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GENERAL INTRODUCTION 

One of the main objectives in animal breeding is to make genetic progress in quantitative traits. To 

achieve this objective, complex breeding programmes are developed. These programmes are used 

worldwide and are in principle similarly structured, independent of species and breed. They are 

always characterised by successive steps: (1) a breeding goal definition for specific production 

systems, environments and species, (2) the recording of phenotypes, (3) the acquisition of kinship 

information, (4) the estimation of breeding values for specific traits and animals, (5) the selection 

process of high value animals to breed the next generation based on complex total merit indices 

and (6) the dissemination of genetics into the production tier. 

For several reasons, those programmes need to be reviewed and adjusted on a regular basis. 

Alongside with findings from research, future challenges, like climate change, and the effective 

use of resources need to be considered. Furthermore, social and ethical influences are important, 

notably regarding animal welfare, food production and consumers demands. In addition, political 

regulations, e.g. for specific production systems, and economic aspects, like the profit generated 

by genetic gain, are crucial for the success and evaluation of breeding programmes (European 

Commission, 2008 a, 2008 b). 

The breeding goal includes multiple traits, combined in a total merit index, and is developed for 

long-term improvement of the population. In the last decades, most breeding strategies in pigs and 

cattle focused on production traits and high yields, as a result of their economic value. Negative 

genetic correlations between those yield traits and functional traits led to a decline in fitness traits 

(Lucy, 2001; Knol et al., 2002; Grandinson, 2005). This is criticised by consumers, the general 

society as well as certain farmers. In order to put more emphasis on fitness traits, these have to be 

weighted to higher degree in the total merit index and/or new traits have to be considered (Egger-

Danner et al., 2014). For pigs, mothering ability traits are becoming increasingly important because 

it has become evident that a good mothering ability is one of the prerequisites for low piglet 

mortality. 

Breeding animals are selected based on the total merit index. The latter combines the single trait 

breeding values and the economic importance of the traits or trait complexes and is another 

important step in breeding programmes. Different objective and non-objective approaches can be 
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used to determine economic weights for traits. Those depend on data, monetary evaluation of traits 

and questioning, like the consideration of specific environmental effects or the maximisation aim 

(Nielsen and Amer, 2007; Teegen et al., 2008; Fuerst-Waltl et al., 2010). 

Changing environments pose the question about genotype by environment interactions (GxE). 

Ignoring GxE effects might result in diminished genetic gain (Mulder and Bijma, 2005; Mulder, 

2007). Therefore, breeding programmes need to be optimised in the presence of GxE, to breed 

animals which are capable of a reliable performance in a variety of environments. This is important, 

because well performing animals in a specific environment do not necessarily perform as good in 

another, more different environment (Falconer and Mackay, 1996). There are different concepts to 

estimate GxE interactions, like the estimation of genetic correlations between performances in 

different environments or the reaction norm approach, which uses continuous environmental 

descriptors (Hayes et al., 2016). 

In the present thesis, several aspects of classical, common and novel quantitative traits in pigs and, 

in different environments, in cattle are analysed. 

In Chapter 1 phenotypic data of new mothering ability traits in pigs, recorded on an ordinal scale, 

were used to estimate genetic parameters. Heritabilities and repeatabilities were estimated by 

applying generalised linear mixed and threshold models. Bivariate analyses were used to estimate 

genetic correlations. Subsequently, the data recording approach, the fitted models and the possible 

inclusion of the investigated traits in existing breeding schemes were discussed. 

Chapter 2 focuses on the economic aspect of cattle breeding programmes. A discrete choice 

experiment was used to evaluate the importance of commonly included and new, not yet monetarily 

evaluated, traits in total merit indices of Brown Swiss cattle. Selection decisions and farm 

management environments of surveyed breeders were considered. A conditional logit model was 

used to derive relative economic weights and estimate the marginal willingness to pay for six trait 

complexes, the semen price and interactions between traits. Finally, the, not strictly economic and 

non-objective, discrete choice approach, and its regular use in breeding programmes and results 

were discussed. 

In Chapter 3 possible GxE for production and functional traits of Brown Swiss cattle and their 

effect on existing breeding programmes were examined. Bivariate sire models were used to 
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estimate genetic correlations between environments on a trait level. Furthermore, total merit indices 

(TMI) for sires were calculated using environment-specific relative economic weights to determine 

possible GxE effects at TMI level. Subsequently, results and their impact on existing breeding 

programmes were discussed. 

Chapter 4 investigates GxE interactions for various production and functional traits of Brown 

Swiss cattle using reaction norm models. Milk energy yield was used as a continuous 

environmental descriptor, combining the average herd effects of milk, fat and protein yield of 

phenotyped animals. A reaction norm model was used, including a random regression of a specific 

sire on the environmental descriptor and heterogeneously modelled residuals. In addition, breeding 

values for sires were estimated to provide insight into putative reranking effects. The results and 

possible effects on existing breeding schemes of Brown Swiss were discussed. 

A general discussion will connect the different Chapters. It discusses the applied methods, the 

results and their use for existing breeding programmes of pigs and Brown Swiss cattle. Moreover, 

possibilities for the implementation of results and findings in current breeding schemes will be 

analysed and prospects for future research are presented. 
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GENERAL SUMMARY (ENGLISH) 

Complex breeding programmes are used worldwide to achieve genetic progress in quantitative 

traits. These programmes are basically similarly structured, independent of breed and species, and 

are characterised by successive steps. The adjustment and revision of breeding programmes is of 

ongoing interest due to several reasons, e.g. research findings and various political, economic, 

social and ethical aspects. For the long-term improvement of livestock populations, multiple traits 

are included in the breeding goals of such programmes. Unfavourable genetic correlations between 

economically important production traits and functional traits compromise the genetic progress in 

animal health and welfare. Novel functional and behavioural traits and the adjustment of relative 

economic weights for the optimisation of total merit indices are investigated in research projects. 

In addition, genotype by environment interactions (GxE) can influence the genetic improvement 

of livestock populations. The consideration of these interactions is crucial due to the globalisation 

of breeding structures and the associated varying production environments. 

The main objectives of this thesis were 1) to investigate novel behavioural traits in pig breeding, 

2) to derive environmental-specific relative economic weights based on consumers preferences for 

Brown Swiss cattle, 3) to estimate GxE at a trait and an index level by applying bivariate sire 

models in Brown Swiss cattle and 4) to analyse GxE for different production and functional traits 

in Brown Swiss cattle using reaction norm models. 

In Chapter 1 genetic parameters for mothering ability traits were estimated, based on field-

recorded data on a five-point ordinal scale. Heritabilities (h2) were estimated by applying a linear 

mixed model and a threshold model, ranging between 0.02 to 0.07 and 0.05 to 0.15, respectively. 

The slightly higher estimates for the repeatability ranged from 0.05 to 0.09 and from 0.08 to 0.17 

(same models applied) and indicate the influence of the permanent environment. Highest h2 were 

found for the group- and nursing behaviour of the sows. Correlations, estimated by bivariate 

analyses, were positive. Highest genetic correlations were found between group-/nursing behaviour 

and litter balance and piglet weaning weight with estimates between 0.71 and 0.86. The results 

indicate that the threshold model seems to be more suitable for the data used. Accelerating genetic 

gain for improved mothering ability in sows is possible. For the implementation of results in 

breeding programmes, a most objective definition of traits is necessary. Furthermore, the 
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investigation of correlations between mothering ability traits and common production traits is 

required. 

In Chapter 2, the importance of breeding traits of Brown Swiss cattle in terms of selection 

decisions of farm managers were evaluated by using a discrete choice experiment (DCE). 

Environment-specific relative economic weights (REW) and the marginal willingness to pay were 

estimated by using a conditional logit model. Several trait complexes, the semen price, interactions 

between these traits and specific characteristics of the farms were included. Farmers showed 

highest preferences for the milk value, conformation/udder and fitness. Interactions indicated a 

great importance of the fitness trait complex for organically managed farms compared to 

conventional farmers. The latter weighted the milk value and the trait complex conformation/udder 

high. The DCE is flexible regarding the modelling of heterogeneous farmers’ preferences for a 

limited number of trait complexes. Derived environmental-specific REW can be used for the 

development of an environmental-specific total merit index (TMI). The method is suitable to judge 

farmers’ preferences for specific traits, especially those which have not yet been monetarily 

evaluated. The results can be used by breeding organisations in their decision-making processes to 

include traits in the TMI. Further, a comparison of currently used REW and the DCE-derived REW 

indicated, that they agree to a large extent, but farmers want to include the new trait perinatal 

sucking behaviour in the TMI. The combination of the DCE and purely profit-oriented approaches 

is recommended. 

Chapter 3 investigated GxE at a trait and an index level for Brown Swiss sires. Bivariate sire 

models were used to estimate genetic correlations between organic and conventional production 

systems and two altitude level of the farms for milk production traits and several functional traits. 

Furthermore, to determine possible GxE and rerankings at an index level, total merit indices for 

the sires were calculated, based on breeding values and environmental-specific REW. The genetic 

correlations were high between the analysed environments, ranging from rg=0.79 (first 

insemination to conception between the different altitude level of the farms) to rg=0.99 (calving to 

first insemination, cystic ovaries, maternal stillbirth between the production systems). The results 

indicate no severe GxE at a trait level and thus, no adjustment of the existing breeding programme. 

Between the environmental-specific TMIs of the Brown Swiss sires for organic and conventional 

production systems, no severe reranking was found. Consequently, no putative GxE effects were 

found for the production system environments at an index level. 
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In Chapter 4, GxE for various production and functional traits in Brown Swiss cattle were analysed 

using random regression reaction norm models. The continuous environmental descriptor milk 

energy yield (MEY) was calculated as a linear combination of average herd effects, obtained from 

the routine breeding value estimation, of milk-, fat- and protein yield. The applied reaction norm 

model included a random sire effect (intercept) and a random sire slope effect (environmental 

sensitivity), i.e. the random regression coefficient of the regression of a specific sire on the 

environmental descriptor MEY. To investigate putative GxE effects, breeding values for the sires 

were estimated. Results showed no severe GxE for the functional traits but for the production trait 

fat yield. In addition, the slope variances as descriptors of the environmental sensitivity and the 

Spearman rank correlations between the estimated breeding values of the sires at different 

environmental levels indicate no severe GxE for the investigated traits. The results imply no 

substantial benefit of the consideration of GxE given the environmental descriptor and traits for 

the Brown Swiss breeding programme. 
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GENERAL SUMMARY (GERMAN) 

Weltweit werden komplexe Zuchtprogramme eingesetzt, um genetische Fortschritte bei 

quantitativen Merkmalen zu erzielen. Diese Programme sind unabhängig von Nutztierart und Rasse 

grundsätzlich ähnlich strukturiert und zeichnen sich durch aufeinander folgende Schritte aus. Die 

Anpassung und Überarbeitung dieser Zuchtprogramme ist von anhaltendem Interesse und erfolgt 

aus ganz unterschiedlichen Perspektiven und mit variierenden Zielvorstellungen, so gilt es etwa, 

aktuelle Forschungsergebnisse einzubinden oder verschiedene politische, wirtschaftliche, soziale 

und ethische Aspekte zu berücksichtigen. Zur langfristigen Optimierung der Nutztierpopulationen 

sind in den Zuchtzielen solcher Programme komplexe Zusammenstellungen an Merkmalen 

enthalten. Gerade diese Komplexität und die genannten äußeren Aspekte führen dazu, dass sich die 

Rahmenbedingungen der Programme stetig ändern. Dieser Wandel muss von der Forschung 

begleitet werden, um zum Beispiel ungünstige genetische Korrelationen zwischen wirtschaftlich 

wichtigen Produktionsmerkmalen und neuen funktionalen Merkmalen aufzudecken, die den 

genetischen Fortschritt, insbesondere in Bezug auf die Tiergesundheit und den Tierschutz, 

beeinträchtigen können. Dementsprechend wird in Forschungsprojekten neben neuartigen 

funktionalen Merkmalen und Verhaltensmerkmalen auch die Anpassung von relativen 

ökonomischen Gewichten zur Optimierung von Gesamtzuchtwerten untersucht. Die 

Optimierungsprozesse der Zuchtprogramme beziehen darüber hinaus die Genotyp-Umwelt-

Interaktionen (GxE) mit ein, welche die genetische Verbesserung von Nutztierpopulationen 

beeinflussen. Die Berücksichtigung dieser Interaktionen ist in Folge der Globalisierung der 

Zuchtstrukturen und der damit verbundenen, variierenden Produktionsumgebungen von 

entscheidender Bedeutung. 

Die zentralen Zielsetzungen dieser Dissertation waren 1) die Untersuchung neuer 

Verhaltensmerkmale in der Schweinezucht, 2) die Ableitung umweltspezifischer, relativer 

wirtschaftlicher Gewichte auf der Grundlage von Züchterpräferenzen für Braunvieh, 3) die 

Schätzung von Genotyp-Umwelt-Interaktionen auf Merkmals- und Gesamtzuchtwertebene unter 

Anwendung bivariater Vatermodelle beim Braunvieh und 4) die Analyse von Genotyp-Umwelt-

Interaktionen für verschiedene Produktionsmerkmale und funktionale Merkmale beim Braunvieh 

unter Verwendung von Reaktionsnormmodellen. 
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In Kapitel 1 wurden genetische Parameter für Mütterlichkeitsmerkmale bei Schweinen auf der 

Grundlage von Felddaten, erfasst auf einer Fünf-Stufen-Skala, geschätzt. Die Heritabilitäten (h2) 

wurden sowohl unter Anwendung eines linear gemischten Modells als auch eines 

Schwellenwertmodells geschätzt und lagen zwischen 0,02 und 0,07 bzw. 0,05 und 0,15. Die etwas 

höheren Schätzungen für die Wiederholbarkeit lagen zwischen 0,05 und 0,09 bzw. 0,08 und 0,17 

und weisen auf einen Einfluss der permanenten Umwelt hin. Für das Gruppen- und Säugeverhalten 

der Sauen wurden die höchste Heritabilitäten geschätzt. Die Korrelationen zwischen den 

Mütterlichkeitsmerkmalen, geschätzt mit einer bivariaten Erweiterung des linear gemischten 

Modells, waren positiv. Die höchsten genetischen Korrelationen wurden zwischen dem Gruppen-/ 

Säugeverhalten und der Wurfhomogenität sowie dem Absetzgewicht der Ferkel gefunden, mit 

Schätzungen zwischen rg = 0,71 und rg = 0,86. Eine züchterische Optimierung des mütterlichen 

Verhaltens von Sauen erscheint aussichtsreich. Die Ergebnisse legen nahe, dass sich das 

Schwellenwertmodell für die verwendeten ordinalen Daten besser eignet. Für die Umsetzung der 

Ergebnisse in Zuchtprogrammen ist eine möglichst objektive Definition der Merkmale 

erforderlich. Ferner ist die Untersuchung von Korrelationen zwischen Mütterlichkeitsmerkmalen 

und allgemeinen Produktionsmerkmalen von Interesse. 

In Kapitel 2 wurden Züchterpräferenzen für ausgewählte Merkmale beim Braunvieh mit Hilfe 

eines Discrete Choice Experiments (DCE) untersucht. Umweltspezifische, relative ökonomische 

Gewichte (REW) und die marginale Zahlungsbereitschaft („marginal willingness to pay“) wurden 

unter Verwendung eines bedingten Logit-Modells geschätzt. Berücksichtigt wurden klassische und 

neue Merkmalskomplexe, der Samenpreis der Bullen, spezifische Charakteristika der Betriebe 

sowie Interaktionen zwischen den genannten Attributen. Die Betriebsleiter zeigten die größten 

Präferenzen für die Merkmalskomplexe Milchwert, Exterieur/ Euter sowie Fitness. Interaktionen 

wiesen auf eine große Bedeutung des Fitnesskomplexes für ökologisch wirtschaftende Betriebe im 

Vergleich zu konventionell wirtschaftenden Betrieben hin. Letztere gewichteten den Milchwert 

und den Merkmalskomplex Exterieur/ Euter hoch. Das DCE ist flexibel in Bezug auf die 

Modellierung heterogener Präferenzen der Landwirte für eine begrenzte Anzahl von 

Merkmalskomplexen. Abgeleitete, umweltspezifische REW können für die Entwicklung eines 

umweltspezifischen Gesamtzuchtwertes (TMI) verwendet werden. Die Methode eignet sich zur 

Beurteilung der Präferenzen der Landwirte für bestimmte Merkmale, insbesondere solche, die noch 

nicht monetär bewertet wurden. Die Ergebnisse können von Zuchtorganisationen in ihre 
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Entscheidungsprozesse eingebunden werden, um vielversprechende Merkmale in den 

Gesamtzuchtwert aufzunehmen. Ein Vergleich der derzeit verwendeten REW und der von dem 

DCE abgeleiteten, umweltspezifischen REW ergab, dass sie weitgehend übereinstimmen. Die 

befragten Landwirte zeigten jedoch ein gesteigertes Interesse an dem neuen Merkmal „perinatales 

Saugverhalten“ und möchten dieses in den TMI aufnehmen. Die Kombination von DCE und strikt 

gewinnorientierten Ansätzen wird empfohlen. 

Kapitel 3 untersuchte Genotyp-Umwelt-Interaktionen (GxE) sowohl auf Merkmals- als auch auf 

Gesamtzuchtwerteben für Braunviehbullen. Bivariate Vatermodelle wurden angewendet, um 

genetische Korrelationen zwischen ökologischen und konventionellen Produktionssystemen sowie 

unterschiedlichen geografischen Höhenniveaus der Betriebe für verschiedene 

Milchproduktionsmerkmale und funktionale Merkmale zu schätzen. Um mögliche GxE- und 

Rangverschiebungen auf Indexebene zu bestimmen, wurden auf der Grundlage von Zuchtwerten 

und umweltspezifischen REW Gesamtzuchtwerte für die Braunviehbullen berechnet. Die 

genetischen Korrelationen zwischen den untersuchten Umwelten waren hoch und lagen zwischen 

rg = 0,79 (Verzögerungszeit zwischen den unterschiedlichen Höhenniveaus der Betriebe) und rg = 

0,99 (Rastzeit, Zysten, maternale Totgeburtenrate zwischen den Produktionssystemen). Die 

Ergebnisse deuten auf keine wesentlichen GxE auf Merkmalsebene hin und bestätigen somit die 

bestehenden Zuchtprogramme. Zwischen den umweltspezifischen Gesamtzuchtwerten der 

Braunviehbullen für ökologische und konventionelle Produktionssysteme konnten keine 

gravierenden Rangverschiebungen festgestellt werden. Folglich konnten keine wesentlichen 

Genotyp-Umwelt-Interaktionen zwischen den untersuchten Produktionssystemen auf Indexebene 

gefunden werden. 

