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Abstract 
 
A high-power eye-safe scanning aerosol lidar system in the ultraviolet wavelength region is introduced for the 
study of the optical properties of aerosol particles and transport processes in the atmosphere, especially in the 
atmospheric boundary layer (ABL). This system operates with an average power of 9 W in combination with a  
40-cm scanner with a speed of up to 10° s-1. A modified version of the lidar inversion algorithm is developed for 
the retrieval of optical properties of aerosols from scanning lidar measurements. The lidar data can be analyzed 
with previously unachieved temporal and spatial resolution of 0.03 s and 3 m, respectively. 

New methods are developed for both scanning and non-scanning lidar systems to study the evolution and 
structure of the convective boundary layer (CBL). Three advanced techniques namely: logarithm gradient method, 
inflection point method, and the Haar wavelet transform method are demonstrated for determining the 
instantaneous CBL height from the high-resolution lidar measurements. The Haar wavelet-based approach is 
found to be a robust technique for the automated detection of the ABL height. Vertical lidar measurements over an 
urban valley-like location provided the ABL top to be within 0.7–2.3 km above ground level (AGL). The mean 
entrainment zone thickness for the quasi-steady CBL is of about 75 m. The aerosol load showed high variability 
both for a quasi-stationary well-mixed CBL and a CBL during its rapid growth in the morning. The fast Fourier 
transform based spectral analysis of the instantaneous CBL height time series has yielded a spectral exponent 
value of 1.502 ± 0.08314, confirming non-stationary behavior of CBL in the morning.  

Higher-order moments are calculated with respect to fluctuations of the particle backscatter coefficients 
for well-mixed CBL conditions under which hygroscopic growth of the aerosol particles can be neglected. The 
variance spectra show an f- -5/3 roll-off (inertial subrange) inside the quasi-steady CBL. It is demonstrated that the 
major part of the inertial subrange is detected and that the integral scale (60-70 s) is significantly larger than the 
temporal resolution of the lidar system. Consequently, the major part of turbulent fluctuations is resolved. Vertical 
distribution of the variance, skewness, and kurtosis have reflected the turbulence features with an accuracy that is 
mainly limited by sampling errors due to turbulence statistics. Negative values of skewness are found inside the 
CBL while positive values are found in the entrainment zone near the top of the CBL for the quasi-stationary 
regime. But for the case of a rapidly growing CBL, skewness profile has shown a high variability even inside the 
CBL, most probably due to the presence of a rapid growth rate of 4-5 m/minute, non-stationarity, and strong 
residual layer above the CBL.  

The optical properties of aerosol particles emitted from a faint source (a livestock farm, located in flat 
terrain) are determined by means of spatially and temporally high-resolved scanning lidar measurements in 
combination with a high-resolved atmosphere-microphysics-chemistry model and in-situ aerosol measurements at 
ground. Both model and lidar results have yielded the particle backscatter coefficient of the aerosol plume to be of 
about 30 % higher than that of the background aerosol load near the facility. Results show a high spatial and 
temporal variability of the plume. The lifting height of the plume is found to be of about 20 m AGL near the 
source and of about 115 m AGL over long distances up to 3 km due to transport in downwind. The aerosol plume 
has caused an increase of the aerosol number density downwind of up to 5 % in the lowermost 50 m of the ABL. 

Combined high-resolution measurements of aerosol optical properties and temperature field over a 
complex mountainous region with the rotational Raman lidar revealed undulating aerosol-rich layers in the 
preconvective environment and a gradual warming trend of the lower troposphere as the nearby storm system 
evolved. Simultaneous measurements of particle backscatter and extinction coefficients, and respective lidar ratios 
confirm the presence of different particle types in different altitudes. Lidar ratios inside the CBL are found to vary 
around 35 sr. High-resolution scanning and vertical measurements has shown the CBL height to vary between 0.8 
and 1.2 km over the mountain peak. Measurements of aerosol distributions and collocated Doppler lidar derived 
wind field confirm mountain induced flow modifications.  

RHI scan measurements of aerosol optical properties and temperatures showed some more features that 
were consistent with ascending air motion due to overflow over the ridge. The aerosol layers showed the terrain 
following flow features. The particle backscatter coefficient is found to be slightly increased within a potential 
temperature tongue. Small-scale wave structures are determined from the wavelet spectra of the time series of the 
lidar signal intensity at cirrus layer. Lidar ratio values between the altitudes of cirrus cloud base (5.2 km) and top 
(8 km) show high vertical variability with a minimum and maximum values of 3 sr and 25 sr, respectively.  
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Zusammenfassung 
 
Zur Untersuchung optischer Eigenschaften von Aerosolpartikeln und Transportprozessen in der Atmosphäre, 
speziell in der atmosphärischen Grenzschicht (atmospheric boundary layer, ABL), wird ein augensicheres 
Hochleistungs-Scanning-Lidarsystem im ultravioletten Wellenlängenbereich vorgestellt. Das System arbeitet mit 
einer durchschittlichen Leistung von 9 W in Kombination mit einem 40 cm Scanner mit einer Geschwindigkeit bis 
zu 10° s-1. Eine modifizierte Version des Lidar-Inversionsalgorithmus zur Rekonstruktion der optischen 
Eigenschaften von Aerosolpartikeln aus den Scanning-Lidar-Messungen wird entwickelt. Die Lidar-Daten können 
mit einer bisher nicht erreichten zeitlichen und räumlichen Auflösung von 0,03 s bzw. 3 m analysiert werden. 
 Zur Untersuchung von Entwicklung und Struktur der konvektiven Grenzschicht (convective boundary 
layer, CBL) werden neue Verfahren, sowohl für scannende als auch für nicht-scannende Lidar-Systeme, 
entwickelt. Zur Bestimmung der Höhe der instantanen CBL aus den hochaufgelösten Lidar-Messungen werden 
drei fortschrittliche Techniken, und zwar: die Methode des logarithmischen Gradienten, die Inflection-Point-
Methode und die Wavelet-Transformation nach Haar, angewendet. Die auf Wavelets basierende Methode nach 
Haar zeigte bemerkenswert gute Resultate. Vertikale Lidar-Messungen über einem städtischen talähnlichen 
Messplatz ergaben eine Obergrenze der ABL zwischen 0,7 km und 2,3 km über Grund. Die abgeschätzte mittlere 
Dicke der Entrainmentzone für die quasistabile CBL war etwa 75 m. Die Aerosolpartikelbeladung zeigte eine 
hohe Variabilität sowohl für eine quasistationäre gut durchmischte CBL wie auch für eine CBL während des 
schnellen morgendlichen Anwachsens der Schicht. Die auf einer Fast-Fourier-Transformation basierende 
spektrale Analyse der Höhe der instantanen CBL ergab einen spektralen Exponentenwert von 1,502±0,0314, was 
das nicht-stationäre Verhalten der CBL am Morgen bestätigt.  
 Für gut durchmischte CBL-Bedingungen unter denen hygroskopisches Wachstum der Aerosolpartikel 
vernachlässigt werden kann, Momente höherer Ordnung unter Berücksichtigung von Fluktuationen des 
Partikelrückstreukoeffizienten berechnet. Die Varianz-Spektren zeigen ein von f  -5/3 Roll-Off (Inertialbereich) im 
Innern der quasistabilen CBL. Es wird gezeigt, dass der Großteil des Inertialbereichs nachgewiesen wird und dass 
die integrale Skala (60 s –70 s) signifikant größer ist als die zeitliche Auflösung des Lidar-Systems. Folglich wird 
der Großteil der turbulenten Fluktuationen aufgelöst. Die vertikale Verteilung von Varianz, Schiefe und Wölbung 
spiegelt die Turbulenzeigenschaften mit einer Genauigkeit wider, die hauptsächlich durch Fehler aufgrund der 
Turbulenzstatistik bestimmt wird. Negative Werte der Schiefe finden sich im Innern der CBL, während positive 
Werte in der Entrainmentzone nahe der Obergrenze der CBL im quasistationären Bereich beobachtet werden. Im 
Fall einer schnell anwachsenden CBL zeigte das Schiefe-Profil jedoch selbst im Innern der CBL eine hohe 
Variabilität, höchstwahrscheinlich aufgrund einer hohen Anwachsrate von 4 m –5 m / Minute, der Nicht-
Stationarität und einer starken Restschicht oberhalb der CBL.  
 Die optischen Eigenschaften der Aerosolpartikel einer schwachen Quelle (ein Bauernhof mit Viehhaltung 
in ebenem Gelände) werden mittels Messungen mit räumlich und zeitlich hoch aufgelösten Scanning-Lidar-
Messungen, in Kombination mit einem hochauflösenden Atmosphären-Mikrophysik-Chemie-Modell und in situ 
Aerosolpartikel-Messungen am Boden bestimmt. Sowohl die Modell- als auch die Lidar-Ergebnisse ergaben, dass 
der Partikelrückstreukoeffizient der Abluftfahne etwa 30 % höher ist als der Partikelrückstreukoeffizient der 
Hintergrund-Aerosolpartikelbeladung nahe der Anlage. Die Ergebnisse zeigen eine große räumliche und zeitliche 
Variabilität in der Aerosolpartikel-Abluftfahne. Die Anhebung der Aerosolpartikel-Abluftfahne ergibt sich zu 
etwa 20 m über Grund in Quellennähe und zu etwa 115 m über weite Entferungen bis zu 3 km aufgrund des 
Transports in Windrichtung. Die Aerosolpartikel-Abluftfahne bewirkte ein Anwachsen der Aerosolpartikel-
Anzahldichte in Windrichtung von bis zu 5 % in den untersten 50 m der ABL.  
 Kombinierte hochauflösende Messungen von Aerosolpartikel-Eigenschaften und Temperaturfeldern mit 
dem Rotations-Raman-Lidar über einem komplexen bergigen Gebiet machten einerseits wellenförmig verlaufende 
aerosolpartikelreiche Schichten in der präkonvektiven Umgebung, sowie einen graduellen Erwärmungstrend der 
unteren Troposphäre, während sich das nahegelegene Sturmsystem entwickelte, deutlich. Simultane Messungen 
von Partikelrückstreu- und Extinktionskoeffizienten und entsprechenden Lidar-Verhältnissen bestätigen die 
Anwesenheit verschiedener Arten von Aerosolpartikeln in verschiedenen Höhen. Die Lidar-Verhältnisse im 
Innern der CBL variieren um einen Wert von 35 sr. Mit hochaufgelösten Scanning- und Vertikalmessungen ergab 
sich eine CBL-Höhe zwischen 0,8 km und 1,2 km über der Bergspitze. Messungen des Aerosolpartikel-Verteilung 
und aus Doppler-Lidar ermittelte Windfelder bestätigen durch die Berge induzierte Flussmodifikationen. 
 RHI-Scan Messungen von Temperatur und optischen Eigenschaften der Aerosolpartikel zeigten einige 
weitere Merkmale, die mit der Bewegung der Luft über den Bergrücken hinweg konsistent sind. Die 
Aerosolpartikel-Schichten zeigten Flussmerkmale, die dem Gelände folgen. Der Partikelrückstreukoeffizient 
zeigte sich innerhalb eines ‘tounges’ der potentiellen Temperatur leicht erhöht. Kleinskalige Wellenstrukturen 
werden aus den Wavelet-Spektren der Zeitreihen der Rückstreuintensität an Cirrusschichten bestimmt. Werte der 
Lidarverhältnisse zwischen Cirruswolkenuntergrenze (5,2 km) und Obergrenze (8 km) zeigen hohe vertikale 
Variabilität mit einem Minimalwert von 3 sr und einem Maximalwert von 25 sr.  
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Chapter 1 

Introduction and motivation 

1.1 Atmospheric aerosol 

Aerosols belong to the great group of general disperse systems dealing with very fine 

particulate collectives in solid, liquid, and gaseous medium. Aerosols are a minor component of the 

atmosphere, a trace constituent, but their role is amplified by their ubiquity and their interaction with 

the atmospheric radiation. Typical sizes of aerosol vary from 10-4 µm to tens of micrometers. They can 

be found in concentrations ranging from about 107 to 10-6 cm-3, depending upon their size, origin, and 

location. The study of the atmospheric aerosols is important for a variety of reasons, three of which are: 

(i) Aerosols influence the climate directly and indirectly by altering the radiative energy transfer 

through their optical properties (Patadia et al., 2008). Among all other forcing mechanisms, 

uncertainties in the radiative forcing of earth’s radiative budget due to aerosols are maximum (IPCC, 

2001), (ii) By serving as cloud condensation nuclei, they influence cloud-microphysical processes and 

therefore the development of clouds and precipitation which are important for weather and climate 

prediction and earth’s hydrological cycle, and (iii) Aerosols influence air quality (see, Aneja et al., 2008 

and references therein), environmental pollution and often cause severe health-hazardous problems in 

human and any other animals.  

Technological advancement, industrial expansion, population growth, urbanization, and man’s 

constant striving for a higher living standard have been responsible for the fast growing of the 

anthropogenic aerosol concentration (Charlson et al., 1992; IPCC, 2001, 2007). Much interest in 

atmospheric aerosols has been stimulated by the observed impact of anthropogenic emissions (IPCC, 

2007).  

Very recently, the fourth assessment report of the Intergovernmental Panel on Climate Change 

(Forster et al., 2007) has been published. Climate change is acknowledged as the ultimate political 

challenge worldwide due to the release of IPCC working group report in 2007. According to this report, 

large uncertainties in the assessment of climate forcing arise from an incomplete understanding of dust 

processes including production, transport, and removal. Uncertainties include “both an uncertainty 

range (value uncertainty) and a level of scientific understanding (structural uncertainty)”. This 

incomplete knowledge sets an important limit to accurate modeling and forecasting (Ghan and 

Schwartz, 2007, Gobbi et al., 2000). For instance, due to high temporal and spatial variability of 
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aerosols, their characterization into climate models is highly uncertain. Therefore, there is an immense 

importance to emphasize at least on the second one “structural uncertainty” through performing field 

campaigns for process studies.  

Optical properties of aerosol particles are dependent on the distribution of atmospheric 

temperature (therefore on stability), and the humidity, while the dynamical structures of aerosols are 

mainly governed by wind direction and speed, and underlying orography. In this regard, the vertical 

distribution of aerosol optical properties such as particle backscatter coefficient, particle extinction 

coefficient, and corresponding extinction-to-backscatter ratio in two-three dimensions is considered as 

one of the relevant and important parameters needed to investigate atmospheric aerosol processes. The 

quantification of optical properties is necessary for modeling the impact of aerosols on climate.  

Aerosols distributed from lower to upper tropospheric region are termed as tropospheric 

aerosol. The tropospheric aerosol most probably fills 80 % of the whole atmospheric content. 

Consequently, it consists of the particles having penetrated the active cloud filters (Gong et al., 2007), 

stirred up in the convective system (Khain et al., 2005) or mixed downward from the stratosphere 

(Menzies and Tratt, 1995). It is considered as a typically aged aerosol, with some added products 

released from clouds.  

The temporal and spatial variability of the tropospheric aerosols are much higher than any 

other constituent because of the great diversity and wide distribution of the sources and short residence 

time of the aerosol particles. Tropospheric aerosols are generally concentrated in the lower-most 

atmospheric layer, which is called the atmospheric boundary layer (ABL). Investigation of aerosol 

distribution and aerosol transport processes in the ABL in urban regions are of particular interest due to 

large pollution events for various anthropogenic activities taking place in these regions. However, our 

ability to assess these possible impacts is constrained by our limited knowledge of the physical and 

chemical properties of aerosols of both anthropogenic and natural origin. The spatial and temporal 

variation of aerosols is important for determining air quality over a given area. Therefore, the physical 

and chemical properties of aerosols, size distribution, single scattering albedo and their effects on 

climate change in accordance with the measurement techniques of various parameters related to 

aerosols are some of the important issues in the present-day aerosol studies.  

There are two major aspects of aerosol science. One is related to the long-term measurements 

of physicochemical properties of aerosols and their distribution in a diverse area or over any particular 

region and the second one is related to the investigation of the aerosol particles, their properties, and 

their relationship to the diverse atmospheric processes. First one has an unique benefit so that these can 

help to develop an aerosol climatology while the second one yields an advantage to advance our 

knowledge about the aerosol processes taking place in the atmosphere by performing case studies with 

the measurements obtained during field campaigns (process study). The aerosol process study should 

always be performed in such a direction that both qualititative and quantitative results are obtained. 

These results can then help to characterize and classify the processes involved in diverse 
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meteorological situations. For instance, investigations of optical properties of aerosols, different 

aerosol layers (e.g., residual layer) during different ABL regimes and aerosol transport processes in 

different orographical locations (e.g., over valley, flat terrain, complex topography), physical 

characterization of harmful anthropogenic aerosols leading to environmental pollution, are some of the 

important areas.  

 Among various anthropogenic aerosols, hardly studied aerosol particulates are that originated 

from livestock buildings. There is an increasing awareness of the impact that the livestock facilities 

have on the environment, especially in countries or regions (e.g., Germany, The Netherlands) with 

dense animal populations (e.g., Mackiewicz, 1998; Jongbloed and Lenis, 1998; Denby et al., 2008). 

Emission of varieties of particulates and gases from livestock facilities has been found to be a major 

source for degrading air and water quality in the vicinity of the livestock buildings. To date little is 

known about the physical/optical properties of these anthropogenic aerosols from such facilities. Close 

to such sources, aerosol properties are undergoing rapid changes that affect their properties far away 

from the source (Lammel et al., 2005). 

Some research efforts have been made in the last two decades about the adverse effects of the 

livestock farming contributing serious environmental pollution (see, among others, Lange et al., 1999; 

Jongbloed and Lenis, 1998). These emissions are also a major threat to the health of the inhabitants, 

surrounding the region and to the farmers working inside the facilities (see Praml, 1990; Heederik et al., 

1991; Ryalander et al., 1986; Mackiewicz, 1998; and references therein for a brief review of health 

effects of various dusts emitted from farms). Farm animals and their manure contributes largely to the 

emission of methane, nitrous oxide, carbon dioxide, ammonia, various sulfates, several inorganic ions 

etc. (see, Dong et al., 2007; Lammel et al., 2004, 2005; among others for different sources of aerosol 

types and their constituents in and around livestock facilities).  

 All these studies have various limitations which are: (a) they can not adequately provide spatial 

and temporal distributions of the aerosol plume to an extended region, (b) they can not resolve the 

transport processes in variable environmental conditions, (c) wind-driven dynamics is not fully clear 

since plumes are measured at certain points, (d) emissions from the farms are not necessarily 

continuous and point measurements techniques can give erroneous results in those cases when the 

emission rates are varying, and (e) point sampling arrays may fail to detect the fraction of emitted dust 

since the dynamic behavior of these aerosol plumes may vary within a fraction of a second.  

 Therefore, the important questions concerning the detailed transport and vertical extent of these 

plumes, which are closely related to the respiratory hazards of the inhabitants in the surrounding and to 

the environmental pollution are still unsolved. Furthermore, Fraigneau et al. (1996) suggested that the 

prediction of mean concentration might lead to erroneous results if the effect of turbulence is neglected.  

 A measurement technique should be used which can provide a 3-dimensional distribution of the 

aerosol optical properties. Such measurements are also important for detailing the 

relationship/dependencies of aerosol optical properties with/on the prevailing meteorological 
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parameters/conditions. Furthermore, the measured aerosol optical properties should be compared with 

the model results in order to obtain a consistent picture of the distribution of the aerosol physical 

properties.  

 In addition to the investigation of physical properties of aerosols, another important part in 

aerosol science is to investigate aerosol transport processes taking place inside the ABL, which is 

closely related to their physical properties. Investigations of both mean and instantaneous structure of 

the aerosol processes over an ideal and nearly homogeneous terrain have been extensively studied so 

far. But, the studies concerning convectively driven atmospheric boundary layer (CBL) structure over 

mountainous regions have received relatively little attention. In contrast to the aerosol dynamics over 

flat and horizontally homogeneous terrain, aerosol processes over low-mountain regions are complex 

due to the effects of orography-induced gravity waves and fully inhomogeneous flow modification due 

to the presence of valleys in the surroundings. Furthermore, investigation of the aerosol optical 

properties prior to the development of convective systems over low mountain regions brings additional 

challenges to the experimentalist but at the same time yields an opportunity to explore at least the 

physical processes involved in the pre-convective situations over such regions (Rotach and Zardi, 

2007). To date, a few research efforts have been initiated in this direction.  

  

1.2 Atmospheric boundary layer   

 According to the definition of Stull (1988), the ABL is identified as the part of the atmosphere, 

”that is directly influenced by the presence of the earth’s surface, and responds to surface forcing with 

a time scale of about an hour or less”. The temporal and spatial variability of the depth of the ABL, 

ranging from a few hundred meters to a few km, generally depends upon the nature of the surface (land 

or ocean) and the prevailing meteorological conditions.  

 The main contributing factors for the high variability of the ABL over the land surface are 

radiative heating, orography, and inhomogeneous land use. Over the ocean, which is less dynamic in 

space and time, the major factors are the advection of air masses and sea surface temperature. Four 

different sub layers classify the ABL regime which are the mixed layer (ML), the entrainment zone 

(EZ), the stable boundary layer (SBL), and the residual layer (RL). The classification is available in 

more detailed in Stull (1988).  

 Figure 1.1 illustrates an idealized diurnal variation of the structure of the lower atmosphere 

together with different layers. Solar heating of the Earth’s surface drives a convective mixed layer that 

grows to a maximum height varying from several hundred meters to 3 km or more. The EZ at the top of 

the mixed layer is an elevated layer characterized by a stable temperature lapse rate that controls the 

entrainment of air from the free atmosphere.  
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Figure 1.1: Schematic of a classical ABL (adapted from Stull, 1988) evolution (upper panel) and vertical 
distributions of buoyancy flux (lower left) and the pollutant concentration, C (lower right) during daytime, 
depicting the various layers of the lower troposphere. Upper panel shows three distinct parts: a very turbulent 
CBL, a less turbulent residual layer, and a stable boundary layer.  
 
 
 Monitoring of the ABL is an urgent issue in atmospheric science. This layer is characterized by 

largest variability contrary to any other part of the Earth’s atmosphere, while the majority of the sources 

and sinks are located in the ABL. 

The temporal and spatial variability of the ABL depth generally depends on surface forcing, 

entrainment, and lifting or subsidence. The surface forcing mainly includes frictional drag, evaporation 

and transpiration, heat transfer, and terrain-induced flow modification. An accurate and precise study of 

ABL processes is of importance either in the case of parameterization in a general circulation model 

(Ghan and Schwartz, 2007) or in the case of relatively small-scale feature detection by large-eddy 

simulation (LES) method (Mayor, 2001; Mayor et al., 2003).  

Another interesting aspect of the ABL research is the investigation of stable nocturnal boundary 

layer (NBL), also called SBL. The SBL develops during nighttime; sometimes a nocturnal jet 

determines aerosol mixing and transport processes (see, Banta et al., 2003; Newsom and Banta, 2003; 

among others). A stable layer at the top of the mixing layer acts as a lid to the rising thermals, thus 

restraining the domain of the turbulence. It is called EZ because entrainment into the ML occurs here. 

Elevated stable layers play an important role in local circulations, vertical transport, and mixing. The 
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dynamics and evolution of elevated stable layers during transition and nighttime periods are controlled 

primarily by moisture and stable aerosol layers within the layer as well as the wind and temperature 

differences across the layer.  

Determination of ABL height in terrain induced urban area and in highly complex 

topographical regions are of uttermost importance in the atmospheric science community. These 

processes may include the complexities in the aerosol distribution in different regimes of CBL, 

interaction of residual layers with the underlying CBL, modification of the aerosol field with 

atmospheric humidity distribution and stability of the atmosphere, modification of the CBL by the 

underlying orography, and multitude of dynamical behavior associated with the wave activities and the 

wind field. Investigation of the ABL processes is an essential element in the improvement of present 

day weather forecasting model. They play an important role in air mass convection, weakly forced 

convection, strongly forced convection, and the modification of convergence lines.  

 The initiation of air mass convection in cases of weak forcing over complex terrain has been 

identified as a major problem of the numerical weather prediction models (Meißner et al., 2007). There 

is evidence that the wrong simulation of the boundary layer, entrainment zone, and residual layer 

including the diurnal/inter-diurnal development is crucial for the deficiencies (Weigel, 2005; Rotach et 

al., 2008). To develop a new ABL scheme and to evaluate the model performance, simultaneous highly 

range-resolved measurements of the aerosol optical properties, temperature and humidity fields, ABL 

height, entrainment layer structure, clouds, residual layer properties are necessary. 

 The ABL height is also an important parameter characterizing the potential of the boundary 

layer to take up emitted air pollutants. This height defines the volume for the dilution of air pollutants 

emitted or formed near the surface and thus the near-surface pollutant concentrations. In earlier studies, 

it was partly found that the correlation between air pollution and ABL height is inconsistent (Aron, 

1983). Those data gave no reliable information on the daily mean ABL height and the diurnal variation 

of ABL height. With today’s availability of remote sensing devices for monitoring the structure of the 

ABL and the ABL height, a reinvestigation of this correlation is meaningful. 
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Chapter 2 

Lidar remote sensing of aerosol and atmospheric 

boundary layer 

 

2.1 General perspective                

Observations of aerosol dynamics and the characterization of aerosol optical properties in variable 

atmospheric conditions are of significant importance in many areas of atmospheric science. An 

important aspect lies in this regard at the measurements of two-to-three dimensional distributions of 

aerosol optical properties with an unprecedented accuracy both for environmental and meteorological 

purposes. In general, measurements obtained with active, passive, and in-situ sensors are 

complementary. Some advantages of remote sensing technique over conventional direct measuring 

techniques are: (a) the remote sensor does not need to be carried into the medium which is to be 

measured, (b) the measurement system does not modify the variable being measured, and (c) the 

atmosphere can be scanned by remote sensing means in two-three dimension, at different altitudes and 

remote places unlike the single point measurement capabilities of most in-situ systems. All these 

reasons call for the remote sensing techniques for the purpose of atmospheric aerosol studies. 

Optical remote sensing has been extensively used to study the atmospheric aerosol pollutants. 

These techniques fall into two categories: active and passive remote sensing techniques. Remote 

sensors can be classified into three different types on the basis of the platform used: ground-based, air 

borne, and satellite borne.  

In passive remote sensing techniques, the changes in properties of electromagnetic waves 

including energy (absorption and emission), wavelength (frequency shifts), and polarization are 

measured with an external source of radiation. The natural sources like sun, moon, sky or stars are used 

for this purpose, and the change observed in the backscattered power and spectral distributions of the 

corresponding source is utilized to derive information about atmospheric constituents. Vertical 

distribution of molecules, pressure and temperature can also be inferred through the use of inversion 

algorithms. But these systems cannot provide high range resolved information of the measured 

parameter of interest with high accuracy.  

In active remote sensing techniques, sources like lasers or artificial lamps, in the ultraviolet 

(UV), visible and infrared (IR) portion of the spectrum are used in a similar way as in a radar (RAdio 
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Detection And Ranging) system. The change observed in the backscattered power and spectral 

distribution of the sources after the propagation through the atmosphere is utilized to derive the 

information of the atmospheric variables.  

  

2.2 Lidar applications and requirements  

2.2.1 Contributions to atmospheric boundary layer studies 

Lidar, an acronym for LIght Detection And Ranging is an active remote sensing instrument that 

transmits electromagnetic radiation and measures radiation after being backscattered by particles and 

molecules of the atmosphere. The time delay between the emitted pulse and the time of observation is 

related to the distance at which the scattering has occurred via the velocity of light (Collis, 1966). Lidar 

uses radiation in the ultraviolet, visible or infrared wavelength region of the electromagnetic spectrum 

(i.e., 1000 times shorter than that is used in used in radar systems). Consequently, the lidar signal is 

sensitive to molecules and aerosol particles of the atmosphere. High repetition rate of the laser 

transmitter and short pulses with high pulse energy permits measurement with high temporal and spatial 

resolution, respectively. Because the laser pulse is short and the diameter of the beam small, very small 

volume sections along the laser path in the atmosphere are consecutively probed. For lidar, the small 

divergence of the laser beam defines lidar volumes of typically only a few cubic meters at ranges of 

tens of km.  

 Unlike radars, lidars do not have the problem arising due to ground clutter. Lidar remote 

sensing technique allows continuous monitoring of the profiles of atmospheric variables with very high 

temporal and spatial resolution. Lidar signals can readily be interpreted. Different scattering 

mechanisms permit different kinds of measurements. Detailed descriptions of the principles and 

applications of different lidar techniques are available in Kovalev and Eichinger (2002) and in 

Weitkamp (2005). 

 Lidar systems do not have the potential to make direct measurements of cloud-microphysics. 

They cannot make measurement in the presence of optically thick clouds. A precise alignment must be 

maintained all the time during measurements.  

An elastic-backscatter lidar signal results mainly due to the Rayleigh scattering and Mie 

scattering processes. This feature makes lidar remote sensing systems also attractive for studying the 

ABL, where high-resolution sounding is necessary to capture the variability of the parameters of 

interest. The ABL dynamical processes that can be studied by lidar include the instantaneous depth of 

the ABL and its evolution in time, the entrainment zone, and varieties of convective activity patterns 

with associated dynamics.  

The ABL height is determined by characteristic features in profiles of atmospheric variables. 

Different methodologies are used for the determination of the instantaneous ABL height, which are 

based on different properties of the turbulent well-mixed boundary layer. The most conventional 
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method uses in-situ soundings by radiosonde, which gives profiles of wind, temperature, relative 

humidity (RH), and pressure. The radiosonde profile yields a “snapshot”–view of the atmosphere. This 

technique has the limitations arising due to poor sampling (Weckwerth et al., 1996). Tethered balloons 

and aircraft observed profiles are also means for estimating the ABL depth. All these approaches had 

been found to consist of some shortcomings and measurement uncertainties (see, Seibert et al., 2000 for 

an intercomparison and review of these methods).  

In contrast to radio soundings, active remote sensing systems are capable of providing 

continuous monitoring of the key-variables of the atmosphere in high spatial and temporal resolutions, 

leading to much better sampling statistics of the instantaneous ABL height. For this purpose, sodar 

(e.g., Beyrich and Gryning, 1998), radar wind profilers (e.g., Angevine et al., 1994), lidar system (e.g., 

Russel et al., 1974) are in use. For more than two decades, ground-based or/and airborne remote sensing 

techniques are being used as tools to monitor atmospheric parameters and associated dynamics. With 

lidar a multitude of atmospheric parameters can be observed (see Weitkamp, 2005 for a recent review) 

which allows investigating also cross-correlations between the lidar backscatter signal and relative 

humidity (Wulfmeyer and Feingold, 2000). Among all remote sensing techniques, lidar is thus the most 

comprehensive one because the high-resolution tempo-spatial variability of various scales involved in 

boundary layer processes can be investigated by this technique. Just recently, also space borne lidar 

provided (see, Vaughan et al., 2004 for a brief overview of CALIPSO) a global coverage for aerosol 

monitoring.  

Several studies have been performed using lidar systems to determine the structure and 

variability of the ABL height and to retrieve the entrainment zone thickness (EZT); e.g., Senff et al. 

(1996), Kiemle et al. (1997), Davis et al. (1997), Cohn et al. (1998), Steyn et al. (1999), Dupont et al. 

(1999), Menut et al. (1999), Wulfmeyer (1999a, b), Cohn and Angevine (2000), Brooks et al. (2003), 

He et al. (2006). Furthermore, networks of aerosol lidar systems such as the European Aerosol Research 

Lidar Network (EARLINET, Matthias et al., 2004), the Asian Dust Network (ADNET, Murayama et 

al., 2001), and the Micro-Pulse Lidar Network (MPLNET, Welton et al., 2001) are performing 

observations for building aerosol climatology. 

 

2.2.2 Lidar developments related to aerosol observation 

In the last two decades lidar development for studying the atmospheric aerosols and clouds has made a 

good progress. A Small, autonomous, eye-safe micro pulse lidar (MPL) system (Spinhirne, 1993) is 

being used for continuous observations of the vertical distribution of cloud and aerosol layers (see also, 

Spinhirne et al. 1995a,b). The MPL was first developed as an aerosol research tool within the 

Atmospheric Radiation Measurement (ARM) program in USA (Stokes and Schwartz, 1994). But the 

MPL signals require sufficient correction and uncertainty analysis to derive correctly the aerosol 

properties or information (see, a short note by Welton and Campbell, 2002). A depolarization 
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backscatter lidar developed by Grund and Sandberg (1996) can yield the same parameters as previous 

one together with the information about water phase in clouds. This system has the limitation with 

respect to the calibration issue: backscatter and extinction signal cannot be separated. Bissonnette and 

Hutt (1990) developed a multiple scattering lidar system, which delivers detailed information on the 

microphysical parameters. This system is simple and affordable but the data analysis technique is 

challenging. Piironen and Eloranta (1994) developed the high-spectral resolution lidar technique, which 

delivers aerosol backscatter and extinction coefficient, simultaneously. The development of the system 

is challenging and needs attention for eye-safe operation.  

A vibronic Raman lidar system developed by Ansmann et al. (1992) uses both elastic and 

inelastic signal scattered from aerosols and molecules, respectively to derive optical properties of 

aerosol particles. But the reduced range and poor resolution of the system are two major limitations. 

Furthermore, a high-power laser transmitter is needed and this system also needs attention for the non 

eye-safe laser beam transmission. Althausen et al. (1999) applied a 6-wavelength 11-channel lidar 

system to study atmospheric aerosols while Mueller et al. (1998) developed the retrieval algorithms for 

the estimation of aerosol optical properties at those wavelengths. But the system development is not 

straightforward and can hardly be applied in urbanized regions due to the transmission of non eye-safe 

wavelengths. This system also has limitations in daytime operation and insufficient range-resolved 

information.  

Several research efforts have been performed in the last two decades for the development and 

application of scanning lidar system for atmospheric aerosol research (chapter 4 in Weitkamp, (2005) 

and references there in). By pointing a laser beam in various directions at various angles (scanning) 

with respect to the surface, a ground-based aerosol lidar system can provide a description of the three-

dimensional distribution of aerosols in the atmosphere. Eloranta and Forrest (1992) applied a volume 

imaging lidar system to observe aerosol structures in a CBL. Nevertheless, the ocular hazard associated 

with this scanning lidar prevents it from being widely deployed. Soriano et al. (2001) and Kunz et al. 

(2002) developed a scanning backscatter lidar, which has same limitation due to eye-hazardous laser 

beam transmission. In contrast to these efforts, Strawbridge and Snyder (2004) aided the safe operation 

of scanning aerosol lidar with marine radar to detect aircraft. But this system is also not versatile due to 

its limitation of using the same radar in the urban regions. Low power multi-angle micro-pulse lidar 

systems are inexpensive tools for achieving eye-safe operation (e.g., Powell et al., 2000). But they do 

not provide high temporal resolution and long-range data simultaneously and are therefore not well 

suited for scanning measurements.  

Mayor and Spuler (2004), Spuler and Mayor (2005, 2007) made extensive research efforts to 

develop a scanning eye-safe aerosol lidar system to study the ABL processes by interpreting relative 

aerosol backscatter intensity at the wavelength of 1.54 µm. The large dynamic range of their system is 

an attractive feature but their results have not yet been used to quantify the optical properties of 

atmospheric aerosols. Very recent progresses in scanning lidar techniques and their applications are 
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documented in revised and reviewed papers of the International laser radar conference; ILRC-2008. 

See, among others Behrendt et al. (2008), Wulfmeyer et al. (2008b), Brewer et al. (2008), and Siefert et 

al. (2008).  

Therefore, large numbers of lidar systems exist but only some selected numbers of these are 

well suited for aerosol research – but of this group most of them are limited in operation by range, 

resolution, and/or eye-safety.  

 

2.2.3 Required specifications of suitable lidar systems 

 Two key research issues concerning the applicability of eye-safe scanning lidar systems and the 

advantages of using high-resolution lidar measurements for the study of aerosols in the ABL are 

addressed in the following. 

 With scanning lidar, another dimension is added so that the sources and tracks of the aerosol 

particles and the aerosol plume structures can be identified. For instance, vertical scanning can yield a 

detailed picture of the upper hemisphere while the horizontal scanning measurements can evince the 

aerosol sources with high accuracy and can track dynamics of aerosol plumes. Furthermore, unlike 

vertically pointing lidar measurements, scanning lidar can provide aerosol optical properties down to 

the ground level starting from a location very close to the lidar (~ limited beyond a few hundred meters 

due to partial overlap factor of the system up to that distance). 

 Lidar signal with high value of signal-to-noise ratio (SNR) and rapid scanning capability are 

two of the important requirements for obtaining 2-3 dimensional aerosol dynamics inside and above the 

CBL. Appropriate scan strategies are also important elements to overcome the trade-off between high 

SNR and scan speed. The scan strategies again concern the trade-off between the spatial and temporal 

resolution of lidar measurements, coverage area, and scan speed. Therefore, a suitable scanning lidar 

system also needs an automated high-speed data acquisition facility so that above requirements can be 

achieved with sufficient accuracy and precision.  

For scanning lidar systems, eye safety of the transmitted laser radiation is an important issue in 

order to prevent damages to the eyes of humans and animals. Furthermore, the wavelength of the lidar 

beam is another important issue. Differences between the UV and IR lidar concepts are due to the 

wavelength dependency of the atmospheric backscatter signals: while in the IR the molecular 

backscatter coefficient is mostly negligible compared to the particle backscatter signal so that particle 

backscatter signals are detected (almost) directly, the situation is much different in the UV where – 

outside of clouds – the major portion of the signal typically comes from molecular backscattering. In 

the UV, one needs to separate the molecular and particle backscatter signal portions. This separation 

allows the calibration of the system using clear air signals for the derivation of the particle backscatter 

coefficient. Therefore, lidar systems operating at UV wavelength offer the correct estimate of the 

boundary value, at least at the far end of the lidar range.  
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High-temporal-resolution analysis of CBL microscale structure involves the high signal-to-

noise ratio and therefore high power laser transmitter. Such high-resolution lidar measurement can 

reveal highly resolved aerosol features (< 5 meters in some instances) present especially inside the 

CBL. However, the small-scale structure that can be detected is limited by the lidar pulse length. For 

instance a range resolution of the lidar of 1.5 m corresponds to a lidar pulse length of 10 ns. With the 

advancement of high-power laser technology (e.g., Schiller, 2007; Petrova, 2008;) and with the 

availability of the commercial high-speed data acquisition card, development of the high-resolution 

lidar system is feasible.  

Within this dissertation, a scanning, high-resolution mobile aerosol lidar system is developed 

which can be widely deployed especially near urban areas/coastlines/near airports since the laser beam 

transmitted from this system does not create ocular hazards. The optical properties of the aerosol 

particles can be retrieved with the University of Hohenheim (UHOH) mobile scanning eye-safe aerosol 

lidar system. This system consists of unique features so that it can be used as a tool both for 

meteorological and environmental research purposes.  

 

2.2.4 Combination of lidar measurements with modeling and synergy with other 

instruments  

Although single wavelength elastic lidar measurements are necessarily limited in space and time and in 

their ability to differentiate among various types of aerosol particles, lidar measurements of aerosol 

optical properties in two-three dimensions and in time by performing process research (field studies) are 

beneficial to improve the understanding of aerosol processes. But, application of a single lidar alone 

cannot benefit the aerosol process study and the ABL dynamics. Combination of data from active, 

passive and in-situ sensors is the most promising way for profiling thermodynamic variables throughout 

the full depth of the troposphere (Westwater, 1997).  

To study atmospheric processes in detail, lidar measurements should be complemented by other 

active and passive remote sensing measurements. For instance, synergetic remote sensing data like 

relative humidity, potential temperature, virtual potential temperature, gradients of these parameters, 

buoyancy, convective inhibition (CIN), convective available potential energy (CAPE) in clear air and 

around cumulus clouds can yield important additional information for studying different meteorological 

processes (e.g., convection initiation) in an advanced manner.  

 Two more important issues are the evaluation of models like LES with lidar-measured variables 

and lidar data assimilations into present day weather forecast models (e.g., mesoscale model). 

Wulfmeyer et al. (2006) and Grzeschik et al. (2008) showed the impact of the lidar data assimilation of 

water vapor on mesoscale model forecast.  

 Within this dissertation, the UHOH scanning aerosol lidar was applied for resolving the 

problem concerning the aerosol emission and transport processes close to the source through estimating 
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the optical properties of aerosol plumes and investigation of the transport processes inside the ABL. 

The lidar results were then compared with a high-resolving atmosphere-microphysics-chemistry model 

for better prediction of aerosol flow. In-situ point measurements of aerosol size distribution provide a 

better initialization of the LES model. Such combination of experimental and modeling approach is 

considered to be a novel approach to the description of plumes from different aerosol sources (e.g., 

livestock buildings). 

 

2.3 Lidar system development plans and outline 

Main goal of this thesis is the development and application of an eye-safe scanning lidar system 

for atmospheric aerosol research and thereafter the understanding of the processes inside and above the 

ABL, the most complex part of the lower troposphere. 

A vertical-pointing elastic backscatter lidar system using an infrared wavelength was first 

developed which served as a test-bed for the development of a mobile, scanning eye-safe aerosol lidar 

system operating at 355 nm wavelength for detailed studies of the ABL dynamics and aerosol 

processes.  

In contrast to lidar systems in the infrared (wavelength about 1500 nm; Spuler and Mayor, 

2005), eye safety is technically much easier to obtain in the UV. The typical range and time resolution 

of the lidar system are 3 m and 0.03 s, respectively. Such scanning eye-safe aerosol lidar is a unique 

instrument for obtaining objective characteristics of the ABL owing to a combination of properties such 

as remoteness, mobility, resolution, and information content.  

In early 2006, the scanning aerosol lidar system was transformed to the world’s first scanning 

rotational Raman lidar system (Radlach et al., 2006) for the simultaneous measurements of atmospheric 

temperature and both the particle extinction coefficient and the particle backscatter coefficient. 

Development of the scanning RRL is a part of the PhD thesis of Radlach (2008c) while this dissertation 

emphasizes on the development of the data acquisition software and data analysis facilities for the RRL. 

Technical descriptions of new lidar system are available in chapter 3.  

A detailed description of the analysis techniques for data obtained with the lidar operating at 

different wavelengths is presented in chapter 4.  

 Chapter 5 concerns the application of a vertically pointing lidar system developed for the 

characterization of ABL structures and the investigation of related statistics for the better understanding 

of the ABL processes. This chapter mainly focuses on the investigation of the complexities involved in 

both daytime CBL and nighttime boundary layer over an urban valley-like location. 

 Chapter 6 describes the development of a mobile, scanning eye-safe aerosol lidar system at the 

UV wavelength. Selected results obtained during a field campaign in northern Germany during 

September 2005 are presented. The main aim is to demonstrate the potential benefit of applying a 
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scanning aerosol lidar in the UV to investigate aerosol emissions from a livestock facility having rather 

low concentrations and thereafter the retrieval of the optical properties of the aerosol plume.  

 In Chapter 7, results from the field campaign PRINCE (PRediction, Identification and trackiNg 

of Convective cElls) are presented. This field campaign was the part of a project COSI-TRACKS 

(Convective Storms Virtual Institute, with contribution to TRACKS, Transport and Chemical 

Conversion in Convective Systems). Combined measurements of aerosol optical properties and 

atmospheric temperature distributions in pre-convective environments were the major goal of this 

campaign.  

Selected results obtained during the international field campaign COPS (Convective and 

Orographically-induced Precipitation Study, Wulfmeyer et al., 2008a) are presented in chapter 8. For 

the first time RRL technique is applied for RHI scanning data so that aerosol optical properties in 2-3 

dimensions could be estimated. The COPS field campaign took place during summer 2007 in 

southwestern Germany and eastern France. 

