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2. Summary

2. 1. Summary (English)

Software sensors and bioprocess are well-established research areas which have much to
offer each other. Under the perspective of the software sensors area, bioprocess can be
considered as a broad application area with a growing number of complex and challenging
tasks to be dealt with, whose solutions can contribute to achieving high productivity and high-
quality products.

Although throughout the past years in the field of software sensors and bioprocess, progress
has been quick and with a high degree of success, there is still a lack of inexpensive and reliable
sensors for on-line state and parameter estimation. Therefore, the primary objective of this
research was to design an inexpensive measurement system for on-line monitoring of ethanol
production during the backer’s yeast cultivation process. The measurement system is based
on commercially available metal oxide semiconductor gas sensors. From the bioreactor
headspace, samples are pumped past the gas sensors array for 10 s every five minutes and
the voltage changes of the sensors are measured. The signals from the gas sensor array
showed a high correlation with ethanol concentration during cultivation process.

In order to predict ethanol concentrations from the data of the gas sensor array, a principal
component regression (PCR) model was developed. For the calibration procedure no off-line
sampling was used. Instead, a theoretical model of the process is applied to simulate the
ethanol production at any given time. The simulated ethanol concentrations were used as
reference data for calibrating the response of the gas sensor array. The obtained results
indicate that the model-based calibrated gas sensor array is able to predict ethanol
concentrations during the cultivation process with a high accuracy (root mean square error of
calibration as well as the percentage error for the validation sets were below 0.2 gL and 7 %,
respectively). However the predicted values are only available every five minutes. Therefore,
the following plan of the research goal was to implement an estimation method for continues
prediction of ethanol as well as glucose, biomass and the growth rates. For this reason, two
nonlinear extensions of the Kalman filter namely the extended Kalman filter (EKF) and the
unscented Kalman filter (UKF) were implemented separately for state and parameter
estimation. Both prediction methods were validated on three different cultivation with
variability of the substrate concentrations. The obtained results showed that both estimation

algorithms show satisfactory results with respect to estimation of concentrations of substrates
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and biomass as well as the growth rate parameters during the cultivation. However, despite
the easier implementation producer of the UKF, this method shows more accurate prediction
results compared to the EKF prediction method.

Another focus of this study was to design and implement an on-line monitoring and control
system for the volume evaluation of dough pieces during the proofing process of bread
making. For this reason, a software sensor based on image processing was designed and
implemented for measuring the dough volume. The control system consists of a fuzzy logic
controller which takes into account the estimated volume. The controller is designed to
maintain the volume of the dough pieces similar to the volume expansion of a dough piece in
standard conditions during the proofing process by manipulating the temperature of the
proofing chamber. Dough pieces with different amounts of backer’s yeast added in the
ingredients and in different temperature starting states were prepared and proofed with the
supervision of the software sensor and the fuzzy controller. The controller was evaluated by
means of performance criteria and the final volume of the dough samples.

The obtained results indicate that the performance of the system is very satisfactory with

respect to volume control and set point deviation of the dough pieces.



2.2. Zusammenfassung

Softwaresensoren und Bioprozese sind gut etablierte Forschungsgebiete, die sich gegenseitig
viel befruchten kénnen. Unter dem Blickwinkel der Softwaresensorik kann der Bioprozess als
ein breites Anwendungsgebiet mit einer wachsenden Zahl komplexer und anspruchsvoller
Aufgabenstellungen betrachtet werden, deren Losung zur Erzielung hoher Produktivitat und
qualitativ hochwertiger Produkte beitragen kann. Obwohl in den letzten Jahren auf dem
Gebiet der Softwaresensoren und des Bioprozesses rasch und mit groRem Erfolg
Untersuchung erzielt wurden, fehlt es immer noch an kostengiinstigen und zuverldssigen
Sensoren fir die Online-Zustands- und Parameterschatzung. Daher war das primare Ziel dieser
Forschung die Entwicklung eines kostengiinstigen Messsystems fiir die Online-Uberwachung
der Ethanolproduktion wahrend des Kultivierungsprozesses von Backhefe. Das Messsystem
basiert auf kommerziell erhaltlichen Metalloxid-Halbleiter-Gassensoren. Die Headspace-
Proben des Bioreaktors werden alle finf Minuten fir 10 s an der Gassensor-Anordnung
vorbeigepumpt und die Spannungsanderungen der Sensoren werden gemessen. Die Signale
des Gassensorarrays zeigten eine hohe Korrelation mit der Ethanolkonzentration wahrend des
Kultivierungsprozesses.

Um die Ethanolkonzentrationen aus den Daten des Gassensorarrays vorherzusagen, wurde
ein Hauptkomponenten-Regressionsmodell (PCR) verwendet. Fiir das Kalibrierungsverfahren
ist keine Offline-Probenahme notwendig. Stattdessen wird ein theoretisches Modell des
Prozesses genutzt, um die Ethanolproduktion zu jedem beliebigen Zeitpunkt zu simulieren.
Die kinetischen Parameter des Modells werden im Rahmen der Kalibration bestimmt. Die
simulierten Ethanolkonzentrationen wurden als Referenzdaten fiir die Kalibrierung des
Ansprechverhaltens des Gassensorarrays verwendet. Die erhaltenen Ergebnisse zeigen, dass
das modellbasierte kalibrierte Gassensorarray in der Lage ist, die Ethanolkonzentrationen
wahrend des Kultivierungsprozesses mit hoher Genauigkeit vorherzusagen (der mittlere
guadratische Fehler der Kalibrierung sowie der prozentuale Fehler fiir die Validierungssatze
lagen unter 0,2 gL! bzw. 7 %). Die vorhergesagten Werte sind jedoch nur alle fiunf Minuten
verfligbar. Daher war der folgende Plan der Untersuchung die Implementierung einer
Schatzmethode zur kontinuierlichen Vorhersage von Ethanol sowie von Glukose, Biomasse
und der Wachstumsrate. Aus diesem Grund wurden zwei nichtlineare Erweiterungen des
Kalman Filters, ndmlich der erweiterte Kalman Filter (EKF) und der unscented Kalman Filter

(UKF), getrennt fur die Zustands und Parameterschatzung implementiert. Beide
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Vorhersagemethoden wurden an drei verschiedenen Kultivierungen mit Variabilitat der Start
substratkonzentrationen validiert. Die erhaltenen Ergebnisse zeigen, dass beide
Schatzungsalgorithmen zufriedenstellende Ergebnisse hinsichtlich der Schatzung der
Konzentrationen von Substraten und Biomasse sowie der Parameter der Wachstumsrate
wahrend der Kultivierung ermitteln. Trotz der einfacheren Implementierung des UKF zeigt
diese Methode jedoch genauere Vorhersageergebnisse im Vergleich zur EKF-
Vorhersagemethode.

Ein weiterer Schwerpunkt dieser Untersuchung war der Entwurf und die Implementierung
eines Online-Uberwachungs- und Regelungssystems fiir die Volumenauswertung von
Teigstlicken wahrend des Garprozesses bei der Brotherstellung. Aus diesem Grund wurde ein
auf  Bildverarbeitung  basierendes  Uberwachungssystem  zur  Messung  der
Teigvolumenauswertung entworfen und implementiert. Das Regelsystem besteht aus einem
Fuzzy-Logic-Controller, der das gemessene Volumen fiir die Regelung nutzt. Die Regelung ist
so ausgelegt, dass das Volumen der Teiglinge mit Werten des Volumens eines Teiglings unter
Standardbedingungen wahrend des Garprozesses vergleicht und die Temperatur der
Garkammer entsprechend anpasst. Teiglinge mit unterschiedlichen Hefemengen in den
Zutaten und verschiedenen Temperaturstartwerten wurden vorbereitet und unter
Anwendung des Fuzzy-Reglers gegart. Der Regler wurde anhand von Leistungskriterien und
dem Endvolumen der Teigproben bewertet.

Die erhaltenen Ergebnisse zeigen, dass die Leistung des Systems in Bezug auf die

Volumenregelung und die Sollwertabweichung der Teigstlicke sehr zufriedenstellend ist.



3. Introduction and outline

3. 1. Introduction
3. 1. 1. Software sensors

Successful operation, control and optimization of biotechnological process depend on reliable
real-time available measurements of the process variables. Although some hardware sensors
are readily available, they often have several drawbacks: cost, sample destruction, discrete-
time measurements, processing delay, sterilization, disturbances in the hydrodynamic
conditions inside the bioreactor, etc. It is therefore of interest to use software sensors
(Bogaerts and Wouwer 2003; Venkateswarlu 2005). The central idea behind a software sensor
is to use easily accessible on-line data for the estimation of other process variables that are
either difficult to measure or only measured at low frequency (Kadlec et al., 2009).

A schematic diagram demonstrating the main components of a software sensor as defined in

Luttmann et al. (2012) is shown in Figure 1.
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Fig. 1. Software sensor structure

Asillustrated in Figure 1, a software sensor consists of one or more hardware (physical) sensor,
knowledge of the process and an estimator. In the following parts of this sections, a brief

overview of the individual elements of a software sensor are presented.

3. 1. 1. 1. Process knowledge

A critical element of a software sensor is the available knowledge. In any kind of process,
knowledge is defined as the ability to describe relationships between critical process variables
and critical quality or performance attributes. In the context of bioprocesses, knowledge could

be expressed through mathematical models (Studer et al., 1998).



According to the paradigms that are employed, bioprocess models are classified as
mechanistic, empirical (data-driven) and hybrid models. A short description of these models

are as follows:

e Mechanistic models

In simple terms, mechanistic models are description of the biological phenomenon of a
bioprocess using microscopic mass balance formulated by means of a set of ordinary
differential equations, in which the rates of biochemical transformations (in the mass balance
equations) are described by kinetic models. Most of these kinetic models are built upon a few
classic models such as the Monod model, the Droop model, and the logistic model (Vatcheva
et al., 2006). Due to their good data-fitting abilities across a wide range of bioprocesses, these
models are still widely applied for monitoring, control and optimization of bioprocesses.
However mechanistic models possess poor predictive capabilities for highly nonlinear and
complex biological systems (del Rio-Chanona et al., 2019). This is caused by the construction
principles of the kinetic models, which lump hundreds of metabolic pathways into just a few
parameters which are assembled in a simple model structure. Furthermore, as metabolic
pathways are strongly dependent on the cultivation conditions, any changes in these
conditions also have an impact on the values of the model parameters. Therefore, the
estimated parameters from one specific set of data may no longer apply to the same system
operated under a different operating condition (Fouchard et al., 2009; Adesanya et al., 2014).
e Empirical models

Empirical models are based on direct measurement and extensive data records. Compared
with kinetic models, empirical models contain more parameters and structures for data
regression, enabling the inclusion of distinct process behaviours collected at different
operating conditions in a single model. This allows the model to accurately interpolate the
performance of untested new processes operated over a range of operating conditions (Zhang
et al., 2019). The drawbacks of the empirical models is firstly they are heavily reliant on the
quality and quantity of data sets. Second, most empirical models calculate the values of state
variables at fixed time intervals. However, data sampled at a plant are often obtained at
different time intervals, which would result in missing information for empirical model

construction (Baughman and Liu, 2014).
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e Hybrid models

Most bioprocesses deal with a high number of process variables and uncertainties. Therefore,
it is difficult to describe the process only with kinetic equations. In hybrid models which are
based on macroscopic mass balance equations, the biochemical transformations rates are
described by means of a machine learning tool such artificial neural networks and/ or fuzzy
logic algorithms. Machine learning tools would consider the influence of more process
variables on the conversion rates, resulting in more reliable values.

In terms of application of the models, models are classified as dynamic and static models.
Dynamic models include differential equations, typically over time or location coordinates
which allow prediction. Static models are correlations which cannot provide time-dependent
simulation results. Hence, they are not applicable for prediction over time or location, they

are not commonly applied in bioprocess development (Kroll et al., 2017).

3. 1. 1. 2. Measurement system

o Measurement type

There are different ways of performing a measurement and taking samples from a bioprocess.

These methods can be categorized as in-line, at-line or off-line as illustrated in Figure 2.

@(K -

in-line probe .o
in-line in-line bypass

(in-situ) (non-invasive)

e

Filtration probe/
sampling unit

at-line off-line

== analyzer

Figure 2. Different types of sampling methods in bioprocess. Adapted from ClafSen et al., 2017.
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Off-line measurements are collected manually or automatically and then transferred to the
laboratory to be analysed. This causes long time delays, so that such measurements cannot
contribute to the control of the dynamic process behaviour (ClaBen et al., 2017; Lourenco et
al., 2012).

An in-line sensor produces data continuously, and it is in direct contact with the process
medium or separated from the bioreactor by a bypass (non-invasive sensor). By providing
continuous information, these sensors are enablers of continuous process control.

An at-line sensors analyse samples near to the bioreactor. Samples are collected regularly
(manually or automatically) and are transported to the analysis system for further analysis.

Data are generated according to the analysis frequency at certain time intervals.

e Sensor type

Bioprocess variables can be measured in the gas, liquid, and solid phases of a bioprocess with
a wide variety of measurement techniques (Fig. 3). In the gas-phase, monitoring of several
gases, especially oxygen, ethanol and carbon dioxide, is important. The changes in the
concentrations of these gases provide information about cell growth, metabolism, and
productivity. In the liquid phase, the concentrations of various nutrients, metabolites and
products, as well as dissolved gases like oxygen and carbon dioxide, must be monitored. This
monitoring can be performed with in-line sensors or via the large variety of analytical systems
available in chemical and biochemical laboratories. The biomass which is the most important
variable in a bioprocess is a representative of the solid phase. The biomass can be
characterized by its concentration or, more importantly, by its metabolic activity. Different
analytic methods such as turbidity sensors, impedance sensors and NMR spectroscopy are

used to determine the biomass concentration (Biechele et al., 2015).
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Figure 3. Schematic of bioprocess monitoring techniques. NIR near-infrared spectroscopy, FTIR
Fourier-transform infrared spectroscopy, HPLC high-performance liquid chromatography, ELISA
enzyme-linked immunosorbent assay, GC gas chromatography, MS mass spectrometry, PTR-MS
proton transfer reaction mass spectrometry, MALDI-TOF-MS matrix-assisted laser desorption
ionization time-of-fight mass spectrometry, NMR nuclear magnetic resonance, FIA flow-injection
analysis. Adapted from Veloso & Ferreira, (2017).

3. 1. 1. 3. State estimator

The state estimator is the ‘brain’ of the software sensor. Many kinds of state estimation
methods have been proposed and most of them have been applied in bioprocesses.
Bioprocess state estimation methods can be categorized in five main classes. Each technique
has its own advantages and drawbacks. This section aims to presents a brief overview of each

method, which can be advantageously applied to bioprocesses.

13



e Component balance based methods

By these methods, estimations are carried out using theoretical and experimental derived
relationships between the measured variables and the estimated values. The basic feature of
this method is to represent the conversion of substrate to cell mass by reasonable
assumptions regarding the regulatory structure of the organism (Zhao, 1996; Venkateswarlu,

2005).

e Observer based methods

Observers are used as state estimators in deterministic system (no randomness is involved in
the development of estimated states of the process). As one of the basic state estimation
methods, the Luenberger observer has been provided by David. G. Luenberger (Luenberger,
1964) to solve the problem of state estimation of deterministic linear systems (Wang et al.,
2016). The principle of the Luenberger observer is that by combining a known measurement
with knowledge of the process (process mathematical model), the process state can be
estimated.

Consider the following linear discrete-time system.

X[k = Ax[k_l] + Bu[k—l] (1)

where x[i) is the process state vector, up,_qj is an input vector and A and B are matrices with
proper dimensions. Outputs of the system are functions of the state vector xy and are

represented with the vector zj :

Zjig = Hxpyg @)

Where matrix H is the measurement matrix which relates the process states to the
measurements.

The observer model of the system can be derived from the above equations.

Using the initial conditions of the state variables, the state x| and the outputs z[;; can be
simulated in response to a time sequence of inputs. However, the predicted values would
differ from the actual outputs of the system if the model parameters are not exactly known.
The Luenberger observer is a real-time simulator with a feedback mechanism for recursively
correcting its estimated state by determining the prediction error, which reflects the

discrepancy between the output of the system zp;; and the predicted measurements Hx ;.
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The prediction error is then multiplied by the matrix L (observer gain) and fed back to the state
equation. The state of the observer (estimated state) and the output of the state are defined

with the following equations.
xo,[k] = Axo,[k_l] + BU[k] + L(Z[k] — HX[k]) (3)
Zo, k) = HXo k) (4)

Where x¢ ] is the current observed state, X r_q is the previous observed state and z, i
is the observed outputs.

Note that the observer gain matrix (L) remains constant throughout the whole process and is
selected using methods such as pole placement. Once setup correctly, the Luenberger
observer is capable of generating estimates accurately.

As already mentioned, the Luenberger observer is designed and implemented in linear
systems. Most bioprocesses often include nonlinearities. Therefore, the Luenberger observer
cannot provide satisfactory results for such systems. Nonlinear observers are better suited for
state estimation in nonlinear processes.

Nonlinear observers can be classified in two major classes namely the Luenberger-based
observers and the finite-dimensional system observers.

The Luenberger-based observers involves the extended versions of the classical Luenberger
observer (Dochain, 2003; Alonso et al., 2004; Tronci et al., 2005, Fissore et al., 2007, Vries et
al., 2010). The extended Luenberger observer (ELO), sliding mode observer (SMQ), adaptive
state observer (ASO), generic and back stepping observers are examples of observers falling
into this class. This type of observer is suitable for less complex linear systems with relatively
simpler computational methods (Bejarano et al., 2007).

The second category is the finite-dimensional system observers, which include the reduced-
order, low-order, high-gain, asymptotic and exponential observers. These finite-dimensional
system observers are designed for processes whose dynamics are described by ordinary
differential equations (ODEs) (Bitzer and Zeitz, 2002).

The attributes, advantages and limitations according to each method are given in Ali et al.
(2015). The main difference between each method is according to their ability to take into
account the measurement errors, to the necessity of using an accurate model for the reaction

kinetics (Bogaerts, 1999), to the fact that they are only based on local approximations
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(linearization of the nonlinear models) or not (Gauthier et al., 1992) ) and to their speed of the
estimation convergence which can be arbitrarily fixed or is only depending on the culture

conditions (Bastin and Dochain, 1991; Bogaerts and Hanus, 2001).
e Kalman filter based methods

The Luenberger’s state observer is strictly used for state estimation in deterministic systems.
In most bioprocess systems, the process model as well as the sensor (physical) output are to
some extent disturbed by noise. For such systems, Kalman filter based methods are used as
state estimators (randomness is involved in the development of estimated states of the
process).

The Kalman filter is used to provide optimal estimates of unmeasured states for time varying
linear systems in the presence of noise (stochastic systems) by combining information from a
process mathematical model with on-line process measurements.

In the Kalman filter, the process model defines the evaluation of the state from time k— 1 to

time k as:

X[k] = Ax[k—l] + Bll[k_l] + W[k—l] (5)

Where x is the state vector, u is the process input and w is the Gaussian process noise vector
that is assumed to be zero-mean with the covariance Q. Matrix A relates the state at the
previous time step k-1 to the state at the current step k, matrix B relates the control input to
the state variables x.

The process model is paired with the measurement model that describes the relationship

between the state and the measurement at the current time step k as:

Z[k] = CX[k] + V[k] (6)

Where z is the output of the system, matrix C is the measurement matrix which relates the
process state X to the measurements and v is the Gaussian measurement noise vector
which is assumed to be zero-mean with the covariance R.

The Kalman filter algorithm consist of two recursive steps. The flow chart of the Kalman filter

algorithm is presented in Figure 4.
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Figure 4. Kalman filter flowchart.

In the first step (the prediction step), the process model is used to predict the state variables

and the estimation error covariance’s by the following equations.
Xk = Ax[k—l] + Bll[k_ 1] (7)
P[k] = AP[k_l]AT + Q (8)

In the above equations Xy is the state variables estimate at time k which is deduced from a
previous estimation of the state x[;_qj at time k - 1. The new term P is called the state error
covariance matrix which encrypts the error covariance of the predicted state values. Py is
the new prediction error covariance matrix at time k and Pj;_1; is the previous estimated error
covariance matrix at time k - 1. Whenever a measurement is available a correction step is
performed.

In the correction step the predicted model estimates are combined with the measured values

to provide corrected estimates by the following equations.

Kpg = PygC(R + CPyCT) (9)
2
= Pyq(1 — KpgH)™ + K?R (10)
Xp i = X + K (2 — Cxpig) (11)

First the measurement prediction error which reflects the discrepancy between the true
outputs zy and the predicted outputs Cxpy; is calculated and multiplied by the so called
Kalman gain Ky to update the estimated state variables. Therefore the filtered state variables
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Xf i) are obtained. In the similar manner the filtered estimation error covariance Py [y is
obtained. The Kalman gain K is chosen to minimise the estimated error covarianc and unlike
the Observer gain, K[ is continuously changed with each iteration to converge the states
rapidly in a robust manner.

With the filtered values as initial condition, the simulation of the process as well as the
estimation error covariance’s can be carried out until the next measurement is obtained and

everything repeats again.

e Artificial neural network based methods

Artificial neural networks (ANN) are powerful tools for state estimation in highly nonlinear
dynamic systems. The main advantage of ANN-based methods for state estimation is that they
do not need any prior knowledge about the kinetic growth rate, but the disadvantage is the
large amount of data sets required for training and testing the neural network.

Neural networks are comprised of a great number of interconnected neurons (nodes). The
choice of the architecture of the network depends on the task to be performed. For modelling
of physical systems, a feedforward layered network is normally used which has an input layer
containing multiple or single inputs, at least one hidden layer and an output layer containing
multiple or single outputs. The input layer receives information from an external source and
passes the information to the network for processing, the hidden layer receives information
from the input layer and does all the information processing and the output layer receives the
processed information from the network, and sends the result out to an external receptor
(Baughman and Liu, 2014).

Each neuron is a processor which performs a weighted sum of all inputs from other neurons
or from outside of the network. Predictions are obtained by passing the weighted sum through
a nonlinear transfer function (sigmoid, hyperbolic tangent, sinusoid, threshold, etc.) (Thibault
et al., 1990). The predicted values are then subtracted from the desired values to calculate
the prediction error. The prediction error is minimized by performing iterations so that the

network is optimized.

e Fuzzy logic based methods

Fuzzy logic systems are intelligent models based on fuzzy sets and fuzzy logic (Zadeh 1965),
which have a wide range of applications, e.g., pattern recognition, intelligent control, data

mining (Zhang et al., 2017). Fuzzy logic systems can also be used for state estimation by
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mapping the input and output of a system, using a set of fuzzy rules and a corresponding
inference mechanism.

Similar to ANN based methods, fuzzy logic based methods do not need any prior knowledge
about the kinetic growth rate. However, fuzzy logic gains superiority over neural networks as
system complexity increases because it allows for an easier design, system identification, and
reassignment after a change. Moreover, fuzzy rules can process numerical as well as symbolic

data and offers some transparency (Patnaik, 1997; Georgieva and de Azevedo, 2009).

3. 1. 2. Gas sensor array

The analysis of fermenter exhaust gas can be used to obtain important knowledge about the
microbial activity. For instance, in the aerobic fermentation of baker's yeast, carbon dioxide
and water is produced from glucose, and in anaerobic fermentation, ethanol is produced.
Ethanol may be also produced in the aerobic fermentation if excess glucose is presented.
Production of ethanol is unwanted since it may inhabit growth of microorganisms. An absence
of dissolved oxygen would indicate a situation where fermentation conditions are anaerobic.
Therefore, measurement of oxygen, CO, and ethanol concentrations are crucial in order to
have an optimized processing.

