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1.Summary-Zusammenfassung 

1.1 Summary 

Phosphorus (P) is an essential macronutrient for the growth and development of plants, which is required 

as the structural component of nucleic acids, phospholipids, phospho-proteins and metabolites and plays an 

important role in the transport of cellular energy with ATP. However, plants can only absorb P directly as 

phosphate (Pi) in the soil solution, and the Pi concentration in soil solution is normally quite low, so plants 

often suffer from P deficiency, which affects the crop yield and quality. In agriculture, farmers massively 

apply P fertilizer to maintain high yield. Due to the long-term high fertilization rates and long-term organic 

residue accumulation, the total P pool per hectare has increased between 1900 and 2020. Since modern 

varieties have often been selected in high-nutrient input conditions for high yields, concerns are being raised 

that the beneficial traits for P uptake under a limited P supply will gradually decline in elite varieties. Re-

garding to maize (Zea mays L.), thousands of varieties have been bred since it was domesticated as a food 

product. It is an open question whether traits and genes related to P deficiency in European maize have 

changed since the Green Revolution, the start of hybrid breeding and high-intensity fertilization. This is the 

core research question of this dissertation. Here I present the analysis of roots in response to P deficiency 

using a diverse panel of European maize genotypes via several experiments. 

In Chapter I, we focus on whether maize seedlings of the flint and dent heterotic pools vary in the P acqui-

sition and utilization since the onset of hybrid breeding using 34 genotypes in mini-rhizotrons. These gen-

otypes included 16 flint lines that were released over more than five decades ago, 7 doubled haploid lines 

from the flint landraces (DH_LR), 8 dent lines, and 3 hybrids. Seedling P use efficiency (PUE) and related 

traits were measured and compared at two P levels in a calcareous soil. Seedling PUE and P acquisition 

efficiency (PAE) from founder flint to representative elite flints declined over the last decades, which was 

associated with smaller root systems and their reduced ability to exploit external P, were paralleled by 

decreased rhizosphere pH and shorter root hairs in low P. Comparing flints with preselected DH_LR, old 

and more recently released dent elite varieties, elite dent seedlings and their hybrids revealed improved 

PUE and earlier start to acquire exogenous P. DH_LR were similar to modern elite flints. When evaluating 

early root traits associated with high P efficiency, seed P should also be considered, and it is important to 

stack different root traits to optimize PUE, Phosphorous utilization efficiency (PUtE) and PAE in breeding 

programs. The root hair length, the ability to acidify rhizosphere and root diameter in maize flint and dent 

pools may be utilized to further improve P use in maize agroecosystems.  

In Chapter II, we compared the root exudated organic acids and mycorrhizal fungi colonization degree 

among 24 genotypes which have been evaluated in Chapter I. These genotypes included 16 flint lines, 6 

DH_LR and 2 old dent lines. Seedling colonization with arbuscular mycorrhizal fungi (AMF) and organic 
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acid anion release were measured. P-uptake-related root traits were compared under P-sufficient and P-

deficient conditions. Weak trends for the loss of AMF colonization or changes in organic acid anion release 

at low P supply were detected in modern varieties. One DH_LR was found with increased mycorrhization, 

whereas others were similar to modern elite lines. Overall, substantial genetic variance was encountered for 

these traits.  

In Chapter III, using nearly isogenic maize lines, the B73 wild type and the rth3 root hairless mutant, we 

quantified the effect of root hairs and AMF infection in a calcareous soil under P deficiency. Wild-type root 

hairs extended the rhizosphere for acid phosphatase activity by 0.5 mm compared with the rth3 hairless 

mutant. Total root length of the wild type was longer than that of rth3 under P deficiency. Higher AMF 

colonization and mycorrhiza-induced phosphate transporter gene expression were identified in the mutant 

under P deficiency, but plant growth and P acquisition were similar between mutant and the wild type. The 

mycorrhizal dependency of maize was 33 % higher than the root hair dependency. The results identified 

larger mycorrhizal dependency than root hair dependency under P deficiency in maize. Root hairs and AMF 

inoculation are two alternative ways to increase Pi acquisition under P deficiency, but these two strategies 

compete with each other. 

In Chapter IV again two nearly isogenic maize lines, the B73 wild type and the rth2 root hairless mutant, 

were used to address the importance of root hairs during drought and under P deficiency. The results indi-

cate that drought and P deficiency synergistically impair maize growth; while P concentrations were little 

affected by the loss of root hairs, the P content was massively reduced at combined stress, showing that P 

deficiency is much more severe under drought. 

In Chapter V, we first compared the root traits response to low P and high P of six preselected genotypes 

in European flint in Chapter I. We then generated RNA libraries from the roots of these lines under both 

low P and high P. Using an expressed genes matrix, we conducted a Weighted Genomic Coexpression 

Network Analysis (WGCNA), and detected general low P-induced modules and modules that were higher 

in founder flints. The P deficiency-responsive metabolic processes common to all six genotypes included: 

(1) acceleration of carbon supply for organic acid synthesis through glycolysis and TCA cycle; (2) alteration 

of lipid metabolism; (3) changes of activity of transmembrane transporters; (4) carotenoid metabolism. 

Additionally, the founder flint line EP1, F2 and doubled haploid landrace SM1 have their specific strategies 

and mechanism to cope with low P. Our findings well support other studies with transcriptome, proteome 

and metabolome experiments in maize and other species, and point to molecular events involved in the 

efficient alleviation of P stress in efficient maize accessions.  
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Altogether, this study presents informative analyses in how maize genotypes with distinct breeding history 

adapt to P deficiency in regard of root, rhizosphere traits and root transcription. It showed correlation be-

tween phenotypic traits and gene transcription, which is much more complex than previously reported. It 

also opened a novel insight into molecular regulation on Pi utilization, resulting in promotion of vegetative 

biomass in P deficiency. These findings will also provide precious knowledge for plant breeders and agron-

omists who work on P research in maize and other cereal crops. 

1.2 Zusammenfassung 

Phosphor (P) ist ein essentieller Makronährstoff für das Wachstum und die Entwicklung von Pflanzen, der 

als Strukturbestandteil von Nukleinsäuren, Phospholipiden, Phosphoproteinen und Metaboliten benötigt 

wird und eine wichtige Rolle beim Transport von Zellenergie mit ATP spielt. Pflanzen können P jedoch 

nur direkt als Phosphat (Pi) aus der Bodenlösung aufnehmen, und die Pi-Konzentration in der Bodenlösung 

ist normalerweise recht niedrig, sodass Pflanzen häufig unter P-Mangel leiden, was sich auf den Ernteertrag 

und die Qualität auswirkt. In der Landwirtschaft düngen die Landwirte massiv P-Dünger, um den Endertrag 

zu erhalten. Aufgrund der langfristig hohen Düngung und der langfristigen Anreicherung organischer Rück-

stände hat sich der Gesamt-P-Pool pro Hektar zwischen 1900 und 2020 erhöht. Da moderne Sorten häufig 

unter Bedingungen mit hoher Nährstoffversorung für hohe Erträge ausgewählt wurden, werden Bedenken 

laut, dass vorteilhafte Eigenschaften für die P-Aufnahme bei einem begrenzten P-Angebot bei Elite-Sorten 

allmählich abnehmen. In Bezug auf Mais (Zea mays L.) wurden Tausende von Sorten gezüchtet, seit er als 

Lebensmittel domestiziert wurde. Inwiefern sich seit der Grünen Revolution durch Hybridzüchtung und 

hochintensive Düngung entsprechende Merkmale und Gene des P-Mangels bei europäischem Mais verän-

dert haben, ist ungeklärt. Dies herauszufinden ist die zentrale Forschungsfrage in dieser Dissertation. Ich 

untersuche dazu Wurzeln in Reaktion auf einen P-Mangel in einem Panel europäischer Maisgenotypen in 

mehreren Experimenten. 

In Kapitel I konzentrieren wir uns darauf, ob sich die frühe Maisentwicklung von Genotypen der heteroti-

schen Pools Flint/Dent seit Beginn der Hybridzüchtung verändert hat. Dabei kamen 34 Genotypen in Mini-

Rhizotron bei zwei P-Stufen zum Einsatz. Diese Genotypen umfassten 16 Flintlinien, die zum Teil vor 

mehr als sechs Jahrzehnten zugelassen wurden, 7 doppelte haploide Linien, die aus den Flint-Landrassen 

entwickelt wurden (DH_LR), 8 Dentlinien und 3 ihrer Hybride. Die Effizienz der P-Nutzung (PUE) von 

jungen Pflanzen und zugehörige Merkmale wurden in einem kalkhaltigen Boden verglichen. Die Effizienz 

der PUE und -P-Akquisition (PAE) der ersten selektierten Flint Linien, auf denen die Hybridzüchtung be-

ruht, bis hin zu repräsentativen neusten Elite-Flint Linien ging in den letzten Jahrzehnten zurück, was mit 

kleineren Wurzelsystemen und ihrer verringerten Fähigkeit zur Nutzung von externem P verbunden war. 

Der Vergleich von Flint mit ausgewählten DH_LR, alten und neueren Dent-Elite-Sorten und ihren 
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Hybriden zeigte verbesserte PUE in alten, aber nicht DH_LR Linien, welche modernen Elite-Flintlinien 

ähnelten. Bei der Bewertung von Wurzelmerkmalen, die mit einer hohen P-Effizienz verbunden sind, muss 

auch Samen-P berücksichtigt werden. Die Wurzelhaarlänge, die Fähigkeit zur Ansäuerung der Rhizosphäre 

und der Wurzeldurchmesser können in Mais-Flint- und Dent-Pools genutzt werden, um die P-Verwendung 

in Mais-Agrarökosystemen weiter zu verbessern. 

In Kapitel II verglichen wir den Besiedlungsgrad der Wurzel mit Mycorrhizapilzen und die Menge und Typ 

der exudierten organischen Säuren anhand von 24 Genotypen, die bereits in Kapitel I untersucht wurden. 

Diese Genotypen umfassten 16 Flintlinien, 6 DH_LR und 2 alte Dentlinien. Die Wurzelbesiedlung mit 

arbuskulären Mykorrhizapilzen (AMF) und die Ausschüttung von organischen Säureanionen wurden ge-

messen. P-Aufnahme und Wurzelmerkmale wurden unter ausreichendem P und unter P-defizienten Bedin-

gungen verglichen. Bei modernen Sorten wurden schwache Trends für den Verlust der AMF-Besiedlung 

und der geringe Verlust der Zitratausschüttung bei niedriger P-Düngung festgestellt. In einer DH_LR wurde 

er höchste Mycorrhizierungsgrad gefunden, während andere modernen Elite-Linien ähnlich waren. Insge-

samt wurde für diese Merkmale eine erhebliche genetische Varianz festgestellt. 

In Kapitel III haben wir unter Verwendung nahezu isogener Maislinien, des B73-Wildtyps und der rth3-

wurzelhaarlosen Mutante, die Wirkung von Wurzelhaaren und von AMF-Infektionen in einem kalkhaltigen 

Boden unter P-Mangel quantifiziert. Wildtyp-Wurzelhaare vergrößerten die Rhizosphäre für die Aktivität 

der sauren Phosphatase um 0,5 mm im Vergleich zur rth3-Mutante ohne Haare. Die Gesamtwurzellänge 

des Wildtyps war länger als die von rth3 unter P-Mangel. Eine höhere AMF-Kolonisierung und Mykor-

rhiza-induzierte Phosphattransporter-Genexpression wurden in der Mutante unter P-Mangel identifiziert, 

aber das Pflanzenwachstum und die P-Akquisition waren zwischen Mutante und Wildtyp ähnlich. Die My-

korrhiza-Abhängigkeit von Mais war 33% höher als die Wurzelhaar-Abhängigkeit. Die Ergebnisse identi-

fizierten eine größere Mykorrhiza-Abhängigkeit als die Wurzelhaar-Abhängigkeit bei P-Mangel bei Mais. 

Wurzelhaare und AMF-Inokulation sind zwei alternative Möglichkeiten, um die Pi-Akquisition bei P-Man-

gel zu erhöhen, aber diese beiden Strategien konkurrieren miteinander. 

In Kapitel IV wurden erneut zwei nahezu isogene Maislinien verwendet, der B73-Wildtyp und die rth2-

Wurzelhaarlose Mutante, um die Bedeutung von Wurzelhaaren während Wassermangel und unter P-Man-

gel zu untersuchen. Die Ergebnisse zeigen, dass Trockenheit und P-Mangel das Maiswachstum synergis-

tisch beeinträchtigen. Während die P-Konzentrationen durch den Verlust von Wurzelhaaren wenig beein-

flusst wurden, war der P-Gehalt bei kombiniertem Stress massiv verringert, was zeigt, dass der P-Mangel 

sich unter Trockenheit viel schwerwiegender auswirkt.  
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In Kapitel V haben wir zuerst die Reaktion der Wurzelmerkmale auf niedrigen P und hohen P von sechs 

vorausgewählten Genotypen in europäischem Flint aus Kapitel I verglichen. Anschließend haben wir 

mRNA-Transkriptome aus den Wurzeln dieser Linien sowohl unter niedrigem P als auch unter hohem P 

isoliert. Mit diesen Daten führten wir anschließend eine gewichtete Koexpression-Netzwerkanalyse 

(WGCNA) durch und entdeckten allgemeine Module, die mit niedriger P-Versorgung höher exprimiert-

wurden. Die auf P-Mangel reagierenden Stoffwechselprozesse und genetische Anpassungen, die allen sechs 

Genotypen gemeinsam sind, umfassten: (1) Veränderung des Kohlenstoffwechsels für die Synthese orga-

nischer Säuren durch Glykolyse und TCA-Zyklus; (2) Veränderung des Lipidstoffwechsels; (3) Aktivität-

sänderungen von Transmembrantransportern; (4) Carotinoidstoffwechsel. Zusätzlich haben die effizienten 

Flint Linien EP1, F2 und die doppelt haploide Landrasse SM1 ihre spezifischen Strategien und Mechanis-

men, um mit niedrigem P Angebot fertig zu werden. Unsere Ergebnisse stimmen gut mit bestehenden Tran-

skriptom-, Proteom- und Metabolom-Studien in Mais und anderen Arten überein. Darüber hinaus können 

sie helfen, die molekularen Ereignisse zu verstehen, die für P Effizienz bei Mais von Bedeutung sind. 