Chapter 9 gives a brief summary of the work performed within this dissertation. An outlook for 

the future application of the lidar techniques and data analysis facilities developed is also outlined. 
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Chapter 3 

Experimental set ups of the aerosol lidar system of 

University of Hohenheim 

 

3.1 Vertically pointing elastic lidar system  

The vertically pointing elastic lidar system of UHOH was operated in an intermediate configuration on 

the way to the development of a scanning lidar system for aerosol backscatter and temperature 

measurements (Behrendt et al., 2005; Pal et al., 2006; Radlach et al., 2008a).  

 This version of the lidar system worked in monostatic biaxial configuration with a maximum 

spatial and temporal resolution of 3 m and 0.033 s, respectively. The data acquisition system stores the 

lidar data with a frequency of 30 Hz as it is triggered by the laser pulse repetition frequency (also 30 

Hz). The lidar system was equipped with a flash-lamp-pumped Nd:YAG laser emitting simultaneously 

the fundamental (1064 nm) and the second harmonic (532 nm) wavelengths. Pulses of ~ 10 ns duration 

with pulse energy of 600 mJ at both wavelengths were emitted. The schematic set up and specifications 

of this lidar instrument are shown in Figure 3.1 and Table 3.1, respectively.  

 The backscattered light was sampled with a Ritchey-Chretien-type telescope with a 40-cm-

diameter primary mirror. The same telescope was used for the scanning aerosol lidar and scanning RRL 

described in this study while the laser wavelength differed. The backscattered light passed a lens and 

was then split by a dichroic beam splitter, separating the signals of the two transmitted wavelengths. 

The two beams were analyzed by means of two interference filters, both with 5 cm diameter and 10 nm 

half-width-at-half-maximum (FWHM) band-pass before reaching the detectors: a photomultiplier tube 

(PMT, Hamamatsu R7400-U02) for 532 nm and a silicon avalanche photodiode (Si-APD, Perkin & 

Elmer C3095E) for 1064 nm. Sensitive area of the APD and the PMT are 0.8 mm and 8 mm, 

respectively. 

 The data acquisition and processing unit was comprised of: a two-channel Gage CS 14100 card 

with 14 bit resolution analog-to-digital converter (ADC) sampling the backscattered signal with 

50 MHz to provide data in 3 m vertical resolution, and a standard personal computer, where the data 

were processed using an automated LabView code and then stored on a hard disk. The raw and the 
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range-square-corrected backscatter signal and time-versus altitude image of the lidar signal for both 

channels were displayed in real time. 

 Figure 3.2 shows examples of the range-square corrected signal intensity for the 1064 and 

532 nm wavelengths collected simultaneously with the UHOH lidar at UHOH weather station in the 

afternoon of 7 July 2005. Both images show detailed vertical structures of the CBL up to an altitude             

~ 2.0 km above ground level (AGL) and a cirrus cloud layer between 6 and 7 km AGL. Zoom-in-views 

of the range corrected signal at the IR wavelength for region of the CBL (marked by ‘A’ in Figure) and 

of a cirrus layer (marked by ‘C’) are shown in Figure 3.3. This figure shows high resolved information 

of the aerosol field inside the CBL associated with enhanced turbulent structure. Cirrus layer is also 

visible with an unprecedented resolution. Such high-resolution lidar measurements can yield 

information about the entrainment driven small-scale features present in the CBL.  

 With the configuration of the UHOH lidar used here, observations could not be made from the 

ground to a height of about 400 m because the transmitted laser beam was not completely in the field of 

view of the receiver. This version of the UHOH aerosol lidar system was deployed in Stuttgart 

downtown during summer 2004 and the results obtained from these measurements are discussed in 

chapter 5.  

 

Table 3.1: Technical parameters of the vertically pointing UHOH elastic aerosol lidar system 
 

TRANSMITTER 

   Nd:YAG laser  
Wavelengths:   1064 nm and 532 nm 
Pulse energy:  600 mJ @1064nm and 600 mJ @532nm 
Pulse repetition rate: 30 Hz 
Pulse duration:  10 ns 

TELESCOPE 

   Type:                                    Ritchey-Chretien (Astro Optic) 
Diameter of primary mirror: 40 cm  
Diameter of secondary mirror: 10 cm 
Focal ratio: f/10 
Coating: Aluminum with quartz protective coating 

DETECTORS 

Si-APD for 1064 nm and PMT for 532 nm  

ANALOG-TO-DIGITAL CONVERTER 

   Compu-Scope 14100 
Analog-to-digital resolution: 14 bits 
Sampling rate: 50 Ms/s (for 2 channel) 
Sampling in range: 3 m      
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Figure 3.1: Scheme of the vertically pointing elastic backscatter lidar of UHOH. APD: Avalanche photodiode, BE: Beam expander, BSM: Beam steering mirror, DBS: 
Dichroic beam splitter, IF1 - IF2: Interference filter, L1-L3: Lenses, PMT: Photomultiplier tube, PD: Photodiode. 
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Figure 3.2: Time-versus-height cross-section of aerosol optical backscattering at 1064 nm (left) and 532 nm (right) from ground to 8.0 km AGL over a 15-minute period 
collected on 7 July 2005 at UHOH weather station, Stuttgart, Germany. These data show the simultaneous measurements of aerosol and cirrus cloud structures with a 
temporal resolution of 1 s and a vertical resolution of 3 m. Two regions labeled by ‘A’ and ‘C’ corresponding to the ABL and cirrus layer, respectively are shown in Figure 
3.3.
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Figure 3.3: Zoom-in-views of the regions marked by ‘A’ and ‘C’ (see, Figure 3.2) illustrating enhanced turbulence in the CBL (left panel) and detailed vertical structure of 
the cirrus cloud layer (right panel). 
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3.2 Mobile, scanning eye-safe aerosol lidar system using ultraviolet 

wavelength 

Significant modifications were made for transforming the vertically pointing UHOH aerosol lidar to a 

scanning system allowing: the facility of field-operation by using a compact mobile platform, the 

capability of transmitting eye-safe laser beam with scanning facility, and a high-speed data acquisition 

software for applying four different scan patterns. The fundamental components of the UHOH scanning 

lidar system consisting of a laser transmitter, beam steering unit, receiving optics, telescope, data 

acquisition system, and the mobile platform are briefly described in the following.  

 

Transmitter  

The UHOH scanning aerosol lidar system uses the frequency-tripled output of the same Nd:YAG laser 

used in the earlier version of the lidar system but with pulse energy of 300 mJ at a wavelength of 

355 nm. In contrast to its earlier configuration, this system works in a monostatic coaxial configuration 

as shown in Figure 3.4. The specifications of the key components are summarized in Table 3.2. The 

laser radiations at 532 nm and 1064 nm are not transmitted into the atmosphere. Only radiation at 355 

nm separated with a beam splitter is transmitted at a pulse repetition rate of 30 Hz after 6-times beam 

expansion. This is performed mainly to avoid damages to the eyes of humans and animals. Furthermore, 

this reduces the beam divergence and protects the output mirror coatings.  

 For laser radiation of 400-1400 nm, the main eye threats are connected with retina damage 

because the retina, lens, aqueous humor and vitreous body transmit this range of wavelengths. The 

situation is different for 355 nm because radiation with this wavelength is already absorbed in the outer 

parts of the eye. Taking the energy distribution within the beam profile into account, it is found that a 

beam diameter of 14 cm is sufficient for a pulse energy of 300 mJ and pulse duration of 5 ns in order to 

be eye safe at 355 nm as shown in Figure 3.5. Due to the divergence of the transmitted beam, this 

diameter is reached at distances larger than 270 m.  

 

Receiver and beam steering unit 

The laser beam is emitted coaxial to the receiving telescope (Ritchey-Chretien type telescope used in 

the vertically pointing lidar). A laser-bending mirror is mounted directly on the backside of the 

secondary mirror of the telescope, so that the outgoing laser beam is exactly centered in the middle of 

the telescope. The light backscattered from the atmosphere is directed via the two scanner mirrors 

towards the telescope.  
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Table 3.2: Technical parameters of the UHOH scanning aerosol lidar  
 

TRANSMITTER 

Type: Flash-lamp-pumped frequency tripled Nd:YAG (Spectra-Physics, GCR5-30) 
Wavelength: 354.66 nm  
Pulse energy: ~ 300 mJ 
Repetition rate: 30 Hz 
Pulse duration: 5 ns 
Beam diameter: 6.5 cm (after expansion) 
RECEIVER (with the same configuration as used in chapter 1) 
Telescope:   Ritchey-Chretien type  
Diameter of primary mirror:  40 cm  
Diameter of secondary mirror: 10 cm 
Focal length ratio:  f/10 
Coating: Aluminum with quartz protection layer 

 INTERFERENCE FILTER 

 Wavelength:   355 nm 
 FWHM:    8 nm 
 Transmission:   50 – 55 % 
 Diameter:   50 mm. 

SCANNER 

 Manufacturer:  National Center for Atmospheric Research (NCAR), Boulder, USA.  
 Mirror coating: Protected silver enhanced at 355 nm    
 Substrate: Zerodur 
 Motor type: Servomotors (SM2340 and SM3420 from Animatics, USA)  
Encoder: Resolution with 4000 counts/revolution 

 Scan speed: 10° s-1 in azimuth and elevation 

Dimensions:  Octagonal, Main axes: 609.6 mm x 431.8 mm 

   Thickness: 25.4 mm   

DETECTOR (PMT) 

 Type:  Hamamatsu R7400- U02  
 Diameter: 8 mm 
 Typical gain: ~105 
ANALOG-TO-DIGITAL CONVERTER 

 Compu-Scope  14100 
 Analog-to-digital resolution: 14 bits 
 Sampling rate:  50 Ms/s (for 2 channel) 
 Sampling resolution: 3 m    

  

 The beam steering unit is powered by two servomotors. Lidar scan speeds of up to 10° s-1 are 

obtainable. With the use of sliding contacts, uni-directional non-stop scanning is possible. The technical 

details of the scanner are also summarized in Table 3.2. The wide-band high reflectivity of the mirrors 

reaches more than 95 % within the wavelength range 350 - 1500 nm. A photograph of the scanner on 

the roof of the mobile platform during one measurement is shown in Figure 3.6. A 3-dimensional view 

of the scanner solid model is also shown in the figure (right panel).  

 The beam steering unit is connected by a serial line to the data acquisition computer and 

controlled with the graphical programming language LabView. After passing the telescope the light is 

collimated with a lens and the background is reduced with an interference filter of a FWHM of 8 nm. 
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Figure 3.4: Schematic set up of the UHOH scanning aerosol lidar system. BD: beam dump, BE: beam expander, 
BSU: Scanner (beam steering unit), IF: interference filter, L: lenses, LM: laser mirrors, PMT: photomultiplier 
tube, BS: Beam Splitter, BSM: Beam Steering Mirror, PD: Photo-Diode. 
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Figure 3.5: Eye safety considerations for the scanning aerosol lidar: Energy density against beam diameter, taking 
the maximum energy density within the inhomogeneous laser beam profile of the Nd:YAG laser into account. The 
dashed line shows the maximum allowed energy density of 56 J/m2. For a diameter larger than 14 cm, the laser 
beam is eye safe according to DIN (Deutsche Industrie Norm) rules available at: http://www.pr-
o.info/bc/uvv/93/anh2.htm 

 
     

 

Figure 3.6: The UHOH lidar scanner during measurement in a field campaign in 2005 (left). A 3-dimensional 
view of the scanner solid model (right); Source: NCAR, USA. 
 

The received signal is then focused and detected on an 8 mm R7400-U02 PMT (Hamamatsu). An 

inbuilt high-precision 8-stage electron multiplier is incorporated to the PMT package to produce a noise 

free gain of the order of 105. The amplified signal is then sent to the 14-bit ADC (CS14100). 
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Data acquisition  

The same data acquisition and processing unit as used in the vertically pointing IR lidar system (section 

3.1) was implemented to the scanning aerosol lidar. The complete data acquisition code (DAC) was 

modified to collect and analyze backscatter signal digitized through the ADC so that it permits the 

scanning facility. This software fully controls the scanner movement, data acquisition system, data 

display and storage with high speed, accuracy, and precision.  

 In this configuration of the UHOH scanning lidar, four different sorts of scan patterns are 

possible: (i) RHI (range-height indicator) scan, where the elevation angle is varied at a constant rate 

keeping the azimuth angle constant, (ii) PPI (plan-position indicator) scan where the azimuth angle is 

changed at a constant rate keeping the elevation angle fixed, (iii) RHI volume scan where a set of RHI 

scans is performed with equidistantly changed azimuth angle, and (iv) PPI volume scan where a set 

of PPI scans is performed with equidistantly changed elevation angle.  

 The software includes a real time pseudo-colored display of the backscattered signal, range-

square corrected lidar signal in range-time indicator (RTI) panel. Features include a graphical user 

interface to specify time resolution, range resolution, maximum range, sampling rate, scan speed, scan 

type, scan sectors, and plot type, which facilitated the UHOH lidar to be useful for a multitude of 

measuring tasks. The scanner position is updated at a 30-Hz rate via a parallel port connection to the 

computer. This full software provides a flexible and high quality remote probing capability through 

various scanning mode for a better understanding of dynamical processes, taking place in the 

atmosphere. A complete description of the UHOH scanning lidar dataflow is outlined in section 4.6. 

 

Mobile platform  

The mobile laboratory is based on a truck of Mercedes-Benz (model 814) to allow field-able 

configuration of the UHOH scanning lidar at any accessible site. This platform for the scanning lidar is 

heritage of ARGOS, which was developed in GKSS Research Center, Geesthacht, Germany for mobile 

lidar measurements as a part of the PhD thesis of Wandinger (1994). A photograph of the mobile 

platform is seen in Figure 3.7. Several mechanical infrastructures were made inside the truck to 

accommodate optical bench, telescope mount and scanner adaptor ring.  

 The full mobile platform was made compact, highly stable, and sensitive to any sort of 

mechanical perturbation. The Nd:YAG laser, beam expander, bending mirrors, telescope and the whole 

detection system are mounted on a stable and stiff frame (120 x 60 mm2, Item GmbH) with breadboard 

of Newport. Other exterior fittings included an adapter ring for mounting the scanner on the roof of the 

truck, a mobile crane that can be mounted directly on the roof. 
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Figure 3.7: Mobile platform including the scanner of the UHOH scanning lidar in operation during a field 
campaign in 2005. 
 

 The UHOH scanning aerosol lidar system developed within the part of this thesis is found to be 

an efficient tool for the atmospheric aerosol research. The important features include the following: 

• Eye-safety (operating at 355 nm). 

• Field mobility (compact mobile truck) with geographical positioning system (GPS) or 

server based time synchronization. 

• Large dynamic range (of around 10 km) with high temporal (< 0.3 s) and spatial 

resolution (< 3 m). 

• Retrieval of aerosol optical properties (particle backscatter and extinction coefficient at 

wavelength of 355 nm). 

• Continuous operation (around the clock except prohibitive weather condition arising 

due to shower and/or during extreme humid and foggy weather situation). 

• Real-time display of lidar data applying LabView tools and near real-time 

instantaneous backscatter plots using sophisticated tools. 

• Numerous scan images through batch file and time-lapse animation of these images. 

These animations are of particular importance to observe the two-three dimensional 

flows of the atmospheric aerosols.  

 First field deployment of the UHOH scanning aerosol lidar system was in Autumn 2005 during 

a field campaign in Mettingen near Osnabruck in northern Germany and results obtained are subject of 

chapter 6.  
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3.3 Mobile, scanning rotational Raman lidar system 
The existing eye-safe scanning aerosol lidar at 355 nm was extended to a scanning rotational Raman 

lidar system by integrating two rotational Raman channels in the receiver module. The laser transmitter, 

telescope, scanner, beam steering unit are used in the same configuration as in the UHOH scanning 

aerosol lidar. The elastically scattered signal and two signals out of the rotational Raman bands are 

separated with a sequential set-up of 3-channels (Behrendt and Reichardt, 2000). The signals are 

detected with photomultiplier tubes and digitized simultaneously in analog and photon-counting mode 

with a temporal and spatial (or range) resolution of 10 s and 3.75 m, respectively with a Licel transient 

recorder.   

 In contrast to most other rotational Raman lidar systems, this new lidar developed within COSI-

TRACKS, uses an eye-safe laser transmitter in the near UV (wavelength of 354.7 nm). This minimized 

restrictions for scanning operation in the field. This wavelength yields also temperature data of better 

performance with latest advancements in narrow-band interference filter technology than measurements 

at longer wavelength do. This is due to a larger backscatter cross-section and lower daylight 

background in the UV. The particle backscatter coefficient and extinction coefficient can be determined 

independently with the elastic and rotational Raman signals (Ansmann et al., 1992; Behrendt et al., 

2002).  

 A detailed description of the scanning RRL can be found in Radlach (2008c). As a part of this 

thesis, several software tools were developed which handle the complete data acquisition system 

together with scanner movement with numerous scan patterns, storage and display of the data. Several 

data analysis algorithms were developed to calculate the aerosol optical properties as well as to present 

them through high-quality images. A Brief description of this software is given in Appendix-A and B.  

 The profiles of the particle extinction and backscatter coefficients and then the lidar ratio reveal 

several microphysical properties of aerosol or cloud layers since the backscattering and extinction due 

to aerosol particles depend in different ways on the size, shape of the scattering particles. 

 The first field deployment of the scanning RRL was in summer 2006 during the field campaign 

PRINCE at the summit of Hornisgrinde mountain in northern Black Forest. Results obtained from some 

selected measurements of the PRINCE campaign are discussed in chapter 7. Some technical 

improvements of the scanning RRL system were realized a prior to an international field campaign 

(COPS) in 2007 (Radlach et al., 2008b). For instance, an injection-seeded flash-lamp-pumped Nd:YAG 

laser was implemented which emits pulses at 50 Hz with a power of 10 W at the frequency-tripled 

wavelength of 355 nm. 

 A brief summary of the three different configurations of the lidar system is shown in Table 3.3. 
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Table 3.3: Summary of the configuration of the lidar systems used during four different field campaigns 

Deliverable data product/s Field campaign/s Lidar system 

 

Wavelength 

 

Configuration 

and operation 

mode 
Primary  Secondary Name and 

location 

Year Orography Major aim/s 

Elastic lidar 532 nm and 

1064 nm 

Vertically 

pointing, 

monostatic, 

biaxial, non-eye-

safe, laboratory 

based 

Relative particle back-

scatter @ 1064 nm and 

532 nm wavelengths 

Aerosol dynamics, 

ABL height, EZT, 

higher-order- 

moments, statistical 

properties of ABL 

dynamics 

Stuttgart 

measurement, 

Schlossplatz, near 

downtown 

Stuttgart 

2004 “U-shape” 

valley 

Observation of ABL 

dynamics over an urban- 

valley 

Scanning 

aerosol lidar 

355 nm Scanning, 

monostatic, co-

axial, eye-safe, 

mobile 

Particle backscatter and 

extinction coefficient @ 

355 nm wavelength  

As above PLUS1 campaign, 

Mettingen near 

Osnabrück, north 

Germany 

2005 Flat terrain Investigation of optical 

properties, and transport 

of the plume from a 

livestock facility 

Scanning 

rotational 

Raman lidar 

355 nm As above Temperature field, 

particle backscatter and 

extinction coefficient, 

and aerosol lidar ratio @ 

355 nm wavelength. 

As above together 

with stability 

parameters after 

gradient of potential 

temperature profiles 

PRINCE, at the 

summit of 

Hornisgrinde 

mountain in the 

northern Black 

Forest. 

2006 Complex 

mountaino-

us region 

Investigation of aerosol 

optical properties and 

temperature field in 

preconvective weather 

situation in a low-

mountainous region 

As above but 

with improved 

system 

efficiency by a 

factor of 10 

355 nm As above As above As above COPS, same 

location as above 

2007 As above As above but with 

additional advantages of 

multi-instruments 

synergies 
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Chapter 4 

Lidar data analysis techniques 

 

4.1 Determination of the atmospheric boundary layer height  

 In the following, data analysis procedures applied for the evaluations of the lidar data obtained 

at IR wavelength are outlined. These include three different methods for the determination of the 

instantaneous ABL height from vertically pointing lidar measurements. The EZT is estimated from the 

time evolution of ABL height. Furthermore, three different procedures for the statistical analyses of the 

ABL height time series are presented. Non-stationarities embedded in the time series and then 

determination of multi-fractal dimension, higher-order moments estimation of the lidar backscatter 

signal intensity for investigating the turbulence nature of ABL are evaluated. Finally, a brief overview 

of the wavelet-based spectral analysis to extract several scales/frequencies present in the time series of 

the particle backscatter signal in the different atmospheric layers is given.  

 Aerosol particles, which are suspended in the ABL, produce strong signatures in backscatter 

lidar signals. Generally, the lidar signal intensity decreases from the top of ABL to the free troposphere 

if there is no cloud layer or RL. Daytime ABL yields vertical transport and strong turbulent mixing and 

hence different entrainment regimes. The procedures for estimating the ABL height by the logarithm 

gradient method (LGM), the inflection point (IP) method, and the Haar wavelet transform (HWT) 

method are described in the following.  

 ABL height is defined as the height of the inversion level separating the free troposphere (FT) 

from the boundary layer (Stull, 1988). The inversion layer is finite in depth, and thus covers a range of 

heights not a single discrete and easily confined value. According to Stull (1988), ABL depth is defined 

as the “average height of the inversion base”. But the entrainment near the top of the ABL consists of 

complex processes and therefore, the instantaneous ABL height is often not well defined. The ABL 

height is differently characterized as: 

• The height of the inversion base (commonly denoted as zi), which is also the top of the well-

mixed layer, and approximately equal to the level at which the buoyancy flux becomes zero 

in a CBL. 

• The top of the inversion (top of BL as a whole), equal to the height above which the 

turbulence intensity becomes zero, and the upper limit of negative buoyancy flux. 
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• A point within the inversion layer– the location of the maximum vertical gradient is 

frequently used since it is relatively easy to identify by automated algorithms, the level of the 

minimum (max negative value) buoyancy flux might also be used – this is approximately the 

midpoint of the inversion layer. 

 The definitions of the ABL height differ not only in the precise value obtained, but more 

fundamentally in that they are defined by different physical quantities or processes. The different 

algorithms used on the lidar backscatter signals similarly result in different levels because they are 

defined by or they represent different physical quantities/processes. These distinctions are important 

when comparing results from different algorithms, and some precision should be used in the definition 

of exactly what feature is being identified. It is further important to note that the inversion that defines 

the top of the boundary layer is a thermodynamic feature. Lidar backscatter is considered to reflect the 

thermodynamic inversion closely because it is proportional to the aerosol concentration if the change in 

the particle size distribution and particle composition are neglected. The aerosol concentration is much 

lower in the free troposphere as compared to that in the CBL and thus has a transition that closely 

matches the inversion. Aerosol size, however, is a function of humidity, which often falls dramatically 

across the inversion layer; the lidar backscatter is thus not truly conserved and differences between the 

transition zone limits of lidar backscatter profile and thermodynamic inversion might exist, at least for 

some conditions.  

The EZ at the upper boundary of the mixed layer is characterized by a capping (temperature lid) 

to the rising thermals. The methods to estimate EZT are discussed in section 4.2. Stull (1988) defined 

entrainment zone as the region where the buoyancy flux is negative or the region where more than 5 % 

and less than 100 % of air on a horizontal plane has free tropospheric (FT) characteristics. The ABL 

height (zi) may be taken as the height at which 50 % of the air has free atmosphere characteristics or 

when buoyancy flux is minimum. 

 

4.1.1 Lidar equation 

Elastic backscatter lidar is an efficient technique for remote sounding of the ABL. Suspended aerosols 

act as tracers and allow getting a detailed characterization of the ABL structure and especially the 

height of the ABL. The monostatic elastic lidar signal is expressed as  

( ) ( ) ( ) ( )
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2 λλλ αβ      [4.1] 

where 

R is the range 

Pλ(R) is the received signal intensity at the wavelength of λ (here, 355 nm) from range R 

P0,λ is the peak power of the single laser pulse  
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c is the velocity of light 

tP is the laser pulse width  

K is the efficiency of the detector system 

A is the receiving area of the telescope 

O(R) is the laser-beam receiver-field-of-view overlap function  

βλ is the total backscatter coefficient due to atmospheric particles and molecules 

αλ is the total extinction coefficient due to atmospheric particles and molecules 

Total backscatter coefficient can be expressed as ( ) ( ) ( )RRR parmol ,, λλλ βββ +=               [4.2] 

where ( )Rmol,λβ  and ( )Rpar,λβ  are the molecular backscatter coefficient and particle backscatter 

coefficient, respectively. A similar relationship as Eqn. 4.2 can also be obtained for the total extinction 

coefficient 

)()()( ,, RRR parmol λλλ ααα +=     [4.3] 

where )(, Rmolλα  and )(, Rparλα are the molecular and particle extinction coefficient, respectively. The 

relationship between lidar backscatter intensity and aerosol concentration is complicated and can be 

tackled with the multiwavelength Raman or high-spectral resolution lidar (Wandinger et al., 1995; 

Mueller et al., 1998).  

 In the IR wavelength region, the range-square-corrected backscatter signal intensity is 

approximately proportional to the particle backscatter coefficient if the aerosol extinction is small. The 

Rayleigh scattering due to the atmospheric molecules at this wavelength is negligible. Therefore, Eqn. 

4.1 can be approximated as  

     ( ) ( )R
R

RP parβ
2

C
≅         [4.4] 

 
where C is a constant containing the system constant, receiver area, and overlap function.  

 Eqn. 4.4 is not aimed at the retrieval of the absolute value of particle backscatter coefficient. 

But using aerosols as tracers, characterization of the ABL structures and investigation of related 

statistics are feasible.  

 

4.1.2 Logarithm gradient method 

The first approach adopted here for retrieving the ABL height is based on the calculation of the vertical 

gradient of the logarithm of the range-square-corrected lidar backscattered signal (Senff, 1996; 

Wulfmeyer, 1999a; Wulfmeyer and Janjic, 2005) which is expressed as 
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where z2 and z1 are two different heights (z2 > z1) from the lidar. Please note that range (R) is replaced by 

height (z) in the lidar equation as this technique is applied for the vertically pointing lidar 

measurements. The use of the derivative of the logarithm of range-squared corrected signal yields one 

advantage compared to the use of derivative of only range-squared corrected signal. The benefit is to 

have the extinction coefficient (although small) in linear form allowing maxima and minima to appear 

with better-expressed contrast.  

  The lidar signal generally shows a local discontinuity or transition zone between the mixed 

layer and the free troposphere, more or less well marked, depending on the turbulent activity and the 

aerosol distributions present. The altitude corresponding to the minimum of D(z) is defined as the 

instantaneous ABL top. This height is denoted throughout the text and in the figures as hLGM and is 

expressed as 

( )( )zDh minLGM ≡           [4.6] 

 According to Stull (1988), the top of the ABL is the height of the most negative sensible heat 

flux and may be situated well in the middle of the entrainment zone. Since passive scalars are 

accumulated in the ABL, large gradients of aerosol concentration or water vapor density occur at the 

inversion capping the ABL; those gradients are also suited for defining the top of the ABL (Stull, 1988). 

In ideal cases, the location of this gradient coincides to the minimum in the buoyancy flux profile. A 

sharp potential temperature jump also determines the ABL top (Boers et al., 1984). 

 One should remember that the quantity D(z) is sensitive to the presence of noise in the lidar 

signal and special care should be taken in the averaging scheme before this technique is applied.  

 

4.1.3 Inflection point method 

The retrieval of the ABL height by IP method (Menut et al., 1999) is based on the estimation of the 

altitude corresponding to the minimum of the second derivative of the logarithm of the range-square-

corrected signal and can be expressed as    
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 This definition is slightly different from the LGM. The IP method searches for the altitude 

where the inflection point of ( )zD occurs. hIP is in general less than hLGM since second derivative 

changes sign each time the first derivative changes direction. Second derivative function exhibits 

various minima below and above hLGM. In this regard, Sicard et al. (2006) demonstrated that the best 

estimator with the IP method is the minimum of the second derivative located just below hLGM.   
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4.1.4 Haar wavelet transform method 

The concept of wavelet transform (WT) was introduced in the early 1980’s and then was used by many 

authors for atmospheric and oceanographic studies (Farge, 1992; Meyers et al., 1993; Torrence and 

Compo, 1998). The most simple orthogonal mother-wavelet function is the Haar wavelet (Daubechies 

et al., 1992). Using this as kernel, studies that successively determined the ABL height are Davis et al. 

(2000), Cohn and Angevine (2000), Brooks (2003), among others. The HWT-based method applied 

here is an application of wavelets for feature recognition. The Haar wavelet function returns large 

coefficient values where a profile has large backscatter gradients, so this is used with lidar profiles.  

The Haar wavelet is defined as  

                         

otherwise0

2for1

/2for1

a/bzb

bzab

a

bz
H +≤≤−

≤≤−

=






 −
          [4.8] 

 
where z is height and a and b are the dilation and translation of the function, respectively. A functional 

diagram of the Haar wavelet is shown in Figure 4.1. 

 

 
Figure 4.1: Sketch of the Haar wavelet function used in the determination of the ABL height. The blue dotted line 
marks the expected hHWT.  
 

 For a signal f(z) (here range-corrected signal, 2)( zzP and the Haar wavelet H, the convolution, 

Wf(a,b) of the Haar function with the backscatter profile, is defined as the covariance transform 

(Gamage and Hagelberg, 1993). This function after normalized with the dilation value is expressed as 
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Here zmin and zmax are the lower and upper altitude of the lidar profile between which the HWT is to be 

applied. Now, the maximum value of the covariance transform corresponds to the strong step-like 

decrease in backscatter at the top of the ABL. The corresponding altitude of the resulting maximum is 

identified as the ABL top and is expressed as 

( )( ) maxminformax zbzba,Wh fHWT <<≡   .              [4.10] 

This technique works well except for complicated cases, e.g., when the boundary layer consists 

of the newly developing CBL and one or more RL in the lower troposphere like possibly in the morning 

time (see section 5.3.2.1).  

 

4.2 Estimation of entrainment zone thickness from ABL height time 

series 

The existence of different entrainment regimes and hysteresis effects in the daytime evolution of the EZ 

makes the retrieval of the EZT complicated (see, Flamant et al., 1997). An entrainment zone is basically 

characterized by a region near the top of the boundary layer where an enormous mixing of the free-

tropospheric (FT) air (by downdraft) and the thermals (by updraft) of the CBL occurs (Stull, 1988). The 

top of the entrainment zone can be easily determined, but the bottom height of the same is characterized 

by an altitude where 5-10 % of the air that has the FT characteristics. In this study this definition is used 

to estimate EZT. This definition was confirmed by Deardorff et al. (1980) through his water tank 

experiment. This experiment yielded a comprehensive description of the normalized depth of the 

entrainment zone and the “overall” Richardson number, *
iR  
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and  

g is the acceleration due to gravity 

θ∆  is the potential temperature jump across the entrainment zone 

θ  is the mean ABL potential temperature. 

*w is the convective velocity scale defined as ( ) 







= hw

g
w s''* θ

θ
 

The definition of Richardson number (Melfi et al., 1985) is important while discussing the EZT: 

Deardorff et al. (1980) suggested that the ratio of the EZT and the ABL depth is directly related to Ri*. 

 EZT can be determined from cumulative frequency distribution of the instantaneous ABL 

height measurement from lidar (e.g., Stull and Eloranta, 1984; Melfi et al., 1985). This procedure 
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consists of the calculation of height differences between the 5 %-10 % and 90 %-95 % values of the 

cumulative frequency distributions of the instantaneous ABL height evolution.  

This analysis is not directly comparable with that of Melfi et al. (1985) since they considered 

the EZ in a spatially averaged sense whereas EZ in a time averaged sense is considered in this work. 

The EZT is computed from the time series from a vertically pointing ground-based lidar while their 

study used backscatter signal collected from aircraft. It is assumed in this case that the EZ is “a measure 

of the averaged vertical size of the ABL-height fluctuations” as defined in Boers et al. (1995). This 

should be mentioned here that Taylor’s “frozen turbulence” hypothesis could be used to transform 

temporal data into the spatial domain (Taylor, 1921; Powell and Elderkin, 1974). These results are then 

compared with the standard deviation approach (Davis et al., 1997; Hägeli et al., 2000; Schwemmer et 

al., 2004).  

Estimation of the EZT is important since it can describe the growth of the CBL and 

accompanying vertical mixing of the pollutants that largely depends on the surface forcing as well as on 

entrainment at the CBL top. 

 

4.3 Statistical analyses 

All geophysical datasets show non-stationary behavior both in time and space. ABL is the most variable 

atmospheric layer in the troposphere due to the variety of physical processes. Major challenges lie in the 

development and application of the best suitable statistical approach to the problem of non-stationarities 

in the signal. 

The CBL consists of highly fluctuating and irregular structures and the CBL height necessarily 

carries this information by its irregularity in space and time. Therefore, the top of the CBL is an 

implicative of this fluctuation. Variability in the CBL top could be an indicator of multi-scaling 

properties. To quantify the aspects of variability and correlations at different temporal and spatial 

scales, one needs to apply advanced statistical approaches. To do this, different statistical techniques 

have been applied here: Fast Fourier transformation (FFT)-based power spectral analysis, detrended 

fluctuation analysis (DFA) and multifractal analysis.  

Davis et al. (1994) presented a detailed discussion on the spectral properties and stationary 

issues for time series of geophysical datasets. The basic concept of their technique is to search for the 

scaling regime of those data, the energy/power spectra of which show a power law dependency. They 

showed that computation of the power/energy spectra could easily test the scale invariance. For a 

scaling process, one can always expect a power law behavior (Davis et al., 1994). Here, the aim is to 

illustrate the statistical behavior of the CBL height time series on the basis of multifractal framework. 

Using these techniques, very recently, through a series of three papers Lovejoy et al. (2008), Lilley et 

al. (2008) and Radkevich et al. (2008) demonstrated lidar data of atmospheric aerosols (considering 

passive tracers) to estimate turbulent scaling in the atmosphere.  
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High-resolution time series of lidar derived CBL height is considered for applying these 

methods. Firstly, it is tried to find a power law dependency to examine the existence of self-affined 

properties of the CBL height time series. Secondly, same time series is treated by the DFA. Then the 

effects of local trends by fitting polynomials of degree 1 or/and 2 are demonstrated. Finally, local 

correlations and scaling properties of the CBL height time series are studied by the multifractal 

approach. Similar analyses can be found in Ivanova et al. (2002) for the case of a time series of stratus 

cloud base height. To my best knowledge, to date such analyses have not yet been applied to a time 

series of CBL height obtained from a ground-based lidar system.  

 The main objectives in performing statistical analyses of the CBL height evolution (i.e., time 

series) are three-fold: 

• To determine the characteristic features of the local correlations in the CBL evolution 

• To investigate its multi-fractal behavior 

• To classify the non-satationarities involved in the CBL 

 

4.3.1 Spectral analysis 

The FFT-based spectral analysis is performed on the instantaneous CBL height time series. First of all, 

removal of outliers (due to erroneous profiling) from the time series is performed since these outliers 

yield significant errors in the calculation (Lenschow et al., 2000). The time series is then corrected for a 

linear trend and then is high-pass filtered to get rid of the long-term variations in the data. This is 

necessary to perform a clear separation between large-scale and small-scale phenomena. The high-pass 

filtering process is performed by the fast Fourier transform of the time series and then multiplying the 

transforms with an appropriate filter function; see Senff et al. (1996) and Wulfmeyer (1999a) for outlier 

removal technique and high-pass filtering procedure.  

 The power-law dependence can be found from SF(f) ~ f -γ where SF is the power and f is the 

frequency and γ is the corresponding spectral exponent. The slope of ln[SF(f)] versus ln[f] yields the 

value of γ. The value of γ determines whether the process is self-affined or not. If 1< γ<3 then, the 

signal is a non-stationary process with stationary increments.  

 

4.3.2 Detrended fluctuation analysis 

Detrended fluctuation analysis (DFA) is a method for quantifying the correlation property of a non- 

stationary time series based on computation of a scaling exponent by means of a modified root mean 

square calculation of a random walk. The DFA method reveals the extent of long-range correlations in a 

time series. Briefly, the time series to be analyzed (with N samples) is first integrated. Next, the 

integrated time series is divided into boxes of equal length n. In each box of length n, (a polynomial of 

the order of 1 or 2) a least squares line is fitted representing the local trend in that box. The y coordinate 
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of the straight-line segments is denoted by yn(i). Next, the integrated time series, yN(i) is detrended by 

subtracting the local trend, yn(i), in each box so that  

Y(i )= yN(i) − yn(i)       [4.12] 

For a given window of size n (in this case, the profile number), the root-mean-square 

fluctuation of this integrated and detrended time series is called detrended fluctuation function and is 

calculated as 
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The above computation is repeated for different box sizes n (different scales) to provide a 

relationship between F(n) and n. A power-law relation between F(n) and the box size n indicates the 

presence of scaling: F(n) ~ nα*. The parameter α*, called the scaling exponent or correlation exponent 

(self-similarity parameter) represents the correlation properties of the signal: if α* = 0.5, there is no 

correlation and the signal is an uncorrelated signal (white noise- the value at one instant is independent 

of all previous values), if α*< 0.5, the signal is anti-correlated; if α* > 0.5, there are positive correlations 

in the signal. 0 < α* < 0.5 indicates power-law anti-correlations (large values are more likely to be followed 

by small values and vice versa); for α* > 1 correlations exist but cease to be of a power-law form. As 

quantified by the parameter α*, this method enables identification of the timescales over which noise 

dominates the time series and characterizes the temporal range of correlations in the time series. For 

DFA, presence of a positive alpha value defines a scaling range where a relationship γ = 1+2α* holds 

(Davis et al., 1994). Later, this relationship was recognized as Heneghan and McDarby (2000) 

relationship. 

The most important advantage of DFA over conventional methods (e.g., autocorrelation, 

spectral, and Hurst-analysis) is that it permits the detection of intrinsic self-similarity embedded in a 

seemingly non-stationary time series (Hurst et al., 1965; Pelletier, 1997). Following the work of Peng et 

al. (1994), several theoretical studies elucidated the power and limitations of filtering out various trends 

from synthetic data series (Heneghan and McDarby, 2000, Talkner and Weber, 2000, Hu et al., 2001). It 

is considered that the DFA is a reliable tool to accurately quantify the correlation within a signal. 

Additionally, the scaling and crossover features of F(n) can be used to determine the order of 

polynomial trends present in the data.  

 

4.3.2 Multifractal analysis 

The intermittency is quantified adopting the singular measure analysis. Following Davis et al. (1994), 

the first step that this technique requires is to define a basic measure ε(1;l) as  
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where ∆y(1;l)= y(ti+1)-y(ti) is the small scale gradient field and <> denotes an average over the N data 

points  
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Next, one can define a series of ever more coarse-grained and ever shorter fields ε(r; l) where                

0 < l < N-r* and r*=1,2,4,8…N. Thus the average measure of in the interval [l; l+r] is 
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The scaling properties of the generating function are then obtained through the equation 
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Using K(q) function one can define the generalized multifractal dimension 
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Results obtained for a CBL height time series after applying these three techniques are described in 

section 5.3.5.  

 

4.4 Procedure to determine higher-order moments  

Statistical results concerning turbulent moment analysis of the fluctuation of particle backscatter 

coefficients inside the boundary layer is an area of major interest. In spite of its importance, no study 

exists so far that illustrates potential of this technique (higher-order moments estimation) for aerosol 

backscatter in the CBL. 

 The idea of estimating the higher-order moments of the range corrected lidar backscatter signal 

lies in assuming the aerosols as passive tracers of the atmospheric dynamics. In this case, this is 

assumed that fluctuations of the backscatter coefficient are mainly due to changes of total aerosol 

number density but not due to fluctuations of the microphysical properties of the aerosol particles. The 

latter may be due to aerosol swelling and advection of different particle types. The analysis presented 

below can be improved if more information concerning the vertical profile of aerosol microphysical 

properties becomes available, e.g., by in-situ profiling or the use of more sophisticated lidar systems.  

 Here, the main aim is to determine the turbulent moments of particle backscatter and its 

scientific interpretation if fluctuations of their microphysical properties can be neglected. One of the 

important factors is the change of aerosol optical properties in environments with variable RH 

(hygroscopic factor). But for a well-mixed CBL, one can approximate the RH to be constant in height 

within the CBL. Changes in the entrainment zone may be significant, however, as far as RH < 80%, 

also in this region aerosol swelling can be neglected (Wulfmeyer and Feingold, 2000). Under these 
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conditions, the fluctuation in the range-square corrected backscatter signal is approximately 

proportional to the fluctuations in the aerosol number density as shown in the following.  

 It was mentioned earlier that the range-square corrected lidar signal is directly proportional 

(Eqn. 4.4) to the particle backscatter coefficient, i.e., ( )zparβ . So, the backscatter signal can be 

considered as a surrogate for the concentration of a passively advected tracer i.e. aerosols. According to 

the Mie theory (Boheren and Huffman, 1983), the particle backscatter coefficient at a certain height z 

and at time t can be expressed  
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zbsc stands for the backscatter efficiency at the lidar wavelength λ, r is the particle 

radius and m is the complex refractive index of the particle, n(r(t)) is the number of particles with radius 

r at time t. The index i in Eqn. 4.19 describes various particle types.  

 If one neglects the variation of the aerosol size with the relative humidity and assumes similar 

types of aerosol particles in the study region, then the fluctuation of ( )tzpar ,,λβ  can be expressed as 
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Generally, the aerosol number density can be expressed by a log-normal distribution 
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where iµ ,
 

and iσ
 
are the mean geometrical radius, and the standard deviation in each case, 

respectively. 

If we can express the backscatter profile by a single type of aerosol particle,  
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 Now, we introduce the assumption that the fluctuations of the aerosol microphysical properties 

are significantly smaller than the fluctuations of the total number density in the observed volume of the 

lidar. In this case, 
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which leaves a time independent function C(z) under the integral. This constant is characteristic for a 

particular type of aerosol particles. The temporal fluctuations can be written as   

( ) )()(, zCtNtz zpar ∆≈∆β .       [4.25] 

Consequently, for each height  
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which states that the fluctuation of the particle backscatter coefficient is directly proportional to the 

aerosol number density fluctuation in the atmosphere if the assumptions are valid. Furthermore, the 

relative fluctuation of the backscatter coefficient becomes equal to the relative fluctuation of the aerosol 

number density. 

Profiles of higher-order moments of fluctuations of the lidar retrieved aerosol backscatter 

intensity i.e., variance (V), skewness (Sk), and kurtosis (K) are derived here following the methods, 

introduced in Lenschow et al. (2000) and applied in Wulfmeyer and Janjić (2005). Previous studies in 

turbulence analysis inspired to use high-resolution dataset for a better understanding of turbulent 

characteristics of the CBL by examining the ranges and scales of variability involved. Spectral analysis 

is performed in the same fashion as mentioned in the section 4.3.1 but for the measured relative particle 

backscatter coefficient at each altitude levels. During the error analysis, the system noise errors and the 

sampling errors were taken into consideration. The techniques for the determination of these noise 

terms were extensively discussed in Senff et al. (1994) and Wulfmeyer (1999a).  

 
4.5 Wavelet-based spectral analysis 

Studies of the oscillatory phenomena have traditionally been based on the FFT-based analysis (Cooley 

and Tukey, 1965). In the recent years, it was found that many of the processes in the ABL are non-

Gaussian and non-stationary and have essential asymmetry in their probability distribution. FFT-based 

analysis alone cannot provide a comprehensive description of the properties of these processes because 

it yields a mapping of a process that is localized in frequency but global in time. This calls for the 

application of wavelet-based spectral analysis technique since this procedure in contrast to the FFT 

allows one to localize irregularities both in time and scale (frequency) domains and then to resolve 
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isolated features in a time series. By decomposing a time series into time, frequency, space, one is able 

to determine both the dominant modes of variability and how those modes vary in time. It provides a 

time-frequency representation since wavelet transform is capable of providing the time frequency 

information simultaneously, hence giving the time frequency representation of the signal.  

