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1 General Introduction

The long and successful history of allohexaploid bread wheat ( Triticum aes-
tivum L.; 2n = 6z = 42; AABBDD), which dominates wheat production
today, started about 10,000 years ago when modern agriculture and wheat
domestication began in the Fertile Crescent of the Near East (Lev-Yadun
et al. 2000; Salamini et al. 2002; Marcussen et al. 2014). The evolution
of modern bread wheat was marked by several ploidy changes, events which
are quite common among flowering plants (Salamini et al. 2002). Bread
wheat possesses three independent subgenomes A, B, and D, while its wild
progenitors were diploid (2n = 2z = 14) (Marcussen et al. 2014). The two
diploid wild grasses Triticum urartu (AA) and Aegilops speltoides (BB) gave
rise to tetraploid wild emmer (Triticum turgidum, AABB) by polyploidiza-
tion (Marcussen et al. 2014). Bread wheat then originated by spontaneous
hybridization between Triticum turgidum and the D genome donor Aegilops
tauschii (DD) (Marcussen et al. 2014). The great success of wheat in dif-
ferent geographic regions and under varying climatic conditions is partly
attributable to its 17-gigabase complex hexaploid genome (IWGSC 2014).

Wheat is the most important crop in global agricultural production as it
possesses the largest global cultivation area (FAOSTAT 2017). In 2014, the
world wheat production was around 729 million tons on 220 million hectares,
representing the third largest crop production in the world, after maize and
rice (FAOSTAT 2017). Wheat is used as animal feed and is the main staple
food for about one third of the world’s population, providing about 20 %
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of the global dietary energy, and is globally the second main food crop for
human consumption after rice (FAO 2013; Ray et al. 2013; Shiferaw et
al. 2013; IWGSC 2014). Therefore, wheat plays a key role for global food

security.

The global population continues to grow, reaching nearly 7.6 billion in
the middle of 2017, and is projected to exceed 9 billion by the middle of
this century (UN 2017). This ever-growing world population is accompanied
by an increasing demand for meat and dairy products due to growing af-
fluence and an expanding biofuel consumption (Evans 2009; Godfray et al.
2010). Simultaneously, global food production is threatened by competition
for arable land between food and non-food uses, increasing input costs, and
weather extremes as a result of climate change (Godfray et al. 2010; Lobell
et al. 2011; OECD/FAO 2013). Thus, agriculture is facing more challenges
than ever before, while estimates project a required doubling of the global
food demand by 2050 (Godfray et al. 2010; Foley et al. 2011; Tilman et al.
2011; Ray et al. 2012; Ray et al. 2013).

Introduced in the 1960s, the so-called ‘Green Revolution’ enabled sub-
stantial yield increases in wheat for many years, mainly through the intro-
duction of dwarfing genes in combination with large amounts of fertilizer and
pesticide applications (Hedden 2003). During the past years, however, about
37 % of the global wheat growing areas are affected by stagnating wheat
yields (Ray et al. 2012). Since arable land is finite, there is a strong demand
for smart and sustainable agricultural innovations to increase yield and to
meet the challenges of future food security. Plant breeders take a key role to
feed the world and must therefore adopt innovative breeding technologies to
substantially contribute to the required increase in crop production. Here,
the exploitation of the hybrid technology also in selfing species, as already
successfully done in rice, could significantly boost grain yield (Tester and
Langridge 2010; Xu et al. 2014).

In contrast to wheat, recent global yield growth rates were much higher

in maize and rice and they also exceeded wheat in their global production
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quantity even with a smaller cultivation area (Alston et al. 2009; Ray et al.
2013; FAOSTAT 2017). This difference can, to a large extent, be attributed
to the utilization of the hybrid technology, which facilitates increased yields
through the phenomenon of heterosis and assures a higher return on invest-
ment (Whitford et al. 2013). Especially the latter is also very closely associ-
ated with agricultural productivity growth (Alston et al. 2009). Wheat has
an autogamous nature and the first scientific wheat breeding in Germany and
France was initiated by Wilhelm Rimpau and Henri de Vilmorin, respectively,
and started in the late 19® century (Lupton 1987). Traditionally, line breed-
ing is the breeding method of choice for wheat and more than 99 % of the
registered wheat varieties in Europe are derived from line breeding programs
exploiting self-fertilization of wheat (Longin et al. 2012). However, a main
drawback of line breeding is the high level of farm saved seeds (BDP 2010),
which leads to a lower turn-over rate of certified seeds each year and there-
fore to a lower return on investment. The protection of intellectual property
is a major concern of breeding companies regarding their high investments
and the long breeding cycles of about 10 years prior to the release of new
varieties. Consequently, the plant breeding industry puts lower investment

in line breeding compared to hybrid crops.

The phenomenon of heterosis

The term heterosis, in its systematic and scientific form, was coined by G.
H. Shull and traces back to the beginning of hybrid maize breeding in the
US in 1908 (Shull 1914; Crow 1998). Heterosis describes the increased vigor
and fitness of a crossbred heterozygous genotype compared to corresponding
inbreds (Shull 1952; Lamkey and Edwards 1999). In the literature, heterosis
is often expressed as midparent heterosis, which is the deviation of the hybrid
performance from the mean of the parents. In contrast, better-parent hetero-
sis describes the deviation of the hybrid performance from the performance

of the better parent. However, these definitions of heterosis are more of a



General Introduction 4

scientific nature and are only of secondary importance for the plant breeder
and particularly for the farmer. From an economic point of view, the most
interesting comparison is that between the hybrid performance and the per-
formance of the best commercial non-hybrid variety available on the market.
This comparison is agronomically relevant and is known as commercial het-
erosis, and is used as a measure for the usefulness and long-term success of

any hybrid breeding program.

The genetic basis and biology of heterosis is still not fully understood
although heterosis has now been fascinating scientists for more than 100
years (Shull 1908; East 1908). There are three possible quantitative genetic
explanations for the causes of heterotic effects: dominance, overdominance,
and epistasis. The dominance hypothesis assumes that deleterious recessive
alleles at multiple loci contributed from the one parent are suppressed or
masked by dominant alleles from the other parent (Davenport 1908; Bruce
1910; Keeble and Pellew 1910; Jones 1917; Jiang et al. 2017). Therefore,
the hybrid would carry more favorable dominant alleles than either of its
parents. The overdominance hypothesis explains heterosis with the heterozy-
gosity at individual loci leading to superior performance and an advantage
of the hybrid (East 1936; Hull 1945; Crow 1948; Jiang et al. 2017). If only
overdominance contributed to heterosis, the hybrid would always be the best
performing genotype (Jiang et al. 2017). Finally, heterosis can be explained
by epistasis, which assumes favorable interaction effects between different
loci (Richey 1942; Schnell and Cockerham 1992; Jiang et al. 2017). The
types of digenic epistatic effects include additive-by-additive, additive-by-
dominance and dominance-by-dominance effects with other loci (Jiang et al.
2017). With the presence of epistasis, heterosis at a specific locus becomes
a function of the genetic background (Goodnight 1999). However, none of
these three classical theories is mutually exclusive and probably all expla-
nations contribute to heterosis (Yu et al. 1997; Lamkey and Edwards 1999;
Hua et al. 2003; Li et al. 2008; Zhou et al. 2012; Jiang et al. 2017).

The contribution of the different theories and the genetic architecture

of heterosis greatly varies among species, crosses, and the trait of interest
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(Schnable and Springer 2013). In addition, the event of polyploidization
displays a special case of capturing heterotic gene combinations leading to
fixed heterosis and a higher probability that epistatic interactions are more
pronounced (Kaeppler 2012). Molecular approaches aiming to dissect the ba-
sis underlying heterosis included genomic, epigenetic, proteomic, metabolic,
quantitative trait loci (QTL), association mapping and network studies, but
the molecular basis and genetic mechanisms of heterosis remain elusive and
there is no unifying explanation (Birchler et al. 2003; Baranwal et al. 2012;
Chen 2013; Groszmann et al. 2013; Schnable and Springer 2013; Itabashi et
al. 2018). Nonetheless, heterosis remains the basis of hybrid breeding and
offers great potential for agriculture to deal with the increasing demands for

food and feed of future generations.

The success of hybrid breeding

Maize is one of the best examples for the success of hybrid breeding. US
maize productivity did not change significantly between 1866 and the 1930s,
when solely open-pollinated maize varieties were available for the market
(Hallauer 1999; Tracy 2004). After the discovery of heterosis in maize, at the
beginning of the 20" century, it took more than 20 years, until the 1930s,
before the economic success of commercial hybrid breeding emerged (Crow
1998). First maize hybrids in the US in the 1920s showed a commercial het-
erosis of about 15 % compared to the best open-pollinated varieties (Duvick
1999). However, the production of single-cross maize hybrid seed was too
expensive at early stages due to the low performance of inbred lines. In ret-
rospect, the invention of double-cross hybrids by Jones (1918) made hybrid
maize seed production commercially successful. Four-way hybrids were more
vigorous and removed the restriction to use inbred lines, suffering under in-
breeding depression, for the production of hybrid seed (Lee and Tracy 2009).
Later on, inbred line performance has been improved and single-cross hybrids

dominated the market as they possess the highest level of heterosis.
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From the late 1930s on, there was a strong linear increase in US maize
yields for more than 70 years (Hallauer 1999; Duvick et al. 2004; Tracy
2004). Clearly, this increased productivity cannot be solely attributed to
genetic improvement and includes several other reasons like increased inputs
in plant nutrition and plant protection or changes in management practices.
Nevertheless, probably more than 50 % of this increase can be attributed to
genetic improvement (Tracy 2004), which was facilitated by the successful
introduction of the hybrid technology. Thus, the maximum exploitation of
heterosis through hybrid breeding was an essential factor for yield increase in

maize and nowadays hybrid varieties have replaced open-pollinated varieties
(Duvick 2005; Troyer 2006).

Based on the experiences in hybrid maize breeding, it became evident
early on that higher heterosis and hybrid performance could be achieved
when the parental lines are derived from two genetically divergent germplasm
pools, referred to as heterotic groups (Hallauer 1999). Following the defini-
tion of Melchinger and Gumber (1998), a heterotic group “denotes a group of
related or unrelated genotypes from the same or different populations, which
display similar combining ability and heterotic response when crossed with
genotypes from other genetically distinct germplasm groups”, while a het-
erotic pattern defines a specific pair of heterotic groups showing an optimum
exploitation of heterosis. Heterotic groups promote the genetic divergence
between parents in a systematic way, mainly as a result of genetic drift and
the reciprocal recurrent selection for general combining ability (Melchinger
1999; Reif et al. 2007; Gerke et al. 2015). Since heterosis can be considered
as a function of heterozygosity, heterotic groups optimize the exploitation of
heterosis and hybrid performance (Martin et al. 1995; Falconer and Mackay
1996; Melchinger 1999; Fu et al. 2014). Consequently, considering a domi-
nance model, fully contrasting allele frequencies would assure maximum het-
erosis (Miranda Filho 1999). Furthermore, heterotic groups lead to a lower
ratio of specific (0%, ,) compared to general combining ability (02 ,4), and
simplify hybrid breeding as early testing, hybrid prediction based on general

combining ability (GCA) effects as well as genomic prediction become more
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efficient (Melchinger 1999; Reif et al. 2007; Technow et al. 2014). More-
over, a clear two-pool concept also facilitates the stacking of dominant major
QTL and the handling of the desired hybrid mechanism (Longin et al. 2012).
Therefore, heterotic groups are often designated as the backbone of hybrid
breeding and are of major importance for the long-term success of a hybrid
breeding program (Melchinger and Gumber 1998). However, heterotic groups
are not established overnight and the choice of germplasm to start heterotic
groups should be taken carefully since it forms the basis for generations of

breeders.

Heterotic groups must usually be established through long-term breeding
strategies. For example, heterotic groups in the US Corn Belt evolved from
long-term reciprocal recurrent selection (Duvick et al. 2004). Moreover, het-
erotic groups can be explained by the Wahlund effect (Wahlund 1928), which
describes the effect of reduced heterozygosity in subdivided and diverged
populations. By contrast, crosses between diverged populations possess an
increased level of heterozygosity and thus heterosis. For instance, Central Eu-
ropean heterotic groups Dent and Flint were geographically separated and

have been established based on geographic origin (Schnell 1992).

The great success of hybrid maize breeding in the US Corn Belt has moti-
vated breeders and scientists alike to transfer the hybrid technology to other
outcrossing crops. However, the introduction of successful hybrid breeding
requires some main prerequisites: (i) a sufficiently high degree of hetero-
sis, (ii) a reliable and cost-efficient hybrid mechanism which prevents self-
pollination, and (iii) a reliable system for the identification and prediction
of superior hybrids. All these prerequisites are easily met for maize, where
manual emasculation is readily achieved due to the separation of the male
and female flowers. By contrast, the flowering biology of other crops requires
more advanced hybrid mechanisms, like cytoplasmic male sterility (CMS)
or chemical hybridization agents (CHAs) (Fu et al. 2014). For instance,
hybrid rye breeding in Central Europe has started in the 1970s and the dis-
covery of the ‘Pampa’ (P) type CMS cytoplasm and the identification of
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the Petkus and Carsten heterotic pools enabled the success story of hybrid
rye breeding (Geiger and Miedaner 1999). Nowadays, also hybrid rye vari-
eties have replaced open-pollinated varieties in many countries due to their
superior grain yield performance (Geiger and Miedaner 2009). Moreover, hy-
brid varieties have successfully been established in many other crops such as
sunflower, sugar beet, and also in many vegetable production systems, under-
scoring the hybrid breeding potential (Pickett 1993; Wehner 1999; Colombo
and Galmarini 2017). In small grain cereals, particularly in wheat, hybrid
breeding is not established yet, but is feasible and promises several advan-
tages to deal with the projected worldwide food demand and is therefore
again attracting strong attention in the public and private wheat breeding

community (Wiirschum et al. 2018).

Hybrid wheat breeding

In contrast to allogamous crops, hybrid breeding in autogamous crops has
long been considered as unattractive mainly due to several additional lay-
ers of complexity (Figure 1). However, also autogamous crops can greatly
benefit from the hybrid technology to achieve increased yield through the
exploitation of heterosis, higher yield stability and a higher return on invest-
ment (Hallauer et al. 1988; Longin et al. 2012). For instance, autogamous
crops like rice, sorghum and more recently rapeseed were successfully shifted
from line to hybrid breeding. During the first wave of hybrid wheat breeding
with its peak in the 1980s, studies reported a midparent heterosis for grain
yield of a about 10 % (Merfert et al. 1987; Pickett 1993; Longin et al. 2012).
Indeed, recent research based on an extensive number of hybrids tested in
multi-environmental field trials confirmed that hybrid wheat holds great po-
tential to increase yield gain, yield stability and global productivity of wheat
(Longin et al. 2013; Longin et al. 2014; Whitford et al. 2013; Miihleisen
et al. 2014). In hybrid crosses within elite germplasm, a maximum com-

mercial heterosis of 1 Mg ha™! seems feasible, which roughly reflects breeding
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Complexity
of hybrid breeding

Maize heterotic groups
allogamous crops

heterotic groups + hybrid mechanism

autogamous crops
Wheat

Figure 1: Components contributing to increasing complexity of hybrid breed-

ing in different crops.

progress of 15 years within line breeding (Laidig et al. 2014; Zhao et al.
2015). Particularly in the context of climate change, the higher yield stabil-
ity of hybrid wheat and its generally higher tolerance to biotic and abiotic
stress is of great relevance and makes the hybrid technology very attractive
(Jordaan 1999; Longin et al. 2013; Miihleisen et al. 2014). A recent study
showed that hybrid wheat is able to combine its higher yield potential with
lower susceptibility to Fusarium head blight when compared to line varieties
(Miedaner et al. 2017). Moreover, hybrid wheat appears to have a lower
susceptibility to frost, leaf rust and Septoria tritici blotch compared to line
varieties (Longin et al. 2013). These examples clearly illustrate the poten-
tial of hybrid wheat, particularly in the context of climate change and future
food security, but history showed that hybrid wheat breeding is not trivial

but a challenging venture.

Interest in research and development of hybrid wheat started in the 1960s.
Until now, however, the introduction of wheat hybrids in the global wheat
market was not crowned with lasting success and hybrid wheat is still a niche
product due to several reasons. First, early hybrid wheat breeding in the
1960s and 1970s coincided with the great success of high-yielding semidwarf
wheat varieties introduced during the Green Revolution (Wilson and Driscoll
1983; Hedden 2003). The additional benefit of heterosis, therefore, could not

compete with the fast improvements of standard line cultivars (Duvick 1999).
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Second, the flowering and floral biology of wheat presents an additional layer
of complexity compared to allogamous crops like maize or rye and a cost-
effective and completely satisfactory hybrid mechanism was missing (Pickett
1993, Figure 1). The ensuing high costs of hybrid wheat seed production were
a major reason for its almost non-existent market. Moreover, wheat breeding
is not solely focused on yield but combines a large body of breeding goals
including disease resistance and bread-making quality. The final favorable
combination of these many breeding goals in the hybrid background presents
an additional challenge specific for wheat. Hence, a number of issues remain

to be solved for a sustainable success of hybrid wheat.

Challenges for hybrid wheat breeding

Heterotic groups are of major importance for the success of a hybrid breed-
ing program in the long run, but are not yet available in wheat. Reciprocal
recurrent selection has been already proven as an efficient tool for the estab-
lishment of heterotic groups in maize (Hagdorn et al. 2003; Duvick et al.
2004; Gerke et al. 2015) and the additional use of genome-wide marker pro-
files leading to reciprocal recurrent genomic selection could even accelerate
this breeding strategy (Cros et al. 2015). Before turning on the machinery
of reciprocal recurrent selection or reciprocal recurrent genomic selection, a
beneficial starting point considering several parameters could greatly accel-
erate the establishment of heterotic groups. Melchinger and Gumber (1998)
proposed a multi-stage procedure to identify heterotic groups starting with
the grouping of germplasm based on genetic distance. However, a comprehen-
sive study discovering how global wheat genetic diversity could support and
accelerate hybrid wheat breeding and the establishment of heterotic groups

is still lacking and was subject of this thesis research.

It has been speculated that genetic diversity and heterosis for hybrid
wheat breeding could be increased by using spring and winter types as pos-

sible heterotic groups (Koekemoer et al. 2011). A similar approach could be
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the exploitation of exotic germplasm for hybrid breeding (Goodman 1999).
However, genetic divergence between parental lines and resulting heterosis is
always linked to the adaptation of germplasm to the target region. Therefore,
at least as demonstrated in maize, excessive use of genetic distance between
parental components could also lead to negative effects and to a decrease in
heterosis when exceeding a certain optimum (Moll et al. 1965; Melchinger
and Gumber 1998). Knowledge about the association of heterosis and genetic
distance in a broad diversity space to optimally exploit heterosis in wheat
is missing. This information is of fundamental importance for hybrid wheat

breeding in general and the establishment of heterotic groups in the long-run.