Many researches have been dedicated to design and implementation of measurement devices
for oxygen and carbon dioxide analyses in bioprocesses and many commercial sensors are
already available. However, there is still a lack of a cheap, reliable and accurate measurement
device for on-line measurement of ethanol concentration for bioprocesses.

Infrared gas analysers could be used for measuring ethanol concentrations in the gaseous
phase. The infrared gas analyser measures trace gases by determining the absorption of an
emitted infrared light source through the air sample. The main drawback of this method is
that the outlet gas of a bioreactor contains a considerable amount of moisture, which would
negatively affect the absorption of the emitted infrared light source. An alternative method is
using gas sensor arrays (GSA) also known as electronic nose.

A GSA is an instrument consisting of an array of reversible but only semi-selective gas sensors
coupled to a pattern recognition algorithm (Persaud and Dodd 1982).

A variety of sensor types such as conducting polymer sensors (CP), piezoelectric surface
acoustic wave (SAW), thickness shear mode (TSM), metal oxide semiconductor (MQOS), metal

oxide semiconductor field effect transistor (MOSFET) and electrochemical (EC) sensors could
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be used in a GSA. Due to the low cost and simple working principle of metal oxide gas sensors,
they are the most employed type of sensors in GSA.

In MOS, the metal oxide material simply measures the change of resistance. Usually, oxygen
molecules will attract free electrons in metal oxide material, forming oxygen ions. In this
process, free electrons inside the materials are consumed, resulting in band bending and an
electron depletion region at the materials surfaces. The target gas molecules are either acting
as reducing gas or oxidizing gas, corresponding to donor or acceptor of charge carriers. When
the materials are placed in the environment of these gases, the resistance of the
semiconductor metal oxide will increase or decrease depending upon the type of majority
carriers in the sensing materials and types of target gases (Shankar and Rayappan, 2015; Chen
et al.,, 2019).

The performance improvement of GSA system mainly contains two kinds of optimization:
sensitive material selection (sensor array optimization) and signal processing and data

evaluation (Fig. 5).
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Figure 5. Performance improvement steps of a GAS system.
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For selecting the sensors in a GSA, a typical approach is to first analyse the chemical
composition of the samples and then select sensors which are responsive to those chemical
groups with cross sensitivity to form the sensor array. Then from this, the sensors are tune
and adjust in the array according to the responses, which is called sensitive material selection
and sensor array optimization (Yan et al., 2015).

Signal processing and data evaluation is a key point of performance improvement of a GSA
system. A basic signal processing and data evaluation structure of a GSA system contains the

following main steps
e Data pre-processing

Signal pre-processing is used to prepare the data for further processing. This can involve noise
reduction and smoothing the raw signals and to line arise the signals output to compensate
for concentration fluctuations in the response vector by using a normalisation procedure. The
functions carried out in this step should be considered carefully, as the quality of some aspects
of the data will be improved while others are diminished. For example, normalization will
make each set of data directly comparable; however weak signals dominated by noise will

have their relative noise magnified greatly (Hines et al., 1999; Gardner and Taylor, 2009).
e Feature extraction

The aim of feature extraction is to extract robust information from the characteristic sensor
response with less redundancy, which can represent the different “fingerprint” patterns well,
to ensure the effectiveness of the subsequent pattern recognition algorithm. There are many
feature extraction methods which have been used in E-nose applications. Most of these
feature extraction methods can be roughly divided into three types: the first type is to extract
signal features such as maximum values, integrals, differences and derivatives from the
original response curves of sensors. The second type is based on curve fitting, which fits the
response curves based on a specific model and extracts a set of fitting parameters as the
features. The third one is based on some transforms, and very often the fast Fourier transform
(FFT) and the discrete wavelet transform (DWT) (Llobet et al., 1997; Llobet et al., 2002; Carmel

et al., 2003; Yan et al., 2015).
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e Dimensionality reduction

The aim of dimensionality reduction is to find a low-dimensional mapping that preserves most
of the information in the original feature vector. In the field of artificial olfaction, principle
components analysis and discriminant function analysis are commonly used. These evaluation
procedures present high-dimensional data sets in a manner so that there is maximum variance

in @ minimum number of dimensions (Musatov et al., 2010; Hartyani et al., 2013).
e Pattern recognition

The response vector generated by the sensor array are then analysed using a pattern
recognition technique (PRT). The PRT methods may be divided into supervised and non-
supervised methods although a combination of both can be used.

In most cases there are two stages used in the pattern recognition process. First, the output
of the sensor array is tagged with a descriptor and the classes are learned and grouped
according to their description. Then the response from an unknown vector may be classified
using the relationship found from the known vector. This process is known as supervised
learning. Artificial neural network (ANN) is the best-known supervised technique.

In unsupervised learning there are no descriptors, the classes are learned based on some form
of similarity measures. The most applied unsupervised technique is principal component

analyses (PCA) (Scott et al., 2006; Peris and Escuder-Gilabert, 2009).

3. 1. 3. Baker’s yeast fermentation

Bakers’ yeast is a generic name for yeast products used primarily for leavening purposes which
are strains of Saccharomyces cerevisiae. These organisms are single celled fungi which
reproduce by budding and bear their sexual spores in an ascus. As fungi, yeasts are eukaryotic
organisms distinct from more primitive prokaryotic organisms (Trivedi et al., 1986).

Baker’s yeast production is one of the oldest food biotechnologies and may be considered as
a “ripened technology” (Gélinas, 2012).

The objective of baker’s yeast manufacturing is to harvest as fast as possible the highest
amount of living cell mass at the lowest cost. First, fermentation tanks must be seeded with
the strongest and purest microbial starters, otherwise unwanted microorganisms will be
harvested instead. Second, such microorganisms must be fed under thoroughly controlled
conditions to optimize yeast biomass and gassing power enough to raise dough, otherwise

bakers will experience variations in bread volume (Gélinas, 2014). The yeast is recovered from
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the final fermenter by using centrifugal action to concentrate the yeast solids. The yeast solids
are subsequently filtered by a filter press or a rotary vacuum filter to concentrate the yeast
further. Next, the yeast filter cake is blended in mixers with small amounts of water,
emulsifiers, and cutting oils. After this, the mixed press cake is extruded and cut. The yeast
cakes are then either wrapped for shipment or dried to form dry yeast (Barker and Williamson,
1992).

The fermentation of bakers’ yeast can be performed in three different modes: continuous,
batch and fed-batch. The continuous modes is based on the continuous addition of substrate
and simultaneous removal of the products. In a batch mode no substrate is added to the initial
charge, nor is any product removed, until the end of the process. In the fed-batch operation
substrate is fed either through injections or continuously during fermentation and the product
is removed at the end of the process (Reyman, 1992).

When S. cerevisiae is grown aerobically using glucose as substrate, biomass and ethanol are
produced and a diauxic pattern can be observed. After depletion of glucose, ethanol is
consumed by the cells (Zhang et al., 1997). Accordingly, a mathematical model that reflects
the ethanol and biomass production and glucose consumption during batch cultivation of S.

cerevisiae in an ideal stirred tank reactor can be described by the following equations (Solle et

al., 2003).

dx

% = MeX + ugX (10)
46 _  _ KeX (11)
dt Yx/c

dE _ ueX _ ppX (12)
dt YE/G Yx/E

Here G, E and X are the glucose, ethanol and the biomass concentrations, respectively. g and
Hg are the specific growth rates on glucose and ethanol, respectively. Yx /g, Yg/g and Yx g are
the yield coefficients with respect to the conversion from glucose to biomass, glucose to
ethanol and ethanol to biomass, respectively.

The diauxic growth can be considered in the model by the fact, that pg is only greater than
zero if glucose is present, and then there is no growth on ethanol (ug = 0 h) (glucose
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repression). If glucose has been consumed, then the cells have just ethanol as the only carbon
source, so [ = 0 h'! but pg is greater than zero until ethanol is consumed. The above

assumptions can be formulated into the following equations:

_ 0 G=0 (13)
He = Heo G>0
0 G>0o0rE=0
He = { tgo G =0and E>0 (14)

In order to perform a simulation of the process, the parameters of the model should be
determined. Typical values of the yield coefficients can be found in literature.

In a fed-batch process, substrate feed rate plays a significant role to attain a high productivity
of cultivation processes. The below equations are a theoretical model of a fed-batch process

(Kristensen, 2002).

ax _ _ K (15)
ac  Hs v
ds _ _usx | F(sp-5) (16)
de X/S v
@ _ (17)
de F
F= — X kX 8

Yx/s(SF — Sconst) Yx/E dt (18)

where X is cell mass, S is substrate concentration, IV is working volume and F is a substrate feed
rate. Us is the specific growth rate on the substrate. Yx/s and Yx/E are the yield coefficient for the
substrate with respect to biomass and ethanol respectively. SFis the substrate concentration of
the feed solution. Sconst is the substrate concentration in the bioreactor at the start of a fed-batch
process.

On-line monitoring and control of fed-batch cultivations have been studied and reported
extensively in literature (Veloso et al., 2009; Jianlin et al., 2010; Dewasma et al., 2013; Lisci et
al., 2020). On-line monitoring of batch cultivation is also crucial in order to monitor the state
and if necessary change the operation conditions to achieve high productivity over the

process. However, on-line monitoring and state estimation in batch cultivations remains
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briefly addressed in the literature. Therefore, the focus of this study was to design and

implement software sensors for the batch cultivation process of S. cerevisiae.

3. 1. 4. Dough fermentation

Dough is a multiphase and multicomponent system mainly composed of carbohydrates,
proteins, lipids, water and air. The dough ingredients, as well as the processing conditions,
determine the macroscopic structure of baked products which, in turn, is responsible for their
appearance, texture, taste and stability. To build up this structure, the ingredients are mixed
and kneaded, the dough leavened and baked (Autio and Laurikainen, 1997; Romano et al.,
2007). Since the fluffiness and the flavour of the final product is influenced very much during
leavening process, this step is one of the quality-determining steps in the production of baking
goods. Leavening is done by CO; production which is associated with yeast activity. The
produced CO; is penetrated and trapped in the viscoelastic texture of the dough which results
in the dough volume expansion. A desirable loaf volume is achieved only if the dough provides
a favourable environment for yeast growth and gas generation and, at the same time,
possesses a gluten matrix capable of maximum gas retention (Sahlstrom et al., 2004).

The production of fermentation metabolites in dough can be affected by different factors,
including availability of fermentation sugars in dough, ingredients/ recipe of the dough, dough
fermentation conditions, yeast growth conditions, and the genetic makeup of the yeast strain
(Struyf et al., 2017).

The control and optimization of the leavening process in the bread-making ensures final
texture and quality of the backed products. In order to implement a control strategy, two
major elements are required; a measurement device and a mathematical model.

For measuring the volume evaluation of dough during the fermentation process, several
methods have been reported in literature. Some author’s follow the evolution of the volume
or height of the dough sample to characterize this phase (Kilborn et al., 1981). Some authors
study the microstructure of the bread dough sample using radio-graphic methods like X-rays
(Babin et al., 2006) and magnetic resonance imaging MRI (Bonny et al., 2004) or microscopic
methods like scanning electron microscope SEM (Gan et al., 1995). In these methods, the
fraction of the volume occupied by the gas on 2D (or 3D) images is measured to characterize
the fermentation phase (Skaf et al., 2009).

For the mechanistic mathematical description of the volume evolution during the proofing

process, certain assumptions are necessary: the dough has a Newtonian behavior, so the
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Bernoulli equation can be used complemented by the continuity equation, during kneading
just nitrogen is introduced into the dough (no CO;), the bubbles are spherical and
homogeneous distributed over the dough, no new bubbles are built during fermentation, all
bubbles have the same radius, the yeast and therefore the CO; production is homogeneously
distributed over the dough, growth of yeast is not considered, only CO; diffusion is considered,
no coalescence and disproportionation are considered, all the gas retained in the dough and
the ideal gas law can be applied. For modelling the volume evaluation of dough which is based
on the work of (Stanke et al., 2014), by considering the assumptions, the increasing bubble
radius over time can be described by the following equation.

dR _ 3nRgT PpR Y (19)

dt 16mR%p 4 2u

Where R is the bubble radius, n is the amount of CO, in moles in the bubble, R the universal
gas constant, T the temperature, P the pressure in the liquid dough, y the surface tension
and p is viscosity. Because of the concentration difference of CO, in dough and bubble, a
transport caused by diffusion of CO, into the bubble takes place, which is proportional to the
concentration difference. The change of the number of moles of CO, in the bubble with time
is described by Eq. (20)

% = 4DRm(Cp — C*) (20)
D is the diffusion coefficient, C* the carbon dioxide concentration which is in equilibrium with
its partial pressure at the bubble surface and Cj, the carbon dioxide concentration in the
dough. CO, concentration in dough increases with the production by yeast cells and decreases

with the diffusion into all bubbles. Thus, change of CO, concentration in dough is described

by Eq. (21)
dac *
=2 = Qco, — 4NyDR1(Cp — C*) (21)

Qco, is carbon dioxide production rate and N, is the number of bubbles per volume unit.

The concentration of C* and Py are followed from Henrys law which is described in Eq. (22)
and (23).
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cr="re (22)

__n—ng

(23)

n - Ptotal
The temperature dependency of carbon dioxide production rate is described by Arrhenius

equation which is presented in Eq. (24).

Qco, = Ae Ea/(RgT) (24)

Where A is the pre-exponential factor (constant for each chemical reaction and E, is the

activation energy for the reaction.

3. 2. Outline

Commercialization of bioprocesses will require a continued emphasis on bioprocess
monitoring and control. In the past, the application of process monitoring and control to
bioprocesses has been limited by the availability of suitable sensors. New developments have
combined enhanced computational power and a broad set of data analytical techniques with
molecular biology to address some of these limitations (Reilly and Charles, 1990). Accordingly,
the focus of this study was in two-fold; the first objective was to design and implement a
software sensor for on-line monitoring of baker’s yeast batch cultivation process and secondly
to design a monitoring and control system for the supervision of the fermentation (proofing)

process in bread making.

3. 2. 1. Baker’s yeast cultivation

Up to now, there is still a lack of inexpensive and robust commercially available sensor that
allow real-time monitoring of important variables in the baker’s yeast cultivation process.
Therefore, in the firs publication ” Model-based calibration of a gas sensor array for on-line
monitoring of ethanol concentration in Saccharomyces cerevisiae batch cultivation” the
main goal was to design an inexpensive measurement system which is capable of measuring
at least one process variable during the cultivation process. For this reason, a gas sensor array
as well as a bioreactor head space sampling system was designed to analyse the exhaust gas
of the bioreactor. The signals from the gas sensor array showed a high correlation toward

ethanol concentration during cultivations, therefore the signals were used for predicting
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ethanol concentration. For the calibration procedure no off-line samples were used. Instead,
a theoretical model of the process was applied to simulate the ethanol production at any given
time.

With the proposed method, it was possible to predict ethanol concentration with a high
accuracy. However, ethanol was predicted only every five minutes (due to the headspace
sampling producer) and no information from other process variables such as biomass and
glucose concentration were obtained. Therefore, in the second publication ”’The Kalman filter
for the supervision of cultivation processes’’ an extended Kalman filter (EKF) based software
sensor was designed and implemented for continues monitoring of ethanol concentration
during cultivations of baker’s yeast. The software sensor employs the discrete ethanol
measurements from the gas sensor array and predicts continues ethanol, glucose and biomass
concentrations. Furthermore, the specific growth rates and their maximum values were also
predicated with the proposed method.

Usually the EKF shows good prediction results. Nevertheless, in spite of the satisfactory
results, it has some disadvantages. It is reliable for systems which are almost linear on the
time scale of the update intervals; it requires the calculation of Jacobians at each time step,
which may be difficult to obtain for higher order systems; it does linear approximations of the
system at a given time instant, which may introduce errors in the estimation, leading to a state
divergence over time (Julier and Uhlmann, 1997). Therefore, in the third publication
”’Parameter and state estimation of backers yeast cultivation with a gas sensor array and
unscented Kalman filter’” an unscented Kalman filter (UKF) was used for predicting the
process variables.

The UKF is another nonlinear extension of the Kalman filter which is very similar to the EKF,
but instead of approximating the non-linear process model by calculating the Jacobian of the
dynamics for the determination of the estimation error variance, the transformed probability
distributions are approximated directly. This is done by representing the distribution by a set
of chosen sample points (sigma points), transforming these points by the non-linear model
function, and then approximating the mean and variance of the transformed distribution, by
the mean and variance of the transformed points (Julier et al., 2000).

The obtained results show that with the proposed UKF algorithms, it is possible to estimate
the maximal specific growth rates as well as continuous ethanol, glucose and biomass

concentrations with a better accuracy compared to the EKF based method.
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3. 2. 2. Dough fermentation process

The fermentation (proofing) process of dough is one of the quality-determining steps in the
production of baking goods. In order to ensure final product quality, robust measurement
system and control strategies are required. Therefore, for the dough fermentation process, in
the publication ”Application of fuzzy logic control for the dough proofing process” a
measurement system (software sensor) based on image analyses was developed for
measuring the volume evaluation of dough pieces and a fuzzy logic controller was designed to
maintain the volume of the dough pieces similar to volume expansion of a dough piece under
standard conditions. The fuzzy controller uses the measured volume from the imaging system
and comperes it to a reference value (volume of a dough piece in standard conditions). The
fuzzy controller manipulates the temperature and humidity of the proofing chamber
according to the difference in the measured volume. The obtained results indicate that the

performance of the system is very satisfactory with respect to volume control.
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solid phases of a bioprocess. On-line messurements of these
varisbles make great demands on the sensing device. It is
easier to meet these demands in the gas phagse environment
than in the liquid phase for various masons: in the gas phase,
the nurnber of interfering substances is smaller and the me-
chanical stress on the sensor membrmne i lower than in the
stirred bioresctor liquid In sddition, preventon of so-called
sensar fouling by cell adhesion i not necessary and & sterile
barrier in the form of & mass filter can be easily introduced
into the gas stream (Wild et al, 1996)

Mumerous methods have attempted to measure the con-
centration of volatile organic compounds (VOCs)in the vapour
phase. In recent years, particulady due torecent technological
developments in sensor technology end computing power,
fas Sensor aTeys (eledtronic nose techniques) have become
valuable tools for VOC messurements. Generally, the sensor
amay technique is sttractive for a8 number of significant fea-
tures, such as the relatively fast sssessment of headspace, a
quantitative representation or qualitstive identification of a
gas and using chesp chemical sensors which can be easily
integrated in current production processes. It has thus
become particularly suitsble for the continuous monitoring of
microbisl fermentation processes ([ieng et al, 2015). Recent
applications of ges sensor arrays for monitoring fermentation
process have been reported in the litersture (Buratti &
Benedettd, 201&; Ghosh et al., 2017; Hidayat et al., 2018 Li
et al, 2019 Ten et al, 2018, 2019). However, only a few
works have demonstrated the application of gas sensor arays
for maonitoring ethanol concentration during 5. cerevisize
cultivation (Bachinger & Mandenius, 2001; Lidén et al., 1998;
Mandenius et al, 1997). In onder to predict a specific volatile
compound with a gas sensor array, chemometric modelling
techniques are required In the previous studies, the calibra-
tion methods for the chemometric models were limited to
data-driven calibration methods. The main disadvantage of
date-driven calibration methods is the huge smount of off-
line dats necessary to calculate & reliasble model

An alternative to the dete-driven celibration method,
which is a ime consuming tesk, & model-based calibration
(MBC). A statistical model-based approach for developing
calibmtion models does not require the time-expensive
collection of samples for off-line messurements. Further-
mare, this approach addresses some of the shortcomings of
treditional calibration methods to study the entire system
response which results in robust calibration. Lin et al. [3007)
gave a systematic approech for development of data-driven
soft sensors. MBC approaches have been implementsd on
spectroscopy-based monitoring systems. Solle et al (2003, as
well g5 Pequet-Durend et sl. (2017&), used this evelustion
technique for the prediction of biomass, glucmse, and ethanol
during & 5. cerevizige cultivation. Furthermaore, Paquet-Durand
et &l. (20170} applied this method for eveluation of fluores-
cence me asurements during several parallel cultivations of H.
polymarpha in & micotitre plate.

Based on fluorescence messureme nts, Odman et &l. [3009)
and Solle et sl (2003) evaluated yesstoultivation using glucnse
as substrate and developed chemometric models, one for the
glucose consumption phase with concomitent ethanol pro-
duction and a separate one for the ethanol consumption
phase (after glucose depletion). They stated that it was

difficult to use one and the same model for both phases.
Prquet-Durend et sl (20178) examined artificial neural net-
warks for the correlation of the fluorescence spectra with
glucose, biomass and ethanol concentmtions. They imple-
mented a model-based training approsch for training one
single neural network for the whole process. They reported an
sccurate prediction of glucose and biomass (error of predic-
tion below 5%) though the prediction error for ethanol was
1(%. This is due to ethanol not being fluorescent so it could
only be determined indirectly from the spectra. Therefore,
flucrescence -based maonitoring methods are not the most
socurate methods for predicting ethanol concentrations dur-
ing 5 cerevisige cultivation process. In this contrdbution,
ethanol concentration during yesst cultivation was predicted
using & ges sensor array &nd chemometric modelling. The
mein contribution of this paper can be summ arised a3 follow:

» Design and implerentation of & gas sensor array and
hesdspace sampling system in order to achieve acou-
rate prediction of ethanol concentration in the liquid
phase during 5. erevisize batch cultivation.

= Implementation of 8 MBC algorithm for the calibration
of the ges sensor array. Insteed of using off-lne mes-
surements, simulated process varisbles were wsed to
determine parameters of the chemometric model. The
kinetic parameters of the process model are unknown
at the beginning and are also determined during this
procedure.

The results of the proposed calibration method are
compared with & classical calibmtion method [CCM) in which
the parameters of the model are scquired by least squares
fitting to off -line messurements.

The remaining paper is organised as follows. Section 2
provides the materizls and methods which were applied in
this study. Section 3 provides the results and Section 4 con-
cludes this paper.