Insgesamt präsentiert diese Arbeit Details, wie sich Maisgenotypen mit unterschiedlicher Zuchtgeschichte 

hinsichtlich Wurzel-, Rhizosphären-Merkmalen und Wurzeltranskription an P-Mangel anpassen. Die Kor-

relation zwischen phänotypischen Merkmalen und der Gentranskription, die viel komplexer ist als zuvor 

berichtet, bietet Hinweise darauf, welche Gennetzwerke P Effizienz ausmachen. Dies eröffnet einen Ein-

blick in die molekulare Regulation der Pi-Nutzung, um vegetative Biomasse bei P-Mangel zu steigern. 

Diese Erkenntnisse werden auch Pflanzenzüchtern und Agronomen wertvolles Wissen liefern, die an der 

P-Forschung in Mais und anderen Getreidekulturen arbeiten.
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2. Introduction 

2.1 Phosphorus and adaptive responses to phosphorus deficiency 

Phosphorus (P) is an essential macronutrient in plant growth and development, which is required as a 

structural component in nucleic acids, phospholipids, phospho-proteins and metabolites and plays a 

major role in transporting cellular energy with ATP. Plants can only directly absorb P as phosphate (Pi) 

in the soil solution and the dry weight of plants may contain up to 0.5% P (Marschner and Marschner, 

2012).  However, previous studies reported that over 40% of the world soils are in a P deficient level 

and the acid-weathered soils of tropical and subtropical regions of the world are particularly prone to P 

deficiency (Vance et al. 2003). Owing to its low availability and slow diffusion in soil, the Pi concen-

tration in soil solution is normally quite low, ranging from 2 to 10 μM (Raghothama, 1999), which 

affects the crop yield and quality. Thus, it is vital to discover mechanisms and further exploit the adap-

tions to increase plant efficiency and manage the crop yield stability under P-limited conditions.  

Under Pi limiting conditions, plants maintain cytosolic Pi levels in several ways: promoting the availa-

bility of external Pi, increasing its absorption, recycling and consumption of non-essential phosphorus-

containing molecules (Pratt et al., 2009). These processes mainly occur in three parts, namely shoot, 

root and rhizosphere (Fig. 1), but the exact order in which they function and integration remains unclear 

(Ajmera et al., 2019). In the case of roots, these reactions occur on different biological scales, such as 

morphology, anatomy, physiology and biochemistry. Deferent plant species may adopt different mech-

anisms to gain access to soil low available Pi by altering root morphology, secreting Pi mobilizing 

compounds into rhizosphere and associating with mycorrhiza (Raghothama, 1999; Vance, 2001; Vance 

et al., 2003; Lambers et al., 2006). 

 

2.1.1 Root morphology adaptation 

To optimize the Pi acquisition in response to Pi deficiency, different plant species have evolved diver-

gent adaptations to root morphology. Root System Architecture (RSA), with highly plasticity, including 

the shape and structure of the root system often varies among plant species (Hodge, 2004). Pi deficiency 

will change the RSA traits by stimulating lateral root branching, increasing the length and density of 
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root hairs and in some species, formation of cluster roots and inhibition primary root elongation 

(Carswell et al., 1996; Lambers et al., 2010).  

 

Figure 1. Integrated overview of phosphate starvation responses. The responses and signaling mechanisms operate at a range of 

scales and different locations which are depicted in nine connected panels: (a) denotes the whole plant and field scale; (b) denotes 

the whole plant scale with systemic signals; (c) denotes cells from any part of the plant which respond to phosphate deprivation 

altering the lipid content, releasing phosphate stores from the vacuole where Pi is liberated from esters by Acid Phosphatases 

(APase). (d) denotes the epigenetic effects (principally chromatin modification) that influence transcription of Phosphate Star-

vation Response genes. (e) denotes the pyrophosphate-dependent glycolytic bypass enzymes and metabolic Pi recycling sys-

tem. (f) denotes rhizosphere activities, specifically the exudation of acid phosphatases (P-ases), Strigolactones (SLs) and Low 

Molecular Weight Organic Acids (LMWOA) which stimulate bacterial activity and attract Arbuscular Mycorrhizal Fungi (AMF); 

(g) denotes a close-up view of the rhizosphere boundaries between the root, soil sheath (SS), microbes and soil where exudates 

and sugars (Glu–glucose, Suc–sucrose and Fru–fructose) are secreted through efflux transporters respectively to solubilize Pi 

(h) denotes the alteration in meristem and elongation zone length and the formation of root hairs. (i) denotes a cross section 

through a root and the paths taken during Pi uptake: the positions of different tissues within a root, namely, epidermis, exo-

dermis, sclerenchyma plus cortex, endodermis, pericycle, phloem, cambium and xylem are marked respectively by red, blue, 

green, pink, yellow, orange, pale brown and purple; and transport of shoot-to-root signal molecules, symplastic/inter-organellar 

Pi and apoplastic Pi are depicted respectively by red, blue and dashed yellow arrows (Ajmera et al., 2019). 
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Lateral root branching is a key RSA trait in response to Pi deficiency. Lateral roots originate from 

pericyclic cells close to the xylem pole and trigger a series of asymmetric and transverse divisions 

(Torrey, 1950). Low Pi stress could result in a decrease of cell division rate, while the cell growth in 

the root elongation zone is simultaneously inhibited (Sánchez-Calderón et al., 2006). Since the soil P is 

frequently absorbed by the soil partials, plant species with larger root system contribute more in access 

to available Pi in the soil for uptake (Jungk, 2001). The response of lateral root to Pi deficiency is plant 

species and genotypes dependent. Some Pi-efficient plant species/genotypes within a species may grow 

the lateral root from the basal root at an angle that allow more roots to explore the topsoil likely to 

contain more available Pi (Lynch and Brown, 2001) or develop an RSA that places active root area 

relatively rich in Pi (Smith, 2001).  Some maize genotypes increase the number and length of lateral 

roots by distributing more roots in the sub-soil, while common beans and soybeans (Glycine max) with 

shallow roots prefer to enhance the capacity of topsoil P forage (Zhu and Lynch, 2004; Bayuelo-Jiménez 

et al., 2011).  

Root hairs - the tubular-shaped outgrowths from root epidermal cells - are one of the most important 

root morphologic adaptations to P deficiency (Peterson and Farquhar, 1996), because they can strongly 

increase the root surface area. Root hairs play an important role in acquisition of poorly mobile nutrients 

such as Pi by effectively extending the width of the Pi depletion zone around the root (Föhse et al., 

1988). Parker et al. (2000) pointed that root hairs form as much as 77% of the root surface area of field 

crops. Evidence from barley (Hordeum vulgare) suggested that genotypes with longer root hair took up 

more Pi, and tended to yield better when Pi was limiting crop growth (Singh Gahoonia and Nielsen, 

2004). In P deficiency, maize root hairs were responsible for a >30% increase in biomass and P shoot 

content, but did not affect the shoot P concentration and were even more important under drought 

(Klamer et al., 2019), which proved in the case of the limited solubility and mobility of Pi in soils, the 

area next to roots and the overall root surface area are most important for Pi acquisition.  

 

2.1.2 Rhizosphere adaptation 

The rhizosphere, the soil that is in close contact with the root surface is strongly influenced by exudates 

from the plant, is massively extended in the root hair regions compared to hairless areas in individual 
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plants (Ma et al., 2018). Plants can alter the biochemical environment of the rhizosphere and solubilize 

organic and inorganic phosphate compounds through increasing the root exudates into rhizosphere 

(Johnson et al., 1996) or formation of mycorrhizal symbionts to trap Pi for the plants in the rhizosphere 

(Richardson et al., 2011).  

Organic anions (malate, citrate and oxalate), enzymes (phosphatase, phytase), phenolic acids and proton 

are the main components of the root exudates involved in P deficient response (Richardson et al., 2011). 

In general, these exudates mainly promote solubilization of insoluble phosphate compounds, by com-

petitively binding with the cationic phosphate partners and liberating the Pi ions from organic com-

pounds (Dakora and Phillips, 2002). The secretion of organic acids from root is highly environmental 

stress and plant species specific. Usually, the amounts and components varied between plant spe-

cies/genotypes and even different zone of root segments (Neumann et al., 1999; Liao et al., 2006). 

Generally, dicots, particularly legumes, are more efficient in releasing organic acids to the rhizosphere 

for Pi mobilization than monocots (Lyu et al., 2016; Wen et al., 2019). Citric acid and malic acid are 

the predominant acids released by roots under Pi starvation conditions. For example, the roots of rape 

(Brassica napus) and white lupin excrete mainly citrate and malate for efficiently use of rock phosphates 

(Hoffland et al., 1992; Neumann et al., 1999). Root exudates of citrate increased two-fold in alfalfa that 

helps them solubilizing more Pi under low P conditions (Lipton et al., 1987). Al induced a large amount 

release of malate and citrate from root tips in maize and wheat (Triticum aestivum) plants.  

Arbuscular mycorrhizal fungi (AMF) are one of the most important beneficial microorganisms, which 

colonize 72% of the vascular plant species (Brundrett and Tedersoo, 2018; Bonfante, 2018). AMF play 

an important role in the acquisition of nutrients by their symbionts, especially P (Smith and Read, 2008). 

The majority of plant species, including crop species, are responsive to mycorrhizal symbiosis. AMF 

intimately connect with the root and transfer nutrients in cortical cell layers and can extend up to several 

centimeters away from the root and form a dense hyphal network (Smith et al., 2011). The hyphae 

greatly increase the surface area and soil volumes exploited by the root and play a vital role in nutrient 

acquisition, especially for the sparingly soluble and poorly mobile Pi (Finlay, 2008). Previous studies 

have concluded that arbuscular mycorrhizal plants have two pathways for the uptake of Pi from the soil 

solution: the direct Pi uptake pathway via the root epidermis including root hairs, and the indirect 
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arbuscular mycorrhizal pathway where Pi is initially taken up by external AMF hyphae (Grace et al., 

2009). These different pathways are associated with distinct molecular Pi uptake transporters of the 

PHT1 Pi transporter family that play specific roles to the two pathways (Benedetto et al., 2005; Javot 

et al., 2007). When mycorrhizal fungi colonize plants, the mycorrhiza-specific Pi transporter gene ex-

pression (ZmPht1;6 in maize and variously named orthologs in other species) was greatly enhanced 

compared to the non-colonized roots (Nagy et al., 2006; Liu et al., 2016; Sawers et al., 2017).  

 

2.1.3 Root morphology and rhizosphere interaction 

Both root morphology adaptation and microbial cooperation require plants to allocate photosynthetic 

carbon belowground to competing sinks, either to promote cellular hair growth or for transfer to the 

symbiotic partner (Lynch, 2015). The formation and maintenance of root hairs appear to be a relatively 

cheap process with respect to carbon and energy demand (Jungk, 2001), while AMF colonization is 

associated with a costly delivery of up to 15-20% photosynthetic carbon to fungi in exchange for nutri-

ents (Wright et al., 1998; Jakobsen et al., 2005; Ryan et al., 2012). There is compelling evidence of a 

general trade-off between root hairs and mycorrhizal symbiosis: plant species and genotypes with long 

and dense root hairs rely less on mycorrhizal fungi for P acquisition (Chen et al., 2005; Brown et al., 

2012; Brown et al., 2013). The comparison of various plant species with different root hair length and 

mycorrhizal dependence demonstrated that root hairs and mycorrhiza are typically inversely correlated, 

which the benefits of AMF were significantly less pronounced in plants with longer root hairs 

(Schweiger et al., 1995). In maize, the importance of arbuscular mycorrhiza formation compared with 

root hairs under low P availability is still unclear. The AMF also influence root system architecture, 

most prominently, by enhancing lateral root formation (Chen et al., 2017). 

Meanwhile, some exudates also promote recruitment of soil microorganisms by providing a carbon 

source, and/or acting as a chemo-attractants (Czarnecki et al., 2013). AMF colonization depends on 

release of such signaling compounds into the rhizosphere to germinate spores and attract hyphae for 

root contact; a radially extended rhizosphere was expected to be beneficial for the number of AMF-root 

contact sites. In response to low phosphate, exuded strigolactones, in both Lotus japonicus and rice, 

play an important role in the establishment of root and arbuscular mycorrhizal symbiosis interaction 
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and enhance hyphal branching and root colonization of AMF, consequently increasing the exploration 

for Pi (Akiyama et al., 2005; Besserer et al., 2006; Chagas et al., 2018).  