In Kapitel 4 wurden Genotyp-Umwelt-Interaktionen für ausgewählte Produktionsmerkmale und 

funktionale Merkmale bei Braunvieh mithilfe von Reaktionsnormmodellen analysiert. Der 

kontinuierliche Umweltdeskriptor Milchenergiemenge (MEY) wurde als eine lineare Kombination 

von durchschnittlichen Herdeneffekten für die Milch-, Fett- und Proteinmenge berechnet, die aus 

der routinemäßigen Zuchtwertschätzung stammten. Das angewandte Reaktionsnormmodell 

beinhaltete einen zufälligen Vatereffekt (intercept) und einen Vater-Slope-Effekt 

(Umweltsensitivität), d. h. den zufälligen Regressionskoeffizienten der Regression eines 

bestimmten Bullens auf den Umweltdeskriptor MEY. Um mögliche GxE-Effekte zu untersuchen, 

wurden Zuchtwerte für die Bullen geschätzt. Die Ergebnisse zeigten keine wesentlichen GxE für 
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die funktionalen Merkmale, jedoch für das Produktionsmerkmal Fettmenge. Weder die Varianzen 

der Steigung der Reaktionsnormen als Beschreiber für die Umweltsensitivität noch die Spearman-

Rangkorrelationen zwischen den geschätzten Zuchtwerten der Bullen auf verschiedenen 

Umweltebenen weisen auf relevante Genotyp-Umwelt-Interaktionen für die untersuchten 

Merkmale hin. Aufgrund der Ergebnisse scheint eine Berücksichtigung von Genotyp-Umwelt-

Interaktionen unter Verwendung des Umweltdeskriptors MEY und den betrachteten Merkmalen 

für das aktuelle Braunvieh-Zuchtprogramm nicht nötig. 
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Abstract 

The improvement of the postpartum survival rate of piglets is important for pig breeding nowadays. 

For the improvement, breeding for good mothering abilities of sows offer a promising strategy. 

The aim of the following study was to estimate genetic parameters for mothering ability traits 

recorded on an five-point ordinal scale (1=”best” to 5=”worst”). Information of 48,028 litters and 

15,688 sows belonging to different lines and crosses was available. Genetic parameters were 

estimated by applying a linear mixed- and a threshold model. Pairwise bivariate analyses were 

conducted for the linear mixed model (LMM) in order to calculate correlations. 

The estimates for the heritability (repeatability) using the LMM are between 0.02 and 0.07 (0.05 

and 0.09). With the threshold model the heritability (repeatability) estimates are between 0.05 and 

0.15 (0.08 and 0.17). The difference between repeatability and heritability points to a huge impact 

of the permanent environment. The threshold model seems to be more suitable for analysing the 

data. The heritability estimated for group - and nursing behaviour with the threshold model was 

highest (0.15 and 0.10). All the correlations were positive and the genetic correlations were in 

accordance with the phenotypic correlation. The genetic correlation for piglet vitality and estrus 

behaviour was zero. The highest genetic correlations were estimated between nursing – (group 

behaviour) and litter balance and piglet weaning weight. For nursing behaviour and piglet weaning 

weight the genetic correlation was 0.86. 

Accelerating genetic gain for good mothering abilities of sows will be possible. Especially nursing 

- and group behaviour seem to be promising traits. For the implementation in breeding programs, 

clearly defined traits are required and correlations between mothering ability and common 

production traits (e.g. daily weight gain) should be investigated. 

 

Keywords: pure breed and cross breed sows; linear mixed - and threshold models; genetic 

parameters; mothering ability 

 

1. Introduction 

From an economical point of view pig production is highly dependent on the productivity of the 

sow, defined as the number of piglets weaned per sow per year. A main objective is to achieve high 

numbers of piglets in balanced litters with a high survival rate of piglets. Piglet losses before 
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weaning are the reason why productivity cannot be measured immediately after birth (Lund et al., 

2002). A low heritability for survival rate of piglets until weaning, the ongoing breeding for high 

leanness, high growth rates and a good feed efficiency have led to a slight decrease in piglet 

(Grandinson et al., 2002; Grandinson, 2005; Kerr and Cameron, 1996; Knol et al., 2002; Roehe 

and Kalm, 2000). Moreover the present development in the field of sow management (more opened 

husbandry systems, growing farm structures) as well as ongoing debates about animal welfare have 

increased the demand for sows with better mothering ability. 

Because of this issue the search for improvement options of the survival rate of piglets moves in 

the focus of breeding tasks. Breeding for good mothering ability of sows offer an important and 

promising strategy to improve the postpartum survival rate of the piglets (Grandinson et al., 2003; 

Lund et al., 2002). Numerous characteristics for a comprehensive description of sow maternity 

were already pinpointed and genetically evaluated in some studies (Grandinson et al., 2003, 2005; 

Gäde et al., 2008a, 2008b; Hellbrügge et al., 2006a, 2006b, 2008a, 2008b; Løvendahl et al., 2005, 

Vangen et al., 2005). All those studies have in common that the estimates of the heritability are 

general low. 

For practical operations an easy and immediate data recording is needed. To fulfil these essential 

requirements the pig breeding association “Schweinezuchtverband Baden-Württemberg e.V.” 

(SZV) has developed a practical possibility to develop a comprehensive data base. Since 2011, the 

data of seven mothering ability traits, were recorded on farms in Germany and Switzerland. The 

sows were evaluated based on a given catalogue, designed by the breeding association, including 

definitions and corresponding classifications of the traits (Table 1). Based on an internet platform 

a continuous data transfer from the farms to the SZV is guaranteed. 

The aim of this study was to make use of their comprehensive data base to estimate genetic 

parameters of mothering ability traits by applying suitable linear mixed- and threshold models. 

Recommendations for the practical application in pig breeding programs will be given. 
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Table 1 Mothering ability traits as well as their abbreviations (in parenthesis) with description. The 

definitions are only shown for the best (1) and worst (5) category on the five-point scale. 

Traits Description Definition 

Estrus behaviour 
(EB) 

Clarity, 
intensity, period 

1: Estrus on time, distinct tolerance                                                                                                                                                                     
5: Bad/no estrus, bad/no tolerance 

Group behaviour 
(GB) 

Inconspicuous, 
dominant, aggressive 

1: Calm                                                                                                                                                               
5: Aggressive, dominant                                                                                      

Farrowing behaviour 
(FB) 

Behaviour during 
farrowing, 
aggressiveness 
towards piglets, 
mothering abilities 

1: Sow remains lying during farrowing, 
    is not biting or snapping, rapid parturition   
    /no help is needed 
5: Sow stands up frequently during 
    farrowing, 
    is biting or snapping, heavily delayed  
    parturition 

Piglet vitality 
(PV) 

Lively, lethargic, birth 
weight, colostrum 
intake 

1: Birth weight >1,2 kg, piglets suckle  
    immediately and stimulate the udder well                                                                        
5: Birth weight <1 kg, many piglets have  
    problems in locating the udder or are  
    even not able to find it 

Nursing behaviour 
(NB) 

Nursing behaviour, 
quality of teats 
including  

1: Sow feeds the piglets until satiation, all  
    udder complexes are fully developed and  
    functional                                                                      
5: Sow is laying on the udder, feeds the 
    piglets short, injured/ non-functional udder  
    complexes 

Litter balance 
(LB) 

Homo-/heterogeneity 
of piglets in litter 

1: No underweight piglets, litter is balanced                                                                                                        
5: Many underweight piglets, litter is  
    unbalanced 

Piglet weaning weight 
(PW) 

Average weight of 
piglets in the litter 

1: Weight: 4 weeks: >8 kg                                                      
                  3 weeks: >6.5 kg                                                                                                                            
5: Weight: 4 weeks: <8 kg                 
                  3 weeks: <6.5 kg 
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2. Materials and Methods 

2.1. Animals 

The sows were kept on 90 farms in Germany and Switzerland between 2011 and 2014. Most of the 

farms worked in a three week rhythm. The parities of the sows ranged from 1 to 18. Information 

of 48,028 litters and 15,688 sows was available. In the first litter 26% of the sows provide data for 

the mothering ability traits. In the second litter 21% of the sows had observations, in the third litter 

16% and in litters ≥4 approximately 37% had observations. 

The sows belong to different lines and crosses. From the pure breed sows, German Landrace (GL, 

33%) and Large White (LW, 28%) were most frequently represented followed by Piétrain (PI, 

14%). From the cross breed sow 19% belong to the cross Leicoma (LC) x GL and 3.5% belong to 

the crosses LW x (LC x GL) and LW x GL. The pedigree of the sows was augmented with ancestral 

information from up to eighteen generations back and comprises information from 38,013 sires and 

dams, depending on the breed. The founder animals were assigned to six genetic groups. 

 

2.2. Mothering ability traits 

Before data collection started, a meeting of the farmers with the pig breeding association 

“Schweinezuchtverband Baden-Württemberg e.V.” (SZV) was arranged to give detailed 

instructions for data recording during routine farm work. To fulfil the essential requirements of an 

easy and immediate data recording the pig breeding association “Schweinezuchtverband Baden-

Württemberg e.V.” (SZV) has developed a practical possibility to develop a comprehensive data 

base. Each farmer received a catalogue, including classifications and corresponding trait definitions 

of the mothering ability and recorded the data. Based on an internet platform a continuous data 

transfer from the farms to the SZV is guaranteed. Vangen et al. (2005) showed that collecting data 

on maternal behaviour with questionnaires seems to work in a large scale under field conditions. 

Data recording was done using a five-point ordinal scale including categories 1 until 5. The traits 

with description and definitions of the best (1) and worst category (5), representing biological 

extremes, are listed in Table 1. The categories 2 and 4 have been added on the catalogue by the 

SZV in 2013. This was done because a quantitative genetic background of the traits is assumed, 

which is better represented by more detailed categories. This is in accordance with the study of 

Gäde et al. (2008a) who also used 5 categories. 
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Table 2 Absolute and relative number of observations for mothering ability traits in the five 

categories. 

Traitsa 
Absolute number 

of observation 

Proportion in the categories 
1 2 3 4 5 

Good Not good 

EB 31,449 87.83 2.26 7.04 0.68 2.18 

GB 13,905 87.62 3.50 8.22 0.23 0.42 

FB 34,711 77.34 4.15 12.26 1.97 4.29 

PV 31,450 78.61 5.05 12.92 1.33 2.09 

NB 29,924 81.07 4.09 11.25 1.25 2.34 

LB 32,906 74.33 5.37 15.30 1.81 3.19 

PW 32,487 74.60 5.36 15.43 1.45 3.15 

Combination of categories 1 and 2 (good) and categories 3, 4 and 5 (not good). 
a For trait abbreviation see Table 1. 

 

The following seven mothering ability traits were available: Estrus behaviour (EB), group 

behaviour (GB), farrowing behaviour (FB), piglet vitality (PV), nursing behaviour (NB), litter 

balance (LB) and piglet weaning weight (PW). The absolute number of observations for the seven 

behaviour traits as well as their proportion in the five categories are included in Table 2. The 

number of observations from the seven mothering ability traits recorded for the sows ranged from 

13,905 for GB to 34,711 for FB. Most obvious are the low proportions of observations in categories 

2 and 4 for all the traits. Therefore the observations for these traits were transformed into 0/1 (not 

good/good). Categories 1 and 2 were combined into the category “good” whereas 3, 4 and 5 were 

combined in the category “not good”, which was done by summing up the proportions in categories 

3, 4 and 5 (1 and 2) for all the traits. The proportions on the binary scale can be calculated from the 

proportions in the 5 categories listed in Table 2. 

 

2.3. Statistical models 

For the genetic analysis two statistical models were applied; a linear mixed model (LMM) and a 

threshold model (e.g. McCullagh and Nelder, 1989; Tempelman, 1998); Gäde et al. (2008a) have 

shown that the effects of the parity and of the combined farm season, influence the behaviour of 
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sows. For the analysis parities ≥4 were combined. The farm in the combined farm season effect 

was included to account for the effect of the farmer. Each of the three seasons comprises 4 months. 

For EB and GB (FB, PV, NB, LB and PW) the service (farrowing) period was considered in the 

season to take account for the recording period. Both systematic environmental effects were tested 

for significance, before inclusion in the statistical models. 

In the first step the observations were assumed to be normal distributed and the following linear 

mixed model was applied for the analysis of the seven mothering ability traits: 

 

 𝑦"#$ = 𝐹𝑥𝑆" + 𝑃# + 𝑎$ + 𝑝𝑒 + 𝑒"#$  (1) 

 

where the response variable 𝑦"#$ is the observation of sow l, coded with 0 or 1. The fixed effects 

𝐹𝑥𝑆" represent the systematic environment of the ith farm season and 𝑃#of the lth litter, which are 

included only if they were significant. 𝑝𝑒 is the random permanent environment effect of the lth 

sow, with a covariance structure as 𝑝𝑒~N(0, Iσ567 ) where σ567  is the permanent environmental 

variance, 𝑎$ is a random additive-genetic effect of the sow, with a covariance structure as 

𝑎"$9~N(0, Aσ;7) where σ;7  is the additive genetic variance and	A is the numerator relationship 

matrix derived from the pedigree and 𝐼 is an identity matrix. 𝑒"#$ is the random residual, with a 

covariance structure as 𝑒"#$~N(0, Iσ67) where σ67 is the residual variance. 

In further analyses the 0/1 observations were assumed to be binomial distributed and a single 

threshold model with a probit link function was applied, including the same fixed and random 

effects as stated above. In the analysis the residual variance was fixed at σ67=1. 

The statistical analyses were performed separately for each trait in order to estimate the 

repeatability and the heritability of the traits. The repeatability was calculated as 𝑡 = ?@AB?CA

?@AB?CAB?DA
 and 

the heritability as ℎ7 = ?@A

?@AB?CAB?DA
. Pairwise bivariate analyses were conducted in order to estimate 

genetic and phenotypic correlations. For these analysis the LMM was used. 
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3. Results 

3.1. Univariate analyses 

The effect of the combined farm season interaction and of the litter was significant for all seven 

mothering ability traits in both models (p≤0.001, not shown) and was included for the genetic 

analysis. 

The results of the univariate analyses are given in Table 3. In the LMM, the repeatability of the 

traits raged between 0.05 for PV and 0.09 for FB, NB and PW. The corresponding heritability 

ranged from 0.02 for EB to 0.07 for NB. EB, PV, LB and PW revealed the lowest heritability, 

followed by FB, GB and NB. 

 

Table 3 Heritability (ℎF7) and repeatability (𝑡̂) of mothering ability traits (standard errors in 

parenthesis), results from univariate analyses. 

 LMM Threshold model 

Traitsa 𝑡̂ ℎF7 𝑡̂ ℎF7 

EB 0.07 (0.01) 0.02 (0.01) 0.12 (0.01) 0.08 (0.02) 

GB 0.08 (0.01) 0.05 (0.01) 0.17 (0.03) 0.15 (0.06) 

FB 0.09 (0.01) 0.04 (0.01) 0.12 (0.01) 0.07 (0.01) 

PV 0.05 (0.01) 0.03 (0.01) 0.08 (0.01) 0.07 (0.02) 

NB 0.09 (0.01) 0.07 (0.01) 0.12 (0.01) 0.10 (0.02) 

LB 0.08 (0.01) 0.03 (0.01) 0.12 (0.01) 0.05 (0.01) 

PW 0.09 (0.01) 0.03 (0.01) 0.11 (0.01) 0.05 (0.01) 
a For trait abbreviation see Table 1. 

 

In the threshold, the repeatability for the traits raged between 0.08 for PV and 0.17 for GB. The 

corresponding heritability ranged from 0.05 for LB and PW to 0.15 for GB (Table 3). LB, PW, 

NB, PV, and EB revealed the lowest heritability, followed by NB and GB. The repeatability and 

the heritability were lower in the LMM compared to the threshold model. 
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3.2. Pairwise bivariate analyses 

The results from pairwise bivariate analyses are shown in Table 4. All the correlations are positive. 

The phenotypic correlations are in an interval between 0.02 (for EB and all the other traits except 

GB as well as for GB and PV) and 0.41 (for PV and NB). The genetic correlations were largest for 

PW and NB (0.86). For the pair PV and EB the genetic correlation was zero, which is in accordance 

with the phenotypic correlation. 

 

Table 4 Phenotypic (above the diagonal) and genetic (below the diagonal) correlations (𝑟5I  and 𝑟JI) 

between mothering ability traits (standard errors in parenthesis), results from bivariate analyses. 

Traita EB GB FB PV NB LB PW 

EB - 
0.23  

(0.01) 
0.02  

(0.01) 
0.02  

(0.01) 
0.02  

(0.01) 
0.02  

(0.01) 
0.02  

(0.01) 

GB 
0.12  

(0.19) 
- 

0.03  
(0.01) 

0.02  
(0.01) 

0.03  
(0.01) 

0.04  
(0.01) 

0.04  
(0.01) 

FB 
0.05  

(0.17) 
0.26  

(0.17) 
- 

0.22  
(0.01) 

0.25  
(0.01) 

0.13  
(0.01) 

0.13  
(0.01) 

PV 
0.00  

(0.18) 
0.12  

(0.16) 
0.32  

(0.13) 
- 

0.41  
(0.01) 

0.22  
(0.01) 

0.22  
(0.01) 

NB 
0.06  

(0.15) 
0.34  

(0.13) 
0.55  

(0.09) 
0.60  

(0.09) 
- 

0.30  
(0.01) 

0.30  
(0.01) 

LB 
0.07  

(0.18) 
0.71  

(0.13) 
0.56  

(0.12) 
0.61  

(0.12) 
0.85  

(0.06) 
- n.c.b 

PW 
0.10  

(0.18) 
0.71  

(0.12) 
0.52  

(0.12) 
0.67  

(0.10) 
0.86  

(0.06) 
n.c.b - 

a For trait abbreviation see Table 1. 
b n.c.: not converged. 

