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Abstract 

Phytopathogenic fungi such as Pyrenophora teres and Zymoseptoria tritici cause 

destructive diseases of barley and wheat in all major cereal production areas worldwide. 

The control of net blotch of barley caused by P. teres and Septoria tritici blotch (STB) of 

wheat caused by Z. tritici mainly relies on the usage of fungicides. Thereby, three single-

site inhibiting fungicide classes, the quinone outside inhibitors (QoIs), the demethylation 

inhibitors (DMIs) and the succinate dehydrogenase inhibitors (SDHIs) have the highest 

relevance. In recent years, the QoI fungicide efficacy was significantly reduced due to the 

occurrence of G143A in cytochrome bc1 complex (CYTB) of Z. tritici. In P. teres, G143A has 

not been found so far, however, F129L in CYTB has been detected, which mediates 

‘moderate’ resistance levels towards QoI fungicides. Furthermore, the population of Z. tritici 

in Western Europe has shown a continuous ‘shift’ over many years towards an increased 

DMI tolerance. The class of SDHIs is the most newly introduced fungicide class and inhibits 

the fungal succinate dehydrogenase complex (SDH) which is a critical enzyme of the 

respiratory chain and the tricarboxylic cycle. The upcoming SDHI resistance in European 

populations of P. teres and Z. tritici was investigated in the present study and resistance 

mechanisms underlying SDHI resistance were characterised. SDHI resistant isolates of 

both pathogens were collected in intensive monitoring programmes which covered the 

major barley and wheat growing areas in Europe. 

SDHI resistant isolates showed point mutations in the genes SdhB, SdhC and SdhD which 

cause amino acid alteration in the subunits B, C and D of the SDH complex. First SDHI 

resistant isolates of both pathogens were detected in 2012 and showed amino acid 

alteration, histidine to tyrosine at position 277 in SDH-B (B-H277Y) in the case of P. teres 

and a threonine to asparagine exchange at position 79 in SDH-C (C-T79N) in the case of 

Z. tritici.  

In P. teres, a significant increase of SDHI resistant isolates from 2012 to 2015 was 

observed, particularly in countries such as France and Germany. Several target-site 

mutations leading to amino acid exchanges, namely B-H277Y, C-S73P, C-N75S, C-G79R, 

C-H134R, C-S135R, D-D124N/E, D-H134R, D-G138V, D-D145G and D-E178K, were 

identified in those isolates. Sequencing of SdhB, SdhC and SdhD genes of several isolates 

confirmed that each isolate carried one mutation in the Sdh genes, and not two or more in 

combination. In vitro and in planta sensitivity tests were performed and revealed that each 

SDH-variant causes a distinct resistance phenotype towards SDHIs. Commercially 

available SDHIs were compared and isolates showed cross-resistance towards all SDHIs 

tested, although some minor differences in the response to different mutations were 

observed. Most of the SDHI resistant P. teres isolates carried C-G79R substitution which 

was shown to exhibit one of the strongest effects of all detected alterations. In addition to 

C-G79R, other substitutions, such as C-N75S and D-D145G, were frequently found in the 
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field. These SDH-variants were shown to confer low to moderate levels of resistance. 

Glasshouse data demonstrated that SDHIs can still contribute effectively to disease control 

when applied in a preventative manner at registered dose rates, particularly in case of 

mutants with ‘low’ and ‘moderate’ resistance phenotypes (e.g. B-H277Y, C-N75S, D-D124N 

and D-D145G). Analysis of multiple resistance to QoI and SDHI fungicides revealed that 

isolates from 2013 with C-G79R substitution did not simultaneously carry the F129L 

exchange in CYTB. However, an increase of QoI and SDHI double resistant isolates was 

observed in the following years.  

In contrast to the rapid ‘build-up’ of resistant isolates in the population of P. teres in countries 

such as France and Germany, the emergence of SDHI resistance in Z. tritici did not evolve 

as fast as observed in net blotch. Here, only a few resistant isolates have been sampled so 

far (42 resistent of 3431 investigated isolates, 1.2%). An increase of resistant isolates of 

Z. tritici was observed mainly in Ireland, the United Kingdom and the Netherlands, however, 

still at low levels. SDH-variants B-N225I, B-T268I/A, C-N86S/A, C-T79N/I, C-W80S, 

C-H152R and C-V166M were detected in SDHI resistant isolates collected in these and 

other countries such as France and Germany. Four isolates showed two mutations in the 

Sdh genes in combination. These mutations cause alterations B-R240L+C-T79N, 

B-T268I+C-I29V, B-T268A+C-F23S and C-H152R+D-R47W. In vitro and in planta 

sensitivity measurements demonstrated that C-H152R mutants showed the highest 

resistance level of all investigated SDH-variants collected in the field. C-T79N and C-N86S 

exchanges which have been detected more frequently in the field than C-H152R, were 

shown to confer lower levels of resistance compared to C-H152R.  

Dual inoculation tests were performed with several SDHI resistant and sensitive field 

isolates of both pathogens to detect potential fitness costs of SDHI resistance mutations. 

Quantitative molecular detection methods were established to detect SNPs causing SDHI 

resistance and were used to examine an increase or a decrease of resistance alleles in 

mixtures of resistant and sensitive isolates. Mixtures were propagated for several cycles on 

barley or wheat seedlings without the use of fungicides. Field isolates of P. teres revealed 

a high natural variability, independent of their resistance status. However, when all mixtures 

were taken together, a slight decrease of resistance alleles was observed in mixtures with 

sensitive isolates. In field isolates of Z. tritici, a significant decrease of B-T268I and 

C-H152R in mixtures with sensitive isolates was observed. In contrast, C-T79N field isolates 

showed a high pathogenicity and competitiveness compared with sensitive isolates. 

Therefore, it could be proposed that fitness costs can vary between different mutations 

within a species. 

Both phytopathogenic species were shown to evolve a range of diverse target-site 

mutations, which led to different alterations in both pathogen species with exception of 

C-N75S in P. teres and the homologous variant, C-N86S, in Z. tritici. This can be explained 
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by species-specific variation of the SDH enzyme, a different nature of the pathogens (e.g. 

host plants and disease geographical spread) as well as a different fungicide use pattern 

(e.g. mode of action diversity and fungicide application intensity). The absence of a 

dominant major target-site mutation in the case of SDHI resistance in both pathogens is 

thought to allow SDHIs as effective control agent against both pathogen species also in the 

future. Nevertheless, anti-resistance management strategies are highly recommended for 

the usage of SDHIs. These strategies should not only be based on the use of mixtures and 

alternations of fungicides, but should also implement integrated disease control 

measurements (e.g. resistant host cultivars).  
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1 Introduction 

1.1 Wheat and barley cultivation and the importance of 
fungal diseases 

Grasses (Poaceae or Graminea) are perhaps the most economically important plant family 

with the greatest potential to address the needs of mankind for food, feed and fuel (Mak, 

2010). Barley (Hordeum vulgare L.) is regarded as the fourth most important cereal crop in 

the world, placed after maize, wheat and rice (Akar et al., 2004). In the last century, barley 

was mainly cultivated for human food supply. Nowadays, it is primarily grown as animal 

feed and for the malt production used in the beer industry (Hayes, 1992). Barley has a high 

ecological compatibility and can be produced also under unfavourable climatic conditions 

with relatively long periods of drought. Therefore, in some developing countries with arid 

and semi arid climates, barley is still the only cereal which serves as a staple food resource 

(Akar et al., 2004). 

Wheat (Triticum aestivum L.) belongs to the family Graminea and has the widest distribution 

worldwide within all cereal crops. It is cultivated in some 100 countries with the highest 

concentration in temperate zones of the northern hemisphere, including major cereal 

growing areas of North America, Europe, Asia and North Africa (Oleson, 1994). Wheat 

serves as an important human food source and feed grain for many classes of livestock 

(Ranhotra, 1994). About 95% of the world production is derived from wheat varieties, which 

belong to the category of common or bread wheat, whereas the remaining 5% are durum 

wheat varieties (Oleson, 1994). Global harvests of 705 million metric tonnes were reached 

in 2013 to 2014 (Gurr and Fones, 2015). Nowadays, Europe is the most productive wheat 

growing area worldwide, when yields per hectare between different continents are 

compared (calculations based on http://www.fao.org/faostat/en/). France and Germany are 

the biggest wheat producers in Europe contributing ~26% and ~17%, respectively (Gurr 

and Fones, 2015). 

Since the green revolution, cereal yields have increased significantly to satisfy global 

requirement of the ever-increasing global population (Welch and Graham, 2004). A major 

task of the 21th century is to produce enough food to meet the demand of an increasing 

population in an environment of climate change, and with requirement of more substainable 

cultivation systems (Tilman et al., 2002). 

Plants are vulnerable to abiotic stress factors, such as heat, cold, drought, salinity and 

nutrient stress (Wang et al., 2003) and biotic attacks, which include fungi, bacteria, viruses, 

nematodes and insects (Hammond-Kosack and Jones, 2000). Global potential losses due 

to pests were calculated to be 50% in wheat, of which the highest losses were caused by 

weed pests, followed by animal pests and pathogens. Whereas weed pest control can be 
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managed mechanically and chemically, control of animal pests and diseases are mainly 

dependent on chemical control measures (Oerke, 2006). Many thousands of plant 

pathogenic fungi are known. Regarding each crop individually, the number of fungi that is 

able to attack and cause damage is limited. However, infections of a pathogen in a 

favourable environment can result in significant economic losses.  

Barley and wheat are believed to have been domesticated as crop plants since the settling 

of humans in the Fertile Crescent around 10,000 years ago (Badr et al., 2000; Özkan et al., 

2002). Since that time, intensive cultivation and selection of genetically homogenous crops 

has put strong selective pressure on natural fungal populations and has led to the 

emergence of completely new pathogens, which are highly adapted to different crop species 

(Brunner et al., 2007; Stukenbrock et al., 2007; Friesen et al., 2008a, 2008b). In a recent 

study, scientists voted in a survey the ‘Top 10’ of most economic and scientific important 

fungal pathogens (Dean et al., 2012). Eight of ten nominated pathogens are fungal species, 

which infect gramineacious hosts. Destructive grass diseases are, for example, the rice 

blast disease, caused by Magnaporthe oryzae (Ou, 1980), rust diseases of cereals (stem 

rust, yellow rust, brown rust), particularly of wheat, caused by several Puccinia species, and 

Blumeria graminis, which causes powdery mildew of grasses, including wheat and barley. 

In addition, Fusarium graminearum senso lato and associated Fusarium species, which 

normally cause ‘moderate’ yield losses, can lead to mycotoxin-contaminated grain in 

several cereal species (Kazan et al., 2012). Furthermore, Zymoseptoria tritici, which causes 

Septoria tritici blotch (STB) of wheat, was placed at rank seven in its importance (Dean et 

al., 2012). Plant pathogens are highly variable and adapt to environmental changes quickly. 

Since the 1960s, Z. tritici has become the most prominent pathogen on wheat in Europe, 

replacing other pathogens such as rusts, mildews and Parastagonospora nodorum (often 

called Leptosphaeria nodorum) (Oliver and Hewitt, 2014).  

1.1.1 Net blotch disease in barley caused by Pyrenophora teres 

Pyrenophora teres Drechsler (asexual morph: Drechslera teres [Sacc.] Shoem.) is the 

causal agent of net blotch of barley. P. teres is an ascomycetous, necrotrophic fungus 

belonging to the class of Dothideomycetes in the order Pleosporales. Net blotch is a major 

disease in barley, and causes severe yield losses in many barley growing regions 

worldwide. In temperate climate zones in untreated conditions P. teres can cause yield 

losses of 10-40% and may reach even higher levels up to 100% under favourable 

environmental conditions for the fungus (Mathre, 1997; Minarikova and Polisenska, 1999; 

Murray and Brennan, 2010). Furthermore, infection can negatively affect feed and malting 

quality of barley kernels due to a reduction of kernel size (Mathre, 1997; Grewal et al., 2008). 

P. teres can infect a range of different gramineous species within the genera Aegilops, 

Agropyron, Elymus, Hordeum, Hordelymus and Stipa (Brown et al., 1993). 
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1.1.1.1 Taxonomy and relationship to other Pyrenophora species 

The sexual morph Pyrenophora teres was first described by Drechsler in 1923. The asexual 

morph, Drechslera teres, was originally placed in the genus Helminthosporium, but was 

reassigned in the genus of Drechslera in the late 1950s (Shoemaker, 1962; Alcorn, 1988). 

Analysis of mating-type gene sequences confirmed that P. teres belongs to the 

Pleosporales group closely related to Phaeosphaeria nodorum (Phaeosphaeriaceae) and 

Leptosphaeria maculans (Leptosphaeriaceae) (Rau et al., 2005, 2007). Two other 

Pyrenophora species, P. graminea and P. japonica, can cause foliar diseases on barley. 

The three species can be differentiated by small differences in morphology of ascocarp, 

conidia and conidiophore, in addition to their typical disease symptoms (Ito and Kuribayashi, 

1931; Shoemaker, 1962; Sivanesan, 1987). 

Net blotch exists in two forms, P. teres f. teres (net form of net blotch) and 

P. teres f. maculata (spot form of net blotch), which show different disease symptoms, but 

are undistinguishable by other morphological traits (e.g. conidia) (Smedegård-Petersen, 

1971). Disease symptoms of the net form of net blotch are elongated lesions with necrotic 

areas along leaf veins with occasional transverse striations, whereas the spot form of 

P. teres produces more discrete, rounded lesions, mostly surrounded by a chlorotic zone 

(Figure 1 A, B). Historically, P. teres f. teres was regarded as the predominant form of 

P. teres but in recent years epidemics with the spot type have been reported, particularly in 

Canada and Australia (Tekauz, 1990; McLean et al., 2010). However, in these studies the 

differentiation of both forms was based on appearance of disease symptoms, which can be 

inconclusive since the appearance of lesions is also dependent on the stage of infection, 

pathotype, climatic conditions and host genotype (Smedegård-Petersen, 1971). DNA 

markers and mating-type gene sequences revealed the close relationship of net type and 

spot type of P. teres. Therefore, the form names P. teres f. teres and P. teres f. maculata 

are widely accepted by plant pathologists and geneticists. However, several studies have 

shown that the two forms of P. teres are divergent genetic groups and phylogenetically 

independent and could be also regarded as different species (Bakonyi and Justesen, 2007; 

Serenius et al., 2005; Rau et al., 2007; Lehmensiek et al., 2010). In vitro mating of the two 

forms was possible and resulted in fertile progeny with intermediate disease symptoms and 

were demonstrated to be stable (Campbell et al., 2002; Campbell and Crous, 2003). 

However, it remains unclear whether natural hybridisation occurs in nature (Campbell et al., 

2002; Leisova et al., 2005). As no clear morphological or life cycle differences between both 

forms are known, these topics will be explained in the following for both types together. 
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Figure 1: Disease symptoms and conidia of P. teres. A: Lesions of net form of P. teres on barley leaf 
(artificially inoculated). B: Lesions of spot form of P. teres on barley leaf (artificially inoculated). C: Conidia of 
P. teres (measuring 30-174 µm x 15-23 µm) (BASF SE picture pool). D: Conidiophores on barley leaf (BASF 
SE picture pool). 

1.1.1.2 Life cycle 

P. teres is a seed- and stubble-borne pathogen usually produces the ascocarp 

(pseudothecium), which serves as over-seasoning structure, on barley debris left after 

harvest. The increase of reduced or no-tillage agricultural practices has probably 

contributed to a wider presence of net blotch disease and other stubble-borne diseases 

(Shipton et al., 1973; Mathre, 1997; McLean et al., 2010). The disease cycle of P. teres is 

given in Figure 2. Pseudothecia appear as dark dots on the surface of barley straw in the 

late summer or at the beginning of autumn. As P. teres is a heterothallic pathogen, the 

development of the sexual stage requires strains of two opposite mating genotypes (Rau et 

al., 2005). Within mature pseudothecia, asci with generally eight ascospores are formed 

(Webster, 1951; Mathre, 1997). Ascospores are actively released and dispersed by wind, 

and lead to primary infections early in the season (Jordan, 1981). In addition, seed-borne 

mycelium and conidia produced on barley stubble or on an alternative host can also start 

primary infections (Shipton et al., 1973; Jordan and Allen, 1984; Louw et al., 1996; McLean 

et al., 2010). The fungus colonizes the plant tissue and produces large numbers of conidia, 

which serve as secondary inoculum. Production of conidia takes place with several 

propagation cycles throughout the growing season. Spores are dispersed by wind or rain 

fall to infect upper leaf layers of the same plant, neighbouring plants or new barley fields in 

far distance (Jordan, 1981; Mathre, 1997). Successful dispersion, germination and infection 

of conidia are highly dependent on the relative humidity, temperature and leaf wetness, and 
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other environmental factors (Jordan, 1981; van den Berg and Rossnagel, 1990). At the end 

of the growing season, pseudothecia are again produced on senescent tissue. 

 
Figure 2: Life cycle of P. teres. The picture is taken from Liu et al. (2011) and shows the life cycle over the 
season. Primary infection of seedlings is mainly driven by wind dispersed ascospores but also stubble-born 
conidia. Secondary infections (polycyclic) are mainly derived from wind and splash dispersed conidia. 
Pseudothecia containing ascospores develop within the senescent host tissue. 

1.1.1.3 Infection process and toxin production 

Conidia or ascospores germinate on the surface of leaves within a few hours in the 

prescence of water (Shipton et al., 1973; van den Berg und Rossnagel, 1990). P. teres 

directly invades leaf tissue through the cuticle into epidermal cells, between epidermal cells 

or in rare events by entering through stomata (Van Caeseele and Grumbles, 1979; Keon 

and Hargreaves, 1983; Jørgensen et al., 1998). Penetration is driven by enzymatic 

hydrolysis of cuticule and cell wall together with the formation of appressoria. After 

penetration of the epidermal cell, intracellular primary and subsequently secondary vesicles 

are developed in order to disrupt the invaded plant cell (Keon and Hargreaves, 1983). 

Intracellular hyphae are produced within the epidermal cell which finally enter mesophyll 

tissue, where intercellular growth of further hyphae occurs. During the infection process, 

chlorotic zones start to develop around infected cells, where chloroplasts are destroyed 

probably caused by toxins and effectors secreted by the fungus, or a host response by 

programmed cell death (Keon and Hargreaves, 1983). Intracellular vesicles are different 

between net type and spot type of P. teres. Whereas, P. teres f. teres behaves completely 

necrotrophic, with respect to infection and nutrition uptake, the intracellular vesicles of 

P. teres f. maculata are more haustorial-like and initially serve as feeding structures. 

Therefore, P. teres f. teres could referred to as complete necrotrophic, in contrast, 
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P. teres f. maculata could be seen as hemibiotroph (with a very short period of biotrophy) 

(Lightfoot and Able, 2010; Liu et al., 2011). 

Both forms of P. teres produce different toxins in order to induce chlorotic and necrotic death 

of plant tissue. Necrotic lesions can appear 24 h after inoculation and sporulation can occur 

within one week. The chlorotic area surrounding a net blotch lesion was shown to be free 

of fungal hyphal growth (Smedegård-Petersen, 1977; Keon and Hargreaves, 1983). Three 

structurally similar phytotoxic compounds which induce necrosis and/or chlorosis, named 

toxin A, toxin B and toxin C, were purified from isolates of both P. teres types (Smedegård-

Petersen, 1977; Bach et al., 1979). The determination of the chemical structure of the three 

toxins revealed that they are similar or identical (in case of toxin C) to aspergillomarasmine 

A, which is produced by Aspergillus versicolor and is present in indoor environments and 

on food products (Samson et al., 2004). In addition to low molecular weight compounds, 

proteinaceous metabolites extracted from culture filtrates of P. teres were able to induce 

necrotic lesions on barley cultivars (Sarpeleh et al., 2007, 2008). 

1.1.1.4 Population diversity 

Knowledge about the diversity and the genetic structure of a fungal population can be 

helpful in the management of fungal diseases, mainly for a successful development of 

resistant host varieties and the effective and long-lasting use of fungicides. P. teres was 

shown to have a high level of variability in the population compared to many other fungi 

even within a small-scale sampling area (Shipton et al., 1973; Campbell et al., 2002; 

Lehmensiek et al., 2010). Furthermore, populations separated by long distances exhibit a 

high genetic differentiation, which suggests limited gene flow (Jonsson et al., 2000; 

Lehmensiek et al., 2010). Phylogenetic studies revealed that the two mating-type genes of 

P. teres were found in a ratio of 1:1 in the population, suggesting that sexual reproduction 

is a driving force in the development of population structure (Rau et al., 2005).



Introduction 10 

 

 

1.1.2 Septoria tritici blotch in wheat caused by 
Zymoseptoria tritici 

1.1.2.1 Importance 

Septoria tritici blotch (STB) caused by the ascomycetous fungus Zymoseptoria tritici 

(Desm.) Quaedvlieg and Crous is a globally-distributed disease of wheat (Dean et al., 2012; 

Gurr and Fones, 2015; Torriani et al., 2015). Severe epidemics on STB-susceptible wheat 

cultivars can cause yield losses of up to 50% (Eyal et al., 1987). Z. tritici is thought to have 

emerged about 10,000 years ago from an ancestral population during the domestication of 

wheat in the Fertile Crescent (Stukenbrock et al., 2007). In the European Union, Z. tritici 

has become the most devastating foliar disease in wheat cultivation (Eyal et al., 1987; Shaw 

and Royle, 1989; Gurr and Fones, 2015). Z. tritici is favoured by humid climatic conditions 

that prevails in EPPO’s “Maritime Zone” (Bouma, 2005) and includes the European regions 

Northern France, Germany, and the UK. Approximately 70% of annually used fungicides in 

European cereal cultivation are applied to control STB as the main disease (Ponomarenko 

et al., 2011). 

1.1.2.2 Taxonomy 

Z. tritici belongs to the class of Dothideomycetes in the order Capnodiales and the family 

Mycosphaerellaceae. Mycosphaerella graminicola (Fuckel) J. Schroeter in Cohn is the 

sexual stage of Z. tritici on wheat (Sanderson, 1976). Formerly, Z. tritici was referred to as 

Septoria tritici (Roberge in Desmaz.). In 2011, Quaedvlieg et al. introduced a novel genus 

Zymoseptoria to accommodate the Septoria-like species commonly infecting graminicolous 

hosts. All species of Zymoseptoria show a yeast-like growth in culture and up to three 

different types of conidia, namely pycnidial conidia, phragmospores on aerial hyphae and 

yeast-like proliferation via microcyclic conidiation (Quaedvlieg et al., 2011). 

1.1.2.3 Life cycle 

In winter wheat cultivation, Z. tritici survives the summer on residues of the previous wheat 

crop and starts infections in the autumn (Holmes and Colhoun, 1974; Brown et al., 1978; 

Serivastava and Tewari, 2002). Z. tritici is a specialized pathogen of wheat but is considered 

to survive in association with other alternative hosts belonging to the genera Agropyron 

spp., Agrostis spp., Brachypodium spp., Bromus spp., Dactylis spp. Festuca spp., Hordeum 

spp., Glyceria spp., Poa spp., Secale cereale and Triticum spp. (Sprague, 1950; Eyal, 

1999). The exact role of alternative hosts in the epidemiology of the pathogen is not 

understood so far but it is thought that wild grass species can form a reservoir for the 

pathogen (Hoffmann and Schmutterer, 1999). This source of the fungus is probably 

important when wheat residues are absent. Primary infection starts with the germination of 

ascospores and pycnidiospores on the leaf surface (Hilu and Bever, 1957; Eyal et al., 1987; 
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Shipton et al., 1971; Suffert et al., 2011). Ascospores are dispersed by wind over long 

distances and are considered to be the main source of primary inoculum (Shaw and Royle, 

1989; Suffert et al., 2011). Ascospores are produced in fruiting bodies of the sexual stage, 

which are called pseudothecia or ascocarps. Z. tritici has a heterothallic nature, therefore 

two different mating types (MAT1-1 and MAT1-2) are needed for sexual reproduction (Kema 

et al., 1996). As two lesions originating from both mating types need to coalesce, a high 

infection density is thought to lead to a higher number of pseudothecia than in an epidemic 

at lower infection densities (Cowger et al., 2002). Pseudothecia were also observed during 

growing season but appear long time after pycnidia (delay around 30-60 days) on infected 

leaves as a survival strategy in response to exhaustion of nutrition (Hunter et al., 1999; 

Eriksen and Munk, 2003). Pseudothecia that were produced during epidemics on green 

leaves stay viable on senescent leaves and plant debris as an ascospores source. 

However, ascospore release follows a seasonal pattern with a first peak in late autumn and 

a second peak at the end of the growing season (June or July) in the Northern Hemisphere 

in winter wheat cultivation (Hunter et al., 1999; Eriksen and Munk, 2003). Local secondary 

infections during the growing season are primarily driven by asexual conidia or 

pycnidiospores disseminated by rain splash or strong wind. STB is favoured by cool and 

wet weather with a temperature optimum between 16 to 21°C (Holmes and Colhoun, 1974). 

However, infections can also occur during winter at temperatures of at least 5°C. A 

successful infection requires a minimum of 6 h and up to four days of leaf wetness. Once 

the host is infected, the fungus exhibits a long latency phase of around 17 to 28 days before 

characteristic black fruiting bodies appear and a new generation of spores is produced. 

Spores produced in these fruiting bodies are exuded in sticky masses and are distributed 

mainly by rain splashes onto upper leaf layers and heads (De Wolf, 2008). Long, rainless 

periods reduce horizontal and upward vertical spread of spores to upper leaves, which are 

important in grain filling process (Eyal et al., 1987). Symptoms of Z. tritici on wheat leaves 

appear as irregular chlorotic areas, which later turn into necrotic lesions with typical black 

conidia (Eyal et al., 1987). On infected debris, pycnidiospores can be viable for several 

months (Hilu and Bever, 1957). In Figure 3, the dynamics of a STB disease epidemiology 

is shown with special regard to the importance of different inocula sources. The main source 

of primary infection was suggested to derive from wind-dispersed ascospores from far 

distant wheat debris, whereas secondary infection mainly was proposed to start from 

splash-dispersed pycnidiospores from neighouring wheat debris or from senescent basal 

leaves within wheat plants (Suffert et al., 2011). 
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Figure 3: Dynamic of a Septoria tritici blotch epidemic. Figure is extracted from Suffert et al. (2011). Red 
arrows indicate infections caused by wind-dispersed ascospores and blue arrows indicate infections caused by 
splash-dispersed pycnidiospores of Z. tritici. The width of the arrows illustrates the suggested significance of 
each mechanism. 1: ascospores from distant infected wheat debris; 2: ascospores from neighbouring wheat 
debris; 3: ascospores from wheat volunteers; 4: ascospores from grass species (importance unclear); 5: 
pycnidiospores from neighbouring wheat debris; 6: pycnidiospores from wheat volunteers; 7: pycnidiospores 
from senescent basal leaves. 

1.1.2.4 Infection process 

Ascospores and conidia germinate on the leaf surface and penetrate the host plant through 

the stomata (Kema et al., 1996; Duncan and Howard, 2000). Most Mycosphaerella fungi, 

such as Z. tritici, show an extensive ‘latent period’ of symptomless fungal colonization 

(Leonard and Mundt, 1984). During this asymptomatic phase, hyphae of Z. tritici grow in the 

apoplastic space in close contact to plant cell walls (Kema et al.,1996; Marshall et al., 2011; 

Yang et al., 2013). As the fungus does not develop haustoria or other intracellular feeding 

structures, it remains questionable as to how the acquisition of nutrition is managed within 

that time. However, Kema et al. (1996) observed a movement of host chloroplasts towards 

the cell wall during infection which indicates an alteration of host cell physiology by the 

pathogen. In the latency phase, the growth of Z. tritici behaves more like an endophyte than 

a biotroph (Joosten et al., 1990; Solomon and Oliver, 2001, 2002; Thomma et al., 2005; 

Keon et al., 2007; Rudd et al., 2015; Sánchez-Vallet et al., 2015). Although the repertoire 

of plant cell wall degrading enzymes in Z. tritici is small compared to other phytopathogenic 

fungi, the expression profile gives evidence that they are important in plant colonization 

(Brunner et al., 2013). Some of the cell wall degrading enzymes are exclusively expressed 

during asymptomatic phase suggesting that release of nutrient from cell walls is used as 

nutrition but without visible damage to plant cells (Sánchez-Vallet et al., 2015). During 

colonization of their host plants, all endophytic and biotrophic fungi need to prevent host 

immune responses (Liu et al., 2003). Up to date, only two effectors of Z. tritici were shown 

to be essential for infection process (Marshall et al., 2011). Mg1LysM and Mg3LysM have 
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a signal peptide for secretion and a LsyM domain in common, which was demonstrated to 

prevent chitin-triggered immunity (Marshall et al., 2011; de Jonge et al., 2010; Sánchez-

Vallet et al., 2013). After asymptomatic colonization of host tissue, a rapid switch to the 

necrotrophic, pathogenic phase coupled with sudden death of plant cells occurs. However, 

the reasons why Z. tritici first exhibits a long latent period before causing necrosis and the 

signals that trigger the switch to necrosis remain unknown (Sánchez-Vallet et al., 2015). 

The expression of cysteine rich effector proteins has been described in Z. tritici, but 

probably the fungus uses several other mechanisms to induce necrosis (Keon et al., 2007; 

Rudd et al., 2008, 2015; Brunner et al., 2013; Mirzadi Gohari et al., 2015). 

1.1.2.5 Genetics and population diversity 

The genome of Z. tritici was fully sequenced in 2011 and is used as a model for fundamental 

genetic studies of haploid plant-pathogenic fungi since then (Goodwin et al., 2011). 

Goodwin et al. (2011) discovered that the length of the genome is 39.7 Mb, which is 

comparable to other filamentous ascomycetes, but it has the highest number of 

chromosomes reported from ascomycetes so far, in total 21 (Goodwin et al., 2011). Another 

feature of the Z. tritici genome is the low number of genes encoding for cell wall degrading 

enzymes, which is more similar to endophytes than to other plant pathogenic fungi 

(Goodwin et al., 2011). Furthermore, genome studies revealed a high size range of 

chromosomes and that eight chromosomes could get lost during meiosis without visible 

effects on the fungus (Wittenberg et al., 2009; Goodwin et al., 2011). These so-called 

‘dispensable chromosomes’ are proposed to originate from an ancient horizontal transfer 

from an unknown donor organism. The role of dispensable chromosomes remains elusive 

but it is thought that they might contribute to rapid adaptation to changing environmental 

conditions (Wittenberg et al., 2009). Studies on the genetic structure of populations 

indirectly reveals that sexual reproduction is very common in Z. tritici (Chen and McDonald, 

1996; Linde et al., 2002). Moreover, it was reported that the fungus shows a very high 

effective population size which allows gene flow on a world-wide scale (Zhan et al., 2003). 

Zhan et al. (2003) further demonstrated that around 90% of the global genetic variation 

could be found within a single wheat field. This diversity of the fungus is a consequence of 

the sexual productive system leading to the formation of ascospores, which initiate 

epidemics every season (Chen and McDonald, 1996; Linde et al., 2002; Waalwijk et al., 

2002). 

1.2 Disease management in cereals 

Diseases are a major threat in cereal production systems influencing both yield and grain 

quality (Oerke, 2006). Therefore, many control measures have been adopted over the last 

years in order to minimize disease severity. Integrated disease control relies on cultural 
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practices, breeding of pathogen resistant host varieties and the use of chemical control 

agents. 

1.2.1 Cultural measures 

Cultural practices, which include sanitation, tillage, crop rotation and adaption of the sowing 

date, are known to affect disease pressure in cereal production. The removal of infected 

crop residues from the field is one method to reduce inoculum and distribution of pathogens 

(Conway, 1996). Incorporation of residues into the soil and crop rotation are two further 

cultural methods in cereals to reduce pathogen inoculum. Minimum and no tillage have 

been shown to increase disease pressure of fungal pathogens especially of tan spot and 

Fusarium head blight (Jørgensen and Olsen, 2007). Inoculum of P. teres produced on straw 

was still able to initiate infection after nine months in the field (Piening, 1968). However, 

disease severity of STB and P. teres are less affected by crop rotation and reduced tillage 

compared to other pathogens. This is possibly due to the intensity of cereal production areas 

with ascospores being prevalent in all growing regions and are regarded as the main source 

of early season inoculum (Gladders et al., 2001; Brown and Hovmøller, 2002; Eriksen and 

Munk, 2003). Sowing date also shows a significant effect on disease development. Early 

autumn sowing of winter wheat can favour many diseases, such as eyespot and STB 

(Bødker et al., 1990; Bateman et al., 2007; Gladders et al., 2007; Jørgensen et al., 2014). 

On the other hand, late sowing can increase the risk of powdery mildew and yellow rust 

infections in spring (Jørgensen et al., 2014). Futhermore, a high input of nitrogen fertilizer 

can enhance the development of some foliar diseases, such as STB (Simon et al., 2003), 

yellow rust (Neumann et al., 2004) and powdery mildew (Olesen et al., 2003). Additionally, 

low or high crop densities can have an impact on the risk of disease epidemics. Many 

pathogens (e.g. powdery mildew) favour high seedling densities, whereas the splash-borne 

diseases caused by Z. tritici and P. teres were shown to have a higher risk at low seedling 

densities, where they profiting from crops more open to rain (Tompkins et al., 1992; Colbach 

and Saur, 1998). A major problem of cultural methods used to prevent diseases is the fact 

that a method reducing the risk of one disease, can enhance the risk of other diseases to 

occur (Jørgensen et al., 2014). 

1.2.2 Resistance breeding 

The growth of disease resistant cultivars represents a useful tool to combat plant pathogens 

(Loyce et al., 2008; Jørgensen et al., 2014). Plants respond to pathogen infections using 

transmembrane pattern recognition receptors (PRRs) to detect slowly evolving pathogen-

associated molecular patterns (PAMPs) and polymorphic nucleotide-binding (NB) and 

leucine rich repeats (LRR) containing proteins to recognize pathogen specific effectors 

(Dangl and Jones, 2001). NB-LRR-mediated disease resistance was shown to be effective 
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against obligate biotrophic and hemibiotrophic pathogens, but not against necrotrophic 

pathogens (Glazebrook, 2005). After successful recognition of an infection, disease 

resistance is usually mediated by hypersensitive cell death response (HR) of the host plant 

(Jones and Dangl, 2006). 

Over the last 25 years, breeding of resistant wheat cultivars has provided cultivars with 

disease resistance against yellow rust, brown rust, eyespot, powdery mildew and to some 

extent to STB (Loyce et al., 2008). Multi-resistant cultivars cover only a small proportion of 

cultivated wheat since they still show a lower yield in the absence of pathogens compared 

to cultivars with low disease resistance (Brown, 2002). Moreover, additional yield responses 

to fungicide treatment were often found even in resistant cultivars, which indicates that 

disease resistance does not cover all diseases and that fungicides may contribute to 

positive physiological effects on crops (Bartlett et al., 2002). However, field trials from 

Denmark, France, Sweden and the UK have indicated that resistant cultivars can reduce 

potential yield losses and the expected fungicide costs (Jørgensen et al., 2008). Key 

effectors of Z. tritici and P. teres are thought to be mainly proteinaceous (Sarpeleh et al., 

2007, 2008; Rudd et al., 2010). In P. teres, single incompletely dominant resistance genes 

were identified in barley breeding lines (Schaller, 1955; Gray, 1966). As host resistance 

against P. teres obtained by single genes was overcome by pathotypes/biotypes of the 

pathogen, a durable approach was first accomplished using multiple resistance genes 

(Douiyssi et al., 1998). 

1.2.3 Chemical control using fungicides 

Since other disease control practices are often unsufficient to completely suppress plant 

diseases and positive yield response after chemical treatments can be observed, the use 

of chemical control agents is widely practiced. Chemical applications to control plant 

diseases target fungal diseases (fungicides), some bacterial diseases and on rare 

occasions phytoplasms (antibiotics), and by indirect control of vectors also viruses 

(insecticides) (Baldwin and Rathmell, 1988). Cereals in European cultivation systems are 

one of the most widely treated group of crops worldwide (Kuck and Gisi, 2006). 

Fungicides are agents to protect plants against invasion by fungi and have been used for 

more than 200 years. At the beginning, fungicides were mainly used to protect cereal seeds 

and grapevines. After the Second World War, the number of crops treated with chemicals, 

the number of chemicals available, the area and frequency of applications, and the 

effectiveness of treatments have shown a huge increase (Brent and Hollomon, 2007). The 

use of fungicides has contributed to improve quality and quantity of agricultural products 

(Oerke et al., 1994). In cereals, the lack of disease resistant varieties against many 

pathogens has made the use of fungicides to be one of the most important tools to manage 

fungal diseases (Verreet et al., 2000). 
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Chalk, wood ash and sulphur are naturally occurring substances that have been used as 

fungicides in the early years but are toxic to many forms of life (Campbell, 1989). Since the 

18th century, copper and lime sulphur became commonly used in cultivation of vegetables, 

fruits and ornamental plants and still are broadly used to manage crop diseases, especially 

on organic farms (Marzani, 2011). Later, further non-selective compounds, such as 

mercuric chlorides, and products of industrial processes, such as nitrophenols (Fent and 

Hunn, 1996), were used as fungicides; all of them showing toxicity to both users and non-

target organisms. The modern era of synthetic fungicides began in the first half of the 20th 

century with inventions such as organomercury seed treatments, which were banned in the 

1970s and 1980s due to their unfavourable toxicological profile (Oliver and Hewitt, 2014). 

Thereupon, efforts were initiated to develop new chemicals, which showed a more 

favourable toxicological and ecotoxicological profile, and a higher efficacy. In the late 1960s 

and 1970s, compounds such as benzimidazoles, 2-amino-pyrimidines, carboxanilides, 

phosphorothiolates, morpholines, dicarboximides, and sterol demethylation inhibitors 

(DMIs) were introduced (Brent and Hollomon, 2007). Particularly DMIs were subsequently 

improved over the next years leading to novel fungicides with a more potent action against 

plant pathogens (Anonymous, 2002). Over the last 20 years, numerous novel compounds 

belonging to chemical groups of phenylpyroles, anilinopyrimidines, benzamides, quinone 

outside inhibitors (QoIs, also called strobilurins) and succinate dehydrogenase inhibitors 

(SDHIs, earlier called carboxamides) were launched to the market. 

Modern synthetic fungicides are mainly developed and sold by large, independent, multi-

national companies. The development of a novel fungicide and the maintenance of existing 

products are very cost intensive and costs are continuously rising due to increased 

regulatory pressures. In contrast, progress in plant breeding is mainly driven by state 

agencies and universities (Oliver and Hewitt, 2014). Currently, the major companies are 

leading pesticide market worldwide: Syngenta (fungicide sales 2015: US$ 3,916 million, 

currently in merging process with ChemChina), Bayer CropScience (fungicide sales 2015: 

US$ 3,803 million, currently in merging process with Monsanto), BASF (fungicide sales 

2015: US$ 2,917 million), DuPont and Dow Chemicals (fungicide sales 2015: US$ 418 and 

750 million, respectively, both in merging process). Before developing a novel fungicide, the 

company needs to be convinced that the product will reach enough sales to justify high 

expenses for research and development. 

Fungicides can be classified in different ways according to crop protection performance, 

their mode of action and their chemical structures. Currently, there are over 200 molecules 

that are marketed as fungicides in agriculture and which belong to several chemical classes. 

Most fungicides are complex organic molecules containing several functional groups often 

similar in different compounds within one mode of action (MOA) group (Oliver and Hewitt, 

2014). Important differentiations are made between single- and multi-site modes of action 

and between protectant and eradicant (curative) effectiveness of molecules. 
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Protectant fungicides are applied before infection to prevent initial penetration of the 

pathogen into the host plant. Immobile protectant fungicides, also called contact fungicides, 

remain on the leaf surface forming a chemical blockade and are not distributed within the 

host plant. Non-systemic fungicides are often multi-site inhibitors, disrupting several 

biochemical processes by their ability to bind chemical groups, for example thiol moieties, 

which are commonly found in many enzymes (Oliver and Hewitt, 2014). Examples of 

protectant (contact) fungicides are inorganic copper salt (Bordeaux mixture), and sulphur, 

as well as dithiocarbamates (e.g. thiram, metiram and mancozeb) and pthalimides (e.g. 

captan, folpet) and some others (FRAC, 2016). Protectant fungicides have several 

restrictions in practical use as they need to be applied in advance of pathogen attack, they 

are impacted by degradation and erosion due to light and rain, and they need to remain in 

sufficient amounts on the leaf surface to stay active. Thus, an early warning of an infection 

risk is necessary to find the optimal timing of protective fungicides (Lucas, 1998). Factors 

such as rain duration and intensity, wind and temperature are related to the dissemination 

of ascospores in Z. tritici and are used in forecasting models of disease outbreaks (Royle, 

1994; Parker et al., 1999; Eyal, 1999). 

In contrast to that, systemic fungicides enter the plant and are translocated in the plant 

exhibiting apoplastic mobility and/or symplastic mobility. Systemic compounds can show 

protectant and curative activity and, therefore, can be used to kill already established 

infections, at least to some extent (Brent and Hollomon, 2007; Manners, 1993). Systemic 

fungicides act as single-site inhibitors, which means that they have a defined biochemical 

target-site in a pathogen (Taylor, 2001). Systemic fungicides are often specific in their 

toxicity, showing low toxicity to most non-target organisms (Narayanasamy, 2002). 

Compared with non-systemics, the popularity of systemic fungicides is increasing, 

particularly in cereals (Hewitt, 1998). 

Intense research is performed to classify fungicides according to their biological and 

biochemical MOA. An up-to-date classification of fungicides can be found on the website of 

FRAC (FRAC, 2016). In total, agrochemical fungicides belong to 48 described MOAs and 

further unclear MOAs, whereof the most important classes are restricted to a limited number 

of MOAs. 

Three main site-specific systemic classes of fungicides are currently in use to control cereal 

diseases. The C14-demethylation inhibitors (DMIs), which inhibit a step in the sterol 

biosynthesis of membranes, the quinone outside inhibitors (QoIs), which block the electron 

transfer in complex III of mitochondrial respiration, and the succinate dehydrogenase 

inhibitors (SDHIs), which lead to an inhibition of complex II and therefore are also involved 

in mitochondrial respiration. 

The DMI class is a subgroup of sterol biosynthesis inhibitors (SBIs), which constitute the 

largest group of fungicides with respect to the number of compounds and current sales 

http://www.frac.info/
http://www.frac.info/
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(FRAC, 2016). DMIs interfere with the synthesis of ergosterol, which is the principal sterol 

in membranes of all fungi, except the oomycetes. Ergosterol acts as a functional component 

in the maintenance of membrane integrity and therefore, a reduction of ergosterol leads to 

membrane disruption and electrolyte leakage (Joseph-Horne et al., 1996). DMIs interact 

with sterol 14 α-demethylase (P450 monooxygenase) by inhibiting the removal of C14 

methyl group from eburicol and, thereby, causing subsequent accumulation of precursor 

sterols and reduced production of ergosterol (Baldwin, 1983, 1990; Gadher et al., 1983; 

Baloch et al., 1984; Kelly et al., 1995). P450 monooxygenase is encoded by the Cyp51 

gene. DMIs presumably block the enzyme at its active site, thus hampering the access of 

the natural substrate (Kelly and Kelly, 2013). DMIs can be split into five chemical classes, 

whereof triazoles are commercially the most important and include epoxiconazole, 

prothioconazole, tebuconazole and propiconazole, but also a few pyrimidines and 

imidazoles (e.g. prochloraz) have reached market relevance (Oliver and Hewitt, 2014). 

The first fungicide of the QoI class was first launched to the markets only two decades ago. 

Today, many different QoI fungicides are broadly used in crop protection with annual market 

sales approaching US$1 billion (Oliver and Hewitt, 2014). The first strobilurins (strobilurin A 

and B) were discovered in a wood-rotting basidiomycetous fungus, Strobilurus tenacellus, 

in 1977 (Anke et al., 1977). Studies confirmed that both strobilurin A and B were powerful 

antibiotics against several fungal species by inhibition of fungal energy production at the 

quinol oxidation in cytochrome bc1 complex (complex III) (Anke et al., 1979; Sauter et al., 

1999). These natural products attracted agrochemical companies to produce synthetic 

compounds which showed similar or even more effective molecules. QoIs have several 

beneficial properties as they are active against a range of fungi including oomycetes, 

basidiomycetes and ascomycetes, they are non-toxic to non-target organisms and they are 

degraded rapidly in the environment (Oliver and Hewitt, 2014). Important QoI fungicides are 

for example azoxystrobin and pyraclostrobin. 

The SDHI group of fungicides has a long history, however, SDHIs reached market 

relevance only several years ago as a consequence of the development of molecules with 

a broader spectrum of activity against many basidiomycete and ascomycete fungi. As 

SDHIs are investigated in the present study, a short summary of their history and the 

fungicidal activity are given in section 1.2.4. 

1.2.4 Succinate dehydrogenase inhibitors (SDHIs) 

In 1966, two oxathiin carboxamides (carboxin and oxycarboxin) were the first SDHIs 

described to show fungicidal activity (von Schmeling and Kulka, 1966). Both were launched 

to the market by Uniroyal in the years 1969 and 1975. They were mainly used as seed 

treatments to control a limited number of species within the basidiomycetous fungi, such as 

Rhizoctonia spp., Ustilago spp. and Tilletia caries in cereals, maize, cotton, oilseed rape 
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and legumes (reviewed Oliver and Hewitt, 2014). In 1974, two structural analogues, 

benodanil (BASF) and fenfuram (Shell), were introduced to the market, followed by a range 

of SDHIs such as mepronil and flutolanil mainly targeting rice diseases (Glättli et al., 2011). 

All these compounds have a limited spectrum in common, which is restricted to 

basidiomycetes, and a poor mobility in plants and are therefore referred to the first 

generation of SDHIs. Recently, new SDHI fungicides with a broader spectrum of activity, 

including basidiomycetous, ascomycetous and deuteromycetous plant pathogens on 

various crops, were developed. Boscalid (BASF) was the first of these SDHI fungicides with 

a broader spectrum and was launched in 2003 (Stammler et al., 2007; Stammler, 2008). In 

the last years, several other SDHIs, such as bixafen (Bayer CS), fluopyram (Bayer CS), 

fluxapyroxad (BASF SE), isopyrazam and benzovindiflupyr (Syngenta), and penthiopyrad 

(Mitsui) followed (Glättli et al., 2011; Stammler et al., 2015) and more are expected in the 

future e.g. pydiflumetofen (Syngenta). Today, SDHIs rank with QoI and DMIs in their 

importance in fungal disease control and their market-size (usage) has rapidly increased in 

many crops. 

The target of SDHIs is the succinate dehydrogenase enzyme (SDH), also referred to as 

complex II or succinate-ubiquinone oxidoreductase, which is an essential enzyme of the 

tricarboxylic cycle and the mitochondrial electron transfer chain (Keon et al., 1991; 

Hägerhäll, 1997; Matsson and Hederstedt, 2001). The SDH enzyme is a mitochondrial 

heterotetramer composed of four nuclear-encoded subunits and is located in the inner 

mitochondrial membrane (Cecchini, 2003): SDH-A (also called Fp) is a hydrophilic 

flavoprotein, SDH-B (also called Ip) is an iron sulphur protein which contains three iron 

sulphur centres, and SDH-C (CybL) and SDH-D (CybS) are membrane anchoring subunits, 

which show a complexed prosthetic haem b group between both antiparallel helices (Sun 

et al., 2005; Ōmura and Shiomi, 2007; Ackrell, 2008). The SDH complex couples the 

oxidation of succinate to fumarate in the mitochondrial matrix with the reduction of 

ubiquinone (Q) to ubiquinol in the membrane during aerobic respiration (Horsefield et al., 

2004, 2006). A schematic model of the SDH enzyme is given in Figure 4. Several studies 

have demonstrated that the amino acid residues involved in Q-binding are positioned near 

[3Fe-4S] clusters and the haem b group and are highly conserved residues between 

bacteria and eukaryotes (Yankovskaya et al., 2003; Sun et al., 2005; Horsefield et al., 

2006). 
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Figure 4: Schematic model of succinate dehydrogenase complex. Picture is taken from Ōmura and Shiomi 
(2007). The SDH complex is composed of subunits SDH-A (flavoprotein, Fp), SDH-B (protein containing iron-
sulphur clusters, Ip), and SDH-C (CybL) and SDH-D (CypS) as membrane anchors with a complexed haem b 
group. The enzyme accomplishes succinate oxidation (SDH activity) with ubiquinone reduction (SQR activity). 

SDHI fungicides bind at the Q-binding site (Q-site) of SDH complex and interrupt the 

reduction of ubiquinone to ubiquinol by competitive inhibition, finally impacting on fungal 

respiration (Keon et al., 1991; Matsson and Hederstedt, 2001; Horsefield et al., 2006; 

Huang et al., 2006). Modern SDHIs are thought to bind deeper into the Q-site than 

ubiquinone itself but show an overlapping binding to the natural substrate (Glättli et al., 

2009, 2011; Fraaije et al., 2012; Sierotzki and Scalliet, 2013). 

The structure of four SDHI fungicides and their structural alignments are shown in Figure 5. 

The overlay of SDHI molecules shows that they have several molecular features in common 

representing the fungicidal activity of these molecules. A first common feature is the central 

amide moiety, which forms hydrogen-bond interactions to amino acid residues of the Q-site. 

A second feature in common is the aromatic ring in the aniline part, which stabilizes the 

molecule in the Q-site by hydrophobic contacts or π-π-interactions. Moreover, most modern 

SDHIs additionally carry a nitrogen-containing heterocycle (pyrimidine or pyrazole), which 

further increases the binding affinity via hydrogen bounds (aromatic nitrogen) and π-π-

interactions. The three-dimensional alignment demonstrates that the part of SDHI 

molecules which reaches deeper into the Q-site are structurally conserved, whereas the 

outer part of molecules (right hand side in Figure 5 B) appears to be more variable. The 

alignment of molecules further indicates that SDHIs all share a similar binding mode in the 

Q-site (Glättli et al., 2009, 2011; Stammler et al., 2015). 
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Figure 5: Structural properties of SDHI fungicides. Picture taken from Glättli et al. (2011) (modified). 
A: Chemical structure of four SDHIs with their common structural features to interact with amino acid residues 
of ubiquinone-binding site. B: Structural alignment of several SDHI molecules indicating interaction sites 
suggests similar binding mode at complex II. 

