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2. Summary 

2. 1. Summary (English) 

Software sensors and bioprocess are well-established research areas which have much to 

offer each other. Under the perspective of the software sensors area, bioprocess can be 

considered as a broad application area with a growing number of complex and challenging 

tasks to be dealt with, whose solutions can contribute to achieving high productivity and high-

quality products. 

Although throughout the past years in the field of software sensors and bioprocess, progress 

has been quick and with a high degree of success, there is still a lack of inexpensive and reliable 

sensors for on-line state and parameter estimation. Therefore, the primary objective of this 

research was to design an inexpensive measurement system for on-line monitoring of ethanol 

production during the backer’s yeast cultivation process. The measurement system is based 

on commercially available metal oxide semiconductor gas sensors. From the bioreactor 

headspace, samples are pumped past the gas sensors array for 10 s every five minutes and 

the voltage changes of the sensors are measured. The signals from the gas sensor array 

showed a high correlation with ethanol concentration during cultivation process.  

In order to predict ethanol concentrations from the data of the gas sensor array, a principal 

component regression (PCR) model was developed. For the calibration procedure no off-line 

sampling was used. Instead, a theoretical model of the process is applied to simulate the 

ethanol production at any given time. The simulated ethanol concentrations were used as 

reference data for calibrating the response of the gas sensor array. The obtained results 

indicate that the model-based calibrated gas sensor array is able to predict ethanol 

concentrations during the cultivation process with a high accuracy (root mean square error of 

calibration as well as the percentage error for the validation sets were below 0.2 gL-1 and 7 %, 

respectively). However the predicted values are only available every five minutes. Therefore, 

the following plan of the research goal was to implement an estimation method for continues 

prediction of ethanol as well as glucose, biomass and the growth rates. For this reason, two 

nonlinear extensions of the Kalman filter namely the extended Kalman filter (EKF) and the 

unscented Kalman filter (UKF) were implemented separately for state and parameter 

estimation.  Both prediction methods were validated on three different cultivation with 

variability of the substrate concentrations. The obtained results showed that both estimation 

algorithms show satisfactory results with respect to estimation of concentrations of substrates 
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and biomass as well as the growth rate parameters during the cultivation. However, despite 

the easier implementation producer of the UKF, this method shows more accurate prediction 

results compared to the EKF prediction method. 

Another focus of this study was to design and implement an on-line monitoring and control 

system for the volume evaluation of dough pieces during the proofing process of bread 

making. For this reason, a software sensor based on image processing was designed and 

implemented for measuring the dough volume. The control system consists of a fuzzy logic 

controller which takes into account the estimated volume. The controller is designed to 

maintain the volume of the dough pieces similar to the volume expansion of a dough piece in 

standard conditions during the proofing process by manipulating the temperature of the 

proofing chamber. Dough pieces with different amounts of backer’s yeast added in the 

ingredients and in different temperature starting states were prepared and proofed with the 

supervision of the software sensor and the fuzzy controller. The controller was evaluated by 

means of performance criteria and the final volume of the dough samples. 

The obtained results indicate that the performance of the system is very satisfactory with 

respect to volume control and set point deviation of the dough pieces. 
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2.2. Zusammenfassung 

Softwaresensoren und Bioprozese sind gut etablierte Forschungsgebiete, die sich gegenseitig 

viel befruchten können. Unter dem Blickwinkel der Softwaresensorik kann der Bioprozess als 

ein breites Anwendungsgebiet mit einer wachsenden Zahl komplexer und anspruchsvoller 

Aufgabenstellungen betrachtet werden, deren Lösung zur Erzielung hoher Produktivität und 

qualitativ hochwertiger Produkte beitragen kann. Obwohl in den letzten Jahren auf dem 

Gebiet der Softwaresensoren und des Bioprozesses rasch und mit großem Erfolg 

Untersuchung erzielt wurden, fehlt es immer noch an kostengünstigen und zuverlässigen 

Sensoren für die Online-Zustands- und Parameterschätzung. Daher war das primäre Ziel dieser 

Forschung die Entwicklung eines kostengünstigen Messsystems für die Online-Überwachung 

der Ethanolproduktion während des Kultivierungsprozesses von Backhefe. Das Messsystem 

basiert auf kommerziell erhältlichen Metalloxid-Halbleiter-Gassensoren. Die Headspace-

Proben des Bioreaktors werden alle fünf Minuten für 10 s an der Gassensor-Anordnung 

vorbeigepumpt und die Spannungsänderungen der Sensoren werden gemessen. Die Signale 

des Gassensorarrays zeigten eine hohe Korrelation mit der Ethanolkonzentration während des 

Kultivierungsprozesses.  

Um die Ethanolkonzentrationen aus den Daten des Gassensorarrays vorherzusagen, wurde 

ein Hauptkomponenten-Regressionsmodell (PCR) verwendet. Für das Kalibrierungsverfahren 

ist keine Offline-Probenahme notwendig. Stattdessen wird ein theoretisches Modell des 

Prozesses genutzt, um die Ethanolproduktion zu jedem beliebigen Zeitpunkt zu simulieren. 

Die kinetischen Parameter des Modells werden im Rahmen der Kalibration bestimmt. Die 

simulierten Ethanolkonzentrationen wurden als Referenzdaten für die Kalibrierung des 

Ansprechverhaltens des Gassensorarrays verwendet. Die erhaltenen Ergebnisse zeigen, dass 

das modellbasierte kalibrierte Gassensorarray in der Lage ist, die Ethanolkonzentrationen 

während des Kultivierungsprozesses mit hoher Genauigkeit vorherzusagen (der mittlere 

quadratische Fehler der Kalibrierung sowie der prozentuale Fehler für die Validierungssätze 

lagen unter 0,2 gL-1 bzw. 7 %). Die vorhergesagten Werte sind jedoch nur alle fünf Minuten 

verfügbar. Daher war der folgende Plan der Untersuchung die Implementierung einer 

Schätzmethode zur kontinuierlichen Vorhersage von Ethanol sowie von Glukose, Biomasse 

und der Wachstumsrate. Aus diesem Grund wurden zwei nichtlineare Erweiterungen des 

Kalman Filters, nämlich der erweiterte Kalman Filter (EKF) und der unscented Kalman Filter 

(UKF), getrennt für die Zustands und Parameterschätzung implementiert.  Beide 
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Vorhersagemethoden wurden an drei verschiedenen Kultivierungen mit Variabilität der Start 

substratkonzentrationen validiert. Die erhaltenen Ergebnisse zeigen, dass beide 

Schätzungsalgorithmen zufriedenstellende Ergebnisse hinsichtlich der Schätzung der 

Konzentrationen von Substraten und Biomasse sowie der Parameter der Wachstumsrate 

während der Kultivierung ermitteln. Trotz der einfacheren Implementierung des UKF zeigt 

diese Methode jedoch genauere Vorhersageergebnisse im Vergleich zur EKF-

Vorhersagemethode. 