2 Marterial and methods

21 Stran and cultivation conditions

Three batch fermentations of 5. cerevizine, named BC1, BC2,
and BC3, were performed. Cultivations were carried out in a
3 L steinless steel tank bioresctor (Minifors, Infors HT, Bott-
mingen, Switzerland) with & working volume of 1.35 L and
equipped with tempersture and pH control. 5 g of baker's
verst 5. cerevizige (fresh backer's yeast, Omas's Ur-Hefe) was
used in all pre-cultivations. The baker's yeast was suspended
into 100 mlL Schatmmann medium contsining 0.34 g L™
MEgS0,-TH,0, 0.42 g L7 CaCl,-2H,0, 4.5 g L™ (MH,)S0,
1.9 g L™ (MH,).HPO,, 09 g L~ KCL. After shaking for 10 min
they were sdded into the bioreactor. The medium used for
batch aultivations was the same as for the suspended cells,
but with & g L7, 7 g L7 and 9g L7 glucose for BC1, BCZ, and
BC3 respectively and 1 mL L™ trace elements solution
(0.015 g L~ FeCly-6H.0, 9 mg L™ ZnS0y-7H.O, 10.5 mg L™
MnS04-2H:0, and 24 mg L CuS04 5H:0) and 1 ml L7
vitamin solution (006 g L™ myoinositol, 003 g L™ Ca-
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pantothenate, & mg L~* thismine HCL, 1.5 mg L™ pyridoxine
HCl, and 0.02 mg L™ bictin). All three batch nms were oper-
ated under the same conditions, that i, a constant tempera-
ture of 30 °C and pH maintsined st 5. The aeration and
BEitation rates were kept constentat3.5 L min~ and 450 rpm,

respectively.
2.2 Off-line analysis

Samples were regulerly taken from the bioreactor and putinto
pre-weighed and pre-dried micro centrifuge tubes. The sam-
ples without the supernatant were left in a drying oven at
103 °C for 24 h. They were then cooled down for 30 min before
weighing. The supernatant of the samples after centrifugation
was examined by HPLC (ProStar, Variant, Walnut Creek, CA,
UsA) to determine the concentration of ethanol. The super-
natant was firstly filtered through a 0.45 pm pore size paoly-
propylene membrane filter (VWE, Darmstadt, Germany).
Subsequently, 20 pl. was injected into 2 Rezex ROA-orgenic
acid H+ (%) column (Fhenomenex, Aschaffenburg, Ger-
many) operated at 70 °C with 5 mM H;50, as an eluent at
0.6 mL min™" flow rate. The concentration of ethancl was
caleulated by Galaxde™ Chromatography software (Varian,
Walnut Creek, CA, 1JSA).

2.3 Gas sensor array and on-line sampling

In this study, & gas sensor amway was developed and imple-
mented for real-time monitoring of ethanol concentration
during yeast cultivation. The developed system is built in
three parts, namely messurement chamber, eledtronics and
mechanics.

The messurement chamber inchides commerdally avail-
gble metal oxide semiconductor (MOS) gas sensors. Selecting
the propersensors is always challenging in volatile compound
measurement with gas sensor arrays.

Durin g 5. cerevizige cultivation, ethanol is the main volatile
compound produced Whenever ethanol is present, chemical
sensors cannot distinguish other volatile compounds from the
much higher ethanol background. Therefore, in this contri-
bution only MOS gas sensors with high sensitivity to ethanal
(according to the manufsturer's instructions) were used (TGS
&X2 TGS 813 and MQ3) The MOS gas sensors were placed in-
side & chamber with & volume of 250 mlL to messure the
ethanol concentration of the incoming gas. A circulation fan
was placed inside the chamber for homogeneous distribution
of the gas. In order to eiiminate the drift effect of sensor signal
which may arise from temperature variation under long time
measurements, the tempersture of the messurement cham-
ber was kept constant at 42 °C. For this reason, & temperature
sensor (DHTZZ, Aosong Electronics Co., Ltd) as well as two
hesting elements were placed inside the messurement
chamber. The temperature of the chamber was controlled
with & closed loop temperature control system.

The electronics part covers the sensor circuit, control cir-
cuit, micto controllers and a power supply circuit for gener-
ating required different voltages for sensars (5 V) and valves
(12 V). A micro controller (Arduino Mano) containing & 10-bit
ADC [@nelogue to digital convertor) was used to canvert the
electrical signals from the MOS sensors and the temperature

sensor to digital signals. The digitsl signals were sent to
snother micro controller [(Arduino megs 25680) wvia [2C
communication protocol. Data from the Arduino megs was
sent to & computer (Intel Core i3, 2033 MHz, 4 GB RAM) via
serial port communication for further signal processing and
dats extracton. The mechanical part consists of Teflon
tubing, pump (Schwarzer Precision, Essen, Germany) and so-
lenoid veles. Figure 1 gives & schematic diagram of the mea-
SUrement system.

The bioreactor hesdspace sempling procedure consisted of
an automated sequence of internal operstions which was
performed every 5 min during the cultivation process. Head-
spece sampling contzined the following main stages: expo-
sure stege, purging stage and sensor regeneration stage. In the
exposure stage, the headspace of the bioreactor was passed
into the sensor chamber for 10 s sta flow rate of 400 mL min™
with & diaphmgm pump (Schwarzer Precision, Essen, Ger-
many). The exposure stage was followed by the purging stage.
In this phase, clean air was drawn into the sampling pipe (the
pipe connected from the bioresctor to the measurement
chamber) to clear the remsaining gas from the previous mea-
surement. Simulteneously the messurement chamber was
flushed out with a stream of oxygen at & flow rate of
450 ml min~" for 180 5. These values as well &s the flow rate of
the pump were all determined by technical conditions of our
measurement set-up and practicel considerations. After the
flushing step was over, the input and output valves of the
sensor chamber was kept dosed for 110 s 50 thatthe readouts
from sensors reached the same level as before measurement
(sensor regeneration stage). The sampling procedure was
oontmlled vie & set of ministure solenoid valves interfaced by
& miao controller (Arduino Mana).

24,  Signal pre-processing and feature extraction

Anzlogue dats obtzined from the output voltage responses of
the sensars were sempled st 2 5~ frequency during the whole
cultivation process. Figure 2 shows a typical sensor circuit and
its interface diagram.

In Fig. 2,V i & fixed voltage for the heater of the sensor
(5 V), Ve is the upper reference voltage (5 V), By is the bad
resistor and Bg is the sensor resistance. With pure air B is
high. With the presence of detectable gases, Rz changes with
the variation of gas concentration. V- is a frced voltage (5 V).
By messuring the voltage on the resistor Ry, the sensor
response (Vs) can be calculated by the following equation:

R

i

Ve ()

Eazch sensor reacts differently to volatiles in the headspace
gas of the bioresctor. The output voltage is mlated to the
ethanol concentration but it doesn't directly include the con-
centration levels. However, it is known that i the concentra-
tion levelchanges, the output voltegeresponses of the sensors
change also (Kizni et al., 2016; Omatu & Yano, 2015).

For ethanol prediction, the sensor response should first be
further pre-processed to obtain comprehensible signals. Sec-
ond, some features from the pre-processed signals should be
extracted. In the next step, dimensionality reduction should
be performed on the extracted festures. Dimensionality
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Fig. 1 — Schematic disgram of the measurement system.
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Fig. 2 — Basic gas sensor interface drouit diagram.

reduction projects the festure wector onto & lower dimen-
sional space in order to avoid problems associated with high-
dimensional, sparse datesets and redundancy (Apguilers et &l.,
201Z). Finglly, the reduced features should be imported into
the prediction model. Figure 3 showrs the block diagram of the
proposed ethanol prediction algorithm.

Ome of the simplest methods of signal pre-processing,
which is slso widely used for drift compensstion, is the
transformeton of individual sensor signels based on the
initial value of the sensor response. This process com pen sates
for noise, drift and also for inherently large or smallsignals (Di
Carlo & Felesconi, 201%). For this reason the following equa-
tion was spplied.

vﬁ - VSU:
=" @

where Ve is the response fthe woltage of the sensar) of the ith
Sens0T, Vi is its baseline and 5 coresponds to the modified
signal.

The next step in the ethanol prediction algorithm is
extracting useful festures from the output signals. In esch
measurement oycde, the sensors are exposed to the headspace
ges of the bioresctor for 10 s, which causes changes in the
output signals. In the next step the odomnt is flushed out of
the sensor using the oxygen gas and the sensor returns back to
its baseline. The time during which the sensar is exposed to
the odorant is referred to &s the trensient phase, while the
time it takes the sensor to return to its baseline resistance is
called the recovery phase. In order to exploit the obtrined
information in the transient phase, tao representative fes-
tures were extracted from each sensor:

» Peak height: calculsted as the difference bebareen the
meximal welue and the baseline value of sensor
response in the transient phase.

» Perk ama: calculated as the ares under the signal
response in the transient phase.

In total, esch messurement cycle was characterised by &
varnables (Le., 3 sensors » 2 festures per sensor). In order to
quantify the amount of useful information for predicting
ethanol concentration from all the warisbles, prindpal
component analyses (PCA) was performed. The process of PCA
is to fnd & new coordinate system of the mesn centred data
set, whose axes are perpendicular and hawve maxim al variance
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Fig. 3 — Block diagram of the proposed ethanol prediction algorithm.

in decreasing order. The direction contsining most of the
vanence of the data is called the first PC. The second PC carries
the maximum variance of the remeining data and so0 on.
These PCs ame statistically unrelated to esch other (A5, 2008;
Ortto, 19949).

2.5 Theoretical model

When 5. cerevisiae is grown serobically using glucose as sub-
strate, biomass and ethanol are produced and a disuxic
pattern can be observed. After depletion of ghicose, ethanolis
consumed by the cells (Zhang et al, 1997). Accordingly, we
have used a mathe matical model that reflects the ethanol and
biomass production and ghicose consumption during batch
cultivation of 5. cerevizige. The model was formulated by Solle
et &l (2003} and has been reported in literature previously
(Assawajaruwen, Ecdkard, et al, 2017, Assewajariwen,
Reinalter, et al, 2017; Paquet-Durand et al, 2017s). This
mathematical model is based on the following assumptions:
the cultivation of the yeast cells is performed in an ideal
stirred tank reactor, there is no concentration gradient in the
resctor, the change of physicochemical properties of the cells
does not change the growth rates and yield coefiidents except
for the main substrates [glicose and ethanol) and the growth
rates are the same for all cells and nolimitation in growth can
be observed (change of the main substrate from ghicose to
ethanol is very fast).

The mathematical model can be described by the following
differentizl equations:

dX

o e X (3
dc__ pX

—_— - 4
dt Yo K
§=Fux _ meX 5)
dt Yew Yie

Here G, E and X are the glucose, ethanol and the biomass
concentrations, respectively. g and g, are the specific growth
rates on glucose and ethanol, respectively. Yy, Yoo and Yie
are the yield coefficients with respect to the conversion from
glucose to biomass, glucose to ethanol and ethanol to
biomass, respectively.

The disuxic growth can be considered in the model by the
factthat g is only greater than zeroif glucose is present, and

then there is no growth on ethsnol (g = 0 h™7 (glucose
repression). If gluoose has been consumed, then the cells have
just ethanol &s the anly carbon source, 50 gg = 0 h™" but g is
greater than zero until ethanol is consumed. The above &s-
sumptions can be formulated into the following equations:
_Jo &
“

=0
B G = 0 (6}

{0 G =0orE=0
Be =

gy G= ODandEs0 ?

In order to perform & simulation of the process, the pa-
rameters of the modelshould be determined. Typical values of
the yield coefficients can be found in the litersture (Odmen
et gl., 2009). In this contribution, the yield coefidents hawe
been fixed to following values, which are similar to those used
by Faquet-Durand et al [2017&):

Yee=0175g, 5% Yeu=0473 g " and Yy p = 0598 g, =7

The walues for the specific growth rates (pg, and pgy) are
determined during the MBEC procedure by numerical integra-
ton of the differential equations wsing & Runge-Kutta-
method.

26.  Model-based calibration procedure

In order to predictethanol concentrations from the data ofthe
gas sensar array, the following prindpal component regres-
sion (PCE) model was appled (the chemometric model).

o= + (B 2PG) + (py PG ()

where c¢ is the predicted ethanol concentration, PC; isthe first
principal component of the gas sensor array data and py, py
end p, are the parameters of the chemometric model.

The simulated ethanol concentrations calculated from the
process model were used as reference data for calibrating the
response of the gas sensor array. In order to cakulate the
simulated ethanol concentrations, the values of the spedfic
growth rates were required. For obteining these values the
following procedure was applied:

During the first step, roughly estimated starting values of
the specific growth rates (ug and pm) are used and the
simulated ethanol concentration is calculated. During the
calibration procedure, the eveluation of the simulated ethanol
ooncentration is compared with the predicted ethanol
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concentration and the sum of squared differences is calcu-
lated. In the next step, the error of predicion is minimised by
implementing an optimisation algorithm. The algorithm
changes the process model parameters (u;, and wgy) 25 well 23
the parameters of the chemometric model (p,, py and p,). All
the steps are processed in 8 opde untl the minimum of the
sum of squared differences is obtained. The flowrchart of the
MBC procedure is presented in Fig. 4.

The optimisation method which was used to minimise the
error of prediction is & partice swarm optimisation algorithm.

)

| Calculate new

| process model parameters
1
1
1

(kg and g )

This algorithm works by improving & population of cendidate
solutions called particdles, which are the parameters of the
mathematical models (here the specific growth rates as well
g3 the parameters of the chemometric model). The particles
are flying through the search space and the velocity of each
particle is determined by the position of its best-kmown per-
formance as well as the position of the overall swarm's best
known performance. The swarm iteratively moves to the best
solution. A more detailed desoiption can be found in the
literature [e.g. Wanget al., 2014).

Initial values of growth rate
(bq and pigy )
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Fig. 4 — Flowrchart of the model-based calibration procedure to get optimal parameters for the process model as well as the

calibration model.
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By applying this MBC method, appropriate velues for the
parameters of the theoretical process model (g, 8nd pg) caEn
be estimated. Furthermore, the optimal pammetes of the
calibration model are calculated and are wed for predicting
ethanol concentration.

2.7, Calibration usig off-line values

Ethanol concentration was elso predicted by & dassical cali-
bration spproach. The same chemnome tric model was used for
this approach. The chemometric model was calibrated using
the off-line ethanol concentrations.

For both calibration methods, data from all three cultive-
tions were carried out separately for the calibmtion models
[with esch calibration method, three different calibration
maodels were made). Each calibration model was evaluated
individually with the dats from the other two cultivations.

The calibration models were charecterised by the root-
mean-squared error of calibration (RMSEC), standard error of
calibration (SEC) with resped to the maxmum ethanol con-
centration, root-mean-squared error of prediction (RMSEF)
end standard error of prediction (SEF) with respect to the
maximum ethanol concentration.

The RMSEC describes how a model fits the calibration and
RMSEP evaluates & calibretion model versus s sample set from
& new cultvation. They are calculated with the following
equation:

|ﬁ
RMSEC or Mﬁ@_w.'z“ U:‘TW o

where ¥ represents the calculated concentration during
calibration (RMSEC) or predicton (RMSEF) and Y; is the con-
centration determined by reference analysis (gither simulated
or aoff-line concentrations). N stands for the messurement
oount

EMSEC and EMSEF provide an estimate of the prediction
error in the same unitas the initial data (g L~7), while SEC and
SEP provide the prediction emor with respect to the maximum
ethanol concentration in the reference dats in terms of per-
centege. SEC and SEP are calolated as folloar:

1||I'I ":‘ 7 :
Y,

=

SEC or SEP (%)= (1)
where ¥; is the calculated concentration determined by
the chemometric model and Y; is the concentration deter-
mined by reference analysis (either simulated or off-line
concentrations). N stands for the messurement count and
¥ e 18 the maximum e th anol concentration in the reference
data.

3 Results and discussion
31. Response of the gas sensor array

The gas Sensor &ITEY response pattern from & cultivation of
miaoorganisms may have various origins. The sensors can, if
sensitive enough, respond to specific volatile compownds
emnitted by the micmorgenisms in the culture or to the

Tahble 1 — Predicted values of the specific growth rates and the parameters of the chemometric models using MBC and CCM

calibration approaches.

Cultivation e ) wslh™) Polg L) py(ig L)/ unit)) P2 (g L /Unir’)
MED MED MED CCM MED CCM MED CCM
BC1 15 0.08 004 023 0.38 079 137 009
B2 15 0w 004 03 032 10 051 006
B 16 0w 02 01 085 027 124 009
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Table 2 — Yield coefficient of all three coltivations as well

as the selected yield coefficient for the simmlation mode)

Cultivation  Yyolgy/Bs) YL'GLUE 1R Yy By /B2
BC1 0.158 0458 0552
BC2 0.184 0.483 0586
BC3 0.159 0464 0533
Simulation 0.175 0473 0598
Mean + 5D 0.167 + 0,01 0468 +0.01 0577 + 0uH

emission from the nutrient components of the medium
(Bechinger & Mendenius, H000).

In order to determine the sensitvity of the gas sensor
array to the nutrient com ponents of the medium as well asto
the volatile compounds emitted by the cells, the response
pattern of the gas sensor amay from BC2 (before and after
adding the suspended cell culture) was compared to the off-
line values of ethanol, glucose and biomass which were
measured during the same cultivation. For this reason the
bioreactor was filled with 1 L of the medium and a glucase
solution (to & final concentration in bioreactor of 7 gL ~") and
five sampling cycles were performed from the headspace of
the bioresctor. Immediately before the &th sampling oycle,
the suspended cell was added and the sampling oycles were
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performed every 5 min until the end of the cultivation pro-
cess (Fig. 5.

Figure 5(g) indicates the evolution of gluoose, etheanol and
hiomass during the cultivation (BCZ) and Fig. 5(b) illustrates
the raw signal respomse of one of the gas sensars during the
same cultivation.

In Fig. 5{b), the five peaks before T, ., indicate th e response
of the sensar to the components of the medium. At Tiwa the
suspended cells are added to the biorea ctar (inoculation time),
Tuwe i5 the peak with the highest value and T isthe last peak
where the ethanol is depleted and whose heightis the same &s
before Togn-

High sensitivity of the sensar to ethanol produced during
the cultivetion process can be descrbed by comparing the
penerzal pattern of the peak heights (Fig. 5 b)) with the ethanol
concentration (Fig. 5(a)).

In Fig. %), while the ghicose is decressing during the
plucose phase, the products (ethanol and biomass) are
increesing. At sround 2 h, the glucose is depleted snd the
cultivetion shifts to the ethanol consumption phase. After
ground 7 h, the ethanolis also depleted and no more ethanol
remained in the culture broth. Similar behaviour of the sensor
response can be observed from Fig. 5(b). In Fig. 5(b), the peak
height before T, Bnd after T,,. is the same. In additon,
there are nochengesin the peak heights after Tewa (the region
where all the ethanol s consumed). From these illustrations it
can be seen that the sensor is highly sensitive to ethanol but
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2.5 BC3
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1 15 i

Q05115225 3 35
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Fig. 6 — Predicted versus simulated ethanol concentrations using the MBC ap proach for all three cultivations (BC1-BC3)
as well as the predicted werses off-line ethanol concentrations using the CCM approach for all three ultivations

(BC1-BC3).
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Tahle 3 — RMSEC and SEC for both ca bration methods.,

Cultivation MBC CCM

BC1 agigl™ 1T airgl™? T
B2 agdgL™ b1 agag Lt S
B3 anagl-t 4% 0.8 g Lt i

not 2o sensitive to the other components of the cultivation
mediurm

32, Calibration models

Far the MBC approach, the proposed method in section 256
was applied to the sensor data gathered from the headspace
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gas analysis of the bioreactor during each cultivation process
separately. The evaluation of the predicted ethanaol concen-
trations from the gas sensor amay was cornpared with the
sirmulated ethanol concentrations. The sum of squared dif-
ferences was caleulated and minirmized by the particle swarm
optimisation method. With this approach, the parameters of
the chemometric models {p,, py and p,) as wel as the growth
rates of the simulation model (g and mes) were obtained.

For the CCM, the offline ethanol concentrations
frmeasured from the offline samples taken during the cult-
vation) were fitted to the responseof the gas sensor arrmy and
the sumof squared differences was minimised. The predicted
walues for the spedfic growth rates on glucose and ethanol
jobtained from the MBC approach) as well as the parameters
af the PCR model using both calibration approaches are pre-
sented in Table 1.
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Fig. 7 — Predicted |dots) verses off-Ine (crosses) ethanel concentrajons using the MBC approach. (a) and (b) present the
predicted and off-lne ethaneol concentrations fusing BC3 for calibratden) dudng BC2 and BC1 respectively. (¢ and (d) present
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Drata in Table 1 reveal that there i no significant dif ference
betwesen the growth parameters (e and ) from cultiva-
tions with different initial conditions. This shows that the
yeast cells have regulatory mechanismes to be able tobalance
the cellular activity in different conditions. Furthermeore, the
values for g and ey that were obtained by fiting the theo-
retical process model directly to the off line data of the same
cultivations were 0.15 h™" and 0.004 h™", respectively. So the
growth mate values are equal. These values alo fit well with
the range of 5. cerevizsiae’s growth rates reported in literature
(Boender et al, 2009). Therefore, the parametsr estirmation
method can be considered reliable.

Az previously mentioned in secton 2.1, the yield oo-
effidents of the simulaton model were obtained from litera-
ture. In order to ensure that no changes in these cosffidents
ocourred, the yield coefident of each cultivation was also
obtained by fitting the process modd tothe off-line data. The
obtained walues were compared to the chosen values from
literature (Table 7).

Between three diffeent cultivations as well as the simu-
lated process model, the values of yield coefficients have no
significant difference due tothe low standard deviation This
indicates that the yield coeffidents chosen from liberature are
in the correct range and the simulation model can describe
the process accuratsly.

Az a method of assessing the fit of the calibration models to
the data, the cormlation plots were prepared (Fig. 6). The
predicted versus simulated ethanol concentrations using the
MEC approach for all three cultivations (BC1-BCY) as well as
the predicted versus off-line measured ethanol concentra-
tions wsing the COM approach for all three cultivations
(BC1—BC3) are presented.

The FMSEC and 5EC were chosen as the numerical tools for
accuracy asaesarnent of the calibration modela. Thevalues are
given in Tahble 3.

The results in Table 3 indicate that the most suitable cali-
braton method for the determination of the ethanol concen-
tration is the MBC approach (RMSEC is below 3.5% in all 3
cultivations). This was tobe expected due to the difference in
the number of data used during calibration, because for the
CCM approach just 13 samples were collected and analysed
offline However, with a relatively small number of training
data, the CCM approach i= also a reliable method for the
determmination of ethanaol concentration (RMSEC is below 5.5%
inall 3 cultivations).

33 Validation of the calibration models

In onder to see if the calibration models are able to predict
the ethanol concentration during new process runs, each
calibration model obtained from a cultivation run was wali-
dated with the data from the other twa cultivations which
hawve different initial concentrations. Figure 7{a) and (b)
present the predicted (using data frorm BC3 for the calibra-
tion rodel) as well as the off-line measurerments of ethanol
concentration as a functon of time durdng BCI and BCL
respectvely. Figure 7{d) and {d) present the predicted fusing
data from BCZ for the calibration mode]) as well as the off-
line rmeasurements of ethanol concentration as a functon
of ime during BC3 and BC1 respectively. Figure 7(e) and (f)

present the predicted (using data from BC1 for the calibra-
ton model) as well as the off-line measurements of ethanol
concentration as a Numction of time during BC2 and BC2
respectively .

Figure 7 indicates that the predicted ethanal concentration
using the MBC approach corresponds well with the off-line
measwrements during al cultivations. Furthermore, the
ethano]l production phase and ethanel consumption phaseare
deady indicated by the predicted ethanol values without a
gignificant ime delay (incomparison with the off -line values).
In 5 cerevigige batch cultivation, the metabolic shift of the
yeast cdls (shifing from ethanol production to ethanol con-
sumptaon) is a crtical point which indicates a significant
change in its metabolism and can be observed using the gas
sensor aray. Ethanol prediction with the MBC approach was
compared with the ethanol prediction uwsing the CCM
approach. For this reason RMSEP and SEP were caloulated and
the results are shown in Table 4.