1.2.5 Differences in fungicide use in European countries  

The level of chemical input for disease control varies not only among countries but also 

within countries. Today, fungicides are used as a common practice to prevent severe 

disease epidemics. In European cereal production, the intensity of fungicide treatments 

varies from 0-4 times per season and has an average of two treatments (Jørgensen et al., 

2014). Based on sold amounts of chemicals and national surveys from the years 2006 and 

2007 in Germany, France, the United Kingdom and Denmark, it was observed that the 

usage in Denmark was much lower than in other countries. In France, regional differences 

could be found which showed higher use intensities in Northern France than in southern 

regions. The highest total use of fungicides was applied in the UK. These differences can 

be explained by different pest and disease pressures, different climatic conditions, different 

operating policy action plans to reduce pesticide usage, different organisation of advice to 

farmers, and different prices of pesticides (Jørgensen et al., 2014). 

Across Europe in winter wheat and winter barley, two applications of fungicides (excluding 

seed treatments) are generally applied per season although this can be higher in intensive 

cropping areas. In winter wheat, the first application is applied during stem extension, at 

growth stage 30/31, to target stem base and early foliar pathogens, such as eyespot, 

B. graminis f. sp. tritici and Z. tritici. The second application is applied to protect crops 

against foliar diseases during flag leaf emergence, at growth stage 37, such as B. graminis 

f. sp. tritici, Puccinia spp. and Z. tritici (reviewed Oliver and Hewitt, 2014). In winter barley, 

the major pathogens are B. graminis f. sp. hordei, Rhynchosporium secalis, P. teres and 
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Puccinia hordei. In contrast to that, in spring barley, usually only a single fungicide 

application is sufficient to control pathogens such as B. graminis f. sp. hordei and R. secalis 

(reviewed Oliver and Hewitt, 2014). 

1.3 Evolution of fungicide resistance 

Huge achievements have been made in modern agriculture. However, certain cultural 

practices, such as monoculture, using susceptible cultivars and nitrogenous fertilizer that 

could enhance disease susceptibility, have contributed to increase the destructive potential 

of plant diseases. Therefore, the control of plant diseases now is often dependent on the 

use of fungicides (Schwinn, 1992). The spread of new damaging diseases in a changing 

climatic environment, the evolution of pathogens that break resistance of host cultivars and 

the emergence of pathogens showing a loss of sensitivity to fungicides are the major 

challenges of modern plant protection (Hollomon and Brent, 2009). Charles Darwin 

declared all organisms to be survivors of natural selection competing with others in their 

specific environment (Darwin, 1859). Fungicides are a part of the environment of 

phytopathogenic fungi in agricultural ecosystems and show a direct effect on survival of 

fungi. Therefore, it is obvious that pathogens evolve mechanisms to resist those lethal 

effects. Fungal genomes are very plastic and show many thousands of polymorphisms 

(Cuomo et al., 2007) and produce a high number of progeny, under favourable conditions, 

in many propagation cycles each season (FRAC, 2016). 

Fungicide resistance is defined as a heritable and stable genetic modification of a fungus 

to overcome the effects of a fungicide (Delp und Dekker, 1985; Steffens et al., 1996). There 

are four different resistance mechanisms that are described in fungicide resistant fungi 

(reviewed FRAC, 2016): 

1) Alteration of the target-site of fungicides 

2) Exclusion of fungicides from the cell 

3) Overexpression of the target enzyme of fungicides 

4) Detoxification of the fungicide 

 

The most important mechanism in phytopathogenic fungi relies on point mutations in genes 

encoding for the target enzymes of fungicides (Brent and Hollomon, 2007). These mutations 

cause alteration of the target proteins of fungicides, which leads to a reduced or inhibited 

binding efficiency of fungicides. The effect on the fungicide sensitivity caused by different 

target-site mutations can lead to a range of diverse efficacy losses (depending on the 

mutation). Single-site inhibiting fungicides mainly target one specific enzyme in a 

biochemical process. A point mutation causing one amino acid exchange can rapidly and 

effectively block fungicide interaction within such target-sites (Brent and Hollomon, 2007). 

http://www.frac.info/
http://www.frac.info/
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In contrast, multi-site inhibitors interfere with several biochemical steps. Here, the evolution 

of resistance is more slowly because the fungus requires a combination of many mutations 

to overcome effects of fungicides (Brent and Hollomon, 2007). The emergence of resistance 

is described in the literature as ‘qualitative’ resistance (also called ‘single-step’ or 

‘disruptive’) and ‘quantitative’ resistance (also called ‘multi-step’, ‘continuous’, and 

‘directional’) (Brent and Hollomon, 2007). The qualitative resistance is often associated with 

a failure of disease control and is characterised by a sudden loss of efficacy of fungicides 

with a clearly separated resistant subpopulation. This form of resistance is often derived 

from target-site mutations in specific genes (monogenic) (Brent and Hollomon, 2007; De 

Miccolis Angelini et al., 2015). G143A, which causes high resistance levels to QoI fungicide, 

is a well-studied example of a ‘single-step’ evolution of fungicide resistance (Heaney et al., 

2000; Gisi et al., 2002; Fraaije et al., 2002, 2005; Lucas and Fraaije, 2008; Torriani et al., 

2009; Lesniak et al., 2011). In contrast, the quantitative resistance is characterised by a 

slow, continuous ‘shift’ of the sensitive population towards a population with a reduced 

fungicide sensitivity. This form of resistance is often caused by several mutations in different 

genes (polygenic), whereof individual mutations can have minor effects leading to additive 

effects when combined (Brent and Hollomon, 2007; De Miccolis Angelini et al., 2015). The 

slow adaptation of the Z. tritici population against DMI fungicides is an example of a 

continuous resistance evolution, however, it is mainly expressed by several mutations within 

Cyp51 gene or overexpression of the same gene (Cools and Fraaije, 2008, 2013; Cools et 

al., 2013). 

Spontaneous mutations in genomes continually occur in all organisms. It is thought that 

mutations which can cause fungicide resistance randomly occur in the population of 

pathogens, however, under non-selective conditions they do not provide advantage and 

can disappear again (Brent and Hollomon, 2007). Under fungicide treatment, such resistant 

individuals have a higher competitiveness compared to the sensitive population and 

propagation within the population occurs. Effective resistance mechanisms that are 

observed in resistant individuals do not necessarily mean that practical disease control 

failure will evolve (Brent and Hollomon, 2007). Target-site alterations were often connected 

to a decreased enzyme efficiency (Fisher et al., 2004; Scalliet et al., 2012). This could lead 

to a reduced fitness of isolates in untreated conditions, consequently hampering the further 

increase of resistance alleles in the population (Brent and Hollomon, 2007). A common 

feature of fungicide resistance (due to alterations in the target protein) is that products, of 

the same MOA group, are generally considered to be cross-resistant, but not to other 

fungicide groups (FRAC, 2016). 

Active exclusion of fungicides from the fungal cell can contribute to resistance and was 

reported in some phytopathogenic species such as B. cinerea (Kretschmer et al., 2009; 

Kretschmer, 2012) and Z. tritici (Leroux and Walker, 2011; Omrane et al., 2015). Multi-drug-

resistance (MDR, as it is called) is known to have relevance in pathogens and cells, 

http://www.frac.info/
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including bacteria but also human cancer cells (Perez-Tomas, 2006; Morschhäuser, 2010; 

Bassetti et al., 2013). Thereby, overexpression of efflux pumps of the ATP-binding cassette 

(ABC) transporter or major facilitator superfamilies (MFS) are involved. The overexpression 

of such efflux transporters can confer resistance to a broad range of structurally unrelated 

toxic molecules, including fungicides. However, resistance levels in the investigated fungal 

pathogens were low (~20-fold tolerance) (Kretschmer, 2012). Therefore, MDR has minor 

relevance compared to target-site resistance in practice but could further contribute to 

resistance ‘strength’ in addition to target-site resistance. Research on MDR is still at the 

beginning in plant pathogenic fungi and was described in single field isolates in only few 

species (Chapeland et al., 1999; Kretschmer et al., 2009; Leroux and Walker, 2011; 

Omrane et al., 2015). 

A third resistance mechanism is the overexpression of target genes. Thereby target-site 

enzymes of fungicides are expressed in a higher number, which increases the likelihood of 

fungal natural substrates to interact with enzymes that are not blocked by fungicides (FRAC, 

2016). On this account the fungicide efficacy can be reduced. An example is the 

overexpression of CYP51 in Z. tritici, which resulted in a 10-40-fold transcript level leading 

to a 7-16-fold reduction of DMI sensitivity in vitro (Cools and Fraaije, 2013). 

The last reported resistance mechanism is based on the detoxification of fungicides by an 

increased metabolism or enzymatic detoxification by hydrolases, glutathione S-

transferases or cytochrome P450 monooxygenases. Examples for metabolic adaptations 

involved in fungicide resistance are fenhexamid resistance in B. cinerea (Leroux et al., 

2002) and benzimidazole resistance in F. graminearum (Sevastos et al., 2016). 

Detoxification of fungicides in fungal cells is not well understood so far, but seems to have 

minor relevance compared to other resistance mechanisms. In contrast, herbicide 

resistance in weeds is often archived by an increased or altered metabolism (Bryant, 2004; 

HRAC, 2016). 

The risk for the development of fungicide resistance is dependent on different chemical 

features of the fungicides, the pathogen and the agricultural system (Kuck and Russell, 

2006; Brent and Hollomon, 2007). A model to calculate the risk for fungicide resistance 

development was recently designed by Grimmer et al. (2015). 61 European cases of 

resistance against single-site-acting fungicides were compared with respect to the number 

of years from product introduction to the first detection of resistance (FDR time). Different 

traits that significantly affect the FDR time were identified. These observations showed that 

the number of latency phases of a pathogen per year, the number of host varieties, effects 

of the agricultural system (e.g. glasshouse or field) as well as the molecular complexity of 

fungicides are key factors affecting the time of resistance development (Grimmer et al., 

2015). In research, the term resistance is often used when a fungus tolerates higher 

concentrations of a given fungicide, independent of the level of resistance. However, if 

http://www.frac.info/
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resistance levels are low, or the level of a resistance allele stays low in a population, 

resistance does not necessarily lead to a control failure of fungicides in the field. To separate 

these two events, the term ‘field resistance’ can be useful to describe a scenario, in which 

the pathogen population has evolved high frequencies of resistance that cause a control 

failure of fungicides in the field (Brent and Hollomon, 2007). As a consequence of a wider 

use of systemic single-site acting fungicides, the resistance development started to raise as 

a practical problem in agriculture. As a result, strategies were discussed to solve this 

phenomenon (Schwinn, 1982). In 1981, the Fungicide Resistance Action Committee 

(FRAC) was founded to address these problems. Since then, FRAC has a leading role in 

determining fungicide resistance management strategies (Highwood, 1990; Marzani, 2011). 

Guidelines are reviewed in annual FRAC meetings and can be followed on the FRAC 

webpage (FRAC, 2016). Current recommendations for resistance management in cereals 

include tatics such as a limited number of applications, the alternation and use of mixtures 

of different MOA groups, and an optimal timing, in a rather preventative than curative 

application, of fungicide sprays (van den Bosch et al., 2011, 2014; van den Berg et al., 

2013). 

1.3.1 Resistance to succinate dehydrogenase inhibitors 

First cases of resistance towards SDHIs were described 5-7 years after the market launch 

of carboxin and other first-generation SDHIs in diseases such as corn smut and 

chrysanthemum rust (Ben-Yephet et al.,1975; Georgopoulos et al., 1975; Abiko et al., 1977; 

Leroux and Berthier, 1988). Several studies revealed that resistance is based on single-site 

mutations in genes encoding the target enzyme of SDHIs (Keon et al., 1991; Skinner et al., 

1998; Matsson et al., 1998; Matsson and Hederstedt, 2001; Ito et al., 2004). After the 

introduction of broad-spectrum SDHIs, SDHI resistance was observed in field isolates of 

some other plant pathogens, such as B. cinerea on various crops (Stammler et al., 2007; 

Veloukas et al., 2011; Yin et al., 2011), Corynespora cassiicola (Miyamoto et al., 2008, 

2010), Sclerotinia sclerotiorum (Glättli et al., 2009) and Alternaria alternata (Avenot and 

Michailides, 2007; Avenot et al., 2008, 2009). Genetic analysis of the Sdh genes in these 

isolates revealed that mutations which lead to SDHI resistance were found in genes for 

subunits SDH-B, SDH-C and SDH-D of SDH enzyme. SDH enzymes in different fungal 

species show different lengths of amino acid sequences. Due to that, homologous 

(orthologous) amino acids in different species have different numbers within the protein. A 

prominent position of an amino acid alteration is positioned in the highly conserved subunit 

SDH-B. Histidine at orthologous positions 277, 272 and 267 in A. alternata (Avenot and 

Michailides, 2007), B. cinerea (Stammler et al., 2007; Veloukas et al., 2011) and in 

laboratory mutants of Z. tritici (Skinner et al., 1998; Glättli et al., 2011; Fraaije et al., 2012; 

Scalliet et al., 2012) was substituted in SDHI resistant isolates. Those positions correspond 

to histidines at position 257 in Ustilago maydis (Keon et al., 1991) and 229 in Xanthomonas 
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campestris pv. citri (Li et al., 2006) at which amino acid substitutions influencing SDHIs 

sensitivity, have been detected in former years. In most cases, substituted amino acids were 

directly positioned in direct proximity to the Q-site. In some plant pathogens, such as 

A. alternata, substituted amino acids distant to the Q-site have been detected, e.g. 

C-H133R and D-H134R (Avenot et al., 2009). Histidines at these positions are highly 

conserved amongst species and confer haem b stabilization between SDH-C and SDH-D 

subunit (Cecchini, 2003). An up-to-date overview of SDHI resistance in plant pathogens can 

be found on the FRAC-webpage (FRAC, 2016) and is reviewed in Stammler et al. (2015). 

1.3.2 Fungicide resistance in P. teres and Z. tritici 

P. teres is classified as a ‘medium-risk’ pathogen for the evolvement of fungicide resistance 

(FRAC, 2016). In recent years, F129L was detected in the European population of P. teres, 

which was shown to mediate ‘moderate’ levels of QoI resistance (Semar et al., 2007; 

Sierotzki et al., 2007). In some phytopathogenic species, G143A, which causes high levels 

of QoI resistance, has not yet been detected, although QoIs have been used significantly 

against these pathogens in the field. It was shown that different Puccinia species (Grasso 

et al., 2006a), Alternaria solani (FRAC, 2016), different Monilinia species (Miessner and 

Stammler, 2010; Luo et al., 2010), P. teres (Sierotzki et al., 2007) and others (Stammler, 

2012; Stammler et al., 2012) had an intron after the triplet that encodes glycine at position 

143. It was proposed that G143A could be lethal in these species, because the substitution 

could have strong effects on the splicing process leading to a deficient CYTB (Grasso et 

al., 2006b). As a second mechanism of QoI resistance, G137R was reported in P. teres and 

A. solani (Sierotzki et al., 2007; FRAC, 2016). However, F129L and G137R were generally 

shown to cause lower resistance factors than G143A, and show limited impact on the field 

efficacy of QoIs even when higher frequencies are observed in the population (Semar et 

al., 2007). Frequencies of F129L in European populations of P. teres were found to be 

highest in the UK, however, never reaching 100% in the population. Lower frequencies of 

F129L were observed in countries such as Germany and France (FRAC, 2016). 

Most fungicide treatments in Europe target STB as the main foliar disease of wheat. Today, 

Z. tritici is mainly controlled by fungicides of classes SDHIs, DMIs and multi-site fungicides, 

such as chlorothalonil (Oliver and Hewitt, 2014). Z. tritici has a high adaptive potential to 

environmental changes (Stukenbrock et al., 2011). Formerly, Z. tritici was mainly controlled 

by QoI fungicides, which are classified as high risk fungicides for the development of 

resistance. The efficacy of QoIs was drastically reduced due to resistance development in 

Z. tritici populations in North-Western Europe and other regions of the world (FRAC, 2016). 

In Z. tritici, QoI resistance is mainly mediated by the amino acid substitution G143A in CYTB 

(Fraaije et al., 2003, 2005; Torriani et al., 2009). In Z. tritici, F129L in CYTB plays a minor 

role but was detected in a few isolates from Ireland (Lucas and Fraaije, 2008; Kildea et al., 

2010). Moreover, fungicides of the DMI class are under threat, mainly in intensive wheat 
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growing areas, especially where STB control mainly relies on DMIs (Stammler and Semar, 

2011; Cools et al., 2013). Populations of Z. tritici in these regions showed a gradual ‘shift’ 

towards more and more insensitive populations to DMI fungicides. It was shown that the 

accumulation of successive mutations in the Cyp51 gene of Z. tritici led to these advanced 

adapted isolates (Leroux et al., 2007; Cools and Fraaije, 2008, 2013). 

SDHIs are not yet faced with real practical problems of resistance in these two pathogens 

(Dubos et al., 2013). In 2012, first SDHI-resistant field isolates were reported in P. teres and 

Z. tritici (FRAC, 2016). The emergence of SDHI resistant individuals in the European 

population of P. teres on barley and Z. tritici on wheat are topic of the present work. Detected 

target-site mutations that have been identified were communicated to FRAC after each 

growing season. The results presented in this work have been partially published (Rehfus 

et al., 2016, 2017, accepted 2017). 
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2 Objectives 

Fungicide resistance and its management is an important concern in crop protection. 

Without resistance management, single resistant isolates of pathogens could rapidly 

propagate under selective conditions and could cause severe efficacy losses in the field 

within a few years. This happened in many phytopathogenic fungi with methyl 

benzimidazole carbamates and dicarboximides in the 1980s and the QoI fungicide class in 

the last years. To implement effective resistance management strategies, the mechanisms 

underlying resistance and their impact on the control of pathogens is of great importance. 

The aims of this study were to detect and characterise resistance mechanisms towards 

SDHI fungicides in two cereal pathogens, namely Pyrenophora teres and 

Zymoseptoria tritici, in Europe. The study focused on the following main areas: 

1. Detection of SDHI resistance mechanisms in P. teres and Z. tritici 

2. Development of reliable quantification tools to determine resistance frequencies in 

Europe 

3. In vitro and in planta sensitivity evaluation of resistant isolates 

4. Determination of fitness penalties associated with mutations in both pathogens 

5. Evaluation of occurrence of multiple resistance in the pathogens 

6. Estimation of field performance of SDHIs in the future 
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3 Material and Methods 

3.1 Technical devices 

Technical devises used in the present study are listed in Table 1. Technical equipment 

commonly used in laboratories, such as pipettes and centrifuges, are not listed. 

Table 1: Technical devises used. 

Technical devise Origin 

Airbrush (nozzle size 0.3 / 0.5 mm), 
SATAminijet® 3000 B HVLP 

SATA GmbH & Co. KG, Kornwestheim, Germany  

Analytical balance, MC 410S Sartorius AG, Göttingen, Germany 

Application chamber, SPK011 (applying 400 L 
ha-1) 

BASF SE, Ludwigshafen, Germany 

Blue light transillumination, UVT-28 L Herolab GmbH Laborgeräte, Wiesloch, Germany 

Cell counting chamber, Thoma bright line Hirschmann Laborgeräte GmbH & Co. KG, 
Eberstadt, Germany 

Gel documentation system, EasyDoc plus Herolab GmbH Laborgeräte, Wiesloch, Germany 

Gel electrophoresis, Sub-Cell GT Basic 
System 

Bio-Rad Laboratories Inc., Hercules, US  

Homogenisation, Mixer Mill MM200 Retsch GmbH, Haan, Germany 

Homogenisation, Grindomix GM200 Retsch GmbH, Haan, Germany 

Inoculation station BASF SE, Ludwigshafen, Germany 

KNF Vacuum / pressure pump KNF Neuberger GmbH, Freiburg, Germany 

Microscope, Olympus IX70 Olympus Deutschland GmbH, Hamburg, 
Germany 

Thermal cycler, DNA Engine DYAD Bio-Rad Laboratories Inc., Hercules, US 

Thermal cycler, Mastercycler gradient  Eppendorf AG, Hamburg, Germany 

Pyrosequencing preparation, PyroMark Q96 
work station 

Qiagen, Hilden, Germany 

Pyrosequencer, PSQ 96MA  Qiagen, Hilden, Germany  

Real-time PCR cycler, Rotor-Gene Q 2-Plex Qiagen, Hilden, Germany  

Spectrophotometer, NanoDrop 2000 Thermo Fisher Scientific Inc., Waltham, US 

Sunrise™ absorbance reader TECAN Group AG, Männedorf, Switzerland  

UV light transillumination, UVT-28 ME-HC Herolab GmbH Laborgeräte, Wiesloch, Germany 

Water purification, Q-POD® MilliQ Merck KGaA, Darmstadt, Germany 

XC10 Colour Camera Olympus Deutschland GmbH, Hamburg, 
Germany 
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3.2 Chemicals and consumables 

Chemicals and consumables used in the present work are shown Table 2. Standard 

reaction tubes and pipette tips are not listed. 

Table 2: Consumables used. 

Consumables  Manufacterer  

10,000 x GelGreen nucleic acid stain  Biotium Inc., Hayward, US 

6x Orange DNA loading dye Fermentas GmbH, St. Leon-Rot, Germany 

8 cm plant pots Pöppelmann GmbH und Co. KG, Lohe, Germany 

96well microtiter plate VWR International GmbH, Darmstadt, Germany  

96well PCR plate 4titude Ltd., Wotton, UK 

Acetone Bernd Kraft GmbH, Duisburg, Germany 

Adhesive PCR seal 4tidude Ltd., Wotton, UK 

Ampicillin, sodium salt  AppliChem GmbH, Darmstadt, Germany  

BactoTM Peptone Becton, Dickinson and Company, Franklin Lakes, US 

Combitips plus Eppendorf AG, Hamburg, Germany  

D-(+)-glucose Sigma Aldrich, St. Louis, US 

DEPC-water Ambion Inc., Austin, US 

DifcoTM Agar Becton, Dickinson and Company, Franklin Lakes, US 

DifcoTM ISP medium 2 Becton, Dickinson and Company, Franklin Lakes, US 

DifcoTM LB Broth, Miller Becton, Dickinson and Company, Franklin Lakes, US 

DifcoTM Peptone Becton, Dickinson and Company, Franklin Lakes, US 

EDTA  Calbiochem, Merck KGaA, Darmstadt, Germany 

Ethanol Sigma Aldrich, St. Louis, US 

Gauze Lohmann & Rauscher GmbH & Co. KG, Neuwied, 
Germany 

Gelatine VWR International GmbH, Darmstadt, Germany 

Glacial acetic acid Riedel-de Haën, Seelze, Germany  

Glycerol VWR International GmbH, Darmstadt, Germany 

Yeast extract Merck KGaA, Darmstadt, Germany 

HPLC water (Chromasolv Plus)  Sigma Aldrich, St. Louis, US  

Magnesium chloride Merck KGaA, Darmstadt, Germany 

Magnesium sulphate Merck KGaA, Darmstadt, Germany 

Malt extract VWR International GmbH, Darmstadt, Germany 

Oat flakes (Kölln Schmelzflocken) Peter Kölln GmbH & Co. KGaA, Elmshorn, Germany 

Petri dish (ø 92mm) Greiner Bio-One International GmbH, Frickenhausen, 
Germany 

Potassium chloride Merck KGaA, Darmstadt, Germany 

Potassium sulphate Merck KGaA, Darmstadt, Germany 

Sodium acetate Sigma Aldrich, St. Louis, US 
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Consumables  Manufacterer  

Sodium chloride Sigma Aldrich, St. Louis, US 

Sodium hydroxide  Merck KGaA, Darmstadt, Germany 

O´GeneRuler, 1 kb DNA ladder Fermentas GmbH, St. Leon-Rot, Germany 

6x Orange DNA loading dye Fermentas GmbH, St. Leon-Rot, Germany 

PyroMark annealing buffer  Qiagen, Hilden, Germany 

PyroMark binding buffer  Qiagen, Hilden, Germany 

PyroMark Gold Q96 reagents  Qiagen, Hilden, Germany 

RNase Away Molecular Bio-Products Inc., San Diego, US 

Streptavidin sepharose high 
performance  

GE Healthcare, Buckinghamshire, UK  

Streptomycin sulphate Sigma Aldrich, St. Louis, US 

Tris Base, Molecular biology grade Merck KGaA, Darmstadt, Germany 

Tryptone  Formedium Ltd., Hunstanton, UK 

Tween20 Sigma Aldrich, St. Louis, US 

Ultra Clear Cap strips  Thermo Fischer Scientific Inc., Waltham, US 

Biozym LE agarose Biozym Biotech Trading GmbH, Wien, Austria 

3.3 Enzymes, kits and bacterial strain 

Table 3 lists enzymes, kits and bacterial strain used in the present study. 

Table 3: Enzymes, kits and bacterial strain used. 

Name  Manufacturer  

BglII, FastDigest Fermentas GmbH, St. Leon-Rot, Germany 

CloneJET PCR Cloning Kit Fermentas GmbH, St. Leon-Rot, Germany 

Maxima Hot Start PCR Master Mix (2x) Fermentas GmbH, St. Leon-Rot, Germany 

NucleoSpin DNA Plant 8 II Kit Macherey-Nagel GmbH & Co. KG, Düren, Germany 

NucleoSpin Gel and PCR Clean-up Kit Macherey-Nagel GmbH & Co. KG, Düren, Germany 

NucleoSpin Plasmid Kit Macherey-Nagel GmbH & Co. KG, Düren, Germany 

Phusion Hot Start, High-Fidelity DNA 
Polymerase Mastermix 

Finnzymes OY, Espoo, Finland 

Fast Blue qPCR Mastermix (2x) Eurogentec, Seraing, Belgium 

XL-1 Blue Competent Cells  Agilent Technologies, Santa Clara, US  
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3.4 Buffer und solutions 

The buffers and solutions indicated in Table 4 and Table 5 were used in the present work. 

Table 4: Solutions and reaction buffers used. 

Name Composition Notes 

10% acetone 10% [v/v] acetone  

TAE buffer  

(50x stock solution) 

2 M TRIS-base 

1 M acetic acid 

5 mM EDTA 

dilution of stock solution to 1x working 
solution 

Tris-HCl buffer  

(10x stock solution) 

0.5 M TRIS-base pH 8 (with HCl), autoclaved, dilution of 
stock solution to 1x working solution with 
sterile water 

 

Table 5: Buffers used for pyrosequencing. 

Name Composition Notes 

70% ethanol 70% [v/v] ethanol  HPLC water used 

2 M sodium hydroxide 

(stock solution) 

2 M NaOH HPLC water used, dilution of stock 
solution to 0.2 M working solution with 
HPLC water 

10x washing buffer 

(stock solution) 

100 mM TRIS HPLC water used, pH 7.6 (with acetic 
acid), dilution of stock solution to 1x 
working solution with HPLC water 
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3.5 Growth media 

Liquid and agar media used for the cultivation of fungi and bacteria are listed in Table 6. 

Table 6: Growth media used. 

Media Composition Notes 

Inoculation medium - 
P. teres 

0.25% malt extract (w/v) 

0.25% gelatine (w/v) 

gelatine dissolved in hot water 

Inoculation medium - 
Z. tritici 

0.02% Tween20 (v/v)  

ISP2-(strep) agar 3.8% [w/v] ISP medium 2 

2% [w/v] agar 

(0.003 % [w/v] streptomycin 
sulphate) 

autoclaved, pH 7.2, cooled to 60°C 
before addition of streptomycin (100 
mg mL-1 stock solution [sterile 
filtered] to 100 mg L-1) 

LB-(amp) medium 
(agar) 

2.5% [w/v] LB-broth powder 

(2% agar) 

(0.01% [w/v] ampicillin sodium salt) 

autoclaved, cooled to 60°C before 
addition of ampicillin (100 mg mL-1 
stock solution [sterile filtered] to 100 
mg L-1) 

Malt-(strep) medium 
(agar) 

2% [w/v] malt extract 

(2% [w/v] agar) 

(0.003% [w/v] streptomycin 
sulphate) 

autoclaved, cooled to 60°C before 
addition of streptomycin (100 mg 
mL-1 stock solution [sterile filtered] 
to 100 mg L-1) 

Malt medium 
amended with gycerol 

2% [w/v] malt extract 

15% [v/v] glycerol 

autoclaved 

POA agar* 5% [w/v] peanut leaf extract (50 g 
peanut leaflets in 500 mL of water) 

1.5% [w/v] oat flakes 

2% [w/v] agar 

autoclaved, poured thin (15 mL 
agar per petri dish with ø 92 mm) 

SOC medium 2 % [w/v] tryptone 

0.5 % [w/v] yeast extract 

10 mM [w/v] NaCl 

2.5 mM [w/v] KCl 

10 mM [w/v] MgCl2 

10 mM [w/v] MgSO4 

20 mM [w/v] glucose 

autoclaved, pH 7.0 

YBA medium d.c. 2% (w/v) Bacto™ Peptone 

2% (w/v) yeast extract 

4% (w/v) sodium acetate 

autoclaved 

YBG medium d.c. 2% (w/v) Bacto™ Peptone 

2% (w/v) yeast extract 

4% (w/v) glycerol 

autoclaved, pH 6.8 

* recipe extracted from Speakman and Pommer (1986) 
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3.6 Oligonucleotides 

The oligonucleotides listed in Table 7 served as primers for standard PCR and Sanger 

sequencing in this work. Primers and probes, which were used for SNP detection, are 

indicated in Table 8. Biotinylated primers and probes were obtained from Eurogentec 

(Seraing, Belgium). All other oligonucleotides were synthesized by an internal DNA 

laboratory of BASF SE. 

Table 7: Oligonucleotides used for standard PCR. Sequences are shown in 5‘3‘ orientation. Fungal 
species, target sequences, amplicon sizes and annealing temperatures for Phusion polymerase (Tm) are given. 
Oligonucleotides for Cyp51 gene were available from previous work in our laboratory. 

Species Name Sequence (5‘3‘) Target Size [kb] Tm [°C] 

P
. 

te
re

s
 

KES 1825 (fw) CATAACCGAGGAAGCTTGAGTG 
SdhB 1.2 66 

KES 1837 (rv) CAAACACAACTCGCAATTAACGC 

KES 1827 (fw) ATCACCCAACACCACCATCG 
SdhC 0.85 69 

KES 1828 (rv) ATGTTGCAAACTTCAATCGTACCC 

KES 1833 (fw) CGATCCTTCAACCCACCTCCGA 
SdhD 0.75 71 

KES 1834 (rv) ACCCGCTTATGCATGCCACAG 

Z
. 
tr

it
ic

i 

KES 304 (fw) ATGGCTCTTCGACTCGCG 
SdhB 1.001 64 

KES 3 (rv) GTGAAAGCCATGCTCTTCTTG 

KES 584 (fw) ATGTTGGCACAGAAGCTCAC 
SdhC 0.839 69 

KES 550 (rv) TTACGATTCCATACTTCAGAAAGGC 

KES 583 (fw) ATGGCCTCCACCGCCCT 
SdhD 0.697 62 

KES 2124 
(rv)* 

CCATCTACAACTTCTGCTCAATC 

KES 540 (fw) ATGGGTCTCCTCCAGGAAGTC 
Cyp51 1.623 66 

KES 541 (rv) TCAGTTCTTCTCCTCCTTCTCCTC 

* sequence of oligonucleotide KES 2124 is extracted from Fraaije et al. (2012) (Mgsdhdr1) 
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Table 8: Oligonucleotides and probes used for pyrosequencing and qPCR. Sequences are shown in 5‘3‘ 
orientation. Fungal species, target sequence and additional information (notes) is given. Note that two assays 
are available for C-H152R detection. Assays for detection of G143A in Z. tritici, F129L and G137R in P. teres 
were already established in previous studies in our laboratory. Probes used for qPCR had 5’ fluorescein (5’ FAM) 
reporter dye and 3’ black-hole-quencher (3’ BHQ-1). 

Species Name Sequence (5‘3‘) Target Notes 

P
. 
te

re
s
 -

 S
N

P
 d

e
te

c
ti

o
n

 b
y
 p

y
ro

s
e
q

u
e
n

c
in

g
 

KES 1845 
(fw) 

ACAGGACGCCCTCAACAACAG 

partial SdhB 

 

KES 1846 
(rv) 

ACTCTCCCTATTTGCCACGTGAT 5‘ biotinylated 

KES 1847 
(fw) 

GAGCTTGTACCGATGC B-H277Y/L/R sequencing 
primer 

KES 1848 
(fw) 

ATCTACAGGCCGCAAATCAC 

partial SdhC 

 

KES 1849 
(rv)  

CCAAATGCCTCAATCCGTTAAG 5‘ biotinylated 

KES 1851 
(fw) 

CGTTCCCCTTCTTCTTT C-H134R, 
C-S135R 

sequencing 
primer 

KES 1956 
(fw) 

TGGCCTCATCGCTCA C-N75S sequencing 
primer 

KES 2025 
(fw) 

CTTAGACTTGCAGCAACTG 

partial SdhC 
(C-G79R) 

5‘ biotinylated 

KES 2026 
(rv) 

ATACCGAAGAGGTAGAGAGAACC
G 

 

KES 2027 
(rv) 

CGGAGAGAACGATAC C-G79R sequencing 
primer 

KES 2020 
(fw) 

TTTCCGCTGGTCTCATTCC 

partial SdhD 

 

KES 2021 
(rv) 

AGAGTGCAAGACCGAGAACAAC 5‘ biotinylated 

KES 2028 
(fw) 

CTGAACCCTGTAACC D-D124N/E sequencing 
primer 

KES 2023 
(fw) 

CGCTCTTCTGGTAGTC D-H134R sequencing 
primer 

KES 2024 
(fw) 

AGATCATGCATCGTCG D-D145G sequencing 
primer 

KES 2080 
(fw) 

AACAACCCCCAGATCATGC 

partial SdhD 
(D-E178K) 

5‘ biotinylated 

KES 2081 
(rv) 

CCTAGCAACAGCCTCGGTAATAC  

KES 2082 
(rv) 

ATACCAACATCATTCGT D-E178K sequencing 
primer 

KES 432 
(fw) 

TCCTAACTTAAAAGGTTACACAAG
GCTT partial Cyt b 

(F129L) 

 

KES 433 
(rv) 

AACCATTTTGGGCTATGTTGGTA 5‘ biotinylated 

KES 434 
(fw) 

CGGAACTTAGACAGCC F129L sequencing 
primer 
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Species Name Sequence (5‘3‘) Target Notes 

KES 630 
(fw) 

GGCTGAAATGCTGCTTAATGT 

partial Cyt b 
(G137R) 

5‘ biotinylated 

KES 631 
(rv) 

AATTTTCACCTCAAAGGCTCATT  

KES 632 
(rv) 

CAAAGGCTCATTTGC G137R sequencing 
primer 

Z
. 
tr

it
ic

i 
- 

S
N

P
 d

e
te

c
ti

o
n

 b
y
 p

y
ro

s
e
q

u
e
n

c
in

g
 

KES 602 
(fw) 

AGTACCTCGGACCAGCTGTCCT 

partial SdhB 

 

KES 603 
(rv) 

CCGCTTTCCAATCATCTCGTTC 5‘ biotinylated 

KES 604 
(fw) 

GAGCTTGTACCGATGC B-H267Y/R/L, 
B-T268I, 
B-I269V 

sequencing 
primer 

KES 655 
(fw) 

ACCGCAAATAACCTGGTACCTCT 

partial SdhC 

5‘ biotinylated 

KES 656 
(rv) 

AATCATACTCGCCGTATCCCAAA  

KES 657 
(rv) 

CCGTATCCCAAACCA C-H152R sequencing 
primer 

KES 770 
(rv) 

CTCCCGAGGCGGCGAC C-N86K/S, 
C-G90R 

sequencing 
primer 

KES 2138 
(fw) 

CCGGTGACGTTTCATTCGTT 

partial SdhC 
(C-H152R) 

 

KES 2139 
(rv) 

ACTCGCAACACTCAACCCCACAA 5‘ biotinylated 

KES 2140 
(fw) 

GTTGAATGGAGTGAGG C-H152R sequencing 
primer 

Z
. 
tr

it
ic

i 
–

 S
N

P
 d

e
te

c
ti

o
n

 b
y
 q

P
C

R
 

KES 1841 
(rv) 

AATCGTCTTGGTCAAGACCTGCAA 

partial Cyt b 

(C-T79N) 

 

KES 1839 
(fw) 

CACCTCGCAATCTACAAACCGCAA
ATATC 

MAMA primer 
(T79) 

KES 1840 
(fw) 

CACCTCGCAATCTACAAACCGCAA
ATAGA 

MAMA primer 
(N79) 

St-sdhc-
79 

AGCCTTCTACGCCTTCGG  probe (5’ FAM 
and 3’ BHQ-1) 

KES 64 
(rv) 

CCCTAGAACATTAACATGAACAAT
CG 

partial Cyt b 

(G143A) 

 

KES 132 
(fw) 

CAATAAGTTAGTTATAACTGTTGC
CC 

MAMA primer 
(G143) 

KES 73 
(fw) 

GCACTCAATAAGTTAGTTATAACT
GTTGCAG 

MAMA primer 
(A143) 

St-cytb-
143 

CCCTAAGAATGCGGTTGCCATCAT
CA 

 probe (5’ FAM 
and 3’ BHQ-1) 
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3.7 Software 

The software used in this work is given in Table 9. 

Table 9: Software used. 

Name Provider 

BLAST BASF SE, Ludwigshafen, Germany 

FastPCR PrimerDigital Ltd, Helsinki, Finland 

LaserGene™ 12  DNASTAR Inc., Madison, US 

Magellan™ TECAN Group AG, Männedorf, Switzerland 

MegAlign™ Pro DNASTAR Inc., Madison, US 

Pyrosequencing Assay Design (version 1.0.6) Qiagen, Hilden, Germany 

RESLAB BASF SE, Ludwigshafen, Germany 

Rotor-Gene Q Series (version 2.0.2) Qiagen, Hilden, Germany 

R studio (version 0.98.1091) RStudio, Inc. 

SeqMan™ Pro DNASTAR Inc., Madison, US 

The PyMOL Molecular Graphics System 
(version 1.8) 

Schrödinger, LLC. 

3.8 Cultivation of living organisms 

3.8.1 Cultivation of wheat and barley plants 

Fungicide sensitivity tests and growth competition studies of fungal isolates were carried 

out in a glasshouse. Barley cultivar ‘Astrid’ served as host plant for experiments performed 

with P. teres. Wheat cultivar ‘Riband’ was used as host for glasshouse trials with Z. tritici. 

Both cereal cultivars (around 10 plants per pot) were grown in the glasshouse on Universal 

perlite soil (BASF SE) with 16 h light and at 20°C until growth stage BBCH 11 before 

inoculation. 

3.8.2 Cultivation of fungal isolates 

P. teres was cultivated on 2% malt-strep agar for mycelial growth and on thin poured POA 

agar for sporulation. Isolates were cultivated for 10 days at 22°C in the dark to allow mycelial 

growth and for spore production with a 12 h dark and 12 h light cycle (soft-white light tubes 

supplemented with near ultra-violet light). It is important to note that POA plates should not 

be sealed with parafilm. Z. tritici was cultivated on ISP2-strep agar for 7 days at 18°C and 

with a 12 h dark and 12 h light cycle. Isolates were directly used for sensitivity assays, 

growth competition tests, DNA preparation and further downstream procedures, or were 

stored at -80°C in 2% (w/v) malt medium with 15% (v/v) glycerol. 
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3.9 Fungal isolates and leaf samples 

Fungal isolates and leaf samples from all over Europe were either obtained from ‘Random 

Monitoring’ performed by the company EpiLogic (Freising-Weihenstephan, Germany) or by 

internal monitoring programmes on commercial or trial sites of BASF SE and other 

institutions. 

3.9.1 ‘Random monitoring’ and ‘Trial site monitoring’ 

‘Random Monitoring’ in European countries was carried out by the company EpiLogic. 

Samples were taken in all major barley and wheat growing areas in Europe in order to get 

an overview of the pathogen population in European countries. 

Air-borne P. teres spores were collected by a spore trap mounted on the roof of a car (Figure 

6). Most isolates of P. teres used in this study were obtained from BASF European pathogen 

monitoring programmes in the years 2012-2015. In total, 175 isolates were collected in 

2012, 248 isolates in 2013, 245 isolates in 2014 and 253 isolates in 2015. Collection of 

isolates was done in June and July of each year. Thus, collection was started in southern 

countries (e.g. Italy) and was ended in northern countries (e.g. Denmark, Sweden) at the 

end of July. One to 15 single-spore isolates of P. teres were obtained from each route and 

were pre-analysed for SDHI resistance in an ex vivo test, based on detached leaves which 

had been treated with discriminating test concentrations of 0, 0.64 and 2.5 mg L-1 

fluxapyroxad (technical a.i.). Isolates which showed ≥40% of necrotic leaf area at 0.64 mg 

L-1 fluxapyroxad in these detached leaf tests were further analysed in the present study. 

Analysed isolates are listed in Supplementary Table 37. 

‘Random monitoring’ in Europe was additionally performed for the pathogen Z. tritici, 

however, with a different isolate collection method. During the growing season, 

pycnidiospores act as the main source of inoculum of new wheat plants. Pycnidiospores of 

Z. tritici are rarely detected in the air. Therefore, sampling of Z. tritici isolates was realised 

by collecting STB-infected leaves from all major wheat growing regions. Sampling was 

organised by BASF including shipment to EpiLogic. Subsequently, isolates were generated 

and tested for their sensitivity to fluxapyroxad in a microtiter test. In total, 484 isolates were 

collected in 2012, 456 isolates in 2013, 690 isolates in 2014, 630 isolates in 2015 and 504 

isolates in 2016. Isolates that showed EC50 values of >0.3 mg fluxapyroxad L-1 in this test 

were further analysed in the present study. Origin and sampling date of Z. tritici isolates are 

given in Supplementary Table 38. 
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Figure 6: Spore jet trap mounted on a car to sample air-borne spores of P. teres. Barley leaves in the 
collection chamber were used to trap spores (http://www.epilogic.de/). 

In addition to ‘Random monitoring’, isolates collected from trial sites were included in the 

present study. ‘Trial site monitoring’ programmes comprised 337 isolates of P. teres from 

2013 collected in France and Germany. In the case of Z. tritici, isolates were obtained from 

different trial sites in Europe. These included 100 isolates from 2012 collected in France, 

487 isolates from 2013 collected in Germany, and 25 isolates from 2015 collected in Ireland.  

Experiments that were conducted on multiple resistance of both pathogens, QoI ‘Random 

monitoring’ (P. teres) and DMI ‘Random monitoring’ (Z. tritici) made by EpiLogic, were 

additionally considered. 

3.9.2 ‘Field monitoring’ 

Net blotch- or STB-infected leaves, that were sampled by BASF SE field technicians, 

farmers or governmental institutions and universities, were additionally studied. Collectors 

sent 20-30 dried barley or wheat leaves per sample (field). These had been randomly 

collected from the fields, which were either used as a trial site or are commercial fields. 

Samples, which were taken from trial sites, were mainly taken from untreated plots. Most 

samples were collected in April and May. The number, origin and sampling date of these 

leaf samples are given in Supplementary Table 39 and Table 40. 

The leaf samples were mainly taken to extract DNA to quantify allele frequency, which are 

leading to SDHI resistant phenotypes, by pyrosequencing or qPCR (see section 3.10.3). 

Therefore, in the case of net-blotch infected barley, 20 small pieces of lesions (~5 mm2) 

were excised from different leaves obtained from one sample. Scissors and pinzettes were 

placed in 100% EtOH and were flamed after each sample. Gloves were removed, whenever 

contact with infected leaf material could not be avoided. These pieces of lesions were 

pooled in an Eppi for each sample and DNA extraction followed. 

In the case of Z. tritici, all wheat leaves were grinded together in a homogeniser (Grindomix 

GM200) for 3 min, 10,000 rpm. The equipment, that was used for the homogenisation, was 

thoroughly cleaned after each sample. The remaining sample material was removed by 

washing in water with soap. The surface was additionally cleaned by an incubation of 5 min 
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in RNase Away, which also removes DNA contaminations. Afterwards, equipment was 

again cleaned in water and was dried. This method is more time-consuming than cutting 

lesions but is useful in that it considers all lesions from all leaves that were taken from one 

site. However, when lower infection densities on leaves (<10%) were observed, green leaf 

areas were first removed (roughly) to obtain higher fungal DNA ratio in the extract. 

3.9.2.1 Generation of P. teres and Z. tritici from infected leaves 

Some infected leaf samples were additionally used to generate isolates of P. teres and 

Z. tritici. Isolation protocols were already established in our laboratory. In case of P. teres, 

this was mainly done to obtain spot-type isolates. For this, two filter papers were placed in 

a petri dish. The upper filter paper was prepared before by using a scalpel to cut small 

openings in it (in two parallel rows). Here, the ends of dried leaf segments with typical net-

blotch lesions (3-5 segments per petri dish) were inserted. The filter papers were moistened 

with sterile water. It is important to note that leaf segments should not have direct contact 

to water. The petri dishes were then incubated for 3-4 days at 18-22°C with a 12 h dark and 

12 h light cycle (soft-white light tubes supplemented with near ultra-violet light). After that, 

single spores of typical P. teres conidiophores were transferred under the binocular to 2% 

malt-strep agar plates. These were incubated for a further 5-10 days at 24°C in the dark. 

Z. tritici strains were isolated from infected leaf samples from Ireland and the United 

Kingdom in 2016. The dried leaves were surface sterilised in 2.5% sodium hypochlorite 

solution for 60 s and washed twice in sterile water. After leaves had dried, lesions were 

excised and transferred to 2% malt-strep agar. Petri dishes were incubated for 1-2 days at 

22°C until pycnidia start to release spores. Spores produced by a single pycnidium were 

regarded as an isolate and were transferred to ISP2-strep plates. Petri dishes were 

incubated for 7 days at 18°C and 12 h of light. 

3.10 Molecular biological methods 

3.10.1 Standard molecular techniques 

Standard molecular techniques, such as DNA extraction, PCR and gel electrophoresis, 

were performed according to manufacturers’ or established protocols. 

The extraction of genomic DNA was done using Nucleo Spin® Plant kits (single column 

isolation or 48-well scale vacuum processing). Homogenisation of bacterial or fungal 

material was performed by freezing 15 to 30 mg cells, conidia or mycelia on dry ice and 

consequent grinding for 1 min at 20 Hz (Retsch) and the addition of a metal bead. For DNA 

isolation, the manufacturers’ protocol using PL1 lysis buffer for the extraction from plant 

material was used. DNA was stored at 4°C for short time storage and at -20°C for long time 
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storage. Concentration and purity of DNA was determined using photometric measurement 

by Nanodrop2000. PCR was performed to amplify target DNA sequences. Pathogen 

specific oligonucleotides are listed in Table 7. Reactions were preapared as shown in Table 

10. To avoid contaminations, all reactions were prepared in a clean bench. A NTC with 

DEPC-water instead of template DNA served as control. 

Table 10: Preparation of PCR reactions. 

Component  Volume [µL] in a final volume of 25 µL 

2 x Mastermix (Maxima/Phusion Flash) 12.50 

DEPC-H2O  7.50 

Primer fw (10 pmol µL-1) 1.25 

Primer rv (10 pmol µL-1) 1.25 

Template DNA 2.5 

Phusion® High-Fidelity DNA polymerase (Thermo Fisher Scientific) was used for the cloning 

and sequencing of target genes. Phusion DNA polymerase possesses 5’3’ polymerase 

activity, 3’5’ exonuclease activity (proofreading) and generates blunt-ends. Appropriate 

annealing temperatures were determined by gradient PCR and can be found in Table 7. To 

reduce costs for large-scale pyrosequencing procedure, Maxima Hot Start Taq Polymerase 

(Thermo Fisher Scientific) was taken to amplify target DNA sequences. Another advantage 

of Maxima DNA polymerase is the inactivity at room temperature, which helps to avoid 

extension of unspecific annealed primers or primer dimers, and allows preparation of large 

PCR setups at RT. Temperature programmes used for PCR reactions are given in Table 

11.  

Table 11: PCR programme to amplify target DNA sequences. Maxima Hot Start Taq polymerase (Phusion 
High Fidelity Polymerase) were used for amplification. Annealing temperature is dependent on primer pair and 
polymerase used. 

Function Temperature [°C] Time [min] Cycles 

Initial denaturation  95 (98) 4:00 (0:30) 1 

Denaturation 95 (98) 0:15 (0:10)  

Annealing 45-72 0:30 (0:05) 35-39 

Elongation 72 1:00 per kb (0:15-0:30 per kb)  

Final elongation 72 5:00 1 

Cooling 4 ∞  

In a next step, amplified PCR fragments were either used for sequencing of genes, SNP 

detection by pyrosequencing (see section 3.10.3) or studies on promotor insertions of 

MgMFS1 (see section 3.13). DNA fragments were separated in a 1% TAE agarose gel 

either using ethidium bromide and UV-light or GelGreen and a blue light table (430-490 nm) 

to visualise DNA fragments. Ethidium bromide was preferred whenever the exact size of 

DNA fragments was important for example in the process of assay development. The result 
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of gel electrophoresis was documented with EasyDoc plus gel documentation system. For 

further Sanger sequencing, appropriate PCR products were excised from the gel and 

cleaned-up using NucleoSpin Gel and PCR Clean-up kit. Sequencing was performed with 

oligonucleotides used for the corresponding PCR reaction. In a few cases, the amplification 

led to unspecific byproducts during PCR e.g. Cyp51 gene of some isolates. To obtain 

specific sequencing, the PCR product of appropriate size was excised from the gel and was 

cleaned-up and cloned prior to sequencing. For blunt-end cloning, CloneJET PCR Cloning 

Kit was used. PCR products were ligated into pJet1.2/blunt cloning vector and vectors were 

transformed in Escherichia coli XL1-Blue competent cells. SOC media was used for the 

recovery of cells after transformation and LB-amp agar for selection. Clones were picked 

and transferred to LB-amp media for further propagation. Plasmide DNA was isolated using 

NucleoSpin Plasmid Kit. For the verification of correct insert length, plasmids were digested 

using BglII restriction enzyme (Table 12) and separated by gel electrophoresis. Sequencing 

of the plasmids which contained the sequence of interest, was performed with 

oligonucleotides pJet1.2 fw and pJet1.2 rv. 