Irrespective of the chosen strategy to establish heterotic groups in wheat,
male and female parents must be compatible to each other. The crucial traits
for male-female compatibility are plant height and flowering time. Males
should be taller than females to facilitate pollen flow and to optimize female
seed set. Females should flower about two days earlier than males to allow
the florets to gape (Pickett 1993). The synchronization in flowering time
is often referred to as nicking. These phenotypic requirements are greatly

restricting theoretical cross combinations.

Reduced height (Rht) genes were introduced during the Green Revolu-
tion and led to an improved harvest index and increased grain yield (Hedden
2003). The two homeoeloci Rht-B1 and Rht-D1, located on group 4 chromo-
somes, originated from the Japanese cultivar Norin10 and encode DELLA
proteins which are components of the gibberellic acid signal transduction
pathway (Borner et al. 1996; Peng et al. 1999; Pearce et al. 2011; Wilhelm
et al. 2013b). The Rht-B1b and Rht-D1b alleles play a major role in con-
trolling plant stature, but additional minor genes fine-tune plant height in
wheat (Worland and Snape 2001; Wilhelm et al. 2013a; Wilhelm et al. 2013b;
Wiirschum et al. 2015). Likewise, flowering time in wheat is controlled by
different key gene loci affecting photoperiod response (Ppd), vernalization re-
quirement ( Vin), or earliness per se (Eps) (Worland and Snape 2001; Snape
et al. 2001; Distelfeld et al. 2009; Laurie and Turner 2011). Ppd genes di-

vide wheat genotypes into photoperiod-sensitive and photoperiod-insensitive
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classes (Distelfeld et al. 2009). Wheat is photoperiod sensitive and the start
of flowering requires a critical day length (Langer et al. 2014a). The Ppd-D1
allele has a major effect on flowering time in wheat and its mutant type pro-
motes early flowering irrespective of day length (Langer et al. 2014a). Vin
genes generally divide wheat into spring and winter types (Distelfeld et al.
2009). Winter wheat has vernalization requirement and is the predominant
type grown in Europe. Major genes such as Vrn, Ppd and Rht are nowadays
routinely used for marker-assisted selection in wheat line breeding programs.
In hybrid wheat breeding, phenotypic selection assisted by molecular markers
for these candidate genes could be effectively used to fine-tune flowering time
and plant height in the male and female parents. However, the frequency of
DNA polymorphisms at these important loci as well as their effects under
German growth conditions were unknown in large worldwide wheat collec-
tions. This knowledge is of relevance for efficient hybrid wheat breeding and

for the establishment of heterotic groups.

The self-pollinating nature and cleistogamy of wheat resulted from a long
domestication process (Zohary 1967; D’Souza 1970). Additionally, variety
registration and seed production within line breeding programs favor closed
flowering to ensure high homogeneity. This leads to a lower frequency of geno-
types with favorable floral characteristics and good cross-pollination ability
required for hybrid breeding. The identification of such lines is challeng-
ing and time-consuming because pollination capability in wheat depends on
many different traits such as plant height, flowering, opening of the glumes,
awness of the lemma, size of stigma, duration of stigma receptivity, stigma
exsertion, lodicule size, number of pollen grains per anther, anther dimen-
sions, elongation of the anther filament, extrusion of anthers, dehiscence of
anthers, pollen grain, proportional extent of pollen grains released within
the floret, longevity of the pollen grain, and the duration of flowering (cf.
De Vries 1971 or Pickett 1993). Besides, outcrossing in wheat is generally
dependent on environmental conditions like temperature, relative humidity
or day time (Fruwirth 1905; De Vries 1972; Pickett 1993).
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Previous research suggested that the amount of pollen production in
wheat is rather low with about 2000-3000 pollen grains (De Vries 1971).
This is roughly only one tenth of the amount of pollen grains produced by
the allogamous rye (De Vries 1971; Wilson and Driscoll 1983). Wheat pollen
is relatively heavy, which has negative impacts on its aerodynamics, suggest-
ing that male and female plants should be planted close to each other for
hybrid seed production (Lelley 1966; D’Souza 1970; De Vries 1971; Waines
and Hegde 2003). Moreover, wheat pollen has a rather low viability and
longevity is in the range of minutes (D’Souza 1970; Pickett 1993). A num-
ber of studies suggested that anther extrusion, length of anthers and their
filaments are promising indirect indicators for pollen release and hence, for
cross-pollination ability (Joppa et al. 1968; Beri and Anand 1971; De Vries,
1974). Langer et al. (2014b) compiled a number of promising flowering and
floral traits with relevance for hybrid breeding programs and evaluated these
traits in field trials. They observed large genetic variations and high heritabil-
ities for most of the evaluated traits suggesting that improvement by selection
seems feasible. Unfortunately, most of the evaluated traits like pollen mass
or anther extrusion are difficult and time-consuming to score. Therefore,
employing molecular markers tightly linked with major QTL for the trait
of interest (Wiirschum 2012) or genomic prediction based on genome-wide
marker profiles (Meuwissen et al. 2001; Heffner et al. 2009) could greatly
accelerate and simplify the redesign of the wheat flower. However, little is
known about the genetic architecture and inheritance of the traits of interest

and further research is required.

Finally, the seed set on female plants in hybrid seed production is the
crucial parameter for the success of a hybrid wheat breeding program as it
determines seed costs and the competitiveness with line breeding. However,
little is known about the trait seed set itself or trait correlations between
indirect male floral traits and seed set. The redesign of the wheat floral
architecture requires breeding strategies for the long run and their design

and assessment was a major aspect of this thesis work.
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Objectives

The goal of this thesis was to contribute to breeding strategies for hybrid
wheat in Europe. The main objectives were to assess the usefulness of global
wheat diversity for hybrid breeding and to dissect the genetic architecture of
male floral traits required for the redesign of the wheat flower for an efficient

hybrid seed production.

In particular, the objectives were to:

1. Evaluate global wheat genetic diversity and how it could be used to

support the development of heterotic groups in wheat;

2. Assess the usefulness of exotic germplasm for hybrid wheat breeding

and for the establishment of heterotic groups;

3. Evaluate the relationship between heterosis and genetic distance in a

broad diversity space;

4. Evaluate the importance of male floral traits for hybrid wheat seed
production and dissect the genetic architecture underlying male floral

traits required for hybrid wheat breeding.
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Abstract Hybrid wheat breeding has great potential to increase the global
wheat grain yield level particularly in view of the increasing abiotic and biotic
stress challenges as well as variable climatic conditions. For the long-term
success of hybrid wheat breeding and the maximum exploitation of hetero-
sis, high-yielding heterotic patterns must be established. Here, we propose
a unified framework for hybrid breeding and the establishment of heterotic

groups in autogamous crops and exemplify it for hybrid wheat breeding in
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Germany. A key component is the establishment of genetic distance between
heterotic groups and in this context, we assessed genetic diversity in a global
collection of 1110 winter wheat varieties released during the past decades in
35 countries but with a focus on European origin. Our analyses revealed the
absence of major population structure but nevertheless suggest genetically
distinct subgroups with potential for hybrid wheat breeding. Taking our
molecular results and additional phenotypic data together, we propose how
global genetic diversity can be used to accelerate and support reciprocal re-
current selection for the development of genetically distinct heterotic groups

in hybrid wheat breeding.
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Abstract Copy number variation was found to be a frequent type of DNA

polymorphism in the human genome often associated with diseases but its
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importance in crops and the effects on agronomic traits are still largely un-
known. Here, we employed a large worldwide panel of 1110 winter wheat vari-
eties to assess the frequency and the geographic distribution of copy number
variants at the Photoperiod-B1 (Ppd-B1) and the Vernalization-A1 (Vin-
A1) loci as well as their effects on flowering time under field conditions. We
identified a novel four copy variant of Virn-A1 and based on the phylogenetic
relationships among the lines show that the higher copy variants at both loci
are likely to have arisen independently multiple times. In addition, we found
that the frequency of the different copy number variants at both loci reflects
the environmental conditions in the varieties’ region of origin and based on
multi-location field trials show that Ppd-B1 copy number has a substantial
effect on the fine-tuning of flowering time. In conclusion, our results show the
importance of copy number variation at Ppd-B1 and Vrn-A1 for the global
adaptation of wheat making it a key factor for wheat success in a broad range
of environments and in a wider context substantiate the significant role of

copy number variation in crops.
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Abstract Heterosis refers to the improved trait values of hybrids compared
to their parental lines. However, the usefulness of exotic, genetically dis-
tant germplasm for hybrid breeding remained elusive. Here, we employed
a unique data set comprising 2,046 wheat hybrids and found about 10 %
average midparent heterosis in crosses between elite lines as well as in crosses
between elite and exotic lines. We show that heterosis for grain yield is not
decreasing in crosses exploiting a maximum level of available global wheat
diversity. Moreover, implementing a novel distance measure giving weight
to heterosis loci revealed a strong positive association between heterosis and
genetic distance, for which the analysis of the genetic architecture of hetero-
sis provided a mechanistic understanding. As the absolute hybrid response
was mainly driven by parental per se performance, elite lines are favorable
for hybrid wheat breeding. Collectively this work expands the genome-based
understanding of heterosis in crops, an important pillar towards global food

security.
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Abstract

Heterosis refers to the improved trait values of hybrids compared to their parental lines.
However, the usefulness of exotic, genetically distant germplasm for hybrid breeding remained
elusive. Here, we employed a unique data set comprising 2,046 wheat hybrids and found ~10%
average midparent heterosis in crosses between elite lines as well as in crosses between elite
and exotic lines. We show that heterosis for grain yield is not decreasing in crosses exploiting
a maximum level of available global wheat diversity. Moreover, implementing a novel distance
measure giving weight to heterosis loci revealed a strong positive association between heterosis
and genetic distance, for which the analysis of the genetic architecture of heterosis provided a
mechanistic understanding. As the absolute hybrid response was mainly driven by parental per
se performance, elite lines are favorable for hybrid wheat breeding. Collectively this work
expands the genome-based understanding of heterosis in crops, an important pillar towards

global food security.
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INTRODUCTION

The targeted exploitation of heterosis has revolutionized plant breeding in the past century and is an
ongoing success story in many crops1'2. Wheat is a key global staple crop providing about 20% of the
global dietary energy, but its yield trends are insufficient to ensure the World’s future food security3’4.
Recent studies have shown that hybrid wheat holds great potential to increase yield gain, yield stability
and thus global productivity of wheat™®.

Three mutually nonexclusive theories have been proposed to explain heterosis: (i) dominance®

13-15 16,17

2 (i) over-dominance , and (iii) epistasis ''. Although the genetic mechanism(s) underlying
heterosis remained elusive'®, for successful hybrid breeding the rule of Saint Benedict could be
customized as follows: Rationali cum intervallo labora, ut maxime augeatur heterosis — work with
(genetic) distance to maximize heterosis. This well accepted principle is applied in many hybrid breeding
programs and is based on quantitative genetic theory, as heterosis depends on directional dominance
and the difference in gene frequencies between particular lines or populationsm. Since the difference in
gene frequencies corresponds to the Rogers’ distance in case of homozygous parental lines, genetic
distance has been proposed as a predictor for hybrid performance and as a proxy for grouping of

20,21

germplasm into heterotic groups®“". Thus, the idea of introgressing exotic germplasm to support the

divergence in allele frequencies between opposite heterotic pools and to increase heterosis appears

. . . . 22-27
obvious and has been discussed in several studies

. The crucial question is, however, if there is a
steady increase of heterosis with genetic distance between the hybrid parents or an optimum that
maximizes heterosis.

A prominent study in maize by Moll et al® suggested that genetic distance cannot be taken to
extremes to increase heterosis. These authors used eight parental maize populations from four different
geographical regions to produce 28 hybrid crosses, and found that heterosis for grain yield increased
with increasing geographic distance between the parental populations, but then decreased again in the
crosses considered genetically most diverse. Despite the limitations of this work, it since then became
well accepted in the community of quantitative geneticists and hybrid breeders, that there is a certain
but unknown optimum level of genetic distance and its exceedance is followed by a decrease in
heterosis, presumably due to adaptation issues of the parents or negative epistatic interactions between

unadapted genes19'21.
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Jiang et al*® recently elaborated a quantitative genetic framework to study the genetic
architecture of heterosis in hybrid populations. They found that epistatic effects play the most prominent
role in the genetic architecture of grain yield heterosis in elite European hybrid wheat. However, such
favorable co-adapted gene complexes can be disrupted in genetically extremely diverse crosses and
can cause outbreeding depression and finally a decrease in heterosis® 2. To date, little is known about
the relationship between heterosis and genetic distance outside maize. Moreover, previous studies
estimated genetic distances based on geographic origin of the parents or with genome-wide neutral
markers, thereby not taking the genetic architecture of heterosis into account. To bridge this gap, we
utilized the growing toolbox of genomic approaches and applied it to analyze an extensive hybrid wheat
panel comprising 1,750 elite wheat hybrids and 296 hybrids established from crosses between elite
wheat lines and exotic germplasm. We show, that midparent heterosis for grain yield in hybrid wheat is
constantly increasing with genetic distance, even in genetically distant crosses that exploit the maximum
level of genetic diversity available in global winter wheat. Furthermore, we established a new genetic
distance measure that gives special weight to dominance effects estimated in a Bayesian framework

and elucidated the genetic basis of grain yield heterosis in the different hybrids.
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RESULTS

Genetic diversity and divergence are maximized in the hybrid parents

To evaluate the relationship between heterosis and genetic distance, we produced a total of 2,046 wheat
hybrids, thereby employing three sets of parental germplasm groups that cover different levels of global
wheat diversity (Supplementary Figs. 1 and 2). Within the “Elite” set, we sampled 189 and 41 wheat
lines as female and male parents, respectively, representing the current Western European elite wheat
breeding germplasm. The “Historic” set consisted of 96 cultivars from the past five decades, mainly with
Western European background, which represents adapted material that is already a step away from the
elite wheat breeding pool. We completed our global wheat diversity collection by tapping into the winter
wheat diversity held at the IPK gene bank in Gatersleben and further sampled 101 wheat accessions as
the “Exotic” set. This represents a massive step into global wheat diversity as these accessions cover
the most diverse material available for winter wheat breeding without leaving the primary gene pool33,
All lines were fingerprinted with a 15 k Infinium SNP array, that performed without bias in all
three parental groups (Supplementary Fig. 3). The mean polymorphic information content (PIC) of the
“Elite” and “Historic” sets was almost identical with 0.315 and 0.314, respectively, while the mean PIC
of the “Exotic” set was highest with 0.365, indicating its higher allelic diversity. This corresponded well
with the gene diversity Hs, which was 0.33, 0.32, and 0.35 for the “Elite”, “Historic” and “Exotic” sets,
respectively. The mean pairwise Fst values indicated significant differentiation between all three sets
while being highest between the “Elite” and “Exotic” and somewhat lower between the “Elite” and
“Historic” sets (Fig. 1c¢). Indeed, the observed Fstof 0.15 between “Elite” and “Exotic” reflects a similar
level of genetic differentiation as the Dent and Flint heterotic pools in maize*. This trend was further
substantiated by distance- and character-based phylogenetic methods, clearly separating the “Elite”,
“Historic” and “Exotic” sets (Fig. 1a,b,d). The curves of linkage disequilibrium (LD) decay as a measure
for the haplotype diversity were almost identical for the “Elite” and “Historic” sets, but decayed faster for
the “Exotic” set, thus lending further support to the conclusion of the higher genetic divergence of this
set (Fig. 1e). This was further corroborated by the difference in persistence of LD phase of the “Exotic”
set (Fig. 1f). The higher degree of long-ranging LD observed in the “Elite” and “Historic” sets likely
results from selection and fixation of favorable alleles, a typical characteristic normally found in elite
breeding populations®*?¢. Taken together, all analyses underscore the successful sampling of a

maximum genetic diversity in the hybrid wheat parents.
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Heritability estimates in the hybrid wheat panel

We evaluated the “Elite” set at six and the “Historic” and “Exotic” sets at five agro-ecologically diverse
locations and observed high heritability estimates between 0.81 and 0.83 for grain vyield
(Supplementary Table 2). In total, 431 hybrids outperformed the highest yielding released line variety
KWS Smart, with the best performing hybrid (10.89 Mg ha'1) outyielding it by 0.73 Mg ha”
(Supplementary Fig. 4). This yield advantage of 7.2% relative to the best commercial variety
corresponds to several years of selection gain in breeding programs and underscores previous results
on the potential of hybrid wheat to increase yield5'37. Heritability estimates of grain yield heterosis ranged
between 0.66 and 0.78 (Supplementary Fig. 5). This reflects the high quality of the phenotypic data
underlying this study, which consequently provides an excellent foundation to reevaluate heterosis in

genetically diverse hybrid wheat.

No breakdown of heterosis with maximized diversity

Interestingly, the “Elite”, “Historic” as well as “Exotic” hybrids all showed a similar amount of mean
relative midparent heterosis with 9.24, 9.48, and 9.17%, respectively (Fig. 2, Supplementary Fig. 6,
Supplementary Table 2). Nonetheless, it is important to note that there was a significant difference (P
< 0.01) in the mean absolute heterosis between the “Elite” (0.83 Mg ha"1) and “Exotic” (0.72 Mg ha'1)
hybrids owing to the generally lower yield level of the exotic material. We observed a weak positive
correlation between the relative midparent heterosis and genetic distance (r = 0.18***), as well as
between the absolute midparent heterosis and genetic distance (r= 0.13***) (Fig. 3a). This observation
also held true within each of the three sets of hybrids.

The finding that the absolute midparent heterosis was lower in the “Exotic” hybrids than in the
“Elite” hybrids should not be interpreted as a decrease of absolute midparent heterosis under maximized
genetic distance. First, this difference was rather small and for a similar relative midparent heterosis the
absolute heterosis values must become smaller for lower midparent values caused by the lower per se
performance of the “Exotic” lines (Supplementary Fig. 6). Second, the absolute midparent heterosis of
“Exotic” hybrids was generally lower, even for those hybrids with a genetic distance between their
parental lines similar to that of some of the “Elite” hybrids and third, the trend of a constant increase of
absolute midparent heterosis with genetic distance was also clearly discernible in the “Exotic” hybrids.

Taken together, our results revealed a slightly lower absolute heterosis in hybrids involving “Exotic”
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lines, but an increase of absolute and relative midparent heterosis with genetic distance without an

apparent breakdown under maximized genetic distance.