Ein weiterer Schwerpunkt dieser Untersuchung war der Entwurf und die Implementierung 

eines Online-Überwachungs- und Regelungssystems für die Volumenauswertung von 

Teigstücken während des Gärprozesses bei der Brotherstellung. Aus diesem Grund wurde ein 

auf Bildverarbeitung basierendes Überwachungssystem zur Messung der 

Teigvolumenauswertung entworfen und implementiert. Das Regelsystem besteht aus einem 

Fuzzy-Logic-Controller, der das gemessene Volumen für die Regelung nutzt. Die Regelung ist 

so ausgelegt, dass das Volumen der Teiglinge mit Werten des Volumens eines Teiglings unter 

Standardbedingungen während des Gärprozesses vergleicht und die Temperatur der 

Gärkammer entsprechend anpasst. Teiglinge mit unterschiedlichen Hefemengen in den 

Zutaten und verschiedenen Temperaturstartwerten wurden vorbereitet und unter 

Anwendung des Fuzzy-Reglers gegärt. Der Regler wurde anhand von Leistungskriterien und 

dem Endvolumen der Teigproben bewertet. 

Die erhaltenen Ergebnisse zeigen, dass die Leistung des Systems in Bezug auf die 

Volumenregelung und die Sollwertabweichung der Teigstücke sehr zufriedenstellend ist. 
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3. Introduction and outline 

3. 1. Introduction 

3. 1. 1. Software sensors 

Successful operation, control and optimization of biotechnological process depend on reliable 

real-time available measurements of the process variables. Although some hardware sensors 

are readily available, they often have several drawbacks: cost, sample destruction, discrete-

time measurements, processing delay, sterilization, disturbances in the hydrodynamic 

conditions inside the bioreactor, etc. It is therefore of interest to use software sensors 

(Bogaerts and Wouwer 2003; Venkateswarlu 2005). The central idea behind a software sensor 

is to use easily accessible on‐line data for the estimation of other process variables that are 

either difficult to measure or only measured at low frequency (Kadlec et al., 2009).  

A schematic diagram demonstrating the main components of a software sensor as defined in 

Luttmann et al. (2012) is shown in Figure 1. 

 

 

 

 

 

 

 

Fig. 1. Software sensor structure 

As illustrated in Figure 1, a software sensor consists of one or more hardware (physical) sensor, 

knowledge of the process and an estimator. In the following parts of this sections, a brief 

overview of the individual elements of a software sensor are presented. 

3. 1. 1. 1. Process knowledge 

A critical element of a software sensor is the available knowledge. In any kind of process, 

knowledge is defined as the ability to describe relationships between critical process variables 
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be expressed through mathematical models (Studer et al., 1998). 

   sensor 
calibration 

available knowledge 

frequent  
estimates 

bioprocess 

   operation 
  parameters 

 process   
 variables 

  estimator 
hardware  
 sensor/s 

𝑥ො, 𝑦ො 

𝑥,  𝑦 𝑚 

   infrequent 
measured data 

software sensor 

𝑢 



10 
 

According to the paradigms that are employed, bioprocess models are classified as 

mechanistic, empirical (data-driven) and hybrid models. A short description of these models 

are as follows: 

• Mechanistic models 

In simple terms, mechanistic models are description of the biological phenomenon of a 

bioprocess using microscopic mass balance formulated by means of a set of ordinary 

differential equations, in which the rates of biochemical transformations (in the mass balance 

equations) are described by kinetic models. Most of these kinetic models are built upon a few 

classic models such as the Monod model, the Droop model, and the logistic model (Vatcheva 

et al., 2006). Due to their good data‐fitting abilities across a wide range of bioprocesses, these 

models are still widely applied for monitoring, control and optimization of bioprocesses. 

However mechanistic models possess poor predictive capabilities for highly nonlinear and 

complex biological systems (del Rio‐Chanona et al., 2019). This is caused by the construction 

principles of the kinetic models, which lump hundreds of metabolic pathways into just a few 

parameters which are assembled in a simple model structure. Furthermore, as metabolic 

pathways are strongly dependent on the cultivation conditions, any changes in these 

conditions also have an impact on the values of the model parameters. Therefore, the 

estimated parameters from one specific set of data may no longer apply to the same system 

operated under a different operating condition (Fouchard et al., 2009; Adesanya  et al., 2014). 

• Empirical models 

Empirical models are based on direct measurement and extensive data records. Compared 

with kinetic models, empirical models contain more parameters and structures for data 

regression, enabling the inclusion of distinct process behaviours collected at different 

operating conditions in a single model. This allows the model to accurately interpolate the 

performance of untested new processes operated over a range of operating conditions (Zhang 

et al., 2019). The drawbacks of the empirical models is firstly they are heavily reliant on the 

quality and quantity of data sets. Second, most empirical models calculate the values of state 

variables at fixed time intervals. However, data sampled at a plant are often obtained at 

different time intervals, which would result in missing information for empirical model 

construction (Baughman and Liu, 2014).  
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• Hybrid models 

Most bioprocesses deal with a high number of process variables and uncertainties. Therefore, 

it is difficult to describe the process only with kinetic equations. In hybrid models which are 

based on macroscopic mass balance equations, the biochemical transformations rates are 

described by means of a machine learning tool such artificial neural networks and/ or fuzzy 

logic algorithms. Machine learning tools would consider the influence of more process 

variables on the conversion rates, resulting in more reliable values. 

In terms of application of the models, models are classified as dynamic and static models. 

Dynamic models include differential equations, typically over time or location coordinates 

which allow prediction. Static models are correlations which cannot provide time-dependent 

simulation results. Hence, they are not applicable for prediction over time or location, they 

are not commonly applied in bioprocess development (Kroll et al., 2017). 

3. 1. 1. 2. Measurement system 

• Measurement type 

There are different ways of performing a measurement and taking samples from a bioprocess. 

These methods can be categorized as in-line, at-line or off-line as illustrated in Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Different types of sampling methods in bioprocess. Adapted from Claßen et al., 2017. 

 in-line 
(in-situ) 

Filtration probe/  
sampling unit 

in-line probe 

at-line 

      in-line 

(non-invasive) 

analyzer 

off-line 

bypass 



12 
 

Off-line measurements are collected manually or automatically and then transferred to the 

laboratory to be analysed. This causes long time delays, so that such measurements cannot 

contribute to the control of the dynamic process behaviour (Claßen et al., 2017; Lourenço et 

al., 2012). 

An in-line sensor produces data continuously, and it is in direct contact with the process 

medium or separated from the bioreactor by a bypass (non-invasive sensor). By providing 

continuous information, these sensors are enablers of continuous process control.  