Table 12: Preparation of BglII restriction reactions. 

Component  Volume [µL] in a final volume of 20 µL 

Plasmid DNA  3 

FastDigest® buffer 2 

BglII FastDigest® 1 

DEPC water 14 

3.10.2 Sequencing 

Sequencing of PCR products and plasmids were done internally by BASF SE DNA 

laboratory. Resulting sequences were analysed using DNASTAR lasergene programmes 

(DNASTAR, Madison, USA). SeqMan programme was used to obtain contigs of two reads 

(fw and rv primer), whereas MegAlign programme was used to compare nucleotide and 

protein sequences between samples or organisms. Sequences were additionally checked 

using BLAST (internal BLAST of BASF SE) to verify correctness of origin. 

3.10.3 SNP detection systems 

In the present study, genetic polymorphisms causing a reduction of fungicide efficacy were 

either detected by quantitative PCR (qPCR) or by pyrosequencing. Most mutations were 

detected using pyrosequencing, as it allows a high through-put but also the detection of 

more than one mutation in one assay. In some cases, no matching pyrosequencing primer 

could be designed, e.g. due to repetitive nucleotides at positions before or after mutations. 

Here, qPCR assays based on TaqMan probes were developed. 
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3.10.3.1 Quantitative real-time PCR (qPCR) 

Quantitative PCR enables the real-time measurements of DNA through PCR amplification. 

Detection and quantification of mutated DNA during this work was based on TaqMAMA 

genotyping assays (Glaab and Skopek, 1999). TaqMAMA combines quantitative PCR using 

a TaqMan probe with modified allele-specific PCR primer (MAMA primer). TaqMan® probes, 

originally designed by Roche Molecular Systems Inc. (Pleasanton, US), are dual labeled 

hydrolysis probes with a reporter fluorophore at the 5’ end and a quencher fluorophore at 

the 3’ end. The fluorogenic probe (~20 bp) is complementary to the target sequence and 

anneals specifically between the two PCR primers. TaqMan probe principle utilizes the 

5’3’ exonuclease activity of Taq polymerase, which leads to hydrolysation of the probe 

while elongation. Thereby the reporter dye is released from the close vicinity of the quencher 

dye which leads to an increase of fluorescence. The increase of fluorescence is proportional 

to amplified PCR product.  

To guarantee discrimination of SNP allelic polymorphisms, MAMA primer were used in 

combination to TaqMan assay in the present study. A MAMA primer is either specific for the 

investigated SNP or the wild type sequence. Besides the nucleotide exchange that is 

investigated, a second nucleotide exchange in the MAMA primer is leading to a mismatch 

in both sequences, which can significantly improve discrimination between alleles (Cha et 

al., 1992). MAMA primer nucleotide exchanges were selected according to Li et al. (2004) 

to obtain greatest allelic discrimination and these are shown in Table 8. The relative 

amounts of allelic SNP variants in a sample can be quantified by equal aliquots of the pooled 

DNA measured in two separate PCR reactions, and which contain a specific primer pair to 

one or the other allelic SNP variant. If efficiency of both PCR reactions is similar, a 50% 

mixture of both alleles should reach a detectable level of fluorescence at the same cycle for 

the two amplifications. For mixtures of unequal ratios of the two alleles, the difference in 

cycle number between both reactions can serve for the calculation of relative allele amounts 

(Germer et al., 2000). In the present study, allele-specific discrimination was performed for 

the molecular detection and quantification of G143A in CYTB and C-T79N in SDH-C of 

Z. tritici. Components and preparation of qPCR reactions are described in Table 13. As 

TaqMan probes are sensitive to light, light sources were avoided as far as possible for the 

preparation of qPCR reactions. 

Table 13: Preparation of qPCR reaction (TaqMAMA). 

Component Volume [µL] in a final volume of 25 µL 

Fast Blue qPCR Mastermix (2x)  12.5 

DEPC-water  7.25 

Primer fw (10 pmol µL-1) 1.25 

Primer rv (10 pmol µL-1) 1.25 

TaqMan probe (10 pmol µL-1) 0.25 

Template DNA 2.5 



Material and Methods 44 

 

 

The two-step temperature programme used for qPCR is shown in Table 14. All qPCR 

reactions were run on Rotor-Gene-Q maschine. 

Table 14: Programme used for qPCR reactions. 

Function Temperatur [°C] Time [min] Cycle 

Initial denaturation 95 5:00 1 

Denaturation 95 0:10 
40 

Annealing & Elongation 60 0:45 

The measurement of the fluorescence was done at the end of elongation after each cycle. 

Cq (cycle of quantification) values were obtained by Rotor-Gene Q Series Software. The cq 

value defines the cycle at which measured fluorescence significantly exceeds background 

fluorescence and is used for the calculation of allele frequencies (sensitive and resistant). 

The frequency of sensitive to resistant allele was calculated according to Germer et al. 

(2000): 

Frequency of allele1 = 1 / (2ΔCq
 + 1) 

where ΔCq = (Cq of allele1-specific PCR) – (Cq of allele2-specific PCR) 

For validation of assays, DNA of a wild type isolate and DNA of a mutated isolate, mixtures 

of them (95/5, 90/10, 70/30, 50/50, 30/70, 10/90 and 5/95%) and 1:10 dilution series of both 

DNA samples were tested. Quantification of non-mutated/mutated DNA was reliable above 

a value of 2-3% and accuracy of the assays was 1%, which means values can vary ± 1%. 

The specificity of primer pairs was tested by performing qPCR reactions on non-target DNA 

isolated from pathogens ubiquitious in nature e.g. B. cinerea and A. alternata but also from 

cereal pathogens infecting same hosts e.g. Pyrenophora tritici-repentis, R. secalis, several 

rust species and B. graminis. In each run, a NTC, a DNA sample containing 100% sensitive 

allele and a DNA sample containing 100% resistant allele and a 50% mixture of both DNA 

samples served as controls. 

3.10.3.2 Pyrosequencing 

Pyrosequencing is a DNA sequencing methodology based on the principle of sequencing-

by-synthesis. It allows real-time sequencing of 20 to 30 basepairs and thereby can be used 

for mutation detection and quantification. The technique uses a cascade of enzymatic 

reactions that starts with nucleotide incorporation and ends in a detectable light signal 

(bioluminescence). 

Four enzymes are needed in a pyrosequencing reaction. The Klenow fragment of DNA 

polymerase I, ATP sulfurylase, luciferase and apyrase (Figure 7). The reaction mixture also 

contains the enzyme substrates adenosine phosphosulfate (APS) and D-luciferin and the 

sequencing template with an annealed primer. The four nucleotides are added one after 

each other to the reaction mixture. If the added nucleotide is incorporated by DNA 
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polymerase, pyrophosphate (PPi) is released which itself is substrate for ATP sulfurylase 

producing ATP. ATP is converted by luciferase mediated turnover from D-luciferin to 

oxyluciferin and thus to light. A CCD camera then detects light emission. A fourth enzyme, 

apyrase, removes unincorporated nucleotides and ATP before addition of the next base 

(Ahmadian et al., 2000, 2006). 

 
Figure 7: Schematic procedure of pyrosequencing. The figure is extracted from Ahmadian et al. (2006). If 
the added dNTP is complementary to the template and is therefore incorporated by Klenow Polymerase into the 
DNA strand, a pyrophosphate (PPi) is released. PPi is converted by ATP Sulfurylase into ATP. ATP serves as 
substrate for Luciferase enzyme emitting detectable light. 

In the present work, pyrosequencing was not only performed to detect point mutations in 

P. teres and Z. tritici but was also used for quantification of mutations in a DNA pool. To 

allow quantitative point mutations analysis, pyrosequencing assays were developed using 

the Pyrosequencing Assay Design Software. Standard PCR, using Maxima Hot Start PCR 

Master Mix and the primer pairs with biotinylated oligonucleotides (listed in Table 8), were 

employed for amplification of all gene fragments (~200 bp). The following conditions were 

applied for all pyrosequencing assays: initial heating at 95°C for 15 s, 40 cycles at 94°C for 

15 s, 55°C for 30 s and 72°C for 20 s, followed by a final elongation step at 72°C for 5 min. 

Every template was applied in duplicate. 

Table 15: Temperature programme used for PCR reaction before pyrosequencing. 

Function Temperatur [°C] Time [min] Cycle 

Initial denaturation 95 1:00 1 

Denaturation 94 0:15 

40 Annealing 55 0:30 

Elongation 72 0:20 

Final elongation 72 5:00 1 
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After the immobilisation of PCR products to streptavidin sepharose beads implementing the 

Vacuum Prep Worktable and a clean-up step with ethanol (70%), single strand preparation 

was performed using sodium hydroxide (0.2 M) followed by a washing step in tris-acetate 

(10 mM). Single stranded samples were transferred to annealing buffer amended with the 

according sequencing primer (listed in Table 8) and were heated at 80°C for 2 min in an 

incubator. After cooling, the samples were then pyrosequenced using PyroMark Gold Q96 

Reagents on a PSQ 96MA machine, as described by the manufacturers.  

Table 16: Preparation of DNA template for pyrosequencing reaction. A: Immobilisation of template DNA to 
streptavidin sepharose beads; B: Reaction solution for pyrosequencing. 

 Component  Volume [µL] Notes 

A PCR reaction (amplified template DNA) 25 incubation for 15-
20 min at RT 
(1200 rpm) 

 Binding buffer 37 

 Streptavidin Sepharose  3 

B Annealing buffer 38.75 addition of bound 
template DNA 

 Sequencing primer 1.25 

For validation of assays, DNA of a wild type isolate and DNA of a mutated isolate as well 

as mixtures of them (95/5, 90/10, 70/30, 50/50, 30/70, 10/90 and 5/95%) were tested. 

Quantification of non-mutated/mutated DNA was reliable above a value of 10% and 

accuracy of all assays was 5%, which means values can vary ± 5%. In addition, specificity 

of primer was checked by performing pyrosequencing on non-target DNA isolated from 

pathogens ubiquitious in nature e.g. B. cinerea and A. alternata but also from cereal 

pathogens infecting same hosts e.g. P. tritici-repentis, R. secalis, several rust species and 

B. graminis. 

3.11 Fungicide sensitivity tests 

The effect of different mutations in the Sdh genes on various SDHIs was studied in the 

present study. In vitro sensitivity tests were performed in a microtiter scale to test wild type 

and Sdh mutated isolates in high sample numbers. In addition, in planta studies were 

performed on barley and wheat seedlings in the glasshouse. 

3.11.1 Fungicides used 

The tested compounds (Table 17) are foliar applied SDHI fungicides that are already or will 

soon be available on the European market for the control of P. teres in barley and Z. tritici 

in wheat. In in vitro tests, fungicides were mainly used as technical active ingredients 

obtained from Sigma Aldrich, an exception was benzovindiflupyr, which was not available 

and thus synthesized by BASF SE. In glasshouse tests, either ready-formulated products 
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(solo-SDHI compounds) were used (when commercially available) or technical active 

ingredients were formulated and then applied to plants (see section 3.11.3.2).  

SDHIs have a low water solubility (0.49 mg L-1 bixafen, 16 mg L-1 fluopyram, 3.44 mg L-1 

fluxapyroxad, 0.55 mg L-1 isopyrazam and 1.38 mg L-1 penthiopyrad at 20°C, 

http://sitem.herts.ac.uk/aeru/ppdb/en/). Therefore, inappropriate handling during 

preparation of fungicide concentrations can lead to unintentional precipitation of SDHIs. 

Stock solutions of SDHIs (10,000 mg L-1) were prepared in dimethyl sulphoxide (DMSO). 

Further dilutions were made in (sterile) water. 100 mg L-1 solutions of most SDHIs (such as 

bixafen, fluxapyroxad, fluopyram and penthiopyrad) are vulnerable to precipitation. 

Therefore, further dilutions should be prepared rapidly (some SDHIs precipitate after a 

while) but mixing should occur carefully without shaking or vortexing. 

Table 17: Fungicides used. 

Fungicide 
class 

Technical a.i. 

(example for trade 
mark) 

Company 

(launch date in 
Europe) 

Structural formula 

SDHI Benzovindiflupyr  

(no solo product 
available) 

Syngenta Agro 
GmbH 

(expected 2017) 

 

SDHI Bixafen 

(no solo product 
available) 

Bayer Crop 
Science  

(2013) 

 

SDHI Fluopyram  

(Luna Privilege®) 

Bayer Crop 
Science  

(2016) 
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Fungicide 
class 

Technical a.i. 

(example for trade 
mark) 

Company 

(launch date in 
Europe) 

Structural formula 

SDHI Fluxapyroxad 

(Imbrex®) 

BASF SE 

(2013) 

 

SDHI Isopyrazam 

(Zulu®) 

Syngenta Agro 
GmbH  

(2013) 

 

SDHI Penthiopyrad 

(Fontelis®/Intellis®) 

DuPont 

(2013) 

 

QoI Pyraclostrobin 

(Comet®) 

BASF SE 

(2002) 

 

DMI Prothioconazole 

(Proline®) 

Bayer Crop 
Science 

(2004) 
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3.11.2 Microtiter tests 

In vitro tests with fungicides were performed in 96-well microtiter plates according to 

monitoring methods described on the web page of FRAC (FRAC, 2016) with some minor 

changes. Pure technical grades of bixafen, fluopyram, fluxapyroxad, isopyrazam, 

penthiopyrad and benzovindiflupyr were dissolved in DMSO to prepare 10,000 mg L-1 stock 

solutions. In addition to SDHIs, pyraclostrobin (as the formulated product Comet®), 

prothioconazole and tolnaftate (both as technical a.i. obtained from Sigma Aldrich) were 

measured in some microtiter tests. Dilution of fungicides was conducted in sterile deionized 

water immediately before mixing with spore suspensions. Fungicide dilutions were prepared 

double-concentrated in 48-deep-well plates and were mixed in a ratio of 1:1 with spore 

suspensions in the 96-well plates. The following final concentrations of fungicide were used 

in microtiter tests: 0, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10 and 30 mg a.i. L-1. Seven 

appropriate fungicide dilutions and a water control were chosen for each fungicide used and 

experiment. 

Table 18: Preparation of fungicide dilution series. 

Dilution (concentration in fungicide dilution [mg L-1]) Final concentration in 

microtiter plate [mg L-1] 

9.8 mL water + 0.2 ml 10,000 mg L-1 solution (200) (100) 

7.0 mL water + 3.0 ml 200 mg L-1 solution (60) 30 

9.0 mL water + 1.0 ml 200 mg L-1 solution (20) 10 

9.0 mL water + 1.0 ml 60 mg L-1 solution (6) 3 

9.0 mL water + 1.0 ml 20 mg L-1 solution (2) 1 

9.0 mL water + 1.0 ml 6 mg L-1 solution (0.6) 0.3 

9.0 mL water + 1.0 ml 2 mg L-1 solution (0.2) 0.1 

9.0 mL water + 1.0 ml 0.6 mg L-1 solution (0.06) 0.03 

9.0 mL water + 1.0 ml 0.2 mg L-1 solution (0.02) 0.01 

9.0 mL water + 1.0 ml 0.6 mg L-1 solution (0.006) 0.003 

10.0 mL water  0 

P. teres isolates were grown for 10 days and Z. tritici isolates for 7 days prior to microtiter 

test. Spore suspensions of P. teres were obtained by harvesting spores from POA plates 

using a Drigalski spatula and 4 mL of YBA d.c. medium. Compared to many other fungi, 

P. teres generally produces a relatively low number of spores on artificial media. 1-3 POA 

plates of each isolate (dependent on the spore production of the isolate) were grown to 

obtain enough spores for microtiter test with many different fungicides. The obtained spore 

suspension was filtered through sterile 4-fold gauze to remove mycelium. In contrast, 

Z. tritici produces a high number of spores on artificial media. Spores were harvested by a 

sterile cotton swab from ISP2-strep plates and were transferred to 2-4 mL of YBG d.c. 
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medium. Spores were counted microscopically using a haemocytometer (Thoma cell 

chamber) and adjusted to 4E+03 cells mL-1 for P. teres and 1.6E+04 cells mL-1 for Z. tritici 

with the appropriate media. Different treatments with spores and without spores (blank) 

were tested in four replicates in 96-well microtiter plate by mixing 50 µL of fungicide dilutions 

with 50 µL spore suspension or media without spores. The set-up of a microtiter plate can 

be seen in Figure 8. To allow growth of P. teres and Z. tritici isolates in microtiter plates, 

these were incubated at 18°C in darkness. The growth was measured in a photometer 

(96-well reader) at 405 nm 5 days after set-up in the case of P. teres and 7 days after set-

up in the case of Z. tritici. The values were corrected by comparison with the blanks. The 

EC50-values (concentration with a fungal growth inhibition of 50% relative to the untreated 

control) were determined by probit-analysis and mean value of technical replicates was 

calculated using log-values. Reslab-Software (BASF SE software using SAS calculation) 

was used to calculate EC50 values. 

 
Figure 8: Experimental set-up of a microtiter plate assay. No fungicide is applied in row A. Fungicide 
concentration is increasing in rows B-H. Columns 1-4 are not inoculated with fungal spores. Columns 5-12 are 
inoculated with the same number of spores each well. 

3.11.3 Sensitivity tests in the glasshouse 

The impact of SDH alterations on SDHIs was investigated in glasshouse studies. The 

sensitivity of SDHIs was determined on barley cv. ‘Astrid’ or wheat cv. ‘Riband’, both of 

which were inoculated as seedlings in growth stage BBCH 11. Both cereal varieties that 

were used in trials are highly susceptible to either net blotch disease or STB. Fungicides 

were applied one-day preventative or four-days curative. 

3.11.3.1 Inoculation 

Spore suspensions of P. teres were obtained from 10-days-old cultures, which were grown 

on POA petri dishes (see section 3.8.2). Spores were harvested from 2-3 petri dishes per 

isolate (low sporulating isolates were transferred to up to 10 POA plates to obtain enough 
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spores). Spores were removed from plates by the addition of 4 mL of 0.25% malt + 0.25% 

gelatine medium and the use of a Drigalski spatula. The suspension was filtered through 

two layers of gauze to separate spores from mycelium. Finally, the spore density was 

counted in a Thoma cell chamber and adjusted to 1E+04 spores mL-1 in malt-gelatine 

medium. Spore suspensions of Z. tritici were prepared by using a sterile cotton swab to 

transfer spores to 4 mL of 0.02% Tween20 in water. The suspension was filtered through 

two layers of gauze and spores were counted. A spore density of 2.5E+06 cells mL-1 was 

adjusted in 0.02% Tween20-water. Spore suspensions were prepared in sufficient volumes, 

calculating 1-2 mL suspension for one pot with 10 seedlings. 

Plants that had been inoculated with one isolate, were separated (one isolate per 

glasshouse trolley) and placed on a wet fleece, which was additionally covered by a 

semipermeable foil. The plants were inoculated with an airbrush (nozzle size: 0.5 mm for 

Z. tritici, 0.8 mm for P. teres) until plants were covered but no run-off was observed. After 

inoculation, seedlings on trolleys were covered with a light permeable plastic box and were 

transferred to a glasshouse chamber at 20°C and 80% humidity and 15 h light period. The 

plastic surroundings were removed after two days in the case of P. teres and after four days 

in the case of Z. tritici. 

Note that the glasshouse management optimised the lights in 2016 in glasshouse 

chambers, which were used for the cultivation of inoculated barley and wheat plants. These 

optimised light conditions (old lights: Philips Master HPI-T Plus 400W/645, new lights: DH 

Licht CHD AGRO 400W 230V) allowed higher infection pressures of Z. tritici, particularly in 

glasshouse trials conducted in the winter months. 

3.11.3.2 Fungicide application 

Fungicides were applied in a spray chamber with flat fan nozzles, which uses water amounts 

equal to 400 L ha-1. A maximum of 16 plant pots were treated at a time with 100 mL of 

fungicide solution. 

Sensitivity tests with P. teres were carried out using two different concentrations of each 

fungicide. Three SDHIs were compared in glasshouse studies on P. teres (fluxapyroxad, 

fluopyram and penthiopyrad). These three SDHIs are available as solo-formulated products, 

Imbrex® (BASF SE), Luna Privilege® (Bayer CS) and Fontelis® (DuPont). Fungicides were 

applied in full registered rate doses (125 g a.i. ha-1) or at a third of the registered rate (41.5 

g a.i. ha-1). Dilutions of formulated products were conducted in water. Three replicates per 

treatment and isolate were laid out in a fully randomised experimental design. 

Glasshouse trials with Z. tritici were conducted at full registered field rate doses of SDHIs 

and included all technical a.i.s of SDHIs that were tested in microtiter tests. Registered rates 

are 75 g a.i. ha-1 benzovindiflupyr, 100 g a.i. ha-1 bixafen, 100 g a.i. ha-1 fluopyram, 125 g 

a.i. ha-1 fluxapyroxad and isopyrazam and 300 g a.i. ha-1 penthiopyrad. It was observed that 
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precipitation of SDHIs can occur in fungicide dilutions using the standard formulation (5% 

acetone and 0.05% wettol) designated in the established protocol. Therefore, 

Agnique®AMD10 (BASF SE) was used as alternative formulation substance to avoid 

precipitation of SDHIs. SDHIs were first dissolved in DMSO (10,000 mg L-1 to 20,000 mg L-1) 

and were then diluted in 0.15% (v/v) Agnique AMD10 in water. The blank formulation (0.15% 

Agnique AMD10, 2% (v/v) DMSO) was additionally applicated in the tests to see whether 

these adjuvants show an effect on the growth of Z. tritici. In addition to technical a.i.s, the 

solo-product Imbrex® was applied in these tests. Four replicates per treatment and isolate 

were laid out in a fully randomised experimental design. 

3.11.3.3 Rating 

Infection success of both cereal pathogens was visually rated in diseased leaf area (%). 

Thereby, all leaves that were present at the time of application and inoculation were rated. 

Leaves that have evolved after the inoculation of the pathogen were not included. Diseased 

leaf area was assessed 10 dpi in the case of P. teres and 21 dpi in the case of Z. tritici. The 

efficacy (inhibition) of fungicides was calculated according to Abbott (1925):  

% efficacy= (% disease untreated - % disease treated) x 100% (% disease untreated)-1 

3.12 Competition studies of SDHI resistant isolates 

3.12.1 Competition studies in planta 

Infection behaviour of SDHI resistant isolates was studied in planta on barley seedlings cv. 

‘Astrid’ in the case of P. teres and wheat seedlings cv. ‘Riband’ in the case of Z. tritici 

(seedling age BBCH 11). Competition studies, which included several sensitive field 

isolates and resistant isolates, were performed. Mixtures that contain one resistant and one 

sensitive isolate in each mixture (1:1), were propagated together over several infection 

cycles without use of any fungicides. Spore suspensions were prepared as described in 

section 3.11.3.1. Suspensions were adjusted to 2.5E+04 spores mL-1 of P. teres and 

2.0E+06 spores mL-1 of Z. tritici. These were applied alone or were mixed in a ratio of 1:1 

with another isolate. Each pot, which had ~10 cereal seedlings, was inoculated with 2 mL 

of the spore suspension. Each isolate or mixture was inoculated to six pots. P. teres infected 

leaves were rated and harvested 10-21 days later. Z. tritici was harvested 28 days after 

inoculation. All infected leaves of each mixture/isolate were washed in 15 mL of either 

0.25% malt and 0.25% gelatine medium (P. teres) or 0.02% Tween-water (Z. tritici). 

Subsequently, spore suspensions were filtered through 2-fold gauze and were used to 

inoculate the next round of fresh plants. 
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An aliquot of 2 mL of each spore suspension (at starting point and at each propagation 

cycle) was taken to quantify alleles leading to resistance by pyrosequencing or qPCR (see 

section 3.10.3). 

In total, five competition experiments were performed. Two experiments were carried out 

on P. teres isolates, whereas the other three experiments were done on SDHI resistant 

mutants of Z. tritici. The list of isolates that were mixed in ‘fitness’ tests in the glasshouse 

can be found in Supplementary Table 42 and Table 44. In the set-up of competition studies, 

uninoculated plants were placed between different isolates/mixtures to see if there is any 

unintended spreading of isolates. All competition studies were carried out in a separate 

glasshouse chamber to avoid having fungicide treated plants from other trials inside the 

same chamber. 

 
Figure 9: Schematic procedure of competition studies in planta with different P. teres and Z. tritici 
isolates. Isolates used in mixtures are given in the results and in Supplementary Table 42 and Table 44. 

3.12.2 Generation of SDHI-resistant mutants of Z. tritici 

SDHI resistant mutants were created on YBG agar amended with fluxapyroxad (10 and 1 

mg L-1). The generation of fungicide resistant mutants of Z. tritici by selection on agar is 

facilitated by the high number of spores that are produced on artificial media compared to 

most other fungi. Five ISP2-strep plates of each parental isolate was freshly transferred 7 

days prior to the experiments. All spores, pooled from the plates, were transferred to 4 mL 

of sterile water. Total cell numbers were calculated by counting spores in a dilution 

(1:10,000 dilution) and two independent measurements. Around 1.0E+08 spores were 

plated out onto YBG agar amended with fluxapyroxad (as the formulated product, Imbrex®). 

Different SDHI sensitive field isolates and the reference isolate IPO323 served as parental 

isolates and are listed in Table 19. Putative SDHI-resistant mutants were picked from 
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growing colonies after 10-14 days of incubation at 21°C and 12 h of artificial light. Mutants 

were grown for another generation on selective media before the detection of resistance 

mechanisms was started. 

Table 19: SDHI sensitive Z. tritici isolates that were used as parental isolates for generation of SDHI 
resistant mutants. 

Name Origin Year  QoI resistance 

IPO323 Netherlands (reference isolate) 1981 no 

3718 Germany 2004 no 

2847 Ireland 2002 G143A 

3573 Ireland 2003 G143A 

3955 Germany 2005 G143A 

5821 United Kingdom 2015 F129L 

The exposure to UV-light was avoided to reduce likelihood for other random mutation to 

occur in the genome. Fungal material was directly transferred to PCR reactions (Mastermix 

used for standard PCR reaction with addition of 2.5 µL of water) by using sterile pipet tips. 

Pyrosequencing and qPCR assays, described in section 3.10.3, were used to screen known 

SNPs which can lead to SDHI resistance. In addition, some mutants were analysed by 

sequencing of the genes SdhB, SdhC and SdhD, as described in section 3.10.1. 

3.13 Studies to detect enhanced efflux of Z. tritici 

Overexpression of MDR transporters is known in Z. tritici isolates from the field (Leroux and 

Walker, 2011; Omrane et al., 2015). The Z. tritici isolates studied were additionally tested 

for such an enhanced efflux of unspecific toxic compounds. Two different methods were 

used. On the one hand, microtiter tests with tolnaftate were performed. Tolnaftate is a 

thiocarbamate antimycotic, which is used in humane medicine but not in agricultural 

systems and has a different mode of action (inhibition of squalene epoxidase in sterole 

biosynthesis) (Ryder et al., 1986) compared to the fungicide classes studied. An enhanced 

tolerance to tolnaftate, therefore, could give indication of a higher efflux of toxic compounds 

by the isolates (Leroux and Walker, 2011). The tested concentrations of tolnaftate in 

microtiter tests were 0, 0.03, 0.1, 0.3, 1, 3, 10 ,30 mg a.i. L-1. 

Z. tritici isolates were further analysed for the presence of an insertion in the promotor of 

MgMFS1 transporter. This PCR-based method was extracted from Omrane et al. (2015). 

The promotor of MgMFS1 of several SDHI resistant field isolates was amplified using KES 

2143 and KES 2144. Sizes of amplicons were analysed in a gel (1% TAE) using ethidium 

bromide. 
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Table 20: Oligonucleotides used for MgMFS1 promotor studies in Z. tritici. Primer sequences were 
extracted from Omrane et al. (2015). 

Name Sequence (5‘  3‘) Amplicon size Tm 

KES 2143 ACATGATCCCTGATCCGTTC 700 bp (without insert), 
1200 bp (with insert) 

57 
KES 2144 CGGCGACTTCTTGCTGAA 

3.14 Homology modelling 

The homology models of P. teres and Z. tritici SDH protein subunits SDH-B, SDH-C and 

SDH-D were performed by Dr. Janosch Achenbach (BASF SE) and Dr. Antje Wolf (BASF 

SE). The standard settings of the modelling tool in MOE was used to construct homology 

models (Molecular Operating Environment, Version 2010.1, Chemical Computing Group 

Inc., Montreal, Canada). As a structural template for this model, the available SDH X-ray 

structure of SDH-carboxin complex from Gallus gallus (PDB 2WQY) with a resolution of 2.1 

Å was chosen. The overall sequence identity to G. gallus for subunits B, C and D are 

63.95%, 35.5% and 35.9% for P. teres and 67.76%, 30.71% and 28.16% for Z. tritici. The 

amino acid substitutions leading to SDHI resistance were manually implemented into the 

three-dimensional structure of the reference strain protein. Alignments of the amino acid 

sequence were performed using BLOSUM62 substitution matrix. 

3.15 Bioinformatic analyses 

Oligonucleotides used for standard PCR and qPCR were designed with the programme 

FastPCR. Oligonucleotides used for pyrosequencing assays were designed using 

Pyrosequencing Assay Design Software. Blasts and alignments were made on BASF 

internal Bioinformatics site (includes NCBI data base). Colouring and virtual mutagenesis 

of homology models of P. teres and Z. tritici SDH enzymes were applied in PyMOL 

software. Reslab software was used to determine EC50 values in microtiter tests and 

inhibition values in glasshouse studies. Statistical evaluation was done with statistic 

software R. Glasshouse trials were analysed by Lagrange-Multiplier-Test (P=0.05), 

individually for each fungicide and dose rate, using logit transformation to normalise the 

data. In competition studies, the increase or decrease of mutants was tested by applying 

linear regressions. Slope of regressions (lm test) was tested (P=0.001, P=0.01, P=0.05) to 

evaluate significance of increase or decrease. Significant differences of infection rates and 

spore production of isolates were tested in an unpaired t-test (P=0.05) in comparison to 

sensitive isolates.
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4 Results 

The emergence of SDHI resistance in the two cereal pathogens P. teres and Z. tritici was 

observed. Resistant isolates of both pathogens were obtained from intensive monitoring 

programmes (‘Random monitoring’ and ‘Trial site monitoring’) which were carried out in the 

whole of Europe. Resistance mechanisms were detected and characterised for their impact 

on various SDHIs. Alignments of protein sequences and homology modelling were used to 

visualise localisation of alterations in the target enzyme of SDHIs. Quantitative detection 

systems were established to obtain further information about frequencies of resistant alleles 

in the whole Europe. In addition, the competitiveness of resistant isolates compared to wild 

types was examined and an analysis of multiple resistance mechanisms towards SDHIs 

and other fungicide classes (mainly QoI and DMIs) was carried out. In the following, both 

pathogens are depicted separately starting with P. teres. 

4.1 Emergence of SDHI resistance in Pyrenophora teres 
in Europe 

4.1.1 Detection and analysis of resistant isolates 

Isolates of P. teres were collected as air-borne conidia from different regions of Europe. 

Their sensitivity towards SDHI-fungicides has been analysed by EpiLogic since 2007. The 

sensitivity was tested in an ex vivo bioassay with detached barley leaves. This test used 

three discriminating fluxapyroxad concentrations to differentiate sensitive (-), moderately 

(+/++) and advanced (+++) resistant isolates. 

Before 2012, isolates were found to have sensitivities within the regular baseline range and 

were classified as sensitive (-). In the season 2012, two P. teres isolates from Northern 

Germany were shown to have a higher tolerance towards fluxapyroxad and were 

categorized as moderately resistant. In the following years, more isolates which exhibited 

moderate resistance towards fluxapyroxad were detected in Germany and other European 

countries. Isolates which showed an advanced resistance phenotype were first found in 

2013 in France and Germany. All ‘suspicious’ isolates sampled between 2012 and 2015, 

and some selected wild type isolates were analysed in the present study and are listed in 

Supplementary Table 37. 

An overview of the different amino acid substitutions, that were detected in SDHI resistant 

P. teres isolates obtained from ‘Random monitoring’, is given in Table 21. 
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Table 21: Overview of amino acid substitutions in P. teres isolates from European countries. Isolates 
were obtained from ‘Random monitoring’ in Europe from 2012 to 2015. 

SDH-variant Years of 
detection 

Codon WT >Codon 
Sdh mutant 

Number of 
detected 
isolates 

B-H277Y 2012 to 2015 CAC>TAC 27 

C-S73P 2015 TCG>CCG 1 

C-N75S* 2014 to 2015 AAC>AGC 18 

C-G79R 2013 to 2015 GGT>CGT 134 

C-H134R 2013 to 2015 CAC>CGC 29 

C-S135R 2013 to 2015 AGC>AGA(G) 9 

D-D124N 2013 GAC>AAC 1 

D-D124E 2013 to 2015 GAC>GAA 6 

D-H134R 2013 to 2015 CAC>CGC 8 

D-G138V 2015 GGT>GTT 2 

D-D145G 2013 to 2015 GAT>GGT 12 

D-E178K 2014 GAG>AAG 3 

* C-N75S was first detected in an additional ‘Trial site monitoring’ of  

BASF SE in 2013; in ‘Random monitoring’ it was first found in 2014 
 

Amplification of the target genes (SdhB, SdhC and SdhD) and sequencing using specific 

P. teres oligonucleotides of SdhB (KES 1825 and KES 1837), SdhC (KES 1827 and KES 

1828) and SdhD (KES 1833 and 1834) genes were performed. All sequencing reactions 

were carried out using both primers, forward and reverse, to obtain two reads of each 

sequence. DNA sequences were virtually spliced by alignments with cDNA sequences 

available on genome database of P. teres. In total, 12 SDH-variants were detected in 

resistant isolates of P. teres in European countries. Sequenced Sdh genes of isolates 

showed only one mutation in each isolate, never two or more Sdh mutations in combination. 

Not all isolates were used to sequence whole SdhB, SdhC and SdhD genes. Isolates from 

2015 were mainly analysed by pyrosequencing to detect SDHI resistance mechanisms. 

4.1.2 Impact of mutations leading to SDHI resistance in P. teres 
isolates 

The sensitivity of SDHI sensitive and SDHI resistant P. teres isolates was measured in 

microtiter tests and glasshouse trials to analyse the effect of different mutations on several 

SDH-inhibiting fungicides. 

4.1.2.1 Sensitivity of P. teres isolates in vitro 

The sensitivities of P. teres isolates, which showed a mutation in the Sdh genes, were 

determined in microtiter tests against a range of commercially available SDHI fungicides. 

The compounds bixafen, fluxapyroxad, isopyrazam, penthiopyrad, benzovindiflupyr and 

fluopyram are foliar-applied SDHI fungicides that are available on the European market for 

the control of net blotch in barley. The pooled results from three individual experiments are 

illustrated in Figure 10. The EC50 values of all tested isolates (20 wild type isolates and 57 

Sdh mutant isolates with 10 different genotypes) ranged from 0.003 to 1.649 mg bixafen 
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L−1, 0.003 to 0.820 mg fluxapyroxad L−1, 0.003 to 0.971 mg benzovindiflupyr L−1, 0.011 to 

4.133 mg isopyrazam L−1, 0.010 to 9.297 mg penthiopyrad L−1 and 0.006 to 0.454 mg 

fluopyram L−1. The sensitive isolates (SDH wild type enzyme), including isolates from 1998 

to 2014 collected in France, Germany, the United Kingdom, Poland, Hungary and Belgium, 

showed a relatively low range of EC50 values varying from 0.003 to 0.009 mg fluxapyroxad 

L−1, 0.003 to 0.007 mg bixafen L−1, 0.003 to 0.019 mg benzovindiflupyr L−1, 0.011 to 0.056 

mg isopyrazam L−1, 0.010 to 0.061 mg penthiopyrad L−1 and 0.006 to 0.055 mg fluopyram 

L-1. The highest EC50 values measured for all SDHIs were obtained for isolates carrying the 

amino acid substitutions to arginine in SDH-C and SDH-D subunit, C-H134R, C-G79R, 

C-S135R and D-H134R. The substitution with the greatest impact on the sensitivity of 

SDHIs, with exception of penthiopyrad, was C-H134R, showing mean EC50 values of 0.441 

mg fluxapyroxad L−1, 0.460 mg bixafen L−1, 0.751 mg benzovindiflupyr L−1, 2.500 mg 

isopyrazam L−1, 5.755 mg penthiopyrad L−1 and 0.417 mg fluopyram L−1. The substitution 

causing the second largest impact on the sensitivity of fluxapyroxad and bixafen, and the 

largest on penthiopyrad was C-G79R with EC50 values of 0.440, 0.396 and 6.603 mg a.i. 

L−1. In comparison, the isolates carrying C-S135R exhibited the second highest impact on 

benzovindiflupyr and isopyrazam sensitivities, with mean EC50 values of 0.612 and 1.478 

mg a.i. L−1, respectively. The substitutions, D-E178K, B-H277Y and D-D124N/E showed the 

lowest impact on all SDHIs tested. 

At the time these experiments were performed, only one isolate of D-D124N and D-D124E 

have been available. In Figure 10, these two substitutions were taken together for the 

calculation of mean EC50 value. However, D-D124E in comparison to D-D124N showed a 

slightly higher impact on the sensitivity to most SDHIs. EC50 values of the D-D124E mutant 

were 0.054 mg fluxapyroxad L−1, 0.045 mg bixafen L−1, 0.073 mg benzovindiflupyr L−1, 0.159 

mg isopyrazam L−1, 0.299 mg penthiopyrad L−1 and 0.138 mg fluopyram L−1 and EC50 values 

of D-D124N mutants were shown to be 0.025 mg fluxapyroxad L−1, 0.037 mg bixafen L−1, 

0.092 mg benzovindiflupyr L−1, 0.125 mg isopyrazam L−1, 0.279 mg penthiopyrad L−1 and 

0.108 mg fluopyram L−1. Some substitutions, such as C-N75S and D-D145G, were shown 

to cause an intermediate increase of EC50 values compared to wild types.  

Different SDH amino acid substitutions confer different levels of resistance to SDHIs. 

However, regarding each substitution separately, all SDHIs tested in microtiter tests are 

affected in a similar manner. In microtiter tests, the highest EC50 values were obtained for 

isolates carrying SDH-variants, C-G79R, C-H134R and C-S135R, followed by D-H134R. 

Medium levels of resistance were observed for isolates carrying C-N75S, D-D124E and low 

levels of resistance for isolates having B-H277Y, D-D145G and D-D124N. It was 

demonstrated that all SDHI fungicides show a similar response to different SDH alterations 

which implies cross-resistance of resistant isolates to all SDHIs tested. 
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Figure 10: SDHI sensitivity of P. teres isolates carrying different mutations in the Sdh genes. Photometric measurements (OD405) detecting mycelial growth of P. teres 
in microtiter plates were used to determine EC50 values (probit calculation) of SDHI fungicides. Water control and seven concentrations (up to 10 mg a.i. L-1) of bixafen, 
fluxapyroxad, benzovindiflupyr, isopyrazam, penthiopyrad and fluopyram applied in four replicates were mixed with spore suspensions of Sdh wild type isolates and several 
Sdh mutated isolates. SDH amino acid substitution, the number of isolates and standard errors (some standard errors are smaller than the symbol itself) calculated from three 
individual experiments, are given. These results have been partially published recently (Rehfus et al., 2016, Figure 3).
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The RF values and the cross-resistance pattern are given in Table 22. RF values ranged 

from 0.25 to 204, dependent on the SDH-variant and the SDHI that was observed. 

Resistance factors were calculated as ratios of EC50 of resistant to EC50 of sensitive isolates 

and are dependent on wild type activity of compounds and the set of wild types that are 

used. Fungicides (in Figure 10 and Table 22) are sorted due to their intrinsic activity towards 

SDHI sensitive isolates. Bixafen and fluxapyroxad had highest activity on wild type isolates 

of P. teres, followed by benzovindiflupyr, isopyrazam, penthiopyrad and fluopyram. 

Although, RF values of fluopyram were lower in comparison to other SDHIs, the 

classification of mutants was similar. Fluopyram in generell was shown to behave cross-

resistant to other SDHIs. Low RF values of fluopyram were mainly driven by low activities 

of this substance towards wild type isolates of P. teres compared to other SDHIs tested. 

One exception of cross-resistance was observed in P. teres in the case of B-H277Y 

mutants, which showed a more sensitive phenotype towards fluopyram than wild type 

isolates. B-H277Y mutants, however, only showed low resistance factors in case of other 

SDHIs tested. 

Table 22: Resistance factors of P. teres isolates showing different SDH-variants towards SDHIs. 
Resistance factors were calculated as ratios of mean EC50 of resistant isolates / EC50 of sensitive isolates shown 
in Figure 10. Bixafen (bixa), fluxapyroxad (fluxa), benzovindiflupyr (benzo), isopyrazam (isopyra), penthiopyrad 
(penthio) and fluopyram (fluo) are sorted due to their intrinsic activity on wild type isolates (left to the right). 
Colours indicate the strength of resistance with RF values < 0 white (no resistance), ≤ 20 bright yellow, 21 to 50 
dark yellow, 51 to 100 orange, and >100 red. 

 RF values 

SDH-variants Bixa Fluxa Benzo Isopyra Penthio Fluo 

D-E178K 5 14 6 5 14 3 

B-H277Y 9 14 9 6 13 0.25 

D-D124N/E 9 11 4 6 9 3 

C-N75S 14 20 24 19 34 5 

D-D145G 18 14 12 8 6 2 

D-H134R 29 32 24 23 67 3 

C-S135R 35 51 36 55 109 7 

C-G79R 84 86 31 37 234 7 

C-H134R 97 86 45 93 204 11 

4.1.2.2 Sensitivity of P. teres isolates in planta 

In microtiter tests, it could be confirmed that different SDH-variants of P. teres have an 

influence on the SDHI efficacy and cause a range of diverse sensitivity losses. Spores in a 

microtiter plate are directly exposed to high concentrations of fungicides without considering 

the substance behaviour in interaction with plants. The efficacy of three solo SDHI 

compounds on Sdh mutated isolates was tested under controlled conditions in the 

glasshouse (Figure 11). Fontelis® (tech a.i. penthiopyrad), Imbrex® (tech a.i. fluxapyroxad) 

and Luna Privilege® (tech a.i. fluopyram) are commercially available SDHI solo fungicides 

either used in speciality crops (fluopyram and penthiopyrad) and/or cereal crops 

(fluxapyroxad and penthiopyrad). In Figure 11 A, inhibition levels of compounds are shown 

at full doses of the registered field rates (125 g a.i. ha-1). SDHIs solo compounds controlled 

wild type isolates of P. teres with a mean inhibition of 92% fluopyram, 98% fluxapyroxad 
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and 95% penthiopyrad when the fungicides were applied one-day preventative. The isolates 

carrying an SDH amino acid exchange showed a broad range of inhibition levels, which 

depended on the SDH-variant, the product that was used, and the applied dose of 

fungicides. 

At full rates, significant efficacy losses of all three compounds were observed for SDH-

variants showing C-G79R, C-H134R, D-D124E and D-H134R. No significant or weak 

reduction of inhibition levels was observed for isolates having B-H277Y, D-D124N and 

D-D145G. However, isolates carrying C-N75S and C-S135R exchange were fully controlled 

by fluxapyroxad at full doses. Fluopyram and penthiopyrad showed significant efficacy 

losses regarding C-N75S and C-S135R mutants even at full doses. Inhibition levels at a 

dose equal to a third of the full rate of the three SDHIs are given in Figure 11 B. Here, the 

impact of SDH-variants on SDHI efficacy was more pronounced but SDH-variants showed 

the same ranking as with the full doses. 

Regarding the impact of different SDH-variants, results from microtiter tests were confirmed 

in glasshouse studies. Isolates which carry amino acid substitutions C-G79R and C-H134R 

had the highest impact on the SDHI efficacy, whereas B-H277Y, D-D145G and D-D124N 

had no significant or only a low impact on SDHI efficacies. The observation from microtiter 

tests that fluopyram shows a weaker activity against wild type isolates compared to other 

SDHIs was also visible in glasshouse tests. At a third rate, wild type isolates were inhibited 

by fluopyram to 81%, by fluxapyroxad to 97% and by penthiopyrad to 85%. Fluopyram 

showed a slightly better activity on B-H277Y mutants (85 % inhibition) compared to wild 

types, which had been also seen in microtiter tests. Fluxapyroxad, which showed an RF of 

14 in the case of B-H277Y in microtiter, was also not significantly affected by this exchange, 

even at a third of the full rate of the fungicide. Therefore, RF values evaluated in microtiter 

tests do not necessarily allow conclusions on the efficacy in planta. However, the ranking 

of SDH-variants with respect to their impact on SDHI efficacies were shown to be similar in 

both glasshouse and microtiter tests. 
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Figure 11: Efficacy of fluopyram (Luna Privilege®), fluxapyroxad (Imbrex®) and penthiopyrad (Fontelis®) against SDHI sensitive and resistant 
isolates of P. teres in glasshouse experiments. Water control and different treatments were applied in three replicates one day before inoculation of barley 
cv. Astrid (BBCH 11) with Sdh wild type (n=2) and Sdh mutated isolates including SDH-variants: B-H277Y, C-N75S, C-G79R, C-H134R, C-S135R (each n=2) 
and D-D124N, D-D124E, D-H134R, D-D145G (each n=1). A: Box-and-Whiskers of inhibition levels [%] of SDHIs when applied at full doses of registered field 
rates (125.0 g a.i. ha-1). B: Box-and-Whiskers of inhibition levels [%] of SDHIs when applied at a third of the registered field rate (41.7 g a.i. ha-1). Within a 
fungicide, same letters on top of Box-and-Whiskers mean that they do not differ significantly according to Lagrange multiplier to range test (P=0.05).
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4.1.3 Localisation of amino acid exchanges in the SDH enzyme 

4.1.3.1 Alignments of P. teres SDH amino acid sequences to other 
phytopathogenic fungi 

SDH-B, SDH-C and SDH-D amino acid sequences of P. teres, SDH wild type and SDHI 

resistant isolates, were aligned to sequences of other phytopathogenic fungi. The fungi 

included are important plant pathogens that cause serious damage in the production of 

speciality (e.g. fruit, vine, vegetables) or arable (e.g. soy beans, potatoes, cereals) crops. 

P. teres sequences were obtained in the present study, sequences of other plant pathogens 

were extracted from NCBI or BASF internal sequence database. The alignment of SDH-B 

sequences revealed that the SDH-B subunit shows a high conservation of amino acids. The 

sequence alignment in Figure 12 shows that histidine at position 277, which can be 

exchanged to tyrosine in resistant isolates of P. teres, is highly conserved amongst other 

phytopathogenic fungi. Sequence alignments including bacteria, mammals and plants 

releaved that this histidine is highly conserved within all kingdoms of living organisms 

(Cecchini, 2003).  

 
Figure 12: Alignment of partial SDH-B amino acid sequence of P. teres and other phytopathogenic fungi. 
Sequences of ascomycetous and basidiomycetous fungi are named by species EPPO code (PYRNTE: 
Pyrenophora teres, ALTESO: Alternaria solani, BOTRCI: Botrytis cinerea, SEPTTR: Zymoseptoria tritici, 
VENTIN: Venturia inaequalis, SCLESC: Sclerotinia sclerotiorum, PHAKPA: Phakospora pachyrhizi). In the case 
of P. teres, a wild type sequence and the sequence of an SDH-B H277Y mutant is included. The numbers of 
amino acids that are given in the figure are based on the sequence length of P. teres. 
Colour code: > 80% conserved, ≥ 50% conserved, ≥ 50% similar, not conserved. Sequence align-
ments were made by the multiple alignment tool on bioinformatics webpage of BASF SE, which uses muscle-
calculation. 

In Figure 13, the alignment of partial SDH-C amino acid sequences of sensitive and 

resistant isolates of P. teres and other phytopathogenic fungi is shown. Amino acids G79 

and H134 of P. teres are conserved amongst other fungi. Other positions, such as N75 and 

S135, which are altered in some resistant isolates of P. teres, are conserved when 

compared to most fungi but show exceptions, as for example S. sclerotiorum (F75) and 

P. pachyrhizi (T135). Position 73, where S73P exchange can occur in P. teres, shows no 

conservation in different fungal species. 
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Figure 13: Alignment of partial SDH-C amino acid sequence of P. teres and other phytopathogenic fungi. 
Sequences of ascomycetous and basidiomycetous fungi are named by species EPPO code. In case of P. teres, 
a wild type sequence and the sequences of SDH-C S73P, N75S, G79R, H134R and S135R mutants are 
included. The numbers of amino acids that are given in the figure are based on the sequence length of P. teres. 
Colour code:      > 80% conserved, ≥ 50% conserved, ≥ 50% similar,  not conserved. Sequence 
alignments were made by the multiple alignment tool on bioinformatics webpage of BASF SE, which uses 
muscle-calculation. 

The alignment of SDH-D amino acid sequences of mutants of P. teres and other fungi is 

given in Figure 14. Here, most exchanges found in SDHI resistant isolates of P. teres are 

located at a position which is completely conserved over all fungi investigated. There is only 

one exception, D-E178K, a position at which P. pachyrhizi carries an asparagine instead of 

glutamic acid. 