Accounting for dominance effects revealed a more accurate picture between heterosis and

genetic distance

Assuming that all marker loci are in LD with QTL involved in heterosis and that there is a substantial
degree of dominance at these loci, then genetic distance would indeed be a perfect tool for the prediction
of heterosis®®. In case of neutral markers, however, genetic distance appears to be a weak estimator for

heterosis, at least in unrelated material®®

. We aimed to reduce the degree of noise caused by neutral
markers by developing and employing a functional Rogers’ distance (fRD) that gives weight to markers
contributing to heterosis through dominance. These dominance effects were estimated by genomic

prediction based on a BayesCtr approach to account for their genetic architecture*®*'

. Taking the whole
dataset into account, we observed a strong increase in the correlation from r = 0.13*** to r = 0.64*** for
absolute midparent heterosis and from r = 0.18*** to r = 0.66*** for relative midparent heterosis when
considering the dominance effects to compute the genetic distances (Fig. 3b). These trends were
confirmed within all three different sets of hybrids, and were further validated by fivefold cross-validation
which resulted in only slightly lower values of r= 0.56*** and 0.57*** for absolute and relative midparent
heterosis, respectively (Supplementary Fig. 7). Consistently, the mean cross-validated correlations
between heterosis and the fRD were similar to the genome-wide prediction accuracies for midparent
heterosis when only considering dominance effects (Supplementary Table 3).

In summary, giving weight to dominance effects when estimating the genetic distance between
parental lines revealed a much stronger correlation between heterosis and genetic divergence. This

suggests that genome-wide neutral markers have so far obscured the true genetic association between

heterosis and genetic distance.

Different genetic architecture of grain yield heterosis in “Elite” and “Exotic” hybrids

We next applied the quantitative genetic framework recently elaborated by Jiang et al. 2 {0 elucidate
the genetic basis of grain yield heterosis in our two genetically most distinct sets of hybrids, “Elite” and
“Exotic”. Partitioning the total genetic variance of heterosis into its components revealed the importance

of additive-by-additive epistasis, which explained 62% of the genetic variance of grain yield heterosis in
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the “Elite” set, whereas dominance effects contributed only to 10% of the genetic variance (Fig. 4g).
This observed pattern is in close agreement with results by Jiang et al.”® who exploited a similar set of
elite wheat hybrids. We identified a total of 221 significant effects in the “Elite” set, of which the majority
was involved in several types of interactions (Fig. 4a-c, Supplementary Table 6). Out of the seven
heterotic QTL effects that significantly contribute to heterosis, five were overlapping with those reported
by Jiang et al.®®, which is quite considerable for a complex trait like grain yield heterosis (Fig. 4i).
Interestingly, the “Exotic” set showed a different genetic architecture for grain yield heterosis. Here, the
contribution of the different genetic components of variance to heterosis was much more balanced.
Dominance had a more pronounced role and explained 24% of the genetic variance of grain yield
heterosis. In line with this, we identified two dominance effects out of the total 101 significant effects,
while for the “Elite” set only one was identified and none by Jiang et al.®®. This is likely due to the “Exotic”
parental lines being less subjected to intensive breeding and selection, which was corroborated by the
results from the LD analyses and their on average much taller height (Fig. 1e,f, Supplementary Table
2). We assume that favorable additive-by-additive epistatic interactions between loci on homoeologous
subgenomes of the allohexaploid wheat genome became fixed during line breeding, an effect termed
fixed heterosis, thus explaining the more prominent role of dominance in exotic wheat germplasm.

The comparatively low contribution of dominance effects to the total genetic variance of
heterosis and the observed strong increase in the correlation between fRD and heterosis are not
mutually contradictory. Rather, the loci given weight for the fRD based on their dominance effects also
capture different types of epistatic interactions, as revealed by our mapping approach and the
correlations between the kinship matrices for dominance and the three types of digenic epistatic
interactions (Supplementary Tables 3-5). Thus, the genome-based analysis of the genetic architecture
of grain yield heterosis provides the mechanistic understanding for the observations regarding the

correlation between heterosis and genetic distance.
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DISCUSSION

The association between heterosis and genetic distance is one of the central elements in hybrid
breeding theory and has intrigued and inspired many scientists as well as plant breeders during the past

decadeSZ1 ,26,27,38,39,42-47

. The long history of hybrid breeding in maize has led to a substantial increase in
genetic differentiation between the established heterotic pools*®. For hybrid crops in their infancy, such
as wheat, breeders need to decide which germplasm to use for an optimal exploitation of heterosis and
for the establishment of heterotic groups. Here, we particularly revisited the concept based on the study
by Moll et al.”® that suggests a certain optimum genetic distance for maximum heterosis. Despite its
importance for hybrid breeding this concept has since neither been unambiguously confirmed nor
disproved, even in maize.

Interestingly, we observed no evidence for a breakdown of heterosis under maximized genetic
distance. The average relative midparent heterosis was about 10% in all three sets of hybrids, even in
the genetically most distant crosses between elite and exotic lines. However, in line with quantitative
genetic theory and the assumption of a certain contribution of dominance to heterosis in wheat, we did
observe an increase of heterosis with increasing genetic distance estimated by genome-wide markers.
For the first time, however, the growing genomics toolbox allowed us to take this kind of analysis a step
further by implementing a distance measure that gives special weight to markers involved in the
expression of heterosis. The strongly increased correlation between heterosis and this fRD illustrates
that genome-wide neutral markers obscure the true genetic association between heterosis and genetic
distance (Fig. 5a). Thus, only a subset of the genome contributes to grain yield heterosis. We
hypothesize that this finding challenges the paradigm of hybrid breeding to keep established heterotic
groups strictly separated, as maintaining a high genetic distance based on markers that do not contribute
to heterosis appears obsolete and may even hinder the introgression of favorable alleles and breaking
of haploblocks, thereby limiting per se performance.

Consequently, breeders could tap into wheat diversity for hybrid breeding without passing into
a sub-optimum and losing relative grain yield heterosis. The absolute heterosis, however, was on
average lower for the “Exotic” hybrids compared to the “Elite” hybrids (Fig. 5b). This can be attributed
to the lower per se performance of these exotic lines, due to their less intensive selection for yield and
potentially being less adapted to the growing conditions of the field trials (Supplementary Figs. 8 and
9). Notably, genetic distance will inevitably be confounded with per se performance and adaptation. Moll

et al.?® observed a decrease in heterosis in the most divergent crosses, but these were also the ones
9
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that included the two Mexican populations that were low in yield even under conditions where they were
commonly grown. This illustrates, that also the study underlying the “Moll concept” faced the issue that
the levels of genetic divergence were confounded with adaptation and per se performance and even
growing the hybrids in the different environments, as done by Moll et al.®®, does not allow to disentangle
these confounding effects. Thus, in order to maximize hybrid performance, crosses among high-yielding
elite lines appear more promising for hybrid breeding in wheat than the direct utilization of exotic
germplasm, as the lower parental per se performance of exotic lines cannot be compensated by
heterotic response. In general, the observed hybrid performances are encouraging and underscore the
potential of hybrid wheat breeding to increase grain yield levels globally. Collectively our results illustrate

the power of genome-based approaches to dissect the complex phenomenon heterosis.

10
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METHODS
Methods, including statements of data availability and any associated accession codes and references,

are available in the online version of the paper.
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ONLINE METHODS

Plant materials and field trials. This study was based on three different sets of wheat hybrids denoted
in the following as “Elite”, “Historic” and “Exotic”. The “Elite” set initially comprised 434 potential female
lines provided by the 13 following wheat breeding companies: Bayer CropScience AG, Deutsche
Saatveredelung AG, KWS LOCHOW GmbH, Limagrain GmbH, Pflanzenzucht Oberlimpurg, RAGT-
Saaten GmbH, Saatzucht Bauer GmbH, Saatzucht Josef Breun GmbH & Co. KG, Saatzucht Streng-
Engelen GmbH & Co. KG, Secobra Saatzucht GmbH, Strube Research GmbH & Co. KG, Syngenta
Seeds GmbH, and W. von Borries-Eckendorf GmbH & Co. KG (Supplementary Fig. 1a). We genotyped
those lines with 22 SSR markers and based on genetic distances among them (Rogers’ distance > 0.2)
and by maximizing the allelic diversity (> 97 % of alleles maintained after selection), selected 189 out of
the 434 as female parents for the hybrids. Forty-one male lines were selected based on suitable floral
characteristics*® and were provided by the two wheat breeding companies Limagrain GmbH and
Nordsaat Saatzucht GmbH (Supplementary Fig. 1b). Within the “Elite” set, we were able to produce
enough seeds for 1,750 elite wheat hybrids by crossing the 189 elite female lines and the 41 elite male
lines in an incomplete factorial mating design using chemical hybridization agents (Supplementary Fig.
2a). The sterility of the female parents after chemical hybridization agent application was checked by
bagging 1-3 plants. The 1,750 hybrids, their 189 female and 41 male parental lines, as well as 11
commercial varieties as checks, i.e. 8 line varieties (quality class A: JB Asano, Julius, RGT Reform;
quality class B: Colonia, KWS Loft, Rumor, Tobak; quality class C: Elixer), and 3 hybrids (quality class
B: Hybred, Hystar, quality class C: LG Alpha), were evaluated for grain yield (Mg ha'1), heading date
(days from January 1%) and plant height (cm) at six agro-ecologically diverse locations in Germany in
the growing season 2015/16. The locations were Asendorf, Biendorf, Gatersleben, Hadmersleben,
Rosenthal, and Seligenstadt (Supplementary Table 1). The experimental design for each group of 506
entries, that can be harvested on a single day, was an a-design with size of the incomplete blocks of
11. Sowing density was 200 seeds per m for all entries and plot size at the different locations ranged
from 7.2 to 11 m2 Plots were treated with fertilizers, fungicides and herbicides according to best

agronomic practices.

The “Historic” set consisted of 96 wheat lines selected based on a temporal and spatial selection
strategy (Supplementary Fig. 1c,d). About half of these wheat varieties were released between the

1960’s and 1980’s, but also some more recently released varieties were included (Supplementary Fig.
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1c). The spatial, i.e. geographical, component mainly focused on Western European origins. More than
80 % of the varieties were released in Germany, France or Great Britain, but also cultivars from regions
with a more continental climate were included. The “Historic” material is part of the winter wheat panel
described recently by Boeven et al.?’. All of these lines were used as female components with an elite
male tester mix in a topcross mating design using chemical hybridization agents (Supplementary Fig.
2c). The elite male tester mix was provided by Nordsaat Saatzucht GmbH and comprised two
unreleased breeding sibling lines with known good male floral characteristics. The sterility was again
checked by bagging 1-3 female plants. We were able to produce enough seeds for 96 hybrids derived

from crosses of 96 “Historic” female lines with the male tester mix.

For the “Exotic” set, a random sample of 1,500 gene bank accessions obtained from the
gene bank IPK Gatersleben were screened for their male floral characteristics in observation plots at
the IPK Gatersleben. Finally, 101 accessions were selected and crossed as male components in an
incomplete factorial mating design with 9 German elite varieties (Famulus, Franz, Glaucus, JB Asano,
Patras, RGT Reform, Rumor, Tabasco, Tiirkis) used as female testers, that were emasculated by a
chemical hybridization agent (Supplementary Fig. 2b). The sterility was checked by bagging 1-3 female
plants. According to available passport data and information obtained from the genetic resources
information and analytical system (GRIS) for wheat and triticale (http://wheatpedigree.net), the
acquisition date of more than 50% of these lines pre-dates the year 1970 and more than 20 worldwide
origins were represented by this random gene bank sample (Supplementary Fig. 1e,f). We were able

to produce enough seeds for 200 hybrids.

The “Historic” and “Exotic” hybrids, as well as their female and male parental lines were
evaluated for grain yield (Mg ha'1), heading date (days from January 1st) and plant height (cm) at five
agro-ecologically diverse locations in Germany in the growing season 2015/16. The locations were
Stuttgart-Hohenheim, Renningen, Gatersleben, Schackstedt and Bohnshausen (Supplementary Table
1). Heading date was only recorded at two locations. The experimental designs were unreplicated a-
designs. To avoid neighboring effects of the much taller gene bank accessions, the material was split
into two adjacent trials according to plant height. The “tall trial” (243 entries) included all “Exotic” lines >
100 cm and their hybrids, while the “short trial” (378 entries) included all “Exotic” lines < 100 cm, their
hybrids and all their female testers, all “Historic” hybrids, the male tester mix and also its single

components, and the same common elite checks as used in the “Elite” trial, and 95 further genotypes
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not considered in this study. The two adjacent trials were linked by 10 commercial medium-long check
varieties (Bernstein, Capo, Discus, Hybery (hybrid), Hymack (hybrid), KWS Milaneco, Midas,
Naturastar, Xantippe) at each location. Sowing density was 220 seeds m™ for all entries and plot size at
the different locations ranged from 7.56 to 12 m2. Plots were treated according to best agronomic
practices, but N-fertilizers were reduced by 25 % and an additional application of growth regulators was
applied to prevent lodging.

In all trials, data were recorded for heading date as the number of days from January 1% to the
day when half of the heads of a plot had emerged from the flag leaves, for plant height in cm from the
ground to the tip of the erected ears, excluding awns, at the growth stage of dough development of the
kernels, and for grain yield in Mg ha™" with a moisture content of 140 g H,O kg'1. Homogeneity of hybrids
was visually assessed on a scale from 1 (uniform) to 9 (50/50 mix of two genotypes) about two to three
weeks after flowering. In addition, hybridity of the “Exotic” hybrids was visually assessed on a scale from
1 (more than 90 % selfing) to 9 (only hybrids) in observation plots of two rows and 1.25 m length at the
IPK Gatersleben, where each hybrid and its parents were sown side by side. We identified 53 hybrids
of the “Elite” set and 48 hybrids of the “Exotic” set which did not meet these criteria and were therefore

not considered for the subsequent heterosis analyses

Phenotypic data analyses. Data for both experiments were analyzed by a two-stage approach, where
first data of each experiment was analyzed separately, and then means across experiments were
calculated. All data were screened for outliers using the method 4 “Bonferroni-Holm with re-scaled
median absolute deviation standardized residuals” as suggested by Bernal-Vasquez et al.®®. Our mixed
model description follows the syntax suggested by Patterson®’, where crossed effects are denoted with
a dot operator, fixed and random effects are separated by a colon, with fixed effects appearing first. The

phenotypic data of the “Elite” set were analyzed based on the following linear mixed model:

G :Loc+ G eLoc+ LoceExp+ Loc e Exp « Block D

where G, Loc, Exp, and Block denote the effects of the genotypes, locations, trials and incomplete
blocks, respectively. Error, block and experiment variances were assumed to be heterogeneous among
locations. Genotype had 1,991 levels, 1,750 for hybrids, 189 and 41 for female and male parents,

respectively, and 11 for checks.
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The phenotypic data of the “Historic” and “Exotic” sets were analyzed by a model analogous to
model (1). Here, genotype had 621 levels, 200 for “Exotic” hybrids, 101 for “Exotic” male parental lines,
nine for “Exotic” female testers, 96 for “Historic” hybrids and female parental lines, respectively, three
for “Historic” male tester and its components, 11 for elite checks, 95 for additional genotypes and 20 for
the ten medium-long check varieties coded separately for the “tall” and “short” trial. The reason for the
latter was a plausibility check before analyses. We tested for identical yield of the ten commercial
medium long check varieties in both experiments using the following linear mixed model:

ML pecrs + Trial + ML pecrs ® Trial : Loc + ML pecrs ® Loc 2)

where MLnecks, Trial, and Loc denote the effects of the medium long checks, trials and locations,
respectively. Extending the data and the model by including all data did not change the result that there
was a significant and consistent overestimation of medium-tall genotypes in the “short trial” compared
to the “tall trial” (on average 0.53 Mg ha'1). As neighboring effects are one plausible explanation, we
tried to account for this by treating differences in plant height of the neighboring plots as co-variable.
However, this co-variable was not significant leaving a still significant systematic yield effect of the “tall
trial”. We, therefore, decided not to rely on the checks for connecting the two trials and rather coded the
medium-long checks of each ftrial as different genotypes. Thus, trial adjustment was done across
locations but within the same group of genotypes.

In a second step, the “Elite”, “Historic” and “Exotic” sets were analyzed in a joint analysis based
on the common elite checks. Here, adjusted entry means and corresponding standard errors of
genotypes from the first step were used in the following linear mixed model:

G+ Set:G e Set 3
where G and Set denote the genotypes and sets, respectively. Owing to the use of one divided by the
squared standard errors of means as weighting factor, we set the residual variance to one applying
method 3 suggested by Méhring and Piepho52.

We assumed fixed genotypic effects to obtain best linear unbiased estimators (BLUESs) of the
genotypic values of hybrids, females and males. BLUEs were used to calculate midparent heterosis
(MPH) for each hybrid as MPH = F, - MP, where F, refers to the performance of a hybrid and MP refers
to the midparent value of the two parental lines P, and P.. Relative midparent heterosis (MPH %) was
calculated for each hybrid as MPH (%) = (MPH / MP) x 100. Better-parent heterosis (BPH) was
calculated as BPH = F — Pgetter, Where Pgeer refers to the performance of the better performing parental

line. Relative better-parent heterosis was calculated as BPH (%) = (BPH / MP) x 100. Correlations based
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on BLUEs were tested with Pearson’s product moment correlation coefficients. BLUEs of different
genotypic groups were compared by Student’s t-tests.

Variance components were estimated by the restricted maximum likelihood (REML) method
treating all effects as random except for the group effect. Binary dummy variables were used to estimate
variance components for each group. The “Elite” set was analyzed with the following mixed model:
Group : Loc + Loc ¢ Exp + Loc « Exp « Block + Group  Loc
+ Checks + Checks » Loc + Females + Males
+ GCApemate + GCAremate ® L0C + GCApgre + GCAygre ® Loc + SCA (4)
where Group refers to the genetic group effects (hybrids, females, males, and each check have a
separate level), Checks to the effect of the checks, Females to the effect of the female parents, Males
to the effect of the male parents, GCA denotes general combining ability effects, and SCA the specific
combining ability effect. For sake of simplicity, dummy variables were suppressed in the model stated
above. We assumed group-specific error variances. Similarly, the “Historic” and “Exotic” sets were
analyzed with the following linear mixed model:

Group + Maleygsier: Loc + Loc o Trial + Loc « Trial « Block + Group « Loc

+ Femaley;storic + Elitecyitivars + Malegyoric + Rest

+ GCAFemaleHistaric + GCAFemaleExotic * GCAFEmaleExoric * Loc

+ GCApgtep . + GCAMatep g * LOC + SCApxoric (5)
where Group refers to the genetic group effects (hybrids “Historic” and “Exotic”’, female parents
“Historic”, male parents “Exotic”, elite varieties including all checks and “Exotic” female parents, and
Rest), and Elitecunivars to the effects of the elite checks and “Exotic” female parents, Rest to the effect of
genotypes not further considered in this study. The male tester within the “Historic” set was considered

as fixed effect. We assumed group-specific error variances. Broad sense heritability (h?) on an entry-

2 2
mean basis was estimated as the ratio of genotypic to phenotypic variance, h? = ¢Z/(cZ + % + :—;),

where ¢ and o2, refer to the total genotypic variance of the different genetic groups and their
interaction with location, respectively, L to the number of locations, R to the number of replications and
o2 to the residual variance. Except for checks within the “Elite” set and GCA of hybrids produced in an
incomplete factorial mating design, ¢Z,, was confounded with ¢2. Genotypic variance of hybrids was
assumed to be the sum of GCA and SCA variances. Heritability of midparent heterosis was estimated

as described by Jiang et al. 2 Briefly, midparent heterosis was calculated based on block-corrected
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values of hybrids and their parents at each location. We then used these values and fitted a linear mixed

YBLUP

2

model including random genotype and location effects. Heritability was estimated as h?2 =1 — e
G

where 95,5 is the mean variance of a difference of two BLUPs®®. Al statistical analyses were performed

within the R environment * and with the software package ASRemlI-R 3.0%.