 

The largest phenotypic correlations were calculated for FB/PV and NB (0.25/0.41) as well as for 

NB and LB/PW (0.30/0.30). For FB/PV and NB (0.55/0.60) and for NB and LB/PW (0.85/0.86) 

the genetic correlations were also large. The highest genetic correlations were calculated for the 

pairs LB/PW and all other traits except EB, ranging from 0.52 to 0.86. 
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4. Discussion 

There is a difficulty in the interpretation and the comparison of the results with other studies. On 

the one side there is huge amount of traits describing the mothering abilities mentioned in the 

literature, on the other side there are distinct differences in trait recording, scaling and analysing of 

the data. Besides practical recording methods, e.g. using questionnaires (Vangen et al., 2005), there 

are more complex methods, e.g. using special behaviour tests, to judge the behaviour and the 

reaction of the animals (Grandinson et al., 2003). However also the analyses of the data were done 

using different models. Some authors used threshold models (Gäde et al., 2008a, 2008b; Kaufmann 

et al., 2000; Vangen et al., 2005) others used linear models (Løvendahl et al., 2005; Quiniou et al., 

2002; Roehe, 1999) and Grandinson et al. (2002) used both kind of models. 

Subsequently a comparison was done for the genetic parameters of traits which were also analysed 

in the literature and for the models. 

 

4.1. Comparison with the literature 

In general the difference between the repeatability and the heritability indicate that a huge part of 

the between individual variance is due to the permanent environment. This was also supported by 

Gäde et al. (2008a) who estimated a moderate repeatability of 0.24 and a low heritability of 0.07 

for the GB of the sows. For GB and NB the estimates of the heritability were highest with the LMM 

and threshold model. 

For GB the repeatability and heritability estimated with the LMM (threshold model) in our study 

was 0.08 and 0.05 (0.17 and 0.15). In the study of Løvendahl et al. (2005) the heritability estimated 

for GB was low until moderate. However they used a trait definition for GB, which differentiates 

between animals behaving aggressive (ℎ7=0.04) and the ones receiving the aggression (ℎ7=0.24). 

For EB the heritability estimated with the LMM (threshold model) was 0.02 (0.08). Although Gäde 

et al. (2008b) used a different trait definition for EB of the sow and estimated a similar heritability 

of 0.09. 

For the FB and NB the heritability estimated with the LMM (threshold model) was 0.04 and 0.07 

(0.07 and 0.10). For the maternal abilities of the sow, comprising among others FB, NB Gäde et 

al. (2008a) estimated a similar heritability of 0.05. The low heritability estimates reflect the results 
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of the study of Vangen et al. (2005) where a different scaling and scored was used. The “exposing 

of the sows udder to the piglets at suckling” (ℎ7=0.07) and the “interruptions and nervousness of 

the sow during suckling” (ℎ7=0.08) were analysed separately. 

For PV the piglet birth weight, the ability of the piglet to locate the udder and the colostrum intake 

are taken into account. The estimated heritability for PV was 0.03 for the LMM and 0.07 for the 

threshold model. Grandinson et al. (2002); Kaufmann et al. (2000); Knol et al. (2002) and Roehe 

(1999) estimated a heritability between 0.15 and 0.22 for birth weight of piglets. Selecting on sows 

with heavy piglets during birth could reduce the piglet losses postpartum (Quiniou et al., 2002). 

The lower heritability estimates in our study suggests that a combination of the aspects describing 

the PV possibly has an effect on the heritability. Maybe analysing the aspects of PV separately 

might increase the heritability estimates and accelerate the genetic gain. 

 

4.2. Comparison of the models 

When using a threshold model, the heritabilities are estimated on the assumed underlying scale and 

are expected to be higher than heritabilities estimated on the observed scale (Dempster and Lerner, 

1950). In general the heritability estimates for the traits were higher with the threshold model than 

with the LMM. However those kind of models involve a higher computational effort because they 

are susceptible for the extreme category problem (ECP). This problem occurs if there is insufficient 

trait variation in the fixed effect classes and hinders the continuous genetic parameter estimation 

(Sorensen and Gianola, 2002). 

At the moment the heritability was estimated using a threshold model with a single-threshold 

because of the lack of data in categories 2 and 4. A single-threshold is suitable for the analysis to 

avoid problems in obtaining convergence, or a valid set of estimates (Gianola and Foulley, 1983). 

However with an increase in the proportions of records in categories 2 and 4, the application of a 

model with multiple thresholds might become possible in the future. Gäde et al. (2008a) analysed 

GB and maternal ability of sows using a multiple threshold model. 

 

4.3. Pairwise bivariate analyses 

The genetic correlations are between 𝑟J = 0 (PV and EB) and 𝑟J = 0.86 (PW and NB). Associations 

between an inconspicuous and calm GB of the sows and the other mothering traits are in agreement 
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with the results of other studies. Andersen et al. (2005) reported that sows which are more 

inconspicuous in the group, were more protective to their piglets and showed less crushing. 

Furthermore the handling of an inconspicuous and calm sows can be of benefit. 

The positive genetic correlations between FB of the sow and PV (𝑟J = 0.32), NB (𝑟J = 0.55), LB 

(𝑟J = 0.56) and PW (𝑟J = 0.52) are in agreement with other studies. A positive, peaceful FB is 

commonly associated with a good NB of the sow and an increase in the postpartum PV. As a 

consequence the litters are more homogeneous with high average weights of the piglets at weaning. 

If the sow remains lying during farrowing, it is more likely that the piglets start sucking behaviour. 

As a result of this stimulating behaviour, the sows organism releases oxytocin to promote milk 

ejection. This has a positive impact on the vitality of the offspring and support piglet growth 

(Algers, 1993; Valros, et al., 2002). This results in an increase of the economy of the production 

and improves the welfare of the sows and piglets (Cronin and van Amerongen, 1991; Grandinson, 

et al., 2003; Herskin, et al., 1998; Valros, et al., 2002; Wechsler and Hegglin, 1997). 

The high genetic correlations between NB and PV (𝑟J = 0.60) as well as between NB and LB (𝑟J = 

0.85) and NB and PW (𝑟J = 0.86) support the causal chain. Valros et al. (2002) confirmed that the 

FB of the sow is positive correlated with the growth of the piglets. 

To shed some light in the complexity of mothering ability traits, structural equation models (SEM) 

can be applied (Gianola and Sorensen, 2004). The causal structures for the SEM can be pre-selected 

based on prior biological knowledge (e.g. different recording periods). 

Furthermore the estimation of correlations between mothering ability and common production 

traits (e.g. daily weight gain) should be investigated in ongoing studies. 

 

5. Conclusion 

A noticeable part of the between-individual variance is captured by the permanent environment, as 

can be seen for the traits EB, FB, LB and PW. In comparison with the LMM, the threshold model 

offers higher heritability estimates for the traits. This is most obvious for the traits EB and GB. 

The highest heritability in both models was estimated for the traits NB and GB, which seem to be 

promising traits for the selection of mothering abilities of the sows. However the estimates of 
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heritability are still not high. That means accelerating the genetic gain will be possible but time-

consuming. 

Maybe more clearly defined traits might help to increase the heritability and improve the genetic 

gain. However correlations between mothering ability and common production traits (e.g. daily 

weight gain) should also be investigated to give recommendation of how to implement mothering 

ability traits in breeding programs.  
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ABSTRACT 

Breeding traits are usually combined in a total merit index according to their economic weights to 

maximize genetic gain based on economic merit. However, this maximization may not always be 

the aim of the selection decisions by farm managers. A discrete choice experiment was used to 

evaluate the importance of traits in terms of the selection decisions of farm managers operating in 

different environments. Six trait complexes, the semen price, the interactions between these traits, 

and significant characteristics of the farms were included in a conditional logit model to estimate 

relative economic weights and the marginal willingness to pay for all traits. Milk value, 

conformation/udder, and fitness were the most important traits for the farmers, and significant 

interactions indicated that fitness is of greater importance on organically managed farms than on 

conventional farms. Farm managers with an advanced education placed more weight on the milk 

value trait than farm managers without advanced education. On conventional farms, managers 

weighted the traits milk value and conformation/udder highly. The conformation/udder and fitness 

trait complexes were important on organic farms. A new trait called perinatal sucking behavior of 

newborn calves should be included in the total merit index. 

 

Keywords: economic weight, discrete choice experiment, Brown Swiss cattle 

 

INTRODUCTION 

The definition of breeding goals is one of the most important steps in the development of efficient 

breeding programs. Trait selection for inclusion in a breeding goal depends on trait heritability and 

genetic correlations with other traits as well as the costs and labor required to record phenotypic 

data and the economic importance of the trait. For many breeds, a total merit index (TMI) is 

established that includes both the traits and their relative economic weights (REW). Several 

methods are available to estimate REW, the most common of which are strictly economic in 

nature and include objective and profit-oriented methods, such as the herd model (Amer et al., 

1996; Fuerst-Waltl et al., 2010), or direct costing and profit functions, which are based on the 

costs and profits of a production system (Brascamp et al., 1985; Nielsen and Amer, 2007). Critical 

aspects of these methods are the lack of information on some traits, especially functional traits 

and new traits that have not been validated monetarily, and the assumption that the sole objective 

of breeders and farmers is profit maximization. However, the choices of farmers may not be 
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affected only by economic factors, especially on organic farms, where particular importance may 

be attached to noneconomic aspects such as animal welfare, environmental impacts, and other 

individual operational characteristics (Nielsen and Amer, 2007). 

Alternatively, REW may be derived via nonobjective methods that are based on the subjective 

assessments and empirical values of experts, breeders, farmers, or consumers. Teegen et al. (2008) 

and von Rohr et al. (1999) applied the contingent valuation method to estimate REW in horse and 

pig breeding, respectively. A simple and intuitive approach is to analyze the frequency of the use 

of sires for AI and link it to the EBV of their traits, which would yield some realized REW (i.e., 

the relative importance of trait EBV in the past selection of the sires). However, such an approach 

would fail for new traits, and more sophisticated methods have to be used. Choice experiments are 

frequently applied to study farmers’ preferences for traits. For example, Martin-Collado et al. 

(2015) applied pairwise comparisons of traits in an online survey to study Australian dairy farmers’ 

preferences for 13 traits. The authors showed that the preferences are heterogeneous with respect 

to farmer characteristics - that is, they differed for production-focused, functionality-focused, and 

type-focused farmers. The farmer characteristics were identified by using principal component 

analysis followed by hierarchical cluster analysis. A similar approach was used by Slagboom et al. 

(2016a, b) to identify farmers’ characteristics. An interesting result of Martin-Collado et al. (2015) 

was that the heterogeneity was intrinsic to farmers and not to production systems or breeds. The 

results of the study were used in the design of new breeding objectives and selection indices 

tailored for these 3 farmer types in Australia (Byrne et al., 2016). Choice experiments have also 

been applied in other species, such as sheep (Byrne et al., 2012; Ragkos and Abas, 2015), pigs 

(Roessler et al., 2012), and chickens (Bett et al., 2011) and frequently to study farmers’ preferences 

in developing countries (Duguma et al., 2011). Ahlman et al. (2014) and Slagboom et al. (2016a, 

b) used choice experiments to study Swedish and Danish dairy farmers’ preferences for breeding 

traits, respectively, considering heterogeneous preferences among farmers (i.e., organic and 

conventional farmers). 

A challenge is the proper design of the choice sets. The discrete choice experiment (DCE) has a 

well-defined theoretical basis in random utility theory (Louviere et al., 2010) and is closely related 

to natural decision processes. Respondents are given a questionnaire consisting of multiple 

questions called choice sets, and they are required to choose one alternative from each set, which 

enables researchers to examine comprehensive decisions. In animal breeding, this method can be 
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used to study farmers’ preferences for breeding traits and, based on this, to derive REW by 

allowing breeders to choose among hypothetical sires with different EBV and semen prices. The 

assumption is that the sire chosen from the questionnaire will represent the greatest utility for the 

breeder. This utility is affected by the levels of the attributes of the sires (i.e., hypothetical EBV 

and semen prices) and by operational characteristics of the farm (e.g., conventional or organic 

systems). The latter allows for the consideration of heterogeneous preferences among farmers. 

Naturally, the utility comprises economic aspects but also values the experience, informal 

background, or future orientation of the farmers. Interactions between the trait EBV of the sires 

and the characteristics of farms or farmers can be used to determine heterogeneous REW, which 

is termed “environment-specific REW” throughout this article. These can be used to define 

environment-specific breeding goals. 

The DCE can also be used to calculate the  marginal willingness to pay (MWTP), which describes 

the amount of money a respondent is willing to pay to obtain an additional nonmonetary attribute 

(Aizaki et al., 2015) - in this case an improvement in a certain trait by 1 genetic standard deviation. 

This broadens the assessment of trait importance to include a monetary perspective. 

The Brown Swiss cattle breed is a milk-type, dual-purpose breed that is commonly used in southern 

Germany, and it is reared in conventional as well as organic farming systems, which have their own 

TMI with different REW. The aim of the present study was to estimate REW and the MWTP using 

a DCE for Brown Swiss cattle in the state of Baden-Wuerttemberg in southern Germany. The REW 

were subsequently used to establish an environment-specific TMI and were compared with the 

REW used in the current TMI for this breed. 

 

MATERIALS AND METHODS 

Survey Design and Data 

A choice experimental design was created with 18 choice sets consisting of 3 hypothetical sires 

each; 1 sire had to be chosen by the breeder to serve as an average cow in the herd. Seven attributes 

were defined for the sires; namely, the price for 1 portion of semen (monetary element in euros) 

and breeding values for the following 6 trait complexes. The milk production value trait complex 

represented milk, protein, and fat yield. The general beef production value represented daily gain, 

carcass quality, and slaughter yield. The conformation/udder trait complex consisted of exterior and 
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health of claw, leg, and udder. The fitness trait complex comprised the remaining functional traits 

(i.e., calving ease, stillbirth, functional longevity, persistency, fertility). The show type trait denoted 

all exterior traits except udder, claw, and leg exterior. The final trait, perinatal sucking behavior 

(PSB), was included because insufficient PSB is a serious problem in this breed and shows 

significant heritability (Maltecca et al., 2007). According to a survey, approximately 7% of 

newborn Brown Swiss calves exhibit insufficient PSB in Germany, and the heritability is about 

0.15 (C. Dreher and J. Bennewitz, Institute of Animal Science, University Hohenheim, Germany, 

personal communication). This trait is a putative novel breeding trait. The admissible levels of the 

breeding values were 100 (mean breeding value), 112 (1 SD above the mean), and 124 (2 SD above 

the mean), and no breeding value was assumed to be below the mean. The prices for 1 portion of 

semen were set at €6 (low cost), €12 (moderate cost), and €18 (higher cost). The analytical design 

was created with the R package “support.CEs” (Aizaki, 2012). 

 

Table 1. Example of a discrete choice set1 

Trait Sire 1 Sire 2 Sire 3 

Milk value ++ ++ O 

Beef value + ++ + 

Conformation/udder O O ++ 

Show type + O O 

Fitness O + + 

Perinatal sucking behavior ++ + ++ 

Price2 12 18 18 

Choice 6 12 18 

1 O, +, and ++ = hypothetical breeding values (mean, 1 SD, and 2 SD, respectively) for the traits of 
hypothetical sires. 
2 Hypothetical values for the sires’ semen (€/portion). 
 

Seven orthogonal main effects arrays (1 for each trait and 1 for the semen price) were used to define 

the first alternative of each choice set, and the same was done for the second and third alternatives. 

Assignments were performed randomly with different seeds. For each of the 1,000 designs resulting 

from the different seeds, 500 DCE were simulated, and the average standard errors and the average 

correlations were recorded between the estimated and true effects. The design with the smallest 
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standard error and highest correlation was chosen for the study, and of the 18 choice sets, 2 

questionnaires (A and B) with 9 choice sets each were randomly created to limit the number of 

choice sets the farmers had to consider. On-farm trial interviews were conducted using the 

questionnaires to evaluate their comprehensibility, and the results revealed that no adaptation of 

the initial questionnaires was necessary. Additionally, the reactions of the farmers were generally 

very positive, indicating a general willingness to cooperate. Following the trial interviews, the 

questionnaires were sent to 230 managers (respondents) of both conventionally and organically 

managed farms in southern Germany (Alb region of the state of Baden-Wuerttemberg). Farmers 

were randomly assigned either questionnaire A or questionnaire B, and every farmer was required to 

complete 9 choice sets. An example of a choice set is given in Table 1. Questionnaires were sent 

by mail and were accompanied by an explanation letter with instructions and additional questions 

about the farming system (e.g., organic or conventional, feeding, daily milking frequency) and the 

characteristics of the respondents (e.g., level of education). A total of 166 completed surveys were 

returned and used for the statistical analyses, which resulted in 4,482 data sets [9 choice sets (A or 

B) × 3 alternatives × 166 respondents]. 

 

Conditional Logit Model 

The questionnaires were analyzed with a conditional logit model as follows: ynki = 1 if person n 

chose alternative i from the kth choice set completed by the person, and ynkj = 0 for the other 

alternatives, j ≠ i. It is assumed that random variables Unki exist such that 

 𝑦K9" = L1 if	𝑈K9" > 𝑈K9#	for	all	𝑗 ≠ 𝑖
0 otherwise																																

  

The value Unki is the utility (or benefit) that person n obtained from choosing alternative i from the 

kth choice set. It is assumed that the utility can be decomposed as 

 𝑈K9" = (β + ∑`𝛾 𝛿K`)′aK9" + 𝜀K9"  

where the vector anki contained the attributes of alternative i from the kth choice set completed by 

farmer  n; β is the vector of the effects of the traits; γs is the vector of interactions between 

characteristic s describing the farms and the traits; and δns = 1 if the farm managed by farmer n has 

characteristic s. The variable εnki captures the effect of all unobserved factors that affect the choice 

of the farmer. As a shorthand, 
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 𝑉K9" = (β + ∑`𝛾 𝛿K`)′aK9"  

where Vnki is called the observable component of the benefit farmer n obtained from choosing 

alternative i in the kth choice set Ck. The probability for choosing the alternative i is 

 
𝑃K(𝑖|𝐶9) =

exp(𝑉K9")
∑ expj𝑉K9#k#∈mn

 
 

In this conditional logit model, the MWTP for the nonmonetary variable (i.e., the 6 traits) included 

in the DCE was calculated as 

 
MWTP = −

𝑏uv
𝑏v

 
 

where bfm is the estimated coefficient of the nonmonetary variable and bm is the estimated 

coefficient of the monetary variable price per portion of each sire’s semen. Twelve euros per 

portion of semen was taken as a basis, and the results were reported in euros for a portion of semen 

and per genetic standard deviation of the specific trait. To estimate the coefficients for all traits as 

well as the interactions, the R package “survival” and the function “clogit” were used (Aizaki, 

2012). Interactions with P > 0.01 were excluded from the model step by step, but if the interaction 

between a farm characteristic and a trait was significant, the interaction of this characteristic with 

all traits was retained. To derive the MWTP, the R function “mwtp” was used (Aizaki et al., 2015). 

