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Abbreviations

BLUP Best linear unbiased prediction

GBLUP Genomic best linear unbiased prediction

GWAS Genome-wide Association Study

LD Linkage disequilibrium

MAF Minor allele frequency

MAS Marker-assisted selection

OLS ordinary least squares

QTL Quantitative trait locus

RKHS Reproducing kernel hilbert spaces

RNA ribonucleic acid

TRN training set

TST test/validation set



1. General Introduction

Hybrid breeding, which capitalizes on exploiting heterosis in crosses between

genetically divergent parents, is an important driver of sustainable agricul-

tural intensification needed for meeting increased demands for food and fiber

(Duvick, 2005). With the emergence of the doubled-haploid (DH) technol-

ogy (Wedzony et al., 2009), hybrid breeding has received further attention.

The DH technology allows the production of diploid plants, which have two

identical copies of the same chromosome, in a single generation. Assuming

two heterotic groups, which are genetically distinct clusters of maternal and

paternal germplasm (Melchinger and Gumber, 1998), and further assuming

that a medium-sized breeding program can generate about 1,000 DH lines per

heterotic group and year, a breeder would hypothetically have to select from

n2 = 106 hybrid candidates in each generation. Typically, 90% of DH lines

are being produced anew in each season implying that 0.92 ∗ 106 = 810.000

putative hybrids would not share a single parent of hybrid progeny with phe-

notypic records, thereby exacerbating the selection even more. The great chal-

lenge now is to find ways to reduce the effort necessary to select the most

promising of all possible candidates, which cannot be assessed exhaustively in

multi-environment field trials.

Accelerating Hybrid Prediction

Early attempts to limit the number of genotypes, that need to be assessed for

estimating the performance of putative hybrids, was to examine the per se per-

formance of their parent lines. Due to dominance effects (Schrag et al., 2006;

Smith, 1986) this approach failed, however, giving way to the evaluation of
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general combining ability (GCA), which is based on crosses between putative

parent lines with few tester lines from the opposite heterotic group (Schrag

et al., 2006; Sprague and Tatum, 1942). The latter approach is still prac-

ticed in many modern breeding programs, but it is time-consuming (Bernardo,

2010), thereby reducing potential selection gain (Falconer and Mackay, 1996).

A promising way to address the huge number of candidates is to look into

auxiliary information, data collected on the parents instead of the hybrid can-

didates themselves, thereby reducing the number of genotypes from n2 to just

2n. Since its inception, the goal of hybrid breeding was to pick the best hybrid

candidate itself (Shull, 1908) but, due to the previous lack of suitable predic-

tor data as well as absent powerful computational resources and software, this

idea has been revisited only recently (Technow et al., 2014).

Expected Relationship

Pedigree data, which can be collected at almost no cost, emerged as the first

predictor to lift some of the burden of intensive phenotype testing. Pedi-

gree data capture the expected relatedness between individuals and have been

proven to provide valuable information in hybrid prediction models (Bernardo,

1994; Crossa et al., 2014). However, pedigree data suffer from some shortcom-

ings: The choice of a founder generation is rather arbitrary and typically

depends on the time at which a breeding program started collecting pedigree

records. If the pedigree is extremely deep, another problem arises in that kin-

ship coefficients converge to one, thereby requiring truncation of the pedigree

at some point (Speed and Balding, 2015). Moreover, Mendelian sampling,

representing the randomness in which genes are passed down from parents to

their progeny, is not accounted for by pedigree information. Finally, pedigree-

information may give inaccurate estimates of the gene substitution effect be-

cause its prediction models falsely assume that residuals are identically and

independenty distributed (Duenk et al., 2017).



Dawn of Genomics

Between 1974 and 2005 several marker systems, such as restriction fragment

length polymorphisms (RFLP), simple sequence repeats (SSR), amplified frag-

ment length polymorphisms (AFLP), single nucleotide polymorphisms (SNP)

and diversity arrays technology markers (DArT), were developed (see Bernardo

(2008) for a review). Marker-assisted selection (MAS) was suggested for inte-

grating these molecular markers with phenotype data to optimize selection in-

dices and drive the improvement of quantitative characters (Lande and Thomp-

son, 1990). While MAS successfully facilitated the manipulation of quantita-

tive trait loci (QTL) with large effects (Zhong et al., 2006) it has failed to

improve traits influenced by many QTL, each with small effects on the trait

(Bernardo, 2008; Dekkers and Hospital, 2002). Moreover, MAS suffers from bi-

ased effect sizes of QTL estimated in different genetic backgrounds (Melchinger

et al., 1998) and may require large mapping populations when effect sizes are

small and/or allele frequencies depart from 0.5 (Mackay et al., 2009).

Realized Relationship and Algorithms

While the path outlined by Lande and Thompson (1990) is deemed a rather

inefficient use of the wealth of molecular data (Meuwissen et al., 2001), Fer-

nando and Grossman (1989) proposed to use all genomic data simultaneously

by appying BLUP to a linear mixed model, thereby jointly incorporating ef-

fects of all genomic markers. Especially in plant breeding, the number of

features of a predictor p typically exceeds the number of genotypes n, thereby

rendering ordinary least squares (OLS) infeasible for such prediction scenarios

because no degrees of freedom are left for estimating feature effects (de los

Campos et al., 2010). Instead, researchers adopted methods that incorporate

effect shrinkage, and thus, circumvent this shortcoming of OLS. Among the

earliest, and still widely used (Mrode, 2014), methods was best linear unbi-

ased prediction (BLUP) (Henderson, 1949) and its equivalent ridge regression

(RR) (Fernando and Grossman, 1989; Meuwissen et al., 2001). In short, BLUP

incorporates information on non-random environmental effects as well as ap-
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propriately weighted information on related individuals to adjust the pheno-

typic observations (Mrode, 2014). BLUP, respectively RR, shrinks all effects

equally and is well-suited for the infinitesimal model (Fisher, 1918) where the

number of features is large and where no single feature explains a large pro-

portion of phenotypic variance (Mackay et al., 2009). Popular alternatives to

BLUP are Bayesian estimation methods, which assign varying prior distribu-

tions to effects and are therefore particularly suited for situations where the

number of features is small to moderate and where some effects have apprecia-

bly higher impacts on phenotypic variation than others (de los Campos et al.,

2010; Daetwyler et al., 2010; Zhao et al., 2015). These models mitigate the

problem of overshrinking large effects that may occur with RR (Heffner et al.,

2009). Empirical studies, however, have usually shown that the difference be-

tween algorithms like RR-BLUP and BayesB, which shrinks many effects to

zero and assigns stronger priors to non-zero effects than RR-BLUP or BayesA,

is usually small (Hayes et al., 2009; Technow et al., 2014; VanRaden et al.,

2009). A plethora of further algorithms for predicting breeding values, includ-

ing RR-BLUP, Bayesian LASSO, elastic net, Bayes Cπ, empirical Bayes, repro-

ducing kernel Hilbert space, weighted Bayesian shrinkage regression, support

vector machines, random forests and neural networks, were explored on eight

plant breeding datasets but no clear recommendation for a particular algorithm

could be made (Heslot et al., 2012). Generally, the optimal algorithm-choice

depends on the phenotype as well as the predictors involved (Xu et al., 2017)

but most recent studies typically use either GBLUP, when epistasis is small or

not of interest, or reproducing kernel hilbert space when epistasis should be

accounted for (e.g. e Souza et al. (2017); Xu et al. (2017)).

