusion that calculated 

availability values for mineral P sources need to be adjusted for the decline in hydrolysis of 

InsP contained in the basal diet resulting from the P supplement. 

In the third study (Manuscript 3), broilers (20 birds per pen; n=8 pens per treatment) were fed 

two low-P corn-soybean meal-based diets without (BD-; 4.4 g P/kg DM) or with 

monocalcium phosphate (MCP) (BD+; 5.2 g P/kg DM) and without or with added phytase at 

500 or 12,500 FTU/kg from days 15 to 24 of age. Digesta samples were taken from the 

duodenum/jejunum and lower ileum. Another 180 broilers (n=6 pens per treatment, 10 birds 

each) were fed the three BD+ diets from day 1 to 21 of age to assess the influence of 

supplemented phytase on tibia mineralization and strength. Interactions between MCP and 

phytase affected InsP6 hydrolysis and the concentrations of specific lower InsPs. 

Supplementation with 12,500 FTU/kg phytase resulted in 92% prececal InsP6 hydrolysis and 

strong degradation of InsP5. This resulted in higher P net absorption, affirmed by higher body 

weight gain, tibia strength, and mineralization compared to treatments without or with  

500 FTU/kg of phytase. MCP supplementation reduced InsP6 hydrolysis and the degradation 

of specific lower InsPs in birds fed diets without phytase or with 500 FTU/kg of phytase, but 

did not reduce InsP6 hydrolysis or degradation of InsP5 at the high phytase dose. Hence 

effects of added MCP on phytase efficacy depend on the dose of supplemented phytase.  

In the fourth study (Manuscript 4), broilers (15 birds per pen, n=8 pens per treatment) were 

fed a wheat-soybean meal diet low in P (4.8 g/kg DM) and containing either microwave-

treated (BDTW; 121 U/kg of phytase) or non-microwave treated (BDUTW; 623 U/kg of phytase) 

wheat meal from d 16 to 23 of age. Diets were used without or with supplementation of a 

phytase, alone or in combination with a xylanase. Interactions between microwave treatment 

and enzyme supplementation were found for InsP6 hydrolysis in the ileum and P net 

absorption in the duodenum/jejunum and ileum. In the ileum, P net absorption was similar, 

but InsP6 hydrolysis was significantly higher for BDTW (78%) than for BDUTW (69%) in the 

absence of supplemental phytase. Microwaving may have disrupted wheat aleurone structures 

in ways that increased the accessibility of the phytate and may have encouraged higher levels 

of activity among specific phytases of microbial or endogenous mucosal origin in the lower 

small intestine. In both segments, InsP6 hydrolysis and P net absorption were significantly 

increased by supplementation of phytase, but no further by additional supplementation of 

xylanase. In birds that were fed the phytase-supplemented diets, microwave treatment of 

wheat had no effect on InsP6 hydrolysis, but it significantly reduced P net absorption in both 

segments.  
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The fifth study compromised two experiments (Manuscript 5) in which the influence of 

different dietary factors on InsP6 degradation in the crop was investigated. The experimental 

designs was as mentioned for Manuscript 3 (experiment 2) and 4 (experiment 1) since the 

samples were taken in the same trials. In experiment 1, InsP6 hydrolysis in the crop was 

significantly increased by supplementation of phytase, but not further by the additional 

supplementation of xylanase. Microwave treatment of wheat reduced InsP6 hydrolysis and 

degradation of InsP5, due to reduction in intrinsic enzyme activity. The effect of 500 FTU/kg 

of supplemental phytase on InsP6 hydrolysis was much higher in broilers fed the maize- 

compared to those fed the wheat-based diets (experiment 2 and 1). Thus, for supplemental 

phytase the accessibility of phytate in wheat seems to be lower than in maize, perhaps due to 

different storage sites. Supplementation of 12,500 FTU/kg of phytase caused high InsP6 

hydrolysis (up to 80%) and stronger degradation of InsP3-5 than supplementation of  

500 FTU/kg (experiment 2). In both experiments, degradation of Ins(1,2,5,6)P4 was a limiting 

step in the breakdown process of InsP6 by the supplemented phytase. However, upon phytase 

supplementation Ins(1,2,5,6)P4 accumulated in BDTW diets whereas InsP4 degradation 

proceeded in untreated wheat diets (experiment 1). Ins(1,2,5,6)P4 seemed to be degraded 

synergistically by intrinsic wheat phosphatases and the supplemented phytase. 