Farm managers were classified as educated (EF; basic 3-yr apprenticeship) or advanced educated 

(AEF; basic 3-yr apprenticeship plus 2 yr of extra schooling), and the farming systems were 

classified as conventional or organic. 

 

RESULTS 

Table 2 shows the coefficients and P-values estimated for the 7 attributes (6 traits and the semen 

price) and 2 significant interactions (i.e., between the trait fitness and the farming system and 

between the trait milk value and the education level of the farm manager) using the conditional 

logit regression model. 
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Table 2. Estimated coefficients for traits and significant interactions between traits and the 

individual and operational characteristics of the respondents using a conditional logit regression 

model 

Item Coef1 SE (Coef) P-value 

Milk value  0.76 0.09 < 0.001 

Beef value -0.07 0.06    0.219 

Conformation/udder  1.13 0.06 < 0.001 

Show type 0.12 0.06    0.055 

Fitness  0.59 0.06 < 0.001 

Perinatal sucking behavior  0.56 0.06 < 0.001 

Price -0.31 0.07 < 0.001 

Fitness × organic  0.73 0.25    0.004 

Milk value × advanced farmer education  0.42 0.11 < 0.001 

1 Coef = estimated coefficients for traits and significant interactions from the discrete choice 

experiment using a conditional logit regression model. 

 

Five of the attributes (milk value, conformation/udder, fitness, PSB, and the monetary element price 

for 1 portion of semen) showed a significant effect on the choice behavior of the respondents (P < 

0.001). The 2 traits of beef value and show type were not significant. The conformation/ udder trait 

complex showed the highest estimated coefficient followed by the trait complexes of milk value 

and fitness and the trait PSB (in descending order), and a negative coefficient was estimated for 

the price. The coefficient for the interaction between organic farming systems and the fitness trait 

complex was 0.73, and coefficient for the interaction between the milk value trait and AEF was 

0.42. Based on the 2 significant interactions, REW were calculated for 4 environments, which were 

defined by the combinations of conventional and organic farming systems and EF and AEF (Table 

3). Conventional AEF considered the trait of milk value to be 9% more important than conventional 

EF, and AEF of organic farms assigned a weight of 17% to the milk value, also 9% higher than EF 

of organically managed farms. The highest REW were estimated for the conformation/udder trait 

complex for the environment of conventional farming system and EF. Organic farm managers 

weighted the conformation/udder trait complex approximately 30%, and they weighted the fitness 

trait complex approximately 35%, which was twice the weight given by conventional farm 
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managers. The REW for the trait PSB were between 14 and 21%, and this trait seemed to be more 

important for EF, whereas no difference was observed between the 2 farming types. 

 

Table 3. Environment-specific relative economic weights (%) of traits depending on the farming 

system and level of education of the farm manager1 using discrete choice experiment data 

 Conventional Organic 

Trait EF AEF EF AEF 

Milk value 25 34 8 17 

Beef value  -2  -2   3   2 

Conformation/udder 35 33 30 29 

Show type   4   3   4   3 

Fitness 17 18 35 34 

Perinatal sucking behavior 21 14 20 15 

1 EF = farm manager without an advanced education; AEF = farm manager with an advanced 

education. 

 

Show type was not very important in any environment, and beef value was even less so. The 

REW for beef value was slightly negative for conventional and slightly positive for organic farming 

systems. Table 4 shows the REW estimated in this study, the REW used in the current conventional 

TMI (Bayrische Landesanstalt für Landwirtschaft, 2016; Fuerst-Waltl et al., 2016), and the REW 

used in the current organic TMI (Bayrische Landesanstalt für Landwirtschaft, 2017). The REW for 

fitness and constitution derived from the DCE were in similar range as the current conventional 

TMI and organic TMI. In the conventional system, the DCE REW for fitness was approximately 

6% higher than in the current TMI. The DCE-derived REW included the new traits PSB and show 

type, which were not included in the current TMI; the addition of these traits reduced the REW of 

milk value and beef value compared with the current TMI. The DCE REW of the milk value is 

lower in both systems, and the DCE REW for beef value equals one quarter of the currently used 

REW in the organic TMI. 
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Table 4. Relative economic weights (%) of traits depending on the farming system compared with 

current relative economic weights (%) used for the conventional and organic total merit index 

(TMI) 

 Conventional TMI Organic TMI 

Trait Current1 DCE2 Current3 DCE 

Milk value 50 29.5 25 12.5 

Beef value  5     -2 10   2.5 

Fitness/constitution4 45 51.5 65    64 

Show type -   3.5 -   3.5 

Perinatal sucking behavior - 17.5 - 17.5 
1 Bayrische Landesanstalt für Landwirtschaft (2016). 
2 Discrete choice experiment (this study).  
3 Bayrische Landesanstalt für Landwirtschaft (2017). 

4 Fitness (term in the current conventional TMI) and constitution (term in the current organic TMI) 

are comparable trait complexes. 

 

Table 5 shows the results of the MWTP estimation. Farm managers were willing to pay approximately 

€3.60 more for a portion of semen and an improvement of 1 genetic standard deviation of the 

conformation/ udder trait complex independent of farming system and level of education. The AEF 

group of conventional farms were willing to pay €3.95 more for the trait of milk value, whereas the EF 

group of organic farms were willing to pay only €0.88 more for a portion of semen. Managers of organic 

farms were willing to pay approximately €0.35 more for the sires’ semen and an improvement of 1 

standard deviation of the beef value trait, whereas managers of conventional farms were not willing to 

pay for a genetic gain in the trait (−€0.23). Managers of organic farms were willing to pay more than 

twice as much money as conventional farm managers for an improvement in fitness. For the trait of 

PSB, AEF managers, independent of farming system, were willing to pay approximately €1.80 more 

for a portion of semen to improve the trait by 1 genetic standard deviation, whereas EF managers were 

willing to pay approximately €2.19 more. 
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Table 5. Marginal willingness to pay1 (€) for the traits depending on the farming system and level 

of education of the farm manager2 using discrete choice experiment results 

 Conventional Organic 

Trait EF AEF EF AEF 

Milk value  2.58  3.95 0.88 2.25 

Beef value -0.21 -0.25 0.37 0.33 

Conformation/udder  3.54  3.90 3.34 3.70 

Show type  0.43  0.34 0.46 0.36 

Fitness  1.68  2.10 4.00 4.40 

Perinatal sucking behavior  2.09  1.70 2.28 1.90 
1 Mean price for 1 portion of a sire’s semen with €12 as a basis. Results are in euros for 1 portion 

of semen and per genetic SD of the trait. 

2 EF = farm manager without an advanced education; AEF = farm manager with an advanced 

education. 

 

DISCUSSION 

A DCE approach was used to determine the REW and the MWTP for trait complexes in Brown 

Swiss cattle in southern Germany. In discussing the results of the study, it is important to note that 

this approach is not purely economically motivated, so if the aim of cattle breeding is to maximize 

profit, the results of the DCE should be considered with some caution. Profit-oriented methods aim 

to maximize profit for farmers but do not always reflect the farmers’ aims. In the DCE method, the 

opinions of farmers can be included, so the estimated REW are more likely to reflect the aspirations 

of the farmers. At the same time, the amount of money a farmer is willing to pay may not 

completely represent the effects of trait improvements on the profitability of the farm. Thus, DCE 

could be used to complement profit-oriented methods to obtain REW, and the putative differences 

in the results of these 2 alternative approaches can be evaluated and discussed with the farmers. 
 

DCE Questionnaire Structure 

Considering the collection of the data for the DCE, the selection of the traits to be included in the 

questionnaires was particularly important. The chosen traits should not be random, meaning that 
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they should be known or of special interest to breeders, and trait complexes, such as the milk value 

(milk yield, protein, and fat content), should be commonly understood or otherwise explained to 

the respondents. In addition, the scope of the choice sets should not be too complex, as too many 

traits per set can overwhelm the respondents, which may negatively affect the choice behavior 

(Auspurg and Liebe, 2011). As a result, the respondent might too often choose the one alternative 

with the greatest personal utility or might refuse to participate completely. Therefore, to ensure 

cooperation, it is necessary to select meaningful traits, perform trial interviews in person on the 

farm, explain the motivation for this kind of experiment, and limit the scope of the questionnaire 

sets. It seems that the number of traits in the present DCE was not too high, which can be deduced 

from the relatively high number of returned questionnaires and from the results of the on-farm trial 

interviews. However, it would naturally be better to include more traits in the questionnaires to 

obtain a more differentiated picture of single-trait REW. For example, the milk value trait in this 

study included milk fat and protein yield, but it can reasonably be assumed that the REW of these 

3 subtraits would differ, and the same holds true for the functional traits. A weak point of the DCE 

questionnaire design was that the trait PSB was the only trait that was not embedded in a trait 

complex. This was done because before this experiment, it was unknown whether breeders would 

prefer to have PSB included as a new trait in the TMI. Including PSB as a subtrait in a trait complex 

would not have informed us about the farmers’ preferences for this specific trait. However, it is 

reasonable to assume that the REW of PSB would be lower if other traits in the TMI were treated 

separately and not included in trait complexes. This, however, would greatly increase the number 

of traits, risking the problems associated with too many choices as listed above. 

 

Results of the DCE 

The results of this study confirm the heterogeneity in the farmers’ trait preferences (Tables 2–4), 

which was also found by, for example, Martin-Collado et al. (2015), Ahlman et al. (2014), and 

Slagboom et al. (2016a, b). The farms were classified using external information (i.e., production 

system and level of farmers’ education). More sophisticated classification methods were applied 

by Martin-Collado et al. (2015) and Slagboom et al. (2016a, b). This requires the collection of 

farmers and farm profile factors, which were not included in our questionnaires. 

The managers of organic farming systems placed more weight on the fitness trait complex and less 

on milk value, and the MWTP for the fitness trait complex was twice as high compared with 
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conventional farm managers. This might be due to the need for more robust cows because medical 

treatment options are reduced in organic systems. In addition, a high genetic milk value is less 

important in organic systems because there are generally fewer opportunities to realize high milk 

yield due to feeding restrictions. The conformation/udder trait complex is very important for both 

farming systems. Ahlman et al. (2014) investigated the differences for traits between organic and 

conventional farming systems in Sweden using questionnaires. In general, the same traits were 

important in both systems, with some differences in the relative importance of traits. Organic farm 

managers put more weight on health traits and less on milk production, which is in agreement 

with the results of the present study. Slagboom et al. (2016a) identified a higher priority of 

production traits for organic farmers compared with conventional farmers in Denmark, which is in 

contrast to the results of Ahlman et al. (2014) and to our results. The explanations for these results 

given by Slagboom et al. (2016a) were that farmers wanted to improve the traits that are more 

problematic in their herds. Because the average milk yield and the disease incidences were both 

lower in organic herds compared with the conventional herds included in their study, organic 

farmers ranked milk yield higher than the conventional farmers did. 

In the present study, the second tier of the farm characteristics was the education of the farmers. 

The AEF gave more weight to milk value and less to the new trait of PSB. One explanation could 

be that insufficient PSB is less severe on farms with AEF, but this could not be demonstrated in 

the current study. 

The currently used TMI was recently adjusted based on newly estimated economic weights of 

traits and discussions with the breeders (Fuerst-Waltl et al., 2016). In general, both REW (the 

currently used and the DCE REW) agree to a large extent for both farming systems (Table 4). 

However, it seems that farmers wish to include the new trait PSB, which goes mainly at the costs 

of the weight of milk in the TMI. Currently, routine data recording is implemented for the trait PSB 

by the breeding organization, and farmers must assess the sucking behavior of newborn calves 

using 4 categories (no, weak, normal, and strong sucking reflex). Once a suitable data structure 

and genetic evaluation (i.e., EBV calculation) have been established, this trait will be included in 

the TMI, and the results of the current DCE might be used to determine the weight that this trait 

should receive in the adjusted TMI. 
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CONCLUSIONS 

The DCE is a suitable choice experiment method to derive REW for a limited number of trait 

complexes. It can be viewed as a bottom-up approach because the REW are based on the responses 

of farmers to structured questionnaires. Thus, this method is not strictly economically driven and 

can be used in combination with purely profit-orientated approaches. The DCE is flexible in the 

sense that heterogeneous farmers’ preferences can be modeled straightforwardly. Thus, it allows for 

the estimation of environment-specific REW, which can in turn be used to develop an environment-

specific TMI. It is a suitable method to judge the importance of traits for farmers, especially traits 

that have not been economically evaluated, and hence might guide breeding organizations in their 

decisions to include these traits in the TMI. Furthermore, the DCE can be regularly used to assess 

whether the current TMI reflects the expectations of farmers and to indicate where adjustments are 

needed. By comparing the REW obtained by the DCE with those that are currently used in the 

German Brown Swiss population, it became obvious that they agree to a large extent except that 

farmers wish to have the new trait PSB included in the TMI. The addition of PSB would reduce the 

REW for the milk trait complex. 
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ABSTRACT 

Production and functional traits in the dairy-emphasized dual-purpose cattle breed Brown Swiss 

improved due to the optimization of breeding and management in recent decades. The breed is used 

in a wide range of different production environments in the state of Baden-Wuerttemberg, southern 

Germany. Regarding sustainability aspects and consumer preferences, more extensive production 

systems and environments are popular. In comparison to other production environments, these 

production environments contain more extensive, organic systems and more intensive, 

conventional systems. Additionally, due to the topography of southern Germany, the altitude of the 

farms (e.g., Swabian Alb and Black Forest) is of interest and chosen as the other environment. The 

aim of the study was to estimate the genotype by environment interaction (GxE) for Brown Swiss 

sires in terms of milk production traits (milk yield, protein yield and fat yield) and functional traits 

(longevity, nonreturn rate 56, calving to first insemination, first insemination to conception, cystic 

ovaries, calving ease and stillbirth rate). This approach was conducted by applying bivariate sire 

models. Furthermore, total merit indices (TMIs) for sires were calculated based on breeding values 

estimated with different models and environment-specific relative economic weights (REW) to 

determine a possible GxE at TMI levels and rerankings of sires. In general, genetic correlations at 

the trait level were high for differently defined environments and ranged from rg=0.79 (first 

insemination to conception for altitude) to rg=0.99 (calving to first insemination, cystic ovaries and 

maternal stillbirth rate). The majority of genetic correlations were above 0.8, indicating no severe 

GxE at the trait level and no need for an adjustment to the breeding programs to account for 

different environments for Brown Swiss cattle. Due to the results of the rank correlations between 

the different environment-specific TMIs, no severe reranking was shown, and no GxE at the TMI 

level was induced by the results at the trait level. 

 

Keywords: Genotype by environment interaction, Brown Swiss cattle, organic production systems, 

total merit indices 
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1. INTRODUCTION 

In the state of Baden-Wuerttemberg, southern Germany, 2016 approximately 343,720 dairy cows 

are milked, of which approximately 8,5 % are housed in organically managed systems 

(Statistisches Bundesamt, 2017; Statistisches Landesamt Baden-Wuerttemberg, 2018). Brown 

Swiss cattle are one of the predominant breeds used for milk production in Baden-Wuerttemberg. 

Recent surveys regarding breeder preferences and breeding objectives revealed that in comparison 

to conventional farmers, organic farmers put more weight on fitness traits (Steininger et al., 2012; 

Steinwidder and Krogmeier, 2014; Just et al., 2018). This conclusion is based on the publication 

of two types of total merit indices (TMIs) for Brown Swiss cattle in Germany: the conventional 

TMI with relative economic weights of 50 %, 5 % and 45 % for milk, beef and fitness traits, 

respectively, and the organic TMI with weights of 25 %, 10 % and 65 % for milk, beef and fitness 

(56 % fitness and 9 % conformation) traits, respectively (Fuerst-Waltl et al., 2016; LfL, 2018). 

However, to date, it has been unclear whether a genotype x environment interaction (GxE) exists 

between organic and conventional farming systems for breeding traits. In addition, how the ranking 

of sires would change if a GxE at a trait level or at a TMI level are taken into account is unknown. 

In addition to trait GxE, the TMI level also considers the different economic weights. In Baden-

Wuerttemberg, variation in the production environment also is due to the fact that some farms are 

located on low mountain ranges, such as the Swabian Alb or the Black Forest, which results in a 

noticeable altitudinal range with regard to farm locations. In general, the environmental conditions 

are relatively more severe on these farms than on lowland farms. To date, it is unknown whether 

GxE interactions are present between these two environments. If undetected GxE interactions exist, 

then the evaluated genetic performance of sires for a specific environment (e.g., conventional 

production system) might not be valid for their offspring in other environments. This scenario could 

lead to an inefficiency of breeding programs and hence to reduced genetic improvement (Mulder 

and Bijma, 2005; Hammami et al., 2009). Even though there are numerous studies on GxE, only a 

few studies address GxE in different production systems, such as organic and conventional 

systems, or at a topographic level, such as altitude of the farms where the performance is evaluated. 

Nauta et al. (2006) found GxE for milk production traits for organically and conventionally 

managed Holstein Friesians in the Netherlands, and Sundberg et al. (2010) showed similar results 

for fertility traits in Swedish Holstein/Swedish Red. Pfeiffer et al. (2016) investigated GxE between 

different production systems for milk yield and functional traits in Austrian Fleckvieh (dual-
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purpose Simmental) and found no severe GxE. Studies considering different altitudes as 

environments are rare. Williams et al. (2012) investigated the growth and survival of Angus cattle 

in the U.S. at differing altitudes and found minor GxE for high mountain disease. 

In Germany, only a few GxE studies have been conducted. Koenig et al. (2005) defined 

geographical region and herd size as environmental factors. Genetic correlations between eastern 

and western Germany were between 0.9 and 0.95 for protein yield. Larger effects were reported 

when herd size was considered as an environmental factor. Streit et al. (2012, 2013) investigated 

GxE effects for German Holsteins using reaction norm models. Similar to the results of Koenig et 

al. (2005), they found little GxE. A study by Simianer et al. (2007) investigated GxE at the trait 

level between organically and conventionally managed farms in Switzerland and selected farms in 

Germany for Brown Swiss cattle. They found no severe GxE for different milk production and 

functional traits. 

The aim of this study was to investigate GxE at the trait level for two different environments, i.e., 

production system and altitude of the farms, for milk production traits and functional traits in 

German Brown Swiss cattle using a multiple-trait sire model. These results were subsequently used 

to create a TMI for organic and conventional production systems according to the economic 

weights used in the routine breeding program to detect putative GxE effects at the TMI level. 