Limitations of genomic information

Genomic information has propelled the field of trait predictions in the past

two decades and the technology has matured so much that sampling genomic

information can nowadays be done at a fraction of the initial costs. With the

great success in predicting complex traits using genotyping arrays, such as the



Illumina50K chip for maize, it was initially expected that the next technologial

leap, whole-genome sequencing (WGS) would help to precisely pinpoint quan-

titative trait loci influencing the trait of interest. Genotyping arrays are known

to suffer from ascertainment bias, meaning that SNPs with high minor allele

frequencies (MAF) are overrepresented (Mathew et al., 2018; Pérez-Enciso

et al., 2015; Wray et al., 2013; Yang et al., 2010), putting sufficient linkage dis-

equilibrium (LD) between SNPs and QTL in jeopardy (Hayes et al., 2009; Yang

et al., 2017). Whole-genome sequencing (WGS) and genotyping-by-sequencing

data are expected to remedy such shortcomings of SNP-arrays but suffer from

the so-called ’curse of dimensionality’, which implies that an increasing number

of features, relative to the number of samples, increases overfitting (Libbrecht

and Noble, 2015). In a simulation study, Pérez-Enciso et al. (2015) observed

that the expected gain in prediction accuracy from WGS-data compared to

array-data is merely in the range of 4% to 8%. This result clearly demon-

strates the tradeoff between the richer information content of sequence data

and added noise in the predictions compared to genotyping arrays. In human

genetics, the p > n problem is currently being addressed, particularly through

the formation of consortia accumulating data for studies with related research

questions. Still, a study investigating genetic influences on human height using

13,558,738 markers with a sample size of 102,221 individuals could only realize

an explained variance of about one-third of the trait heritability in prediction

(Kim et al., 2017).

Integrating Physiological Epistasis

Epistasis, describing deviations from Mendelian genetics where the phenotype

expression of a genotype at a locus is altered by (an)other loci in the genome

(Sackton and Hartl, 2016), adds to the aforementioned issues with genomic

information. A caveat of genomic data is its inability to account for physiolog-

ical epistasis (Dalchau et al., 2011; Zhu et al., 2012) while statistical epistasis,

which is defined as genetic variation at the population level (Sackton and Hartl,

2016), is typically of negligible magnitude (Guo et al., 2016; Hill et al., 2008;
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Mackay, 2014; Vazquez et al., 2016). Even recent methodological develop-

ments, addressing the ’curse of dimensionality’ (Jarqúın et al., 2014; Martini

et al., 2016; Vitezica et al., 2017), could not exploit statistical epistasis unless

training and prediction set shared the same or closely related parents (Jiang

and Reif, 2015).

Endophenotypes, such as messenger RNA, proteins and metabolites, con-

stitute biological layers governing the phenotype manifestation of a genotype

(Mackay et al., 2009). Given their intermediary position in the genotype-

phenotype cascade, they offer to capture physiological epistasis, i.e., interac-

tions among and between any biological layer preceding the phenotype, in-

cluding epistasis at the genome level (Sackton and Hartl, 2016). Contrary

to the pedigree as well as the genome, endophenotypes are not static but in-

creasingly in flux with growing proximity to the phenotype as exemplified by

metabolites of the Calvin-Benson cycle (Sweetlove et al., 2016). Combining

endophenotypes, as well as pedigree and genomic information, was suggested

for compensating missing or unreliable information in any single data source

(Ritchie et al., 2015) and is a focal point of this thesis.

Imputing Incomplete Predictors

Recent studies in maize inbred lines (Guo et al., 2016), rice hybrids (Dan

et al., 2016; Xu et al., 2016) and maize hybrids (Zenke-Philippi et al., 2017)

have shown that transcriptomic and metabolomic data, sampled at an early

stage of plant development, could improve upon pedigree- and even genome-

based predictions of some important and complex traits. Despite these promis-

ing results, novel ”omics” predictors have not found widespread application,

yet. One of the reasons for reservations among breeders regarding the use of

”omics” predictors might be additional costs and logistical efforts for sampling

these data compared to pedigree or SNP data. Borrowing a statistical frame-

work from animal breeding, which allows for the combination of two predictors

sampled on partially overlapping sets of genotypes, might incentivize breed-

ers to spend resources on covering merely a subset of genotypes with ”omics”



predictors while imputing the latter for the remaining set of genotypes.

The introduction of MAS, and later genomic selection, in animal breed-

ing suddenly confronted researchers with a situation where a large number of

”old” animals had only pedigree records whereas a much smaller number of

”young” animals had both, pedigree and genomic records. First attempts at

combining the two predictors for estimating breeding values of animals used

a two step approach where, in a first step, conventional breeding values were

estimated using just pedigree data and phenotypic values from related animals

(VanRaden et al., 2009). In a second step, marker effects were estimated by

regressing conventional breeding values onto the marker genotypes of ”young”

animals. These effects could then be used to impute breeding values of the

”young” animals. A problem with this approach is that the error distribu-

tion of the conventional breeding values may be different from that of the

imputed breeding values (Aguilar et al., 2010). Garrick et al. (2009) proposed

to accomodate this error by deregressing the breeding values and weighting

the residuals according to the prediction error variances. Independently from

each other, Legarra et al. (2009) and Christensen and Lund (2010) developed

a statistical framework in which both, complete and incomplete predictor in-

formation could be used simultaneously for infering breeding values. Their

method was refined by transforming their BLUP-models into equivalent single

step marker-effect-models, which implicitly model the structure of the impu-

tation error and use the information of both predictors without sophisticated

weighting of their coefficients (Fernando et al., 2014).

Objectives

The goal of this thesis’ research was to compare different ’omics’ technologies

regarding their utility for hybrid prediction. In particular, the objectives were

to

1. compare the performance of ’omics’ or pedigree data as single predictors

for the prediction of hybrid performance.
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2. investigate the benefit of combining features, sampled at the level of

parent lines, for predicting genetic values of maize hybrids using multi-

environmental phenotypic data on complex agronomic traits.

3. explore the single-step prediction framework as a viable improvement

over current methods for imputing ‘omics’ predictors.