 

2.2 Spatial-Temporal phosphate starvation response and the molecular signaling in phosphate 

starvation response 

All the above Phosphate Starvation Responses (PSRs) act at different temporal and spatial-physical 

scales, i.e., field, rhizosphere, plant, organ, tissue, cell and sub-cell (Ajmera et al., 2019). Plants inte-

grate internal and external factors to trigger such responses to Pi deficiency, which relies on both local 

and systemic sensing/signaling mechanisms (Fig.2). External Pi is sensed by a local system around the 

root-tip, particularly in the root cap (Svistoonoff et al., 2007; Bonnot et al., 2016). This independently 

slows the growth of primary-root and promotes root-hair development in Arabidopsis (Chiou and Lin, 

2011). In addition to genetic regulation, the dynamics modulation of different hormones, such as auxin 

(AUX), ethylene (ET), gibberellin (GA) and strigolactone (SL), also plays an important role in such 

local responses, leading to altered RSA (Chien et al., 2018). The internal Pi status is monitored by 

systemic signals to improve the availability, recycling, absorption and transportation of Pi (Lin et al., 

2014).  

Lateral and cluster root growth is partially regulated at a systemic level (Zhang et al., 2014). By traf-

ficking various signals through the vasculature, systemic signaling integrates the local responses of the 

entire plant (Fig. 1b). This includes phloem-mediated shoot-to-root signals (microRNAs, sugars and 

CAX-Ca2+/H+ transporters) and xylem-mediated root-to-shoot signals (Pi, cytokinin and strigolactones). 

These signals collectively trigger a cascade involving a large number of Phosphate Starvation Induced 

(PSI) genes (Lin and Chiou, 2008; Liu et al., 2016). Most of these are described in Fig. 2 and reviewed 

in detail in Zhang et al.  (2014). PSI genes are classified as early or late in expression (i.e., within a few 

hours or after one day of Pi starvation), and whether they are shoot-, root-or non-specific. In Arabidopsis, 

the early genes encode transcription factors belonging to MYB, ERF, WRKY and bHLH families, Pi 

transporters, protein kinases and proteins/enzymes initiating exudation, membrane remodeling and lat-

eral root formation (whose emergence is not until later times). The late-responsive genes mainly encode 

the downstream regulators for Pi transport, recycling and metabolic bypass processes (Lin et al., 2009; 
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Chiou and Lin, 2011). In roots, persisting low Pi elicits genes involved in Pi uptake, exudate synthesis 

and importantly, hormone regulation leading to altered RSA.  

Most PSRs aim, at least in part, to increase Pi uptake and transport in the plant. Furthermore, the tissue-

specific and phosphate-responsive gene expression reveals a greater level of complexity in the system. 

The core pathway of transcriptional regulation of Pi acquisition involves the dissociation and sequential 

sumoylated activation of a major transcription factor of PSRs, named PHR1 in Arabidopsis, and its 

orthologue PHR2 in rice (Rubio et al., 2001; Miura et al., 2005; Lv et al., 2014; Puga et al., 2014). This 

triggers a network of molecular responses, including gene activation, microRNA-mediated repression, 

a reduction in directed ubiquitination and active trafficking of Pi transporters to the plasma membrane 

(Liu et al., 2014). PHR1/2 and its associated pathways have been extensively studied (Figure 2) and 

reviewed (Zhang et al., 2014; Briat et al., 2015; Pant et al., 2015).  

 

2.3 Breeding effect on strategic aspects in adaptation to phosphorus deficiency 

Recently, increasing evidence has been obtained that root functional traits change together with evolu-

tion history (Reinhart et al., 2012; Ma et al., 2018). Because of long-term agricultural practices, espe-

cially high fertilization and long-term organic residue accumulation, the total P pool per hectare has 

increased between 1900 and 2010 (Sattari et al., 2012; Zhang et al., 2017). As modern varieties have 

often been selected under high-nutrient input conditions to provide high yields, concerns are being 

raised that the beneficial traits for P uptake under a limited P supply will gradually decline in elite 

varieties. Genes or traits related to efficient nutrient acquisition may become lost when all nutrients are 

directly available to plants, as plant adaptive traits to nutrient deficiency often result in additional carbon 

costs (Wissuwa et al., 2009; Wang et al., 2010). Indeed, in rice, a low-P tolerance QTL, Pup1 has been 

genetically identified for the improved P acquisition of landraces via larger roots. The PSTOL1 gene in 

the QTL, Pup1, has been cloned and transferred to modern varieties and this gene enhanced early root 

growth, enabling more uptake when incorporated into Pi-sensitive varieties (Gamuyao et al., 2012; 

Heuer et al., 2017). By comparing older varieties or landraces with modern lines, the loss of root traits 

contributing to P uptake has also been reported in wheat cultivars, especially for traits dealing with 

mycorrhizal competence. High nutrient availability within selection sites is thought to reduce the benefit 
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of symbiotic interactions (Hetrick et al., 1993; Egle et al., 1999; Zhu et al., 2001). However, recent 

research with modern soybean cultivars selected by conventional breeding approaches for higher yield 

has unintentionally led to plants that are adapted better to soil P fluctuations and that acquire more P 

from the P-rich zones (Zhao et al., 2004).  

 

 Figure 2 Hierarchical signaling pathways in response to Pi availability in plants. The pyramid represents Pi signaling path-

ways. From the top, Pi serves as a primary signal to trigger downstream signaling cascades. A number of molecules generated 

according to Pi availability act as the subsequent signals, involved in local and/or systemic signaling. Root system architecture 

(RSA) is altered in response to deprivation of external Pi, suggesting regulation by local signals. These local responses include 

suppression of primary root (PR) growth by PDR2-LPR1, STOP1-ALMT1 and CLE14-CLV2/PEPR2 modules and enhance-

ment of root hair (RH) and lateral root (LR) growth regulated by root growth factor (RGF) peptides and hormones, including 

auxin (AUX), ethylene (ET), gibberellin (GA) and strigolactone (SL). On the other hand, the mobile signal molecules, such as 

Pi, SL and cytokinin (CK), move from roots to shoots modulating shoot growth, whereas Pi-, sugar-, miRNA- and possibly 

Ca2+-derived signals move from shoots to roots regulating Pi uptake, remobilization and recycling. PHR1, a major transcription 

activator of PSRs, plays a role in regulating systemic responses. By integrating the local and systemic signaling, plants develop 

coordinated physiological responses to exploit the use of Pi. The question marks indicate uncertain roles of gibberellin in root 

growth and Ca2+ and miR827 in systemic signaling (Chien et al., 2018). 
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Maize, as a major worldwide crop, have been bred thousands of varieties that can be grouped into three 

broad categories: landraces, open-pollinated populations, and hybrids. There are already studies implied 

breeding had affected on the related root traits of maize. Various maize genotypes (bred in P-rich or P-

poor environments) perform differently in homogeneous and heterogeneous P soils. The genotypes bred 

in the P-rich environment have a competitive advantage under the heterogeneous P pattern, whereas the 

genotype bred in a P-poor environment has a stronger competitive ability under homogeneous P soil 

distribution (Li et al., 2019). A comparison of the mycorrhizal colonization of 141 inbred lines, 38 

hybrids, and 76 landraces of maize has revealed that the percent of colonization varies greatly. Inbred 

lines that have been released in particular locations and years show significantly larger colonization 

than other lines. Modern hybrids exhibit significantly greater colonization than inbred lines and older 

landraces (An et al., 2010), but the year-of-release effect on colonization depends on the origin of the 

cultivar. 

On the field scale, improvements in Phosphorus Use Efficiency (PUE) have been achieved through 

improved soil management (Simpson et al., 2015), cultivar screening (Haling et al., 2018) and selective 

breeding based on improved root systems (Jia et al., 2018; Strock et al., 2018). However, during the 

last decades of maize breeding, little attention has been paid on plant performance on low Pi soils, as 

high fertilizer loads were used and selection was performed under high available Pi conditions. Potential 

ways to improve Phosphate Acquisition Efficiency (PAE) include modification of RSA, rhizosphere-

microbial interaction and Pi uptake. Phosphate Utilization Efficiency (PUtE) involves reducing plant 

phosphorus demand and/or enhancing its internal utilization/recycling. PAE and PUtE combine to give 

an overall PUE for a plant. Far more progress has been achieved toward understanding the mechanisms 

underlying PAE than PUtE, perhaps because of the greater complexity of the processes involved.  
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2.4 Objectives 

In maize, RSA and rhizosphere traits are major components of maize PUE, especially PAE. Using a 

diverse panel of European maize genotypes, the individual contribution of these traits to improved PUE 

could be determined. Beneficial RSA (i.e., root hairs), rhizosphere traits (i.e., root exudated organic 

acids, mycorrhiza symbiosis) and combinations thereof may be identified.  

We hypothesize that: 

(1) As the consequence of breeding under high fertilizer loads, beneficial RSA and/or rhizosphere 

traits for high PUE may be lost in elite varieties under low Pi conditions. 

(2) The contribution of AMF to plant growth and Pi acquisition is generally larger and more critical 

than that of root hairs, and cannot be compensated by root hairs. 

(3) Genotype with different breeding history has a general molecular mechanisms of LP adaptation 

and its specific potential molecular mechanisms of LP adaptation. 

The Chapter I and II address the first hypothesis. We determined RAS and rhizosphere traits related 

PUE using a panel of European maize genotypes (Chapter I 34 genotypes and Chapter II 24 genotypes) 

under low Pi and high Pi conditions. 

The Chapter III and IV address the second hypothesis. We checked the mycorrhizal colonization, phos-

phatase activity and organic acids in root exudates using B73 and its root hairless mutant rth3 under 

low Pi conditions, and clarified the contribution of AMF and root hairs to Pi acquisition. We also 

checked organic acids in root exudates and phosphatase activity using B73 and its root hairless mutant 

rth2 under low Pi and water limited conditions, and clarified the contribution of root hairs to Pi acqui-

sition. 

The Chapter V address the third hypothesis. We tried to find the key genes, key pathways, and potential 

molecular mechanisms of LP adaptation in maize with different breeding history. 

 



Publications 

16 

 

3. Publications 

The present dissertation consists of five scientific articles as reflected by chapter I-V. The chapter I - 

IV have been published in a peer reviewed journal. The chapter V is a manuscript planned to submit 

to a peer reviewed journal. 

Publication I 

Xuelian Li*; Melissa Mang*; Hans-Peter Piepho; Albrecht Melchinger; Uwe Ludewig (2021). De-

cline of seedling phosphorus use efficiency in the heterotic pool of flint maize breeding lines since the 

onset of hybrid breeding. Journal of Agronomy and Crop Science: In press.   

https://doi.org/10.1111/jac.12514 (* shared first authorship). 

Publication II 

Xuelian Li; Xiuhao Quan; Melissa Mang; Günter Neumann; Albrecht Melchinger; Uwe Ludewig 

(2021). Flint maize root mycorrhization and organic acid exudates under phosphorus deficiency: 

trends in breeding lines and doubled haploid lines from landraces. Journal of Plant Nutrition and Soil 

Science 184: 346 - 359.  https://doi.org/10.1002/jpln.202000471 

Publication III 

Xiaomin Ma*; Xuelian Li*; Uwe Ludewig (2021). Arbuscular mycorrhizal colonization outcompetes 

root hairs in maize under low phosphorus availability. Annals of botany 127: 155–166. 

https://doi.org/10.1093/aob/mcaa159 (* shared first authorship). 

Publication IV 

Florian Klamer; Florian Vogel; Xuelian Li; Hinrich Bremer; Günter Neumann; Benjamin Neuhäuser; 

Uwe Ludewig. (2019): Estimating the importance of maize root hairs in low phosphorus conditions and 

under drought. Annals of botany 124: 961–968. https://doi.org/10.1093/aob/mcz011. 

Publication V 

Xuelian Li; Uwe Ludewig. Transcriptomic network analyses of the response to low phosphate supply 

in roots of maize with distinct breeding history (in preparation).

https://doi.org/10.1111/jac.12514


Chapter I 

17 

 

4. Chapter I 

Decline of seedling phosphorus use efficiency in the heterotic pool of flint maize breeding lines since 

the onset of hybrid breeding 

 



Chapter I 

18 

 



Chapter I 

19 

 



Chapter I 

20 

 



Chapter I 

21 

 



Chapter I 

22 

 



Chapter I 

23 

 



Chapter I 

24 

 



Chapter I 

25 

 



Chapter I 

26 

 



Chapter I 

27 

 



Chapter I 

28 

 



Chapter I 

29 

 



Chapter I 

30 

 



Chapter I 

31 

 



Chapter I 

32 

 



Chapter II 

33 
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Flint maize root mycorrhization and organic acid exudates under phosphorus deficiency: 
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Arbuscular mycorrhizal colonisation outcompetes root hairs in maize under low phosphorus availa-
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Abstract 

Phosphorus (P) deficiency is a global problem in maize production. Although macro/microarray technolo-

gies have significantly increased our general knowledge of maize responses to P deficiency, an integrative 

and deeper understanding of the diversity of responses in maize genotypes is still needed. 