 

2. MATERIAL AND METHODS 

2.1. Animals, Traits and Environments 

This study was based on trait records from twelve production and functional traits and pedigree 

data of Brown Swiss cows born between 2006 and 2014 in southern Germany in the state Baden-

Württemberg. In total, 52,013 cows and 132 sires were evaluated in this study; however, the 

number of individuals was smaller for some analyses (see below). The pedigree contained 185,439 

animals. The milk production traits investigated were milk, fat and protein yield. The analyses of 

functional traits included longevity, nonreturn rate 56, calving to first insemination, first 

insemination to conception, cystic ovaries, maternal and paternal calving ease and maternal and 

paternal stillbirth rate. Pfeiffer et al. (2015a, b) proposed estimating breeding values in a routine 

application and subsequent extract derivates such as yield deviations (YDs) or deregressed 

estimated breeding values (dEBV) and using these in multivariate GxE analysis. This approach has 
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computational advantages because in a GxE study, simple models can be applied. We followed this 

approach and used YDs obtained by the best prediction method (Cole et al., 2012) during routine 

genetic evaluations for the milk production traits, which are described in Fuerst et al. (2019). For 

the functional traits, we used dEBV. Fertility traits were deregressed using a multivariate de-

regression based on the approach of Jairath et al. (1998) and Schaeffer (2001), which is 

implemented in the program packages MiX99 (Lidauer et al., 2013). The deregression for calving 

ease and stillbirth rate was performed using the Garrick method (Garrick et al., 2009). The genetic 

evaluation system for functional traits is described in Fuerst et al. (2019). 

 

Table 1 Number of cows, farms and sires (with at least five daughters) in each of the production 

systems1 and farm locations based on altitude2 for selected traits in Brown Swiss cattle. 

  production system altitude of farm 

traits number organic conventional < 800 m ASL > 800 m ASL 

milk production 
traits 

cows 3,783 48,230 43,434 1,214 

farms 173 1,706 1,651 171 

sires 132 56 

functional traits 

cows 3,486 45,115 39,629 928 

farms 129 1,196 1,251 57 

sires 127 51 

calving ease 

cows 3,453 46,072 40,074 850 

farms 149 1,504 1,478 117 

sires 131 44 

stillbirth rate 

cows 3,229 43,643 37,377 740 

farms 141 1,399 1,382 95 

sires 122 41 
1 organic production system according to commission regulation (EC) No 889/2008 (European 

Commission, 2008). 
2 farm location based on altitude; classification according to comparison areas (LEL, 2017). 
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The two types of environment, production system and altitude of farm location, with two levels 

each, were considered. These two production systems considered were conventionally and 

organically managed farms, and the two farm locations were located below and above 800 meters 

above sea level (ASL) (LEL, 2017). Above 800 ASL was considered because many farms above 

800 ASL are mainly located in mountainous regions with relatively severe environmental 

conditions, e.g., in food quality, and they are mainly grassland-based feeding regimes. Only sires 

with at least five daughters with trait records at each level within an environmental class were used 

in the statistical analysis. Table 1 gives an overview of the number of cows, sires and farms for the 

selected traits or trait complexes and the four environmental classes. 

 

2.2. Univariate sire model 

All variance component analyses were performed using the package ASReml 3.0 in R 3.2.3. 

(Butler, 2009; R Core Team, 2015). For the estimation of non-environmental-specific breeding 

values, a univariate sire model was applied. This estimation was determined as a reference scenario 

using the following equation: 

𝑦 = 𝜇 + 𝑍𝑠 + 𝑒 (1) 

where 𝑦 is a vector containing the trait phenotypes (i.e., YD or dEBV), µ is the overall mean, and 

𝑠 is a vector of random sire effects. The distribution of the sire effects is assumed to be 

𝑠	~	𝑁(0, 𝐴𝜎7𝑠), where 𝐴 is the sire additive genetic relationship matrix and 𝜎`7 is the sire variance. 

𝑍 denotes the incidence matrix relating the cow observations to the corresponding sire effect. The 

vector 𝑒 contains the random residuals, with 𝑁(0, 𝐼𝜎7𝑒), where 𝐼 is the identity matrix and 𝜎67 is 

the residual variance. 

 

2.3. Analysis of GxE at a trait level using bivariate sire models 

Equation (2) is a bivariate extension of equation (1), and equation (2) modelled the trait records 

collected in different environments as different but correlated traits. The model was applied 

separately for each environmental class (i.e., production system and altitude of farm location) with 

the two levels as different environments within the classes. The equation was as follows: 
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~
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𝐼� 0
0 𝐼7
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0 𝑍7

� ~
𝑠�
𝑠7� +	 ~

𝑒�
𝑒7� (2) 

where	𝑦�and 𝑦7 are vectors with trait phenotypes (i.e., YD or dEBV) from daughters in 

environments 1 and 2, respectively. 𝐼� and 𝐼7 are the identity matrices linking the phenotypes to the 

environment level means (µ� and µ7). 𝑍� and 𝑍7 are the incidence matrices relating the trait records 

to the random sire effects (vectors 𝑠� and 𝑠7) for the corresponding environmental level. The 

covariance structure of these two random effects is Var	 ~
𝑠�
𝑠7� = 𝐶 ⊗ 𝐴, 𝑤𝑖𝑡ℎ	𝐶 = 	 �

σ7s� σs�,7
σs�,7 σ7s7

�, 

where 𝐴 is the sire additive relationship matrix;	𝜎`�
7  and 	𝜎`A

7 the sire variances for environment 1 

and 2, respectively; and 𝜎`�,`A	is the corresponding covariance. The vectors 𝑒� and 𝑒7	contained the 

random residuals,	where 𝜎6�
7  and 𝜎6A

7  are the residual variances for environment 1 and environment 

2, respectively. The genetic correlation between the trait records, collected at different 

environmental levels, was estimated using standard notations. 

 

2.4. Analysis of GxE on a total merit index level 

To estimate putative GxE effects for the production system environment at an index level, the sire 

EBV for organic and conventional production systems were estimated using equation (2). In 

addition, these values were estimated in equation (1), i.e., without considering GxE. Relative 

economic weights (REWs) for the two environments were approximated by the weighting factors 

used in routine applications (LfL, 2016; LfL, 2018) and recent studies about breeder preferences 

for common traits, novel traits and traits that are not yet monetarily evaluated in cattle breeding 

(Steinwidder and Krogmeier, 2014; Fuerst-Waltl et al., 2016; Just et al., 2018). 

The REWs used to create the environment-specific total merit index (TMI) of a sire are shown in 

Table 2. In summary, in the organic production system, the milk production traits jointly received 

a weight of only 36 %, while in the conventional system, this value was 54 %. The REW for 

longevity was 24 % (16 %) in the organic (conventional) system. Additionally, the remaining 

functional traits were weighted higher in the organic system than in the conventional system. 

Notably, the somatic cell score as a proxy trait to improve udder health was not considered in this 

study. 
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Table 2 Environmental-specific relative economic weights1 (%, rounded) of specific traits used 

for the calculation of total merit indices of Brown Swiss cattle, managed in organic and 

conventional production systems2. 

  production system 
trait 
complexes 

traits organic conventional 

milk 
production 
traits 

milk yield 12 18 

fat yield 12 18 

protein yield  12 18 

functional 
traits 

longevity 24 16 

nonreturn rate 56   8   6 
calving to first 
insemination 

  8   6 

first insemination 
to conception 

  8   6 

cystic ovaries   8   6 

calving ease 
maternal   4   3 

paternal   4   3 

1 The relative economic weights applied in this study were approximated, using routine 

applications as a basis (LfL, 2016; LfL, 2018). 
2 organic production system according to commission regulation (EC) No 889/2008 (European 

Commission, 2008). 

 

For each sire, four different TMIs were calculated. For the conventional production system, the 

TMI for a sire was calculated as follows: 

𝑇𝑀𝐼��K = 	�𝐸𝐵𝑉��K,� ∗ 	𝑅𝐸𝑊��K,�

��

��"

 (3) 

where 𝑇𝑀𝐼��K is the conventional TMI of a sire, 𝐸𝐵𝑉��K,� is the sire EBV for trait 𝑡 obtained from 

model (2) and 𝑅𝐸𝑊��K,� is the conventional REW of trait t. Similarly, for the organic production 

system, the sire TMI was calculated as follows: 



CHAPTER THREE 

63 

𝑇𝑀𝐼��J = 	�𝐸𝐵𝑉��J,� ∗ 	𝑅𝐸𝑊��J,�

��

��"

 (4) 

where the subscript organic (𝑜𝑟𝑔) denotes the corresponding values valid for the organic 

production system. In comparison, a 𝑇𝑀𝐼��K� (𝑇𝑀𝐼��J) was additionally calculated by using the 

EBV obtained from equation (1) in equations (3) and (4), i.e., the difference in these two TMIs is 

solely due to the use of different REWs. Rank correlations between sire TMIs were calculated to 

detect the putative GxE reranking effect at an index level. 

 

3. RESULTS 

3.1. GxE at the trait level 

The genetic correlation estimates are shown in Table 3. The genetic correlations between 

organically and conventionally managed farms were close to one for calving to first insemination, 

cystic ovaries, and maternal and paternal stillbirth rates and approximately 𝑟J = 0.95 for first 

insemination to conception, longevity, milk yield, protein yield, fat yield, nonreturn rate 56 and 

paternal calving ease. For maternal calving ease, the genetic correlation was below 𝑟J = 0.90. The 

correlations of all the traits were slightly smaller for altitude of farm than for production system. 

All standard errors (SEs) were small. 

A similar pattern was observed for the genetic correlations between low and high altitude farms. 

The genetic correlations for nonreturn rate 56 and maternal stillbirth rate were close to one. Most 

correlations ranged between 𝑟J = 0.85	and 𝑟J = 0.95. For the trait first insemination to conception, 

the lowest correlation was found (𝑟J = 0.79). Except for the traits stillbirth rate and first 

insemination to conception, the SEs were small. 

 

3.2. GxE at the TMI level 

The rank correlations between weighted TMIs of all organically and conventionally produced sires, 

using EBVs from the univariate and bivariate models, respectively, are shown in Table 4. All rank 

correlation coefficients were between 0.96 and 1. 

 

 



CHAPTER THREE 

64 

Table 3 Genetic correlations (ra) and standard errors (SE; in brackets) of selected traits between 

the levels of the production system1 (organic and conventional) and farm location based on altitude2 

(< 800 m ASL and > 800 m ASL, resp.) in Brown Swiss cattle, calculated with the bivariate sire 

model. 

  production system altitude of farm 
trait 
complexes 

traits organic - conventional < 800 m - > 800 m ASL 

milk 
production 
traits 

milk yield 0.95 (0.03) 0.91 (0.06) 

fat yield 0.95 (0.02) 0.93 (0.06) 

protein yield  0.93 (0.03) 0.87 (0.08) 

functional 
traits 

longevity 0.96 (0.07) 0.92 (0.09) 

nonreturn rate 56 0.94 (0.07) 0.98 (0.08) 
calving to first 
insemination 

0.99 (0.04) 0.95 (0.11) 

first insemination 
to conception 

0.97 (0.05) 0.79 (0.15) 

cystic ovaries 0.99 (0.03) 0.90 (0.08) 

calving ease 
maternal 0.84 (0.10) n.c.3 

paternal 0.92 (0.11) n.c.3 

stillbirth rate 
maternal 0.99 (0.04) 0.97 (0.32) 
paternal 0.98 (0.05) 0.94 (0.11) 

1 organic production system according to commission regulation (EC) No 889/2008 (European 

Commission, 2008). 
2 farm location based on altitude; classification according to comparison areas (LEL, 2017). 
3 not converged. 
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Table 4 Rank correlations (rSpearman) between the organic1 and conventional total merit indices of 

all 123 Brown Swiss sires, calculated with the univariate and the bivariate estimated breeding 

values as a basis. 

 TMIuo2 TMIuc3 TMIbo4 TMIbc5 

TMIuo 1    

TMIuc 0.972 1   

TMIbo 0.983 0.966 1  
TMIbc 0.970 0.998 0.965 1 

1 organic production system according to commission regulation (EC) No 889/2008 (European 

Commission, 2008). 
2 TMIuo: total merit index, univariate estimation, organic weighting. 
3 TMIuc: total merit index, univariate estimation, conventional weighting. 
4 TMIbo: total merit index, bivariate estimation, organic weighting. 
5 TMIbc: total merit index, bivariate estimation, conventional weighting. 

 

4. DISCUSSION 

4.1. GxE at the trait level 

The genetic correlations for milk production traits found in this study ranged from approximately 

0.94 (production system) to 0.90 (farm altitude). All correlations were higher than 0.8, indicating 

no severe GxE or demand for independent breeding programs for those environments (Boelling et 

al., 2003; Robertson, 1959; Mulder et al., 2006). Similar results for differing production systems 

were found in several other studies. Nauta et al. (2006) estimated genetic correlations between 

organic and conventional production systems in Dutch Holstein. For the traits milk yield, fat yield 

and protein yield, the correlations were 𝑟J = 0.80, 𝑟J = 0.88 and 𝑟J = 0.71, respectively, 

indicating a moderate GxE. Gerber et al. (2006) conducted a study in Fleckvieh cattle and estimated 

genetic correlations for milk production traits between farms with different levels of management 

intensity. In that study, minor GxE interactions were found (𝑟J = 0.94, 𝑟J = 0.95 and 𝑟J = 0.88 

for milk yield, fat yield and protein yield, respectively). For Swedish Holstein/Swedish Red, the 

genetic correlations for milk production traits between organic and conventional production 

systems were close to one, indicating no occurrence of a GxE (Sundberg et al., 2010). 
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In a project to detect a GxE for different production and functional traits measured in organic and 

conventional production systems in Switzerland and Germany, Simianer et al. (2007) calculated 

genetic correlations of 𝑟J = 0.89, 𝑟J = 0.86 and 𝑟J = 0.89 for milk yield, fat yield and protein 

yield, respectively, in Brown Swiss cattle. These results suggest only a minor GxE. For the 

functional trait calving to first insemination, a genetic correlation of 𝑟J = 0.69 was estimated. The 

authors noted that this significant GxE should be interpreted with caution because of the data 

structure and very divergent variances of permanent environmental effects in both environments. 

The results of an Austrian GxE analysis in Fleckvieh cattle were similar to the results from the 

previously described studies. Pfeiffer et al. (2016) investigated GxE effects for milk yield as well 

as different functional traits in production environments with varying management intensities 

(organic and conventional farming at low and high farm intensities). All estimated genetic 

correlations were close to one, e.g., 𝑟J = 0.98 for milk yield, indicating no GxE effects. 

For the trait longevity, high genetic correlations of 𝑟J = 0.96 and 𝑟J = 0.92 were estimated for 

production system and altitude of farm location, respectively, which confirm the findings of 

Pfeiffer et al. (2016) and Ahlman et al. (2011). In both studies, correlations for longevity were 

above 0.8, suggesting no severe GxE. Ahlman et al. (2011) found that the traits considered 

indicated a higher longevity and consequently a lower replacement rate in organic production 

systems than in conventional production systems in Sweden. Longevity is a key issue for farmers 

because a longer productive life and selection for improved fertility leads to reduced replacement 

rates and costs (Pritchard et al., 2013). 

For the functional traits nonreturn rate 56, calving to first insemination and cystic ovaries, high 

genetic correlations for both environmental descriptors were estimated. Pfeiffer et al. (2016) found 

similar results for the traits nonreturn 56 (average 𝑟J = 0.94) and cystic ovaries (𝑟J = 1.0) between 

organic and different conventional production systems in Austrian Fleckvieh cattle. Haile-Mariam 

et al. (2008) analysed the GxE of functional traits in Australian Holstein Friesians considering 

different calving systems and regions as environments. They found slight GxE effects for nonreturn 

rates in extreme environments (continuous environmental descriptors such as herd size) and groups 

of herds that were approximately 𝑟J = 0.6. Sundberg et al. (2010) estimated a genetic correlation 

for calving to first insemination collected during different lactation events that was close to one in 

Swedish Holstein/Swedish Red. Describing the environment according to different calving months 
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and geographic locations, Ismael et al. (2016) showed GxE effects for geographic location (𝑟J =

0.8) in the Scandinavian Holstein population. 

In the present study, the only genetic correlation below 0.8 was estimated for the functional trait 

first insemination to conception when the environment was classified by farm location altitude. No 

GxE effects were found with respect to the production systems. 

For the traits calving ease and stillbirth rate, high genetic correlations were estimated. No 

correlations could be estimated for maternal calving ease because the equation did not converge. 

Genetic correlations for Holstein populations estimated between different countries as part of the 

Interbull Organization ranged between 𝑟J = 0.58 (maternal calving ease) and 𝑟J = 0.59 (maternal 

stillbirth), indicating GxE effects for those traits and environments (Mark, 2004). For the trait 

maternal calving ease, the evaluated genetic correlations between seven core populations of 

Holstein were 𝑟J = 0.84. Similar to the results of Mark (2004), lower correlations between all 

populations and countries might be due to trait definitions and data evaluation procedures but not 

solely due to GxE effects. 

As the dataset used in this study is a representative sample of the farm structure for Brown Swiss 

breeders and was not further preselected to obtain a balanced data structure, there was a relatively 

large difference regarding the number of individuals, farms and sires between the certain 

environmental classes. This scenario might have compromised the detection of GxE effects. 

However, the data structure reflected the reality of GxE in these environments. Since an 

environmental descriptor has a strong influence on the results of GxE studies, alternative 

environmental descriptors may lead to noticeable interactions, but alternative environmental 

descriptors were not focused on in this study. Further studies should be conducted using 

continuously scaled environmental descriptors and/or genotype data to obtain a detailed view of 

GxE and to analyse GxE at the QTL level. 

 

4.2. GxE at the TMI level 

The TMIs for sires, using their EBV for organic and conventional production systems (see 2.4.), 

were estimated to determine whether there are putative GxE effects for production system 

environments at an index level. The rank correlations for all sires were close to unity, indicating 

no reranking at an index level. A reranking across environments is more important for animal 
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breeding than scaling effects, indicating that the best sire in one environment is not necessarily the 

best in other environments, leading to losses in genetic gain. Several studies have investigated the 

reranking of animals due to GxE effects for different environments, genotypes and traits by looking 

at the magnitude of GxE due to the extent of genetic correlations or estimated rank correlations. 

Pfeiffer et al. (2016) found no severe rank effects (rank correlations were close to unity) for 

Austrian Fleckvieh for milk yield between organic and conventional production systems according 

to sire EBVs. Similar results were shown for different management systems in the U.S., different 

grazing systems in the Netherlands, different fertility categories and continuous herd average 

fertility performances in New Zealand (Kearney et al., 2004; van der Laak et al., 2016; Craig et al., 

2018). 