 
Figure 14: Alignment of partial SDH-D amino acid sequence of P. teres and other phytopathogenic fungi. 
Sequences of ascomycetous and basidiomycetous fungi are named by species EPPO code (instead of ALTESO 
as in Figure 12 and Figure 13, ALTEAL (A. alternata) sequence is shown). In case of P. teres, a wild type 
sequence and the sequences of SDH-D D124N/E, H134R, G138V, D145G and E178K mutants are included. 
The numbers of amino acids that are given in the figure are based on the sequence length of P. teres SDH. 
Colour code:      >80% conserved,      ≥ 50% conserved,     ≥ 50% similar,      not conserved. Sequence alignments 
were made by the multiple alignment tool on bioinformatics webpage of BASF SE, which uses muscle-
calculation. 
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4.1.3.2 Homology modelling of the SDH enzyme of P. teres 

Amino acid substitutions that were detected in SDHI resistant P. teres isolates were 

analysed as to their localisation within the SDH enzyme. Identification of locations of SDH-

variants B-H277Y, C-S73P, C-N75S, C-G79R, C-H134R, C-S135R, D-D124N/E, D-H134R, 

D-G138V, D-D145G and D-E178K were carried out using a homology model of the P. teres 

SDH enzyme (Figure 15). SDH modelling of the wild type enzyme of P. teres was performed 

by Dr. Janosch Achenbach (BASF SE), whereas mutagenesis and illustration of the SDH 

model was part of the present work. Modelling was based on the X-ray structure of Gallus 

gallus (PDB 2WQY) because an X-ray structure of the P. teres SDH was not available. In 

the SDH homology model, carboxin is indicated at the binding site of SDHIs and haem b 

group is depicted, which is naturally complexed by highly conserved histidine residues of 

SDH-C and SDH-D chains (Cecchini, 2003; Horsefield et al., 2004).  

 
Figure 15: Localisation of amino acid substitutions leading to SDHI resistance in homology model of 
P. teres succinate dehydrogenase enzyme. Homology model of SDH subunits SDH-B, SDH-C and SDH-D 
is based on X-ray from G. gallus (PDB 2WQY) with the docked pose of carboxin in ubiquinone-binding pocket 
and complexed haem b group between SDH-C and SDH-D. SDH-B (orange), SDH-C (lilac) and SDH-D (blue) 
subunits are shown in cartoon style (helices denote α-helical secondary structures and ribbons denote 
β-sheets). Carboxin and haem b are depicted in ball-and-stick models showing CPK colouring (carbon=grey, 
nitrogen=blue, oxygen=red, sulfur=yellow, iron=dark orange). Substituted amino acid residues of B-H277Y, 
C-S73P, C-N75S, C-G79R, C-H134R, C-S135R, D-D124E, D-H134R, D-G138V, D-D145G and D-E178K are 
depicted in sphere/stick models showing CPK colouring except for carbon atoms, which are shown in the colour 
of corresponding subunit. Hydrogen atoms are not shown in any of the molecules. A: Overview of positions of 
amino acid substitutions in SDH-B, SDH-C and SDH-D subunits of SDH enzyme. Alterations are found in direct 
neighbourhood of the Q-site such as B-H277Y, C-S73P and D-D145G, in close neighbourhood to haem b group 
in case of C-N75S, C-G79R, C-H134R, C-S135R, D-H134R and D-G138V or in far distance to both sites such 
as D-D124N/E (D-D124E shown) and D-E178K. B: Closer view to alterations located near Q-site and haem b 
group. 

With respect to their localisation within the SDH enzyme, substitutions can be found at 

different positions in SDH-B, SDH-C and SDH-D subunits. Amino acids at positions 277 in 

SDH-B subunit, 73 in SDH-C subunit and 145 of SDH-D subunit are placed in the direct 

vicinity of the Q-site (SDHI binding site). Amino acids in subunit SDH-C at positions 75, 79, 
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134 and 135, and in subunit SDH-D at positions 134 and 138 are situated near the haem b 

group within SDH complex. Two further substitutions in far distance to both sides (Q-site 

and haem b group) in subunit D, at positions 124 and 178, were detected.  

The distance of the substituted amino acids to carboxin and haem b group is given in Table 

23. Since the P. teres SDH model was aligned to the chicken SDH model, length 

specifications are just estimations to illustrate positions within the enzyme. Amino acid 

arginine in the case of C-G79R mutants is much bulkier compared to glycine and makes 

the original position of haem b unlikely (0 Å of arginine to haem b implies a ‘clash’ of arginine 

with haem b). Interestingly, the histidines that coordinate the central iron atom of haem b 

group can be substituted to arginine in SDHI resistant isolates of P. teres (C-H134R and 

D-H134R). Arginine is not known to coordinate haem groups, which would mean the loss 

of one coordination partner for haem b in case of these mutants. 

Table 23: Distance of amino acid substitutions in P. teres to carboxin binding site and haem b group. 
Nearest atoms of both carboxin and haem b group to altered amino acid residue were calculated in the 
measurement tool of PyMol. Length measurements can be found in the Supplementary Material, Figure 48. 

SDH-variant Distance to 
carboxin [Å] 

Distance to 
haem b group [Å] 

B-H277Y 1.3 3.4 

C-S73P 3.1 6.6 

C-N75S 3.9 4.3 

C-G79R 6.9 0 

C-H134R 6.9 2.1 

C-S135R 13.9 2.4 

D-D124E 26.9 12.3 

D-H134R 9.6 2.0 

D-D145G 4.5 7.5 

D-E178K 36.5 21.8 

4.1.4 Frequency of SDHI resistant isolates of P. teres in Europe 

SDHI resistant isolates of P. teres were sampled in Europe over a period of four years 

starting in 2012 in ‘Random monitoring’. Sequencing of the Sdh genes of resistant isolates 

showed a range of different mutations which caused amino acid variations in the SDH 

enzyme. In addition to ‘Random monitoring’, quantitative pyrosequencing assays were 

established to detect the frequency of genotypes leading to SDHI resistance directly from 

DNA pools of net blotch infected leaf samples. These leaf samples were collected mainly 

from trial sites but also from commercial fields all over Europe and were sampled by field 

technicians of BASF SE, farmers or governmental institutions and universities. 

4.1.4.1 ‘Random monitoring’ 

The ‘Random monitoring’ included 175 isolates from 2012, 248 isolates from 2013, 245 

isolates from 2014 and 253 isolates from 2015. During this work, two isolates from 2012, 

72 isolates from 2013, 118 isolates from 2014 and 138 isolates from 2015 were analysed. 
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Thereof, the two isolates in 2012, 62 isolates in 2013, 74 isolates in 2014 and 113 isolates 

in 2015 showed target-site mutations in the Sdh genes.  

In 2012 in a region between Rostock and Lübeck in Germany, the first two SDHI resistant 

isolates were detected carrying B-H277Y exchange (Figure 16). Isolates collected in other 

European countries were shown to be fully sensitive towards SDHIs. 

 
Figure 16: Occurence of SDH-variants leading to SDHI resistance in isolates of P. teres collected in 
‘Random monitoring’ from various European countries in 2012. Colour code of SDH-variants and the 
number of isolates are given in the figure. The size of the disc represents the number of isolates and the location 
of the disc indicates the origin of collected isolates. Isolates were sampled in Ireland (IE) (n=3), the United 
Kingdom (UK) (n=23), in France (FR) (n=64), Belgium (BE) (n=10), Germany (DE) (n=68) and Denmark (DK) 
(n=7). 

A strong increase in SDHI resistance in P. teres to 25% of the sampled isolates was 

observed in 2013 (Figure 17). SDHI-resistant isolates were found in France, Germany, the 

United Kingdom, Belgium and Denmark. In France, 14% and in Germany 44% of all 

sampled isolates showed target-site mutations in the Sdh genes. Within insensitive isolates 

in 2013, a range of different mutations in Sdh genes was found leading to substitutions such 

as B-H277Y, C-G79R, C-H134R, C-S135R, D-D124N and D-D124E, D-H134R and 

D-D145G. The most frequent amino acid exchange detected was found to be C-G79R, 

whereas other SDH changes occurred at lower frequencies. Isolates collected from 

Sweden, Poland, Czech Republic, Hungary and Italy were shown to be SDHI sensitive. 
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Figure 17: Occurence of SDH-variants leading to SDHI resistance in isolates of P. teres collected in 
‘Random monitoring’ from various European countries in 2013. Colour code of SDH-variants and the 
number of isolates are given in the figure. The size of the disc represents the number of isolates and the location 
of the disc indicates the origin of collected isolates. Isolates were sampled in the United Kingdom (UK) (n=28), 
in France (FR) (n=50), Belgium (BE) (n=10), Germany (DE) (n=80), Denmark (DK) (n=25), Sweden (SE) (n=15), 
Poland (PL) (n=10), Czech Republic (CZ) (n=10), Hungary (HU) (n=10) and Italy (IT) (n=10). 

The distribution and frequency of insensitive isolates of P. teres in Europe for the year 2014 

is given in Figure 18. A further increase in SDHI-resistant P. teres isolates from 25% in 2013 

to 30% in 2014 was observed in Europe (see Figure 20). In contrast to 2013, isolates 

sampled in 2014 from the United Kingdom and Denmark were sensitive towards SDHIs. In 

most northern and eastern countries, such as Denmark, Poland and Croatia, no SDHI 

resistant isolates of P. teres were detected in 2014. In Sweden, one isolate carrying C-G79R 

exchange was observed. Highest proportion of SDHI-resistant isolates were collected in 

France, Germany and Belgium. Large regional differences were found with the highest 

frequencies of resistant isolates in northern parts of France and Germany. In Germany, only 

a slight increase of resistant isolates from 44% in 2013 to 47% in 2014 was observed, 

whereas in France a significant increase in SDHI-resistant isolates from 14% in 2013 to 

70% in 2014 was found. In 2014, there was an increase in the frequency of other SDH-

variants compared to C-G79R. In Germany, C-G79R was found in a lower number of 

isolates compared to 2013, and the frequency of amino acid exchange D-D145G increased 

to 12% in isolates sampled. In France, the frequency of isolates carrying C-G79R increased 

in 2014 to 41% compared to the year 2013. Besides C-G79R, C-N75S, with a frequency of 

16% in France, gained importance in 2014. A new mutation which caused D-E178K was 

observed in a region from central France. 
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Figure 18: Occurence of SDH-variants leading to SDHI resistance in isolates of P. teres collected in 
‘Random monitoring’ from various European countries in 2014. Colour code of SDH-variants and the 
number of isolates are given in the figure. The size of the disc represents the number of isolates and the location 
of the disc indicates the origin of collected isolates. Isolates were sampled in Ireland (IE) (n=10), the United 
Kingdom (UK) (n=50), in France (FR) (n=55), Belgium (BE) (n=5), the Netherlands (NL) (n=10), Germany (DE) 
(n=65), Denmark (DK) (n=10), Sweden (SE) (n=10), Poland (PL) (n=20) and Czech Republic (CZ) (n=10). These 
results were published recently (Rehfus et al., 2016, Figure 8). 

SDHI resistant isolates of P. teres and their frequency in Europe in the year 2015 are given 

in Figure 19. In France, the most frequent amino acid substitution was shown to be C-G79R. 

In contrast, isolates collected from Northern-Germany showed a higher diversity of SDH-

variants, with C-H134R, C-G79R, D-D124E and B-H277Y being the most frequent. In 

addition, a new SDH-C variant, C-S73P, was found. In the UK, only eight isolates were 

collected in 2015 whereof five isolates showed SDHI resistance. These isolates carried 

mutations leading to C-N75S, C-G79R, D-H134R and a new variant, namely D-G138V. 

Isolates collected in countries such as Poland, Italy and the Netherlands were shown to be 

fully sensitive towards SDHIs. A low frequency of C-G79R mutants were detected in 

Denmark and Sweden in 2015. 
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Figure 19: Occurence of SDH-variants leading to SDHI resistance in isolates of P. teres collected in 
‘Random monitoring’ from various European countries in 2015. Colour code of SDH-variants and the 
number of isolates are given in the figure. The size of the disc represents the number of isolates and the location 
of the disc indicates the origin of collected isolates. Isolates were sampled in the United Kingdom (UK) (n=8), in 
France (FR) (n=80), the Netherlands (NL) (n=5), Germany (DE) (n=95) and Denmark (DK) (n=15), Sweden (SE) 
(n=10), Poland (n=15) and Italy (n=15). Other SDH-variants than that listed in the figure were C-S73P (n=1) 
collected in Germany and D-G138V (n=2) collected in UK and France. 

In Figure 20, an overview of the frequency of SDHI resistant isolates over all the years in 

Europe is given. In ‘Random monitoring’, an increase of SDHI resistant isolates has been 

observed since 2012. In 2013, 25% of all collected isolates showed an alteration in the Sdh 

genes. In 2014, this proportion raised to 30% and to 45% in the year 2015 (Figure 20 A). In 

the years 2013 to 2015, the most frequent amino acid substitution was C-G79R, present in 

>50% of all resistant isolates. However, in 2014 and 2015, significant proportions showed 

other alterations, such as C-N75S, C-H134R and D-D145G. 
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Figure 20: Frequency of SDH amino acid substitutions leading to SDHI resistance in P. teres in Europe 
from 2012 to 2015. Colour code of SDH-variants and the number of isolates are given in the figure. A: Increase 
of SDHI resistant isolates and corresponding SDH-variants collected in ‘Random Monitoring’ in many European 
countries from 2012 to 2015. B: Frequency of SDH-variants within SDHI resistant isolates collected in ‘Random 
Monitoring’ in countries such as France, the United Kingdom, Germany, Belgium, Denmark and Sweden. 

4.1.4.2 Field samples 

Sequence information of sensitive and resistant isolates of P. teres were used to establish 

quantitative pyrosequencing assays. Pyrosequencing assays for the detection of B-H277Y, 

C-N75S, C-G79R, C-H134R, C-S135R, D-D134N/E, D-H134R, D-D145G and D-E178K 

variants were then used to determine the frequency of alleles leading to SDHI resistance in 

infected leaf samples. Assays to detect C-N75S and C-G79R are sequenced in 5’3’ 

orientation, whereas all other assays are designed forward in a 3’5’ sequencing 

orientation. One sample included 20 to 30 net-blotch infected leaves, which had been 

randomly collected within a field at each site. DNA was extracted from 20 net blotch lesions 

of these leaves at each site and was analysed.  

The frequency of sensitive alleles (‘SDH wild type’ as it is referred to in the figures) was 

calculated by adding the frequency of different resistance alleles and substraction from 

100%. Studied SNPs should represent the main proportion of alleles leading to SDHI 

resistance. However, alterations C-S73P and D-G138V (first detected in 2015 in a low 

number of isolates) are not covered by pyrosequencing assays. 

The frequencies of alleles leading to SDHI resistant phenotypes are shown in Figure 21 in 

an overview for the whole of Europe in the year 2014. In 2014, 243 samples were taken 

from untreated plots from trial sites or commercial fields of 17 different countries. SNPs, 

which are known to cause SDHI resistance, were detected in France, Germany, Belgium 

and Denmark. However, frequencies were highest in Northern-France and the middle and 

northern parts of Germany. In one sample from Denmark, low frequencies of the allele, 

which causes C-G79R variant, and in another sample, low frequencies of D-D124E, were 
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observed. In all other countries, pyrogrammes showed 100% wild type sequence in all 

analysed samples. 

 
Figure 21: Frequency of genotypes causing SDHI resistance in P. teres collected in ‘Field monitoring’ 
from various European countries in 2014. Net blotch infected leaf samples (one sample includes a pool of 
20 infected leaves randomly collected from one site) were taken from commercial sites and from untreated plots 
of trial sites. Frequency of alleles leading to SDHI resistance was measured using quantitative pyrosequencing. 
Colour code of SDH-variants and the number of samples are given in the figure. The size of the disc represents 
the number of analysed samples and the location of the disc indicates the origin of collected leaf samples. 
Samples are taken from Ireland (IE) (n=3), the United Kingdom (UK) (n=6), France (FR) (n=82), Spain (ES) 
(n=3), Belgium (BE) (n=2), Germany (DE) (n=57), Denmark (DK) (n=21), Sweden (SE) (n=12), Finland (FI) 
(n=20), Norway (NO) (n=1), Latvia (LV) (n=13), Poland (n=10), Czech Republic (CZ) (n=3), Italy (n=2), Ukraine 
(UA) (n=6), Romania (RO) (n=2) and Bulgaria (BG) (n=1). 

Frequencies of resistance alleles in samples from 2015 are given in Figure 22. In 2015, 261 

samples from 18 different countries were analysed. The situation in 2015 was comparable 

to that in 2014. The highest proportion of SDHI resistant genotypes were found in France 

and Germany. However, altered alleles were also observed in low frequencies in southern 

regions of both countries. In addition, the frequency of resistant genotypes in Belgium 

increased in 2015 to 50% of resistant alleles. Low frequencies were also observed in the 

United Kingdom for the first time in ‘Field monitoring’. In one Italian sample, a low frequency 

of C-G79R was shown. All other countries, including Denmark, were shown to have 

sensitive populations. 



Results 73 

 

 

 
Figure 22: Frequency of genotypes causing SDHI resistance in P. teres collected in ‘Field monitoring’ 
from various European countries in 2015. Net blotch infected leaf samples (one sample includes a pool of 
20 infected leaves randomly collected from one site) were taken from commercial sites and from untreated plots 
of trial sites. Frequency of alleles leading to SDHI resistance was measured using quantitative pyrosequencing. 
Colour code of SDH-variants and the number of samples are given in the figure. The size of the disc represents 
the number of analysed samples and the location of the disc indicates the origin of collected leaf samples. 
Samples are taken from Ireland (IE) (n=5), the United Kingdom (UK) (n=16), France (FR) (n=115), Spain (ES) 
(n=5), Belgium (BE) (n=5), Germany (DE) (n=14), Denmark (DK) (n=16), Sweden (SE) (n=17), Finland (FI) 
(n=10), Latvia (LV) (n=3), Poland (n=6), Czech Republic (CZ) (n=4), Italy (n=5), Hungary (HU) (n=3), Slovakia 
(SK) (n=1), Ukraine (UA) (n=19), Romania (RO) (n=5) and Bulgaria (BG) (n=8). These results were published 
recently (Rehfus et al., 2017, Figure 1). 

In 2016, 183 samples from 19 different countries were analysed. The overview of the 

different genotypes found in infected leaf samples from European countries in 2016 is given 

in Figure 23. Countries which showed high levels of mutated alleles in the 2014 and 2015, 

such as France, Germany and Belgium, were also found to have highest frequencies of 

these genotypes in 2016.  

In the United Kingom, low frequencies of C-H134R (12% in one region), C-S135R and B-

H277Y (<5% in a region, which consisted of 9 samples) were detected. In contrast to other 

countries with SDHI resistant variants, no C-G79R was detected in the United Kingdom. In 

Poland, low frequencies of resistance alleles (B-H277Y and D-D145G) were detected in 

2016 for the first time. 
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Figure 23: Frequency of genotypes causing SDHI resistance in P. teres collected in ‘Field monitoring’ 
from various European countries in 2016. Net blotch infected leaf samples (one sample includes a pool of 
20 infected leaves randomly collected from one site) were taken from commercial sites and from untreated plots 
of trial sites. Frequency of alleles leading to SDHI resistance was measured using quantitative pyrosequencing. 
Colour code of SDH-variants and the number of samples are given in the figure. The size of the disc represents 
the number of analysed samples and the location of the disc indicates the origin of collected leaf samples. 
Samples are taken from Ireland (IE) (n=5), the United Kingdom (UK) (n=21), France (FR) (n=41), Spain (ES) 
(n=3), Belgium (BE) (n=2), Germany (DE) (n=20), Denmark (DK) (n=20), Sweden (SE) (n=10), Finland (FI) 
(n=10), Estonia (EE) (n=1), Latvia (LV) (n=2), Lithuania (LT) (n=5), Poland (n=10), Czech Republic (CZ) (n=1), 
Italy (n=3), Hungary (HU) (n=3), Slovakia (SK) (n=4), Ukraine (UA) (n=10), Romania (RO) (n=3) and Bulgaria 
(BG) (n=9). 

In isolates obtained from ‘Random monitoring’, SDH-variant D-D145G was only found in 

Germany (see section 4.1.4.1). In accordance to that, the allele which causes D-D145G 

was also mainly detected in Germany in the ‘Field monitoring’. In 2015, D-D145G was 

additionally detected in low frequencies in one sample from an eastern region in France. 

The frequency of alleles, shown to cause SDHI resistance, is given in an overview in Figure 

24. Here, all field samples which had been analysed in the years 2014 to 2016 are included. 

The proportion of resistance alleles in all samples from Europe was 26.2% in 2014, 27.4% 

in 2015 and 19.6% in 2016. C-G79R was shown to have the highest proportion within SDH-

variants in field samples (77.5% in 2014, 71.7% in 2015 and 52.4% in 2015) (Figure 24 B). 

In 2016, other variants than C-G79R were found more frequently compared to the years 

before and the proportion of C-G79R within resistance alleles seems to have decreased 

over the years. 
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Figure 24: Frequency of alleles leading to SDHI resistance in P. teres in Europe from 2014 to 2016. Colour 
code of SDH-variants and the number of samples are given in the figure. A: Frequency of alleles leading to SDH 
variation in field samples from European countries from 2014 to 2016 (proportion of ‘SDH wild type’ was 
calculated by addition of resistance alleles and substraction from 100%). B: Frequency of alleles leading to 
different SDH-variants when ‘resistant’ proportion is regarded. 

In the ‘Field monitoring’, samples were not taken balanced, which means that not the same 

number of samples from each region were analysed in every year. In 2014 and 2015, for 

example, more samples were collected in France and Germany compared to 2016. In 2016, 

countries with a still sensitive population of P. teres, such as Ukraine, sent a high proportion 

of samples compared to France and Germany. Therefore, the decrease of resistant alleles, 

which is observed in Figure 24, is probably a matter of unbalanced data. 

The frequency of resistance genotypes is shown seperatly for the countries Germany and 

France (Figure 25) to see if there was a spread of resistant genotypes in both countries 

over the years. In Germany (Figure 25 A), the highest level of mutated alleles was observed 

in 2014. Here, C-G79R was the most frequent resistance mechanism. In 2015 and 2016, 

no further increase of resistance alleles was detected. However, sample numbers were low 

in 2015 and 2016, which was due to the relatively low infection pressure in many regions in 

these years. In 2015 and 2016, the proportion of alleles leading to C-G79R was lower than 

that found in 2014. The most frequent alteration in 2016 was D-D145G (14% in all samples), 

followed by C-G79R (11.6% in all samples) and thirdly C-H134R (9.6% in all samples). In 

France, an increase of alleles leading to SDHI resistance was observed (Figure 25 B). The 

frequency of resistance alleles raised from 42% in 2014 to 56% in 2015 and 59% in 2016. 

In contrast to Germany, the most frequent SDH-variant in France was shown to be C-G79R 

over all three years. However, a reduction of the C-G79R proportion within SDH-variants 

was observed in 2016 in France as well. 
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Figure 25: Frequency of alleles leading to SDHI resistance in P. teres in France and Germany from 2014 
to 2016. Colour code of SDH-variants and the number of samples are given in the figure. Proportion of ‘SDH 
wild type’ was calculated by adding frequency of resistance alleles and substraction from 100%. A: Frequency 
of alleles leading to SDH-variation in field samples from Germany 2014 to 2016. B: Frequency of alleles leading 
to SDH variation in field samples from France 2014 to 2016. 

In summary, C-G79R was the most dominant SDH-variant that was found in infected leaf 

samples from Europe. In 2015 and 2016, further mutations which cause SDHI resistance 

made up a significant proportion of the detected resistance alleles. The pattern of resistance 

alleles, even within a region, was shown to be a dynamic process. 

4.1.4.3 Overview of frequency of SDHI resistant isolates 

The frequency of SDH-variants connected to SDHI resistance in P. teres was determined 

by using two different sampling methods. On the one hand, the collection of air-borne spores 

from defined routes through European countries and the subsequent generation of isolates, 

and on the other hand, the collection of net blotch infected leaf samples and the 

determination of resistance alleles in DNA pools of 20 leaves per site. Both monitoring 

methods revealed that there was an increase, both in resistant isolates/alleles and the 

number of target-site mutations responsible for SDHI resistance, in some European 

countries since 2012. It was shown that amino acid substitution C-G79R predominantly was 

found in resistant isolates/samples. Both sampling methods indicated that the proportion of 

other SDH-variants than C-G79R increased in years 2014 to 2016. It was shown that most 

resistant isolates/samples were found in the northern and middle parts of France and 

Germany, but also in Belgium. The pattern of different SDH-variants was found to be highly 

comparable to each other when both monitoring methods were compared. However, some 

minor differences between ‘Random monitoring’ and ‘Field monitoring’ were found when 

countries such as the United Kingdom and Denmark were investigated. 
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4.1.4.4 Spot type of P. teres in Europe 

The oligonucleotides that were used for pyrosequencing were designed on DNA of 

P. teres f. teres (PTT). In additional studies, it was tested whether amplification and 

detection of SNPs in P. teres f. maculata (PTM) type was possible as well. For this, two 

reference isolates of PTM and two reference isolates of PTT were obtained from CBS fungal 

isolate collection (Centraalbureau for Schimmelculturen, Utrecht, Netherlands). 

Furthermore, isolates were generated from leaf samples (obtained in 2014) which showed 

typical spot-type lesions instead of net-like lesions. The genes SdhB, SdhC and SdhD were 

sequenced. 

Several nucleotide exchanges were found in the Sdh genes of PTM isolates compared to 

PTT isolates. The alignment of SdhB and SdhC sequences of PTT and PTM isolates is 

given in the Supplementary Material, Figure 49 and Figure 50. Most nucleotide exchanges 

did not affect amino acid sequence. However, two nucleotide exchanges were positioned 

at hybridisation site of primer KES 1847, which was used to detect B-H277Y in P. teres. 

Further, two nucleotide exchanges were detected at binding site of KES 1956 (C-N75S 

detection) and KES 2025 (C-G79R detection). 

Pyrosequencing assays were tested for PTM reference isolates and in mixtures of 25%, 

50% and 75% mixed with PTT isolates. No signals were obtained in case of PTM reference 

isolates when the B-H277Y assay was run. The other two assays for the detection of 

C-N75S and C-G79R resulted in robust signals that could be used for quantification. This 

means that molecular quantification of alleles which lead to SDHI resistance also includes 

spot-type genotypes of P. teres. One exception is B-H277Y, which was not detectable in 

PTM genotypes with primers used in this work. A list of samples and their origin, that 

showed spot-type lesions, and additionally had ‘robust’ signals in all assays with exception 

of B-H277Y assay are depicted in Supplementary Material, Table 34. These samples were 

mainly obtained from countries, such as Denmark and the UK, and eastern and southern 

countries, like Poland, Hungary, Italy and Spain. None of the SDHI resistant isolates from 

‘Random monitoring’ showed PTM sequence, which is probably due to fact that PTT is the 

predominating type of P. teres in Germany, France and Belgium, where the highest 

proportion of SDHI resistant isolates was sampled. 
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4.1.5 Multiple resistance in P. teres 

In addition to SDHIs, two other classes of single-site inhibiting fungicides have a 

predominant relevance in the protection of cereals against phytopathogenic fungi, the QoIs 

and the DMIs. In cereals, SDHI fungicides are often used in combination to both these 

classes for a better and broader disease control. P. teres isolates were additionally 

analysed with respect to QoI resistance and their DMI sensitivity in order to gain information 

about the occurrence of multiple resistance in P. teres. 

4.1.5.1 QoI resistance in SDHI resistant isolates of P. teres 

QoI resistance in P. teres is mainly mediated by mutations in Cyt b which lead to F129L 

exchange in complex III of the respiratory chain (Semar et al., 2007; Sierotzki et al., 2007). 

A few QoI resistant isolates from Ireland showed another mutation in Cyt b which cause 

G137R exchange (Sierotzki et al., 2007; FRAC, 2016). Both variants were shown to cause 

phenotypes which are moderately resistant to QoI fungicides (Semar et al., 2007). Existing 

pyrosequencing assays for F129L and G137R were used to analyse the QoI resistance 

status of SDHI resistant P. teres isolates. Additionally, the absence of G143A was verified 

using an existing qPCR assay. G143A and G137R were not detected in any of the tested 

isolates. F129L was detected in 18% of SDHI resistant isolates in 2013, 19% in 2014 and 

34% in 2015. Thereby, differences of the F129L frequency was observed in isolates having 

different SDH-variants. The proportion of SDHI resistant isolates, which simultaneously had 

F129L exchange, is given in Figure 26 (seperately for each SDH-variant). The F129L 

frequency in Europe has been stable for many years within different regions (FRAC, 2016; 

internal data). In Germany, for example, a mean F129L frequency of around 20-30%, and 

in France around 30-40%, was measured for at least three years. This was not only 

measured in the QoI ‘Random monitoring’ conducted by EpiLogic but also in the 

pyrosequencing-based quantification of net blotch infected leaf samples performed during 

the present study (data not shown). However, the frequency of F129L in P. teres 

populations can vary between different regions and also within countries. Therefore, the 

proportion of F129L (frequencies obtained from QoI ‘Random monitoring’ carried out by 

EpiLogic) in isolates collected on the same sampling routes is shown in Figure 27. 

http://www.frac.info/
http://www.frac.info/
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Figure 26: Proportion of SDHI and QoI double resistant P. teres isolates obtained from ‘Random 
monitoring’. Each colomn represents collected isolates from year 2013, 2014 or 2015 having the same 
Sdh genotype. Colour code: Proportion of SDH-variant without F129L; Proportion of isolates 
simultaneously carrying an SDH-variant and F129L. Isolates containing different SDH-variants B-H277Y, 
C-N75S, C-G79R, C-H134R and C-S135R are shown separately, whereas SDH-D mutants (D-D124N/E, 
D-H134R, D-G138V, D-D145G, D-E178K) and newly found C-S73P in 2015 are shown together in one 
diagramme (other SDH-variants). The number of isolates having respective variant is given in the figure. F129L 
occurrence in SDHI resistant isolates was detected by pyrosequencing. 

In 2013, only a few isolates had the F129L exchange in combination to an SDH-variant 

(mainly B-H277Y mutants). On routes, where C-G79R mutants had been collected, 25% of 

these isolates showed the F129L exchange. However, none of the 36 C-G79R mutants 

showed the F129L exchange in combination. In total, 11 SDHI resistant isolates carried 

F129L exchange in combination, whereas 50 SDHI resistant isolates were not QoI resistant. 

A slight increase of double mutants was observed in 2014. Thereby, C-G79R mutants 

showed the strongest increase of F129L in combination when the years 2013 and 2014 are 

compared. In 2015, the number of double resistant isolates further increased to 34% and 

was found to be highly comparable to frequencies obtained in the ‘random’ population on 

the same routes. 
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Figure 27: Frequency of F129L [%] in analysed SDHI resistant isolates of P. teres collected in ‘Random 
monitoring’ in the year 2013 to 2015. Each colomn represents collected isolates from year 2013, 2014 or 
2015 having the same Sdh genotype. Colour code:  Proportion of SDH-variant without F129L;
 Proportion of isolates simultaneously carrying an SDH-variant and F129L;  Frequency of F129L in all 
isolates collected from same routes in Europe where SDH resistant isolates were sampled (values are taken 
from QoI ‘Random monitoring’, internal unpublished data). Isolates containing different SDH-variants B-H277Y, 
C-N75S, C-G79R, C-H134R, C-S135R, D-D124N/E, D-H134R and D-D145G are shown separately, whereas 
newly found SDH-C and SDH-D mutants (D-E178K in 2014, C-S73P and D-G138V in 2015) are shown together 
in one diagramme. SDH-variant and the number of isolates having this variant is given in the figure. F129L 
occurrence in SDHI resistant isolates was detected by pyrosequencing. Frequency of F129L in ‘random’ 
population is missing in the case of D-H134R in 2013 because no data was available in QoI ‘Random monitoring’ 
from the same routes. 

4.1.5.2 DMI sensitivity of SDHI resistant isolates of P. teres 

Several isolates of P. teres from the year 2014 that had been collected in different European 

countries were investigated with respect to their sensitivity towards DMIs. 

In order to establish whether there are differences in DMI sensitivity between SDH wild type 

and SDHI resistant isolates, the efficacy of the DMI prothioconazole against 29 SDHI 

sensitive isolates and 24 SDHI resistant isolates was measured in microtiter tests (Figure 

28). 
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Figure 28: Prothioconazole sensitivity of SDHI sensitive and SDHI resistant isolates of P. teres obtained 
from ‘Random monitoring’ 2014. Photometric measurements (OD405) detecting mycelial growth of P. teres in 
microtiter plates were used to determine EC50 values (probit calculation) of prothioconazole. Water control and 
seven concentrations of prothioconazole in four replicates were mixed with spore suspensions of SDH wild type 
isolates (n=29) and several SDH mutated isolates carrying different mutations in the Sdh genes (n=24). 
Colour code: EC50 values of SDHI sensitive isolates,   EC50 values of SDHI resistant isolates. The origin and 
the number of isolates is given in the figure. 

EC50 values of all the isolates tested ranged from 0.179 to 6.28 mg prothioconazole L-1. 

SDH wild types varied in their sensitivities from 0.182 to 3.15 mg prothioconazole L-1. SDHI 

resistant isolates showed a slightly higher range of sensitivities from 0.179 to 6.28 mg 

prothioconazole L-1. Within countries, isolates were highly comparable, independent of their 

SDHI resistance. Minor differences in EC50 values to prothioconazole were observed when 

isolates between different countries are compared. Although, P. teres isolates collected 

from different countries show a high range of different DMI sensitivities, no indication for a 

DMI ‘shift’ can be found. Isolates from earlier years show a similar range of EC50 values for 

prothioconazole (internal unpublished data). For example, isolates from 2001 collected from 

France, Germany and the Netherlands had EC50 values of 0.15 to 2.46 mg prothioconazole 

L-1 and isolates from 2010 collected in France, Germany and Ireland ranged from 0.073 to 

15.79 mg prothioconazole L-1. Highest EC50 values in 2010 were also observed for isolates 

sampled in Ireland, as detected in this study. Differences between countries should be 

studied in further experiments to see whether these differences are significant and have 

genetic reasons. 
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4.1.6 Competition studies on Sdh mutants of P. teres in in planta 
studies 

Quantitative pyrosequencing assays were used to perform competition studies of SDHI-

resistant isolates of P. teres in the glasshouse. Isolate mixtures which contained one 

resistant and one sensitive isolate (1:1) were prepared and applied to barley plants. Infected 

leaves of each mixture were harvested after 10-21 days and were used to prepare spore 

suspensions for the inoculation of new barley plants. Each mixture was transferred over 

several propagation cycles in the glasshouse without any use of fungicides. At the starting 

point, 2 mL of a spore suspension with 2.5E+04 spores mL-1 of each isolate or mixture were 

used to inoculate a pot with ~10 barley plants. Repetitions of each isolate and mixture were 

four to six pots, depending on the experiment. After 10-21 days, infected leaves were 

harvested and washed in a defined amount of water and were subsequently used to 

inoculate the next round of plants. An aliquot of each spore suspension was taken to extract 

DNA and was used to quantify the amount of the point mutations of interest. In addition to 

mixtures, each isolate was propagated individually and the infected leaf area was rated. 

DNA was also extracted from infected plants inoculated with single isolates, to check if there 

is cross-contamination between infected plants of each isolate. Four to six additional 

uninoculated plants were placed between replicates of isolates to see if there was any 

unintended spreading of isolates. 

SDHI resistant isolates that carry exchanges B-H277Y, C-N75S, C-G79R and C-H134R 

were tested in a first approach. Each of these isolates were mixed with an isolate that carried 

the same Sdh mutation and additionally also F129L. This test was done to elaborate 

whether double resistant isolates show a ‘fitness’ disadvantage, compared to SDHI resistant 

isolates. 

In Figure 29, a decrease of the F129L frequency can be seen in all mixtures when the 

starting point is compared to the second cycle. In this approach, a decrease of F129L 

frequency indicates a decrease of the double mutant in the mixture. F129L frequency 

decreases in the ‘B-H277Y’ mixture from 89 to 63%, in the ‘C-N75S’ mixture from 80 to 

59%, in ‘C-G79R’ mixture from 60 to 46% and in the ‘C-H134R’ mixture from 32 to 0%. This 

indicates that SDHI resistant isolates of P. teres had an advantage in the growth on barley 

plants against SDHI/QoI double resistant isolates. After the third cycle, the experiment was 

stopped due to low infections pressures seen in many single isolates and mixtures, which 

did not give enough inoculum for another infection cycle. 
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Figure 29: In planta competition studies of SDHI resistant isolates against SDHI and QoI double resistant 
isolates of P. teres under non-selective conditions. Four SDHI-resistant isolates, which carry B-H277Y, 
C-N75S, C-G79R or C-H134R and four SDHI/QoI resistant isolates (B-H277Y+F129L, C-N75S+F129L, 
C-G79R+F129L or C-H134R+F129L) were used to test the ability of double mutants to compete with single 
resistant isolates when propagated together over several rounds on barley cv. ‘Astrid’ (BBCH 11) without any 
fungicide pressure. Each mixture contains one SDHI-resistant and one SDHI/QoI-resistant isolate (B-H277Y 
mixture: green, C-N75S mixture: yellow, C-G79R mixture: red, C-H134R mixture black). In addition to mixtures, 
each isolate, which was used in a mixture, was transferred over the cycles alone. Spore suspensions were 
prepared from POA plates at the starting point or by washing infected leaves in Tween-water. Mixtures were 
subsequently transferred over two propagation cycles and DNA of spore suspension at each propagation cycle 
was analysed by pyrosequencing. F129L frequency [%] was measured in mixtures and single isolates (pool of 
six infected plants each mixture/isolate).  

Table 24 shows the diseased leaf area [%] of all isolates and mixtures over the three 

infection cycles. In the first cycle, plants were inoculated with a defined number of spores 

(all isolates/mixtures were adjusted to 2.5E+04 spores mL-1). Diseased leaf area was high 

in almost all inoculated plants. Lowest infection rates (22.5%) were observed in a double 

resistant isolate carrying B-H277Y and F129L exchange. Highest infection rates (80-87%) 

were observed for isolates carrying C-N75S variant, which was also seen in the mixture of 

these isolates. 

In the second cycle, where infected leaves from the first round were used to inoculate new 

plants, the diseased leaf area decreased in many isolates and in corresponding mixtures of 

them. Infection rates decreased over the following propagation cycles to under 5% in case 

of B-H277Y and B-H277Y+F129L mutants, C-G79R and C-G79R+F129L mutants and in 

the double mutant C-H134R+F129L. Whereas infection rates of C-N75S and 

C-N75S+F129L mutants and single mutant carrying C-H134R remained high over all 

cycles. Spore number (mean of two agar plates, which were washed in a defined volume of 

water) was additionally analysed. Due to low number of isolates in this experiment, further 

experiments were conducted with more isolates of each genotype. 
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Table 24: Pathogenicity of SDHI resistant and SDHI/QoI double resistant isolates of P. teres on barley 
cv. ‘Astrid’. Mean of four replicates, each replicate contained a pot with around 10 barley plants, shown for all 
propagation cycles and standard error is given. Each pot was inoculated with 2 mL of a spore suspension, which 
contained 2.5E+04 spores mL-1. After 10-21 dpi, infected leaves of each isolate/mixture were harvested. Infected 
leaves within an isolate/mixture were pooled and washed in 10 mL of Tween-H2O and applied to a next charge 
of plants. 

Aa exchange(s) Isolate ID 

Number 
of spores 
[x104 spores 

mL-1] 

Diseased leaf area [%]  
(mean ± SE) 

Cycle 1* Cycle 2* Cycle 3* Mean 
(cycles) 

B-H277Y 1710 27.5 52.5 ± 4.79 7.5 ± 1.44 1.3 ± 0.75 20.4 

C-N75S 1688 40.5 80.0 ± 4.08 35.0 ± 2.89 40.0 ± 7.07 51.7 

C-G79R 1678 25.5 60.0 ± 4.08 6.25 ± 1.25 1.2 ± 0.58 22.5 

C-H134R 1707 30 67.5 ± 4.78 42.5 ± 2.50 80.0 ± 2.04 63.3 

B-H277Y+F129L 1687 2.5 22.5 ± 2.5 5.0 ± 2.04 1.8 ± 0.63 9.8 

C-N75S+F129L 1703 24.5 87.5 ± 2.5 32.5 ± 6.29 40.0 ± 4.08 53.3 

C-G79R+F129L 1669 12 72.5 ± 2.5 15.0 ± 2.89 0 29.1 

C-H134R+F129L 1672 29.5 47.5 ± 4.79 6.25 ± 1.25 1.3 ± 1.25 18.4 

Mixture B-H277Y 1710+1687  40.0 ± 4.08 8.75 ± 1.25 0.8 ± 0.75 16.5 

Mixture C-N75S 1688+1703  85.0 ± 2.89 32.5 ± 2.50 45.0 ± 6.45 54.2 

Mixture C-G79R 1678+1669  70.0 ± 4.08 17.5 ± 4.79 21.3 ± 3.14 36.3 

Mixture C-H134R 1707+1672  67.5 ± 2.50 12.5 ± 2.50 5.0 ± 1.02 28.3 

* all spore suspensions from cycles 1-3 were analysed using quantitative pyrosequencing, in cycle 3 many 
samples showed undetectable levels of DNA, therefore, cycle 3 is not shown in Figure 29. 

As described in section 4.1.4, C-G79R was the most frequent SDH-variant detected in SDHI 

resistant isolates in Europe. In addition to its high frequency, this SDH alteration gave one 

of the highest impacts of all variants on SDHIs. The following competition studies focused 

on the C-G79R mutants. When C-G79R mutants were analysed with respect to the 

occurrence of multiple resistance to QoI fungicides, F129L had been found in a lower 

number of C-G79R mutants than had been expected, particularly in the year 2013 (see 

section 4.1.5.1). Although the ‘background’ population in the same regions showed 25% 

F129L, none of the C-G79R mutants carried F129L in combination. On the one hand, this 

could be due to random effects or selection of mutants by products predominantely used in 

the field. On the other hand, this could be an indication of a possible ‘fitness’ penalty 

associated with multiple mutations in genes encoding for respiratory chain enzymes. In the 

following competition tests, C-G79R mutants (SDHIres), F129L mutants (QoIres) and 

C-G79R+F129L (SDHIres+QoIres) mutants were investigated. Isolates, resistant to one 

fungicide class, were mixed with completely sensitive isolates. Double resistant isolates 

(C-G79R+F129L) were tested in competition with sensitive isolates and in competition with 

isolates that were resistant to one of these fungicide classes. In first infection studies to 

check the pathogenicity of isolates, it was observed that reference isolates Pt 1013, Pt 1020 
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and Pt 1022, which have been used for many years as sensitive isolates in microtiter tests, 

showed a reduced pathogenicity on barley cv. ‘Astrid’ compared to some selected SDHI 

resistant isolates of P. teres and SDHI sensitive isolates from the year 2014 (data not 

shown).  

 
Figure 30: In planta competition studies of C-G79R mutants in mixtures with sensitive isolates of P. teres 
under non-selective conditions. Five SDHI-resistant (carrying C-G79R) and five SDHI sensitive isolates 
obtained from ‘Random Monitoring’ 2014 were used to test the ability of C-G79R mutants to compete with SDHI-
sensitive isolates when propagated together over several rounds on barley cv. ‘Astrid’ (BBCH 11) without any 
fungicide pressure. Each mixture (mixture 1-5) contains one SDHI-resistant and one SDHI-sensitive isolate. All 
isolates used were shown to lack F129L and therefore are sensitive towards QoIs. Isolates were mixed 
according to their sampling origin. Isolates in mixture 1 and 4 were obtained from Germany, in mixture 2 from 
France, in mixture 3 from Belgium, and in mixture 5 the SDHI-resistant isolate from France and the SDHI-
sensitive one from Germany. Spore suspensions were prepared from POA plates at the starting point or by 
washing infected leaves in malt-gelatine medium. Mixtures were subsequently transferred over four propagation 
cycles and DNA of spore suspension at each propagation cycle was analysed by pyrosequencing. In addition 
to different mixtures, which are shown in grey, the mean of all mixtures and their standard errors are given in 
black. The slope of the linear regression is -3.02 and was shown to not significantly vary from 0 (P=0.05). 
C-G79R frequency of single isolates was 0% (sensitive isolates) or 100% (C-G79R mutants) over all cycles 
(data not included in the figure). 

Appropriate SDHI sensitive isolates for the competition studies were chosen according to 

the following criteria: Isolates (sensitive and resistant) were taken from the same sampling 

year (2014) and were mixed in pairs from same sampling country (in most pairs). Isolates 

and their origin that were used in mixtures are given in Supplementary Table 42. The 

competitiveness of C-G79R mutants compared to sensitive isolates over four propagation 

cycles under glasshouse conditions is shown in Figure 30. The frequency of C-G79R over 

all cycles and in all mixtures/isolates was measured using quantitative pyrosequencing. A 

slight reduction (not significant, P>0.05) of C-G79R frequency was observed in the mean of 

all mixtures. However, different mixtures revealed a highly diverse picture of increase and 

decrease. In two mixtures, C-G79R frequency increased to 100%, whereas it decreased in 

three other mixtures. These results indicate that field isolates show a high variability in their 

fitness, independent of their resistance status, and the outcome of competition tests can be 

dependent on the isolates/mixtures investigated. 
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Figure 31: In planta competition studies of F129L mutants in mixtures with sensitive isolates of P. teres 
under non-selective conditions. Five QoI resistant (carrying F129L) and five QoI sensitive isolates obtained 
from ‘Random Monitoring’ 2014 were used to test the ability of F129L mutants to compete with QoI sensitive 
isolates when propagated together over several rounds on barley cv. ‘Astrid’ (BBCH 11) without any fungicide 
pressure. Each mixture (mixture 1-5) contains one QoI resistant and QoI sensitive isolate. All isolates used were 
shown to lack SDH exchanges and therefore are sensitive towards SDHIs. Isolates are mixed according to their 
sampling origin. Isolates in mixture 1 were obtained from Ireland (QoI resistant isolate) and the United Kingdom 
(QoI sensitive isolate), in mixture 2 from France, in mixture 3 from the United Kingdom, in mixture 4 from France 
(QoI resistant) or Germany (QoI sensitive) and in mixture 5 from the United Kingdom (QoI resistant isolate) and 
Germany (QoI sensitive). Spore suspensions were prepared from POA plates at the starting point or by washing 
infected leaves in malt-gelatine medium. Mixtures were subsequently transferred over four propagation cycles 
in the glasshouse and 2 mL of spore suspension at each propagation cycle was analysed by pyrosequencing 
in two repetitions. In addition to different mixtures, which are shown in grey, the mean of all mixtures and their 
standard errors are given in black. The slope of the linear regression is -1.62 and was shown to not significantly 
vary from 0 (P=0.05). F129L frequency of single isolates was 0% (sensitive isolates) or 100% (F129L mutants) 
over all cycles (data not included in the figure). 

Additionally, the competitiveness of F129L field mutants of P. teres was analysed in 

mixtures of QoI resistant and QoI sensitive isolates. All the isolates used in this test did not 

show resistance towards SDHIs. The F129L frequency in mixtures was analysed over four 

propagation cycles and is given in Figure 31. A decrease of F129L frequency was observed 

in three mixtures (mixtures 2, 3 and 5). In contrast, an increase of F129L frequency was 

detected in mixtures 1 and 4, which indicates an isolate-dependent variability. In the mean 

of all mixtures, a slight but insignificant (P>0.05) decrease in F129L level can be seen. 

Furthermore, the competitiveness of double resistant isolates (C-G79R+F129L) was 

studied in comparison to different isolates, which either showed no resistance (sensitive 

isolates) or were resistant towards SDHIs or QoIs. The results of these studies are depicted 

in Figure 32. Figure 32 A presents the C-G79R frequency in three mixtures with 

C-G79R+F129L mutants and F129L mutants. The frequency of F129L in three mixtures of 

C-G79R+F129L mutants with C-G79R mutants is shown in Figure 32 B, and the C-G79R 

frequency in four mixtures of C-G79R+F129L mutants with sensitive isolates is given in 

Figure 32 C. A slight decrease of the investigated resistance alleles was observed in all 

three approaches in the mean of all mixtures. However, as had been observed in fitness 

tests with single mutants, a high variability of different mixtures could be also observed in 

competition studies with double mutants. In the first approach, where double resistant 

isolates had been mixed with single QoI resistant isolates, C-G79R frequency decreased in 

two mixtures which indicated a decrease of double mutants, whereas C-G79R frequency 
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increased to 100% in the third mixture. In the second approach, where double resistant 

isolates had been mixed with single SDHI resistant isolates, two mixtures showed a 

decrease in F129L frequency which indicated a decrease of the double mutants and a slight 

increase of F129L level in a third mixture. In the last approach, where C-G79R+F129L 

mutants had been mixed with completely sensitive isolates, a decrease of C-G79R 

frequency was observed in two mixtures and a slight increase in two other mixtures. All 

isolates and mixtures over all cycles were analysed for both SNPs leading to C-G79R and 

F129L (only mutation of interest is shown in the figures).  

In general, competition studies with field isolates of P. teres indicated a high variability of 

isolates, although the isolates involved had been collected in similar years and regions. In 

all cases of competition tests in the glasshouse, one or two mixtures showed the opposite 

trend to the majority of mixtures. In these mixtures, resistant field isolates were able to 

compete with sensitive isolates, and were shown to reach levels of up to 100% in mixtures. 

Taking all competition studies of P. teres into account, a slight decrease of the resistance 

alleles (in mean of all mixtures) was observed in each approach. This would indicate that 

the sensitive isolates (or single resistant isolates) used in these studies, showed a slightly 

higher competitiveness in planta than most resistant isolates (or double resistant isolates). 