4. transfer the single-step framework for breeding value prediction to the

prediction of hybrids derived from pure-breeding inbred lines.
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Abstract

Accurate prediction of traits with complex genetic architecture is cru-

cial for selecting superior candidates in animal and plant breeding and

for guiding decisions in personalized medicine. Whole-genome predic-

tion has revolutionized these areas but has inherent limitations in incor-

porating intricate epistatic interactions. Downstream ‘omics’ data are

expected to integrate interactions within and between different biologi-

cal strata and provide the opportunity to improve trait prediction. Yet,

predicting traits from parents to progeny has not been addressed by a

combination of ‘omics’ data. Here, we evaluate several ‘omics’ predictors

—genomic, transcriptomic and metabolomic data —measured on parent

lines at early developmental stages and demonstrate that the integration

of transcriptomic with genomic data leads to higher success rates in the

correct prediction of untested hybrid combinations in maize. Despite

the high predictive ability of genomic data, transcriptomic data alone

outperformed them and other predictors for the most complex heterotic

trait, dry matter yield. An eQTL analysis revealed that transcriptomic

data integrate genomic information from both, adjacent and distant sites

relative to the expressed genes. Together, these findings suggest that

downstream predictors capture physiological epistasis that is transmit-

ted from parents to their hybrid offspring. We conclude that the use of

downstream ‘omics’ data in prediction can exploit important informa-

tion beyond structural genomics for leveraging the efficiency of hybrid

breeding.
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Abstract

The ability to predict the agronomic performance of single-crosses with

high precision is essential for selecting superior candidates for hybrid

breeding. With recent technological advances, thousands of new parent

lines, and consequently, millions of new hybrid combinations are possible

in each breeding cycle, yet only a few hundred can be produced and phe-

notyped in multi-environment yield trials. Well established prediction

approaches, such as best linear unbiased prediction (BLUP) using pedi-

gree data and whole-genome prediction using genomic data are limited in

capturing epistasis and interactions occurring within and among down-

stream biological strata such as transcriptome and metabolome. Because

mRNA and small RNA (sRNA) sequences are involved in transcriptional,

translational and post-translational processes, we expect them to pro-

vide information influencing several biological strata. However, using

sRNA data of parent lines to predict hybrid performance has not yet

been addressed. Here, we gathered genomic, transcriptomic (mRNA and

sRNA) and metabolomic data of parent lines to evaluate the ability of

the data to predict the performance of untested hybrids for important

agronomic traits in grain maize. We found a considerable interaction for

predictive ability between predictor and trait, with mRNA data being a

superior predictor for grain yield and genomic data for grain dry matter

content, while sRNA performed relatively poorly for both traits. Com-

bining mRNA and genomic data as predictors resulted in high predictive

abilities across both traits and combining other predictors improved pre-

diction over that of the individual predictors alone. We conclude that

downstream ‘omics’ can complement genomics for hybrid prediction, and

thereby, contribute to more efficient selection of hybrid candidates.
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Abstract

Predicting genetic values with high accuracy is pivotal for effective can-

didate selection in animal and plant breeding. Novel ‘omics’-based pre-

dictors have been shown to improve upon established genome-based pre-

dictions of important complex traits but require laborious and expensive

assays. As a consequence, there are various datasets with full genetic

marker coverage of all studied individuals but incomplete coverage with

other ‘omics’ data. In animal breeding, single-step prediction was intro-

duced to efficiently combine pedigree information, collected on a large

number of animals, with genomic information, collected on a smaller

subset of animals, for breeding value estimation without bias. Using two

maize datasets of inbred lines and hybrids, we show that the single-step

framework facilitates imputing transcriptomic data, boosting forecasts

when their predictive ability exceeds that of pedigree or genomic data.

Our results suggest that covering only a subset of inbred lines with ‘omics’

predictors and imputing all others using pedigree or genomic data could

enable breeders to improve trait predictions while keeping costs under

control. Employing ‘omics’ predictors could particularly improve can-

didate selection in hybrid breeding because the success of forecasts is a

strongly convex function of predictive ability.



5. General Discussion

Endophenotypes are assumed to capture a plethora of biological infor-

mation, which may not be available from routinely used predictors such

as pedigree and genomic information (Mackay et al., 2009; Sackton and

Hartl, 2016). To improve selection gain in hybrid breeding programs, our

objective was to assess the utility of these endophenotypes for predicting

genetic values of single crosses and to explore avenues for maximizing

cost-efficiency of these alternative predictors.

High predictive abilities in the estimation of genetic values for hybrids

are primarily driven by large genetic distances between parents, linkage

disequilibrium, relatedness between training and test set and properties

of the predictors themselves.

Heterotic patterns and Linkage

Disequilibrium

Heterotic patterns refer to two genetically diverse populations, one be-

ing used for generating maternal and the other generating paternal lines

for the production of hybrid offspring. The separate improvement of

each heterotic pool through recurrent selection has two beneficial out-

comes: (1) genetic drift and selection for hybrid performance procure

complementary gametes in the hybrid offspring and (2) it ensures that

the performance of superior hybrids can predominantly be predicted on

the basis of general combining ability (GCA) effects (Reif et al., 2007).
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All maize hybrids used throughout our studies were based on the Dent x

Flint heterotic pattern, which was established by exploiting two indepen-

dent introductions of material from North America and the Caribbean

(Brandenburg et al., 2017). The genetic divergence between the Dent

and Flint materials used in our studies could clearly be gleaned from

principal component analyses using pedigree, genomic markers, gene ex-

pression transcripts and single-stranded RNA, which is consistent with

two studies using U.S. maize lines (Gerke et al., 2015; Hall et al., 2016).

Moreover, ratios of specific combining ability (SCA) variance to the total

genetic variance in our material were less than ten percent for both, silage

maize and grain maize traits. This result coincides with observations

from previous studies on the genetic architecture of hybrid breeding pro-

grams in maize, which reported SCA variance that typically amounted to

five to twenty percent of the total genetic variance for various traits and

heterotic patterns from European as well as U.S. hybrid maize (Argillier

et al., 2000; Bernardo, 1996; Fischer et al., 2008; Geiger et al., 1986;

Kadam et al., 2016; Parisseaux and Bernardo, 2004; Schrag et al., 2006;

Technow et al., 2014). It should be noted, though, that this low ratio

is not exclusively due to the exploitation of heterotic patterns but also

affected by the makeup of a typical hybrid breeding scheme. Commonly,

the final selection of single crosses in factorial mating designs is preceded

by a selection stage where parents from each heterotic group are selected

based on their general combining ability with one or more testers from

the opposite heterotic group, thereby reducing the magnitude of SCA

variance (Giraud et al., 2017).

With the progressing adoption of new technologies for rapidly generating

fully homozygous inbred lines, such as single-seed descent (SSD) and the

doubled-haploid (DH) technology (Wedzony et al., 2009), vast numbers

of hybrids could theoretically be produced. Hybrids can be partitioned

into three categories: T2, T1 and T0 hybrids, where the digit refers to

the number of parents that have previously been tested in other hybrids.