An at-line sensors analyse samples near to the bioreactor. Samples are collected regularly 

(manually or automatically) and are transported to the analysis system for further analysis. 

Data are generated according to the analysis frequency at certain time intervals. 

• Sensor type 

Bioprocess variables can be measured in the gas, liquid, and solid phases of a bioprocess with 

a wide variety of measurement techniques (Fig. 3). In the gas-phase, monitoring of several 

gases, especially oxygen, ethanol and carbon dioxide, is important. The changes in the 

concentrations of these gases provide information about cell growth, metabolism, and 

productivity. In the liquid phase, the concentrations of various nutrients, metabolites and 

products, as well as dissolved gases like oxygen and carbon dioxide, must be monitored. This 

monitoring can be performed with in-line sensors or via the large variety of analytical systems 

available in chemical and biochemical laboratories. The biomass which is the most important 

variable in a bioprocess is a representative of the solid phase. The biomass can be 

characterized by its concentration or, more importantly, by its metabolic activity. Different 

analytic methods such as turbidity sensors, impedance sensors and NMR spectroscopy are 

used to determine the biomass concentration (Biechele et al., 2015). 
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Figure 3. Schematic of bioprocess monitoring techniques. NIR near-infrared spectroscopy, FTIR 
Fourier-transform infrared spectroscopy, HPLC high-performance liquid chromatography, ELISA 
enzyme-linked immunosorbent assay, GC gas chromatography, MS mass spectrometry, PTR-MS 
proton transfer reaction mass spectrometry, MALDI-TOF-MS matrix-assisted laser desorption 
ionization time-of-fight mass spectrometry, NMR nuclear magnetic resonance, FIA flow-injection 
analysis. Adapted from Veloso & Ferreira, (2017). 
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• Component balance based methods 

By these methods, estimations are carried out using theoretical and experimental derived 

relationships between the measured variables and the estimated values. The basic feature of 

this method is to represent the conversion of substrate to cell mass by reasonable 

assumptions regarding the regulatory structure of the organism (Zhao, 1996; Venkateswarlu, 

2005). 

• Observer based methods 

Observers are used as state estimators in deterministic system (no randomness is involved in 

the development of estimated states of the process). As one of the basic state estimation 

methods, the Luenberger observer has been provided by David. G. Luenberger (Luenberger, 

1964) to solve the problem of state estimation of deterministic linear systems (Wang et al., 

2016). The principle of the Luenberger observer is that by combining a known measurement 

with knowledge of the process (process mathematical model), the process state can be 

estimated. 

Consider the following linear discrete-time system.  

𝒙[𝑘]  = A𝒙[𝑘−1] + B𝑢[𝑘−1]  (1) 

where 𝑥[𝑘]   is the process state vector, 𝒖[𝑘−1] is an input vector and A and B are matrices with 

proper dimensions. Outputs of the system are functions of the state vector 𝒙[𝑘]  and are 

represented with the vector 𝑧[𝑘]  :  

𝒛[𝑘]  = H𝒙[𝑘]    (2) 

 

Where matrix H is the measurement matrix which relates the process states to the 

measurements. 

The observer model of the system can be derived from the above equations. 

Using the initial conditions of the state variables, the state 𝒙[𝑘]  and the outputs 𝒛[𝑘]  can be 

simulated in response to a time sequence of inputs. However, the predicted values would 

differ from the actual outputs of the system if the model parameters are not exactly known. 

The Luenberger observer is a real-time simulator with a feedback mechanism for recursively 

correcting its estimated state by determining the prediction error, which reflects the 

discrepancy between the output of the system 𝒛[𝑘] and the predicted measurements H𝒙[𝑘].  
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The prediction error is then multiplied by the matrix L (observer gain) and fed back to the state 

equation. The state of the observer (estimated state) and the output of the state are defined 

with the following equations. 

𝒙𝑂,[𝑘]  =  A𝒙𝑂,[𝑘−1] + B𝑢[𝑘]  +  L(𝒛[𝑘]  −  H𝒙[𝑘])  (3) 

𝑧𝑂,[𝑘]  =  H𝒙𝑂,[𝑘] 
  (4) 

Where 𝒙𝑂,[𝑘] is the current observed state, 𝒙𝑂,[𝑘−1] is the previous observed state and 𝒛𝑂,[𝑘] 

is the observed outputs.    

Note that the observer gain matrix (L) remains constant throughout the whole process and is 

selected using methods such as pole placement. Once setup correctly, the Luenberger 

observer is capable of generating estimates accurately. 

As already mentioned, the Luenberger observer is designed and implemented in linear 

systems. Most bioprocesses often include nonlinearities. Therefore, the Luenberger observer 

cannot provide satisfactory results for such systems. Nonlinear observers are better suited for 

state estimation in nonlinear processes. 

 Nonlinear observers can be classified in two major classes namely the Luenberger-based 

observers and the finite-dimensional system observers. 

The Luenberger-based observers involves the extended versions of the classical Luenberger 

observer (Dochain, 2003; Alonso et al., 2004; Tronci et al., 2005, Fissore et al., 2007, Vries et 

al., 2010). The extended Luenberger observer (ELO), sliding mode observer (SMO), adaptive 

state observer (ASO), generic and back stepping observers are examples of observers falling 

into this class. This type of observer is suitable for less complex linear systems with relatively 

simpler computational methods (Bejarano et al., 2007).  

The second category is the finite-dimensional system observers, which include the reduced-

order, low-order, high-gain, asymptotic and exponential observers. These finite-dimensional 

system observers are designed for processes whose dynamics are described by ordinary 

differential equations (ODEs) (Bitzer and Zeitz, 2002).  

The attributes, advantages and limitations according to each method are given in Ali et al. 

(2015).  The main difference between each method is  according to their ability to take into 

account the measurement errors, to the necessity of using an accurate model for the reaction 

kinetics (Bogaerts, 1999), to the fact that they are only based on local approximations 
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(linearization of the nonlinear models) or not (Gauthier et al., 1992) ) and to their speed of the 

estimation convergence which can be arbitrarily fixed or is only depending on the culture 

conditions (Bastin and Dochain, 1991; Bogaerts and Hanus, 2001). 

• Kalman filter based methods  

The Luenberger’s state observer is strictly used for state estimation in deterministic systems. 

In most bioprocess systems, the process model as well as the sensor (physical) output are to 

some extent disturbed by noise. For such systems, Kalman filter based methods are used as 

state estimators (randomness is involved in the development of estimated states of the 

process). 

The Kalman filter is used to provide optimal estimates of unmeasured states for time varying 

linear systems in the presence of noise (stochastic systems) by combining information from a 

process mathematical model with on-line process measurements.  