Table 4 reveals that, by using the MBC approach, the SEP of
prediction is below 7% in all cases except when BC2is used for
calibration and the data set from BCL is used for validation
[EEP = 9.3%). However, even though in the MBC approach no
aff-line measurement were used during the calibration pro-
cedure of the chemaometric model, the prediction corres ponds
very well with the simulated values. Furthermore, in oom-
parison with the predictions from using the CCM, lower pre-
diction emrors are obtained.

The larger errors of prediction from the CCM are because
nat 20 many off -line sarmples are used for calibration. There-
fare, by inreasing the number of off-line samples, more ac-
curate predictions might be obtained. However thiswouldbe a
time-consuming and expensive approach.

When using the MBC approach, the percentage eror
greatly depends on the kinetic pammeters of the simulation
madel that are obtained from the sptimisation algorithm. If
they are clwse to the real walues, the process maodel will
describe the process suffidently accurately. Therefore,
improving the optimisation process can lead to even lower
percentage arors. Of coumse, the percentage ermrors also
depend on how good the off-line samplings were performed
and how accurate they are. However, the prediction emaor for
ethano] concentrations is below 10% in all three cultivations

Table 4 — The RMSEP and SEP abmined with the MBC and
CCM approach,

Using BCL for the calibration model

Validation with MBC CeM

B2 Gl gl-t  ax aiglt £
BC3 008 gLt ¥ algl™t 7.6%
Using BC2 for the calitwation model

Vali dation with MBC CCM

BC1 a6 gl seu amMgl™?t am
A asgl™t So aigl™t Lo
Using BC3 for the calitwation model

Validation with MEC O

BC1 024 gl &£F% oMglt  ASK
B2 il gl-t &£ alagl-t T
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which & considered decent for a bioprocess espedally when
considering that no off-line values were used to achieve this
result.

4, Conclusion

Thesignals from the gas sensor array described hereshoweda
high correlation with ethanol concentration during cultiva-
tions of 5. cerevizise growing an gheease. Similar to any other
indirect measurament method, a chemometric maodsl is
required for predicting the ethanol concentration from the
signals of the gas sensor array. This apprach normally
requires off-line sampling for calibration purposes which is
expensive and time-consurming. Altematively, a simulation
maode can be used, if the correct parmmeters for the mode] are
known. In the proposed method, the only requirement for
calkulating the parameters of the simulation model is the
response of the gas sensor array from a single cultivation mn.
Then the pammeters for the siilation model can be calou-
lated by minimizing the prediction error by aptimising the
kinetic parameter values of the simulation maodel as well as
the parameter valies of the chemometric model

The proposed MBC method provided comparable results to
the reference ethanol concentration values obtained by HFLC.
Furthermore, compared to spectrascopy-supported modsls
farethanol prediction which have applied separmte prediction
madds for each diauxic growth phases of the cultivation, in
this investigation only a single maodel was applied for the tero
diauxic growth phases.

The proposed measurement system i inexpensive to
implement, has just a few maintenance requirements and
can be implementsd on bioreactors with different volumes.
However it could be assumed when dealing with much
higher ethanol concentrations, the sensor measurement
limit would be exceeded. In this case, the outlet gas of the
hisreactor can be diluted with a efeence gas. Overall, the
gas sensor amray seems to be a useful non-invasive toaol for
continusus monitoring of yeast cultivation and might alsobe
used for dosed loop control of processes invalving ethanol
measurements.
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techniques enable solid bases for digital transformation in the biopharmaceutical
industry.

Among various data analytical techniques, the Kalman filter and its non-linear
extensions are powerful tools for predicion of reliable process information. The
combination of the Kalman filier with a virtual representation of the bioprocess,
called digital twin, can provide real-ime available process information. Incorpora-
tion of such varables in process operation can provide improved control perfor-
mance with enhanced productivity.

In this chapter the linear discrete Kalman filter, the extended Kalman filter and the
unscented Kalman filiers are described and a bref overview of applications of the
Kalman filter and its non-linear extensions to bioreactors are presented. Farthermore,
in a case study an example of the digital twin of the backer’s yeast batch cultivation
process is presented.

Graphical Abstract A digital twin of a bioreactor mirrors the processes of the real
bioreactor. It contains the physical parts, the process model and prediction algorithm
to predict the bioprocess variables. These values could be used for optimization and
control of the process.
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Abbreviations

HEH e~ HOT
E = ﬁ

Nz
E

State transition matrix

Process input ransition matrix
Measurement model

Cubature Kalman filter

Extended Kalman filier

Ensemble Kalman filter

Jacoby matnx of ()

Non-linear function describing the process change
Flow injection analysis

Jacoby matrix of measurement model
Measurement model

Kalman filter

Estimation eror covanance matrx
Model parameter vector for estimation
Process noise covariance matrix
Measurement noise covariance matrix
Time

Unscented Kalman filter
Measurement noise vector

Process noise vector

State variables vector

State variable at continuous time k
State variable at discrete time k
Filtered state variable at discrete time k
Measurement vector

1 Introduction

Bioprocesses are described as biological systems that are non-linear, complex and
unsteady; thus development of precise control systems in order to achieve robust
product quality and productivity can be challenging. The control of these processes
can be significantly improved by online process monitoring followed by corrective
actions. In this context, bioprocess digital twins are helpful tools.

Digital twins are virtual representations of the production process which enable
pre-emptive process control by using online data to predict the process outcome in
advance. They convert the physical process to a smart process and thus achieve the
ultimate goal of the digital transformation. This enables unprecedented possibilides
for timely and automated intervention o provide critical decision support during

process development [1].
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Digital twins mainly consist of a mathematical model which describes the
dynamic behaviour observed in a biochemical reactor and a prediction or self-
leaming algorithm which estimates the cellular component concentrations and the
process parameters that cannot be described mechanistically [2, 3].

Bioprocess mathematical models may generally be categorized into algebraic
equations and dynamic models. Algebraic equations are developed from mass and
component balances, from mass or heat transfer laws or even from elemental
balances. Dynamic models usually consist of dynamic balances of conserved quan-
tities in combinaton with kinetics to describe rate expressions as functions of the
state variables. Detailed description of mathematical modelling of bioprocesses is
covered by previous authors in greater details than space allows here [4-7]. The goal
of this chapter is to highlight state estimation methods with a specific focus on the
Kalman filter and its non-linear extensions.

For linear systems, the Luenberger observer and the Kalman filter, whose 60th
anniversary occurred in 2020 [8], are the most applied methods for estimating
parameters and process variables that cannot be measured directly. In the area of
non-linear systems, particle filiering (PF), high gain observers, non-linear extensions
of the Kalman filter such as the extended Kalman filter (EKF) and the unscented
Kalman filter (UKF) and many others have been proposed. However, due (o the
simple structure and low computational effort of non-linear extensions of the
Kalman filter, these methods have gained more interest, and many research studies
have been dedicated to the implementation of such filiers for state and parameter
estimation in bioprocess technologies. The main objective of this chapter is to
discuss the applications of different Kalman filter algorithms in bioprocess technol-
ogies. Therefore, this chapter is orzanized as follows: in the next section, a brief
overview of the Kalman filtering theory and its non-linear extensions will be
discussed. Applications of the Kalman filter for the supervision of cultivation
processes will be given in the third section, followed by a case study evaluating
the implementation of an extended Kalman filter for developing a digital twin of the
backer’s yeast batch cultivation process. In the last section, a conclusion is
presented.

2 Kalman Filtering Theory and Its Non-linear Extensions

The Kalman filier is a set of mathematical equations that provides an efficient
computational solution of the least-squares method when the considered system is
linear and the unceraintes are modelled by Gaussian random varables. When the
system state dynamics is non-linear, then cerain linearization methods are applied.
The most prominent of these algorithms are the extended Kalman filter (EKF) and
the unscented Kalman filter (UKF), invented independently by several research
groups. Different extensions of the Kalman filters differ in the way the estimation
ermor is calculated. A brief overview of these methods are as follows.
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2.1 The Kalman Filter

The Kalman filter is used to provide optimal estimates of unmeasured states for time
varying linear systems in the presence of noise by combining information from a
process mathematical model with online process measurements. The process model
defines the evaluation of the state from time k—1 to time k as:

X[y = AX 1) + Butge—1) + Wi (1)

where x is the state vector, u is the process input and w is the Gaussian process noise
vector that is assumed to be zero-mean with the covariance (0. Matrix A relates the
state at the previous time siep k—1 o the state at the current step &, matrix B relates
the control input to the state variables x.

The process model is paired with the measurement model that describes the
relationship between the state and the measurement at the current time step k as:

2 = Cxpg + vy (2)

where £ is the measurement vector and v is the Gaussian measurement noise vector
which is assumed t© be zero-mean with the covariance R. Matrix C relates the state to
the measurement Zj). Since the measurements does not exhaustively inform on the
cumrent situation of the process, the KF aims to provide an estimate of the process
state at time &, given the inidal state of x, the measurements and the information of
the system.

The Kalman filier algorithm consists of two steps which are summarized as
follows:

*  Prediction step (time update): Using the initial condition, the process model is
used to predict the state varables and the estimation error covarnance’s until the
first measurement is available.

X = Axp_y) + Bug_) (3)
Py = AP AT+ 0 (4)

In the above equations, xy, is the state variables estimate at time k which is
deduced from a previous estimation of the state x; _ 4 at time k—1. The new term
P is called the state error covariance matrix which encrypts the error covariance of
the predicted state values. Py is the new prediction error covarance matrix at time
k and Pyp - g is the previous estimated emor covarnance matrix at time k—1.
Whenever a measurement is available, a correction step is perfonmed:

» Correction step | measurement update): In this step the predicted model estimates
are combined with the measured values to provide corrected estimares.
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Prediction Filtering
(time update) (measurement update)
When no measurment is avalable When new measurment is avalable

7N /TN

State variables .
Estimated & Filtered

values N . values
estimation error covariances

N S

Fig. 1 The flow chart of the Kalman filter algorithm

x g =X + Ky lzg — Cxpy) (5)
Py =Pyl — KyC)' + KR (6)
KFE] = Plk]ET{R-l- EPlk]C?}_I {?:I

The measurement prediction emor, reflects the discrepancy between the true
measurements zj;) and the predicted measurements Cx ). The difference of both is
multiplied by the so called Kalman gain and used to update the estimated state
varables. Therefore the filiered state variables xy [y are obtained. In the similar
manner, the fitered estimation error covariance Py, |, is obtained. Ky, is chosen to
minimizes the estimated emor covanance

dP;
& ®)

The measurement emror vadance must be compared with the estimation error
vanance to see how the filter is acting. For this purpose, a very rough treatment is
NEeCessary:

If B < CPyC" then K = C " and x; ) = C 'z so the filtered is almost
determined by the measured.

If R 3 CPyC" then x5 = x; the filtered value is almost the estimated one and
no influence of the measurement will be obtained.

With the filtered values as initial condition the simulation of the process as well as
the estimation emor covarance’s can be carried out until the next measurement is
obtained and everything repeats again. The flow chart of the Kalman filter algorithm
is presented in Fig. 1.
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2.2 Continuous-Discrete Fxtended Kalman Filter

Asdescribed in the previous section, the Kalman filter addresses the general problem
of trying 0 estimate the state of a process that is governed by a linear differential
equation system. In non-linear dynamic systems, the process model or the measure-
ment model cannot be determined with multiplication of vectors and matrices. For
such systems, a linearzation should be performed. The linearzation can be
performed by different methods. The essential difference among different versions
of the Kalman filkers (extended Kalman filter, unscented Kalman filter and ensemble
Kalman filter) consists in how they calculate the estimation error. A Kalman filter
that linearizes about the current mean and covanance is referred to as an extended
Kalman filter (EKF). A non-linear dynamic system can be described by the follow-
ing differential equation:

ax() _
S = () ule) + w0 ©)

With discrete measurements that are:

ziy = hlx(g)] + vy (10)

The differential equation provide the continuous part, the measurements are the
discrete part, where fis a non-linear function of the state variables x and the conrol
input . The non-linear function & in the measurement equation relates the current
state to the measurement zj. w and v are, respectively, the process noise vector and
the measurement noise vector. These noises are assumed to be zero mean, white, and
independent of each other, with respective covarance matrices () and R.

To calculate the estimation error covariance matrix, the following differential
equations have to be solved in parallel to the state differential equaton.

% = F()P(r)+ P()F' (1) + Q (1

Here the Jacobian matnx is used, which is given by the following equation:
F=d (12)

dx xr), wlr)

The filiering is performed as follows:

1

K = P(t)H" (1) [H(t) P(n)HT (1) + R (13)
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xy(ng) = x(ng) +Kgleg — ke ()] (14)
Pr(t) = [I - KgHy]P(tw) [1 - KyHy]|" +KgRK, (15)

where Hjy is the Jacoby matrix of h]:

dh

Iy

Correspondingly to the KF algorithm, the EKF algorithm consists of two main
parts including prediction step and the correction step.

As mentioned above, the basic framework for the EKF involves state estimation
of a non-linear dynamic system. However, in some cases, prediction of xg requires
coupling both state estimation and parameter estimation [9]. Here a process model
parameter p(f)is considered © be time dependent and can be estimated by adding the
parameter as an additional state variable whose differential equation is then given as

dpli)
-0 (17)

At every time step, the current estimate of the parameter p(f) is used in the
measurement filter. In the joint estimation method, model state variables and
model parameters are included in a single joint state vector. Parameter estimation
evolves in time along with state estimation, as observations are assimilated [10].

Other alematives for parameter estimation with the KF include calibrating
parameters outside the KF calculation with an outer optimisation routing [11-13],
and parameter estimation in steady-state KF calculations where observations are
climatological averages over the entire time perod of interest [14], but in both of
these two approaches the parameter estimation part of the calculation considers all
observations at once rather than sequentially.

2.3 Other Non-linear Extensions of the Kalman Filter

As mentioned previously, when the system is non-lingar and can be well approxi-
mated by linearization, then the EKF is a good option for state estimation; however
EKF is not optimal if the system is highly non-linear, this is because only the mean is
propagated through the non-linearity [15]. The unscented Kalman filier (UKF) is
another non-linear extension of the Kalman filier which is a discrete time filtering
algorithm. The UKF utilizes the unscented transformation for computing approxi-
mate soltions to the filtering problems.

A general framework for state estimation based on the UKF for this state space
model is presented as follows:
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In the first step, the initial values for the state and covariance estiimation have to be
set. Following this, the recursive estimation is performed by the prediction and
comection steps. Within the prediction step, a priori state and covarance estimation
utilizing the process model is performed. Using the unscented transformation, a set
of sigma points are chosen. These sigma points characterize the current probability
density function. Each point from the sigma matrix is propagated through the
process model to calculate the estimations of state vanables and the error covariance.
Following this, a correction step is preformed when a measurement is received. This
leads to the estimations of the filtered state variables and the fikered error covarance
by calculating the Kalman gain.

The UKF has been used in various fields for non-linear sate estimations. However
a couple of alternative approaches have emerged over the last few years, namely, the
ensemble Kalman filter (EnKF) and the cubature Kalman filier (CKF) which are
widely used when the process model is of extremely high order and non-linear, the
initial states are highly uncertain and a large number of measurements are available
[16, 17].

Similar to the UKF, the EnKF and CKF select a set of sample points (sigma
points) in order to deal with the non-linearity of the system. In high-dimension
systems, the weights of the sigma points in the UKF are prone 1o be negative, leading
to low estimation accuracy.

In EnKF the error covariances are estimated approximately using an ensemble of
model forecasts. The main concept behind the formulation of the EnKF is that if the
dynamical model is expressed as a stochastic differential equation, the prediction
ermor statistics, which are described by the Fokker-Plank equation, can be estimated
using ensemble integrations, and the error covariance matrices can be calculated by
integrating the ensemble of model states [16].

The cubature Kalman filter uses the sphercal-radial cubamire rule to generate
some weighted sampling points to approximate integral in Bayesian estimation. A
brief overview of the unscented Kalman filtering and sigma point filiering in general
are given by van der Merwe [15].

3 Application of Kalman Filters in Bioprocess Monitoring

Here 41 recent published articles [ 19-60] in the pedod of 199 1-2020 on application
of the Kalman filier and its extensions for state and parameter estimation in
bioprocesses are discussed. Due to space limitation, only some of the reported
articles are presented in Table 1. The table is organized by classifying the aricles
into different categories, which include the type of the Kalman filter and the applied
process model, the type of microorganism and the culiivation process mode, the
measured process variable(s) and the objective of the filtering algorithm. This table
would help understanding how the Kalman filter was explored chronologically to
date. It should be mentioned that in some works more than one Kalman filter
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Tahle 1 Extended Kalman filter application for cultivation processes

Estimator/ Cultivation
application oy pel Process
type micreorganism | model Ohbjective Measured state | Reference
Extended Batch cultiva- | Dissolved Muoise filtering | Dissolved Leeet al
Kalman fil- tion/E. coli oxygen mass | from oxygen [19]
terfexperi- balance dissolved
mental oxVEen
application MESUrEmEnts
Extendad Fed-batch cul- | Material bal- Parameter Glucose con- Hitzman
Kalman fil- tivation' ance equation | estimation and | centration with | et al. [32]
terfexperi- 8. cerevisiae with Monod | substrate FlA
mental growth rate prediction
application kinetics
Kalman fil- Batch cultiva- | Ideal stirred Moise filtering | Biomass, glu- | Cha and
terfexperi- tion/ tank reactor from cose, and eth- | Hizmann
mental 8. cerevisiae misdel with predicted anol (with [36]
application Monod bioprocess ultrasonic

growth kinet- | variables velocity)

ics (glucose

and ethanol as

limiting

subvstrates
Extendead Fed-batch cul- | A model for Moise filtering | Glucose con- | Arndt and
Kalman fil- tivation/ an ideal from centration with | Hitzmann
terfexperi- 5. cerevisiae stirred tank predicted flow injection | [37]
mental reacior in glucose analyses (FLA)
application combination

with Monod

growth

kinetics
Extended Fed-batch cul- | Cybernetic Filtering out Dilution rate Patn aik
Kalman fil- | tvation/ midel of noise from the |or the pas-lig- | [39]
terf 8 cerevisiae Jones and feed stream uid mass
simulation Kompala transfer coeffi-

cient for
oxygen

Extanded Fed-batch cul- | General Parameter Dissolved and | Rocha
Kalman fil- tivation/E. coli | dynamic estimation and | exhanst oxy- et al. [4]
ter! model of bio- | biomass gen and car-
simulation reactors with | prediction bon dioxide

Monod

growth

kinetics
Extended Fed-batch cul- | A model with | Estimation of | Dissolved Soons
Kalman fil- tivation/ two parame- | specific Oy gen et al. [42]
terfexperi- Bordetella ters which are | growth rate,
mental e sy calculated biomass, and
application using separate | 0X VEEN mass

expenments transfer

(continued)
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Table 1 (continued)

Estimator/ Cultivation
application v e/ Process
tvpe microorganism | model Ohjective Measured state | Reference
Unscantad Fed-batch cul- | Owerflow Moise reduc- Predicted spe- | Henry
Kalman fil- tivation metabolism tion from cific uptake etal. [41]
terfexperi- hybridoma cell | model predicted and produc-
mental culure values tion rate
application
Extended Fed-batch cul- | ldeal stirred Parameter, Glucose con- Klockow
Kalman fil- tivation tank resctor biomass, and centration with | et al. [43]
terfexperi- 5. cerevisiae midel with glucosa FlA
mental Mionod prediction
application growth

kinetics
Extendad Fed-batch cul- | General Estimation of | Dissolved VYeloso
Kalman fil- tivation/E. coli | dyvnamic biomass, glu- | oxygen and et al. [44]
terfexperi- model of bio- | cose, and carbon dioxide
mental reactors with | acetate
application Monod

growth

kinetics
Unscantad Fed-batch cul- | Mass balance | Estimation of | Dissolved Tianlin
Kalman fil- tivation/ of substrate biomass and | oxygen and et al. [46]
ter/ &, cerevisiae and biomass substrate carbon dioxide
simulation in the head- concentrations

space with

Monod

growth

kinetics
Unscented Fed-batch/ Material bal- | Prediction of | Biomass and Dewasme
Kalman fil- hybridoma cell | ance equation | acetate and dissolved et al. [48]
ter/ with Monod | glucose oxXygen
simulation growth concantration

kinetic
Extendad Batch cultiva- | Unstructured | Estimation of | Glucose and Popova
Kalman fil- tion/ mindel for product, sub- | ethanol et al. [49]
ter/ 8. cerevisiae alcoholic fer- | strate, and
simulation mentation biomass

with concentrations

immobil ized

cells using

Monod

growth

kinetics
Extendad Fed-batch cul- | Mass balance |Estimation of | Substrate and | Kefimer
Kalman fil- tivation/ of substrate substrate and | biomass con- | and King
terfexperi- 5. cerevisiae and biomass biomass centration with | [34]
mental in the head- concentrations | NIR
application space with spectrometer

Monod

(continuedy
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Estimator/ Cultivation
application typel Process
type microorganism | modeal Objective Measured state | Reference

growth

kinetics
Unscented Fed-batch cul- | Mass balance | Biomass and | Oxvgen Simutis
Kalman fil- fivation/ of substrate specific bio- uptake and and
terfexperi- 8. cérevisiae and biomass mass growth | COsformation | Lilbert
mental with Monod rat estimation | rate [35]
application growth

kinetics
Sigma point Fed-batch cul- | Mass balance | Estimation of | Substrate and | Kriimer
Kalman fil- tivation/ of substrate substrate and | biomass con-  |and King
terfexperi- 8. cerevisiae and biomass bioimnass centration with | [57]
mental in the head- concentrations | NIR
application space with spectromeater

Monod

growth

kinetics
Extended Fed-batch cul- | Material bal- | Ethanol pre- Temperatre, | Lisci and
Kalman fil- fivation/ ance equation | diction and do and sub- Tronci
terf 8. cerevisiae with Monod state strate et al. [60]
simulation growth rate estimation concen tration

kinetics

algorithm are examined. More detailed description of each category for all publica-
tions is presented in the following part of this section.

3.1 Type of Kalman Filter

According to the type of Kalman filter alzonthm, the literature presented indicates
there exist a considerable number of articles on implementation of EKF for state and
parameter estimation. More than 60% of the applications (28 articles) have
implemented EKF algorithms for their process. This is due to the fact that the
culdvation process of microorganisms is a complex non-linear biochemical process
and the EKF is a well-known state estimation method for non-linear systems. The
linear Kalman filter which is almost exclusively used for state estimation in linear
systems have also been used by some authors (3 articles). Although the EKF shows
zood prediction results and is widely used in literature, it presents some disadvan-
tages. It is reliable for systems which are almost linear on the time scale of the update
intervals; it requires the calculation of Jacobians at each time siep, which may be
difficult to obtain for higher order systems; it does linear approximations of the
system at a given tme instant, which may introduce errors in the estimation, leading
then the state to diverge over time [9, 15]. For instance, in continuous or fed-batch
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cultivations, despite continuous supply by a feed, the substrate concentration can
drop to zero as the cell takes it up very fast. In such cultivations, linearization in the
time and measurement update can lead to significant inaccuracies in the process,
while the EKF assumes a certain probability for substrate concentrations below zero,
even though this is physically impossible [54]. Therefore in recent years, application
of other non-linear extensions of the Kalman filter is used. For example, Femandes
et al. [54] have implemented an UKF algorithm in order to estimate glucose and
glutamine from biomass, lactate and ammonia measurement during fed-batch culti-
vation of hybridoma cells. The predictions were compared to the ones obtained with
an EKF; they have reported the UKF achieves better level of accuracy. Krimer and
King [537] have implemented a UKF in fed-batch cultivation of S. cerevisiae for
noise filtering from predicted biomass values with NIR specrometer. In another
study, the same authors [54] have implemented an EKF for the same process. The
authors have reported accurate predicted values in both studies; however there is no
comparison between the two methods, Other types of the non-linear Kalman filtering
method have also been reporied in literature. Zhao et al. [53] have implemented a
CEF for incorporating delayed measurements of biomass, substrate, and product
concentration in fed-batch cultivation for penicillin production. Bavdekar et al. [47]
have implemented an EnKF for overcoming delayed measurements of biomass,
substrate and ethancl concentration in fed-bach cultivation of 8. cerevisiae.
Addressing the same delay problem Klockow et al. [43] complemented a ring buffer
by an EKF and got satisfied resulis.