 FFT-based spectral analysis can estimate the frequency and power of the spectra in the time 

series but wavelet-based technique has added advantage that the time is known. Furthermore, FFT 

analysis is better choice for the identification of the larger-scale peaks due to convective activity or 

other wave-like motions. However, they fail to show smaller-scale peaks due to local small-scale 

turbulence or weak turbulence unless small time series is chosen so that the local phenomenon takes up 

a reasonable fraction of the time series. With the aid of wavelet technique multi-scale (large scale as 

well as small-scale localized processes) analysis from time series is possible and therefore applied here. 

A comparison of Fourier spectra and wavelet spectra can be found in Hudgins et al. (1993) while a 

theoretical discussion is given in Perrier et al. (1995).  

 Only in the last two decades, the application of wavelet technique to the atmospheric processes 

has gained immense acceptance both in short time series cases (Turner and Leclerc, 1994; Frey et al., 

2000; Terradellas et al., 2005; Salmond, 2005) and in long time series cases (Torrence and Compo, 

1998; Pal, 2004; Devara and Pal, 2004).  

 The steps involved in using wavelet analysis are described in Torrence and Compo (1998). A 

brief outline is presented in the Appendix-D. The analyzing mother wave function adopted for the 

continuous WT analysis in this work is Morlet since Morlet provides a better localization in the 

observed frequency (Torrence and Compo, 1998). Results obtained from wavelet spectral analysis are 

represented through scalograms (time/period) of the wavelet coefficient.  

 A flow chart is shown in Figure 4.2 summarizing the data analysis schemes applied as a part of 

post-processing of the data collected with the vertically pointing UHOH lidar system. 

 

4.6 Scanning aerosol lidar data flow 

Scanning lidar data flow consists of retrieval of the optical properties of atmospheric aerosols from the 

lidar range resolved signal intensity (raw data) and display of the particle backscatter field in 2-3 

dimensions applying advanced graphics. Within the part of this thesis, complete data acquisition 

program and numerous dedicated programs for the post processing the lidar data were developed for 

analyzing the UHOH scanning aerosol lidar data. 

 A sophisticated and developed data acquisition code is of uttermost importance for immediate 

interpretation of the collected lidar data. Figure 4.3 shows the schematic representation of the lidar data 

flow, which explains how the lidar signal intensity, backscattered from atmospheric particles, clouds 

and molecules are represented through the images of the optical properties of the atmospheric aerosols, 
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Figure 4.2: Flow chart showing the lidar data analysis methodologies including estimation of instantaneous ABL height, entrainment zone thickness and related statistical 
analysis for characterization of ABL dynamics. For details, see text. 
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and cloud particles. Each block is discussed briefly in the following to give an overview of the data 

recording, post-processing, and display techniques. 

 An important aspect of lidar application lies in the accurate recording and processing of the 

lidar return signals to take an advantage of the sophisticated lidar techniques and thereof the potential 

wealth of information about the atmosphere. The UHOH scanning lidar signal comprises the elastically 

backscattered signals from the atmospheric aerosols and molecules and cloud particles. Elastic 

scattering refers to the scattering process where the wavelength of the incident radiation remains 

unchanged. Molecular scattering or Rayleigh scattering intensity which is proportional to the λ-4 (λ, the 

wavelength of incident radiation) is sufficiently large at the UV wavelength region compared to the IR 

wavelength region. Normally nitrogen and oxygen contribute a major portion (of around 98 %) of the 

atmospheric molecules. On the other hand, the elastic scattering from particles with sizes comparable to 

the wavelength of the incident radiation or larger is called Mie scattering. This is worthwhile to mention 

that the Mie theory is valid for radiation of arbitrary wavelength by a sphere of arbitrary radius and 

complex refractive index.  

 The complete flow of the UHOH scanning aerosol lidar data consists of three major parts: real 

time data acquisition, post processing of the lidar data through lidar inversion technique for determining 

the aerosol optical properties and lidar data display techniques.  

 

4.6.1 Data acquisition in real time 

The main aim lies here to represent a complete view of the dataflow during data acquisition. Signal 

received by the detector is converted to binary bits with the Gage CS14100 card, which serves as ADC. 

Data flow during the acquisition in principle comprises of two inter-related blocks as shown in the 

flowchart. The DAC developed as a part of this thesis consists of a useful graphical user interface 

facility providing the user the following advantages:  

• Choice of the scanning sector, scan type, scan step resolution or scan speed, number of scan 

steps or scan numbers, time resolution, range resolution, and option for time-synchronized scan 

either by selectable switches/fields or by some numbers.  

• User can put the above values through a batch file and run the lidar system continuously unless 

it is intended to be stopped. 

• Continuous display of several important update information, e.g., GPS time, number of dataset 

and scan completed, azimuth and elevation angle the lidar beam is pointing at, instantaneous 

time of each profile, indication of the backward movement of the scanner when lidar is not 

acquiring data. 

• Time-synchronized scan with combinations of different scan patterns.  

 The complete DAC initializes the data acquisition card and the scanner motors simultaneously. 

Initialization of the CS14100 consists of the choice of the number of samples (4096 bins) to be stored, 
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Figure 4.3: Flowchart showing the summary of the major steps involved in the data acquisition, storage, post processing and presentation of the UHOH scanning aerosol lidar 
data. For details, see text. 
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sampling rate (usually 50 MHz, but 100 MHz also possible), selection of input mode, trigger mode and 

configuration, capture mode, and selection of the impedance (50 Ω or 1 MΩ).  

 All these parameters are of particular importance for the initialization of the CS14100 card and 

properties of the stored lidar data (binaries). For instance, choice of 50 MHz sampling rate ensures the 

lidar data range resolution of 3 m, 4096 number of bins configures such high-resolved data up to a 

range of around 12 km. Configuration of the data acquisition card is detailed in the Appendix-B. 

 Initialization of the scanner motors consists of providing two particular values of revolution in 

degrees (both azimuth and elevation) of the motors so that the encoders provide a measure of the 

revolution of the laser beam emitting the center of the scanner mirror with respect to the initialized 

value of zero angles. The DAC yields an advantage to check the alignment of the lidar system for 

obtaining full overlap at sufficient lower range/height. This needs sufficient experience of the 

experimentalist. During this time, data storage is not active but the user has the possibility to start data 

storing at any time by switching on a binary switch after aligning the lidar system. 

 The display window on the DAC includes the raw lidar profile (instantly obtained), range-

square corrected profile, and time versus range/height false color plot of the background corrected and 

range-square corrected signal intensity in arbitrary unit (a.u.) through a predefined pseudo-color scale. 

Once a lidar profile is corrected for range-square dependencies, this gives the experimentalist an 

opportunity to obtain a result proportional to the backscatter coefficient of the targets. Particularly, the 

range-height image of the lidar signal intensity yields the user an opportunity for interpreting the 

collected data in real time and for obtaining qualitative information about the temporal variation of the 

structure of the troposphere, especially the ABL.  

 The real-time display of the range-square corrected profile yields the facility to achieve proper 

alignment of the transmitter and receiver optical systems and to obtain full overlap at the closest 

height/range possible. This is performed at the beginning of the lidar measurements through examining 

the vertical behavior of the lidar signal as the alignments of the necessary optics are changed. During 

this check, the largest profile (maximum in amplitude after the full-overlap region) corresponds to the 

optimal alignment of the system. Typical behavior of the lidar signal is checked in all direction of 

interest and optimized alignment is then obtained. Apart from the single shot acquisition at 30 Hz, the 

DAC facilitates the user to average the data both in time and/or in range to decrease the amount of 

stored data whenever necessary.  

 The DAC developed for the UHOH scanning lidar is found to consist of the facility of obtaining 

continuous time-synchronized scanning measurements. The scan speed is widely variable ranging from 

10° s-1 for motion of the azimuth and elevation angle, so that a full 360°-turn (180°-turn in elevation) 

needs 36 s (18 s), down to less than 0.1° s-1. The angle resolution that the decoder can provide is of 

about 0.003°. During the tracing back motion of the scanner, the lidar does not acquire data. This 

facilitates to keep a time-synchronized data acquisition in the following scans. This is performed to 

achieve uni-directional scans separated by a constant time interval among them. This strategy yields the 
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user an advantage to assess the atmospheric flow features. Sun safety of the PMT is taken care while 

providing the input of the azimuth and elevation angles for particular scan measurements after reading a 

sun chart, available from Landeshauptstadt Stuttgart, Amt für Umweltschutz, Abt. Stadtklimatologie 

(http://cgi.stadtklima-stuttgart.de/mirror/sonnefre.exe). 

 The DAC controls the storage of the raw lidar signal intensity as a function of height/range 

through a special binary format, called Bscan format. This format yields the user several advantages 

after providing shot-to-shot variation of GPS time, azimuth and elevation angles of the lidar signals, 

altitude. Additionally, this format takes care of some important information for the lidar operations, 

e.g., number of lidar profiles averaged, length of the data, wavelength, and location of lidar site 

including co-ordinates. These headers are repeated for each lidar profile and written to the Bscan file, 

specified by the user. A detailed description of the Bscan header information can be found under the 

Appendix- A.  

 

4.6.2 Post processing of the scanning lidar data  

 The elastic-backscatter signal at 355 nm allows for calculating the particle backscatter 

coefficient through analytical inversion of the lidar equation (Klett, 1981; Sasano et al., 1985; Fernald, 

1984). The molecular backscatter and extinction profiles are determined along the line of sight (LOS) of 

the lidar signal using pressure and temperature values measured at ground in combination with the 

hydrostatic equation and information about atmospheric stability, respectively.  

 Calibration of the lidar can be accomplished using clear-air signals in the far range for each 

profile. As multiple scattering effects can usually be neglected, accurate fields of the backscatter 

coefficient can be derived even though some uncertainties arise from the prescribed lidar ratio profile 

(Kovalev, 1995).  

 The steps for the determination of the particle backscatter coefficient are the following: (a) 

background level subtraction, (b) cancellation of erroneous profiles, arising from undesired hard targets 

like trees or buildings, or saturation in the detector hence in ADC, (c) averaging in time and in range 

with discrete boxcar window e.g., 20 profiles (e.g., time resolution of 0.66 s, for 1° s-1 scan speed and 

0.66° which gives out 12 m spatial resolution in 1 km range and 36 m at 3 km) and in range e.g., 10 

bins yielding 30 m, and (d) application of the inversion technique, to calculate particle backscatter 

coefficient (Fernald, 1984). This step inherently uses few assumptions and calculations: (i) a constant 

value for extinction-to-backscattering ratio for aerosols (so called lidar ratio), (ii) reference range for 

calibrating lidar signal, (iii) assumption of particle backscatter coefficient value at calibration range, and 

(iv) Rayleigh scattering cross-section following the formulation introduced in Bucholtz et al. (1995) 

from known atmospheric temperature and pressure profile from collocated radio sounding on the 

experimental days, or using surface temperature and pressure information.  

 



   
  Chapter 4. Lidar data analysis

   

 46

4.6.2.1 Lidar inversion technique  

The monostatic lidar equation (Eqn. 4.1) can be analytically solved following the method described in 

Fernald (1984). Since P0,λ(R), c, tp, K are system dependent constant, Eqn. 4.1 can be expressed as 
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Since the lidar equation involves two different unknown variables (particle backscatter and 

extinction coefficient), therefore it is necessary to assume a constant ratio of the particle extinction to 

the backscatter coefficients to solve the lidar equation after the application of inversion technique 

proposed in Fernald (1984). This ratio is termed as aerosol lidar ratio and can be represented as 
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On the contrary, ratio of the extinction to the backscatter coefficients for the molecular scatters is 

constant in all heights 
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Combining Eqn. 4.28 to 4.30, ( )Rpar,λβ  can be expressed as  
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Now, the unknown system constant C can be obtained after calibrating the lidar signal at a 

calibration range Rc with an assumed value of the ratio of particle backscatter to Rayleigh extinction 

coefficient. For simplicity, here onwards 2)( RRPλ  is expressed as X(R). 

The most critical input parameter here is the lidar ratio ( )RS par,λ . This quantity depends on the 

microphysical, chemical, and morphological properties of the aerosol particles. For a single wavelength 

elastic lidar system, a constant lidar ratio value in all height is considered instead of height dependent 

profile of lidar ratio value. So, ( )RS par,λ  can be kept outside the integral in Eqn. 4.31. Due to the 

absence of additional information, the aerosol lidar ratio is an input for the UHOH lidar data analysis 

and a constant height-independent value is assumed (Pappalardo et al., 2005). 
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 Furthermore, on using the a priori information of the ( )Rpar,λβ  at the calibration range Rc, 

Eqn. 4.31 can be expressed as 
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On the other hand, the total Rayleigh-scattering cross section per molecule, σ(λ), is expressed as  
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where λ is the wavelength (in centimeters), ns is the refractive index for standard air at λ, Ns is the 

molecular number density (2.54743 х 1019 cm-3) for standard air and ρn is the depolarization factor- a 

term that accounts for the anisotropy of the air molecule and depends on the wavelength (Bucholtz, 

1995).  

 Ideal gas law allows calculating the molecular number density profile either using a known 

ground pressure and temperature or using the radiosonde retrieved pressure and temperature profiles if 

available.  

     ( ) ( ) ( )λσβλ RNRmol =,        [4.34] 

Molecular number density is calculated as 
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where k is the Boltzmann constant (1.380658 x 10-23 J K-1 ) and T(z) and P(z) can be calculated as 

z
z

T
TzT

d

d
)( 0 +=                   [4.36] 

T

z

ePzP LR

g

0)(
−

=                                          [4.37],  

respectively where T0 and P0 are standard sea level temperature (288.15 K) and pressure (1013 mb), 

respectively, and RL is the universal gas constant for dry air (287.05 J kg-1 K-1). T (z) and P (z) can also 

be obtained with the radiosonde profile. Further calculation for Rayleigh volume scattering coefficient 

is performed following Bucholtz (1995) where variation of the depolarization factor with wavelength is 

taken care.  
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The Eqn. 4.32 leads to a simple numerical integration scheme and the inversion can be 

accomplished analytically. A suitable calibration range is determined for each individual case by the 

analysis of the lidar backscattering signals. The inversion technique is numerically stable, if it is 

accomplished in backward direction. Furthermore, backward formulation rapidly vanishes the 

dependencies on the far range initial guess of particle backscatter coefficient. Therefore, the inversion 

procedure applied in this study is performed from the far field calibration (Fernald, 1984) height after 

confirming a low aerosol loading.  

Furthermore, another key disadvantage of this technique arises due to the use of a height 

independent profile of lidar ratio. In reality, lidar ratio can strongly vary with height especially when 

marine, anthropogenic, and/or desert aerosol, different aerosol layers are present in layers above each 

other (Ansmann et al., 2001, 2002). Even in the well-mixed layer, the lidar ratio is not constant with 

height because RH varies with height.  

 Numerous studies have already been performed for finding the advantages and limitations of 

the inversion technique (see, Bissonnette, 1986; Kunz, 1996 ;). The key limitation arises due to the fact 

that both particle backscatter coefficient and particle extinction coefficient is determined from one 

measured quantity, the elastic lidar signal.  

 

4.6.2.2 Determination of optical properties from scanning lidar data 

If one assumes that inversion algorithm is valid in the situation that the backward integration scheme 

starts at a calibration range in the aerosol-free troposphere then inversion technique can easily be 

applied to the lidar data obtained from vertical measurement (elevation angle of 90°). But this 

methodology is not straightforward for the lidar data obtained from RHI scanning measurement due to 

the trade-off between the low signal-to-noise ratio of the lidar signal and the calibration range (to be 

estimated) for the inversion at the very low elevation LOS. Due to the changes in elevation angle of the 

LOS during RHI scanning measurement the reference range comes down from the assumed level of free 

troposphere to the region of ABL (while decreasing elevations of LOS from 90°). Schematic 

representation of this fact is shown is Figure 4.4.  

 In the figure the lidar system is located at point O (origin). One can assume the figure to be a 

mimic of a hemispherical scan covering elevation angle from 0° to 180°. Fernald’s inversion can easily 

be applied to the LOS at an elevation angle of 90° since this corresponds to the vertical lidar 

measurement. Here the calibration range can easily be fixed and in Figure 4.4 calibration range is at a 

height/range of 4.5 km assuming that the aerosol load is vary small above the height 3.0 km. Quality of 

the lidar signal at this range is high enough to be analyzed with respect to signal-to-noise ratio. One can 

also apply the same technique to obtain the ( )Rpar,λβ  profile for the LOS at an elevation of 80°. 

Aerosol-free region is present from a height of 3.0 km, and then a critical LOS reaches at a certain 

elevation angle where the inversion technique cannot be applied directly due to the presence of high 
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aerosol content in the ABL. One can assume that such a situation arises in the figure for the LOS1 (red 

colored) at an elevation of 40°. In such a critical case the calibration value for lidar signal on LOS2 

(black colored in Figure) at RC2 is obtained from the ( )Rpar,λβ  value at the corresponding height (not 

range) of previous LOS1 value; here R’C1. Similarly the calibration value at RC3 is assumed to be 

similar as R’C2 and so on.  

 Very similar approach was applied in Sasano (1996) where he assumed that the aerosol was 

distributed almost homogenously along the horizontal direction (layered structure, see section 5 in 

Sasano, 1996). But the approach followed here is much advanced in the regard that high-resolution RHI 

scanning measurement takes the advantage to assume a closest value of ( )Rpar,λβ  at the calibration 

range from the previous LOS where the inversion technique was valid on the basis of the calibration at 

a height with low aerosol loading. So the method applied here can easily get rid of the assumption of 

layered structure and can be applied in any critical situation provided the RHI scan includes at least one 

LOS where inversion technique is strictly applicable and the RHI scan provides high-resolution data 

both in range and in time. This technique provides an advantage of relative calibration for each LOS of 

each RHI scan measurement. A detailed sensitivity analysis is performed for the inversion method and 

described in Appendix- C. 

 

 

Figure 4.4: Sketch of the data analysis scheme applied to obtain particle backscatter coefficient field from RHI 
scan measurement (see, section 6.4.2 for further details). 
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4.6.3 Lidar data display  

Representation via mapping of the lidar data product is a key issue for the end users concerning the 

usefulness of the lidar remote sensing technique for atmospheric science studies. This includes the 

preparations of the plot of the PPI or RHI scanning view or time-height cross-sections of the particle 

backscatter coefficient field through a range-range or range-height panel with averaging (moving 

window smoothing) or without any sort of additional averaging. Several automated mapping tools were 

developed to create the plot of instantaneous profile of particle backscatter coefficient. Furthermore, 

time-lapse animations of the consecutive vertical or horizontal scans provide a view of the evolution of 

the CBL so that the transport of the atmospheric aerosols inside and above the CBL can be visualized. 

 The vertical profile (horizontal axis is value of ( )Rpar,λβ  and vertical axis is height) represents 

the instantaneous vertical structure of the aerosol distribution. Similar profiles can also be created for 

the PPI and RHI scans. Here the vertical axis represents the range from the lidar system instead of 

height. This plot contains the information of the instantaneous azimuth and elevation angle of the lidar 

beam.  

 The time-height cross-section of the ( )Rpar,λβ  field is obtained through compiling a series of 

consecutive vertical profiles where the horizontal axis is the time of sequential profiles and vertical axis 

is the height in m, AGL and each pixel intensity in pseudo-color represents the value of the parameter 

of interest (e.g., ( )Rpar,λβ ) at a particular time and height. If scanning data are plotted in this frame, this 

is called range-time indicator (RTI) and height is replaced by range from lidar. These plots help the user 

to investigate and understand the evolution of aerosol structures of various scales. An RHI scan or 

vertical scan image at a particular azimuth direction is produced after the combination of incrementally 

increased or decreased multiple LOS backscatter coefficient value where the horizontal axis in the 

image is range from lidar and the vertical axis is height above the ground level. Additionally, the image 

provides the user the information including direction of scan, time required to complete the scan and 

scan speed to enrich the direct interpretation of the results.  

 If produced in various azimuth angles, RHI scan images enable the user to achieve important 

multi-dimensional views of the atmosphere. PPI scan image is produced in the same fashion with the 

exception that elevation angle is constant here for a particular scan and variable azimuth angles provide 

the information of the aerosol features at different ranges/distances. Lidar derived ( )Rpar,λβ  profiles at 

multiple LOS as a function of azimuth is combined in PPI image. This image yields the two-

dimensional view of the aerosol structures present in the atmosphere. Horizontal view (plane at the lidar 

height) of the aerosol flow can be achieved if PPI scan is performed at an elevation angle of zero 

degree. Again, the sequential PPI scans at different elevation angles yield a view of the aerosol 

dynamics in the ABL. Altogether, these displays provide the possibility to obtain highly vertically and 

spatially resolved information on aerosol particles with the added advantage of high temporal 
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resolution. They help to interpret the temporal variability of optical properties of aerosols within a 

widely inhomogeneous atmosphere. 

 An example of the application of inversion technique is briefly presented here to illustrate the 

capability of the technique to retrieve the particle backscatter coefficient field from an RHI scanning 

measurements. Figure 4.5 shows example of an RHI scan image of ( )Rpar,λβ  in m-1 sr-1 obtained on 17 

March during lidar measurements at UHOH campus. The scan speed was 1.0 °/s and the RHI sector 

were within the elevation angles from 67.5° to 112.5°. The approach followed here depends upon the 

assumption of 0)(, =Rcparλβ . Rc is reference level and selected by interpreting the lidar raw signal. For 

the data shown 

 

Figure 4.5: Particle backscatter coefficient of a 45-s RHI sector scan from elevation 67.5° to 112.5°, with a 
temporal and range resolution of 0.1 s and 3 m, respectively at 355 nm, collected on 17 March 2006, around 
0919 UTC near UHOH main building. The angular resolution is 0.1°. A residual layer is present at a height of 
1.2 km AGL. 
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here, it is 3.0 km. To reduce the effects of statistical noise during the calculation, an interval range       

Rc ± 60 m instead of a single range bin of the free troposphere with less aerosol load is considered here. 

This value is used in the inversion method. Aerosol structures between 0.7 and 2 km are seen in particle 

backscatter coefficient field. This figure illustrates the extremely high range and temporal resolution of 

the particle backscatter measurements. The entrainment at the top of the CBL can be observed in detail. 

   

4.7 Combined measurements of particle backscatter and extinction 

coefficient, and lidar ratio with scanning rotational Raman lidar 

As described in the previous section, the classical inversion method (Fernald, 1984) requires the 

boundary condition of an aerosol-free layer and aerosol backscattering to extinction ratio at the 

calibration altitude/range. As the UHOH scanning RRL uses of the two RRL channels, this yields some 

advantages for retrieving the aerosol optical properties: (a) this technique is independent of the 

assumption of a profile of the lidar ratio (b) this technique is independent of the assumption of particle 

backscatter coefficient in an initialization range. The principal components of the scanning RRL 

received backscatter signal are Raman backscattered radiation from the molecules of nitrogen and 

oxygen and the elastically backscattered radiation from both air molecules and atmospheric aerosols.  

 The methodology and the theoretical background for the retrieval of particle backscatter and 

extinction coefficients are described here. 

The lidar equations for the elastic and inelastic (Raman scattering) backscatter signals are 
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respectively. )(0 RPλ and )(RP Rλ are the backscattered signals from range R at the laser wavelength λ0 

and the Raman wavelength λR, respectively. O(R) is the overlap between the laser beam and the receiver 

field-of-view; the value of this function is 1 for height/range above/beyond, which the laser beam 

overlaps completely with the field of view of the receiver. 0λK  and RKλ are the system constants. 

NR(R) is the molecule number density of the Raman-active gas and 
Ωd

d
R

)(πσ λ
 is the range-independent 

differential Raman cross section for the backward direction. )(0 R
par

λβ  and )(0 R
mol

λβ are the elastic 

backscatter coefficients for particle and Rayleigh scattering, respectively. )(R
par

λα  and 
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)(Rmol

λα describe the extinction of light of wavelength λ by atmospheric aerosol particles and gas 

molecules, respectively. Configuration of the RRL system allows similar values of the system constant 

and the overlap function for both wavelengths can be assumed to be same. Second one can be 

considered as a working assumption.  

Rearrangement of the Eqn. 4.38 and 4.39 yields  
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Use of the two rotational Raman lidar channels in this system gives a unique advantage to obtain a 

molecular reference signal (temperature independent, from temperature dependent RR signals). To 

minimize the temperature dependencies, a weighted sum of two RR signals (following Behrendt et al., 

2002) is used 
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∗+=λ     [4.41] 

where fReλ  is the molecular reference signal. This is clear from the above equation that the 

determination of the particle backscatter coefficient is primarily dependent on both the information of 

the elastic and Raman channel signals. )(0 R
par

λβ is derived from the ratio 
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(b) The air density, molecular backscatter and atmospheric extinction profiles can be determined 

along the LOS of the lidar using pressure and temperature values measured at ground in 

combination with the hydrostatic equation and information about atmospheric stability, 

respectively. Collocated radiosonde profiles (whenever available) obviously give a better 

representation of the height/range dependencies of pressure and temperature.  

Using above assumptions and calculations (Ansmann et al., 1992), Eqn. 4.40 can be simplified to 
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Now, the particle extinction coefficient can be calculated as  
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where )(Re RN f  is the molecular number density of the reference gas. λ-k denotes the wavelength 

dependence of the particle scattering. Configuration of the UHOH RRL system (Radlach et al., 

2008a, b) allows here to assume λ0 = λRef due to the very small difference between these two 

wavelengths. Height dependent lidar ratio profile )(
0

RS
par

λ can be obtained then from the ratio of the 

particle extinction and the backscatter coefficient at wavelength λ0 
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 The lidar ratio, which depends on size, shape and spatial orientation of the scattering particles, 

contains information about microphysical properties of the cloud, the basic quantities in the description 

of radiative properties. 

The application of the RRL technique for the determination of aerosol optical properties described 

here to derive the profile of reference signal through Eqn. 4.43 is not straightforward for the RHI 

scanning measurements. For such cases, the constant value cK  (in Eqn. 4.41) is computed for the LOS 

at 90° elevation angle (corresponding to the vertical measurement) for each RHI scan and then same 

cK value is used for the other LOS at other elevation angles of that scan. The only requirement for this 

modified approach is that the RHI scan measurement should contain at least a profile at an elevation 

angle of 90° so that the reference signal can be computed.  

Through this novel approach one can get rid of the uncertainties involved in the inversion 

method to retrieve the aerosol optical properties. Additionally, the UHOH scanning RRL is found to be 

an excellent candidate for the exploration of ABL aerosol lidar ratio and temperature field. The 

approach to derive a lidar reference signal by use of pure rotational Raman backscattering signals is 

applied for the first time to the scanning data to obtain a 2-dimensional field of aerosol optical/physical 

properties in addition to the well-known time-height cross-section of the same. Both daytime and night 

time measurement examples with sufficient high temporal and spatial resolution after the RRL 

technique is rare in the literature.  
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 Figure 4.6 shows an example of the results obtained after applying the rotational Raman lidar 

technique. Figure shows time-versus-altitude image of particle backscatter coefficient field obtained in 

the early morning of 8 June 2007 between 0430 and 0540 UTC during one of the IOP days of COPS 

field campaign. Altitude is in m AGL. This Figure depicts the high tempo-spatial sounding capability of 

the UHOH RRL system. 

 

 

 

Figure 4.6: Time-height cross-section of particle backscatter coefficient yielding the wave-like features in the 
ABL in the early morning of 8 June 2007. 
 



   
  Chapter 4. Lidar data analysis

   

 56

 Time resolution and range resolution in the plot are 13 s (after averaging 650 consecutive shots) 

and 3.75 m, respectively. These are also the resolution of the stored data. No further averaging is 

performed. The UHOH RRL retrieved ( )Rpar,λβ  field presents a vivid description of boundary-layer 

dynamics that can, under suitable circumstances, provide insight into the mechanisms responsible for 

the wave generation and subsequent wave behavior. The wave-like features in the ( )Rpar,λβ  field may 

be due to the gravity waves induced by the local topography of the mountainous regions. Detection of 

such oscillatory motions in the NBL is only possible as long as the integration time is smaller than the 

period of oscillation. Wind speed was of around 7 m s-1 and was blowing from northeast of the lidar 

site. 

 



 

Chapter 5. Investigation of ABL with an elastic lidar 

       

 57

 

 

Chapter 5 

Investigation of an urban-atmospheric boundary layer 

with a vertically pointing elastic lidar using an IR 

wavelength 

 

5.1 Introduction 

The vertically pointing UHOH elastic aerosol lidar system (described in section 3.1) was deployed in 

downtown Stuttgart to acquire data during the “Physics Festival” in 2004 (four days from 23 to 

26 June). This was a unique opportunity to study the boundary layer dynamics of an urban valley with 

an ultra-high-resolution aerosol lidar system. The high spatial and temporal resolution in UHOH lidar 

data helped to capture small-scale features in the CBL. The primary objective for using the UHOH lidar 

was to obtain a close picture of the depth and variability of the CBL, particularly considering the 

complexities involved due to the effects of the topography of that region: a roughly “u-shaped” valley 

surrounded by ridges of about 150 m height at several sides. This sort of orography often contributes to 

the complex pattern of the dispersion of pollutants emitted in the region (e.g., Chazette et al., 2005; 

Plamen et al., 2002). An experiment to explore the ABL in this area has not been made before.  

 In principle, lidar determination of the ABL height uses either of the following two methods: 

variance based analysis through observation of mixing processes in ABL, and gradient method based on 

vertical distribution of the passive tracers resulting from mixing processes. The first one concerns the 

determination of the mean ABL height while the second one determines the instantaneous depth of the 

ABL. The three different methods (logarithm gradient method, inflection point method, and the Haar 

wavelet transform scheme) fall in the second category. Previous lidar studies for the purpose of ABL 

height estimation used one or two of the three different existing techniques.  

 In case of the LGM, several minima exist in the profiles of gradient of the range-square 

corrected lidar signal complicating selection of the appropriate peak corresponding to hLGM. Flamant et 

al. (1997) used a criterion of selecting a relevant minimum in the aerosol backscatter gradient, which 

was found to be more or less case sensitive. Wulfmeyer and Janjić (2005) determined the ABL height 

with the LGM from 1-min-averaged lidar data. They again used a 2-h running mean of the ABL height 

to avoid the large fluctuations in the ABL height derived with the measurements of 1-min temporal 
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resolution. The choice of the relevant minimum is defined differently in different publications, and is 

somewhat arbitrary. The HWT-based approach can be used for automated recognition of CBL top from 

the data with short integration times examining small CBL features. The scale, represented by the 

wavelet dilation, can also be used for quality control, that is, to test the reliability of the algorithm 

result. These two features of the HWT-based technique make the analyses very attractive (Cohn and 

Angevine, 2000). 

 To my best knowledge, no study exists so far that uses high-resolution lidar data and compares 

the results on ABL height obtained by the three methods mentioned. An important aspect concerns the 

determination of the instantaneous CBL height and the EZT by available techniques eventually deciding 

on the appropriate tools for the routine measurements of these quantities. As smaller scale processes 

often become important in the entrainment zone, high tempo-spatially resolved information of the 

tracers in this region would be required. Instantaneous CBL height can significantly change within very 

short time interval especially when convective activity is a dominant feature. Therefore, a combination 

of some advanced statistical approaches was applied for the exploration of the non-stationarities in the 

CBL height time series. Results from this new approach may serve as an indication on the variability of 

the CBL height.  

This work is mainly focused at a study of the CBL with the UHOH lidar measurements 

obtained at IR wavelength. Investigation of the growth rate of the CBL top from lidar measurements is 

also addressed. Additionally, the CBL height in the presence of a residual layer of the previous day is 

considered. The interaction between these two layers is studied as to reveal the description of 

penetrative convection processes at the CBL top. Though Angevine et al. (1998) made similar 

observations with wind profiler they could not deduct any conclusion most probably due to insufficient 

temporal (of about 30 s) and spatial (60 m) resolution.  

 Turbulence in the CBL carries special signatures, which are of high importance for both 

atmospheric modeling and dispersion studies. Following Lenschow et al. (2000), and Wulfmeyer 

(1999a, b), higher order moments (i.e., variance, skewness, and kurtosis) of the range-corrected lidar 

backscatter signal were investigated. This highlights that aerosol lidar data can yield potential benefit to 

estimate turbulence features in the CBL (quantitatively). It is expected that the investigation of turbulent 

moment analysis in the CBL bring a new concept on the application of aerosol lidar as a reliable tool to 

advance boundary layer research. This type of analyses for water vapor and vertical velocity fields were 

performed by several authors (see, among others, Couvreux et al., 2005; Wulfmeyer and Janic, 2005; 

Godowitch, 1986). Additionally, the CBL height time series were subjected to spectral analysis.  

Following are the key research issues discussed in this chapter: 

• Demonstration of the three techniques for the estimation of the instantaneous CBL heights and 

subsequent determination of EZT from high-resolution lidar sounding. 

• Statistical analyses of the CBL height time series to explore non-stationarities involved in a 

rapidly growing CBL regime. 
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• Higher-order moments are calculated from an aerosol lidar data. What are the advantages of 

this technique? Can an aerosol lidar characterize the turbulence profiles in the CBL?  

• What are the major differences between the CBL regime in a quasi-steady state and in a phase 

of rapid growth? Do the profiles of higher-order moments help to yield more insights into their 

characteristic features? 

• How complicated is the interaction between the growing CBL and the RL in the morning over 

an urban area located in a valley?  

• What are the qualitative and quantitative aspects of the gravity waves and K-H filament 

structure that can be assessed with backscatter lidar measurements? How efficient is a wavelet-

based spectral analysis technique to resolve the multi-scale features present during wave 

activities in the residual layer? 

 

5.2 The experimental site 

The UHOH lidar system was deployed during the measurement period near the downtown Stuttgart 

(48°46′43.5′′ N, 9°10′48.9′′ E, elevation approximately 240 m ASL) in southwestern Germany. The 

experimental site is located in a valley with complex topography (Figure 5.1) and is characterized by a 

large population density, high density of buildings, diverse anthropogenic activities, non-uniform land 

use, and enhanced industrial activities. The urban aspect of the city originates from the fact that it is a 

major transportation cross point, including a large river port, an international airport, and a considerable 

industrial center. The variation of the elevation in this city with the deepest point by the Neckar river (of 

about 200 m ASL and the highest point in Stuttgart Vaihingen (of about 550 m ASL) influences the 

meteorological conditions.  

Stuttgart’s climate is characterized by warm summers and mild winters. During the 

measurement period the sky was mostly cloud-free. As to weather conditions, absolute maximum 

temperature of 25.5 °C, absolute minimum of 9.5 °C, maximum RH of 78.4 % and minimum of 16.2 %, 

only fair weather cumuli, some Cirrus clouds and no precipitation were observed. The mean wind speed 

at 10 m height was 3-4 m s-1. This meteorological dataset was collected by the weather station in 

Stuttgart city (Amt für Umweltschutz der Stadt Stuttgart, Schwabenzentrum-Stadtmitte, at 48°46′20′′ N, 

9°10′46′′ E, 275 m ASL) about 500 m distant to the measurement site. The surface temperature on 

26 June 2004 reached its maximum value of 25.5 °C at 1630 CEST (central European summer time). 

Horizontal wind obtained at 10 m height was mild (1-1.5 m s-1). The RH at ground showed a classical 

diurnal cycle with a maximum RH of 80 % at about 0600 CEST and minimum RH of 30 % at 

1700 CEST on 26 June 2004 which was one of the important measurement days when the UHOH lidar 

continuously monitored the CBL for more than eight hours.  
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Figure 5.1: Topographic map showing the elevation variation (m, ASL) of Stuttgart city region with the lidar site 
marked by a circle. 
 
 

5.3 Results and Discussion 

Vertically pointing aerosol backscatter lidar provides two-dimensional observations of the lower 

troposphere. During measurements in Stuttgart downtown, UHOH lidar system in general collected data 

up to 12 km. The present study mainly deals with the data obtained in the ABL. Figure 5.2 depicts time-

height cross-section for eight hours observations of the background-subtracted and range-square-

corrected signal in the 1064-nm channel collected from 0955 to 1800 CEST on 26 June 2004. Temporal 

and spatial resolutions are 0.03 s and 3 m, respectively. Two white bands on the image (around 

1150 CEST and 1300 CEST) are the time when no data were available.  

 Sources of the background signal in the lidar data are: scattered sunlight during daytime 

observation, and moon, stars, as well as artificial light during nighttime measurements. Further 

processing of the lidar signal is always performed after removing this background signal. Lidar signals 

collected beyond the heights where intensities become nearly constant (typically at around 11 km AGL, 

if no high altitude cirrus clouds are present) are considered to be the background signal level. In good 

approximation, the arbitrary intensity values of the pseudo-color scale are proportional to the relative 

particle backscatter coefficient (Eqn. 4.4). 
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Figure 5.2: Time-height cross-section of the range-square-corrected backscatter signal, measured on 26 June 
2004, from 0955 to 1810 CEST. The two white stripes mark the period where no data are available. The color 
scale is linear and goes from blue for weak backscattering to pink/white for strong backscattering. Temporal and 
spatial resolutions are 0.03 s and 3 m, respectively. The vertical axis is in meter, for altitude AGL and horizontal 
axis is time in CEST (UTC+2 h). R: a strong residual layer from previous day showed up around 1.8 km AGL, F: 
free atmospheric air with l very low aerosol load above 2.0 km, C: CBL growth during morning eroded nighttime 
stable layer, E: entrainment at the top of the CBL, W: wave-like activities, M: turbulent mixing inside the CBL.  
  
 A zoom-in-view of the lidar measurements collected between 1030 and 1033 CEST is shown in 

Figure 5.3. This figure demonstrates the UHOH lidar’s capability to investigate the CBL with an ultra-

high-resolution. With such data, variability of the instantaneous CBL height can be quantified and the 

EZT can be estimated (see, section 4.2 for the EZT determination). Obviously, high-resolution lidar 

measurements can resolve the changes in the instantaneous CBL height whereas the mean CBL height 

(based on several numbers of profiles) can cause a broadening of the entrainment-induced peak in the 

backscatter intensity due to the time evolution of the mean CBL. 
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Figure 5.3: A zoom-in-view of the range-square corrected signal intensity collected between 1030 and 1033 UTC 
(extracted from Figure 5.2) showing the detailed vertical structure of the CBL during morning.  
 

 Such high-resolution lidar data can retrieve the entrainment-driven small-scale patterns, 

especially in the daytime CBL as can be seen in this figure. 

 Time-height cross-section presented in Figure 5.2 shows that a strong previous night residual 

layer (marked by ‘R’) was observed at an altitude of about 1.8 km AGL in the morning until 

1120 CEST while the free-tropospheric air with very low aerosol load was present above 2.1 km 

altitude (marked by ‘F’). Around 1130 CEST, the growing CBL (marked by ‘C’) contacted the base of 

the residual layer and eventually became indistinguishable. Also visible is that starting at 1120 CEST, 

the dust layer became trapped in the entrainment region. This interaction will be discussed in section 

5.3.2.3. Influenced by this process, the CBL was grown in thickness and thus a one-way entrainment 

dominated. When laminar air from the free troposphere and capping inversion are introduced into the 

CBL, thickness of the CBL grows. On the contrary, none of the turbulent air is incorporated into the 

laminar air. These characteristics were clearly observed by the UHOH lidar measurements. 

 Figure 5.2 shows that from 1200 CEST onwards, a strong mixing of the aerosol particles in the 

entrainment zone near the top of the CBL (of about 2.0 km AGL) was observed arising due to a regime 

of well-mixed CBL (marked by ‘E’). The depth of the CBL was remained nearly constant around 

2.0 km until 1800 CEST. Some wave-like activities were observed around 1610 CEST (marked by ‘W’; 
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see, section 5.3.6.2). Inside the CBL, small-scale turbulence features were observed until 1800 CEST 

(marked by ‘M’).  

 The time-height cross-section (Figure 5.2) shows two different regimes of CBL evolution. One 

during the rapid growth of CBL and another in the afternoon with a regime of equilibrium entrainment 

i.e., when CBL evolution is in a quasi-steady state. Quasi-stationary CBL (case I) was first used to 

demonstrate the three techniques for CBL height determination. These analyses were then extended to 

study the CBL in the morning (case II). 

 

5.3.1 Case I: Quasi-stationary convective boundary layer 

5.3.1.1 Results obtained with logarithm gradient method, inflection point method, 

   and Haar wavelet transform analysis  

Figure 5.4 illustrates the retrieval of hLGM and hIPM for backscatter signal acquired at 1552 CEST on 26 

June 2004. Before the LGM, IP, and HWT were applied on the lidar data, 10 consecutive lidar profiles 

were averaged which provided a time resolution of 0.3 s. In the following analysis for LGM and IP 

method, no further time averaging was performed but a gliding average with a Gaussian window of full 

width at half maximum of 30 m was applied in height on the raw data before D(z) was calculated. This 

averaging was necessary to determine the minimum gradient peak. The influence of changing height 

difference (dz = z2 - z1) on D(z) was tested. After performing this sensitivity test, the appropriate peak in 

the D(z) profile related to the ABL top was found. For these data, dz of 30 m was found to be most 

appropriate for searching the minimum of D(z). As expected Figure 5.4 clearly shows the minimum of 

the 2nd derivative (inflection point) appears below the height the minimum of the 1st derivative. So if the 

LGM correctly finds the transition zone between the mixed layer and the free troposphere, then IP 

method will mark the mid of the transition zone which is below the hLGM. Depending upon the turbulent 

activity present in the ABL, the local discontinuity between mixed layer and free troposphere atop is 

defined as the transition zone here. This transition zone is also a means of determining the EZT in 

different atmospheric conditions (Flamant et al., 1997).  

 The HWT-based analysis (discussed in the section 4.1.4) was applied to the same data to 

retrieve the ABL height. The wavelet covariance transform Wf(a,b) was computed for each profile and 

the altitude corresponding to its maximum was denoted as the ABL top. The crucial point for estimating 

ABL height following this approach is dependent on the choice of two parameters: the interval between 

upper (zmax) and lower (zmin) altitude where the HWT should be applied, and the value of the dilation (a) 

and translation (b). Following Davis et al. (2000), a sensitivity test was performed to obtain the 

characteristic differences of the Wf(a,b) values for different dilations as shown in Figure 5.5. The 

location of the maximum covariance turned out to be at an altitude of 2030 m for all dilation values 

beyond 175 m. For the lower dilation values in this case, the function Wf(a, b) exhibited two or three 

peaks and the procedure for determining hLGM became ambiguous.  



   
  Chapter 5. Investigation of ABL with an elastic lidar

   

 64

 

Figure 5.4: Determination of the instantaneous height of the CBL on 26 June 2004 at 1552 CEST using LGM and 
IP method. The plot represents in arbitrary units: the background-subtracted range-square corrected backscatter 
signal (left panel), 1st derivative (middle panel), and 2nd derivative (right panel) of the logarithm of range-square-
corrected signal. The temporal and spatial resolution of the data is 0.3 s and 3 m. In height, a 30 m gliding average 
is applied. hLGM and hIP are found at 2063 m and 2020 m AGL, respectively.  
 

 
 
Figure 5.5: Wavelet covariance transform values Wf (a,b) for different dilations from 50 m to 275 m. Except for 
dilation of 50 m, 75 m, 100 m, 125 m, 150 m, and 175 m all show a maximum value at 2030 m yielding the ABL 
top. This result is obtained after applying the HWT to the data collected on 26 June, at 1552 CEST as in 
Figure 5.4. 
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For obtaining hHWT, the dilation value of 200 m was chosen for whole time series of case I. Unless 

otherwise stated the HWT analysis was constrained between 500 m and 3000 m altitude.  