However, a significant fitness penalty of C-G79R and C-G79R+F129L was not observed in 

the studies presented, which was due to the high variation.  

All isolates (WT, F129L, C-G79R and C-G79R+F129L) that were used to prepare mixtures 

in fitness tests were analysed with respect to the number of spores that they produced on 

an artificial medium and their pathogenicity in planta during presented competition studies 

(Table 25). 
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Figure 32: In planta competition studies of C-G79R+F129L double resistant isolates in mixtures with 
sensitive, QoI-resistant or SDHI-resistant isolates of P. teres under non-selective conditions. A: Double 
resistant (SDHIres+QoIres) isolates against QoI-resistant isolates (SDHIsens+QoIres); B: Double resistant 
(SDHIres+QoIres) isolates against SDHI-resistant isolates (SDHIres+QoIsens); C: Double resistant 
(SDHIres+QoIres) isolates against sensitive isolates (SDHIsens+QoIsens). The isolates included were six 
isolates (carrying C-G79R+F129L), four sensitive isolates (SDHIsens+QoIsens) and six isolates resistant to one 
fungicide class (3 isolates SDHIres, 3 isolates QoIres). Isolates were obtained from ‘Random Monitoring’ 2014 
and were used to test the ability of double mutants to compete with sensitive isolates when propagated together 
over several rounds on barley cv. ‘Astrid’ (BBCH 11). Each mixture contains one double resistant and one other 
isolate. Isolates were mixed according to their sampling origin (in most cases). Spore suspensions were 
prepared from POA plates at the starting point or by washing infected leaves in malt-gelatine medium. Mixtures 
were subsequently transferred over four propagation cycles in the glasshouse and 2 mL of spore suspension at 
each propagation cycle was analysed by pyrosequencing in two repetitions. In addition to different mixtures, 
which are shown in grey, the mean of all mixtures and their standard errors are given in black. The slope of the 
linear regression is -4.0 (A), -5.0 (B), -2.03 (C) and was shown to not significantly vary from 0 (P=0.05). 
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Spore production on POA medium was highly dependent on the isolate that was analysed, 

independent of its resistance status. Spore numbers did not significantly vary (P=0.05) 

between sensitive and QoI-, SDHI or QoI and SDHI resistant isolates, although sensitive 

isolates (on average) produced slightly higher numbers of spores. Spore suspensions of 

each isolate were adjusted to 2.5E+04 spores mL-1 and were used to inoculate six pots with 

~10 barley plants (2 mL each pot). Diseased leaf area was assessed 14 dpi (cycle 1- rating 

is given in Table 25). On average, the pathogenicitiy of sensitive isolates was not 

significantly different (P>0.05) to that of resistant isolates. Highest variation of infected leaf 

area was again observed in different isolates independent of their resistance situation, 

which further demonstrates the high variability of isolates collected from the field. 

Table 25: Spore production on an artificial medium and pathogenicity of SDHI sensitive, C-G79R mutated 
and C-G79R+F129L double mutated isolates of P. teres. Each isolate was transferred to two POA plates. 10 
days later, all spores on each plate were removed using a Drigalski spatula and 4 mL of water, and were filtered 
through gauze. The number of spores was counted in a Thoma cell chamber. Spore suspensions were adjusted 
to 2.5E+04 spores mL-1. Six pots with ~10 barley plants per pot were inoculated with 2 mL of spore suspension 
each pot. Infected leaves were visually rated 14 dpi. Mean of six replicates shown for all isolates (n=33) and 
standard errors are given. Unpaired t-test (P=0.05) was used to calculate if mean of sensitive isolates 
(QoIsens+SDHIsens) significantly vary from that of mutated isolates showing F129L, C-G79R or 
C-G79R+F129L. 

Aa exchange(s) 
No. of 
isolates 

Number of spores 
[x104 spores mL-1] 

Diseased leaf area [%]  
(mean ± SE) 

Mean 
(two repetitions) 

Mean 
(isolates ± 

SE) 

Mean 
(four repetitions 

each isolate) 

Mean  
(isolates ± 

SE) 

no 9 53, 34, 40, 14.5, 23.5, 

60, 16.5, 24.5, 73.5 
37.7 ± 6.87a 

43, 54, 39, 38, 58, 

39, 35, 33, 58 
44.1 ± 3.3a 

F129L 8-10  48, 7.5, 24.5, 40.5, 

14.5, 14.5, 18, 12.5, 

10.5, 42 

23.3 ± 4.68a 56, 39, 33, 57, 63, 

58, 48, 45 

49.9 ± 2.5a 

C-G79R 10-11 16, 53.5, 45, 14.5, 

29.5, 12, 37.5, 10.5, 

10.5, 21, 13.5 

23.9 ± 4.58a 68, 61, 43, 50, 48, 

50, 43, 33, 47, 19 

46.2 ± 4.1a 

C-G79R+F129L 6 22.5, 25, 26.5, 18, 

50.5, 13.5 

26.0 ± 5.27a 53, 27, 53, 67, 43, 

16 

43.2 ± 7.7a 

These data suggest that possible fitness costs of C-G79R and double mutants 

(C-G79R+F129L), that were investigated, were low under glasshouse conditions. Further 

tests with a higher number of isolates, to overcome the high natural variability of field 

isolates, or competition tests under more challenging conditions (e.g. resistant barley 

cultivar) could provide useful additional information about potential fitness penalties of 

resistant and multiple resistant isolates of P. teres.
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4.2 Emergence of SDHI resistance in Z. tritici in Europe 

4.2.1 Detection of resistant isolates 

Z. tritici is a devastating pathogen of wheat, which can cause enormous yield losses in 

wheat cultivation in Europe (Eyal et al., 1987; Gurr and Fones, 2015). Intensive baseline 

studies before market launch of SDHIs and monitoring programmes after launch have been 

carried out since 2007. Sampling of Z. tritici isolates was done by collecting STB-infected 

leaves from various locations throughout Europe (‘Random monitoring’) or from field trials 

(‘Trial site monitoring’). Subsequently, isolates were generated and tested for their 

sensitivity to fluxapyroxad in a microtiter test by EpiLogic. In 2012, one isolate from a 

northern region in France (Agnières) showed an EC50 value of 0.574 mg fluxapyroxad L-1 

and was classified as ‘suspicious’. This value was around 10-20-fold higher than that of 

sensitive reference isolates and outside a previously made baseline sensitivity. A mutation 

in the SdhC gene of Z. tritici which lead to C-T79N was detected in previous studies in our 

laboratory (FRAC, 2016). In ‘Random monitoring’, 484 isolates were analysed in 2012, 

followed by 456 isolates from 2013, 690 isolates from 2014, 630 isolates from 2015 and 

504 isolates from 2016. In monitoring programmes of trial sites, 100 isolates from 2012, 487 

isolates from 2013 and 25 isolates from 2015 were analysed in addition. 

Analyses of ‘suspicious’ isolates after 2012 were done as a part of the present study. Z. tritici 

specific oligonucleotides, forward and reverse, were used to sequence the genes SdhB, 

SdhC and SdhD of SDHI resistant isolates in two independent reads. In the years 2012 to 

2016, a total of 42 field isolates showed a target-site mutation in the Sdh genes, whereof 

three of them had two mutations in the Sdh genes in combination. These were B-N225I, 

B-T268I (one isolate carrying B-T268I in combination with C-I29V), B-T268A in combination 

with C-F23S, C-T79N/I (one isolate carrying C-T79N in combination with B-R240L), 

C-W80S, C-N86S/A, C-H152R and C-V166M. An overview of the different amino acid 

substitutions which were detected and that had been obtained from ‘Random monitoring’ 

and ‘Trial site monitoring’ in the whole of Europe, is given in Table 26. After the detection of 

C-T79N in 2012, an isolate from an additional ‘Trial site monitoring’ was found in 2013, 

which carried C-N86S. In 2014, no additional SDHI resistant isolates were detected in our 

monitoring programmes. In 2015, B-T268I, C-T79N, C-N86S, C-H152R and C-V166M were 

detected. One isolate from France, which had B-T268I, showed an additional exchange in 

SDH-C, namely C-I29V. 

 

 

 

http://www.frac.info/
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Table 26: Amino acid substitutions conferring SDHI resistance in field isolates of Z.  tritici. Isolates were 
obtained from ‘Random monitoring’ and ‘Trial site monitoring’ in Europe from 2012 to 2016. 

SDH-variant Year of detection Country Codon WT >Codon 
Sdh mutant 

Number of 
isolates 

B-N225I 2016 NL AAC>ATC 1 

B-T268I 2015, 2016 IE, GB ACC>ATC 2 

B-T268I+C-I29V 2015 FR ACC>ATC, ATC>GTC 1 

B-T268A+C-F23S 2016 IE ACC>GCC, TTC>TCC 1 

C-T79N 2012, 2015, 2016 FR, IE, NL ACC>AAC 17 

C-T79N+B-R240L 2015 IE ACC>AAC, CGA>CTA 1 

C-T79I 2016 IE ACC>ATC 1 

C-W80S 2016 IE TGG>TCG 1 

C-N86S 2013, 2015, 2016 DE, IE, UK, NL AAC>AGC 13 

C-N86A 2016 NL AAC>GCC 1 

C-H152R 2015, 2016 IE, UK, NL CAT>CGT 3 

C-V166M 2015 UK GTG>ATG 1 

Most SDHI resistant isolates collected over the years, showed C-T79N exchange as the 

resistance mechanism. Most of them did not carry an additional mutation in the Sdh genes. 

However, one isolate from Ireland, was detected to have a second SDH-variant in SDH-B 

(B-R240L) in combination with C-T79N. 

In 2016, new variants of SDH-B and SDH-C were detected. In addition to variants already 

known from single resistant isolates in 2012 to 2015, B-N225I, B-T268A in combination with 

C-F23S, C-T79I, C-W80S and C-N86A were found. 

In the following sections, SDHI resistant isolates sampled in the years 2012 to 2015 were 

further characterised with respect to their impact on the SDHI efficacy and their 

competitiveness compared with sensitive isolates. SdhB, SdhC and SdhD genes of isolates 

collected in 2016 were sequenced but further testing in microtiter and glasshouse studies 

was not included in the present study. 

4.2.2 Characterisation of mutations leading to SDHI resistance 

4.2.2.1 Sensitivity of Z. tritici isolates in vitro 

The sensitivity of Z. tritici isolates with mutations in the Sdh genes towards different SDHIs 

was determined in microtiter tests. The tested SDHIs are commercially available fungicides 

on the European market for control of Septoria tritici blotch, and represent the same set 

tested on P. teres. 

Seven isolates showing Sdh wild type genes and 14 field isolates showing seven different 

Sdh genotypes were tested in two independent tests. In Figure 33, mean EC50 values 

towards benzovindiflupyr, isopyrazam, bixafen, fluxapyroxad, penthiopyrad and fluopyram 

are given. Standard errors were calculated from individual isolates with the same Sdh 

genotype. The EC50 values of all tested isolates ranged from 0.014 to 2.465 mg 

benzovindiflupyr L−1, 0.030 to 5.447 mg fluxapyroxad L−1, 0.019 to 6.921 mg isopyrazam 
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L−1, 0.015 to 9.793 mg bixafen L−1, 0.030 to 22.534 mg penthiopyrad L−1, and 0.135 to 5.094 

mg fluopyram L−1. 

The SDHI sensitive isolates that were analysed, originated from the years 1987-2015 

(Origin and isolation year is given in Supplementary Table 43). Two of these SDH wild type 

isolates were moderately or highly resistant to QoIs caused by F129L (n=1) or G143A (n=1). 

Both QoI resistant isolates lay within the range of other SDHI sensitive isolates without QoI 

resistance. EC50 values of SDHI sensitive isolates varied from 0.014 to 0.038 mg 

benzovindiflupyr L−1, 0.019 to 0.112 mg isopyrazam L−1, 0.015 to 0.107 mg bixafen L−1, 

0.030 to 0.078 mg fluxapyroxad L−1, 0.030 to 0.147 mg penthiopyrad L−1, and 0.135 to 0.242 

mg fluopyram L−1. 

The highest EC50 values measured for all SDHIs were found for isolates carrying the amino 

acid substitutions C-H152R and C-V166M. C-H152R has already been described in 

laboratory mutants of Z. tritici that had been generated by UV-light exposure (in most cases) 

and subsequent selection on SDHI-containing agar (Stammler et al., 2010; Fraaije et al., 

2012; Scalliet et al., 2012). First field isolates that carried C-H152R were found in the 

season 2015 in Ireland (in the present work; Dooley et al., 2016) and the United Kingdom 

(FRAC, 2016). In the present study, mean EC50 values for C-H152R were 2.071 mg 

benzovindiflupyr L−1, 5.250 mg fluxapyroxad L−1, 6.715 mg isopyrazam L−1, 8.252 mg 

bixafen L−1, 17.330 mg penthiopyrad L−1, and 4.386 mg fluopyram L−1. C-H152R was shown 

to cause the highest loss of efficacy for all SDHIs tested, with exception of fluopyram. 

Fluopyram was impacted the most by SDH-variant C-V166M, which was found in another 

isolate from 2015. 

Other amino acid substitutions, such as B-T268I, C-T79N and C-N86S were shown to 

confer a lower impact on all SDHIs compared with C-H152R. C-T79N showed mean EC50 

values of 0.425 mg benzovindiflupyr L−1, 0.980 mg fluxapyroxad L−1, 0.590 mg isopyrazam 

L−1, 0.754 mg bixafen L−1, 0.929 mg penthiopyrad L−1, and 1.312 mg fluopyram L−1. One 

resistant C-T79N isolate showed another mutation in the Sdh genes, causing B-R240L 

exchange. In comparison to other T79N mutants, this isolate showed slightly higher EC50 

values towards benzovindiflupyr and isopyrazam, but not for the others. However, EC50 

values of the SDH double mutant (B-R240L+C-T79N) did not exceed factor 2 of those found 

for single C-T79N mutants. This means that the variation observed between C-T79N and 

C-T79N+B-R240L mutant is smaller than that found within sensitive isolates. These results 

indicate that the B-R240L variant causes no or only low additional effects on the SDHI 

efficacy. Similar results were obtained for B-T268I mutants and an isolate showing B-T268I 

in combination with C-I29V. This isolate showed slightly higher EC50 values compared to 

isolates which had only B-T268I. Due to the low number of isolates with two mutations in 

the Sdh genes, the effect of these additional mutations is difficult to determine. Both isolates 

had higher EC50 values compared with isolates with one SDH variation. However, reflecting 

http://www.frac.info/
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the range of SDHI sensitivities in ‘baseline’ isolates (SDH wild type), it is hard to predict 

whether higher EC50 values are caused by these additional mutations or on account of 

natural variation of isolates. Further studies, which would include more double SDH 

mutants, would be necessary to clarify smaller discrepancies of SDHI sensitivities within 

such isolates. 

In general, cross resistance of SDH mutants was observed for all SDHIs tested. Small 

differences in the behaviour to different SDH-variants was observed for SDHIs in cases 

such as C-V166M and C-H152R. Here, fluopyram was more affected by C-V166M than by 

C-H152R, as it was observed for other SDHIs. Resistance factors of SDH-variants of field 

isolates are shown in Table 27. RF values were calculated as ratios of EC50 of resistant to 

EC50 of sensitive isolates. The strongest effect can be observed for C-H152R mutants and 

the isolate carrying C-V166M. C-N86S caused low to medium RF values which ranged from 

8 to 39, depending on the substance. Lowest RF values were obtained for isolates with 

B-T268I and C-T79N exchange in all SDHIs tested. As had been observed in the studies 

on P. teres (see section 4.1.2.1), also wild type isolates of Z. tritici showed the lowest 

sensitivity towards fluopyram of the SDHIs tested. RF values of fluopyram were slightly 

lower compared with other SDHIs. However, low RF values of fluopyram were mainly based 

on the low activitiy of this substance towards wild type isolates. A decrease of SDHI efficacy 

was also observed for fluopyram when SDH mutated isolates are compared to wild type 

isolates. 

Table 27: Resistance factors of Z. tritici isolates with different SDH-variants towards SDHIs. Resistance 
factors were calculated as ratios of mean EC50 of resistant isolates / EC50 of sensitive isolates shown in Figure 
33. Benzovindiflupyr (benzo), isopyrazam (isopyra), bixafen (bixa), fluxapyroxad (fluxa), penthiopyrad (penthio) 
and fluopyram (fluo) are sorted due to their intrinsic activity on wild type isolates (left to the right). Colours 
indicate the strength of resistance with RF values ≤ 20 bright yellow, 21 to 50 dark yellow, 51 to 100 orange, 
and >100 red. 

SDH-
variants 

RF values 

Benzo Isopyra Bixa Fluxa Penthio Fluo 

B-T268I 19 13 19 17 15 7 

C-T79N 17 11 14 16 14 7 

C-N86S 39 18 18 17 25 8 

C-V166M 58 28 36 23 47 29 

C-H152R 82 128 148 88 262 25 
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Figure 33: SDHI sensitivity of Z. tritici isolates carrying different mutations in the Sdh genes. Photometric measurements (OD405) to detect mycelial growth of Z. tritici 
in microtiter plates were used to determine EC50 values (probit calculation) of SDHI fungicides. Water control and seven concentrations, up to 10 mg a.i. L-1 of benzovindiflupyr, 
isopyrazam, bixafen, fluxapyroxad, fluopyram and up to 30 mg a.i. L-1 of penthiopyrad, were applied in four replicates and were mixed with spore suspensions of SDH wild 
type isolates and several SDH mutated isolates. Fungicides are sorted beginning with the fungicide showing highest activitiy against SDH wild type isolates. SDH amino acid 
substitution, the number of isolates and standard errors are given. Some standard errors are smaller than the symbol itself and were calculated by mean of two individual 
experiments over isolates having the same Sdh genotype.
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4.2.2.2 Sensitivity of Z. tritici isolates in planta 

The SDHI efficacy was also investigated in planta under glasshouse conditions. In total, 

four glasshouse tests were carried out to test the response of SDHIs to SDH mutants. 

SDHIs were applied one-day preventative in two tests and four-day curative (4 dpi) in 

another two tests. In each test, wheat plants (BBCH 11) cv. ‘Riband’ were inoculated with 

two SDHI sensitive isolates and eight SDHI resistant isolates (B-T268I n=2, C-T79N n=2, 

C-N86S n=2, C-H152R n=2) in four replicates for each isolate and treatment. The infected 

leaf area on untreated and treated plants was visually rated 21 dpi. Not all SDHIs that had 

been tested in microtiter tests were available as solo products when studies were 

performed. In order to include all SDHIs in these glasshouse tests, all the SDHIs were 

obtained from Sigma Aldrich (with exception of benzovindiflupyr, see section 3.11.1) and 

were dissolved prior to application by using DMSO and Agnique AMD10 (see section 

3.11.3.2). Agnique AMD10 is a solvent which is used in commercial formulations to increase 

the solubility of the fungicide. In cereal production, fungicides are applied in low spray 

volumes which range from 100 to 400 L ha-1. Here, an appropriate formulation of active 

ingredients is necessary as SDHIs tend to precipitate in water solutions. A spray chamber 

that uses water volumes equal to 400 L ha-1 was used in the present studies. 

In an initial experiment with different solvents it was shown that precipitation of all SDHIs 

was inhibited when a final concentration of 2% (v/v) DMSO and 0.15% (v/v) Agnique AMD10 

in water was used (data not shown). The solvent system (2% DMSO, 0.15% Agnique 

AMD10) was solely applied in one preventative and one curative test to see whether these 

adjuvants show an effect on the growth of Z. tritici. In addition to DMSO/Agnique AMD10-

dissolved SDHIs, Imbrex® was applied, which is a commercial SDHI-solo formulation 

containing fluxapyroxad. Fungicides were applied at full registered field rates of solo 

products or combination-products, these are 75 g a.i. ha-1 benzovindiflupyr, 100 g a.i. ha-1 

of isopyrazam, 125 g a.i. ha-1 of bixafen, fluopyram, fluxapyroxad and Imbrex®, and 300 g 

a.i. ha-1 of penthiopyrad. 

The inhibition of SDH wild type and SDH mutated isolates when SDHIs are applied one-day 

before inoculation is given in Figure 34. SDH wild type isolates were effectively controlled 

by all SDHIs tested. SDH-variants, which caused ‘moderate’ RF values in microtiter tests, 

such as B-T268I, C-T79N and C-N86S, were also shown to reduce the SDHI efficacy in 

glasshouse trials. Furthermore, C-H152R, which caused high RF values compared with 

other SDH-variants in microtiter, also gave the highest efficacy reduction of all SDHIs in 

glasshouse tests. The SDH-variants, B-T268I, C-T79N and C-N86S, all had similar effects 

on the SDHI efficacy. These mutants were controlled by mean inhibitions of 65 to 98%, 

depending on the SDHI under investigation. Significant effects were calculated by 

Lagrange-Multiplier test from two independent tests with the same set of isolates. Thereby, 

differences between wild type isolates and SDHI resistant isolates were calculated for each 

compound separately. The comparison of different SDHIs due to their efficacy was not 
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included in statistical tests. Imbrex® (commercial formulation with a.i. fluxapyroxad) showed 

the highest control of B-T268I, C-T79N and C-N86S mutants without significant differences 

to wild type isolates. However, when fluxapyroxad was dissolved in DMSO/Agnique 

AMD10, significant effects of these ‘moderate’ mutations were visible. The benefit of 

fluxapyroxad in its commercial formulation was observed in all glasshouse trials performed. 

This indicates that the optimised formulation of a substance can give an increase of efficacy. 

There are several reasons that could explain this, including a higher stability of molecules, 

a better uptake to plant tissue or fungal cells, or the spread on the plant surface in an 

optimised formulation. 

In four-day curative tests, the same ranking of different SDH-variants was observed. The 

inhibition levels of both curative tests are given in Figure 35. However, in the curative 

situation, the effect of SDHI resistant isolates was more pronounced. SDHI sensitive 

isolates were effectively controlled by all SDHIs even when applied 4 dpi. SDHI resistant 

isolates of Z. tritici were significantly less controlled by all SDHIs used. The impact on the 

efficacy of SDHIs was highest in the case of isolates with C-H152R. Here, mean inhibition 

values of 0-15% were detected in different treatments. A high infection pressure in the 

untreated plants of both curative trials was observed for most isolates. Although the same 

number of spores were used to inoculate plants, the infected leaf area was observed to be 

different between isolates. Lowest infection rates in untreated plants were observed in all 

replicates of SDHI sensitive isolates (St 1965 and St 3718). Highest infection rates were 

observed for both C-T79N mutants and both C-N86S mutants. The high variation of 

inhibition values seen for isolates of the same genotype in the curative trials resulted mainly 

from the differences in the infection rate in the different experiments. In the first glasshouse 

test, mean growth rate [% infected leaf area] was 48% in the two sensitive isolates, 68% in 

B-T268I mutants, 97% in C-T79N mutants, 90% in C-N86S mutants and 71% in C-H152R 

mutants. In the second experiment, which was carried out in another chamber in the 

glasshouse with different glasshouse lightings, infection rates were even higher. The same 

set of isolates showed mean infection levels of 81% in the sensitive isolates, 97% in B-T268I 

mutants, 100% C-T79N mutants, 98% in C-N86S mutants and 96% C-H152R mutants. The 

diseased leaf area of different isolates in all four tests is given in Supplementary Material, 

Table 35. 
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Figure 34: Inhibition [%] of wild type and Sdh mutated isolates of Z. tritici by several SDHIs under one-day preventative conditions in the glasshouse. Infected leaf 
area of two wild type isolates and eight Sdh mutated isolates with B-T268I (n=2), C-T79N (n=2), C-N86S (n=2), C-H152R (n=2) was determined. Untreated plants, plants 
treated with the blank formulation (2% DMSO, 0.15% Agnique AMD10)- and SDHI-treated plants, wheat plants cv. ‘Riband’ in BBCH 11, were rated 21 dpi. Each treatment 
and isolate was repeated in four replicates in each experiment. Two independent experiments were performed. Within a fungicide, same letters on top of Box-and-Whiskers 
mean that they do not differ significantly according to Lagrange multiplier to range test (P=0.05). 
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Figure 35: Inhibition [%] of wild type and Sdh mutated isolates of Z. tritici by several SDHIs under four-day curative conditions in the glasshouse. Infected leaf area 
of two wild type isolates and eight Sdh mutated isolates with B-T268I (n=2), C-T79N (n=2), C-N86S (n=2), and C-H152R (n=2) was determined. Untreated plants, plants 
treated with the blank formulation (2% DMSO, 0.15% Agnique AMD10)- and SDHI-treated plants, wheat plants cv. ‘Riband’ in BBCH 11, were rated 21 dpi. Each treatment 
and isolate was repeated in four replicates in each experiment. Two independent experiments were performed. Within a fungicide, same letters on top of Box-and-Whiskers 
mean that they do not differ significantly according to Lagrange multiplier to range test (P=0.05). These results will be partially published in Plant Pathology (Rehfus et al., 
accepted 2017). 
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4.2.3 Localisation of amino acid exchanges in the SDH enzyme 

4.2.3.1 Alignments of Z. tritici SDH amino acid sequences to other 
phytopathogenic fungi 

SDH-B and SDH-C amino acid sequences of Z. tritici, SDH wild type and SDHI resistant 

isolates, were aligned to sequences of other phytopathogenic fungi. The alignment in Figure 

36 shows the amino acid positions in SDH-B, N225I, R240L, T268I/A, which were altered 

in one or more SDHI resistant isolates. All amino acid substitutions in SDH-B that were 

found in SDHI resistant isolates are located at highly conserved positions within 

phytopathogenic fungi. 

 
Figure 36: Alignment of partial SDH-B amino acid sequence of Z. tritici and other phytopathogenic fungi. 
Sequences of ascomycetous and basidiomycetous fungi are named by species EPPO code (SEPTTR: 
Zymoseptoria tritici, PYRNTE: Pyrenophora teres, ALTESO: Alternaria solani, BOTRCI: Botrytis cinerea, 
VENTIN: Venturia inaequalis, SCLESC: Sclerotinia sclerotiorum, PHAKPA: Phakospora pachyrhizi). In case of 
Z. tritici, a wild type sequence and the sequence of SDH-B N225I, R240L (which was found in combination to 
C-T79N), T268I and T268A mutants are included. The numbers of amino acids that are given in the figure are 
based on the sequence length of Z. tritici.  
Colour code: >80% conserved,  ≥50% conserved, ≥ 50% similar, not conserved. Sequence 
alignments were made by the multiple alignment tool on the bioinformatics webpage of BASF SE, which uses 
muscle-calculation. 

In Figure 37, partial SDH-C amino acid sequences are shown for Z. tritici and its SDHI 

resistant field mutants in comparison to other plant pathogens. C-W80S and C-H152R are 

positioned at highly conserved positions within phytopathogenic fungi. Whereas in P. teres, 

the histidine at position 134 (which is orthologous to histidine at position 145 in Z. tritici) was 

replaced by arginine, in Z. tritici the histidine at position 152 (which is orthologous to P. teres 

H141) was shown to be replaced in SDHI resistant isolates. Amino acid substitutions 

C-T79N/I, C-N86S/A and C-V166M were placed at positions at which at least one other 

fungus was shown to have another amino acid. At position 79, in B. cinerea and 

S. sclerotiorum the amino acid proline was found. S. sclerotiorum was also found to be 

different at position 86, having F86, in contrast to other fungi that were included in this study. 
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Figure 37: Alignment of partial SDH-C amino acid sequence of Z. tritici and other phytopathogenic fungi. Sequences of ascomycetous and basidiomycetous fungi are 
named by species EPPO code (SEPTTR: Zymoseptoria tritici, PYRNTE: Pyrenophora teres, ALTESO: Alternaria solani, BOTRCI: Botrytis cinerea, VENTIN: Venturia 
inaequalis, SCLESC: Sclerotinia sclerotiorum, PHAKPA: Phakospora pachyrhizi). In case of Z. tritici, a wild type sequence and the sequence of SDH-C T79N, T79I, W80S, 
N86S, N86A, H152R and V166M mutants are included. The numbers of amino acids that are given in the figure are based on the sequence length of Z. tritici SDH.  
Colour code: > 80% conserved,    ≥ 50% conserved,    ≥ 50% similar, not conserved. Sequence alignments were made by the multiple alignment tool on 
bioinformatics webpage of BASF SE, which uses muscle-calculation. 
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Three isolates simultaneously showed two amino acid alterations in the SDH enzyme. 

B-R240L is located at a highly conserved position within fungal species and was found in 

addition to C-T79N in one isolate. One SDHI resistant isolate showed C-F23S in 

combination to B-T268A and another isolate had C-I29V simultaneously to B-T268I. C-F23S 

and C-I29V were found at positions which are highly variable within phytopathogenic 

species (not shown in the sequence alignment). Sequence alignment of SDHI resistant and 

sensitive isolates of Z. tritici revealed that C-I29V had also been found in a French isolate, 

which was shown to be sensitive towards SDHIs. Therefore, an effect of this SDH-variant 

on the SDHI sensitivity seems unlikely. 

In general, the SDH-C subunit shows the lowest conservation within SDH subunits 

(Cecchini, 2003; Sierotzki and Scalliet, 2013; Mair et al., 2016). Even within Z. tritici, 

different SdhC variants exists, which show nucleotide polymorphisms at several positions. 

Most nucleotide exchanges were found to be silent and did not alter amino acid sequence. 

Two SNPs in SdhC gene that were frequently found (~50% of sequenced isolates), were 

shown to cause two alterations at the beginning of SDH-C amino acid sequence (C-N33T 

and C-N34T). Isolates showed either NN or TT but not mixed up. Complete DNA and protein 

sequence alignments of Z. tritici SDH-C can be found in the Supplementary Material, Figure 

53 and Figure 54. 

4.2.3.2 Homology modelling of the SDH enzyme of Z. tritici 

Amino acid substitutions detected in SDHI resistant isolates were analysed with respect to 

their localisation within the SDH complex. The homology model of subunits SDH-B, SDH-

C and SDH-D and altered amino acid residues are shown in Figure 38. SDH modelling of 

the wild type enzyme was performed by Dr. Antje Wolf (BASF SE), whereas mutagenesis 

and illustration of the SDH model was part of the present work. 

Key substitutions (B-N225I, B-T268I, C-T79N, C-W80S, C-N86S, C-H152R and C-V166M) 

found in resistant field isolates in the present study, were all located in the neighbourhood 

of the Q-site. In docking studies, SDH-B residues P220, S221, W224, H267 and I269, 

together with residues in SDH-C (L71, W80, S83, A84 and R87) and in SDH-D (D129 and 

Y130) were shown to form the SDHI binding cavity in Z. tritici (Fraaije et al, 2012; Scalliet 

and Sierotzki, 2013). Therefore, most positions which could be substituted in case of SDHI 

resistance are located near positions that are important for SDHI binding to the SDH 

enzyme or are directly involved in the SDHI interaction to the target protein (in case of 

C-W80S). 
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Figure 38: Localisation of amino acid substitutions which lead to SDHI resistance in homology model 
of Z. tritici succinate dehydrogenase enzyme. Homology model of SDH subunits SDH-B, SDH-C and SDH-
D is based on X-ray from G. gallus (PDB 2WQY) with the docked pose of carboxin in ubiquinone-binding pocket 
and complexed haem b group between SDH-C and SDH-D. SDH-B (orange), SDH-C (lilac) and SDH-D (blue) 
subunits are shown in cartoon style (helices denote α-helical secondary structures and ribbons denote 
β-sheets). Carboxin and haem b are depicted in ball-and-stick models showing CPK colouring (carbon=grey, 
nitrogen=blue, oxygen=red, sulfur=yellow, iron=dark orange). Substituted amino acid residues of B-N225I, 
B-T268I, C-T79N, C-W80S, C-N86S, C-H152R and C-V166M are depicted in stick models showing CPK 
colouring except for carbon atoms, which are shown in the colour of corresponding subunit. Hydrogen atoms 
are not shown in any of the molecules. A: Overview of SDH-B, SDH-C and SDH-D subunits of SDH enzyme 
and localisation of substitutions (altered amino acid are shown as spheres). Alterations are found in direct 
neighbourhood of the Q-site. B: Closer view to alterations located in or near Q-site. 

4.2.4 Frequency of SDHI resistance in Europe 

The fluxapyroxad sensitivity of 3431 isolates of Z. tritici was analysed since 2012. In total, 

42 isolates showed a reduced SDHI sensitivity in our monitoring programmes and these 

carried one or, in rare cases, two mutations in the genes SdhB, SdhC and SdhD. 

Isolates obtained from SDHI ‘Random monitoring’ in the years from 2012 to 2016 have 

included 2819 isolates. First SDHI resistant isolates in ‘Random monitoring’ were collected 

in the year 2015. In 2015, 5 of 630 analysed isolates were shown to be SDHI resistant 

(0.8%). In 2016, 25 of 559 isolates carried SDH amino acid exchanges and were SDHI 

resistant (4.5%). This indicates that there was an increase of SDHI resistant isolates in 2015 

to 2016, however, still at a very low level. SDHI resistant isolates in 2015 were collected in 

Ireland (n=2), the United Kingdom (n=2) and in France (n=1) and in 2016 in Ireland (n=12), 

the Netherlands (n=8) and the United Kingdom (n=5). Three additional isolates were 

detected in 2015 by molecular detection of known Sdh mutations in some isolates from DMI 

‘Random monitoring’, which was conducted in our laboratory at the same time. These 
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isolates, one from the United Kingdom and two from Ireland, showed C-T79N exchange 

and were additionally included in the present study. 

In addition to ‘Random monitoring’, 612 isolates were obtained from different trial sites in 

Europe (‘Trial site monitoring’). These included 100 isolates from 2012 collected in France, 

487 isolates from 2013 collected in Germany, and 25 isolates from 2015 collected in Ireland. 

In total, 9 of these isolates, most of them (n=7) collected in 2015 from Ireland, carried target-

site mutations in the Sdh genes. The frequency of SDHI resistant isolates on the trial site in 

Ireland from 2015 was relatively high (7 of 25 isolates analysed, 28%) compared with 

frequencies observed in the ‘Random monitoring’. This can be explained with the high SDHI 

usage at this site and that the trials which were performed on this field have focused on 

SDHI applications, even more than one SDHI application in a season. 

The frequency of different amino acid substitutions found in isolates collected in a four-year 

period are shown in Figure 39. The most frequent SDH-variants are C-T79N (40.5%) and 

C-N86S (31%). Other substitutions, such as C-H152R (7.1%, n=3) and B-T268I (7.1%, n=3) 

were detected in a lower number of isolates. All other substitutions were detected in a single 

isolate (B-N225I, B-T268A, C-T79I, C-W80S, C-N86A and C-V166M). 

 
Figure 39: Frequency of amino acid substitutions in all Z. tritici isolates analysed and frequency of 
different substitutions within SDHI resistant isolates from European countries 2012-2016. All SDHI 
resistant isolates that were detected in the ‘Random monitoring’ and in ‘Trial site monitoring’ are included in the 
figure. 

In addition to isolates, different locations were analysed by pyrosequencing and qPCR. The 

frequency of resistant alleles which cause C-H152R, B-T268I and C-T79N detected in early 

spring sampling in Ireland and the United Kingdom, is shown in Figure 40. In total, STB-

infected wheat leaves were collected from 22 commercial locations. C-H152R was first 

found in 2015 on a trial site in Ireland. In spring 2016, C-H152R was not detectable by 

pyrosequencing in any of the samples from Ireland and the United Kingdom. In comparison, 

B-T268I was detected in one sample from southern Ireland and C-T79N was found in a low 

frequency (<10%) at different locations in Ireland and at a location in the United Kingdoms. 

Alleles causing C-T79N were find in a higher frequency only at one site in Ireland. 
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Figure 40: Frequency of resistant alleles in infected leaf samples of Z. tritici collected from commercial 
sites in Ireland (IE) and the United Kingdom (UK) in early spring in 2016. After the detection of different 
target-site mutations in SDHI resistant isolates of Z. tritici, the frequency of several mutations was quantitatively 
determined using pyrosequencing and qPCR. Infected leaves (~20 to 30 randomly collected leaves per sample) 
from 37 different fields in Ireland and the UK were analysed. All leaves within one sample were grinded. An 
aliquot was taken to extract DNA and was analysed by pyrosequencing (B-T268I, C-H152R) and qPCR 
(C-T79N). 

These data indicate that SDHI resistant isolates are still detected at low frequencies within 

the European population of Z. tritici. Many countries, such as France and Germany, showed 

a completely sensitive population in 2016, although the two first resistant isolates (2012 and 

2013) had been collected in these countries. In countries, such as Ireland, the United 

Kingdom and the Netherlands, few SDHI resistant isolates have been detected in 2016. In 

Ireland, the frequency of SDHI resistant isolates has increased from 6.1% in 2015 to 12.2% 

in 2016 (SDHI ‘Random monitoring’). This increase is still low when compared with the rapid 

increase of SDHI resistant isolates in France and Germany in the case of P. teres (see 

section 4.1.4). 
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4.2.5 Multiple resistance in Z. tritici 

SDHI resistant isolates, that had been sampled in European countries before 2016, were 

analysed for the occurrence of multiple resistance towards DMI and QoI fungicides. QoIs 

are severely affected by G143A exchange, which is present at high frequencies in European 

populations of Z. tritici (Gisi et al., 2002; Fraaije et al., 2005; FRAC, 2016). Z. tritici 

additionally shows adaptation against DMI fungicides by the accumulation of several amino 

acid substitutions in CYP51 enzyme (Cools and Fraaije, 2008; Stammler et al., 2008a, 

2008b; Fraaije et al., 2012). Furthermore, SDHI resistant isolates were tested for a potential 

enhanced efflux of membrane transporters. Tolnaftate (a thiocarbamate), used to treat 

dermatomycoses (Ryder et al., 1986), is known as a preferred substrate for efflux 

transporter. It shows an altered MOA compared to cereal fungicides and can, therefore, be 

used to detect an enhanced efflux of unspecific toxic compounds (Leroux et al., 2002). QoI 

resistance was analysed in microtiter tests with pyraclostrobin (data not shown) and 

molecular detection of G143A by qPCR. DMI adaptation of isolates was analysed by cloning 

of Cyp51 gene into pJet1.2 with the subsequent sequencing of clones (oligonucleotides 

pJet1.2fw, pJet1.2rev). A potentially enhanced efflux of isolates was determined in 

microtiter tests with tolnaftate and the detection of promotor insertions in MgMFS1 

transporter. The results for SDHI resistant isolates and two SDH wild type isolates are given 

in Table 28. The SDH wild type isolates included are reference isolate IPO323 and field 

isolate St 5950, which is highly adapted towards DMIs (Cyp51 haplotype O3) and shows an 

enhanced efflux due to 512 bp promotor insertion in MgMFS1 (as depicted in Omrane et 

al., 2015). 

All SDHI resistant field isolates were shown to carry G143A and, therefore, are QoI 

resistant. Cyp51 haplotypes indicate the adaptation level of isolates towards DMI 

fungicides. Most SDHI resistant isolates showed R7-R12 haplotypes, which is the 

nomenclature used in some publications (Leroux and Walker, 2011; Omrane et al., 2015). 

These haplotypes cause moderately to highly adapted phenotypes towards azoles 

frequently used in cereals, such as epoxiconazole and prothioconazole (Fraaije et al., 2012; 

http://eurowheat.au.dk/). In addition to known combinations of CYP51 exchanges, new 

combinations of alterations were detected in six SDHI resistant isolates. These haplotypes 

have been first identified in these isolates and some other isolates (SDHI sensitive) from 

DMI ‘Random monitoring’ in 2014 and 2015 (internal unpublished data). An enhanced efflux 

of SDHI resistant isolates could be excluded, with exception of one isolate which had slightly 

enhanced EC50 values for tolnaftate (St 6027, 0.87 mg tolnaftate L-1). However, compared 

to St 5950 (carries 519 bp promotor insertion), which shows EC50 values of 1.69 mg 

tolnaftate L-1, the enhancement of tolnaftate efflux in isolate St 6027 is lower. 

http://www.frac.info/
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Table 28: SDHI resistant isolates of Z. tritici collected in Europe from 2012 to 2015 and the fungicide sensitivity to QoIs, DMIs and tolnaftate. In addition to SDHI 
resistant isolates, IPO323, a sensitive reference isolate, and St 5950 are included. St 5950 shows no alteration in the SDH enzyme, but shows an enhanced efflux of tolnaftate. 
* St 6036 was kindly provided by Teagasc Institute, Ireland. ** These three isolates were detected by molecular detection method (qPCR) in isolates of the DMI ‘Random 
monitoring’, which were additionally screened for known SNPs during the present studies. 

Isolate-ID Year Country 

SDHIres QoIres DMI adaptation Efflux 

SDH-variant  CYP51-variants (haplotype) Type EC50 

tolnaftate 

Promotor 

insertc 

IPO323 1981 NL no no no alternations  0.495±0.052 no 

St 5950 2014 PL no G143A A379G, I381V, Del Y459/Y460, S524T O3 1.690±0.009 yes 

St 5548 2012 FR C-T79N G143A I381V, Y461H R6 0.434±0.062 no 

St 5745 2013 DE C-N86S G143A na na 0.538±0.037 no 

St 6027 2015 FR B-T268I+C-I29V G143A D134G, V136A, I381V, Y461H R11 0.867±0.294 no product 

St 6028 2015 UK C-V166M G143A V136A, I381V, Y461S, S524T R12 0.572 no 

St 6029 2015 IE C-H152R G143A V136A, Y461S, S524T R9 0.551±0.003 no 

St 6030 2015 IE B-R240L+C-T79N G143A na na 0.543±0.009 no 

St 6031 2015 IE C-T79N G143A V136A, I381V, Y461H, S524T R12 0.474±0.005 no 

St 6032 2015 IE B-T268I G143A V136A, Del Y459/Y460, S524T new 2015b 0.548±0.002 no product 

St 6033 2015 IE C-T79N G143A V136A, I381V, Y461H, S524T R12 0.537±0.012 no 

St 6034 2015 IE C-T79N G143A D134G, V136A, I381V, Y461H R11 0.538±0.025 no 

St 6035 2015 IE C-N86S G143A I381V, Del Y459/Y460 R7 0.668±0.189 no 

St 6036* 2015 IE C-H152R+D-R47W G143A D134G, V136A, I381V, Y461H R11 0.514±0.042 no 

St 6037 2015 UK B-T268I G143A V136C, A379G, I381V, Del Y459/Y460, S524T new 2014a 0.527±0.058 no product 

St 6038 2015 IE C-T79N G143A V136C, I381V, Del Y459/Y460, S524T new 2014a 0.552±0.003 no 

St 6039 2015 IE C-N86S G143A na na 0.547±0.035 no 

St 6127** 2015 UK C-T79N G143A I381V, S524T new 2015b na no 

St 6149** 2015 IE C-T79N G143A D134G, V136A, I381V, Y461S, S524T new 2015b 0.457 no 

St 6156** 2015 IE C-T79N G143A D134G, V136A, I381V, Y461S, S524T new 2015b 0.416 no 

a  these combinations of CYP51 alterations were first found in isolates in DMI ‘Random monitoring’ from 2014 (internal unpublished data) 

b  these combinations of CYP51 alterations were first found in isolates in DMI ‘Random monitoring’ from 2015 (internal unpublished data) 

c  promotor insertions of MgMFS1 were studied by PCR using primers extracted from Omrane et al. (2015). Wild type promotor shows 700 bp product, isolates with 

MgMFS1 overexpression show 1200 bp product. 
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Additonally, PCR of the promotor region did not show a product in this isolate. Omrane et 

al. (2015) reported this for three isolates in their studies and proposed new rearrangements 

in the promotor of MgMFS1 in these isolates (no hybridisation of primer possible). St 6027 

(B-T268I+C-I29V) also showed slightly higher EC50 values in microtiter tests with several 

SDHIs compared to mutants with B-T268I. Higher EC50 values for SDHIs in this isolate could 

also be explained by this slightly enhanced efflux. It was shown in preliminary studies that 

SDHIs are affected by MgMFS1 overexpression (519 bp insertion) resulting in RF values of 

≤10 (data not shown). In these studies, St 5950 (MgMFS1 overexpressor) had EC50 values 

of 0.317 mg fluxapyroxad L-1, 0.393 mg bixafen L-1 and 0.804 mg fluopyram L-1 without 

having a mutation in the Sdh genes. In comparison, IPO323 showed EC50 values of 0.054 

mg fluxapyroxad L-1, 0.038 mg bixafen L-1, 0.157 mg fluopyram L-1. The contribution of an 

enhanced efflux on the SDHI sensitivity and their different genetic mechanisms should be 

studied in the future. However, compared to high RF values that can be contributed by 

target-site mutations in the Sdh genes, low RF values of MgMFS1 overexpression in case 

of SDHIs seems to have minor relevance. Alignments of CYP51 protein sequences and 

promotor insertion studies of SDHI resistant isolates are given in Supplementary Material, 

Figure 51 and Figure 52. 

4.2.6 Competition studies of field mutants of Z. tritici 

The competitiveness of SDHI resistant field mutants of Z. tritici was determined in 

glasshouse tests. Inoculation of wheat seedlings (cv. ‘Riband’) with mixtures of SDHI 

resistant isolates and appropriate SDHI sensitive isolates, and their subsequent 

propagation over three cycles was performed (see section 3.12.1). Quantitative 

pyrosequencing was used to detect the frequency of resistance alleles in each spore 

suspension of mixtures and single isolates over all propagation cycles. SDHI resistant field 

isolates were studied towards their DMI sensitivity (Cyp51 haplotypes) and QoI resistance 

in section 4.2.5. Several SDHI sensitive field isolates were investigated with respect to their 

Cyp51 haplotype and their QoI background to find appropriate mixing partners for SDHI 

resistant isolates. Other criteria considered were the sampling origin and the collection year. 

Thus, most isolates, with exception of two isolates, were collected in Ireland. One SDHI 

resistant isolate was from France (2015) and one sensitive isolate was from the United 

Kingdom (2016). The SDHI sensitive isolate from UK was used because it had a rare 

combination in CYP51, that had been first detected in 2015 in a B-T268I mutant. 

The SDHI resistant isolates investigated in competition studies, either carried a relatively 

rare SDH-variant in field isolates, B-T268I and C-H152R, or the more frequently detected 

C-T79N. Two isolates with the same SDH-variant were investigated and mixed in two 

independent mixtures with an appropriate SDHI sensitive isolate. In all mixtures, both 

isolates showed the same Cyp51 haplotype and all isolates were QoI resistant (G143A), 

with exception of one SDHI sensitive isolate. This isolate was mixed with a C-H152R mutant 



Results 108 

 

 

with G143A because they were shown to share the same Cyp51 haplotype (R9). This 

haplotype had not been detected in any other SDHI sensitive isolate from Ireland. In addition 

to mixtures of two isolates (one SDHI sensitive and one SDHI resistant), mixtures of four 

isolates were also prepared (two SDHI resistant having the same SDH-variant and their 

SDHI sensitive mixing partners). 

Pyrosequencing data of these competition experiments are given in Figure 41. In Figure 

41 A, mixtures of B-T268I mutants and their sensitive partners are shown. In mixtures A 

and A+B a reduction of 20-25% of B-T268I frequency was observed. B-T268I frequency 

was stable in mixture B. In mean, a significant decrease of B-T268I was observed in this 

experiment with these isolates. A slight decrease of SDH-variant C-H152R was detected in 

mixtures C and D (15-20% reduction), whereas in mixture C+D C-H152R stayed more 

stable (Figure 41 B). C-T79N frequency was shown to be stable over all growth cycles in all 

mixtures with a tendency to increase (Figure 41 C). 

Slopes of regression lines were statistically analysed to see whether the changes in 

resistance allele frequencies were significant. In summary, a significant decrease was 

observed for B-T268I (P<0.001) and C-H152R (P<0.05) frequency, however, C-T79N was 

shown to stay stable (P>0.05). Diseased leaf areas of different isolates over all cycles 

included in these competition studies are given in Table 29. 

These results indicate that in the case of B-T268I and C-H152R, a reduction of the ‘fitness’ 

of these mutants could be observed, whereas C-T79N was shown to compete with SDHI 

sensitive isolates. Due to these fitness tests, it can be proposed that different target-site 

alterations can cause different fitness costs. These data are in line with the frequency of 

different alterations observed in the monitoring programmes. Most SDHI resistant isolates 

showed C-T79N exchange. B-T268I was detected in three isolates from 2015, however, 

was not detected in 2016 anymore. Instead, another alteration at the same position, 

B-T268A, was found in one isolate in 2016. 
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Figure 41: In planta competition studies of SDHI resistant field isolates of Z. tritici against SDHI sensitive isolates with similar genetic background. Three 
propagation cycles on wheat seedlings cv. ‘Riband’ were performed with mixtures of appropriate SDHI resistant (n=6) and sensitive (n=4) isolates without fungicide pressure. 
Quantitative pyrosequencing or qPCR (C-T79N) was used to detect frequency of Sdh mutations in spore suspensions that were used for inoculation. A: B-T268I frequency 
[%] in mixtures of B-T268I mutants (n=2) and sensitive isolates (n=2), two in mixture (A, B) or all four in mixture (A+B). B: C-H152R frequency [%] in mixtures of C-H152R 
mutants (n=2) and sensitive isolates (n=2), two in mixture (C, D) or all four in mixture (C+D). C: C-T79N frequency [%] in mixtures of C-T79N mutants (n=2) and sensitive 
isolates (n=2), two in mixture (E, F) or all four in mixture (E+F). D: Isolates in mixtures and their status of SDHI resistance (SDHI res), QoI resistance (QoI res) and Cyp51 
haplotype. *St 6036 was kindly provided by S. Kildea (Teagasc, Ireland, 2015) and had D-R47W exchange in combination to C-H152R. **This combination was first found in 
2015. Single isolates were additionally propagated over all cycles. All mixtures and single isolates were tested for all mutations (including G143A) to detect possible 
contaminations between different treatments (data not shown in the figure). 