In this study, we first compared the root traits response to low P (LP) and high P (HP) of six preselected 

genotypes in European flint in a mini-rhizotron experiment for three weeks. We then generated RNA li-

braries from the roots of these lines under both LP and HP. Using the expressed gene matrix, we subse-

quently conducted Weighted Genomic Coexpression Network Analysis (WGCNA). The P deficiency-re-

sponsive metabolic processes common to all six genotypes included: (1) acceleration of carbon supply for 

organic acid synthesis through glycolysis and TCA cycle; (2) alteration of lipid metabolism; (3) changes of 

activity of transmembrane transporters; (4) carotenoid metabolism. Additionally, the founder flint line EP1, 

F2 and doubled haploid landrace SM1 have their specific strategies and mechanism to cope with LP. Our 

findings could help to understand of the molecular events involved in the diversity and efficiencies of P 

stress responses among maize accessions. 

Keywords: maize (Zea Mays. L), Phosphorus, RNAseq, WGCNA 
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1. Introduction 

Phosphorus (P) is essential for the normal growth and development of plants because it is vital for regulating 

energy metabolism, enzymatic reactions and signal transduction processes (Raghothama 1999). P is readily 

taken up by the roots as (di-)hydrogen phosphate (H2PO4
- or HPO4

2-), and almost all P in soils is found in 

fully oxidized form as orthophosphate (Pi). P is typically least bioavailable in soils of all essential macro-

elements for plants, despite high total P amounts within soils. Because it usually forms insoluble complexes, 

especially with aluminum and iron under acidic conditions and calcium under alkaline conditions (Péret et 

al. 2011), the free Pi concentration even in agricultural soil solution is rarely above ten µM, and sparingly 

soluble P-forms are converted into insoluble forms with time (Bieleski 1973). So, plants always suffer from 

P deficient stress under natural conditions. 

Plants have evolved diverse strategies to adapted to P deficiency, including morphological modification to 

access a large soil area (Postma et al. 2014; Haling et al. 2018); chemical modifications of the rhizosphere 

(Hinsinger 2001; Pang et al. 2018); microbial interactions with arbuscular mycorrhizal fungi to help access 

P from the labile soil P pool (Smith et al. 2011; van der Heijden et al. 2015); and bypassing the metabolic 

steps that require ATP (Ganie et al. 2015). These adaptations to variable P availability depend at least in 

part on changes in gene expression. Some key regulators of P homeostasis, mainly been characterized by 

Arabidopsis (Arabidopsis thaliana L.) and rice (Oryza sativa L.), include the MYB transcription factor 

PHOSPHATE STARVATION RESPONSE REGULATOR 1 (PHR1), which acts as a central regulator by 

binding to the P1BS cis-element (GNATATNC) in the target genes (Chiou and Lin 2011); members of 

WRKY (Devaiah et al. 2007; Chen et al. 2009; Dai et al. 2016; Wang et al. 2014) and PHO families 

(Hamburger et al. 2002; Bari et al. 2006); the miRNAs miRNA399 and miRNA827 (Fujii et al. 2005; Kant 

et al. 2011); E3 ligase NLA and SIZ1 (Kant et al. 2011; Miura et al. 2005); and IPS1/At4 (Franco-Zorrilla 

et al. 2007; Hou et al. 2005). In contrast, only the bHLH transcription factor ZmPTF1 has been shown to 

increase the low P tolerance of maize (Zea mays. L); it does so by regulating carbon metabolism and root 

growth (Li et al. 2011). Many phytohormone were found to be related to plant P deficient responses. Wang 

et al. (2013) found that heterologous expression of ZmPHR1 in Arabidopsis increased the shoot biomass 

and inorganic Pi content. Huang et al. (2018) found that auxin response factors ARF7 and ARF19 function 

upstream of PHR1 to modulate its transcription in Arabidopsis roots. Pi loading into the xylem or root-to-

shoot translocation were also important in low P tolerant plants, which was mediated by PHO1 (Poirier et 

al. 1991). PHO2, a gene in the same family as PHO1, was found to be regulated by PHR1 and miRNA399 

at the transcription level, and could degrade PHO1 and Pi transporters to down-scale Pi absorption and 

translocation (Bari et al. 2006). PHOSPHATE TRANSPORTER 1 (PHT1) family plays crucial roles in 

both Pi acquisition and Pi translocation (Nussaume et al. 2011). In Arabidopsis, the knockout of AtPHT1;1 
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significantly reduced Pi uptake, and AtPHT1;5 regulated Pi translocation to maintain Pi homeostasis (Shin 

et al. 2004; Nagarajan et al. 2011). 

Maize is not only an important food and feed crop in the worldwide, but also an important raw material in 

energy production and many other industries (McLaren 2005). In maize, efficient P use is critical between 

planting and the six-leaf stage, when the young root is still too small to sustain shoot nutrient supply. P-

deficiency during that stage reduced grain yield (Barry & Miller, 1989). Our previous study has found 

different strategies to cope with P deficiency between old European landraces and modern flint maize seed-

lings, which may also differ in changes in gene expression. 

In recent decades, the development of molecular biological methods has promoted the potential genotypic 

response mechanisms of physiological metabolic responses of plants under biotic and abiotic stresses. In 

these molecular biological methods, RNA sequencing (RNA-seq) has showed advantages in quickly and 

comprehensively obtaining the gene expression to abiotic stresses in different developmental stages, tissues, 

and organs (Martin et al. 2013). RNA-seq results could provide insights into the discovery of new genes, 

including annotation genes and differentially expressed genes (DEGs), and molecular markers (Zhang et al. 

2018). Compared with traditional sequencing methods, RNA-seq can provide high-throughput sequencing 

results with lower cost but high sensitivity, and can detect low abundance expressed genes. A large quantity 

of DEGs associated with P deficient response have been reported in various species by RNA-seq, such as 

wheat (Wang et al. 2019), maize (O'Rourke et al. 2013; Du et al. 2016; Sun et al. 2016; Yu et al. 2018), rice 

(Deng et al. 2018), and soybean (Zeng et al. 2016). Another method, Weighted Gene Co-expression Net-

work Analysis (WGCNA) has also been used to analyze large gene data sets like micro-array and RNA-seq 

data sets. In WGCNA, a matrix of all the genes or filtered genes is built first and soft threshold of the matrix 

is performed, and then the scale-free network is established through the soft threshold (Langfelder and 

Horvath 2008). These genes are clustered into different modules in scale-free networks, and the genes in 

the same module have the same expression pattern. After correlating these modules with the external phe-

notypic traits of the sample, modules with a high correlation with the sample traits are selected. Finally, 

vital genes with high connectivity in the module could be identified. These genes play key roles in the 

concerning traits and development.  

In this study, we selected 6 representative maize genotypes from the flint heterotic pool of a public temper-

ate maize breeding program that spans the breeding progress since the onset of hybrid breeding from the 

1950s to 2010s (Li et al., submitted). Through an oligonucleotide microarray platform, a total 1179 P-

deficient responsive genes (high P vs. low P) in the roots of a low P-tolerant genotype were detected in 

maize by Calderon-Vazquez et al. (2008); among the genes, at least 33 % lack an orthologue in the Ara-

bidopsis genome, implying that some P-deficiency responsive pathways are unique in maize (Calderón-
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Vázquez et al. 2011). Therefore, the purpose of the present study was to find the key genes, key pathways, 

and potential molecular mechanisms of efficient P adaptation in maize. 

2.Materials and Methods 

2.1 Plant Materials 

Six maize genotypes, of which seeds obtained from Institute of Plant Breeding of University of Hohenheim 

(UHOH), had been selected from previous study in the climate chamber. These six genotypes were: two 

flint founder lines (EP1, F2) originating from landraces, two elite flint lines (F160, F142) developed by the 

maize breeding program of UHOH, and two doubled haploid lines from landraces (SF1 produced from the 

German population Strenzfelder, SM1 produced from the Romanian population Satu Mare). 

2.2 Plant growth conditions 

The experiment was conducted in a growth chamber at the University of Hohenheim, Stuttgart Germany 

(48°42'44"N, 9°12'30"E). Seeds were surface-sterilized by rinsing them in 10%(v/v) H2O2 solution for 20 

minutes afterwards they were put in the aerated 10 mM CaSO4 solution at 25 ºC in the dark overnight. 

The next day seeds were placed between filter paper soaked in a 4mM CaSO4 solution for around three 

days to germinate and then transferred one seedling to soil-sand substrate gently as described (Li et al, 

submitted). Plants were grown in half-cylinder rhizotrons (height 25 cm; diameter 10 cm) and the rhizo-

trons were arranged in an unblocked randomized design with five biological replicates for each treatment 

in the climate chamber. The climate chamber temperature was maintained 25 ºC during the day and 20 ºC 

at night, air humidity was set to 60%, day time was from 8 a.m. to 10 p.m. P content, root and rhizosphere 

traits were measured as discussed previously (Li et al, 2021). 

2.3 RNAseq Analysis 

The roots of maize plants were washed and harvested in five replicates, one plant per replicate, at 3 weeks 

after transferring into the rhizostron. Total RNA was extracted from ground root tissues with an innuPREP 

Plant RNA Kit (Analytik Jena AG, Jena, Germany) following the manufacturer instructions. The RNA 

concentration was determined by Nanodrop 2000c Spectrophotometer (Thermo Fisher Scientific, US). 

Three of the replicates were sent to Novogene Co., Ltd where the RNAseq libraries were constructed using 

NEBNext® UltraTM RNA Library Prep Kit for Illumina® (NEB, USA) and the Novaseq 6000 instrument 

was used for sequencing. Reads were aligned to B73 genome RefGen_v4 with HISAT2 and counted using 

HTSeq. 
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2.4 Differential Expression Analysis 

Differentially expressed genes were analyzed with DESeq2 package in R (Love et al. 2014; McCarthy et 

al. 2012). Genes with readcount fewer than two counts per million reads were filtered out, and analysis was 

carried out under False Discovery Rate < 0.05 as the significant measure. 

2.5 Weighted Coexpression Network Analysis 

WGCNA package was necessary to construct the co-expression network (Langfelder and Horvath, 2008). 

The correlation between genes was performed by Tukey’s Biweight correlation (Horvath 2011), and the 

correlation results were used to calculate the distance matrix. The calculations were done using WGCNA 

package in R (Langfelder and Horvath 2008). The distance matrix was later used for the dynamic hierar-

chical clustering and to build the edges (connections) between nodes (genes) in the network.  

2.5.1 Co-expression Network Construction 

First, unqualified genes of samples were excluded from subsequent studies. Then, an appropriate soft-

thresholding power (sft, in our study sft was 7) based on a scale-free topology criterion was chosen accord-

ing to the function pickSoftThreshold and the weighted adjacency matrix was built using the sft. The cor-

relation between one gene and all other ones was incorporated into an adjacency matrix, and the adjacency 

matrix was later transformed into the topological matrix (TOM) (Yip and Horvath 2007). These genes 

demonstrated hierarchical clustering according to the TOM-based dissimilarity (1-TOM) measure. After 

hierarchical clustering, highly correlated genes were assigned to the same module (Ravasz et al. 2002). 

2.5.2 Identification of Significant Modules and Functional Annotation 

After the samples’ trait information imported into the network, the module eigengene (ME), module mem-

bership (MM), and gene significance (GS) were calculated. Eigengenes were representative gene of the 

principal component 1 in a module, ME representing the expression pattern of eigengenes in the module. 

MM was the degree of correlation between eigengenes and module. If MM is close to 1, the eigengene is 

highly correlated with the module. GS could be considered as the association of individual genes with 

samples’ trait information. The module could be a candidate key module if it has a high ME valve with the 

samples’ trait information (Langfelder and Horvath 2008).  

2.5.3 Identification and visualization of Hub gene 

Hub genes are defined as genes with a high correlation in candidate modules. The hub gene was filtered to 

meet the absolute value of the geneModuleMembership >0.80 and geneTraitSignificance >0.60. After iden-

tifying hub genes highly associated with P utilization related traits, the annotating the function of relevant 
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modules was preformed to the potential mechanisms for the effects of corresponding trait. Gene ontology 

(GO) functional annotation and the Kyoto encyclopedia of genes and genomes (KEGG) were analyzed by 

gProfiler2 (Kolberg et al. 2020) and visualized the results by clusterProfiler, enrichplot, DOSE (Yu 2020) 

packages in R. Meanwhile, search tool for the retrieval of interacting genes (STRING) (Szklarczyk et al. 

2015) database was used to construct a Protein-protein-interaction (PPI) prediction analysis and Cytoscape 

(Shannon et al. 2003) visualize the PPI network. If a gene has high degrees in a PPI network, it will be 

defined as playing a critical role in the module. 

3. Results  

3.1 Transcriptomic analyses of P response in the seedling maize root 

Previous analyses demonstrated of P response related traits of 24 European flint maize released from the 

onset of hybrid breeding. Under Pi limitation, founder flint EP1 and F2 showed higher Pi uptake and bio-

mass accumulation compared with the other four genotypes (Fig. 1 a-d). In general, root hair length and 

root to shoot ratio increase under low P compared to high P condition were larger in founder flint lines (Fig. 

S1); and doubled haploid landrace SM1 has relatively higher mycorrhizal colonization (Li et al, 2021). To 

capture the transcriptional changes coinciding with these physiological and morphological changes in maize 

roots, plants roots harvested in the same experiment were used for RNAseq analysis.  