Given that 81% of hybrids will be T0 hybrids, sharing no parental ga-



metes with the training set (TRN), efforts should be directed towards

improving predictive ability for this subset of hybrids. The importance of

similarities between the TRN and the test set (TST) for high predictive

abilities was pointed out in several studies (Albrecht et al., 2014; Crossa

et al., 2014; Technow et al., 2014). Technow et al. (2014) observed that

predictive ability increases with the number of hybrids in the TRN, but

that the benefit of a large number of hybrids in the TRN is reduced

if the ratio of SCA variance to the total genetic variance is small, as

typically observed in established heterotic patterns. Predictive abilities

of T2 hybrids were particularly high in our studies with comparatively

small dependence on the predictor type. This can be explained by the

fact that T2 hybrids were covered by multiple copies of their parental

gametes in the TRN so that predictive ability was primarily driven by

the low ratio of SCA variance to total genetic variance as argued by

Technow et al. (2012). Remarkably high predictive abilities observed

in experiments on the utility of metabolites for predicting T2 hybrids

in rice (Dan et al., 2016) corroborate this hypothesis. Conversely, pre-

dictive ability for T0 and T1 improved when increasing the number of

parental lines in the TRN while keeping the number of hybrids constant;

probably due to more precise estimates for GCA effects (Technow et al.,

2014). This ranking of T2 over T1 and T0 hybrids, with respect to pre-

dictive abilities, was confirmed in independent studies (Kadam et al.,

2016; Zenke-Philippi et al., 2017). To match the genetic diversity in

the TRN with that of the target population, Bustos-Korts et al. (2016)

suggested an algorithm used by gene banks (Odong et al., 2013). This

uniform sampling procedure successfully improved predictive ability over

that with random sampling of the TRN without introducing population

stratification. With a constant number of hybrids that can be evaluated,

a higher number of properly sampled parent lines would particularly

benefit the prediction of T0 and T1 hybrids compared to T2 hybrids

(Technow et al., 2014).

Ideally, studies should be designed such that markers and causative QTL
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are in high LD, otherwise predictive ability will primarily be based on

relationships between individuals occurring in both, TRN and TST (Ha-

bier et al., 2013; Schopp et al., 2017; Yang et al., 2017). Unfortunately,

relationships between TRN and TST disintegrate faster than LD between

markers and QTL, thereby necessitating more resources for recurring es-

timation of marker effects or breeding values (Heslot et al., 2012). More-

over, kinship-driven selection of candidates increases the risk of inbreed-

ing, which is equivalent to a loss of genetic diversity, thereby threatening

sustainable genetic gain (Heslot et al., 2012). Technologies for the in-

terrogation of the entire genome are now emerging, raising expectations

of perfectly tagging QTL with markers (Kahvejian et al., 2008). Sim-

ulations have shown that gains from whole-genome sequencing (WGS)

data over SNP genotyping-arrays are merely modest (Pérez-Enciso et al.,

2015), which is due to technical limitations such as sequencing errors but

also to the ’curse of dimensionality’ (Libbrecht and Noble, 2015), which is

particularly problematic in plant breeding programs where sample sizes

are rather limited. While new sequencing technologies improve tagging

of causal QTL, there may be no algorithms that can successfully cope

with this plethora of information given limited sample sizes. While al-

gorithms, that can set the size of effects to zero (e.g. BayesB, LASSO,

elastic net) can outperform GBLUP for traits with a small number of

well-tagged QTL with large effects (Daetwyler et al., 2010), they suffer

from identifiability issues for a large number of features (Heslot et al.,

2012; Technow et al., 2014). Our own studies have found that predictive

ability with genomic information quickly reached a plateau at marker

densities around 10,000 SNPs, which is in agreement with previous stud-

ies (Riedelsheimer et al., 2012; Technow et al., 2012, 2014) and BayesB

could not improve upon GBLUP, which is why we did not present those

results in our publications.



Pedigree-based and genomic prediction

Bernardo (1994) pioneered the use of pedigree information and genomic

markers for best linear unbiased prediction of genetic values in plant hy-

brids. Since then, numerous studies on genetic value prediction in hybrid

material have been conducted (see Zhao et al. (2015) for a review), most

of them using either (genomic) BLUP, BayesB or reproducing kernel

Hilbert spaces (RKHS) as prediction algorithms. In our studies, pedi-

gree information was typically outperformed by genomic information in

the prediction of genetic values for hybrids, which is consistent with find-

ings from wheat (Crossa et al., 2010). This was particularly the case for

T0 hybrids, where only distantly related individuals were shared between

TRN and TST, and coincides with observations on Merino sheep as well

as simulated data (Clark et al., 2012) and a study using genetially diverse

maize and wheat material from CIMMYT (Crossa et al., 2014). Intrigu-

ingly, in the latter study, nonlinear algorithms yielded improvements in

predictive ability over those obtained with GBLUP when marker den-

sity increased (Crossa et al., 2014). This supports a finding by Technow

et al. (2014), who used a subset of the material presented in Schrag et al.

(2018), where BayesB yielded a slightly higher predictive abiliy in T0

hybrids compared to GBLUP.

Value added by endophenotypes

Neither pedigree nor genomic data capture intricate physiological epis-

tasis arising from complex interactions among and between endopheno-

types (Brem et al., 2005; Brown et al., 2014; Guo et al., 2016; Hill et al.,

2008). Our studies suggested that the transcriptome, which is the first

endophenotype following the genome, integrates interactions between

SNP loci, both on the same as well as across chromosomes. Genetic

value prediction for hybrids using transcriptomic data yielded improved

predictive abilities compared to those achieved with genomic informa-
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tion for yield in silage and grain maize as well as for protein in silage

maize (Schrag et al., 2018; Westhues et al., 2017). In our study using

maize inbred lines (Guo et al., 2016), ear diameter and kernel width, two

yield-related traits, were predicted with higher precision by transcrip-

tomic data compared to genomic data (Westhues et al., 2017). Small

RNAs, were included in one of our studies (Schrag et al., 2018) because

they are intricately interwoven with gene expression by influencing tran-

scriptional, post-transcriptional and post-translational processes (Franks

et al., 2017; Lappalainen et al., 2013; Li et al., 2016; Mortimer et al.,

2014), thereby potentially augmenting gene expression data. While they

did not outperform any of the other evaluated predictors they yielded

a predictive ability for grain yield that nearly matched that of genomic

data and were on par with gene expression-based predictive ability for

grain dry matter content (Schrag et al., 2018). Metabolites are the final

endophenotype prior to the manifestation of the phenotype, and there-

fore, could potentially integrate all previous main and interaction effects

within and between upstream endophenotypes (Patti et al., 2012). For

the prediction of grain dry matter yield, root metabolites were supe-

rior to genomic information but trumped by gene expression information

(Schrag et al., 2018). Conversely, root metabolites were the worst pre-

dictor for grain dry matter content in the same material. Competitive

predictive abilities could be realized with root metabolites for the traits

’fat’ and ’dry matter yield’ in silage maize while leaf metabolites per-

formed poorly for all assessed traits (Westhues et al., 2017).