Results 110 

 

 

Table 29: Pathogenicity of SDHI resistant and SDHI sensitive isolates of Z. tritici on wheat cv. ‘Riband’. 
Mean of six replicates, each replicate containing a pot with around 10 wheat plants, shown for all propagation 
cycles and standard error is given. Each pot was inoculated with 2 mL of a spore suspension, which contained 
3.0x106 spores mL-1. After 21-28 dpi, infected leaves of each isolate/mixture were harvested. Infected leaves 
within an isolate/mixture were pooled and washed in 10 mL of Tween-H2O and applied to a next charge of 
plants. 

SDH-
variant 

Isolate ID 

Diseased leaf area [%]  
(mean ± SE) 

Cycle 1 Cycle 2 Cycle 3 Mean 
(cycles) 

no 

St 5497 100 ± 0 90.8 ± 3.75 93.3 ± 4.94 94.7 

St 6059 100 ± 0 96.7 ± 1.67 98.3 ± 1.67 98.3 

St 5314 100 ± 0 78.3 ± 4.01 86.7 ± 3.33 88.3 

St 5995 96.7 ± 3.33 45.0 ± 3.14 100 ± 0.0 80.6 

B-T268I 
St 6027 78.3 ± 4.77 83.3 ± 2.11 91.7 ± 3.07 84.4 

St 6032 95.0 ± 5.0 78.3 ± 3.07 86.7 ± 3.33 86.7 

C-H152R 
St 6029 86.7 ± 6.15 73.3 ± 4.22 95.0 ± 2.24 85 

St 6036 90.0 ± 6.32 51.7 ± 6.01 78.3 ± 3.07 73.3 

C-T79N 
St 6033 83.3 ± 3.33 58.3 ± 3.07 100 ± 0.0 80.5 

St 6034 93.3 ± 6.67 90.8 ± 2.71 96.7 ± 3.33 93.6 

4.2.7 SDHI resistant laboratory mutants of Z. tritici 

4.2.7.1 SDHI sensitivity of laboratory mutants 

Compared to P. teres, Z. tritici produces a high number of spores in vitro. Therefore, it is 

relatively easy to generate fungicide resistant isolates by selection on agar amended with 

fungicides. In previous studies, the generation of laboratory mutants of Z. tritici by UV-light 

exposure and fungicide selection has been carried out (Scalliet et al., 2012; Fraaije et al., 

2012). The SDHI sensitivities of laboratory mutants generated in 2008 in our laboratory 

(Stammler et al., 2010), were investigated in the present study. Three SDH wild type isolates 

(S27, St 1965 and St 3718) were used to select SDHI resistant mutants on agar amended 

with fungicide by applying large numbers of spores after previous exposure to UV-light (in 

most tests). In these experiments, laboratory mutants were obtained by selection with 

different SDHIs (boscalid, fluopyram, fluxapyroxad and isopyrazam). The mutants 

investigated are B-H267Y (selected on 30 mg boscalid L-1), B-H267L (selected on 30 mg 

isopyrazam L-1), B-I269V (selected on 10 mg fluopyram L-1), C-N86K and C-G90R (selected 

on 10 mg fluxapyroxad L-1 and 30 mg penthiopyrad L-1) and C-H152R (selected on 30 mg 

boscalid L-1). Several other laboratory mutants, which showed the same or other 

substitutions (or combinations of two SDH exchanges in rare cases), were detected (internal 

unpublished data). 
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During the present thesis, further laboratory isolates were produced to enlarge the set of 

SDHI resistant laboratory mutants. These additional isolates were produced in 2014 on agar 

amended with fluxapyroxad and were derived from the parental isolates IPO323, St 3718, 

St 3573 and St 5821. The latter two parental isolates are moderately or advanced resistant 

towards QoI fungicides, either showing G143A (St 3573) or F129L (St 5821). In comparison 

to most laboratory mutants from 2008, generation of mutants in the present work was not 

done by previous UV-mutagenesis (see section 3.12.2). This was done to reduce the 

likelihood of additional mutations to occur in the genome that do not have an impact on 

SDHIs. The list of selected isolates and SDH-variants that were found in this experiment is 

given in Supplementary Material, Table 36. At high fluxapyroxad concentrations (10 mg a.i. 

L-1), C-H152R was present in at least one laboratory strain obtained by all parental isolates. 

Other amino acid substitutions, that were found in the field such as C-T79N, C-N86S, were 

not obtained even at the lower concentration of fluxapyroxad (1 mg a.i. L-1). Most clones 

that were recovered from 1 mg fluxapyroxad L-1 were shown to be false positives (no growth 

visible on second fluxapyroxad selection). 

C-H152R mutants generated in 2014 were included in sensitivity studies of laboratory 

mutants. The SDHI sensitivity of some laboratory mutants was determined in microtiter tests 

and EC50 values are shown in Figure 42. Laboratory mutants, which carried different SDH 

alterations, exhibited a range of different sensitivities. Some SDH-variants, such as 

B-H267Y, B-I269V and C-G90R, were shown to cause lower EC50 values compared to other 

variants in case of most SDHIs. However, fluopyram was less affected by B-H267Y than 

other SDHIs, which had also been observed in the orthologous exchange in P. teres 

(B-H277Y). On the other hand, fluopyram efficacy was more reduced in case of the B-I269V 

mutant compared to all other SDHIs showing EC50 of >3 mg a.i. L-1. B-I269V and other SDH-

variants were selected by fluopyram, however, B-I269V was exclusively selected by 

fluopyram and not by other SDHIs (internal unpublished data). 

C-H152R was detected in many different isolates produced in laboratory studies. This 

variant, which was shown to cause highest EC50 values of all variants detected in the field, 

also gave high EC50 values in laboratory isolates. Two variants, B-H267L and C-N86K, were 

detected in laboratory studies, and which cause a high SDHI efficacy loss, but have not 

been found so far in the field. Both variants were shown to cause a high SDHI efficacy loss 

in microtiter tests, even higher than EC50 values of C-H152R mutants. 
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Figure 42: SDHI sensitivity of laboratory generated Z. tritici isolates carrying different mutations in the 
Sdh genes. Photometric measurements (OD405) to detect mycelial growth of Z. tritici in microtiter plates were 
used to determine EC50 values (probit calculation) of SDHI fungicides. Water control and seven concentrations 
(up to 10 mg a.i. L-1) of benzovindiflupyr, fluxapyroxad, isopyrazam, bixafen, penthiopyrad (up to 30 mg a.i. L-1 
in case of C-H152R mutants) and fluopyram applied in four replicates were mixed with spore suspensions of 
Sdh wild type isolates and several Sdh mutated isolates. SDH amino acid substitution, the number of isolates 
and standard errors are given. Standard errors were calculated by mean values obtained from two independent 
tests over biological replicates (due to low number of investigated isolates (B-I269V, C-G90R, B-H267Y, 
B-H267L) some standard errors are missing). Some isolates in the case of fluopyram and fluxapyroxad were 
only tested up to 3 mg a.i. L-1 (B-I269V, C-G90R and B-H267L in the case of fluopyram and B-H267L in the 
case of fluxapyroxad). 

In a direct comparison of parental isolates and C-H152R mutants, RF values were 

calculated for different pairs of isolates (Table 30). RF values calculated for different pairs 

of parental isolates and obtained C-H152R mutant ranged between 20 to 353, depending 

on the SDHI and isolate pair under investigation. It was observed that RF values of 

C-H152R mutants, although pairs of isolates have same/similar genetic background, can 

highly vary between different pairs of isolates. Lowest RF values were obtained for St 3718 

and two corresponding C-H152R mutants (B3-6-18 generated in 2008, X3718-4 generated 

in 2014). St 3718 showed highest EC50 values in case of all SDHIs within sensitive, parental 

isolates. This demonstrates that RF values can show variation even within one SDH-variant 

depending on the sensitivity of the parental isolates. 

Table 30: EC50 values and RF values of C-H152R mutants derived from different parental isolates. 
Parental isolates are S27 (SDHI sens, QoI sens), St 3718 (SDHI sens, QoI sens) and St 3573 (SDHI sens, QoI 
res). RF values were calculated by taking EC50 of corresponding parental isolates (EC50 of mutated isolate/ EC50 
of parental isolate). 

Isolates 
Benzovindi. Isopyrazam Bixafen Fluxapyroxad Penthiopyrad Fluopyram 

EC50 RF EC50 RF EC50 RF EC50 RF EC50 RF EC50 RF 

S27 0.016  0.026  0.026  0.030  0.035  0.135  

B0-3-7 1.242 78 5.547 213 5.911 227 4.796 160 na na 3.648 27 

St 3718 0.038  0.112  0.088  0.078  0.147  0.165  

B3-6-18 1.087 29 6.224 55 8.155 93 4.728 61 15.608 106 3.899 24 

X3718-4 0.836 22 3.648 33 6.616 75 3.421 44 15.950 109 3.314 20 

St 3573 0.015  0.019  0.015  0.072  0.030  0.157  

X3573-2 1.310 87 3.885 204 5.295 353 5.570 77 7.985 266 4.661 30 
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4.2.7.2 Competition studies of C-H152R laboratory mutants in the 
glasshouse 

C-H152R laboratory mutants were investigated with respect to their competitiveness to their 

parental strains in competition studies in planta. Thus, each SDHI sensitive parental isolate 

was mixed in two separate mixtures with two independent C-H152R mutants of it. These 

mixtures were transferred over several propagation cycles, as it was already described for 

field isolates (see section 4.2.6). In addition, each isolate or laboratory mutant was 

inoculated separately to rate diseased leaf area of isolates. In Figure 43, the frequency of 

C-H152R in mixtures is given for two independent experiments with the same set of isolates. 

These competition studies were performed in 2015 when glasshouse lights had not yet been 

adjusted to an optimised lighting for Z. tritici (see section 3.11.3.1) One experiment was 

carried out in early summer of 2015 (Figure 43 A, C, E). In this experiment, infection rates 

were high for most isolates, with the exception of the parental isolate IPO323, its C-H152R 

mutants and their mixtures. IPO323 and its corresponding C-H152R mutants showed 

diseased leaf area of <5%, which led to no or low pyrosequencing efficiencies and were 

excluded. In a second test, which was conducted in winter of 2015, infection rates were very 

low most probably due to a lower light exposure during the infection process. The 

experiment was, therefore, stopped after two cycles of propagation due to unsufficient spore 

yield to start a new inoculation cycle (Figure 43 B, D, F). Highest infection rates in all 

experiments were determined for parental isolate St 3718 and its corresponding laboratory 

mutants. All three isolates showed 80-100% of diseased leaf area in the first test over all 

cycles and 40-50% of diseased leaf area in the second study. St 3573 and St 5821, and 

mutants of them, showed medium infection rates (20-50%) in the first test and lower 

infection rates (0-15%) in the second trial. 

A significant decrease of the C-H152R frequency was observed for mixtures containing 

St 3718 and its mutants. This was consistent in both experiments, however, in the 

experiment with lower infection pressure, the decrease was more pronounced (Figure 

43 A+B).  

A more diverse picture was observed when QoI resistant parental isolates were examined 

in mixtures with their C-H152R mutants. Due to the high occurrence of G143A in the Z. tritici 

population in Europe, it was seen as useful to examine multiple resistance and the resulting 

‘fitness phenotype’ in this case. 

Thus, mixtures of QoI resistant isolates with their appropriate mutants were replicated 

individually for each mixture. This means that e.g. mixture 1.1 and 1.2 are technical 

replicates (include the same C-H152R mutant and parental isolate) to elaborate if mixtures 

of same isolates behave similarly in a repetition. Replicates of mixtures behaved similar 

with respect to a decrease or increase of C-H152R frequency. 
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Figure 43 In planta competition studies of laboratory mutants of Z. tritici carrying C-H152R and their 
parental isolates under non-selective conditions. Two independent glasshouse tests were performed with 
the same set of isolates. C-H152R mutants, which were selected on fluxapyroxad-amended agar and were 
obtained from three parental isolates (St 3718, 3573 and 5821), were mixed with the corresponding parental 
isolate. Mixtures were subsequently transferred over three propagation cycles in a first trial (A, C, E) and two 
propagation cycles in a second trial (B, D, F) on wheat cv. ‘Riband’ (BBCH11). In the first trial (A, C, E), high 
infection rates were observed. In the second test (B, D, F), lower infection rates were observed for all isolates 
and mixtures. Some values are missing due to low infection rate and none-detectable signals in pyrosequencing 
procedure. A and B: Competition of two independent C-H152R mutants with their parental isolate 3718, which 
is QoI sensitive. C and D: Competition of two independent C-H152R mutants with their parental isolate 3573, 
which is QoI resistant (G143A). Each mixture was repeated. E and F: Competition of two independent C-H152R 
mutants with their parental isolate 5821, which is moderately QoI resistant (F129L). Each mixture was repeated. 
Spore suspensions were prepared from ISP2 plates at the starting point or by washing infected leaves in Tween-
water. 2 mL of each spore suspension at each propagation cycle was used for analysis by pyrosequencing in 
two repetitions. In addition to different mixtures, which are shown in grey, the mean of mixtures and their 
standard errors are given in black. Single isolates were additionally inoculated and transferred over all cycles. 
The frequency of C-H152R was determined in mixtures and single isolates. Single isolates showed either 0% 
C-H152R for parental isolates 3718, 3573 and 5821 or 100% for all C-H152R mutants over all cycles (not shown 
in the figure). 

Irrespective of an increase or decrease of C-H152R frequency in different mixtures, each 

mixture treated separately showed the same outcome in both experiments. One C-H152R 

mutant of St 3573 (G143A) was observed to compete with its parental isolate and was 

shown to reach frequencies of up to 100% in the mixture. The second mutant of St 3573 

showed the opposite trend with a strong decrease of C-H152R frequency over propagation 
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cycles. The same results were obtained for C-H152R mutants of St 5821 (F129L), with an 

increase of the first mutant in the mixture but a decrease of the second mutant. 

These competition studies with G143A/F129L parental isolates and their corresponding 

mutants showed controverse results, although parental isolates and their mutants should 

theoretically have a more similar genetic background than field isolates. In further studies, 

it would be necessary to sequence genomes of such mutants that show an advanced fitness 

compared to its parental isolate and thus to detect potential compensatory mechanisms that 

allow a higher pathogenicity compared to its parental isolate (although having C-H152R). 
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5 Discussion 

SDHIs are today an important tool for disease management in cereals. To date, 14 plant 

pathogenic species show SDHI resistance under field conditions (FRAC, 2016). The most 

intensively studied fungal pathogens are described from various speciality and row crops, 

such as B. cinerea on strawberry (Stammler et al., 2007; Veloukas et al., 2011), 

C. cassiicola (Miyamoto et al., 2008, 2010), Didymella bryoniae (Avenot et al., 2012) and 

Podosphaera xanthii on curcurbits (Ishii et al., 2011; FRAC, 2016), A. alternata on pistachio 

(Avenot et al., 2008, 2009; Stammler, 2008), A. solani on potatoes (Fairchild et al., 2013), 

S. sclerotiorum on oilseed rape (Glättli et al., 2009), V. inaequalis on apple (Huf, 2016; 

FRAC, 2016) and Stemphylium vesicarium on asparagus (FRAC, 2016). Molecular studies 

have revealed that the resistance mechanisms are target-site mutations in the Sdh genes 

encoding for subunits SDH-B, SDH-C and SDH-D. 

The emergence of SDHI resistant phenotypes of two cereal pathogens in Europe is 

described in the present work. First SDHI resistant isolates of P. teres and Z. tritici were 

detected in 2012. Therefore, these fungal species were the first important cereal pathogens 

with relevance in crop protection which acquired SDHI resistance. Several target-site 

mutations were detected and characterised in the present work. In the following sections, 

resistance mechanisms in P. teres and Z. tritici are compared to each other and with other 

phytopathogenic fungi. The frequency, the impact and the cross-resistance pattern of 

target-site mutations are highlighted. Finally, the competitiveness of resistant isolates is 

discussed with special attention to future efficacy of SDHI-containing products in cereal 

production systems. 

5.1 Emerging situation of SDHI resistance in net blotch 
and STB in Europe 

5.1.1 Frequency and distribution of SDHI resistant isolates of 
P. teres in Europe 

The first SDHI resistant isolates of P. teres were detected in Germany in 2012. A target-site 

mutation in SdhB gene, leading to B-H277Y, was found (Rehfus et al., 2016; FRAC, 2016). 

Resistance factors (described as EC50 of mutated isolates/ EC50 sensitive isolates) for this 

mutation were low for all SDHIs tested in the present study. Accompanied by the 

introduction of more SDHI containing fungicides on the European market, the situation 

became more complex. In the following years, the number of resistant isolates and the 

responsible target-site mutations in resistant isolates has increased. In 2013, eight 

http://www.frac.info/
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additional SDHI resistance mutations leading to SDH-variants C-N75S, C-G79R, C-H134R, 

C-S135R, D-D124N/E, D-H134R and D-D145G were observed. However, sequencing of 

the genes SdhB, SdhC and SdhD of several SDHI resistant isolates revealed, that each 

resistant isolate showed only one of these mutations but not two or more in combination. 

Most resistant isolates collected in 2013 carried the C-G79R substitution. In addition to its 

high frequency, this SDH-variant gave one of the highest impacts on the efficacy of all 

SDHIs that were tested in microtiter tests. Most SDHI resistant isolates were collected in 

regions of Northern France and Northern Germany, which represent the main barley 

production areas in Europe. A further increase of SDHI resistant isolates was observed in 

Europe in 2014 and 2015. Regions, which show highest frequencies of resistant isolates, 

were north-eastern parts of France and middle and northern parts of Germany. Besides 

C-G79R substitution, other substitutions in the SDH enzyme gained in importance, e.g. 

C-N75S, C-H134R and D-D145G. Additionally, the SDH-variants C-S73P, D-G138V and 

D-E178K were detected in a few resistant isolates. 

The situation of SDHI resistance in P. teres was studied using two different sampling 

methods (‘Random monitoring and ‘Field monitoring’). The pattern of SDH-variants that was 

observed in different regions was found to be highly comparable to each other. Both 

monitoring studies revealed that C-G79R was the most frequent SDH-variant, particularly 

in 2013 and 2014. In France, C-G79R was the most frequent alteration over all years 

(‘Random’- and ‘Field monitoring’). In Germany, the proportion of C-G79R mutants within 

resistant isolates was lower compared with France. For example, in the german ‘Field 

monitoring’ 2016, the most frequent SDH-variant was D-D145G then followed by C-G79R 

and C-H134R. This trend that other SDH-variants have gained in importance, was observed 

in France as well, however C-G79R was still the most frequent alteration within resistant 

isolates. France was shown to have the highest frequencies of SDHI resistant isolates in all 

countries that were analysed. Comparing the increase and frequency of SDH-variants in 

different countries of Europe, the ‘build-up’ of SDHI resistant isolates in France is hard to 

correlate with the use of SDHI-containing fungicides alone. Recommendations, that are 

followed in all countries with registered SDHI-containing products, restricted the usage of 

SDHIs to a maxium of two foliar applications per growing season (FRAC guidelines, FRAC, 

2016). Particularly in France only one application of SDHIs per growing season is 

recommended (https://www.english.arvalisinstitutduvegetal.fr/). In addition, SDHIs are 

always applied in mixtures with fungicides which target an alternative MOA. Similarities in 

pattern could be found when the frequencies of SDHI resistant isolates in Europe were 

compared to a disease risk map for net blotch. The disease risk for net-blotch in winter 

barley production in Europe is given in Figure 44. In the north-east of France, where the 

highest level of resistant isolates was observed, the risk for net-blotch infection is high over 

large areas. This is due to various factors, such as climatic conditions that favour the 

propagation of the pathogen, the availability of host plants (main barley growing region in 

http://www.frac.info/
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France), and the use of susceptible barley cultivars in these regions (Born, 2013). The 

disease risk is also quite high in some parts of Germany and some regions in Poland (see 

Figure 44). In Poland, no SDHI resistant isolates were detected in ‘Random monitoring’. 

Very low frequencies of resistance alleles were detected in infected barley leaves from trial 

sites in 2016. The absence or low levels of SDHI resistance in Poland, although showing 

high disease risk, can be explained by the more extensive agricultural systems there. 

Additionally, SDHI-containing products were introduced later to the polish market than in 

France and Germany. In the United Kingdom, the disease risk is mapped moderate to high 

for some regions. However, the areas which show ‘high risk’ are smaller than those regions 

in France and Germany and no regions are classified as ‘very high’ risk regions. This and 

the fact that SDHIs are probably used less in the UK than in Germany and France could 

explain why SDHI resistance in the UK is still at a low level. Fungicide inputs in barley in 

the UK are quite low compared to France and Germany and QoI/DMI fungicides have 

dominated (personal communication, Dr. R. Bryson, BASF SE). 

 
Figure 44: Disease risk for P. teres in winter barley (BBCH 25-69) in European cereal growing areas. 
Extracted from Born (2013) ‘Optimal Zonal Trial Planning (OZTP) for evaluating fungicides in wheat and barley’ 
for BASF by the company Spatial Business Integration. For analysing the disease risk in European countries, 
long-term information was derived from satellite images, weather records and field observations for regions in 
Europe where barley is grown. These data were compared to conditions P. teres requires for an optimal 
development. The data is computed in a grid of 25 km by 25 km and the results are compared to information 
available from scientific papers and reports of disease outbreaks. This map was also shown in Rehfus et al. 
(2016) in Figure 11. 

This observation suggests that disease pressure and vitality of the pathogen are driving 

forces for resistance development and not solely due to fungicide selection pressure. In 

regions where the disease risk for net-blotch is high, P. teres shows an earlier onset of 

infections and a shorter latent period. Thus, more propagation cycles per season can be 

obtained, which implies that the risk of the random emergence of mutations could be higher, 

due to the higher number of spores that are produced. This is in line with the resistance risk 
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assessment by van den Bosch (2011) and Grimmer et al. (2015), which showed that the 

basic reproduction number and the latent period of a pathogen are significant factors for 

resistance risk development. 

The distribution of the SDHI resistant isolates was found to be variable across Europe, with 

the highest level of resistant isolates and genetic diversity (with respect to SDH variation) 

in France and Germany. According to the FRAC Pathogen Risk List from 2013, P. teres is 

classified as a medium risk pathogen for the development of resistance to fungicides 

(FRAC, 2016). Nevertheless, a rapid occurrence and ‘build-up’ of resistant phenotypes 

towards SDHIs was observed between 2012 and 2014, six and five years (Germany and 

France, respectively) after the market launch of the first foliar-applied SDHIs. After the first 

strong increase from 2012 to 2013 in both countries, the proportion of SDHI resistant 

isolates further increased to ~70% in France or stayed at a level ~40-50% in Germany. In 

other countries, such as the United Kingdom, Denmark and Sweden, anomalies between 

different years were observed. For example, in the United Kingdom, SDHI resistant isolates 

were observed in a significant proportion in 2013, however in 2014 no SDHI resistant 

isolates were collected. In 2015, five of eight isolates collected in the UK were SDHI 

resistant. In net-blotch infected samples from the ‘Field monitoring’, very low frequencies of 

resistance alleles were observed in the UK in 2015 and even in 2016. This indicates that 

SDHI resistant isolates are detectable in some cases, but no real ‘build-up’ of resistant 

isolates in the population in the UK has occurred so far. Interestingly, in the case of QoI 

resistance, F129L reached the highest frequencies in the UK of all countries in Europe. 

Here, levels of up to 70% F129L were found in the population from the UK, whereas in 

Germany and France levels of more than 45% F129L were not exceeded in all years of 

observation (data not shown). An explanation could be a differential use of SDHIs and QoIs 

in these three countries. SDHIs are also broadly used in cereal cultivation in the UK. 

However, especially in the UK, barley cultivation is more extensive (compared with e.g. 

wheat) and fungicides with a lower price (e.g. QoIs) are often preferred (personal 

communication, Dr. R. Bryson, BASF SE) which is different to barley production in countries 

such as Germany and France. SDHI resistant isolates were also observed in countries such 

as Denmark (in 2013) and Sweden (in 2014) at low frequencies. In both countries, SDHIs 

registrations are very limited and most SDHIs are not yet approved for the use in cereals. 

A wind drift of spores from northern regions of Germany might additionally explain the 

occurence of resistant phenotypes in these countries rather than any selection pressure 

from fungicide applications. 

Two further amino acid substitutions in the SDH complex, not detected in this study, have 

been reported in FRAC, namely C-K49E and C-R64K (FRAC, 2016). 

http://www.frac.info/
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5.1.2 Frequency and distribution of SDHI resistant isolates of 
Z. tritici 

The first SDHI resistant isolate of Z. tritici was found in 2012 and carried C-T79N exchange 

(FRAC, 2016). Although high numbers of isolates were collected and tested for their 

sensitivity in the following years, only low numbers of SDHI resistant isolates have been 

found in Europe so far.  

In our monitoring programmes (2012-2016), 42 of 3431 tested isolates were shown to be 

SDHI resistant. In 2013, another single isolate showing C-N86S in SDH enzyme was 

detected. In 2015, more SDHI resistant isolates were detected, however still at a very low 

level and most of them were collected from trial sites, which often show intensive ‘SDHI 

application histories’ and not in ‘Random monitoring’. Genotypes which lead to SDHI 

resistance detected in 2015 showed B-T268I, C-T79N, C-N86S, C-H152R and C-V166M 

substitutions. Several other variants at the same or different positions were further detected 

in 2016 (B-N225I, C-T79I, C-N86A). Additionally, a low number of double Sdh mutated 

isolates were collected. These showed two altered positions in two different subunits, not 

two in the same subunit, B-R240L+C-T79N, B-T268I+C-I29V, B-T268A+C-F23S and 

C-H152R+D-R47W. Dr. B. Fraaije (personal communication, Rothamsted Research) has 

additionally reported of several isolates with more than one Sdh mutation but the 

contribution of such mutations that occur in combination to other resistance mutations with 

known impact has still to be determined. The knowledge of DNA/protein sequence and 

baseline information of wild type populations, in combination with sensitivity tests of 

sensitive and resistant isolates normally allows a reliable determination of resistance 

mutations. However, especially when a low number of isolates are available (at the 

beginning of emergence), baseline sensitivity shows high variation and the observed 

mutations cause only a low impact on the SDHI sensitivity, the determination is more 

challenging. 

Particularly SdhC DNA sequence of Z. tritici shows a high variation, even within SDHI 

sensitive isolates. 35 nucleotide exchanges were detected in different SDHI sensitive 

isolates. The nucleotide sequence alignments of different wild type isolates can be found in 

the Supplementary Material, Figure 53. Most mutations were found to be silent, whereas 

three nucleotide exchanges led to the amino acid substitutions C-I29V, C-N33T and 

C-N34T. The amino acid sequence alignments are shown in the Supplementary Material, 

Figure 54. The first exchange was found in only one isolate from France, whereas C-N33T 

and C-N34T were found in ~50% of isolates, either showing NN or TT, but not mixed up. 

No differences in the SDHI sensitivity was discovered in isolates with NN or TT (in the 

present study; Dubos et al., 2013). Amino acid alterations at position 33 and 34 were also 

detected in SDHI resistant isolates. Amongst those SDHI resistant isolates which have the 

same resistance mutations, both types (NN and TT) could be observed in most cases. All 

three C-H152R field isolates showed TT at positions 33 and 34. However, B-T268I, C-T79N 

http://www.frac.info/
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and C-N86S isolates had both types. This gives evidence that these SDHI resistant isolates 

(showing same resistance mutation) have emerged in both types independently. This would 

indicate that resistance mutations evolved more than once (at least two times 

independently, probably even more often). Torriani et al. (2009) reported that G143A (QoI 

resistance) has emerged at least four times independently in European populations of 

Z. tritici; this was shown by phylogenetic analysis of mitochondrial sequences. Additionally, 

the F129L exchange in P. teres has been found to be coded by three different codons (TTC 

wild type to TTA, TTG or CTC, all coding for leucine) (Semar et al., 2007), also meaning an 

independent emergence. The occurrence of resistance in different geographical areas or in 

different genetic groups within a species was also shown in case of SDHI resistance in 

B. cinerea from apple (Yin et al., 2011).  

Most amino acid substitutions found in SDHI resistant field isolates were shown to cause 

‘moderate’ levels of resistance (see section 4.2.4). It is interesting to note that most of the 

‘moderate’ mutations in field isolates, have not been detected in laboratory mutants before. 

Mutations, described by several studies with laboratory mutants (Skinner et al., 1998; 

Stammler et al., 2010; Fraaije et al., 2012; Scalliet et al., 2012), have not occurred in the 

field so far. Exceptions thereby are the ‘strong’ mutation leading to C-H152R and one 

‘moderate’ mutation (C-N86S), which had been found in combination with B-H267Y in a 

laboratory isolate (Fraaije et al., 2012). One reason for the selection of mainly ‘strong’ 

mutations in laboratory screenings could be due to the high discriminatory doses chosen 

for the selection of SDHI resistant mutants. Thus, isolates carrying ‘moderate’ mutations 

were probably unable to grow in such experiments. On the other hand, isolates with ‘strong’ 

mutations which have been selected by SDHIs in several laboratory studies, such as 

B-H267L, C-N86K or C-G90R, have still not been found in the field population. A possible 

explanation could be the reduced fitness of these isolates. The amino acid substitution 

C-H152R, which has been described by three of the four laboratories which have generated 

SDHI resistant isolates (Stammler et al., 2010; Fraaije et al., 2012; Scalliet et al., 2012), 

was first detected in the field in 2015, three seasons after the first SDHI resistant isolate 

(C-T79N) had been detected. The monitoring results in 2016 indicate that, currently, the 

most frequent amino acid exchanges are C-T79N and C-N86S, and that others, such as 

B-T268I, C-W80S, C-H152R, B-N225I, B-T268A, C-T79I and C-N86A, have only been 

found in single isolates (the last four SDH-variants are described for the first time in the 

field). C-H152R was found in only two isolates in 2016, one from the Netherlands, the other 

from the United Kingdom. Since the C-H152R amino acid exchange causes the highest 

resistance level of all field mutants to all SDHIs, and thus should give an advantage at high 

or low exposures of SDHIs, it could be speculated that this alteration might be connected 

to fitness penalties as well. In addition, in a practical field situation, lower dose rates are 

often applied and selection of mutants is a result of lower, but in some cases, repeated 
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applications. This may favour selection of ‘moderately’ resistant isolates with a better level 

of fitness (fitness of Sdh mutants is discussed in section 5.4)  

Other institutions and companies found other Sdh mutations. For example, C-W80S (first 

found in our monitoring in 2016) was sampled for the first time in UK in 2013 by another 

research group (FRAC, 2016). In 2014, no suspicious isolates were detected in our 

monitoring. However, in 2014, B-N225T exchange was detected in an isolate from Ireland 

in another monitoring programme (FRAC, 2016). The first report of C-H152R in an Irish field 

was published by Dooley et al. (2016). 

5.1.3 Comparison of the emergence of SDHI resistance in Z. tritici 
and P. teres  

In accordance to the emergence of QoI and DMI resistance, SDHI resistant isolates of 

Z. tritici and P. teres were first detected in Western Europe in countries such as Ireland, the 

United Kingdom, France and Germany. This phenomenon is probably based on the high 

disease pressures in these regions, which comes along with a high intensity of fungicide 

use in these areas (FRAC, 2016). After the first detection in 2012, a rapid increase of 

resistant isolates was observed in the following years in the European population of P. teres, 

particularly in countries such as France and Germany. In contrast, resistant isolates of 

Z. tritici in Europe were still observed at low frequencies, even in 2015 and 2016. 

There are several reasons that could explain the much faster ‘build-up’ of resistant 

individuals in P. teres compared with Z. tritici. Factors such as the biology of both different 

fungal species, the intensity of fungicide usage and disease pressures in the years of 

detection could have had an impact on the emergence of resistance. P. teres shows a 

shorter latency phase in its host compared with Z. tritici. Up to 12 cycles of propagations 

can be observed in net blotch disease under favourable conditions per year, compared to 

3-6 cycles of propagation in the case of STB (personal communication, G. Prigge, BASF 

SE; Gurr and Fones, 2015). Higher numbers of propagules and higher infection pressures 

could theoretically contribute to a faster emergence and ‘build-up’ of resistance in a 

population. However, field technicians and collectors, who sent infected leaf sampes, 

reported that the disease pressure of P. teres was low in most regions of Germany in 2015 

(personal communication, Dieter Strobel, BASF SE). In contrast, significant disease levels 

of Z. tritici were observed in all years for most regions, which indicates that environmental 

conditions were favourable for Z. tritici in these years. Both pathogens are classified as 

‘medium-risk’ pathogens for the development of fungicide resistance (FRAC, 2016) and, 

therefore, does not help to explain the faster ‘build-up’ of SDHI resistance in net blotch. QoI 

resistant isolates of Z. tritici emerged faster and developed in higher frequencies in 

European countries compared with P. teres, which seems to be in contrast to SDHI 

resistance emergence. However, QoI resistance is mediated by different CYTB alterations 

http://www.frac.info/
http://www.frac.info/
http://www.frac.info/
http://www.frac.info/


Discussion 123 

 

 

in both species (G143A prevalent in Z. tritici and F129L in P. teres), which might also explain 

the differences of QoI resistance emergence in P. teres and Z. tritici. Additionally, the 

market launch and the range of SDHI containing products in barley and wheat production 

are very similar and, therefore, could also not really explain different numbers of SDHI 

resistant isolates in both fungi. In summary, a real explanation why Sdh mutations did evolve 

faster in net blotch than in STB is still missing and answering that question would require 

the analyses of detailed informations, such as the fungicide use patterns, weather 

conditions, crop patterns and several other factors that could affect the time of resistance 

emergence. 

Further differences in the development of SDHI resistance in P. teres and Z. tritici were 

observed in the range of different target-site mutations. Mutations that were found in 

resistant isolates of P. teres and Z. tritici, and their orthologous positions in the respective 

other pathogen, are given in Table 31. Most amino acids in the SDH enzyme that could 

result in SDHI resistance when substituted, are conserved residues in both P. teres and 

Z. tritici and, therefore, show the same amino acid in sensitive isolates. Exceptions are 

positions 23 (21), 29 (27), 75 (64) and 84 (73) in SDH-C of Z. tritici (P. teres). Here, the wild 

typic amino acid is different in both species. 

C-N86S in Z. tritici and orthologous C-N75S in P. teres is the only substitution that has been 

detected in both pathogens in the field so far. All other SDH-variants have been detected 

either in P. teres or Z. tritici. C-G79R amino acid substitution, which is the most frequent 

alteration in P. teres, was not detected in field isolates of Z. tritici but has been detected in 

some laboratory isolates (here C-G90R) (Stammler et al., 2010; Fraaije et al., 2012; Scalliet 

et al., 2012; in the present study). On the other hand, C-T79N, the most frequent exchange 

within SDHI resistant isolates of Z. tritici, has not been detected in P. teres or in any other 

plant pathogens so far. 

For most mutations, there is no explanation based on nucleotide sequence, why different 

mutations develop in both pathogens. An exception thereby is C-S135R (P. teres), which is 

unlikely to occur in Z. tritici because serine is coded TCG (instead of AGC as in P. teres) 

and two nucleotide exchanges would be necessary to result in arginine. The same was 

observed for C-V166M (Z. tritici), which is unlikely to occur in P. teres due to different 

codons. On a protein level, active parts of the SDH enzyme are composed similar to each 

other, and conservation between both organisms is high (Cecchini, 2003). In Figure 45, the 

structural alignment of homology models of P. teres and Z. tritici is given (homology models 

were individually presented in the results for both pathogens in Figure 15 and Figure 38). 
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Table 31: Amino acid positions in P. teres and Z. tritici which can be substituted in the case of SDHI 
resistance. Positions included are found in SDHI resistant field isolates of either P. teres or Z. tritici. Wild type 
amino acid is given for all positions analysed. An altered amino acid is given, when this substitution was found 
in this species in the field or in laboratory mutants (Z. tritici). SDH-variants collected in the field are shown in 
bold. SDH-variants detected in the present study are underlined. Other SDH-variants included in the list were 
detected in laboratory mutants, either in the present study or in Stammler et al. (2010), Fraaije et al. (2012) and 
Scalliet et al. (2012). Laboratory mutants are marked with an asterix. SDH-variants not found as a single 
substitution but in combination with another, are given in brackets. D-R47W was detected in an isolate from 
Ireland which simultaneously carried C-H152R (Dooley et al., 2016); this isolate was provided to our laboratory 
for further studies. 

Protein AA position in P. teres  AA position in Z. tritici 

SDH-B 

N235 N225I /T 

(R250) (R240L) 

H277Y H267Y/L/R* 

T278 T268I(A) 

SDH-C 

(V21) (F23S) 

(L27) (I29V) 

K49E K60 

R64K K75 

T68 T79N/I 

W69 W80S 

S73P A84V* 

N75S N86S/A (K*) 

G79R G90R* 

H134R H145R* 

S135R S146 

H141 H152R 

V155 V166M 

SDH-D 

(R63) (R47W) 

D124N/E D108 

H134R H118 

G138V G122 

D145G D129E* 

E178K E162 

 

The majority of altered amino acids found in P. teres are positioned in close proximity to the 

haem b group (exceptions are B-H277Y in binding pocket and D-D124N/E and D-E178K at 

a far distance). In contrast, all SDH variations of Z. tritici were located near to or directly in 

the binding pocket for ubiquinone and the SDHIs. Length differences and variable positions 

of amino acids in the SDH complex in plant pathogenic fungi could explain diverse biologcial 

profiles of SDHIs in different fungal species (Scalliet et al., 2012) and could further explain 

why different mutations evolve in different species. 

Interestingly, amino acid substitution C-R64K in P. teres (FRAC, 2016) leads to the amino 

acid lysine, which is present in sensitive isolates of Z. tritici at that position. Such variable 

positions in the SDH enzyme in sensitive isolates of different plant pathogens species might 

explain why other mutations develop in different species and could give an explanation why 

RF values of the same substitution can vary between species. 
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Figure 45: Structural alignment of P. teres and Z. tritici homology models. Homology models are based 
on X-ray from G. gallus (PDB 2WQY). A: Overlay of SDH-B, SDH-C and SDH-D subunits of both plant 
pathogens. Identical amino acid residues are shown in white, similar residues are shown in blue and dissimilar 
residues are shown in red. B: Zoom to some positions in SDH-C, which are known from SDHI resistant field 
isolates, and their overlay. Wild type amino acids are shown. Dark lilac shows the position of amino acids in 
P. teres, and light lilac the amino acids in Z. tritici. Positions that were found to be substituted in the field, are 
shown in bold. 

EC50 values for SDHI sensitive isolates, that had been obtained in microtiter tests in the 

present study, ranged from 0.005 to 0.04 mg a.i. L-1 in the case of P. teres, and 0.05 to 0.18 

mg a.i. L-1 in the case of Z. tritici, depending on the SDHI analysed. All SDHIs were shown 

to have higher EC50 values (~5-10 fold higher) for sensitive Z. tritici isolates than for sensitive 

P. teres isolates. However, if these differences are a result of altered positions in the SDH 

enzyme of different species, requires further detailed studies. 

Resistance factors of mutations detected in P. teres and Z. tritici are shown in Table 32. 

Resistance levels in the case of the orthologous substitutions C-N75S and C-N86S are 

highly comparable in both pathogen species. However, C-G79R in P. teres showed slightly 

higher RF values for most compounds (penthiopyrad and fluopyram are exceptions) 

compared with C-G90R in Z. tritici. In contrast, B-H277Y in P. teres generally showed lower 

RF values than its orthologous variant in Z. tritici. Interestingly, laboratory mutants of 

Z. tritici, which had B-H267Y, did not show hypersensitivity to fluopyram, which was 

observed in B-H277Y in P. teres. 
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Table 32: Resistance factors of SDHI resistant isolates of P. teres and Z. tritici at corresponding 
substitutions. C-N75S, C-G79R, B-H277Y (P. teres) and C-N86S (Z. tritici) were detected in the field, C-G90R 
and B-H267Y are laboratory mutants of Z. tritici. RF values are based on microtiter tests shown in present study. 

SDH-variants 
RF values 

Benzo Isopyra Bixa Fluxa Penthio Fluo 

C-N75S 24 19 14 20 34 5 

C-N86S 39 18 18 17 25 8 

C-G79R 31 37 84 86 234 7 

C-G90R 26 25 73 50 790 >22 

B-H277Y 9 6 9 14 13 0.25 

B-H267Y 31 14 29 24 137 1 

Some features of SDHI resistance were observed in common for both pathogens, although 

different target-site mutations were identified in P. teres and Z. tritici: 

• A high number of different mutations were identified in the field 

• Some mutations have a lower impact on SDHIs than others (cross-resistance of 

SDHIs on market, however, response not identical) 

• Each resistant isolate showed one amino acid exchange in the SDH subunits; in a 

few cases two alterations were observed only in Z. tritici, but not two in the same 

subunit. 

5.2 Orthologous SDH-variants in other plant pathogenic 
fungi 

Well-studied examples of SDHI resistant plant pathogens are known from speciality and 

row crops. In most phytopathogenic species, which already showed SDHI resistant 

phenotypes in the field, several mutations at different positions in the SDH-B, SDH-C and 

SDH-D subunits have been detected (reviewed by Stammler et al., 2015; FRAC, 2016). 

Compared to plant pathogenic species which infect speciality and row crops, SDHI resistant 

isolates in cereal pathogens were detected later, which is most probably due to the earlier 

introduction of SDHI-containing products and the higher number of applications per season 

in speciality crops. 

Many amino acid substitutions that were detected in P. teres and Z. tritici in the present 

study, have already been described in other plant pathogenic fungi. Orthologous (also 

called homologous) positions in different fungal species do not necessarily have the same 

amino acid number, which is due to length differences of amino acid sequences. Mair et al. 

(2016) recently published a proposal for using a unified nomenclature for SDH amino acid 

exchanges, which is based on P. teres SDH as archetype sequence. To date, the scientific 

community still uses the species-specific numbering of resistance amino acid alterations, 

which often leads to some confusion when resistance mechanisms in different species are 

compared. The numbering of orthologous amino acids in different species can be easily 

identified in the paper of Mair et al. (2016) and Stammler et al. (2015). In the following, SDH-
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variants of P. teres and Z. tritici are compared to other published SDHI resistance mutations 

in other plant pathogens.  

The histidine substitution in subunit B at position 277 in P. teres was found in many species 

that had acquired SDHI resistance. This position in P. teres is homologous to positions 249 

in Aspergillus oryzae, 257 in U. maydis, 272 in A. alternata and B. cinerea and can be 

substituted to tyrosine, arginine, lysine and valine in resistant isolates of different species 

or even in the same species (FRAC, 2016). A well-studied case of SDHI resistance in plant 

pathogens is B. cinerea. Resistant isolates of B. cinerea were detected in apple (Yin et al., 

2011), kiwi (Bardas et al., 2010) and strawberry (Stammler et al., 2007; Veloukas et al., 

2011, 2013). B-H272Y/R/L/V and exchanges at other positions such as B-P225L/F/T, 

B-N230I, C-A85V and D-H132R have been detected in field isolates and laboratory isolates 

of B. cinerea. Thereby, different mutations were detected even in one sampling location 

(Stammler et al., 2007; Veloukas et al., 2011). D-H132R in B. cinerea is homologous to 

D-H134R in P. teres and B-N230I in B. cinerea is homologous to B-N225I in Z. tritici. Other 

variants known from B. cinerea were not present in field isolates of both investigated 

pathogens, however, were detected in some laboratory strains of Z. tritici in previous studies 

(e.g. B-H267Y/R/L and C-A84V) (Skinner et al., 1998; Stammler et al., 2010; Scalliet et al., 

2012; Fraaije et al., 2012). Other plant pathogens, where intensive resistance research has 

been completed, are A. solani on potatoes (Gudmestad et al., 2013) and A. alternata on nut 

crops (e.g. pistachio) in the US (Avenot et al., 2008, 2009). Here, SDH-variants B-H277Y/R, 

C-H134R, D-D123E and D-H133R were detected in A. alternata and B-H278Y/R and 

D-H133R in A. solani. With the exception of B-H277R/B-H278R, orthologous mutations to 

those found in Alternaria species have also been identified in P. teres (B-H277Y, C-H134R, 

D-D124E and D-H134R). The question raises as to why P. teres evolved only B-H277Y at 

this position and not, for example, B-H277R, which was frequently found in resistant isolates 

of A. solani, A. alternata, B. cinerea and other SDHI resistant species. Another pathogen 

which showed similar mutations to some variants found in P. teres is C. cassiicola. Here, 

amino acid substitutions B-H278Y/R, C-S73P, D-S89P and D-G109V have been reported 

(Miyamoto et al., 2008, 2010). C-S73P in P. teres and C. cassiicola is placed at a position 

which has various possible amino acid residues in wild type sequences of other pathogenic 

fungi. In B. cinerea and Z. tritici alanine is found at this position, C-A84, and this was 

substituted to valine in laboratory mutants of both species. Current work in our laboratory 

has revealed an exchange at this position (C-I86F) which leads to a reduced SDHI 

sensitivity in P. pachyrhizi. This was communicated in the SDHI FRAC Working Group 

(FRAC, 2016). D-G138V, which was detected in two 2015 isolates of P. teres, is 

orthologous to D-G109V in C. cassiicola. The set of mutations detected in field isolates of 

Z. tritici was most comparable to V. inaequalis on apple. Here, C-H151R (C-H152R in 

Z. tritici) and B-T253I (ortholog to B-T268I in Z. tritici) was detected in our laboratory (Huf, 

2016). However, C-T79N, which was the most frequently found SDHI resistance mutation 
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in Z. tritici, was not relevant in any other plant pathogen. C-T79I was detected at the 

orthologous position in A. oryzae (identical to one isolate from 2016 in Z. tritici). The most 

important substitution in P. teres (C-G79R) was not important in any other plant pathogen 

and has only been detected in laboratory mutants of Z. tritici so far. A second pathogen 

known from barley, Ramularia collo-cygni, evolved target-site mutations in the Sdh genes 

in the last two years. Here, research is still at the beginning, however, a few resistant 

isolates have been characterised and have shown C-N87S (homolog to C-N75S in P. teres 

and C-N86S in Z. tritici) in addition to C-H146R (homolog to C-H134R in P. teres) and 

C-H153R (homolog to C-H152R in Z. tritici) (FRAC, 2016). Few SDHI resistant isolates of 

R. collo-cygni were also analysed during the present study. Here, alterations B-H267R, 

B-T268I, B-I269V (numbering of alterations in SDH-B are based on Z. tritici sequence 

because beginning of R. collo-cygni SDH-B is still unknown), C-N87S, C-H146R and 

C-H153R were found in isolates from Germany (data not shown). 

The observation of homologous mutations in other plant pathogenic fungi shows that, 

although the genetic modifications which lead to SDHI resistance are various, and large 

numbers of mutations have been found so far, they appear to be restricted to a smaller 

number of mutations that predominantly occur in the field (Stammler et al., 2015). Thereby, 

each fungal pathogen species shows its own set of mutations that were predominantely 

detected. Reasons for the diversity of mutations in different species can be seen in the use 

of SDHI-containing products in different crop/pathogen systems, an altered exposure, 

uptake and metabolisation of substances in plant pathogens and species-specific effects of 

mutations on the SDHI efficacy and pathogen fitness. Exact reasons for the development 

of different mutations remain so far unclear. However, it could be observed that similar SDH-

variants were detected in species which are closely related to each other, e.g. A. alternata 

and A. solani. These species cause diseases in different crops and thus are present in 

different agricultural systems with other compounds/application intensities. Nevertheless 

they have evolved similar SDH-variants. Different species obviously have selected those 

Sdh mutations that provide the highest benefits regarding their specific SDHI environment 

and which cause the lowest fitness costs in their genetic background. This species-specific 

pattern of different resistance mutations clearly shows the importance of monitoring 

programmes of field populations. Rapid molecular detection methods of resistance alleles 

are only useful when the main resistance mechanisms (mutations) are known in a species 

(Stammler et al., 2015). 
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5.3 Impact of point mutations in the Sdh genes on the 
sensitivity to SDHIs 

5.3.1 Structural changes of SDH enzyme caused by target-site 
mutations 

The structure of E. coli SDH and several mitochondrial SDHs from eukaryotes display highly 

conserved residues which are involved in ubiquinone catalysis and haem b coordination 

(Yankovskaya et al., 2003; Sun et al., 2005; Horsefield et al., 2006). SDH-B subunit reveals 

relatively high conservation, whereas many variable positions have been observed in 

SDH-C and SDH-D (Cecchini, 2003; Maklashina et al., 2010). SDHI fungicides have been 

shown to strongly bind to the SDH complex at the ubiquinone reduction site (Keon et al., 

1991; Matsson and Hederstedt, 2001; Yankovskaya et al., 2003; Horsefield et al., 2006; 

Huang et al., 2006; Glättli et al., 2009). Docking studies of modern SDHIs suggest that they 

bind deeper into the Q-site than ubiquinone itself, but show an overlapping binding mode to 

the natural substrate (Glättli et al., 2011; Sierotzki and Scalliet, 2013; Stammler et al., 2015). 

The Q-site is a hydrophobic pocket formed by highly conserved residues in many organisms 

(including bacteria and eukaryotes) of SDH-B, SDH-C and SDH-D subunits (Horsefield et 

al., 2004). Residues involved in ubiquinone binding are W224 in SDH-B, S83 in SDH-C and 

Y130 in SDH-D (Z. tritici numbering) (Tran et al., 2006; Silkin et al., 2007; Zhou et al., 2011). 