 

5.3.1.2 Intercomparison among the different techniques 

Figure 5.6 presents the time-height cross-section of the range-square corrected signal intensity collected 

between 1430 and 1600 UTC (upper panel) the temporal evolution of hHWT, hLGM, and hIP (upper panel). 

The two time series using the LGM and the HWT were found to be highly correlated (correlation 

coefficient of 0.85) and the linear trends in both cases were very similar. In general, hHWT is smaller 

than hLGM. This is a characteristic feature for the HWT. The HWT coefficient becomes maximum when 

the covariance between backscatter profile and the Haar function is a maximum. But this value is again 

related to the value of dilation. Brooks (2003) showed how the HWT method identifies a point close to 

the center of the transition zone, with a trend towards higher values with increasing dilation. The HWT 

method will thus tend to identify a point lower than the LGM, though the difference will vary both from 

profile to profile and with dilation for any given profile. The LGM identifies the location of the 

minimum in the vertical gradient of the backscatter, which tends to lie within the upper part of the 

transition zone.  

 It is important to mention here that the LGM and the HWT analysis are necessarily not different 

from each other, if dilation value of the range resolution (in this case 3 m) is applied during estimation 

of Wf(a ,b) in the HWT analysis. Furthermore, the advantage of the HWT method allows limiting the 

analysis to a chosen range of scales, so that small gradients (e.g., caused by noise) will be cancelled. 

The HWT coefficient is calculated at each height level; caused by this implicit smoothing, the technique 

does not require additional averaging of the signals in height as in the case of LGM. 

 The hIP is always smaller than hLGM because the 2nd derivative of the range-square-corrected 

signal has always a local log-minimum below the minimum of the 1st derivative (see, Figure 5.4). The 

IP method actually searches for the interface between the mixed layer and the free troposphere and 

therefore hIP is defined as the middle of the transition zone. On the other hand, definition of hLGM is 

different from hIP. Since hLGM is defined as the base of the transition zone, it becomes also the top of the 

mixed layer. This directly implies hLGM > hIP (Figure 5.3).  

 Comparison of the mean CBL heights determined from the respective time series yielded a 

difference of 59 m between the LGM and the HWT-based analysis while a difference of 63 m was 

found between LGM and IP method. A difference of only 5 m was found when comparing the mean 

CBL heights estimated by the HWT and IP method. Correlation analyses among the three time series 

were performed. The resulting correlation coefficients between time series of hLGM and hHWT, hLGM and 

hIP, and hIP and hHWT are 0.815, 0.811, and 0.781, respectively. It can be stated that hLGM> hHWT> hIP for 

the case of 1.5-h lidar measurements of quasi-stationary CBL (Figure 5.6).  
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Figure 5.6: Time-height cross-section of range-square corrected signal intensity (upper panel) and the time series 
of hLGM, hHWT, and hIP (lower panel) for case I.  
 

 Two important results were obtained concerning the accuracy of the results obtained with the 

HWT-based approach. The vertical distribution of the variance (section 5.3.1.4) of the fluctuation of the 

particle backscatter coefficients showed the maximum at 2022 m AGL. The vertical profiles of potential 

temperature and water vapor mixing ratio obtained with the radiosonde launch at 1200 UTC on this day 

from the near-by weather station manifested a strong signature of the temperature inversion and a sharp 
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gradient in the mixing ratio at an altitude of 2005 m AGL confirming the height of mean CBL (Figure 

5.8). This was very close to the mean value of hHWT (2008 m) during this time. On the contrary, the 

LGM-based results do not show such close similarity neither with the variance profile nor with the 

radiosonde-derived height.  

 The application of LGM often becomes quite complicated because the minimum cannot be well 

defined or several minima might exist over an extended height range. On the contrary, being a 

convolution the HWT-based approach does not show several peaks in the distribution of the HWT 

coefficient, as is the case for LGM, if an appropriate dilation value is selected. The dilation value of 

200 m was chosen for the case I after a detailed sensitivity test of this value. The LGM does not offer 

such an opportunity. Previous studies (including very recently published one; Baars et al., 2008) on the 

application of the HWT method used relatively high values of dilation (of about 450 m in Baars et al., 

2008; of about 1000 m in Cohn and Angevine, 2000;) for determining CBL top. Furthermore, Baars et 

al. (2008) also found the hLGM to be higher than hHWT in their study but they did not investigate in detail 

the reasons behind these characteristic differences between these two methods. High spatial resolution 

in the UHOH lidar data yielded the facility to use a relatively lower dilation value of 200 m while the 

high temporal resolution facilitated to obtain a close picture of the high temporal variability of CBL 

height. Indeed, a large dilatation, which comprises this first gradient and the second one (that represents 

the mixed layer top), will give a largest coefficient than a dilatation comprising only the first or the 

second gradient. This is an important source of bias with the wavelet method. A difference of around 

100 m between the hLGM and hHWT are observed (Figure 5.6) around 1515 CEST for this reason. 

Presence of a large transition zone during this period is visible as yielded by the time-height cross-

section. Furthermore, longer dilatations would require unnecessary computations and are more 

susceptible to errors from a varying backscatter profile above the CBL, particularly if there are various 

layers, as it will be discussed further (section 5.3.2.1). 

 On the other hand, IP method inherently uses the information from the profile obtained with the 

LGM, a series of criteria have to be fulfilled to use this result as a correct estimate of CBL height (see, 

Sicard et al., 2006; for a detailed discussion on these criteria).  

 It can be concluded that the HWT-based approach is the suitable or preferable technique for the 

automated determination of the instantaneous height of the CBL, even for lidar data collected in a 

temporally, vertically, and horizontally complex situations. 

 FFT-based spectral analysis was performed on the time series of hLGM , hIP , and hHWT and the 

results obtained are shown in Figure 5.7. All of them show a power law dependency with a spectral 

exponent (slope value, γ) of about 1.0. The temporal resolution in the time series is 0.3 s. Therefore, the 

Nyquist frequency (f max/2) for the FFT spectra is 1.66 Hz. None of the slopes confirm the –5/3-power 

law dependency. In this case, the time series created by the increments of a nonstationary signal has a 

spectral exponent of around 1, and so is a quasi-stationary signal. For such signals, DFA algorithm is 

not applicable (see, section 4.3).  
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Figure 5.7: FFT power spectra for the three different time series: Left: Logarithm gradient method, middle: IP Method, right: Haar wavelet technique. Slope for each 
spectrum are also shown as straight red line on each panel. 



 

Chapter 5. Investigation of ABL with an elastic lidar 

       

 69

 

Figure 5.8: Profiles of the potential temperature (in K) and water vapor mixing ratio (in g/kg) obtained from the 
radiosonde launch at 1200 UTC from Stuttgart/Schnarrenberg (48.8333° N, 9.2000° E, 315 m ASL) station on 
26 June 2004.  
 

5.3.1.3 Entrainment zone thickness for case I 

Two different approaches are applied for estimating the EZT from the time series of the instantaneous 

CBL height. The standard deviation of the CBL height time series yields the value of the EZT (e.g., 

Davis et al., 1997; Hägeli et al., 2000). This technique is assigned here to be the standard deviation 

technique. The EZT value obtained through this technique is 92 m using the time series of hHWT. The 

frequency distribution of hHWT shown in Figure 5.9 is nearly symmetrical. This distribution is peaked 

around 2050 m AGL and does not spread much which yields the fact that most of the observations 

showed the CBL height around 2.0 km AGL. Larger values are considered to be due to the most 

energetic thermals. The values around 1700 m AGL were arising most probably due to the strong 

entrainment of the free-tropospheric clean air.  

 Results obtained from cumulative frequency distribution method (discussed under section 4.2) 

are shown in Figure 5.10. This figure shows the evolution of the CBL height together with an 

illustration of the cumulative frequency distribution technique on the time series (upper panel).   
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Figure 5.9: Frequency distribution of the instantaneous CBL height derived by the HWT-based method for case I. 

 

 

Figure 5.10: EZT estimation after cumulative frequency distribution of instantaneous CBL height time series (of 
same data as in Figure 5.12b), derived from 0.3 s resolution UHOH lidar data. Linear fits for both hHWT 05/10 (blue 
line) and hHWT 90/95 (red line) values of the cumulative frequency distributions are shown here. The lower panel 
shows the estimated EZT values for this case. For further details, see text. 
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 The determination of the EZT is performed also using the time series of hHWT. Lower and upper 

parts of the entrainment zone are denoted as hHWT(05/10) and hHWT(90/95), respectively, where the first one 

corresponds to the mean of the 5 %-10 % values of the cumulative frequency distribution and the 

second one corresponds to the mean of 90 %-95 % values. Subtraction of these values yields EZT. 30 s 

was the averaging time over which the EZT was calculated. Figure 5.10 also shows the evolution of the 

estimated EZT (lower panel). The values of EZT are ranged around 80 m while the mean value of EZT 

is 75 m. Some higher values of EZT around 200 m might be arising due to an enhanced convective 

activity and associated entrainment of the FT air. This mean value of EZT is of about 20 % smaller 

compared to the one from the standard deviation method.  

 Melfi et al. (1985) considered lower and upper limits of the cumulative frequency distribution 

to be 4 % and 98 %, respectively. On the contrary, Flamant et al. (1997) and Beyrich and Gryning 

(1998), mentioned in their study that these percentage values are author dependent and stated the choice 

of a fixed percentage value is rather complicated due to intense mixing in the entrainment zone (both 

horizontal and vertical). Therefore, the average values of the 5 %-10 % values were considered for 

minimizing the possible step effects in the frequency distribution. Time series-based technique 

following cumulative frequency distribution allows remarkable insights into the variability of CBL 

height and thus can provide a significant understanding of the nature and scale of the mixing processes. 

The evolution of EZT is appeared to be anticorrelated with the location of convective plume tops and 

EZT became very thick (of about 200 m) between actively rising plumes. Application of cumulative 

frequency distribution for computing EZT from a time series of vertically pointing lidar data is of first 

kind here.  

 

5.3.1.4 Profiles of higher-order moments for case I 

So far, the evolution of CBL top has been discussed only. To add further quantitative information, an 

attempt is made to estimate the turbulence processes for the entire 1.5-h observations (case I). A 

detailed description of turbulence processes inside the CBL can be achieved by the estimation of 

higher-order moments of particle backscatter coefficient fluctuations ( par
'β ) if the hygroscopic growth 

of the particles is neglected (see, section 4.4). These profiles were estimated up to an altitude of 2.7 km 

as it was found previously for this dataset that the CBL height was below 2.7 km AGL without presence 

of any significant growth rate, any CBL clouds and further aerosol layers above the CBL top. This kind 

of classical picture of well-mixed CBL regime can be assumed to be appropriate for investigating the 

turbulence features. 

 Using the noise error profiles by means of statistical error propagation, variance, skewness, and 

kurtosis profiles including error bars (with respect to statistical and sampling errors) were determined. 

Autocovariance analyses of the high-resolution time series or analyses of variance spectra were 
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performed for this purpose. Details of these methods are explained in Senff et al. (1994), Wulfmeyer 

(1999a), and Lenschow et al. (2000), so that only the major results are summarized here.  

 Figure 5.11 shows variance spectra of relative particle backscatter coefficients during the 1.5-h 

observations at eight different heights inside the CBL. Lidar data with time resolution of 10 s is used 

here. Log SF(f) is plotted here against log (f). The solid lines in all the plots show the decrease of the 

spectra as expected according to the –5/3-power law describing the inertial subrange of the spectra 

(Kolmogorov, 1941). Obviously, the inertial subrange was reached in all cases. This confirms the time 

resolution used here to be high enough to resolve the energy containing eddies and part of the inertial 

subrange. Recently, Engelmann et al. (2008) showed similar characteristics in the variance spectra of 

par
'β  for a case of well-mixed CBL confirming f--5/3 roll-off (inertial subrange) in the spectra. But they 

did not extend their results to investigate the vertical profiles of higher-order moments of par
'β  as has 

been performed in this study. Furthermore, range resolution in their lidar data was relatively lower 

(75 m) than UHOH lidar data (3 m). 

 Following Lenschow et al. (2000), autocovaiance function (denoted as m11 in their paper) for 

each height level was calculated to determine variance of the particle backscatter and corresponding 

noise variance. The autocovariance function calculated for 100 lags for four selected heights (1000, 

1350, 1750, 2000 m) in the CBL are shown in Figure 5.12. The increase of the total variance at zero lag 

at 2000 m was due to both the increase of the atmospheric variance and the noise variance. 

 Figure 5.13 plots the vertical distribution of the integral scale with and without noise correction. 

This profile including other higher-order moments profiles for this case were normalized with the mean 

CBL height of 2008 m estimated by averaging 1.5-h time series of hHWT. This figure shows clearly that 

without noise correction the integral scale would be significantly underestimated. The standard error 

due to instrument noise is also shown on the 2/3-power law fit curve. The integral scale is in the range 

of 75 s inside the CBL but decreased to 30 s near zi. A more detailed investigation yields that the values 

of the integral scale were between 50 s and 75 s within 0.2zi and 0.9zi. But, a slight increase was 

observed at 1.1zi, which might be arising due to strong entrainment occurring near the CBL top. 

Nevertheless, the integral scale estimated is significantly larger than the time resolution. This means 

that roughly the first 5-7 lags of the autocovariance function fall within the inertial subrange. Therefore, 

the major part of turbulent fluctuations in the CBL can be resolved with the UHOH lidar data.  

 Vertical distributions of variance, skewness, and kurtosis of the par
'β  including error bars with 

respect to statistical and sampling errors were determined (Figure 5.14). Vertical profiles of the 
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Figure 5.11: Spectra of relative particle backscatter coefficient at four different heights. –5/3-slope is shown in each panel to present the expected shape of the inertial 
subrange. 
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Figure 5.12: The m11 (t) for four different heights for case I. The inertial range is resolved by only 5-7 data 
points. 
 

 

Figure 5.13: The integral scale of particle backscatter coefficient fluctuations retrieved with two different noise 
corrections and without correction. The bars on the linear fit curve denote the standard error due to instrument 
noise.  
 



 

Chapter 5. Investigation of ABL with an elastic lidar 

       

 75

variance with and without noise corrections illustrate that noise correction is necessary for all altitudes. 

The variance shows a maximum near the entrainment zone (around 2022 m AGL), which was very 

close to the top of the mean CBL height. These properties of the variance profile are similar to that of 

the findings of Sullivan et al. (1998) and Wulfmeyer (1999b) concerning the humidity. 

Figure 5.14 (middle panel) shows the skewness profile without any sort of correction for noise 

and with noise correction using a three-point linear extrapolation to zero lag. Noise error and the 

sampling error are also plotted here as error bar on the linear fit curve. Vertical variability of the 

skewness shows the presence of significant structures inside the CBL. The estimated noise error was 

small. But the sampling error was relatively high above the CBL top. A comprehensive description of 

convection up to the CBL height can be observed from the value of Sk. The negative Sk value inside the 

well-mixed CBL as obtained in the present case is not unexpected. A prominent peak and positive value 

was also observed in the region CBL top. 

 Figure 5.14 also presents (right panel) the kurtosis profile with and without noise correction. 

The sampling and noise errors are shown on the corrected kurtosis profile. First lag and linear fit 

approach provide here nearly similar results. Throughout the entire CBL the uncorrected profile shows 

a constant value around 4 with a slight increase at 0.6zi. But, at the top of the CBL, the profile shows a 

significantly higher value of K of about 12. 

A brief summary of the quantitative results obtained for the present case is given in Table 5.1.  

 
Table 5.1: Summary of the results obtained for Case I 
 

 hLGM hIP hHWT From variance 

profile 
Slope (γ), from FFT power 
spectra of the time series 

1.01 ± 0.06451 1.04 ± 0.0644 1.06 ± 0.0654 Not applicable 

Mean CBL height 2068 m 
 

2005 m 2008 m 2022 m 

EZT from standard 
deviation method 

118 m 
 

77 m 92 m Not applicable 
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Figure 5.14: Vertical distributions of the variance (V), skewness (Sk), and kurtosis (K) for case I with two different noise corrections and without any correction. Statistical 
and sampling errors are also shown. See text, for further discussion. 
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5.3.2 Case II: Convective boundary layer during its rapid growth in morning 

 

5.3.2.1 Retrieval of convective boundary layer height  

 
This section deals with the investigation of the CBL evolution obtained with the UHOH lidar 

measurements between 0955 and 1115 CEST on the same day as in case I. During this time, the 

evolution of CBL confirmed an interesting regime transforming from a stratified structure in the 

morning to a well-mixed CBL toward noon. In general, the application of the HWT-based method as 

discussed in section 4.1.4 works well. But this algorithm can lead to significant problems when multiple 

aerosol layers exist. The other two methods also have these biases. Such a situation was observed 

during case II. Before the HWT was applied on the range-square-corrected signal, 10 consecutive lidar 

profiles were averaged which yielded a time resolution of 0.33 s. Figure 5.15a is the time-height plot of 

D (z) values. The residual layers were confined within the altitudes from 1.6-2.1 km. This confinement 

was due to less turbulent motion in this region. The LGM picked the strongest gradient, which was not 

always at the top of the newly developing CBL but for many profiles was found in the RL. Thus a fully 

automated LGM routine failed in identifying the top of the CBL. The HWT was applied within the 

altitude from 500 m to 3000 m. A similar analysis was performed for the choice of dilation value as in 

case I and dilation value of 260 m was found suitable for this dataset. It was mentioned earlier that the 

value of most suitable dilation depends on the nature of backscatter profile. Figure 5.15a displays that 

the HWT sometime picked the top of the RL instead of the top of the convectively growing boundary 

layer. 

 The HWT analysis was modified then to find correctly the height of CBL top with the 

following procedure. At first, the aerosol layer was identified from the time-versus-altitude plot of D(z) 

of the background corrected signal as displayed in Figure 5.15a. Then the upper altitude limit below the 

aerosol layer was selected and used as zmax (in Eqn.4.9) for calculating Wf(a, b). The upper limit in the 

integration for obtaining the Wf(a, b) is now not limited to a fixed altitude but differs in time owing to 

the presence of the RL. Although the approach is based on a subjective determination of the residual 

layer, this technique needs a very limited number of user-defined inputs. Following this approach, also 

used by Senff et al. (2002), and Cohn and Angevine (2000), difficulties arising due to the appearance of 

RL were eliminated. 

 Figure 5.15b shows the growth of CBL top (black-solid line) overlaid on the range-square-

corrected backscatter intensity after the subjective approach was applied. This figure exhibits also the 

capability of the HWT-based approach to retrieve correctly the CBL height in the presence of multiple 

dust layers. The morning time convection is clear from both figures showing the growing CBL top from 

0.8 to 1.3 km. The possible interaction between the convectively growing boundary layer and the RL 

can be observed at the end of the time series. This interaction is discussed in section 5.3.2.3.  
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Figure 5.15: Retrieval of ABL top by the HWT method in the presence of several aerosol layers in the ABL. The 
HWT is applied in altitude range from 500 m to 3000 m with a dilation value of 260 m. (a) D(z) values are plotted 
in time-versus-altitude frame. Clearly visible is that the HWT-based analysis mostly finds the previous-night 
aerosol layer height as ABL top as overlaid with the white line on the image. (b) The HWT is applied below a 
selected altitude by confirming the presence of the RL (see, text for further details about this subjective approach). 
Time series of convectively growing ABL top (hHWT, solid black line) is superimposed on the range-square 
corrected lidar backscatter intensity.  

 

5.3.2.2 Entrainment zone thickness for case II 

Following the standard deviation method and cumulative frequency distribution method described in 

section 4.2, the EZT was determined for case II as was performed for case I. Figure 5.16a shows the 

normalized frequency distribution of hHWT for case II. The standard deviation approach yielded a value 

of 140 m for the EZT. The frequency distribution is highly asymmetrical reflecting two different 

regimes of the CBL. The distribution around 900 m AGL is expected to be due to the entrainment and 

corresponding mixing process inside the CBL while the distribution around 1300 m AGL is due to the 

penetrative convection at the top of the CBL. 

 Results obtained from the cumulative frequency distribution method are shown in Figure 5.17. 

Temporal averaging for the cumulative frequency-based approach is also 30 s as in case I. The 

determination of the EZT was performed using cumulative frequency distribution of the time series of 

hHWT . The upper panel shows the time evolution of the hHWT together with the results obtained from 

cumulative frequency distribution. The hHWT(05/10) and hHWT(90/95), are also shown in the figure. The lower 

panel shows the 30-s interleaved EZT values. This technique yielded a mean EZT of 62 m.  
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Figure 5.16: Frequency distribution of the instantaneous CBL height derived with the HWT for case II. 

 

Figure 5.17: EZT estimation by cumulative frequency distribution of hHWT for case II. Linear fits for both hHWT 

05/10 and hHWT 90/95 values of the cumulative frequency distributions are shown here. Lower panel shows the EZT 
variability during this time period.  
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 A large difference was found between the values of the EZT for these two methods. Both cases 

show that the EZT obtained with the standard deviation method is higher than that with the cumulative 

frequency distribution method. One probable reason for the discrepancies can be due to the presence of 

different intrinsic trends in the time series of the CBL height that cannot be easily determined. A 

detailed investigation of the differences found for the EZT (17 m for case I and 82 m for case II) needs 

further research. Nevertheless, this regime (case II) has rarely been considered in previous studies of the 

CBL entrainment zone characteristics though being an important aspect with respect to near-surface air 

pollution.  

 

5.3.2.3      Penetrative convection in the convective boundary layer  

The interaction between the CBL and the RL atop mentioned in the previous section is studied here. A 

similar study was performed by Pahlow et al. (2005) for the case of a forest fire smoke. In their paper, 

they studied the interaction between the top of the CBL and the bottom of the smoke layer.  

 It is clear from Figure 5.18 that the growing CBL (red line in figure) and the overlying RL 

(black line) were coupled at an altitude of 1.7 km AGL just after 1115 CEST. This figure shows that the 

height of the RL was found to be descending and the CBL height to be ascending (see, the linear trends 

overlaid on them). This is a clear indication to the absence of turbulence motion in the RL. The RL at 

1.8 km AGL in the present case was also observed in the lidar data collected on the previous night (on 

25 June around 2230 CEST; see, section 5.3.6.1)  

 To correlate the RL height and the top of the CBL, first the linear trends of both time series 

were subtracted and then the correlation coefficient was calculated. The value of the correlation 

coefficient was found to be 0.33. Such poor value of correlation coefficient confirms the different 

behaviors of the two time series. The minimum and maximum interval between the linear trends of the 

two time series was found to be 80 m and 820 m, respectively. This effect (dynamical coupling with 

very poor correlation) might have been occurred due to the wave activity in the lower troposphere. 

Indeed, it is visible from Figure 5.18 that the dynamic coupling between the two time series is an 

indication of gravity waves. After the CBL started to grow, the RL evinced ripple structure due to the 

overshooting thermals at the CBL top. 

 This is observed from the figure that the hHWT reached the level of the dust layer merging into 

one another becoming indistinguishable. This is normally called penetrative convection (Deardorff et 

al., 1969). As a result of this activity, cleaner air from the free troposphere enters the CBL by 

downdraft.  

 Trapping of the pollutants in the CBL is a familiar phenomenon, which arises due to the reason 

that none of the turbulent CBL air mass can carry pollutants into the laminar air. After sunrise as time 

progresses, the CBL over land can be modified by different phenomena: morning or early afternoon 

penetrative convection, and encroachment or decay of the late afternoon convection. Sorbjan (1996) 

showed in his work that early morning penetrative convection often evolves to an encroachment 
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structure due to rapid growth. Encroachment processes in the CBL are possible when the atmosphere 

above the CBL consists of an RL from previous night. Stull (1988) showed that if the CBL 

development is completely dependent on the surface warming, then the CBL encroaches upward only as 

the CBL warms. Therefore, during this time, the growth of the CBL height is highly correlated with the 

rate of surface heating. This was exactly the situation during case II in this study (see section 5.3.4 for 

further discussion on the correlation between the surface temperature and CBL height evolution). Also 

this work showed the fast growth of the CBL in the morning in the presence of an RL and a 

comparatively slower growth in the later afternoon. However, the transition between the free 

encroachments to the penetrative convection is difficult to determine. 

 

 

Figure 5.18: Evidence of penetrative convection in the CBL. The hHWT (dashed-red curve) and the RL bottom 
(solid–black curve) are shown together with linear trends overlaid. Red solid and black solid lines are linear trend 
for hHWT and residual layer bottom, respectively. 
 

 

5.3.2.4 Profiles of higher-order moments for case II 

Higher-order moments analysis was performed for case II in the similar fashion as was performed for 

case I aiming at the investigation of the turbulence profiles for this different regime where a rapidly 

growing CBL during morning eroded nighttime stable layer in presence of a strong residual layer above 

the CBL. The full time series of 1 hour 20 minutes (case II) of relative particle backscatter data are 

treated for this purpose. The calculation of the higher-order moments was restricted to the data obtained 

below 2.7 km AGL as a maximum value of instantaneous CBL height was found to be of about 1.7 km 

AGL. 

 Variance spectra of relative particle backscatter coefficient fluctuations at 8 selected height 

levels are shown in Figure 5.19. The –5/3-power law is also shown. This figure suggests that the inertial 
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subrange was achieved for some cases. There is considerable deviation in the higher altitude as can be 

seen from the spectra at 1755 m AGL. This is probably arising due to the presence of the residual layer 

at that height. 

 The autocovariance functions for 100 different lag values are shown in Figure 5.20 for four 

different heights (600, 800, 100, and 1200 m AGL). Similar to the case I, the integral scale for par
'β  

was of about 60-70 s inside the CBL as shown in Figure 5.21. For all higher-order moments profiles 

height is normalized with the mean CBL height (zi, 1136 m) during this time calculated by averaging 

hHWT values of this case. The integral scale value signifies that at a time resolution of 10 s that roughly 

the first 6-7 lags of the autocovariance function fall within the inertial subrange. Surprisingly, the 

vertical distributions of corrected and uncorrected profiles of the integral scales are nearly same except 

at the altitude above 1.4zi. There was a prominent drop of the integral scale value above 1.4zi, which 

might be arising due to the presence of the strong residual layer present at that height. Otherwise, above 

1.1zi, an increasing trend was observed up to a high value of about 225 s at 1.5zi. 

 The vertical distributions of variance, skewness, and kurtosis with and without noise corrections 

are shown in Figure 5.22. Similar to the case I, the variance without the noise correction were observed 

to be overestimated in all heights. The sampling and noise errors as black and red error bars, 

respectively, are also shown for the corrected profile (i.e., variance obtained with the 1st lag approach). 

The variance below the altitude of about 500 m is not shown here as the data was affected by the partial 

overlap factor of the lidar system. Unlike case I, the distribution of V in height was not well defined. A 

sharp peak was observed at the mean CBL height. Additionally, some other peaks were also observed 

most probably due to the non-stationarities present in the CBL height evolution. But the influence of the 

different aerosol layers cannot be ignored while explaining the vertical distribution of the variance. 

There were secondary broad peaks between 1.3zi and 1.4zi with a local maximum. Most probably, 

above 1.4zi, high values corresponded to the residual layer at those heights. The rest of the large 

variance values most probably were observed due to turbulent activities present in the CBL. Above the 

RL, the variance profile decreased and reached nearly a value of zero. Further investigation of these 

characteristics needs detailed information on flux Richardson number (Sorbjan, 1990).  

Similar to the results found by Mahrt et al. (1991), predominant negative skewness values up to 

the height of 0.8zi were the result of rapid growth of the CBL height (see, Figure 5.22). But around an 

altitude of 900 m and higher, positive skewness was found. It is interesting to note that the Sk profile 

increased with height in two different altitude regimes: one from 0.8zi and 1.1zi and the other one from 

1.2zi to the RL bottom at 1.5zi. The first is representative of convective activity, which organized as 

height increased but the second one exhibited several peaks, which were arising most probably due to 

the presence of different scales of mixing. A marked and dramatic change in Sk with negative values at 

an altitude 1.6-1.7 km could be the result of the intrusion of free tropospheric air. This is consistent with 

the studies of Couvreux et al. (2005).  



 

 

       

 

C
h

a
p

ter 5
. In

vestig
a

tio
n

 o
f A

B
L

 w
ith

 a
n

 ela
stic lid

a
r 

83 

 

Figure 5.19: Spectra of particle backscatter coefficient at four different heights for case II. The –5/3-slopes are shown on each panel in order to present the expected shape of 
the inertial subrange. 
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Figure 5.20: The autocovariance function at four different heights for case II. 
 

 
 

Figure 5.21: Integral scale for case II with and without noise correction. The standard error due to instrument 
noise is also shown as an error bar on the profile. 
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Figure 5.22: Profiles of variance (left panel, 2nd order moment), skewness, (middle panel, 3rd order moment), and kurtosis, (right panel, 4th order moment) obtained from the 
UHOH lidar backscatter intensity data from 0955 to 1115 CEST, 26 June 2004. 
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 Above an altitude of 1.5zi, the Sk profile obtained a constant value close to 0 due to almost 

homogeneous aerosol distributions in the free troposphere. Kurtosis is shown in the right panel of the 

figure. The kurtosis increased with height from 3 to 8 in the region of ABL height. Again, K increased 

sharply to value of 16 due to the presence of RL. 

 Obviously the higher-order moments profiles are getting more complicated due to non-

stationarities, rapid growth rate, and presence of the residual layers together with some other aerosol 

layers. 

 

5.3.3 Comparison of case I and case II 
 
Table 5.2 summarizes the qualititative and quantitative differences between two different CBL regimes. 

The key difference between the two cases is mainly arising due to two major reasons. Firstly, a rapid  

 

Table 5.2: Comparison of the results obtained for case I and case II. 

Features   Case I 

(Time series 1430-1600 CEST)  

   Case II 

(Time series 0955-1120 CEST) 

Visual inspection of the time 
series of r-square corrected 
signal 

Quasi-stationary CBL CBL regime during its rapid growth  

Residual layer  Not observed Observed at an altitude around 
1.8 km AGL, together with other 
multi-layered structure 

CBL height growth rate High, up to 5 m/minute Very low (< 1 m/minute), nearly 
constant with time 

Slope (γ), from FFT power 
spectra of the time series 

1.0 ± 0.06 1.5 ± 0.038 

Mean entrainment zone 
thickness 

75 m while the a maximum value 
was 220 m  

62 m while the maximum value was 
200 m 

Mean CBL height Mean hLGM of 2068 m with 
minimum of 1641 m and 
maximum of 2277 m  

Mean hHWT was found to be 1136 m 
with minimum of 678 m and 
maximum at 1545 m 

Vertical profile of V  Classical picture of variance 
profile for a well-mixed CBL 
found. Maximum of variance 
found at 2022 m 

Multimode distribution of V due to 
the presence of multiple aerosol 
layers. Highly affected by the rapid 
growth of CBL height. Maximum 
of variance was found at 1120 m 
AGL 

Vertical profile of Sk Mostly negatively skewed up to 
the top of the CBL and positive 
values found near the CBL top. 
Above 1.1zi, free tropospheric air 
observed with constant skewness 
value 

Highly complicated structure with 
both positive and negative 
skewness inside the CBL 

Integral scale  Between 60 and 80 s up to the 
CBL top. Higher values are found 
in the entrainment zone.  

Between 60 and 80 s up to the CBL 
top. 

Power spectra of particle 
backscatter coefficient 

Found to follow –5/3-power law 
inside the CBL 

Found but, near the entrainment 
zone no such power law observed 
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growth of CBL height during the case II was observed with a rate of up to 5 m/minute while for case I, 

a very slow growth was found which could be considered as a quasi-stationary CBL. Secondly, unlike 

case II, no strong RL or any detached multiple aerosol layers were observed during the period of case I. 

The latter one resulted presence of penetrative convection at the top of the CBL during case II.  

Similar behaviors were observed for both cases while demonstrating the CBL height estimation 

with LGM, IP method and the HWT-based analysis, i.e., the fundamental difference among the 

techniques providing hLGM> hHWT> hIP. The mean EZT for case I and case II were found to be 75 m and 

62 m, respectively. Mean CBL heights obtained with the HWT-based method were 2008 m and 1136 m 

for case I and case II, respectively. These differences are arising due to the enhanced entrainment 

processes prevailing during case I. An FFT-based power spectral analysis of the CBL height time series 

provided γ values of 1.0 and 1.5 for case I and case II, respectively. This is a confirmation of the 

implicit non-stationarity present during case II.  

 Some characteristic differences were observed in the vertical distributions of the higher-order 

moments. The vertical distribution of variance profile for case I provided a well-defined aerosol 

distribution due to turbulence inside the CBL. An expected peak was observed at the top of the CBL 

while variance profile for case II was found to consist of 2 to 3 different peaks in it. Most probably this 

was caused by the presence of overlying residual layers and a rapid growth during case II. Additionally, 

relatively large sampling errors were observed for all higher-order moment profiles for case II 

compared to case I.  

 The integral scale values for both cases inside the CBL (i.e., part of the CBL above the surface 

layer and below the entrainment zone) agree well with each other with a value of about 60-80 s. 

Additionally, a decrease of the integral scale was found for both cases near zi. These findings are similar 

to the findings of Lenschow et al. (2000). But, the sharp drop of the integral scale at 1.4zi for case II is 

most probably due to the heterogeneity induced by the RL aerosols present at that height. On the other 

hand, a larger value of integral scale was observed for case I (of about 120 s) near 1.1zi. Few more 

characteristic differences were observed for the third-order moments (skewness). Negative values of 

skewness were found inside the CBL while positive values were observed in the entrainment zone near 

the top of the CBL for case I. But for case II, skewness profile showed a high variability even inside the 

CBL with positive values. 

 Being the experimental area located in the region of Stuttgart downtown, an increased amount 

of anthropogenic activities during morning (case II) was not unexpected yielding diverse features in the 

turbulence profiles. Furthermore, UHOH lidar was operated at the bottom of a valley-like region so that 

aerosol distributions during case II are expected to be largely affected by different pollutants advected 

from surrounding regions in the morning. The estimation of the higher-order moments in this study 

solely used the aerosols to be the tracers of the CBL dynamics. Therefore, the observed structures in the 

aerosol distribution during case II most probably yielded such turbulence profiles in the CBL. 



   
  Chapter 5. Investigation of ABL with an elastic lidar

   

 88

 High resolution of the UHOH lidar measurements helped to make reliable evaluation of some 

turbulence parameters through the estimation of the higher-order moments. As found in other studies, 

the variance profile in present case also gave an indication to the variability inside the boundary layer. 

Obviously, the maximum variance value appeared at the mean CBL height. The normalized third-order 

moment or skewness value, obtained in this work showed a vertical variability in different height 

regimes. Free troposphere was found to be less skewed or without any asymmetry, with Sk value nearly 

equal to zero for both cases. Similar results concerning the vertical dependency of Sk value in CBL can 

be found in Mahrt et al. (1991), Couvreux et al. (2005), and Larson et al. (2001). Encroachment of free 

tropospheric air into the CBL was observed during the study of penetrative convection and the negative 

value of Sk near the RL is a confirmation. High positive values of K (in its vertical distribution) were 

obtained in the EZ, which agrees with the findings of Lenschow et al. (2000). In this intercomparison 

only qualititative aspects can be considered since different tracers have been used in those studies 

(water vapor mixing ratio, vertical velocity) and this one (aerosols). Furthermore, this should be noted 

that the results obtained are based on a technique, which uses an assumption considered to be true for a 

CBL regime where stationarity exist, and hygroscopic growth of the aerosol particles can be neglected. 

These assumptions are not considered to be true for the CBL regime during case II both due to the 

heterogeneity in the distributions of the aerosol particles influenced by a rapid growth of CBL, and the 

presence of the residual layers above.  

  

5.3.4 Evolution of convective boundary layer height  

Two different regimes of ABL growth were clearly observed from the full-day-time-series of the data, 

with respect to the estimated growth rate: one regime (from 0955 to 1115 CEST) with growth rate of   

3-5 m/minute and another (1130 to 1800 CEST) with comparatively slower rate with 0.5–2 m/minute as 

evinced by Figure 5.23. This figure shows the time series of CBL height growth rate in m/minute (see, 

panel a) determined from the time series of the hHWT estimated during 1000-1800 CEST (panel b). RH 

at ground is also shown in the figure (panel c). Increase of the surface temperature (panel d) and the 

growth of the CBL height were highly correlated to each other as seen from the figure. Rapid growth in 

the morning was caused by surface heating and associated convective activities while the decrease of 

the growth rate and then the persistence of a constant slower growth were due to interaction with the RL 

and resulting capping, subsidence, and advection. The afternoon boundary layer deepens slower than 

the morning one because it is thicker, and is therefore less heated by a similar surface heat flux. The 

CBL height reached its maximum (2250 m, obtained by the HWT method) around 1730 CEST. This 

suggests that the surface forcing was still present around this time. Sunset was at 2130 CEST on this 

day.  

 This should be noted that the encroachment at the top of the CBL mentioned in section 5.3.2.3 

is most probably an outcome of the high correlation between the surface temperature and the CBL 
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height measured during this time. Surface temperature observed during 1000 and 1130 UTC showed a 

sharp increase from 18.2 °C to 20.2 °C while the CBL height developed from 678 m to 1545 m AGL. A 

correlation coefficient of 0.89 was found while comparing these two time series between 1000 and 

1130 CEST. This is an indication to encroachment as the rapid growth of the CBL height is assumed to 

be highly dependent on the surface temperature while the RL atop remained more or less at the same 

altitude (around 1.8 km AGL) with a slightly decreasing trend.  

 

 
 

Figure 5.23: ABL growth rate is shown quantitatively (one regime with 3-4 m/min and another regime 0.5 to 
2 m/min) and the surface temperature variation over whole day is also shown to illustrate how the surface heating 
affects the ABL evolution. Consequent effect of surface heating is revealed after 3 hours during 10:00 CEST. 
After comparison of the time series of ABL height and surface temperature following results are obtained: 
correlation coefficient: 0.87 if compared both CBL height and temperature from 0900 to 1800 CEST, Correlation 
coefficient: 0.97 if compared between CBL height (0900 to 1800 CEST) and temperature (0600 to 1800 CEST). 
 

a b 

c d 
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5.3.5 Statistical analyses of a convective boundary layer height time series: Non-

stationarities  

For the following statistical analyses, the Haar wavelet derived CBL height time series between      

0955 and 1115 CEST of 26 June 2004 is used. The correlation embedded in the CBL top fluctuations 

can be investigated using DFA method as described in section 4.3.2. Figure 5.24 shows the local linear 

fits (blue solid line) for the CBL top time series divided into segments of length of 100 consecutive 

CBL heights. The vertical red lines indicate boxes of size 100. The bluew solid line segments represent 

the trend estimated in each box by polynomial fits (of order of 1 or 2). The same computation was 

repeated over various box sizes (n) to provide a relationship between F(n) and n (see, Eqn. 4.13). The 

slope of the line relating log F(n) to log (n) determines the scaling exponent (self-similarity parameter), 

α* as mentioned before. Figure 5.25 presents the calculated value of alpha-exponent as obtained from 

the log-log plot of F(n) and n for DFA method of polynomial of order 1 (upper panel) and order 2 

(middle panel). Alpha-exponent values are 0.123 and 0.372 for DFA-1-and DFA-2, respectively.  

 For both DFA results, it is evident that long-range time correlations in the CBL top fluctuations 

were present with positive alpha value (< 0.5 here). Consequently, the spectral exponent values, 

(γ, 1.246 and 1.74 for DFA-1 and DFA-2, respectively) then was lying in the region 1< γ < 3. It can be 

concluded that CBL height time series show a non-stationary process with stationary increments. Figure 

5.25 (bottom panel) presents the FFT power spectra for the same time series following the method 

described in section 4.3.1. The value of γ obtained through FFT power spectral analysis is 1.502. This γ 

value denotes the similar characteristics concerning the non-stationarity in the CBL height time series. 

These parameters are the indicators of the dynamics of CBL.  

 The γ value here in any case is somewhat below the 5/3 resulting from Kolmogorov's theory for 

isotropic and homogeneous turbulence (Kolmogorov, 1941). This inconsistency prevents to relate the 

multifractal dimension to the spectral exponent value obtained. The CBL dynamic self-affinity with a 

roughness exponent of 0.37 is consistent with study of Pelletier (1997). Similar spectral analysis can be 

found in Melfi et al. (1985).  

 Figure 5.26 shows the hierarchy of the values of the generalized dimension Dm(q) for the same 

time series. The straight line is drawn to enhance the value of q at which the Dm(q) function starts to 

deviate from linear dependency. The K(q) function defined by Eqn 4.18 indicates the intermittency of 

the signal. Thus the multi-fractal properties of the CBL height time series are expressed by two sets of 

scaling functions, Dm(q) describing the roughness of the signal and K(q) describing its intermittency. 

For the mono-fractal case Dm(1)=0.75, there is no intermittency in the signal at all, if Dm(q) ≡ 1. In the 

present case CBL height time series was found to be mostly fluctuating and with intermittency in it 

since the generalized dimension calculated lies between 0 and 1. Figure 5.22 yields that K(q) function 

becomes almost linear in the region of higher q values, which implies that a single event was 

dominating in the statistics, i.e., non-stationarity embedded in the time series of the CBL heights. 
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 These results show that the multifractal analysis yields a convenient framework for the 

description of different scaling regimes present in the convectively growing boundary layer. These 

analyses revealed the roughness of CBL top heights during the morning, non-stationarities in CBL 

height time series having anti-persistent signal with stationary increments. Generalized multifractal 

dimensions were found to be within 0 and 1. Main objectives of these analyses were achieved after 

characterizing the local correlations in the CBL top dynamics and by quantifying the multi-fractal 

behavior in it. The FFT analysis also revealed the fact that the CBL height evolution with time is 

expected to be a non-stationary process with stationary increments. The relationship between the 

spectral exponent (γ) and the Hurst exponent (α*) for a self-affined time series was reasonably satisfied. 

 These results in general can help to achieve an understanding of the dynamical behavior of CBL 

depth especially when convective activity is a dominant feature. While comparing with the multifractal 

results of the previous studies it should be noted that it is not possible to make a straightforward and 

direct comparison since those studies deal with a purely spatial variations (as obtained with aircraft lidar 

data) of the tracers whereas the analysis performed is strictly for variations in time. Another key 

shortcoming may always arise in the multifractal results while using aerosols as tracers obtained with 

IR lidar systems: the lidar signal intensity is actually non-linearly linked to the particle backscatter 

coefficient and this is also true for the relation to the aerosol concentration.  

 

 
Figure 5.24: Local detrending in DFA algorithm using the CBL height time series obtained on 26 June 2004. 
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Figure 5.25: DFA results and FFT power spectral analysis. The bottom panel shows the power spectral of the 
CBL top height data. A spectral exponent value of γ = 1.502 characterizes the correlations of fluctuations (see, 
text for further details). 
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Figure 5.26: Generalized multifractal dimension, Dm(q) and K(q) for the CBL height time series presented in 
Figure 5.20. Deviation of Dm(q) from the linear dependencies on q values is seen after the dashed line. K(q) 
function determines the intermittency in the CBL height time series data.  
 
  

5.3.6 Wave-like activities in the boundary layer 

High-resolution lidar observations of wave activities in different atmospheric layers are another key 

issue in atmospheric science since these measurements can confirm waves with shorter periods. For 

instance, study of the internal gravity waves is important since they critically influence the energetic 

and dynamics of the region by momentum transfer (Holton, 1992). A wave that propagates in density-

stratified fluid under the influence of buoyancy forces is called internal gravity wave or internal wave 

(Holton, 1992). 