In the Kalman filter, the process model defines the evaluation of the state from time k – 1 to 

time k as:   

𝐱[k] = A𝐱[k−1] + B𝐮[k−1] + 𝐰[k−1]  (5) 

Where 𝒙 is the state vector, 𝒖 is the process input and 𝒘 is the Gaussian process noise vector 

that is assumed to be zero-mean with the covariance 𝑄. Matrix A relates the state at the 

previous time step k-1 to the state at the current step k, matrix B relates the control input to 

the state variables 𝒙.  

The process model is paired with the measurement model that describes the relationship 

between the state and the measurement at the current time step k as: 

𝐳[k] = C𝐱[k] + 𝐯[k]  (6) 

Where 𝐳[k] is the output of the system, matrix C is the measurement matrix which relates the 

process state 𝐱[k] to the measurements and 𝒗 is the Gaussian measurement noise vector 

which is assumed to be zero-mean with the covariance 𝑅.  

The Kalman filter algorithm consist of two recursive steps. The flow chart of the Kalman filter 

algorithm is presented in Figure 4. 
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Figure 4. Kalman filter flowchart. 

In the first step (the prediction step), the process model is used to predict the state variables 

and the estimation error covariance’s by the following equations.    

𝐱[k] = A𝐱[k−1] + B𝐮[k − 1]  (7) 

P[k] = AP[k−1]A
T + Q  (8) 

In the above equations 𝒙[𝒌] is the state variables estimate at time k which is deduced from a 

previous estimation of the state 𝒙[𝒌−𝟏] at time k - 1. The new term P is called the state error 

covariance matrix which encrypts the error covariance of the predicted state values. 𝐏[𝒌] is 

the new prediction error covariance matrix at time k and 𝐏[𝒌−𝟏] is the previous estimated error 

covariance matrix at time k - 1. Whenever a measurement is available a correction step is 

performed. 

In the correction step the predicted model estimates are combined with the measured values 

to provide corrected estimates by the following equations. 

 𝐾[𝑘] = 𝑃[𝑘]𝐶(𝑅 + 𝐶𝑃[𝑘]𝐶
𝑇)

−1
   (9) 

𝑃𝑓,[𝑘] = 𝑃[𝑘](1 − 𝐾[𝑘]𝐻)
2

+ 𝐾2𝑅  (10) 

𝒙𝑓,[𝑘] = 𝒙[𝑘] +  𝐾[𝑘](𝒛[𝑘]  −  𝐶𝒙[𝑘])  (11) 

First the measurement prediction error which reflects the discrepancy between the true 

outputs 𝒛[𝑘] and the predicted outputs 𝐶𝒙[𝑘] is calculated and multiplied by the so called 

Kalman gain K[k] to update the estimated state variables. Therefore the filtered state variables 
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𝒙𝑓,[𝑘] are obtained. In the similar manner the filtered estimation error covariance 𝑃𝑓,[𝑘] is 

obtained. The Kalman gain 𝐾[𝑘] is chosen to minimise the estimated error covarianc and unlike 

the Observer gain, 𝐾[𝑘] is continuously changed with each iteration to converge the states 

rapidly in a robust manner. 

With the filtered values as initial condition, the simulation of the process as well as the 

estimation error covariance’s can be carried out until the next measurement is obtained and 

everything repeats again.  

• Artificial neural network based methods  

Artificial neural networks (ANN) are powerful tools for state estimation in highly nonlinear 

dynamic systems. The main advantage of ANN-based methods for state estimation is that they 

do not need any prior knowledge about the kinetic growth rate, but the disadvantage is the 

large amount of data sets required for training and testing the neural network. 

Neural networks are comprised of a great number of interconnected neurons (nodes). The 

choice of the architecture of the network depends on the task to be performed. For modelling 

of physical systems, a feedforward layered network is normally used which has an input layer 

containing multiple or single inputs, at least one hidden layer and an output layer containing 

multiple or single outputs. The input layer receives information from an external source and 

passes the information to the network for processing, the hidden layer receives information 

from the input layer and does all the information processing and the output layer receives the 

processed information from the network, and sends the result out to an external receptor 

(Baughman and Liu, 2014).  

Each neuron is a processor which performs a weighted sum of all inputs from other neurons 

or from outside of the network. Predictions are obtained by passing the weighted sum through 

a nonlinear transfer function (sigmoid, hyperbolic tangent, sinusoid, threshold, etc.) (Thibault 

et al., 1990). The predicted values are then subtracted from the desired values to calculate 

the prediction error. The prediction error is minimized by performing iterations so that the 

network is optimized. 

• Fuzzy logic based methods  

Fuzzy logic systems are intelligent models based on fuzzy sets and fuzzy logic (Zadeh 1965), 

which have a wide range of applications, e.g., pattern recognition, intelligent control, data 

mining (Zhang et al., 2017). Fuzzy logic systems can also be used for state estimation by 
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mapping the input and output of a system, using a set of fuzzy rules and a corresponding 

inference mechanism. 

Similar to ANN based methods, fuzzy logic based methods do not need any prior knowledge 

about the kinetic growth rate. However, fuzzy logic gains superiority over neural networks as 

system complexity increases because it allows for an easier design, system identification, and 

reassignment after a change. Moreover, fuzzy rules can process numerical as well as symbolic 

data and offers some transparency (Patnaik, 1997; Georgieva and de Azevedo, 2009). 

3. 1. 2. Gas sensor array  

The analysis of fermenter exhaust gas can be used to obtain important knowledge about the 

microbial activity. For instance, in the aerobic fermentation of baker's yeast, carbon dioxide 

and water is produced from glucose, and in anaerobic fermentation, ethanol is produced.  

Ethanol may be also produced in the aerobic fermentation if excess glucose is presented. 

Production of ethanol is unwanted since it may inhabit growth of microorganisms. An absence 

of dissolved oxygen would indicate a situation where fermentation conditions are anaerobic. 

Therefore, measurement of oxygen, CO2 and ethanol concentrations are crucial in order to 

have an optimized processing.   

Many researches have been dedicated to design and implementation of measurement devices 

for oxygen and carbon dioxide analyses in bioprocesses and many commercial sensors are 

already available. However, there is still a lack of a cheap, reliable and accurate measurement 

device for on-line measurement of ethanol concentration for bioprocesses.  

Infrared gas analysers could be used for measuring ethanol concentrations in the gaseous 

phase. The infrared gas analyser measures trace gases by determining the absorption of an 

emitted infrared light source through the air sample. The main drawback of this method is 

that the outlet gas of a bioreactor contains a considerable amount of moisture, which would 

negatively affect the absorption of the emitted infrared light source. An alternative method is 

using gas sensor arrays (GSA) also known as electronic nose.  

A GSA is an instrument consisting of an array of reversible but only semi-selective gas sensors 

coupled to a pattern recognition algorithm (Persaud and Dodd 1982).  