These residues are suggested to be also involved in SDHI interaction by the formation of 

hydrogen-bonds of SDHIs to B-W224 and D-Y130, and through a water molecule to C-S83 

of the central amide bond, which is a common feature of all SDHIs. Modern SDHIs are 

thought to interact with the SDH enzyme at several additional positions (Horsefield et al., 

2006; Huang et al., 2006; Ruprecht et al., 2009; Sierotzki and Scalliet, 2013; Stammler et 

al., 2015). A schematic view of the SDHI binding mode is highlighted in Figure 46. 
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Figure 46: Schematic binding mode of SDHIs in Z. tritici ubiquinone-binding site. This picture is extracted 
from Sierotzki and Scalliet (2013) (modified). The polar cavity (red amino acid residues) is thought to interact 
with the acid core ring of SDHIs (red colour), the hydrophobic pocket (blue amino acid residues) are thought to 
interact with the linker of SDHIs (blue colour) and the groove on the protein surface (green amino acid residues) 
shows interaction with hydrophobic rest of SDHIs (green colour). Dashed lines show hydrogen-bonds (or 
electrostatic interaction), full lines depict hydrophobic contacts and yellow box gives putative interactions with 
π-clouds. 

Some amino acid exchanges found in SDHI resistant plant pathogens are integral parts of 

the binding cavern of SDHIs. Thus, histidine at position 267 in SDH-B (Z. tritici, see Figure 

46), which is often substituted in resistant isolates of different plant pathogens (e.g. 

B-H277Y in P. teres), is supposed to be involved in the interaction of SDHIs (Glättli et al., 

2011; Sierotzki and Scalliet, 2013) and explains the reduced efficacies of SDHIs in the case 

of these mutants (no hydrogen bonds possible). Other examples of SDH-variants that are 

directly involved in SDHI binding, are C-W80S (in field isolates of Z. tritici) and B-P225L/T/F 

in B. cinerea (orthologous to B-P220 in Z. tritici). The resistance levels that are expressed 

by different exchanges is not correlated to the distance to SDHI interaction site (Stammler 

et al., 2015). This means that different exchanges even at one position can cause different 

resistance factors, which can also be dependent on the investigated organism (Scalliet et 

al., 2012). Several other SDH-variants detected in the present study are not directly involved 

in SDHI binding but are closely located to residues which form the binding cavern (e.g. 

B-T268I, C-T79N and C-N86S in Z. tritici and C-N75S and D-D145G in P. teres). It can be 

speculated, that as these substitutions are so closely located to the binding cavern that they 

could easily cause structural rearrangements within the binding cavern. Interestingly, 

substituted residues sometimes lead to a bulkier side chain (e.g. B-T268I and C-T79N), 

whereas in other examples substituted residues (e.g. C-N86S and D-D145G) are smaller, 

compared with the wild type amino acid. 
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Many substitutions found in SDHI resistant isolates of P. teres are located within SDH-C 

and SDH-D subunits near to the haem b group of the SDH enzyme (C-G79R, C-H134R, 

C-S135R, D-G138V and D-H134R). In the case of C-G79R substitution, the original position 

of the haem b group seems to be unlikely because the arginine residue is much bulkier 

compared to glycine, which would consequently lead to a ‘clash’ with the haem b group. 

Substituted residues in the cases C-S135R and D-G138V are also much bulkier compared 

to wild type amino acids. Histidine at position 134 in SDH-C and SDH-D are conserved 

residues, which coordinate the central iron atom of haem b group. Interestingly, these two 

(not both in combination) histidines can be substituted to arginine in SDHI resistant isolates 

of P. teres. Arginine is not known to act as coordination parter of the haem b group 

(Dokmanić et al., 2008), which means that one coordination partner is lost in the case of 

these mutants. It can be supposed that such changes in the enzyme can result in structural 

rearrangements, which indirectly affect the topology of the Q-site. To date, the exact role of 

the b-type haem in the SDH enzyme is still a matter of scientific debate (Horsefield et al., 

2004; Oyedotun et al., 2004, 2007; Maklashina et al., 2010). It was demonstrated that haem 

b- lacking mutants of E. coli and Saccharomyces cerevisiae, which had been obtained by 

site-directed mutagenesis, still show ubiquinone reduction and correct assembly of the SDH 

complex (Oyedotun et al., 2007; Tran et al., 2007; Maklashina et al., 2010). On the other 

hand, there is strong evidence that haem b has a critical role in structural stabilisation of the 

enzyme and that it contributes to the maintenance of a high catalysis rate, which was 

suggested to result from an alternative electron pathway from [3Fe-4S] cluster to haem b 

and ubiquinone (Nakamura et al., 1996; Maklashina et al., 2001; Anderson et al., 2005; 

Tran et al., 2007; Stammler et al., 2015). 

In addition, two positions at a far distance to the Q-site and haem b group, D-D124N/E and 

D-E178K, have been detected in P. teres. These alterations can most probably also lead to 

a structural rearrangement within the protein and thus affecting the Q-site topology, as 

described for amino acid substitutions near haem b. Although, these substitutions are at a 

far distance, they are observed at the same α-helices that span the membrane right up to 

the Q-site. 

5.3.2 SDHI sensitivity of resistant isolates 

In microtiter tests, the SDHI resistant isolates of P. teres and Z. tritici showed a 10 to 100-

fold higher tolerance (in some cases even higher) to SDHIs, which was dependent on the 

mutation and the SDHI analysed. All SDHIs tested in this study were affected and confirm 

the statement by FRAC that in general cross-resistance exists between SDHIs (FRAC, 

2016). This can be explained by the similar binding mode to the SDH enzyme by different 

SDHIs (Glättli et al., 2009; Fraaije et al., 2012; Sierotzki and Scalliet, 2013). In vitro 

sensitivity losses and in planta efficacy losses determined in the glasshouse do not 

necessarily reflect the situation in the field. Glasshouse tests are a step closer to field 

http://www.frac.info/


Discussion 132 

 

 

conditions compared to microtiter studies, because the host plant is included. Therefore, 

glasshouse data can provide an estimation on the efficacy of fungicides under resistance 

conditions in the field. 

In the present study, glasshouse tests were performed under preventative and curative 

applications of SDHIs at either the registered field rates or at one third of this rate. Lower 

dose rates or curative applications (four-days curative in the tests presented) challenge the 

fungicide performance. Two different approaches for the set-up of glasshouse trials were 

used. One approach was to use commercially available products (solo formulations) and a 

second was to use dissolved active ingredients. Since not all SDHIs are commercially 

available as solo formulations, it was decided to test all SDHIs dissolved in DMSO/Agnique 

AMD10 in Z. tritici for a representative comparison. Due to the very low water solubility of 

some SDHIs, it was necessary to optimise the solvent system to avoid precipitation of these 

compounds which could give inaccurate results. For comparison and as an evaluation of 

the effect of an individual optimised formulation, one compound (fluxapyroxad) was used 

both, as the commercial formulation in addition to the procedure with dissolved a.i. (Z. tritici 

glasshouse tests). Glasshouse data show that isolates carrying ‘moderate’ mutations 

(determined in microtiter tests) are generally better controlled than mutants, which carried 

‘strong’ resistance mutations. The findings can be interpreted that the sensitivity of all 

compounds are impacted by all mutations, but that in most cases there is still a significant 

contribution to the control of isolates which contain the ‘moderate’ mutations B-T268I, 

C-T79N and C-N86S in Z. tritici and C-N75S, D-D124N/E and D-D145G in P. teres. 

Fluxapyroxad in its commercial formulation showed a better efficacy than in the standard 

solution used. This could indicate that there is potential for a higher control of all isolates by 

each SDHI in its commercial formulation compared to the standard solution as used in this 

study. There are several reasons that could explain this, including a higher stability of 

molecules, a better uptake to plant tissue or fungal cells, or the spread on the plant surface 

in an optimised formulation. 

Under curative conditions or at lower dose rates of SDHIs, efficacies showed a strong 

reduction with some mutations, particularly in isolates carrying, for example, C-H152R in 

Z. tritici or C-G79R and C-H134R in P. teres.  

It should also be considered that glasshouse trials were performed with single isolates 

representing 100% resistant genotypes, whereas in the field, lower frequencies of SDHI 

resistant isolates have been found so far. Therefore, the generally treated pathogen 

population in the field would be highly heterogenous. In addition, resistant isolates show a 

wide range of diverse mutation, even regarding one sample taken from one site. Therefore, 

the treated pathogen population in the field would be probably more heterogenous 

compared to the approach used in the current study. Glasshouse tests were also conducted 

using a high number of spores and optimal infection conditions for the fungus. Very high 
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infection pressures were observed in untreated control plants (mainly in curative trials of 

Z. tritici), which further challenged the fungicide performance. Therefore, the glasshouse 

trials indicate that SDHIs could still contribute to disease control in the field even if the 

frequency of mutations (at least for most mutations) is high in the population. It would be 

useful to determine the degree of this contribution in field experiments in the future. 

Fungicide selection experiments (with solo products) and efficacy tests with artificially 

inoculated mutants in the field are interesting approaches, however, could possibly 

contribute to a faster ‘build-up’ of resistant isolates coupled with a more rapid decline of 

fungicides efficacy. This assumption is made because, particularly in Z. tritici, most SDHI 

resistant isolates were first collected from trial sites and not in the ‘Random monitoring’ (in 

the present study). Additionally, an increase of resistant isolates was first observed at trial 

sites in 2015 carried out by independent scientists in 2015 (where high doses of solo SDHIs 

were applied) (Dooley et al., 2016; personal communication, Dr. S. Kildea, Teagasc 

Institute). Additionally, samples taken from some Irish trial sites (untreated plots) showed 

higher frequencies of C-T79N compared to commercial sites in the same year, and even in 

2016. A model for the evolution of fungicide resistance is given in Figure 47 (extracted from 

van den Bosch et al., 2011). 

 
Figure 47: Emergence and selection phase of fungicide resistant populations. This model is extracted 
from van den Bosch et al. (2011) (modified). This model shows the emergence and selection phase of resistant 
individuals and depicts first time of resistance detection and the effective life of fungicides. 

This model describes that single individuals within sensitive populations randomly acquire 

resistance by spontaneous mutation. However, natural selection can cause down selection 

of random occurred mutants. At the beginning of resistance evolution, levels of resistant 

individuals are so low that they are hardly detected. Under fungicide selective conditions, 

resistant individuals will spread until they exceed a critical point, whereafter the selection 
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phase with a strong increase of resistant isolates can occur. The rate of this increase in the 

resistant population will depend on a range of external factors, such as the use intensity of 

the given fungicide class, disease intensity, anti-resistance management (van den Bosch 

et al., 2011, 2014). In all phases of the resistance evolution, alternation and mixing of MOAs 

(still active MOAs) in addition to the use of multi-site fungicides, are useful tools to minimize 

the selection process and should be used in the field to avoid further spread and enrichment 

of resistant individuals. The relative fitness of resistant isolates compared with the wild type 

population will also impact on the resistance development in the population (fitness of SDHI 

resistant isolates is discussed separately in section 5.4). The relative slow increase of 

SDHI-resistant field mutants in Z. tritici and the noticeable difference between trial sites and 

‘Random monitoring’ shows that in field situations resistance management can at least slow 

down the progress of SDHI resistance. 

5.3.3 Cross-resistance of SDHI resistant phenotypes to various 
SDHIs 

A general cross-resistance of SDHIs has been postulated, because they all share common 

chemical features and a similar binding mode to the target enzyme (Glättli et al., 2009; 

Scalliet et al., 2012; Fraaije et al., 2012; FRAC, 2016), although minor differences in the 

response to mutations can be observed for different compounds. However, there are 

exceptions with some mutations, where no clear cross-resistance seems to be present (Ishii 

et al., 2011; Veloukas et al., 2013). The magnitude of the impact conferred by a specific 

mutation can vary from species to species (Sierotzki and Scalliet, 2013; Stammler et al., 

2015). 

In cross-resistance studies, it needs to be carefully considered that RF values obtained from 

in vitro studies do not necessarily correlate in a linear way with the efficacies observed in 

the glasshouse particularly as the sensitivity of the wild type (reference isolates) can also 

vary. This was observed in the present study in case of fluopyram. Although fluopyram had 

lower RF values in microtiter tests compared with many other compounds with most SDH-

variants, its efficacy was significantly decreased in glasshouse studies. For example, 

C-G79R mutants (P. teres) had a RF=7 in microtiter tests with fluopyram, but were shown 

to cause an efficacy reduction of 60% in fluopyram treated plants (full rates). In comparison, 

fluxapyroxad showed RF values of 86 (C-G79R) in microtiter tests, however, efficacy 

reduction was only 20% (full rates). This suggests that RF values obtained in microtiter tests 

are not generally a good indication of the in planta efficacy and/or field performance of 

compounds. Therefore, the impact of a specific mutation should be analysed in in vitro and 

in planta studies, and should be theoretically tested also under field conditions. 

Furthermore, each fungicide can have specific properties (e.g. stability and translocation 

properties in the plant), which can enhance performance, particularly under field conditions. 

Different SDHIs can also show an advantage or a disadvantage depending on the plant 
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pathogen, crop species, environmental conditions and agricultural practices, factors which 

also need to be considered when compounds are compared. 

In laboratory mutants of Z. tritici, which had been obtained by selection on agar amended 

with an SDHI, numerous mutations were found (Stammler et al., 2010, Fraaije et al., 2012; 

Scalliet et al., 2012). Many mutations in the Sdh genes of these artificially created mutants 

conferred resistance to all SDHIs in a similar manner. Examples of such mutations, which 

were shown to cause high impacts on all SDHIs, are B-H267L and C-N86K. Additionally, 

mutations were detected which revealed different responses to some SDHIs compared to 

other SDHIs. Examples, thereof, are B-H267Y, which had no or just a low impact on 

fluopyram, and B-I269V and C-A84V, which had a high impact on fluopyram but low impact 

on several other SDHIs. A negative cross-resistance, which means that mutations confer 

sensitivity loss to one SDHI but hypersensitivity to another SDHI, was not detected in 

laboratory studies (Fraaije et al., 2012; Scalliet et al., 2012; in the present study).  

In the present study, SDH-variants that were found in resistant field isolates were 

investigated. Thereby, cross-resistance to all SDHIs tested was observed for most 

mutations that were found. One exception was B-H277Y, which was shown to cause low 

resistance levels to most SDHIs, whereas it caused hypersensitivity to fluopyram. 

Hypersensitivity of the orthologous mutation, B-H272Y to fluopyram was also shown in field 

isolates of B. cinerea (Ishii et al., 2011; De Miccolis Angelini et al., 2015). Laboratory 

mutants of Z. tritici, which had homologous B-H267Y, did not show hypersensitivity in vitro 

(RF=1 in the present study and unpublished data from 2008, RF=5 in other studies from 

Scalliet et al., 2012). It could be concluded that hypersensitivity to fluopyram, in the case of 

B-HY, is dependent on the species where it occurs. However, in studies with B-H277Y 

mutants in P. teres and B-H272Y mutants in B. cinerea, field isolates were compared, and 

not parental isolate and corresponding mutants, as had been the case in Z. tritici. 

Additionally, B-H267Y laboratory mutants showed no hypersensitivity in in vitro tests, but 

low levels of hypersensitivity were observed once tested in vivo (Scalliet et al., 2012). This 

could lead to the conclusion that the vitality of an isolate can contribute to the impact 

observed in sensitivity tests. Efficacy levels of fungicides in planta (and to some extent in 

vitro) are dependent on the resistance level of the isolate, but are additionally impacted by 

the vitality of the isolate. Speed of fungal growth and aggressiveness of isolates 

(summarised as vitality) can give minor advantages or disadvantages in efficacy 

measurements, independent on their resistance status. Such differences were also 

observed in different C-H152R laboratory mutants in the present study (see Table 33). Here, 

a high variance of RF values was observed, although all isolates carried the same mutation. 

This was mainly due to different sensitivities of parental wild type isolates, however, even 

two mutants from the same parental isolate were shown to have slightly different RF values. 

Lowest RF values were observed for the two mutants of St 3718, which had the highest 

sensitivity towards SDHIs compared with all other parental isolates. Interestingly, these two 
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mutants also showed the lowest competitiveness in glasshouse studies when mixed with 

their parental isolates. This would imply that the parental isolate was much fitter compared 

with its mutants. RF values and the results of in planta competition studies are shown in 

Table 33. 

Table 33: EC50 values of fluxapyroxad and RF values of C-H152R mutants used for competition studies 
in the glasshouse. Parental isolates are S27 (sens), St 3718 (sens), St 3573 (G143A) and St 5821 (F129L). 
RF values were calculated by taking EC50 of corresponding parental isolate. * Frequency of C-H152R in the last 
cycle determined in two independent competition tests (mixture of mutant and parental isolates). 

Isolates 

Competition studies in planta 
[% C-H152R in last cycle]* 

Fluxapyroxad 

test 1 test 2 EC50 [mg a.i. L-1] RF 

S27 not used not used 0.030  

B0-3-7 not used not used 4.796 160 

St 3718   0.078  

B3-6-18 35 0 4.728 61 

X3718-4 0 0 3.421 44 

St 3573   0.072  

X3573-2 7.5 0 5.570 77 

X3573-5 100 100 7.320 102 

5821   0.057  

X5821-1 100 85 5.097 89 

X5821-3 5 na 4.177 73 

It could be observed that mutants, which decreased within mixtures with its parental isolate, 

showed slightly lower RF values compared to those mutants with a higher competitiveness 

in planta. These results should not be (over)-interpreted because only a few pairs of parental 

isolate and according mutants have been investigated and differences were only small. 

Nevertheless, it could be assumed that the vitality of an isolate can also contribute to the 

outcome in microtiter tests. Individuals with a reduced fitness could possibly grow under 

untreated conditions, however, fitness cost will be more pronounced in treated conditions. 

If a resistance mechanism is causing a high degree of sensitivity loss, this effect is not 

clearly notable, however, looking at resistance mechanisms causing a lower reduction, 

thereby, a reduced fitness of an isolate could also result in lower EC50 values compared to 

more viable isolates. 

In the determination of the effects of individual mutations, it is necessary to test several 

mutants with the same resistance mechanism. However, at an early stage of an emerging 

resistance often only small numbers of isolates are available. This can sometimes result in 

a misleading impression of the impact of mutants and the meaning for the field performance 

of the fungicides under investigation. 

Therefore, gene-replacement mutants or artificially selected mutants could provide useful 

tools to determine ‘pure’ effects of mutations. Selection on fungicide-containing agar is not 

applicable for all pathogens, particularly in fungi that produce low numbers of conidia on 

artificial media (e.g. P. teres). Furthermore, in such forward-genetic approaches mutations 

are not directly introduced and selection can result in different mutations than those found 

in the field. Gene replacement mutants, on the other hand, would allow the direct 

introduction of a resistance allele in a defined background. However, vector construction, 



Discussion 137 

 

 

transformation and selection techniques are time-consuming and would not allow a direct 

determination of the effect within the same season in which a mutation is detected 

(especially if there are as many target-site mutations as observed in the present study). 

In summary, a high degree of cross-resistance of SDHIs was observed in the present study 

on SDHI resistant field isolates of P. teres and Z. tritici. In some cases, the magnitude of 

the effect was shown to vary between compounds. In the majority, mutations revealed an 

impact to all SDHIs, and some of them had a high impact to all compounds, e.g. C-G79R 

(P. teres) and C-H152R (Z. tritici). It can be assumed that the pathogen populations of both 

species can evolve resistance mechanisms that overcome or at least reduce the effects of 

all compounds that are present in their environment, and that these mutants will represent 

the most frequent mutations.  

5.3.4 SDHI resistance- continuous or discrete evolution of 
fungicide resistance? 

Fungicide resistance can be achieved by a single point mutation, e.g. G143A in QoI 

resistance. In Z. tritici, severe efficacy losses of QoIs in the field were obtained due to high 

frequencies of G143A within a short period in European populations (Fraaije et al., 2005; 

Torriani et al., 2009; FRAC, 2016). Such development of resistance is called a ‘discrete’ or 

‘single-step’ evolution of fungicide resistance. QoI resistance is obtained by G143A, F129L 

or in rare cases G137R, depending on the plant pathogen (FRAC, 2016). G143A in CYTB 

is described for 22 fungal species to date (Mair et al., 2016; FRAC, 2016). Examples are 

Z. tritici (Fraaije et al., 2005), B. cinerea (FRAC, 2016), A. alternata (FRAC, 2016), 

B. graminis (Sierotzki et al., 2000), P. viticola (Heaney et al., 2000) and V. inaequalis 

(Steinfeld et al., 2002). Species which show F129L as QoI resistance mutation are, for 

example, P. teres (Semar et al., 2007; Sierotzki et al., 2007) and P. pachyrhizi (Klosowski 

et al., 2016). In some species, both mutations (F129L and G143A) were found to occur in 

the field, such as in Z. tritici and P. viticola (FRAC, 2016). RF values caused by F129L and 

G137R normally range between 5-15, in a few cases up to 50 (depending mainly on the 

pathogen), whereas G143A causes RF values greater than 100, and in some cases even 

greater than 1000 (FRAC, 2016). Therefore, G143A leads to high resistance levels and this 

is often referred to as ‘complete’ resistance, because when high frequencies of G143A are 

reached field efficacy of QoIs are dramatically reduced (FRAC, 2016). In contrast, F129L 

and G137R express moderate, also called ‘partial’ resistance because QoIs applied in 

appropriate rates still provide effective control, despite facing high mutation frequencies in 

the population (Semar et al., 2007). In other examples, first the accumulation of several 

mutations in the same gene or at different loci led to significant levels of resistance (Cools 

and Fraaije, 2008; Zhan et al., 2006). Such ‘continous’ evolvement of resistance was 

observed in the adaptation of Z. tritici towards DMI fungicides in Western Europe over many 

years (Stammler et al., 2008 a, b; Fraaije et al., 2012; Lucas et al., 2015). In contrast to QoI 

http://www.frac.info/
http://www.frac.info/
http://www.frac.info/
http://www.frac.info/
http://www.frac.info/
http://www.frac.info/
http://www.frac.info/


Discussion 138 

 

 

resistance, this resistance emergence was slower and DMIs are still effective on Z. tritici 

populations (although showing DMI-adapted haplotypes in high frequencies) in many 

regions (http://eurowheat.au.dk/). 

The mechanisms underlying SDHI resistance are more comparable to those found in QoI 

resistance than in DMI adaptation, but have been shown to be much more complex. SDHI 

resistance evolution could be regarded as an intermediate type between QoI and DMI 

resistance emergence such that genotypically it is more comparable to QoI resistance but 

phenotypically closer to DMI resistance. In accordance to QoI resistance, SDHI resistant 

isolates of P. teres, Z. tritici and many other pathogens in general had only a single Sdh 

mutation and not multiple mutations within target genes, as is the case in DMI adaptation. 

Only a small number of mutations are described in QoI resistant isolates. However, in the 

case of SDHI resistance, a high number of relevant mutations have been found, even within 

a single species. Some of these mutations in the SDH enzyme can mediate a high sensitivity 

reduction towards SDHIs. However, several other mutations that have been found in the 

field, express lower sensitivity losses. None of the sequenced P. teres isolates carried a 

second mutation in the Sdh genes, which indicates a minor role of such events in P. teres 

so far. However, a few double mutants in the Sdh genes have been reported from laboratory 

mutants (Fraaije et al., 2012; Scalliet et al., 2012) and at very low levels in isolates of Z. tritici 

collected in the field (in the present study). Therefore, the role of additional alterations in 

the SDH enzyme remains elusive and needs to be further studied in the future. 

Of course, the question rises if SDHI resistance will ‘build-up’ as fast and as devastating as 

it has been observed in the case of G143A in Z. tritici. Considering the complexity of Sdh 

mutations that can occur in SDHI resistant fungi, and the to-date low frequency within the 

population, this would indicate that the emerging SDHI resistance is different to the ‘black-

white’ scenario of QoI resistance due to G143A. In contrast to DMIs and SDHIs target 

enzyme, QoIs target CYTB, which is encoded by a mitochondrial gene. Therefore, several 

important differences in terms of resistance evolution are given. Mitochondrial DNA 

(mtDNA) is present in a high copy number within the fungal cell and mutates at a higher 

frequency than nuclear DNA (Bohr and Anson, 1999). This implies that point mutations 

occur more frequently in mtDNA and mutations in a single copy of mtDNA would not show 

direct effect on fungal vitality. Additionally, mitochondrial electron transfer can be obtained 

without complex III (and complex IV) by alternative oxidase (AOX) (Wood and Hollomon, 

2003). This alternative pathway is regarded as a rescue mechanism and provides 40% of 

the normal efficiency of respiration (Fernández-Ortuño et al., 2008, 2010). An increase of 

reactive oxygen species was observed in mitochiondria as a result of QoI inhibition of CYTB 

(Bohr and Anson, 1999). Thus, alternative respiration might ensure ATP synthesis in the 

presence of sublethal concentrations of QoI fungicides, which theoretically could provide an 

opportunity for the fungus to select mutations in Cyt b (Fernández-Ortuño et al., 2010). It 

has been observed that different target-proteins (SDH, CYTB, CYP51) of fungicides can 
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have different levels of ‘flexibility’ with respect to their potential adaptation towards single-

site inhibitors. CYTB, for example, is a highly conserved protein which is most probably 

more stringent in its structure than proteins with a lower conservation. G143A causes a 

relatively small change of amino acid residues from glycine to alanine. However, this 

exchange has a huge impact on the sensitivity towards QoI fungicides. In the case of SDHI 

resistance mutations, substituted amino acids partially result in much bulkier side chains, 

which are thought to cause severe structural rearrangements within the SDH enzyme. RF 

values are, however, often lower than for G143A in QoI fungicides (RF value comparison in 

the present study and reports on webpage of FRAC, 2016).  

The fitness of G143A mutants has been elaborated in several fungal species by different 

working groups. Fitness penalties were observed in QoI-resistant populations of P. viticola 

and the rice pathogen Pyricularia grisea (Avila-Adame and Köller, 2003; Genet et al., 2006; 

Fernández-Ortuño et al., 2010). In contrast, in several other plant pathogens, such as 

B. graminis, no obvious fitness penalties were detected (Heaney et al., 2000). S. cerevisae 

has been used as a model to test the fitness associated with QoI resistance mutations. 

Residues that are involved in the Qo site of yeast were modified to mimic Qo binding site of 

several plant pathogenic species. These studies revealed that G143A led to a slight 

reduction in the activitiy of bc1 complex in most mimics of the Qo site with exceptions such 

as B. graminis f. sp. tritici (Fisher and Meunier, 2008). Controverse results were obtained in 

fitness studies on G143A in different species and even within a species. It seems likely that 

G143A causes a low impact on the fitness but not a severe impact. QoIs are still frequently 

used to control other plant pathogens in wheat and barley (e.g. rusts). In such an 

environment, the fitness cost of G143A could be regarded as too low to cause a decrease 

in frequency of QoI resistant individuals in the population. Therefore, in many pathogens 

such as Z. tritici high frequencies are still present in the field in Western Europe, although 

QoIs are not used to control STB anymore in these regions (FRAC, 2016; internal 

unpublished data). 

Each mutation that causes fungicide resistance can, theoretically, negatively interfere with 

physiolocial and biochemical processes (Anderson, 2005). Although single effects of 

mutations could have a low impact on the fitness (e.g. G143A in some pathogens), it should 

be considered that there is an ongoing evolutionary process with the accumulation of 

resistances towards more than one fungicide class in some plant pathogens e.g. Z. tritici, 

P. teres, and others (Lucas et al., 2015). Each interaction of resistance alleles towards 

different fungicide classes theoretically can result in an altered fitness of these individuals, 

probably also depending on the pathogen species. The understanding of the evolution of 

(multi) resistance, and the impact on the fitness of such resistant organisms has key 

importance in the management of diseases in medicine, breeding of livestocks and in crop 

protection. The further spread of SDHI resistant isolates is highly dependent on their 

competitiveness under field conditions and this is highlighted in the following section. 
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5.4 Competitiveness of SDHI resistant isolates of P. teres 
and Z. tritici 

The emergence and spread of fungicide resistant isolates is dependent on their advantage 

in a fungicide-selecting environment on the one hand and the presence of fitness penalties 

connected with this resistance on the other hand. Resistance towards antibacterial agents 

is well studied and fitness measurements are widely documented. Many mutations in 

antibiotic resistant strains of E. coli were shown to cause fitness costs in competitive studies 

without selection pressure (Enne et al., 2005; Trindade et al., 2009). Additionally, epistasis 

effects were observed when interaction of pairs of antibiotic resistance was analysed (Yeh 

et al., 2006; Chait et al., 2007). Epistasis happens when a phenotype of a mutation in one 

locus depends on which mutations are already present in other loci. In antibiotic resistant 

bacteria, epistatic effects were described as additive, synergistic, antagonistic or 

suppressive dependent on different combination of antibiotic resistance. It was observed 

that in certain drug combinations, which were shown to act suppressive, one of the 

antibiotics was more effective in the treatment against its resistant mutant than against wild 

types (Chait et al., 2007). Furthermore, it was suggested that suppressive interactions 

between antibiotics and their appropriate use of combinations could slow down or even 

counteract the evolution of drug resistance (Yeh et al., 2009). Little is known about epistatic 

effects in the interaction of multiple resistance towards fungicides in phytopathogenic fungi. 

However, to predict the evolution of multiple resistance, it is important to analyse possible 

fitness costs that are associated to single mutations and the accumulation of different 

mutations. 

The fitness of a fungal plant pathogen is dependent on several parameters, which include 

spore production, spore dispersal, pathogenicity, mycelial growth, and survival between 

seasons (Mikaberidze and McDonald, 2015). Several studies on the fitness of SDHI 

resistant isolates of plant pathogenic fungi can be found in the literature (Kim and Xiao, 

2011; Fraaije et al., 2012; Scalliet et al., 2012; Schmitz et al., 2014; Veloukas et al., 2014). 

Studies were conducted with artificial mutants and field isolates for mycelial growth, spore 

production and in dual inoculation tests with sensitive isolates. Furthermore, the enzyme 

activity was measured in response to several mutations that had been found in laboratory 

isolates. A reduced enzyme activity was detected in mitochondrial suspensions of 

recombinant strains of Z. tritici reference isolate IPO323 (Scalliet et al., 2012). All mutants 

showed a weaker ubiquinone reductase activity in these tests compared to IPO323 with 

different remaining enzyme activitites e.g. B-H267Y/L (9% or 13%), C-H152R (22%) and 

D-D129G (19%) (Scalliet et al., 2012). A high reduction of the enzyme activity could explain 

why these mutants have not been found so far in the field, or only at very low levels (e.g. 

C-H152R). Although they used homologous recombination constructs without the start 

codon to avoid functional expression from ectopic insertions, T-DNA and Agrobacterium 

tumefaciens-based transformation needs an additional introduced selection gene (e.g. 
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hygromycin resistance gene) which can lead to unintended, random insertion of the 

construct. This could consequently lead to disfunction of several other important pathways 

and could influence the vitality of the isolates (independent of the resistance mutation). In 

B. cinerea, fitness of SDHI resistant isolates has been investigated using recombinant 

mutants and field isolates in in planta studies (Lalève et al., 2014; Veloukas et al., 2014). 

Recombinant strains showed a reduced SDH activity and respiration rate, except for 

B-H272Y mutants (Lalève et al., 2014). This is contrary to the results obtained in Z. tritici 

(B-H267Y) (Scalliet et al., 2012). Multiple resistant field isolates of B. cinerea, which carried 

exchanges B-H272Y/L+G143A, B-N230I+G143A and B-P225F+G143A, showed reduced 

fitness values compared to the sensitive isolates, whereas B-H272R+G143A and isolates 

only showing G143A did not reveal a lower fitness (Veloukas et al., 2014). Fitness tests 

indicated that many investigated mutations caused a reduced fitness-phenotype and that 

the effect of orthologous mutations in species can be different, but even within one species 

the same mutation had different effects depending on the fitness test. However, studies on 

the fitness of SDHI resistant and multiple resistant isolates are rare, particularly for plant 

pathogens such as Z. tritici and P. teres. 

Most competition tests do not cover all stages and stress conditions with which a fungus is 

faced in the field. ‘Perfect’ fitness tests would cover the ability of a resistant strain to 

compete with sensitive strains in an environment underlying natural conditions, which 

include fluctuating conditions (cold/heat, dry/wetness) in addition to the presence of different 

host genotypes and competing microorganisms (Mikaberidze and McDonald, 2015). 

However, field experiments are time and cost-intensive and the additional release of 

resistant spores of a fungal pathogen should be avoided. In the present study, the fitness 

of isolates was mainly studied in planta with field isolates, however, laboratory mutants 

(C-H152R) were also used. In planta competition studies are time and work consuming, 

compared to in vitro studies, and do not allow a high throughput of isolates. Infection and 

propagation studies in the glasshouse better reflect the situation which a resistant isolate is 

faced in the field, as such studies address the whole infection and asexual propagation 

process of the fungus. The pathogenicity of SDHI resistant isolates of P. teres and Z. tritici, 

and their competitiveness compared to sensitive isolates in dual inoculation, was 

investigated in the present study. Whenever field isolates were investigated, the sensitive 

isolates were taken mostly from the same country and year. Additionally, the occurrence of 

multiple resistance in these isolates was analysed, and the isolates were appropriately 

mixed. This was done to reduce the variability, which is automatically given in field isolates, 

to a minimum. In experiments conducted on P. teres, C-G79R, F129L and double mutants 

(C-G79R+F129L) were compared by using several different isolates from different 

countries. These studies revealed a high variability of isolates, despite the fact that the 

isolates were collected in similar years and regions. A high variability of P. teres field isolates 

was also observed in other studies when sporulation intensity was observed even in isolates 
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from the same field (Marzani, 2011). In the mean of all mixtures, a slight decrease of all 

resistance alleles was observed. However, a significant fitness penalty of C-G79R mutants 

and C-G79R+F129L mutants was not observed in the current study. This could be explained 

by the high variability of field isolates of P. teres, but also demonstrates that some resistant 

isolates show high competitiveness, at least under the conditions used. It could be 

speculated, that fitness penalites are low for those mutations that are detected in a high 

frequency in the field (e.g. C-G79R). On the other hand, C-G79R should, theoretically, lead 

to severe structural rearrangements in the SDH complex. Such structural rearragements 

should consequently lead to lower enzyme efficiencies. Therefore, further fitness tests 

should be performed under more challenging conditions for the fungus. These could include 

winter simulations, drought and heat stress or even fluctuating conditions, resistant host 

cultivars and the application of multi-site inhibitors (e.g. chlorothalonil). Considering the 

natural variability of field isolates, further fitness tests should include more isolates/mixtures 

especially when field isolates are compared. Since such tests would be time consuming 

and would require many resistant isolates (not given at the beginning of resistance 

evolution), it could be thinkable to screen a high number of sensitive isolates first to enhance 

the knowledge of the natural variability of the fungus in pathogenicity and growth tests. 

However, despite having this knowledge, unknown would remain the fitness of the parental 

isolate. Therefore, fitness tests on field isolates are challenging, particularly when a high 

variability is observed and the expected fitness cost is low for a particular mutation. 

A lower variability compared to P. teres, was observed in competition tests with field isolates 

of Z. tritici. The results indicated that B-T268I and C-H152R exchanges have a negative 

effect on the fitness of isolates, whereas C-T79N mutants were shown to compete with 

SDHI sensitive isolates under the applied conditions. This is in line with the observation that 

C-T79N substitution is most frequently found within SDHI resistant isolates, whereas 

B-T268I and C-H152R are observed at very low levels. Of course, the number of 

investigated isolates was low and these results should be verified in additional studies. 

C-N86S exchange was also frequently found in SDHI resistant isolates but was not 

analysed in dual inoculation studies. However, in glasshouse sensitivity tests with SDHI 

resistant isolates, C-N86S and C-T79N mutants showed the highest infection rates of all 

SDHI resistant isolates. Thus, the impact on fitness caused by C-N86S seems to be low, 

but needs to be determined in future studies. Interestingly, C-T79N and C-N86S are both 

located at positions in the SDH enzyme that are not conserved throughout plant pathogenic 

species. Such variable positions seem to have a minor role for the enzymatic function, 

compared to those highly conserved, e.g. C-H152R, and could explain why these alterations 

have a lower impact on fitness. The fitness of C-H152R laboratory mutants of Z. tritici, which 

had been obtained on fungicide-amended agar, was tested with different parental isolates 

(QoI sens, G143A and F129L). C-H152R mutants of the wild type isolate St 3718, which 

shows high infection rates, were clearly less competitive than their parental isolate. 
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However, mutants of G143A and F129L parental isolates showed controverse results, 

which led to an increase of the first and a decrease of the second mutant in mixtures with 

their appropriate parental isolates. G143A and F129L parental isolates both showed lower 

infection rates compared to the QoI sensitive parental isolate (St 3718), which demonstrates 

that the outcome of such an experiment can be different when a different ‘background’ 

(isolate) is used. This shows the importance of analysing more than one parental isolate, 

also with respect to multiple resistant isolates. In this context, the possible occurrence of 

compensatory mutations that could modulate fitness losses of target-site mutations needs 

to be mentioned. Genome sequencing of such laboratory mutants that show benefical 

fitness compared to their parental isolates could provide useful insights to such 

mechanisms. Compensatory mechanisms could also explain the seldom occurrence of 

C-G79R in P. teres combined to F129L in 2013, and that this combination was found more 

frequently in 2014 and 2015. It seems possible that first compensatory mutations needed 

to occur to allow C-G79R and F129L to exist in combination. Genome sequencing of double 

resistant isolates (C-G79R+F129L) compared to single resistant isolates (C-G79R isolates 

and F129L isolates) could reveal such mechanisms. 

In order to find an additional measurement tool for the fitness of isolates, the behaviour of 

different mutants of Z. tritici under stress was tested in initial tests in a microtiter approach 

(data not shown). The mycelial growth of isolates (measured in photometer) were tested in 

different concentrations of salt (sodium chloride and potassium chloride), sodium 

hypochlorite and were also exposed to low and high temperatures. Most conditions did not 

reveal a discrimination between sensitive and resistant isolates, heat stress was an 

exception. Here, minor (not significant) differences were observed, for example IPO323 still 

showed growth at higher temperatures compared to isolates with advanced resistance 

genotypes. Such tests could be additionally implemented to test the behaviour of mutants 

in a stress situation in a high throughput of isolates. However, in these preliminary tests the 

differences were small and conditions that more effectively reveal a fitness cost should be 

tested in addition (e.g. chlorothalonil). 

The detection of fitness costs is a challenging effort and each approach (in vitro compared 

to in vivo, field isolates compared to laboratory mutants) reveals advantages and 

disadvantages. In vitro studies analyse single fitness parameters such as mycelial growth 

and sporulation, but do not include the host plant. In vivo studies are time and work 

consuming and do not allow high throughput, which would be necessary to show significant 

effects, particularly in studies with field isolates. The fitness associated with a mutation 

would be most precisely assessed in comparison to an isolate which shows the same 

genetic background except for the resistance allele. Laboratory mutants obtained by 

transformation or selection on fungicide-amended agar would allow the comparison of 

genetically similar isolates. However, random site effects during the transformation 

approach, and the stress caused by selection on fungicide-containing agar could lead to 
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unintended changes in the laboratory mutant compared to its parental isolate, thus, showing 

an effect on the fitness independently of the resistance mutation. In recent years, 

CRISPR/Cas-based manipulation of several organisms (including filamentous fungi) have 

demonstrated the advantage of this method (Jinek et al., 2012; O’Connell et al., 2014; 

Nødvig et al., 2015; Ochiai, 2015 and numerous others). The advantage of this method is 

the possibility to precisely modulate a genome (including point mutations, insertions, 

deletions) using RNA-based targeting. The method allows the introduction of mutations at 

a specific site, was shown to minimize off-target effects and can be performed without the 

use of selection markers. Having uniform sensitive and resistant isolates by a defined 

modulation of the genome with tools such as CRISPR/Cas9 could give further insights to 

the fitness of resistant (multiple) individuals in different organisms. 

In summary, the resistance level and the fitness impact can be different for different target-

site mutations within a phytopathogenic species and for orthologous mutations in different 

fungal species (in the current study; Lalève et al., 2014; Veloukas et al., 2014). Such 

differences might explain why the C-G79R amino acid substitution is the most important in 

P. teres and C-T79N was most frequently detected in SDHI resistant isolates of Z. tritici, 

and yet these two exchanges have not been reported from other plant pathogens from the 

field. Different species have obviously selected those Sdh mutations that gave the highest 

benefit regarding the specific SDHI environment, and which showed the lowest fitness 

impact in their genetic background (including parameters such as multiple resistance). 

Nowadays, an increasing number of plant pathogens accumulate resistance mechanisms 

against various fungicides, thereby, each species shows its specific pattern which could 

contribute to an altered fitness of SDHI resistant isolates within this background. It could be 

proposed that exchanges causing ‘moderate’ efficacy losses of SDHIs such as 

C-N75S/C-N86S or C-T79N allow the continuation of these individuals in the presence of 

SDHIs but do not impose severe fitness penalties as it could be the case with other 

alterations, such as C-H152R (only low frequencies in the field) and C-N86K (only in 

laboratory mutants of Z. tritici). 

In higher organisms, e.g. nematodes and mammals, mutations in SDH-B, SDH-C and 

SDH-D subunits of SDH enzyme have been shown to cause tumors e.g. in hereditary 

paraganglioma (Niemann and Müller, 2000; Astuti et al., 2001; Douwes Dekker et al., 2003) 

or hypersensitive phenotypes to oxygen with a drastically shortened lifespan in 

Caenorhabditis elegans (Ishii et al., 1998). This clearly indicates that such alterations can 

cause severe fitness penalties. However, especially fungi can adapt rapidly to their 

environment. In Z. tritici, dispensable chromosomes and plasticity in meiosis has been 

detected (Goodwin et al., 2011), which could drive rapid adaptation to changing 

environments and potentially can cause a faster compensation of fitness costs compared 

to many other organisms. 
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5.5 Future perspective of SDHI efficacy 

The potential comparisons with other plant pathogen species are limited, on account of the 

different resistance mechanisms (different mutations in the Sdh genes). Therefore, the 

prediction of the further evolution of SDHI resistance in Z. tritici and P. teres is challenging. 

The presence of SDHI resistance in P. teres in some European regions requires that 

resistance management strategies are strictly followed. Guidelines are given by FRAC and 

these are reviewed yearly at the annual FRAC meetings. Effective resistance management 

strategies are still viable because QoI fungicides still contribute to net blotch control and the 

sensitivity to DMIs is stable over the last few years (FRAC, 2016). Different MOAs are useful 

tools, since the alternation of fungicides and particularly mixtures provide effective 

resistance management strategies (Hobbelen et al., 2014; van den Bosch et al., 2014). An 

emphasis on a preventative, rather than a curative application time point is also 

recommended, since an optimal application timing is also an effective resistance 

management approach (van den Berg et al., 2013). It seems likely that SDHIs can still 

contribute to net blotch control, even when high frequencies of mutants are present in the 

field. However, efficacy decrease of SDHI fungicides could be expected, particularly under 

suboptimal conditions (e.g. curative conditions) for the fungicide, if high frequencies of 

mutants, such as C-G79R and C-H134R, are present in the population. 

Z. tritici is in an early phase of resistance development and the occurrence of numerous 

resistance mutations indicates a complex situation probably also in the future. The SDHI 

resistant isolates of Z. tritici described in this study were all QoI resistant, had Cyp51 

haplotypes with an advanced evolution in a DMI environment (i.e. different combination of 

mutations) and some of these were also benzimidazole resistant (data not shown). If such 

multiple resistant isolates have fitness penalties summarised from the different target-site 

mutations, should be further studied in detail with the purpose of developing effective 

resistance management strategies. 

The efficacy of SDHIs against STB in the future is depending on several factors:  

• Can double Sdh mutants evolve and cause higher resistance levels?  

• Are C-T79N/C-N86S mutants competitive also in nature and develop high 

frequencies within the population?  

• Are there compensatory mechanisms to enhance the fitness of mutants carrying 

mutations with severe impact on SDHIs (e.g. C-H152R)?  

• Can (multiple) resistant isolates evolve other mechanisms that could enhance 

resistance level (e.g. overexpression of efflux pumps in higher frequencies in the 

population)? 

 

http://www.frac.info/


Discussion 146 

 

 

Significant progress has been made in the last years in the understanding of fungicide 

resistance and how it can be managed (Brent and Hollomon, 2007; van den Bosch et al., 

2011; Grimmer et al., 2015; Lucas et al., 2015). Effective anti-resistance strategies require 

effective and different MOAs. However, the number of MOAs is decreasing over the last 

years, which is due to the resistance build-up in some plant pathogens and stricter 

European legislation potentially reducing the availability of existing active ingredients and 

co-formulated products. In this background, future anti-resistance management should 

comprise integrated disease control, which uses conventional fungicides in addition to 

biofungicides and resistant cultivars (including classical breeding and GM technology) 

(reviewed Hollomon, 2015). Such integrated disease control measurements could help to 

challenge (multiple) resistant individuals to keep their subpopulation at a level as low as 

possible. 

 

Future experiments to extend the research reported here might include: 

• Competition studies of (multiple) resistant isolates exposed to stress conditions (e.g. 

simulation of winter, resistant host cultivars, multi-site inhibitors) in site-directed 

transformants (CRISPR/Cas) or in a high-throughput with field isolates 

• Explore role and impact of double mutants of Sdh genes, e.g. site-directed 

mutagenesis using CRISPR/Cas 

• Genome sequencing of resistant laboratory isolates which showed an enhanced 

competitiveness compared to parental isolates to identify possible compensatory 

mutations (which are thought to reduce or even eliminate fitness cost) 

• Establish absolute quantification methods for relevant pathogens to investigate 

remaining pathogen numbers (resistant/sensitive in a mixture) after SDHI treatment 

(low and high concentrations) in terms to quantify absolute numbers of resistant 

individuals after treatments (how much can SDHIs still reduce also resistant 

individuals?) 

• Investigate other potential mechanisms that are involved in SDHI resistance (e.g. 

efflux pumps and metabolism) 
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Figure 48: Length measurements (PyMol measurement tool) in homology model of P. teres. A: Distance 
of substituted amino acids to carboxin (nearest atoms). B: Distance of substituted amino acids to haem b group 
(nearest atoms). 

 

Figure 49-Part 1: SdhB DNA sequence alignment of PTT and PTM. Further description is given on page 
170. 
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Figure 49-Part 2: SdhB DNA sequence alignment of PTT and PTM. Further description is given on page 
170. 
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Figure 49-Part 3: SdhB DNA sequence alignment of PTT and PTM. SdhB DNA sequence alignment of five 
PTT and five PTM isolates is given. Two PTT and two PTM isolates were obtained from CBS fungal isolate 
collection (Centraalbureau voor Schimmelculturen, Utrecht, Netherlands) and all four isolates were originated 
from Hungary. The other PTT isolates shown are isolates from France and the UK obtained from ‘Random 
monitoring’. The other PTM isolates were isolated during the present study from infected leaves which showed 
spot-type lesions. These leaves were sent from Italy (isolate PTM 3), Germany (isolate PTM 4) and Denmark 
(isolate PTM 5). In total, six SNPs in SdhB were detected in PTM compared to PTT. Primer KES 1847 
(sequencing primer of B-H277Y) anneals at nucleotide positions 975-990. Here, two SNPs between PTT and 
PTM sequences are detectable which explains why this assay does not work for PTM isolates. 

 

Figure 50-Part 1: SdhC DNA sequence alignment of PTT and PTM. Further description is given on page 
171. 
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Figure 50-Part 2: SdhC DNA sequence alignment of PTT and PTM. SdhC DNA sequence alignment of five 
PTT and five PTM isolates is given. Two PTT and two PTM isolates were obtained from CBS and originated 
from Hungary. The other PTT isolates shown are isolates from France and the UK obtained from ‘Random 
monitoring’. The other PTM isolates were isolated during the present study from infected leaves which showed 
spot-type lesions. These leaves were sent from Italy (isolate PTM 3), Germany (isolate PTM 4) and Denmark 
(isolate PTM 5). In total, six SNPs in SdhC were detected in PTM compared to PTT. 

Table 34: Net blotch infected leaf samples of P. teres with spot-type lesions and their origin. Samples in 
the list showed spot-like lesions on barley leaves in addition to no detectable signals in assay B-H277Y (other 
assays resulted in ‘robust’ signals). 

Isolate-ID Country Origin Sampling Date Comments 

81/14 PL Łany Wielkie April 2014 spot lesions 

124/14 ES Zambrana May 2014 spot lesions 

129/14 IT Conselice May 2014 spot lesions 

15/15 DE Oberbohingen April 2015 spot lesions 

31+32/15 UK Shotley/Euston April 2015 spot lesions 

37-39/15 PL Łany Wielkie April 2015 spot lesions 

162/15 HU Szentlörinckata May 2015 spot lesions 

176-179/15 UK 

Stoke by Clare, 
Thornham Magna, 
Bildeston, 
Walkington 

June 2015 spot lesions 

182-183/15 UK Naughton, St. Osyth June 2015 spot lesions 

248+250/15 DK 
Flakkebjerg, 
Hinnerup 

June 2015 spot lesions 

13/16 IT Voghera May 2015 spot lesions 

34/16 UK Stoke by Clare April 2016 spot lesions 

52+53/16 UK Cherhill May 2016 spot lesions 

91+95/16 UK St. Osyth, Ockbrook June 2016 spot lesions 

98+99/16 UK Bildeston June 2016 spot lesions 

101-103/16 UK 
Ipswhich, 
Sevenhampton, 
Fosote 

June 2016 spot lesions 

144/16 SK Maly Saris June 2016 spot lesions 

167/16 DK Stensmark July 2016 spot lesions 
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Table 35: Diseased leaf area of Z. tritici isolates used in glasshouse studies on the SDHI sensitivity 
Diseased leaf area is shown for two one-day preventative tests (P1-1 and P1-2) and two four-day curative tests 
(C4-1 and C4-2). Curative tests were carried out in a glasshouse chamber with optimised light conditions for 
Z. tritici which allowed higher infection rates. 