Genotypic data and analyses. All parental lines were fingerprinted using a 15 k Infinium SNP array
that contains a subset of markers from the 90 k lllumina Infinium assayse. The development of the 15 k
SNP-chip and genotyping was performed by TraitGenetics GmbH (www.traitgenetics.com) and resulted
in a total of 13,006 polymorphic SNP markers. In the rare event of missing marker data, imputation was
performed by Random Forest regression57. After quality tests, 10,059 high-quality SNPs with available
map position remained that were used for all subsequent analysis. Genotyping of one “Elite” male line

and two females lines failed, which were consequently excluded from the subsequent analyses.

The polymorphic information content (PIC) as a measure of genetic diversity was calculated for
each marker as PIC = 1 - (p? + g?), where p and q denote the frequencies of the two alleles. In addition,
we calculated the gene diversity statistic Hs*® using the R package ‘HIERFSTAT'®®. Fqr statistic for each
pair of subpopulations among “Elite”, “Historic”, and “Exotic”, was estimated using the method of* ® g5

»61

implemented in the R package ‘diveRsity””" and visualized by a neighbor-joining tree using the R

package ‘ape’62

. The 95% confidence intervals for the Fst statistic were obtained from 1000 bootstrap
replicates. Population structure among parental lines was analyzed by principal coordinate analysis
(PCoA)® and cluster analysis was based on modified Rogers’ distances® using the software package

Plabsoft®. The neighbor-joining tree was generated using the R package ‘ape’62

. Bayesian clustering
analysis was implemented using the software package ADMIXTURE version 1.23%. The most probable
number of ancestral populations capturing the major population structure in the data was found by

fivefold cross-validation. Genetic distance was measured by Rogers’ distance®’. In addition, a functional

Rogers’ distance (fRD) was calculated by incorporating estimated dominance effects of the SNPs as:

where X and Y represent two genotypes under consideration, X,,; and Y,; are allele frequencies of the

Jj-th allele at the u-th locus, n,, is the number of alleles at the u-th locus, L refers to the number of loci,
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and w, is the dominance weight for the u-th locus. The dominance weight w for the u-th locus was
calculated as the value of w, divided by the mean of all dominance effects resulting in a scaled weight
with a mean of one. Dominance effects of SNPs were estimated based on the BayesCtr approach

previously outlined in detail by 37

. We performed a five-fold cross-validation with 100 runs to estimate
dominance effects and to assess the association between heterosis and fRD. The trends between the
different measures of genetic distance and heterosis were visualized by fitting natural smoothing splines.

The extent of pairwise linkage disequilibrium (LD) was assessed using the squared allele-
frequency correlations (r?) according to®. Decay of LD with genetic map distance for the “Elite” and
“Exotic” sets was assessed by fitting natural smoothing splines to the r? values. The threshold for LD
due to linkage was calculated based on the method described by Breseghello and Sorrels®®. The
persistence of linkage phase between the “Elite”, “Historic” and “Exotic” sets was inferred by calculating
LD as the correlation coefficient r, where r can take values between -1 and 1. The correlation of r
between the different sets was defined as R and plotted against the genetic map distance” and was

again assessed by fitting natural smoothing splines. The LD parameters r and 2 were calculated using

the software package PLINK™.

Partitioning of genetic variance components for MPH. Genetic variance components for MPH were
estimated by fitting an extended genomic best linear unbiased prediction model*" including dominance

and digenic epistatic effects. Briefly, the model can be described as follows:

Y =9a+t Ygaat gaa t gaa te ™

where y is the vector of MPH values for all hybrids, g4, gaa, 924 @nd gqq are vectors of genetic values
contributed by dominance, additive-by-additive, additive-by-dominance and dominance-by-dominance
effects, respectively, and e is a residual term. In the model we assume g,~N(0,K;02),
9aa~N(0,K40020), 9aa~N(0,Kaq03q), 9aa~N(0,K44044) and e~N(0,TT'a7), where Kg, Koq, Kqq and Kqq
are marker-derived kinship matrices for the different genetic effects. T is a rx(r + s) matrix of linear

transformation from the vectors of the original trait (grain yield) to the vectors of MPH, where r is the

number of hybrids and s is the number of parental lines.

Note that in the model the residual term is not assumed to be independently distributed. The

reason is that we usually assume independent residual terms for the original trait grain yield, but the
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MPH values are derived from the original trait values in the form of the linear transformation T. The
marker-derived kinship matrices are also specific to MPH instead of the original trait. We refer to Jiang
et al.”® for more details on the implementation of the model. The variance components 0%, 024, 024 and

a2, were estimated by the multi-kernel method in the R package BGLR"™.

Definition of heterotic effects. The heterotic effect of a locus is the genetic contribution of the locus to
MPH, which is a complex combination of the dominance effect of the locus itself and the epistatic

interaction effects with the entire genetic backgroundzg. The precise definition is described as follows:

Let Q be the set of all QTL for the original trait. QTL were coded as 0, 1, or 2, depending on the
number of a chosen allele at each locus. Considering one hybrid, we denote by R,; (k,l = 0 or 2) the
subset of loci where the female parent has genotype k and the male parent has genotype [. For i,j € Q,
let d; be the dominance effect of the i-th QTL, aa;; is the additive-by-additive epistatic effect between
the i-th and the j-th QTL, ad;; is the additive-by-dominance epistatic effect between the i-th and the j-
th QTL, and dd;; is the dominance-by-dominance epistatic effect between the i-th and the j-th QTL. The

heterotic effect of the i-th locus was defined as:

1 1 1 1 1 L
di—z Z aaij+5 Z aai}-+5 Z adﬁ—z Z adﬁ+§ Z ddU l.fl ERZO
JER29 JERo2 JER22 JERoo JER20URq2
1 1 1 1 1 .
di—z Z aaij+5 Z aaij+5 Z adﬁ—i Z adﬁ+5 z ddi/ if i € Ry,
hi — 1 JERo2 JE€R20 JER22 J€Roo JER20UR02 (8)
2 z ad;; if i € Ry
JER20UR02
1 . .
) Z ad;; if 1 € Roo
JER20URo2

With this definition, the MPH value of each hybrid is the sum of heterotic effects across all loci,

i.e., MPH = EiEQ hi'

Genome-wide scan for significant heterotic effects. We applied the following three-step procedure
developed by Jiang et al® to detect significant heterotic effects: First, genome-wide association
mapping was performed to identify significant component effects (i.e. dominance and di-genic epistatic

effects). We used a standard linear mixed model with a marker-derived kinship matrix controlling for the
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structure of multiple levels of relatedness and polygenic background effects’”®. Since presence of
epistasis was assumed, it is necessary to apply a model controlling the polygenic background effects

consisting of both main and epistatic effects’®. The model can be described as follows:

y=ma+gg+gaat Gaa + Gaa +e 9

where y, g4, 9aa> 9aa> 9aa @Nd e are the same as in Eq. (7). In particular, a is the genetic effect being
tested, m is the corresponding coefficient. More precisely, a is the dominance effect of any marker or
the epistatic interaction effect for any pair of markers. We assumed that a is an unknown fixed
parameter. The other assumptions are the same as for Eq. (7). For computational efficiency, the model
was transformed to a standard linear regression model in which only the residual terms are random.
The transformed model is equivalent to the original one, provided that the influence of different @ on the

estimation of variance components is negligible”®’’

. After the transformation, the significance of the
effect @ can be assessed by an F-test. We refer to Jiang et al.”® for more details on the implementation

of the model.

In the second step, the significant component effects were integrated into the heterotic effects

according to Eq. (8). All non-significant effects were set to zero.

Finally, the heterotic effect h; of each locus was tested by a permutation test. More precisely,
for each locus, the MPH values of all hybrids can be predicted using the heterotic effect of this particular
locus. Then the Pearson correlation coefficient between the predicted and observed MPH values was

calculated and a permutation test for the correlation coefficient was performed.

In the first and third step, the genome-wide threshold for P values was determined in the
following way: For the “Elite” panel, the threshold was P < 0.05 after Bonferroni-Holm correction for
multiple testing78. For the “Exotic” panel, the power of detecting significant epistatic effects was severely
hindered by the small population size. We therefore used a modified Bonferroni correction method based
on the effective number of independent markers p., which was obtained by performing principal
component analysis for the marker LD matrix”. The threshold for dominance and heterotic effects was

P < 0.05/p, and for epistatic effects P < 0.05/(p.(p. — 1)/2).
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Fig. 1 | Genetic diversity is maximized in the hybrid wheat parents. The 227 “Elite” parents, 98
“Historic” parents and 106 “Exotic” parents were analyzed for population structure and linkage
disequilibrium (LD) parameters. a, Principal coordinate analysis based on modified Rogers’ distances.
Percentages in parentheses refer to the proportion of genotypic variance explained by the first and
second principal coordinate. b, Neighbor-joining tree based on modified Rogers’ distances. ¢, Neighbor-
joining tree based on the results of Fgr statistics for the three sets. d, Bayesian clustering analysis
(ADMIXTURE) with K=3. e, Smoothing spline of the LD measure r? plotted against the genetic map
distance within the three sets. Dotted lines show the 95% percentile of LD between pairs of unlinked
markers as a population-specific critical value for LD due to genetic linkage. f, Smoothing spline of

pairwise correlations of LD phase (R) between the three sets plotted against the genetic map distance.
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Fig. 2 | Heterosis for grain yield. Distribution of absolute and relative midparent heterosis (MPH) for

grain yield for the “Elite”, “Historic” and “Exotic” hybrids. The dashed vertical line indicates the mean.
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Fig. 3 | Association between grain yield heterosis and genetic distance. Association between
absolute or relative midparent heterosis and a, Rogers’ distance (RD) or b, functional Rogers’ distance

(fRD), shown for the different sets of hybrids. The grey lines are locally weighted regression lines.
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Fig. 4 | Genetic architecture of midparent heterosis for grain yield in wheat in the “Elite” and
“Exotic” hybrids. a-f, Wheat chromosomes are indicated as bars in the inner circle; gray shadings
differentiate homoeologous chromosomes. Gray connector lines represent the genetic-map positions of
SNPs on the chromosomes. Colored links in the centers of the circles represent significant digenic
epistatic interactions: additive-by-additive interactions (al,dl), additive-by-dominance interactions (b,e),
and dominance-by-dominance interactions (c,f). Manhattan plots for the dominance effects (all,dll) and
the heterotic effects (alll,dlll) from GWAS. Significance thresholds are indicated as red dashed lines.
g,h, Relative contributions of the genetic components of midparent heterosis for grain yield (o2,
dominance variance; o2,,, additive-by-additive variance; a2, additive-by-dominance variance; o2,
dominance-by-dominance variance) estimated via Bayesian generalized linear regression. i, Venn
diagram showing the number of overlapping heterotic QTL between the “Elite” and “Exotic” sets and the

study by Jiang et al.%.
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with Rogers’ distance between parental lines. HP, hybrid performance; MP, midparent value; MPH,

absolute midparent heterosis
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Table S1 | Location information. Locations used for the field trials in the growing-season 2015/16

62

Trial Location Latitude Longitude Altitude  Mean annual Mean annual

precipitation temperature
“Elite” Asendorf 52°44'17.934" N 9°0'24.105"E 45m 751 mm 9.3°C
“Elite” Biendorf 51°45'0" N 11°50'59" E 79m 470 mm 8.8°C
“Elite” Gatersleben 51°50'35.7" N 11°18'1.512" E 156 m 519 mm 8.7°C
“Elite” Hadmersleben 51°58'37.916"N  11°18'10.414" E 91m 500 mm 8.7°C
“Elite” Rosenthal 52°18'18.89" N 10°10'52.88" E 70 m 700 mm 9.8°C
“Elite” Seligenstadt 49°51'16.30" N 10°06'2.30" E 280 m 606 mm 9.2°C
“Exotic/Historic”  Boéhnshausen 51°51'31.401"N  10°57'44.669" E 130 m 580 mm 9.2°C
“Exotic/Historic”  Gatersleben 51°51'39.986" N 11°18'4471"E 156 m 519 mm 8.7°C
“Exotic/Historic”  Renningen 48°44'29.583"N  8°55'15.35" E 484 m 690 mm 79°C
“Exotic/Historic”  Schackstedt 51°43'12" N 11°37'11.999" E 134 m 504 mm 8.8°C
“Exotic/Historic”  Stuttgart- 49°43'2.646" N 9°11'12.699" E 406 m 697 mm 8.8°C

Hohenheim
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Table S2 | Summary statistics and heterosis. Shown for grain yield, heading time, and plant height

Source

Grain yield (Mg ha™)

Heading (days)

Plant height (cm)

“Elite” hybrids (n = 1697)
h2
Mean (Min; Max)
Mean MPH (Min, Max)
Mean MPH% (Min; Max)
Mean BPH (Min; Max)
Mean BPH% (Min; Max)
“Historic” hybrids (n = 96)
h?
Mean (Min; Max)
Mean MPH (Min; Max)
Mean MPH% (Min; Max)
Mean BPH (Min; Max)
Mean BPH% (Min; Max)
“Exotic” hybrids (n = 152)
hZ
Mean (Min; Max)
Mean MPH (Min; Max)
Mean MPH% (Min; Max)
Mean BPH (Min; Max)
Mean BPH% (Min; Max)

0.81
9.93 (7.48; 10.89)
0.83 (-0.75; 2.39)
9.24 (-8.21; 28.30)
0.60 (-1.63; 1.91)
6.47 (-17.41; 21.38)
0.83

9.35 (8.30; 10.72)
0.81(-0.12; 2.57)
9.48 (-1.32; 31.51)
0.47 (-0.62; 2.03)
5.27 (-6.16; 23.34)
0.82

8.76 (7.59; 9.63)
0.72 (-0.77; 1.79)
9.17 (-9.18; 24.44)
-0.66 (-1.49; 0.14)
-7.00 (-16.29; 1.46)

0.94
152.74 (148.19; 158.31)
-0.76 (-3.62; 2.77)
-0.49 (-2.36; 1.82)
-1.63 (-7.49; 1.35)
-1.05 (-4.80; 0.89)
0.79

152.97 (148.71; 157.75)
-1.30 (-4.79; 1.39)
-0.84 (-3.06; 0.91)
-2.42 (-6.51; 0.28)
-1.56 (-4.20; 0.18)

0.64

155.22 (151.93; 158.40)
-1.41(-5.37; 6.13)
-0.88 (-3.23; 4.09)

-3.30 (-10.09; 1.36)
-2.07 (-6.12; 0.88)

0.94
90.02 (72.68; 105.18)
6.26 (-7.54; 18.83)
7.50 (-8.96; 23.49)
2.40 (-11.55; 14.61)
2.84 (-13.71; 18.30)

0.76
91.02 (83.00; 98.73)
5.96 (-1.64; 13.30)
6.33 (-1.73; 14.03)
3.03 (-4.02; 11.46)
3.46 (-4.62; 13.14)

0.84

112.71 (94.07; 124.03)
9.02 (-1.22; 32.81)
9.15 (-1.03; 37.59)
-13.33 (-38.11; 31.05)
-9.19 (-25.00; 34.88)

MPH, absolute midparent heterosis; MPH%, relative midparent heterosis; BPH, absolute better parent

heterosis; BPH%, relative better parent heterosis
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1 Table S3 | Genome-wide prediction accuracies for mid-parent heterosis in the “Elite” and “Exotic” sets

2 considering different genetic effects

Model “Elite” “Exotic”
D 0.54 0.64
AA 0.70 0.68
D+A 0.68 0.68
D+AA+AD 0.69 0.69
D+AA+AD+DD 0.68 0.68
3
4
5 Table S4 | Correlations among kinship matrices of dominance (D), and respective digenic epistatic (AA,
6  AD, DD) variance components (VC) within the “Elite” set
vC D AA AD DD
D 1.00 0.47 0.76 0.99
AA 1.00 0.75 0.53
AD 1.00 0.78
DD 1.00
7
8
9 Table S5 | Correlations among kinship matrices of dominance (D), and respective digenic epistatic (AA,

10  AD, DD) variance components (VC) within the “Exotic” set

VvC D AA AD DD
D 1.00 0.83 0.81 0.99
AA 1.00 0.96 0.85
AD 1.00 0.82
DD 1.00
11
12

13 Table S6 | Number of significant genetic effects and heterotic effects detected in the “Elite” and “Exotic”
14 sets

Genetic effect “Elite” ® “Exotic” ®
D 1 2
AA 106 5
AD 81 19
DD 33 75
Heterotic effect 46 18
15 *“Elite” set: Treshold P < 0.05 after Bonferroni correction, ® “Exotic” set: Treshold P < 0.05 after modified Bonferroni correction
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Fig. S1 | Plant material information of parental lines. Breeders’ affiliation of a, 189 female lines and

b, 41 male lines and used within the “Elite” set. ¢, Decade of release and d, origin of 96 female lines

within the “Historic” set. e, Decade of release and f, origin of 101 male lines within the “Exotic” set. AFG,
Afghanistan; AUT, Austria; BGR, Bulgaria; CHN, China, CSK, former Czechoslovakia; DEU, Germany;
EST, Estonia; FIN, Finland; FRA, France; GBR; Great Britain; HRV, Croatia; HUN, Hungary; ITA, Italy;
JPN, Japan; LTU, Lithuania; NA, no data available; NLD, Netherlands; NPL, Nepal; POL, Poland; ROM,
Romania; RUS, Russia; SVK, Slovak Republic; TUR, Turkey; URY, Uruguay; USA, United States of