In order to indicate which Kalman filter extension describes the process better,
numerical simulation mns are required. According to this perspective, a closer look
to the presented articles indicates that most studies (31 articles) had relied on
practical applications and simulation studies have been reported only 12 times.

3.2 Microorganism

Regarding the type of microorganism, the articles show that the majorty of the
research has focused on applying the Kalman filier or its extensions for state or
parameter estimation during the cultivation of 8. cerevisiae (19 artcles) and E. coli
(7 articles). The importance of these microorganisms for the biopharmaceutical
industry is widely recognized, as E. coli and 5. cerevisiae are the most important
host microorganism used to produce recombinant proteins [58]. In addition,
8. cerevisiae is also widely used for the production of the backers yeast as well as
wine and beer. Only a few articles demonstrate state estimation in the cultivation
process of other microorganisms. For instance, some authors have implemented state
estimation methods for prediction of substrate and product concentratdon during
culivations of Candida wiilis [30], Penicillium chrysogenum [46, 53] and
Kluyveromyvees marcianus [34).
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3.3 Cultivation Mode

From an operational point of view, cultivation of microorganisms can be performed
in batch, fed-batch and continuous modes. In fed-batch cultivation modes, set point
control of the substrate concentration by manipulating the input flow rate is a matter
of particular economic and scientific interest. In order to have an efficient control
system, sufficient knowledge about the process stte vanables is required, which can
be achieved by the state estimation methods soch as the Kalman filker or its
extensions. Therefore, previous studies have almost exclusively focused on the
application of state estimation methods for fed-batch cultivations (34 publications).
However, online monitoring and estimation of state variables in batch cultivations is
also crucial in order to monitor the state and if necessary may improve it to achieve
high productivity over the process. For instance, controlling the level of dissolved
oxygen (DO) in the fermentation broth, effects the rate of microbial metabolism.
Accordingly, Lee et al. [19] have implemented an EKF for noise filtering of
dissolved oxygen measurements which were used for controlling the DO levels in
batch cultivation of E. coli. This approach and, more generally, online monitoring
and state estimation of varables in batch cultivations remain briefly addressed in the
literature.

3.4  Bioprocess Phase

Mixing of medium and pre-culmres are performed during upstream processing phase
and separation and purification of the product from biomass is performed during the
downstream processing phase. In order to optimize cell growth and maximize the
product yield, online monitoring and a tight control is required during both phases.
The presented articles show there have been numerous studies to investigate the
application of state estimation methods dunng the cultivation phase (39 papers).
However, the articles indicate that only two authors had examined the application of
Kalman filtering methods for state and wvanable estimation in downstream
processing. For efficient and mbust process development in the downstream
processing phase, knowledge of the location and concentration of the product and
key contaminants is also crucial. Holwill et al. [28] have used a low technology
detection system involving the measurement of rate of change of absorbance at a
single wavelength after addition of reagent to a representative sample stream. This
provided online data detailing the performance of a continuous precipitation process.
This information as well as a mathematical model which describes the fractional
protein perception were fed into a control algorithm which was programmed to
maintain predefined set points by feedback control through adjustments to the
overall feed saturation. The Kalman filter was used for estimating the parameters
of the model. Feidl et al. [39] developed a state estimation procedure for estimation

57



The Kalman Filter for the Supervision of Cultivation Processes

of antbody concentration by combining information coming from kinetic model and
a Raman analyser, in the frame of an extended Kalman filter approach (EETF).

3.5 Measurement Device

An overview of measurement devices that are approprate for the operation of
bioprocesses is presented by Sonnleitner [61]. More specific details of different
types of sensors and their measurement principles can be found in literature
[62, 63]. The literature presented indicate that in E coli cultivation, most authors
have employed DO and CO, measurements from the exit gas or glucose measure-
ments using flow injection analysis as the measurement in the Kalman filker algo-
rithm. On the other hand, in 8. cerevisine cultivatons, besides DO, COs and glucose
measurements, biomass measurements have also been widely applied. For example,
Dewasme et al. [48] applied biomass measurements for their KF durng an E. coli
cultvation.

3.6 Process Model

According to the aticles presented, the general mass balance equations are the most
common mathematical approach used for describing the process in state observing
algorithms. An overview of typical models applied to bioprocesses is presented by
Chhatre [64]. A wide variety of growth kinetics are developed for modelling of
particular bioprocesses. The Monod growth model [65] is the most applied method
for calculating the growth kinetics of microorganisms; it comresponds to a rational
function in which the specific growth rate w is only a function of a single limiting
substrate concentration and is subjected to substrate saturation when S = K.

8
F=Fnﬁxm {]E‘]

where .. 15 the maximum specific growth rate, K, is the Monod half-saturation
constant, and § is the concentration of the limiting substrate. In the mentioned
articles, all of the authors, which were growing 5. cerevisioe and E coli, have
implemented the Monod growth kinetics. A modified Monod model was applied
by Patnaik [35, 38] which is described in detail by Henson and Seborg [66] or Jones
and Kompala [67]. Application of other methods for calculating the growth kinetics
such as the Contois growth model [68] has also been reported. A feamre of the
Contois growth model is that growth rate depends upon the concentraions of both
substrate and cell mass with the consequence that an inhibition is present at high cell
concentrations. This growth kinetic has been implemented in a process model
describing the growth behaviour of Pewmicillium chrysogenum in  fed-batch
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culivations. A modified Conwis model was applied by Jianlin et al. [48] and Zhao
et al. [53] in an UKF and CKF algorithm for biomass and substrate prediction,
respectively. The growth rate can also be represented by artificial neural networks.
However this kind of models is not applied often in combination with a KF. Zorzetto
and Wilson [27] have applied a hybrid model in an EKF algorithm which is based on
the theory of limited respiratory with using arificial neural network for predicting
the growth rates during fed-batch cultivation of 5. cerevisiae.

Most of the process models which are reported in literamure and are used in the
Kalman filter algorithms are considered to be ideal stied tank reactors, whereas
production-scale operations are cormupted by noise. This problem s more sever in
large-scale operations than in laboratory-scale fermentations [35]. This can describe
why all applications of state estimation methods presented in Table | are performed
in laboratory -scale bioreactors (most cultivations are performed in a 2-3 L bioreactor
and one cultivation [57] have been performed in a 22 L bioreactor).

4 An Extended Kalman Filter for the Monitoring of a Yeast
Cultivation

The integration of gas sensor array data in a non-linear state estimator has not been
discussed previously in the literature. Yousefi-Darani et al. [69] have designed and
implemented a model-based calibrated gas sensor array for online measurement of
ethanol concentration in batch cultivation with the yeast S. cerevisiae. However the
predicted values are only available every 5 min. Therefore in this work, in order to
have continues values of ethanol concentration as well as the values of biomass,
glucose and the maximal growth rates, we have implemented an EKF. In addition,
the whole estimation producer could be considered as a digital twin of the baker’s
yeast batch cultivaton process, which could be used for process optimizaton and
control.

4.1 The Cultivation Process

The cultivation of Saccharomyees cerevisiae (fresh baker’s yeast, Oma’s Ur-Hefe)
was carfied out ina 2.5 L bioreactor (Minifors, Infors HT, Bottmingen, Switzerland)
with a vessel of stainless steel working volume of 1.35 L equipped with a temper-
ature (set point of 30°C) and pH (set point pH = 5) control unit. The aeration and
agitation rates were kept constant at 3.5 L min~' and 500 rpm, respectively. For the
pre-culure, 5 g of the baker’s yveast was suspended into 100 mL medium containing
0.34 g L' MeS0,;-TH-0, 042 g L7 CaCls-2H-0, 45 g L™ (NH, -804, 1.9g L'
(NH,),HPO,, 09 g L™" KCL The inoculation was performed after 10 min of
shaking. The same medium supplemented with glucose to a final concentration of
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Fig. 2 Overview of the experimental setup

5 gL as well as | mL L™" trace elements solution (0.015 g L™" FeCly-6H,0,
9 mgL™" ZnSO,47H,0, 105 mg L™" MnSO,-2H,0,and 2.4 mg L' CuSO, 5H,0)
and 1 mL L™' viamin solution (0.06 g L' myoinositol, 003 g L'
Ca-pantothenate, 6 mg L' thiamine HCl, 1.5 mg L~' pyrdoxine HCI, and
0.03 mg L' biotin) was used for the cultivation. The experimental setup is
presented in Fig. 2.

4.2 EKF Algorithm

The EKF uses discrete measurements of ethanol from the gas sensor array and
estimates continuous online values of ethanol, biomass and glucose concentrations
as well as the maximal growth rates in S. cerevisiae batch cultivation. A detailed
description of the working principle of the EKF is presented in Sect. 2.2

The EKF was implemented using the software Matlab® 2019a (version 9.6.0); the
“Symbolic Math™ toolbox (version 8.3) was used to calculate the estimation error
covariance differential equation matrix (25 equations). For all calculatons, a normal
office PC (Intel Core™ i5 8,500 with 8 GiB of RAM) with Window 10 was used. For
the simulation, the system of in total 30 (5 + 25) differential equations was solved
numerically using the explicit, Runge—Kutta-based ode45 method from Matlab. The
Matlab code can be found in the appendix.
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4.3 Online Ethanol Measurements

The online ethanol measurements were performed in a self-developed system
equipped with commercially available metal oxide semiconductor (MOS) gas sen-
sors (TGS 822, TGS 813 and MOQ3). The sensors were located in a measuring
chamber with a volume of 250 mL and operated in two cycles: a measurement
cycle and a washing cycle. During the measurement cycle, the headspace gas was
pumped into the measurement chamber for 10's at a flow rate of 400 mL min~" with
a diaphragm pump (Schwarzer Precision, Essen, Germany ). Then the chamber was
flushed by pure oxygen for regeneration. A peak-shaped measurement signal is
obtained, which was evaluated by using a chemometric model, which is described
in dewil in the literature [69]. Therefore, every 5 min a new ethanol measurement
value is used by the Kalman filker. Figure 3 presents a schematic diagram of the
online ethanol measurement system and the EKF for continuous state varables and
parameter estimation,

Mote that the EKF was carried out after the experiments were performed. The
results, however, camry over to a true online application where the data is not
analysed or modified in retrospect.

Sampling system and gas sensor array On-line ethanol prediction
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pre-processing extraction
[ ]
Pre-processed signal
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Fig. 3 Schemuatic diagram of the online ethanol measurement system and the EKF for continuous
state variables and parameter estimation



The Kalman Filter for the Supervision of Cultivation Processes
4.4  Offline Measurements

For offline analysis, samples were regularly taken from the bioreactor and placed in
pre-weighed and pre-dred micro centrifuge tubes. For biomass determination, the
sample without supernatant were dried for 24 h at 103°C and after cooling for 30 min
weighed. Using the filrated supernatant (pore size filter, 0.45 pm, polypropy lene
membrane, VWE, Dammstadt, Germany), glucose and ethanol were determined by
HPLC (ProStar, Varant, Walout Creek, CA, USA); injection of 20 pL. into a Rezex
ROA-organic acid H+ (8%) column (Phenomenex, Aschaffenburg, Gemmany) and
operated at 70°C with 5 mM H,50, as an eluent at 0.6 mL min~" flow rate; software
GalaxieTM Chromatwgraphy (Varian, Walnut Creek, CA, USA). The offline values
were not used dunng the esimation of the state vanables and are only taken © show
that the estimates are accuraie.

4.5 State Equations of the Cultivation Process

As bioreactor an ideal stirred tank reactor was assumed. As state variables, the
biomass, glucose and ethanol concentrations as well as the maximal specific growth
rate on glucose and ethanol were applied. Therefore, the following state equations
are obtained:

- , [ (g +ug)X
X _Ha
G Yex
Ll B | =|(#a_ke)y (19)
IF o Yee Y
e Cr ﬂ
_FM,E_ 0
were i and g are given as
_me;ﬂtﬂ
o= Ko1 G (20)
2
Pomar g E i )_
— — 1= 21
ME = Ko+ E ( H max 3 @n

As one can see from the state equation, the Kalman filier is used to estimate the
maximum specific growth rate on glucose y,.,.  and on ethanol u.. . The
importance of the specific growth rate for the assessment of a cultivation is discussed
by Galvanauskas et al. [70].
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Table 2 Parameter values used for the sinmlation model

Parameter Yalue Description

Kq 0.1gl " Monod constant glucose

Kg 0.1 gl ! Monod constant ethanol

Yex 0.17 gg ! Conversion factor glucose to biomass
YeE 0.46 gg ! Conversion factor glucose o ethanol
Yex 0.6gg ! Conversion factor ethanol to biomass

Table 3 Initial conditions for the extended Kalman filter

Parameter | Value Description

X _o 24l Initial biomass
concentration
Initial glucose
concentration
Ei_u 0.1gL" Initial ethanol
concentration
faax, ¢ |0.1407° Initial maximal
growth rate on
glucose

007k ! Initial maxinmal
growth mie on
ethanol

Initial estimation
Error covariance
matrix

1

G, 5.0 gL

P g 0.02 g12 0 0 0
0.02 g°L2 0 0
0 0.02 gL ]
0 0 0.02h72
0 0 ] 0.02h 2

= =2 =2 =

oo oo

The extension to the ordinary Monod model for u, is applied, so that the
transformation from ghicose consumption o ethanol consumption is modelled. In
Tables 2, 3, and 4 the parameters of the model as well as the initial values for the
state equations and the initial values of the estimation error covariance are presented.

The Matlab code as well as the measured off- and online data of this example can
be found in the appendix.

4.6 Results

In Fig. 4 the online and offline measured values of ethanol, the offline measured
values of biomass and glucose as well as all the Kalman filter estimated values of all
three bioprocess variables can be seen.

Figure 4 indicates the typical diauxic growth pattem of baker’s yeast on glucose
is obtained. First the glucose is consumed and biomass and ethanol are produced,
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B
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Fig. 4 Online and offiine values for biomass, glucose and ethanol as well as EKF estimates for
these values

E‘:{L‘Ei Prediction error of Glucose Fthanol Biomass
5 (W]
F* values compared RMSEP 0.12gL ! 0.14gL " 012gL !
offling measursments
Error 5.6% 2 8% 6.2%
B’ 0,96 0.99 0.97

then ethanol is converted to biomass. The offline measurements and its
comesponding estimated values fit quite well together as can be seen in Table 5.

The root mean squared error of prediction (RMSEP) of glucose is 0.12 g L™". The
ethanol offline values during glucose consumption are mostly higher than the online
measured and the predicted ones; in overall their RMSEP is 0.14 g L™". All ethanol
online measurements seems to be a little bit shifted in time compared to the offline
values, which might indicate the time delay due to gas transport from the fermen-
tation broth through the headspace of the reactor to the measurement system. The
biomass has a RMSEP of 0.12 g L™, but the highest deviation can be seen shortly
after ethanol is used as substrate. The values shortly before ethanol consumption
might not be predicted accurately, because the model describing the switching from
glucose to ethanol might be suboptimal.

In order to investigate the influence of the measurement frequency on the
performance of the EKF, we decreased the measurement frequency of the online
ethanol measurements to one per hour. The resulis of the estimated values with the
EKF are presented in Fig. 5.

Still the overall behaviour of the estimated values is the same. However, the
sampling frequency has an influence on the corrections of the estimated state during
filtering. Larger step changes are observed in the estimated values whenever a new
measurement is available. However, even if the sampling frequency is changed to
one per hour, the overall behaviour is predicted well.
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Fig. 5§ Online (every 1 h) and offline values for biomass, glucose and ethanol as well as EKF
estimates for these values

Obviously with a higher sampling frequency, these step changes are smaller.
Mevertheless, with a 5 min sampling time, the EKF was able to follow the true states
of the system with a reasonably small emror. More detailed information about the
influence of the sampling frequency on the accuracy of the Kalman filter estimates
can be found in literamre [71, 72].

The EKF was also used for predicting the specific growth rates and their maxi-
mum values.

In Fig. 6 the estimated maximum specific growth rates with respect to glucose
Moo, ; and ethanol p,,.. ¢ as well as specific growth rates itself (ug; and pp for
glucose and ethanol respectively) are presented.

After inoculation, the specific growth rate and its maximum value with respect to
glucose are increasing from 0.14 h™' to more than 0.18 h™'. However shorly
thereafier they decrease again. This indicates the high sensitivity of the estimation
values due to the measurement noise vanance R and the process noise variance with
respect 0 M., . Which is Q) [4]. The smaller the R and the higher the Q [4]. the
more the estimated values will rely upon the measurements and as a consequence the
filtered values might be changed, if the measured and estimated values deviate from
each other. The more glucose is consumed, the larger will be the difference of y0e
and g, due to the Monod growth kinetics. If the glucose is almost depleted, the
extension to the Monod model on ethanol contributes to increasing growth on
ethanol. Shortly after 2 h cultivation dme, the transition from ghicose to ethanol as
substrate takes place. The maximum specific growth rate on ethanol ... g, which
has not changed during the growth on glucose starts to increase. According to the
typical Monod behaviour, before ethanol is depleted, due to the low substrate
concentration, p,. g should be almost constant while g should be increasing.
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Fig. 6 Estimated max imum specific growth rates with respect to glucose ey ¢ and ethanol e, g
as well as the specific growth mies (g and pp for glucose and ethanol, respectively)

However this is not observed in Fig. 6 which is due to the fluctuation of the measured
and estimated ethanol concentration.

5  Conclusion

In this chapter, the working principles as well as an overview of Kalman filter
applications for state and parameter estimation in bioprocesses has been presented.
Regarding the type of the Kalman filter, since most biotechnical processes are
non-linear, non-linear versions of the Kalman filter, specifically the EKF, are
the most applied algorthm among other extensions of the Kalman filter. However
the UKF is getting attention in recent years. The results in literature indicate that the
UEKF algorithms deliver more accurate estimates of the parameters and state vari-
ables compared o EKF algorithms.

In spite of the apparent success of Kalman filters for state and parameter estima-
tion in lab-scale bioreactors, the integration of Kalman filkers into industrial systems
is not very widespread while most of the process models mentioned in literature
consider noise-free ideal fermentations, whereas production-scale operations are
comupted by concentraton gradients and disturbance. Accordingly, more efforts
are required towards performing simulation studies in order to model and validate
proper mathematical models associated with complex non-ideal bioprocesses.

Despite the numerous examples on state estimation methods for biotechnological
processes in literature, the research on implementing Kalman filkers for state
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estimation in downstream processing remain rather limited. The advancement in
state and parameter estimation methods in downstream processes leads to better
knowledge of the location and concentration of the product and key contaminants,
which are essential for process optimization and control.

So far most of the Kalman filter algorithms are implemented for monitoring
fed-batch cultivations; however more attention is required for real-time implemen-
tation of the Kalman filter algorthms for controlling the feed rate and substrate
production in these cultivations. Further efforts are also required towards implemen-
tation of state estimation methods in batch and continuous cultivations.

From the presented literamre, it could be conchuded that the non-linear extensions
of the Kalman fiker are powerful tools for state estimation in bioprocesses; therefore
they could be used for digitalization of bioprocesses. Accordingly, in a case study, a
digital twin of the baker’s yeast batch fermentation process was developed by using
a dynamic non-linear model of the process as well as an EKF algorithm. The
proposed method gives the possibility to predict glucose, ethanol and biomass
concentrations simultaneously from the only available infrequent online measure-
ments of ethanol concentration. The accuracy of the estimated biomass and substrate
production are in line with other studies which have also implemented an EKF
algorithm for monitoring the baker’s yeast culiivation [32, 49]. However, in our
application the maximal specific growth rates on glucose and ethanol are also
estimated. As a consequence, the rapid and precise estimation of these variables
could increase the overall knowled ge integration in the digital twin of the process.

Owerall, the unique advantage of onling monitoring and in general digital twins of
bioprocesses is that they could play critical roles in bioprocess development such as
supporting problem solving in manufacturing, reducing effort in seting up a control
strategy and accelerating process performance by taking corrective actions automat-
ically and in real time.