Taking all studies together, it can be concluded that broilers and their gut microbiota have a 

very high potential to hydrolyze InsP6 in the digestive tract when diets low in P and Ca are 

fed. Differences in the concentrations of lower InsPs showed that the initial step of InsP6 

hydrolysis is not the only catabolic step influenced by different dietary factors. To optimize 

efficacy of phytases and achieve a maximal InsP degradation and minimal P excretions the 

separate and interactive effects of different dietary influencing factors on InsP hydrolysis need 

to be better understood and considered in future diet formulations. 
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6 ZUSAMMENFASSUNG 

In pflanzlichen Samen liegt Phosphor (P) überwiegend in Form von Phytat (Salze von Myo-

Inositol 1,2,3,4,5,6-Hexakisdihydrogenphosphat oder InsP6) vor. Daher hängt die  

P-Verfügbarkeit aus pflanzlichen Futtermitteln, die aus Samen hergestellt werden, im 

Verdauungstrakt hauptsächlich von der enzymatischen Hydrolyse von InsP6 und von niederen 

Inositolphosphat-Isomeren (InsPs) ab. Aufgrund der hohen Preise für mineralischen P, der 

ökologischen Relevanz übermäßiger P-Ausscheidungen sowie der Erschöpfung mineralischer 

P-Reserven gewinnen Erkenntnisse zur Maximierung der Verwertbarkeit von Phytat-P in der 

Geflügelernährung zunehmend an Bedeutung. Das Hauptziel dieser Arbeit war daher, die 

InsP6-Hydrolyse und die Bildung niederer InsPs in verschiedenen Abschnitten des 

Verdauungstraktes beim Broiler besser zu verstehen. Zudem wurde der Einfluss verschiedener 

Fütterungsfaktoren und deren Interaktionen untersucht. 

In der ersten Studie (Manuskript 1) wurden P-arme (5.2 g P/kg TM), auf Mais und 

Sojaextraktionsschrot basierende Rationen ohne (Basalration) oder mit Zulage einer von drei 

Phytasen (eine Aspergillus- und zwei E. coli-Phytasen) (16.-25. Lebenstag, n=10 Abteile pro 

Behandlung mit je 15 Broilern) eingesetzt. Die hohe InsP6-Hydrolyse (74%) bis zum Ende 

des Ileums der mit der Basalration gefütterten Tiere deutete auf ein hohes Potenzial des 

Broilers und dessen Mikrobiota zur InsP6-Hydrolyse hin. Unterschiedliche InsP-Muster 

zwischen den Abschnitten des Verdauungstraktes lassen auf die Beteiligung von 

Phosphatasen mukosaler und mikrobieller Herkunft schließen. Die Phytasezulage erhöhte die 

InsP6-Hydrolyse im Kropf, jedoch nicht im Ileum. Die Ergebnisse im Kropf und  

Drüsen-/Muskelmagen bestätigten die in der Literatur beschriebenen in vitro-Abbauwege von 

3- und 6-Phytasen zum ersten Mal im Broiler. Im Dünndarm konnten die von den zugelegten 

Phytasen spezifisch gebildeten InsP4-5-Isomere noch vorgefunden werden, was auf ihre 

weitere Aktivität im Dünndarm schließen lässt. Die Akkumulation von InsP4 in den vorderen 

Abschnitten des Verdauungstraktes unterschied sich beim Einsatz von 3- und 6-Phytasen. 