Streit et al. (2012) estimated GxE for different milk-production traits using reaction norm models 

in German Holstein and found only a minor GxE. Estimated rank correlations between EBV 

showed no severe reranking of sires, even if a slight GxE was found. 

Only a few studies found rerankings of animals due to a GxE between varying environments. Nauta 

et al. (2006) estimated genetic correlations below 0.8 for milk production traits in Dutch Holstein 

between organic and conventional production systems. Estimated breeding values of specific sires 

resulted in a reranking with respect to milk yield. Ismael et al. (2016) investigated GxE for the 

environments calving month and geographic location for Danish and Swedish Holstein. They found 

minor rerankings of sires due to differences from unity for estimated correlations for calving to 

first insemination between calving months. No reranking could be observed between different 

locations and the same trait. 

Hayes et al. (2003) observed only small rerankings of bulls for milk-yield traits and the 

environmental descriptor temperature-humidity index in Australian Holstein Friesian. 

The rank correlations in the present study indicate no reranking at the TMI level for the investigated 

production systems and traits. Only minor effects could be observed for the top 10 organic sires 

between production systems. These results suggest that selection decisions will not be affected, 

and no putative GxE effects at the TMI level are present. 
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The results at the trait level and TMI level suggest no separate breeding programs are needed for 

the investigated production environments. The provision of an organic TMI (ÖZW; LfL, 2018) for 

Brown Swiss sires is a helpful tool for breeders. These environmentally specific TMIs allow 

organic breeders to select animals in accordance with their production environment and maximize 

genetic and economic merit based on their preferences for fitness traits. 

 

5. CONCLUSIONS 

In general, no severe GxE was found at a trait level or at an index level. This result suggests that 

no separate breeding programs are needed for the investigated environments and traits in German 

Brown Swiss cattle. 
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IMPLICATIONS 

Genotype-by-environment interactions are one source of variance in environment-sensitive 

quantitative traits. In animal breeding, ignoring this variance component can result in scaling and 

reranking effects of estimated breeding values for these traits. This, in turn, might compromise the 

response to selection and, hence, the efficiency of animal breeding schemes. In the present study, 

genotype-by-environment interactions in Brown Swiss dairy cattle for sixteen milk production and 

functional traits were investigated by applying random regression reaction norm models. The aim 

was to determine if and to what extent genotype-by-environment interactions are present and 

whether these have a potential impact on the estimated breeding values. 

 

INTRODUCTION 

The sensitive reaction of a genotype to environmental changes can be one source of quantitative 

trait variation. Some production traits, but particularly functional traits, are of low heritability and 

strongly influenced by environmental factors. For these traits, genotype-by-environment 

interactions (GxE) are more likely than for traits that depend, mostly, on the genetics of an animal. 

To determine GxE and to infer how these might impact selection and breeding schemes in 

livestock, bivariate and multivariate analyses as well as reaction norm models were frequently 

applied. In the latter approach, the environment is modelled as a continuously scaled variable, such 

as temperature-humidity index, herd disease level or farm input level as recently reviewed by 

Hayes et al. (2016). Several studies found GxE in different cattle breeds using different 

environmental descriptors (e.g. Hayes et al., 2003; El-Tarabany and Nasr, 2015; Ha et al., 2017) 

and the suitability of different reaction norm models was investigated (e.g. Calus et al., 2002; 

Kolmodin et al., 2002; Lillehammer et al., 2009). 

As sires are usually selected according to their estimated breeding value, GxE may affect values 

for certain traits, which can eventually result in scaling effects or a reranking of sires. Recent 

studies revealed that GxE influence the breeding value estimation of traits with significant GxE. 

Including information on environmental sensitivity led to an increased accuracy of estimated 

breeding values, especially if genomic data was available (Zhang et al., 2019; Bohlouli et al., 2018). 

If GxE is one source of the variability of certain traits in a specific breed, this would reduce the 

response to selection and, hence, compromise the efficiency of breeding schemes. 
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GxE always depend on the applied environmental descriptor. Larger environmental sensitivity can 

be observed when the range of the environmental descriptor is wide, which especially concerns 

across breed and across country evaluations. Brown Swiss is one of the most important dairy cattle 

breeds in southern Germany and Austria. The topography, the farm size, the management and the 

feeding regimes can differ substantially, and the environmental ranges are therefore expected to be 

large. Imort-Just et al. (2019, submitted) conducted GxE studies in the German-Austrian Brown 

Swiss population using bivariate sire models to infer GxE considering environments classified by 

farm altitude (above and below 800 m ASL) and farming system (organic and conventional). Since 

sires are usually selected according their total merit index, they investigated GxE effects on trait 

and on total merit index level. They found minor GxE effects for one functional trait (first 

insemination to conception interval). No reranking of sires was observed, neither on trait nor on 

total merit index level. 

The objective of the present study was to investigate GxE effects in Brown Swiss cattle using 

random regression reaction norm models. A continuously scaled environmental descriptor 

capturing a wide range of herd environments was used, which has successfully been done in other 

studies (e.g. Calus et al., 2002; Strandberg et al., 2009; Streit et al., 2012). The results were 

expected to determine traits affected by GxE and to infer roughly the potential impact on estimated 

breeding values and currently used breeding schemes. 

 

MATERIAL AND METHODS 

Individuals and environmental descriptor 

This study is based on phenotype and pedigree data from a sample of the German-Austrian Brown 

Swiss dairy population. The dataset contained the averaged performance of first lactating cows, 

born between 2006 and 2014, with at least 7 herd-test-day records. Individuals with a lack of sire 

information or that descend from sires with less than five female offspring in the dataset were 

discarded from the analyses. 

The investigated traits were the milk production traits milk yield (MY), fat yield (FY) and protein 

yield (PY) as well as milk energy yield (EY) as a linear function of the three traits (Nostitz and 

Mielke, 1995). Further, the functional traits longevity (LON), non-return rate 56 of heifers (hNRR) 

and cows (cNRR), calving to first insemination interval (CFI), first insemination to conception 
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interval of heifers (hFIC) and cows (cFIC), cystic ovaries (CO), fertility disorders (FD), maternal 

and paternal calving ease (mCE, pCE) and maternal and paternal stillbirth rate (mSB, pSB) were 

examined. 

For analyses, the cows’ yield deviations (YD) were derived from their averaged first lactation 

performances of the routine genetic evaluation using an animal test day model (Fuerst et al., 2019). 

The YDs were not adjusted for heterogeneous variances. This approach ensured that the phenotypes 

were not pre-corrected for potential GxE effects captured by heterogeneous herd variances (Lidauer 

et al., 2002) and concerned the milk production traits and LON. For all other traits, breeding values, 

obtained from the routine genetic evaluations (Fuerst et al., 2019), were deregressed following 

Garrick et al. (2009) and considered as phenotypes in the subsequent analyses. 

For the application of reaction norm models, a continuously scaled parameter is required to 

describe the production environment of individuals. Herd-test-day solutions of milk production 

traits have frequently been used successfully as environmental descriptors (e.g. Streit et al., 2012). 

Therefore, in the present study, averaged herd effects (AHE) obtained during routine breeding 

value estimation were used, not corrected for heterogeneous herd variances. According to Streit et 

al. (2012), who proposed to rather use one single environmental descriptor instead of three 

correlated descriptors, milk energy yields (MEY, in MJ) were calculated as a linear combination 

of the AHE of MY, FY and PY following Nostitz and Mielke (1995). Assuming a constant lactose 

content of 4.8 % per kg milk yield, and with the evidence of high correlations between the traits, 

the following formula was applied to calculate the environmental descriptor for each cow 𝑗: 

𝑀𝐸𝑌# = 0.802 ∗ 𝑀𝑌# + 38.4 ∗ 𝐹𝑌# + 23.6 ∗ 𝑃𝑌# (1) 

To ensure that the environmental descriptor is representative for the overall Brown Swiss herd’s 

environments, individuals showing most extreme milk energy yields (2.5% of the data) were 

discarded from further analyses. Depending on the respective trait, 52,545 to 60,441 cows 

descending from 1,095 to 1,235 bulls remained in the evaluation dataset after quality control. 

 

Statistical analyses 

The phenotypes and milk energy yields (environmental descriptor variable) were scaled to a mean 

of zero and a standard deviation of one. Following Kolmodin et al. (2002) and Lillehammer et al. 
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(2009), the following random regression reaction norm model was applied using the R package 

ASReml-R (Butler et al., 2017): 

𝑦"#9 = 	µ + 𝑏 ∗ 𝑀𝐸𝑌9 +	𝑠;" +	𝑠¤"	𝑀𝐸𝑌9 + 𝑒"#9  (2) 

with 𝑦 being the YD of the 𝑗-th daughter of sire 𝑖 in environment 𝑘 (details see below), µ the overall 

mean and 𝑏 the fixed effect of the environment. 𝑠;" denotes the random sire effect (intercept) and 

𝑠¤" the sire slope effect (environmental sensitivity), which is the random regression coefficient of 

the regression of sire 𝑖 on the environmental descriptor MEY. The variance-covariance structure 

of the sire intercept and slope effects is defined as 𝑣𝑎𝑟 ~
𝑠;
𝑠¤� = 𝐴	 ⊗	�

𝜎`@
7 𝜎`@,`§

𝜎`@,`§ 𝜎`§
7 �, with 𝐴 being 

the pedigree-derived relationship matrix. The residuals were modelled heterogeneously within 10 

equally sized groups according to the milk energy yield (Lillehammer et al., 2009). The fixed effect 

of the environment was tested for significance using Wald test statistics (Kenward and Roger, 

1997). The random effects (intercept, slope) were tested for significance applying z-statistics at a 

significance level of 𝛼 = 0.01. 

Following Lynch and Walsh (1998) the sire variance as a function of the environment was 

calculated as 

	𝜎`|©ª«7 = 	 	𝜎`@
7 + 	2𝑀𝐸𝑌𝜎`@,`§ + 𝑀𝐸𝑌

7	𝜎`§
7  (3) 

for each trait, with 	𝜎`@
7  (	𝜎`§

7 ) being the estimated intercept (slope) variance component, 𝜎`@,`§ their 

covariance and 𝑀𝐸𝑌, a vector containing the realisations of the continuously scaled environmental 

descriptor variable. Genetic correlations between the sire variance given 𝑀𝐸𝑌v"K and 𝑀𝐸𝑌v;¬, the 

10- and 90% - quantile of 𝑀𝐸𝑌, and the 25- and 75% - quantile of 𝑀𝐸𝑌, respectively, were 

computed. Generally, considering two environments 𝑀𝐸𝑌� and 𝑀𝐸𝑌7, the correlation is 

𝑟J­®¯�,­®¯A = 	
𝜎©ª«�,©ª«A
𝜎©ª«�𝜎©ª«A

 (4) 

and the covariance was defined as 

𝜎©ª«�,©ª«A = 	𝜎`@
7 +	𝜎`@,`§𝑀𝐸𝑌� + 𝜎`@,`§𝑀𝐸𝑌7 + 	𝜎`§

7 𝑀𝐸𝑌�𝑀𝐸𝑌7 (5) 
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Using the random effect estimates of sire 𝑖, the sires’ reaction norm 𝑅 across all environments was 

calculated as 

𝑅" = 𝑠;" +	𝑠¤"	𝑀𝐸𝑌 (6) 

and its estimated breeding value (EBV) in environment 𝐸 then was 

𝐸𝐵𝑉"|ª = 𝑠;" +	𝑠¤"	𝑀𝐸𝑌ª (7) 

To infer whether putative GxE effects affect the EBV ranking of bulls, and if certain EBV ranges 

are more affected than others, Spearman rank correlations were calculated for different sire subsets. 

According to their intercept value (i.e. 𝐸𝐵𝑉" irrespective the environment), the following sires were 

chosen and their 𝐸𝐵𝑉"|ª reranking was investigated for the different values of 𝑀𝐸𝑌ª described 

above for the genetic correlation: the ten bulls with the highest (best 10 sires) and the lowest (worst 

10 sires) intercept EBVs, the sire with the median EBV ± five bulls (medium sires), and all the 

sires in the study. 

 

RESULTS 

The reaction norm model (Formula 2) did not reach convergence for the traits hNRR, hFIC, FD, 

mCE, pCE and mSB. For the remaining traits, the results of the variance component estimation can 

be taken from Table 1. The sire intercept variance was significant for all traits, ranging from 0.026 

(cNRR) to 0.203 (MY), and was generally much lower for the functional traits compared to the 

milk production traits. In contrast, the estimated slope variance was only significant for FY. 

Overall, the sire slope variances were notably small (across all traits the intercept variance was on 

average 27-fold larger). Except for cNRR and LON, the covariance between the intercept and slope 

was negative. However, the covariance estimates were close to zero and not significant for all 

investigated traits. 

The standard errors of the estimated variance components were large when the estimated variance 

was close to zero, which concerned almost all non-significant variance components. For the milk 

production traits and functional traits, the sire variance, expressed as a function of the environment, 

is visualised in Figure 1 and Figure 2, respectively. 
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Table 1 Variance component estimates obtained from ASReml. The sire intercept variance (𝜎`@
7 ), 

sire slope variance (𝜎`§
7 ) and their covariance (𝜎`@,`§) as well as the standard errors (SE) are shown 

for the investigated traits; * highlight significant components (𝛼 = 0.01). For clarity, the estimates 

were multiplied by the factor 100. 

Trait1     𝜎`@
7 ∗ 	107 (SE)      𝜎`§

7 ∗ 107 (SE) 𝜎`@,`§ ∗ 10
7 (SE) 

MY 20.240 (1.123)*                   0.014 (0.023) -0.433 (0.207) 

FY 17.220 (1.033)*                   0.240 (0.083)* -0.481 (0.275) 

PY 18.494 (1.063)*                   0.055 (0.035) -0.371 (0.233) 

EY 18.742 (1.081)*                   0.115 (0.052) -0.618 (0.253) 

cNRR 2.614 (0.289)*                   0.018 (0.025) 0.030 (0.071) 

CFI 5.071 (0.474)*                   0.028 (0.028) -0.253 (0.120) 

cFIC 2.367 (0.281)*                   0.006 (0.023) -0.090 (0.070) 

LON 2.866 (0.340)*                   0.052 (0.040) 0.021 (0.106) 

CO 6.179 (0.514)*                   0.007 (0.024) -0.112 (0.113) 

pSB 7.135 (0.615)*                   0.049 (0.037) -0.121 (0.160) 
1 Milk yield (MY), fat yield (FY), protein yield (PY), milk energy yield (EY), non-return rate 56 

of cows (cNRR), calving to first insemination interval (CFI), first insemination to conception 

interval of cows (cFIC), longevity (LON), cystic ovaries (CO), paternal stillbirth rate (pSB) 

 

It shows that the estimated sire variance was higher for the milk production traits and larger 

differences in sire variance across environments were apparent for these traits. For traits with a 

positive covariance between the sire intercept and slope variance, the estimated sire variance 

decreased with increasing values of the environmental variable. The opposite was observed for the 

trait cNRR. For LON, the estimated sire variance decreased while the environmental descriptor 

was less than MEY = -0.406 and subsequently increased up to the maximal value of the 

environmental descriptor. 

Nevertheless, all genetic correlations that were calculated between different percentiles of the 

environment were positive for all traits and ranged from 0.992 to 1 (from 0.972 to 1), considering 

the 25th and 75th (10th and 90th) percentile. A smaller genetic correlation was present for the traits 

LON (0.845) and FY (0.886) between the two most extreme environments (see Table 2). 
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Figure 1 Estimated sire variance as a function of the environmental descriptor milk energy yield 

(MEY, Formula 1) for the investigated milk production traits. The plot illustrates the estimated sire 

variance as a function of the environmental descriptor for the milk production traits milk yield 

(solid line), milk energy yield (dot-dashed), protein yield (dotted) and fat yield (dashed). The 

vertical lines correspond to the minimum, 10th percentile, 25th percentile, 75th percentile, 90th 

percentile and the maximum (from left to right) of the environmental descriptor. 
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Figure 2 Estimated sire variance as a function of the environmental descriptor milk energy yield 

(MEY, formula 1) for the investigated functional traits. The plot illustrates the estimated sire 

variance as a function of the environmental descriptor for the functional traits paternal stillbirth 

rate (solid line), cystic ovaries (dashed), calving to first insemination interval (dotted), longevity 

(two-dashed), first insemination to conception rate in cows (dot-dashed) and a cows’ non-return 

rate 56 (long-dashed). The vertical lines correspond to the minimum, 10th percentile, 25th percentile, 

75th percentile, 90th percentile and the maximum (from left to right) of the environmental 

descriptor. 
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Figure 3 Reaction norms of the best 10 sires (left), medium sires (middle) and worst 10 sires (right) 

for the traits fat yield (top) and cystic ovaries (bottom). The vertical lines correspond to the 

minimum, 10th percentile, 25th percentile, mean, 75th percentile, 90th percentile and the maximum 

(from left to right) of the environmental descriptor milk energy yield (MEY, formula 1). 
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Table 2 Genetic correlations (𝑟J) between the minimum and maximum, the 10th and 90th percentile 

and the 25th and 75th percentile of the environmental descriptor milk energy yield (MEY, formula 

1), respectively, are shown for the investigated traits. 

Trait1 𝑟J(𝑚𝑖𝑛,𝑚𝑎𝑥) 𝑟J(𝑝10, 𝑝90) 𝑟J(𝑝25, 𝑝75) 

MY 1.000 1.000 1.000 

FY 0.886 0.980 0.994 

PY 0.980 0.996 0.999 

EY 0.962 0.993 0.998 

cNRR 0.942 0.990 0.997 

CFI 0.991 0.998 1.000 

cFIC 1.000 1.000 1.000 

LON 0.845 0.972 0.992 

CO 0.995 0.999 1.000 

pSB 0.944 0.990 0.997 
1 For trait abbreviations, see Table 1. 

 

Table 3 provides the Spearman rank correlations between the estimated breeding values of all sires, 

calculated for different environments based on the estimated sire intercept and slope effects 

(Formula 7). The rank correlations were above 0.995 for all traits and all environments compared. 

Even for the trait FY, that showed significant GxE, no severe reranking was present. This changes 

when the rank correlations of the sire cohort’s best 10 sires (Table S1), medium sires (Table S2) 

and worst 10 sires (Table S3) were investigated separately. Generally, the rank correlations were 

slightly reduced for the best 10 sires (-0.039) and worst 10 sires (-0.018) and dropped remarkably 

in the subset of medium sires (-0.262). This shows that reranking effects predominantly occur 

between sires with estimated intercept breeding values close to the mean. Across all traits, the 

ranking differences increased, the more the environment differed. This was  

especially evident for the traits FY and LON, but also evident for EY, cNRR, CFI and pSB in the 

medium sire cohort. 