Appendix

Extended Kalman filter Matlab code: Online state prediction of batch yeast cultiva-
tions based on ethanol gas sensors.

fInitialization

clear; close all; ele;

gympref ('Abbreviatefutput', false);

¥Variable and parameter definition

¥ 8ymbols for aymbolic math calculations

ayms GEXPt real

gyms ¥ gx¥ ge¥ exmul mu2 K M GKE M E real

¥Variables / Parameters

init¥X =[2.5;6; 0.2;0.15; 0.08]; $initial state (Biomass,
% Clucoze, Ethanal)
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initP =diag([0.1,0.02, 0.02,0.2,0.02]); $¥initial process estimation
¥ covariance matrix

init = [initX; iniep{:})]; ¥ combined initial value
fvector

¥ for the odegsol ver

H =[00100] fobgervationmatrix
H=1x5

a a 1 a a
Q=diag ([0.001,0.001,0.001,0.001,0.001]) %¥processnoise covariance
fmatrix

B =0.058 f measurement noise
fcovariancematrix

Kl =0.1; ¥ Monod konstant glucose
K2 =0.1; % Monod konstant ethanaol

testimated parameter values

Yax =0.15; ¥ Yield glucose -» biomass
Yge =0.34; ¥ Yield glucose -»> ethanol
Yeoxr =0.43; ¥ ¥Yield ethanol -> biomass

$Process model

¥Monod terms

muel =mul*3d / (G+E_M 3);

mue =mu2*E / (E+K_M E) * (1 - muel/mil) ;

¥Model OD

de=aym(X* [...
{ muel +mue2) P ¥ Biomazss
-miel/Y g P ¥ Glucose
{muel/Y gx*¥ ge - mue /Y ex) ;... ¥ Ethanol
0; ¥ muel
0; ¥ miie2

1);
¥Jacobian of Model with respect to state variables
F = jacobian {(ds, [X,G,E,mul,mu2] )
Pmatrisx
P=gymi{'P', [5,5])
dP=F*P + P*F'+{
¥Simlation / State prediction and filtering
tReplace all symbolic parameters with their respective numericvalues
F =suba(F, [Y gx¥Y ge¥Y exK M GE M E], [¥Ygx¥ge Yex Kl K2]);
dS=suba({ds, [Y gx¥ ge¥Y ex KX M GK M E], [¥gx ¥Yge Yex K1 E2]);
dP=subs{dP, [¥ gx¥ ge¥ exK M GE M E], [¥Ygx ¥ge YexKL E2]);
thAssemble all di fferential equations into a vector of 12 element s
% ({3x state, 3x P)
OdeSys = matlabPunctien { [dS(:);dP{:)], 'Vars', {t, [X; G; E; mul; mu2;
P11}
¥ load measurement values fromfile:

load BC2_eth pred.mat ¥ Ethanol sensor
fmeasurements
load BC2 . mat $ 0ffline values for

t¥simulate the process from one ethanol gas measurement time to the next:
E0=0;
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MC = zeros{0,5); $atore filtered states in these variables
SimState = zeros {(0,5) ;
SimTime = [] ;
fori = 1:numel {timeE)
tzpan = [tO0timeE{i)] ;

[T, state] =ode4s (OdeSys, tspan, init); % gimilate / solve model
PS = gtate{end,1:5)"'; ¥ predicted state
MS =ME (i) ; % meagsured state
B =reshape (state{end, 6:end) ,5,5) ; % process covariance

% matrix
.4 =PwH'/ [H*P*H'+R) ; tkalman gainmatrisx
FS =PS +K* (M5-P3(3)); $filtered state
Pfilt =PF-K*H*F ; tfilteredprocess

% covariance matrix
injit = [FS; Pfile({:)]; fnew initial condition
to =timeE(i); ¥ new starting time for

¥ next iteration
¥ Save intermediate states for plotting

MC = [MC;F3'];
gtate{end,l:3) =NaN;
SimState = [SimState; state(:,1:5)];
SimTime = [SimTime; T] ;
end
$Rezsul ts

¥Plot the results in a presentable figure and savefile todisk
f =figure("Position", [0,0,1600,640]) ;
subplot(l, 2,1) ;

h=plot{[0,time"], [initX{1:3)';M],'.", 'MarkerSize', 20); ¥ Flot
fmeasurements

get(h, {'coloxr'}, {'r'; 'g';'b'}); hold on;

h=plot (SimTime, SimState{:,1:3)); $Plot simulated values

set(h, {'color'}, {'z'; 'g';'b'});

plot{timeE,ME, "+b", 'MarkerSize',8) ; holdoff ; ¥ Plot ethanol gas sensor
¥values

ax=goa;

ax.FontSize=14;

ax.FontName = '"Times’ ;

ax.Posgsition= [.05 .1 .4 .85];

ax.ActivePozitionProperty = 'outerposition';
ax.Gridlinestyle=":"';

ax.Gridrlpha =.7;

xlabel {("time 5/hs ', 'interpreter', 'Latex', "FontSize”,16) ;

ylabel {'concentration 5/\ frac{g}{L)

$','interpreter', 'Latex ', "FontSize" ,16) ; ylim ([0 8]) ;

gridon; box of £; grid({geca, 'minor') ;

legend ('Biomass offline', 'Glucose offline ' , 'Ethanol offline ', 'Biomass
Kalman', 'Glucose Kalman', 'Ethanol Kalman', 'Ethanol gas

gengor', 'interpreter', 'Latex', "FontSize",12, "Color”, [.5 .91 .9]);
subplot ({1, 2,2) ;

h=plot (SimTime, SimState (:,4:5)); % Plot mu values over time
ax=goa;

70



A. Yousefi-Darani et al.

ax.FontSize =14;

ax.FontName = 'Times’' ;

ax.Pogition= [.55 .1 .4 .85];

ax.ActivePositionProperty = 'outerpogition';
ax.Gridlinestyle=":";

ax.Gridalpha = .7;

ytickformat('¥.2€")

set{h, {'eolar'}, {'z'; 'k'});

xlabel ('time 5/hs', 'interpreter', 'Latex', "FontSize", 16) ;
ylabel {'S$\muS value $/\frac{1}{h}

5, 'interpreter', 'Latex ', "FontSize" 16) ;

gridon; box of £; grid{gca, 'minor') ;

legend ('$Ym 15, ' $\m 2

5',"interpreter', 'Latex', "FontSize"”,12, "Color", [.53 .3 1]) ;
annotation ("arrow”, [.55 .97], [.1 .1])

annotation {"arrow", [.05 .47], [.1 .1])

annotation {"arrow", [.05 .05], [.1 .98])

annotation ("arrow", [.55 .55], [.1 .38])

saveas (£, 'KalmanPred.svg', 'avg' ) ; ¥ zave copy of figure to file

%$Calculate Errors

SimTime = SimTime + ({1 :numel (SimTime))*1le-10)";
Simvalues = interpl (SimTime, SimState(:,1:3),time);
S5E = sum({ (SimValues - M) ."2);

RMSE = g2grt (SSE/numel (time)) ;

50T = aum( (M-mean (M) ) ."2);

ESg=1-SSE.,/5QT;

Tl=table('Size', [3,3], 'VariableTypes"',

{ rdeuble’, rdouble’ , 'double’ }, 'VariableNames',

{ 'Biomags', 'Glucoge', 'Ethanol'}, 'RowNames' , { '"RMSEP', 'Exrror
% . TR } :| ;

T1(1l,:) =num2cell (FMSE) ;

T1{2,:) =num2cell (SSE./ (max (M) -min (M) )*100) ;
T1(3,:) =num2cell (RSq)
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1 | INTRODUCTION
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Abstract

Real-time information about the concentrations of substrates and biomass is the
key to accurate monitoring and control of bioprocess. However, on-line measure-
ment of these variables is a challenging task and new measurement systems are
still required. An alternative are software sensors, which can be used for state
and parameter estimation in bioprocesses. The software sensors predict the state
of the process by using mathematical models as well as data from measured vari-
ables. The Kalman filter is a type of such sensors.

In this paper, we have used the Unscented Kalman Filter (UKF) which is a non-
linear extension of the Kalman filter for on-line estimation of biomass, glucose
and ethanol concentration as well as for estimating the growth rate parameters in
5. cerevisioe batch cultivation, based on infrequent ethanol measurements. The
UKF algorithm was validated on three different cultivations with variability of
the substrate concentrations and the estimated values were compared to the off-
line values.

The results obtained showed that the UKF algorithm provides satisfactory results
with respect to estimation of concentrations of substrates and biomass as well as
the growth rate parameters during the batch cultivation.

KEEYWORDS
batch cultivation, bioprocess supervision, ethanol, state estimation, Unscented Kalman filter

direct on-line measurements of these biological state vari-
ables are often not possible due to the lack of cheap or

The ability to measure primary process variables, such as
biomass, substrate and product concentrations is essential
in order to guarantee the successful operation and auto-
matic control of bioprocesses at their optimal state. But

Abbreviations: EEF, Extended Kalman filter: 5. cerevisioe,
Saccharomyoes cerevisioe; UKF, unscented Kalman Alter

reliable measuring devices. In fact, in many practical appli-
cations, only some of the state variables involved are avail-
able for on-line measurement. Therefore, the development
of methodologies, namely software sensors which can pro-
vide accurate estimation of process variables that are not
measurable in real time, is of great interest [2-4].

This is an open: acoess article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any mediom, provided the

ariginal wark is properly cted.
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The classical Kalman filter and its nonlinear extensions
are a type of such software sensors, which have received a
huge interest for state estimation of bioprocesses. In gen-
eral, the Kalman filters combine the information of a pro-
cess model and the available measurements for state and
parameter estimation. As Harvey [5] pointed out, in the
classical Kalman filter, both the process model and the
measurement equation of the state space model are linear.
However, most bioprocesses are highly nonlinear, there-
fore the classical Kalman filter cannot be used for state
estimation in such processes. Different nonlinear exten-
sions of the Kalman filter are available which mostly dif-
fer in the approximation of the prediction uncertainty. The
extended Kalman filter (EKF) is a standard nonlinear esti-
mation technigue which can handle nonlinearity's by local
first order Taylor approximations of the non-linear func-
tions in the model. Implementation of EKF algorithms for
state and parameter estimation in bioprocess have been
reported in numerous studies. Lisci and Tronci et al. [6]
have implemented an extended Kalman filter for state esti-
mation in fed-batch cultivation of 8. cerevisize based on
temperature, dissolved oxygen and substrate concentra-
tion measurements. Krishna et al. [7] have implimented
an EKF algorithm for estimation of lactose concentration
in fed-batch cultivation of Kluyveromyces marxianus based
on dissolved oxygen measurements; Kriimer and King [£]
used an EKF for estimation of substrate and biomass con-
centration in fed-batch cultivation of 5. cerevisiae; Lee etal.
[9] applied an EKF algorithm for noise filtering from the
dissolved oxygen measurements during batch cultivation
of E. coli and Hitzmann et al. [10] implemented an EKF
complemented by a special flow-injection analysis system
for glucose measurements during fed-batch cultivation of
5. cerevisioe. Based on the estimation, a feed forward PI-
control with a set point of 0.5 g/L was carried out. The
mean deviation of the set point and the estimated value
as well as the set point and the measured value were 0.05
and 0.11 g/L respectively. A similar approach is discussed
by Klockow et al. [11] where the time delay of the measure-
ments was compensated by a ring-buffer. They showed that
a set point of 0.007 g/L can be realized reliably.

Usually the well-known EKF shows good prediction
results. Nevertheless, in spite of the reported satisfactory
results, it has some disadvantages. It is reliable for systems
which are almost linear on the time scale of the update
intervals; it requires the calculation of Jacobians at each
time step, which may be difficult to obtain for higher order
systems; it does linear approximations of the system at a
given time instant, which may introduce errors in the esti-
mation, leading to a state divergence over time [12, 13].

The unscented Kalman filter (UKF) is another nonlinear
extension of the classical Kalman filter which is very simi-
lar to the EEF, but instead of approximating the non-linear

PRACTICAL APPLICATION

In a previous study we have designed and imple-
mented a model-based calibrated gas sensor array
for on-line measurement of ethanol concentration
in batch cultivation with the yeast 5. cerevisiae
[1]. The obtained results indicate that the gas sen-
sor array was able to predict ethanol concentra-
tion with high accuracy. However the predicted
values are only available every five minutes. There-
fore in this work, in order to have continues val-
ues of ethanol concentration as well as the values
of biomass, glucose and the growth rates, we have
implemented an unscented Kalman filter (UKF)
algorithm.

The obtained results indicate, that accurate con-
tinues concentrations of the state variables as well
as the growth rates can be obtained by the UKF
algorithm. No off-line measurements for calibra-
tion are required in the proposed algorithm.

The proposed method is a cheap alternative to
other tools that are used for monitoring yeast cul-
tivations such as spectroscopy based methods.

process model by calculating the Jacobian of the dynam-
ics for the determination of the estimation error vari-
ance, the transformed probability distributions are approx-
imated directly. This is done by representing the distribu-
tion by a set of chosen sample points, transforming these
points by the non-linear model function, and then approx-
imating the mean and variance of the transformed distri-
bution by the mean and variance of the transformed points
[14]. In recent years, a number of authors have demonstrate
the successful application of UKF algorithms for state and
parameter estimation in bioprocesses. For instance, Jianlin
et al. [15] have implimented an UKF algorithm for biomass
and substrate prediction based on dissolved oxygen and
carbon dioxide measurements in a fed-batch cultivation
of 8 cerevisiae. Using the same microorganism, Simutis
and Liibbert [16] have applied an UKF algorithm for esti-
mation of biomass and its specific growth rate based on
oxygen uptake and CO; formation rate measurements in
a fed-batch cultivation. Furthermore, Krimer and King
[17] have used an UKF algorithm for filtering out noise
from measured state varizbles which were predicted with
a near infra-red spectrometer in a fed-batch cultivation of
5 cerevisiae.

As it can be seen, previous studies have exclusively
focused on implementing UKF algorithms in fed-batch
cultivations, however on-line monitoring and estimation
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of state variables in batch cultivations is also crucial in
order to achieve high productivity over the process. There-
fore, in this contribution an UKF algorithm is designed
for on-line estimation of biomass, glucose and ethanol
concentration as well as for estimating the growth rate
parameters in 5. cerevisiae batch cultivation, based on the
infrequently available ethancl measurements. In order to
evaluate the reliability of the UKF, the proposed algorithm
was validated on three different cultivations with variabil-
ity of the substrate concentrations.

This paper is organized as follows: In the coming sec-
tion of this work, the experimental setup and the cultiva-
tion conditions, the dynamic model of 5. cerevisiae batch
cultivation and a brief description of the on-line ethanol
measurement method as well as the unscented Kalman fil-
ter are described. In section 3 results and discussion is pre-
sented, and section 4 concludes this paper.

2 | MATERIALS AND METHODS

2.1 | Batch cultivation process

Three batch cultivations of 5 cerevisioe, named BC1, BC2,
and BC3, were performed. 5. cerevisiae (fresh baker's yeast,
Oma's Ur-Hefe) was pre-cultivated before fermentation.
5 g of baker’s yeast was used in all cultivations. The baker's
yeast was inoculated into 100 mL Schatzmann medium
[18] and after shaking for 10 min, they were added into
the stainless steel tank bivreactor (Minifors, Inifors HT,
Bottmingen, Switzerland). The medium used for batch cul-
tivations was the same as for the pre-culture, but with
0 g/L, 5 g/L and 2.85 g/L glucose for BC1, BCZ, and BC3
respectively and 1 mL/L trace elements solution. All three
batch runs were operated at the same conditions, that is,
a constant temperature at 30°C and a maintained pH at
5. The aeration and agitation rates were kept constant at
3.5 L/min and 450 rpm, respectively. Detailed experimen-
tal conditions of the cultivations are described by Yousefi-
Darani et al. [1].

2.2 | Nonlinear process model

For modelling the process, an ideal stirred tank reactor in
batch mode has been assumed with a cell growth kinetic
approximated by the Monod model, where the substrate
glucose as well as ethanol (when glucose is depleted) are
the single growth-limiting factor. According to the mass
balance, the dynamic process model consists of the follow-
ing equations [19]:

dx

F i HeX + ppX (1)

i | e Srinres
do _ pgX
T~ Yaro (2)
dE _ KX _ HgX (2)
de Yoo  Yxpe

were G, E and X are the glucose, ethanol and the biomass
concentrations, respectively. Yy g, Y g and Yy are the
yield coefficients with respect to the conversion from glu-
cose to biomass, glucose to ethanol and ethanol to biomass,
respectively. u; and g are the specific growth rates on glu-
cose and ethanol, respectively and are calculated as

Mmax,; - G
= ! 4
He Kg+G (4)
Hmax,g - E Hiz ):
- M 1= 5
He Kg+E ( Hmarx, )

Hmox, ¢ And Mmgy g are the maximum specific growth
rates on glucose and on ethanol, respectively. The val-
ues for ppoy o and . oare estimated with the UKF
filtering.

Therefore they are described with two additional differ-
ential terms, which do not alter the values:

ditmazx, o

i =0 (&)
diimax, ¢ _
— =10 (7

In this contribution, the yield coefficients as well as the
Monod equation’s constants (Kg and K ) have been fixed
to values which were chosen from literature [1, 20].

2.3 | On-line ethanol measurements

The on-line ethanol measurements were performed in a
self-developed measurement system which contains two
main parts, namely the headspace sampling system and
the measurement chamber. Headspace sampling proce-
dure consisted of an automated sequence of internal oper-
ations. First the head space samples of the bicreactor are
pumped past the measurement chamber for 10 s at a flow
rate of 400 mL min—" with a diaphragm pump (Schwarzer
Precision, Essen, Germany) every five minutes. The mea-
surement chamber has a volume of 250 mL and contains
a gas sensor array which is equipped with commercially
available metal oxide semiconductor (MOS) gas sensors
(TGS 822, TGS 813 and MQ3). In the next step the chamber
is flushed by pure cxygen for regeneration. By preforming
these steps, a peak shaped measurment signal is obtained.
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FIGURE 1 The operation scheme of the on-line ethanol measurement system and the UKF algorithm for continuous state variables and

parameter estimation

Ethanol concnetration is obtained from the raw signals
by implementing signal processing methods and a chemo-
metric model, which is described in detail in the literature
[1]. Using the ethanol measurement in the gas phase, the
ethanol concentration in the liquid phase of the cultivation
broth is determined. Every 5 min a new ethanol measure-
ment value is sent to the UKF algorithm. As measurement
maoddel the identity is used, i. e. the ethanol value itself. The
operation scheme of the on-line ethanol measurement sys-
tem and the UKF algorithm is presented in Figure 1.

2.4 | Unscented Kalman filter

In this work, an UKF is implemented to estimate continu-
ous ethanol, glucose and biomass concentrations as well as
the maximal growth rates during S. cerevisiae batch culti-
vation. As all Kalman filter approaches, the UKF calculates
the most probable system state by appropriately weighing

maodel predictions and actual measurements according to
maodel uncertainty and measurement error, respectively.
The UKF was chosen here over other extensions of the
Kalman filter since it accurately calculates the statistical
distributions of even nonlinear systems.

The UKF algorithms consist of two steps namely the pre-
diction step (time update) and the filtering step (measure-
ment update) which are summarized as follows:

+ Prediction step (time update):

Using the last known state X the process model is
used to predict the state variables Xy until the next
measurement zy is available.

For the Kalman filtering to work, the state covari-
ance Py must also be estimated somehow from the
last known state covariance Py. In the UKF the
unscented transformation is used to estimate this
state covariance.
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The idea is to use a collection (2n+1, where n is the
number of state variable) of well-chosen system
states [22], based on the last known state and state
covariance and then propagate/predict the system
state from each of those so called sigma points. The
predicted system state X is then the weighted aver-
age of these 2n+1 predictions. The estimated covari-
ance Py isessentially the weighted covariance of the
same predictions.

= Correction step (measurement update):

Whenever a measurement is available, the predicted
state values X are combined with the measured
values z; to provide corrected or filtered state
estimates X;. For this reason the Kalman gain
matrix Ky must be calculated:

P.-HT

=T P HTAR 1o

Ki

Here E iz the measurement error, H is the Jacobian
matrix of the measurement model b ( Yand Py isthe already
mentioned estimated state covariance matrix of the predic-
tion. The corrected or filtered system state X, is essentially
the weighted average of the predicted system state and the
measurement with the Kalman gain as weight:

ft:xk +Kk'(3k_h{xk}} (11}
The filtered state covariance Py is updated based on the

estimated state covariance Py, the Kalman gain Ky and the
process noise covariance matrix 0:

Ppo=P—(Ep -H-P)+0Q-At—(Ep-H-Q-Af) (12)

At is the time difference to the last known state/
measurement.

The filtered values X, and #; can then be used as initial
conditions for the next prediction/ simulation of the pro-
cess as well as for the estimation of the covariance until
the next measurement is obtained and everything repeats
again.

The reliability and quality of a Kalman filter estima-
tor can be evaluated by observabilty analyses, the theory
of which has been established previously [21, 22]. Observ-
abilty analysis provides an assessment of the theoretical
possibility of estimating the state variables or parameters
of the system from the available measurements (sensors)
[23]. Due to Salau et al. [24], if the idea is to use the small-
est number of sensors in order to simultanecusly estimate
the state and parameters of a system, using the Kalman

b | s B we

filter makes it impossible to find complete system observ-
abilty. For instance, in the process considered here, the two
additional differential equations for parameter estimation
Of gy ¢ and pio., ; produces a Jacobian matrix with cor-
responding row elements equal to null and therefore the
observability is not given. However, due to the chosen pro-
cess model with low correlation of the state variables, the
observabilty of the process is guaranteed, since in this case,
diagonal time-invariant matrices ¢} and R can be success-
fully applied, which makes the UKF tuning considerably
simple. A more comprehensive description about imple-
mentation of the UKF algorithm as well as the observabilty
analysis can be found in [25-28].

In this study, a continuous-discrete UKF is used, ie., a
continuous time update and a discrete-time measurement
update. Table 1 presents the initial values for the UKF filter
as well as the parameters of the model.

The UKF was implemented using the software Mat-
lab R201% (version 9.6.0); for all calculations a normal
office PC (Intel CoreR i5 8500 with 8 GiB of RAM) with
Window 10 was used. For the simulation. the system of
in total 5 differential equations was solved numerically
using the explicit, Runge-Kutta based cde45 method from
Matlab.

25 | Off-line measurements

Samples for analysing the concentrations of biomass, glu-
cose, and ethanol were regularly taken from the bioreactor
and put into pre-weighed and pre-dried micro-centrifuge
tubes. Cell dry weight was determined by centrifugation
{(Universal 16 R, Hettich Zentrifugen GmbH & Co. KG,
Tuttlingen, Germany) of a sample with 1.5 mL (2 times)
at 14,000 rpm for 10 min at 4°C. The wet cells were let in
a drying oven at 103°C for 24 h. Subsequently, they were
cooled down for 30 min before weighing. The supernatant
of the samples after the centrifugation was examined by
HPLC (ProStar, Variant, Walnut Creek, CA. USA) to deter-
mine the glucose and ethanol concentrations. Firstly, the
supernatant was filtrated with pore size filter, 0.45 pm,
polypropylene membrane (VWE, Darmstadt, Germany),
then 20 pL was injected into a Rezex ROA-organic acid
H+(8%) column (Phenomenex, Aschaffenburg, Germany)
and operated at 70°C with 5 mM H;304 as an eluent at
0.6 mL/min flow rate. The concentrations of glucose and
ethanol were calculated by Galaxie software (Varian, Wal-
nut Creek, CA, USA).

In order to evaluate the performance of the UKF algo-
rithm with respect to the accuracy of predicting ethanol
concentrations, the root-mean square error {RMSE)
between the predicted ethanol concentration with the
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TABLE 1 Initial conditions for the mathematical model as well

Parameter Description

Xi-n Initial biomass concentration
Giog Initial glucose concentration
Ei-p Initial ethanol concentration
Mmax g Initial maximal growth rate on glucose
Mmax Initial maximal growth rate on ethanol
Yyo conversion from glecose to biomass
Yen conversion from ethanol to glucose
Y= conversion from biomass to ethanol
Eq Monod constant for gluoose
Ey Monod constant for ethanol
1] Unscented transformation constant
n Unscented transformation constant
Unscented transformation constant
R Measurement noise variance

(1] Initial process estimation covariance matrix

Observation matrix

UKF and the off-line ethanol concentrations was calcu-
lated and compared to the RMSE between the on-line
measured ethanol concentration and off-line ethanol
concentrations. Furthermore, the percentages standard
error (SE) with respect to the maximum ethanol concen-
tration, for the predicted ethanol concentrations from the
UKF as well as the on-line ethanol concentrations were
calculated. RMSE and SE are calculated according to the
following equations:

(&)

¥ represents the predicted ethanol concentration from
the UKF algorithm or the measured on-line ethanol con-
centration, Y, is the concentration determined by the off-
line values, N stands for the measurement count and ¥ g,
is the maximum ethanol concentration in the correspond-
ing off-line data.

To evaluate the accuracy of the estimated biomass
and glucose concentrations from the UKF algorithm,
the RMSE between the predicted values and the off-line
values as well as the SE with respect to the maximum off-
line value were calculated.

as the unscented Kalman filter

Value
BC1 248 /L BC2 244 g/L BC3 26gL
BC1 [T BC2 Sl BC3 2R5 gL
BC1 01 g/L BC2 018 /L BC3 0.25 g/l
BC1 0.16 h-? BC2 018 h! BC3 04z
BC1 0.007 h! BC2 0.004 b BC3 (.008 h-!
0175 g, gyt
0473 g g~
0.598 gy g~
0,01 g/L
001 g/L
1
(]
2
00225 gL

diag (0.001 g2 12h-" 0.001 g2L*h- 0.001 gLk~ 0.005 h—? 0.005 h-7)
diag(0 0 0 0 0)
00100)

3 | RESULTS AND DISCUSSION

The UKF presented in section 2 is used for continuous
estimation of ethanol concentration on the basis of infre-
quent on-line ethanol measurements from the gas sensor
array. The UKF algorithm was also used for estimation of
biomass and glucose as well as estimating the maximum
growth rate on glucose and ethanol. The algorithm was
validated on three cultivations with different initial con-
ditions. Figure 2 presents the performance of the UKF for
the estimation of ethanol concentration during three cul-
tivation runs.