America; YUG, former Yugoslavia

32



Boeven et al. (to be submitted) 66

»
i’

a 189 Females
=TT 1

ok :ii iii %

|
| g

E

L

1
u'
.IIllIIIIIII

- - -
e — -

41 Males

ﬁ—- —

b 101 Males

FITI-n'I'III. :'li'-'lna'l,l:r':":l' e

T T kT hils

9 Female
testers

c Male tester x 96 Females

Fig. S2 | Schematic illustration of the mating designs. Produced and tested hybrids are indicated by
green boxes. a, “Elite”; incomplete factorial mating design. b, “Exotic”; incomplete factorial mating

design. c, “Historic”; topcross mating design.
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Fig. S3 | Assessment of SNP array. Distribution of the minor allele frequency (MAF) in the three groups
“Elite”, “Historic”, and “Exotic”, showing that the SNP array is equally informative in all three groups of
parental lines. Ascertainment bias in the “Exotic” set would result in a high proportion of markers with

low MAF, which is not the case here.
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Fig. S4 | Distributions of grain yield and Rogers’ distance between parents. a,d,g, Distributions of

grain yield for 1,697 “Elite” hybrids, 96 “Historic” hybrids and 152 “Exotic” hybrids. b,e,h, Boxplots

showing grain yield of female parents, male parents, and hybrids for “Elite”, “Historic” and “Exotic” sets.

c,f,i, Distributions of Rogers’ distances between 217 “Elite” parents, between 98 “Historic” parents, and

between 74 “Exotic” parents. 1=Colonia, 2=Elixer, 3=Hybred, 4=Hystar, 5=JB Asano, 6=Julius, 7=KWS

Loft, 8=KWS Smart, 9=LG Alpha, 10=RGT Reform, 11=Rumor and 12=Tobak.
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Fig. S6 | Hybrid response, heterosis and per se performance. The positive association between (a)
midparent value and hybrid performance as well as (b) the negative association between midparent

value and heterosis was observed within each group, accompanied with a shift from “Elite” to “Exotic”.
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Fig. S7 | Cross-validated correlation between heterosis and the functional Rogers’ distance
(fRD). a, Boxplots showing correlations between heterosis and the functional Rogers’ distance for
dominance effects estimated in 80% of the hybrids and the correlation assessed in the remaining 20%.
The greater variation of values within the “Historic” set can be explained as an effect of the topcross
mating design. b,c, Natural smoothing splines to the cross-validated values between fRD and (b)

absolute and (c) relative midparent heterosis.
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Fig. S8 | Phenotypic trait correlations. a, “Exotic” lines and b, “Exotic” hybrids. Plant height and yield

were found to be strongly negatively correlated within the “Exotic” lines, but much less so in their hybrids

from crosses with adapted elite material.
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Abstract Hybrid wheat breeding is a promising approach to increase grain
yield and yield stability. However, the identification of lines with favorable
male floral characteristics required for hybrid seed production currently poses
a severe bottleneck for hybrid wheat breeding. This study therefore aimed
to unravel the genetic architecture of floral traits and to assess the poten-

tial of genomic approaches to accelerate their improvement. To this end,
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we employed a panel of 209 diverse winter wheat lines assessed for male
floral traits and genotyped with genome-wide markers as well as for Rht-
B1 and Rht-D1. We found the highest proportion of explained genotypic
variance for the Rht-D1 locus (11-24 %), for which the dwarfing allele Rht-
D1b had a negative effect on anther extrusion, visual anther extrusion and
pollen mass. The genome-wide scan detected only few QTL with small or
medium effects, indicating a complex genetic architecture. Consequently,
marker-assisted selection yielded only moderate prediction abilities (0.44—
0.63), mainly relying on Rht-D1. Genomic selection based on weighted ridge-
regression best linear unbiased prediction achieved higher prediction abilities
of up to 0.70 for anther extrusion. In conclusion, recurrent phenotypic selec-
tion appears most cost-effective for the initial improvement of floral traits in
wheat, while genome-wide prediction approaches may be worthwhile when
complete marker profiles are already available in a hybrid wheat breeding

program.
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Abstract Efficient hybrid wheat breeding requires the redesign of the wheat
floral architecure to enhance cross-pollination. Several studies evaluated the
phenotypic variation and the genetic architecture of male floral traits, but

their contribution to the most important trait, hybrid seed set on the female


https://doi.org/10.1007/s10681-018-2188-1

Boeven et al. 2018. Euphytica 214:110. 77

parent, has not yet been considered. To bridge this gap, we employed 31
male lines and evaluated the hybrid seed set on two female tester lines in
crossing blocks. Hybrid seed set showed large genetic variance and high her-
itability, which demonstrates the potential for the improvement of this trait.
However, the assessment of hybrid seed set is difficult as secondary traits
like plant height and especially flowering time, as well as the environment
largely influence the hybrid seed set. Nevertheless, a moderately high cor-
relation between visual anther extrusion and hybrid seed set opens up the
possibility to use visual anther extrusion as an indirect trait for preliminary
male screenings. Further research evaluating traits influencing female recep-
tivity coupled with genomics-assisted approaches are highly recommended to

develop an improved selection portfolio for maximizing hybrid seed set.



7 General Discussion

Hybrid breeding is a worldwide success story. First and foremost, hybrid
breeding has been applied extensively to the agricultural production of the
allogamous crop maize (Duvick 1999, 2005; Troyer 2006), but has since also
been established in sunflower, sugar beet, rye and many other crops (Longin
et al. 2012). This inspired scientists and breeders alike to evaluate the

potential of hybrid breeding in wheat.

Wheat has a rather long history of hybrid breeding efforts tracing back to
the 1960s and was explored by a number of research groups and companies
across many countries including Germany, the former German Democratic
Republic, France, Great Britain, the US, China, Australia, India, and South
Africa (Merfert et al. 1988; Lucken and Johnson 1989; Pickett 1993; Singh
et al. 2010; Koekemoer et al. 2011; Longin et al. 2012). In the 1980s, hybrid
wheat breeding and research peaked and the first hybrid cultivars entered
the wheat market (Pickett 1993). However, they did not find lasting success.
Hybrid wheat was mainly hampered by its high seed production costs due
to the self-pollinating flowering biology, the lack of a completely satisfactory
hybrid mechanism, and the strong competition of high-yielding line varieties,
eventually leading to a decreasing interest in hybrid wheat in the beginning
of the 1990s (Pickett 1993). Nevertheless, the stagnation of wheat yields dur-
ing the past years, ongoing climate change, the need to feed an ever-growing
world population, accompanied by a growing toolbox of genomic approaches

again led to increasing interest in hybrid wheat. Consequently, solutions to
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the issues hampering hybrid wheat breeding need to be developed. These is-
sues can be roughly divided into two thematic components: (i) quantitative
genetics dealing with heterosis as well as with the establishment of heterotic
groups, and (ii) applied breeding mainly focusing on the production of hybrid
seed and the required redesign of the wheat flower. Both thematic compo-
nents were part of this thesis research and will be discussed in the following

paragraphs.

Performance of European hybrid wheat: Sub-

stantial heterosis is available

The crucial decision to launch a hybrid wheat breeding program mainly relies
on the realized amount of heterosis and the resulting hybrid performance.
Longin et al. (2012) reported an average grain yield heterosis of about 10 %
in wheat, based on a review of studies performing multi-environmental field
trials. This amount of midparent heterosis for grain yield seems realistic
and was confirmed in recent studies analyzing grain yield of more than 3,500
wheat hybrids and their parental lines (Longin et al. 2013; Boeven et al. to
be submitted). In the wheat market, however, hybrid wheat varieties need
to compete with high performing line varieties. Hence, from an economic
point of view, the most interesting parameter is the commercial heterosis
comparing the performance of hybrids with the best performing released
line variety. We tested 1,750 wheat hybrids for grain yield and found that
106 hybrids significantly (P < 0.05) outperformed the highest performing
released line variety with a maximum yield benefit of 1 Mg ha! (Figure
2, unpublished data). This yield advantage corresponds to several years
of selection gain in line breeding programs and highlights the potential of
hybrid wheat (Longin et al. 2013; Zhao et al. 2015; Boeven et al. to
be submitted). Interestingly, we did not observe a significant difference in
grain yield between lines employed as female or male parents, illustrating

that the rather stringent selection for floral characteristics required for the
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Figure 2: Grain yield performance of hybrid wheat. Distribution of grain yield
of 1,750 wheat hybrids tested in six environments (unpublished data, ZUCHTWERT
project). Arrows indicate performance of the 11 check varieties, respective quality
classes are given in parentheses. Green bars indicate hybrids performing better than
the best-unreleased wheat line. Both orange and green bars indicate all hybrids per-

forming better than the best released line variety.

male parents to produce hybrid seed, appears to have no negative trade-off

regarding their yield potential.

Undoubtedly, commercial heterosis is always a question of definition.
Comparing the best performing unreleased hybrid combination with the best
performing released line variety might be an unfair comparison as a released
line variety is not fully representing the available maximum potential of line
breeding including new lines in pre-registration stages. Taking this scenario

into account, only 15 hybrids significantly (P < 0.05) outperformed the high-
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est performing unreleased line variety but still with a maximum yield benefit
of 0.78 Mg ha! (Figure 2, unpublished data). On the other hand, it must be
considered that up to now fewer monetary resources were invested in hybrid
compared to line breeding and the used hybrid parents were not pre-selected
for their combining ability but represent a more or less random sample of

current German line breeding programs.

Fusarium head blight (FHB) is a serious fungal disease in wheat and
infections with FHB lead to yield losses and to a contamination of the grain
by mycotoxins harmful for livestock as well as for humans (Osborne and
Stein 2007). The registration of new wheat varieties in Germany requires
at least a moderate resistance to FHB. Interestingly, Miedaner et al. (2017)
found a negative average midparent heterosis for FHB and hence, wheat
hybrids combined their higher yield potential with a lower susceptibility to
FHB. We analyzed grain yield and FHB ratings of 1,750 wheat hybrids and
their 189 parental lines. Here, hybrids and lines showed a similar level of FHB
disease severity, but the hybrids were still able to combine it with higher yield
(Figure 3a, unpublished data). The slightly different result compared to the
study by Miedaner et al. (2017) might be explained by the broader sampling
strategy and genetic background of the parental lines. Additionally, Longin
et al. (2013) observed that hybrid wheat possesses a lower susceptibility
to leaf rust and Septoria tritici blotch compared to their parental lines and
the general trend that hybrid wheat can combine higher yield with a similar
or even lower level of disease susceptibility was also confirmed by our data
(Figure 3, unpublished data). These examples underscore the potential of
hybrid breeding, facilitating high-yielding and disease-resistant genotypes to

meet the challenges of climate change and future food security.

Finally, bread-making quality traits are of essential importance in wheat
breeding and processing (Shewry et al. 1995). Ideally, genotypes should
combine high grain yield with high bread-making quality. This, however, is
difficult to achieve, as these traits are negatively associated. In Germany,

new cultivars need to meet minimum standards to enter different quality
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yield and Septoria tritici blotch severity.

classes. This classification has a huge impact on the success of new cultivars
in the wheat market. For example, two important indirect parameters for
bread-making quality are protein content and sedimentation volume. Both
traits were reported to show a negative midparent heterosis of on average
about 2 to 3 %, respectively (Liu et al. 2016; Thorwarth et al. 2018). In
contrast, we found that wheat hybrids showed a positive midparent hetero-
sis for protein yield of about 8 %. In addition, Thorwarth et al. (2018)
recently reported for grain protein deviation, based on a bivariate model,
a heterosis of about 35 %. This study compared hybrids and lines within
different quality classes and stressed that hybrids had a higher grain yield at
a given sedimentation volume or protein content. These initial findings are
promising towards a more sustainable wheat production but further research
is required to determine the bread-making quality of hybrid wheat in more
detail.
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Establishment of heterotic groups in wheat: A

long way to go

Genetic diversity caused by spatial or temporal isolation contributed to the
establishment of heterotic groups in different crops (Melchinger and Gum-
ber 1998). For instance in rye, the well-known heterotic groups Carsten and
Petkus were identified in a 7x7 complete diallel among open pollinated pop-
ulations and these identified pools originally trace back to two germplasm
groups separated through breeding history (Hepting 1978; Melchinger and
Gumber 1998; Geiger and Miedaner 1999). In contrast, the establishment
of heterotic groups in autogamous crops is generally more challenging be-
cause the amount of heterosis is lower, and the floral biology and pollination
control often limit theoretical testcrosses. Moreover, line breeding allows a
widespread exchange of germplasm between breeding companies leading to
a mix of germplasm impeding the identification of divergent groups as it is

the case in current German elite winter wheat (Figure 4).

For these reasons, a more unified approach for the establishment of het-
erotic groups in wheat is required. In Chapter 2, Boeven et al. (2016b)
proposed the HyBFrame approach tackling how global wheat genetic diver-
sity could be used to support and accelerate hybrid breeding and the estab-
lishment of heterotic groups by reciprocal recurrent selection. Briefly, the

HyBFrame approach includes eight steps:

(1) adapted germplasm under maximized diversity serves as starting ma-
terial due to the moderate to high correlations between parental per se

and hybrid performance (Longin et al. 2013; Figure 5);
(2) identification and consideration of suitable male and female floral traits;
(3) factorial testcrosses to assess GCA;

(4) selection of promising lines as starting material for male and female

pools;
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(5) consideration of the desired hybrid mechanism;

(6) start of reciprocal recurrent (genomic) selection to improve combining

ability and genetic divergence between the pools (Hagdorn et al. 2003;

Gerke et al. 2015);

(7) continuous support of reciprocal recurrent (genomic) selection by the

knowledge-based introgression of new germplasm not disrupting the

established patterns. Breeders should consider predicted GCA, genetic

similarity, the necessity of previous backcrossing to improve adaption,
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and final testcross performance with proven testers from the opposite

pool;

(8) new genotypes fulfilling the before-mentioned requirements and pos-
sessing a superior observed GCA enter the respective group. If neces-
sary, further selection of progenies for floral traits, hybrid mechanism

related traits, or adaptation traits.

Most of the illustrated HyBFrame steps have already been made or are
currently ongoing in applied hybrid wheat breeding programs. Nevertheless,

the implementation of HyBFrame takes many years and needs long-term

commitment.

Moreover, Zhao et al. (2015) recently proposed a three-step approach for
the genome-based establishment of a heterotic pattern in wheat. This ap-
proach is based on the initial production and field evaluation of a preferably
large number of wheat hybrids derived from an incomplete factorial mat-
ing design using chemical hybridization agents (CHAs). In a first step, the

performance of all untested hybrids is estimated by genomic prediction. A
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Figure 5: Prediction of hybrid performance. a Association between hybrid perfor-
mance and sum of parental GCA effects (not cross-validated). b Association between
parental line per se performance and GCA effects. ¢ Association between hybrid
performance and midparent performance. Data from Chapter 4 based on a separate
analysis of “Elite” hybrids and parents.
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simulated annealing algorithm is then used to search for a high yielding het-
erotic pattern. Finally the long-term success of the selected heterotic groups
is evaluated based on quantitative genetic parameters. Applying this frame-
work to a panel of 1,604 wheat hybrids and their 135 parents, Zhao et al.
(2015) suggested that a starting group size of about 16 individuals offers a
good compromise between short-term and long-term selection gain for grain
yield in European winter wheat. Interestingly, for a heterotic group size
of 16 individuals they found on average 81 % overlapping genotypes when
comparing the result of the three-step approach with an approach assigning
genotypes based on their GCA effects, which can again be explained by the
strong effect of parental per se performance on hybrid performance in wheat.
Moreover, the results by Zhao et al. (2015) gave evidence that the identified
heterotic pattern is accompanied with a higher relevance of o, leading
to a lower ratio of 0%, 4 to 04c4 and enhancing recurrent selection gain as

expected based on quantitative genetic theory (Reif et al. 2007).

The elaborated three-step approach is a perfect tool for the decision sup-
port when starting to establish heterotic groups in wheat, which might then
be continued by following HyBFrame. Nonetheless, the three-step approach
by Zhao et al. (2015) neglected relevant hybrid seed production issues when
assigning individuals into theoretical heterotic patterns and assumed that a
few major genes control required male or female floral characteristics. This,
however, seems not to be the case as revealed by recent studies dissecting
the genetic architecture underlying male floral traits in wheat (Boeven et
al. 2016a; Muqaddasi et al. 2016; 2017a, b, ¢). Moreover, as also followed
by Zhao et al. (2015), genetic distance itself is not sufficient but definitely
required as a supporting element for the establishment of heterotic groups.
Likewise, as reviewed by Melchinger and Gumber (1998), molecular marker
based genetic distance is not suitable for the prediction of hybrid performance
but displays a perfect tool for grouping of germplasm and a pre-identification
of promising germplasm for heterotic groups. Hence, HyBFrame requires ge-
netic distance analyses and integrates this knowledge in a unified approach

for the establishment of heterotic groups.
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We, therefore, studied the genetic diversity in a panel of 1,110 winter
wheat lines released during the past decades in 35 countries. This analy-
sis revealed no clear population structure within Western European mate-
rial, but some main trends in global wheat genetic diversity became evident.
Briefly, some genetic backgrounds tended to cluster together: Western Euro-
pean lines, Eastern European lines, lines released in China and lines from the
US clustered together with Eastern European lines (Boeven et al. 2016b).
Interestingly, some lines assigned to male lines due to their favorable floral
traits also tended to cluster together. The main diversity patterns were as-
sociated with the geographical origin and most likely evolved from long-term
domestication, evolution and adaption to different environmental conditions
(Cavanagh et al. 2013; Boeven et al. 2016b).

Not surprisingly, the global wheat diversity was also accompanied with
differentiating phenotypic variation. For instance, lines from Eastern Eu-
rope, France or the US tended to earlier heading compared with lines from
Germany or Great Britain. The wide range in heading date and hence in
flowering time can be explained by adaptation to different environmental
conditions and the resulting selection of favorable genotypes by breeders. In
line with our phenotypic results, Langer et al. (2014a) observed that the
photoperiod insensitive allele Ppd-D1a of the major photoperiod regulator
Ppd-D1 is more frequent in French, Eastern European and Russian wheat
lines resulting in earlier flowering to escape heat and drought stress in regions
of lower latitude. In addition to major genes, Diaz et al. (2012) demonstrated
that copy number variation (CNV) at the Ppd-B1 and Vin-A1 loci affects
flowering time in wheat, as increased Ppd-B1 and Virn-1 copies were accom-
panied by early flowering, day neutral phenotypes and increased vernalization
requirement, respectively. In Chapter 3, we analyzed our global wheat col-
lection of 1,110 winter wheat lines also for CNV at Ppd-B1 and Vrn-A1 and
found that CNV reflects environmental conditions of the different origins.
For instance, we observed a North to South trend within Europe for Ppd-B1
resulting in a higher frequency of the two or three copy variants in France

and in lines assigned to the Eastern European group. In a global context, US
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lines showed a great similarity with South Eastern European lines and Chi-
nese lines possessed the highest frequency of the three copy variant reflecting

the high pressure for photoperiod insensitivity.