Principal component analysis (PCA) clarified two principal components (PCs), which altogether explain 

59% of the total sample variance in the transcriptomic data. Specifically, the first PC corresponded to the 

P treatments and explained 39% of the total sample variation, whereas the second PC (PC2; 20% of sample 

variance) delineated six genotypes analyzed (Fig. 1e). These results showed that in addition to a response 

to P treatments, the gene expression of samples also exhibited a genotypic difference. 

The gene expression levels were analyzed and normalized using the VST method in DEseq2; |log2(Fold-

Change)| ≥ 1 and adjusted p-value < 0.05 were set as the threshold for significant differential expression. 

We found with a range of 3293 to 5863 genes which showed differential expression between LP and HP in 

the six genotypes. SF1 had the most DEGs and F160 had the least DEGs among these six genotypes. EP1 

and F2 had similar numbers of DEGs, which a total of 2332 and 2575 DEGs were upregulated, whereas 

2215 and 2499 DEGs were downregulated in EP1 and F2, respectively. F142, SF1 and SM1 had similar 

numbers of DEGs (Fig. 2a).  

To identify common genes in different genotypes, the overlaps of all genotypes and unique genes were 

shown in a Venn diagram (Figs. 2b and c). A total of 144 downregulated genes (Fig. 2b) and 594 upregu-

lated genes (Fig. 2c) overlapped with those of six genotypes, respectively. The unique downregulated genes 
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were more than the shared DEGs in every genotype, suggesting different plant strategies after P deficiency 

stress (Fig. 2b). The unique upregulated genes varied in every genotype, which SM1 had the most unique 

upregulated DEGs and SF1 had the least unique upregulated DEGs (Fig. 2c).  

 

 

Figure 1. Biomass and P content of six genotypes (a-d). (e)PCA identified two PCs corresponding to the P treatments 

(PC1) and genotypes (PC2) in our RNA-seq analysis. Each point corresponds to one RNAseq sample. Dots correspond 

to high P treatment, triangle points correspond to low P treatment; Each color corresponds to a specific genotype. 
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Figure 2. Up- and downregulated DEGs and venn diagrams across six genotypes. (a) Numbers of Differently Expressed Gene 

(DEG) under low P condition (LP)  relative to high  P condition (HP)  of genotypes in our RNAseq analysis. (b-c) Venn plots 

showing numbers of unique up- or down-regulated genes in each genotype (in the petals), and shared up- or down-regulated gene 

number of all genotypes (in the center). 

 

3.2 A Weighted Coexpression Network Analysis (WGCNA) identifies candidate regulatory genes for 

P response 

Genes differentially expressed were queried for relationships to known P starvation response genes identi-

fied previously in Arabidopsis (Table S1). In general, maize presented two or more duplicate loci with high 

homology to individual Arabidopsis P starvation response genes. Detailed summaries of the pathways for 

plant P starvation response and in-depth transcript accumulation patterns of predicted maize candidate 

genes expressed during P deficiency are summarized according to previous reviews (Calderón-Vázquez et 

al. 2011; Ajmera et al. 2019) and provided in Table S1. We next used a gene coexpression network analysis 

(Langfelder and Horvath 2008, 2012) to identify additional candidate genes involved in regulating the P 

utilization of the maize. In a WGCNA, each edge (correlation between gene expression levels) was calcu-

lated to indicate the strength of its co-expression relationship with every other node in the network. In this 

way, a WGCNA was constructed based upon the expression-level correlations of all 22764 transcribed 

genes identified in our RNAseq analysis. 
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Figure 3.  The expression levels of eigengenes within the 24 modules identified in our WGCN analysis at each of the six geno-

types analyzed under LP and HP. 

 

Our WGCNA partitioned the transcriptome of six genotypes into 24 coexpression modules. Fig. 3 illustrates 

the expression levels of eigengenes (idealized representative genes) within these 24 modules at each of the 

six genotypes analyzed under LP and HP conditions. Expression levels of genes within modules 15 and 16 are 

associated with the P treatments (Fig. 3). Thus, comparisons of transcript accumulation levels between P 

treatments at each genotype (Fig. 2) reveal interesting correlations, clearly identifying a set of “suppressed” 

by P deficiency (1 to 5), “induced” by P deficiency (15 to 16) and “genotype-specific” modules (6 to 14 

and 17 to 24). Modules which are significantly correlated with specific root traits contain genes from known 

P starvation response and regulatory genes were collected. Within module 16, for example, the PHT1;1 

homologs Zm00001d004305 showed correlation coefficients of 0.76 with Root/Shoot and 0.63 with Root 

hair length, whereas the PHR1 homolog Zm00001d029020, found in module 14, has a correlation coeffi-

cient 0.51 with rhizosphere pH. Most known P starvation response and regulatory genes (Table S1) could 

be found in Module 16. Moreover, Module 16 was highly corelated to PUtE, PUE, root/shoot, root hair 
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length and root exudated organic acids (Fig. 4), so it was selected to investigate the molecular mechanism 

of P adaptation under P deficiency.  

 

Figure 4. Heat map depicting the correlation of each trait (x axis) to the 24 coexpression modules (y axis) identified in tran-

scriptomic analyses of the six maize genotypes. Colors (red to blue) correspond to the values of the Pearson’s pairwise correlations, 

where red (+1) is positively correlated and blue (−1) is negatively correlated. 

 

3.3 Functional analysis of module 16  

Module 16 is one of the modules “induced” by P deficiency. GO term analysis of the eigengenes in coex-

pression module 16 showed significant enrichment for oxidation-reduction process, transmembrane 

transport and cellular response to phosphate starvation (Fig. S1). KEGG term analysis of the eigengenes in 

coexpression module 16 showed significant enrichment for biosynthesis of secondary metabolism and car-

bon related metabolism (Fig. S1). Hub genes related to PUtE of Module 16 were selected to meet the abso-

lute value of the geneModuleMembership >0.80 and geneTraitSignificance for PUtE >0.60 (Fig. 5a). GO 

term analysis of hub genes related to PUtE in coexpression module 16 showed significant enrichment for 
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cellular response to phosphate starvation, including 89 genes (Fig. 5b). KEGG term analysis of hub genes 

related to PUtE in coexpression module 16 showed significant enrichment for Glycerolipid metabolism, 

Glycerophospholipid metabolism, Carotenoid biosynthesis and ABC transporters (Fig. 5c). The PPI net-

work found top 10 key genes related to PUtE, which is  Zm00001d005925 (1_Glucose-6-phosphate iso-

merase), Zm00001d041243 (2_Malate dehydrogenase), Zm00001d010038 (3_CASP-like protein 5), 

Zm00001d026156 (4_Putative glycerol-3-phosphate transporter 1),  Zm00001d031428 (5_Monogalacto-

syldiacylglycerol synthase 2 chloroplastic), Zm00001d022496 (6_ Anther-specific proline-rich protein 

APG),  Zm00001d027936 (7_15-cis-phytoene desaturase chloroplastic/chromoplastic),  Zm00001d043442 

(8_Carotenoid cleavage dioxygenases8), Zm00001d050428 (9_NADP-dependent glyceraldehyde-3-phos-

phate dehydrogenase) and Zm00001d048835 (10_ Phosphatidate phosphatase PAH2) (Fig. 5d). 

 

Figure 5. Net-work analysis the hub genes in Module 16 which had the highest correlation coefficient (0.81) with PUtE. (a) Hub 

genes of the Module 16. Hub genes were genes having a gene significance over 0.6 and a module membership over 0.8.; (b) Top 

20 GO categories of the hub genes involved in Module 16; (c) KEGG categories of hub genes involved in Module 16; (d) Protein-

protein-interact (PPI) prediction analysis of the hub genes in Module 16. Node size means the degree of genes. 
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3.4 Functional analysis of module 17 

Module 17 is one of the modules which specifically expressed higher in founder flint. GO term analysis of 

the eigengenes in coexpression module 17 showed significant enrichment for peptidase complex, endopep-

tidase complex and proteasome complex (Fig.6a). KEGG term analysis of the eigengenes in coexpression 

module 17 showed significant enrichment for proteasome and Glutathione metabolism (Fig.6a). The PPI 

network found top 10 key genes related to SDW, which is  Zm00001d035136 (1_Succinate-CoA ligase), 

Zm00001d008245 (2_ribosomal protein L30), Zm00001d027514 (3_Ubiquitin domain-containing protein 

DSK2b), Zm00001d022573 (4_26S proteasome regulatory subunit 4 homolog A), Zm00001d034667 

(5_Fes1A), Zm00001d005248 (6_ Dolichyl-diphospho-oligosaccharide--protein glycosyltransferase 48 

kDa subunit), Zm00001d020506  (7_ 26S proteasome non-ATPase regulatory subunit 9), 

Zm00001d015788 (8_proteasome component4), Zm00001d021020  (9_ 60S ribosomal protein L32) and 

Zm00001d037700 (10_Heat shock protein 4) (Fig. 6b). 

 

 

Figure 6. Network analysis the genes in Module 17 which had the highest correlation coefficient (0.86) with SDW. (a) GO cate-

gories and KEGG categories involved in Module 17; (b) Protein-protein-interact (PPI) prediction analysis in Module 17. Node size 

means the degree of genes. 
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4. Discussion 

4.1 General molecular mechanism to LP response in the six maize genotypes  

The adaptations to variable P availability depend at least in part on changes in gene expression,  including 

morphological modification to access a large soil area (Postma et al. 2014; Haling et al. 2018); chemical 

modifications of the rhizosphere (Hinsinger 2001; Pang et al. 2018); the establishment of symbiotic rela-

tions with AMF to help access P from the labile soil P pool (Smith et al. 2011; van der Heijden et al. 2015); 

recycling and mobilization of internal Pi (Cruz-Ramírez et al. 2006); and bypassing the metabolic steps that 

require ATP (Ganie et al. 2015). Previous research in maize reported changes in some specific proteins' 

response to Pi starvation by altering the balance of carbohydrate, protein, nucleotide, and secondary me-

tabolites (Li et al. 2007). Pi deficiency's effect on the expression of genes encoding proteins that mediate 

these pathways in maize roots remains to be determined.  

4.1.1 Pi deficiency integrates P and C metabolism in maize roots 

The protein modification in the alteration of the balance of carbohydrate mainly happened in the pathway 

of glycolysis and tricarboxylic acid (TCA) cycle (Li et al. 2007), which is consistent with gene expression 

pattern (Calderon-Vazquez et al. 2008) and our functional enrichment in module 16. Identifying changes 

in the expression of several sugar-related genes, including genes involved in sugar synthase, photosynthate 

product distribution and glycolysis in Pi-deficient maize roots, proved that there is direct crosstalk between 

sugar metabolism and Pi deficiency in plants (Hammond and White 2011). Tesfaye et al. (2007) noted a 

dark/light directed expression of several carbohydrate and metabolism genes in response to Pi stress in 

white lupin roots. Glycolysis is modified through bypassing reactions that require ATP, as reflected by the 

cluster of genes encoding phosphoglycerate mutase (PGM), phosphoenolpyruvate carboxylase (PEPCase), 

and PEPcase kinase (PEPK) in module 16. However, increased gene expression in the transcription levels 

were observed only PEPK in all genotypes, probably to provide the carbon skeletons necessary for the next 

intermediary reactions in C metabolism. In addition, the synthesis and excretion of organic acids have been 

documented in maize as a response to Pi deficiency (Gaume et al. 2001). Significant induction of several 

genes encoding Aluminum-activated malate transporter 10 (ALMT10) and malate dehydrogenase 2 

(MDH2) in all genotypes were observed, whose activity are necessary for the synthesis of malate and citrate, 

indicating that in maize roots ALMT10 or MDH2 is a limiting step for the exudation of citrate/malate.  

4.1.2 P recycling under Pi deficiency 

P recycling changes in these maize roots in the gene expression level was related to the lipid metabolism, 

cell wall organization and transmembrane transporter. Internal Pi recycling involves phospholipid 
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degradation and sulfolipids/galactolipid synthesis (Essigmann et al. 1998; Hammond et al. 2004). The ex-

pression increased phospholipid degradation related genes included phospholipase A2 (PLA2), phospho-

lipase C (PLC), phospholipase D (PLD), phosphatidate phosphatase 2 (PAH2) and glycerophosphodiester 

phosphodiesterase (GPPDs), in which PLC and PLD were also found to mediate phospholipid degradation 

in Arabidopsis (Cruz-Ramírez et al. 2006) and PLA2 and PAH2 was stronger induced in maize (Calderon-

Vazquez et al. 2008). The expression increased sulfolipids/galactolipid synthesis included UDP-sulfoqui-

novose synthase, Sulfoquinovosyl transferase SQD2 and Monogalactosyldiacylglycerol synthase 2 

(MGD2). Similarly, transport systems were strongly affected under Pi deficiency (Supplementary Database 

S1). The alterations in the transcript level of phosphate, sulphate, Fe, and ABC transporters as well as sugars 

and oligo-peptides encoding genes was identified. In addition, the genes related to establishment of the 

Casparian strip membrane domain (CSD) and the subsequent formation of Casparian strips was found in 

module 16, which in rice also determined similar genes under Pi deficiency (Wasaki et al., 2003). 