Figure 2 shows the estimates of the concentrations of
ethanol in the bioreactor computed using the UKF (blue
curve) together with the on-line measured ethanol concen-
trations (grey dots) and the HPLC off-line ethanol concen-
trations (black squares). Note that the HPLC off-line values
were not used during the estimation of the state variables,
and are only taken to show that the estimates are accurate.

When a deviation of the on-line measured and esti-
mated values are present, the estimated values are shifting
to the measured ones, indicating that the measured data
are not dominating the estimation. For instance, in BC2
between 2 and 3 h cultivation time, there is a significant
difference between the measured values and the off-line
values which can be caused by several factors includ-
ing temperature fluctuations in the ethanol measurement
chamber, an inappropriate determination of the base line,
or electrical noise in the sensor circuit. Due to the fact that
the process model fits to the off-line values, it could be
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FIGURE 2 Measured ethanol concentration with the gas sensor array (grey dots), estimated ethanol concentration with UEF (blue curve)
and off-line ethanol concentration (black sguares) during all three cultivations (BC1 - BC3)

stated that the on-line measured values are not accurate.
In this case the UKF predicted values are a compromise of
the process model and the on-line measured values which
leads to much more accurate predictions. The accuracy of
the UKF regarding ethanol prediction was evaluated by
comparing the RMSEP and SEP of the estimated (filtered)
ethanol concentration with the non-filter ones (the mea-
sured ethanol concentration), and the results are presented
in Table 2.

Table 1 shows the performance of the UKF compared
with the case where the ethanol concentrations were mea-
sured off-line. In BC2 the RMSEP and SEP of the off-
line measured ethanol concentration is considerably larger
compared to the filtered ones. In BC1 and BC3 the UKF
slightly increased the accuracy of the ethanol concentra-
tions. However, the standard error of estimated ethanol
concentration with the UKF during all cultivations is

below 5% which is a decent value.
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FIGURE 3 Estimated biomass and glucose concentrations with UKF (solid line) and off-line biomass and glucose concentrations (black

squares) during all three cultivations (BC1 - BC3)

012 3456

TABRLE 2 Comparison of off-line measured values and UKF
estimated ethanol concentration

Off-line measured UKF estimated
values wvalues
Cultivation RMSEP SEP RMSEP SEP
BC1 0.63 gL 5.5% 015 /L 4%
BC2 016 g/L 0.5% 0.08 g/L 45%
BC3 0.08 g/l 6.5% 0.09 o/ 4.5%

The UKF is also able to accurately estimate the concen-
trations of biomass and glucose during the cultivations.
Figure 3 presents the estimated values as well as the off-
line values of biomass and glucose for BC1 - BC3. In BC1
the estimates of the biomass concentration between 6 and
£ h cultivation time, deviate from the off-line values, how-
ever their evaluation is almost the same. This might be due
to faulty sample handling or measurement errors.
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TABLE 3 RMSEF and 5EP for glucose and biomass

Biomass Glucose
Cultivation RMSEP SEP RMSEP SEP
BC1 029 g/L o, 013 g/L L7%
BC2 0.00 /L 5% 016 g/L 4%
BC3 01g/L 5% 016 g/L 4%

cancantration

time (h]

FIGURE 4 Arificially distorted measured ethanol concentra-
tion with random noise (@), estimated ethanol concentration with
UKF (), off-line ethanol concentration (black sguares), estimated
glucose concentration with UKF (—), off-line glucose concentration
{black diamonds), estimated biomass concentration with UKF (),
off-line binmass concentration (black triangles) in BC2

The data in Figure 3 indicates that the typical diauxic
growth pattern of baker's yeast on glucose is observed. First
the glucose is consumed and biomass as well as ethanol are
produced, then ethanol is converted to biomass. The off-
line measurements and its corresponding estimated values
fit quite well together as can be seen in Table 3.

As illustrated abowve, the UKF is able to accurately pre-
dict the state variables in all three cultivations, based on the
available infrequent on-line ethanol measurements. How-
ever, as indicated in Figure 2 and Table 2, the measured
ethanol concentration is not noisy, therefore an accurate
estimation of the state variables by the UKF is not far from
expectation. Therefore, in order to check the prediction
ability of the UKF algorithm when the measurement data
are noisy, the measured ethanol values were artificially
distorted by random noise and the UKF algorithm was
performed.

Figure 4 shows the estimated as well as the off-line val-
ues of state variables of BC2, by the UKF with consider-
ing noisy ethanol measurements. As it can be seen, even
if the measurement values are artificially distorted by ran-
dom noise, the UKF does not show much different results
in predicting the state variables (SEP for all state vari-
ables is below 6%). The results for the other two cultiva-

tion data records are qualitatively the same, and are thus
not repeated here.

As already stated previcusly, the UKF algorithm was
also used for estimating the maximal specific growth rates.
To prove the capability of the UKF for estimating the max-
imal specific growth rates, different starting values were
chosen for these parameters in each cultivation. These
values are chosen according to a rough estimate of these
parameters.

Figure 5 presents the estimated maximum specific
growth rates with respect to glucose fmay o and ethanol
Hmax i a5 well as specific growth rates itself for glucose pg
and ethanol gy across all three cultivations.

In BC1 the g, » and pg; are increasing sharply short
after the inoculation starts, this indicates that the chosen
starting values are lower than the actual values, therefore
the UKF algorithm converges to the true values. When the
glucose is almost depleted, the transition from glucose to
ethanol as substrate takes place, therefore pmay e and pg
would start to increase. However, shortly before glucose is
completely depleted, pmsy o increases which results in the
decrease of pi;, therefore the UKF increases the up,, - and
j to compensate the under estimation of ;. According to
the typical Monod behaviour, before ethanol is depleted,
due to the low substrate concentration, ug,., ;; should be
almost constant while g should be increasing. However
this is not observed in BC1 which is due to the fluctua-
tion of the measured and estimated ethanol concentration
which can be seen between 4 and 7 h of cultivation time.

In BC2, after inoculation, the specific growth rates and
its maximum values with respect to glucose are increas-
ing slightly. This indicates that the chosen starting values
are not far from the actual values. Accordingly, in BC3, the
specific growth rates and its maximum values with respect
to glucose are decreasing after the inoculation and shortly
thereafter they increase again. This indicates that the cho-
sen starting values are lower than the actual values, never-
theless the UKF algorithm converges them to reasonable
values.

The high sensitivity of the estimated values due to the
measurement noise variance and the process noise vari-
ance can be observed by comparing the estimated growth
rates from BCI to BC3. In BC2 and BC3, the measured and
estimated ethanol concentrations shows less fluctuation
compared to the ones from BC2, therefore the estimated
values for the specific growth rates show less fluctuating
compared to the ones from BCL

In Figure & the estimation error variances of the pro-
cess variables and the maximal specific growth rate with
respect to glucose and ethanol are presented. The ini-
tial values of the variances are all set to zero. All val-
ues seem to be very much reproducible with respect to
all three cultivation runs. During the glucose phase the
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estimation error variance values of glucose are much
higher compared to the ones of biomass and ethanol. The
values are roughly one order of magnitude higher. The rea-
son is, that the ration of the change of ethanol and glo-
cose with time during the glucose phase is the ration of
the yield coefficients Yy /Y 5 whose value is 037 g g7
Therefore, the change in glucose is much higher (2.7 times)
which causes a larger error and a larger variance. If one
considers the variance of glucose as 0.1 g; L™ and ethanol
as 0.01 g; L~ then the square root is 0.316 g/L and 0.1 g/L
respectively. If one calculate the ration of error of ethanol
by the error of glucose 0.1/0.316 then almost the same val-
ues is obtained as the ration of the yield coefficients. Dur-
ing the ethanol phase the estimation error variance of glu-
cose become small, because no increase in ethanol can
be detected and therefore no glucose is present. The vari-
ance of biomass and ethanol are stable throughout the
cultivation. The variances of the of maximal growth rate
on glucose are increasing fast to a constant value during
the glucose phase and are increasing constantly during
ethanol phase. The corresponding values with respect to
ethanol behave in the same manner but inverted. If no
measurement information of growth on the substrate is
present, the estimation error variance is just increasing
constantly, however the variance decreased clearly when
growth occurred on that substrate. The constant values as
well as the slope during increasing are the same.

4 | CONCLUDING REMARKS

The design of monitoring and control algorithms to
improve the performance of bioprocesses is of major
importance. However, it is often difficult to find inexpen-
sive and robust commercially available sensors that allow
real-time monitoring of important process variables, such
as the biomass and substrate concentrations as well as the
growth rates. Therefore, the development of software sen-
sors is of paramount importance.

In this work, a dynamic nonlinear model was used
and an unscented Kalman filter algorithm was imple-
mented for parameter and state estimation during
5. cerevisiage batch cultivaton. The proposed UKF algo-
rithm only requires on-line data from infrequent ethanol
measurements together with the yield coefficients of the
process model.

Three batch cultivations with different initial condi-
tions were conducted in order to analyse the behaviour
and performance of the UKF. The result obtained showed
that with the proposed UKF algorithms, it was possible to
estimate the specific growth rates as well as continuous
ethanol, glucose and biomass concentrations with great

accuracy, during the cultivation process. In order to check
the quality margin for estimation with respect to presented
noise in the measured on-line ethanol values, a simulation
was preformed; as a conclusion, the UKF algorithm is still
able to predict the parameters and state variables, if the
noise is about less than 10%.

The proposed UKF algorithm can be used for compre-
hensive monitoring of the baker's yeast batch fermentation
process as well as for design and implementation of con-
trol strategies for the fed-batch fermentation process of the
baker's yeast.
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A fuzzy logic control system is designed and applied to 2 proofing system. The contraller
is experimentally evalusted and the performance is compared to the ones from a PID
controller. Dough pieces with different amounts of yeast added in the ingredients and in
different temperature starting states are prepared and proofed with the supervision of the
fuzzy control system. The controller is designed to maintain the volume of the dough pleces
similar to volume expansion of a dough piece in standard conditions during the proofing
process. Controllers are evaluated by means of performance criteria and the final volume of
the dough samiples. It is demonstratad that the furzy logic controller can provide significant
better control, does not require a mathematical model and has better disturbance rejection

@ 2019 Instimtion of Chemical Enginesars. Published by Elsevier BV, All rights resarved.

1. Introduction

The proofing (fermentation) process of dough is one of the
guality-determining steps in the production of baking goods.
Beside the fluffiness, whose fundaments are established dur-
ing fermentation, the flavour of the final product is influenced
very much during this production stage. One of the prime
aspects inindustrial baking enterprises is to control the proof-
ing process in order to achiewve a predictable final volume of
dough pieces at the end of this process step.

Popular strategies for process control consist of clas-
sical control techmiques and advence control techniques.
Classical control techniques are mzinly represented by the
proportional-integral-derivative (PID) controller. The greatest
hindrance to the widespread use of dassical control strategies
in the process industry is the need for a deteiled mathemat-
ical model for the control system &nd the difficulty to copy
its realization from one applimation to another. This makes
the introduction of such strategies quite expensive in such

* Corresponding euthor ot Garbenstr. 73, Stuttgart, Germany.
E-mail address: rahimé@uni-hohenheim.de (A Yousefi-Darani).
httpssidoi.org 10,1016/ fbp 2010.02 006

fields as the food industry (Lahtinen, 2001). Application of
a PID controller for controlling the fermentation process in
bread making has been previously studied by the authors
(Yousefi-Darani et al, 2018), however the complexity of the
mathematical model of the fermentation process, illustrates
the elaborateness of implementing the controller.

On the other hand, advanced process control techniques
target at nonlinearities and high-order dynamics which are
ubiguitous in many processes in the food industry. Thus, it
is often necessary to employ advanced food process control
techniques for these processes (Kondakd and Zhou, 2007

Advanced control techniques might be classified into the
following three main categories: model-based control, fuzzy
logic control, and artifidal neural neterork-based control (lean-
Fierre., 2004; Romagnoli and Palazoglu, 2005}

Fuzzy logic controller is a rule-based zpproach which
uses varizble formulated rules such as [F (condition) and
THEN (conclusion). Fuzzy logic controller brings & system-
atic methodology to convert expert knowledge into a heuristic
control algorithm (Perez-Correa and Zaror, 1993). Therefore,
it becomes wery beneficial for those food processes whera
human experts exists and no mathematical models are avail -

0960- 30859 2019 Institution of Chemical Engineers. Published by Elsevier EV. All rights resarved.
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sble. Recent applications of furzy logic controllers on food
process are reported in litersture (Amiryousefi et sl., 2017;
Chungetal , 2010; REahman et al., 201Z; Lietal, 2010; Wu et al.,
2018; leannou et &l., 2006; Sui and Tong,, 2016; Mahadevappa
et al, 2017; Al-Mahzsneh et al., 2003; Wu et al., 3017; Schmitz
et al.,, 2014; Villanueva et al., 201%; Sui et al_, 2018). The vari-
ety of fuzzy control applications indicates that this technigque
is becoming an important tool for complex processes. The
main reason for the popularity of fuzzy controllers is the ade-
gquate control over nonlinear processes. The nonlinearity of
the dough proofing process and volume expansion of dough
pieces during the proofing process have been explzined by
Stanke et al. (2014). Due to its nonlinearity and complexdty,
dough proofing process offers attractive and challenging prob-
lems concerning control.

Dewiation of controlled variable from the target values, high
temperature fluctuation during the process and high settling
time are the drawbacks of the exsting PID control system
fior the dough proofing process. Therefore, in this contribu-
tion fuzzy logic control technigques were applied in order to
achieve more efficient control over the proofing process in
bread making and to overcome the drawbacks of the exdst-
ing PID control system. This is the first ime that a proofing
process is controlled by a fuzzy logic system. Effidency of the
proofing process is achieved by using the output parameter
provided by the furzy control system such as inoreasing the
proofing chambers temperature due to the smaller size of the
dough piece compared to the standard sample at the same
time. The mzin contributions of this paper can be summarized
as follows.

1} Design and implementation of a fuzzy logic control sys-
tem based on image processing for controlling the proofing
process in bread making.

7) Comparison of the performance of the designed control
system with a PID controller in order to find the most
afficdent contral system for the proofing process in bread
making.

The remaining paper is organized as follows. Section 7 pro-
vides the materials and methods which were applied in this
study. The process of controller design is presented in Section
3. Section 4 provides the performance of the controller and
Section & concludes this paper.

2 Materials and methods

21 Monitoring system and image processing

The imaging system for online measurements of volume
expansion of the dough pieces during proofing was adapted
from Yousefi-Damani et al. (201E). Briefly, a digital camera (DFK
31BU03 H, The Imaging Source Europe GmbH, Germany) was
installed at the side of a proofing chamber (Klimaschrank WC
4033, Vitsch Industrietechnik GmbH, Germany) and a LED
light was used in the chamber for better illumination. The dig-
ital image processing algorithm which was used to evaluate
fermentation process is carried out by software programmed
in Matlab (F2016a, the Mathworks Inc., Matic, Massachuset
USA). Fig. 1shows the image processing steps which were used
in this study. The image processing starts with copping the
image in order to eliminate the edges and frame an image
containing one dough piece. The next step is converting the

Fegpdl irmage

| )

Cropping of the images ‘
Kti=im. a.b?

RUGE fo grey soale imags - — Vilume makuktion

l l"Ef]m',—ﬂ_'a;
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reghon properiis

Fig. 1 - Image processing steps and relative volume
measurement of the doughs.

image to grey scale image which is followed by some mor-
phological operations such &s dilation and erosion. In order
to identify objects in the digital image a thresholding opera-
tion was applied and for caloulating the volume of the dough
pieca, the bounding box surrounding the binary image was
determined (Zettel at al., 2016). The volume of the dough piece
was approximated by an ellipsoid shape with the same width
and height. The relative volume of the dough piece was then
caloulated according to Egs. (1) and (2).

Vit - 5 xLengheld Reightty? i
V(e - i 2

where Vit is the volume of the dough, V() .4 is relative wol-
ume at ime &

22 Reference volume measurernents and data set for
comtrol

A reference data set (target values) for the process was pre-
pared which presents the volume expansion of a dough piece
obtained under standard conditions. In order to provide the
reference data, & method for the production of bread was set
up; a8 dough piece with standard recipe was prepared and
proofied in the proofing chamber for one hour. During the
whole proofing process, the temperature and moisture of the
proofing chamber were kept constant at standard conditions
(30=C and B0I% relative humidity). An image was captured
every minute, the relative volume of the dough was calculated
with the image processing system, and this value was consid-
ered as reference value for the corresponding point which the
image was capbured.

23 Pore size distribution in baked breads

Dough pieces which were fermented for one hour in the proof-
ing chamber were baked for 25 min at ZH0°C. Baked breads
were cooled for 30 min &t room temperature and cut into slices
and then scanned with & flat scanner (HP SCANJET 8300).
Images were processed using & dedicated software called
“CGebickanalyse” (Cermany).

The pores areas are classified in five different classes:
small (0.10-200mm?), relative smazll (2.01-3.00mm?),
madium (3.01-6.00mm?), relative big (6.01-10.00mm?®) =nd
big (10.01-11.00 mm?). All measurements were performed in
triplicats.
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Fig. 2 - Input and output variables of the fuzzy logic dough proofing system.

2.4 Sample preparation

The dough preparation method was similar to the pervious
method for the PID controller. Three different compositions of
dough (standard redpe, more yeast and less yeast) were stud-
ied. The standard redpe dough formulation was 1000 g wheat
flour type 550 (Rettenmeier Mihle CmbH, Germany), &00g
water, 20 g salt (Siede-Speisesalz, Sudsalz CmbH, Germany),
3% g baking malt (Ulmer Goldmalz, C5M Deutschland GmbH,
Germany), 10g margarine (Meister Goldbadk, CSM Deutsch-
land GmbH, Germany) and 10g dry yeast (Trockenhefe,
Safe-instand Red, France). The mixing was done in & spiral
mixer (DI0EMA Dierks & S6hne GmbH, Cermany) with 1min
at low speed (25 rpm) followed by 5 min at high speed (S0rpm).
The dough rest was carried out for 20minutes at 30°C. The
dough was then laminated and shaped in a shaping-moulding
machine so that dough pieces for bread rolls are obtained.
Dough pleces with more yeast and less yeast were prepared
with the same recipe as the standard redpe, except that the
amount of yeast was 7.5 g for less and 12.5 g for more yeast. In
order to prepare frozen dough pieces, the dough pieces were
frozen in a freexer (T = —19°C) for more than six hours. Thawed
dough pieces were prepared by thawing the frozen dough
pieces in & refrigerator for more than six hours (T =+7=C).

2.5, Temperature profile of the frozen dough pieces

In order to evaluate the temperature st the dough surface
(DST) and dough centre (DCT) of the frozen dough pieces dur-
ing fermentation, a thermometer (Almemo 2590-35-45) was
inserted in the centre and surface of the frozen dough pieces
before freezing.

3. Conftroller design
3L The fuzzy system

A typical furzy system is running in three steps. During the
first step crisp data are converted into fuzzy data or member-
ship functions (fuzzification). In the next step membership
functions are combined with the control rules to derive the
furzy output (fuzrzy inference). The lzst step is called defuzzi-
fication where each assodated output is calculated. Keeping
the same framework, a fuzzy system with two inputs and one
output was developed in the present study. Fig. 2 presents an
owerview of the fuzzy system.

3.1.1. Parameter selection for the fuzzy system
Several parameters are influencing the fermentation time of
bread dough: temperature, quality and quantity of the yeast,

type of flour, amount of salt, water content, improvers, or pro-
cess conditions for dough preparation such &s mixing ime and
speed. The impacts of these parameters on the proving pro-
cess have been widely studied by various authors (Shehzad
et al, 2010 Chevallier et al., 201%; Chiotellis and Camphbell,
2003; Sahlstrom et al, 7004). However, the main controlling
factors which can be changed during the proofing process
are temperature and humidity. Here the proofing chambers
humidity is set constant Therefore, only temperature was
chosen as contral variatble,

In the present study the controllad variable is the volume
of the dough piece during the proofing process, therefore the
value obtained from dividing the measured relative wvolume of
the dough sample by the relative volume from the reference
data at the same time points is used as one input variable
(Vir), the second input is the actual temperature of the proofing
chamber (Tw), and the cutput is the temperature set point to
be adjusted at the proofing chamber (To).

31.2. Fuzzyinput and output sets

The fuzzy system was programmed using the software MAT-
LAB (Fuzzy Logic Toolbox). The classical notion of membership
functions (Zzdeh, 1965) was used to evaluate the input and
output parameters as fuzzy variables. The membership func-
tions are in the form of triangular shape and trapezoidal
functions. The triangular shape is a function of a vector, x,
and depends on three scalar parameters @, b, and ¢, a5 given
by Eq. (3) and the trapezoidal function is a function of wector
¥, which depends on four scalar parameters a, b, c, and d, as
given by Eq. (4).

flwiabe) - E]

flviab.e d) = (5]

In Eg. (3) the parameters @ and c locate the feet of the tri-
angle and the parameter b locates the peak and in Eq. [4) the
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Fig. 3 — Fuzzy sets and membership functions for the input and output variables of the dough proofing controller: (a) fuzzy
sets for relative volume ratio, (b) fuzzy sets for temperamre {input), (c) fuzzy sets for set point temperature (owtput).

parameters @ and d locate the feet of the trapezoid and the
parameters b and c locate the shoulders.

The output of the system (set point temperature of the
proofing chamber temperature control unit) is responsible for
controlling the convergence speed of the system, but due to
the sensitivity of dough pieces to high temperatures, special
care should be taken in to account when it comes to choos-
ing the membership functions and their appropriate ranges.
Therefore, in order to define the membership functons, sev-
eral experiments were conducted. For the first input, based on
the relative volume ratio, eight membership functions were
defined: extremely smzll (ES), very small (V5), relative small
(RS), small {5), normal (M), big (B), relative big (RB) and very
big (VB). For the second input wariable (actual proofing cham-
bers temperature), three linguistic terms were selected and
expressed by the fuzzy sets, low (L), normal (M) and high
[H).
Far the cutput varizble (set point tempemature of the proof-
ing chamber (Tg)) eight membership functions were defined
and expressed as: very low (VL), reladve low (RL), low (L),
normal (M), high (H), relative high (RH)} very high (VH) and
maximum high (MH]).

The membership functions of the fuzzy sets for each of
the two input variables and the output variable are shown in

Fig. Ya{c).

313, Fuzzy rule base

After setting the input and output parameters, the next step
is matching them with IF-THEN rules and aggregation of the
levels of matching, so that the inference can be made. Mam-
dani’s furzy inference method was used here implemanted in
MATLAE. All rules used for controlling the proofing process are
presented in a matrix form in Fig. 4. This matrix configuration
allows sesing 3 large number of rules and their outcomes at &
glance.

All rules are evaluated in parallel, and the order of the rules
is unimportant. Below are some examples how the rules are
evaluated.