Likewise, plant height is an important aspect for hybrid wheat seed pro-
duction since male lines should be taller than female lines to facilitate high
out-crossing rates. We observed a wide range for plant height in our global
wheat collection. British and French varieties were on average about 10 cm
shorter compared to German varieties. This finding can be explained by a
higher frequency of major semi-dwarfing genes Rht-B1b and Rht-D1b in vari-
eties from Great Britain and France (Wiirschum et al. 2015b). Historically,
semi-dwarfing genes dominated UK wheat production since the 1980s (An-
gus 2001). Eastern European lines were only slightly shorter compared to
the German material. This is also consistent with results by Wiirschum et
al. (2015b) since they found that the weaker Rht-B1b allele, which explained
about two and a half times less genotypic variance compared to Rht-D1b, was
more frequent in Eastern European lines, being the main source for plant
height reduction within this material. Moreover, Wiirschum et al. (2017a)
revisited the genetic control of plant height in our global wheat collection
of 1,110 lines and identified a major Rht locus on chromosome 6A, Rht2/,
and found a temporal trend as the height-reducing allele Rht2/b was more

present in recent high yielding material released after 1990.

As illustrated by the HyBFrame approach, heterotic pools are not closed
groups but should be continuously broadened by new germplasm to increase
allelic diversity. The great variation in flowering time and plant height are
two examples underscoring that interesting germplasm sets to widen estab-
lished heterotic groups are restricted by phenotypic adaptation (Boeven et
al. 2016b). In addition, bread-making quality traits are of essential impor-
tance in wheat breeding and must also be considered in the context of hybrid
wheat. Thus, most of the promising lines identified by their predicted GCA
or genetic distance cannot be directly used to perform testcrosses due to
adaptation issues, lacking abiotic or biotic stress tolerance or due to con-

straints in floral traits required for hybrid breeding. Therefore, some of these



General Discussion 89

interesting lines first need to be crossed with adapted lines from the respec-
tive heterotic group into which they should be introgressed, followed by a
selection for the above-mentioned traits. For some traits where major QTL
are known, like Vrn, Ppd or Rht, marker-assisted selection can effectively
support this process. Then, progenies are again genotyped to predict their
GCA and the most promising candidates can enter the respective heterotic
group and support their improvement by reciprocal recurrent selection as
outlined in more detail by Boeven et al. (2016b).

In the context of genetic diversity and hybrid wheat breeding, Akel et al.
(2018) recently investigated the usefulness of spelt wheat as a heterotic group
for bread wheat. Spelt and bread wheat are genetically clearly separated and
hybrids between these groups show also an interesting amount of heterosis.
However, much lower hybrid performance and baking-quality compared to
pure bread wheat hybrids as well as free-threshing issues make spelt wheat
rather unattractive for hybrid wheat breeding (Akel et al. 2018).

As mentioned before, heterotic groups normally must be established
through breeding. Reciprocal recurrent selection is a breeding method for
population improvement in hybrid breeding and was used for the establish-
ment of heterotic groups in maize (Wricke and Weber 1986; Duvick et al.
2004). It has been shown that this breeding method is effective when over-
dominance or at least partial dominance are present (Comstock et al. 1949;
Schnell 1961; Wricke and Weber 1986). Likewise, long-term reciprocal recur-
rent selection might give evidence for the gene action of heterosis (Lamkey
and Edwards 1999). The genetic architecture of heterosis is therefore affect-
ing reciprocal recurrent selection, and consequently also the establishment of

heterotic groups.

Recently, Jiang et al. (2017) elaborated a quantitative genetic framework
to elucidate the genetic architecture in a diverse wheat population. This new
framework enables the analysis of epistasis, which normally requires the use

of special mating designs (Melchinger et al. 2007). Jiang et al. (2017) found
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pronounced additive-by-additive epistatic effects underlying grain yield het-
erosis in wheat while dominance played a less important role. In Chapter
4, we applied the same quantitative genetic framework in a large panel of
2,046 wheat hybrids exploiting different levels of genetic diversity between
parental lines, using elite germplasm, historic lines released during the past
decades and a random sample of gene bank accessions. Although we found
less significant effects mainly due to the lower number of SNP markers, our
study confirmed the predominant role of additive-by-additive epistatic effects
for grain yield heterosis in elite hybrid wheat. This result is, to a certain ex-
tent, not surprising, since it mirrors favorable additive-by-additive epistatic
interactions which are also fixed in hexaploid wheat lines. This phenomenon
is also known as so called fixed heterosis in wheat (Kaeppler 2012). Thus,
also wheat lines profit not only from additive but also from epistatic effects
(Goldringer et al. 1997). Likewise, under absence of inbreeding depression,
which is true for wheat, quantitative genetic theory generally suggests that
a great amount of heterosis is due to favorable additive-by-additive epistasis
(Lamkey and Edwards 1999). However, the prominent role of epistasis under-
lying heterosis challenges the establishment of heterotic groups even more as
it limits reciprocal recurrent selection based on the exploitation of dominance
effects between gene pools (Jiang et al. 2017). It remains an open question if
favorable epistatic interactions can be fixed in a pool concept. Moreover, it
can be speculated if a strict long-term selection for combining ability instead
of line per se performance would lead to a change in the genetic architecture

of heterosis enriching dominance effects in wheat.

We also studied the genetic architecture of grain yield heterosis in crosses
between exotic lines and elite testers. Here, we found a differentiating pat-
tern where dominance effects played a more prominent role accounting for
about one quarter of the genotypic variance of grain yield heterosis (Boeven
et al. to be submitted). This finding was attributed to less breeding and
selection within the exotic panel, likely resulting in a lower accumulation
of additive-by-additive epistatic effects and explaining the more prominent

role of dominance. It further gives evidence that the genetic architecture of
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grain yield heterosis in wheat is greatly depending on the genetic background.
However, as hybrid performance in wheat is driven by parental per se per-
formance, exotic lines are of no direct use for hybrid wheat breeding and the
establishment of heterotic groups. It nevertheless supports the notion that
a modification of the genetic architecture of heterosis towards dominance is

feasible.

The establishment of heterotic groups are always long-term projects. It is
also important to note that heterotic groups are never “finished”, but have to
be developed and continuously improved. Since the middle of the 2000s, for
instance, hybrid varieties in rapeseed have almost completely replaced line
varieties in the German market, but clear heterotic groups like in maize are
still not established. Since hybrid breeding in wheat is even more complex
than in rapeseed, it can be expected that it will take several decades until
clear heterotic groups are established, under the assumption that breeding
companies will focus on hybrid wheat. The cornerstone based on quanti-
tative genetic theory has been laid, and even if it appears challenging due
to the genomic complexity of wheat, interested breeding companies are now
asked to take the next step. Due to the aforementioned reasons, the joint
establishment of heterotic groups and patterns across breeding companies is

highly recommended.

Genetic diversity and heterosis in wheat: Is

the upper limit reached already?

The amount of about 10 % midparent heterosis in elite wheat appears to
be sufficient to seriously consider the implementation of a hybrid breeding
program. Nevertheless, a higher amount of heterosis would make this decision
much easier due to an improved long-term competitiveness of hybrid versus
line breeding (Longin et al. 2014). One could ask, if the amount of heterosis

in wheat will stay constant or might change in the future.
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Heterosis is a derived trait depending on the variation of two parameters,
the midparent value as well as the performance of the F; generation. For
instance, the long history of hybrid breeding in maize led to a substantial
increase in genetic differentiation between established heterotic pools (van
Heerwaarden et al. 2012), while the amount of midparent heterosis was
decreasing over the years due to two contrasting events: strong inbreeding
depression in early years and a continuously improved line per se perfor-
mance during the past decades (Duvick 1999). A similar phenomenon was
observed in early hybrid breeding in rye (Hartwig H. Geiger, pers. commun.).
Thus, allogamous crops tend to have very high midparent heterosis in early
hybrid breeding stages, but show a decreasing trend with time (Melchinger
and Gumber 1998). In contrast, wheat has a self-pollinating nature and is
therefore almost not affected by inbreeding depression. Hence, we specu-
late that midparent heterosis would increase with time when selection would

completely focus on combining ability instead of line per se performance.

In addtition, heterosis and hybrid breeding should benefit from increased
diversity between parental lines, which is in line with quantitative genetic
theory under simplifying assumptions not considering epistasis (Falconer and
Mackay 1996). This trend was already observed in very early hybrid maize
breeding (Hallauer 1999) and became also obvious in a study by Moll et al.
(1962) classifying parental populations based on geographic distance (Fig-
ure 6a). However, in a similar study exploiting a higher level of parental
divergence, Moll et al. (1965) observed a decrease of heterosis in extremely
wide crosses with large genetic divergence (Figure 6b). This finding can be
explained by the disruption of favorable allelic and non-allelic co-adapted
gene complexes resulting in negative dominance and epistatic interactions
and leading to outbreeding depression (Lynch 1991; Falconer and Mackay
1996; Mohamed and Pirchner 1998; Aspi 2000). Besides genetic distance,
Melchinger and Gumber (1998) also stressed, that heterosis depends on the

adaptation of parental lines.

Consequently, this kind of experiment would ideally be performed with

adapted lines of a similar yield level that cover the entire range of genetic
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Figure 6: Visualization of different datasets showing the relationship between

heterosis and genetic divergence. a Maize grain yield and midparent heterosis
(MPH) based on data from Moll et al. (1962), levels of divergence (II-V) are according

to the original study and are based on geographic distance and ancestral relationships.

b The similar analysis but showing data from Moll et al. (1965), levels of divergence

(II-VIII) are according to the original study and are based on geographic distance and

ancestral relationships. ¢ Relationship between heterosis and genetic divergence based

on data in tropical maize populations from Reif et al. (2003). Genetic distance was

estimated based on 85 SSR markers. Relationship was visualized by fitting natural

smoothing splines. d Relationship between heterosis and genetic divergence in wheat

(based on data from Chapter 4, modified). Genetic distance was estimated based on

a 15k SNP array. Relationship was visualized by fitting natural smoothing splines.
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diversity. This, however, is not possible in practice, as genetic distance will
inevitably be confounded with adaptation and per se performance and ge-
netically distant lines will be less adapted and lower yielding. In line with
this, Moll et al. (1965) observed a decrease in heterosis in the most divergent
crosses including populations from Mexico. Interestingly, these Mexican pop-
ulations were also poor performing in their original environment. In practice,
it is impossible to disentangle the confounding effects of genetic divergence,
adaption and per se performance. Reif et al. (2003) revisited the “Moll
concept” analyzing genetic distance and heterosis in tropical maize. In con-
trast to earlier studies, Reif et al. (2003) investigated genetic distance based
on molecular markers. Interestingly, these authors found no evidence for
decreasing heterosis under maximized genetic distance and attributed this
finding to the similar adaptation of parental lines and the lack of extremely

divergent crosses (Figure 6c¢).

In wheat, a number of studies assessed heterosis and genetic distance but
not in extremely diverse material and always in the context of hybrid predic-
tion (Boeven et al. 2016b). As hybrid wheat breeding is still in its infancy
and hybrid breeding programs need to be planned in an optimal manner,
profound knowledge about the relationship between heterosis and genetic
distance in a broad diversity space is of utmost important. We exploited
a maximum level of genetic diversity in wheat without leaving the primary
gene pool. Interestingly, when not considering crosses between closely re-
lated material where heterosis is naturally limited, we observed an average
grain yield midparent heterosis of about 10 % in elite crosses as well as in
crosses between elite and exotic lines under maximized diversity. We found
no evidence for a breakdown of heterosis under maximized genetic distance
as postulated by Moll et al. (1965) in maize (Figure 6d). Moreover, en-
abled by the growing toolbox of genomic approaches, we incorporated a new
functional Rogers’ distance (fRD) which gives special weight to dominance
effects estimated in a genome-wide prediction framework. This distance mea-
sure accounts for the genetic architecture of the trait of interest. Heterosis

increased linearly with an increasing heterotic genetic distance between par-
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ents (Figure 6d, Boeven et al. to be submitted). Thus, genome-wide neutral
markers are most likely diluting the true association between heterosis and

genetic distance.

Interestingly, average absolute grain yield heterosis in the set of hybrids
between elite and exotic lines was consistently on a lower level throughout the
entire genetic distance space compared to the set of hybrids between elite and
elite lines, also when considering a similar extent of midparent value in both
sets. This pointed again to the fact that the extent of heterosis was specific
within each hybrid set. We dissected the genetic architecture underlying
grain yield heterosis and found more negative dominance and dominance-
by-dominance epistatic effects in the set of hybrids between elite and exotic
lines compared with the set of elite hybrids. This finding might explain
the lower extent of absolute grain yield heterosis within the set of hybrids
between elite and exotic lines. The fewer negative dominance and dominance-
by-dominance epistatic effects in the set of hybrids between elite and elite
lines can be explained by purifying selection in early stages of pedigree line

breeding programs, where dominance is still present when loci are not yet
fixed.

We might have to refine our proposed HyBFrame approach and might
have to re-think the organization of germplasm in hybrid breeding programs.
Since not all markers contribute to heterosis, maintaining genetic distance
based on genome-wide markers between heterotic groups might hamper the
introgession of favorable alleles from the other group leading to sub-optimal
per se as well as hybrid performance. Following from this, it can be hy-
pothesized that heterotic groups should not diverge on a genome-wide level
but only for the subset of the genome contributing to (positive) heterosis
(Boeven et al. to be submitted). However, heterosis is quantitative and
practical breeding needs to consider many traits besides grain yield making
this approach very challenging and complex. Thus, future research needs to

validate whether this approach can be profitable for hybrid breeding.

Our study revealed two important results for current hybrid wheat breed-

ing programs. First, a substantial increase in genetic distance to the elite
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parent is always accompanied with a lower per se performance of the exotic
parent. This leads to a lower hybrid performance compared with elite crosses.
Second, we did not observe any additional gain in heterosis which might be
tapped and transferred to the elite pool by fast genomics-assisted adaptation
of exotic lines. Thus, a maximized diversity of parental lines in the sense of

leaving the elite pool has no direct benefit for initial hybrid breeding phases.

Redesign of the wheat floral architecture: A
perfect scenario for genomics-assisted breed-

ing

The self-pollinating nature of wheat is exploited in wheat line breeding pro-
grams but it displays a major bottleneck for hybrid wheat seed production as
it greatly hampers cross-pollination. From an economic perspective, the addi-
tional benefit of grain yield heterosis in commercial hybrid wheat is therefore
often eliminated by the higher hybrid seed production costs. Thus, com-
petitive hybrid wheat breeding requires the redesign of the wheat flower,
regardless of the used hybrid mechanism (Whitford et al. 2013).

The compatibility of male and female parents in hybrid wheat is generally
dependent on different environmental factors such as temperature or wind
velocity as well as on the genotype itself. The realized seed set in hybrid
crossing blocks is finally the most important factor as it determines hybrid
seed costs. Seed set in hybrid crossing blocks is influenced by some main
requirements on the female and male side as schematically illustrated in
Figure 7. These requirements lead to a number of indirect male and female

floral traits influencing the trait seed set itself.

We used a special crossing block design, originally elaborated in hybrid

rye breeding, to test 31 male lines for their seed set on two female testers.
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Figure 7: Main parameters influencing seed set in hybrid wheat seed produc-
tion, adapted from Pickett (1993).

The use of isolation walls allowed us to test this relatively high number of
male lines on a relatively small area. However, we observed that field trials
for seed set are very challenging. We pre-selected male and female lines
for a compatible flowering time based on data for heading date from the
previous year. The selected females were expected to flower about two days
earlier than the males. However, our study showed that slight deviations in
flowering time largely influence hybrid seed set and this nicking effect was
underscored by the moderate positive correlation between heading date and
seed set (Boeven et al. 2018). Consequently, nicking issues can lead to an
underestimation of good male lines in their seed set as it was the case for the

variety Apache (Boeven et al. 2018).

The photoperiod regulator Ppd-D1 has a major effect on flowering time
control in European winter wheat and generally affects wheat adaptability
and yield (Worland 1996; Snape et al. 2001; Langer et al. 2014b) Moreover,
we showed in Chapter 3 that also different copy number variants at Ppd-B1
reflect global adaptation in wheat (Wiirschum et al. 2015a). Thus, even
though we know quite a bit about the genetic control of the highly heritable
trait flowering time in wheat, the effect of the individual year can be large
and it is highly challenging to select male and female lines optimally fitting
in the short hybrid seed production nicking window of wheat. Therefore,
effective breeding for improved seed set requires a number of female testers
covering broad nicking windows. Moreover, these testers should also opti-
mally represent the respective heterotic groups in the future (Longin et al.
2007; Boeven et al. 2016b).



General Discussion 08

We were able to include two female testers to assess seed set under field
conditions and observed no statistically significant differences in seed set
between the two lines (Boeven et al. 2018). However, this was rather a sam-
pling effect of the two female lines and we experienced in other hybrid seed
production crossing blocks that the female parents can have great effect on
seed set. Female receptivity generally depends on environmental conditions
during flowering time as high temperature substantially above 20°C as well
as too cool temperatures or high relative humidity can have harmful effects
on receptivity and seed set (Imrie 1966; Pickett 1993). Likewise, the length
of stigma receptivity is also affected by the environment and site effects, but
can vary from a few days up to almost two weeks (De Vries 1971). Knox et
al. (1986) suggested to evaluate stigma receptivity as seed set after pollina-
tion at different times relative to flower opening, but a precise experiment
like this under field conditions would be very challenging. Previous studies
also reported about variation for stigma length of about three to four mil-
limeters in wheat, which is about two millimeters less compared to rye or
triticale (Pickett 1993; Blouet et al. 1999; Singh et al. 2007). Since larger
stigma sizes lead to more exposed stigma branches, selection for stigma size
would have positive effects for cross-pollination and seed set (Virmani and
Edwards 1983; Blouet et al. 1999). More detailed knowledge about the
phenotypic variation and genetic control of female wheat organs like stigma
size, stigma exsertion or stigma receptivity would facilitate the more targeted
improvement of female hybrid parents in European winter wheat. However,
we conclude that the final test for the trait seed set indirectly combines all
relevant characteristics of female organs and is for now easier to implement
in hybrid breeding programs. Finally, a large number of female lines would
need to be screened for their seed set and this phenotypic effort could then
be used to establish genomic prediction models for this difficult-to-measure

trait.