Balance between phenotype-proximity and

endophenotype perturbation

As previously noted, metabolites, as the final endophenotype in the

genotype- phenotype cascade, should potentially be the superior predic-

tor by representing all upstream effects acting on the phenotype. How-



ever, this was clearly not the case throughout our studies; a result that is

in agreement with other studies (Guo et al., 2016; Xu et al., 2017) com-

paring metabolites to different predictor types. One explanation could

be the very limited subset of metabolites that were measured in these

studies compared to the vast array estimated to be present in plants

(Fernie, 2007). Additionally, metabolites belonging to the elementary

Calvin-Benson cycle have extremely fast turnover rates (Arrivault et al.,

2009), making it nearly impossible to quantify them precisely. Finally,

metabolites are very susceptible to biotic (Rudd et al., 2015; Tzin et al.,

2015) and abiotic (Asiago et al., 2012; Caldana et al., 2011; Witt et al.,

2012) perturbations. Notwithstanding, other endophenotypes are also

affected by external factors and such deviations of endophenotype levels

from what is expected based on levels observed in upstream biological

layers is generally referred to as ’phenotypic buffering’ (Civelek and Lusis,

2014). The expression of genes is known to be influenced by small RNAs,

which couple with an Argonaute (AGO) protein and bind to a matching

messenger-RNA sequence, thereby partially or completely suppressing

the matched gene (Mortimer et al., 2014). Involvement of sRNAs has

been reported for various processes in plants such as (i) leaf polarity,

(ii) leaf serration, (iii) development phase change, (iv) flowering time,

(v) root meristem development and (vi) responses to biotic and abiotic

stresses (see Li et al. (2016) for a review). Two studies on rape seed (Shen

Yifei et al., 2017) and maize Seifert et al. (2018a) found that sRNA ex-

pression levels displayed moderate to strong negative correlations with

the expression of their pertaining mRNAs. This is in opposition to pos-

itive correlations of genomic and gene expression information in maize

(Seifert et al., 2018a) and suggests that sRNA expression profiles capture

different information (Seifert et al., 2018b). Gene expression patterns in

maize hybrids revealed a preponderance of additive expression in the

F1 generation (Springer and Stupar, 2007b; Stupar et al., 2008), which

was recently confirmed for gene expression in hybrids of rape seed (Shen

Yifei et al., 2017) and Arabidopsis, where 95% of expressed genes were
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at the mid-parent level (Alonso-Peral et al., 2016). Similar observations

were made at the metabolite level in maize hybrids (Lisec et al., 2011)

and taken together these findings could be explained within the context

of metabolic flux theory, which posits that detrimental expression levels

of endophenotypes in the parents are counterbalanced in their hybrid

progeny (Kacser and Burns, 1981; Springer and Stupar, 2007a). Further

support is provided by co-localization of additively expressed genes with

heterotic QTL in hybrid maize (Thiemann et al., 2014). Interestingly,

genes associated with defense-mechanisms were significantly suppressed

in rape seed hybrids compared to their parent lines, possibly adding to

plant growth heterosis given that plant immunity and plant growth are

negatively associated (Shen Yifei et al., 2017).

Complementing endophenotypes

Combining endophenotypes was shown to improve upon predictive abil-

ities of individual predictors in a study on the prediction of breast can-

cer risk (Vazquez et al., 2016) and a study predicting genetic values in

maize inbred lines (Guo et al., 2016). In concordance with our observa-

tions, Guo et al. (2016) showed that predictive abilities, based on either

genomic or metabolite information, were dependent upon multiple fac-

tors: (i) the trait to be predicted, (ii) the type of tissue from which

endophenotypes were sampled, (iii) the age of the tissue at sampling

and (iv) the number of features. The combination of genomic with gene

expression data improved the stability of predictions across traits (Guo

et al., 2016; Schrag et al., 2018; Westhues et al., 2017) possibly due to

the compensation of missing or unreliable information in any individ-

ual predictor (Ritchie et al., 2015). While the simultaneous inclusion

of all endophenotypes in predictions maximized predictive abilities for

maize inbred lines (Guo et al., 2016), this was not strictly true for maize

hybrids where combinations of just gene expression data with genomic

information yielded the best average predictive abilities across traits. To



investigate the optimal contribution of individual predictors for maxi-

mizing predictive abilities, Schrag et al. (2018) placed weights ranging

from 0 to 1 on each of three predictors (pedigree, genomic information,

gene expression information) so that the sum of weights was equal to

one. A previous simulation study suggested that adjusting the variance

of individual markers with known large effects could improve predictive

abilities (Bernardo, 2014). Adding markers from high-density genotyp-

ing chips, which were found to be significantly associated with complex

traits in GWAS, to low-density genotyping chips yielded gains in reli-

ability of production trait prediction ranging from 1.5 to 4 percentage

points in Nordic Holsteins (Brøndum et al., 2015). In our study (Schrag

et al., 2018), a high weight on gene expression data and almost no weight

on pedigree information, maximixed the ability to predict genetic values

for grain yield whereas weights for the three predictors were roughly bal-

anced in the prediction of grain dry matter content (GDMC). Ashraf

et al. (2016) also observed that the optimal weight placed on pedigree

and genomic relationship matrices varied depending on the trait and hy-

pothesized that pedigree information likely received higher weights for

traits where a high fraction of variance was generated by QTL with low

minor allele frequency, which might apply to GDMC. Finally, modelling

SCA effects did not improve predictive abilities for any predictor (Schrag

et al., 2018; Westhues et al., 2017) and interactions between predictors

were not modeled because the studies by Guo et al. (2016) and Vazquez

et al. (2016) had indicated that our sample sizes would have been too

small to benefit from including SCA effects.