4.1.3 Carotenoid metabolism under Pi deficiency         

Carotenoid metabolism related genes were found to be induced under Pi deficiency in module 16. Carote-

noid cleavage dioxygenases (CCDs) drive carotenoid catabolism to produce various apocarotenoids and 

immediate derivatives with particular developmental, ecological, and agricultural importance. Carotenoids 

can be sequentially cleaved by plastid CCD7 and CCD8, generating carlactone as the strigolactone precur-

sor (Alder et al. 2012), which were highly induced under low P in all the six genotypes. Strigolactones 

coordinate shoot and root development, promote germination of parasitic seeds, and trigger AMF branching 

(Umehara et al. 2008). Loss-of-function mutation of CCD7 or CCD8 leads to dramatically more axillary 

branches in Arabidopsis. OsCCD8b also regulates rice (Oryza sativa) tillering, whereas ZmCCD8 plays 

essential roles in root and shoot development, with smaller roots, shorter internodes, and longer tassels in 

Zmccd8 mutant plants (Arite et al. 2007; Guan et al. 2012). According to our WGCNA analysis, ZmCCD8 

is one key genes in coexpression Module 16, which is typically a set of genes highly expressed under LP 

and significantly correlated with P utilization of all the six preselected maize genotypes (Fig. 6d). A partic-

ularly interesting feature of a number of CCD genes is their active involvement in P-deficiency responses. 

Upon Pi limitation, enhanced CCD8 expression boosts strigolactone production, reducing tiller prolifera-

tion and stimulating AMF-mediated Pi acquisition (Umehara et al. 2008; Czarnecki et al. 2013). 

4.2 Specific molecular mechanism to LP response in founder flint 

In founder flint EP1 and F2 showed higher biomass and Pi content in LP and can be considered efficient. 

The results in our study suggested that the enhanced biomass accumulation maybe related to the ability of 

integrating C and N metabolism. The ability of these two maize roots to preserve N- and C containing 
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metabolites under Pi starvation is notable. An extensive repression of genes related to proteasome and pep-

tidase involved in protein degradation was found in module 17, the up-regulation of protein degradation in 

a low Pi tolerance maize was also found under LP by microarray (Lin et al. 2013). Possible reasons could 

be the low Pi tolerance maize uses amino acids as an alternative C source to maintain biomass (Calderon-

Vazquez et al.,2008). It was also found that genes involved in glutathione transferase were induced under 

Pi deficiency. Glutathione was widely studied and found to be involved in stress management like drought, 

oxidative stress, chilling, high temperature (Kocsy et al. 2001; Štolfa et al. 2016; Pardo-Hernández et al. 

2020). A previous study linked low P availability in the soil with photo-oxidative stress in plants 

(Hernández and Munné-Bosch 2015), which implies that glutathione transferase accumulation played a role 

as antioxidant regulator in founder flints. 

5. Conclusions 

In maize, as in other crops, the general mechanism of regulating P utilization under LP is related to balance 

of carbohydrate through glycolysis and TCA cycle, alteration of lipid metabolism, changes of gene expres-

sion of transmembrane transporters and carotenoid biosynthesis. Additionally, the P use efficient founder 

flint lines EP1, F2 and doubled haploid landrace SM1 have their own specific strategies and mechanism to 

cope with LP. This may help to identify network constraints for efficient P use. Gene networks identified 

in this study and their proposed role in Pi adaptation are supported by the analysis of the data available from 

existing transcriptome, proteome and metabolome experiments conducted in maize and the other species. 

These genes provide an opportunity to identify different alleles involved in the adaptive response to Pi 

deficiency; they also provide a basis for identifying candidate genes and processes that may improve the 

tolerance to Pi deficiency in maize and other cereal crops. This work also provides a framework for the 

production of Pi-specific maize arrays to study global gene expression changes between Pi high-efficiency 

and low-efficiency maize genotypes. 
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Supplemental materials 

Table S1. Phosphate Starvation-Induced genes in Arabidopsis and their respective orthologs in maize. (n.d. means not detected.) 

Gene Arabidopsis Maize Module Gene name Description 

ARP6     At3g33520 Zm00001d024059 1  uncharacterized 

IPS1 At3g09922 Zm00001d022669 16 lncRNA819, pilncr1 - pi-

deficiency-induced long 

non-coding RNA1 

inhibits ZmmiR399-guided cleavage of 

ZmPHO2 

bHLH32 At3g25710 Zm00001d047878 3 bhlh143 - bHLH-tran-

scription factor 143 

Locus designated and assigned to a transcrip-

tion factor family by the GRASSIUS project 

(Yilmaz et al 2009) , which also provided the 

mappings to the B73_Reference Genome se-

quence v2 gene models. 

  Zm00001d039764 13 bhlh104 Locus designated and assigned to a transcrip-

tion factor family by the GRASSIUS project 

(Yilmaz et al 2009), which also provided the 

mappings to the B73_Reference Genome se-

quence v2 gene models. 

CAX1 At1g08960 Zm00001d023377 4  Cation/calcium exchanger 5 

CAX3  At3g51860 Zm00001d044533 

 
13 cax3 - calcium exchanger3 Expression affected by ABP4, auxin, and 

Ca++. Homolog of Arabidopsis CAX1 in-

volved in auxin transduction pathway. 

IPK1 At5g42810 Zm00001d001974 

 

6  Uncharacterized 

Protein: inositol-pentakisphosphate 2-kinase 1 

LPR1 At1g23010 Zm00001d040035 

 
21 mco1 - multicopper oxi-

dase1 

LiPocalin-Related (LPR), LOW PHOS-

PHATE ROOT (LPR), LPR1b (per Zhang, 

XR), (LPR1) Cupredoxin superfamily protein 

(per Zhang, XR), LPR2 (per NCBI), multicop-

per oxidase LPR1 homolog 1 (per NCBI) 

  Zm00001d040034 

 
10 pza02427 candidate gene for root system architecture and 

nitrogen use efficiency 

MYB62 At1g68320 Zm00001d008528 

 
16 myb22 - MYB-transcrip-

tion factor 22 

Locus designated and assigned to a transcrip-

tion factor family by the GRASSIUS project 

(Yilmaz et al 2009), which also provided the 

mappings to the B73_Reference Genome se-

quence v2 gene models. 

similar to myb domain protein 116 of A. thali-

ana 

https://www.maizegdb.org/gene_center/gene/pilncr1
https://www.maizegdb.org/gene_center/gene/pilncr1
https://www.maizegdb.org/gene_center/gene/pilncr1
https://www.maizegdb.org/gene_center/gene/bhlh143
https://www.maizegdb.org/gene_center/gene/bhlh143
https://www.maizegdb.org/gene_center/gene/cax3
https://www.maizegdb.org/gene_center/gene/mco1
https://www.maizegdb.org/gene_center/gene/mco1
https://www.maizegdb.org/person/3152857
https://www.maizegdb.org/person/3152857
https://www.maizegdb.org/person/3152857
https://www.maizegdb.org/person/59795
https://www.maizegdb.org/person/59795
https://www.maizegdb.org/gene_center/gene/pza02427
https://www.maizegdb.org/gene_center/gene/myb22
https://www.maizegdb.org/gene_center/gene/myb22
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  Zm00001d040019 

 
23 myb137 - MYB-transcrip-

tion factor 137 

Locus designated and assigned to a transcrip-

tion factor family by the GRASSIUS project 

(Yilmaz et al 2009), which also provided the 

mappings to the B73_Reference Genome se-

quence v2 gene models. 

similar to myb domain protein 62 of A. thali-

ana 

PHF1 At3g52190 Zm00001d019048 

 
16 pco144169 pco144169(539), SEC12-like protein 1 (per 

NCBI) 

PHO1 At3g23430 Zm00001d051945 

 
16 phos2 - phosphate trans-

porter2 

PHO1-like phosphate 

transporter 

phosphate transporter PHO1-2-like (per 

NCBI), ZmPHO1, ZmPho1;2a (per Sawers, 

RJH) 

PHO2 At2g33770 Zm00001d038972 

 
16 uce10 - ubiquitin conju-

gating enzyme10 

similar to Arabidopsis Ubiquitin-conjugating 

enzyme family protein 

AY109797 (per Old Canonical Name), 

CL10211_1, phosphate2 (per Du, QG), puta-

tive ubiquitin-conjugating enzyme E2 24 (per 

NCBI), ZmPHO2 (per Du, QG) 

PHR1 At4g28610 Zm00001d029020 

 
14 glk17 - G2-like-transcrip-

tion factor 17 

Locus designated and assigned to a transcrip-

tion factor family by the GRASSIUS project 

(Yilmaz et al 2009), which also provided the 

mappings to the B73_Reference Genome se-

quence v2 gene models. 

GLK17 putative MYB DNA-binding domain 

superfamily protein (per NCBI), PHR1 (per 

NCBI), ZmMYB-CC1 (per Bai, JR), ZmPHR1 

(per Xu, YJ) 

  Zm00001d019536 

 
10 glk15 - G2-like-transcrip-

tion factor 15 

Locus designated and assigned to a transcrip-

tion factor family by the GRASSIUS project 

(Yilmaz et al 2009), which also provided the 

mappings to the B73_Reference Genome se-

quence v2 gene models. 

CDPK substrate protein 1 (per NCBI), 

pco106271(668) Protein PHOSPHATE 

STARVATION RESPONSE 1 (per NCBI), 

ZmMYB-CC9 (per Bai, JR), ZmPHR15 (per 

Xu, YJ) 

PHT1;1 At5g43350 Zm00001d004305 

 
16 pht13 - phosphate trans-

porter protein13 

Annotation: can completely or partly com-

plement the yeast Pi-uptake mutant 

https://www.maizegdb.org/gene_center/gene/myb137
https://www.maizegdb.org/gene_center/gene/myb137
https://www.maizegdb.org/gene_center/gene/pco144169
https://www.maizegdb.org/person/59795
https://www.maizegdb.org/gene_center/gene/phos2
https://www.maizegdb.org/gene_center/gene/phos2
https://www.maizegdb.org/data_center/gene_product?id=9034610
https://www.maizegdb.org/data_center/gene_product?id=9034610
https://www.maizegdb.org/person/59795
https://www.maizegdb.org/person/133955
https://www.maizegdb.org/person/133955
https://www.maizegdb.org/gene_center/gene/uce10
https://www.maizegdb.org/gene_center/gene/uce10
https://www.maizegdb.org/person/136031
https://www.maizegdb.org/person/9038740
https://www.maizegdb.org/person/59795
https://www.maizegdb.org/person/9038740
https://www.maizegdb.org/gene_center/gene/glk17
https://www.maizegdb.org/gene_center/gene/glk17
https://www.maizegdb.org/person/59795
https://www.maizegdb.org/person/59795
https://www.maizegdb.org/person/9039719
https://www.maizegdb.org/person/9035030
https://www.maizegdb.org/gene_center/gene/glk15
https://www.maizegdb.org/gene_center/gene/glk15
https://www.maizegdb.org/person/59795
https://www.maizegdb.org/person/59795
https://www.maizegdb.org/person/9039719
https://www.maizegdb.org/person/9035030
https://www.maizegdb.org/gene_center/gene/pht13
https://www.maizegdb.org/gene_center/gene/pht13
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Expression: induced under low Pi conditions 

Expression: up-regulated by arbuscular my-

corrhizal fungi (AMF) 

Map Note: Genetic coordinate based on bp 

coordinates in B73 v4 (EHC Aug 2019) 

Pht1;2 (per NCBI), ZmPHT1;4 (per Liu, F), 

Zmpt4 (per Liu, F) 

PHT1;4 At2g38940 Zm00001d004301 

 
n.d. pht3 - phosphate trans-

porter protein3 

similar to Arabidosis inorganic phosphate 

transporter 1-4, PT3 (per Wright, DP), 

ZmPHT1;8 (per Liu, F), Zmpt8 (per Liu, F) 

Map Note: Genetic 2 coordinate based on bp 

coordinates in B73 v4 (EHC Nov 2017) 

Annotation: can completely or partly com-

plement the yeast Pi-uptake mutant 

Expression: induced under low Pi conditions 

  Zm00001d032850 

 
16 pht2 - phosphate trans-

porter protein2 

Pht1;1 (per Nagy, R), pt2 (per Wright, DP), 

PT2 (per Wright, DP), ZmPHT1;9 (per Liu, F), 

Zmpt9 (per Liu, F) 

History: Mapped in silico by inference from 

BAC sequence match (EH Coe Jul 2008) 

Annotation: can completely or partly com-

plement the yeast Pi-uptake mutant 

Expression: up-regulated by arbuscular my-

corrhizal fungi (AMF) 

Expression: induced under low Pi conditions 

Map Note: Genetic 1 coordinate based on bp 

coordinates in B73 v4 (EHC Sep 2017) 

PHT2;1 At3g26570 Zm00001d017069 

 

n.d.  Inorganic phosphate transporter 2-1 chloro-

plastic 

PLD1 At3g16785 Zm00001d037946 

 
1 pld13 - phospholipase 

D13 

phospholipase D p1 (per NCBI), phospho-

lipase D zeta 1 (per NCBI), ZmPLDζ (per 

Chen, L), ZmPLDZeta 

PTF1 At5g58010 Zm00001d045046 

 
n.d. ptf1 - Pi starvation-in-

duced transcription fac-

tor1 

single copy, may be involved in regulating car-

bohydrate metabolism 

bhlh171 (per Grassius), bHLH transcription 

factor PTF1 (per NCBI), putative transcription 

factor (ptf) (per Hawkins, JS), umc2362, 

ZmbHLH194 (per Gramene) 

Annotation: bhlh171 locus designated and 

assigned to a transcription factor family by 

https://www.maizegdb.org/person/59795
https://www.maizegdb.org/person/9035029
https://www.maizegdb.org/person/9035029
https://www.maizegdb.org/gene_center/gene/pht3
https://www.maizegdb.org/gene_center/gene/pht3
https://www.maizegdb.org/person/953970
https://www.maizegdb.org/person/9035029
https://www.maizegdb.org/person/9035029
https://www.maizegdb.org/gene_center/gene/pht2
https://www.maizegdb.org/gene_center/gene/pht2
https://www.maizegdb.org/person/9018486
https://www.maizegdb.org/person/953970
https://www.maizegdb.org/person/953970
https://www.maizegdb.org/person/9035029
https://www.maizegdb.org/person/9035029
https://www.maizegdb.org/gene_center/gene/pld13
https://www.maizegdb.org/gene_center/gene/pld13
https://www.maizegdb.org/person/59795
https://www.maizegdb.org/person/59795
https://www.maizegdb.org/person/9035480
https://www.maizegdb.org/gene_center/gene/ptf1
https://www.maizegdb.org/gene_center/gene/ptf1
https://www.maizegdb.org/gene_center/gene/ptf1
https://www.maizegdb.org/person/9021409
https://www.maizegdb.org/person/59795
https://www.maizegdb.org/person/1191759
https://www.maizegdb.org/person/726055
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the GRASSIUS project (Yilmaz et al 2009) , 

which also provided the mappings to the 

B73_Reference Genome sequence v2 gene 

models. 