A variety of sensor types such as conducting polymer sensors (CP), piezoelectric surface 

acoustic wave (SAW), thickness shear mode (TSM), metal oxide semiconductor (MOS), metal 

oxide semiconductor field effect transistor (MOSFET) and electrochemical (EC) sensors could 
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be used in a GSA. Due to the low cost and simple working principle of metal oxide gas sensors, 

they are the most employed type of sensors in GSA.  

In MOS, the metal oxide material simply measures the change of resistance. Usually, oxygen 

molecules will attract free electrons in metal oxide material, forming oxygen ions. In this 

process, free electrons inside the materials are consumed, resulting in band bending and an 

electron depletion region at the materials surfaces. The target gas molecules are either acting 

as reducing gas or oxidizing gas, corresponding to donor or acceptor of charge carriers. When 

the materials are placed in the environment of these gases, the resistance of the 

semiconductor metal oxide will increase or decrease depending upon the type of majority 

carriers in the sensing materials and types of target gases (Shankar and Rayappan, 2015; Chen 

et al., 2019). 

The performance improvement of GSA system mainly contains two kinds of optimization: 

sensitive material selection (sensor array optimization) and signal processing and data 

evaluation (Fig. 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Performance improvement steps of a GAS system. 
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For selecting the sensors in a GSA, a typical approach is to first analyse the chemical 

composition of the samples and then select sensors which are responsive to those chemical 

groups with cross sensitivity to form the sensor array. Then from this, the sensors are tune 

and adjust in the array according to the responses, which is called sensitive material selection 

and sensor array optimization (Yan et al., 2015). 

Signal processing and data evaluation is a key point of performance improvement of a GSA 

system.  A basic signal processing and data evaluation structure of a GSA system contains the 

following main steps 

• Data pre-processing 

Signal pre-processing is used to prepare the data for further processing. This can involve noise 

reduction and smoothing the raw signals and to line arise the signals output to compensate 

for concentration fluctuations in the response vector by using a normalisation procedure. The 

functions carried out in this step should be considered carefully, as the quality of some aspects 

of the data will be improved while others are diminished. For example, normalization will 

make each set of data directly comparable; however weak signals dominated by noise will 

have their relative noise magnified greatly (Hines et al., 1999; Gardner and Taylor, 2009). 

• Feature extraction 

The aim of feature extraction is to extract robust information from the characteristic sensor 

response with less redundancy, which can represent the different “fingerprint” patterns well, 

to ensure the effectiveness of the subsequent pattern recognition algorithm.  There are many 

feature extraction methods which have been used in E-nose applications. Most of these 

feature extraction methods can be roughly divided into three types: the first type is to extract 

signal features such as maximum values, integrals, differences and derivatives from the 

original response curves of sensors. The second type is based on curve fitting, which fits the 

response curves based on a specific model and extracts a set of fitting parameters as the 

features. The third one is based on some transforms, and very often the fast Fourier transform 

(FFT) and the discrete wavelet transform (DWT) (Llobet et al., 1997; Llobet et al., 2002; Carmel 

et al., 2003; Yan et al., 2015). 
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• Dimensionality reduction  

The aim of dimensionality reduction is to find a low-dimensional mapping that preserves most 

of the information in the original feature vector. In the field of artificial olfaction, principle 

components analysis and discriminant function analysis are commonly used. These evaluation 

procedures present high-dimensional data sets in a manner so that there is maximum variance 

in a minimum number of dimensions (Musatov et al., 2010; Hartyáni et al., 2013). 

• Pattern recognition  

The response vector generated by the sensor array are then analysed using a pattern 

recognition technique (PRT). The PRT methods may be divided into supervised and non-

supervised methods although a combination of both can be used. 

In most cases there are two stages used in the pattern recognition process. First, the output 

of the sensor array is tagged with a descriptor and the classes are learned and grouped 

according to their description. Then the response from an unknown vector may be classified 

using the relationship found from the known vector.  This process is known as supervised 

learning. Artificial neural network (ANN) is the best-known supervised technique.  

In unsupervised learning there are no descriptors, the classes are learned based on some form 

of similarity measures. The most applied unsupervised technique is principal component 

analyses (PCA) (Scott et al., 2006; Peris and Escuder-Gilabert, 2009). 

3. 1. 3. Baker’s yeast fermentation 

Bakers’ yeast is a generic name for yeast products used primarily for leavening purposes which 

are strains of Saccharomyces cerevisiae. These organisms are single celled fungi which 

reproduce by budding and bear their sexual spores in an ascus. As fungi, yeasts are eukaryotic 

organisms distinct from more primitive prokaryotic organisms (Trivedi et al., 1986). 

Baker’s yeast production is one of the oldest food biotechnologies and may be considered as 

a “ripened technology” (Gélinas, 2012).  

The objective of baker’s yeast manufacturing is to harvest as fast as possible the highest 

amount of living cell mass at the lowest cost. First, fermentation tanks must be seeded with 

the strongest and purest microbial starters, otherwise unwanted microorganisms will be 

harvested instead. Second, such microorganisms must be fed under thoroughly controlled 

conditions to optimize yeast biomass and gassing power enough to raise dough, otherwise 

bakers will experience variations in bread volume (Gélinas, 2014). The yeast is recovered from 
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the final fermenter by using centrifugal action to concentrate the yeast solids. The yeast solids 

are subsequently filtered by a filter press or a rotary vacuum filter to concentrate the yeast 

further. Next, the yeast filter cake is blended in mixers with small amounts of water, 

emulsifiers, and cutting oils. After this, the mixed press cake is extruded and cut. The yeast 

cakes are then either wrapped for shipment or dried to form dry yeast (Barker and Williamson, 

1992). 

The fermentation of bakers’ yeast can be performed in three different modes: continuous, 

batch and fed-batch. The continuous modes is based on the continuous addition of substrate 

and simultaneous removal of the products. In a batch mode no substrate is added to the initial 

charge, nor is any product removed, until the end of the process. In the fed-batch operation 

substrate is fed either through injections or continuously during fermentation and the product 

is removed at the end of the process (Reyman, 1992).  

When S. cerevisiae is grown aerobically using glucose as substrate, biomass and ethanol are 

produced and a diauxic pattern can be observed. After depletion of glucose, ethanol is 

consumed by the cells (Zhang et al., 1997). Accordingly, a mathematical model that reflects 

the ethanol and biomass production and glucose consumption during batch cultivation of S. 

cerevisiae in an ideal stirred tank reactor can be described by the following equations (Solle et 

al., 2003).  