Properties of valuable predictors

Our studies aimed to explore what constitutes a valuable predictor for

the prediction of genetic values in hybrids and identify properties that

should be considered when designing experiments. The four major prop-

erties were: (i) sampling costs and throughput, (ii) repeatability, (iii)
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tissue and (iv) cell age. Pedigree information can be collected at practi-

cally no cost except for the effort of record-keeping itself. Assuming that

pedigree records are correct, it follows that repeatability of pedigree in-

formation is perfect. Genotyping has become increasingly affordable for

larger plant breeding companies that can exploit economies of scale. Re-

peatability of genomic information is nearly perfect since the genome is

static and technologies are sufficiently mature for producing high quality

data at high throughput. Tissue type and cell age are irrelevant factors

for genomic information, making it an almost ideal predictors apart from

the previously mentioned caveats: i) their inability to capture physiolog-

ical epistasis, ii) sequencing errors and iii) their large number compared

to typical sample sizes in plant breeding. In contrast to pedigree and

genomic information, all of the listed factors must be weighted when

choosing endophenotypes for the prediction of genetic values. Because

endophenotypes are not static layers of biological information, it is nec-

essary to sample them from multiple biological replicates to deal with

external perturbations (Asiago et al., 2012; Caldana et al., 2011; Rudd

et al., 2015; Tzin et al., 2015; Witt et al., 2012) for improving their re-

peatability. With the advent of RNA-seq (Martin and Wang, 2011; Wang

et al., 2009), throughput and coverage for gene expression have reached

promising levels although the technology still requires fine-tuning (Franks

et al., 2017). For metabolites, the situation is currently less promising

given that the sampled range of metabolites using recent technologies is

nowhere close to the number of metabolites expected to exist in the plant

kingdom (Fernie and Stitt, 2012). Our first study showed that metabo-

lites sampled from leaf tissue were worse predictors than metabolites

sampled from young roots (Westhues et al., 2017). Mediocre predictive

ability of genetic values using metabolites sampled from leaf tissue were

previously reported in maize inbred lines (Riedelsheimer et al., 2012) and

confirmed in two recent studies using a maize association panel (Wen

Weiwei et al., 2018) and a genetically diverse set of rice inbred lines (Wei

et al., 2018) whereas metabolites sampled from root tissue could match



(Westhues et al., 2017) or even exceed (Schrag et al., 2018) predictive

abilities achieved with genomic information for the trait ’yield’. In hu-

man genetics, the Genotype-Tissue Expression (GTEx) consortium was

initiated to study multi-tissue gene regulation using close to 50 tissues

from almost 900 deceased donors (Lonsdale et al., 2013). Regarding

tissue type, some of the major findings of GTEx-based studies are: (i)

over half of the detected gene expression QTL (eQTL) are tissue specific

(Gibson, 2015), (ii) not all previously detected eQTL were biologically

plausible based on the causative tissue (Gibson, 2015) and (iii) shared

eQTL effects were confirmed across tissues having biologically meaning-

ful similarities (Ongen et al., 2017). In addition to tissue type, cell age at

sampling is another important determinant of predictor properties. Our

own studies could not discriminate effects arising from cell age from those

originating from tissue type since the only predictor that was sampled

from two different tissues was also sampled from different development

stages on each tissue. However, studies in maize (Meng Dexuan et al.,

2018), rice (Narsai et al., 2017), vervet monkeys (Jasinska et al., 2017)

and humans (Gopalan et al., 2017) indicate that such effects act on the

expression of genes.

Improving cost efficiency of alternative

predictors

As shown, endophenotypes, even when used in isolation, have the poten-

tial to improve upon the prediction of genetic values compared to either

pedigree or genomic information. Few studies have used endophenotypes

for more than the identification of molecular trait QTL, yet. Multivariate

analyses, treating gene expression variables as phenotypes, are theoreti-

cally well-suited for enriching predictions with information from partially

missing features but quickly become computationally prohibitive with

features sets as large as those provided by RNA-seq, particularly when
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used in conjunction with cross-validation techniques. PrediXcan offered,

for the first time, a practical framework going beyond endophenotype-

based QTL mapping by inferring gene expression data for individuals

having only genetic information from individuals having both, genetic

information as well as gene expression data to correlate these features

with disease traits (GTEx Consortium et al., 2015). We consider this

study exciting because it shows a way for reconciling higher costs of en-

dophenotypes, compared to pedigree and genomic data, with their sug-

gested potential for improving genetic value prediction. Unfortunately,

their method suffers from an inability to account for the incurred impu-

tation error. The single-step framework, which is widely used in animal

breeding, has been intensively studied and improved to address this par-

ticular problem in the imputation of genotypic information from animals

having both, pedigree and genomic information (Christensen and Lund,

2010; Fernando et al., 2014; Legarra et al., 2009). Our third study is

the first investigation of the applicability of the single-step framework

to the imputation of a quantitative predictor. While this framework has

been developed assuming heritabilities equal to one for the features to be

imputed, gene expression data used throughout our study were sampled

under highly standardized conditions, thereby reducing the influence of

environmental perturbations. Applying this framework in the prediction

of maize inbred lines, using complete genomic and incomplete gene ex-

pression data, yielded merely minor improvements over those observed

when using genomic information alone. Similar results were obtained for

our hybrid data when comparing predictive abilities based on genomic

data to those achieved from imputed gene expression data, which we at-

tributed to the considerably higher predictive ability for genomic data

in the full set of 1,521 hybrids compared to that achieved with the core

set of 685 hybrids. When imputing transcripts in the hybrid data set

via pedigree information, however, a substantial improvement in pre-

dictive ability over that achieved with pedigree data was observed. In

conclusion, using endophenoypes in the single-step framework is highly



promising for genetic value prediction of both, inbred lines and hybrids,

when the discrepancy in predictive ability between the two predictors is

moderate to large.

Conclusions

Our research demonstrated that endophenotypes, and gene expression

data in particular, can be of great utility for improving the prediction of

genetic values for complex traits recorded on hybrid plants. Our specific

conclusions are:

(a) endophenotypes seem to be particularly suited for the prediction of

yield-related traits,

(b) combining different predictors yields stable predictive abilities across

diverse agronomic traits,

(c) to be highly predictive, endophenotypes should be sampled under

highly standardized conditions from young tissue,

(d) covering merely a subset of all genotypes with both, endopheno-

types and pedigree/genomic information can leverage the positive

properties of endophenotypes for genetic value prediction at reduced

costs.



6. Summary

One of the great challenges for plant breeders is dealing with the vast

number of putative candidates, which cannot be tested exhaustively in

multi-environment field trials. Using pedigree records helped breeders

narrowing down the number of candidates substantially. With pedigree

information, only a subset of candidates need to be subjected to exhaus-

tive tests of their phenotype whereas the phenotype of the majority of

untested relatives is inferred from their common pedigree. A caveat of

pedigree information is its inability to capture Mendelian sampling and

to accurately reflect relationships among individuals. This shortcoming

was mitigated with the advent of marker assays covering regions har-

boring causal quantitative trait loci. Today, the prediction of untested

candidates using information from genomic markers, called ’genomic pre-

diction’, is a routine procedure in larger plant breeding companies. Ge-

nomic prediction has revolutionized the prediction of traits with complex

genetic architecture but, just as pedigree, cannot properly capture phys-

iological epistasis, referring to complex interactions among genes and

endophenotypes, such as RNA, proteins and metabolites. Given their

intermediate position in the genotype-phenotype cascade, endopheno-

types are expected to represent some of the information missing from

the genome, thereby potentially improving predictive abilities.