In der zweiten Studie (Manuskript 2) wurde der Einfluss der Zulage von mineralischem P und 

von unterschiedlichen Basalrationen auf die Verfügbarkeit von mineralischem P bestimmt. Es 

wurden semisynthetische oder auf Mais und Sojaextraktionsschrot (Experiment 1) und auf 

Mais oder Weizen basierende Rationen (Experiment 2) eingesetzt. Um P-Konzentrationen 

von 0,05, 0,10 und 0,15% (Experiment 1) oder 0,075% und 0,15% (Experiment 2) zu 

erreichen wurden die Rationen mit wasserfreiem Mononatriumphoshat (MSPa) oder 

Monocalciumphosphat-Monohydrat (MCPh) ergänzt. Experiment 1 basierte auf 

Exkrementsammlungen (20. bis 24. Lebenstag, n=7 Tiere pro Ration), Experiment 2 auf 
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Chymussammlungen (Ileum, 22 Tage alte Broiler, n=5 Abteile mit jeweils 19 Tieren). Die 

Weizen- und Mais-basierten Rationen unterschieden sich nicht in der InsP6-Hydrolyse. Jedoch 

reduzierte die Zulage von mineralischem P die InsP6-Hydrolyse beim Einsatz der InsP-

haltigen Rationen. Die Evaluierung der zugelegten mineralischen P-Quelle wurde demnach 

nicht von der Wahl der Basalration beeinflusst. Allerdings sollten die für mineralische  

P-Quellen kalkulierten Werte um die durch die P-Zulage bewirkte Reduktion der  

InsP-Hydrolyse korrigiert werden. 

In der dritten Studie (Manuskript 3) wurden zwei P-arme auf Mais und Sojaextraktionsschrot 

basierende Rationen ohne (BD-; 4.4 g P/kg TM) oder mit Monocalciumphosphat (MCP) 

(BD+; 5.2 g P/kg TM) ohne oder mit Zulage von 500 oder 12.500 FTU/kg Phytase eingesetzt 

(15.-24. Lebenstag, 20 Broiler pro Abteil, n=8 Abteile pro Behandlung). Es wurden 

Chymusproben aus dem Duodenum/Jejunum und Ileum entnommen. Um die Wirkung 

zugelegter Phytase auf die Tibia-Mineralisierung zu untersuchen, wurden weitere 180 Broiler 

(n=6 Abteile pro Behandlung mit je 10 Tieren, 1.-21. Lebenstag) mit den drei BD+ Rationen 

gefüttert. Es traten Interaktionen zwischen MCP und Phytase bezüglich der InsP6-Hydrolyse 

sowie den Konzentrationen spezifischer niederer InsPs auf. Die Zulage von 12.500 FTU/kg 

Phytase ermöglichte eine InsP6-Hydrolyse von 92% sowie einen starken Abbau von InsP5. 

Zudem war die P-Nettoabsorption mit Zulage von 12.500 FTU/kg Phytase signifikant höher 

als ohne oder mit Zulage von 500 FTU/kg. Dies wurde durch eine höhere 

Lebendmassezunahme sowie durch eine höhere Tibia-Mineralisierung bestätigt. Unter der 

Verwendung der Rationen ohne oder mit 500 FTU/kg Phytase bewirkte die Zulage von MCP 

eine Reduktion der InsP6-Hydrolyse sowie einen reduzierten Abbau spezifischer niederer 

InsPs. Beim Einsatz von 12.500 FTU/kg Phytase hatte die Zulage von MCP keinen Einfluss 

auf die InsP6-Hydrolyse oder den Abbau von InsP5. Der Einfluss von zugelegtem MCP auf 

die Phytaseeffizienz hängt somit von der Phytasedosis ab. 

In der vierten Studie (Manuskript 4) wurden auf Weizen und Sojaextraktionsschrot basierende 

P-arme (4.8 g/kg TM) Rationen, welche entweder mikrowellenbehandelten (BDTW; 121 U/kg 

Phytase) oder nicht mikrowellenbehandelten Weizenschrot (BDUTW; 623 U/kg Phytase) 

enthielten, eingesetzt. Die Rationen wurden ohne oder mit Zulage einer Phytase allein oder in 

Kombination mit Xylanase verwendet (16.-23. Lebenstag, 15 Broiler pro Abteil, n=8 Abteile 

pro Behandlung). Zwischen der Mikrowellenbehandlung und der Enzymzulage traten 

Interaktionen bezüglich der InsP6-Hydrolyse im Ileum und der P-Nettoabsorption im 