[F dough volume is much larger compared to the standard
sample and the actual temperature of the proofing chamber
is high, then it implies that the dough needs to be cooled
dowmn in order to deease the volume expansion. This cn
be represented by the following rule.

IF (Ver — VE)and (Tm — H) THEN (Tsp — VL)
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Fig. 4 - Fuzzy logic rule matrix of the control system for
dough proofing.

‘When dough volume is smaller than the standard sample
and the temperature of the proofing chamber is low, it indi-
cates that higher temperatures should be applied in order to
accelerate volume expansion of the dough. This can be repre-
sented by the following rule.

IF (Vyr = VS)and (To = L) THEN [Ty = VH)

Omnee the reference data and the sample have the same size
there is no further necessity to either decrease or increase the
temperature. Therefore, the temperature is set to 30°C. This
can be represanted by the following rule.

IF (Ve — N} and (Te — N)THEN (Tsp - N}

Fig_ & illustrates an example of fuzzification and application
of one rule in the proposed fuzzy contrel method for the dough
proofing control.

In Fig. & an example of the application of rule number
4 iz presented whera the actusl values are as follows: the
relative volume ratio is Vir=1.07 and the measured tem-
perature of the proofing chamber is T, =33°C Each input
triggers two membership functions, which are for the rela-
tive volume ratio B (Big) with the value of the membership
function mf-Ve(B[1.07])=0.2 and KB (Relative Big) with mf-
Ver(RE[1.07])=0.8; and for the temperature the membership
functions M (Normal) mf-Te (M[33°C])=0.3 and H [High) with
mf-Tm({H[33°C]) =0.7. Thus, the conditionzl parts of four rules
are true and the overall concdusion must be drewn from rules
1-4in Fig 6.

The conditional part is composed out of tero conditions
which are connected logically by an AND function. Therefore,
the outcome will be calculated by the minimal value of the
corresponding membership functon values. For rule 4 it will

be the minimum of 0.2 and 0.3. As 2 consequence the ares
of the membership function L of Tsp below 0.2 will contribute
to the final result. This will be illustrated in Fig. &, where the
contributions coming from the other 3 rules can be seen.

314 Defuzzification

Defurzification converts the fuzrzy values into a crisp value. In
this contribution the methaod of centre of gravity (C0G) was
used according to Eqg. ().

J[rmT”T#- 1 (Toe) T,

T.P - Toee
g ™ (e} BTy

3]

where Tg is the crisp cutput velue of the fuzzy controller,
T 15 the i th bound of integration and u (Ts) represents its
membership value, whose top is cut as explained in Fig. 7.

32 Closed loop control system

The designed fuzzy logic system as well as the image pro-
cessing system are implemented in a feedback control system.
The complete outlook of the setup for controlling the dough
proofing process in bread making is depicted in Fig. 8.

The monitoring system is implemented in the loop to
continuously mezsure the wolume of the dough pieces. The
starting temperature of the proofing chamber is always 30-C.
The control system starts with capturing an image from the
dough sample. The image is sent to the image evaluation algo-
rithm, relative wolume is calculated. The ratio of the relative
volume of the actual sample to the ralative volume from the
reference data set among with the actual temperature of the
proofing chamber is sent to the fuzzy logic controller. The out-
put signal (temperature set point of the proofing chamber) is
obtained based on the furzy dedsion making rules. This loop
is repeated every 5 min for one hour.

4, Resultz and discussion
41 Controller performanoce

Dough pieces in different temperature starting states with
variation in amount of yezst were prepared and fermented in
the proofing chamber using the controller. Volume evolutions
of a dough pieces during the proofing processes are shown in
Fig. 9.

The optimum results for dough fermentation is considered
to be the same as the final volume of the standard dough
sample. The analysis of volume variation as function of time
rewveals that similar to the PID controller, regardless to the
actual starting state of the dough and any alteration in amount
of yeast, the fuzzy controller is able to yield comparable final
volumes compared to the standard samples after one hour.

Volume evaluation curves presented in Fig. 9 depicts a sig-
nificant deyesse in volume deviation of samples which were
proofed by the furzy logic controller from target values com-
pared to the ones proofed by the PID controllar.

The performance index of a controller can be defined as the
root mean squarad error (EMSE) of the controlled process out-
put and the standard output. Furthermore, deviztions of final
volume of the controlled dough pieces from standard dough
pieces (OFS) as well as the settling time (the time required
for the response curve to reach and stay within a range of
cartain percentage of the final valus) were used as controller
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Table 1 — Performance criteria of fuzzy and PID controller for the proofing process.

State of the dough Cantroller EMSE Devintion of final valume from standard Settling time (rmin)
Normaal stae- e yeast PDomnd . 009 228%Qawm p
Normmal state-less peast PDomma Q5 171% (e -
Thawed dough mare yest T -
Thawed doughlessyeast PDomed . 08 134%fown) a
Froaen sate e yeust PDommd . OV 2m% Gy @
R e e -

performance index for the volume evaluation curves (Table 1)
and IAE (integral absolute etror) as performance index for the
tme-temperature curves. RMSE, DFS and IAE are defined as
Egs. (G}-{E] respectively.

N !_ll'rlC:|
nesE - 4 Zale 7B )
Dﬁ%-% 0]
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where Vy is the volume of the controlled dough piece, Vi is
the volume of the standard sample, Vg is the final volume of
the controlled dou gh piece and Vi is the final volume of a
standard dough piece.

Drata in Table 1 reveal that the response of the fuzzy logic
controller gives maore satisfactory performance with respect to
RMSE and final volume of the dough pieces st the end of the
proofing process. Furthermaore, the settling time for the fuzzy
controller is significantly shorter than the settling ime for the
PID contreller.

The settling time of both controllers (B0min) for proofing
dough pieces in frozen state are relatively high which is due
to the longer time required for thawing frozen dough pieces.
Freezing presents a significant effect as disturbance to the
proofing process, causing the volume of the samples to deviate
from the set value during the proofing process. Consequently,
high temperatures should be spplied to rapidly minimize the
deviation. The highest temperature applied for thewing frozen
dough pieces is 50°C by both controllers. Increzsing the thaw-
ing temperature beyond 50°C would lead to shorter settling
tdme. But on the contrary, high temperatures result in denat-
uration of proteins, deactivation of the yeast cells and higher
enzyme activity (protease and amylase). These higher enzyme
rates would result in weaker doughs and substantizlly less
oven spring (Siffring and Bruinsma, 1993). Therefore, with con-
sidering the final volume of the frozen dough pieces at the end
of the process which is comparabl e with the standard samples,
the long settling time could be neglect able.

Datain Fig 10 presents the ime—temperature profile of the
proofing chamber during the proofing process for both con-
trollers as well as the total [AE (the sum of areas above and
below the sat point) of the ime-tempemature graphs.

A lower [AE represent less temperature fluctuation dur-
ing the proofing process. Temperature fluctuation may result
in defects such as small and compact final products with a

dense oqumb structure, poor retention of C0z and inhibiting
expansion during proofing.

However, the final volume of the dough pieces proofed with
any of the controllers are in the same range. The data in Fig. 9
reveals that the total IAE for dough samples in normal state
and thawed state which were proofed with the furzy controller
is significantly lower compared to the ones proofed with the
PID controller. However for the other three cases it is higher.

4.2 Temperature profile of the frozen dough
Time-temperature profile recorded at the centre of the frozen
dough pieces (XCT) and surface of the frozen dough pieces
(DOST) during the proofing process as well as the varistions of
the air temperature in the proofing chamber (PCT) are shown
in Fig. 10. Data in Fig. 10 illustrates when the fuzzy controller
is applied the temperature fluctuation between DST and PCT
i5 lower compared to when the PID controller is applied. How-
ever, temperature fluctuztion between D5T and DCT are lower
when the PID controller is applied.

According to literature (Cauvain, 2012; Kamel and Stauffer,
19493), optimal dough temperature at the end of the proofing
process is 28-35°C. Temperatures below this range results in
small final products with dense and cumb structure and tem-
peratures higher than that can produce unpleasant flavours
through production of organic adds. The tme-temperature
data in Fig. 11 reveals that when the fuzzy logic controller
is applied, the temperature at the surface and centre of the
frozen dough pieces reach to 30=C after approcdmately 40 min
and stays constant untl the end of the proofing process. On
the contrary, when the FID controller is applied, the temper-
ature at the surface and centre of the dough pieces are never
in equilibrium during the process and the surface tempera-
ture of the dough at the end of the process is slightly higher
than 40°C. Therefore, the fuzzy logic controller shows better
results over controlling the temperature of the frozen dough
pieces during the proofing process.

4.3.  Pore size distribution

Fig. 12 illustrates the pore size distribution fior breads obtained
from dough pieces proofed with the fuzzy controller and the
PID' controller. Pore size distribution of the bread was plotted
betereen number of bubbles (%) and pore arez. In Fig. 12, §
stands for standard, N stands for normal, f stands for frozen,
M stands for more yeast, L stands for less yeast, P stands for FID
controller and F stands for Fuzzy controller. Sapirstein (1999)
reported that pore size in the baked bread ranged between 0.08
and E mm equivelent diameters, which correspond to areas of
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Fig. 11 - Time-temperature evolation in the proofing chamber (PCT) and at centre (T) and surface (5T) of dough piece
during the proofing process, which were frozen at the proofing start.

0.02-200 mm?®. The pores size distribution in baked bread in
present study ranged between 0.1 and 11 mm? pore areas.

A general trend showm in the data is difference in pore size
distribution between the standard sample and the samples
which wera proofed by the controllers.

In all semples, smaller pores are presented in greater num-
bers. Applying any of the taro controllers increased the number
of pores classified as small Furthermaore, for all samples
beside the ones in frozen state with less yeast and thawed
state with more yeast, when the fuzzy logic controller was
applied, the number of small pores increased more compering
to when the PID controller was applied.

Comparing the pore population classified as relative small,
medium, and relative big, 3 non-significant difference is
observed when different controller is applied. Moreover, no
significant difference is ocbserved between the mentionad pore

population from the stand ard sample and the samples proofed
by the controllers. On the other hand, & significant difference
(p<=0.0%) in percentage of pores classifiad as big is observed
between the standard samples and the samples which were
proofed by the controllers. These cheervations can be sup-
ported by the fact that in bread, pore sizes distribution is
related toa balance between the rate of heating and the time
neaded for the outer region of the dough to develop some
rigidity (Datta et al, 2007). Therefore, the difference in pore
distribution is due to the rate of heating which each of the
controllers apply during the proofing process.

5. Conclusion

A fuzzy logic control system was successfully designed and
applied to the proofing process in bread malking. Experiments
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Fig. 12 - Pore size distribution in bread.

werne performed in order to proof dough pieces in different
starting states and with different amount of yeast added in the
ingredients. The efidency of the controller was evaluated and
compared to maintain the volume of the dough pieces similar
to the target values during the proofing process. The results
‘were compared with the performance of a PID controller from
5 previous study.

The obtained results indicate that average deviations of
the volume of the dough pieces with different amount of
yeast and in different temperature starting states at the end
of the proofing process was less than 2.9% compared to the
target values. The obtained performance of the system is
wery satisfactory with respect to volume control and set point
deviation compared to the PIDV controller. Additionally, the
furzy logic controller performance with respect to overall TAE,
HSME, setiling time, surface and central tempersture of the
frozen dough pieces and pore size distribution in baked breads
exhibited satisfactory performance compared with the PID
controller.

Furthermore, fuzzy logic slgorithms can be constructed
in a user-friendly way and, due to the fact that fuzzy logic
controllers are doser to human thinking and perception, by
elaborating a set of rules the system can be controlled with-
out requiring the computation of any mathematical model.
As 8 consequence the implementation of the fuzzy controller
‘was faster. Therefore, the fuzzy controller represents & viable
alternative for controlling the process with.

Conflicts of interost

The authors declare that there is no conflict of interest regard-
ing the publication of this article.

Acknowledgment

AIF (18123N) is great fully acknowledged for financial support
of this study.

References

Al-Mzhasnsh, M, Amer, M B., REababah, T, 2012. Modsling
moisture sorption isotherms in roasted green wheat using

least square regression and neural-fuzzy techniques. Food
Bioprod. Process. o0 (2), 165-170.

Amiryousefi, M.R., Mohebbi, M., Golmohammadzadeh, 5.,
Epochelkd, &, Baghbani, E, 2017. Fuzzy logic application to
model caffeine relezss from hydroge] colloidosomes. ). Food
Eng, 167, 35-42.

Czuvain, 5P (Ed), 2012 Bread Making, Improving Quality.
Woodhead Publ., Cambridge, UK.

Chevallier, 5, Zifiga, R., Le-Bail, A., 2012. Assessment of bread
dough expansion during fermentation. Food Bioprocess
Technol 5 (7, 609-517.

Cchung, C.-C., Chen, H-H,, Ting, C-H., 3010. Grey prediction fuzzy
control for pH processes in the food industry. | Food Eng. 96
(4], 5TE-5ED.

Datta, AK., Sahin, 5., Sumnu, G, Keskin, 5.0., 3007. Porous media
characterization of breads baked using novel heating modes.
1. Food Eng_ 79 (1), 106-116.

Jean-Pierre, C., 2004. Process Control: Theory and Applications.
Epringer, London.

Kamel, B.5, Stauffer, CE., 1993, Advances in Baking Technalogy.
Chapman & Hall, London, UE.

Kondakri, T, Zhou, W, 2017. Recent applications of advanced
control techniques in food industry. Food Bioprocess Technol.
10 (3), 522-542_

Lehtinen, &, 2001. Identification of fuzzy controller for use with a
falling-film evaporator. Food Control 12 (3), 175-180.

Li, Z., Raghavan, GV, Wang, M, 2010. Apple volatiles monitoring
and control in microwave drying. LWT Food Sci Technol 43
(4], 6B4-GED.

Mazhadevappa, |, Groi, F, Delgado, A., 2017. Fuzzy logic based
process contol strategy for effective sheeting of wheat dough
in small and medium-sized enterprisas. J. Food Eng, 199,
53-949.

Perez-Corres, ], Zaror, C, 1993, Recent advances in process
control and their potential applications to food processing.
Food Contral 4 (4), 202-209.

Rahman, M_5., Rashid, M., Hussain, M., 2012. Thermazl
conductivity prediction of foods by neural netaork and fuzzy
(AMNFI15) modeling techniques. Food Bioprod. Process. 90 (2),
333-340.

Romagnoli, A, Palazoglu, A, 2005. Introduction to Process
Control CRC Press.

Sahlstrdm, 5., Park, W, Shelton, DR, 2004. Factors influencing
yeast fermentation and the effect of LMW sugars and yeast
fermentation on hearth bread quality. Cereal Chem. 81 (3),
378-335.

Sapirstein, H., 1995, The imaging and measurement of bubbles in
bread. Bubbles in Food. GM.

97



45 FOOD AND BICFRODUCTS PROCESSING 115 [2019) 3645

Schmitz, I, Silva, F, Neves Filho, L, Fileti, A, Silveim, V., 2014.
Multivarizble fuzzy control strategy for an experimentsl
chiller system. J. Food Process Eng. 37 (2), 160-168.

Shehzad, A., Chiron, H., Della valle, G, Kansou, K., Ndiays, A.,
Réguerre, A 2010, Porosity and stability of bread dough
during proofing determined by video image analysis for
differant compositions and mixing conditions. Food Res. Int.
43 (8), 1090-2005.

siffring, K., Bruinsma, BL., 1993, Effects of proof temperature on
the quality of pan bread Careal Chem. 70 (3), 351-353.

Stanke, M., Zettel, W, Schiltze, 5, Hitkmann, B., 2004.
Measurement and mathematical modeling of the relative
volume of wheat dough during proofing, J. Food Eng. 131,
5864,

5ui, §., Tong, 5., 2016. Fuzzy adaptive quantized output feedback
tracking control for switched nonlinear systems with input
guantization. Fuzzy Sats Syst 290, 56-78.

5ui, 5., Chen, CLF, Tong, 5.C., 2018. Fuzzy adaptive finite-time
control design for non-triangular stochastic nonlinear
httpuifdx. doi.org/ 1001 109 TFUZE 2018 38E2 167,

villanueva, 0., Posada, B, Gonzslaz, [, Garcia, A, Martinez, A.,
2015. Monitoring of a sugar aystallization process with fuzzy
logic and digital image processing. J. Food Process Eng. 38 (1),
19-30.

W, C, Liw, I, Jing, X, Li, H., Wu, L, 2017. Adaptive fuzzy control
for nonlinear networked control systems. IEEE Trans. Syst.
Man Cybarn. Syst 47 (8), 2430-2430,

W, C, et al, 2018. Obsarver-based adaptive fault-tolerant
tracking control of nonlinear nonstrict-feedback systems. IEEE
Trans. Meural Metw. Leam. Syst. 29 {7), 3022-3033.

Yousefi-Darani, A., Paguet-Durand, O, Zettel, V, Hitzmann, B.,
2018. Closed loop control system for dough fermentation
based on image processing. | Food Process Eng., 212801

Zadeh, LA, 1565, Information and control. Fuzzy Sets & (3),
338-353.

Zettel, viktoriz, et al, 2016, Image analysis and mathematical
modelling for the supervision of the dough fermentation
process. In- AIP Conference Proceedings. AIP Publishing, val.
1769, No. 1.

98



5. Discussion

A bottleneck in bioprocess monitoring and control is often caused by the lack of reliable
sensors. That is why estimation techniques issued from control theory have been applied to
on-line estimation of bioprocess variables. That induced the development of software sensors,
which associate a sensor (hardware) and an estimation algorithm (software) in order to
provide on-line estimates of the unmeasurable variables and kinetic parameters (Nicoletti et
al., 2009).

Within this thesis software sensors were developed for monitoring and control of the
fermentation of baker’s yeast, three times the suspension (baker’s yeast cultivation process)
and once the solid-state fermentation (dough fermentation) was investigated. Both processes
are of high importance for industries.

The designed software sensors for the cultivation of the baker’s yeast process are based on
metal oxide gas sensor array. Application of gas sensor arrays for on-line monitoring of yeast
cultivation has been previously reported in literature (Lidén et al., 1998). However, lack of
stability over time (sensor drift) and the high cost of recalibration are factors which had limited
the widespread adoption of gas sensor arrays in real industrial setups (Di Carlo and Falasconi,
2012).

According to literature, there are several different methods for drift compensation; these
methods can be classified into three main categories. The first is the search for new materials
that can reversibly interact with the relevant gas, so that the detected molecules unbind from
the sensor material as soon as the gas has been purged from the sensor surface (Yamazoe,
191; Roth et al.,, 1994). The second is the dynamical characterization of the sensor response
and additionally, the third is the use of appropriate signal processing techniques, including
feature extraction and pattern recognition methods (Vergara et al., 2007; Liu et al., 2013).
Accordingly, the last two methods were applied in this work for sensor drift compensation. In
addition, in order to overcome the time consuming and expensive calibration issue of the gas
sensor array, a model-based calibration procedure was performed. For this procedure, the
only requirement is the process mathematical model (simulation model) and the response of
the gas sensor array from a single cultivation run. Then the parameters of the simulation
model can be calculated by minimising the prediction error by optimising the kinetic
parameter values of the simulation model as well as the parameter values of the chemometric

model.
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The designed gas sensor array and the model-based calibration approach was used for on-line
prediction of ethanol concentration in three different cultivations. The experiments carried
out show that the proposed method provides comparable results to the reference ethanol
concentration values obtained by HPLC. Thus, the gas sensor array has great potential in on-
line monitoring of ethanol concentration during yeast cultivation. However, due to frequent
flushing of the sensor array with oxygen flow, predicted ethanol concentrations are available
only every five minutes. Therefore, in order to have continues ethanol concentrations as well
as the concentration of other important process variables such as biomass, glucose and the
growth rates, it was crucial to implement a software sensor. For this reason, the nonlinear
extensions of the Kalman filter namely the Extended Kalman filter (EKF) and the Unscented
Kalman filter (UKF) were separately applied and used as state estimation methods. The
designed software sensors give the possibility to predict glucose, ethanol and biomass
concentrations simultaneously from the only available infrequent on-line measurements of
ethanol concentration.

By applying the EKF as the state estimator, the accuracy of the estimated biomass and
substrate production were in line with other studies which have also implemented an EKF
algorithm for monitoring the baker’s yeast cultivation (Hitzmann et al., 2000; Popova et al.,
2013). However, in this application the maximal specific growth rates on glucose and ethanol
were also estimated. As a consequence, the rapid and precise estimation of these variables
could increase the overall knowledge of the process.

In spite of the satisfactory results obtained by the EKF, it has some disadvantages such as: it
requires the calculation of Jacobians at each time step, which may be difficult to obtain for
higher order systems; it does linear approximations of the system at a given time instant,
which may introduce errors in the estimation, leading to a state divergence over time.
Therefore, another software sensor based on the the Unscented Kalman filter was designed
and implemented for continuous state and parameter estimation of the baker’s yeast
fermentation process. The results were compared with the ones optioned from the EKF (from
cultivations with similar initial conditions).

The obtained results indicate that the application of both techniques delivers satisfactory
estimates of the important state variables and the product concentrations. However, the
errors using UKF is comparatively less than the errors using EKF, which means the UKF is more

adaptive than EKF in state estimation. The decisive advantage of the Unscented Kalman filter

100



is that the dynamic process model and the model that relates the state variables to the
guantities that are measured on-line can be used in their original forms. Only the description
of the uncertainty of the states is approximated (Simutis and Liibbert, 2017).

It can be concluded that the developed software sensors expand the application range of the
gas sensor array for the nonlinear state and parameter estimation of the baker’s yeast
fermentation process. Consequently, it is promising to build up a compact and economical
version of such measurement systems. Such sensors would be cost-effective and miniaturized
devices for routine analysis, which could be advantageous to real-time bioprocess monitoring
and control.

Since in solid-state fermentation (dough fermentation), the concentration of ethanol
production is low, it was not possible to apply the gas sensor array for on-line monitoring of
the process. Therefore, another software sensor was designed based on image analysis for
predicting the volume of the dough pieces. The measurement system was complimented with
a controller and was used for controlling the fermentation process. The controller consists of
a fuzzy logic control system which changes the proofing chamber’s temperature according to
the volume of the dough pieces. The controller maintains the volume of the dough pieces
similar to the volume expansion of a dough piece in standard conditions during the proofing
process. The controller was experimentally evaluated by preparing dough pieces with
different amount of yeast added in the ingredients and in different starting states and proofing
them with the supervision of the fuzzy control system. The performance of the controller was
compared to the performance of a PID controller from another study (Yousefi-Darani et al.,
2018).

The obtained results indicates that average deviation of the volume of the dough pieces (at
the end of the proofing process) with different amount of yeast added in the ingredients and
in different starting states was less than 2.9 % compared to the target values. The obtained
performance of the system is very satisfactory with respect to volume control and set point
deviation compared to the PID controller. Additionally, the fuzzy logic controller performance
with respect to RMSE, settling time, surface and central temperature of the frozen dough
pieces and pore size distribution in baked breads exhibited satisfactory performance
compared with the PID controller. Furthermore, fuzzy logic algorithms can be constructed in
a user-friendly way and, due to the fact that fuzzy logic controllers are closer to human

thinking and perception, by elaborating a set of rules the system can be controlled without
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requiring the computation of any mathematical model. As a consequence, the
implementation of the fuzzy controller is faster. Therefore, the fuzzy controller represents a

viable alternative for controlling the process.
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