In a first study we explored the ability of several predictor types to

forecast genetic values for complex agronomic traits recorded on maize

hybrids. Pedigree and genomic information were included as the bench-

mark for evaluating the merit of metabolites and gene expression data



in genetic value prediction. Metabolites, sampled from maize plants

grown in field trials, were poor predictors for all traits. Conversely, root-

metabolites, grown under controlled conditions, were moderate to com-

petitive predictors for the traits ’fat’ as well as ’dry matter yield’. Gene

expression data outperformed other individual predictors for the predic-

tion of genetic values for ’protein’ and the economically most relevant

trait ’dry matter yield’. A genome-wide association study suggested that

gene expression data integrated SNP interactions. This might explain the

superior performance of this predictor type in the prediction of ’protein’

and ’dry matter yield’.

Small RNAs were probed for their potential as predictors, given their in-

volvement in transcriptional, post-transcriptional and post-translational

regulation. Regardless of the trait, small RNAs could not outperform

other predictors. Combinations of predictors did not considerably im-

prove the predictive ability of the best single predictor for any trait but

improved the stability of their performance across traits. By assign-

ing different weights to each predictor, we evaluated each predictor’s

optimal contribution for attaining maximum predictive ability. This ap-

proach revealed that pedigree, genomic information and gene expression

data contribute equally when maximizing predictive ability for ’grain

dry matter content’. When attempting to maximize predictive ability

for ’grain yield’, pedigree information was superfluous.

For genotypes having only genomic information, gene expression data

were imputed by using genotypes having both, genomic as well as gene

expression data. Previously, this single-step prediction framework was

only used for qualitative predictors. Our study revealed that this frame-

work can be employed for improving the cost-effectiveness of quantitative

endophenotypes in hybrid prediction. We hope that these studies will

further promote exploring endophenotypes as additional predictor types

in breeding.



7. Zusammenfassung

Eine der größten Herausforderungen der Pflanzenzüchtung ist der Um-

gang mit der enormen Anzahl von Kandidaten, die nicht vollständig in

mehrortigen Versuchen geprüft werden können. Die Nutzung von Ver-

wandtschaftsbeziehungen hilft Züchtern die Anzahl dieser Kandidaten

erheblich zu reduzieren. In diesem Fall muss nur ein Teil der Kandidaten

phänotypisch geprüft werden. Für die übrigen, ungetesten Verwandten

wird der Phänotyp hingegen mit Hilfe des Stammbaums vorhergesagt.

Ein Nachteil von Stammbauminformationen ist, dass sie Zufallsprozesse

Mendelscher Vererbung nicht erfassen und somit nicht präzise die genetis-

che Ähnlichkeit zwischen Individuen wiedergeben. Die Nutzung von

Marker-Chips, welche Genomregionen mit kausaler Beziehung zur Ausprägung

phänotypischer Merkmale abdecken, konnte an dieser Stelle eine Verbesserung

erzielen. Inzwischen ist die Nutzung von Markerinformationen zur Vorher-

sage ungetester Kandidaten - gemeinhin als ‘Genomische Selektion’ beze-

ichnet - in größeren Pflanzenzüchtungsunternehmen bereits Routine. Genomis-

che Selektion hat die Vorhersage von Merkmalen mit komplexer genetis-

cher Architektur revolutioniert. Wie Stammbauminformationen, so können

auch genomische Informationen physiologische Epistasie, welche kom-

plexe Interaktionen zwischen Genen und Endophänotypen wie RNA,

Proteinen und Metaboliten beschreibt, nicht adäquat abbilden. Auf-

grund ihrer Einbettung innerhalb der Genotyp-Phänotyp-Kaskade wird

erwartet, dass sie Informationen, die nicht durch das Genom repräsentiert

werden, abbilden. Auf diesem Weg könnten Endophänotypen möglicherweise

die Vorhersagegenauigkeit gegenüber genomischen Informationen verbessern.



In einer ersten Studie untersuchten wir die Eignung unterschiedlicher

Klassen von Prädiktoren zur Vorhersage genetischer Werte für komplexe

agronomische Merkmale bei Hybridmais. Stammbaum- sowie genomis-

che Informationen wurden als Referenz zur Bewertung der Eignung von

Metabolit- und Genexpressionsdaten für die Vorhersage genetischer Werte

herangezogen. Metabolite, die von Maispflanzen aus dem Feld entnom-

men wurden, erwiesen sich als wenig geeignet für die Vorhersage der un-

tersuchten Merkmale. Im Gegensatz dazu erwiesen sich Wurzelmetabo-

lite, entnommen von Maispflanzen, welche unter kontrollierten Bedingun-

gen im Gewächshaus angezogen wurden, als akzeptable Prädiktoren für

die Vorhersage der Merkmale ”Fett” und ”Trockensubstanzgehalt”. Gen-

expressionsdaten waren der überlegene Prädiktor zur Vorhersage genetis-

cher Werte für die Merkmale ”Protein” sowie das ökonomisch wichtigste

Merkmal ”Trockenmasseertrag”. Eine genomweite Assoziationskartierung

deutete darauf hin, dass Genexpressionsdaten Interaktionen zwischen

Genorten integrieren. Dies könnte die überlegene Eignung dieser Prädiktorenklasse

zur Vorhersage der Merkmale ”Protein” und ”Trockenmasseertrag” erklären.

Small RNAs wurden in einer zweiten Studie auf ihre Eignung als Prädiktoren

untersucht, da sie an der Regulierung transkriptionaler, post-transkriptionaler

und post-translationaler Prozesse beteiligt sind. Unabhängig vom Merk-

mal konnten small RNAs andere Prädiktoren nicht übertreffen. Obwohl

keine Kombination von Prädiktoren deutlich die Vorhersagegenauigkeit

der besten einzelnen Prädiktorenklasse übertreffen konnte, gewährleistete

die Nutzung mehrer Prädiktoren die höchste Stabilität der Vorhersagen

über Merkmale hinweg. Indem wir jedem Prädiktor ein unterschiedliches

Gewicht zuwiesen, konnten wir deren optimale Beiträge zur Maximierung

der Vorhersagegenauigkeit bestimmen. Dieser Ansatz zeigte, dass Stamm-

bauminformationen, genomische Informationen sowie Genexpressions-

daten zu gleichen Anteilen zur Maximierung der Vorhersagegenauigkeit

beim Merkmal ”Korntrockensubstanzgehalt” beitrugen. Zur Maximierung

der Vorhersagegenauigkeit des Merkmals ”Kornertrag” waren Stamm-

bauminformationen hingegen unerheblich.
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Für Genotypen, die lediglich mit genomischer Information abgedeckt