 In the following section, two different events are described during which wave-like features 

were observed by the UHOH lidar during measurement period. A similar analysis on the structure and 

evolution of waves after the application of a high-resolution Doppler lidar can be found in Newsom and 

Banta (2003) and in Fritts et al. (2003). Both of the studies characterized the wave structures using lidar 

derived radial velocity field whereas the present work demonstrates the potential of an aerosol lidar 

system for investigating the wave-structures in a RL. There are different reasons behind the origin of 

gravity waves: the vertically shifting force induced by the terrain topography (McFarlane, 1987), 
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convection (Larsen et al., 1982), geostrophic adjustment (Uccellini and Koch, 1987), cold fronts (Gall 

et al., 1988), wind shear (Lalas and Einaudi, 1976).  

Two different approaches were considered to characterize the oscillation observed during the 

measurement period: first by the conventional FFT analysis and second by the application of Morlet- 

based wavelet spectral analysis. The results show the existence of gravity waves and features similar to 

K-H waves.  

 

5.3.6.1 Gravity waves  

The UHOH lidar data acquired on 25 June 2004 revealed the atmosphere to possess a rich set of waves. 

Since the UHOH lidar samples backscattered data with a time resolution of 0.033 s and a spatial 

resolution of 3 m, relatively rapid phenomena in the atmosphere can be studied. Figure 5.27 reveals 

such evidence of oscillatory behavior in the particle backscatter field. Lidar data in the figure shows a 

residual layer with a top height of about 1.7 km, and a bottom height of 1.4 km showing an enormous 

mixing which is expected to be related to the presence of convectively driven internal gravity waves in 

the RL.  

During evening when the heating of the earth surface by insolation starts to cease, a stable layer 

forms over the earth surface stopping the turbulence connection between surface and free troposphere. 

If the wind shear dominates over this stable-stratification, the turbulence may become an episodic event 

due to mixing and may give rise to some oscillatory behavior in the aerosol layer.  

 Although these sorts of waves are not generally of great importance for synoptic scale weather 

forecasting, they can be important in mesoscale motions. They are important mechanisms for 

transporting energy and momentum to high levels of the atmosphere. Additionally, this case served as 

an evidence of the appearance of the previous night aerosol layer present at the altitude of 1.6 km. This 

stayed around this constant altitude throughout the time series with oscillation. Obviously this layer was 

still present at the same height on the next day (26 June 2004) morning as was presented in section 5.3.2 

(case II). Understanding the formation of residual layers above NBL, their evolution in the morning and 

their interaction with the growing CBL are some of the important components in the development of the 

more complete representation of aerosol dynamics in a complex valley-like location of Stuttgart city. 

In order to better characterize the oscillation observed in the NBL, wavelet-based spectral 

analysis was applied to the time series of lidar signal intensity at eight equidistant altitudes between 

1400 m and 2100 m. The application of wavelet spectral analysis to different altitudes rather than to a 

single altitude yields the advantage to extract the large amount of information content.  
 Figure 5.28 shows the scalograms (time/period) of the wavelet coefficient for the range-square-

corrected signal intensity along the altitudes mentioned. In this plot each detailed coefficient is plotted  
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Figure 5.27: One set of UHOH lidar measurement acquired on 25 June 2004 (with time-resolution of 0.33 s) 
during lidar measurement at Stuttgart downtown revealed the atmosphere to posses a rich set of waves (convective 
gravity waves) in nocturnal boundary layer in the lidar backscattered intensity field.  
 

as a pixel whose color corresponds to the magnitude of the wavelet coefficient. In addition to the 

scalograms each panel of the figure contains the time series of the signal amplitude at those altitudes 

(upper panel), and global wavelet spectral (right panel), which is equivalent to the power spectral from 

an FFT. Contours are overlaid on each scalogram. Localized wavelet spectrum indicates waves 

signature with a frequency of 0.0001 Hz. The global wavelet spectrum also shows a peak around this 

frequency. Figure 5.28 shows that the wavelet decomposed periods were present in all heights but at 

different times which indicates a propagation of the gravity waves. A defined structure of a frequency 

of 0.0004 Hz with a maximum around 2250 CEST can be seen in the figure. A weaker peak appeared at 

2220 CEST but its period was slightly higher. These frequencies are not unexpected for gravity waves 

(Fritts et al., 2003).  

 In this figure, some more structures having frequencies lower than 0.0001 Hz are observed, 

however the significance of these structures are questionable due to edge effects. Edge effects arise due 

to finite length of time series. In the present analysis, the time series is padded with sufficient zeroes to 

bring the total length N up to the next-higher power of two, thus limiting the edge effects and speeding 

up the Fourier transformation during calculation. Padding with zeroes introduces discontinuities at the 

endpoints and as one goes to larger scales, decreases the amplitude near the edges as more zeroes enter 

the analysis. Some coherent small-scale structures (ripples) are also visible in the figure. Wavelet 

spectra at 1500 m AGL show the presence of coherence structure with a scale of 0.0004 Hz but the 

amplitude of these two structures is different in time. After 2230 CEST, the spectra show higher values 

of coefficient and evince that same feature is present but with prominent mode.  

 FFT-based spectral analyses are not able to show the location (in time) of the frequency present 

in the resultant spectra. Presence of the various frequencies in a time series can be evinced by FFT but 
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this is not sufficient information to characterize all the structures present. These results suggest that the 

wavelet spectral analysis is an efficient tool to provide information on the evolution of the different 

scales or periods that are involved with a wave event. So far, a very few studies have made a detailed 

investigation of the gravity waves induced aerosol structures by applying a very high-resolution dataset. 

It is demonstrated here that this sort of wavelet-based approach to a high-resolution lidar data can 

explore the wave-like phenomenon and their evolution in time. The tempo-spatial lidar data can explore  

 

 

Figure 5.28: A detailed time-frequency representation of the range-square corrected lidar signal intensity at 
different altitudes AGL confirming different oscillatory structures present above NBL on 25 June 2004 by wavelet 
analysis. Morlet-based wavelet analysis power spectrum is shown here. Each panel shows the scalogram of lidar 
signal intensity at a particular height, time series of the signal intensity at that particular altitude together with the 
mean wavelet power spectra. Color scale increases from violet/black for minimum to red for maximum. 
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the wave-like phenomena in the RL (if present) and their dynamical mechanisms embedded in the NBL. 

Distribution of aerosols in the RL has a significant impact on local pollutant budgets at a variety of 

temporal and spatial scales and can improve the understanding of the structure of the lower troposphere 

and processes taking place in there. 

 

5.3.6.2 Kelvin-Helmholtz activity 

The K-H waves appear in the atmosphere mainly due to the presence of stratified shear flow instability 

(Fernando, 1991; Scorer, 1997). These waves act to mix across considerably vertical depths (up to 

around 1km) and dissipate energy. Estimation of this dissipated energy has a significant impact on 

atmospheric dynamics. Analytical, numerical and laboratory models (Esler and Polvani, 2003) have 

extensively studied the appearance and breakdown of such activities but it is not clear how these results 

can be applied to the waves in the real atmosphere.  

 High-resolution sounding of the CBL with the UHOH lidar revealed K-H structure in the CBL. 

The UHOH lidar data can be used to estimate the thickness of the K-H billow or the amplitude of these 

billows and the billow wavelength. During the measurement on 26 June 2004, one set of the UHOH 

lidar data as shown in Figure 5.29, captured a specific fine structure of the CBL. In an altitude between 

1.75 and 2.23 km, displayed in the figure (see, square region in figure 5.29a), a wave-like instability 

was observed starting to grow at 1610 CEST. This type of activity is an implicative of K-H activity. 

Kelvin’s cat’s eye patterns embedded within step-like structures are shown in zoomed-in-view (Figure 

5.29b). The K-H wave height (H) in the figure running along a step-like structure was of about 50 m 

deep. According to Turner (1973) the most probable K-H wavelength is 7.5 H, where H is the depth of 

the layer. This gives a wavelength of about 400 m, which is not unrealistic for a case of a well-mixed 

CBL (see, Stull, 1988). The structure started to break around 1624 CEST together with sudden onset of 

strong turbulence, associated with overturning and breaking of the waves into turbulence.  

 K-H waves as observed here are class of waves those forms at the top of the CBL along the 

overshooting thermals (Stull, 1988). The top of the CBL here is well marked by a sharp interface as can 

be seen from the figure. This figure also shows the breaking of the K-H structures and a rapid dilution 

of the aerosols in the CBL around 1620 CEST. Thermals were also observed. During such a situation, 

often rapidly evolving K-H waves are observed (Stull, 1988). The wavelength of the K-H waves implies 

that the feature might has been triggered by shear instability generated by strong vertical wind shear 

above the experimental site.  

 Lidar observations of these types of activities in the CBL may provide at least some qualitative 

insights into the instability and turbulent mixing processes in the CBL. Collocated radiosonde retrieved 

horizontal wind profile can reveal some more details of these K-H structures. Nevertheless, the lidar 

dataset presented exhibits the potential of the UHOH aerosol lidar system to detect the K-H wave 

activities in the ABL. 
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Figure 5.29: (a) Range resolved relative aerosol backscatter intensity (extracted from the data obtained on 26 June 2004) showing the presence of Kelvin-Helmholtz like 
wave activity in the ABL, (b) zoom-in-view of the K-H waves '(cat's-eye' patterns) extracted from the full time series of the lidar data. Partial overlap region up to of about 
400 m AGL is blocked by a white stripe.  
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5.4 Summary and conclusions 

Special emphasis was given to the results from a study of convective boundary layer and its evolution 

based on a ground-based upward looking lidar system. The results demonstrated that high-resolution 

lidar measurements could contribute to a clear description of the physical processes, taking place within 

the CBL, especially that one of the Stuttgart region having a valley-like location. For this study, data 

with range resolution of 3 m and time resolution of up to 0.033 s were used which were obtained with 

the UHOH lidar in a vertically pointing mode, using a wavelength of 1064 nm. In this work, the 

instantaneous CBL height, its growth rate and associated entrainment in the course of sunny days were 

investigated.  

 Various complex convective activity patterns were revealed in the analysis both during quasi-

stationary CBL (case I) and a rapidly growing CBL (case II). Configuration of the system providing 

high-tempo-spatial resolution enabled to monitor the small-scale structures in detail. This work studied 

the variability of the instantaneous CBL height during morning and afternoon and facilitated to 

calculate the EZT from this variability. The altitudes of the CBL top over the city of Stuttgart were 

found to be within 1–2.3 km AGL. The aerosol distributions over Stuttgart downtown area during day 

and night exhibited highly variable aerosol load distributed over complex vertical structures. 

A detailed intercomparison of the three advanced techniques (LGM, IP, and HWT) was 

performed with an aim to select a best suitable approach for the purpose of routine measurements of 

instantaneous CBL height. An FFT-based analysis also showed same value of spectral exponent 

(γ = 1.0). The Haar wavelet-based approach was selected to be suitable for the routine determination of 

instantaneous CBL height from the UHOH lidar data. During one case when atmosphere encountered a 

dense aerosol layer, the associated interaction between the RL and the underlying CBL is found to be an 

indicative of penetrative convection. Appearance of this sort of RL is considered to be due to the 

trapping of aerosols and other pollutants emitted at night in the valley-like location of Stuttgart city.  

 Evolution of hHWT through the course of the day was studied. Two different growth rates were 

observed: a high growth rate of up to 5 m/minute in the morning and another with a very low value of  

around < 1 m/minute. The instantaneous CBL heights were varied between 0.6 and 1.5 km AGL during 

the rapid growth while the same were varied between 1.6 and 2.3 km AGL for the other case. The EZT 

in the morning was lower (62 m) than in the afternoon (75 m) as was confirmed by the results obtained 

with the cumulative frequency distribution method. Consequently, two different turbulence regimes 

were observed both inside and at the top of the CBL, as confirmed with the higher-order moments 

profiles of the aerosol backscatter fluctuations.  

FFT power spectra of the instantaneous ABL height showed power-law dependency for the case 

of rapidly growing boundary layer. The spectral exponent value obtained in the energy spectrum, 

confirmed the non-stationary behavior. The γ value (1.502 ± 0.08314) obtained in this case does not 

agree well with that (1.6 ± 0.02) of the findings of Boers et al. (1995). In their case, the investigation of 
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boundary layer height was confined in a trade-wind cumulus regime. FFT analysis, DFA technique and 

multifractal analysis were found effective to study the non-stationarity behavior of CBL height 

evolution and the correlations in their fluctuations. For the selected case during the morning it is 

demonstrated that the CBL height evolution was a type of non-stationary anti-persistent process. 

Through this study one can identify the dynamic scaling in a CBL height time series. Nevertheless, 

these types of time series-based statistical analyses can give rise to a suitable approach for the CBL 

modeling which is still a challenge in atmospheric science (Pelletier, 1997). These analyses exhibited 

that the CBL height fluctuations could be characterized by simple statistical parameters like multifractal 

dimension, and roughness exponent that can be a good basis for the ABL modeling.  

To date, for the first time, a high-resolution aerosol lidar measurements explored the benefits of 

the higher order moments estimation of the aerosol backscatter field identifying different CBL 

activities. These results show the capability of an aerosol lidar to resolve turbulent processes in a larger 

portion of the CBL and in the lower troposphere. Profiles of higher-order moments were derived 

including noise and sampling errors for two different CBL regimes as mentioned before. The accuracy 

of the measurement was mainly limited by the sampling errors involved due to the turbulent statistics. 

The variance profile for the quasi-stationary CBL provided well-defined aerosol distributions due to 

turbulence inside the CBL showing maximum value of the variance at the top of the mean CBL height 

while for a case during a rapid growth of CBL showed multiple peaks appeared in the vertical 

distribution of variance. 

It was demonstrated that the major part of the inertial subrange was detected and that the 

integral scale (60-70 s) was significantly larger than the temporal resolution of the lidar system. 

Consequently, the major part of turbulent fluctuations was resolved. Negative values of skewness were 

found inside the CBL while positive values were observed in the entrainment zone near the top of the 

CBL for the quasi-stationary regime. Power spectrum analysis of the aerosol backscatter fluctuations at 

various heights inside the CBL showed a roll-off according to f--5/3-power law which suggests that the 

inertial subrange was reached. Negative values of skewness were found inside the CBL while positive 

values were observed in the entrainment zone near the top of the CBL for the quasi-stationary regime. 

But for the case of a rapidly growing CBL, skewness profile showed a high variability even inside the 

CBL. Presence of different aerosol layers, a rapid growth of the CBL in the morning, a high non-

stationarity make the distributions of the higher-order moments in the CBL rather complicated so that 

the interpretation of the results not at all was straightforward. A quasi-steady CBL is considered to be 

an appropriate for the estimation of higher-order moments for characterizing turbulence in the CBL. A 

detailed comprehensive description could be obtained after an intercomparison of these results with 

LES model results. 



 

Chapter 6. Application of a scanning eye-safe aerosol lidar 

 101 

 

 

Chapter 6 

Application of a scanning eye-safe aerosol lidar for 

investigating physical characteristics of aerosols emitted 

from a livestock farm 

 

6.1 Introduction 

Livestock farming have been found to be a major source of health-hazardous aerosol particles in the 

neighborhood around their locations. The transport processes of these aerosols and their distributions 

strongly depend on variable meteorological conditions, e.g., variability in the prevailing wind, 

temperature, and relative humidity and are often influenced by the obstacles outside the farm buildings, 

and physicochemical processes inside the ABL (Lammel et al., 2005).  

 Several studies have been performed to measure the aerosol source contribution of the livestock 

farming with various localized point measurement techniques around the facilities. Lammel et al. 

(2004) studied in detail the constituents of the aerosols emitted from such a facility in southern 

Germany (Talgut Lindenhof) with data collected from several point measurement techniques directly at 

the farm, downwind, and in an unaffected background region. Lee and Zhang (2006) studied the 

monitoring of the ammonia and odor emissions with a cylindrical dynamic chamber. Takai et al. (1998) 

made field surveys of indoor dust concentrations and dust emissions from various livestock buildings 

with cattle, poultry etc. Some other studies, which describe similar experiments, can be found elsewhere 

(Seedorf, 1998; Dong et al., 2007).  

 The computational fluid dynamics analysis (Bjerg et al., 2004), and numerical studies 

(Fraigneau et al., 1996) were also applied to problem concerning the emission from livestock facilities. 

Important results on the types, size distribution, and chemical constituents of the aerosol plumes emitted 

from such farms were obtained. In some cases the increase of aerosol loading at the downwind sites was 

observed (e.g., Lammel et al., 2004) yet leaving the optical properties, vertical extent, and transport 

range of the plume unresolved. Some of them provided the yearly or monthly amount of emission 

(Dong et al., 2007).  
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The most significant importance lies in devising effective remediation strategies to the problem 

of such emissions; these must be based on a comprehensive understanding of the actual phenomena. 

Application of three-dimensional scanning lidar technology needs to be demonstrated in this regard to 

provide both qualitative and quantitative description of the aerosol plume from livestock facilities over 

an extended region of the atmosphere as well as at closer vicinity.  

Despite the need to characterize the aerosol emission from livestock farming and availability of 

the potential of scanning lidar technology, only few lidar studies have been reported to date. Hartung et 

al. (1998) made an effort in this concern to detect the strength of the aerosol emission from a farm. In 

their work, they only showed an increase of the lidar signal intensity (a single profile) for the aerosol 

plume, but they did not report the optical properties of the aerosols. Additionally, the study failed to 

yield details of aerosol transport by scanning measurement due to the restrictions given by the operation 

of non-eye-safe lidar. Recently, Prueger et al. (2008) studied the dispersion of the particulate matter 

outside an animal husbandry by means of eddy covariance towers. Additionally, they supported their 

findings with scanning elastic lidar measurements characterizing the dynamics of plume. But, they did 

not report the optical properties of those aerosols. In this concern it is worthwhile to mention that 

Holmén et al. (1998, 2001a,b) showed promising estimates of the emission factors from agricultural 

activities as obtained by an application of scanning lidar system. 

It became quite clear that standalone application of the lidar technique for the measurements of 

aerosol optical properties will never be sufficient to investigate the problem of aerosol emission from 

livestock farms. Synergetic measurements with in-situ instruments and model validation are necessary. 

Therefore, a novel approach was developed within this work (see, section 6.2 for detailed discussion 

about the methodology). 

  To understand the significant importance of the aerosol processes, aerosol microphysical 

properties, and the impact of the anthropogenic aerosols emitted from livestock farms, a collaborative 

project (BW-PLUS, Baden-Württemberg Programm Lebensgrundlage Umwelt and ihre Sicherung) 

between University of Hohenheim and Max Planck Institute of Meteorology, MPI (M) was initiated by 

the ministry of the environment and transport of Baden Württemberg, Germany. The BW-PLUS field 

campaign (here after only PLUS1 campaign) was an important part of a project of the BW-PLUS 

program.  

The advanced program BW-PLUS consists of different application oriented environmental 

research projects, including technical and methodological projects as well as development of 

instruments for the solution of environmental pollution issues. 

The main objective of this work is to address a combination of high-resolved measurements and 

model simulations of aerosol properties in order to resolve the aerosol source and aerosol transportation 

on a small spatial and temporal scale. It can then help to achieve the microphysical properties of these 

anthropogenic aerosols.  
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The findings of this project work are an essential part of this dissertation. The key research 

issues which have been addressed in this chapter deal with: 

• State of the research performed so far to detect the aerosol plume of a livestock facility, 

pointing at the gaps in those studies and proposing new approaches considered to close these 

gaps.  

• Benefit of scanning lidar in the UV wavelength to quantify the optical properties of aerosol 

particles emitted from livestock farms. 

• How do the physical/optical properties of the plume of the exhaust air from the farm change? 

What are the mechanisms involved? 

• How important are the lidar scan strategies to capture the plume to understand the dynamics 

and evolution of aerosol properties close to a source? What is the instantaneous state of the 

aerosol structures at different distances from the source? 

• Comparison with the lidar retrieved results with the results obtained from LES experiment. 

What are the advantages of the combination of lidar results, model results and in-situ 

measurements? 

 The computational tools of the LES model being extended to include aerosol optical properties 

(LES-AOP) were developed by Valdebenito (2008) in MPI (M) as a part of his doctoral thesis.  

 

6.2 Methodology 

The aerosol properties close to the source region change rapidly due to multitude of processes, e.g., 

diffusion, condensation, aggregation, chemical reactions, and deposition. As the number concentration, 

mass, particle phase, degree of mixing, and composition of the aerosol particles changes, eventually the 

PSD will be affected.  

 Physicochemical properties as well as climate and air pollution related characteristics of 

aerosols are pursued here with a new scheme: two or three-dimensional measurements and modeling of 

physical and chemical properties of aerosol particles. This was done with: (a) high-resolution 

measurements of aerosol optical properties by the UHOH scanning aerosol lidar system, (b) in-situ 

point measurements for the characterization of physical and chemical properties of aerosols surrounding 

source, and (c) a high-resolving atmosphere-microphysics-chemistry model. Figure 6.1 shows a 

schematic of the methodology to study the aerosol processes in concern. These processes include: 

changes of aerosol optical properties at close range of the source as well as at far ranges, wind driven 

aerosol transport in the neighborhood, and turbulence in the aerosol structures and associated lifting of 

the plume.   
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Figure 6.1: Schematic representation of the layout for investigating aerosol optical properties and mixing 
processes using new scanning high-resolution aerosol lidar system of UHOH and the high-resolving 
atmosphere-microphysics-chemistry model. For further details, see text.  
 

Investigation of the aerosol mixing processes with this novel approach consists of the following steps 

(see, Figure 6.1): 

1. Initialization of the PSD: On the basis of in-situ (e.g., impactor) field measurements of 

aerosol particles near the source, the LES-AOP produces a discretized size distribution of 

aerosol particles in 3-dimension for the model grid.  

2. Time evolution of the PSD: Simulation of the microphysical processes in 3-dimensions 

(performed by the basic structure model) 

3. Aerosol optical properties: Computation of the particle backscatter and extinction 

coefficient for each time step and grid point from the particle size distribution and the 

complex refractive index for different aerosol types.  

4. Intercomparison: The common result, which is deliverable both from scanning lidar and 

LES-AOP, is the 2-dimensional field of optical properties of the aerosol plume. 2-

dimensional fields of particle backscatter coefficients from the UHOH scanning lidar 

measurements are produced. A direct intercomparison is performed between the lidar 

measurements and the results obtained from LES-AOP simulations.  

 Aerosol processes are complex close to the source which will affect the distribution and 

composition of aerosols and consequently their optical properties (e.g., particle backscatter and 

extinction coefficients). Initialization and forcing for the model is derived from ground-based in-situ 

measurements of the precise size distribution and composition of aerosol particles. Local model output 

of the German weather service provides the meteorological variables for the initial state of the model.  

In summary, a consistent description of the aerosol emission as well as its optical properties and 

thereafter better prediction of the aerosol characteristics in the vicinity of the livestock farm are aimed 

at. The model, once validated with the lidar measurements through performing a one-to-one 
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intercomparison, can be used to predict the optical properties and transport processes of the aerosols 

emitted from the livestock farms. Later, applications of this method can focus on the aerosol emissions 

from different livestock farms of various animal species.  

 The methodology developed is novel and unique for its attractive features and the important 

elements within. For instance, an eye-safe scanning aerosol lidar is an appropriate technology to this 

problem and therefore was explored during the PLUS1 campaign. Demonstration of the UHOH 

scanning aerosol lidar including its suitability to determine the optical properties of these aerosol 

particles was performed. Recognition of lidar relative (only) backscatter intensity and of the turbulence 

structure in the ABL is straightforward. Comparisons with LES results were previously performed by 

Mayor et al. (2003). Due to the presence of complicated and rapid aerosol processes near the source and 

close to the ground, the simulation of the optical properties of these particles becomes more 

challenging. Simultaneously, the lidar should be able to retrieve high-resolved two-three dimensional 

distributions of the aerosol optical properties instead of relative signal intensity if one is aiming at the 

accurate simulation and measurements of the aerosol optical properties together with the turbulent flow 

features. Furthermore, the LES-AOP model employs a more detailed description of the PSD and aerosol 

composition, which allows estimating the absolute value of the particle backscattering coefficient. 

   

6.3 PLUS1 field campaign 

 The PLUS1 campaign was the first field deployment of the UHOH scanning aerosol lidar. The 

campaign took place during 11-21 September 2005 in close vicinity to a livestock farm. The farm is 

located in Mettingen (52°19.44´ N; 7°8.8´ E; 56 m ASL), Westphalia. The farm was selected for being 

located on a particularly flat terrain in northern Germany. It was an actively ventilated pig house 

hosting 1800 animals.  

 Lidar data were collected with high spatial and temporal resolution every day from morning to 

the early evening with the only exception of prohibitive weather condition arising from showers.  

 

6.3.1 Selection and design of the experimental location 

To understand complex processes close to the source and accomplish all their influences correctly in a 

LES model, a homogeneous terrain is always a better choice and so was in the case for PLUS1 

campaign.  

 Both the deployments of the sensors for measuring aerosol properties in up wind and down 

wind, and the UHOH lidar scan strategies were optimized for the combination of experimental results 

and newly developed LES model results. The topography of the region as presented in Figure 6.2 shows  
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Figure 6.2: Topography of the measurement site showing the elevation variation (m, ASL) around the region of 
Mettingen with UHOH lidar site (square box). Source of the image: Top200 Viewer, © Geogrid-Viewer version 
1.1. 
 

the flatness of the experimental area while Figure 6.3 is an aerial view of the farm and its surrounding 

region. 

In-situ sensors were placed in the field as shown in Figure 6.3 to investigate the transport and 

conversion processes (near the ground) of the emitted aerosols. The selection of the livestock farm in 

this location provided for several advantages to meet the goals of the BW-PLUS project. The major 

advantages are the following: 

• large number of animals in the farm representing a source for particulate and gases.  

• the farm building was large enough (25 m х 60m) to serve as a source of aerosol plume. 

• the farm building was ventilated actively from one of the two chimneys (separated by of about 

30m from each other) with output of 9 ± 2 m3/s. Thus aerosol emission is in the order of 

magnitude of 100 g/h (related to PM10; IIASA, 2001). 

• no other similar sort of farms in the vicinity. 

• flat terrain and observable from many sites together with good accessibility and working area. 

 The choice of the flat terrain arises due to the inherent limitations of the LES-AOP as to its 

incapability of mapping/simulating the aerosol flow regime in a complex topographical region. 

Measurements obtained during the nighttime and full cloud coverage were not suitable for the LES run. 

Furthermore, lidar measurements of aerosol flow over a flat terrain are more convenient than over a 

complex terrain due to the absence of orographical influence on the aerosol structures and transport so 

that the lidar results can be better interpreted. Therefore, episodes of dry and sunny weather conditions 

were selected aiming at predominantly occurring air mass mixing. As the chances are that water vapor 
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condensation takes place on the optics, the UHOH scanning lidar system was not operated in the 

evening and at night.  

A detailed description of the UHOH scanning aerosol lidar system is found in section 3.2. The 

scan patterns were within the full hemisphere with the exception of the region around the sun for 

protecting the detector (a photomultiplier tube, PMT). Scan strategies were applied during PLUS1 

campaign following the particular sun chart (available at http://cgi.stadtklima-

stuttgart.de/mirror/sonnefre.exe) of the individual days. Such an example of the sun chart is shown in 

Figure 6.4.  

The ground distance between the farm and lidar was 480 m as shown in Figure 6.3 and the farm 

was situated at an azimuth of 193.5°, measured from the geographical north. The outlet of the farm 

chimney is just 5-6 m higher compared to the horizontal lidar beam plane. There was a manure storage 

chamber in the close proximity of the building but was covered by a crust of dry material.  

 A hard target calibration of the scanner was performed at the beginning of the PLUS1 field 

campaign in order to adjust the scanner alignment so that lidar signal can be stored with correct spatial 

information with respect to the geographical location of the system (calculated from the elevation angle 

above the horizon and the azimuth angle measured from geographical north). Lidar signals from two 

chimneys of a power plant at a distance of about 6.4 km (Figure 6.5) were used for this purpose. 

 

 

Figure 6.3: Wind directions (red arrow) and field experiment configuration with locations of the farm (large 
circle), the UHOH lidar system and sampling locations (upwind: yellow, downwind: red and orange) during 
measurement period in September 2005, close to Mettingen. The black radii denote a PPI sector scan performed 
with the lidar system. Source of the satellite picture: © GeoContent. 

N 
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Figure 6.4: Elevation of the sun on 20 September 2005 on Osnabrück during the course of the day. Circles 
indicate the elevation and radial lines from the center of the plot the azimuth angle of the sun, respectively. Source 
of the chart: © (http://cgi.stadtklima-stuttgart.de/mirror/sonnefre.exe). 

 
Figure 6.5: (a) Location of the power plant at Ibbenbueren together with the lidar near the livestock farm at 
Mettingen as a circle. (b) Calibration of the lidar alignment with hard-target measurement. This plot displays the 
extract of a PPI scanning measurement on 17 September 2005. PPI volume scan was performed at scan rate of 
0.1° s-1 between azimuth angles of 73° and 79° within the elevation angle between 2° and 4° with an elevation 
step of 0.1°. One selected example PPI scan image is shown here. This yields time resolution of 0.033 s, range 
resolution of 3m and angular resolution of 0.003°. This image shows the lidar signature of the power plant 
chimney at a distance of 6.4 km from lidar. Source of the satellite image: © GeoContent. 
 

 The locations of the Chimneys were collected by a GPS receiver. The alignment of the lidar 

scanner was performed with an accuracy of better than 1 mrad. The range resolution of each lidar 

profile is 3 m; the azimuth-angle resolution is very high with only 0.0033° between consecutive 

a 
b 
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profiles. The backscatter signals of each laser shot emitted with a laser repetition rate of 30 Hz were 

recorded. Furthermore, this calibration demonstrates the high performance of the new lidar scanner, 

which combines high angular resolution with high stability. 

 

6.3.2 Overview of the instruments deployed  

In the presence of favorable weather conditions during the PLUS1 field campaign, different aerosol in-

situ measurements were performed to characterize the source contribution of the livestock farm and the 

distribution and transport processes of aerosol plume in downwind. Furthermore, 8 meteorological radio 

soundings (Väisälä RS-92) were launched at different times of the day during the campaign. The 

radiosonde profiles of relative humidity and temperature are briefly discussed. In-situ aerosol and trace 

gas measurement instruments include the following: 

• Trace gases samplers; PM2.5 and PM10 filters. 

• Optical Particle Counter (OPC), GRIMM 1108; 15 channels for aerodynamic diameter 

> 0.23 µm. 

• Five stage mini cascade impactor; deposition of aerosol particles on platform covered 

electron microscopical grids for later laboratory analyses. 

 Results obtained from above instruments were directly or indirectly provided detailed 

qualitative and/or quantitative information to the LES-AOP model confirming the PSD, aerosol number 

density in downwind, aerosol constituents and properties.  

 

6.3.3 Meteorological condition 

During the PLUS1 campaign, air masses in two different synoptic situations were observed. The 

general situation is shown in the DWD (German weather service) surface chart in Figure 6.6. From                

12-15 September 2005, contaminated air advected from west, under low pressure system “Takashi”, 

and from 16–20 September 2005, a maritime background air advected from north, dry and sunny under 

high-pressure system “Katja”. Radio-soundings during the campaign showed this fact confirming a 

difference in the humidity of the two air masses as shown in Table 6.1.  

 During the second situation, a strong upper level westerly current with wind velocities larger 

than 25 m s-1 passed over Europe (Figure 6.7). In this region, the main temperature contrast occurred 

between the air of arctic origin in the north and subtropical air in the south. At the southern edge of the 

current, a cyclonic vortex was formed which did not affect the weather in Central Europe. Within the 

next few days, the pressure in the middle troposphere over the Eastern Atlantic rose up. Thus the strong 

upper level westerly current and therefore the tracks of the following low-pressure systems were shifted 

to the north. Due to the strong upper tropospheric circulation the low "Takashi” moved rapidly 

eastward. It crossed Germany and continued eastward to Russia. Its surface front crossed Germany 
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from north to south during 16 September 2005. While ahead of the front, temperature over 20 °C was 

observed, it was significantly cooler behind the front with 10-15 °C.  

 

 

 
Figure 6.6: Surface chart showing the weather situation on 16 September 2005 at 00 UTC: replacement of 
cyclonic by anti-cyclonic influence (‘Takashi’ and ‘Katja’, respectively). Experimental location is marked by red 
circle on the image. Source: Freie Universität Berlin (2005).  
  

Table 6.1: Results and observations of radio sonde launches during the intensive measurement period, 15-
17 September 2005, in Mettingen (a.) near the ground (60 m height) and (b.) in 1000 m above ground.   
             
a. 

Start time 
 

(Date, UTC) 

Pressure 
 

(hPa) 

Temperature 
 

(°C) 

Relative 
Humidity 

(%) 

Wind- 
Direction 

(°) 

Wind speed  
 

(m s-1) 
15.9.05, 0906 1010.0 18.5 73 186 0.6 
15.9.05, 1150 1008.5 18.0 72 290 2.3 
15.9.05, 1412 1006.3 17.0 76 260 1.1 
16.9.05, 1143 1002.4 14.5 61 290 2.9 
16.9.05, 1510 1003.4 12.9 72 360 2.7 
17.9.05, 0729 1013.2 9.8 75 260 1.4 
17.9.05, 1141 1014.5 14.4 50 320 2.3 
17.9.05, 1454 1015.0 13.3 63 290 2.0 

b. 
Start time 

 
(Date, UTC) 

Pressure 
 
(hPa) 

Temperature 
 

(°C) 

Relative 
Humidity 

(%) 

Wind- 
Direction 

(°) 

Wind speed  
 

(m s-1) 
15.9.05, 0906 895.9 8.9 96 272 14.7 
15.9.05, 1150 895.0 10.1 84 269 13.6 
15.9.05, 1412 892.9 9.2 97 281 13.6 
16.9.05, 1143 888.1 4.6 73 344 10.7 
16.9.05, 1510 888.7 4.7 79 349 12.9 
17.9.05, 0729 896.6 3.0 75 344 7.0 
17.9.05, 1141 898.5 3.8 89 327 4.6 
17.9.05, 1454 899.3 4.6 79 340 4.4 
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Figure 6.7: Surface chart obtained from the Deutscher Wetterdienst (DWD) from 16 to 20 September 2005 (from 
top left to bottom left) at 1200 UTC (in each case). Experimental location is marked by red circle on the image 
(top-left). Source: Freie Universität Berlin (2005).  
 
 Within the next few days, cooler air dominated in Germany. With increasing surface pressure a 

high-pressure zone with warm and sunny days and cool nights developed over Central Europe. 

Northeastern Germany was influenced by disturbances passing west to east over southern Scandinavia. 

They pushed low-level clouds from the Baltic Sea inland. In northwest Germany sunny conditions 

warmed up the incorporated cool maritime air up to 15-16 °C on 17 September 2005. At the night it 

became cold with lowest values slightly over the freezing point and ground frost occurred at some 

places. During the night to 18 September it again remained clear in many places in the range of the 

high-pressure zone. The high "Katja" reached the Baltic States with a core pressure of 1030 hPa. A 
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further high-pressure cell ‘Lilo’ formed over southwest England. In the core region of this elongated 

high-pressure zone it was again usually clear during the night to 19 September 2005. However it did not 

cool down as much as during the previous nights, since mild and humid air from the North Sea replaced 

the existing air of polar origin. The low-level Stratus cloud deck that swiped into north Germany from 

the Baltic Sea led to high temperature contrasts between the cloudy and cloud free areas both during the 

day and at night. The general weather situation did not change substantially during the next days, so that 

in Central Europe the anti-cyclonic weather persisted. This is true although the center of the high-

pressure system is shifted to Eastern Europe. 

   

 
 
Figure 6.8: Field of equivalent potential temperature (in °C) at 850 hPa obtained from GFS 12 UTC analysis. 
Source: ©www.wetter3.de. 
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 Figure 6.8 shows the field of equivalent potential temperature at 850-hPa level at 1200 UTC 

from 16-20 September 2005 (from top left to bottom left) obtained with the GFS analysis (available at 

http://www2.wetter3.de/Archiv/GFS/). Geopotential heights at the same level are also shown as contour 

on each panel. The region of the experimental area is marked by red circle. The cold front is well 

observed in the equivalent potential temperature field on 16 September (top left) arriving to northern 

Germany. A ridge extending from Southwest Europe to northeast as seen from 12 UTC analyses for 

17 September influenced middle European region. In the following days, the whole middle European 

region was under the influence of a high-pressure system. In all the images, an arctic cold and dry air 

mass is observed (marked by the blue color on each image). In the south of this, a typical aged warm air 

mass (marked by green) was observed. During these days, wind was rather weak and was mainly 

flowing from north (not shown here). 

 Evolution of wind field at 10 m height at an interval of 6 hour (00, 06, 12, and 18 UTC, from 

top left to bottom right, respectively) on 20 September 2005 is shown in Figure 6.9. Wind direction 

over the experimental area on this day changed from southerly to northerly. 

 

 
Figure 6.9: Wind field observed by the GFS analysis on 20 September from 00 UTC to 18 UTC (from top left to 
bottom right). Source: ©www.wetter3.de. 
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 A strong contrast in the aerosol characteristics obtained with the in-situ measurements at ground 

was found during the two different meteorological situations during the campaign. The upwind particle 

mass concentration decreased from 120-220 gm-3 to 25-40 gm-3, and the sea-salt increased strongly 

while the secondary aerosols decreased drastically (NH4NO3 and (NH4)2SO4). The particle number 

concentration decreased from 160 cm-3 to 4–5 cm-3 (0.3 – 1 µm) and from 1.4 cm-3 to 0.4 cm-3 (> 1 µm). 

The background air was less polluted (e.g., < 10 ng m-3 of Pb compared with 10-25 ng m-3). A high 

nitric acid concentration in the farm plume (4.5 ppb) in the afternoon of 16 September 2005 might 

indicate an upwind source of NOx pollution. These experimental results are more detailed in 

Valdebenito (2008).  

 

6.4 Results and discussion 

6.4.1 High-resolution scans of smoke plume 

With the aid of vertical scanning measurements, a 2-d image of the relative strength of aerosols can be 

produced from the individual lidar line-of-sight (LOS) signals. Figure 6.10 demonstrates the extremely 

high range and time resolution of the backscatter measurements of the UHOH scanning lidar. These 

data were collected on 19 September 2005, from 1740 to 1750 UTC. The RHI scans were obtained 

between the elevation angles of 2° and 20° towards north-west (azimuth of about 318°) from lidar 

system with a scan speed of 0.5° s-1 (recording time of 36 s for each scan). Range resolution is 

maximum with 3 m and so is the temporal resolution with 0.033 s, and angular resolution is 0.015° (in 

elevation). This figure displays total 9 sequential RHI scans of range-square-corrected backscatter 

signal intensity of a smoke plume, originating from the biomass burning near the lidar site at ground 

which was made by the local people for some agricultural waste removal purposes.  

 In all RHI panels, red to pink color shaded regions represent high signal intensities due to the 

plume being corrected for background and range-square dependencies. Plume motions and vertical 

extent both become visible from this sequence. This Figure shows that the dust plume extends in the 

ranges of 360-480 m and rises at heights between 10 and 40 m. 

 It is noteworthy, that the range of elevation angles, which were performed during the scan, was 

even larger than what would have been necessary to cover the size of the detected aerosol smoke 

streamer. Hiscox et al. (2006) made a quantitative study of the plume dispersion parameters with the 

use of high-resolution lidar scan images of smoke plume. They used RHI scan images of a plume to 

measure vertical dispersion parameters and vertical meander of the plume centerline. Future research 

can be planned for the application of this technique to UHOH lidar measurements to study dispersion. 

This may be performed by estimating the width, actual spread, and the vertical extent of the plume. 

Different dispersion models (e.g., Venkatram, 1988) can be used for intercomparison and validation. 
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Figure 6.10: Sequence of RHI scans performed with the lidar in horizontal-range-to-height diagrams (from top 
left to bottom right) with vertical cross-sections of an aerosol structure due to biomass burning. Data was collected 
on 19 September 2005 from 1740-1750 UTC. Background-subtracted, range-corrected backscatter signals are 
plotted against horizontal range and height relative to the location of the lidar system. The plots show an extract of 
the data at constant locations: heights between 10 and 40 m, horizontal distance between 350 and 500 m. The 
azimuth angle (318°) was kept constant during these scans.  
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6.4.2 Aerosol optical properties in an RHI scan view  

The UHOH lidar scan strategies (including type of scans, sector or volume of scan domain, scan speed) 

can be adapted in such a way that the ABL height and complexities arising in different ABL regime can 

be detected. Some sets of nearly hemispherical scans were performed on 20 September 2005 at about 

1415 UTC. An RHI panel of the particle backscatter coefficient obtained (after applying the technique 

described in the section 4.6.2.2) is shown in Figure 6.11. This scan image reveals high variability of the 

aerosol particles in the ABL yielding clear signature of the ABL top at and around 1.2 km AGL over a 

distance of 3 km from north to south of the lidar system. Each scan started just above the horizon (5° 

elevation) to a scanning angle 175° and required approximately 6 minutes to be completed.  

 Above 1.2 km altitude, it was substantially cleaner air, so that inversion algorithm developed 

(section 4.6.2.2) for scanning lidar measurements could be applied in this case. Inside the boundary 

layer, variability of the particle backscatter coefficient was observed. No boundary layer clouds were 

present during these measurement periods.  

 Variation of the ABL heights over an extended region was arising due to the classical 

characteristics of ABL activities since surface forcing was not switched off at 1415 UTC. Scan speed 

was kept sufficiently low (0.5° s-1) to provide high angular resolution of the aerosol distribution in the 

RHI field. A nearly constant ABL top over along the distance of 3 km is observed in the figure. This is 

 

 

Figure 6.11: Left panel: Selected hemispherical RHI among 12 such scans collected on 20 September at 
1415 UTC shows the high aerosol loading in the ABL. Scans were performed with a very low scan speed of 
0.5° s-1 to acquire good resolution in range as well as in height. Scans were made in from south to north of the 
lidar system. ABL top variation at and around 1.2 km AGL over 3 km distance is visible. Right panel: Vertical 
profile (LOS at 90° elevation angle extracted from the RHI scan) of particle backscatter coefficient confirming the 
ABL top at a height about 1.2 km AGL. 
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not unexpected in a flat terrain-region like that of Mettingen. Entrainment-driven small-scale patterns 

are also visible. 

  The example presented is a selected scan among 12 such scans. Both temporal and spatial 

variability of the ABL aerosol field over the horizontal distance of 3 km can be observed by the 

animation of these scans (not shown here). Some wave-like structures at the top of the ABL have been 

revealed from the animation. These wave-like features are very similar to the features of convectively 

forced stationary gravity waves.  

 In the right panel of Figure 6.11, one example of the particle backscatter coefficient profile is 

chosen that represents the result when the lidar was pointing to the zenith. This profile confirms the top 

of the ABL at about 1.2 km AGL indicated by a sharp drop in ( )Rpar,λβ . A notable decrease in the 

backscattering profile up to a height of about 350 m AGL was caused by incomplete overlap function. 

Results up to this distance must be excluded from interpretation. 

 

6.4.3 Investigation of aerosol plume from the farm 

Near horizontal PPI scans at an elevation angle of 2.26° were performed on 20 September 2005 around 

1615 UTC in an azimuth sector of 30° pointing towards the livestock farm (between azimuth angle 180° 

and 210°). Scan speed was 2° s-1 which corresponded to a duration of 15 s for each scan to be 

completed. During this time, wind was calm with a speed of about < 3 m s-1. Temperature recorded 

during this time was 17 °C while maximum temperature of the day was 18.5 °C and RH was low (of 

about 45 %). Sun elevation angle was 15° and the end of the twilight was at 1807 UTC.  