The reaction norms of the sires within the sire subsets, exemplarily displayed for the traits FY and 

CO in Figure 2, support these findings. Further, they provide additional information about the size 
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of the estimated breeding value across the continuously scaled environmental variable. It is clearly 

visible that small to moderate scaling effects can be observed for all bulls. In contrast, reranking 

effects only affected a fraction of sires and were most pronounced when comparing the medium 

sires (e.g. FY, see Figure 3). 

 

 

Table 3 Spearman rank correlations between the estimated breeding values irrespective of the 

environment based on the intercept estimates (𝐸𝐵𝑉") and the estimated breeding values in a certain 

environment E (𝐸𝐵𝑉"|ª) (see Formula 7) for all of the sires in the study and the investigated traits.  

The rank correlations (𝜌) are shown for the estimated breeding values given the minimum 

(𝜌(ª³´µ|¶µ·)), maximum (𝜌(ª³´µ|¶@¸)), 10th (𝜌(ª³´µ|¹�º)), 25th (𝜌(ª³´µ|¹A»)), 75th (𝜌(ª³´µ|¹¼»)) and 90th 

(𝜌(ª³´µ|¹½º)) percentile of the environmental descriptor milk energy yield (MEY, formula 1). 

Trait1 𝜌(ª³´µ|¶µ·) 𝜌(ª³´µ|¹�º) 𝜌(ª³´µ|¹A») 𝜌(ª³´µ|¹¼») 𝜌(ª³´µ|¹½º) 𝜌(ª³´µ|¶@¸) 

MY 1.000 1.000 1.000 1.000 1.000 1.000 

FY 0.996 0.999 1.000 1.000 0.999 0.995 

PY 1.000 1.000 1.000 1.000 1.000 1.000 

EY 0.999 1.000 1.000 1.000 1.000 0.999 

LON 0.996 0.999 1.000 1.000 0.999 0.997 

cNRR 0.999 1.000 1.000 1.000 1.000 0.999 

CFI 1.000 1.000 1.000 1.000 1.000 1.000 

cFIC 1.000 1.000 1.000 1.000 1.000 1.000 

CO 1.000 1.000 1.000 1.000 1.000 1.000 

pSB 0.999 1.000 1.000 1.000 1.000 0.999 
1 For trait abbreviations, see Table 1. 
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Table S1 Spearman rank correlations of the best 10 sires. Spearman rank correlations between the 

estimated breeding values irrespective the environment based on the intercept estimates (𝐸𝐵𝑉") and 

the estimated breeding values in a certain environment E (𝐸𝐵𝑉"|ª) (see Formula 7). The rank 

correlations (𝜌) are shown for the estimated breeding values given the minimum (𝜌(ª³´µ|¶µ·)), 

maximum (𝜌(ª³´µ|¶@¸)), 10th (𝜌(ª³´µ|¹�º)), 25th (𝜌(ª³´µ|¹A»)), 75th (𝜌(ª³´µ|¹¼»)) and 90th (𝜌(ª³´µ|¹½º)) 

percentile of the environmental descriptor milk energy yield (MEY, Formula 1) and were 

calculated for each trait across the best ten sires (ranked according to their intercept breeding 

values). 

Trait1 𝜌(ª³´µ|¶µ·) 𝜌(ª³´µ|¹�º) 𝜌(ª³´µ|¹A») 𝜌(ª³´µ|¹¼») 𝜌(ª³´µ|¹½º) 𝜌(ª³´µ|¶@¸)  

MY 0.988 1.000 1.000 1.000 1.000 1.000 

FY 0.636 0.855 0.939 0.988 0.976 0.842 

PY 0.988 1.000 1.000 1.000 1.000 1.000 

EY 0.964 0.988 0.988 1.000 0.988 0.988 

LON 0.564 0.867 0.939 0.927 0.927 0.842 

cNRR 0.964 1.000 1.000 0.988 0.988 0.964 

CFI 0.988 1.000 1.000 1.000 1.000 0.988 

cFIC 1.000 1.000 1.000 1.000 1.000 1.000 

CO 1.000 1.000 1.000 1.000 1.000 1.000 

pSB 0.818 0.915 0.988 0.964 0.964 0.927 
1For trait abbreviations, see Table 1. 
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Table S2 Spearman rank correlations of the medium sires. Spearman rank correlations between 

the estimated breeding values irrespective of the environment based on the intercept estimates 

(𝐸𝐵𝑉") and the estimated breeding values in a certain environment E (𝐸𝐵𝑉"|ª) (see Formula 7). The 

rank correlations (𝜌) are shown for the estimated breeding values given the minimum (𝜌(ª³´µ|¶µ·)), 

maximum (𝜌(ª³´µ|¶@¸)), 10th (𝜌(ª³´µ|¹�º)), 25th (𝜌(ª³´µ|¹A»)), 75th (𝜌(ª³´µ|¹¼»)) and 90th (𝜌(ª³´µ|¹½º)) 

percentile of the environmental descriptor milk energy yield (MEY, formula 1) and were calculated 

for each trait across sires with medium intercept breeding values (the sire having the median 

intercept breeding value ± 5 bulls, ranked according to their intercept breeding values). 

Trait1 𝜌(ª³´µ|¶µ·) 𝜌(ª³´µ|¹�º) 𝜌(ª³´µ|¹A») 𝜌(ª³´µ|¹¼») 𝜌(ª³´µ|¹½º) 𝜌(ª³´µ|¶@¸) 

MY 1.000 1.000 1.000 0.991 0.991 0.991 

FY 0.490 0.745 0.864 0.755 0.527 0.209 

PY 0.818 0.918 0.955 0.982 0.982 0.900 

EY 0.718 0.855 0.882 0.845 0.618 0.209 

LON 0.527 0.536 0.573 0.027      -0.191      -0.364 

cNRR 0.727 0.900 0.927 0.755 0.455 0.127 

CFI    -0.109 0.277 0.964 1.000 0.909 0.791 

cFIC 0.855 0.973 0.991 0.982 0.936 0.891 

CO 0.982 0.991 1.000 1.000 1.000 0.991 

pSB 0.309 0.773 0.909 0.945 0.918 0.909 
1 For trait abbreviations, see Table 1. 
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Table S3 Spearman rank correlations of the worst 10 sires. Spearman rank correlations between 

the estimated breeding values irrespective the environment based on the intercept estimates (𝐸𝐵𝑉") 

and the estimated breeding values in a certain environment E (𝐸𝐵𝑉"|ª) (see Formula 7). The rank 

correlations (𝜌) are shown for the estimated breeding values given the minimum (𝜌(ª³´µ|¶µ·)), 

maximum (𝜌(ª³´µ|¶@¸)), 10th (𝜌(ª³´µ|¹�º)), 25th (𝜌(ª³´µ|¹A»)), 75th (𝜌(ª³´µ|¹¼»)) and 90th (𝜌(ª³´µ|¹½º)) 

percentile of the environmental descriptor milk energy yield (MEY, formula 1) and were calculated 

for each trait across the worst ten sires (ranked according to their intercept breeding values). 

Trait1 𝜌(ª³´µ|¶µ·) 𝜌(ª³´µ|¹�º) 𝜌(ª³´µ|¹A») 𝜌(ª³´µ|¹¼») 𝜌(ª³´µ|¹½º) 𝜌(ª³´µ|¶@¸) 

MY 0.988 0.988 1.000 1.000 1.000 1.000 

FY 0.976 1.000 1.000 0.988 0.976 0.976 

PY 1.000 1.000 1.000 1.000 1.000 1.000 

EY 0.988 1.000 1.000 1.000 1.000 1.000 

LON 0.806 0.952 0.976 0.952 0.952 0.891 

cNRR 0.964 0.988 1.000 1.000 1.000 1.000 

CFI 0.988 0.988 1.000 0.988 0.988 0.976 

cFIC 1.000 1.000 1.000 1.000 1.000 0.952 

CO 1.000 1.000 1.000 1.000 1.000 1.000 

pSB 0.842 0.939 0.952 1.000 0.988 0.976 
1 For trait abbreviations, see Table 1. 

 

DICUSSION 

A previous study examining GxE in the same population applying bivariate analyses revealed no 

severe interactions (Imort-Just et al. 2019, submitted). Since the detection of GxE effects in that 

study was compromised by the classification in two distinct environments, which resulted in 

strongly unbalanced datasets, it was suggested to investigate GxE by using a continuously scaled 

environmental descriptor and reaction norm models as used in the present study. 

Random regression reaction norm models to infer the sources of variability, particularly GxE, are 

complex and need a suitable data structure and sufficient trait variability to gain reasonable 

estimates. Small variation or a lack of information may result in high standard errors as well as 
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poor convergence of the model or parameter estimates that are outside the parameter space 

(Misztal, 2008). Although convergence issues are usually less evident in sire models (Misztal and 

Legarra, 2017), the variance in question was not sufficiently large in some of the functional traits 

(hNRR, hFIC, FD, mCE, pCE and mSB) to estimate reliable variance components given the model 

parameterisation in the present study (Table 1). However, since the model contained all relevant 

sources and could not be reduced any further, GxE investigations for these traits should be 

conducted using larger datasets or increasing the minimum number of daughters of sires in the 

evaluation. This, in turn, might also decrease the partially high standard errors of the estimates. 

Still, increasing the minimum number of daughters per sire would have reduced the general dataset. 

This would not represent reality since there are always sires with little offspring information 

included in the routine genetic evaluations. Further, but more importantly, this might have 

compromised the detection of GxE effects in other traits caused by losses in variation of the 

environmental descriptor. Alternatively, non-linear reaction norm models can be applied as done 

by Streit et al. (2012); however, it did not substantially improve the results in their study as the 

reaction norms were almost linear and the first order effect explained the environmental sensitivity 

sufficiently. Regarding the reaction norms of the sires (Figure 2), their findings might also be valid 

for the present study. 

The estimates of the sire variance irrespective of the environment (intercept variance) was 

significant for all traits and remarkably larger for the milk production traits than for the functional 

traits (Table 1). This was expected since this variance component is roughly equivalent to the sire 

variance obtained from models without an interaction term, and it has been shown in previous 

studies that there is genetic variation in the relevant functional and production traits in this breed. 

Among others, Loberg et al. (2015) conducted variance component estimations in several Brown 

Swiss cattle populations and estimated moderate to high heritabilities for milk production traits 

whereas the heritabilities for functional traits were small (e.g. h2= 0.03 for maternal calving ease, 

for which the reaction model in this study did not converge). The influence of the environment is 

strong in traits with a low heritability and, hence, GxE are more likely to impact the expression of 

a phenotype in such traits. In agreement, the results of Kolmodin et al. (2002) suggest that GxE 

effects may be more present in functional traits. Still, no GxE were found for the functional traits 

in the present study, but for the milk production trait FY. Derivates of the milk production traits 

were used to calculate the environmental descriptor MEY, and FY had the highest weight in this 
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variable (Formula 1). Thus, the environmental descriptor was probably more suitable to detect GxE 

effects for this particular trait than for others. This was also discussed by Streit et al. (2012), who 

analysed GxE for milk production traits using either milk energy yield or somatic cell score as the 

environmental descriptor. Generally, GxE are more pronounced if the range of the environmental 

descriptor is very large (i.e. temperature-humidity index) or in across country evaluations of breeds 

(Hayes et al., 2016). 

The estimates of the slope variance, which denotes the measure of the environmental sensitivity of 

genotypes, were generally small across all traits (Table 1), indicating no GxE in the German-

Austrian Brown Swiss population (only marginal GxE for the trait FY). This either results from 

the fact that the individuals are not particularly sensitive to the environment, i.e. robust, or of a 

small environmental variance, i.e. the herd production levels across the environments are very 

homogeneous, or both. In the present study, the reasons could not be further quantified due to the 

lack of single herd-test-day information. Instead of averaged herd effects across the first lactation 

herd-test-days, these would probably have been more suitable to capture the production 

environment. 

The results of GxE studies imply that a low covariance between the intercept and the slope comes 

along with larger reranking effects (e.g. Santana et al., 2013). Zhang et al. (2019) discussed that 

this holds true for a high covariance, given that the variance components are significant and the 

range of the environment is large. In the present study, the slope variances were close to zero for 

all traits which naturally leads to low covariances irrespective of potential reranking effects. Even 

though FY revealed minor GxE, across all individuals no severe reranking was observed in the 

German-Austrian Brown Swiss sires for all traits (Table 3). 

In the separately investigated sire subsets’ best 10 sires, medium sires and worst 10 sires (defined 

in the Material & Methods section), reranking was only considerably present for the subset of sires 

with intercept sire effects close to the mean (which was close to zero due to standardizing the data) 

for some of the investigated traits. Here, the breeding value of a sire is dominated by the slope 

effect, even if this effect is minimal and following the breeding value changes (almost) completely 

with changes of the environment. Further, sires with an EBV close to the mean are rarely selected 

and, hence, barely contribute to the next generation. 
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For all bulls in the study, slight EBV scaling effects were observed for each of the traits. A negative 

(positive) covariance between the intercept and slope (Table 1) resulted in negative (positive) 

slopes of the reaction norms of sires with a high (low) intercept breeding value (Figure 3). These 

relations should be interpreted with caution since the covariance estimates were significant. 

Differences in daughter performance caused by these scaling effects should not be expected. 

The trait LON showed different results compared to the other traits. Whereas otherwise no 

significant GxE were found (Table 1), the reranking of bulls, especially of sires with the highest 

and lowest intercept breeding values for LON, was most evident and resulted in the smallest 

Spearman rank correlations (Table S1 and Table S3). Petersson et al. (2005) found significant GxE 

for this trait in dairy cattle as well. These results suggest that further GxE investigations in LON, 

using a larger dataset and herd-test-day records, might be promising in this Brown Swiss 

population. 

As Zhang et al. (2019) pointed out, the estimation of breeding values is affected by the environment 

for traits with significant GxE and consequently shows genetic correlations that significantly differ 

from unity between certain environments. In this case, the exclusion of GxE could cover reranking 

effects whereas the inclusion of GxE information increased the accuracy of EBVs, especially when 

genomic data was available (Bohlouli et al., 2018; Zhang et al., 2019). 

The results of the present study imply that the routine animal evaluation and breeding scheme of 

the German-Austrian Brown Swiss population would not substantially benefit from the 

consideration of GxE given the environmental descriptor applied. Similar results could be observed 

when applying bivariate models and considering farming systems or the altitude of farm location 

as environments in the same population, especially if sire selection is based on the total merit index 

(Imort-Just et al. 2019, submitted).  
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GENERAL DISCUSSION 

This study investigates different aspects of breeding programmes in pigs and Brown Swiss cattle. 

Maintaining the major objective of animal breeding, the superiority of the next generation over the 

present through genetic gain, is one of the key aspects of any breeding programme, independent of 

breed or species. The successive steps of breeding programmes, starting with the definition of a 

breeding goal in a specific production environment and ending with the dissemination of genetics 

by selecting animals based on their outstanding total merit indices, need to be edited on a regular 

basis due to exogenous aspects. Those influencing factors might be research findings or future 

economic, political, environmental and social circumstances. A variety of starting points arise from 

these factors to optimise currently used breeding programmes. 

 

Novel traits and the estimation of environmental-specific relative economic weights (Chapter 

1 and 2) 

 

Traits considered in breeding programmes can roughly be characterised as production and 

functional traits, whereby the former maximise the profit by a higher output, for example the milk 

yield of dairy cows or the feed utilisation and growth rate in pigs. Functional traits reduce costs of 

input and thus increase the efficiency of animal production. Common traits are for instance health 

and the calving ease in cows or the rates of losses (e.g. number of weaned piglets) in pigs (Groen 

et al., 1997; Swalve, 2003; Tarrés et al., 2006). 

Research findings revealed negative genetic correlations between production and functional traits, 

leading to a decline in health and functionality of animals as a consequence of selection for high 

productivity (Simianer et al., 1991; Gäde, 2006). Due to these findings, political influences, 

consumers’ and farmers’ demands, and various other aspects, novel functional and behavioural 

traits (Dreher et al., 2019; Egger-Danner et al., 2014; Kramer et al., 2013) gain importance. 

Common problems related to these kinds of traits are the difficulties in recording, due to the 

subjective perception, varying trait definitions, the non-normal distribution related to the common 

classification in categories and especially the dependency on the motivation of the data collector, 

e.g. veterinarian or farmer (e.g. Gäde, 2006; Hellbrügge, 2007; Løvendahl, 2005; Gernand et al., 

2012). In addition, various mathematical and statistical approaches for quantitative genetic 
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analyses (e.g. linear mixed models, threshold models) are available. These factors make a reliable, 

objective phenotyping and the comparison with other studies difficult. 

The results of Chapter 1 showed highest heritabilities for the nursing behaviour and the group 

behaviour of sows, making those promising traits for a selection for improved mothering ability of 

sows. A significant part of between-individual variance is captured by the permanent environment, 

most obvious for the estrus behaviour, farrowing behaviour, the balance of the litter and the average 

weight of the piglets in the litter. Comparing the estimates of the linear mixed model and the 

threshold model, it becomes clear that the latter offers higher heritability estimates, which is most 

evident for the estrus and the group behaviour. Nevertheless, the threshold model is a more 

elaborate method that requires a higher computational effort (Sorensen and Gianola, 2002). Even 

though estimates are higher, they are still low, indicating that an acceleration of genetic gain is 

possible for certain traits, but will be time-consuming. 

The results of this study are based on field-recorded observations. For large amounts of data, on-

farm phenotyping replaces stationary assessments of only a small number of animals. This 

approach requires the motivation of breeders/farmers, a practical and easy recording of data, and 

transfer, but is also closer to practical conditions and not as cost intensive as stationary assessments 

(Grandinson et al., 2003; Vangen et al., 2005). The approach of field-recording and online data 

transmission by the pig breeding association “Schweinezuchtverband Baden-Württemberg e.V.” 

shows that collecting reliable on-farm data by trained farmers is possible on a large scale, and can 

provide big data for quantitative genetic analyses whether it is for behavioural traits or other new 

traits. 

Breeding associations deal with behavioural traits of sows to address legal requirements, e.g. open 

housing systems, related animal welfare issues and consumers’ and breeders’ demands for a more 

animal oriented food production. The cooperation of the “Schweinezuchtverband Baden-

Württemberg e.V.” with the French breeding association AXIOM, concerning the improvement of 

mothering abilities of sows, indicate a decline of piglet losses due to teat quality of the sows 

(German Genetic, 2018). 