Map Note: Genetic coordinate based on re-

combination mapping and bp coordinates in 

B73 v4 (EHC May 2019) 

Expression: overexpression allows improved 

root system; increased ABA content; and acti-

vated ABA-, CBF4-, ATAF2-and NAC30-

mediated stress responses; increased drought 

tolerance (Li et al., 2019) 

SPX1 At5g20150 Zm00001d053626 

 
16 cl49602_1 cl49602_1(357), IDS4-like protein (per 

NCBI), SPX domain-containing protein 1 (per 

Benfey, PN) 

SPX3 At2g45130 Zm00001d044541 16  SPX domain-containing protein 3 

  Zm00001d029460 16  SPX domain-containing protein 3 

  Zm00001d033047 16  SPX domain-containing protein 3 

SQD2 At5g01220 Zm00001d018595 

 
16 GRMZM2G100652 ortholog associated with root‐to‐shoot ratio in 

A. thaliana 

pco094720a (per NCBI), Sulfoquinovosyl 

transferase SQD2 (per NCBI) 

  Zm00001d028539 

 
9 IDP329 sulfoquinovosyl transferase SQD2 (per NCBI) 

ZAT6 At5g04340 Zm00001d029586 4  zinc finger protein 36 

https://www.maizegdb.org/gene_center/gene/cl49602_1
https://www.maizegdb.org/person/59795
https://www.maizegdb.org/person/52396
https://www.maizegdb.org/gene_center/gene/GRMZM2G100652
https://www.maizegdb.org/person/59795
https://www.maizegdb.org/person/59795
https://www.maizegdb.org/gene_center/gene/IDP329
https://www.maizegdb.org/person/59795
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Figure S1. Root traits of six genotypes between low P and high P.  (a) total root length; (b) specific root length; (c) root to shoot ratio; (d) rhizosphere soil solution 

pH; (e) root hair length; (f) average root diameter; (g) root secreted acid phosphatase activity; (h) root exudated oganic anions. 
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Figure S2. Net-work analysis the eigengenes in Module 16 which had the highest correlation coefficient (0.81) with PUtE. 

(a) Top 20 GO categories of the eigengenes involved in Module 16; (b) Top 20 KEGG categories of eigengenes involved in Module 

16; (c) Net-work analysis of the eigengenes in Module 16. Node size means the degree of genes; (d) Correlation between repre-

sentative root traits and key eigengenes. 
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9. General discussion  

The application of mineral P fertilizers increases plant-available P in the soil and improves crop growth 

and yield, but its success dependents on many different factors such as type of fertilizer, application form, 

the timing of fertilization, weather conditions, various soil properties and plant factors (Holford, 1997; 

Shen et al., 2011). As P is a finite resource, breeding of major crops with improved P efficiency may have 

large effects on the sustainability of the agroecosystems (Ludewig et al., 2019). Efforts in breeding tropi-

cal maize for P-deficient, acid soils with high loads of toxic Aluminum have identified candidate loci for 

important root traits (Azevedo et al., 2015), which gave a good example that breeding indeed has an im-

pact on root traits. But it is still ambiguous how the breeding affected maize root traits for P-deficient, 

neutral or alkaline soils, and the molecular mechanism of LP tolerance was lack of an integrative under-

standing. In this dissertation, we will discuss the breeding effect on European maize root traits and the 

trade-off of different root traits under LP first, then try to summarize an integrative understanding of 

maize Pi utilization molecular mechanism. 

9.1 Root and rhizosphere related responses of European maize flint lines to P deficiency 

There are substantial variability and distinct genetic architectures in dent and flint maize diversity panels 

(Messmer et al., 1992; Cartea et al., 1999; Rincent et al., 2014), which is consistent with different P effi-

ciency trends of the two panels showed in Chapter I. Due to different geographic separation and contrasting 

environmental conditions, phenotypic differences between these two germplasm pools are expected (Brown 

and Anderson, 1947; Unterseer et al., 2016). In Chapter I, the PUE, PUtE and PAE of elite flints released 

from the 1950s to 2010s decreased dramatically under both low P and high P. Most DH-LRs, surprisingly, 

preformed similar to moderately modern elite flints. However, most dent elite varieties in the study per-

formed superior. Those selected in the same public breeding program released from the 1990s to 2010s 

generally had higher biomass, PUE, PUtE and PAE, comparable to some flint founder lines. 

Much of the large variation in seedling biomass differences between these two germplasm pools was prob-

ably due to different P mobilization from seeds and a delayed switch to exogenous P acquisition. Especially 

under LP, seedlings of several genotypes (especially some in the Elite Flint2 and Elite Flint3 groups) even 

contained less P than originally stored P in the seed. It suggested that during germination they were not able 

to utilize the seed P and translocate it into the seedling, resulting in a seed P loss. Massive losses of macro-

nutrients and micronutrients during germination have been reported and can be prevented by silicon treat-

ments (Moradtalab et al., 2018). In those juvenile plants have a seed P loss, re-uptake of transiently lost P 

from internal sources could appear as a major function of the root system. Indeed, previous research showed 

the measurable P uptake by maize roots begins with a delay of around five days after germination, but the 

P uptake rate was shown to be independent of the initial seed P content (Nadeem et al., 2011; White and 
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Veneklaas, 2012). For the different genetic backgrounds analyzed here, there was a strong correlation of 

total dry mass with exogenous P taken up, especially in HP, but not with the seed P content. Some dent 

elite lines (and hybrids) apparently switched earlier or more robustly to acquisition from exogenous P pools 

so that they had already acquired substantial external P at the time of harvest, consequently produced more 

biomass.  

Although the internal remobilization of stored P was dominant in LP at the investigated juvenile stage, all 

root traits except APase were significantly correlated to PAE in LP. When only focusing on the flint pool, 

the decline of PUE and PAE of flint were accompanied with smaller seedling root biomass in elite flint 

varieties despite the breeding progress, while Root/Shoot had no considerable change. This implies for flint, 

investment into the roots may be less important when all nutrients are amply available, as in typical breeding 

scenarios. Several root traits of flints were associated with the decrease of PUE in the breeding process, 

Rhizos-pH and RootHairLen in LP and to a lesser extent RootDiam in HP were accompanied with the 

decline of PUE of flint, which means founder flints have a weaker ability to acidify the rhizosphere and 

grow longer root hairs under limited P conditions. 

In Chapter II, we grew European flint maize genotypes with distinct breeding histories in two soil mixtures 

under two P levels and observed that seedling biomass was more substantially determined genetically at 

HP compared with LP, whereas shoot P content was similarly correlated between both experiments at both 

LP and HP. The group of founder flints had higher seedling biomass compared with that of elite flints, 

whereas recently developed DH from landraces were, on average, similar to Elite Flint2 and Elite Flint3. 

Despite limited relevance for larger quantities of dissolution of soil P, root organic acid anion exudation 

(Pearse et al., 2006; Oburger et al., 2011; Wang et al., 2016; Lyu et al., 2016) for the mobilization of 

adsorbed P from soil particles can increase the absorption of phosphorus by plants (Gerke et al., 2000). The 

volume of carboxylates secreted from root tips varied in the 24 maize genotypes under both LP and HP 

conditions, but on average, citrate was the only major carboxylate that was more released under LP. Citrate 

was correlated with shoot dry weight and shoot P accumulation, together with succinic acid and trans-

aconitic acid. Importantly, the mobilization efficiency of Pi by the organic acid anions in many soils is 

citrate > oxalate > malate > trans-aconitate > succinate > acetate (Jones, 1998; Gaume, 2000), and interest-

ingly, the amount of citric acid and trans-aconitic acid in exudates has declined during the breeding process 

under LP conditions. This suggests that modern elite genotypes release less beneficial organic anions to 

mobilize P under limited P supply than old genotypes. Other functions of root exudation, such as attracting 

other beneficial microbes may be related to the trends to release more malate under HP conditions or other 

changes in root organic acid anion exudates. The release of malate and citrate by Aluminum-Activated 

Malate Transporters (ALMT) and Multidrug and Toxic Compound Extrusion (MATE) families are among 
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the well-understood transporter candidates involved in exudation (Sasse et al., 2018). Previous findings 

also showed that AM induces malic acid accumulation in the roots of water-stressed maize plants (Hu and 

Chen, 2020), but the organic acid in exudates do not increase.  

AMF colonization, a typical response to coping with P deficiency in native environments and crops (Smith 

et al., 2011), modulates the relationship between root growth and nutrient acquisition in maize (Ramírez-

Flores et al., 2019). In Chapter II, all genotypes in our study showed increased colonization under LP, and 

only under this condition was the mycorrhizal colonization correlated with shoot P content. Concern has 

been expressed that, on evolutionary time scales, plants have clearly reduced their dependence on symbiotic 

mycorrhizal fungi since they first emerged in land ecosystems (Ma et al., 2018). Indeed, a comparison of a 

landrace with hybrid maize varieties has revealed a better response to AMF mycorrhization (Londoño et 

al., 2019), whereas mycorrhizal infection was even more pronounced in a modern European elite line com-

pared with an African line (Wright et al., 2005). Even during the relatively short period of breeding selec-

tion from the 1950s to 2000s, mycorrhizal colonization and responsiveness have decreased, although only 

a very limited number of lines has been evaluated for this trait (Chu et al., 2013; Chu et al., 2020). Here, 

no obvious trend for a loss of mycorrhization during the breeding process for European flint genotypes was 

observed, although the founder line EP1 showed particularly high mycorrhization. Furthermore, the DH 

line SF1 had the highest mycorrhization degree/intensity and SM2 the highest arbuscular abundance of the 

root system, but interestingly, several other DH lines from the same landrace were even less colonized than 

the modern flints. SF1 or SM2 may therefore be good candidates for breeding for superior AMF mycorrhi-

zation or can be used as parents for quantitative trait loci (QTL) studies to identify genetic components of 

mycorrhization. However, although such material might contribute interesting genetics to modern elite lines, 

DH lines from landraces are not generally superior with regard to AMF colonization than modern elite lines. 

9.2 Tradeoffs of root traits related to PUE under low P 

A wide variation and co-variation of key root and rhizosphere traits have been found to create multiple P 

acquisition strategies that may be similarly efficient in an ecosystem (Zemunik et al., 2015; Brundrett and 

Tedersoo, 2018; Lambers et al., 2018). Previous studies showed in controlled experimental conditions, 

different plant species showed different P acquisition strategies with different root and rhizosphere trait 

tradeoffs, while maize with its fibrous root system investing relatively little into rhizosphere traits (Lyu et 

al., 2016; Wen et al., 2019). In our study in Chapter I, only TRL and SRL (morphological traits) are not 

significantly affected by P treatment, and all the traits (morphological traits and rhizosphere traits) showed 

variation among genotypes. TRL was important under both LP and HP to PUE; RootDiam, Rhizos-pH, 

Carboxylates and RootHairLen were more important under LP to PUE. While under HP, TRL was nega-

tively correlated to RootHairLen (r = -0.32); and under LP, TRL was positively correlated to RootHairLen 
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(r = 0.37). Moreover, the correlation between PUE and TRL decreased from 0.50 under HP to 0.39 under 

LP, meanwhile, the correlation between PUE and RootHairLen increased from -0.19 to 0.45. This can be 

taken as one kind of trade-off among the root traits, which verified our third hypothesis. The variation and 

co-variation still exist when only considering the flint pool.  Under HP, there is a large variation of all these 

eight root functional traits; under LP, there is a visible co-variation among TRL, RootHairLen, Root/Shoot, 

Rhizos-pH and Carboxylates. The trade-off between TRL and RootHairLen is also still found in the flint 

pool. As only young roots were considered here, field trials with the investigated genotypes are required to 

confirm the importance of juvenile PUE traits for adult plants and final grain yield. Such experiments should 

also consider other traits that are important for P efficiency in adult plants, such as the presence of cortical 

root aerenchyma (Postma and Lynch, 2011). 