 Data were collected with the maximum temporal (0.033 s) and spatial resolution (3 m) of the 

UHOH scanning lidar system. Before the particle backscatter coefficient is derived from the collected 

data, 10 consecutive profiles were averaged which yielded time resolution of 0.3 s and a gliding 

window average (width of 10 bins) in range was performed which provided 30 m effective range 

resolution. Then particle backscatter coefficient field was derived following the procedure described in 

section 4.6.2.2. A value for the lidar ratio at 355 nm, which can be considered as an average one for 

continental ABL aerosols, is 39 sr (Pappalardo et al., 2005). This value was used in the inversion 

technique to derive ( )Rpar,λβ .  

 Since these PPI scans took place inside the boundary layer, the procedure for the retrieval of the 

optical properties was not straightforward due to the absence of a constant calibration value in the far 

field. An advantage of the results obtained from hemispherical RHI scans (discussed in the previous 

section) was considered. First, the data of an RHI scan were analyzed and a calibration value above the 

boundary layer was made. The inversion technique resulted in a particle backscattering profile in the 

boundary layer. A vertical profile of ( )Rpar,λβ  yielded a clear indication of the ABL top over which the 

lidar signal could be easily calibrated. The selected zenith shooting profile was smoothed and 
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extrapolated. A calibration value was then obtained for the far field in the near horizontal PPI scans. In 

the literature extensive error considerations were accomplished to the inversion procedure (e.g., 

Bissonnette, 1986; Kunz, 1996). In general, it can be stated that the relative error of the particle 

backscattering coefficient corresponds for instance to the error of the calibration value in %. In this 

regard detailed sensitivity tests have been performed and discussed in Appendix- C. 

 Six out of 22 sequential PPI scans are shown in Figure 6.12. These scans show the near-

horizontal (a slant plane at an elevation angle of 2.26°) distribution of the particle backscatter 

coefficient in range-range panel with the lidar system in the origin. Pseudo-color from black to 

white/pink corresponds to minimum and maximum particle backscatter coefficient in m-1 sr-1, 

respectively. During this period wind was blowing nearly from north-northeast as shown by red arrow 

over the PPI scan (scan 1). Wind directions during all scans were same and therefore are not shown in 

all PPI panels. Location of the farm is overlaid as a square on the scan images.  

 Figure 6.12 clearly shows the emission of the aerosol plume from the livestock facility. Particle 

backscatter coefficient of the aerosol cloud emitted from the farm was of about 30 % higher than that of 

the background aerosol present in the atmosphere. The values of ( )Rpar,λβ  of the aerosols distributed in 

the region of 1.5-2.0 km were higher compared to the close region (region until 1.2 km) to the farm. 

This enhancement of the ( )Rpar,λβ  (up to 1.2 x 10-5 m-1 sr-1) in the far distance most probably was 

caused by a humidity induced particle growth.  

 The aerosols emitted from this farm were found to be consisting of ammonium and nitrate salts 

on some other days during the campaign (Valdebenito, 2008). Increase in physical dimension of the 

plume might also be arising due to the effect of the dispersion. In light wind condition the dispersion of 

the aerosol plumes can be more rapid. Similar physical characteristics of the plume (originated from 

agricultural sources) and its dynamics were reported by Holmén et al. (1998). Blowing of the plume 

with the prevailing wind shows the aerosol transport with some effect of turbulence activities in the 

ABL. Emitted plume was lofted at a height of 20 m AGL near the source and of about 115 m at the 

extended region of 3.0 km. Very recently, Prueger et al. (2008) showed in their study that the vertical 

extent of the plume emitted from such a facility can be around 30-40 m in the close region. However, 

these values are critically dependent on many other factors. The results concerning the plume extension 

and maximum height agree well to the results obtained by Holmén et al. (2001) for an agricultural 

tilling. This case has been selected for the comparison with the LES-AOP results (see, section 6.4.6). 

  It can be stated that the Gaussian plume model will not be able to assess this type of plume 

emission. The farm is not a continuous source of aerosol. The emission necessarily depends on 

numerous factors, e.g., feeding rhythm, related movement of the animals inside the facility, ventilation 

system. In-situ point measurement techniques will underestimate/overestimate in such cases since they 

cannot provide high-resolution tracking of aerosol emission as possible with such scanning lidar 

technique. Sequential PPI scans during this period illustrate the evolution and transport of aerosol  
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Figure 6.12: Near horizontal PPI scans (clockwise in the azimuth sector of 180° to 210° with a scan rate of 2° s-1) 
collected at Mettingen, Germany, on 20 September 2005, around 1620 UTC. Sequence of six PPI scan images 
(among 22 such scans) showing optical properties, ( )Rpar,λβ  of the plume of the exhaust air form the livestock 

facility. Dynamics of the emitted plume in downwind is visible from the sequence. Each PPI sector scan took of 
about 15 s to be completed. The time gap between the end of one scan and the start of the next scan is of about 4 s 
when the system does not acquire data. Lidar is the located at the origin of the image and positive x-axis is in the 
direction of east. Range rings at each 200 m are displayed and azimuth sector at each 10° is shown. Aerosol plume 
from the farm (black-square on the image) with associated motion in downwind (red arrow: wind direction) and 
turbulence features are visible. The figure demonstrates the turbulent drifted structure of the aerosol plume. Note 
the increase of the plume dimension with distance from the lidar. 
 

plumes. All the images are having similar characteristics in view of the contribution of the farm as an 

aerosol source although faint. Sequential PPI scan images also show the broadening of the plume and its 

downwind transport. If a time-lapse animation is made (not shown here) with 22 such PPI scan images 

through an avi file format, one can easily visualize the motion of the plume with the prevailing wind. 

These results provide a confirmation that plume emission from the facility obviously was not 

continuous and a Gaussian plume model cannot provide snapshots of such emissions. This kind of 

model has several limitations, e.g., in calm wind conditions, they have poor predictability.  

 It is important to mention here that the choice of PPI scans at a very low elevation angle 

detected the aerosol emission from the source. The illustration in Figure 6.13 shows that if the vertical 
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extent of the plume is very low, PPI scan at high elevation angle cannot detect the structure of plume in 

the scan domain. None of the PPI scans collected at high elevation angles (> 2.5°) were able to show 

the structures of the plume from the farm. This figure also gives an illustration of this fact showing 

resulting geometry of the exhaust aerosol plume, which can be pointed out due to the measurements 

accomplished with the lidar.  

 Another set of very low elevation (2.26°) PPI scans over the farm region yielded the structure 

of the emission of the aerosol plume. Figure 6.14 shows 3 out of a total of 52 PPI scans performed. 

Scans were performed with a low scan speed of 0.5°/ s. Time resolution and range resolution in the 

particle backscatter coefficient field were same as the previous case. In range, a gliding window average 

with a width of 30 m was performed. ( )Rpar,λβ  of the plume (of about 5.0 x 10-6 m-1 sr-1) was similar as 

in the previous case. But the source contribution and transport with the prevailing wind is 

comparatively less clear as only a very narrow horizontal sector of the scan domain was obtained with 

the lidar measurements. However, these observations once again confirm the emission of the plume and 

downwind transport in the close as well as in far region of the farm.  

 None of the PPI scan measurements shown here is a part of a PPI volume scan. Therefore, all 

the available information about the vertical structure and extent of the farm plume is based on the fixed- 

elevation PPI-Scan. But, clear evidence was found regarding the lack of farm plume with a PPI scan at 

an elevation angle of 4.76° or more. The intercomparison results presented (see, section 6.4.6) confirm 

this fact.  

 

 

 
 

Figure 6.13: Schematic of the scan region and the location of the farm with respect to lidar. Left panel: Polar 
view of the scan region where lidar and the farm are shown. The farm is located at a distance of about 480 m from 
the lidar and at an azimuth angle 193.5°. Right panel: change in height with respect to the distance from the lidar 
at two different elevation angles, namely 2.26° and 4.76°. The height of the farm-chimney is 6 m higher than the 
horizontal lidar beam outlet. A schematic of the aerosol plume is shown with the color circles as a mimic of the 
plume. Color indicates the optical properties of the aerosol emitted. Diameter of the circles can be approximated 
as the plume dimension at different ranges. Please note that this is only a qualitative view of the emission to assess 
the extension of the plume.  
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 During the PLUS1 campaign, RHI scan measurements showed in general only weak, if any, 

evidence of the farm plume. The PPI scans of 17 September were found to have too high elevation 

angle of about >4.5°, thus missing the farm plume (see, Valdebenito, 2008; and Lammel et al., 2007; 

for a brief overview on the lidar results and model simulations made for other days of the campaign). 

 Nevertheless, RHI scans over the farm area may confirm the vertical extent of the plume and 

can describe more insights into the aerosol transport processes. Very high-resolution rapid volume scan 

(both RHI and low elevation PPI) can yield 3-4 dimensional pictures of the plume emission in the future 

field experiments. 

 

 
Figure 6.14: A set of three low elevations horizontal scans showing the emission of plume from the farm at 
1631 UTC on 20 September 2005. Wind direction is shown as red arrow on one of the PPI scan (left panel).  
 

6.4.4 Horizontal scans at different elevation angles 

 A comparison of three different PPI scans performed on 20 September is aimed here to assess 

the requirements of a suitable scan strategy for detecting emission from the farm and to illustrate the 

complexities involved in the aerosol emission and transport processes. Schematic of the scan region and 

the location of the farm with respect to lidar are shown in Figure 6.13 to support these results. Goal of 

this investigation is, however, not only the analysis of the natural variability of the aerosol particles 

emitted from the livestock facility; the determination of a suitable scan strategy is an important issue.

 Figure 6.15 shows the PPI scan images of ( )Rpar,λβ  measured in the afternoon on 

20 September 2005. There is a clear difference between the horizontal scan at 2.26° (panel B) and at 

4.76° (panel A and C) elevation angle as shown in the figure. There was no significant increase of 

( )Rpar,λβ field when scan was performed at 4.76° elevation angle. On the contrary, near horizontal scan 

at an elevation angle of 2.26° showed the enhancement of the particle backscatter coefficient for the 

aerosol emitted (panel B). Quantitative analyses of these results are detailed in section 6.4.6 while 
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comparing the lidar-derived ( )Rpar,λβ  field with the LES-AOP simulations for PPI scans at different 

elevation angles. 

  

 
 

Figure 6.15: Three different PPI scans performed on 20 September 2005. Particle backscatter coefficient field at 
4.76° elevation angle PPI scan around 1530 UTC and 1800 UTC (panel A and C, respectively), same as (panel A) 
but at 2.26° elevation angle around 1620 UTC (panel B). A clear evidence for the lack of the farm plume is 
observed in the PPI sector scan at an elevation angle of 4.76° (panel A and C). Wind direction is shown as a red 
arrow for the PPI scan at an elevation of 2.26° (Panel B) illustrating the downwind transport of the plume. The 
wind directions during other two scanning measurements were same.  

 

6.4.5 In-situ measurements at ground 

Apart from the LES-AOP simulation (Valdebenito, 2008) and the UHOH scanning lidar observations, 

in-situ point measurements of aerosol particles during PLUS1 campaign showed promising results to 

support this study. For instance, single particle analysis served for identification of the aerosol types, 

the degree of mixing, and supplied qualitative information concerning the aerosol chemical 

characteristics for improved initialization of the model. 

 Some of the experimental analyses of the collected particle samples were performed within this 

thesis in UHOH. The most important results regarding single particle analysis are shown in Figure 6.16 

and 6.17. These figures show that on 17 September 2005, sub-micron carbon-containing particles 

(Figure 6.16) and super-micron particles (Figure 6.17) e.g., CaO and CaSO4 were present in the farm 

plume. The single particle analysis was performed by laser microprobe mass analyzer (LAMMA). A 

detailed description on the LAMMA technique is available in Wieser and Wurster (1986).  

  

Selected results obtained with in-situ measurements are summarized here: 

• Mass spectra of the single particle analysis evinced that the farm plume contained sub-micron 

(0.18 – 0.35 µm) carbon particles and super-micron (1.2- 3.5 µm) Ca, CaO and CaSO4. 
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• Background aerosol was mainly consisting of Chlorides, possible oxides from Na, K, Ca as 

well as organic carbon (OC). 

• Highly condensed carbonaceous matter, especially soot particle were not found in plume. 

• The fine particulate matter (PM2.5) content of S, Cl, Ca, K, Fe, and Ni showed a significant 

downwind/upwind increase. 

 During the measurement days (16 and 17 September, 2005) the background aerosol 

concentration was rather small containing sea salt, K and -oxides, hardly any secondary aerosol and no 

soot particles. The quantitative amounts of these particles were smaller on 17 September than on 

16 September. The aerosol measurements at the ground showed an enrichment of organic particulate 

material. Ammonia was also present. A high ammonia concentration was found on 16 September 

(38 µg m-3) compared to the other day (4.7 µg m-3). These results and some other results obtained by in-

situ point measurements were discussed in detail in Lammel et al. (2006, 2007) published as a part of 

annual reports of the BW-PLUS project. 

 Although, these results were not directly used for the lidar data analyses they provided a wealth 

of important information concerning  

• identification of the aerosol particles 

• the particle size distribution 

• initialization of aerosol composition in model runs. 

• qualitative information regarding the chemical aerosol characteristics. 

 These results facilitated the LES-AOP so that the key parameters for the initialization and 

forcing of the model were estimated from the in-situ measurements performed. The UHOH lidar cannot 

provide any kind of information on the PSD. Nevertheless, the results obtained with the lidar helped to 

evaluate the model results (see, intercomparison study in section 6.4.6), which were highly dependent 

on the in-situ measurements at ground.  

 All these results confirm that the livestock farm is an isolated aerosol source, and the aerosol 

barely influenced by other anthropogenic sources such as of agricultural or road traffic origin.
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Figure 6.16: Comparison of typical positive (above) and negative (below) mass spectra of sub-µm (D = 0.18-0.35 µm particles upwind (left) and downwind (right) of the 
aerosol source collected near the farm (distance, ∆s = 750 m) on 17 September 2005. Courtesy of: Prof. R. Wurtser, UHOH.
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Figure 6.17: Same as Figure 6.16 but for super-micron (D = 1.2-3.5 µm) particles upwind (left) and downwind (right). Courtesy of: Prof. R. Wurtser, UHOH.
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6.4.6 Intercomparison between lidar measurements and large-eddy simulation 

 (LES) results 

Intercomparison study is an important part of this work to demonstrate the novel technique. It allowed 

for better understanding the observed aerosol structures on the lidar scans by relating them with the 

simulated aerosol emission and transport near the source. The following section briefly describes the 

most essential part of the LES-AOP experiment while a detailed description of the model can be found 

in Valdebenito (2008).  

 

6.4.6.1 High-resolving atmosphere-microphysics-chemistry model 

There are two different approaches to the numerical simulation of turbulence: (1) direct numerical 

simulation where all relevant to dissipation scale of the flow are resolved, starting from the largest 

energy-producing eddies down to the small energy-dissipating eddies, and (2) LES, where a range of 

scales is resolved, from the largest eddies down to a defined cut off size, below which the dynamics are 

modeled. Resolving the flow implies that the equations of motion are integrated over a discrete mesh in 

time and space.  

LES is a numerical approach that involves three-dimensional simulation of eddies and can 

resolve turbulence in the atmosphere. LESs are able to demonstrate two-three and/or three-four 

dimensional structures of turbulence (Wyngard and Brost, 1984; Stevens and Lenschow, 2001). LES 

results can be used as an efficient tool to analyze the time evolution of the coherent structures and their 

contribution to the turbulent transport. The LES can also be used to study cloud-free CBL (Sorbjan, 

1995). Most of the LES experiments are based on the simulation of idealized ABL structures, followed 

up by the comparison with the turbulence statistical results obtained from in-situ measurements.  

The high-resolving atmosphere-microphysics-chemistry model was developed (Valdebenito, 

2008) on the basis of an existing atmosphere chemistry model, being a basic structure model with 

chemistry module (Chlond and Wolkau, 2000; Mueller and Chlond, 1996;). This LES was extended to a 

version so that it can simulate changes of the aerosol PSD in each grid point of the model domain for 

each time step. The PSD initialization, PSD evolution, and calculation of aerosol optical properties 

(AOP) are the key components of the LES-AOP. Aerosol processes in the LES-AOP included emission, 

transportation, sedimentation, and condensation. Due to the high computational demand of the LES 

approach, the LES-AOP model neglected the coagulation and nucleation processes. 

The key features of the LES-AOP experiment, which are important for the intercomparison study, 

are: 

1. Selected days (17 and 20 September 2005) were simulated between 0900 and 1800 UTC. 

2. Model domain: 4 km x 4 km base and 2 km high. 

3. Horizontal and vertical grid resolutions are 50 m and 20 m, respectively. 

4. Temporal resolution was adjusted during simulation time (between 1 and 5 s). 
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5. Forcing and output time step: 15 minute. 

6. The model produced instantaneous and time averaged fields of optical properties of aerosols. 

7. The aerosol (from the farm) PSD was derived from measured PM2.5 and PM10 (relative to 

upwind). 

 

6.4.6.2 Intercomparison results 

For intercomparison study, lidar measurements obtained on 20 September 2005 were selected because it 

contained only some sets of PPI scans with elevation angle below 3° among all the lidar measurements 

performed in PLUS1 campaign. The clear indication of the farm plume was obtained from these low 

elevations PPI scans. Furthermore, it was found that the particle backscatter coefficient for 

20 September was consistently higher than for 17 September (Valdebenito, 2008). An intercomparison 

between the results obtained with the lidar and model simulation for 17 September is also discussed.  

 Lidar derived results of the optical properties of aerosols obtained from a single instantaneous 

PPI scan made in less than one minute cannot be compared directly with the LES-AOP results due to 

relatively large forcing and output time step of the model (15 minute). Therefore, for the 

intercomparison, an effort was made to average over 22 consecutive PPI scans obtained between 

1615 and 1630 UTC on 20 September (described in the section 6.4.3). Profiles of ( )Rpar,λβ  lying on 

the same LOS of each PPI scan were averaged for this purpose. No further range averaging was 

performed. Figure 6.18 shows a direct comparison between PPI scan image of averaged ( )Rpar,λβ  field 

obtained with the UHOH lidar (left panel) and the LES-AOP results of 15-min averaged fields (right 

panel) around 1600 UTC on 20 September. The simulated ( )Rpar,λβ  values were interpolated to the PPI 

scan projection for 2.26° elevation angle as shown in the figure. Four different sorts of aerosol scenarios 

were simulated to achieve the intensity of the background fluctuations. The background values seemed 

to be better represented by the high aerosol scenario. The high aerosol load (HAER) was based on the 

total mass on the individual stages of the cascade impactor (determined by gravimetric analysis), which 

determined the background aerosol number size distribution. A detailed description of these aerosol 

scenarios is available in Valdebenito (2008). 

 This figure once again shows the structure and transport of the emitted plume. An averaged PPI 

scan fails to show the bending of the plume due to the turbulence effect and the influence of the small-

scale features. This loss of information becomes evident if any of the PPI scans in Figure 6.12 are 

compared to Figure 6.18.  
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Figure 6.18: Intercomparison between measured and simulated PPI-scans between 1615 and 1630 UTC on 20 September 2005. Left: UHOH lidar estimated particle 
backscatter coefficient field, right: simulated particle backscatter coefficient field after LES-AOP. Source of the model results: Valdebenito (2008). 
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 A detailed intercomparison was then performed to investigate the aerosol plumes during the 

whole day. For this purpose, data collected by the UHOH lidar and simulation results by LES-AOP 

between 1000 and 1800 UTC on 20 September are considered (Table 6.2). The table shows ( )Rpar,λβ  

obtained both with the UHOH lidar and LES-AOP. In the Table, β∆  represents the contribution of the 

aerosol source i.e., the livestock farm. This value was calculated by the difference between total particle 

backscatter coefficients due to the farm-polluted fields (background and aerosol from farm) and the 

particle backscatter coefficient for the background aerosol contribution ( β bckgrd). Furthermore, σß is 

the standard deviation of the farm polluted instantaneous field.  

 The PPI scans at two different elevation angles (2.26° and 4.76°) were considered for the 

intercomparison. As the UHOH lidar performed different scan patterns during this day including 

different PPI, RHI scans at different elevation and azimuth angles, respectively covering various scan 

domains, there are some gaps in the lidar results. Additionally, for the LES-AOP simulations, there 

were three different types of predicted ( )Rpar,λβ  for three different aerosol scenarios, namely, optical 

density low (ODL), optical density medium (ODM), and optical density high (ODH). 

 

Table 6.2: Comparison of predicted (model, under 3 scenarios of aerosol properties, ODL, ODM and ODH,      
1 s-means) and measured (lidar) ranges of the aerosol particle backscatter coefficient βλ = 355 nm (10-6 m-1 sr-1) in the 
plume (∆ß, maximum value, 15 minute mean) and in the background (ß, mean ± standard deviation, 1 s-mean) for 
Mettingen, 20 September 2005, 1000-1800 UTC for conical (PPI) scans at two different elevation angles.  
 

Predicted 

( x 10
-6

 m
-1

 sr
-1

) 

Measured 

(x 10
-6

 m
-1

 sr
-1

) 

ODL 

(Optical density low) 

ODM  

(Optical density 

medium) 

ODH 

(Optical density 

high) 

Time (UTC), 

tilt of PPI scan 

∆ß ß bckgrd ∆ß ß bckgrd ∆ß ß bckgrd ∆ß ß bckgrd 
1000 (2.26°)   0.60 1.10±0.05 3.68 5.95±0.16 5.26 8.60±0.24 
1000 (4.76°) <0.25 2.5±0.12 0.16 1.07±0.05 0.93 5.70±0.29 1.42 8.31±0.37 
1100 (2.26°)   0.27 1.02±0.05 1.38 5.65±0.12 2.00 8.13±0.23 
1100 (4.76°) <0.42 3.5±0.21 0.18 1.03±0.05 1.01 5.58±0.23 1.54 8.11±0.29 
1200 (2.26°)   1.43 0.85±0.09 8.51 4.73±0.43 12.3 6.75±0.64 
1200 (4.76°) <1.0 1.5±0.51 0.33 0.93±0.09 1.94 5.02±0.37 2.80 7.27±0.61 
1300 (2.26°)   1.67 0.80±0.06 10.1 4.36±0.31 14.6 6.25±0.46 
1300 (4.76°)   0.59 0.83±0.06 3.58 4.48±0.30 5.19 6.46±0.49 
1400 (2.26°)   1.17 0.79±0.06 7.26 4.19±0.34 10.6 6.14±0.50 
1400 (4.76°) <0.62 1.8±0.31 0.31 0.79±0.03 1.95 4.19±0.16 2.83 6.12±0.26 
1500 (2.26°)   1.79 0.75±0.06 10.9 3.90±0.38 16.5 5.81±0.57 
1500 (4.76°) <0.22 1.8±0.11 0.31 0.75±0.02 1.89 3.90±0.13 2.85 5.79±0.20 
1600 (2. 26°) 6.0±0.3 2.9±0.21 1.68 0.70±0.06 11.1 3.61±0.40 16.6 5.43±0.59 
1600 (4.76°)   0.35 0.70±0.03 2.30 3.63±0.23 3.43 5.43±0.34 
1700 (2. 26°)   1.61 0.66±0.07 10.3 3.42±0.44 15.8 5.18±0.68 
1700 (4.76°) <0.38 2.5±0.19 0.51 0.66±0.03 3.23 3.44±0.19 4.94 5.18±0.28 
1800 (2. 26°) <0.32 2.2±0.16 7.19 0.65±0.29  46.3 3.39±1.88 68.8 5.14±2.75 
1800 (4.76°) <0.31 3.1±0.15 1.12 0.64±0.13 7.18 3.34±0.81 10.6 5.04±1.19 
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 Comparing these results of table 6.2, one should note that the LES-AOP results were based on 

the sensitivity study performed during the model simulation, showing some discrepancies due to 

uncertainties of the initialization of the model simulations. This was mainly due to the lack of aerosol 

composition data by in-situ instruments on this day. The measured values were smaller than those of the 

best guess simulation, but exceeded the ODL scenario. The upper estimate (scenario ODH) yielded 

values between 3.5 and 6.3 x 10-6 m-1 sr-1. Therefore, the uncertainty of the model forecast for the 

particle backscattering coefficient, being averaged over several square kilometers could be up to  

± 50/70 %. Furthermore, the aerosol load scenarios reflect the uncertainty on the ground measurements. 

There is approx. a 70 % discrepancy between the background PSD estimated from the gravimetric 

analysis and the one estimated from the ion chromatography. There were no ground in-situ 

measurements available on 20 September; the model simulations were based on the in-situ 

measurements on 17 September.  

 The intercomparison between the measured and simulated particle backscatter coefficient field 

was also performed for 17 September 2005. Table 6.3 shows the aerosol contribution due to the farm at 

different times of the day on 17 September for PPI scan at two different elevation angles. The model 

simulations performed on this day showed that the heterogeneity on the background fields (caused 

mainly by turbulence) were much larger than the farm plume signal at 4.76°, which made the detection  

 

 

Table 6.3: Comparison of predicted and measured (lidar) values of the aerosol particle backscatter coefficient     
βλ = 355 nm (10-6 m-1 sr-1) in the plume (∆ß, maximum value, 15 min mean) and in the background                             
(ß,mean ± standard deviation, 1 s-mean) for Mettingen, on 17 September, from 1000-1800 UTC conical (PPI) 
scans. 
 

Measured 

( x 10
-6

 m
-1

 sr
-1

) 

Predicted 

( x 10
-6

 m
-1

 sr
-1

) 

Time (UTC), tilt of PPI 

scan 

∆ß ß bckgrd ∆ß ß bckgrd 
1000 (2.26°)   0.30 4.08±0.24 

1000 (4.76°) <0.22 2.0±0.11 0.02 4.28±0.25 

1100 (2.26°)   0.81 3.37±0.22 

1100 (4.76°)   0.05 3.62±0.30 

1200 (2.26°)   0.64 3.38±0.21 

1200 (4.76°) <0.62 1.25±0.31 0.07 3.48±0.18 

1300 (2.26°)   0.68 3.15±0.17 

1300 (4.76°) <0.54 1.2±0.27 0.10 3.22±0.16 

1400 (2.26°)   1.05 2.94±0.15 

1400 (4.76°)   0.09 2.99±0.13 

1500 (2.26°)   1.16 2.73±0.10 

1500 (4.76°) <0.26 1.8±0.13 0.08 2.78±0.09 

1600 (2.26°)   2.66 2.55±0.12 

1600 (4.76°)   0.39 2.58±0.07 

1700 (2.26°)   3.23 2.39±0.15 

1700 (4.76°) <0.20 1.0±0.1 0.39 2.42±0.08 

1800 (2.26°)   3.29 2.25±0.10 

1800 (4.76°)   0.55 2.27±0.07  
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of the farm plume on the PPI scans on this elevation practically impossible. For the 2.26° PPI scans the 

case is the opposite, the simulated heterogeneity on the background fields was much smaller than the 

farm plume signal. Detection with near horizontal scan at an elevation angle of 2.26° should have been 

possible at least after 1400 UTC. During this time, the model simulation showed sufficiently high 

values of particle backscatter coefficient of up to 1-3 x 10-6 m-1 sr-1 (see, table). However, lidar 

measurements, on this day, were performed at the larger elevation angle (e.g., PPI scan at an elevation 

of 4.76° or higher). The line of sight corresponding to this elevation angle (see, Figure 6.13) obviously 

misses the volume affected by the aerosol emission, so that the plume was no longer detectable by the 

UHOH lidar. This should be noted that the background aerosol scenario was inherently constrained by 

the uncertainties involved in the initialization of the model simulations. 

 A one-to-one direct intercomparison between two different days for continuous measurements 

cannot be presented since the scan pattern and the temporal coverage of the lidar datasets were changed 

from day to day and even sometimes within a single day. However, the LES-AOP model was capable to 

simulate the results on each day with the same model configuration with a defined grid resolution in the 

same domain.  

 Furthermore, there is a relatively small intersection between the lidar scan region and model 

domain due to very high resolution of the UHOH lidar (3 m in range) in comparison with the model 

(50 m in horizontal and 30 m in vertical). Consequently, this yields a difference (although small) 

between the lidar derived background aerosol strength and the model defined background aerosol field. 

Another reason is that the lidar scan is limited in a particular scan domain. Therefore, the definition of 

optical properties of background aerosol is not exactly the same as in model domain. Furthermore, 

although the observed range of values of ( )Rpar,λβ  lies between the simulated values under the various 

scenarios, but no single simulation scenario seems to match all the observations (Valdebenito, 2008). 

 The intercomparison results show that 

• Observed range of values for the backscattering lies between the aerosol simulation scenarios 

• The model simulation managed to represent the intensity of the farm contribution 

But, the LES-AOP results fail to capture the shape of the farm plume and intensity of the background 

fluctuations. Uncertainties in the combined effort are arising probably due to the following reasons. 

• Vertical resolution of the model domain is 20 m starting at 10 m height 

• LES performance is poor at the lowest grid point (10 m), which arises due to the presence of the 

surface. This is an inherent property of LES models (Khanna and Brasseur, 1997) 

• Design of the LES-AOP for producing very small-scale structure as can be detected by the 

UHOH lidar is limited by very high computational demand.  

• The horizontal heterogeneities of smaller size than the resolution of the LES-AOP model were 

not captured  



                                                                                       
                                                                                        Chapter 6. Application of a scanning eye-safe aerosol lidar 

 

 132

• Vertical variability in detail is missing due to lack of volume scan. Unavailability of low-

elevation (of about 2°) PPI/RHI scan on 17 September reduced the number of possible cases for 

the intercomparison between the observation and simulation of the farm plume. 

• In-situ measurements were incomplete during the field experiment on 20 September 2005. The 

aerosol compositions were assumed to be that of 17 September suggesting no change of the 

aerosol hygroscopic properties. 

• No RHI volume scan was performed below an elevation angle of 4.76° and no PPI volume scan 

was available covering very low elevation to a high elevation performed with small elevation 

steps (< 2°).  

 The intercomparison results for the 17 September case showed that the LES-AOP could easily 

detect the aerosol emission from the farm by discriminating the farm contribution from the background 

in most of the cases when the scan was performed at an elevation angle of 2.26° and in some cases for 

the elevation angle of 4.76°. This is consistent with the results obtained with the UHOH lidar 

measurements both on 17 and 20 September. Both the LES-AOP simulated and UHOH lidar derived 

aerosol field for the PPI scans at an elevation of 4.76° did not show any clear signatures of farm plume. 

This suggests that the rise of the farm plume was very low (see, Figure 6.13, for further explanation on 

the scan geometry). Both the model and lidar results confirm that the shape of the farm plume in the 

instantaneous PPI scan is strongly influenced by the turbulence while the time averaged field shows an 

approximately Gaussian shape. This once again confirms the requirements for high-resolution scanning 

lidar measurements.  

The intercomparison results show that the representation of the aerosol transport around the 

livestock facilities can be obtained with the combination of the state-of-the-art eye-safe scanning lidar 

technique, in-situ point measurements and the LES-AOP simulations, as was performed within the BW-

PLUS project. 

 

6.5 Summary and conclusions 

A mobile eye-safe scanning aerosol lidar at 355 nm (UV) was developed. With 300 mJ pulse energy 

and a pulse repetition rate of 30 Hz, it was possible to observe the 2-dimensional structure of the 

particle backscatter coefficient in the ABL and the lower free troposphere with high resolution. The eye 

safety made the system useful so that it could be operated without restrictions. A modified approach to 

the lidar inversion technique was introduced and applied to scanning lidar measurements obtained 

during PLUS1 campaign. This system demonstrated for the first time the application of a UV scanning 

aerosol lidar technique for investigating the optical properties and spatial distribution of the aerosol 

plume from a livestock facility. It was the first field deployment of the system. Tracking of the aerosol 

features yielded possible investigation of the boundary layer depth, and a clear recognition of a faint 

aerosol source (livestock farm) including both emissions and transportation processes.  
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 A novel approach was introduced for the determination of the optical properties of aerosols by 

means of spatially and temporally high-resolution lidar measurements in combination with numerical 

simulations of aerosol optical properties with a high-resolving atmosphere-microphysics-chemistry 

model. During PLUS1 campaign near a livestock farm in Mettingen, Westphalia, Germany, from 11-

21 September 2005, data for the novel approach were collected. 

 Lidar measurements and aerosol in-situ measurements were performed. The investigated 

aerosol source was weak, i.e., not visible with the eye; it caused an increase of the aerosol number 

density downwind of up to 5 % in the lowermost 50 m of the atmosphere. The primary particulate 

matter emission flux was estimated from model results to be 100-500 g/h. Particle backscatter 

coefficient values of the aerosol plume were of about 30 % higher than that of the background aerosol 

contribution. With the aid of the scan strategy, it was possible to investigate aerosol transport arising 

mainly due to the prevailing winds close to the source and up to a distance of more than 3.0 km. The 

lifting height of the investigated plume was found to be of about 20 m AGL near the source and of 

about 115 m AGL in the extended region at 3.0 km. An averaging over longer time periods (of about 

15 minute) showed a roughly Gaussian-resembling aerosol plume. 

 Downwind diffusion and associated expansion of the plume became clear from the results. The 

aerosol structures presented through the PPI scan images showed very high particle backscatter 

coefficient of 1.0 X 10-5 m-1 sr-1 at a distance of about 1.5 - 2 km from the source. Longer time series of 

such scan patterns will yield more insight into the emission and transport of the plume during different 

episodes of ABL regimes. Due to the lack of in-situ measurements on this day, investigation of aerosol 

composition was not possible.  

 Intercomparison study shows that the there are certainly some differences in the particle 

backscatter coefficient field obtained with the UHOH lidar and the LES-AOP simulation. The model 

was capable to represent the intensity of the farm contribution with some uncertainties. As for this day 

(20 September 2005) no in-situ aerosol data were available to initialize the model; the lidar 

measurements and model results could not be compared directly. This also yielded a limitation in the 

model simulation to set the upper and lower emission scenarios that largely depends on the uncertainty 

coming from the ground measurements. The results agree in backscatter coefficient and shape of the 

plume with the measurements.  

 The combination of eye-safe scanning lidar system and the high-resolving atmosphere-

microphysics-chemistry model will be able to investigate the aerosol emission of diverse sources like 

motor traffic, power station emission, and emissions from various agricultural sources. Therefore, the 

methodology developed, has an extraordinary future potential for studying the emission of health-

hazardous particles to assess the health related risk and evaluate the environmental policies on such 

issues. The uncertainties in the results can be reduced in future field experiments by improved in-situ 

and lidar measurements. The optical aerosol characteristics could be predicted only with a substantial 

uncertainty, ±50/70 % for the particle backscattering coefficient. This uncertainty comes from 
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inconsistency between the results from different techniques (gravimetric analysis and ion 

chromatography) applied even to the same measurements. Furthermore, in-situ measurements were 

incomplete during the field experiment. The experiences suggest that the forecast quality of the model 

could be improved by modification in-situ measurement strategy. The time resolution and the error of 

the mass regulation of the particle size-resolved measurement of the background aerosol could be 

improved by deployment of impactors with higher flow.  

 Very high-resolution and fast RHI/PPI volume scans can improve this study by an accurate 

investigation of the vertical extent of the plume. In future, the accuracy of the LES-AOP model can be 

increased by the use of aerosol optical properties derived from lidar observations in the estimation of 

the model initial values. 
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Chapter 7 

Characterization of the convective boundary layer 

structure in a highly complex orographical region during 

PRINCE-2006 
 

7.1 Introduction 

Aerosol distribution over inhomogeneous low mountainous regions is a complex issue due to a variety 

of reasons. For instance, observations in hilly and mountainous terrain show that while the CBL 

structure in the early morning is highly inhomogeneous, the afternoon CBL structure tends to be 

horizontally homogeneous (Lenschow et al., 1979). Dayan et al. (1988) concluded that orography is a 

major factor determining the CBL height variability, rather than differences in synoptic conditions or 

land use. De Wekker et al. (1997) and Kossmann et al. (1998) investigated radiosonde profiles and 

aircraft data from field study in the Black Forest region of south-west Germany and showed two 

different behaviors of the CBL: evolution of a CBL that follows the underlying terrain towards a CBL 

which seems to be unaffected by the terrain in homogeneity.  

 Advection plays an important role in the CBL structure over hilly regions (Kossmann et al., 

1998). Very few research studies have focused on the application of the state-of-the-art scanning lidar 

system for investigating the spatio-temporal variability of aerosol optical properties in complex 

mountainous regions.  

 In contrast to the lidar measurement from aircraft for estimating the spatial variability of the 

aerosol flow, scanning lidar measurement at ground from a single point is relatively inexpensive and 

needs comparatively less effort to change the measurement strategies. Hence, the purpose of the present 

study is to demonstrate the temporal and spatial variations of the aerosol flows in the CBL in association 

with the relevant dynamical processes over complex terrain. Prior to this campaign, the UHOH scanning 

aerosol lidar was transformed to a scanning rotational Raman lidar system. A brief description of the 

RRL is given in chapter 3. Procedures for the determining the aerosol optical properties are described in 

chapter 4.  

 Following critical issues have been addressed and resolved with the aid of scanning and vertical 

lidar measurements performed during the PRINCE campaign.  
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• How far is the scanning lidar technique capable of characterizing the complexities involved in 

the mountain induced flow and aerosol flow in the neighbor valley? 

• How are the optical properties of CBL aerosols and their dynamics modified in a pre-

convective environment over mountains? 

• What are the major effects of irregular terrain on the classical CBL structures? 

• How are the transport processes over the mountains modified during different times of the CBL 

evolution? 

 

7.2 Brief overview of the PRINCE campaign 

The present section deals with the observation and characterization of aerosol optical properties and 

aerosol transport in a highly complex orographical region during the PRINCE campaign (Groenemeijer 

et al., 2008) that took place in the northern Black Forest in southwest Germany in July 2006. The 

PRINCE campaign was aimed at the measurement of the atmospheric temperature and dynamics prior 

to orographically induced deep convection. To date, there is a large gap in the knowledge concerning 

when and where convective cells in the course of the day develops and what are the necessary elements 

of a field program concerning the measurement strategies.  

This field campaign was part of a project COSITRACKS, which aimed at reliable statistical 

assessments of the frequency of convective storms, their damage potential and regional distributions. 

The major goal of the PRINCE campaign was to demonstrate the multi-sensor-based observations of 

the pre-convective processes in the mountainous region. Figure 7.1 shows the complex topography of 

the PRINCE campaign region with the location of the UHOH RRL system at the summit of the 

Hornisgrinde mountain (48°36´12.9´´ N, 8°12´3.5´´ E, elevation of 1161 m ASL). The campaign area 

covers the northern Black Forest as well as the eastern upper Rhine valley. The lowest elevation of the 

Rhine valley floor is around 120 m ASL and the highest elevation is the lidar site itself.  

The UHOH scanning rotational Raman lidar was one of the many active and passive remote-

sensing instruments, which were operational during the field campaign. Figure 7.2 shows a photograph 

of the UHOH RRL, the IMK (Institut für Meteorologie und Klimaforschung) Doppler lidar, and the 

IMK cloud radar on the Hornisgrinde mountain peak during the campaign. Additionally, the 

deployment of mobile teams releasing radiosondes was performed. The locations for the RS launches 

were adapted to the developing weather situations following PRINCE Operations center. Moreover, the 

added value of equipping a research aircraft with real-time satellite information and data from ground-

based operational radars were evaluated.  
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Figure 7.1: Location of the UHOH RRL at Hornisgrinde mountain during the PRINCE campaign together with 
the surrounding inhomogeneous orography (right). East west transect line over a distance of 8 km (keeping lidar at 
the middle) showing the change of elevation in m ASL (left). 

 

 

 

Figure 7.2: Photograph showing three remote sensing instruments deployed during PRINCE campaign on the 
summit of Hornisgrinde mountain.  
 

7.3 Results and discussion 

In the following, three different case studies are presented: (1) the first one concerns the data obtained 

on 12 July 2006 (case I) when the atmosphere encountered a convective storm cluster, (2) the second 

case highlights the complex aerosol dynamics in a CBL on 15 July (case II), and (3) the third case 

delineates the strong heterogeneity of the aerosol distribution during the daytime CBL evolution on 

9 July (case III) arising due to the presence of RL, cumulus clouds, and orographical flow modification. 

The UHOH RRL detected how various layers of enhanced particle backscatter were influenced by 

turbulence resulting from solar heating and, possibly, developing convective storms.  
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7.3.1 Case I 

Investigation of the range-resolved distribution of the optical properties of aerosol particles and their 

distribution during the pre-convective weather situation as well as after the passage of the convective 

cells are the main objectives of this case study. Recently, Groenemeijer et al. (2008) studied in detail 

this case demonstrating the application of multi-sensor measurement strategy while Trentmann et al. 

(2008) investigated the variability of the convective precipitation during this case on the basis of multi-

model simulations.  

 A detailed description of synoptic weather situation during this case can be found in 

Groenemeijer et al. (2008). In the early morning of 12 July, storm systems were formed over the Rhine 

Valley about 30 km to the west-northwest of Hornisgrinde at around 0330 UTC. The first convective 

clouds were visually observed across the western and eastern slopes of the Murg Valley. Figure 7.3 

shows two visible satellite images at 1200 and 1500 UTC on this day. It can be seen that at 1200 UTC, 

the cluster in the PRINCE region was one of the first storm clusters to develop, together with larger 

clusters in the southeast that developed over the Swabian Jura. Three hours later, the storm cluster was 

dissipated leaving some remnant cirrus fields over the Black Forest.  

 High-resolution fields of ( )Rpar,λβ  obtained (applying the RRL technique) with the UHOH 

RRL in vertically pointing mode is shown for two observation times: before the convection was 

initiated (Figure 7.4a and 7.4b) and after the cell passed by and convection broke down (Figure 7.4c and 

7.4d). The temporal and spatial resolutions are 10 s and 7.5 m, respectively. Time series of CBL heights 

obtained with the HWT-based method are also overlaid on the time height cross-sections.  

   

 
Figure 7.3: The “PRINCE” convective cluster observed by Meteosat 8 (VIS) at 1200 UTC (left) and the new 
convective development around the original cluster location at 1500 UTC on 12 July 2006 (right) marked by a 
star. The rectangle corresponds to the PRINCE region. Source: FZK / EUMETSAT. 
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 It is important to note that the HWT-based analysis was applied on the vertical profiles of 

( )Rpar,λβ  rather than on the range-square corrected lidar signal intensity. A well-mixed CBL was 

present over the experimental region in the morning of 12 July shortly after 0800 UTC. On this day, 

sunrise was at 0338 UTC and sunset was at 1928 UTC. 

 It is important to mention here that with the application of RRL technique, it has been possible 

to estimate the aerosol optical properties from an altitude of 200 m AGL. This new-overlap region 

could only be achieved due to the RRL technique. 

 Several radiosondes were launched at an interval of 2-3 hours during the day. They were 

launched from the radiosonde site on the western slope of Hornisgrinde at Brandmatt (of about 700 m 

ASL), approximately 3.0 km west of the mountain peak. Profiles of relative humidity and potential 

temperature for four-selected sonde (0700, 0900, 1300, and 1500 UTC) on this day are shown in 

Figure 7.5. 

 Figure 7.4a shows the presence of neutrally stratified elevated aerosol layers in the early 

morning over the lidar site at different altitudes between ground and 3.0 km AGL. The CBL height 

during this time was observed to be nearly constant at an altitude around 0.9 km AGL. No thermals 

were present. An aerosol layer with thickness around 200 m above an altitude of 1.0 km was detached 

having slight undulations throughout this measurement period.  

 A highly complex stratification within the lower 2.5 km AGL over the lidar site was present on 

this day. High backscatter coefficients at around 1 km AGL mark the boundary layer top as shown in 

Figure 7.4b. But the detailed investigation of the evolution of CBL top height is not possible since 

boundary layer cumulus clouds were present at the CBL top. Just below the cloud, ( )Rpar,λβ  was 

relatively high due to increasing RH causing growth of the cloud particles.  