Duodenum/Jejunum und Ileum auf. Ohne Enzymzulage war die InsP6-Hydrolyse im Ileum 

signifikant höher für BDTW (78%) verglichen mit BDUTW (69%), wohingegen die  

P-Nettoabsorption gleich war. Es ist anzunehmen, dass durch die Mikrowellenbehandlung 
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Strukturen in der Aleuronschicht des Weizens zerstört wurden, was die Zugänglichkeit des 

darin vorkommenden Phytates erhöht haben könnte. Durch die Mikrowellenbehandlung 

könnte die Aktivität spezifischer mikrobieller und endogener Mukosaphytasen im Darm 

angestiegen sein. Die Phytasezulage erhöhte die InsP6-Hydrolyse und P-Nettoabsorption in 

beiden Abschnitten. Die Kombination mit Xylanase erzielte keine weitere Steigerung. Mit 

Enzymzulage wurde durch die Mikrowellenbehandlung die P-Nettoabsorption, nicht aber die 

InsP6-Hydrolyse, reduziert. 

Die letzte Studie umfasste zwei Experimente (Manuskript 5), die den Einfluss von 

Fütterungsfaktoren auf den InsP6-Abbau im Kropf untersuchten. Das Versuchsdesign 

entsprach dem in Manuskript 3 (Experiment 2) und 4 (Experiment 1) beschriebenen Design. 

In Experiment 1 erhöhte die Phytasezulage die InsP6-Hydrolyse. Die Kombination mit 

Xylanase erzielte keine weitere Steigerung. Infolge der reduzierten intrinsischen 

Phytaseaktivität wurden die InsP6-Hydrolyse und der Abbau von InsP5 durch die 

Mikrowellenbehandlung des Weizens vermindert. Die Steigerung der InsP6-Hydrolyse, die 

durch die Zulage von 500 FTU/kg Phytase erreicht wurde, war weitaus höher unter 

Verwendung der Mais- (Experiment 2) als unter Verwendung der Weizen-basierten Ration 

(Experiment 1). Demnach scheint das Phytat in Mais für die zugelegte Phytase besser 

zugänglich zu sein als das Phytat in Weizen, was auf die unterschiedlichen Speicherorte 

zurückzuführen sein kann. Mit Zulage von 12.500 FTU/kg Phytase wurde eine sehr hohe 

InsP6-Hydrolyse (bis zu 80%) sowie ein stärkerer Abbau von InsP3-5 als  mit der Zulage von 

500 FTU/kg Phytase erreicht (Experiment 2). Beide Experimente zeigten, dass der Abbau von 

Ins(1,2,5,6)P4 einen limitierenden Schritt beim InsP6-Abbau durch die zugelegte Phytase 

darstellt. Jedoch scheinen die zugelegte Phytase und  Phosphatasen aus Weizen Ins(1,2,5,6)P4 

synergistisch abzubauen, da die Phytasezulage eine Akkumulation von Ins(1,2,5,6)P4 bei 

BDTW, hingegen nicht bei BDUTW bewirkte (Experiment 1).  

Aus den Ergebnissen der vorliegenden Arbeit lässt sich schlussfolgern, dass Masthühner 

zusammen mit ihrer Mikrobiota bei Verwendung von P- und Ca-armen Rationen ein hohes 

Potenzial zur InsP6-Hydrolyse im Dünndarm aufweisen. Unterschiede in den Konzentrationen 

niederer InsPs zeigten, dass die Abspaltung der ersten Phosphatgruppe beim InsP6-Abbau im 

Verdauungstrakt nicht der einzige katabole Schritt ist, der von verschiedenen 

Fütterungsfaktoren und deren Interaktionen beeinflusst wird. Um die Effizienz von Phytasen 

zu optimieren, einen maximalen InsP-Abbau zur erreichen, den P-Bedarf des Tieres exakter 

zu treffen und die P-Ausscheidungen zu minimieren müssen in zukünftigen 

Rationsgestaltungen der Einfluss dieser Faktoren sowie deren Interaktionen auf die InsP-

Hydrolyse berücksichtigt werden. 
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ANNEX 1. Analysed concentrations of acid detergent fibre (ADF) in feed, litter, wood shavings and content of the crop and gizzard and calculated 

percentage of wood shavings, litter and excreta in crop and gizzard content
1 

 Treatment Analysed 

concentration  

of ADF 

(g/kg DM) 