The genotypes in Chapter II were grouped into four categories, according to the definitions of agronomic 

use efficiency and their responsiveness to P, with the founder line EP1 being exceptionally efficient. The 

increase in the Root/Shoot ratio is a well-known strategy of plants for coping with P-deficiency and was 

consistently found in our experiments. However, the P-efficiency was not significantly affected by the ratio. 

In terms of P-efficiency and P-responsiveness, root traits associated with physiology and architecture are 

more important than the root biomass itself. Root traits associated with efficient P use (such as in EP1) were 

characterized by a large investment into not only long laterals, but also thick shoot-borne roots. Roots 

thicker than 0.2 and thinner than 0.4 mm are thought to be lateral roots (Tai et al., 2016), and these were 

promoted most strongly under low P, irrespective of genotype and class. Because of the different root types 

contributing to P-efficiency in maize, the SRL, a typically valuable measure of the high P use efficiency of 

plants, was studied and shown to be low in the most P-efficient genotypes. Rhizosphere pH and root length 

were associated with P-efficiency and contributed similarly to the prediction of the P-efficient genotypes 

under LP conditions, e.g., TRL and RootDiam. The latter two criteria contributed in an opposite under HP 

conditions, revealing the dilemma that beneficial traits under LP conditions may be different from those 

under HP and underpinning the importance of the environment in which crops are selected during the breed-

ing process. 

In Chapter IV, the rth2 maize mutant apparently had, in addition to the root hair phenotype, altered root 

architecture. Roots thinner than 0.4 mm are lateral roots (Tai et al., 2016), indicating an increased number 

of laterals in rth2. However, the genotype × environment effect on the root dry weight was apparently low 

or absent, suggesting the root architecture changes were seemingly not a response to short root hairs under 

P-limiting conditions. However, changes in the root architecture of rth2 and the barley mutant brb (Dodd 

and Diatloff, 2016) may also affect P uptake. Therefore, these mutants must be used cautiously to draw 

conclusions on root hair function. Surprisingly, the mutant rth2 performed better than the wild type in well-
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supplied hydroponics, which may reflect a substantial energy cost of building root hairs in conditions where 

they are not required. 

9.3 Maize root hair and mycorrhizal interaction under P limiting conditions  

As root hairs play an important role in Pi acquisition (Jungk, 2001; Lambers et al., 2006; Lynch, 2015), it 

was expected that the hairless mutant performed much worse than the wild type under P-deficient condi-

tions in Chapter III. The primary role of root hairs is to extend the root surface area and to increase the 

radial rhizosphere diameter to explore a larger soil volume (Ma et al., 2001; Pang et al., 2018). This was 

confirmed by up to 0.5 mm broader rhizosphere extent of acid phosphatase activity in the wild type com-

pared to that of the hairless mutant, irrespective of AMF inoculation. Our study further verified that the 

root hair dependency of maize growth was 57%. The root hair dependency of barley, by contrast, was ac-

cording to results shown in Chen et al., (2005) and Jakobsen et al., (2005) around 75%, which is notably 

higher than our results in maize, indicating root hairs play more important roles in barley than in maize. 

Furthermore, the root hairs enhanced the P content by 44%, but this increase was not significant and the P 

concentration was similar or tended to be even slightly decreased in plants with root hairs, which is in line 

with previous research (Weber et al., 2018; Klamer et al., 2019; Ludewig et al., 2019). However, root 

hairless plants were severely depressed in biomass formation compared with the wild type, meaning that 

any additionally acquired Pi was immediately invested in producing more shoot and root biomass, leading 

to bigger shoots and longer roots. Maize wild type had a higher SRL than rth3, which indicated that the 

wild type has longer root length for a per-unit invested dry-mass. This further allowed a greater soil vol-

ume to be explored per unit C invested and thus enhanced P uptake efficiency (Laliberté et al., 2015). 

Therefore, maize root hairs not only improved PAE but also indirectly improved root morphology, with 

longer total root length and higher SRL that further improved plant growth compared to the rth3 hairless 

mutant.  

AMF inoculation increased the plant growth and Pi acquisition of both wild type and rth3 root hairless 

mutant 1.8-7.4 times. The P nutritional status, i.e., the shoot P concentration, was massively improved by 

AMF, facilitating maize growth and further Pi acquisition by AMF and by roots. The root hairless mutant 

rth3 particularly profited more from the AMF inoculation than the wild type, which is consistent with pre-

vious studies where root hair length negatively correlated with mycorrhizal dependency of various spe-

cies, because root hair length contributed to plant Pi uptake (Tawaraya, 2003). Thus, root hairs and AMF 

provide alternative, inversely correlated pathways for Pi foraging. Although root hairs and AMF provide 

alternative mechanisms to increase the contact with soil, the 33% higher mycorrhizal growth dependency 

than root hair dependency strongly argues that AMF provide a more efficient way to acquire Pi even in 

young maize. Furthermore, the total colonized root length was similar in the two genotypes under AMF 
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inoculation condition and was accompanied with almost the same final biomass, indicating that AMF 

played a more important role than root hairs for Pi acquisition in maize (Wen and Schnable, 1994; 

Cozzolino et al., 2013). However, similar studies in barley showed that the root hairs play more important 

roles than AMF (Jakobsen et al., 2005; Chen et al., 2005; Li et al., 2014). This is probably due to the fact 

that the root hair length of barley wild type was almost doubled under the P-deficient condition compared 

to that under higher P condition (Brown et al., 2012), while the root hair length in maize B73 wild type 

was not significantly different between under P deficient (this study 0.90 mm) and sufficient condition 

(0.83 mm) (Weber et al., 2018). This explanation is supported by observations in Plantago lanceolata L., 

whose root hair length was not responsive to P availability, but was highly dependent on AMF for Pi ac-

quisition under P deficiency (Brown et al., 2013). It is also noteworthy that root hairs are already endoge-

nously found in young seedlings from the first days of growth, while AMF establishment requires several 

weeks to be functionally established (Smith and Read, 2008). Ultimately, AMF could compensate the loss 

of root hairs and even played a more critical role than root hairs for Pi acquisition under P-deficiency 

even for juvenile maize. As a consequence, the plant biomass and Pi uptake were induced by AMF colo-

nisation in rth3 by 1.6-2.5 times compared to that in the wild type. The phytohormone strigolactone plays 

an important role in the establishment of the root and AM symbiosis interaction (Akiyama et al., 2005; 

Besserer et al., 2006; Chagas et al., 2018). AMF colonisation depends on the release of such signaling 

compounds into the rhizosphere to germinate spores and attract hyphae for root contact; a radially ex-

tended rhizosphere was expected to be beneficial for the number of AMF-root contact sites. However, 

root hairs expand the soil volume into which strigolactone is released, but had only a minor role in maize, 

as the AMF colonisation was higher in the hairless mutant than in the wild type. Molecular signals such 

as CLE peptides also play a key role in AMF colonisation of various plants (Handa et al., 2015; Karlo et 

al., 2020). Future investigations about genetic and molecular pathways such as the relationship between 

the release of strigolactones and CLE peptides with AMF colonization are needed to reveal the con-

trasting mycorrhizal colonisation between wild type and rth3 in maize. 

9.4 Different molecular mechanism patterns of flint maize roots under low P  

In Chapter IV, the adaptations to low P availability in the expression in roots of six preselected genotypes 

in European maize flint depended mainly on bypassing the metabolic steps that require ATP (Ganie et al., 

2015); and recycling and mobilization of internal Pi (Cruz-Ramírez et al., 2006). Glycolysis is modified 

through bypassing reactions that require ATP, as reflected by the cluster of genes encoding phosphoglycer-

ate mutase (PGM), phosphoenolpyruvate carboxylase (PEPCase), and PEPcase kinase (PEPK) in a module 

induced by P deficiency in WGCNA result. P recycling changes in these maize roots in the gene expression 

level was related to the lipid metabolism, cell wall organization and transmembrane transporter. Internal Pi 

recycling involves phospholipid degradation and sulfolipids/galactolipid synthesis (Essigmann et al., 1998; 
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Hammond et al., 2004). The expression increased phospholipid degradation related genes included phos-

pholipase A2 (PLA2), phospholipase C (PLC), phospholipase D (PLD), phosphatidate phosphatase 2 

(PAH2) and glycerophosphodiester phosphodiesterase (GPPDs), in which PLC and PLD were also found 

to mediate phospholipid degradation in Arabidopsis (Cruz-Ramírez et al. 2006) and PLA2 and PAH2 was 

stronger induced in maize (Calderon-Vazquez et al., 2008). The expression increased sulfolipids/galacto-

lipid synthesis included UDP-sulfoquinovose synthase, Sulfoquinovosyl transferase SQD2 and Monoga-

lactosyldiacylglycerol synthase 2 (MGD2). Similarly, transport systems were strongly affected under Pi 

deficiency. The alterations in the transcript level of phosphate, sulphate, Fe, and ABC transporters as well 

as sugars and oligo-peptides encoding genes was identified. In addition, the genes related to establishment 

of the Casparian strip membrane domain (CSD) and the subsequent formation of Casparian strips was found 

in module 16, which in rice also determined similar genes under Pi deficiency (Wasaki et al., 2003). 

Founder flint EP1 and F2 showed specific molecular mechanism to LP response. The higher biomass of 

these two genotypes maybe related to the ability of integrating C and N metabolism. A relatively higher 

expression of genes related to proteasome and peptidase involved in protein degradation was found in these 

two genotypes under LP. It was also found that genes involved in glutathione transferase were induced 

under Pi deficiency. Glutathione was widely studied and found to be involved in stress management like 

drought, oxidative stress, chilling, high temperature (Kocsy et al., 2001; Štolfa et al., 2016; Pardo-

Hernández et al., 2020). Previous study linked low P availability in the soil with photo-oxidative stress in 

plants (Hernández and Munné-Bosch, 2015), which imply that glutathione transferase accumulation played 

a role as antioxidation under low Pi conditions in founder flints. 

Maize general mechanism of regulating P utilization under LP is related to balance of carbohydrate through 

glycolysis and TCA cycle, alteration of lipid metabolism, changes of gene expression of transmembrane 

transporters and carotenoid biosynthesis. Additionally, the founder flint line EP1, F2 and doubled haploid 

landrace SM1 have their own specific strategies and mechanism to cope with LP. The genes identified in 

this study and their proposed role in Pi adaptation are supported by the analysis of the data available from 

existing transcriptome, proteome and metabolome experiments conducted in maize and the other species. 

These genes provide an opportunity to identify different alleles involved in the adaptive response to Pi 

deficiency; they also provide a basis for identifying candidate genes and processes that may improve the 

tolerance to Pi deficiency in maize and other cereal crops. This work also provides a framework for the 

production of Pi-specific maize arrays to study global gene expression changes between Pi high-efficiency 

and low-efficiency maize genotypes. 
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9.5 Future perspectives 

Improving PUE is vital to increase the nutritional value of grains, improve farm economies and reduce 

environmental burden. However, due to insufficient understanding of the molecular mechanisms under-

pinning traits and their interactions, current breeding strategies have hardly been successful (Veneklaas et 

al., 2012). Therefore, it’s important to clarify the components of (and their relative contributions to) traits 

of interest from molecular to field scales, and provide a starting point for integrative research to improve 

PUE. 

From the outset, we should keep in mind that different growth conditions (light regimes, growth matrices, 

etc.) influence the plant response to the same external Pi treatment. So, it would be good to collaborate 

with other groups, modellers and statisticians to capture the related processes in different growth condi-

tions or scales. The comparison of these processes within relevant genotypes (particularly, those perform-

ing well in low-P landscapes) or multiple conditions, for example, a certain range of constant external Pi 

levels, will also be both informative and closer to field conditions. Using novel drugs (such as Phostin and 

Phosphatin) and Pi analogs (such as phosphite and methylphosphonate (Arnaud et al., 2014; Jost et al., 

2015)) may help to further decipher plant responses to Pi starvation. Regarding to the phosphate-starva-

tion responses, many core gene regulatory networks involving PHR1/2 have been identified in Arabidop-

sis and rice, and there are some genes seem to be conserved in a variety of plant species (Fang et al., 

2009; Ajmera et al., 2019), which provides a set of candidate genes/molecular components for maize re-

search for improving PUE. 

Furthermore, we have used transcriptomic technique to identify the components of the system concerned 

but note that at the molecular scale, individual omics techniques may give only one-side of which players 

are important. This could be resolved by using multiple omics techniques on the same samples (Wilson et 

al., 2015). This will help to refine and prioritize the regulatory pathways and provide the interactive to-

pology on which dynamic models can be developed. The initial dynamic models should focus on a 

smaller part of the entire network, these models can be integrated later to discover the different aspects of 

the PSR affect each other. 

Taking all together, to get deeper understanding of phosphate research, interdisciplinary team working is 

a good choice. Interdisciplinary team working on the different aspects of phosphate research (especially 

of different scales) must come together and share terminology, skills and concepts in order to be able to 

build models that link genotypes to desirable traits or genes. In addition, interdisciplinary cooperation is 

likely to accelerate output, strengthen understanding, and promote the transformation of purely scientific 

endeavors into practical applications.
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