waren, imputierten wir Genexpressionsdaten mit Hilfe solcher Geno-

typen für die sowohl genomische Informationen als auch Genexpressions-

daten vorlagen. Bis dato wurde dieser ”single-step” Vorhersageansatz

lediglich für qualitative Prädiktoren verwendet. Unsere Studie zeigte,

dass dieser Ansatz zur Verbesserung der Kosteneffizienz quantitativer

Prädiktoren in der Hybridleistungsvorhersage genutzt werden kann. Wir

hoffen mit diesen Studien einen Anstoß für weiterführende Forschungsar-

beiten über den Einsatz von Endophänotypen als zusätzliche Prädiktoren

in der Züchtung gegeben zu haben.
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Pérez-Enciso M, Rincón JC, Legarra A (2015) Sequence- vs. chip-

assisted genomic selection: accurate biological information is ad-

vised. Genet Sel Evol 47(1):43, DOI 10.1186/s12711-015-0117-5, URL

http://www.gsejournal.org/content/47/1/43

Reif JC, Gumpert F, Fischer S, Melchinger AE (2007) Impact

of interpopulation divergence on additive and dominance vari-

ance in hybrid populations. Genetics 176(3):1931–1934, DOI

10.1534/genetics.107.074146

Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F,

Sulpice R, Altmann T, Stitt M, Willmitzer L, Melchinger AE (2012)

Genomic and metabolic prediction of complex heterotic traits in hybrid

maize. Nat Genet 44(2):217–20, DOI 10.1038/ng.1033

Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D (2015) Methods

of integrating data to uncover genotype-phenotype interactions. Nat

Rev Genet 16:85–97, DOI 10.1038/nrg3868

Rudd JJ, Kanyuka K, Hassani-Pak K, Derbyshire M, Andongabo A,

Devonshire J, Lysenko A, Saqi M, Desai NM, Powers SJ, Hooper J,

Ambroso L, Bharti A, Farmer A, Hammond-Kosack KE, Dietrich RA,

Courbot M (2015) Transcriptome and metabolite profiling of the infec-

tion cycle of Zymoseptoria tritici on wheat reveals a biphasic interac-



tion with plant immunity involving differential pathogen chromosomal

contributions and a variation on the hemibiotrophic lifestyle def. Plant

Physiol 167(3):1158–85, DOI 10.1104/pp.114.255927

Sackton TB, Hartl DL (2016) Perspective genotypic context and

epistasis in individuals and populations. Cell 166:279–287, DOI

10.1016/j.cell.2016.06.047

Schopp P, Müller D, Technow F, Melchinger AE (2017) Accuracy of

genomic prediction in synthetic populations depending on the number

of parents, relatedness, and ancestral linkage disequilibrium. Genetics

205(1):441–454, DOI 10.1534/genetics.116.193243

Schrag TA, Melchinger AE, Sørensen A, Frisch M (2006) Prediction of

single-cross hybrid performance for grain yield and grain dry matter

content in maize using AFLP markers associated with QTL. Theor

Appl Genet 113(6):1037–47, DOI 10.1007/s00122-006-0363-6

Schrag TA, Westhues M, Schipprack W, Seifert F, Thiemann A,

Scholten S, Melchinger AE (2018) Beyond Genomic Prediction: Com-

bining Different Types of omics Data Can Improve Prediction of

Hybrid Performance in Maize. Genetics 208(4):1373–1385, DOI

10.1534/genetics.117.300374

Seifert F, Thiemann A, Grant-Downton R, Edelmann S, Rybka D, Schrag

TA, Frisch M, Dickinson HG, Melchinger AE, Scholten S (2018a)

Parental Expression Variation of Small RNAs Is Negatively Corre-

lated with Grain Yield Heterosis in a Maize Breeding Population. Front

Plant Sci 9, DOI 10.3389/fpls.2018.00013

Seifert F, Thiemann A, Schrag TA, Rybka D, Melchinger AE, Frisch M,

Scholten S (2018b) Small RNA-based prediction of hybrid performance

in maize. BMC Genomics 19(1):371, DOI 10.1186/s12864-018-4708-8

Shen Yifei, Sun Shuo, Hua Shuijin, Shen Enhui, Ye Chu-Yu, Cai

Daguang, Timko Michael P, Zhu Qian-Hao, Fan Longjiang (2017)



BIBLIOGRAPHY 47

Analysis of transcriptional and epigenetic changes in hybrid vigor of

allopolyploid Brassica napus uncovers key roles for small RNAs. Plant

J 91(5):874–893, DOI 10.1111/tpj.13605

Shull GH (1908) The Composition of a Field of Maize. J Heredity

4(1):296–301

Smith OS (1986) Covariance between line per se and testcross perfor-

mance. Theor Appl Genet 2:540–543

Speed D, Balding DJ (2015) Relatedness in the post-genomic era: is it

still useful? Nat Rev Genet 16(1):33–44, DOI 10.1038/nrg3821

Sprague GF, Tatum LA (1942) General vs. Specific Combining Ability

in Single Crosses of Corn. J Am Soc Agron pp 923–932

Springer NM, Stupar RM (2007a) Allele-specific expression patterns re-

veal biases and embryo-specific parent-of-origin effects in hybrid maize.

Plant Cell 19(8):2391–2402, DOI 10.1105/tpc.107.052258

Springer NM, Stupar RM (2007b) Allelic variation and heterosis in maize:

How do two halves make more than a whole? Genome Res 17(3):264–

275, DOI 10.1101/gr.5347007

Stupar RM, Gardiner JM, Oldre AG, Haun WJ, Chandler VL, Springer

NM (2008) Gene expression analyses in maize inbreds and hybrids

with varying levels of heterosis. BMC Plant Biol 8(33):1–19, DOI

10.1186/1471-2229-8-33

Sweetlove, Nielsen Jens, Fernie Alisdair R (2016) Engineering central

metabolism – a grand challenge for plant biologists. Plant J 90(4):749–

763, DOI 10.1111/tpj.13464

Technow F, Riedelsheimer C, Schrag Ta, Melchinger AE (2012) Genomic

prediction of hybrid performance in maize with models incorporating

dominance and population specific marker effects. Theor Appl Genet

125(6):1181–94, DOI 10.1007/s00122-012-1905-8



Technow F, Schrag TA, Schipprack W, Bauer E, Simianer H, Melchinger

AE (2014) Genome properties and prospects of genomic prediction

of hybrid performance in a breeding program of maize. Genetics

197:1343–1355, DOI 10.1534/genetics.114.165860

Thiemann A, Fu J, Seifert F, Grant-Downton RT, Schrag Ta, Pospisil

H, Frisch M, Melchinger AE, Scholten S (2014) Genome-wide meta-

analysis of maize heterosis reveals the potential role of additive gene

expression at pericentromeric loci. BMC Plant Biol 14(88):1–14, DOI

10.1186/1471-2229-14-88

Tzin V, Fernandez-Pozo N, Richter A, Schmelz EA, Schoettner M,
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und nichts verschwiegen habe.

Matthias Westhues

05.04.2019