Calculated concentration 

of ADF in crop/gizzard 

content not originating 

from feed 

(g/kg DM)
2 

Calculated 

percentage of 

wood shavings 

in litter 

(%)
3
 

Calculated 

percentage of wood 

shavings in crop/ 

gizzard content 

(%)
4
 

Calculated 

percentage of 

litter in crop/ 

gizzard content 

(%)
5 

Calculated 

percentage of  

excreta in crop/ 

gizzard content 

(%)
6
 

Feed        

 BDUTW 35      

 BDTW 33      

Litter        

 BDUTW 479  58    

 BDUTW+Phy 468  57    

 BDUTW+PhyXyl 520  63    

 BDTW 464  57    

 BDTW+Phy 541  66    

 BDTW+PhyXyl 534  65    

Wood shavings  823      

Crop content        

 BDUTW 65 30  4 6 3 

 BDUTW 73 38  5 8 3 

 BDUTW+Phy 58 23  3 5 2 

 BDUTW+Phy 44 8  1 2 1 

 BDUTW+PhyXyl 52 17  2 3 2 

 BDUTW+PhyXyl 56 21  3 4 2 

 BDTW 91 58  7 13 5 
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ANNEX 1 continued 

 Treatment Analysed 

concentration  

of ADF 

(g/kg DM) 

Calculated concentration 

of ADF in crop/gizzard 

content not originating 

from feed 

(g/kg DM)
2 

Calculated 

percentage of 

wood shavings 

in litter 

(%)
3
 

Calculated 

percentage of wood 

shavings in crop/ 

gizzard content 

(%)
4
 

Calculated 

percentage of 

litter in crop/ 

gizzard content 

(%)
5 

Calculated 

percentage of  

excreta in crop/ 

gizzard content 

(%)
6
 

Crop content BDTW 79 47  6 10 4 

 BDTW+Phy 46 13  2 3 1 

 BDTW+Phy 64 31  4 6 2 

 BDTW+PhyXyl 73 41  5 8 4 

 BDTW+PhyXyl 60 27  3 5 2 

Gizzard 

content 
       

 BDUTW 400 365  44 76 32 

 BDUTW 359 324  39 68 28 

 BDUTW+Phy 416 381  46 81 35 

 BDUTW+Phy 421 386  47 82 35 

 BDUTW+PhyXyl 372 337  41 65 31 

 BDUTW+PhyXyl 436 401  49 77 37 

 BDTW 421 388  47 84 36 

 BDTW 426 394  48 85 37 

 BDTW+Phy 363 330  40 61 21 

 BDTW+Phy 476 443  54 82 28 

 BDTW+PhyXyl 392 359  44 67 31 

 BDTW+PhyXyl 422 389  47 73 34 

1
Samples of the crop and gizzard content were taken from two pens per treatment with 15 birds per pen. ADF, acid detergent fibre; Samples of the crop and gizzard content 

and litter samples were taken on the same day. 
2
Analysed concentration of ADF in the crop or gizzard content (g/kg DM) – analysed concentration of ADF in feed (g/kg DM). 

Under the assumption that ADF originating from feed was not degraded in the crop and gizzard. 
3
Analysed concentration of ADF in litter (g/kg DM) / analysed concentration 
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of ADF in wood shavings (g/kg DM) × 100. 
4
Calculated concentration of ADF in the crop or gizzard content not originating from feed (g/kg DM) / analysed concentration of 

ADF in wood shavings (g/kg DM) × 100. 
5
Calculated concentration of ADF in the crop or gizzard content not originating from feed (g/kg DM) / analysed concentration of 

ADF in litter (g/kg DM) × 100. Under the assumption that birds did not select between wood shavings and excreta. 
6
Calculated percentage of litter in the crop or gizzard 

content / 100 × (100 - calculated percentage of wood shavings in litter). Under the assumption that birds did not select between wood shavings and excreta. BDUTW, basal diet 

containing untreated wheat; BDTW, basal diet containing microwave treated wheat; Phy, E. coli-derived phytase Quantum
TM

 Blue; Xyl, Econase
®
 XT 25.  