Various studies investigated new functional and behavioural traits in dairy cows to adapt to future 

circumstances and optimise current breeding schemes. The utility of direct health traits for breeding 

programmes, such as mastitis diagnoses, was shown by Egger-Danner et al. (2012) for Austrian 
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Fleckvieh cattle and Heringstad et al. (2007) for Norwegian red cattle. Koeck et al. (2010) and 

Urioste et al. (2010) investigated newly defined udder health traits in Fleckvieh and Norwegian 

Red cattle, like the prolonged elevated somatic cell score, and found higher genetic correlations 

with mastitis in comparison to the commonly used somatic cell score. Many studies deal with 

reproduction traits, e.g. calving and mating behaviour information, artificial insemination, fertility 

disorders and body conditioning score (Egger-Danner et al., 2014; Pryce et al., 2001; Løvendahl 

and Chagunda, 2010). Other traits relate to the cows’ behaviour, such as temperament during 

milking or the sucking behaviour of the cow or calf (Kramer et al., 2013; Fuerst-Waltl et al., 2010a; 

Dreher et al., 2019). Due to future climate protection, a special focus lays on traits optimizing the 

methane emission of dairy cows, like the methane emission predicted from the residual feed intake 

(De Haas et al., 2011). 

For the investigation of new and behavioural traits, clear and objective definitions need to be 

established. This may help to allow large scale data collection on-farm by trained farmers. Several 

studies showed that this approach is expedient and data quality is similar to those of expert staff, 

e.g. veterinarians (e.g. Gernand et al., 2012; Grandinson et al., 2003). Furthermore, clear definitions 

of traits can increase the calculated parameters of quantitative genetic analyses, e.g. heritabilities, 

and simplify the decision-making process over including new traits in existing breeding schemes, 

regarding achievable genetic gain in an appropriate time. Moreover, genetic correlations to 

economically important production traits should be considered and investigated to avoid economic 

losses. 

Apart from the investigation and implementation of new traits in existing breeding programmes, 

the economic component of breeding schemes can be optimised. The ideal weighting of existing 

or new traits in total merit indices to estimate values of animals and, therefore, their potential for 

selection is crucial regarding profit maximisation for breeders, and differs depending on breeding 

goal, country, breed, species, environmental factors etc. Various studies use different approaches 

for the estimation of optimised/customised relative economic weights, such as objective, profit-

oriented approaches (Amer et al., 1996; Fuerst-Waltl et al., 2010b), or alternative, non-objective 

methods, like choice experiments (e.g. von Rohr et al., 1999; Teegen et al., 2008; Martin-Collado 

et al., 2015; Roessler et al., 2012). 
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The latter was the objective of Chapter 2. Results showed that the applied discrete choice 

experiment (DCE) is suitable to derive environmental-specific relative economic weights (REW) 

for a limited number of traits or trait complexes. The use of external information, e.g. the 

production system and the farmers’ educational level, confirmed heterogeneous farmers’ trait 

preferences. These results are in accordance with studies by Martin-Collado et al. (2015), Ahlmann 

et al. (2014) and Slagboom et al. (2016 a,b). Organic farm managers placed a high weight on the 

fitness trait complex compared to conventional farm manager. This might be due to the need for 

robust cows; in addition, higher milk yields are most likely not to be achieved due to feeding 

restrictions. The same holds true for the marginal willingness to pay. Comparable results were 

found by Ahlman et al. (2014) for Swedish dairy farmers. Contrasting results were shown by 

Slagboom et al. (2016 a) for farmers in Denmark. The researchers explained the higher priority of 

production traits for organic farm manager with the need to improve problematic traits. 

The farmers’ responses to structured questionnaires make the DCE a bottom-up approach. In 

comparison to profit-oriented approaches, like the herd model (Amer et al., 1996; Fuerst-Waltl et 

al., 2010b), the discrete choice approach is not strictly economically driven, but it can model 

farmers’ preferences very flexibly and straightforwardly. It is based on utility theory instead of the 

concept of profit maximisation, like the herd model or direct costing and profit functions 

(Brascamp et al., 1985; Nielsen and Amer, 2007). This makes the DCE a target-oriented method 

to judge the importance of specific traits for farmers. New traits in particular, such as the sucking 

behaviour of Brown Swiss calves (Dreher et al., 2019), can be evaluated, even if they have not yet 

been monetarily evaluated. Furthermore, environment-specific REW can be derived, which can be 

used to develop environment-specific total merit indices (see Chapter 3). The stated advantages of 

the DCE over strictly profit-oriented approaches might help breeding organisations in their 

decision-making processes. The application of those questionnaires on a regular basis can be used 

for the assessment of current total merit indices of breeding programmes. Results can then be used 

for the adjustment of current total merit indices or to answer questions like whether to include new 

traits or trait complexes in existing breeding schemes. 

The results of Chapter 2 indicate, by comparing the DCE-derived REW and the currently used 

REW for the German Brown Swiss population, that they agree to a large extent. This might be due 

to recent adjustments of the total merit index for Brown Swiss (Fuerst-Waltl et al., 2016). In this 

study, farmers responded positively to the new trait sucking behaviour of the calf and desire its 
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inclusion in the total merit index. This would result in reduced REW for the milk traits complex. 

As a final assessment, a combination of discrete choice studies on a regular basis and purely profit-

oriented approaches would be best to optimise existing breeding schemes and total merit indices. 

Several studies investigated consumers’ and farmers’ preferences for specific attributes in pig 

breeding, using both, objective and non-objective methods. A study by Krupová et al. (2016) 

reviewed different methods to calculate economic weights for breeding traits in pigs. Serenius et 

al. (2007) used an objective, bio-economic approach to estimate economic values for sow 

efficiency and meat quality in pigs. Estimated economic values were high for the total number of 

piglets born, feed conversion ratio and lean meat. Additionally, meat quality should be considered 

in the production trait index to avoid its decline. Wallenbeck et al. (2016) used online-

questionnaires to study farmers’ preferences for pig breeding goals in organic and conventional pig 

breeding goals. They found that, regarding estimated desired genetic gain, organic farmers 

favoured health traits. Conventional farmers, on the other hand, favoured growth traits. Another 

study investigated the preferences for animal welfare in pig production. Denver et al. (2017) 

applied choice methods to determine consumers’ preferences for pig welfare. Results indicated that 

consumers won’t pay for improved animal welfare beyond a certain level. Roessler et al. (2008) 

used choice experiment to investigate preferences of smallholder farmers for specific pig breeding 

traits in Vietnam. Heterogeneous preferences were found for the resource-driven and demand-

driven production systems. The variety of studies shows the need for the different methods to take 

available information, e.g. production environments, farmers’ preferences and profit of production, 

into account for the optimisation of breeding schemes. 

 

Genotype by environment interactions for varying environments (Chapter 3 and 4) 

 

Besides the optimisation of current breeding schemes by revising economic weights or including 

new traits to address certain difficulties, the effect of the environment on animal breeding becomes 

a big issue. This is because of the globalisation of animal breeding and the variation of production 

systems and environments and need to be considered. These environmental challenges are not only 

due to changes on the market, e.g. international breeding cooperatives (e.g. EuroGenomics, 

Interbull, PIC). Climate and resource management, the role of the animal in food production, 
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relating animal welfare and consumers’ demands lead to a variation in production systems and 

environments as well. 

Thus, GxE are a source of variance in quantitative traits and need to be accounted for. Otherwise, 

they can lead to a reduced response to selection and, therefore, an inefficiency of the underlying 

breeding programme. Two types of GxE are of interest for animal breeding. Firstly, GxE can induce 

a different scaling of genotypes performances in varying environments without a reranking; 

secondly, it can lead to a reranking of genotypes. The latter indicates that the performance of the 

best animal in one environment may be impairing in the other environment. 

GxE can occur between environments that can be easily defined in categories, for example organic 

and conventional farming systems (Nauta et al., 2006; Simianer et al., 2007; Pfeiffer et al., 2016) 

or geographical regions and the altitude level of the farm (Williams et al., 2012; Koenig et al., 

2005). Other environments are better described by continuous variables, for example a temperature 

humidity index or the milk energy yield of dairy cows (Hayes et al., 2016; Calus et al., 2002; Streit 

et al., 2012). The definition of environments under investigation is crucial for the choice of 

approaches to account for GxE. Hayes et al. (2016) presented two common approaches to account 

for GxE, depending on the environmental descriptor used. Multitrait models consider a genotype’s 

performance for a trait in varying environments as different but potentially correlated traits. The 

genetic correlation between the traits can be used as an indicator for the degree of reranking 

between the environments under study. For strongly varying environments a rg<0.8 can occur, 

indicating the demand for separate breeding programmes for the traits and environments under 

investigation (Boelling et al., 2003; Robertson, 1959; Mulder et al., 2006). If the environment can 

be described best by a continuous variable, reaction norm models are the appropriate choice. 

Thereby, the response to environmental changes are modelled as a curve with an intercept and a 

slope for each genotype using random regression (Hayes et al., 2016). 

Chapter 3 investigated GxE in Brown Swiss cattle in southern Germany for several common 

production and functional traits between varying production systems and farm altitude levels using 

bivariate sire models. Genetic correlations, estimated with a bivariate sire model on trait level, were 

high and indicated no severe GxE. Thus, no need for an adjustment of the existing breeding 

programme seems necessary. The study of GxE between organic and conventional production 

systems is of particular interest due to future circumstances, e.g. the optimal use of resources with 
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regard to climate change, political frameworks and consumers call for alternative production 

conditions. The results of Chapter 3 are in accordance with various studies investigating GxE for 

several traits between categorical environments (e.g. Nauta et al., 2006; Sundberg et al., 2010; 

Simianer et al., 2007; Pfeiffer et al., 2016). In general, genetic correlations for production traits, 

like milk yield, are above 0.8 between varying environments in the same country or area (Kearney 

et al., 2004; Simianer et al., 2007; Sundberg et al., 2010; Pfeiffer et al., 2016). This is different for 

functional traits. Genetic correlations for longevity, maternal calving ease and maternal stillbirth 

between different countries of the Interbull project are on average below 0.6 (Mark, 2004). 

The advantages of the applied multitrait approach are the flexibility in modelling the variance-

covariance structure and the use of the results for straightforward conclusions for adaptions of 

breeding programmes (Mulder, 2007). Furthermore, the approach is capable of handling various 

types of data structures. The data used in Chapter 3 was slightly off-balance regarding the number 

of phenotyped animals, farms and sires between the investigated environments. Even though this 

might have affected the detection of GxE effects, this data structure depicts reality most accurately. 

In animal breeding, the multitrait approach is widely used because GxE can easily be estimated 

using relationship information, e.g. genetic information between sires’ daughters performing in 

varying environments, and genetic correlations between environments provide indications for 

optimizing breeding programmes. 

In addition to the investigation of GxE effects at a trait level, putative GxE effects for the 

production system environments at an index level were estimated in Chapter 3. Sires’ EBV for 

organic and conventional production systems were estimated and environment-specific relative 

economic weights, approximated by factors from routine applications, were used to create total 

merit indices. Estimated rank correlations indicated no severe reranking of sires at an index level. 

Differences in performance can be the result of GxE, the underlying breeding goals or genetic 

variances and correlations between traits. To study GxE for multiple traits in two environments at 

an index level, Mulder (2007) introduced an alternative approach to the applied method presented 

in Chapter 3. He presented the genetic correlation between breeding goals (rH), combining 

economic values of environments under investigation and the full genetic variance-covariance 

matrix between the traits in those environments. Studying differences between organic and 

conventional production systems and possible GxE effects, breeding goals for both environments 

are divergent, but usually not contrary. For this kind of breeding goals, effects of economic values 
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are smaller and the correlation between the breeding gaols is mostly driven by the genetic 

correlation (Mulder, 2007). The results of Chapter 3 suggested no separate breeding programmes 

for Brown Swiss cattle for the investigated environments. Nevertheless, the provision of an organic 

TMI (LfL, 2018) for this breed is beneficial for breeders. The environment-specific TMI allows a 

selection of animals best suited for the production environment and therefore a maximization of 

genetic gain in the population, especially for organic production systems’ preferred functional 

traits. 

The previously used multitrait approach is not suitable for multiple environments, because of 

convergence, and estimation problems (Strandberg, 2006). In consequence of the classification of 

two specific production environments, the data set used in Chapter 3 was slightly unbalanced. 

Accordingly, to estimate GxE effects for common production and functional traits, the adaption of 

the environmental descriptor and the application of reaction norm models were focused on in 

Chapter 4. Following several studies, a continuously scaled descriptor (milk energy yield; MEY), 

capturing a large range of herd environments, was used (Calus et al., 2002; Strandberg et al., 2009; 

Streit et al., 2012). The results of chapter 4 showed no GxE for the investigated functional traits 

but for the production trait fat yield. This might be due to the modelling of the environmental 

descriptor MEY which was calculated using the derivates of the production traits milk, fat and 

energy yield (Nostitz and Mielke, 1995; Streit et al., 2012). As a result, this descriptor might be 

more suitable to detect possible GxE effects for the investigated production traits compared to the 

functional traits. The same was found and discussed by Streit et al. (2012), who studied GxE for 

several production traits in German Holstein cattle, using MEY or somatic cell score as 

environmental descriptors. The findings for functional traits contrast with the results of Kolmodin 

et al. (2002) and Loberg et al. (2015). Heritabilities for functional traits are low and the influence 

of the environment is greater. Hence, the impact of GxE on the phenotypic expression of such traits 

might be more probable. 

The estimated slope variances of the study in Chapter 4, describing the environmental sensitivity 

of the investigated genotypes, indicated no GxE either. This might be due to several reasons: 

individuals under investigation seem to be quite robust, meaning they are not very sensitive to 

environmental changes. In addition, the variance of considered environments might be small in the 

terms of very homogenous herd production levels across production environments. Furthermore, 
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Spearman rank correlations between the estimated breeding values for the sires and investigated 

traits were calculated, indicating a severe reranking of genotypes. 

The investigation of genotype by environment interactions is a key issue in cattle breeding, hence 

breeding programmes and structures, production environments and management systems are 

varying more than in pig breeding. This is a consequence of the international use of genetics and 

the divergent management systems. In general, studies investigating GxE in pigs are rare. 

Commonly, GxE between nucleus and commercial environments are investigated because these 

environments are strongly divergent. Nucleus breeding programmes are characterised by small 

purebred herds, bred under controlled conditions, e.g. feeding regime, production climate, number 

of animals and hygiene level (Mulder, 2007). In contrast, production or commercial environments 

are used for the piglet production. This is achieved by crossbreeding various purebred breeds, for 

instance Duroc sires with excellent meat quality and sows with a high reproduction rate and good 

mothering abilities (e.g. German Landrace). Several studies estimated genetic correlations between 

these production systems and found a wide range of estimates, from 0.3 up to unity (Merks, 1988; 

Cameron, 1993). Findings suggest a distinction between GxE effects and “non-unity genetic 

correlations between purebred and crossbred performance”. The latter can, hence, lower the 

correlation between environments under investigation (Mulder, 2007). A study by Brandt et al. 

(2009) investigated GxE for growth and carcass traits in various pig breeds between organic and 

conventional production systems. They concluded that no separate breeding programmes for the 

breeds and environments under investigation are needed. Linear reaction norms were estimated by 

Knap and Su (2008). The total litter size at birth as a function of routine herd-year-season effects 

were estimated for two PIC lines and their crosses, spread over various environments (America, 

Europe, Asia, Australia). Their results indicated that for the reaction norm approach a great amount 

of data and a wide range of environments is necessary to produce reliable results. 

The findings of this thesis underline the need of a revision of existing breeding programmes in pigs 

and Brown Swiss cattle on a regular basis. Various external influences, like economical, political, 

ethical and environmental changes, lead to possibly necessary modifications of breeding schemes 

for livestock. The analysis of the usage of new traits for the improvement of animal productivity, 

health and the economic optimisation of production systems is of great interest. The data recording 

for mothering ability traits in pigs under the field is closest to practical conditions. The results 

indicate that, if phenotyping strategies are most objective and repeatable, behaviour traits are 
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heritable and of use for the improvement of breeding schemes. A direct transmission of the 

collected on-farm data to the breeding organisation simplifies quantitative analyses processes and 

quick results can motivate the involved parties to investigate new traits and to cooperate. The 

inclusion of such traits can help to improve the mothering ability of sows in the future. 

To involve breeders’ preferences for specific attributes or traits of their breed, the discrete choice 

experiment seem to be a straightforward approach. The design of the choice sets is crucial, and 

traits considered need to be known by or well explained to the farmers. However, the participation 

in the survey is very intuitive and farmers as well as breeding organisations can benefit from the 

results. Moreover, operational characteristics of farms or farmers can be included to estimate 

environmental-specific relative economic weights for the queried traits. Furthermore, in contrast 

to strictly economic approaches, the preferences for new and not yet monetarily evaluated traits or 

trait complexes is possible, thus the interest of participants for common and new traits can be 

evaluated on a regular basis. Results of the DCE might lead to the revision of existing breeding 

programmes regarding included traits and environment-specific economic weighting factors of 

such in Brown Swiss cattle. 

In addition, the investigation of GxE for several production and functional traits in varying 

environments in Brown Swiss cattle seem to be crucial regarding future circumstances. Both 

approaches applied in this thesis showed that currently separate breeding programmes for the 

studied environments and traits do not seem necessary, neither on trait nor on index level. The 

multitrait approach enables an analysis of possible GxE effects for two classified environments, 

e.g. organic and conventional production systems. The bivariate sire model can handle unbalanced 

data sets (close to practical data conditions), is flexible in modelling the variance-covariance 

structure, and the results can be used for straightforward conclusions for adaptations of breeding 

programmes. Random regression norm models can be applied if the environmental descriptor is a 

continuous variable, like the described milk energy yield. Reasonable estimates can be achieved, 

if the data structure is suitable and the amount of data and variability is sufficient. Due to the 

difficulty of finding appropriate environmental descriptors for GxE, the reaction norm approach 

has not been implemented in practical animal breeding so far (Mulder, 2007). 

Even though no severe GxE were found for the investigated traits and environments in the German 

Brown Swiss cattle population, further analyses using single herd-test-day-records and other, 



GENERAL DISCUSSION 

109 

promising environmental descriptors might be of interest to investigate possible GxE in German 

Brown Swiss cattle. Even though this breed seems to be quite robust to environmental changes, 

differences in performance are known. Currently, the environmental-specific organic total merit 

index (LfL, 2018) takes this into account. It allows breeders to select animals best suited for their 

production environment and, therefore, maximise the genetic and economic merit based on 

farmers’ preferences. 
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