Moreover, the female spike morphology can affect the cross-pollination in
hybrid crossing blocks. It has been discussed that spikes with closely packed

spikelets are disadvantageous for cross-pollination since lemma and palea are
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appressed to one another (Campbell et al. 1983; Pickett 1993). This phe-
nomenon is sometimes referred to as “clubbing”. On the other hand, wheat
spikes with spikelets spaced more loosely on the rachis can be beneficial for
pollen capture in hybrid seed production since the floret can open with less
physical restriction (Kofoid 1991; Pickett 1993). This characteristic is often
referred to as “laxness” of a spike. Laxness or compactness of a spike is
moderately positively correlated (r = 0.48**) with the number of spikelets
per spike (SPS) (Wirschum et al. 2018a). We performed a genome-wide
association study for SPS and identified a major QTL on chromosome 7A ex-
plaining almost 17 % of the genotypic variance and weighted ridge-regression
best linear unbiased prediction was promising and yielded a cross-validated
prediction ability of 0.69 (Boeven et al. 2016b). In line with our results,
a number of other studies also found medium- or major-effect QTL for this
trait (Ma et al. 2007; Buerstmayr et al. 2011; Echeverry-Solarte et al. 2014;
Zhai et al. 2016). Thus, genomics-assisted breeding is feasible and would
allow to reduce SPS and indirectly increase laxness in the female pool to
improve cross-pollination. However, SPS is also an important yield compo-
nent in wheat (Tian et al. 2015), where too lax spikes have negative effects
on yield per se performance and on general combining ability (Borghi et al.
1988; Pickett 1993). Consequently, this asks for an optimal compromise be-
tween lax wversus compact spikes on the female side, which requires further
research. In general, the partitioning of different yield components in the
male and female pools seems interesting to support hybrid seed production

as well as heterosis.

Cross-pollination in wheat is dependent on sufficient viable wind-borne
pollen (Figure 7). Wheat pollen is known to be relatively heavy and tests for
terminal fall velocity suggest a rather short distance of a few meters between
male and female parents (Lelley 1966; D’Souza 1970; De Vries 1971). In
Chapter 6, we also tested the effect of the distance between male and female
lines on seed set. The locations showed a great effect on the seed set between
the more close and distant female plots. On average, the closer female plots

had a slightly higher seed set but this was only barely statistically significant
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(Boeven et al. 2018). The effect of spatial distance on seed set was not as
high as expected. This suggests that wheat pollen can reach longer distances
under certain environmental conditions. For instance, Virmani and Edwards
(1983) reported that the distance of wheat pollen dispersal could reach up to
a few hundred meters in very extreme cases. Based on our results, however,
a width of about 3 m for female strips can be accepted for commercial CHA
based hybrid seed production to optimize the male to female ratio. However,
even wider distances are not recommended due to the declining gradient of
seed set in the more distant female plots as demonstrated by Brears and
Bingham (1989) and also supported by the findings of Khan et al. (1973).

Our data supported the fact that not all locations are equally suitable
for efficient hybrid seed production. In particular, wind is favored for wheat
pollen flow and a careful selection of potential hybrid seed production lo-
cations based on multiannual climatic conditions and test seed production
is recommended to increase efficiency. Moreover, even the use of tractor-
mounted fans or helicopters as wind support for hybrid wheat seed pro-
duction have been discussed in the literature (Virmani and Edwards 1983;
Koekemoer et al. 2011). These approaches sound interesting but are defi-
nitely unrealistic, as they would further boost the already high hybrid wheat
seed production costs. Consequently, genotypes with favorable male floral

traits giving enough seed set under natural wind pollination are required.

The large genotpyic variation and high heritability for seed set suggest
that this trait can be improved by recurrent phenotypic selection. However,
conducting male screenings for seed set under field conditions is cumbersome
and definitely not feasible in early stages of breeding schemes for male pool
improvement (Boeven et al. 2018). Nonetheless, seed set is the most impor-
tant trait hybrid wheat breeders should use to establish superior male lines.
Hence, this phenotypically difficult-to-measure trait displays an ideal situa-
tion for genomics-assisted breeding approaches. This would require a much
larger diversity panel of a few hundred potential male lines and phenotypic ef-

fort to conduct a genome-wide association study for seed set and to calibrate
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and test genomic prediction models. However, such a multi-environmental
large-scale experiment for seed set would be really challenging due to the
already mentioned nicking issues and resulting choice of female testers. Al-
ternatively, the identification of easier-to-screen male floral traits associated
with seed set opens up the possibility of indirect selection in early breeding
stages of male pool development. Then, the cumbersome assessment of seed

set could be conducted only in later stages with fewer candidates to be tested.

During the first big wave of hybrid wheat breeding between the 1960s and
late 1980s, many studies focused on flowering and floral traits in wheat. The
trait anther extrusion showed a wide phenotypic variation and appeared quite
promising for breeding for cross-pollination capability in wheat (Joppa et al.
1968; D’Souza 1970; Milhonic and Jost 1970; De Vries 1971, 1973; John-
son and Patterson 1973; Barnett and Patterson 1974; Sage and Isturiz 1974;
Atashi-Rang and Lucken 1978). Langer et al. (2014b) evaluated two ap-
proaches to assess anther extrusion: (i) anther extrusion count (AEX) based
on the remaining anthers in the lateral florets; and (ii) visual anther extrusion
(VAEX) based on a 1-9 scale (Figure 8a). Both traits show large genotypic
variation, have high heritability estimates and possess a high phenotypic trait
correlation of about 0.7 (Langer et al. 2014b; Boeven et al. 2016a; Boeven
et al. 2018). The scoring of VAEX is mainly affected by weather conditions
such as wind or rainfall, by daytime and by the personal effect of the breeder
during the scoring. VAEX was therefore considered less accurate than AEX,
which is less affected by weather conditions and more objective due to the
counting procedure. On the other hand, scoring AEX takes more time per
genotype, about 10 minutes for four spikes, but the possibility to deep-freeze
spikes and assess AEX after peak work periods makes it more flexible than
VAEX. Interestingly, VAEX had a much higher association with seed set
than AEX (Boeven et al. 2018). This might be explained by the effect of the
“personal impression”. Very likely, further floral characteristics like filament
length or size and the color of anthers are unconsciously taken into account
during the scoring of visual anther extrusion. For instance, filament length

itself is also positively correlated with seed set (Boeven et al. 2018) and Beri
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Figure 8: Anther extrusion of wheat lines. a Low, medium and high level of anther
extrusion in wheat, from left to right. b Spike during flowering of the well-known

super male Piko.

and Anand (1971) found an positive association between filament length and
pollen grain shed outside the floret. Moreover, AEX is only considering the
two lateral florets and the effect of the central florets is not considered, which
might also explain the lower correlation with seed set. Consequently, VAEX
appears more promising and should be treated with higher priority when
following the concept for male pool development suggested by Boeven et al.
(2016a).

Male lines possessing extraordinary high pollination capability probably
combine a large number of favorable male floral traits. During the last five
years, the State Plant Breeding Institute screened about 5,000 wheat lines
for VAEX plus addtitional indirect male floral traits. These lines included
old and new released varieties as well as large collections from international
gene banks. A few lines showed comparable or even higher VAEX than
the already well-known males such as Apache or Piko (Figure 8b). This

illustrates that lines with favorable male floral characteristics are rare and
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that breeding schemes for male pool development are required (Boeven et al.
2016a). It also suggests that high VAEX is required but not sufficient for
good outcrossing capability. For instance, the variety Piko had the highest
value for seed set but not for all of the assessed indirect male floral traits
including VAEX (Boeven et al. 2018). We conclude that traits like pollen
viability, pollen longevity or the time course of pollen release, and flowering
duration are of importance and require further research to unravel the “Piko
secret”. One part of this secret might be that Piko is able to release pollen
over a longer period of time compared to other high performing VAEX lines.
However, this hypothesis needs to be tackled in future experiments taking a

closer look at flowering duration in wheat.

We demonstrated the importance of indirect male floral traits to breed for
outcrossing capability in wheat. Indeed, indirect male floral traits are easier
to assess than the trait seed set. However, the assessment of visual anther
extrusion or pollen mass are also very time-consuming, depending on climatic
conditions and daytime, and hence, are impractical for early breeding stages
of male pool development with many candidates to be tested (Boeven et al.
2016a). Thus, genomics-assisted breeding approaches could greatly acceler-
ate breeding schemes for improving male floral characteristics. In Chapter
5, we employed a panel of 209 diverse winter wheat lines and performed a
genome-wide association (GWA) study to dissect the genetic architecture of
relevant indirect male floral traits. The genome-wide scan revealed a com-
plex genetic architecture underlying anther extrusion and pollen mass. A
complex genetic architecture underlying anther extrusion was also found in
other winter and spring wheat collections (Mugaddasi et al. 2016, 2017a, c).
We identified the dwarfing gene Rht-D1 as the only major QTL and our re-
sults provided strong evidence that Rht-D1b (mutant type, short phenotype)
leads to negative effects for male floral traits. Thus, it is reasonable to con-
sider Rht-D1 in breeding schemes for male pool development. Future linkage
mapping studies in bi-parental populations might detect additional QTL for

male floral traits. Up to now, however, the complex genetic architecture
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underlying male floral traits limits the potential of classical marker-assisted

selection.

Therefore, we tested the potential of genomic prediction for male floral
traits and found moderate to high prediction abilities for anther extrusion,
visual anther extrusion and pollen mass. The great potential of genomic
prediction for anther extrusion was also confirmed in spring wheat (Muqad-
dasi et al. 2017c¢). Collectively, our results suggest that genomic prediction
is a powerful tool for the pre-selection of promising male lines. However,
breeders must first invest phenotypic effort in screening large populations
for difficult-to-measure male floral traits in multi-environmental field trials
to establish robust training sets for genomic prediction models. Then, it
displays a perfect scenario where genomics-assisted breeding can effectively
support recurrent selection breeding schemes for male pool development as
suggested by Boeven et al. (2016a). One should keep in mind, however, that
any breeding scheme for male pool development should have a high focus on
general combining ability and must include final field-tests for the ultimate

target trait seed set.

Plant height is a crucial trait in wheat breeding as it has large effects
on the harvest index, lodging and grain yield (Hedden 2003). In hybrid
wheat breeding, relative plant height of male and female components is a
crucial parameter for an efficient hybrid seed production. Due to the pollen
characteristics of wheat, male lines should be slightly taller than female lines
to support pollen shed and reception of pollen on the female flower (Virmani
and Edwards 1983; Pickett 1993). Consequently, the positive effect of the
wild-type Rht-Dl1a (tall phenotype) on male floral traits is beneficial and
fits in the framework for hybrid wheat seed production. Wheat plant height
in Northern European countries including Germany, France and the UK is
controlled by Rht-D1 (Worland and Snape 2001; Le Couviour et al. 2011;
Wiirschum et al. 2015b; Wiirschum et al. 2018b). Thus, the mutant-type
Rht-D1b could be fixed in the female pool to achieve a desired reduced height.

However, wheat hybrids show positive heterosis of about 10 % for plant
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height (Longin et al. 2013; Boeven et al. to be submitted). Consequently,
the use of reduced height loci in the male and female parents greatly depends
on the desired and accepted stature of the hybrids in the respective wheat
markets. Wiirschum et al. (2017a) reported the strong height-reducing effect
of Rht24 and its relevance in global wheat breeding. Interestingly, Rht2}
appears to have no negative effects on male floral traits (Wiirschum et al.
2018b). This suggests that good outcrossing capability can be combined
with short height on the male side, too. A prominent example is the variety
Apache (Boeven et al. 2016a; Boeven et al. 2018). In addition, the use
of Rht2j is very interesting in a CMS hybrid system, as female maintainer
lines need to possess a sufficient cross-pollination ability, too. These findings
greatly expand the Rht portfolio for hybrid wheat breeders and allow the
pre-selection of parental lines with the aid of molecular markers for major
Rht loci.

To tackle another open question, we conducted a small experiment re-
garding the longevity of wheat pollen under field conditions in the 2015/16
growing season. To this end, we used two female testers and four released
wheat varieties including Piko, Hermann, Henrik and Naturastar as pollen
parent. We used two female spikes for each cross and spikes were hand-
emasculated following standard protocols. Emasculated spikes were directly
covered with paper bags. As a control, we performed all crosses as it is rou-
tine in wheat breeding. Afterwards, we collected pollen of five ears per male
and stored the pollen in petri dishes under field conditions. The following
crosses were then performed after 3, 7, and 24 hours, respectively, using a
paintbrush to apply the pollen. All spikes were harvested and we counted
the seed set. While the standard crossing procedure led to seed set in all
cases, we did not find any seed set for crosses where the pollen was stored for
3 or 7 hours. Interestingly, we observed up to two kernels for some crosses
after storing the pollen for 24 hours. Genotyping for the polymorphic Rht-1
loci revealed, however, that all kernels harvested from the 24 hour version re-
sulted from unintended selfing. Consequently, our results suggest that wheat

pollen generally has a rather short longevity. This is in line with previous
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studies from the 1960s and 1970s which reported a maximum longevity of 30
minutes under field conditions and up to 3 hours under optimal temperature
and humidity (for review see Pickett 1993).

Commercial hybrid seed production generally requires logistical efforts
in planning of the crossing-blocks. To produce GCA trial seeds in breed-
ing programs, however, it would be sometimes advantageous to have more
flexibility regarding the seed production. We did some pre-tests for two al-
ternative methods as illustrated in Figure 9. We used the same two females
testers and isolation walls as described by Boeven et al. (2018). A portable
vacuum cleaner was used to collect pollen from four flowering male lines and
each vacuum cleaner bag was then opened and shaken above the emasculated
female testers. The second approach was a bit more simplistic. Male spikes
with extruded anthers were cut and shaken above the emasculated female
testers. Both approaches led to substantial seed set in a similar range as nat-
ural wind pollination in crossing-blocks (Boeven et al. 2018). Interestingly,
the vacuum cleaner method tended to have lower seed set than the shaking
method. However, our results should be taken with caution since it was just a
pre-test and a more thorough experiment is required. Nonetheless, we could
already demonstrate that an improvement of hybrid seed production on a
small-scale sufficient to produce novel hybrid combinations for evaluation in

breeding programs seems feasible.

Secondary applications of the hybrid tech-

nology in wheat

The hybrid technology itself offers some secondary applications besides hy-
brid breeding in its actual sense. For instance, van Ginkel and Ortiz (2017)
proposed the hybrid-enabled line profiling (HELP) approach, which aims to
identify best parents and cross combinations using the hybrid technology

and inbred lines derived from the 3-5 % top performing Fys. This strategy
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Figure 9: Alternative methods for pollination in hybrid wheat seed production.
a, b Pollen collection with a portable vacuum cleaner and pollination. ¢ Male spikes
with extruded anthers are cut and directly shaken above emasculated female plots. d
Results of the two methods.

transfers knowledge from hybrid to line breeding and was already applied in
earlier wheat breeding programs where line and hybrid breeding were per-
formed in parallel. In that case, when it is applied as a spin-off strategy and
the data is gathered anyway, the proposed method seems reasonable and
breeders would probably intuitively perform HELP or modified versions of
this approach. However, it is questionable if that approach pays off due to
increased costs and longer breeding cycles when the hybrid technology is not

applied on a routine basis.

In addition, the hybrid technology offers chances to leverage the exploita-
tion of untapped genetic diversity of gene bank accessions for grain yield
(Longin and Reif 2014). It is highly challenging to screen genetic resources
for their yield potential due to lodging issues or lack of major resistance or

adaptation genes. Longin and Reif (2014) proposed a theoretical concept to
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unmask the yield potential of genetic resources by crossing them with elite
testers based on the CHA hybrid technology. The elite testers must be cho-
sen in such a way that they are able to eliminate masking effects for example
by carrying dwarfing genes. The true breeding value of the genetic resources
for grain yield is then evaluated in the F; hybrid background and delivers an
estimate for their combining ability in hybrid breeding as well as a starting

point to mine for novel grain yield alleles in wheat line breeding programs.

We applied the framework proposed by Longin and Reif (2014) and
crossed a number of “Historic” and “Exotic” lines with elite testers (Boeven
et al. to be submitted). For example, one “Historic” hybrid derived from
a cross between a male tester and Maris Kinsman, a British variety from
the 1970s, yielded 10.72 Mg ha™! and was among the top 15 performing elite
hybrids of the whole study (Figure 10) (Boeven et al. to be submitted). The
“Historic” hybrids significantly (P < 0.001) outperformed their parents with
an average yield advantage of 0.95 Mg ha, and seven “Historic” hybrids

showed a higher yield than the best commercial check variety.

Grouping the “Historic” lines according to their year of release revealed a
clear temporal trend of increased yield line per se performance over the last
six decades (r = 0.79, P < 0.001) (Figure 10). The corresponding hybrids
showed a similar but weaker trend (r = 0.62, P < 0.001) and performed on a
higher level. Focusing only on the period between 1960 until 1989 revealed
a significant time trend for the “Historic” lines (r = 0.43, P < 0.01) but not
for their hybrids (r = 0.20, P = 0.17). There was no significant difference in
yield between elite checks and “Historic” hybrids generated with comparably
recent lines released between 1990 and 2016, while the line per se performance
of these lines was significantly (P < 0.001) outperformed by the elite checks.
In general, the observed temporal trend is typical for breeding germplasm
and reflects the progress in line breeding during the past decades (Laidig
et al. 2014; Losert et al. 2017). Our results proved that the theoretical
concept suggested by Longin and Reif (2014) is practicable and of interest

for wheat breeding programs. However, we only focused on grain yield and
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Figure 10: Temporal trend in grain yield performance exploiting “Historic”
varieties applying the approach suggested by Longin and Reif (2014). Box-
plots showing grain yield of commercial check varieties and “Historic” lines and their
hybrids, as well as their male elite tester. Lines are ordered according to their year
of release. Checks are Colonia, Elixer, Hybred, Hystar, JB Asano, Julius, KWS Loft,
KWS Smart, LG Alpha, RGT Reform, Rumor and Tobak. Based on data from Chapter
4.

the final validation of this concept requires more than competitive F; grain
yield performance. Moreover, we conclude that the choice of optimal testers

for this approach warrants further research.