Isolate-ID SDHIres 
Diseased leaf area in untreated [%] 

P1-1 P1-2 C4-1 C4-2 Mean 

1965 no 7 ± 0.8 13 ± 1.4 41 ± 3.4 70 ± 3.6 33 ± 14.4 

3718 no 29 ± 2.8 13 ± 1.4 55 ± 4.3 92 ± 4.1 47 ± 17.2 

6027 B-T268I 61 ± 2.9 55 ± 3.5 90 ± 3.3 99 ± 0.8 76 ± 10.8 

6032 B-T268I 64 ± 1.7 58 ± 3.2 81 ± 5.2 95 ± 1.7 75 ± 8.4 

5548 C-T79N 69 ± 6.7 60 ± 5.8 96 ± 1.4 100 ± 0 81 ± 9.9 

6031 C-T79N 57 ± 2.4 44 ± 4.3 98 ± 0.3 100 ± 0 75 ± 14.2 

5745 C-N86S 67 ± 2.5 47 ± 6.3 83 ± 2.1 97 ± 1.0 74 ± 10.7 

6035 C-N86S 85 ± 3.7 53 ± 3.2 97 ± 1.2 99 ± 0.8 84 ± 10.6 

6029 C-H152R 47 ± 3.3 46.5 ± 7.2 66 ± 2.7 100 ± 0 71 ± 13.4 

6036 C-H152R 50 ± 4.8 32 ± 2.4 75 ± 3.8 92 ± 5.8 62 ± 13.3 

 
Figure 51: Verification of the absence of a promotor insertion in the MgMFS1 transporter in SDHI 
resistant isolates of Z. tritici by PCR. Sequences of oligonucleotides were taken from Omrane et al. (2015) 
(Z4_110044_FW and Z4_110044_RV) and were used to amplify a part of MgMFS1 promotor in SDHI resistant 
field isolates of Z. tritici. As shown by the authors in Omrane et al. (2015), tolnaftate-sensitive isolates showed 
an amplicon of 700 bp, whereas most tolnaftate-resistant isolates showed an insertion of 519 bp, which led to 
an amplicon size of 1200 bp. Ma: Size marker, 1: IPO323 (tolnaftate-sensitive), 2: St 5950 (tolnaftate-resistant), 
3-17: SDHI resistant isolates (St 5548, 5745, 6027-6039). 

Table 36: Laboratory mutants of Z. tritici that were generated during the present study. All clones on 
second selection plate were screened for known SNPs (B-H267R/Y/L, B-T268I, B-I269V, C-T79N, C-N86S (K), 
C-G90R and C-H152R). Some selected isolates were further sequenced. 

Isolates Applied spore 
number 

Conc. [mg 
a.i. L-1] 

No. of 
colonies 

No. of 
colonies 
(2. selection) 

SDH-B and SDH-C variants (number of 
isolates) 

IPO323 
1.77E+09 10 7 7 C-H152R (6), unknown (1) 

1.77E+09 1 10 2 C-G90R (1), unknown (1) 

St 3718 
7.56E+08 10 8 1 C-H152R 

7.56E+08 1 100 2 Unknown (2) 

St 2847 
4.45E+08 10 3 3 C-V48G (1), B-H267Y (1), unknown (1) 

4.45E+08 1 25 0 no colonies 

St 3573 

9.04E+08 10 41 15 B-N225I (1), C-N86K (2), C-H152R (3), 
unknown (9) 

9.04E+08 1 57 2 unknown (2) 

St 3955 
1.10E+09 10 0 0 no colonies 

1.10E+09 1 39 0 no colonies 

St 5821 
7.72E+08 10 7 7 C-H145R (2), C-H152R (5) 

7.72E+08 1 4 2 unknown 
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Figure 51-Part 1: Alignments of CYP51 amino acid sequence of Z. tritici. Further description is given on 
page 174. 
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Figure 52-Part 2: Alignments of CYP51 amino acid sequence of Z. tritici. Isolates shown are SDHI sensitive 
(sequence from the database, St IPO323, St 1965, St 3718 and St 5950) and some SDHI resistant isolates that 
were additionally characterised for their CYP51-type (St 6027-29, St 6031-38 and St 6127). For some 
sequences the beginning and the end of CYP51 sequence is missing. Amino acid exchanges known to reduce 
the DMI sensitivity are D134G, V136A/C, A379G, I381V, deletions Y459-Y461 (isolates which have deletions 
show an X at these positions), Y459D/S/C, Y461S/H and S524T. These alterations can be found in different 
combinations in Z. tritici isolates (e.g. R6-R12, O3). 

 
Figure 53-Part 1: SdhC cDNA sequence alignments of SDHI sensitive isolates of Z. tritici. Further 
description is given on page 175.
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Figure 53: SdhC cDNA sequence alignments of SDHI sensitive isolates of Z. tritici. Sensitive isolates 
shown are taken from different countries and years. The beginning of three sequences is missing. Several SNPs 
can be observed in SdhC sequence even within sensitive isolates. Most of them are silent mutations, however, 
quantitative SNP detection systems (e.g. pyrosequencing and qPCR) are more challenging due to these variable 
positions. 
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Figure 54: Alignment of SDH-C amino acid sequence in Z. tritici. Isolates shown are some selected SDHI 
sensitive (WT) and SDHI resistant strains with the amino acid exchanges B-T268I, C-T79N/I, C-W80S, 
C-N86S/A, C-H152R and C-V166M (beginning of SDH-C sequence is missing for some sequences). At 
positions 33-34, two variants of SDH-C are present in sensitive and resistant isolates of Z. tritici (N33, N34 or 

T33, T34). 
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Table 37: Overview of ‘Random Monitoring’ isolates of P. teres in 2012-2015. Isolates were gained and 
preanalysed by EpiLogic company. All SDHI resistant and sensitive isolates that were analysed in the present 
study are listed in the column isolates analysed. 

Country Routes 
Sampling 
Date 

No. of 
isolates 

Isolates analysed 

SDHIres sensitiv 

IE Dundulk-Dublin-Carrickmacross 13-07-2012 3 0 0 

UK Edinburgh-Berwick 12-07-2012 2 0 0 

UK Newcastle-Harrogate 12-07-2012 8 0 0 

UK Harrogate-Newark 12-07-2012 1 0 0 

UK East Anglia (North) 11-07-2012 10 0 0 

UK Cambridge-Dover 11-07-2012 2 0 0 

BE Brüssel-Aachen 28-06-2012 10 0 0 

FR Calais-Lille 27-06-2012 15 0 0 

FR St. Quentin-Reims 27-06-2012 10 0 0 

FR Paris-Reims 09-06-2012 10 0 0 

FR Reims-Troyers 08-06-2012 10 0 0 

FR Bourges-Nevers 08-06-2012 10 0 0 

FR Auch-Toulouse 31-05-2012 9 0 0 

DK Kolding-Nyborg 04-07-2012 5 0 0 

DK Nyborg-Kopenhagen 04-07-2012 2 0 0 

DE Flensburg-Kappeln-Eckernfeld 04-07-2012 5 0 0 

DE Oldenburg i.H.-Hamburg 15-06-2012 15 0 0 

DE Lübeck-Rostock 15-06-2012 8 2 0 

DE Hannover-Kassel 05-07-2012 10 0 0 

DE Dortmund-Warburg 14-06-2012 10 0 0 

DE Köln-Aachener Bucht 28-06-2012 10 0 0 

DE Magdeburg-Halle 15-06-2012 10 0 0 

   Σ175 2 0 

UK Edinburgh-Berwick 23-07-2013 6 2 0 

UK Newcastle-Harrogate 23-07-2013 8 2 1 

UK Harrogate-Newark 23-07-2013 2 1 0 

UK East Anglia (North) 22-07-2013 6 1 0 

UK Cambridge-Dover 22-07-2013 6 3 1 

BE Brüssel-Aachen 01-07-2013 10 2 2 

FR Calais-Lille 30-06-2013 10 2 1 

FR St. Quentin-Reims 30-06-2013 10 3 0 

FR Paris-Reims 24-06-2013 10 3 0 

FR Reims-Troyes 23-06-2013 10 1 0 

FR Bourges-Nevers 23-06-2013 10 1 0 

SE Malmö-Hörby 16-07-2013 15 0 0 

DK Kolding-Nyborg 15-07-2013 10 2 0 

DK Nyborg-Kopenhagen 15-07-2013 15 3 1 

DE Eckernfeld-Kiel-Oldenburg i.H 07-07-2013 10 4 0 

DE Oldenburg i.H.-Hamburg 07-07-2013 10 4 0 

DE Lübeck-Rostock 08-07-2013 10 9 0 

DE Rostock-Greifswald 08-07-2013 10 1 1 

DE Greifswald-Neubrandenburg 08-07-2013 10 7 0 

DE Hannover-Kassel 26-06-2013 10 4 2 

DE Dortmund-Warburg 07-07-2013 10 4 0 

DE Magdeburg-Halle 28-06-2013 10 3 0 

PL Görlitz-Breslau 05-07-2013 10 0 1 
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CZ Velke-Brünn-Mikulor 03-07-2013 10 0 0 

HU Nickelsdorf-Györ-Sopron 03-07-2013 10 0 0 

IT Brescia-Verona- Alessandria 06-06-2013 10 0 0 

   Σ 248 62 10 

IE Dunulk-Dublin-Carrickmacross 13-07-2014 10 0 5 

UK Edinburgh-Berwick 14-07-2014 10 0 4 

UK Newcastle-Harrogate 13-07-2014 10 0 3 

UK Harrogate-Newark 14-07-2014 10 0 2 

UK East Anglia (North) 14-07-2014 10 0 4 

UK Cambridge-Dover 14-07-2014 10 0 2 

NL Groningen-Appungedam-Winsch. 02-07-2014 10 0 1 

BE Brüssel-Aachen 22-06-2014 5 3 2 

FR Calais-Lille 21-06-2014 15 5 2 

FR St. Quentin-Reims 21-06-2014 10 8 1 

FR Paris-Reims 01-06-2014 9 8 1 

FR Reims-Troyes 31-05-2014 15 15 0 

FR Bourges-Nevers 31-05-2014 4 3 1 

FR Auch-Toulouse 17-05-2014 3 0 3 

SE Malmö-Hörby 03-07-2014 10 1 1 

DK Nyborg-Kopenhagen 03-07-2014 10 0 1 

DE Oldenburg i.H.-Hamburg 03-07-2014 10 5 1 

DE Lübeck-Rostock 25-06-2014 10 7 0 

DE Hannover-Kassel 17-06-2014 5 2 2 

DE Dortmund-Warburg 02-07-2014 15 11 2 

DE Magdeburg-Halle 17-06-2014 14 5 1 

DE Sinsheim-Crailsheim 24-05-2014 3 0 1 

DE Schweinfurt-Rothenburg 05-06-2014 9 1 1 

PL Görlitz-Breslau 27-06-2014 10 0 2 

PL Oppeln-Gleiwitz 27-06-2014 10 0 0 

CZ Velke-Brünn-Mikulor 13-06-2014 10 0 1 

   Σ 247 74 44 

UK East Anglia (North) 12-07-2015 6 3 2 

UK Cambridge-Dover 12-07-2015 2 2 0 

FR Calais-Lille 28-06-2015 20 16 3 

FR St. Quentin-Reims 29-06-2015 10 6 2 

FR Paris-Reims 03-06-2015 20 17 2 

FR Reims-Troyes 02-06-2015 10 5 2 

FR St. Menehould-Metz-Saarbrücken 29-06-2015 10 8 0 

FR Bourges-Nevers 02-06-2015 20 15 1 

SE Malmö-Hörby 06-07-2015 10 1 3 

DK Nyborg-Kopenhagen 06-07-2015 15 1 2 

DE Oldenburg i.H.-Hamburg 20-06-2015 15 15 0 

DE Lübeck-Rostock 19-06-2015 10 9 1 

DE Hannover-Kassel 16-06-2015 15 12 1 

DE Magdeburg-Halle 16-06-2015 15 3 2 

DE Sinsheim-Crailsheim 28-06-2015 15 0 0 

DE Schweinfurt-Rothenburg 12-06-2015 15 0 0 

DE Niederbayern 04-07-2015 10 0 0 

PL Görlitz-Breslau 24-06-2015 15 0 2 

HU Nickelsdorf-Györ-Sopron 10-06-2015 5 0 0 

IT Brescia-Verona 16-05-2015 15 0 2 

   Σ 253 113 25 
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Table 38: SDHI resistant Z. tritici isolates collected in the ‘Random monitoring’ and on trial sites in the 
years 2012-2016 in Europe. Internal- and external-ID (in most cases EpiLogic-ID), sampling country (region), 
date and information about the monitoring is given. Isolates were either obtained from trial sites of BASF SE 
(n=10) or Teagasc Institute (n=1) or from ‘Random SDHI monitoring’ (n=29) or ‘Random DMI monitoring’ (n=3). 

Internal-ID External-ID Country Region 
Sampling 
Date 

Monitoring 

St 5548 St 12-150/4 FR Nord-Pas de Calais 2012 Trial  

St 5745 St 13-018/4 DE Grevenbroich 2013 Trial  

St 6027 St 15-082/3 FR Picardie 2015 Random SDHI 

St 6028 St 15-229/1 UK Scotland 2015 Random SDHI 

St 6029 St 15-336/2 IE Leinster 2015 Trial  

St 6030 St 15-338/1 IE Leinster 2015 Trial  

St 6031 St 15-338/2 IE Leinster 2015 Trial  

St 6032 St 15-339/1 IE Leinster 2015 Trial  

St 6033 St 15-339/2 IE Leinster 2015 Trial  

St 6034 St 15-339/3 IE Leinster 2015 Trial  

St 6035 St 15-345/1 IE Munster 2015 Random SDHI 

St 6036* OP15.13 IE Oak Parc 2015 Trial-Teagasc 

St 6037 St 15-263/1 UK South West 2015 Random SDHI 

St 6038 St 15-328/10 IE Leinster 2015 Trial  

St 6039 St 15-394/2 IE Northern Ireland 2015 Trial 

St 6127 St 15-151/9 UK East Midlands 2015 Random DMI 

St 6149 St 15-330/3 IE Leinster 2015 Random DMI 

St 6156 St 15-331/8 IE Leinster 2015 Random DMI 

St 6407 St 16-005/2 UK East Midlands 2016 Random SDHI 

St 6409 St 16-096/1 UK West Midlands 2016 Random SDHI 

St 6410 St 16-167/1 IE Leinster 2016 Random SDHI 

St 6411 St 16-167/2 IE Leinster 2016 Random SDHI 

St 6412 St 16-167/3 IE Leinster 2016 Random SDHI 

St 6413 St 16-168/3 IE Leinster 2016 Random SDHI 

St 6414 St 16-174/1 IE Leinster 2016 Random SDHI 

St 6415 St 16-178/1 IE Leinster 2016 Random SDHI 

St 6416 St 16-179/2 IE Leinster 2016 Random SDHI 

St 6417 St 16-186/1 IE Munster 2016 Random SDHI 

St 6418 St 16-188/3 IE Munster 2016 Random SDHI 

St 6419 St 16-190/1 IE Munster 2016 Random SDHI 

St 6420 St 16-190/2 IE Munster 2016 Random SDHI 

St 6421 St 16-190/3 IE Munster 2016 Random SDHI 

St 6422 St 16-343/1 NL Groningen 2016 Random SDHI 

St 6423 St 16-345/1 NL Groningen 2016 Random SDHI 

St 6424 St 16-345/3 NL Groningen 2016 Random SDHI 

St 6425 St 16-347/2 NL Flevoland 2016 Random SDHI 

St 6426 St 16-347/3 NL Flevoland 2016 Random SDHI 

St 6427 St 16-348/1 NL Groningen 2016 Random SDHI 

St 6428 St 16-349/1 NL Groningen 2016 Random SDHI 

St 6429 St 16-349/2 NL Groningen 2016 Random SDHI 

St 6431 St 16-360/3 UK East Midlands 2016 Random SDHI 

St 6432 St 16-361/1 UK South West 2016 Random SDHI 

St 6433 St 16-361/2 UK South West 2016 Random SDHI 

* St 6036 was kindly provided by Dr. S. Kildea (Teagasc Institute, Ireland) 
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Table 39: P. teres leaf samples collected in various European countries in the years 2014-2016. 

Year Country 
No. of 
locations/ 
samples 

Locations 
Sampling 
date (no. of 
samples) 

2
0
1
4

 

BE 2/2 Bolinne, Mignault June (2) 

BG 1/1 Letnitsa July (1) 

CZ 3/3 Kromeriz, Rokytnice, Vestec by Chrudim 
May (2) 
June (1) 

DE 27/56 

Aurich, Bedburg, Beetzendorf, Bernburg, 
Borwere, Bühren, Buxheim, Dedelow, Dunau, 
Erding, Erlangen-Hüttendorf, Feistenaich, 
Gadegast, Grucking, Günzburg, Hamerstorf, 
Höckelheim, Köfering, Lippetal-Hüttinghausen, 
Mallersdorf, Manker, Oberboihingen, Ohrensen, 
Ostenfeld, Sachsen, Steinkimmen, Walkendorf 

Apr (36) 
May (14) 
June (4)  
Nov (2) 

DK 14/21 
Akirkeby, Allingabro, Dubgardvej, Flakkebjerg, 
Forsøgsmarken, Herning, Hobro, Middelfart, 
Nørager, Nr. Aby, Rønde, Sejet, Tølløse, Vivild 

May (3) 
June (11) 
July (7) 

ES 3/3 Altorricón, Villamartin, Zambrana May (3) 

FR 32/82 

Amiens, Arc sur Tille, Beugnâtre, Bignan, Bucy 
Saint Liphard, Chavagnes, Chazeuil, Chouday, 
Coudres, Coulommes, Douchy les Ayette, 
Ecquetot, Freshnes l' Archeveque, Gibourne, La 
Bouexière, La Croix-en-Brie, La Veuve, 
Labergement-lès-Seurre, Loyat, Ludes, 
Magnicourt-en-Comte, Marchélepot, Montans, 
Neuville-au-Cornet, Patay, Saint-Léger-aux-Bois, 
Sery, Souchez, Trouhans, Vatan, Vouillé, 
Warmeriville 

Apr (32) 
May (16) 
June (34) 

FI 9/20 
Hanho, Jokioinen, Lammi, Lieto, Pernaja, Ruukki, 
Sarvilahti, Sotkamo, Ylistaro 

July (20) 

IE 3/3 Blarney, Kildalton, Oak Park 
June (2) 
July (1) 

IT 2/2 Conselice, Ozzano Dell' Emilia 
Apr (1) 
May (1) 

LV 10/13 
Auce, Jelgavas, Kurstsu, Lielauce, Penkule, 
Priekule, Priekuli, Sesava, Striki, Zebrene 

June (9) 
July (4) 

NO 1/1 Meldal Aug (1) 

PL 3/10 Łany Wielkie, Pagów, Sosnicowice 

Apr (2) 
May (2) 
June (5) 
July (1) 

RO 1/2 Timis Apr (2) 

SE 11/12 
Evertsholm, Färjestaden, Forsa, Gotland, 
Hardeberga, Hassleholm, Högby, Kalmar, 
Kävlinge, Mörbylanga, Skälsund 

June (3) 
July (9) 

UA 4/6 
Korobochkino Tchugyev, Snigurivka, Terezene, 
Uzhnoukrainsk 

May (1) 
June (5) 

UK 6/6 
Bildeston, Dereham, Grantham, Oulton, Retford, 
St. Osyth 

Mar (1) 
May (5) 

2
0
1
5

 

BE 5/5 Alleur, Graux, Lonzee, Mignault, Perwez June (5) 

BG 2/8 Dobrovnitsa, Ognyanovo June (8) 

CZ 4/4 Krasne Udoli, Oskorinek, Osoblaha, Rokytnice 
May (2) 
June (1) 
July (1) 

DE 9/14 
Bedburg, Bothkamp, Bühren, Gronai, Hingste, 
Klipphausen, Oberbohingen, Waldsee, 
Walkendorf 

Apr (3) 
May (3) 
June (7) 
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July (1) 

DK 7/16 
Boris, Flakkebjerg, Haderslev, Hinnerup, 
Holstebro, Midtfalster, St. Heddinge 

June (15) 
July (1) 

ES 5/5 
Castilleja del Campo, Cerrado, Coronil, Vencillon, 
Villamartin 

Jan (2) 
Apr (2) 
June (1) 

FI 5/10 Hauho, Inkoo, Jokioinen, Ruukki, Ylistaro 
July (3) 
Aug (7) 

FR 41/115 

Arc sur Tille, Arcay, Aussonce, Baudrieres, 
Bignan, Breal sous Montfort, Castelnau 
Destretefond, Chalons en Champagne, 
Chambley, Chazeuil, Chenay, Cherance, 
Chouday, Coinces, Eton, Flacey, Fontaine-
Francaise, Framecourt, Frevin capelle, La Croix-
en-Brie, La Veuve, Lagrave, Le Vieil Evreux, 
Leudeville, Mandeville, Marchélepot, Marliens, 
Milly-la-Foret, Montans, Montharville, Neuville 
Saint Vaast, Paudy, Pontfaverger, Reneve, Saint-
Léger-aux-Bois, Saint Martin du Fouilloux, Saint 
Ouen D'Attez, Trouhans, Vouillé, Warmeriville 

Apr (24) 
May (40) 
June (51) 

HU 2/3 Szekszard, Szentlörinckata 
May (1) 
June (2) 

IE 3/5 Blarney, Oakpark, Wicklow 
June (1) 
July (4) 

IT 5/5 
Caluso, Castelnuovo Scrivia, Conselice, Lovolo di 
Albettone, Ozzano Dell' Emilia 

May (4) 
June (1) 

LV 3/3 Auce, Eleja, Kursisi 
May (1) 
June (1) 
July (1) 

PL 2/6 Lany Wielkie, Pagów 
Apr (3) 
May (2) 
June (1) 

RO 2/5 Fantana, Sânpetru de Câmpie June (5) 

SE 11/17 
Astorp, Bjerby Öland, Borrby, Fötegården, 
Grimskullen, Hemmesdynge, Kastlösa Öland, 
Marstad, Öberga, Svalöv, Vickleby Öland 

July (17) 

SK 1/1 Spisska Bela June (1) 

UA 17/19 

Bezzabotovka, ChernechaSloboda, Chornokintci, 
Dalnik, Danilivka, Korobochkino, lviv, Mazky, 
Miheya, Terezyne, Razdolnoe, Rivne, Sarata, 
Sharhorod, Snigurivka, Stryzhivka, Velikii 

May (3) 
June (16) 

UK 15/16 

Blagg, Bildeston, Bourton on the water, 
Bridgwater, Dereham, Euston, Great Barton, Little 
Weighton, Shotley, Stoke by Clare, St. Osyth, 
Thornham Magna, Naughton, Upleadon, 
Walkington 

Apr (2) 
May (3) 
June (11) 

2
0
1
6

 

BE 2/2 Mignault, Perwez May (2) 

BG 2/9 Kalugerovo, Letnitsa 
Mar (1) 
Apr (8) 

CZ 1/1 Prerov June (1) 

DE 8/20 
Bedburg, Gronau, Hoya, Krauchenwies, 
Möglingen, Oberbohingen, Waldsee, Walkendorf 

Apr (2) 
May (5) 
June (13) 

DK 18/20 

Åbenrå, Bogense, Brønderslev, Flakkebjerg, 
Flynder, Hobro, Horsens, Kolding, Nykøbing F., 
Regstrup, Ringsted, Romo, Rønnede, Stensmark 
Grenå, Viborg, Vissenbjerg, Vojens 

June (13) 
July (7) 

EE 1/1 Jogeva Aug (1) 
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ES 3/3 Monzon, Utrera, Villamartin 
May (29) 
June (1) 

FI 6/10 Hanho, Inkoo, Jokioinen, Lieto, Ruukki, Ylistaro Sept (10) 

FR 30/41 

Allouagne, Baccon, Banteux, Blagny-sur-
Vingeanne, Bligny les Beaune, Chouday, 
Coinces, Conde, Cuperly, Freshnes l' 
Archeveque, Grandville, La Croix-en-Brie, 
Louvigny, Marchélepot, Meuilley, Mignaloux-
Beauvoir, Montans, Neuville-au-Cornet, Notre 
Dame d'Allencon, Quetigny, Réalcamp, Reneve, 
Saint Gregoire, Saint-Palais, St. Maclou de 
Folleville, Vatan, Vaudemange, Villettes, Yevres 

April (3) 
May (27) 
June (11) 

IE 5/5 
Carrigtwohill, Fermoy, Glanmire, Ovens, 
Scartbarry 

June (4) 
July (1) 

IT 3/3 Conselice, Ozzano dell' Emilia, Voghera May (3) 

LT 5/5 
Akademija, Baisiogala, Kaunas, Radviliskis, 
Siauliai 

Aug (5) 

LV 2/2 Peterlauki, Satiki 
June (1) 
July (1) 

PL 7/10 
Bydgoszcz, Grodkow, Jaroslawiec, Lobez, 
Sosnicowice, Sroda Wielkopolska 

Apr (1) 
June (9) 

RO 1/3 Fantana June (3) 

SE 8/10 
Borrby, Engköping, Falköping, Grästorp, 
Hallstahammar, Saleby, Uppsala, Västerås 

July (2) 
Aug (8) 

SK 4/4 Detva, Krupina, Maly Saris, Rimavska Sobota 
May (1) 
June (2) 
July (1) 

UA 10/10 
Busk, Dalnik, Dolsk, Hajvoron, Hrystynivka, 
Hybalivka, Korobochkino, Lyubar, Nastashka, 
Terezine 

Apr (1) 
May (9) 

UK 16/21 

Beverley, Bildeston, Bury St. Edmunds, 
Caythorpe Heath, Cherhill, Dereham, Fosote, 
Ipswhich, Kings Bromley, Newark-on-Trent, 
Ockbrook, Sevenhampton, Stoke by Clare, St. 
Osyth, Watton, Willingale 

April (1) 
May (4) 
June (14) 
July (2) 

 

Table 40: Z. tritici leaf samples collected in Ireland and the United Kingdom from commercial sites in 
the year 2015. 

Country 
No. of 
locations/ 
samples 

Origin Sampling Date 

IE 21/24 

Ballagh Hse, Blarney, Cahir, Carrigtohill, 
Castletownroche, Cruicetown, Daver, Delvin, 
Donerale, Martinstown, Middleton, 
Morganstown, Muchgrange, New Inn, 
Parsonstown, Portaferry, Reynoldstown, 
Riverstick, Salterstown, Scartbarry, 
Watergrasshill 

Mar (24) 

UK 11/13 
Chudleigh, Dunsford, East Allington, Hurcott, 
Ideford, Isham, Ottery St. Mary, Payhembury, 
Powderham, Spaxton, Temple Bruer  

Mar (1) 
Apr (12) 
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Table 41: SDHI sensitive and resistant isolates of P. teres used in sensitivity tests. All isolates were 
analysed in microtiter tests, underlined isolates were additionally used in sensitivity tests in planta. 

Isolate-
ID 

Country Region/Route Year SDHIres QoIres Origin 

Pt 1020 UK North Lophans 1998 no no Trial site 

Pt 1022 UK Swanessey 1998 no no Trial site 

Pt 1522 UK Harrogate-Newark 2004 no no Random QoI 

Pt 1530 FR Calais-Abbeville 2004 no no Random QoI 

Pt 1682 DE Hannover-Kassel 2012 no F129L Random QoI 

Pt 1685 DE Lübeck-Rostock 2012 no F129L Random QoI 

Pt 1719 PL Görlitz-Breslau 2013 no no Random SDHI 

Pt 1720 UK Cambridge-Dover 2013 no no Random SDHI 

Pt 1722 UK Newcastle-Harrogate 2013 no no Random SDHI 

Pt 1724 DE Hannover-Kassel 2013 no no Random SDHI 

Pt 1725 DE Hannover-Kassel 2013 no no Random SDHI 

Pt 1727 BE Brüssel-Aachen 2013 no F129L Random SDHI 

Pt 1728 BE Brüssel-Aachen 2013 no no Random SDHI 

Pt 1732 FR Calais-Lille 2013 no F129L Random SDHI 

Pt 1735 DE Rostock-Greifswald 2013 no no Random SDHI 

Pt 1758 UK East Anglia (North) 2014 no no Random SDHI 

Pt 1830 DE Dortmund-Warburg 2014 no no Random SDHI 

Pt 1850 FR Calais-Lille 2014 no no Random SDHI 

Ptm 1 HU unknown unknown no no CBS 

Ptm 2 HU unknown unknown no no CBS 

Pt 1683 DE unknown 2013 B-H277Y na Trial site 

Pt 1686 DE unknown 2013 B-H277Y na Trial site 

Pt 1687 DE unknown 2013 B-H277Y F129L Trial site 

Pt 1710 FR La Veuve 2013 B-H277Y no Trial site 

Pt 1773 FR Calais-Lille 2014 B-H277Y F129L Random SDHI 

Pt 1852 FR Paris-Reims 2014 B-H277Y no Random SDHI 

Pt 1688 FR La Veuve 2013 C-N75S no Trial site 

Pt 1696 FR La Veuve 2013 C-N75S no Trial site 

Pt 1697 FR La Veuve 2013 C-N75S no Trial site 

Pt 1698 FR La Veuve 2013 C-N75S no Trial site 

Pt 1699 FR La Veuve 2013 C-N75S no Trial site 

Pt 1703 FR Bouges-le-Chateau 2013 C-N75S F129L Trial site 

Pt 1666 DE unknown 2013 C-G79R no Trial site 

Pt 1667 DE unknown 2013 C-G79R no Trial site 

Pt 1669 DE unknown 2013 C-G79R F129L Trial site 

Pt 1670 DE unknown 2013 C-G79R no Trial site 

Pt 1671 DE unknown 2013 C-G79R no Trial site 

Pt 1674 DE unknown 2013 C-G79R F129L Trial site 

Pt 1675 DE unknown 2013 C-G79R no Trial site 

Pt 1678 DE unknown 2013 C-G79R no Trial site 

Pt 1680 DE unknown 2013 C-G79R no Trial site 

Pt 1681 DE unknown 2013 C-G79R no Trial site 

Pt 1706 FR Bouges-le-Chateau 2013 C-G79R no Trial site 

Pt 1723 DE Hannover-Kassel 2013 C-G79R no Random SDHI 

Pt 1726 BE Brüssel-Aachen 2013 C-G79R no Random SDHI 

Pt 1734 DE Lübeck-Rostock 2013 C-G79R no Random SDHI 

Pt 1737 DE Greifswald-Neubranden. 2013 C-G79R no Random SDHI 

Pt 1762 BE Brüssel-Aachen 2014 C-G79R no Random SDHI 

Pt 1672 DE unknown 2013 C-H134R F129L Trial site 

Pt 1707 FR Bouges-le-Chateau 2013 C-H134R no Trial site 

Pt 1708 FR Bouges-le-Chateau 2013 C-H134R no Trial site 

Pt 1689 FR Bouges-le-Chateau 2013 C-S135R no Trial site 

Pt 1690 FR Bouges-le-Chateau 2013 C-S135R no Trial site 

Pt 1691 FR Bouges-le-Chateau 2013 C-S135R no Trial site 

Pt 1692 FR Bouges-le-Chateau 2013 C-S135R no Trial site 

Pt 1693 FR Bouges-le-Chateau 2013 C-S135R no Trial site 

Pt 1694 DE Soest 2013 C-S135R no Trial site 

Pt 1695 FR La Veuve 2013 C-S135R no Trial site 
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Pt 1700 FR Bouges-le-Chateau 2013 C-S135R no Trial site 

Pt 1701 FR Bouges-le-Chateau 2013 C-S135R no Trial site 

Pt 1702 FR Bouges-le-Chateau 2013 C-S135R no Trial site 

Pt 1704 FR Bouges-le-Chateau 2013 C-S135R no Trial site 

Pt 1705 FR Bouges-le-Chateau 2013 C-S135R F129L Trial site 

Pt 1718 FR Marchélepot 2013 C-S135R F129L Trial site 

Pt 1731 FR St. Quentin-Reims 2013 C-S135R F129L Random SDHI 

Pt 1831 DE Dortmund-Warburg 2014 C-S135R F129L Random SDHI 

Pt 1721 UK Harrogate-Newark 2013 D-D124E F129L Random SDHI 

Pt 1730 FR Bourges-Nevers 2013 D-D124N F129L Random SDHI 

Pt 1738 DE Greifswald-Neubranden. 2013 D-H134R no Random SDHI 

Pt 1739 DE Greifswald-Neubrandenburg 2013 D-H134R no Random SDHI 

Pt 1766 BE Brüssel-Aachen 2014 D-H134R no Random SDHI 

Pt 1823 DE Hannover-Kassel 2014 D-H134R no Random SDHI 

Pt 1733 DE Dortmund-Warburg 2013 D-D145G no Random SDHI 

Pt 1736 DE Rostock-Greifswald 2013 D-D145G no Random SDHI 

Pt 1827 DE Dortmund-Warburg 2014 D-D145G no Random SDHI 

Pt 1835 DE Dortmund-Warburg 2014 D-D145G no Random SDHI 

Pt 1838 DE Magdeburg-Halle 2014 D-D145G no Random SDHI 

Pt 1801 FR Bourges-Nevers 2014 D-E178K F129L Random SDHI 

Pt 1802 FR Bourges-Nevers 2014 D-E178K F129L Random SDHI 

 

Table 42: Pairs of isolates used in competition studies on P. teres Isolates were mixed according to 
collection year (only isolates 2014 were included) and their sampling origin. 

Isolate-
ID 

Cou
ntry 

Origin Date Resistance 
Mixt
ure 

Fitness 
test 

Pt 1819 DE Lübeck-Rostock 2014 C-G79R 
Mix 1 

C-G79R 
against 
sensitive 
isolates 

Pt 1844 DE Sinsheim-Crailsheim 2014 no 

Pt 1787 FR Paris-Reims 2014 C-G79R 
Mix 2 

Pt 1785 FR Paris-Reims 2014 no 

Pt 1765 BE Brüssel-Aachen 2014 C-G79R 
Mix 3 

Pt 1763 BE Brüssel-Aachen 2014 no 

Pt 1819 DE Lübeck-Rostock 2014 C-G79R 
Mix 4 

Pt 1830 DE Dortmund-Warburg 2014 no 

Pt 1853 FR Paris-Reims 2014 C-G79R 
Mix 5 

Pt 1747 UK Edinburgh-Berwick 2014 no 

Pt 1742 IE Dundulk-Dublin-Carrick. 2014 F129L 
Mix 1 

F129L 
against 
sensitive 
isolates 

Pt 1746 UK Edinburgh-Berwick 2014 no 

Pt 1771 FR Calais-Lille 2014 F129L 
Mix 2 

Pt 1804 FR Auch-Toulouse 2014 no 

Pt 1749 UK Edinburgh-Berwick 2014 F129L 
Mix 3 

Pt 1755 UK East Anglia (North) 2014 no 

Pt 1803 FR Bourges-Nevers 2014 F129L 
Mix 4 

Pt 1810 DE Oldenburg i.H.-Hamburg 2014 no 

Pt 1748 UK Edinburgh-Berwick 2014 F129L 
Mix 5 

Pt 1830 DE Dortmund-Warburg 2014 no 

Pt 1784 FR Paris-Reims 2014 C-G79R+F129L 
Mix 1 

Double 
mutants 
against 
F129L 

Pt 1803 FR Bourges-Nevers 2014 F129L 

Pt 1790 FR Reims-Troyes 2014 C-G79R+F129L 
Mix 2 

Pt 1776 FR St.Quentin-Reims 2014 F129L 

Pt 1784 FR Paris-Reims 2014 C-G79R+F129L 
Mix 3 

Pt 1748 UK Edinburgh-Berwick 2014 F129L 

Pt 1782 FR St.Quentin-Reims 2014 C-G79R+F129L 
Mix 1 Double 

mutants 
against 
C-G79R 

Pt 1853 FR Paris-Reims 2014 C-G79R 

Pt 1770 FR Calais-Lille 2014 C-G79R+F129L 
Mix 2 

Pt 1765 BE Brüssel-Aachen 2014 C-G79R 

Pt 1772 FR Calais-Lille 2014 C-G79R+F129L Mix 3 



Supplementary Tables 185 

 

 

Pt 1787 FR Paris-Reims 2014 C-G79R 

Pt 1782 FR St.Quentin-Reims 2014 C-G79R+F129L 
Mix 1 

Double 
mutants 
against 
sensitive 
isolates 

Pt 1804 FR Auch-Toulouse 2014 no 

Pt 1770 FR Calais-Lille 2014 C-G79R+F129L 
Mix 2 

Pt 1785 FR Paris-Reims 2014 no 

Pt 1772 FR Calais-Lille 2014 C-G79R+F129L 
Mix 3 

Pt 1810 DE Oldenburg i.H.-Hamburg 2014 no 

Pt 1790 FR Reims-Troyes 2014 C-G79R+F129L 
Mix 4 

Pt 1755 UK East Anglia (North) 2014 no 

 

Table 43: SDHI sensitive and resistant isolates of Z. tritici used in sensitivity tests. All isolates were 
analysed in microtiter tests, underlined isolates were additionally used in sensitivity tests in planta. 

Isolate-ID Country Region/Route Year SDHIres QoIres Origin 

IPO323 NL unknown 1981 no no reference 

S27 UK unknown 1994 no no reference 

St 1965  unknown  no no  

St 3573 IE Crowleys Mallow 2003 no G143A Trial site 

St 3718 DE Böhl 2004 no no Trial site 

St 4408 SE unknown 2008 no no unknown 

St 5821 IE unknown 2011 no F129L unknown 

St 6027 FR Picardie 2015 B-T268I G143A Random 

St 6032 IE Leinster 2015 B-T268I G143A Trial site 

St 6037 UK South West 2015 B-T268I G143A Random 

St 5548 FR Agnieres 2012 C-T79N G143A Trial site 

St 6030 IE Leinster 2015 C-T79N G143A Trial site 

St 6031 IE Leinster 2015 C-T79N G143A Trial site 

St 6033 IE Leinster 2015 C-T79N G143A Trial site 

St 6034 IE Leinster 2015 C-T79N G143A Trial site 

St 6038 IE Leinster 2015 C-T79N G143A Trial site 

St 5745 DE Grevenbroich 2013 C-N86S G143A Trial site 

St 6035 IE Munster 2015 C-N86S G143A Random 

St 6029 IE Leinster 2015 C-H152R G143A Trial site 

St 6036 IE Oak Park 2015 C-H152R G143A Trial site 

St 6028 UK Scotland 2015 C-V166M G143A Random 

Is1-55-3 

parental isolate St 1965 

2008 B-H267L no 

Lab 
mutants 
2008 
(previous 
studies) 

B1E-7-4 2008 B-H267Y no 

Fp-1-55-1 2008 B-I269V no 

Mt-1-55-1 2008 C-N86K no 

A0-13-5 
parental isolate IPO323 

2008 C-N86K no 

A0-13-7 2008 C-G90R no 

B3-6-18 
parental isolate St 3718 

2008 C-H152R no 

B0-3-7 2008 C-H152R no 

14-X10-3718-4 parental isolate St 3718 2014 C-H152R no 

Lab 
mutants 
2014 
(present 
study) 

14-X10-323-7 
parental isolate IPO323 

2014 C-H152R no 

14-X10-323-9 2014 C-H152R no 

14-X10-3573-2 
parental isolate St 3573 

2014 C-H152R G143A 

14-X10-3573-5 2014 C-H152R G143A 

14-X10-5821-1 
parental isolate St 5821 

2014 C-H152R F129L 

14-X10-5821-3 2014 C-H152R F129L 
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Table 44: Isolates and pairs of isolates used in competition studies on Z. tritici Isolates were mixed 
according to collection year, their sampling origin and resistance status towards QoIs and DMIs (field isolates). 

Isolate-ID Country SDHIres QoIres CYP51 type Mixture 

St 5497 IE no G143A R11 
A 

St 6027 FR B-T268I G143A R11 

St 6059 UK no G143A new 2015 
B 

St 6032 IE B-T268I G143A new 2015 

St 5314 IE no no R9 
C 

St 6029 IE C-H152R G143A R9 

St 5497 IE no G143A R11 
D 

St 6036 IE C-H152R G143A R11 

St 5995 IE no G143A R12 
E 

St 6033 IE C-T79N G143A R12 

St 5497 IE no G143A R11 
F 

St 6034 IE C-T79N G143A R11 
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Zusammenfassung 

Phytopathogene Pilze wie Pyrenophora teres und Zymoseptoria tritici verursachen 

ertragsrelevante Krankheiten an Gerste und Weizen und sind in allen Getreide-

anbaugebieten weltweit verbreitet. Die Bekämpfung der Netzfleckenkrankheit an Gerste, 

ausgelöst durch den Erreger P. teres, und der Septoria-Blattdürre an Weizen, ausgelöst 

durch den Erreger Z. tritici, wird größtenteils durch den Einsatz von Fungiziden 

gewährleistet. Dabei finden die drei „single-site“-Fungizid-Klassen der „Quinone-outside“-

Inhibitoren (QoIs), der Demethylase-Inhibitoren (DMIs) und der Succinat-Dehydrogenase-

Inhibitoren (SDHIs) den größten Einsatz. Durch die rasche Entwicklung der G143A-

Substitution im Cytochrom bc1-Komplex (CYTB) in der europäischen Population von 

Z. tritici haben QoIs bereits stark an Wirkung verloren. In der P. teres Population wurde die 

G143A bisher noch nicht entdeckt, dafür wurde der F129L-Austausch im CYTB 

nachgewiesen. Die F129L-Substitution löst ebenfalls eine QoI-Resistenz aus, jedoch in 

geringerem Maße als die G143A-Substitution. Zudem hat sich die Population von Z. tritici 

über viele Jahre hinweg gegenüber den DMI-Fungiziden angepasst, wodurch auch hier eine 

verringerte Feldwirkung dieser Fungizide in Westeuropa zu beobachten ist. Die SDHIs 

repräsentieren die neuste der drei Fungizid-Klassen und inhibieren die pilzliche Succinat-

Dehydrogenase (SDH), die ein wichtiger Bestandteil der Atmungskette und des Citrat-

Zyklus in Lebewesen darstellt. Die Entstehung von Fungizid-Resistenzen in den 

Pflanzenpathogenen P. teres und Z. tritici gegenüber der Klasse der SDHIs und deren 

Charakterisierung war Bestandteil der vorliegenden Arbeit. Isolate beider Pathogene 

wurden in großangelegten „Monitoring“-Studien gesammelt und umfassten alle wichtigen 

Gersten- und Weizenanbaugebiete Europas. 

SDHI-resistente Isolate zeigten Punktmutationen in den Genen SdhB, SdhC und SdhD, die 

zu Aminosäure-Substitutionen in den SDH-B, SDH-C und SDH-D-Untereinheiten des SDH-

Komplexes führen. Die ersten resistenten Isolate wurden im Jahr 2012 gesammelt und 

führten zu der Aminosäure-Substitution, Histidin zu Tyrosin an Position 277 der SDH-B 

Untereinheit in P. teres (B-H277Y) und Threonin zu Asparagin an Position 79 der SDH-C 

Untereinheit in Z. tritici (C-T79N). Im Falle von P. teres wurde ein starker Anstieg der 

resistenten Isolate in den folgenden Jahren hauptsächlich in Deutschland und in Frankreich 

festgestellt. Die detektierten Punktmutationen führten zu den Aminosäure-Substitutionen 

B-H277Y, C-S73P, C-N75S, C-G79R, C-H134R, C-S135R, D-D124N/E, D-H134R, 

D-G138V, D-D145G und D-E178K. Die Sequenzierung der resistenten Isolate zeigte, dass 

jedes Isolat nur einen Austausch in der SDH aufwies, nie jedoch zwei oder mehr 

Substitutionen in einem Isolat aufzufinden waren. In vitro- und in planta-Sensitivitätsstudien 

wurden durchgeführt und zeigten, dass jede Substitution einen spezifischen Einfluss auf 
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die Sensitivität der SDHIs hatte. Verschiedene SDHIs, die auf dem Markt erhältlich sind, 

wurden verglichen und es zeigte sich, dass sich alle SDHIs in Bezug auf die 

Resistenzstärke der einzelnen Mutationen ähnlich verhielten. Die meisten SDHI-resistenten 

Isolate von P. teres hatten den C-G79R-Austausch. Diese Substitution führte zu einem der 

stärksten Wirkungsverluste aller SDH-Varianten. Substitutionen, die einen schwächerem 

Wirkungsverlust der SDHIs aufwiesen, wie z.B. die C-N75S- und D-D145G-Substitution, 

wurden zusätzlich zur C-G79R häufig in der Feldpopulation gefunden. Die durchgeführten 

Gewächshausstudien deuten darauf hin, dass SDHI-Fungizide immer noch zu einer 

effektiven Bekämpfung der Netzfleckenkrankheit eingesetzt werden können, auch wenn der 

Anteil der resistenten Isolate in der Population hoch ist. Dies gilt vor allem für einen 

präventiven Fungizid-Einsatz und für die „schwach“ und „moderat“ angepassten Isolate, die 

Substitutionen wie z.B. B-H277Y, C-N75S, D-D124N und D-D145G aufweisen. Die SDHI-

resistenten Isolate wurden auf das Vorkommen multipler Resistenzen zu QoI Fungiziden 

untersucht. Es zeigte sich, dass die C-G79R-Mutanten aus dem Jahr 2013 keine F129L-

Substitution im CYTB aufwiesen, wohingegen die Anzahl der doppelt resistenten Isolate 

über die Beobachtungsjahre zunahm. 

Im Vergleich zu dem raschen Aufkommen von SDHI-resistenten Isolaten von P. teres in 

Ländern, wie z.B. Deutschland und Frankreich, scheint die Entwicklung von SDHI-

Resistenzen bei Z. tritici langsamer vonstattenzugehen. Bisher wurden nur wenige SDHI-

resistente Z. tritici Isolate überhaupt gesammelt (42 resistente von 3431 untersuchten 

Isolaten, 1,2%). In Ländern wie Irland, Großbritannien und in den Niederlanden wurde auch 

bei Z. tritici ein Anstieg der resistenten Isolate beobachtet, jedoch nur in geringem Ausmaß. 

Die Aminosäure-Substitutionen B-N225I, B-T268I/A, C-N86S/A, C-T79N/I, C-W80S, 

C-H152R und C-V166M wurden in den resistenten Isolaten aus diesen und weiteren 

Ländern, wie Frankreich und Deutschland, über die Jahre gefunden. Vier Isolate wiesen 

sogar zwei Mutationen in zwei unterschiedlichen Sdh-Genen in einem Isolat auf. Die 

Punktmutationen führten hier zu den Aminosäure-Substitutionen B-R240L+C-T79N, 

B-T268I+C-I29V, B-T268A+C-F23S und C-H152R+D-R47W. Der höchste Wirkungsverlust 

aller SDHIs wurde bei Isolaten mit der C-H152R-Substitution beobachtet. Die am häufigsten 

gefundenen SDH-Varianten, C-T79N und C-N86S, wiesen dagegen deutlich geringere 

Wirkungsverluste, verglichen mit der C-H152R-Substitution, auf.  

Vergleichende Pathogenitätsstudien mit einigen SDHI-resistenten und sensitiven Isolaten 

von P. teres und Z. tritici wurden im Gewächshaus durchgeführt um potenzielle 

Fitnessnachteile der SDHI-resistenten Mutanten zu untersuchen. Quantitative 

Detektionssysteme der SNPs, die zur SDHI-Resistenz führen, wurden entwickelt und 

genutzt, um die Zu- oder Abnahme der resistenten Allel-Varianten in Mischungen von 

resistenten und sensitiven Isolaten zu beobachten. Dabei wurden Gersten- und Weizen-

Sämlinge mit den Isolat-Mischungen inokuliert und über mehrere Vermehrungszyklen ohne 

Fungizid-Einsatz propagiert. Feldisolate von P. teres wiesen eine hohe Variabilität der 
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„Fitness“ unabhängig von ihrem Resistenz-Status auf. Trotz der hohen Schwankungen war 

im Mittel aller Mischungen eine Abnahme der resistenten Allele zu beobachten. Bei Z. tritici 

wurden die Feldisolate auf das Vorkommen von multiplen Resistenzen hin untersucht und 

entsprechend mit SDHI-sensitiven Isolaten mit gleichem Resistenzhintergrund (mit 

Ausnahme der SDHI Resistenz) gemischt. Ein signifikanter Abfall der resistenten Allel-

Varianten war im Falle der B-T268I- und der C-H152R-Substitution zu beobachten. Im 

Gegensatz dazu zeigten C-T79N-Mutanten eine hohe Pathogenität und es wurde keine 

Abnahme der Resistenz-Allele in diesen Mischungen detektiert. Die Ergebnisse deuten 

darauf hin, dass die Fitnessnachteile, ausgelöst durch verschiedene Mutationen, 

unterschiedlich stark sein können. 

Es wurde gezeigt, dass beide phytopathogene Pilzarten eine hohe Anzahl an 

verschiedenen „Target-site“-Mutationen im Falle der SDHI-Resistenz entwickeln können 

und diese sich stark zwischen den beiden Pathogenen unterscheiden (mit der Ausnahme 

der C-N75S in P. teres und der homologen Substitution C-N86S in Z. tritici). Das kann mit 

der spezies-abhängigen Variation des SDH-Enzyms zusammenhängen, aber auch in der 

unterschiedlichen Biologie der Pathogene (z.B. Wirtpflanze, geographisches Vorkommen 

der Krankheiten) und einem unterschiedlichen Fungizid-Einsatz (z.B. Intensität in Gerste 

und Weizen) begründet liegen. Die Abwesenheit von einer dominanten „Target-site“-

Mutation in beiden Pathogenen, wie z.B. im Falle der QoI-Resistenz durch G143A in 

Z. tritici, deutet darauf hin, dass SDHIs in der Zukunft immer noch effektiv zur Kontrolle 

beider Pflanzenkrankheiten eingesetzt werden können. Trotzdem ist ein Anti-Resistenz-

Management für den Einsatz von SDHIs essentiell und sollte nicht nur auf Mischungen und 

Alternierung von Fungiziden beruhen, sondern auch integrierte Bekämpfungsstrategien 

stärker mit einbinden.
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