 

d𝑋

d𝑡
=  𝜇𝐺𝑋 +  𝜇𝐸𝑋  (10) 

d𝐺

d𝑡
=  −

𝜇𝐺𝑋

𝑌𝑋/𝐺
  (11) 

d𝐸

d𝑡
=  

𝜇𝐺𝑋

𝑌𝐸/𝐺
−  

𝜇𝐸𝑋

𝑌𝑋/𝐸
  (12) 

 

                                              
Here G, E and X are the glucose, ethanol and the biomass concentrations, respectively. μG and 

μE are the specific growth rates on glucose and ethanol, respectively. YX/G, YE/G and YX/E are 

the yield coefficients with respect to the conversion from glucose to biomass, glucose to 

ethanol and ethanol to biomass, respectively.  

The diauxic growth can be considered in the model by the fact, that μG is only greater than 

zero if glucose is present, and then there is no growth on ethanol (μE = 0 h-1) (glucose 
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repression). If glucose has been consumed, then the cells have just ethanol as the only carbon 

source, so μG = 0 h-1 but μE is greater than zero until ethanol is consumed. The above 

assumptions can be formulated into the following equations:  

 

                                                                                                                                (13)         

 

 

                                                                                                                                (14)         

 

In order to perform a simulation of the process, the parameters of the model should be 

determined. Typical values of the yield coefficients can be found in literature.  

In a fed-batch process, substrate feed rate plays a significant role to attain a high productivity 

of cultivation processes. The below equations are a theoretical model of a fed-batch process 

(Kristensen, 2002). 

d𝑋

d𝑡
=  𝜇𝑆𝑋 −  

𝐹𝑋

𝑉
  (15) 

d𝑆

d𝑡
=  −

𝜇𝑆𝑋

𝑋/𝑆
+  

𝐹(𝑆𝐹 − 𝑆)

𝑉
   (16) 

d𝑉

d𝑡
=  𝐹     (17) 

𝐹 =  
𝜇𝑆𝑋𝑉

𝑌𝑋/𝑆(𝑆𝐹 − 𝑆𝑐𝑜𝑛𝑠𝑡)
−  

𝜇𝐸𝑋

𝑌𝑋/𝐸
 ,  if 

d𝑆

d𝑡
=  0 

(18) 

 

where 𝑋 is cell mass, 𝑆 is substrate concentration, 𝑉 is working volume and 𝐹 is a substrate feed 

rate. 𝜇𝑠 is the specific growth rate on the substrate. 𝑌𝑋/𝑆 and 𝑌𝑋/E are the yield coefficient for the 

substrate with respect to biomass and ethanol respectively. 𝑆𝐹 is the substrate concentration of 

the feed solution. 𝑆𝑐𝑜𝑛𝑠𝑡 is the substrate concentration in the bioreactor at the start of a fed-batch 

process. 

On-line monitoring and control of fed-batch cultivations have been studied and reported 

extensively in literature (Veloso et al., 2009; Jianlin et al., 2010; Dewasma et al., 2013; Lisci et 

al., 2020). On-line monitoring of batch cultivation is also crucial in order to monitor the state 

and if necessary change the operation conditions to achieve high productivity over the 

process. However, on-line monitoring and state estimation in batch cultivations remains 
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briefly addressed in the literature. Therefore, the focus of this study was to design and 

implement software sensors for the batch cultivation process of S. cerevisiae.  

3. 1. 4. Dough fermentation 

Dough is a multiphase and multicomponent system mainly composed of carbohydrates, 

proteins, lipids, water and air. The dough ingredients, as well as the processing conditions, 

determine the macroscopic structure of baked products which, in turn, is responsible for their 

appearance, texture, taste and stability. To build up this structure, the ingredients are mixed 

and kneaded, the dough leavened and baked (Autio and Laurikainen, 1997; Romano et al., 

2007). Since the fluffiness and the flavour of the final product is influenced very much during 

leavening process, this step is one of the quality-determining steps in the production of baking 

goods. Leavening is done by CO2 production which is associated with yeast activity. The 

produced CO2 is penetrated and trapped in the viscoelastic texture of the dough which results 

in the dough volume expansion. A desirable loaf volume is achieved only if the dough provides 

a favourable environment for yeast growth and gas generation and, at the same time, 

possesses a gluten matrix capable of maximum gas retention (Sahlström et al., 2004).  

The production of fermentation metabolites in dough can be affected by different factors, 

including availability of fermentation sugars in dough, ingredients/ recipe of the dough, dough 

fermentation conditions, yeast growth conditions, and the genetic makeup of the yeast strain 

(Struyf et al., 2017).  

The control and optimization of the leavening process in the bread-making ensures final 

texture and quality of the backed products. In order to implement a control strategy, two 

major elements are required; a measurement device and a mathematical model. 

For measuring the volume evaluation of dough during the fermentation process, several 

methods have been reported in literature. Some author’s follow the evolution of the volume 

or height of the dough sample to characterize this phase (Kilborn et al., 1981). Some authors 

study the microstructure of the bread dough sample using radio-graphic methods like X-rays 

(Babin et al., 2006) and magnetic resonance imaging MRI (Bonny et al., 2004) or microscopic 

methods like scanning electron microscope SEM (Gan et al., 1995). In these methods, the 

fraction of the volume occupied by the gas on 2D (or 3D) images is measured to characterize 

the fermentation phase (Skaf et al., 2009). 

For the mechanistic mathematical description of the volume evolution during the proofing 

process, certain assumptions are necessary: the dough has a Newtonian behavior, so the 
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Bernoulli equation can be used complemented by the continuity equation, during kneading 

just nitrogen is introduced into the dough (no CO2), the bubbles are spherical and 

homogeneous distributed over the dough, no new bubbles are built during fermentation, all 

bubbles have the same radius, the yeast and therefore the CO2 production is homogeneously 

distributed over the dough, growth of yeast is not considered, only CO2 diffusion is considered, 

no coalescence and disproportionation are considered, all the gas retained in the dough and 

the ideal gas law can be applied. For modelling the volume evaluation of dough which is based 

on the work of (Stanke et al., 2014), by considering the assumptions, the increasing bubble 

radius over time can be described by the following equation. 

𝑑𝑅

𝑑𝑡
=

3n𝑅𝐺T

 16𝜋𝑅2µ
−

𝑃𝐷𝑅

4µ
−

γ

2 µ
  

(19) 

 

Where R is the bubble radius, n is the amount of C𝑂2 in moles in the bubble, 𝑅𝐺  the universal 

gas constant, T the temperature, 𝑃𝐷 the pressure in the liquid dough, γ the surface tension 

and µ is viscosity. Because of the concentration difference of C𝑂2 in dough and bubble, a 

transport caused by diffusion of C𝑂2 into the bubble takes place, which is proportional to the 

concentration difference. The change of the number of moles of C𝑂2  in the bubble with time 

is described by Eq. (20) 

𝑑𝑛

𝑑𝑡
= 4𝐷𝑅𝜋(𝐶𝐷 − 𝐶∗)   (20) 

 

D is the diffusion coefficient, 𝐶∗ the carbon dioxide concentration which is in equilibrium with 

its partial pressure at the bubble surface and 𝐶𝐷 the carbon dioxide concentration in the 

dough. C𝑂2 concentration in dough increases with the production by yeast cells and decreases 

with the diffusion into all bubbles. Thus, change of C𝑂2 concentration in dough is described 

by Eq. (21) 

𝑑𝐶𝐷

𝑑𝑡
= 𝑄C𝑂2

− 4𝑁𝑏𝐷𝑅𝜋(𝐶𝐷 − 𝐶∗)  (21) 

 

𝑄C𝑂2
 is carbon dioxide production rate and 𝑁𝑏 is the number of bubbles per volume unit. 