Results shown in Annex 1, in Manuscript 4 and Manuscript 5 (experiment 1) are based on the same trial, respectively. 
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ANNEX 2. Concentrations of different InsPs in the digesta of the gizzard
1
 

  BDUTW  BDTW Pooled 

SEM 

P-value 

Supplements 0 Phy PhyXyl  0 Phy PhyXyl Mwt Enz Mwt x Enz 

InsP3
2,3

 n.d. 550 391 
 

n.d. 682 530 73 0.102 0.039 0.965 

Ins(1,2,5,6)P4
4 

489 2,244 1,865 
 

n.d. 3,143 2,321 285 0.034 <0.001 0.429 

Ins(1,2,3,4,5)P5
 

424 n.d. n.d.  342 119 n.d. 84 0.389 <0.001 . 

Ins(1,2,4,5,6)P5 170 n.d. n.d. 
 

204 n.d. n.d. 10 0.006 . . 

ΣInsP5 595 n.d. n.d. 
 

546 119 n.d. 85 0.695 <0.001 . 

InsP6
5 

4,136 341 253 
 

4,479 362 329 238 0.425 <0.001 0.921 

1
Data are given as means and pooled SEM (untransformed data), n= 8 pens per treatment with 15 birds per pen. 

2
At least one out of the following InsP3 isomers: Ins(1,4,5)P3, 

Ins(1,2,6)P3, Ins(2,4,5)P3, Ins(1,3,4)P3, Ins(1,4,6)P3.
 3

Means were significantly different between Phy and PhyXyl (calculated across basal diets due to missing interactions), 

P≤0.05. 4Means were significantly different all three Phy levels (calculated across basal diets due to missing interactions), P≤0.05. 5
Means were significantly different between 

0 and Phy and between 0 and PhyXyl (calculated across basal diets due to missing interactions), P≤0.05. BDUTW, basal diet containing untreated wheat; BDTW, basal diet 

containing microwave treated wheat; Enz, enzyme supplementation; LOQ, limit of quantification (the InsP isomer was not quantifiable in the majority of samples); Mwt, 

microwave treatment;  n.d., not detectable (the InsP isomer was not detectable in the majority of samples); Phy, E. coli-derived phytase Quantum
TM

 Blue; Xyl, Econase
®
 XT 

25. 

Results shown in Annex 2, in Manuscript 4 and Manuscript 5 (experiment 1) are based on the same trial, respectively. 
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ANNEX 3. Concentrations of different InsPs in the digesta of the gizzard
1
  

  BD-  BD+ Pooled 

SEM 

P-value 

Phy 0 500 12,500  0 500 12,500 Phy MCP Phy x MCP 

InsP3
2
 n.d. 518 n.d.  n.d. 845 n.d. 125 . 0.087 .  

Ins(1,2,5,6)P4
3
 n.d. 1,240 n.d.  n.d. 2,230 n.d. 412 . 0.114 .  

Ins(1,2,3,4,6)P5
 

65 n.d. n.d.  78 n.d. n.d. 12 . 0.435 .  

Ins(1,2,3,4,5)P5
 

410 59 n.d.  343 n.d. n.d. 31 <0.001 0.186 .  

Ins(1,2,4,5,6)P5
 

503 n.d. n.d.  453 n.d. n.d. 23 . 0.142 .  

InsP6
3 

7,277 222 n.d.  7,230 385 n.d. 133 <0.001 0.182 0.131  

1
Data are given as means per treatment and SEM (untransformed data), n= 8 pens per treatment with 15 birds per pen; 

2
At least one out of the following InsP3 isomers: 

Ins(1,2,6)P3, Ins(1,4,5)P3, Ins(2,4,5)P3; BD-, basal diet without monocalcium phosphate (MCP); BD+, basal diet containing MCP; LOQ, limit of quantification (the InsP 

isomer was not quantifiable in the majority of samples); n.d., not detectable (the InsP isomer was not detectable in the majority of samples); Phy, E. coli-derived phytase 

Quantum Blue
®
; 

Results shown in Annex 3, in Manuscript 3 and Manuscript 5 (experiment 2) are based on the same trial, respectively. 
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