 Due to the higher extinction inside these optically thick clouds, the lidar signal disappeared and 

no retrieval was possible. These regions are colored black as shown in Figure 7.4b. A second layer, 

which was probably related to an advected RL, was delimited in approximately at 1.4 km AGL. The 

200 m thick layer with weak ( )Rpar,λβ  of about 1.0-2.0 x 10-6 m-1 sr-1 was still present. It was relatively 

dry and warm as was confirmed by the relative humidity and temperature profile obtained by 0900 UTC 

sonde (see, Figure 7.5b). Clouds observed by the lidar were developing at the CBL top in the crest of 

waves, which were probably excited by the mountain range.  

 An aerosol-clear layer at about 1.4-1.5 km AGL (Figure 7.4b) was associated with the 

temperature lid until 0930 UTC as was confirmed by the simultaneous temperature measurement by the 

UHOH RRL. Profiles of potential temperature obtained with the UHOH RRL for four selected times (of 

0635, 0930, 1435, and 1710 UTC) on this IOP day are shown in Figure 7.6. At this time (around 0930 

UTC), the earlier stratified aerosol layers were more and more mixed by turbulence. It is important to 

mention that the convection to the east of the mountain became organized after 0930 UTC, which  
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Figure 7.4: Time-versus-height display of ( )Rpar,λβ  field during four different regimes [a-d] of the ABL on an 

intensive observation period on 12 July 2006 during PRINCE campaign. The temporal and spatial resolutions are 

10 s and 7.5 m, respectively. Clear air is indicated by blue. High value of ( )Rpar,λβ  is indicated by red to pink 

while clouds are marked by white. Evolution of CBL heights (black solid curve) is overlaid on each panel.  
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Figure 7.5: Radiosonde profiles of potential temperature (in K, blue curve) and relative humidity (in %, red 
curve) on 12 July 2006 during four different times (0700, 0900, 1300, and 1500 UTC) of the day, launched from 
Brandmatt. Vertical axis at the right side on each panel shows the altitude above the lidar site.  
 

might have influenced the observed aerosol structure above Hornisgrinde. This might have been caused 

by advection rather than by insolation as the cirrus-shield remnants prevailed until late afternoon. At 

this time the heating of the surface was already low due to the low elevation of the sun, which was also 

seen in the fact that the well-mixed CBL was delimited to heights below 1 km AGL. Figure 7.4 depicts 

the complexities of the aerosol layers present during different times on this day. CIN and CAPE for a 50 

hPa mixed parcel at Brandmatt calculated from the radiosonde profile at 0702 UTC were 62 and 994 

(J/kg), respectively.  



                                                                            
                                                  Chapter 7. Characterization of the CBL structure during PRINCE 

 

 142

 Collocated Doppler lidar measurement of radial velocity field obtained by an RHI scan (west to 

east) around 0933 UTC is shown in Figure 7.7. In color scale, the radial velocity values are plotted in 

the RHI panel. This figure confirms the presence of different aerosol layers those were observed by the 

UHOH RRL (see, Figure 7.4a and b). Easterly wind components of 1-2 ms-1 were observed throughout 

most of the layers to the east of the Hornisgrinde mountain. On the west of the mountain peak, a flow 

pattern with a bottom layer of winds with 1 ms-1 westerly component with a thickness of 700 m was 

observed. This corresponds to an upslope branch of mountain breeze.  

 Figure 7.4c shows that the CBL between 1410 and 1500 UTC was rather stratified with various 

separated aerosol layer present between 0.5 and 2.5 km with different particle backscatter coefficients. 

An aerosol layer above the CBL top (marked by the black solid line) was observed at altitudes between 

1.7 and 1.8 km with relatively high ( )Rpar,λβ  of about 6.0 x 10-6 m-1 sr-1 compared to surrounding 

layers. The RH was high (of about 80 %) at these altitudes as can be seen from the 1300 UTC RS 

profile (see, Figure 7.5c). 

 Figure 7.4d shows a slightly elevated evolution of the CBL around 1700 UTC. The CBL height 

was dropped by 0.5 km during this time as compared to the case in Figure 7.4c. This is not surprising 

due to the decrease of the convective activities. The CBL was then stabilized around 1730 UTC but the 

aerosol layers above the CBL top were still present. During this period, a thick cirrus-deck was present 

at altitude of around 10 km AGL (not shown here). The presence of this cloud deck stabilized the CBL 

significantly reducing the insolation. Wave-like structures were prominent as can be seen from the field 

of ( )Rpar,λβ . 

 

Figure 7.6: Temperature measurements with the rotational Raman lidar: profiles measured on 12 July 2006 at 
Hornisgrinde (1161m ASL). Lidar data were acquired around the indicated time during (1) 40 minutes, (2) 
30 minutes, (3) 40 minutes and (4) 60 minutes, respectively. The spatial resolution is 37.5 m (profile 1, 3 and 4) 
and 75 m (profile 2). Lidar signals are smoothed with the indicated window lengths. The data error increases with 
altitude from approximately 0.2 K at 1 km to 1 K at 5 km AGL. Source: Groenemeijer et al. (2008).  
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Figure 7.7: Field of radial wind velocity obtained with the IMK Doppler lidar around 0933 UTC on 12 July 2006. 
Scan was performed from west to east. Blue color represents a velocity component towards the system and red 
corresponds to the away from the system. Source: Groenemeijer et al. (2008). 
 

 After the convection broke down in the early evening, a pronounced temperature lid was 

present at height around 1.4 km AGL during the course of the day as evinced from the temperature 

measurements with RRL. Temperature measurements as shown in Figure 7.6 confirm that a lower 

tropospheric warming was occurred at Hornisgrinde. A comparison of the profiles of 0635, 0930 and 

1435 UTC revealed a warming of the air above 2.7 km altitude. For example, at 3.8 km the temperature 

increased by 5 K in this period, most of it after 0930 UTC. Between 0930 and 1435 some warming also 

occurred down to 1.8 km AGL. Between 1435 and 1710 UTC, after the decay of the convective system, 

the air above 2.7 km was cooled again by approximately 2 K. This might be the main reason why there 

was no convection initiated at the lidar site.  

 

7.3.2 Case II 

During PRINCE, the UHOH RRL collected extensive sets of data with RHI scanning measurements. A 

subset of 6 selected consecutive RHI scans of 90 scans performed on 15 July 2006 towards east of 

Hornisgrinde is displayed in Figure 7.8. The images (a-f) show the vertical scan results from an 

elevation of 5° to 90° yielding a well-mixed CBL. By linking the scan frames through an animated gif, 

time-lapse animations of the atmospheric aerosol dynamics from few meters above ground can be 

investigated. This figure evinces the aerosol flow from east to west, which was governed by the wind 

driven transport. Each scan required of about 90 s to be completed. Scan speed was set to low (1.0° s-1) 
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to provide high angular resolution in the RHI field of ( )Rpar,λβ . Range rings at each 200 m are shown 

in the figures. Temporal and spatial resolutions are 10 s and 3.75 m, respectively. 

A sharp decrease in the field of ( )Rpar,λβ  was observed at an altitude of about 800 m AGL 

along the horizontal distance of about 2.0 km indicating the presence of relatively cleaner air above. In 

pseudo-color scale, blue corresponds to the relatively aerosol free air and the red-to-pink region 

corresponds to the high particle backscatter coefficient. Migration of this structure in the lower CBL 

could be investigated in detail through the animation if the gravitational settling of the aerosol particles 

is ignored. A turbulent convective motion is visible from ground to an altitude of about 900 m. This is 

an indicative of the CBL top at that height. An entrainment zone is visible in the altitudes between 800 

and 900 m AGL with highly variable ( )Rpar,λβ  field. Unlike case I, no stable residual layers were 

observed during this case. The CBL aerosol regime present in this case is strictly due to enhanced 

mixing process. The CBL top was present at around 800 m AGL most probably due to a temperature 

inversion  

 

 

 

Figure 7.8: Eastward RHI sector scans from elevation 5° to 90° with temporal and spatial resolution of 1 s and 
3.75 m, respectively. The scan speed was 1° s-1 thus the angular resolution is 1°, collected at Hornisgrinde on 
15 July 2006 during PRINCE campaign. Selected 6 RHI scans of 90 such scans are presented here.  
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at this altitude that forced the aerosols to remain within the CBL. This case demonstrates the 

requirement of the sequential relatively long time RHI scans to study the CBL aerosol field, the CBL 

height and it spatial variability, and the associated entrainment inside the CBL in a complex 

topographical region like Black Forest.  

 

7.3.3 Case III  

Figure 7.9 shows the evolution of the aerosol field over the lidar site from 1000 to 1700 UTC on 9 July 

2006. Temporal and spatial resolutions are same as in case II. Vertical axis is extended up to 2 km AGL 

to highlight the CBL portion in which convective mixing processes are visible. This figure shows the 

structure of the convective boundary layer over the mountain region during the course of the day. The 

Black solid line overlaid on the time-height cross-section represents the top of the CBL evolution 

determined by the HWT-based analysis. Only exception lies during the presence of low-level 

convective clouds over the measurement site. 

 A residual layer was present (green and yellow colored region up to an altitude of 1 km) during 

the early noon (until 1130 UTC) and became indistinguishable with the growing CBL. The ( )Rpar,λβ  

values are nearly constant in the lowest part of the CBL, indicating the existence of a well-mixed 

boundary layer. The CBL height reached a maximum value of 1.0 km in the late afternoon. An 

undulation of the aerosol-laden CBL could be observed from the time series. Sharp rises of the CBL 

height from time to time were arising probably due to the presence of the Hornisgrinde mountain, which 

led to enhanced turbulence and drag, and then deepening of the boundary layer. Thermals were also 

present. Switching off or decaying of the surface forcing is considered to be the major reason behind the 

decaying of the CBL top around 1700 UTC. 

 The UHOH RRL lidar has one advantage so that the particle extinction-to-backscatter ratio 

(lidar ratio) can be directly measured from the two RRL signals as described in section 4.7. Lidar ratio 

profiles obtained at five different times (1115, 1245, 1430, 1530 and 1700 UTC) for case III are shown 

in Figure 7.10. The aim is to confirm the presence of different types of aerosol particles present inside 

and above the CBL on this day. 

Lidar ratio profile at 1115 UTC yields a vertical variability with a value around 40 sr until an 

altitude of 1.6 km AGL. There is a sharp peak in the lidar ratio around 1.7 km AGL suggesting a very 

high extinction value as the time-height cross-section already evinced a relatively lower value of 

backscatter coefficients at this altitude.  

 Lidar ratios were found mostly between 35 and 45 sr with some vertical variability within for 

the aerosol measurements until 1300 UTC as can be seen from the profile at 1115 UTC and 1245 UTC. 

The S(R) profile at 1245 UTC showed rather less variability in height with a value around 35 sr. The 

S(R) profile at 1430 showed a sharp increase at 1.2 km AGL from 25 sr to 40 sr in the region of lofted 

dust (see, Figure 7.9) and decreased with height to 10 sr. A similar peak was observed in S(R) at 1.8 km 
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AGL. Such similar values of lidar ratio confirm the presence of same type of aerosol particles in those 

heights indicating a pronounced effect of relatively large particles on the optical properties. 

Unexpectedly low lidar ratios (< 10 sr) were observed both inside and above the CBL during the late 

afternoon as can be seen from the S(R) profiles at 1530 UTC and 1700 UTC. This is consistent with the 

field of ( )Rpar,λβ  as presented in the time-height cross-section in Figure 7.9. This confirms the presence 

of similar types of aerosol particles during the late afternoon.  

 

 

 
Figure 7.9: Lidar time series of particle backscatter coefficient from 1015 to 1715 UTC in three panels (from up to 
down) measured on 9 July 2006 during PRINCE campaign showing the well-mixed CBL. CBL top are marked by 
black-solid line on the time-height cross-section.  
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Figure 7.10: Measurements of the lidar ratio taken in and above the CBL during five different times of the day on 9 
July 2006.  
 
 Through the analyses of the vertical profiles of lidar ratio, a key difference in the aerosol load 

and aerosol type were observed between noon (with high lidar ratios) and the afternoon (with relatively 

lidar ratios).  

Figure 7.9 illustrates the presence of wavy aerosol layers during the first one hour of the 

measurement period (1030 to 1130 UTC) within the altitude between 0.5 and 1.0 km AGL. But the 

shallow CBL below was affected to a larger extent by the local orography and was more 

inhomogeneous than the aerosol layer above. This Figure shows the down mixing of the aerosol layer 

towards the growing CBL around 1130 UTC. These types of processes are largely responsible for the 

increase of surface pollution concentration (McKendry et al., 1997).  

This case study yielded a frequent transportation of aerosols above the CBL height especially 

during the afternoon (after 1400 UTC). Also visible is that during these times, thermals became more 

vigorous. The venting of the pollutants above the CBL heights are referred to as “mixing-layer-

venting”. 

It is probably difficult to discuss the correlation between aerosols and the development of the 

cumulus clouds in the mountainous regions. However, it can be seen that aerosol layers above the 

boundary layer were observed only when ( )Rpar,λβ  in the boundary layer was high. Around 12 UTC, 

the cumulus activity was high and aerosol backscatter was high in the CBL but ( )Rpar,λβ  was low 
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above the CBL. On the contrary, around 1630 UTC ( )Rpar,λβ  was observed relatively high above the 

CBL height in the presence of cumulus clouds. This indicates that aerosols in the upper layer were 

transported from the boundary layer probably with the cumulus activity. The mechanism of the 

transportation and the effect of aerosols on the cumulus characteristics can be a very interesting topic 

for future study. Nevertheless, this type of characterization of CBL height evolution over mountain 

peaks is of particular importance for the better prediction of the dispersion of air pollutants over these 

regions, which is a poorly understood part of the CBL over complex terrain.  

 An FFT-based power spectral analysis (see, section 4.3.1) is performed on the instantaneous 

CBL height time series obtained between 1220 and 1320 UTC. During this time, CBL was well-mixed 

and no further aerosol layers were observed above the CBL height. Figure 7.11 shows the log-log plot 

of the normalized power spectra and frequency. The curve resulted a spectral exponent value of 0.9. 

The –5/3-power law is also shown in the figure (blue line). This value of γ suggests the CBL regime to 

be quasi-stationary. Similar results were obtained for a case of well-mixed CBL regime described in 

chapter 5.  

 

 

Figure 7.11: FFT power spectra for the CBL height obtained between 1220 and 1320 UTC on 9 July 2006 (case 
III). The blue line corresponds to –5/3-power law curve.  
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7.4 Summary and conclusions 

The first scanning aerosol measurements with the rotational Raman lidar technique were realized during 

the PRINCE campaign in 2006. Within this campaign the influence of complex mountainous region on 

the CBL and the optical properties of aerosols and their transport and mixing under convective weather 

conditions were investigated. With both the vertically pointing and scanning measurements, multi-

sensor measurement strategies from a complex mountainous region were demonstrated. Lidar 

observations showed single-layered aerosol structures, well-mixed boundary layer, multi-layered 

aerosol distributions, and oscillation in the aerosol layers during different days of the campaign. The 

CBL heights were found to vary between 800 m (1900 m ASL) and 1200 m AGL (2300 m ASL) during 

most of the campaign days.  

 During one IOP day (case I) in the PRINCE campaign, combined high-resolution measurements 

of aerosol optical properties and temperature field with the UHOH RRL revealed undulating aerosol-

rich layers in the preconvective environment and a gradual warming trend of the lower troposphere as 

the nearby storm system evolved. The lower clouds inside the CBL were associated with the developing 

storm system, but the exact influence of these features on the convective initiation is not much clear. 

 Collocated Doppler lidar measurements of radial wind velocity confirmed the complexities in 

the various aerosol structures and their dynamics inside the CBL above the mountain. For instance, the 

case I showed that the top of the elevated easterly flow was approximately at the same altitude as the 

top of the boundary layer. This supports the idea that the air within the upslope flow out of the valley 

(here Rhine Valley) rose near the mountain top (Hornisgrinde) and returned towards the valley as part 

of this elevated easterly flow. The observations of the different aerosol layers at various altitudes over 

the Hornisgrinde mountain on this day showed that the height of these layers was rather constant but 

with slightly different ( )Rpar,λβ  values. These aerosol layers were found up to an altitude of about 

3.0 km AGL. These results suggest that the aerosol layers over the mountainous regions are often very 

high than the CBL height.  

 Furthermore, the results obtained with the Doppler lidar confirming the upslope flow (from 

valley to mountain) and the return flow (as a part of a elevated easterly) suggest a consistent picture of 

the dynamics of these aerosol layers over the mountain as was observed by the UHOH RRL. These 

results illustrate that such transport are often efficient in the morning above the low mountain regions 

under relatively low wind speed, implying that aerosols in the higher layers during the morning or even 

during the noon are not necessarily remnants of residual layers, as it is commonly defined.  

 Time height cross-sections of the ( )Rpar,λβ  field on 9 July (case II) in this study showed 

significant variation in CBL height over timescales of tens of seconds. This was associated with very 

high variability of the aerosol distribution inside and above the CBL.  

 Independent measurements of vertical distributions of the particle extinction and backscatter 

coefficients were presented. The resulting lidar ratios indicated strongly variable aerosol layers. Even 
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on a same day, two different types of vertical variability of the lidar ratios were observed implying the 

presence of two different types of aerosol particles.  

 The CBL height varied between 0.5 and 1.1 km above the mountain and a residual layer above 

the height of the CBL persisted until the early afternoon. Unlike case I, no other aerosol layers at higher 

altitudes were observed. This suggests that the observed residual layers might have been remnants of 

the aerosols from the surrounding valleys. Whether this is the case requires further research. During this 

time, CBL growth rate was low enough. But the detailed investigation of the interaction between the RL 

and CBL was not possible as the CBL cumuli were developed at the same time when the CBL and the 

RL height became indistinguishable. An FFT-based spectral analysis of the time series of the height of a 

well-mixed CBL case yielded a spectral exponent value of 0.9 confirming a quasi-steady regime of 

CBL.  

 The results illustrated that the mixing and transport processes over mountain regions not only 

influence the CBL development and its modification but also enhance the vertical transport of the 

pollutants unlike over the flat and horizontally homogeneous terrain.  

 High-resolution RHI scanning measurements yielded spatial variation of the ABL structures 

with a significant aerosol plume with ( )Rpar,λβ  of 6- – 8 x 10-6 m-1 sr-1. The CBL height during this case 

was found to be of about 0.8 km AGL with very small spatial variability over an extended region of 

2 km. Time-lapse animations of the RHI scan images of the aerosol optical properties are an important 

data product obtained but unfortunately cannot be presented in a thesis. 
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Chapter 8 

Investigation of temperature field and aerosol optical 

properties during COPS 
 

8.1 Brief overview of the Convective and Orographically-induced       

 Precipitation Study 

COPS is a Research and Development Project (RDP) of the World Weather Research Project (WWRP) 

aimed at studying and advancing the quality of forecasts of orographically-induced precipitation in 

complex terrain. The overarching goal of COPS is to “advance the quality of forecasts of 

orographically-induced convective precipitation by four-dimensional observations and modeling 

of its life cycle” (Wulfmeyer et al., 2008). COPS focused at the identifications of the physical and 

chemical processes responsible for the deficiencies in quantitative precipitation forecast over low-

mountain regions with the goal to improve their model representation. 

 A better understanding of the triggering mechanisms for convection caused by orographic 

effects is of immense importance. Therefore, the results containing the aerosol processes inside the 

CBL in the low mountain region is an important element to fulfill the overarching goals of COPS. 

Barthlott et al. (2006) confirmed in their study that the better representation of the flow patterns in 

mountainous areas improves the forecasting in these regions. 

 Within COPS, a dense network of state-of-the-art active and passive remote sensing systems 

was deployed during the three months long (June-Aug, 2007) field campaign in south-western 

Germany/eastern France region to observe atmospheric variables in three dimensions. Figure 8.1 

depicts the locations of the COPS supersites over the complex orography in the Black Forest region.  

 A detailed description of the COPS field campaign (see, www.uni-hohenheim.de/cops/), 

research activities during the campaign (see, http://www.cops2007.de/), and the first results obtained 

are described in Wulfmeyer et al. (2008a), the COPS scientific overview document, and in the COPS 

field report, respectively.  

 The overarching goals and the detailed descriptions of the COPS campaign are beyond the 

scope of this dissertation. COPS was a unique opportunity to study numerous CBL processes in a 

complex terrain in diverse meteorological conditions during three months long period. Therefore, an 

extensive research is carried out within this dissertation using the data collected with UHOH scanning 
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RRL (Radlach et al., 2008a, b) to study various ABL processes. These include observation of aerosol 

optical properties in different times of the day and during different synoptic situations, the effect of 

orography on aerosol flow, aerosol transport, and aerosol turbulence processes. Combined and time 

synchronous synergic measurements of different lidar systems provided for the first time an unique 

potential to demonstrate aerosol process in ABL (e.g., distribution and dependencies of aerosol optical 

properties on relative humidity and temperature) and finally to demonstrate the application of sensor 

synergy.  

 For the first time the RRL technique is applied for RHI scanning measurement to determine 

aerosol optical properties (both particle backscatter and extinction coefficient and then corresponding 

lidar ratio) in 2-3 dimensions together with high temporal and spatial resolutions. This brings a new 

element to the lidar application for the ABL research.  

The key ABL research issues addressed in this concern are:  

• A detailed investigation of ABL over low mountain regions both during day and night. 

• Demonstration of advanced scan strategies and potential benefit of multi-instrument dataset 

obtained during COPS.  

 

 

Figure 8.1: Set up of the COPS supersites overlaid on the orography. Color bar represents height above mean sea 
level. Source: COPS field report. 
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8.2 Instruments 

In particular, two novel ground-based mobile scanning lidar systems were developed by the UHOH 

lidar group: a scanning rotational Raman lidar (RRL) which provides combined measurement of 3-d 

field of atmospheric temperature and aerosol optical properties with unprecedented accuracy, and a 

high-resolution water vapor differential absorption lidar (DIAL), which yields accurate measurement of 

water vapor fields and particle backscatter field at the near-IR wavelength. Differential absorption lidar 

is a technique which measures the water vapor number density with very high resolution in space and 

time by alternate emission of short laser pulses which are absorbed strongly by water vapor in the 

atmosphere (online) and which are weakly absorbed (offline) and by time-resolved detection of the 

atmospheric backscatter signals (Schotland, 1966). 

 During COPS, both lidar systems were located at the peak of Hornisgrinde mountain together 

with a large suite of remote sensing systems. The new scanning water vapor DIAL that was developed 

within three interlinked projects funded by the German Research Foundation (Deutsche 

Forschungsgemeinschaft, DFG) was deployed for the first time in the field during COPS. For brevity, 

this system is named here as UHOH DIAL in the following (see Schiller, 2009; for a detailed 

description of the UHOH scanning DIAL system). First results obtained with the UHOH DIAL system 

during COPS can be found in Pal et al. (2008).  

Application of the UHOH DIAL system to estimate the water vapor mixing ratio is described in 

detail in Schiller (2009) while the synergetic measurements of different lidar systems (including UHOH 

RRL and UHOH DIAL) during COPS are discussed in Behrendt et al. (2008) and Wulfmeyer et al. 

(2008b). 

 

8.3 Results and discussion 

The RRL observations of selected profiles of the particle extinction and backscatter coefficients and 

then extinction-to-backscatter ratio at 355 nm wavelength (lidar ratio) under various meteorological 

conditions during the COPS field campaign are presented. Different scan patterns were performed 

during this campaign. These include:  

• Continuous vertical measurements. 

• Continuous RHI scanning measurements with an increment of 5° within the upper hemisphere. 

• Combinations of time-synchronous RHI scan measurements and vertical measurements. 

 

8.3.1 Examples of vertical measurements 

Figure 8.2 shows an example of time-height cross-section of ( )Rpar,λβ  at 355 nm as derived from 

zenith-shooting RRL measurements between 1930 and 2045 UTC on 12 August 2007. This figure 
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shows the field of ( )Rpar,λβ  up to an altitude of 12 km AGL including cirrus cloud structures at an 

altitude of 10 km AGL. The right panel shows a zoom-in-view of the region (altitude between ground 

and 4.0 km AGL) marked by the rectangle in the left panel. This image yields the presence of the 

gravity wave structures in the residual layers. Wind was relatively calm in the boundary layer and was 

blowing from southwest at the mountain height while it changed slightly to westerly at an altitude 

above 600 m. Cirrus cloud layer showed an enhanced ( )Rpar,λβ  of >1.5 x 10-5 m-1 sr-1 due to the cirrus 

crystals.  

 High values of ( )Rpar,λβ  up to 4 – 5 x 10-6 m-1 sr-1 in the residual layer and a sharp drop of this 

value to 1 x 10-6 (m-1 sr-1) above 2.2 km were due to high RH (of about 80 %) and the presence of dry 

layer (with RH of about 40 %), respectively. Collocated radiosonde retrieved RH profile as shown in 

Figure 8.3 confirms the high variability of the moisture structures present during this time. The zoom-

in-view shows relatively high ( )Rpar,λβ  at 3 km height AGL and corresponds to the peak in the RH 

profile (increase up to 80 % RH).  

  

 
Figure 8.2: 13-s resolution time-height cross-sections of particle backscatter coefficient during night on 
12 August 2007 showing the aerosol structure influenced by the local orography. A zoom-in-view of the field of 

( )Rpar,λβ  is shown in right panel.  
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Figure 8.3: Vertical profile of particle backscatter coefficient at different times during the measurement period 
around 2000 UTC on 12 Aug 2007. Relative humidity profile obtained from collocated radiosonde is shown as 
black solid curve.  
 
 12-minutes interleaved vertical profiles of ( )Rpar,λβ  (at different times during the measurement 

as shown in Figure 8.2) from 0.4-4.0 km are shown in Figure 8.3 together with RH profile obtained 

from radiosonde launched at 2000 UTC from the lidar site. The dependencies of the particle backscatter 

coefficient on the RH values are higher in the lower altitude (between 0.4 and 2.0 km) due to the higher 

values of RH (of about 80 %). Relatively lower dependencies of the particle backscatter coefficient on 

RH in the higher height are arising due to the larger drift of the RS from the measurement site.  

 It can be seen from Figure 8.2 and Figure 8.3 that the structure of aerosol distribution is closely 

related to the structure of relative humidity. The structures of aerosol distributions in the ABL up to 

2.2 km height and very thin aerosol layers above the boundary layer are observed up to about 2 km 

height coincide with high humidity values in those regions. As there is a similarity in distribution 

patterns of aerosols and relative humidity, a very simple relationship between the value of backscatter 

coefficient and RH is feasible.  

 

 



                                                                    
                                          Chapter 8. Investigation of temperature and aerosol field during COPS 

 156

8.3.2 Two-dimensional field of aerosol optical properties  

During COPS, the UHOH RRL performed RHI scan in steps of 5° with a predefined start and end 

elevation angle. This is called discrete scan pattern (explained in detail in Appendix- B). Such 

hemispherical RHI scan patterns give an advantage to study the 2-d structure of both particle 

backscatter and extinction coefficients and therefore the comprehensive representation of the aerosol 

optical properties. 

 Figure 8.4 shows a sequence of three such RHI scans detailing the fields of ( )Rpar,λβ  (upper 

panel) and ( )Rpar,λα  (lower panel). These figures show a complex structure with a superposition of 

several aerosol layers between the surface and 4 km altitude and in different directions or elevations. 

Presence of layers with relatively lower aerosol loading at 0.9 km, 1.2 km, and at 3.5 km AGL suggests 

that the aerosol layers are decoupled. The origin of the relatively strong particle backscatter coefficient 

in the west is considered to be the aerosol layers trapped over the valley (see, Figure 8.1 for a detailed 

picture of the orography). These are basically the residual layers from the previous night stable 

boundary layer over these regions. The structures present in all scan images are consistent with the 

collocated RS profile of RH and temperature (not shown here). The increase in ( )Rpar,λβ  up to           

5.0 x 10-6 m-1 sr-1 around 3.0 km AGL is due to the increase in RH at those altitudes. 

 Two different inversion layers observed in the 2-dimensional aerosol structures in RHI scan 

images are confirmed by the RS retrieved temperature inversions at 1.3 km and 3.0 km. These strong 

inversions are associated with the RL aerosols.  
 A key advantage of the UHOH RRL system is the independent determination of the ratio of the 

particle extinction-to-backscatter coefficients (denoted as S(z)). For investigating the physical properties 

of the aerosols observations presented in Figure 8.4, six selected vertical profiles of lidar ratio are 

shown in Figure 8.5. These profiles are determined from the RRL profiles collected at LOS of 90°. 

Temporal and spatial resolutions are 10 s and 37.5 m, respectively. 

 Figure 8.5 shows that the vertical distribution of the lidar ratio was approximately independent 

of height up to 2.5 km AGL. In this region, lidar ratios were between 20 and 25 sr. Few peaks were 

present as can be seen in the 0602 and 0608 UTC profiles. The sudden lofting of the lidar ratios is due 

to the thin aerosol layers at those levels. But there is step-like increase in S(z) up to 60 sr around 3.5 km 

AGL. This implies that the aerosol below the height of 2.5 km AGL was of same origin while the 

aerosols in the altitude between 3.0 and 3.5 km AGL were certainly of different origin.  
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Figure 8.4: 3 consecutive hemispherical RHI scans from west-to-east showing particle backscatter (top panel) and extinction coefficient (bottom panel) field. Clearly visible 
is the presence of multiple aerosol layers in the early morning on 14 June 2007. 
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Figure 8.5: Six selected profiles of lidar ratio measured with the UHOH RRL during the RHI scan measurement 
presented in Figure 8.4. Lidar ratio profiles for the LOS at 90° are only shown.  
  

 RHI scan measurements of the aerosol optical field (see, Figure 8.4) and the vertical profiles of 

the lidar ratio presented confirms that the thick aerosol layers between 3.0 and 3.5 km were not 

originated from the ABL activities but advected from somewhere else. In general it can be stated that 

the lidar ratio in the lower altitude is rather low (< 30 sr) which is lower than for the aerosol types 

purely caused by anthropogenic pollutions. Whether these are due to the recirculation of local emissions 

or long-range transport can be confirmed by the backtrajectory analyses by locating the origin of these 

aerosols in higher altitudes.  

 

8.3.3 Combined measurements of aerosol optical properties and temperature  

On 25 August 2007 during IOP 18b (see, COPS Field Report, for a brief overview on the COPS IOPs), 

UHOH RRL performed a continuous RHI scan pattern as a part of supersite cross-section scan scenario. 

The aim of this scan pattern was to collect atmospheric variables in 2-dimensions in an extended region 

so that data collected from various supersites can be linked together to investigate the atmospheric flow 

patterns without any gap. Furthermore, this is a unique way to demonstrate the application of sensor 

synergy, which is a key research goal of COPS.  
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 Figure 8.6 shows six consecutive hemispherical RHI scans performed on this IOP day between 

1556 and 1629 UTC. Each scan took of about 5 minutes while RRL averages 650 shots in each LOS. 

The plane in which the RHI scan was performed was oriented towards the neighboring COPS supersites 

(azimuth of 291°). Temporal and spatial resolutions are 13 s and 37.5 m (10 range bins averaged), 

respectively in the particle backscatter coefficient field. Wind was blowing from southwest of the 

measurement site. Distinctly visible is that aerosol layers between 1.5 and 2.5 km were present. These 

layers were observed more or less at constant altitude throughout the one hour scanning measurement 

(not shown here). Steep temperature inversion at this altitude triggered such high ( )Rpar,λβ  followed by 

trapping of the pollutants.  

 Figure 8.6 shows that at the beginning (scan 1), two different aerosol layers were observed 

which started to couple as time progressed (scan 3 onwards). Orographically-induced aerosol flow 

dynamics is visible near the altitude of lidar location. This is likely to be due to the rise of aerosol-rich 

air masses from the valley to the height of nearest mountain peak (here Hornisgrinde) followed by the 

enhanced vertical transport on the steep slopes. These types of vertical transport process arising due to 

the presence of mountain peaks are referred to as “mountain venting”. In the boundary layer, the 

horizontal wind speed observed by the collocated radiosonde (see, wind barbs in Figure 8.8) was found 

to be of about 5 m s-1. During this time, wind was mostly westerly. 

The Rhine valley region (west of lidar site) consists of enhanced industrial activities where 

higher emissions of anthropogenic aerosols are not unexpected. High aerosol loading in the LOS at an 

azimuth of 291° towards Rhine valley (within 500 m above the lidar height) was most probably due to 

the trapping of the pollutants over this valley. This is observed from the figure that the vertical 

structures of the ABL over the valley region were composed of successive aerosol layers. The layers at 

the lower height are expected to be due to the valley emission and the higher layers are likely to be due 

to the combined emission, advection, and mixing. These results are also suggestive of the presence of 

the exchange processes over mountainous regions.  

 Figure 8.6 yields a situation of non-horizontal ABL top generated by differences in the terrain 

elevations. To date, such a high tempo-spatially resolved description of the exchange processes over 

complex terrain is rare in the literature. The high ( )Rpar,λβ  near the lidar site can be explained by the 

presence of humid air mass. The aerosol layers with high backscatter coefficient between 1.5 and 2.5 

km AGL can also be explained by the profiles of the temperature and dew point temperature obtained 

with the collocated radiosonde profile (Figure 8.7) at 1654 UTC launched from the supersite 

Hornisgrinde. A relatively low particle backscatter coefficient field in the region between 0.7 and 1.5 

km heights in all scans is arising due to the less humid air as observed in the RH profile obtained with 

the radiosonde launches. 
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Figure 8.6: Sequence of six consecutive hemispherical RHI scans images (from top left to bottom right) of particle backscatter coefficient field around 1600 UTC on 
25 August 2007. The plane in which the RHI-scan was performed was orientated towards the neighboring COPS Supersites (azimuth = 291°). Temporal and spatial 
resolutions are 13 s and 37.5 m (10 range bins averaged), respectively. 
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 The field of potential temperature (commonly denoted as θ) derived from simultaneously 

measured temperature field with the RRL between 1600 and 1700 is presented in Figure 8.8 (see, 

Radlach, 2008c; for the method to calculate this variable). Potential temperature is defined as the 

temperature that a parcel of dry air would have if it were compressed to a standard pressure of 1000 mb. 

Since potential temperature is conserved for dry-adiabatic motion in the atmosphere, θ is kept constant 

within well-mixed layers and for descending (ascending) air parcels that are undergoing dry-adiabatic 

warming (cooling). At this time the elevation of the sun ranged from 20° to 10°. As can be seen from 

the wind barbs in Figure 8.8, the airflow was mainly westerly in lower heights (<2000 m ASL or of 

about <900 m AGL) and in the free troposphere (>3000 m ASL or of about >1900 m AGL). In between 

the wind was southwesterly orientated. Figure 8.8 shows some features that are consistent with 

ascending air motion due to overflow over the ridge as for rising air constant θ  is expected. A warm θ -

tounge was stretching downward just east of the mountain peak. This supports a process, which is 

mixing down air from aloft to the ground layer. ( )Rpar,λβ  was slightly increased (as shown in figure 

8.6) within this θ -tounge. 

 

 

Figure 8.7: Skew-T Log-P diagram showing radiosonde ascent from supersite Hornisgrinde at 1654 UTC on 
25 August 2007. Blue solid line is the dew point temperature and the red solid line represents the temperature.  
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Figure 8.8: Field of potential temperature obtained with the scanning RRL for the same data presented in 
Figure 8.6. For this field 13 consecutive raw-data scans were averaged giving an averaging time of 3 minutes for 
each profile. The range resolution is 37.5 m. A gliding average of 300 m was applied. The wind barbs show 
horizontal wind data measured by the radiosonde launched at the lidar site at 17 UTC. The black line marks the 
potential temperature of 305 K. Source: Radlach et al. (2008b). 

 

This case presents a brief summary of characterization of the dynamics of aerosol stratification 

containing mixed and detached (accumulation) aerosol layers over complex terrain and valleys. Similar 

phenomena have been extensively observed during different IOP days of COPS field campaign and 

offer a detailed description of the aerosol dynamics (as in this case) over mountainous region using the 

state-of-the-art lidar technology. 

 

8.3.4 Optical properties and dynamics of cirrus cloud 

The UHOH RRL lidar measurements in the early morning on 1 July 2007 yielded an interesting episode 

with the presence of a strong residual layer up to 2.0 km AGL and a 2.5 km thick cirrus cloud layer in 

between 5.2 and 7.7 km AGL. The left panel of Figure 8.9 presents the time-height cross-section of the 

range-square corrected signal intensity for the data obtained at the elastic channel of the RRL from 

0400-0800 UTC. Investigations of the transmission and reflection properties of the cirrus particles and 

wavelet-based spectral analysis for determining various scales of turbulent motions present in them are 

aimed here.  

 Particle backscatter coefficient field obtained for this dataset is shown in the right panel of 

Figure 8.9 in the altitudes between ground and 4.0 km AGL. This figure shows high aerosol loading 
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Figure 8.9: Range square corrected signal intensity of the elastic channel of RRL showing early morning stable boundary layer together with cirrus cloud at an altitude around 
6 km AGL (left) and particle backscatter coefficient field between 200 and 4000 m AGL obtained from 0400-0500 UTC on 1 July 2007 (right). 
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between the ground and 2.0 km AGL. Obviously this is a stable RL with high backscatter coefficient of 

around 3.5 x 10-6, m-1 sr-1. A very low ( )Rpar,λβ  field between 0.5 and 1.0 km is arising due to a dry 

layer present in this region as confirmed by the collocated radiosonde derived RH profile. This feature 

is again confirmed after comparing the potential temperature profile obtained from the collocated RS 

profile.  

Figure 8.10 presents an example of time-height cross-section of particle backscatter and extinction 

coefficients in the altitude of cirrus cloud layers (from 5.0-8.0 km) for the same time period as in Figure 

8.9 showing the variability of the optical properties of the cirrus. Collocated sounding at 0500 UTC 

showed that the temperature in this cirrus layer varied from –20 °C at cloud bottom (of about 5.2 km 

AGL) to –36 °C at the cloud top (of about 8.0 km AGL) while the RH was fairly constant with a value 

from 60 – 65 %. The tropopause height was observed at 11.7 km during this time. Figure 8.11 shows 

15 minute interleaved vertical profiles of lidar ratio belonging to this observation.  

 In general, in cirrus clouds, the extinction and backscatter and hence the lidar ratio can vary if 

layers of falling ice crystals are present. Lidar ratio profile in Figure 8.11 shows variability of lidar 

ratios in heights between 5.2 and 7.5 km from 3 - 25 sr. This large variability in the lidar ratio profile 

suggests that the observed cirrus cloud layer contained both horizontally oriented ice particles (for lidar 

ratio of about 3 sr) and ice crystals with considerable amounts of particles (for lidar ratios > 20 sr) 

larger than 300 µm (Takano and Liou, 1989). Platt (1978) showed that few oriented crystals could 

produce strongly enhanced backscattering and unrealistic low lidar ratios. The present case also showed 

a very high particle backscatter coefficient (> 2.5 x 10-5, m-1 sr-1) in the altitudes from 5.5 – 6.0 km 

AGL. Furthermore, dependencies of the lidar ratios on the cirrus thickness were investigated (not 

shown here) for the entire time period but no clear tendency was found.  

 Very often, to characterize cirrus layer properties, the lidar ratio corresponding to the ratio of 

the cirrus optical depth to the backscatter coefficient integrated over the cirrus layers is determined and 

is interpreted as the cirrus-layer “mean” lidar ratio (Seifart et al., 2007). For the present case, a value of 

11 sr is obtained. It should be mentioned here that until now multiple scattering correction (Weinman, 

1976) and effect of specular reflection (if present) are not taken into account for determining lidar 

ratios. However, the RRL technique used in this work has the potential to provide a reliable description 

of the cirrus optical properties, which is not achievable with elastic backscatter lidar technique. The 

cirrus layer showed both temporal and vertical variability of the lidar ratio. It implies that the inversion 

algorithm used to derive the extinction coefficients under the assumption of a height-independent lidar 

ratio will definitely yield erroneous results in such cases.  

 Optical properties of the cirrus clouds and their structures are necessarily influenced by small- 

scale features at high altitudes where turbulence is patchy or intermittent (Demoz, 1997). Smith and 

Jonas (1997) demonstrated the wavelet analysis to be an efficient tool to investigate turbulence 

characteristics in cirrus cloud. High-resolution lidar data is considered here to be an appropriate time 
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Figure 8.10: Time-height panel showing the particle backscatter coefficients (left) and particle extinction 
coefficients (right) in the region of thick cirrus cloud between 5.0 and 8.0 km on 1 July 2007.  
 

 

Figure 8.11: 15 minutes interleaved vertical profiles of lidar ratios for the cirrus layer observed on 1 July 2007.  
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Figure 8.12: Wavelet scalogram for the time series of lidar signal intensity at an altitude of 6.0 km presenting the 
appearance of different scales in the wavelet spectra. This figure identifies the dominant frequencies present in the 
cirrus layer using wavelet analysis of an 80-min time series of lidar data. Contour lines are also plotted. Time 
series of the signal intensity (upper panel) and averaged global spectra (right) are shown (see text for further 
explanation). 
 
series for applying wavelet transform to investigate the turbulence features present in the cirrus layer. 

Small-scale turbulence has an important influence on the cirrus structure. To extract small-scale 

turbulence features present in these layers, time series of range-corrected lidar signal intensity is treated 

here for the wavelet-based spectral analysis. Furthermore, the large vertical extension (up to 3.4-4.0 

km) of the cirrus cloud layer presents an advantage to study the internal variability within them.  

 Some features have been obtained after the Morlet-based WT analysis (discussed in chapter 4) 

of the time series of range-corrected lidar signal intensities at 5.0 km altitude where the cirrus clouds 

showed maximum variability. This example case was selected to illustrate the type of the results that is 

expected from the localized space-scale analysis. The wavelet-based techniques fortunately are able to 

extract and analyze multi-scale features hidden in the time series and therefore is applied here.  

 Two to three different frequencies were found to be dominant after the wavelet analyses. Figure 

8.12 shows the scalograms (time/period) of the time series of lidar signal intensity at 6.0 km where the 
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wavelet power spectra (average of absolute wavelength coefficient squared) are represented with 

pseudo-color scale increasing from black through green to red. Contours are overlaid for a better 

description of the wavelet spectra. It is important to note that the Morlet wavelet yields λ = 1.03s, where 

λ is the Fourier period, indicating that for the Morlet, the wavelet scale is almost equal to the Fourier 

period (Torrence and Compo, 1998). Time series of the signal amplitude at the selected height is also 

shown in the upper panel of the Figure 8.12. An interesting result deduced from the wavelet scalograms 

is that the different scales of 0.015 Hz are embedded inside the cirrus layers.  

 Two other peaks at 0436 and 0450 UTC indicate that the prominent contribution in variations is 

due to two scales centered about 0.06 Hz. Another small-scale structure was present in the scalograms 

at the beginning of the time series with a frequency of around 0.25 Hz.  

 Wavelet coefficients from the continuous analysis have been used to calculate global power 

spectra at the selected altitude and are shown in the right panel of Figure 8.12. The first peak in the 

averaged spectra is questionable since at this higher scale the edge effect is dominant and results are not 

reliable in this region. But the other scale corresponding to a value of 0.01 Hz with higher value of 

wavelet coefficient (red-color in the color bar) significantly demonstrates the presence of the 

corresponding frequency between 0400 and 0430 UTC. 

 

8.3.5 Scanning lidar measurements of aerosol field 

The UHOH DIAL system performed various scan patterns during the COPS IOPs. Two examples of 

RHI scan measurements of background-subtracted and range-square corrected offline signal intensity 

collected on 25 August 2007 (IOP 18 b) are shown in Figure 8.13. An aerosol plume is observed in this 

region colored in red against the green/yellow background. This shows how fast the aerosol particles 

can be lifted up to higher altitudes (towards the CBL top) triggered by the orography-induced 

convective activities. 