Future challenges and an outlook for hybrid

wheat

The present findings show that hybrid wheat holds great potential to boost
global productivity of wheat. Previous research as well as our own studies
have shown that the production of hybrid wheat seed is currently the ma-
jor challenge and bottleneck. The success of hybrid wheat will rely on the
availability of a cost-efficient system for hybrid seed production including a
satisfactory hybrid mechanism and an improved outcrossing capability. Most
of the important floral traits show large genotypic variances and high heri-

tabilities. We outlined genomics-assisted breeding strategies to support the
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redesign of the wheat flower. Nevertheless, this is not an easy task and re-
quires long-term commitment of the public and private sector. Since hybrid
wheat is still a niche product and not established in the market, detailed
studies and robust numbers about hybrid wheat economics are lacking. A
number of authors suggested that a commercial heterosis of about 1 Mg hat
is required to counterbalance higher seed production costs (Schachschneider
1997; Weissmann and Weissmann 2002; Koekemoer et al. 2011). Recent hy-
brid wheat seed costs are about 2.5 times higher compared to certified seed
of line varieties in Germany. Taking a reduced sowing rate of 220 kernels
per square meter for hybrids into account, we estimated a minimum required
hybrid yield advantage of about 4 % to counterbalance only the higher seed
costs and to reach a break-even. Again, this highlights the great need for a

more cost-effective hybrid seed production system in wheat.

Hybrid breeding is more complex compared to line breeding in wheat.
Besides the aforementioned floral constraints of wheat, breeders need to re-
organize their germplasm in a completely different way, inverting the present
line breeders’ way of thinking. Hybrid breeding generally asks for more re-
sources compared to line breeding. A possible CMS system requires back-
crosses with the respective cytoplasm and restorer genes need to be intro-
gressed in promising male lines. It is very likely that a minimum of two to
three restorer genes are required in wheat to achieve full restoration, which
inflates the size of backcross populations. In addition, efficient tools for hy-
brid prediction are required as the number of possible single-cross hybrids
is a quadratic function of the number of parental lines (Zhao et al. 2015;
Boeven et al. 2016¢). Both examples underscore that effective hybrid wheat
breeding asks for more resources, for example using molecular markers to aid
backcrosses, to predict untested hybrids, and finally to increase the response
to selection (Longin et al. 2015; Zhao et al. 2015; Liu et al. 2016; Wiirschum
et al. 2017b). Although there is a lot of progress in genotyping technology
and marker costs were decreasing during the last years (Rasheed et al. 2017),

it still remains questionable if smaller breeding companies will be able to take



General Discussion 111

that effort. The fate of these smaller companies will therefore highly depend

on the competitiveness of line versus hybrid varieties in the wheat market.

Generally, before launching a hybrid wheat breeding program, breeding
companies must carefully consider a number of parameters. The final decision
about the usefulness of hybrid wheat is then driven by its genetic potential
as well as by general economic and political conditions. Longin et al. (2014)
compared the expected selection gain and long term competitiveness of hy-
brid versus line breeding under simplifying assumptions and only considering
grain yield. They found that hybrids would be superior in the early years
due to an initial advantage of heterosis, but line breeding would catch up
eventually due to a larger annual selection gain, which is strongly influenc-
ing the competitiveness of hybrid versus line breeding (Longin et al. 2012;
Longin et al. 2013; Longin et al. 2014). This finding illustrates that line
breeding programs and line varieties will likely be able to compete with hy-
brids, especially because a large number of traits other than grain yield need
to be considered. Thus, economic and political factors mainly regarding the
problem of farm saved seeds might be decisive reasons and a major driving

force for wheat breeding companies to shift from line to hybrid breeding.

Nevertheless, it does not need to be a black or white decision. It seems
realistic that both hybrids and lines could co-exist in the future wheat market
because of their different agronomic characteristics. Due to the heterozygous
state of hybrids, it is assumed that they can better buffer environmental
effects and are more yield stable compared to inbred lines, which is also of
interest in the context of climate change. Miihleisen et al. (2014) observed a
higher yield stability in hybrid wheat compared to lines but as indicated by
recent results from Liu et al. (2017) differences between lines and hybrids are
not always statistically significant. Further research is required to reveal the
agronomic performance of hybrids and lines under different environmental
conditions. However, it is likely that hybrid wheat possesses a beneficial per-
formance in more marginal environments while line varieties might maintain

the first choice for wheat production under optimal conditions. Moreover, it
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is likely that line varieties are advantageous for the production of wheat with
very high bread-making quality. In contrast, hybrids are more interesting
for breeding companies in countries where high amounts of farm saved seeds
or the collection of royalties are problematic. These examples underscore a

possible co-existence of lines and hybrids in the wheat market.

To conclude, the exploitation of heterosis in wheat is possible and
promises many advantages. A number of issues still need to be solved but
the basis for hybrid wheat is laid. The near future will show if the theoreti-
cal potential of hybrid wheat could lead to superior varieties boosting global
wheat productivity, and dealing with increasing food demand and climate

change.
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8 Summary

Wheat is one of the top three global staple crops, possesses the largest global
cultivation area, and plays a key role for the world’s future food security.
However, its projected yield increase is insufficient to meet the future food
and feed demand of an ever-growing world population. Consequently, the rate
of breeding progress and productivity of wheat must be increased. Unfortu-
nately, current wheat line breeding has a low return on investment mainly
due to high levels of farm saved seeds, which makes wheat less attractive
for the plant breeding industry and leads to lower investments and progress
compared to other crops where the hybrid technology is established. Hybrid
breeding is a worldwide success story in many crops but is not yet established
in wheat. Hybrid wheat promises increased yield gain due to the exploitation
of heterosis, higher yield stability and stabilized return on investments for
breeding companies which warrants further investment and breeding progress

in this important stable crop.

The self-pollinating nature of wheat is a major bottleneck for hybrid seed
production and efficient hybrid wheat breeding requires the redesign of the
wheat floral architecture to enhance cross-pollination. Furthermore, the long-
term success of hybrid wheat is crucially dependent on the establishment of
heterotic groups, on the identification of a high yielding heterotic pattern,
and finally, on the realized amount of heterosis and hybrid performance.
Therefore, the main objectives of my thesis research were to: (i) analyze

the genetic diversity and adaptation in a global winter wheat collection and
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evaluate how diversity trends could be used to support the development of
heterotic groups in wheat; (ii) assess the relationship between heterosis and
genetic distance under maximized diversity and evaluate the usefulness of
exotic germplasm for hybrid wheat breeding; (iii) dissect the genetic archi-
tecture underlying male floral traits in wheat to enable genomics-assisted
breeding approaches and investigate the trait seed set which is most crucial

for an efficient hybrid seed production.

The analyses of genetic diversity in a large worldwide panel of 1,110 winter
wheat varieties released during the past decades showed no major popula-
tion structure but revealed genetically distinct subgroups. Most of the global
diversity trends could be explained by breeding history and were associated
with geographical origin and long-term domestication. We found that the
frequency of the copy number variants at the Photoperiod-B1 (Ppd-B1) and
the Vernalization-A1 (Vin-A1) loci reflect wheat adaptation to the environ-
mental conditions of the different regions of origin. Thus, adaptation issues
add an additional layer of complexity and hamper the direct introgression of
genetic diversity to support the genetic divergence between heterotic pools.
Based on all these analyses, we proposed HyBFrame, a unified framework
illustrating how global wheat genetic diversity can be used to support and
accelerate reciprocal recurrent selection for the development of genetically

distinct heterotic groups in wheat.

In a second experiment, we produced 2,046 wheat hybrids by crossing
elite with elite lines as well as elite with exotic lines and performed multi-
environmental field trials. Interestingly, we found an average midparent het-
erosis of about 10 % in elite crosses as well as in exotic crosses and observed
no evidence for a breakdown of heterosis under maximized genetic distance
among the hybrid parents. Genetic distance based on genome-wide molecular
markers revealed only a very weak association with midparent heterosis for
grain yield. Here, we elaborated a functional Rogers’ distance giving weight
to heterosis loci and observed a strong positive association between heterosis

and this novel distance measure. Hence, considering the genetic architecture
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of heterosis revealed a more accurate picture of the relationship between het-
erosis and genetic distance. In addition, the genetic architecture of heterosis
in wheat is crucially dependent on the genetic background. We found that a
higher number of negative dominance and dominance-by-dominance epistatic
effects can reduce the level of absolute heterosis in wide crosses between ex-
otic lines and elite testers. Moreover, hybrid performance in wheat is mainly
driven by parental per se performance. Thus, elite lines are favorable for hy-

brid breeding and should be employed as the starting material for heterotic

grouping.

Hybrid seed production is the major bottleneck for hybrid wheat breeding
and explains the low market share of hybrid wheat varieties. Seed set on the
female plants in crossing blocks is the most crucial trait for hybrid seed pro-
duction in wheat. We tested 31 male lines and evaluated the hybrid seed set
on two female tester lines in crossing blocks. Seed set showed a large geno-
typic variation and a high heritability suggesting that recurrent selection for
increased seed set is feasible. The major problem is the synchronized flower-
ing between male and female lines, making the evaluation of seed set in large
panels very complex and difficult. Hence, indirect male floral traits with high
correlation to the trait seed set would be promising to breed for improved
hybrid seed production. We found a strong association between seed set and
visual anther extrusion, underscoring that indirect male floral traits have a
high potential for preliminary male screenings. We also dissected the genetic
architecture underlying promising male floral traits and assessed the poten-
tial of genomics-assisted approaches for their improvement. We employed a
panel of 209 diverse wheat lines and found a complex genetic architecture
underlying all male floral traits. The Reduced height gene Rht-D1 was iden-
tified as the only major QTL, for which the commonly used height-reducing
allele showed negative effects on male floral traits. This genetic architecture
with many moderate- or small-effect QTL limits classical marker-assisted se-
lection. In contrast, genomic prediction yielded moderate to high prediction

abilities for anther extrusion. Finally, we proposed a breeding scheme to in-
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crease cross-pollination in wheat based on a combination of phenotypic and

genomics-assisted selection.

Taken together, hybrid breeding in wheat is a very promising approach
and the next years will show if all of the current issues can be solved. This
thesis research contributed to breeding strategies for hybrid wheat breeding

and to the general understanding of heterosis in crops.



9 Zusammenfassung

Weizen ist eines der drei weltweit wichtigsten Grundnahrungsmittel, be-
sitzt die grofite globale Anbaufliche und spielt eine Schliisselrolle fiir
die zukiinftige Erndahrungssicherheit der Welt. Die vorhergesagten Ertrags-
steigerungen sind jedoch zu gering um der zukiinftigen Nachfrage nach
Nahrungs- und Futtermitteln einer stetig wachsenden Weltbevolkerung ge-
recht zu werden. Folglich miissen der Ziichtungsfortschritt und die Produk-
tivitat des Weizenanbaus gesteigert werden. Die aktuell im Weizen ange-
wandte Linienziichtung hat jedoch durch den hohen Anteil des Nachbau-
saatgutes eine geringe Rentabilitdt, was die Attraktivitat des Weizens fiir
Ziichtungsunternehmen mindert und zu geringeren Investitionen und Fort-
schritt, verglichen mit Hybridkulturarten, fithrt. Die Hybridziichtung ist ei-
ne weltweite Erfolgsgeschichte, aber im Weizen nicht etabliert. Hybridweizen
verspricht erhohte Ertragszuwéachse durch die Ausnutzung der Heterosis, eine
hohere Ertragsstabilitdt und eine stabile Rendite fiir Ziichtungsunternehmen,
was weitere Investitionen und Ziichtungsfortschritt fiir dieses wichtige Grund-

nahrungsmittel gewéhrleistet.

Die selbstbefruchtende Natur des Weizens ist eine entscheidende Ein-
schrankung fiir die Hybridsaatgutproduktion und eine effiziente Hybridwei-
zenziichtung ist auf die Umgestaltung der Weizen-Blithbiologie zur Verbes-
serung der Fremdbefruchtung angewiesen. Dariiber hinaus ist der langfristi-
ge Erfolg des Hybridweizens entscheidend von der Etablierung heterotischer
Gruppen, der Identifikation eines ertragreichen heterotischen Musters, so-

wie der letztendlich realisierten Heterosis und Hybridleistung abhangig. Die
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Hauptziele meiner Dissertation waren daher: (i) die genetische Diversitat und
Adaptation in einer globalen Winterweizen Kollektion zu analysieren und zu
evaluieren wie Diversitatstrends fiir die Etablierung von heterotischen Grup-
pen im Weizen unterstiitzend genutzt werden koénnen; (ii) das Verhéltnis
zwischen Heterosis und genetischer Distanz, unter der Beriicksichtigung ma-
ximaler Diversitit, zu beurteilen und den Nutzen exotischen Zuchtmaterials
fir die Hybridweizenziichtung einzuschétzen; (iii) die genetische Architek-
tur mannlicher Blithmerkmale im Weizen zu untersuchen, um genomisch un-
terstiitzte Zuchtverfahren zu ermoglichen und dartiber hinaus das Merkmal
Saatgutansatz zu untersuchen, welches die entscheidende Rolle fiir eine effi-

ziente Hybridsaatgutproduktion spielt.

Die Analyse der genetischen Diversitat einer weltweiten Weizenkollektion
mit 1,110 Sorten, zugelassen in den letzten Jahrzehnten, zeigte keine Haupt-
populationsstruktur, aber genetisch unterscheidbare Untergruppen. Viele die-
ser globalen Diversitétstrends konnten durch die Ziichtungsgeschichte erklért
werden und waren mit der geographischen Herkunft und der langfristigen
Domestikation assoziiert. Wir konnten zeigen, dass die Kopienzahlvariation
an den Photoperiode-B1 (Ppd-B1) und Vernalisation-A1 (Vin-A1) Loci die
Anpassung des Weizens an verschiedene Umweltbedingungen und die unter-
schiedlichen Herkunftsregionen widerspiegelt. Adaptationsprobleme fithren
daher zu einer erhohten Komplexitdt und verhindern die direkte Einkreu-
zung genetischer Diversitat, um die genetische Divergenz zwischen heteroti-
schen Gruppen zu unterstiitzen. Basierend auf diesen Ergebnissen wurde von
uns der HyBFrame Ansatz vorgeschlagen, ein umfassender Rahmen der be-
schreibt, wie die globale Diversitit des Weizens genutzt werden kann, um die
reziproke rekurrente Selektion zur Entwicklung genetisch unterschiedlicher

heterotischer Gruppen im Weizen beschleunigend zu unterstiitzen.

In einem zweiten Versuch wurden von uns insgesamt 2,046 Weizenhy-
briden von Kreuzungen zwischen Elite-Linien und Kreuzungen zwischen
Elite- und exotischen Linien produziert und anschlieBend in Feldversuchen

in mehreren Umwelten getestet. Interessanterweise fanden wir eine durch-
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schnittliche Heterosis zum Elternmittel von ungefahr 10 % in den Elitekreu-
zungen sowie in den exotischen Kreuzungen und beobachteten keinen Hin-
weis fiir einen Riickgang der Heterosis unter maximaler genetischer Distanz
zwischen den Eltern. Die genetische Distanz basierend auf genomweiten mo-
lekularen Markern zeigte nur eine sehr schwache Assoziation mit der Hete-
rosis zum Elternmittel. Hier wurde von uns eine funktionale Rogers’ Distanz
entwickelt, welche Heterosis Loci besonders wichtet und eine stark positi-
ve Korrelation zwischen Heterosis und dieser neuen Distanzmethode beob-
achten lieB. Die Beriicksichtigung der genetischen Architektur der Heterosis
fithrte daher zu einem deutlich klareren Bild zwischen Heterosis und geneti-
scher Distanz. Zudem ist die genetische Architektur der Heterosis im Weizen
entscheidend vom genetischen Hintergrund des Materials abhéngig. Wir be-
obachteten, dass ein hoheres Ausmafl an negativen Dominanz- und epistati-
schen Dominanz x Dominanz-Interaktionseffekten das Niveau der absoluten
Heterosis in weiten Kreuzungen zwischen exotischen Linien und Elitetestern
reduzieren kann. Dariiber hinaus wird die Hybridleistung im Weizen maf}-
geblich von der elterlichen Eigenleistung bestimmt. Folglich sind Elitelinien
fiir die Hybridziichtung zu favorisieren und sollten als Startmaterial fiir die

heterotische Gruppierung genutzt werden.

Die Hybridsaatgutproduktion ist die entscheidende Einschrankung in der
Hybridweizenziichtung und erklédrt den geringen Marktanteil von Hybridsor-
ten. Der Saatgutansatz auf den weiblichen Pflanzen in Kreuzungsblécken ist
das entscheidende Merkmal. Wir haben 31 Véterlinien fiir ihren Saatgutan-
satz auf zwei Miittertestern in Kreuzungsblocken untersucht. Das Merkmal
Saatgutansatz zeigte eine grofie genotypische Variation und eine hohe Heri-
tabilitdt, was den Einsatz der rekurrenten Selektion zur Verbesserung dieses
Merkmals ermoglicht. Das Hauptproblem ist die Synchronisation der Bliite
zwischen ménnlichen und weiblichen Linien, was die Evaluierung des Saatgu-
tansatzes in groflen Kollektionen sehr komplex und schwierig gestaltet. Da-
her wéren indirekte ménnliche Blithmerkmale mit einer hohen Korrelation
zum Saatgutansatz sehr vielversprechend, um fiir eine verbesserte Hybrid-

saatgutproduktion zu ziichten. Wir fanden eine starke Assoziation zwischen
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Saatgutansatz und visueller Antherenextrusion, was das hohe Potenzial in-
direkter ménnlicher Blithmerkmale fiir erste Bonituren zur Vatereignung un-
terstreicht. Zudem haben wir die genetische Architektur vielversprechender
ménnlicher Blithmerkmale untersucht und das Potenzial von genomisch un-
terstiitzten Ansédtzen zur Verbesserung dieser Merkmale evaluiert. In einer
Kollektion von 209 diversen Weizenlinien fanden wir eine komplexe genetische
Architektur fiir alle ménnlichen Blithmerkmale. Das Kurzstrohgen Rht-D1
wurde als einziges Major-Gen (QTL) identifiziert und das haufig verwendete
Kurzstroh-Allel zeigte negative Effekte fiir ménnliche Blithmerkmale. Diese
genetische Architektur, mit vielen méaflig bis wenig wirkenden QTL, limi-
tiert die klassische markergestiitzte Selektion. Im Gegensatz dazu zeigte die
genomische Vorhersage méflige bis hohe Vorhersagefédhigkeiten fiir Antheren-
extrusion. Schliefllich wurde von uns ein erstes Ziichtungsschema, basierend
auf phanotypischer und genomisch-unterstiitzter Selektion, zur Verbesserung

der Fremdbefruchtung des Weizens vorgeschlagen.

Zusammenfassend ist der Hybridweizen sehr vielversprechend und die
ndchsten Jahre werden zeigen, ob alle aktuellen Probleme gelost werden
konnen. Die vorliegende Arbeit liefert einen Beitrag zu Ziichtungsstrategien
fiir die Hybridweizenziichtung und zum allgemeinen Verstindnis von Hete-

rosis in Kulturpflanzen.
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