The concentration of 𝐶∗ and 𝑃𝐵 are followed from Henrys law which is described in Eq. (22) 

and (23). 
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𝐶∗ =
𝑃𝐵

𝐻
  (22) 

𝑃𝐵 =
𝑛−𝑛0

𝑛
− 𝑃𝑡𝑜𝑡𝑎𝑙  (23) 

 

The temperature dependency of carbon dioxide production rate is described by Arrhenius 

equation which is presented in Eq. (24). 

𝑄C𝑂2
 = 𝐴𝑒−𝐸𝑎/(𝑅𝐺𝑇) (24) 

Where A is the pre-exponential factor (constant for each chemical reaction and 𝐸𝑎 is the 

activation energy for the reaction.  

3. 2. Outline 

Commercialization of bioprocesses will require a continued emphasis on bioprocess 

monitoring and control. In the past, the application of process monitoring and control to 

bioprocesses has been limited by the availability of suitable sensors. New developments have 

combined enhanced computational power and a broad set of data analytical techniques with 

molecular biology to address some of these limitations (Reilly and Charles, 1990). Accordingly, 

the focus of this study was in two-fold; the first objective was to design and implement a 

software sensor for on-line monitoring of baker’s yeast batch cultivation process and secondly 

to design a monitoring and control system for the supervision of the fermentation (proofing) 

process in bread making. 

3. 2. 1. Baker’s yeast cultivation  

Up to now, there is still a lack of inexpensive and robust commercially available sensor that 

allow real-time monitoring of important variables in the baker’s yeast cultivation process. 

Therefore, in the firs publication ’’ Model-based calibration of a gas sensor array for on-line 

monitoring of ethanol concentration in Saccharomyces cerevisiae batch cultivation’’ the 

main goal was to design an inexpensive measurement system which is capable of measuring 

at least one process variable during the cultivation process. For this reason, a gas sensor array 

as well as a bioreactor head space sampling system was designed to analyse the exhaust gas 

of the bioreactor. The signals from the gas sensor array showed a high correlation toward 

ethanol concentration during cultivations, therefore the signals were used for predicting 
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ethanol concentration. For the calibration procedure no off-line samples were used. Instead, 

a theoretical model of the process was applied to simulate the ethanol production at any given 

time.  

With the proposed method, it was possible to predict ethanol concentration with a high 

accuracy. However, ethanol was predicted only every five minutes (due to the headspace 

sampling producer) and no information from other process variables such as biomass and 

glucose concentration were obtained.  Therefore, in the second publication ’’The Kalman filter 

for the supervision of cultivation processes’’ an extended Kalman filter (EKF) based software 

sensor was designed and implemented for continues monitoring of ethanol concentration 

during cultivations of baker’s yeast. The software sensor employs the discrete ethanol 

measurements from the gas sensor array and predicts continues ethanol, glucose and biomass 

concentrations. Furthermore, the specific growth rates and their maximum values were also 

predicated with the proposed method.  

Usually the EKF shows good prediction results. Nevertheless, in spite of the satisfactory 

results, it has some disadvantages. It is reliable for systems which are almost linear on the 

time scale of the update intervals; it requires the calculation of Jacobians at each time step, 

which may be difficult to obtain for higher order systems; it does linear approximations of the 

system at a given time instant, which may introduce errors in the estimation, leading to a state 

divergence over time (Julier and Uhlmann, 1997). Therefore, in the third publication 

’’Parameter and state estimation of backers yeast cultivation with a gas sensor array and 

unscented Kalman filter’’ an unscented Kalman filter (UKF) was used for predicting the 

process variables.  

The UKF is another nonlinear extension of the Kalman filter which is very similar to the EKF, 

but instead of approximating the non-linear process model by calculating the Jacobian of the 

dynamics for the determination of the estimation error variance, the transformed probability 

distributions are approximated directly. This is done by representing the distribution by a set 

of chosen sample points (sigma points), transforming these points by the non-linear model 

function, and then approximating the mean and variance of the transformed distribution, by 

the mean and variance of the transformed points (Julier et al., 2000).  

The obtained results show that with the proposed UKF algorithms, it is possible to estimate 

the maximal specific growth rates as well as continuous ethanol, glucose and biomass 

concentrations with a better accuracy compared to the EKF based method. 
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3. 2. 2. Dough fermentation process 

The fermentation (proofing) process of dough is one of the quality-determining steps in the 

production of baking goods. In order to ensure final product quality, robust measurement 

system and control strategies are required. Therefore, for the dough fermentation process, in 

the publication ’’Application of fuzzy logic control for the dough proofing process’’ a 

measurement system (software sensor) based on image analyses was developed for 

measuring the volume evaluation of dough pieces and a fuzzy logic controller was designed to 

maintain the volume of the dough pieces similar to volume expansion of a dough piece under 

standard conditions. The fuzzy controller uses the measured volume from the imaging system 

and comperes it to a reference value (volume of a dough piece in standard conditions). The 

fuzzy controller manipulates the temperature and humidity of the proofing chamber 

according to the difference in the measured volume. The obtained results indicate that the 

performance of the system is very satisfactory with respect to volume control. 
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4. Publications 

3. 1. Model-based calibration of a gas sensor array for on-line monitoring of ethanol        

concentration in Saccharomyces cerevisiae batch cultivation.                  

By Abdolrahim Yousefi-Darani, Majharulislam Babor, Olivier Paquet-Durand, Bernd Hitzmann 

Published in Biosystems Engineering, volume 198, pages 198-209. August 2020. 
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4. 2. The Kalman filter for the supervision of cultivation processes. 

By Abdolrahim Yousefi-Darani, Olivier Paquet-Durand, Bernd Hitzmann. Published in Advances 

in Biochemical Engineering/Biotechnology. Page 1-30. November 2020. 
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4. 3. Parameter and state estimation of backers yeast cultivation with a gas sensor array and 

unscented Kalman filter. 

By Abdolrahimahim Yousefi-Darani, Olivier Paquet-Durand, Jörg Hinrichs, Bernd Hitzmann 

Published in Engineering in life science, volume …, pages …. December 2020. 
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4. 4. Application of fuzzy logic control for the dough proofing process. 