 Wind was blowing from west-southwest as was observed by the collocated radiosonde profile 

(see, wind barbs in Figure 8.8). 

 Continuous RHI scans were performed in such a way that each scan took of about 48 s both in 

forward (from elevation angle of 2° to 25°) and backward (from elevation angle of 25° to 2°) direction. 

The scan speed was set low enough (0.5° s-1) in both directions to provide high angular resolution. The 

high laser power of the UHOH DIAL system allowed capturing the aerosol structure up to a distance of 

more than 12 km.  

 Figure 8.13 shows diverse aerosol structures around a Cumulus mediocris (Cu med) cloud. This 

cloud attenuated the signals beyond it. A thick aerosol layer was present at an altitude of 2.0 km AGL 

throughout the measurement period as has been seen in the time-lapse animation of 30 such consecutive 

RHI scans (not shown here). The animation reveals that two detached aerosol layers existed which were 

coupled as time progressed. Enhanced convective activity and the associated dynamics of the aerosol  
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Figure 8.13: Example of RHI scans with the UHOH DIAL: range-corrected backscatter intensities showing the aerosol field around a Cumulus mediocris (Cu med) cloud. 
The scan speed was 0.5° s-1, each profile is with 1-s average giving an angular resolution of 0.5°. Elevation angles of 2 to 25° are covered. The range resolution is 15 m. The 
horizontal scale gives the distance to the lidar in km. The scan direction was towards southeast. 
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plume in the height between 0.2 and 0.6 km are visible. Wind driven aerosol dynamics at a height of 

1.0 km AGL can also be seen in the animation. The retrieval of the humidity field from such scanning 

measurements is in progress. 

 

8.4 Summary and conclusions 

High-resolution measurements of aerosol optical properties for some selected cases have been presented 

from the data obtained during the COPS field campaign in summer 2007. These results provide an 

important contribution to the CBL processes over low mountain regions like Black Forest. 

Orographically-induced flow modification has been studied in detail.  

 To best of my knowledge, for the first time 2-dimensional field of aerosol optical properties are 

determined after applying the rotational Raman lidar technique. This modified approach can give a 

better confidence towards the application of the scanning Raman lidars for studying the atmospheric 

aerosol processes with high accuracy. Measurement of aerosol optical properties during daytime with 

sufficiently high resolution is found to be an attractive feature of the UHOH RRL system.  

 The UHOH RRL measurement of aerosol optical properties during one case showed the 

presence of a thick aerosol layer up to an altitude of 3.0 km with a very high value of particle 

backscatter coefficient of about 6.0 x 10-6 sr-1m-1. This aerosol layer showed wave-like features over the 

mountains. The vertical distribution of aerosols yielded high ( )Rpar,λβ  up to 6.0 x 10-6 sr-1 m-1 which 

were highly correlated with the high values of RH of about 85 % derived from the collocated 

soundings. Some other aerosol layers with relatively low ( )Rpar,λβ  of 1.0 – 2.0 x 10-6 sr-1 m-1 were also 

present. In these layers, lower RH (of about 50 %) was observed. These results concerning the 

relationship between relative humidity and particle backscatter coefficient can help to obtain a better 

estimate of the hygroscopic factor. This is foreseen that these results can be improved by a combination 

of the simultaneous measurements of aerosol optical properties by UHOH RRL and the water vapor 

mixing ratio by UHOH DIAL system.  

 Independent measurements of particle extinction and backscatter coefficients, and the 

respective lidar ratio for the RHI scans confirmed two different types of the aerosol particles in the 

layers observed above the lidar site: one with a high lidar ratio of about 50 – 60 sr in the altitudes 

between 3.0 and 3.5 km and another with a relatively low values of lidar ratio of 20 – 30 sr below 2.0 

km altitude. These results are of unique importance for obtaining valuable information on the different 

types of aerosols and their extent and structure inside and above the ABL over the mountain and 

surrounding valleys.  

 Combined measurements of 2-dimensional field of aerosol optical properties and temperature 

by RRL showed presence of different stability regimes over the mountain peak and their effect on the 

surrounding aerosol field. The RHI scan measurements presented for this case investigated some 

features that were consistent with ascending air motion due to overflow over the ridge. The distribution 
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of the aerosol layers over the experimental site showed the terrain following flow features. The particle 

backscatter coefficient was slightly increased within a potential temperature tongue. These results, once 

complemented with the collocated remote sensing instruments, will allow making use of synergetic data 

products to investigate and understand important processes that inhibit or support convection in low 

mountain regions. 

 Observation of optical properties of aerosols, and dynamics in the cirrus cloud structures were 

derived from RRL technique and wavelet spectral analysis of lidar backscattering, respectively. Lidar 

ratios between the cirrus cloud base (5.2 km) and top (8 km) showed both high vertical variability with 

minimum and maximum values of 3 sr and 25 sr, respectively. Furthermore, a temporal variability was 

also observed while comparing the lidar ratio profiles during one-hour measurements. Small-scale wave 

structures were determined from the Morlet-based WT spectra. The results obtained from this analysis 

are promising and could be extended to three months time period (whenever present) of the COPS field 

experiment. The main disadvantage of this technique is that only octave frequency bands are resolved. 

 It should be noted that the interpretation of lidar observation of only lidar ratios of cirrus clouds 

in terms of properties of the cloud particles is not a straightforward task. This arises due to the 

complexities involved in the scattering processes in the cirrus layers and the presence of various sizes 

and shapes. To make general comments on the cirrus particles observed in the present case, it needs 

further case studies. COPS will give an opportunity to get more insights using multi-instrument datasets 

(in this regard) for calculating depolarization ratio, optical depth, emissivity, height, and cloud height 

for different sorts of cirrus layers like sub-visual, thin and opaque cirrus clouds observed during three 

month period.  

 Various time-synchronous scan strategies during the COPS campaign were found to be an 

efficient technique to study the atmospheric variables in 3-dimensions. Simultaneous scanning 

measurements of temperature field and aerosol optical properties are other key findings for ABL 

process studies during COPS. The relative particle backscatter field observed during an RHI scanning 

measurement with UHOH scanning DIAL system helped to investigate aerosol transport up to a 

distance larger than 10 km. Simultaneously measured water vapor field will no doubt be a treasure on 

the lidar application for atmospheric remote sensing as well as a big step forward in enhancing our 

knowledge about atmospheric science. 
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Chapter 9 

Summary, conclusions, and outlook 

9.1 Summary and conclusions 

Within this dissertation, a mobile, scanning eye-safe aerosol lidar system in the UV wavelength was 

developed and applied for investigating aerosol optical properties and transport processes in the lower 

troposphere, especially in the ABL. This work summarizes some of the most salient results of four 

different field campaigns/measurements and obviously adds some yet unpublished materials, which are 

based on the lidar application for studying atmospheric aerosols and the CBL processes. Here, main 

focus is to present recommendations for future work after briefly highlighting the key research findings.  

 

From lidar measurements at IR wavelength  

Within the first part of the thesis, the potential benefit of a vertically pointing lidar system operating at 

IR wavelength was demonstrated for a vivid representation of the daytime CBL over a complex terrain-

induced urban region. Ultra-high-resolution lidar sounding during measurements in Stuttgart downtown 

explored detailed insights into two different regimes of CBL on a same day: a quasi-stationary well-

mixed cloud free CBL (case I) and a rapidly growing CBL in the morning in presence of a strong 

residual layer above the CBL top (case II). For both cases, the instantaneous CBL height, its growth rate 

and associated entrainment were studied. Three different advanced approaches (LGM, IP, and HWT) 

were demonstrated for precise determination of the instantaneous CBL height and the associated EZT. 

The HWT-based analysis was found be a robust technique for this purpose. Additionally, the wavelet-

based approach was qualified to detect CBL height in complex situation like in case II. This yielded an 

advantage to explore the interaction between the RL and the growing sCBL.   

 A rapidly developing instantaneous CBL height with a growth rate of 5 m/minute was observed 

in the morning when the CBL was growing from 700 m AGL to the height of a residual layer at 1545 m 

AGL. The mean EZT was found to be 62 m. Interaction between the CBL and the RL above in this case 

is found to be suggestive of penetrative convection at the top of the CBL. But the CBL was found to be 

well-mixed in the afternoon. The evolution of the instantaneous CBL height at around 2.0 km AGL was 

found to be quasi-stationary. An FFT-based power spectrum analysis confirmed this stationarity with a 

spectral exponent value of 1.0. 



                                                                                                                                                                
   Chapter 9. Summary, conclusions, and outlook 

 172

 For the first time a high-resolution aerosol lidar measurements explored the benefits of the 

higher-order moments estimation of the aerosol backscatter field identifying different CBL activities. 

Application of the method introduced is so far valid for the well-mixed CBL regime where the 

fluctuations of aerosol microphysical properties can be neglected. The profiles of the higher-order 

moments of particle backscatter coefficient fluctuations in the CBL yielded a comprehensive picture of 

the CBL processes. It was demonstrated that the major part of the inertial subrange was detected and 

that the integral scale value (60-70 s) was significantly larger than the temporal resolution in the lidar 

data. Consequently, the major part of turbulent fluctuations was resolved. Vertical distribution of the 

variance, skewness, and kurtosis investigated the turbulence features in the CBL aerosol field and 

complex convective activity patterns with an accuracy that was mainly limited by sampling errors due 

to turbulence statistics. Furthermore, it was demonstrated that without noise correction, the values of 

integral scale, variance, skewness, and kurtosis in the CBL were either underestimated or 

overestimated.  

 Vertical distribution of variance showed a well-defined structure with a maximum value at the 

top of the CBL without further peaks confirming an aerosol distribution in a regime of well-mixed 

CBL. But the variance profile for the other case was found to consist of several peaks including the one 

at the mean CBL height. A negatively skewed structure of the aerosol distribution was found up to the 

top of the CBL and positive values of skewness were found in the entrainment zone for the case of well-

mixed CBL. On the contrary, a high vertical variability with both positive and negative skewness inside 

the CBL was observed for the other case.  

 A detailed intercomparison study was performed between the two cases concerning the 

characteristics features of the higher-order moments profiles. This demonstrated the quasi-stationary 

CBL regime to be a better choice for investigating turbulence in the CBL. A non-stationary CBL regime 

may often provide erroneous profiling of higher-order moments. For instance, the integral scale value in 

the region of residual layer showed a drop of 100 s at 1.4zi and an exceptional high value of 230 s at 

1.5zi, most probably due to the heterogeneity induced by the aerosol particles in the RL. 

 An FFT-based spectral analysis, the DFA technique, and the multifractal analysis have been 

found to be effective to study the non-stationary behavior of the CBL height evolution and the 

correlations in their fluctuations. The power spectra obtained with FFT-based analysis of the 

instantaneous CBL height time series during its rapid growth showed power-law dependency. The 

resultant γ value (1.502 ± 0.08314) confirmed non-stationary behavior. This value of γ was found to be 

closely similar to that from the DFA methods. The values of generalized dimension were found to be 

between 0 and 1. The CBL dynamic self-affinity with a roughness exponent of 0.37 was obtained which 

is consistent with the previous studies.  

 Both the qualitative and quantitative description of gravity waves in a RL in the evening and 

detection of the K-H filaments in daytime CBL are two important parts of this work. Wavelet-based 

extraction of spectral characteristics of a wave-like event in a residual layer yielded scale dependencies 
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of various structures and confirmed a wave signature with a frequency of 0.0001 Hz. The global 

wavelet spectrum also showed a peak around this frequency. Such multi-scale feature recognition (as 

presented with the scalograms) cannot be obtained with the standard FFT-based analysis. The 

wavelength of the K-H filament was found to be of about 400 m, which is not unrealistic for a case of a 

well-mixed CBL.  

 

From scanning lidar measurements at UV wavelength over flat terrain 

 Second part of the thesis emphasized on the development and application of a mobile eye-safe 

scanning aerosol lidar system for the study of aerosol processes inside the ABL. The lidar system was 

operated at a wavelength of 355 nm with an average power of 9 W in combination with a 40-cm 

scanner with a speed of up to 10° s-1. The capability of eye-safe operation made the system useful so 

that it could be operated without restrictions. A modified version of the inversion algorithm was 

introduced for determining aerosol optical properties from scanning lidar measurements. The capability 

of estimating optical properties of the aerosol particles and facility of the high-resolution scanning are 

two of the most important features of the UHOH scanning aerosol lidar system developed within this 

work.  

 First eye-safe scanning UV-lidar tracking of the optical properties of aerosol plume from an 

agricultural facility (located in flat terrain) was realized. A detailed picture of the transport of the plume 

was obtained. The physical and chemical properties of these aerosols were determined by means of 

spatially and temporally high-resolved scanning lidar measurements in combination with a high-

resolving atmosphere-microphysics-chemistry model and in-situ aerosol measurements at ground. 

Aerosol optical properties were predicted by the model and the results were compared with scanning 

lidar measurements.  

 Both model and lidar results yielded the particle backscatter coefficient of the plume to be of 

about 30 % higher than that of the background aerosol load near the facility. The aerosol structures 

presented through the PPI scan images showed very high particle backscatter coefficient up to            

1.0 X 10-5 m-1 sr-1 in the far region of about 2 km. A series of PPI scans demonstrated that the 

movements of the plume near the livestock facility were complex and were highly influenced by the 

turbulence inside the lower ABL. Longer averaging (~ 15 minutes) in PPI scanning measurements 

showed an approximately Gaussian-shaped aerosol plume missing the turbulence driven structures 

within it. Ground-based in-situ measurements during the campaign showed an increase of the aerosol 

number density downwind of up to 5 % in the lowermost 50 m of the atmosphere. 

 High-resolution scanning around the farm explored diverse physical features of the emitted 

plume e.g., the coverage area and rising, turbulence diffusion, spatial and temporal variability, and 

transportation in downwind over long distances up to 3 km. The lofted height of the plume was found to 

be of about 20 m AGL near the farm and of about 115 m AGL in an extended region of 3.0 km. 
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Intercomparison results show that the LES-AOP detected observed range of values for the particle 

backscattering for different aerosol simulation scenarios. The model simulation managed to represent 

the intensity of the farm contribution.  

 In contrast to the conventional in-situ measurement techniques, combination scanning lidar 

system, in-situ aerosol measurements and LES modeling towards a study of the physical/optical 

characteristics of aerosol flows close to a livestock facility was found to be a unique technique and 

highly synergetic. The uncertainty can be reduced in future field experiments by improved and precise 

in-situ measurements and lidar scanning. 

  With the aid of novel technique developed within this work, following major key research 

issues concerning lidar application were achieved: 

• Scanning aerosol lidar at UV wavelength is capable of estimating the optical properties of 

aerosol plume from a faint source. 

• High-resolution scanning lidar measurements are required to investigate the spatial and 

temporal variability of the plume and their transport in downwind. 

• An appropriate scan strategy was found so that the aerosol emission could be observed. 

Through this, a clear scan strategy for the improvements of the results is envisioned for future 

scanning lidar applications.  

 

From the scanning rotational Raman lidar measurement over complex terrain 

Scanning RRL measurement from the top of the Black Forest mountain investigated some of the CBL 

dynamical features, which were mainly driven by the local orography of the region. The RRL technique 

was modified to allow the retrieval of particle backscatter coefficient and particle extinction coefficient 

and then the corresponding lidar ratio from the scanning RRL measurements. This yielded another 

benchmark for the application of the RRL technique to determine the aerosol optical properties in 2-

dimension which can be considered to be the most efficient way-out to investigate the aerosol processes 

in the ABL.  

 The first scanning aerosol measurements with the rotational Raman lidar technique were 

realized during the PRINCE campaign in 2006. The CBL height was found to vary between 800 m 

(1900 m ASL) and 1300 m AGL (2400 m ASL) over Hornisgrinde mountain during most of the 

campaign days. An FFT-based spectral analysis of a time series of the height of a well-mixed CBL case 

yielded a spectral exponent value of 1.0 confirming the stationarity in the time series.  

 A strong vertical variability of lidar ratios between 30 and 50 sr was observed in presence of 

different aerosol layers. Even on a same day, two different types of vertical variability of the lidar ratios 

were observed: one with 30 sr in the morning and another with 10 sr in the late afternoon confirming 

presence of two different types of aerosol particles.  
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  During one IOP day (case I) in PRINCE campaign, combined high-resolution measurements of 

aerosol optical properties and temperature field obtained with the UHOH RRL revealed undulating 

aerosol-rich layers in the preconvective environment and a gradual warming trend of the lower 

troposphere as the nearby storm system evolved.  

 Results obtained with the collocated Doppler lidar measurements of radial wind velocity 

confirming the upslope flow (from valley to mountain) and the return flow (as a part of a elevated 

easterly) suggested a consistent picture of the transport of the aerosol layers over the mountain. 

Presence of these layers was confirmed by the UHOH scanning RRL while investigating the optical 

properties of the aerosols in those layers.  

 Some selected measurement examples were presented from the data obtained during COPS 

field campaign to show a unique importance for obtaining valuable information on the different types of 

aerosols, and their extent and structure inside and above the ABL over the mountain and surrounding 

valleys which is closely related to COPS.  

 Combined measurements of 2-dimensional field of aerosol optical properties and temperature 

showed presence of different stability regimes over the mountain peak and their effect on the 

surrounding aerosol field. These results once complemented with the collocated remote sensing 

instruments will allow using synergetic data products to investigate and understand important processes 

that inhibit or support convection in a low mountain range. 

 Independent measurements of particle extinction and backscatter coefficients, and the 

respective lidar ratio obtained from RHI scans confirmed two different origin of the aerosol layers 

observed above the lidar site: one with a high lidar ratios between 50 and 60 sr in the altitudes between 

3.0 and 3.5 km and another with a relatively low values of lidar ratios between 20 and 30 sr up to 2.0 

km AGL. These results are of unique importance for studying advection of different aerosol layers over 

the mountainous regions.  

 Observation of aerosol optical properties and turbulence driven features in the cirrus cloud 

structures were derived from wavelet-based spectral analysis. On using Morlet as the mother wavelet, 

the wavelet spectra of the time series of lidar signal intensity in the cirrus layer yielded different 

frequencies around 0.151 Hz, which were confirmed by the FFT power spectra. Presence of different 

frequencies during different times in the cirrus layer was most probably arising due to patchy turbulence 

in this region. Lidar ratios between the altitudes of cirrus cloud base (5.2 km) and top (8 km) showed 

high vertical variability with a minimum and maximum values of 3 sr and 25 sr, respectively.  
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9.2 Outlook 

Three different advanced techniques for the determination of the instantaneous CBL height were 

demonstrated for the first time for ultra-high-resolution aerosol lidar measurements. The Haar wavelet-

based approach can be applied for an automated detection of the CBL height on a routine basis. Future 

research can be directed towards estimation of the CBL height from high-resolution lidar measurements 

in real time for an immediate interpretation of the CBL aerosol processes.  

 The EZT can also be estimated routine basis in real time. Application of cumulative frequency 

distribution technique to the high-resolution time series of instantaneous CBL height to calculate EZT 

yields immense confidence for future lidar applications. Multi-instruments dataset will definitely help to 

demonstrate this in detail. Furthermore, the LES modeling of the entrainment processes is an essential 

issue for atmospheric applications (Otte and Wyngaard, 2001). Thus, several entrainment law 

formulations have been derived to date, which relate the entrainment velocity, namely the velocity at 

which the interface rises, to measurable parameters of the mixed and interfacial layers. Results 

presented with two different techniques could be related to these parameters.  

 Higher-order moments were calculated with respect to fluctuations of the particle backscatter 

coefficient at different heights. This highlights that aerosol lidar data can yield potential benefit to 

estimate turbulence features in the CBL. The application of these analyses for the CBL turbulence is an 

important aspect of atmospheric science, which has not been possible earlier applying developed 

techniques to aerosol backscatter lidar measurements. A deeper insight into the dependence of the 

variance of a scalar on scaling parameters in the convective boundary layer can be explored with the aid 

of results obtained from LES models (Wyngaard and Brost 1984; Moeng and Wyngaard 1984; Moeng 

and Wyngaard 1989).  

 The wavelet-based spectral analysis could be a good basis for aerosol lidar application towards 

estimating the multi-scale processes present during wave events.  

 Multifractal analysis exhibited that the CBL height fluctuation can be characterized by simple 

statistical parameters like generalized multifractal dimension, roughness exponent. More cases need to 

be studied, however, in order to provide a more precise interpretation of these results. The aim of this 

next step could be to classify CBL height time series according to their statistical properties and to 

relate these properties to the underlying dynamics in different meteorological situations. Another 

important aspect of this study could be in the direction of the application of these techniques to time 

series of other relevant physical parameters like pressure, temperature, humidity, and horizontal wind at 

the CBL height.   

 The eye-safe scanning aerosol lidar system operating at UV wavelength developed within this 

dissertation is found to be an important candidate for future lidar application for studying aerosol 

processes in the lower troposphere, especially inside the ABL. The novel approach developed within 

the BW-PLUS project has an extraordinary future potential for studying the emission of health-
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hazardous particles to assess the risk they possibly pose, a prerequisite for mitigation measures. The key 

future research may include the following: 

• The combination of observations and modeling approach could be used for an improved 

representation of aerosol sources in large-scale atmospheric modeling.  

• Assimilation of the lidar derived aerosol optical properties by developing an aerosol operator 

can yield a better initial state of the field of optical properties in the LES-AOP simulation.  

• A fast volume scan with very high speed is recommended to accomplish the detection of the 

plume from livestock farm so that aerosol structures and transport can be observed at multiple 

altitudes simultaneously, to yield a 4-dimensional description of the field of the aerosol optical 

properties.  

• More powerful lidar systems with even greater dynamic ranges and sensitivity are technically 

feasible. This lidar system could be improved to a version to achieve longer range, high 

sensitivity and less maintenance facility. An important research effort could be made in making 

the system fully automated and unattended.  

• Deployment of scanning rotational Raman lidar so that the independent aerosol optical 

properties and temperature can be derived. 

• A surface meteorological station with frequent radiosonde launching facility can give more 

reliable information about the prevailing meteorological condition near the farm.  

 This is convinced that longer time series of lidar measurements can improve this study through 

an accurate investigation of the vertical extent yielding more insight into the plume emissions and 

transport during different episodes of ABL activities. 

 The resolution of the scanning RRL data will allow the analysis of turbulent structures within 

the boundary layer and sensible heat flux estimation by combination with the data of collocated Doppler 

lidar measurements during COPS. The results presented is a starting point in this concern to 

demonstrate the complex orography induced flow modification, evolution of CBL, role of residual layer 

or aerosol layer, mountain induced waves, and stable NBL processes. During COPS at the supersite 

Hornisgrinde, meteorological surface-based measurements including frequent radiosonde launches and 

state-of-the-art remote sensing instruments like scanning Doppler lidar, water vapor DIAL, cloud radar, 

scanning micro wave radiometer were performed. Combination of the data products from these 

instruments will provide a unique dataset for boundary layer characterization, convection initiation, and 

evaluation of the meteorological models, and for studying aerosol-cloud microphysics.  

 The analyses of the COPS dataset are still ongoing. Intensive research efforts have been 

initiated to connect all the data products from the different ground-based and airborne, active and 

passive remote sensing instruments to each other and to study the chain of processes leading to 

convective precipitation. Near-future research will be a big step forward concerning the 4-dimensional 

remote sensing based on COPS for studying convective initiation in complex terrain. 
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Appendix 

 

A. Lidar data, data control, scan strategies, and analysis 

A1. Overview of the lidar data structure and codes used 

The UHOH aerosol lidar system stores data in a special binary format called Bscan format. This is 

achieved with the Labview codes developed (detailed in appendix-B) in UHOH within the part of this 

dissertation. Bscan is a program that runs from the PV-WAVE or IDL command line. Therefore, the 

format used for the data is called Bscan format. Within this work, the procedure for writing lidar data 

with this format was achieved. This format yields the user a number of advantages to analyze and 

visualize scanning and non-scanning lidar data. 

 Bscan reads fixed-length binary records. Each record in such a file contains a 30-word header 

followed by a profile of predefined length. All header words and profile elements are real*4 values and 

the first element of the profile is the value closest to the instrument. Several lidar data analysis and 

visualization tools were developed in IDL. With the help of Bscan format, one can produce two-

dimensional, time-versus-range or time-versus-altitude, color images of any lidar dataset. Data obtained 

from any ground-based or airborne (nadir or zenith) lidar can be analyzed as long as the data are written 

in the required format. The format used for the UHOH aerosol lidar system contains the header 

information in each data file as shown in Appendix- A2. IDL codes made it possible to provide near-

real time automated analysis and displays of the stored lidar data. Therefore, the UHOH lidar data 

structure is developed in such a fashion so that the basic information about the lidar run: the acquisition 

start time, the total number of lidar events inside the file the number of operational digitizer modules, 

the PMT voltages, the laser power, and some remarks can be achieved fast for the purpose of post 

processing. 

 Special emphasis was given for the retrieval of aerosol optical properties for vertical 

measurements and scanning measurements after two different techniques i.e., Fernald algorithm, 

rotational Raman lidar technique. An excellent graphical tool was designed to produce animation of the 

scan images for better understanding of the dynamical processes taking place in the atmosphere.
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A2. Lidar data format 

LIDAR DATA HEADER (Bscan) FORMAT  

at UHOH as 25/05/2004 

 
0    hour (0. - 23.): 18          [From GPS] 
1    minute (0. - 59.): 39.000         [From GPS]  
2    second (0.00 -59.999): 10.38        [From GPS] 
3    GPS altitude (meters above mean sea level): 0      [From GPS] 
4    alternative altitude (i.e. pressure altitude, not decided yet): 0     [Arbitrary]       
5    alternative altitude (i.e. radar altimeter, not decided yet): 0     [Arbitrary]       
6    beam azimuth (forward is 0, right wing is 90, aft is 180, left wing is 270, etc.): 0  [From Scanner] 
7    beam elevation (0 is level with horizontal plane of platform, +90 is zenith, -90 is nadir): 90 [From Scanner] 
8    platform roll (left-right angle in degrees off earth's horizon): 0    [Not used] 
9    platform pitch (nose-tail angle in degrees off earth's horizon): 0    [Not used] 
10  platform heading: 0          [Not used] 
11   month (1. - 12., Please note that this variable will be used to test byte-order.): 11  [From Computer] 
12   day (1. - 31.): 24          [From Computer] 
13   year (please use full year; i.e. 1995 not 95.): 2004      [From Computer] 
14   pulse repetition frequency (PRF) of lidar in Hz: 30      [Arbitrary]  
15   number of shots that were not included (from intention) in this profile: 0   [Arbitrary]  
16   data type identifier (please see addendum 1) : 260      [Arbitrary]  
17   number of hours to adjust header time to get to UTC (positive or negative): 0  [From GPS] 
18   platform latitude (north pole = +90, equator = 0., south pole = -90.)    [From GPS] 
19   platform longitude (degrees east of Greenwich.): 0      [From GPS] 
20   range from lidar of the first word in the profile in meters: 0     [Arbitrary] 
21   range resolution of data in meters (i.e. 15 m per word if using 10 MHz digitizer): 3  [CS14100] 
22   platform identifier : 9.0015         [Arbitrary]         
23   number of words in header (currently 30.): 30      [Arbitrary] 
24   no data flag (what you put in the profile if data is not available for a particular word): 0 [Arbitrary]  
25   scan style (0 =VAD, 1=RHI, 2=FIXED, 3=OTHER): 0     [From Scanner] 
26   number of laser shots actually used to derive this profile (header 28 minus header 16): 10 [Arbitrary] 
27   number of laser shots intended to use to derive this profile (header 16 plus header 27): 0 [Arbitrary] 
28   number of words in the profile (word in the data part of the record, not the header): 4096 [CS14100] 
29   transect number or scan number (increases by 1 for each scan or transact): 0  [From Scanner]
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A3. Data control and scan strategies 

In principle there are two different types of scan strategies that have been followed during the lidar 

measurements during the four field campaigns performed from 2004-2007. First one concerns the 

continuous vertical measurement and/or PPI/RHI sector/volume scans and the other one is the discrete 

scan strategy, where a defined number of LOS data are collected covering a region of 

azimuth/elevation. In all cases, the amount of stored data is a trade-off between the time 

resolution/range resolutions and scans speed/number of scans/number of sectors. The data store policies 

have been followed in such way that the real-time displays during data acquisition are not hampered 

and/or the time necessary for post-processing is not large enough. The scan strategies largely depend on 

the aim to achieve with the lidar experiment and varied during the field campaigns performed.  

 

B. Data acquisition codes in LabView 
 

B1. Overview of the data acquisition codes  

A number of dedicated data acquisition and evaluation programs have been developed within this 

research with an aim of providing near-real-time quick looks of the lidar data products. An accurate 

high speed DAC system was developed in LabView. LabView is a graphical programming language 

developed by National Instruments (http://www.ni.com). Several user-friendly programs were written in 

LabView 7.1 as a part of DAC providing excellent user interface design, scanner motion control, 

input/out file report, and real time display of lidar signals. The flow diagram showing the major steps 

involved in the DAC during lidar measurement is shown in Figure B1. 

Three different versions of the DAC were developed. These are 

(I) DAC for the vertically pointing lidar system at IR: This DAC was specially made for the 

controlling of the lidar data acquisition build with an ADC card CS14100 and storage of the lidar 

data in Bscan format on a PC. One screen shot of this version is displayed in Figure B2. 

(II) DAC for the scanning eye-safe aerosol lidar system at 355 nm: This DAC is in contrast to the 

previous version of the DAC providing a unique capability of scanner motion control and process 

ADC signal only in single channel mode. Figure B3 shows one screen shot of this DAC during 

the lidar measurement yielding three major panels of the graphical interface namely initialization 

of the Gage card (right panel), display of the lidar data (central panel), and initialization of the 

scanner (left panel). 

(III) DAC for the scanning rotational Raman lidar at 355 nm: A 3-channel Licel transient recorder was 

used in the data acquisition system. A stare-and-step scan strategy was optimized in the DAC. 

This DAC provides the user the possibility of (1) Choice of the scanning sector, scan type, scan 

step resolution, number of scan steps, time resolution, range resolution, option for time-

synchronized scan. (2) User can put the above values through a batch file and run the code 
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continuously unless it is stopped. (3) Continuous display of GPS time, scanner location both in 

azimuth and elevation, (4) Time-synchronized scan with complicated scan pattern. A screen shot 

during lidar measurement is displayed in Figure B4. 

 

B2. Implementation of scanning operation 

The operator needs to define/fill the following fields before the scanning operation starts: 

• Choice of the scanning type; i.e. either fixed PPI or RHI or volume scan (PPI/ RHI) 

• PPI offset angle the scanner is deviating from the geographical north. This is called “Hall to 

North offset” 

• RHI offset: angle the scanner is deviating from the geographical horizon. This is called Hall to 

Horizon offset.  

• Stare angle: angle showing the direction (azimuth /elevation) the scanner mirror should look  

• Start angle: Sector scan start angle 

• End angle: Sector scan end angle. 

• Scan speed: Maximum 10° s-1 

• Number of scan: The default value is “infinity”. The scanning movement is stopped when the 

main STOP button is pressed. 

 While initializing, the scanner always goes to the 0 angle of the motor processor and then it 

initializes to the selected offset angle. When it starts scanning then it always gives a feedback value 

(as it is asked for) of the position in degrees measured from the initialized position (from north for 

PPI and from horizon for RHI).  

 In summary, the scanning programme adds the following information to the vertically pointing 

lidar programme: (i) raw instantaneous elevation or azimuth angle value replied from the scanner 

processor, (ii) stare angle (fixed elevation or azimuth), (iii) scan number, and (iv) scanning type. 

Most important governing factor is the forward movement indicator, which takes care that the lidar 

data are stored only when the scanner is in the forward moving stage. This code takes care about the 

scanner motion control. 
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Figure B1: Flow chart showing the major steps involved in the of data acquisition software developed. 

 

 Visualization of the lidar signal intensity in real time (during measurement) is a significant 

issue in the field of active remote sensing technology. The processed lidar data in real-time are 

displayed in the front panel of the DAC. One example is shown in Figure B3. The plot shows the range-

corrected backscatter signal versus number of emitted laser shots since the start of the measurement and 

versus range. The profiles were recorded with elevation angles between 30 and 90° with 0.033 s 

temporal resolutions and 3 m range resolution (which corresponds to about 180 profiles per scan). The 

top of the boundary layer in about 1.4 km height is characterized by lidar backscatter signal intensity. 

Vertical profiles are generally larger in intensity in this plot because the data are not corrected for 

atmospheric extinction here. 
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Figure B2: Front panel of the DAC of UHOH aerosol lidar during the measurement at Stuttgart downtown in 2004. The Full panel includes the panel containing the 
initialization of the Gage card CS14100 and a display panel containing the raw lidar signal for the wavelength 532 nm (left panel) and 1064 nm (right panel), and range-time 
indicator panel showing the evolution of the atmospheric aerosols structures.  
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Figure B3: A real time display of an RHI scan in time-range panel during data acquisition obtained after a screen shot from the lidar data acquisition computer during test 
measurement at UHOH on 1 September 2005. 
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Figure B4: Latest version of the DAC of UHOH scanning temperature and aerosol lidar system during the field 
campaign COPS in 2007. Left panel (profile plot, abscissa is distance from lidar and vertical axis is value of the 
ratio) shows the ratio of the two rotational Raman lidar channel, which is an indicative of the atmospheric 
temperature profile in real time. Right panel shows the received backscatter signal intensity (mV) in the same 
fashion as left panel.  
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Figure B5: Flowchart showing the steps involved in the DAC. Data flow during acquisition (left) and scanner control (right) 
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C. Sensitivity tests for the inversion algorithm 

The analytical inversion technique for determining aerosol optical properties from data obtained with 

the elastic backscatter lidar system is being used and discussed in the literature (e.g., Kunj, 1996; 

Fernald, 1984; Sasano et al., 1985; Klett, 1986; Bissonnette, 1986; among others) for approximately 

three decades and is still under discussion.  

 It has been mentioned in chapter 3 that the two-component monostatic lidar equation takes into 

consideration the scattering due to air molecules and aerosols under the assumption of a constant lidar 

ratio. Additionally, inversion method depends upon the specification of a boundary condition of a 

certain value for the backscatter coefficient at a designated range, so called calibration range.  

 Fernald (1984) showed in his paper that the boundary conditions at the far range give a better 

convergence when integration is made toward the near range. This is called backward integration 

scheme in the analytical inversion. Since the backscatter coefficient value at the boundary is usually 

unknown, it is often assumed that an aerosol-free layer exists at a certain level, which is called the 

matching method to calibrate the lidar signal.  

 As mentioned before the solution for ( )Rpar,λβ  with the inversion technique inherently uses 

some assumptions. Therefore, following sensitivity tests are of immense importance and have been 

performed: 

• Dependencies of the retrieved ( )Rpar,λβ  on the assumed aerosol lidar ratio 

• Behavior of the solution with forward and backward integration scheme 

• Changes in the calibration height and the assumed ( )Rpar,λβ  value at that height 

• Impact of the error in the Rayleigh scattering cross-section on the retrieved ( )Rpar,λβ  

field 

 The Inversion algorithm is sensitive to the assumed value of the calibration range/height and the 

( )Rpar,λβ  value at that calibration range. This raises another question concerning the sensitivity of the 

inversion scheme (forward or backward) in dependence of the calibration range. The assumption of the 

calibration range is therefore related to the integration scheme to be applied in the inversion algorithm. 

It has been shown in numerous literatures including the Fernald’s paper on the inversion technique that 

the backward integration or so called far end solution is most appropriate as the corrupted (not accurate) 

( )Rpar,λβ  value converges to the true value in the case when backward integration is used. A 

parametric sensitivity test of the two main inversion algorithms (inversion solution from near-end and 

far-end boundary conditions) was performed to demonstrate the stability of the inversion scheme 

applied. These two solutions are basically identical in theoretical point-of-view but they differ in 

practice because of the stability problems arising from the non-linearity of the monostatic lidar equation 

as shown in Figure C1. In this Figure the calibration range is considered at 4 km. Clearly shown is that 
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the analytical solution for ( )Rpar,λβ  at a range of 5 km has high instability for the forward integration 

scheme while in case of the backward integration scheme, the solution looks comprehensive.  The 

lidar ratio confirms the relationship between the extinction to the backscatter ratio as mentioned in 

chapter 3. This ratio is not necessarily constant with height. Under most circumstances, the vertical 

distribution of the lidar ratio is not known. 

  Fernald (1984) assumed in his paper aerosol lidar ratio is constant in height. This essentially 

assumes that the size distribution and compositions are not changing with height and the variation in 

( )Rpar,λβ  is due to the changes in the number density. Sasano et al. (1985) showed that a constant lidar 

ratio value can lead to errors in the ( )Rpar,λβ . This theoretical analysis suggested that the investigation 

of the retrieved ( )Rpar,λβ  solution needs detailed sensitivity tests. This is clear from Eqn. 4.32 that 

when a constant value is assumed for aerosol lidar ratio, solution is definitely affected by the molecular 

extinction coefficient. Present section investigates this after using UHOH lidar data rather than 

theoretical analysis. Figure C2 depicts the particle backscatter coefficient field obtained after applying 

 

 

Figure C1: Demonstration of the instability present in the particle backscatter coefficient during forward 
integration scheme applied in the inversion algorithm.  
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different lidar ratio value (constant in height) during the inversion technique applied to the lidar signal. 

This Figure shows the effect of assuming constant lidar ratios during ( )Rpar,λβ  calculation. There is no 

chance to accurately estimate the aerosol lidar ratio value for this case. This value is assumed to be 39, a 

frequently used value for the aerosols for the European region (Pappalardo et al., 2005). Kovalev (1995) 

showed in his paper that the distortions of the aerosol extinction profiles are in general larger if the 

assumed lidar ratio is overestimated. The findings here are similar to that obtained by Kovalev (1995) if 

one assumes that the lidar ratio value used here is correct. 

 

 

Figure C2: ( )Rpar,λβ  profiles for different height independent lidar ratios for determining the impact of lidar ratio 

in the inversion method.  
 

 For the sensitivity test concerning the assumption of calibration range, the backward integration 

scheme is applied only. This test inherently concerns the assumption of aerosol free atmosphere and the 

quality of the lidar signal at the calibration range. Figure C3 shows the results obtained from the 

inversion method while considering different calibration heights for the data obtained as shown in 

Figure C2. This figure shows that the retrieved ( )Rpar,λβ  value at different heights (e.g., 1.0 km, 

1.1 km, 1.2.km etc.) after the calibrating the lidar signal at different heights (1.5-2.0 km, 2.0- 2.5 km, 

2.5-3.0 km). The figure yields that for all heights the obtained ( )Rpar,λβ  value is underestimated while 

calibrating the lidar signal beyond 4.0-5.0 km. Additionally, the behavior of the deviation is also the 

same. This clarifies the fact that if one starts the calibration in the height between 4.0 and 4.5 km, then 
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the retrieved ( )Rpar,λβ  shows neither any underestimation nor any overestimation. At the same time, 

one should remember that as the number of steps involved in the backward integration scheme 

increases, faster (better) the correct ( )Rpar,λβ  value is obtained. Therefore, while averaging in 

range/height, a gliding boxcar average is applied to the case here so that the number of height steps 

(bins) is not decreased during the averaging procedure. Inversion technique also requires ( )Rpar,λβ  

value at the calibration range (in the region of less aerosol loading). The value of ( )Rpar,λβ  at the 

calibration range is in general an unknown quantity. The solution is also sensitive to the assumed value 

of ( )Rpar,λβ . An iterative approach is followed here to estimate the relatively correct ( )Rpar,λβ  value at 

the calibration range. The term ‘relatively correct’ is used here to emphasize that the ( )Rpar,λβ  value at 

the other ranges anyway approaches to the correct value while 

 

 

Figure C3: Sensitivity tests of the calibration height for the inversion algorithm applied  
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Figure C4: Determination of particle backscatter coefficient at the calibration range with the iteration method 
applied during the inversion technique. 
 

while backward integration is applied. Figure C4 shows the vertical distribution of the ( )Rpar,λβ  value 

obtained with this iterative approach. This is clear from the figure that the there is no significant 

difference among the results obtained from iteration 2 to 6. These curves are obtained in the following 

way. Particle backscatter coefficient value of the calibration range is kept very low (1.0 x 10-7, m-1 sr-1 

or less. Then a profile of ( )Rpar,λβ  is resulted. For the next iteration the value of ( )Rpar,λβ  at the 

calibration range is obtained from the previously obtained ( )Rpar,λβ  profile. This is called iteration 2 

and so on obtained the results from higher iteration steps. This is clear from the figure that the solution 

converges rapidly and no differences were found in the results obtained from the iteration 2, 3, 4 etc. 

Therefore, there is no need to recalculate the ( )Rpar,λβ  after iteration 2. Above all, the value of 

( )Rpar,λβ  at the calibration range is having significantly poor effect on the solution.  
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Figure C5: Impact of the error in the Rayleigh scattering cross-section on the particle backscatter coefficient 
profile. 
 

Impact of the error in the calculated molecular backscatter scattering coefficient on the calculated 

( )Rpar,λβ  is now aimed here.  

 Figure C5 shows the profiles of (left panel) ( )Rpar,λβ  obtained with no error performed during 

the ( )Rpar,λβ  calculation and with an error of ± 10 % in molecular scattering coefficient. Clearly seen 

are the different values of ( )Rpar,λβ  with height with three different molecular scattering estimates. 

Right panel shows the calculated deviation in percentage of the error in ( )Rpar,λβ  profile. This figure 

shows that an error of 10 % in the molecular scattering coefficient can lead to an error of up to 60 % in 

( )Rpar,λβ  profile. Therefore, it can be concluded that more accurate the molecular scattering coefficient 

profile, more accurate is ( )Rpar,λβ  profile. In this regard a special care is taken during the calculation 

of Rayleigh scattering following Bucholtz (1995) as mentioned in chapter 3.  

Through the above sensitivity tests one major conclusion can be easily drawn: Fernald’s 

inversion technique takes the advantage that there is no requirement to quantify the value of system 

constant. The calibration value at the far range is necessary to assume. The influence of the wrong value 

of particle backscatter coefficient at the calibration range is mainly limited by the far end of the 
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measurement path. The ( )Rpar,λβ  value retrieved at the near range (first 2/3 of the lidar and calibration 

range) can be considered as very good estimates even if ( )Rpar,λβ  at calibration is totally wrong as far 

as ( )Rpar,λβ  is at far end is greater than 0 and lidar signal quality is good enough to apply inversion 

technique.  

 

D4. Wavelet transforms analysis  

The steps involved in using wavelet-based spectral analysis (see, Torrence and Compo, 1998 for a 

detailed discussion) are outlined here.  

(i) Find the Fourier transform of the time series 

(ii) Choose a wavelet function and a set of scales to analyze 

(iii) Once a wavelet function is chosen, it is necessary to choose a set of scales ‘s’ to use in the 

 wavelet transform. It is convenient to write the scales as fractional power of two  

jj

j SS d
0 2=                [D1.1] 

where, S0 is the smallest resolvable scale and j = 0,1,2,……..J. J determines the largest scale. 

The S0 should be chosen so that the equivalent Fourier period is approximately 2dt. The choice of 

sufficiently small dj depends on the width in the spectral space of the Wavelet function. 

(iv)   For each scale, construct the normalized wavelet function using  

 ( ) ( ) ( )kk s
t

ss ωψπωψ 0

2/1

d
2=               [D1.2] 

(v) Wavelet transform is calculated at that scale using 

( ) ( ) dtni
N

k

kkn
kesXsW

ωωψ∑
−

=

=
1

0

*
                 [D1.3] 

(vi) Determine the cone of influence and the Fourier wavelength at that scale 

(vii) After repeating steps III-V for all scales, remove any padding and contour plot the wavelet power 

spectrum 

(viii) Make the scalograms together with the time series of the variable and global power spectra. 
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