By Abdolrahimahim Yousefi-Darani, Olivier Paquet-Durand, Bernd Hitzmann. Published in 

Food and Bioproducts Processing. Volume 115, pages 36-46, February 2019. 
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5. Discussion 

A bottleneck in bioprocess monitoring and control is often caused by the lack of reliable 

sensors. That is why estimation techniques issued from control theory have been applied to 

on-line estimation of bioprocess variables. That induced the development of software sensors, 

which associate a sensor (hardware) and an estimation algorithm (software) in order to 

provide on-line estimates of the unmeasurable variables and kinetic parameters (Nicoletti et 

al., 2009).  

Within this thesis software sensors were developed for monitoring and control of the 

fermentation of baker’s yeast, three times the suspension (baker’s yeast cultivation process) 

and once the solid-state fermentation (dough fermentation) was investigated. Both processes 

are of high importance for industries.  

The designed software sensors for the cultivation of the baker’s yeast process are based on 

metal oxide gas sensor array. Application of gas sensor arrays for on-line monitoring of yeast 

cultivation has been previously reported in literature (Lidén et al., 1998). However, lack of 

stability over time (sensor drift) and the high cost of recalibration are factors which had limited 

the widespread adoption of gas sensor arrays in real industrial setups (Di Carlo and Falasconi, 

2012).  

According to literature, there are several different methods for drift compensation; these 

methods can be classified into three main categories. The first is the search for new materials 

that can reversibly interact with the relevant gas, so that the detected molecules unbind from 

the sensor material as soon as the gas has been purged from the sensor surface (Yamazoe, 

191; Roth et al., 1994). The second is the dynamical characterization of the sensor response 

and additionally, the third is the use of appropriate signal processing techniques, including 

feature extraction and pattern recognition methods (Vergara et al., 2007; Liu et al., 2013). 

Accordingly, the last two methods were applied in this work for sensor drift compensation. In 

addition, in order to overcome the time consuming and expensive calibration issue of the gas 

sensor array, a model-based calibration procedure was performed. For this procedure, the 

only requirement is the process mathematical model (simulation model) and the response of 

the gas sensor array from a single cultivation run. Then the parameters of the simulation 

model can be calculated by minimising the prediction error by optimising the kinetic 

parameter values of the simulation model as well as the parameter values of the chemometric 

model. 
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The designed gas sensor array and the model-based calibration approach was used for on-line 

prediction of ethanol concentration in three different cultivations. The experiments carried 

out show that the proposed method provides comparable results to the reference ethanol 

concentration values obtained by HPLC. Thus, the gas sensor array has great potential in on-

line monitoring of ethanol concentration during yeast cultivation. However, due to frequent 

flushing of the sensor array with oxygen flow, predicted ethanol concentrations are available 

only every five minutes. Therefore, in order to have continues ethanol concentrations as well 

as the concentration of other important process variables such as biomass, glucose and the 

growth rates, it was crucial to implement a software sensor. For this reason, the nonlinear 

extensions of the Kalman filter namely the Extended Kalman filter (EKF) and the Unscented 

Kalman filter (UKF) were separately applied and used as state estimation methods. The 

designed software sensors give the possibility to predict glucose, ethanol and biomass 

concentrations simultaneously from the only available infrequent on-line measurements of 

ethanol concentration.  

By applying the EKF as the state estimator, the accuracy of the estimated biomass and 

substrate production were in line with other studies which have also implemented an EKF 

algorithm for monitoring the baker’s yeast cultivation (Hitzmann et al., 2000; Popova et al., 

2013). However, in this application the maximal specific growth rates on glucose and ethanol 

were also estimated. As a consequence, the rapid and precise estimation of these variables 

could increase the overall knowledge of the process. 

In spite of the satisfactory results obtained by the EKF, it has some disadvantages such as: it 

requires the calculation of Jacobians at each time step, which may be difficult to obtain for 

higher order systems; it does linear approximations of the system at a given time instant, 

which may introduce errors in the estimation, leading to a state divergence over time. 

Therefore, another software sensor based on the the Unscented Kalman filter was designed 

and implemented for continuous state and parameter estimation of the baker’s yeast 

fermentation process. The results were compared with the ones optioned from the EKF (from 

cultivations with similar initial conditions).  

The obtained results indicate that the application of both techniques delivers satisfactory 

estimates of the important state variables and the product concentrations. However, the 

errors using UKF is comparatively less than the errors using EKF, which means the UKF is more 

adaptive than EKF in state estimation. The decisive advantage of the Unscented Kalman filter 
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is that the dynamic process model and the model that relates the state variables to the 

quantities that are measured on-line can be used in their original forms. Only the description 

of the uncertainty of the states is approximated (Simutis and Lübbert, 2017). 

It can be concluded that the developed software sensors expand the application range of the 

gas sensor array for the nonlinear state and parameter estimation of the baker’s yeast 

fermentation process. Consequently, it is promising to build up a compact and economical 

version of such measurement systems. Such sensors would be cost-effective and miniaturized 

devices for routine analysis, which could be advantageous to real-time bioprocess monitoring 

and control. 

Since in solid-state fermentation (dough fermentation), the concentration of ethanol 

production is low, it was not possible to apply the gas sensor array for on-line monitoring of 

the process. Therefore, another software sensor was designed based on image analysis for 

predicting the volume of the dough pieces. The measurement system was complimented with 

a controller and was used for controlling the fermentation process. The controller consists of 

a fuzzy logic control system which changes the proofing chamber’s temperature according to 

the volume of the dough pieces. The controller maintains the volume of the dough pieces 

similar to the volume expansion of a dough piece in standard conditions during the proofing 

process. The controller was experimentally evaluated by preparing dough pieces with 

different amount of yeast added in the ingredients and in different starting states and proofing 

them with the supervision of the fuzzy control system. The performance of the controller was 

compared to the performance of a PID controller from another study (Yousefi‐Darani et al., 

2018). 

The obtained results indicates that average deviation of the volume of the dough pieces (at 

the end of the proofing process) with different amount of yeast added in the ingredients and 

in different starting states was less than 2.9 % compared to the target values. The obtained 

performance of the system is very satisfactory with respect to volume control and set point 

deviation compared to the PID controller. Additionally, the fuzzy logic controller performance 

with respect to RMSE, settling time, surface and central temperature of the frozen dough 

pieces and pore size distribution in baked breads exhibited satisfactory performance 

compared with the PID controller. Furthermore, fuzzy logic algorithms can be constructed in 

a user-friendly way and, due to the fact that fuzzy logic controllers are closer to human 

thinking and perception, by elaborating a set of rules the system can be controlled without 
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requiring the computation of any mathematical model. As a consequence, the 

implementation of the fuzzy controller is faster. Therefore, the fuzzy controller represents a 

viable alternative for controlling the process. 
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